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Abstract

Project Code: RSA5980037

Project Title: Gauged Supergravity from String/M-theory and AdS/CFT holography

Investigator: Associate Professor Dr. Parinya Karndumri

E-mail Address: parinya.ka@hotmail.com

Project Period: 3 years

The project concerns with the studies of holographic solutions within the framework of
gauged supergravities in four, five, six and seven dimensions. The gauged supergravities under
consideration are four-dimensional theories with N=3,4 supersymmetries and matter-coupled
half-maximal gauged supergravities in five, six and seven dimensions. In four dimensions, in
addition to new supersymmetric anti-de Sitter (AdS) vacuum, novel classes of holographic RG
flows and Janus solutions are found. Some of these solutions have known higher-dimensional
origins and can accordingly be uplifted to string/M-theory. The uplifted solutions would give
more insight to dynamics of the dual superconformal field theories (SCFTs) in three dimensions
at strongly coupled limits. These theories describe low energy dynamics of MZ2-brane, a
fundamental ingredient of M-theory, and recently play an important role in microscopic study of
black hole in AdS, space. Similar solutions including static black holes and strings in AdSs
space are obtained within N=4 gauged supergravity in five dimensions. In six dimensions,
general conditions for the existence of supersymmetric AdSg vacua are derived. Furthermore, it
is shown that these vacua have no moduli preserving all supersymmetry. Finally, in seven
dimensions, domain wall solutions with a non-vanishing three-form field are given. These
solutions describe surface defects in N=(1,0) SCFTs in six dimensions, and some of them can

be uplifted to M-theory.
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Introduction to the research problem and its significance

It is wildly accepted that superstring theory, or string theory for short, is the best
candidate for a theory of quantum gravity. In the past fifty years, string theory has provided
many insightful explanations to a number of unsolved problems in theoretical high energy
physics such as black hole entropy and the Big Bang, the origin of our universe. At the
beginning, there are five seemingly different superstring theories. But it has been shown that all
of the five superstring theories are related to each other and to a unified eleven-dimensional
theory, called M-theory, by a number of dualities.

At low energy, an energy scale much lower than the Planck scale at which the strength
of gravity is comparable to other interactions, both string and M-theories can be successfully
described by supergravity theories. Supergravity is an extension of Einstein general relativity by
incorporating supersymmetry, the symmetry of exchanging bosons and fermions. It is presently
known that string/M-theory has ten and eleven-dimensional supergravities as effective theories
at low energy. Furthermore, in order to obtain a sensible physical theory in four-dimensional
space-time, six or seven extra dimensions need to be compactified in a tiny volume. This will
result in an effective lower dimensional theory. It has been shown that these effective theories
take the form of supergravity and gauged supergravity theories. The latter is a gauged version
of the former in the sense that some part of the global symmetry of the supergravity theory is
promoted to a local or gauge symmetry. This procedure introduces non-abelian gauge
symmetry to a supergravity theory. The resulting gauged theories possess many new features
including the possibility of vacua different from Minkowski space-time.

An extremely important consequence of string theory is the so-called AdS/CFT
correspondence, a duality relation between string theory on a particular space containing anti-
de Sitter (AdS) space and a conformal field theory (CFT) on the boundary of the AdS space. At
low energy, this reduces to a correspondence between a supergravity theory and a conformal
field theory. This is a kind of strong-weak duality in which a weakly coupled gravity theory is
dual to a strongly coupled field theory which is usually a gauge theory and vice versa. The
correspondence is a direct consequence from the study of D-brane dynamics. In some sense,
this is a correspondence between closed and open strings. Therefore, the AdS/CFT

correspondence is expected to give some insight to the strong coupling limit of many interesting



gauge theories and the structure behind string/M-theory. In this respect, AdS spaces in different
space-time dimensions are essential. It turns out that many gauged supergravities can
accommodate vacua precisely of this type.

The original AdS/CFT correspondence has been extended through a number of different
directions. One of these is the extension to non-conformal field theories. This is of particular
interest since all of the gauge theories in the standard model of particle physics are not
conformally symmetric. The result is called non-AdS/non-CFT or in a more common term
gauge/gravity correspondence. Gravity backgrounds which are dual to this type of gauge
theories are domain walls. Another interesting class of solutions is Janus solutions dual to
interface CFTs which are useful in condensed matter physics as well. Solutions of these types
also arise naturally in various types of gauged supergravities in the form of half-maximally
supersymmetric vacuum solutions.

All of these facts express clearly that gauged supergravities play a very important role in
understanding string/M-theory as well as gauge theories. It turns out that working in lower
dimensions is much more convenient. Therefore, many interesting results are firstly obtained in
lower dimensional gauged supergravities. To interpret the results in string/M-theory context, an
embedding of these results is needed. This can be done by using a consistent reduction ansatz
from ten or eleven dimensions to lower dimensions. Constructing the reduction ansatz is
normally a highly non-trivial task, and presently only some particular cases of maximal gauged
supergravities are known. In the case of half-maximal gauged supergravities, very little is known
about their solutions and their embedding in higher dimensions. A reduced number of
supersymmetry makes it more difficult to explicitly find the corresponding reduction ansatz since
in this case supersymmetry allows for the coupling to an arbitrary number of matter fields.
Objectives
To study gauge/gravity correspondence within half-maximal gauged supergravities in 4, 5, 6
and 7 dimensions and to identify possible higher dimensional origins within string/M-theory.

To apply the results in extracting useful consequences in dual field theories and give some
interpretations of the results in terms of brane configurations in string/M-theory.

Methodology



The procedure for finding holographic solutions is generally given by the following steps.

1. Analyze the structure of gauged supergravity under consideration.

2. Compute the scalar potential and look for possible AdS critical points.

3. Set up the corresponding BPS equations by setting fermionic supersymmetry
transformations to zero. This step in general involves imposing certain projection
conditions on the Killing spinors. These conditions in effect reduce the original number
of supersymmetry.

4. Solve the resulting BPS equations to obtain the solutions of interest such as holographic
RG flows and Janus solutions dual respectively to RG flows and interfaces in the dual
field theories.

5. Check whether the BPS solutions satisfy the second-order field equations.

6. If the gauged supergravity has known higher dimensional origin, apply the reduction
ansatz to uplift the BPS solutions to string/M-theory.

7. Look for implications of the holographic solutions in the dual SCFT.

4. Outcomes
A large number of new results have been obtained from this project. It is more convenient to
report on these results separately in various space-time dimensions.

1. Four-dimensional gauged supergravities:

In N=3 gauged supergravity with SO(3)xSU(3) gauge group, the first holographic
study of this gauged supergravity has been performed in this project. Two AdS, critical
points preserving the full N=3 supersymmetry have been identified. One of these critical
points is the expected trivial critical point with all scalars vanishing and SO(3)xSU(3)
symmetry. The other one is a new non-trivial critical point with only SO(3)xU(1)
symmetry. The full scalar masses and holographic RG flows interpolating between these
critical points have been given. These solutions describe RG flows between N=3 three-

dimensional SCFTs dual to the aforementioned AdS, critical points. A number of

supersymmetric AdSzxzz solutions have also been found. These describe RG flows
across dimensions from N=3 SCFTs in three dimensions to one-dimensional conformal
field theory or conformal quantum mechanics. The solutions also have an interpretation

in terms of supersymmetric black holes in AdS, space.



In N=4 gauged supergravity, various gauge groups have been considered. The
first gauge group is SO(3)x(T*,T%) arising from a truncation of eleven-dimensional
supergravity on a tri-sasakian manifold. The resulting gauged supergravity admits two
supersymmetric AdS, critical points with N=3 and N=1 supersymmetries. Holographic
RG flows from these critical points to non-conformal field theories in the IR have been
studied. In addition, a class of supersymmetric N=1 Janus solutions have also been
given. All of these solutions can be uplifted to M-theory. The corresponding solutions in

eleven dimensions have also been considered. The study has continued to find
AdSsz2 solutions arising as near horizon geometries of AdS, back holes. These

provide a new class of AdSzxzz solutions with known M-theory origin and should be
useful in the context of black hole physics.

For N=4 gauged supergravities arising from type Il string theories,
ISO(3)xISO(3) and ISO(3)xU(1)° gauge groups have been considered. These gauge
groups are obtained respectively from type IIB and type IlA string theories compactified
on an orbifold T%Z,xZ,. RG flows and Janus solutions preserving different numbers of
supersymmetries have been found within these gauged supergravities.

However, solutions in all these non-semisimple gauge groups have a limited
structure in a sense that there are only a few supersymmetric AdS, critical points. The
research project then moved on to consider semisimple gauge groups SO(4)xSO(4),
S0O(4),S0(3,1) and SO(3,1)xSO(3,1). For these gauge groups, there are many
supersymmetric N=4 AdS, critical points with different residual symmetries and various
possibilities of RG flows between them. In addition, many of these solutions can be
obtained analytically and hence very useful in all interesting applications.
Five-dimensional gauged supergravity:

A similar study has been performed in N=4 gauged supergravity in five
dimensions coupled to five vector multiplets with gauge groups U(1)xSU(2)xSU(2),
U(1)xSO(3,1) and U(1)xSL(3,R). This gauged supergravity was previously less studied
in the holographic context. Holographic RG flows and a large class of half-
supersymmetric black strings in AdS; with AdS3x22 horizons have been found. The

study has also been extended to more general solutions with % -supersymmetry



including static black holes in AdSs;. All of these solutions have not appeared in
previous literatures.
3. Six-dimensional gauged supergravity:

Supersymmetric AdSg vacua are rare. The only possibility is AdSg vacua
preserving sixteen supercharges. These can be found using half-maximal N=(1,1)
gauged supergravity, known as F(4) gauged supergravity. In this research project,
general conditions for the existence of supersymmetric AdSg vacua with all
supersymmetry unbroken have been derived including the general form of gauge groups
admitting these AdSg critical points. These gauge groups take the form of G;xG,
subgroup of the global symmetry group SO(4,n) with G; and G, being subgroups of
SO(3,m) and SO(1,m-n), respectively. It has also been shown that these AdSg vacua do
not have moduli, deformations by massless scalars preserving all supersymmetry.
These vacua are then isolated points in the scalar field space. This implies that the dual
six-dimensional SCFTs do not have marginal deformations preserving all
supersymmetry in agreement with the field theory results.

4. Seven-dimensional gauged supergravity:

The last part of the results in this project arises from a study of matter-coupled
N=2 gauged supergravity in seven dimensions. The study extends usual domain wall
solutions, with only scalar fields non-vanishing, to include the three-form field in the N=2
supergravity multiplet. An analytic solution of this type has been obtained, and for
particular values of gauge coupling constants, the solution can be uplifted to eleven-
dimensions. This solution takes the form of an AdS;-sliced domain wall and describes a
conformal surface defect in the dual N=(1,0) SCFT. It has also been shown that
supersymmetric solutions with non-vanishing gauge fields and a three-form field do not
exist.

5. Conclusions and discussions

A number of new holographic solutions of various types such as domain walls,
RG flows and Janus solutions in different space-time dimensions are discovered in this
research project. Many of these solutions have known higher dimensional origins and

can be uplifted or embedded in string/M-theory. The results of this project enlarge



known holographic solutions to a large extent. In addition, some gauged supergravities
considered in this project have never been considered before namely, N=3,4 gauged
supergravities in four dimensions and N=4 gauged supergravity in five dimensions
coupled to vector multiplets.

Although many results have been discovered, there are many research

directions to pursue. Examples of these are finding AngXZz solutions in N=4 gauged
supergravity in four dimensions with both electric and magnetic vector fields turned on.
These will give a new class of supersymmetric dyonic AdS, black holes. There are
some gauged supergravity theories that have not been investigated in the context of
holography such as N=5,6 gauged supergravity in four dimensions and N=6 gauged
supergravity in five dimensions. Maximal gauged supergravity in seven dimensions and
various gauged supergravities in three dimensions also deserve further study. Hopefully,
all of these issues and the related ones will be addressed in another research project.
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Abstract We study four-dimensional N = 4 gauged super-
gravity coupled to six vector multiplets with semisimple
gauge groups SO4) x §O4), SO3,1) x SO3, 1) and
SO4) x SO(3, 1). All of these gauge groups are dyonically
embedded in the global symmetry group SO (6, 6) via its
maximal subgroup SO (3,3)xS0O(3, 3).For SO(4) xS0 4)
gauge group, there are four N = 4 supersymmetric AdSs
vacuawithSO(4)xS04),S04)xS03),5S03)xS04)
and SO (3) x SO(3) symmetries, respectively. These Ad Sy
vacua correspond to N = 4 SCFTs in three dimensions
with SO(4) R-symmetry and different flavor symmetries.
We explicitly compute the full scalar mass spectra at all
these vacua. Holographic RG flows interpolating between
these conformal fixed points are also given. The solutions
describe supersymmetric deformations of N = 4 SCFTs by
relevant operators of dimensions A = 1,2. A number of
these solutions can be found analytically although some of
them can only be obtained numerically. These results pro-
vide a rich and novel class of N = 4 fixed points in three-
dimensional Chern—Simons-Matter theories and possible RG
flows between them in the framework of N = 4 gauged
supergravity in four dimensions. Similar studies are carried
out for non-compact gauge groups, but the SO (4) x SO4)
gauge group exhibits a much richer structure.

1 Introduction

The study of holographic RG flows is one of the most inter-
esting results from the celebrated AdS/CFT correspondence
since its original proposal in [1]. The solutions take the form
of domain walls interpolating between AdS vacua, for RG
flows between two conformal fixed points, or between an
Ad S vacuum and a singular geometry, for RG flows from a

#e-mail: parinya.ka@hotmail.com

b e-mail: keima.tham @ gmail.com

conformal fixed point to a non-conformal field theory. Many
of these fixed points are described by superconformal field
theories (SCFTs) which are also believed to give some insight
into the dynamics of various branes in string/M-theory.

Rather than finding holographic RG flow solutions directly
in string/M-theory, a convenient and effective way to find
these solutions is to look for domain wall solutions in lower
dimensional gauged supergravities. In some cases, the result-
ing solutions can be uplifted to interesting brane configura-
tions within string/M-theory, see for example [2—4]. Apart
from rendering the computation simpler, working in lower
dimensional gauged supergravities also has an advantage of
being independent of higher dimensional embedding. Results
obtained within this framework are applicable in any models
described by the same effective gauged supergravity regard-
less of their higher dimensional origins.

Many results along this direction have been found in
maximally gauged supergravities, see for examples [5—13].
A number of RG flow solutions in half-maximally gauged
supergravities in various dimensions have, on the other hand,
been studied only recently in [14-21], see also [22,23] for
earlier results. In this paper, we will give holographic RG flow
solutions within N = 4 gauged supergravity in four dimen-
sions. Solutions in the case of non-semisimple gauge groups
with known higher dimensional origins have already been
considered in [19,20]. This non-semisimple gauging, how-
ever, turns out to have a very restricted number of supersym-
metric Ad S4 vacua. In this work, we will consider semisim-
ple gauging of N = 4 supergravity similar to the study in
other dimensions. Although some general properties of Ad S
vacua and RG flows have been pointed out recently in [18],
to the best of our knowledge, a detailed analysis and explicit
RG flow solutions in N = 4 gauged supergravity have not
previously appeared.

Gaugings of N = 4 supergravity coupled to an arbitrary
number n of vector multiplets have been studied and classi-

@ Springer
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fied for a long time [24-26], and the embedding tensor for-
malism which includes all possible deformations of N = 4
supergravity has been given in [27]. For the case of n < 6,
the relation between the resulting N = 4 supergravity and
ten-dimensional supergravity is not known. Therefore, we
will consider only the case of n > 6 which is capable of
embedding in ten dimensions. Furthermore, we are particu-
larly interested in N = 4 gauged supergravity coupled to six
vector multiplets to simplify the computation. In this case,
possible gauge groups are embedded in the global symme-
try group SL(2,R) x SO(6,6). From a general result of
[28], the existence of N = 4 supersymmetric AdS4 vacua
requires that the gauge group is purely embedded in the
SO(6, 6) factor. Furthermore, the gauge group must con-
tain an SO(3) x SO(3) subgroup with one of the SO(3)
factors embedded electrically and the other one embedded
magnetically.

We will consider gauge groups in the form of a simple
product G| x G3 in which one of the two factors is embed-
ded electrically in SO(3,3) C SO(6, 6) while the other is
embedded magnetically in the other SO (3, 3) subgroup of
SO (6, 6). Taking the above criterions for having supersym-
metric AdS4 vacua into account, we will study the case of
Gi1,Gr, =S0O(4) and SO (3, 1). There are then three differ-
ent product gauge groups to be considered, SO (4) x SO (4),
SOB,1)xSO0@3,1)and SO(4) x SO(3, 1). We will iden-
tify possible supersymmetric Ad S4 vacua and supersymmet-
ric RG flows interpolating between these vacua. These solu-
tions should describe RG flows in the dual N = 4 Chern—
Simons-Matter (CSM) theories driven by relevant operators
dual to the scalar fields of the N = 4 gauged supergravity.
As shown in [29], some of the N = 4 CSM theories can be
obtained from a non-chiral orbifold of the ABJM theory [30].
Other classes of N = 4 CSM theories are also known, see
[31,32] for example. These theories play an important role
in describing the dynamics of M2-branes on various back-
grounds. The solutions obtained in this paper should also
be useful in this context via the AdS/CFT correspondence.
It should also be emphasized that all gauge groups consid-
ered here are currently not known to have higher dimensional
origins. Therefore, the corresponding holographic duality in
this case is still not firmly established.

The paper is organized as follow. In Sect. 2, we review
N = 4 gauged supergravity coupled to vector multiplets
in the embedding tensor formalism. This sets up the frame-
work we will use throughout the paper and collects rele-
vant formulae and notations used in subsequent sections. In
Sect. 3, N = 4 gauged supergravity with SO(4) x SO (4)
gauge group is constructed, and the scalar potential for scalars
which are singlets under SO (4)ipy C SO (4) x SO (4) is com-
puted. We will identify possible supersymmetric Ad S4 vacua
and compute the full scalar mass spectra at these vacua. The
section ends with supersymmetric RG flow solutions interpo-
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lating between AdSs vacua and RG flows to non-conformal
field theories. A similar study is performed in Sects. 4 and 5
for non-compact SO (3, 1) x SO (3, 1)and SO(4)xSO@3, 1)
gauge groups. Conclusions and comments on the results will
be given in Sect. 6. An appendix containing the convention
on 't Hooft matrices is included at the end of the paper.

2 N = 4 gauged supergravity coupled to vector
multiplets

To set up our framework, we give a brief review of four-
dimensional N = 4 gauged supergravity. We mainly give rel-
evant information and necessary formulae to find supersym-
metric AdS4 vacua and domain wall solutions. More details
on the construction can be found in [27].

N = 4 supergravity can couple to an arbitrary number n
of vector multjplets. The supergravity multiplet consists of
the graviton ej;, four gravitini ¥/, six vectors A”", four spin-
% fields x’ and one complex scalar T containing the dilaton
¢ and the axion x. The complex scalar can be parametrized
by SL(2,R)/SO(2) coset. Each vector multiplet contains a
vector field A, four gaugini Al and six scalars ¢”. Similar to
the dilaton and the axion in the gravity multiplet, the 6n scalar
fields can be parametrized by SO (6,n)/SO(6) x SO(n)
coset.

Throughout the paper, space-time and tangent space
indices are denoted respectively by p, v, ... =0, 1,2, 3 and
a,v,... = 0,1,2,3. The SO(6) ~ SU(4) R-symmetry
indices will be described by m,n =1, ..., 6 for the SO (6)
vector representation and i, j = 1,2, 3,4 for the SO(6)
spinor or SU (4) fundamental representation. The n vector
multiplets will be labeled by indices a, b = 1,...,n. All
fields in the vector multiplets accordingly carry an additional
index in the form of (A¢, Al "),

Fermionic fields and the supersymmetry parameters trans-
forming in the fundamental representation of SU(4)g ~
SO (6)g R-symmetry are subject to the chirality projections

ys¥i, =l vsx'=—x'. ysAi = (1)

while the fields transforming in the anti-fundamental repre-
sentation of SU (4)g satisfy
Yshi = —A;. (2)

VsWui = —Vuis  VsXi = Xi

Gaugings of the matter-coupled N = 4 supergravity
can be described by two components of the embedding
tensor f;‘"‘M and fomnp wWith o = (4+,—) and M, N =
(m,a) = 1,...,n + 6 denoting fundamental representa-
tions of SL(2, R) and SO (6, n), respectively. Under the full
SL(2,R) x SO(6,n) duality symmetry, the electric vec-
tor fields AT = (A™, A7), appearing in the ungauged
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Lagrangian, together with their magnetic dual A= form
a doublet under SL(2, R) denoted by A*M . A general gauge
group is embedded in both SL(2, R) and SO (6, n), and the
magnetic vector fields can also participate in the gauging.
However, each magnetic vector field must be accompanied
by an auxiliary two-form field in order to remove the extra
degrees of freedom.

From the analysis of supersymmetric AdS4 vacuain [28],
see also [25,26], purely electric gaugings do not admit Ad Sy
vacua unless an SL(2, R) phase is included [25]. The latter
is however incorporated in the magnetic component f_ sy p
[27]. Therefore, only gaugings involving both electric and
magnetic vector fields, or dyonic gaugings, lead to AdSs
vacua. Furthermore, the existence of maximally supersym-
metric Ad S, vacua requires £*M = 0. Accordingly, we will
from now on restrict ourselves to the case of dyonic gaugings
and £2M = (.

With €M = 0, the gauge covariant derivative can be
written as

Dy =V, —gAM f N inp 3)

where V,, is the usual space-time covariant derivative includ-
ing the spin connection. tjsy are SO (6, n) generators in the
fundamental representation and can be chosen as

(tMN)pQ = 25[%[77N]P~ “4)

nun = diag(—1,-1,—-1,—-1,—-1,—-1,1,...,1) is the
SO (6, n) invariant tensor, and g is the gauge coupling con-
stant that can be absorbed in the embedding tensor fyynp.
For a product gauge group consisting of many simple sub-
groups, there can be as many independent coupling constants
as the simple groups within the product. Note also that with
the component £*M = 0, the gauge group is embedded solely
in SO (6, n).

To define a consistent gauging, the embedding tensor has
to satisfy a set of quadratic constraints

fozR[MNfﬁpQ]R =0, 6O{ﬁfotMNRfﬁPQR =0. (5

as well as the linear or representation constraint fyyynp =
Sfarmnpy-

The scalar coset SL(2, R)/S O (2) can be described by the
coset representative V,,. We will choose the explicit form of
V, as follow

_je—®
vaze%’(X e ) ©)

For the SO(6,n)/SO(6) x SO(n) coset, we intro-
duce a coset representative VMA transforming under global

SO(6, n) and local SO(6) x SO (n) by left and right multi-
plications, respectively. By splitting the index A = (m, a),
we can write the coset representative as

Vit =00, V9. (7)

Being an element of SO (6, n), the matrix VMA satisfies the
relation

In addition, we can parametrize the SO(6,n)/SO(6) x
SO (n) coset in term of a symmetric matrix

MMN ZVMmVNm +VMaVNa (9)

which is manifestly SO (6) x SO (n) invariant.

In this paper, we are mainly interested in supersymmetric
solutions with only the metric and scalars non-vanishing.
The bosonic Lagrangian with vector and auxiliary two-form
fields vanishing can be written as

1 1
-1 MN
L=—-R+—9, Myno*mM"" —
e > +16 MmN

ATkt =V

(10)

4(Imt)2

where e is the vielbein determinant. The scalar potential
is given in terms of the scalar coset representative and the
embedding tensor by

2
g 1
V= 6 I:faMNPfﬁQRSMaﬁ |:§MMQMNRMPS

2

+ (gnMQ _ MMQ) nNRnPSi|
4

- §faMNPf,3QRS€aﬂMMNPQRS:| (11)

where MMN is the inverse of My y, and MMNPORS g
obtained from

MMNPQRS = EmnpqrsVMmVNan pVQqVR rVS y (12)

with indices raised by n™¥. Similar to MMN, MP is the
inverse of a symmetric 2 x 2 matrix Myg defined by

Map = Re(Vu V). (13)

Fermionic supersymmetry transformations are given by

i i_ 2 i
8y, =2Dye — ggA1 Yu€js (14
. .4 i
Sx' = ie"PV,D,Vgyte — gigAlzjej', (15)
ol = 20V,M DV, T yte; +2igAy, €. (16)
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The fermion shift matrices, also appearing in fermionic mass-
like terms of the gauged Lagrangian, are given by

i i il NP
A =PV VMV YV

ij i jl NP
AY =PV VMV fay

, " P
A’ = €TV VNV oy (17)
where V,, " is defined in terms of the *t Hooft symbols G%

and V,," as

i_ Ly, mgis
Vy' = EVM Gp. (18)
Similarly, the inverse elements VMI. j can be written as

1 .
G % convert an index m in the vector representation of SO (6)
into an anti-symmetric pair of indices [ij] in the SU (4) fun-
damental representation. They satisfy the relations

y 1
Gmij = —(Gp)* = _EeijleI;nl- (20)

The explicit form of these matrices can be found in the
appendix.

The scalar potential can also be written in terms of the
fermion shift matrices A; and A, as

Ui U ij L iy
V=—§A1A1,'j+§A2 A2U+§A2ai A,, It 21
Together with the fermionic supersymmetry transformations,
it then follows that unbroken supersymmetry corresponds to
an eigenvalue of AY , a, satisfying Vp = —% where V) is
the value of the scalar potential at the vacuum or the cosmo-
logical constant.

3 Supersymmetric AdS4 vacua and holographic RG
flows in SO (4) x SO (4) gauged supergravity

We are interested in gauge groups that can be embedded in
SO@3,3) xSO@3,3) C SO(6, 6). These gauge groups take
the form of a product G| x G, with G1, G2 C SO(3, 3)
being six-dimensional. Semisimple groups of dimension six
that can be embedded in SO (3, 3) are SO(4), SO(3, 1) and
SO(2,2). The embedding tensors for these gauge groups
are given in [33]. Since gauge groups involving SO (2, 2)
factors do not give rise to AdSs vacua, we will not consider
these gauge groups in this paper. In this section, we will study
N = 4 gauged supergravity with compact SO (4) x SO (4) ~
SO@3) x SOB) x SO(3) x SO(3) gauge group.
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3.1 AdS4 vacua

Non-vanishing components of the embedding tensor for
SO(4) x SO(4) gauge group are given by

Frip =201 = 8)€mip.  Frape = V2(81 4 8)ez50
foiip = V282 — 8emip,  foaze = V2(82 + 82)esz00
(22)

where we have used the indices M = (m, a) = (m,m, a, a)
with m = 1,2,3, m = 4,5,6,a = 7,8,9 and a =
10, 11, 12. As mentioned before, the first and second SO (4)
factors are embedded electrically and magnetically, respec-
tively.

Non-compact generators of SO (6, 6) are given by

Yia = em,a+6 T €a+6,m (23)

in which the 12 x 12 matrices epsy are defined by
(emMN)Po =0mPONQ- (24)

The 36 scalars in SO (6,6)/S0O(6) x SO(6) transform as
(6, 6) under the compact group SO (6) x SO(6). Under the
gauge group SO(4); x SO4)_ ~ SO(3)! x SO(3)3 x
SOB)L x SO(3)2, these scalars transform as

6,6~ (3,3,1,D+@3,1,1,3)+(1,3,3,H+(1,1,3,3).
(25)

We will consider scalars which are singlets under the
diagonal subgroup SO @)iny ~ [SO(3)L x SO(3)21p x
[SOB)L x SO3)21p. Under SO (4)iny, the scalars trans-
form as

2.+ 3. 1H+ 1A, 3)+ 1,5 +(5.1)+23,3). (206)

The two singlets correspond to the following non-compact
generators

Yi=Yi 4 Yo+ Y3, Yo=Y+ Yss+ Yes 27

in terms of which the coset representative is given by
L = ef/)l?l etbzl?z. (28)

Together with the SL(2,R)/SO(2) scalars which are
SO4) x SO(4) singlets, there are four SO (4)iyy singlet
scalars. The scalar potential for these singlets can be com-
puted to
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16— -
V= ge ¢—661 6¢2[e¢+3¢2[e¢+3¢2g%+e¢+12¢‘+3¢2g

— 3P T401+3¢2 (28% + g%) _ 3P +801+302 (g% + 25;%)
+26g1[g2(1 + 3¢*?) — 27 3,(3 + )]
+6e7% g1[ga (1 + 3¢*?) — 72223 + €]

— 6671 21[g2(1 + 3¢*?) — 2733 + ')

—26" 21[ga(1 4 3¢?) — 72223 + *)]]

+ M1 =362 + )]0 + e x5

+ 1682622 (1 4 e* x?) + ' [ (16e°7 g1 &1
=30 — 683" 7 + 7 (?83)

+ (€57 — 6" = 3)g31]]. (29)

2
1

This potential admits a maximally supersymmetric Ad Sy
critical point with SO (4) x SO(4) symmetry at x = ¢ =
¢ = 0 and

&2 — &

¢ =1In =
81 — &1

. (30)

For convenience, we will denote this AdSs vacuum with
SO4) x SO(4) symmetry by critical point I.

Without loss of generality, we can shift the dilaton such
that this critical point occurs at ¢ = 0. For definiteness, we
will choose

h=g1+g -8 (31

At this critical point, we find the value of the cosmological
constant and the Ad Sy radius

1

Vo=—6(g1 —&)? and L= ——
V281 — g1)

(32)

where we have assumed that g; > g;. All scalars have masses
m?L? = —2. In general, using the relation m?L? = A(A —
3), we find that these scalars can be dual to operators of
dimensions A = 1 or A = 2. These correspond to mass
terms of scalars (A = 1) or fermions (A = 2) in the dual
three-dimensional SCFTs. Usually, the correct choice is fixed
by supersymmetry as in the case of ABJM theory. However,
in the present case, the identification is not so clear.

Furthermore, the scalar potential in (29) also admits addi-
tional three supersymmetric AdS4 vacua:

e II. This critical point has SO(3)4+ x SO(4)_ symmetry
with

o—In |:2\/gl§1j|’ b1 = T [g} ¢r =0,

g1+ & 2 L&

3(g1 +&0(g1 — &)’
V8181
~ 1
(8181)*

L = .
(&1 —gVver+ &

e III. This critical point has SO (4)+ x SO(3)_ symmetry
with

¢=—1n[2—vg"‘§2], ¢2=11n[2] 1 =0,

o+

Vo =

(33)

382+ &)(g1 — &)’
V8282
.1
(8282)%

L= .
&1 —gDVe +2

e IV. This critical point is invariant under a smaller sym-
metry SO (4)iny With

p=1n Na‘?l—g”‘?z] n=zm|2].
8282 81+ 81 2 &
1 [g
¢ = Eln [5] ;
3(g2+8)°(g1 — &1)°
2,/81818282 ’
B V2(g1818282)
@ -V e+ )

Vo =

(34)

Vo =

35)

We have written the above equations in term of g, for brevity.
All of these critical points preserve the full N = 4 supersym-
metry and correspond to N = 4 SCFTs in three dimensions.
Scalar masses at these critical points are given in Tables 1, 2
and 3.

It should also be noted that three massless scalars at crit-
ical points II and III are Goldstone bosons corresponding to
the symmetry breaking SO(4)+ x SO4)— — SOQ3)+ x
SO@4)_ and SO4)y x SO4)- — SO+ x SOQ3)_.

Table 1 Scalar masses at the N = 4 supersymmetric Ad Sy critical
point with SO (3) + x SO (4) — symmetry and the corresponding dimen-
sions of the dual operators

Scalar field representations m?L? A
(LLD —2x2 1,2
1,11 4 4
3.1,1 0x3 3
1,3,3) 0x9 3
(5.1, 1) —2xs 1,2
3.1,3)+@3.,3.1 —2x18 1,2
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Table 2 Scalar masses at the N = 4 supersymmetric Ad Sy critical
point with SO (4) 1+ x SO (3) - symmetry and the corresponding dimen-
sions of the dual operators

Scalar field representations m?L? A
1,1,1) 22 1,2
11,1 4 4
1,1,3) 0x3 3
3,31 0x9 3
1,1,5) —245 1,2
1,3,3)+@3.1,3) —2418 1,2

Table 3 Scalar masses at the N = 4 supersymmetric Ad Sy critical
point with SO (3) x SO(3) ~ SO (4)iny symmetry and the correspond-
ing dimensions of the dual operators

Scalar field representations m?L? A
11 —2x2 1,2
1,1 452 4
1L5+61D —2x10 1,2
1,3)+@3. 1D Oxe 3
3.3 Ox1s 3

These scalars live in representations (3,1, 1) and (1, 1, 3),
respectively. Similarly, for critical point IV, six of the mass-
less scalars in the representation (1, 3) + (3, 1) are Goldstone
bosons of the symmetry breaking SO(4)y x SO4)- —
SO(4)iny. The remaining massless scalars correspond to
marginal deformations in the SCFTs dual to these AdSy
vacua. These deformations necessarily break some amount
of supersymmetry since the N = 4 Ad S4 vacua have no mod-
uli preserving N = 4 supersymmetry [28]. It should also be
noted that the vacuum structure of this gauged supergravity
is very similar to two copies of SO(3) x SO3) ~ SO4)
N = 3 gauged supergravity considered in [34].

3.2 Holographic RG flows between N = 4 SCFTs

We now consider holographic RG flow solutions interpolat-
ing between supersymmetric Ad S4 vacua previously identi-
fied. To find supersymmetric flow solutions, we begin with
the metric ansatz

ds* = eZA(’)dxlz’z +dr? (36)

where dx12 , is the flat Minkowski metric in three dimensions.

For spihor conventions, we will use the Majorana rep-
resentation with all y# real and ys5 purely imaginary. This
choice implies that €; is a complex conjugate of €’. All scalar
fields will be functions of only the radial coordinate » in order
to preserve Poincaré symmetry in three dimensions. The BPS
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conditions coming from setting § x' = 0 and §A!, = O require
the following projection

y;ei = eiAei. 37

It follows from the 8,,; = 0 conditions for u = 0, 1, 2,
that

N = :l:ﬂ (38)

A =4W,
w

where W = |[W)|, and ' denotes the r-derivative. The super-
potential WV is defined by

W=-a (39)

where « is the eigenvalue of Ail‘i corresponding to the unbro-
ken supersymmetry. The detailed analysis leading to Eq. (38)
can be found, for example, in [34]. -

For SO (4)iny singlet scalars, the tensor A'/ takes the form
of a diagonal matrix

3
A = R (40)

with the superpotential given by
1

—$-3¢1-3¢ [ 5 L $H201430) | s B+601+3¢
W= e 27012 13 g1e 1792 +igle 1702
42
e+ ) [g2(1 4 36) — g2 3+ 497)]
—igef 3 — 3igle¢+4¢'+3¢2] ) 41

The variation of A/, leads to the following BPS equations

¢1 = ‘;We‘“e%ﬁ‘m (€ = 1) g1 — g0, (42)
| N 5 i

¢y = _zﬁ'e”‘e 27302 — 1) 82 — g2)(e? x — ).

(43)

Consistency of the first condition implies that the phase e/
is purely imaginary, e’ = +i. With this choice, the second
condition requires that x = 0. This is also consistent with
the variation of the dilatini Xi . Furthermore, with x = 0, the
superpotential (41) is purely imaginary in agreement with
the spinor phase ¢!** in Eq. (38).

We will choose a definite sign in order to identify the
SO4) x SO(4) critical point with the limit » — oo. The
BPS equations for ¢, ¢1 and ¢, can then be written as

ow 20W

) 29W
N ¢1 = —Z T
¢ 3 3¢

¢ =—4 BEETS

¢y = (44)
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together with the A’ equation

A=W (45)

Explicitly, these equations read

¢_ 4¢ 21 =
$1=—s—ze2 N - D8 - g). (46)
1 2ﬁ g gl
I e 4 20 ~
¢y = —=e 2P — (@78 — g2), (47)
1 ¢
¢ = —— ¢~ 53013
232
% [3g1 201302 _ g (#4302 _ 34 9401430
+ §1e¢+6¢‘+3¢2 + &30
X [g2e2¢2 G+e*) — (1 + 3e4¢2)]] , (48)
1 ¢
A = 5301302
42

% [3§1e"’+2"’1+3¢’2 — g1e9T¥ _ 3g, tHiB1+30

+§le¢+6¢|+3¢2 + 391

x [g2(1+36%) — 2623 4 ) || (49)

The scalar potential can be written in term of the real super-
potential W as

IWN? 2 /aW\2 2 /oW’ )
v=4(55) +3 () +3 () v o

It can be verified that the above BPS equations are compatible
with the second-order field equations. It should be noted that
the consistency between BPS equations and field equations
also requires y = 0.

