

รายงานวิจัยฉบับสมบูรณ์

โครงการ การเตรียมไตรโมเดลพอรัสคาร์บอนซีโรเจลจากรีซอร์ซีนอล ฟอร์มัลดีไฮด์และคอตตอนไฟเบอร์สำหรับตัวเก็บประจุไฟฟ้าสองชั้น

โดย นายเกรียงศักดิ์ ใกรวัฒนวงศ์

31 กรกฎาคม 2563

รายงานวิจัยฉบับสมบูรณ์

โครงการ การเตรียมไตรโมเดลพอรัสคาร์บอนซีโรเจลจากรีซอร์ซีนอล ฟอร์มัลดีไฮด์และคอตตอนไฟเบอร์สำหรับตัวเก็บประจุไฟฟ้าสองชั้น

รศ.ดร.เกรียงศักดิ์ ใกรวัฒนวงศ์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) และสถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว.
และสถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง
ไม่จำเป็นต้องเห็นด้วยเสมอไป)

Project Code: RSA5980004

Project Title: Preparation of trimodal porous carbon xerogels from resorcinol, formaldehyde and

cotton fibers for electric double layer capacitors

Investigator: Assoc.Prof.Dr. Kriangsak Kraiwattanawong

King Mongkut's Institute of Technology Ladkrabang

E-mail Address : kriangsak.kr@kmitl.ac.th

Project Period: 3 years

Abstract

This research is to investigate the influence of trimodal porous carbon xerogels (TCXs) as carbon electrode for an electric double layer capacitor. The structural and porous properties of TCXs were studied by synthesis conditions and drying methods. Resorcinol to water (R/W) ratios and resorcinol to catalyst (R/C) ratio were changed from 0.25 g/cm³ to 0.5 g/cm³ and from 200 mol/mol to 300 mol/mol. Cotton fibers to resorcinol-formaldehyde (CF/RF) ratio was changed from 0.00 g/g to 0.25 g/g. The CF/RF composite hydrogels were prepared under the mentioned synthesis conditions. The composite hydrogels were cured at 90 °C for a week, cut as thin disks, CF-hydrolyzed by H₂SO₄, exchanged by tertiary butyl alcohol, dried by evaporation or vacuum drying, and carbonized at 1000 °C to obtain TCXs. TCXs were characterized by a nitrogen adsorption apparatus, a scanning electron microscope, a mercury porosimeter, a Raman spectrometer, an X-ray diffractometer, and a potentiostat/galvanostat equipment. The evaporation drying gave scaffold carbon xerogels as macropore wall prohibiting the ion transport, whereas the vacuum drying allowed sponge-like carbon xerogels as opened microporous wall permitting the ion transport. Sponge-like carbon xerogels promoted the capacitive performance of TCXs very well in every synthesis condition. TCXs possessing sponge-like carbon xerogels showed increased capacitance values from 137 F/g to 317 F/g at 200 mA/g in a three-electrode system as a result of macropore-assisted electrolyte transfer in aqueous electrolytes. In the future, the improvement of TCXs is very attractive as the carbon electrode for the supercapacitor to increase the capacitive performance.

Keywords: Templated carbon xerogels; Electric double layer; Macropore-assisted electrolyte

transfer; Vacuum drying; Aqueous electrolyte

รหัสโครงการ : RSA5980004

ชื่อโครงการ : การเตรียมไตรโมเดลพอรัสคาร์บอนซีโรเจลจากรีซอร์ซีนอล ฟอร์มัลดีไฮด์และคอตตอนไฟ

เบอร์สำหรับตัวเก็บประจุไฟฟ้าสองชั้น

นักวิจัย: รศ.ดร.เกรียงศักดิ์ ใกรวัฒนวงศ์

สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

E-mail Address: kriangsak.kr@kmitl.ac.th

ระยะเวลาโครงการ : 3 ปี

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาอิทธิพลของไตรโมดาลพอรัสคาร์บอนซีโรเจล (Trimodal porous carbon xerogels; TCXs) เป็นขั้วไฟฟ้าคาร์บอนสำหรับตัวเก็บประจุสองชั้น โครงสร้างและความพรุนของ TCXs ได้ศึกษาจากสภาวะการสังเคราะห์และวิธีการทำให้แห้ง อัตราส่วนรีซอร์ซินอล (Resorcinol; R) ต่อน้ำ (R/W) และอัตราส่วนรีซอร์ซินอลต่อตัวเร่งปฏิกิริยา (R/C) เปลี่ยนจาก 0.25 g/cm³ เป็น 0.5 g/cm³ และจาก 200 mol/mol เป็น 300 mol/mol อัตราส่วนฝ้ายต่อรีซอร์ซินอลฟอร์มัลดีไฮด์ (CF/RF) เปลี่ยนจาก 0.00 g/g ถึง 0.25 g/g CF/RF คอมโพสิตไฮโดรเจลนี้เตรียมขึ้นภายใต้เงื่อนไขการสังเคราะห์ดังกล่าว คอมโพสิต ไฮโดรเจลได้รับการบุ่มที่ 90 องศาเซลเซียสเป็นเวลาหนึ่งสัปดาห์ ตัดเป็นแผ่นบาง ไฮโดรไลซ์ฝ้ายโดย แลกเปลี่ยนตัวทำละลายโดยบิวทิลแอลกอฮอล์ ทำแห้งด้วยการระเหยหรือการทำให้แห้งด้วย H₂SO₄ ัสญญากาศ และเผาที่อุณหภูมิ 1000 องศาเซลเซียสเพื่อรับ TCXs TCXs ที่เตรียมได้ถูกทำไปวิเคราะห์ด้วย เครื่องดูดซับในโตรเจน กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด เครื่องดูดซับปรอท รามานสเปคโตมิเตอร์ เครื่องวิเคราะห์การเลี้ยวเบนรังสีเอกซ์ และเครื่องวิเคราะห์ทางเคมีไฟฟ้า การทำให้แห้งด้วยการระเหยให้ คาร์บอนซีโรเจลแบบชั้นซึ่งทำหน้าที่เป็นผนังมาโครพอร์โดยยับยั้งการถ่ายโอนไอออน ในขณะที่การอบแห้ง แบบสุญญากาศให้คาร์บอนซีโรเจลคล้ายฟองน้ำซึ่งทำหน้าที่เป็นผนังรูพรุนมาโครพอร์แบบเปิดโดยยอมให้มี การถ่ายโอนไอออน คาร์บอนซีโรเจลคล้ายฟองน้ำช่วยเพิ่มประสิทธิภาพการทำงานของ TCX ในการกักเก็บ ประจุได้ดีมากในทุกสภาวะการสังเคราะห์ TCXs ที่มีคาร์บอนซีโรเจลคล้ายฟองน้ำมีค่าการเก็บประจุที่ เพิ่มขึ้นจาก 137 F/g เป็น 317 F/g ที่ 200 mA/g ในระบบสามขั้วไฟฟ้าเนื่องจากมีมาโครพอร์ที่ช่วยในการ ถ่ายโอนอิเล็กโทรไลต์ ในอนาคต การปรับปรุง TCXs นั้นน่าสนใจมากในฐานะขั้วไฟฟ้าคาร์บอนสำหรับตัว เก็บประจุยิ่งยวดเพื่อเพิ่มประสิทธิภาพของตัวเก็บประจุ

คำหลัก : Templated carbon xerogels; Electric double layer; Macropore-assisted electrolyte transfer; Vacuum drying; Aqueous electrolyte

บทสรุปผู้บริหาร

รหัสโครงการ : RSA5980004

ชื่อโครงการ: การเตรียมไตรโมเดลพอรัสคาร์บอนซีโรเจลจากรีซอร์ซีนอล ฟอร์มัลดีไฮด์และคอตตอนไฟ

เบอร์สำหรับตัวเก็บประจุไฟฟ้าสองชั้น

นักวิจัย: รศ.ดร.เกรียงศักดิ์ ใกรวัฒนวงศ์

สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

ปีที่พิมพ์: 2563

แหล่งทุน: สกว และ สจล.

งานวิจัยนี้ต้องการพัฒนาวัสดุคาร์บอนที่มีรูพรุน เพื่อนำไปใช้เป็นขั้วไฟฟ้าคาร์บอนในอุปกรณ์กัก เก็บพลังงานชนิดต่างๆ โดยศึกษาอิทธิพลของรูพรุนของไตรโมดาลพอรัสคาร์บอนซีโรเจล (Trimodal porous carbon xerogels; TCXs) โดยอาศัยเทคนิคการสังเคราะห์แบบ Hard templating ทำให้ได้รูพรุนขนาดมาโค รพอร์ เมโซพอร์ และไมโครพอร์ จากนั้นจึงนำ TCXs มาวิเคราะห์คุณสมบัติทางกายภาพและคุณสมบัติทาง เคมีไฟฟ้า จากผลการวิจัย ทำให้พบว่า TCXs ที่มีคาร์บอนซีโรเจลคล้ายฟองน้ำมีค่าการเก็บประจุที่เพิ่มขึ้น จาก 137 F/g เป็น 317 F/g ที่ 200 mA/g ในระบบสามขั้วไฟฟ้าเนื่องจากมีมาโครพอร์ที่ช่วยในการถ่ายโอนอิ เล็กโทรไลต์

TCXs ที่มีรูพรุนทั้งมาโครพอร์ เมโซพอร์ และไมโครพอร์ช่วยลดความต้านทานในการถ่ายโอน สารละลายอิเล็กโทรไลต์ โดยเฉพาะเมื่อมีการถ่ายโอนอิเล็กโทรไลต์ที่รวดเร็ว ซึ่งส่งผลดีต่อการใช้งานที่มี ความต้องการกักเก็บและปลอดปล่อยสารละลายอิเล็กโทรไลต์อย่างรวดเร็วด้วยเช่นกัน ตัวเก็บประจุที่ใช้ TCXs นี้ จึงมี Power density และ Energy density เพิ่มขึ้น และเพิ่มประสิทธิภาพของตัวเก็บประจุได้

นอกจากการลดความต้านทานในการถ่ายโอนสารละลายอิเล็กโทรไลต์แล้ว การเพิ่มความสามารถใน การเก็บประจุของขั้วไฟฟ้าคาร์บอนก็เป็นสิ่งที่มีความสำคัญ ในอนาคต การปรับปรุง TCXs นั้นน่าสนใจมาก ในฐานะขั้วไฟฟ้าคาร์บอนสำหรับตัวเก็บประจุยิ่งยวดเพื่อเพิ่มประสิทธิภาพของตัวเก็บประจุ และสามารถใช้ งานได้หลากหลายมากขึ้น

า ความสำคัญและที่มาของปัญหาที่ทำการวิจัย

ขั้วไฟฟ้าคาร์บอนที่ใช้สำหรับตัวเก็บประจุสองชั้นไฟฟ้า (EDLC) จะต้องมีพื้นที่ผิวสูงก่อให้เกิดการ สะสมประจุบนพื้นผิว และรูพรุนขนาดเมโซพอร์หรือมาโครพอร์ที่ส่งเสริมการถ่ายโอนอิเล็กโทรไลต์ ดังนั้น ขนาดรูพรุนที่เหมาะสม (เมโซพอร์และ/หรือมาโครพอร์) ช่วยเพิ่ม (i) การใช้งานของตัวเก็บประจุที่อัตราการ ปลดปล่อยประจุสูงและ (ii) การใช้อิเล็กโทรไลต์ขนาดใหญ่ขึ้นสำหรับแรงดันไฟฟ้าที่สูงขึ้น สารละลายอิเล็กโทรไลต์ที่ใช้น้ำเป็นตัวทำละลายจะใช้สำหรับ EDLC น้อยกว่า 1 โวลต์ แต่อิเล็กโทรไลต์อินทรีย์ (สูงถึง 2.5 โวลต์) และของเหลวไอออนิก (มากกว่า 3 โวลต์) สามารถใช้กับตัวเก็บประจุที่แรงดันสูงต้องการขนาดเมโซ พอร์และ/หรือมาโครพอร์ที่เหมาะสม IUPAC ได้จำแนกขนาดรูพรุน คือ ไมโครพอร์ (เส้นผ่านศูนย์กลาง <2 นาโนเมตร), เมโซพอร์ (เส้นผ่านศูนย์กลาง 2-50 นาโนเมตร) และมาโครพอร์ (เส้นผ่านศูนย์กลาง > 50 นาโนเมตร) คาร์บอนกัมมันต์เป็นวัสดุที่มีรูพรุนที่ใช้สำหรับ EDLC แต่มีเพียงไมโครพอร์และมาโครพอร์ คาร์บอนกัมมันต์บางชนิดที่มีเมโซพอร์แต่มีปริมาณเมโซพอร์เพียงเล็กน้อยและไม่สามารถควบคุมขนาดเมโซพอร์ได้ เนื่องจากสารตั้งต้นเป็นวัสดุทางธรรมชาติซึ่งมีรูพรุนขนาดใหญ่ ยิ่งไปกว่านั้น สารตั้งดันจาก ธรรมชาติยังมีความไม่สม่ำเสมอ ทำให้ยากต่อการควบคุมขนาดรูพรุน

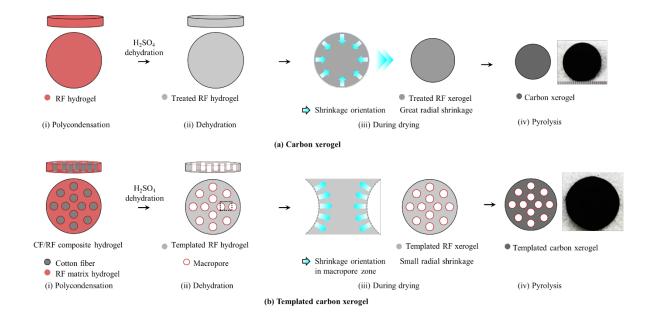
คาร์บอนเจลที่เตรียมโดยกระบวนการพอลีคอนเดนเซชันเป็นวัสดุคาร์บอนที่มีรูพรุนซึ่งสมบัติของรู พรุนของเจลคาร์บอนจะถูกควบคุมได้ดีกว่าคาร์บอนกัมมันต์ นี่เป็นเพราะเจลคาร์บอนถูกเตรียมโดยปฏิกิริยา ของโมเลกุลขนาดเล็ก (โดยทั่วไปจากรีซอร์ซินอลและฟอร์มัลดีไฮด์) กลายเป็นโครงสร้างของแข็งที่มีรูพรุน คาร์บอนเจลที่มีความพรุนสูงมักจะมีไมโครพอร์และเมโซพอร์ โดยมักจะไม่พบมาโครพอร์ ดังนั้น งานวิจัยนี้ จะเป็นการเตรียมไตรโมดาลพอรัสคาร์บอนซีโรเจล (Trimodal porous carbon xerogels; TCXs) คาร์บอน เจลที่มีรูพรุนขนาดไมโครพอร์ เมโซพอร์ และมาโครพอร์ เพื่อใช้เป็นขั้วไฟฟ้าคาร์บอนสำหรับ EDLC และ การใช้งานอื่นๆ ในอุตสาหกรรมเคมีและปิโตรเคมี

2. วัตถุประสงค์

- 1. เพื่อสังเคราะห์ TCXs โดยการกำจัดฝ้าย (Cotton fibers; CFs) จากคอมโพสิตเจล และทำให้แห้งโดยการ อบแห้งแบบสุญญากาศหรือการระเหย
- 2. เพื่อศึกษาโครงสร้างรูพรุนและคุณสมบัติรูพรุนของ TCXs
- 3. เพื่อศึกษาประสิทธิภาพในการเก็บประจุของ TCXs
- 4. เพื่อศึกษาหาปริมาณ CF ที่เหมาะสมที่เติมลงในคอมโพสิตเจล เพื่อส่งเสริมการถ่ายโอนอิเล็กโทรไลต์
- 5. เพื่อเลือกวิธีการอบแห้งสำหรับการเตรียม TCXs ในการใช้งานเป็นขั้วไฟฟ้าคาร์บอน

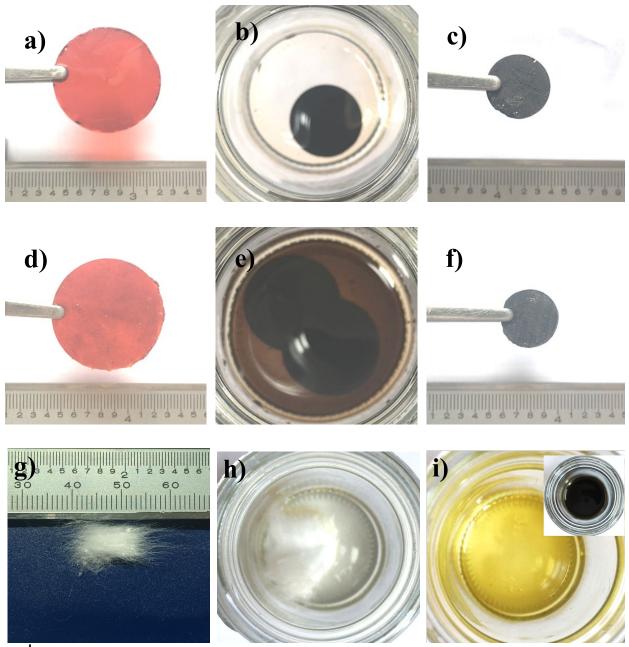
3. วิธีการทดลอง

3.1 การสังเคราะห์ CF/RF คอมโพสิตไฮโดรเจล และ TCXs


TCXs สามารถสังเคราะห์ได้โดยการกำจัด CFs ออกจาก CF/RF คอมโพสิตไฮโดรเจล แผนผังของ การเตรียม TCXs แสดงในรูปที่ 1 [1] และแสดงลักษณะของการเปลี่ยนแปลงของ TCXs ดังรูปที่ 2 สารตั้งต้น ์ที่ใช้มีดังนี้ คือ รีซอร์ซินอล (Sigma-Aldrich Inc. เกรดวิเคราะห์, 99 wt%), ฟอร์มัลดีไฮด์ (Labscan Asia Co. . Ltd. เกรดวิเคราะห์ 35-40 wt% ใน 4-12 wt% เมทานอล). โซเดียมคาร์บอเนต (C) (Sigma-Aldrich Inc. เกรดวิเคราะห์, 99.8%) เป็นตัวเร่งปฏิกิริยาพื้นฐาน เส้นใยฝ้าย (CFs) และน้ำกลั่น (W) สารละลายรีซอร์ ซินอลฟอร์มัลดีไฮด์ (RF sols) ถูกเตรียมภายใต้สัดส่วนการสังเคราะห์และวิธีการทำให้แห้งตามที่รายงานไว้ ในตารางที่ 1 [1] และตารางที่ 2 [2] โดยชื่อตัวอย่างจะกำหนดตามผลงานวิจัยที่ได้รับการตีพิมพ์ไว้แล้ว RF sols ถูกเทลงในขวดแก้วสำหรับอัตราส่วนโดยมวล CF/RF ที่ 0.00 g/g เป็นตัวอย่างเปล่าดังแสดงในรูปที่ 1 (a) และ 0.20 g/g เป็นตัวอย่างเปรียบเทียบดังแสดงในรูปที่ 1 (b) อัตราส่วนโดยโมลาร์ R/F ถูกกำหนดให้ คงที่ที่ 0.5 mol/mol อัตราส่วนโดยโมลาร์ R/C เปลี่ยนที่ 200 และ 300 mol/mol และความเข้มขันของมวล R/W ก็แปรผันที่ 0.25 g/cm³ และ 0.50 g/cm³ ชื่อตัวอย่างของ TCXs ได้รับการระบุไว้ในตารางที่ 2 TCXx (โดยที่ x คือ 1, 2 หรือ 3 ขึ้นอยู่กับสูตร) ถูกกำหนดให้เป็นปริมาณคาร์บอนซีโรเจลที่เตรียมจากอัตราส่วน R/C และ R/W ที่แตกต่างกัน การระเหยและการทำแห้งแบบสุญญากาศนั้นได้รับกำหนดเป็น 'E' และ 'V' ตามลำดับ ตัวเลขสุดท้าย (0 หรือ 20) หมายถึงเปอร์เซ็นต์โดยมวล CF ในแต่ละ CF/RF คอมโพสิตไฮโดร เจล สารผสมดังกล่าวจะแข็งตัวกลายเป็น CF/RF คอมโพสิตไฮโดรเจล ที่อุณหภูมิห้อง จากนั้น จะบ่มที่ 50 องศาเซลเซียสเป็นเวลา 1 วันและที่ 90 องศาเซลเซียสเป็นเวลาหนึ่งสัปดาห์

ตารางที่ 1 ระบบการตั้งชื่อ เงื่อนไขการสังเคราะห์ ผลผลิตคาร์บอนและการหดตัวในแนวรัศมีของเทมเพลต คาร์บอนซีโรเจล [2]

Sample	CF/RF	R/W	Yield	$\Delta r_{\text{dry}} r_{\text{wet}}$	$\Delta r_{\sf carbon} r_{\sf wet}$
	(g/g)	(g/cm³)	(%)	(%)	(%)
TCX1_0	0.00	0.25	48.82	27.58	48.95
TCX1_5	0.05	0.25	48.90	28.32	48.42
TCX1_15	0.15	0.25	48.81	27.31	48.05
TCX1_25	0.25	0.25	47.60	24.89	46.47
TCX2_0	0.00	0.50	47.76	8.21	36.31
TCX2_5	0.05	0.50	47.77	9.53	35.05
TCX2_15	0.15	0.50	45.80	9.63	36.21
TCX2_25	0.25	0.50	46.21	6.16	34.90


ตารางที่ 2 ระบบการตั้งชื่อ เงื่อนไขการสังเคราะห์ ผลผลิตคาร์บอนและการหดตัวในแนวรัศมีของเทมเพลต คาร์บอนซีโรเจล [1]

Sample	CF/RF	R/W	R/C	Burn-off	$\Delta r_{\text{dry}} r_{\text{wet}}$	$\Delta r_{\text{carbon}} r_{\text{wet}}$
	(g/g)	(g/cm³)	(mol/mol)	(%)	(%)	(%)
TCX1E0	0.00	0.50	200	52.24	8.21	36.32
TCX1E20	0.20	0.50	200	54.15	8.11	34.89
TCX1V0	0.00	0.50	200	50.64	6.79	35.89
TCX1V20	0.20	0.50	200	51.64	4.68	33.95
TCX2E0	0.00	0.25	200	51.18	27.58	48.95
TCX2E20	0.20	0.25	200	51.03	27.84	47.84
TCX2V0	0.00	0.25	200	51.01	22.74	45.11
TCX2V20	0.20	0.25	200	51.25	8.58	35.53
TCX3E0	0.00	0.25	300	51.59	26.37	46.32
TCX3E20	0.20	0.25	300	52.64	21.58	42.84
TCX3V0	0.00	0.25	300	50.54	9.16	34.74
TCX3V20	0.20	0.25	300	50.77	7.26	32.63

