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Project Summary

1.1 Variational inequality problems and some re-
lated formulations

Throughout this summary, we let H be a real Hilbert space with inner product
⟨·, ·⟩ and induced norm ∥ · ∥. Let C be a closed convex subset of H. Let us recall the
following two major (nonlinear) problems:

Fixed Point Problem (FPP): Let T : C → C be a mapping. An element u ∈ C

is a fixed point of T if u = Tu. The set of all fixed points of T is denoted by
Fix(T ).

Variational Inequality (VI): Let A : C → H. An element u ∈ C is a solution of
a variational inequality for A if ⟨v − u,Au⟩ ≥ 0 for all v ∈ C. The set of all
solutions of a variational inequality for A is denoted by VI(C,A).

These two problems are related as follows:

FPP =⇒ VI: For a given T : C → C, we have Fix(T ) = VI(C, I − T ).

VI =⇒ FPP: For a given A : C → H, we have VI(C,A) = Fix(PC ◦ (I − A)) where
PC is the metric projection from H onto C.

To approximate a solution of the variational inequality, we are interested in both
weak and strong convergences. Recall that a sequence {xn} in H converges strongly

3



(weakly, respectively) to x ∈ H if limn→∞ ∥xn − x∥ = 0 (limn→∞⟨xn − x, y⟩ = 0 for
all y ∈ H, respectively).

In [A1], we improve three weak convergence theorems for a common fixed point
of a family of firmly nonexpansive mappings with generalized parameters. We prove
the same results for the class of k-demicontractive mapping where k ≤ 1. Note that
every firmly nonexpansive is k-demicontractive mapping where k = −1. For the case
k = 1, we use two techniques proposed by Ishikawa1 and by Korpelevič2 to attack
this problem. The methods and results in [A1] are extensively studied and extended
to a more general algorithm via using an infinite matrix. The weak convergence are
given in [A4] and the strong convergence in [A7]. In some special cases, we obtain a
simple proof of Wang’s method for split common fixed point problem3 in [A8]. We
also simplify the main results of Lin and Takahashi4 and of Takahashi5 in [A5].

1.2 Some results in a more general setting

In a more general setting than the Hilbert space setting, we discuss some results in
a complete metric space. In [A2], we discuss the well known Caristi’s theorem where
the distance function is replaced by the w-distance. The latter notion was defined by
Kada et al.6. We do not only obtain an approximation of a fixed point of a mapping

1Ishikawa, Shiro. Fixed points by a new iteration method. Proc. Amer. Math. Soc. 44 (1974),
147–150.

2Korpelevič, G. M. An extragradient method for finding saddle points and for other problems.
(Russian) Èkonom. i Mat. Metody 12 (1976), no. 4, 747–756.

3Wang, Fenghui. A new method for split common fixed-point problem without priori knowledge
of operator norms. J. Fixed Point Theory Appl. 19 (2017), no. 4, 2427–2436.

4Lin, Lai-Jiu; Takahashi, Wataru. A general iterative method for hierarchical variational in-
equality problems in Hilbert spaces and applications. Positivity 16 (2012), no. 3, 429–453.

5Takahashi, W. Strong convergence theorems for maximal and inverse-strongly monotone map-
pings in Hilbert spaces and applications. J. Optim. Theory Appl. 157 (2013), no. 3, 781–802.

6Kada, Osamu; Suzuki, Tomonari; Takahashi, Wataru. Nonconvex minimization theorems and
fixed point theorems in complete metric spaces. Math. Japon. 44 (1996), no. 2, 381–391.
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but also a minimizer of a certain function. We also study the similar result where the
contractive condition are restricted with respect to a directed graph in [A6].

We study some geometric properties implying the existence a fixed point of a
nonexpansive mapping in a Banach space in [A3]. This is a joint work with Professor
Ji Gao.

1.3 Some by-product of the project

During our study in this project, we also obtain the following results. According
to [A6], we can prove some new stability result in the sense of Ulam7 for a mapping
whose contractiveness is restricted with respect to a directed graph in [A10]. A
classical problem of the stability result of Cauchy equation and that of the general
linear equation are obtained in [A9] and [A11].

1.4 Research outputs

In this project, we published the following 11 papers.

A1: Jaipranop, Chanitnan; Saejung, Satit. Some improvements on weak conver-
gence theorems of Chuang and Takahashi in Hilbert spaces. Chamchuri J.
Math. 8 (2016), 1–17. (No impact factor)

A2: Ardsalee, Pinya; Saejung, Satit. On some fixed point theorems of Caristi’s
type via w-distance. J. Nonlinear Convex Anal. 17 (2016), no. 11, 2355–2364.
(2017 Impact Factor: 0.56)

A3: Gao, Ji; Saejung, Satit. U -flatness and non-expansive mappings in Banach
spaces. J. Korean Math. Soc. 54 (2017), no. 2, 493–506. (2017 Impact Factor:
0.684)

7Hyers, D. H. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U. S. A.
27, (1941). 222–224.
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A4: Jaipranop, Chanitnan; Saejung, Satit. An explanation of over-relaxation pa-
rameters for some algorithms in Hilbert spaces. Linear Nonlinear Anal. 3
(2017), no. 3, 409–421. (No impact factor)

A5: Wongchan, Kanokwan; Saejung, Satit. Strong convergence of Browder’s and
Halpern’s type iterations in Hilbert spaces. Positivity 22 (2018), no. 4, 969–982.
(2017 Impact Factor: 0.92)

A6: Boonsri, Narongsuk; Saejung, Satit. Fixed point theorems for contractions of
Reich type on a metric space with a graph. J. Fixed Point Theory Appl. 20
(2018), no. 2, Art. 84, 17 pp. (2017 Impact Factor: 0.971)

A7: Jaipranop, Ch.; Saejung, Satit. On the strong convergence of sequences of
Halpern type in Hilbert spaces. Optimization 67 (2018), no. 11, 1895–1922.
(2017 Impact Factor: 1.17)

A8: Kraikaew, Rapeepan; Saejung, Satit. Another look at Wang’s new method for
solving split common fixed-point problems without priori knowledge of operator
norms. J. Fixed Point Theory Appl. 20 (2018), no. 2, Art. 81, 6 pp. (2017
Impact Factor: 0.971)

A9: Phochai, Theerayoot; Saejung, Satit. The hyperstability of general linear
equation via that of Cauchy equation. Aequationes Mathematicae (to appear).
(2017 Impact Factor: 0.644)

A10: Buakird, Apimuk; Saejung, Satit. Ulam stability with respect to a directed
graph for some fixed point equations. Carpathian J. Mathematics 35 (2019),
no. 1, 23–30. (2017 Impact Factor: 0.878)

A11: Phochai, Theerayoot; Saejung, Satit. Some notes on the Ulam stability of
the general linear equation. Acta Mathematica Hungarica (to appear). (2017
Impact Factor: 0.481)
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A1: Jaipranop, Chanitnan; Saejung, Satit. Some improvements on weak conver-
gence theorems of Chuang and Takahashi in Hilbert spaces. Chamchuri J.
Math. 8 (2016), 1–17.
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Abstract: Chuang and Takahashi [3] recently proved three weak convergence the-

orems for a family of firmly nonexpansive mappings with generalized parameters.

We discuss these three results for a family of k -demicontractive mappings where

k ≤ 1. Obviously, the class of k -demicontractive mappings contains all firmly non-

expansive mappings. The situation k = 1 is extensively studied by means of the

Ishikawa iteration and the extragradient method of Korpelevič. Some numerical

results for k = 1 are presented and further discussed.

Keywords: fixed point, k -demicontractive mapping, Mann iteration, Ishikawa

iteration, extragradient method

2000 Mathematics Subject Classification: 47H09, 47H10

1 Introduction

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and induced norm ∥ · ∥ .
Let C be a nonempty subset of H . An element x ∈ C is called a fixed point of

a mapping T : C → H if x = Tx . The set of all fixed points of T is denoted by

Fix(T ).

∗The author is supported by the Human Resource Development in Science Project (Science

Achievement Scholarship of Thailand, SAST)
†Corresponding author
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2 Chamchuri J. Math. 8(2016): Ch. Jaipranop and S. Saejung

Our work is inspired by the recent work of Chuang and Takahashi [3]. They

proved three weak convergence theorems for a family of firmly nonexpansive map-

pings. Their results are interesting because their iterations are established with

generalized parameters. In the previous work of Mann [8], the parameter is taken

in [0, 1] while Chuang and Takahashi’s work allows the wider interval of parame-

ters in [0, 2]. We continue the study of these works and extend the class of firmly

nonexpansive mappings to that of k -demicontractive mappings where k ≤ 1.

Note that every firmly nonexpansive mapping with a fixed point is just (−1)-

demicontractive. Hence our work includes theorems of Chuang and Takahashi as

a special case. We also discuss the 1-demicontractive case. This class is very

interesting and beyond the scope of the work of Chuang and Takahashi. We use

two techniques in the work of Kraikaew and Saejung [7] in this situation. Some

numerical results are also presented and discussed.

2 Preliminaries

Throughout this paper, we use → and ⇀ for the strong and weak convergences,

respectively. We write xn ≡ x for the statement xn = x for all n ≥ 1.

Definition 2.1. [4] Let C be a nonempty subset of H and k be a real number.

We say that a mapping T : C → H is k -pseudocontractive if ∥Tx − Ty∥2 ≤
∥x−y∥2+k∥(I−T )x−(I−T )y∥2 for all x, y ∈ C . If T is 1-pseudocontractive, then

it is simply called pseudocontractive. If T is k -pseudocontractive where k < 1,

then it is usually called strictly pseudocontractive. If T is 0-pseudocontractive,

then it is called nonexpansive. If T is (−1)-pseudocontractive, then it is called

firmly nonexpansive.

Definition 2.2. [4] Let C be a nonempty subset of H and k be a real number.

We say that a mapping T : C → H is k -demicontractive if Fix(T ) ̸= ∅ and ∥Tx−
p∥2 ≤ ∥x−p∥2+k∥x−Tx∥2 for all p ∈ Fix(T ), x ∈ C . If T is 0-demicontractive,

then it is called quasi-nonexpansive. If T is (−1)-demicontractive, then it is called

quasi-firmly nonexpansive.

Remark 2.3. 1. Every k -pseudocontractive mapping with a fixed point is k -

demicontractive.

2. Let C be a nonempty, closed and convex subset of H . If T : C → H is

quasi-nonexpansive, then Fix(T ) is closed and convex.

12



Some improvements on weak convergence theorems of Chuang and Takahashi 3

Lemma 2.4. Let C be a nonempty subset of H . Let T : C → H be a k -

demicontractive mapping. Let S := (1− α)I + αT where α is a nonnegative real

number and I is an identity mapping. Then for all x ∈ C and p ∈ Fix(T ) ,

∥Sx− p∥2 ≤ ∥x− p∥2 − α(1− k − α)∥x− Tx∥2.

In addition, if α ∈ ]0, 1− k[ , then Fix(S) = Fix(T ) and S is quasi-nonexpansive.

Proof. Let x ∈ C and p ∈ Fix(T ). We have

∥Sx− p∥2 = ∥(1− α)(x− p) + α(Tx− p)∥2

= (1− α)∥x− p∥2 + α∥Tx− p∥2 − α(1− α)∥x− Tx∥2

≤ ∥x− p∥2 − α(1− k − α)∥x− Tx∥2.

If α ∈ ]0, 1− k[ , then Fix(T ) = Fix(S) and S is quasi-nonexpansive.

The following conditions are studied in [3].

Definition 2.5. Let C be a nonempty subset of H . Let {Tn : C → H}∞n=1 be a

sequence of mappings and T be a family of mappings from C into H . Suppose

that
∩∞

n=1 Fix(Tn) ̸= ∅ . We say that

1. {Tn}∞n=1 satisfies the resolvent property if there exists a nonexpansive map-

ping T : C → H and Fix(T ) =
∩∞

n=1 Fix(Tn) and there exist n0, k ≥ 1 such

that ∥x − Tx∥ ≤ k∥x − Tnx∥ for all x ∈ C and for all n ≥ n0 . In this

situation, we also say that {Tn}∞n=1 satisfies the resolvent property with a

nonexpansive mapping T .

2. {Tn}∞n=1 satisfies the AKTT-condition if the following two conditions are

satisfied:

(a)
∑∞

n=1 sup
x∈B

∥Tn+1x−Tnx∥ < ∞ for each nonempty and bounded subset

B of C . (In particular, the sequence {Tnx}∞n=1 is Cauchy for all x ∈
C .)

(b) The mapping T : C → H given by Tx := limn→∞ Tnx for all x ∈ C

satisfies the property Fix(T ) =
∩∞

n=1 Fix(Tn).

In this situation, we also say that ({Tn}∞n=1, T ) satisfies theAKTT-condition.

3. ({Tn}∞n=1, T ) satisfies the NST-condition if

13



4 Chamchuri J. Math. 8(2016): Ch. Jaipranop and S. Saejung

(a) Fix(T ) :=
∩

T∈T Fix(T ) ⊂
∩∞

n=1 Fix(Tn).

(b) For each bounded sequence {zn}∞n=1 ⊂ C , limn→∞ ∥zn − Tnzn∥ = 0

implies that limn→∞ ∥zn − Tzn∥ = 0 for all T ∈ T .

Remark 2.6. 1. If {Tn}∞n=1 satisfies the resolvent property with a nonexpan-

sive mapping T , then ({Tn}∞n=1, {T}) satisfies the NST-condition.

2. If ({Tn}∞n=1, T ) satisfies the AKTT-condition , then ({Tn}∞n=1, {T}) satisfies
the NST-condition.

Proof. Let {zn}∞n=1 be a bounded sequence in C such that limn→∞ ∥zn −
Tnzn∥ = 0. Since ({Tn}∞n=1, T ) satisfies the AKTT-condition, limn→∞ sup{∥Tz−
Tnz∥ : z ∈ {zn}} = 0. In particular, limn→∞ ∥Tzn − Tnzn∥ = 0. This im-

plies that

lim sup
n→∞

∥zn − Tzn∥ ≤ lim
n→∞

∥zn − Tnzn∥+ lim
n→∞

∥Tnzn − Tzn∥ = 0.

Hence limn→∞ ∥zn − Tzn∥ = 0.

Let C be a nonempty, closed and convex subset of H . Then for each x ∈ H ,

there is a unique element x̂ ∈ C such that

∥x− x̂∥ = min
y∈C

∥x− y∥.

Set PCx = x̂ . The mapping PC is called the metric projection from H onto C .

Lemma 2.7. [10] Let C be a nonempty, closed and convex subset of H . Then,

for all x ∈ H and y ∈ C , y = PCx if and only if ⟨y−x, z− y⟩ ≥ 0 for all z ∈ C .

The following is the most general result amongst the three weak convergence

theorems of Chuang and Takahashi [3].

Theorem 2.8. [3] Let C be a nonempty, closed and convex subset of H . Let

{Tn : C → C}∞n=1 be a sequence of firmly nonexpansive mappings. Let T be a

family of nonexpansive mappings of C into itself, which satisfies NST-condition.

Let {αn}∞n=1 be a sequence in ]0, 2[ . Let {xn}∞n=1 be a sequence in C defined byx1 ∈ C arbitrarily chosen,

xn+1 := PC ((1− αn)xn + αnTnxn) ∀n ≥ 1.

If lim infn→∞ αn(2− αn) > 0 , then xn ⇀ x , where x ∈
∩∞

n=1 Fix(Tn) .
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We recall the following facts which are of interest and play an important role

in this paper.

Lemma 2.9 (Opial’s property). Let {xn}∞n=1 be a sequence in H such that xn ⇀

x ∈ H . Then

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥

for all y ∈ H with y ̸= x .

Definition 2.10. Let F be a nonempty subset of H . A sequence {xn}∞n=1 in H
is Fejér monotone with respect to F if ∥xn+1 − p∥ ≤ ∥xn − p∥ for all n ≥ 1 and

p ∈ F .

Lemma 2.11. [11] Let F be a nonempty, closed and convex subset of H and

{xn}∞n=1 be a sequence in H . If {xn}∞n=1 is Fejér monotone with respect to F ,

then {PFxn}∞n=1 is convergent.

Lemma 2.12. Let {an}∞n=1 , {bn}∞n=1 , and {cn}∞n=1 be sequences of nonnegative

real numbers such that an+1 ≤ an − cnbn for all n ≥ 1 and lim infn→∞ cn > 0 .

Then limn→∞ an exists and
∑∞

n=1 bn < ∞ . In particular, limn→∞ bn = 0 .

Proof. The proof of this lemma is rather simple but it is given here for the sake

of completeness. Note that an+1 ≤ an for all n ≥ 1. Thus limn→∞ an exists.

Moreover, cnbn ≤ an − an+1 . This yields
∑k

n=1 cnbn ≤ a1 − ak+1 ≤ a1 . So∑∞
n=1 cnbn ≤ a1 < ∞ . Since lim infn→∞ cn > 0, there are an integer n0 ≥ 1 and

a positive real number b such that b ≤ cn for all n ≥ n0 . Thus b
∑∞

n=n0
bn ≤∑∞

n=n0
cnbn < ∞ . Then

∑∞
n=1 bn < ∞ and hence limn→∞ bn = 0.

3 Results

Definition 3.1. Let C be a nonempty subset of H . A mapping T : C → H
satisfies the demiclosedness property if x = Tx whenever {xn}∞n=1 is a sequence

in C such that xn ⇀ x ∈ C and xn − Txn → 0.

We say that a family T mappings from C into H satisfies the demiclosedness

property if T satisfies the demiclosedness property for all T ∈ T .

Lemma 3.2. Let C be a nonempty, closed and convex subset of H . Let {Tn :

C → H}∞n=1 be a sequence of mappings. Let T be a family of mappings of C into

H satisfying the demiclosedness property. Assume that ({Tn}∞n=1, T ) satisfies the

15
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NST-condition. Let {xn}∞n=1 be a sequence in C . If limn→∞ ∥xn − p∥ exists for

all p ∈
∩∞

n=1 Fix(Tn) and limn→∞ ∥xn − Tnxn∥ = 0 , then xn ⇀ x for some

x ∈
∩∞

n=1 Fix(Tn) .

Proof. First, we show that all weak cluster points of {xn}∞n=1 belong to the set∩∞
n=1 Fix(Tn). To see this, let {xnk

}∞k=1 be a weakly convergent subsequence of

{xn}∞n=1 . (Such a subsequence exists because {xn}∞n=1 is bounded.) We assume

that xnk
⇀ u for some u ∈ C . Let T ∈ T . Since ({Tn}∞n=1, T ) satisfies the

NST-condition, limn→∞ ∥xn − Txn∥ = 0 and hence limk→∞ ∥xnk
− Txnk

∥ = 0.

Since T satisfies the demiclosedness property, u ∈ Fix(T ). This implies that

u ∈ Fix(T ) =
∩∞

n=1 Fix(Tn).

Finally, we show that the whole sequence {xn}∞n=1 converges weakly to some

element in the set
∩∞

n=1 Fix(Tn). To see this, it suffices to prove that the set of

all weak cluster points of {xn}∞n=1 is a singleton. Suppose that {xmj
}∞j=1 and

{xpk
}∞k=1 are two subsequences of {xn}∞n=1 which converge weakly to u and v ,

respectively. From the first part of the proof, we obtain that u, v ∈
∩∞

n=1 Fix(Tn).

In particular, both limits limn→∞ ∥xn − u∥ and limn→∞ ∥xn − v∥ exist. Suppose

that u ̸= v . By Opial’s property, we obtain the following contradiction:

lim inf
j→∞

∥xmj − u∥ < lim
j→∞

∥xmj − v∥

= lim
k→∞

∥xpk
− v∥

< lim
k→∞

∥xpk
− u∥

= lim inf
j→∞

∥xmj
− u∥.

So u = v . Hence xn ⇀ x for some x ∈
∩∞

n=1 Fix(Tn), as desired.

3.1 k -demicontractive mappings where k < 1

Theorem 3.3. Let C be a nonempty, closed and convex subset of H . Let {Tn :

C → H}∞n=1 be a sequence of kn -demicontractive mappings where kn < 1 for all

n ≥ 1 . Let T be a family of mappings of C into H satisfying the demiclosedness

property. Assume that ({Tn}∞n=1, T ) satisfies NST-condition. Let {αn}∞n=1 be a

sequence in ]0, 1− kn[ . Let {xn}∞n=1 be a sequence in C defined byx1 ∈ C arbitrarily chosen,

xn+1 := PC ((1− αn)xn + αnTnxn) ∀n ≥ 1.
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If lim infn→∞ αn((1 − kn) − αn) > 0 , then xn ⇀ x for some x ∈
∩∞

n=1 Fix(Tn) .

Moreover, x = limn→∞ P∩∞
n=1 Fix(Tn)xn .

Proof. Let p ∈
∩∞

n=1 Fix(Tn). Let Sn := (1 − αn)I + αnTn for all n ≥ 1. By

Lemma 2.4, we get the following statements:

∥xn+1 − p∥2 ≤ ∥Snxn − p∥2 ≤ ∥xn − p∥2 − αn((1− kn)− αn)∥xn − Tnxn∥2,

Fix(Sn) = Fix(Tn), and Sn is quasi-nonexpansive for all n ≥ 1. By Lemma 2.12

with an ≡ ∥xn − p∥2 , bn ≡ ∥xn − Tnxn∥2 and cn ≡ αn((1 − kn) − αn), we get

that limn→∞ ∥xn − p∥ exists and limn→∞ ∥xn − Tnxn∥ = 0. By Lemma 3.2, we

have xn ⇀ x , where x ∈
∩∞

n=1 Fix(Tn).

Note that {xn}∞n=1 is Fejér monotone with respect to
∩∞

n=1 Fix(Tn). Since

Fix(Tn) is closed and convex for all n ≥ 1, it follows that
∩∞

n=1 Fix(Tn) is closed

and convex. By Lemma 2.11, {P∩∞
n=1 Fix(Tn)xn}∞n=1 converges to a point q in∩∞

n=1 Fix(Tn). It follows from Lemma 2.7 that⟨
xn − P∩∞

n=1 Fix(Tn)xn, P∩∞
n=1 Fix(Tn)xn − x

⟩
≥ 0.

Since xn ⇀ x and P∩∞
n=1 Fix(Tn)xn → q , we have

⟨xn − P∩∞
n=1 Fix(Tn)xn, P∩∞

n=1 Fix(Tn)xn − x⟩ → ⟨x− q, q − x⟩ = −∥x− q∥2 ≥ 0.

This implies that x = q . Hence limn→∞ P∩∞
n=1 Fix(Tn)xn = x .

Set kn ≡ −1 in Theorem 3.3, we obtain the following corollary.

Corollary 3.4. Let C be a nonempty, closed and convex subset of H . Let {Tn :

C → H}∞n=1 be a sequence of quasi-firmly nonexpansive mappings. Let T be a

family of mappings of C into H satisfying the demiclosedness property. Assume

that ({Tn}∞n=1, T ) satisfies NST-condition. Let {αn}∞n=1 be a sequence in ]0, 2[ .

Let {xn}∞n=1 be a sequence in C defined byx1 ∈ C arbitrarily chosen,

xn+1 := PC ((1− αn)xn + αnTnxn) ∀n ≥ 1.

If lim infn→∞ αn(2 − αn) > 0 , then xn ⇀ x for some x ∈
∩∞

n=1 Fix(Tn) and

x = limn→∞ P∩∞
n=1 Fix(Tn)xn .

Remark 3.5. Our Corollary 3.4 improves Theorem 3.3 of [3] in the following

ways.
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(a) Since every firmly nonexpansive mapping with a fixed point is quasi-firmly

nonexpansive, Corollary 3.4 deals with a wider class of mappings.

(b) The family T in our Corollary 3.4 is more general than the family T of

nonexpansive mappings in Theorem 3.3 of [3]. In fact, it is known that

every nonexpansive mapping satisfies the demiclosedness property.

(c) All mappings in Theorem 3.3 of [3] are self-mappings while in our Corollary

3.4 they are nonself.

(d) We obtain a further information about the weak limit x of the sequence

{xn}∞n=1 . In fact, we can conclude that x = limn→∞ P∩∞
n=1 Fix(Tn)xn .

From Remark 2.6 and Theorem 3.3, we obtain the following two corollaries

which improve Theorems 3.1 and 3.2 of [3], respectively.

Corollary 3.6. Let C be a nonempty, closed and convex subset of H . Let {Tn :

C → H}∞n=1 be a sequence of kn -demicontractive mappings where kn < 1 for all

n ≥ 1 . Assume that {Tn}∞n=1 satisfies the resolvent property with a nonexpansive

mapping T . Let {αn}∞n=1 be a sequence in ]0, 1− kn[ . Let {xn}∞n=1 be a sequence

in C defined by x1 ∈ C arbitrarily chosen,

xn+1 := PC ((1− αn)xn + αnTnxn) ∀n ≥ 1.

If lim infn→∞ αn((1 − kn) − αn) > 0 , then xn ⇀ x for some x ∈
∩∞

n=1 Fix(Tn)

and x = limn→∞ P∩∞
n=1 Fix(Tn)xn .

Corollary 3.7. Let C be a nonempty, closed and convex subset of H . Let

{Tn : C → H}∞n=1 be a sequence of kn -demicontractive mappings where kn < 1

for all n ≥ 1 . Assume that ({Tn}∞n=1, T ) satisfies the AKTT-condition and T

satisfies the demiclosedness property. Let {αn}∞n=1 be a sequence in ]0, 1− kn[ .

Let {xn}∞n=1 be a sequence in C defined byx1 ∈ C arbitrarily chosen,

xn+1 := PC ((1− αn)xn + αnTnxn) ∀n ≥ 1.

If lim infn→∞ αn((1 − kn) − αn) > 0 , then xn ⇀ x for some x ∈
∩∞

n=1 Fix(Tn)

and x = limn→∞ P∩∞
n=1 Fix(Tn)xn .
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3.2 1-demicontractive mappings

Definition 3.8. Let C be a nonempty subset of H and let L be a positive real

number. A mapping T : C → H is L-Lipschitzian if ∥Tx − Ty∥ ≤ L∥x − y∥ for

all x, y ∈ C .

It is known that the sequence {xn}∞n=1 defined in Theorem 3.3 fails to converge

even Tn ≡ T where T is 1-demicontractive and L -Lipschitzian (see [2]). We

modify the iteration in Theorem 3.3 to obtain two weak convergence theorems,

that is, Theorems 3.10 and 3.12. We now restrict ourselves from the nonself

mappings to the self ones. The first result is based on the Ishikawa iteration [5].

The following lemma is modified from [7].

Lemma 3.9. Let C be a nonempty, closed and convex subset of H . Let T : C →
C be an L-Lipschitzian and 1-demicontractive mapping. Let α, β ∈ [0, 1] . Define

the mappings S and U by S := (1− α)I + αT and U := (1− β)I + βTS . Then

for all x ∈ C and p ∈ Fix(T ) ,

∥Ux− p∥2 ≤ ∥x− p∥2 + αβ(L2α2 + 2α− 1)∥x− Tx∥2 + β(β − α)∥x− TSx∥2.

In addition, if 0 < β ≤ α < 1√
L2+1+1

, then Fix(U) = Fix(T ) and U is quasi-

nonexpansive.

Proof. Let x ∈ C and p ∈ Fix(T ). Then

∥Ux− p∥2 = ∥(1− β)(x− p) + β(TSx− p)∥2

= (1− β)∥x− p∥2 + β∥TSx− p∥2 − (1− β)β∥x− TSx∥2.

Since T is 1-demicontractive, ∥TSx−p∥2 ≤ ∥Sx−p∥2+∥Sx−TSx∥2 . Note that

∥Sx− p∥2 = ∥(1− α)(x− p) + α(Tx− p)∥2

= (1− α)∥x− p∥2 + α∥Tx− p∥2 − (1− α)α∥x− Tx∥2

≤ (1− α)∥x− p∥2 + α∥x− p∥2 + α∥x− Tx∥2 − (1− α)α∥x− Tx∥2

= ∥x− p∥2 + α2∥x− Tx∥2;
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and

∥Sx− TSx∥2 = ∥(1− α)(x− TSx) + α(Tx− TSx)∥2

= (1− α)∥x− TSx∥2 + α∥Tx− TSx∥2 − (1− α)α∥x− Tx∥2

≤ (1− α)∥x− TSx∥2 + αL2∥x− Sx∥2 − (1− α)α∥x− Tx∥2

= (1− α)∥x− TSx∥2 + α3L2∥x− Tx∥2 − (1− α)α∥x− Tx∥2

= (1− α)∥x− TSx∥2 + α(L2α2 + α− 1)∥x− Tx∥2.

So ∥TSx − p∥2 ≤ ∥x − p∥2 + α(L2α2 + 2α − 1)∥x − Tx∥2 + (1 − α)∥x − TSx∥2 .
We get that

∥Ux− p∥2 ≤ ∥x− p∥2 + αβ(L2α2 + 2α− 1)∥x− Tx∥2 + β(β − α)∥x− TSx∥2.

If 0 < β ≤ α < 1√
L2+1+1

, then L2α2 + 2α − 1 < 0. This implies that Fix(T ) =

Fix(U) and U is quasi-nonexpansive.

Theorem 3.10. Let C be a nonempty, closed and convex subset of H . Let {Tn :

C → C}∞n=1 be a sequence of L-Lipschitzian and 1-demicontractive mappings. Let

T be a family of mappings of C into itself satisfying the demiclosedness property.

Assume that ({Tn}∞n=1, T ) satisfies NST-condition. Let {αn}∞n=1 be a sequence

in
]
0, 1/(

√
L2 + 1 + 1)

[
and {βn}∞n=1 be a sequence in ]0, αn] . Let {xn}∞n=1 be a

sequence in C defined by
x1 ∈ C arbitrarily chosen,

yn := (1− αn)xn + αnTnxn,

xn+1 := (1− βn)xn + βnTnyn ∀n ≥ 1.

If lim infn→∞ βn(1− 2αn − L2α2
n) > 0 , then xn ⇀ x for some x ∈

∩∞
n=1 Fix(Tn)

and x = limn→∞ P∩∞
n=1 Fix(Tn)xn .

Proof. Let p ∈
∩∞

n=1 Fix(Tn). Let Sn := (1−αn)I+αnTn and Un := (1−βn)I+

βnTnSn for all n ≥ 1. Note that yn = Snxn and xn+1 = Unxn for all n ≥ 1. By

Lemma 3.9, ∥Unxn− p∥2 ≤ ∥xn− p∥2+β2
n(L

2α2
n+2αn− 1)∥xn−Tnxn∥2 and Un

is quasi-nonexpansive and Fix(Un) = Fix(Tn). Thus

∥xn+1 − p∥2 ≤ ∥xn − p∥2 + β2
n(L

2α2
n + 2αn − 1)∥xn − Tnxn∥2.

Note that L2α2
n+2αn−1 < 0 for all αn ∈

]
0, 1/(

√
L2 + 1 + 1)

[
. By Lemma 2.12,

we get that limn→∞ ∥xn − p∥ exists and limn→∞ ∥xn − Tnxn∥ = 0. By Lemma

3.2, we have xn ⇀ x for some x ∈
∩∞

n=1 Fix(Tn).
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Since Fix(Un) = Fix(Tn) and Un is quasi-nonexpansive, Fix(Tn) is closed and

convex for all n ≥ 1. So
∩∞

n=1 Fix(Tn) is closed and convex. Note that {xn}∞n=1 is

Fejér monotone with respect to
∩∞

n=1 Fix(Tn). The rest of the proof is essentially

the same as that of Theorem 3.3, so it is omitted.

Next, we use the extragradient technique of Korpelevič [6] for this situation.

We observe the following inequality which plays an important role in the next

theorem. Note that this result is more general than the one in [7].

Lemma 3.11. Let C be a nonempty, closed and convex subset of H . Let T : C →
C be an L-Lipschitzian and 1-demicontractive mapping. Let α ∈ [0, 1] . Define

the mappings S and U by S := (1 − α)I + αT and U := PC(I − αS + αTS) .

Then for all x ∈ C and p ∈ Fix(T ) ,

∥Ux− p∥2 ≤ ∥x− p∥2 − (1− α2(1 + L)2)α2∥x− Tx∥2.

In addition, if α ∈
]
0, 1

1+L

[
, then Fix(U) = Fix(T ) and U is quasi-nonexpansive.

Proof. Let x ∈ C and p ∈ Fix(T ).

∥Ux− p∥2 ≤ ∥x− αSx+ αTSx− p∥2 − ∥x− αSx+ αTSx− Ux∥2

= ∥x− p− α(Sx− TSx)∥2 − ∥x− Ux− α(Sx− TSx)∥2

= ∥x− p∥2 − ∥x− Ux∥2 + 2α⟨p− Ux, Sx− TSx⟩.

Since T is 1-demicontactive, ⟨p− Sx, Sx− TSx⟩ ≤ 0. So

⟨p− Ux, Sx− TSx⟩ = ⟨Sx− Ux, Sx− TSx⟩+ ⟨p− Sx, Sx− TSx⟩

≤ ⟨Sx− Ux, Sx− TSx⟩.

Note that ∥x− Ux∥2 = ∥x− Sx∥2 + 2⟨x− Sx, Sx− Ux⟩+ ∥Sx− Ux∥2 . Then

∥Ux− p∥2 ≤ ∥x− p∥2 − ∥x− Sx∥2 − 2⟨x− Sx, Sx− Ux⟩ − ∥Sx− Ux∥2

+ 2α⟨Sx− Ux, Sx− TSx⟩

= ∥x− p∥2 − ∥x− Sx∥2 − ∥Sx− Ux∥2

+ 2⟨Sx− Ux, α(Sx− TSx)− (x− Sx)⟩.

21



12 Chamchuri J. Math. 8(2016): Ch. Jaipranop and S. Saejung

We consider

2⟨Sx− Ux, α(Sx− TSx)− (x− Sx)⟩

= 2α⟨Sx− Ux, Sx− TSx− (x− Tx)⟩

≤ 2α∥Sx− Ux∥∥Sx− TSx− (x− Tx)∥

≤ 2α∥Sx− Ux∥(∥x− Sx∥+ ∥Tx− TSx∥)

≤ 2α(1 + L)∥Sx− Ux∥∥x− Sx∥

≤ ∥Sx− Ux∥2 + α2(1 + L)2∥x− Sx∥2.

We have that

∥Ux− p∥2 ≤ ∥x− p∥2 − (1− α2(1 + L)2)∥x− Sx∥2

= ∥x− p∥2 − (1− α2(1 + L)2)α2∥x− Tx∥2. (1)

If α ∈ ]0, 1/(1 + L)[ , then 1 − α2(1 + L)2 ≥ 0. From (1) , we get that Fix(T ) =

Fix(U) and U is quasi-nonexpansive.

Theorem 3.12. Let C be a nonempty, closed and convex subset of H . Let {Tn :

C → C}∞n=1 be a sequence of L-Lipschitzian and 1-demicontractive mappings. Let

T be a family of mappings of C into itself satisfying the demiclosedness property.

Assume that ({Tn}∞n=1, T ) satisfies NST-condition. Let {αn}∞n=1 be a sequence in

]0, 1/(1 + L)[ . Let {xn}∞n=1 be a sequence in C defined by
x1 ∈ C arbitrarily chosen,

yn := (1− αn)xn + αnTnxn,

xn+1 := PC(xn − αnyn + αnTnyn) ∀n ≥ 1.

If lim infn→∞(1 − αn(1 + L))αn > 0 , then xn ⇀ x for some x ∈
∩∞

n=1 Fix(Tn)

and x = limn→∞ P∩∞
n=1 Fix(Tn)xn .

Proof. Let p ∈
∩∞

n=1 Fix(Tn). Let Sn := (1 − αn)I + αnTn and Un := PC(I −
αn)Sn + αnTnSn for all n ≥ 1. Note that yn = Snxn and xn+1 = Unxn for all

n ≥ 1. By Lemma 3.11, we get that ∥Unxn − p∥2 ≤ ∥xn − p∥2 − (1 − α2
n(1 +

L)2)α2
n∥xn−Tnxn∥2 and Un is quasi-nonexpansive and Fix(Un) = Fix(Tn). Thus

∥xn+1 − p∥2 ≤ ∥xn − p∥2 − (1− α2
n(1 + L)2)α2

n∥xn − Tnxn∥2.

By Lemma 2.12, we get that limn→∞ ∥xn−p∥ exists and limn→∞ ∥xn−Tnxn∥ = 0.

