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Part 1

Project Summary



Project Summary

1.1 Variational inequality problems and some re-

lated formulations

Throughout this summary, we let H be a real Hilbert space with inner product
(-,-) and induced norm || - ||. Let C be a closed convex subset of H. Let us recall the

following two major (nonlinear) problems:

Fixed Point Problem (FPP): Let T': C — C be a mapping. An element u € C'
is a fized point of T if uw = T'u. The set of all fixed points of T" is denoted by
Fix(T).

Variational Inequality (VI): Let A: C — H. An element u € C is a solution of
a variational inequality for A if (v — u, Au) > 0 for all v € C. The set of all
solutions of a variational inequality for A is denoted by VI(C, A).

These two problems are related as follows:
FPP — VI: For a given T': C' — C, we have Fix(T) = VI(C,I —T).

VI = FPP: For a given A : C' — H, we have VI(C, A) = Fix(Pc o (I — A)) where

P¢ is the metric projection from H onto C.

To approximate a solution of the variational inequality, we are interested in both

weak and strong convergences. Recall that a sequence {x,} in H converges strongly

3



(weakly, respectively) to x € H if lim, o ||z, — 2| = 0 (lim, o (z, — z,y) = 0 for
all y € H, respectively).

In [A1], we improve three weak convergence theorems for a common fixed point
of a family of firmly nonexpansive mappings with generalized parameters. We prove
the same results for the class of k-demicontractive mapping where k£ < 1. Note that
every firmly nonexpansive is k-demicontractive mapping where £ = —1. For the case
k = 1, we use two techniques proposed by Ishikawa'!' and by Korpelevié? to attack
this problem. The methods and results in [A1] are extensively studied and extended
to a more general algorithm via using an infinite matrix. The weak convergence are
given in [A4] and the strong convergence in [A7]. In some special cases, we obtain a
simple proof of Wang’s method for split common fixed point problem? in [A8]. We
also simplify the main results of Lin and Takahashi* and of Takahashi® in [A5].

1.2 Some results in a more general setting

In a more general setting than the Hilbert space setting, we discuss some results in
a complete metric space. In [A2], we discuss the well known Caristi’s theorem where
the distance function is replaced by the w-distance. The latter notion was defined by

Kada et al.. We do not only obtain an approximation of a fixed point of a mapping

Tshikawa, Shiro. Fixed points by a new iteration method. Proc. Amer. Math. Soc. 44 (1974),

147-150.
2Korpelevié, G. M. An extragradient method for finding saddle points and for other problems.

(Russian) Ekonom. i Mat. Metody 12 (1976), no. 4, 747-756.
3Wang, Fenghui. A new method for split common fixed-point problem without priori knowledge

of operator norms. J. Fixed Point Theory Appl. 19 (2017), no. 4, 2427-2436.
4Lin, Lai-Jiu; Takahashi, Wataru. A general iterative method for hierarchical variational in-

equality problems in Hilbert spaces and applications. Positivity 16 (2012), no. 3, 429-453.
STakahashi, W. Strong convergence theorems for maximal and inverse-strongly monotone map-

pings in Hilbert spaces and applications. J. Optim. Theory Appl. 157 (2013), no. 3, 781-802.
6Kada, Osamu; Suzuki, Tomonari; Takahashi, Wataru. Nonconvex minimization theorems and

fixed point theorems in complete metric spaces. Math. Japon. 44 (1996), no. 2, 381-391.
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but also a minimizer of a certain function. We also study the similar result where the
contractive condition are restricted with respect to a directed graph in [A6].

We study some geometric properties implying the existence a fixed point of a
nonexpansive mapping in a Banach space in [A3]. This is a joint work with Professor

Ji Gao.

1.3 Some by-product of the project

During our study in this project, we also obtain the following results. According
to [A6], we can prove some new stability result in the sense of Ulam? for a mapping
whose contractiveness is restricted with respect to a directed graph in [A10]. A
classical problem of the stability result of Cauchy equation and that of the general
linear equation are obtained in [A9] and [A11].

1.4 Research outputs

In this project, we published the following 11 papers.

A1: Jaipranop, Chanitnan; Saejung, Satit. Some improvements on weak conver-
gence theorems of Chuang and Takahashi in Hilbert spaces. Chamchuri J.

Math. 8 (2016), 1-17. (No impact factor)

A2: Ardsalee, Pinya; Saejung, Satit. On some fixed point theorems of Caristi’s
type via w-distance. J. Nonlinear Conver Anal. 17 (2016), no. 11, 2355-2364.
(2017 Impact Factor: 0.56)

A3: Gao, Ji; Saejung, Satit. U-flatness and non-expansive mappings in Banach
spaces. J. Korean Math. Soc. 54 (2017), no. 2, 493-506. (2017 Impact Factor:
0.684)

"Hyers, D. H. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U. S. A.
27, (1941). 222-224.
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Abstract: Chuang and Takahashi [3] recently proved three weak convergence the-
orems for a family of firmly nonexpansive mappings with generalized parameters.
We discuss these three results for a family of k-demicontractive mappings where
k < 1. Obviously, the class of k-demicontractive mappings contains all firmly non-
expansive mappings. The situation k& = 1 is extensively studied by means of the
Ishikawa iteration and the extragradient method of Korpelevi¢. Some numerical

results for k£ =1 are presented and further discussed.

Keywords: fixed point, k-demicontractive mapping, Mann iteration, Ishikawa
iteration, extragradient method

2000 Mathematics Subject Classification: 47H09, 47TH10

1 Introduction

Let H be a real Hilbert space with inner product (-,-) and induced norm || - ||.
Let C' be a nonempty subset of H. An element = € C is called a fized point of
amapping T': C — H if x = Tx. The set of all fixed points of T" is denoted by
Fix(T).

*The author is supported by the Human Resource Development in Science Project (Science
Achievement Scholarship of Thailand, SAST)
t Corresponding author
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2 Chamchuri J. Math. 8(2016): Ch. Jaipranop and S. Saejung

Our work is inspired by the recent work of Chuang and Takahashi [3]. They
proved three weak convergence theorems for a family of firmly nonexpansive map-
pings. Their results are interesting because their iterations are established with
generalized parameters. In the previous work of Mann [8], the parameter is taken
in [0,1] while Chuang and Takahashi’s work allows the wider interval of parame-
ters in [0,2]. We continue the study of these works and extend the class of firmly
nonexpansive mappings to that of k-demicontractive mappings where k£ < 1.
Note that every firmly nonexpansive mapping with a fixed point is just (—1)-
demicontractive. Hence our work includes theorems of Chuang and Takahashi as
a special case. We also discuss the 1-demicontractive case. This class is very
interesting and beyond the scope of the work of Chuang and Takahashi. We use
two techniques in the work of Kraikaew and Saejung [7] in this situation. Some

numerical results are also presented and discussed.

2 Preliminaries

Throughout this paper, we use — and — for the strong and weak convergences,
respectively. We write x,, = x for the statement z,, =« for all n > 1.

Definition 2.1. [4] Let C be a nonempty subset of H and k be a real number.
We say that a mapping T : C — H is k-pseudocontractive if |Tx — Ty||? <
lz—yl|?>+&||(I-T)z—(I-T)y|]? forall z,y € C. If T is 1-pseudocontractive, then
it is simply called pseudocontractive. If T is k-pseudocontractive where k < 1,
then it is usually called strictly pseudocontractive. If T' is 0-pseudocontractive,
then it is called nonezpansive. If T is (—1)-pseudocontractive, then it is called

firmly nonexpansive.

Definition 2.2. [4] Let C' be a nonempty subset of H and k be a real number.
We say that a mapping T : C' — H is k-demicontractive if Fix(T) # 0 and || Tz —
p|? < ||z —p|> +k||z —Tz|? for all p € Fix(T),z € C. If T is 0-demicontractive,
then it is called quasi-nonexpansive. If T is (—1)-demicontractive, then it is called

quasi-firmly nonerpansive.

Remark 2.3. 1. Every k-pseudocontractive mapping with a fixed point is k-

demicontractive.

2. Let C be a nonempty, closed and convex subset of H. If T': C — H is
quasi-nonexpansive, then Fix(T) is closed and convex.

12



Some improvements on weak convergence theorems of Chuang and Takahashi 3

Lemma 2.4. Let C be a nonempty subset of H. Let T : C — H be a k-
demicontractive mapping. Let S := (1 — )l + oT where « is a nonnegative real
number and I is an identity mapping. Then for all x € C and p € Fix(T),

[z —pl* < |z = pl* — a1 — k — @)z — Tz|*
In addition, if a €1]0,1 — k[, then Fix(S) = Fix(T) and S is quasi-nonezpansive.

Proof. Let z € C' and p € Fix(T). We have

ISz = pl* = (1 = @)(z = p) + a(Tx — p)||?
=1 =a)|z—p|* +a|Tz - pl* - a(1 - a)|lz - Tz|?
<z =pl* — a1l = k — a)llz — Tzl

If @ €]0,1— k[, then Fix(T) = Fix(S) and S is quasi-nonexpansive. |
The following conditions are studied in [3].

Definition 2.5. Let C' be a nonempty subset of H. Let {T}, : C' — H}22, be a
sequence of mappings and 7 be a family of mappings from C' into H. Suppose
that (o2, Fix(T;,) # 0. We say that

n=1

1. {T,}52, satisfies the resolvent property if there exists a nonexpansive map-
ping T: C — H and Fix(T) = "~ Fix(T;,) and there exist ng, k > 1 such
that ||z — Tz|| < k|lz — T,z|| for all z € C and for all n > ng. In this
situation, we also say that {7}, satisfies the resolvent property with a
nonexpansive mapping T .

2. {T,}52, satisfies the AKTT-condition if the following two conditions are
satisfied:
(a) >0y sup ||Tht1z — Tpz|| < oo for each nonempty and bounded subset
z€B

B of C. (In particular, the sequence {T,,2}32, is Cauchy for all = €
c.)

(b) The mapping T : C — H given by Tz := lim, o Tpx for all z € C
satisfies the property Fix(T) = oo, Fix(T},).

n=1

In this situation, we also say that ({T7,}52,,T) satisfies the AKTT-condition.

3. ({Th}52,,T) satisfies the NST-condition if

13



4 Chamchuri J. Math. 8(2016): Ch. Jaipranop and S. Saejung

(a) Fix(T) := Npey Fix(T) € Ny Fix(T5).
(b) For each bounded sequence {z,}52, C C, lim,c0 ||2n — Tnznl = 0

implies that lim, o ||z, — T2,|| =0 forall T € T.

Remark 2.6. 1. If {T},}52, satisfies the resolvent property with a nonexpan-
sive mapping T', then ({T5,}5%,,{T}) satisfies the NST-condition.

2. If ({T,}52,,T) satisfies the AKTT-condition , then ({T,,}52,,{T}) satisfies
the NST-condition.

Proof. Let {z,}52, be a bounded sequence in C' such that lim,_, ||z, —

Thnzn| = 0. Since ({T,}22,,T) satisfies the AKTT-condition, lim,, o sup{||7z—

T,z|| : z € {z,}} = 0. In particular, lim,, o || T2 — Tp2s|| = 0. This im-

plies that
limsup ||z, — Tzy|| < lm ||zn, — Thzn|l + lim |12, — Tzs|| = 0.
n—oo n—00 n—00
Hence lim,_, ||z — T2p|| = 0. O

Let C be a nonempty, closed and convex subset of . Then for each = € H,
there is a unique element T € C' such that

lz = ] = min [|z — y]|.
Set Pox = Z. The mapping P¢ is called the metric projection from H onto C'.

Lemma 2.7. [10] Let C be a nonempty, closed and convez subset of H. Then,
forallz € H and y € C, y= Pox if and only if (y—x,2—1y) >0 forall z € C.

The following is the most general result amongst the three weak convergence
theorems of Chuang and Takahashi [3].

Theorem 2.8. [3] Let C be a nonempty, closed and convex subset of H. Let
{T, : C = C}%2L, be a sequence of firmly nonexpansive mappings. Let T be a
family of nonexpansive mappings of C into itself, which satisfies NST-condition.

Let {an}22 be a sequence in ]0,2[. Let {x,}22, be a sequence in C' defined by

1 € C arbitrarily chosen,

Tnt1:= Po (1 — ap)xn + anThx,) Yn > 1.

If liminf, 0o @n(2 — @) > 0, then x,, = T, where T € (oo, Fix(T,).

14



Some improvements on weak convergence theorems of Chuang and Takahashi 5

We recall the following facts which are of interest and play an important role

in this paper.

Lemma 2.9 (Opial’s property). Let {z,}32; be a sequence in H such that x, —
z € H. Then

liminf ||z, — 2| < liminf ||z, — y||
n—00 n— 00
for all y € H with y # x.

Definition 2.10. Let F be a nonempty subset of H. A sequence {z,}22; in H
is Fejér monotone with respect to F if ||zp11 — p|| < ||zs — p|| for all n > 1 and
peF.

Lemma 2.11. [11] Let F be a nonempty, closed and convex subset of H and
{2,352, be a sequence in H. If {x,}52, is Fejér monotone with respect to F,

then {Prx,}02, is convergent.

Lemma 2.12. Let {an}52, {22, and {c,}52, be sequences of nonnegative
real numbers such that an+1 < an — cpby, for all n > 1 and liminf, ,. ¢, > 0.
Then lim,,_, o a,, exists and fozl b, < 00. In particular, lim, . b, =0.

Proof. The proof of this lemma is rather simple but it is given here for the sake

of completeness. Note that a,y+1 < a, for all n > 1. Thus lim, . a, exists.
k
n=1

Moreover, ¢pb, < ap — apt1. This yields > cnby < a1 —agy1 < ap. So
ZZC:1 Cnbn < ap < 00. Since liminf, . ¢, > 0, there are an integer ng > 1 and
> b, <
n=ng N =

> g Cnbn < 00. Then 337 | b, < 00 and hence limy, o0 by = 0. O

a positive real number b such that b < ¢, for all n > ng. Thus b

3 Results

Definition 3.1. Let C' be a nonempty subset of H. A mapping T : C — H
satisfies the demiclosedness property if © = Tx whenever {z,}22, is a sequence
in C such that z, =z € C and z,, — Tx, — 0.

We say that a family 7 mappings from C into H satisfies the demiclosedness
property if T satisfies the demiclosedness property for all 7€ T .

Lemma 3.2. Let C' be a nonempty, closed and convex subset of H. Let {T) :
C — M}, be a sequence of mappings. Let T be a family of mappings of C into
H satisfying the demiclosedness property. Assume that ({T,,}°2,,T) satisfies the

15



6 Chamchuri J. Math. 8(2016): Ch. Jaipranop and S. Saejung

NST-condition. Let {x,}52, be a sequence in C. If lim, oo ||z — p|| ezists for
all p € Ny Fix(Ty,) and limy_o0 |2 — Than| = 0, then z,, — T for some
z € (oo, Fix(T,,).

Proof. First, we show that all weak cluster points of {z,}52, belong to the set
Moo, Fix(T},). To see this, let {z,,}72; be a weakly convergent subsequence of
{zn}22,. (Such a subsequence exists because {z,}72; is bounded.) We assume
that x,, — u for some u € C. Let T € T. Since ({T,,}52,,7) satisfies the
NST-condition, lim,_,« |2, — T2y|| = 0 and hence limy_,o0 [|Zn, — TTn, || = 0.
Since T satisfies the demiclosedness property, v € Fix(T). This implies that
u € Fix(T) =Ny, Fix(T,).

Finally, we show that the whole sequence {z,}22; converges weakly to some
Fix(7,). To see this, it suffices to prove that the set of
all weak cluster points of {z,};%, is a singleton. Suppose that {zn,}52,; and

oo

element in the set (N~ ;

{zp, }72, are two subsequences of {z,}32; which converge weakly to v and v,
respectively. From the first part of the proof, we obtain that u,v € (,—; Fix(T5,).
In particular, both limits lim,,_, ||z, — u|| and lim,_« ||z, — v|| exist. Suppose

that u # v. By Opial’s property, we obtain the following contradiction:
liminf ||y, —ul| < lm ||z, — v
j—o0 j—o0
= 1 _
Jm 2y, —of
< lim oy, —ul
= liminf ||2,,; — u.
j—oo

So u =wv. Hence z,, = T for some T € (o Fix(T},), as desired. |

3.1 k-demicontractive mappings where £k < 1

Theorem 3.3. Let C be a nonempty, closed and convex subset of H. Let {T, :
C — H}2, be a sequence of ky -demicontractive mappings where k, < 1 for all
n>1. Let T be a family of mappings of C into H satisfying the demiclosedness
property. Assume that ({T,}32,,T) satisfies NST-condition. Let {a,}52, be a
sequence in 10,1 — kp[. Let {x,}52, be a sequence in C defined by

1 € C arbitrarily chosen,

Tnt1 = Po (1 — ap)xn + 0 Tha,) V> 1.

16



Some improvements on weak convergence theorems of Chuang and Takahashi 7

If liminf, o an (1 — ky) — i) > 0, then z, = T for some T € (-, Fix(T},).

Moreover, T = limy, o0 P>, Fix(T,,)%n -

Proof. Let p € Mne, Fix(T3,). Let S, := (1 — o)l + o, T, for all n > 1. By
Lemma 2.4, we get the following statements:

241 _pH2 < |Shwn — pH2 < lan - pH2 —an((1 = ky) — ap)llzn — Tn"En”zv

Fix(S,) = Fix(T,), and S,, is quasi-nonexpansive for all n > 1. By Lemma 2.12
with a, = ||z, — p||?, bn = |20 — Thzn||? and ¢, = o, (1 — k) — o), we get
that limy, 0 ||zn — p|| exists and limy, oo || — Thzyn|| = 0. By Lemma 3.2, we
have x, — T, where T € (o, Fix(T,).

Note that {z,}32, is Fejér monotone with respect to (., Fix(7,). Since
Fix(T},) is closed and convex for all n > 1, it follows that (,~; Fix(T},) is closed
and convex. By Lemma 2.11, {Pﬂi"zl Fix(Tn)z"}?ﬂ converges to a point ¢ in
Moo, Fix(T,) . It follows from Lemma 2.7 that

(#n — Pn=_, Fix(T,)%n, P2, Fix(1,)%n — T) > 0.

Since z, =T and Pree | Fix(T,)Tn = ¢, we have

(@0 — Pz, mis(r,)Tny Proe, Fis(r,)@n — T) = (T = ¢,¢ = 7) = — [T — || > 0.
This implies that T = ¢q. Hence lim, 00 P> | Fix(T,,)Tn =T O
Set k, = —1 in Theorem 3.3, we obtain the following corollary.

Corollary 3.4. Let C be a nonempty, closed and convex subset of H. Let {T, :
C — H}2, be a sequence of quasi-firmly nonexpansive mappings. Let T be a
family of mappings of C' into H satisfying the demiclosedness property. Assume
that ({T,,}52,,T) satisfies NST-condition. Let {o,}22; be a sequence in 10,2][.
Let {x,}52, be a sequence in C defined by

z1 € C arbitrarily chosen,
ZTnt1 = Po (1 — an)xn + anThx,) Vo> 1.

If liminf, o0 (2 — @) > 0, then z, = T for some T € (.-, Fix(T,) and

Z = lim, Pﬂ;'c’zl Fix(Ty,)%n -

Remark 3.5. Our Corollary 3.4 improves Theorem 3.3 of [3] in the following

ways.
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(a) Since every firmly nonexpansive mapping with a fixed point is quasi-firmly

nonexpansive, Corollary 3.4 deals with a wider class of mappings.

(b) The family 7 in our Corollary 3.4 is more general than the family 7 of
nonexpansive mappings in Theorem 3.3 of [3]. In fact, it is known that

every nonexpansive mapping satisfies the demiclosedness property.

(c¢) All mappings in Theorem 3.3 of [3] are self-mappings while in our Corollary

3.4 they are nonself.

(d) We obtain a further information about the weak limit Z of the sequence

{z, )52, . In fact, we can conclude that T = limy, ;00 P | Fix(T,)%n -

oo
n=1

From Remark 2.6 and Theorem 3.3, we obtain the following two corollaries
which improve Theorems 3.1 and 3.2 of [3], respectively.

Corollary 3.6. Let C be a nonempty, closed and convex subset of H. Let {T, :
C — H}2, be a sequence of ky -demicontractive mappings where k, < 1 for all
n > 1. Assume that {T,,}5>, satisfies the resolvent property with a nonexpansive
mapping T'. Let {a,}52, be a sequence in 0,1 — ky,[. Let {z,}2, be a sequence
in C defined by

x1 € C arbitrarily chosen,

Tnt1 = Po (1 —ap)zn + anThz,) Yn > 1

If iminf, o0 an((1 — kn) — an) > 0, then z, — T for some T € [\, Fix(Ty)
and T = lim7L—>oo Pﬂ;’czl Fix(Ty)Tn -

Corollary 3.7. Let C be a nonempty, closed and convex subset of H. Let
{T,, : C = H}SL, be a sequence of k,-demicontractive mappings where k, < 1
for all n > 1. Assume that ({T,,}52,,T) satisfies the AKTT-condition and T
satisfies the demiclosedness property. Let {a,}22, be a sequence in 10,1 — k,|[.

Let {z,}52, be a sequence in C defined by

x1 € C arbitrarily chosen,

Tnt1 = Po (1 — ap)zn + anThe,) Yn > 1

If liminf, o o, ((1 — k) — @) > 0, then x,, = T for some T € ﬁf;l Fix(T,)

and T = limn—»oo Pﬂle Fix(Tn)Tn -

18
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3.2 1-demicontractive mappings

Definition 3.8. Let C' be a nonempty subset of H# and let L be a positive real
number. A mapping T : C — H is L-Lipschitzian if |Tz — Ty|| < L|jz — y|| for
all z,y e C.

=S}
n=1

It is known that the sequence {z;, defined in Theorem 3.3 fails to converge
even T,, = T where T is 1-demicontractive and L-Lipschitzian (see [2]). We
modify the iteration in Theorem 3.3 to obtain two weak convergence theorems,
that is, Theorems 3.10 and 3.12. We now restrict ourselves from the nonself
mappings to the self ones. The first result is based on the Ishikawa iteration [5].

The following lemma is modified from [7].

Lemma 3.9. Let C' be a nonempty, closed and conver subset of H. Let T : C' —
C' be an L-Lipschitzian and 1-demicontractive mapping. Let «, B € [0,1]. Define
the mappings S and U by S:=(1—a)I+oT and U := (1 — B)I + BTS. Then
for all x € C and p € Fix(T),

Uz —pl* < o = pl* + aB(L*® + 20 = V||l — Ta|* + B(8 — a) o — TSz,

In addition, if 0 < 8 < a <

nonexpansive.

ﬁ, then Fix(U) = Fix(T) and U is quasi-

Proof. Let z € C and p € Fix(T). Then

[Tz = pll* = 11 = B)(z — p) + BT Sz — p)|?
= (1= B)llz = pl* + BITSz — pl* — (1 - B)Bllz — TSz

Since T is 1-demicontractive, ||T'Sx —p||> < ||Sz—p|> + Sz —TSz||?. Note that

ISa = pl2 = |1 - &)@ — p) + Tz — p)|?
= (1= )z~ pl? + ol Tz — p|* - (1 - a)aflx - Ta|?
< (1= a)lle = pl? + allz — plI? + allz — Tz|]? - (1 — a)alje — Ta?

|z = pl* + o}z — Ta||;

19



10 Chamchuri J. Math. 8(2016): Ch. Jaipranop and S. Saejung

and

Sz — TSz||* = ||(1 — @)(x — TSx) + a(Tx — TSz)||?

)|z — TSz||> + a||Tx — TSz|* — (1 — a)a|z — Tx|?
)|z — TSz||> + aL?||z — Sz|? — (1 — a)a|z — T=|?
)|z — TSz||> + 2 L2||z — Tz|* — (1 — a)allz — Tz|?
)|z — TSz||> + a(L?*a® + a — 1)||z — Tz|*.

(
= (1 _
<(1-
= (1 _
=(1-
So TSz —p|? < ||lz — p|? + a(L2a2 + 20 — 1) ||z — Tz|? + (1 — o) |z — TS|
We get that

Uz = p|* < |l = plI* + aB(L*® + 20 = 1)z — T[> + B(8 — a)[lo — TSz*.

Ifo<p<ax< ﬁ, then L2a? + 2a — 1 < 0. This implies that Fix(7T) =
Fix(U) and U is quasi-nonexpansive. O
Theorem 3.10. Let C be a nonempty, closed and conver subset of H. Let {T), :
C — C}22, be a sequence of L-Lipschitzian and 1-demicontractive mappings. Let
T be a family of mappings of C' into itself satisfying the demiclosedness property.
Assume that ({T,}52,T) satisfies NST-condition. Let {a,}52, be a sequence
in ]0,1/(VL>+ 1+ 1)[ and {8,332, be a sequence in ]0,cv,]. Let {z,}32, be a
sequence in C' defined by

1 € C arbitrarily chosen,

Yn = (1 — an)n + anThn,

Tp41 = (1 - Bn)xn + ﬁnTnyn vn > 1.
If liminf, o0 Bn(1 — 20y, — L2a2) > 0, then z, — T for some T € Moo, Fix(T,)
and T = linlnﬁoo Pﬂ?f:l Fix(Tn)zn .

Proof. Let p € (N, Fix(T},). Let Sp := (1—an)l+ 0, T, and U, := (1—8,)I +
BnT, Sy for all n > 1. Note that y, = S,, and z,4+1 = U,x, forall n>1. By
Lemma 3.9, |Un@yn —p||? < || — pl|? + 82(L?02 + 200, — 1) ||z, — Ty ||* and U,
is quasi-nonexpansive and Fix(U,,) = Fix(T},). Thus

llZn41 71’”2 <y, *pHQ + 52([/20[% + 20, — D@, — Tuxn”2~

Note that L?a? +2a, —1 < 0 for all a, € ]0,1/(vL2+1+ 1)[. By Lemma 2.12,
we get that lim,_,« ||z, — p|| exists and lim, o [|xn, — Thzy,| = 0. By Lemma

3.2, we have z,, = T for some 7 € (-, Fix(T},).
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Since Fix(U,) = Fix(T,,) and U, is quasi-nonexpansive, Fix(7},) is closed and
convex for all n > 1. So (,~; Fix(T},) is closed and convex. Note that {z,}52 is

Fejér monotone with respect to (-, Fix(7},). The rest of the proof is essentially

the same as that of Theorem 3.3, so it is omitted. O

Next, we use the extragradient technique of Korpelevi¢ [6] for this situation.
‘We observe the following inequality which plays an important role in the next
theorem. Note that this result is more general than the one in [7].

Lemma 3.11. Let C' be a nonempty, closed and convex subset of H. Let T : C —
C be an L-Lipschitzian and 1-demicontractive mapping. Let « € [0,1]. Define
the mappings S and U by S := (1 —a)l +aT and U := Po(I — aS + aTS).
Then for all x € C and p € Fix(T),

Uz = pl* < llz = p|* = (1 = 0*(1 + L)*)a?|lz — Ta|.

In addition, if o € ]0 [, then Fix(U) = Fix(T) and U is quasi-nonezpansive.

1
P THL
Proof. Let z € C and p € Fix(T).

Uz —p|? < |lz — oSz + oTSz — p||* — ||# — aSz + TSz — Uzl
= |z —p—a(Sz —TSz)|? - |z — Uz — a(Sz — T'Sz)|?
= ||z - p|® = |z — Uz|* + 2a{p — Uz, Sz — T'Sz).

Since T is 1-demicontactive, (p — Sz, Sz —T'Sx) <0. So

(p—Usx,Sx —TSx) = (Sx — Uz, Sv — TSz) + (p — Sz, Sz — TSxz)
< (St —Usx, Sz —TSxz).

Note that ||z — Uz||? = ||z — Sz||® + 2(z — Sz, Sz — Ux) + ||Sz — Uz||?. Then

Uz —p||® < ||z —p|?® = ||z — Sz||®> — 2(x — Sz, Sz — Uz) — ||Sz — Uz|?
+2a(Sz — Uz, Sx — TSx)
= llz = pIP — |}z — Sz|* — Sz — Ua]?
+2(Sz — Uz, a(Sz — TSz) — (z — Sx)).
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We consider

2(Sz — Uz, a(Sz — TSz) — (x — Sz))
=2a(Sz —Ux, Sz — TSz — (x — Tz))

< 2a|Sz — Ux||||Sz — TSz — (x — Tx)||
<2a||Sz — Uz|(||lx — Sz| + |Tx — TSz||)
<2a(l+ L)||Sz — Uz||||z — Sz||

< |8z — Ux|)® + o*(1 4+ L)?||= — Sz|2.

We have that

Uz —p|? < ||z = p|?* = (1 = a*(1 + L)?) |z — Sz|®
=z —pl* = (1 - a®(1 + L)*)o®||lz — Tz||*. 1)
If @ €]0,1/(1 + L)[, then 1 — a?(1+ L)% > 0. From (1) , we get that Fix(T) =
Fix(U) and U is quasi-nonexpansive. O
Theorem 3.12. Let C be a nonempty, closed and convex subset of H. Let {T), :
C — C}22, be a sequence of L-Lipschitzian and 1-demicontractive mappings. Let

T be a family of mappings of C into itself satisfying the demiclosedness property.
Assume that ({T,,}52,,T) satisfies NST-condition. Let {a,,}52, be a sequence in

n=1»
10,1/(1+ L)[. Let {x,}32; be a sequence in C defined by

1 € C arbitrarily chosen,

Yn = (1 - a’VL)ITL + anTnITn

Tnt1 = Po(Tn — anyn + anThyn) Yn > 1.
If liminf, oo (1 — an(l + L))a, > 0, then x, = T for some T € (oo, Fix(T},)
and T = lim,_,s Pﬂ?f:l Fix(Tn)Tn -

Proof. Let p € oo, Fix(T,,). Let S, == (1 — an)! + o, T;, and U, := Po(I —
an)Sp + @, T, S, for all n > 1. Note that y, = Spz, and z,41 = Uy, for all
n > 1. By Lemma 3.11, we get that ||Unz, —pl|®> < [|on —pl|> — (1 — a2(1 +
L)?)a2||zn —Thxn||? and U, is quasi-nonexpansive and Fix(U,,) = Fix(7},). Thus

541 *p\lz < lzn — sz -(1- ai(l + L)z)aiuxn - TnInH2~

By Lemma 2.12, we get that lim,, o ||z, —p|| exists and lim,,_,o0 || 25 —Tn2y|| = 0.
By Lemma 3.2, we have z,, — T for some 7 € (., Fix(T},).
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Since Fix(U,) = Fix(T,,) and U, is quasi-nonexpansive, Fix(7},) is closed and
convex for all n > 1. So (,~; Fix(T},) is closed and convex. Note that {z,}52 is
Fejér monotone with respect to (-, Fix(7},). The rest of the proof is essentially

the same as that of Theorem 3.3, so it is omitted. O

4 Numerical Results

Finally, we show some numerical results for Theorems 3.10 and 3.12. The following
example is taken from [2]. Let H be the two-dimensional Euclidean space R2. If
z = (a,b) € H, define z+ € H to be (b, —a). Let K := K; U K> where

Ky :={zeMH:|z|| <1/2} and Ko :={z € H:1/2 < |jz|| < 1}.
Define T': K — K by

T z+at if x € Ky,
T =
H;—Hf.r+xi if x € Ks.

Then K is a closed and convex subset of H. Moreover, T' is 5-Lipschitzian and
1-demicontractive mapping with Fix(T) = {(0,0)}. For computational purposes,
it is of interest to know

(a) how the convergence behaviour of {z,,}52; depends on the choice of {a, }32,
in Theorems 3.10 and 3.12;

(b) which of the iterations in Theorems 3.10 and 3.12 is more efficient.

To illustrate (a), we discuss Theorem 3.10 with z; = (1,0) and «a,, = 3, =
a. To guarantee the convergence of {z,}52,, we are allowed to choose a €
10,1/(v/26 4+ 1)[. Figures 1 and 2 show that the larger choice «, the closer the
term x, is to the fixed point (0,0). For Theorem 3.12, we set z; = (1,0) and
a, =a €10,1/6].

To illustrate (b), let z; = 2} = (0.1,0) and let {z,}32, and {z),}°2, be
defined by the iterations in Theorem 3.10 with «,, = 8, = o and Theorem 3.12
with a, = a, respectively. Note that ]0,1/(v/26 + 1)[ C ]0,1/6[. Figure 3 shows
that in this situation the iteration in Theorem 3.12 is more efficient than the one
in Theorem 3.10.
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Table 1: The value of ||z, —(0,0)| where z,, is defined by the iteration in Theorem

3.10

Chamchuri J. Math. 8(2016): Ch. Jaipranop and S. Saejung

Qp = Ppn =«

n

0.004 0.007 0.080 0.160 0.163
1 1 1 1 1 1
2 9.96e—1 9.93e—1 9.23e—1 8.49e—1 8.46e—1
50 8.38e—1 7.5le—1 4.67e—1 3.6le—1 3.57e—1
100 7.26e—1 6.24e—1 4.09e—1 24le—1 2.36e—1
500 5.09e—1 5.00e—1 1.42e—1 9.37e—3 8.46e—3
3
S
g
5
2
s

Figure 1: The behaviour of |z, — (0,0)|] in Theorem 3.10 and the choice of

{an}niy

Table 2: The value of ||z, —(0,0)| where z,, is defined by the iteration in Theorem

3.12

Iteration number

) ap, =«

" 770004 0010 0080 0160  0.166

1 1 1 1 1 1

2 9.96e—1 9.90e—1 9.20e—1 8.70e—1 8.660—1
50 838e—1 6.88c—1 4.62—1 3.0de—1 2.9le—1
100 7.27e—1 5.69%—1 3.94e—1 1.62e—1 1.47e—1
500 5.09e—1 5.00e—1 1.10e—1 1.03e—3 6.45¢—4
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Value of ||xn-(0,0)||

Iteration number

Figure 2: The behaviour of ||, — (0,0)|| in Theorem 3.12 and the choice of

{on}ny

Table 3: The values of ||z, — (0,0)]| and |z}, — (0,0)]|
oy = B, = a (Theorem 3.10)  «,, = a (Theorem 3.12)

0.160 0.163 0.160 0.166

1 le—1 le—1 le—1 le—1
2 9.92e—2 9.92e—2 9.87e—2 9.87e—2
50  6.72e—2 6.65e—2 5.39e—2 5.14e—2
100 4.48e—2 4.39e—2 2.86e—2 2.61le—2
500 1.74e—3 1.58e—3 1.83e—4 1.14e—4

Value of |[xn-(0,0)|| and ||x'n-(0,0)]|

Iteration number

Figure 3: Comparative values of ||z, — (0,0)|| and ||z}, — (0,0)]|

25
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ON SOME FIXED POINT THEOREMS OF CARISTI’'S TYPE VIA
w-DISTANCE

PINYA ARDSALEE" AND SATIT SAEJUNG

Dedicated to Professor Tomds Dominguez Benavides on his 65th birthday

ABSTRACT. We slightly improve two fixed point theorems proved by Kada, Suzuki
and Takahashi [4]. Using our new improvement results, we extend a fixed point
theorem of Chuang, Lin and Takahashi [2] by means of w-distance and we also
deduce a result of Takahashi, Wong and Yao [7] from our result.

1. INTRODUCTION

In 1976, Caristi [1] proved the following fixed point theorem which is an extension
of the well-known Banach fixed point theorem.

Theorem 1.1 (Caristi). Let (X,d) be a complete metric space and let T : X — X
be a mapping such that

dz,Tz)+ f(Tz) < f(z) VrelX,

where f @ X — (—o00,00] is a proper, bounded below and lower semicontinuous
function. Then there exists w € X such that u=Tu and f(u) < co.

There are many generalizations of Theorem 1.1. One of them which we concern
is the result using w-distances introduced by Kada, Suzuki and Takahashi [4].

Let (X,d) be a metric space. Recall that a function p : X x X — [0,00) is a
w-distance if the following conditions are satisfied:

(wl) p(x,y) < p(x,2) + p(z,y) for all z,y,z € X;

(w2) For each x € X, the function y +— p(z,y) is lower semicontinuous;

(w3) For each € > 0 there exists § > 0 such that d(y, z) < ¢ whenever p(z,y) <
and p(z,z) < 4.

It is obvious that d is a w-distance. Using this notion, the following two interesting
results were proved in [4].

Theorem 1.2 (Kada, Suzuki and Takahashi). Let (X.d) be a complete metric
space. Let T : X — X be a mapping. Suppose that the following conditions hold:

2010 Mathematics Subject Classification. 47H09, 47H10, 54E50.

Key words and phrases. Fixed point theorem, contractive condition, w-distance, complete metric
space.
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(al) There exist a proper and bounded below function f : X — (—o00,00] and a
w-distance p such that
f(Tz)+p(z,Tz) < f(z) VzeX;
(a2) The function f is lower semicontinuous.
Then there exists u € X such that u = Tu and f(u) < 0.