Schematic diagram

ร**ูปที่ 1** แผนผังการเตรียม TCX: a) carbon xerogel ที่ไม่มีการใช้ CF และ b) carbon xerogel ที่มี templated พร้อมการใช้ CF [1]

ร**ูปที่ 2** ภาพออพติคอลของ TCX1_0 precursor (RF hydrogel), TCX1_5 precursor (CF/RF composite hydrogel) ที่มีอัตราส่วน CF/RF ที่ 0.05 g/g และ CFs: a) RF hydrogel; b) RF hydrogel ที่ไฮโดรไลซ์ด้วย H_2SO_4 c) TCX1_0; d) CF/RF คอมโพสิตไฮโดรเจล e) RF xerogel ไฮโดรไลซ์ด้วย H_2SO_4 f) TCX1_5; g) CFs และ h) CFs แช่ใน H_2SO_4 โดยฉับพลันและ i) CFs ทำปฏิกิริยากับ H_2SO_4 ภายใน 1 นาทีและ 90 นาที (ภาพเล็ก) [2]

CF/RF คอมโพสิตไฮโดรเจลถูกตัดเป็นแผ่นบางๆ (ความหนาประมาณ 1 มม.) แล้วแช่ในน้ำกลั่น CFs ใน CF/RF คอมโพสิตไฮโดรเจลจะถูกทำให้ไฮโดรไลซ์โดย 98% H₂SO₄ (Qrec Chemical Co. , Ltd. เกรดวิเคราะห์ 98%) เป็นเวลา 12 ชั่วโมงที่ 50 องศาเซลเซียสเพื่อให้กลายเป็น RF เทมเพลตไฮโดรเจล จากนั้น นำ RF เทมเพลตไฮโดรเจลมาล้างด้วยน้ำกลั่นหลายครั้งก่อนจะทำการแลกเปลี่ยนตัวทำละลายกับ บิวทิลแอลกอฮอร์ (TBA) ที่อุณหภูมิ 50 องศาเซลเซียสเป็นเวลา 1 วันและต่อมาถูกแทนที่ด้วย TBA ใหม่ทุก วันจำนวน 5 ครั้ง เทมเพลตเจลจะถูกทำให้แห้งโดยใช้วิธีการอบแห้งด้วยการระเหยในเตาอบที่อุณหภูมิ 50 องศาเซลเซียสเป็นเวลา 2 วัน หรืออบแห้งสุญญากาศที่อุณหภูมิห้องเป็นเวลา 1 วัน แล้วจึงนำตัวอย่างไปทำการคาร์บอไนเซชันในเครื่องปฏิกรณ์ควอตซ์ด้วยอัตราการไหลของในโตรเจนที่ 200 cm³/min โดยอุณหภูมิ เพิ่มขึ้นจากอุณหภูมิห้องเป็น 250 องศาเซลเซียสในอัตรา 250 องศาเซลเซียส/ชั่วโมง จากนั้น รักษาอุณหภูมิ ใว้ที่ 250 องศาเซลเซียสเป็นเวลา 2 ชั่วโมง จากนั้น อุณหภูมิจะเพิ่มขึ้นอีกครั้งเป็น 1,000 องศาเซลเซียสที่ 250 องศาเซลเซียสต่อชั่วโมง และรักษาอุณหภูมิไว้ที่ 1,000 องศาเซลเซียสเป็นเวลา 4 ชั่วโมงก่อนที่อุณหภูมิจะถูกทำให้เย็นลงในท่อควอทซ์

2.2 การวิเคราะห์คุณสมบัติ

TCXs จะถูกนำมาวิเคราะห์ด้วยเครื่องมือวิเคราะห์ต่าง ๆ ดังนี้ การดูดซับและการคายซับ N₂ ที่ -196 องศาเซลเซียสโดยเครื่องมือการดูดซับแก๊สไนโตรเจน (BEL Japan Inc. BELSORP-mini) เพื่อหาค่าพื้นที่ผิว จำเพาะ (S_{BET}) โดยวิธี Brunauer-Emmett-Teller (BET) [3] การกระจายของรูพรุนขนาดเมโซพอร์ ปริมาตร เมโซพอร์ (V_{mes}) และรัศมีของเมโซพอร์ (r_p) โดยวิธี Barrett-Joyner-Halenda (BJH) [4] รัศมีสูงสุดของรัศมี เมโซพอร์ (r_{mes, peak}) ปริมาตรไมโครพอร์ (V_{mic}) ถูกประเมินโดยวิธี Dubinin-Radushkevich [5] และพื้นที่ผิว ไมโครพอร์ (S_{mic}) คำนวณโดยวิธี t-plot [6] โครงสร้างมาโครพอร์ถูกวิเคราะห์โดยเครื่องดูดซับปรอท (Micromeritics, MicroActive AutoPore V9600) โครงสร้างของ TCXs ถูกตรวจสอบด้วยกล้องจุลทรรศน์ อิเล็กตรอนแบบส่องกราด (SEM) (FEI Company, QUANTA 250) TCXs ถูกเคลือบด้วยแพลตตินัมพลทินัม เพื่อส่งเสริมการนำไฟฟ้าของอิเล็กตรอน TCXs ยังถูกวิเคราะห์โครงสร้างด้วย X-ray diffractometer (XRD, Rigaku, SmartLab X-ray Diffractometer) และ Raman สเปกโตรสโคป (Thermo Scientific, DXR SmartRaman Spectrometer)

2.3 การวิเคราะห์ทางเคมีไฟฟ้า

ประสิทธิภาพทางเคมีไฟฟ้าของ TCX เป็นขั้วไฟฟ้าคาร์บอนถูกวิเคราะห์ภายใต้ระบบสามขั้วไฟฟ้า กับ Ag/AgCI/อิ่มตัว KCI (BAS Inc.) เป็นขั้วไฟฟ้าอ้างอิงและลวดทองเป็นขั้วไฟฟ้าแบบเคาน์เตอร์ สารละลาย KOH 4 mol/dm³ ที่เตรียมจากสารละลาย 8 mol/dm³ KOH (Wako Pure Chemical Industries Inc., เกรดวิจัย 8 mol/dm³) ถูกใช้เป็นอิเล็กโทรไลต์ วิธีการประจุและคายประจุกระแสไฟฟ้าและแรงดันไฟฟ้า แบบวัฏจักรถูกวิเคราะห์ด้วย Potentiostat 466 (eDAQ Pty. Ltd.) การวิเคราะห์ทางเคมีไฟฟ้าได้ทำการ

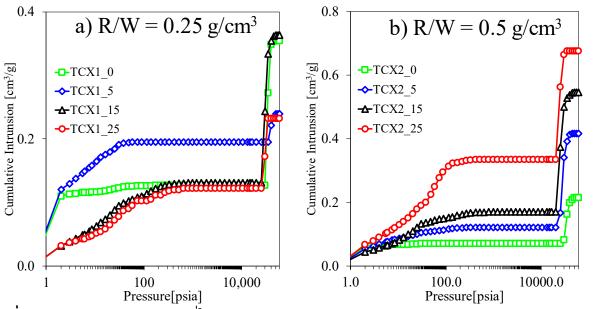
วิเคราะห์ในห้องที่มีเครื่องปรับอากาศที่อุณหภูมิ 25 องศาเซลเซียสถึง 27 องศาเซลเซียส อัตราการสแกน สำหรับแรงดันไฟฟ้าแบบวัฏจักรอยู่ระหว่าง 2 mV/s ถึง 20 mV/s โดยมีหน้าต่างแรงดันไฟฟ้าจาก -1.0 volt ถึง 0.0 volt ความหนาแน่นกระแสไฟฟ้าของการวิเคราะห์แบบการประจุและคายประจุไฟฟ้านั้นเปลี่ยนแปลง จาก 200 mA/g เป็น 1,000 mA/g ระหว่าง 0.0 volt ถึง 1.0 volt วิธีการประจุและคายประจุไฟฟ้าและวิธีโว ลแทมเมทรีแบบวัฏจักรถูกใช้เพื่อประเมินค่าความจุและผลที่ได้เกือบเหมือนกัน [7] ดังนั้น ค่าความจุกระแสไฟฟ้า (Galvanostatic, C_g) ได้รับการประเมินโดยวิธีการคายประจุไฟฟ้าสามารถคำนวณได้จาก สมการ (1):

$$C_g = \frac{I\Delta t}{m\Delta V} \tag{1}$$

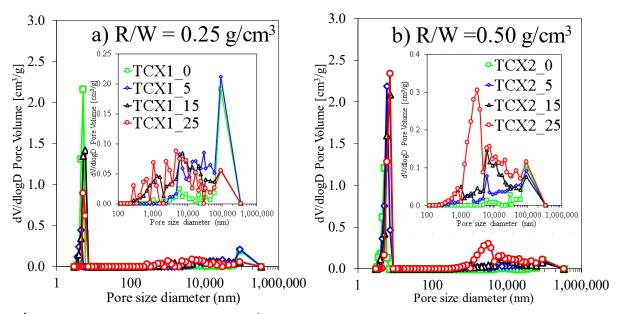
โดย C_g คือ ความจุกระแสไฟฟ้า (F/g)
I คือ กระแสคงที่
t คือ ช่วงเวลา
m คือ น้ำหนัก TCX และ

∧∨ คือ ความต่างศักย์

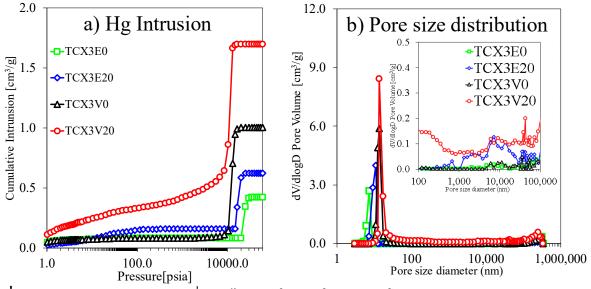
4. ผลงานวิจัย


ส่วนของผลงานวิจัยนี้เป็นการรวบรวมผลการทดลองจากบทความวิจัยที่ได้เผยแพร่ในวารสารวิชา การระดับนานาชาติแล้ว ดังนั้น รายงานผลงานวิจัยนี้จะอ้างอิงข้อมูลในบทความวิจัยเป็นสำคัญ หากมีส่วน ที่คล้ายคลึงกัน ข้าพเจ้าขอนำเพียงส่วนหนึ่งมาใช้อธิบาย ดังต่อไปนี้

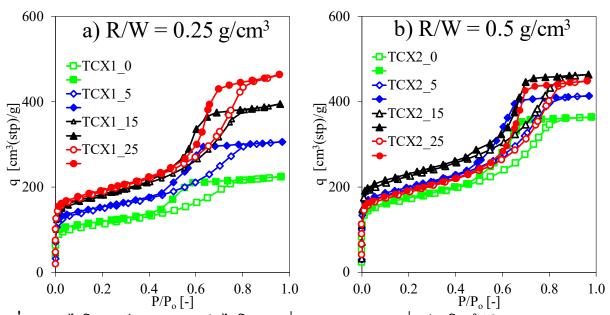
4.1 ความแตกต่างสำหรับโครงสร้างรูพรุน TCX โดยวิธีการอบแห้งแบบวิกฤต

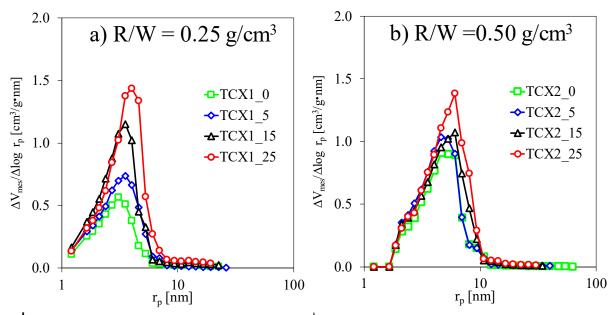

รูปที่ 3 ถึงรูปที่ 5 แสดงการปริมาณสะสมของ Hg และการกระจายตัวของรูพรุน [1-2] รูปที่ 3 และ รูปที่ 4 มีความคล้ายคลึงกันกับรูปที่ 5 โดยเมื่อใช้ CF แล้ว จะมีการสร้างรูพรุนขนาดมาโครพอร์และเมโซพอร์ โดยรูพรุนทั้ง 2 ชนิด อย่างต่อเนื่อง ดังนั้น จึงขอใช้รูปที่ 5 เพื่อการอธิบายผลงานวิจัย

รูปที่ 5 แสดงการปริมาณสะสมของ Hg ใน TCX3s และการกระจายขนาดรูพรุนที่ได้จาก Hg porosimetry TCX1s และ TCX2s มีการปริมาณสะสมของ Hg คล้ายกับ TCX3 จากรูปที่ 5(a) เมื่อความดัน เพิ่มขึ้นจาก 1 psia เป็น 10,000 psia ปริมาณของ Hg ใน TCX3E0 ก็เพิ่มขึ้นเล็กน้อยเช่นเดียวกับปริมาณ Hg ที่บุกรุกใน TCX3V0 ผลการวิจัยชี้ให้เห็นว่า TCX3E0 และ TCX3V0 มีมาโครพอร์ในปริมาณเล็กน้อย ปริมาณสะสมของ Hg เพิ่มขึ้นอย่างมากเมื่อความดันเพิ่มขึ้นซึ่งบอกว่า TCX3E0 และ TCX3V0 นั้นมีเมโซ พอร์ด้วย การใช้ CFs ในฐานะ template จะเพิ่มปริมาณสะสมของ Hg ใน TCX3E20 มากกว่า TCX3E0 และ TCX3V0 ภายใต้ความดันน้อยกว่า 10,000 psia ผลที่ได้นี้แสดงให้เห็นว่ามาโครพอร์ของ TCX3E20 ได้รับ

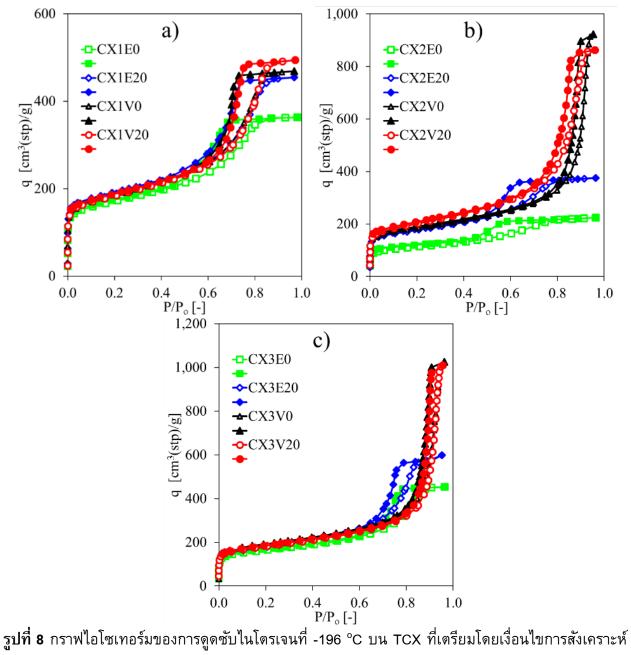

การพัฒนาเล็กน้อยโดยการใช้ CF ปริมาณสะสมของ Hg ใน TCX3V20 เพิ่มขึ้นเมื่อความดันเพิ่มขึ้นน้อยกว่า 10,000 psia ผลการทดลองนี้ชี้ให้เห็นว่ามาโครพอร์ของ TCX3V20 สามารถสร้างขึ้นอย่างต่อเนื่องเพื่อสร้าง เมโซพอร์โดยการอบแห้งแบบสุญญากาศควบคู่กับการใช้ CF รูปที่ 5(b) แสดงการกระจายขนาดรูพรุนของ TCX3 ผลลัพธ์ยืนยันว่า TCX3E0 และ TCX3V0 มีมาโครพอร์น้อยในขณะที่ TCX3E20 และ TCX3V20 มีมาโครพอร์เนื่องจากการกำจัด CFs มาโครพอร์ของ TCX3V20 ถูกสร้างขึ้นอย่างต่อเนื่องจนขยายตัวไปสู่การ เพิ่มขึ้นของเมโซพอร์ดังแสดงในรูปที่ 5

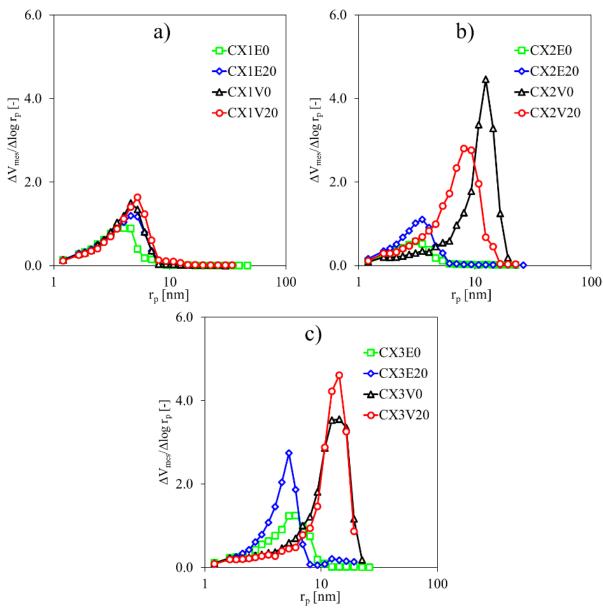
ร**ูปที่ 3** การสะสมปรอทของ TCX ที่ใช้อัตราส่วน CF/RF และอัตราส่วน R/W ต่างๆ: a) R/W = 0.25 g/cm³ และ b) 0.50 g/cm³ [2]


ร**ูปที่ 4** การกระจายขนาดรูพรุนของ TCXs ที่เตรียมไว้โดยใช้อัตราส่วน CF/RF และอัตราส่วน R/W ต่างๆ: a) R/W = 0.25 g/cm³ และ b) 0.50 g/cm³ [2]


ร**ูปที่ 5** การสะสมปรอทของ TCX3 ที่มีและไม่มีการใช้ CF โดยทำแห้งโดยการระเหยและการอบแห้ง สุญญากาศ: a) การสะสมปรอท และ b) การกระจายขนาดรูพรุน [1]

รูปที่ 6 ถึงรูปที่ 9 แสดงไอโซเทอร์มการดูดซับ N_2 ของ TCX ที่ -196 °C [1-2] รูปที่ 6 และรูปที่ 7 แสดงให้เห็นว่า เมื่อเพิ่ม CF แล้ว TCX จะมีความพรุนเพิ่มมากขึ้น คุณสมบัติความพรุนได้รายงานไว้ใน ตารางที่ 3 ดังนั้นจึงกำหนดให้ใช้ CF/RF คงที่ที่ 0.00 g/g และ 0.20 g/g และเปรียบเทียบกับวิธีการทำแห้ง ดังรูปที่ 8 และรูปที่ 9


รูปที่ 8 แสดงไอโซเทอร์มการดูดซับ N₂ ของ TCX ที่ -196 °C ในขณะที่รูปที่ 9 แสดงการกระจายตัว ของรูพรูนขนาดเมโซพอร์ การดูดซับในโตรเจนของ TCX แสดงให้เห็นว่า TCX ประกอบด้วยโครงสร้างไมโค รพอร์และโครงสร้างเมโซพอร์ สมบัติความพรุนแสดงในตารางที่ 4 สำหรับ microporosity ปริมาณของ ในโตรเจนที่อัตราส่วน P/Po ที่ 0.2 เท่ากับ TCX ดังแสดงในรูปที่ 8(a)-(c) ผลลัพธ์เหล่านี้บ่งบอกว่า TCX ทุก ์ ตัวมีพื้นที่ผิวไมโครพอร์และ V_{mic} ใกล้เคียงกันดังที่รายงานไว้ในตารางที่ 4 รูปที่ 8(a) แสดงให้เห็นว่าปริมาณ ของ N₂ ที่ถูกดูดซับบน TCX1E0 และมี hysteresis loop เล็กกว่า TCX1s อื่น ๆ แสดงว่า mesoporosity ของ TCX1E0 น้อยกว่า TCX1 อื่น ๆ ด้วยวิธีการทำให้แห้งแบบสุญญากาศ TCX1V0 และ TCX1V20 มี ปริมาณ N_2 ที่ดูดซับมากกว่า TCX1E0 และ TCX1E20 การกระจายขนาดของเมโซพอร์ของ TCX1E0 แสดง การหดตัวของรูพรุนมากกว่า TCX1s อื่น ๆ ดังรูปที่ 9(a) ที่อัตราส่วน R/W ต่ำ TCX2s ให้ผลลัพธ์ที่คล้ายคลึง กับ TCX1s ดังที่แสดงในรูปที่ 8(b) และ 9(b) ในขณะที่ TCX3s ให้แนวโน้มเช่นเดียวกับที่แสดงในรูปที่ 8(c) และ 9(c) นอกจากนี้ TCXs ที่ถูกทำให้แห้งด้วยการอบแห้งแบบสุญญากาศยังมีค่า V_{mes} ที่สูงกว่า TCXs ที่ถูก ทำให้แห้งด้วยการระเหย ผลลัพธ์เหล่านี้เปิดเผยว่าการทำแห้งแบบสูญญากาศสามารถยับยั้งการหดตัวของ เมโซพอร์ได้ดังรูปที่ 9 ค่า S_{mic} ของ TCX เปลี่ยนไปเล็กน้อย นอกจากนี้การทำแห้งแบบสุญญากาศยังช่วย ป้องกันการหดตัวของเมโซพอร์ซึ่งเป็นการเพิ่มค่า S_{BET} ของ TCXs ในระดับหนึ่งดังแสดงในตารางที่ 4 ผลลัพธ์เหล่านี้เห็นด้วยกับการศึกษาก่อนหน้านี้เกี่ยวกับการเตรียมคาร์บอน คาร์บอนซีโรเจลที่อบแห้งด้วย สุญญากาศมีรูพรุนมากกว่าคาร์บอนซีโรเจลที่อบแห้งด้วยการระเหย อาจเป็นเพราะสภาวะการอบแห้งที่ ดังนั้น การทำแห้งแบบสุญญากาศช่วยเพิ่มพื้นที่ผิวจำเพาะในระดับหนึ่งภายใต้สภาวะการ แตกต่างกัน สังเคราะห์เดียวกัน