By Lemma 3.2, we have xn ⇀ x for some x ∈
∩∞

n=1 Fix(Tn).
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Since Fix(Un) = Fix(Tn) and Un is quasi-nonexpansive, Fix(Tn) is closed and

convex for all n ≥ 1. So
∩∞

n=1 Fix(Tn) is closed and convex. Note that {xn}∞n=1 is

Fejér monotone with respect to
∩∞

n=1 Fix(Tn). The rest of the proof is essentially

the same as that of Theorem 3.3, so it is omitted.

4 Numerical Results

Finally, we show some numerical results for Theorems 3.10 and 3.12. The following

example is taken from [2]. Let H be the two-dimensional Euclidean space R2 . If

x = (a, b) ∈ H , define x⊥ ∈ H to be (b,−a). Let K := K1 ∪K2 where

K1 := {x ∈ H : ∥x∥ ≤ 1/2} and K2 := {x ∈ H : 1/2 ≤ ∥x∥ ≤ 1}.

Define T : K → K by

Tx =

x+ x⊥ if x ∈ K1,

x
∥x∥ − x+ x⊥ if x ∈ K2.

Then K is a closed and convex subset of H . Moreover, T is 5-Lipschitzian and

1-demicontractive mapping with Fix(T ) = {(0, 0)} . For computational purposes,

it is of interest to know

(a) how the convergence behaviour of {xn}∞n=1 depends on the choice of {αn}∞n=1

in Theorems 3.10 and 3.12;

(b) which of the iterations in Theorems 3.10 and 3.12 is more efficient.

To illustrate (a), we discuss Theorem 3.10 with x1 = (1, 0) and αn = βn ≡
α . To guarantee the convergence of {xn}∞n=1 , we are allowed to choose α ∈]
0, 1/(

√
26 + 1)

[
. Figures 1 and 2 show that the larger choice α , the closer the

term xn is to the fixed point (0, 0). For Theorem 3.12, we set x1 = (1, 0) and

αn ≡ α ∈ ]0, 1/6[.

To illustrate (b), let x1 = x′
1 = (0.1, 0) and let {xn}∞n=2 and {x′

n}∞n=2 be

defined by the iterations in Theorem 3.10 with αn = βn ≡ α and Theorem 3.12

with αn ≡ α , respectively. Note that
]
0, 1/(

√
26 + 1)

[
⊂ ]0, 1/6[. Figure 3 shows

that in this situation the iteration in Theorem 3.12 is more efficient than the one

in Theorem 3.10.
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Table 1: The value of ∥xn−(0, 0)∥ where xn is defined by the iteration in Theorem

3.10

n
αn = βn ≡ α

0.004 0.007 0.080 0.160 0.163

1 1 1 1 1 1

2 9.96e−1 9.93e−1 9.23e−1 8.49e−1 8.46e−1

50 8.38e−1 7.51e−1 4.67e−1 3.61e−1 3.57e−1

100 7.26e−1 6.24e−1 4.09e−1 2.41e−1 2.36e−1

500 5.09e−1 5.00e−1 1.42e−1 9.37e−3 8.46e−3

Figure 1: The behaviour of ∥xn − (0, 0)∥ in Theorem 3.10 and the choice of

{αn}∞n=1

Table 2: The value of ∥xn−(0, 0)∥ where xn is defined by the iteration in Theorem

3.12

n
αn ≡ α

0.004 0.010 0.080 0.160 0.166

1 1 1 1 1 1

2 9.96e−1 9.90e−1 9.29e−1 8.70e−1 8.66e−1

50 8.38e−1 6.88e−1 4.62e−1 3.04e−1 2.91e−1

100 7.27e−1 5.69e−1 3.94e−1 1.62e−1 1.47e−1

500 5.09e−1 5.00e−1 1.10e−1 1.03e−3 6.45e−4
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Figure 2: The behaviour of ∥xn − (0, 0)∥ in Theorem 3.12 and the choice of

{αn}∞n=1

Table 3: The values of ∥xn − (0, 0)∥ and ∥x′
n − (0, 0)∥

n
αn ≡ βn ≡ α (Theorem 3.10) αn ≡ α (Theorem 3.12)

0.160 0.163 0.160 0.166

1 1e−1 1e−1 1e−1 1e−1

2 9.92e−2 9.92e−2 9.87e−2 9.87e−2

50 6.72e−2 6.65e−2 5.39e−2 5.14e−2

100 4.48e−2 4.39e−2 2.86e−2 2.61e−2

500 1.74e−3 1.58e−3 1.83e−4 1.14e−4

Figure 3: Comparative values of ∥xn − (0, 0)∥ and ∥x′
n − (0, 0)∥
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U-FLATNESS AND NON-EXPANSIVE MAPPINGS

IN BANACH SPACES

Ji Gao and Satit Saejung

Abstract. In this paper, we define the modulus of n-dimensional U -
flatness as the determinant of an (n+1)×(n+1) matrix. The properties of
the modulus are investigated and the relationships between this modulus
and other geometric parameters of Banach spaces are studied. Some
results on fixed point theory for non-expansive mappings and normal
structure in Banach spaces are obtained.

1. Introduction

Let X be a real Banach space with the dual space X∗. Denote by BX and
SX the closed unit ball and the unit sphere of X , respectively. Recall that
∇x ⊂ SX∗ denotes the set of norm 1 supporting functionals of x ∈ SX .

Brodskĭı and Mil’man [2] introduced the following geometric concepts in
1948:

Definition 1.1. Let X be a Banach space. A nonempty bounded and convex
subset K of X is said to have normal structure if for every convex subset C of
K that contains more than one point there is a point x0 ∈ C such that

sup{∥x0 − y∥ : y ∈ C} < diamC.

A Banach space X is said to have

• normal structure if every bounded convex subset ofX has normal struc-
ture;

• weak normal structure if every weakly compact convex set K of X has
normal structure;

• uniform normal structure if there exists 0 < c < 1 such that for every
bounded closed convex subset C of K that contains more than one
point there is a point x0 ∈ C such that

sup{∥x0 − y∥ : y ∈ C} < c · diamC.

Received January 30, 2016; Revised September 11, 2016.
2010 Mathematics Subject Classification. 46B20, 47H10, 37C25, 54H25.
Key words and phrases. fixed point property, matrices, modulus of n-dimensional uniform

flatness, modulus of n-dimensional U -flatness, non-expansive mapping, normal structure.
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494 J. GAO AND S. SAEJUNG

Remark 1.2. The following facts are known.

• uniform normal structure =⇒ normal structure =⇒ weak normal
structure.

• In the setting of reflexive spaces, normal structure ⇐⇒ weak normal
structure.

Kirk [9] proved that if a Banach space X has weak normal structure, then
it has weak fixed point property, that is, every non-expansive mapping from a
weakly compact and convex subset of X into itself has a fixed point.

Let N be the set of all natural numbers and n ∈ N.
For two sets of vectors {xi}n+1

i=1 ⊆ X and {fi}n+1
i=2 ⊆ X∗, the following

(n+ 1)× (n+ 1) matrix
⎡

⎢

⎢

⎢

⎣

1 1 · · · 1
⟨x1, f2⟩ ⟨x2, f2⟩ · · · ⟨xn+1, f2⟩

...
...

. . .
...

⟨x1, fn+1⟩ ⟨x2, fn+1⟩ · · · ⟨xn+1, fn+1⟩

⎤

⎥

⎥

⎥

⎦

is denoted by m(x1, x2, . . . , xn+1; f2, f3 , . . . , fn+1) [6].
Gao and Saejung [6] introduced the concept of volume by the convex hull of

x1, x2, . . . , xn+1 in X of

v(x1, x2, . . . , xn+1) := sup{detm(x1, x2, . . . , xn+1; f2, f3 , . . . , fn+1)},

where the supremum is taken over all fi ∈ ∇xi
, where i = 2, 3, . . . , n+ 1.

Definition 1.3 ([6]). Let νnX = sup{v(x1, x2, . . . , xn+1) : x1, x2, . . . xn+1 ∈
SX} be the upper bound of all n-dimensional volume in X .

Definition 1.4 ([6]). Let X be a Banach space. Define

Un
X(ε) = inf

{

1− 1

n+ 1
∥x1 + x2 + · · ·+ xn+1∥ :

x1, x2, . . . , xn+1 ∈ SX ,
v(x1, x2, . . . , xn+1) ≥ ε

}

,

where 0 ≤ ε ≤ νnX to be the modulus of n-dimensional U -convexity of X .

The following results were proved [6]:

Proposition 1.5. For a Banach space X with dim(X) > n, we have νnX ≥ 2.

Lemma 1.6. Un
X(ε) is a continuous function in [0, νnX).

Theorem 1.7. If X is a Banach space with Un
X(1) > 0 for some n ∈ N, then

X is reflexive.

Theorem 1.8. If X is a Banach space with Un
X(1) > 0 for some n ∈ N, then

X has normal structure.
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2. Main results

We introduce the concept of the modulus of n-dimensional flatness as follows:

Definition 2.1. Let X be a Banach space and 0 ≤ ε ≤ νnX . Then the modulus
of n-dimensional U -flatness of X is defined as follows:

Wn
X(ε) = sup

{

1− 1

n+ 1
∥x1 + x2 + · · ·+ xn+1∥

}

,

where the supremum is taken over all {xi}n+1
i=1 ⊆ SX such that there exist

{fi}n+1
i=2 ⊆ SX∗ with fi ∈ ∇xi

for all i = 2, . . . , n+1 and detm(x1, x2, . . . , xn+1;
f2, f3 , . . . , fn+1) ≤ ε.

Remark 2.2. Wn
X(ε) is an increasing and continuous function on [0, νnX).

Proof. The proof is the same as that of Corollary 5 of [10]. !

Remark 2.3. The name of the modulus, U -flatness, is defined by comparing
with Definition 1.4.

Lemma 2.4 (Bishop-Phelps-Bollobás [1]). Let X be a Banach space, and let

0 < ε < 1. Given z ∈ BX and h ∈ SX∗ with 1 − ⟨z, h⟩ < ε2

4 , then there exist
y ∈ SX and g ∈ ∇y such that ∥y − z∥ < ε and ∥g − h∥ < ε.

Lemma 2.5. Let An× n be the following n× n matrix

An× n :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −1 1 · · · (−1)n− 1 (−1)n− 2 (−1)n− 1

− 1
2 1 −1 · · · (−1)n+1 (−1)n− 1 (−1)n

0 − 1
2 1 · · · (−1)n− 1 (−1)n (−1)n− 1

...
...

...
. . .

...
...

...
0 0 0 · · · 1 −1 1
0 0 0 · · · − 1

2 1 −1
0 0 0 · · · 0 − 1

2 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Then det(An× n) = 1
2n− 1 .

Proof. It follows from mathematical induction:
By repeatedly using add 1

2 times the first row to second row, then use the
first row to estimate the determinant, we get the result. !

Lemma 2.6. Let B(n+1)× (n+1) be the following (n+ 1)× (n+ 1) matrix

B(n+1)× (n+1) :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 · · · 1 1 1
− 1

2 1 −1 · · · (−1)n− 1 (−1)n (−1)n+1

0 − 1
2 1 · · · (−1)n (−1)n+1 (−1)n+2

...
...

...
. . .

...
...

...
0 0 0 · · · 1 −1 1
0 0 0 · · · − 1

2 1 −1
0 0 0 · · · 0 − 1

2 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
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496 J. GAO AND S. SAEJUNG

Then det(B(n+1)× (n+1)) =
2n+1
2n .

Proof. It follows from mathematical induction and the preceding lemma:

Let n = 1, B2× 2 =
[

1 1
− 1

2 1

]

, det(B2× 2) =
3
2 .

If for n, det(Bn× n) = 2n− 1
2n− 1 , then for n + 1, by using the first column to

estimate the matrix, we have

det(B(n+1)× (n+1)) = det(An× n) +
1

2
det(Bn× n)

=
1

2n− 1
+

2n− 1

2n
=

2n+ 1

2n
.

!

Theorem 2.7 ([7]). Let X be a Banach space. Then X is not reflexive if and
only if for any 0 < δ < 1 there are a sequence {xn} ⊆ SX and a sequence
{fn} ⊆ SX∗ such that

(a) ⟨xm, fn⟩ = δ whenever n ≤ m; and
(b) ⟨xm, fn⟩ = 0 whenever n > m.

Theorem 2.8. If X is a Banach space with Wn
X(2n+1

2n ) < 1 − 1
n+1 for some

n ∈ N, then X is reflexive.

Proof. Suppose that X is not reflexive. Let 0 < δ < 1 be given. Let {xi} ⊆ SX

and {fi} ⊆ SX∗ be two sequences satisfying the two conditions in Theorem 2.7.
Let n ∈ N be given. Let yi = (−1)i+1 xi+xi+1

2 for i = 1, . . . , n + 1 and
gi = (−1)i+1fi ∈ SX∗ for i = 2, . . . , n+ 1. Then, we have

δ ≤ ⟨yi, gi⟩ =
〈

(−1)i+1xi + xi+1

2
, (−1)i+1fi

〉

≤ 1

2
∥xi + xi+1∥ = ∥yi∥ ≤ 1,

and

detm(y1, y2, y3 . . . , yn− 1, yn, yn+1; g2, g3 , g4 . . . , gn− 1, gn, gn+1)

= det

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 · · · 1 1 1
⟨y1, g2⟩ ⟨y2, g2⟩ ⟨y3 , g2⟩ · · · ⟨yn− 1, g2⟩ ⟨yn, g2⟩ ⟨yn+1, g2⟩
⟨y1, g3 ⟩ ⟨y2, g3 ⟩ ⟨y3 , g3 ⟩ · · · ⟨yn− 1, g3 ⟩ ⟨yn, g3 ⟩ ⟨yn+1, g3 ⟩

...
...

. . .
...

...
...

...
⟨y1, gn− 1⟩ ⟨y2, gn− 1⟩ ⟨y3 , gn− 1⟩ · · · ⟨yn− 1, gn− 1⟩ ⟨yn, gn− 1⟩ ⟨yn+1, gn− 1⟩
⟨y1, gn⟩ ⟨y2, gn⟩ ⟨y3 , gn⟩ · · · ⟨yn− 1, gn⟩ ⟨yn, gn⟩ ⟨yn+1, gn⟩

⟨y1, gn+1⟩ ⟨y2, gn+1⟩ ⟨y3 , gn+1⟩ · · · ⟨y2, gn+1⟩ ⟨yn, gn+1⟩ ⟨yn+1, gn+1⟩

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= det

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 · · · 1 1 1
− δ

2 δ −δ · · · (−1)n− 1δ (−1)nδ (−1)n+1δ
0 − δ

2 δ · · · (−1)n− 2δ (−1)n− 1δ (−1)nδ
...

...
...

. . .
...

...
...

0 0 0 · · · δ −δ δ
0 0 0 · · · − δ

2 δ −δ
0 0 0 · · · 0 − δ

2 δ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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= δn det

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 · · · 1 1 1
− 1

2 1 −1 · · · (−1)n− 1 (−1)n (−1)n+1

0 − 1
2 1 · · · (−1)n− 2 (−1)n− 1 (−1)n

...
...

...
. . .

...
...

...
0 0 0 · · · 1 −1 1
0 0 0 · · · − 1

2 1 −1
0 0 0 · · · 0 − 1

2 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

By Lemmas 2.5 and 2.6, we have

detm(y1, y2, . . . , yn+1; g2, g3 , . . . , gn+1) = δn
2n+ 1

2n
.

On the other hand, since

∥y1 + y2 + · · ·+ yn+1∥
n+ 1

=
∥(−1)n+2xn+2 + x1∥

2(n+ 1)
≤ 1

n+ 1
,

we have

1− ∥y1 + y2 + · · ·+ yn+1∥
n+ 1

≥ 1− 1

n+ 1
.

Since δ can be chosen arbitrarily closed to 1, let δ = 1− ε2

4 where ε can be
chosen arbitrarily closed to 0.

Let z1 = y1. Next, let i = 2, 3, . . . , n + 1. From Bishop-Phelps-Bollobás
result (Lemma 2.4), there exist zi ∈ SX and hi ∈ ∇zi such that ∥yi − zi∥ < ε
and ∥gi − hi∥ < ε.

This implies that

|⟨zi, hj⟩ − ⟨yi, gj⟩| ≤ |⟨zi − yi, gj⟩|+ |⟨yi, hj − gj⟩|+ |⟨zi − yi, hj − gj⟩| ≤ 3ε.

It follows then that

detm(z1, z2, . . . , zn+1;h2, h3 , . . . , hn+1) =

(

1− ε2

4

)n
2n+ 1

2n
+ cε,

where c is a bounded constant. Moreover,

1− ∥z1 + z2 + · · ·+ zn+1∥
n+ 1

≥ 1− 1 + ε

n+ 1
.

From the definition of Wn
X(ε), we have

Wn
X

((

1− ε2

4

)n
2n+ 1

2n
+ cε

)

≥ 1− 1 + ε

n+ 1
.

Since ε can be arbitrarily close to 0, the theorem is proved. !
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Let C(n+1)× (n+1) be the following (n+ 1)× (n+ 1) matrix:

C(n+1)× (n+1) :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 1 · · · 1 1 1
− 2

3 1 −1 1 · · · (−1)n− 1 (−1)n (−1)n+1

1
3 − 2

3 1 −1 · · · (−1)n (−1)n+1 (−1)n+2

0 1
3 − 2

3 1 · · · (−1)n+1 (−1)n+2 (−1)n+3

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 1 −1 1
0 0 0 0 · · · − 2

3 1 −1
0 0 0 0 · · · 1

3 − 2
3 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Then det(C2× 2) = 5
3 , and det(C3× 3 ) = 7

9 .

Theorem 2.9. If X is a Banach space with Wn
X(detC(n+1)× (n+1)) < 2

3 for

some n ∈ N, then X is reflexive. In particular, for n = 1 we have if W 1
X(53 ) <

2
3 , then X is reflexive; and for n = 2 we have if W 2

X( 79 ) <
2
3 , then X is reflexive.

Proof. Suppose that X is not reflexive. Let 0 < δ < 1 be given. Let {xi} ⊆ SX

and {fi} ⊆ SX∗ be two sequences satisfying the two conditions in Theorem 2.7.
Let n ∈ N be given. Let yi = (−1)i+1 xi+xi+1+xi+2

3 for i = 1, . . . , n + 1 and
gi = (−1)i+1fi ∈ SX∗ for i = 2, . . . , n+ 1. Then, we have

δ ≤ ⟨yi, gi⟩ =
〈

(−1)i+1 xi + xi+1 + xi+2

3
, (−1)i+1fi

〉

≤
1

3
∥xi + xi+1 + xi+2∥ = ∥yi∥ ≤ 1,

and

m(y1, y2, y3 , y4, . . . , yn− 1, yn, yn+1; g2, g3 , g4, . . . , gn− 1, gn, gn+1)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 1 · · · 1 1 1
⟨y1, g2⟩ ⟨y2, g2⟩ ⟨y3 , g2⟩ ⟨y4, g2⟩ · · · ⟨yn− 1, g2⟩ ⟨yn, g2⟩ ⟨yn+1, g2⟩
⟨y1, g3 ⟩ ⟨y2, g3 ⟩ ⟨y3 , g3 ⟩ ⟨y4, g3 ⟩ · · · ⟨yn− 1, g3 ⟩ ⟨yn, g3 ⟩ ⟨yn+1, g3 ⟩
⟨y1, g4⟩ ⟨y2, g4⟩ ⟨y3 , g4⟩ ⟨y4, g4⟩ · · · ⟨yn− 1, g4⟩ ⟨yn, g4⟩ ⟨yn+1, g4⟩

...
...

...
...

. . .
...

...
...

⟨y1, gn− 1⟩ ⟨y2, gn− 1⟩ ⟨y3 , gn− 1⟩ ⟨y4, gn− 1⟩ · · · ⟨yn− 1, gn− 1⟩ ⟨yn, gn− 1⟩ ⟨yn+1, gn− 1⟩
⟨y1, gn⟩ ⟨y2, gn⟩ ⟨y3 , gn⟩ ⟨y4, gn⟩ · · · ⟨yn− 1, gn⟩ ⟨yn, gn⟩ ⟨yn+1, gn⟩

⟨y1, gn+1⟩ ⟨y2, gn+1⟩ ⟨y3 , gn+1⟩ ⟨y4, gn+1⟩ · · · ⟨yn− 1, gn+1⟩ ⟨yn, gn+1⟩ ⟨yn+1, gn+1⟩

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= δn

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 1 · · · 1 1 1
− 2

3 1 −1 1 · · · (−1)n− 1 (−1)n (−1)n+1

1
3 − 2

3 1 −1 · · · (−1)n (−1)n+1 (−1)n+2

0 1
3 − 2

3 1 · · · (−1)n+1 (−1)n+2 (−1)n+3

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 1 −1 1
0 0 0 0 · · · − 2

3 1 −1
0 0 0 0 · · · 1

3 − 2
3 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
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We have

detm(y1, y2, y3 , y4, . . . , yn− 1, yn, yn+1; g2, g3 , g4, . . . , gn− 1, gn, gn+1)

= δn detC(n+1)× (n+1).

On the other hand, for n ≥ 2,

∥y1 + y2 + · · ·+ yn+1∥
n+ 1

=
∥x1 + x3 − x4 + · · ·+ (−1)nxn+1 + (−1)n+2xn+3∥

3(n+ 1)

≤ n+ 1

3(n+ 1)
δ =

1

3
δ,

and for n = 1,

∥y1 + y2 + · · ·+ yn+1∥
n+ 1

=
∥x1 − x4∥

6
≤

1

3
δ.

We have

1− ∥y1 + y2 + · · ·+ yn+1∥
n+ 1

≥ 1− 1

3
δ ≥ 2

3
δ

for all n ∈ N.
The theorem can be proved by using the Bishop-Phelps-Bollobás result

(Lemma 2.4), and same idea in the proof of Theorem 2.8. !

We consider n = 1.

Theorem 2.10. If X is a Banach space with W 1
X(2m+1

m+1 ) < m
m+1 for some

m ∈ N, then X is reflexive. In particular, for m = 2 we have if W 1
X(53 ) <

2
3 ,

then X is reflexive.

Proof. Suppose that X is not reflexive. Let 0 < δ < 1 be given. Let {xi} ⊆ SX

and {fi} ⊆ SX∗ be two sequences satisfying the two conditions in Theorem 2.7.
Let m ∈ N be given. Let

y1 =
x1 + x2 + · · ·+ xm + xm+1

m+ 1
, y2 = −x2 + x3 + · · ·+ xm+1 + xm+2

m+ 1
and g2 = −f2 ∈ SX∗ .

Consider the 2-dimensional subspace of X spanned by y1 and y2.
We have

detm(y1, y2; g2) = det

[

1 1
⟨y1, g2⟩ ⟨y2, g2⟩

]

= det

[

1 1
− m

m+1 1

]

δ =
2m+ 1

m+ 1
δ,

and
∥

∥

∥

y1 + y2
2

∥

∥

∥
=
∥

∥

∥

x1 − xm+2

2(m+ 1)

∥

∥

∥
≤ 1

m+ 1
δ.

This is

1−
∥

∥

∥

y1 + y2
2

∥

∥

∥
≥ m

m+ 1
δ.

Similar to the proof of Theorem 2.8 we have

W 1
X

(

2m+ 1

m+ 1

)

≥ m

m+ 1
.
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This completes the proof. !

In 2008, Saejung proved the following result:

Lemma 2.11 ([11]). If X is a Banach space with BX∗ is weak* sequentially
compact and it fails to have weak normal structure, then for any ε > 0 and
n ∈ N there are {x1, x2, . . . , xn} ⊆ SX and {f1, f2, . . . , fn} ⊆ SX∗ such that

(a) |∥xi − xj∥ − 1| < ε for all i ̸= j;
(b) ⟨xi, fi⟩ = 1 for all 1 ≤ i ≤ n; and
(c) |⟨xi, fj⟩| < ε for all i ̸= j.

Theorem 2.12. If X is a Banach space with BX∗ is weak* sequentially com-
pact and Wn

X(1) < 1− 1
n+1 for some n ∈ N, then X has weak normal structure.

Proof. Suppose that X does not have weak normal structure. Let 0 < ε < 1 be
given. Then there are {xi}n+1

i=1 ⊆ SX and {fi}n+1
i=1 ⊆ SX∗ satisfying the three

conditions in Lemma 2.11.
For convenience, let |⟨xi, fj⟩| = εi,j . Then εi,j ≤ ε for all i ̸= j.
Let yi = xi+1− xi

∥xi+1− xi∥
∈ SX for i = 1, . . . , n + 1 and gi = fi+1 ∈ SX∗ for

i = 2, . . . , n+ 1. Then
∥yi − (xi+1 − xi)∥ ≤ ε

for i = 1, . . . , n+ 1. Moreover,

∥y1 + y2 + · · ·+ yi + · · ·+ yn+1∥
≤ ∥(x2 − x1) + (x3 − x2) + · · ·+ (xi+1 − xi) + · · ·+ (xn+2 − xn+1)∥+(n+ 1)ε

= ∥xn+2 − x1∥+ (n+ 1)ε.

Next, we consider the following matrix:

m(y1, y2, . . . , yn+1; g2, g3 , . . . , gn+1)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 · · · 1 1
⟨y1, g2⟩ ⟨y2, g2⟩ ⟨y3 , g2⟩ · · · ⟨yn, g2⟩ ⟨yn+1, g2⟩
⟨y1, g3 ⟩ ⟨y2, g3 ⟩ ⟨y3 , g3 ⟩ · · · ⟨yn, g3 ⟩ ⟨yn+1, g3 ⟩

...
...

...
. . .

...
...

⟨y1, gn⟩ ⟨y2, gn⟩ ⟨y3 , gn⟩ · · · ⟨yn, gn⟩ ⟨yn+1, gn⟩
⟨y1, gn+1⟩ ⟨y2, gn+1⟩ ⟨y3 , gn+1⟩ · · · ⟨yn, gn+1⟩ ⟨yn+1, gn+1⟩

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 · · · 1 1
ε2,3− ε1,3
∥x2− x1∥

1− ε2,3
∥x3− x2∥

ε4,3− 1
∥x4− x3∥

· · · εn+1,3− εn,3

∥xn+1− xn∥
εn+2,3− εn+1,3

∥xn+2− xn+1∥
ε2,4− ε1,4
∥x2− x1∥

ε3,4− ε2,4
∥x3− x2∥

1− ε3,4
∥x4− x3∥

· · · εn+1,4− εn,4

∥xn+1− xn∥
εn+2,4− εn+1,4

∥xn+2− xn+1∥
...

...
...

. . .
...

...
ε2,n+1− ε1,n+1

∥x2− x1∥
ε3,n+1− ε2,n+1

∥x3− x2∥
ε4,n+1− ε3,n+1

∥x4− x3∥
· · · 1− εn,n+1

∥xn+1− xn∥
εn+2,n+1− 1

∥xn+2− xn+1∥
ε2,n+2− ε1,n+2

∥x2− x1∥
ε3,n+2− ε2,n+2

∥x3− x2∥
ε4,n+2− ε3,n+2

∥x4− x3∥
· · · εn+1,n+2− εn,n+2

∥xn+1− xn∥
1− εn+1,n+2

∥xn+2− xn+1∥

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

It follows then that

detm(y1, y2, . . . , yn+1; g2, g3 , . . . , gn+1) = 1 + cε,
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where c is a bounded constant.
On the other hand, since

∥y1 + y2 + · · ·+ yn+1∥
n+ 1

≤ ∥xn+2 − x1∥
n+ 1

+ ε ≤ 1 + ε

n+ 1
+ ε,

we have

1− ∥y1 + y2 + · · ·+ yn+1∥
n+ 1

≥ 1− 1 + ε

n+ 1
− ε.

Let z1 = y1. Next, let i = 2, 3, . . . , n+ 1.
From Bishop-Phelps-Bollobás result (Lemma 2.4), there exist zi ∈ SX and

hi ∈ ∇zi such that

∥yi − zi∥ < ε and ∥gi − hi∥ < ε.

In particular,

|⟨zi, hj⟩ − ⟨yi, gj⟩| ≤ |⟨zi − yi, gj⟩|+ |⟨yi, hj − gj⟩|+ |⟨zi − yi, hj − gj⟩| ≤ 3ε.

This implies that

detm(z1, z2, . . . , zn+1, h2, h3 , . . . , hn+1)

= det

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 · · · 1 1
⟨z1, h2⟩ ⟨z2, h2⟩ ⟨z3 , h2⟩ · · · ⟨zn, h2⟩ ⟨zn+1, h2⟩
⟨z1, h3 ⟩ ⟨z2, h3 ⟩ ⟨z3 , h3 ⟩ · · · ⟨zn, h3 ⟩ ⟨zn+1, h3 ⟩

...
...

...
. . .

...
...

⟨z1, hn⟩ ⟨z2, hn⟩ ⟨z3 , hn⟩ · · · ⟨zn, hn⟩ ⟨zn+1, hn⟩
⟨z1, hn+1⟩ ⟨z2, hn+1⟩ ⟨z3 , hn+1⟩ · · · ⟨zn, hn+1⟩ ⟨zn+1, hn+1⟩

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 1 + dε,

where d is a bounded constant. Hence

1− ∥z1 + z2 + · · ·+ zn+1∥
n+ 1

≥ 1− 1 + ε

n+ 1
− 2ε.

Since ε can be arbitrarily small, it follows from the definition of Wn
X(·) that

Wn
X(1) ≥ 1−

1

n+ 1
.

This completes the proof. !

Theorem 2.13. If X is a Banach space satisfying one of the following two
conditions:

• Wn
X(1) < 1− 1

n+1 for some n ∈ N with n ≥ 2; or

• W 1
X(1) < 1

2 and W 1
X(53 ) <

2
3 for n = 1.

Then X has normal structure.

Proof. Since X is reflexive, it follows that BX∗ is weak* sequentially compact.
Moreover, 2n+1

2n < 1 for n ∈ N and n ≥ 3, and 7
9 < 1 for n = 2. The first result

is a direct consequence of Theorems 2.8, 2.9 and 2.12. The second result is a
direct consequence of Theorems 2.10 and 2.12. !

51



502 J. GAO AND S. SAEJUNG

Definition 2.14 ([4, 5]). Let X and Y be Banach spaces. We say that Y is
finitely representable in X if for any ε > 0 and any finite dimensional subspace
N ⊆ Y there is an isomorphism T : N → X such that for any y ∈ N ,

(1− ε)∥y∥ ≤ ∥Ty∥ ≤ (1 + ε)∥y∥.

We say that X is super-reflexive if any space Y which is finitely representable
in X is reflexive.

Theorem 2.15. If X is a Banach space with Wn
X(2n+1

2n ) < 1− 1
n+1 for some

n ∈ N and n ≥ 2, or W 1
X(2m+1

m+1 ) < m
m+1 for n = 1 and some m ∈ N, then X

is super-reflexive. In particular, for m = 2 we have if W 1
X(53 ) <

2
3 , then X is

super-reflexive.

Proof. We only prove the first part (for n ≥ 2). The proof of second part (for
n = 1) is same.

The proof is similar to that of Theorem 2.12 in [6]. Suppose that X is not
super-reflexive. Then there exists a nonreflexive Banach space Y such that Y
can be finitely representable. From Remark 2.2 and Theorem 2.8, for each n
there exists some positive function f(ε) which goes to 0 as ε goes to 0, satisfies
Wn

Y (
2n+1
2n − ε) > 1 − 1

n+1 − f(ε). Therefore, there exist {yi}n+1
i=1 ⊆ SY and

{gi} ∈ ∇yi
⊆ SY ∗ for i = 2, . . . , n+ 1 such that

det

⎡

⎢

⎢

⎢

⎣

1 1 · · · 1 1
⟨y1, g2⟩ ⟨y2, g2⟩ · · · ⟨yn, g2⟩ ⟨yn+1, g2⟩

...
...

. . .
...

...
⟨y1, gn+1⟩ ⟨y2, gn+1⟩ · · · ⟨yn, gn+1⟩ ⟨yn+1, gn+1⟩

⎤

⎥

⎥

⎥

⎦

≤ 2n+ 1

2n
− ε,

and

1− ∥y1 + y2 + · · ·+ yn+1∥
n+ 1

> 1− 1

n+ 1
− f(ε).

Let N = span{y1, y2, . . . , yn+1}, and T : N → M ⊆ X be an isomorphism
with range M .

Let us consider the conjugate mapping T ∗ of T . Let gi|N be the restricting
gi on N. Then ⟨Tyj, (T ∗)− 1gi|N⟩ = ⟨yj , gi⟩ for 1 ≤ i, j ≤ n+ 1.

We have

1− ε ≤ ∥T ∥ ≤ 1 + ε,

1− ε ≤ ∥T ∗∥ ≤ 1 + ε,

and

1− ε ≤ ∥(T ∗)− 1∥ ≤ 1 + ε.

Let xi = Tyi and fi = (T ∗)− 1gi|N for i = 1, . . . , n+ 1. Then

⟨xj , fi⟩ = ⟨Tyj, (T ∗)− 1gi|N ⟩ = ⟨yj , gi⟩.
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If i = j, then ⟨xi, fi⟩ = ⟨yi, gi⟩ = 1, so fi ∈ ∇xi
and we have

det

⎡

⎢

⎢

⎢

⎣

1 1 · · · 1 1
⟨x1, f2⟩ ⟨x2, f2⟩ · · · ⟨xn, f2⟩ ⟨xn+1, f2⟩

...
...

. . .
...

...
⟨x1, fn+1⟩ ⟨x2, fn+1⟩ · · · ⟨xn, fn+1⟩ ⟨xn+1, fn+1⟩

⎤

⎥

⎥

⎥

⎦

= det

⎡

⎢

⎢

⎢

⎣

1 1 · · · 1 1
⟨y1, g2⟩ ⟨y2, g2⟩ · · · ⟨yn, g2⟩ ⟨yn+1, g2⟩

...
...

. . .
...

...
⟨y1, gn+1⟩ ⟨y2, gn+1⟩ · · · ⟨yn, gn+1⟩ ⟨yn+1, gn+1⟩

⎤

⎥

⎥

⎥

⎦

≤ 2n+ 1

2n
− ε.

On the other hand,

∥x1 + x2 + · · ·+ xn+1∥
n+ 1

=
∥T (y1 + y2 + · · ·+ yn+1)∥

n+ 1

≤ (1 + ε)
∥y1 + y2 + · · ·+ yn+1∥

n+ 1

≤ 1 + ε

n+ 1
+ (1 + ε)f(ε).

This implies that

1− ∥x1 + x2 + · · ·+ xn+1∥
n+ 1

≥ 1− 1 + ε

n+ 1
− (1 + ε)f(ε).

Since f(ε) can be arbitrarily small, we have

Wn
X

(

2n+ 1

2n

)

≥ 1− 1

n+ 1
.

This completes the proof. !

We consider the uniform normal structure. To discuss this result, let us
recall the concept of the “ultra”-technique.

Let F be a filter of an index set I, and let {xi}i∈I be a subset in a Hausdorff
topological space X , {xi}i∈I is said to converge to x with respect to F , denoted
by limF xi = x, if for each neighborhood V of x, {i ∈ I : xi ∈ V } ∈ F .
A filter U on I is called an ultrafilter if it is maximal with respect to the
ordering of the set inclusion. An ultrafilter is called trivial if it is of the form
{A : A ⊆ I, i0 ∈ A} for some i0 ∈ I. We will use the fact that if U is an
ultrafilter, then

(i) for any A ⊆ I, either A ⊆ U or I −A ⊆ U ;
(ii) if {xi}i∈I has a cluster point x, then limU xi exists and equals to x.

Let {Xi}i∈I be a family of Banach spaces and let l∞(I,Xi) denote the subspace
of the product space equipped with the norm ∥(xi)∥ = supi∈I ∥xi∥ < ∞.
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Definition 2.16 ([3, 12]). Let U be an ultrafilter on I and let NU = {(xi) ∈
l∞(I,Xi) : limU ∥xi∥ = 0}. The ultra-product of {Xi}i∈I is the quotient space
l∞(I,Xi)/NU equipped with the quotient norm.

We will use (xi)U to denote the element of the ultra-product. It follows from
remark (ii) above, and the definition of quotient norm that

(2.1) ∥(xi)U∥ = lim
U

∥xi∥.

In the following we will restrict our index set I to be N, the set of natural
numbers, and let Xi = X, i ∈ N for some Banach space X . For an ultrafilter
U on N, we use XU to denote the ultra-product. Note that if U is nontrivial,
then X can be embedded into XU isometrically.

Lemma 2.17 ([12]). Suppose that U is an ultrafilter on N and X is a Banach
space. Then (X∗)U ∼= (XU )∗ if and only if X is super-reflexive; and in this
case, the mapping J defined by

⟨(xi)U , J((fi)U )⟩ = lim
U
⟨xi, fi⟩ for all (xi)U ∈ XU

is the canonical isometric isomorphism from (X∗)U onto (XU )∗.