Obviously, Theorem 1.2 is an extension of Theorem 1.1.

Theorem 1.3 (Kada, Suzuki and Takahashi). Let (X,d) be a complete metric
space. Let T : X — X be a mapping. Suppose that the following conditions hold:

(bl) There exist a number r € [0,1) and o w-distance p such that
p(Tx, T?z) < rp(z, Tx) Yz € X;
(b2) For each y € X withy # Ty,
inf{p(z,y) + p(z,Tz) 12 € X} > 0.
Then there exists u € X such that u = Tu. Moreover, if v = Tv, then p(v,v) = 0.

The purpose of this paper is to present two fixed point theorems which slightly
extend Theorems 1.2 and 1.3 respectively. Using our two results we discuss two
interesting results. The first result proved by Chuang, Lin and Takahashi [2] is
extended by replacing the metric by a w-distance. As a consequence of a particular
case of this result with some additional result we deduce the second result recently
proved by Takahashi, Wong and Yao [7].

Since we work on the w-distance, we also need the following lemma proved in [4].

Lemma 1.4. Let (X,d) be a metric space and let p be a w-distance on X. Let {x,}
and {yn} be sequences in X, let {an} and {Bn} be sequences in [0,00) converging
to 0, and let x,y,z € X. Then the followings hold:
(&) If p(xn,yn) < an and p(xy, z) < B, for any n € N, then {y,} converges to
z;
(b) If p(zn, zm) < v for any n,m € N with m > n, then {z,} is a Cauchy
sequence.

2. SOME EXTENSIONS ON THEOREM 1.2 AND THEOREM 1.3

Let (X, d) be a metric space and T : X — X be any mapping. Let us compare
(al) of Theorem 1.2 and (bl) of Theorem 1.3. Suppose that (bl) holds, that is,
there exist a number r € [0,1) and a w-distance p such that

p(Tx, T%z) < rp(x, Tx) vz € X.
It follows then that
f(Tz) +plx, Tz) < f(z),
where

fl) = T ple, ).

It is clear that this f is proper and bounded below. However, we do not know that
whether or not f is lower semicontinuous.
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Now, if we assumc that f(z) = 117, (z,Tx) is lower scmicontinuous, then we
have (b2) of Theorem 1.3. To see this, suppose that f is lower semicontinuous and
let us assume that

inf{p(z,y) +p(z,T2): 2 € X} =0
for some y € X. Then there exists a sequence {x, } in X such that lim, 00 p(zp,y) =
0 and lim,, o, p(2p, Ty) = 0. It follows from (w3) of p that lim,,—, - d(Txy,y) = 0.

Since f is lower semicontinuous, we have
f(y) <liminf f(Tx,)
n—oQ

= liminf p(Txzy, TQLU,L)
—r n—oo

IN

liminf p(zp, Tx,) = 0.

—r n—oo
This implies that p(y, Ty) = 0. Now, we have
lim p(z,, Ty) < lim p(za,y) +py, Ty) = 0.
n—o0 n—oo

By (w3) of p, we get y = Ty. So (b2) is satisfied.

It is interesting to discuss a fixed point theorem in the presence of conditions (al)
and (b2). The following theorem is referred as Theorem 2.1. It is an extension of
Theorem 1.3.

Theorem 2.1. Let (X, d) be a complete metric space. Let T : X — X be a mapping.
Suppose that the following conditions hold:
(al) There exist a proper and bounded below function f : X — (—oo0,o¢]| and a
w-distance p such that
f(Tz) +p(x,Tz) < f(z) VoeX:
(b2) For each y € X withy # Ty,
inf{p(z,y) + p(z,Tz) : 2 € X} > 0.
Then, for each x € X with f(x) < oo, the Picard sequence {T"x} converges to a
fized point of T'.
Lemma 2.2. Let (X,d) be a complete metric space and let p be a w-distance on
X. Let {a@n} be a sequence in X. If Y o o p(@n, Tpy1) < 00, then {zn} is a Cauchy
sequence and hence limy,_soo d(zy, 2) = 0 for some z € X. Moreover, we also have
hnln—>cx; P(l‘m Z) = 0

Proof. For each natural numbers n and k, we have

n+k—1 o0
p(x'nymn,+k) < Z p<xja$j+1) < Zp(l‘j»xﬂ»l)'
Jj=n Jj=n

Since 3% p(n, @pt1) < 00, it follows from Lemma 1 with a, = 3772, p(, 7j41)
that {z,} is a Cauchy sequence. So there exists an element z € X such that
lim,, o0 d(2p, 2) = 0. Moreover, for each natural number n, we have

o9}
p(zy, 2) <liminf p(x,, 2o k) < Zp(xj,wj+1).
k—oco :
j=n
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Again, it follows from > 7% o p(y, Zn41) < 00 that limy oo p(2n, 2) = 0. a
Proof of Theorem 2.1. Let o € X be such that f(zg) < oo. It follows from (al)
that

f(fvn+l> er(l?m mn+1) < f(ln)
for each n > 0 where 2,41 = Tz, for each n > 0. Hence {f(z,)} is a nonincreasing
sequence. Since f is bounded below, the limit lim, .., f(x,) exists (and finite).

Consequently, > o2 o p(2n,2ni1) < co. By Lemma 2.2, there exists an element
w € X such that lim,, e p(2,, u) = 0. Moreover, we have

inf{p(z,u) +p(z,Tx):z € X} < li_)rn p(zp,w) + p(Tn, Tpe1) = 0.
n—oo
It follows from (b2) that u = T'u. This completes the proof. a
We slightly extend Theorem 1.2 by weakening the lower semicontinuity of f.

Definition 2.3. Let (X,d) be a metric space and let p be a w-distance. We say
that a mapping f : X — (—00,o0] is lower semicontinuous type if

lim d(yn, z) = lim p(yn,z) =0 = f(z) <liminf f(y,)
n—oo n—2o0 n—oo
whenever {y,} is a sequence in X and z € X.
Remark 2.4. Obviously, lower semicontinuity = lower semicontinuity type.

Theorem 2.5. Let (X, d) be a complete metric space. LetT : X — X be a mapping.
Suppose that the following conditions hold:
(al) There exist a proper and bounded below function [ : X — (—o0, 0] and a
w-distance p such that for all z € X satisfying
J(T2) + ple. Ta) < f(a);
(a2*) f is lower semicontinuous type.
Then, there exists an element u € X such that uw = Tu and f(u) < co. In particular,

p(u,u) =0.

Proof. The proof is very similar to the original one but it is presented here for the
sake of completeness. Let S : X — 2% be a mapping defined by

S(y) ={we X : f(w) +ply,w) < f(y)} VyeX.
It is noted that Ty € S(y) for all y € X. Let zy € X be such that f(z¢) < co. Let
{zn} be an iterative sequence such that z,41 € S(x,) and

1
(Tpa1) < inf f +— Vn>0.
f(@ns1) uelél(wn)f(u) 1 n>0

Since 41 € S(z,), we obtain f(xp41) + p(2n, Tpt1) < f(xy). Since f is bounded
below and { f(2,)} is nonincreasing, the limit lim,,—, o f () exists (and finite) which
implies that >_>° ) p(Zn, Tns1) < 00. It follows from Lemma 2.2 that there is u € X
such that limy,—e0 d(Zn, 1) = limp— 00 p(an, u) = 0. By (a2*), we have

f(u) < laninf f().
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Note that if z € S(y) and y € S(z), then x € S(2). Hence z,+x € S(z,) for all
n >0 and k > 1, that is,

F@nti) + P, ) < Fln).
In particular, we have
S () + Pl ) < Hgninf £ (1) + P, T i)
< f(an) Yn>o.

This implies that w € Nyp>05(xy) and f(u) < co. Suppose that there is an element
z € Mp>05(xy). Note that f(z) < oo and

) 1
f(2) +p(zni1,2) £ f(zni1) < uegl(g")f(u) toaa s

1
< f(z _ > 0.
f()+n+1 Vn >0

Then lim,—s 00 p(zpn,2) = 0. Since lim, o0 p(zn,u) = 0, we have v = z. Hence
{u} = Np>0S(xn). Since Tu € S(u) C Np>0S(xy), we get u = Tu. O

3. DISCUSSIONS ON SOME RECENT FIXED POINT THEOREMS WHICH ARE
DEDUCED FROM OUR THEOREMS 2.5 AND 2.1

We recall the following concept first. Let [°° be the Banach space of bounded
real sequences with the supremum norm. A linear functional p on I™ is called a
mean if p(e) = ||u|| = 1, where e = (1,1,1,...). For z = (21,22, 23,...), the value
() is also denoted by pun(2y,).

The following result was recently proved by Chuang, Lin and Takahashi (see [2,
Theorem 3.1]).

Theorem 3.1 (Chuang, Lin and Takahashi). Let (X, d) be a complete metric space,
let 1 be a mean on 1>, let {z,} be a bounded sequence in X, and let ¥ : X —
(—00,00] be a proper, bounded below, and lower semicontinuous function. Let T :
X — X be a mapping. Suppose that there exvists m € NU {0} such that
(3.1) find(zn, T™y) +(Ty) < ¢(y), Yy € X.
Then there exists an element w € X such that

(a) prnd(zn,u) =0;

(0) u = limg_yoo T*y for all y € X with ¥(y) < oo:

(¢) Y(u) = inf{y(v) i v e X};

(d) u="Tu;

(e) If there exists v € X with v ="Tv and (v) < 00, then u =v.
Remark 3.2. It should be noted that Theorem 3.1 of [2] is not stated as above. In
fact, in place of (d) and (e) above, it was stated there that

(d’) w is a unique fixed point of T'.
We find that (d’) is not correct.
Remark 3.3. Theorem 3.1 is very interesting because:

e The contractive condition is expressed in terms of means. Various mappings
recently introduced in [3, 5, 6] satisfy this condition.
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e The conclusion of Theorem 3.1 simultaneously presents the existence a com-
mon solution of the problem of finding a fixed point of a given mapping and
that of finding a minimizer of a given lower semicontinuous function.

e The solution above is unique and can be approximated by a simple iterative
sequence.

We will generalize Theorem 3.1 by replacing a metric d in (3.1) by a symmet-
ric w-distance p. We start with the following lemma which does not require the
completeness of the space.

Lemma 3.4. Let (X,d) be a metric space and p be a w-distance. Let T : X — X
be a mapping and let ¢ : X — (—oc,00] be a proper and bounded below function.
Suppose that there exist u € X and m € NU {0} such that p(u,u) =0 and

p(u, T"y) + (Ty) < ¢Y(y) Vy e X.

Then

(a) limy_oo T*y = u for all y € X with ¥(y) < oo,

(b) If there exists v € X with v =Tv and ¢ (v) < oo, then u = v;
(¢) If m#0, u=T"u and P(u) < 0o, then u = Tu;

(d) If + is lower semicontinuous, then ¥(u) = inf{y(v) : v € X}.

Proof. Let y € X be such that 1(y) < oo. So we obtain p(u, T™"*y) < (T*y) —
Y(TF+1y) for all k > 0. Hence

o

S, T Fy) < y) - lim 9(T*y) < co.
k—00

k=0

So limg o0 p(u, Tky) = 0. Tt follows from Lemma 1.4 and p(u, u) = 0 that limy_,, 7%y =
u, that is; (a) holds.

(b) and (c) follow immediately from (a).

To see (d), we assume that v is lower semicontinuous. Note that ¥(Ty) < ¢ (y)
for all y € X. It follows from (a) that

w(u) <lminfo(Try) <e(y), Yy e X with w(y) <oo.

That is, ¥(u) = inf{y(y) : y € X}. O

3.1. An improvement of Theorem 3.1 where d is replaced by a symmetric
w-distance p.

Lemma 3.5. Let (X,d) be a metric space and p be a w-distance. Let {xn} be a
sequence in X such that {p(zy,, )} is bounded for some x € X. Let u be a mean on
[>°. Then

lim p(yg,y) = Lim p(y,yr) =0 = Lm pnp(@n, yr) = pnp(Tn, y)

k—o0 k—oc k—o0

whenever {yi} is a sequence in X and y € X.
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Proof. Since {p(xy,x)} is bounded for some x € X, it follows that p,p(z,,2) is
well-defined for all z € X. Let {yx} be a sequence in X and y € X such that
limy o0 (Y, ¥) = limp—oo p(y, yi) = 0. It follows that

tnp(Tn,y) < lminf(pap(@n, yr) + p(Ys. v))

k—oo

= liminf pnp(xn, yx)
k—oo

< limsup pnp(Tn, Yr)
k—o0

< pinp(n,y) + limsuap p(y. yi)

k—oc

= tnp(Tn, Y).
a
We are ready to prove the following result via Theorem 2.5.

Theorem 3.6. Let (X,d) be a complete metric space, let p be a symmetric w-
distance, let pu be a mean on 1, let {x,} be a sequence in X such that {p(zn,x)} is
bounded for some x € X and let ¢ : X — (—o00,00] be a proper, bounded below and
lower semicontinuous function. Let T : X — X be a mapping satisfying that there
exists m € NU {0} such that
(3.2) tnp(zn, T™y) +9(Ty) < d(y), Yy € X.
Then there exists an element u € X such that

(@) pnp(zn,u) = 0;

(b) w = limy_,00c TFy for all y € X with (y) < oo;

(¢) ¥(u) =inf{y(v) :ve X};

(d) w="Tu;

(e) If there exists v € X with v =Tv and ¢ (v) < 0o, then u = v.
Proof of Theorem 3.6 where m # 0. Since ¥(Ty) < ¢¥(y) for all y € X, we have
(T™y) < ¥(Ty). Then
(3.3) pnp(an, T™y) + O(T™y) < p(y) vy e X
We set

_ 1 ~ 1
Pw.9) = 3p(a,y) and Bly) = B(y) + Sp(any) Voy € X,

Obviously, p is a w-distance and & is lower semicontinuous type with respect to p.
Note that, for each y € X, we have

poy Nt 1 1
ply, T™y) +o(T™y) = 5p(y, T™y) +(T™Y) + S pap(zn, T"Y)

1 1 ‘ 1
< §unp(-7:n, y) + §an(wm T™y) +9(Ty) + Qunp(wm T™y)

1 ,
Eunp(zm Y) + P (zn, T™y) + Y(Ty)

1
< §unp(xm y) +¥(y)

b(y).
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Using Thcorem 2.5, there is v € X such that T™u = w and @(u) < oo. Thus
1(u) < 0o. By the inequality (3.3), we get

() + () < ).

Hence p,p(x,,u) = 0, that is, (a) holds. Moreover, p(u,w) < 2u,p(z,,w) = 0.
Then

p(u, T™y) < pinp(@n, ) + pnp(2n, TTY) < pinp(z,, T™y) Yy e X
which implies that

p(u, T™y) +¢(Ty) < ¢(y) Yy e X.
Using Lemma 3.4, we get that (b), (c), (d) and (e) hold. The proof is complete. O

Proof of Theorem 3.0 where m = 0. We put
_ 1 ~ , 1
plz,y) = plx,y) and  9(y) = 9(y) = 5unp(@n,y)

for all z,y € X. Obviously, D is a w-distancc and 1? is lower scmicontinuous typce
with respect to p.
Then we have the following

. ~ 1 ‘ 1
Py, Ty) + 0 (Ty) = -p(y, Ty) + L(Ty) — - pnp(2n, Ty)

2 2
1 1 ‘ 1
< Eﬂnp(wn: y) + iﬂﬂp(mm Ty) + 1r‘/)(Ty) - ilt'rzp(wn,? Ty)
1
= pnp(Tn,y) +U(Ty) — §#np($n,y)
1 ~
< P(y) = Gpap(En,y) = V(y)-

Using Theorem 2.5, there is u such that v = Tu and zZ(u) < oo which imply that
1(u) < oo, that is, (d) holds. Moreover, it follows from (3.2) that

pnd(xn,u) < P(u) —¥(Tu) = 0.

We obtain that p,d(x,,u) =0, that is, (a) holds and then
d(u,y) < pnd(@n, w) + pnd(@n, y) = ppd(n,y) Yy € X.

Consequently, we obtain

d(u,y) +0(Ty) < dly) Vye X.
By using Lemma 3.4, we get that (b), (c¢) and (e) hold. O
3.2. A supplement to Theorem 3.6 in the absence of the lower semicon-
tinuity of .

Theorem 3.7. Let (X,d) be a complete metric space, let p be a symmetric w-
distance, let 1 be a mean on 1°°, let {x,} be a sequence in X such that {p(x,,z)}
is bounded for some x € X and let ¢ : X — (—00,00) be a bounded below function.
LetT : X — X be a mapping. Assume that one of the following statements is true.
(W) There exists m € N such that
o pnp(@n, T™y) +b(Ty) < U(y) Vy € X;
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o inf{p(z,2) +p(z,T™z) :x € X} >0Vzc X with z #T™z.
(V) T satisfies the following conditions
o pmp(an,y) +(Ty) < ¥(y) Vy € X;
o inf{p(z,z) +p(z,Tz):x € X} >0Vze X with z #T=z.
Then there exists an element u € X such that
(&) pnp(wn, u) = 0;
(b) u = limy_yoo T*y for ally € X;
(¢) w is a unique fixved point of T

Proof. Note that ¥ (y) < oo for all y € X. First, we assume that the condition (#)
holds. As in the proof of Theorem 3.6 where m = 0, we have

By, T™y) + (T™y) < fly) Wy € X.
By using Theorem 2.1, there is u € X such that u = T"wu. Then we can follow
the result of the proof of Theorem 3.6 where m # 0 and obtain the conclusions via
Lemma 3.4.
The conclusions for the condition (V) can be obtained by following the proof of

Theorem 3.6 where m = 0 and applying Theorem 2.1 and Lemma 3.4. So it is
omitted. O

We can deduce a recent result proved by Takahashi, Wong and Yao [7, Theorem
3.2] from our Theorem 3.7.

Theorem 3.8. Let (X,d) be a complete melric space, let p be a symmetric w-
distance and let {x,} be a sequence in X such that {p(xy,x)} is bounded for some
x € X. Let T be a mapping of X into itself. Suppose that there exist a real number
r €[0,1) and a mean p on I°° such that
pnP(Tn, Ty) < 7pnp(T0,y), Yy € X.

Then, the followings hold:

(a) T has a unique fized point u in X;

(b) w = limy_yoo T*y for all y € X.

Proof. To prove this theorem by using Theorem 3.7, we show that the condition
(V) holds. Let y € X. We have

(1 = 1) pinp(@n- ) + (20, TY) < v pinp(Tr, y) + (1 = 1) pinp (20, )

which implies that

1 1
/‘np(xmy) + m/in])(ﬂfmT?j) < 1 /l'np(xnvy)7

—r

that is, ftnp(zn,y) + ¢(Ty) < o(y) where (y) = = pnp(@n, y). Next, we assume
that there exist an element z € X and a sequence {y,,} in X such that

lim p(ym,2) = lim p(ym, Tym) = 0.

m—»o>0 m—oQ

It follows from

lim p(Tym, z) < Hm (pWm, Tym) + p(Ym; 2)) =0
m—r00 m—00
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and Lemma 3.5 that
lim /«an(xnvym) = ,Unp(l'mz) = lim /an(.’l’n, Tym)~
m—oo m— oo
Therefore,

pnp(Tns 2) = WM ppp(2n, Tym) < v Hm pnp(@n, Yim) = 7pnp(Tn, 2)
T—r00 m—0Q
which implies that
pnp(zp, z) = 0.
In particular, p(z,Tz) < pnp(zn, 2) + pnp(2n, Tz) < (1 + r)ppp(zy, z2) = 0. More-
over, p(z,z) < 2p(z,Tz) = 0. It follows from Lemma 1.4 that z = T'z. O

Remark 3.9. It is worth mentioning that the mean g in Theorems 3.6, 3.7 and 3.8
can be replaced by lim sup.
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U-FLATNESS AND NON-EXPANSIVE MAPPINGS
IN BANACH SPACES
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ABSTRACT. In this paper, we define the modulus of n-dimensional U-
flatness as the determinant of an (n+1) X (n+1) matrix. The properties of
the modulus are investigated and the relationships between this modulus
and other geometric parameters of Banach spaces are studied. Some
results on fixed point theory for non-expansive mappings and normal
structure in Banach spaces are obtained.

1. Introduction

Let X be a real Banach space with the dual space X*. Denote by Bx and
Sx the closed unit ball and the unit sphere of X, respectively. Recall that
Vi C Sx+ denotes the set of norm 1 supporting functionals of x € Sx.

Brodskii and Mil'man [2] introduced the following geometric concepts in
1948:

Definition 1.1. Let X be a Banach space. A nonempty bounded and convex
subset K of X is said to have normal structure if for every convex subset C of
K that contains more than one point there is a point zg € C such that

sup{||zo —y| : y € C} < diam C.
A Banach space X is said to have

e normal structure if every bounded convex subset of X has normal struc-
ture;

e weak normal structure if every weakly compact convex set K of X has
normal structure;

o uniform normal structure if there exists 0 < ¢ < 1 such that for every
bounded closed convex subset C' of K that contains more than one
point there is a point xg € C' such that

sup{||zo —y|| : y € C} < ¢-diam C.
Received January 30, 2016; Revised September 11, 2016.
2010 Mathematics Subject Classification. 46B20, 47TH10, 37C25, 54H25.
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Remark 1.2. The following facts are known.

e uniform normal structure — normal structure — weak normal
structure.

e In the setting of reflexive spaces, normal structure <= weak normal
structure.

Kirk [9] proved that if a Banach space X has weak normal structure, then
it has weak fixed point property, that is, every non-expansive mapping from a
weakly compact and convex subset of X into itself has a fixed point.

Let N be the set of all natural numbers and n € N.

For two sets of vectors {z;}/1' C X and {f;}7%) C X*, the following
(n+1) x (n+ 1) matrix

1 1 1
(w1, f2) (x2, f2) o+ (Tng1, f2)
<£U1,J'cn+1> <$2,fn+1> <$n+1;fn+1>
is denoted by m(z1, T2, ..., Tni1; fo, f35- -5 far1) [6]-

Gao and Saejung [6] introduced the concept of volume by the convex hull of
1,22, ...,Tps1 in X of

v(x1, T2, ..., Tpt1) = sup{det m(z1, za, ..., Tni1; fo, f3,- -, fnt1) s
where the supremum is taken over all f; € V,,, where : = 2,3,...,n+ 1.
Definition 1.3 ([6]). Let v% = sup{v(z1,%2,...,Tnt1) : T1,%2,...Tpt1 €

Sx} be the upper bound of all n-dimensional volume in X.

Definition 1.4 ([6]). Let X be a Banach space. Define

21 + @2+ + 2pya| :

’U(l‘l,l‘g, .. -7$n+1) >e

n . T1,T2,...,Tpt1 € SX,
U =inf{1—
R b

where 0 < e < V% to be the modulus of n-dimensional U-convexity of X.

The following results were proved [6]:
Proposition 1.5. For a Banach space X with dim(X) > n, we have V% > 2.
Lemma 1.6. U%(¢) is a continuous function in [0,v%).

Theorem 1.7. If X is a Banach space with U%(1) > 0 for some n € N, then
X is reflexive.

Theorem 1.8. If X is a Banach space with U%(1) > 0 for some n € N, then
X has normal structure.
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2. Main results
We introduce the concept of the modulus of n-dimensional flatness as follows:

Definition 2.1. Let X be a Banach space and 0 < ¢ < v%. Then the modulus
of n-dimensional U-flatness of X is defined as follows:

Wk(e) = sup{l _

n+1||!131+$2+"'+ffn+1||}7

where the supremum is taken over all {z;}"' C Sy such that there exist
{fi}i4} C Sy« with f; € V,, foralli = 2,...,n+1and det m(z1, 29, ..., Tpi1;
f27f37"'5fn+1) S g.

Remark 2.2. W§(e) is an increasing and continuous function on [0, V% ).
Proof. The proof is the same as that of Corollary 5 of [10]. O

Remark 2.3. The name of the modulus, U-flatness, is defined by comparing
with Definition 1.4.

Lemma 2.4 (Bishop-Phelps-Bollobés [1]). Let X be a Banach space, and let
0<e<l. Given z € Bx and h € Sx+ with 1 — (z,h) < %, then there exist
y € Sx and g € Vy such that ||y — z|| < e and ||g — h| <e.

Lemma 2.5. Let A, xn be the following n x n matriz

_ 1 ] 1 (_1)n—1 (_1)n—2 (_1)n—1'
,% 11 -1 ... (,1)n+1 (71)n—1 (71)711
L ) (g
Anxn:: : ’ : .
0 0 0 1 -1 1
0 0 0 -1 1 .
0 0 0 0 -1 i

Then det(A,xn) = 2%1

Proof. 1t follows from mathematical induction:
By repeatedly using add % times the first row to second row, then use the
first row to estimate the determinant, we get the result. O

Lemma 2.6. Let B(,q1)x(n+1) be the following (n + 1) x (n + 1) matriz

M1 1 1 - 1 1 1

o B T B GV B SR VL G
Bnt1)x(n+1) = S : : :
0 0 0 1 —1 1
0 0 0 -1 1 -1

0 0 0 0 -1 1]
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Then det(B(p41)x (nt1)) = 27511~

Proof. It follows from mathematical induction and the preceding lemma:
Let n =1, Baxa = [—1% }] ,det(Baya) = 3.
If for n, det(Bnxn) = %, then for n + 1, by using the first column to
estimate the matrix, we have
1
det(B(n+1)><(n+1)) = det(Aan) + 5 det(Ban)

1 2n—1 2n+1
_Qn—1+ on— 9n O

Theorem 2.7 ([7]). Let X be a Banach space. Then X is not reflexive if and
only if for any 0 < & < 1 there are a sequence {x,} C Sx and a sequence
{fn} C Sx~ such that

(a) (T, fn) = whenever n < m; and

(b) (@m, fn) =0 whenever n > m.

Theorem 2.8. If X is a Banach space with W}}(Q’;“) <1- %-H for some
n € N, then X is reflexive.

Proof. Suppose that X is not reflexive. Let 0 < § < 1 be given. Let {x;} C Sx
and {f;} C Sx~ be two sequences satisfying the two conditions in Theorem 2.7.
Let n € N be given. Let y; = (—l)i‘*‘lm'ﬁ# fori = 1,...,n 4+ 1 and
gi = (=1)"1f, € Sx. fori =2,...,n+ 1. Then, we have
i1 T + X ; 1
5 < g = ()P (LY < Db | = ] < 1.

and

det m(y1,y2,Y3 -+, Yn—1,Yn> Yn+1: 92,93, 94 - - - » In—1> Gr» Yn+1)

o1 1 1 1 1 1 ]
(y1,92) (Y2, g2) (Y, g2) -+ (Yn-1,92) (Yn, 92) (Yn+1, g2)
(y1,93) (Y2, g3) (W3, g3) -+ (Yn—1,93) (Yn, 93) (Yn+1,93)
=det| : I : : :
W1, 9n-1) (Y2:9n-1) U3:9n-1) - WUn-1,9n-1) (YnsGn-1) (Yn+1,9n-1)
(Y1, Gn) (Y2, gn) W3, 9n) - (Yn—1,9n) Yn» gn) (Yn+1,9n)
_<y1,gn+1> (Y2, Gnt1) (Y32 Gnt1) - (Y2, In+1) (Yn, Gn+1) (yn+1,gn+1>_
M1 1 1 - 1 1 1 ]
-3 65 —§ - (=) (=S (=)
-5 6 - (=% (-1t )
_ det . . : . )
0 0 0 1) ) 1)
0 0 0 -3 5 -5
L0 0 0 0 -3 5§ ]
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11 1 1 1 1

R B O e D

0 -3 1 (=)= (=t (="
= 6" det Lo :

0 0 0 1 -1 1

0 0 0 -1 1 -1

L0 0 0 0 —1 I

By Lemmas 2.5 and 2.6, we have

2n+1
detm(ylay27‘"7yn+1;927g37~~-7gn+1) =" on .

On the other hand, since

lyr +y2+ -+ Yl _ (=D P@ns0 + 2 < !
n+1 2(n+1) “n+1’
we have
" 1
1_||y1+y2—|— +3/+1||21_ .
n+1 n+1

Since § can be chosen arbitrarily closed to 1, let 6 =1 — % where £ can be

chosen arbitrarily closed to O.

Let z1 = y1. Next, let ¢ = 2,3,...,n + 1. From Bishop-Phelps-Bollobas
result (Lemma 2.4), there exist z; € Sx and h; € V, such that [|y; — z|| < e
and |g; — hil]| <e.

This implies that

[(2is ) — (Wir 9501 < (20 = yis 9501 + (Y, hy — g5) | + {20 — yis by — g5)| < 3e.
It follows then that

"on+1
277,

2
€
det m(z1, 22, ..., 2nt1;ho, ha, oy hpgr) = (1 - —)

1 + ce,

where c is a bounded constant. Moreover,

21+ 22+ - + znqall > 1te

1-— .
n+1 - n+1

From the definition of W¥(e), we have

2\" 2 +1 l1+e
W 1—— >1— .
X(< 4) on +C€)— n+i

Since € can be arbitrarily close to 0, the theorem is proved. O
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Let C(y41)x (nt1) be the following (n 4 1) x (n 4 1) matrix:

1 1 1 1 1 1 1
-2 1 -1 1 (-t (=D (=1t
R o AP e S Vi
0 5 -5 1 e
Clntyxm+1) == | . . : .
o 0 0 0 - 1 1 1
o 0 0 0 - -2 1 -1
(0 0 0 0 - 3 -2 1
Then det(02><2) = %, and det(c;gxg) = %

Theorem 2.9. If X is a Banach space with W (det Cpq1)x(nt1)) < % for
some n € N, then X is reflexive. In particular, for n =1 we have if W}((%) <
%, then X is reflexive; and for n = 2 we have if W}z((g) < %, then X is reflexive.

Proof. Suppose that X is not reflexive. Let 0 < § < 1 be given. Let {x;} C Sx
and {f;} C Sx- be two sequences satisfying the two conditions in Theorem 2.7.

Let n € N be given. Let y; = (—1)”’1g“ﬂc”igﬁfwr2 fori=1,...,n+1 and
gi = (=1)"*1f; € Sx. fori =2,...,n+ 1. Then, we have

5 < (yi,g;) = <(_1)i+1 Ti + Tip1 + Tip2 ’ (_1)i+1fi>

3
1
< ng’i +Tip1 + zige|| = [luill <1,
and

m(y17 Y2,Y3:Yds - -+ 5 Yn—15Yny Yn+15 92, 93, 94, - - ~7gn—1agn;gn+l)

o1 1 1 1 1 1 1 T
(y1,92) (Y2, 92) (Y3, 92) (Ya,92) -+ (Yn-1,92) (Yn: g2) (Yn+1,92)
(y1,93) (2, 93) (y3,93) (Ya,93) - (Yn—1,93) (Yn» 93) (Yn+1,93)

| g (2,94 (y3,94)  (Wa94) o Wn-1,94) (Wne94)  (Ynt1,94)
<y17 gnfl> <y27 gn71> <y37 9n—1> <y47 gn71> e <yn71agn71> <yn7 gn71> <yn+1~,gnfl>
(Y1, 9n) (Y2, gn) Wss9n)  Wargn) - (Yn—1,9n) Yn,9n)  (Yn+1,9n)
_(yl-,!]n+1> (Y2, 9n+1)  (U3:9n+1)  Was9n+1) - Yn—1,9n+1)  Yn, Gnt1) <yn+1a9n+1>_
(1 1 1 1 1 1 1 1
—1§ 12 -1 1 - (=) (—1)"1 —1)”+;
5 -5 L - (DY (—1)“2 (—1)”+3
B I R R e S
0 0 0 0 1 -1 1
0 0 0 0 -2 1 -1
L0 0 0 0 3 -2 1]
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We have

det m(ylv Y2,Y3, Y4y - -3 Yn—1,Yn, Yn+1592, 93,945 - - - 9n—1,9n, gn+1)
= 0" det C(n+1)><(n+1)~
On the other hand, for n > 2,

lyr g2+ ynnll _ llertas —2at o+ (D) @01 + (D" Pas
n+1 3(n+1)
n+1 1
—0==0
~3(n+1) 37
and forn =1,
g1 +y2+ -+l [lza — 24| <!
n+1 6 3
We have ) )
n+1 3 3
for all n € N.
The theorem can be proved by using the Bishop-Phelps-Bollobas result
(Lemma 2.4), and same idea in the proof of Theorem 2.8. O
We consider n = 1.
Theorem 2.10. If X is a Banach space with W}((Qg‘jll) < gy for some

2

m € N, then X is reflexive. In particular, for m = 2 we have if WX(§) <3,

then X is reflexive.

Proof. Suppose that X is not reflexive. Let 0 < § < 1 be given. Let {x;} C Sx
and {f;} C Sx- be two sequences satisfying the two conditions in Theorem 2.7.
Let m € N be given. Let
o 1+ 22 +"'+x’m+$m+1 _ _$2+l‘3+"'+$»m+1 +xm+2
= m+ 1 2= mA1
and go = — fo € Sx~.
Consider the 2-dimensional subspace of X spanned by y; and ys.
We have

det m(y1,y2; g2) = det [< 1 1 >]_det {_l 1]5_M57

ylvg2> <y2792 m+1 m+1
and
|52 = am i ) s o
2m +1 m—l—l '
This is n
I_Hyl y2” 5
m+1

Similar to the proof of Theorem 2.8 we have

2m+1 m
wi > .
X<m+1)—m+1
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This completes the proof. (Il
In 2008, Saejung proved the following result:

Lemma 2.11 ([11]). If X is a Banach space with Bx~ is weak* sequentially
compact and it fails to have weak normal structure, then for any ¢ > 0 and
n € N there are {x1,za,...,2,} C Sx and {f1, f2,..., fn} C Sx+ such that

(@) [llwi — ;| — 1] <& for all i # j;

(b) {x, fi) =1 for all 1 < i <n; and

(€) (i, f;)| < e foralli # j.

Theorem 2.12. If X is a Banach space with Bx+ is weak™ sequentially com-
pact and Wi (1) < 1— %ﬂ for somen € N, then X has weak normal structure.

Proof. Suppose that X does not have weak normal structure. Let 0 < e < 1 be
given. Then there are {z;}""! C Sx and {f;}7"! C Sx- satisfying the three
conditions in Lemma 2.11.

For convenience, let |(z;, f;j)| = €;;. Then g; ; < e for all i # j.
Let y; = % € Sx fori =1,...,.n+1and g; = fi;1 € Sx- for
1=2,...,n4+ 1. Then

lyi — (Tip1 —@3)|| < e

fori=1,...,n+ 1. Moreover,

ly1 +yo + -+ yi+ -+ Yngall
< @2 — 1) + (w3 —@2) + -+ + (Tiv1 — @) + -+ (Tng2 — o)+ (n+ 1)e
= ||Zn42 — 21f| + (n + 1)e.

Next, we consider the following matrix:

m(y1792» ey Yn+1592,935 - - - 7gn+1)

[ 1 1 1 1 1 1
(y1,92)  (y2,92) (Y3, 92) (Yns92)  (Un+1,92)

(y1,93) (y2,93) (y3,93) (Yn, g3) (Yn+1,93)
W1,9n)  (Y2:9n) (Y3, 9n) (YnsGn)  (Yn+1,9n)

_<y1, 9n+1> <y27gn+1> <y37 9n+1> <yn7gn+1> <yn+1a 9n+1>_

[ 1 1 1 1 1 l
£€2,3—€1,3 l—e23 e43—1 En41,3—€n,3 En42,3—Ent1,3
lz2—z1]l lzs—z2]| lza—=s]| [#nt1—zn]l lznt2—@nill
£€2,4—€1,4 £€3,4—€2.4 l—e3.4 En41,4—€En.4 En+4+2,4—En+1,4

_ (B lzs—z2]| lza—zs]| l#nt1—znll lznt2—oniall
€2,n+1—€1 nt1l €3,n+1—E2,n+1 €4.n+1—E3,n+1 l—€n nt1 Ent2.nt1—1
w2 —1]| lzs —w2]| lzs—ws]| (e l#nt2—Tniall
€2,n+2—E€1,n+2 €3,n+2—E€2,n+2 €4,n+2—E3,n+2 En+1l,n+2—En,n+2 —En+1,n42
lz2 =1 lzz—z2]| lza—=s]| [znt1—znll lznt2—zniall |
It follows then that
det m(y1,Y2, - Yn+1; 92,935 - - - Gn+1) = 1 + cg,
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where c is a bounded constant.
On the other hand, since
1 +y2 + -+ ynrll _ [ Tnr2 — 2] l+e

< _
n+1 - n+1 +E_n+1+5’

we have
Cyity Ayl S 1_ﬂ _
n+1 - n+1
Let 21 = y1. Next,let 1+ =2,3,...,n+ 1.
From Bishop-Phelps-Bollobés result (Lemma 2.4), there exist z; € Sx and
h; € V,, such that

1

lly: — zil| < e and ||g; — hi]| < e.
In particular,
[(zis hy) = (Wi 97)| < [z = Y, gi) | + [y by — )| + (2 — yis by — g5)| < 3e.
This implies that

det m(zl, 22y vy Zn41, hQ, hg, ey hn+1)
[ 1 1 1 S 1 1 1
(21, h2) (22, ha) (z3,h2) -+ (zn,ha) (Zn41, ha)
(21, h3) (22, h3) (z3,h3) -+ (zn,h3) (Zn+1, h3)
= det . . . . . .
<Z17 hn> <227 hn> <Z37 hn> ce <Zn7 hn> <Zn+17 hn>
(21, hng1) (22, hng1)  (23,hn41) - (s hngr)  (Zngts o) ]
=1+ de,

where d is a bounded constant. Hence

21 + 22+ -+ znya || S 1_ﬁ
n+1 - n+1

Since ¢ can be arbitrarily small, it follows from the definition of W%(-) that

1-— — 2e.