We now consider various possible RG flows interpolating
between the N = 4 supersymmetric fixed points. Some of
these flows can be obtained analytically, but the others require
some sort of numerical analysis. Near the SO(4) x SO (4)
critical point as r — oo, the BPS equations give

b b1y ~e 11 (51)

in agreement with the fact that all these scalars are dual to
operators of dimensions A = 1,2. Ly is the Ad Sy radius at
critical point I.

We begin with the flow between critical points I and II.
In this case, we can consistently set ¢ = 0. By considering
¢ and A as functions of ¢, we can combine the above BPS
equations into

dp  gi(143e*) +eX1[4(gr — §2)e?1 ¢ — g1 (e*1 +3)]
dgy (¥ — 1)(Z1e2 —g))

(52)
dA  g1(143e') — e1[4(gy — 22)e? 0 + 813 + )]
dgy 2(e%1 — 1)(g1621 — g1) '

(53)

The first equation can be solved by

_3 apr _
¢=ln[g2 g2+ Ci(e* 1)]. (54)

g1e3% — g

The integration constant C; will be chosen such that the solu-
tion interpolates between ¢ = 0 at the SO (4) x SO (4) crit-

ical point and ¢ = In [—Vg'g'} at the SO(3)4 x SO4)_

g1+81
...2 _ 5
critical point. This is achieved by choosing C; = %,
1741
and the solution for ¢ is given by
(g2 — 82)(g1 + §1*M)e
¢ =1In ) 5 . (55)
81 — &
With this solution, Eq. (53) can be solved by
_h 41 5 0201y 4 L 3 o2
A="7—In(1-e")+In(g1—g1e™)+ 5 In(g1+81e™)
(56)

where an irrelevant additive integration constant has been
removed.
By changing to a new radial coordinate 7 defined by % =

e% , Eq. (46) becomes

dpr U301 401 -

_— = — = _ 1 1 _ 57

i~y et = D@e? g (57)

whose solution is given by

(8% - g’%)f ~ -1 ~ -1

=L 2ln — (g1 —g)tan~'e? — (g1 + &1) tanh !
V2

42212 tanh ™! [ /&e¢1j| . (58)
81

Near critical point II, the operator dual to ¢»; becomes irrel-
evant with dimension A = 4, but the operator dual to the
dilaton ¢ is still relevant with dimensions A = 1, 2. This
can be seen by looking at the behavior of scalars near critical
point 1T

d~e T and ¢ ~ el (59)

asr — —OQ.
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We can then consider a flow from critical point II to critical
point IV. Along this flow, we have ¢| = % In %, and a similar
analysis gives the solution

<i>=1n[ng‘g‘(g”“;’”ew2 } (60)

(814 &1)(g2 + §262%2)

A= ‘1;_2 —In(1 — €*?) +1n(§26** — g2)

1 -
+ 5 In(g2 + 326792, 61)
Along this flow, the running of ¢» is described by
(g1 —81)(g2+ §2)F
V2
= (g1 — g tan"' e — (g2 + Z2) tanh~

+2./g22, tanh ™! |:e¢2 Q} (62)

82

L 92

[SIASS

with 7 defined by % =e
Similarly, the flows between critical points I and III and
between critical points III and IV are given respectively by

$1 =0, (63)
e? (g2 + 22)
=1In|—22 " °27 |, 64
¢ |:82+€2¢282i| (9
A= =) @ - )
1 y
+ 5 In(g2 + £2e") (65)
and
1
¢ ==1In [&} , (66)
2 g2
—¢1 5 51 0201
6 =1n e % (g +g2~)(81 +§1€ ) ’ 67)
2(g1 +81)v 8282
A= %1 —In(1 — €*) +1n(g; — *?1 1)
1 3
+ 5 In(gr + g1e*) (68)

In these cases, the r-dependent of ¢»; and ¢ can be obtained
in the same way as Eqgs. (58) and (62).

For a direct flow from critical point I to critical point IV, a
numerical solution is needed. This solution is given in Fig. 1.
More generally, a flow from critical point I to critical point II
and finally to critical point IV can also be found. This solution
is given in Fig. 2 and describes a cascade of RG flows with
smaller flavor symmetry along the flow.

3.3 RG flows to N = 4 non-conformal theory

A consistent truncation of the above N =4 SO (4) x SO (4)
gauged supergravity is obtained by setting ¢; = ¢ = 0.

@ Springer

In this case, only scalars in the gravity multiplet are present.
As previously mentioned, the axion x cannot be turned on
simultaneously with ¢; and ¢>.

For ¢1 = ¢» = 0, the superpotential is complex and given
by

W= %e—‘é’ [(g2 — &) xe? —i(g2— g2+ ¢ (g1 — &1)].
(69)

With g» = g1 + g2 — &1, the scalar potential takes a simpler
form

2 2
V=4 <8—W> +4e72 (8—W> —3wW?
¢ ax
= —(g1 — g% (1 +4e? + 21 + x2)] (70)

which has only one Ad Sy critical point at ¢ = x = 0. This
is critical point I of the previous subsection.
The BPS equations in this truncation are given by

W V2@ —gole? (4 10 — 1
¢ V(1 4 e9)2 4 20 2
~ _2
26 0W _ 2V2(% —gne 2y

/
X' =—4 = , (72)
dx V(1L + ¢9)2 4 ¢2¢ 52

1
A=W= —2(g1 — gl)e_%\/(l +e?)2 + e 2. (73)

/2

Near the Ad Sy critical point, we find

¢’ =

. (7D

¢~ x~e i (74)

implying that ¢ and x correspond to relevant operators of
dimensions A =1, 2.

By considering ¢ and A as functions of x, we can combine
the BPS equations into

dp (1 +x>)—1

— , 75
dx oy (75)
dA 142e? 4+ 2 (1 + x?
dA 14224+ +x7) 76)
dx 4x
which can be solved by

1
¢ =—5In(1—2Cx - x2). (77)

1

A=—lnx+§1n[1—Cx—i—,/l—ZCx—xz]

1

+ 7 In(l —2Cx - x3) (78)

in which an additive integration constant for A has been
neglected. It should also be noted that we must keep the
constant C # 0 in order to obtain the correct behavior near
the Ad Sy critical point as given in Eq. (74).
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r

Fig. 3 Solutions for x with g; = 1,8, =2and xo = +v/1+C2 - C
for C =1 (red), C =5 (green) and C = 10 (blue)

Finally, we can substitute the ¢ solution in (77) in Eq. (72)
and in principle solve for x as a function of ». However, we
are not able to solve for x analytically. We then look for
numerical solutions. From Eq. (77), we see that ¢ — 0 as
x — 0. This limit, as usual, corresponds to the Ad Sy critical
point. We can also see that ¢ is singular at xo for which
1—-2Cxo—x3 =0o0r

xo=—C ++/1+C2. (79)

This implies that ¢ flows from the value ¢ = 0 at the critical
point to a singular value ¢ — oo while x flows between the
values x = 0 and x = yo. Examples of solutions for y is
shown in Fig. 3.

Near the singularity ¢ — oo and x — xo, we find that

X—XO’\”A, ¢>~—lnr2, A~Inr. (80)
This gives the metric
ds* = rzdx%’z +dr?. (81)

From the scalar potential (70), we find V — —oo for any
value of xo. Therefore, the singularity is physical according
to the criterion of [35]. We then conclude that the solution
describes an RG flow from the N = 4 SCFT in the UV to
a non-conformal field theory in the IR corresponding to the
above singularity. The deformations break conformal sym-
metry but preserve the SO (4) flavor symmetry and N = 4
Poincaré supersymmetry in three dimensions.

4 N=4S0@3,1) x SO@3,1) gauged supergravity

In this section, we consider non-compact gauge group
SO@3,1) x SO(3, 1) with the embedding tensor

@ Springer

Sf+123 = fr189 = f1729

1 -
= —f1783 = ﬁ(gl —&1)s

1 -
S+789 = fr183 = fy723 = — fr120 = ﬁ(gl +81),

fas6 = f-a11,12 = f-105.12 = —f-10,11,6
1
= — (g2 — 82);
\/E 8 8
f-1011,12 = foa11,6 = f-105.6 = — f-45,12
1
= —(g2+22). (82)
V2

We now repeat the analysis performed in the previous section.

4.1 Supersymmetric AdSs vacuum

We will parametrize the SO(6, 6)/SO(6) x SO (6) coset by
using scalars thatare SO (3) xSO3) € SO3, 1)H)xSO(3, 1)
invariant. From the embedding of SO(3,1) in SO(3,3),
there are two SO (3) x SO (3) singlets corresponding to the
non-compact generators

Yi =Y+ Y0 — Va3, Ya=Yas+ Y55 — Yeo. (33)

The coset representative can be parametrized as
L — e¢1f’1 e¢2}72. (84)

In this case, the scalar potential is given by

1
V = _e—9—001-6¢ [2g26¢+3¢.+9¢2

8

x (e*g) —3g16* — g1 +351€™)
—6g2€¢+3¢1+5¢2(g1e6¢‘ _ 3g162¢' — a1+ 3§164¢1)
+622e?NTT2 (3,6 — 3162 4 g1 — 1)
— 252N (5101 — 3010201 — ) +35164)
+3e6¢1+4¢2 [e4¢2 (2g§ —#Ha+ X262¢)

—3(g5 —285)(1 + x*¢*")]

+ 3801002 (1 4 4 2e2%) + 83591 (1 + x%e*?)

+ 5% [3(2g% — g2t

+16¢% (282 + €2 (9181 + 8282x)]
+g%e2¢+12¢1 g%e&b o 3(g% _ 2§%)6¢+4¢|:|:| . (85)

This potential admits only one supersymmetric Ad Sy crit-
ical point at

o=t 818185 + 897 (g7 + 8D’ —o
2 8282 ' '
1 o 1 2>
¢ = 31n [—&] ¢ = ~1In [—g—}. (86)
81 2 82
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Table 4 Scalar masses at the N = 4 supersymmetric AdSs critical
point with SO (3) x S O (3) symmetry and the corresponding dimensions
of the dual operators for SO (3, 1) x SO(3, 1) gauge group

Scalar field representations m?L? A
1n —2x2 1,2
1D 4.0 4
1L5+6.1D —2x10 1,2
1L3)H+GED Oxe 3
3.3 Ox18 3
This critical point preserves N = 4 supersymmetry and

SO3) x SO(3) symmetry. The latter is the maximal com-
pact subgroup of SO (3, 1) x SO (3, 1) gauge group. Without
loss of generality, we can shift the scalars such that the criti-
cal point occurs at ¢ = ¢ = ¢ = 0. This can be achieved
by setting

g1=-81, &£2=-8, & =81 (87)

With these values, the cosmological constant and AdSs
radius are given by

1
Vo=—6gf and L= _—. (88)
2g1
It should be noted that the choice g1 = —g1, g2 = —g» and

g» = g1 makes the critical pointat ¢ = ¢ = ¢ = x =0a
dSs with Vo = 2¢72.

At the N = 4 AdSs critical point, the gauge group
SO(3,1) x SO(3, 1) is broken down to its maximal com-
pact subgroup SO(3) x SO(3). All scalar masses at this
critical point are given in Table 4. The two singlet represen-
tations (1, 1) corresponding to ¢; and ¢, are dual to irrelevant
operators of dimensions A = 4, and six massless scalars in
representation (1, 3) + (3, 1) are Goldstone bosons.

4.2 RG flows without vector multiplet scalars

Since there is only one supersymmetric Ad Sy critical point,
there is no supersymmetric RG flow between the dual SCFTs.
In this case, we instead consider RG flows from the SCFT
dual to the N = 4 AdS4 vacuum with SO (3) x SO (3) sym-
metry. We begin with a simple truncation to scalar fields in
the supergravity multiplet obtained by setting ¢; = ¢ = 0.
Within this truncation, the superpotential is given by

W= e 14 e —iy)] (89)

232

in term of which the scalar potential can be written as

16 (AWN* 16 _,, (OW\> 4
(=) +=e?|—) —-w
9 \ a¢ 9 ax 3

= —g2e P[1 +4¢? + 221+ x2)). (90)

The flow equations obtained from §x! = 0 conditions are
given by

¢
, 8 oW __«/Egle*f[e2¢(1+x2)— 1

¢ =20 = LoD
3 0¢ V(1 + )2 + 20 x2
_9
g BedW _ 22meTix 92)
3 ax V(1 4 e?)2 + 26 2

The BPS conditions from (SAZ = 0 are, of course, identically
satisfied by setting ¢; = ¢ = 0.

The flow equation for the metric function is simply given
by

3 ®
A =W=—"—gre 2,/(1 +e?)2 + e2¢x2. (93)
2 nety X
Near the Ad Sy critical point, we find
¢~ x~e VT (94)

as expected for the dual operators of dimensions A = 1, 2.
Apart from some numerical factors involving gauge cou-
pling constants, the structure of the resulting BPS equations
are very similar to the SO(4) x SO (4) case. We therefore
only give the solution without going into any details here

¢ = —%111(1 —x2=2Cx), (95)

3 3
A=—3JIny+gln(l—2Cx —x?

3
—|—Zln(1—C)(+,/1—2Cx—X2). (96)

As in the SO(4) x SO(4) case, we are able to solve for
x only numerically. An example of solutions for x is shown
in Fig. 4. From the figure, it can be readily seen that, along
the flow, x interpolates between x = 0 and y9 = —C £
+/1 4+ CZ. The ¢ solution, on the other hand, interpolates
between ¢ = 0 and ¢ — o0 as can be seen from the solution
(95). The singularity ¢ — oo also givesriseto V — —oo for
any value of xo. Therefore, the singularity is physical, and
the solution describes an RG flow from the N = 4 SCFT in
the UV with SO(3) x SO (3) symmetry to a non-conformal
field theory in the IR corresponding to this singularity.

4.3 RG flows with vector multiplet scalars

We now consider solutions with non-vanishing vector mul-
tiplet scalars. In this case, we need to set x = 0 in order to

@ Springer



626 Page 12 of 16

Eur. Phys. J. C (2018) 78:626

X(r)
0.10

0.08 ;
0.06 ;
0.04 ;
0.02 ;

T B L ! r
-4 -2 8 2 4

Fig. 4 Solution for y with xo =41+ C? —CforC =5andg; =1
inSO(@3,1) x SO(3, 1) gauging

make the solutions of the BPS equations solve the second-
order field equations as in the case of SO (4) x SO (4) gaug-
ing. The corresponding BPS equations are given by

¢, = /2g1¢? cosh(2) sinh ¢, 97)
P = «/zglefg cosh(2¢») sinh ¢, (98)
¢ = V2g1¢~ 5 [¢? cosh ¢y (cosh(2y) — 2)

— cosh ¢, (cosh(2¢2) — 2)1, 99)

A = %gleg [¢? cosh ¢y (cosh(2) — 2)

+ cosh ¢y (cosh(2¢n) — 2)]. (100)

With suitable boundary conditions, these equations can be

solved numerically as in the previous cases. We will, how-

ever, look at particular truncations for which analytic solu-

tions can be found. These solutions should be more interest-

ing and more useful than the numerical ones in many aspects.

The first truncation is obtained by setting ¢ = ¢ and¢p =

0. It can be easily verified that this is a consistent truncation.
The relevant BPS equations read

¢ = +/2g1 cosh(2¢) sinh 1, (101)
A’ = V/2g cosh ¢1[cosh(2¢1) — 2] (102)
which have a solution
1 — /2 cosh
2g1r =1In M —24/2tanh~ ! e?", (103)
1 + +/2cosh ¢y
A =In(1+€*) —In(1 — &*) — ¢). (104)

The solution for ¢; is clearly seen to be singular at a finite
value of r.

Recall that ¢ and ¢, are dual to irrelevant operators, we
expect that in this case, the N = 4 SCFT should appear in
the IR. Near the singularity, we find
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b1~ i1 [C 3g”} d A~—1] [c 33”}

~+-In|C — an ~—=In|C —

! 3 22 3 22
(105)

for a constant C. It can be verified that, in this limit, the scalar
potential blows up as V — oco. Therefore, the singularity is
unphysical.

Another truncation is obtained by setting ¢ = 0 which
gives rise to the BPS equations

o) = \/ng% cosh(2¢1) sinh ¢, (106)
¢ = «/Egle_%(l + ¢? cosh ¢1)[cosh(2¢1) — 2], (107)
A = %gleg[eqb cosh ¢ (coshé1) —2) — 11, (108)
An analytic solution to these equations is given by
¢ =1In |:cosh b1 — %C cosh(2¢1)csch¢1i| , (109)
\/Eglf = In[C — tanh(2¢1)], (110)
A = In[cosh(2¢1)] — %ln(sinh é1)
- %ln[C cosh(2¢1) — sinh(2¢1)] (111)

where the coordinate 7 is defined via % = e‘% It should be
noted that to give the correct behavior for ¢ and ¢ near the
Ad Sy critical point, we need C # 0.

The solution is singular at a finite value of 7. Near this
singularity, we find

1 .

&1 ~:|:Zln’\/§g1r—C‘ (112)
where C is a constant. The behavior of ¢ and A depends on
the value of C.

We begin with the case ¢; — oo. For C = 2, we find
from the explicit solution that

¢>~—¢1~iln V2g17 - C|,

A~ ¢ ~—%ln V2gi7 - C|. (113)
For C # 2, we find

¢~¢1~—%1n V2g17 = C|,

A~ ¢ ~—%1n V2g17 = C|. (114)

Both of these singularities lead to V' — oo and hence are
unphysical.

We now move to another possibility with ¢; — —o0. In
this case, we find

3

1 -
¢~¢1~Zln\f2g1f—c
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A~~~ —In[VagiF — ¢ (115)
for C = —2 and

¢~ — ~—‘1—11n \/Egﬂ’—é ,

A~ —¢ ~—%1n V2g1F = C (116)

for C # —2. These behaviors also give V — oo. Therefore,
we conclude that the solutions in this particular truncation do
not holographically describe RG flows from N = 4 SCFT.
A similar analysis shows that the truncation with ¢; = 0
also leads to unphysical singularities. It would be interest-
ing to uplift these solutions to ten or eleven dimensions and
determine whether these singularities are resolved.

5 N=4S0@) x SO(@3,1) gauged supergravity

In this section, we consider a gauge group with one compact
and one non-compact factors of the form SO(4) x SO(3, 1).
All the procedures are essentially the same, so we will not
present much detail here. The SO (4) and SO (3, 1) are elec-
trically and magnetically embedded in SO (3, 3) x SO (3, 3),
respectively. The corresponding embedding tensor is given
by

fri23 =v2(g1 — 81, frso = V2(g1 + 1),

foa56 = f—a11,12 = f-10,5,12 = — f=10,11,6

1
= _( 2 — ~2)5
\/2 8 8
f-1011,12 = foa11,6 = f-10,56 = —f-4512
1
=—(g+8). (117)
\/5 8 8

5.1 Supersymmetric AdS4 vacua

We consider scalar fields invariant under SO (4)iny C
SOM@4) x SOB) C SOM4) x SO(3, 1). The corresponding
coset representative for the SO (6, 6)/SO(6) x SO (6) coset
is now given by

L = et el (118)

where )A’l and Y, are defined in (27) and (83), respectively.
The scalar potential turns out to be

VvV = le—¢—6¢1—6¢2[(g1 +g2)2e2¢+12¢‘+6¢2
8

—3(3g} +2g1g2 + g3)e P TANIT60

+ e [g%(l + ez¢xz)(l + €4¢2)3
+16¢°%2[e2 (g2 + g1g2 — 83 x°) — &3]
+8g26¢+3¢'+6¢2[g1(62¢' _ 1)3

Table 5 Scalar masses at the N = 4 supersymmetric AdS4 critical
point with SO (4) x S O (3) symmetry and the corresponding dimensions
of the dual operators for SO (4) x SO (3, 1) gauge group

Scalar field representations m?L? A
1,1,1) 22 1,2
111 4 4
1,1,3) 0x3 3
3,31 0x9 3
1,1,5) —245 1,2
1,3,3)+@3.1,3) —2418 1,2

+ 262 (3 + ¢*1)] cosh ¢
x [cosh(2¢2) — 2] — 3(3¢7 + 48182 + 2¢3)

% 62¢+8¢1+6¢2 + g%€2¢+6¢2] (1 19)
where we have imposed the following relations
Si=g1+g and & =-g (120)

in order to have an N = 4 supersymmetric AdSy critical
point with SO(4) x SO(3) symmetry at ¢; = ¢ = ¢ =
x = 0.

There are two supersymmetric AdS4 vacua with N = 4
supersymmetry:

e The first critical pointis a trivial one with SO (4) x SO (3)
symmetry at
p=x=¢1=¢=0, Vp=—6g. (121)

e A non-trivial supersymmetric critical point is given by

¢ =x =0, ¢1:11n[ &l }
2 g1+ &
o= [4g1(g1 + gz)} _ 352+
2 g1+ g2)? |’ Vg1(g1 + g2)
(122)

This critical point is invariant under a smaller symmetry
SO@3) x SO(3).

Scalar masses at these two critical points are given in Tables 5

and 6. It can be seen that the mass spectra are very similar
to critical points IIT and IV in the case of SO(4) x SO(4)

gauge group.
5.2 Holographic RG flow

In this section, we will give a supersymmetric RG flow solu-
tion interpolating between the two AdS4 vacua identified
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Table 6 Scalar masses at the N = 4 supersymmetric AdS4 critical
point with SO (3) x S O (3) symmetry and the corresponding dimensions
of the dual operators for SO (4) x SO (3, 1) gauge group

Scalar field representations m?L? A
1,1 —2x2 1,2
€1 42 4
@€1,5+G,1 —2x10 1,2
1,3)+@31 Ox6 3
3.3 0x18 3

above. As in the previous cases, turning on vector multi-

plet scalars requires the vanishing of the axion y. Since we

are only interested in the solution interpolating between two

Ad Sy vacua, we will accordingly set x = 0 from now on.
With x = 0, the superpotential is given by

i ¢
W= L o 5301-3% [gle¢+3¢2 + 3g et B30
4v2
—3(g1 + gz)e¢+2¢1+3¢2
+ gze3¢>1 (1 + e2?2)(1 — 4292 4 *92)

— (g1 + gz)€¢+6¢‘+3¢2] (123)

in term of which the scalar potential can be written as

v a(BWN L2 OWNT 2 (W s
I RH I RH IR

The BPS equations read

o — 20W
'™ 39¢
1 ¢
=-3 ﬁez 14— 1)(e* (g1 + g2) — g1),  (125)
o — 20W
27 3¢

1
N z_ﬁgze—%—“’l (@ = (e + 1),
oW
¢ = a2
¢
1
- —me—%—“’l [4gze3¢1 cosh ¢ [cosh(2¢2) — 2]

+e? (1€ = g1+ G+ gl

(126)

(127)
1

A= Zﬁe—%—3¢1 [64)[(@2@ 13+ (3 + M) gy]
— 4gge3‘l’1 cosh ¢ [cosh(2¢r) — 2]] . (128)

Since ¢, = 0 at both critical points, we can consistently
truncate ¢, out. Note also that ¢, is dual to an irrelevant oper-
ator of dimension A = 4 as can be seen from the linearized
BPS equations which give
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=

p~¢1~e L, ¢p~el. (129)

With ¢, = 0, we find an RG flow solution driven by ¢ and
¢1 as follow

8221 + g2)F = V2grtan 1 €91 + V/2(2g + g2) tanh ! €#1

2B T g anh™! [¢m L
1
-1 o1
$=1n|° g1 +e” (g1 +¢2) ’ (131)
281+ &2
A= %m —In(1 — €*1) + In[(*? — 1)g;
1
+eXig] + 5 Inlgr + (g1 + 2% (132)

. ~. . F ¢
where the coordinate 7 is related to r by the relation Z—; =e2.

This solution preserves N = 4 supersymmetry in three
dimensions and describes an RG flow from N = 4 SCFT in
the UV with SO(4) x SO(3) symmetry to another N = 4
SCFT in the IR with SO(3) x SO(3) symmetry at which
the operator dual to ¢ is irrelevant. Although the number
of supersymmetry is unchanged, the flavor symmetry SO (3)
in the UV is broken by the operator dual to ¢;. We can also
truncate out the vector multiplet scalars and study supersym-
metric RG flows to non-conformal field theories as in the
previous cases. However, we will not consider this trunca-
tion since it leads to similar structure as in the previous two
gauge groups.

6 Conclusions and discussions

We have studied dyonic gaugings of N = 4 supergravity cou-
pled to six vector multiplets with compact and non-compact
gauge groups SO4) x §O4), SO3,1) x SO3,1) and
SO@4) x SO(3, 1). We have identified a number of super-
symmetric N = 4 AdS4 vacua within these gauged super-
gravities and studied several RG flows interpolating between
these vacua. The solutions describe supersymmetric defor-
mations of the dual N = 4 SCFTs with different flavor sym-
metries in three dimensions. These deformations are driven
by relevant operators of dimensions A = 1, 2 which deform
the UV SCFTs to other SCFTs or to non-conformal field
theories in the IR.

For SO (4) x S O (4) gauge group, there are four supersym-
metric AdS4 vacua with SO(4) x SO4), SO4) x SO(3),
SO3)xSO(4) and SO (4) symmetries. These vacua should
correspond to N = 4 conformal fixed points of N = 4
CSM theories with SO (4), SO(3) and no flavor symmetries,
respectively. We have found various RG flows interpolating
between these critical points including RG flows connecting
three critical points or a cascade of RG flows. These should
be useful in holographic studies of N = 4 CSM theories.
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In the case of non-compact SO(3, 1) x SO(3, 1) gauge
group, we have found only one supersymmetric AdSs vac-
uum with SO (3) x S O (3) symmetry. We have given anumber
of RG flow solutions describing supersymmetric deforma-
tions of the dual N = 4 SCFT to N = 4 non-conformal field
theories. The solutions with only scalar fields from the grav-
ity multiplet non-vanishing give rise to physical singularities.
Flows with vector multiplet scalars turned on, however, lead
to physically unacceptable singularities. The mixed gauge
group SO(4) x SO(3, 1) also exhibits similar structure of
vacua and RG flows with two supersymmetric AdS4 critical
points.

Given our solutions, it is interesting to identify their higher
dimensional origins in ten or eleven dimensions. Along this
line, the result of [36,37] on S 3x 83 compactifications could
be auseful starting point for the SO (4) x S O (4) gauge group.
The uplifted solutions would be desirable for a full holo-
graphic study of N = 4 CSM theories. This should provide
an analogue of the recent uplifts of the GPPZ flow describing
a massive deformation of N = 4 SYM [38,39]. The embed-
ding of the non-compact gauge groups SO(3,1) x SO(3, 1)
and SO(4) x SO(3, 1) would also be worth considering.

Another direction is to find interpretations of the solutions
given here in the dual N = 4 CSM theories with differ-
ent flavor symmetries similar to the recent study in [18] for
AdSs5/CFT4 correspondence. The results found here is also
in line with [18]. In particular, scalars in the gravity multi-
plet are dual to relevant operators at all critical points. These
operators are in the same multiplet as the energy-momentum
tensor. Another result is the exclusion between the operators
dual to the axion and vector multiplet scalars which cannot
be turned on simultaneously as required by supersymmetry
in the gravity solutions. It would be interesting to find an
analogous result on the field theory side.

A generalization of the present results to include more
active scalars with smaller residual symmetries could provide
more general holographic RG flow solutions in particular
flows that break some amount of supersymmetry. We have
indeed performed a partial analysis for SO (3)iyy scalars. In
this case, there are six singlets. It seems to be possible to
have solutions that break supersymmetry from N = 4 to
N = 1, but the scalar potential takes a highly complicated
form. Therefore, we refrain from presenting it here. Solutions
from other gauge groups more general than those considered
here also deserve investigations. Finally, finding other types
of solutions such as supersymmetric Janus and flows across
dimensions to Ad S> x X7, with ¥» being a Riemann surface,
would also be useful in the holographic study of defect SCFTs
and black hole physics. Recent works along this line include
[20,40-45].
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Appendix A: Useful formulae
To convert an SO(6) vector index m to a pair of anti-

symmetric SU (4) fundamental indices [ij], we use the fol-
lowing 't Hooft symbols

0 i0 0] [0 00
ij | —-i000 ij | 0 00
Gr = 000—i |’ G = - 000|’
| 007 O | 0 —i00
000 i [0—-10 0O
ij 00-i0 ij 1000
ij _ ij _
Gy = OiOO’G4_000—1’
| —i0 0 0| 0010
[0 0 —10 00 0 —1
ij 00 01 ij 00-10
ij _ ij _
Gs = 10 00} G 010 O (133)
| 0-1 00 100 O
These matrices satisfy the relation
Gonij = — 2 eijuG = —(Giy* 134
ml./__zeljkl m=—(Gm)". ( )
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Abstract We holographically study supersymmetric defor-
mations of N = 3 and N = 1 superconformal field
theories in three dimensions using four-dimensional N =
4 gauged supergravity coupled to three-vector multiplets
with non-semisimple SO (3) x (T3, T%) gauge group. This
gauged supergravity can be obtained from a truncation of
11-dimensional supergravity on a tri-Sasakian manifold and
admits both N = 1,3 supersymmetric and stable non-
supersymmetric Ad Sy critical points. We analyze the BPS
equations for S O (3) singlet scalars in detail and study possi-
ble supersymmetric solutions. A number of RG flows to non-
conformal field theories and half-supersymmetric domain
walls are found, and many of them can be given analyti-
cally. Apart from these “flat” domain walls, we also con-
sider AdSs3-sliced domain wall solutions describing two-
dimensional conformal defects with N = (1, 0) supersym-
metry within the dual N = 1 field theory while this type of
solutions does not exist in the N = 3 case.

1 Introduction

In recent years, superconformal field theories (SCFTs)
in three dimensions have attracted much attention in the
context of the AdS/CFT correspondence [1]. Apart from
being effective world-volume theories of M2-branes [2,3],
three-dimensional gauge theories and their conformal fixed
points have also interesting applications in condensed matter
physics [4-6].

Along this line, four-dimensional gauged supergravities
have been a very useful tool in various holographic stud-
ies including the holographic Renormalization Group (RG)
flows and conformal defects of co-dimension one. The former
can be described holographically by domain walls interpo-
lating between two AdS vacua or between an AdS vacuum
in one limit and a domain wall in the other limit; see for

#e-mail: parinya.ka@hotmail.com

Published online: 25 February 2017

example [7-9]. These two classes of solutions correspond,
respectively, to RG flows between conformal fixed points
and flows to non-conformal field theories. These solutions
are called “flat” or Minkowski-sliced domain walls. The con-
formal defects on the other hand can be described in the
holographic context by AdS-sliced domain walls [10-16].

A number of holographic RG flows within four-dimen-
sional gauged supergravities have been studied; see for exam-
ple [17-21] and [22-24] for more recent results. Some of
these solutions can be uplifted to 11 dimensions result-
ing in many interesting geometric interpretations such as a
polarization of M2-branes into MS5-branes in [25]. On the
other hand, supersymmetric Janus solutions in four dimen-
sions have been studied recently in the maximal N = 8§,
SO(8) gauged supergravity in [26]. Some of these solu-
tions have been uplifted to 11 dimensions via a consistent
S7 reduction in [25]. In the context of lower supersym-
metry, a number of supersymmetric Janus solutions within
N = 3, SU2) x SU(3) gauged supergravity have been
explored in [27]. This gauged supergravity is expected to
describe the lowest Kaluza—Klein modes of a compactifi-
cation of M-theory on a tri-Sasakian manifold N 010 28].
The gauge group SU(2) x SU(3) is an isometry of N°10,
and the two factors are identified with the N = 3 SO3)r
R-symmetry and SU (3) flavor symmetry in the dual SCFT,
respectively.

The complete spectrum of this compactification has been
carried out in [29], and the structure of the supermultiplets
has been given in [30]. Furthermore, the dual SCFT to this
compactification has been proposed in [31]. It has also been
discovered in [31] and further investigated in [32] that all
compactifications of M-theory giving rise to N = 3 super-
symmetric AdS4 backgrounds contain a universal massive
spin—% multiplet. All components of this multiplet arise only
from constant harmonics. The truncation keeping only the
lowest Kaluza—Klein modes and this massive multiplet is
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accordingly expected to be consistent. The resulting theory
is expected to be N = 4 gauged supergravity with N = 4
supersymmetry broken to N = 3 at the vacuum. The dual
composite operators to this long, massive, gravitino multiplet
have also been proposed in [31,32].

Up to now, only the complete truncation of 11-dimensional
supergravity on a generic tri-Sasakian manifold has been car-
ried out in [33] in which all the fields which are singlet under
the flavor SU(3) symmetry have been kept. The enhance-
ment by the Betti vector multiplet, which is also an SU(3)
singlet, in the compactification on N°!° has also been pointed
out. This is due to a non-trivial cohomology of degree two
in N0 giving rise to an additional massless vector multi-
plet.

This tri-Sasakian truncation results in N = 4 gauged
supergravity coupled to three-vector multiplets. The theory
admits two supersymmetric Ad Sy solutions with unbroken
SO3)g R-symmetry and N = 3, 1 supersymmetries. These
solutions correspond to compactifications on N°19 and its
squashed version, respectively. A possible candidate for the
N = 3 SCFT dual to the N = 3 solution is given in [31],
but there is a puzzle with this SCFT as regards the baryonic
spectrum; see the discussion in [34] and [35]. Forthe N = 1
case, the situation is less clear. In particular, the N = 1 SCFT
dual to the squashed N = 1, AdSs x N 010 golution has not
previously appeared although the N = 1 SCFT dual to the
squashed S7 compactification has been given in [36]. In this
paper, we will analyze the BPS equations for SO (3) g invari-
ant scalar fields and investigate possible deformations of the
dual N = 3 and N = 1 SCFTs within the framework of
four-dimensional gauged supergravity.

We will mainly consider supersymmetric deformations
in the forms of RG flows to non-conformal field theories
and two-dimensional defects described by Janus solutions.
Regarding to the N0 compactification, a number of holo-
graphic RG flows and Janus solutions within the framework
of N = 3 gauged supergravity have already been studied
in [27,37], but these solutions currently cannot be uplifted
to 11 dimensions due to the lack of the complete consistent
truncation keeping all lowest Kaluza—Klein modes including
the SU (3) non-singlet ones.

The paper is organized as follows. In Sect. 2, we review
N = 4 gauged supergravity coupled to three-vector mul-
tiplets and the tri-Sasakian truncation of 11-dimensional
supergravity to this N = 4 gauged supergravity. The analysis
of BPS equations for S O (3) g singlet scalars will also be car-
ried out. These are relevant for finding supersymmetric RG
flow and Janus solutions in Sects. 3 and 4. We will also explic-
itly give the uplift of some solutions to 11 dimensions and
finally give some conclusions and comments on the results
in Sect. 5. In the two appendices, we give an explicit form
of the relevant field equations and some of the complicated
BPS equations.

@ Springer

2 N = 4 gauged supergravity and tri-Sasakian
truncation of 11-dimensional supergravity

In this section, we briefly review N = 4 gauged super-
gravity in the embedding tensor formalism to set up the
framework for finding supersymmetric solutions. Further
details of the construction can be found in [38] on which
this review is mainly based. We will also give basic informa-
tion and relevant formulas of the tri-Sasakian truncation of
11-dimensional supergravity to N = 4 gauged supergravity
with SO (3) x (T3, T3) gauge group. This is the strategy we
will follow in order to uplift four-dimensional solutions to
11 dimensions.

2.1 N = 4 gauged supergravity coupled to three-vector
multiplets

We now consider the half-maximal N = 4 supergravity in
four dimeqsions. The supergravity multiplet consists of the
graviton eﬁ, four gravitini wi , SiX vectors AZ’, four spin-
% fields x’ and one complex scalar t. The complex scalar,
or equivalently two real scalars, can be parametrized by the
SL(2,R)/SO(2) coset.

In this half-maximal supersymmetry, the supergravity
multiplet can couple to an arbitrary number n of vector
multiplets although we will later set n = 3. Each mul-
tiplet contains a vector field A, four gaugini Al and six
scalars ¢". The scalar fields can be parametrized by the
SO(6,n)/SO(6) x SO (n) coset. Before moving to possible
gaugings of this matter-coupled supergravity, we will first
give some details as regards various indices used throughout
this paper.