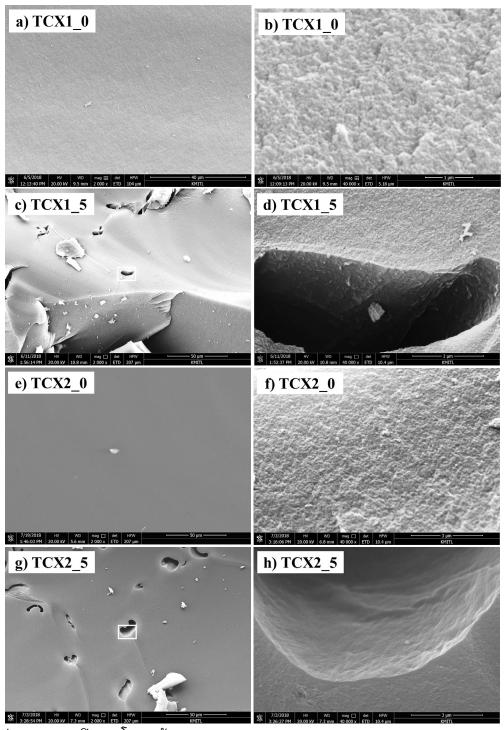

ร**ูปที่ 6** กราฟไอโซเทอร์มของการดูดชับในโตรเจนที่ -196 °C บน TCX ที่เตรียมโดยใช้อัตราส่วน CF/RF และ อัตราส่วน R/W ต่างๆ: a) R/W = 0.25 g/cm³ และ b) 0.50 g/cm³ (สัญลักษณ์เปิด = การดูดซับ; สัญลักษณ์ ปิด = การคายซับ) [2]

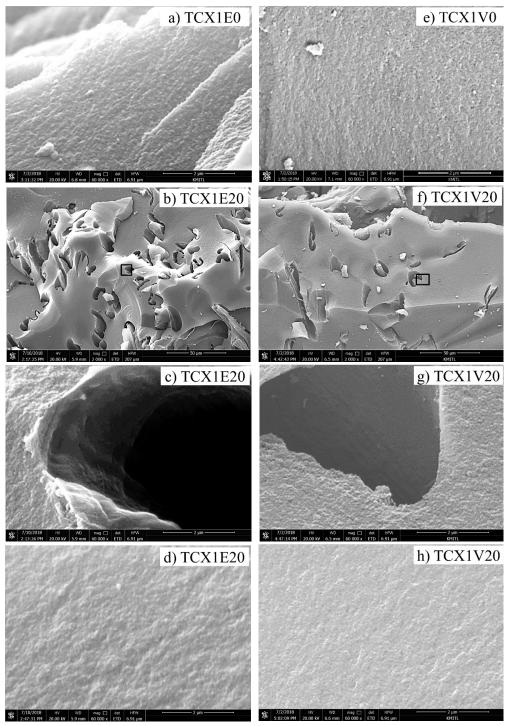
ร**ูปที่ 7** การกระจายขนาดรูพรุนเมโซพอร์ของ TCX ที่เตรียมโดยใช้อัตราส่วน CF/RF และอัตราส่วน R/W ต่างๆ: a) R/W = 0.25 g/cm³ และ b) 0.50 g/cm³ [2]

ร**ูปที่ 8** กราฟไอโซเทอร์มของการดูดซับไนโตรเจนที่ -196 °C บน TCX ที่เตรียมโดยเงื่อนไขการสังเคราะห์ และวิธีการอบแห้งต่างๆ: a) TCX1s, b) TCX2s และ c) TCX3s (สัญลักษณ์เปิด = การดูดซับ; สัญลักษณ์ ปิด = การคายซับ) [1]

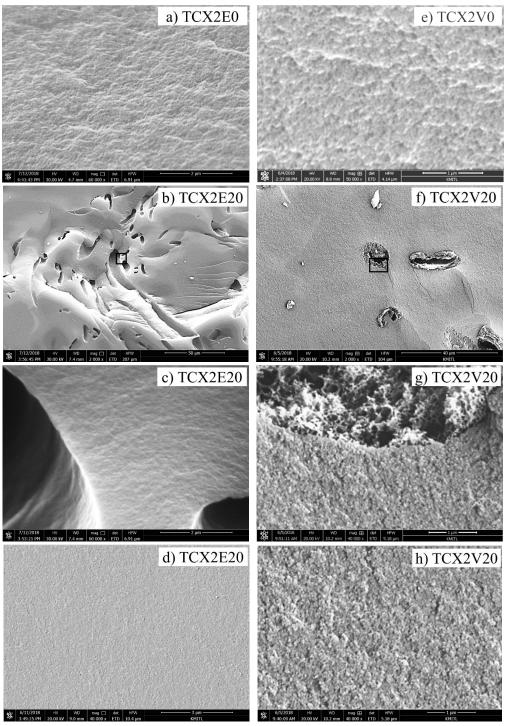
ร**ูปที่ 9** การกระจายขนาดรูพรุนเมโซพอร์ของ TCX ที่เตรียมโดยเงื่อนไขการสังเคราะห์และวิธีการทำให้แห้ง ต่างๆ: ก) TCX1s, b) TCX2 และ c) TCX3s [1]

ตารางที่ 3 คุณสมบัติโครงสร้างและความพรุนของ TCX [2]

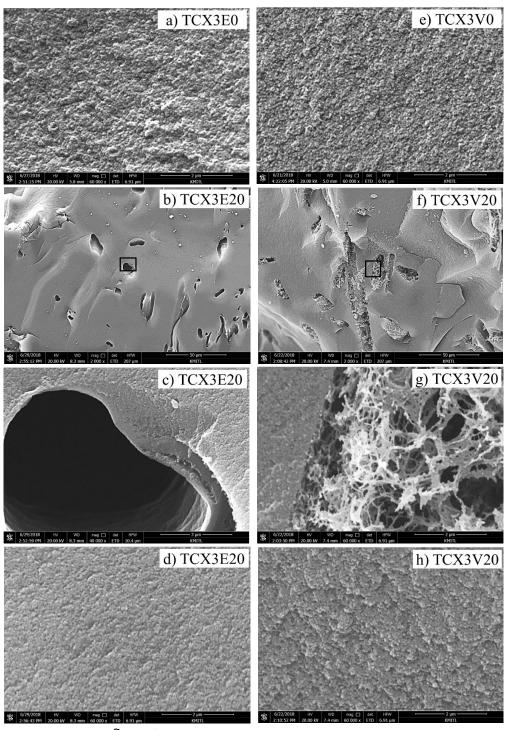

Sample	I _D /I _G [-]	2θ [-]	D ₀₀₂ spacing	S _{BET}	V_{mes}	V_{mic}	r _{mes,peak}
			[Å]	(m^2/g)	(cm ³ /g)	(cm ³ /g)	(nm)
TCX1_0	1.056	22.14	4.0118	322	0.25	0.13	3.09
TCX1_5	1.022	22.48	3.9519	424	0.34	0.17	3.52
TCX1_15	1.038	23.48	3.7858	517	0.46	0.20	3.52
TCX1_25	0.983	21.82	4.0699	542	0.56	0.21	4.02
TCX2_0	1.022	23.04	3.8571	479	0.41	0.20	3.52
TCX2_5	0.990	23.38	3.8018	534	0.47	0.22	3.52
TCX2_15	0.959	22.84	3.8904	537	0.50	0.21	4.60
TCX2_25	1.025	22.24	3.9940	537	0.53	0.22	4.60


ตารางที่ 4 คุณสมบัติโครงสร้างและความพรุนของ TCX [1]

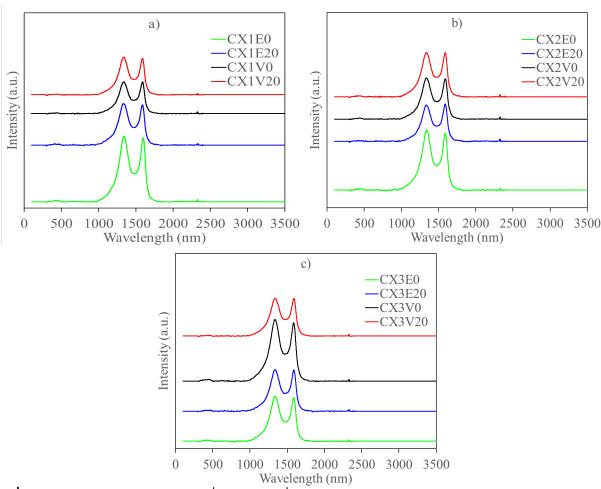
Sample	I _D /I _G [-]	2θ [-]	D ₀₀₂ spacing	S _{BET}	S _{mic}	V _{mes}	V _{mic}	r _{mes,peak}	Cg
			[Å]	(m^2/g)	(m^2/g)	(cm ³ /g)	(cm ³ /g)	(nm)	(F/g)
TCX1E0	1.0222	23.04	3.857	549	408	0.405	0.200	3.52	140
TCX1E20	1.0319	23. 00	3.864	608	419	0.539	0.216	4.60	140
TCX1V0	0.9891	21.86	4.063	595	402	0.572	0.211	4.60	140
TCX1V20	1.0339	21.74	4.085	592	405	0.609	0.209	5.28	179
TCX2E0	1.0559	22.14	4.012	365	193	0.245	0.133	3.09	130
TCX2E20	0.9742	22.18	4.005	573	354	0.429	0.200	3.52	148
TCX2V0	1.0179	21.20	4.188	595	409	1.266	0.219	12.40	217
TCX2V20	0.9981	21.10	4.207	666	368	1.190	0.234	8.02	317
TCX3E0	1.0306	22.32	3.980	531	372	0.558	0.191	5.67	151
TCX3E20	1.0095	21.86	4.063	587	357	0.797	0.209	5.28	134
TCX3V0	1.0576	22.72	3.911	556	279	1.429	0.219	14.32	165
TCX3V20	1.0021	21.52	4.126	615	402	1.399	0.214	14.32	211


นอกจาก mesoporosity แล้วการอบแห้งแบบสุญญากาศยังส่งผลต่อโครงสร้างรูพรุนของ TCX เมื่อ ใช้ CFs รูปที่ 10 ถึงรูปที่ 13 แสดงโครงสร้างรูพรุนของ TCXs ที่เตรียมโดยการระเหยและการอบแห้งด้วย สุญญากาศภายใต้เงื่อนไขการสังเคราะห์ต่างๆ [1-2] รูปที่ 10 แสดงถึงโครงสร้างรูพรุนของ TCXs ที่ใช้การ อบแห้งแบบระเหยโดย SEM [2] โครงสร้างของ TCXs นี้ แสดงให้เห็นพื้นผิวที่อัดแน่นอย่างชัดเจน เรียกว่า scaffold carbon xerogels ซึ่งจะเกิดขึ้นเมื่อใช้การอบแห้งแบบระเหยเท่านั้น

เมื่อเปรียบเทียบการอบแห้งแบบระเหยกับการอบแห้งแบบสุญญากาศ โครงสร้างของ TCX จะมี ความแตกต่างกัน [1] คือ โครงสร้างรูพรุนของ TCX1s ที่เตรียมโดยอัตราส่วน R/W ที่ 0.5 g/cm³ แสดงในรูป ที่ 11 ในขณะที่โครงสร้างรูพรุนของ TCX2s และ TCX3s ที่เตรียมโดยอัตราส่วน R/W ที่ 0.25 g/cm³ แสดง ในรูปที่ 12 และรูปที่ 13 ตามลำดับ หากไม่มีเส้นใยฝ้ายนั้น TCX ที่เตรียมโดยการทำให้แห้งด้วยการระเหย (รูป^{ีที่} 11(a), 12(a) และ 13(a)) แสดงลักษณะสัณฐานคล้ายกับ TCXs ที่เตรียมโดยการอบแห้งแบบ สุญญากาศ (รูปที่ 11(e), 12(e) และ 13(e)) ตามลำดับ ดังนั้นการอบแห้งแบบสุญญากาศจึงไม่เปลี่ยน โครงสร้างรูพรุนของ TCX หากไม่ใช้ CFs เมื่อใช้ CFs มาโครพอร์จะกระจายตัวภายใน TCXs ดังแสดงในรูป ที่ 11(b), 12(b) และ 13(b) (สำหรับการทำให้แห้งด้วยการระเหย) และรูปที่ 11(f), 12(f) และ 13(f) (สำหรับ การทำแห้งแบบสุญญากาศ) ตามลำดับ เมื่อระเหยตัวทำละลายด้วยการระเหยในการเตรียม TCXs นั้นจะมี ปรากฏโครงสร้างแบบ scaffold carbon xerogels ซึ่งทำหน้าที่เป็นผนัง macropore (รูปที่ 11(c), 12(c) และ 13(c) (อยู่ในสี่เหลี่ยมสีดำในรูปที่ 11(b) , 12(b) และ 13(b)) ภาพ SEM ยืนยันว่า scaffold carbon xerogels นั้นประกอบด้วยอนุภาคนาโนที่บรรจุอย่างหนาแน่น ผลลัพธ์เหล่านี้บ่งบอกว่า scaffold carbon xerogels นั้น มีส่วนทำให้สมบัติความพรุนไม่ดีเมื่อเทียบกับเฟสโครงสร้างเมโซพอร์ ในขณะที่ภายใต้การอบแห้งแบบ สุญญากาศ scaffold carbon xerogels นั้นดูเหมือนจะหายไปใน TCX2V20 และ TCX1V20 (รูปที่ 11 (g)) และ scaffold carbon xerogels ใน TCX2E20 และ TCX3E20 แต่ปรากฏโครงสร้างแบบ sponge-like carbon xerogels ใน TCX2V20 และ TCX3V20 ที่อัตราส่วน R/W ต่ำที่ 0.25 g/cm³ ดังแสดงในรูปที่ 12(g) และ 13(g) sponge-like carbon xerogels เหล่านี้พบได้ใน TCX2V20 และ TCX3V20 จึงมีความเป็นไปได้ที่ว่า TCX1V20 ซึ่งเตรียมไว้ที่ R/W สูง ส่งผลกระทบต่อความแข็งแรงระหว่างอนุภาคนาโน ต่างจาก TCX1V20 ที่เตรียมโดยอัตราส่วน R/W ที่ 0.50 g/cm³ ที่ว่า TCX2V20 และ TCX3V20 ถูกสังเคราะห์ที่อัตราส่วน R/W ที่ต่ำกว่า ดังนั้น ผนังมาโครพอร์ของ TCX สามารถเปลี่ยนจาก scaffold carbon xerogels โดยการทำให้แห้ง ด้วยการระเหยกลายเป็น sponge-like carbon xerogels โดยการทำให้แห้งด้วยสุญญากาศ sponge-like carbon xerogels ต้องการอัตราส่วน R/W ต่ำประมาณ 0.25 g/cm³ สำหรับการอบแห้งแบบสูญญากาศที่ใช้ สำหรับการเตรียม TCX ด้วยเส้นใยฝ้าย นอกจากนี้หลักฐานนี้ชี้ให้เห็นว่าการอบแห้งด้วยสุญญากาศทำให้ เกิดการเปลี่ยนแปลงของผนังมาโครพอร์ของ TCX



ร**ูปที่ 11** ภาพ SEM เปิดเผยโครงสร้างของ TCX1s: a) TCX1E0 (60,000x), b) TCX1E20 (2,000x), c) TCX1E20 ที่ผนังมาโครพอร์ (60,000x), d) TCX1E20 ใกล้กับมาโครพอร์ (60,000x), e) TCX1V0 (60,000x), f) TCX1V20 (2,000x), g) TCX1V20 ที่ผนังมาโครพอร์ (60,000x) และ h) TCX1V20 ใกล้กับมาโครพอร์ (60,000x) [1]

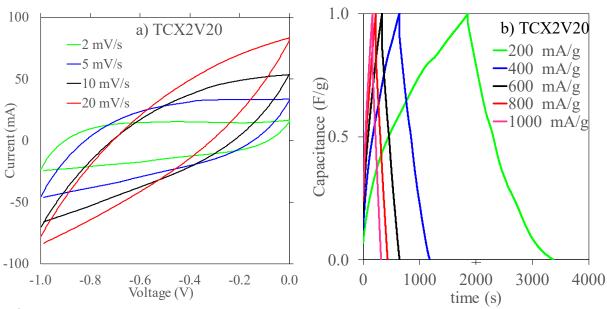


ร**ูปที่ 12** ภาพ SEM เปิดเผยโครงสร้างของ TCX2s: a) TCX2E0 (60,000x), b) TCX2E20 (2,000x), c) TCX2E20 ที่ผนังมาโครพอร์ (60,000x), d) TCX2E20 ใกล้กับมาโครพอร์ (40,000x), e) TCX2V0 (50,000x), f) TCX2V20 (2,000x), g) TCX2V20 ที่ผนังมาโครพอร์ (40,000x) และ h) TCX2V20 ใกล้กับมาโครพอร์ 40,000x) [1]

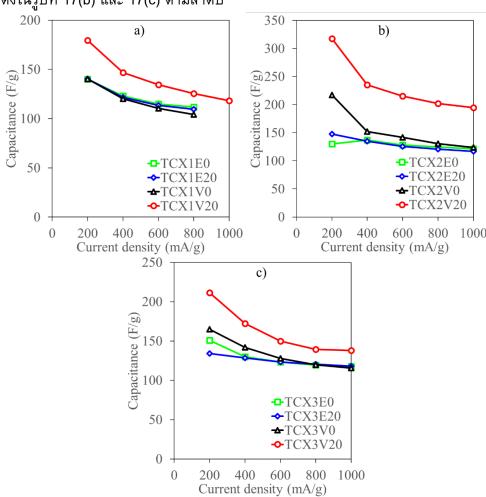
ร**ูปที่ 13** ภาพ SEM เปิดเผยโครงสร้างของ TCX3s: a) TCX3E0 (60,000x), b) TCX3E20 (2,000x), c) TCX3E20 ที่ผนังมาโครพอร์ (40,000x), d) TCX3E20 ใกล้กับมาโครพอร์ (60,000x)) TCX3V0 (60,000x), f) TCX3V20 (2,000x), g) TCX3V20 ที่ผนังมาโครพอร์ (60,000x) และ h) TCX3V20 ใกล้กับมาโครพอร์ (60,000x) [1]

รูปที่ 14 แสดงให้เห็นถึงรามานสเปกตรัมของ TCXs ที่เตรียมโดยการระเหยและการอบแห้งด้วย สุญญากาศ พีค D และ G โดดเด่นที่ประมาณ 1,340 cm⁻¹ และ 1,590 cm⁻¹ ตามลำดับ อัตราส่วนความเข้ม D ถึง G (I_D/I_G) ที่ได้จากรามานสเปกตรัมนั้นถูกรายงานในตารางที่ 4 อัตราส่วนความเข้มนี้แสดงถึงระดับ ความไม่สมบูรณ์ของผลึกกราไฟต์ [8-9] การใช้ CF สำหรับ TCX1s จะเพิ่มอัตราส่วนความเข้มโดยการทำให้ แห้งด้วยการระเหยและการดูดการอบแห้ง ในทางตรงกันข้าม TCX2 และ TCX3 (ที่มีอัตราส่วน R/W ต่ำที่ 0.25 g/cm³) มีอัตราส่วนความเข้มลดลงเมื่อใช้ CFs สำหรับการระเหยการระเหยและการอบแห้งสุญญากาศ ผลลัพธ์นี้บ่งบอกว่าข้อบกพร่องหรือความไม่สมบูรณ์ของ TCX สามารถลดลงได้โดยการใช้ CF สำหรับ อัตราส่วน R/W ที่ 0.25 g/cm³ ภายใต้การอบแห้งแบบสุญญากาศและการระเหย [2]

ร**ูปที่ 14** Raman spectra ของ TCX ที่เตรียมโดยเงื่อนใชการสั่งเคราะห์และวิธีการอบแห้งต่าง ๆ: a) TCX1s, b) TCX2s และ c) TCX3s [1]


รูปที่ 15 แสดง XRD spectra ของ TCX รูปแบบ XRD ของ TCX นั้นกว้างเนื่องจาก TCX เป็นวัสดุ เมโชพอรัสคาร์บอนและให้ XRD spectra ที่มีความเป็นระเบียบเพียงบางส่วน ระยะห่าง D002 ซึ่งสอดคล้อง กับการสะท้อนกราไฟต์ของระนาบ 002 และ 20 แสดงอยู่ในตารางที่ 4 XRD spectra ระบุว่า TCX จากการ อบแห้งแบบระเหยมีระยะห่าง D002 ที่น้อยกว่า TCX ที่เตรียมโดยการอบแห้งแบบสุญญากาศ จึงเป็นไปได้ ว่าระยะห่าง D002 นั้นเกี่ยวข้องกับการจัดเรียงของอนุภาคนาโนที่เชื่อมต่อระหว่างกันของเมโซพอรัส คาร์บอนเจล เมื่ออนุภาคนาโนของ TCX แน่นขึ้น ทำให้ระยะห่างระหว่างอนุภาคนาโนสั้นลง X-ray จึง สามารถกระเจิงได้ที่ 20 ที่สูงขึ้นซึ่งจะเป็นการลดระยะห่างของ D002 การเชื่อมต่อระหว่างกันของอนุภาคนาโนที่หนาแน่นนำไปสู่การลดความพรุนและขนาดรูพรุน ดังนั้น TCXs ที่เตรียมโดยการทำให้แห้งด้วยการ ระเหยและมีการเชื่อมต่อระหว่างอนุภาคนาโนหนาแน่นมีช่องว่าง D002 ขนาดเล็ก ในทางกลับกัน การทำ แห้งแบบสุญญากาศทำให้เกิดความพรุนของ TCX มากกว่าการทำแห้งแบบระเหยทำให้เกิดช่องว่าง D002 มากขึ้นดังที่รายงานไว้ในตารางที่ 4 การเปลี่ยนแปลงระยะห่างของ D002 อาจนำไปสู่ความพรุนของวัสดุเมโซพอรัสคาร์บอน เมื่อใช้ CF ร่วมกับการทำให้แห้งด้วยสุญญากาศที่อัตราส่วน R/W ต่ำ (0.25 g/cm³) ระยะห่างของ interlayer จะเพิ่มขึ้นซึ่งสอดคล้องกับความเป็นรูพรุนอย่างมากใน TCX2V20 และ TCX3V20