Wx(1)>1-

n+1
This completes the proof. ([l

Theorem 2.13. If X is a Banach space satisfying one of the following two
conditions:

o W}}(l)<1—n+_1f0rsomen€Nwithn22; or

e Wi(1)< 3 and Wi (5) < 2 forn=1.
Then X has normal structure.

Proof. Since X is reflexive, it follows that By« is weak* sequentially compact.
Moreover, 2211 <1lfornéeNandn >3, and % < 1 for n = 2. The first result
is a direct consequence of Theorems 2.8, 2.9 and 2.12. The second result is a

direct consequence of Theorems 2.10 and 2.12. O
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Definition 2.14 ([4, 5]). Let X and Y be Banach spaces. We say that Y is
finitely representable in X if for any £ > 0 and any finite dimensional subspace
N CY there is an isomorphism T : N — X such that for any y € N,

A =9yl < Tyl < A +2)yll

We say that X is super-reflezive if any space Y which is finitely representable
in X is reflexive.

Theorem 2.15. If X is a Banach space with Wi (2%H) <1 — n%H for some

ne€Nandn>2, or W}((Z”Ll) < i forn =1 and some m € N, then X
s super-reflexive. In particular, for m = 2 we have if W)%(%) < %, then X is

super-reflexive.

Proof. We only prove the first part (for n > 2). The proof of second part (for
n = 1) is same.

The proof is similar to that of Theorem 2.12 in [6]. Suppose that X is not
super-reflexive. Then there exists a nonreflexive Banach space Y such that Y
can be finitely representable. From Remark 2.2 and Theorem 2.8, for each n
there exists some positive function f(¢) which goes to 0 as € goes to 0, satisfies
Wp(2 —¢) > 1 — A5 — f(e). Therefore, there exist {y;}]7 € Sy and
{9:} € Vy, C Sy~ for i =2,...,n+ 1 such that

1 1 1 1
(y1,92) (Y2,92) - (Un,92) (Yn+1,92) 2+l

: e T T
<y17gn+1> <y2, gn+1> T <yn, gn+1> <yn+1agn+1>

det

and

[y +y2+ - + Yol
n+1 > 1 n+1 /).
Let N = span{y1,¥y2,.--,Ynt1}, and T : N = M C X be an isomorphism
with range M.
Let us consider the conjugate mapping T of T'. Let g;n be the restricting
gi on N. Then (Ty;, (T*) " gin) = (5, 9i) for 1 <i,j <n+ 1.
We have

1

1—e<|T|| <1+e¢,

l—e<|T7]| £ 1+¢,
and
L—e<[(TH Y <1+e.
Let 2; = Ty; and f; = (%) 'g;ny for i =1,...,n+ 1. Then

(x5, fi) = (T, (T gan) = (s, 94)-
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If i = 4, then (x4, fi) = (yi,9:) = 1, so f; € V., and we have

[ 1 1 1 1
<$1,f2> <CU2,f2> <$naf2> <$n+17f2>
det . . . . .
_<xl7fn+1> <$27fn+1> <xn7fn+1> <mn+lvfn+l>
F1 1 1 1
(1,920 (W2.92) - (Un:92)  (Ynt1,92)
= det . . . . .
_<y1, gn+1) (Y2,9n+1) - WUnsGnt1)  (Ynt1, In1)
2n +1
< —
= on £
On the other hand,
lz1 + a2+ - + Tpga || _ 1T (y1 +y2+ -+ ynt1)|l
n—+1 n+1

n-+1

<1Fe i ofe.

“n+1

This implies that

|1 + 22+ 4+ Tpta| 1+e
- Hlsqg -2 1+ ,
n—+1 - n+1 ( e)f(e)

Since f(g) can be arbitrarily small, we have
2n+1 1

Yl— ) >1- .

wx ( 2n ) = n+1

This completes the proof. O

1

We consider the uniform normal structure. To discuss this result, let us
recall the concept of the “ultra”-technique.

Let F be a filter of an index set I, and let {z;};c; be a subset in a Hausdorff
topological space X, {x; }ier is said to converge to x with respect to F, denoted
by limzxz; = z, if for each neighborhood V of z, {i € I : x; € V} € F.
A filter U on I is called an wultrafilter if it is maximal with respect to the
ordering of the set inclusion. An ultrafilter is called t¢rivial if it is of the form
{A: A C Iy € A} for some ig € I. We will use the fact that if U is an
ultrafilter, then

(i) for any A C I, either ACU or I — A C U,

(ii) if {x;}icr has a cluster point z, then limy, x; exists and equals to x.
Let {X;}ies be a family of Banach spaces and let [ (I, X;) denote the subspace
of the product space equipped with the norm [|(z;)|| = sup;¢; ||zl < oo.

23
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Definition 2.16 ([3, 12]). Let U be an ultrafilter on I and let Ny = {(z;) €
loo(I, X;) : limy ||2;|| = 0}. The ultra-product of {X;}icr is the quotient space
loo(I, X;)/Ny equipped with the quotient norm.

We will use () to denote the element of the ultra-product. It follows from
remark (ii) above, and the definition of quotient norm that

(2.1) I(@a)ell = Lim [las .

In the following we will restrict our index set I to be N, the set of natural
numbers, and let X; = X,i € N for some Banach space X. For an ultrafilter
U on N, we use Xy, to denote the ultra-product. Note that if I/ is nontrivial,
then X can be embedded into X, isometrically.

Lemma 2.17 ([12]). Suppose that U is an ultrafilter on N and X is a Banach
space. Then (X*)y = (Xy)* if and only if X is super-reflexive; and in this
case, the mapping J defined by

(@i, J((fi)u)) = lim{zs, fi) - for all (z:)u € Xy
is the canonical isometric isomorphism from (X*)y onto (Xy)*.

Theorem 2.18. Let X be a super-reflexive Banach space. Then for any non-
trivial ultrafilter U on N, and for all n € N and ¢ > 0, we have Wy, () =
Wi(e).
Proof. Since X can be embedded into X, isometrically, we may consider X as
a subspace of Xy From the definition of W (¢), we have Wg, (¢) > Wg(e).
We prove the reverse inequality.
For any very small n > 0, from the definition of W%, (¢), let (2§ )y, (27)u,
ooy (@M, (27 belong to Sx,,, and let (f?)y € Vi (Fu € Vigsy,,
ooy (FDu € Vianyy, (frthy, e V(gr+1y, be such that

K2

m((l’})u, (1'12)1/17 ) (x?)llv (SE?—H)U; (fzz)ua (fzg)U7 SRR (fzn)?/lv (fin—‘rl)u) <e,
and
I@Du + @)+ - + (@) + (@ Dl
n+1
Without loss of generality, we may assume by (2.1) that

1—

L—np<|[(@Dull<l+nforj=1,....,n+1,

L—n<|[(full<1+nforj=2,...,n+1,
and
1-n< <(xi)u,(flj)u> <l+nforj=2,...,n+1.
From the property of ultra-product, we know the subsets

P = {ism((xi)us (@ @ (@7 s (B (P -5 s (£ D) e}
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and

x} x2 R O it
o= {1 et 6 o b @2 g )

are all in U. So the intersection P N Q is in U too, and hence is not empty.
Let 1 € PN Q be fixed. Then

l—np<|al|<14nforj=1,....,n+1;

Tl—n<|flll<l4nforj=2,...,n+1;
l—n< (@, fly<l+4nforj=2,....,n+1;
m(z}, z?,. .. ,a:?,a:?“; R O o fi’”l) <g;
and
i +af+-- +af + o
n+1
From Lemma 2.4, for 0 < n < 1 (since 1 can be arbitrarily small, if necessary
we can normalize vectors xZ and fij to use Lemma 2.4) there are {y; ;Lill C Sx
and {g; ;Lizl C Sx- such that
e gV, forallj=2,....,n+1;
o |zl —y;ll <npforallj=1,...,n41;
o ||fi —gjl <nforj=2,...,n+1.
Similar to the proof of Theorem 2.8, we have

1—

> Wy, () —n.

det m(yhy?a ey YnyYnt1,92,93, - - - 7gnagn+1) S €+ cn,

[ly1t+y2+-+yn+yntll n
and 1 — T > W3, (e) — dn, where c and d are constants.

Since n > 0 can be arbitrarily small, we have W (e) > Wg, (e). O

Lemma 2.19 ([8]). If X is a super-reflexive Banach space, then X has uniform
normal structure if and only if Xy has normal structure.

Theorem 2.20. Suppose that X is a Banach space satisfying one of the fol-
lowing conditions:

o W}}(l)<17n+_1f0r50menENwithn22; or

e Wi(1) <1 and Wi (8) < 2 forn=1.
Then X has uniform normal structure.

Proof. 1t follows directly from Theorems 2.13, 2.15, 2.18 and Lemma 2.19. [
Example. Let H be a Hilbert space. We have Wi (e) = 2=%1=2 for 0 < e < 2.

Since Wj(1) = 252 = 0.29289--- < L, and W} (3) = 2‘;@ =0.59175- - -

< %, from Theorem 2.20, H has uniform normal structure.
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AN EXPLANATION OF OVER-RELAXATION PARAMETERS
FOR SOME ALGORITHMS IN HILBERT SPACES

CHANITNAN JATPRANOP* AND SATIT SAEJUNG'

ABSTRACT. Many known algorithms concerning mappings of firmly nonexpan-
sive type have been proposed with the relaxation parameters in the interval [0, 2].
Using a fact from theory of nonexpansive mappings, we show that such an over-
relaxation can be deduced from the usual relaxation the interval [0,1]. In this
paper we discuss a more general form algorithms than the recent works of Chuang
and Takahashi [4]. This is inspired by the one studied by Combettes and Penna-
nen [7]. Finally, we use the same technique to explain the over-relaxation of the
contraction-proximal point algorithm of Wang and Cui [17].

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-,-) and induced norm || - |.
We focus on the following two interesting problems.

Fixed Point Problem: Let C' be a nonempty subset of H and T : C' — H
be a given mapping. An element x € C'is a fized point of T if x = T'x. The
set of all fixed points of T is denoted by Fix(T').

Zeros of (Multivalued) Operator: Let A : H — 2% be a given multivalued
operator. An element & € H is a zero of A if 0 € Az. Denote by A~10 the
set of all zeros of A.

Many investigations of iterative sequences for finding a solution of these problems
have been made by many mathematicians (see, for example, [3] and the references
therein). In this paper, we consider the Mann type algorithms for the first problem
and the contraction-proximal point algorithm for the second one. Several weak con-
vergence theorems for the Mann type algorithms were proved by Chuang and Taka-
hashi [4]. As mentioned in their Remark 3.1, the relaxation parameters {a, }52, is
taken in the interval [0, 2]. Note that the usual Mann type algorithm makes essential
use of the parameters in [0, 1]. For the second problem, we consider the strong con-
vergence theorem of contraction-proximal point algorithm. This result was recently
proved by Wang and Cui [17]. They discussed the algorithm when the relaxation
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410 CH. JAIPRANOP AND S. SAEJUNG

parameters are taken in [0,2]. The previous related works are restricted for only
parameters in [0, 1]. This improvement as discussed by Eckstein and Ferris [10] may
speed up the convergence to a solution.

It is our purpose to use some facts from the theory of nonexpansive mappings to
explain why such over-relaxations can be made. Moreover, we show that how some
known results can be used to immediately deduce these results.

2. RESULTS

The sets of nonnegative real numbers and of nonnegative integers are denoted by
R, and Ny, respectively. We use — and — for the strong and weak convergence,
respectively. For a given sequence {2, }5° . let 20{z,,}5° ; denote the sct of all weak
cluster points of {z,}32,, that is,

Wiz, trry = {z: z,, — z for some subsequence {z,, } oo of {z,}0ey}

2.1. On weak convergence theorem of Chuang and Takahashi. Throughout
this subsection, let A := [anﬁj]zojzo be an infinite matrix satisfying the following
conditions:

(A1) ap; >0foralln,j e NL.

(A2) ap; =0 for all n,j with j > n.

(A3) Yj_gan;=1foralln€N..

(A4) lim, s o = 0 for all j € N
Algorithm 1 ( [7]). Let {1}, : H = H}32, be a sequence of mappings. Let {a, }72
be a sequence in R. Let {z,,}72, be an arbitrary sequence generated by

xp € H arbitrarily chosen,

T i= D g O i,

Tl = Tn + an(ThTn + en — Tn), Vn € Ny,
where e, € H for all n € N...

Note that each e, is regarded as the error made in the computation of T}, %,.
This provides a more realistic model of the actual implementation of the algorithm.
Before moving on, let us mention some advantage of the element z,,4; incorporating
the past iterates {17}2-’,0. This method can mitigate the zig-zagging ( [5,15]) and

spiralling ( [8,9]) of sequences reported in some applications.
The following algorithm was studied by Chuang and Takahashi [4].

Algorithm 2. Let C' be a nonempty closed and convex subset of a Hilbert space
H. Let {T,, : C' — H}>Z, be a sequence of mappings. Let {a,}02, be a sequence
in R. Let {z,}52, be a sequence in C defined by

g € C is chosen arbitrarily,
Znt1 = Po (1 — ap)an + anThz,), Vn e Ng,

where P¢ is the metric projection onto C'.

Inspired by the preceding two algorithms, we are interested in the following one.
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Algorithm 3. Let C be a nonempty closed and convex subset of a Hilbert space
H. Let {T,, : C — H};2 be a sequence of mappings. Let {an}2 be a sequence
in R. Let {z,}72 be a sequence in C' defined by

2o € C' is chosen arbitrarily,

T o= D50 On gy

Tnt1 := Po (T + an(TnTn + €0 — Tn)), Vn € Ny,
where e, € H for all n € Ny.

Remark 2.1. In Algorithm 3, if C = H, then Algorithm 3 can be reduced to
Algorithm 1.

Remark 2.2. In Algorithm 3, if o, = 1 for all n € N, then Z,, = x,, and hence
Algorithm 3 can be reduced Algorithm 2.

Definition 2.3 ([7]). Let A = [an,_j]zojzg be an infinite matrix satisfying the condi-
tions (A1)-(A4). We say that A is concentrating if whenever {£,}7%, and {e,};°
are sequences in [0, 00) such that > > &, < oo and

& =)0 s
g'n,+1 S fn + &p
for all n € N, it follows that {£,}52, is convergent.
The following are interesting examples of concentrating matrices.

Example 2.4. An infinite matrix A = [antj}:jzo is concentrating if one the follow-
ing conditions is satisfied (see [7,14]).
(1) apyp =1foralln e N_.
(2) iminfy, yoo Onn > 0 and >.07 (7 < oo, where 7, 1= Z;’ZO loni1; — (1 —
Qi ]_’7”1)0171,]" fOl" all n e N\ .
(3) Let 7 :=max{0,3",, anj—1} forall j € Ny and Jy, := {j € Ny [ ; > 0}
for all n € N;.. Suppose that the following conditions hold:
(a) Z;C:O 7j < 09,
(b) Joy1 C JoU{n+1} forallne Ny,
(c) that there exists a € (0, 1) such that
ap; >« forall n € Ny and for all j € Jy,.
(4) Suppose that there exist numbers {a;}o<i<m in R. such that 3 " a; = 1
and the roots of the polynomial
p(z) = 2" —(ap2™ + a12™ o dmo12 + )

are all within the unit disc, with exactly one root on its boundary. The
entries vy, ; are defined as follows:
0 if0<j<n,
Vne{0,....m—1} on; = ,”*J
’ 1 if j=n,
0 ifo<j<n—m,

p—j ifn—m<j<n

Yn>m anp;= {
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412 CH. JAIPRANOP AND S. SAEJUNG

Definition 2.5. Let C be a nonempty subset of a Hilbert space 4. A mapping
T:C —~His
(1) nonexpansive if [|[Tx — Ty|| < ||z — y|| for all z,y € C.
(2) quasi-nonezpansive if Fix(T) # @ and ||Tx —p|| < ||l@ —p| for all 2 € C and
p € Fix(T).
(3) firmly nonexpansive if |
all z,y € C.
(4) firmly quasi-nonezpansive if Fix(T) # @ and |Tx—p||? < ||z—p||>~|z—Tz||?
for all z € C and p € Fix(7T).

2 < e —ylP? = ll(@ = Ta) = (y — Ty)|* for

Te—Ty

Remark 2.6. (1) Every noncxpansive (firmly noncxpansive, resp.) mapping
with a fixed point is quasi-nonexpansive (firmly quasi-nonexpansive, resp.).
(2) T is firmly nonexpansive (firmly quasi-nonexpansive, resp.) if and only if
2T — I is nonexpansive (quasi-nonexpansive, resp.), where I is the identity
mapping. In particular, if 7 : C' — H is firmly nonexpansive (firmly quasi-
noncxpansive, resp.), then T = %I + %S for some noncxpansive (quasi-
nonexpansive, resp.) mapping S : C — H.
(3) If T : C — H is a nonexpaunsive mapping and {z,, }°Z, is a bounded sequence
in C such that lim,_, ||z, — T2y| =0, then & # W{z,}52, C Fix(T).

Definition 2.7. Let C' be a nonempty subset of a Hilbert space H. Let {T,, : C' —
M}, be a sequence of mappings such that

o
S:= ﬂ Fix(T},) # @
n=0
and let 7 be a family of mappings from C into H.

(®) {T5.}0%, satisfies the resolvent property [4] if there exists a nonexpansive
mapping T : C — H with Fix(T) = S and there exist ng, k& € N such that
|z — Tz| < kljz — Thz| for all € C and for all n > ng. In this situation,
we also say that {T),}>°, satisfies the resolvent property with a nonezpansive
mapping T.

(V) {T,}52, satisfies the AKTT-condition [1] if the following two conditions are
satisfied:

(@) >0 ysup,ep || Thp1z — Tha| < oo for each bounded subset B of C.
(In particular, {T,,z}72, is a Cauchy sequence for all x € C' and hence
limy, 00 T2 exists for all z € C.)

(b) The fixed point set of the mapping T : C — H defined by Tz =
limy,—y00 Tpx for all z € C coincides with S, that is, Fix(7') = S.

In this situation, we also say that ({7},}02, T) satisfies the AKTT-condition.

(0) ({Th}oey, T) satisfies the NST-condition [13] if the following two conditions
hold.

(a) Fix(T) C S.

(b) For each bounded sequence {z,}:2, C C, the following implication
holds

lim ||z, — Thzn|| =0 = lim ||z, — Tz,|| =0 VT €T.
n—oo0 n—odo
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() {T0}22, satisfies the CP-condition [7] if for each bounded sequence {z,}5°
in C, the following implication holds
zn — Thzn > 0 = Wz} CS.
Remark 2.8. (1.) Either (#) or (V) implies ().

(2.) If T is a family of nonexpansive mappings, then () = ().
(3.) (&)« (V). In fact, Example 3.1 in [4] shows that (&) = (9).

Example 2.9. ((U) = (#)) Let H = R and C = [0,1]. For each n € N, let
T, : C — H be defined by

Tz = .'L‘l, ?f x € [01, 2%] s
57, fa€ (27,1] .

3n
Then 0% sup,ec | The1a — Tozl] < 3000 |5t — 50| = Yooty g < 00. Note

that T2 = lim,_0c T,z = 0 for all z € C and Fix(T) = (), —,; Fix(T,,) = {0}. So
{T,.}2, satisfies the AKTT-condition.

We show that {T},}5%, does not satisfy the resolvent property. Suppose that
there are a nonexpansive mapping 7' : C' — H and constants ng, k € N such that
Fix(T) = {0} and ||z — Tz|| < k||l — Thz|| for all € C and n > ny. For any
x € [0,1/2™], we have T,,,& = z. Hence Tw = x. This implies that [0,1/2"] C
Fix(T) = {0} which is a contradiction.

Note that each T, is firmly nonexpansive because
2, ifa €0, 5],

-+ 2%1 ifxe (%,1]

(2T, — Iz = {

is nonexpansive.

Lemma 2.10 ([6]). Let {122 . {Bn}22y and {en}52 be sequences in Ry such
that Yoy €n < 00 and

§n+l < €n - 6n +én fOT alln € N+'
Then {£,}5° is convergent and y o By < 00.
Lemma 2.11 ([12]). Let A be an infinite matriz satisfying the conditions (A1)-
(A4). Let {&.}22, be a sequence in R and &, = Z?:() an & for alln € Ny, If
§1L - 57 th@'/l En — g
Lemma 2.12 ([6]). Let S be a nonempty closed and convex subset of a Hilbert space

H. Let {zn}og be a sequence in H and let {,}72, be a sequence of nonnegative
real numbers such that > 0 g e, < 00 and

‘.’I:,,+1 71)" S ‘|$71, 7p|| +én

Joralln € Ny and all p € S. Then {Psxz,}72 converges to a point in S.
Lemma 2.13 (Opial’s Theorem). Let S be a nonempty subset of H and {xn}0
be a sequence in H. If the following two conditions hold:

(a) imy o0 ||2n — p|| exists for allp € S,
(0) W{zn}pZy C S,
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then {z,}5° converges weakly to a point in S.
We now state our first weak convergence theorem for Algorithm 3.

Theorem 2.14. Let {1}, : C — H}Z be a sequence of quasi-nonexpansive map-
pings with the common fized point set S. Let {x,}5°, be an arbitrary sequence

generated by Algorithm 3 where A is concentrating, {a,}0> is a sequence in [0,1],

and Y2 o llenll < co. If iminf, e cn(l — @) > 0 and {T,}52, satisfies the
CP-condition, then x, — u € S.

Proof. Let p € S and let &, := ||z, — p|| for all n € N;. Now we have
énsv1 = ll@ny1 — pll = |Po (Tn + an(TnTn + en — Tn)) — Po(p)|l
< 111 — )T + @n T + atnen —
= (1 = o) (@0 — p) + an(T0Tn — p) + anenl|
< (1= on)[Zn —pll + an
< |@n —pll + anllenll

T = pll + nllenl|

n
<Y anglla = pll + anllenl|
J=0

= En + anlen]l-

Since A is concentrating and > o |len|| < oo, the limit lim, o [|Jzn — p| = @
exists. It follows from Lemma 2.11 that

n

Jim &, = 7}31;2:0%4”% -pll =a
Jj=

Note that &np1 < ([T — 2l + anllen]] < &, + anllen] for all n € N;. Consequently,
Tin |7 — pll = a.
Let &, := 2||(1 — ) (@p, — p) + @n(LT0 — p)|l|lenl| + ||l€n]|? for all n € Ny. Note that
|(1 = 0)(Zn — p) + (10T — p)|| < |70 — 2l
So we have Y > &, < co. Now we consider
st =PI < (1L = an)(@n = p) + (T — p)| + lanenl)?
= (1 = an)(@n = p) + an(TuZ — p)|* + apllenl?
T 200 [(1 = €)@ — ) + n(Tn — D)l el
= (1 —an)||Tn — pHZ + an||ToTn — pH2 — (1 = an)an ||z, — Tnfnuz
+20,[[(1 = @) (Tn = p) + an(TuTr = p)llllenll + i llenl®

g Hin - PHZ - (1 - a‘n)annin - 7—?ILEHHQ + En

n
< Zan,j”mj —pll* = (1 = an)an|[Zn — TuZn|* + en.
j=0
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S0 (1= an)an|[Fa — TuZul® < S5 anllz; — ol = |zns1 — p|]? + 2n. Note that

n
lim ||z, fp||2 = lim E an )|z prz =d2
n—r00 n—o0 4 o

=

Thus lim, e (1 — )@ ||Tn — TnTall? = 0. Since liminf, oo ap(l — ay,) > 0, we
have

Tn — 1p%,p — 0.
Moreover, since {T,,}72, satisfies the CP-condition, we have 20{zZ, },>;, C S. In the
proof above, we can infer that lim,,_, [T, — p|| exists for all p € S. It follows then
from Opial’s Theorem that 7, — u € S. Note that

|Zns1 — Zull = | P (Zn + cn(TnZn + €0 — Tn)) — Po(T)||
< (1= an)Zn + anTnTn + omen — T
= an||TnTn + en — T
< an(|T0Tn — Tnll + lleall)-
So ©p41 — @ — 0. Hence x,, — u € S. This completes the proof. O

Letting C' = H in the preceding theorem gives the following result which is due
to Combettes and Pennanen [7].

Corollary 2.15 ([7]). Let {T,, : H — H}}"y be a sequence of firmly quasi-
nonezxpansiwe mappings. Let {x,}52, be an arbitrary sequence generated by Algo-
rithm 1 where A is concentrating and {a, 52, lies in [§,2 — d] for some 6 € (0,1),
and D07 o llenll < oo. If {Th}52 satisfies the CP-condition, then z,, — u € S.

Proof. Since each T, : H — H is a firmly quasi-nonexpansive mapping, there is a
quasi-nonexpansive mapping S, : H — H such that 7;, = %I + %Sn In particular,
I-T,= %(I — Sp). This implies that S = (72, Fix(S,) and {S,};2, satisfies the
CP-condition. Morcover,

Tptl = Tn + an(Tnin +en — T’n)
o
=7n + %(SHTTL + 2ep, — fn)-
Note that c,/2 € [0, 1], iminfy, se0(l — atn/2)n/2 > §2/4 > 0, and 300 [|2en | <
00. By Theorem 2.14, we get the result. d

In Theorem 2.14 and Corollary 2.15, we do not know much about the weak limit
u of the sequence {z,}32,. We now discuss a certain subclass of concentrating
matrices which is taken from Example 2.5 in [7] and obtain some information about
the weak limit w. More precisely, we show that

u= lim Psxy,.
n—o0

Theorem 2.16. Let {15, : C — H}?2, be a sequence of quasi-nonezpansive map-
pings. Let 7, i= 370 [eut1,5— (1 —i1,n41)ang| - Suppose that 3707 7 < 0o and
liminf, o anyn > 0. Let {xn}?_o be an arbitrary sequence generated by Algorithm
3 where {an 152 is a sequence in [0,1], and 3.7 |lenll < 0o. Assume that {T,}52

satisfies the CP-condition. Then
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(a) Ifliminf, . o (1 — ) > 0, then x, — u = limy, o0 Ps2p-
(b) Suppose that {1}, : C — C}°%, is a sequence of nonexpansive mappings and
(T}, T) satisfies the AKTT-condition. If 37 an(l — ap) = oo, then

T, — u = limy, oo Py,

Proof. It was proved in [7, Example 2.5] that A is concentrating. As in the proof
of our Theorem 2.14, both limits lim,, o ||z, — p|| and lim,_,~ ||Z, — p|| exist and
they are equal and z, — w € S. In particular, {z,}72, is bounded. We show that
lim,,—o0 Psx;, = u. Since we also proved that z,4; — T, — 0, it suffices to show
that

lim PsT, = u.

n—r00
We will apply Lemma 2.12. Let p € S. As in the proof of Theorem 2.14, we have
Hwn+1 - P” < ||In - P” + an”(f'nH- Let Yn = Z;}':O(Oémrl,j - (]- - an«kl,n«#])an,j)xj-
Since >, (T, < 00 and {z, 122 is bounded, we have > o [|ynll < Y ooey Tnllan|| <
oo. Note that

n

Tn+1 = Qntln+1Tn+1 + E Qnt1,57;
Jj=0

n
=7n+ Z(@n+l,j - (1 - an+l,n+l)an,j)xj - an+l,n+l(fn - xn+1)
j=0

(21) = (]- - an+1,n+l)§n + Up4+1,n+1Tn+1 + Yn-
It follows from (2.1) that
[Znt1 = pll < (1 = ngr,n0)l[Tn = pll + dngrnrallznes — ol + llynll
S ”fn - p” + ap, F1,n+ 10471“671“ + | Un”
<|@n —pll + llenll + llynll-

By Lemma 2.12, { PsZ, }2°, converges to some element a € S. Note that u € S. It
follow then that 0 < (%, — PsT,, PsT, —u) for all n € Ny. Since T, — PsTp, — u—a
and PsT, — u — a — u, we have (%, — PsTy,, PsT, — u) — —|lu — al|>. Then
—|ju — a||* > 0 aud heuce © = a. This implies that

lim PsT, = u.

n—oo

The proof of Part (a) is complete.

Part (b). Suppose that {T}, : C — C}° is a sequence of nonexpansive mappings
and ({T,}52.T) satisfies the AKTT-condition and > 5° ) an(l — o) = oo. Let
p € S. As in the proof of Theorem 2.14, we have lim,_, ||T, — p|| exists. Then

Tptl = (1 - an+l,n+1)fn + 11 Zn41 + Yn
- (] - 047L+1,71,+1an)fn + an+1,n+1an7—:nfn
+ an+1,n+1(l’n+l - ((1 - an)fn + anTnEn)) + Yn.-
= (1 - ﬂn)fn + Bn,]—jnfn + Wn,

where 3, := Qpt1,n+10n and wy, := Qn41n+1 (l'TH—l - ((1 - an)Tn + a-nTnTn)) + Yn-
Since T,, : C — C, we have ||wy|| < anciprianllen] + lynll. Then > 07 o [Jwa]l <
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00. Let vy = 2||(1 = 3.)Fn + BnTnTn — plll|wnl + |wa]/? for all n € N,. Then
> o n < 00. We now consider

an+l *p||2 < H(l - Bn)fn + ﬁnTnEn *p||2 + Yn
= (1 - 5n)HTn —PH2 + ﬁnHTnfn —PH2 - (1 - 571)/571“171 - TnTnH2 +
S an 777“2 - (l - Bn)ﬁnHIn - T‘ngnu2 + Tn-

By Lemma 2.10, 3% o(1 — 8,)Bul|Tn — TnZn||* < 00. Since 32° g an(l — o) = o0
and liminf,, o0 ainy, > 0, we have Y07 8,(1 — B,) = oo. Thus

linrgioréf |Zr, = T0Zn|| = 0.
We prove that limy, e | ZTn — TnTn|| exists. Now, we have
1Zn1 — Tap1Znsal
= H (1 - /3n)(T,,, = TTn) + (T,,LT" = T Tni1) + (TnTpt1 — TVH»ITWHI) + w"H
<A =870 = ToZnll + 170 = Togr | + 1 ToZngs = Toa T || + [Jwnl
<NZp — TnTn|| + sup{||Tnzx — Thg1z| : @ € {ZTpn}} + 2||wn]|-
Since ({T,}5%, T) satisfies the AKTT-condition, > o ;sup,.c @} Tnprz = Tha|| <

00. Thus limy,— « [[Tn — 15T, || exists and hence limy, o |Z5, — 13 Zn || = 0. We follow
the proof of Theorem 2.14 and we have z,, — u € S. Moreover, it follows from Part
(a) that u = lim,— o Psxy,. The proof of Part (b) is completed. O

Using the same technique as in the proof of Corollary 2.15, we immediately obtain
the following two corollaries from our Theorem 2.16(a) and (b), respectively.

Corollary 2.17. Let {1, : C — H}%, be a sequence of firmly quasi-nonexpansive
mappings. Let T, := Z;”zo |ant1,; — (1 — ngins1)0nyj|. Suppose that > po o T <
oo and liminf, soc on > 0. Let {xn}2%, be an arbitrary sequence generated
by Algorithm 3 where {an}52 is a sequence in [0,2], and > o_ |len]| < co. If
lminfp o an(2 — an) > 0 and {T,}52, satisfies the CP-condition, then x, — u =
lim,,—oc Psp.

Corollary 2.18. Let {T,, : H — H}>L, be a sequence of firmly nonezpansive map-
pings. Let 1, := Z?:o |otn41,j— (L= tpi1ng1)n j|. Suppose that Y 2 (7, < oo and
liminf, oo npn > 0. Let {2, }22, be an arbitrary sequence generated by Algorithm 3
where {om }o2 o is a sequence in [0,2], and 307 |len|| < oo. If Y07 ap(2—ay) = o0
and ({T0,}22, T) satisfies the AKTT-condition, then z,, = v = lim,, o0 Psy,.

Remark 2.19. Our Corollary 2.18 gives a weak convergence theorem for a sequence
of firmly nonexpansive mappings from #H into H with the condition > 7 (o, (2 —
) = oo. This is a generalization of [11].

The following corollary gives a generalization of Chuang and Takahashi’s weak
convergence theorem [4].

Corollary 2.20. Let {15, : C — H}°, be a sequence of firmly nonezpansive map-
pings. Let 7, = Z?:o |@ng1,; — (1 — Qngint1)@nl. Suppose that Y oo Ty < 00
and liminf, ,oc 0n, > 0. Let T be a family of nonexpansive mappings of C into

67



418 CH. JATPRANOP AND S. SAEJUNG

H. Assume that ({Tn}o2, T) satisfies the NST-condition. Let {x,}22, be an arbi-
trary sequence generated by Algorithm 3 where {a,}52 is a sequence in [0,2], and

S o llenll < oo, If liminf, oo 0n(2 — ap) > 0, then zp, = u = limy_ o0 Psp.

Corollary 2.21. Let {1}, : C — H};2, be a sequence of firmly nonezpansive map-
pings. Let T be a family of nonerpansive mappings of C' into H. Assume that
(T}, T) satisfies the NST-condition. Let {x,};2, be an arbitrary sequence
generated by Algorithm 2 where {o, }22, is a sequence in [0, 2]. If iminf, o c,(2—
ap) >0, then z, — u = limy, 00 PsZy.

Proof. Let e, = 0 and «,,, = 1 for all n € N in Corollary 2.20. Then z,, = z,,
> 0™ =0, and liminf, o aypn =1 > 0. Then Corollary 2.21 follows. O

Remark 2.22. Our Corollary 2.21 gives an informative conclusion about the weak
limit of an iterative sequence in Theorem 3.3 of [4]. In fact, we have u = limy, o PsZy.

2.2. On generalized contraction-proximal point algorithm of Wang and
Cui. Recall that a multivalued operator A : H — 2% is monotone if (z—y, u—v) > 0
for all z,y € H and u € Az,v € Ay. A monotone operator A is mazimal monotone
if the graph Graph(A) := {(x,y) € H X H : y € Az} is not perperly contained in the
graph of any other monotone mapping. We refer the reader to [2] for more details.
It is known that if A is maximal monotone, then for each ¢ > 0 and for each x € H
there exists a unique element z € H such that

x € z+cAz.

In this case, we write J.x = z. Consequently, .J. is a mapping from H into H. It is
also known that

(a) Fix(J,) = A~ 10.

(b) J is firmly nonexpansive.

(¢) If e1,¢9 > 0, then J,z = J,, (%T + %Jclw) for all x € H.

Wang and Cui [17] proposed the contraction-proximal point algorithm with the
over-relaxed parameters. We explain how the over-relaxed parameter simply works
in this situation.

Definition 2.23 ([16]). {1}, : H — H}32, is said to be a strongly quasi-nonexpansive
sequence if it satisfies the following conditions:
(1) Mazo Fix(Ty) # @ and [[Thz —p|| < [lz —p| for all z € H and p €
Moy Fix(T,) and for all n € N
(2) limyp—oo |yn —Tnynll = 0 whenever {y, 152, is a bounded sequence in H such
that

o0
nlglolc (lyn = pll = 1 Tnyn — pll) = 0 for some p € mOFiX(Tn)'
e
Lemma 2.24 ([16]). Let {1, : H — H}32, be a strongly quasi-nonexpansive se-
quence satisfying the CP-condition. Suppose that {x,}re is a given by xo,u € H
and
Tl = At + (1 = X)) Tpxy,  for allm € Ng
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where {\,}02 is a sequence in (0,1) salisfying the conditions lim,_~ A, = 0 and
> g An = 00. Then {2,122 converges strongly to Py Fix(T,) U

Theorem 2.25 ([17]). Suppose that A : H — 2™ is a mazimal monotone operator
such that A710 # @. Suppose that {\, 1325 C (0,1), {1}, C (=1,1), {0,}5%, C
(0,2), and A\ +yn + 0, = 1 for all n € Ny. Assume that the following conditions
hold:

(1) liminf, s ¢n > 0;

(2) lmy oo An =0, D07 0 Ay = 005

(3) 0 < liminf,, - 8, <limsup,_, ., o, < 2
Then, for any nitial guess xo,u € H, the sequence {z,}52, generated by

Tptl = AU+ YnTn + OnJe, xn for alln € No|
converges strongly to Py—1o(u).

