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Abstract 

Project Code:  RSA5880030 
Project Title:  Epileptic seizure detection and localization from scalp EEG 

signals using complex systems analysis and temporal pattern 
analysis techniques 

Investigator: Asst. Prof. Suparerk Janjarasjitt 
 Department of Electrical and Electronic Engineering, Faculty of 

Engineering, Ubon Ratchathani University 
E-mail address:  suparerk.j@ubu.ac.th 
Project Period: 3 years 

Epilepsy is a chronic neurological disorder that is characterized by 
recurrent seizures. It is a common disorder that affects people of all ages. The 
electroencephalogram (EEG) monitoring is the most common diagnostic test for 
epilepsy. In this research project, scalp EEG data obtained from the CHB-MIT 
Scalp EEG Database (https://www.physionet.org/content/chbmit/1.0.0/) 
containing long-term EEG recordings of subjects with intractable seizures are 
examined. Quantitative features extracted from scalp EEG signals using complex 
systems analysis and temporal pattern analysis techniques are applied for 
epileptic seizure classification and detection. In the computational experiments, 
the sequential feature selection method is applied for feature reduction and 
the support vector machine (SVM) classifier is applied for epileptic seizure 
classification. From the computational results, the quantitative features 
obtained from the temporal pattern analysis provide the best performance on 
epileptic seizure classification and detection. The epileptic seizure detection 
rate achieved is 92.42% while the averaged false detection rate is 0.007/hour. 
Furthermore, the epileptic seizures can be perfectly detected in 17 out of 24 
datasets and there are none of false detection in 20 out of 24 datasets. The 
computational results also show that the computational algorithm for epileptic 
seizure detection developed has a considerable potential to be further applied 
for a real-time epileptic seizure detection and warning system.  

Keywords: electroencephalogram; complex systems analysis; temporal 
pattern analysis; epileptic seizure detection; localization
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เนื้อหางานวิจัย 

1. บทนำ 

1.1 ความสำคัญและที่มาของปัญหา 
โรคลมชัก (หรือในภาษาอังกฤษ เรียกว่า epilepsy) เป็นความบกพร่องทางระบบ

ประสาทเรื้อรัง ที่ซึ่งมีผลกระทบกับคนทุกช่วงวัย [1]  ในประเทศไทยมีผู้ป่วยโรคลมชัก
ประมาณ 380,000 ถึง 470,000 คน [2]  ในขณะที่มีผู้ป่วยโรคลมชักราว ๆ 50 ล้านคนทั่วโลก 
โดยคนจำนวนมากกว่า 2 ล้านคนในประเทศสหรัฐอเมริกาได้รับการวินิจฉัยว่าเป็นลมชักหรือ
เคยมีอาการชักโดยไม่ทราบสาเหตุ [3]  โรคลมชักถูกอธิบายลักษณะด้วยอาการชักที่เกิดขึ้นซ้ำ 
ๆ [1]  การชัก (seizure) คืออาการสั่นโดยที่ไม่ได้ตั้งใจเป็นตอนสั้น ๆ ที่ซึ่งอาจจะเกี่ยวข้องกับ
บางส่วนของร่างกายหรือทุกส่วนของร่างกาย และบางครั้งอาจรวมถึงการสูญเสียสติ [1] โดย
แต่ละตอนเป็นผลของการคายประจุไฟฟ้ามากผิดปกติในกลุ่มของเซลล์สมอง [1]  ลักษณะของ
การชักแปรผันและขึ้นอยู่กับตำแหน่งในสมองที่ความผิดปกติเริ่มต้นขึ้น อีกทั้งยังขึ้นอยู่กับว่า
ความผิดปกตินั้นแพร่กระจายไปไกลมากน้อยเพียงใด  ในขณะที่เกิดอาการชัก เซลล์ประสาท
หรือนิวรอน (neuron) อาจจะมีการคายประจุสูงถึง 500 ครั้งต่อวินาทีหรือมากกว่านั้น [3]  

อาการชักสำหรับบางคนอาจจะเกิดขึ้นเป็นครั้งคราว แต่สำหรับบางคนมีอาการชักเกิดขึ้นเป็น
ร้อยครั้งต่อวัน [3]  

โรคลมชักเป็นความบกพร่องที่เกิดขึ้นได้จากหลายสาเหตุ ซึ่งอาจจะเป็นอะไรก็ได้ที่
รบกวนรูปแบบปกติของกิจกรรมของเซลล์ประสาทนับตั้งแต่ความเจ็บป่วย ความเสียหายของ
สมอง ไปจนถึงพัฒนาการของสมองที่ผิดปกติ [3]  ในปัจจุบันโรคลมชักยังไม่สามารถรักษาได้ 
[3]  วิธีการรักษาโรคลมชักที่มีอยู่ในปัจจบันสามารถควบคุมอาการชักได้ในบางครั้งของร้อยละ 
80 ของผู้ป่วยโรคลมชัก  ผู้ป่วยโรคลมชักประมาณ 600,000 คนในประเทศสหรัฐอเมริกามี
อาการชักที่ไม่สามารถควบคุมได้ [3]  ในผู้ป่วยโรคลมชักจำนวนประมาณร้อยละ 70 อาการชัก
สามารถถูกควบคุมได้ด้วยยาสมัยใหม่และเทคนิคการผ่าตัด [3]  นอกจากนี้ การบำบัดสมัยใหม่
สามารถช่วยผู้ป่วยโรคลมชักได้อย่างมีนัยสำคัญในประมาณร้อยละ 80 โดยมีอาการชักห่างกัน
เป็นเดือนหรือเป็นปี [3]  การบำบัดด้วยการผ่าตัดอาจจะมีประโยชน์สำหรับผู้ป่วยโรคลมชักที่
ตอบสนองต่อการรักษาด้วยยาได้ไม่ดี [1]  สถิติต่าง ๆ แสดงให้เห็นชัดว่าการรักษาที่ดีกว่าที่เป็น
อยู่มีความจำเป็นอย่างยิ่ง [3]  

ภาวะชักสามารถและมีผลกระทบต่อการใช้ชีวิตประจำวันของผู้ป่วยโรคลมชัก ครอบครัว 
และผู้ที่อยู่รอบข้าง [3]  นอกจากนี้ โรคลมชักสามารถเป็นภาวะที่คุกคามต่อชีวิตได้ [3]  ผู้ป่วย
โรคลมชักบางรายอาจจะมีความเสี่ยงสูงในกรณีที่อาการชักยาวผิดปกติหรือการตายฉับพลันโดย
ไม่ทราบสาเหต ุ โดยเฉลี่ยแล้วผู้ป่วยโรคลมชักที่ต่อต้านการรักษามีช่วงชีวิตที่สั้นกว่าปกติ  และ
ยังมีความเสี่ยงสูงขึ้นในการสูญเสียความจำโดยเฉพาะอย่างยิ่งผู้ที่มีอาการชักเริ่มต้นตั้งแต่ในช่วง
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วัยเด็ก  โรคลมชักคิดเป็นร้อยละ 0.5 ของภาวะของโลกทั่วโลก [1]  โรคลมชักมีผลกระทบทาง
เศรษฐศาสตร์อย่างยิ่งทั้งในส่วนของความจำเป็นทางด้านสาธารณสุข การตายก่อนวัยอันควร 
และผลผลิตจากการทำงาน  

วิธีการทดสอบโรคลมชักรวมถึงการวินิจฉัยประเภทของการชักมีอยู่หลายวิธี  การเฝ้า
สังเกตุสัญญาณคลื่นสมอง (electroencephalogram หรือ EEG) เป็นวิธีการวินิฉัยโรคลมชักที่
นิยมมากที่สุด อีกทั้งยังสามารถตรวจวัดความผิดปกติของกิจกรรมหรือสัญญาณไฟฟ้าในสมอง 
[3]  ผู้ป่วยโรคลมชักมักจะมีการเปลี่ยนแปลงจากรูปแบบปกติของคลื่นสมอง ถึงแม้ว่าจะไม่ใช่
ในขณะที่ผู้ป่วยมีอาการชัก [3]  โดยทั่วไปสัญญาณคลื่นสมองเป็นวิธีการตรวจวัดแบบไม่รุกราน
ซึ่งถูกตรวจวัดโดยอาศัยอิเล็กโทรดที่ถูกวางอยู่บนหนังศีรษะ  สัญญาณคลื่นสมองในลักษณะดัง
กล่าวนี้เรียกว่าสัญญาณคลื่นสมองแบบหนังศีรษะ (scalp EEG)  วิธีการตรวจวัดสัญญาณคลื่น
สมองอีกลักษณะหนึ่งเรียกว่า intracranial EEG หรือ electrocorticogram (ECoG) ที่ซึ่งอิ
เล็กโทรดถูกวางอยู่ภายในกะโหลกศีรษะ โดยอาจจะเป็นบนเยื่อหุ้มสมอง (cortex) หรือลึก
เข้าไปในสมอง  

 คุณสมบัติของสัญญาณคลื่นสมองทั้งสองลักษณะ นั่นคือ scalp EEG และ intracranial 

EEG ที่ทำให้การตรวจจับภาวะชักยุ่งยาก คือ ความแปรปรวนระหว่างผู้ป่วยโรคลมชัก [4]  โดย
การตรวจจับภาวะชักโดยใช้สัญญาณคลื่นสมองแบบหนังศีรษะยิ่งมีความท้าทายมากยิ่งขึ้น 
เนื่องจากคุณสมบัติทางกายภาพของสัญญาณ  สัญญาณคลื่นสมองแบบหนังศีรษะมีความอ่อน
ไหวมากต่อกิจกรรมของเซลล์ประสาทบนผิวของสมอง ซึ่งเป็นผลให้สัญญาณคลื่นสมองแบบ
หนังศีรษะตรวจวัดกิจกรรมของเซลล์ประสาทที่อยู่ลึกเข้าไปในสมองได้ไม่ดี  นอกจากนี้ 
สัญญาณคลื่นสมองแบบหนังศีรษะยังอ่อนไหวต่อสัญญาณรบกวนอื่น ๆ เช่น การกระพริบตา 
และกิจกรรมทางไฟฟ้าของกล้ามเนื้อ รวมถึงสัญญาณรบกวนจากสาเหตุอื่น ๆ เช่น การ
เคลื่อนที่ของอิเล็กโทรด และสัญญาณรบกวนจากแหล่งจ่ายกำลัง  ปัญหาหลักอีกปัญหาหนึ่งที่
ทำให้การตรวจจับภาวะชักมีความท้ายทายคือความแตกต่างของลักษณะทางสัณฐานวิทยาของ
การชักระหว่างตัวผู้ป่วย (inter-patient) หรือแม้แต่ภายในตัวผู้ป่วย (intra-patient) เอง [5] 

ความถูกต้องของการวินิจฉัยประเภทของลมชักที่ผู้ป่วยเป็นเป็นสิ่งสำคัญอย่างยิ่งสำหรับ
การหาวิธีการรักษาที่มีประสิทธิภาพ [3]  ในการวินิจฉัยโรคลมชัก แพทย์ผู้เชี่ยวชาญจะทำการ
ตรวจสอบข้อมูลสัญญาณคลื่นสมองที่ถูกบันทึกจากผู้ป่วยโรคลมชักโดยกระทำการตรวจพินิจ 
และระบุรูปแบบเชิงเวลาของสัญญาณคลื่นสมองที่มีลักษณะเฉพาะและคุณลักษณะของการชัก  
ความถี่ของเหตุการณ์ชักและพฤติกรรมของสมองในช่วงระหว่างเหตุการณ์ชักเป็นอีกสาระ
สำคัญหนึ่งที่จำเป็นสำหรับการวินิจฉัยโรคลมชัก  โดยทั่วไปแล้ว ข้อมูลสัญญาณคลื่นสมอง
ปริมาณมากจำเป็นในการวินิจฉัยโรคลมชัก ซึ่งส่งผลให้เป็นภาระในการตรวจสอบข้อมูล
สัญญาณคลื่นสมอง  ดังนั้น การวินิจฉัยโรคลมชักเป็นงานที่ต้องใช้เวลานานนอกเหนือจากความ
เชี่ยวชาญเฉพาะทาง   
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การตรวจจับภาวะชัก (epileptic seizure detection) และการระบุช่วงเวลาของภาวะ
ชัก (localization) เป็นองค์ประกอบที่สำคัญสำหรับการวินิจฉัยโรคลมชัก  นอกจากนี้ การ
ตรวจจับภาวะชักและการระบุช่วงเวลาของภาวะชักโดยอัตโนมัติจะช่วยเสริมระบบการรักษา
บำบัดและการแจ้งเตือน ซึ่งจะช่วยให้ผู้ป่วยโรคลมชักและครอบครัวมีคุณภาพชีวิตที่ดีขึ้น  การ
ตรวจจับภาวะชักอัตโนมัติโดยอาศัยสัญญาณคลื่นสมองแบบหนังศีรษะจะทำให้การเฝ้าสังเกตุที่
บ้านเป็นระยะยาวเป็นไปได้  สิ่งนี้จะช่วยลดค่าใช้จ่ายของผู้ป่วยโรคลมชักได้ [6]  ในขณะที่การ
ตรวจจับการเริ่มต้นของภาวะชัก (epileptic seizure onset) สามารถถูกนำไปใช้เพื่อดำเนิน
การสแกนสมองอัตโนมัติซึ่งเป็นการวินิจฉัยที่สำคัญอีกอย่างหนึ่งสำหรับโรคลมชัก สำหรับการ
ตรวจสอบเพิ่มเติมเพื่อระบุตำแหน่งภายในสมองของจุดกำเนิดของอาการชัก  นอกจากนี้ 
สำหรับระบบบำบัดรักษาแบบวงปิด การตรวจจับการเริ่มต้นของภาวะชักสามารถถูกนำไปใช้
เพื่อกระตุ้นกลไกที่ช่วยยับยั้งการกำเนิดของการชัก  การตรวจจับการเริ่มต้นของภาวะชักยัง
สามารถช่วยในการแจ้งเตือนผู้ป่วยโรคลมชักหรือผู้ดูแลเพื่อทำให้เตรียมตัวได้พร้อมหรือจัดการ
ได้อย่างเหมาะสมเพื่อป้องกันหรือลดความรุนแรงของการชัก 

ในภาพรวม การตรวจจับภาวะชักและการระบุช่วงเวลาของภาวะชักสามารถช่วยบรรเทา
ปัญหาที่มีสาเหตุจากการขาดแคลนแพทย์ผู้เชี่ยวชาญทางด้านประสาทวิทยาได้ และสามารถ
ช่วยเพิ่มความถูกต้องและความรวดเร็วในการวินิจฉัยโรคลมชัก  นอกจากนี้แล้วการตรวจจับ
ภาวะชักและการระบุช่วงเวลาของภาวะชักยังจะช่วยลดค่าใช้จ่ายและภาระในการบำบัดรักษา
โรคลมชักและสาธารณสุขได้  

1.2 วัตถุประสงค์ 
ในโครงการวิจัยนี ้เรามุ่งเน้นที่จะ  

1) พัฒนาขั้นตอนวิธีเชิงคำนวณใหม่สำหรับการสกัดคุณลักษณะเฉพาะของสัญญาณคลื่นสมอง
ที่สัมพันธ์กับภาวะชักของผู้ป่วยโรคลมชัก 

2) พัฒนาขั้นตอนวิธีเชิงคำนวณใหม่สำหรับการตรวจจับภาวะชักของผู้ป่วยโรคลมชักโดยใช้
สัญญาณคลื่นสมอง 

3) พัฒนาขั้นตอนวิธีเชิงคำนวณใหม่สำหรับการระบุการเริ่มต้นและการสิ้นสุดของภาวะชักของ
ผู้ป่วยโรคลมชัก 

4) พัฒนาโปรแกรมวิเคราะห์ข้อมูลสัญญาณคลื่นสมองสำหรับการตรวจจับภาวะชักและการ
ระบุตำแหน่งของภาวะชัก 

1.3 งานวิจัยที่เกี่ยวข้อง 
สัญญาณคลื่นสมองมีบทบาทที่สำคัญอย่างยิ่งในการวินิจฉัยโรคลมชัก [7] เนื่องจากเป็น

ส่วนหนึ่งในการทดสอบวินิจฉัยพื้นฐานสำหรับโรคลมชัก  สัญญาณคลื่นสมองแบบหนังศีรษะ 
(scalp EEG) และสัญญาณคลื่นสมองแบบภายในกะโหลก (intracranial EEG) เป็นสัญญาณ
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คลื่นสมองที่นิยมใช้ในการทดสอบวินิจฉัยสำหรับโรคลมชัก  ในช่วงสองทศวรรษที่ผ่านมา 
สัญญาณคลื่นสมองแบบภายในกะโหลกได้รับความสนใจเพิ่มขึ้นอย่างมาก ส่วนหนึ่งเนื่องมาจาก
คุณลักษณะของสัญญาณคลื่นสมองแบบภายในกะโหลกแสดงถึงกิจกรรมทางไฟฟ้าของสมองได้
ชัดเจนและมีความละเอียดเชิงพื้นที่ได้ดีกว่าเมื่อเปรียบเทียบกับสัญญาณคลื่นสมองแบบหนัง
ศีรษะ   

การศึกษาจำนวนมากได้เสนอวิธีการตรวจจับภาวะชักโดยใช้ข้อมูลสัญญาณคลื่นสมอง
แบบภายในกะโหลก  นอกจากการตรวจจับภาวะชักแล้วยังมีความพยายามในการตรวจจับ
ภาวะชักล่วงหน้าหรือจนถึงการทำนายการเกิดภาวะชัก [8–11]  แต่เมื่อไม่นานมานี้ก็ได้มีการ
ศึกษาที่นำเสนอการตรวจจับภาวะชักโดยใช้สัญญาณคลื่นสมองแบบหนังศีรษะเพิ่มขึ้น  นั่นก็
เป็นเพราะว่าสัญญาณคลื่นสมองแบบหนังศีรษะมีรูปแบบที่เหมาะสมสำหรับการตรวจจับภาวะ
ชักในเวลาจริงมากกว่า  การศึกษาที่เกี่ยวข้องกับวิธีการตรวจจับภาวะชักอัตโนมัติซึ่งมุ่งเน้นไปที่
สัญญาณคลื่นสมองแบบหนังศีรษะได้รายงานผลของความสำเร็จและความท้าทายที่หลากหลาย 
[12–18]  

โดยทั่วไปแล้ว การตรวจจับภาวะชักโดยใช้สัญญาณคลื่นสมองแบ่งออกเป็นสามช่วงหลัก 
ประกอบด้วยการสกัดคุณลักษณะเฉพาะของสัญญาณคลื่นสมอง การจำแนกภาวะชัก และการ
ตรวจจับภาวะชัก  คุณลักษณะเฉพาะพื้นฐานและง่ายที่สุดที่ถูกใช้ในการวิเคราะห์สัญญาณและ
การจำแนก ซึ่งรวมถึงการจำแนกภาวะชัก คือ คุณลักษณะเฉพาะในโดเมนเวลา  คุณลักษณะ
เฉพาะในโดเมนเวลาที่เป็นที่นิยม คือ ค่าเฉลี่ย ค่าความแปรปรวน ค่าสูงสุด ค่าต่ำสุด ค่า
พลังงาน ค่าความยาวเส้น ค่าพลังงานไม่เป็นเชิงเส้น [18–20]  คุณลักษณะเฉพาะที่ดีที่สุด
ประกอบด้วยความยาวเส้น ค่าพลังงานไม่เป็นเชิงเส้น และค่าความแปรปรวน โดยมีค่าความไว
และค่าความจำเพาะเท่ากับ 85.54 และ 52.06 84.39 และ 51.55 และ 95.98 และ 15.67 

ตามลำดับ  ถึงแม้ว่าค่าความแปรปรวนเป็นคุณลักษณะเฉพาะที่ทำให้ได้ค่าความไวมากที่สุดแต่
ก็ทำให้ได้ค่าความจำเพาะต่ำมาก [19]  ค่าพารามิเตอร์ยอร์จ (Hjorth parameter) [21] ซึ่ง
ประกอบด้วยค่ากิจกรรม (activity) ค่าความเคลื่อนไหว (mobility) และค่าความซับซ้อน 
(complexity) เป็นคุณลักษณะเฉพาะในโดเมนเวลาอีกกลุ่มหนึ่งที่ถูกนำไปใช้สำหรับการ
จำแนกและการตรวจจับภาวะชัก [19, 22]  คุณลักษณะเฉพาะดังกล่าวพบว่าสามารถช่วย
ให้การจำแนกและการตรวจจับภาวะชักมีประสิทธิภาพที่ดี [22–23]   

สำหรับการวิเคราะห์และการวินิจฉัยสัญญาณคลื่นสมองตามรูปแบบนิยมแล้ว สัญญาณ
คลื่นสมองจะถูกแบ่งออกเป็นส่วนประกอบย่อยจำนวน 5 ส่วนหรือคลื่นซึ่งสอดคล้องกับส่วน
ประกอบเชิงความถี่ที่แตกต่างกัน นั่นคือ คลื่นเดลต้า (delta) คลื่นเธต้า (theta) คลื่นอัลฟ่า 
(alpha) คลื่นเบต้า (beta) และคลื่นแกมม่า (gamma)  โดยปกติ คลื่นเดลต้า คลื่นเธต้า คลื่น
อัลฟ่า คลื่นเบต้า และคลื่นแกมม่ามีช่วงความถี่ต่ำกว่า 4 เฮิรตซ์ ระหว่าง 4 และ 8 เฮิรตซ์ 
ระหว่าง 8 และ 12 เฮิรตซ์ ระหว่าง 12 และ 30 เฮิรตซ์ และช่วงความถี่สูงกว่า 30 เฮิรตซ์ ตาม
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ลำดับ  ค่ากำลังของสัญญาณคลื่นสมองซึ่งสอดคล้องกับช่วงความถี่หรือแถบสเปกทรัมต่าง ๆ จึง
เป็นคุณลักษณะพื้นฐานที่ใช้ในการตีความและการวิเคราะห์สัญญาณคลื่นสมอง  นอกจากนี้แล้ว 
เทคนิคการวิเคราะห์โดเมนความถี่มีส่วนสำคัญในการวิเคราะห์สัญญาณคลื่นสมอง  ค่ากำลัง
ของสัญญาณคลื่นสมองได้ถูกใช้อย่างกว้างขวางเป็นคุณลักษณะเฉพาะสำหรับการตรวจจับ
ภาวะชัก  

ค่ากำลังของคลื่นแกมม่าถูกพบว่าเป็นช่วงความถี่ที่ได้รับความสนใจสำหรับการตรวจจับ
ภาวะชัก [24]  การเพิ่มขึ้นต่อเนื่องของกิจกรรมในช่วงความถี่ที่สูงกว่า 30 เฮิรตซ์ถูกสังเกตพบ
ในขณะที่จุดเริ่มต้นของการชัก [24]  โดยเฉพาะอย่างยิ่ง ส่วนประกอบย่อยของสัญญาณคลื่น
สมองในช่วงความถี่ระหว่าง 36 และ 44 เฮิรตซ์แสดงให้เห็นว่าเป็นช่วงความถี่ที่เหมาะสมที่สุด
สำหรับการตรวจจับภาวะชัก โดยมีค่าความถูกต้องเท่ากับร้อยละ 96.7 ค่าความไวเท่ากับร้อย
ละ 96.3 และค่าจำเพาะเท่ากับร้อยละ 96.8  ค่าความถี่จุดยอด ค่าความถี่มัธยฐาน และค่า
สเปกทรัลเอนโทรปีซึ่งคำนวณมาจากสเปกทรัมกำลังเป็นอีกคุณลักษณะเฉพาะหนึ่งในโดเมน
ความถี่ที่เป็นที่นิยม [19, 22]   

เทคนิคการวิเคราะห์ในโดเมนร่วมเวลา-ความถี่ได้ถูกนำไประยุกต์ใช้เพื่อแสดงลักษณะ
ของสัญญาณคลื่นสมองที่เกี่ยวข้องกับลมชักในรูปของเวลาและความถี่ร่วมกัน  การแปรเปลี่ยน
ของส่วนประกอบสเปกทรัมในสัญญาณคลื่นสมองที่เกี่ยวข้องภาวะชักสอดคล้องกับสภาวะทาง
กายภาพและทางพยาธิวิทยาของสมองสามารถสังเกตพบได้ โดยเฉพาะอย่างยิ่งภาวะชัก  การ
แปลงเวฟเล็ตซึ่งรวมทั้งการแปลงเวฟเล็ตต่อเนื่องและการแปลงเวฟเล็ตไม่ต่อเนื่องเป็นการแปลง
หนึ่งที่มีสมรรถภาพสูงและถูกนำไปประยุกต์ใช้อย่างกว้างขวางในการประมวลผลและการ
วิเคราะห์สัญญาณ  คุณลักษณะเฉพาะจำนวนมากคำนวณมาจากค่สัมประสิทธิ์เวฟเล็ตโดยตรง 
เช่น ค่ากำลังสัมพัทธ์ ค่าความแปรปรวน และค่าเอนโทรป ี[19]  ค่าความไวและค่าความ
จำเพาะของการจำแนกภาวะชักโดยใช้ค่ากำลังสัมพัทธ์มีค่าสูงถึงร้อยละ 71.32 และ 79.67 

ตามลำดับ  
นอกจากองค์ประกอบของสัญญาณในเชิงความถี่แล้ว สัญญาณคลื่นสมองยังเป็นสัญญาณ

เชิงกายภาพอีกสัญญาณหนึ่งที่แสดงออกถึงพฤติกรรมและรูปแบบที่หลากหลายอย่างน่า
ประหลาดใจ  ถึงแม้ว่ารูปแบบหรือพฤติกรรมที่เฉพาะของสัญญาณคลื่นสมองปรากฎให้เห็น แต่
ยังคงมีความยุ่งยากในการจับยึดรูปแบบหรือพฤติกรรมเหล่านั้นโดยใช้วิธีการวิเคราะห์เชิง
คำนวณหรือตัวชี้วัดเชิงปริมาณในรูปแบบเดิม ๆ [25]  นอกจากนี้ เทคนิคและวิธีการวิเคราะห์
ในรูปแบบเดิม เช่น การวิเคราะห์ฟูเรียร์ อาจจะนำไปสู่การตีความหรือการแปรผลที่ผิดพลาดได ้
[26]  ดังนั้น เทคนิคและวิธีการวิเคราะห์เชิงคำนวณที่ได้รับมาจากหลักการและการศึกษาเกี่ยว
กับระบบซับซ้อน (complex systems) ซึ่งรวมถึงทฤษฎีความยุ่งเหยิง (chaos theory) 

พลศาสตร์ไม่เป็นเชิงเส้น (nonlinear dynamics) และแฟรกทัลส์ (fractals) มีผลกระทบเพิ่ม
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สูงขึ้นต่อการประยุกต์ใช้ในทางชีววิทยาและการแพทย์ [27] โดยโรคลมชักเป็นอีกการประยุกต์
ใช้งานหนึ่งที่สำคัญสำหรับการวิเคราะห์พลศาสตร์ไม่เป็นเชิงเส้น [28] 

ตัวชี้วัดเชิงปริมาณที่นิยมมากที่สุดซึ่งได้มาจากวิธีการที่อาศัยทฤษฎีความยุ่งเหยิงและ
พลศาสตร์ไม่เป็นเชิงเส้นซึ่งถูกนำไปประยุกต์ใช้ในการตรวจจับและการทำนายภาวะชัก คือ ตัว
ยกกำลังลีอาพูนอฟที่มากที่สุด (largest Lyapunov exponent) ค่ามิติแฟรกทัล (fractal 

dimension) และค่ามิติสหสัมพันธ์ (correlation dimension) [22]  ตัวยกกำลังลีอาพูนอฟบ่ง
บอกถึงอัตราของการลู่ออกแบบเลขชี้กำลังของวิธีโคจรในปริภูมิสถานะแบบปิด (close state-

space trajectory) [29]  ในขณะที่ ค่ามิติต่าง ๆ เช่น ค่ามิติแฟรกทัล และค่ามิติสหสัมพันธ ์
เป็นต้น บ่งบอกถึงระดบขั้นความเสรี (degree of freedom) ที่แท้จริงของระบบพลศาสตร์
มูลฐาน  โดยทั่วไปแล้ว ตัวชี้วัดเชิงปริมาณเหล่านี้แสดงถึงลักษณะของความซับซ้อนของระบบ
มูลฐาน  สำหรับกรณีของการประยุกต์ใช้งานในการวิเคราะห์สัญญาณคลื่นสมอง ระบบมูลฐาน
คือสมองนั่นเอง  นอกจากการทำให้ตัวชี้วัดเชิงปริมาณของสัญญาณคลื่นสมองเป็นผลสำหรับ
การตรวจจับภาวะชัก วิธีการที่อาศัยการวิเคราะห์ระบบซับซ้อนและการวิเคราะห์พลศาสตร์ไม่
เป็นเชิงเส้นได้ถูกประยุกต์ใช้เพื่อสร้างความเข้าใจที่ลึกซึ้งมากขึ้นเกี่ยวกับกลไกและพลศาสตร์
ของสมอง [30]  อย่างไรก็ตาม ข้อเสียหลักของวิธีการที่อาศัยการวิเคราะห์ระบบซับซ้อนและ
การวิเคราะห์พลศาสตร์ไม่เป็นเชิงเส้น คือ ความต้องการเชิงคำนวณปริมาณมาก  

หลักการแฟรกทัลส์และตัวชี้วัดเชิงปริมาณที่เกี่ยวข้องได้เพิ่มช่องทางในการตรวจสอบ
และการประยุกต์ใช้งานในทางชีววิทยาและการแพทย์ ซึ่งรวมถึงทางด้านประสาทวิทยา [31–

32]   หลักการทางคณิตศาสตร์ของแฟรกทัลโดยทั่วไปแล้วเกี่ยวข้องวัตถุที่ไม่ปกติซึ่งมีคุณสมบัติ
ทางเรขาคณิตที่เรียกว่า ความไม่แปรเปลี่ยนทางขนาด (scale-invariance) หรือความ
คล้ายคลึงในตนเอง (self-similarity) [27, 33]  รูปแบบแฟรกทัลส์ประกอบด้วยหน่วยย่อย ๆ 
ที่คล้ายคลึงกับโครงสร้างของวัตถุมหทรรศน์ [27] ซึ่งในธรรมชาติสามารถขึ้นมาจากพฤติกรรม
การปรับขนาดเชิงสถิติในปรากฎการณ์ทางกายภาพมูลฐาน [34]  การวิเคราะห์เชิงคำนวณและ
ตัวชี้วัดเชิงปริมาณสำหรับคำนวณหาค่าและอธิบายลักษณะพฤติกรรมเชิงแฟรกทัลส์และความ
ซับซ้อน เช่น ตัวยกกำลังเฮิรสท์ (Hurst exponent) ตัวยกกำลังขนาด (scaling exponent) 

ค่ามิติแฟรกทัล และค่าเอนโทรปีในรูปแบบต่าง ๆ [35–37] ถูกนำมาประยุกต์ใช้ในงานวิจัย
เกี่ยวกับโรคลมชักเพื่ออธิบายลักษณะพฤติกรรมของสมองและสำหรับการตรวจจับภาวะชัก   

กลุ่มของกระบวนการสุ่มแบบไม่แปรเปลี่ยนทางขนาดเชิงสถิติหรือคล้ายคลึงกันในตนเอง
ที่สำคัญ คือ กระบวนการแบบ   [34]  โดยทั่วไปแล้วแบบจำลองของกระบวนการแบบ   

ถูกแสดงแทนโดยใช้การอธิบายลักษณะในโดเมนความถี่และแสดงถึงพฤติกรรมกฎการยกกำลัง 
(power law behavior) ซึ่งสามารถถูกอธิบายลักษณะได้ดังนี้  [38]  การ
แปลงเวฟเล็ตเป็นเครื่องมือสำหรับอธิบายลักษณะสัญญาณที่ไม่แปรเปลี่ยนทางขนาดหรือ
คล้ายคลึงกันในตนเองโดยธรรมชาติ จึงมีบทบาทสำคัญในการศึกษาสัญญาณและระบบที่

1/f 1/f

X(ω) ∝ 1/ ω γ
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คล้ายคลึงกันในตนเอง โดยเฉพาะอย่างยิ่ง กระบวนการแบบ   [36, 39]  ตัวยกกำลังสเปก
ทรัม (spectral exponent)  ซึ่งบ่งบอกถึงการกระจายตัวของกำลังของกระบวนการแบบ   

จากความถี่ต่ำไปความถี่สูงสามารถถูกอธิบายลักษณะได้ในรูปของความชันของกราฟระหว่างค่า
ลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ตและขนาด  

เมื่อไม่นานมานี้ การวิเคราะห์แฟรกทัลโดยอาศัยเวฟเล็ตได้ถูกนำไปประยุกต์ใช้กับข้อมูล
สัญญาณคลื่นสมองแบบภายในกะโหลกของผู้ป่วยโรคลมชักซึ่งได้มาในระหว่างสภาวะทางพยาธิ
วิทยาที่แตกต่างกัน นั่นคือ สภาวะชักและสภาวะระหว่างที่ไม่ชัก และได้มาจากบริเวณส่วนต่าง 
ๆ ของสมองเพื่อตรวจสอบคุณลักษณะการไม่แปรเปลี่ยนทางขนาดของพลศาสตร์ของสมอง 
[40–41]  จากการวิเคราะห์แฟรกทัลโดยอาศัยเวฟเล็ต ผลการทดลองเชิงคำนวณแสดงให้เห็น
ว่าสมองแสดงออกถึงคุณลักษณะการไม่แปรเปลี่ยนทางขนาดที่แตกต่างกันสอดคล้องกับสภาวะ
ทางพยาธิวิทยาที่ต่างกันและบริเวณของสมองที่ต่างกัน  นอกจากนี้ ตัวยกกำลังสเปกทรัมของ
ข้อมูลสัญญาณคลื่นสมองแบบภายในกะโหลกที่สอดคล้องกับสภาวะทางพยาธิวิทยาที่แตกต่าง
กันของสมองซึ่งได้มาจากการวิเคราะห์แฟรกทัลโดยอาศัยเวฟเล็ตมีค่าแตกต่างกันอย่างมีนัย  
แต่อย่างไรก็ตาม ความชันของกราฟระหว่างค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์
เวฟเล็ตและขนาดมีค่าแปรปรวนขึ้นอยู่กับระดับที่ใช้ในการวิเคราะห์แฟรกทัลโดยอาศัยเวฟเล็ต 
[42]  ดังนั้น ค่าประมาณของตัวยกกำลังสเปกทรัมขึ้นอยู่กับช่วงของระดับที่ใช้ในการประมาณ
ค่าความชัน  สิ่งนี้เสริมให้เห็นความแตกต่างระหว่างตัวยกกำลังสเปกทรัมของสัญญาณคลื่น
สมองแบบภายในกะโหลกซึ่งถูกบันทึกในระหว่างเหตุการณ์ชักและในช่วงที่ไม่ได้ชัก  นอกจากนี้ 
การวิเคราะห์แฟรกทัลโดยอาศัยเวฟเล็ตได้ถูกนำไปประยุกต์ใช้และได้แสดงให้เห็นว่าผลต่างของ
ตัวยกกำลังสเปกทรัม 2 ค่าซึ่งคำนวณได้มาจาก 2 ช่วงของระดับการแปลงเวฟเล็ตเป็น
คุณลักษณะเฉพาะเดี่ยวที่ดีที่สุดสำหรับการจำแนกภาวะชัก   

ลักษณะของสัญญาณคลื่นสมองที่เกี่ยวข้องกับลมชักได้ถูกตรวจสอบในพจน์ของจุดต่ำสุด
เฉพาะที่และจุดสูงสุดเฉพาะที่ [43–45]  ในการศึกษาดังกล่าว จุดต่ำสุดเฉพาะที่ถูกนิยามว่าคือ
จุดที่ซึ่งมีค่าแอมปลิจูดน้อยกว่าจุดรอบข้างและจุดสูงสุดเฉพาะที่ถูกนิยามว่าคือจุดที่ซึ่งมีค่า
มากกว่าจุดรอบข้าง  ดังนั้น จุดต่ำสุดเฉพาะที่และจุดสูงสุดเฉพาะที่บ่งบอกถึงจุดยอดของ
สัญญาณที่มีการเปลี่ยนแปลงทิศทางเกิดขึ้น  ค่าคุณลักษณะเฉพาะที่หลากหลายสามารถ
คำนวณออกมาได้โดยตรงจากสัญญาณคลื่นสมองที่เกี่ยวข้องกับลมชักหรือจากผลแปลงของ
สัญญาณ [43–45]  ค่าคุณลักษณะเฉพาะของจุดต่ำสุดเฉพาะที่และจุดสูงสุดเฉพาะที่ต่าง ๆ ได้
ถูกนำไปใช้กับสัญญาณคลื่นสมองทั้งแบบหนังศีรษะและแบบภายในกะโหลก  ผลการทดลอง
เชิงคำนวณแสดงให้เห็นว่าสัญญาณคลื่นสมองมีลักษณะที่แยกออกจากกันได้สอดคล้องกับ
สภาวะทางพยาธิวิทยาของสมองที่แตกต่างกัน [43–45]  นอกจากนี้ ลักษณะที่แยกออกจากกัน
ได้นั้นสามารถถูกนำไปใช้กับการตรวจจับภาวะชักและการระบุการเริ่มต้นและการสิ้นสุดของ
ภาวะชักของผู้ป่วยโรคลมชักได้โดยง่าย ซึ่งข้อดีของวิธีการดังกล่าวคือความง่ายของการคำนวณ  

1/f
γ 1/f
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สำหรับการจำแนกและการตรวจจับแล้วมีเทคนิคและวิธีการจำนวนมากให้เลือกใช้ โดย
เทคนิคการตรวจจับพื้นฐานที่สุดคือการเปรีบเทียบกับค่าขีดแบ่ง  อย่างไรก็ตาม เทคนิคการ
ตรวจจับดังกล่าวนี้ส่งผลมีประสิทธิภาพที่ค่อนข้างแย่เนื่องจากความแปรปรวนของลักษณะของ
สัญญาณคลื่นสมองระหว่างเหตุการณ์การชักหรือความแปรปรวนของลักษณะของโรคลมชัก
ระหว่างผู้ป่วย  เทคนิคการเปรียบเทียบค่าขีดแบ่งแบบปรับตัวเป็นอีกเทคนิคหนึ่งที่ถูกนำมา
ประยุกต์ใช้ในการตรวจจับภาวะชักอัตโนมัติในสัญญาณคลื่นสมองระยะยาว [46]  ค่าความไว
ซึ่งมีค่าสูง นั่นคือ ร้อยละ 87.3 และการตรวจจับเท็จซึ่งมีค่าต่ำ นั่นคือ 0.22 ครั้งต่อชั่วโมงเป็น
ผลที่ได้  นอกจากนี ้เทคนิคและวิธีการเชิงคำนวณสมัยใหม่ซึ่งรวมถึงโครงข่ายประสาทเทียม 
(artificial neural networks) และการเรียนรู้เครื่องจักร (machine learning) ได้ถูกนำมา
ประยุกต์ใช้สำหรับการตรวจจับภาวะชัก เช่น วิธีการจำแนกแบบไม่เป็นเชิงเส้น [24] การ
วิเคราะห์องค์ประกอบหลัก [47] การวิเคราะห์องค์ประกอบอิสระ [48–49] และเครื่องจักรเวก
เตอร์รองรับ [50–52] 

2. วิธีการทดลอง  

2.1 ชุดข้อมูลสัญญาณคลื่นสมอง 
ชุดข้อมูลสัญญาณคลื่นสมองที่ใช้ศึกษาในโครงการวิจัยนี้เป็นชุดข้อมูลของสัญญาณคลื่น

สมองที่ถูกตรวจวัดโดยใช้อิเล็กโทรดชนิดติดไว้บนหนังศีรษะ (scalp EEG) ของผู้ป่วยโรคลมชัก 
ซึ่งถูกนำมาจากฐานข้อมูล CHB-MIT Scalp EEG Database ที่อยู่ที่ https://

www.physionet.org/content/chbmit/1.0.0/ [53]  ชุดข้อมูลสัญญาณคลื่นสมองที่อยู่ใน
ฐานข้อมูลนี้ถูกรวบรวมจากผู้ป่วยโรคลมชักที่มีภาวะชักควบคุมได้ยาก (intractable seizure) 

ที่โรงพยาบาลเด็กบอสตัน (Children's Hospital Boston)  ผู้ป่วยโรคลมชักอยู่ในระหว่างเฝ้า
ติดตามอาการหลังจากที่หยุดการใช้ยาต้านลมชักเพื่อวินิจฉัยคุณลักษณะของภาวะชักของผู้ป่วย
และประเมินการรักษาด้วยการผ่าตัด ข้อมูลสัญญาณคลื่นสมองถูกตรวจวัดและบันทึกโดยใช้
อัตราการชักค่า 256 ตัวอย่างต่อวินาที และความละเอียดระดับ 16 บิต  การจัดวางตำแหน่งขอ
งอิเล็กโทรดในการตรวจวัดและบันทึกข้อมูลสัญญาณคลื่นสมองใช้ระบบนานาชาติ 10-20   

ฐานข้อมูล CHB-MIT Scalp EEG Database บรรจุชุดข้อมูลสัญญาณคลื่นสมองจำนวน 
24 ชุดข้อมูล ซึ่งถูกเรียกว่า CHB01 CHB02 CHB03 ไปจนถึง CHB24  ชุดข้อมูล 23 ชุดข้อมูล
แรก นั่นคือ ยกเว้นชุดข้อมูล CHB24 ถูกตรวจวัดและบันทึกจากผู้ป่วยโรคลมชักจำนวน 22 

ตัวอย่าง ซึ่งแบ่งออกเป็นเพศชายจำนวน 5 ตัวอย่าง มีอายุระหว่าง 3 ถึง 22 ปี และเพศหญิง
จำนวน 17 ตัวอย่าง มีอายุระหว่าง 1.5 ถึง 19 ป ี ชุดข้อมูล CHB01 และชุดข้อมูล CHB21 

เป็นชุดข้อมูลของสัญญาณคลื่นสมองที่ถูกตรวจวัดและบันทึกมาจากตัวอย่างเดียวกัน  ชุดข้อมูล
สัญญาณคลื่นสมองจำนวนทั้งหมด 24 ชุดข้อมูลในฐานข้อมูล CHB-MIT Scalp EEG 

Database ประกอบด้วยภาวะชักจำนวน 198 ครั้ง รวมเป็นข้อมูลสัญญาณคลื่นสมองที่มีความ
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ยาวเท่ากับ 3,537,881 วินาที  รายละเอียดของชุดข้อมูลสัญญาณคลื่นสมองและผู้ป่วยโรคลม
ชักถูกแสดงไว้ในตาราง 2.1   