ร**ูปที่ 15** XRD spectra ของ TCX ที่เตรียมโดยเงื่อนไขการสังเคราะห์และวิธีการทำให้แห้ง: a) TCX1s, b) TCX2s และ c) TCX3s [1]


4.2 ประสิทธิภาพทางเคมีไฟฟ้าของโครงสร้างรูพรุน TCX โดยวิธีการอบแห้งแบบวิกฤต

รูปที่ 16 แสดงให้เห็นถึงไซคลิกโวลแทโมแกรมและลักษณะการประจุและการคายประจุไฟฟ้าของ TCX2V20 ลักษณะของตัวอย่างอื่นๆ ดังนั้น TCX2V20 จึงเป็นตัวแทนของไซคลิกโวลแทโมแกรมและ ลักษณะการประจุและการคายประจุไฟฟ้า ในรูปที่ 16(a) voltammogram เกือบเป็นรูปสี่เหลี่ยมสำหรับอัตรา การสแกนที่ 2 mV/s จึงเห็นได้ชัดว่าไม่มีพีคของปฏิกิริยารีดอกซ์ ดังนั้น อิเล็กโทรไลต์จะถูกดูดซับและ desorbed ย้อนกลับเพื่อสร้างชั้นการเป็นประจุไฟฟ้าสองชั้นบนขั้วไฟฟ้า TCX2V20 การเพิ่มขึ้นของอัตรา การสแกนจะเปลี่ยน voltammogram จากรูปทรงสี่เหลี่ยมเป็นรูปร่างคล้ายลูกรักบี้ ผลลัพธ์สนับสนุนว่า TCX แสดงประสิทธิภาพสูงในอัตราการสแกนต่ำและลดประสิทธิภาพการจัดเก็บไอออนเมื่อเพิ่มอัตราการสแกนที่ สูงขึ้น [10-13] รูปที่ 16(b) แสดงถึงความหนาแน่นกระแสที่เพิ่มจาก 200 mA/g เป็น 1,000 mA/g ผล การศึกษาพบว่าการเพิ่มขึ้นของความหนาแน่นกระแสดดเวลาการประจุและคายประจุไฟฟ้า คุณลักษณะนี้ ชี้ให้เห็นว่าประสิทธิภาพทางเคมีไฟฟ้าของ TCX ลดลงภายใต้การประยุกต์ใช้อัตราการประจุและการคาย ประจุที่รวดเร็ว

ร**ูปที่ 16** Cyclic voltammograms และการประจุและการคายประจุไฟฟ้าของ TCX2V20 ในสารละลายที่เป็น สารละลาย 4 mol/dm³ KOH สำหรับขั้วไฟฟ้าสามเซลล์ [1]

รูปที่ 17 แสดงค่าความจุของ TCX ที่ความหนาแน่นกระแสต่าง ๆ เมื่อความหนาแน่นกระแสเพิ่มขึ้น ค่าความจุลดลงตามที่แสดงในรูปที่ 17(a)-(c) นอกจากนี้ TCX ที่เตรียมโดยการระเหยการอบแห้ง (TCXxE0 และ TCXxE20) มีค่าความจุคล้ายกับ TCX ที่เตรียมโดยการอบแห้งแบบสุญญากาศโดยไม่มีการใช้ CF (TCXxV0) ตัวอย่างเช่น TCX1E0, TCX1E20 และ TCX1V0 มีค่า Cg ที่ 140 F/g ที่ 200 mA/g ผลลัพธ์ เหล่านี้ไม่น่าแปลกใจเนื่องจาก S_{BET}, S_{mic}, V_{mes} และ V_{mic} ของ TCX เหล่านี้เกือบจะเหมือนกัน (ตารางที่ 4) ในทางทฤษฏีประสิทธิภาพของตัวเก็บประจุแบบ EDLC นั้นขึ้นอยู่กับพื้นที่ผิวหน้าของวัสดุที่มีรูพรุนระหว่าง วัสดุคาร์บอนพรุนและอิเล็กโทรไลต์ อย่างไรก็ตาม TCX1V20 ที่ใช้เส้นใยฝ้ายและเตรียมโดยการอบแห้งแบบ สุญญากาศมีค่าความจุสูงสุดตลอดช่วงความหนาแน่นกระแสในขณะที่ S_{BET}, S_{mic}, V_{mes} และ V_{mic} ของ TCX1V20 มีความคล้ายคลึงกับ TCX1 อื่นๆ ดังนั้น ความจำเป็นของโครงสร้างรูพรุนจึงมีบทบาทสำคัญ อย่างยิ่งในประสิทธิภาพของตัวเก็บประจุ แม้ว่าเงื่อนไขการสังเคราะห์ RF จะแตกต่างกันไป (TCX2s และ TCX3s) แต่ TCX2V20 และ TCX3V20 ยังคงมีค่าความจุสูงสุดเมื่อเปรียบเทียบกับ TCX2s และ TCX3 อื่น ๆ ตามที่แสดงในรูปที่ 17(b) และ 17(c) ตามลำดับ

ร**ูปที่ 17** อิทธิพลของความหนาแน่นกระแสไฟฟ้าต่อค่าความจุของ TCX ที่เตรียมโดยเงื่อนไขการสังเคราะห์ และวิธีการอบแห้งต่างๆ: a) TCX1s, b) TCX2s และ c) TCX3s [1]

5. บทสรุป

ประสิทธิภาพทางเคมีไฟฟ้าของ EDLCs สามารถเพิ่มขึ้นโดยไม่ลดอายุการใช้งานของวงจรและ ความหนาแน่นของพลังงานด้วยการใช้ TCX เป็นขั้วไฟฟ้าคาร์บอน TCX ถูกสังเคราะห์เพื่อลดความ ต้านทานการถ่ายโอนมวลภายในขั้วไฟฟ้าคาร์บอนเนื่องจากประกอบด้วยมาโครพอร์ เมโซพอร์และไมโคร พอร์ TCX เตรียมได้จากการไฮโดรไลซ์ CFs ออกจาก CF/RF คอมโพสิตไฮโดรเจลด้วย H_2SO_4 ตามด้วย การแลกเปลี่ยนตัวทำละลาย การทำให้แห้ง และการคาร์บอไนเซชัน TCX ถูกนำมาวิเคราะห์โดยใช้ Hg porosimeter, เครื่องดูดซับแก๊สไนโตรเจน กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด เครื่องวัดรังสีเอกซ์, รา มานสเปคโตรมิเตอร์ และเครื่องวัดเคมีไฟฟ้า และได้ข้อสรุปดังนี้

- (a) มาโครพอร์ของ TCX สามารถสร้างขึ้นได้อย่างต่อเนื่องตั้งแต่ขนาดมาโครพอร์จนถึงระดับเมโซ พอร์ มาโครพอร์ที่สร้างได้อย่างต่อเนื่องนี้ต้องใช้การอบแห้งแบบสุญญากาศร่วมกับการใช้ CF
- (b) การทำให้แห้งด้วยสุญญากาศสามารถยับยั้งการหดตัวของเมโซพอร์ใด้ดีกว่าการทำให้แห้งด้วย การระเหย ดังนั้น เมโซพอร์ของ TCX ที่เตรียมโดยการทำแห้งแบบสุญญากาศจึงมีค่ามากกว่าเมโซพอร์ที่ เตรียมโดยการทำให้แห้งด้วยการระเหย
- (c) การทำให้แห้งด้วยสุญญากาศร่วมกับการใช้ CF ในการเตรียม TCX นำไปสู่การก่อตัวของ sponge-like carbon xerogels ซึ่งต้องเตรียมขึ้นที่อัตราส่วน R/W ต่ำที่ประมาณ 0.25 g/cm³ หรือน้อยกว่า เมื่อใช้การอบแห้งการระเหยร่วมกับการใช้ CF สำหรับการเตรียม TCX จะทำให้เกิดโครงสร้างแบบ scaffold carbon xerogels
- (d) ประสิทธิภาพทางเคมีไฟฟ้าสามารถเพิ่มขึ้นได้โดยการสังเคราะห์ TCX โดยการทำให้แห้งด้วย สุญญากาศร่วมกับการใช้ CF เนื่องจากมาโครพอร์ของ TCXxV20 หรือ sponge-like carbon xerogels ลด ความต้านทานการถ่ายโอนอิเล็กโทรไลต์ TCX2V20 จึงมีค่าความจุสูงที่ถึง 317 F/g สำหรับความหนาแน่น กระแสที่ 200 mA/g ขนาดของเมโซพอร์ที่เหมาะสมอยู่ระหว่าง 2 นาโนเมตรและ 5 นาโนเมตรยังสามารถ ช่วยเพิ่มประสิทธิภาพทางเคมีไฟฟ้า

ผลผลิตที่ได้จากโครงการ

ข้าพเจ้าได้มีการเผยแพร่ผลงานวิจัยในวารสารวิชาการระดับนานานาชาติบนฐานข้อมูล WoS และมีค่า Impact factor ตามที่ได้ระบุในเลขที่สัญญา RSA5980004 จำนวน 2 บทความ เป็นที่เรียบร้อยแล้ว คือ

- Kriangsak Kraiwattanawong, "Improvement of the textural properties of templated carbon xerogels using cotton fibres as a hard template dehydrated by sulphuric acid", Diamond & Related Materials Vol. 92, 2019, pp. 9–17. (Impact factor 2018: 2.290)
- Kriangsak Kraiwattanawong, "Macropore-assisted electrolyte transfer inside binder-free templated carbon xerogels as carbon electrode for electric double layer capacitors" Eur. Polym. J. 130 (2020) 109678. (Impact factor 2018: 3.621)

ข้าพเจ้าได้แนบผลงานวิจัยข้างต้นในท้ายภาคผนวก

เอกสารอ้างอิง

- [1] K. Kraiwattanawong, Eur. Polym. J. 130 (2020) 109678.
- https://doi.org/10.1016/j.eurpolymj.2020.109678
- [2] K. Kraiwattanawong, Diam. Relat. Mater. 92 (2019) 9-17.
- https://doi.org/10.1016/j.diamond.2018.12.005.
- [3] S. Brunauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc. 60 (1938) 309-319. https://doi.org/10.1021/ja01269a023.
- [4] E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73 (1951) 373-380. https://doi.org/10.1021/ja01145a126.
- [5] M.M. Dubinin, L.V. Radushkevich, Dokl. Akad. Nauk. SSSR. 55 (1947) 331-337.
- [6] B.C. Lippens, J.H. deBoer, J. Catal. 4 (1965) 319-323. https://doi.org/10.1016/0021-9517(65)90307-6.
- [7] I. Yang, S. Kim, S. Kwon, M. Kim, J. Jung, Electrochim. Acta 223 (2017) 21-30. https://doi.org/10.1016/j.electacta.2016.11.177.
- [8] F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53 (1970) 1126-1130. https://doi.org/10.1063/1.1674108.
- [9] J. Mitra, S. Jain, A. Sharma, B. Basu, Carbon 65 (2013) 140-155. https://doi.org/10.1016/j.carbon.2013.08.008.
- [10] H.S. Kim, M.A. Abbas, M.S. Kang, H. Kyung, J. H. Bang, W.C. Yoo, Electrochim. Acta 304 (2019) 210-220. https://doi.org/10.1016/j.electacta.2019.02.121.
- [11] V. Romano, B. Martín-García, S. Bellani, L. Marasco, J.K. Panda, R. Oropesa-Nuñez, L.
- Najafi, A.E.D.R. Castillo, M. Prato, E. Mantero, V. Pellegrini, G. Angelo, F. Bonaccorso,
- ChemPlusChem 84 (2019) 882-892. https://doi.org/10.1002/cplu.201900235.
- [12] I. Yang, S. Kim, S. Kwon, M. Kim, J. Jung, Electrochim. Acta 223 (2017) 21-30. https://doi.org/10.1016/j.electacta.2016.11.177.
- [13] K. Kraiwattanawong, N. Sano, H. Tamon, Microporous Mesoporous Mater. 165 (2013) 228-233. https://doi.org/10.1016/j.micromeso.2012.08.022.

ELSEVIER

Contents lists available at ScienceDirect

Diamond & Related Materials

journal homepage: www.elsevier.com/locate/diamond

Improvement of the textural properties of templated carbon xerogels using cotton fibres as a hard template dehydrated by sulphuric acid

Kriangsak Kraiwattanawong

Department of Chemical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

ARTICLE INFO

Keywords:
Sulphuric acid
Textural properties
Templating technique
Carbon xerogel
Cotton fibres decomposition

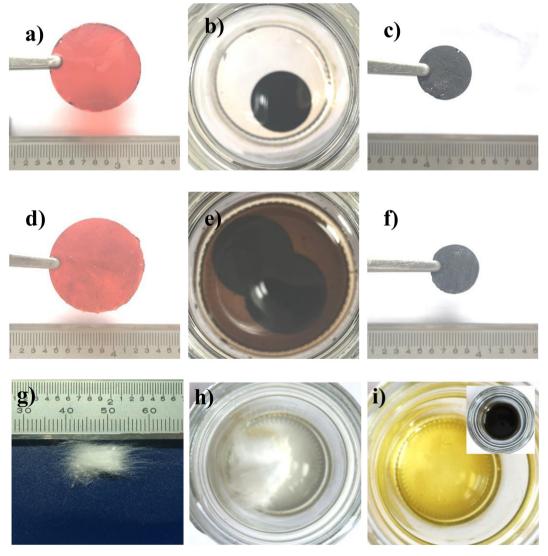
ABSTRACT

Carbon xerogels have generally low textural properties compared with carbon aerogels and carbon cryogels since the gas-liquid interface produces a capillary force in small pores. In this work, the templated carbon xerogels (TCXs), using resorcinol-formaldehyde (RF) and cotton fibres (CFs) as a hard template, were synthesized by CF removal from CF/RF composite hydrogels by sulphuric acid treatment. The TCX precursors were exchanged by *t*-butanol, dried by evaporation drying, and carbonized at high temperature. Scanning electron microscope images and Hg intrusion data confirm that TCXs possess macropores whose walls are the carbon xerogel scaffold. Their nitrogen adsorption and desorption isotherms also support that TCXs have micropores and mesopores. The quantities of micropores, mesopores and macropores are improved with the increase of CF utilization. X-ray diffraction allows us to know that TCXs have a graphitic structure. The intensity of D to G from the Raman spectra is also investigated.

1. Introduction

Unlike conventional porous carbons such as activated carbons, the textural structure and porous properties of mesoporous carbons, such as carbon aerogels and carbon xerogels, can be changed by controlling the synthesis procedure [1]. The nanostructure and the surface chemistry can be designed to overcome diffusional limitations and functional usages in specific contexts such as catalysis, adsorption, and energy storage. Microporosity acts to create a high adsorptive capacity of carbon materials for gaseous molecules, whereas mesoporosity serves as an adsorbent for organic molecules. Although macroporosity has seemingly no importance for adsorption, macropores are indispensable in the porous carbons to promote the accession of molecules migrating in and out of the fluid on to the carbon surface. With the invention of carbon gel in 1989 [2], the sol-gel polycondensation of resorcinol and formaldehyde (RF) gives rapid progress in mesoporous control and tunable pore sizes. The synthesis condition is the significant parameter to determine the textural structure as well as the drying method. The ratio of resorcinol to catalyst (R/C), the ratio of resorcinol to distilled water (R/W), and the ratio of resorcinol to formaldehyde (R/F) are fundamentally used to adjust the mesoporous structure [3]. With the increase of these ratios, the pore structure of the carbon gel is changed from the microporous carbon gel to the microporous and mesoporous carbon gel, the microporous and macroporous carbon gel, or the mesoporous and macroporous carbon gel [1,4]. However, these carbon

gels (including the carbon aerogels dried by supercritical fluids, the carbon cryogels dried by freeze drying, and the carbon xerogels dried by subcritical dryings) are disordered mesoporous carbons containing the tortuous pores. Among the subcritical drying methods, evaporation drying without any preliminary treatment is the most attractive method because it is inexpensive and simple [1]. Therefore, carbon xerogel having the high surface area can be applied for various purposes, such as electrodes for electric double layer capacitors [5,6], anode materials for lithium ion batteries [7] and catalyst supports [8,9].


The molecule transports in straight pores more easily than in the tortuous pores; thereby, the ordered mesoporous carbons or the templated carbons comprising straight pores are created. Herein, the templates used can be classified into two categories: exotemplating (hard templating) and endotemplating (soft-templating). A commercial silica (Porasil®) was firstly used as the hard template for the well-defined macroporous carbon [10]. Surfactant micelles were also modelled as the soft template [11]. Later, Liang et al. [12] firstly succeeded in synthesizing highly ordered mesoporous carbon by using polystyreneblock-poly(4-vinylpyridine) as the soft template. The rapid progress in the templated carbons has continued to the present day. Various substances can be used as the template such as MCM [13], KIT [14], SBA [15], HMS [16], or PEO-PPO-PEO triblock copolymers [17]. Herein, organic-inorganic composites are prepared prior to prepare the ordered mesoporous carbons. For the ordered mesoporous carbons, the procedure involves many steps: i) the template synthesis of materials such as

E-mail address: kriangsak.kr@kmitl.ac.th.

porous silica; ii) the infiltration of an appropriate carbon precursor and the polymerization (or resin) in the template pore as the composite; iii) the carbonization such as the silica/carbon composite, and iv) the template elimination by a chemical treatment such as HF or NaOH, respectively. Therefore, the textural properties of a templated carbon are mainly dependent on the template structure.

Templating is the most powerful technique to synthesize organic or inorganic materials, giving unique, uniform, and ordered materials with the desirable macropores simultaneously. However, the complex and tedious procedure preparing the templated carbons, and the fact that the textural structure relies on the template structure are the disadvantages. Moreover, the porous properties of polymers infiltrated in the inorganic template cannot be controlled directly, leading to uncontrollable textural properties of mesoporous carbons. Cotton fibres (CF) are almost pure cellulose and they are renewable, inexpensive and natural substrates. They possess the linear glucose polymer lined by 1,4-glucosidic linkages or ether bonds [18]. These ether linkages are breakable by the hydrolysis reaction using diluted acid, concentrated acid, or enzymes to receive monosaccharide [19]. Furthermore, concentrated sulphuric acid (H₂SO₄) can be used for dehydrating CFs to saccharide derivatives and then dehydrating those saccharides to

carbon. Note that CFs can be eliminated by concentrated H₂SO₄ and the by-product exists concentrated H₂SO₄ corresponding to Fig. 1(i). Thereby, if CFs are dispersed in the organic-organic composite hydrogel, CFs can be eliminated from the organic-organic composite hydrogel by reacting with concentrated H2SO4. For the purpose of this work, the templating technique will be adapted to propose the facile sequences in the control of textural structure and the porous properties of carbon xerogels directly. Herein, the organic-organic composite hydrogel is synthesized from an RF sol acting as the polymeric resin and CFs acting as the template. Therefore, concentrated H₂SO₄ is used for CF removal from the organic-organic composite hydrogel by the dehydration reaction. Later, the remaining templated RF hydrogel is exchanged by tertiary butyl alcohol (TBA) and dried by evaporation drying. The dried gel is carbonized to become the templated carbon xerogel (TCX). The textural properties are analyzed by nitrogen adsorption apparatus and the macroporous structure is observed by a Hg porosimeter and a scanning electron microscope (SEM). Raman spectroscopy and X-ray diffraction are also characterized.

Fig. 1. Optical images of a TCX1_0 precursor (RF hydrogel), a TCX1_5 precursor (CF/RF composite hydrogel) with CF/RF ratio at 0.05 g/g and CFs: a) a RF hydrogel; b) a RF hydrogel treated by H₂SO₄; c) TCX1_0; d) a CF/RF composite hydrogel; e) a RF xerogel treated by H₂SO₄; f) TCX1_5; g) CFs and h) CFs immersed in H₂SO₄ suddenly and i) CFs reacted with H₂SO₄ within 1 min and 90 min (inset). (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)

2. Experimental

2.1. Synthesis of templated carbon xerogels

2.1.1. Synthesis of CF/RF composite hydrogels

TCXs can be started from the CF/RF composite hydrogels. The details have been described in previous works [20,21]. The CF/RF composite hydrogels were synthesized from an RF sol and CFs dispersed in glass vials. Here, the reactants used in the CF/RF composite hydrogels were purchased as follows: resorcinol (Sigma-Aldrich Inc., analytical reagent grade, 99 wt%); formaldehyde (Labscan Asia Co. Ltd., analytical reagent grade, 35-40 wt% stabilized by 4-12 wt% methanol); sodium carbonate (Na₂CO₃) (C) (Sigma-Aldrich Inc., analytical reagent grade, 99.8%) as a catalyst; commercial CFs, and distilled water (W) as a diluent. The average length of CFs is about 1.2 cm (ranging from 1.0 cm to 2.4 cm as shown in Fig. 1(g) and their diameters vary in the range of 12 µm to 18 µm, respectively. The molar ratio of resorcinol to formaldehyde (R/F) and the molar ratio of resorcinol to sodium carbonate (R/C) were fixed at 0.5 mol/mol and 200 mol/mol, respectively. In this work, the mass concentration of resorcinol to distilled water (R/ W) was set at 0.25 g/cm³ and 0.50 g/cm³. The mass ratios of CFs to RF (CF/RF ratio) were changed at 0.00, 0.05, 0.15 and 0.25 g/g, respectively. The samples prepared are named as listed in Table 1. Initially, CFs were filled into the glass vial in the vertical direction. Then, the RF sol was prepared and poured into the glass vial. After the mixtures had been gelated at room temperature. The RF sol became a solid enwrapping CFs as the CF/RF composite hydrogels. The CF/RF composite hydrogels were cured at room temperature for one day, at 50 °C for one day, and at 90 °C for seven days, respectively.