Space-time and tangent space indices are denoted respec-

tivelyby w,v,...=0,1,2,3and 1, v,... =0, 1,2, 3. The
SO (6) ~ SU(4) R-symmetry indices will be described by
m,n = 1,...,6 for the SO(6) vector representation and

i,j =1,2,3,4 for the SO(6) spinor or SU (4) fundamen-
tal representations. The n vector multiplets will be labeled
by indices a, b = 1,..., n. Therefore, all the fields in the
vector multiplets will carry an additional index in the form
of (A%, Ai%, ¢™). All fermionic fields and the supersymme-
try parameters transform in the fundamental representation
of SU@4)r ~ SO(6)r R-symmetry and are subject to the
chirality projections

ysUL =V,  vsx'=-x'. A =1 (1

Similarly, for the corresponding fields transforming in the
anti-fundamental representation of SU (4) g, we have

Vs¥ui = —Vpui, Yshi = —Aj. (2)

VsXi = Xi»
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Gaugings of the matter-coupled N = 4 supergravity can
be efficiently described by using the embedding tensor ®.
This constant tensor encodes the information as regards the
embedding of any gauge group Gy in the global or dual-
ity symmetry SL(2,R) x SO(6,n) in a covariant way. It
has been shown in [38] that there are two components of
the embedding tensor £*M and fyyyp With o = (+, —)
and M, N = (m,a) = 1,...,n + 6 denoting fundamental
representations of SL(2, R) and SO (6, n), respectively. The
electric vector fields AT = (A7, A%), appearing in the
ungauged Lagrangian, and their magnetic dual A= form a
doublet under SL(2, R) denoted by A*M .

In general, a subgroup of both SL(2,R) and SO(6, n)
can be gauged, and the magnetic vector fields can also par-
ticipate in the gauging. In particular, it has been shown in
[39], see also [40], that purely electric gaugings do not admit
Ad Sy vacua. In this paper, we will only consider gaugings
involving both electric and magnetic vector fields in order to
obtain AdS4 vacua relevant for applications in the AdS/CFT
correspondence.

The full covariant derivative can be written as

Dy =V, —gAMO N inp + gAMCP Y g ity (3)

where V, is the usual space-time covariant derivative. tjy
and 74 are SO (6, n) and SL(2, R) generators which can be
chosen as

) p? =288 mmip. (tap),’ = 280,¢p), )
with € = —eP* and et~ = 1. nyy = diag(—1, —1, —1,
—1,—1,—1,1,...,1) is the SO(6, n) invariant tensor, and
g is the gauge coupling constant that can be absorbed in the
embedding tensor ®. The embedding tensor appearing in the
above equation can be written in terms of & aM and famnNP
as

OuMNP = faMNP — Ea[NNPIM- (5)

In the following discussions, we will only consider solutions
with only the metric and scalars non-vanishing. Therefore,
we will set all of the vector fields to zero from now on.

We now consider explicit parametrization of the scalar
coset manifold SL(2,R)/SO2) x S0O(6,n)/SO(6)
x §O(n). The first factor can be described by a coset repre-
sentative

1 T
7 (1) ®

or equivalently by a symmetric matrix

7|2 Rer)

Vo[:

1
Meop = Re(VaVE) = Imz (

Rer 1 )

Note that Im(V, V;) = €4p. The complex scalar 7 can in turn
be written in terms of the dilaton ¢ and the axion yx as

T=x+ie?. (8)

For the SO (6,n)/S0O(6) x SO(n) factor, we introduce
the coset representative V), 4 transforming by a left and right
multiplication under SO (6, n) and SO (6) x SO (n), respec-
tively. We will split the SO (6) x SO (n) index A = (m, a)
and write the coset representative as VMA = WV," V.
Being an element of SO (6, n), the matrix VMA satisfies the
relation

As in the SL(2,R)/SO(2) factor, we can parametrize the

SO(6,n)/SO(6) x SO(n) coset in terms of a symmetric
matrix

Muy = V" V™ + Vi Vy . (10)

We are now in a position to give the bosonic Lagrangian
with the vector fields and auxiliary two-form fields vanishing,

11
-1

L= -Rt—
¢ 216

B My dH MMN — Tl T -V

(1)

1
4(Imr)2

where e is the vielbein determinant. The scalar potential is
given by

2

oq

V =

1
[faMprﬁQRsM“ﬂ [gMMQMNRM”S

2
+ (gnMQ _ MMQ) nNRnPS]

—_
(o)}

4
_§faMNPfﬁQRS€a'BMMNPQRS + 3§£’I§AVM“'BMMN}

12)

where MMN is the inverse of My, and MMNPORS g
defined by

MynpPoRrs = emnpquVvaNnVP pquVR rvs y (13)

with indices raised by nMV .

The gauge group we will consider here is a non-
semisimple group SO (3) x (T3, ’i‘3) C S0(6, 3) described
by the non-vanishing component f, 3y p of the embedding
tensor. We will then set £¥ = 0 in the following discus-
sion. The embedding of this SO (3) x (T3, ) gauge group
is described by the following components of the embedding
tensor:

@ Springer
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SH10.K+6 = — f41+3,7+6,K+6
= 2V2€1,x, 1,J,K=1,2,3,
Frrr6.046.k+6 = 60N2kerjk,  foriv6.K+6 = —4€rsk.

(14)

The constant k is related to the four-form flux along the
four-dimensional space-time; see Eq. (30) below. This gauge
group arises from a truncation of 11-dimensional supergrav-
ity on a tri-Sasakian manifold [33]. It should be noted that
both electric and magnetic components participate in the
gauging, f+ynp # 0, since purely electric gaugings do not
lead to AdS4 vacua as mentioned above.

We should also remark that the identification of this gauge
group and other computations in [33] have been done in the
off-diagonal nyn

—Iz; 03 03
nun =1 03 03 I3 (15)
0; Iz 03

where 03 and I3 denote 3 x 3 zero and identity matrices,
respectively. Accordingly, in computing My ypors in (13)
and some parts of the supersymmetry transformations given
below, V,;," and V,,“ must be projected to the negative and
positive eigenvalue subspaces of sy, respectively.

By transforming to a purely electric frame, the gauge alge-
bra will be more transparent. We will not explicitly give this
transformation here since we will mainly work in the above
electric-magnetic frame. However, for completeness, we will
discuss the structure of the gauge algebra here; see [33] for
more details. The SO(3) part is the diagonal subgroup of
SOB)xS03) xS0@3) CSO®)xSO@B) C SO(,3).
The six generators of T3 and T3 transform as 3 + 3 under
S0(3). T3 generators commute with each other while T3
generators close on to T? generators.

We now turn to another important ingredient of the N = 4
gauged supergravity namely the supersymmetry transforma-
tions of fermionic fields. These are given by

. . 2 s

) . 4 ..
Sx' =ie®PVy D, Vpyte — §igA’ge,-, (17)
fel, (18)

ol =2iV,M DV, yle; + 2igA,,;

The fermion shift matrices are defined by
. , .

Allj = Ea'B(VQ)*VkZMVleVPJ fﬁMNP,
- . y

AY = PV V"V Ve M

Agyi’ = EaﬂVaVMaVNikVijfﬁMN : (19)
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where V), i is defined in terms of the *t Hooft symbols Gﬁ,{
and V,," as

1

2VM'”G;/1, (20)

ij_
V' =
and similarly for its inverse,

1 iy
VM = V" (Gl 21

The Gi,{ satisfy the relations

1
* = —Gijle]n{f- (22)

Gmij = Gy 3

The explicit form of these matrices can be found for example
in [39]. Note that we use the convention about the (anti) self-
duality of G,;; opposite to that of [39]. It should also be
noted that the scalar potential can be written in terms of A
and A, tensors as

1 1 (I
V= =AY Ay gAY Asij + 5 Ay Ao @3)

2.2 N = 4 gauged supergravity from 11 dimensions

Four-dimensional N = 4 gauged supergravity coupled to
three-vector multiplets with SO (3) x (T3, T3) gauge group
has been obtained from a truncation of 11-dimensional super-
gravity on a generic tri-Sasakian manifold in [33]. In this sec-
tion, we review the relevant formulas involving the reduction
ansatz which will be useful for uplifting four-dimensional
solutions in the next sections. In particular, we will set all of
the vector fields to zero as well as the auxiliary two-form and
magnetic vector fields.
The 11-dimensional metric can be written as

dslzl = ez‘/’dsi + erdsz(BQK) +grn'n’. (24)

The three-dimensional internal metric g;; can be written in
terms of the vielbein as

g=0"0. (25)

For convenience, as in [33], we will parametrize the matrix
Q in terms of a product of a diagonal matrix V and an SO (3)
matrix O as
Q=Vo0, V=diage", e, %). (26)

The scalar ¢ is chosen in such a way that the four-dimensional
Einstein—Hilbert term is obtained

1
<p=—§(4U+V1+V2+V3). (27)
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Finally, Bk denotes a four-dimensional quaternionic Kahler
manifold.

The three-form field and its four-form field strength are
given, respectively, by

1
C3=C3+61m1/\J1+6X€11K771A77]/\77K (28)

and
— l 1.J K
G4 = Hy + 4Tre vol(QK) + 66”de AN NN

+derg Ant AT e nl(x + Tre)drk — 2¢i)]
xnpl An? A TK (29)

where Hy = dc3, ¢yyis a3 x 3 matrix and Trc = 8”c11. In
the present case, the Hy will be given by

Hy = —6ke*?~V17V2=Va=4Uyq), (30)

where voly is the volume form of the four-dimensional metric
dsf. The volume form of Bk, vol(QK), can be written in
terms of the two-forms J/ as

vol(QK) = 11’ AJl (31)
= ,

For the N°'0 tri-Sasakian manifold, we can take a simple
description in terms of a coset manifold SU (3)/U (1). This
is enough for our propose although the full SU (3) x SU (2)
isometry is not manifest; see [41] for another description.
Using the standard Gell-Mann matrices, we can choose the
SU (3) geneartors to be —%Aa, a=1,...,8. The coset and
U (1) generators can be chosen to be

; .
K; = —5()»1,)»2, A3, A4, A5, Ae, A7), H=———s.

The vielbein on N°19 can eventually be obtained from the
decomposition of the Maurer—Cartan one-form

L YL = ¢'K; + wH (33)

where L is the coset representative for SU (3)/ U (1). w is the
corresponding U (1) connection.
Following [33], we will use the tri-Sasakian structures of
the form
1
I _ .1 2 3
T’ - 2 (@ ’ e ’ e )a
1
JI = g(e4AeS - /\66, —ne’

—e* A 86, A ned—edn e4). (34)

From these, we find the metric on Bk to be

1

ds%(Bok) =
s7(Bk) 756

(@) + @+ @+ )] 39
with the volume form given by

Loy L3 4. 5 6
vol(QK):EJ AJ =—6—4€ AeTAe Ne. (36)

In the remaining parts of this paper, we will not need the
explicit form of ds? (Bgk) and n'’s since we will not consider
the deformations of these metrics. Therefore, we will leave
these as generic expressions.

2.3 BPS equations for SO (3) invariant scalars

We now give an explicit parametrization of the SL(2, R)/
SOR)xS50(6,3)/S0O(6) x SO(3) coset and relevant infor-
mation for setting up the BPS equations corresponding to
SO (3) singlet scalars.

Since we will study both RG flows and Janus solutions,
and the former can formally be obtained as a limit of the
latter, we will first construct the BPS equations for finding
supersymmetric Janus solutions and take an appropriate limit
to find the BPS equations for RG flow solutions. The metric
ansatz takes the form of an AdS3-sliced domain wall,

ds? = A0 (7 da? | + d&2) + dr2. 37)

As can be clearly seen, this metric becomes a flat domain
wall used in the study of holographic RG flows in the limit
£ — oo. The vielbein components can be chosen to be

A § 2
et = eAtTdxt,  f =etdE, o =dr (38)
The non-vanishing spin connections of this metric are then
given by

. =7 o = At (39)
where ’ denotes the r-derivative. For the moment, indices
w, v will take values 0, 1, and hatted indices are the tangent
space indices.

In this paper, we are only interested in SO(3) singlet
scalars. These scalar fields depend only on the radial coor-
dinate r. There are four SO(3) singlets corresponding to
two scalars from SL(2,R)/SO(2) and another two from
S0(6,3)/SO(6) x SO(3) according to the branching of
§0(6,3) - SOQB) x SO(3) x SO3) — SO3)diag

6,3 - 3,1,3)+1,3,3) = 2xA+3+5). (40)
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Following [33], we parametrize the SO(6,3)/S0O(6) x
SO (3) coset representative by

0; V2ZI; 0;
V= eXp 03 03 03
V2ZI; 03 03

| B 03 03
x | 03 e U=V Iz 03 . 41

03 03 (32U +Vi 13
Note that SO(3) invariance requires c;; to be proportional
to the identity, c; 7 = \/ZZ(S[J, and V| =V, = Vs.
The SL(2,R)/SO(2) scalars are given by
T=x+4ie". (42)
For convenience, we will define another scalar,

Uy =2U + V. (43)

This also gives a diagonal scalar kinetic term

1
— 8, My 3" MMN —

T durott™

4(Imt)2
27 4t g 2
In order to setup the BPS equations corresponding to
§x! = 0and SAZ = 0, a projector involving y; is needed.
Since the procedure is essentially the same as in [26,27], we
will only repeat the relevant formulas. Following [26], we
will use Majorana representation in which all gamma matri-
ces y, are real, and ys = iyyy; 34 is purely imaginary. In
the chiral notation, we have, for example,

— _éU/2 _ 9 2 _ 1676‘/])(/2 _ 5672U| Z/2, (44)

. 1 . 1 .
€ = S+ Vs)€ys € = S= ¥s)em (45)
where €), is a four-component Majorana spinor. From all

this, it follows that €; = (¢?)*.
Accordingly, the y,-projector can be written as

yfei =¢'l¢; (46)
or equivalently
y;e,- = Al 47)

The analysis of 51,01’; = 0 equations leads to the following 13
projection:

A

ve€i = ikeMel (48)

see [26] for more detail. The constant « satisfying x> = 1
determines the chirality of the unbroken supercharges on the
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two-dimensional defect. Up to a phase, the full Killing spinor
can be written as

¢l — B taHi S O (49)

with the constant spinors ¢ @ satisfying

y;e(o)i = 81.(0) and yéei(o) =inei, (50)
The integrabitity conditions of Swé P = 0 equations give
A%+ Zize*“ = W (51)

where WV is the “superpotential” given by the eigenvalue o of
the Ali/ tensor corresponding to the unbroken supersymmetry

2
W= —a. (52)
3
The cosmological constant at Ad Sy critical points is given in
terms of « by the relation V = _43_10[2.

Finally, we note the expression for the phase ¢!”* in terms
of W

in Ak e~ A
CEwWTTwWO &)
and €t = L (54)
A+ %e*A

for real and complex W, respectively. These relations can be
obtained by considering the gravitino variations in each case;
see [27] for more detail.

For the RG flows, the corresponding BPS equations can
be found by formally taking the limit £ — oo. We simply
find

A'=4W and " = ﬂ. (55)
w

where W = |W)| is call the “real superpotential”. The Y

projector drops out, and there is no chirality restriction on
the preserved supercharges.

We now give the scalar potential for S O (3) singlet scalars

V = 36—6U1—3V1 [2€2U1+6V| + 1286‘/1 Z2 _ 84U1 _ 863(U1+V1)
+2eU (x + 2)* +3(k —2xZ — Z*)?]. (56)

As pointed out in [33], this is the scalar potential of the trun-
cated N = 1 supergravity in which only SO (3) singlet fields
are retained.

The scalar field equations can be obtained by using this
potential in the effective Lagrangian

1

Licalar = e3A |:16814MMN8MMMN - aufaﬂ‘t* — V] .

1
4(Imr)?
(57)
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Note that the scalar field equations are the same for both the
RG flows and the Janus solutions since scalars do not depend

on the £ coordinate. This is the reason we can take /—g to

. & .. .
be just &4 not 34127 . The explicit form of these equations

and Einstein equations will be given in Appendix A.

As shown in [33], the above potential admits a num-
ber of AdSy critical points both supersymmetric and non-
supersymmetric. In this paper, we will only consider the fol-
lowing supersymmetric Ad S4 vacua:

1 \
2 Ur=3Vi= k. Vo= —120k|3 (58)
n: v =5+ m®  y 2Ly, K
: =1In —In—, =—1In—,
! 215 =615

3 |37
Vo = —12]k|"2 5 (59)

with x = Z = 0. The cosmological constant Vj is related to
the Ad S, radius by

2= (60)

Vo

Within the N = 4 gauged supergravity, critical point I with
k > 0 gives N = 3 supersymmetric AdS4 vacuum while
k < 0 solution gives a non-supersymmetric skew-whiffle
solution as will be shown in the next section. Similarly, crit-
ical point IT with k < 0 and k > O corresponds, respectively,
to weak G N = 1 AdS4 and non-supersymmetric skew-
whiffle solutions. In particular, the N = 1 critical point cor-
responds to a squashed version of N°1° manifold. It is also
useful to note the two metrics here

2r
N=3: ds} = |k|*%(eﬁdxf2 +dr?)

1 2 1.1
kI [ds? (B + '], 6D
7
1 [lk|]\"6, 2
N=1: ds} = % (E) (eTrdxi, +dr?)
1
kI\3 1
+5 L ds*(Bok) + =n'n'| (62)
15 5
where the AdS; radii are given by L3z = %|k|% and L| =
51,3
- k|2,
2(3)7

Before carrying out the analysis of BPS equations, we
briefly discuss the dual SCFTs to these critical points. The
SCFT dual to the N = 3 critical point has been proposed
in [31]. At low energy, this is an SU(N) x SU(N) gauge
theory of interacting three hypermultiplets transforming in
a triplet of the SU (3) flavor symmetry. Each hypermultiplet
transforms as a bifundamental under the SU(N) x SU(N)
gauge group and as a doublet of the SUQ2)g ~ SOQ3)r
R-symmetry. In terms of the N = 2 superfields, these hyper-
multiplets can be written as

Ui =@ —t) and Vig = —eapUf = wi.iii)  (63)

wherei =1,2,3anda =1, 2.

From the Kaluza—Klein spectrum given in [29,30], the
massless graviton multiplet corresponds to the usual stress-
energy tensor multiplet, including the SO (3) g R-symmetry
current, in the dual N = 3 SCFT. There are also nine mass-
less vector multiplets transforming in the adjoint and singlet
(Betti multiplet) representations of SU (3). These correspond
to the following operator:

. 1 . _. 1 , _ _
Y= —Tr(U'U;+V'V,) — —8.Tr(U* Uy + VF V),
=7 j D =340 (U" Uy 3

(64)
1 . _.
Y= ETr(U’ U+ V'V (65)

which are the conserved currents of the flavor SU (3) and the
baryonic U (1) global symmetries, respectively.

In[31]; see also [32], the operator dual to the massive grav-
itino multiplet, which is of particular interest in the present
work, has also been proposed. The corresponding operator
is given by the SO (3) r singlet composite superfield

SH = Tr(016%05) (66)

where Oy is the field strength superfield. The components
(eF, @%, O®y,) are denoted in the N = 2 language by
(Y, X, —YT) together with derivative terms. The explicit
form of these can be found in [31]. Upon expanding in powers
of the superspace coordinates (6%, 8°), we obtain the com-
posite operators dual to the various component fields within
the massive gravitino multiplet. For example, the scalar oper-
ator of dimension 6 corresponding to the breathing mode of
the N%1° manifold is given by the N = 3 supersymmetriza-
tion of the operator

MV ePTTE,  Fyy Fy. (67)

It should be noted that this operator is the highest component
of the supermultiplet with six factors of the (6%, 6°) coordi-
nates. The deformation corresponding to this operator is then
expected to preserve supersymmetry.

It has been pointed out in [33] that the SCFT dual to the
N = 1 critical point on the other hand should be identified
with the N = 1 SCFT arising from the squashed seven-
sphere given in [36]. This is due to a similar spectrum within
the truncation of [33] and that of the squashed seven-sphere.
However, very little is known about N = 1 SCFT in three
dimensions apart from holographic descriptions.
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3 N = 3 supersymmetric solutions

We now look at the resulting BPS equations and their solu-
tions. By using the coset representative (41), we find that Allj
tensor is diagonal

AY = diag(ar, a3, a3, @3). (68)

The two eigenvalues a1 and a3 correspond to Killing spinors
¢! and €>3% and give rise to the superpotentials

Wy = %e—%(w'*vl)[ewl +2eU VI —2yZ — 22

+2i[eV x + (V' + M) Z]], (69)

1

Wi = — e 2OV 524 0el 3V 3kt 65 Z + 327

+2i[eV (x + 2) — 331 Z]]. (70)

In this section, we will consider only W3 corresponding to
unbroken N = 3 supersymmetry and leave the analysis of
W) to the next section.

3.1 Flow to N = 3 non-conformal field theory

The analysis of SAZ = O equations along €234 requires Uy =
3Viand x = 2Z.However, weneed to furthersety = Z =0
in the BPS equations in order to satisfy the field equations.
With all these requirements, we end up with the N = 3 BPS
equations

V= e 2V1(eV — ), (71)
1
A= ze*%vl (7 — 3k). 72)

From these equations, we find an N = 3 Ad Sy critical point

1
Vi = —Ink,
6

_ 73
=1 (73)

A =

Tl o

We also see that there is no critical point for k < 0. This
is in agreement with the fact that the solutions with k < 0
break all supersymmetry as mentioned before. In Eqgs. (71)
and (72), we have chosen a definite sign choice to obtain the
correct behavior near the critical point

3r

Vi ~els. (74)

This is consistent with the fact that V; is dual to an irrelevant
operator of dimension six. We then see that the dual N = 3
SCFT appears in the IR.

It can be checked that these equations satisfy the scalar
field equations and Einstein equations. In this case, the super-
potential is real

1
Wy = W3 = Ee—%‘vl 71 — 3k), (75)
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and the scalar potential can be written as

4 AW
_ () gy
189 \ 9V,

= 9k%e 2Vt — 2171, (76)

For non-vanishing pseudoscalars x and Z and U; # 3V,
N = 3 supersymmetry is broken, and the scalar potential
cannot be written in terms of the real superpotential W3. It
should also be noted that the vanishing of y and Z rules out
any supersymmetric Janus solutions since the corresponding
BPS equations cannot be consistent for finite £. This is similar
to the results of [26] and [27] in which pseudoscalars are
required for supersymmetric Janus solutions to exist.

We now return to a supersymmetric RG flow solution. The
BPS equations given above have a simple solution

3 1

A=Vit §1n(e6V1 — k), (77)
1 1 — eGkF-‘rC

V] = —811’1 T (78)

where the new radial coordinate 7 is related to r by % =

21 - = 3r
e 2V, As 7 ~ r —> —oo, we find Vi ~ Ok~ o
As usual in flows to non-conformal field theories, there is
a singularity at 7 ~ —& which gives Vi — oo. Near this

singularity, we find

1 7 7
Vi~ 5 In(6k7+C) and A ~ EVI ~T 5 In(6k7+C).
(79)

In this limit, the scalar potential vanishes. This implies that
the singularity is physical according to the criterion of [42].

We can also see this by looking at the 11-dimensional
metric and considering the criterion of [43]. In the present
case, we have U = V| and

ds?, = e Vds] + ¢*V1(ds*(Bgk) + n'n’)
= dx?, + (6kF + C) " d7?
+(6kF + C) 3 [ds>(Bok) +n'n'],
G4 = —6kdx® A dx! A dx? A dF. (80)

By changing to a new coordinate R via the relation dR =
~ 7 . .
(6kr 4+ C)~8dr, we can write the metric as

dsf; = dx{, +dR* + (kR)*[ds*(Bgk) + n'n"] 81)

Near the singularity, we then see that the metric component
goo 1s bounded, g(()%)l) = —¢24=TVi . _ 1. Therefore, the
singularity is also physical by the criterion of [43]. This solu-
tion should be identified with the flow from E'?> x HK, HK
being a Hyper-Kahler manifold, to AdS; x N studied in
[44] by using another approach.
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It should also be noted that when k = 0, Ad Sy critical
points do not exist. In this case, the gauged supergravity,
however, admits an N = 3 supersymmetric domain wall
vacuum. This solution preserves only six supercharges due
to the y, projection and accordingly is a half-BPS solution.
By setting k = 0 in the BPS equations, we can find a simple
domain wall solution

Vlzzlng—r, Azzln& (82)
9 2 9 2

where, for convenience, we have set the associated integra-

tion constants to zero by shifting the coordinates. This solu-

tion can be readily lifted to 11 dimensions in which the metric

is given by

14 4
9\~ 9r\°
ds? = dxfz + (_r) dr’ + (%) ds*(Bgk) + n'n’,

2
(83)
= dx{, + dR* + R*(ds*(Bok) + n'n") (84)
2
where we have defined a new coordinate R = (97’) 9. In this

case, the four-form field vanishes.

As a final comment on the N = 3 solution, we can also
give a geometric interpretation of the condition U; = 3V].
Recall that Uy = 3V] means U = V1, we find that only the
breathing mode is consistent with N = 3 supersymmetry. As
mentioned previously, the breathing mode corresponds to an
operator which is the highest component of the supermulti-
plet and hence does not break supersymmetry. On the other
hand, the squashing mode corresponding to the scalar Vi — U,
dual to a dimension-4 operator, breaks all of the supersym-
metry. Non-supersymmetric RG flows between N = (3, 0)
and N = (0, 1) supersymmetric Ad Sy critical points driven
by this scalar have been studied in [45]; see also [46]. The
dual operator driving the flow has also been proposed in [45].

4 N = 1 supersymmetric solutions
In this section, we will carry out a similar analysis for the
case of unbroken N = 1 supersymmetry corresponding to

the Killing spinor €'. The real superpotential is given by

3 3
W, = 7673U17§V1

2
X\/[ZXeU] +2Z (V1 +e3V1) 2+ [e2U1 - 2V1+3VI 4k —2x 7 — 72]2
(85)
in terms of which the scalar potential can be written as
oWy oW,
v=-—26r""1"1 _3y2 (86)

AP dpP

where ¢ = (U, Vi, Z, x) and G*? is the inverse of the
metric in the scalar kinetic terms given in (44). We now look
at the BPS equations and possible supersymmetric solutions.

4.1 RG flow solutions

We begin with an RG flow solution with only U; and V|
scalars non-vanishing. These correspond to the breathing and
squashing modes of N!0 It can be checked that keeping
only Up and Vj is consistent with the BPS equations and the
corresponding field equations. From 11-dimensional point
of view, this corresponds to pure metric modes since the
pseudoscalars Z and x appear in the internal components
of the four-form field strength. A non-supersymmetric flow
between this N = 1 AdS4 and the skew-whiffle N = 3 Ad Sy
has already been studied in [45,46].

In this work, we will study a supersymmetric flow to a
non-conformal field theory. The BPS equations in this case
are given by

Uj = e 32UV 201 | goUrt3Vi 4 3, (87)

Vl/ — e—%(2U1+V1)(62U1 _ 2€U1+3V1 +k), (88)

A = 2 HOURD Q201 | UiV g (89)
2

From these equations, we clearly see that there is only one
Ad Sy critical point given by the N = 1 critical point II in
Sect. 2, and there exists a critical point only for k < 0 as
previously remarked.

Near this N = 1 critical point, we find an asymptotic
behavior

Sr 3r
3Vi—U; ~e 3L, 2Up+ V) ~el 90)
corresponding to relevant and irrelevant operators of dimen-
sions A = %, % and A = 6, respectively.

We begin with a simple case in which the relevant defor-
mation is further truncated out. This can be achieved by set-
ting Vi = % — % In 5. By taking appropriate combinations,
we find new BPS equations

3V — U] = 2e72U1=3Vi(U1 — 503V,

2+ V| = e~ 3V1-3U1 32V 4 6eV131 4 7k)

oD
92)
from which we immediately see that the above truncation is

consistent. Under this truncation, the remaining BPS equa-
tions become

3 7
Ul = —e 2130201 4 5¢), (93)
1 ﬁ
3
A = ¢ 30176201 4 5k). (94)

24/5
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By changing to a new radial coordinate 7, defined by g—f =

7 . . .
e~ 2U1 asinthe N = 3 case, we obtain the solution

1 ef6xf5kf _3
Uy=——In| ———|,
2 S5k

1 1

A= EUl + 3

where we have absorbed all integration constants by shift-

ing 7 and rescaling d)c122 coordinates. It should also be

remembered that in this case k < 0. The singularity at

6+/5kF — —In3 is physical by the criteria of both [42]
and [43]. In this case, we find, as 6+/5ki — —1In3,

In(6¢*Yt 4 10k), (95)

Voo, b st (96)

We identify this solution with the flow from E2 x Spin(7)
to AdS; x S7 where S7 is the squashed seven-sphere with a
weak G, holonomy.

To solve Egs. (91) and (92) in the presence of both types
of deformations, we introduce new scalar fields defined by

V=3V,-U; and U =2U;+V, 97)

in terms of which the BPS equations become

U2~ 10", (98)
U(3 FV20) 4 6o VU 4 k), (99)

<t

2
7

e 77730 (2630 4 03U 4 ke?V). (100)

We then define a new coordinate p via the relation

d 2097
P _ o iV-nl,

. (101)

An analytic solution to the above equations can subsequently
be obtained

—In(5 + C1€*"),

<t
Il

[l
Il

7 7 20\ 2
SpFcin| =3k +Cre )

3
4 4 9 C] e_2p>

2p 3 F
x5+ Cre™ )5|:3k(5)52 ](5 5 5 5

—£(35)C1C265’01|:|

A—6 254+ 2 niscy + 406
=—-p+ 14 + g n[ 1 + 40e ]
where 5 F is the hypergeometric function.

We now consider the asymptotic behavior of this RG flow
to N = 1 non-conformal field theories. Near the singularity
atp=1In(— C5‘) we find that

(102)
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V =—In(5+ Cie ) - o0,
.3
U~ gln(Cl +5¢*) > —o0,

3
A~ o In(Cy + 5¢%°). (103)

Although the scalar potential diverges near this singularity,
the 11-dimensional metric gives g(%l) ~ constant. The sin-
gularity is then physical and the solution describes an RG
flow between the dual N = 1 SCFT and a non-conformal
N =1 field theory. Near this singularity, the corresponding
11-dimensional solution is given by

dp?
2
(Cy + 5€2r)5
+(C1 +5¢%)3ds> (Bok) + (C1 + 5¢2) "5y,
(104)
(105)

2 _ 3,2
dsjp = dxi, +

Gy = —6k(Cy +5¢2°)"5dx® Adx! Adx? A p

where we have absorbed a constant in the d)cl2 , coordinates.

We then move to more complicated RG flows involving
the SO(3)r singlet pseudoscalars. In this case, the flows
will involve the internal components of the four-form field
strength. Before considering possible solutions, we give an
explicit form of the uplift formulas for the metric and the
four-form with non-vanishing Z and x:

ds121 = e_(ZUH'Vl)dsz +eU1=W dsz(BQK) + eV r]ln ,
Gy = —6ke U1 =3V1y0l4+12Zvol(QK) + x'dr A ' A n2 An?
+ x4+ Dergxn' An? ATE £ Zdr anf AT
(106)

The N = 1 BPS equations with four non-vanishing scalars
are given by

, 23W1 , 4'E”’Vl
vl =-2L 0 oy =222
30U, 9aV
7 = —%ew‘ _8W1, x = —4e8 _8W1’ A=W
3¢ 9z 3y
(107)

where the superpotential Wy is given in (85). The explicit
form of these equations can be found in Appendix B.

We will begin with the solutions near the N = 1 Ad Sy
critical point. Near this critical point with r — oo, we find
that

_ o 3r
3Vi—U; ~e 31, 2U1 + V) ~el1,

6 _5r .
X+§Z~e L, X——~e 3.

5

From these, we see that U; and V| are combinations of a rele-
vant and an irrelevant operators of dimensions A = %, % and
A = 6 as in the previous case while Z and x are combina-

tions of a relevant and an irrelevant operators of dimensions

(108)
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A= % and A = 5, respectively. These are consistent with
the scalar masses given in [33].

Even with pseudoscalars turned on, there is a consistent
truncation keeping only irrelevant scalars. This truncation is
given by

1 1
V1=§U1—§1n5 and Z = 5y. (109)
Within this truncation, the BPS equations become
_Iy
Ul = © 2 [63¢M 1 150ke?V1 + 75K
I
+5250%% (2" — k) +91875x*], (110)
3
12xe 2V (762U — 5k 4+ 175%2
P Sl ), (111)
NE4
A 3 i % (112)
25
where

W= \/ (Te2U1 4 5k)2 + 350 2(7e2U1 — 5k) + 30625 *.
(113)

In this case, the BPS equations cannot be completely solved
analytically. However, the solution can be implicitly given
by defining a new scalar field F via the relation F = ¢! in
terms of which the BPS equations read

dx 12x(175%% + 7F — 5k)

dr V3FIJA9F2 1 25(k—35¢2)2+70F (k+35x2)
(114)

dr _ _21F2 +50F (k 4+ 35x2) + 25(k — 35x2)? 115)

dy 2x(TF + 1752 — 5k) ’

da _ _49F2 + 70F (k +35x2) 4+ 25(k — 35x2%)? 116)

dy 8x F(TF + 175x2 — 5k)

where in the last two equations we have taken y as an inde-
pendent variable by combining F’ and A’ equations with x’
equation, respectively. By solving Eq. (115), we can deter-
mine F(x) implicitly from the following solution:

2
1 4 5(k +35x2) +7F
Cyx = 2373 [5(k35¢2) + TF L Fy (2, : [5¢ X% +7F] )

3
"2’ 3500k x 2

1
49F2 4+ 70F (k + 35x%) + 25(k — 35X2)2]§

—175(5§)x2[ v
X

(117)

In principle, F () can be substituted in Egs. (114) and (116)
to determine y (r) and A(x).

We now look for asymptotic behavior for large values of
scalar fields. At large x, we find that

1 1 C
Ui =—lnF~§ln—

, _8
T x~Cro
2 x2

(118)
where for convenience we have shifted the coordinate » such
that the singularity is present at r = 0. In genral, x (r — 0)
can be oo or —oo depending on the sign of the constant C’. For
definiteness, we will take C” > 0 in the present discussion.
This behavior give the metric warped factor

A~ zln r. (119)
9

Near the singularity, we find that the scalar potential diverges

but géz)w becomes constant. We then conclude that the singu-

larity is physical by the criterion of [43]. For completeness,

we give an example of numerical solutions with k = —1 in

Fig. 1.

Note that we have identified the N = 1 Ad Sy critical point
at y = 0and U; = 0.22541, for k = —1, with the IR SCFT
at r = —oo. The numerical solution also gives a singularity
consistent with the above analysis namely the divergence of
scalars and the potential as well as the constancy of géél). The
11-dimensional solution near the singularity can be obtained
as follows:

2 2 2 2R ? 2 1 1.1
dsj; = dxi, +dR" + (T) |:ds (Bok) + 517 i| )
7
2R\? 0 1 2
Gy = —6k 5 dx” Adx® Adx“ Adr
2R\ *
+ 60 ? vol(Bgk)

2R\ 4 2\~
+6 (7) erygn’ An? ATE - <§>

xR™2dR A 771 A r;2 /\r)3

17

2\ 2
-5 <§> RAR Al A J!

1

SN

(120)

where we have defined a new coordinate R = %r 5,

We now look at the most general flow solution with all four
scalars turned on. The BPS equations are too complicated to
be solved analytically. In any case, numerical solutions can
be obtained by suitable boundary conditions similar to the
previous case. From the asymptotic behavior of these scalars
given in (108), there could be many possible singularities at
the end of the flows due to the presence of various vacuum
expectation values and operator deformations as in the solu-
tions studied in [24]. We will only give an example of these
solutions. This is shown in Fig. 2 in which we take k = —1,
and the N = 1 critical point corresponds to the values of the
scalar fields

@ Springer
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A(r)

-95 |

-10.0 f

-10.5

-11.0 f

xo Ui
0.06 0.255 £
0.05 0.250 [
0.04¢ 0.245 [
0.03 f
0.240 [
0.02
235
0.01 f 0-235
, . . o 43 46
-48 46 44 42 40 - o

(a) Solution for x

(b) Solution for Uy

-44  -42 T -40 —48 46 44 42 40
(¢) Solution for A

14
-85}
-9.0f
95}
N N N . N n n n n T
I8 46 44 -42 -40" -48  -46 44 42 40
e) The metric component
(d) The scalar potential ((21) P
along the flow Foo
Fig. 1 An RG flow solution from N = 1 non-conformal field theory to N = 1 SCFT with one scalar and one pseudoscalar and k = —1
U = 0.25541, Vi = —0.45134, Z=yx=0. (121)  The last equation implicitly gives the scalar V (r).