ตาราง 2.1 รายละเอียดของชุดข้อมูลสัญญาณคลื่นสมองและผู้ป่วยโรคลมชัก 

ชุดข้อมูล อายุ (ปี)
ความยาว

ของข้อมูล 
(วินาที)

จำนวน

ภาวะชัก 
(ครั้ง)

ระยะเวลาของภาวะชัก (วินาที)

มากที่สุด น้อยที่สุด เฉลี่ย

CHB01 11 145946 7 101 27 63.14

CHB02 11 126923 3 82 9 57.33

CHB03 14 136768 7 69 47 57.43

CHB04 22 561792 4 116 49 94.50

CHB05 7 140371 5 120 96 111.60

CHB06 1.5 240228 10 20 12 15.30

CHB07 14.5 241369 3 143 86 108.33

CHB08 3.5 72003 5 264 134 183.80

CHB09 3.5 244319 4 79 62 69.00

CHB10 3 180059 7 89 35 63.86

CHB11 12 125222 3 752 22 268.67

CHB12 2 85276 40 97 13 36.88

CHB13 3 118767 12 70 17 44.58

CHB14 9 93574 8 41 14 21.13

CHB15 16 143996 20 205 31 99.60

CHB16 7 68381 10 14 6 8.40

CHB17 12 75603 3 115 88 97.67

CHB18 18 128249 6 68 30 54.50

CHB19 19 107716 3 81 77 78.67

CHB20 6 99337 8 49 29 36.75

CHB21 13 118156 4 81 12 49.75

CHB22 9 111580 3 74 58 68.00

CHB23 6 95601 7 113 20 60.57

CHB24 – 76645 16 70 16 31.94
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เนื่องจากจำนวนช่องสัญญาณของสัญญาณคลื่นสมองในแต่ละชุดข้อมูลไม่เท่ากัน

และช่องสัญญาณของสัญญาณคลื่นสมองยังแตกต่างกัน ในโครงการวิจัยนี้จึงเลือกใช้ช่อง

สัญญาณของสัญญาณคลื่นสมองจำนวน 18 ช่องสัญญาณซึ่งเหมือนกันใน 22 ชุดข้อมูล 

นั่นคือ CHB01 CHB02 CHB03 CHB04 CHB05 CHB06 CHB07 CHB08 CHB09 

CHB10 CHB11 CHB13 CHB14 CHB16 CHB17 CHB18 CHB19 CHB20 CHB21 

CHB22 CHB23 และ CHB24 โดยจำนวนของช่องสัญญาณและช่องสัญญาณของสัญญาณ

คลื่นสมองที่ใช้สำหรับชุดข้อมูล CHB12 และ CHB15 จะเฉพาะและแตกต่างออกไป  ช่อง

สัญญาณของสัญญาณคลื่นสมองจำนวน 18 ช่องสัญญาณสำหรับ 22 ชุดข้อมูลประกอบ

ด้วย FP1-F7 F7-T7 T7-P7 P7-O1 FP1-F3 F3-C3 C3-P3 P3-O1 FZ-CZ CZ-PZ FP2-

F4 F4-C4 C4-P4 P4-O2 FP2-F8 F8-T8 T8-P8 และ P8-O2  

2.2 กระบวนการประมวลผลและวิเคราะห์ข้อมูลสัญญาณคลื่นสมอง 
กระบวนการประมวลผลและวิเคราะห์ข้อมูลสัญญาณคลื่นสมองในภาพรวมของโครงการ

วิจัยสามารถแบ่งออกเป็น 3 ระยะหลัก ดังแสดงในรูป 2.1 ซึ่งประกอบด้วย  
1) ระยะการคัดเลือกคุณลักษณะเฉพาะ (feature selection stage) 

เป้าหมายของระยะการคัดเลือกคุณลักษณะเฉพาะ คือ การได้มาซึ่งคุณลักษณะเฉพาะ
ของสัญญาณคลื่นสมองที่เหมาะสมเพื่อนำไปประยุกต์ใช้ในการจำแนก ซึ่งจะส่งผลให้ได้รับผล
การจำแนกสัญญาณคลื่นสมองที่เกี่ยวข้องกับภาวะชักและไม่เกี่ยวข้องกับภาวะชักได้อย่างมี
ประสิทธิภาพมากที่สุด  

ขั้นตอนวิธีในระยะการคัดเลือกคุณลักษณะเฉพาะ ประกอบด้วย 2 ขั้นตอน ดังนี้ 
คุณลักษณะเฉพาะต่าง ๆ ถูกคำนวณและสกัดออกมาจากสัญญาณคลื่นสมอง แล้วหลังจากนั้น
คุณลักษณะเฉพาะต่าง ๆ ของสัญญาณคลื่นสมองที่สกัดออกมาได้ถูกนำไปคัดเลือกโดยอ้างอิง
จากผลลัพธ์ของการจำแนกภาวะชัก 
2) ระยะการฝึกสอนตัวจำแนก (classifier training stage) 

เป้าหมายของระยะการฝึกสอนตัวจำแนก คือ การได้มีตัวจำแนกสำหรับแบ่งแยกระหว่าง
สัญญาณคลื่นสมองที่เกี่ยวข้องกับภาวะชัก (สัญญาณคลื่นสมองในขณะที่ตัวอย่างอยู่ในภาวะ
ชัก) และสัญญาณคลื่นสมองที่ไม่เกี่ยวข้องกับภาวะชัก (สัญญาณคลื่นสมองในช่วงเวลาที่
ตัวอย่างไม่อยู่ในภาวะชัก) โดยใช้คุณลักษณะเฉพาะที่ถูกคัดเลือกไว้ในระยะการคัดเลือก
คุณลักษณะเฉพาะ 

ขั้นตอนวิธีในระยะการฝึกสอนตัวจำแนก ประกอบด้วย 2 ขั้นตอน ดังนี ้คุณลักษณะ
เฉพาะที่ถูกคัดเลือกไว้ในระยะการคัดเลือกคุณลักษณะเฉพาะของสัญญาณคลื่นสมองถูกสกัด
ออกมา  แล้วถูกนำไปใช้ฝึกสอนตัวจำแนกเพื่อให้สามารถจำแนกระหว่างเวกเตอร์ของ
คุณลักษณะเฉพาะที่ถูกคัดเลือกไว้ของสัญญาณคลื่นสมองที่เกี่ยวข้องกับภาวะชักและเวกเตอร์ 
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รูป 2.1 กระบวนการประมวลผลและวิเคราะห์ข้อมูลสัญญาณคลื่นสมอง 
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ของคุณลักษณะเฉพาะที่ถูกคัดเลือกไว้ของสัญญาณคลื่นสมองที่ไม่เกี่ยวข้องกับภาวะชักได้ดี
ที่สุด 
3) ระยะการตรวจจับภาวะชัก (detection stage) 

เป้าหมายของระยะการตรวจจับภาวะชัก คือ การนำตัวจำแนกที่ดีที่สุดซึ่งได้รับมาจาก
ระยะการฝึกสอนตัวจำแนกไปใช้ในการจำแนกเวกเตอร์ของคุณลักษณะเฉพาะที่ถูกคัดเลือกไว้
ของสัญญาณคลื่นสมองเพื่อตรวจจับภาวะชัก 

ขั้นตอนวิธีในระยะการตรวจจับภาวะชัก ประกอบด้วย 3 ขั้นตอน ดังนี้ คุณลักษณะ
เฉพาะที่ถูกคัดเลือกไว้ในระยะการคัดเลือกคุณลักษณะเฉพาะของสัญญาณคลื่นสมองถูกสกัด
ออกมา  แล้วเวกเตอร์ของคุณลักษณะเฉพาะเหล่านั้นของสัญญาณคลื่นสมองถูกนำไปจำแนก
ด้วยตัวจำแนกที่ถูกฝึกสอนมา  ผลจากการจำแนกทำให้ได้ตัวแทนที่จะเป็นสัญญาณคลื่นสมองที่
เกี่ยวข้องกับภาวะชัก  ภาวะชักจะถูกพิจารณาและตัดสินด้วยตัวตัดสินใจที่อาศัยผลการจำแนก
ที่เกิดขึ้นในขั้นตอนสุดท้าย 

2.2.1 คุณลักษณะเฉพาะของสัญญาณคลื่นสมอง 
คุณลักษณะเฉพาะของสัญญาณคลื่นสมองที่ศึกษาและถูกนำไปใช้ในการจำแนกและการ

ตรวจจับภาวะชักแบ่งออกเป็น 3 กลุ่ม คือ ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์
เวฟเล็ต ซึ่งเป็นคุณลักษณะเฉพาะของสัญญาณคลื่นสมองที่ได้มาจากผลการแปลงเวฟเล็ต 
ค่าตัวยกกำลังสเปกทรัม ซึ่งเป็นคุณลักษณะเฉพาะของสัญญาณคลื่นสมองที่ได้มาจากหลักการ
แฟรกทัลส์ซึ่งอาศัยการแปลงเวฟเล็ต และค่าตัวชี้วัดที่เป็นคุณลักษณะเฉพาะของสัญญาณคลื่น
สมองที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลา   
ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต 

สัญญาณคลื่นสมองจะถูกแบ่งแยกออกเป็นส่วนประกอบย่อย ๆ โดยใช้การแปลงเวฟเล็ต
แบบไม่ต่อเนื่อง จำนวน 5 ระดับ ( ) ซึ่งส่งผลให้ได้ส่วนประกอบย่อย จำนวน 6 ส่วน
ประกอบย่อย ดังนี้ ส่วนประกอบย่อยของสัมประสิทธิ์ละเอียด (detail coefficients) จำนวน 5 

ส่วนประกอบย่อย นั่นคือ     และ  และส่วนประกอบ
ย่อยของสัมประสิทธิ์ประมาณ (approximation coefficients) จำนวน 1 ส่วนประกอบย่อย 
นั่นคือ   ฟังก์ชันเวฟเล็ตแม่แบบที่ใช้ในการแยกส่วนประกอบย่อยของสัญญาณคลื่น
สมอง คือ เวฟเล็ตดอเบอร์ชีส์ อันดับที ่6 (6th order Daubechies wavelets)   

ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ตซึ่งเป็นค่าคุณลักษณะเฉพาะ
ของสัญญาณคลื่นสมอง โดยถูกเขียนแทนด้วย  คำนวณได้จาก  

  (2.1) 

และ  (2.2) 

L = 5

{d5,1} {d5,2} {d5,3} {d5,4} {d5,5}

{a5,5}

λl

λl = log2 (var (dL,l))
λL+1 = log2 (var (aL,L))
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เมื่อ  คือ จำนวนระดับของการแยกส่วนประกอบย่อย นั่นคือ 5 ระดับ และ   

ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต      และ  ของ
สัญญาณคลื่นสมองสัมพันธ์กับช่วงแถบความถี่โดยประมาณระหว่าง 64–128 32–64 16–32 

8–16 4–8 และ 0–4 เฮิรตซ์ ตามลำดับ   
ค่าตัวยกกำลังสเปกทรัม 

ค่าตัวยกกำลังสเปกทรัมของสัญญาณคลื่นสมองจะคำนวณจากค่าลอการิทึมของความ
แปรปรวนของสัมประสิทธิ์เวฟเล็ต  ซึ่งใช้กระบวนการเดียวกันกับการสกัดค่าคุณลักษณะ
เฉพาะในกลุ่มของค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต นั่นคือ การแบ่ง
แยกสัญญาณคลื่นสมองออกเป็นส่วนประกอบย่อย ๆ โดยใช้การแปลงเวฟเล็ตแบบไม่ต่อเนื่อง 
จำนวน 5 ระดับด้วยเวฟเล็ตดอเบอร์ชีส์ อันดับที่ 6   

ค่าตัวยกกำลังสเปกทรัมซึ่งถูกเขียนแทนด้วย  คำนวณมาจากการประมาณค่าความ
ชันของกราฟระหว่างค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต นั่นคือ 

 และค่าระดับของการแยกส่วนประกอบย่อย นั่นคือ  ในช่วงระดับ  และ   

ค่าตัวยกกำลังสเปกทรัมของสัญญาณคลื่นสมอง จำนวน 6 ค่า ซึ่งประกอบด้วย   

   และ  ถูกสกัดออกมา  ค่าความชันของกราฟถูกประมาณค่าโดยใช้การ
ถดถอยเชิงเส้นแบบวิธีกำลังสองน้อยที่สุด (least-squares regression)  

ค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลา 
สัญญาณส่วนประกอบย่อยของสัญญาณคลื่นสมองที่ถูกเขียนแทนด้วย   

   และ  ซึ่งได้มาจากการสร้างกลับสัญญาณโดยใช้เพียงแค่ค่า
สัมประสิทธิ์ละเอียด     และ  และค่าสัมประสิทธิ์
ประมาณ  ตามลำดับ จะถูกนำไปดำเนินการวิเคราะห์รูปแบบเชิงเวลา  ค่าตัวชี้วัด
จำนวน 12 ค่าซึ่งประกอบด้วยค่าเฉลี่ยของแอมพลิจูดของจุดสูงสุดต่ำสุดเฉพาะที่  ค่าราก
กำลังสองเฉลี่ยของแอมพลิจูดของจุดสูงสุดต่ำสุดเฉพาะที่  ค่าความแปรปรวนของแอมพลิ
จูดของจุดสูงสุดต่ำสุดเฉพาะที่  ค่าเฉลี่ยของผลต่างแอมพลิจูดของจุดสูงสุดต่ำสุดเฉพาะที ่

 ค่ารากกำลังสองเฉลี่ยของผลต่างแอมพลิจูดของจุดสูงสุดต่ำสุดเฉพาะที่  ค่าความ
แปรปรวนของแอมพลิจูดของจุดสูงสุดต่ำสุดเฉพาะที่  ค่าเฉลี่ยของระยะห่างระหว่างจุด
สูงสุดต่ำสุดเฉพาะที่  ค่ารากกำลังสองเฉลี่ยของระยะห่างระหว่างจุดสูงสุดต่ำสุดเฉพาะที ่

 ค่าความแปรปรวนของระยะห่างระหว่างจุดสูงสุดต่ำสุดเฉพาะที่  ค่าสูงสุดของระยะ
ห่างระหว่างจุดสูงสุดต่ำสุดเฉพาะที่  ค่าของระยะห่างระหว่างจุดสูงสุดต่ำสุดเฉพาะที ่  

และจำนวนของจุดสูงสุดต่ำสุดเฉพาะที่  ซึ่งคำนวณได้มาจากการวิเคราะห์รูปแบบเชิงเวลา
ของสัญญาณส่วนประกอบย่อยทั้ง 6 สัญญาณของสัญญาณคลื่นสมอง นั่นคือ   

   และ  โดยที่จุดสูงสุดเฉพาะที่  และจุดต่ำสุดเฉพาะที ่  ใน

L l = 1,2,3,…,5
λ1 λ2 λ3 λ4 λ5 λ6

λl

γ(li,lf )

log2 (var (λl)) l li lf
γ(1,3) γ(1,4)

γ(1,5) γ(2,4) γ(2,5) γ(3,5)

{x1} {x2}
{x3} {x4} {x5} {x6}

{d5,1} {d5,2} {d5,3} {d5,4} {d5,5}
{a5,5}

Aavg

Arms

Avar

Davg Drms

Dvar

Iavg

Irms Ivar

Imax Imin

Nχ

{x1} {x2}
{x3} {x4} {x5} {x6} pmax pmin
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โครงการวิจัยนี้นิยามว่าคือจุดที่ซึ่งมีค่าแอมปลิูดมากกว่าและน้อยกว่าจุดรอบข้าง ซึ่งสามารถ
เขียนแทนได้โดย  

  (2.3) 

และ 

  (2.4) 

เมื่อ   

ดังนั้น ค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลาของสัญญาณคลื่นสมองที่จะถูก
นำไปใช้เป็นค่าคุณลักษณะเฉพาะของสัญญาณคลื่นสมองในการจำแนกภาวะการชักมีจำนวน
ทั้งหมด 72 ค่าสำหรับแต่ละช่องสัญญาณของสัญญาณคลื่นสมอง โดยค่าตัวชี้วัด   

         และ  ของสัญญาณส่วนประกอบย่อย 
 จะถูกเขียนแทนด้วย           

 และ  ตามลำดับ  

2.2.2 วิธีการคัดเลือกคุณลักษณะเฉพาะ 
ค่าคุณลักษณะเฉพาะของสัญญาณคลื่นสมองในแต่ละช่องสัญญาณที่ถูกสกัดออกมาได้จะ

ถูกนำไปผ่านกระบวนการคัดเลือกคุณลักษณะเฉพาะเพื่อลดจำนวนของค่าคุณลักษณะเฉพาะ
ของสัญญาณคลื่นสมองซึ่งจะถูกนำไปใช้ในการจำแนกภาวะการชักลง  การลดจำนวนของค่า
คุณลักษณะเฉพาะของสัญญาณคลื่นสมองส่งผลให้เวกเตอร์ของคุณลักษณะเฉพาะของสัญญาณ
คลื่นสมองมีขนาดเล็กลง รวมไปจนถึงความซับซ้อนในการจำแนก ความต้องการสำหรับการ
คำนวณ และระยะเวลาในการคำนวณที่ลดลงด้วย  

วิธีการคัดเลือกคุณลักษณะเฉพาะของสัญญาณคลื่นสมองที่ใช้ในโครงการวิจัยนี้ คือ วิธี
การคัดเลือกคุณลักษณะเฉพาะเชิงลำดับ (sequential feature selection)  ค่าฟังก์ชันเป้า
หมายที่ใช้เป็นค่าอ้างอิงสำหรับการคัดเลือกคุณลักษณะเฉพาะของสัญญาณคลื่นสมอง คือ ค่า
ความสูญเสียแบบสมการกำลังสอง ซึ่งอยู่ในรูปของ  

  (2.5) 

เมื่อ   และ  คือ จำนวนของตัวอย่าง ค่าน้ำหนักสำหรับตัวอย่างลำดับที่  และค่า
คะแนนของการจำแนกสำหรับตัวอย่างลำดับที่  ตามลำดับ  

2.2.3 การจำแนกภาวะชัก 
ตัวจำแนกที่ถูกนำมาใช้ในการจำแนกระหว่างเวกเตอร์ของคุณลักษณะเฉพาะหลักของ

สัญญาณคลื่นสมองในโครงการวิจัยนี ้คือ ตัวจำแนกแบบเครื่องจักรเวกเตอร์รองรับ (support 

pmax = {n = ⌈ s + t
2 ⌉ x[s − 1] < x[n] and x[t + 1] < x[n]}

pmin = {n = ⌈ s + t
2 ⌉ x[s − 1] < x[n] and x[t + 1] < x[n]}

x[s] = x[s + 1] = … = x[n] = x[n + 1] = … = x[t]

Aavg Arms

Avar Davg Drms Dvar Iavg Irms Ivar Imax Imin Nχ

{xl} Aavg,l Arms,l Avar,l Davg,l Drms,l Dvar,l Iavg,l Irms,l Ivar,l Imax,l

Imin,l Nχ,l

loss =
N

∑
k=1

wj (1 − mk)2

N wk mk k
k
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vector machine (SVM) classifier) โดยมีฟังก์ชันฐานหลักเชิงรัศมี (radial basis function) 

ซึ่งมีนิยาม ดังนี้  

  (2.6) 

เป็นฟังก์ชันแก่นกลาง (kernel function)  เวกเตอร์ของคุณลักษณะเฉพาะหลักของสัญญาณ
คลื่นสมองจะถูกจำแนกออกเป็น 2 กลุ่มสอดคล้องกับภาวะชัก นั่นคือ กลุ่มของสัญญาณคลื่น
สมองที่เกี่ยวข้องกับภาวะชัก ซึ่งเป็นกลุ่มตัวอย่างที่เป็นบวกสำหรับการจำแนกนี้ และกลุ่มของ
สัญญาณคลื่นสมองที่ไม่เกี่ยวข้องกับภาวะชัก ซึ่งเป็นกลุ่มตัวอย่างที่เป็นลบสำหรับการจำแนกนี ้ 

2.2.4 การตรวจจับภาวะชัก 
การตรวจจับภาวะชักจะกระทำในรูปแบบของการตรวจจับเวลาจริงซึ่งจะถูกประยุกต์กับ

ผลการจำแนกเวกเตอร์ของคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมอง  การตรวจจับภาวะ
ชักประกอบด้วย 2 ขั้นตอน ได้แก่ การแปรผลการจำแนกโดยอาศัยเทคนิคการออกเสียงข้าง
มาก (majority vote) และการกรองผลการตรวจจับ  ในขั้นตอนของการแปรผลการจำแนก
โดยอาศัยเทคนิคการออกเสียงข้างมาก ผลการจำแนกเวกเตอร์ของคุณลักษณะเฉพาะหลักของ
สัญญาณคลื่นสมองซึ่งมีค่าเท่ากับ 1 แทนผลการจำแนกที่เป็นบวกและมีค่าเท่ากับ 0 แทนผล
การจำแนกที่ลบ ภายในกรอบหน้าต่างเวลาจะถูกแปรผลว่าเป็น 1 หรือ 0 ตามความถี่ของผล
การจำแนก นั่นคือ ผลที่ได้รับจากการแปรผลการจำแนกโดยอาศัยเทคนิคการออกเสียงข้างมาก 

 ของส่วนย่อยที่  ของสัญญาณคลื่นสมองภายในกรอบหน้าต่างเวลาขนาดเท่ากับ  

จะมีค่าเท่ากับ  

  (2.7) 

เมื่อ  คือ ผลการจำแนกเวกเตอร์ของคุณลักษณะเฉพาะหลักของส่วนย่อยที่  ของ
สัญญาณคลื่นสมอง   

ผลที่ได้รับจากการแปรผลการจำแนกโดยอาศัยเทคนิคการออกเสียงข้างมาก คือ ผลการ
ตรวจจับภาวะชักเบื้องต้น โดยการเริ่มต้นของภาวะชักคือตำแหน่งที่ผลของการแปรผลการ
จำแนกโดยอาศัยเทคนิคการออกเสียงข้างมาก  มีค่าเปลี่ยนแปลงจาก 0 เป็น 1 นั่นคือ 
ตำแหน่ง  ที่ซึ่ง  และ  และการสิ้นสุดของภาวะชักคือตำแหน่งที่
ผลของการแปรผลการจำแนกโดยอาศัยเทคนิคการออกเสียงข้างมาก  มีค่าเปลี่ยนแปลง
จาก 1 เป็น 0 นั่นคือ ตำแหน่ง  ที่ซึ่ง  และ   ผลการตรวจจับ
ภาวะชักเบื้องต้นจะถูกกรองในกระบวนการกรองผลการตรวจจับเพื่อกำจัดผลการตรวจจับ
ภาวะชักเบื้องต้นที่อยู่ใกล้กันมากกว่าระยะเวลา  ที่กำหนดไว้ โดยเหตุการณ์ชักซึ่งเป็นผลของ
การตรวจจับภาวะชักเบื้องต้นลำดับที ่  จะถูกนับว่าเป็นภาวะชักจริงก็ต่อเมื่อระยะเวลา
ระหว่างการเริ่มต้นของภาวะชักจากการตรวจจับภาวะชักเบื้องต้นลำดับที่  และการสิ้นสุดของ

K (xj, xk) = exp (−∥xj − xk∥2)

ym[n] n Nw

ym[n] = mode {yp[n − Nw + 1], yp[n − Nw + 2], …, yp[n]}
yp[n] n

ym[n]
n ym[n − 1] = 0 ym[n] = 1

ym[n]
n ym[n − 1] = 1 ym[n] = 0

Tz

n
n
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ภาวะชักในลำดับก่อนหน้ามีค่ามากกว่า   ถ้าหากไม่ใช่ เหตุการณ์ชักซึ่งเป็นผลของการตรวจ
จับภาวะชักเบื้องต้นลำดับที่  จะไม่ผ่านการกรองและไม่ถูกจับว่าเป็นภาวะชักใหม่   

2.3 การวิเคราะห์ข้อมูลสัญญาณคลื่นสมองและการประเมินผล 
การทดลองที่ดำเนินการในโครงการวิจัยนี้แบ่งออกเป็น 3 ลักษณะ ดังนี ้1) กระบวนการ

ประมวลผลและวิเคราะห์ข้อมูลสัญญาณคลื่นสมองเป็นรายช่องสัญญาณของแต่ละชุดข้อมูล 2) 

กระบวนการประมวลผลและวิเคราะห์ข้อมูลสัญญาณคลื่นสมองทุกช่องสัญญาณของแต่ละชุด
ข้อมูล และ 3) กระบวนการประมวลผลและวิเคราะห์ข้อมูลสัญญาณคลื่นสมองของทุกชุดข้อมูล  
การทดลองที่ดำเนินการในลักษณะที ่1 และ 2 เป็นการจำแนกและตรวจจับภาวะชักแบบ
เฉพาะตัวอย่าง (subject-dependent seizure classification and detection) ในขณะที่
การทดลองที่ดำเนินการในลักษณะที ่3 เป็นการจำแนกและตรวจจับภาวะชักแบบไม่ขึ้นอยู่กับ
ตัวอย่าง (subject-independent seizure classification and detection)   

2.3.1 การแบ่งส่วนย่อยของสัญญาณคลื่นสมอง 
สัญญาณคลื่นสมองในทุกช่องสัญญาณของแต่ละชุดข้อมูลจะถูกตัดแบ่งออกเป็นส่วนย่อย 

ๆ ซึ่งมีความยาวเท่ากับ 512 จุด นั่นหมายถึงว่าส่วนย่อยของสัญญาณคลื่นสมองมีระยะเวลา
เท่ากับ 2 วินาที โดยแต่ละส่วนย่อยของสัญญาณคลื่นสมองมีส่วนที่ซ้อนทับกันเป็นความยาว 
256 จุด ซึ่งเทียบเท่ากับระยะเวลา 1 วินาที  ส่วนย่อยทั้งหมดของสัญญาณคลื่นสมองในแต่ละ
ช่องสัญญาณของแต่ละชุดข้อมูลคือชุดข้อมูลสัญญาณคลื่นสมองที่ถูกป้อนเข้าสู่กระบวนการ
ประมวลผลและวิเคราะห์ข้อมูลสัญญาณคลื่นสมองตามที่ได้แสดงไว้ในรูป 2.1  

ชุดข้อมูลสัญญาณคลื่นสมองสำหรับแต่ละชุดข้อมูลถูกแบ่งออกเป็น 3 ชุดข้อมูลย่อย นั่น
คือ ชุดข้อมูลย่อยสำหรับการคัดเลือกคุณลักษณะเฉพาะ (feature selection set) ชุดข้อมูล
ย่อยสำหรับการฝึกสอนตัวจำแนก (training set) และชุดข้อมูลย่อยสำหรับการทดสอบการ
จำแนกภาวะชัก (test set)   

ชุดข้อมูลย่อยสำหรับการคัดเลือกคุณลักษณะเฉพาะประกอบด้วยส่วนย่อยของสัญญาณ
คลื่นสมองในช่วงเวลาที่คาบเกี่ยวกับภาวะชักทุกเหตุการณ์ ที่สามารถแบ่งออกเป็นส่วนย่อยของ
สัญญาณคลื่นสมองตลอดช่วงเวลาที่ภาวะชักเกิดขึ้นซึ่งเป็นกลุ่มของสัญญาณคลื่นสมองที่
เกี่ยวข้องกับภาวะชัก และส่วนย่อยของสัญญาณคลื่นสมองในช่วงเวลาก่อนที่ภาวะชักเริ่มต้น
เป็นระยะเวลา 6 นาทีซึ่งเป็นกลุ่มของสัญญาณคลื่นสมองที่ไม่เกี่ยวข้องกับภาวะชักเพื่อจำกัด
ปริมาณของข้อมูลของกลุ่มตัวอย่างที่เป็นลบไม่ให้มากกว่าปริมาณของข้อมูลของกลุ่มตัวอย่างที่
เป็นบวกมากเกินไปและสร้างสมดุลระหว่างจำนวนของตัวอย่างที่เป็นบวกและลบ  

สำหรับชุดข้อมูลย่อยสำหรับการฝึกสอนตัวจำแนกและชุดข้อมูลย่อยสำหรับการทดสอบ
การจำแนกภาวะชักประกอบด้วยส่วนย่อยของสัญญาณคลื่นสมองที่ถูกแบ่งออกเป็นสองส่วนซึ่ง
เป็นส่วนเติมเต็มของกันและกัน โดยสัดส่วนของข้อมูลสัญญาณคลื่นสมองจะถูกแบ่งตามจำนวน

Tz

n
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ของเหตุการณ์ของภาวะชักทั้งหมดของแต่ละชุดข้อมูล  ส่วนย่อยของสัญญาณคลื่นสมองบริเวณ
รอบแต่ละเหตุการณ์ของภาวะชักซึ่งครอบคลุมทั้งส่วนย่อยของสัญญาณคลื่นสมองที่อยู่ภายใน
ช่วงเวลาก่อนภาวะชัก ขณะเกิดภาวะชักและหลังภาวะชักนั้นจะถูกจัดเป็นชุดข้อมูลย่อยสำหรับ
การทดสอบการจำแนกภาวะชัก และส่วนย่อยของสัญญาณคลื่นสมองอื่น ๆ จะถูกจัดเป็นชุด
ข้อมูลสำหรับการฝึกสอนตัวจำแนก  

2.3.2 การสกัดคุณลักษณะเฉพาะ 
คุณลักษณะเฉพาะของส่วนย่อยของสัญญาณคลื่นสมองในแต่ละช่องสัญญาณของแต่ละ

ชุดข้อมูลที่ถูกสกัดออกมามีจำนวนทั้งหมด 84 ค่า โดยแบ่งออกเป็นค่าลอการิทึมของความ
แปรปรวนของสัมประสิทธิ์เวฟเล็ตจำนวน 6 ค่า ซึ่งประกอบด้วยค่าลอการิทึมของความ
แปรปรวนของสัมประสิทธิ์เวฟเล็ต      และ  ค่าตัวยกกำลังสเปกทรัมจำนวน 6 

ค่า ซึ่งประกอบด้วยค่าตัวยกกำลังสเปกทรัม      และ  และค่าตัวชี้วัดที่
ได้จากการวิเคราะห์รูปแบบเชิงเวลาจำนวน 72 ค่า ซึ่งประกอบด้วยค่าตัวชี้วัด   

         และ   เมื่อ   

คุณลักษณะเฉพาะของส่วนย่อยของสัญญาณคลื่นสมองในแต่ละช่องสัญญาณของแต่ละ
ชุดข้อมูลที่ถูกสกัดออกมาจะถูกนำไปผ่านการคัดเลือก  การคัดเลือกคุณลักษณะเฉพาะของส่วน
ย่อยของสัญญาณคลื่นสมองจะกระทำตามกลุ่มของคุณลักษณะเฉพาะ นั่นคือ กลุ่มของค่า
ลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต กลุ่มของค่าตัวยกกำลังสเปกทรัม และ
กลุ่มของค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลา  

สำหรับการทดลองในลักษณะที่ 1 นั่นคือ กระบวนการประมวลผลและวิเคราะห์ข้อมูล
สัญญาณคลื่นสมองเป็นรายช่องสัญญาณของแต่ละชุดข้อมูล เวกเตอร์ของคุณลักษณะเฉพาะที่
นำไปประยุกต์ใช้ในการจำแนกและตรวจจับภาวะชักจะประกอบขึ้นด้วยค่าคุณลักษณะเฉพาะ
หลักซึ่งเป็นค่าคุณลักษณะเฉพาะที่ถูกคัดเลือกในแต่ละกลุ่มของคุณลักษณะเฉพาะ  ในขณะที่
เวกเตอร์ของคุณลักษณะเฉพาะที่นำไปประยุกต์ใช้ในการจำแนกและตรวจจับภาวะชักสำหรับ
การทดลองในลักษณะที่ 2 นั่นคือ กระบวนการประมวลผลและวิเคราะห์ข้อมูลสัญญาณคลื่น
สมองทุกช่องสัญญาณของแต่ละชุดข้อมูลจะประกอบขึ้นด้วยค่าคุณลักษณะเฉพาะหลักซึ่งเป็น
ค่าคุณลักษณะเฉพาะที่ถูกคัดเลือกในแต่ละกลุ่มของคุณลักษณะเฉพาะจากทุกช่องสัญญาณของ
สัญญาณคลื่นสมองของชุดข้อมูลนั้น ๆ  

2.3.3 การฝึกสอนตัวจำแนกและการจำแนกภาวะชัก 
สอดคล้องกับการแบ่งส่วนย่อยของสัญญาณคลื่นสมองสำหรับชุดข้อมูลย่อยสำหรับการ

ฝึกสอนตัวจำแนกและชุดข้อมูลย่อยสำหรับการทดสอบการจำแนกภาวะชัก การฝึกสอนตัว
จำแนกและการทดสอบการจำแนกภาวะชักจะกระทำคล้ายคลึงกับการทดสอบข้ามแบบทิ้งไว้
หนึ่ง (leave-one-out cross validation) โดยขึ้นกับจำนวนเหตุการณ์ของภาวะชักทั้งหมดใน

λ1 λ2 λ3 λ4 λ5 λ6

γ1,3 γ1,4 γ1,5 γ2,4 γ2,5 γ3,5

Aavg,l Arms,l

Avar,l Davg,l Drms,l Dvar,l Iavg,l Irms,l Ivar,l Imax,l Imin,l Nχ,l l = 1,2,3,…,6
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แต่ละชุดข้อมูล นั่นคือ การฝึกสอนตัวจำแนกและการจำแนกภาวะชักจะกระทำซ้ำเท่ากับ
จำนวนของเหตุการณ์ของภาวะชักทั้งหมด   

ในแต่ละรอบของการฝึกสอนตัวจำแนกและการจำแนกภาวะชัก เวกเตอร์ของคุณลักษณะ
เฉพาะหลักของส่วนย่อยของสัญญาณคลื่นสมองบริเวณรอบเหตุการณ์ของภาวะชักหนึ่งซึ่ง
ครอบคลุมทั้งส่วนย่อยของสัญญาณคลื่นสมองที่อยู่ภายในช่วงเวลาก่อนภาวะชัก ขณะเกิดภาวะ
ชัก และหลังภาวะชักนั้นจะถูกนำไปใช้สำหรับการทดสอบการจำแนกภาวะชัก  เวกเตอร์ของ
คุณลักษณะเฉพาะหลักของส่วนย่อยของสัญญาณคลื่นสมองส่วนที่เหลือจะถูกนำไปใช้สำหรับ
การฝึกสอนตัวจำแนก  

2.3.4 การประเมินประสิทธิภาพในการจำแนกและการตรวจจับภาวะชัก 
ประสิทธิภาพในการจำแนกระหว่างเวกเตอร์ของคุณลักษณะเฉพาะหลักของส่วนย่อยของ

สัญญาณคลื่นสมองที่เกี่ยวข้องกับภาวะชักและเวกเตอร์ของคุณลักษณะเฉพาะหลักของส่วน
ย่อยของสัญญาณคลื่นสมองที่ไม่เกี่ยวข้องกับภาวะชักจะถูกประเมินโดยอาศัยตัววัดที่นิยมใช้ใน
การประเมินประสิทธิภาพในการจำแนกซึ่งประกอบด้วยค่าความถูกต้อง (accuracy) ค่าความ
ไว (sensitivity) ค่าความจำเพาะ (specificity) และค่าคะแนน  โดยค่าความถูกต้อง 
(accuracy) ค่าความไว (sensitivity) ค่าความจำเพาะ (specificity) และค่าคะแนน  

สามารถคำนวณได้จาก  

  (2.8) 

  (2.9) 

  (2.10) 

และ  (2.11) 

ตามลำดับ  นอกจากนี้ ค่าผลคูณระหว่างค่าความไวและค่าความจำเพาะ ซึ่งคำนวณได้ดังแสดง
ในสมการ (2.3) นั่นคือ  

   

จะถูกพิจารณาด้วยเช่นกัน   
ตัววัดที่บ่งบอกถึงความสามารถในการตรวจจับภาวะชักที่นำมาใช้เพื่อประเมิน

ประสิทธิภาพในการตรวจจับภาวะชักประกอบด้วย 2 ค่าหลัก คือ อัตราในการตรวจจับภาวะ
ชัก (detection rate) ความถูกต้องในการตรวจจับภาวะชัก และอัตราบวกเท็จ (false 

positive rate) หรืออัตราในการตรวจจับภาวะชักผิดพลาด  อัตราในการตรวจจับภาวะชักหรือ
ความถูกต้องในการตรวจจับภาวะชัก คือ อัตราส่วนระหว่างจำนวนของเหตุการณ์ของภาวะชัก
ที่ถูกตรวจจับได้อย่างถูกต้องและจำนวนของเหตุการณ์ของภาวะชักทั้งหมด นั่นคือ  เมื่อ 

F1

F1

Ac = TP + TN
TP + TN + FP + FN
Se = TP

TP + FN
Sp = TN

TN + FP
F1 score = 2TP

2TP + FP + FN

SS = Se × Sp = TP
TP + FN

× TN
TN + FP

Zd /ZT
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 คือ จำนวนของเหตุการณ์ของภาวะชักที่ถูกตรวจจับได้อย่างถูก และ  คือ จำนวนของ
เหตุการณ์ของภาวะชักทั้งหมดที่เกิดขึ้น  อัตราบวกเท็จ (false positive rate) หรืออัตราใน
การตรวจจับภาวะชักผิดพลาด คือ อัตราส่วนระหว่างจำนวนของเหตุการณ์ของภาวะชักที่ถูก
ตรวจจับผิดพลาด นั่นคือ ภาวะชักไม่ได้เกิดขึ้น ณ ขณะเวลาที่ถูกตรวจจับนั้น และระยะเวลา
ทั้งหมดของข้อมูลสัญญาณคลื่นสมองที่ทำการวิเคราะห์   

นอกจากนี้ ความสามารถในการระบุช่วงเวลาของภาวะชักที่เกิดขึ้นจะถูกประเมินโดยใช้
ความคลาดเคลื่อนในการระบุเวลาของการเริ่มต้นของภาวะชักและความคลาดเคลื่อนในการ
ระบุเวลาของการสิ้นสุดของภาวะชัก  ความคลาดเคลื่อนในการระบุเวลาของการเริ่มต้นของ
ภาวะชักจะถูกระบุด้วยค่าเฉลี่ยและค่าเฉลี่ยสัมบูรณ์ของผลต่างเวลาในการระบุการเริ่มต้นของ
ภาวะชัก  ในทำนองเดียวกันความคลาดเคลื่อนในการระบุเวลาของการสิ้นสุดของภาวะชักจะ
ถูกระบุด้วยค่าเฉลี่ยและค่าเฉลี่ยสัมบูรณ์ของผลต่างเวลาในการระบุการสิ้นสุดของภาวะชัก  ค่า
เฉลี่ยของผลต่างเวลาในการระบุการเริ่มต้นหรือการสิ้นสุดของภาวะชัก  และค่าเฉลี่ย
สัมบูรณ์ของผลต่างเวลาในการระบุการเริ่มต้นหรือการสิ้นสุดของภาวะชัก  คำนวณได้จาก  

  (2.12) 

และ   (2.13) 

เมื่อ  และ  คือ เวลาของการเริ่มต้นหรือการสิ้นสุดของภาวะชักที่ตรวจจับได้ และ
เวลาของการเริ่มต้นหรือการสิ้นสุดของภาวะชักจริง และ  คือ จำนวนของภาวะชักทั้งหมดที่
ตรวจจับได้  ค่าที่ดีที่สุดในการระบุเวลาของการเริ่มต้นและการสิ้นสุดของภาวะชักเป็นอีกหนึ่ง
ตัวชี้วัดของความคลาดเคลื่อนในการระบุเวลาของการเริ่มต้นและการสิ้นสุดของภาวะชัก ซึ่ง
เขียนแทนด้วย  คือค่าที่น้อยที่สุดของค่าสัมบูรณ์ของผลต่างเวลาในการระบุการเริ่มต้น
หรือการสิ้นสุดของภาวะชัก นั่นคือ  

  (2.14) 

3. ผลการทดลอง  

3.1 คุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมอง 
คุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองได้มาจากการคัดเลือกคุณลักษณะเฉพาะ

ของส่วนย่อยของสัญญาณคลื่นสมองซึ่งแบ่งออกเป็น 3 กลุ่ม นั่นคือ ค่าลอการิทึมของความ
แปรปรวนของสัมประสิทธิ์เวฟเล็ต ค่าตัวยกกำลังสเปกทรัม และค่าตัวชี้วัดที่เป็นคุณลักษณะ
เฉพาะของสัญญาณคลื่นสมองที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลา โดยใช้วิธีการคัดเลือก
คุณลักษณะเฉพาะเชิงลำดับ (sequential feature selection)  คุณลักษณะเฉพาะหลักของ

Zd ZT

Δtd
Δta

Δtd = 1
Nd

Nd

∑
k=1

tdetected[k] − tactual[k]

Δta = 1
Nd

Nd

∑
k=1

tdetected[k] − tactual[k]

tdetected tactual

Nd

Δtmin

Δtmin = min { tdetected[k] − tactual[k] }
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สัญญาณคลื่นสมองแบ่งออกเป็น 2 ลักษณะ คือ คุณลักษณะเฉพาะของสัญญาณคลื่นสมองแบบ
รายช่องสัญญาณ และคุณลักษณะเฉพาะของสัญญาณคลื่นสมองแบบทุกช่องสัญญาณ 

3.1.1 คุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองแบบรายช่องสัญญาณ 
คุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองแบบรายช่องสัญญาณ คือ คุณลักษณะ

เฉพาะของส่วนย่อยของแต่ละช่องสัญญาณของสัญญาณคลื่นสมองในแต่ละชุดข้อมูล ซึ่ง
ประกอบด้วยค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต ค่าตัวยกกำลังสเปกทรัม 
และค่าตัวชี้วัดที่เป็นคุณลักษณะเฉพาะของสัญญาณคลื่นสมองที่ได้มาจากการวิเคราะห์รูปแบบ
เชิงเวลา ที่ถูกทำการคัดเลือกโดยมีค่าความสูญเสียแบบสมการกำลังสองเป็นค่าฟังก์ชันเป้า
หมาย  
ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต 

จำนวนเฉลี่ยของค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต     

 และ  ของส่วนย่อยของสัญญาณคลื่นสมองจากทุกช่องสัญญาณของแต่ละชุดข้อมูลที่ถูก
คัดเลือกเป็นคุณลักษณะเฉพาะหลักแสดงอยู่ในตาราง 3.1  นอกจากนี้ ค่าเฉลี่ยของการถูกคัด
เลือกเป็นคุณลักษณะเฉพาะหลักของค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต 