2.1.2. CF removal from CF/RF composite hydrogels by H_2SO_4 dehydration

The CF/RF composite hydrogels were sliced into thin wafers (ca. 1 mm thickness) and immersed in distilled water before the water was discarded. These composite hydrogels thus contained a small amount of water on the inner and outer surface. Later, the CF/RF composite hydrogels were soaked in 98% H₂SO₄ (Qrec Chemical Co. Ltd., analytical reagent grade, 98%) for 12 h at 50 °C. Note that hydration is a rapid and exothermic reaction, but H2SO4 diffusion in the CF/RF composite hydrogels may be an obstacle. Therefore, a long time and a mild temperature were used here. The CFs were decomposed to be saccharides and even converted to carbon. Then the residues (templated RF hydrogels) were washed in distilled water many times to remove the acid and any dissolved substances from the templated RF hydrogels. Since the vapour-liquid interface makes for pore shrinkage during any subcritical drying, the templated RF hydrogels were exchanged by TBA at 50 °C for one day to suppress the pore collapse before the evaporation drying [22]. Then fresh TBA was exchanged daily 5 times in total. The templated hydrogels were dried by evaporation in an oven at 50 °C for two days to become the templated RF xerogel. To receive TCXs, the templated RF xerogels were carbonized in a quartz reactor with nitrogen flowing through the quartz reactor at 200 cm³/min. The

Table 1Nomenclatures, synthesis conditions, carbon yields and radial shrinkage of templated carbon xerogels.

Sample	CF/RF (g/g)	R/W (g/ cm ³)	Yield (%)	$\Delta r_{ m dry}/r_{ m wet}$ (%)	$\Delta r_{ m carbon}/r_{ m wet}$ (%)
TCX1_0	0.00	0.25	48.82	27.58	48.95
TCX1_5	0.05	0.25	48.90	28.32	48.42
TCX1_15	0.15	0.25	48.81	27.31	48.05
TCX1_25	0.25	0.25	47.60	24.89	46.47
TCX2_0	0.00	0.50	47.76	8.21	36.31
TCX2_5	0.05	0.50	47.77	9.53	35.05
TCX2_15	0.15	0.50	45.80	9.63	36.21
TCX2_25	0.25	0.50	46.21	6.16	34.90

temperature was increased from room temperature to 250 °C at a rate of 250 °C/h, and it was maintained at 250 °C for 2 h. Next, the temperature was raised to 1000 °C at 250 °C/h, and it was kept at 1000 °C for 4 h before the samples were cooled down in the quartz tube. Note that the temperature is controlled correctly by the programmable controller.

2.2. Characterization

The N2 adsorption and desorption isotherms were analyzed at -196 °C by the N₂ adsorption apparatus (BEL Japan Inc.; BELSORPmini II). The Brunauer-Emmett-Teller (BET) method was reckoned to estimate the specific surface area (SBET) from the N2 adsorption isotherm [23]. The Barrett-Joyner-Halenda (BJH) method [24] was utilized to calculate the mesopore size distribution, the mesopore volume (V_{mes}) , and the mesopore radius (r_p) . The highest peak of the mesopore radius $(r_{mes,peak})$ was used as the representative of an average mesopore radius. The Dubinin-Radushkevich method [25] was utilized for the micropore volume (V_{mic}). The structures of TCXs were analyzed by scanning electron microscopy (FEI Company, QUANTA 250). The macroporous structure was analyzed by mercury porosimetry (Micromeritics, MicroActive AutoPore V9600). TCXs were also characterized by an X-ray diffractometer (XRD, Rigaku, SmartLab X-ray Diffractometer) and a Raman spectroscope (Thermo Scientific, DXR SmartRaman Spectrometer). The carbon yield was determined by the remaining weight of TCXs obtained from the carbonization compared to the weight of TCX precursors (templated RF hydrogels). The carbon yield is listed in Table 1. The radii of dry xerogels (r_{dry}) and the radii of hydrogels or wet gels (rwet) were utilized to observe the radial shrinkage of drying on the macroscopic scale ($\Delta r_{dry}/r_{wet}$). Likewise, the radii of TCXs (r_{carbon}) and r_{wet} were used to investigate the radial shrinkage of carbonization ($\Delta r_{carbon}/r_{wet}$). Note that the $\Delta r_{dry}/r_{wet}$ and $\Delta r_{carbon}/r_{wet}$ values were figured from the ratio of the radius change (the difference in radius between r_{dry} and r_{wet} and the difference in radius between r_{carbon} and $r_{\text{wet}}\!\!$ to $r_{\text{wet}}\!\!$. Their radial shrinkages were reported in Table 1.

3. Results and discussion

3.1. Structural properties of templated carbon xerogels

Fig. 1 exhibits the optical changes of TCX1_0 and TCX_5. In the case of the TCX1_0 precursor, Fig. 1(a) unveils that the RF hydrogel without CFs has a reddish-brown colour whereas Fig. 1(b) demonstrates that the RF hydrogel immersed in the H₂SO₄ solution becomes black in colour. Noticeably, the remaining H₂SO₄ solution becomes a light-yellow solution after the acid treating process. The gel-colour change might occur after dehydration as the unreacted hydroxyl group remains on the RF hydrogel. The final product, TCX1_0, is shown in Fig. 1(c). In the case of other TCXs with CFs, for instance the TCX1_5 precursor, Fig. 1(d) shows that the CF/RF composite hydrogel also has a reddishbrown colour. Afterwards, the CF/RF composite hydrogel which has passed through the H₂SO₄ dehydration step becomes black like the TCX1_0 precursor as shown in Fig. 1(e). TCX1_5 is the final product shown in Fig. 1(f). Noticeably, the temperature of the H₂SO₄ solution is raised by the dehydration and the remaining H₂SO₄ solution turns to be a dark-brown solution. Fundamentally, H2SO4 can decompose CFs and H₂SO₄ can also dehydrate sugar, producing the carbon form as exhibited in Fig. 1(h)-(i). Therefore, carbon particulates may be suspended in the H₂SO₄ solution making the dark-brown colour. Table 1 reports the carbon yield, the $\Delta r_{drv}/r_{wet}$ value, and the $\Delta r_{carbon}/r_{wet}$ value of TCXs. The TCX1 and TCX2 series have carbon yields of about $48 \pm 1\%$ and $47 \pm 1\%$, respectively. From the radius change, the $\Delta r_{drv}/r_{wet}$ value and the $\Delta r_{carbon}/r_{wet}$ value of the TCX1 series are greater than those of the TCX2. These data imply that the change of synthesis condition has little effect on the mass loss, but it does influence pore shrinkage and the change of textural properties.

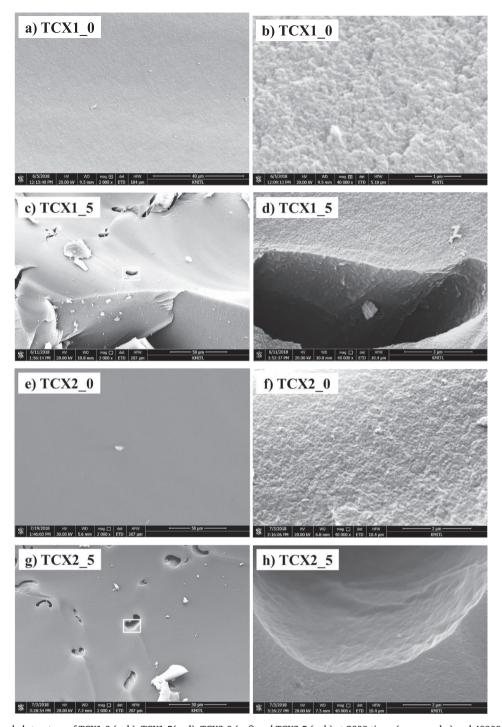


Fig. 2. SEM images revealed structure of TCX1_0 (a, b); TCX1_5(c, d); TCX2_0 (e, f) and TCX2_5 (g, h) at 2000 times (a, c, e and g) and 40000 times (b, d, f and h) of magnifications.

Fig. 2 shows the SEM images for the textural structure of TCXs prepared under the R/W ratios at 0.25 and 0.50 g/cm³. Without CFs applied, Fig. 2(a) and (e) demonstrates the smooth surface of TCX1_0 and TCX2_0 magnified 2000 times. Meanwhile, Fig. 2(b) and (f) reveals the coarse surface of TCX1_0 and TCX2_0 magnified 40,000 times. The SEM images indicate that a greater R/W ratio provides a packed structure of nanoparticles [26]. When CFs are utilized as the template in the TCX synthesis, the textural structure of TCXs is changed as shown in Fig. 2(c) and (g). For the low magnifications of 2000 times, the surfaces of TCX1_5 and TCX2_5 unveil the various-shape channels, the macropore structure, and the smooth surface as displayed in Fig. 2(c) and (g).

For the greater magnifications at 40,000 times, Fig. 2(d) and (h) illustrates the textural structure at the channel wall of TCX1_5 and TCX2_5, respectively. The images show that the textural structures of TCX1_5 and TCX2_5 are created from interconnected nanoclusters like the textural structures of TCX1_0 and TCX2_0, respectively. Moreover, the channel walls of TCX1_5 and TCX2_5 indicate the scaffold structure or the dense morphology as illustrated in Fig. 2(d) and (h). This scaffold structure can be found in previous research studies in various features. For example, the "mille-feuille" structure, another scaffold, is investigated in the preparation of phloroglucinol and glucose polymerized by the sol-gel method and dried by freeze drying [27]. The

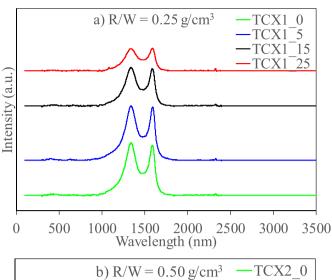

authors assume that this structure is related to the freeze-drying step. Without the organic-solvent exchange, water in the gel becomes ice during the period of gel immersion in liquid nitrogen. However, the mille-feuille structure disappears when the phloroglucinol and glucose gel are dried by the supercritical fluid with CO2. Another carbon cryogel scaffold of dense morphology is coated by ammonia borane (AB) [28]. The carbon cryogel scaffold acts as the substrate and AB forms a sheet or a thin film coated on the carbon cryogel scaffold. Furthermore, the carbon cryogel scaffold also appears in the synthesis of carbon/carbon composite cryogels which have previously been referred to as "dense rings" [21]. Although the exchange with TBA eluded the volume expansion during pre-freezing, the slight volume shrinkage during the freeze drying can pull the RF matrix apart from CFs forming the carbon cryogel scaffold as the macropore wall. In this work, the macropore within the TCX structure is sealed by the carbon xerogel scaffold as a thin pore wall, as confirmed by Fig. 2(d) and (h). This is because the gas-liquid interface induces the nanoclusters to contract together, forming the carbon xerogel scaffold. In addition, for example, Di Maio et al. prepared the scaffolds with tubular/isotropic bi-modal pore structures by gas foaming and the fibre templating was dried by evaporation drying [29]. Therefore, not only freeze drying can produce the scaffold structure, but evaporation drying is also another method to design the scaffold texture. Herein, the carbon xerogel scaffold looks like hollow carbon-based CFs (CCFs) [30]. For CCFs, the inner diameter and the thickness of their hollow section are about $3\,\mu m$ and $1.5\,\mu m,$ respectively. The macropore diameters are generally greater than $5\,\mu m$ and the dense texture consists of packed nanoclusters. Therefore, the carbon xerogel scaffold is coated and acts as the macropore wall since the CFs were removed by the dehydration reaction.

Fig. 3 depicts the Raman spectra of TCXs with the various CF quantities templated in the carbon xerogels. All TCXs possess the firstorder dominant D and G peaks at around 1340 cm⁻¹ and 1590 cm⁻¹ as drawn in Fig. 3(a) and (b), respectively. The broad D band at 1340 cm⁻¹ contributed to dangling bonds and the defects of the prepared carbon structure and the broad G band at 1590 cm⁻¹ is attributed to the in-plane vibrations of carbon atoms strongly coupled in the graphene sheet [31]. The intensity ratio of the D to G band (I_D/I_G) is widely known as the degree of imperfection of crystallinity of graphite [32,33]. The I_D/I_G value of TCX1_0 is about 1.056 and that of TCX2_0 is about 1.022. This result is like the previous works in that the intensity of the D band derived from the carbon xerogel is greater than the intensity of the G band [34,35]. The I_D/I_G ratio trends downwards to 0.983 and 0.959 for the R/W ratios at 0.25 g/cm³ and 0.50 g/cm³, respectively, as reported in Table 2. The existence of a uniform structure in the composite materials can decrease the I_D/I_G value, as is the case for single wall nanotube-carbon aerogels [35]. Here, the scaffold structure is the uniform structure existing in TCXs and increasing the proportion of perfect structure to disordered structure. Therefore, the degree of imperfection of crystallinity decreases due to the existence of the scaffold structure created in TCXs.

Fig. 4(a) and (b) demonstrates the XRD patterns of TCXs for the R/W ratios at $0.25~g/cm^3$ and $0.50~g/cm^3$, respectively. All TCXs possess broad peaks and their peaks are centred at 2θ about $23 \pm 1^\circ$ and $43 \pm 1^\circ$ which correspond to the 002 and 100/101 reflection planes of graphite, respectively. The 2θ of each TCX is reported in Table 2 and the interlayer spacing (d spacing) is calculated using Bragg's law. Their peaks are very broad and shift since TCXs are amorphous structures. These XRD patterns of TCXs are like those of carbon xerogels prepared by the sol–gel process in a water–methanol–inorganic salt solution [36].

3.2. Textural properties of templated carbon xerogels

Fig. 5(a) and (b) demonstrates the N_2 adsorption and desorption isotherms of TCXs at $-196\,^{\circ}\text{C}$ for the different R/W ratios: $0.25\,\text{g/cm}^3$ and $0.50\,\text{g/cm}^3$. All TCXs are type IV by IUPAC classification, containing the micropores and the mesopores. In Fig. 5(a), at $0.25\,\text{g/cm}^3$ of

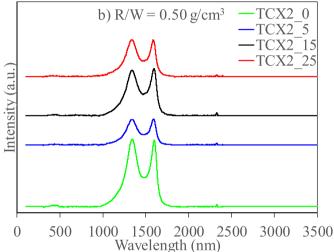


Fig. 3. Raman spectra of TCXs prepared by using various CF/RF ratios and the two R/W ratios: a) $R/W = 0.25 \text{ g/cm}^3$ and b) 0.50 g/cm^3 .

Table 2Structural and porous properties of templated carbon xerogels.

Sample	I_D/I_G [-]	2θ [–]	D ₀₀₂ spacing [Å]	S _{BET} (m ² /g)	V _{mes} (cm ³ / g)	V _{mic} (cm ³ /g)	r _{mes,peak} (nm)
TCX1_0	1.056	22.14	4.0118	322	0.25	0.13	3.09
TCX1_5	1.022	22.48	3.9519	424	0.34	0.17	3.52
TCX1_15	1.038	23.48	3.7858	517	0.46	0.20	3.52
TCX1_25	0.983	21.82	4.0699	542	0.56	0.21	4.02
TCX2_0	1.022	23.04	3.8571	479	0.41	0.20	3.52
TCX2_5	0.990	23.38	3.8018	534	0.47	0.22	3.52
TCX2_15	0.959	22.84	3.8904	537	0.50	0.21	4.60
TCX2_25	1.025	22.24	3.9940	537	0.53	0.22	4.60

R/W, the porosity of TCX1s can be impressively developed by the increase of CFs utilized. The greater the CF/RF ratio, the greater the amount of nitrogen adsorbed on TCX1s during the low partial pressure and the larger hysteresis loop. On the other hand, at the higher R/W ratio $(0.50\,\mathrm{g/cm^3})$, the nitrogen amount adsorbed on TCX2s can be slightly increased during the low partial pressure and the hysteresis loop as revealed in Fig. 5(b).

Fig. 6 illustrates the mesopore size distribution reckoned by the BJH method to the nitrogen adsorption branch of TCXs. Fig. 6(a) reveals the mesopore size distribution curve of TCX1s. The $r_{\rm mes,peak}$ value of TCX1_0 is about 3.09 nm as reported in Table 2. For TCX1s, the area

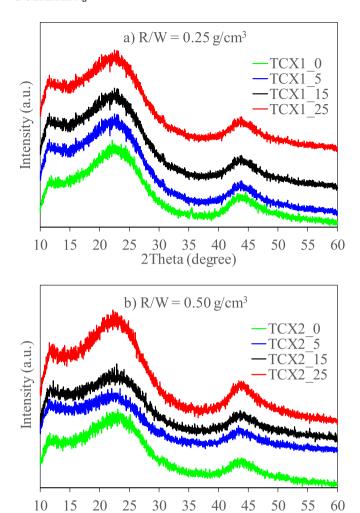
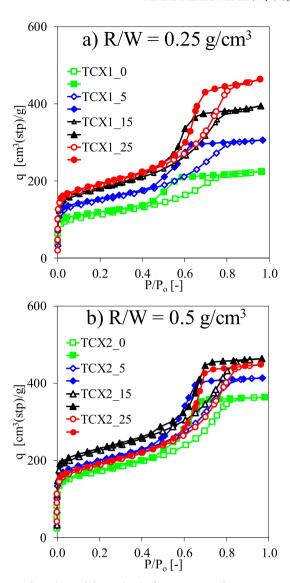



Fig. 4. XRD spectra of TCXs prepared by using various CF/RF ratios and the two R/W ratios: a) $R/W=0.25\,g/cm^3$ and b) $0.50\,g/cm^3$.

2Theta (degree)

under the mesopore size distribution curve implying the V_{mes} value is least. By gradually increasing the CF/RF amount from 0.05 g/g to $0.25\,g/g$, the $r_{mes,peak}$ values and the areas under the mesopore size distribution curves of TCX1s increase step-by-step as well. Fig. 6(b) also shows the mesopore size distribution curve of TCX2s. When the CF/RF ratio is increased, the $r_{mes,peak}$ values and the areas under the mesopore size distribution curves of TCXs are increased gradually. Although the mesopore structure is moderately improved, the CF utilization for TCXs helps to suppress the pore shrinkage resulting from the gas-liquid interface from the evaporation drying. These results support that the mesoporous structure of TCXs can be developed by an increase in the CF/RF ratio. Table 2 reports the textural properties for all TCXs. All textural properties are increased with the increase of CF addition. Not only is the S_{BET} value improved, but the V_{mes} and V_{mic} values are also interestingly increased with an insignificant change of $r_{\text{mes},\text{peak}}.$ Herein, $S_{\text{BET}},\,V_{\text{mes}}$ and V_{mic} values are gradually augmented with the CF utilization in the R/W ratios of $0.25\,\mathrm{g/cm^3}$ and $0.50\,\mathrm{g/cm^3}$. The $S_{BET},\,V_{mes}$ and V_{mic} values for TCX1s are enhanced by about 68%, 124%, and 62%, respectively. On the other hand, the $S_{\text{BET}},\ V_{\text{mes}}$ and V_{mic} values for TCX2s are merely increased by about 12%, 29%, and 10%, respectively. The textural properties of TCX2s prepared at the R/W ratio of 0.50 g/ cm³ were slightly improved. However, these results suggest that the beneficial development of textural properties for TCXs should be prepared with a low R/W ratio such as $0.25\,\mathrm{g/cm^3}$ or less. This is because the void inside the TCX2 series is small. When the evaporation drying

Fig. 5. N₂ adsorption and desorption isotherms at $-196\,^{\circ}\text{C}$ on TCXs prepared by using various CF/RF ratios and the two R/W ratios: a) R/W = $0.25\,\text{g/cm}^3$ and b) $0.50\,\text{g/cm}^3$ (open symbols = adsorption; closed symbols = desorption).

approach is used, the textural properties of the TCX2 series are less well developed than the textural properties of the TCX1 series.

Fig. 7 illustrates the Hg cumulative intrusion in TCXs and Fig. 8 reveals the pore size distribution estimated from the Hg porosimetry. Fig. 7(a) and (b) shows that Hg penetrates in TCX1 0 and TCX2 0 to a small extent at very low pressures less than 2 psia. The Hg volume is increased by the outer surface. After that, their Hg cumulative amounts are almost constant when the pressure applied increases up to 30,000 psia. These results hinted that TCX1_0 and TCX2_0 contain the poor macropores associated with the pore size distribution in Fig. 8(a) and (b) and the SEM images in Fig. 2(a) and (e). Hg intrudes once in TCX1_0 and TCX2_0 when the pressure is applied from 35,000 psia to 60,000 psia. At the higher pressure applied, the Hg intrusion from the macropores into the mesopores of each sample corresponds to Fig. 8(a) and (b). Fig. 8(a) and (b) confirms that TCX1_0 and TCX2_0 have the mesopore structure according to Fig. 6(a) and (b). When CFs are used in the TCX preparation, the Hg quantity is gradually increased with the increase of pressure to almost 400 psia, and the Hg quantity reaches a constant level as shown in Fig. 7(a) and (b). These results suggest that the TCX1 and TCX2 series possess the macropore structure corresponding to Fig. 8(a) and (b). Fig. 7(b) also demonstrates that the Hg

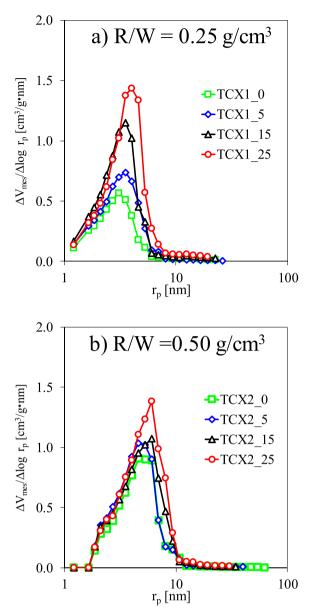
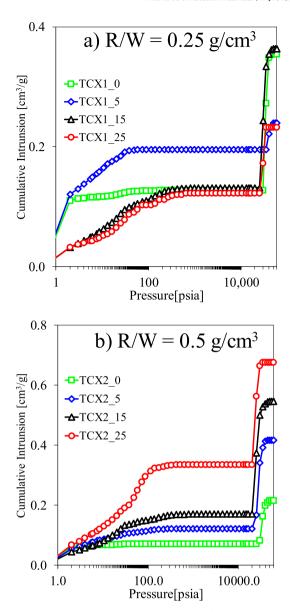
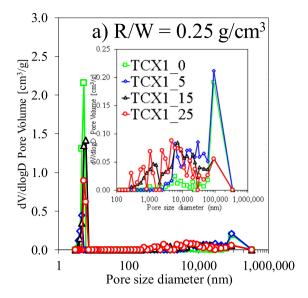
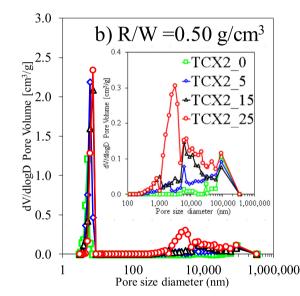


Fig. 6. Mesopore size distribution by JBH method of TCXs prepared by using various CF/RF ratios and the two R/W ratios: a) $R/W = 0.25 \, g/cm^3$ and b) $0.50 \, g/cm^3$.

cumulative intrusion is sequentially enhanced by the CF utilization. Note that the Hg cumulative intrusion of the TCX1 series does not have the same order as the Hg cumulative intrusion of the TCX2 series. It is possible that the TCX1 series is more easily broken than the TCX2 series. It differs from the C/C composite cryogels prepared at the R/W ratio of 0.25 g/cm³ reported in the previous work [22]. Even though the C/C composite cryogels have greater porous properties than the TCX1 series, C/C composite cryogels can avoid the pore collapse from Hg intrusion better than the TCX1 series. It is probable that the C/C composite cryogels contain carbon fibres reinforcing the mechanical strength whereas the TCX1 series does not have such carbon fibres. Fig. 8(b) reveals that the macropore structure is developed with the increase of CF utilization in the TCX2 preparation. The area under the macropore size distribution curve of TCX2_5 is greater than the area of the macropore size distribution curve of TCX2_0. Note that the area under the macropore size distribution curve corresponds to the macropore volume. The areas under the macropore size distributions of TCX2_15 and TCX2_25 are also greater than the area under the


Fig. 7. Mercury cumulative intrusion of TCXs prepared by using various CF/RF ratios and the two R/W ratios: a) $R/W = 0.25 \text{ g/cm}^3$ and b) 0.50 g/cm^3 .

macropore size distribution curve of TCX2_5 and the smaller macropore sizes of TCX2_15 and TCX2_25 can be created as shown in the inset of Fig. 8(b). For TCX2_25, the macropore diameters of about 500 nm are formed. The more the CF utilization in the TCX2 series, the smaller the macropore sizes created. Therefore, the CF utilization of the TCX preparation allowed the formation of the macropore structure.