Theorem 2.18. Let X be a super-reflexive Banach space. Then for any non-
trivial ultrafilter U on N, and for all n ∈ N and ε > 0, we have Wn

XU

(ε) =
Wn

X(ε).

Proof. Since X can be embedded into XU isometrically, we may consider X as
a subspace of XU . From the definition of Wn

X(ε), we have Wn
XU

(ε) ≥ Wn
X(ε).

We prove the reverse inequality.
For any very small η > 0, from the definition of Wn

XU

(ε), let (x1
i )U , (x

2
i )U ,

. . . , (xn
i )U , (x

n+1
i )U belong to SXU

, and let (f2
i )U ∈ ∇(x2

i )U
, (f 3

i )U ∈ ∇(x3
i )U

,

. . . , (fn
i )U ∈ ∇(xn

i )U
, (fn+1

i )U ∈ ∇(xn+1
i )U

be such that

m((x1
i )U , (x

2
i )U , . . . , (x

n
i )U , (x

n+1
i )U ; (f

2
i )U , (f

3
i )U , . . . , (f

n
i )U , (f

n+1
i )U ) ≤ ε,

and

1− ∥(x1
i )U + (x2

i )U + · · ·+ (xn
i )U + (xn+1

i )U∥
n+ 1

> Wn
XU

(ε)− η.

Without loss of generality, we may assume by (2.1) that

1− η < ∥(xj
i )U∥ < 1 + η for j = 1, . . . , n+ 1,

1− η < ∥(f j
i )U∥ < 1 + η for j = 2, . . . , n+ 1,

and

1− η < ⟨(xj
i )U , (f

j
i )U ⟩ < 1 + η for j = 2, . . . , n+ 1.

From the property of ultra-product, we know the subsets

P = {i : m((x1
i )U , (x

2
i )U , . . . , (x

n
i )U , (x

n+1
i )U ; (f

2
i )U , (f

3
i )U , . . . , (f

n
i )U , (f

n+1
i )U )≤ε}
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and

Q =

{

i : 1− ∥(x1
i )U + (x2

i )U + · · ·+ (xn
i )U + (xn+1

i )U∥
n+ 1

> Wn
XU

(ε)− η

}

are all in U . So the intersection P ∩Q is in U too, and hence is not empty.
Let i ∈ P ∩Q be fixed. Then

1− η < ∥xj
i∥ < 1 + η for j = 1, . . . , n+ 1;

1− η < ∥f j
i ∥ < 1 + η for j = 2, . . . , n+ 1;

1− η < ⟨xj
i , f

j
i ⟩ < 1 + η for j = 2, . . . , n+ 1;

m(x1
i , x

2
i , . . . , x

n
i , x

n+1
i ; f2

i , f
3
i , . . . , f

n
i , f

n+1
i ) ≤ ε;

and

1− ∥x1
i + x2

i + · · ·+ xn
i + xn+1

i ∥
n+ 1

> Wn
XU

(ε)− η.

From Lemma 2.4, for 0 < η < 1 (since η can be arbitrarily small, if necessary
we can normalize vectors xj

i and f j
i to use Lemma 2.4) there are {yj}n+1

j=1 ⊆ SX

and {gj}n+1
j=2 ⊆ SX∗ such that

• gj ∈ ∇yj
for all j = 2, . . . , n+ 1;

• ∥xj
i − yj∥ < η for all j = 1, . . . , n+ 1;

• ∥f j
i − gj∥ < η for j = 2, . . . , n+ 1.

Similar to the proof of Theorem 2.8, we have

detm(y1, y2, . . . , yn, yn+1; g2, g3 , . . . , gn, gn+1) ≤ ε+ cη,

and 1− ∥y1+y2+···+yn+yn+1∥
n+1 > Wn

XU

(ε)− dη, where c and d are constants.
Since η > 0 can be arbitrarily small, we have Wn

X(ε) ≥ Wn
XU

(ε). !

Lemma 2.19 ([8]). If X is a super-reflexive Banach space, then X has uniform
normal structure if and only if XU has normal structure.

Theorem 2.20. Suppose that X is a Banach space satisfying one of the fol-
lowing conditions:

• Wn
X(1) < 1− 1

n+1 for some n ∈ N with n ≥ 2; or

• W 1
X(1) < 1

2 and W 1
X(53 ) <

2
3 for n = 1.

Then X has uniform normal structure.

Proof. It follows directly from Theorems 2.13, 2.15, 2.18 and Lemma 2.19. !

Example. LetH be a Hilbert space. We haveW 1
H(ε) = 2−

√
4− 2ε
2 for 0 ≤ ε ≤ 2.

Since W 1
H(1) = 2−

√
2

2 = 0.29289 · · · < 1
2 , and W 1

H(53 ) =
2−

√
2
3

2 = 0.59175 · · ·
< 2

3 , from Theorem 2.20, H has uniform normal structure.
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espaces et des algèbres de Banach, (French) Studia Math. 41 (1972), 315–334.
[4] M. M. Day, Normed Linear Spaces, Third edition. Ergebnisse der Mathematik und ihrer

Grenzgebiete, Band 21. Springer-Verlag, New York-Heidelberg, 1973.
[5] J. Diestel, Geometry of Banach spacesselected topics, Lecture Notes in Mathematics,

Vol. 485, Springer-Verlag, Berlin-New York, 1975.
[6] J. Gao and S. Saejung, The n-dimensional U-convexity and geometry of Banach spaces,

J. Fixed Point Theory 16 (2015), no. 2, 381–392.
[7] R. C. James, Weakly compact sets, Trans. Amer. Math. Soc. 113 (1964), 129–140.
[8] M. A. Khamsi, Uniform smoothness implies super-normal structure property, Nonlinear

Anal. 19 (1992), no. 11, 1063–1069.
[9] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer.

Math. Monthly 72 (1965), 1004–1006.
[10] T.-C. Lim, On moduli of k-convexity, Abstr. Appl. Anal. 4 (1999), no. 4, 243–247.
[11] S. Saejung, Convexity conditions and normal structure of Banach spaces, J. Math. Anal.

Appl. 344 (2008), no. 2, 851–856.
[12] B. Sims, “Ultra”-techniques in Banach space theory, Queen’s Papers in Pure and Applied

Mathematics, Vol. 60, Queen’s University, Kingston, ON, 1982.

Ji Gao

Department of Mathematics

Community College of Philadelphia

Philadelphia, PA 19130-3991, USA

E-mail address: jgao@ccp.edu

Satit Saejung

Department of Mathematics

Faculty of Science

Khon Kaen University

Khon Kaen 40002, Thailand

and

The Centre of Excellence in Mathematics

Commission on Higher Education (CHE) Sri Ayudthaya Road

Bangkok 10400, Thailand

and

Research Center for Environmental and Hazardous Substance Management

Khon Kaen University

Khon Kaen, 40002, Thailand

E-mail address: saejung@kku.ac.th

56



A4: Jaipranop, Chanitnan; Saejung, Satit. An explanation of over-relaxation pa-
rameters for some algorithms in Hilbert spaces. Linear Nonlinear Anal. 3
(2017), no. 3, 409–421.

57



59



60



61



62



63



64



65



66



67



68



69



70



71



A5: Wongchan, Kanokwan; Saejung, Satit. Strong convergence of Browder’s and
Halpern’s type iterations in Hilbert spaces. Positivity 22 (2018), no. 4, 969–982.

73



Positivity
https://doi.org/10.1007/s11117-018-0554-9 Positivity

Strong convergence of Browder’s and Halpern’s type
iterations in Hilbert spaces

Kanokwan Wongchan1 · Satit Saejung1

Received: 16 August 2017 / Accepted: 5 January 2018
© Springer International Publishing AG, part of Springer Nature 2018

Abstract We use results from theory of nonexpansive mappings to unify and deduce
the recent results of Lin and Takahashi (Positivity 16:429–453, 2012) and of Takahashi
(J Optim Theory Appl 157:781–802, 2013).

Keywords Fixed point · Maximal monotone operator · Resolvent · Inverse strongly
monotone mapping

Mathematics Subject Classification 47H05 · 47H10 · 58E35

1 Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. For a mapping
T : C → H where C ⊂ H, we write Fix(T ) for the fixed point set of T , that is,
Fix(T ) := {x ∈ C : x = T x}. It is known that many problems can be reformulated to
the problem of finding a fixed point of an associated mapping. In this paper, we use a
fixed point algorithm approach to the problem of finding a zero of maximal monotone
operator. Recall that an operator A ⊂ H × H is monotone if 〈x − y, u − v〉 ≥ 0 for
all (x, u), (y, v) ∈ A. We say that A is maximal monotone if it is monotone and it
cannot be properly included in any other monotone operator. Minty [5] proved that
a monotone operator A ⊂ H × H is maximal monotone if and only if the operator
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Kanokwan Wongchan
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1 Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002,
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I + A is surjective, that is, the range of I + A is entirely H (see also [7]). Using
this result, the concept of resolvent can be defined as follows: For each x ∈ H and
r > 0, there exists a unique element z ∈ H such that z ∈ x + r Ax . In this case, we
write z = Jr Ax := (I + r A)−1x . It is easy to see that Fix(Jr A) coincides with the
set of zeros of A, that is, Fix(Jr A) = A−10 := {x ∈ H : 0 ∈ Ax}. In other word,
the problem of finding a zero of a maximal monotone operator is equivalent to that of
finding a fixed point of its resolvent.

Recently, Lin and Takahashi [3] and Takahashi [6] proposed an iterative sequence
to approximate a common zero of two maximal monotone operators. More precisely,
let C be a closed convex subset of a Hilbert space H. Suppose that A : C → H
is inverse strongly monotone and B, F ⊂ H × H are maximal monotone such that
dom(F) := {x ∈ H : Fx 	= ∅} ⊂ C . The problem discussed in [3] and [6] is to
approximate an element in (A + B)−10 ∩ F−10. The purpose of this paper is to use
theory of nonexpansive mappings to give a concise and short proof of both results.
The main results of this paper are presented in two subsections, that is, the Browder’s
type and the Halpern’s type iterations.

2 Some definitions and preliminaries

Let C be a subset of a Hilbert space H. Recall that a mapping T : C → H is called
L-Lipschitzian if ‖T x − T y‖ ≤ L‖x − y‖ for all x, y ∈ C . An L-Lipschitzian
mapping with L < 1 and L = 1 is called a contraction and a nonexpansive mapping,
respectively. The theory of nonexpansive mappings is closely connected to theory of
maximalmonotone operators. In fact, every resolvent of amaximalmonotone operator
is a nonexpansive mapping.

For a closed convex subset C of a Hilbert space H, the projection of an element
x ∈ H onto C is the unique point PCx in C such that

‖x − PCx‖ = inf{‖x − y‖ : y ∈ C}.

In particular, we have 〈x − PCx, PCx − y〉 ≥ 0 for all y ∈ C .
We recall two recent interesting results. The first one is from the work of Takahashi

[8] and the second one from the work of Aoyama et al. [1].

Theorem T Suppose that {Tn : H → H} is a countable family of nonexpan-
sive mappings and T : H → H is a nonexpansive mapping such that ∅ 	=
Fix(T ) ⊂ ⋂∞

n=1 Fix(Tn). Suppose that {Tn} satisfies the NST-condition (I) with T ,
that is, limn→∞ ‖zn − T zn‖ = 0 whenever {zn} is a bounded sequence in H with
limn→∞ ‖zn − Tnzn‖ = 0. Let u ∈ H and {xn} be a sequence inH defined by

xn = αnu + (1 − αn)Tnxn, for all n ≥ 1

where {αn} ⊂ (0, 1) and limn→∞ αn = 0. Then the sequence {xn} converges to
PFix(T )u.
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Theorem AKTT Suppose that {Tn : H → H} is a countable family of nonexpansive
mappings such that F := ⋂∞

n=1 Fix(Tn) 	= ∅. Suppose that {Tn} satisfies the AKTT-
condition, that is, the following two conditions are satified:

• ∑∞
n=1 sup{‖Tnz − Tn+1z‖ : z ∈ B} < ∞ whenever B is a bounded subset of H

(and hence {Tnx} is a Cauchy sequence for all x ∈ H);
• The mapping T : H → H defined by T x := limn→∞ Tnx for all x ∈ H satisfies
Fix(T ) = F.

Let u ∈ H and {xn} be a sequence inH defined by x1 ∈ H arbitrarily chosen and

xn+1 = αnu + (1 − αn)Tnxn, for all n ≥ 1

where {αn} ⊂ [0, 1] satisfies the following conditions

lim
n→∞ αn = 0;

∞∑

n=1

αn = ∞;
∞∑

n=1

|αn − αn+1| < ∞.

Then the sequence {xn} converges to PFu.

In this paper, we modify Theorems T and AKTT to Theorems 1 and 2, respectively.
Moreover, we show that the following four results are deduced from our Theorems 1
and 2.

The following two results are Theorems 7 and 8 of [3].

Theorem LT1 Let C be a nonempty closed convex subset of H. Let α > 0 and
A : C → H be α-inverse strongly monotone. Let B, F be a maximal monotone
operator on H such that domain of F included in C. Let Jλ = (I + λB)−1 and
Tr = (I + r F)−1 be the resolvent of B for λ > 0 and F for r > 0, respectively.
Let k ∈ (0, 1) and let g be a k-contraction of H into itself. Let V be a γ -strongly
monotone and L-Lipschitzian with γ > 0 and L > 0. Suppose that μ and γ are two
real numbers such that

0 < μ <
2γ

L2 and 0 < γ <
γ − L2μ

2

k
.

Suppose that (A + B)−10 ∩ F−10 	= ∅. Assume that {αn} ⊂ (0, 1), {λn} ⊂ (0,∞)

and {rn} ⊂ (0,∞) satisfy

lim
n→∞ αn = 0, 0 < a ≤ λn ≤ 2α and lim inf

n→∞ rn > 0.

Then the following hold:

(1) For each n ≥ 1, define

Tnx := αnγ g(x) + (I − αnV )Jλn (I − λn A)Trn x for all x ∈ H.

Then Tn has a unique fixed point xn ∈ H and {xn} is well-defined and bounded.
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(2) The sequence {xn} converges strongly to a unique element z0 ∈ (A+B)−10∩F−10
and

〈(V − γ g)z0, q − z0〉 ≥ 0 for all q ∈ (A + B)−10 ∩ F−10.

Recall that V : H → H is γ -strongly monotone if 〈x − y, V x −V y〉 ≥ γ ‖x − y‖2
for all x, y ∈ H.

Theorem LT2 In the setting of Theorem LT1, let x1 = x ∈ H and

xn+1 := αnγ g(xn) + (I − αnV )Jλn (I − λn A)Trn xn for all n ≥ 1,

where {αn} ⊂ (0, 1), {λn} ⊂ (0,∞) and {rn} ⊂ (0,∞) satisfy

lim
n→∞ αn = 0,

∞∑

n=1

αn = ∞,

∞∑

n=1

|αn − αn| < ∞, 0 < a ≤ λn ≤ 2α,

∞∑

n=1

|λn − λn+1| < ∞, lim inf
n→∞ rn > 0, and

∞∑

n=1

|rn − rn+1| < ∞.

Then the sequence {xn} converges strongly to a unique element z0 ∈ (A + B)−10 ∩
F−10 and

〈(V − γ g)z0, q − z0〉 ≥ 0 for all q ∈ (A + B)−10 ∩ F−10.

The following two results are Theorems 3.1 and 3.2 of [6].

Theorem T1 Let C be a nonempty closed convex subset ofH. Letα > 0 and A : C →
H be α-inverse strongly monotone. Let B, F be a maximal monotone operator on H
such that domain of F included in C. Let Jλ = (I + λB)−1 and Tr = (I + r F)−1

be the resolvent of B for λ > 0 and F for r > 0, respectively. Let k ∈ (0, 1)
and let g be a k-contraction of H into itself. Let G be a strongly positive bounded
linear self-adjoint operator H with coefficient γ > 0. Suppose that 0 < γ < γ/k
and (A + B)−10 ∩ F−10 	= ∅. Assume that {αn} ⊂ (0, 1), {λn} ⊂ (0,∞) and
{rn} ⊂ (0,∞) satisfy

lim
n→∞ αn = 0, 0 < a ≤ λn ≤ 2α and lim inf

n→∞ rn > 0.

Then the following hold:

(1) For sufficiently large n ≥ 1, define

Tnx := αnγ g(x) + (I − αnG)Jλn (I − λn A)Trn x for all x ∈ H.

Then Tn has a unique fixed point xn ∈ H and {xn} is well-defined and bounded.
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(2) The sequence {xn} converges strongly to a unique element z0 ∈ (A+B)−10∩F−10
and

〈(G − γ g)z0, q − z0〉 ≥ 0 for all q ∈ (A + B)−10 ∩ F−10.

Theorem T2 In the setting of Theorem T1, let x1 = x ∈ H and

xn+1 := αnγ g(xn) + (I − αnG)Jλn (I − λn A)Trn xn for all n ≥ 1,

where {αn} ⊂ (0, 1), {λn} ⊂ (0,∞) and {rn} ⊂ (0,∞) satisfy

lim
n→∞ αn = 0,

∞∑

n=1

αn = ∞,

∞∑

n=1

|αn − αn| < ∞, 0 < a ≤ λn ≤ 2α,

∞∑

n=1

|λn − λn+1| < ∞, lim inf
n→∞ rn > 0, and

∞∑

n=1

|rn − rn+1| < ∞.

Then the sequence {xn} converges strongly to a unique element z0 ∈ (A + B)−10 ∩
F−10 and

〈(G − γ g)z0, q − z0〉 ≥ 0 for all q ∈ (A + B)−10 ∩ F−10.

In this paper, we need the following results.

Lemma 1 Suppose that {sn}, {tn}, and {αn} are sequences of real numbers such that
sn ≥ 0, αn ∈ [0, 1], and sn+1 ≤ (1 − αn)sn + αntn for all n ≥ 1. If

∑∞
n=1 αn = ∞

and lim supn→∞ tn ≤ 0, then limn→∞ sn = 0.

Lemma 2 Suppose that B ⊂ H × H is a maximal monotone operator and Jr is the
resolvent of B for r > 0. Then

‖Jr x − Js x‖ ≤
∣
∣
∣1 − s

r

∣
∣
∣ ‖x − Jr x‖

for all x ∈ H and r, s > 0.

3 Main results

3.1 Browder’s type iterations

We first modify Theorem T in the following way.

Theorem 1 Suppose that {Tn : H → H} is a countable family of nonexpansive
mappings and T : H → H is a nonexpansive mapping such that ∅ 	= Fix(T ) ⊂⋂∞

n=1 Fix(Tn). Suppose that {Tn} satisfies the NST-condition (I) with T . Suppose that
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f, g : H → H is α- and β-Lipschitzian, respectively and α + β < 1. Let {xn} be a
sequence inH defined by

xn = αn( f (xn) + g(Tnxn)) + (1 − αn)Tnxn, for all n ≥ 1

where {αn} ⊂ (0, 1) and limn→∞ αn = 0. Then the sequence {xn} converges to
z0 = PFix(T )( f + g)(z0).

Proof Obviously, the sequence {xn} is well-defined. Note that PFix(T ) ◦ ( f + g) is
an (α + β)-contraction. By the Banach contraction principle, there exists a unique
element z0 ∈ Fix(T ) such that

z0 = PFix(T )( f + g)(z0).

Define the following iterative sequence

zn = αn( f + g)(z0) + (1 − αn)Tnzn

for all n ≥ 1. It follows from Theorem T that the sequence {zn} converges to z0 =
PFix(T )( f + g)(z0). Now we consider

‖ f (xn) − f (z0)‖ ≤ ‖ f (xn) − f (zn)‖ + ‖ f (zn) − f (z0)‖
≤ α‖xn − zn‖ + α‖zn − z0‖;

and

‖g(T xn) − g(z0)‖ = ‖g(T xn) − g(T z0)‖
≤ ‖g(T xn) − g(T zn)‖ + ‖g(T zn) − g(T z0)‖
≤ β‖T xn − T zn‖ + β‖T zn − T z0‖
≤ β‖xn − zn‖ + β‖zn − z0‖.

This implies that

‖xn − zn‖
≤ αn‖ f (xn) − f (z0)‖ + αn‖g(Tnxn) − g(z0)‖ + (1 − αn)‖Tnxn − Tnzn‖
≤ αnα‖xn − zn‖ + αnα‖zn − z0‖

+ αnβ‖xn − zn‖ + αnβ‖zn − z0‖ + (1 − αn)‖xn − zn‖.

In particular,

(1 − (α + β))‖xn − zn‖ ≤ (α + β)‖zn − z0‖.

It follows from limn→∞ ‖zn−z0‖ = 0 and α+β < 1 that limn→∞ ‖xn−zn‖ = 0.We
conclude that {xn} converges to z0 = PFix(T )( f + g)(z0). This completes the proof. ��
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Theorem 2 Theorem 1 implies Theorem LT1.

Theorem 3 Theorem 1 implies Theorem T1.

Before we prove the preceding two theorems, we show the following result.

Lemma 3 Suppose thatC is a closed convex subset ofH. Let A : C → H beα-inverse
strongly monotone where α > 0. Let B, F be a maximal monotone operator on H
such that domain of F included in C. Let Jλ = (I + λB)−1 and Tr = (I + r F)−1 be
the resolvent of B for λ > 0 and F for r > 0, respectively. Assume that {λn} ⊂ (0,∞)

and {rn} ⊂ (0,∞) satisfy

0 < a ≤ λn ≤ 2α and lim inf
n→∞ rn > 0.

Suppose that (A+B)−10∩F−10 	= 0. Then {Jλn (I−λn A)Trn } satisfies NST-condition
with Jα(I − αA)Tα .

Proof First we note that Fix(Jλn (I −λn A)) = (A+ B)−10 and Fix(Trn ) = F−10 for
all n ≥ 1. Let {xn} be a bounded sequence in H such that

lim
n→∞ ‖xn − Jλn (I − λn A)Trn xn‖ = 0.

Let z ∈ (A + B)−10 ∩ F−10. Then z = Jλn (I − λn A)z = Trn z for all n ≥ 1. In
particular,

‖Jλn (I − λn A)Trn xn − z‖ ≤ ‖Trn xn − z‖ ≤ ‖xn − z‖.

This implies that lim
n→∞(‖xn − z‖ − ‖Trn xn − z‖) = 0. Since each Trn is firmly nonex-

pansive,

‖xn − Trn xn‖2 + ‖Trn xn − z‖2 ≤ ‖xn − z‖2.

We obtain that
lim
n→∞ ‖xn − Trn xn‖ = 0. (1)

Note that

‖xn − Jλn (I − λn A)xn‖
≤ ‖xn − Jλn (I − λn A)Trn xn‖ + ‖Jλn (I − λn A)Trn xn − Jλn (I − λn A)xn‖
≤ ‖xn − Jλn (I − λn A)Trn xn‖ + ‖Trn xn − xn‖.

It follows from (1) that

lim
n→∞ ‖xn − Jλn (I − λn A)xn‖ = 0. (2)
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Let {λnk } be a subsequence {λn} such that limk→∞ λnk = λ for some λ ∈ [a, 2α].
Next, we observe that

‖Jλnk (I − λnk A)xnk − Jλ(I − λnk A)xnk‖
≤

∣
∣
∣1 − λ

λnk

∣
∣
∣‖(I − λnk A)xnk − Jλnk (I − λnk A)xnk‖

≤
∣
∣
∣1 − λ

λnk

∣
∣
∣
(
‖xnk − Jλnk (I − λnk A)xnk‖ + λnk‖Axnk‖

)
.

Therefore, since {Axnk } is bounded, we have

lim
k→∞ ‖Jλnk (I − λn A)xnk − Jλ(I − λnk A)xnk‖ = 0. (3)

Moreover,

‖xnk − Jλ(I − λA)xnk‖
≤ ‖xnk − Jλ(I − λnk A)xnk‖ + ‖Jλ(I − λnk A)xnk − Jλ(I − λA)xnk‖
≤ ‖xnk − Jλ(I − λnk A)xnk‖ + |λnk − λ|‖Axnk‖
≤ ‖xnk − Jλnk (I − λnk A)xnk‖ + ‖Jλnk (I − λnk A)xnk − Jλ(I − λnk A)xnk‖

+ |λnk − λ|‖Axnk‖.

It follows from (2) and (3) that

lim
k→∞ ‖xnk − Jλ(I − λA)xnk‖ = 0. (4)

Next, we consider

‖xnk − Jα(I − αA)xnk‖
≤ ‖xnk − Jλ(I − λA)xnk‖ + ‖Jλ(I − λA)xnk − Jα(I − αA)xnk‖
≤ ‖xnk − Jλ(I − λA)xnk‖ +

∣
∣
∣1 − α

λ

∣
∣
∣‖xnk − Jλ(I − λA)xnk‖.

Using (4), we obtain that

lim
k→∞ ‖xnk − Jα(I − αA)xnk‖ = 0.

By the double extract subsequence principle, we conclude that

lim
n→∞ ‖xn − Jα(I − αA)xn‖ = 0. (5)
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Now we consider the following inequality

‖xn − Jα(I − αA)Tαxn‖
≤ ‖xn − Jα(I − αA)xn‖ + ‖Jα(I − αA)xn − Jα(I − αA)Tαxn‖
≤ ‖xn − Jα(I − αA)xn‖ + ‖xn − Tαxn‖
≤ ‖xn − Jα(I − αA)xn‖ + ‖xn − Trn xn‖ + ‖Trn xn − Tαxn‖
≤ ‖xn − Jα(I − αA)xn‖ +

(
1 +

∣
∣
∣1 − α

rn

∣
∣
∣
)
‖xn − Trn xn‖.

It follows from (1), (5), and lim infn→∞ rn > 0 that

lim
n→∞ ‖xn − Jα(I − αA)Tαxn‖ = 0.

This completes the proof. ��
Proof of Theorem 2 Put S := Jα(I − αA)Tα and Sn := Jλn (I − λn A)Trn for all
n ≥ 1. It follows from Lemma 3 that {Sn} satisfies NST-condition with S. Moreover,
Fix(S) = (A + B)−10 ∩ F−10. Rewrite the formula of each xn in Theorem LT1 as
follows:

xn = α̂n
(
f̂ (x) + ĝ(Snx)

) + (1 − α̂n)Snxn

where α̂n := αn
μ
, f̂ = μγ g and ĝ = I − μV for all n ≥ 1. Note that f̂ is a μγ k-

contraction and ĝ is a
√
1 − 2μτ -contraction. Moreover, γμk + √

1 − 2μτ < 1. It
follows from our Theorem 1 that {xn} converges to

z0 = PFix(S)( f̂ + ĝ)z0.

Moreover,

〈(V − γ g)z0, q − z0〉 ≥ 0 for all q ∈ Fix(S) = (A + B)−10 ∩ F−10.

The proof is finished. ��
Remark 1 In Theorem LT1, the constants μ and γ are chosen such that

0 < μ <
2γ

L2 and 0 < γ <
γ − L2μ

2

k
.

It should be noted that the conclusion of Theorem LT1 remains true if the following
more general condition is satisfied:

0 < μ <
2γ

L2 and 0 < γμk < 1 −
√

1 − 2μ
(
γ − L2μ

2

)
.
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Proof of Theorem 3 Put S := Jα(I − αA)Tα and Sn := Jλn (I − λn A)Trn for all
n ≥ 1. It follows from Lemma 3 that {Sn} satisfies NST-condition with S. Moreover,
Fix(S) = (A + B)−10 ∩ F−10. Rewrite the formula of each xn in Theorem LT1 as
follows:

xn = α̂n
(
f̂ (x) + ĝ(Snx)

) + (1 − α̂n)Snxn

where α̂n := αn
t , f̂ = tγ g and ĝ = I − tG for all n ≥ 1. Note that f̂ is a γ tk-

contraction and ĝ is a 1−tγ -contraction.Moreover, γ tk+(1−tγ ) = 1−(γ −γ k)t <

1. It follows from our Theorem 1 that {xn} converges to

z0 = PFix(S)( f̂ + ĝ)z0.

Moreover,

〈(G − γ g)z0, q − z0〉 ≥ 0 for all q ∈ Fix(S) = (A + B)−10 ∩ F−10.

The proof is finished. ��

3.2 Halpern’s type iterations

We modify Theorem AKTT in the following way.

Theorem 4 Suppose that {Tn : H → H} is a countable family of nonexpansive
mappings such that F := ⋂∞

n=1 Fix(Tn) 	= ∅. Suppose that {Tn} satisfies the AKTT-
condition. Suppose that f, g : H → H is α- and β-Lipschitzian, respectively. Let {xn}
be a sequence inH defined by x1 ∈ H arbitrarily chosen and

xn+1 := αn( f (xn) + g(Tnxn)) + (1 − αn)Tnxn, for all n ≥ 1,

where {αn} ⊂ [0, 1] satisfies the following conditions

lim
n→∞ αn = 0;

∞∑

n=1

αn = ∞;
∞∑

n=1

|αn − αn+1| < ∞.

If α + β < 1, then the sequence {xn} converges to PFu.

Proof Note that PF ◦ ( f + g) is an (α + β)-contraction. By the Banach contraction
principle, there exists a unique element z0 ∈ F such that

z0 = PFix(T )( f + g)(z0).

Define the following iterative sequence

zn+1 := αn( f + g)(z0) + (1 − αn)Tnzn
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for all n ∈ N. It follows from Theorem AKTT that the sequence {zn} converges to
z0 = PF ( f + g)(z0). Now we consider

‖ f (xn) − f (z0)‖ ≤ ‖ f (xn) − f (zn)‖ + ‖ f (zn) − f (z0)‖
≤ α‖xn − zn‖ + α‖zn − z0‖;

and

‖g(T xn) − g(z0)‖ = ‖g(T xn) − g(T z0)‖
≤ ‖g(T xn) − g(T zn)‖ + ‖g(T zn) − g(T z0)‖
≤ β‖T xn − T zn‖ + β‖zn − z0‖
≤ β‖xn − zn‖ + β‖zn − z0‖.

This implies that

‖xn+1 − zn+1‖
≤ αn‖ f (xn) − f (z0)‖ + αn‖g(Tnxn) − g(z0)‖ + (1 − αn)‖Tnxn − Tnzn‖
≤ αnα‖xn − zn‖ + αnα‖zn − z0‖

+ αnβ‖xn − zn‖ + αnβ‖zn − z0‖ + (1 − αn)‖xn − zn‖
= (1 − αn(1 − (α + β)))‖xn − zn‖ + αn(α + β)‖zn − z0‖.

Note that
∑∞

n=1 αn(1 − (α + β)) = ∞ and limn→∞ (α+β)‖zn−z0‖
1−(α+β)

= 0. It follows
from Lemma 1 that limn→∞ ‖xn − zn‖ = 0. Hence, we conclude that {xn} converges
to z0 = PF ( f + g)(z0). This completes the proof. ��
Theorem 5 Theorem 4 implies Theorem LT2.

Theorem 6 Theorem 4 implies Theorem T2.

Before we prove the preceding two theorems, we show the following result.

Lemma 4 Suppose thatC is a closed convex subset ofH. Let A : C → H beα-inverse
strongly monotone where α > 0. Let B, F be a maximal monotone operator on H
such that domain of F included in C. Let Jλ = (I + λB)−1 and Tr = (I + r F)−1 be
the resolvent of B for λ > 0 and F for r > 0, respectively. Assume that {λn} ⊂ (0,∞)

and {rn} ⊂ (0,∞) satisfy

0 < a ≤ λn ≤ 2α,

∞∑

n=1

|λn − λn+1| < ∞, lim inf
n→∞ rn > 0, and

∞∑

n=1

|rn − rn+1| < ∞.

Suppose that (A + B)−10 ∩ F−10 	= ∅. Then {Jλn (I − λn A)Trn } satisfies AKTT-
condition.
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Proof First, we note that
∑∞

n=1 |1 − λn+1
λn

| < ∞ and
∑∞

n=1 |1 − rn+1
rn

| < ∞. Let B

be a bounded subset of H and x ∈ B. Let p ∈ (A + B)−10 ∩ F−10. It follows that
p = Jλn (I − λn A)p = Trn p for all n ≥ 1. Note that all the mappings Jλn , I − λn A,
and Trn are nonexpansive. We note that

‖Jλn (I − λn A)Trn x − p‖
= ‖Jλn (I − λn A)Trn x − Jλn (I − λn A)p‖
≤ ‖(I − λn A)Trn x − (I − λn A)p‖
≤ ‖Trn x − p‖
≤ ‖x − p‖.

For each n ≥ 1, we have the following three suprema are finite:

sup{‖Jλn (I − λn A)Trn x‖ : x ∈ B}, sup{‖Trn x‖ : x ∈ B},
and sup{‖ATrn x‖ : x ∈ B}.

Moreover, we consider the following three estimates:

‖Jλn+1(I − λn+1A)Trn x − Jλn+1(I − λn+1A)Trn+1x‖
≤ ‖Trn x − Trn+1x‖
≤

∣
∣
∣1 − rn+1

rn

∣
∣
∣‖x − Trn x‖;

‖Jλn+1(I − λn A)Trn x − Jλn+1(I − λn+1A)Trn x‖
≤ ‖(I − λn A)Trn x − (I − λn+1A)Trn x‖
= |λn − λn+1|‖ATrn x‖;

and

‖Jλn (I − λn A)Trn x − Jλn+1(I − λn A)Trn x‖
≤

∣
∣
∣1 − λn+1

λn

∣
∣
∣‖(I − λn A)Trn x − Jλn (I − λn A)Trn x‖.

This implies that

∞∑

n=1

sup{‖Jλn (I − λn A)Trn x − Jλn+1(I − λn+1A)Trn+1x‖ : x ∈ B} < ∞.

Finally, we assume that λ := limn→∞ λn and r := limn→∞ rn . It is obvious that

lim
n→∞ Jλn (I − λn A)Trn x = Jλ(I − λA)Tr x
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for all x ∈ H and

Fix(Jλn (I − λn A)Trn ) = Fix(Jλ(I − λA)Tr )

for all n ≥ 1. This completes the proof. ��
Proof of Theorem 5 Put S := Jα(I−αA)Tα and Sn := Jλn (I−λn A)Trn for all n ≥ 1.
It follows from Lemma 4 that {Sn} satisfies AKTT-condition. Moreover, Fix(S) =
(A + B)−10 ∩ F−10. Rewrite the formula of each xn in Theorem LT2 as follows:

xn+1 = α̂n
(
f̂ (xn) + ĝ(Snxn)

) + (1 − α̂n)Snxn

where α̂n := αn
μ
, f̂ = μγ g and ĝ = I − μV for all n ≥ 1. Note that f̂ is a μγ k-

contraction and ĝ is a
√
1 − 2μτ -contraction. Moreover, γμk + √

1 − 2μτ < 1. It
follows from our Theorem 4 that {xn} converges to

z0 = PFix(S)( f̂ + ĝ)z0.

Moreover,

〈(V − γ g)z0, q − z0〉 ≥ 0 for all q ∈ Fix(S) = (A + B)−10 ∩ F−10.

The proof is finished. ��
Remark 2 In Theorem LT2, the constants μ and γ are chosen such that

0 < μ <
2γ

L2 and 0 < γ <
γ − L2μ

2

k
.

It should be noted that the conclusion of Theorem LT1 remains true if the following
more general condition is satisfied:

0 < γμk < 1 −
√

1 − 2μ
(
γ − L2μ

2

)
.

Proof of Theorem 6 Put S := Jα(I − αA)Tα and Sn := Jλn (I − λn A)Trn for all
n ≥ 1. It follows from Lemma 4 that {Sn} satisfies AKTT-condition with S. Moreover,
Fix(S) = (A + B)−10 ∩ F−10. Rewrite the formula of each xn+1 in Theorem T2 as
follows:

xn+1 = α̂n
(
f̂ (xn) + ĝ(Snxn)

) + (1 − α̂n)Snxn

where α̂n := αn
t , f̂ = tγ g and ĝ = I − tG for all n ≥ 1. Note that f̂ is a γ tk-

contraction and ĝ is a 1−tγ -contraction.Moreover, γ tk+(1−tγ ) = 1−t (γ −γ k) <

1. It follows from our Theorem 4 that {xn} converges to

z0 = PFix(S)( f̂ + ĝ)z0.
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Moreover,

〈(G − γ g)z0, q − z0〉 ≥ 0 for all q ∈ Fix(S) = (A + B)−10 ∩ F−10.