Near the singularity, we can see that x ~ Z — oo and
U; ~ Vi — —oo. From the BPS equations, we can make an
analysis near this limit resulting in the asymptotic behavior

1
U1~3V1~§1nX*%, Z ~ 5y ~r70. (122)

Using these expressions or the numerical analysis in Fig. 2,
we can see that the singularity is physical due to the constancy
of g(()(l)l) although the scalar potential becomes infinite. The
uplift of this solution can be obtained along the same line as

in the previous case.
4.2 Domain wall solutions

Similar to the N = 3 case, we will consider N = 1 domain
wall solutions to the BPS equations with £ = 0. All of the
relevant BPS equations can be obtained from those given
above by setting k = 0, so we will not repeat them here.

In the case of vanishing pseudoscalars, we find a domain
wall solution to Egs. (98), (99), and (100) with k = 0

- 3. 21 1 -
U=v-= A=-T,
2720 2

2eiV [2+25eV—2(1 — 58, (}T, 3 Sev)]

In[105¢" — 21,

r =

27

3969(21) % (5¢¥ — 1)
(123)

@ Springer

With non-vanishing pseudoscalars, we find an analytic
solution only for the subtruncation to irrelevant scalars,
Vi = lU1 — % In5 and Z = 5. The solution to Egs. (110),
(111), and (112) with k = 0 is given by

1 [c
Up=—In| —4 25,2,
2 2x2

A=i@w%fc07%mn

1
ZJﬁ%KH—ﬂv%HSEX%(ﬂm%—C042ﬂ(%,

6 _G )
> 70 7
50y 2
r= 2 :

(124)

=

1

S4xF(C1—50x1)7

When uplifted to 11 dimensions, these solutions will pro-
vide domain walls with internal four-form fluxes. All of these
solutions should describe non-conformal N = 1 field theo-
ries in three dimensions according to the DW/QFT corre-
spondence [47,48].

4.3 Janus solutions

In the case of N = 1 supersymmetry, it is possible to have a
supersymmetric Janus solution describing a conformal inter-
face within the three-dimensional N = 1 SCFT. The result-
ing BPS equations for an AdS3-sliced domain wall metric
can be written as
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X Z(r) Ui(n
0.0 0.2
0.250 [
0.03 0.15
0.02 0.10 0.245
0.01 0.05 ‘ ‘ ‘ ‘ .,
42 44 46 48 50
22 44 a6 a8 50 22 44 46 45 S0
(a) Solution for (b) Solution for Z (¢) Solution for Uy
-0452 | 8.5f
-0.453 | 80F
—0454 | 75¢
0f
~0.455
65¢
~0.456 ot
. . . . sy ) ) ) ) o,
42 44 46 48 50 42 44 46 48 50
(d) Solution for V4 (e) Solution for A
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4 14x10° |
9.0
1.2x 108 F
-2 1.0x10° F
-9.4 8.0x 107 F
6.0x107 f
-9.6 |
4.0x107 f
9.8 ¢ 20x107 F
) ) ) ) ., . . . . Ly
42 4.4 4.6 18 3.0 4.2 4.4 4.6 4.8 5.0
(f) The scalar potential (%) ')Fhe metric component
11
along the flow 900
Fig. 2 An RG flow solution from N = 1 SCFT to N = 1 non-conformal field theory with two scalars and two pseudoscalars and k = —1
’_ _g i/ owr zKeU] e\ oW (125) sponding second-order field equations. We will not present
! 3 W U, 3 W) dZ° the explicit form of these equations here due to their com-
2 A AW o) e\ oW plexity. This can be obtained from the above equations by
7= -0 + e [ —— — ) (126) taking the superpotential W; from Eq. (85)
3 W 0Z 3 LWy ) aly i 1 CAPE
4 A 3W 4 —AN 3w There is, however, a consistent truncation that can be per-
V] = A S 1 <e_> a7 (127)  formed by keeping only the irrelevant deformations. It can
IWiavi 3 W) ax be straightforwardly checked that setting V| = % — %lnS
) oy, AW 4 4 (e oW and Z = 5y is a consistent truncation for both the above
X =—4e"N ——— + —«ke — ) —, (128) . . .
Wy 0y 3 LWy ) ovy BPS equations and the corresponding field equations. The
5 24 resulting equations are given by
AT =wE - 7 (129)

These equations reduce to the RG flow equations in the limit
£ — 00, as expected. They take a very similar form to the
equations studied withinthe N = 8and N = 3 gauged super-
gravities in [26,27]. All of these equations satisfy the corre-

24'
Ul = 7[21e4U1 + 50ke?Vt + 25k

+1750x% (2" — k) + 30,625 ]

40k ye~ATU

7629 + 1752 — 5k),
oy (7Te"1 + 175 )

(130)
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2K6_A+U1
= 216*Y 4 5062Y 4 25k
X 50y [21€*7" +50¢°Y1 +
+1750x% (2" — k) + 30,625 "]
8A’ 22U,
—%(762111 + 1752 — 5K), (131)
9
A% = e[ 4 5k%)?
e_2A
+350x2(7¢*Ut — 5k) + 30,625 1] — i (132)
where ) is defined by
V=(7eV +5k%)2+350x2(7*Y1 — 5k)+30625x*. (133)

Even within this simpler truncation, it is not possible to find
any analytic solutions.

‘We now return to the BPS equations for all SO (3) singlet
scalars. As in the N = 8 gauged supergravity case, these

BPS equations have a turning point at which A" = 0. Also,
the regular Janus solution is required to approach the N =1
Ad Sy critical point as r — *+o00. As discussed in [26], for
a given branch of A’ near one of these limits, the first term
in the scalar flow equations dominates. When the solution
moves from the critical point, the second term will make the
solution begin to loop around. At the point when A’ = 0, the
other branch of A’ equation will bring the solution back to
the Ad Sy critical point. The solution preserves N = (1, 0) or
N = (0, 1) supersymmetry on the two-dimensional interface
depending on the sign of k.

However, from an intensive numerical search, we have
not found this type of solutions even starting from A” > 0 at
the turning point. All of the solutions we obtain are singular
on both sides of the turning point. Example of these solu-
tions for the two-scalar truncation and all four scalars are
shown, respectively, in Figs. 3 and 4. Note that the singulari-

X i) A
1.15 ¢ S ——
. : . oy
03 ~1.0 -0.5 0.5 1.0
-0.05}
. -0.10 F
~1.0 —0.5 0.5 1.0 =0.15
-0.20 }
-0.5
. . A A —025}
-1p ~05 05 [0 025
(a) Solution for Uy (b) Solution for Uy (¢) Solution for A
Fig. 3 N = 1 Janus solution within a truncation to two irrelevant scalars with k = —1,k = land £ = 1
X(@) Z(r) Ui (r)
i 1.0 )
2f 0.1}
0.5
1 F n
—0 ~0.1 0.1 02 "
~02 0.1 01 02 " So2 ~0.1 01 02 " ol
,1 E
-0.5 02
_2F —Veer
-3t -1.0 -0.3f

(b) Solution for Z

(¢) Solution for Uy

r

01

(d) Solution for V3

102 ~0.1 01

(e) Solution for A

Fig. 4 N = 1 Janus solution with all SO (3) singlet scalarsand k = —1,x =l and £ = 1
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ties appearing at both ends correspond to the non-conformal
phases of the dual N = 1 SCFT studied in the previous
section. These are also physical singularities according to
the criterion of [43]. Therefore, we expect that these singular
solutions might give some physical insight in the dual N = 1
field theories.

5 Conclusions

We have studied N = 4 gauged supergravity in four dimen-
sions with SO (3) x (T3, ’i‘3) gauge group. This theory is a
consistent truncation of 11-dimensional supergravity on a tri-
Sasakian manifold including massive Kaluza—Klein modes.
The theory admits two supersymmetric Ad Sy critical points
with N = 3 and N = 1 supersymmetries and unbroken
SO (3) g R-symmetry. We have fully analyzed the BPS equa-
tions for both cases and checked that they satisfy all the
second-order field equations. This analysis has not been car-
ried out in the truncation given in [33] in which only the struc-
ture of the supermultiplets has been discussed. The result
obtained in this paper is consistent with all the expectations
in [33] and in a sense could be viewed as an extension of
the analysis in [33] to include the fermionic supersymmetry
variations.

We have subsequently used these BPS equations to study
possible sueprsymmetric deformations of the dual three-
dimensional N = 3 and N = 1 SCFTs. These deformations
correspond to turning on scalar composite operators dual to
the massive gravitino multiplet of the gauged supergravity or
their vacuum expectation values. We have studied a number
of RG flows between these SCFTs and non-conformal field
theories in three dimensions. Many of these deformations
lead to various singularities corresponding to possible non-
conformal phases of the dual SCFTs. We have also checked
that all of the new N = 1 flow solutions presented here
flow to physical singularities. Among the various solutions
found in this paper, we have recovered the N = 3 flow from
EL2 x HK to AdSs x N°9 and the N = 1 flow from
E'2 x Spin(7) to AdSs x S7 studied in [44].

The results given here provide additional gravity solutions
to AdS4/CFT3 correspondence and might be useful in many
studies along this line. In addition, we have found a num-
ber of supersymmetric domain wall solutions which might
be useful in the context of DW/QFT correspondence. All of
these solutions can be straightforwardly uplifted to 11 dimen-
sions. The corresponding prescription of the uplift has also
been given. It could be interesting to further study the impli-
cations of these solutions inthe dual N = 1 SCFTand N = 1
gauge theory. The interpretation of these solutions in terms
of M-brane geometries when uplifted to 11 dimensions also
deserves further investigation.

Furthermore, we have looked at possible supersymmetric
Janus solutions. In the N = 3 case, this type of solutions
is not possible at least with unbroken SO (3)g symmetry.
This is similar to the five-dimensional Janus solution with
unbroken SO (6) symmetry [12]. There could also be non-
supersymmetric Janus solutions in this case as well. For the
N =1 case, the supersymmetric Janus solution is possible
numerically. This solution corresponds to a two-dimensional
conformal interface with N = (1, 0) unbroken supersym-
metry. We have given examples of numerical Janus solutions
between N = 1 non-conformal phases of three-dimensional
SCFTs. These solutions might be useful in the context of
interfaced and boundary CFTs [49]. It would be interesting
(if possible) to look for regular Janus solutions interpolating
between N = 1 Ad Sy critical points which describe defected
CFTs in three dimensions [50].

We end the paper by pointing out other possible future
work. First of all, it is interesting to consider more gen-
eral solutions with a residual symmetry less than SO (3)g.
From the N = 1 BPS equations studied here, it could
be readily seen that this analysis would be very compli-
cated. Alternatively, we could consider solutions with non-
vanishing gauge fields that interpolate between N = 1,3
Ad Sy solutions to AdS> x X5 in which X5 is a Riemann
surface. These solutions should correspond to twisted three-
dimensional SCFTs and would be interesting in the study
of black hole physics. Another issue, which should be of
much interest, is to construct a more general and com-
plete truncation of 11-dimensional supergravity on N910,
The truncation given in [33] has taken into account only
SU (3) singlet fields. This more general truncation could be
used to uplift the RG flows and Janus solutions studied in
[27,37] resulting in new holographic solutions in 11 dimen-
sions. Finally, by taking the Betti multiplet into account, it
would be interesting to study baryon states corresponding
to M5-branes wrapped on supersymmetric 5-cycles of N01°
similar to the study of the four-dimensional gauge theory
in [51].
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Appendix A: Field equations for S O (3) g singlet scalars

In this appendix, we explicitly give the field equations for
all of the four SO (3)r singlet scalars and the corresponding
Einstein equations. Since the equations in the RG flow case
can be obtained from those of the Janus solutions, we will
only give the equations for the Janus solutions.

The scalar equations are given by

U/ +3A'U; — 82UV _ 1g)?
—4722e2Y1 +18¢%V1 — 9k) — 18Z% — 8x%(e2V' +927?)

—8xZ (2?1 — 9k +92%) — 272U ] = 0,

_ €76U1 -3V [2€4U1 +24€3U1+3V1

(134)
Vll/ + SA/V{ _ %efﬁU]ff)V] [6€4U1+3V] 4 12€2U1+9V1 _ 18k2€3vl

+1263V1 226V — 2V 4 3k) — 24x 23V 2V — 3k +32Z2)

—182%3"1 — 122312V +62%) — x’zew‘] =0, (135)
X// + 3A/X/ _ 6X/Vl/ _ 66—6U1+3V1 [462U1 (X + Z)
+12Z(Z* +2xZ — k)] =0, (136)

7' +3A'7 —20{Z — 4e7 VN2V 4 65Vt — 3k +32%)
+6x2Z + x (V' =3k +92%)] =0. (137)

With the metric ansatz (37), the Einstein equations give rise
to the following (dependent) equations:

2A” 4347 + e 42U 4 v
2 T2 T gt
1 3
+Ze—6V1X/2 + Ee—ZUl Z?+v =0, (138)
342 4 5_26sz _ %U{Z _ % 2 %efw.x/z
3 —2U; Z/Z _
—Je +V=0 (139)

where V is the scalar potential given in (56).

Appendix B: BPS equations for N = 1 supersymmetry

We give the BPS equations for the N = 1 RG flow solutions
here. These equations are given by

87%<2U1+v|)
Ui = ——5 @ +25" 1k
x (e2U1 4 4eU1H3V1 4 3k
+222(2¢U1 + 66011 + 5eV13V1 3k
+ax? e +32%)
+32* +4x2e* +372% - 3k)], (140)
o3 QUIHVI)
Vl/ — [(€2U1 + k)Z _ 462U1+6V1 + 2Z2

Q

><(62U1 — 251 — k)

@ Springer

+Z +ax2 PV + 22 + 4x 2V + 2% - b)),

(141)
26130
7 = — 3 [2Ze5Y + 22UV 4 (4 + 2)
x (' +2xZ + 2% — b)), (142)
126—3U1+%V1 U 5
X' =- 3 [@x +2)e*" + Z(Z° +2xZ — k)]
(143)
where

Q:\/[Zewl Z+2(x+2)eV [P +[e2V1 42U +3Vi 4k — 223+ 2) ]
(144)
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Abstract A class of AdS; x X, with 35 being a two-sphere
or a hyperbolic space, solutions within four-dimensional
N = 4 gauged supergravity coupled to three-vector mul-
tiplets with dyonic gauging is identified. The gauged super-
gravity has a non-semisimple S O (3) x (T3, T3) gauge group
and can be obtained from a consistent truncation of 11-
dimensional supergravity on a tri-sasakian manifold. The
maximally symmetric vacua contain AdS4 geometries with
N = 1,3 supersymmetry corresponding to N = 1 and
N = 3 superconformal field theories (SCFTs) in three
dimensions. We find supersymmetric solutions of the form
AdS; x X, preserving two supercharges. These solutions
describe twisted compactifications of the dual N = 1 and
N = 3 SCFTs and should arise as near horizon geometries
of dyonic black holes in asymptotically AdS4 space-time.
Most solutions have hyperbolic horizons although some of
them exhibit spherical horizons. These provide a new class
of AdS; x X, geometries with known M-theory origin.

1 Introduction

Apart from giving deep insight to strongly coupled gauge
theories and string/M-theory compactifications in various
dimensions, the AdS/CFT correspondence has been recently
used to explain the entropy of asymptotically AdS4 black
holes [1-3]. In this context, the black hole entropy is com-
puted using topologically twisted index of three-dimensional
superconformal field theories (SCFTs) compactified on a
Riemann surface ¥, [4-8]. In the dual gravity solutions,
the black holes interpolate between the asymptotically AdS4
and the near horizon AdS; x ¥, geometries. These can be
interpreted as RG flows from three-dimensional SCFTs in
the form of Chern—Simons—Matter (CSM) theories possibly
with flavor matters to superconformal quantum mechanics
corresponding to the AdS, geometry.

#e-mail: parinya.ka@hotmail.com

Along this line of research, BPS black hole solutions
in four-dimensional gauged supergravity, in particular near
horizon geometries, with known higher-dimensional origins
are very useful. Most of the solutions have been studied
within N = 2 gauged supergravities [9-15], for recent
results; see [16,17]. Many of these solutions can be uplifted
to string/M-theory since these N = 2 gauged supergravi-
ties can be obtained either from truncations of the maximal
N = 8 gauged supergravity, whose higher-dimensional ori-
gin is known, or direct truncations of M-theory on Sasaki—
Einstein manifolds.

In this work, we give evidence for anew class of BPS black
hole solutions in the half-maximal N = 4 gauged super-
gravity with known higher-dimensional origin by finding a
number of new AdS, x ¥ solutions. This gauged supergrav-
ity has SO(3) x (T3, T3) gauge group and can be obtained
from a compactification of M-theory on a tri-sasakian mani-
fold [18]. Holographic RG flows and supersymmetric Janus
solutions, describing (1 + 1)-dimensional interfaces in the
dual SCFTs have recently appeared in [19]. In the present
paper, we will look for supersymmetric solutions of the form
AdS, x X, within this tri-sasakian compactification.

Apart from giving this type of solutions in gauged super-
gravity with more supersymmetry, to the best of the authors’
knowledge, the results are the first example of AdS, x X,
solutions from the truncation of M-theory on a tri-sasakian
manifold. The truncation given in [18] gives a reduction
ansatz for 11-dimensional supergravity on a generic tri-
sasakian manifold including massive Kaluza—Klein modes.
Among this type of manifolds, N°!* with isometry SU (2) x
SU(3) is of particular interest. In this case, there is a non-
trivial two-form giving rise to an extra vector multiplet; see
[20,21] for the Kaluza—Klein spectrum of AdS4 x N 010 This
background, discovered long ago in [22], preserves N = 3
out of the original N = 4 supersymmetry. There is another
supersymmetric AdS4 vacuum with SO (3) symmetry and
N = 1 supersymmetry, the one broken by AdSs x N 010,
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This vacuum corresponds to AdSs4 x N0 geometry, with
NO10 being a squashed version of N0,

Not much is known about the dual N = 1 SCFT, but the
dual N = 3 SCFT has been proposed in a number of previous
works [23,24]; see also [25,26]. This SCFT takes the form
of a CSM theory with SU (N) x SU (N) gauge group. Itis a
theory of interacting three hypermultiplets transforming in a
triplet of the SU (3) flavor symmetry, and each hypermultiplet
transforms as a bifundamental under the SU(N) x SU(N)
gauge group and as a doublet of the SU(2)g ~ SO(3)r R-
symmetry. There are also a number of previous works giving
holographic studies of this theory both in 11-dimensional
context and in the effective N = 3 and N = 4 gauged
supergravities [19,27-31]. Solutions given in these works are
holographic RG flows, Janus solutions and supersymmetric
AdS; x X, solutions with magnetic charges.

In this work, we consider N = 4 gauged supergravity
constructed in the embedding tensor formalism in [32]. This
construction is the most general supersymmetric gaugins of
N = 4 supergravity in which both the “electric” vector fields,
appearing in the ungauged Lagrangian, and their magnetic
duals can participate. Therefore, magnetic and dyonic gaug-
ings are allowed in this formulation. Furthermore, this for-
mulation contains the “purely electric” gauged N = 4 super-
gravity constructed long time ago in [33] and the non-trivial
SL(2, R) phases of [34,35] as special cases. We will look for
supersymmetric AdS, x X, solutions in the N = 4 gauged
supergravity with a dyonic gauging of the non-semisimple
group SO (3) x (T3, T3). The solutions are required to pre-
serve SO(2) C SO3)g, so only a particular combination
of vector fields corresponding to this SO (2) residual gauge
symmetry appears in the gauge covariant derivative. The
strategy is essentially similar to the wrapped brane solutions
of [36], implementing the twist by canceling the spin con-
nections on X; by the SO (2) gauge connection.

These AdS; x X, solutions should appear as near hori-
zon geometries of supersymmetric black holes in asymptot-
ically AdS4 space-time. Since the N = 4 gauged super-
gravity admits two supersymmetric AdS4 vacua with unbro-
ken SO(3)g symmetry and N = 1, 3 supersymmetries, the
AdS; x ¥, solutions should be RG fixed points in one dimen-
sion of the dual N = 1, 3 SCFTs. Although the structure of
the dual N = 1 SCFT is presently not clear, we expect that
there should be RG flows between these twisted N = 1, 3
SCFTs on X, to one-dimensional superconformal quantum
mechanics dual to the AdS, x X, solutions. In this sense,
the entropy of these black holes would possibly be computed
from the topologically twisted indices of the dual N = 1, 3
SCFTs. Furthermore, these solutions should provide a new
class of AdS; geometries within M-theory.

The paper is organized as follows. In Sect. 2, we review
N = 4 gauged supergravity coupled to vector multiplets and
relevant formulas for uplifting the resulting solutions to 11

@ Springer

dimensions. The analysis of BPS equations for SO(2) C
SO (3)r singlet scalars and Yang—Mills equations, for static
black hole ansatze consistent with the symmetry of X, will
be carried out in Sect. 3. In Sect. 4, we will explicitly give
AdS; x X, solutions to the BPS flow equations. We sepa-
rately consider the N = 1 and N = 3 cases and end the
section with the uplift formulas for embedding the solutions
in 11 dimensions. We finally give some conclusions and com-
ments on the results in Sect. 5. In the appendix, we collect the
convention regarding ‘t Hooft matrices and give the explicit
form of the Yang—Mills and BPS equations.

2 N = 4 gauged supergravity with dyonic gauging

In this section, we review N = 4 gauged supergravity in
the embedding tensor formalism following [32]. We mainly
focus on the bosonic Lagrangian and supersymmetry trans-
formations of fermions which provide basic ingredients for
finding supersymmetric solutions. Since the gauged super-
gravity under consideration is known to arise from a tri-
sasakian truncation of 11-dimensional supergravity, we will
also give relevant formulas which are useful to uplift four-
dimensional solutions to 11 dimensions. The full detail of
this truncation can be found in [18].

2.1 N =4 gauged supergravity coupled to vector
multiplets

In the half-maximal N = 4 supergravity in four dimen-
sif)ns, the supergravity multiplet consists of the graviton
eﬁ , four gravitini I/Ii , SiX vectors Al’f, four spin-% fields
x' and one complex scalar . The complex scalar can be
parametrized by the SL(2, R)/S O (2) coset. The supergrav-
ity multiplet can couple to an arbitrary number n of vector
multiplets containing a vector field A, four gaugini Al and
six scalars ¢". The scalar fields can be parametrized by the
SO(6,n)/SO(6) x SO(n) coset.

Space-time and tangent space indices are denoted, respec-
tively, by w,v,... = 0,1,2,3 and 4,v,... = 0,1,2,3.
Indices m,n = 1,...,6 and i,j = 1,2,3,4, respec-
tively, describe the vector and spinor representations of the
SO(6)r ~ SU(4)gr R-symmetry or equivalently a second-
rank anti-symmetric tensor and fundamental representations
of SU(4)g. The n vector multiplets are labeled by indices
a,b = 1,...,n. All the fields in the vector multiplets
will accordingly carry an additional index in the form of
(Aa , )“ia7 ¢ma).

All fermionic fields and the supersymmetry parameters
transform in the fundamental representation of SU (4)g R-
symmetry with the chirality projections

vs =V vsxi=—x', ysh =1l (1
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Similarly, for the fields transforming in the anti-fundamental
representation of SU (4) g, we have

V5‘(//ll~l‘ = _Wui )

General gaugings of the matter-coupled N = 4 super-
gravity can be efficiently described by the embedding tensor
®, which encodes the information as regards the embed-
ding of any gauge group Gy in the global or duality sym-
metry SL(2, R) x SO(6, n). There are two components of
the embedding tensor E"‘M and fyynp with o = (+, —)
and M,N = (m,a) = 1,...,n + 6 denoting fundamen-
tal representations of SL(2, R) and SO (6, n), respectively.
The electric vector fields AY+ = (A™, Aj}), appearing in
the ungauged Lagrangian, together with their magnetic dual
AM~= form a doublet under SL(2, R). These are denoted col-
lectively by AM®. In general, a subgroup of both SL(2, R)
and SO (6, n) can be gauged, and the magnetic vector fields
can also participate in the gauging. However, in this paper,
we only consider gaugings with only fy v p non-vanishing.
We then set £%M to zero from now on. This also considerably
simplifies many formulas given below.

The full covariant derivative can be written as

Dy =V, — gAY fu M inp 3)

where V,, is the space-time covariant derivative including the
spin connections. #y;y are SO (6, n) generators which can be
chosen as

(tmn) p? =265, “

with nyn being the SO (6, n) invariant tensor. The gauge
coupling constant g can be absorbed in the embedding ten-
sor ®. The original gauging considered in [33] only involves
electric vector fields and is called electric gauging. In this
case, only f4pnp are non-vanishing. In the following dis-
cussions, we will consider dyonic gauging involving both
electric and magnetic vector fields. In this case, both AM+
and AM~ enter the Lagrangian, and fy,pyyp With @ = &
are non-vanishing. Consistency requires the presence of two-
form fields when magnetic vector fields are included. In the
present case with & aM — (), these two-forms transform as an
anti-symmetric tensor under SO (6, n) and will be denoted
by BN = BN The two-forms modify the gauge field
strengths to

VSXi = Xi»  V5Ai = —Aj. (2)

1
HMi — dAM:E _ EUMQfaQNPANa A APi

1
+50"C fronp BN, )

Note that for non-vanishing f_p/np the field strengths of
electric vectors HM* have a contribution from the two-form
fields.

Before moving to the Lagrangian, we explicitly give the
parametrization of the scalar coset manifold SL(2, R)/SO(2)

x SO(6,n)/SO(6) x SO(n). The first factor can be
described by a coset representative

1 T
Imt ( 1 > ©

or equivalently by a symmetric matrix

Vy =

1 7|? Ret
Mo = Re(VuV) = — <1|ae|f 1 ) . ™)

It should also be noted that Im(V, Vg) = €4p. The complex
scalar t can also be written in terms of the dilaton ¢ and the
axion y as

T=x+ ie?. (8)

Forthe SO (6, n)/S 0 (6)x SO (n) factor, we can introduce
the coset representative VMA transforming by left and right
multiplications under SO (6, n) and SO (6) x SO (n), respec-
tively. The SO (6) x SO (n) index will be splitas A = (m, a)
according to which the coset representative can be written
as VMA = V)", V), "). As an element of SO(6, n), the
matrix VMA also satisfies the relation

As in the SL(2,R)/S0O(2) factor, the SO (6,n)/SO(6) x
SO (n) coset can also be parametrized in term of a symmetric
matrix defined by

Myn = VMmVNm + VMaVNa. (10)

The bosonic Lagrangian of the N = 4 gauged supergrav-
ity is given by

1 1
e L= SR+ RDMMMND“MMN

—maufaﬂf* -V

1
_Zlm ‘EMMNH%,—FHN—FMU

1

1 - M+q/N+
—gRe Te Hpo

Voo
"IN,

1
_Ee—IEHVPG [f—MNPA%_A{;V+8pA5_

1 _
+ZfaMNRfﬁPQS’?RSA,}YaA{;VJrA;;ﬂAg
1

_foMNPBIILVVP

o _
X(ZBPAQW —EUMSfaSQRAg“A(If )

1
—1—6f+MNRf_stnRSB,%NB,§;Q} (11)
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where e is the vielbein determinant. The scalar potential is
given by

2
g
V= E[faMNPfﬂQRSMaﬂ
1 2
% |:§MMQMNRMPS+ <§nMQ_MMQ) nNRnPSi|
4
—§faMpr,sQRse“ﬂMMNPQRS] (12)

where MMN is the inverse of My y, and MMNPORS g

defined by
MMNPQRS = EmnpquVMmVNnVP pVQqVR rVS s (13)

with indices raised by ™V . The covariant derivative of My
is defined by

DMyn = dMyn + 24702 £, 0p My r. (14)

It should be pointed out here that the magnetic vectors
and the two-forms do not have kinetic terms. They are aux-
iliary fields whose field equations give rise to the duality
relation between two-forms and scalars and the electric-
magnetic duality of AMT and AM~| respectively. Together
with the Yang—Mills equations obtained from the variation
with respect to AM* | these equations are given by

nun * DHN ™

1
—Zf+MPNMNQDMQP, (15)

1
nun * DHNT = Zf_MPNMNQDMQP, (16)
HM= = Im MMV yyp x HPT —Re tHMT, (17)

where we have used differential form language for later com-
putational convenience. By substituting H™~ from (17) in
(15), we obtain the usual Yang-Mills equations for HM+
while Eq. (16) simply gives the relation between the Hodge
dual of the three-form field strength and the scalars due to
the usual Bianchi identity of the gauge field strengths

1
FME = gaM= — EUMQfaQNPANa/\APi. (18)

In this paper, we are interested in N = 4 gauged supergravity
coupled to three vector multiplets. The gauge group of inter-
est here is a non-semisimple group SO (3) x (T3, 'i'3) -
SO(6, 3) described by the following components of the
embedding tensor:

— f4143,746,K+6
2215k, 1,7, K =1,2,3,
fi146.7+6.k+6 = 68/ 2ker

f-1,+6,k+6 = —4€1jk. (19)

f+17.k+6 =

The constant k is related to the four-form flux along the four-
dimensional space-time; see Eq. (122).

@ Springer

We should also remark that we follow the convention of
[18] in all of the computations carried out here. In particular,
the SO (6, 3) tensor 1y is off-diagonal

—1I5 03 03

0; 013 (20)
0; I3 03

NMN =

where 03 and I3 denote 3 x 3 zero and identity matrices,
respectively. As a result, the computation of My pors in
(13) and parts of the supersymmetry transformations given
below which involve V,,”" and V,,“ must be done with the
projection to the negative and positive eigenvalues of 17y,
respectively. This can be achieved by using the projection
matrix

0; V2P; 05
P=|-P; 0 P (21)
Py 03 P

where the 3 x 3 matrix P3 is given by

3 1 001
h=—/010]. (22)
V2 100

We now turn to the supersymmetry transformations of
fermionic fields. These are given by

. 0 i N
8y, =2Dy€' —ggAll"yMej—i—Z(Va)*VM”H%“y”pyuej,

(23)
e ie“ﬂVaDﬂVﬂ)/“e"—gigA;jej + %VO,VMi-/H%‘,“Gj,
(24)
ol =2iV,M DV, yte; + 2igA,, !
—%VQVMHH,%“VWE" . (25)
The fermion shift matrices are defined by
Ailj = 6aﬂ(Va)*VklMVNikVlefﬂM N
Aéj = eaﬁVaszMVNikVP'ﬂfﬁM N
A2aij = VIV Vp jkfﬂMN : (26)

where V,," is defined in terms of the ‘t Hooft matrices G,
and V,," as

| g
Vi = 3Vu" G 27)
and similarly for its inverse

1 iy
M= —EVM’”(GL{)*. (28)
G% satisfy the relations

G
Gmij = (Gi)* = Efijle]:nl- (29)
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The explicit form of these matrices is given in the appendix.
It should also be noted that the scalar potential can be written
in terms of A; and A tensors as

1 ij 1 i LN
Vi=—2AVAlij + A7 Asij + 5 A5, Aoy -

3 9 2 (30)

With the explicit form of V, given in (6) and Eq. (17), it
is straightforward to derive the following identities:
Vo Vi THY ™ = — (V) T VT HET Y (1 = vs). 31
IVl Vi HIR Y™ = —(Vo) T Wy HIL Y (1L ps), (32)
Vo) Vi TH 1y, = V) T VM T H ™y, (1= ys).
(33)

In obtaining these results, we have used the following rela-
tions for the SO (6, n) coset representative [33]:

1 ..
NMN = _EeijleM”VNkl + VuVne,
VWM =0,
. 1 . o
V'V = =288 =880, Yu Yy =8 (34)

These relations are useful in simplifying the BPS equations
resulting from the supersymmetry transformations. Note also
that these relations are slightly different from those given in
[32] due to a different convention on V, in terms of the scalar
7. In more detail, V), used in this paper and in [18] satisfies
V4 /V_ = t while Vy used in [32] gives V1 /V_ = t*. This
results in some sign changes in the above equations compared
to those of [32].

2.2 Uplift formulas to 11 dimensions

As mentioned above, four-dimensional N = 4 gauged super-
gravity coupled to three vector multiplets with SO(3) x
(T3, 13) gauge group has been obtained from a truncation
of 11-dimensional supergravity on a tri-sasakian manifold in
[18]. We will briefly review the structure and relevant for-
mulas focusing on the reduction ansatz which will be useful
for embedding four-dimensional solutions. Essentially, we
simply collect some formulas without giving detailed expla-
nations for which we refer the interested reader to [18].
The 11-dimensional metric can be written as

ds?; = e**ds3 + ¢*Yds? (Bok)

+ers(m' + ADG? + A]). 35)

The three-dimensional internal metric g;; can be written in
terms of the vielbein as

g=0"0. (36)

Following [18], we will parametrize the matrix Q in terms
of a product of a diagonal matrix V and an SO (3) matrix O

Q0 =V0, V =diage", e, %). (37)
The scalar ¢ is chosen to be

1
<p=—§(4U+V1+V2+V3) (38)

in order to obtain the Einstein frame action in four dimen-
sions. Bk denotes a four-dimensional quaternionic Kéhler
manifold whose explicit metric is not needed in the following
discussions.

The ansatz for the four-form field is given by

1 -
Ga = Ha+ Har A(n+AD" + SeryicHy A (n+ A’
A + ADX + 4Tre vol(QK) H 1
1
A+ AN AT+ 66111(

xdy Am+AD A+ ADT A+ ADK
+Hy NI e l(x + Tro)d ke

—2ci)lmn+ AT A+ AT A TEK. (39)

c7y is a3 x 3 matrix and Trc = 8/ ¢; ;. The volume form of
Bqk, vol(QK), can be written in terms of the two-forms J !
as

_1 I I
vol(QK) = 27" A 7", (40)

Various forms in the above equation are defined by

Hy =dc3 + ¢y /\FZI,

Hy; = Deap + ey FS A Gk,
Hyp = D&y — 2¢a1 + x Fay,
Hy; = Dcip +2c1 + CJlej,

Hyjj = Dcyj +2ep5k(c1x + Ci1g) (41)

with the SO (3) covariant derivative
n
Dcy, .1, =dcyy..1, +2 Z ernkA] Acn ko, (42)
=1
The SO (3)r field strengths are defined by

F} =dAl — e xA] A A, (43)

It is useful to note here that the SL(2, R)/SO(2) scalars are
given by

Vi+Va+V3

T=x+Iie (44)

Although we will not directly need the explicit form of
ds2(BQK) and n'’s in the remaining parts of this paper, it
is useful to give some information on the N°19 tri-sasakian
manifold. N9 is a 7-manifold with SU(2) x SU(3) isom-
etry. The SU (2) is identified with the R-symmetry of the
dual N = 3 SCFT while SU (3) is the flavor symmetry. A

@ Springer



689 Page 6 of 15

Eur. Phys. J. C (2017) 77:689

simple description of N!0 can be obtained in terms of a
coset manifold SU(3)/U (1). With the standard Gell-Mann
matrices, the SU (3) generators can be chosen to be —%Aa,
a =1,...,8.Thecosetand U (1) generators are accordingly
identified as

i
K; = —5(/\1, A2, A3, A4, A5, Ag, A7),

i~/3
H=-"0 (45)
2
The vielbein on N0 can eventually be obtained from the

decomposition of the Maurer—Cartan one-form
L~ YL = é'K; + wH (46)

where L is the coset representative for SU (3)/U (1), and w
is the corresponding U (1) connection.

Following [18], we can use the tri-sasakian structures of
the form

1
I _ o1 207
Z(e,e,e),

1
J! =g(e‘t/\es—e?’/\e6,—e3/\es—e4

n

/\ef’, O ned—edn e4). 47

From these, we find the metric on the quaternionic—Kéhler
base Bqk to be

1
ds*(Bgk) = ﬁue%z +(eH)? + (@) + ()] (48)
with the volume form given by

1 1
vol(QK) = 6J’ AJl = —6—4e3 net A A ed. (49)

As mentioned before, all of the fields appearing in the reduc-
tion of [18] are SU (3) singlets.