4. Conclusions

TCXs were synthesized by the $\rm H_2SO_4$ treatment of CF/RF composite hydrogels. The CF/RF composite hydrogels were prepared from a mixture of CFs, resorcinol, and formaldehyde, with sodium carbonate as the catalyst. The CF/RF composite hydrogels were gelated at room temperature and cured at room temperature for one day, at 50 °C for one day, and at 90 °C for seven days, respectively. Then, the CF/RF composite hydrogels were dehydrated and hydrolyzed by $\rm H_2SO_4$, exchanged with TBA, dried by evaporation, and carbonized at 1000 °C to become TCXs. CFs were varied with the CF/RF ratio from 0.00 g/g to 0.25 g/g. Their carbon structure was observed using a scanning electron microscope, an X-ray diffractometer, and the Raman spectroscope. The

Fig. 8. Pore size distributions from mercury cumulative intrusion with macropore range (inset) of TCXs prepared by using various CF/RF ratios and the two R/W ratios: a) $R/W = 0.25 \text{ g/cm}^3$ and b) 0.50 g/cm^3 .

textural properties of TCXs were estimated by $\rm N_2$ adsorption and desorption apparatus and the Hg porosimeter. The conclusions of this work were derived as below.

- (a) TCXs, synthesized by the H₂SO₄ treatment for CF/RF composite hydrogels, have micropores, mesopores, and macropores. The carbon xerogel scaffold acts as the macropore wall.
- (b) The macropores are created by CF removal from the CF/RF composite hydrogels.
- (c) The greater the CF utilization in the CF/RF composite hydrogels, the greater the improvement in their textural properties: microporosity, mesoporosity, and macroporosity. The increase of their textural properties is also related to the starting synthesis conditions. A low R/W ratio is preferable, such as 0.25 g/cm³.

Acknowledgements

This research is financially supported by the Thailand Research Fund (TRF) and King Mongkut's Institute of Technology Ladkrabang Research Fund (RSA5980004).

References

- M. Enterría, J.L. Figueiredo, Nanostructured mesoporous carbons: tuning texture and surface chemistry, Carbon 108 (2016) 79–102.
- [2] R.W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde, J. Mater. Sci. 24 (1989) 3221–3227.
- [3] H. Tamon, H. Ishizaka, T. Araki, M. Okazaki, Control of mesopore structure of organic and carbon aerogels, Carbon 36 (1998) 1257–1262.
- [4] S.A. Al-Muhtaseb, J.A. Ritter, Preparation and properties of resorcinol-formaldehyde organic and carbon gels, Adv. Mater. 15 (2003) 101–114.
- [5] Y. Tao, M. Endo, R. Ohsawa, H. Kanoh, K. Kaneko, High capacitance carbon-based xerogel film produced without critical drying, Appl. Phys. Lett. 93 (2018) 193112 (1-3)
- [6] Y.J. Lee, J.C. Jung, J. Yi, S.-H. Baeck, J.R. Yoon, I.K. Song, Preparation of carbon aerogel in ambient conditions for electrical double-layer capacitor, Curr. Appl. Phys. 10 (2010) 682–686.
- [7] X. Yuan, Y.-J. Chao, Z.-F. Ma, X. Deng, Preparation and characterization of carbon xerogel (CX) and CX–SiO composite as anode material for lithium-ion battery, Electrochem. Commun. 9 (2007) 2591–2595.
- [8] S.A. Al-Muhtaseb, Role of catalyst type in the selective separation of olefinic and paraffinic hydrocarbons using xerogel-based adsorbents, Carbon 46 (2008) 1003–1009
- [9] H. Jin, H. Zhang, Y. Ma, T. Xu, H. Zhong, M. Wang, Stable support based on highly graphitic carbon xerogel for proton exchange membrane fuel cells, J. Power Sources 195 (2010) 6323–6328.
- [10] M.T. Gilbert, J.H. Knox, B. Kaur, Porous glassy carbon, a new columns packing material for gas chromatography and high-performance liquid chromatography, Chromatographia 16 (1) (1982) 138–146.
- [11] J.N. Israelachvili, D.J. Mitchell, B.W. Ninham, Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers, J. Chem. Soc. Faraday Trans. 72 (1976) 1525–1568.
- [12] C. Liang, K. Hong, G.A. Guiochon, J.W. Mays, S. Dai, Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers, Angew. Chem. Int. Ed. 43 (2004) 5785–5789.
- [13] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker Galen, D. Stucky, A new family of mesoporous molecular-sieves prepared with liquid-crystal templates, J. Am. Chem. Soc. 114 (27) (1992) 10834–10843.
- [14] T.W. Kim, F. Kleitz, B. Paul, R. Ryoo, MCM-48-like large mesoporous silicas with tailored pore structure: facile synthesis domain in a ternary triblock copolymerbutanol-water system, J. Am. Chem. Soc. 127 (20) (2005) 7601–7610.
- [15] D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science 279 (5350) (1998) 548–552.
- [16] P.T. Tanev, T.J. Pinnavaia, A neutral templating route to mesoporous molecularsieves, Science 267 (5199) (1995) 865–867.
- [17] P. Alexandridis, A.T. Hatton, Poly(ethylene oxide)-poly(propylene oxide)-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling, Colloids Surf. A Physicochem. Eng. Asp. 96 (1–2) (1995) 146.
- [18] D. Klemm, B. Heublein, H.P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material, Angew. Chem. Int. Ed. 44 (2005) 3358–3393.
- [19] M. Balat, H. Balat, C. Oz, Progress in bioethanol processing, Prog. Energy Combust. Sci. 34 (2008) 551–573.
- [20] K. Kraiwattanawong, N. Sano, H. Tamon, Low-cost production of mesoporous carbon/carbon composite cryogels, Carbon 49 (2011) 3404–3411.
- [21] K. Kraiwattanawong, N. Sano, H. Tamon, Carbon tunnels formed in carbon/carbon composite cryogels, Microporous Mesoporous Mater. 153 (2012) 47–54.
- [22] K. Kraiwattanawong, H. Tamon, P. Praserthdam, Influence of solvent species used in solvent exchange for preparation of mesoporous carbon xerogels from resorcinol and formaldehyde via subcritical drying, Microporous Mesoporous Mater. 138 (2011) 8–16.
- [23] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc. 60 (2) (1938) 309–319.
- [24] E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances I. Computations from nitrogen isotherms, J. Am. Chem. Soc. 73 (1951) 373–380.
- [25] M.M. Dubinin, L.V. Radushkevich, The equation of the characteristic curve of activated charcoal, Dokl. Akad. Nauk SSSR 55 (1947) 327–329.
- [26] T. Yamamoto, T. Nishimura, T. Suzuki, H. Tamon, Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying, J. Non-Cryst. Solids 288 (2001) 46–55.
- [27] N. Brun, C.A. Garcia-Gonzalez, I. Smirnova, M.M. Titirici, Hydrothermal synthesis of highly porous carbon monoliths from carbohydrates and phloroglucinol, RSC Adv. 3 (38) (2013) 17088–17096.
- [28] S. Sepehri, A. Feaver, W.J. Shaw, C.J. Howard, Q. Zhang, T. Autrey, G. Cao, Spectroscopic studies of dehydrogenation of ammonia borane in carbon cryogel, J. Phys. Chem. B 111 (2007) 14285–14289.
- [29] E. Di Maio, A. Salerno, S. Iannace, Scaffolds with tubular/isotropic bi-modal pore structures by gas foaming and fiber templating, Mater. Lett. 93 (2013) 157–160.
- [30] S. Wang, Z. Ren, J. Li, Y. Ren, L. Zhao, J. Yu, Cotton-based hollow carbon fibers with high specific surface area prepared by ammonia etching for supercapacitor application, RSC Adv. 4 (2014) 31300–31307.
- [31] M. Kakunuri, S. Vennamalla, C.S. Sharma, Synthesis of carbon xerogel nanoparticles by inverse emulsion polymerization of resorcinol–formaldehyde and their use as

- anode materials for lithium-ion battery, RSC Adv. 5 (2015) 4747-4753.
- [32] F. Tuinstra, J.L. Koenig, Raman spectrum of graphite, J. Chem. Phys. 53 (1970) 1126–1130.
- [33] J. Mitra, S. Jain, A. Sharma, B. Basu, Patterned growth and differentiation of neural cells on polymer derived carbon substrates with micro/nano structures in vitro, Carbon 65 (2013) 140–155.
- [34] M. Kakunuri, S. Kali, C.S. Sharma, Catalytic graphitization of resorcinol-for-maldehyde xerogel and its effect on lithium ion intercalation, J. Anal. Appl.
- Pyrolysis 117 (2016) 317-324.
- [35] M.A. Worsley, P.J. Pauzauskie, S.O. Kucheyev, J.M. Zaug, A.V. Hamza, J.H. Satcher Jr., T.F. Baumann, Properties of single-walled carbon nanotube-based aerogels as a function of nanotube loading, Acta Mater. 57 (2009) 5131–5136.
- [36] W. Kicinski, M. Szala, M. Nita, Structurally tailored carbon xerogels produced through a sol–gel process in a water–methanol–inorganic salt solution, J. Sol-Gel Sci. Technol. 58 (2011) 102–113.

Contents lists available at ScienceDirect

European Polymer Journal

journal homepage: www.elsevier.com/locate/europolj

Macropore-assisted electrolyte transfer inside binder-free templated carbon xerogels as carbon electrode for electric double layer capacitors

Kriangsak Kraiwattanawong

Department of Chemical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

ARTICLE INFO

Keywords:
Templated carbon xerogels
Electric double layer
Macropore-assisted electrolyte transfer
Vacuum drying
Aqueous electrolyte

ABSTRACT

Capacitive performance of electric double layer capacitors is influenced by specific surface area, while pore structure also promotes electrolyte transfer inside a carbon electrode. Organic electrolytes require macropores, whereas aqueous electrolytes operate best using mesopores for electrolyte transfer. Templated carbon xerogels (TCXs) were prepared from resorcinol and formaldehyde with cotton fibers as a hard template containing macropores, mesopores and micropores as the carbon electrode. Results suggested that macropores (> 50 nm) were contiguously created and connected with mesopore diameters (2–50 nm), leading to convenient ion transport inside the TCXs. Vacuum drying formed sponge-like carbon xerogels that permitted electrolyte transfer. Despite the insignificant change of porous properties, TCXs possessing sponge-like carbon xerogels showed increased capacitance values from 137 F/g to 317 F/g at 200 mA/g in a three-electrode system as a result of macropore-assisted electrolyte transfer in aqueous electrolytes.

1. Introduction

Pseudocapacitors and electric double layer capacitors (EDLCs) are promising energy storage devices. The former rely on the Faradaic reaction from a heteroatom such as nitrogen, oxygen and phosphorus in a carbon electrode [1,2], while the latter are based on electrostatic phenomena on the surface of a carbon electrode. Normally, pseudocapacitors have high capacitance values and energy densities but suffer from low power densities, poor cycling stability, and inferior electrical conductivity that lead to practical problems [3]. Unlike pseudocapacitors, EDLCs offer quick charging time, high power density, environmental friendliness, high coulombic efficiency and long cycle lifetime [4]; however, they encounter lower capacitance values and lower energy densities. For pseudocapacitors, the capacitance of an N-doped porous carbon film prepared by electrospraying was recently reported as high as 446 F/g at 1 mA/cm² [1]. For EDLCs, mesoporous carbon materials prepared from resorcinol (R) and formaldehyde (F) as carbon xerogels [5,6] or carbon spheres [6] contained micropores for ion physisorption and mesopores for ion transport. Using CO₂ activation, the capacitance values of carbon xerogels and carbon spheres were developed from 8 5F/g to 251 F/g (at 100 mA/g and 81% burn-off) [5] and from 95 F/g to 360 F/g (at 500 mA/g with %burn off not reported), respectively [7]. Nevertheless, increase of galvanostatic capacitance (Cg) of EDLCs via the surface-area increment inevitably requires mass loss

The electrochemical performance of EDLCs depends on efficient electrolyte transport, high surface area, optimized pore size, straight pore structure, and electrolyte size [4]. Hence, porous carbons have been extensively studied as suitable EDLC electrodes including activated carbons [8], ordered mesoporous carbons [9,10], carbon nanotubes [11], porous carbon spheres [7,12], and activated carbon gels [5,7,9]. Theoretically, the capacitance values of EDLCs should have a proportionally linear correlation with the total surface area; however, tortuous pore effects result in poorer electrolyte transport than straight pores. Many previous experiments have confirmed that capacitance values are not only related to the surface area but also depend on the pore structure that promotes or interferes with electrolyte transfer inside the carbon electrode. Therefore, attempts to design a pore structure that enhances electrochemical performance with unnecessary change of specific surface area have examined straight mesopore channels in an ordered mesoporous carbon [9], size of monodispersed carbon spheres [12], graphitization of porous carbon spheres [6], mesopore size of a carbon aerogel (dried by evaporation) [13], and carbon tunnels inside a carbon/carbon composite cryogel [14] to increase capacitance values under controlled specific surface area by improving electrolyte transport in the mesopore structure. Generally, the mesopore structure of carbon electrode is always concentrated; nevertheless, no previous research has investigated the effect of macropore structure on EDLC performance. Carbon/carbon composite cryogels containing carbon tunnels have high capacitance because of their high surface area [14].

E-mail address: kriangsak.kr@kmitl.ac.th.

In lithium-ion and sodium-ion batteries, tunnels in the cathode and the anode are developed to promote ion transportation [15–18]. In this study, electrochemical enhancement was proposed by the macropore structure.

In 1989, organic aerogels were synthesized by sol-gel polycondensation from resorcinol and formaldehyde (RF) [19], while research concerning organic gels and carbon gels increased. Carbon gels offer designability in various forms and methods including the controllability of pore sizes and particle sizes, high porous properties, ease of preparation under various synthetic conditions at mild temperature, and high electric conductivity. Therefore, carbon gels were extensively applied for carbon electrode applications [20-22], aqueous adsorption [23], catalysis [24–26] and gas storage [27]. Conventional carbon gels (aerogels, cryogels, and xerogels) are used as carbon electrodes, since they have both micropores and mesopores. It is widely believed that EDLCs require micropores for ion physisorption and mesopores for ion transfer. However, under various synthesis conditions and methods, conventional carbon gels containing micropores, mesopores, and macropores (trimodal pore structure) have been sparsely studied [28-31]. The significance of macropores in increasing capacitance values has not been investigated. Fortunately, templated carbon xerogels (TCXs) contribute to such trimodal pore structure [32]. Briefly, TCXs can be prepared by the elimination of cotton fibers (CF) from CF/RF composite hydrogels by H₂SO₄ dehydration, exchanged by tertiary butyl alcohol (TBA), and then dried by evaporation and carbonized under inert atmospheres. Here, macropores were prepared through TCXs to study their influence on capacitive performance. Despite the existence of mesopores, low charge and discharge rate, and aqueous small electrolyte, the macropores connected with usable surface area to significantly enhance the capacitance values. This study demonstrated the essence of macropores enhancing electrochemical performance and energy density without suffering a shorter life cycle and lower power density. Three RF sols were used in the preparation of CF/RF composite hydrogels, and two different subcritical drying methods as evaporation drying and vacuum drying were investigated. Pore structure was characterized by mercury porosimetry, nitrogen adsorption and desorption techniques, and scanning electron microscopy. TCXs were also observed by an X-ray diffractometer and a Raman spectroscope. Cyclic voltammetry and charge-discharge analysis were used to monitor the electrochemical performance of TCXs.

2. Experimental

2.1. Synthesis of CF/RF composite hydrogels and TCXs

TCXs can be synthesized by CF removal from CF/RF composite hydrogels [32]. The schematic diagram of TCX preparation is expressed in Fig. 1. The starting materials are listed as resorcinol (Sigma-Aldrich Inc., analytical reagent grade, 99 wt%), formaldehyde (Labscan Asia Co., Ltd., analytical reagent grade, 35-40 wt% stabilized by 4-12 wt% methanol), sodium carbonate (C) (Sigma-Aldrich Inc., analytical reagent grade, 99.8%) as a basic catalyst, commercial CFs, and distilled water (W) as a diluent. First, the RF sols were prepared under different synthesis conditions and drying methods as reported in Table 1. The RF sols were poured into glass vials for CF/RF mass ratio at 0.00 g/g as the blank sample as shown in Fig. 1(a), and 0.20 g/g as the comparative sample as shown in Fig. 1(b). The R/F molar ratio was fixed at 0.5 mol/ mol. The R/C molar ratio was changed at 200 and 300 mol/mol, and the R/W mass concentration was also varied at 0.25 g/cm³ and 0.50 g/ cm³. The TCX specimens are listed in Table 1. TCXx (where x is 1, 2, or 3 depending on the recipe) was designated as the templated carbon xerogel prepared at different R/C and R/W ratios. Evaporation and vacuum drying were assigned as 'E' and 'V', respectively. The last number (0 or 20) refers to the CF mass percentage in each CF/RF composite hydrogel. The mixtures were solidified to become CF/RF composite hydrogels at room temperature, and then cured for one day,

at 50 °C for one day and then at 90 °C for one week.

The CF/RF composite hydrogels were cut into thin disks (ca. 1 mm thickness) and soaked in distilled water. CFs in the CF/RF composite hydrogels were dehydrated by 98% H₂SO₄ (Qrec Chemical Co., Ltd., analytical reagent grade, 98%) for 12 h at 50 °C to become the templated RF hydrogel. Then, the templated RF hydrogels were washed several times with distilled water. The vapor-liquid interface during subcritical drying renders enormous pore shrinkage; therefore, the templated RF hydrogels were exchanged by TBA at 50 °C for one day and subsequently replaced by fresh TBA daily five times. The templated gels were dried using two subcritical drying methods as evaporation in an oven at 50 °C for two days or vacuum drying at room temperature for one day. The templated RF xerogels were designated by these subcritical dryings. TCXs were achieved from the carbonization of templated RF xerogels in a quartz reactor with nitrogen flow rate at 200 cm³/min. The temperature was increased from room temperature to 250 °C at a rate of 250 °C/hour and then kept at 250 °C for two hours. Next, the temperature was increased again to 1,000 °C at 250 °C/hour and held at 1,000 °C for four hours before the TCXs were spontaneously cooled in a quartz tube.

2.2. Characterization

The N2 adsorption and desorption isotherms were measured at -196 °C by an N2 adsorption instrument (BEL Japan Inc.; BELSORPmini). The N2 adsorption branch was used to analyze the specific surface area (S_{BET}) by the Brunauer-Emmett-Teller (BET) method [33]. The N2 adsorption branch was also used to calculate the mesopore size distribution, the mesopore volume (V_{mes}), and the mesopore radius (r_p) by the Barrett-Joyner-Halenda (BJH) method [34]. The highest peak of the mesopore radius $(r_{\text{mes},\text{peak}})$ was estimated as the representative of an average mesopore radius. The micropore volume (V_{mic}) was evaluated by the Dubinin-Radushkevich method [35] and micropore surface area (S_{mic}) was calculated by the t-plot method [36]. The macroporous structure was analyzed by a mercury porosimeter (Micromeritics, MicroActive AutoPore V9600). The structure of TCXs was observed by a scanning electron microscope (FEI Company, QUANTA 250). Here, TCXs were sputtered by platinum to promote electron conductivity. TCXs were also characterized by an X-ray diffractometer (XRD, Rigaku, SmartLab X-ray Diffractometer) and a Raman spectroscope (Thermo Scientific, DXR SmartRaman Spectrometer). The D₀₀₂ spacing corresponding to the graphitic reflection of the 002 plane was calculated from the 20 centered peak using Bragg's law. The radii of wet gels (r_{wet}) , the radii of dry xerogels (r_{dry}) , and the radii of TCXs (r_{carbon}) were used to investigate radial shrinkage by the drying methods ($\Delta r_{dry}/r_{wet}$) and radial shrinkage by carbonization ($\Delta r_{\text{carbon}}/r_{\text{wet}}$) on a macroscopic scale as shown in Table 1.