The proof is finished. ��
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cept to Reich G-contraction and obtain a fixed point theorem. Note
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nectedness of G and it does not include Jachymski’s results as a special
case. Moreover, there are some mistakes in several corollaries. Some
examples and counterexamples are illustrated. It is our purpose to im-
prove Bojor’s theorem and to present two fixed point theorems for Reich
G-contractions. Our results are extensions of the two Jachymski’s theo-
rems. Finally, we also discuss some priori error estimates.
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1. Introduction

For a mapping T from a nonempty set X into itself, the set of fixed points
of T is denoted by Fix(T ), that is, Fix(T ) = {x ∈ X : x = Tx}. If (X, d)
is a metric space, we say that T : X → X is a Picard operator (abbr., PO)
if Fix(T ) = {x∗} and limn→∞ d(Tnx, x∗) = 0 for all x ∈ X. We also say
that T is a weakly Picard operator (abbr., WPO) if for every x ∈ X, there
exists x∗ ∈ Fix(T ), such that limn→∞ d(Tnx, x∗) = 0. Obviously, every PO
is a WPO, but the converse is not true. One of many interesting results
in the literature giving a sufficient condition for being a PO is the Banach
Contraction Principle.

Theorem B. Let (X, d) be a complete metric space and let T : X → X be a
contraction, that is, there exists α ∈ (0, 1), such that d(Tx, Ty) ≤ αd(x, y)
for all x, y ∈ X. Then, T is a PO.
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It was Reich [11,12] who generalized Theorem B by introducing the so-
called Reich’s contraction: there are α, β, γ ∈ [0, 1), such that α + β + γ < 1
and d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty) for all x, y ∈ X. He also
proved that if (X, d) is complete, then every Reich’s contraction T : X → X
is a PO.

On the other hand, Ran and Reurings [10] introduced a new type of
contractions with respect to a given partial order in a metric space and they
proposed a fixed point theorem which is another generalization of Theorem B.
Ran–Reurings’s results were discussed further by Turinici [13,14]. Nieto and
Rodŕıguez-López [8,9] gave some more general sufficient conditions for the
mapping to be a PO. Later on, Jachymski [7] replaced a partial order using a
more general relation, that is, a directed graph. He also proved a fixed point
theorem which includes the results of Nieto and Rodŕıguez-López as a special
case (see Theorems J1 and J2 below). To be precise, for a metric space X,
let G be a directed graph, where the vertex set V (G) of G is X and the
edge set E(G) of G is a subset of the Cartesian product X × X. Throughout
this paper, we assume that (x, x) ∈ E(G) for all x ∈ X. He also introduced
the following mapping: T : X → X is a Banach G-contraction if there exists
α ∈ (0, 1), such that for all (x, y) ∈ E(G) the following two conditions hold:

• (Tx, Ty) ∈ E(G);
• d(Tx, Ty) ≤ αd(x, y).

It is clear that if E(G) = X × X, then a Banach G-contraction reduces to
a contraction in Theorem B. Before passing, we note that some fixed point
theorems obtained from the combination of a notion of directed graphs and
that of Reich’s contractions were investigated in [1–3]. However, our results
in this paper are not deduced from these papers.

For a given directed graph G = (V (G), E(G)) and for x, y ∈ V (G), a
G-path from x to y is a finite sequence {xi}N

i=0 in V (G), such that x0 = x,
xN = y and (xi−1, xi) ∈ E(G) for all i = 1, 2, . . . , N . For x ∈ X, we write

[x]G = {y ∈ X : there exists a G-path from x to y}.

We say that G is connected if V (G) = [x]G for all x ∈ X, that is, there exists
a G-path from x to y for every pair x, y ∈ V (G).

For a directed graph G, let G−1 be the directed graph obtained from G
by reversing the direction of edges, that is, V (G−1) := V (G) and

E(G−1) := {(y, x) : (x, y) ∈ E(G)}.

We also interested in the undirected graph ˜G obtained from G by ignoring
the direction of edges, that is, V ( ˜G) := V (G) and

E( ˜G) := E(G) ∪ E(G−1).

Due to this notation, we say that G is weakly connected if V (G) = [x]
˜G for

some (and hence, for all) x ∈ X, that is, there exists a ˜G-path from x to y
for every pair x, y ∈ V (G).

For a metric space (X, d) endowed with a directed graph G and for a
mapping T : X → X, we write XT = {x ∈ X : (x, Tx) ∈ E(G)}.
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Remark 1. Let (X, d) be a metric space endowed with a directed graph G
and T : X → X be a mapping. If X =

⋃{[x]G : x ∈ XT } and there exists
x0 ∈ XT , such that XT ⊂ [x0]G, then X = [x0]G.

The following two fixed point theorems were proved by Jachymski.

Theorem J1. [7, Theorem 3.2] Let (X, d) be a complete metric space endowed
with a directed graph G and T : X → X be a Banach G-contraction. Suppose
that the following condition holds:

(J-1) For any sequence {xn} in X, if limn→∞ xn = x ∈ X and (xn, xn+1) ∈
E(G) for all n ∈ N, then there is a subsequence {xnk

} of {xn}, such
that (xnk

, x) ∈ E(G) for all k ∈ N.

Then, the following statements are true.
(1) card Fix(T ) = card{[x]

˜G : x ∈ XT }.
(2) Fix(T ) �= ∅ if and only if XT �= ∅.
(3) T has a unique fixed point if and only if there exists x0 ∈ XT , such that

XT ⊂ [x0] ˜G.
(4) T |[x0]

˜G
is a PO for all x0 ∈ XT .

(5) If XT �= ∅ and G is weakly connected, then T is a PO.
(6) T |Y is a WPO, where Y =

⋃{[x]
˜G : x ∈ XT }.

(7) If XT = X, then T is a WPO.

Theorem J2. [7, Theorem 3.3] Let (X, d) be a complete metric space endowed
with a directed graph G and T : X → X be a Banach G-contraction. Suppose
that the following condition holds:

(J-2) T is orbitally G-continuous, that is, for all x, y ∈ X and for any sub-
sequence {Tnkx} of {Tnx}, if limk→∞ Tnkx = y and (Tnkx, Tnk+1x) ∈
E(G) for all k ∈ N, then limk→∞ T (Tnkx) = Ty.

Then, the following statements are true.
(1) Fix(T ) �= ∅ if and only if XT �= ∅.
(2) For any x ∈ XT and y ∈ [x]

˜G, {Tny} converges to a fixed point of T
and limn→∞ Tny does not depend on y.

(3) If XT �= ∅ and G is weakly connected, then T is a PO.
(4) If XT = X, then T is a WPO.

Note that the key assumption of Theorem Ji is the condition (J-i) where
i = 1, 2. It is clear that (J-1) � (J-2).

Recently, Bojor [4] proved a fixed point theorem for Reich’s mappings in
the setting of a complete metric space with a directed graph. To state Bojor’s
result, we recall the following type of connectedness introduced in [4].

Definition 2. Let (X, d) be a metric space endowed with a directed graph G
and T : X → X. We say that the graph G is T -connected if for all vertices
x, y of G with (x, y) /∈ E(G), there exists a G-path {xi}N

i=0 from x to y, such
that x0 = x, xN = y, and (xi, Txi) ∈ E(G) for all i = 1, 2, . . . , N − 1. We say
that G is weakly T -connected if ˜G is T -connected.
Remark 3. It is clear that if G is T -connected, then G is connected and
XT �= ∅. However, the converse is not true.

The following type of mappings was studied by Bojor [4].
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Definition 4. [4] Let (X, d) be a metric space endowed with a directed graph
G. A mapping T : X → X is said to be a Reich G-contraction if there exist
α, β, γ ∈ [0, 1), such that α + β + γ < 1, and for all (x, y) ∈ E(G), the
following two conditions hold:

• (Tx, Ty) ∈ E(G);
• d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty).

In this case, we also say that T is a Reich G-contraction with parameters α,
β, γ.

Remark 5. (1) If T is a Reich G-contraction and E(G) = X × X, then T is
a Reich contraction.

(2) If T is a Reich G-contraction with parameters α, β, γ and β = γ = 0,
then it is a Banach G-contraction.

(3) If T is a Reich G-contraction with parameters α, β, γ and β = γ, then
it is a Reich ˜G-contraction.

Remark 6. Suppose that T is a Reich G-contraction with parameters α, β,
γ. Suppose that the following condition hold:

(x, y) ∈ E(G) ⇐⇒ (y, x) ∈ E(G). (♠)

Then, T is a Reich G-contraction with parameters α′, β′, γ′, where α′ = α
and β′ = γ′ = 1

2 (β + γ). In fact, we assume that (x, y) ∈ E(G). Then,
(y, x) ∈ E(G). It follows from the definition of Reich G-contraction that:

d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty)
d(Ty, Tx) ≤ αd(y, x) + βd(y, Ty) + γd(x, Tx).

This implies that

d(Tx, Ty) ≤ α′d(x, y) + β′d(x, Tx) + γ′d(y, Ty),

where α′ = α and β′ = γ′ = 1
2 (β + γ). Note that the conclusion above fails if

(♠) is not satisfied.

Remark 7. It follows from Remarks 5(1) and 6 that if T is a Reich contraction
with parameters α, β, γ, then T is a Reich contraction with parameters α′,
β′, and γ′, where α′ = α and β′ = γ′ = 1

2 (β + γ).

The following example shows that the class of Reich G-contractions is
different from that of Reich contractions and that of Banach G-contractions.

Example 8. Let X = R equipped with the usual metric d. Define a directed
graph G on X by E(G) := {(x, x) : x ∈ X} ∪ {(0, x) : x �= 0}. Define
T : X → X by Tx = −x for all x ∈ X. It is clear that if (x, y) ∈ E(G), then
(Tx, Ty) ∈ E(G). Let (x, y) ∈ E(G). We may assume that x = 0 and y �= 0.
Note that d(Tx, Ty) = d(x, y) = |y|, d(x, Tx) = 0, and d(y, Ty) = 2|y|. It
follows that T is a Reich G-contraction with parameters α = 1

4 , β = 0, and
γ = 1

2 . We show that T is not a Reich contraction. Suppose that T is a Reich
contraction with parameters α′, β′, and γ′, where β′ = γ′. Note that T0 = 0,
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T1 = −1 and 1 = d(T0, T1) ≤ α′d(0, 1) + β′d(0, T0) + γ′d(1, T1) = α′ + 2γ′.
In particular,

1 + β′ ≤ (α′ + β′ + γ′) + γ′ < 1 + γ′.

This implies that β′ < γ′ which is a contradiction. Moreover, it is obvious
that T is not a Banach G-contraction.

Bojor [4] proposed the following theorem [4, Theorem 6] which is related
to Theorem J1.

Theorem Bo. Let (X, d) be a complete metric space endowed with a directed
graph G and T : X → X be a Reich G-contraction. Suppose that the following
condition holds:

(J-1) For any sequence {xn} in X, if limn→∞ xn = x ∈ X and (xn, xn+1) ∈
E(G) for all n ∈ N, then there is a subsequence {xnk

} of {xn}, such
that (xnk

, x) ∈ E(G) for all k ∈ N.
If G is T -connected, then T is a PO.

Due to Remark 3, we cannot conclude that Theorem Bo is a generaliza-
tion of Theorem J1. It is worth mentioning that Theorem Bo was extended
from the single-valued mapping to the multi-valued one by Alfuraidan and
Khamsi (see [3, Theorem 4.4]).

It is our purpose to give two generalizations of Theorem J1 and of The-
orem J2 for Reich G-contraction. In fact, the concept of T -connectedness as
was the key assumption of Theorem Bo can be replaced by the condition orig-
inally discussed in Theorems J1 and J2. The paper is organized as follows: In
main results, we prepare several sufficient conditions for the two sequences
{Tnx} and {Tny} to be Cauchy equivalent. The extensions of Theorems J1
and J2 are presented in Sects. 2.1 and 2.2, respectively. Note that the exten-
sion of Theorem J2 obtained in this paper is a nice application of the result
of Hicks and Rhoades [6]. In the last subsection, if we assume that a Reich
G-contraction has a fixed point in place of the completeness of a space and
the conditions (J-1) and (J-2), some priori error estimates are presented. We
consider the priori error estimate when the graph is defined from a partial
order. We also discuss some gaps in Bojor’s results and present some related
examples and counterexamples to his results.

2. Main results

The following result was implicitly proved in [4].

Lemma 9. [4] Let (X, d) be a metric space endowed with a directed graph
G and T : X → X be a Reich G-contraction with parameters α, β, γ. Let
δ = α+β

1−γ . If (x, Tx) ∈ E(G), then

d(Tn+1x, Tn+2x) ≤ δd(Tnx, Tn+1x) for all n ≥ 1,

and hence, {Tnx} is a Cauchy sequence.
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Definition 10. Let {an} and {bn} be two sequences of nonnegative real num-
bers. We write an = O(bn) for the situation that there exist a positive number
C > 0 and an integer N ≥ 1, such that an ≤ Cbn for all n ≥ N .

Lemma 11. Let δ ∈ (0, 1) and k be a nonnegative integer. Let {an} and {bn}
be two sequences of nonnegative real numbers, such that an+1 ≤ δan + bn for
all n ≥ 1. If bn = O(nkδn), then an = O(nk+1δn).

Proof. Since bn = O(nkδn), there exist a positive number D > 0 and an
integer N ≥ 1, such that bn ≤ Dnkδn for all n ≥ N . Then, for all n ≥ N , we
have

an+1

D
≤ δ

an

D
+ nkδn.

Without loss of generality, we assume that D = N = 1. That is,

an+1 ≤ δan + nkδn for all n ≥ 1.

Let n ≥ 2. Then

an ≤ δan−1 + (n − 1)kδn−1

≤ δ(δan−2 + (n − 2)kδn−2) + (n − 1)kδn−1

= δ2an−2 + (n − 2)kδn−1 + (n − 1)kδn−1

...

≤ δn−1a1 + 1kδn−1 + 2kδn−1 + · · · + (n − 1)kδn−1

= δn−1a1 + (1k + 2k + · · · + (n − 1)k)δn−1

≤ δn−1a1 + (n − 1)k+1δn−1

=
1
δ

(

a1

nk+1
+

(

n − 1
n

)k+1
)

nk+1δn

≤ Cnk+1δn,

where C = 1
δ

(

a1
2k+1 + 1

)

. Hence, an = O(nk+1δn). The proof is finished. �

Lemma 12. Let (X, d) be a metric space endowed with a directed graph G
and T : X → X be a Reich G-contraction with parameters α, β, γ. Let
δ := max

{

α+β
1−γ , α+γ

1−β

}

. Suppose that (x, y) ∈ E(G). Then, the following two
statements are true.

(1) If β ≥ γ and d(Tnx, Tn+1x) = O(nkδn) for some nonnegative integer
k, then d(Tnx, Tny) = O(nk+1δn) and d(Tny, Tn+1y) = O(nk+1δn).

(2) If β ≤ γ and d(Tny, Tn+1y) = O(nkδn) for some nonnegative integer
k, then d(Tnx, Tny) = O(nk+1δn) and d(Tnx, Tn+1x) = O(nk+1δn).
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Proof. (1) Assume that β ≥ γ and d(Tnx, Tn+1x) = O(nkδn) for some non-
negative integer k. Let n ≥ 1. Note that (Tnx, Tny) ∈ E(G) and

d(Tn+1x, Tn+1y) = d(T (Tnx), T (Tny))

≤ αd(Tnx, Tny) + βd(Tnx, Tn+1x) + γd(Tny, Tn+1y)

≤ αd(Tnx, Tny) + βd(Tnx, Tn+1x) + γd(Tny, Tnx)

+ γd(Tnx, Tn+1x) + γd(Tn+1x, Tn+1y).

In particular,

d(Tn+1x, Tn+1y) ≤ α + γ

1 − γ
d(Tnx, Tny) +

β + γ

1 − γ
d(Tnx, Tn+1x).

Since β ≥ γ, we have α+γ
1−γ ≤ α+β

1−γ ≤ δ. Hence,

d(Tn+1x, Tn+1y) ≤ δd(Tnx, Tny) +
β + γ

1 − γ
d(Tnx, Tn+1x).

Note that β+γ
1−γ d(Tnx, Tn+1x) = O(nkδn). By Lemma 11, we have

d(Tnx, Tny) = O(nk+1δn).

Since d(Tny, Tn+1y) ≤ d(Tny, Tnx)+d(Tnx, Tn+1x)+d(Tn+1x, Tn+1y), we
have d(Tny, Tn+1y) = O(nk+1δn).

(2) The proof is similar to that of (1), so it is omitted. �

Remark 13. The assumption β ≥ γ in Lemma 12(1) cannot be omitted as
shown in the following example.

Example 14. Let X, d, G and T be defined as in Example 8. Note that T is
a Reich G-contraction with parameters α = 1

4 , β = 0, and γ = 1
2 . Finally, we

observe that (0, y) ∈ E(G) for all y �= 0 and d(Tn0, Tn+10) = 0 = O(1/2n).
However, the sequence {Tny} is not Cauchy.

Definition 15. Let (X, d) be a metric space. We say that the sequences {xn}
and {yn} in X are Cauchy equivalent if one of them (hence, all of them) is a
Cauchy sequence and limn→∞ d(xn, yn) = 0.

Definition 16. Let G be a directed graph. For each pair x, y ∈ V (G) with
x �= y, we define e(x, y) := ∞ if y /∈ [x]G; and

e(x, y) := min {k ∈ N : {zj}k
j=0 is a G-path from x to y}

if y ∈ [x]G. Moreover, we define e(x, x) = 0 for all x ∈ V (G).

The following result gives a sufficient condition for the two sequences
{Tnx} and {Tny} to be Cauchy equivalent.

Lemma 17. Let (X, d) be a metric space endowed with a directed graph G
and T : X → X be a Reich G-contraction with parameters α, β, γ. Let δ :=
max

{

α+β
1−γ , α+γ

1−β

}

and let x ∈ XT . Then, the following statements are true.

(1) If β ≥ γ and y ∈ [x]G, then d(Tnx, Tny) = O(nkδn), where k := e(x, y).
In particular, {Tnx} and {Tny} are Cauchy equivalent.
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(2) If β ≤ γ and y ∈ [x]G−1 , then d(Tnx, Tny) = O(nkδn), where k :=
e(y, x). In particular, {Tnx} and {Tny} are Cauchy equivalent.

(3) If y ∈ XT and y ∈ [x]G, then {Tnx} and {Tny} are Cauchy equivalent.

Proof. Let x ∈ XT . It follows from Lemma 9 that d(Tnx, Tn+1x) = O(δn).
(1) Assume that β ≥ γ and y ∈ [x]G and let k := e(x, y). Then,

there exists a G-path {zj}k
j=0 from x to y, such that z0 = x, zk = y and

(zj , zj+1) ∈ E(G) for all j = 0, 1, 2, . . . , k − 1. Since (z0, z1) ∈ E(G) and
d(Tnz0, T

n+1z0) = d(Tnx, Tn+1x) = O(δn), it follows from Lemma 12(1)
that

d(Tnz0, T
nz1) = O(nδn) and d(Tnz1, T

n+1z1) = O(nδn).

Similarly, since (z1, z2) ∈ E(G) and d(Tnz1, T
n+1z1) = O(nδn), it follows

from Lemma 12(1) that

d(Tnz1, T
nz2) = O(n2δn) and d(Tnz2, T

n+1z2) = O(nδn).

Continuing this process gives d(Tnzk−1, T
ny) = d(Tnzk−1, T

nzk) = O(nkδn)
and d(Tny, Tn+1y) = d(Tnzk, Tn+1zk) = O(nkδn). Note that

∑∞
n=0 nkδn <

∞ and {Tnx} is a Cauchy sequence. Hence, {Tnx} and {Tny} are Cauchy
equivalent.

(2) We can follow the proof of (1) but with an application of Lemma 12(2).
(3) is a consequence of (1) and (2). �

Corollary 18. Let (X, d) be a metric space endowed with a directed graph G
and T : X → X be a Reich G-contraction with parameters α, β, γ, such that
β ≥ γ. Let δ = α+β

1−γ . Assume that there exists x0 ∈ XT , such that X = [x0]G.
Then, the following statements hold.

(1) For each x ∈ X, d(Tnx0, T
nx) = O(nkδn) where k := e(x0, x). In

particular, {Tnx} and {Tnx0} are Cauchy equivalent.
(2) {Tnx} and {Tny} are Cauchy equivalent for all x, y ∈ X.

Proof. (1) and (2) follow from Lemma 17(1). �

The following lemma can be proved using the same technique as in
Lemma 12 and Corollary 18 so its proof is omitted.

Lemma 19. Let (X, d) be a metric space endowed with a directed graph G
and T : X → X be a Reich G-contraction with parameters α, β, γ, such that
β = γ. Let δ = α+β

1−γ . Then, the following statements hold:

(1) If (x, y) ∈ E( ˜G) and d(Tnx, Tn+1x) = O(nkδn) for some nonnega-
tive integer k, then d(Tnx, Tny) = O(nk+1δn) and d(Tny, Tn+1y) =
O(nk+1δn).

(2) If x ∈ XT and y ∈ [x]
˜G, then {Tnx} and {Tny} are Cauchy equivalent.

(3) If XT �= ∅ and G is weakly connected, then the sequences {Tnx} and
{Tny} are Cauchy equivalent for all x, y ∈ X.
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2.1. An extension of Theorems J1 and Bo

Lemma 20. Let (X, d) be a complete metric space endowed with a directed
graph G and T : X → X be a Reich G-contraction. Suppose that Condition (J-
1) holds. If x ∈ X satisfies the condition (x, Tx) ∈ E(G), then limn Tnx = z
for some z ∈ Fix(T ).

Proof. Suppose that T : X → X is a Reich G-contraction with parameters α,
β, γ. Let x ∈ X be such that (x, Tx) ∈ E(G). It follows that (Tnx, Tn+1x) ∈
E(G) for all n ∈ N. Moreover, it follows from Lemma 9 that {Tnx} is a
Cauchy sequence. Since X is complete, limn Tnx = z for some z ∈ X. It
follows from Condition (J-1) that there is a subsequence {Tnkx} of {Tnx},
such that (Tnkx, z) ∈ E(G) for all k ∈ N. This implies that

d(z, Tz) = lim
k→∞

d(Tnk+1x, Tz)

= lim
k→∞

d(T (Tnkx), T z)

≤ lim
k→∞

(αd(Tnkx, z) + βd(Tnkx, Tnk+1x) + γd(z, Tz))

= γd(z, Tz).

Hence, z ∈ Fix(T ) as desired. �

Theorem 21. Let (X, d) be a complete metric space endowed with a directed
graph G and T : X → X be a Reich G-contraction with parameters α, β, γ.
Suppose that Condition (J-1) holds. Then, the following statements are true.

(1) Fix(T ) �= ∅ if and only if XT �= ∅.
(2) T |XT

is a PO if and only if there exists x0 ∈ XT , such that XT ⊂
[x0]G ∪ [x0]G−1 .

Suppose, in addition, that β ≥ γ. Then, the following statements are true.

(3) T |[x0]G is a PO for all x0 ∈ XT .
(4) If there exists x0 ∈ XT , such that X = [x0]G, then T is a PO. In

particular, if X =
⋃{[x]G : x ∈ XT } and there exists x0 ∈ XT , such

that XT ⊂ [x0]G, then T is a PO.
(5) T |Y is a WPO, where Y =

⋃{[x]G : x ∈ XT }.
(6) If XT = X, then T is a WPO.

Proof. We prove (2). Note that T (XT ) ⊂ XT . (⇒) Assume that T |XT
is

a PO. Then, Fix(T |XT
) = {x0} for some x0 ∈ XT . Let x ∈ XT . Then,

(Tnx, Tn+1x) ∈ E(G) for all n ∈ N and limn→∞ Tnx = x0. By (J-1), there
exists k ∈ N, such that (T kx, x0) ∈ E(G). Then, {x, Tx, T 2x, . . . , T kx, x0} is
a G-path from x to x0. Hence, x ∈ [x0]G−1 ⊂ [x0]G ∪ [x0]G−1 .

(⇐) Assume that there exists x0 ∈ XT , such that XT ⊂ [x0]G ∪ [x0]G−1 .
It follows from Lemma 20 limn Tnx0 = z for some z ∈ Fix(T ). Obviously,
z ∈ XT . Now, we prove that T |XT

is a PO. To see this, let x ∈ XT ⊆
[x0]G∪[x0]G−1 . It follows that either x ∈ [x0]G or x0 ∈ [x]G. By Lemma 17(3),
the sequences {Tnx} and {Tnx0} are Cauchy equivalent. This implies that
limn Tnx = z. Therefore, T |XT

is a PO.
From now on, we assume that β ≥ γ.
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(3) Let x0 ∈ XT . We first observe that T ([x0]G) ⊂ [x0]G. It follows from
Lemma 20 that limn Tnx0 = z for some z ∈ Fix(T ). To show that T |[x0]G is
a PO, let x ∈ [x0]G. It follows from Lemma 17(1) that {Tnx0} and {Tnx}
are Cauchy equivalent. Hence, limn Tnx = z and T |[x0]G is a PO.

(4) is a direct consequence of (3) and Remark 1.
(5) follows from (3).
(6) follows from Lemma 20. �

The following result is similar to the preceding theorem but for the
situation that β ≤ γ. The proof is left for the reader to verify.

Theorem 22. Let (X, d) be a complete metric space endowed with a directed
graph G and T : X → X be a Reich G-contraction with parameters α, β, γ.
Suppose that Condition (J-1) holds. Then, the following statements are true.
(1) Fix(T ) �= ∅ if and only if XT �= ∅.
(2) T |XT

is a PO if and only if there exists x0 ∈ XT , such that XT ⊂
[x0]G ∪ [x0]G−1 .

Suppose, in addition, that β ≤ γ. Then, the following statements are true.
(3) T |[x0]G−1 is a PO for all x0 ∈ XT .
(4) If there exists x0 ∈ XT , such that X = [x0]G−1 , then T is a PO. In

particular, if X =
⋃{[x]G−1 : x ∈ XT } and there exists x0 ∈ XT , such

that XT ⊂ [x0]G−1 , then T is a PO.
(5) T |Y is a WPO, where Y =

⋃{[x]G−1 : x ∈ XT }.
(6) If XT = X, then T is a WPO.

Corollary 23. Let (X, d) be a complete metric space endowed with a directed
graph G and T : X → X be a Reich G-contraction with parameters α, β, γ
where β = γ. Suppose that Condition (J-1) holds. Then, the following hold:
(1) card Fix(T ) = card{[x]

˜G : x ∈ XT };
(2) Fix(T ) �= ∅ if and only if XT �= ∅;
(3) T has a unique fixed point if and only if there exists x0 ∈ XT , such that

XT ⊂ [x0] ˜G;
(4) T |[x0]

˜G
is a PO for all x0 ∈ XT ;

(5) If XT �= ∅ and G is weakly connected, then T is a PO. In particular, if
X =

⋃{[x]
˜G : x ∈ XT } and there exists x0 ∈ XT , such that XT ⊂ [x0] ˜G,

then T is a PO;
(6) T |Y is a WPO, where Y =

⋃{[x]
˜G : x ∈ XT };

(7) If XT = X, then T is a WPO.

Proof. The proof of (1) is similar to that Theorem 3.2(1) of [7]. Observe
that (3) is a consequence of (1). The rest follows directly from the proof of
Theorem 21 and Lemma 19. �

Remark 24. We note that the T -connectedness of the graph G which is a
requirement of Theorem Bo is weaken. Moreover, the following example is
applicable for our result but beyond the scope of Theorem Bo.

Example 25. Let X = N and E(G) = {(n, n) : n ∈ X}∪{(n, n+1) : n ∈ N}∪
{(2, 1)}. Define a mapping T : X → X by T1 = T2 = T3 = 1 and Tn = n−2
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for all n ≥ 4. Then, T is a Reich G-contraction with parameters α = 1
2 ,

β = γ = 1
5 . Note that all the conditions of Theorem 21 are satisfied, and

hence, we obtain that 1 is the unique fixed point of T and limn→∞ Tnx = 1
for all x ∈ X. To see that G is not T -connected, we consider x = 3 and y = 5.
Note that (x, y) /∈ E(G) and the sequence {x, z, y} where z = 4 is the only
G-path from x to y. Obviously, (z, Tz) /∈ E(G). Hence, this example is not
applicable in Theorem Bo.

The following example show that the condition “there exists x0 ∈ XT ,
such that XT ⊂ [x0] ˜G” in Corollary 23(5) cannot be dropped.

Example 26. We modify the preceding example as follows. Let X, G, and T
be the same as Example 25. Let X∗ = X∪X ′, where X ′ := {−n : n ∈ X}. Let
G∗ be a directed graph, such that V (G∗) = X∗ and E(G∗) = E(G) ∪ E(G′),
where

(−x,−y) ∈ E(G′) ⇐⇒ (x, y) ∈ E(G).

Define T ′ : X ′ → X ′ by T ′(−x) = −Tx for all x ∈ X. Now, we define
T ∗ : X∗ → X∗ by T ∗x = Tx if x ∈ X and T ∗x = T ′x if x ∈ X ′. Then,
T ∗ is a Reich G∗-contraction with parameters α = 1

2 , β = γ = 1
5 . It follows

from Corollary 23(5) that T is a WPO. In fact, Fix(T ∗) = {−1, 1}. Observe
that the condition “there exists x0 ∈ X∗

T ∗ , such that X∗
T ∗ ⊂ [x0]˜G∗” is not

satisfied.

To point out some error in Bojor’s results, we quote his three results as
follows.

Corollary Bo1. Let (X, d) be a complete metric space endowed with a directed
graph G. Suppose that Condition (J-1) holds. Suppose that T : X → X satis-
fies one of the following conditions:

• T is a Reich G-contraction with parameters α, β, γ, such that β = γ [4,
Corollary 1];

• T is a Banach G-contraction [4, Corollary 2];
• T is a Kannan G-contraction, that is, T is a Reich G-contraction with
parameters α = 0, β = γ [4, Corollary 3].

If G is weakly T -connected, then T is a PO.

The preceding results of Bojor are not true. In fact, it follows from
Corollary 23 that to guarantee the existence of a fixed point of T , it is nec-
essary and sufficient that XT �= ∅. However, the condition XT �= ∅ is not
assumed. Moreover, the weak T -connectedness does not imply that XT �= ∅

as shown in the following example.

Example 27. Let X = [0, 1] be a usual metric space. Define a directed graph
G on X by E(G) = {(x, x) : x ∈ X} ∪ {(x, y) : x, y ∈ (0, 1] and x ≤ y} ∪
{(1, 0)}. Define a mapping T : X → X by Tx = x

4 for all x > 0 and T0 = 1.
It follows that

• T is a Kannan G-contraction with a parameter β = 3
7 ;

• T is a Banach G-contraction with a parameter α = 3
4 .
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Note that G is weakly T -connected and satisfies the condition (J-1). It is easy
to see that Fix(T ) = ∅.

2.2. An extension of Theorem J2

In this subsection, we show that an extension of Theorem J2 via the fixed
point theorem of Hicks and Rhoades [6]. We first recall the following concepts.

Definition 28. Let (X, d) be a metric space. Let T : X → X and x0 ∈ X.
Let Orb(x0, T ) = {x0, Tx0, T

2x0, . . .} be an orbit of x0 under T . A function
g : X → [0,∞) is said to be T -orbitally lower semicontinuous at x0 if {yn} is a
sequence in Orb(x0, T ) and limn→∞ yn = y implies g(y) ≤ lim infn→∞ g(yn).

The following fixed point theorem was proved by Hicks and Rhoades
[6].

Theorem HR. Let (X, d) be a complete metric space and δ ∈ [0, 1). Suppose
that T : X → X is a mapping and there exists let x0 ∈ X, such that

d(Ty, T 2y) ≤ δd(y, Ty) for all y ∈ Orb(x0, T ).

Then, the following statements are true.

(1) limn Tnx0 := z exists.
(2) The element z in (1) is a fixed point of T if and only if x �→ d(x, Tx) is

T -orbitally lower semicontinuous at x0.

The idea of the following lemma is taken from our recent work [5].

Lemma 29. Let (X, d) be a metric space endowed with a directed graph G.
Suppose that T : X → X is a Reich G-contraction. If Condition (J-2) is
satisfied, then the function x �→ d(x, Tx) is T -orbitally lower semicontinuous
at x0 for all x0 ∈ XT .

Proof. Let x0 ∈ XT . Then, (Tnx0, T
n+1x0) ∈ E(G) for all n ∈ N. We show

that g(x) := d(x, Tx) is T -orbitally lower semicontinuous at x0. Let {yn}
be a sequence in Orb(x0, T ) and limn→∞ yn = y ∈ X. For each n ∈ N, let
m(n) be the smallest number k, such that T kx0 = yn. We consider the set
K = {m(n) : n ∈ N}.

Case 1. K is an infinite set. Therefore, there exists a subsequence {ynk
} of

{yn}, such that m(nk) < m(nk+1) for all k ∈ N. Hence, {ynk
} is a

subsequence of {Tnx0}. In particular, there is a strictly increasing
sequence {pk} of natural numbers, such that ynk

= T pkx0 for all
k ∈ N. Then, limk→∞ ynk

= limk→∞ T pkx0 = y. It follows from
(T pkx0, T

pk+1x0) ∈ E(G) and Condition (J-2) that

lim
k→∞

Tynk
= lim

k→∞
T pk+1x0 = Ty.

Since x0 ∈ XT , it follows from Lemma 9 that limk→∞ d(T pkx0,
T pk+1x0) = 0. Hence, g(y) = d(y, Ty) = 0. Therefore, g(y) = 0 ≤
lim infn→∞ g(yn).
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Case 2. K is a finite set. Since {yn} is a sequence in a finite set {T jx0 : j ∈ K}
and limn yn = y, there exist k ∈ K and N ∈ N, such that yn = T kx0

for all n ≥ N . Hence, y = T kx0, that is, yn = y for all n ≥ N . Then

g(y) = d(y, Ty) = lim
n→∞ d(yn, T yn) = lim inf

n→∞ g(yn).

As considered in the preceding two cases, the function g(x) is T -orbitally
lower semicontinuous at x0. �

The following result is our extension of Theorem J2 for Reich
G-contractions.

Theorem 30. Let (X, d) be a complete metric space endowed with a directed
graph G and T : X → X be a Reich G-contraction with parameters α, β, γ,
such that β ≥ γ. Suppose that Condition (J-2) holds. Then, the following
statements hold.
(1) Fix(T ) �= ∅ if and only if XT �= ∅.
(2) For each x ∈ XT and for each y ∈ [x]G, {Tny} converges to a fixed

point of T and limn→∞ Tny does not depend on y.
(3) If there exists x0 ∈ XT , such that X = [x0]G, then T is a PO. In

particular, if X =
⋃{[x]G : x ∈ XT } and there exists x0 ∈ XT , such

that XT ⊂ [x0]G,, then T is a PO.
(4) T |Y is a WPO, where Y =

⋃{[x]G : x ∈ XT }.
(5) If there exists x0 ∈ XT , such that XT ⊂ [x0]G ∪ [x0]G−1 , then T has a

unique fixed point.
(6) If XT = X, then T is a WPO.

Proof. (1) (⇒) is obvious, because Fix(T ) ⊂ XT .
(⇐) Let x0 ∈ XT . Then, (Tnx0, T

n+1x0) ∈ E(G) for all n ∈ N. Put
δ = α+β

1−γ . Then, by Lemma 9, we have

d(Tn+1x0, T
n+2x0) ≤ δd(Tnx0, T

n+1x0) for all n ∈ N. (♥)

Let y ∈ O(x0,∞). Then, y = Tnx0 for some n ≥ 0. Hence, by (♥), we have

d(Ty, T 2y) = d(Tn+1x0, T
n+2x0)

≤ δd(Tnx0, T
n+1x0)

= δd(y, Ty).

Then, by Theorem HR(1), there exists an element z ∈ X, such that z =
limn→∞ Tnx0. It follows from Condition (J-2) and Lemma 29 that x �→
d(x, Tx) is T -orbitally lower semicontinuous at x0. Then, by Theorem HR(2),
we have z = Tz. Hence, z ∈ Fix(T ) �= ∅.

We show (2). Let x ∈ XT and let y ∈ [x]G. It follows from (1) that
limn Tnx = z for some z ∈ Fix(T ). From Lemma 17(1), {Tnx} and {Tny}
are Cauchy equivalent. This implies that {Tny} converges to a fixed point of
T .