A simple proof of Theorem 2.25. Using the same technique as in the proof of Corol-
lary 2.15, we can write
1 1,
Jcn = 5[ + ibn

for some nonexpansive mapping S, : H — H. Moreover, we have the following
expression:

Tntl = AU + YnZn + 6n ( I+ S )xn
= >\n U+ (’}n (671,/2)) Tn + (671,/2)51!,:1/,”
= An'u + (1 - )\n)TnIna

where

(Yn =+ 0n/2)1 + (0,,/2) Sy,
1-X,

We obtain the conclusion from Lemma 2.24 by showing that:

T, =

(W) {T}22, is a strongly quasi-nonexpansive sequence;
Q0) {Tn}2, satisfies the CP-condition.
To prove (#), we first note that

F#£A70= ﬁ Fix(S,) = ﬁ Fix(T).

n=0 n=0
Let € H and p € ("~ Fix(T;,). We consider
'+ 0n/2 /2 2
[ Twz —p||* = ‘ u(ar -p)+ / (Snm —p)H
1=, 1—
Vo + /2 . n/Z
= ﬁ“-f - ||2 1— HS T *P”Z
_ 'Yn+5n/2 n/z _ 2
(=) (75 )uz S
: +60/2\ [ 6n)2
<l —pl2 — Tn n v _ 2
<l =l = (o3 (7250w = Snal”
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In particular, [|[T,2 — p|| < ||z — p|| for all 2 € H and p € (-, Fix(T,,) and for all
n € Ny. Next, let {y,}°, be a bounded sequence in H such that

e o]
lim (||yn =l = I Thyn — pH) = 0 for some p € ﬂ Fix(T,,).

n—00
n=0

It follows from the boundedness of {y, }>° that limy, e (||yn —p|I2=||Tnyn— pHQ) =
0. In particular,

lim (22 i 5”/2) (ff/z Ylgn = Sagall® = 0.

n=oo \ 1 — A\, An
Note that liminf,_ e % > 0 and liminf,, % > 0. This implies that
limy, o0 ||Yyn — Snyn|| = 0 and hence
. . 0n/2
Ay = Tl = Tt 7= lym = Snynl| = 0.

To prove (V), let {2,}52, be a bounded sequence in #H such that lim,_ ||z, —
Thzn|| = 0. Note that

8n/2 0n/2 5,
lzn—Thznll = 1 z /\"”Zn_snznu =1 Z /\n”Zn_(z-]cn_I)Zn” = 17_n/\n”2n_']cnzn”-
Since liminfy, ;00 6, > 0 and lim, o0 Ay = 0, we have liminf, ,o 12— > 0 and
hence limy, o0 |27, — Je, 2n]| = 0. Note that J,, x = Jﬂél’ + %Jcnx) for all
z € H. Then

cp— 1
C—']Cnxn> — Ip

n

1 1
([ Je, @ — Jizn| < H <_xn + = ‘1 - _’HTn = Je, ol
Cn Cn

It follows from liminf, oo ¢n > 0 and limy, o ||2n — Je, 20 || = 0 that limp e [|2n —
Jizp|| = 0. Since Ji is nonexpansive, it follows from Remark 2.6(3) that 20{z,},°, C
Fix(J;) = A7'0, that is, (V) holds. (]
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1 Introduction

Let H be a real Hilbert space with inner product (-, -) and norm || - ||. For a mapping
T : C — H where C C H, we write Fix(T) for the fixed point set of T, that is,
Fix(T) := {x € C : x = Tx}. Itis known that many problems can be reformulated to
the problem of finding a fixed point of an associated mapping. In this paper, we use a
fixed point algorithm approach to the problem of finding a zero of maximal monotone
operator. Recall that an operator A C H x H is monotone if (x — y,u — v) > 0 for
all (x,u), (y,v) € A. We say that A is maximal monotone if it is monotone and it
cannot be properly included in any other monotone operator. Minty [5] proved that
a monotone operator A C H x H is maximal monotone if and only if the operator
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I + A is surjective, that is, the range of I + A is entirely H (see also [7]). Using
this result, the concept of resolvent can be defined as follows: For each x € H and
r > 0, there exists a unique element z € H such that z € x 4+ r Ax. In this case, we
write z = Jax = (I +rA) " x. Itis easy to see that Fix(J,4) coincides with the
set of zeros of A, that is, Fix(J,4) = A~10 := {x € H:0 € Ax}. In other word,
the problem of finding a zero of a maximal monotone operator is equivalent to that of
finding a fixed point of its resolvent.

Recently, Lin and Takahashi [3] and Takahashi [6] proposed an iterative sequence
to approximate a common zero of two maximal monotone operators. More precisely,
let C be a closed convex subset of a Hilbert space H. Suppose that A : C — H
is inverse strongly monotone and B, F C H x H are maximal monotone such that
dom(F) := {x € H: Fx # @} C C. The problem discussed in [3] and [6] is to
approximate an element in (A + B)~'0 N F~10. The purpose of this paper is to use
theory of nonexpansive mappings to give a concise and short proof of both results.
The main results of this paper are presented in two subsections, that is, the Browder’s
type and the Halpern’s type iterations.

2 Some definitions and preliminaries

Let C be a subset of a Hilbert space H. Recall that a mapping 7 : C — H is called
L-Lipschitzian if ||Tx — Ty| < L|lx — y| for all x,y € C. An L-Lipschitzian
mapping with L < 1 and L = 1 is called a contraction and a nonexpansive mapping,
respectively. The theory of nonexpansive mappings is closely connected to theory of
maximal monotone operators. In fact, every resolvent of a maximal monotone operator
is a nonexpansive mapping.

For a closed convex subset C of a Hilbert space H, the projection of an element
x € H onto C is the unique point Pcx in C such that

lx = Pex|| = inf{llx —y| : y € C}.

In particular, we have (x — Pcx, Pcx —y) > Oforall y € C.
We recall two recent interesting results. The first one is from the work of Takahashi
[8] and the second one from the work of Aoyama et al. [1].

Theorem T Suppose that {T,, : H — 'H} is a countable family of nonexpan-
sive mappings and T : H — 'H is a nonexpansive mapping such that & #
Fix(T) C ﬂ;ozl Fix(T;,). Suppose that {T,} satisfies the NST-condition (I) with T,
that is, lim,_, o |20 — Tzall = O whenever {z,,} is a bounded sequence in H with
lim,— oo 120 — Tuznll = 0. Let u € H and {x,} be a sequence in H defined by

Xp =apu + (1 —oy)Tyx,, foralln>1

where {a,} C (0,1) and lim, @, = 0. Then the sequence {x,} converges to
Prixryu.
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Theorem AKTT Suppose that {T,, : H — H} is a countable family of nonexpansive
mappings such that F = ﬂ;ﬁl Fix(T,,) # @. Suppose that {T,,} satisfies the AKTT-
condition, that is, the following two conditions are satified:

o > > sup{l|Tuz — Ty+12|l : 2 € B} < oo whenever B is a bounded subset of H
(and hence {T,x} is a Cauchy sequence for all x € 'H);

e The mapping T : H — 'H defined by Tx := lim,_, , Ty x for all x € H satisfies
Fix(T) = F.

Let u € 'H and {x,} be a sequence in 'H defined by x| € 'H arbitrarily chosen and
Xnt1 = pu + (1 — o) Tyxp, foralln > 1

where {a,} C [0, 1] satisfies the following conditions

o0 o0
lim «, = 0; E o, = 00; E loty — otpg1| < 00.
n—oo

n=1 n=1
Then the sequence {x,} converges to Pru.

In this paper, we modify Theorems T and AKTT to Theorems 1 and 2, respectively.
Moreover, we show that the following four results are deduced from our Theorems 1
and 2.

The following two results are Theorems 7 and 8 of [3].

Theorem LT1 Let C be a nonempty closed convex subset of H. Let « > 0 and
A : C — 'H be a-inverse strongly monotone. Let B, F be a maximal monotone
operator on 'H such that domain of F included in C. Let J, = (I + AB) ! and
T, = (I +rF)~" be the resolvent of B for » > 0 and F for r > 0, respectively.
Let k € (0,1) and let g be a k-contraction of 'H into itself. Let V be a y-strongly
monotone and L-Lipschitzian withy > 0 and L > 0. Suppose that u and y are two
real numbers such that
2
75

vy
0</L<L—J;and0<y< .

Suppose that (A + B~ lonF-lo # @. Assume that {o,} C (0, 1), {X,} C (0, 00)
and {r,} C (0, c0) satisfy

Iim o, =0,0 <a <A, <2aand liminfr, > 0.
n—o00 n—00

Then the following hold:
(1) For each n > 1, define

Thx :=o,yg(x) + U —a,V)Jy, (I — A, AT, x forallx € H.

Then T, has a unique fixed point x,, € H and {x,} is well-defined and bounded.
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(2) The sequence {x,} converges strongly to a unique element zy € (A+B)~'0NF~10
and

((V—-v8)z0,q9 —z0) = O0forallq € (A+ B)710 n F~lo.

Recall that V : ' H — H is y-strongly monotone if (x —y, Vx —Vy) > y|x — y||2
forall x,y € H.

Theorem LT2 In the setting of Theorem LTI, let x; = x € 'H and
Xnt1 = py8(xy) + (I —a, V), (I — Ay AT, x, foralln > 1,

where {a,} C (0, 1), {},} C (0, 00) and {r,} C (0, co0) satisfy

o0 o0
limozn=0,2 an=oo,2 loy, —ap| < 00,0 <a <A, <2a,
n—oo

n=1 n=1

o0 o0
Z [Ap — Apt1] < oo, liminf r, > 0, and Z |rp — rpg1| < o0.
n—o0

n=1 n=1

Then the sequence {x,} converges strongly to a unique element zo € (A + B)~'0N
F~'0 and

(V=y8)20.q — 20) = Oforallqg € (A+ B)~'on F~'0.

The following two results are Theorems 3.1 and 3.2 of [6].

Theorem T1 Let C be a nonempty closed convex subset of H. Leta > Oand A : C —
'H be a-inverse strongly monotone. Let B, F be a maximal monotone operator on H
such that domain of F included in C. Let J,, = (I + AB) " and T, = (I + rF)~1
be the resolvent of B for A > 0 and F for r > 0, respectively. Let k € (0, 1)
and let g be a k-contraction of 'H into itself. Let G be a strongly positive bounded
linear self-adjoint operator H with coefficient y > 0. Suppose that 0 < y < ¥ /k
and (A + B)7'0 N F~10 # @. Assume that {a,} C (0, 1), {x,} C (0, c0) and
{rn} C (0, 00) satisfy

Iim o, =0,0 <a <A, <2aand liminfr, > 0.
o0

n—oo n—

Then the following hold:
(1) For sufficiently large n > 1, define

Twx =o,yg(x) + U —a,G)Jy, (I — 2, A)T,,x forallx € H.

Then T,, has a unique fixed point x,, € H and {x,} is well-defined and bounded.
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(2) The sequence {x,} converges strongly to a unique element zy € (A+B)~'0NF~10
and

(G —yg)z0.q — 20) = O forallg € (A+ B)~'on F~10.
Theorem T2 In the setting of Theorem T1, let x1 = x € H and
X1 = py8(xn) + (I —ayG)Jy,(I — Ay AT, X, foralln > 1,

where {a,} C (0, 1), {A,} C (0, 00) and {r,} C (0, c0) satisfy

o0 o0
lim oy =O,Zan =oo,2|an—an| < 00,0 <a <y <2a,
n—oo
n=1 n=1
o0 o0
> Ihn = Ang1] < 0o, liminfr, > 0, and Y |ry — raq1] < o0.
" n—oo 1
n= n=

Then the sequence {x,} converges strongly to a unique element zo € (A + B)~'0N
F~'0 and

(G —yg)z0.q — z0) = O forallg € (A+ B)~'on F~'0.
In this paper, we need the following results.
Lemma 1 Suppose that {s,}, {t,}, and {«,} are sequences of real numbers such that
sp >0, a, €[0,1], and sp41 < (1 — ay)sy + apty foralln > 1. Ifzzozloc,, = 00

and limsup,,_, t, <0, thenlim,_, s, = 0.

Lemma 2 Suppose that B C 'H x H is a maximal monotone operator and J, is the
resolvent of B forr > 0. Then

N
rx = Joxll < |1 = 2] x = Jyx]

forallx e Handr,s > 0.

3 Main results
3.1 Browder’s type iterations

We first modify Theorem T in the following way.

Theorem 1 Suppose that {T,, : H — H} is a countable family of nonexpansive
mappings and T : H — H is a nonexpansive mapping such that ¢ # Fix(T) C
ﬂflozl Fix(T,). Suppose that {T,} satisfies the NST-condition (I) with T. Suppose that
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f, & : H — 'H is a- and B-Lipschitzian, respectively and a + < 1. Let {x,} be a
sequence in 'H defined by

Xp = an(f(xn) + g(Tyxp)) + (1 — o) Tyxy, foralln > 1

where {o,} C (0, 1) and lim,, 5 o, = 0. Then the sequence {x,} converges to
20 = Prix(r)(f + &) (20).

Proof Obviously, the sequence {x,} is well-defined. Note that Prix(r) o (f + g) is
an (o + B)-contraction. By the Banach contraction principle, there exists a unique
element zg € Fix(T) such that

20 = Prix(7)(f + 8)(z0).

Define the following iterative sequence

2 = au(f +8)(zo) + (1 —ap)Thzn

for all n > 1. It follows from Theorem T that the sequence {z,} converges to zp =
Prix(r) (f + 8)(z0). Now we consider

ILf Cen) = f o) < f Gen) = F @I+ 1Lf (z0) = f20)]

< allxn = zall + ellza — 2oll:

and

8(Txn) — gzo)l = 1g(Txn) — g(Tz0)|
< 1g(Txp) — g(Tzn) |l + 18(Tzn) — &(T 20) ||
< BITxn = Tznll + Bl Tz0 — Tzoll
< Bllxn = zall + Bllzn — zoll.

This implies that

X0 — zall
< anllfCn) — fEOI + anllg(Taxn) — gzo)ll + (1 — )| Thxn — Tuzall
< apallxy — zpll + apallzy — 2ol
+anBllxn — zull + auBllzn — zoll + (1 — @) llxn — zall-

In particular,

(I —=(a+BDIlxn — znll = (@ + B)llzn — zo0ll-

It follows from lim, o0 [|2n — 20l = 0and o+ < 1thatlim,— o [|x, — 2, ]| = 0. We
conclude that {x,} converges to zo = Prix(1)(f + &)(z0). This completes the proof. O
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Theorem 2 Theorem 1 implies Theorem LT1I.
Theorem 3 Theorem 1 implies Theorem T1.
Before we prove the preceding two theorems, we show the following result.

Lemma 3 Suppose that C is a closed convex subset of H. Let A : C — H be a-inverse
strongly monotone where a > 0. Let B, F be a maximal monotone operator on 'H
such that domain of F included in C. Let J, = (I + AB) Land T, = (I +rF)~ ! be
the resolvent of B for .. > 0 and F forr > 0, respectively. Assume that {A,} C (0, c0)
and {r,} C (0, 00) satisfy

0<a<i;, <2xand liminfr, > 0.
n—oo

Suppose that (A+B) 10N F~10 # 0. Then {J;, (I — 1, A)T,, } satisfies NST-condition
with Jo(I — aA)T.

Proof First we note that Fix(Jy, (I —A,A)) = (A+ B)~'0 and Fix(T,,) = F~10 for
alln > 1. Let {x,} be a bounded sequence in H such that

lim [lx, — Jo,(I — 2, A) T, x| = 0.
n—0o0

Letz € (A+ B)~'0N F~'0. Then z = J;,(I — AyA)z = Tp,z foralln > 1.1In
particular,

|, (I =2y AT, xn — 2l < W Ty xn — 2l < llxn — 2l

This implies that lim (||x, — z|| — |7, x, — zl|) = 0. Since each T,,, is firmly nonex-
n—o0

pansive,
2 2 2
llx, — 15, xn -+ ”Tr,,xn —zlI” < llxu —zlI”.

We obtain that
lim |x, — Ty, xx| = 0. (H
n—oQ

Note that

I, — Jkn (I = X A)xgl|
< |lxp — -IA,, - )\nA)Trnxn” + ”an - )LnA)Tr,,xn - Jkn I = X A)xsl
< llxn — J)»n - )\nA)Tr,,xn” + ”Tr,,xn — Xpll.

It follows from (1) that

lim [x, — Jy,(I =2, A)xn|l = 0. ()
n— 00
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Let {A,,} be a subsequence {A,} such that limy_, oo Ay, = A for some A € [a, 2a].
Next, we observe that

”J)‘”k I - )”nkA)xnk - L - )\nk A)xnk I

A
< U= 20 = h Ay, = T3 (= Ay A
Ang
A
= 1= 2| (B, = o (7 = R i 4+ A ] ).
Nk

Therefore, since {Ax,, } is bounded, we have

lim [, (I = Ay A)Xn, — Jo(I = hng A, || = 0. 3)
k— 00

Moreover,
X0, — S (I — AA) x|
= Mxne = Bl = A A)xp | + 15— Ay A)xny, — S — AA) X, |l
< lmy, = Il = A D)X |+ Ay, — Al Aoxpy ||
= oy = Ja (I = X Ay | + 1y, (I = A A) Xy = T = A A ||
+ [y — Al A .

It follows from (2) and (3) that
lim |lx,, — JA(I —AA)x,, |l =0. 4)
k—o00

Next, we consider

||xnk —Jo (I — aA)xnk”
< lxne = I = 2AA) x|l + 1 — AA) Xy, — Jo (I — aA)xp, ||

o
< I, = Ja = Ay 1l 4 [1 = = I, = Ja = Ay .
Using (4), we obtain that

lim [|x,, — Jo(I — @ A)xy,, || = 0.
k—o00

By the double extract subsequence principle, we conclude that

lim ||x, — Jo(I —aA)x,|| =0. (5)
n—0o0o
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Now we consider the following inequality

X0 — Jo (I — aA)Toxn ||
< lxn — Jo —aA)xull + 1Ja (I —aA)xy — Jo(I — aA)Toxy||
< lxn = Jo(I — aA)xp |l + X0 — Toxnll
< Mxn = Jo I = aA)xnll 4 X0 = Tr Xn |l + 1T, X0 — T

o
< ln = Jall =@yl + (14 |1 = =) 1% = T .
n

It follows from (1), (5), and lim inf,,_, o 7, > O that

lim [|lxp — Jo(I — 0 A)Tyxy|| = O.
n—oo

This completes the proof. O

Proof of Theorem 2 Put S := Jy(I — 0 A)Ty and S, := J,,(I — 1, A)T,, for all
n > 1. It follows from Lemma 3 that {S,,} satisfies NST-condition with S. Moreover,
Fix(S) = (A + B)~'0 N F~10. Rewrite the formula of each x,, in Theorem LT1 as
follows:

Xp = Qy (f(X) +§(S,1)C)) + (1 —ay) Spxn

where @, := % f=pygandg =1 — uV foralln > 1. Note that f is a uyk-

contraction and g is a /1 — 2ut-contraction. Moreover, y ik + /1 —2ut < 1. It
follows from our Theorem 1 that {x,} converges to

20 = Prix(s) (f + o
Moreover,
((V —y8)20,q — 20) > O forall ¢ € Fix(S) = (A+ B)~'on F~'0.
The proof is finished. O
Remark 1 In Theorem LT1, the constants u and y are chosen such that
Lu

Y-

0 27 nd 0
< < —= an < <
F=12 v K

It should be noted that the conclusion of Theorem LT1 remains true if the following
more general condition is satisfied:

2y L2
0<pL<L7;and0<y;Lk<1—\/l—2M(y—2“),
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Proof of Theorem 3 Put S := Jy(I — aA)Ty and S, := J,,(I — 1, A)T,, for all
n > 1. It follows from Lemma 3 that {S, } satisfies NST-condition with S. Moreover,
Fix(S) = (A + B)~'0 N F~10. Rewrite the formula of each x,, in Theorem LT1 as
follows:

X = @ (F ) + 8(Sx)) + (1 — @) Spxn

where @, = %, f=tygandg =1 —1tG foralln > 1. Note that f is a yk-

contraction and g is a 1 —ty-contraction. Moreover, ytk+(1—ty) = 1 —(y —yk)t <
1. It follows from our Theorem 1 that {x,} converges to

20 = PFix(S)(f'i- 2)20.
Moreover,
((G —vyg)z0,9 — z0) = 0 forall g € Fix(S) = (A + B)710 n F~lo.

The proof is finished. o

3.2 Halpern’s type iterations

We modify Theorem AKTT in the following way.

Theorem 4 Suppose that {T, : H — H} is a countable family of nonexpansive
mappings such that F := (., Fix(T,) # @. Suppose that {T,} satisfies the AKTT-
condition. Suppose that f, g : H — 'H is a- and B-Lipschitzian, respectively. Let {x,}
be a sequence in 'H defined by x| € 'H arbitrarily chosen and

Xng1 1= (f () + 8(Tnxp)) + (I —an) Tyxn,  foralln =1,
where {a,} C [0, 1] satisfies the following conditions
) 00
nlgrgoan =0; ;an = o0; ”2:; loy — apy1] < 00.
Ifa + B < 1, then the sequence {x,} converges to Pru.

Proof Note that Pr o (f + g) is an (@ 4 B)-contraction. By the Banach contraction
principle, there exists a unique element zo € F such that

20 = Prixr)(f + &)(20)-

Define the following iterative sequence

Zn+1 = (f + @) (o) + (I — o) Thzn

84



Strong convergence of Browder’s and Halpern’s type...

for all n € N. It follows from Theorem AKTT that the sequence {z,} converges to
z0 = Pr(f + g)(z0). Now we consider

ILfCen) = f o) < 1 f Gen) = F @I+ 1Lf (zn) = f (o)l

< allxn = zall + llza — 2oll:

and

lg(Txn) — g(zo)ll = 118(Txn) — g(Tz0)|l
< lg(Txn) — 8Tzl + Ilg(Tzn) — g(Tz0)l
< BITxy — Tzall + Bllzn — 20l
< Bllxn — zull + Bllzn — 20l

This implies that

Xn+1 — Znt1ll
< anllf(xn) = f @O+ anllg(Thxn) — gl + (I — ) | Tuxn — Tnzall
< agallxy, — zull + anallzn — 20l
+anBlixn — zull + anBlizn — zoll + (A — @) lxn — zall
= —an(I = (a4 B)lxn — znll + an(a + B)llzn — 2ol

Note that Y 72 oty (1 — (@ + B)) = 00 and lim,— w = 0. It follows

. (a+p)
from Lemma I that lim,,_, » ||x, — 2, || = 0. Hence, we conclude that {x, } converges

to zo = Pr(f + g)(zo). This completes the proof. O
Theorem 5 Theorem 4 implies Theorem LT2.
Theorem 6 Theorem 4 implies Theorem T2.

Before we prove the preceding two theorems, we show the following result.

Lemma 4 Suppose that C is a closed convex subset of H. Let A : C — H be a-inverse
strongly monotone where « > 0. Let B, F be a maximal monotone operator on H
such that domain of F included in C. Let J, = (I + AB) Land T, = (I +rF)~ ! be
the resolvent of B for .. > 0 and F forr > 0, respectively. Assume that {A,} C (0, c0)
and {r,} C (0, co) satisfy

o o0
0<a<i; <2a, Z A — Ant1] < oo, liminfr, > 0, and E |[ry — rpg1| < 00.
n—oo

n=1 n=1

Suppose that (A + B)y~lon F 1o # @. Then {J,, (I — 1, A)T,.,} satisfies AKTT-
condition.
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Proof First, we note that y o>, |1 — A;’L—:II <ooand 37 |1 — 5| < co. Let B
be a bounded subset of H and x € B. Let p € (A + B)~'0 N F~10. It follows that

p=J, I —2r,A)p =T, pforalln > 1. Note that all the mappings J;,, I — A, A,
and 7}, are nonexpansive. We note that

/3, (I =2 A) Ty, x — pli
=110, (I = 2n ATy, x — J3,(I = 2 A) |
S U =2 AT x = (I = 2y A)pll
< T x = pl

<lx—pl.
For each n > 1, we have the following three suprema are finite:

sup{[[J», (] = 2 A) T, x|l : x € B}, sup{[|T,,, x| : x € B},
and sup{||AT,, x|l : x € B}.

Moreover, we consider the following three estimates:

||J)LnJrl (I — }\.nJrlA)Trnx — J)LnJrl (1 — )\n+1A)Tr,1+1x”
< ”Trnx - Trn+1x”

Fn+1

< 1= 22 i = 73

n
1o (I = 2 AT x — Jip iy (I = A1 AT, x|
< =2, )T, x — (I — Ay 1 AT, x|
= [Ap — )\n+l|||ATr,,x”§

and

”JA,, - )\nA)Tr,,x - J)»,,ﬂ - AnA)Tr,,x”

<

kn«H
1— - (I — A, AT x — Ty, (I — A AT x|
n

This implies that

o0
> sup{l i, (I = 2 AT x — Ty (I = A1 ATy, x| 2 x € B) < o0,

n=1
Finally, we assume that A := lim,,_, o0 A, and r := lim,_, o 7. It is obvious that

lim Jy, (I — 2 ATy, x = J(I — LA)T,x
n—0o0
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for all x € H and
Fix(J;, (I — A A)T,,) = Fix(J;, (I — LA)T;)

for all n > 1. This completes the proof. O

Proof of Theorem 5 Put§ := Jo(I —aA)Ty and S, := J, (I =1, A)T,, foralln > 1.
It follows from Lemma 4 that {S,} satisfies AKTT-condition. Moreover, Fix(S§) =
(A + B)~'0 N F~10. Rewrite the formula of each x,, in Theorem LT?2 as follows:

Xn+l = 67n(]\(xn) +§(Snxn)) + (1 - a?n)Snxn

where @, := %, f=pygandg =1 — uV forall n > 1. Note that f is a uyk-

contraction and g is a /1 — 2ut-contraction. Moreover, y uk + /1 —2ut < 1. It
follows from our Theorem 4 that {x,} converges to

20 = Prixcs)(f + D20
Moreover,
((V = yg)z0.q — z0) = O forall ¢ € Fix(S) = (A + B)~'on F~ 0.
The proof is finished. O
Remark 2 In Theorem LT?2, the constants w and y are chosen such that
7 - 4

5
0<,u<L—J;andO<y< .

It should be noted that the conclusion of Theorem LT1 remains true if the following
more general condition is satisfied:

0<yuk<1—\/1—2u(y—L;“).

Proof of Theorem 6 Put S := J,(I — 0 A)Ty and S, := J,,(I — 1, A)T,, for all
n > 1. It follows from Lemma 4 that {S,, } satisfies AKTT-condition with S. Moreover,

Fix(S) = (A + B)~'0 N F~10. Rewrite the formula of each Xp+1 in Theorem T2 as
follows:

Xn+1 = ay (f(xn) + ?(Snxn)) + (1 = @) Suxn
where @, = %, f=tygandg =1 —1tG foralln > 1. Note that f is a yk-
contraction and g is a 1 —ty-contraction. Moreover, ytk+(1—ty) = 1—t(y —yk) <

1. It follows from our Theorem 4 that {x,} converges to

20 = Prixcs)(f + D20
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Moreover,
(G — y£)z0.q — z0) = O forall ¢ € Fix(S) = (A + B)~'on F~10.
The proof is finished. O
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Fixed point theorems for contractions of
Reich type on a metric space with a graph

Narongsuk Boonsri and Satit Saejung

Abstract. In a metric space with a directed graph G, Jachymski (Proc
Am Math Soc 1(136):1359-1373, 2008) introduced the concept of Ba-
nach G-contraction and proved two fixed point theorems for such map-
pings. Bojor (Nonlinear Anal 75:3895-3901, 2012) generalized this con-
cept to Reich G-contraction and obtain a fixed point theorem. Note
that Bojor’s theorem is established under the additional type of con-
nectedness of G and it does not include Jachymski’s results as a special
case. Moreover, there are some mistakes in several corollaries. Some
examples and counterexamples are illustrated. It is our purpose to im-
prove Bojor’s theorem and to present two fixed point theorems for Reich
G-contractions. Our results are extensions of the two Jachymski’s theo-
rems. Finally, we also discuss some priori error estimates.

Mathematics Subject Classification. Primary 47H10; Secondary 05C40,
54H25.

Keywords. Fixed point, Reich G-contraction, Banach G-contraction, met-
ric space with a directed graph.

1. Introduction

For a mapping T from a nonempty set X into itself, the set of fixed points
of T is denoted by Fix(T), that is, Fix(T) = {z € X : = Tz}. If (X,d)
is a metric space, we say that T: X — X is a Picard operator (abbr., PO)
if Fix(T) = {z*} and lim, o d(T"z,2*) = 0 for all z € X. We also say
that T is a weakly Picard operator (abbr., WPO) if for every x € X, there
exists * € Fix(T'), such that lim,,_,o d(T"xz,z*) = 0. Obviously, every PO
is a WPO, but the converse is not true. One of many interesting results
in the literature giving a sufficient condition for being a PO is the Banach
Contraction Principle.

Theorem B. Let (X, d) be a complete metric space and let T: X — X be a
contraction, that is, there exists o € (0,1), such that d(Tx, Ty) < ad(x,y)
forall x,y € X. Then, T is a PO.

&) Birkhiuser
Published online: 04 May 2018
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It was Reich [11,12] who generalized Theorem B by introducing the so-
called Reich’s contraction: there are «, 3,7 € [0,1), such that « + 8+ v < 1
and d(Tx,Ty) < ad(z,y) + fd(x,Tz) + vd(y, Ty) for all z,y € X. He also
proved that if (X, d) is complete, then every Reich’s contraction 7: X — X
is a PO.

On the other hand, Ran and Reurings [10] introduced a new type of
contractions with respect to a given partial order in a metric space and they
proposed a fixed point theorem which is another generalization of Theorem B.
Ran—Reurings’s results were discussed further by Turinici [13,14]. Nieto and
Rodriguez-Lépez [8,9] gave some more general sufficient conditions for the
mapping to be a PO. Later on, Jachymski [7] replaced a partial order using a
more general relation, that is, a directed graph. He also proved a fixed point
theorem which includes the results of Nieto and Rodriguez-Lépez as a special
case (see Theorems J1 and J2 below). To be precise, for a metric space X,
let G be a directed graph, where the vertex set V(G) of G is X and the
edge set E(G) of G is a subset of the Cartesian product X x X. Throughout
this paper, we assume that (z,z) € E(G) for all x € X. He also introduced
the following mapping: T: X — X is a Banach G-contraction if there exists
a € (0,1), such that for all (z,y) € E(G) the following two conditions hold:

o (Tz,Ty) € E(G);

o d(Tx,Ty) < ad(z,y).
It is clear that if E(G) = X x X, then a Banach G-contraction reduces to
a contraction in Theorem B. Before passing, we note that some fixed point
theorems obtained from the combination of a notion of directed graphs and
that of Reich’s contractions were investigated in [1-3]. However, our results
in this paper are not deduced from these papers.

For a given directed graph G = (V(G), E(G)) and for z,y € V(G), a
G-path from z to y is a finite sequence {z;}¥ in V(G), such that z¢ = x,
xny =y and (z;_1,2;) € E(G) for all i =1,2,...,N. For € X, we write

[x]¢ = {y € X : there exists a G-path from z to y}.

We say that G is connected if V(G) = [z]g for all z € X, that is, there exists
a G-path from z to y for every pair z,y € V(G).

For a directed graph G, let G—! be the directed graph obtained from G
by reversing the direction of edges, that is, V(G™1) := V(G) and

B(GTY) = {(y,2) : (z,y) € B(G)}.
We also interested in the undirected graph G obtained from G by ignoring

the direction of edges, that is, V(G) := V(G) and
E(G):= E(G)UE(G™).

Due to this notation, we say that G is weakly connected if V(G) = [z]5 for

some (and hence, for all) z € X, that is, there exists a G-path from z to y
for every pair x,y € V(G).

For a metric space (X,d) endowed with a directed graph G and for a
mapping T: X — X, we write Xy = {z € X : (z,Tz) € E(G)}.
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Remark 1. Let (X,d) be a metric space endowed with a directed graph G
and T: X — X be a mapping. If X = [J{[z]¢ : # € X} and there exists
xo € Xr, such that X7 C [z¢]q, then X = [xo]c-

The following two fixed point theorems were proved by Jachymski.

Theorem J1. [7, Theorem 3.2] Let (X, d) be a complete metric space endowed
with a directed graph G and T: X — X be a Banach G-contraction. Suppose
that the following condition holds:
(J-1) For any sequence {x,} in X, if lim, oo ©p = ¢ € X and (zy, Tpi1) €
E(G) for all n € N, then there is a subsequence {xn, } of {xn}, such
that (xy,,,z) € E(G) for all k € N.
Then, the following statements are true.
(1) card Fix(T) = card{[z]5 : v € X7}
(2) Fix(T) # @ if and only if X1 # @.
(3) T has a unique fized point if and only if there exists xo € Xr, such that
Xr C [:E()]é
(4) T(zg)s s a PO for all zo € Xr.
(5) If X7 # @ and G is weakly connected, then T is a PO.
(6) Tly is a WPO, where Y = | {[z]5 : z € Xr}.
(7) If Xp =X, then T is a WPO.

Theorem J2. [7, Theorem 3.3] Let (X, d) be a complete metric space endowed
with a directed graph G and T: X — X be a Banach G-contraction. Suppose
that the following condition holds:

(J-2) T is orbitally G-continuous, that is, for all z,y € X and for any sub-
sequence {T™ x} of {T"xz}, if limg_ oo T x =y and (T z, T T'z) €
E(G) for all k € N, then limy_.oo T (T x) = Ty.

Then, the following statements are true.
(1) Fix(T') # @ if and only if X1 # .
(2) For any x € X1 and y € [z]g5, {T™y} converges to a fived point of T

and lim,, . T™y does not depend on y.

(3) If X1 # @ and G is weakly connected, then T is a PO.
(4) If Xpr =X, then T is a WPO.

Note that the key assumption of Theorem Ji is the condition (J-7) where
i =1,2. Tt is clear that (J-1) < (J-2).

Recently, Bojor [4] proved a fixed point theorem for Reich’s mappings in
the setting of a complete metric space with a directed graph. To state Bojor’s
result, we recall the following type of connectedness introduced in [4].
Definition 2. Let (X, d) be a metric space endowed with a directed graph G
and T: X — X. We say that the graph G is T-connected if for all vertices
x,y of G with (z,y) ¢ E(G), there exists a G-path {x;} from z to y, such
that ©o =z, xny =y, and (z;,Tx;) € E(G) for alli =1,2,..., N — 1. We say
that G is weakly T -connected if G is T-connected.

Remark 3. Tt is clear that if G is T-connected, then G is connected and

X1 # @. However, the converse is not true.

The following type of mappings was studied by Bojor [4].
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Definition 4. [4] Let (X, d) be a metric space endowed with a directed graph
G. A mapping T: X — X is said to be a Reich G-contraction if there exist
a,B,v € [0,1), such that « + 8+ v < 1, and for all (z,y) € E(G), the
following two conditions hold:

o (Tz,Ty) € E(G);

o d(Txz,Ty) < ad(zx,y) + Bd(xz, Tx) + ~vd(y, Ty).

In this case, we also say that T is a Reich G-contraction with parameters «,

B, -

Remark 5. (1) If T is a Reich G-contraction and E(G) = X x X, then T is
a Reich contraction.
(2) If T is a Reich G-contraction with parameters a, 3, v and 5 =~ = 0,
then it is a Banach G-contraction.
(3) If T is a Reich G-contraction with parameters «, 3, v and § = =, then
it is a Reich G-contraction.

Remark 6. Suppose that T is a Reich G-contraction with parameters «, £,
~. Suppose that the following condition hold:

(z,y) € E(G) < (y,7) € E(G). (®)

Then, T is a Reich G-contraction with parameters o/, 3, 7/, where o/ = «
and f =+ = %(6 + 7). In fact, we assume that (z,y) € E(G). Then,
(y,z) € E(GQ). It follows from the definition of Reich G-contraction that:

d(Tz,Ty) < ad(z,y) + Bd(x, Tx) 4 vd(y, Ty)
d(Ty, Tr) < ad(y,z) + Bd(y, Ty) + vd(x, Tz).
This implies that
d(Tx,Ty) < o'd(z,y) + f'd(z, Tx) +~'d(y, Ty),

where o/ = a and /' =+ = %(ﬁ + 7). Note that the conclusion above fails if
(#) is not satisfied.

Remark 7. Tt follows from Remarks 5(1) and 6 that if T is a Reich contraction
with parameters «, 3, v, then T is a Reich contraction with parameters o,
B, and v, where o/ = a and ' =+’ = %(ﬁ + 7).