     และ  ของส่วนย่อยของสัญญาณคลื่นสมองในทุกช่องสัญญาณของแต่ละชุด
ข้อมูลแสดงอยู่ในตาราง 3.1  

ตาราง 3.1 ผลการคัดเลือกคุณลักษณะเฉพาะหลักของค่าลอการิทึมของความแปรปรวนของ
สัมประสิทธิ์เวฟเล็ตของสัญญาณคลื่นสมองแบบรายช่องสัญญาณโดยใช้ค่าความ
สูญเสียแบบสมการกำลังสองเป็นค่าฟังก์ชันเป้าหมาย 

λ1 λ2 λ3 λ4

λ5 λ6

λ1 λ2 λ3 λ4 λ5 λ6

ชุดข้อมูล

จำนวนของ

คุณลักษณะ

เฉพาะหลัก

คุณลักษณะเฉพาะ

CHB01 2.667 0.667 0.389 0.278 0.167 0.500 0.667
CHB02 3.278 0.778 0.500 0.222 0.556 0.944 0.278

CHB03 3.333 0.944 0.389 0.389 0.389 0.889 0.333

CHB04 3.500 0.722 0.444 0.500 0.333 1.000 0.500

CHB05 2.444 0.333 0.556 0.278 0.833 0.222 0.222

CHB06 3.556 0.833 0.667 0.833 0.444 0.444 0.333

CHB07 3.111 0.611 0.500 0.500 0.667 0.444 0.389

CHB08 3.944 0.500 0.444 0.722 0.333 0.944 1.000

CHB09 1.222 0.056 0.000 0.000 0.944 0.111 0.111

CHB10 2.889 0.611 0.389 0.389 0.722 0.389 0.389

λ5λ1 λ4λ3 λ6λ2
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จำนวนของค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ตของส่วนย่อยของ
สัญญาณคลื่นสมองจากทุกช่องสัญญาณของแต่ละชุดข้อมูลที่ถูกเลือกเป็นคุณลักษณะเฉพาะ
หลักของสัญญาณคลื่นสมองเฉลี่ยมีจำนวนเท่ากับ 3.454 คุณลักษณะเฉพาะ  ชุดข้อมูล CHB13 

มีจำนวนคุณลักษณะเฉพาะหลักที่ถูกคัดเลือกเฉลี่ยสูงสุด นั่นคือ 5.444 คุณลักษณะเฉพาะ  ใน
ขณะที่ชุดข้อมูล CHB19 มีจำนวนคุณลักษณะเฉพาะหลักที่ถูกคัดเลือกเฉลี่ยต่ำสุด นั่นคือ 
1.000 คุณลักษณะเฉพาะซึ่งหมายความว่ามีเพียงคุณลักษณะเฉพาะหลักเพียงแค่ค่าเดียวที่ถูก
คัดเลือกสำหรับทุกช่องสัญญาณ  

ค่าเฉลี่ยสูงสุดในการถูกคัดเลือกเป็นคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองของ
ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ตของส่วนย่อยของสัญญาณคลื่นสมอง
สำหรับแต่ละชุดข้อมูลถูกเขียนด้วยตัวหนา  ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์
เวฟเล็ตของส่วนย่อยของสัญญาณคลื่นสมอง      และ  มีอัตราในการถูกคัด
เลือกเป็นคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองสูงที่สุดในแต่ละชุดข้อมูลเป็นจำนวน 6 

3 4 7 10 และ 2 ชุดข้อมูล ตามลำดับ  
ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต  ของส่วนย่อยของสัญญาณ

คลื่นสมองเป็นคุณลักษณะเฉพาะที่ถูกคัดเลือกเป็นคุณลักษณะเฉพาะหลักของสัญญาณคลื่น

CHB11 4.056 0.889 0.667 0.500 0.444 1.000 0.556

CHB12 4.889 0.833 0.833 0.833 0.833 0.778 0.778

CHB13 5.444 1.000 0.833 0.944 0.833 0.889 0.944

CHB14 3.278 0.667 0.889 0.444 0.111 0.889 0.278

CHB15 4.889 0.778 0.889 0.778 0.889 0.889 0.667

CHB16 3.500 0.833 0.389 0.833 0.778 0.444 0.222

CHB17 4.778 0.833 0.833 0.778 0.833 0.889 0.611

CHB18 4.889 0.778 0.833 0.611 0.778 1.000 0.889

CHB19 1.000 0.111 0.111 0.722 0.056 0.000 0.000

CHB20 2.111 0.889 0.444 0.222 0.167 0.333 0.056

CHB21 3.833 0.500 0.556 0.722 0.944 0.722 0.389

CHB22 3.444 0.556 0.333 0.556 0.444 1.000 0.556

CHB23 3.889 0.833 0.389 0.500 0.333 0.944 0.889

CHB24 2.944 0.500 0.167 0.389 0.444 0.778 0.667

ชุดข้อมูล

จำนวนของ

คุณลักษณะ

เฉพาะหลัก

คุณลักษณะเฉพาะ

λ5λ1 λ4λ3 λ6λ2

λ1 λ2 λ3 λ4 λ5 λ6

λ5
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สมองมากที่สุด ซึ่งถูกคัดเลือกในชุดข้อมูล CHB02 CHB04 CHB11 CHB14 CHB15 CHB17 

CHB18 CHB22 CHB23 และ CHB24  ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟ
เล็ต  สัมพันธ์กับช่วงแถบความถี่ 4–8 เฮิรตซ์ของสัญญาณคลื่นสมอง  ในขณะที่ค่าลอการิทึม
ของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต  ของส่วนย่อยของสัญญาณคลื่นสมองซึ่งสัมพันธ์
กับช่วงแถบความถี่ 32–64 เฮิรตซ์ของสัญญาณคลื่นสมองเป็นคุณลักษณะเฉพาะที่ถูกคัดเลือก
เป็นคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองน้อยที่สุด  
ค่าตัวยกกำลังสเปกทรัม 

จำนวนเฉลี่ยของค่าตัวยกกำลังสเปกทรัม     และ  ของส่วน
ย่อยของสัญญาณคลื่นสมองจากทุกช่องสัญญาณของแต่ละชุดข้อมูลที่ถูกคัดเลือกเป็น
คุณลักษณะเฉพาะหลัก และค่าเฉลี่ยของการถูกคัดเลือกเป็นคุณลักษณะเฉพาะหลักของค่าตัว
ยกกำลังสเปกทรัม     และ  ของส่วนย่อยของสัญญาณคลื่นสมองใน
ทุกช่องสัญญาณของแต่ละชุดข้อมูลแสดงอยู่ในตาราง 3.2 โดยค่าเฉลี่ยสูงสุดในการถูกคัดเลือก
เป็นคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองของค่าตัวยกกำลังสเปกทรัมของส่วนย่อย
ของสัญญาณคลื่นสมองสำหรับแต่ละชุดข้อมูลถูกเขียนด้วยตัวหนา 

ตาราง 3.2 ผลการคัดเลือกคุณลักษณะเฉพาะหลักของค่าตัวยกกำลังสเปกทรัมของสัญญาณ
คลื่นสมองแบบรายช่องสัญญาณโดยใช้ค่าความสูญเสียแบบสมการกำลังสองเป็น
ค่าฟังก์ชันเป้าหมาย 

λ5

λ2

γ(1,3) γ(1,4) γ(1,5) γ(2,4) γ(2,5)

γ(1,3) γ(1,4) γ(1,5) γ(2,4) γ(2,5)

ชุดข้อมูล

จำนวนของ

คุณลักษณะ

เฉพาะหลัก

คุณลักษณะเฉพาะ

CHB01 4.556 1.000 0.778 0.778 0.722 0.667 0.611

CHB02 3.556 0.889 0.556 0.667 0.556 0.500 0.389

CHB03 4.778 0.889 0.833 0.722 0.667 0.833 0.833

CHB04 4.944 1.000 0.889 0.722 0.722 0.833 0.778

CHB05 4.722 0.889 0.722 0.611 0.944 0.611 0.944

CHB06 3.444 0.889 0.444 0.611 0.500 0.667 0.333

CHB07 4.500 1.000 0.889 0.778 0.722 0.611 0.500

CHB08 4.389 0.778 0.556 0.722 0.667 0.889 0.778

CHB09 4.667 0.889 0.944 0.611 0.833 0.778 0.611

CHB10 4.667 0.944 0.722 0.444 0.833 0.889 0.833

CHB11 4.333 0.778 0.722 0.722 0.444 0.889 0.778

CHB12 3.667 0.611 0.500 0.778 0.611 0.500 0.667

γ(2,5)γ(1,3) γ(2,4)γ(1,5) γ(3,5)γ(1,4)
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จำนวนของค่าตัวยกกำลังสเปกทรัมของส่วนย่อยของสัญญาณคลื่นสมองจากทุกช่อง
สัญญาณของแต่ละชุดข้อมูลที่ถูกเลือกเป็นคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองเฉลี่ย
มีจำนวนเท่ากับ 4.208 คุณลักษณะเฉพาะ  ชุดข้อมูล CHB24 มีจำนวนคุณลักษณะเฉพาะหลัก
ที่ถูกคัดเลือกเฉลี่ยสูงสุด นั่นคือ 5.167 คุณลักษณะเฉพาะ  ในขณะที่ชุดข้อมูล CHB16 มี
จำนวนคุณลักษณะเฉพาะหลักที่ถูกคัดเลือกเฉลี่ยต่ำสุด นั่นคือ 2.833 คุณลักษณะเฉพาะ  

ค่าตัวยกกำลังสเปกทรัมของส่วนย่อยของสัญญาณคลื่นสมอง  มีอัตราในการถูกคัด
เลือกเป็นคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองโดยใช้ค่าความสูญเสียแบบสมการ
กำลังสองเป็นค่าฟังก์ชันเป้าหมายสูงที่สุด โดยถูกคัดเลือกเป็นคุณลักษณะเฉพาะหลักมากที่สุด
ในจำนวน 12 ชุดข้อมูล นั่นคือ ชุดข้อมูล CHB01 CHB02 CHB03 CHB04 CHB06 CHB07 

CHB10 CHB17 CHB20 CHB22 CHB23 และ CHB24  

ค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลา 
ผลการคัดเลือกคุณลักษณะเฉพาะหลักของค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิง

เวลาของส่วนย่อยของสัญญาณคลื่นสมองโดยใช้ค่าความสูญเสียแบบสมการกำลังสองเป็นค่า
ฟังก์ชันเป้าหมายแสดงอยู่ในตาราง 3.3 และ 3.4 โดยจำนวนเฉลี่ยของค่าตัวชี้วัดที่ได้มาจากการ
วิเคราะห์รูปแบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองจากทุกช่องสัญญาณของแต่ละชุด
ข้อมูลที่ถูกคัดเลือกเป็นคุณลักษณะเฉพาะหลักและค่าเฉลี่ยของการถูกคัดเลือกเป็นคุณลักษณะ
เฉพาะหลักซึ่งแบ่งตามสัญญาณส่วนประกอบย่อย นั่นคือ      

CHB13 4.111 0.556 0.778 0.611 0.667 0.722 0.778
CHB14 3.389 0.722 0.444 0.556 0.389 0.778 0.500

CHB15 4.389 0.667 0.722 0.556 0.833 0.778 0.833
CHB16 2.833 0.556 0.556 0.444 0.278 0.278 0.722
CHB17 4.500 0.889 0.889 0.722 0.778 0.778 0.444

CHB18 4.889 0.833 0.889 0.722 0.778 0.889 0.778

CHB19 3.889 0.556 0.500 0.500 0.556 0.889 0.889

CHB20 3.444 0.944 0.556 0.556 0.444 0.556 0.389

CHB21 3.611 0.556 0.722 0.722 0.611 0.722 0.278

CHB22 4.389 0.889 0.778 0.722 0.500 0.778 0.722

CHB23 4.167 1.000 0.833 0.444 0.389 0.778 0.722

CHB24 5.167 1.000 0.778 0.833 0.778 0.944 0.833

ชุดข้อมูล

จำนวนของ

คุณลักษณะ

เฉพาะหลัก

คุณลักษณะเฉพาะ

γ(2,5)γ(1,3) γ(2,4)γ(1,5) γ(3,5)γ(1,4)

γ(1,3)

{x1} {x2} {x3} {x4} {x5}
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และ  แสดงอยู่ในตาราง 3.3 และค่าเฉลี่ยของการถูกคัดเลือกเป็นคุณลักษณะเฉพาะหลัก
ซึ่งแบ่งตามตัวชี้วัดของการวิเคราะห์รูปแบบเชิงเวลาแสดงอยู่ในตาราง 3.4 โดยค่าเฉลี่ยสูงสุดใน
การถูกคัดเลือกเป็นคุณลักษณะเฉพาะหลักสำหรับแต่ละชุดข้อมูลถูกเขียนด้วยตัวหนา 

ตาราง 3.3 ผลการคัดเลือกคุณลักษณะเฉพาะหลักของค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูป
แบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบรายช่องสัญญาณโดยขึ้นกับ
สัญญาณส่วนประกอบย่อย 

{x6}

ชุดข้อมูล

จำนวนของ

คุณลักษณะ

เฉพาะหลัก

สัญญาณส่วนประกอบย่อย

CHB01 8.889 0.111 0.116 0.083 0.153 0.153 0.125

CHB02 7.000 0.079 0.144 0.060 0.093 0.102 0.106

CHB03 10.500 0.120 0.162 0.134 0.111 0.153 0.194
CHB04 6.611 0.093 0.167 0.093 0.056 0.065 0.079

CHB05 8.278 0.139 0.116 0.162 0.088 0.088 0.097

CHB06 8.444 0.079 0.097 0.116 0.153 0.120 0.139

CHB07 5.944 0.097 0.060 0.097 0.088 0.093 0.060

CHB08 9.056 0.102 0.153 0.134 0.125 0.120 0.120

CHB09 5.056 0.056 0.088 0.111 0.074 0.065 0.028

CHB10 7.111 0.056 0.111 0.139 0.083 0.106 0.097

CHB11 9.778 0.139 0.194 0.125 0.111 0.134 0.111

CHB12 14.500 0.153 0.139 0.185 0.227 0.264 0.241

CHB13 13.833 0.213 0.088 0.157 0.148 0.222 0.324
CHB14 6.167 0.106 0.106 0.074 0.069 0.079 0.079

CHB15 15.056 0.144 0.194 0.148 0.199 0.296 0.273

CHB16 6.500 0.079 0.093 0.106 0.106 0.088 0.069

CHB17 7.056 0.083 0.102 0.111 0.120 0.051 0.120
CHB18 11.611 0.236 0.148 0.125 0.106 0.167 0.185

CHB19 7.667 0.134 0.097 0.171 0.097 0.065 0.074

CHB20 5.278 0.060 0.065 0.051 0.069 0.083 0.111
CHB21 6.389 0.093 0.130 0.116 0.065 0.069 0.060

CHB22 6.500 0.111 0.134 0.074 0.088 0.042 0.093

CHB23 6.167 0.111 0.074 0.060 0.079 0.074 0.116

{x5}{x1} {x4}{x3} {x6}{x2}
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ตาราง 3.4 ผลการคัดเลือกคุณลักษณะเฉพาะหลักของค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูป
แบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบรายช่องสัญญาณโดยขึ้นกับ 
ตัวชี้วัดของการวิเคราะห์รูปแบบเชิงเวลา 

CHB24 8.222 0.097 0.171 0.116 0.069 0.111 0.120

ชุดข้อมูล

จำนวนของ

คุณลักษณะ

เฉพาะหลัก

สัญญาณส่วนประกอบย่อย

{x5}{x1} {x4}{x3} {x6}{x2}

ชุด

ข้อมูล

CHB01 0.120 0.296 0.074 0.157 0.074 0.019 0.000 0.000 0.074 0.481 0.065 0.120

CHB02 0.204 0.139 0.093 0.120 0.083 0.065 0.000 0.000 0.037 0.315 0.065 0.046

CHB03 0.213 0.139 0.083 0.139 0.083 0.019 0.000 0.000 0.065 0.694 0.250 0.065

CHB04 0.083 0.093 0.056 0.019 0.065 0.019 0.009 0.000 0.000 0.583 0.176 0.000

CHB05 0.120 0.185 0.046 0.167 0.083 0.000 0.000 0.000 0.019 0.546 0.185 0.028

CHB06 0.231 0.167 0.139 0.102 0.093 0.074 0.000 0.000 0.056 0.417 0.093 0.037

CHB07 0.204 0.037 0.056 0.065 0.028 0.056 0.000 0.000 0.037 0.407 0.093 0.009

CHB08 0.148 0.102 0.065 0.204 0.111 0.065 0.000 0.000 0.009 0.463 0.315 0.028

CHB09 0.083 0.167 0.083 0.056 0.056 0.056 0.009 0.000 0.111 0.185 0.019 0.019

CHB10 0.065 0.167 0.074 0.074 0.037 0.065 0.000 0.000 0.102 0.481 0.120 0.000

CHB11 0.213 0.231 0.083 0.222 0.148 0.028 0.000 0.000 0.019 0.500 0.176 0.009

CHB12 0.287 0.148 0.083 0.361 0.139 0.009 0.000 0.000 0.000 0.741 0.620 0.028

CHB13 0.222 0.139 0.056 0.167 0.083 0.028 0.000 0.000 0.074 0.787 0.667 0.083

CHB14 0.093 0.074 0.056 0.028 0.046 0.037 0.000 0.000 0.009 0.565 0.102 0.019

CHB15 0.194 0.185 0.102 0.231 0.157 0.056 0.000 0.000 0.037 0.815 0.685 0.046

CHB16 0.157 0.083 0.111 0.083 0.056 0.083 0.000 0.000 0.037 0.389 0.056 0.028

CHB17 0.046 0.093 0.046 0.019 0.009 0.028 0.000 0.000 0.028 0.676 0.231 0.000

CHB18 0.250 0.157 0.056 0.139 0.093 0.028 0.000 0.000 0.037 0.713 0.407 0.056

CHB19 0.167 0.185 0.037 0.065 0.120 0.009 0.000 0.000 0.111 0.444 0.111 0.028

CHB20 0.130 0.102 0.065 0.102 0.019 0.019 0.019 0.000 0.056 0.287 0.019 0.065

CHB21 0.093 0.120 0.065 0.009 0.019 0.056 0.000 0.000 0.009 0.546 0.139 0.009

CHB22 0.056 0.139 0.065 0.037 0.074 0.019 0.000 0.000 0.019 0.593 0.065 0.019

CHB23 0.148 0.120 0.111 0.065 0.037 0.056 0.000 0.000 0.019 0.380 0.065 0.028

IminIvarIavgDrmsAvarAavg NλImaxIrmsDvarDavgArms
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จำนวนของตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลาของส่วนย่อยของสัญญาณ
คลื่นสมองจากทุกช่องสัญญาณของแต่ละชุดข้อมูลที่ถูกเลือกเป็นคุณลักษณะเฉพาะหลักของ
สัญญาณคลื่นสมองเฉลี่ยมีจำนวนเท่ากับ 8.400 คุณลักษณะเฉพาะ  ชุดข้อมูล CHB15 มี
จำนวนคุณลักษณะเฉพาะหลักที่ถูกคัดเลือกเฉลี่ยสูงสุด นั่นคือ 15.056 คุณลักษณะเฉพาะ  ใน
ขณะที่ชุดข้อมูล CHB09 มีจำนวนคุณลักษณะเฉพาะหลักที่ถูกคัดเลือกเฉลี่ยต่ำสุด นั่นคือ 
5.056 คุณลักษณะเฉพาะ   

เมื่อพิจารณาคุณลักษณะเฉพาะที่ถูกคัดเลือกโดยพิจารณาตามสัญญาณส่วนประกอบย่อย 
     และ  ค่าตัวชี้วัดที่สกัดมาจากสัญญาณส่วนประกอบ

ย่อย      และ  มีอัตราในการถูกคัดเลือกเป็นคุณลักษณะ
เฉพาะหลักของสัญญาณคลื่นสมองสูงที่สุดในจำนวน 3 8 6 4 2 และ 5 ชุดข้อมูล โดยค่าตัวชี้
วัดที่สกัดมาจากสัญญาณส่วนประกอบย่อย  ซึ่งสอดคล้องกับช่วงแถบความถี่ 64–128 

เฮิรตซ์ของสัญญาณคลื่นสมองถูกคัดเลือกเป็นคุณลักษณะเฉพาะหลักมากที่สุด  
เมื่อพิจารณาคุณลักษณะเฉพาะที่ถูกคัดเลือกโดยพิจารณาตามตัวชี้วัดของการวิเคราะห์

รูปแบบเชิงเวลา ตัวชี้วัดเชิงเวลาที่มีอัตราในการถูกคัดเลือกเป็นคุณลักษณะเฉพาะหลักของ
สัญญาณคลื่นสมองสูงที่สุด คือ ค่าสูงสุดของระยะห่างระหว่างจุดสูงสุดต่ำสุดเฉพาะที ่  ซึ่งมี
อัตราในการถูกคัดเลือกเป็นคุณลักษณะเฉพาะหลักสูงที่สุดในทุกชุดข้อมูล  ในขณะที่ค่าราก
กำลังสองเฉลี่ยของระยะห่างระหว่างจุดสูงสุดต่ำสุดเฉพาะที่  เป็นคุณลักษณะเฉพาะที่ไม่ถูก
คัดเลือกเป็นคุณเฉพาะหลักในทั้ง 24 ชุดข้อมูล 

3.1.2 คุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองแบบทุกช่องสัญญาณ 
คุณลักษณะเฉพาะซึ่งประกอบด้วยค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟ

เล็ต ค่าตัวยกกำลังสเปกทรัม และค่าตัวชี้วัดที่เป็นคุณลักษณะเฉพาะของสัญญาณคลื่นสมองที่
ได้มาจากการวิเคราะห์รูปแบบเชิงเวลาของส่วนย่อยของทุกช่องสัญญาณของสัญญาณคลื่น
สมองในแต่ละชุดข้อมูลถูกนำมาคัดเลือกเป็นคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมอง
แบบทุกช่องสัญญาณโดยใช้วิธีการคัดเลือกคุณลักษณะเฉพาะเชิงลำดับ (sequential feature 

selection)  

ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต 
จำนวนของช่องสัญญาณคลื่นสมอง จำนวนของคุณลักษณะเฉพาะหลักของสัญญาณคลื่น

สมองที่ถูกคัดเลือก และจำนวนของค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต

CHB24 0.130 0.204 0.056 0.102 0.102 0.065 0.000 0.000 0.009 0.454 0.241 0.009

ชุด

ข้อมูล
IminIvarIavgDrmsAvarAavg NλImaxIrmsDvarDavgArms

{x1} {x2} {x3} {x4} {x5} {x6}
{x1} {x2} {x3} {x4} {x5} {x6}

{x1}

Imax

Irms
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ของส่วนย่อยของทุกช่องสัญญาณของสัญญาณคลื่นสมองสำหรับแต่ละชุดข้อมูลที่ถูกคัดเลือก
เป็นคุณลักษณะเฉพาะแสดงอยู่ในตาราง 3.5  

ตาราง 3.5 ผลการคัดเลือกคุณลักษณะเฉพาะหลักของค่าลอการิทึมของความแปรปรวนของ
สัมประสิทธิ์เวฟเล็ตแบบทุกช่องสัญญาณโดยใช้ค่าความสูญเสียแบบสมการกำลัง
สองเป็นค่าฟังก์ชันเป้าหมาย 

ชุดข้อมูล

จำนวนของ

ช่อง

สัญญาณ

จำนวนของ

คุณลักษณะ

เฉพาะหลัก

คุณลักษณะเฉพาะ

CHB01 3 3 1 0 0 1 0 2

CHB02 2 2 0 1 0 0 1 0

CHB03 3 2 1 0 0 0 2 0

CHB04 2 2 0 0 1 0 1 0

CHB05 2 2 1 0 0 1 0 0

CHB06 3 3 1 1 0 0 1 0

CHB07 2 2 0 0 1 0 1 0

CHB08 3 3 0 0 1 0 1 1

CHB09 1 1 0 0 0 1 0 0

CHB10 2 2 0 0 0 1 1 0

CHB11 3 3 1 0 0 0 1 1

CHB12 15 6 16 18 18 6 12 18

CHB13 6 3 3 1 0 0 0 3

CHB14 3 2 2 0 0 0 1 0

CHB15 16 6 17 16 9 16 12 18

CHB16 3 4 1 0 1 1 1 0

CHB17 3 3 0 1 0 1 1 0

CHB18 2 3 0 1 0 0 1 1

CHB19 1 1 0 0 1 0 0 0

CHB20 2 2 1 0 1 0 0 0

CHB21 3 3 0 1 2 0 1 0

CHB22 2 1 0 0 0 0 2 0

CHB23 3 2 0 0 0 0 1 2

CHB24 2 1 0 0 0 0 2 0

λ4λ3 λ6λ2 λ5λ1
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ช่องสัญญาณที่ถูกคัดเลือกเป็นค่าคุณลักษณะเฉพาะหลักสำหรับค่าลอการิทึมของความ
แปรปรวนของสัมประสิทธิ์เวฟเล็ตของส่วนย่อยของสัญญาณคลื่นสมองมีจำนวนระหว่าง 1 และ 
16 ช่องสัญญาณ โดยส่วนใหญ่จำนวนช่องสัญญาณที่ถูกคัดเลือกเป็นค่าคุณลักษณะเฉพาะหลัก
มีจำนวนเท่ากับ 3 ช่องสัญญาณ  ในขณะที่ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์
เวฟเล็ตของส่วนย่อยของสัญญาณคลื่นสมองที่ถูกคัดเลือกเป็นค่าคุณลักษณะเฉพาะหลักมี
จำนวนตั้งแต่ 1 ไปจนถึง 6 ค่า โดยส่วนใหญ่จำนวนค่าลอการิทึมของความแปรปรวนของ
สัมประสิทธิ์เวฟเล็ตที่ถูกคัดเลือกเป็นค่าคุณลักษณะเฉพาะหลักมีจำนวนเพียง 2 ค่า  ค่า
ลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ตของส่วนย่อยของสัญญาณคลื่นสมอง
เพียงค่าเดียวที่ถูกคัดเลือกเป็นค่าคุณลักษณะเฉพาะหลักสำหรับชุดข้อมูล CHB09 และ CHB19  

ค่าตัวยกกำลังสเปกทรัม 
จำนวนของช่องสัญญาณคลื่นสมอง จำนวนของคุณลักษณะเฉพาะหลักของสัญญาณคลื่น

สมองที่ถูกคัดเลือก และจำนวนของค่าตัวยกกำลังสเปกทรัมของส่วนย่อยของทุกช่องสัญญาณ
ของสัญญาณคลื่นสมองสำหรับแต่ละชุดข้อมูลที่ถูกคัดเลือกเป็นคุณลักษณะเฉพาะแสดงอยู่ใน
ตาราง 3.6  

ตาราง 3.6 ผลการคัดเลือกคุณลักษณะเฉพาะหลักของค่าตัวยกกำลังสเปกทรัมแบบทุกช่อง
สัญญาณโดยใช้ค่าความสูญเสียแบบสมการกำลังสองเป็นค่าฟังก์ชันเป้าหมาย 

ชุดข้อมูล

จำนวนของ

ช่อง

สัญญาณ

จำนวนของ

คุณลักษณะ

เฉพาะหลัก

คุณลักษณะเฉพาะ

CHB01 3 1 3 0 0 0 0 0

CHB02 2 2 1 0 0 0 0 1

CHB03 4 4 0 0 1 1 1 1

CHB04 6 5 2 2 2 1 1 0

CHB05 3 3 1 1 0 0 1 0

CHB06 3 2 1 0 0 0 2 0

CHB07 5 4 2 0 1 1 1 0

CHB08 3 1 0 0 0 0 0 3

CHB09 4 3 2 1 0 2 0 0

CHB10 2 2 2 0 0 0 1 0

CHB11 3 3 0 0 1 0 1 1

CHB12 15 6 9 12 17 6 7 15

CHB13 6 6 1 1 2 1 2 1

γ(2,4)γ(1,5) γ(3,5)γ(1,4) γ(2,5)γ(1,3)
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คล้ายคลึงกับผลการคัดเลือกคุณลักษณะเฉพาะหลักโดยใช้ค่าลอการิทึมของความ
แปรปรวนของสัมประสิทธิ์เวฟเล็ตของส่วนย่อยของสัญญาณคลื่นสมอง  ช่องสัญญาณที่ถูกคัด
เลือกเป็นค่าคุณลักษณะเฉพาะหลักสำหรับค่ายกกำลังสเปกทรัมของส่วนย่อยของสัญญาณคลื่น
สมองมีจำนวนระหว่าง 2 และ 16 ช่องสัญญาณ โดยส่วนใหญ่จำนวนช่องสัญญาณที่ถูกคัดเลือก
เป็นค่าคุณลักษณะเฉพาะหลักมีจำนวนเท่ากับ 3 ช่องสัญญาณ  ในขณะที่ค่ายกกำลังสเปกทรัม
ของส่วนย่อยของสัญญาณคลื่นสมองที่ถูกคัดเลือกเป็นค่าคุณลักษณะเฉพาะหลักมีจำนวนตั้งแต่ 
1 ไปจนถึง 6 ค่า โดยส่วนใหญ่จำนวนยกกำลังสเปกทรัมที่ถูกคัดเลือกเป็นค่าคุณลักษณะเฉพาะ
หลักมีจำนวนเพียง 2 ค่า   
ค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลา 

จำนวนของช่องสัญญาณคลื่นสมอง จำนวนของตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบ
เชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองของทุกช่องสัญญาณที่ถูกคัดเลือกเป็นคุณลักษณะ
เฉพาะหลัก และจำนวนของคุณลักษณะเฉพาะหลักที่ถูกคัดเลือกซึ่งแบ่งตามสัญญาณส่วน
ประกอบย่อยแสดงอยู่ในตาราง 3.7  ในขณะที่ตาราง 3.8 สรุปจำนวนของคุณลักษณะเฉพาะ
หลักที่ถูกคัดเลือกซึ่งแบ่งตามตัวชี้วัดของการวิเคราะห์รูปแบบเชิงเวลา  

ตาราง 3.7 ผลการคัดเลือกคุณลักษณะเฉพาะหลักของค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูป
แบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบทุกช่องสัญญาณโดยขึ้นกับ
สัญญาณส่วนประกอบย่อย 

CHB14 2 2 0 0 0 0 1 1

CHB15 16 6 14 16 11 16 8 14

CHB16 4 3 1 1 0 0 0 2

CHB17 4 2 2 2 0 0 0 0

CHB18 5 5 1 1 0 1 2 1

CHB19 6 4 4 1 0 0 1 1

CHB20 3 2 2 1 0 0 0 0

CHB21 3 2 0 2 0 1 0 0

CHB22 3 3 1 0 0 0 1 1

CHB23 4 2 1 0 0 0 0 3

CHB24 2 3 1 0 1 0 1 0

ชุดข้อมูล

จำนวนของ

ช่อง

สัญญาณ

จำนวนของ

คุณลักษณะ

เฉพาะหลัก

คุณลักษณะเฉพาะ

γ(2,4)γ(1,5) γ(3,5)γ(1,4) γ(2,5)γ(1,3)
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ตาราง 3.8 ผลการคัดเลือกคุณลักษณะเฉพาะหลักของค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูป
แบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบทุกช่องสัญญาณโดยขึ้นกับ 
ตัวชี้วัดของการวิเคราะห์รูปแบบเชิงเวลา 

ชุดข้อมูล

จำนวนของ

ช่อง

สัญญาณ

จำนวนของ

คุณลักษณะ

เฉพาะหลัก

สัญญาณส่วนประกอบย่อย

CHB01 4 5 1 1 1 0 1 1

CHB02 9 6 0 3 5 2 0 1

CHB03 4 3 0 3 3 0 0 0

CHB04 8 6 1 9 1 0 0 3

CHB05 9 7 1 2 13 8 1 0

CHB06 9 9 1 1 2 3 4 12

CHB07 6 7 0 2 5 3 0 1

CHB08 7 6 5 1 0 1 0 4

CHB09 4 5 0 2 1 1 2 0

CHB10 3 5 0 4 9 0 1 0

CHB11 5 4 2 7 0 0 0 0

CHB12 15 12 20 14 10 14 28 22

CHB13 18 12 34 30 22 30 29 5

CHB14 13 8 10 10 0 1 3 1

CHB15 9 10 2 5 2 0 7 7

CHB16 14 8 17 6 0 3 1 2

CHB17 6 8 2 1 2 1 0 2

CHB18 5 5 3 2 1 0 0 1

CHB19 11 6 0 6 4 4 0 0

CHB20 5 3 0 0 0 0 3 2

CHB21 2 8 0 1 1 2 0 0

CHB22 3 2 0 3 0 0 0 0

CHB23 4 3 2 2 0 0 0 1

CHB24 8 8 3 7 2 4 1 0

{x4}{x3} {x6}{x2} {x5}{x1}
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ช่องสัญญาณที่ถูกคัดเลือกเป็นค่าคุณลักษณะเฉพาะหลักสำหรับตัวชี้วัดที่ได้มาจากการ
วิเคราะห์รูปแบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองมีจำนวนระหว่าง 2 และ 18 ช่อง
สัญญาณ และตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่น
สมองที่ถูกคัดเลือกเป็นค่าคุณลักษณะเฉพาะหลักมีจำนวนระหว่าง 2 และ 12 ค่า  โดยส่วนใหญ่
จำนวนของช่องสัญญาณที่ถูกคัดเลือกเป็นค่าคุณลักษณะเฉพาะหลักมีจำนวนเท่ากับ 4 ช่อง

ชุด

ข้อมูล

CHB01 1 2 0 0 1 1 0 0 0 0 0 0

CHB02 2 2 5 1 0 1 0 0 0 0 0 0

CHB03 3 0 1 1 0 0 0 1 0 0 0 0

CHB04 3 3 1 3 1 3 0 0 0 0 0 0

CHB05 1 4 8 0 2 10 0 0 0 0 0 0

CHB06 5 5 3 3 2 2 0 0 1 1 0 1

CHB07 3 1 2 2 1 2 0 0 0 0 0 0

CHB08 5 3 1 0 1 0 0 0 1 0 0 0

CHB09 0 1 3 1 0 1 0 0 0 0 0 0

CHB10 2 3 3 1 1 3 0 0 0 0 0 1

CHB11 4 3 1 1 0 0 0 0 0 0 0 0

CHB12 9 2 1 5 5 0 0 0 1 44 41 0

CHB13 3 1 0 0 1 0 0 0 1 71 73 0

CHB14 3 1 0 1 0 0 0 0 0 9 11 0

CHB15 0 1 0 4 0 0 0 0 0 9 8 1

CHB16 1 1 1 0 0 1 0 0 1 12 12 0

CHB17 1 2 1 0 0 3 0 0 1 0 0 0

CHB18 2 3 0 0 0 0 0 0 0 0 0 2

CHB19 2 3 4 0 1 4 0 0 0 0 0 0

CHB20 1 0 0 0 1 1 0 0 0 1 0 1

CHB21 1 1 1 1 0 0 0 0 0 0 0 0

CHB22 1 1 1 0 0 0 0 0 0 0 0 0

CHB23 1 2 1 0 1 0 0 0 0 0 0 0

CHB24 6 1 3 2 1 4 0 0 0 0 0 0

IminIvarIavgDrmsAvarAavg NλImaxIrmsDvarDavgArms
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สัญญาณ  ในขณะที่จำนวนของตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลาของส่วนย่อย
ของสัญญาณคลื่นสมองที่ถูกคัดเลือกเป็นค่าคุณลักษณะเฉพาะมีจำนวนเท่ากับ 8 ค่า  

เมื่อพิจารณาคุณลักษณะเฉพาะที่ถูกคัดเลือกโดยพิจารณาตามสัญญาณส่วนประกอบย่อย 
     และ  ค่าตัวชี้วัดที่สกัดมาจากสัญญาณส่วนประกอบ

ย่อย  ซึ่งสอดคล้องกับช่วงแถบความถี ่32–64 เฮิรตซ์ของสัญญาณคลื่นสมองถูกคัดเลือก
เป็นคุณลักษณะเฉพาะหลักมากที่สุด  สำหรับตัวชี้วัดที่ได้รับจากการวิเคราะห์รูปแบบเชิงเวลา 
ตัวชี้วัดเชิงเวลาที่มีอัตราในการถูกคัดเลือกเป็นคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมอง
สูงที่สุด คือ ค่าสูงสุดของระยะห่างระหว่างจุดสูงสุดต่ำสุดเฉพาะที่  และค่าต่ำสุดของระยะ
ห่างระหว่างจุดสูงสุดต่ำสุดเฉพาะที่   แต่ถ้าหากไม่นับรวมผลการคัดเลือกคุณลักษณะ
เฉพาะในชุดข้อมูล CHB12 และ CHB13 ซึ่งมีจำนวนของคุณลักษณะเฉพาะหลักสูงกว่าชุด
ข้อมูลอื่น ๆ มาก จะพบว่าค่าเฉลี่ยของแอมพลิจูดของจุดสูงสุดต่ำสุดเฉพาะที่  และค่าราก
กำลังสองเฉลี่ยของแอมพลิจูดของจุดสูงสุดต่ำสุดเฉพาะที่  ตัวชี้วัดเชิงเวลาที่มีอัตราในการ
ถูกคัดเลือกเป็นคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองสูงที่สุด  

3.2 ประสิทธิภาพในการจำแนกคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมอง 
เวกเตอร์ของคุณลักษณะเฉพาะซึ่งประกอบด้วยค่าคุณลักษณะเฉพาะหลักของสัญญาณ

คลื่นสมองของแต่ละชุดข้อมูลที่ถูกคัดเลือกแบบรายช่องสัญญาณและแบบทุกช่องสัญญาณถูก
นำมาประยุกต์ใช้ในการจำแนกภาวะชัก 

3.2.1 การจำแนกคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองแบบรายช่องสัญญาณ 
ประสิทธิภาพในการจำแนกเวกเตอร์ของคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมอง

แบบรายช่องสัญญาณที่ได้มาจากคุณลักษณะเฉพาะทั้ง 3 กลุ่ม นั่นคือ ค่าลอการิทึมของความ
แปรปรวนของสัมประสิทธิ์เวฟเล็ต ค่าตัวยกกำลังสเปกตรัม และค่าตัวชี้วัดที่ได้มาจากการ
วิเคราะห์รูปแบบเชิงเวลาสำหรับแต่ละชุดข้อมูลมีผลดังต่อไปนี้  
ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต 

ค่าความถูกต้อง  ค่าความไว  ค่าความจำเพาะ  ค่าคะแนน  และค่าผลคูณ
ระหว่างค่าความไวและค่าความจำเพาะ  ของการจำแนกเวกเตอร์ของคุณลักษณะเฉพาะ
หลักของสัญญาณคลื่นสมองแบบรายช่องสัญญาณเมื่อใช้ค่าลอการิทึมของความแปรปรวนของ
สัมประสิทธิ์เวฟเล็ตของส่วนย่อยของแต่ละช่องสัญญาณของสัญญาณคลื่นสมองที่ดีที่สุดแสดง
อยู่ในตาราง 3.9  

ตาราง 3.9 ประสิทธิภาพในการจำแนกเวกเตอร์ของค่าลอการิทึมของความแปรปรวนของ
สัมประสิทธิ์เวฟเล็ตหลักของส่วนย่อยของสัญญาณคลื่นสมองแบบรายช่อง
สัญญาณ 

{x1} {x2} {x3} {x4} {x5} {x6}
{x2}

Imax

Imin

Aavg

Arms

Ac Se Sp F1

SS
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ประสิทธิภาพในการจำแนกเวกเตอร์ของคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองที่
แสดงอยู่ในตาราง 3.9 เป็นผลการจำแนกภาวะชักที่ดีที่สุดโดยอ้างอิงจากค่าผลคูณระหว่างค่า
ความไวและค่าความจำเพาะ  ค่าเฉลี่ยของค่าความถูกต้อง  ค่าความไว  ค่าความจำเพาะ 

 ค่าคะแนน  และค่าผลคูณระหว่างค่าความไวและค่าความจำเพาะ  ของการจำแนก
เวกเตอร์ของคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองสำหรับทั้ง 24 ชุดข้อมูลเท่ากับร้อย

ชุดข้อมูล

CHB01 99.833 51.893 99.981 65.726 51.883

CHB02 99.968 83.429 99.991 87.688 83.421

CHB03 99.808 40.831 99.985 55.946 40.825

CHB04 99.953 31.316 100.000 47.600 31.316

CHB05 99.897 77.265 99.989 85.799 77.257

CHB06 99.949 24.540 100.000 39.409 24.540

CHB07 99.947 64.329 99.995 76.588 64.326

CHB08 99.276 53.355 99.873 65.428 53.287

CHB09 99.975 81.429 99.997 88.372 81.427

CHB10 99.950 84.989 99.988 89.535 84.979

CHB11 99.939 92.954 99.984 95.130 92.939

CHB12 98.985 49.901 99.873 63.610 49.838

CHB13 99.628 19.196 100.000 32.209 19.196

CHB14 99.900 49.718 99.995 65.185 49.716

CHB15 99.376 71.670 99.768 76.236 71.504

CHB16 99.899 27.660 99.999 42.975 27.660

CHB17 99.759 43.243 99.988 59.122 43.238

CHB18 99.842 44.444 99.986 59.319 44.438

CHB19 99.865 42.194 99.993 57.971 42.191

CHB20 99.754 19.205 100.000 32.222 19.205

CHB21 99.877 34.483 99.990 49.123 34.480

CHB22 99.941 72.464 99.992 81.967 72.458

CHB23 99.788 58.469 99.975 71.287 58.454

CHB24 99.573 53.131 99.895 63.134 53.075

ความจำเพาะ  
Sp

ความไว  
Se

Se × Sp
ความถูกต้อง  

Ac
คะแนน F1

Ac Se

Sp F1 SS
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ละ 99.778 53.005 99.968 64.649 และ 52.985 ตามลำดับ  ค่าคะแนน  และค่าผลคูณ
ระหว่างค่าความไวและค่าความจำเพาะ  ที่ดีที่สุดคือร้อยละ 95.130 และ 92.939 ตาม
ลำดับ ซึ่งเป็นผลของการจำแนกเวกเตอร์ของคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองใน
ชุดข้อมูล CHB11 โดยมีค่าเฉลี่ยของค่าความถูกต้อง  ค่าความไว  และค่าความจำเพาะ  