(3) follows from (2) and Remark 1.
(4) follows from (2).
(5) follows from (1) and Lemma 17(3).
(6) follows from (1). �
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2.3. Some priori error estimates

In the preceding two subsection, it is shown that the conditions (J-1) and
(J-2) are sufficient for the existence of a fixed point of Reich G-contractions
in a complete metric space. in this subsection, we consider the situation
that a Reich G-contraction has a fixed point and we study some priori error
estimates. Note that the following result requires neither the completeness
nor Jachymski’s conditions.

Theorem 31. Let (X, d) be a metric space endowed with a directed graph G.
Suppose that T : X → X is a Reich G-contraction with parameters α, β, γ,
such that Fix(T ) �= ∅. Then, the following statements are true.
(1) If β = γ and G is weakly connected, then T is a PO.
(2) Let δ := max{α+β

1−γ , α+γ
1−β }. Suppose that G is connected. Then, T is a

PO with a unique fixed point z. Moreover, the following statements are
true.
(a) d(Tnx, z) = O(δn) for all x ∈ XT . In fact, d(Tnx, z) ≤ δn

1−δ d(x, Tx)
for all n ∈ N.

(b) If β ≥ γ and x ∈ X\XT , then d(Tnx, z) = O(nlδn), where l :=
e(z, x).

(c) If β ≤ γ and x ∈ X\XT , then d(Tnx, z) = O(nrδn), where r :=
e(x, z).

Proof. Pick z ∈ Fix(T ). Note that z ∈ XT .
(1) Assume that β = γ and G is weakly connected. It follows Lemma 19(2)

that {Tnx} and {Tnz = z} are Cauchy equivalent for all x ∈ X. Then, T is
a PO.

To see (2), we assume first that β ≥ γ and G is connected. Let x ∈
X. Note that X = [z]G. It follows from Corollary 18(1) that d(Tnx, z) =
d(Tnx, Tnz) = O(nlδn), where l := e(z, x). Therefore, (b) holds. In particu-
lar, limn Tnx = z for all x ∈ X. This implies that T is PO. Now, we consider
the case x ∈ XT . For all n,m ∈ N, it follows from Lemma 9 that

d(Tnx, Tn+mx)

≤ d(Tnx, Tn+1x) + d(Tn+1x, Tn+2x) + · · · + d(Tn+m−1x, Tn+mx)

≤ δnd(x, Tx) + δn+1d(x, Tx) + · · · + δn+md(x, Tx)

≤
⎛

⎝

∞
∑

j=n

δj

⎞

⎠ d(x, Tx)

=
δn

1 − δ
d(x, Tx).

Letting m → ∞ gives d(Tnx, z) ≤ δn

1−δ d(x, Tx) for all n ∈ N. This proves (a).
For the case β ≤ γ and G is connected, it can be proved analogously, so

the proof is omitted. �
We now restrict ourselves to a certain directed graph. Let (X,�) be a

partially ordered set. Let G be a directed graph on X, such that

E(G) := {(x, y) ∈ X × X : x � y}.

104



Fixed point theorems for contractions of Reich type Page 15 of 17  84 

Then, for x0 ∈ X, the condition X = [x0]G is equivalent to x0 � x for all
x ∈ X. In this case, e(x0, x) = 1 for all x �= x0.

Corollary 32. Let (X,�) be a partially ordered set and let (X, d) be a complete
metric space. Let T : X → X be a nondecreasing mapping (with respect to �),
that is, Tx � Ty whenever x � y. Assume that there exist nonnegative real
numbers α, β, γ, such that α + β + γ < 1 and

d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty) for all x � y.

Assume that one the following conditions holds:
(N-1) For any nondecreasing sequence {xn} in X, if limn→∞ xn = x ∈ X,

then xn � x for all n ∈ N;
(N-2) For all x, y ∈ X and for any subsequence {Tnkx} of {Tnx}, if limk→∞

Tnkx = y and Tnkx � Tnk+1x for all k ∈ N, then limk→∞ T (Tnkx) =
Ty.

Then, the following statements hold.
(1) Fix(T ) �= ∅ if and only if there exists x0 ∈ X, such that x0 � Tx0.
(2) Suppose that β ≥ γ and there exists x0 ∈ X, such that x0 � x for

all x ∈ X. Then, T is a PO with a unique fixed point z. Moreover, if
δ = α+β

1−γ , then the following statements are true.
• d(Tnx, z) = O(δn) for all x � Tx.
• d(Tnx, z) = O(nδn) for all x �� Tx.

(3) Suppose that β = γ and there exists x0 ∈ X, such that x0 � Tx0.
Suppose that every pair of elements of X has either an upper bound or
a lower bound. Then, T is a PO with a unique fixed point z. Moreover,
if δ = α+β

1−γ , then the following statements are true.
• d(Tnx, z) = O(δn) for all x � Tx.
• d(Tnx, z) = O(n2δn) for all x �� Tx.
• If β = γ = 0, then d(Tnx, z) = O(αn) for all x �= z.

Finally, we discuss the following result of Bojor [4, Corollary 4].

Corollary Bo2. Let (X,�) be a partially ordered set and let (X, d) be a com-
plete metric space. Let T : X → X be a nondecreasing mapping. Assume that
there exist nonnegative real numbers α, β, γ, such that α + β + γ < 1 and

d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty) for all x � y.

Assume that the following conditions hold:
(1) For any nondecreasing sequence {xn} in X, if limn→∞ xn = x ∈ X,

then xn � x for all n ∈ N.
(2) For each x, y ∈ X, incomparable elements of (X,�), there exists z ∈ X,

such that x � z, y � z and z � Tz.
Then, T is a PO.

It follows from our Corollary 32(1) that Fix(T ) �= ∅ if and only if there
exists x0 ∈ X, such that x0 � Tx0. In particular, if T is a PO, then there
exists x0 ∈ X, such that x0 � Tx0. However, even we assume that there
exists x0 ∈ X, such that x0 � Tx0, we do not have the conclusion as shown
in the following example.
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Example 33. Let X, G, and T be defined in Example 8. For x, y ∈ X, we
define

x � y ⇐⇒ (y, x) ∈ E(G).

Then

d(Tx, Ty) ≤ 1
4
d(x, y) +

1
2
d(x, Tx) for all x � y.

It is obvious that T is not a PO.
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On the strong convergence of sequences of Halpern type
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ABSTRACT
In this paper, we introduce a concept of A-sequences of
Halpern type where A is an averaging infinite matrix. If A is the
identity matrix, this notion become the well-know sequence
generated by Halpern’s iteration. A necessary and sufficient
condition for the strong convergence of A-sequences of
Halpern type is givenwhenever thematrixA satisfies somecer-
tain concentrating conditions. This class of matrices includes
two interesting classes of matrices considered by Combettes
and Pennanen [J. Math. Anal. Appl. 2002;275:521–536]. We
deduce all the convergence theorems studied by Cianciaruso
et al. [Optimization. 2016;65:1259–1275] and Muglia et al. [J.
Nonlinear Convex Anal. 2016;17:2071–2082] from our result.
Moreover, these results are established under the weaker
assumptions. We also show that the same conclusion remains
true under a new condition.
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1. Introduction

LetH be a realHilbert spacewith inner product ⟨·, ·⟩ and induced norm ∥ · ∥, that
is, ∥x∥2 = ⟨x, x⟩ for all x ∈ H. Recall that an element x ∈ H is a fixed point of a
mapping T : H → H if x=Tx and the set of all fixed points of T is denoted by
Fix(T). We use → and⇀ for the strong and weak convergence, respectively. For
a given sequence {xn}∞n=1, let W{xn}∞n=1 denote the set of all weak cluster points
of {xn}∞n=1, that is,

W{xn}∞n=1 := {z ∈ H : xnk ⇀ z for some subsequence {xnk}∞k=1 of {xn}∞n=1}.

In this paper, we are interested in the approximation of a fixed point of amapping
via an iteration if such a fixed point exists.

The following type of mappings was introduced by Aoyama et al. [1].

CONTACT S. Saejung saejung@kku.ac.th, satitz@yahoo.com Department of Mathematics, Faculty of
Science, Khon Kaen University, Khon Kaen 40002, Thailand
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Definition 1.1: A mapping T : H → H is L-hybrid where L ≥ 0 if

∥Tx − Ty∥2 ≤ ∥x − y∥2 + L⟨x − Tx, y − Ty⟩

for all x, y ∈ H. Every L-hybrid mapping where L=0 and L=2 is called a
nonexpansive and nonspreading mapping, respectively.

The concept of nonspreading mappings was introduced by Kohsaka and
Takahashi [2]. Let us summarize several fact about L-hybrid mappings.

Remark 1.1: (1) If T : H → H is firmly nonexpansive, that is, ∥Tx − Ty∥2 ≤
⟨x − y,Tx − Ty⟩ for all x, y ∈ H, then T is an L-hybrid mapping for all L ∈
[0, 2] (see [1]).

(2) Not every L-hybridmapping is continuous. In fact, for each L>0 there exists
a noncontinuous L-hybrid mapping (see [1]).

(3) If T : H → H is L-hybrid, then I−T is demiclosed at zero, that is, x=Tx
whenever {xn}∞n=1 is a sequence inH such that xn ⇀ x ∈ H and xn − Txn →
0 (see [3]).

(4) Every L-hybrid mapping with a fixed point is quasi-nonexpansive. Recall
that a mapping T : H → H is quasi-nonexpansive if Fix(T) ̸= ∅ and ∥Tx −
p∥ ≤ ∥x − p∥ for all x ∈ H and p ∈ Fix(T). Note that the fixed point set
of a quasi-nonexpansive (in particular, an L-hybrid) mapping is closed and
convex (see [4]).

In this paper, the following mappings are also studied.

Definition 1.2: A mapping D : H → H is said to be

(1) β-strongly monotone where β > 0 if

⟨Dx − Dy, x − y⟩ ≥ β∥x − y∥2 for all x, y ∈ H;

(2) δ-Lipschizian where δ > 0 if

∥Dx − Dy∥ ≤ δ∥x − y∥ for all x, y ∈ H.

Every δ-Lipschitzianmappingwhere δ < 1 is specifically called a δ-contraction
or a contraction.

Remark 1.2: If D : H → H is a β-strongly monotone and δ-Lipschitzian map-
ping and 0 < µ < 2β/δ2, then the mapping I − µD is an η-contraction where
η := (1 − µ(2β − µδ2))1/2. Roughly speaking, ifµ is not too large, then I − µD
is a contraction.
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The iterations in this paper are defined by using averaging matrices. Recall
that an infinite real matrix [an,k]∞n,k=1 is averaging if the following conditions are
satisfied:

(A1) an,k ≥ 0 for all n, k ≥ 1 and an,k = 0 for all n ≥ 1 and k>n;
(A2)

∑n
k=1 an,k = 1 for all n ≥ 1;

(A3) limn→∞ an,k = 0 for all k ≥ 1.

Lemma1.3 ([5]): Suppose that [an,k]∞n,k=1 is an averagingmatrix. Let {ξn}∞n=1 be a
sequence of real numbers and ξn :=

∑n
k=1 an,kξk for all n ≥ 1. If ξn → ξ for some

real number ξ , then ξn → ξ .

Recall that for a real number a, the positive part of a, denoted by a+, is defined
by a+ := max{a, 0}.

Definition 1.4: An averaging matrix [an,k]∞n,k=1 satisfies

• BB1-condition [6] if limn→∞
∑n−1

k=1(an,k+1 − an,k)+ = 0;
• BB2-condition [6] if limn→∞

∑n−1
k=1 |an,k+1 − an,k| = 0;

• CMMX-condition [7] if an,1 ≥ an,2 ≥ · · · ≥ an,n for all n ≥ 1.

Remark 1.3: Obviously,

CMMX − condition =⇒ BB2-condition =⇒ BB1-condition.

Moreover, none of the implication above can be reversed.

Remark 1.4: If an averaging matrix [an,k]∞n,k=1 satisfies the condition BB2, then
limn→∞ an,n = 0. In fact, since [an,k]∞n,k=1 is averaging, we have limn→∞ an,1 =
0. This implies that limn→∞ |an,n| ≤ limn→∞(|an,1| +

∑n−1
k=1 |an,k+1 − an,k|) =

0 and hence limn→∞ an,n = 0.

The following three strong convergence theorems for a fixed point of an L-
hybrid mapping are our starting point. The first one was proved by Cianciaruso
et al. [7] and the second and the third ones were proved by Muglia et al. [8].

Theorem 1.5 ([7, Theorem 3.5]): Let D : H → H be a β-strongly monotone and
δ-Lipschitzian operator and let T : H → H be an L-hybrid mapping such that
Fix(T) ̸= ∅. Let [an,k]∞n,k=1 and [bn,k]∞n,k=1 be averaging matrices. Let {xn}∞n=1 be
a sequence inH defined by

x1 ∈ H arbitrarily chosen,
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xn :=
n∑

k=1
an,kxk,

xn+1 := γnxn + (1 − γn)(I − µnD)

n−1∑

k=0
bn,k+1Tkxn for all n ≥ 1,

where

(a) {µn}∞n=1 ⊂ (0,µ)withµ < 2β/δ2 and limn→∞ µn = 0 and
∑∞

n=1 µn = ∞;
(b) [bn,k]∞n,k=1 satisfies CMMX-condition;
(c) limn→∞(1 − an,n)/µn = 0;
(d) {γn}∞n=1 ⊂ [0,α) ⊂ [0, 1) and limn→∞ γn = 0.

Then {xn}∞n=1 converges strongly to p ∈ Fix(T) and this element p is the unique
solution of the variational inequality ⟨Dp, y − p⟩ ≥ 0 for all y ∈ Fix(T).

Theorem 1.6 ([8, Theorem 2.3]): Let D : H → H be a β-strongly monotone and
δ-Lipschitzian operator and let T : H → H be a nonspreading mapping such that
Fix(T) ̸= ∅. Let [bn,k]∞n,k=1 be an averaging matrix. Let {xn}∞n=1 be a sequence in
H defined by

x1 ∈ H arbitrarily chosen,

xn+1 := αn(I − µnD)xn + (1 − αn)
n−1∑

k=0
bn,k+1Tkxn for all n ≥ 1,

where

(a) {αn}∞n=1 ⊂ (0, 1) satisfies limn→∞ αn = 0 and {µn}∞n=1 ⊂ (0,µ) with µ <

2β/δ2 and
∑∞

n=1 αnµn = ∞;
(b) [bn,k]∞n,k=1 satisfies CMMX-condition.

Then {xn}∞n=1 converges strongly to p ∈ Fix(T) and this element p is the unique
solution of the variational inequality ⟨Dp, y − p⟩ ≥ 0 for all y ∈ Fix(T).

Theorem 1.7 ([8, Corollary 2.6]): Let f : H → H be an α-contraction and let
T : H → H be a nonspreading mapping such that Fix(T) ̸= ∅. Let [bn,k]∞n,k=1 be
an averaging matrix. Let {xn}∞n=1 be a sequence inH defined by

x1 ∈ H arbitrarily chosen,

xn+1 := αnf (xn) + (1 − αn)
n−1∑

k=0
bn,k+1Tkxn for all n ≥ 1,

where
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(a) {αn}∞n=1 ⊂ (0, 1) satisfies limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(b) [bn,k]∞n,k=1 satisfies CMMX-condition.

Then {xn}∞n=1 converges strongly to p ∈ Fix(T) and this element p is the unique
solution of the variational inequality ⟨(I − f )p, y − p⟩ ≥ 0 for all y ∈ Fix(T).

It is worth mentioning that there are two averaging matrices [an,k]∞n,k=1 and
[bn,k]∞n,k=1 involving the iterative scheme mentioned above. The first matrix
[an,k]∞n,k=1 is exploited to update xn+1 from the past iterates {xk}nk=1. This
approach motivated by the work of Combettes and Pennanen [9] mitigates the
zig-zagging [10, 11] and spiraling [12, 13] of sequences reported in some appli-
cations. The second matrix [bn,k]∞n,k=1 is motivated from the work of Brézis and
Browder [6]. It can be viewed as an extension of the usual Cesàromean of ergodic
theory.

It is our purpose to introduce two concepts: (1) A-sequences of Halpern type
where A is an averaging infinite matrix, and (2) concentrating matrices in the
sense of Halpern; to simultaneously unify and generalize the preceding three
results. The paper is organized as follows: In Section 2, we first prove some
auxiliary results which is a refinement of Xu’s lemma. The definition of concen-
trating matrices in the sense of Halpern is introduced in Subsection 2.1. This
kind of matrices is inspired by the work of Combettes and Pennanen [9]. In
Subsection 2.2, we provide some tools used extensively in this paper. Our main
convergence theorem is presented in Subsection 2.3 after the introduction of
A-sequences of Halpern type where A is an averaging infinite matrix. A neces-
sary and sufficient condition for the convergence of an A-sequence of Halpern
type is given in terms of some properties of the set of all weak cluster points of
some sequences defined from this sequence. In Subsection 2.4, we show that all
the results of Cianciaruso et al. [7] and of Muglia et al. [8] are easily deduced
from our result with weaker assumptions and with some new conditions. Finally,
in Section 3, we discuss two interesting examples of concentrating matrices in
the sense of Halpern. More precisely, we show that averaging matrices satisfying
either the generalized segmenting or the generalized moving average condition
are concentrating in the sense of Halpern.

2. Main results

We start ourmain result by refining the result which is known as Xu’s lemma [14].

Lemma 2.1: Let {sn}∞n=1 be a sequence in [0,∞), {αn}∞n=1 be a sequence in [0, 1]
with

∑∞
n=1 αn = ∞, and {tn}∞n=1 be a sequence of real numbers. Assume that

sn+1 ≤ (1 − αn)sn + αntn

for all n ≥ 1. Then lim supn→∞ sn ≤ lim supn→∞ tn. In particular, Xu’s lemma
follows, that is, if lim supn→∞ tn ≤ 0, then limn→∞ sn = 0.
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Proof: Without loss of generality, we can assume that tn+1 ≤ tn for all n ≥ 1.
(In fact, we can replace tn by t̂n := sup{tk : k ≥ n} and we see that limn→∞ t̂n =
lim supn→∞ tn.) Note that

0 ≤ max{sn+1, tn+1} ≤ max{sn, tn} for all n ≥ 1.

In particular, limn→∞ max{sn, tn} exists. Observe that αn(sn − tn) ≤ sn −
sn+1. Then

∑m
n=1 αn(sn − tn) ≤ s1 − sm+1 ≤ s1 for all m ≥ 1. It follows from∑∞

n=1 αn = ∞ that

lim inf
n→∞

(sn − tn) ≤ 0.

Now we consider the following two cases.
Case 1: limn→∞ sn exists. It follows that

lim
n→∞

sn ≤ lim inf
n→∞

(sn − tn) + lim sup
n→∞

tn ≤ lim sup
n→∞

tn.

Case 2: limn→∞ sn does not exist. This case is broken into two subcases.
Subcase 2.1: There is an integer N such that sn ≥ tn for all n ≥ N. Then sn =

max{sn, tn} for all n ≥ N. So limn→∞ sn exists, which is a contradiction.
Subcase 2.2: The inequality snk < tnk holds for infinitely many nk. Then

lim sup
n→∞

sn ≤ lim
n→∞

max{sn, tn} = lim
k→∞

max{snk , tnk} = lim
k→∞

tnk ≤ lim sup
n→∞

tn.

This completes the proof. !

Lemma 2.2: Let {sn}∞n=1 and {εn}∞n=1 be sequences in [0,∞) such that
∑∞

n=1 εn <

∞, {αn}∞n=1 be a sequence in [0, 1]with
∑∞

n=1 αn = ∞, and {tn}∞n=1 be a sequence
of real numbers. Assume that

sn+1 ≤ (1 − αn)sn + αntn + εn

for all n ≥ 1. Then lim supn→∞ sn ≤ lim supn→∞ tn. In particular, Xu’s lemma
follows, that is, if lim supn→∞ tn ≤ 0, then limn→∞ sn = 0.

Proof: Note that

sn+1 +
∞∑

k=n+1
εk ≤ (1 − αn)

(
sn +

∞∑

k=n
εk

)
+ αn

(
tn +

∞∑

k=n
εk

)
.

By Lemma 2.1 and
∑∞

n=1 εn < ∞, we have

lim sup
n→∞

sn = lim sup
n→∞

(
sn +

∞∑

k=n
εk

)
≤ lim sup

n→∞

(
tn +

∞∑

k=n
εk

)
= lim sup

n→∞
tn.

Then the result follows. !
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2.1. Concentratingmatrices in the sense of Halpern

Inspired by the concentrating matrices in the sense of Combettes and Pennanen
[9], we introduced the following matrices.

Definition 2.3: An averaging matrix [an,k]∞n,k=1 is concentrating in the sense of
Halpern, (H-concentrating, in short) if whenever {sn}∞n=1, {εn}∞n=1 are sequences
of nonnegative real numbers such that

∑∞
n=1 εn < ∞, {αn}∞n=1 is a sequence

in [0, 1] with
∑∞

n=1 αn = ∞, {tn}∞n=1 is a sequence of real numbers with
lim supn→∞ tn ≤ 0, and

sn :=
n∑

k=1
an,ksk

sn+1 ≤ (1 − αn)sn + αntn + εn

for all n ≥ 1, it follows that limn→∞ sn = 0. It is clear from Lemma 2.2
that the identity matrix is H-concentrating. Some interesting examples of H-
concentrating matrices are discussed in Section 3.2.

2.2. Auxiliary results

Lemma 2.4: Let C be a nonempty convex subset of H and let T : C → C be a
mapping. Let n ≥ 1 and let {bk}nk=1 be a finite sequence of nonnegative numbers
with

∑n
k=1 bk = 1. Let z ∈ C and let {yk}n+1

k=1 be a sequence in C and {ξk}nk=1 be a
sequence of real numbers such that

∥yk+1 − Tz∥2 ≤ ∥yk − z∥2 + ξk

for all k = 1, . . . , n. Then

∥z − Tz∥2 ≤ 2

〈 n∑

k=1
bkyk − z,Tz − z

〉

+
n−1∑

k=1
(bk+1 − bk)∥yk+1 − Tz∥2

+ b1∥y1 − Tz∥2 − bn∥yn+1 − Tz∥2 +
n∑

k=1
bkξk.

Proof: Note that

∥yk+1 − Tz∥2 ≤ ∥yk − z∥2 + ξk

= ∥(yk − Tz) + (Tz − z)∥2 + ξk

= ∥yk − Tz∥2 + 2⟨yk − Tz,Tz − z⟩ + ∥Tz − z∥2 + ξk

= ∥yk − Tz∥2 + 2⟨yk − z,Tz − z⟩ − ∥Tz − z∥2 + ξk.
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Then we have
n∑

k=1
bk∥yk+1 − Tz∥2

≤
n∑

k=1
bk∥yk − Tz∥2 + 2

〈 n∑

k=1
bkyk − z,Tz − z

〉

− ∥Tz − z∥2 +
n∑

k=1
bkξk.

Therefore

∥z − Tz∥2 ≤ 2

〈 n∑

k=1
bkyk − z,Tz − z

〉

+
n−1∑

k=1
(bk+1 − bk)∥yk+1 − Tz∥2

+ b1∥y1 − Tz∥2 − bn∥yn+1 − Tz∥2 +
n∑

k=1
bkξk.

This completes the proof. !

Lemma2.5: Let C be a nonempty closed and convex subset ofH and let T : C → C
be a mapping. Let {yn,k}∞n,k=1 be a bounded double sequence in C and {ξn,k}∞n,k=1 be
a bounded double sequence of real numbers. Let [bn,k]∞n,k=1 be an averaging matrix
satisfying the BB1-condition. Suppose that zn :=

∑n
k=1 bn,kyn,k and

∥yn,k+1 − Tzn∥2 ≤ ∥yn,k − zn∥2 + ξn,k

for all n ≥ 1 and for all k = 1, 2, . . . , n. If limn→∞
∑n

k=1 bn,kξn,k = 0, then

lim
n→∞

∥zn − Tzn∥ = 0.

Proof: It follows from Lemma 2.4 and zn :=
∑n

k=1 bn,kyn,k that

∥zn − Tzn∥2

≤ 2

〈 n∑

k=1
bn,kyn,k − zn,Tzn − zn

〉

+
n−1∑

k=1
(bn,k+1 − bn,k)∥yn,k+1 − Tzn∥2

+ bn,1∥yn,1 − Tzn∥2 − bn,n∥yn,n+1 − Tzn∥2 +
n∑

k=1
bn,kξn,k

≤
n−1∑

k=1
(bn,k+1 − bn,k)+∥yn,k+1 − Tzn∥2 + bn,1∥yn,1 − Tzn∥2 +

n∑

k=1
bn,kξn,k.

Note that {zn} is bounded and hence so are the sequence {yn,1 − Tzn}∞n=1 and
the double sequences {yn,k+1 − Tzn}∞n,k=1. The conclusion follows from the BB1-
condition of [bn,k]∞n,k=1 and limn→∞

∑n
k=1 bn,kξn,k = 0. !
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Lemma2.6: Let C be a nonempty closed and convex subset ofH and let T : C → C
be L-hybridwith a fixed point. Let B := [bn,k]∞n,k=1 be an averagingmatrix. Suppose
that that {xn}∞n=1 is a bounded sequence in C. If one of the following conditions is
satisfied:

(a) B satisfies BB1-condition and L=0;
(b) B satisfies BB2-condition and L>0,

then

lim
n→∞

∥∥∥
n∑

k=1
bn,kTk−1xn − T

( n∑

k=1
bn,kTk−1xn

)∥∥∥ = 0

and hence W{
∑n

k=1 bn,kTk−1xn}∞n=1 ⊂ Fix(T).

Proof: Let yn,k := Tk−1xn, zn :=
∑n

k=1 bn,kyn,k and ξn,k := L⟨Tk−1xn − Tkxn,
zn − Tzn⟩ for all n, k ≥ 1. Since T is L-hybrid,

∥yn,k+1 − Tzn∥2 ≤ ∥yn,k − zn∥2 + ξn,k.

We assume that (a) holds. It follows that limn→∞
∑n

k=1 bn,kξn,k = 0 and the
result follows from Lemma 2.5.

We assume that (b) holds. Note that T is quasi-nonexpansive. Since {xn}∞n=1 is
bounded, the sequence {zn − Tzn}∞n=1 and the double sequence {Tkxn}∞n,k=1 are
bounded. It follows from the BB2-condition of B that

lim
n→∞

bn,1xn = lim
n→∞

n−1∑

k=1
(bn,k+1 − bn,k)Tkxn = lim

n→∞
bn,nTnxn = 0.

In particular,

lim
n→∞

n∑

k=1
bn,kξn,k

= L lim
n→∞

n∑

k=1
bn,k⟨Tk−1xn − Tkxn, zn − Tzn⟩

= L lim
n→∞

〈

bn,1xn +
n−1∑

k=1
(bn,k+1 − bn,k)Tkxn − bn,nTnxn, zn − Tzn

〉

= 0.

The conclusion follows again from Lemma 2.5. !

2.3. Convergence theorems

We first define the following notion which plays a key role in this paper.
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Definition 2.7: Let F be a nonempty closed and convex subset of H and A :=
[an,k]∞n,k=1 be an averaging matrix. We say that a sequence {xn}∞n=1 ⊂ H is of
A-Halpern type with respect to F if there exist a contraction f : H → H; two
sequences {un}∞n=1, {vn}∞n=1 in H; and two sequences {αn}∞n=1, {βn}∞n=1 in [0, 1]
such that the following conditions are satisfied:

(a)
∑∞

n=1 αn = ∞ and lim infn→∞(1 − βn) > 0;
(b) ∥un − p∥ ≤

∑n
k=1 an,k∥xk − p∥ and ∥vn − p∥ ≤

∑n
k=1 an,k∥xk − p∥ for all

n ≥ 1 and for all p ∈ F;
(c) xn+1 = βnxn + (1 − βn)(αnf (un) + (1 − αn)vn) for all n ≥ 1.

Remark 2.1: Suppose that F is a nonempty closed and convex subset of H and
A is an averaging matrix. Every A-Halpern type sequence with respect to F is
bounded.

Proof: Let A := [an,k]∞n,k=1. Suppose that {xn}∞n=1 is of A-Halpern type with
respect to F where f : H → H, {un}∞n=1, {vn}∞n=1, {αn}∞n=1, {βn}∞n=1 are given by
Definition 2.7. Let p ∈ F. Suppose that f is an α-contraction. For each n ≥ 1, set

Mn := max
{
∥x1 − p∥, . . . , ∥xn − p∥, 1

1 − α
∥f (p) − p∥

}
.

Note that

∥un − p∥ ≤
n∑

k=1
an,k∥xk − p∥ ≤ Mn

and

∥vn − p∥ ≤
n∑

k=1
an,k∥xk − p∥ ≤ Mn.

Moreover,

∥f (un) − p∥ ≤ ∥f (un) − f (p)∥ + ∥f (p) − p∥
≤ α∥un − p∥ + ∥f (p) − p∥
≤ αMn + (1 − α)Mn = Mn.

This implies that

∥xn+1 − p∥ ≤ βn∥xn − p∥ + (1 − βn)(αn∥f (un) − p∥ + (1 − αn)∥vn − p∥)
≤ βnMn + (1 − βn) (αnMn + (1 − αn)Mn) = Mn.

By induction, we get that ∥xn − p∥ ≤ max{∥x1 − p∥, (1/(1 − α))∥f (p) − p∥} for
all n ≥ 1 and hence {xn}∞n=1 is bounded. !
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We now give a necessary and sufficient condition for the convergence of a
sequence of A-Halpern type with respect to F.

Theorem 2.8: Let F be a nonempty closed and convex subset of H and A :=
[an,k]∞n,k=1 be an averagingmatrix. Suppose that a sequence {xn}∞n=1 is of A-Halpern
type with respect to F where f : H → H, {un}∞n=1, {vn}∞n=1, {αn}∞n=1, {βn}∞n=1 are
given by Definition 2.7. Suppose that yn := αnf (un) + (1 − αn)vn for all n ≥ 1.
Suppose in addition that one of the following conditions is satisfied:

(a) A is H-concentrating and
∑∞

n=1 βn(1 − an,n) < ∞;
(b) limn→∞(1 − an,n)/αn = 0.

Then xn → z = PFf (z) if and only if W{yn} ⊂ F.

Proof: Wemay assume that f is an α-contraction where α ∈ (0, 1). In particular,
the composition PF ◦ f is also an α-contraction on F and hence there exists a
unique element z ∈ F such that z = PFf (z).

(⇒) Assume that xn → z. Note that xn+1 − xn = (1 − βn)(yn − xn). It fol-
lows from limn→∞ ∥xn+1 − xn∥ = 0 and lim infn→∞(1 − βn) > 0 that limn→∞
∥yn − xn∥ = 0 and hence W{yn} = W{xn} = {z} ⊂ F.

(⇐) We assume that W{yn} ⊂ F. Then lim supn→∞⟨f (z) − z, yn − z⟩ ≤ 0. It
follows from Remark 2.1 that {xn}∞n=1 is bounded and so are the sequences {un}
and {vn}. SetM := sup{∥xn − z∥2 : n ≥ 1}. We consider the following estimates:

∥yn − z∥2

= ∥αn(f (un) − f (z)) + αn(f (z) − z) + (1 − αn)(vn − z)∥2

≤ ∥αn(f (un) − f (z)) + (1 − αn)(vn − z)∥2 + 2αn
〈
f (z) − z, yn − z

〉

≤ αnα
2∥un − z∥2 + (1 − αn)∥vn − z∥2 + 2αn

〈
f (z) − z, yn − z

〉

≤ (1 − αn(1 − α2))
n∑

k=1
an,k∥xk − z∥2 + 2αn

〈
f (z) − z, yn − z

〉
.

In particular, we have

∥xn+1 − z∥2

≤ βn∥xn − z∥2 + (1 − βn)∥yn − z∥2

≤ βn∥xn − z∥2 + (1 − βn)(1 − αn(1 − α2))
( n∑

k=1
an,k∥xk − z∥2

)

+ 2(1 − βn)αn⟨f (z) − z, yn − z⟩.

We now discuss the following two cases.
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Case 1:We assume thatA is H-concentrating and
∑∞

n=1 βn(1 − an,n) < ∞. In
this case, we start by refining the preceding estimate:

∥xn+1 − z∥2

≤ βn∥xn − z∥2 + (1 − βn − (1 − βn)αn(1 − α2))
( n∑

k=1
an,k∥xk − z∥2

)

+ 2(1 − βn)αn
〈
f (z) − z, yn − z

〉

= βn
(
∥xn − z∥2 −

n∑

k=1
an,k∥xk − z∥2

)

+ (1 − (1 − βn)αn(1 − α2))
( n∑

k=1
an,k∥xk − z∥2

)

+ 2(1 − βn)αn
〈
f (z) − z, yn − z

〉

≤ βn(1 − an,n)∥xn − z∥2 + (1 − (1 − βn)αn(1 − α2))
( n∑

k=1
an,k∥xk − z∥2

)

+ 2(1 − βn)αn
〈
f (z) − z, yn − z

〉

≤ βn(1 − an,n)M + (1 − (1 − βn)αn(1 − α2))
( n∑

k=1
an,k∥xk − z∥2

)

+ (1 − βn)αn(1 − α2)
2⟨f (z) − z, yn − z⟩

1 − α2 .

Since
∑∞

n=1 αn = ∞ and lim infn→∞(1 − βn) > 0, we have
∑∞

n=1(1 − βn)αn
(1 − α2) = ∞. Since A is H-concentrating and

∑∞
n=1 βn(1 − an,n) < ∞, we

have limn→∞ ∥xn − z∥2 = 0, that is, xn → z.
Case 2:We assume that limn→∞(1 − an,n)/αn = 0. In this case, we follow the

idea from [7]. Note that
∑n−1

k=1 an,k∥xk − z∥2 ≤ (1 − an,n)M for all n ≥ 2. We
now consider the following estimate:

∥xn+1 − z∥2

≤ βn∥xn − z∥2 + (1 − βn)(1 − αn(1 − α2))
(
(1 − an,n)M + an,n∥xn − z∥2

)

+ 2(1 − βn)αn
〈
f (z) − z, yn − z

〉

=
(
βn + (1 − βn)(1 − αn(1 − α2))an,n

)
∥xn − z∥2

+ (1 − βn)(1 − αn(1 − α2))(1 − an,n)M

+ 2(1 − βn)αn
〈
f (z) − z, yn − z

〉

≤ (1 − (1 − βn)αn(1 − α2))∥xn − z∥2 + (1 − βn)(1 − an,n)M

+ 2(1 − βn)αn
〈
f (z) − z, yn − z

〉
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=
(
1 − (1 − βn)αn(1 − α2)

)
∥xn − z∥2

+ (1 − βn)αn(1 − α2)

(
1 − an,n

αn(1 − α2)
M +

2
〈
f (z) − z, yn − z

〉

1 − α2

)

.

Note that
∑∞

n=1(1 − βn)αn(1 − α2) = ∞ and limn→∞(1 − an,n)/αn = 0. This
implies that limn→∞ ∥xn − z∥2 = 0, that is, xn → z. !

2.4. Deduced results

Wenowpresent thefirst deduced result which is an improvement of Theorem1.5.

Theorem2.9: Let D : H → H be a β-stronglymonotone and δ-Lipschitzian oper-
ator and T : H → H be an L-hybrid mapping such that Fix(T) ̸= ∅. Let A :=
[an,k]∞n,k=1 and B := [bn,k]∞n,k=1 be averaging matrices. Let {xn}∞n=1 be a sequence
inH defined by

x1 ∈ H arbitrarily chosen,

xn :=
n∑

k=1
an,kxk,

xn+1 := γnxn + (1 − γn)(I − µnD)

n−1∑

k=0
bn,k+1Tkxn for all n ≥ 1,

where

(a) {µn}∞n=1 ⊂ (0,µ)withµ < 2β/δ2 and limn→∞ µn = 0 and
∑∞

n=1 µn = ∞;
(b) one of the following two conditions is satisfied:

(1) B satisfies BB1-condition and L=0;
(2) B satisfies BB2-condition and L>0;

(c) one of the following two conditions is satisfied:
(1) A is H-concentrating and

∑∞
n=1 γn(1 − an,n) < ∞;

(2) limn→∞(1 − an,n)/µn = 0;
(d) {γn}∞n=1 ⊂ [0, 1] with lim supn→∞ γn < 1.

Then xn → z = PFix(T)(I − D)z.