The following example shows that the class of Reich G-contractions is
different from that of Reich contractions and that of Banach G-contractions.

Example 8. Let X = R equipped with the usual metric d. Define a directed
graph G on X by E(G) = {(z,z) : € X} U{(0,z) : = # 0}. Define
T: X — X by Te = —x for all x € X. It is clear that if (x,y) € F(G), then
(Tz,Ty) € E(G). Let (z,y) € E(G). We may assume that z = 0 and y # 0.
Note that d(Tz,Ty) = d(z,y) = ly|, d(z,Tz) = 0, and d(y, Ty) = 2|y|. It
follows that T is a Reich G-contraction with parameters o = i, 6 =0, and
v = % We show that T is not a Reich contraction. Suppose that T is a Reich

contraction with parameters o/, 5, and v/, where 3’ = +'. Note that 70 = 0,
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Tl=-1and 1 =4d(70,71) < a’d(0,1) + 5'd(0,70) ++'d(1,T1) = o' + 2+.
In particular,

L+3 < (" +8 +9)++9 <1+7"

This implies that 3’ < 4/ which is a contradiction. Moreover, it is obvious
that T is not a Banach G-contraction.

Bojor [4] proposed the following theorem [4, Theorem 6] which is related
to Theorem J1.

Theorem Bo. Let (X,d) be a complete metric space endowed with a directed

graph G andT: X — X be a Reich G-contraction. Suppose that the following

condition holds:

(J-1) For any sequence {x,} in X, if limy oo 2 = ¢ € X and (zp, Tni1) €
E(G) for all n € N, then there is a subsequence {x,, } of {z,}, such
that (zn,,z) € E(G) for all k € N.

If G is T-connected, then T is a PO.

Due to Remark 3, we cannot conclude that Theorem Bo is a generaliza-
tion of Theorem J1. It is worth mentioning that Theorem Bo was extended
from the single-valued mapping to the multi-valued one by Alfuraidan and
Khamsi (see [3, Theorem 4.4]).

It is our purpose to give two generalizations of Theorem J1 and of The-
orem J2 for Reich G-contraction. In fact, the concept of T-connectedness as
was the key assumption of Theorem Bo can be replaced by the condition orig-
inally discussed in Theorems J1 and J2. The paper is organized as follows: In
main results, we prepare several sufficient conditions for the two sequences
{T™z} and {T"y} to be Cauchy equivalent. The extensions of Theorems J1
and J2 are presented in Sects. 2.1 and 2.2, respectively. Note that the exten-
sion of Theorem J2 obtained in this paper is a nice application of the result
of Hicks and Rhoades [6]. In the last subsection, if we assume that a Reich
G-contraction has a fixed point in place of the completeness of a space and
the conditions (J-1) and (J-2), some priori error estimates are presented. We
consider the priori error estimate when the graph is defined from a partial
order. We also discuss some gaps in Bojor’s results and present some related
examples and counterexamples to his results.

2. Main results

The following result was implicitly proved in [4].

Lemma 9. [4] Let (X,d) be a metric space endowed with a directed graph
G and T: X — X be a Reich G-contraction with parameters «, 3, . Let
§ =2 If (¢, Tx) € E(G), then

AT e, T2 2) < 6d(T™2, T" '2)  for alln > 1,

and hence, {T"z} is a Cauchy sequence.
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Definition 10. Let {a,} and {b,} be two sequences of nonnegative real num-
bers. We write a,, = O(b,,) for the situation that there exist a positive number
C > 0 and an integer N > 1, such that a,, < Cb, for all n > N.

Lemma 11. Let § € (0,1) and k be a nonnegative integer. Let {a,} and {b,}

be two sequences of nonnegative real numbers, such that any1 < da, + by, for
alln > 1. If b, = O(n*6™), then a, = O(nF*16m).

Proof. Since b, = O(n*§™), there exist a positive number D > 0 and an
integer N > 1, such that b, < Dn*§" for all n > N. Then, for all n > N, we
have

An+1

D

< 5%" 1 nken,

Without loss of generality, we assume that D = N = 1. That is,
a1 < dap + nk6"  for allm > 1.

Let n > 2. Then

an < 8ap_1 + (n— 1)kt
< 6(8an_o+ (n—2)F6""2) + (n— 1)ksn1
= 8%an o+ (n—2)"6" "1 4 (n — 1)ken !

< 6n—1a1 + 11@5n—1 + Qk(sn—l 4+t (n _ 1)]66”—1
_ 6n—1a1 + (1k + 2k RS (Tl _ 1)k)(5n—1
S 6n—1a1 + (n _ 1)k+15n—1

_1 a1 n—1 kol k+16n
s\ Ty "

< an—}—l(sn’

where C' = § (5f4r + 1). Hence, a, = O(n¥*16™). The proof is finished. [

Lemma 12. Let (X,d) be a metric space endowed with a directed graph G
and T: X — X be a Reich G-contraction with parameters o, (3, 7. Let

0= max{?‘%f7 %} Suppose that (z,y) € E(G). Then, the following two

statements are true.
(1) If B > v and d(T"x, T 'z) = O(nk6") for some nonnegative integer
k, then d(T"x, T"y) = O(n**16") and d(T"y, T"*'y) = O(n*+16m).
(2) If B < v and d(T"y, T"y) = O(nké"™) for some nonnegative integer
k, then d(T"x, T"y) = O(n**t16") and d(T"x, T" ' x) = O(n*+16m).
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Proof. (1) Assume that 3 > v and d(T"z, T""'x) = O(n*§") for some non-
negative integer k. Let n > 1. Note that (7T"z,T"y) € E(G) and

d(T" e, T y) = d(T(T"z), T(T"y))
< ad(T"z, T"y) + Bd(T"z, T" ' x) + vd(T"y, T" " y)
< ad(T™z, T"y) + Bd(T™z, T"x) + vd(T™y, T"x)
+ yd(T"2, T" M x) + yd(T™ o, T y).
In particular,
B+

1—n

a+y

d(T" e, T y) < d(T™z, T"y) + d(T"z, T x).

1—v
Since 3 > v, we have % < %‘fj < 6. Hence,

d(T" e, T y) < §d(T"x, T™y) + %d(T"m, T ).

Note that %d(T”x,T"“x) = O(n*s™). By Lemma 11, we have
d(T"z, T"y) = O(nF*iem).
Since d(T™y, T"*1y) < d(T"y, T"x) +d(T"x, T x) + d(T" 'z, T y), we

have d(T"y, T"*ly) = O(n*+15").
(2) The proof is similar to that of (1), so it is omitted. O

Remark 13. The assumption § > ~ in Lemma 12(1) cannot be omitted as
shown in the following example.

Example 14. Let X, d, G and T be defined as in Example 8. Note that T is

a Reich G-contraction with parameters a = i, [ =0,and v = % Finally, we
observe that (0,y) € E(G) for all y # 0 and d(T™0,T"10) = 0 = O(1/2").

However, the sequence {T"y} is not Cauchy.

Definition 15. Let (X, d) be a metric space. We say that the sequences {x,, }
and {y,} in X are Cauchy equivalent if one of them (hence, all of them) is a
Cauchy sequence and lim,, oo d(%y, yn) = 0.

Definition 16. Let G be a directed graph. For each pair z,y € V(G) with
x # vy, we define e(z,y) := 00 if y ¢ [x]g; and

e(r,y) :=min{k € N : {zj}fzo is a G-path from z to y}
if y € [z]¢. Moreover, we define e(x, ) = 0 for all z € V(G).

The following result gives a sufficient condition for the two sequences
{T"z} and {T"y} to be Cauchy equivalent.

Lemma 17. Let (X,d) be a metric space endowed with a directed graph G
and T: X — X be a Reich G-contraction with parameters o, 3, v. Let § :=

max {%‘5, %} and let x € Xp. Then, the following statements are true.

(1) If B>~ and y € [z]a, then d(T"x, T"y) = O(n*6™), where k = e(x,y).
In particular, {T"x} and {T"y} are Cauchy equivalent.
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(2) If 3 <~ and y € [v]g-1, then d(T"z, T"y) = O(nké"), where k =
e(y,x). In particular, {T"x} and {T"y} are Cauchy equivalent.
(3) Ify € X1 and y € [z]q, then {T"x} and {T"y} are Cauchy equivalent.

Proof. Let # € Xr. It follows from Lemma 9 that d(T"z, T"1z) = O(6™).

(1) Assume that § > v and y € [z]g and let k := e(x,y). Then,
there exists a G-path {zj};?zo from x to y, such that zyp = =z, 2z = y and
(2j,2j41) € E(G) for all j = 0,1,2,...,k — 1. Since (20,21) € E(G) and
d(T"z0, T" M 29) = d(T"z, T z) = O(6"), it follows from Lemma 12(1)
that

d(T"2,T"2) = O(né™) and d(T"z, T"'21) = O(nd™).

Similarly, since (z1,22) € E(G) and d(T"z,T"2) = O(nd"), it follows
from Lemma 12(1) that

d(T"21,T"2) = O(n?6™) and d(T"zy, T" " 25) = O(nd™).

Continuing this process gives d(T"zy_1, T™y) = d(T" 2,1, T" z1,) = O(n*6™)
and d(T"y, T y) = d(T" 2k, T"'z)) = O(n*6™). Note that > oo nko" <
oo and {T"x} is a Cauchy sequence. Hence, {T"x} and {T"y} are Cauchy
equivalent.
(2) We can follow the proof of (1) but with an application of Lemma 12(2).
(3) is a consequence of (1) and (2). O

Corollary 18. Let (X, d) be a metric space endowed with a directed graph G
and T: X — X be a Reich G-contraction with parameters «, (3, v, such that
B >n. Letd = %’fj Assume that there exists xo € X, such that X = [zo]q.
Then, the following statements hold.
(1) For each x € X, d(T"x¢,T"x) = O(n*s") where k = e(xo,x). In
particular, {T™z} and {T™xo} are Cauchy equivalent.
(2) {T™z} and {T™y} are Cauchy equivalent for all z,y € X.

Proof. (1) and (2) follow from Lemma 17(1). O

The following lemma can be proved using the same technique as in
Lemma 12 and Corollary 18 so its proof is omitted.

Lemma 19. Let (X,d) be a metric space endowed with a directed graph G
and T: X — X be a Reich G-contraction with parameters «, (3, vy, such that
B=r. Let § = %*f Then, the following statements hold:

(1) If (z,y) € E(G) and d(T"z,T" 'z) = O(n*é") for some nonnega-
tive integer k, then d(T"z,T"y) = O(n**+16") and d(T"y, T"y) =
O(nF+1sm).

(2) If v € Xp and y € [z]g, then {T™x} and {T™y} are Cauchy equivalent.

(3) If Xr # @ and G is weakly connected, then the sequences {T"x} and
{T"y} are Cauchy equivalent for all x,y € X.
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2.1. An extension of Theorems J1 and Bo

Lemma 20. Let (X,d) be a complete metric space endowed with a directed
graph G and T: X — X be a Reich G-contraction. Suppose that Condition (J-
1) holds. If x € X satisfies the condition (x,Tz) € E(G), then lim,, T"z = z
for some z € Fix(T).

Proof. Suppose that T: X — X is a Reich G-contraction with parameters «,
B, 7. Let z € X be such that (z,Tz) € E(G). It follows that (T"z, T"" ) €
E(Q) for all n € N. Moreover, it follows from Lemma 9 that {T™z} is a
Cauchy sequence. Since X is complete, lim,, T"x = z for some z € X. It
follows from Condition (J-1) that there is a subsequence {T™ x} of {T™x},
such that (T™x, z) € E(G) for all k € N. This implies that

d(z,Tz) = klim d(T™ e, Tz)
= klim d(T(T™x),Tz)

IN

Jim (d(T"™ x, 2) + Bd(T™ x, T™ ) + yd(z,Tz))
=~d(z,Tz).
Hence, z € Fix(T) as desired. d

Theorem 21. Let (X, d) be a complete metric space endowed with a directed
graph G and T: X — X be a Reich G-contraction with parameters a, (3, 7.
Suppose that Condition (J-1) holds. Then, the following statements are true.
(1) Fix(T) # @ if and only if X1 # .
(2) T|x, is a PO if and only if there exists xo € Xrp, such that Xp C
[zo]c U [o]G-1-
Suppose, in addition, that 3 > ~y. Then, the following statements are true.

(3) Tlizo)e is a PO for all o € Xr.

(4) If there exists x9 € Xr, such that X = [xo]g, then T is a PO. In
particular, if X = \J{[z]g : * € X} and there exists vog € Xr, such
that Xp C [zo]g, then T is a PO.

(5) Ty is a WPO, where Y = J{[z]c : © € Xr}.

(6) If X =X, then T is a WPO.

Proof. We prove (2). Note that T'(Xr) € Xr. (=) Assume that T|x, is
a PO. Then, Fix(T|x,) = {xo} for some 2o € Xp. Let = € Xp. Then,
(T"z, T""'z) € E(G) for all n € N and lim,, .o, 7"z = xo. By (J-1), there
exists k € N, such that (T%x,z0) € E(G). Then, {z, Tz, T?z,...,T"z, 20} is
a G-path from z to xg. Hence, x € [zg]g-1 C [zo]e U [zo]g-1-

(<) Assume that there exists xg € X, such that Xo C [zo]aU[zo]g-1-
It follows from Lemma 20 lim, T"z¢ = z for some z € Fix(T"). Obviously,
z € Xr. Now, we prove that T|x, is a PO. To see this, let x € Xr C
[zo]cU[zo]g-1. It follows that either z € [z¢]¢ or zg € [z]¢. By Lemma 17(3),
the sequences {T"z} and {T"xz(} are Cauchy equivalent. This implies that
lim,, T"z = z. Therefore, T'|x,. is a PO.

From now on, we assume that 3 > ~.

99



Page 10 of 17 N. Boonsri and S. Saejung

(3) Let xg € Xp. We first observe that T'([zo]a) C [zo]a. It follows from
Lemma 20 that lim,, T"x¢ = z for some z € Fix(7T'). To show that T'|[;,). is
a PO, let x € [zo]g. It follows from Lemma 17(1) that {T"x¢} and {T"z}

are Cauchy equivalent. Hence, lim,, 7"z = z and T'|[,,, is a PO.
(4) is a direct consequence of (3) and Remark 1.
(5) follows from (3).
(6) follows from Lemma 20. d

The following result is similar to the preceding theorem but for the
situation that 8 < ~. The proof is left for the reader to verify.

Theorem 22. Let (X, d) be a complete metric space endowed with a directed
graph G and T: X — X be a Reich G-contraction with parameters o, (3, .
Suppose that Condition (J-1) holds. Then, the following statements are true.

(1) Fix(T) # @ if and only if X1 # <.

(2) T|x, is a PO if and only if there exists xo € Xrp, such that Xp C
[zo]a U [wo]G-1-

Suppose, in addition, that 3 < ~y. Then, the following statements are true.

(3) Tlizg),— 15 a PO for all zg € Xr.

(4) If there exists xg € Xy, such that X = [xo]g-1, then T is a PO. In
particular, if X = J{[z]g-1 : © € X1} and there exists xo € X, such
that Xr C [xo]lg-1, then T is a PO.

(5) Ty is a WPO, where Y = | J{[z]g-1 : z € Xr}.

(6) If X =X, then T is a WPO.

Corollary 23. Let (X,d) be a complete metric space endowed with a directed
graph G and T: X — X be a Reich G-contraction with parameters o, [3, v
where 8 = ~. Suppose that Condition (J-1) holds. Then, the following hold:

(1) cardFix(T) = card{[z]5 : * € Xr};

(2) Fix(T) # @ if and only if X1 # &;

(3) T has a unique fized point if and only if there exists xo € Xr, such that
Xr C [330]5;§

(4) T(zo)s is a PO for all zg € Xr;

(5) If X7 # @ and G is weakly connected, then T is a PO. In particular, if
X = U{lz]g : © € X1} and there exists o € X, such that X C [xo]g,
then T is a PO;

(6) Tly is a WPO, where Y =\ J{[z]g : v € Xr};

(7) If Xpr = X, then T is a WPO.

Proof. The proof of (1) is similar to that Theorem 3.2(1) of [7]. Observe
that (3) is a consequence of (1). The rest follows directly from the proof of
Theorem 21 and Lemma 19. (]

Remark 24. We note that the T-connectedness of the graph G which is a
requirement of Theorem Bo is weaken. Moreover, the following example is
applicable for our result but beyond the scope of Theorem Bo.

Ezample 25. Let X = Nand E(G) ={(n,n) :n € X}U{(n,n+1):n e N}U
{(2,1)}. Define amappingT: X - X byT1=T2=T3=1and Tn =n—2
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for all n > 4. Then, T is a Reich G-contraction with parameters a = %,
1

B = v = . Note that all the conditions of Theorem 21 are satisfied, and
hence, we obtain that 1 is the unique fixed point of 7" and lim,, ., T"x =1
for all x € X. To see that G is not T-connected, we consider x = 3 and y = 5.
Note that (z,y) ¢ E(G) and the sequence {x,z,y} where z = 4 is the only
G-path from z to y. Obviously, (z,Tz) ¢ E(G). Hence, this example is not
applicable in Theorem Bo.

The following example show that the condition “there exists zg € Xr,
such that X7 C [z0]5" in Corollary 23(5) cannot be dropped.

Ezxample 26. We modify the preceding example as follows. Let X, G, and T
be the same as Example 25. Let X* = XUX'’, where X' := {—n:n € X}. Let
G* be a directed graph, such that V(G*) = X* and E(G*) = E(G)U E(G’),
where
(71‘: 7y) € E(G/) — (I>y) € E(G)

Define 77: X’ — X' by T'(—z) = —Txz for all z € X. Now, we define
T : X* > X* by T"z = Tx if v € X and T*z = T'z if € X'. Then,
T* is a Reich G*-contraction with parameters a = %, B=~= % It follows
from Corollary 23(5) that 7" is a WPO. In fact, Fix(T*) = {—1,1}. Observe
that the condition “there exists x9 € X7., such that X7. C [zo]5:" is not
satisfied.

To point out some error in Bojor’s results, we quote his three results as
follows.

Corollary Bol. Let (X, d) be a complete metric space endowed with a directed
graph G. Suppose that Condition (J-1) holds. Suppose that T: X — X satis-
fies one of the following conditions:
e T is a Reich G-contraction with parameters a, 3, v, such that 8 =~ [4,
Corollary 1];
e T is a Banach G-contraction [4, Corollary 2];
o T is a Kannan G-contraction, that is, T is a Reich G-contraction with
parameters o = 0, 3 = v [4, Corollary 3].

If G is weakly T-connected, then T is a PO.

The preceding results of Bojor are not true. In fact, it follows from
Corollary 23 that to guarantee the existence of a fixed point of 7', it is nec-
essary and sufficient that X1 # &. However, the condition X7 # & is not
assumed. Moreover, the weak T-connectedness does not imply that X # @&
as shown in the following example.

Ezample 27. Let X = [0, 1] be a usual metric space. Define a directed graph
Gon X by E(G) = {(z,z) : x € X} U{(z,y) : z,y € (0,1] and z < y} U
{(1,0)}. Define a mapping T: X — X by Tz = § for all z > 0 and 70 = 1.
It follows that
e T is a Kannan G-contraction with a parameter g =
e T is a Banach G-contraction with a parameter oo =

)

3
7
3
I
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Note that G is weakly T-connected and satisfies the condition (J-1). It is easy
to see that Fix(1T") = @.

2.2. An extension of Theorem J2

In this subsection, we show that an extension of Theorem J2 via the fixed
point theorem of Hicks and Rhoades [6]. We first recall the following concepts.

Definition 28. Let (X,d) be a metric space. Let T: X — X and zp € X.
Let Orb(zg,T) = {x0, T2, T?xq, ...} be an orbit of 29 under T. A function
g: X — [0,00) is said to be T-orbitally lower semicontinuous at xo if {y, } is a
sequence in Orb(zg, T') and lim,_,~ yn, = y implies g(y) < liminf, .~ g(yn)-

The following fixed point theorem was proved by Hicks and Rhoades

[6].

Theorem HR. Let (X, d) be a complete metric space and § € [0,1). Suppose
that T: X — X is a mapping and there exists let xog € X, such that

d(Ty7T2y) <dd(y,Ty) for ally € Orb(x,T).

Then, the following statements are true.

(1) lim,, T™zq := z ewxists.
(2) The element z in (1) is a fized point of T if and only if x +— d(z, Tx) is
T-orbitally lower semicontinuous at xq.

The idea of the following lemma is taken from our recent work [5].

Lemma 29. Let (X,d) be a metric space endowed with a directed graph G.
Suppose that T: X — X is a Reich G-contraction. If Condition (J-2) is
satisfied, then the function x — d(z,Tx) is T-orbitally lower semicontinuous
at xg for all xo € Xr.

Proof. Let kg € X7. Then, (T"zq, T" 1 2¢) € E(G) for all n € N. We show
that g(z) := d(z,Tz) is T-orbitally lower semicontinuous at xo. Let {y,}
be a sequence in Orb(zg,T) and lim, . yn = y € X. For each n € N, let
m(n) be the smallest number k, such that T*z¢ = y,,. We consider the set
K= {m(n):n e N}.

Case 1. K is an infinite set. Therefore, there exists a subsequence {y,, } of
{yn}, such that m(ny) < m(ngy1) for all k& € N. Hence, {y,,} is a
subsequence of {T"zp}. In particular, there is a strictly increasing
sequence {pi} of natural numbers, such that y,, = TP+ x for all
k € N. Then, limy_ oo yn, = limp_oc TP*z¢ = y. It follows from
(TPrxg, TP*lz4) € E(G) and Condition (J-2) that

lim Ty,, = lim TP lzy = Ty.

—00 k—o0
Since zg € Xr, it follows from Lemma 9 that limg_, . d(TP*xg,
TPetlp) = 0. Hence, g(y) = d(y,Ty) = 0. Therefore, g(y) = 0 <
liminf, o0 g(yn)-
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Case 2. K is a finite set. Since {y,, } is a sequence in a finite set {77z : j € K}
and lim,, y, = y, there exist k € K and N € N, such that y,, = T
for all n > N. Hence, y = T"x, that is, y, = y for all n > N. Then

As considered in the preceding two cases, the function g(z) is T-orbitally
lower semicontinuous at xg. O

The following result is our extension of Theorem J2 for Reich
G-contractions.

Theorem 30. Let (X, d) be a complete metric space endowed with a directed
graph G and T: X — X be a Reich G-contraction with parameters a, (3, v,
such that B > ~. Suppose that Condition (J-2) holds. Then, the following
statements hold.

(1) Fix(T') # @ if and only if X1 # .

(2) For each © € Xp and for each y € [x]a, {T"y} converges to a fized
point of T and lim,_,. T™y does not depend on y.

(3) If there exists xo € Xr, such that X = [xo]g, then T is a PO. In
particular, if X = \H{[z]¢ : © € Xr} and there ezists vy € Xp, such
that X C [zo]g,, then T is a PO.

(4) Ty is a WPO, where Y = J{[z]¢ : © € Xr}.

(5) If there exists xo € X, such that X1 C [xo]a U [zo]g-1, then T has a
unique fixed point.

(6) If Xpr =X, then T is a WPO.

Proof. (1) (=) is obvious, because Fix(T) C Xr.
(<) Let 9 € Xp. Then, (T"xo, T" '2¢) € E(G) for all n € N. Put
6= 0%"5 Then, by Lemma 9, we have

1
d(T" g, T 22g) < 6d(T" w0, T"x) for all n € N. (@)
Let y € O(xp,00). Then, y = T"xo for some n > 0. Hence, by (V), we have
d(Ty, T?y) = d(T"xo, T 2a0)
< 0d(T™xo, T )
= 6d(y, Ty).

Then, by Theorem HR(1), there exists an element z € X, such that z =
lim,, 00 T™xg. It follows from Condition (J-2) and Lemma 29 that x +—
d(x, Tx) is T-orbitally lower semicontinuous at x¢. Then, by Theorem HR/(2),
we have z = T'z. Hence, z € Fix(T') # .

We show (2). Let © € X and let y € [z]g. It follows from (1) that
lim,, T"x = z for some z € Fix(T). From Lemma 17(1), {T™z} and {T"y}
are Cauchy equivalent. This implies that {T"y} converges to a fixed point of
T.

3) follows from (2) and Remark 1.

4) follows from (2).

5) follows from (1) and Lemma 17(3).
6 (

(
(
(
(6) follows from (1). O
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2.3. Some priori error estimates

In the preceding two subsection, it is shown that the conditions (J-1) and
(J-2) are sufficient for the existence of a fixed point of Reich G-contractions
in a complete metric space. in this subsection, we consider the situation
that a Reich G-contraction has a fixed point and we study some priori error
estimates. Note that the following result requires neither the completeness
nor Jachymski’s conditions.

Theorem 31. Let (X,d) be a metric space endowed with a directed graph G.
Suppose that T: X — X is a Reich G-contraction with parameters o, 3, 7,
such that Fix(T) # @. Then, the following statements are true.

(1) If 8=~ and G is weakly connected, then T is a PO.

(2) Let § := max{M &tV Suppose that G is connected. Then, T is a

11—~ 1—
PO with a umquewﬁxedﬁpoint z. Moreover, the following statements are
true.
(a) d(T"z,z) = O(0") for allz € Xp. In fact, d(T"x, z) < %d(w,Tm)
for alln € N.
(b) If B > ~v and x € X\Xr, then d(T"z,z) = O(n'é"), where | :=
e(z,x).
(c) If B <~ and x € X\Xr, then d(T"z,z) = O(n"d"), where r :=
e(z,2).

Proof. Pick z € Fix(T). Note that z € Xp.

(1) Assume that 8 = v and G is weakly connected. It follows Lemma 19(2)
that {T"z} and {T™z = z} are Cauchy equivalent for all z € X. Then, T is
a PO.

To see (2), we assume first that § > v and G is connected. Let z €
X. Note that X = [z]¢. It follows from Corollary 18(1) that d(T"z,z) =
d(T"z, T"z) = O(n'é™), where [ := e(z, x). Therefore, (b) holds. In particu-
lar, lim,, T"x = z for all z € X. This implies that T is PO. Now, we consider
the case x € Xp. For all n,m € N, it follows from Lemma 9 that

d(T™z, T" " x)
<d(T"z, T" M) + d(T" e, T 22) + -+ d(T" T e, T ™)
< o"d(x, Tx) + 6" d(x, Tx) + - - + 6" d(x, Tx)

< Z 67| d(z, Tx)
j=n
= — Tx).
T 5d(w, x)

Letting m — oo gives d(T"x, z) < %d(x, Tz) for all n € N. This proves (a).
For the case < v and G is connected, it can be proved analogously, so
the proof is omitted. O

We now restrict ourselves to a certain directed graph. Let (X, <) be a
partially ordered set. Let G be a directed graph on X, such that

EGQ) ={(z,y) e X x X :z < y}.
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Then, for zg € X, the condition X = [z¢]¢ is equivalent to zo < z for all
x € X. In this case, e(xg,x) = 1 for all z # xg.

Corollary 32. Let (X, =) be a partially ordered set and let (X, d) be a complete

metric space. Let T: X — X be a nondecreasing mapping (with respect to <),

that is, Tx < Ty whenever © < y. Assume that there exist nonnegative real

numbers o, 3, v, such that « + 3+ v <1 and
d(Tz, Ty) < ad(z,y) + fd(x, Tx) + vd(y, Ty) for all x < y.

Assume that one the following conditions holds:

(N-1) For any nondecreasing sequence {x,} in X, if lim, 00 zn = € X,
then x, < x for alln € N;

(N-2) For allz,y € X and for any subsequence {T™ x} of {T"x}, if limg_ 0
Ty =y and T™x < Ty for all k € N, then limy,_ o T(T" x) =
Ty.

Then, the following statements hold.

(1) Fix(T) # @ if and only if there exists zo € X, such that xo < Txg.

(2) Suppose that 8 > ~ and there exists zo € X, such that xog =< x for
all v € X. Then, T is a PO with a unique fized point z. Moreover, if
6= %f, then the following statements are true.

o d(T"zx,z) = O(0") for all x X Tx.
o d(T"x,z) = O(nd™) for allxz A Tx.

(3) Suppose that 3 = ~ and there exists g € X, such that xo =< Txo.
Suppose that every pair of elements of X has either an upper bound or
a lower bound. Then, T is a PO with a unique fixed point z. Moreover,
if o = %, then the following statements are true.

o d(T"x,z) = O(6") for all x < Tx.
o d(T"xz,z) = O(n*s") for all x £ Tx.
o If 3=~=0, then d(T"x,z) = O(a™) for all x # z.

Finally, we discuss the following result of Bojor [4, Corollary 4].

Corollary Bo2. Let (X, =) be a partially ordered set and let (X, d) be a com-
plete metric space. Let T: X — X be a nondecreasing mapping. Assume that
there exist nonnegative real numbers a, 3, v, such that a« + 3+ v < 1 and

d(Tz, Ty) < ad(z,y) + fd(x, Tz) +vd(y, Ty) for all x < y.
Assume that the following conditions hold:
(1) For any nondecreasing sequence {x,} in X, if limy ooty = x € X,
then x, = x for all n € N.
(2) For each z,y € X, incomparable elements of (X, =), there exists z € X,
such that © < z, y Xz and z 2 Tz.
Then, T is a PO.

It follows from our Corollary 32(1) that Fix(T') # & if and only if there
exists g € X, such that xg < Txg. In particular, if T" is a PO, then there
exists xg € X, such that zg < Tzg. However, even we assume that there
exists xg € X, such that x¢g < Tzg, we do not have the conclusion as shown
in the following example.
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Example 33. Let X, G, and T be defined in Example 8. For z,y € X, we
define

r =y <= (y,z) € E(G).
Then
d(Tz,Ty) < id(x,y) + %d(x,Tz) for all z < y.

It is obvious that 7" is not a PO.
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In this paper, we introduce a concept of A-sequences of Received 22 January 2018
Halpern type where A is an averaging infinite matrix. If A is the Accepted 2 August 2018
identity matrix, this notion become the well-know sequence KEYWORDS
gene.ra!ted by Halpern'’s iteration. A necessary and sufficient Fixed point; sequence of
condition for the strong convergence of A-sequences of Halpern type; averaging
Halpern type is given whenever the matrix A satisfies some cer- matrix; concentrating matrix;
tain concentrating conditions. This class of matrices includes L-hybrid mapping

two interesting classes of matrices considered by Combettes

and Pennanen [J. Math. Anal. Appl. 2002;275:521-536]. We ?xz;aﬁ;gﬂ?ﬁ?ous
deduce all the convergence theorems studied by Cianciaruso ' ’

et al. [Optimization. 2016;65:1259-1275] and Muglia et al. [J.

Nonlinear Convex Anal. 2016;17:2071-2082] from our result.

Moreover, these results are established under the weaker

assumptions. We also show that the same conclusion remains

true under a new condition.

1. Introduction

Let H be areal Hilbert space with inner product (-, -) and induced norm || - ||, that
is, [|x]|? = (x,x) for all x € H. Recall that an element x € H is a fixed point of a
mapping T : H — 'H if x=Tx and the set of all fixed points of T is denoted by
Fix(T). We use — and — for the strong and weak convergence, respectively. For
a given sequence {x,}52 |, let 20{x,,}7° ; denote the set of all weak cluster points
of {x,,}7° , that is,

Wixn)pe = {z € H : x,, — z for some subsequence {xy, }ro, of {x,};=;}.
In this paper, we are interested in the approximation of a fixed point of a mapping

via an iteration if such a fixed point exists.
The following type of mappings was introduced by Aoyama et al. [1].

CONTACT S. Saejung @ saejung@kku.ac.th, satitz@yahoo.com @ Department of Mathematics, Faculty of
Science, Khon Kaen University, Khon Kaen 40002, Thailand

© 2018 Informa UK Limited, trading as Taylor & Francis Group

111



1896 (&) CH.JAIPRANOP AND S. SAEJUNG
Definition 1.1: A mapping T : H — H is L-hybrid where L > 0 if
ITx = Tyl < e = yII” + L{x — Tx,y = Ty)

for all x,y € H. Every L-hybrid mapping where L=0 and L=2 is called a
nonexpansive and nonspreading mapping, respectively.

The concept of nonspreading mappings was introduced by Kohsaka and
Takahashi [2]. Let us summarize several fact about L-hybrid mappings.

Remark 1.1: (1) If T :'H — H is firmly nonexpansive, that is, || Tx — Ty|? <
(x —y, Tx — Ty) for all x, y € 'H, then T is an L-hybrid mapping for all L €
[0,2] (see [1]).

(2) Notevery L-hybrid mapping is continuous. In fact, for each L > 0 there exists
a noncontinuous L-hybrid mapping (see [1]).

(3) If T:H — H is L-hybrid, then I—T is demiclosed at zero, that is, x=Tx
whenever {x,}°° | isasequencein H such thatx, — x € Handx, — Tx, —
0 (see [3]).

(4) Every L-hybrid mapping with a fixed point is quasi-nonexpansive. Recall
that a mapping T : H — 'H is quasi-nonexpansive if Fix(T) # @ and || Tx —
pll < llx — p|l for all x € H and p € Fix(T). Note that the fixed point set
of a quasi-nonexpansive (in particular, an L-hybrid) mapping is closed and
convex (see [4]).

In this paper, the following mappings are also studied.
Definition 1.2: A mapping D : H — H is said to be
(1) B-strongly monotone where 8 > 0 if
(Dx — Dy,x — y) > Blx —y||2 forallx,y € H;
(2) 8-Lipschizian where § > 0 if
[Dx — Dy|l < dllx —y|l forallx,y € H.

Every §-Lipschitzian mapping where § < 1 is specifically called a §-contraction
or a contraction.

Remark 1.2: If D : H — 'H is a B-strongly monotone and §-Lipschitzian map-
ping and 0 < 1 < 28/82, then the mapping I — uD is an n-contraction where
ni=01—pRp — us®)2 Roughly speaking, if  is not too large, then I — uD
is a contraction.
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The iterations in this paper are defined by using averaging matrices. Recall
that an infinite real matrix [a, k]9 _, is averaging if the following conditions are
satisfied:

(A1) api > O0foralln,k > 1landa,; =O0foralln > 1and k> n;
(A2) Y f_japr=1lforalln > I
(A3) limy oo apr =0forallk > 1.

Lemma 1.3 ([5]): Suppose that [an,k]fk:1 is an averaging matrix. Let {£,}5° | bea

sequence of real numbers and &, := Y }_, aniéx for alln > 1. If&, — & for some
real number £, then &, — &.

Recall that for a real number g, the positive part of a, denoted by a™, is defined
by a™ := max{a, 0}.

Definition 1.4: An averaging matrix [a,x]75_, satisfies

e BBI-condition [6] if limy 00 Y —1 (@nj+1 — dnk) ™ = 0;
e BB2-condition [6] if limy— 0o 34—} lanks1 — ankl = 05
o CMMX-condition [7) ifapy > apr > --- > ap, foralln > 1.

Remark 1.3: Obviously,
CMMX — condition = BB2-condition = BB1-condition.

Moreover, none of the implication above can be reversed.

Remark 1.4: If an averaging matrix [a,,£]5_, satisfies the condition BB2, then
limy,—, 0 an,n = 0. In fact, since [an,k]‘fk:1 is averaging, we have lim,_, o a,,1 =
0. This implies that lim,_ oo |an,n| < lim,—co(|an1] + ZZ;II |anjtr1 — ankl) =
0 and hence lim,,_, o a5, = 0.

The following three strong convergence theorems for a fixed point of an L-
hybrid mapping are our starting point. The first one was proved by Cianciaruso
etal. [7] and the second and the third ones were proved by Muglia et al. [8].

Theorem 1.5 ([7, Theorem 3.5]): Let D : H — 'H be a B-strongly monotone and
8-Lipschitzian operator and let T : H — H be an L-hybrid mapping such that
Fix(T) # @. Let [an,k]fk:1 and [bn,k]szl be averaging matrices. Let {x,}° | be
a sequence in 'H defined by

x1 € 'H arbitrarily chosen,
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n
Xy = Z A Xk
k=1

n—1

X1 7= Yuxn + (1= yu)(I = nD) ) bupert T'%n foralln = 1,
k=0

where

(@) {mn)S2, C (0, ) withp < 2B8/8% andlimy,_, oo iy = 0and > oo | jy = 003
(b) [b,,,k]fk:1 satisfies CMMX-condition;

(©) limy—oo(1 = ann)/pn = 0;

(d) {ynlo2; C[0,) C [0,1) and lim,_ 00 ¥ = 0.

Then {x,};° | converges strongly to p € Fix(T) and this element p is the unique

solution of the variational inequality (Dp,y — p) > 0 for all y € Fix(T).