3 BPS flow equations

In this section, we perform the analysis of Yang—Mills equa-
tions and supersymmetry transformations in order to obtain
BPS equations for the flows between AdS4 vacua and possi-
ble AdS; x X, geometries. We set all fermions to zero and
truncate the bosonic fields to SO(2) C SO(3)r singlets.
This SO (2) is generated by

X = Xoi + Xey + X3- (50)
where the gauge generators are defined by
Xuta = = famnpt"". (51)

We see that a combination of the electric vectors A%+, A%T
and the magnetic vector A3~ becomes the corresponding
SO(2) gauge field.

@ Springer

We are interested in supersymmetric solutions of the form
AdS; x T, with ¥, = §2, H2. We will then take the ansatz
for the four-dimensional metric to be

ds? = —e*/dr® 4 dr? + X7 (d6? + F(0)*dg?)  (52)
with
F(@)=sinf and F(f) =sinh6 (53)

for the S and H?, respectively. We will also use the param-
eter k = +1 to denote the S and H? cases. The functions
f(r), g(r) and all other fields only depend on the radial coor-
dinate r for static solutions. With the obvious vielbein

ef = efdt, e = dr,
¢! = e8do, ¢ = efFdg, (54)

it is now straightforward to compute the spin connections of
the above metric

ol = f/e;, o = g/eé,
A N PN F' (O o
o = g/ed), P = F((Q))e_ge(P' (55)

In the above expressions, we have used the hat to denote
“flat” indices while ' stands for the r-derivative with the only
exception that F/(0) = %. The ansatz for electric and
magnetic vector fields are given by

AMT = AMdr — pM F'(9)dg, (56)
AM= = AMdr — ey F'(0)dg (57)

where we have chosen the gauge such that A ﬁ” “ =0. pM and
e correspond to magnetic and electric charges, respectively.
In the present case, only AMY with M = 3, 6, 9 are relevant.

We finally give the explicit form of the scalar coset repre-
sentative for SO (6, 3)/S 0 (6) x SO (3). The parametrization
of [18] which is directly related to the higher-dimensional
origin is given by

V=CQ (58)

where the matrices Q and C are defined by

Iz 03 03
Q=020 Iy ,
03 03 €2U QT
03 2cT 05
C =exp 0; 03 03 ]. 59)
V2¢ a 03

For SO (2) invariant scalars, the 3 x 3 matrices ¢ and a are
given by

Zy Z3 0 0 0
c=|-z3z,0 |, a=|-200 (60)
0 0 Z, 0 00
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while Q can be obtained from (37) with V, = V| and O
being

0 B0

—00|. (61)
000

O =exp

This is a generalization of the coset representative of the
SO(3)g singlet scalars used in [19] in which & = g =
Z3 =0,Z1 = Zy and V| = V, = V3. In the following,
we will rename the scalars V3 — V; such that the complex
scalar T becomes

=y +ie?V1t"2, (62)

We now give the scalar potential for S O (2) singlet scalars,
V = e 3@UHVIHVI) [ AUHV) (AU 4 904V

+9k2+4x2e4u+2vl

_466U+4V1+2V2(6+62(U—V1)

—e 2 U=VDy L 24k y 7, + 164223

+8Xzze4U+2"' — 12kx 2y

+(16x% — 24k)Z1 Zy + 325 Z3 Z>

+4Z5eM TN L 49272 4 84 7,73

+1623735 — 4573 — 82173

+6kZ3 + 23 4 2¢*"2

(€' (x +22Z1 — 2)* + 2" 2Z1 + Z)*1]. (63)

The scalars 8, ® and Z3 do not appear in the potential. It
can also be checked that setting § = ® = Z3 = 0is a con-
sistent truncation. In fact, B never appears in any equations,
so we can set it to zero. On the other hand, the Yang—Mills
equations, to be given later, demand that ® and Z3 must
be constant. Since we are interested in the flow solutions
interpolating between AdS; x X5 and AdS4 vacua, and at
supersymmetric AdS4 critical points, both ® and Z3 vanish.
We then choose Z3 = & = 0.
The kinetic terms for the remaining scalars read

Lyin = —6U"> —2U' V] + V3) —2V[> = V| Vj

1[3‘/2/2 + 6—2(2V1+V2)X/2 + 46_2(2U+V1)
X Z 422U 22, (64)

We now redefine the scalars such that the kinetic terms are
diagonal

V=2Vi+Vs, U =204V, U,=2U+Vs, (65

in terms of which we find
1 - ~ ~
Liin = —Z(4U{2 + 20 + V"

4V x4 40122 4 207202 2D, (66)

These new scalars will also be useful in the analysis of the
BPS equations below.

The above scalar potential admits two supersymmetric
AdS4 vacua with N = 1 and N = 3 supersymmetries [18].
At these vacua the symmetry is enhanced from SO(2) to
SO (3). For convenience, before carry out the analysis of
the Yang—Mills and BPS equations, we review the N = 3
and N = 1 AdSy critical points in terms of the new scalars
defined above:

|
N=3:V=0=0=;mk
Vo=—12/k|">, k>0, (67)

. 1 k
N=1: U1=U2=1n5+§1n|:——:|,

k <0. (68)

Vo is the cosmological constant related to the AdS4 radius
by
3

L= ——. 69
7 (69)

3.1 The analysis of Yang—Mills equations

We now solve the equations of motion for the gauge fields
given in (15)—(17). We should emphasize that, in the reduc-
tion of [18], the magnetic vectors AM— with M = 4, 5,6 do
not appear in the reduction ansatz. These might arise from
the reduction of the dual internal seven-dimensional metric.
Furthermore, in this reduction, the two-form fields corre-
sponding to these magnetic vectors do not appear.

Although the present analysis involves A%t we will trun-
cate out the A%~ in order to use the reduction ansatz of [ 18] to
uplift the resulting solutions to 11 dimensions. This amounts
to setting eg and fl? in (57) to zero. It turns out that this
truncation is consistent provided that the two-form fields are
properly truncated. Therefore, we will seteg = A,ﬁ = Ointhe
following analysis. Note also that the vanishing of A°~ does
not mean the covariant field strength %~ vanishes although
the usual gauge field strength F°~ vanishes. This is due to the
fact that 4%~ gets a contribution from the two-form fields.

In order to consistently remove A6~ , we truncate the two-
form fields to only B'® and B78. With the symmetry of
AdS, x ¥, background and a particular choice of tensor
gauge transformations

BMN — BMN 4 MV, (70)
we will take the ansatz for the two-forms to be

B’ = B(r)F(0)df A dg,
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B'® = B(r)F(6)do A dé. (71)

With the explicit form of the embedding tensor, we can
compute the covariant field strengths

H* = AV dr Adt + (p® +4B)F(0)d6 A dp,

HOH = A%dr Adt + (p© — 4B)F(0)d6 A dép,

H* = A)'dr Adi + p°F(6)d6 A dg,

H3~ = AYdr Adr 4 (e3 — 2v/2B)F(0)d0 A dg,

HO™ = —6v2kBF(6)d0 A dé,

HO~ = AVdr Adr 4 (e9 — 2v/2B)F(0)d0 Adgp.  (72)
Note the non-vanishing covariant field strength 7, as men-
tioned above, due to the contribution from the two-form fields
despite A~ = 0.

Equations arising from (15) and (16) are explicitly givenin
the appendix. They can be solved by imposing the following
conditions:

Zy=0, @' =27,Z5-225Z],
B'F(0)dr A do Adgp = 24U+
x 3k x A% + %A% — /2% A7),
B'F(0)dr AdO Adg = 4Z e U+
x 3k % A%T + %A%t — V2% A7), (73)
The first condition implies that Z3 is constant. As men-
tioned above, this allows one to set Z3 = 0. The sec-
ond condition then requires that & is constant. We can
also set ® = 0. Together with B = 0, we are left
with only six scalars (U, Vi, Va, x, Z1, Z2) or equivalently
U1, Ua, V, X, Z1, Z2).

‘We move to the last two conditions in (73). First of all, the

dt A dr A dO component gives

3kp® + p® — V2e3 =0 (74)

while the dr A d6 A d¢ component leads to first-order dif-
ferential equations for B and B

B — \/5674(2U+V1)+28*f(3ku4t9 + A% — ﬁjg), (75)
E/ = —4Z1€74(2U+V1)+2g7f(3ku4t9 + A[ﬁ - ﬁvz{?) (76)

After solving all of the Yang—Mills equations and Bianchi
identities, we now consider the duality equation for electric
and magnetic vector fields. These equations whose explicit
form is given in the appendix lead to the relations between
(.Af” ’ fi{” ") and scalars. We can accordingly express the for-
mer in terms of the latter. These relations are given by

A?/ — ef—2g—2(U+V1)—3V2 [€4U+2V2

les +v2e9Zy —4BZ,

+x(p® + 4B +27))]

+Z312(e3 + P x) + V2Za(eo + p7x)]
—4Z)BGk —2xZy + Z3)
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—2V2B(VF2 127, +273) + V2p° Zox 1., (77)
'Até/ — ef—2g—2(2U+V1)73Vz

[(2V2B —eg — p? )V T2 — pO7z3y

—e*V 22 725[V2e3 — 4B + 2002y + x (V2p° +2p° Z3)]

+ABZ5(x + Z2) — Z3[V2(e3 + p* X) + Za(eg + p° 1))

+4v2B 72682V (7 — ) +2v2BZ3(3k =2 Zo + Z3)],

(78)

A?/ — _of2820U+V)-3V;

[Z2(v2e3 — 4B + e9Z3) — 2v/2B(3k — 2 Zy + Z3)

+x(p® —4B + 27, + p° 73], (79)
A= ef—zg;vl—vz [—eVIH2V2 [/ AUV 9

2

+Z2(p* +4B +~2p°2y))

+xZoles — 2828 + v2e9Z, — 4B Z,

+x(p* +4B +v2p°Z5)]

+xe V2 [V2(e0 + pPx) — 4B1], (80)

~ of—28-2Vi—V

A= [AHUTVIHY2) 9 _ AU+ ) (002 /2B 4 p°)

z
—xZa[V2e3 — 4B + 4V2B(x — Z2) + 2e9Z>
+x (V2P +2p° )]
+eV1 227, (V23 + 4V2B +2p° 7,)]. (81)

It turns out that only A?, A? and .,Zl? appear in other equa-
tions, while the remaining ones only appear through their
derivatives. Therefore, these fields can be integrated out.

3.2 BPS equations for SO(2) invariant scalars

We now use the ansatz for all the fields given in the previous
section to set up the BPS equations for finding supersym-
metric solutions. We will use Majorana representation for
the gamma matrices in which all y,, are real, and

Ys = 1YYV (82)

is purely imaginary. We then have, for example,

ef—1(1+y)e"
—2 5)€Mm>

1 .
€ =51 =ys)ey (83)

with 651/1 being four-component Majorana spinors. It follows
that ¢; = (€')*.

We first consider the gravitino transformations. As in other
holographic solutions involving twisted compactifications of
the dual SCFTs, the strategy is to use the gauge connection to
cancel the spin connection on X;. Equations from 81% =0

and 81#; = 0 then reduce to the same equation. The gauge

connection enters the covariant derivative of €’ through the
composite connection Q ;'. With the SO (2) singlet scalars,
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we find that Q ji takes the form of

0100
i 1.1 -1000
A
27 =3% 0000 ®4)
0000
where A is given by
A — ﬁe—2(2U+V1)(3kA9++A6+
—\/EA3_ _ 4e4U+2V1 A9+). (85)

From the form of Q,/, we can see that supersymmetry cor-
responding to €>* is broken for spherical and hyperbolic 2,
since we cannot cancel the spin connections along €3, The
N = 4 supersymmetry is then broken to N = 2.

After using the condition (74) in the Q q;l.j components,
the twist is achieved by imposing the projection

yédaef —eliel (86)
provided that we impose the following twist condition:
2V2kp? = 1. (87)

Indices i, f = 1, 2 denote the Killing spinors corresponding
to the unbroken supersymmetry. From Eq. (86), the chirality

condition on €’ implies that

0F i _ .0 j
yo e =—ie el (88)
With these projections, we can write the Swé = 0 equation,

which is the same as § wé equation, as

A 2 52 i an
g'yre' — §A’1’e; + 50V V'

X (MG = M es e = 0 (89)

where we have multiplied the resulting equation by yé. We
further impose the projector

yiel = eihsi] & (90)
in which ¢/2 is an r-dependent phase. By Eq. (88), this pro-
jector implies

y()ef:ie' €lex. ©n

It should be noted that there are only two independent pro-
jectors given in (86) and (90). Therefore, the entire flows pre-
serve % supersymmetry. On the other hand, the AdS, x X,
vacua is % supersymmetric since the y; projection is not
needed for constant scalars.

As a next step, we introduce the “superpotential” JV and
“central charge” Z defined, respectively, by the eigenvalues
of

2 2 22
§A’1] =W,s" (92)

and
— S0V H — e =z (93)

It should be emphasized that no summation is implied in the
above two equations.

With all these, we obtain the BPS equation from 81//2 =0
by the equation

g — W, -2 =0 (94)
which gives
; Wi + Z;
"= |W,+ 2| and &P =_—""""" 95

8 (Wi il Wi + Zi| 95)

Using all of these results, we find that the equation Swé =
0 gives
N +iAeH—W, + Z =0. (96)
Taking the real and imaginary parts leads to the following
BPS equations:

[ =Rele AW, — 2] (97)
and
A, = el Tmle "MW — Z)]. (98)

We now come to the equation 81/;;T = 0, which gives the r-
dependence of the Killing spinors. When combined with the

equation 81&6 = 0, this equation reads

2l — ' —ideTe =0, (99)
which can be solved by

i_ e%-‘r%fﬁ,e’fdrgf'

€ (100)
&l are constant spinors satisfying the projections
y;%’ 281]617, Véj)gl =elj¢g] . (101)

Using the y; projector, we obtain the following BPS equa-
tions from 8’ and 81! :

4i

—eiAeaﬁVaV;}S;.] — ?Aéi
+iVaVuheM (i H) =0, (102)
.. . 1
Vo' Vu e 4 Ve Vura (H
 Mansis) i) i
+lHéd3 )825;6 + Azt = 0. (103)

Note that there are four equations from 8§/, for each value
ofa =1,2,3, but 8)»2,:3 “+ we do not get any contribution
from the gauge fields. However, the scalars appearing in these
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equations cannot be consistently set to zero since Ao, ji is not
diagonal in ij indices.

It should be pointed out that the N = 3 supersymmetric
AdS4 vacuum corresponds to the Killing spinors €234 while
€! is the Killing spinor of the N = 1 AdSy critical point.
In the next section, we will look for possible AdS, x X,
solutions to the above BPS equations. As mentioned before,
in the twist given above, the supersymmetry corresponding to
€% is broken. Therefore, the resulting AdS> x ¥ solutions
will preserve only two supercharges or half of the N = 1
supersymmetry corresponding to either €! or €2. We will
analyze these two cases separately.

4 Supersymmetric AdS; x X, solutions

In this section, we look for the AdS, x X, fixed points of
the above BPS flow equations with constant scalars. These
solutions should correspond to IR fixed points of the RG
flows from twisted compactifications of the dual N = 3 and
N = 1 SCFTs in three dimensions. They also describe near
horizon geometries of BPS black holes arising from M2-
branes wrapped on X,. Before giving the solutions, we first
discuss the conditions for obtaining the AdS; fixed points.

Atthe AdS; x X, geometries, the scalars are constant, and
we can choose the gauge in which A{” % ~ 0. Furthermore,
the warped factor g(r) is required to be constant, g’(r) = 0.
Let rj, be the position of the horizon, we can summarize the
conditions for AdS; x X, solutions and their properties as
follows:

frn) = o
AdS»

Im[e ™" *(W; — 2)] =0,

e8n) — Ly,

4 22 P
Wi+ 2 =0, 247 = Va V™ M GHE" + MY,

i . AM M e A
7 Ve VMa (i HE® + HGe = =4y

A, =0, =34 (104)

211]7
where L ags, and Ly, are, respectively, the radii of AdS; and
3. These conditions can be viewed as attractor equations for
the scalars at the black hole horizon.

4.1 Solutions in the N = 3 case

We begin with the N = 3 case. The AdS; x ¥ solutions will
describe the fixed points of the RG flows from N = 3 SCFTs
dual to the N%1° compactification of 11-dimensional super-
gravity to supersymmetric CFT;’s dual to the AdS,; x X,
geometries. These flows are examples of the twisted com-
pactifications of the N = 3 SCFT on X».
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In this case, the superpotential and central charge are given
in terms of the redefined scalars (U, Uz, V) by

1 1 i sty 20 - b Da?
W, = 5677(4U1+2U2+V)[62U2 +4€U1+U2 —2€U2+V +46U1+V

3k +2i 72D 1+ 4i 726U — 4i 712 1 ¢V +i2,)
—2iZye" — 72 425 ie" —ie" 427, + Z)1.  (105)

1 ~ ~ ~ ~ ~
2z, = Ze—%(4g+2U2+V)[263eUz — V2iege®> 4 2iesy +2p° xe?

—2ip? 5 (202 +3k) — 4vV2B[eD + ¢V +i(x + Zo)]
12iesZs + 23200226V 4 2ip3x Zs + 2v/2p0 5 Z2eP2
+v2i(eo + p°x)Z3 + 4i B(*U2 — 2692V — 3p)
+4B2x (" +iZ5) + Zo(e” — 272 —iZy)]
+e¥ 23 —3v2p° —V2p°?0 12037, + V20 Z3)

—2ie"*V (p} + V2p° Z1)] (106)

in which the subscript 2 on W, and Z; refers to the super-

potential and central charge associated to the Killing spinor
2

€

The BPS equations are given by

f/ =Rele AW, — 2)],

bh = M2t 2 (107)
IWh + 25|
¢ =W+ 2|, (108)

Ny _ l.ef\”/ﬂAX/
1 5 ~ ~ ~ ~
=3 [e#*"ﬂ”' [2¢%2 + 86201 — 6k + 25871 — 275)]

e

—e 2872017 4028 4 26201 (3 + 4B + V2p° 7))
+ax (22 + Zy)e T 02201 4 ﬁegeﬁﬂg%]

1 sV - -
3¢ O WA, — e0Z2) — 2es(x + Z2) + 42 B

—4B(2 — 3k + 247y — Z2) + V2p x (P2 + 3k)
—Zox 2p* +V2p°Z5)]
—’Ee‘fh‘% (40272017, 27, — y) — 4" 20127, + 7,)

—2e92728[ 7, (\/2e0 — 4B — 2V2B) + x(p* + 4B + v2p° Z1)]
+e‘7728[263 —4V2B —V2p° 3k + 6202) —4v2B
+Z22p° + 8B +2p° Z2)] - 2602283,

o—iA (75 + i[sziA Zé

_ %e—zg—ﬁz—zﬁl—%[zez(gmz) b VBieocT+0D | gr2%

(109)

—2ie3xe20‘ + \/Eipgxez(l_]‘+ﬁ2) + 3\/§ikp9xe‘20‘
+8iZze2g+U‘ — 2ie3ZZeZU‘ — 4y Zre — 2ip3xZ2e20‘
—87,7Z,6%8 + 2Z§e23 — ﬁiegZ%ew‘ - 8)(21625'

—4i BV 202 _ 3k 4 7,25 — Zo — 2ie")] + 8i x 2+ Ui
+4V2BAUN Y t iy +i2y) — V2ipx 22

~4i*V 271 + 22) — 22820V @p + V2P 2)

—eU V82 4 ¥ [2ey — V2p (2 4 30011, (110)
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e_iA[]l' —ie_U‘_iAZi
— 670272017%[26024»\7 _ 6202 _ 260] (602 +€‘7) 43k
—4iZ1 %+ eV —izo) +2ixD — U2 4 2iZ) +iZ5)

+2iZy (% 4 e — ¢V + 72 (111)

where we have used the relation (74) to express p6 in terms
of p? and e3.

To obtain the complete flow solutions, we have to solve
these equations together with the two-form equations (75),
(76) and the equations for the gauge fields (77)—(81) as well
as the algebraic constraint given by Eq. (98). These equations
are very complicated even with the numerical technique not
to mention the analytic solutions. In what follows, we will
present only the AdS, x X solutions and will not give the
numerical flow solutions which may be obtained by suitable
boundary conditions. In principle, the horizon is character-
ized by the values of the scalars as functions of the electric
and magnetic charges. However, due to the complexity of the
BPS equations, it is more convenient to solve the horizon con-
ditions for the charges in terms of the scalar fields although
inverting the solutions to express the scalars in terms of the
charges is desirable.

In the present case, although it is straightforward to solve
the above equations for (B, B, X, 21, p9, p3, e3, e9) interms
of (0 1 02, \7, Z»), the resulting expressions turn out to be
cumbersome and not very illuminating. Accordingly, we
refrain from giving the general result here but instead present
some solutions with specific values of the parameters. These
are obtained from truncating the full result and represent
some examples of AdS, x ¥, geometries within the solution
space.

Examples of AdS, x X, solutions are as follows:

e We begin with a simple solution with vanishing pseu-
doscalars. In the M-theory point of view, only scalars
coming from the 11-dimensional metric are turned on.
The solution is given by

1
kzgv X:ZIZZ2=O’ 69207
-1 [27 .1 [27
V==-In|—|, Uy==In|—|,

2|5 2180
3 1. T5 |

=—-In|>|. B=--(5v2e3-27p°
U, 2n[3] zo(fez P,
1 81 [3
§=3 g0V 10°7 |’
3 3%
B=-2 Lags, (112)
4 32(5)1

It is clearly seen that only the hyperbolic horizon (k =
—1) is possible otherwise g(r,) will become complex.
Therefore, we find that this is an AdS, x H? solution.

e We next consider a solution with scalars and pseu-
doscalars turned on. In the 11-dimensional context, the
solution involves scalar fields from both the metric and
the four-form field. This solution is characterized by

k=1, 212222020,
- ~ 12
U=V =In|—|,

7

3 Aleg+220p° 4leg 4 136p°

P M2 1642
- ey 111
B = ——p°,
202 4’
1 Ll ot [2
= ——, = — In —_ —_— y
X=77 &§73 Py
V21
Lads, = BT (113)

This solution is also AdS, x HZ.

e As a final example, we consider a solution with more
scalars turned on and hence more general than the previ-
ous two solutions. This solution is given by

2k vk
— X=—

Z1=0, Zp=-
1 2 7 7

~ 1
Ul = U2 = Elnk,
5 128,447k — 104,895

P T hevae D
32,723k — 13,923
eg = ,
’ 1 116v2k
5 e, 567667k
W) o8
1. | 2100 = k)Vkkp®
g=-In| - _OVEP I
2 22
) 3, 809 — 2, 961
V =m@vk), B=-25p° [_ ]
16, 464+/2k
L K (114)
AdS; — 3ﬁ

In this case, the flux parameter & is not fixed, and there
are two types of solutions, AdS, x $2 and AdS, x H?,
depending on the value of k. For k > 1, we have an
AdS, x H? solution with x = —1 while the solution
with k < 11is AdSy x §? for which k = 1.

@ Springer
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4.2 Solutions in the N = 1 case

We now repeat a similar analysis for the N = 1 case in
which the N = 1 AdS4 vacuum arises from the squashed
N0 manifold. This critical point exists only for k < 0,
and the AdS; x X, solutions would be IR fixed points of
the twisted compactifications of the dual N = 1 SCFT. The
superpotential and central charge are given by

Wy = 1670272017%[6202 — 4eUr+02 _ 2e‘7(e[/2 + 2@01)
2
YAZ1(Zy —ie%? —ieY)
—3k+iZy(2eV> —4eVt —2¢Y +i75)

12071 + Zo — ieP2 —2ieUn), (115)

e
4

><[2e3(e[/2 +ix)— \/Eiegezﬁz + 2]73)(6‘02 - 3x/§ikp9)(
—ﬁipgxe202 - 4xf21§(602 + eVHXHZz) +2ie3Zs
+2«/§egzzeﬁ2 + 2ip3x22 + Zﬁpgx Zr + ﬁiegZ%
FV2ip° % 22 + 4By (€% + i Zy) + (€22 — 2602V 3k
14BZ>2¢" — 2% —i7y) — 21V (03 + V20 Z0)

+e¥ Qe — 6v/2p° —V2p°% 42972y + V2p°Z3)).

(116)

The procedure is essentially the same, so we will just
present the result of AdS; x X, solutions and leave the
explicit form of the corresponding BPS equations to the
appendix. In this case, it turns out to be more difficult to
find the solutions in particular we have not found any solu-
tions without the pseudoscalars turned on. With some effort,
we obtain the following solutions:

e We begin with a simple solution in which all scalars have
the same value as the N = 1 supersymmetric AdS4 vac-

uum
k=8 =0
= 117 1=4L2=X=V,
N 557 - 1. [55
U =0, =n5—In| 2|, V=—cIn|2|,
6 26
3 3
. 14
P S U U
4 24/2 542
| 10 /15
T I S ,
£§=35 [ Vi p}
53
Lags, = (117)

5 1 3 :
21 (31) (111)
The solution is of the AdS, x H? form.

@ Springer

e We now give a more complicated solution

p3 _ i ( P’ )
V 638 \ 3, 190/—k

(567,365k — 1, 002, 298),

5= s (5307)
V638 \ 89,3200/—k
(13,987, 355k — 27, 368, 286),

~ e3 3p?
B=__
2.2 + 8,932

s [_3E
319
g=1In [7 (%)4 (k= 2)\/—_ka9} ,

~ 1 588k
Uy=-In|————|,
2
2

(63, 162 — 32, 267k),

Z) =

319
134 [7 [2\?
i1 Vai\29) -

This solution also gives AdS; x H? geometry. To show
that this leads to real solutions, we explicitly give one
example of the possible solutions

Lags, = (118)

Zi=x =0, e =5435 p>=—11.56,
U =V =-0.14,
U, =0.55, Z=-0.62, B=10.66,

B = —13.77 4 0.35e3,

g = 1.06. (119)

4.3 Uplift formulas

We end this section by giving the uplift formulas for embed-
ding the previously found Ad S, x X5 solutions in 11 dimen-
sions. We first identify the vector and tensor fields in the
N = 4 gauged supergravity and those obtained from the
dimensional reduction of 11-dimensional supergravity on a
tri-sasakian manifold

A = V24, & =
a =—-A",
& =24, a)> =v2B", =B"

With this identification and the ansatz for the scalars and
vector fields, the 11-dimensional metric and the four-form

—V2A%t, c? = AT,

(120)
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field are given by
dsfl — e*%(“ﬁ‘“fh“})[—ezfdtz 4 dr?

+e?8(d0% + F(0)*dg™)]
+e%(2(~/1+02—‘7)ds2(BQK)+e_%(l71—02+‘~/)

X[(nl)z + (7)2)2] +e§(\7—2l71—202)

x (' +V2A0d1 — V2p F'(0)d9)’ (121

and

G, = _[6kef(4l~/|+202+\7)+f+2g . ﬁBA?’ _ «/§B/A,9]
x F(0)dt Adr AdO Adg
+B'FO)dr AdO Adp A0 +dZy A (' AT+ 1P
ADIV2AY + x A)dr Adt + v2(e9 + xp°
—2B)F(0)d0 A dg] A n' A n?
X[(AY + V22, A7dr
Adt + (p* +v2p°Zy + 2B)F()d6 A dg] A J3
+2(x +2ZDOn' AP AT+ (dZy A TP +dy
AP AP A (7 = N2p° F(6)dg)
+2[(A} 4+ V2.AY)dr
—(V2e9 4 p*)F(0)dp +4(2Z1 4 Z2)vol(Bgk)
+(X + Z2) (P + V2A)dt — V2P  F(0)dg)]

AP AT =2 AT, (122)

5 Conclusions

In this paper, we have found a number of AdS; x ¥ solutions
in N = 4 gauged supergravity with SO (3) x (T?, ) gauge
group. The solutions can be uplifted to M-theory since the
N = 4 gauged supergravity is a consistent truncation of 11-
dimensional supergravity on a tri-sasakian manifold. These
AdS, x ¥, gemetries are expected to arise from the near
horizon limit of certain dyonic BPS black holes which can
be identified as holographic RG flows from twisted compact-
ifications of the dual N = 1, 3 SCFTs in the UV to supercon-
formal quantum mechanics corresponding to the AdS, geom-
etry in the IR. We have found that most of the solutions have
hyperbolic horizons, but some of them have spherical hori-
zons depending on the values of the four-form flux param-
eter. These solutions provide examples of AdS, geometries
from M-theory compactified on a tri-sasakian manifold such
as N°19 and are hopefully useful in the holographic study
of the N = 1,3 Chern-Simons—Matter theories in three
dimensions. They should also be useful in the study of black
hole entropy along the line of recent results in [37-39]. In
this aspect, the near horizon solutions given here are enough
although we have not constructed the full black hole solu-
tions, numerically. It would be interesting to compute the

topologically twisted index in the dual N = 1, 3 SCFTs and
compare with the black hole entropy computed from the area
of the horizon A ~ L222.

The solutions found here might constitute only a small
number of all possible solutions due to the complexity of
the resulting BPS equations. It could be interesting to look
for more solutions or even to identify all possible black hole
solutions to this N = 4 gauged supergravity similar to the
analysis in N = 2 gauged supergravity. For the case of N1°
manifold, there exists an invariant two-form in addition to
the universal forms on a generic tri-sasakian manifold. This
leads to an additional vector multiplet, called a Betti mul-
tiplet, in N = 4 gauged supergravity. This vector multiplet
corresponds to a baryonic symmetry in the dual SCFTs. Find-
ing a reduction that includes the Betti multiplet and SU (3)
non-singlet fields would be very useful in order to find more
interesting black hole and other holographic solutions. We
leave all these issues for future work.
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Appendix A: Useful formulas
In this appendix, we collect some convention on t Hooft

matrices and details on Yang-Mills equations and compli-
cated BPS equations in the N = 1 case.

A.1: ‘t Hooft matrices

In converting SO(6) vector indices m, n to chiral spinor
indices i, j, we use the following ‘t Hooft matrices:

0100
i | -1000
l.[_
“T=looo1l
| 0 0-10]
00107
y 000-1
o _
2= 1000 |’
L 0100 |
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T 0 001
0 010
0 —100|"

| -1 000

C0i0 07
—i00 0
000—i|

[ 00i 0 |

C0 007

000

—i 000 |

0 —i00

000 i

00—i0

0i00

| —i0 00

ij
G3

ij
G,

ij
G5

GY = (123)

A.2: Field equations of gauge fields

In this section, we present the full equations of motion for
the gauge fields AM%. Equation (15) gives

—+DH?™ = e UV [47,(0' +2257})
(/. gzlzzé] dr
871 4QUFV (2 A3 _ /2 ASF _ 32k A%,
(124)
«DHO™ = 33/2ke QU@ 42257] — 22, Z})dr
F12ke™4CUAD (35 A9 1 A% _ /2437), (125)
¥DHO™ = 2ke QU (®' 2757 — 27, Z})dr

+4e74(2U+V1)(3kA9+ + A6+ _ \/§A37) (126)
while Eq. (16) leads to
—«DH3 = 274CUVI(@' 422571 — 22, Z%)dr
+4eHUED 3 A% 4 A — V2437, (127)

*DH6+ — 4\/§k6_4(2U+V1)
[*VT2ViZl 42727 — 7,(®' +2232Z))]dr
—16Z1e4PUHVD 3k A% + A% — V24%7), (128)
«DHt =0 (129)

For equations obtained from (17), it is more convenient to
express them in the following combinations:

H9— _ 6‘_4U+2V1_V2(Z% *H9+ + *H6+

+V2Zy x H3T) — xHOT,
Z%Hg_ +H6_ + \/EZ2H3_ — e4U+2V1+3V2 *H9+

(130)

— X (Z3HY + HOT + V22,13, (131)
V2ZoH ™ + H3 = —x (V221 + H3)
—N V2 (27, % HOT + xH3H). (132)

@ Springer

A.3: BPS equations for the N = 1 case

In this section, we collect all the relevant BPS equations in
the N = 1 case. These are given by

eI 4iemUiming]

_ o020 Y Uit _ 20 4 9,7 (02 4 Uty 4 3
—4i 71 4 eV —iZy) —2ix(e? + eV —2i7) —iZy)
25125 = 2i(e” + U1 — D), (133)

efiA 0& + ierzfiAZ/z

_ %e—Zg—[/z—Z[/]—%[zeZ(g—O—Uz)+ﬁi6962(01+02)+6k62g

—2ie3)(620‘ + ﬁipgxez(me) + 3\f2ikp9)(e2[7‘
—8i22823+0’ —2ie3 22620] — 4y Zre*8 — 2ip3xZ2e20‘
—871Z2e% 4+ 2756% — ﬁiegZ%ew‘ —V2ip°y Z%eﬂ71
—4i B2V [0 _ 3k 4 Z,(2x — Zp — 2ie")] — 8iye2etUn
—4ie2+V (27, + 7o) + 4V2BU eV 1 i(x + Z2)]
+eU1HV (867 + U1 (V27 (202 + 3k) — 23)]
~8xZ1e% — 2,20V @p* + V2 o)),

AV — e VEiNy

1

. -y . _ - -
Ee—Zg—U2—2U1 -5 [262(g+U2) _ 862g+Uz+U1 + 2ie3eU2+2U]

+\/§€962(01+02) — 41')(62‘“02 — 8ixezg+01 - 2e3xe20‘
$2ipd 02200 /394 201400 |3 /3kp9 5 o200
468 2x Zy + i Z2e"2) — 225Ut 46?8 + e3eUt) — 2736%¢
+2\ﬁi€9226’02+201 +4xZe% —2p3x ZzeZ[/‘ — 6ke*8
+2«ﬁip9x22e02+201 + 871 Z20%8 — ﬁegZ%eZUI
1428207y + x —i(@%2 — V)] — 4BeU1 (L20HV _ 3
4BV 2iZ5(e% + V) — 73 + 2x(Zs — ie"?)]
+i620‘+‘7[6«/§p9 —2e34+~2p° —2p37Z5 — «/EpQZ%
+2ie (p* +V2p°Zo)] + 461V [ 4122, + Z0)]
V2p®x 230

(134)

+862g+U1+V _ 8l-ZleZg+Uz _

(135)

where

; Wi+ 24
iA
= — 136
Wi + Z1| (136)

These equations need to be solved together with the following
equations:

f=Rele "W — 211,

g=Wi+2Z, A =eImle ™V - 2] (137)

and the two-form equations (75) and (76).
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Abstract We study holographic RG flow solutions within
four-dimensional N = 4 gauged supergravity obtained from
type ITA and IIB string theories compactified on 7°/Z, x Z,
orbifold with gauge, geometric and non-geometric fluxes.
In type IIB non-geometric compactifications, the resulting
gauged supergravity has SO (3) x I SO (3) gauge group and
admits an N = 4 AdS4 vacuum dual to an N = 4 supercon-
formal field theory (SCFT) in three dimensions. We study
various supersymmetric RG flows from this N = 4 SCFT to
N = 4 and N = 1 non-conformal field theories in the IR.
The flows preserving N = 4 supersymmetry are driven by
relevant operators of dimensions A = 1, 2 or alternatively
by one of these relevant operators, dual to the dilaton, and
irrelevant operators of dimensions A = 4 while the N = 1
flows in addition involve marginal deformations. Most of the
flows can be obtained analytically. We also give examples
of supersymmetric Janus solutions preserving N = 4 and
N = 1 supersymmetries. These solutions should describe
two-dimensional conformal defects within the dual N = 4
SCFT. Geometric compactifications of type IIA theory give
rise to N = 4 gauged supergravity with /S0 (3) x U(1)°
gauge group. In this case, the resulting gauged supergravity
admits an N = 1 AdS4 vacuum. We also numerically study
possible N = 1 RG flows to non-conformal field theories in
this case.

1 Introduction

Along the line of research within the context of the AdS/CFT
correspondence, the study of holographic RG flows is of
particular interest since the original proposal in [1]. There
is much work exploring this type of holographic solutions
in various space-time dimensions with different numbers of

#e-mail: parinya.ka@hotmail.com

b e-mail: keima.tham @ gmail.com

supersymmetry. In this paper, we will particularly consider
holographic RG flows within three-dimensional superconfor-
mal field theories (SCFTs) using gauged supergravity in four
dimensions. This might give some insight to the dynamics
of strongly coupled SCFTs in three dimensions and related
brane configurations in string/M-theory.