Proof: We apply our Theorem 2.8 to prove this result by showing first that the
sequence {xn}∞n=1 is of A-Halpern type with respect to Fix(T). Set

αn := µn
µ

, βn := γn, f := I − µD, un = vn :=
n−1∑

k=0
bn,k+1Tkxn.
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Note that ∥un − p∥ = ∥vn − p∥ = ∥
∑n−1

k=0 bn,k+1(Tkxn − p)∥ ≤
∑n−1

k=0 bn,k+1∥
Tkxn − p∥ ≤ ∥xn − p∥ = ∥

∑n
k=1 an,k(xk − p)∥ ≤

∑n
k=1 an,k∥xk − p∥ for all p ∈

Fix(T). Moreover,

xn+1 = γnxn + (1 − γn)

(
µn
µ

(I − µD)(un) +
(
1 − µn

µ

)
vn

)

= βnxn + (1 − βn)(αnf (un) + (1 − αn)vn).

Finally, we prove that W{yn}∞n=1 ⊂ Fix(T) where yn := αnf (un) + (1 − αn)vn.
To see this, we note from Remark 2.1 that {xn}∞n=1 is bounded and hence
so is the sequence {xn}∞n=1. By Lemma 2.6, we have W{vn}∞n=1 ⊂ Fix(T).
Since limn→∞ ∥yn − vn∥ = limn→∞ αn∥f (un) − vn∥ = 0, we haveW{yn}∞n=1 =
W{vn}∞n=1 ⊂ Fix(T). !

Remark 2.2: The conditions (b), (c), and (d) of Theorem 2.9 are weaker than the
conditions (b), (c), and (d) of Theorem 1.5, respectively.

Remark 2.3:

(1) The matrix A′ = [an,k]∞n,k=1 in Example 3.13 is H-
concentrating but limn→∞(1 − an,n)/αn = ∞. Hence our Theorem 2.9
is established under a new condition and it cannot be applicable by
Theorem 1.5.

(2) Let B := [bn,k]∞n,k=1 be defined by

bn,k :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if n = k = 1;
0 if n ≥ 1 and k > n;
1

n + 1
if n ≥ 2 and k = 1, 2, . . . , n − 1;

2
n + 1

if n ≥ 2 and k = n.

That is,

B =

⎡

⎢⎢⎢⎢⎢⎣

1 0 0 0 0 · · ·
1/3 2/3 0 0 0 · · ·
1/4 1/4 2/4 0 0 · · ·
1/5 1/5 1/5 2/5 0 · · ·
...

...
...

...
... . . .

⎤

⎥⎥⎥⎥⎥⎦
.

Then B satisfies the BB2-condition but it does not satisfy the CMMX-
condition.
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Theorem 2.10: Let D : H → H be a β-strongly monotone and δ-Lipschitzian
operator and T : H → H be L-hybrid such that Fix(T) ̸= ∅. Let A := [an,k]∞n,k=1
and B := [bn,k]∞n,k=1 be averaging matrices. Let {xn}∞n=1 be a sequence inH defined
by

x1 ∈ H arbitrarily chosen,

xn :=
n∑

k=1
an,kxk,

xn+1 := αn(I − µnD)xn + (1 − αn)
n−1∑

k=0
bn,k+1Tkxn for all n ≥ 1

where

(a) {αn}∞n=1 ⊂ [0, 1] such that limn→∞ αn = 0 and {µn}∞n=1 ⊂ (0,µ) with µ <

2β/δ2 and
∑∞

n=1 αnµn = ∞;
(b) one of the following two conditions is satisfied:

(1) B satisfies BB1-condition and L=0;
(2) B satisfies BB2-condition and L>0;

(c) one of the following two conditions is satisfied:
(1) A is H-concentrating;
(2) limn→∞(1 − an,n)/αnµn = 0.

Then xn → z = PFix(T)(I − D)z.

Proof: We apply our Theorem 2.8 to prove this result by showing first that the
sequence {xn}∞n=1 is of A-Halpern type with respect to Fix(T). To see this, set

α̂n := αnµn
µ

, βn := 0, f := I − µD, un := xn,

and

vn :=
(
1 − (1 − αn)µ

µ − αnµn

)
xn + (1 − αn)µ

µ − αnµn

n−1∑

k=0
bn,k+1Tkxn.

It follows that

xn+1 = αn(I − µnD)xn + (1 − αn)
n−1∑

k=0
bn,k+1Tkxn

= αnµn
µ

(I − µD)xn + αn
(
1 − µn

µ

)
xn + (1 − αn)

n−1∑

k=0
bn,k+1Tkxn
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= αnµn
µ

(I − µD)xn

+
(
1 − αnµn

µ

)(αn
(
1 − µn

µ

)

1 − αnµn
µ

xn + 1 − αn
1 − αnµn

µ

n−1∑

k=0
bn,k+1Tkxn

)

= α̂nf (un) + (1 − α̂n)vn.

It is clear that

∥un − p∥ ≤
n∑

k=1
an,k∥xk − p∥ and ∥vn − p∥ ≤

n∑

k=1
an,k∥xk − p∥

for all n ≥ 1 and for all p ∈ Fix(T).
Finally, we prove that W{xn}∞n=1 ⊂ Fix(T). To see this, we note from

Remark 2.1 that {xn}∞n=1 is bounded and hence so is the sequence {xn}∞n=1. By
Lemma 2.6, we have W{

∑n−1
k=0 bn,k+1Tkxn}∞n=1 ⊂ Fix(T). Note that

lim
n→∞

∥∥∥xn+1−
n−1∑

k=0
bn,k+1Tkxn

∥∥∥= lim
n→∞

αn

∥∥∥(I− µnD)xn −
n−1∑

k=0
bn,k+1Tkxn

∥∥∥ = 0.

This implies that W{xn}∞n=1 = W{
∑n−1

k=0 bn,k+1Tkxn}∞n=1 ⊂ Fix(T). Hence the
conclusion follows. !

Remark 2.4: We compare Theorem 1.6 and our Theorem 2.10.

(1) It is obvious that the condition (b) of our Theorem 2.10 is more general than
the condition (b) of Theorem 1.6.

(2) The iteration in our Theorem 2.10 where A is the identity matrix is just the
one studied inTheorem1.6.Note that in the iteration studied inTheorem1.6
the update element xn+1 involves only the current element xn and the past
elements x1, x2, . . . , xn−1 are not exploited. Asmentioned by Combettes and
Pennanen [9], acting on an average of the past elements naturally centers the
iterative sequence and mitigates zigzagging and spiraling.

(3) The mapping in our Theorem 2.10 includes the one studied in Theorem 1.6.
In fact, every nonspreading mapping is 2-hybrid.

Theorem 2.11: Let f : H → H be α-contractive and T : H → H be L-hybrid
such that Fix(T) ̸= ∅. Let A := [an,k]∞n,k=1 and B := [bn,k]∞n,k=1 be averaging
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matrices. Let {xn}∞n=1 be a sequence inH defined by

x1 ∈ H arbitrarily chosen,

xn :=
n∑

k=1
an,kxk,

xn+1 := αnf (xn) + (1 − αn)
n−1∑

k=0
bn,k+1Tkxn for all n ≥ 1

where

(a) {αn}∞n=1 ⊂ [0, 1] such that limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(b) one of the following two conditions is satisfied:

(1) B satisfies BB1-condition and L=0;
(2) B satisfies BB2-condition and L>0;

(c) one of the following two conditions is satisfied:
(1) A is H-concentrating;
(2) limn→∞(1 − an,n)/αn = 0.

Then xn → z = PFix(T)f (z).

Proof: We apply our Theorem 2.8 to prove this result by showing first that the
sequence {xn}∞n=1 is of A-Halpern type with respect to Fix(T). Set

βn := 0, un := xn, vn :=
n−1∑

k=0
bn,k+1Tkxn.

Then xn+1 = αnf (un) + (1 − αn)vn. It is clear that

∥un − p∥ ≤
n∑

k=1
an,k∥xk − p∥ and ∥vn − p∥ ≤

n∑

k=1
an,k∥xk − p∥

for all n ≥ 1 and for all p ∈ Fix(T).
Finally, we prove that W{xn}∞n=1 ⊂ Fix(T). To see this, we note from

Remark 2.1 that {xn}∞n=1 is bounded and hence so is the sequence {xn}∞n=1. By
Lemma 2.6, we have W{vn}∞n=1 ⊂ Fix(T). Note that the sequences {f (un)}∞n=1
and {vn}∞n=1 are bounded, so

lim
n→∞

∥xn+1 − vn∥ = lim
n→∞

αn
∥∥f (un) − vn

∥∥ = 0.

This implies that W{xn}∞n=1 = W{vn}∞n=1 ⊂ Fix(T). Hence the conclusion fol-
lows. !

Remark 2.5: As discussed in Remark 2.4, our Theorem 2.11 significantly
improves Theorem 1.7.
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3. Examples of concentratingmatrices in the sense of Halpern

In this section, we give some examples of H-concentrating matrices.

3.1. CP-concentratingmatrices: definitions and examples

We first recall the following concept introduced by Combettes and Pannanen [9].

Definition 3.1: An averaging matrix [an,k]∞n,k=1 is concentrating in the sense
of Combettes and Pannanen, (CP-concentrating, in short) if whenever {sn}∞n=1,
{εn}∞n=1 are sequences of nonnegative real numbers such that

∑∞
n=1 εn < ∞ and

sn :=
n∑

k=1
an,ksk,

sn+1 ≤ sn + εn,

for all n ≥ 1, it follows that {sn}∞n=1 converges.

To mention some interesting examples of CP-concentrating matrices, we
define some notations. For a given matrix A := [an,k]∞n,k=1, let

a′
n,k := an+1,k − (1 − an+1,n+1)an,k;

ρk :=
( ∞∑

n=k
an,k − 1

)+
;

Jn := {k : an,k > 0}.

Definition 3.2 (Generalized segmenting condition): We say that an averaging
matrix [an,k]∞n,k=1 satisfies the generalized segmenting condition if

∞∑

n=1

n∑

k=1
|a′

n,k| < ∞.

In particular, if a′
n,k = 0 for all n, k ≥ 1, then [an,k]∞n,k=1 is said to satisfy the

segmenting condition [15].

Proposition 3.3: Every averagingmatrix [an,k]∞n,k=1 satisfying the generalized seg-
menting condition and lim infn→∞ an,n > 0 is CP-concentrating. (See [9, Exam-
ple 2.5]) In particular, the identity matrix is CP-concentrating.

The following result tells us that the condition lim infn→∞ an,n > 0 is not
only sufficient but also necessary for averaging matrix [an,k]∞n,k=1 satisfying the
generalized segmenting condition to be CP-concentrating.
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Proposition 3.4: If [an,k]∞n,k=1 is a CP-concentrating matrix satisfying the gener-
alized segmenting condition, then lim infn→∞ an,n > 0.

Before proving this result, let us observe the following fact from the general-
ized segmenting condition.

Remark 3.1: If an averagingmatrix [an,k]∞n,k=1 satisfies the generalized segment-
ing condition and {sn}∞n=1 is a sequence of nonnegative real numbers such that
sn+1 ≤ sn for alln ≥ 1, then {sn} is bounded above and limn→∞ sn exists. Thefirst
assertion follows easily and we assume that there existsM>0 such that sn ≤ M
for all n ≥ 1. To see the second assertion, we first note that

sn+1 =
n∑

k=1
an+1,ksk + an+1,n+1sn+1

= an+1,n+1sn+1 +
n∑

k=1
(an+1,k − (1 − an+1,n+1)an,k)sk + (1 − an+1,n+1)sn

≤ sn − an+1,n+1(sn − sn+1) + M
n∑

k=1
|a′

n,k|

≤ sn + M
n∑

k=1
|a′

n,k|.

Since the identity matrix is CP-concentrating and
∑∞

n=1
∑n

k=1 |a′
n,k| < ∞, we

conclude that limn→∞ sn exists.

Proof of Proposition 3.4: Suppose that [an,k]∞n,k=1 is a CP-concentrating matrix
satisfying the generalized segmenting condition but lim infn→∞ an,n = 0. Pass-
ing to a suitable subsequence {nk} we may assume that

∞∑

j=1
anj+1,nj+1 ≤ 1 and

∞∑

n=n1+1

n∑

k=1
|a′

n,k| ≤ 1/2.

Define a sequence {δn} ⊂ {0, 1} by

δn :=
{
1 if n = nk + 1 for some k ≥ 1;
0 otherwise.

We also define a sequence {sn} by

s1 := 4 and sn+1 := sn − δn+1 for all n ≥ 1.

129



1914 CH. JAIPRANOP AND S. SAEJUNG

Note that

•
∑∞

j=1 aj,jδj ≤ 1;
• s1 = s2 = · · · = sn1 and sn ≤ s1 for all n ≥ n1 + 1;
•
∑l

k=1 a′
l,ksk = 0 for all l = 1, 2, . . . , n1.

This implies that

sn+1 = an+1,n+1sn+1 +
n∑

k=1
a′
n,ksk + (1 − an+1,n+1)sn

= sn − an+1,n+1δn+1 +
n∑

k=1
a′
n,ksk.

In particular, for n ≥ n1 + 1, we have

sn+1 = s1 −
n∑

j=1
aj+1,j+1δj+1 +

n∑

j=1

j∑

k=1
a′
j,ksk

= s1 −
n∑

j=1
aj+1,j+1δj+1 +

n∑

j=n1+1

j∑

k=1
a′
j,ksk

≥ s1 −
∞∑

j=1
aj+1,j+1δj+1 +

n∑

j=n1+1

j∑

k=1
a′
j,ksk

≥ s1 − 1 +
n∑

j=n1+1

j∑

k=1
a′
j,ksk.

Note that s1 = s2 = · · · = sn1 ≥ 0 and sn1+1 = sn1 − δn1+1 = 3 ≥ 0. We prove
by induction that sn ≥ 0 for n ≥ n1. Suppose that there exists n ≥ n1 such that
sk ≥ 0 for all k = 1, 2, . . . , n + 1.We show that sn+2 ≥ 0. To see this, we consider

sn+1 ≥ s1 − 1 +
n∑

j=n1+1

j∑

k=1
a′
j,ksk

≥ s1 − 1 −
n∑

j=n1+1

j∑

k=1
|a′

j,k|s1

≥ 3 − 4
∞∑

j=n1+1

j∑

k=1
|a′

j,k| ≥ 1.

This implies that sn+2 ≥ sn+1 − 1 ≥ 0. By induction, we conclude that sn ≥ 0 for
all n ≥ 1. It follows from Remark 3.1 that limn→∞ sn exists. However, it is easy
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to see that limn→∞ sn does not exist which is a contradiction. This completes the
proof. !

Definition 3.5 (Generalized moving average condition): We say that an aver-
aging matrix [an,k]∞n,k=1 satisfies the generalized moving average condition if the
following conditions hold:

(a)
∑∞

k=1 ρk < ∞,
(b) Jn+1 ⊂ Jn ∪ {n + 1} for all n ≥ 1,
(c) there exists a ∈ (0, 1) such that an,k ≥ a for all n ≥ 1 and for all k ∈ Jn.

Proposition 3.6: Every averaging matrix satisfying the generalized moving aver-
age condition is CP-concentrating. (See [9, Example 2.6])

3.2. H-concentratingmatrices and some examples

To show that an averaging matrix is H-concentrating, we use the following easier
characterization.

Proposition 3.7: An averaging matrix [an,k]∞n,k=1 is H-concentrating if and only
if whenever {sn}∞n=1 is a sequence of nonnegative real numbers, {αn}∞n=1 is a
sequence in [0, 1] with

∑∞
n=1 αn = ∞, {tn}∞n=1 is a sequence of real numbers with

lim supn→∞ tn ≤ 0 and

sn :=
n∑

k=1
an,ksk

sn+1 ≤ (1 − αn)sn + αntn

for all n ≥ 1, it follows that limn→∞ sn = 0.

Proof: The necessity is trivial. To prove the sufficiency, we assume that the
latter statement holds. Suppose that {sn}∞n=1, {εn}∞n=1 are sequences of nonneg-
ative real numbers such that

∑∞
n=1 εn < ∞, {αn}∞n=1 is a sequence in [0, 1] with∑∞

n=1 αn = ∞, {tn}∞n=1 is a sequence of real numbers with lim supn→∞ tn ≤ 0
and

sn :=
n∑

k=1
an,ksk

sn+1 ≤ (1 − αn)sn + αntn + εn

for all n ≥ 1. Set rn := sn +
∑∞

i=n εi for all n ≥ 1. Observe that

sn +
∞∑

i=n
εi ≤

n∑

k=1
an,k

(
sk +

∞∑

i=k
εi
)

=
n∑

k=1
an,krk = rn.
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It follows that

rn+1 = sn+1 +
∞∑

j=n+1
εj

≤ (1 − αn)sn + αntn +
∞∑

j=n
εi

= (1 − αn)
(
sn +

∞∑

j=n
εj
)

+ αn
(
tn +

∞∑

j=n
εj
)

≤ (1 − αn)rn + αn
(
tn +

∞∑

j=n
εj
)
.

Note that lim supn→∞(tn +
∑∞

j=n εj) = lim supn→∞ tn ≤ 0. By the assumption
of this part, we have limn→∞ rn = 0. In particular,

lim
n→∞

sn = lim
n→∞

(
rn −

∞∑

j=n
εj
)

= 0.

This implies that [an,k]∞n,k=1 is H-concentrating. !

Remark 3.2: Suppose that [an,k]∞n,k=1 is an averaging matrix. Suppose that
{sn}∞n=1 is a sequence of nonnegative real numbers, {αn}∞n=1 is a sequence in [0, 1],
{tn}∞n=1 is a bounded sequence of real numbers, and

sn :=
n∑

k=1
an,ksk

sn+1 ≤ (1 − αn)sn + αntn

for all n ≥ 1. Then {sn}∞n=1 is bounded.

Proof: Suppose that M := sup{s1, t1, t2, . . .}. Obviously, s1 ≤ M. Assume that
sk ≤ M for all k = 1, 2, . . . , n. Then sn =

∑n
k=1 an,ksk ≤ M and sn+1 ≤ (1 −

αn)sn + αntn ≤ M. By induction, the sequence {sn}∞n=1 is bounded. !

3.2.1. Generalized segmenting condition
We prove that every averaging matrix [an,k]∞n,k=1 satisfying lim infn→∞ an,n > 0
is H-concentrating. In fact, we have the following result.

Proposition 3.8: Suppose that A := [an,k]∞n,k=1 is an averaging matrix satisfy-
ing the generalized segmenting condition. Then the following two statements are
equivalent.
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(a) A is H-concentrating;
(b) lim infn→∞ an,n > 0.

Proof: (b)⇒(a) Suppose that lim infn→∞ an,n > 0. Suppose that {sn}∞n=1 is a
sequence of nonnegative real numbers, {αn}∞n=1 is a sequence in [0, 1] with∑∞

n=1 αn = ∞, {tn}∞n=1 is a sequence of real numbers with lim supn→∞ tn ≤ 0
and

sn :=
n∑

k=1
an,ksk

sn+1 ≤ (1 − αn)sn + αntn

for all n ≥ 1. By Remark 3.2, we assume that sn ≤ M < ∞ for all n ≥ 1. Note
that

sn+1 = an+1,n+1sn+1 + (1 − an+1,n+1)sn +
n∑

k=1
a′
n,ksk

≤ an+1,n+1((1 − αn)sn + αntn) + (1 − an+1,n+1)sn + M
n∑

k=1
|a′

n,k|

= (1 − αnan+1,n+1)sn + αnan+1,n+1tn + M
n∑

k=1
|a′

n,k|.

Since lim infn→∞ an,n > 0 and
∑∞

n=1 αn = ∞, we have
∑∞

n=1 αnan+1,n+1 =
∞. By Lemma 2.2, we obtain limn→∞ sn = 0. Since sn+1 ≤ max{sn, tn} and
lim supn→∞ tn ≤ 0, we have limn→∞ sn = 0. This implies that A is H-
concentrating.

(a) ⇒ (b) Suppose that [an,k]∞n,k=1 is an H-concentrating matrix satisfying the
generalized segmenting condition but lim infn→∞ an,n = 0. Passing to a suitable
subsequence {nk} we may assume that

ank+1,nk+1 ≤ 1
k + 1

for all k ≥ 1 and
∞∑

n=n1

n∑

k=1
|a′

n,k| ≤ 1
4
.

Define a sequence {αn} ⊂ [0, 1] by

αn :=

⎧
⎨

⎩

1
k + 1

if n = nk + 1 for some k ≥ 1;

0 otherwise.

We also define a sequence {sn} by

s1 > 0 and sn+1 := (1 − αn+1)sn for all n ≥ 1.
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Note that

•
∑∞

j=1 αj = ∞ and
∑∞

j=1 aj,jαj ≤
∑∞

j=1 1/j2 < ∞;
•
∏∞

l=n1(1 − al+1,l+1αl+1) ≥
∏∞

k=1(1 − 1/(k + 1)2) = 1/2;
• s1 = s2 = · · · = sn1 and 0 ≤ sn ≤ s1 for all n ≥ n1 + 1;
• sn1 = s1.

This implies that

sn+1 = an+1,n+1sn+1 +
n∑

k=1
a′
n,ksk + (1 − an+1,n+1)sn

= (1 − αn+1an+1,n+1)sn +
n∑

k=1
a′
n,ksk.

In particular, we have

sn+1 = (1 − αn+1an+1,n+1)sn +
n∑

k=1
a′
n,ksk

=
n∏

l=n−1
(1 − αl+1al+1,l+1)sn−1

+ (1 − αn+1an+1,n+1)
n−1∑

k=1
a′
n−1,ksk +

n∑

k=1
a′
n,ksk

≥
n∏

l=n−1
(1 − αl+1al+1,l+1)sn−1 −

n∑

l=n−1

( l∑

k=1
|a′

l,k|sk
)

...

≥
n∏

l=n1

(1 − αl+1al+1,l+1)sn1 −
n∑

l=n1

( l∑

k=1
|a′

l,k|sk
)

≥
n∏

l=n1

(1 − αl+1al+1,l+1)s1 −
n∑

l=n1

( l∑

k=1
|a′

l,k|
)
s1

≥ (1/2)s1 − (1/4)s1 = (1/2)s1.

It follows from sn+1 ≤ sn for all n ≥ 1 and Remark 3.1 that limn→∞ sn exists.
Thus limn→∞ sn ≥ (1/2)s1 > 0. Since limn→∞ αn = 0, we have limn→∞ sn =
limn→∞ sn > 0 which is a contradiction. This completes the proof. !

134



OPTIMIZATION 1919

3.2.2. Generalizedmoving average condition
We prove that every averaging matrix satisfying the generalized moving average
condition is H-concentrating.

Lemma 3.9: Suppose that [an,k]∞n,k=1 is CP-concentrating. Suppose that {sn}∞n=1
is a sequence of nonnegative real numbers, {αn}∞n=1 is a sequence in [0, 1] with∑∞

n=1 αn = ∞, {tn}∞n=1 is a sequence of real numbers with lim supn→∞ tn ≤ 0 and

sn :=
n∑

k=1
an,ksk

sn+1 ≤ (1 − αn)sn + αntn

for all n ≥ 1. Then limn→∞ sn exists. Furthermore, if lim infn→∞ sn = 0, then
limn→∞ sn = 0.

Proof: Without loss of generality, we can assume that 0 ≤ tn+1 ≤ tn for all
n ≥ 1. (Otherwise, we replace tn by t̂n := sup{0, tn, tn+1, . . .} and it is clear that
sn+1 ≤ (1 − αn)sn + αn̂tn.) Hence limn→∞ tn = 0. Set tn :=

∑n
k=1 an,ktk. Note

tn ≥ tn ≥ tn+1. Then

sn+1 ≤ (1 − αn)sn + αntn ≤ max{sn, tn}.

Moreover, tn+1 ≤ max{sn, tn}. Set ξn := max{sn, tn} and ξn :=
∑n

k=1 an,kξk.
Then

ξn+1 ≤ max{sn, tn} = max
{ n∑

k=1
an,ksk,

n∑

k=1
an,ktk

}

≤
n∑

k=1
an,kmax{sk, tk} =

n∑

k=1
an,kξk = ξn.

Since [an,k]∞n,k=1 is CP-concentrating, limn→∞ ξn exists. Since limn→∞ tn = 0,
we get that limn→∞ sn exists. !

Lemma 3.10: Suppose that [an,k]∞n,k=1 is an averaging matrix satisfying the gener-
alized moving average condition. Let cn,k :=

∑∞
i=n ai,k and un :=

∑n
k=1 cn+1,k for

all n, k ≥ 1. Then {un}∞n=1 is bounded above.

Proof: Since a|Jn| ≤
∑n

k=1 an,k = 1, there is an integer m ≥ 1 such that |Jn| ≤
1/a ≤ m for all n ≥ 1. It follows from

∑∞
k=1 ρk < ∞ that {ρn}∞n=1 is bounded.

There is a real number M such that cn,k ≤ ck,k ≤ ρk + 1 ≤ M for all n, k ≥ 1.
Then

0 ≤ un =
n∑

k=1
cn+1,k =

∑

k∈Jn+1\{n+1}
cn+1,k ≤ mM

for all n ≥ 1. !
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Proposition 3.11: Every averaging matrix satisfying the generalized moving aver-
age condition is H-concentrating.

Proof: Suppose that A := [an,k]∞n,k=1 is an averaging matrix satisfying the gener-
alized moving average condition. Suppose that {sn}∞n=1 is a sequence of nonneg-
ative real numbers, {αn}∞n=1 is a sequence in [0, 1] with

∑∞
n=1 αn = ∞, {tn}∞n=1 is

a sequence of real numbers with lim supn→∞ tn ≤ 0 and

sn :=
n∑

k=1
an,ksk

sn+1 ≤ (1 − αn)sn + αntn

for all n ≥ 1. By Remark 3.2, we assume that sn ≤ M < ∞ for all n ≥ 1. Let
cn,k :=

∑∞
i=n ai,k and un :=

∑n
k=1 cn+1,ksk. By Lemma 3.10, we have {cn,k}∞n,k=1

and {un}∞n=1 are bounded above. Obviously, cn,k − cn+1,k = an,k and cn,n − 1 ≤
ρn. Since

sn+1 ≤ (1 − αn)
( n∑

k=1
an,ksk

)
+ αntn

= (1 − αn)
( n∑

k=1
(cn,k − cn+1,k)sk

)
+ αntn,

we obtain

sn+1 + un = sn+1 +
n∑

k=1
cn+1,ksk

≤ (1 − αn)
( n∑

k=1
cn,ksk

)
+ αn

(
tn +

n∑

k=1
cn+1,ksk

)

= (1 − αn)(sn + un−1) + αn(tn + un) + (1 − αn)(cn,n − 1)sn
≤ (1 − αn)(sn + un−1) + αn(tn + un) + ρnM.

Since
∑∞

k=1 ρk < ∞ and lim supn→∞ tn ≤ 0, it follows from Lemma 2.2 that

lim inf
n→∞

sn + lim sup
n→∞

un = lim inf
n→∞

sn + lim sup
n→∞

un−1

≤ lim sup
n→∞

(sn + un−1)

≤ lim sup
n→∞

(tn + un) ≤ lim sup
n→∞

un.

In particular, lim infn→∞ sn = 0. It follows fromLemma3.9 that limn→∞ sn = 0.
Hence A is H-concentrating. This completes the proof. !
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3.2.3. Some concrete examples
Note that the generalized segmenting condition and the generalized moving
average condition are independent as shown in the following two examples.

Example 3.12: Let A := [an,k]∞n,k=1 be defined by

an,k :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if n = k = 1;
0 if n ≥ 1 and k > n;
an−1,k/2 if n ≥ 2 and k < n;
1/2 if n ≥ 2 and k = n.

That is,

A =

⎡

⎢⎢⎢⎢⎢⎣

1 0 0 0 0 · · ·
1/2 1/2 0 0 0 · · ·
1/4 1/4 1/2 0 0 · · ·
1/8 1/8 1/4 1/2 0 · · ·
...

...
...

...
... . . .

⎤

⎥⎥⎥⎥⎥⎦
.

Then A is an averaging matrix satisfying the generalized segmenting condition
but not the generalized moving average condition.

Example 3.13: Let A′ := [an,k]∞n,k=1 be defined by

an,k :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if n = k = 1;
0 if n ≥ 1 and k > n;
0 if n ≥ 2 and k = 1, 2, . . . , n − 2;
1/2 if n ≥ 2 and k = n − 1, n.

That is,

A′ =

⎡

⎢⎢⎢⎢⎢⎣

1 0 0 0 0 · · ·
1/2 1/2 0 0 0 · · ·
0 1/2 1/2 0 0 · · ·
0 0 1/2 1/2 0 · · ·
...

...
...

...
... . . .

⎤

⎥⎥⎥⎥⎥⎦
.

Then A′ is an averaging matrix satisfying the generalized moving average condi-
tion but not the generalized segmenting condition.

Remark 3.3: The question naturally arises whether the classes of CP-
concentrating matrices and H-concentrating matrices are equal.
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1. Introduction

The split feasibility problem (SFP) which was first introduced by Censor and
Elfving [3] is to find

x̂ ∈ C such that Lx̂ ∈ Q,

where C and Q are closed convex subsets of Hilbert spaces H1 and H2,
respectively, and L : H1 → H2 is a bounded linear operator. The SFP has
received much attention, due to its applications in signal processing and image
reconstruction.

Suppose that PC and PQ are the (orthogonal) projections onto the sets
C and Q, respectively. Assuming that SFP has a solution, it is not difficult
to see that x̂ ∈ H1 solves the SFP if and only if it solves the fixed-point
equation

x̂ = PC(I − γL∗(I − PQ)L)x̂,

where γ > 0 is any constant, I is the identity operator, and L∗ is the adjoint of
L. Byrne [1] proposed the following algorithm: x1 ∈ H1 is arbitrarily chosen
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and for all n ≥ 1,

xn+1 = PC(xn − γL∗(I − PQ)Lxn),

to approximate a solution of the SFP. In fact, it was proved that if H1 and H2

are finite dimensional, then {xn} converges to a solution of the SFP provided
that the SFP is consistent and γ ∈ (

0, 2/‖L‖2
)

.
We now reformulate the SFP into the so-called split common fixed-point

problem (SCFP), that is, the problem of finding

x̂ ∈ Fix(U) such that Lx̂ ∈ Fix(T ),

where U : H1 → H1 and T : H2 → H2 are two mappings with nonempty
fixed-point sets Fix(U) := {x ∈ H1 : x = Ux} and Fix(T ) := {y ∈ H2 :
y = Ty}, respectively, and L : H1 → H2 is a bounded linear operator. If
U := PC and T := PQ, then Fix(U) = C and Fix(T ) = Q and hence the
SCFP immediately reduces to the SFP. It should be noted here that Byrne et
al. [2] showed that the SFP can be reformulated into the split common null
point problem. Censor and Segal [4] proposed and proved the convergence of
the following algorithm: x1 ∈ H1 is arbitrarily chosen and for all n ≥ 1,

xn+1 = U(xn − γL∗(I − T )Lxn)

where U and T are firmly nonexpansive mappings (see the definition in
Sect. 2) in the finite dimensional setting and γ ∈ (

0, 2/‖L‖2
)

. To imple-
ment this algorithm, we have to know or estimate the operator norm of the
bounded linear operator L. However, the computation (or the estimate) of
‖L‖ is not an easy task. To overcome this drawback, many variable step sizes
without the prior information about ‖L‖ have been constructed (see [7]). Fol-
lowing the idea of Yang [9], Wang [8] proposed the following method for the
SCFP.

Theorem 1.1. Let U : H1 → H1, T : H2 → H2 be firmly nonexpansive
mappings and L : H1 → H2 be a bounded linear operator. Define

{

x1 ∈ H1

xn+1 = (I − ρn(I − U + L∗(I − T )L))xn,

where {ρn} is a sequence of positive real numbers such that
∑∞

n=1 ρn = ∞
and

∑∞
n=1 ρ2

n < ∞. If Ω := {x ∈ H1 : x ∈ Fix(U) and Lx ∈ Fix(T )} �= ∅,
then xn ⇀ z ∈ Ω. Furthermore, z = limn→∞ PΩxn.

The purpose of this paper is to give a short and simple proof of Wang’s
result and provide a weaker sufficient condition on {ρn} which does not re-
quire the computation of the operator norms.

2. Results

We first recall some definitions concerning our result. Let H be a real Hilbert
space with inner product 〈·, ·〉 and the induced norm ‖·‖. For a closed convex
subset C of H, the (orthogonal) projection PC : H → C is defined for each
x ∈ H as the unique element PCx ∈ C such that

‖x − PCx‖ = inf{‖x − z‖ : z ∈ C}.
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Definition 2.1. An operator T : H → H is called
• firmly nonexpansive if, for all x, y ∈ H,

〈x − y, Tx − Ty〉 ≥ ‖Tx − Ty‖2;

• α-inverse strongly monotone where α > 0 if αT is firmly nonexpansive,
that is, for all x, y ∈ H,

〈x − y, Tx − Ty〉 ≥ α‖Tx − Ty‖2.

Remark 2.2. Every projection is firmly nonexpansive.

More information concerning firmly nonexpansive mappings and, in par-
ticular, nearest point projections can be found in the book by Goebel and
Reich [5].

Let us recall the following result of Groetsch [6].

Theorem 2.3. Let H be a Hilbert space and let S : H → H be a firmly non-
expansive mapping such that Fix(S) := {x ∈ H : x = Sx} �= ∅. Define

{

x1 ∈ H
xn+1 = (1 − αn)xn + αnSxn.

If {αn} is a sequence in [0, 2] such that
∞
∑

n=1

αn(2 − αn) = ∞,

then the sequence {xn} converges weakly to an element z ∈ Fix(S) and z =
limn→∞ PFix(S)xn.

Lemma 2.4. Let H be a Hilbert space. A mapping A : H → H is α-inverse
strongly monotone if and only if I − αA is firmly nonexpansive.

Lemma 2.5. If a, b, c are positive real numbers, then

a2 +
b2

c
≥ (a + b)2

1 + c
.

Lemma 2.6. Let U : H1 → H1, T : H2 → H2 be firmly nonexpansive map-
pings and let L : H1 → H2 be a bounded linear operator. Suppose that
α := 1

1+‖L‖2 and A := I − U + L∗(I − T )L. The following statements are
true.
(a) I − αA is firmly nonexpansive;
(b) if Ω := {x ∈ H1 : x ∈ Fix(U) and Lx ∈ Fix(T )} �= ∅, then Fix(I −

αA) = Ω.

Proof. (a) By Lemma 2.4, it suffices to show that A is α-inverse strongly
monotone. Suppose that x, y ∈ H1. It follows from ‖L∗‖ = ‖L‖ and Lemma
2.5 that
〈x − y, Ax − Ay〉 = 〈x − y, (I − U)x − (I − U)y〉 + 〈Lx − Ly, (I − T )Lx − (I − T )Ly〉

≥ ‖(I − U)x − (I − U)y‖2 + ‖(I − T )Lx − (I − T )Ly‖2
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≥ ‖(I − U)x − (I − U)y‖2 +
‖L∗(I − T )Lx − L∗(I − T )Ly‖2

‖L∗‖2

≥ (‖(I − U)x − (I − U)y‖ + ‖L∗(I − T )Lx − L∗(I − T )Ly‖)2
1 + ‖L‖2

≥ α‖Ax − Ay‖2.

(b) Obviously, Ω ⊂ Fix(I − αA). Suppose that Ω �= ∅. To prove that
Fix(I − αA) ⊂ Ω, let z ∈ Fix(I − αA) and p ∈ Ω. This implies that Az =
Ap = 0. It follows from (a) that

0 = 〈z − p,Az − Ap〉
≥ ‖(I − U)z − (I − U)p‖2 + ‖(I − T )Lz − (I − T )Lp‖2

= ‖(I − U)z‖2 + ‖(I − T )Lz‖2.

In particular, z ∈ Fix(U) and Lz ∈ Fix(T ). This means that z ∈ Ω and
the proof is finished. �

Now we present the following result which is an improvement of Theo-
rem 1.1.

Theorem 2.7. Let H1 and H2 be Hilbert spaces. Let U : H1 → H1, T : H2 →
H2 be firmly nonexpansive mappings and L : H1 → H2 be a bounded linear
operator. Define

{

x1 ∈ H
xn+1 = (I − ρn(I − U + L∗(I − T )L))xn,

where {ρn} is a sequence in
[

0, 2/(1 + ‖L‖2)
]

such that

∞
∑

n=1

ρn(2 − (1 + ‖L‖2)ρn) = ∞.

Suppose that Ω := {x ∈ H1 : x ∈ Fix(U) and Lx ∈ Fix(T )} �= ∅. Then the
sequence {xn} converges weakly to z ∈ Ω. Furthermore, z = limn→∞ PΩxn.