Theorem 1.6 ([8, Theorem 2.3]): Let D : H — 'H be a B-strongly monotone and
3-Lipschitzian operator and let T : H — H be a nonspreading mapping such that
Fix(T) # @. Let [bﬂ’k]szl be an averaging matrix. Let {x,},- | be a sequence in
'H defined by

x1 € H arbitrarily chosen,

n—1
X1 1= (I = nD)x + (1= @) ) bpgpr Tx  foralln = 1,
k=0

where

(@) {an)pe, C(0,1) satisfies lim,_, o0 0ty = 0 and {pn}oe; C (0, ) with u <
2B/8% and Y02 | atpjin = 003
(b) [bnklS_, satisfies CMMX-condition.

Then {x,},° | converges strongly to p € Fix(T) and this element p is the unique
solution of the variational inequality (Dp,y — p) > 0 for all y € Fix(T).

Theorem 1.7 ([8, Corollary 2.6]): Let f : H — H be an o-contraction and let
T :'H — M be a nonspreading mapping such that Fix(T) # ©. Let [byx]}5_, be
an averaging matrix. Let {x,};° | be a sequence in H defined by

x1 € H arbitrarily chosen,

n—1

Xpt1 = onf (x0) + (1 — ) Z bn’kHTkxn foralln > 1,
k=0

where
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(@) {an)2, C (0,1) satisfies limy o0 0ty = 0 and Y o | aty = 003
(b) [bnilig_, satisfies CMMX-condition.

Then {x,};° | converges strongly to p € Fix(T) and this element p is the unique
solution of the variational inequality ((I — f)p,y — p) = 0 for all y € Fix(T).

It is worth mentioning that there are two averaging matrices [a,k];;_, and
[bnkl; g, involving the iterative scheme mentioned above. The first matrix
[an)k]fk:1 is exploited to update x,4; from the past iterates {xk}zzl. This
approach motivated by the work of Combettes and Pennanen [9] mitigates the
zig-zagging [10, 11] and spiraling [12, 13] of sequences reported in some appli-
cations. The second matrix [bn,k]fk:1 is motivated from the work of Brézis and
Browder [6]. It can be viewed as an extension of the usual Cesaro mean of ergodic
theory.

It is our purpose to introduce two concepts: (1) A-sequences of Halpern type
where A is an averaging infinite matrix, and (2) concentrating matrices in the
sense of Halpern; to simultaneously unify and generalize the preceding three
results. The paper is organized as follows: In Section 2, we first prove some
auxiliary results which is a refinement of Xu’s lemma. The definition of concen-
trating matrices in the sense of Halpern is introduced in Subsection 2.1. This
kind of matrices is inspired by the work of Combettes and Pennanen [9]. In
Subsection 2.2, we provide some tools used extensively in this paper. Our main
convergence theorem is presented in Subsection 2.3 after the introduction of
A-sequences of Halpern type where A is an averaging infinite matrix. A neces-
sary and sufficient condition for the convergence of an A-sequence of Halpern
type is given in terms of some properties of the set of all weak cluster points of
some sequences defined from this sequence. In Subsection 2.4, we show that all
the results of Cianciaruso et al. [7] and of Muglia et al. [8] are easily deduced
from our result with weaker assumptions and with some new conditions. Finally,
in Section 3, we discuss two interesting examples of concentrating matrices in
the sense of Halpern. More precisely, we show that averaging matrices satisfying
either the generalized segmenting or the generalized moving average condition
are concentrating in the sense of Halpern.

2. Main results
We start our main result by refining the result which is known as Xu’s lemma [14].

Lemma 2.1: Let {s,}52, be a sequence in [0,00), {a,};2 | be a sequence in [0,1]
with Y oo | oty = 00, and {t,)2 | be a sequence of real numbers. Assume that

spp1 < (1 —ap)sy + apty

or all n > 1. Then lim su; sp < limsu tn. In particular, Xu’s lemma
pnﬁOO pn%oo p
follows, that is, iflim sup,,_, .ty <0, then lim,_, o0 s, = 0.
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Proof: Without loss of generality, we can assume that f,; < t, for all n > 1.
(In fact, we can replace t, by?n := sup{f, : kK > n} and we see that limy— o0 fn =
limsup,,_, o, ts.) Note that

0 < max{s,+1,ty+1} < max{s,,t,} foralln > 1.

In particular, lim,_ o max{s,,t,} exists. Observe that «,(s, —t,) <s, —
Snt1. Then Y0 au(sy — ty) < 51— Smp1 < s1 for all m > 1. It follows from
Y02, oy = oo that

liminf(s, — t,) < 0.
n—0o0

Now we consider the following two cases.
Case 1:lim,_, s, exists. It follows that

lim s, <liminf(s, — t,) + limsup t, <limsupt,.
n—00 n—>00 n—00 n—00

Case 2: lim,,_, oo s, does not exist. This case is broken into two subcases.

Subcase 2.1: There is an integer N such that s, > t, for all n > N. Then s, =
max{s,, t,} forall n > N. So lim,,_, o s, exists, which is a contradiction.

Subcase 2.2: The inequality s,, < t,, holds for infinitely many #y. Then

limsups, < lim max{s,,t,} = lim max{s,,,t,} = lim t, <limsupt,.
n—00 n—00 k—o0 k— o0 n—00

This completes the proof. u

Lemma2.2: Let {s,}>, and {e,} | be sequences in [0, 00) such that 2211 &n <
00, {2 | be a sequence in [0, 1] with 220:1 o, = 00, and {t,}52 | be a sequence
of real numbers. Assume that

Snp1 = (L —ap)sy +apty + &y

for all n > 1. Then limsup,_, . s, <limsup,_,  t,. In particular, Xu’s lemma
follows, that is, iflim sup,,_, . tn <0, then lim,_, o 5, = 0.

Proof: Note that

o0 oo o0
st Y e < _an)(5n+25k> +an<tn+Zek)-

k=n+1 k=n k=n

By Lemma 2.1 and ) oo | &, < 00, we have

o0 o
limsup s, = lim sup (sn + Z 8k> < lim sup (tn + Z 8k) = lim sup ¢,.

n—o0 n—oo n—oo n—o00
k=n k=n

Then the result follows. [ |
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2.1. Concentrating matrices in the sense of Halpern
Inspired by the concentrating matrices in the sense of Combettes and Pennanen

[9], we introduced the following matrices.

Definition 2.3: An averaging matrix [a,x]7%_, is concentrating in the sense of
Halpern, (H-concentrating, in short) if whenever {s,}°° |, {€,};>, are sequences
of nonnegative real numbers such that ) 7 | &, < 00, {&,}32 | is a sequence
in [0,1] with Zi;“n =00, {t,};2; is a sequence of real numbers with
limsup,,_, ,, tn» < 0,and

n
Sy = Z A Sk
k=1

Sp+1 = (1 - Oln)gn + auty + &y

for all n > 1, it follows that lim,_ oo s, = 0. It is clear from Lemma 2.2
that the identity matrix is H-concentrating. Some interesting examples of H-
concentrating matrices are discussed in Section 3.2.

2.2. Auxiliary results

Lemma 2.4: Let C be a nonempty convex subset of H and let T : C — C be a
mapping. Let n > 1 and let {bx};_, be a finite sequence of nonnegative numbers
with Y p_ by = 1. Let z € C and let {yk}zg be a sequence in C and {§;}]_, be a
sequence of real numbers such that

Iyks1 — T2lI* < llyk — zlI* + &
forallk =1,...,n. Then

n n—1
llz = Tz)|* < 2 <Z biyk — 2, Tz — z> + ) (g1 — bollyksr — Tzl
k=1 k=1

n
+billyr = T2l? = ballynrn — T2l* + ) bk
k=1

Proof: Note that

Iyker — Tzll* < llyk — 2I1* + &
=k — T2) + (Tz — 2)|I” + &
= lyk — T2l* + 20 — Tz, Tz — 2) + || Tz — 2II* + &
= llye — Tz* + 200 — 2, Tz — 2) — || Tz — 2* + .
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Then we have

n
> bellykn — T2
k=1

n n n
<D billye — Tzl +2<Z biyk — 2 Tz—z> — 1Tz —2I* + ) bik.

k=1 k=1 k=1
Therefore
n n—1
lz — Tz)1* < 2 <Z biyk — 2, Tz — z> + Y (g1 — bollyksr — Tzl
k=1 k=1
n
+billyr — Tzl* = ballynss — T2l + ) bei.
k=1
This completes the proof. |

Lemma 2.5: Let Cbe a nonempty closed and convex subset of HandletT : C — C
be a mapping. Let {yn},5_, be a bounded double sequence in C and {§, i}, _, be
a bounded double sequence of real numbers. Let [by k175 _, be an averaging matrix
satisfying the BB1-condition. Suppose that z, := > }_; by iyuk and

lynis1 — TZnHZ < ynk — Zn||2 +&nk
foralln > 1 and forallk = 1,2,...,n Iflim,_, ZZ:I buiénk = 0, then

lim ||z, — Tzu|| = 0.
n—oo

Proof: It follows from Lemma 2.4 and z,, := Y _; by iyn that

2
Iz — Tzul|

n n—1
<2 <Z bujnk — Zns Ten — zn> + ) g1 = bu)lynks1 — Tzall?
k=1 k=1

n
+ bupllyns — Tzall® = bunllynnir = Tzull> + Y buénk

k=1
n—1 n
<Y Bukt1 = ba) Tlynkss — Taall® + buallyns — Tzull* + D buibnk.
k=1 k=1

Note that {z,} is bounded and hence so are the sequence {y,1 — Tz,}52, and
the double sequences {y, k41 — Tzu}5_,- The conclusion follows from the BB1-
condition of [bk]55_, and limy,, o Y by bugbni = 0. [ |
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Lemma2.6: Let Cbe a nonempty closed and convex subset of HandletT : C — C
be L-hybrid with a fixed point. Let B := [b,,x]5._, be an averaging matrix. Suppose
that that {x,};° | is a bounded sequence in C. If one of the following conditions is

satisfied:

(a) B satisfies BBI-condition and L= 0;
(b) B satisfies BB2-condition and L > 0,

then

n n
nlgr;o H Z bn,ka_lxn - T(Z bn,ka_lxn)
k=1 k=1

and hence W{Y "}, bk T 1x,)2°, C Fix(T).

-

Proof: Let y, = T5 'x,, 2, := 30, bugynk and &,y := L{T* x,, — Tkx,,
zy — Tzy) for all n, k > 1. Since T is L-hybrid,

2 2
lynkr1 — Tenll™ < Nlynk — zall” + Enk-

We assume that (a) holds. It follows that lim,—oc Y r_; buiénk = 0 and the
result follows from Lemma 2.5.

We assume that (b) holds. Note that T is quasi-nonexpansive. Since {x,,}52 | is
bounded, the sequence {z, — Tz,};° | and the double sequence {Tkxn}fk:1 are
bounded. It follows from the BB2-condition of B that

n—1
lim byxs = m > (bpgr1 — bup) Tx = lim by, T"x, = 0.
n—oo n—oo —1 n—o0

In particular,
n
lim b
o kz n,ksn,k
=1

n
=1L lim Z bn,k(Tk_lxn — Trxy 2, — Tz,)
n—o00

k=1
n—1
=L lim <bn,1xn + 3 Gngert — ba) T% — by T, 20 — Tzn> =0.
n— 00 =1
The conclusion follows again from Lemma 2.5. |

2.3. Convergence theorems

We first define the following notion which plays a key role in this paper.
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Definition 2.7: Let F be a nonempty closed and convex subset of H and A :=
[ankl;—, be an averaging matrix. We say that a sequence {x,};>; C H is of
A-Halpern type with respect to F if there exist a contraction f : H — H; two
sequences {u,}o |, {vy)ne; in H; and two sequences {a,}50 |, {Bnloe, in [0,1]
such that the following conditions are satisfied:

(@) Y% oy = oo and liminf,—oo(1 — By) > 0;

®) llun —pll < X%y ankllxk — pll and [[v, — pll < Y _p_; ankllxx — pll for all
n> landforallp € F;

(&) Xnt1 = Bnxy + (1 — ,Bn)(anf(un) + (1 — ap)vy) foralln > 1.

Remark 2.1: Suppose that F is a nonempty closed and convex subset of { and
A is an averaging matrix. Every A-Halpern type sequence with respect to F is
bounded.

Proof: Let A := [a,x]_,- Suppose that {x,};2, is of A-Halpern type with
respect to F where f : H — H, {un}oe;, (v}, {@n}52,, {Bnloe, are given by
Definition 2.7. Let p € F. Suppose that f is an a-contraction. For each n > 1, set

1
My = max {x1 = pl-. I = pll, ——IIf @) =l }.
— o
Note that
lun = pll < ankllxe — pll < M,
k=1
and
low —pll <) ankllxk — pll < M.
k=1
Moreover,
If ) = pIl < If () = F@I + 1 () — I
< aflun —pll + I () — pll
<aM,+ (1 —a)M, = M,.
This implies that

lxn+1 = pll < Bullxu — pll + (1 = Bu)(@ullf (un) — pll + (1 — o) lve — pID)
< BuMy + (1 = By) (@M + (1 — ay)My) = M,,.

By induction, we get that || x, — p|| < max{[|x; — p|, (1/(1 — a))||f(p) — plI} for

all n > 1 and hence {x,}° , is bounded. |
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We now give a necessary and sufficient condition for the convergence of a
sequence of A-Halpern type with respect to F.

Theorem 2.8: Let F be a nonempty closed and convex subset of H and A :=
(@), be an averaging matrix. Suppose that a sequence {x,},  is of A-Halpern
type with respect to F where f : H — H, {ua}72 1, {va}oo s (a5 15 {Br}oo, are
given by Definition 2.7. Suppose that y, := onf (uy) + (1 — ay)vy, for all n > 1.
Suppose in addition that one of the following conditions is satisfied:

(a) A is H-concentrating and 220:1 Bn(1 — ap,) < o0;
(b) limy—oo(1 — ann) /oty = 0.

Then x, — z = Ppf(2) if and only if W{y,} C F.

Proof: We may assume that f is an «-contraction where o € (0, 1). In particular,
the composition Pr o f is also an «-contraction on F and hence there exists a
unique element z € F such that z = Pgf(z).

(=) Assume that x, — z. Note that x,4; — x, = (1 — 8,) (yn — x»). It fol-
lows from lim,,, o ||xy+1 — x|l = 0 and lim inf,,—, oo (1 — B,) > 0 thatlim,_,
lyn — xn|l = 0 and hence W({y,} = W{x,} = {z} C F.

(<) We assume that 20{y,,} C F. Then limsup,,_, . (f(2) — z,y» —2) < 0.1t
follows from Remark 2.1 that {x,};,>, is bounded and so are the sequences {u,}
and {v,}. Set M := sup{||x, — z||*> : n > 1}. We consider the following estimates:

lyn — 2117
= [l (f (un) — f(2) + an(f(2) — 2) + (1 — &) (vy — D)
< llon(f(un) — f(2) + (1 — &) (Wn — DI* + 20 (f (2) — 2,30 — 2)
< oo’ llun — 21> + (1 = o) lvg — 2] + 200 (f(2) — 2,y — 2)
< (1= a1 =a?) Y angllxk — 217 + 200 (f(2) — 2,0 — 2).
k=1
In particular, we have
%041 — 2l

< Bullxn — zII> + (1 = Bu)llyn — 2l

< Bullxw — 217 + (1 = B (1 = an(1 = ) (Y il — 2I)
k=1

+2(1 - Ign)an(f(z) —Z,¥n — 2).

We now discuss the following two cases.
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Case 1: We assume that A is H-concentratingand > ;2 | B4(1 — an,) < 00.In
this case, we start by refining the preceding estimate:

2
[Xn41 — zll

< Bullxw = 2P + (1= B — (1= B = (Y anelli — 21
k=1

+2(1 = Ban(f(2) — z,yn — 2)

n

2 2

= Ba (0 — 212 = Y anlli — 217
k=1

+ (1= (1= Ban — @)D anell — 2117

k=1
+21 = Ban(f(@) — 2.y~ 2)

= Bul = an) 5 — 217 + (1 = (1= Ben(l = o) (Y anille - 2I%)

k=1

+2(1 = Benlf @) = 2.0 — 2)

n
< Bull = an)M + (1 = (1 = fan(l = ) (Y anelli — 2I1?)
k=1
2)2<f(z) —Z,Yn — 2)
1—a? '

Since Y 7, oy = 00 and liminf, (1 — B,) > 0, we have Y 2 (1 — Bu)ay
(1 — a?) = oo. Since A is H-concentrating and ZZ‘;I Bn(l —ap,) < 0o, we
have lim,,_, o0 ||, — 2||? = 0, that is, x, — z.

Case 2: We assume that lim,,_, o (1 — a,,,,) /o, = 0. In this case, we follow the
idea from [7]. Note that ZZ;% angllxk — zl|> < (1 = ap,)M for all n > 2. We
now consider the following estimate:

+ 1= Bay(l —«a

%n41 — 2112

< Ballxn — 21> + (1 = B) (1 — (1 — ) ((1 = an)M + apullxn — 2%
+2(1 = Boan (f(2) — 2,90 — 2)

= (Bn+ (1= B — an(1 — &*))any) llxn — 2l
+ (1= B A = ay(1 — )1 — ap)M
+2(1 = Bu)atn (f(2) = 2,yn — 2)

< (1= 1= Band —aD))lxy —2zl* + 1 = B (1 — any)M
+2(1 = Bu)atn (f(2) — 2, yn — 2)
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= (1- = poan( =) 5, — 2|1
11— Ann M+ 2<f(Z) —Z¥n _Z>) )

an(1 —a?) 1 —a?

+u—ﬂ0wa—a%(

Note that Y 02 /(1 — By)ay(1 — @?) = 0o and limy— 5o (1 — @p,n) /ety = 0. This
implies that lim,,—« [|x, — z||* = 0, that is, x, — z. [ |

2.4. Deduced results

We now present the first deduced result which is an improvement of Theorem 1.5.

Theorem2.9: LetD : H — 'H be a B-strongly monotone and §-Lipschitzian oper-
ator and T : H — 'H be an L-hybrid mapping such that Fix(T) # &. Let A :=
[an)k]szl and B := [bn,k]szl be averaging matrices. Let {x,},- | be a sequence

in 'H defined by

x1 € H arbitrarily chosen,

n
Xy 1= Z An,kXk>
k=1

n—1

Xnt1 = YuXn + (1 — yn) (I — uuD) Z buji1 T"%,  foralln > 1,
k=0

where

(@) {unliey C (0, ) with o < 28/82 andlim,_, o0 i = 0 and ZZL Iy = O0;
(b) one of the following two conditions is satisfied:
(1) B satisfies BB1-condition and L= 0;
(2) B satisfies BB2-condition and L > 0;
(c) one of the following two conditions is satisfied:
(1) A is H-concentrating and Z‘;il V(1 — ap,) < 00;
(2) limy—oo(l — ann)/in = 0;
(d) {yn)o2, C [0,1] withlimsup, , v < 1.

Then x, — z = Prixr)(I — D)z.

Proof: We apply our Theorem 2.8 to prove this result by showing first that the
sequence {x,},°  is of A-Halpern type with respect to Fix(T). Set

n—1
i _
Up 1= In’ Bn == Vu> f =1—uD, u,=v,:= E bﬂ,k-HTkx"‘
k=0
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Note that ||ty — pll = lva — pll = | 7=y buk1 (T — )| < 7=y bkl
%, — pll < I1Xn — pll = | Ypy @nkCek — P)II < Dk angllxk — pll forallp €
Fix(T'). Moreover,

mw1=VM%+(1—VM<EQI—MDXWJ+(1—Eﬁ)m)
2 122
= Buxn + (1 — ,Bn)(anf(un) + (1 —ap)vp).

Finally, we prove that 20{y,}5> | C Fix(T) where y, := a,f (u,) + (1 — ay)v,.
To see this, we note from Remark 2.1 that {x,}5>, is bounded and hence
so is the sequence {x,};°,. By Lemma 2.6, we have 20{v,};°, C Fix(T).
Since limy, oo [[yn — vall = limy— 0 & ||f (44) — vull = 0, we have W{y, )2, =
W{v,}52, C Fix(T). |

Remark 2.2: The conditions (b), (c), and (d) of Theorem 2.9 are weaker than the
conditions (b), (c), and (d) of Theorem 1.5, respectively.

Remark 2.3:

(1) The matrix A = [anklfG—, in  Example 313 is H-
concentrating but lim,_, (1 — a,,,) /0y, = 00. Hence our Theorem 2.9
is established under a new condition and it cannot be applicable by
Theorem 1.5.

(2) LetB:= [b,,,k]z)okz1 be defined by

1 ifn=k=1;
0 ifn>1 and k> m
— 1
buj = ifn>2 and k=1,2,...,n—1;
n%—l
ifn>2 and k=n.
n+1

That is,

1 0 0 0
1/3 2/3 0 0
B—|1/4 1/4 2/4 0©
1/5 1/5 1/5 2/5

o O O O

Then B satisfies the BB2-condition but it does not satisfy the CMMX-
condition.
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Theorem 2.10: Let D: H — H be a B-strongly monotone and §-Lipschitzian
operator and T : H — H be L-hybrid such that Fix(T) # @. Let A := [an,k]zok:l
and B := [bn,k]fk:1 be averaging matrices. Let {x,}52 | be a sequence in H defined

by

x1 € H arbitrarily chosen,

n
}n = Zan,kxk;
k=1

n—1
Xpt1 := (I — D)Xy + (1 — ay) Z bn,k_,_lTkEn forallm > 1
k=0

where

(@) {an)pe; C [0,1] such that lim,_, oo ay = 0 and {fun}e; C (0, ) with u <
2B/8% and Y02 | anpin = 00
(b) one of the following two conditions is satisfied:
(1) B satisfies BB1-condition and L= 0;
(2) B satisfies BB2-condition and L > 0;
(c) one of the following two conditions is satisfied:
(1) A is H-concentrating;
(2) limysoo(l — apn)/enjty = 0.

Then Xn —> 2= PFix(T) (I — D)Z.

Proof: We apply our Theorem 2.8 to prove this result by showing first that the
sequence {x,},° ; is of A-Halpern type with respect to Fix(T). To see this, set

—~ o _
Uy = nl"«n’ Bni=0, f:=1—pD, u,:=Xxy,,
n
and
| _ 11—« = _
oy = (1 _ n)M)xn + ( n) i an)kHTkxn'
M = Qnln K= Cnlkn =0
It follows that
n—1
Xpy1 = (I — uuD)xy + (1 — ap) Z bn,k+1Tk7Cn
k=0
it M n—1
= u(I — uD)x, + an(l - l)in + (1 —ay) Z bn,k-HTk}n
n n =0

125



1910 (&) CH.JAIPRANOP AND S. SAEJUNG

o
= 2 (1 — D)%,
"w

Unn Oln<1 a %) 1—ay = K
+ (1 - )( s %ot iy O bukn T y,,)

" ! © k=0
= anf(un) + (1 — &\n)vn.

It is clear that

n n
lun = pll <Y anillxe —pll  and v, —pll < anllxe — pll
k=1 k=1

forall n > 1 and for all p € Fix(T).

Finally, we prove that 20{x,}52, C Fix(T). To see this, we note from
Remark 2.1 that {x,}7° , is bounded and hence so is the sequence {x,};° ;. By
Lemma 2.6, we have QI]{ZZ;é b+ Tki,,}f?:l C Fix(T). Note that

n—1 n—1
Xn+1— Z bn,k—H Tk}n (I—= punD)xy — Z bn,k—H Tk}n =0.

lim ‘ = lim o,
n—oo n—oQ

This implies that 2{x,}7> | = QB{ZZ;& bn,k+1TkEn}ﬁil C Fix(T). Hence the
conclusion follows. |

Remark 2.4: We compare Theorem 1.6 and our Theorem 2.10.

(1) TItis obvious that the condition (b) of our Theorem 2.10 is more general than
the condition (b) of Theorem 1.6.

(2) The iteration in our Theorem 2.10 where A is the identity matrix is just the
one studied in Theorem 1.6. Note that in the iteration studied in Theorem 1.6
the update element x,, involves only the current element x,, and the past
elements xy, x2, . . ., X,—1 are not exploited. As mentioned by Combettes and
Pennanen [9], acting on an average of the past elements naturally centers the
iterative sequence and mitigates zigzagging and spiraling.

(3) The mapping in our Theorem 2.10 includes the one studied in Theorem 1.6.
In fact, every nonspreading mapping is 2-hybrid.

Theorem 2.11: Let f : H — H be a-contractive and T : H — H be L-hybrid
such that Fix(T) # &. Let A := [an,k]z’k:1 and B := [b,,,k]fk:1 be averaging
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matrices. Let {x,};° | be a sequence in H defined by

x1 € H arbitrarily chosen,

n
}n = Zan,k-xk)
k=1

n—1

Xpg1 = opf (X)) + (1 — ap) Z bn,kHTkE,, foralln > 1
k=0

where

(@) {an}o2, C [0,1] such thatlim, ooty = 0 and Y 7| oy = 00;
(b) one of the following two conditions is satisfied:

(1) B satisfies BB1-condition and L= 0;

(2) B satisfies BB2-condition and L > 0;
(c) one of the following two conditions is satisfied:

(1) A is H-concentrating;

(2) limy—oo(1 — ann)/an = 0.

Then x, — z = Prix(\f (2).

Proof: We apply our Theorem 2.8 to prove this result by showing first that the
sequence {x,},° ; is of A-Halpern type with respect to Fix(T). Set

n—1

—_ k—
Bn =0, uy:=Xx,v,:= Z bujr1T %y.
k=0

Then x,41 = anf (uy) + (1 — ay)v,. Itis clear that

n n
lun = pll <Y angllxe —pll - and v, —pll < ankllxi — pll
k=1 k=1
forall n > 1 and for all p € Fix(T).

Finally, we prove that 20{x,}5°, C Fix(T). To see this, we note from
Remark 2.1 that {x,}° , is bounded and hence so is the sequence {x,};° ;. By
Lemma 2.6, we have 20{v,,}5° | C Fix(T). Note that the sequences {f (u,)};>,
and {v,}52, are bounded, so

lim 41 — vall = lim ay ||f () — va]| = 0.
n—00 n—00

This implies that 20{x,}5° ; = W{v,},>, C Fix(T). Hence the conclusion fol-
lows. |

Remark 2.5: As discussed in Remark 2.4, our Theorem 2.11 significantly
improves Theorem 1.7.
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3. Examples of concentrating matrices in the sense of Halpern

In this section, we give some examples of H-concentrating matrices.

3.1. CP-concentrating matrices: definitions and examples

We first recall the following concept introduced by Combettes and Pannanen [9].

Definition 3.1: An averaging matrix [a, |7 _, is concentrating in the sense
of Combettes and Pannanen, (CP-concentrating, in short) if whenever {s,}° ,
{€n}02 | are sequences of nonnegative real numbers such that ) 7 | &, < co and

n
Sy = Z An kSk>
k=1

Sp+1 = Sn+ €ns

for all n > 1, it follows that {s,,}7° | converges.

To mention some interesting examples of CP-concentrating matrices, we
define some notations. For a given matrix A := [a, ] _; let

/
an,k = Aplk — (1 - an+1,n+l)an,k;

s +
Pk = (Zan,k - 1) ;
n=k
Jn = {k:ani > 0}.
Definition 3.2 (Generalized segmenting condition): We say that an averaging
matrix [a, k]S, satisfies the generalized segmenting condition if

n

[o.¢]
>3l <0
n—=

1 k=1

In particular, if @/, = 0 for all #,k > 1, then [a,,]%_, is said to satisfy the
segmenting condition [15].

Proposition 3.3: Every averaging matrix [a,,x]55._, satisfying the generalized seg-
menting condition and liminf,_, o a,, > 0 is CP-concentrating. (See [9, Exam-
ple 2.5]) In particular, the identity matrix is CP-concentrating.

The following result tells us that the condition liminf,_, a4, > 0 is not

only sufficient but also necessary for averaging matrix [a,]7_, satisfying the
generalized segmenting condition to be CP-concentrating.
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Proposition 3.4: If [a, ]} _, is a CP-concentrating matrix satisfying the gener-
alized segmenting condition, then liminf,_,  a,, > 0.

Before proving this result, let us observe the following fact from the general-
ized segmenting condition.

Remark 3.1: Ifan averaging matrix [a,];_, satisfies the generalized segment-
ing condition and {s,};° , is a sequence of nonnegative real numbers such that
Snt1 < syforalln > 1,then {s,,} isbounded above and lim,,_, o s, exists. The first
assertion follows easily and we assume that there exists M > 0 such that s, < M
for all n > 1. To see the second assertion, we first note that

n
Spp1 = E Ant1,kSk + An+1,n+15n+1
k=1
n
= An+1,n+15n+1 + Z(an+l,k - (1 - an+1,n+1)an,k)5k + (1 - an+1,n+1)gn
k=1

n
Sn = Gnt1n+16n — Sut1) + MZ |a/n,k|
k=1

IA

n
Sot MY la)l
k=1

IA

Since the identity matrix is CP-concentrating and )72 >/, |, | < oo, we
conclude that lim,,_, « 5, exists.

Proof of Proposition 3.4: Suppose that [a,x]7_; is a CP-concentrating matrix
satisfying the generalized segmenting condition but lim inf,_, » a,, = 0. Pass-
ing to a suitable subsequence {ny} we may assume that

o0 o0 n
Zﬂnj+1,nj+1 <1 and Z Z |a, | < 1/2.
=1

n=n1+1 k=1

Define a sequence {8,} C {0,1} by

8'—{1 ifn=mny+1 forsomek> 1;
ni=

0 otherwise.
We also define a sequence {s,,} by

s;:=4 and sp4q:=5, — 841 forallm > 1.
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Note that

o D Z1ad < 1;
e sy=s55=---=s, ands, <s;foralln > n; + 1
. Zizla;k5k=0foraﬂl=1,2,...,n

This implies that
n

_ , _
Sn+1 = An41,n+15n+1 + Zan,ksk + (1 = ant1n+1)n
k=1

- /
=Sy — Ang1nt10n41 + Z a, i Sk-
k=1

In particular, for n > n; + 1, we have

Snt+1 =51 — Zaj+1]+15]+1 + Z Za Sk

j=1 k=1
=51 — Zaj+1]+15]+1 + Z Z i kSk
j=n1+1 k=1
> Za]+1,]+15]+1 + Z Z a; 1Sk
j=m+1 k=1
n J
S S
j=n+1 k=1
Note that s; =sp = -+ =s,, > 0 and sy, 41 = Sp; — 8,41 = 3 > 0. We prove
by induction that s, > 0 for n > n;. Suppose that there exists n > n; such that
sk > Oforallk =1,2,...,n+ 1. We show that s, 1, > 0. To see this, we consider
n J
S 25 =14 D0 Y s
j=n1+1 k=1
>5—1- Z Z| @y ls1
j=n1+1 k=1
o
!
SIS P A
j=m+1 k=1

This implies that s,,4» > 5,41 — 1 > 0. By induction, we conclude thats,, > 0 for
all n > 1. It follows from Remark 3.1 that lim,_, o 5, exists. However, it is easy
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to see that lim,,—, o 5, does not exist which is a contradiction. This completes the
proof. |

Definition 3.5 (Generalized moving average condition): We say that an aver-
aging matrix [a, k]9 _, satisfies the generalized moving average condition if the
following conditions hold:

(a) ZI;.; Pk < OO,
®) Jur1 CJaU{n+ 1} foralln > 1,
(c) thereexists a € (0, 1) such that a, x > aforalln > 1 and for all k € J,,.

Proposition 3.6: Every averaging matrix satisfying the generalized moving aver-
age condition is CP-concentrating. (See [9, Example 2.6])

3.2. H-concentrating matrices and some examples

To show that an averaging matrix is H-concentrating, we use the following easier
characterization.

Proposition 3.7: An averaging matrix [ank|7_, is H-concentrating if and only
if whenever {s,};° | is a sequence of nonnegative real numbers, {a,}5° | is a
sequence in [0, 1] with Y 77 | ay = 00, {t,}2 | is a sequence of real numbers with
limsup,,_, o tn < 0 and

n
Sy = Z AnkSk
k=1

Sn1 < (1 — ay)sy + anty
for all n > 1, it follows that lim,,_, o s, = 0.
Proof: The necessity is trivial. To prove the sufficiency, we assume that the
latter statement holds. Suppose that {s,}° |, {€,} | are sequences of nonneg-
ative real numbers such that Z;l“;l &n < 00, {a,}52 | is a sequence in [0, 1] with

Yool oy = 00, {£,)52 is a sequence of real numbers with limsup,_,  t, <0
and

n
Sy = Za“’ksk
k=1

spr1 < (1 —ap)sy + apty + &4

foralln > 1.Setr, := s, + > s, & forall n > 1. Observe that

o0 n o0 n
Sn+ Z & < Z an,k(Sk + Z&') = Z Anklk = Tn.
k=1 i=k k=1

i=n
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It follows that

[e.¢]
Tngl = Su1 + Z &
j=n+1

00
< (A —ap)sy +auty + Zgi

j=n
[o.¢] oo
=(1- otn)(§n + ZSJ) +an(tn + Zej)
j=n j=n
[o.¢]
<A —-ayr,+ an(tn + Zaj).
j=n

Note that limsup,, , . (t, + 3_72, &) = limsup,_, . t, < 0. By the assumption
of this part, we have lim,_, o r, = 0. In particular,

o0

Jim s = Jim (= 3e7) =0
j=n
This implies that [a,x]0_, is H-concentrating. |

Remark 3.2: Suppose that [a,x]75_, is an averaging matrix. Suppose that
{sn}72 , is a sequence of nonnegative real numbers, {o,}2; is a sequence in [0, 1],
{t,};2, is a bounded sequence of real numbers, and

n
Sy = Z AnkSk
k=1

Sptl = (1 - an)gn + auty

for all n > 1. Then {s,}7° , is bounded.

Proof: Suppose that M := sup{si, t1,ts,...}. Obviously, s; < M. Assume that
sk <M for all k=1,2,...,n Then 5, = Y |  angsk <M and s,41 < (1 —
®p)Sy + auty < M. By induction, the sequence {s,}52, is bounded. |

3.2.1. Generalized segmenting condition
We prove that every averaging matrix [a, k]9 _, satistying liminf, o0 dpn > 0
is H-concentrating. In fact, we have the following result.

Proposition 3.8: Suppose that A := [a,k]0_, is an averaging matrix satisfy-

ing the generalized segmenting condition. Then the following two statements are
equivalent.
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(a) A is H-concentrating;
(b) liminf, o an, > 0.

Proof: (b)=(a) Suppose that liminf, . a,, > 0. Suppose that {s,}5°, is a
sequence of nonnegative real numbers, {a,};, is a sequence in [0,1] with
Zi; oy = 00, {t,}52, is a sequence of real numbers with limsup,_,  t, <0
and

n
Sy = Z An Sk
k=1

Sp+1 = (1 - an)gn + ayty

for all n > 1. By Remark 3.2, we assume that s, < M < oo for all n > 1. Note
that

n

- - ’
Sntl = Ant1n+15n+1 + (1 — App1n+1)Sn + Z a, xSk
k=1

n
< ant1n+1((1 — ap)sy + anty) + (L — ant1,041)5n + M Z |a;1)k|
k=1
n
= (1 — auant1,n+1)Sn + nlntint1tn + MZ |, .
k=1

Since liminf, o any > 0 and Y 0 | oy = 00, we have Y o7 Cplnii i1 =
00. By Lemma 2.2, we obtain lim,,+ 5, = 0. Since s,41 < max{s,,t,} and
limsup,_, ., tn <0, we have lim, s, =0. This implies that A is H-
concentrating.

(a) = (b) Suppose that [an,k]fk:1 is an H-concentrating matrix satisfying the
generalized segmenting condition but lim inf,,_, o gy, = 0. Passing to a suitable
subsequence {75} we may assume that

1 o0 n 1
A+ L1 = 1 forallk >1 and Z Z |a;’k| < T
n=ny k=1
Define a sequence {o,} C [0,1] by

1

—— ifn=mn+1 forsomek > 1;
ay =13 k+1 k -
0

otherwise.
We also define a sequence {s,} by

s1>0 and spy1:= (1 —ay41)s, forallm > 1.
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Note that

S 0 . 00 i2 .
° jzla]—ooandzjzla],]ajf o1 1/j° < 003

o [1:2, 0 —apypman) = [12,(0 —1/(k+ D?) =1/2;
e sy=s5=---=5, and0 <s, <sjforalln >n; + 1;
° Enl = S5].

This implies that

n
_ ’ _
Sn+1 = An1n+15n+1 + Zan,ksk + (1 - an+1,n+l)5n
k=1
n
- /
= (1 - an+1an+1,n+1)5n + Z A 1Ske
k=1

In particular, we have
n

- - /
Swt1 = (1 = Qg 1@nt 10+ 1)Sn + ) )45k
k=1

n
1—[ (1 = ap14141,14+1)8n—1

I=n—1
n—1 n
+ (1 — apr18n+1,n+1) Z Ay Sk + Z ay, Sk
k=1 k=1
n n 1
> [T Q=wmaniimse — ) (Z |ﬂf,k|5k>
I=n—1 I=n—1 k=1
n n 1
= H (I — o184 1,041 — Z (Z |“;,k|5k)
l=n1 1=I’l1 k=1
n n 1
> H(l — 0 1a141,041)81 — Z (Z |af,k|>51
l=n1 l=n1 k=1
> (1/2)s1 — (1/49)s1 = (1/2)s1.