Most of the previously studied holographic RG flows have
been found within the maximal N = 8 gauged supergravities
[2-9]. Many of these solutions describe various deformations
of the N = 8 SCFTs arising from M2-brane world-volume
proposed in [10,11]. Similar study in the case of lower num-
ber of supersymmetry is, however, less known. For example,
a number of RG flow solutions have appeared only recently
in N = 3 and N = 4 gauged supergravities [12—-14]. In
this work, we will give more solutions of this type from the
half-maximal N = 4 gauged supergravity.

N = 4 supergravity allows for coupling to an arbi-
trary number of vector multiplets. With n vector multi-
plets, there are 6n 4 2 scalars, 2 from gravity and 6n
from vector multiplets, parametrized by SL(2, R)/SO(2) x
SO(6,n)/SO(6) x SO(n) coset. The N = 4 gauged super-
gravity has been constructed for along time in [15, 16]. Gaug-
ings constructed in [15] are called electric gaugings since
only electric n 4+ 6 vector fields appearing in the ungauged
Lagrangian gauge a subgroup of SO (6, n). These vector
fields transform as a fundamental representation of SO (6, n).
The scalar potential of the resulting gauged supergravity con-
structed in this way does not possess any AdS critical points
[17,18]. This is not the case for the construction in [16] in
which non-trivial SL(2, R) phases have been included.

The most general gauging in which both electric vector
fields and their magnetic dual can participate has been con-
structed in [19] using the embedding tensor formalism. A
general gauge group is a subgroup of the full duality group
SL(2,R) x SO(6, n) with the vector fields and their mag-
netic dual transforming as a doublet of SL(2, R). In this

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5022-3&domain=pdf
mailto:parinya.ka@hotmail.com
mailto:keima.tham@gmail.com

455 Page2of 18

Eur. Phys. J. C (2017) 77:455

work, we will consider N = 4 gauged supergravity obtained
from compactifications of type II string theories with various
fluxes given in [20]; for other work along this line, see for
example [21-23].

In [20], the scalar potential arising from flux compactifi-
cations of type IIA and IIB theories on 7°/Z, x Z, within
a truncation to SO (3) singlet scalars has been considered,
and some AdSy critical points together with their properties
have been given. For type IIB non-geometric compactifica-
tion, the vacuum structure is very rich even with only a few
number of fluxes turned on. Among these vacua, there exists
an N = 4 AdSy critical point dual to an N = 4 SCFT with
SO 3) x SO(3) global symmetry. In addition, the full clas-
sification of vacua from type IIA geometric compactification
has also been given. In this case, there exist a number of
stable non-supersymmetric AdSy critical points as well as an
N = 1 AdS4 vacuum; see [24] foran N = | supersymmetric
AdS4 vacuum in massive type IIA theory.

We are particularly interestedin N =4 and N = 1 AdS4
critical points from these two compactifications. They cor-
respond to N = 4 and N = 1 SCFTs in three dimensions
with global symmetries SO (3) x SO (3) and SO (3), respec-
tively. We will look for possible supersymmetric deforma-
tions within these two SCFTs in the form of RG flows to
non-conformal phases preserving some amount of supersym-
metry. These deformations are described by supersymmetric
domain walls in the N = 4 gauged supergravity. In the case
of N = 1 SCFT arising from massive type IIA theory, non-
supersymmetric RG flows to conformal fixed points in the
IR have been recently found in [25].

For type IIB compactification, we will also consider super-
symmetric Janus solutions describing (1 + 1)-dimensional
conformal interfaces in the N = 4 SCFT. This type of
solutions breaks conformal symmetry in three dimensions
but preserves a smaller conformal symmetry on the lower-
dimensional interface. Similar to the RG flow solutions, there
are only a few examples of these solutions within the context
of four-dimensional gauged supergravities [14,26-28], see
also [29-31] for examples of higher-dimensional solutions.
They also play an important role in the holographic study
of interface and boundary CFTs [32,33]. We will give more
examples of these solutions in N = 4 gauged supergravity
obtained from non-geometric flux compactification.

The paper is organized as follows. In Sect. 2, we review
relevant formulas and introduce some notations for N = 4
gauged supergravity in the embedding tensor formalism. In
Sects. 3 and 4, we give a detailed analysis of supersymmetric
RG flow and Janus solutions obtained from non-geometric
type IIB compactification. Similar study of RG flows from
geometric type IIA compactification will be given in Sect.
5. We finally give some conclusions and comments on the
results in Sect. 6. We have also included an Appendix con-
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taining more details on the conventions and the explicit form
of complicated equations.

2 N = 4 gauged supergravity coupled to six vector
multiplets

We first review relevant information and necessary formulas
of four-dimensional N = 4 gauged supergravity which is
the framework we use to find supersymmetric solutions. We
mainly follow the most general gauging of N = 4 supergrav-
ity in the embedding tensor formalism given in [19] in which
more details on the construction can be found. N = 4 super-
symmetry allows for coupling the supergravity multiplet to
an arbitrary number of vector multiplets. We will begin with
a general formulation of N = 4 gauged supergravity with n
vector multiplets and later specify to the case of six vector
multiplets.

In half-maximal N = 4 supergravity, the supergravity
multiplet consists of the graviton e}, four gravitini v/’ , six
vectors A/, four spin—% fields x’ and one complex scalar t
consisting of the dilaton ¢ and the axion yx. The complex
scalar can be parametrized by SL(2,R)/SO(2) coset. The
supergravity multiplet can couple to an arbitrary number n
of vector multiplets, and each vector multiplet contains a
vector field A, four gaugini A’ and six scalars ¢™. Similar
to the dilaton and the axion in the gravity multiplet, the 6n
scalar fields in these vector multiplets can be parametrized
by SO (6,n)/S0O(6) x SO (n) coset.

We will use the following convention on various indices
appearing throughout the paper. Space-time and tangent
space indices are denoted, respectively, by w,v,... =
0,1,2,3and ft,0,...=0,1,2,3. The SO(6) ~ SU(4) R-
symmetry indices will be described by m,n =1, ..., 6 for
the S O(6) vector representation and i, j = 1, 2, 3, 4 for the
SO (6) spinor or SU (4) fundamental representation. The n
vector multiplets will be labeled by indicesa, b =1, ..., n.
All fields in the vector multiplets then carry an additional
index in the form of (A%, A!¢, $"¢). Fermionic fields and
the supersymmetry parameters transform in the fundamental
representation of SU(4)g ~ SO(6)g R-symmetry and are
subject to the chirality projections

ysUh =V, vsx' =—x' ysh=Al (1)

On the other hand, for the fields transforming in the anti-
fundamental representation of SU (4) g, we have
Yshi = —A. (2)

VsWui = —VYui, VsXi = Xi»

Gaugings of the matter-coupled N = 4 supergravity
can be efficiently described by using the embedding ten-
sor. This tensor encodes all the information as regards the
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embedding of any gauge group Gy in the global or dual-
ity symmetry group G = SL(2,R) x §O(6,n) in a G
covariant way. According to the analysis in [19], a gen-
eral gauging can be described by two components of the
embedding tensor E“M and fyynp With @ = (+, —) and
M,N = (m,a) = 1,...,n+ 6 denoting fundamental rep-
resentations of SL(2,R) and SO (6, n), respectively. The
electric vector fields ATM = (A}, Aj)), appearing in the
ungauged Lagrangian, and their magnetic dual A= form
a doublet under SL(2, R) denoted by A“M. A particular
electric-magnetic frame in which the SO (2) x SO (6, n) sym-
metry, with SO (2) C SL(2, R), is manifest in the action can
always be chosen. In this frame, A*" and A~ have charges
+1 and —1 under this SO(2).

In general, a subgroup of both SL(2, R) and SO (6, n) can
be gauged, and the magnetic vector fields can also participate
in the gauging. Furthermore, it has been shown in [17], see
also [18], that purely electric gaugings do not admit AdSy
vacua unless an SL(2, R) phase is included [16]. The latter
is, however, incorporated in the magnetic component f_ sy p
[19]. Accordingly, we will consider only gaugings involving
both electric and magnetic vector fields in order to obtain
AdS4 vacua. We will see that gauged supergravities obtained
from type II compactifications are precisely of this form.

The gauge covariant derivative can be written as

Dy =V, —gAMO, N inp + gAY PV E ey (3)

where V,, is the usual space-time covariant derivative includ-
ing the spin connection. fyn and t,g are SO(6,n) and
SL(2, R) generators which can be chosen as

) p? =288 mmp. (tap),’ = 260,¢p), )

with €?# = —eP* and et~ = 1. nyn = diag(—1, —1, —1,
—1,—-1,—-1,1,...,1) is the SO (6, n) invariant tensor, and
g is the gauge coupling constant that can be absorbed in the
embedding tensor ©.

The embedding tensor component ®, sy p can be written
in terms of £€*M and faM NP cOmponents as

OauMmNe = faMNP — Ea[NTPIM- (5)

To define a consistent gauging, the embedding tensor has to
satisfy a quadratic constraint. This ensures that the gauge
generators

Xomt = Oaunpt™F — 014 (6)

form a closed algebra.

In this work, we will consider solutions with only the met-
ric and scalars non-vanishing. In addition, we will consider
gaugings with only f,ynp non-vanishing. Therefore, we

will set all vector fields and &, to zero from now on. In
particular, this simplifies the full quadratic constraint to

fartun Fapol =0, € fumnrfypy ™ =0. (7)

For electric gaugings, these relations reduce to the usual
Jacobi identity for fyyyp = f+mnp as shown in [15,16].

The scalar coset manifold SL(2, R)/SO((2) x SO(6,n)/
SO(6) x SO(n) can be described by the coset representa-
tive (Vg, VMA) with A = (m, a). The first factor can be
parametrized by

1 T
s (1) ®

or equivalently by a symmetric 2 x 2 matrix

7|2 Rer)

Vo =

(C))

1
Maﬁ = RG(VQVE) = — (Re‘( 1

Imt

Note also that Im(VaV;) = €qp. The complex scalar T can
also be written in terms of the dilaton ¢ and the axion yx as

T=x+ ie?. (10)

For the SO (6,n)/S0O(6) x SO(n) factor, we introduce
another coset representative VMA transforming by left and
right multiplications under SO (6, n) and SO (6) x SO(n),
respectively. From the splitting of the index A = (m, a), we
can write the coset representative as VMA =W, V.
Being an element of SO (6, n), the matrix VMA satisfies the
relation

My = V"V 4+ Vy V. (11)
As in the SL(2,R)/SO(2) factor, we can parametrize the

SO(6,n)/SO(6) x SO(n) coset in terms of a symmetric
matrix

Myn =V, " V™ +V,Vy o (12)

We are now in a position to give the bosonic Lagrangian
with the vector fields and auxiliary two-form fields vanishing

11
e 'L=-R+—a,Myno"MMN —

SR+1¢ Tkt =V

(13)

4(Imt)2

where e is the vielbein determinant. The scalar potential can
be written in terms of scalar coset representatives and the
embedding tensor as

2
V= f_6 [faMNPfﬁQRSMaﬂ
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1 2
% |:§MMQMNRMPS 4 <§nMQ _ MMQ) nNRnPS]

4
_§faMNPfBQRS€aﬂMMNPQRS:|

where MMN is the inverse of My, and MMNPORS jq
defined by

MMNPQRS = EmnpqrsVvaNan pVQqVR rVS y (15)
with indices raised by nMV .

Before giving an explicit parametrization of the scalar
coset, we give fermionic supersymmetry transformations of
N = 4 gauged supergravity which play an important role in
subsequent analyses. These are given by

i i 2 i
8y, =2Dye — ggA1 Yu€js (16)
. o4
Sx' = ie"PV,D,Vgyte — 5igA’z-’e,», (17)
sl =20V, DV, T yte; +2igAy, €l (18)

The fermion shift matrices, appearing in fermionic mass-like
terms in the gauged Lagrangian, are defined by

i i il NP
A =PV VMV YV

ij i jl NP
AY = PV VMV fay

, " P
A’ = €TV VM VNV oy (19)
where VMij is defined in terms of the 't Hooft symbols Gi,{

m
and V,," as

S | g
v, = EVM’"G% (20)
and similarly for its inverse

M LM N
W = =3V GR) 2D

G, convert an index m in vector representation of SO (6) to
an anti-symmetric pair of indices [ij] in the SU (4) funda-
mental representation. They satisfy the relations

g 1
Gmij = —(G)* = —Eéi,/leﬁf- (22)
The explicit form of these matrices can be found in the
appendix.

We finally note the expression for the scalar potential writ-
ten in terms of A and A, tensors as

1 ij 1 ij Ui
V== A7Auj + A3 Avij + 5 A5, Ay -

3 9 2 @3)

@ Springer

(14)

It follows that unbroken supersymmetry corresponds to an
eigenvalue of AY, «, satisfying Vo = —% where Vj is the
value of the scalar potential at the vacuum, the cosmological
constant.

We now consider the case of n = 6 vector multiplets. Pos-
sible gauge groups are accordingly subgroups of SO (6, 6)
for &, = 0. Following [20], we restrict ourselves to
solutions preserving at least SO(3) subgroup of the full
gauge group. The residual SO(3) symmetry is embedded
in SO (6, 6) as a diagonal subgroup of SO(3) x SO(3) x
SO 3) x SO(3) with the four factors of SO (3) being sub-
groupsof SO (6) x SO (6) C SO(6, 6). The 36 scalars within
S0O(6,6)/S0O(6) x SO(6) coset transform as (6, 6) under
SO(6) x SO(6) compact subgroup. The above embedding
of SO3) x SO(3) in SO (6) is given by

6~ 3,1+ 1,3). (24)
This implies that the 36 scalars transform as
6,6) >4x(1+3+5) (25)

under the unbroken SO (3) ~ [SO(3) x SO3) x SO(3) x
SO (3)ldiag- We see that there are four SO (3) singlets. We
will denote these scalars by (¢1, ¢2, X1, x2) as in [20]. In
addition, we will also use the explicit parametrization given
in [20]. This gives the coset representative

T
A e 0
VM = (BeT e,] ) & H3 (26)
where the two 2 x 2 matrices e and B are defined by
_ e (1 22 _( 0 xi
e=e2 0o ) B = 0 ) 27

Explicitly, the SO (6, 6) /SO (6) x S O (6) coset representative
consisting of all SO (3) singlet scalars is given by

VMA
e%(<ﬂ1+<ﬂ2) 0 0 0
e%(wl-ﬂpz)xz e%(qﬂl—gﬂz) 0 0
1102 3y @3 @1=02) 5y =3 (@10 o3 @2=0) 5,
ezt 5, 0 0 o2 @291
Qls. (28)

It should also be noted that there are two scalars which are
singlet under SO(3) x SO3) C [SOB) x SO3)ldiag x
[SO@B) x SO(3)ldiag as can be seen by taking the tensor
product of the representation 6 in (24) giving rise to two sin-
glets (1, 1) of SO (3) x SO(3). These two singlets correspond
to ¢1 and @».
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Similarly, the SL(2,R)/SO(2) coset representative will
be parametrized by

v, = %2 (Xg - ie_wg) . (29)

1

With all these and the definition ¢! = (0g. 1, 92, Xg» X1, X2)>
the scalar kinetic terms can be found to be

1 .
Liin = —5 Kijou¢' 9" ¢’

1
= _Z(au‘ﬂgaﬂ‘ﬂg

+30,010" @1 + 38,020 02 + €228, x40" X

+3¢%10,, 10" X1 + 3¢90, 20" X2) (30)

where we have defined the scalar metric K;;, which will play
arole in writing the BPS equations.

The four SO(3) singlet scalars in SO (6, 6)/S0O(6) x
S O (6) correspond to non-compact generators of SO (2, 2) C
SO (6, 6) that commute with the SO (3) symmetry. It is con-
venient to split indices M = (AI) for A = 1,2, 3,4 and
I =1, 2, 3. This implies that the SO (6, 6) fundamental rep-
resentation decomposes as (4, 3) under SO (2, 2) x SO(3).
In terms of (A7) indices, the embedding tensor can be written
as

famNP = faarBick = AaABCEIIK (31)
with Agapc = AgaBc). In particular, the quadratic con-
straints read
€ AgapSAgpEC =0, A(aA[BCAﬂ)D]EC =0. (32)
The SO(6, 6) fundamental indices M, N can also be
decomposed into (m,m), m,m = 1,2,...,6. In connec-
tion with the internal manifold 7° /Zo X Zj, the index m is
used to label the 7° coordinates and splitinto (a, i) such that
a=1,3,5and i_: 2,4, 6. Similar decomposition is also in
use form = (a, i). All togethe_r, indices A, B can be written
asA=(1,2,3,4) =(a,i,a,i). Indices I, J =1, 2, 3 label
the three 72’s inside 7¢ ~ T2 x T2 x T2

The SO(6, 6) invariant tensor 1y and its inverse are
chosen to be

01
_ _MN _ 6

This leads to some extra projections on the negative and pos-
itive eigenvalues of sy . For example, in order to compute
M N pors in the scalar potential defined by equation (15),
we need to project the second index of Vy 4 by using the
projection matrix

(33)

1 (I T
R_ﬁ<]16 116)' (34)

Finally, we will also set the gauge coupling g = % asin [20].

3 RG flows from type IIB non-geometric
compactification

We begin with a non-geometric compactification of type IIB
theory on T’ 6 /7> x Zy. This involves the fluxes of NS and RR
three-form fields (H3, F3) and non-geometric (P, Q) fluxes.
This compactification admits a locally geometric description
although it is non-geometric in nature.

From the result of [20], the effective N = 4 gauged super-
gravity theory is not unique. In this paper, we will only con-
sider the gauged supergravity admitting the maximally super-
symmetric N = 4 AdS4 vacuum. In this case, all the gauge
and non-geometric fluxes lead to the following components
of the embedding tensor:

e =A-aaa=—h flape=AM333 =2,

[ =02 =—X fige=Ar33=47 (35)

for a constant A. The first and second lines correspond
to (H3, F3) and (P, Q) fluxes, respectively. As shown in
[20], the gauge group arising from this embedding tensor is
ISO(B) x ISO(3) ~ [SOB) x T3] x [SO(3) x T?3]. This
gauge group is embedded in SO (6, 6) via the SO(3, 3) x
SO(3, 3) subgroup.

Using this embedding tensor and the explicit form of the
scalar coset representative given in the previous section, we
find the scalar potential

:i O1=302—0g 3 21,201 _ 3,292 ©1+202+¢,
\% 326 A e 3e“%? + 6e
— 1863921 0s _ 3,402 1+20,

_ 2e2<ﬂ1+3<ﬂ2+<ﬂg(1 + 3X12) + 362(</>1+<P2)(X1 _ X2)2
— 1279210 X22

3¢5 + 2 1 (60 = 330)°

+ 362<P1+4¢2X22(X2 _ 2)(1)2 _ 332(¢2+¢g))(§

+ 6e<ﬂ1+4<ﬂ2+<ﬂg(1 + X22) + 62((P1+(Pg)X§

+ 37RO () — o) g

+ 3922 x 2 (1 + xaxg)’

+ 362(§01+2<p2+<pg)(xl — 21 X2Xg + X22Xg)2

+ 62(901+3¢72+<ﬂg)[] + X23Xg —3x1x2(—1+ XZXg)]2]~
(36)
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Table 1 Scalar masses at the

- Scalar fields m2L? A
N = 4 supersymmetric AdSs
critical point with Do Xg ) 1,2
SO@3) x SO(3) symmetry and 4 4
the corresponding dimensions of ~ #1- #2
the dual operators X1, X2 0 3

This potential admits a trivial critical point at which all scalars
vanish. The cosmological constant is given by

3
Vo= -2 (37)

At this critical point, we find the scalar masses as in Table 1.
In the table, we also give the corresponding dimensions of the
dual operators. The AdS4 radius is given by L = %5 Note
that we have used different convention for scalar masses from
that used in [20]. The masses given in Table 1 are obtained
by multiplying the masses given in [20] by 3.

This AdSy critical point preserves N = 4 supersymme-
try as can be checked from the Alll tensor. It should also
be emphasized here that this critical point has SO(3) x
SO (3) symmetry which is the maximal compact subgroup
of ISO(3) x I1SO(3) gauge group.

To set up the BPS equations for finding supersymmetric
RG flow solutions, we first give the metric ansatz

ds? = 240 dx?, + dr? (38)

where dxf , is the flat Minkowski metric in three dimensions.

We will use the Majorana representation for gamma matri-
ces with all y* real and ys purely imaginary. This choice
implies that ¢; is a complex conjugate of €'. All scalar fields
will be functions of only the radial coordinate r. To solve the
BPS conditions coming from setting § ' = 0 and 8)»2 =0,
we need the following projection:

yret = el hel. (39)
From the §v,; = 0 conditions for u = 0, 1, 2, we find

ot = W (40)

A =+£W,
w

where W = |W)|, and’ denotes the r-derivative. These equa-
tions are obtained by solving real and imaginary parts of
3yrui = O separately; see for more details [12,27]. The super-
potential VV is defined by

W= %a (41)

where « is the eigenvalue of Ailj corresponding to the unbro-
ken supersymmetry. We will choose a definite sign for the A’

@ Springer

equation and e'” such that the N = 4 critical point identified
with the N = 4 SCFT in the UV corresponds to » — 00.
For all scalars non-vanishing, the N = 4 supersymmetry
is broken to N = 1 corresponding to the Killing spinor €.
The superpotential for this unbroken N = 1 supersymmetry

is given by

1 1
_ 5 (@1=302—@g) [ 021,92+, Y1+
= ez 8/ [e¥?[e s(—e A
42

— 3G + e x1) (i + e x2))
— i + €7 x2)> (i + e o)
430G 4 e 1) (i + 2 x2)2 (i + e x )] (42)

from which we find

1 1
W =——xe2 #1732 [[(—3e92 (—e?! + 2¢%2
82

+ 2208y, — #1302 X23

4 e%s (6901 _ 3e<PZ)Xg + 3e2<p2+</)g

x (—e?! + €WZ)X22Xg + 3”12y (—1
— 2T 4 62(/)2)(22 4 2eP2teg XZXg))Z
+ [ (=1 + 3e*2 x3)

— Ty (<34 €22 xT) X

4 e G+ 3210 e<ﬂ1+2<ﬂ2+<ﬂg

_ 3e2<ﬂ2 X22 — Ge¥2r s X2Xg
+ 3e?! X1 (_ewz (2 + e<ﬂ2+<ﬂg)X2

— eV xg + T2 )P, (43)
The scalar potential can be written in terms of W as

i OWOW: sy

V =-2K _ W=, (44)
Api dpJ

and, as usual, the BPS equations from §x’ = 0 and §A], = 0
can be written as

y L OW
¢ :ZK]W' (45)

K7 is the inverse of the scalar kinetic metric defined in (30).
The explicit form of these equations is rather complicated
and will not be given here. However, they can be found in
the appendix.

Itis also straightforward to check that these BPS equations
solve the second order field equations. Furthermore, there
exist a number of interesting subtruncations keeping some
subsets of these SO (3) singlets. We will firstly discuss these
truncations and consider the full SO (3) singlet sector at the
end of this section.
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3.1 RG flows with N = 4 supersymmetry

We begin with RG flow solutions preserving N = 4 super-
symmetry to N = 4 non-conformal field theories in the IR.
The analysis of BPS conditions §v,; = 0, § x' = 0 and
8AL = 0 shows that there are two possibilities in order to
preserve N = 4 supersymmetry. The first one is to truncate
out @12 and x1,2. The second possibility is to keep only the
three dilatons ¢, and ¢ > by setting x; = x1,2 = 0.

3.1.1 N = 4 RG flows by relevant deformations

From Table 1, we see that (¢g, xg) correspond to relevant
deformations by operators of dimensions 1 or 2. The BPS
equations admit a consistent truncation to these two scalars.
By setting 912 = x1,2 = 0, we obtain a set of simple BPS
equations

g Mt @nteng -1 (46)
¢ 2V2 \/(1 +e‘/’8)2+e2‘ﬂgx(§,

vg

A2 X
/ 8
X =— , 47)
¢ V2 \/(1 + e¥6)2 + €5 2
g
e 2
A= \/(1 +e¥6)2 4 e2uy 2. (48)
42 Xg

Since (@q, xg) are scalars in SL(2,R)/SO(2), they are
SO (6, 6) singlets and hence SO (3) x SO(3) invariant. All
solutions to these equations then preserve the full SO (3) x
SO (3) symmetry. Moreover, equations SAZ = 0 are identi-
cally satisfied, and it can be checked that N = 4 supersym-
metry is unbroken since equations 8 x’ = 0 and 8 Yu =0
hold for all €’ satisfying the y; projector (39). We should
clarify here the convention on the number of supersymme-
try. In four dimensions, the y; projector reduce the number of
supercharges from 16 to 8. The latter corresponds to N = 4
supersymmetry in three dimensions. On the other hand, the
AdS4 vacuum preserves all 16 supercharges corresponding
to N = 4 superconformal symmetry in three dimensions
containing 8 + 8 = 16 supercharges.

We begin with an even simpler solution with x, = 0
which, from the above equations, is clearly a consistent trun-
cation. In this case, we end up with the BPS equations

L= e T (et — 1), (49)
YT o
A g
A= ——e 2 (1 +e%%). 50
o ( ) (50)
The solution to these equations is easily found to be
otC Z+c
¢y = In[e2v2 1] — In[e2v2 "~ 4+ 1], (629

+C 1 rA
232

with C being an integration constant. The additive integration
constant for A has been neglected since it can be absorbed
by scaling dx12,2 coordinates. In addition, the constant C can
also be removed by shifting the r coordinate.

At large r, we find, as expected for dual operators of
dimensions A =1, 2,

A =lnle Zf (52)

AL

Qo ~e Wi~ L (53)

2./2¢C
A

The solution is singular as r — —
Near this singularity, we find

24/2C
Yg~ A~ ln|:r+L:|

since ¢, — —00.

(54)

The scalar potential is bounded above with V. — —oo0.
Therefore, the singularity of this solution is physical by the
criterion given in [34]. The solution then describes an RG
flow from the dual N = 4 SCFT to an N = 4 non-conformal
field theory with unbroken SO (3) x SO (3) symmetry. The
metric in the IR is given by

= (v +2v20)dx}, + dr? (55)
where we have absorbed some constants to dx] 2 coordinates.

We then consider possible flows solution with Xg # 0.By
introducing a new variable p via

d
& _ Xs (56)
dr  /T—Cyxg+/1— xg2C+ xg)
we find the following solution to Eqgs. (46)—(48):
1 2
Yy = —Eln[l —2Cxg — Xxgl, (57)

—1In x,

1
+3In[1=Cxe+1-20 - 23] (58)

3
PA[l — xg2C + xo)]*

1
+7 In[1 —2Cx, — x4

=45 (C+xs —V1+C?)
+Cz+v1+c(c+xg)
1+ C?
1 35 JI+C2-C
)oFy [, 2,2 Xe TV IE (59)
LYY o firee

where 5 F is the hypergeometric function.
The solution interpolates between the N = 4 AdS4 vac-
uum as 7 — oo and a singular geometry at a finite value of r.
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There are two possibilities for the IR singularities. The first
one is given by

V2ra(l 4+ x3) — 4x0C
Xg ™~ X0, @g~ —21In ,

8x0
X0 2
A~ —22— In[v2rn(1 + x2) — 4x0C] (60)
1T+ xo0 0

where ¢ is a constant. In this case, we have ¢, — 00 and
Xg —> constant as V2ar(1 + X&) — 4xoC. It should be
noted here that the constant C in these equations is not the
same as in the full solution given in (57)—(59).

Another possibility is given by

C

4C + N 20r
A ~ In(v/2Ar 4+ 40). 61)

gg ~ 2In(V2hr +4C), xg ~

In this case, as ﬁrk — —4C, we have g, — —00 and
Xg — Foo depending on the sign of the constant C. Both of
these singularities lead to V — —o0, so they are physical.

3.1.2 N =4 RG flows by relevant and irrelevant
deformations

We now consider RG flows with N = 4 supersymmetry
with xg = x1,2 = 0. Recall that ¢; and ¢; are SO(3) x
SO (3) singlets, we still have solutions with SO (3) x SO (3)
unbroken along the flows. It should also be noted that the
truncation xy> = 0 is consistent only for x, = 0. This
implies that N = 4 supersymmetry does not allow turning
on the operators dual to x, and @12 simultaneously. It would
be interesting to see the implication of this in the dual N = 4
SCFT.
In this case, the BPS equations reduce to

Ao

I 2 (@1=302—9g)
¢, = —e2 4
& 42
X (3e¥2 — ¥l — 3292t ¥s | o¥11302% 00y (62)
A
I — 1 ) 2p2+9 P1+302+9
;= ——=(' —e? —¢ ¢ +e g), (63)
"7 42
A
;o 2¢2+¢ @1+302+¢
= ——(e"”? — et — e e %), (64)
LERW
A= — A 02 @1-302—0;)
8v/2
xe?l — 392 — 322 t0s 4 1302t 0g) (65)

These equations can be analytically solved by introducing
new variables

Pr=91—¢2, G2=¢1+@ (66)

@ Springer

in terms of which the BPS equations become

N ~
sl 3 (P149g) (91
Y1 = e? (e — 1), 67)
272
sl L @2—00) (92
0y = e? (e — 1), (68)
272
A vg ) 3~ 1~ 3~
[ -5 5 502 29119, 501t1¢
g =—=e 2 (3e? —e2"? —3e2 s +e2 %),
42
(69)
y- _L«/_ef%g(e%@erg + 3% _3,% _ 3e%¢1+‘/’g).
82
(70)

By combining all of these equations, we find that

dA 1d 3— e
= — —& = ~—e‘, (71)
dg;  2dg; 2 —1)
dA 1d 3— e
— + —& = (72)
dg>  2d@n 2(e”2 —1)
which can be solved by the following solution:
3 . .
¢g = 5(P1—¢2) —In(l — e”!) +In(1 — e?), (73)
3 -
A= % — 51 +In(l =), (74)

In this solution, we have fixed the integration constant for ¢,
to zero since at the AdSy critical point ¢, = ¢1 = ¢ = 0.
The integration constant for A is irrelevant.

Combining Egs. (67) and (68), we obtain after substituting
for ¢,

d_('z)l — 2 @1=¢) (75)
dgs

whose solution is given by
~ 1 26
=3 In(e™"%* — Cy). (76)

Near the AdSy critical point, we have ¢; ~ @ ~ 0, which
requires that C; = 0. This choice leads to ¢» = @1, which
implies ¢, = 0 and ¢, = 0. We see that the flow does not
involve ¢, and is driven purely by an irrelevant operator of
dimension 4 dual to ¢;. In this case, the N = 4 SCFT dual
to the AdS4 vacuum is expected to appear in the IR. Note
also that equation (69) is consistent for ¢, = 0 if and only if
@2 = @1 as being the case here.
Finally, we can solve Eq. (67) for ¢; (r)

Ar

91 é1 21
—— =2 2 +In(l—e 2)—In(l1+e 2)+C. (77)
22
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The solution is singular as r — M% Near this singularity,
the solution becomes

¢1~¢2~—%ln§|:C— M]

32 2721

A~—1¢1~lln§|:C— ’\r}. (78)
DA AW}

This singularity leads to V — o0, so the solution is unphys-
ical.

We end the discussion of this truncation by giving some
comments on possible subtruncations. From Eqs. (67) and
(68), we easily see that setting ¢; = 0 or ¢ = 0 is a con-
sistent truncation. This is equivalent to setting ¢» = *¢;. In
this case, the solution is found to be

— e~? — C1e’
Yo =M T2 2 |
7 1 1
A=—Z¢1+ 50~ ) + 5 Il = Cre*),
A 1 1
4} e+ SIn(l =) = S In(l +¢7%) + C

(79

where the new radial coordinate p is defined by dp =
e~ % dr.

We see that in this case ¢ is non-trivial along the flow. In
order to make the solution approach the AdSy critical point
with ¢, ~ @1 ~ 0, we need to choose C1 = 1. This gives

¢; = £Incoshg. (80)

. . 4./2C
The solution is singular for p — ==
this limit, we find

3
¥g ~ Lo ¢1~—ln[C— p],

with ¢; — 0. In

42

A~lln[C—%—p} 1)
2 4v2]

Both of these singularities lead to V — o0, so they are also
unphysical.

3.2 RG flows with N = 1 supersymmetry

We now consider a class of RG flow solutions preserving
N = 1 supersymmetry and breaking the SO(3) x SO(3)
to its diagonal subgroup. This is achieved by turning on the
marginal deformations corresponding to x; and x, to the
solutions. As in the N = 4 case, there is a consistent sub-
truncation to only irrelevant and marginal deformations with
only ¢1 and xj non-vanishing. We will consider this case
first and then look for the most general solutions with all six
S0 (3) singlet scalars non-vanishing. It should be noted that

the truncation with only ¢, and x2 non-vanishing is not con-
sistent. This is also an interesting feature to look for in the
dual field theory.

3.2.1 N =1 RG flows by marginal and irrelevant
deformations

By setting ¢, = x; = ¢2 = x2 = 0 in the BPS equations,
we obtain

A rm (3 — 4e? + 21 + 9)(262‘/’1)

/
(pl = ) (82)
2 \/(e“’1 —3)2 4 9xfe?
?1
3 X167
/
Xp=- , (83)
22 \/ (91 — 3)2 + 9y 2e2en
A= e? J(en —3)2 4 9x2e201. (84)
4«/_ ‘/ Hi

We are not able to analytically solve these equations in full
generality, so we will look for numerical solutions in this
case.

Note that further truncation to only ¢; gives rise to the
following BPS equations:

A
= LT e 1) and A = ——L_eF (e —3),

@1 2\/5

(85)

with the solution

3
A= —3%1 + In(1 — &%),
AT

22

This is nothing but the solution of the previous section for
@2 = ¢1. Therefore, we will not further discuss this solution.
For non-vanishing y, we need to find the solutions numer-
ically. An example of these solutions is given in Fig. 1.
The asymptotic behavior of this solution can be deter-
mined from the BPS equations at large ¢ as follows:

2
X1~ X0, @17 —gln (rk 2+ 18)(3 —4C1),
1
~ 2
A 3111 (V)» 2+18X0 4C1) (87)

where xo is a constant. This singularity leads to V — oo,
implying that it is unphysical. We have in addition checked
this by a numerical analysis which consistently shows a
diverging scalar potential near the singularity.

—2 %+ (1 - e*‘%l) —In (1 n e*%]) . (86)
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(b) Solution for x;
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(¢) Solution for A

Fig. 1 An N = 1 RG flow with marginal and irrelevant deformations from type IIB compactification

3.2.2 N = 1 RG flows by relevant, marginal and irrelevant
deformations

After considering various consistent truncations, we end this
section by considering N = 1 RG flow solutions with all
six SO (3) singlet scalars turned on. The resulting RG flows
will be driven by all types of possible deformations namely
marginal, irrelevant and relevant. In this case, we need to
use a numerical analysis due to the complexity of the full
set of BPS equations given in the Appendix. Similar to the
analysis of [9], there could be many possible IR singularities
due to the competition between various deformations both
by operators and vacuum expectation values (vev) present
in the UV N = 4 SCFT. Some examples of these solutions
are given in Fig. 2. In the figure, we have given solutions for
three different values of the flux parameter A for comparison.

From Fig. 2, we see a singularity in the IR end of the
flow while near r — oo the flow approaches the UV N = 4
AdS4. The numerical analysis shows that the singularity is
of a bad type according to the criterion of [34] since it leads
toV — oo.

4 Supersymmetric Janus solutions

In this section, we look at another type of solutions with an
AdS3-sliced domain wall ansatz, obtained by replacing the
flat metric d)cf’2 by an AdS3 metric of radius ¢,

mzzéﬂ”@¥mﬁ+d§)+m? (88)

The solution, called Janus solution, describes a confor-
mal interface of co-dimension one within the SCFT dual
to the AdSy critical point. This solution breaks the three-
dimensional conformal symmetry SO (2, 3) to that on the
(1 + 1)-dimensional interface SO (2, 2).