2.3. Electrochemical analysis

Electrochemical performance of TCXs as the carbon electrode was analyzed under a three-electrode system with Ag/AgCl/saturated KCl (BAS Inc.) as the reference electrode and a gold wire as the counter electrode. TCXs were carefully prepared in disk shapes and used as the binder-free electrode, avoiding interference from tetrafluoroethylene as the binder. A 4 mol/dm³ KOH solution prepared from 8 mol/dm³ KOH solution (Wako Pure Chemical Industries Inc., research grade, 8 mol/ dm³) acted as the electrolyte medium. The sample was placed in the electrolyte solution, and the air inside the sample was removed using a vacuum desiccator. The galvanostatic charge/discharge method and cyclic voltammetry were analyzed by a Potentiostat 466 (eDAQ Pty. Ltd.). The electrochemical measurements were analyzed in the room with an air conditioner at 25 °C to 27 °C. The scan rate for cyclic voltammetry ranged from 2 mV/s to 20 mV/s with the voltage window from −1.0 V to 0.0 V. Current density for the galvanostatic charge/ discharge analysis was varied from 200 mA/g to 1,000 mA/g between

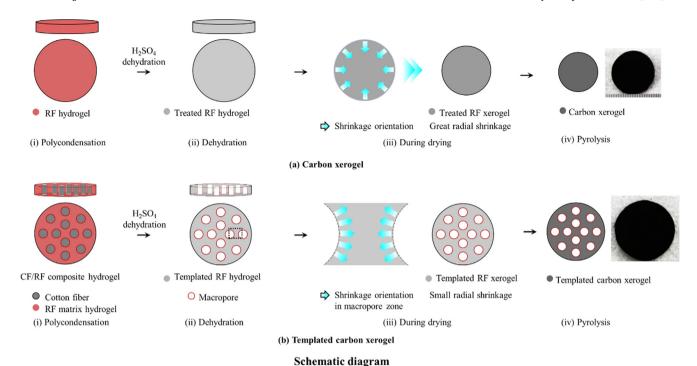


Fig. 1. Schematic diagram of TCX preparation: (a) carbon xerogel without CF utilization and (b) templated carbon xerogel with CF utilization.

Table 1Nomenclatures, synthesis conditions, carbon yields and radial shrinkage of templated carbon xerogels.

Sample	CF/RF (g/g)	R/W (g/ cm ³)	R/C (mol/ mol)	Burn- off (%)	$\Delta r_{dry} r_{wet}$ (%)	$\Delta r_{carbon} r_{wet}$ (%)	
TCX1E0	0.00	0.50	200	52.24	8.21	36.32	
TCX1E20	0.20	0.50	200	54.15	8.11	34.89	
TCX1V0	0.00	0.50	200	50.64	6.79	35.89	
TCX1V20	0.20	0.50	200	51.64	4.68	33.95	
TCX2E0	0.00	0.25	200	51.18	27.58	48.95	
TCX2E20	0.20	0.25	200	51.03	27.84	47.84	
TCX2V0	0.00	0.25	200	51.01	22.74	45.11	
TCX2V20	0.20	0.25	200	51.25	8.58	35.53	
TCX3E0	0.00	0.25	300	51.59	26.37	46.32	
TCX3E20	0.20	0.25	300	52.64	21.58	42.84	
TCX3V0	0.00	0.25	300	50.54	9.16	34.74	
TCX3V20	0.20	0.25	300	50.77	7.26	32.63	

0.0 V to 1.0 V. The galvanostatic charge/discharge method and the cyclic voltammetry method were used to estimate the capacitance values, and the results were almost identical [13]. Therefore, here, capacitance values were evaluated by the typical galvanostatic charge/discharge method from the discharge trace. The galvanostatic capacitance, Cg, was calculated from the discharge curve using equation (1):

$$C_g = \frac{I\Delta t}{m\Delta V} \tag{1}$$

where C_g is the galvanostatic capacitance (F/g), I is the constant current, Δt is the time interval, m is the TCX weight, and ΔV is the potential difference.

3. Results and discussion

3.1. Divergence for TCX pore structure by subcritical drying methods

Fig. 2 demonstrates the cumulative intrusion of Hg in TCX3s and pore size distribution derived from the Hg porosimetry. Note that TCX1s and TCX2s also contribute to Hg intrusion behavior similar to

TCX3s. From Fig. 2(a), when the pressure increased from 1 psia to 10,000 psia, the amount of Hg intruded in TCX3E0 also increased slightly, similar to the amount of Hg intruded in TCX3VO. Results suggested that TCX3E0 and TCX3V0 had small quantities of macropores. The amount of Hg increased drastically with pressure increase, suggesting that TCX3E0 and TCX3V0 also contained mesopores. With CF utilization as the hard templating, the amount of Hg intruded in TCX3E20 increased more than for TCX3E0 and TCX3V0 under a pressure of less than 10,000 psia. This result implied that the macropores of TCX3E20 were slightly developed by CF utilization. Fascinatingly, the amount of Hg intruded in TCX3V20 proportionally increased with increase of pressure less than 10,000 psia. This result suggested that the macropores of TCX3V20 can be continuously created to form mesopores by vacuum drying coupled with CF utilization. Fig. 2(b) shows the pore size distribution of TCX3s. Results confirmed that TCX3E0 and TCX3V0 had few macropores, while TCX3E20 and TCX3V20 possessed macropores because CF removal permitted their occurrence. Especially for TCX3V20, macropore diameters were contiguously generated to mesopore diameters as shown in the inset of Fig. 2(b).

Fig. 3 depicts the N₂ adsorption and desorption isotherms of TCXs at -196 °C, while Fig. 4 illustrates mesopore size distribution estimated by the BJH method from the N2 adsorption branch. The N2 adsorption isotherms of TCXs suggested that TCXs consisted of micropore structure and mesopore structure. Their porous properties are illustrated in Table 2. For microporosity, amounts of nitrogen adsorbed at 0.2 of the P/P_0 ratio were equivalent to the TCXs as shown in Fig. 3(a)–(c). These results implied that every TCX had micropore surface area with $V_{\rm mic}$ values as reported in Table 2. Fig. 3(a) shows that the amount of N₂ adsorbed on TCX1E0 and its hysteresis loop was smaller than the other TCX1s. This result suggested that the mesoporosity of TCX1E0 was poorer than the other TCX1s. By the drying method, TCX1V0 and TCX1V20 gave higher amounts of N2 adsorbed than TCX1E0 and TCX1E20. The mesopore size distribution of TCX1E0 also expressed more pore shrinkage than the other TCX1s as shown in Fig. 4(a). For low R/W ratio, TCX2s contributed similar results to TCX1s as shown in Fig. 3(b) and 4(b), while TCX3s also provided the same tendency as shown in Figs. 3(c) and 4(c). Furthermore, TCXs dried by the vacuum drying also had higher V_{mes} values than TCXs dried by evaporation

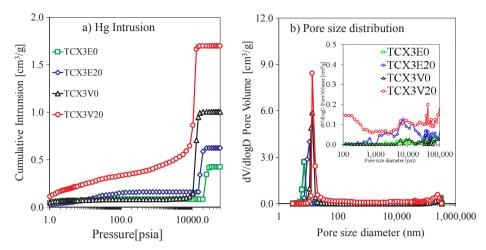


Fig. 2. Mercury cumulative intrusion of TCX3 with and without the CF utilization dried by the evaporation and the vacuum drying: (a) Hg intrusion and (b) pore size distribution.

drying. These results disclosed that vacuum drying can alleviate mesopore shrinkage since the vapor-liquid interface method was better than evaporation drying related to mesopore size distribution (Fig. 4). The $S_{\rm mic}$ values of TCXs changed insignificantly. Furthermore, vacuum drying prevented mesopore shrinkage increasing the $S_{\rm BET}$ values of TCXs to a certain extent, as exhibited in Table 2. These results

concurred with a previous study concerning the preparation of carbon xerogels dried by subcritical drying [37]. Carbon xerogels dried by vacuum drying allowed greater porosity than carbon xerogels dried by evaporation drying, possibly because of the different drying conditions and their drying features. Since TBA was gradually removed from the templated RF gels by evaporation drying, the capillary force was still

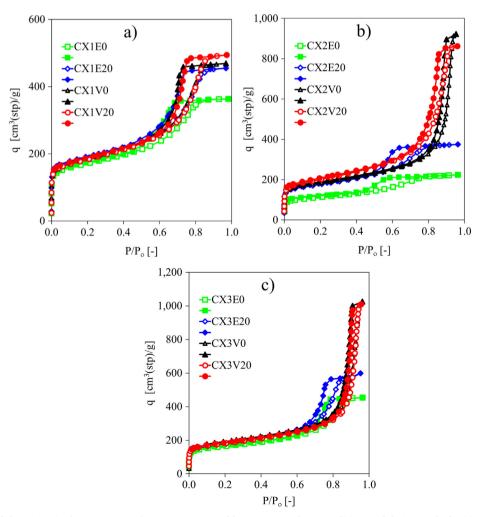


Fig. 3. N_2 adsorption and desorption isotherms at -196 °C on TCXs prepared by various synthesis conditions and drying methods: (a) TCX1s, (b) TCX2s and (c) TCX3s (open symbols = adsorption; closed symbols = desorption).

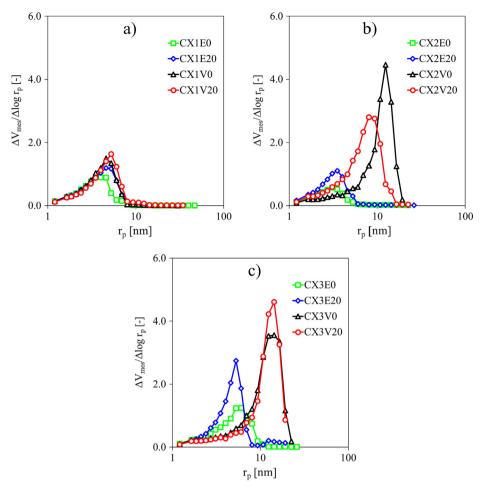


Fig. 4. Mesopore size distribution of TCXs prepared by various synthesis conditions and drying methods: (a) TCX1s, (b) TCX2s and (c) TCX3s.

great. However, TBA was quickly removed from the templated RF gels by vacuum drying under low pressure of almost 0.001 bar, possessing small capillary force. Therefore, vacuum drying allowed better mesoporosity of TCXs than evaporation drying; however, vacuum drying increased the specific surface area to some extent under the same synthesis condition.

Besides the mesoporosity, vacuum drying also influenced the pore structure of TCXs with CF utilization. Figs. 5–7 show the pore structure of TCXs prepared by evaporation drying and vacuum drying under three different synthesis conditions. The pore structure of TCX1s prepared by R/W ratio at 0.5 g/cm 3 is exhibited in Fig. 5, while pore structures of TCX2s and TCX3s prepared by R/W ratio at 0.25 g/cm 3 are presented in Figs. 6 and 7, respectively. Without the cotton fibers, TCXs prepared by evaporation drying (Fig. 5(a), 6(a) and 7(a)) show

morphology similar to TCXs prepared by vacuum drying (Fig. 5(e), 6(e) and 7(e)), respectively. Therefore, vacuum drying did not change the pore structure of TCXs without CF utilization. With CF utilization, the macropores were dispersed inside TCXs as demonstrated in Fig. 5(b), 6(b) and 7(b) (for evaporation drying) and Fig. 5(f), 6(f) and 7(f) (for vacuum drying), respectively. When evaporation drying was applied to prepare TCXs, scaffold carbon xerogels were formed that acted as a macropore wall (Fig. 5(c), 6(c) and 7(c) (located in the black rectangle in Fig. 5(b), 6(b) and 7(b)). The SEM images confirmed that the scaffold carbon xerogels were comprised of densely packed nanoparticles. These results implied that the scaffold carbon xerogels contributed to poor porous properties compared with the mesopore-structure phase near the scaffold carbon xerogels. On the other hand, under vacuum drying, the scaffold carbon xerogels seemingly disappeared in TCX1V20

 Table 2

 Structural and porous properties of templated carbon xerogels.

Sample	I_D/I_G [-]	2θ [–]	D_{002} spacing [Å]	$S_{BET} (m^2/g)$	$S_{mic} (m^2/g)$	V_{mes} (cm ³ /g)	$V_{\rm mic}~(cm^3/g)$	$r_{mes,peak}$ (nm)	C_g (F/g)
TCX1E0	1.0222	23.04	3.857	549	408	0.405	0.200	3.52	140
TCX1E20	1.0319	23.00	3.864	608	419	0.539	0.216	4.60	140
TCX1V0	0.9891	21.86	4.063	595	402	0.572	0.211	4.60	140
TCX1V20	1.0339	21.74	4.085	592	405	0.609	0.209	5.28	179
TCX2E0	1.0559	22.14	4.012	365	193	0.245	0.133	3.09	130
TCX2E20	0.9742	22.18	4.005	573	354	0.429	0.200	3.52	148
TCX2V0	1.0179	21.20	4.188	595	409	1.266	0.219	12.40	217
TCX2V20	0.9981	21.10	4.207	666	368	1.190	0.234	8.02	317
TCX3E0	1.0306	22.32	3.980	531	372	0.558	0.191	5.67	151
TCX3E20	1.0095	21.86	4.063	587	357	0.797	0.209	5.28	134
TCX3V0	1.0576	22.72	3.911	556	279	1.429	0.219	14.32	165
TCX3V20	1.0021	21.52	4.126	615	402	1.399	0.214	14.32	211

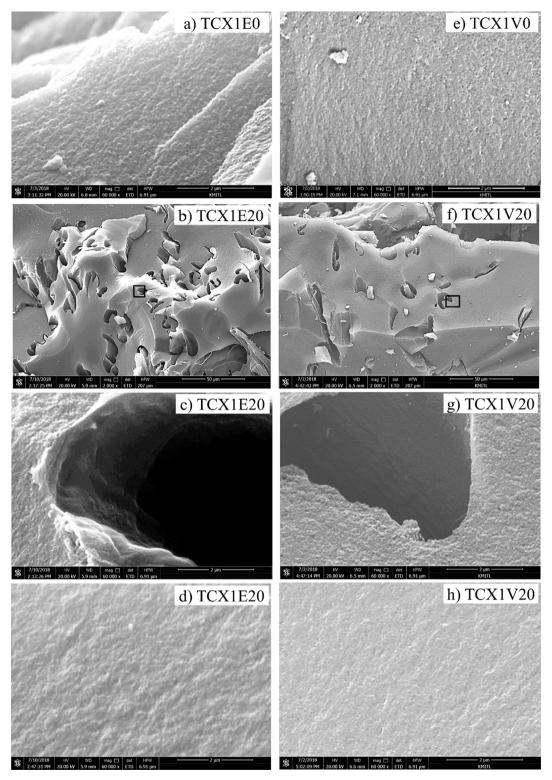


Fig. 5. SEM images revealed structure of TCX1s: (a) TCX1E0 (60,000x), (b) TCX1E20 (2000x), (c) TCX1E20 at a macropore wall (60,000x), (d) TCX1E20 near a macropore (60,000x), (e) TCX1V0 (60,000x), (f) TCX1V20 (2000x), (g) TCX1V20 at a macropore wall (60,000x), and (h) TCX1V20 near a macropore (60,000x).

(Fig. 5(g)), and the scaffold carbon xerogels in TCX2E20 and TCX3E20 turned into sponge-like carbon xerogels in TCX2V20 and TCX3V20 under low R/W ratio at 0.25 g/cm³ as shown in Fig. 6(g) and 7(g). These sponge-like carbon xerogels were only found in TCX2V20 and TCX3V20. It is possible that TCX1V20, prepared at high R/W ratio, affected the high stiffness of its nanoparticle interconnection. Change in macropore wall was not observed. Unlike TCX1V20 prepared by R/W

ratio at 0.50 g/cm³, TCX2V20 and TCX3V20 were synthesized at lower R/W ratio; therefore, they contributed to lower stiffness of their nanoparticle interconnection. The macropore walls of TCXs can be changed from scaffold carbon xerogels by evaporation drying to sponge-like carbon xerogels by vacuum drying. Sponge-like carbon xerogels required low R/W ratio of about 0.25 g/cm³ for vacuum drying used for TCX preparation with cotton fibers. Furthermore, this evidence

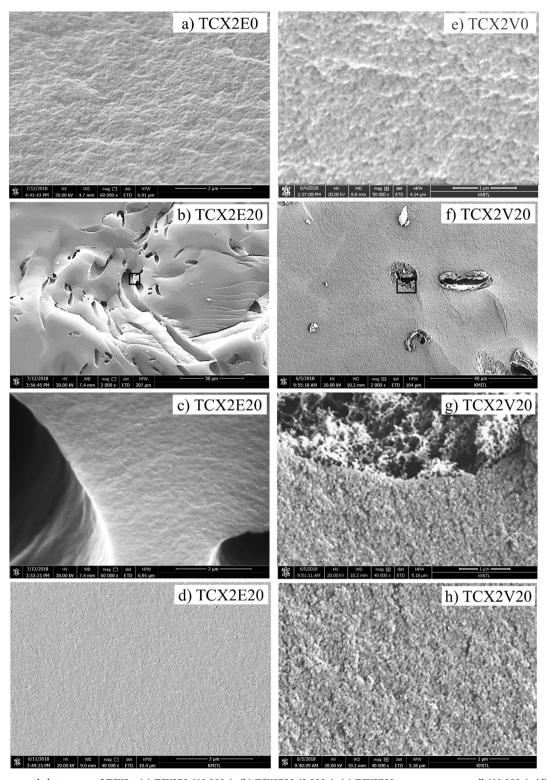


Fig. 6. SEM images revealed structure of TCX2s: (a) TCX2E0 (60,000x), (b) TCX2E20 (2,000x), (c) TCX2E20 at a macropore wall (60,000x), (d) TCX2E20 near a macropore (40,000x), (e) TCX2V0 (50,000x), (f) TCX2V20 (2,000x), (g) TCX2V20 at a macropore wall (40,000x), and (h) TCX2V20 near a macropore (40,000x).

suggested that vacuum drying led to macropore-wall change of TCXs. Fig. 8 demonstrates the Raman spectra of TCXs prepared by evaporation drying and vacuum drying. The D and G peaks were prominent at around 1340 cm $^{-1}$ and 1590 cm $^{-1}$, respectively. Intensity ratios of the D to G band ($I_{\rm D}/I_{\rm G}$) derived from the Raman spectra are reported in Table 2. This intensity ratio is notable as the imperfection degree of graphitic crystallinity [38,39]. For TCX1s, CF utilization increased the intensity ratio by evaporation drying and vacuum drying. Diversely, for

TCX2 and TCX3 (low R/W ratio at 0.25 g/cm³), the intensity ratio decreased using CFs for evaporation drying and vacuum drying. This consequence implied that the defect or the imperfection of TCXs can be reduced by CF utilization for R/W ratio at 0.25 g/cm³ under vacuum drying and evaporation drying [32]. Fig. 9 shows the XRD spectra of TCXs. The XRD patterns of TCXs were broad since TCXs are mesoporous carbon materials and give XRD spectra obtained from the partially uniform structure. The D_{002} spacing, corresponding to the graphitic

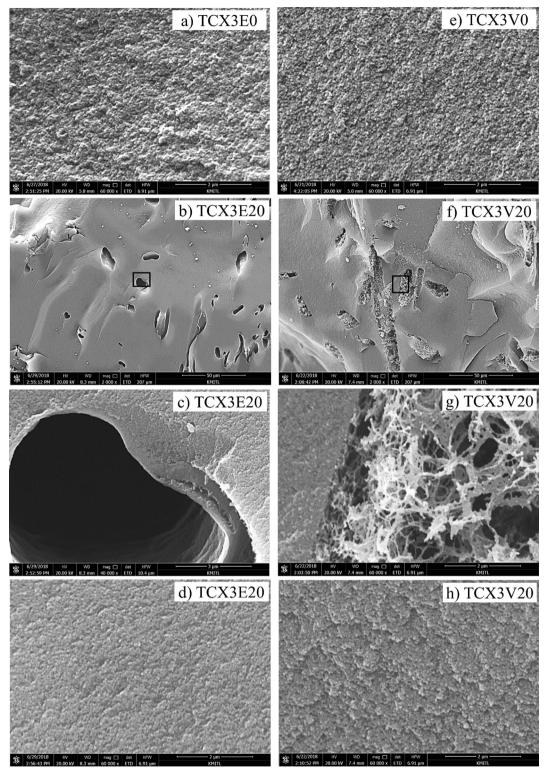


Fig. 7. SEM images revealed structure of TCX3s: (a) TCX3E0 (60,000x), (b) TCX3E20 (2000x), (c) TCX3E20 at a macropore wall (40,000x), (d) TCX3E20 near a macropore (60,000x), (e) TCX3V0 (60,000x), (f) TCX3V20 (2000x), (g) TCX3V20 at a macropore wall (60,000x), and (h) TCX3V20 near a macropore (60,000x).

reflection of the 002 plane, and the 2θ centered peak are listed in Table 2. The XRD spectra indicated that TCXs from evaporation drying generally have smaller D_{002} spacing than TCXs prepared by vacuum drying. It is possible that the D_{002} spacing is related to the arrangement of interconnected nanoparticles of mesoporous carbon gels. When the nanoparticles of TCXs are packed more tightly with shorter distance between the nanoparticles, the X-ray can be diffracted at higher 2θ ,

thereby decreasing the D_{002} spacing. Dense nanoparticle interconnection also leads to reduced porosity and small pore diameter. Therefore, TCXs prepared by evaporation drying and containing dense nanoparticle interconnections have small D_{002} spacings. Conversely, vacuum drying allowed greater porosity of TCXs than evaporation drying, contributing to greater D_{002} spacings as reported in Table 2. The change of D_{002} spacing may lead to higher porosity of mesoporous carbon

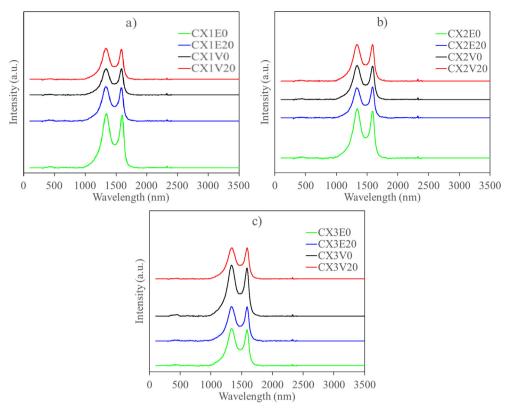


Fig. 8. Raman spectra of TCXs prepared by various synthesis conditions and drying methods: (a) TCX1s, (b) TCX2s and (c) TCX3s.