It follows from s, 1 <5, for all # > 1 and Remark 3.1 that lim,_, s, exists.
Thus lim,— 00 S, > (1/2)s; > 0. Since lim,_, » @, = 0, we have lim,_, s, =

limy,_, 00 S > 0 which is a contradiction. This completes the proof. [ |
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3.2.2. Generalized moving average condition
We prove that every averaging matrix satisfying the generalized moving average
condition is H-concentrating.

Lemma 3.9: Suppose that [an il _, is CP-concentrating. Suppose that {s,};2,

is a sequence of nonnegative real numbers, {o,}5° | is a sequence in [0, 1] wzth
Y2 oy = 00, {ty}52, is a sequence of real numbers withlim sup,,_, . t, < 0 and

n
Sy = Z AnkSk
k=1

Snp1 < (1 — ap)sy + anty
for all n > 1. Then lim,_, o s, exists. Furthermore, if liminf,_, s, = 0, then

limy, 00 s, = 0.

Proof: Without loss of generality, we can assume that 0 < t,; <t, for all
n > 1. (Otherwise, we replace t, by’t\,1 := sup{0, ty, ty+1, . . .} and it is clear that
Snr1 < (1 — a)sy + anty.) Hence lim,_ oo t, = 0. Set £, := ZZZI an ktk. Note
ty >ty > tyy1. Then

spa1 < (1 — ap)sy, + apty, < max{s,, t,}.

Moreover, t,y; < max{s,,t,}. Set &, := max{s,,t,} and ?n = ZZ:] an k€.
Then

n n
max{s,, f,} = max { Z A kSks Z an)ktk}

Env1 <
k=1 k=1
< Zankmax Sko t} = Zankék £,
k=1
Since [a,k]5_, is CP-concentrating, lim, .« &, exists. Since lim,—, oo t;, = 0,

we get that lim,,_, o s,, exists. |

Lemma 3.10: Suppose that [a,k]_, is an averaging matrix satisfying the gener-
alized moving average condition. Let cpj := Y oo, @ik and ty == Y p_; Cyy1k fOT
all n,k > 1. Then {u,}52 | is bounded above.

Proof: Since a|J,| < Y j_, ank = 1, there is an integer m > 1 such that |J,| <
1/a < mforall n > 1. It follows from Y ;2 px < 0o that {p,}°2, is bounded.
There is a real number M such that ¢, <k < pr+1<M for all n, k> 1.
Then

n
0<u,= ch+l,k = Z Cnyrrk < mM

kE]n_H\{VH-l}
foralln > 1. [ |
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Proposition 3.11: Every averaging matrix satisfying the generalized moving aver-
age condition is H-concentrating.

Proof: Suppose that A := [a,£]5_, is an averaging matrix satisfying the gener-
alized moving average condition. Suppose that {s,};° | is a sequence of nonneg-
ative real numbers, {a,}2 | is a sequence in [0, 1] with Zf;l oy = 00, {t,}50 is
a sequence of real numbers with lim sup,,_, . ¢, < 0 and

n
Sy = Z An Sk
k=1

sptr1 < (1 — ap)sy + anty

for all n > 1. By Remark 3.2, we assume that s, < M < oo for all n > 1. Let
Cpk = Zlo:n Ak and u, := ZZ:I Cn+1,kSk- By Lemma 3.10, we have {Cn,k}:okzl

and {u,};> | are bounded above. Obviously, ¢,k — ¢yt1k = ank and ¢, — 1 <
Pn. Since
n
Spr1 < (1 — an)(z a,,,ksk) + auty
k=1
n
= (1= ) ( Dk = ur1iIsk) + nt
k=1
we obtain

n
Spt+1 + Un = Sp41 + Z Cn+1,kSk
k=1

n n
1- an)( > Cn,ksk) +an (tn +y Cn+1,k5k)
k=1 k=1

= (1 —au)(sp + up—1) +au(ty + up) + (1 — ap)(cnn — sy
< (1 —ap)(sp + up—1) + ay(ty + uy) + ppM.

IA

Since Y 72, px < oo and limsup,_, o £y < 0, it follows from Lemma 2.2 that
liminfs, + lim sup u, = liminfs, + lim sup u,—;
n—00 n—00 n—>00 n—00

< limsup(s, + up—1)
n—oQ

< limsup(t, + u,) < limsup u,,.
n—oo n—00

In particular, lim inf,,_, o s, = 0. It follows from Lemma 3.9 thatlim,_, o, s, = 0.
Hence A is H-concentrating. This completes the proof. |
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3.2.3. Some concrete examples
Note that the generalized segmenting condition and the generalized moving
average condition are independent as shown in the following two examples.

Example 3.12: Let A := [a, ]} _, be defined by

1 ifn=k=1;
_Jo ifn>1 and k> n
k= ay_1x/2 ifn>2 and k<n
1/2 iftn>2 and k=n.

That is,

1 0 0 0
1/2 12 0 0
A= |1/4 174 172 0
1/8 1/8 1/4 1)2

o O o o

Then A is an averaging matrix satisfying the generalized segmenting condition
but not the generalized moving average condition.

Example 3.13: Let A’ := (@ k5, be defined by

1 ifn=k=1;

ifn>1 and k> n

ifn>2 and k=12,...,n—2;
1/2 ifn>2 and k=n-—1,n

That is,

1 0 0 0
12 1/2 0 0

A=|0 1/2 12 0
0 0 1/2 1/2

o O O O

Then A’ is an averaging matrix satisfying the generalized moving average condi-
tion but not the generalized segmenting condition.

Remark 3.3: The question naturally arises whether the classes of CP-
concentrating matrices and H-concentrating matrices are equal.
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Another look at Wang’s new method
for solving split common fixed-point
problems without priori knowledge
of operator norms

Rapeepan Kraikaew and Satit Saejung

Abstract. In this paper, we give a simple proof of Wang’s recent result
concerning split common fixed-point problems (F. Wang, J Fixed Point
Theory Appl 19(4): 2427-2436, 2017). Moreover, we provide a more
general sufficient condition than Wang’s for the weak convergence to a
solution of a split common fixed-point problem.

Mathematics Subject Classification. Primary 47J25; Secondary 47J20,
49N45, 65J15.

Keywords. Split common fixed-point problem, firmly nonexpansive map-
ping, Hilbert space.

1. Introduction

The split feasibility problem (SFP) which was first introduced by Censor and
Elfving [3] is to find

€ C suchthat LZ € Q,

where C' and ) are closed convex subsets of Hilbert spaces H; and Ha,
respectively, and L : Hy — Ho is a bounded linear operator. The SFP has
received much attention, due to its applications in signal processing and image
reconstruction.

Suppose that Pc and Py are the (orthogonal) projections onto the sets
C and @, respectively. Assuming that SFP has a solution, it is not difficult
to see that Z € H; solves the SFP if and only if it solves the fixed-point
equation

& = Po(I —yL*(I - Po)L)7,

where v > 0 is any constant, I is the identity operator, and L* is the adjoint of
L. Byrne [1] proposed the following algorithm: x; € H; is arbitrarily chosen

&) Birkhiuser
Published online: 03 May 2018
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and for all n > 1,
Zpy1 = Po(xn —vL*(I — Pg)Lxy,),

to approximate a solution of the SFP. In fact, it was proved that if H; and Ha
are finite dimensional, then {x,, } converges to a solution of the SFP provided
that the SFP is consistent and v € (0,2/||L[?).

We now reformulate the SFP into the so-called split common fixed-point
problem (SCFP), that is, the problem of finding

Z € Fix(U) such that Lz € Fix(T),

where U : Hy — H; and T : Hy — Hs are two mappings with nonempty
fixed-point sets Fix(U) := {x € H; : « = Uz} and Fix(T) := {y € Has :
y = Ty}, respectively, and L : Hy — Hs is a bounded linear operator. If
U := Pc and T := P, then Fix(U) = C and Fix(T) = @ and hence the
SCFP immediately reduces to the SFP. It should be noted here that Byrne et
al. [2] showed that the SFP can be reformulated into the split common null
point problem. Censor and Segal [4] proposed and proved the convergence of
the following algorithm: z; € H; is arbitrarily chosen and for all n > 1,
Tpy1 = Uy, —yL*(I = T)Lxy,)

where U and T are firmly nonexpansive mappings (see the definition in
Sect. 2) in the finite dimensional setting and v € (0,2/[L||*). To imple-
ment this algorithm, we have to know or estimate the operator norm of the
bounded linear operator L. However, the computation (or the estimate) of
|IL|| is not an easy task. To overcome this drawback, many variable step sizes
without the prior information about ||L|| have been constructed (see [7]). Fol-
lowing the idea of Yang [9], Wang [8] proposed the following method for the
SCFP.

Theorem 1.1. Let U : Hy — Hy, T : Ho — Ho be firmly nonexpansive
mappings and L : H1 — Ho be a bounded linear operator. Define
T € Hy
Tpp1 =T —pn(I—U+L*(I -T)L))zp,

where {p,} is a sequence of positive real numbers such that Y~ pn = 00
and Y 07 p2 < oo. If Q := {x € Hy : € Fix(U) and Lz € Fix(T)} # @,
then x, — z € Q. Furthermore, z = lim,, _, oo PoZy,.

The purpose of this paper is to give a short and simple proof of Wang’s
result and provide a weaker sufficient condition on {p,} which does not re-
quire the computation of the operator norms.

2. Results
We first recall some definitions concerning our result. Let H be a real Hilbert
space with inner product (-, ) and the induced norm || -||. For a closed convex

subset C' of H, the (orthogonal) projection Po : H — C' is defined for each
x € H as the unique element Pox € C such that

|z — Poz| = inf{|jJz — 2| : z € C}.
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Definition 2.1. An operator T': H — H is called
e firmly nonexpansive if, for all x,y € H,
(x —y, Tz —Ty) > ||Tx - Ty|*;
e a-inverse strongly monotone where o > 0 if o/T is firmly nonexpansive,
that is, for all z,y € H,
(x —y, Tx — Ty) > o Tz — Tyl

Remark 2.2. Every projection is firmly nonexpansive.

More information concerning firmly nonexpansive mappings and, in par-
ticular, nearest point projections can be found in the book by Goebel and
Reich [5].

Let us recall the following result of Groetsch [6].

Theorem 2.3. Let H be a Hilbert space and let S : H — H be a firmly non-
expansive mapping such that Fix(S) :={x € H : x = Sx} # &. Define

T, €H
To1 = (1 — ap)xn + @ ST
If {an} is a sequence in [0,2] such that

[ee]
Z an(2 — ay,) = oo,
n=1

then the sequence {x,} converges weakly to an element z € Fix(S) and z =
limy, 0 PFix(S)xn'

Lemma 2.4. Let H be a Hilbert space. A mapping A : H — H is a-inverse
strongly monotone if and only if I — «A is firmly nonerpansive.

Lemma 2.5. If a,b, c are positive real numbers, then
2 2
a® + E > M.
c 1+c
Lemma 2.6. Let U : Hy — Hy, T : Hy — Hs be firmly nonexpansive map-
pings and let L : Hi — Ho be a bounded linear operator. Suppose that
a = zoand A:=1-U+ L*(I — T)L. The following statements are

true.

1+HL\

(a) I — A is firmly nonexpansive;
(b) if Q@ :={z € Hy : x € Fix(U) and Lz € Fix(T)} # @, then Fix(I —

ad) =Q.
Proof. (a) By Lemma 2.4, it suffices to show that A is a-inverse strongly
monotone. Suppose that x,y € Hy. It follows from ||L*|| = ||L|| and Lemma
2.5 that

(r —y, Az — Ay) =(x —y,(I —U)x — (I = U)y) + (Lx — Ly,(I — T)Lx — (I — T)Ly)
> (I =U)z—(I-U)yl*+||(I - T)La — (I - T)Ly|]*
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|\L*(I —T)Lx — L*(I — T)Ly||?
12112
(T =)z — (I =)yl +IL*(I = T) L — L*(I — T)Ly||)?
L+IL]2

> (I -U)z—(I-U)yl*+

2

> of| Az — Ay|]>.

(b) Obviously,  C Fix(I — «A). Suppose that Q # &. To prove that
Fix(I — aA) C Q, let z € Fix({ — @A) and p € Q. This implies that Az =
Ap = 0. It follows from (a) that

0={(z—p, Az — Ap)
> (I =U)z = (I =U)p|* + (I = T)Lz — (I = T)Lp|®
= (I =U)=|* + |1 = T)L=|*.

In particular, z € Fix(U) and Lz € Fix(T). This means that z €  and
the proof is finished. O

Now we present the following result which is an improvement of Theo-
rem 1.1.

Theorem 2.7. Let Hy and Ho be Hilbert spaces. Let U : Hy — Hy, T : Ha —
Ho be firmly nonexpansive mappings and L : H1 — Ho be a bounded linear
operator. Define

1 €H
Tny1 =T —pn(I =U+ L*(I = T)L))xp,

where {p,} is a sequence in [0,2/(1+ ||L||*)] such that

Y a2 = (14 |IL]?)pn) = oo

n=1

Suppose that Q := {x € Hy : © € Fix(U) and Lz € Fix(T)} # @. Then the
sequence {x,} converges weakly to z € Q. Furthermore, z = lim,_,oo Po@y,.

Proof. We write A :=1—U + L*(I — T)L. It follows from Lemma 2.6 that
I — aA is firmly nonexpansive where o := 1/(1 + || L||?). Moreover,

Tpt1 = (I — ppA)x, = <1 — %) Ty + %(I — aA)x,.

As a consequence of Theorem 2.3, we obtain the result. O
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Remark 2.8. Our Theorem 2.7 recovers the result of Wang in the following
ways:

L. If {p,} is a sequence of positive real numbers such that > >~ p, =
oo and Y 7 p?2 < oo, then the sequence {p,} ultimately sits in the
interval [0,2/(1+ ||L|[*)] and it satisfies the condition Y 77, p,(2 —
(1 + ||[L||*)pn) = oc. Hence, our Theorem 2.7 implies Wang’s result
(Theorem 1.1).

2. Wang’s result remains true if {p, } is a sequence of positive real numbers
such that ZZO=1 prn = 00 and lim,_. o, p, = 0. This condition does not
require the computation of ||L|| and it is strictly weaker than Wang’s
condition.
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The hyperstability of general linear equation via that of Cauchy
equation
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Abstract. In this paper, we show that the hyperstability of the general linear equation recently
proved by Piszczek (Aequationes Math 88:163-168, 2014) is a direct consequence of that of
the Cauchy equation proved earlier by Brzdek (Acta Math Hung 141:58-67, 2013).
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1. Introduction

One of the many interesting questions in the theory of functional equations
is the hyperstability problem: When is it true that a function which approxi-
mately satisfies a functional equation must also be a solution of the functional
equation?

In this paper, we assume that F, K € {R,C} where R and C are the sets
of all real numbers and complex numbers, respectively; and we assume that
N is the set of all positive integers. Suppose that X and Y are normed spaces
over the scalar fields F and K, respectively. We are interested in the following
functional equation. A function f : X — Y satisfies the general linear equation
if there exist constants a,b € F \ {0} and A, B € K such that

flax +by) = Af(z)+ Bf(y) forall z,y € X. (1.1)

In particular, we say that f satisfies the Cauchy equation if (1.1) holds where
a =b= A= B = 1; the Jensen equation if (1.1) holds wherea =b=A =B =
1/2. Tt is known that a function f: X — Y with f(0) = 0 satisfies the Jensen
equation if and only if it satisfies the Cauchy equation [7,8]. In particular, it
follows that if a function f : X — Y satisfies the Jensen equation, then the
odd part f, of f satisfies the Cauchy equation and the even part f. of f is a

Published online: 16 November 2018 ® Birkhauser
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constant. Recall that f,(z) := 1(f(z) — f(—2)) and fe(z) == 2(f(2) + f(—2))
for all z € X.

Piszczek [9] recently proved the following hyperstability result for general
linear equations.

Theorem P. [9, Theorem 2] Suppose that X is a normed space and 'Y is Banach
space over the scalar fields F and K, respectively. Suppose that a,b € F\ {0}
and A, B € K. Suppose thatc > 0, p <0, and f : X — Y satisfies the following
condition:

I f(az +by) — Af(x) = Bf ()l < c(l|=]]” + [ly[I”)

for all z,y € X \ {0}. Then [ satisfies the equation
flax+by) = Af(z)+ Bf(y) forall =zye X\{0}.

Remark 1.1. Note that the completeness of Y in Theorem P can be relaxed,
that is, the conclusion of Theorem P remains true if Y is a normed space.

The method of the proof of Theorem P given in [9] is based on the fixed
point theorem of Brzdek [4]. In this paper, we provide a simple and direct
proof of Theorem P via the following hyperstability of the Cauchy equation
which was proved by Brzdek [5].

Theorem B. [5, Theorem 1.2] Let X and Y be normed spaces, ¢ > 0, and
p < 0. Suppose that E := X \ {0}. If a function g : X — 'Y satisfies
lg(x +y) — g(z) — gl < c(ll=l” + llyll*),

for all x,y € E with x +y € E, then g satisfies the Cauchy equation on F,
that is,

9@ +y) =g(x) + 9(y)
forallx,y € F withz+y € E.

2. Main results

The following result tells us that if a function approzimately satisfies the gen-
eral linear equation, then its odd part approzimately satisfies the Cauchy equa-
tion and its even part is a constant.

Theorem 2.1. Let X and Y be normed spaces over the scalar fields F and K,
respectively. Let a,b € F\ {0}, A,B € K, ¢ > 0, and p < 0. Suppose that
f: X =Y satisfies the inequality

[ f(ax + by) = Af(x) = Bf ()] < c(llz]” + [lylI”)

for all z,y € X\ {0}. Then the odd and even parts fo, fe : X — Y of f satisfy
the following conditions:
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(a) f(I) = fo(x) + fe(w)r fo(fl') = 7fo(x)7 and fe(fx) = fe(x) Jor all

reX;

(b) fo(0) =0 and f(0) = f(0);

(c) ||fo(x) —2Af, (i) H < 2a||z||P and Hf(,(:n) - 2B/, (%) || < 2a||z||P for
all z € X \ {0} where o :=c¢ (ﬁ + ﬁ);

(d) lfo(x+y) = fola) = fo(y)l| < Cllz|” +lyl[*) for all z,y € X\ {0} where
C = 2a(1 + 2P+ 4+ 3P 4 4P);

(e) fe(z) = f(0) for allz € X; and fc(0) = Afe(0) + Bfc(0).

Proof. It follows immediately that (a) and (b) hold.
We now prove (c) and (d). Note that

[ fo(az +by) — Afo(x) = Bfo(y)|l

= S (artby)—f(~ax — by) — A(F(x) — F(~2) ~ B () ~ f(-9))]
< S f(aztby)~Af() = BFW 451 f(~az — by) = Af(~2) = Bf(~)]
< (2l + Iyl?) + 5 kel + 1y]17)

c(llzl” + lyl*) (2.1)

for all 2,y € X\ {0}. Let z € X \ {0}. Replacing 2 by 5> and y by 37 in (2.1),
we get

z T
fo@) = Afo (=) = Bfo (7 )|| < allzl” (2.2)
where a := ¢ (|2i‘p + ﬁ) Next, replacing = by 5> and y by —5; in (2.1), it

follows from (2.1), (a), and (b) that
|45 (52) + B (35)] = allzl. (2:3)
Then (2.2) and (2.3) imply that
fola) =24, (5-) | < 2all2ll;
folw) =281, (57 )| < 20l

for all x € X \ {0} and so we get (c). If z,y € X \ {0}, then it follows from
(2.1) and (c) that

1 1 1 1
Jo (34 30) = 3hoe) = 51,0

o vo2) - (2) 5 ()]
+llAf, (%) — %fo(:v) +||Bfo (%) - ;fo(y)H
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<[zl IZI") + e + ot
2a 2b
< 2a([[=[|” + [lyl1*).
Let x € X \ {0}. Replacing z by 2x and y by 4z in (2.4), we get

Fo(32) = & fol22) — 5 Foldn) | < 20(27 + ) [P

Next, replacing x by —2z and y by 4z in (2.4), we get

Fole) + 5 £o(22) = 3 Foldz) | < 20(28 + 47)a

Then (2.5) and (2.6) imply
1fo(32) = folx) = fo(22)|] < 4a(2” + 4)|[[|".
Note that (2.4) with y = 3z becomes

fo(20) = L fola) — 3 1o(32)|| < 201+ 39) a1

Then (2.7) and (2.8) imply
[fo(22) = 2fo(2)|| < da(l + 27 + 37 + 47) [z||".
Consequently, if z,y € X \ {0}, then it follows from (2.4) that
1fo(z +y) = folz) = fo(y)l]

2 (;236 + 12y> - %fo(%) - ;fg(2y)H

<
- 2

+ +

1 1

30(2) = 10| + | 3 1o20) - £.0)

<2 a (el + lylP) + 2001 +2° + 3+ )7
20 (1 + 27 + 37 + 47) |y |

= Ol + Iy?)

where C := 2a(1 + 27! + 37 + 47). Hence (d) is proved.
Next we prove (e). By the definition of f,, we get

er(ax + by) - Afe(m) - Bfe(y)H

AEM

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

= S (az +by) + F(—az — by) — A(F(x) + f(~2) = B () + F(~3)

< 3 f @z +by)=Af () ~ BI)| + 1 (~ax — by) — Af(~2) ~ BS(~)|
< Sl + yl17) + 5 (lell” + 1)
= c(ll=]” + ")
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for all z,y € X \ {0}. It follows from (2.9) that

I£u(e) ~ £.00)
Je(0) = 47 (=55) = B (53

x x
<||fo(z) - =) - =
< |fete) - A, (Qa) Be (Qb)H +|
< 20|

for all z € X \ {0}. In particular, for each n € N and for each z € X \ {0}, we
have

[fe(nz) = fe(0)|] < 2alnz|[” = 2an”[lz|”.
Since p < 0, we have

nlLIIc}o fe (nx) = fe(O)

for all z € X \ {0}. Let z € X \ {0} and n € N. Replacing = by % and y
by —%7 in (2.9), we get

’fe(w)Afe (%) Bfe( ” )H (

In particular,
(o) = (M525) < w1 () <o

Since limy, o0 fe (%) = lim, o fe (7) = [fe(0), we have fe(z) =

Afe(0) 4+ B f.(0). Moreover, (2.9) with = £% and y =

n+2°
2a

3

lim ‘

n—oo

i+, gives

0= a5, (5r) - 81 (S )| < antlol

Letting n — oo, we obtain that f,(0) = Af.(0)+Bf.(0). Then f.(z) = f.(0) =
Afe(0) + Bfe(0) for all z € X and hence (e) is proved.

It is known [6] that if X and Y are normed spaces and g : X — Y is a
function satisfying the Cauchy equation for all z,y € X \ {0}, then it satisfies
the Cauchy equation. In fact, this result is true even in a more general setting
(see [1-3]).

Remark 2.2. Let XY, F K, a,b, A, B,c,p, and f be the same as in Theorem
2.1. Then f, satisfies the following conditions:

(@) folz+y) = fo(x) + fo(y) for all z,y € X;
(b) folaz) = Af,(z) and f,(bx) = Bf,(x) for all x € X.

Proof. (a) Theorem 2.1(d) and Theorem B imply that
folz +y) = folz) + fo(y)
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for all z,y € X \ {0} with z +y € X \ {0}. Since f,(0) = 0, the function f,
satisfies the Cauchy equation for all z and y different from zero. In particular,
the statement (a) holds.

To prove (b), let z € X\{0} and n € N. By condition (a) of f, and Theorem
2.1(c), we get fo(nz) =nf,(z) and

=245, (2)]-|

That is,

Letting n — oo, we get that

folw) =245, (5-)

n ‘

fo(nz) — 2Af, (?) H < 2a||nz||P = 2an?||z||P.
a

fol@) = 241, (5=) || < 2am7 a1

Moreover,
folar) = A, (5) + A% (5) =41 (5+3)) = Alol@)

for all x € X \ {0}. Since f,(0) = 0, we now conclude that f,(az) = Af,(z)
for all z € X. Similarly, we can prove that f,(bx) = Bf,(z) for all z € X.
Therefore, (b) is proved. O

By using Theorem 2.1 and Remark 2.2, we prove Theorem P via the hyper-
stability of the Cauchy equation.

A simple proof of Theorem P. By Theorem 2.1 and Remark 2.2, the odd and
even parts f,, fe : X — Y of f satisfy the following conditions

o folx+y) = folx) + foly) for all z,y € X;
o f(x) = fol) + fe(@), fe(x) = Afe(0) + Bfe(0), folax) = Afo(x), and
fo(bx) = Bf,(x) for all z € X.

Let z,y € X. Then

flaz + by) = fo(az + by) + fe(az + by)
= folax) + fo(by) + fe(0)
= Afo(z) + Bfo(y) + Afe(0) + Bfe(0)
= Afo(z) + Bfo(y) + Afe(x) + Bfe(y)
= A(fo(x) + fe(2)) + B(fo(y) + fe(y))
= Af(z) + Bf(y).

This completes the proof. O
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3. Some further remarks

We end the paper with the following remark which explains a relation between
the approximate general linear equation and the approximate Cauchy equa-
tion.

Theorem 3.1. Let X and Y be normed spaces over the scalar fields F and K,
respectively. Let a,b € F\ {0}, A,B €K, p € R, and 3 € Y. Suppose that
B =AB+ BS and g : X — Y is a function such that there exists a constant
C > 0 so that the following statements are true.

(a) [lg(z+ )—g(fv) 9@l < C(llz[” + llyl*) fm" all x,y € X \ {0}.
(b) ||g( —2Ag (£ || < C||z||P and ||g z) — 2Bg (& H < C\z||P for all x €
X\ {0}

If f : X =Y is defined by f(x) = g(x) + B for all x € X, then there exists a
constant ¢ > 0 such that

[f(az +by) — Af(z) = Bf(y)|| < cll=]” + llylI”)
for all z,y € X \ {0}.

Proof. Let z,y € X \ {0}. Note that
lg(az) — Ag@)]| < |g(az) — 249 (3 )| + 141]j20 (5) - (=)

x||P
< Cllaall” +214/C |3

2|4]
¢ (lar +250) el
Similarly, we have

28|
IMW%Jﬁ@W<C<HP )nw
It follows that

| flaz +by) — Af(x) — Bf(y)]
= [lg(az +by) + 8 — A(g(x) + B) — B(g(y) + B)]|
= ||g(az + by) — Ag(z) — Bg(y)||
< |lg(ax + by) — glaz) — g(by)|| + [lg(az) — Ag(x)|| + |lg(by) — Bg(y)|l

2|A 2|B
SOme+wmm+c(mp+")|w+c(wp ')nw
< c(llel” + lyll")

where ¢ := 2C (\a\P+‘ +|b|P+| ) 0
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Note that if we set ¢ := 0 in Theorem 2.1 and C := 0 in Theorem 3.1, then
we immediately obtain the following result of Piszczek [10].

Corollary 3.2. [10, Theorem 1.2] Let X and Y be normed spaces over the scalar
fields F and K, respectively. Let a,b € F\{0} and A, B € K. Then the following
statements are true.

(a) If a function f: X — 'Y satisfies

flaz +by) = Af(x) + Bf(y) for all z,y € X \ {0},

then there exists a function g : X — Y satisfying the Cauchy equation
and

g(azx) = Ag(z) and g(bx) = Bg(x) for allxz € X
and there exists B € Y where = A + Bf such that
flz)=g(z)+ B forallzeX.
(b) If a function g : X —'Y satisfies the Cauchy equation and
g(ax) = Ag(z) and g(bx) = Bg(z) for all x € X;

and 3 €Y is a scalar such that 3 = AB+ B, and if a function f : X — Y
1s defined by

f(x):=gx)+ B foralzeX,
then f satisfies the general linear equation.

Proof. (a) It follows from our Theorem 2.1 where ¢ := 0 that the desired
function ¢ is the odd part of f and  is the even part of f. Hence (a) holds.
(b) is obvious. O

Remark 3.3. The proof of Corollary 3.2(a) is slightly different from the one
originally given in [10, Theorem 1.2].
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Ulam stability with respect to a directed graph for some
fixed point equations

APIMUK BUAKIRD and SATIT SAEJUNG

ABSTRACT. In this paper, we introduce a new concept of Ulam stability of fixed point equation with re-
spected to a directed graph. Two fixed point theorems of Matkowski and of Jachymski are discussed further in
the sense of this stability concept. Some examples about the validity of our notion are given. Finally, we discuss
the vagueness of the recent stability results of Sintunavarat [Sintunavarat, W., A new approach to a-1p-contractive
mappings and generalized Ulam—Hyers stability, well-posedness and limit shadowing results, Carpathian J. Math., 31
(2015), 395-401].

1. INTRODUCTION

Ulam posed the following interesting question in 1940 (see also [19]).
Suppose that G; := (Gi,*) and G2 := (G2, ) are two groups and d :
G2 x Gy — [0, 00) is a metric. For a given € > 0 does there exist a number
0 :=0(g) > Osuch thatif f : G; — G5 satisfies

d(f(zxy), f(x) o f(y)) < dforallz,y e G,

then one can find a homomorphism F' : G; — Gy such that d(f(z), F(z)) <
eforallz € G1?
Hyers [6] gave a partial answer to Ulam’s question in 1941 where G and G, are Banach
spaces. In this setting, he also obtained that §(¢) < ¢ forall ¢ > 0.

There are strict connections between Ulam stability and fixed point theory and for furt-
her information we refer to the survey by Brzdek et al. (see [2]). Ulam’s question was
reformulated in the context of fixed point equation as follows. For more detail, we refer
to the excellent survey by Rus and Serban [14].

Suppose that X := (X, d) is a metric space and T : X — X is given with a

fixed point set Fix(T') := {p € X : p = T'p}. For a given ¢ > 0 does there

exist a number § := §(¢) > 0 such that if w € X satisfies

d(w, Tw) <6,

then one can find a fixed point p € Fix(T') such that d(p, w) < €?
If the preceding is true for the mapping 7', then we say that the fixed point equation
2 = Tx is Ulam stable. For simplicity from now on, we simply say that T"is Ulam stable if
the fixed point equation # = Tz is Ulam stable. If there exists a constant ¢ > 0 such that
d(e) < ce foralle > 0, then we say that T" is Ulam—Hyers stable. That is, T' is Ulam-Hyers
stable if and only if there exists ¢ > 0 such that for any pair (w,e) € X x (0,00) with
d(w, Tw) < ¢ there exists a fixed point p € Fix(T) such that d(p, w) < ce. In the literature,
the following generalization of Ulam—Hyers stability was introduced.
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Definition 1.1. Let X := (X, d) be a metric space and 7' : X — X be given. We say that
T is generalized Ulam—Hyers stable [14] if there exists an increasing function ¢ : [0,00) —
[0, 00) such that £(0) = 0, £ is continuous at zero, and for any pair (w, €) € X x (0, 00) with
d(w,Tw) < ¢ there exists a fixed point p € Fix(T') such that d(p, w) < &(e).

Remark 1.1. If T is generalized Ulam-Hyers stable, then it is Ulam stable. To see this,
let ¢ > 0 be given. Since T is generalized Ulam—-Hyers stable, there exists an increasing
function £ : [0,00) — [0, c0) such that £(0) = 0, £ is continuous at zero, and for any pair
(w,n) € X x (0,00) with d(w, Tw) < 7 there exists a fixed point p € Fix(T) such that
d(p,w) < &(n). We choose 1 := £71(g) > 0. It follows that if w € X satisfies

d(w, Tw) < n,

then one can find a fixed point p € Fix(T') such that d(p, w) < {(n) = €. In particular, we
have the following implications.

Ulam-Hyers generalized Ulam
stabilit = Ulam-Hyers = ilit
y stability y

There are several other types of stability, for more detail we refer to [10] and [4]. It is
easy to see that every Banach contraction defined on a complete metric space is Ulam—
Hyers stable. Recall that a mapping 7" : X — X is a Banach’s contraction if there exists a
constant a € (0, 1) such that

d(Tz,Ty) < ad(z,y) forall z,y € X.
In the literature, there are many generalizations of a Banach’s contraction. We are mainly

interested in the following two types of generalizations due to Matkowski [9] and to Ja-
chymski [7], respectively.

Matkowski’s contractions.

Definition 1.2. Let X := (X, d) be a metric space and ¢ : [0,00) — [0,00) be a nonde-
creasing function such that lim,,_,o, " (¢t) = 0 for all ¢ > 0. A mappingT : X — X isa
Matkowski’s contraction or i-contraction if

d(Tz,Ty) < Y(d(z,y)) forall z,y € X.
Remark 1.2. If¢(t) = at where a € (0, 1), then a y)-contraction becomes a Banach’s contraction.

Jachymski’s contractions. Recently, Jachymski introduced a class of mappings including
all Banach’s contractions and proved a fixed point theorem for mappings in this class.
From now on, by saying that X is a metric space with a directed graph G on X, we mean
that the vertex set V(G) of G is X and the edge set E(G) of G is a subset of the Cartesian
product X x X such that (z,z) € E(G) forall z € X.

Definition 1.3. Let X := (X,d) be a metric space with a directed graph G on X. A
mapping T : X — X is a Banach G-contraction if there exists o € (0, 1) such that for all
(z,y) € E(G) the following two conditions hold:

o (Tx,Ty) € E(G);

e d(Tz,Ty) < ad(z,y).
Remark 1.3. It is clear that if F(G) = X x X, then a Banach G-contraction becomes a
Banach'’s contraction.

Remark 1.4. We note that not every Banach G-contraction is Ulam stable. See Example
2.1.
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In this paper, we introduce a new type of Ulam stability to explain the stability of
Banach G-contractions. In fact, our result includes a wider class of mappings whose con-
tractiveness in the sense of Matkowski is given with respect to a directed graph. We also
discuss some vague result proved by Sintunavarat [17] concerning the generalized Ulam-
Hyers stability. As pointed out by the referee, the results of the paper are related to some
simplified versions of outcomes in several other papers (which can be found in the refe-
rences of the survey [2]) such as Corollary 3.2 in [3].

2. MAIN RESULTS
In this paper we introduce the following concept.

Definition 2.4. Let (X, d) be a metric space with a directed graph Gon X and 7' : X — X
be a mapping such that Fix(T') # @. We say that a mapping T : X — X is Ulam stable with
respect to G if for each & > 0 there is a § := d(¢) > 0 such the following implication holds:

d(w, Tw) < § and (w,Tw) € E(G) = there exists p € Fix(T) such that d(p, w) < e.

In the preceding notion, if there exists a constant ¢ > 0 such that §(¢) < ce foralle > 0,
then we say that T" is Ulam—Hyers stable with respect to G.

Remark 2.5. In particular, if E(G) := X x X, then the Ulam stability with respect to G
(Ulam-Hyers stability with respect to G, respectively) becomes the Ulam stability (Ulam—
Hyers stability, respectively).

Inspired by the works of Matkowski [9] and of Jachymski [7], we introduce the follo-
wing mappings.

Definition 2.5. Let (X,d) be a metric space with a directed graph G on X. Define ¢ :
[0,00) — [0, c0) is a nondecreasing function. We say that 7" : X — X is

(i) a (v, G)-contraction of type I if the following conditions hold
o > >  Y"(t) < ocoforallt > 0;
o (Tz,T%*r) € E(G) whenever (z,Tx) € E(G);
o d(Tz,Ty) < ¥(d(z,y)) whenever (z,y) € E(G);

(ii) a (v, G)-contraction of type II if the following conditions hold
e lim, _,o " (t) =0forallt > 0;
o (Tx,T%r) € E(G) whenever (z,Tz) € E(G);
o d(Tz,Ty) < ¢(d(x,y)) whenever (z,y) € E(G).

Our stability results rely on the following two additional assumptions (see [7]).

(J1) If {z,} is a sequence in X such that (z,,2zn4+1) € E(G) foralln > 1 and z,, — p for
some p € X, then there exists a subsequence {xy, } of {z,} such that (z,,,p) € E(G)
forall k > 1.

(J2) For each x,y € X if Tz — y and (T™*z, T™*'x) € E(G) for all k > 1, then
T(T™z) — Ty.

Remark 2.6. ¢ Since we will mention some fixed point theorems proved under a bit
stronger assumption than the condition (J1), we refer to this assumption as (J1*).
More precisely, it is defined as follows.
(J1*) If {x,} is a sequence in X such that (z,,zn+1) € E(G) for all n > 1 and
2, — p for some p € X, then (z,,,p) € E(G) foralln > 1.
o The condition (J2) is sometimes referred as the orbital G-continuity of T' [7].