Proof. We write A := I − U + L∗(I − T )L. It follows from Lemma 2.6 that
I − αA is firmly nonexpansive where α := 1/(1 + ‖L‖2). Moreover,

xn+1 = (I − ρnA)xn =
(

1 − ρn
α

)

xn +
ρn
α

(I − αA)xn.

As a consequence of Theorem 2.3, we obtain the result. �
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Remark 2.8. Our Theorem 2.7 recovers the result of Wang in the following
ways:

1. If {ρn} is a sequence of positive real numbers such that
∑∞

n=1 ρn =
∞ and

∑∞
n=1 ρ2

n < ∞, then the sequence {ρn} ultimately sits in the
interval

[

0, 2/(1 + ‖L‖2)
]

and it satisfies the condition
∑∞

n=1 ρn(2 −
(1 + ‖L‖2)ρn) = ∞. Hence, our Theorem 2.7 implies Wang’s result
(Theorem 1.1).

2. Wang’s result remains true if {ρn} is a sequence of positive real numbers
such that

∑∞
n=1 ρn = ∞ and limn→∞ ρn = 0. This condition does not

require the computation of ‖L‖ and it is strictly weaker than Wang’s
condition.
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1. Introduction

One of the many interesting questions in the theory of functional equations
is the hyperstability problem: When is it true that a function which approxi-
mately satisfies a functional equation must also be a solution of the functional
equation?

In this paper, we assume that F,K ∈ {R,C} where R and C are the sets
of all real numbers and complex numbers, respectively; and we assume that
N is the set of all positive integers. Suppose that X and Y are normed spaces
over the scalar fields F and K, respectively. We are interested in the following
functional equation. A function f : X → Y satisfies the general linear equation
if there exist constants a, b ∈ F \ {0} and A,B ∈ K such that

f(ax + by) = Af(x) + Bf(y) for all x, y ∈ X. (1.1)

In particular, we say that f satisfies the Cauchy equation if (1.1) holds where
a = b = A = B = 1; the Jensen equation if (1.1) holds where a = b = A = B =
1/2. It is known that a function f : X → Y with f(0) = 0 satisfies the Jensen
equation if and only if it satisfies the Cauchy equation [7,8]. In particular, it
follows that if a function f : X → Y satisfies the Jensen equation, then the
odd part fo of f satisfies the Cauchy equation and the even part fe of f is a
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constant. Recall that fo(x) := 1
2 (f(x) − f(−x)) and fe(x) := 1

2 (f(x) + f(−x))
for all x ∈ X.

Piszczek [9] recently proved the following hyperstability result for general
linear equations.

Theorem P. [9, Theorem 2] Suppose that X is a normed space and Y is Banach
space over the scalar fields F and K, respectively. Suppose that a, b ∈ F \ {0}
and A,B ∈ K. Suppose that c ≥ 0, p < 0, and f : X → Y satisfies the following
condition:

‖f(ax + by) − Af(x) − Bf(y)‖ ≤ c(‖x‖p + ‖y‖p)
for all x, y ∈ X \ {0}. Then f satisfies the equation

f(ax + by) = Af(x) + Bf(y) for all x, y ∈ X \ {0}.

Remark 1.1. Note that the completeness of Y in Theorem P can be relaxed,
that is, the conclusion of Theorem P remains true if Y is a normed space.

The method of the proof of Theorem P given in [9] is based on the fixed
point theorem of Brzdȩk [4]. In this paper, we provide a simple and direct
proof of Theorem P via the following hyperstability of the Cauchy equation
which was proved by Brzdȩk [5].

Theorem B. [5, Theorem 1.2] Let X and Y be normed spaces, c ≥ 0, and
p < 0. Suppose that E := X \ {0}. If a function g : X → Y satisfies

‖g(x + y) − g(x) − g(y)‖ ≤ c(‖x‖p + ‖y‖p),
for all x, y ∈ E with x + y ∈ E, then g satisfies the Cauchy equation on E,
that is,

g(x + y) = g(x) + g(y)

for all x, y ∈ E with x + y ∈ E.

2. Main results

The following result tells us that if a function approximately satisfies the gen-
eral linear equation, then its odd part approximately satisfies the Cauchy equa-
tion and its even part is a constant.

Theorem 2.1. Let X and Y be normed spaces over the scalar fields F and K,
respectively. Let a, b ∈ F \ {0}, A,B ∈ K, c ≥ 0, and p < 0. Suppose that
f : X → Y satisfies the inequality

‖f(ax + by) − Af(x) − Bf(y)‖ ≤ c(‖x‖p + ‖y‖p)
for all x, y ∈ X \ {0}. Then the odd and even parts fo, fe : X → Y of f satisfy
the following conditions:
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(a) f(x) = fo(x) + fe(x), fo(−x) = −fo(x), and fe(−x) = fe(x) for all
x ∈ X;

(b) fo(0) = 0 and fe(0) = f(0);
(c)

∥
∥fo(x) − 2Afo

(
x
2a

)∥
∥ ≤ 2α‖x‖p and

∥
∥fo(x) − 2Bfo

(
x
2b

)∥
∥ ≤ 2α‖x‖p for

all x ∈ X \ {0} where α := c
(

1
|2a|p + 1

|2b|p
)

;
(d) ‖fo(x+ y)− fo(x)− fo(y)‖ ≤ C(‖x‖p +‖y‖p) for all x, y ∈ X \{0} where

C := 2α(1 + 2p+1 + 3p + 4p);
(e) fe(x) = f(0) for all x ∈ X; and fe(0) = Afe(0) + Bfe(0).

Proof. It follows immediately that (a) and (b) hold.
We now prove (c) and (d). Note that

‖fo(ax + by) − Afo(x) − Bfo(y)‖
=

1
2
‖f(ax+by)−f(−ax − by) − A(f(x) − f(−x)) − B(f(y) − f(−y))‖

≤ 1
2
‖f(ax+by)−Af(x) − Bf(y)‖+

1
2
‖f(−ax − by) − Af(−x) − Bf(−y)‖

≤ c

2
(‖x‖p + ‖y‖p) +

c

2
(‖x‖p + ‖y‖p)

= c(‖x‖p + ‖y‖p) (2.1)

for all x, y ∈ X \ {0}. Let x ∈ X \ {0}. Replacing x by x
2a and y by x

2b in (2.1),
we get

∥
∥
∥fo(x) − Afo

( x

2a

)

− Bfo

( x

2b

)∥
∥
∥ ≤ α‖x‖p (2.2)

where α := c
(

1
|2a|p + 1

|2b|p
)

. Next, replacing x by x
2a and y by − x

2b in (2.1), it
follows from (2.1), (a), and (b) that

∥
∥
∥−Afo

( x

2a

)

+ Bfo

( x

2b

)∥
∥
∥ ≤ α‖x‖p. (2.3)

Then (2.2) and (2.3) imply that
∥
∥
∥fo(x) − 2Afo

( x

2a

)∥
∥
∥ ≤ 2α‖x‖p;

∥
∥
∥fo(x) − 2Bfo

( x

2b

)∥
∥
∥ ≤ 2α‖x‖p

for all x ∈ X \ {0} and so we get (c). If x, y ∈ X \ {0}, then it follows from
(2.1) and (c) that

∥
∥
∥
∥
fo

(
1
2
x +

1
2
y

)

− 1
2
fo(x) − 1

2
fo(y)

∥
∥
∥
∥

≤
∥
∥
∥fo

(

a
x

2a
+ b

y

2b

)

− Afo

( x

2a

)

− Bfo

( y

2b

)∥
∥
∥

+
∥
∥
∥
∥
Afo

( x

2a

)

− 1
2
fo(x)

∥
∥
∥
∥

+
∥
∥
∥
∥
Bfo

( y

2b

)

− 1
2
fo(y)

∥
∥
∥
∥
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≤ c
(∥
∥
∥

x

2a

∥
∥
∥

p

+
∥
∥
∥

y

2b

∥
∥
∥

p)

+ α‖x‖p + α‖y‖p

≤ 2α(‖x‖p + ‖y‖p). (2.4)

Let x ∈ X \ {0}. Replacing x by 2x and y by 4x in (2.4), we get
∥
∥
∥
∥
fo(3x) − 1

2
fo(2x) − 1

2
fo(4x)

∥
∥
∥
∥

≤ 2α(2p + 4p)‖x‖p. (2.5)

Next, replacing x by −2x and y by 4x in (2.4), we get
∥
∥
∥
∥
fo(x) +

1
2
fo(2x) − 1

2
fo(4x)

∥
∥
∥
∥

≤ 2α(2p + 4p)‖x‖p. (2.6)

Then (2.5) and (2.6) imply

‖fo(3x) − fo(x) − fo(2x)‖ ≤ 4α(2p + 4p)‖x‖p. (2.7)

Note that (2.4) with y = 3x becomes
∥
∥
∥
∥
fo(2x) − 1

2
fo(x) − 1

2
fo(3x)

∥
∥
∥
∥

≤ 2α(1 + 3p)‖x‖p. (2.8)

Then (2.7) and (2.8) imply

‖fo(2x) − 2fo(x)‖ ≤ 4α(1 + 2p + 3p + 4p)‖x‖p.
Consequently, if x, y ∈ X \ {0}, then it follows from (2.4) that

‖fo(x + y) − fo(x) − fo(y)‖

≤
∥
∥
∥
∥
fo

(
1
2
2x +

1
2
2y

)

− 1
2
fo(2x) − 1

2
fo(2y)

∥
∥
∥
∥

+
∥
∥
∥
∥

1
2
fo(2x) − fo(x)

∥
∥
∥
∥

+
∥
∥
∥
∥

1
2
fo(2y) − fo(y)

∥
∥
∥
∥

≤ 2p+1α(‖x‖p + ‖y‖p) + 2α(1 + 2p + 3p + 4p)‖x‖p
+ 2α(1 + 2p + 3p + 4p)‖y‖p

= C(‖x‖p + ‖y‖p)
where C := 2α(1 + 2p+1 + 3p + 4p). Hence (d) is proved.

Next we prove (e). By the definition of fe, we get

‖fe(ax + by) − Afe(x) − Bfe(y)‖
=

1
2
‖f(ax + by) + f(−ax − by) − A(f(x) + f(−x)) − B(f(y) + f(−y))‖

≤ 1
2
‖f(ax+by)−Af(x) − Bf(y)‖ +

1
2
‖f(−ax − by) − Af(−x) − Bf(−y)‖

≤ c

2
(‖x‖p + ‖y‖p) +

c

2
(‖x‖p + ‖y‖p)

= c(‖x‖p + ‖y‖p) (2.9)
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for all x, y ∈ X \ {0}. It follows from (2.9) that

‖fe(x) − fe(0)‖
≤

∥
∥
∥fe(x) − Afe

( x

2a

)

− Bfe

( x

2b

)∥
∥
∥ +

∥
∥
∥fe(0) − Afe

(

− x

2a

)

− Bfe

( x

2b

)∥
∥
∥

≤ 2α‖x‖p

for all x ∈ X \ {0}. In particular, for each n ∈ N and for each x ∈ X \ {0}, we
have

‖fe(nx) − fe(0)‖ ≤ 2α‖nx‖p = 2αnp‖x‖p.
Since p < 0, we have

lim
n→∞ fe(nx) = fe(0)

for all x ∈ X \ {0}. Let x ∈ X \ {0} and n ∈ N. Replacing x by (n+2)x
2a and y

by −nx
2b in (2.9), we get

∥
∥
∥
∥
fe(x) − Afe

(
(n + 2)x

2a

)

− Bfe

(−nx

2b

)∥
∥
∥
∥

≤ c

(∣
∣
∣
∣

n + 2
2a

∣
∣
∣
∣

p

+
∣
∣
∣
n

2b

∣
∣
∣

p
)

‖x‖p.

In particular,

lim
n→∞

∥
∥
∥
∥
fe(x) − Afe

(
(n + 2)x

2a

)

− Bfe

(−nx

2b

)∥
∥
∥
∥

= 0.

Since limn→∞ fe

(
(n+2)x

2a

)

= limn→∞ fe
(−nx

2b

)

= fe(0), we have fe(x) =

Afe(0) + Bfe(0). Moreover, (2.9) with x = nx
2a and y = −nx

2b , gives
∥
∥
∥
∥
fe(0) − Afe

(nx

2a

)

− Bfe

(−nx

2b

)∥
∥
∥
∥

≤ αnp‖x‖p.

Letting n → ∞, we obtain that fe(0) = Afe(0)+Bfe(0). Then fe(x) = fe(0) =
Afe(0) + Bfe(0) for all x ∈ X and hence (e) is proved. �

It is known [6] that if X and Y are normed spaces and g : X → Y is a
function satisfying the Cauchy equation for all x, y ∈ X \ {0}, then it satisfies
the Cauchy equation. In fact, this result is true even in a more general setting
(see [1–3]).

Remark 2.2. Let X,Y,F,K, a, b, A,B, c, p, and f be the same as in Theorem
2.1. Then fo satisfies the following conditions:

(a) fo(x + y) = fo(x) + fo(y) for all x, y ∈ X;
(b) fo(ax) = Afo(x) and fo(bx) = Bfo(x) for all x ∈ X.

Proof. (a) Theorem 2.1(d) and Theorem B imply that

fo(x + y) = fo(x) + fo(y)
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for all x, y ∈ X \ {0} with x + y ∈ X \ {0}. Since fo(0) = 0, the function fo
satisfies the Cauchy equation for all x and y different from zero. In particular,
the statement (a) holds.

To prove (b), let x ∈ X\{0} and n ∈ N. By condition (a) of fo and Theorem
2.1(c), we get fo(nx) = nfo(x) and

n
∥
∥
∥fo(x) − 2Afo

( x

2a

)∥
∥
∥ =

∥
∥
∥fo(nx) − 2Afo

(nx

2a

)∥
∥
∥ ≤ 2α‖nx‖p = 2αnp‖x‖p.

That is,
∥
∥
∥fo(x) − 2Afo

( x

2a

)∥
∥
∥ ≤ 2αnp−1‖x‖p.

Letting n → ∞, we get that

fo(x) = 2Afo

( x

2a

)

.

Moreover,

fo(ax) = Afo

(x

2

)

+ Afo

(x

2

)

= A
(

fo

(x

2
+

x

2

))

= Afo(x)

for all x ∈ X \ {0}. Since fo(0) = 0, we now conclude that fo(ax) = Afo(x)
for all x ∈ X. Similarly, we can prove that fo(bx) = Bfo(x) for all x ∈ X.
Therefore, (b) is proved. �

By using Theorem 2.1 and Remark 2.2, we prove Theorem P via the hyper-
stability of the Cauchy equation.

A simple proof of Theorem P. By Theorem 2.1 and Remark 2.2, the odd and
even parts fo, fe : X → Y of f satisfy the following conditions

• fo(x + y) = fo(x) + fo(y) for all x, y ∈ X;
• f(x) = fo(x) + fe(x), fe(x) = Afe(0) + Bfe(0), fo(ax) = Afo(x), and

fo(bx) = Bfo(x) for all x ∈ X.

Let x, y ∈ X. Then

f(ax + by) = fo(ax + by) + fe(ax + by)

= fo(ax) + fo(by) + fe(0)

= Afo(x) + Bfo(y) + Afe(0) + Bfe(0)

= Afo(x) + Bfo(y) + Afe(x) + Bfe(y)

= A(fo(x) + fe(x)) + B(fo(y) + fe(y))

= Af(x) + Bf(y).

This completes the proof. �
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3. Some further remarks

We end the paper with the following remark which explains a relation between
the approximate general linear equation and the approximate Cauchy equa-
tion.

Theorem 3.1. Let X and Y be normed spaces over the scalar fields F and K,
respectively. Let a, b ∈ F \ {0}, A,B ∈ K, p ∈ R, and β ∈ Y . Suppose that
β = Aβ + Bβ and g : X → Y is a function such that there exists a constant
C ≥ 0 so that the following statements are true.

(a) ‖g(x + y) − g(x) − g(y)‖ ≤ C(‖x‖p + ‖y‖p) for all x, y ∈ X \ {0}.
(b)

∥
∥g(x) − 2Ag

(
x
2a

)∥
∥ ≤ C‖x‖p and

∥
∥g(x) − 2Bg

(
x
2b

)∥
∥ ≤ C‖x‖p for all x ∈

X \ {0}.
If f : X → Y is defined by f(x) = g(x) + β for all x ∈ X, then there exists a
constant c ≥ 0 such that

‖f(ax + by) − Af(x) − Bf(y)‖ ≤ c(‖x‖p + ‖y‖p)
for all x, y ∈ X \ {0}.
Proof. Let x, y ∈ X \ {0}. Note that

‖g(ax) − Ag(x)‖ ≤
∥
∥
∥g(ax) − 2Ag

(x

2

)∥
∥
∥ + |A|

∥
∥
∥2g

(x

2

)

− g(x)
∥
∥
∥

≤ C‖ax‖p + 2|A|C
∥
∥
∥

x

2

∥
∥
∥

p

= C

(

|a|p +
2|A|
2p

)

‖x‖p.

Similarly, we have

‖g(by) − Bg(y)‖ ≤ C

(

|b|p +
2|B|
2p

)

‖y‖p.

It follows that

‖f(ax + by) − Af(x) − Bf(y)‖
= ‖g(ax + by) + β − A(g(x) + β) − B(g(y) + β)‖
= ‖g(ax + by) − Ag(x) − Bg(y)‖
≤ ‖g(ax + by) − g(ax) − g(by)‖ + ‖g(ax) − Ag(x)‖ + ‖g(by) − Bg(y)‖

≤ C(‖ax‖p + ‖by‖p) + C

(

|a|p +
2|A|
2p

)

‖x‖p + C

(

|b|p +
2|B|
2p

)

‖y‖p

≤ c(‖x‖p + ‖y‖p)

where c := 2C
(

|a|p + |A|
2p + |b|p + |B|

2p

)

. �
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Note that if we set c := 0 in Theorem 2.1 and C := 0 in Theorem 3.1, then
we immediately obtain the following result of Piszczek [10].

Corollary 3.2. [10, Theorem 1.2] Let X and Y be normed spaces over the scalar
fields F and K, respectively. Let a, b ∈ F\{0} and A,B ∈ K. Then the following
statements are true.

(a) If a function f : X → Y satisfies

f(ax + by) = Af(x) + Bf(y) for all x, y ∈ X \ {0},

then there exists a function g : X → Y satisfying the Cauchy equation
and

g(ax) = Ag(x) and g(bx) = Bg(x) for all x ∈ X

and there exists β ∈ Y where β = Aβ + Bβ such that

f(x) = g(x) + β for all x ∈ X.

(b) If a function g : X → Y satisfies the Cauchy equation and

g(ax) = Ag(x) and g(bx) = Bg(x) for all x ∈ X;

and β ∈ Y is a scalar such that β = Aβ+Bβ, and if a function f : X → Y
is defined by

f(x) := g(x) + β for all x ∈ X,

then f satisfies the general linear equation.

Proof. (a) It follows from our Theorem 2.1 where c := 0 that the desired
function g is the odd part of f and β is the even part of f . Hence (a) holds.

(b) is obvious. �

Remark 3.3. The proof of Corollary 3.2(a) is slightly different from the one
originally given in [10, Theorem 1.2].

Acknowledgements

The authors would like to thank the referee for suggestions and comments
and thank Professor Anna Bahyrycz for sending them the reference [2]. The
second author was supported by the Thailand Research Fund and Khon Kaen
University under Grant RSA5980006.

156



The hyperstability of general linear equation

References

[1] Bahyrycz, A., Olko, J.: Hyperstability of general linear functional equation. Aequationes
Math. 90, 527–540 (2016)

[2] Bahyrycz, A.: On stability and hyperstability of an equation characterizing multi-
additive mappings. Fixed Point Theory 18, 445–456 (2017)

[3] Bahyrycz, A., Olko, J.: On stability and hyperstability of an equation characterizing
multi-Cauchy–Jensen mappings. Results Math. 73(2), 55 (2018)
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Ulam stability with respect to a directed graph for some
fixed point equations

APIMUK BUAKIRD and SATIT SAEJUNG

ABSTRACT. In this paper, we introduce a new concept of Ulam stability of fixed point equation with re-
spected to a directed graph. Two fixed point theorems of Matkowski and of Jachymski are discussed further in
the sense of this stability concept. Some examples about the validity of our notion are given. Finally, we discuss
the vagueness of the recent stability results of Sintunavarat [Sintunavarat, W., A new approach to α-ψ-contractive
mappings and generalized Ulam–Hyers stability, well-posedness and limit shadowing results, Carpathian J. Math., 31
(2015), 395–401].

1. INTRODUCTION

Ulam posed the following interesting question in 1940 (see also [19]).
Suppose that G1 := (G1, ∗) and G2 := (G2, �) are two groups and d :
G2 ×G2 → [0,∞) is a metric. For a given ε > 0 does there exist a number
δ := δ(ε) > 0 such that if f : G1 → G2 satisfies

d(f(x ∗ y), f(x) � f(y)) ≤ δ for all x, y ∈ G1,

then one can find a homomorphismF : G1 → G2 such that d(f(x), F (x)) ≤
ε for all x ∈ G1?

Hyers [6] gave a partial answer to Ulam’s question in 1941 where G1 and G2 are Banach
spaces. In this setting, he also obtained that δ(ε) ≤ ε for all ε > 0.

There are strict connections between Ulam stability and fixed point theory and for furt-
her information we refer to the survey by Brzdȩk et al. (see [2]). Ulam’s question was
reformulated in the context of fixed point equation as follows. For more detail, we refer
to the excellent survey by Rus and Şerban [14].

Suppose that X := (X, d) is a metric space and T : X → X is given with a
fixed point set Fix(T ) := {p ∈ X : p = Tp}. For a given ε > 0 does there
exist a number δ := δ(ε) > 0 such that if w ∈ X satisfies

d(w, Tw) ≤ δ,
then one can find a fixed point p ∈ Fix(T ) such that d(p, w) ≤ ε?

If the preceding is true for the mapping T , then we say that the fixed point equation
x = Tx is Ulam stable. For simplicity from now on, we simply say that T is Ulam stable if
the fixed point equation x = Tx is Ulam stable. If there exists a constant c > 0 such that
δ(ε) ≤ cε for all ε > 0, then we say that T is Ulam–Hyers stable. That is, T is Ulam–Hyers
stable if and only if there exists c > 0 such that for any pair (w, ε) ∈ X × (0,∞) with
d(w, Tw) ≤ ε there exists a fixed point p ∈ Fix(T ) such that d(p, w) ≤ cε. In the literature,
the following generalization of Ulam–Hyers stability was introduced.

Received: 13.07.2018. In revised form: 10.01.2019. Accepted: 15.01.2019
2010 Mathematics Subject Classification. 47H10, 54H25, 39B82.
Key words and phrases. Ulam–Hyers stability, Ulam stability, fixed point equation, contraction with respect to a

directed graph.
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Definition 1.1. Let X := (X, d) be a metric space and T : X → X be given. We say that
T is generalized Ulam–Hyers stable [14] if there exists an increasing function ξ : [0,∞) →
[0,∞) such that ξ(0) = 0, ξ is continuous at zero, and for any pair (w, ε) ∈ X× (0,∞) with
d(w, Tw) ≤ ε there exists a fixed point p ∈ Fix(T ) such that d(p, w) ≤ ξ(ε).

Remark 1.1. If T is generalized Ulam–Hyers stable, then it is Ulam stable. To see this,
let ε > 0 be given. Since T is generalized Ulam–Hyers stable, there exists an increasing
function ξ : [0,∞) → [0,∞) such that ξ(0) = 0, ξ is continuous at zero, and for any pair
(w, η) ∈ X × (0,∞) with d(w, Tw) ≤ η there exists a fixed point p ∈ Fix(T ) such that
d(p, w) ≤ ξ(η). We choose η := ξ−1(ε) > 0. It follows that if w ∈ X satisfies

d(w, Tw) ≤ η,
then one can find a fixed point p ∈ Fix(T ) such that d(p, w) ≤ ξ(η) = ε. In particular, we
have the following implications.

Ulam–Hyers
stability =⇒

generalized
Ulam–Hyers

stability
=⇒ Ulam

stability

There are several other types of stability, for more detail we refer to [10] and [4]. It is
easy to see that every Banach contraction defined on a complete metric space is Ulam–
Hyers stable. Recall that a mapping T : X → X is a Banach’s contraction if there exists a
constant α ∈ (0, 1) such that

d(Tx, Ty) ≤ αd(x, y) for all x, y ∈ X.
In the literature, there are many generalizations of a Banach’s contraction. We are mainly
interested in the following two types of generalizations due to Matkowski [9] and to Ja-
chymski [7], respectively.

Matkowski’s contractions.

Definition 1.2. Let X := (X, d) be a metric space and ψ : [0,∞) → [0,∞) be a nonde-
creasing function such that limn→∞ ψn(t) = 0 for all t > 0. A mapping T : X → X is a
Matkowski’s contraction or ψ-contraction if

d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X.

Remark 1.2. If ψ(t) = αtwhere α ∈ (0, 1), then a ψ-contraction becomes a Banach’s contraction.

Jachymski’s contractions. Recently, Jachymski introduced a class of mappings including
all Banach’s contractions and proved a fixed point theorem for mappings in this class.
From now on, by saying that X is a metric space with a directed graph G on X , we mean
that the vertex set V (G) of G is X and the edge set E(G) of G is a subset of the Cartesian
product X ×X such that (x, x) ∈ E(G) for all x ∈ X .

Definition 1.3. Let X := (X, d) be a metric space with a directed graph G on X . A
mapping T : X → X is a Banach G-contraction if there exists α ∈ (0, 1) such that for all
(x, y) ∈ E(G) the following two conditions hold:

• (Tx, Ty) ∈ E(G);
• d(Tx, Ty) ≤ αd(x, y).

Remark 1.3. It is clear that if E(G) = X × X , then a Banach G-contraction becomes a
Banach’s contraction.

Remark 1.4. We note that not every Banach G-contraction is Ulam stable. See Example
2.1.
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In this paper, we introduce a new type of Ulam stability to explain the stability of
Banach G-contractions. In fact, our result includes a wider class of mappings whose con-
tractiveness in the sense of Matkowski is given with respect to a directed graph. We also
discuss some vague result proved by Sintunavarat [17] concerning the generalized Ulam–
Hyers stability. As pointed out by the referee, the results of the paper are related to some
simplified versions of outcomes in several other papers (which can be found in the refe-
rences of the survey [2]) such as Corollary 3.2 in [3].

2. MAIN RESULTS

In this paper we introduce the following concept.

Definition 2.4. Let (X, d) be a metric space with a directed graph G on X and T : X → X
be a mapping such that Fix(T ) 6= ∅. We say that a mapping T : X → X is Ulam stable with
respect to G if for each ε > 0 there is a δ := δ(ε) > 0 such the following implication holds:

d(w, Tw) ≤ δ and (w, Tw) ∈ E(G) =⇒ there exists p ∈ Fix(T ) such that d(p, w) ≤ ε.

In the preceding notion, if there exists a constant c > 0 such that δ(ε) ≤ cε for all ε > 0,
then we say that T is Ulam–Hyers stable with respect to G.

Remark 2.5. In particular, if E(G) := X × X , then the Ulam stability with respect to G
(Ulam–Hyers stability with respect to G, respectively) becomes the Ulam stability (Ulam–
Hyers stability, respectively).

Inspired by the works of Matkowski [9] and of Jachymski [7], we introduce the follo-
wing mappings.

Definition 2.5. Let (X, d) be a metric space with a directed graph G on X . Define ψ :
[0,∞)→ [0,∞) is a nondecreasing function. We say that T : X → X is

(i) a (ψ,G)-contraction of type I if the following conditions hold
•
∑∞

n=1 ψ
n(t) <∞ for all t > 0;

• (Tx, T 2x) ∈ E(G) whenever (x, Tx) ∈ E(G);
• d(Tx, Ty) ≤ ψ(d(x, y)) whenever (x, y) ∈ E(G);

(ii) a (ψ,G)-contraction of type II if the following conditions hold
• limn→∞ ψn(t) = 0 for all t > 0;
• (Tx, T 2x) ∈ E(G) whenever (x, Tx) ∈ E(G);
• d(Tx, Ty) ≤ ψ(d(x, y)) whenever (x, y) ∈ E(G).

Our stability results rely on the following two additional assumptions (see [7]).
(J1) If {xn} is a sequence in X such that (xn, xn+1) ∈ E(G) for all n ≥ 1 and xn → p for

some p ∈ X , then there exists a subsequence {xnk
} of {xn} such that (xnk

, p) ∈ E(G)
for all k ≥ 1.

(J2) For each x, y ∈ X if Tnkx → y and (Tnkx, Tnk+1x) ∈ E(G) for all k ≥ 1, then
T (Tnkx)→ Ty.

Remark 2.6. • Since we will mention some fixed point theorems proved under a bit
stronger assumption than the condition (J1), we refer to this assumption as (J1*).
More precisely, it is defined as follows.

(J1*) If {xn} is a sequence in X such that (xn, xn+1) ∈ E(G) for all n ≥ 1 and
xn → p for some p ∈ X , then (xn, p) ∈ E(G) for all n ≥ 1.

• The condition (J2) is sometimes referred as the orbital G-continuity of T [7].

2.1. (ψ,G)-contractions of type I.
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2.1.1. Fixed point theorem.

Theorem 2.1. Let (X, d) be a complete metric space with a directed graph G on X . Suppose that
T : X → X is a (ψ,G)-contraction of type I and suppose that either the condition (J1) or (J2)
holds. If there exists an element x0 ∈ X such that (x0, Tx0) ∈ E(G), then Tnx0 → p for some
p ∈ Fix(T ), that is, Fix(T ) 6= ∅.

Proof. Set x1 := x0 and xn+1 := Txn for all n ≥ 1. If d(x1, x2) = 0, then x1 = Tx1
and we are done. We now assume that d(x1, x2) > 0. Note that (xn, xn+1) ∈ E(G) and
d(xn+1, xn+2) ≤ ψ(d(xn, xn+1)) for all n ≥ 1. In particular,

d(xn+1, xn+2) ≤ ψn(d(x1, x2))

for all n ≥ 1. Note that
∑∞

n=1 ψ
n(d(x1, x2)) < ∞, and hence

∑∞
n=1 d(xn+1, xn+2) < ∞.

This implies that {xn} is a Cauchy sequence. By the completeness ofX , there is an element
p ∈ X such that xn → p. We now show that p = Tp. The proof is divided into 2 cases.

Case 1: We assume the condition (J1). Then there exists a subsequence {xnk
} of {xn}

such that (xnk
, p) ∈ E(G) for all k ≥ 1. We consider the following

d(p, Tp) ≤ d(p, xnk+1) + d(xnk+1, Tp)

= d(p, xnk+1) + d(Txnk
, Tp)

≤ d(p, xnk+1) + ψ(d(xnk
, p))

for all k ≥ 1. Letting k →∞ gives p = Tp, that is, p is a fixed point of T .
Case 2: We assume the condition (J2). In this case, we have

p = lim
n→∞

xn+1 = lim
n→∞

Tnx1 = lim
n→∞

T (Tnx1) = Tp.

Then p is a fixed point of T .
This completes the proof. �

2.1.2. Ulam stability with respect to G.

Lemma 2.1. Let ψ : [0,∞) → [0,∞) be a nondecreasing function such that
∑∞

k=1 ψ
k(t) < ∞

for all t > 0. Then for each ε > 0 there exists δ > 0 such that

δ +

∞∑
k=1

ψk(δ) ≤ ε.

Proof. Let ε > 0 be given. Then
∑∞

k=1 ψ
k(ε) < ∞. In particular, there exists a positive in-

teger N such that
∑∞

k=N ψk(ε) ≤ ε. We now choose δ := ψN (ε). Hence, δ+
∑∞

k=1 ψ
k(δ) =∑∞

k=N ψk(ε) ≤ ε as desired. �

We present two Ulam stability results with respect to G for (ψ,G)-contractions of type
I.

Theorem 2.2. Let (X, d) be a complete metric space with a directed graph G on X . Suppose that
T : X → X is a (ψ,G)-contraction of type I. Suppose that either the condition (J1) or (J2) holds.
If Fix(T ) 6= ∅, then T is Ulam stable with respect to G.

Proof. Suppose that T : X → X is a (ψ,G)-contraction of type I. Let ε > 0. By Lemma
2.1, there exists a δ > 0 such that δ +

∑∞
k=1 ψ

k(δ) ≤ ε. Let w be an element in X such
that (w, Tw) ∈ E(G) and d(w, Tw) ≤ δ. (Note that such an element w exists because
{(x, x) : x ∈ X} ⊂ E(G) and Fix(T ) 6= ∅.) Set x1 := w and define xn+1 := Txn for all
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n ≥ 1. It follows from Theorem 2.1 that xn → p for some p ∈ Fix(T ). Furthermore, since
d(xk, xk+1) ≤ ψk(d(x1, x2)) ≤ ψk(δ), we also have

d(w, p) = lim
n→∞

d(x1, xn+1) ≤ lim
n→∞

n∑
k=1

d(xk, xk+1) ≤ δ+ lim
n→∞

n∑
k=1

ψk(δ) = δ+

∞∑
k=1

ψk(δ) ≤ ε.

Thus, T is Ulam stable with respect to G. �

The following example shows that our concept of Ulam stability with respect to G is
more suitable for (ψ,G)-contractions than the classical Ulam stability.

Example 2.1. Let X := [0, 1] be a metric space with a usual metric d. Define T : X → X
by

Tx :=

{
x/2 if x ∈ [0, 1/2] ∪ {1}
1 if x ∈ (1/2, 1).

Then the following statements are true.
(a) T is a (ψ,G)-contraction of type I where ψ(t) = t/2 for all t ≥ 0 andE(G) := [0, 1/2]2∪
{(x, x) : x ∈ (1/2, 1]}.

(b) T is not Ulam stable.
(c) T is Ulam stable with respect to G.

Proof. (a) It is clear that ψ is nondecreasing and
∑∞

n=1 ψ
n(t) < ∞ for all t > 0. Moreover,

if (x, y) ∈ E(G), then (Tx, Ty) ∈ E(G) and d(Tx, Ty) ≤ ψ(d(x, y)). Hence T is a (ψ,G)-
contraction of type I.

(b) To see this, we choose ε := 1/2 and set xn := (n+1)/(n+2) for all n ≥ 1. It follows
that d(xn, Txn) = d((n + 1)/(n + 2), 1) → 0. Note that 0 is the only one fixed point of T
and d(xn, 0) ≥ 1/2 for all n ≥ 1. Hence T is not Ulam stable.

(c) We conclude the result by using Theorem 2.2. In fact, we show that the condition
(J1) is satisfied. Suppose that {xn} is a sequence in X such that (xn, xn+1) ∈ E(G) for
all n ≥ 1 and xn → p for some p ∈ X . The result follows easily if p 6= 1/2. We now
consider the case p = 1/2. If there exists an integer N such that xn > p for all n ≥ N , then
xn = xN for all n ≥ N which is impossible. Hence there exists a subsequence {xnk

} such
that xnk

≤ p for all k ≥ 1. In particular, (xnk
, p) ∈ E(G) for all k ≥ 1. So T is Ulam stable

with respect to G. �

2.2. (ψ,G)-contractions of type II.

2.2.1. Fixed point theorem.

Lemma 2.2 ([1]). Suppose that {xn} is a sequence in a metric space (X, d). If {xn} is not a
Cauchy sequence, then there exist a constant ε > 0 and two subsequences {xnk

} and {xmk
} of

{xn} such that the following two conditions hold: for all k ≥ 1 one has

nk < mk and d(xnk
, xmk−1) < ε ≤ d(xnk

, xmk
).

Theorem 2.3. Let (X, d) be a complete metric space with a directed graph G on X . Suppose that
G is transitive, that is, (x, z) ∈ E(G) whenever (x, y) ∈ E(G) and (y, z) ∈ E(G). Suppose that
T : X → X is a (ψ,G)-contraction of type II and suppose that either the condition (J1) or (J2)
holds. If there exists an element x0 ∈ X such that (x0, Tx0) ∈ E(G), then Tnx0 → p for some
p ∈ Fix(T ), that is, Fix(T ) 6= ∅.

Proof. Set x1 := x0 and xn+1 := Txn for all n ≥ 1. If d(x1, x2) = 0, then x1 = Tx1
and we are done. We now assume that d(x1, x2) > 0. Note that (xn, xn+1) ∈ E(G) and
d(xn+1, xn+2) ≤ ψ(d(xn, xn+1)) for all n ≥ 1. In particular,

d(xn+1, xn+2) ≤ ψn(d(x1, x2))
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for all n ≥ 1. In particular, limn→∞ d(xn, xn+1) = 0. We show that {xn} is a Cauchy
sequence. Suppose that {xn} is not a Cauchy sequence. There exist an η > 0 and two
sequences {nk} and {mk} of {n} such that k ≤ nk ≤ mk and d(xnk

, xmk−1) < η ≤
d(xnk

, xmk
) for all k ≥ 1. We note from the transitivity of G that (xnk

, xmk−1) ∈ E(G)
and we obtain the following

η − d(xnk
, xnk+1) ≤ d(xnk

, xmk
)− d(xnk

, xnk+1)

≤ d(xnk+1, xmk
)

≤ ψ(d(xnk
, xmk−1))

≤ ψ(η).