เท่ากับร้อยละ 99.939 92.954 และ 99.984 ตามลำดับ   
ค่าตัวยกกำลังสเปกตรัม 

ค่าความถูกต้อง  ค่าความไว  ค่าความจำเพาะ  ค่าคะแนน  และค่าผลคูณ
ระหว่างค่าความไวและค่าความจำเพาะ  ของการจำแนกเวกเตอร์ของคุณลักษณะเฉพาะ
หลักของสัญญาณคลื่นสมองแบบรายช่องสัญญาณเมื่อใช้ค่ายกกำลังสเปกตรัมของส่วนย่อยของ
แต่ละช่องสัญญาณของสัญญาณคลื่นสมองที่ดีที่สุดแสดงอยู่ในตาราง 3.10  

ตาราง 3.10 ประสิทธิภาพในการจำแนกเวกเตอร์ของค่ายกกำลังสเปกตรัมของส่วนย่อยของ
สัญญาณคลื่นสมองแบบรายช่องสัญญาณ 

F1

SS

Ac Se Sp

Ac Se Sp F1

SS

ชุดข้อมูล

CHB01 99.734 13.808 99.999 24.219 13.808

CHB02 99.953 68.000 99.997 79.866 67.998

CHB03 99.708 2.201 100.000 4.306 2.201

CHB04 99.937 6.596 100.000 12.376 6.596

CHB05 99.835 61.989 99.988 75.135 61.982

CHB06 99.941 13.497 100.000 23.784 13.497

CHB07 99.872 5.793 100.000 10.951 5.793

CHB08 98.935 16.991 100.000 29.047 16.991

CHB09 99.915 26.523 99.999 41.690 26.523

CHB10 99.833 36.726 99.992 52.532 36.723

CHB11 99.608 39.308 100.000 56.433 39.308

CHB12 98.315 7.591 99.956 13.797 7.587

CHB13 99.544 1.097 100.000 2.170 1.097

CHB14 99.888 45.198 99.991 60.377 45.194

CHB15 98.936 30.865 99.901 44.773 30.834

CHB16 99.880 12.766 100.000 22.642 12.766

CHB17 99.653 15.541 99.993 26.513 15.540

CHB18 99.802 24.324 99.998 38.942 24.324

ความจำเพาะ  
Sp

ความไว  
Se

Se × Sp
ความถูกต้อง  

Ac
คะแนน F1
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ค่าเฉลี่ยของค่าความถูกต้อง  ค่าความไว  ค่าความจำเพาะ  ค่าคะแนน  และ
ค่าผลคูณระหว่างค่าความไวและค่าความจำเพาะ  ของการจำแนกเวกเตอร์ของคุณลักษณะ
เฉพาะหลักของสัญญาณคลื่นสมองสำหรับทั้ง 24 ชุดข้อมูลเท่ากับร้อยละ 99.655 22.258 

99.991 32.557 และ 22.555 ตามลำดับ  ค่าคะแนน  และค่าผลคูณระหว่างค่าความไวและ
ค่าความจำเพาะ  ที่ดีที่สุดคือร้อยละ 79.866 และ 67.998 ตามลำดับ ซึ่งเป็นผลของการ
จำแนกเวกเตอร์ของคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองในชุดข้อมูล CHB02 โดยมี
ค่าเฉลี่ยของค่าความถูกต้อง  ค่าความไว  และค่าความจำเพาะ  เท่ากับร้อยละ 99.953 

68.000 และ 99.997 ตามลำดับ  
ค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลา 

ค่าความถูกต้อง  ค่าความไว  ค่าความจำเพาะ  ค่าคะแนน  และค่าผลคูณ
ระหว่างค่าความไวและค่าความจำเพาะ  ของการจำแนกเวกเตอร์ของคุณลักษณะเฉพาะ
หลักของสัญญาณคลื่นสมองแบบรายช่องสัญญาณเมื่อใช้ค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูป
แบบเชิงเวลาของส่วนย่อยของแต่ละช่องสัญญาณของสัญญาณคลื่นสมองที่ดีที่สุดแสดงอยู่ใน
ตาราง 3.11  

ตาราง 3.11 ประสิทธิภาพในการจำแนกเวกเตอร์ของค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูป
แบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบรายช่องสัญญาณ 

CHB19 99.795 7.531 100.000 14.008 7.531

CHB20 99.707 3.642 100.000 7.029 3.642

CHB21 99.831 1.478 100.000 2.913 1.478

CHB22 99.856 22.222 100.000 36.364 22.222

CHB23 99.673 33.875 99.971 48.264 33.865

CHB24 99.558 36.622 99.993 53.241 36.619

ชุดข้อมูล
ความจำเพาะ  

Sp

ความไว  
Se

Se × Sp
ความถูกต้อง  

Ac
คะแนน F1

Ac Se Sp F1

SS

F1

SS

Ac Se Sp

Ac Se Sp F1

SS

ชุดข้อมูล

CHB01 99.870 57.684 100.000 73.164 57.684

CHB02 99.975 81.714 100.000 89.937 81.714

CHB03 99.907 68.949 100.000 81.621 68.949

CHB04 99.939 12.073 99.999 21.296 12.073

CHB05 99.934 83.659 100.000 91.103 83.659

CHB06 99.938 8.589 100.000 15.819 8.589

ความจำเพาะ  
Sp

ความไว  
Se

Se × Sp
ความถูกต้อง  

Ac
คะแนน F1
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ค่าเฉลี่ยของค่าความถูกต้อง  ค่าความไว  ค่าความจำเพาะ  ค่าคะแนน  และ
ค่าผลคูณระหว่างค่าความไวและค่าความจำเพาะ  ของการจำแนกเวกเตอร์ของคุณลักษณะ
เฉพาะหลักของสัญญาณคลื่นสมองสำหรับทั้ง 24 ชุดข้อมูลเท่ากับร้อยละ 99.801 53.091 

99.996 63.657 และ 53.089 ตามลำดับ  ค่าคะแนน  และค่าผลคูณระหว่างค่าความไวและ
ค่าความจำเพาะ  ที่ดีที่สุดคือร้อยละ 98.047 และ 96.168 ตามลำดับ ซึ่งเป็นผลของการ
จำแนกเวกเตอร์ของคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองในชุดข้อมูล CHB11  

3.2.2 การจำแนกคุณลักษณะเฉพาะหลักของส่วนย่อยของสัญญาณคลื่นสมองแบบทุกช่อง
สัญญาณ 
ผลของการจำแนกเวกเตอร์ของคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองแบบทุก

ช่องสัญญาณที่ได้มาจากคุณลักษณะเฉพาะทั้ง 3 กลุ่ม นั่นคือ ค่าลอการิทึมของความแปรปรวน
ของสัมประสิทธิ์เวฟเล็ต ค่าตัวยกกำลังสเปกตรัม และค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูป
แบบเชิงเวลา สำหรับแต่ละชุดข้อมูลมีผลดังต่อไปนี้  

CHB07 99.939 55.793 100.000 71.484 55.793

CHB08 99.235 40.368 100.000 57.517 40.368

CHB09 99.983 85.357 100.000 92.100 85.357

CHB10 99.975 90.728 99.998 94.810 90.726

CHB11 99.975 96.168 100.000 98.047 96.168

CHB12 98.926 40.132 99.989 57.036 40.128

CHB13 99.563 5.119 100.000 9.739 5.119

CHB14 99.851 22.034 99.999 35.945 22.034

CHB15 99.463 66.899 99.925 77.691 66.849

CHB16 99.884 15.957 100.000 27.523 15.957

CHB17 99.709 28.041 99.999 43.684 28.041

CHB18 99.890 57.658 100.000 73.143 57.658

CHB19 99.953 78.661 100.000 88.056 78.661

CHB20 99.825 42.384 100.000 59.535 42.384

CHB21 99.835 3.941 100.000 7.583 3.941

CHB22 99.972 85.507 99.999 91.948 85.506

CHB23 99.903 78.654 99.999 87.938 78.653

CHB24 99.781 68.121 100.000 81.038 68.121

ชุดข้อมูล
ความจำเพาะ  

Sp

ความไว  
Se

Se × Sp
ความถูกต้อง  

Ac
คะแนน F1

Ac Se Sp F1

SS

F1

SS
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ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต 
ค่าความถูกต้อง  ค่าความไว  ค่าความจำเพาะ  ค่าคะแนน  และค่าผลคูณ

ระหว่างค่าความไวและค่าความจำเพาะ  ของการจำแนกเวกเตอร์ของคุณลักษณะเฉพาะ
หลักของสัญญาณคลื่นสมองในทุกช่องสัญญาณเมื่อใช้ค่าลอการิทึมของความแปรปรวนของ
สัมประสิทธิ์เวฟเล็ตแสดงอยู่ในตาราง 3.12  

ตาราง 3.12 ประสิทธิภาพในการจำแนกเวกเตอร์ของค่าลอการิทึมของความแปรปรวนของ
สัมประสิทธิ์เวฟเล็ตของส่วนย่อยของสัญญาณคลื่นสมองแบบทุกช่องสัญญาณ 

Ac Se Sp F1

SS

ชุดข้อมูล

CHB01 99.781 30.067 99.996 45.763 30.066

CHB02 99.913 38.857 99.997 55.061 38.856

CHB03 99.830 44.389 99.993 60.544 44.386

CHB04 99.934 1.862 100.000 3.655 1.862

CHB05 99.911 84.902 99.971 88.437 84.877

CHB06 99.945 23.926 99.997 37.321 23.925

CHB07 99.880 13.720 99.998 23.747 13.720

CHB08 99.443 63.095 99.916 74.410 63.042

CHB09 99.911 22.383 99.999 36.257 22.383

CHB10 99.966 90.337 99.990 92.948 90.328

CHB11 99.935 92.213 99.985 94.790 92.199

CHB12 99.512 73.597 99.981 84.278 73.583

CHB13 99.707 42.230 99.973 57.037 42.219

CHB14 99.875 35.028 99.998 51.452 35.027

CHB15 99.540 77.435 99.853 82.478 77.321

CHB16 99.887 18.085 100.000 30.631 18.085

CHB17 99.680 20.946 99.999 34.540 20.946

CHB18 99.827 39.640 99.984 54.321 39.634

CHB19 99.824 18.803 100.000 31.655 18.803

CHB20 99.700 1.325 100.000 2.614 1.325

CHB21 99.860 22.660 99.993 35.798 22.658

CHB22 99.949 75.845 99.994 84.636 75.840

CHB23 99.728 44.548 99.978 59.627 44.538

ความจำเพาะ  
Sp

ความไว  
Se

Se × Sp
ความถูกต้อง  

Ac
คะแนน F1
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ค่าเฉลี่ยของค่าความถูกต้อง  ค่าความไว  ค่าความจำเพาะ  ค่าคะแนน  และ
ค่าผลคูณระหว่างค่าความไวและค่าความจำเพาะ  ของการจำแนกเวกเตอร์ของคุณลักษณะ
เฉพาะหลักของสัญญาณคลื่นสมองสำหรับทั้ง 24 ชุดข้อมูลเท่ากับร้อยละ 99.796 42.243 

99.983 53.194 และ 42.232 ตามลำดับ  ค่าคะแนน  และค่าผลคูณระหว่างค่าความไวและ
ค่าความจำเพาะ  ที่ดีที่สุดคือร้อยละ 94.790 และ 92.199 ตามลำดับ ซึ่งเป็นผลของการ
จำแนกเวกเตอร์ของคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองในชุดข้อมูล CHB11 โดยมี
ค่าเฉลี่ยของค่าความถูกต้อง  ค่าความไว  และค่าความจำเพาะ  เท่ากับร้อยละ 99.935 

92.213 และ 99.985 ตามลำดับ   
ค่าตัวยกกำลังสเปกตรัม 

ค่าความถูกต้อง  ค่าความไว  ค่าความจำเพาะ  ค่าคะแนน  และค่าผลคูณ
ระหว่างค่าความไวและค่าความจำเพาะ  ของการจำแนกเวกเตอร์ของคุณลักษณะเฉพาะ
หลักของสัญญาณคลื่นสมองในทุกช่องสัญญาณเมื่อใช้ค่ายกกำลังสเปกตรัมแสดงอยู่ในตาราง 
3.13  

ตาราง 3.13 ประสิทธิภาพในการจำแนกเวกเตอร์ของค่ายกกำลังสเปกตรัมของส่วนย่อยของ
สัญญาณคลื่นสมองแบบทุกช่องสัญญาณ 

CHB24 99.567 37.951 99.993 54.645 37.948

ชุดข้อมูล
ความจำเพาะ  

Sp

ความไว  
Se

Se × Sp
ความถูกต้อง  

Ac
คะแนน F1

Ac Se Sp F1

SS

F1

SS

Ac Se Sp

Ac Se Sp F1

SS

ชุดข้อมูล

CHB01 99.725 10.913 99.999 19.639 10.913

CHB02 99.910 38.286 99.995 54.032 38.284

CHB03 99.790 28.678 99.999 44.487 28.678

CHB04 99.945 18.617 100.000 31.390 18.617

CHB05 99.855 68.739 99.981 79.222 68.726

CHB06 99.949 30.675 99.996 45.045 30.674

CHB07 99.882 13.110 100.000 23.181 13.110

CHB08 98.892 13.636 100.000 24.000 13.636

CHB09 99.920 29.964 100.000 45.983 29.964

CHB10 99.867 49.438 99.992 64.801 49.434

CHB11 99.652 50.927 99.969 65.397 50.911

CHB12 99.849 91.485 100.000 95.553 91.485

ความจำเพาะ  
Sp

ความไว  
Se

Se × Sp
ความถูกต้อง  

Ac
คะแนน F1
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ค่าเฉลี่ยของค่าความถูกต้อง  ค่าความไว  ค่าความจำเพาะ  ค่าคะแนน  และ
ค่าผลคูณระหว่างค่าความไวและค่าความจำเพาะ  ของการจำแนกเวกเตอร์ของคุณลักษณะ
เฉพาะหลักของสัญญาณคลื่นสมองสำหรับทั้ง 24 ชุดข้อมูลเท่ากับร้อยละ 99.771 33.369 

99.994 45.581 และ 33.366 ตามลำดับ  ค่าคะแนน  และค่าผลคูณระหว่างค่าความไวและ
ค่าความจำเพาะ  ที่ดีที่สุดคือร้อยละ 95.553 และ 91.485 ตามลำดับ ซึ่งเป็นผลของการ
จำแนกเวกเตอร์ของคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองในชุดข้อมูล CHB12 โดยมี
ค่าเฉลี่ยของค่าความถูกต้อง  ค่าความไว  และค่าความจำเพาะ  เท่ากับร้อยละ 99.849 

91.485 และ 100.000 ตามลำดับ   
ค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลา 

ค่าความถูกต้อง  ค่าความไว  ค่าความจำเพาะ  ค่าคะแนน  และค่าผลคูณ
ระหว่างค่าความไวและค่าความจำเพาะ  ของการจำแนกเวกเตอร์ของคุณลักษณะเฉพาะ
หลักของสัญญาณคลื่นสมองในทุกช่องสัญญาณเมื่อใช้ค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูป
แบบเชิงเวลาแสดงอยู่ในตาราง 3.14   

ตาราง 3.14 ประสิทธิภาพในการจำแนกเวกเตอร์ของค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูป
แบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบทุกช่องสัญญาณ 

CHB13 99.623 18.282 99.999 30.864 18.282

CHB14 99.859 32.203 99.987 46.341 32.199

CHB15 99.820 88.569 99.980 93.225 88.551

CHB16 99.871 6.383 100.000 12.000 6.383

CHB17 99.773 45.270 99.993 61.609 45.267

CHB18 99.835 36.937 99.998 53.712 36.936

CHB19 99.827 20.940 99.999 34.507 20.940

CHB20 99.731 11.589 100.000 20.772 11.589

CHB21 99.863 20.690 99.999 34.146 20.690

CHB22 99.840 13.527 100.000 23.830 13.527

CHB23 99.620 17.401 99.993 29.240 17.400

CHB24 99.607 44.592 99.988 60.960 44.587

ชุดข้อมูล
ความจำเพาะ  

Sp

ความไว  
Se

Se × Sp
ความถูกต้อง  

Ac
คะแนน F1

Ac Se Sp F1

SS

F1

SS

Ac Se Sp

Ac Se Sp F1

SS

ชุดข้อมูล

CHB01 99.791 34.298 99.993 50.245 34.296

ความจำเพาะ  
Sp

ความไว  
Se

Se × Sp
ความถูกต้อง  

Ac
คะแนน F1
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ค่าเฉลี่ยของค่าความถูกต้อง  ค่าความไว  ค่าความจำเพาะ  ค่าคะแนน  และ
ค่าผลคูณระหว่างค่าความไวและค่าความจำเพาะ  ของการจำแนกเวกเตอร์ของคุณลักษณะ
เฉพาะหลักของสัญญาณคลื่นสมองสำหรับทั้ง 24 ชุดข้อมูลเท่ากับร้อยละ 99.573 71.884 

99.936 80.104 และ 71.840 ตามลำดับ  ค่าคะแนน  และค่าผลคูณระหว่างค่าความไวและ
ค่าความจำเพาะ  ที่ดีที่สุดคือร้อยละ 99.753 และ 99.507 ตามลำดับ ซึ่งเป็นผลของการ
จำแนกเวกเตอร์ของคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองในชุดข้อมูล CHB21 โดยมี

CHB02 99.998 98.286 100.000 99.135 98.286

CHB03 99.869 58.750 99.990 72.419 58.744

CHB04 99.981 72.800 100.000 84.129 72.800

CHB05 99.995 98.757 100.000 99.374 98.757

CHB06 99.961 42.331 100.000 59.483 42.331

CHB07 99.979 84.756 100.000 91.749 84.756

CHB08 99.644 72.619 99.996 83.980 72.616

CHB09 99.988 89.170 100.000 94.275 89.170

CHB10 99.989 95.740 100.000 97.824 95.740

CHB11 99.978 96.539 100.000 98.239 96.539

CHB12 94.872 70.320 98.539 77.192 69.293

CHB13 97.288 85.813 100.000 92.679 85.813

CHB14 99.938 67.232 100.000 80.405 67.232

CHB15 99.660 75.944 99.996 86.182 75.941

CHB16 99.983 99.105 100.000 99.559 99.105

CHB17 99.703 28.716 99.990 43.814 28.713

CHB18 99.825 37.838 99.987 52.941 37.833

CHB19 99.985 93.191 100.000 96.476 93.191

CHB20 99.723 7.718 100.000 14.330 7.718

CHB21 99.999 99.507 100.000 99.753 99.507

CHB22 99.957 78.744 99.996 87.166 78.741

CHB23 99.824 63.805 99.987 76.602 63.797

CHB24 99.816 73.245 100.000 84.556 73.245

ชุดข้อมูล
ความจำเพาะ  

Sp

ความไว  
Se

Se × Sp
ความถูกต้อง  

Ac
คะแนน F1

Ac Se Sp F1

SS

F1

SS
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ค่าเฉลี่ยของค่าความถูกต้อง  ค่าความไว  และค่าความจำเพาะ  เท่ากับร้อยละ 99.999 

99.507 และ 100.00 ตามลำดับ  

3.2.3 ประสิทธิภาพการจำแนกภาวะชักแบบไม่ขึ้นอยู่กับตัวอย่าง 
ผลของการจำแนกเวกเตอร์ของคุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองแบบทุก

ช่องสัญญาณโดยไม่แบ่งชุดข้อมูลเมื่อใช้ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟ
เล็ต ค่าตัวยกกำลังสเปกทรัม และค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลาสรุปได้ดัง
ต่อไปนี้  สำหรับการใช้ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ตของส่วนย่อย
ของสัญญาณคลื่นสมองเป็นคุณลักษณะเฉพาะ ความถูกต้อง  ความไว  ความจำเพาะ  

คะแนน  และผลคูณระหว่างค่าความไวและค่าความจำเพาะ  มีค่าเท่ากับร้อยละ 99.744 

13.033 99.996 22.804 และ 13.033 ตามลำดับ  สำหรับการใช้ค่าตัวยกกำลังสเปกทรัมของ
ส่วนย่อยของสัญญาณคลื่นสมองเป็นคุณลักษณะเฉพาะ ความถูกต้อง  ความไว  ความ
จำเพาะ  คะแนน  และผลคูณระหว่างค่าความไวและค่าความจำเพาะ  มีค่าเท่ากับร้อย
ละ 99.760 11.438 99.999 20.524 และ 11.438 ตามลำดับ  และ สำหรับการใช้ค่าตัวชี้วัดที่
ได้มาจากการวิเคราะห์รูปแบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองเป็นคุณลักษณะ
เฉพาะ ความถูกต้อง  ความไว  ความจำเพาะ  คะแนน  และผลคูณระหว่างค่าความ
ไวและค่าความจำเพาะ  มีค่าเท่ากับร้อยละ 99.752 7.230 99.999 13.478 และ 7.230 

ตามลำดับ   

3.3 ประสิทธิภาพในการตรวจจับภาวะชัก 
คุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมอง ซึ่งประกอบด้วย ค่าลอการิทึมของความ

แปรปรวนของสัมประสิทธิ์เวฟเล็ต ค่าตัวยกกำลังสเปกตรัม และค่าตัวชี้วัดที่เป็นคุณลักษณะ
เฉพาะของสัญญาณคลื่นสมองที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลาถูกนำไปประยุกต์ใช้ใน
การตรวจจับภาวะชัก  ประสิทธิภาพในการตรวจจับภาวะชัดซึ่งพิจารณาจาก โดยประสิทธิภาพ
ในการตรวจจับภาวะชักพิจารณาจากความถูกต้องในการตรวจจับภาวะชัก (accuracy) อัตรา
การตรวจจับเท็จ (false detection rate) และเวลาแฝงของการตรวจจับภาวะชัก (latency) 

แบ่งออกเป็นการตรวจจับภาวะชักแบบรายช่องสัญญาณและการตรวจจับภาวะชักแบบทุกช่อง
สัญญาณ 

3.3.1 การตรวจจับภาวะชักแบบรายช่องสัญญาณ 
ผลการตรวจจับภาวะชักแบบรายช่องสัญญาณเมื่อใช้คุณลักษณะเฉพาะเป็นค่าลอการิทึม

ของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต ค่าตัวยกกำลังสเปกตรัม และค่าตัวชี้วัดที่ได้มาจาก
การวิเคราะห์รูปแบบเชิงเวลาซึ่งประกอบด้วยจำนวนภาวะชักจริง จำนวนภาวะชักที่ถูกตรวจจับ 
จำนวนภาวะชักที่พลาด และจำนวนภาวะชักเท็จที่ดีที่สุดถูกสรุปอยู่ในตาราง 3.15 3.16 และ 
3.17 ตามลำดับ  

Ac Se Sp

Ac Se Sp

F1 SS

Ac Se

Sp F1 SS

Ac Se Sp F1

SS
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ตาราง 3.15 ผลการตรวจจับภาวะชักโดยใช้ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์
เวฟเล็ตของส่วนย่อยของสัญญาณคลื่นสมองแบบรายช่องสัญญาณ 

ชุดข้อมูล จำนวนภาวะชักจริง
จำนวนภาวะชัก  
ที่ถูกตรวจจับ

จำนวนภาวะชัก  
ที่พลาด

จำนวนภาวะชักเท็จ

CHB01 7 7 0 0

CHB02 3 3 0 3

CHB03 7 7 0 0

CHB04 4 4 0 0

CHB05 5 5 0 2

CHB06 10 9 1 0

CHB07 3 3 0 0

CHB08 5 5 0 7

CHB09 4 4 0 1

CHB10 7 7 0 7

CHB11 3 3 0 3

CHB12 40 22 18 0

CHB13 12 8 4 0

CHB14 8 8 0 0

CHB15 20 15 5 0

CHB16 10 8 2 0

CHB17 3 3 0 0

CHB18 6 5 1 0

CHB19 3 3 0 0

CHB20 8 8 0 0

CHB21 4 4 0 2

CHB22 3 3 0 0

CHB23 7 7 0 0

CHB24 16 14 2 3

รวม 198 165 33 28
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ตาราง 3.16 ผลการตรวจจับภาวะชักโดยใช้ค่ายกกำลังสเปกตรัมของส่วนย่อยของสัญญาณ
คลื่นสมองแบบรายช่องสัญญาณ 

ชุดข้อมูล จำนวนภาวะชักจริง
จำนวนภาวะชัก  
ที่ถูกตรวจจับ

จำนวนภาวะชัก  
ที่พลาด

จำนวนภาวะชักเท็จ

CHB01 7 6 1 0

CHB02 3 3 0 0

CHB03 7 2 5 0

CHB04 4 3 1 0

CHB05 5 5 0 0

CHB06 10 6 4 0

CHB07 3 2 1 0

CHB08 5 5 0 0

CHB09 4 4 0 0

CHB10 7 7 0 0

CHB11 3 3 0 0

CHB12 40 13 27 0

CHB13 12 2 10 0

CHB14 8 6 2 0

CHB15 20 16 4 0

CHB16 10 4 6 0

CHB17 3 2 1 0

CHB18 6 5 1 0

CHB19 3 3 0 0

CHB20 8 2 6 0

CHB21 4 1 3 0

CHB22 3 3 0 0

CHB23 7 7 0 2

CHB24 16 14 2 0

รวม 198 124 74 2



44

ตาราง 3.17 ผลการตรวจจับภาวะชักโดยใช้ค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลา
ของส่วนย่อยของสัญญาณคลื่นสมองแบบรายช่องสัญญาณ 

จำนวนของภาวะชักที่สามารถตรวจจับได้โดยใช้ค่าลอการิทึมของความแปรปรวนของ
สัมประสิทธิ์เวฟเล็ต ค่ายกกำลังสเปกตรัม และค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิง

ชุดข้อมูล จำนวนภาวะชักจริง
จำนวนภาวะชัก  
ที่ถูกตรวจจับ

จำนวนภาวะชัก  
ที่พลาด

จำนวนภาวะชักเท็จ

CHB01 7 7 0 0

CHB02 3 3 0 0

CHB03 7 7 0 0

CHB04 4 2 2 0

CHB05 5 5 0 0

CHB06 10 4 6 0

CHB07 3 3 0 0

CHB08 5 5 0 0

CHB09 4 4 0 0

CHB10 7 7 0 0

CHB11 3 3 0 0

CHB12 40 24 16 0

CHB13 12 2 10 0

CHB14 8 5 3 0

CHB15 20 20 0 6

CHB16 10 5 5 0

CHB17 3 3 0 0

CHB18 6 5 1 0

CHB19 3 3 0 0

CHB20 8 8 0 0

CHB21 4 2 2 0

CHB22 3 3 0 0

CHB23 7 7 0 0

CHB24 16 14 2 0

รวม 198 151 47 6
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เวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบรายช่องสัญญาณมีจำนวนเท่ากับ 165 124 และ 
151 ตามลำดับ โดยมีจำนวนภาวะชักที่ไม่ถูกตรวจจับจำนวนเท่ากับ 33 74 และ 47 และภาวะ
ชักเท็จที่ถูกตรวจจับจำนวนเท่ากับ 28 2 และ 6 ตามลำดับ  

จากผลการตรวจจับภาวะชักโดยใช้สัญญาณคลื่นสมองแบบรายช่องสัญญาณซึ่งแสดงอยู่
ในตาราง 3.15 3.16 และ 3.17 คิดเป็นประสิทธิภาพในการตรวจจับภาวะชัก ซึ่งประกอบด้วย
ความถูกต้อง อัตราการตรวจจับเท็จ การระบุการเริ่มต้นของภาวะชัก และการระบุการสิ้นสุด
ของภาวะชักสำหรับแต่ละชุดข้อมูลดังสรุปไว้ในตาราง 3.18 3.19 และ 3.20 ตามลำดับ 

ตาราง 3.18 ประสิทธิภาพในการตรวจจับภาวะชักโดยใช้ค่าลอการิทึมของความแปรปรวนของ
สัมประสิทธิ์เวฟเล็ตของส่วนย่อยของสัญญาณคลื่นสมองแบบรายช่องสัญญาณ  

ชุด

ข้อมูล

ความถูก

ต้อง

อัตราการ

ตรวจจับ

เท็จ  
(ครั้ง/

ผลต่างเวลาในการระบุการเริ่มต้น

ของภาวะชัก (วินาที)
ผลต่างเวลาในการระบุการสิ้นสุด

ของภาวะชัก (วินาที)

ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด

CHB01 100.000 0.000 11.29 11.29 4 -18.57 18.57 1

CHB02 100.000 0.085 2.33 2.33 0 -3.00 3.67 1

CHB03 100.000 0.000 23.71 23.71 17 -20.14 20.14 10

CHB04 100.000 0.000 23.25 23.25 9 -42.75 42.75 29

CHB05 100.000 0.051 17.00 17.00 9 -3.40 3.40 0

CHB06 90.000 0.000 2.11 2.11 1 -10.00 10.00 6

CHB07 100.000 0.000 17.67 17.67 2 -34.67 34.67 10

CHB08 100.000 0.350 3.40 3.40 1 -34.20 34.20 9

CHB09 100.000 0.015 5.25 5.25 2 -5.25 5.25 1

CHB10 100.000 0.140 2.43 2.43 0 -3.86 3.86 0

CHB11 100.000 0.086 -0.33 1.00 0 -8.67 8.67 2

CHB12 55.000 0.000 5.09 5.64 0 131.09 144.36 2

CHB13 66.667 0.000 3.75 19.00 5 -18.38 18.63 1

CHB14 100.000 0.000 3.63 3.63 3 -3.75 4.25 1

CHB15 75.000 0.000 16.72 16.94 0 -11.28 11.28 1

CHB16 80.000 0.000 -3.50 4.75 1 -3.75 5.75 3

CHB17 100.000 0.000 37.00 37.00 7 -26.67 27.33 1

CHB18 83.333 0.000 8.60 8.60 6 -13.20 13.20 2

CHB19 100.000 0.000 15.00 15.00 9 2.67 18.67 5

CHB20 100.000 0.000 7.38 7.38 2 -22.88 22.88 2

CHB21 100.000 0.061 4.75 4.75 3 -4.75 4.75 3
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ตาราง 3.19 ประสิทธิภาพในการตรวจจับภาวะชักโดยใช้ค่ายกกำลังสเปกตรัมของส่วนย่อยของ
สัญญาณคลื่นสมองแบบรายช่องสัญญาณ 

CHB22 100.000 0.000 24.67 24.67 2 -7.67 7.67 3

CHB23 100.000 0.000 11.71 11.71 4 -14.14 14.14 1

CHB24 87.500 0.141 7.36 7.36 2 74.64 87.93 4

รวม 83.333 0.028

ชุด

ข้อมูล

ความถูก

ต้อง

อัตราการ

ตรวจจับ

เท็จ  
(ครั้ง/

ผลต่างเวลาในการระบุการเริ่มต้น

ของภาวะชัก (วินาที)
ผลต่างเวลาในการระบุการสิ้นสุด

ของภาวะชัก (วินาที)

ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด

ชุด

ข้อมูล

ความถูก

ต้อง

อัตราการ

ตรวจจับ

เท็จ  
(ครั้ง/

ผลต่างเวลาในการระบุการเริ่มต้น

ของภาวะชัก (วินาที)
ผลต่างเวลาในการระบุการสิ้นสุด

ของภาวะชัก (วินาที)

ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด

CHB01 85.714 0.000 21.17 21.17 2 -23.33 23.33 12

CHB02 100.000 0.000 8.33 8.33 2 -24.33 24.33 5

CHB03 28.571 0.000 2.00 2.00 2 -49.00 49.00 49

CHB04 75.000 0.000 9.00 9.00 2 -87.67 87.67 84

CHB05 100.000 0.000 31.40 31.40 3 -36.20 36.20 14

CHB06 60.000 0.000 2.33 2.33 1 -10.50 10.50 7

CHB07 66.667 0.000 36.50 36.50 26 -33.00 33.00 9

CHB08 100.000 0.000 16.00 16.00 1 -93.80 93.80 12

CHB09 100.000 0.000 10.75 10.75 5 -19.50 19.50 10

CHB10 100.000 0.000 27.57 27.57 18 -19.71 19.71 9

CHB11 100.000 0.000 20.00 -28.33 0 -28.33 28.33 14

CHB12 32.500 0.000 7.92 7.92 2 53.92 75.77 8

CHB13 16.667 0.000 23.50 -43.00 6 -43.00 43.00 28

CHB14 75.000 0.000 4.00 -4.71 3 -4.71 4.71 0

CHB15 80.000 0.000 11.38 12.13 0 -38.63 38.63 1

CHB16 40.000 0.000 3.25 -4.00 2 -4.00 4.00 3

CHB17 66.667 0.000 9.50 -60.00 2 -60.00 60.00 8

CHB18 83.333 0.000 15.00 -15.80 2 -15.80 15.80 2

CHB19 100.000 0.000 32.33 -44.00 13 -44.00 44.00 14

CHB20 25.000 0.000 28.67 -12.33 17 -12.33 12.33 3

CHB21 25.000 0.000 36.00 -13.00 36 -13.00 13.00 13
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ตาราง 3.20 ประสิทธิภาพในการตรวจจับภาวะชักโดยใช้ค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูป
แบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบรายช่องสัญญาณ 

CHB22 100.000 0.000 15.67 -13.00 6 -13.00 13.00 6

CHB23 100.000 0.075 11.00 -12.43 2 -12.43 12.43 2

CHB24 87.500 0.000 7.79 33.71 2 33.71 57.86 3

รวม 62.626 0.002

ชุด

ข้อมูล

ความถูก

ต้อง

อัตราการ

ตรวจจับ

เท็จ  
(ครั้ง/

ผลต่างเวลาในการระบุการเริ่มต้น

ของภาวะชัก (วินาที)
ผลต่างเวลาในการระบุการสิ้นสุด

ของภาวะชัก (วินาที)

ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด

ชุด

ข้อมูล

ความถูก

ต้อง

อัตราการ

ตรวจจับ

เท็จ  
(ครั้ง/

ผลต่างเวลาในการระบุการเริ่มต้น

ของภาวะชัก (วินาที)
ผลต่างเวลาในการระบุการสิ้นสุด

ของภาวะชัก (วินาที)

ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด

CHB01 100.000 0.000 8.14 8.14 3.00 -16.57 16.57 1.00

CHB02 100.000 0.000 5.67 5.67 1.00 -3.00 3.00 1.00

CHB03 100.000 0.000 10.00 10.00 1.00 -7.43 7.43 1.00

CHB04 50.000 0.000 50.50 50.50 32.00 -40.00 40.00 33.00

CHB05 100.000 0.000 32.20 32.20 8.00 -3.00 3.00 1.00

CHB06 40.000 0.000 11.50 11.50 8.00 -3.50 3.50 2.00

CHB07 100.000 0.000 28.67 28.67 25.00 -25.67 25.67 2.00

CHB08 100.000 0.000 26.40 26.40 9.00 -75.20 75.20 26.00

CHB09 100.000 0.000 9.25 9.25 6.00 -13.00 13.00 2.00

CHB10 100.000 0.000 7.71 7.71 3.00 -12.14 12.14 0.00

CHB11 100.000 0.000 1.33 1.33 1.00 -8.33 8.33 1.00

CHB12 60.000 0.000 7.33 7.33 1.00 111.13 118.79 0.00

CHB13 16.667 0.000 13.00 13.00 6.00 -13.50 13.50 4.00

CHB14 62.500 0.000 6.00 6.00 3.00 -7.20 7.20 3.00

CHB15 100.000 0.150 1.00 7.60 0.00 -6.55 6.85 0.00

CHB16 50.000 0.000 1.60 1.60 1.00 -5.20 5.20 3.00

CHB17 100.000 0.000 29.67 29.67 27.00 -26.00 26.00 10.00

CHB18 83.333 0.000 8.80 8.80 6.00 -7.00 7.00 2.00

CHB19 100.000 0.000 36.00 36.00 24.00 -5.67 5.67 3.00

CHB20 100.000 0.000 18.63 18.63 2.00 -7.63 7.63 2.00

CHB21 50.000 0.000 50.00 50.00 45.00 -8.50 8.50 0.00
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ความถูกต้องสำหรับการตรวจจับภาวะชักโดยใช้ค่าลอการิทึมของความแปรปรวนของ
สัมประสิทธิ์เวฟเล็ต ค่ายกกำลังสเปกตรัม และค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิง
เวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบรายช่องสัญญาณในทั้ง 24 ชุดข้อมูลมีค่าระหว่าง
ร้อยละ 55.000 และ 100.00 16.667 และ 100.000 และ 16.667 และ 100.00 ตามลำดับ 
โดยความถูกต้องเฉลี่ยสำหรับการตรวจจับภาวะชักโดยใช้ค่าลอการิทึมของความแปรปรวนของ
สัมประสิทธิ์เวฟเล็ต ค่ายกกำลังสเปกตรัม และค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิง
เวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบรายช่องสัญญาณจากทั้ง 24  ชุดข้อมูลมีเท่ากับ
ร้อยละ 83.333 62.626 และ 76.263 ตามลำดับ  

ในขณะที่อัตราการตรวจจับเท็จสำหรับการตรวจจับภาวะชักโดยใช้ค่าลอการิทึมของ
ความแปรปรวนของสัมประสิทธิ์เวฟเล็ต ค่ายกกำลังสเปกตรัม และค่าตัวชี้วัดที่ได้มาจากการ
วิเคราะห์รูปแบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบรายช่องสัญญาณในทั้ง 24 

ชุดข้อมูลมีค่าระหว่าง 0.000 และ 0.350 0.000 และ 0.0075 0.000 และ 0.150 ครั้งต่อ
ชั่วโมง โดยอัตราการตรวจจับเท็จเฉลี่ยสำหรับการตรวจจับภาวะชักโดยใช้ค่าลอการิทึมของ
ความแปรปรวนของสัมประสิทธิ์เวฟเล็ต ค่ายกกำลังสเปกตรัม และค่าตัวชี้วัดที่ได้มาจากการ
วิเคราะห์รูปแบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบรายช่องสัญญาณจากทั้ง 24 

ชุดข้อมูลมีค่าเท่ากับ 0.028 0.002 และ 0.006 ครั้งต่อชั่วโมง  
ค่าเฉลี่ยสัมบูรณ์ของผลต่างเวลาในการระบุการเริ่มต้นของภาวะชักโดยใช้ค่าลอการิทึม

ของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต ค่ายกกำลังสเปกตรัม และค่าตัวชี้วัดที่ได้มาจาก
การวิเคราะห์รูปแบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบรายช่องสัญญาณมีค่า
ระหว่าง 1.00 และ 37.00 -60.00 และ 36.50 และ 4.00 และ 93.80 วินาที  ในขณะที่ค่า
เฉลี่ยสัมบูรณ์ของผลต่างเวลาในการระบุการสิ้นสุดของภาวะชักโดยใช้ค่าลอการิทึมของความ
แปรปรวนของสัมประสิทธิ์เวฟเล็ต ค่ายกกำลังสเปกตรัม และค่าตัวชี้วัดที่ได้มาจากการ
วิเคราะห์รูปแบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบรายช่องสัญญาณมีค่า
ระหว่าง 3.40 และ 144.36 4.00 และ 93.80 และ 2.33 และ 118.79 วินาที  นอกจากนี้ การ

CHB22 100.000 0.000 5.00 5.00 2.00 -2.33 2.33 2.00

CHB23 100.000 0.000 6.43 6.43 1.00 -1.86 2.43 0.00

CHB24 87.500 0.000 6.50 6.50 2.00 41.43 50.57 0.00

รวม 76.263 0.006

ชุด

ข้อมูล

ความถูก

ต้อง

อัตราการ

ตรวจจับ

เท็จ  
(ครั้ง/

ผลต่างเวลาในการระบุการเริ่มต้น

ของภาวะชัก (วินาที)
ผลต่างเวลาในการระบุการสิ้นสุด

ของภาวะชัก (วินาที)

ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด
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ระบุการเริ่มต้นและการสิ้นสุดของภาวะชักสามารถทำได้โดยสมบูรณ์ นั่นคือ ค่าที่ดีที่สุดในการ
ระบุการเริ่มต้นหรือการสิ้นสุดของการชักมีค่าเท่ากับศูนย์  

3.3.2 การตรวจจับภาวะชักแบบทุกช่องสัญญาณ 
ผลการตรวจจับภาวะชักแบบทุกช่องสัญญาณเมื่อใช้คุณลักษณะเฉพาะเป็นค่าลอการิทึม

ของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต ค่าตัวยกกำลังสเปกตรัม และค่าตัวชี้วัดที่ได้มาจาก
การวิเคราะห์รูปแบบเชิงเวลาซึ่งประกอบด้วยจำนวนภาวะชักจริง จำนวนภาวะชักที่ถูกตรวจจับ 
จำนวนภาวะชักที่พลาด และจำนวนภาวะชักเท็จที่ดีที่สุดถูกสรุปอยู่ในตาราง 3.21 3.22 และ 
3.23 ตามลำดับ  

ตาราง 3.21 ผลการตรวจจับภาวะชักโดยใช้ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์
เวฟเล็ตของส่วนย่อยของสัญญาณคลื่นสมองแบบทุกช่องสัญญาณ 

ชุดข้อมูล จำนวนภาวะชักจริง
จำนวนภาวะชัก  
ที่ถูกตรวจจับ

จำนวนภาวะชัก  
ที่พลาด

จำนวนภาวะชักเท็จ

CHB01 7 7 0 0

CHB02 3 3 0 0

CHB03 7 7 0 0

CHB04 4 1 3 0

CHB05 5 5 0 7

CHB06 10 8 2 0

CHB07 3 3 0 0

CHB08 5 5 0 8

CHB09 4 4 0 0

CHB10 7 7 0 3

CHB11 3 3 0 1

CHB12 40 26 14 1

CHB13 12 10 2 0

CHB14 8 8 0 0

CHB15 20 20 0 11

CHB16 10 7 3 1

CHB17 3 3 0 0

CHB18 6 5 1 2

CHB19 3 3 0 0
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ตาราง 3.22 ผลการตรวจจับภาวะชักโดยใช้ค่ายกกำลังสเปกตรัมของส่วนย่อยของสัญญาณ
คลื่นสมองแบบทุกช่องสัญญาณ 