In this case, the resulting BPS equations will get modified
compared to the RG flow case. First of all, the analysis of
81//,’; = 0 equations requires an additional Y projection

@ Springer

Al (89)

Vi€ = ike'
while the y; projector in §x = 0 and 81/, = 0 equations is
still given by Eq. (39) but with the phase ¢/* modified to

w

oA —
Al 4 e

(90)

Furthermore, the integrability conditions for § Iﬂé 1= Oequa-
tions lead to ’

A/2 + %672/\ — WZ'

O
As expected, these two equations reduce to A’ = =W and
et =W = W in the limit € — oo.

The constant «, with x2 = 1, imposes the chirality con-
dition on the Killing spinors corresponding to the unbroken
supersymmetry on the (1 4+ 1)-dimensional interface. The
detailed analysis of these equations can be found for example
in [27]. Unlike the RG flow case, the Killing spinors depend
on both r and & coordinates; see for more details [26].

We have seen that the analysis of RG flow solutions with
all six SO (3) singlet scalars turned on involves a very com-
plicated set of BPS equations. Since the BPS equations for
supersymmetric Janus solutions are usually more compli-
cated than those of the RG flows, we will not perform the
full analysis with all SO (3) singlet scalars but truncate the
BPS equations to two consistent truncations, with (¢g, x4)
and (@1, x1) non-vanishing. As in other cases studied in
[14,26,27], truncations to only dilatons or scalars without
the axions or pseudoscalars are not consistent with the Janus
BPS equations, or equivalently Janus solutions require non-
trivial pseudoscalars.

4.1 N = 4 Janus solution
We first consider the Janus solution with only the dilaton and

axion in the gravity multiplet non-vanishing. In this case,
the BPS conditions §1! = 0 are automatically satisfied by
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Fig. 2 N = 1 RG flow solutions from type IIB compactification with all SO (3) singlet scalars and A = 1 (purple), A = 1.2 (green) and A = 1.4

(red)

setting @12 = x1.2 = 0. By using the phase (90) in §x’ =0
equations and separating real and imaginary parts, we obtain
the following BPS equations:

e A oW
LW 0xg

205 — 1 4 2xJe™) — ety 92)
CL(L+ )2 + x 2] ’

/ —A
X, = _4A_e*2¢’g oW + dice™ % ¢ m
g w dxg LW dp,
| 2ice AV (e — 1 4 y2e2s) — ALy A (93)
- (L + e%9)2 + x2e%] ’
p et W 2, .22
_ €t ¢ ¢
0=A"+ 7 32e f[(1 +e¥$)" + xge™¢]

Qp = —4——— —die ¥

(94)

where we have also included the gravitini equations from
(91). In terms of the superpotential

e E J(U )2 4 2%, (95)

W
42

these equations take a similar form as in the other four-
dimensional Janus solutions in [14,26,27]. These equations
solve all the BPS conditions for any e, i=1,2,3,4. There-
fore, any solutions to these equations will preserve N = 4
supersymmetry. We solve these equations numerically with
an example of the solutions given in Fig. 3.

From Fig. 3, we see that the solution interpolates between
N = 4 AdS4 vacua at both r — =oo. This solution is
then interpreted as a (1+ 1)-dimensional conformal interface
within the N = 4 SCFT. The interface preserves N = (4, 0)
supersymmetry on the interface due to the sign choice k = 1,
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Fig. 3 N = 4 Janus solution from type IIB compactification within a truncation to ¢, and x, withk =A =1and £ = 22

and SO (3) x S O(3) symmetry remains unbroken throughout
the solution.

4.2 N =1 Janus solution

The truncation keeping only ¢ and y is still consistent in
the case of Janus BPS equations. In contrast to the previous
truncation, any solutions to these equations will break N = 4
supersymmetry to N = 1 and preserve only SO (3) diagonal
subgroup of the full SO (3) x SO(3) symmetry of the N = 4
AdS4 vacuum.

The real superpotential for this truncation is given by

W= * e%l\/(eﬂ"l —3)2 4+ 9y (96)
42 !
in terms of which the BPS equations can be written as
, 44 0W 4 et W
pp=—-———-ke N——
3Wae; 3 LW dx1

20A (421 — 3 — 9y 2?0 — 201) — 12ke¥ A x
[(e”r —3)2 + 9xFe2er]

)

7
/! 4“/
Xl = ———¢

-A
2 W 4 e OW
3IW ax1 3 EW 391
2ce™ A1 (3 — 4e¥ + 2! + 9y i) — 1205, A/

e[(e” —3)2 + 9xTe2¢1]

3

(98)
24 52

A
a 3—26‘/" [(e?' —3)% +9xie®!].

Unlike the previous case, an intensive numerical search has
not found any solutions interpolating between AdS4 vacua
in the limits » — Zoo. All of the solutions found here are
singular Janus in the sense that they connect singular domain
walls at two finite values of the radial coordinate. We give an
example of these solutions in Fig. 4.

This solution could be interpreted as a conformal inter-
face between two N = 1 non-conformal phases of the dual
N = 4 SCFT. However, the singularities are of the bad type.

O:A/Z—I-e

99)
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An uplift to type IIB theory would be needed in order to
decide whether the solution is physically acceptable in the
ten-dimensional context.

5 RG flows from type ITA geometric compactification

We now carry out a similar analysis for a geometric compact-
ification of type IIA theory. The procedure is essentially the
same, so we will omit unnecessary details. In this case, the
compactification only involves gauge (H3, Fy, F>, Fa, Fg)
and geometric (w) fluxes. However, the fluxes are more com-
plicated and lead to many components of the embedding ten-
sor compared to the type IIB case

V6
Hijk ~ f_z56 = A-333 = T)»,
3410
Fuibjek ~ fyape = D+333 = ——
6
Faioj ~ frapi = DA+334 = —- 4,
V10
Fai ~ f_H‘”T]} = Ay3aq = T)h
56
Fo~ fiiie = Aydas = TA,
V6
Hapk ~ fiape = A4233 = T/\,
X /10
Wi~ fapp = A-334 = —

j i a
wka! = wpr' = ope” ~ fiaie = Frimk

= fiabe = A+234 = Ap133 = V104, (100)

In the above equations, we have also given the form field
corresponding to each flux component.

The resulting gauged N = 4 supergravity has a non-
semisimple group SO (3) x U (1)® and admits the minimal
N = 1 AdS4 vacuum at which the gauge group is broken
down to S O (3) compact subgroup. The corresponding super-
potential for the unbroken N = 1 supersymmetry is given
by
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Fig. 4 N = 1 Janus solution from type IIB compactification within a truncation to ¢ and x; withk =1 =£¢=1

W = ie 3 (91=302+0) [2e#11202—¢2
24

X[3V/5i + 22 (V3 + 3v5 )10 + xge?)
—54/3¢% i+ e(szg)S — 34/5e%1 192 i+ e<ﬂ2X2)2
—94/3i 11202

+18v/5e22 (i + ' x1) (i + e x2)
+68/3i372 + 94/5¢1 1302
+6x/§e(p1+3¢2)(1 _ 9ﬁxzew1+3w2]_

The scalar potential can be written in terms of W = [W| as

(101)

1, 0W W
w2

3
27 i apl 4

w2, (102)

Its explicit form is given in the appendix.
When all scalars vanish, there is an N = 1 AdS4 vacuum
with the cosmological constant

Vo = —22 (103)
The six scalars have squared masses as follows:

1
m2L%: 0, —2,4 + /6, J@7+ V159). (104)

All of these values are in agreement with [20] after changing
to our convention including a factor of 3.

As in the type IIB case, the BPS equations obtained from
supersymmetry variations can be written as

A=w o =iV

Ik (105)

However, the resulting equations are much more complicated
than those from type IIB compactification. We will then not
give them in this paper. Furthermore, we have not found any
consistent subtruncation within this set of equations. In the
following, we will only give examples of holographic RG
flows from the N = 1 SCFT dual to the above AdS4 critical
point to non-conformal N = 1 field theories in the IR. These

numerical solutions are shown in Fig. 5 with three different
values of the flux parameter A as in the IIB case.

Asinthe IIB case, we have numerically analyzed the scalar
potential near the singularity and found that it leads to V —
0o, which implies the singularity is unphysical.

6 Conclusions and discussions

We have found many supersymmetric RG flows and exam-
ples of Janus solutions in N = 4 gauged supergravities
obtained from flux compactifications of type II string theo-
ries. These solutions describe supersymmetric deformations
and conformal interfaces within the dual N =4 and N =1
SCFTs in three dimensions. Many of the flow solutions have
been obtained analytically which should be useful for further
investigation.

In type IIB non-geometric compactification, the gauged
supergravity has /SO (3) x 150 (3) gauge group and admits
an N = 4 AdS4 vacuum dual to an N = 4 SCFT with global
symmetry SO(3) x SO(3). We have found two classes of
supersymmetric RG flows. The first one preserves N = 4
supersymmetry, and the global SO (3) x SO(3) symmetry
is unbroken. This type of solutions can be obtained by turn-
ing on only the dilaton and axion in the gravity multiplet
dual to relevant operators of dimensions A = 1, 2. In this
case, the flows are accordingly driven by relevant operators.
Another possibility for preserving N = 4 supersymmetry
is to truncate out all axions or pseudoscalars. The resulting
RG flows are driven by relevant and irrelevant operators of
dimensions A = 1,2 and A = 4, respectively. When the
axions in the vector multplets, corresponding to marginal
deformations, are turned on, the flows break N = 4 super-
symmetry to N = 1 and break SO (3) x §O(3) symmetry to
their SO (3) diagonal subgroup. We have given numerically
the flows driven by marginal and irrelevant operators and the
most general deformations in the presence of all types of
deformations, relevant, marginal and irrelevant. It has been
pointed out in [20] that the vacuum structure of type IIB com-
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Fig. 5 N = 1 RG flow solutions from type IIA compactification with A = 1 (purple), . = 1.2 (green) and A = 1.4 (red)

pactification is very rich. The solutions found in this paper
show that the number of supersymmetric deformations of
these vacua is also enormous.

Within this type IIB compactification, we have also given
Janus solutions preserving N = 4 and N = 1 supersym-
metry. These correspond to (1 4+ 1)-dimensional conformal
interfaces preserving SO (3) x SO (3) and SO (3) symmetry.
For the N = 4 solution, we have given a numerical solution
interpolating between AdS4 vacua on the two sides of the
interface, called regular Janus. This solution gives a holo-
graphic dual of a conformal interface in N = 4 SCFT. For
the N = 1 case, we have not found this type of solutions
but the singular Janus, interpolating between N = 1 non-
conformal phases of the dual N = 4 SCFT. The situation is
very similar to the N = 1 Janus solutions studied in [14].
It would be interesting to have a definite conclusion about
the existence of regular Janus solutions in these two N = 4
gauged supergravities.

@ Springer

In this non-geometric compactification, it is useful to give
some comments about the holographic interpretation of the
results. Due to its non-geometric nature, the stringy origin of
the N = 4 gauged supergravity is presently not well under-
stood. This makes the meaning of the resulting solutions in
terms of RG flows in the dual SCFT unclear. However, work-
ing in four-dimensional gauged supergravity has an obvious
advantage in the sense that the whole formulation of N = 4
gauged supergravity is virtually unchanged for all gaugings
from both geometric and non-geometric compactifications.
Therefore, the approach used here can be carried out for all
other gaugings regardless of their higher-dimensional ori-
gins. On the other hand, the full interpretation of the results
in higher-dimensional contexts calls for further study. Hope-
fully, the results presented here could be useful along this
line of investigations.

We have also carried out the same analysis in a geomet-
ric compactification of type IIA theory resulting in N = 4
gauged supergravity with 7SO(3) x U(1)°. The gauged
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supergravity admits an N = 1 AdS4 vacuum dualtoan N =
1 SCFT in three dimensions. Due to the lack of further con-
sistent subtruncation, we have numerically found examples
of holographic RG flows to N = 1 non-conformal field the-
ories. Similar to the solutions in the type IIB case, the flows
are driven by relevant, marginal and irrelevant operators in a
more complicated manner. It should be pointed out that the
massless scalars dual to marginal deformations considered in
this paper are not the Goldstone bosons corresponding to the
symmetry breaking /SO (3) x ISO3) - SO3) x SO3)
and 1SO(3) x U(1)® — SO(3). The Goldstone bosons
transform non-trivially under the residual symmetry groups
SO3) x SO(3) and SO(3) while the massless scalars con-
sidered in the solutions are singlets. Therefore, they are truly
marginal deformationsinthe N = 1 and N = 4 SCFTs. Note
also that, in the type IIB case, these marginal deformations
break N = 4 supersymmetry in consistent with the fact that
all maximally supersymmetric AdS4 vacua of N = 4 gauged
supergravity have no moduli preserving N = 4 supersym-
metry [35].

There are many possibilities for further investigations.
First of all, it would be interesting to identify the N = 1
and N = 4 SCFTs duval tothe N = 1 and N = 4 AdS4
vacua. This should allow us to identify the dual operators
driving the RG flows obtained holographically in this paper.
It could be interesting to look for more general Janus solu-
tions in type IIB compactification with more scalars turned
on and also look for similar solutions in type ITA compact-
ification. Another direction would be to uplift the solutions
found here to ten dimensions. This could be used to identify
the goo component of the ten-dimensional metric and checked
whether the unphysical singularities by the criterion of [34]
are physical by the criterion of [36]. Finally, it would be of
particular interest to further explore type IIB compactifica-
tion with more general fluxes than those considered in [20].
This could enlarge the solution space of both AdS4 vacua and
their deformations including possible flow solutions between
two AdSy4 vacua. We leave these issues for future work.
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Appendix A: Useful formulas

In this appendix, we collect all of the conventions about 't
Hooft symbols, the scalar potential coming from type ITA

geometric compactification and complicated BPS equations
arising from type IIB non-geometric compactification with

all §O(3) singlet scalars non-vanishing.

A.l:

’t Hooft symbols

To convert an SO(6) vector index m to a pair of anti-
symmetric SU (4) indices [ij], we use the following "t Hooft

symbols:
[0—1 0 07 00—1 0
ij 10 00 ij 00 0 —1
ij _ o __
Gi = 00 O01]{|" Gs = 100 O
|00 —10 | 010 O
[0 0 0—17] _0—100_
ij 0010 ij i 000
ij o
G35 = 0-10 0 |’ Gi = 000—i
|1 00 0 | 10017 0 |
[0 0 —i 0 [00 0 —i]
ij 00 0 i j 00—i O
ij _ ij _
Gs = i 000 Gg = 0i 00 (106)
10— 00 i00 0 |
These matrices satisfy the relation
Gomij = — 2 eijuG = —(Giy* 107
mt]__zel]kl m__( m) ( )

A.2: BPS equations for type IIB compactification

In this section, we give the full BPS equations for the non-
geometric compactification of type IIB theory. These equa-
tions are given by

1 —3ps—
‘Pé - _ 32We<p1 302702 ) 2[— o291 — 9292
+ 6?1192 | o201 +302+0g)
+ 9421205 _ g1 +502+20g
+ 663921205 (2091 — 392 — Q20112

4 2% +2¢2)X2 Xo + 26592295
x (6e¥' — 9¢%? + 62¢1+¢2)X3X + 62(¢1+¢g)xg

+ 9e2(#2t90) 2 6e¢1+¢z+2<pgx

+ 3402 (e2§01 + 362<P2 _ 26(/71-‘-#72))(2 (-1
+eMex2) + 2Ty O~ 4 ey 2)
+ 382%)(22(—82% — e + 41102

+ 32t 4 208 (62(/’1 + 6292

— 4e<ﬂ1+<pz)X§) + 9p2(e1ten) 2(1

e Xzz)(—l 4 o2 P2teg) _ 262(</Jz+<pg)X2Xg
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Mg+ PG (=14 e x) + &)+ xa(1+ 2P H0r — 232

2(p1+ — +
— 6 W)Xl(_ezwg(—l + 62¢2)Xg 20 e2<pgxg2))], (110)
4pr+2 +
+ 12T X22Xg — oMot X;Xg
1

— xo(1 4 *2+2¢0s 62¢7gX§) gh=— ——ef'™ 302-02 ) 2[ o201 _ 30202
+2672 )3 (=14 €25 x0) + €2 3 (=1 + €2 x D)), n j ter gt
e + 2e 8
(108) + e2@P1302+0s) 0 @1 +4patee
Xé _ 161W o1 30— (pgszeng (29" — 3¢ + 34021205 _ fo#11H5¢02+20, + 242120, (-3
— Xt 26<p1+2<p2)x2 — ¢y 4e‘p1+¢2))(2)(g
N 65<p2 (667 — 067 1 e2¢1+<ﬂ2)xg + 265w2+2<pg (4e¥' — 9¢%2 + 62w1+<pz)xgxg
(e — 3€(p2)2Xg 43629 (29 4 622 - 62(W1+(ﬂg)X§ _ 382(¢2+¢g)X§
480 2y + 36M (201 4 3622 + Aot Hetey 2y 20400 6(] 4 s y2)
— 269192 yhy, + 21Oy 6y + 22} 3 (e 4 662 + 126321
920t ) 2(1 4 2025 ) (M) 4y, — 42011302105 | o120
N e2¢2X22Xg) B 362(¢1+¢2)X1(1 4 9eH2 20,20 (62rp1 _ 662‘02))(;)
_ o + 64(/)2)(22 B 64(”)(3‘ n 2X2Xg + 64402)(;1(82(01 + 00202 _ fo¥1T92
+ 4622 3 xg + 2% 43 1)1, (109) + GV TR - 2 (o201 4 9202
_ 4e<.01+</22)x§) _ 262(¢1+¢2)X1(_62¢g(1
o1 = 321W V1 I 201 4 3070 i esz)ngJr 36Ty T xg — 3 ey
+3e" x5 (1 + ¥4 x))

— 40192 _ Y1 +202+0, + 6392 1¥s
4 2¢2%2 X23(1 4 2eP2 10 P ng) — (1 + 439202

+ 32120 + e2§0gX2))

+ 36201025 2 (] 4 202 F0e) 262(<pz+<ﬂg)X2X

4 21 t302t0) | 0, 201+302+0,
— 4eP1TAt0y | 3402200 401 +502+ 20,
+ 263<ﬂ2+2<ﬂg (4e?' — 32 — 362¢1+<ﬂ2

_ 6e4¢2+2¢gx Xo — eZ(ng
+ 4efﬂ1+2¢72)X2Xg + 267921205 (491 278 8

4, 4 295 ,,2 2¢2 2 02+¢
L 3en 1 Aoty 4 Ao 2 +3e™2 x5, (1 4+ e xg) + e x5 (2 4 4eP27%
g

+3202H00) 4 22 y 2y)] (111)

2 2 ’
4+ 3e (<pz+<pg)xg _ 4?1 92+20, X; 8
+ 62<ﬂ1+6<ﬂzxg(1 + 2% Xg) + 62¢2X22(362§01 1

- 1T )2 [ o205 (—] + 292
+ 6672 — 8e¥1 T2 4 63921 X1 = Tew ¢ T eTXe
6201300 | govi Aot + M2y 2y — T2ty
13402200 | o200 (30201 4 6292 +e*2 )3 (1 + e X;) 422723
_ 86¢1+(p2)x§) + e4(p2X24(3€2(p1 + 362(;72 X (1 + e‘pZ‘HPg + ez‘ﬂg X;) + X2(1 + 269024'(!’8
— 4eP1192 | g1 20240 — 26302405 _ At 200 4 20 X;)
+ €25 (3™ + 36772 — 4V Ty 2) =311+ 24D ((1 + 9>
92O Y 2 (1 4 202 2) (1 4 921> — 262020 0, + ezngz
2
=220 oy + P x g + P x5 (1 + ¥4 x2)) + e+ )], (112)
_ 682(¢'+‘p2)x1 (_e2<ﬂg (-1 .
+ ezwz)Xg + X120, X22Xg Xé = 16We</’1—3<ﬂ2—<ﬂg)\2[e‘ﬂz+2wg (2e?! — 3¢e%2
4

— H2t2¢ Xng 4+ ot X25(1 + s Xé) —rter 4 Ze¢1+2¢2)xg
4 2e%92 xf’(l 4 P2t + 3921205 (6?1 — 9e¥2
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4 62¢1+¢2)X22Xg + 62w1+4</>2X25(1 + 2% X;)
+ x2(e21 4 6622 — 4e¥1 12

4 663921 0s _ 22011302+ 0 91402t
+ 362200 020 (0291 4 6292

— 46“"+‘”2)X§) iy XS (€% + 36292

— 269192 4 201202 0s 4 G205 (o201
+3¢%2 — 2e‘p‘+‘”2)x(§) — ¥yl

4 2e¥2t0s _ 0p30atey _ Aent2eg

+ 2%t 205 4, Xg — 402120, X23 Xg

+ e X; + 5e*2 3 (1 + 2% X;)

+ 662“02)(22(1 + 2% + ezngg))

+ 362(W1+¢2)X12(_e2¢g Xg — 362(<ﬂ2+§0g)X22Xg
+267 3 (14 ¥ x])

+x2(2+ 2P0 4 2T L 22y iy)] (113)

where W is given in (43).

A.3: Scalar potential from type IIA compactification

The scalar potential obtained from a geometric compactifi-
cation of type IIA theory is given by

1% :Le¢1—3¢2—¢g A2[20e201 T4¢2
192
+ 2502@011+0e) _ 940914020 _ 18002206

+ 5e2@rteates) (1 4 2\/1_5)(2 + 15)(22)

+ 12652729 (1 4 24/152 + 15x3)

+ 217692 (4 4 8155 + 60x3)

+ P02t 118057 — 12, (3V15

+5x22 +V15x2) — 10x,)

+30944V15x0 — 4V 15x,) + 5[4V15%3

+ 15X — 8xaxg +4x2 + x3 (22 — 4V 1551

+ e2(¢1+3¢2+‘ﬁg)[135

— 544/15x2 + 10155

258 + 12V15x, — 4x33V15 + 60x1 + 20x,)
+ 82631 + xo) (18 + 31551 + V15x,)

— 5x(=21 4+ 1215y,

+4V15x) + 41951 (V15 + x1)

+6x1 x5 + Xz 1+ x3[—9 — 40V 15y,

+60[9x7 — 2x1 (V15 = 3x,) + x21111. (114)
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Abstract We study five-dimensional N = 4 gauged super-
gravity coupled to five vector multiplets with compact and
non-compact gauge groups U(1) x SU(2) x SU(2) and
U()xSO@3,1).ForU(1) x SU(2) x SU(2) gauge group,
we identify N = 4 AdSs vacuawith U (1) x SU(2) x SU(2)
and U(1) x SU(2)diag symmetries and analytically con-
struct the corresponding holographic RG flow interpolating
between these critical points. The flow describes a defor-
mation of the dual N = 2 SCFT driven by vacuum expecta-
tion values of dimension-two operators. In addition, we study
AdS; x %, geometries, for ¥, being a two-sphere S2 or a
two-dimensional hyperbolic space H?, dual to twisted com-
pactifications of N = 2 SCFTs with flavor symmetry SU (2).
We find a number of AdS3 x H? solutions preserving eight
supercharges for different twists from U (1) x U(1) x U(1)
and U (1) x U (1)giag gauge fields. We numerically construct
various RG flow solutions interpolating between N = 4
Ad Ss critical points and these AdS3 x H? geometries in the
IR. The solutions can also be interpreted as supersymmet-
ric black strings in asymptotically Ad S5 space. These types
of holographic solutions are also studied in non-compact
U(1) x SO (3, 1) gauge group. In this case, only one N = 4
Ad S5 vacuum exists, and we give an RG flow solution from
this Ad S5 to a singular geometry in the IR corresponding to
an N = 2 non-conformal field theory. An AdS3 x H? solu-
tion together with an RG flow between this vacuum and the
N =4 AdSs are also given.

1 Introduction

AdSs5/CFT4 correspondence has attracted much attention
since the first proposal of the AdS/CFT correspondence

2e-mail: hl.dao@u.nus.edu

b e-mail: parinya.ka@hotmail.com

in [1]. Various aspects of the very well-understood duality
between type IIB theory on AdSs x S°> and N = 4 Super
Yang-Mills (SYM) theory in four dimensions are captured by
N = 8 S§O(6) gauged supergravity in five dimensions which
is a consistent truncation of type IIB supergravity on S [2].
One aspect of the AdS/CFT correspondence that has been
extensively studied is holographic RG flows. There are many
previous works considering these solutions both in N = 8§
five-dimensional gauged supergravity and directly in type
IIB string theory, see for example [3-7].

Results along this direction with less supersymmetry have
also appeared in [§—11]. In this case, gauged supergravi-
ties in five dimensions with N < 8 supersymmetry provide
a very useful framework. In this paper, we consider holo-
graphic RG flows in half-maximal N = 4 gauged super-
gravity coupled to vector multiplets. This gauged super-
gravity has global symmetry SO (1, 1) x SO(S, n), n being
the number of vector multiplets. Gaugings of a subgroup
Go C SO(1,1) x SO(5,n) have been constructed in an
SO(1,1) x SO(5,n) covariant manner using the embed-
ding tensor formalism in [12], see also [13]. The resulting
solutions should describe RG flows arising from perturbing
N = 2 superconformal field theories (SCFTs) by turning
on some operators or their expectation values. Holographic
solutions describing these N = 2 SCFTs and their defor-
mations are less known compared to the N = 4 SYM. The
results of this paper will give more examples of supersym-
metric RG flow solutions and should hopefully shed some
light on strongly coupled dynamics of N = 2 SCFTs.

We will consider N = 4 gauged supergravity coupled
to five vector multiplets. This N = 4 gauged supergravity
has a possibility of embedding in ten dimensions since the
ungauged supergravity can be obtained via a T reduction
of N = 1 supergravity in ten dimensions similar to N = 4
supergravity in four dimensions coupled to six vector multi-
plets thatdescends from N = 1 ten-dimensional supergravity

@ Springer
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compactified on a T°. However, it should be emphasized that
the gaugings considered here have no known higher dimen-
sional origin todate. We mainly focus on domain wall solu-
tions interpolating between N = 4 Ad S5 vacua or between
an AdSs vacuum and a singular domain wall corresponding
to a non-conformal field theory. These types of solutions have
been extensively studied in half-maximal gauged supergravi-
ties in various space-time dimensions, see [10,11,14-21] for
an incomplete list. The solutions involve only the metric and
scalar fields.

We will also study solutions with some vector fields non-
vanishing. These solutions interpolate between the above
mentioned supersymmetric AdSs vacua and AdS3 x X
geometries in the IR in which X, is a two-sphere (S2) or
a two-dimensional hyperbolic space (H?). Holographically,
the resulting solutions describe twisted compactifications of
the dual N = 2 SCFTs to two-dimensional SCFTs as first
studied in [22]. A number of these flows across dimensions
have been found within N = 8 gauged supergravity and its
truncations in [23-27], see also a universal result in [28] and
solutions obtained directly from type IIB theory in [29]. To
the best of our knowledge, solutions of this type have not
appeared before in the framework of N = 4 gauged super-
gravity coupled to vector multiplets, see however [30] for
similar solutions in pure N = 4 gauged supergravity. Our
results should give a generalization of the universal RG flows
across dimensions in [28] by turning on the twists from flavor
symmetries.

In addition, Ad S3 x ¥, geometries can arise as near hori-
zon limits of black strings. Therefore, flow solutions interpo-
lating between AdSs and AdS3 x X, should describe black
strings in asymptotically AdSs space. Similar solutions in
N = 2 gauged supergravity have been considered in [31-35].
We will give solutions of this type in N = 4 gauged super-
gravity. The solutions presented here will provide further
examples of supersymmetric AdSs black strings and might
be useful for both holographic studies of twisted N = 2
SCFTs on X7 and certain dynamical aspects of black strings.

The paper is organized as follow. In Sect. 2, we review
N = 4 gauged supergravity in five dimensions coupled to
vector multiplets using the embedding tensor formalism. In
Sect. 3, a compact U(1) x SU(2) x SU(2) gauge group
is considered. Supersymmetric AdSs vacua and RG flows
interpolating between them are given. A number of Ad S3 x
H? solutions will also be given along with numerical RG
flows interpolating between the previously identified AdSs
vacua and these Ad S3 x H? geometries. In Sect. 4, we repeat
the analysis for anon-compact U (1) x SO (3, 1) gauge group.
An RG flow from N = 2 SCFT dual to a supersymmetric
Ad S5 vacuum to a singular geometry dual to a non-conformal
field theory is considered. A supersymmetric AdSs3 x H?
geometry and an RG flow between this vacuum and the Ad S
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critical point will also be given. We end the paper with some
conclusions and comments in Sect. 5.

2 Five dimensional N = 4 gauged supergravity coupled
to vector multiplets

In this section, we review the structure of five dimensional
N = 4 gauged supergravity coupled to vector multiplets. We
mainly focus on relevant formulae to find supersymmetric
solutions. More details on the construction of N = 4 gauged
supergravity can be found in [12] and [13].

In five dimensions, N = 4 gravity multiplet consists of
the graviton eﬁf , four gravitini v,,;, six vectors AY and A’,’j,
four spin-% fields x; and one real scalar X, the dilaton. Space-
time and tangent space indices are denoted respectively by
wov, ... = 0,1,2,3,4 and f1,0,... = 0,1,2,3,4. The
SO(5) ~ USp(4) R-symmetry indices are described by
m,n = 1,...,5 for the SO(5) vector representation and
i,j=1,2,3,4 for the SO(5) spinor or U Sp(4) fundamen-
tal representation.

N = 4 supersymmetry allows the gravity multiplet to
couple to an arbitrary number n of vector multiplets. Each
vector multiplet contains a vector field A, four gaugini A;
and five scalars ¢™. The n vector multiplets will be labeled by
indices @, b = 1, ..., n. Components fields in the n vector
multiplets are accordingly denoted by (Af, A{, ™). The
5n scalar fields parametrized the SO (5,n)/SO(5) x SO (n)
coset. Combining the gravity and vector multiplets, we have
6 + n vector fields denoted by Aﬁ" = (AY, AZ’, AZ) and
5n + 1 scalars. All fermionic fields are symplectic Majorana
spinors subject to the condition

£ = Q;;CENT (1

with C and ;; being the charge conjugation matrix and
U Sp(4) symplectic form, respectively.

To describe the SO (5, n)/SO(5) x S O (n) coset, we intro-
duce a coset representative VMA transforming under the
global G = SO(5, n) and the local H = SO(5) x SO (n)
by left and right multiplications, respectively. We use indices
M,N,...,=1,2,...,54+n. Thelocal H indices A, B, ...
can be split into A = (m, a). We can then write the coset
representative as

Vit =00, V9. 2)
The matrix VMA, an element of SO (5, n), satisfies the rela-
tion

N =V VnBnag = =V, "V ™ + V),V ¢ 3)

nun = diag(—1, -1, —-1,—-1,—1,1,..., 1)isthe SO(5, n)
invariant tensor. In addition, the SO(5,n)/S0O(5) x SO (n)
coset can also be described in term of a symmetric matrix
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which is manifestly invariant under the SO (5) x SO (n) local
symmetry.

The full global symmetry of N = 4 supergravity cou-
pled to n vector multiplets is SO(1,1) x SO(5,n). The
SO(1,1) ~ RT factor is identified with the coset space
described by the dilaton X. Gaugings can be efficiently
described, in an SO(1,1) x SO(5, n) covariant manner,
by using the embedding tensor formalism. N = 4 super-
symmetry allows three components of the embedding tensor
SM, (‘EMN = é[MN] and fyuyp = fimnp]. The existence
of supersymmetric AdSs vacua requires £M = 0, see [36]
for more detail. Since, in this paper, we are only interested
in supersymmetric AdSs5 vacua and solutions interpolating
between these vacua or solutions asymptotically approach-
ing AdSs, we will restrict ourselves to the gaugings with
M = 0.

With éM = 0, the gauge group is entirely embedded in
SO(5, n). The gauge generators in the fundamental represen-
tation of SO(5, n) can be written in terms of the SO (5, n)
generators (tMN)pQ = 5[%1771\/]13 as

Xmn" = = Ror)n” = fun® and

Xon" = =R @orn" =8n". (5)
As a result, the covariant derivative reads

Dy =V, + A Xy + A) X0 (6)

where V,, is the usual space-time covariant derivative includ-
ing the spin connection. It should be noted that the definition
of EMN and fynp includes the gauge coupling constants.
Furthermore, SO (5, n) indices M, N, ... are lowered and
raised by 1y n and its inverse n™ V.

In order to define a consistent gauge group, genera-
tors Xy = (Xo, Xp) must form a closed subalgebra
of SO(5, n). This requires $MN and fyyp to satisfy the
quadratic constraints

friun fro® =0 and &y 9 fonp = 0. 7

The first condition is the usual Jacobi identity. From the result
of [36], gauge groups that admit N = 4 supersymmetric
Ad S5 vacua are generally of the form U (1) x Hy x H. The
U(1) is gauged by Ag while H ¢ SO(n + 3 — dim Hp)
is a compact group gauged by vector fields in the vector
multiplets. Hp is a non-compact group gauged by three of
the graviphotons and dim Hp — 3 vectors from the vector
multiplets. In addition, Hy must contain an SU (2) subgroup.
For simple groups, Hy can be SU(2) ~ SO@3), SO3,1)
and SL(3, R).

The bosonic Lagrangian of a general gauged N = 4 super-
gravity coupled to n vector multiplets can be written as

N 1
eT'L= SR — T2 Myn My VY — 23T HO

3 1
—EE_ZDMED“Z + EDMMMND“MMN

~V +e ! Ligp (®)

where e is the vielbein determinant. L, is the topological
term which we will not give the explicit form here due to its
complexity. The covariant gauge field strength tensors read

HM = 20, AN + XppMAN AT + ZMN By 9)

where
Xun® = —fun®, Xmo® =0, Xom™ = —&n",
1
ZMN _ EEMN’ Z0M _ _ M0 _ (10)

The two-form fields do not have kinetic terms and satisfy the
first-order field equation

1
ZMN [—ewpmHﬁ—)pM - M NPHEU] =0 (11)

6+/2

with H® defined by

MN 2,(3) MN P
Z HN/WP =7 |:3D[,LBUP]N + 6dN7>QA[/A
1
x (2,491 +§XRSQA?}A,§]):| (12)

and doyyy = dyno = dyon = nm - These two form fields
arise from vector fields that transform non-trivially under the
U (1) part of the gauge group.

The scalar potential is given by

1 _ 1
V= 7 |:fMNPfQRSE 2 (EMMQMNRMPS

1 1
_ZMMQUNRnPS +gnMQnNRnPS>

1
+Z§MN§'PQE4 <MMPMNQ _ nMPnNQ)

V2
+TfMNP§QR2MMN”QRS (13)

where MMN is the inverse of My y, and MMNPORS g

obtained from
MunpPor = GmnpquMmVNan pVQ qVR ' (14)

by raising the indices with n™ "
Fermionic supersymmetry transformations are given by

i ik
SV = Dy€i + —=Qj A yuex

NG
i : V2 e
~¢ (Q,-,-EVM/"H% — Tafx 2H8p> (yu**
—48" ") €. (15)
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3 .
Sxi = —%_'ZIDME)/MG,' + \/EA];/ek
1 )
Nl Gl
1
+Ez—23{mgv> y*er, (16)

818 = iQ* Wy DV My e + V2945 &
1
_ZEVMaHl%yHVEi . (17)

In the above equations, the fermion shift matrices are defined
by

1
NG
4 . .

+§2-1v”‘MW’Nv”szMNp) :

Ailj _ (ﬁEZleVMikVlesMN

y 1 . .
A = 7 (ﬁngleMlkVNﬂSMN

2 . .
_gz—lvlkalekalfMNP> ,

ij 1/ ij=MN
a2 = L (v
—ﬁzilﬂkIVMaVNikVPﬂfMNP) . (18)
VMij is defined in term of V™ as
B 1 .
Vu' = EVM”’F,’,{ (19)

where I'y] = Q*I",x/ and T',,;/ are SO (5) gamma matrices.
Similarly, the inverse V; jM can be written as

1 .. 1
VM = EVmM(Fll'rjl)* = EVmMrflekinj . 20)

The covariant derivative on ¢; is given by

1 .
Duei = du6i + waj’yabei + Oui'e; (21)

where the composite connection is defined by

0’ = VM, vt — AgSMNVMikVNkj

—AMVNVIP fynp (22)

Before considering various supersymmetric solutions, we
note here the relation between the scalar potential and the
fermion shift matrices A; and A,

@ Springer

V= =AY Ay + A Agij + ASTAY, (23)
Rasing and lowering of indices i, j, ... by Q¥ and ©; j are
also related to complex conjugation for example Ay;; =

Qi A = (AY)*.