Letting k → ∞ gives η ≤ ψ(η), that is, η = 0 which is a contradiction. Hence, {xn} is a
Cauchy sequence. By the completeness of X , there is an element p in X such that xn → p.
The proof that p is a fixed point of T follows exactly as the same as the proof of Theorem
2.1 so it is left for the reader to verify. �

2.2.2. Ulam stability with respect to G.

Lemma 2.3 ([15, 18]). If ψ : [0,∞) → [0,∞) is nonexpansive, that is, |ψ(s) − ψ(t)| ≤ |s − t|
for all s, t ≥ 0, then I − ψ is nondecreasing where I is the identity mapping.

We present the Ulam stability result with respect to G for (ψ,G)-contractions of type II.

Theorem 2.4. Let (X, d) be a complete metric space with a directed graph G on X . Suppose
that T : X → X is a (ψ,G)-contraction of type II where G is transitive and ψ is nonexpansive.
Suppose that either the condition (J1) or (J2) holds. If Fix(T ) 6= ∅, then T is Ulam stable with
respect to G.

Proof. Suppose that T : X → X is a (ψ,G)-contraction mapping of type II where ψ is a
nonexpansive mapping and G is transitive. Let ε > 0. We choose δ := (ε− ψ(ε))/2. Let w
be an element in X such that (w, Tw) ∈ E(G) and d(w, Tw) ≤ δ. Set x1 := w and define
xn+1 := Txn for all n ≥ 1. It follows from Theorem 2.3 that xn → p where p ∈ Fix(T ). We
consider

d(w, p) = d(x1, p) ≤ d(x1, x2) + d(x2, p)

= d(x1, Tx1) + d(Tx1, Tp)

≤ d(x1, Tx1) + ψ(d(x1, p))

≤ δ + ψ(d(w, p)).

In particular, (I − ψ)(d(w, p)) ≤ δ. Suppose that ε < d(w, p). Then (I − ψ)(ε) ≤ (I −
ψ)(d(w, p)) ≤ δ = (ε − ψ(ε))/2 which is a contradiction. Hence, d(w, p) ≤ ε. Thus, T is
Ulam stable with respect to G. �

There exists a nondecreasing and nonexpansive function ψ : [0,∞) → [0,∞) such that
limn→∞ ψn(t) = 0 and

∑∞
n=1 ψ

n(t) = ∞ for all t > 0. In particular, this reveals the
importance of Theorem 2.4.

Example 2.2. Define ψ : [0,∞) → [0,∞) by ψ(t) = t/(1 + t) for all t ≥ 0. Then ψ is
nonexpansive, limn→∞ ψn(t) = 0, and

∑∞
n=1 ψ

n(t) = ∞ for all t > 0. In fact, for each
n ≥ 1, we note that ψn(t) = t

1+nt for all t ≥ 0.
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3. DEDUCED RESULTS AND SOME REMARKS

3.1. Ulam–Hyers stability with respect to G of Banach G-contractions. By Theorem 2.2,
we obtain the following result which supplements the result of Jachymski [7].

Corollary 3.1. Suppose that (X, d) is a complete metric space with a directed graph G on X .
Suppose that T : X → X is a Banach G-contraction with a fixed point. If either the condition (J1)
or (J2) holds, then T is Ulam–Hyers stable with respect to G.

Proof. Suppose that there exists a constant α ∈ (0, 1) such that (Tx, Ty) ∈ E(G) and
d(Tx, Ty) ≤ αd(x, y) for all (x, y) ∈ E(G). Put ψ(t) := αt for all t ≥ 0. Let ε > 0 be given.
Note that if δ = (1−α)ε, then δ+

∑∞
k=1 ψ

k(δ) = δ+
∑∞

k=1 α
kδ = ε. It follows from the proof

of Theorem 2.2 that for each w ∈ X with (w, Tw) ∈ E(G) and d(w, Tw) ≤ δ = (1 − α)ε
there exists a fixed point p of T such that d(p, w) ≤ ε. This completes the proof. �

3.2. Remarks on Sintunavarat’s results. We will discuss some vague statements in the
recent result of Sintunavarat [17]. His results are established in a different context but it
will be seen later that it is equivalent to the setting with a directed graph (see Remark
3.7(1)). We first recall some concepts.

Definition 3.6. Let (X, d) be a metric space. Suppose that ψ : [0,∞) → [0,∞) is a nonde-
creasing function such that

∑∞
n=1 ψ

n(t) <∞ for all t > 0. Suppose that α : X×X → [0,∞)
and T : X → X .

• T is weakly α-admissible if α(Tx, T 2x) ≥ 1 whenever α(x, Tx) ≥ 1.
• T is an (α,ψ)-contraction if α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X .
• X is α-regular if whenever {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for

all n ≥ 1 and xn → p for some p ∈ X it follows that α(xn, p) ≥ 1 for all n ≥ 1.

Definition 3.7. Let (X, d) be a metric space and ε > 0. A point p ∈ X is an ε-fixed point of
a mapping T : X → X if d(p, Tp) ≤ ε.

We carefully restate the following result from [17, Theorems 2.1, 2.2, 2.3, and 3.4].

Theorem 3.5. Suppose that (X, d) is a complete metric space. Suppose that T : X → X is an
(α,ψ)-contraction and it is weakly α-admissible with α(x0, Tx0) ≥ 1 for some x0 ∈ X . Suppose
in addition that either T is continuous or X is α-regular. Then the following statements are true.
(a) Fix(T ) 6= ∅.
(b) If α(p, q) ≥ 1 for all p, q ∈ Fix(T ), then Fix(T ) is a singleton.
(c) Suppose that I −ψ is strictly increasing and onto. If α(p′, q′) ≥ 1 for all ε-fixed points p′ and

q′ of T , then T is generalized Ulam–Hyers stable.

The remarks for the preceding theorem are as follows.

Remark 3.7. (1) Suppose that T : X → X is an (α,ψ)-contraction and it is weakly α-
admissible. We define a directed graph G on X by letting E(G) := {(x, y) : α(x, y) ≥
1}. It follows that T is a (ψ,G)-contraction of type I. In fact, if (x, y) ∈ E(G), then
α(x, y) ≥ 1 and hence

d(Tx, Ty) ≤ α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)).

The continuity of T can be replaced by the G-orbital continuity of T , that is, the con-
dition (J2). The α-regularity of X becomes the condition (J1*) which is a stronger
assumption than the condition (J1). On the other hand, suppose that T is a (ψ,G)-
contraction of type I. Now, we define α(x, y) := 1 if (x, y) ∈ E(G) and α(x, y) := 0 if
(x, y) /∈ E(G). It follows that T is an (α,ψ)-contraction and it is weakly α-admissible.
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(2) Our result for (ψ,G)-contractions of type II also provides a new information which is
beyond the scope of the work of [17].

(3) No quantifier about ε is given in the statement (c) of Theorem 3.5. (The same patterns
of vague statements are in [8, 11, 5, 16, 12, 13].) Moreover, in the proof of [17, Theorem
3.4] (page 400 line 7), the given ε > 0 is not arbitrary as required in the definition of the
generalized Ulam–Hyers stability. Finally, we discuss the validity of the assumption:
α(p′, q′) ≥ 1 for all ε-fixed points p′ and q′ of T . Note that if we set Xε := {x :
d(x, Tx) ≤ ε}, then it follows from the continuity of T or the α-regularity X that the
subsetXε is closed and hence complete. It is clear that T : Xε → Xε is a ψ-contraction.
From this point, the function α plays no role in the study.
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[2] Brzdȩk, J., Cădariu, L. and Ciepliński, K., Fixed point theory and the Ulam stability, J. Funct. Spaces, 2014, Art.

ID 829419, 16 pp.
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Abstract. We discuss the hyperstability outcome given by Aiemsomboon
and Sintunavarat [1] and concerning the general linear equation. We give a simple
proof of it via the hyperstability result for the Cauchy equation. Our proof is
based on Brzde֒k’s fixed point theorem. Moreover, we use a weaker assumption.

1. Introduction

Throughout the paper, we assume that F,K ∈ {R,C} where R and C

are the set of all real numbers and complex numbers, respectively; and we
assume that N and R+ are the set of all positive integers and nonnega-
tive real numbers, respectively. Suppose that X and Y are normed spaces
over the scalar fields F and K, respectively. Hyers [10] was the first one
who answered the well known Ulam’s problem [17] concerning approximate
homomorphisms of groups as follows.

Theorem H. Suppose that X and Y are two Banach spaces. If δ > 0
is a real number and f : X → Y satisfies the condition

‖f(x+ y)− f(x)− f(y)‖ ≤ δ for all x, y ∈ X,

then there exists a unique function f : X → Y such that
(a) F satisfies the Cauchy equation, that is, F (x+ y) = F (x) + F (y) for

all x, y ∈ X ;
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(b) ‖F (x)− f(x)‖ ≤ δ for all x ∈ X .

Rassias and Tabor [16] proposed to study the stability of the following
generalized form of Cauchy equation:

(1) f(ax+ by) = Af(x) +Bf(y) for all x, y ∈ X

for some a, b ∈ F \ {0} and A,B ∈ K. In this case, we say that f satisfies the
general linear equation with constants a, b,A,B. Some authors [1–3,7,9,11,
14,15] proved several stability results of these equations. For more details
on this subject, we refer the readers to the recent monograph of Brzde֒k et
al. [8]. In particular, we say that f : X → Y satisfies the Jensen equation if
(1) holds with a = b = A = B = 1/2. Clearly, if f satisfies the general linear
equation with a = b = A = B = 1, then f satisfies the Cauchy equation.

Piszczek [15] recently proved the following hyperstability result for gen-
eral linear equation (1).

Theorem P [15, Theorem 2]. Suppose that X is a normed space and Y
is a Banach space over the scalar fields F and K, respectively. Suppose that
a, b ∈ F \ {0} and A,B ∈ K. Suppose that c ≥ 0, p < 0, and f : X → Y sat-
isfies the condition

∥

∥f(ax+ by) −Af(x)− Bf(y)
∥

∥ ≤ c(‖x‖p + ‖y‖p)

for all x, y ∈ X \ {0}. Then f satisfies the general linear equation.

Using some idea from Brzde֒k’s result [5], Aiemsomboon and Sintu-
navarat [1] proved the following result which is a generalization of Theo-
rem P.

Theorem AS [1, Theorem 2.1]. Suppose that X is a normed space and
Y is a Banach space over the scalar fields F and K, respectively. Suppose that
a, b ∈ F \ {0} and A,B ∈ K. Suppose that h : X \ {0} → R+ and f : X → Y
satisfies the condition

∥

∥f(ax+ by)−Af(x)−Bf(y)
∥

∥ ≤ h(x) + h(y)

for all x, y ∈ X \ {0}. Suppose that

M0 :=
{

n ∈ N : |A|s
(1

a
(n+ 1)

)

+ |B|s
(

−
1

b
n
)

< 1
}

is an infinite set where s(α) := inf
{

t ≥ 0 : h(αx) ≤ th(x) for all x ∈ X \{0}
}

for α ∈ F \ {0}; and

lim
α→∞

s(α) = lim
α→∞

s(−α) = 0.

Then f satisfies the general linear equation.
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Remark 1. Note that the completeness of Y in Theorem P (and The-
orem AS) can be relaxed, that is, the conclusion of Theorem P (and Theo-
rem AS) remains true if Y is a normed space because without loss of gener-
ality we can replace Y by its completion.

Remark 2. If we set h(x) := c‖x‖p where p < 0 and c ≥ 0, then all the
conditions of Theorem AS concerning h are satisfied.

The aim of this paper is to give a simple proof of Theorem AS via the
hyperstability of Cauchy equation. Moreover, we show that the conclusion
of Theorem AS remains true under a weaker assumption. In particular, we
also remark that some assumptions of Theorem AS are superfluous.

2. Preliminaries and some notes

The key ingredient of our proof is based on Brzde֒k’s fixed point result
[6]. In the following result, we write Y X for the set of functions from a
nonempty set X into a nonempty set Y .

Theorem B [6, Theorem 1]. Let X be a nonempty set and Y be a Ba-
nach space. Let f1, f2 ∈ XX be given. Let T : Y X → Y X be an operator
satisfying the inequality

∥

∥T ξ(x)−T µ(x)
∥

∥ ≤
2

∑

i=1

∥

∥ξ(fi(x))−µ(fi(x))
∥

∥ for all ξ, µ∈Y X and x∈X .

Let Λ: RX
+ → RX

+ be an operator defined by

Λδ(x) :=

2
∑

i=1

δ(fi(x)) for all δ ∈ R
X
+ and x ∈ X .

Suppose that ε ∈ RX
+ and ϕ ∈ Y X satisfy the conditions

‖T ϕ(x)− ϕ(x)‖ ≤ ε(x) and ε∗(x) :=

∞
∑

n=0

Λnε(x) <∞ for all x ∈ X .

Then there exists a unique fixed point ψ of T such that ‖ϕ(x)− ψ(x)‖ ≤
ε∗(x) for all x ∈ X . Moreover, ψ(x) = limn→∞ T nϕ(x) for all x ∈ X .

It is known that a function f : X → Y with f(0) = 0 satisfies the Jensen
equation if and only if it satisfies the Cauchy equation [12,13]. In particular,
it follows that if a function f : X → Y satisfies the Jensen equation, then
the odd part fo of f satisfies the Cauchy equation and the even part fe of f
is a constant. Recall that fo(x) :=

1
2(f(x)− f(−x)) and fe(x) :=

1
2(f(x) +

f(−x)) for all x ∈ X .
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Remark 3. Suppose that f : X → Y is given and fo, fe are odd and even
parts of f , respectively. Note that fo(0) = 0, fo(−x) = −fo(x), fe(−x) =
fe(x), and f(x) = fo(x) + fe(x) for all x ∈ X . In particular, fe(0) = f(0).

3. Main results

We first note the following easy observation.

Lemma 4. Let X be a normed space over the scalar field F and h : X \ {0}
→ R+ be given. For each n ∈ N, define

s(n) := inf
{

t ≥ 0 : h(nx) ≤ th(x) for all x ∈ X \ {0}
}

.

Suppose that a1, a2, . . . , am ∈ F \ {0} where m ∈ N. If H : X \ {0} → R+ is
defined by

H(x) :=
m
∑

i=1

h(aix) for all x ∈ X \ {0}.

Then

H(nx) ≤ s(n)H(x) for all x ∈ X \ {0}.

In particular, h(nx) ≤ s(n)h(x) for all x ∈ X \ {0}.

We establish the following hyperstability result of Cauchy equation.

Lemma 5. Let X and Y be normed spaces over the scalar fields F

and K, respectively. Suppose that H : X \{0} → R+ and g : X → Y are given
such that g(0) = 0, g(−x) = −g(x) for all x ∈ X and H(−x) = H(x) for all
x ∈ X \ {0}. For each n ∈ N, define

s(n) := inf
{

t ≥ 0 : H(nx) ≤ tH(x) for all x ∈ X \ {0}
}

.

Suppose that g satisfies the inequality

(2) ‖g(x+ y)− g(x)− g(y)‖ ≤ H(x) +H(y)

for all x, y ∈ X \ {0} and inf{s(n+1)+ s(n) : n ∈ N} = 0. Then the follow-
ing two statements are true.

(a) g satisfies the Cauchy equation.
(b) If, in addition, there exist a ∈ F \ {0} and A ∈ K such that

(3)
∥

∥

∥
g(x)− 2Ag

( x

2a

)
∥

∥

∥
≤ H(x)

for all x ∈ X \ {0}, then

g(ax) = Ag(x) for all x ∈ X .
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Proof. (a) We may assume that Y is complete (otherwise, we replace Y
by its completion). Let m ∈ N be such that s(m+ 1) + s(m) < 1. Such an
integer m exists because inf{s(n+ 1) + s(n) : n ∈ N} = 0. Let x ∈ X \ {0}.
Replacing x by (m+ 1)x and y by −mx in (2), we get

(4)
∥

∥g(x)− g((m+ 1)x)− g(−mx)
∥

∥ ≤ H((m+ 1)x) +H(mx).

Define Tm : Y X\{0} → Y X\{0} by

(5) Tmξ(x) := ξ((m+ 1)x) + ξ(−mx)

for all x ∈ X \ {0} and ξ ∈ Y X\{0}. Next, we define εm : X \ {0} → R+ by

(6) εm(x) := H((m+ 1)x) +H(mx) ≤ αH(x)

for all x ∈ X \ {0} where α := s(m+ 1) + s(m). Then it follows from (4)
that

‖Tmg(x)− g(x)‖ ≤ εm(x)

for all x ∈ X \ {0}. Define Λm : R
X\{0}
+ → R

X\{0}
+ by

Λmη(x) := η((m+ 1)x) + η(−mx)

for all η ∈ R
X\{0}
+ and x ∈ X \ {0}. Then Λm satisfies the condition of The-

orem B with f1(x) := (m+ 1)x and f2(x) := −mx. Moreover, for every
ξ, µ ∈ Y X\{0} and x ∈ X \ {0}, we have
∥

∥Tmξ(x)− Tmµ(x)
∥

∥ =
∥

∥ξ((m+ 1)x) + ξ(−mx)− µ((m+ 1)x)− µ(−mx)
∥

∥

≤
∥

∥ξ((m+ 1)x)− µ((m+ 1)x‖+ ‖ξ(−mx)− µ(−mx)
∥

∥

=
2

∑

i=1

‖ξ(fi(x))− µ(fi(x))‖.

We show by induction that for each n ∈ N ∪ {0},

(7) Λn
mεm(x) ≤ αn+1H(x) for all x ∈ X \ {0}.

The inequality (7) holds for n = 0 because of (6). Suppose that the inequal-
ity (7) holds for n = k where k ∈ N ∪ {0}. Let x ∈ X \ {0}. Then

Λk+1
m εm(x) = Λm(Λk

mεm(x)) = Λk
mεm((m+ 1)x) + Λk

mεm(−mx)

≤ αk+1H((m+ 1)x) + αk+1H(mx)

≤ αk+1(s(m+ 1) + s(m))H(x) = αk+2H(x).
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That is, the inequality (7) holds for n = k + 1. By induction, (7) holds for
all n ∈ N ∪ {0}. Thus

ε∗(x) :=
∞
∑

n=0

Λn
mεm(x) ≤

∞
∑

n=0

(

αn+1
)

H(x) =
s(m+ 1) + s(m)

1− s(m+ 1)− s(m)
H(x)

for all x ∈ X \ {0}. By Theorem B, there exists a unique fixed point
Gm ∈ Y X\{0} of Tm such that

(8) ‖g(x)−Gm(x)‖ ≤
s(m+ 1) + s(m)

1− s(m+ 1)− s(m)
H(x) for all x ∈ X \ {0}.

Moreover,

Gm(x) = lim
n→∞

(T n
mg)(x)

for all x ∈ X \ {0}.
Next, we show by induction that for each n ∈ N ∪ {0},

(9)
∥

∥T n
mg(x+ y)− T n

mg(x)− T n
mg(y)

∥

∥ ≤ αn(H(x) +H(y))

for all x, y ∈ X \ {0} with x+ y ∈ X \ {0}. The inequality (9) holds for n = 0
because of (2). Suppose that (9) holds for n = k where k ∈ N ∪ {0}. Let
x, y ∈ X \ {0} with x+ y ∈ X \ {0}. Then

∥

∥T k+1
m g(x+ y)− T k+1

m g(x)− T k+1
m g(y)

∥

∥

≤
∥

∥T k
mg((m+ 1)(x+ y))− T k

mg((m+ 1)x)− T k
mg((m+ 1)y)

∥

∥

+
∥

∥T k
mg(−m(x+ y))− T k

mg(−mx)− T k
mg(−my)

∥

∥

≤ αk
(

H((m+ 1)x) +H((m+ 1)y)
)

+ αk
(

H(mx) +H(my)
)

≤ αk(s(m+ 1) + s(m))(H(x) +H(y)) = αk+1(H(x) +H(y)).

That is, the inequality (9) holds for n = k + 1. By induction, (9) holds for
all n ∈ N ∪ {0}. Letting n→ ∞ in (9) gives

(10) Gm(x+y) = Gm(x)+Gm(y) for all x, y ∈ X\{0} with x+y∈X\{0}.

We now prove that for each x, y ∈ X \ {0} with x+ y 6= 0
(11)
∥

∥g(x+y)−g(x)−g(y)
∥

∥ ≤
s(m+1)+s(m)

1−s(m+1)−s(m)
(H(x+y)+H(x)+H(y)).
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To see this, let x, y ∈ X \ {0} with x+ y 6= 0. Then, by (10) and (8), we
have

‖g(x+ y)− g(x)− g(y)‖ ≤ ‖g(x+ y)−Gm(x+ y)‖

+ ‖Gm(x+ y)−Gm(x)−Gm(y)‖+ ‖Gm(x)− g(x)‖+ ‖Gm(y)− g(y)‖

≤
s(m+ 1) + s(m)

1− s(m+ 1)− s(m)
(H(x+ y) +H(x) +H(y)).

In particular, we have
∥

∥g(x+ y)− g(x)− g(y)
∥

∥ ≤ s0
(

H(x+ y) +H(x) +H(y)
)

for all x, y ∈ X \ {0} with x+ y 6= 0 where

s0 := inf
{ s(m+ 1) + s(m)

1− s(m+ 1)− s(m)
: m ∈ N and s(m+ 1) + s(m) < 1

}

.

Since inf{s(n+ 1) + s(n) : n ∈ N} = 0, we have s0 = 0 and hence

g(x+ y) = g(x) + g(y) for all x, y ∈ X \ {0} with x+ y ∈ X \ {0}.

Since g(0) = 0 and g(−x) = −g(x) for all x ∈ X , the function g satisfies the
Cauchy equation.

(b) Now, we assume further that there exist a ∈ F \ {0} and A ∈ K such
that the inequality (3) holds for all x ∈ X \ {0}. Let x ∈ X \ {0} and let

n ∈ N. Note that g(nx) = ng(x) and g
(

nx
2a

)

= ng
(

x
2a

)

. Then

n
∥

∥

∥
g(x)− 2Ag

( x

2a

)
∥

∥

∥
=

∥

∥

∥
g(nx)− 2Ag

(nx

2a

)
∥

∥

∥
≤ s(n)H(x).

That is,
∥

∥

∥
g(x)− 2Ag

( x

2a

)
∥

∥

∥
≤
s(n)

n
H(x).

This implies that
∥

∥

∥
g(x)− 2Ag

( x

2a

)
∥

∥

∥
≤ t0H(x),

where

t0 := inf
{s(n)

n
: n ∈ N

}

.

It follows from inf{s(n+ 1) + s(n) : n ∈ N} = 0 that inf
{ s(n)

n
: n ∈ N

}

= 0
and hence g(x) = 2Ag( x

2a). In particular,

g(ax) = Ag
(x

2

)

+Ag
(x

2

)

= Ag
(x

2
+
x

2

)

= Ag(x).
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Since g(0) = 0, we now conclude that g(ax) = Ag(x) for all x ∈ X . �

We now show that if f satisfies the general linear equation approximately,
then its odd part fo satisfies the Cauchy equation approximately.

Theorem 6. Let X and Y be normed spaces over the scalar fields F

and K, respectively, a, b ∈ F \ {0} and A,B ∈ K. Suppose that h : X \ {0}
→ R+ and f : X → Y are given. Suppose that f satisfies the inequality

‖f(ax+ by)−Af(x)−Bf(y)‖ ≤ h(x) + h(y)

for all x, y ∈ X \ {0}. Then there exists a function H : X \ {0} → R+ such
that H(−x) = H(x) for all x ∈ X \ {0} and the odd and even parts fo, fe : X
→ Y of f satisfy the following conditions:

(a)
∥

∥fo(x)− 2Afo(
x
2a)

∥

∥ ≤ H(x) and
∥

∥fo(x)− 2Bfo(
x
2b)

∥

∥ ≤ H(x) for all
x ∈ X \ {0};

(b)
∥

∥fo(x+ y)− fo(x)− fo(y)
∥

∥ ≤ H(x) +H(y) for all x, y ∈ X \ {0}.
If inf{s(n+ 1) + s(n) : n ∈ N} = 0 where

s(n) := inf
{

t ≥ 0 : h(nx) ≤ th(x) for all x ∈ X \ {0}
}

(n ∈ N),

then
(i) fo(x+ y) = fo(x) + fo(y) for all x, y ∈ X ;
(ii) fo(ax) = Afo(x) and fo(bx) = Bfo(x) for all x ∈ X ;
(iii) fe(x) = fe(0) = f(0) for all x ∈ X ; and fe(0) = Afe(0) +Bfe(0).

Proof. Define

h′(x) :=
1

2
(h(x) + h(−x)), H ′(x) := h′

( x

2a

)

+ h′
( x

2b

)

,

H(x) := 2(H ′(x) +H ′(2x) +H ′(3x))

for all x ∈ X \ {0}. Then h′(−x) = h′(x), H ′(−x) = H ′(x), and H(−x) =
H(x) for all x ∈ X \ {0}. Note that

∥

∥fo(ax+ by)− Afo(x)−Bfo(y)
∥

∥(12)

=
1

2

∥

∥f(ax+ by)− f(−ax− by)−A(f(x)− f(−x))− B(f(y)− f(−y))
∥

∥

≤
1

2

∥

∥f(ax+by)−Af(x)−Bf(y)
∥

∥ +
1

2

∥

∥f(−ax−by)−Af(−x)−Bf(−y)
∥

∥

≤
1

2
(h(x) + h(y)) +

1

2
(h(−x) + h(−y)) = h′(x) + h′(y)

for all x, y ∈ X \ {0}. Let x ∈ X \ {0}. Replacing x by x
2a and y by x

2b in
(12), we get

(13)
∥

∥

∥
fo(x)−Afo

( x

2a

)

−Bfo

( x

2b

)
∥

∥

∥
≤ H ′(x).

Acta Mathematica Hungarica

178



ULAM STABILITY OF THE GENERAL LINEAR EQUATION 9

Next, replacing x by x
2a and y by − x

2b in (12), we get

(14)
∥

∥

∥
−Afo

( x

2a

)

+Bfo

( x

2b

)∥

∥

∥
≤ H ′(x).

Then (13) and (14) imply that

(15)











∥

∥

∥
fo(x)− 2Afo

( x

2a

)∥

∥

∥
≤ 2H ′(x) ≤ H(x),

∥

∥

∥
fo(x)− 2Bfo

( x

2b

)
∥

∥

∥
≤ 2H ′(x) ≤ H(x),

for all x ∈ X \ {0} and so we get (a). If x, y ∈ X \ {0}, then it follows from
(12) and (15) that

∥

∥

∥
fo

(1

2
x+

1

2
y
)

−
1

2
fo(x)−

1

2
fo(y)

∥

∥

∥
(16)

≤
∥

∥

∥
fo

(

a
x

2a
+ b

y

2b

)

− Afo

( x

2a

)

− Bfo

( y

2b

)
∥

∥

∥

+
∥

∥

∥
Afo

( x

2a

)

−
1

2
fo(x)

∥

∥

∥
+

∥

∥

∥
Bfo

( y

2b

)

−
1

2
fo(y)

∥

∥

∥

≤ h′
( x

2a

)

+ h′
( y

2b

)

+H ′(x) +H ′(y) ≤ 2H ′(x) + 2H ′(y).

Let x ∈ X \ {0}. Replacing x by 3x and y by −x in (16), we get

(17)
∥

∥

∥

3

2
fo(x)−

1

2
fo(3x)

∥

∥

∥
≤ 2H ′(3x) + 2H ′(x).

Next, replacing x by 3x and y by x in (16), we get

(18)
∥

∥

∥
fo(2x)−

1

2
fo(3x)−

1

2
fo(x)

∥

∥

∥
≤ 2H ′(3x) + 2H ′(x).

Then (17) and (18) imply

(19) ‖fo(2x)− 2fo(x)‖ ≤ 4H ′(x) + 4H ′(3x).

Consequently, let x, y ∈ X \ {0}, then it follows from (16) and (19) that

‖fo(x+ y)− fo(x)− fo(y)‖ ≤
∥

∥

∥
fo

(1

2
2x+

1

2
2y

)

−
1

2
fo(2x)−

1

2
fo(2y)

∥

∥

∥

+
∥

∥

∥

1

2
fo(2x)− fo(x)

∥

∥

∥
+
∥

∥

∥

1

2
fo(2y)− fo(y)

∥

∥

∥
≤ H(x) +H(y).

So we get (b).
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Now we assume further that inf{s(n+1)+ s(n) : n ∈ N} = 0. Note that,
by Lemma 4, H(nx) ≤ s(n)H(x) for all x ∈ X and n ∈ N. Then all the con-
ditions of Lemma 5 are satisfied and hence we obtain the statements (i)
and (ii).

Next we prove (iii). By the definition of fe, we get
∥

∥fe(ax+ by)−Afe(x)−Bfe(y)
∥

∥(20)

=
1

2

∥

∥f(ax+ by) + f(−ax− by)−A(f(x) + f(−x))− B(f(y) + f(−y))
∥

∥

≤
1

2

∥

∥f(ax+by)−Af(x)−Bf(y)
∥

∥ +
1

2

∥

∥f(−ax−by)−Af(−x)−Bf(−y)
∥

∥

≤
1

2
(h(x) + h(y)) +

1

2
(h(−x) + h(−y)) = h′(x) + h′(y)

for all x, y ∈ X \ {0}. It follows from (20) that

‖fe(x)− fe(0)‖ ≤
∥

∥

∥
fe(x)− Afe

( x

2a

)

−Bfe

( x

2b

)∥

∥

∥

+
∥

∥

∥
fe(0)− Afe

(

−
x

2a

)

−Bfe

( x

2b

)
∥

∥

∥
≤ 2H ′(x) ≤ H(x)

for all x ∈ X \ {0}. For each x ∈ X \ {0} and n ∈ N, we have

‖fe(nx)− fe(0)‖ ≤ H(nx) ≤ s(n)H(x).

Since inf{s(n+ 1) + s(n) : n ∈ N} = 0, there exists an increasing sequence
{nk}

∞
k=1 in N such that lim

k→∞
(s(nk +1)+ s(nk)) = 0. Note that lim

k→∞
s(nk) =

lim
k→∞

s(nk + 1) = 0. In particular,

lim
k→∞

fe((nk + 1)x) = lim
k→∞

fe(nkx) = fe(0) for all x ∈ X \ {0}.

Let x ∈ X \ {0}. Replacing x by (nk+1)x
a

and y by −nkx
b

in (20), we get

∥

∥

∥
fe(x)−Afe

((nk+1)x

a

)

− Bfe

(−nkx

b

)∥

∥

∥
≤ s(nk+1)h′

(x

a

)

+ s(nk)h
′
(x

b

)

.

In particular,

lim
k→∞

∥

∥

∥
fe(x)− Afe

((nk + 1)x

a

)

−Bfe

(−nkx

b

)
∥

∥

∥
= 0.

Since limk→∞ fe
( (nk+1)x

a

)

= limk→∞ fe
(

−nkx
b

)

= fe(0), we have

fe(x) = Afe(0) +Bfe(0).
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Moreover, (20) with x = nkx
a

and y = −nkx
b

, we get

∥

∥

∥
fe(0)−Afe

(nkx

a

)

−Bfe

(−nkx

b

)
∥

∥

∥
≤ s(nk)h

′
(x

a

)

+ s(nk)h
′
(x

b

)

.

Letting k → ∞, we obtain that

fe(0) = Afe(0) + Bfe(0).

Then fe(x) = fe(0) = Afe(0) + Bfe(0) for all x ∈ X and hence we get (iii).
�

By using Theorem 6, we immediately obtain the following hyperstability
result of the general linear equation which is related to Theorem AS.

Theorem 7. Let X and Y be normed spaces over the scalar fields F

and K, respectively, a, b ∈ F \ {0} and A,B ∈ K. Suppose that h : X \ {0}
→ R+ and f : X → Y are given. For each n ∈ N, define

s(n) := inf
{

t ≥ 0 : h(nx) ≤ th(x) for all x ∈ X \ {0}
}

.

Suppose that f satisfies the inequality
∥

∥f(ax+ by)−Af(x)−Bf(y)
∥

∥ ≤ h(x) + h(y)

for all x, y ∈ X \ {0}. If inf{s(n+ 1) + s(n) : n ∈ N} = 0, then f satisfies
the equation

f(ax+ by) = Af(x) + Bf(y)

for all x, y ∈ X .

Proof. Assume that inf{s(n+ 1) + s(n) : n ∈ N} = 0. By Theorem 6,
the odd and even parts fo, fe : X → Y of f satisfy the following conditions:

• fo(x+ y) = fo(x) + fo(y) for all x, y ∈ X ;
• f(x) = fo(x)+fe(x), fe(x)=fe(0)=Afe(0)+Bfe(0), fo(ax)=Afo(x),

and fo(bx)=Bfo(x) for all x ∈ X .
Let x, y ∈ X . Then

f(ax+ by) = fo(ax+ by) + fe(ax+ by) = fo(ax) + fo(by) + fe(0)

= Afo(x)+Bfo(y)+Afe(0)+Bfe(0) = Afo(x)+Bfo(y)+Afe(x)+Bfe(y)

= A(fo(x) + fe(x)) +B(fo(y) +Bfe(y)) = Af(x) + Bf(y). �

Remark 8. (1) For Theorem AS, we note that limα→∞ s(α) = 0 ⇔
limα→∞ s(−α) = 0. Moreover, it follows from limα→∞ s(α) = 0 that M0 is
an infinite set. Hence the latter condition is superfluous.

(2) Our hyperstability result in Theorem 7 follows from a weaker assump-
tion. In fact, it is easy to see that the condition limα→∞ s(α) = 0 implies
inf{s(n+ 1) + s(n) : n ∈ N} = 0.
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By using Theorem 7, we obtain the following corollary concerning the in-
homogeneous version of the general linear equation. It generalizes [1, Corol-
lary 2.5]. For more details about stability of the inhomogeneous functional
equations, we refer to the work of Brzde֒k [4].

Corollary 9. Let X and Y be normed spaces over the scalar fields F

and K, respectively, a, b ∈ F \ {0} and A,B ∈ K. Suppose that h : X \ {0}
→ R+ and d : X ×X → Y are given. For each n ∈ N, define

s(n) := inf
{

t ≥ 0 : h(nx) ≤ th(x) for all x ∈ X \ {0}
}

.

Suppose that f : X → Y satisfies the inequality
∥

∥f(ax+by)−Af(x)−Bf(y)−d(x, y)
∥

∥ ≤ h(x)+h(y) for all x, y ∈ X \{0}

and there exists a function f0 : X → Y such that

f0(ax+ by) = Af0(x) +Bf0(y) + d(x, y) for all x, y ∈ X.

If inf{s(n+ 1) + s(n) : n ∈ N} = 0, then

f(ax+ by) = Af(x) + Bf(y) + d(x, y) for all x, y ∈ X.

Proof. Assume that inf{s(n+ 1) + s(n) : n ∈ N} = 0. Set g(x) :=
f(x)− f0(x) for all x ∈ X . It follows that

∥

∥g(ax+ by)− Ag(x)−Bg(y)
∥

∥

=
∥

∥f(ax+ by)−Af(x)−Bf(y)− (f0(ax+ by)−Af0(x)− Bf0(y))
∥

∥

=
∥

∥f(ax+ by)−Af(x)−Bf(y)− d(x, y)
∥

∥ ≤ h(x) + h(y)

f or all x, y ∈ X \ {0}. By Theorem 7, we get

g(ax+ by) = Ag(x) +Bg(y) for all x, y ∈ X.

In particular, we have

f(ax+ by) = Af(x) +Bf(y) + d(x, y) for all x, y ∈ X. �

Remark 10. Note that in the case A+B 6= 1 and d is a constant func-
tion, that is, d(x, y) := c for all x, y ∈ X , the function f0 : X → Y defined
by

f0(x) =
c

1−A−B
for all x ∈ X,

satisfies the equation

f0(ax+ by) = Af0(x) + Bf0(y) + d(x, y) for all x ∈ X.

Therefore, our Corollary 9 also generalizes [1, Corollary 2.6].
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