CHB20 8 1 7 0

CHB21 4 4 0 0

CHB22 3 3 0 1

CHB23 7 7 0 1

CHB24 16 16 0 4

รวม 198 166 32 40

ชุดข้อมูล จำนวนภาวะชักจริง
จำนวนภาวะชัก  
ที่ถูกตรวจจับ

จำนวนภาวะชัก  
ที่พลาด

จำนวนภาวะชักเท็จ

ชุดข้อมูล จำนวนภาวะชักจริง
จำนวนภาวะชัก  
ที่ถูกตรวจจับ

จำนวนภาวะชัก  
ที่พลาด

จำนวนภาวะชักเท็จ

CHB01 7 4 3 0

CHB02 3 2 1 0

CHB03 7 7 0 0

CHB04 4 4 0 0

CHB05 5 5 0 4

CHB06 10 8 2 1

CHB07 3 3 0 0

CHB08 5 5 0 0

CHB09 4 4 0 0

CHB10 7 7 0 1

CHB11 3 2 1 4

CHB12 40 24 16 1

CHB13 12 7 5 0

CHB14 8 6 2 2

CHB15 20 20 0 1

CHB16 10 1 9 0

CHB17 3 3 0 0

CHB18 6 5 1 0

CHB19 3 3 0 0
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ตาราง 3.23 ผลการตรวจจับภาวะชักโดยใช้ค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลา
ของส่วนย่อยของสัญญาณคลื่นสมองแบบทุกช่องสัญญาณ 

CHB20 8 4 4 0

CHB21 4 3 1 0

CHB22 3 3 0 0

CHB23 7 5 2 0

CHB24 16 14 2 1

รวม 198 142 56 15

ชุดข้อมูล จำนวนภาวะชักจริง
จำนวนภาวะชัก  
ที่ถูกตรวจจับ

จำนวนภาวะชัก  
ที่พลาด

จำนวนภาวะชักเท็จ

ชุดข้อมูล จำนวนภาวะชักจริง
จำนวนภาวะชัก  
ที่ถูกตรวจจับ

จำนวนภาวะชัก  
ที่พลาด

จำนวนภาวะชักเท็จ

CHB01 7 6 1 1

CHB02 3 3 0 0

CHB03 7 7 0 0

CHB04 4 4 0 0

CHB05 5 5 0 0

CHB06 10 7 3 0

CHB07 3 3 0 0

CHB08 5 5 0 0

CHB09 4 4 0 0

CHB10 7 7 0 0

CHB11 3 3 0 0

CHB12 40 38 2 1

CHB13 12 11 1 0

CHB14 8 8 0 0

CHB15 20 20 0 0

CHB16 10 10 0 0

CHB17 3 3 0 0

CHB18 6 5 1 4

CHB19 3 3 0 0
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จำนวนของภาวะชักที่สามารถตรวจจับได้โดยใช้ค่าลอการิทึมของความแปรปรวนของ
สัมประสิทธิ์เวฟเล็ต ค่ายกกำลังสเปกตรัม และค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิง
เวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบทุกช่องสัญญาณมีจำนวนรวมเท่ากับ 166 149 

และ 183 ตามลำดับ โดยมีจำนวนภาวะชักที่ไม่ถูกตรวจจับจำนวนเท่ากับ 32 49 และ 15 และ
ภาวะชักเท็จที่ถูกตรวจจับจำนวนเท่ากับ 40 15 และ 7 ตามลำดับ  ตาราง 3.24 3.25 และ 
3.26 แสดงประสิทธิภาพในตรวจจับภาวะชักโดยใช้ค่าลอการิทึมของความแปรปรวนของ
สัมประสิทธิ์เวฟเล็ต ค่ายกกำลังสเปกตรัม และค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิง
เวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบทุกช่องสัญญาณ ตามลำดับ  

ตาราง 3.24 ประสิทธิภาพในการตรวจจับภาวะชักโดยใช้ค่าลอการิทึมของความแปรปรวนของ
สัมประสิทธิ์เวฟเล็ตของส่วนย่อยของสัญญาณคลื่นสมองแบบทุกช่องสัญญาณ 

CHB20 8 3 5 0

CHB21 4 4 0 0

CHB22 3 3 0 0

CHB23 7 7 0 1

CHB24 16 14 2 0

รวม 198 183 15 7

ชุดข้อมูล จำนวนภาวะชักจริง
จำนวนภาวะชัก  
ที่ถูกตรวจจับ

จำนวนภาวะชัก  
ที่พลาด

จำนวนภาวะชักเท็จ

ชุด

ข้อมูล

ความถูก

ต้อง

การตรวจ

จับเท็จ  
(ครั้ง/
ชั่วโมง)

ผลต่างเวลาในการระบุการเริ่มต้น

ของภาวะชัก (วินาที)
ผลต่างเวลาในการระบุการสิ้นสุด

ของภาวะชัก (วินาที)

ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด

CHB01 100.000 0.000 10.57 10.57 3 -21.43 21.43 1

CHB02 100.000 0.000 16.67 16.67 1 -4.00 4.00 1

CHB03 100.000 0.000 10.57 10.57 1 -1.00 1.86 0

CHB04 25.000 0.000 30.00 30.00 30 -81.00 81.00 81

CHB05 100.000 0.180 4.00 4.00 0 60.80 63.20 0

CHB06 80.000 0.000 6.86 6.86 2 -3.86 3.86 1

CHB07 100.000 0.000 16.67 16.67 1 -4.00 4.00 1

CHB08 100.000 0.400 6.60 6.60 4 -15.00 15.00 3

CHB09 100.000 0.000 8.75 8.75 6 -34.25 34.25 18

CHB10 100.000 0.060 1.71 1.71 0 -2.29 2.29 0

CHB11 100.000 0.029 0.00 1.33 0 -8.33 8.33 1
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ตาราง 3.25 ประสิทธิภาพในการตรวจจับภาวะชักโดยใช้ค่ายกกำลังสเปกตรัมของส่วนย่อยของ
สัญญาณคลื่นสมองแบบทุกช่องสัญญาณ 

CHB12 65.000 0.042 -3.19 9.81 1 122.96 125.81 0

CHB13 83.333 0.000 9.30 9.30 2 4.80 8.40 0

CHB14 100.000 0.000 7.83 7.83 3 -3.67 3.67 0

CHB15 100.000 0.275 4.30 4.80 0 22.00 37.70 0

CHB16 70.000 0.053 2.60 2.60 1 -5.40 5.40 4

CHB17 100.000 0.000 15.33 15.33 3 -42.67 42.67 27

CHB18 83.333 0.056 18.40 18.40 10 -6.20 7.00 2

CHB19 100.000 0.000 23.67 23.67 7 -19.67 19.67 16

CHB20 12.500 0.000 11.00 11.00 11 -23.00 23.00 23

CHB21 100.000 0.000 5.75 5.75 3 -7.00 7.00 2

CHB22 100.000 0.032 7.33 7.33 2 -1.67 1.67 1

CHB23 100.000 0.038 7.43 7.43 2 -5.29 5.29 1

CHB24 100.000 0.188 8.92 8.92 3 42.46 56.00 3

รวม 83.838 0.041

ชุด

ข้อมูล

ความถูก

ต้อง

การตรวจ

จับเท็จ  
(ครั้ง/
ชั่วโมง)

ผลต่างเวลาในการระบุการเริ่มต้น

ของภาวะชัก (วินาที)
ผลต่างเวลาในการระบุการสิ้นสุด

ของภาวะชัก (วินาที)

ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด

ชุด

ข้อมูล

ความถูก

ต้อง

การตรวจ

จับเท็จ  
(ครั้ง/
ชั่วโมง)

ผลต่างเวลาในการระบุการเริ่มต้น

ของภาวะชัก (วินาที)
ผลต่างเวลาในการระบุการสิ้นสุด

ของภาวะชัก (วินาที)
ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด

CHB01 57.143 0.000 11.75 11.75 1 -30.50 31.00 1

CHB02 66.667 0.000 11.00 11.00 6 -21.00 21.00 15

CHB03 100.000 0.000 18.00 18.00 3 -13.71 13.71 1

CHB04 100.000 0.000 9.75 9.75 6 -51.00 51.00 6

CHB05 100.000 0.103 10.00 10.00 4 10.80 14.00 1

CHB06 80.000 0.015 4.25 4.25 1 -5.75 5.75 0

CHB07 100.000 0.000 48.00 48.00 24 -28.33 28.33 6

CHB08 100.000 0.000 44.80 44.80 3 -41.60 41.60 2

CHB09 100.000 0.000 10.25 10.25 5 -15.25 15.25 3

CHB10 100.000 0.020 13.43 13.43 0 -10.14 10.14 0

CHB11 66.667 0.115 4.00 4.00 2 -25.50 25.50 1
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ตาราง 3.26 ประสิทธิภาพในการตรวจจับภาวะชักโดยใช้ค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูป
แบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบทุกช่องสัญญาณ 

CHB12 60.000 0.042 2.92 2.92 1 135.96 136.29 0

CHB13 58.333 0.000 8.29 8.29 2 -16.86 16.86 4

CHB14 75.000 0.077 5.83 5.83 4 -4.33 4.33 2

CHB15 100.000 0.025 2.85 2.95 0 2.05 8.95 0

CHB16 10.000 0.000 2.00 2.00 2 -6.00 6.00 6

CHB17 100.000 0.000 25.00 25.00 1 -13.33 13.33 8

CHB18 83.333 0.000 6.00 6.00 1 -11.20 11.20 5

CHB19 100.000 0.000 9.00 9.00 1 -13.33 13.33 5

CHB20 50.000 0.000 12.75 12.75 8 -12.00 12.00 2

CHB21 75.000 0.000 31.00 31.00 26 -6.33 6.33 2

CHB22 100.000 0.000 26.00 26.00 10 -20.67 20.67 11

CHB23 71.429 0.000 29.40 29.40 16 -6.80 6.80 0

CHB24 87.500 0.047 8.79 8.79 3 39.64 51.93 1

รวม 75.253 0.015

ชุด

ข้อมูล

ความถูก

ต้อง

การตรวจ

จับเท็จ  
(ครั้ง/
ชั่วโมง)

ผลต่างเวลาในการระบุการเริ่มต้น

ของภาวะชัก (วินาที)
ผลต่างเวลาในการระบุการสิ้นสุด

ของภาวะชัก (วินาที)
ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด

ชุด

ข้อมูล

ความถูก

ต้อง

การตรวจ

จับเท็จ  
(ครั้ง/
ชั่วโมง)

ผลต่างเวลาในการระบุการเริ่มต้น

ของภาวะชัก (วินาที)
ผลต่างเวลาในการระบุการสิ้นสุด

ของภาวะชัก (วินาที)

ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด

CHB01 85.714 0.025 11.67 11.67 3 -22.17 22.17 2

CHB02 100.000 0.000 1.33 1.33 1 0.33 1.00 1

CHB03 100.000 0.000 11.43 11.43 7 3.00 7.86 1

CHB04 100.000 0.000 15.25 15.25 8 -4.50 4.50 2

CHB05 100.000 0.000 1.40 1.40 1 0.20 0.20 0

CHB06 70.000 0.000 3.86 3.86 1 -2.29 2.86 0

CHB07 100.000 0.000 4.67 4.67 2 -7.33 7.33 1

CHB08 100.000 0.000 3.00 3.00 1 -10.20 10.20 0

CHB09 100.000 0.000 6.00 6.00 4 -0.75 0.75 0

CHB10 100.000 0.000 1.00 1.00 1 -1.29 1.57 0

CHB11 100.000 0.000 1.67 1.67 1 -6.67 8.00 1

CHB12 95.000 0.042 3.20 3.20 2 1.58 2.00 2
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ความถูกต้องสำหรับการตรวจจับภาวะชักโดยใช้ค่าลอการิทึมของความแปรปรวนของ
สัมประสิทธิ์เวฟเล็ต ค่ายกกำลังสเปกตรัม และค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิง
เวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบรายช่องสัญญาณในทั้ง 24 ชุดข้อมูลมีค่าระหว่าง
ร้อยละ 12.500 และ 100 10.000 และ 100.000 และ 37.500 และ 100.00 ตามลำดับ โดย
ความถูกต้องเฉลี่ยสำหรับการตรวจจับภาวะชักโดยใช้ค่าลอการิทึมของความแปรปรวนของ
สัมประสิทธิ์เวฟเล็ต ค่ายกกำลังสเปกตรัม และค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิง
เวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบรายช่องสัญญาณจากทั้ง 24  ชุดข้อมูลมีเท่ากับ
ร้อยละ 83.838 75.253 และ 92.424 ตามลำดับ  

ในขณะที่อัตราการตรวจจับเท็จสำหรับการตรวจจับภาวะชักโดยใช้ค่าลอการิทึมของ
ความแปรปรวนของสัมประสิทธิ์เวฟเล็ต ค่ายกกำลังสเปกตรัม และค่าตัวชี้วัดที่ได้มาจากการ
วิเคราะห์รูปแบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบรายช่องสัญญาณในทั้ง 24 

ชุดข้อมูลมีค่าระหว่าง 0.000 และ 0.400 0.000 และ 0.115 0.000 และ 0.112 ครั้งต่อชั่วโมง 
โดยอัตราการตรวจจับเท็จเฉลี่ยสำหรับการตรวจจับภาวะชักโดยใช้ค่าลอการิทึมของความ
แปรปรวนของสัมประสิทธิ์เวฟเล็ต ค่ายกกำลังสเปกตรัม และค่าตัวชี้วัดที่ได้มาจากการ
วิเคราะห์รูปแบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบรายช่องสัญญาณจากทั้ง 24 

ชุดข้อมูลมีค่าเท่ากับ 0.041 0.015 และ 0.007 ครั้งต่อชั่วโมง  

CHB13 91.667 0.000 2.00 2.00 2 -1.76 2.29 1

CHB14 100.000 0.000 1.50 1.50 1 -1.13 1.63 0

CHB15 100.000 0.000 4.40 4.40 1 -5.95 6.35 1

CHB16 100.000 0.000 1.00 1.00 1 1.00 1.00 1

CHB17 100.000 0.000 17.00 18.33 2 -25.67 27.67 3

CHB18 83.333 0.112 18.60 18.60 11 -10.20 11.00 2

CHB19 100.000 0.000 1.00 1.00 1 -0.33 0.33 0

CHB20 37.500 0.000 15.00 15.00 12 -10.33 10.33 3

CHB21 100.000 0.000 1.00 1.00 1 1.00 1.00 1

CHB22 100.000 0.000 8.67 8.67 2 -1.67 1.67 1

CHB23 100.000 0.038 3.86 3.86 1 -4.14 4.71 1

CHB24 87.500 0.000 6.07 6.07 1 -2.71 3.14 0

รวม 92.424 0.007

ชุด

ข้อมูล

ความถูก

ต้อง

การตรวจ

จับเท็จ  
(ครั้ง/
ชั่วโมง)

ผลต่างเวลาในการระบุการเริ่มต้น

ของภาวะชัก (วินาที)
ผลต่างเวลาในการระบุการสิ้นสุด

ของภาวะชัก (วินาที)

ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด ค่าเฉลี่ย ค่าเฉลี่ย

สัมบูรณ์
ค่าที่ดีที่สุด
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ค่าเฉลี่ยสัมบูรณ์ของผลต่างเวลาในการระบุการเริ่มต้นของภาวะชักโดยใช้ค่าลอการิทึม
ของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต ค่ายกกำลังสเปกตรัม และค่าตัวชี้วัดที่ได้มาจาก
การวิเคราะห์รูปแบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบรายช่องสัญญาณมีค่า
ระหว่าง 1.33 และ 30.00 2.00 และ 48.00 และ 1.00 และ 18.60 วินาที  ในขณะที่ค่าเฉลี่ย
สัมบูรณ์ของผลต่างเวลาในการระบุการสิ้นสุดของภาวะชักโดยใช้ค่าลอการิทึมของความ
แปรปรวนของสัมประสิทธิ์เวฟเล็ต ค่ายกกำลังสเปกตรัม และค่าตัวชี้วัดที่ได้มาจากการ
วิเคราะห์รูปแบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองแบบรายช่องสัญญาณมีค่า
ระหว่าง 1.67 และ 125.81 4.33 และ 136.29 และ 0.20 และ 27.67 วินาที  นอกจากนี้ การ
ระบุการเริ่มต้นและการสิ้นสุดของภาวะชักสามารถทำได้โดยสมบูรณ์ นั่นคือ ค่าที่ดีที่สุดในการ
ระบุการเริ่มต้นหรือการสิ้นสุดของการชักมีค่าเท่ากับศูนย์   

3.3.3 ประสิทธิภาพในการตรวจจับภาวะชักแบบไม่ขึ้นอยู่กับตัวอย่าง 
ความถูกต้องสำหรับการตรวจจับภาวะชักโดยใช้ค่าลอการิทึมของความแปรปรวนของ

สัมประสิทธิ์เวฟเล็ต ค่ายกกำลังสเปกตรัม และค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิง
เวลาของส่วนย่อยของสัญญาณคลื่นสมองโดยไม่แบ่งชุดข้อมูลมีค่าเท่ากับร้อยละ 22.581 

27.391 และ 17.568 ในขณะที่อัตราการตรวจจับเท็จสำหรับการตรวจจับภาวะชักมีค่าเท่ากับ 
0.015 0.000 และ 0.000 ครั้งต่อชั่วโมง ตามลำดับ  ค่าเฉลี่ยสัมบูรณ์ของผลต่างเวลาในการ
ระบุการเริ่มต้นและการสิ้นสุดของภาวะชักโดยใช้ค่าลอการิทึมของความแปรปรวนของ
สัมประสิทธิ์เวฟเล็ต ค่ายกกำลังสเปกตรัม และค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิง
เวลาของส่วนย่อยของสัญญาณคลื่นสมองมีค่าเท่ากับ 16.292 และ 15.521 10.810 และ 
7.698 และ 19.731 และ 29.192 ตามลำดับ  ค่าที่ดีที่สุดในการระบุการเริ่มต้นและการสิ้นสุด
ของภาวะชักโดยใช้ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต ค่ายกกำลัง
สเปกตรัม และค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลาของส่วนย่อยของสัญญาณ
คลื่นสมอง คือ 2 และ 1 1 และ 0 และ 1 และ 1 วินาที ตามลำดับ  

3.4 โปรแกรมประยุกต์สำหรับการวิเคราะห์สัญญาณคลื่นสมองและตรวจจับภาวะชักของผู้ป่วย
โรคลมชัก 

นอกจากการพัฒนาขั้นตอนวิธีเชิงคำนวณใหม่สำหรับการตรวจจับภาวะชักและการระบุ
การเริ่มต้นและการสิ้นสุดของภาวะชักของผู้ป่วยโรคลมชักแล้ว โปรแกรมประยุกต์ เรียกว่า 
โปรแกรมประยุกต์ EEG Exploration & Detection ได้ถูกพัฒนาขึ้นโดยใช้ MATLAB App 

Designer สำหรับการวิเคราะห์ข้อมูลสัญญาณคลื่นสมอง การจำแนกสัญญาณคลื่นสมองที่
เกี่ยวข้องภาวะชักของผู้ป่วยโรคลมชัก และการตรวจจับและระบุภาวะชักของผู้ป่วยโรคลมชัก  
โปรแกรมประยุกต์ EEG Exploration & Detection ถูกออกแบบโดยอาศัยกระบวนการ
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ประมวลผลและวิเคราะห์ข้อมูลสัญญาณคลื่นสมองเช่นเดียวกันกับกระบวนการประมวลผลและ
วิเคราะห์ข้อมูลสัญญาณคลื่นสมองที่ดำเนินการในโครงการวิจัยนี้ซึ่งถูกแสดงไว้ในบทที่ 2  

โปรแกรมประยุกต์ EEG Exploration & Detection ถูกแบ่งออกเป็น 4 หมวดหลัก คือ 
1) หมวดการตรวจสอบสัญญาณคลื่นสมอง (EEG Trace) 2) หมวดการวิเคราะห์สัญญาณคลื่น
สมอง (EE Analysis) 3) หมวดการจำแนกสัญญาณคลื่นสมองที่เกี่ยวข้องกับภาวะชัก 
(Epileptic Seizure Classification) และ 4) หมวดการตรวจจับภาวะชัก (Epileptic Seizure 

Detection) ซึ่งถูกจัดวางไว้ในแต่ละแถบของโปรแกรมประยุกต์ EEG Exploration & 

Detection  นอกจากนี ้โปรแกรมประยุกต์ EEG Exploration & Detection มีส่วนแสดงปุ่ม 
About เพื่อแสดงกิตติกรรมประกาศและสารสนเทศที่เกี่ยวข้องกับโปรแกรม ดังแสดงในรูป 3.1  

 

รูป 3.1 กิตติกรรมประกาศและสารสนเทศสำหรับโปรแกรมประยุกต์ EEG Exploration & 

Detection  

3.4.1 หมวดการตรวจสอบสัญญาณคลื่นสมอง 
หมวดการตรวจสอบสัญญาณคลื่นสมองอยู่ในแถบ EEG Trace ของโปรแกรมประยุกต์ 

EEG Exploration & Detection เพื่อใช้สำหรับการตรวจสอบสัญญาณคลื่นสมองในโดเมน
เวลา โดยจะแสดงรูปคลื่นของช่องสัญญาณต่าง ๆ ของข้อมูลสัญญาณคลื่นสมอง  เมื่อผู้ใช้
ทำการเปิดข้อมูลสัญญาณคลื่นสมองที่จะดำเนินการตรวจสอบขึ้นมาแล้ว ผู้ใช้จะสามารถแสดง
สารสนเทศของข้อมูลสัญญาณคลื่นสมอง เลือกช่องสัญญาณของข้อมูลสัญญาณคลื่นสมอง ปรับ
เปลี่ยนเวลาเริ่มต้นของสัญญาณคลื่นสมองที่จะแสดงผลและตรวจสอบ ปรับเปลี่ยนกรอบเวลา
ของสัญญาณคลื่นสมองที่จะแสดงผลและตรวจสอบ เลื่อนช่วงเวลาของสัญญาณคลื่นสมองที่จะ
แสดงผลและตรวจสอบ และปรับเปลี่ยนแอมปลิจูดของสัญญาณคลื่นสมองได้   

ส่วนประกอบต่างๆ ของหมวดการตรวจสอบสัญญาณคลื่นสมองดังแสดงในรูป 3.2 ถูก
แบ่งออกเป็น 3 ส่วนหลัก คือ ข้อมูลสัญญาณคลื่นสมอง (Data) ซึ่งใช้สำหรับการเลือกนำเข้า
ข้อมูลสัญญาณคลื่นสมอง การตั้งค่าแสดงผลรูปคลื่นของสัญญาณคลื่นสมอง (Trace) ซึ่งใช้
สำหรับการเลือกรายละเอียดของข้อมูลสัญญาณคลื่นสมองเพื่อแสดงผล และการแสดงผลรูป
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คลื่นของสัญญาณคลื่นสมอง (EEG Axes) ซึ่งใช้สำหรับการแสดงผลและการตรวจดูรูปคลื่นของ
สัญญาณคลื่นสมอง  

 

รูป 3.2 หมวดการตรวจสอบสัญญาณคลื่นสมองของโปรแกรมประยุกต์ EEG Exploration & 

Detection 

3.4.2 หมวดการวิเคราะห์สัญญาณคลื่นสมอง 
หมวดการวิเคราะห์สัญญาณคลื่นสมองอยู่ในแถบ EEG Analysis ของโปรแกรมประยุกต์ 

EEG Exploration & Detection เพื่อใช้สำหรับการวิเคราะห์สัญญาณคลื่นสมองโดยใช้วิธีการ
ประมวลผลสัญญาณคลื่นสมองเป็นรายช่องสัญญาณตามขอบเขตของโครงการวิจัยนี้  หมวด
การวิเคราะห์สัญญาณคลื่นสมองทำงานเชื่อมโยงกับหมวดการตรวจสอบสัญญาณคลื่นสมอง 
นั่นคือ ข้อมูลสัญญาณคลื่นสมองที่จะใช้ในการวิเคราะห์ในหมวดการวิเคราะห์สัญญาณคลื่น
สมองจะเป็นข้อมูลสัญญาณคลื่นสมองที่ถูกเปิดขึ้นแล้วในหมวดการตรวจสอบสัญญาณคลื่น
สมอง  

ส่วนประกอบต่างๆ ของหมวดการวิเคราะห์สัญญาณคลื่นสมองดังแสดงในรูป 3.4 ถูกแบ่ง
ออกเป็น 4 ส่วนหลัก คือ ข้อมูลสัญญาณคลื่นสมอง (Data) ซึ่งใช้สำหรับการเลือกรายละเอียด
ของข้อมูลสัญญาณคลื่นสมองเพื่อแสดงผล การวิเคราะห์สัญญาณคลื่นสมอง (Analysis) ซึ่งใช้
สำหรับการเลือกวิธีการวิเคราะห์ข้อมูลสัญญาณคลื่นสมอง โดยวิธีการวิเคราะห์หลักประกอบ
ด้วยวิธีการวิเคราะห์ทั้งสามที่ใช้ในโครงการวิจัยนี้ นั่นคือ (1) Log-variance of wavelet 

coefficients (2) Spectral exponents และ (3) Temporal pattern analysis การแสดงผล
รูปคลื่นของช่องสัญญาณของสัญญาณคลื่นสมอง (EEG Axes) ซึ่งใช้สำหรับการแสดงผลรูปคลื่น
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ของสัญญาณคลื่นสมอง และการแสดงผลการวิเคราะห์สัญญาณคลื่นสมอง (Analysis Axes) ซึ่ง
ใช้สำหรับการแสดงผลการวิเคราะห์ข้อมูลสัญญาณคลื่นสมอง  

 

รูป 3.4 หมวดการวิเคราะห์สัญญาณคลื่นสมองของโปรแกรมประยุกต์ EEG Exploration & 

Detection 

3.4.3 หมวดการจำแนกสัญญาณคลื่นสมองที่เกี่ยวข้องกับภาวะชัก 
หมวดการจำแนกสัญญาณคลื่นสมองที่เกี่ยวข้องกับภาวะชักอยู่ในแถบ Epileptic 

Seizure Classification (SVM) ของโปรแกรมประยุกต์ EEG Exploration & Detection เพื่อ
ใช้สำหรับการฝึกสอนแบบจำลองของตัวจำแนกแบบเครื่องจักรเวกเตอร์รองรับ (SVM) และการ
จำแนกภาวะชักโดยใช้ตัวจำแนกแบบเครื่องจักรเวกเตอร์รองรับ (SVM)  การใช้งานหมวดการ
จำแนกสัญญาณคลื่นสมองที่เกี่ยวข้องกับภาวะชักมีอยู่ทั้งหมด 4 ลำดับ คือ (1) การโหลดหรือ
การฝึกสอนแบบจำลองของตัวจำแนกแบบเครื่องจักรเวกเตอร์รองรับ (SVM Model Load/

Train) (2) การจำแนกสัญญาณคลื่นสมองที่เกี่ยวข้องกับภาวะชัก (Epileptic Seizure 

Classification) (3) การประเมินประสิทธิภาพในการจำแนกภาวะชัก (Evaluation) และ (4) 

การบันทึกผลการจำแนกภาวะชัก (Export)  

ส่วนประกอบต่างๆ ของหมวดการจำแนกสัญญาณคลื่นสมองที่เกี่ยวข้องกับภาวะชักดัง
แสดงในรูป 3.5 ถูกแบ่งออกเป็น 10 ส่วนหลัก คือ แบบจำลองของตัวจำแนกแบบเครื่องจักร
เวกเตอร์รองรับที่มีอยู่แล้ว (Existing SVM Model) ชุดข้อมูลของสัญญาณคลื่นสมองสำหรับ
การฝึกสอน (Train Dataset) การสกัดคุณลักษณะเฉพาะ (Feature Extraction) การฝึกสอน
ตัวจำแนกแบบเครื่องจักรเวกเตอร์รองรับ (SVM Classifier Training) การจำแนกภาวะชัก 
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(Classification) การประเมินประสิทธิภาพ (Performance) การบันทึกผลการจำแนกภาวะชัก 
(Export) การแสดงผลรูปคลื่นของสัญญาณคลื่นสมองสำหรับการฝึกสอน (Train Dataset 

Axes) การแสดงผลรูปคลื่นของสัญญาณคลื่นสมองสำหรับการจำแนก (Test Dataset Axes) 

และตารางแสดงผลและประสิทธิภาพในการจำแนก (Classification Result & Performance) 

 

รูป 3.5 หมวดการจำแนกสัญญาณคลื่นสมองที่เกี่ยวข้องกับภาวะชักของโปรแกรมประยุกต์ 
EEG Exploration & Detection 

3.4.4 หมวดการตรวจจับภาวะชัก 
หมวดการตรวจจับภาวะชักในแถบ Epileptic Seizure Detection (SVM) ของ

โปรแกรมประยุกต์ EEG Exploration & Detection เพื่อใช้สำหรับการตรวจจับภาวะชักโดยใช้
ตัวจำแนกแบบเครื่องจักรเวกเตอร์รองรับ (SVM)  การใช้งานหมวดการจำแนกสัญญาณคลื่น
สมองที่เกี่ยวข้องกับภาวะชักมีอยู่ทั้งหมด 3 ลำดับ คือ (1) การโหลดแบบจำลองของตัวจำแนก
แบบเครื่องจักรเวกเตอร์รองรับ (SVM Model Load) (2) การตรวจจับภาวะชัก (Epileptic 

Seizure Detection) และ (3) รายงานของผลการตรวจจับภาวะชัก  ส่วนประกอบต่างๆ ของ
หมวดการตรวจจับภาวะชักดังแสดงในรูป 3.6 ถูกแบ่งออกเป็น 5 ส่วนหลัก คือ แบบจำลองของ
ตัวจำแนกแบบเครื่องจักรเวกเตอร์รองรับที่มีอยู่แล้ว (Existing SVM Model) การตรวจจับ
ภาวะชัก (Detection) รายงานของผลการตรวจจับภาวะชัก (Epileptic Seizure Detection 

Report) การแสดงผลรูปคลื่นของสัญญาณคลื่นสมองที่ทำการตรวจจับภาวะชัก (EEG Axes) 

และการแสดงผลการตรวจจับภาวะชัก (Detection Axes)  
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รูป 3.6 หมวดการตรวจจับภาวะชักของโปรแกรมประยุกต์ EEG Exploration & Detection 

4. สรุปและวิจารณ์ผลการทดลอง 
ในโครงการวิจัยนี ้เราได้พัฒนาวิธีเชิงคำนวณใหม่สำหรับการสกัดคุณลักษณะเฉพาะของ

สัญญาณคลื่นสมองแบบหนังศีรษะและการตรวจจับภาวะชักของผู้ป่วยโรคลมชักโดยใช้
สัญญาณคลื่นสมองแบบหนังศีรษะ  นอกจากนี้ วิธีเชิงคำนวณสำหรับการจำแนกภาวะชักและ
การตรวจจับภาวะชักโดยใช้สัญญาณคลื่นสมองที่ได้พัฒนาขึ้นและประยุกต์ใช้ในโครงการวิจัยนี้ 
ได้ถูกรวบรวมและพัฒนาขึ้นเป็นโปรแกรมประยุกต์ที่อาศัย MATLAB อีกด้วย  คุณลักษณะ
เฉพาะของสัญญาณคลื่นสมองที่นำมาประยุกต์ใช้ประกอบด้วยค่าลอการิทึมของความแปรปรวน
ของสัมประสิทธิ์เวฟเล็ต ค่าตัวยกกำลังสเปกทรัม และค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูป
แบบเชิงเวลา  ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ตคือคุณลักษณะเฉพาะที่
คำนวณมาจากผลการแปลงเวฟเล็ตของสัญญาณคลื่นสมองซึ่งสัมพันธ์กับพลังงานของสัญญาณ
คลื่นสมองในช่วงแถบความถี่ต่าง ๆ  ค่ายกกำลังสเปกทรัมคือคุณลักษณะเฉพาะที่คำนวณมา
จากการประมาณค่าความชันของกราฟระหว่างค่าลอการิทึมของความแปรปรวนของ
สัมประสิทธิ์เวฟเล็ตตามหลักการแฟรกทัลส์ซึ่งอาศัยการแปลงเวฟเล็ต  ค่าตัวชี้วัดที่เป็น
คุณลักษณะเฉพาะของสัญญาณคลื่นสมองที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลาคือ
คุณลักษณะเฉพาะที่บ่งบอกถึงลักษณะของจุดสูงสุดและจุดต่ำสุดของสัญญาณคลื่นสมองใน
โดเมนเวลาที่สอดคล้องกับช่วงแถบความถี่ต่าง ๆ   

กระบวนการประมวลผลและวิเคราะห์ข้อมูลสัญญาณคลื่นสมองแบ่งออกเป็น 3 ระยะ
ประกอบด้วย 1) ระยะการคัดเลือกคุณลักษณะเฉพาะ ซึ่งมีเป้าหมายหลักเพื่อลดจำนวนของ
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คุณลักษณะเฉพาะของสัญญาณคลื่นสมองลงให้เหลือเพียงแค่คุณลักษณะเฉพาะหลัก 2) ระยะ
การฝึกสอนตัวจำแนก ซึ่งมีเป้าหมายหลักเพื่อได้รับตัวจำแนกสำหรับการจำแนกเวกเตอร์
คุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองว่าส่วนย่อยของสัญญาณคลื่นสมองดังกล่าว
เกี่ยวข้องกับภาวะชักหรือไม่ และ 3) ระยะการตรวจจับภาวะชัก ซึ่งมีเป้าหมายหลักเพื่อแปรผล
และสรุปผลการจำแนกภาวะชักออกมาเป็นเหตุการณ์ชัก  วิธีการคัดเลือกคุณลักษณะเฉพาะเชิง
ลำดับ (sequential feature selection) โดยมีค่าความสูญเสียแบบสมการกำลังสองเป็นค่า
ฟังก์ชันเป้าหมายถูกนำมาใช้ในการคัดเลือกคุณลักษณะเฉพาะ  ในขณะที่ตัวจำแนกแบบ
เครื่องจักรเวกเตอร์รองรับ (support vector machine (SVM) classifier) ซึ่งมีฟังก์ชันฐาน
หลักเชิงรัศมี (radial basis function) เป็นฟังก์ชันแก่นกลางถูกนำมาใช้เป็นตัวจำแนกเวกเตอร์
คุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมอง  

สำหรับการจำแนกและการตรวจจับภาวะชัก กระบวนการประมวลผลและวิเคราะห์
ข้อมูลสัญญาณคลื่นสมองดำเนินการใน 2 รูปแบบ คือ การประมวลผลและวิเคราะห์ข้อมูล
สัญญาณคลื่นสมองแบบรายช่องสัญญาณ นั่นคือ สัญญาณคลื่นสมองจะถูกนำไปประมวลผล
และวิเคราะห์ทีละช่องสัญญาณสำหรับแต่ละชุดข้อมูล และการประมวลผลและวิเคราะห์ข้อมูล
สัญญาณคลื่นสมองแบบทุกช่องสัญญาณ นั่นคือ สัญญาณคลื่นสมองทุกช่องสัญญาณจะถูกนำ
ไปประมวลผลและวิเคราะห์พร้อมกันสำหรับแต่ละชุดข้อมูล  นอกจากนี้การจำแนกและการ
ตรวจจับภาวะชักยังกระทำใน 2 ลักษณะ คือ การจำแนกและตรวจจับภาวะชักแบบเฉพาะ
ตัวอย่าง (subject-dependent seizure classification and detection) และการจำแนก
และตรวจจับภาวะชักแบบไม่ขึ้นอยู่กับตัวอย่าง (subject-independent seizure 

classification and detection)   

ผลการคัดเลือกคุณลักษณะเฉพาะหลักแสดงให้เห็นถึงช่องสัญญาณของสัญญาณคลื่น
สมองและคุณลักษณะเฉพาะเด่นในทั้งสามกลุ่มของคุณลักษณะเฉพาะของสัญญาณคลื่นสมอง
ซึ่งประกอบด้วยค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต ค่าตัวยกกำลังสเปก
ทรัม และค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลา โดยช่องสัญญาณของสัญญาณ
คลื่นสมองและคุณลักษณะเฉพาะเด่นเหล่านี้มีลักษณะที่แตกต่างกันระหว่างภาวะชักและภาวะ
ที่ไม่เกี่ยวข้องกับการชักและมีบทบาทสำคัญต่อการจำแนกภาวะชักรวมถึงการตรวจจับการชัก  
สำหรับการประมวลผลและวิเคราะห์ข้อมูลสัญญาณคลื่นสมองแบบรายช่องสัญญาณ โดยรวม
แล้วจำนวนของคุณลักษณะเฉพาะของสัญญาณคลื่นสมองในแต่ละช่องสัญญาณสามารถถูกลด
ลงไปได้ประมาณกึ่งหนึ่ง  สำหรับการประมวลผลและวิเคราะห์ข้อมูลสัญญาณคลื่นสมองแบบ
ทุกช่องสัญญาณ คุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองจากทุกช่องสัญญาณมีจำนวน
เพียงประมาณครึ่งหนึ่งที่ถูกคัดเลือก  ในขณะที่ช่องสัญญาณของสัญญาณคลื่นสมองสามารถถูก
ลดลงไปเหลือเพียงแค่ประมาณหนึ่งในหกของจำนวนช่องสัญญาณทั้งหมด   
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ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ตเด่นของส่วนย่อยของสัญญาณ
คลื่นสมองสำหรับการจำแนกภาวะชัก คือ  และ  ซึ่งสัมพันธ์กับช่วงแถบความถี่ 4–8 

เฮิรตซ์และ 64-128 เฮิรตซ์ ตามลำดับ  ช่วงแถบความถี่ของสัญญาณคลื่นสมองซึ่งสัมพันธ์กับ
ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต  (นั่นคือ 4–8 เฮิรตซ์) และ  (นั่น
คือ 64-128 เฮิรตซ์) สอดคล้องกับคลื่นเบต้าและคลื่นแกมม่าตามลำดับ  ค่าตัวยกกำลังสเปก
ทรัมเด่นของส่วนย่อยของสัญญาณคลื่นสมอสำหรับการจำแนกภาวะชัก คือ  ซึ่งแสดงให้เห็น
การเปลี่ยนแปลงของค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ตเมื่อค่าระดับเพิ่ม
ขึ้นในช่วงความถี่ระหว่าง 16 และ 128 เฮิรตซ์ของสัญญาณคลื่นสมอง  ค่าตัวชี้วัดเด่นที่ได้มา
จากการวิเคราะห์รูปแบบเชิงเวลา คือ ค่าสูงสุดของระยะห่างระหว่างจุดสูงสุดต่ำสุดเฉพาะที ่

 ที่สกัดออกมาจากสัญญาณส่วนประกอบย่อย  ของสัญญาณคลื่นสมอง ซึ่งเป็น
คุณลักษณะที่บ่งบอกระยะห่างสูงสุดระหว่างจุดสูงสุดเฉพาะที่และจุดต่ำสุดเฉพาะที่ของ
สัญญาณคลื่นสมองในช่วงแถบความถี่ 64-128 เฮิรตซ์   

สำหรับประสิทธิภาพในการจำแนกภาวะชัก ความจำเพาะในการจำแนกภาวะชักในทุก
ชุดข้อมูลมีค่าสูงมากเมื่อใช้คุณลักษณะเฉพาะหลักของสัญญาณคลื่นสมองทั้งสามกลุ่ม  ใน
ทำนองเดียวกันความถูกต้องในการจำแนกภาวะชักมีค่าสูงเนื่องจากจำนวนของส่วนย่อยของ
สัญญาณคลื่นสมองที่ไม่เกี่ยวข้องกับภาวะชักมีจำนวนมากกว่าจำนวนของส่วนย่อยของสัญญาณ
คลื่นสมองที่เกี่ยวข้องกับภาวะชักมาก  ค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลาของ
สัญญาณคลื่นสมองคือคุณลักษณะเฉพาะที่ทำให้ได้ผลการจำแนกภาวะชักที่ดีที่สุดทั้งในการ
ประมวลผลและวิเคราะห์ข้อมูลสัญญาณคลื่นสมองแบบรายช่องสัญญาณและการประมวลผล
และวิเคราะห์ข้อมูลสัญญาณคลื่นสมองแบบทุกช่องสัญญาณ  จากผลการจำแนกภาวะชักแบบ
รายช่องสัญญาณ คะแนน  และผลคูณระหว่างค่าความไวและค่าความจำเพาะ  มีค่า
ระหว่างร้อยละ 7.58 และร้อยละ 98.05 และร้อยละ 3.94 และร้อยละ 96.17 ตามลำดับ และ
ผลการจำแนกภาวะชักแบบทุกช่องสัญญาณ คะแนน  และผลคูณระหว่างค่าความไวและค่า
ความจำเพาะ  มีค่าระหว่างร้อยละ 14.33 และร้อยละ 99.75 และร้อยละ 7.72 และร้อยละ 
99.51 ตามลำดับ   

นอกจากนี้ ผลการจำแนกภาวะชักยังแสดงให้เห็นว่าการใช้คุณลักษณะเฉพาะของทุกช่อง
สัญญาณของสัญญาณคลื่นสมองร่วมกัน นั่นคือ การจำแนกภาวะชักในการประมวลผลและ
วิเคราะห์ข้อมูลสัญญาณคลื่นสมองแบบทุกช่องสัญญาณ ทำให้ประสิทธิภาพในการจำแนกภาวะ
ชักสูงขึ้นเมื่อเทียบกับการจำแนกภาวะชักโดยใช้คุณลักษณะเฉพาะของสัญญาณคลื่นสมองเพียง
ช่องสัญญาณเดียว  จำนวนของชุดข้อมูลของสัญญาณคลื่นสมองที่มีค่าผลคูณระหว่างค่าความไว
และค่าความจำเพาะ  ในการจำแนกภาวะชักโดยใช้ค่าลอการิทึมของความแปรปรวนของ
สัมประสิทธิ์เวฟเล็ต ค่าตัวยกกำลังสเปกทรัม และค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิง
เวลาเป็นคุณลักษณะเฉพาะของสัญญาณคลื่นสมองที่มีค่ามากกว่าร้อยละ 90 เพิ่มขึ้นจาก
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จำนวน 1 0 และ 2 ชุดข้อมูลเป็น 2 1 และ 7 ชุดข้อมูล ตามลำดับ  ในทำนองเดียวกัน จำนวน
ของชุดข้อมูลของสัญญาณคลื่นสมองที่มีค่าคะแนน  ของการจำแนกภาวะชักโดยใช้ค่า
ลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟเล็ต ค่าตัวยกกำลังสเปกทรัม และค่าตัวชี้วัด
ที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลาเป็นคุณลักษณะเฉพาะของสัญญาณคลื่นสมองที่มีค่า
มากกว่าร้อยละ 90 เพิ่มขึ้นจากจำนวน 1 0 และ 5 ชุดข้อมูลเป็น 2 2 และ 10 ชุดข้อมูล ตาม
ลำดับ   