2.1. (¢, G)-contractions of type I.
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2.1.1. Fixed point theorem.

Theorem 2.1. Let (X, d) be a complete metric space with a directed graph G on X. Suppose that
T:X — Xisa (¢,G)-contraction of type I and suppose that either the condition (J1) or (J2)

holds. If there exists an element xg € X such that (zo,Tx¢) € E(G), then T"zy — p for some
p € Fix(T), that is, Fix(T) # @.

Proof. Set x1 = x¢ and z,,41 = Tx, for alln > 1. If d(z1,22) = 0, then z; = Ta;
and we are done. We now assume that d(z1,x2) > 0. Note that (z,,2z,+1) € E(G) and
d(xpt1,Tng2) < Y(d(@n, Tny1)) forall n > 1. In particular,

(@41, Tn2) < P (d(21,22))

for all n > 1. Note that "> | ¥"(d(z1,22)) < oo, and hence > >, d(zp41,Tnt2) < 00.
This implies that {z,, } is a Cauchy sequence. By the completeness of X, there is an element
p € X such that z,, = p. We now show that p = T'p. The proof is divided into 2 cases.

Case 1: We assume the condition (J1). Then there exists a subsequence {z,, } of {z,}
such that (z,,,p) € E(G) for all k > 1. We consider the following
d(p7 Tp) < d(p7 "177Lk+1) + d($7lk+17 Tp)
= d(p7 InkJrl) + d(Txnk 5 Tp)
< d(p, xnk+l) + '(/)(d(xnkvp))

for all & > 1. Letting k — oo gives p = T'p, that is, p is a fixed point of T'.
Case 2: We assume the condition (J2). In this case, we have

p= lim zp41 = lim T"z; = lim T(T"z1) = Tp.
n—00 n—00 n—oo

Then p is a fixed point of T'.
This completes the proof. O

2.1.2. Ulam stability with respect to G.

Lemma 2.1. Let ¢ : [0,00) — [0, 00) be a nondecreasing function such that 3 p | *(t) < oo
forall t > 0. Then for each € > 0 there exists 6 > 0 such that

5+ > YFo) <e.
k=1

Proof. Lete > 0 be given. Then Y ;2 , 1*(¢) < co. In particular, there exists a positive in-
teger N such that 32 9*(¢) < e. We now choose § := ™V (). Hence, § + > e, ¥ (6) =
Y rey ¥F(e) < e as desired. O

We present two Ulam stability results with respect to G for (v, G)-contractions of type
L

Theorem 2.2. Let (X, d) be a complete metric space with a directed graph G on X. Suppose that
T:X — X isa (v, G)-contraction of type I. Suppose that either the condition (J1) or (J2) holds.
IfFix(T) # @, then T is Ulam stable with respect to G.

Proof. Suppose that T : X — X is a (¢, G)-contraction of type I. Let ¢ > 0. By Lemma
2.1, there exists a § > 0 such that § + > ;2 ¥*(§) < e. Let w be an element in X such
that (w,Tw) € E(G) and d(w,Tw) < ¢. (Note that such an element w exists because
{(z,z) : x € X} C E(G) and Fix(T) # @.) Set 21 := w and define z,,1 := T, for all
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n > 1. It follows from Theorem 2.1 that z,, — p for some p € Fix(T'). Furthermore, since
d(wr, Trr1) < F(d(zy, 22)) < *(8), we also have

d(w,p) = lim d(1,@n41) < lm Y d(eg, 2p41) < 6+ lim Y 9H(8) = 6+)_4"(9) <e.
k=1 k=1 k=1
Thus, T' is Ulam stable with respect to G. O

The following example shows that our concept of Ulam stability with respect to G is
more suitable for (¢, G)-contractions than the classical Ulam stability.
Example 2.1. Let X := [0, 1] be a metric space with a usual metric d. Define T : X — X
by

1 if ze(1/2,1).
Then the following statements are true.
(a) Tisa (¢, G)-contraction of type  where ¢(t) = t/2 forallt > 0 and E(G) := [0,1/2]2U

{(2,2) : 2 € (1/2,1]}.
(b) T is not Ulam stable.
(c) T is Ulam stable with respect to G.

T {W it we0,1/20{1)

Proof. (a) It is clear that ¢ is nondecreasing and >">2 ; ¢¥"(t) < oo for all ¢ > 0. Moreover,
if (z,y) € E(G), then (Tz,Ty) € E(G) and d(T'z,Ty) < ¥(d(z,y)). Hence T'is a (¥, G)-
contraction of type L.

(b) To see this, we choose ¢ := 1/2 and set z,, := (n+1)/(n+2) for all n > 1. It follows
that d(z,, Tz,) = d((n+1)/(n +2),1) — 0. Note that 0 is the only one fixed point of T
and d(z,,0) > 1/2 for all n > 1. Hence T is not Ulam stable.

(c) We conclude the result by using Theorem 2.2. In fact, we show that the condition
(J1) is satisfied. Suppose that {x,} is a sequence in X such that (z,,z,1+1) € E(G) for
alln > 1 and z, — p for some p € X. The result follows easily if p # 1/2. We now
consider the case p = 1/2. If there exists an integer N such that x,, > p for alln > N, then
z, = xy for all n > N which is impossible. Hence there exists a subsequence {xzy, } such
that z,,, < pforall & > 1. In particular, (x,,,p) € E(G) forall k > 1. So T is Ulam stable
with respect to G. O

2.2. (¢, G)-contractions of type II.
2.2.1. Fixed point theorem.

Lemma 2.2 ([1]). Suppose that {x,} is a sequence in a metric space (X,d). If {x,} is not a
Cauchy sequence, then there exist a constant € > 0 and two subsequences {x,, } and {zm, } of
{x,,} such that the following two conditions hold: for all k > 1 one has

ng <mp  and  d(Tpy, Tme—1) < € < d(Tny s Tmy)-

Theorem 2.3. Let (X, d) be a complete metric space with a directed graph G on X. Suppose that
G is transitive, that is, (z, z) € E(G) whenever (x,y) € E(G) and (y, z) € E(G). Suppose that
T : X — X isa (y,G)-contraction of type II and suppose that either the condition (J1) or (]2)
holds. If there exists an element xo € X such that (xo, Txo) € E(G), then T™xy — p for some
p € Fix(T), that is, Fix(T) # @.

Proof. Set 1 := wxp and x,, 41 = Tax, for all n > 1. If d(z1,22) = 0, then 1 = Tz
and we are done. We now assume that d(x1,z3) > 0. Note that (z,,2,+1) € E(G) and
d(Tp41, Tnt2) < Y(d(xn, Tng1)) forall n > 1. In particular,

d(Tn11, Tpt2) < P (d(z1,22))

165



28 Apimuk Buakird and Satit Saejung

for all n > 1. In particular, lim, o d(zy, Zn+1) = 0. We show that {x,,} is a Cauchy
sequence. Suppose that {z,} is not a Cauchy sequence. There exist an n > 0 and two
sequences {n;} and {my} of {n} such that ¥ < ny < my and d(z,,,Tm,—1) < 7 <
d(zp,, Tm,) for all k > 1. We note from the transitivity of G that (z,,, Zm,—1) € E(G)
and we obtain the following

N = (T, Trg1) < ATy, Trmy,) — ATy Ty11)
< d(Tpyt1sTmy)

Y(d(@ny,, Tmy—1))

¥(n).

Letting k£ — oo gives < 1(n), that is, n = 0 which is a contradiction. Hence, {z,} is a
Cauchy sequence. By the completeness of X, there is an element p in X such that z,, — p.
The proof that p is a fixed point of T" follows exactly as the same as the proof of Theorem
2.1 so it is left for the reader to verify. O

ININ ]

2.2.2. Ulam stability with respect to G.

Lemma 2.3 ([15, 18]). If ¢ : [0,00) — [0, 00) is nonexpansive, that is, |1(s) — (t)| < |s — t|
forall s,t > 0, then I — 1) is nondecreasing where I is the identity mapping.

We present the Ulam stability result with respect to G for (¢, G)-contractions of type IL

Theorem 2.4. Let (X, d) be a complete metric space with a directed graph G on X. Suppose
that T : X — X is a (v, G)-contraction of type II where G is transitive and 1 is nonexpansive.
Suppose that either the condition (J1) or (J2) holds. If Fix(T') # @, then T is Ulam stable with
respect to G.

Proof. Suppose that T : X — X is a (¢, G)-contraction mapping of type Il where 9 is a
nonexpansive mapping and G is transitive. Let ¢ > 0. We choose ¢ := (¢ — ¢(¢))/2. Let w
be an element in X such that (w,Tw) € E(G) and d(w, Tw) < ¢. Set z1 := w and define
ZTpt1 := Ty, for all n > 1. It follows from Theorem 2.3 that z,, — p where p € Fix(T). We
consider

d(w, p) = d(z1,p) < d(z1,22) + d(z2,p)
=d(z1,Tx1) + d(Tx1,Tp)
< d(z1,Tz1) +¥(d(z1,p))
< 0+ ¢(d(w,p))-

In particular, (I — ¢)(d(w,p)) < 6. Suppose that ¢ < d(w,p). Then (I —¢)(e) < (I —
¥)(d(w,p)) < 6 = (¢ —¥(e))/2 which is a contradiction. Hence, d(w,p) < e. Thus, T is
Ulam stable with respect to G. (N

There exists a nondecreasing and nonexpansive function ¢ : [0, 00) — [0, c0) such that
lim, 0o ¥™(t) = O and Yo, ¢¥"(t) = oo for all ¢ > 0. In particular, this reveals the
importance of Theorem 2.4.

Example 2.2. Define ¢ : [0,00) — [0,00) by ¥(¢) = t/(1 +¢) for all ¢ > 0. Then ¢ is
nonexpansive, lim, . ¢"(t) = 0, and Y77 ¥"(t) = oo for all ¢ > 0. In fact, for each

n > 1, we note that " (t) = 1+tm forallt > 0.

166



Ulam stability with respect to a directed graph for some fixed point equations 29

3. DEDUCED RESULTS AND SOME REMARKS

3.1. Ulam-Hyers stability with respect to G of Banach G-contractions. By Theorem 2.2,
we obtain the following result which supplements the result of Jachymski [7].

Corollary 3.1. Suppose that (X,d) is a complete metric space with a directed graph G on X.
Suppose that T : X — X is a Banach G-contraction with a fixed point. If either the condition (J1)
or (J2) holds, then T is Ulam—Hyers stable with respect to G.

Proof. Suppose that there exists a constant a € (0,1) such that (Tz,Ty) € E(G) and
d(Tz,Ty) < ad(z,y) for all (z,y) € E(G). Put¢(t) := ot for all t > 0. Let e > 0 be given.
Note thatif § = (1—a)e, then 6+ oo ; ¥ (8) = 6+3 5o, a*d = ¢. It follows from the proof
of Theorem 2.2 that for each w € X with (w,Tw) € E(G) and d(w,Tw) < § = (1 — a)e
there exists a fixed point p of T such that d(p, w) < e. This completes the proof. O

3.2. Remarks on Sintunavarat’s results. We will discuss some vague statements in the
recent result of Sintunavarat [17]. His results are established in a different context but it
will be seen later that it is equivalent to the setting with a directed graph (see Remark
3.7(1)). We first recall some concepts.

Definition 3.6. Let (X, d) be a metric space. Suppose that ¢ : [0,00) — [0, 00) is a nonde-
creasing function such that -, ¥™(t) < coforallt > 0. Suppose that o : X x X — [0, c0)
and 7T : X — X.
o T is weakly a-admissible if o(Tz, T?z) > 1 whenever a(z, Tx) > 1.
e Tisan («a,1)-contraction if a(z,y)d(Tz, Ty) < ¥(d(z,y)) forall z,y € X.
e X is a-reqular if whenever {z,,} is a sequence in X such that a(xy,, x,+1) > 1 for
alln > 1and z,, — p for some p € X it follows that a(z,,p) > 1foralln > 1.

Definition 3.7. Let (X, d) be a metric space and ¢ > 0. A point p € X is an e-fixed point of
amapping T : X — X if d(p,Tp) < e.

We carefully restate the following result from [17, Theorems 2.1, 2.2, 2.3, and 3.4].

Theorem 3.5. Suppose that (X, d) is a complete metric space. Suppose that T : X — X is an

(o, ¥)-contraction and it is weakly a-admissible with o(xo, Txo) > 1 for some xo € X. Suppose

in addition that either T is continuous or X is a-regular. Then the following statements are true.

(a) Fix(T) # 2.

() Ifa(p,q) > 1 forall p,q € Fix(T), then Fix(T) is a singleton.

(c) Suppose that I — 1 is strictly increasing and onto. If a(p’, ¢') > 1 for all e-fixed points p’ and
q' of T, then T is generalized Ulam—Hyers stable.

The remarks for the preceding theorem are as follows.

Remark 3.7. (1) Suppose that T : X — X is an (a,9)-contraction and it is weakly a-
admissible. We define a directed graph G on X by letting E(G) := {(z,y) : a(z,y) >
1}. It follows that T is a (¢, G)-contraction of type I In fact, if (z,y) € E(G), then
a(z,y) > 1 and hence

d(Tz,Ty) < a(z,y)d(Tz, Ty) < P(d(z,y)).

The continuity of T' can be replaced by the G-orbital continuity of T, that is, the con-
dition (J2). The a-regularity of X becomes the condition (J1*) which is a stronger
assumption than the condition (J1). On the other hand, suppose that T" is a (¢, G)-
contraction of type I. Now, we define a(z,y) := 1if (z,y) € E(G) and a(z,y) := 0if
(z,y) ¢ E(G). It follows that T is an («, ¢)-contraction and it is weakly a-admissible.
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(2) Our result for (¢, G)-contractions of type II also provides a new information which is
beyond the scope of the work of [17].

(3) No quantifier about ¢ is given in the statement (c) of Theorem 3.5. (The same patterns
of vague statements are in [8, 11, 5, 16, 12, 13].) Moreover, in the proof of [17, Theorem
3.4] (page 400 line 7), the given € > 0 is not arbitrary as required in the definition of the
generalized Ulam-Hyers stability. Finally, we discuss the validity of the assumption:
a(p’,q') > 1 for all e-fixed points p’ and ¢’ of T. Note that if we set X, := {z :
d(z,Tx) < e}, then it follows from the continuity of 7" or the a-regularity X that the
subset X_ is closed and hence complete. It is clear that 7" : X. — X, is a 1)-contraction.
From this point, the function « plays no role in the study.
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Abstract. We discuss the hyperstability outcome given by Aiemsomboon
and Sintunavarat [1] and concerning the general linear equation. We give a simple
proof of it via the hyperstability result for the Cauchy equation. Our proof is
based on Brzdek’s fixed point theorem. Moreover, we use a weaker assumption.

1. Introduction

Throughout the paper, we assume that F,K € {R,C} where R and C
are the set of all real numbers and complex numbers, respectively; and we
assume that N and R4 are the set of all positive integers and nonnega-
tive real numbers, respectively. Suppose that X and Y are normed spaces
over the scalar fields F and K, respectively. Hyers [10] was the first one
who answered the well known Ulam’s problem [17] concerning approximate
homomorphisms of groups as follows.

THEOREM H. Suppose that X and Y are two Banach spaces. If 6 >0
s a real number and f: X — Y satisfies the condition

If(@+y) = flx) = fll <5 forallzyeX,

then there exists a unique function f: X — Y such that
(a) F satisfies the Cauchy equation, that is, F(xz +y) = F(x) + F(y) for
all x,y € X;
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2 T. PHOCHAI and S. SAEJUNG
(b) [[F(z) = f(x)[| <6 for all x € X.

Rassias and Tabor [16] proposed to study the stability of the following
generalized form of Cauchy equation:

(1) flax +by) =Af(x) + Bf(y) forallz,ye X

for some a,b € F\ {0} and A, B € K. In this case, we say that f satisfies the
general linear equation with constants a,b, A, B. Some authors [1-3,7,9,11,
14,15] proved several stability results of these equations. For more details
on this subject, we refer the readers to the recent monograph of Brzdek et
al. [8]. In particular, we say that f: X — Y satisfies the Jensen equation if
(1) holds with a = b= A = B = 1/2. Clearly, if f satisfies the general linear
equation with a = b= A = B =1, then f satisfies the Cauchy equation.

Piszczek [15] recently proved the following hyperstability result for gen-
eral linear equation (1).

THEOREM P [15, Theorem 2]. Suppose that X is a normed space and Y
is a Banach space over the scalar fields F and K, respectively. Suppose that
a,b e F\ {0} and A, B € K. Suppose that ¢ >0, p <0, and f: X =Y sal-
isfies the condition

| flaz +by) — Af(z) = Bf(y)|| < c(llz]? + [ly[”)
for all z,y € X \ {0}. Then f satisfies the general linear equation.

Using some idea from Brzdek’s result [5], Aiemsomboon and Sintu-
navarat [1] proved the following result which is a generalization of Theo-
rem P.

THEOREM AS [1, Theorem 2.1]. Suppose that X is a normed space and

Y is a Banach space over the scalar fields F and K, respectively. Suppose that
a,b € F\ {0} and A, B € K. Suppose that h: X \ {0} = R4 and f: X =Y
satisfies the condition

|| f(az + by) — Af(x) = Bf(y)|| < h(x)+h(y)
for all x,y € X \ {0}. Suppose that
My = {n eN: |A|s(%(n+ 1)) + |B\s(f%n) < 1}

is an infinite set where s(a) :=inf{t >0 : h(ax) < th(z) for allz € X \{0}}
for a € F\ {0}; and

a3g, 5(e) = Jig s(~) =0

Then f satisfies the general linear equation.
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REMARK 1. Note that the completeness of Y in Theorem P (and The-
orem AS) can be relaxed, that is, the conclusion of Theorem P (and Theo-
rem AS) remains true if Y is a normed space because without loss of gener-
ality we can replace Y by its completion.

REMARK 2. If we set h(z) := c||z||P where p < 0 and ¢ > 0, then all the
conditions of Theorem AS concerning h are satisfied.

The aim of this paper is to give a simple proof of Theorem AS via the
hyperstability of Cauchy equation. Moreover, we show that the conclusion
of Theorem AS remains true under a weaker assumption. In particular, we
also remark that some assumptions of Theorem AS are superfluous.

2. Preliminaries and some notes

The key ingredient of our proof is based on Brzdek’s fixed point result
[6]. In the following result, we write YX for the set of functions from a
nonempty set X into a nonempty set Y.

THEOREM B [6, Theorem 1]. Let X be a nonempty set and Y be a Ba-
nach space. Let f1, fo € XX be given. Let T:YX =YX be an operator
satisfying the inequality

2
1Te@) ~Tu@)| < 3| &i@) —ulfi@)| for all &ueY™ and weX.
i=1
Let A: Rf — Ri_( be an operator defined by
2
Ad(x) ==Y d(fi(x)) forall 5 € RY and x € X.
i=1
Suppose that € € Rf and p € YX satisfy the conditions
I To(x) —p(x)|| <e(z) and £"(x):= zAne(x) < oo forall x € X.
n=0
Then there exists a unique fized point ¥ of T such that ||o(x) —(x)]| <

e*(x) for all x € X. Moreover, ¥(x) = lim, oo T"p(x) for all z € X.

It is known that a function f: X — Y with f(0) = 0 satisfies the Jensen
equation if and only if it satisfies the Cauchy equation [12,13]. In particular,
it follows that if a function f: X — Y satisfies the Jensen equation, then
the odd part f, of f satisfies the Cauchy equation and the even part f. of f
is a constant. Recall that f,(z) := %(f(.r) — f(=x)) and fe(x) := %(f(x) +
f(=x)) for all x € X.
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REMARK 3. Suppose that f: X — Y is given and f,, f. are odd and even
parts of f, respectively. Note that f,(0) =0, fo(—x) = —fo(x), fe(—2x)=
fe(z), and f(x) = fo(x) + fe(x) for all x € X. In particular, f.(0) = f(0).

3. Main results

We first note the following easy observation.

LEMMA 4. Let X be a normed space over the scalar field F and h: X \ {0}
— R4 be given. For each n € N, define

s(n) == inf{t > 0: h(nz) < th(z) for all z € X \ {0}}.
Suppose that ay,az, ..., am € F\ {0} where m € N. If H: X \ {0} — Ry is
defined by
H(z) = Z h(a;x) for all x € X \ {0}.
i=1

Then
H(nz) < s(n)H(z) for all z € X\ {0}.
In particular, h(nz) < s(n)h(x) for all x € X \ {0}.
We establish the following hyperstability result of Cauchy equation.

LEMMA 5. Let X and Y be normed spaces over the scalar fields F
and K, respectively. Suppose that H: X \{0} = Ry and g: X = Y are given
such that g(0) = 0, g(—z) = —g(x) for all x € X and H(—z) = H(x) for all
x € X\ {0}. For each n € N, define

s(n) :=inf{t > 0: H(nz) < tH(x) for allz € X \ {0}}.
Suppose that g satisfies the inequality

(2) lg(z +y) —g(x) —g(y)|| < H(z) +H(y)

for all z,y € X\ {0} and inf{s(n+ 1)+ s(n):n € N} =0. Then the follow-
ing two statements are true.

(a) g satisfies the Cauchy equation.

(b) If, in addition, there exist a € F\ {0} and A € K such that

(3) o)~ 249(5-) || = #(@)
for all z € X \ {0}, then
glax) = Ag(x) for all x € X.
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PROOF. (a) We may assume that Y is complete (otherwise, we replace Y’
by its completion). Let m € N be such that s(m + 1) + s(m) < 1. Such an
integer m exists because inf{s(n+ 1) + s(n) : n € N} =0. Let z € X \ {0}.
Replacing x by (m + 1)z and y by —ma in (2), we get

@ lg@) = g((m+1)z) — g(=ma)|| < H((m +1)z) + H(mz).

Define 7,,: Y XM} 5 y X0} by

(5) Tmé(x) = &((m + 1)x) + {(—mz)

for all € X \ {0} and ¢ € YXMO, Next, we define &,,: X \ {0} — R by
(6) em(r) = H((m + Dz) + H(mz) < oH(z)

for all € X\ {0} where o := s(m + 1)+ s(m). Then it follows from (4)
that

[Tmg(z) — g(@)|| < em(x)
for all z € X \ {0}. Define A,,: Rf\{o} N Ri(\{o} by
Amn(z) == n((m + 1)z) + n(—mz)

for all n € Rf\{o} and € X \ {0}. Then A,, satisfies the condition of The-
orem B with fi(z) := (m+ 1)z and fao(x) := —max. Moreover, for every
&p e YXMO and z € X\ {0}, we have

| T (2) = Trp() || = [|€((m + 1)a) + E(=ma) — p((m + 1)z) — p(—ma)
< [[&((m + 1)) = p((m + Dz + [|E(=ma) — p(-mz)]|

2
= IE(fi(@) — p( fi(@))]l
i=1

We show by induction that for each n € NU {0},
(7) A () < @M (x) forall z € X\ {0}.

The inequality (7) holds for n = 0 because of (6). Suppose that the inequal-
ity (7) holds for n = k where k € NU {0}. Let 2 € X \ {0}. Then

Aﬁflsm(x) = Am(Aﬁlsm(x)) = Affnsm((m + 1)x) + Afnem(—mm)
< FH((m + D) + oF Y H (ma)
< (s(m+1) + s(m)H(x) = " H(x).
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That is, the inequality (7) holds for n = k + 1. By induction, (7) holds for
all n € NU{0}. Thus

(o) L N pn o~ (o __s(m+1)+s(m)
e*(x) .—Z%Amsm(x) S;(a ) H(x) = T st 1) _S(m)H(x)

for all z € X\ {0}. By Theorem B, there exists a unique fixed point
G, € YXMO} of T, such that

s(m+ 1) + s(m)
—s(m+1)—s(m)

®)  llg(@) = Gm(@)ll < ; H(x) forall z € X\ {0}.

Moreover,

Gm(z) = lim (T79)(x)

n—o0

for all z € X \ {0}.
Next, we show by induction that for each n € N U {0},

(9) | Twg(z+y) — Tog(@) — Tmg(y)|| < a™(H(z) + H(y))

forall z,y € X \ {0} with z+y € X \ {0}. The inequality (9) holds forn =0
because of (2). Suppose that (9) holds for n = k where k € NU{0}. Let
z,y € X\ {0} with z +y € X \ {0}. Then

[T gl +y) = T () = Tt a(y)]|
< || Twg((m+ 1) (z + ) — Tog((m + Da) — Tig((m +1)y)|
+ || Tg(=m(z + ) — Tng(—=ma) — Trig(—my)||
< oF(H((m+1)z) + H((m + 1)y)) + oF (H(mz) + H(my))
< ¥ (s(m+ 1) + s(m))(H(x) + H(y)) = o (H(z) + H(y)).

That is, the inequality (9) holds for n = k + 1. By induction, (9) holds for
all n € NU{0}. Letting n — oo in (9) gives

(10) Gp(z+y) = Gu(x)+ G (y) for all z,y € X\{0} with z4+ye€ X\{0}.

We now prove that for each z,y € X \ {0} with z+y # 0

(11)

s(m—+1)+s(m)
s(m+1) —s(m)

l9(z+y)—g(z) —9(y)|| < 1= (H(z+y)+H(z)+H(y)).
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To see this, let z,y € X \ {0} with  +y # 0. Then, by (10) and (8), we
have
l9(z +y) —g(z) — 9| < llg(z +y) — Gm(z +y)ll
T Gm(z +y) = Gn(z) = Gl + 1Gm(x) — g(@)]| + |Gm(y) — ()]
s(m+1)+ s(m)
“1—s(m+1)—s(m)

(H(z +y) + H(z) + H(y)).

In particular, we have

[9(z +y) = 9(x) — g(W)|| < s0(H(z +y) +H(z) +H(y))
for all z,y € X \ {0} with x +y # 0 where

. s(m+1)+s(m)
50 '_mf{l—s(m—i—l)—s(m) :m € N and 5(m+1)+s(m)<1}.
Since inf{s(n+ 1) + s(n) : n € N} =0, we have sy = 0 and hence

glx+y)=g(x)+g(y) foral z,y e X\ {0} withz+ye X\ {0}.

Since ¢g(0) = 0 and g(—x) = —g(x) for all z € X, the function g satisfies the
Cauchy equation.

(b) Now, we assume further that there exist a € F\ {0} and A € K such
that the inequality (3) holds for all z € X \ {0}. Let z € X\ {0} and let

n € N. Note that g(nz) =ng(z) and g (5%) = ng(%) Then

nx

-2 ()| = o 2302

)H < s(n)H(x).
That is,

o) — 249 (2| < 2™ (2.
H Gl ==

This implies that

o) 249 ()| < o (@),
where

ty := inf{s—:) 'n € N}.

It follows from inf{s(n + 1) + s(n) : n € N} = 0 that inf{ S(:) :n €N} =0
and hence g(z) = 2A4g(5;). In particular,

ton = 4a(3) + 40(3) = (3 +3) = )

Acta Mathematica Hungarica

177



8 T. PHOCHAI and S. SAEJUNG

Since ¢(0) = 0, we now conclude that g(ax) = Ag(z) for all z € X. O

We now show that if f satisfies the general linear equation approximately,
then its odd part f, satisfies the Cauchy equation approximately.

THEOREM 6. Let X and Y be normed spaces over the scalar fields F
and K, respectively, a,b € F\ {0} and A, B € K. Suppose that h: X \ {0}
— Ry and f: X — Y are given. Suppose that f satisfies the inequality

[f(az +by) = Af(z) = Bf (y)|| < h(z) + h(y)

for all x,y € X \ {0}. Then there exists a function H: X \ {0} — Ry such
that H(—xz) = H(x) for all z € X \ {0} and the odd and even parts fo, fe: X
— Y off satzsfy the following conditions:

0) [ fole) - 24£5(2)]| < Hlx) and || fole) — 2B ()] < Hlz) for all
x € X \ {0 }

b) {1 ol + ) — fole) — fol)| < H(x) + H(y) for all 2,y € X\ {0}.

If inf{s(n+1) + s(n) : n € N} =0 where
s(n) :==inf{t > 0: h(nz) < th(z) for all z € X\ {0}} (n€N),

then
(i) folz +y) =
(i) fo(az) = A
(iii) fe(x) = fe(0

PRrROOF. Define
/ 1 ! !/ !/
W(@) =5 (h(x) + h(=2)), H'(2):=h ( ) Y h (Zb)
H(z) :=2(H'(z) + H'(2z) + H'(3z))

for all z € X \ {0}. Then h'(—z)=h'(z), H (—z) = H'(x), and H(—z) =
H(z) for all z € X \ {0}. Note that

(12) || folaz +by) — Afo(z) — Bfo(y)||

= 2|l (a4 by) — F(—az — by) —~ A7) ~ F(~)) ~ BU) ~ ()]

folx) + foly) for all z,y € X;
O(:C) and fo(bx) = Bfo(x) for all x € X;
) = f(0) for all x € X; and f.(0) = Afe(O) + Bf.(0).

<

| faz-+by) —AF(@) ~BFW| + 5 | F(~az—by) ~ AF(~) ~ B ()]

NN

< 5 (h(z) + h(9)) + 5 (A(—2) + h(~9)) = W'(2) + H(y)

for all z,y € X\ {0}. Let z € X \ {0}. Replacing x by 5, and y by 5 in
(12), we get

(13)

folw) = ALo(5-) = Bfo(3 )| < H'(@).
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Next, replacing = by 5= and y by —3 in (12), we get

m |-an(2) 50 ()] < o

Then (13) and (14) imply that

fola) =248,(5-)|| < 2H'@) < H(a),

(15)
fol@) = 2B,(5 )| < 21 @) < H(a),

for all z € X \ {0} and so we get (a). If z,y € X \ {0}, then it follows from
(12) and (15) that

(16) Fo(5+ 5u) = 5 o) — 3 5ol0)|
Jologa +0ag) ~ Alo(55) = B1:(55)
+an(5;) - g + [Ba(z) - 320

< !/ /! ! ! < ! !/
h (2a) +h (Qb) + H'(x) + H'(y) < 2H'(z) + 2H'(y).
Let z € X \ {0}. Replacing z by 3z and y by —z in (16), we get

(17) Folz) — 7f0 3@” < 2H'(3z) + 2H'(x).

I3
Next, replacing x by 3z and y by x in (16), we get

(18) Jo(22) = 1 Fo(82) —  fola)|| < 20'(32) + 207" (2).

2
Then (17) and (18) imply

(19) 1fo(22) = 2fo(2)|| < 4H'(z) + 4H'(3z).

Consequently, let 2,y € X \ {0}, then it follows from (16) and (19) that

(; 2% 4 & 2y) fo(2x) - %fo(Zy)H

[fo(z +y) = folz) = fol 3

+[[5 50022 = o) + H%fo@y) ~ 1oty < ) + 1),
So we get (b).
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Now we assume further that inf{s(n+ 1)+ s(n): n € N} = 0. Note that,
by Lemma 4, H(nz) < s(n)H(z) for all z € X and n € N. Then all the con-
ditions of Lemma 5 are satisfied and hence we obtain the statements (i)
and (ii).

Next we prove (iii). By the definition of f., we get

(20) er(ax"'by) _Afe(x)_Bfe(y)H

= Ll Flax 4 by) + (- by) — Af(@) + F(-2)) ~ BUG) + ()

—_

< 5 | f(aw+by) = Af() ~ B + 51| F(~az—by) ~ Af(~) ~ Bf (~y)|

[N}

<

(h(z) + h(w)) + 5 (h(—2) + h(~y)) = H'(2) + H(3)
for all 2,y € X \ {0}. Tt follows from (20) that

1fel) = £0)] < [ £e@) = AL (52) - BL(57) |
|| - ar (=) - Br(5) | < 26 @) < ()
for all z € X \ {0}. For each z € X \ {0} and n € N, we have

[fe(nz) = fe(O)|| < H(nz) < s(n)H(z).

Since inf{s(n + 1) 4+ s(n) : n € N} =0, there exists an increasing sequence
{ni}72, in N such that klim (s(nk+ 1)+ s(ng)) = 0. Note that klim s(ng) =
—00 —00

N | =

lim s(ng + 1) = 0. In particular,

k—o0
lim fo((ng+1)z) = lim fo(ngx) = fe(0) for all z € X \ {0}.
k—o0 k—00

Let € X \ {0}. Replacing x by ("’“:1) and y by —™=2 in (20), we get

)~ AL ("EUTY pp (T | < st p (2) + st (D).

In particular,

hm

folz) - Aﬂ(@) Bf. (=) =o.

Since limg_, fe( "’”H)m) = limy_, 0 fe( "”) = fe(0), we have

fe(z) = Afe(0) + Bfe(0).
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Moreover, (20) with z = ™% and y = =%, we get

Letting k — oo, we obtain that
fe(O) = Afe(o) + Bfe(o)'

Then fe(x) = fo(0) = Afe(0) + Bfc(0) for all x € X and hence we get (iii).
(]

A0 41(%2) < 1, (32) | < s (2) st ).

a b

By using Theorem 6, we immediately obtain the following hyperstability
result of the general linear equation which is related to Theorem AS.

THEOREM 7. Let X and Y be mormed spaces over the scalar fields F
and K, respectively, a,b € F\ {0} and A, B € K. Suppose that h: X \ {0}
— Ry and f: X =Y are given. For each n € N, define

s(n) == inf{t > 0: h(nz) < th(z) for all z € X \ {0}}.
Suppose that f satisfies the inequality

| flaz +by) — Af(x) = Bf(y)|| < h(z)+ h(y)

for all z,y € X\ {0}. If inf{s(n+ 1)+ s(n):ne N} =0, then f salisfies
the equation

flaz +by) = Af(z) + Bf(y)
forall x,y € X.

PROOF. Assume that inf{s(n+ 1) + s(n) : n € N} = 0. By Theorem 6,
the odd and even parts f,, fo: X — Y of f satisfy the following conditions:

o folz +y) = folz) + fo(y) for all z,y € X;

o f(z) = fo(x)+ fe(x), fe(x)=fe(0)=Afe(0) + Bfe(0), folaz)=Afo(x),
and fo(bx)=Bf,(x) for all x € X.

Let z,y € X. Then

flaz +by) = folax +by) + fe(ax + by) = folax) + fo(by) + fe(0)
= Afo(z)+Bfo(y) + Afe(0)+ Bfe(0) = Afo(x) + Bfo(y) + Afe(z) +Bfe(y)
= A(fo(@) + fe(x)) + B(fo(y) + Bfe(y)) = Af(z) + Bf(y). O

REMARK 8. (1) For Theorem AS, we note that lim, . s(a) =0 &
limy—00 $(—a) = 0. Moreover, it follows from lim,—,~ s(a) = 0 that My is
an infinite set. Hence the latter condition is superfluous.

(2) Our hyperstability result in Theorem 7 follows from a weaker assump-
tion. In fact, it is easy to see that the condition lim,— o s(«) = 0 implies
inf{s(n+ 1)+ s(n) : n € N} =0.
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By using Theorem 7, we obtain the following corollary concerning the in-
homogeneous version of the general linear equation. It generalizes [1, Corol-
lary 2.5]. For more details about stability of the inhomogeneous functional
equations, we refer to the work of Brzdek [4].

COROLLARY 9. Let X and Y be normed spaces over the scalar fields F
and K, respectively, a,b € F\ {0} and A, B € K. Suppose that h: X \ {0}
— Ry andd: X x X =Y are given. For each n € N, define

s(n) == inf{t > 0: h(nz) < th(z) for all z € X \ {0}}.
Suppose that f: X — Y satisfies the inequality
|| flaz+by) — Af(x) = Bf(y) —d(z,y)|| <h(z)+h(y) for all z,y € X\ {0}
and there exists a function fo: X — Y such that
folaz +by) = Afo(z) + Bfo(y) +d(z,y) for all z,y € X.
If inf{s(n+1) + s(n) : n € N} =0, then
flax+by) = Af(x) + Bf(y) +d(x,y) foralx,ye X.

PRrROOF. Assume that inf{s(n+1)+s(n):n €N} =0. Set g(z):=
f(z) — fo(x) for all x € X. It follows that

| 9(az +by) — Ag(x) — Bg(y)||
= || f(az +by) — Af(x) = Bf(y) — (folaz + by) — Afo(x) — Bfo(y))||
= || flaz +by) — Af(z) — Bf(y) — d(z,y)|| < h(z)+ h(y)
forall z,y € X\ {0}. By Theorem 7, we get
glaxr 4+ by) = Ag(xz) + Bg(y) forall z,y € X.
In particular, we have
flax +by) = Af(z) + Bf(y) + d(z,y) forallz,ye X. O

REMARK 10. Note that in the case A+ B # 1 and d is a constant func-
tion, that is, d(z,y) := ¢ for all z,y € X, the function fy: X — Y defined
by

¢
folz) = 1_A_B for all x € X,
satisfies the equation
folax +by) = Afo(x) + Bfo(y) + d(z,y) for all z € X.

Therefore, our Corollary 9 also generalizes [1, Corollary 2.6].
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