บทคัดย่อ

รหัสโครงการ: RSA5880037

ชื่อโครงการ: Comparative studies of Quantum and Classical Magnetism in Low-Dimensional

Systems by Means of Neutron Scattering

ชื่อนักวิจัย และสถาบัน: กิตติวิทย์ มาแทน คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

Email address: kittiwit.mat@mahidol.edu

ระยะเวลาโครงการ: 3 ปี

การวัดการกระเจิงของนิวตรอนแบบไม่ยืดหยุ่นและการวัดสภาพความเป็นแม่เหล็กที่สนามแม่เหล็ก ความเข้มสูงถูกใช้เพื่อศึกษาพลศาสตร์สปินและสมบัติเชิงแม่เหล็กของสารประกอบแอนทีเฟอโรแมกเนท α -Cu₂V₂O₇ 0จากการวัดสภาพความเป็นแม่เหล็กภายใต้สนามแม่เหล็กแบบพัลส์ที่มีความเข้มสูงสุด 56 T ทำให้ ค้นพบการเปลี่ยนเฟสเชิงแม่เหล็กที่สนามแม่เหล็กวิกฤต H_{c1} =6.5 T and H_{c2} = 18.0 T ที่สนามแม่เหล็กวิกฤต H_{c1} เกิดการเปลี่ยนเฟสแบบ spin-flop ในขณะที่ที่สนามแม่เหล็กวิกฤต H_{c2} เกิดการเปลี่ยนเฟสแบบ spin-flip การคำนวณ DFT แสดงให้เห็นว่าอันตรกิริยาที่มีค่ามากที่สุด คืออันตรกิริยาระหว่างสปินที่ห่างกันเป็นลำดับที่ 3 และจากการวัดการกระเจิงของนิวตรอนแบบไม่ยืดหยุ่น ทำให้ทางกลุ่มค้นพบ nonreciprocal magnons เป็น ครั้งแรก nonreciproal magnons นี้เป็นผลมาจากการแข่งขันกันระหว่าง anisotropic exchange interaction และ antisymmetric Dzyalonshinskii-Moriya interaction และการเกิด nonreciprocal magnons ทำให้ความเร็วเฟสของคลื่นสปินที่เกิดจากการหมุนของสปินในทิศที่ตรงกันข้ามกันมีค่าไม่เท่ากัน ส่งผลให้เกิดปรากฏการณ์ magnonic Faraday effect และการที่สมมาตร spatial inversion และ time reversal ของระบบสูญเสียไปจากโครงสร้างอะตอมที่ขาดสมมาตร inversion และการใส่สนามแม่เหล็ก ทำให้ การเกิดการเคลื่อนของ dispersion ในแบบที่ไม่สมมาตร ซึ่งสามารถวัดได้เป็นครั้งแรกโดยใช้การกระเจิงของ นิวตรอน

คำหลัก: strongly correlated electrons, neutron scattering, quantum spin state, spin-wave excitations

Abstract

Project Code: RSA5880037

Project Title: Comparative studies of Quantum and Classical Magnetism in Low-Dimensional

Systems by Means of Neutron Scattering

Investigator: Kittiwit Matan, Faculty of Science, Mahidol University

Email address: kittiwit.mat@mahidol.edu

Project Period: 3 years

Inelastic neutron scattering and high-field magnetization measurements were performed to study spin dynamics and magnetic phase diagram of the spin-1/2 antiferromagnet α -Cu₂V₂O₇. The magnetization measured in pulsed fields of up to 56 T reveals two distinct magnetic transition at H_{c1} =6.5 T and H_{c2} = 18.0 T. The former is a spinflop transition typical for a collinear antiferromagnet and the latter is a spin-flip transition of canted moments. Density functional theory, which was employed to compute the exchange interactions, shows that the dominant exchange interaction is between the third nearestneighbor spins. Via the inelastic neutron scattering measurements, for the first time, nonreciprocal magnons were experimentally measured in an antiferromagnet. nonreciprocal magnons are caused by the incompatibility between anisotropic exchange and antisymmetric Dzyalonshinskii-Moriya interactions, which arise from broken symmetry. The nonrecipocity introduced the difference in the phase velocity of the counterrotating magnon modes, causing the opposite spontaneous magnonic Faraday rotation of the left- and rightpropagating spin waves. The breaking of spatial inversion and time reversal symmetry is revealed as a magnetic-field-induced asymmetric energy shift.

Keywords: strongly correlated electrons, neutron scattering, non-reciprocal magnons, spinwave excitations