จากผลการตรวจจับภาวะชักโดยใช้ค่าลอการิทึมของความแปรปรวนของสัมประสิทธิ์เวฟ
เล็ต ค่าตัวยกกำลังสเปกทรัม และค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลาของส่วน
ย่อยของสัญญาณคลื่นสมอง เหตุการณ์ชักทั้งหมดสามารถตรวจจับได้โดยสมบูรณ์ใน 17 9 และ 
15 ชุดข้อมูล ตามลำดับ สำหรับการประมวลผลและวิเคราะห์ข้อมูลสัญญาณคลื่นสมองแบบ
รายช่องสัญญาณ และเหตุการณ์ชักทั้งหมดสามารถตรวจจับได้โดยสมบูรณ์ใน 17 10 และ 17 

ชุดข้อมูล ตามลำดับ สำหรับการประมวลผลและวิเคราะห์ข้อมูลสัญญาณคลื่นสมองแบบทุกช่อง
สัญญาณ  อัตราการตรวจจับเท็จของการตรวจจับภาวะชักโดยใช้ค่าลอการิทึมของความ
แปรปรวนของสัมประสิทธิ์เวฟเล็ต ค่าตัวยกกำลังสเปกทรัม และค่าตัวชี้วัดที่ได้มาจากการ
วิเคราะห์รูปแบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองมีค่าเท่ากับ 0 ครั้งต่อชั่วโมงใน 
16 23 และ 23 ชุดข้อมูล ตามลำดับ สำหรับการประมวลผลและวิเคราะห์ข้อมูลสัญญาณคลื่น
สมองแบบรายช่องสัญญาณ และเหตุการณ์ชักทั้งหมดสามารถตรวจจับได้โดยสมบูรณ์ใน 13 16 

และ 20 ชุดข้อมูล ตามลำดับ  ผลการตรวจจับภาวะชักที่ดีที่สุดคือผลการตรวจจับภาวะชักโดย
ใช้ค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลาของส่วนย่อยของสัญญาณคลื่นสมองจาก
ทุกช่องสัญญาณร่วมกัน ซึ่งทำให้ได้ความถูกต้องและอัตราการตรวจจับเท็จในการตรวจจับ
ภาวะชักในทั้ง 24 ชุดข้อมูลมีค่าเท่ากับร้อยละ 92.42 และ 0.007 ครั้งต่อชั่วโมง (หรือ 0.171 

ครั้งต่อวัน) ตามลำดับ โดยการตรวจจับภาวะชักเท็จเกิดขึ้นเพียงใน 4 ชุดข้อมูลเท่านั้น  
ผลการตรวจจับภาวะชักแสดงให้เห็นอีกด้วยว่าโดยทั่วไปแล้วการระบุตำแหน่งการเริ่มต้น

ของการชักมีผลที่ดีกว่าการระบุตำแหน่งการสิ้นสุดของการชัก นั่นคือ การเริ่มต้นของภาวะชัก
สามารถถูกระบุได้แม่นยำมากกว่าเมื่อเทียบกับการสิ้นสุดของภาวะชัก  สำหรับการประยุกต์ใช้
งานจริงในการตรวจจับภาวะชัก การระบุตำแหน่งการเริ่มต้นของการชักมีความสำคัญมากกว่า
การระบุตำแหน่งการสิ้นสุดของการชัก เนื่องจากการระบุตำแหน่งการเริ่มต้นของการชักเป็น
ผลลัพธ์แรกที่ได้รับจากการตรวจจับภาวะชัก ซึ่งจะส่งผลต่อการแจ้งเตือนด้วยระบบการแจ้ง
เตือนภาวะชักหรือการกระตุ้นกลไกของระบบบำบัดรักษาแบบวงปิด  ผลของการระบุตำแหน่ง
การเริ่มต้นและการสิ้นสุดของภาวะชักที่ได้มีทั้งที่ค่าเป็นบวกและเป็นลบ ซึ่งค่าที่เป็นบวก
สำหรับการระบุตำแหน่งการเริ่มต้นของภาวะชักหมายความว่าการตรวจจับภาวะชักล่าช้ากว่าที่
ภาวะชักเริ่มต้นขึ้น และค่าที่เป็นลบสำหรับการระบุตำแหน่งการเริ่มต้นของภาวะชักหมายความ
ว่าการตรวจจับภาวะชักเกิดขึ้นก่อนหน้าที่ภาวะชักจะเริ่มต้นขึ้นจริง ในทำนองเดียวกัน ค่าที่เป็น
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บวกสำหรับการระบุตำแหน่งการเริ่มต้นของภาวะชักหมายความว่าการบ่งบอกการสิ้นสุดของ
ภาวะชักล่าช้ากว่าที่ภาวะชักสิ้นสุดไปแล้ว และค่าที่เป็นลบสำหรับการระบุตำแหน่งการสิ้นสุด
ของภาวะชักหมายความว่าการบ่งบอกการสิ้นสุดของภาวะชักเกิดขึ้นก่อนหน้าที่ภาวะชักจะสิ้น
สุดลง  ความคลาดเคลื่อนของการระบุตำแหน่งการเริ่มต้นและการสิ้นสุดของภาวะชักมีผล
สอดคล้องกับค่าความไวของการจำแนกภาวะชัก   

ในทางกลับกันสำหรับการจำแนกและการตรวจจับภาวะชักแบบไม่ขึ้นอยู่กับตัวอย่าง 
ค่าตัวยกกำลังสเปกทรัมแสดงให้เห็นว่าเป็นค่าคุณลักษณะเฉพาะของส่วนย่อยของสัญญาณคลื่น
สมองที่ทำให้ได้ผลการจำแนกและการตรวจจับภาวะชักที่เหนือกว่าค่าลอการิทึมของความ
แปรปรวนของสัมประสิทธิ์เวฟเล็ตและค่าตัวชี้วัดที่ได้มาจากการวิเคราะห์รูปแบบเชิงเวลา โดยมี
ค่าความถูกต้อง  ค่าความไว  ค่าความจำเพาะ  ค่าคะแนน  และค่าผลคูณระหว่างค่า
ความไวและค่าความจำเพาะ  ในการจำแนกภาวะชักเท่ากับร้อยละ 99.760 11.438 

99.999 20.524 และ 11.438 ตามลำดับ และความถูกต้องและอัตราการตรวจจับเท็จในการ
ตรวจจับภาวะชักเท่ากับร้อยละ 27.391 และ 0.000 ครั้งต่อชั่วโมง  ประสิทธิภาพในการตรวจ
จับภาวะชักแบบไม่ขึ้นกับตัวอย่างด้อยกว่าประสิทธิภาพในการตรวจจับภาวะชักแบบขึ้นกับ
ตัวอย่างมากตามที่คาดไว้ เนื่องจากความแปรปรวนของลักษณะของสัญญาณคลื่นสมองระหว่าง
เหตุการณ์การชักหรือความแปรปรวนของลักษณะของโรคลมชักระหว่างผู้ป่วย  แต่อย่างไร
ก็ตามศักยภาพในการระบุตำแหน่งของการเริ่มต้นและการสิ้นสุดของภาวะชักในการตรวจจับ
ภาวะชักแบบไม่ขึ้นกับตัวอย่างไม่แตกต่างอย่างมีนัยเมื่อเปรียบเทียบกับความคลาดเคลื่อนใน
การระบุตำแหน่งของการเริ่มต้นและการสิ้นสุดของภาวะชักในการตรวจจับภาวะชักแบบขึ้นกับ
ตัวอย่าง  

นอกจากวิธีการคัดเลือกคุณลักษณะเฉพาะเชิงลำดับแล้ว วิธีการคัดเลือกคุณลักษณะ
เฉพาะโดยใช้วิธีการอื่น ๆ ซึ่งประกอบด้วย neighborhood component analysis (NCA) 

และ ReliefF ได้ถูกนำมาประยุกต์ใช้ วิธีการคัดเลือกคุณลักษณะเฉพาะเชิงลำดับมีแนวโน้มที่จะ
ทำให้ได้คุณลักษณะเฉพาะหลักที่ส่งผลให้ได้การจำแนกภาวะชักและการตรวจจับภาวะชักที่มี
ประสิทธิภาพที่ดีกว่า  ถ้าหากไม่มีการประยุกต์ใช้วิธีการคัดเลือกคุณลักษณะเฉพาะ แต่ทำการ
เลือกใช้คุณลักษณะเฉพาะเด่นเป็นคุณลักษณะเฉพาะหลักร่วมกันในทุกชุดข้อมูลแล้ว ผลการ
จำแนกภาวะชักและการตรวจจับภาวะชักที่ได้รับไม่ดีเทียบเท่ากับผลการจำแนกภาวะชักและ
การตรวจจับภาวะชักที่ได้เมื่อประยุกต์ใช้วิธีการคัดเลือกคุณลักษณะเฉพาะ  ในทำนองเดียวกัน
ตัวจำแนกหรือวิธีการจำแนกรูปแบบอื่น ๆ ที่ได้นำมาประยุกต์ใช้ ซึ่งประกอบด้วย -nearest 

neighbor และ binary decision tree มีแนวโน้มที่จะทำให้ได้ผลการจำแนกภาวะชักและการ
ตรวจจับภาวะชักที่มีประสิทธิภาพด้อยกว่าเล็กน้อย  
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5. ข้อเสนอแนะสำหรังานวิจัยในอนาคต 
เนื่องจากความแปรวปรวนของลักษณะของสัญญาณคลื่นสมองที่เกี่ยวข้องกับภาวะชัก

และลักษณะของสัญญาณคลื่นสมองที่ไม่เกี่ยวข้องกับภาวะชักเป็นปัจจัยหลักต่อประสิทธิภาพใน
การตรวจจับภาวะชัก ระยะเวลาของเหตุการณ์ชักและช่วงระยะเวลาระหว่างเหตุการณ์ชักใน
แต่ละชุดข้อมูลมีความแตกต่างกันอย่างมีนัยสำคัญ รวมไปจนถึงคุณลักษณะเฉพาะหลักและช่อง
สัญญาณของสัญญาณคลื่นสมองที่ถูกคัดเลือกซึ่งแตกต่างกันระหว่างชุดข้อมูลอีกด้วย  ผลกระ
ทบจากปัจจัยดังกล่าวสามารถเห็นได้อย่างชัดเจนจากผลที่ได้รับจากการจำแนกและตรวจจับ
ภาวะชักแบบเฉพาะตัวอย่างเมื่อเปรียบเทียบกับผลที่ได้รับจากการจำแนกและตรวจจับภาวะชัก
แบบไม่ขึ้นอยู่กับตัวอย่าง  ผลการตรวจจับภาวะชักที่ได้รับในโครงการวิจัยนี้สามารถปรับปรุงให้
มีประสิทธิภาพสูงขึ้นได้โดยการออกแบบกระบวนการตรวจจับภาวะชักเฉพาะแต่ละบุคคลหรือ
ในลักษณะที่เรียกว่า personalized medicine  ในที่นี้คือการกำหนดค่ากรอบหน้าต่างเวลา 

 ซึ่งเป็นพารามิเตอร์ในการแปรผลการจำแนกโดยอาศัยเทคนิคการออกเสียงข้างมาก 
(majority vote) และระยะเวลา  ซึ่งเป็นพารามิเตอร์ในการกรองผลการตรวจจับให้เหมาะ
สมสำหรับผู้ป่วยโรคลมชักแต่ละคน   

ผลการศึกษาวิจัยจากโครงการวิจัยนี้แสดงให้เห็นว่าผลในการตรวจจับภาวะชักสำหรับ
หลายชุดข้อมูลมีประสิทธิภาพดีมาก โดยภาวะชักสามารถตรวจจับได้โดยสมบูรณ์และมีค่าเวลา
แฝงในการตรวจจับภาวะชักน้อย  ดังนั้น ขั้นตอนวิธีเชิงคำนวณที่ได้พัฒนาขึ้นในโครงการวิจัยนี้
มีศักยภาพในการนำไปประยุกต์ใช้และต่อยอดไปสู่ระบบการแจ้งเตือนภาวะชักในเวลาจริงได้  
นอกจากนี้ ผลจากการระบุเวลาเริ่มต้นของการภาวะชักซึ่งในบางกรณียังเป็นการระบุเวลาก่อน
การเกิดภาวะชัก  ผลการตรวจจับภาวะชักดังกล่าวแสดงให้เห็นถึงความเป็นไปได้ในการตรวจ
จับล่วงหน้าหรือการคาดการณ์ภาวะชัก  ถ้าได้มีการศึกษาวิจัยในรายละเอียดรวมไปจนถึง
ดำเนินการปรับกระบวนการตรวจจับภาวะชักเฉพาะแต่ละบุคคลแล้ว การตรวจจับภาวะชักล่วง
หน้าหรือการคาดการณ์ภาวะชักอาจจะสัมฤทธิ์ผลได้ ซึ่งความสำเร็จดังกล่าวนี้จะส่งผลให้ระบบ
บำบัดรักษาแบบวงปิด นั่นคือ เมื่อการตรวจจับการเริ่มต้นของภาวะชักจะกระตุ้นกลไกที่ช่วย
ยับยั้งการกำเนิดของการชัก สามารถเกิดขึ้นได้จริง  หรืออย่างน้อยการตรวจจับภาวะชักล่วง
หน้าสามารถช่วยในการแจ้งเตือนผู้ป่วยโรคลมชักหรือผู้ดูแลเพื่อทำให้เตรียมตัวได้พร้อมหรือ
จัดการได้อย่างเหมาะสมเพื่อป้องกันหรือลดความรุนแรงของการชัก  

ถึงแม้ว่าค่าผลคูณระหว่างค่าความไวและค่าความจำเพาะ  และค่าคะแนน  ซึ่งเป็น
ค่าชี้วัดที่ใช้สำหรับการระบุประสิทธิภาพในการจำแนกภาวะชักมีค่าสอดคล้องกัน ค่าชี้วัดทั้ง
สองค่านี้ไม่สามารถบ่งบอกถึงประสิทธิภาพในการตรวจจับภาวะชักได้อย่างแท้จริงดังที่สามารถ
สังเกตเห็นได้จากผลของการจำแนกภาวะชักและผลของตรวจจับภาวะชัก  สำหรับผลการ
จำแนกภาวะชักในบางชุดข้อมูลหรือในบางกรณี ค่าความไวมีค่าน้อยมากซึ่งส่งผลให้ค่าผลคูณ
ระหว่างค่าความไวและค่าความจำเพาะ รวมถึงค่าคะแนน  มีค่าน้อยด้วยเช่นกัน แต่ผลการ
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ตรวจจับภาวะชักยังคงเป็นไปได้โดยสมบูรณ์  สาเหตุที่ทำให้เป็นเช่นนี้เนื่องมาจากการประเมิน
ประสิทธิภาพในการจำแนกภาวะชักกระทำโดยคำนวณเทียบต่อเวกเตอร์ของคุณลักษณะเฉพาะ
หลักหรือต่อส่วนย่อยของสัญญาณคลื่นสมอง ในขณะที่การประเมินประสิทธิภาพในการตรวจ
จับภาวะชักกระทำโดยคำนวณเทียบต่อเหตุการณ์ชัก  การจำแนกภาวะชักได้ถูกต้องจำนวน
หนึ่งต่อเหตุการณ์ชักสามารถส่งผลให้การตรวจจับภาวะชักสำเร็จได้  ดังนั้น การสร้างค่าชี้วัดที่
จะสามารถบ่งบอกถึงประสิทธิภาพในการจำแนกภาวะชักและการตรวจจับภาวะชักได้อย่าง
แท้จริงจะช่วยให้การประเมินประสิทธิภาพในการตรวจจับภาวะชักเป็นไปได้อย่างรวดเร็วและ
แม่นยำจากผลการจำแนกภาวะชัก  

ข้อมูลสัญญาณคลื่นสมองของผู้ป่วยโรคลมชักที่นำมาใช้เป็นอีกหนึ่งสิ่งที่มีความสำคัญต่อ
ผลสัมฤทธิ์ของการศึกษาวิจัย  ในชุดข้อมูลที่นำมาใช้ในโครงการวิจัยนี้ยังขาดสาระเกี่ยวกับ
แหล่งกำเนิดหรือบริเวณของสมองที่เกี่ยวข้องกับการชักและรายละเอียดของประเภทลมชัก
สำหรับผู้ป่วยแต่ละราย  ถ้าหากมีสาระเกี่ยวกับแหล่งกำเนิดหรือบริเวณของสมองที่เกี่ยวข้อง
กับการชักแล้วการเลือกวางตำแหน่งของอิเล็กโทรดเพื่อใช้สำหรับการตรวจจับภาวะชักโดยใช้
สัญญาณคลื่นสมองจะสามารถทำได้อย่างเหมาะสมและสอดคล้องกับลักษณะเฉพาะตัวบุคคล 
โดยการวางตำแหน่งของอิเล็กโทรดไม่จำเป็นที่จะต้องเป็นไปตามระบบนานาชาต ิเช่น 10-20 

หรือ 10-10 เป็นต้น สำหรับการตรวจวัดสัญญาณคลื่นสมองอีกด้วย  นอกจากนี้แล้วการเก็บ
รวบรวมข้อมูลสัญญาณคลื่นสมองระยะยาวและสร้างฐานข้อมูลขนาดใหญ่เป็นสิ่งจำเป็น เพราะ
ฐานข้อมูลดังกล่าวจะช่วยส่งผลให้สามารถทำการศึกษาวิจัยในเชิงลึกที่ครอบคลุมและกว้าง
ขวางได้ดียิ่งขึ้น  
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achieved using the wavelet-based features corresponding to 
the 64–128 and 4–8 Hz subbands of scalp EEGs.

Keywords Electroencephalogram · Seizure · Support 
vector machine · Classification · Wavelet transform

1 Introduction

Indeed, machine learning plays a crucial role in a variety 
of fields and has been widely applied. Ones of the key 
research fields are biology and medicine. Computational 
techniques and tools derived from machine learning con-
cepts and theories have been applied to obtain better diag-
nosis and prognosis of diseases, treatments, and also health 
monitoring systems. Epilepsy, one of the most common 
neurological disorders, has been a challenging subject and 
gained a great attention from researchers. Epilepsy is char-
acterized by recurrent seizures that are physical reactions 
to sudden, usually brief, excessive electrical discharges in 
clusters of nerve cells [21]. Approximately 50 million peo-
ple worldwide have epilepsy, and most of the people with 
epilepsy live in low- and middle-income countries [21].

An electroencephalogram (EEG) that is recorded using 
electrodes placed on the scalp is the most common diagno-
sis test for epilepsy [13]. The EEG that quantifies electrical 
activity of the brain provides ability to detect abnormalities 
in the brain. Epileptic seizure classification and detection 
are a crucial task of epilepsy diagnosis where specific fea-
tures and patterns of the EEG such as monomorphic wave-
forms, polymorphic waveforms, spike and sharp wave com-
plexes, or periods of reduced electrocerebral activity [8, 
17, 20] are needed to be identified and detected. The scalp 
EEG is very sensitive to signal attenuation and artifacts, 
and also has poor spatial resolution. An intracranial EEG 

Abstract In this study, wavelet-based features of single-
channel scalp EEGs recorded from subjects with intracta-
ble seizure are examined for epileptic seizure classification. 
The wavelet-based features extracted from scalp EEGs 
are simply based on detail and approximation coefficients 
obtained from the discrete wavelet transform. Support vec-
tor machine (SVM), one of the most commonly used clas-
sifiers, is applied to classify vectors of wavelet-based fea-
tures of scalp EEGs into either seizure or non-seizure class. 
In patient-based epileptic seizure classification, a training 
data set used to train SVM classifiers is composed of wave-
let-based features of scalp EEGs corresponding to the first 
epileptic seizure event. Overall, the excellent performance 
on patient-dependent epileptic seizure classification is 
obtained with the average accuracy, sensitivity, and speci-
ficity of, respectively, 0.9687, 0.7299, and 0.9813. The vec-
tor composed of two wavelet-based features of scalp EEGs 
provide the best performance on patient-dependent epilep-
tic seizure classification in most cases, i.e., 19 cases out of 
24. The wavelet-based features corresponding to the 32–64, 
8–16, and 4–8 Hz subbands of scalp EEGs are the mostly 
used features providing the best performance on patient-
dependent classification. Furthermore, the performance 
on both patient-dependent and patient-independent epilep-
tic seizure classifications are also validated using tenfold 
cross-validation. From the patient-independent epileptic 
seizure classification validated using tenfold cross-valida-
tion, it is shown that the best classification performance is 
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or an electrocorticogram (ECoG) is an alternative approach 
to detect the electrical activity of the brain by placing elec-
trodes on the cortex. The intracranial EEG therefore pro-
vides a better characteristic of brain activity; however, it is 
a more complicated and expensive diagnostic test. Previ-
ously most of studies on epileptic seizure classification and 
detection examine intracranial EEG data.

A number of quantitative features extracting from either 
scalp EEG or intracranial EEG including time-domain fea-
tures, frequency-domain or transform-domain features, and 
also nonlinear features have been applied and shown to be 
useful for epileptic seizure classification and detection. Sev-
eral of those quantitative features have been applied to both 
scalp and intracranial EEGs for epileptic seizure classifica-
tion and detection. Some common time-domain features 
[4, 9, 14, 18] are Hjorth parameters, zero crossing, root 
mean square (RMS), line length, number of local maxima 
and minima, and various statistical values such as variance. 
Average power, total power, powers of spectral subbands, 
peak frequency, mean frequency, and median frequency 
are common frequency-domain features that are typically 
obtained from the discrete Fourier transform, power spec-
tral density (PSD), and the discrete wavelet transform [9, 
12, 15]. In particular, the time-domain features of single-
channel EEGs that provide the best epileptic seizure clas-
sification [9] with respect to the area under receiver oper-
ating characteristic (ROC) curve are line length, nonlinear 
energy, variance, power, and maximum. Recently, several 
nonlinear quantitative measures [6, 7, 14] such as Shannon 
entropy, approximate entropy, fractal dimension, maximum 
Lyapunov exponent, and spectral exponent are common 
nonlinear features applied for epileptic seizure classifica-
tion and detection.

Various computational techniques and classifiers have 
been used to classify EEG into corresponding physiologi-
cal and pathological states associated with epilepsy such as 
ictal state (EEG associated with an epileptic seizure event), 
interictal, pre-ictal, and post-ictal states. Machine learning 
methods are a popular choice recently applied for classify-
ing a set of multiple quantitative features of EEG. Support 
vector machine (SVM) classifiers are applied to scalp EEG 
data [12, 16–18]. However, in [4], a linear discriminant 
classifier is applied for neonatal seizure detection. Evolu-
tionary neural networks are also applied for epileptic sei-
zure classification [7]. Epileptic seizure classification and 
detection can be performed using either patient-independ-
ent- or patient-dependent-based algorithms. A wide range 
of success on epileptic seizure classification and detection 
has been reported. In general, patient-dependent-based 
algorithms provide better performance on epileptic seizure 
classification. Also, the performance on epileptic seizure 
classification and detection depends on seizure morpholo-
gies [12].

In particular, for epileptic seizure classification and 
detection using scalp EEGs, sixty-five quantitative features 
of multichannel scalp EEGs were examined and utilized 
in Ref. [9]. All sixty-five quantitative features including 
features derived from time-domain analyses, the discrete 
wavelet transform, the continuous wavelet transform, and 
discrete Fourier transform have been previously applied in 
various studies. It was shown that there is a performance 
trade-off between the sensitivity and the specificity. The 
best performance on seizure classification is achieved 
using the relative power obtained from the discrete wavelet 
transform corresponding to a 12.5–25 Hz subband with the 
sensitivity of 71.32% and the specificity of 79.67% when 
the optimal threshold is used [9]. On the other hand, aver-
aged and integrated powers of multichannel bipolar EEGs 
focusing on the 2.5–12 Hz subband were applied for epi-
leptic seizure detection in Ref. [5]. The sensitivity of epi-
leptic seizure detection was 87.3% for subjects with tem-
poral lobe epilepsy (TLE) and extra-temporal lobe epilepsy 
(ETLE).

The energies determined from the coefficients of dis-
crete wavelet transform corresponding to four subbands 
of multiple-channel scalp EEGs are used for patient-
dependent epileptic seizure detection in Ref. [17]. Over-
all, 131 of 139 epileptic seizure events are detected for the 
patient-dependent epileptic seizure detection while there 
are 15 false detections [17]. In Ref. [12], seven quantita-
tive features of 19-channel scalp EEGs including subband 
powers obtained from the continuous wavelet transform 
and various time-domain features and an SVM classifier 
were applied for epileptic seizure detection where the prior 
knowledge on diversity of seizure morphologies was taken 
into account. The high correct detection rate (between 85 
and 100%) and low false alarm rates (between 0.2 and 0.4 
per hour) were achieved [12]. A large set of quantitative 
features of scalp EEGs were applied in Ref. [7] for patient-
dependent epileptic seizure classification. The main fea-
tures examined belonged to morphological-based features, 
time-domain features, frequency-domain, features, and a 
nonlinear feature. The average sensitivity and specificity 
obtained were 89.01 and 94.71%, respectively.

In this study, performances on epileptic seizure classi-
fication using wavelet-based features are examined by, in 
particular, focusing on patient-dependent classification. 
The number of channels of scalp EEGs is minimized which 
yields a small number of wavelet-based features applied 
to epileptic seizure classification. The wavelet-based fea-
tures denoted by !l are given by the logarithm to base 2 of 
variance of detail and approximation coefficients of scalp 
EEGs. Such wavelet-based features are computationally 
relevant to the power spectral density (PSD) [1]. The wave-
let-based approach, however, allows an unbiased estimate 
[1]. SVM is used as a binary classifier to discriminate scalp 
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EEG epochs associated with epileptic seizure event from 
scalp EEG epochs associated with pre-ictal and post-ictal 
states, i.e., non-seizure period. The patient-dependent epi-
leptic seizure classification using wavelet-based features is 
evaluated using two schemes. First, the wavelet-based fea-
tures of scalp EEG epochs corresponding to the first epilep-
tic seizure event are used as a training data. This approach 
complies with the actual application when it is applied 
to real-time or online epileptic seizure classification and 
detection. Furthermore, k-fold cross-validation is applied to 
the patient-dependent epileptic seizure classification using 
wavelet-based features in the second scheme. The perfor-
mance on patient-independent epileptic seizure classifica-
tion is also evaluated using k-fold cross-validation.

2  Materials and methods

2.1  Data and subjects

Scalp EEG data of subjects with intractable seizures exam-
ined in this study were obtained from the CHB-MIT Scalp 
EEG Database (available online at http://www.physionet.
org/pn6/chbmit/). The database was collected at the Chil-
dren’s Hospital Boston [3]. All subjects were monitored 
for up to several days following withdrawal of anti-seizure 
medication in order to characterize their seizures and assess 
their candidacy for surgical intervention [3]. All protected 
health information (PHI) in the original recordings was 
replaced with surrogate information in order to protect the 
privacy of the subjects [3]. The scalp EEG recordings were 
acquired using a sampling rate of 256 Hz with 16 bit res-
olution [3]. The international 10–20 system of EEG elec-
trode positions and nomenclature was used for the record-
ings [3].

There are 24 cases of scalp EEG recordings, referred 
to as chb01, chb02, chb03, and so on. The first 23 cases, 
excluding the chb24 case, were recorded from 22 subjects 
(5 males, ages 3–22 years old, and 17 females, ages 1.5–19 
years old) [3]. The chb01 and chb21 cases were obtained 
from the same subject. There are a total of 198 epileptic 
seizure events. Further details on scalp EEG data and cases 
can be obtained at http://www.physionet.org/pn6/chbmit/.

2.2  Wavelet-based features of scalp EEGs

The discrete wavelet transform is a representation of a 
signal using a countably infinite set of wavelets that con-
stitutes an orthonormal basis [11]. The wavelet transform 
can be interpreted as a generalized filter bank [22] as the 
so-called mother wavelet is typically associated with a 
bandpass filter. Also, the wavelet transform can be inter-
preted in the context of multiresolution analysis (MRA) 

[10]. The multiresolution analysis generally consists of a 
sequence of successive approximation spaces [19]. Fur-
thermore, the multiresolution analysis leads to a hierar-
chical scheme for the computation of the wavelet coef-
ficients of a given function [19].

A signal x[n] is decomposed into approximations 
and details using the scaling and wavelet functions that, 
respectively, correspond to lowpass halfband filter and 
highpass halfband filter. This can be expressed as

where the scaling function φ1,k[n] and the wavelet func-
tion ψ1,k[n] are, respectively, an orthonormal basis for the 
space V1 and the orthogonal complement of V1, denoted 
by W1, and the space V0 = V1 ⊕ W1. The approximation 
coefficients a1[n] and the detail coefficients d1[n] can be 
obtained by

where h[n] and g[n] are, respectively, the impulse 
response of lowpass halfband filter and highpass halfband 
filter.

For a single-level discrete wavelet decomposition 
at level l, the approximation coefficients al[n] can be 
obtained by convolving the approximation coefficients 
al−1[n] with the time-reversed filter of h[n], i.e., h̃[n], 
followed by the downsampling and, similarly, the detail 
coefficients dl[n] can be obtained by convolving the 
approximation coefficients al−1[n] with the time-reversed 
filter of g[n], i.e., g̃[n], followed by the downsampling.

From the L-level discrete wavelet decomposition, 
there are L detail coefficients, i.e., d1, d2, . . ., dL, and one 
approximation coefficients, i.e., aL, obtained. Wavelet-
based features proposed for epileptic seizure classifica-
tion in this study are determined by taking the logarithm 
to base 2 of variance of detail coefficients and approxi-
mation coefficients. The wavelet-based features obtained 
from the detail coefficients dl are denoted by !l, and the 
wavelet-based feature obtained from the approximation 
coefficients aL is denoted by !L+1. Therefore, the wave-
let-based features are given by

(1)x[n] =
∑

k

a0[k]φ0,k[n]

(2)=
∑

k

a1[k]φ1,k[n] +
∑

k

d1[k]ψ1,k[n]

(3)a1[n] =
∑

k

a0[k]h[k − 2n]

(4)d1[n] =
∑

k

a0[k]g[k − 2n]

(5)!l = log2 (var(dl)), where l = 1, 2, . . . , L and

(6)!L+1 = log2 (var(aL))
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2.3  Data analysis and classification

Segments of single-channel scalp EEGs around epileptic 
seizure events (12 min before seizure onset and 12 min 
after seizure offset, unless limited by the beginning, the end 
of recording, or the contiguous epileptic seizure events) 
are used in this study. The scalp EEG segments are divided 
into epochs with length of 512 samples (2 s) and with 50% 
overlap. Such short length of scalp EEG epochs is chosen 
to be able to capture characteristics of a brief lapse of epi-
leptic seizure event. Scalp EEG epochs associated with 
epileptic seizure event are categorized as an SZ class while 
scalp EEG epochs associated with pre-ictal and post-ictal 
states are categorized as an NS class. The number of SZ 
and NS epochs for each case is summarized in Table 1.

The second-order Daubechies wavelets are used for the 
discrete wavelet decomposition. The Daubechies wavelet 
family, one of the most commonly used wavelet families, 
has several nice characteristics including orthogonality and 
finite compact support. Higher-order Daubechies wave-
lets corresponds to higher regularity and also a number of 

vanishing moments. Scalp EEG epochs are decomposed 
into 7 levels that are the maximum level of wavelet decom-
position using the second-order Daubechies. Accordingly, 
seven detail coefficients, i.e., d1, d2, d3, d4, d5, d6 and d7, 
and one approximation coefficients, i.e., a7, are obtained. 
The coefficients d1, d2, d3, d4, d5, d6, d7, and a7 correspond 
approximately to 64–128, 32–64, 16–32, 8–16, 4–8, 2–4, 
1–2, and 0–1 Hz subbands, respectively.

A feature vector applied for epileptic seizure clas-
sification is composed of all combinations of wavelet-
based features of scalp EEG epochs, ranging from two 
wavelet-based features, i.e., 

(

!i, !j
)

 where i != j, to seven 
wavelet-based features, i.e., 

(

!i, !j, ..., !n, !o
)

 where 
i != j != k != l != m != n != o. Feature vectors of scalp 
EEG epochs are classified using support vector machine 
(SVM). The radial basis function (RBF) kernel is used 
to train an SVM classifier. Scalp EEG epochs of both 
SZ and NS classes obtained from the first seizure event 
of each subject are used as training data sets. The clas-
sification and the performance evaluation are performed 
by a case-by-case basis, i.e., patient-dependent epileptic 

Table 1  Details of scalp EEG 
epochs

Case Seizure duration (s) No. of epochs

All seizures The first seizure

Max Min Mean SZ NS SZ NS

chb01 101 27 63.1 428 9147 38 1281

chb02 82 9 57.3 166 3049 79 1264

chb03 69 47 57.4 388 9406 50 1078

chb04 116 49 94.5 370 5744 47 1436

chb05 120 96 111.6 548 6877 113 1133

chb06 20 12 15.3 133 13,151 13 1436

chb07 143 86 108.3 319 3795 84 1436

chb08 264 134 183.8 909 6774 169 1436

chb09 79 62 69.0 268 5364 62 1436

chb10 89 35 63.9 433 9587 33 1436

chb11 752 22 268.7 800 3820 20 1014

chb12 97 13 36.9 1395 25,773 59 1438

chb13 70 17 44.6 511 13,520 42 1436

chb14 41 14 21.1 153 11,099 12 1436

chb15 205 31 99.6 1952 22,497 123 988

chb16 14 6 8.4 64 11,441 7 1436

chb17 115 88 97.7 287 3730 88 1436

chb18 68 30 54.5 315 6924 48 790

chb19 81 77 78.7 230 3102 76 1015

chb20 49 29 36.8 278 10,360 27 810

chb21 81 12 49.8 191 5338 54 1436

chb22 74 58 68.0 198 3432 56 892

chb23 113 20 60.6 410 9269 111 1436

chb24 70 16 31.9 479 16735 23 1436
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Table 2  Statistical values (Mean±SD) of wavelet-based features of scalp EEG epochs

Case Class Feature

!1 !2 !3 !4 !5 !6 !7 !8

chb01 SZ 7.64 ± 1.4 9.54 ± 0.8 11.29 ± 0.6 13.96 ± 0.8 16.58 ± 1.3 17.87 ± 1.8 17.96 ± 1.8 19.03 ± 1.9

NS 4.56 ± 1.2 8.40 ± 1.1 9.69 ± 1.0 9.96 ± 0.9 11.95 ± 1.1 13.03 ± 1.4 13.59 ± 1.8 14.61 ± 2.0

chb02 SZ 8.08 ± 1.5 10.93 ± 1.3 13.23 ± 1.2 15.20 ± 1.0 16.69 ± 1.2 17.17 ± 1.6 16.91 ± 1.9 17.74 ± 2.0

NS 7.47 ± 4.7 8.39 ± 4.0 9.18 ± 2.7 10.81 ± 2.0 12.38 ± 1.7 13.92 ± 1.8 14.90 ± 2.0 16.13 ± 2.1

chb03 SZ 9.85 ± 1.4 11.44 ± 1.5 12.38 ± 1.2 12.91 ± 0.9 15.05 ± 0.8 16.12 ± 1.1 16.80 ± 1.8 17.75 ± 1.9

NS 5.66 ± 1.8 7.48 ± 2.1 8.58 ± 2.0 8.82 ± 1.5 9.89 ± 1.6 11.61 ± 2.1 12.72 ± 2.4 13.71 ± 6.6

chb04 SZ 9.03 ± 2.7 9.97 ± 2.2 11.00 ± 1.7 11.50 ± 0.7 13.47 ± 0.6 14.97 ± 1.1 15.10 ± 1.5 15.34 ± 1.9

NS 6.69 ± 5.9 8.27 ± 5.4 9.30 ± 4.2 10.26 ± 3.4 11.27 ± 2.7 12.45 ± 2.7 13.28 ± 2.8 15.17 ± 3.5

chb05 SZ 8.84 ± 1.0 11.54 ± 0.8 13.57 ± 1.1 15.22 ± 1.5 17.16 ± 1.4 18.36 ± 1.7 18.06 ± 2.1 18.48 ± 2.0

NS 4.41 ± 2.0 6.05 ± 2.1 8.25 ± 1.6 10.91 ± 0.9 13.57 ± 1.0 14.66 ± 1.2 14.92 ± 1.6 15.90 ± 1.9

chb06 SZ 8.74 ± 1.6 10.23 ± 1.1 11.26 ± 0.7 12.19 ± 0.5 13.40 ± 1.5 14.96 ± 1.5 14.96 ± 1.4 16.87 ± 1.4

NS 7.36 ± 1.3 10.40 ± 1.3 12.28 ± 1.0 13.50 ± 0.8 15.16 ± 1.0 16.15 ± 1.0 16.34 ± 1.4 17.29 ± 1.7

chb07 SZ 10.27 ± 2.0 11.88 ± 1.9 13.30 ± 1.5 14.67 ± 0.9 16.51 ± 0.8 18.23 ± 1.4 18.49 ± 1.6 18.66 ± 1.8

NS 5.93 ± 1.8 7.72 ± 1.6 9.21 ± 1.4 10.94 ± 1.8 13.08 ± 2.6 14.69 ± 3.2 15.37 ± 3.3 16.12 ± 3.0

chb08 SZ 2.18 ± 1.3 5.44 ± 1.5 8.41 ± 1.5 12.00 ± 1.4 15.42 ± 1.5 17.83 ± 1.8 17.88 ± 2.1 18.90 ± 2.0

NS 1.52 ± 1.1 4.77 ± 1.0 7.17 ± 0.7 9.76 ± 0.9 12.29 ± 1.1 13.89 ± 1.4 14.47 ± 1.6 15.57 ± 1.8

chb09 SZ 7.25 ± 1.5 10.83 ± 1.5 14.30 ± 1.7 16.87 ± 2.0 18.13 ± 1.6 17.95 ± 1.5 18.18 ± 1.6 19.65 ± 2.1

NS 2.85 ± 2.3 5.85 ± 1.6 8.69 ± 1.4 11.19 ± 1.0 13.19 ± 1.1 13.92 ± 2.0 14.69 ± 2.6 15.73 ± 2.4

chb10 SZ 6.03 ± 0.4 10.00 ± 0.5 13.41 ± 0.7 16.33 ± 0.7 18.20 ± 0.7 17.93 ± 0.9 17.69 ± 1.1 18.39 ± 2.1

NS 4.76 ± 1.7 7.01 ± 1.6 8.90 ± 1.1 11.53 ± 0.7 14.85 ± 0.9 17.22 ± 0.9 17.73 ± 1.3 18.32 ± 1.5

chb11 SZ 8.14 ± 2.2 9.50 ± 1.6 11.81 ± 1.0 13.91 ± 0.7 16.05 ± 0.8 16.27 ± 1.2 16.78 ± 1.0 17.30 ± 1.4

NS 5.68 ± 1.6 7.53 ± 1.3 8.99 ± 1.1 10.44 ± 0.9 12.28 ± 1.1 13.58 ± 1.4 14.50 ± 1.7 15.64 ± 1.8

chb12 SZ 3.19 ± 1.2 7.02 ± 1.4 9.82 ± 1.5 12.06 ± 1.1 14.39 ± 1.2 15.41 ± 2.0 15.55 ± 2.2 17.08 ± 2.3

NS 2.46 ± 0.9 6.23 ± 0.9 8.85 ± 0.8 10.92 ± 1.1 13.03 ± 1.5 14.11 ± 1.5 14.82 ± 1.8 15.73 ± 3.6

chb13 SZ 2.60 ± 0.5 5.35 ± 0.5 8.17 ± 0.4 11.64 ± 0.6 14.26 ± 0.9 16.25 ± 1.0 16.19 ± 1.9 16.53 ± 1.7

NS 3.57 ± 1.4 6.38 ± 1.4 8.92 ± 1.2 11.93 ± 1.1 14.03 ± 1.3 13.88 ± 1.4 14.28 ± 1.6 15.40 ± 1.8

chb14 SZ 2.79 ± 0.5 5.74 ± 0.4 7.51 ± 0.6 9.31 ± 1.1 11.04 ± 1.8 11.84 ± 3.3 12.91 ± 2.7 14.53 ± 3.0

NS 1.75 ± 1.2 5.26 ± 0.9 8.46 ± 1.0 11.50 ± 1.1 14.15 ± 1.1 15.76 ± 1.2 16.07 ± 1.5 16.46 ± 1.6

chb15 SZ 2.26 ± 0.3 4.99 ± 0.4 8.01 ± 0.5 10.73 ± 0.7 12.67 ± 0.9 12.38 ± 1.0 11.84 ± 1.5 13.14 ± 2.0

NS 2.24 ± 0.8 4.23 ± 0.8 6.14 ± 0.7 8.40 ± 0.8 9.65 ± 0.9 10.55 ± 1.0 10.90 ± 1.3 11.84 ± 1.8

chb16 SZ 5.83 ± 0.5 9.48 ± 0.6 12.16 ± 0.4 12.37 ± 0.4 12.77 ± 0.8 13.78 ± 0.9 14.59 ± 1.6 16.16 ± 1.7

NS 3.83 ± 1.3 6.59 ± 1.1 8.32 ± 1.0 9.52 ± 1.0 11.63 ± 1.2 13.08 ± 1.6 13.88 ± 1.9 15.20 ± 2.1

chb17 SZ 3.21 ± 0.7 5.05 ± 0.8 7.16 ± 0.8 9.53 ± 0.9 11.88 ± 0.9 13.20 ± 1.1 12.67 ± 1.7 13.60 ± 1.8

NS 1.70 ± 1.1 3.19 ± 0.6 4.50 ± 0.6 6.90 ± 0.7 9.50 ± 0.8 10.71 ± 1.2 11.20 ± 1.8 12.25 ± 2.0

chb18 SZ 5.26 ± 3.4 6.81 ± 2.6 8.23 ± 1.5 10.38 ± 0.9 13.21 ± 1.1 14.57 ± 1.0 14.88 ± 2.0 15.12 ± 2.7

NS -0.37 ± 2.0 2.14 ± 1.6 4.78 ± 1.3 7.29 ± 1.0 8.83 ± 1.1 9.23 ± 1.4 9.58 ± 1.9 10.69 ± 2.3

chb19 SZ 9.18 ± 3.1 10.71 ± 3.1 12.16 ± 3.0 13.48 ± 3.1 14.90 ± 3.6 15.13 ± 4.4 15.08 ± 4.6 16.82 ± 4.4

NS 4.31 ± 2.7 6.24 ± 2.1 7.55 ± 1.8 9.06 ± 1.1 10.95 ± 1.2 12.64 ± 1.8 13.87 ± 2.3 15.01 ± 4.4

chb20 SZ 4.76 ± 1.0 7.41 ± 1.4 9.29 ± 1.9 10.92 ± 2.0 13.09 ± 2.1 14.97 ± 2.3 14.70 ± 1.9 15.88 ± 2.0

NS 1.80 ± 0.4 4.95 ± 0.4 7.39 ± 0.5 9.63 ± 0.7 11.55 ± 0.9 12.61 ± 1.1 13.15 ± 1.4 14.04 ± 1.6

chb21 SZ 2.18 ± 0.6 5.55 ± 0.4 8.91 ± 0.5 11.78 ± 0.8 13.53 ± 0.9 14.09 ± 1.2 15.32 ± 1.3 16.08 ± 1.5

NS 1.69 ± 0.6 4.69 ± 0.4 7.37 ± 0.4 9.93 ± 0.6 11.76 ± 0.7 12.61 ± 1.0 13.16 ± 1.4 14.23 ± 1.7

chb22 SZ 7.27 ± 2.0 8.90 ± 1.4 11.02 ± 0.6 13.66 ± 0.7 16.24 ± 0.9 17.31 ± 1.0 17.20 ± 1.5 17.68 ± 1.6

NS 5.65 ± 2.0 7.50 ± 1.6 8.89 ± 1.3 10.00 ± 0.8 11.57 ± 1.0 12.68 ± 1.5 13.48 ± 1.9 14.96 ± 1.8

chb23 SZ 11.09 ± 1.5 12.49 ± 1.5 13.34 ± 1.3 13.02 ± 0.9 15.08 ± 1.0 17.42 ± 1.6 18.36 ± 1.6 18.75 ± 1.6

NS 4.03 ± 3.2 6.63 ± 2.8 8.54 ± 2.0 9.83 ± 1.1 11.19 ± 1.1 12.32 ± 1.2 12.87 ± 1.6 14.04 ± 1.8

chb24 SZ 5.03 ± 2.1 8.15 ± 3.0 11.47 ± 2.9 14.68 ± 2.6 17.33 ± 3.0 19.65 ± 4.0 19.37 ± 3.8 19.58 ± 3.6

NS 2.58 ± 0.2 4.53 ± 0.3 7.16 ± 0.3 9.74 ± 0.6 11.92 ± 0.7 13.19 ± 0.9 14.06 ± 1.3 14.91 ± 1.3
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seizure classification. Furthermore, to validate a gen-
eralized performance of wavelet-based features on both 
patient-dependent and patient-independent epileptic sei-
zure classifications, tenfold cross-validations are applied 
using feature vectors composing of two wavelet-based 
features, i.e., 

(

!i, !j
)

. For each case, the feature vectors 
of scalp EEG epochs associated with SZ and NS classes 
are randomly divided into ten subsets. Nine subsets of 
feature vectors are used as a training set while another 
subset of feature vectors being used as a testing set. This 
process is repeated ten times with each of the ten subsets 
of feature vectors being used once as the training set. The 
performance of tenfold cross-validation is determined 
from all ten classifications.