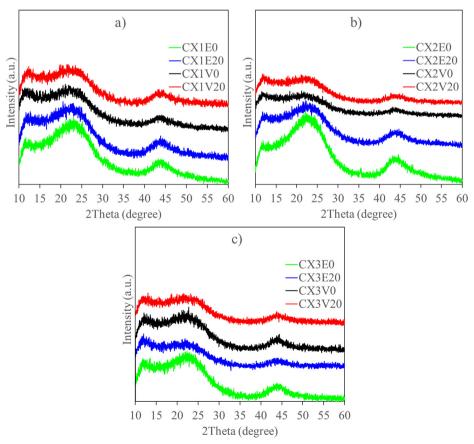


Fig. 9. XRD spectra of TCXs prepared by various synthesis conditions and drying methods: (a) TCX1s, (b) TCX2s and (c) TCX3s.

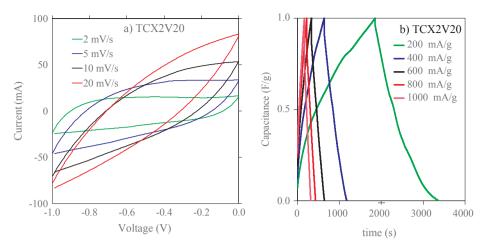


Fig. 10. Cyclic voltammograms and of C/C0 and galvanostatic charge/discharge characteristics of TCX2V20 in 4 mol/dm³ KOH aqueous solution for three cell electrodes.

materials. When the CF utilization is combined with vacuum drying at low R/W ratio (0.25 g/cm³), the interlayer spacing is increased, corresponding to great porosity as found in TCX2V20 and TCX3V20.

3.2. Electrochemical performance of TCX pore structure by subcritical drying methods

Fig. 10 depicts the cyclic voltammogram and the galvanostatic charge/discharge characteristics of TCX2V20. Note that the characteristics of the other samples gave the same features as presented in Figs. S1-S6; therefore, the cyclic voltammogram and the galvanostatic charge/discharge characteristics of TCX2V20 were representative. In Fig. 10(a), the cyclic voltammogram was almost rectangular for the potential scan rate at 2 mV/s. Noticeably, there was no redox peak; therefore, the electrolyte was adsorbed and desorbed reversibly to form an electric double layer on the TCX2V20 electrode. The increase of a potential scan rate changed the cyclic voltammogram from a rectangular shape to a rugby ball shape. Results supported that TCXs showed high performance at the low scan rate, and reduced ion-stored performance with increasing scan rate [7,11,13–14]. In Fig. 10(b), the current density varied from 200 mA/g to 1000 mA/g. Results showed that increase in current density decreased the charge/discharge time. This characteristic indicated that the electrochemical performance of TCXs reduced under application of rapid charge and discharge rate.

Fig. 11 shows the capacitance value of TCXs at various current densities. As current density increased, capacitance value decreased as shown in Fig. 11(a)-(c). Moreover, TCXs prepared by evaporation drying (TCXxE0 and TCXxE20) possessed capacitance values similar to TCXs prepared by vacuum drying without CF utilization (TCXxV0). For example, TCX1E0, TCX1E20 and TCX1V0 had $C_{\rm g}$ values of 140 F/g at 200 mA/g. These results were not surprising since the $S_{\text{BET}},\,S_{\text{mic}},\,V_{\text{mes}},$ and V_{mic} of these TCXs were almost identical (Table 2). Theoretically, the capacitive performance of EDLCs frequently depends on the interfacial surface area between the porous carbon materials and the electrolytes. Surprisingly, TCX1V20 using cotton fibers prepared by vacuum drying had the greatest capacitance values throughout the current density range, while $S_{\text{BET}},\,S_{\text{mic}},\,V_{\text{mes}},$ and V_{mic} of TCX1V20 were similar to the other TCX1s. Therefore, the necessity of pore structure plays a crucial role in capacitive performance. Although the RF synthesis conditions varied (TCX2s and TCX3s), TCX2V20 and TCX3V20 still recorded the highest capacitance values compared to other TCX2s and TCX3s as demonstrated in Fig. 11(b) and (c), respectively. The Ragone plots of TCXs are also presented in Fig. S7. The Ragone plots supported that the energy density of TCXxV20s increased with constant power density, while the other energy densities changed slightly with constant

power density.

To understand the influence of drying methods and CF utilizations on the capacitance value, the plot of Cg gains (or Cg losses) compared with TCXxE0 under the same recipe in each current density is depicted in Fig. 12. For TCXxE20 dried by evaporation, CF utilization did not enhance the C_g value, with lower C_g values in TCX1E20 and TCX3E20. With vacuum drying, TCX1V0 prepared by high R/W ratio at 0.50 g/ cm³ lost C_g value; however, TCX2V0 and TCX3V0 prepared by low R/W ratio at 0.25 g/cm3 successfully gained Cg value. The capacitive performance of TCX2V0 and TCX3V0 possibly developed because of the increase of V_{mes} from 0.245 cm³/g and 0.558 cm³/g to 1.266 cm³/g (five times) and 1.429 cm³/g (three times), respectively. However, the mesopore size of TCX2V0 and TCX3V0 were very large (increased from 3.09 nm and 5.67 nm to 12.40 nm and 14.32 nm, respectively). The electrolyte radii of K⁺(aq) and OH⁻(aq) were reported at about 1.38 Å and 1.33 Å, respectively [40]. Ruiz et al. stated that very narrow micropores as small as 5 Å could form an electric double layer [41], while Huang et al. suggested that mesopore sizes ranging from 2 to 5 nm contributed to high capacitance for an aqueous electrolyte [40]. Therefore, Cg gains of TCX2V0 and TCX3V0 can only be increased by about 87 F/g and 14 F/g at 200 mA/g, respectively. At high current density, the Cg gains of TCX2V0 and TCX3V0 become nearly equivalent to TCX0E0 at 1000 mA/g. These results suggested that the Cg gains were unstable throughout the range of current densities. Capacitance values cannot be developed at fast charging and discharging rates. Moreover, Zeller et al. investigated the relationship between pore structure and electrochemical performance by carbon xerogels in aqueous and organic electrolytes [42]. The C_g values of carbon xerogels were directly based on S_{mic} and S_{BET}, and changed insignificantly at an almost constant surface area. Their results showed that macropores were seemingly ineffective to increase Cg in the aqueous electrolyte. Fascinatingly, despite the fact that the S_{BET} , S_{mic} , V_{mes} , and V_{mic} values were nearly equal to those of TCX2V0 and TCX3V0, the Cg gains of TCX2V20 and TCX3V20 were developed at about 187 F/g and 60 F/g at 200 mA/g, respectively. Moreover, the Cg gains of TCX2V20 and TCX3V20 were still more than TCX2E0 and TCX3E0 (and even TCX2V0 and TCX3V0) for the range of current density. Thus, it can be concluded that Cg gains of TCXs can be successfully obtained by vacuum drying with CF utilization applied at low R/W ratio (0.25 g/cm³). Besides, TCX2V20 had mesopore sizes between 2 nm and 5 nm, and greater than TCX3V20 as demonstrated in Fig. 4(b) and (c). Therefore, TCX2V20 allowed more $C_{\rm g}$ gains than TCX3V20 with more suitable mesopore

The SEM images (Figs. 5–7) show that the macropore walls of TCX1V20, TCX2V20 and TCX3V20 were different from the macropore walls of TCX1E20, TCX2E20 and TCX3E20. Macropore walls of

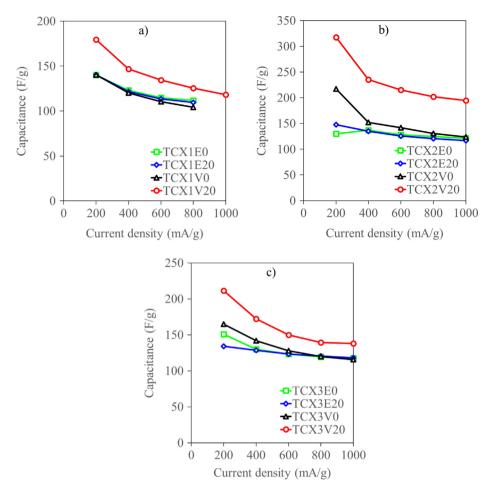


Fig. 11. Influence of current densities on capacitances values of TCXs prepared by various synthesis conditions and drying methods: (a) TCX1s, (b) TCX2s and (c) TCX3s.

TCX1E20, TCX2E20 and TCX3E20 revealed scaffold carbon xerogels, while the macropore walls of TCX2V20 and TCX3V20 disclosed spongelike carbon xerogels. Note that Fig. 5(f) did not show sponge-like carbon xerogels as macropore walls but also did not disclose scaffold carbon xerogels as macropore walls. Furthermore, the proportions of scaffold carbon xerogels in TCX1E20, TCX2E20 and TCX3E20 were comparatively small in proportion to the mesoporous carbon xerogels (the mesopore phase). The proportion of scaffold carbon xerogels in TCX1E20, TCX2E20 and TCX3E20 may be nothing more than the proportion of the sponge-like carbon xerogels in TCX1V20, TCX2V20 and TCX3V20. These results showed that the differentiated structure was not crucially influenced by changes in specific surface area since the scaffold carbon xerogels contained tightly packed carbon nanoparticles (Figs. 5(c), 6(c), and 7(c)) leading to non-macroporous or very small pore walls. This consequence suggested that the macropores were ineffective because electrolyte transfer resistance passing through the macropore walls was greater than the electrolyte transfer resistance along the mesopores. Astoundingly, no scaffold carbon xerogels were found in TCX1V20, TCX2V20 and TCX3V20. The sponge-like carbon xerogels allowed the opened pores to connect with the mesopores inside the TCXs (especially TCX2V20 and TCX3V20) directly. The straight mesopores in ordered mesoporous carbons enhanced electrolyte transfer better than the tortuous mesopores in disordered mesoporous carbons [9]. Here, the sponge-like carbon gels connected between the straight macropores created by CF removal and the carbon surface. These sponge-like carbon xerogels in TCXs promoted the mass transfer of electrolytes migrating from the bulk electrolyte to the interfacial surface. Consequently, the sponge-like carbon xerogels of TCX2V20 and TCX3V20 played a crucial role in increasing the capacitance value,

despite an insignificant change in their porous properties. In addition, only vacuum drying for preparation of TCXs using the cotton fibers permitted the sponge-like carbon xerogels. Furthermore, the sponge-like carbon xerogels occurred using low R/W ratio at about 0.25 g/cm³ or less.

4. Conclusions

The electrochemical performance of EDLCs was enhanced without decreasing cycle lifetime and power density. TCXs were synthesized to reduce mass transfer resistance inside the carbon electrode since they comprised macropores, mesopores and micropores. The TCX precursors were prepared by $\rm H_2SO_4$ dehydration of CFs in CF/RF composite hydrogels, solvent exchange, and drying. TCXs were obtained from TCX-precursor carbonization. The micropores and mesopores of TCXs were derived from RF resin, and the macropores dispersed in TCXs occurred by CF removal. These macropores allowed easy electrolyte transfer into the carbon surface. TCXs were analyzed using a Hg porosimeter, $\rm N_2$ adsorption equipment, a scanning electron microscope, an X-ray diffractometer, a Raman spectroscope, and galvanostat/potentiostat equipment. The following conclusions were drawn.

- (a) The macropores of TCXs can be contiguously created from macropore diameters to mesopore diameters. The macropores of TCXs desire vacuum drying together with CF utilization for TCX preparation. Unlike evaporation drying, the macropores of TCXs are created discretely.
- (b) Vacuum drying can alleviate mesopore shrinkage better than evaporation drying. Hence, mesopores of TCXs prepared by vacuum

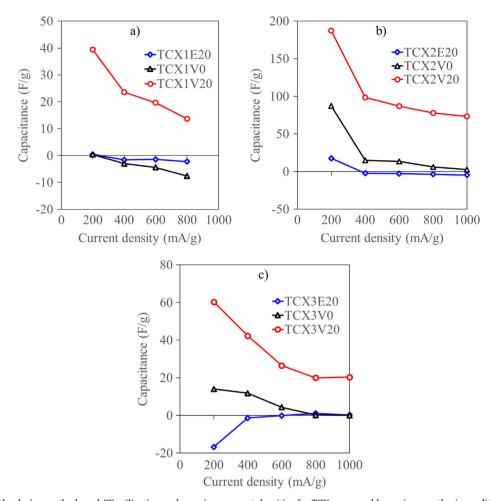


Fig. 12. Cg gains from the drying methods and CF utilization under various current densities for TCXs prepared by various synthesis conditions: a) TCX1s, b) TCX2s and c) TCX3s.

drying were greater than mesopores prepared by evaporation drying.

- (c) Vacuum drying combined with CF utilization in TCX preparation led to the formation of sponge-like carbon xerogels. These spongelike carbon xerogels also required a low R/W ratio at about 0.25 g/ cm³ or less. On the other hand, evaporation drying combined with CF utilization for TCX preparation allowed the formation of scaffold carbon xerogels.
- (d) The electrochemical performance can be increased by TCXs synthesized by vacuum drying combined with CF utilization since the macropores of TCXxV20 or sponge-like carbon xerogels decrease electrolyte transfer resistance. TCX2V20 recorded high capacitance value at about 317 F/g for current density at 200 mA/g. Suitable mesopore sizes between 2 nm and 5 nm also enhanced electrochemical performance.

CRediT authorship contribution statement

Kriangsak Kraiwattanawong: Conceptualization, Methodology, Validation, Investigation, Data curation, Writing - original draft, Writing - review & editing, Funding acquisition.

Acknowledgements

The major funding of this research is financially supported by the Thailand Research Fund (Grant No. RSA5980004) and King Mongkut's Institute of Technology Ladkrabang Research Fund (Grant No. KREF046004).

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eurpolymj.2020.109678.

References

- [1] M.P. Chavhan, S. Ganguly, Carbon 154 (2019) 33–41, https://doi.org/10.1016/j.carbon.2019.07.091.
- [2] F. Liu, Z. Wang, H. Zhang, L. Jin, X. Chu, B. Gu, H. Huang, W. Yang, Carbon 149 (2019) 105–116, https://doi.org/10.1016/j.carbon.2019.04.023.
- [3] X. Dong, X. Wang, L. Wang, H. Song, X. Li, M.B. Chan-Park, C.M. Li, P. Chen, Carbon 50 (2012) 4865–4870, https://doi.org/10.1016/j.carbon.2012.06.014.
- [4] M. Inagaki, H. Konno, O. Tanaike, J. Power Sources 195 (2010) 7880–7903, https://doi.org/10.1016/j.jpowsour.2010.06.036.
- [5] T. Tsuchiya, T. Mori, S. Iwamura, I. Ogino, S.R. Mukai, Carbon 76 (2014) 240–249, https://doi.org/10.1016/j.carbon.2014.04.074.
- [6] B. Chang, B. Yang, Y. Guo, Y. Wang, X. Dong, RSC Adv. 5 (2015) 2088–2095, https://doi.org/10.1039/C4RA09204J.
- [7] H.S. Kim, M.A. Abbas, M.S. Kang, H. Kyung, J.H. Bang, W.C. Yoo, Electrochim. Acta 304 (2019) 210–220, https://doi.org/10.1016/j.electacta.2019.02.121.
- [8] H. Lee, D. Chung, S. Jung, K. An, S. Park, B. Kim, Chem. Eng. J. 377 (2019) 120836, https://doi.org/10.1016/j.cej.2019.01.115.
- [9] T. Matsui, S. Tanaka, Y. Miyake, Adv. Powder Technol. 24 (2013) 737–742, https://doi.org/10.1016/j.apt.2013.03.003.
- [10] N. Yoshida, Y. Hirota, Y. Uchida, T. Asada, N. Kobayasi, N. Nishiyama, Microporous Mesoporous Mater. 272 (2018) 217–221, https://doi.org/10.1016/j.micromeso. 2018.06.028.
- [11] V. Romano, B. Martín-García, S. Bellani, L. Marasco, J.K. Panda, R. Oropesa-Nuñez, L. Najafi, A.E.D.R. Castillo, M. Prato, E. Mantero, V. Pellegrini, G. Angelo, F. Bonaccorso, ChemPlusChem 84 (2019) 882–892, https://doi.org/10.1002/cplu. 201900235.
- [12] S. Tanaka, H. Nakao, T. Mukai, Y. Katayama, Y. Miyake, J. Phys. Chem. C 116 (2012) 26791–26799, https://doi.org/10.1021/jp308415s.

- [13] I. Yang, S. Kim, S. Kwon, M. Kim, J. Jung, Electrochim. Acta 223 (2017) 21–30, https://doi.org/10.1016/ji.electacta.2016.11.177.
- [14] K. Kraiwattanawong, N. Sano, H. Tamon, Microporous Mesoporous Mater. 165 (2013) 228–233, https://doi.org/10.1016/j.micromeso.2012.08.022.
- [15] Y. Xiao, P.-F. Wang, Y.-X. Yin, Y.-F. Zhu, Y.-B. Niu, X.-D. Zhang, J. Zhang, X. Yu, X.-D. Guo, B.-H. Zhong, Yu-Guo Guo, Adv. Mater. 30 (2018) 1803765, https://doi.org/10.1002/adma.201803765.
- [16] C. Wu, W. Hua, Z. Zhang, B. Zhong, Z. Yang, G. Feng, W. Xiang, Z. Wu, X. Guo, Adv. Sci. 5 (2018) 1800519, https://doi.org/10.1002/advs.201800519.
- [17] L. Qiu, W. Xiang, W. Tian, C.-L. Xu, Y.-C. Li, Z.-G. Wu, T.-R. Chen, K. Jia, D. Wang, F.-R. He, X.-D. Guo, Nano Energy 63 (2019) 103818, https://doi.org/10.1016/j.nanoen.2019.06.014.
- [18] Y. Wang, C. Wu, Z. Wu, G. Cui, F. Xie, X. Guo, X. Sun, Chem. Commun. 54 (2018) 9341–9344, https://doi.org/10.1039/C8CC03827A.
- [19] R.W. Pekala, J. Mater. Sci. 24 (1989) 3221–3227, https://doi.org/10.1007/ BF01139044
- [20] Y. Tao, M. Endo, R. Ohsawa, H. Kanoh, K. Kaneko, 193112(1-3), Appl. Phys. Lett. 93 (2018), https://doi.org/10.1063/1.2976684.
- [21] Y. Lee, J. Jung, J. Yi, S. Baeck, J. Yoon, I. Song, Curr. Appl. Phys. 10 (2010) 682–686, https://doi.org/10.1016/j.cap.2009.08.017.
- [22] X. Yuan, Y. Chao, Z. Ma, X. Deng, Electrochem. Commun. 9 (2007) 2591–2595, https://doi.org/10.1016/j.elecom.2007.08.004.
- [23] S. Abolhasani, A. Ahmadpour, T.R. Bastami, A. Yaqubzadeh, J. Mol. Liq. 281 (2019) 261–268, https://doi.org/10.1016/j.molliq.2019.02.084.
- [24] S.A. Al-Muhtaseb, Carbon 46 (2008) 1003–1009, https://doi.org/10.1016/j. carbon.2008.03.015.
- [25] H. Jin, H. Zhang, Y. Ma, T. Xu, H. Zhong, M. Wang, J. Power Sources 195 (2010) 6323–6328, https://doi.org/10.1016/j.jpowsour.2010.04.050.
- [26] L. Wang, J. Cheng, Q. Kang, R. Wang, J. Ruan, L. Li, L. Wu, Z. Li, N. Ai, Compos. Part B:Eng. 174 (2019) 107039, https://doi.org/10.1016/j.compositesb.2019. 107039
- [27] D. Li, W.B. Li, J.S. Shia, F.W. Xin, RSC Adv. 6 (2016) 50138-50143, https://doi.

- org/10.1039/C6RA06620H.
- [28] M. Enterría, J.L. Figueiredo, Carbon 108 (2016) 79–102, https://doi.org/10.1016/j. carbon.2016.06.108.
- [29] S.A. Al-Muhtaseb, J.A. Ritter, Adv. Mater. 15 (2003) 101–114, https://doi.org/10. 1002/adma.200390020.
- [30] T. Yamamoto, T. Nishimura, T. Suzuki, H. Tamon, J. Non-Cryst, Solids 288 (2001) 46–55, https://doi.org/10.1016/S0022-3093(01)00619-6.
- [31] N. Job, R. Pirard, J. Marien, J. Pirard, Carbon 42 (2004) 619–628, https://doi.org/ 10.1016/j.carbon.2003.12.072.
- [32] K. Kraiwattanawong, Diam. Relat. Mater. 92 (2019) 9–17, https://doi.org/10. 1016/j.diamond.2018.12.005.
- [33] S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60 (1938) 309–319, https://doi.org/10.1021/ja01269a023.
- [34] E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73 (1951) 373–380, https://doi.org/10.1021/ja01145a126.
- [35] M.M. Dubinin, L.V. Radushkevich, Dokl. Akad. Nauk. SSSR. 55 (1947) 331-337.
- [36] B.C. Lippens, J.H. deBoer, J. Catal. 4 (1965) 319–323, https://doi.org/10.1016/ 0021-9517(65)90307-6.
- [37] K. Kraiwattanawong, H. Tamon, Piyasan Praserthdam, Microporous Mesoporous Mater. 138 (2011) 8–16, https://doi.org/10.1016/j.micromeso.2010.10.001.
- [38] F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53 (1970) 1126–1130, https://doi.org/10. 1063/1.1674108.
- [39] J. Mitra, S. Jain, A. Sharma, B. Basu, Carbon 65 (2013) 140–155, https://doi.org/ 10.1016/j.carbon.2013.08.008.
- [40] J. Huang, B.G. Sumpter, V. Meunier, Chem. Eur. J. 14 (2008) 6614–6626, https://doi.org/10.1002/chem.200800639.
- [41] V. Ruiz, C. Blanco, R. Santamaria, J.M. Juarez-Galan, A. Sepulveda-Escribano, F. Rodriguez-Reinoso, Microporous Mesoporous Mater. 110 (2008) 431–435, https://doi.org/10.1016/j.micromeso.2007.06.027.
- [42] M. Zeller, V. Lorrmann, G. Reichenauer, M. Wiener, J. Pflaum, Adv. Energy Mater. 2 (2012) 598–605, https://doi.org/10.1002/aenm.201100513.