The performance of epileptic seizure classifications is 
evaluated using three conventional classification perfor-
mance measures: accuracy, sensitivity, and specificity. 
The accuracy (Ac), the sensitivity (Se), and the specific-
ity (Sp) are given, respectively, by

where TP, TN, FP, and FN denote a number of true posi-
tives, a number of true negatives, a number of false posi-
tives, and a number of false negatives, respectively. All 
channels of bipolar scalp EEG data are analyzed and 
examined in this study. Nevertheless, only results that 
are obtained from the channel providing the best perfor-
mance on epileptic seizure classification for each case 
with respect to the product of sensitivity and specificity 
are presented.

In addition, the performance of patient-dependent epi-
leptic seizure classification using the wavelet-based fea-
tures is compared to that using the best five time-domain 

Ac =
TP + TN

TP + TN + FP + FN

Se =
TP

TP + FN
, and

Sp =
TN

TN + FP

Table 3  Performance on 
patient-dependent epileptic 
seizure classification using 2 
wavelet-based features

Subject Channel Feature Accuracy (Ac) Sensitivity (Se) Specificity (Sp) Se × Sp

chb01 FT9-FT10 !2, !5 0.9752 0.9436 0.9767 0.9216

chb02 P7-O1 !2, !4 0.9915 0.9080 0.9955 0.9040

chb03 T7-FT9 !4, !5 0.9802 0.9083 0.9831 0.8929

chb04 C4-P4 !2, !5 0.9523 0.4985 0.9863 0.4916

chb05 P8-O2 !5, !6 0.9856 0.8966 0.9923 0.8897

chb06 F8-T8 !1, !3 0.9924 0.4417 0.9980 0.4408

chb07 FP1-F3 !2, !3 0.9522 0.7106 0.9763 0.6938

chb08 FZ-CZ !4, !6 0.9503 0.7297 0.9809 0.7158

chb09 C3-P3 !2, !4 0.9978 0.9806 0.9987 0.9793

chb10 F7-T7 !4, !5 0.9898 0.7875 0.9998 0.7873

chb11 F7-T7 !3, !4 0.9071 0.6513 0.9783 0.6371

chb12 F8-T8 !2, !4 0.9584 0.2515 0.9972 0.2508

chb13 FZ-CZ !2, !6 0.8425 0.5522 0.8538 0.4715

chb14 C4-P4 !2, !6 0.9900 0.3617 0.9992 0.3614

chb15 T7-P7 !5, !7 0.9629 0.8628 0.9714 0.8381

chb16 C4-P4 !2, !4 0.9847 0.1754 0.9893 0.1736

chb17 CZ-PZ !3, !4 0.9727 0.8794 0.9808 0.8625

chb18 P8-O2 !6, !7 0.9561 0.7041 0.9671 0.6809

chb19 P8-O2 !3, !4 0.9826 0.8831 0.9899 0.8742

chb20 C3-P3 !2, !4 0.9860 0.7570 0.9920 0.7509

chb21 CZ-PZ !1, !3 0.9819 0.8029 0.9882 0.7935

chb22 F3-C3 !4, !5 0.9896 0.9155 0.9937 0.9097

chb23 T7-P7 !4, !5 0.9791 0.8863 0.9826 0.8709

chb24 FZ-CZ !2, !4 0.9704 0.7917 0.9757 0.7724

Average 0.9680 0.7200 0.9811 0.7069
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features [9], i.e., line length, nonlinear energy, variance, 
power, and maximum, in terms of the area under ROC 
curve (AUC). Also, the accuracy, the sensitivity and the 
specificity obtained from patient-dependent epileptic sei-
zure classification using SVM are compared. The line 
length f1, nonlinear energy f2, variance f3, power f4, and 
maximum f5 are, respectively, defined as follows [9]:

(7)f1 =

N−1
∑

n=1

∣

∣x[n − 1] − x[n]
∣

∣

(8)f2 =
1

N − 2

N−2
∑

n=1

x2[n] − x[n − 1]x[n+ 1]

(9)f3 =
1

N

N−1
∑

n=0

(x[n] − x̄)2

(10)f4 =
1

N

N−1
∑

n=0

x2[n]

(11)f5 = max(x[n])

where N denotes the length of EEG signal x[n] and x̄ 
denotes the mean of x[n].

3  Results

3.1  Characteristics of wavelet-based features

Means and standard deviations of all wavelet-based 
features, i.e., !1, !2, !3, !4, !5, !6, !7, and !8, of both 
SZ and NS epochs for each case are summarized in 
Table 2. The characteristics of wavelet-based features 
vary corresponding to cases and also subbands. In gen-
eral, wavelet-based features !i of SZ epochs tend to be 
higher than those of NS epochs. From the results of 
two-sample t-tests (p-value of 0.0001), it is suggested 
that for all cases there is at least one wavelet-based 
feature that associates with the significant difference 
between the means of corresponding wavelet-based 
features of both SZ and NS epochs. The means of 
any wavelet-based feature, i.e., !1, !2, !3, !4, !5, !6, !7,  
and !8, of SZ epochs are significantly different from 
those of NS epochs in 13 cases (chb01, chb03, chb05, 
chb07, chb08, chb09, chb11, chb17, chb18, chb21, 

Table 4  Performance on 
patient-dependent epileptic 
seizure classification using 3 
wavelet-based features

Subject Channel Feature Accuracy (Ac) Sensitivity (Se) Specificity (Sp) Se ×Sp

chb01 FT9-FT10 !2, !3, !5 0.9790 0.8923 0.9833 0.8774

chb02 F3-C3 !2, !4, !5 0.9760 0.9195 0.9787 0.9000

chb03 T7-FT9 !3, !4, !5 0.9796 0.8757 0.9838 0.8615

chb04 C4-P4 !2, !3, !5 0.9471 0.4025 0.9879 0.3976

chb05 FP1-F7 !4, !5, !6 0.9785 0.7448 0.9962 0.7420

chb06 F8-T8 !1, !2, !3 0.9924 0.4167 0.9983 0.4160

chb07 FP1-F3 !1, !2, !3 0.9449 0.5787 0.9813 0.5679

chb08 FZ-CZ !4, !5, !6 0.9508 0.7351 0.9807 0.7210

chb09 F7-T7 !2, !3, !4 0.9964 0.9660 0.9980 0.9641

chb10 F7-T7 !3, !4, !5 0.9814 0.6075 0.9998 0.6074

chb11 FT9-FT10 !2, !3, !4 0.8851 0.4795 0.9979 0.4785

chb12 C4-P4 !1, !3, !4 0.9687 0.4139 0.9992 0.4136

chb13 FZ-CZ !2, !5, !6 0.8738 0.4776 0.8892 0.4247

chb14 CZ-PZ !1, !2, !3 0.9807 0.3191 0.9904 0.3161

chb15 T7-P7 !5, !7, !8 0.9571 0.7797 0.9722 0.7579

chb16 F4-C4 !1, !3, !4 0.9937 0.1930 0.9983 0.1927

chb17 CZ-PZ !2, !3, !4 0.9679 0.9246 0.9717 0.8984

chb18 C4-P4 !2, !3, !6 0.9652 0.5655 0.9826 0.5557

chb19 P8-O2 !2, !3, !4 0.9822 0.8312 0.9933 0.8256

chb20 C3-P3 !1, !2, !3 0.9875 0.7450 0.9938 0.7404

chb21 CZ-PZ !1, !2, !5 0.9844 0.8029 0.9908 0.7955

chb22 F3-C3 !2, !4, !5 0.9907 0.8803 0.9969 0.8775

chb23 T7-P7 !4, !5, !6 0.9818 0.8462 0.9870 0.8351

chb24 FZ-CZ !2, !3, !4 0.9734 0.7829 0.9791 0.7665

Average 0.9674 0.6742 0.9846 0.6742
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chb22, chb23, and chb24). On the contrary, for the 
case chb06, there is a significant difference between 
the means of only wavelet-based feature !4 of both SZ 
and NS epochs.

All wavelet-based features of all SZ and NS epochs 
obtained from all subjects are compared in box plots 
shown in Fig. 1. This obviously shows the tendency of 
higher values of wavelet-based features of SZ epochs 
compared to those of NS epochs. In addition, Figs. 2 
and 3, respectively, compare all wavelet-based fea-
tures of all SZ and NS epochs obtained from the case 
chb09 posing the best performance on epileptic seizure 
classification and the case chb16 posing the worst per-
formance on epileptic seizure classification. Figure 2 
shows that wavelet-based features of SZ epochs are 
substantially higher than those of NS epochs in the case 
chb09. On the other hand, even though wavelet-based 
features of SZ epochs tend to be higher than those of 
NS epochs in the case chb16, wavelet-based features of 
SZ epochs are in the spans of wavelet-based features of 
NS epochs.

3.2  Performance of patient-dependent epileptic seizure 
classification

The performances on patient-dependent epileptic seizure 
classification using the feature vectors composing of 2, 
3, 4, 5, 6, and 7 wavelet-based features of scalp EEG 
epochs corresponding to the first epileptic seizure event 
as the training data set are shown in Tables 3, 4, 5, 6, 7, 
and 8, respectively. The EEG channels and the wavelet-
based features that provide the best performance on cor-
responding epileptic seizure classification are individu-
ally reported for each case. Remark that the EEG channel 
slightly changes from case to case. The performance on 
epileptic seizure classification tends to decrease as the 
number of wavelet-based features used as the feature vec-
tor increases. The wavelet-based features providing the 
best performance on epileptic seizure classification also 
vary from case to case.

The best overall performance on patient-dependent epi-
leptic seizure classification is obtained using the feature 
vector composing of 2 wavelet-based features. There are 19 

Table 5  Performance on 
patient-dependent epileptic 
seizure classification using 4 
wavelet-based features

Subject Channel Feature Accuracy (Ac) Sensitivity (Se) Specificity (Sp) Se × Sp

chb01 FT9-FT10 !1, !2, !3, !4 0.9824 0.7333 0.9948 0.7295

chb02 F3-C3 !3, !4, !5, !8 0.9754 0.7931 0.9843 0.7807

chb03 T7-FT9 !1, !2, !3, !4 0.9678 0.7781 0.9755 0.7590

chb04 FZ-CZ !3, !4, !5, !7 0.9400 0.2477 0.9919 0.2457

chb05 FZ-CZ !1, !2, !3, !4 0.9659 0.6207 0.9920 0.6157

chb06 T7-FT9 !1, !2, !3, !4 0.9910 0.3750 0.9974 0.3740

chb07 FP1-F3 !1, !2, !3, !4 0.9341 0.4638 0.9809 0.4550

chb08 T8-P8 !2, !4, !5, !6 0.9462 0.6878 0.9820 0.6755

chb09 C3-P3 !2, !3, !4, !5 0.9940 0.9078 0.9985 0.9064

chb10 F7-T7 !2, !3, !4, !5 0.9711 0.3850 0.9999 0.3850

chb11 FT9-FT10 !2, !3, !4, !6 0.8664 0.3936 0.9979 0.3927

chb12 C4-P4 !1, !2, !3, !4 0.9691 0.4214 0.9992 0.4211

chb13 FZ-CZ !2, !3, !5, !6 0.8925 0.3945 0.9119 0.3597

chb14 C4-P4 !1, !2, !3, !6 0.9886 0.2128 0.9999 0.2127

chb15 T7-P7 !4, !5, !6, !7 0.9402 0.5653 0.9721 0.5495

chb16 F4-C4 !1, !2, !3, !4 0.9944 0.1579 0.9992 0.1578

chb17 CZ-PZ !2, !3, !4, !7 0.9671 0.8241 0.9795 0.8072

chb18 CZ-PZ !2, !3, !5, !6 0.9534 0.5094 0.9728 0.4955

chb19 FP2-F4 !1, !2, !3, !4 0.9822 0.7727 0.9976 0.7709

chb20 F3-C3 !1, !2, !3, !5 0.9883 0.6295 0.9977 0.6280

chb21 CZ-PZ !1, !2, !4, !5 0.9807 0.7956 0.9872 0.7854

chb22 FZ-CZ !1, !2, !4, !5 0.9899 0.8732 0.9965 0.8701

chb23 P3-O1 !2, !3, !5, !6 0.9833 0.8161 0.9897 0.8076

chb24 FZ-CZ !1, !2, !3, !4 0.9824 0.6491 0.9923 0.6441

Average 0.9644 0.5836 0.9871 0.5762
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cases that the feature vector composing of 2 wavelet-based 
features provides the best performance on epileptic seizure 
classification. The best performance on patient-dependent 
epileptic seizure classification is obtained using the feature 
vector composing of 3 wavelet-based features for the cases 
chb10, chb16, chb17, and chb21. The feature vector com-
posing of 4 wavelet-based features is required to obtain the 
best performance on patient-dependent epileptic seizure 
classification for the case chb12. The best performances on 
patient-dependent epileptic seizure classification for each 
case are summarized in Table 9.

The best performance on patient-dependent epileptic 
seizure classification is obtained at the case chb09 which 
corresponds to the accuracy of 0.9978, the sensitivity of 
0.9806, and the specificity of 0.9987 using the wavelet-
based features !2 and !4 as the feature vector. The worst 
performance on patient-dependent epileptic seizure classi-
fication is obtained at the case chb16 which corresponds to 
the accuracy of 0.9937, the sensitivity of 0.1930, and the 
specificity of 0.9983 using the wavelet-based features !1, !3 
and !4 as the feature vector. The distributions of wavelet-
based features of both SZ and NS epochs corresponding to 
each epileptic seizure event of cases chb09 and chb16 are 

compared in box plots shown in Figs. 4 and 5, respectively. 
These obviously give a justification for the corresponding 
performances. The wavelet-based features of SZ and NS 
epochs in the case chb09 slightly vary from one epileptic 
seizure event to another for all four epileptic seizure events. 
There are, however, considerable variations on wavelet-
based features of SZ and NS epochs within ten epileptic 
seizure events for the case chb16. Furthermore, in the case 
of chb16 the range of wavelet-based features of NS epochs 
is over that of wavelet-based features of SZ epochs. This 
makes such epileptic seizure classification unfeasible.

3.3  Performance evaluation using tenfold 
cross-validation

Using the same corresponding EEG channels and wavelet-
based features providing the best performance reported in 
Table 3, the results of tenfold cross-validation on patient-
dependent epileptic seizure classification are summarized 
in Table 10. In general, the accuracy and the specificity 
of patient-dependent epileptic seizure classification are 
remarkably high. Both accuracy and specificity are higher 
than 0.90 for all cases. The highest and lowest accuracies 

Table 6  Performance on 
patient-dependent epileptic 
seizure classification using 5 
wavelet-based features

Subject Channel Feature Accuracy (Ac) Sensitivity (Se) Specificity (Sp) Se × Sp

chb01 FT9-FT10 !1, !2, !3, !4, !5 0.9760 0.5487 0.9972 0.5472

chb02 FZ-CZ !1, !2, !3, !4, !5 0.9770 0.7011 0.9905 0.6945

chb03 T7-FT9 !1, !2, !3, !4, !5 0.9784 0.6775 0.9906 0.6712

chb04 FZ-CZ !3, !4, !5, !7, !8 0.9369 0.1176 0.9984 0.1175

chb05 FZ-CZ !1, !2, !3, !4, !5 0.9625 0.5333 0.9950 0.5306

chb06 T8-P8 !1, !2, !3, !4, !5 0.9888 0.2583 0.9962 0.2574

chb07 FP1-F3 !1, !2, !3, !4, !5 0.9306 0.3191 0.9915 0.3164

chb08 T8-P8 !2, !3, !4, !5, !6 0.9423 0.6297 0.9856 0.6206

chb09 F4-C4 !1, !2, !3, !4, !5 0.9857 0.7476 0.9982 0.7462

chb10 F7-T7 !2, !3, !4, !5, !6 0.9640 0.2300 1.0000 0.2300

chb11 FT9-FT10 !1, !2, !3, !4, !5 0.8427 0.2795 0.9993 0.2793

chb12 C4-P4 !1, !2, !3, !4, !7 0.9584 0.2073 0.9996 0.2073

chb13 FZ-CZ !2, !3, !4, !5, !6 0.9095 0.3348 0.9318 0.3119

chb14 FZ-CZ !1, !2, !3, !5, !7 0.9869 0.1418 0.9993 0.1417

chb15 C3-P3 !1, !2, !3, !4, !5 0.9110 0.3855 0.9556 0.3684

chb16 F4-C4 !1, !2, !3, !4, !6 0.9947 0.0877 0.9999 0.0877

chb17 CZ-PZ !2, !3, !4, !5, !7 0.9631 0.6784 0.9878 0.6701

chb18 CZ-PZ !2, !3, !4, !5, !6 0.9633 0.4120 0.9873 0.4067

chb19 FP2-F4 !1, !2, !3, !4, !5 0.9634 0.4675 1.0000 0.4675

chb20 F3-C3 !1, !2, !3, !4, !5 0.9861 0.4741 0.9996 0.4739

chb21 CZ-PZ !1, !2, !3, !4, !5 0.9802 0.7372 0.9887 0.7289

chb22 FZ-CZ !1, !2, !3, !4, !5 0.9892 0.8310 0.9980 0.8294

chb23 P3-O1 !1, !2, !3, !5, !6 0.9806 0.7391 0.9898 0.7316

chb24 FZ-CZ !1, !2, !3, !4, !5 0.9791 0.3487 0.9978 0.3479

Average 0.9604 0.4537 0.9907 0.4493
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are, respectively, 0.9959 and 0.9281 while the highest and 
lowest specificities are, respectively, 0.9997 and 0.9910. On 
the contrary, the wide range of sensitivity is obtained. The 
best and worst sensitivities are 0.9295 and 0.0174, respec-
tively. The performance on patient-dependent epileptic sei-
zure classification evaluated using tenfold cross-validation 
is in general lower than those using the wavelet-based fea-
tures of scalp EEG epochs corresponding to the first epilep-
tic seizure event as the training data set. The better perfor-
mance on patient-dependent epileptic seizure classification 
evaluated using tenfold cross-validation is achieved in the 
cases chb04, chb10, chb11, chb14, and chb22. 

The results of tenfold cross-validation on the patient-
independent epileptic seizure classification correspond-
ing to each pair of wavelet-based features are summa-
rized in Table 11. The same EEG channels providing the 
best performance for all cases reported in Table 3 are 
used. The highest product of sensitivity and specificity is 
0.2004 that is obtained from the patient-independent epi-
leptic seizure classification using the wavelet-based fea-
tures !1 and !5 as the feature vector. The corresponding 

accuracy, sensitivity, and specificity are 0.9579, 0.2011, 
and 0.9965, respectively. On the other hand, the worst 
performance on the patient-independent epileptic seizure 
classification is obtained using the wavelet-based fea-
tures !7 and !8 as the feature vector with the accuracy, 
sensitivity, and specificity of 0.9518, 0.0259, and 0.9990, 
respectively.

3.4  Comparison of performance on patient-dependent 
epileptic seizure classification

The areas under ROC curve obtained from using the 
wavelet-based features and the time-domain features are 
compared in Table 12. The maximum area under ROC 
curve for each case is written in bold. In general, the 
wavelet-based features provide better performance on 
epileptic seizure classification compared to the time-
domain features. The wavelet-based features, i.e., !3, !4 , 
!5, and !6, provide the best classification performance 
regarding to the maximum area under ROC curve in 18 
cases while the time-domain features, i.e., f2, f4, and f5 

Table 7  Performance on 
patient-dependent epileptic 
seizure classification using 6 
wavelet-based features

Subject Channel Feature Accuracy (Ac) Sensitivity (Se) Specificity (Sp) Se × Sp

chb01 FZ-CZ !1, !2, !3, !4, !5, !6 0.9675 0.3974 0.9958 0.3958

chb02 F7-T7 !1, !2, !3, !4, !5, !6 0.9712 0.3793 1.0000 0.3793

chb03 T7-FT9 !1, !2, !3, !4, !5, !6 0.9744 0.4320 0.9964 0.4304

chb04 T7-FT9 !1, !2, !3, !4, !5, !7 0.9337 0.0650 0.9988 0.0649

chb05 FZ-CZ !1, !2, !3, !4, !5, !6 0.9536 0.3586 0.9986 0.3581

chb06 T8-P8 !1, !2, !3, !4, !5, !6 0.9899 0.1250 0.9987 0.1248

chb07 FP1-F3 !1, !2, !3, !4, !5, !6 0.9171 0.1319 0.9953 0.1313

chb08 FZ-CZ !1, !2, !3, !4, !5, !6 0.9294 0.5662 0.9798 0.5548

chb09 F4-C4 !1, !2, !3, !4, !5, !6 0.9717 0.4466 0.9992 0.4463

chb10 C3-P3 !1, !2, !3, !4, !5, !6 0.9587 0.1600 0.9979 0.1597

chb11 FZ-CZ !1, !2, !3, !4, !5, !6 0.8173 0.1654 0.9986 0.1651

chb12 F4-C4 !1, !2, !3, !4, !5, !7 0.9513 0.0883 0.9987 0.0882

chb13 FZ-CZ !2, !3, !4, !5, !6, !7 0.9421 0.1620 0.9724 0.1576

chb14 FZ-CZ !1, !2, !3, !4, !5, !7 0.9865 0.0922 0.9996 0.0922

chb15 P7-O1 !2, !3, !4, !5, !6, !7 0.9380 0.2603 0.9956 0.2591

chb16 F4-C4 !1, !2, !3, !4, !6, !8 0.9945 0.0351 1.0000 0.0351

chb17 CZ-PZ !2, !3, !4, !5, !6, !7 0.9410 0.3869 0.9891 0.3827

chb18 CZ-PZ !2, !3, !4, !5, !6, !7 0.9658 0.2772 0.9958 0.2760

chb19 F7-T7 !1, !2, !3, !4, !5, !6 0.9433 0.1818 0.9995 0.1817

chb20 F3-C3 !1, !2, !3, !4, !5, !6 0.9800 0.2271 0.9998 0.2270

chb21 CZ-PZ !1, !2, !3, !4, !5, !6 0.9802 0.6423 0.9921 0.6372

chb22 FZ-CZ !1, !2, !3, !4, !5, !8 0.9773 0.5775 0.9996 0.5772

chb23 P4-O2 !1, !2, !3, !4, !5, !6 0.9595 0.6421 0.9717 0.6239

chb24 FZ-CZ !1, !2, !3, !4, !5, !6 0.9766 0.2018 0.9997 0.2017

Average 0.9550 0.2918 0.9947 0.2896
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provide the best classification in the other 6 cases. The 
wavelet-based features !4 and !5 are the wavelet-based 
features providing the best classification performance 
among all eight wavelet-based features. The nonlinear 
energy, i.e., f2, is the time-domain feature providing 
the best classification performance among all five time-
domain features.

Table 13 shows the best performance on patient-
dependent epileptic seizure classification using the time-
domain features and SVM. The best performance on 
patient-dependent epileptic seizure classification can be 
achieved using the feature vector composing of 2, 3, and 
4 time-domain features for 13, 7, and 4 cases, respec-
tively. The best performance is obtained at the case 
chb09 using the line length, the nonlinear energy, the 
variance, and the maximum as the feature vector while 
the worst performance is obtained at the case chb16 
using the line length and the variance as the feature vec-
tor. In general, the wavelet-based features provide the 
better performance for epileptic seizure classification 
than the time-domain features. The better performance 
on patient-dependent epileptic seizure classification can 
be obtained using the wavelet-based features in 19 cases.

4  Discussion

From the computational results, it is shown that, in general, 
the wavelet-based features of scalp EEG epochs associated 
with epileptic seizure event and non-seizure period, i.e., 
pre-ictal and post-ictal states, are considerably different 
from each other corresponding to the same case. Further-
more, this suggests that at any spectral subband the power 
of scalp EEG epochs associated with epileptic seizure event 
is higher than those of scalp EEG epochs associated with 
non-seizure period. Such differences between the wavelet-
based features lead to an excellent epileptic seizure classi-
fication. The average accuracy, sensitivity, and specificity 
of patient-dependent epileptic seizure classification are, 
respectively, 0.9680, 0.7200, and 0.9811. This performance 
is comparable with the computational results of the auto-
mated patient-dependent epileptic seizure classification [7] 
where the corresponding average sensitivity and specificity 
are 89.01 and 94.71%. However, a larger number of quanti-
tative features were applied in Ref. [7]. The best accuracy, 
sensitivity, and specificity of patient-dependent epilep-
tic seizure classification are 0.9978, 0.9806, and 0.9998, 
respectively.

Table 8  Performance on 
patient-dependent epileptic 
seizure classification using 7 
wavelet-based features

Subject Channel Feature Accuracy (Ac) Sensitivity (Se) Specificity (Sp) Se × Sp

chb01 FZ-CZ !1, !2, !3, !4, !5, !6, !7 0.9598 0.1513 0.9999 0.1513

chb02 P3-O1 !1, !2, !3, !4, !5, !6, !7 0.9599 0.1609 0.9989 0.1607

chb03 T7-FT9 !1, !2, !3, !4, !5, !6, !7 0.9660 0.1361 0.9996 0.1360

chb04 C3-P3 !1, !2, !3, !4, !5, !6, !7 0.9313 0.0217 0.9995 0.0217

chb05 FZ-CZ !1, !2, !3, !4, !5, !6, !8 0.9388 0.1356 0.9997 0.1356

chb06 T8-P8 !1, !2, !3, !4, !5, !6, !8 0.9904 0.0583 0.9999 0.0583

chb07 FP1-F3 !1, !2, !3, !4, !5, !6, !7 0.9113 0.0426 0.9979 0.0425

chb08 CZ-PZ !1, !2, !3, !4, !5, !6, !7 0.9181 0.4135 0.9880 0.4086

chb09 T7-FT9 !1, !2, !3, !4, !5, !6, !7 0.9589 0.1748 1.0000 0.1748

chb10 F3-C3 !1, !2, !3, !4, !5, !6, !7 0.9529 0.0900 0.9952 0.0896

chb11 FZ-CZ !2, !3, !4, !5, !6, !7, !8 0.7858 0.0154 1.0000 0.0154

chb12 F4-C4 !1, !2, !3, !4, !5, !6, !7 0.9487 0.0329 0.9989 0.0329

chb13 FZ-CZ !1, !2, !3, !4, !5, !6, !7 0.9517 0.0768 0.9857 0.0757

chb14 C3-P3 !1, !2, !3, !4, !5, !6, !7 0.9860 0.0284 1.0000 0.0284

chb15 P7-O1 !1, !2, !3, !4, !5, !6, !7 0.9298 0.1258 0.9982 0.1255

chb16 FP2-F8 !1, !2, !3, !4, !5, !6, !8 0.9944 0.0175 1.0000 0.0175

chb17 F3-C3 !1, !2, !3, !4, !5, !6, !7 0.9262 0.1307 0.9952 0.1300

chb18 FZ-CZ !1, !2, !3, !4, !5, !6, !7 0.9503 0.1199 0.9865 0.1182

chb19 F8-T8 !1, !2, !3, !4, !5, !6, !7 0.9335 0.0325 1.0000 0.0325

chb20 CZ-PZ !1, !2, !3, !4, !5, !6, !7 0.9756 0.0558 0.9998 0.0558

chb21 CZ-PZ !1, !2, !3, !4, !5, !6, !7 0.9757 0.4015 0.9959 0.3998

chb22 FZ-CZ !1, !2, !3, !4, !5, !6, !7 0.9597 0.2465 0.9996 0.2464

chb23 P4-O2 !1, !2, !3, !4, !5, !6, !8 0.9659 0.3612 0.9890 0.3572

chb24 FZ-CZ !1, !2, !3, !4, !5, !6, !7 0.9727 0.0570 1.0000 0.0570

Average 0.9476 0.1286 0.9970 0.1280



85

 

1754 Med Biol Eng Comput (2017) 55:1743–1761

1 3

A variety of wavelet-based features of scalp EEG epochs 
are incorporated in the feature vectors used to obtained 
the best performance on patient-dependent epileptic sei-
zure classification for corresponding cases. The number 
of wavelet-based features of scalp EEG epochs used to 
obtained the best performance on patient-dependent epi-
leptic seizure classification also varies among cases. Two 
wavelet-based features of scalp EEG epochs are required to 
obtain the best patient-dependent epileptic seizure classifi-
cation in most cases, i.e., 19 cases out of 24. The wavelet-
based features !4, !2, and !5 are the wavelet-based features 
of scalp EEG epochs that are mostly used as feature vectors 
to obtain the best performance on patient-dependent epilep-
tic seizure classification. These wavelet-based features, i.e., 
!2, !4, and !5 correspond to the 32–64, 8–16, and 4–8 Hz 
subbands of scalp EEG epochs, respectively. The wavelet-
based feature !8 which corresponds to the 0–1 Hz subband 
of scalp EEG epochs is not associated with the best perfor-
mance on patient-dependent epileptic seizure classification 
of any cases.

The best performance on patient-dependent epilep-
tic seizure classification using the wavelet-based features 
of scalp EEG epochs corresponding to the first epilep-
tic seizure event as the training data set is achieved with 
the accuracy of 0.9978, the sensitivity of 0.9806, and the 
specificity of 0.9987. The accuracy, sensitivity, and speci-
ficity of patient-dependent epileptic seizure classification 
using the wavelet-based features of scalp EEG epochs cor-
responding to the first epileptic seizure event as the train-
ing data set are, respectively, 0.9937, 0.1930, and 0.9983 
for the worst performance. The wavelet-based features 
and the time-domain features provides both best and worst 
performances on patient-dependent epileptic seizure clas-
sification for the same cases. Superior performance of the 
wavelet-based features for epileptic seizure classification 
suggests that the distinctive characteristics of epileptic sei-
zure manifest in some specific spectral bands of EEG sig-
nals rather than the whole bandwidth of EEG signals.

In the case with best performance on epileptic seizure 
classification, the consistent characteristics of scalp EEG 

Table 9  Best performance on 
patient-dependent epileptic 
seizure classification

Subject Channel Feature Accuracy (Ac) Sensitivity (Se) Specificity (Sp) Se × Sp

chb01 FT9-FT10 !2, !5 0.9752 0.9436 0.9767 0.9216

chb02 P7-O1 !2, !4 0.9915 0.9080 0.9955 0.9040

chb03 T7-FT9 !4, !5 0.9802 0.9083 0.9831 0.8929

chb04 C4-P4 !2, !5 0.9523 0.4985 0.9863 0.4916

chb05 P8-O2 !5, !6 0.9856 0.8966 0.9923 0.8897

chb06 F8-T8 !1, !3 0.9924 0.4417 0.9980 0.4408

chb07 FP1-F3 !2, !3 0.9522 0.7106 0.9763 0.6938

chb08 FZ-CZ !4, !5, !6 0.9508 0.7351 0.9807 0.7210

chb09 C3-P3 !2, !4 0.9978 0.9806 0.9987 0.9793

chb10 F7-T7 !4, !5 0.9898 0.7875 0.9998 0.7873

chb11 F7-T7 !3, !4 0.9071 0.6513 0.9783 0.6371

chb12 C4-P4 !1, !2, !3, !4 0.9691 0.4214 0.9992 0.4211

chb13 FZ-CZ !2, !6 0.8425 0.5522 0.8538 0.4715

chb14 C4-P4 !2, !6 0.9900 0.3617 0.9992 0.3614

chb15 T7-P7 !5, !7 0.9629 0.8628 0.9714 0.8381

chb16 F4-C4 !1, !3, !4 0.9937 0.1930 0.9983 0.1927

chb17 CZ-PZ !2, !3, !4 0.9679 0.9246 0.9717 0.8984

chb18 P8-O2 !6, !7 0.9561 0.7041 0.9671 0.6809

chb19 P8-O2 !3, !4 0.9826 0.8831 0.9899 0.8742

chb20 C3-P3 !2, !4 0.9860 0.7570 0.9920 0.7509

chb21 CZ-PZ !1, !2, !5 0.9844 0.8029 0.9908 0.7955

chb22 F3-C3 !4, !5 0.9896 0.9155 0.9937 0.9097

chb23 T7-P7 !4, !5 0.9791 0.8863 0.9826 0.8709

chb24 FZ-CZ !2, !4 0.9704 0.7917 0.9757 0.7724

Average 0.9687 0.7299 0.9813 0.7165
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epochs associated with epileptic seizure event and non-sei-
zure periods are observed as their corresponding wavelet-
based features are particularly steady among various epilep-
tic seizure events. Furthermore, the durations of epileptic 
seizure events are sufficiently long. The average duration 
of 4 epileptic seizure events is 69 s. On the contrary, the 
characteristics of scalp EEG epochs associated with epi-
leptic seizure event and non-seizure periods relatively vary 
from one epileptic seizure event to another in the case of 
worst performance on epileptic seizure classification. The 
durations of epileptic seizure events are also exceptionally 
brief. The longest and shortest durations of epileptic sei-
zure events are 14 and 6 s, respectively. This leads to a very 
small number of scalp EEG epochs associated with epilep-
tic seizure event applied to the classification.

When the tenfold cross-validation is applied, the per-
formance on patient-dependent epileptic seizure clas-
sification tends to decrease. In most cases, i.e., 19 cases 

out of 24, the performance on patient-dependent epilep-
tic seizure classification using tenfold cross-validations 
is lower than those using the wavelet-based features of 
scalp EEG epochs corresponding to the first epileptic 
seizure event. This suggests that the wavelet-based fea-
tures of scalp EEG epochs obtained from a single event, 
i.e., around the first epileptic seizure event, may not well 
represent the whole classes due to the variation of char-
acteristics of scalp EEG epochs associated with epileptic 
seizure event and non-seizure period from one epileptic 
seizure event to another. The performance on patient-
independent epileptic seizure classification is relatively 
low compared to the performance on patient-dependent 
epileptic seizure classification. The variation of charac-
teristics of scalp EEG epochs associated with epileptic 

Table 10  Performance on patient-dependent epileptic seizure classi-
fication using tenfold cross-validation

Subject Accuracy (Ac) Sensitivity (Se) Specificity (Sp) Se × Sp

chb01 0.9941 0.9081 0.9981 0.9064

chb02 0.9917 0.8628 0.9987 0.8617

chb03 0.9808 0.6057 0.9963 0.6034

chb04 0.9758 0.7165 0.9925 0.7112

chb05 0.9693 0.6405 0.9955 0.6376

chb06 0.9927 0.3576 0.9991 0.3572

chb07 0.9655 0.6343 0.9934 0.6301

chb08 0.9281 0.4116 0.9975 0.4105

chb09 0.9959 0.9295 0.9992 0.9288

chb10 0.9907 0.8001 0.9993 0.7996

chb11 0.9795 0.9247 0.9910 0.9164

chb12 0.9592 0.2566 0.9973 0.2559

chb13 0.9640 0.0622 0.9981 0.0621

chb14 0.9920 0.4604 0.9993 0.4601

chb15 0.9590 0.5457 0.9949 0.5429

chb16 0.9942 0.0174 0.9997 0.0174

chb17 0.9809 0.7995 0.9949 0.7954

chb18 0.9621 0.2649 0.9938 0.2633

chb19 0.9814 0.7758 0.9967 0.7733

chb20 0.9910 0.6695 0.9997 0.6692

chb21 0.9886 0.7917 0.9957 0.7883

chb22 0.9938 0.9293 0.9975 0.9269

chb23 0.9884 0.8138 0.9962 0.8107

chb24 0.9904 0.6755 0.9994 0.6751

Average 0.9796 0.6189 0.9968 0.6168

Table 11  Performance on patient-independent epileptic seizure clas-
sification using tenfold cross-validation

Feature Accuracy (Ac) Sensitivity (Se) Specificity (Sp) Se × Sp

!1, !2 0.9523 0.0439 0.9987 0.0438

!1, !3 0.9554 0.1592 0.9960 0.1585

!1, !4 0.9570 0.1714 0.9971 0.1709

!1, !5 0.9579 0.2011 0.9965 0.2004

!1, !6 0.9564 0.1631 0.9969 0.1625

!1, !7 0.9532 0.0764 0.9980 0.0763

!1, !8 0.9525 0.0586 0.9982 0.0585

!2, !3 0.9542 0.1050 0.9976 0.1047

!2, !4 0.9561 0.1531 0.9970 0.1527

!2, !5 0.9564 0.1626 0.9969 0.1621

!2, !6 0.9556 0.1410 0.9972 0.1406

!2, !7 0.9533 0.0766 0.9980 0.0764

!2, !8 0.9524 0.0505 0.9984 0.0504

!3, !4 0.9551 0.1266 0.9974 0.1262

!3, !5 0.9564 0.1587 0.9971 0.1582

!3, !6 0.9555 0.1327 0.9975 0.1324

!3, !7 0.9544 0.1028 0.9979 0.1025

!3, !8 0.9526 0.0593 0.9982 0.0592

!4, !5 0.9558 0.1389 0.9975 0.1385

!4, !6 0.9560 0.1437 0.9975 0.1433

!4, !7 0.9552 0.1278 0.9974 0.1275

!4, !8 0.9532 0.0912 0.9972 0.0909

!5, !6 0.9558 0.1384 0.9976 0.1380

!5, !7 0.9552 0.1295 0.9974 0.1292

!5, !8 0.9553 0.1285 0.9975 0.1282

!6, !7 0.9543 0.1060 0.9976 0.1058

!6, !8 0.9539 0.0975 0.9976 0.0973

!7, !8 0.9518 0.0259 0.9990 0.0258
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seizure event and non-seizure period among cases or 
subjects is the primary factor of decreasing classifica-
tion performance. The best performance on patient-inde-
pendent is achieved using the wavelet-based features !1 
and !5 which correspond to the 64–128 and 4–8 Hz sub-
bands of scalp EEGs. The 64–128 Hz subband of EEGs is 

associated with high-frequency oscillations, i.e., gamma 
(30–80 Hz) and ripple (80–250 Hz) oscillations [23]. 
There is evidence that high-frequency oscillations, in par-
ticular, gamma and ripple oscillations, in scalp EEGs are 
clinically correlated with the seizure onset zone [2, 23].

Table 12  Area under ROC 
curve of patient-dependent 
epileptic seizure classification

Case Wavelet-based feature Time-domain feature

!1 !2 !3 !4 !5 !6 !7 !8 f1 f2 f3 f4 f5

chb01 0.882 0.904 0.823 0.868 0.880 0.861 0.823 0.800 0.893 0.921 0.876 0.874 0.874

chb02 0.609 0.435 0.547 0.640 0.737 0.743 0.666 0.609 0.611 0.602 0.605 0.613 0.593

chb03 0.866 0.881 0.889 0.893 0.901 0.858 0.815 0.805 0.880 0.885 0.874 0.872 0.861

chb04 0.840 0.894 0.923 0.950 0.972 0.944 0.864 0.793 0.891 0.900 0.921 0.915 0.904

chb05 0.816 0.851 0.902 0.945 0.926 0.872 0.814 0.821 0.907 0.918 0.916 0.917 0.907

chb06 0.636 0.677 0.707 0.749 0.720 0.705 0.728 0.704 0.719 0.754 0.768 0.762 0.775
chb07 0.934 0.939 0.968 0.971 0.942 0.928 0.905 0.867 0.984 0.988 0.930 0.926 0.957

chb08 0.691 0.708 0.813 0.874 0.915 0.936 0.882 0.880 0.889 0.887 0.912 0.910 0.882

chb09 0.981 0.989 0.991 0.993 0.989 0.957 0.887 0.861 0.977 0.986 0.983 0.983 0.987

chb10 0.849 0.885 0.954 0.986 0.983 0.967 0.825 0.815 0.913 0.932 0.976 0.975 0.974

chb11 0.742 0.826 0.920 0.969 0.978 0.978 0.949 0.914 0.897 0.893 0.978 0.978 0.955

chb12 0.660 0.682 0.713 0.741 0.646 0.583 0.558 0.556 0.711 0.717 0.646 0.644 0.650

chb13 0.521 0.500 0.585 0.672 0.793 0.871 0.783 0.681 0.584 0.594 0.847 0.844 0.733

chb14 0.785 0.640 0.773 0.917 0.947 0.938 0.888 0.783 0.725 0.766 0.884 0.881 0.876

chb15 0.708 0.826 0.889 0.907 0.895 0.801 0.686 0.682 0.834 0.872 0.856 0.853 0.856

chb16 0.709 0.794 0.883 0.871 0.799 0.728 0.669 0.737 0.830 0.833 0.804 0.799 0.758

chb17 0.792 0.839 0.883 0.945 0.940 0.923 0.842 0.777 0.808 0.847 0.918 0.915 0.904

chb18 0.774 0.791 0.829 0.872 0.892 0.890 0.853 0.818 0.846 0.838 0.867 0.868 0.836

chb19 0.808 0.822 0.821 0.844 0.854 0.814 0.753 0.768 0.798 0.801 0.859 0.859 0.852

chb20 0.839 0.834 0.841 0.850 0.727 0.712 0.694 0.724 0.855 0.866 0.813 0.813 0.812

chb21 0.797 0.953 0.979 0.963 0.954 0.872 0.877 0.835 0.981 0.983 0.956 0.953 0.960

chb22 0.848 0.905 0.978 0.991 0.990 0.984 0.939 0.904 0.948 0.971 0.989 0.989 0.954

chb23 0.938 0.930 0.927 0.957 0.978 0.974 0.963 0.934 0.940 0.937 0.978 0.977 0.959

chb24 0.751 0.798 0.815 0.818 0.802 0.802 0.800 0.809 0.795 0.800 0.807 0.808 0.803



88

 

1757Med Biol Eng Comput (2017) 55:1743–1761 

1 3

Table 13  Best performance 
on patient-dependent epileptic 
seizure classification using 
time-domain features

Subject Channel Feature Accuracy (Ac) Sensitivity (Se) Specificity (Sp) Se × Sp

chb01 FT9-FT10 f1, f2, f3 0.9634 0.8923 0.9669 0.8628

chb02 P7-O1 f1, f2, f3 0.9679 0.7816 0.9770 0.7637

chb03 T7-FT9 f3, f5 0.9298 0.7426 0.9374 0.6961

chb04 C4-P4 f1, f3, f4, f5 0.9169 0.3870 0.9566 0.3702

chb05 P8-O2 f1, f2 0.9600 0.9701 0.9593 0.9306

chb06 F8-T8 f1, f2 0.9939 0.4500 0.9995 0.4498

chb07 FP1-F3 f2, f5 0.9688 0.8170 0.9839 0.8039

chb08 FZ-CZ f1, f3, f4 0.9365 0.6946 0.9700 0.6738

chb09 C3-P3 f1, f2, f3, f5 0.9855 0.9903 0.9852 0.9757

chb10 F7-T7 f3, f4 0.9821 0.9100 0.9856 0.8969

chb11 F7-T7 f2, f3, f4 0.8466 0.3115 0.9954 0.3101

chb12 C4-P4 f1, f4 0.9512 0.4162 0.9806 0.4081

chb13 FZ-CZ f1, f2, f3, f5 0.9317 0.2601 0.9578 0.2491

chb14 C4-P4 f3, f4, f5 0.9876 0.4043 0.9961 0.4027

chb15 T7-P7 f3, f5 0.8177 0.9579 0.8058 0.7718

chb16 F4-C4 f1, f3 0.9943 0.0702 0.9996 0.0701

chb17 CZ-PZ f3, f5 0.9306 0.5779 0.9612 0.5555

chb18 P8-O2 f2, f3, f4 0.9419 0.6367 0.9552 0.6082

chb19 P8-O2 f2, f3, f5 0.9639 0.7208 0.9818 0.7077

chb20 C3-P3 f2, f5 0.9848 0.7052 0.9921 0.6996

chb21 CZ-PZ f2, f4 0.9804 0.7226 0.9895 0.7150

chb22 F3-C3 f1, f2 0.9761 0.8310 0.9843 0.8179

chb23 T7-P7 f1, f3, f4, f5 0.9683 0.8863 0.9714 0.8609

chb24 FZ-CZ f1, f5 0.9605 0.7873 0.9656 0.7602

Average 0.9517 0.6635 0.9691 0.6400

Fig. 1  Comparison between the 
wavelet-based features of scalp 
EEG epochs associated with 
non-seizure periods and those 
associated with epileptic seizure 
events of all subjects
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Fig. 2  Comparison between the 
wavelet-based features of scalp 
EEG epochs associated with 
non-seizure periods and those 
associated with epileptic seizure 
events of case chb09
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Fig. 3  Comparison between the 
wavelet-based features of scalp 
EEG epochs associated with 
non-seizure periods and those 
associated with epileptic seizure 
events of case chb16
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Fig. 4  Comparison of the 
wavelet-based features of SZ 
and NS epochs of case chb09 
corresponding to each epileptic 
seizure event
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5  Conclusions

The computational results suggest that the wavelet-based 
features obtained from the logarithm of variance of detail 
and approximation coefficients are a promising quantita-
tive feature for epileptic seizure classification. Accom-
panied with SVM, an excellent performance on patient-
dependent epileptic seizure classification can be achieved 

using wavelet-based features of a single channel of scalp 
EEG. Three key factors having an effect on the perfor-
mance of epileptic seizure classification are consistency 
of features/patterns of epileptic seizure activity (epilepti-
form activity), duration of epileptic seizures, and amount 
of training data. In cases whose characteristics of scalp 
EEGs associated with epileptic seizure activity and non-
seizure period are consistent, only two wavelet-based 

Fig. 5  Comparison of the 
wavelet-based features of SZ 
and NS epochs of case chb16 
corresponding to each epileptic 
seizure event
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features of a single channel of scalp EEGs are required to 
achieve an excellent epileptic seizure classification. The 
performance on epileptic seizure classification can, how-
ever, be further improved by refining relevant parameters. 
This will be studied in future works. Also, the epileptic 
seizure classification can be potentially applied for real-
time (online) epileptic seizure detection and monitoring 
system.
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Introduction

Epilepsy, one of the most common neurological disorders, 
remains a challenging topic to researchers in many aspects. 
In epilepsy, the normal pattern of neuron activity is dis-
turbed, and sometimes clusters of neurons in the brain sig-
nal abnormally [1]. Epilepsy is characterized by recurrent 
seizures that are physical reactions to sudden, usually brief, 
excessive electrical discharges in clusters of nerve cells [2]. 
There are many possible causes for seizures ranging from 
illness to brain damage to abnormal brain development [1]. 
Approximately 50 million people worldwide have epilepsy 
and most of the people with epilepsy live in low- and mid-
dle-income countries [2]. In Thailand, there are between 
380,000 and 470,000 people estimated to have epilepsy [3].

EEGs that quantify electrical activity of the brain are the 
most fundamental diagnostic test for epilepsy. Typically, 
EEGs are recorded using electrodes placed on the scalp. 
Scalp EEGs have several advantages including simplicity, 
non-invasiveness and also inexpensiveness. Scalp EEGs are 
however very sensitive to artifacts and have a poor spatial 
resolution. Intracranial EEGs are an alternative approach to 
measure the electrical activity of the brain by placing elec-
trodes on the cortex. As intracranial EEGs provide better 
temporal and spatial characteristics of electrical activity of 
the brain compared to scalp EEGs, intracranial EEGs are 
more suitable for comprehensive diagnosis of epilepsy. 
Therefore, intracranial EEGs are used in most of studies, 
in particular, epileptic seizure classification and detection 
which are one of the most crucial tasks in diagnosis of 
epilepsy.

In epileptic seizure classification, corresponding states 
of the brain epochs of EEGs associated with, namely, ictal 
state (during epileptic seizure activity), and pre-ictal and 
post-ictal states (during non-seizure periods), are identified 

Abstract Classification of epileptic scalp EEGs are cer-
tainly ones of the most crucial tasks in diagnosis of epi-
lepsy. Rather than using multiple quantitative features, a 
single quantitative feature of single-channel scalp EEG 
is applied for classifying its corresponding state of the 
brain, i.e., during seizure activity or non-seizure period. 
The quantitative features proposed are wavelet-based fea-
tures obtained from the logarithm of variance of detail and 
approximation coefficients of single-channel scalp EEG 
signals. The performance on patient-dependent based epi-
leptic seizure classifications using single wavelet-based fea-
tures are examined on scalp EEG data of 12 children sub-
jects containing 79 seizures. The 4-fold cross validation is 
applied to evaluate the performance on patient-dependent 
based epileptic seizure classifications using single wavelet-
based features. From the computational results, it is shown 
that the wavelet-based features can provide an outstanding 
performance on patient-dependent based epileptic seizure 
classification. The average accuracy, sensitivity, and speci-
ficity of patient-dependent based epileptic seizure classifi-
cation are, respectively, 93.24%, 83.34%, and 93.53%.
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based on specific features and patterns of EEGs such as 
monomorphic waveforms, polymorphic waveforms, spike 
and sharp wave complexes, or periods of reduced elec-
trocerebral activity [4–6]. A variety of quantitative features 
extracted from either scalp EEGs or intracranial EEGs have 
been shown to be useful for epileptic seizure classification 
and detection. A wide range of success on epileptic seizure 
classification and detection has been reported. The superior 
performance on epileptic seizure classification and detec-
tion using intracranial EEGs can in general be obtained.

In particular, the quantitative features applied for epi-
leptic seizure classification and detection using scalp 
EEGs can be classified into a number of categories. Vari-
ous time-domain features [7–10] such as line length, zero 
crossing, RMS, higher order moments, entropies, and 
Hjorth parameters are fundamental and simple quantitative 
features applied for epileptic seizure classification. Energy 
based features [4, 8–14] derived from Fourier transform 
and wavelet transforms are the most common quantitative 
features applied for various applications of EEG analy-
sis including epileptic seizure classification and detection. 
Quantitative features derived from nonlinear methods 
[9] including Lyapunov exponents are novel quantita-
tive features applied to epileptic seizure classification and 
detection.

Furthermore, a number of computational techniques and 
tools have beeen applied for classifying quantitative fea-
tures of scalp EEGs into classes corresponding to physi-
ological states, basically, seizure and non-seizure periods. 
Such computational techniques and tools ranging from 
simplest techniques such as thresholding to complex and 
advanced approaches based on concepts of computational 
intelligence, artificial neural networks, and machine learn-
ing. Support vector machines (SVMs) are one of the most 
common classifiers applied for epileptic seizure classifica-
tion and detection [4, 8, 10, 12–15]. Evolutionary neural 
networks is another approach recently applied for epileptic 
seizure classification and detection [9].

In this study, wavelet-based features of scalp EEGs 
of children subjects with epilepsy are applied for patient-
dependent based epileptic seizure classification. The wave-
let-based features used are computationally relevant to 
the power spectral density (PSD) [16]. The wavelet-based 
approach however allows an unbiased estimate [16]. It is 
focused on assessing the performance of epileptic seizure 
classification using only single quantitative feature of sin-
gle-channel scalp EEG rather than using multiple and com-
plex quantitative features of single or multiple channels of 
scalp EEGs. Accordingly, as opposed to complicated clas-
sifiers, a simple thresholding technique can be applied to 
classify scalp EEGs into their corresponding states. The 
performance of three schemes of epileptic scalp EEG clas-
sifications using wavelet-based features is examined.

Materials and methods

EEG data and subjects

Scalp EEG data of twelve children subjects (3 males and 9 
females) with intractable seizures examined in this study 
were obtained from the CHB-MIT Scalp EEG Database 
(available online at http://www.physionet.org/pn6/chb-
mit/). The database was collected at the Children’s Hos-
pital Boston [17] and originally studied in Refs.  [4, 12]. 
All subjects were monitored for up to several days fol-
lowing withdrawal of anti-seizure medication in order to 
characterize their seizures and assess their candidacy for 
surgical intervention [17]. All protected health informa-
tion (PHI) in the original recordings was replaced with 
surrogate information in order to protect the privacy of 
the subjects [17].

The subjects are referred to as chb01, chb02, chb05, 
chb08, chb09, chb10, chb13, chb14, chb16, chb20, chb22 
and chb23, and age between 2 and 11 years old. A cho-
sen single channel of scalp EEG signals is examined for 
each subject. The scalp EEG signals were acquired using 
a sampling rate of 256 Hz with 16-bit resolution [17]. The 
international 10–20 system of EEG electrode positions and 
nomenclature was used for the recordings [17]. There are a 
total of 79 epileptic seizure events. Segments of scalp EEG 
signals around epileptic seizure events (12 min before sei-
zure onset and 12  min after seizure offset, unless limited 
by the beginning and the end of recording) are used in this 
study.

The scalp EEG segments are divided into epochs with 
length of 512 samples (2  s) and with 50% overlap. Scalp 
EEG epochs associated with epileptic seizure event are cat-
egorized as an SZ class while scalp EEG epochs associated 
with pre-ictal and post-ictal states are categorized as Pr and 
Po classes. The description of all twelve subjects and the 
number of SZ, Pr and Po epochs for each subject are sum-
marized in Table 1.

Discrete wavelet transform

The discrete wavelet transform (DWT) is certainly one of 
the most powerful and widely used signal processing tech-
niques. The DWT is a representation of a signal using a 
countably-infinite set of wavelets that constitutes an ortho-
normal basis [18]. The wavelet transform can be interpreted 
as a generalized filter bank [19] and also in the context of 
multiresolution analysis (MRA) [20]. The MRA generally 
consists of a sequence of successive approximation spaces 
[21]. Furthermore, the multiresolution analysis leads to a 
hierachical scheme for the computation of the wavelet coef-
ficients of a given function [21].
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A signal x[n] is decomposed into approximations and 
details using scaling functions ! and wavelet functions ! 
that, respectively, correspond to halfband lowpass filter and 
halfband highpass filter. This can be expressed as

where the scaling function !1,k[n] and the wavelet func-
tion !1,k[n] are, respectively, an orthonormal basis for the 
space V1 and the orthogonal complement of V1, denoted by 
W1, and the space V0 = V1 ⊕W1. The approximation coeffi-
cients a1[n] and the detail coefficients d1[n] can be obtained 
by

where h[n] and g[n] are, respectively, the impulse response 
of halfband lowpass filter and halfband highpass filter.

For a single-level discrete wavelet decomposition at 
level l, the approximation coefficients al[n] can be obtained 
by convolving the approximation coefficients al−1[n] with 
the time-reversed filter of h[n], i.e., h̃[n], followed by the 
downsampling and, similarly, the detail coefficients dl[n] 
can be obtained by convolving the approximation coef-
ficients al−1[n] with the time-reversed filter of g[n], i.e., 
g̃[n], followed by the downsampling. Therefore, there are 
L detail coefficients, i.e., d1, d2, … , dL, and one approxima-
tion coefficients, i.e., aL, obtained from the L-level discrete 
wavelet decomposition.

(1)
x[n] =

∑

k

a0[k]!0,k[n]

=
∑

k

a1[k]!1,k[n] +
∑

k

d1[k]"1,k[n]

(2)a1[n] =
∑

k

a0[k]h[k − 2n]

(3)d1[n] =
∑

k

a0[k]g[k − 2n]

Wavelet-based features and data analysis

Quantitative features examined in this study are obtained 
from the detail coefficients dl[n] and the approximation 
coefficients al[n]. The proposed wavelet-based features 
!i are the logarithm of variance of detail coefficients and 
approximation coefficients. The wavelet-based features 
obtained from the detail coefficients dl are denoted by !k 
where k = l and the wavelet-based feature obtained from 
the approximation coefficients aL is denoted by !L+1. There-
fore, the wavelet-based features are given by

Scalp EEG epochs are decomposed into five levels, that 
yield five detail coefficients d1, d2, d3, d4, and d5 and one 
approximation coefficients a5, using the 6th order Daube-
chies wavelets. The Daubechies wavelet family is one of the 
most commonly used wavelet families which hass several 
nice characteristics including orthogonality and finite com-
pact support. A higher order Daubechies wavelets corre-
sponds to higher regularity and also a number of vanishing 
moments. Furthermore, the five levels of wavelet decompo-
sition is the maximum number of levels of wavelet decom-
position of scalp EEG epochs with length of 512 samples 
(2 s) using the 6th order Daubechies wavelets. The coeffi-
cients d1, d2, d3, d4, d5, and a5 approximately correspond to 
64–128, 32–64, 16–32, 8–16, 4–8, and 0–4-Hz subbands, 
respectively, which coincide with conventional EEG bands, 
namely, !, !, !, !, and !. The frequency responses of the 
6th order Daubechies wavelets corresponding to the coef-
ficients d1, d2, d3, d4, d5, and a5 are shown in Fig. 1.

(4)
!k = log2

(
var

(
dl
))
, where k = {l|l = 1, 2,… , L} and

(5)!L+1 = log2
(
var

(
aL
))
.

Table 1  Description of subjects and scalp EEG data

Subject Age Channel No. of EEG epochs
(year) Pr SZ Po

chb01 11 FT9-FT10 4633 421 4517
chb02 11 FP2-F4 1564 163 1484
chb05 7 P4-O2 3287 543 3595
chb08 3.5 F4-C4 3590 904 3185
chb09 10 F4-C4 2872 264 2494
chb10 3 T7-FT9 5026 426 4566
chb13 3 F7-T7 7504 499 8106
chb14 9 C4-P4 5744 145 5372
chb16 7 F8-T8 6594 54 6771
chb20 6 F8-T8 4788 270 5752
chb22 9 F3-C3 2154 195 1277
chb23 6 F7-T7 4631 403 5033
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Fig. 1  The corresponding spectral subbands of the 6th order Daube-
chies wavelets
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EEG classification and validation

A single feature !k is applied to classify corresponding 
scalp EEG epochs into one of classes, i.e., SZ, Pr, Po, 
and NS (non-seizure period) classes using a thresholding 
technique. Three classifications performed in this study 
include (1) classification between scalp EEG epochs 
associated with the SZ class and those associated with 
the Pr class; (2) classification between scalp EEG epochs 
associated with the SZ class and those associated with 
the Po class; and (3) classification between scalp EEG 
epochs associated with the SZ class and those associated 
with the Pr or Po classes (NS class).

The classification is performed by a subject-by-sub-
ject basis. The scalp EEG epochs obtained from within 
the same subject are applied for each classification. 
Performance of epileptic seizure classification is evalu-
ated using three conventional classification performance 
measures: accuracy, sensitivity, and specificity. The accu-
racy (Ac), the sensitivity (Se), and the specificity (Sp) are 
given, respecitvely, by

where TP, TN, FP, and FN denote a number of true posi-
tives, a number of true negatives, a number of false posi-
tives, and a number of false negatives, respectively. In 
addition, the product of sensitivity and specificity is also 
determined as a performance measure that justifies both the 
true positive rate and the true negative rate.

The 4-fold cross validation is used to validate the per-
formance of classifications. For each subject, the set of 
wavelet-based features of scalp EEG epochs associated 
with various classes are divided into four subsets. Three 
subsets of wavelet-based features are used to as a training 
set while another subset of wavelet-based features is used 
to as a testing set. A threshold ! is determined from the 
training set of wavelet-based features corresponding to 
both positive and negative classes, respectively, denoted 
by ZP and ZN as follows:

where Z̄P and Z̄N are, respectively, the means of wavelet-
based features corresponding to positive and negative 
classes. The positive class refers to the SZ class and the 
negative class refers to either the Pr, Po, or NS class.

Ac =
TP + TN

TP + TN + FP + FN

Se =
TP

TP + FN
, and

Sp =
TN

TN + FP

(6)! =

{
maxZP+min ZN

2
if Z̄P < Z̄N

minZP+maxZN
2

if Z̄P > Z̄N

The classification is simply performed using a thresh-
olding technique with the following rules of logical 
comparison. In the first case, i.e., Z̄P < Z̄N, a scalp EEG 
epochs of testing set is classified to belong to a positive 
class if the corresponding wavelet-based feature !k is less 
than or equal to the threshold; and a negative class, oth-
erwise. On the contrary, in another case, Z̄P > Z̄N, a scalp 
EEG epochs of testing sets is classified to belong to a 
positive class if the corresponding wavelet-based feature 
!k is greater than or equal to the threshold; and a nega-
tive class, otherwise. The cross validation is repeated 4 
times with each of the four subsets of wavelet-based fea-
tures is used once as the testing set. The performance 
of 4-fold cross validation is determined from all four 
classifications.

Results

Characteristics of wavelet-based features

The wavelet-based features, i.e., !1, !2, !3, !4, !5 and !6, 
of scalp EEG epochs associated with the SZ, Pr and Po 
classes of subjects chb01, chb02, chb05, chb08, chb09, 
chb10, chb13, chb14, chb16, chb20, chb22, and chb23 
are compared in box plots shown in Fig. 2a–l. A variety 
of charateristics of wavelet-based features of scalp EEG 
epochs are observed. It is shown that the wavelet-based 
features vary corresponding to subjects, classes, and even 
levels of wavelet decomposition. In most of cases, the 
wavelet-based features !k of scalp EEG epochs associated 
with the SZ class tend to be greater than those of scalp 
EEG epochs associated with the Pr and Po classes. In 
addition, means and standard deviations of wavelet-based 
features of scalp EEG epochs associated with any class of 
all subjects are summarized in Table 2.

For comparative purposes, the one-way analysis of 
variance (ANOVA) is performed to assess differences 
in the wavelet-based features of scalp EEG epochs asso-
ciated with various classes, i.e., SZ, Pr, and Po classes. 
The p-values and the F-statistic (shown in parentheses) 
yielded from the ANOVA are summarized in Table  3. 
In general, it is shown that probabilities of the identical 
means of wavelet-based features of scalp EEG epochs 
associated with various classes are very low, except for 
the wavelet-based features !2 of scalp EEG epochs of the 
subject chb13, and the wavelet-based features !1 and !6 
of scalp EEG epochs of the subject chb16. This therefore 
suggests that there are significant differences among the 
wavelet-based features of scalp EEG epochs associated 
with SZ, Pr, and Po classes in most cases.
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Fig. 2  Comparison between the wavelet-based features of scalp EEG epochs associated with the SZ, Pr and Po classes



99

 

62 Australas Phys Eng Sci Med (2017) 40:57–67

1 3

Table 2  Statistical values (Mean±S.D.) of wavelet-based features of scalp EEG epochs
Subject Class Feature

!1 !2 !3 !4 !5 !6

chb01 SZ 6.6287 8.4568 10.9442 13.4406 16.1876 18.9825
±1.9952 ±1.3919 ±0.8740 ±1.0615 ±0.9209 ±1.0896

Pr 2.5195 5.0179 8.3729 10.2162 12.0625 14.4906
±0.8310 ±0.6443 ±0.6299 ±0.9968 ±1.2072 ±1.6421

Po 3.4485 5.6258 8.5076 9.6827 12.2851 15.2157
±1.5918 ±1.3538 ±1.1643 ±0.8727 ±0.9218 ±1.5378

chb02 SZ 7.5183 10.4664 12.4426 13.8604 15.6579 17.8267
±2.5635 ±3.1395 ±3.0063 ±2.0935 ±1.4272 ±1.4808

Pr 6.5488 8.4669 9.8869 11.1460 12.9414 15.8717
±2.5090 ±2.0734 ±1.7713 ±1.5153 ±1.8095 ±4.8464

Po 4.4578 6.6188 8.4059 10.0235 12.2254 16.0619
±2.6892 ±2.6555 ±2.4001 ±2.1643 ±2.1518 ±2.6234

chb05 SZ 7.4822 10.3704 13.7127 16.1397 17.6216 18.6036
±1.5232 ±1.5979 ±1.7393 ±1.7906 ±1.5899 ±1.5878

Pr 4.4955 6.0566 8.2006 10.5811 13.5692 15.3415
±1.7468 ±1.9404 ±1.3950 ±0.9618 ±1.1351 ±1.2584

Po 3.8382 4.8550 7.2079 10.1620 13.4400 16.1543
±1.8498 ±1.9213 ±1.5165 ±0.9982 ±1.1931 ±1.3207

chb08 SZ 5.1461 8.0370 9.8464 11.4802 14.5328 18.1211
±2.5616 ±2.4900 ±2.1613 ±1.4573 ±1.3318 ±1.5930

Pr 5.0728 8.1933 9.8271 10.3745 11.5928 14.0999
±1.7320 ±1.8753 ±1.6315 ±1.0427 ±0.9133 ±1.3089

Po 3.6598 6.6884 8.7140 10.3888 12.5549 15.0254
±4.1051 ±3.4106 ±2.8057 ±2.1327 ±1.4987 ±1.4438

chb09 SZ 8.5817 10.8286 14.2112 16.9356 18.4499 19.0741
±1.5432 ±1.3744 ±1.7586 ±1.6716 ±1.3911 ±7.5684

Pr 3.2773 6.7227 10.2232 12.0630 13.6581 14.6536
±2.5508 ±1.1438 ±0.9907 ±0.6813 ±1.2994 ±1.6843

Po 1.2433 4.1909 7.8570 10.3876 13.4543 17.8999
±2.2626 ±1.4220 ±1.0153 ±1.0744 ±1.5118 ±1.8689

chb10 SZ 7.6707 10.2179 13.1721 15.6550 17.5727 17.3363
±3.2603 ±2.4969 ±2.0693 ±2.0022 ±2.2325 ±8.3229

Pr 4.7488 7.2206 8.5943 9.6048 12.4542 15.4374
±2.4495 ±2.3524 ±2.1326 ±1.8392 ±1.4837 ±1.4495

Po 4.5996 6.6639 8.3200 9.4948 11.9262 15.7294
±4.1748 ±4.0700 ±3.4590 ±2.9585 ±2.5411 ±2.2504

chb13 SZ 3.8395 6.6823 8.8202 10.7626 13.7026 17.2294
±3.9457 ±3.1561 ±2.2190 ±1.3935 ±1.4292 ±1.4242

Pr 3.8632 6.6297 8.5787 10.3618 12.7589 14.7254
±3.5257 ±3.0752 ±2.3645 ±1.4723 ±1.4141 ±2.4477

Po 3.5740 6.4785 8.4499 10.4186 12.9909 15.2597
±3.3259 ±2.7703 ±2.0833 ±1.3236 ±1.4111 ±1.5976

chb14 SZ 1.4103 5.4052 7.1245 8.4113 9.2893 12.4497
±0.9324 ±0.8706 ±0.9527 ±1.4289 ±1.6622 ±2.1553

Pr -0.1081 4.1840 7.6330 10.7932 13.2712 15.9291
±1.3834 ±0.8909 ±1.0076 ±1.1977 ±1.2022 ±1.1348

Po 0.0721 4.2333 7.6250 10.8245 13.3803 15.9608
±1.5816 ±0.9645 ±0.9498 ±1.1625 ±1.1167 ±1.0589

chb16 SZ 7.6381 10.2524 12.0917 12.4086 12.8099 15.6339
±1.9693 ±1.4677 ±1.0787 ±1.2311 ±1.2756 ±1.6457

Pr 6.5017 9.0354 10.0736 10.1094 11.8267 15.1486
±2.8348 ±1.8989 ±1.4435 ±1.3242 ±1.7293 ±2.9055
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Table 2  (continued)
Subject Class Feature

!1 !2 !3 !4 !5 !6

Po 6.4623 8.9670 9.9779 10.0265 11.6523 15.0727
±2.8486 ±1.9430 ±1.4698 ±1.3488 ±1.7038 ±2.0498

chb20 SZ 8.5072 9.9786 11.3826 11.9010 12.5947 15.7773
±1.8207 ±1.4231 ±1.1572 ±1.2846 ±1.3902 ±1.6482

Pr 0.4535 4.8787 7.7156 9.4214 11.3773 13.9828
±0.8160 ±0.7171 ±0.6819 ±0.8185 ±0.9555 ±1.2480

Po 1.3325 5.1767 7.7903 9.4593 11.3899 13.9077
±1.9545 ±1.2828 ±0.8855 ±0.8129 ±0.8866 ±1.1633

chb22 SZ 7.5442 9.0416 10.6315 12.8188 15.4922 17.3781
±2.5117 ±1.8639 ±0.9496 ±0.7455 ±0.9696 ±1.0162

Pr 4.1816 6.5538 8.2137 9.5921 11.0114 13.3812
±2.3785 ±1.7431 ±1.2103 ±0.7063 ±0.8402 ±1.5822

Po 4.2253 6.6122 8.3653 9.7752 11.8681 14.4637
±3.7632 ±2.7824 ±1.9898 ±0.9327 ±0.9552 ±1.3435

chb23 SZ 11.0134 12.2340 12.8540 12.6699 14.4533 17.7460
±1.7954 ±1.5732 ±1.3631 ±1.0328 ±0.8681 ±1.1313

Pr 6.3472 8.8818 10.2033 10.5132 11.6496 14.7702
±2.3357 ±1.8823 ±1.5718 ±1.0520 ±1.1174 ±1.5334

Po 5.1976 7.6905 9.0974 9.8769 11.3606 14.5662
±2.7825 ±2.2764 ±1.7954 ±1.0073 ±1.0075 ±1.4255

Table 3  Results of one-way 
ANOVA using the wavelet-
based features

Subject Feature
!1 !2 !3 !4 !5 !6

chb01 0 0 0 0 0 0
(2151.83) (2089.45) (1482.91) (3116.24) (2886.07) (1633.33)

chb02 ≪ 0.0001 ≪ 0.0001 ≪ 0.0001 ≪ 0.0001 ≪ 0.0001 < 0.0001

(292.12) (333.18) (358.26) (371.38) (240.16) (19.14)
chb05 0 0 0 0 0 0

(995.05) (2028.19) (4552.60) (7592.90) (2967.20) (1499.17)
chb08 ≪ 0.0001 ≪ 0.0001 ≪ 0.0001 ≪ 0.0001 0 0

(207.51) (282.31) (229.87) (182.17) (2123.19) (2978.87)
chb09 0 0 0 0 0 0

(1343.46) (4708.45) (6337.20) (6689.72) (1537.83) (1428.09)
chb10 ≪ 0.0001 ≪ 0.0001 ≪ 0.0001 0 0 ≪ 0.0001

(161.78) (238.97) (579.79) (1293.33) (1452.77) (116.41)
chb13 < 0.0001 0.0034 < 0.0001 < 0.0001 ≪ 0.0001 ≪ 0.0001

(14.09) (5.68) (11.20) (20.29) (134.57) (424.05)
chb14 ≪ 0.0001 ≪ 0.0001 < 0.0001 ≪ 0.0001 0 ≪ 0.0001

(87.88) (123.49) (19.08) (294.14) (863.91) (699.64)
chb16 0.0084 < 0.0001 ≪ 0.0001 ≪ 0.0001 < 0.0001 0.0667

(4.78) (13.55) (61.42) (88.97) (27.77) (2.71)
chb20 0 0 0 0 ≪ 0.0001 ≪ 0.0001

(3551.56) (2881.03) (2647.23) (1157.04) (221.72) (305.09)
chb22 ≪ 0.0001 ≪ 0.0001 ≪ 0.0001 0 0 ≪ 0.0001

(119.00) (119.20) (226.38) (1476.23) (2391.63) (762.51)
chb23 0 0 0 0 0 0

(1068.48) (1102.86) (1235.99) (1591.51) (1608.61) (878.46)
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Performance of epileptic scalp EEG classifications

The products of sensitivity and specificity obtained from 
the scalp EEG classifications using the wavelet-based 
features, i.e., !1, !2, !3, !4, !5, and !6, are summarized in 
Table  4. The best performance for each classification is 
individually written in bold. The wavelet-based features 
!1, !2, !4, !5, and !6 are the quantitative features that pro-
vide the best classification performance in terms of prod-
uct of sensitivity and specificity. The products of sensitivity 

and specificity of the classification between scalp EEG 
epochs associated with SZ and NS classes, the classifica-
tion between scalp EEG epochs associated with SZ and Pr 
classes, and the classification between scalp EEG epochs 
associated with SZ and Po classes range between 35.67% 
and 94.08%, between 36.73% and 93.19%, and between 
39.94% and 94.68%. The best products of sensitivity 
and specificity for the classification between scalp EEG 
epochs associated with SZ and NS classes, the classifica-
tion between scalp EEG epochs associated with SZ and Pr 

Table 4  The product of 
sensitivity and specificity of 
epileptic seizure classification 
using the wavelet-based features

The best performance for each classification is individually written in bold

Subject Class. Feature
!1 !2 !3 !4 !5 !6

chb01 SZ-NS 72.55 49.63 53.02 90.16 94.08 60.58
SZ-Pr 85.30 82.91 86.21 86.70 93.15 79.78
SZ-Po 69.28 44.29 50.86 92.51 94.68 60.18

chb02 SZ-NS 38.31 44.84 47.35 43.31 59.58 40.06
SZ-Pr 31.85 43.96 48.77 43.68 63.46 46.92
SZ-Po 47.98 47.28 47.37 41.64 59.35 31.36

chb05 SZ-NS 43.91 76.31 89.70 93.89 51.64 68.79
SZ-Pr 46.57 80.86 89.96 91.57 54.50 76.95
SZ-Po 42.21 75.21 89.28 93.64 43.60 63.03

chb08 SZ-NS 15.58 24.20 25.91 25.88 51.94 76.07
SZ-Pr 24.65 25.89 24.35 44.08 79.55 81.06
SZ-Po 15.19 26.65 29.06 23.23 48.52 71.13

chb09 SZ-NS 86.37 89.14 87.63 63.84 63.77 58.00
SZ-Pr 81.39 85.58 81.35 43.05 42.16 67.59
SZ-Po 91.32 92.67 95.26 79.34 66.40 33.74

chb10 SZ-NS 43.95 43.03 56.65 84.47 43.85 47.72
SZ-Pr 43.78 33.31 48.58 85.76 29.96 41.52
SZ-Po 43.53 47.91 58.08 82.78 57.63 47.98

chb13 SZ-NS 25.63 25.23 21.19 14.63 24.07 35.67
SZ-Pr 25.14 18.18 20.12 13.91 24.70 36.73
SZ-Po 26.34 26.57 24.80 25.51 27.73 39.94

chb14 SZ-NS 1.33 0.00 37.82 64.76 86.62 76.10
SZ-Pr 1.99 16.18 38.68 65.54 85.49 75.57
SZ-Po 1.31 0.00 37.82 64.61 87.83 76.51

chb16 SZ-NS 39.02 27.76 12.67 57.42 8.47 26.94
SZ-Pr 33.95 29.12 10.92 59.15 8.42 27.48
SZ-Po 33.89 36.00 19.68 60.73 16.37 30.48

chb20 SZ-NS 87.17 60.48 48.91 68.92 57.21 56.69
SZ-Pr 91.82 62.44 53.58 69.29 57.61 54.85
SZ-Po 85.77 62.23 48.69 72.83 47.17 59.83

chb22 SZ-NS 59.85 51.84 35.74 91.48 93.19 54.77
SZ-Pr 61.56 61.36 73.36 92.64 95.59 58.75
SZ-Po 53.64 44.92 31.98 89.93 92.30 59.76

chb23 SZ-NS 79.30 73.61 64.48 51.98 55.13 63.35
SZ-Pr 78.63 71.67 63.15 51.42 55.68 62.89
SZ-Po 81.60 77.76 70.83 56.86 73.79 75.72
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classes, and the classification between scalp EEG epochs 
associated with SZ and Po classes are 94.08% (chb01), 
95.59% (chb22), and 94.68% (chb01), respectively.

The accuracy, the sensitivity, and the specificity cor-
responding to the best classification performances in 
terms of products of sensitivity and specificity shown 
in Table 4 are further shown in Table 5. The accuracies 
of the classification between scalp EEG epochs associ-
ated with SZ and NS classes, the classification between 
scalp EEG epochs associated with SZ and Pr classes, 

and the classification between scalp EEG epochs asso-
ciated with SZ and Po classes range between 86.41% 
and 99.21%, between 86.84% and 99.36%, and between 
83.52% and 97.76%. The sensitivities of the classifica-
tion between scalp EEG epochs associated with SZ and 
NS classes, the classification between scalp EEG epochs 
associated with SZ and Pr classes, and the classifica-
tion between scalp EEG epochs associated with SZ and 
Po classes range between 38.28% and 98.35%, between 
38.68% and 98.58%, and between 44.69% and 99.24%. 

Table 5  The best individual 
performance on epileptic 
seizure classification

Subject Class. Feature Accuracy (Ac) Sensitivity (Se) Specificity (Sp) Se × Sp

chb01 SZ-NS !5 97.28 96.67 97.31 94.08
SZ-Pr !5 96.18 96.91 96.11 93.15
SZ-Po !5 97.63 96.91 97.70 94.68

chb02 SZ-NS !5 88.72 66.26 89.92 59.58
SZ-Pr !5 86.84 71.78 88.41 63.46
SZ-Po !5 86.58 66.87 88.75 59.35

chb05 SZ-NS !4 96.30 97.61 96.19 93.89
SZ-Pr !4 95.25 96.32 95.07 91.57
SZ-Po !4 95.89 97.97 95.58 93.64

chb08 SZ-NS !6 88.29 85.84 88.62 76.07
SZ-Pr !6 90.83 88.72 91.36 81.06
SZ-Po !6 83.52 85.84 82.86 71.13

chb09 SZ-NS !2 94.17 94.68 94.15 89.14
SZ-Pr !2 90.75 94.68 90.39 85.58
SZ-Po !3 96.30 99.24 95.99 95.26

chb10 SZ-NS !4 86.41 98.35 85.88 84.47
SZ-Pr !4 87.89 98.58 86.99 85.76
SZ-Po !4 85.21 98.58 83.97 82.78

chb13 SZ-NS !6 91.48 38.28 93.18 35.67
SZ-Pr !6 91.46 38.68 94.97 36.73
SZ-Po !6 86.78 44.69 89.37 39.94

chb14 SZ-NS !5 95.10 91.03 95.15 86.62
SZ-Pr !5 93.84 91.03 93.91 85.49
SZ-Po !5 95.65 91.72 95.76 87.83

chb16 SZ-NS !4 93.82 61.11 93.95 57.42
SZ-Pr !4 93.70 62.96 93.95 59.15
SZ-Po !4 93.47 64.81 93.69 60.73

chb20 SZ-NS !1 97.45 89.26 97.66 87.17
SZ-Pr !1 99.17 92.22 99.56 91.82
SZ-Po !1 95.78 89.26 96.09 85.77

chb22 SZ-NS !5 99.01 93.85 99.30 93.19
SZ-Pr !5 99.36 95.90 99.68 95.59
SZ-Po !5 97.76 93.85 98.36 92.30

chb23 SZ-NS !1 90.89 87.10 91.05 79.30
SZ-Pr !1 90.03 87.10 90.28 78.63
SZ-Po !1 90.77 89.83 90.84 81.60

Average SZ-NS 93.24 83.34 93.53 78.05
SZ-Pr 92.94 84.57 93.39 79.00
SZ-Po 92.11 84.97 92.41 78.75
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The specificities of the classification between scalp EEG 
epochs associated with SZ and NS classes, the classifi-
cation between scalp EEG epochs associated with SZ 
and Pr classes, and the classification between scalp EEG 
epochs associated with SZ and Po classes range between 
35.67% and 94.08%, between 36.73% and 95.59%, and 
between 39.94% and 95.26%.

Discussion

The wavelet-based features !5 and !4 are the two quantita-
tive features that provide the best performance of epilep-
tic seizure classification in terms of the product of sensi-
tivity and specificity in most subjects. The wavelet-based 
features !5 and !4 correspond to the ! (4–8-Hz spectral 
subband) and ! (8–16-Hz spectral subband) bands. The 
feature !3 corresponding to the ! (16–32-Hz spectral sub-
band) band is the only wavelet-based feature that does not 
provide the best performance of epileptic seizure classifi-
cation. The best performance on classification between 
scalp EEG epochs associated with epileptic seizure event 
and those associated with pre-ictal state is obtained in the 
subject chb22 with the product of sensitivity and specificity 
of 95.59%. The best performance on classification between 
scalp EEG epochs associated with epileptic seizure event 
and those associated with post-ictal state is obtained in the 
subject chb09 with the product of sensitivity and specificity 
of 95.26%. The best performance on classification between 
scalp EEG epochs associated with epileptic seizure event 
and those associated with non-seizure period is obtained in 
the subject chb01 with the product of sensitivity and speci-
ficity of 94.08%.

The average accuracy and specificity of all three clas-
sifications are higher than 90%. In general, the accuracy 
of epileptic seizure classifications correlates with the cor-
responding specificity because the number of scalp EEG 
epochs associated with non-seizure period, i.e., pre-ictal 
or post-ictal states, dominates the number of scalp EEG 
epochs associated with epileptic seizure event. The average 
sensitivity of all three classifications are higher than 80%. 
Interestingly, the average performance on epileptic seizure 
classifications between scalp EEG epochs associated with 
epileptic seizure event and those associated with pre-ictal 
state is comparable to the average performance on epileptic 
seizure classifications between scalp EEG epochs associ-
ated with epileptic seizure event and those associated with 
post-ictal state. However, there are some significant differ-
ences between those two classifications in some subjects.

To provide some general picture on the performance 
on epileptic seizure classifications obtained using single 
wavelet-based features of scalp EEGs, the performances 

on epileptic seizure classifications and detections examined 
using the same source of epileptic scalp EEG data, i.e., the 
CHB-MIT Scalp EEG Database, are summarized as fol-
lows. The sensitivity of epileptic seizure classification and 
detection reported in literature ranges between 95.2% and 
71.3% (95.2% [13], 94.91% [8], 87.3% [11], 71.32% [7]) 
while the specificity of epileptic seizure classification and 
detection was reported to be higher than 93% [9] and 79.7% 
[7]. In addition, the false detection rate ranges between 0.11 
and 1.53 per hour (0.11 per hour [10], 0.59 per hour [13], 
0.83 per hour [12, 14], 1.52 per hour [15], 1.53 per hour 
[8]). The latency of seizure detection ranges between 3 and 
9.3  s (3 [12, 14], 6.43 [13], 7.8 [10], 9.3 [15]). However, 
it needs to be remarked that the experimental setups vary 
from study to study.

Conclusions

In this study, the logarithm of variance of detail and 
approximation coefficients of epochs of single-channel 
scalp EEGs are used as quantitative features for patient-
dependent based epileptic seizure classification. The 
performance on patient-dependent based epileptic sei-
zure classification using single wavelet-based features in 
a group of children subjects with age ranging between 
2 and 11 years old are examined. Rather than aiming to 
achieve the best classification performance using com-
putationally complicated algorithms as other studies, 
this study aims to provide a baseline of performance on 
patient-dependent based epileptic seizure classification, 
in particular, using single wavelet-based feature of sin-
gle-channel scalp EEGs with the thresholding technique. 
The computational results evaluated using 4-fold cross 
validations show that an excellent performance on epi-
leptic seizure classification can be obtained using only a 
single wavelet-based feature !k in a number of subjects. 
Such promising results suggest that a single wavelet-
based feature !k of single-channel scalp EEGs can be fur-
ther applied for epileptic seizure detection.
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