3 Supersymmetric RG flows in U(1) x SU(2) x SU(2)
gauge group

We begin with a compact gauge group U (1) x SU(2) x
SU (2). In order to gauge this group, we need to couple the
gravity multiplet to at least three vector multiplets. Compo-
nents of the embedding tensor for this gauge group are given
by

EMY = gy (8315 — oY), 4

fa42.i42, 542 = —&€mip, M, N, p=1,2,3, (25)

fabe = g3€abe, a,b,c=1,2,3 (26)

where g1, g2 and g3 are the corresponding coupling constants
for each factor in U (1) x SU(2) x SU(2).

To parametrize the scalar coset SO (5, n) /SO (5) xS O (n),
we introduce a basis for GL(5 + n, R) matrices

(emMN)Po =0mPONQ (27)

in terms of which SO(5, n) non-compact generators are
given by
m=1,2,...,5 a=1,2,...,n.

(28)

Yina = em,a+5 + €a+5,m»

We will mainly consider the case of n = 5 vector multiplets,
but the results can be straightforwardly extended to the case
ofn > 5.

3.1 RG flows between N = 4 supersymmetric Ad S5
critical points

We will consider scalar fields that are singlets of U(1) x
SU2)diag C U(1) x SUQ) x SU(2). Under SO(5) x
SO(5) C SO(5,5), the scalars transform as (5, 5). With the
above embedding of the gauge group in SO (5, 5), the scalars
transform under U (1) x SU(2) x SU(2) gauge group as

2x (1, Dp+2x @, Do+ 1,342+ 1,3)2
+2 x (3, 1o + (3,3)0 (29)

and transform under U (1) x SU (2)diag as

To+2x140+2x12+3%x304+3:24+3-2+5p
(30)
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where the subscript denotes the U (1) charges. According to
this decomposition, there is one singlet corresponding to the
following SO (5, 5) non-compact generator

Yy = Y31 + Yoo + Vs3. (3D
Using the coset representative parametrized by
V=, (32)

we find the scalar potential for ¢ and X as follow

1
Vv

[32«/§g1g223 cosh® ¢ — 9(g% + g%) cosh(2¢)

~ 32
~8(83 — g3 —4v/2g183 57 sinh’ ¢ — gag3 sinh® §)
+(g3 + ) cosh(6¢) | (33)

This potential admits two N = 4 supersymmetric Ad S5 crit-
ical points. The first one is given by

1

2w
1

This critical point is invariant under the full gauge symmetry
U() x SU2) x SU(2) since ¥ is a singlet of the whole
SO(5,5) global symmetry. Furthermore, we can rescale X,
or equivalently set g» = —~/2g1 to bring this critical point
located at ¥ = 1. The cosmological constant, the value of
the scalar potential at the critical point, is

¢ =0 and Z:(—

Vo = —3g7. (35)

Another supersymmetric critical point is given by

8283

81y/2(83 — 83)

This critical point also preserves the full N = 4 supersym-
metry but has only U (1) x SU(2)diag Symmetry due to the
non-vanising scalar ¢. The cosmological constant for this
critical point is

2
2,2 3
818>8
Vo=-3(—"522-] . 37)
2(83 - gz)

This second N = 4 AdSs critical point has been shown
to exist in [11] when an additional SU (2) dual to a flavor
symmetry of the dual N = 2 SCFT is present.

We now analyze the BPS equations arising from setting
supersymmetry transformations of fermions to zero. We first
define Vy,'/ with the following explicit choice of SO(5)
gamma matrices Cpi

1 —
b= ln[g3 g

= - ] and X =
2 lgzta

(36)

MH=ilbh®o, I'in=Dh® o3,
['s=03Q0; (38)

' =-0x®oy,
'y =01 ®o2,

where 07,1 = 1, 2, 3 are the usual Pauli matrices.

Since we are interested only in solutions with only the
metric and scalars non-vanishing, we will set all the vector
and two-form fields to zero. The metric ansatz is given by
the standard domain wall

ds* = eZA(’)dx%j +dr? (39

with dxl2 5 being the metric on four dimensional Minkowski
space. In addition, the scalars ¥ and ¢ as well as the Killing
spinors €; are functions of only the radial coordinate r.

We begin with the §v,; = 0 conditions for u =0, 1, 2,3
which lead to

2 )
Alyrei + i\/;sz,-jA{"ek =0 (40)
where ’ denotes the r-derivative. Multiply this equation by
A'y, and iterate, we find
A/ZE,' +MikMkj€j =0 (41)
for M;7 = \/g Qik Alfj . The above equation has non-
vanishing solutions for ¢; if MikMk-/ x 8;/ . We will write
M*Mm = — w2 (42)
where W will be identified with the superpotential. When
substitute this result in Eq. (41), we find
A =£|W]|. (43)

On the other hand, Eq. (40) leads to the projection condition
on ¢;

yre = tilile; (44)
where 1,7 is defined via
M) = WL (45)

The condition §v;; = 0 gives the usual r-dependent Killing
spinors of the form €; = 6%601‘ for constant spinors €, sat-
isfying (44). Using the projector (44) in conditions §x; = 0
and 61¢ = 0, we can derive the first order flow equations for
Y and ¢.

For the coset representative in (32), we find the superpo-
tential

1
W= 52*‘ (ﬁg123 — 25 cosh® ¢ — 2g5 sinh® ¢>) .

(46)
The matrix I;/ in the y, projection is given by
il = (02 ®03);" . (47)
The scalar kinetic term reads
Liin = —%2*22/2 - gqﬂ : (48)
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The scalar potential (33) can be written in term of the super-
potential as

30WN? 3, [aW)\?
V==|—) +22*(—=) —6w?. (49)
2\ 9¢ 2 0
By choosing the sign choice such that the U (1) x SU (2) x

SU (2) is identified with r — o0, the BPS conditions from
8x; and §A{ reduce to the following equations

oW

¢ = T ! cosh ¢ sinh ¢ (g2 cosh ¢ + g3 sinh ¢),
(50)
aw 1
P=-plo=—2 (ﬁg123+g2 cosh? ¢+g3 sinh® ¢) .
(51)

It can be readily verified that the critical points given in
(34) and (36) are also critical point of W and solve Eqs. (50)
and (51). These critical points are then N = 4 supersymmet-
ric. Together with the A’ equation

1
A'= =27 (V28157 — 2g5 cosh® ¢ — 2g3sinh’ ),
(52)

we have the full set of BPS equations to be solved for RG
flows interpolating between the two supersymmetric AdSs
critical points. It can be verified that these BPS equations
imply the second-order field equations.

By treating ¢ as an independent variable, we can solve for
Y (¢) and A(¢) as follow

2 26 20\ 4
3 3
5 e3(g3 — gze 82— g2e™?) ’ (53)

(% - e - 2ﬁg1]%

1 1 1
A=——¢+-In(1 - *")—=In(g3 — g3¢*” — g2—g2¢7%)
3 2 2
1
—In[ea(l =) —ga(1+ ) . (54)

We have neglected an irrelevant additive integration constant
in A. The constant C will be chosen in such a way that X
approaches the second AdSs vacuum. This requires C =

2
— 8183782)" Jeading to the final form of the solution for &
V28283

(55)

1
|: V2g2g3¢? }3

81(g2 — 826** — g3 — g3¢??)
Finally, the solution for ¢ (r) is given by

1—e?
1+e?

+2,/g% — g2 tanh ™! |:e¢ /w} (56)
’ 83— 82
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g283p = g3ln |: i| —2grtan” ! e?

Table 1 Scalar masses at the

Scalar field 22 A
N = 4 supersymmetric AdSs cararieic "
. . . representations
critical point with
U(l) x SU22) x SU(2) 1. 1) 4 5
symmetry and the
corresponding dimensions of the A D2 —3xa 3
dual operators 1,3)x —3x6 3
(3, Do —4x6 2
(3.3) —4x9 2
Table 2 Scalar masses at the Scalar field m2L2 A
N = 4 supersymmetric AdSs .
representations

critical point with

U(1) x SU (2)diag symmetry and 1o _4 )

the corresponding dimensions of

the dual operators Io 12 6
1 —3x4 3
3i2 5 x6 5
3o 4y 2
30 Ox3 4
So Oxs 4

where the new radial coordinate p is defined by Z—f =%l
This solution is the same as that obtained in [11] and has
a very similar structure to solutions obtained from half-
maximal gauged supergravities in seven and six dimensions
[14,16].

Near the UV N = 4 critical point, we find

2r

G~ %~ eV LTIy (57)
where the AdSs radius is given by Lyy = —V% = g.

This behavior implies that the RG flow dual to this solution
is driven by vacuum expectation values of operators with
dimension A = 2. Near the IR point, we find

2 _ar
¢ ~elr, ¥ ~e Ir (58)
where
2%( 2 2) %
Lp=| =552 (59)
81(8283)

The operator dual to ¢ becomes irrelevant in the IR with
dimension A = 6 while the operator dual to ¥ has dimension
A = 2 as in the UV. For completeness, we give masses for
all scalars at both critical points in Tables 1 and 2. In these
tables, the singlets (1, 1)¢ and one of the 1o with m?L? =
—4 in Table 2 corresponds to X. The massless scalars 3 in
Table 2 are Goldstone bosons corresponding to the symmetry
breaking SU (2) x SU (2) — SU (2)diag- The massless scalars
50 are dual to marginal operators in the dual N = 2 SCFT.
It should also be noted that most of the results in this section
have already been found in [11]. However, the full scalar
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mass spectra are new results that have not been studied in
[11].

3.2 Supersymmetric RG flows from N = 2 SCFTs to two
dimensional SCFTs

We now consider another type of solutions namely solutions
interpolating between supersymmetric AdSs vacua identi-
fied previously and AdS; x ¥, geometries. In the present
consideration, X is a two-sphere (52) or a two-dimensional
hyperbolic space (H?).

We begin with the metric ansatz for the ¥, = S2 case

ds* = ¥ Vdxi | +dr* + ) (do* +sin® 0d¢?)  (60)

where dx12 | is the flat metric in two dimensions. It is useful
to note the components of the spin connection
ot = f/eﬂ7 w@r — g/ee’

w? = g’eq;, 0 = ¢=8 cothe? (61)
with the obvious choice of vielbein

et =eldxt, o =dr, eé =e8dh, qu = e8sinfd¢
(62)

for 1 =0, 1.

To preserve some amount of supersymmetry, we impose
a twist condition by cancelling the spin connection on §>
with some gauge connections. We will consider abelian twists
fromU(1) xU()xU() C U(1) x SU(2) x SU(2) and its
U(1) x U(1)gjag subgroup. The corresponding gauge fields
are denoted by (A”, A%, A®). Note that turning on A” and A>
correspond to a twist along the R-symmetry U (1) x SU(2)
of the dual N = 2 SCFTs while a non-vanishing A% is related
to turning on the gauge field of SU (2) flavor symmetry. The
latter cannot be used as a twist since the Killing spinor is
neutral under this symmetry. B

An effect of the twisting procedure is to cancel »’? on S2.
The BPS conditions ;5 = 0 and 6y, b= 0 then lead to the
same BPS equation. In order to achieve this, we consider the
ansatz for the gauge fields

AM=058 — 4 cosOdep . (63)
We consider two type of solutions with unbroken gauge sym-
metry U (1) x U(1) x U(1) and U (1) x U(1)giag. We begin
with a simpler case of U (1) x U (1) x U (1) invariant sector
consisting of four singlet scalars ¥ and ¢;, i = 1, 2, 3. The
latter correspond to the SO(5,5) non-compact generators
Ys3, Y54 and Ys5. The coset representative is then given by

VY = ¥1 Y53 o92Y54 ,93Ys55 (64)

A straightforward computation gives relevant components of
the covariant derivative on the Killing spinors ¢;

1 ‘
Dq;e,- = ... 4 Ee_g cotf [)/d;@fi —iapgi (o2 ® 0‘3)iJEj
tiasga(or @ on)ile; ). (65)

In order to cancel the spin connection, we need to impose the
conditions

Y546 = a081(02 ® 03)ilej —asgr(o1 ®o1)ilej . (66)

Consistency with (i, (5)2 = I4 requires the conditions

(g1a0)* + (g2a5)* =1 and gigrapas = 0. (67)

The second condition implies, for non-vanishing g; and g,
either agp = 0 or a5 = 0 for which the first condition gives
gras = =*1 or grap = =1, respectively. These two pos-
sibilities correspond respectively to the a-twist and B-twist
studied in [37], see also a discussion in [28].

For ap = 0 and gras = +£1, the condition (66) becomes a
projector

ivgsei = Flo1 @ a)ile; . (68)
For as = 0 and g1ap = +£1, we find
ivgsei = H02 @ 03)i€; . (69)

It should be noted that we can make a definite sign choice for
the twist condition and the y; é projector. The other possiblil-
ity can be obtained by changing the sign of ag or as together
with a sign change in the y; $ projector. In the remaining part
of this paper, we will choose the twist conditions and y; $
projector with the upper sign.

For the U (1) x U(1)giag sector with the U (1)giag being
a diagonal subgroup of U(1) x U(1) C SU2) x SU(2),
we have five singlets from the vector multiplet scalars
corresponding to the following non-compact generators of
SO(5,5)

Yi=Ys 4+ Yy, Yra=VYs3, Y3=VY3 Yy,
Y4 =VYs4, Y5=7Ys5 (70

giving rise to the coset representative
V:e¢>19le¢2fze¢3?36¢494e¢595 ) (71)

The result of the analysis is the same as in the previous case
but with an additional condition imposed on the flux param-
eters as and ag

g2as = gzas (72)

implementing the U (1) giag gauge symmetry. It turns out that,
in both cases, all two-form fields can be consistently set to
zero provided that A' and A2 vanish.
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For the H? case, we simply change sin@ to sinh@ in
the metric (60) and take the gauge fields to be AM =
anq cosh @de. The twist procedure works as in the S? case.
However, due to the opposite sign in the covariant field
strengths HM = dAM, the resulting BPS equations for
the two cases are related to each other by a sign change in
the twist parameters a .

3.2.1 Flow solutions with U (1) x U(1) x U(1) symmetry

With the coset representative (64), the scalar potential and
the superpotential are given respectively by

1
V = —52_2 (g%—Zﬁg1g223 cosh ¢ cosh ¢, cosh <p3)

(73)
and
W = éz*‘ (ﬁgl 3 — 2g5 cosh ¢y cosh @2 cosh ¢3)
(74)
The scalar kinetic term reads
Lyin = _22_22/2 - % cosh? g5 cosh? g3}
—% cosh” p3¢5* — %wéz ~ (75

The scalar potential can also be written in term of the
superpotential as

3 aW\> 9 W\
V==X (—) + = cosh™2 ¢ cosh™ 3 <—>

2 EP> 2 301
9 aWN2 9 /aw)\?

~ cosh™2 — =) —ew?. (76
a0 (p3<3<ﬂ2> +2<a¢3> 7e)

It can be easily checked that setting ¢» = @3 = 0 is a con-
sistent truncation. Moreover, the result with non-vanishing
¢ and @3 is not significantly different from that with ¢ =
@3 = 0. Therefore, we will further simplify the computation
by using this truncation and set ¢ = ¢.

We first consider the case with agp = 0. By using the y;
projection (44) with the matrix I/ given in (47), we find the
following BPS equations

1
¢ = 52—1e—¢—2g[g2e2g<e2‘ﬂ — 1) — kZ?(as — ag)

+ic(as + ag)e*’], (77)
1
_5 [\/Eg123
+g> cosh ¢ — ke 2852 (a5 cosh ¢ + ag sinh gp)] ,
(78)

Y =
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1
¢ = 62_1 [ﬁg123 — 2g> cosh ¢
—icde=28 52 (as cosh ¢ + ag sinh (p)], (79)
1
f/ — 82—1 [\/58123

+2K g2 cosh ¢ + 2ke 6 £2 (a5 cosh ¢ + ag sinh <p)] .
(30)

The sign choices k = +1 and k = —1 correspond to ¥y =
S? and ¥, = H?, respectively. We will use this convention
throughout the paper.

The AdS3 x ¥, vacua are characterized by the conditions
g =¢ =% =0and f' = LAlds3' It turns out that the
above equations admit any Ad S5 solutions only for ag = 0
and k = —1. In this case, we find that any constant value of

¢ leads to an AdS3 x H? solution of the form

1
o= T=-— (ﬁgzcoshq)o>3

81

1
1 2as cosh? ©0 V2 }
§= 6 In|—————|, Laass=|\—F—>5—

gie 8183 cosh? ¢y
(81)

where ¢ is a constant. This solution preserves eight super-
charges or N = 4 in three dimensions due to the y; $ projec-
tor. On the other hand, the entire flow solution will preserve
only four supercharges due to an additional y; projector.

For ¢ = 0, the solution has U (1) x U (1) x SU(2) sym-
metry due to the vanishing A® while the solution with ¢ # 0
has smaller symmetry U(1) x U(1) x U(1). The resulting
AdS; x H? geometry should be dual to a two dimensional
N = (2,2) SCFT with SU(2) or U(1l) flavor symmetry
depending on the value of ¢y. An asymptotic analysis near the
AdS3 x H? critical point shows that ¢ is dual to a marginal
operator in the two-dimensional SCFT. The central charge of
the dual SCFT can also be computed by [38]

1
3Lads;  3Lads;Vol(H?) 5,0 3vol(H?)as
C = e e —

2G; 2Gs B V2818:Gs

(82)

which is independent of ¢g. go is the value of g(r) at the
Ad S3 critical point. For Hy being a genus g > 1 Riemann
surface, we have vol(H?) = 4m(g — 1).

Examples of numerical flow solutions interpolating
between N = 4 supersymmetric AdSs and N = 4 super-
symmetric AdS3 x H? with different values of ¢ are given
in Fig. 1. The solution with ¢9 = 0 is effectively the same
as that studied in [28] which is in turn obtained from the
solutions in [30] by turning off the U (1) gauge field. In this
case, the matter multiplets can be decoupled. Solutions with
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(b) Solution for g

f(n

(¢) Solution for X

(d) Solution for f’

Fig. 1 RG flows from N = 4 AdS;s critical point with U (1) x SU(2) x SU (2) symmetry to N = 4 AdS3 X H? geometries in the IR with g; =1

and ¢g = 0 (red), o = 0.5 (blue) and ¢y = 1 (green)

o # 0are only possible in the matter-coupled gauged super-
gravity and have not previously appeared.

For the case of as = 0, we also find that the BPS conditions
require ag = 0. The resulting BPS equations read

¢ =g > sinhg, (83)
2 1
Y = _‘/T_z—l (:caoe‘28 + g1 24) — 382coshe,  (84)
1
g = 62_2 (ﬁ8124 —2g>¥ coshg — ZKﬁaOe_2g> ’
(85)
1
f'= 227 (V2 =t - 20T coshp + Vakape ).
(86)

Note also that the BPS equation for ¢ does not involve agy
since ¢ is neutral under AV, In this case, Ad S3 vacua do not
exist. For ¢’ = g’ = 0, we find a singular behavior of X at a
finite value of r

S (87)

VV2g1r —C

for some contant C. This has also been pointed out in [28].

3.2.2 Flow solutions with U (1) x U(1)giag symmetry

In this case, there are five singlet scalars from SO(5,5)
/SO (5) x SO(5) coset with the coset representative given by
(71). Together with X, there are in total six singlet scalars, and
the computation is much more complicated than the previous
case. We will again make a truncation by setting 4 = ¢p5 = 0
in the following analysis. The scalar potential with this trun-
cation is given by

1 .
% »n-2 [Sﬁgl(gz cosh ¢ — g3 sinh ) + 4(g2 — g3)

~ 16
+8283 sinh(2¢2) (2 cosh® (2¢1) cosh(4¢3) + cosh(dgy) — 3)
+8~/§g1 cosh(2¢1) cosh(2¢3) 23(g2 cosh ¢ + g3 sinh ¢)
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+(g3 + g3) cosh(2¢n) (cosh® (21 ) cosh® (23) — 1)
—4(g2 + g3) cosh(2¢1) cosh(2¢3)] . (88)

This can be written in term of the superpotential as

_3 5 [ OW 9 ow
\% 52 <82> +Zcosh (2¢)< ¢>

9 [aW\? 9 (oW’ 5
*z(a?z) +1(37>3) o &

where the superpotential in this case is given by

1
W = 8271 [ﬁgﬁﬁ — g2 cosh ¢ + g3 sinh ¢

— cosh(2¢1) cosh(2¢3) (g2 cosh ¢ + g3 sinh ¢>2)] .
(90)

It can be verified that this superpotential admits two critical
points given in Eqs. (34) and (36). When ¢1 = ¢3 = 0,
this is the U (1) x U (1) x U (1) invariant sector. For ¢3 = 0
and ¢1 = ¢, we reobtain the U (1) x SU(2)gjae invariant
scalars which admit the second N = 4 AdSs critical point
with U (1) x SU (2)djag Symmetry.

We firstly consider the twist from A° gauge field. For
as = 0, the U(1)giag symmetry also demands ag = 0. The
BPS equations for ¢1, ¢ and ¢3 will not depend on the twist
parameter ag since they are not charged under A°. Therefore,
the only possibility to have AdS3 vacua is to set these scalars
to their values at the two AdSs critical points. Setting all
¢;i = 0fori = 1, 2,3 dose not lead to any AdS3 solutions
as in the previous case. The other choice namely ¢3 = 0

and¢; = ¢ = S 1In [§;+§2] does not give rise to any Ad S3
vacua either. Therefore we will not give the explicit form of
the BPS equations in this case.

We now consider the twist from A> and A® gauge fields.
In this case, we do find some Ad S3 solutions. The BPS equa-

tions read

1
q‘){ = 5 Z_lsech(2¢3) sinh(2¢1) (g2 cosh ¢, + g3 sinh ¢),
1)

1
¢ = 557" [ cosh(2p1) cosh(23) (g3 cosh ¢z

+g> sinh @) — g3 sinh ¢ — 2k 2e ™8 (ag cosh ¢
+as sinh ¢2) + g2 sinh ¢2], (92)

1
@3 = 537 cosh(2¢1) sinh(2¢3)(g2 cosh ¢ + g3 sinh ¢2),

93)
1
¥ = G [g3 sinh ¢» — cosh(2¢,) cosh(2¢3) (g2 cosh ¢
+g3 sinh ¢p) — 2ke ™26 2% (a5 cosh ¢y
+ag sinh ¢n) — 2v/2%3 —gy cosh ¢y ], (94)

@ Springer

|
¢ =-x! [g3 sinh ¢ — cosh(2¢1) cosh(2¢3) (g2 cosh ¢

6
+g3 sinh @) — g» cosh ¢y + dke 262 (as cosh ¢
‘ag sinh ¢) ++/2g1 23] , 95)

frelgm [ g3 sinh @2 — cosh(21) cosh(23)(g: cosh ¢

6
+g3 sinh ¢) — g2 cosh ¢y — 2ke 2822 (as cosh ¢
+ag sinh g) ++/2¢1 57 (96)

for which there is a relation goas = gzag to be imposed.

We find that these equations admit AdS3 x X, solutions
only for k = —1. The AdS3 x H? solutions are given as
follow.

e [. The simplest solution is obtained by setting ¢; = O,
i=1,2,3and

1
205\ 1 2
5 V2 g=im % ,
g1 6 |gig

1
2 3
Lags, = (i) . ©7)

8183

e II. One of the AdS3 x H? solutions with vector multiplet
scalars non-vanishing is given by

1. [g—g
¢1=¢2=—1n|: , $3=0,
2 lesta

3 _ V2883

g1,/83 — &3

g = lln ag(g_g - 82)2
6 818283

Lagsy = (M) ) (98)

818783
e III. There is another AdS3 x H? solution located at

1 —
¢1 =0, ¢2=¢3=§ln|:g3 g2],

&3+ &
V28283

DL 15 M
g1/&3 — &3
1. | 24383 — gd)?
g=-In a (83 82) ’
6 g1g2g3
V2(g2 —gd)
Lpas; = | —3552 . (99)
g1g283
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(r)

L L . . L
-10 -5 5 10 r -10 5

(a) Solution for X

(b) Solution for g

L L r 1 1 L i
5 10 -10 -5 r 5 10 r

(¢) Solution for f’

Fig. 2 AnRG flow between N = 4 AdSs vacuum with U (1) x SU(2) x SU (2) symmetry and N = 4 AdS3 x H? vacuum with U (1) x U (1)diag

symmetry in (97) for g1 =1

All of these solutions preserve eight supercharges corre-
sponding to N = 4 supersymmetry in three dimensions or
equivalently N = (2, 2) in the dual two dimensional SCFTs.
It should also be noted that critical points II and III appear to
be related by a permutation of ¢;. However, the solution with
¢> = 0 does not exist since this also requires ¢; = ¢3 = 0
and ag = a5 = 0.

The next step is to find RG flow solutions interpolating
between N = 4 supersymmetric AdSs critical points and
the above AdS3 x H? geometries. We first consider a simple
case of the flow to AdS3 x H? critical point I with ¢ =
¢> = ¢3 = 0. The BPS equations simplify considerably to

|

¥=—3 (ﬁgl 3 4 gy — a5e_2g22) , (100)
1

g=c3 (ﬁg123 —2g) — 4a5e—2g22> , (101)
1

f =z (ﬁg123 —2g+ 2a5e*2g22) . (102)

We can partially solve these equations analytically and find
a relation between solutions of g and X of the form

2asg +4asIn T = 2 T2 (gr + v2g1 2. (103)

However, the complete solutions can only be found numeri-
cally. In this case, the solutions reduce to the universal flows
across dimensions considered in [28]. An example of these
solutions is given in Fig. 2.

AdS3 x H? critical point II is more interesting in the
sense that it can be connected to both of the N = 4 AdSs
vacua. In order to obtain RG flow solutions, we set ¢3 = 0
which is a consistent truncation. An example of flows from
AdSs with U (1) x SU(2) x SU(2) symmetry to Ad S3 x H?
critical point II is given in Fig. 3. With suitable boundary
conditions, we can find a solution that flows from Ad S5 with
U(1)xSU(2) x SU (2) symmetry and approaches Ad S5 with
U (1) x SU (2)diag symmetry before reaching the AdS3 x H 2
critical point II. A solution of this type is shown in Fig. 4.

Similarly, we can set ¢ = 0 and find a numerical solution
interpolating between AdSs vacuum with U (1) x SU(2) x
SU (2) symmetry and Ad S3 x H 2 critical point III. The result

is shown in Fig. 5. We have also verified that all of these
solutions satisfy the corresponding field equations.

4 Supersymmetric RG flows in U(1) x SO (3, 1) gauge
group

In this section, we consider a non-compact gauge group
U(1) x SO(3, 1) with the embedding tensor
EMN — o (8M5N — sM s,

f3a5 = f378 = — fasg = — fs61 = —&2..

(104)
(105)

Atthe vacuum, the U (1) x SO (3, 1) gauge group will be bro-
ken down to it maximal compact subgroup U (1) x SO(3) C
U (1) xSO(3, 1). Under this unbroken symmetry, there is one
scalar singlet from SO (5, 5)/S O (5) x SO (5) corresponding
to the non-compact generator

Y=Y31+ Yo —Ys3. (106)

With the usual parametrization of the coset representative of
the form

L =%, (107)

the scalar potential is given by

1
V= EE_ze_wgz |:(1+3€4¢—16€6¢+3€8¢+€12¢) o)

4263 (1 — 362 _ 3% 4 e6¢) g123] .

This potential admits only one N = 4 supersymmetric Ad Ss
vacuum due to the absence of flavor symmetry in the dual
N = 2 SCFT in agreement with the result of [11]. This
critical point is located at

(108)

& )1/3
V2g

Asinthe U (1) x SU (2) x SU (2) gauge group, we can rescale
% suchthat ¥ = I atthe AdSs vacuum. Equivalently, we can
choose the value of g, to be g» = —+/2g1. With this choice,
the cosmological constant and Ad Ss radius are given by

¢ =0 and 2:—( (109)

@ Springer
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Fig. 3 An RG flow from AdSs critical point with U (1) x SU(2) x SU(2) symmetry to AdS3 x H? critical point I for g = 1 and g3 = 2g;

&1(r) $2(n an
s o = r s o > r r
(a) Solution for ¢ (b) Solution for ¢, (c) Solution for g
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14l 14F
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Fig. 4 AnRG flow from Ad S5 critical point with U (1) x SU(2) x SU(2) symmetry to Ad Ss critical point with U (1) X SU(2)gjag Symmetry and
finally to AdS3 x H? critical point II for g; = 1 and g3 = 2g;
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Fig. 5 An RG flow from Ad S5 critical point with U (1) x SU(2) x SU(2) symmetry to AdS3 x H? critical point Il for g; = 1 and g3 = 2g;

Table 3 Scalar masses at the
N = 4 supersymmetric AdSs
critical point with

Scalar field
representations

U(1) x SO(3) symmetry and 1o _4 2
the corresponding dimensions of
the dual operators for the Io 12 6
non-compact U (1) x SO(3, 1) 1o —34 3
gauge group 3. 5«6 5
30 —4x6 2
30 0x3 4
So Oxs 4
6 2
Vo=-3g7 and L*=—— == (110)
Vo 8]

Scalar masses at this vacuum are given in Table 3. The
spectrum is the same as that of the N = 4 AdSs with
U(1) x SU(2)giag symmetry in the compact gauge group.
Massless scalars in 3¢ representation are Goldstone bosons
of the symmetry breaking SO(3, 1) — SO(3).

4.1 BPS equations and holographic RG flow solutions

Since there is only one supersymmetric Ad S5 critical point,
supersymmetric RG flows between Ad S5 critical points do
not exist. We will look for solution describing a domain wall

with one limit being the Ad Ss critical point identified above
and another limit being a singular geometry dualtoan N = 2
non-conformal field theory.

With the same procedure as before, the superpotential in
this case reads

e (1 —3e2 — 3% + 59) gy + 2424, %3
12% ’

(111)

It can be easily verified that W has only one critical point.
The potential can be written in term of the superpotential as

2 2
V= 3 [22 (a_w> + (a_w> } —6W?2.
2 E3S Y

The BPS equations for this gauge group are given by

o = <8W) B e (&2 — e + 5 — 1) g»
= 7o) = ,

(112)

4%
s — 52 (a_W> _ L
X 12
x [4«/§e3¢g1 3 - (1 — 320 _ 3% 4 e6¢> gz] ’
A W= e730 (1 =362 —3e% 4 ¢69) gy +24/2¢, 27 |

12%
(113)
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By combining these equations, the flow equations for the
warp factor A and the dilaton ¥ can be written as

3 [4v2e3 0153 - g2 (1 - 3620 -3¢401.¢%) |

¥ (¢) = ,
2 3g2 (€20 —e* + % — 1)
(114)
A @) (1 —3e% —3e* + €59) gy + 242630 g, 53
N 3(e2 — e +e% — 1) g ’
(115)
The solution for £ can be readily obtained
1/3
ot / (116)
=8 .
£2C1(1 + %) — V/2g,

To make the flow approach the Ad S; critical point, we choose

the constant C; tobe C| = \/&Tl This leads to
&2

s 13
2:_|: \/5826 j| (117)

g1(1 + )

1/3
; : 8
which clearly gives ¥ = (ﬁgu ) for ¢ =0.

With the solution for X(¢), the solution for A can be
straightforwardly obtained. The result is

A:%[2¢+3ln<l—e2¢>

tin (1+e2¢‘) —3In (1+e4¢)]. (118)

. . . . sodp
Finally, by redefining the radial coordinate r to p via > =

> ~!, we find the solution for ¢ (p)
2¢20 =21In(1 —e?) —21In (1 +¢?)
+2 [ln (ﬁe¢+ez¢+1) —In (ﬁe‘l’_eM _ 1)]
(119)

where an additive integration constant has been discarded.
Asr — oo, we find

S~e T and ¢~el . (120)

The operator dual to ¢ is irrelevant as indicated by the value
of m?L? = 12 in Table 3. From the solution (119), ¢ — +oc0
at a finite value of p. Explicitly, we find that, as ¢ — o0,

1 3g2p0 g1p
10} §1n|:C+T and ¢ —ln[C—T]

(121)

for some constant C. In both cases, ¥ — Oand V — o0. As
a result, these singularities are unphysical by the criterion of
[39].

@ Springer

4.2 RG flows to AdS3 x X, geometries

We now restrict ourselves to scalars which are invariant
under SO(2) € SOB3) C SO(@3,1) whose generator is
(Ts)u™ = fsp™N. There are in total five singlets from
SO(5,5)/S0(5) x SO(5). However, as in the case of
U() x SU(2) x SU(2) gauge group, we can truncate this
set to just three singlets corresponding to the following non-
compact generators

Yi=Ysi+ Y Ya=VYn—Yy, V3=7Vs53. (122)
The coset representative is given by
I = e¢1)71€¢2)72€¢31737 (123)

and the potential reads

V= %62_2 [85 [cosh(4¢1 — 2¢3) + cosh(41 + 2¢3)

+ cosh(263) (6 + 4 cosh(d) sinh® (26, ))]

—16g% 4 1623v/2g1 g2 [cosh 3

+ cosh(2¢;) sinh(2¢1) sinh(¢3)]] (124)

which admits only a single supersymmetric critical point at
which all vector multiplet scalars vanish.

The metric ansatz is still given by (60). We will con-
sider the twists obtained from turning on U (1) x U(l) C
U(1) x SO(3, 1) gauge fields along X,. These gauge fields
will be denoted by A? and A3. As in the previous section, the
twists from A° and A° cannot be turned on simultaneously.
Furthermore, the A? twist does not lead to Ad S3 x X» solu-
tions. We will therefore consider only the twist from A>. It
turns out that the two-form fields can also be consistently set
to zero provided that we set the gauge fields A' = A% = 0.

With the same ansatz as in (63), together with the projec-
tors (44) and (68), we find the following BPS equations after

using the twist condition gras = 1
f = _ziz e 201 —202—¢3—2¢ [eZg (1 — M 2
4 4e2@1td2) _ Aiter) _ 243

442 @G1tdate3) | AGI+203 _ Adat+2¢3
+ e4¢>1+4¢2+2¢3) g2 — dicase>@1+ov) (1 + 62¢3> 2

— 42620 +2¢z+¢3+2ggl 23] , (125)
g = _ﬁ 0201202~ 63-2g [ezg (1 _ A

+4€2(¢1+¢2) — Mot _ 243

+462(¢1 +2+¢3) + e 011203 _ A2 +2¢3

+ e4¢1+4¢2+2¢3) @2 + 8Kcase?@1+9D) ( 1+ 82¢3> 52

_4ﬁe2¢1+2¢2+¢3+2gg123] , (126)
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(b) Solution for g

(¢) Solution for f’

Fig. 6 An RG flow from N = 4 AdSs critical point with U(1) x SO(3) symmetry to AdS3 x H? geometry in the IR from U(1) x SO(3, 1)

gauge group and g; = 1

s/ = _ L 220032 [ (1 - 1 4 o4

24
4 4e2@01+d2) _ A@r1te2) _ 203

442 @1tdatds) | LAP1+203 _ Ad0+2¢3
+ e4¢1+4¢2+2¢3> @2 — dicase?@1+2) (1 + 62¢3) ¥2

+ 82620 22 g 3 (127)
. e 201+2¢2—¢3 (1 + e4¢1) (62¢3 — 1) I 128
¢l - 2 (1 + €4¢2) E ) ( )
" o201 -2¢2—¢3 (e4¢| _ 1) (e4¢’2 — 1) (62¢3 — 1) 2
2 8% ’
(129)
O} = —o—201-201-5-2s [ezg (e4¢1 s
8%

—42@1td2) o A1) _ 205
442 G1+date3) | AGI+2d3 _ Adat2¢3
+ e4¢1+4¢2+2¢3) @ + dicaseX 192 (ezasz _ 1) 22] .
(130)
Unlike the compact gauge group considered in the previous

section, the above equations admit only one AdS3 x H?
solution given by

81

1/3 1/3
o= Ll gig L V2

= —= — |\ — , AdSy; = | ——> .
2 as \ 2 ’ 8183

(131)

1/3
2
$1 =y =3 =0, 2=—<‘/_g2) :

To find an RG flow solution interpolating between this
AdS; x H? and the AdSs critical point (109), we can con-
sistently set all ¢;, i = 1,2,3, to zero and k = —1. The

remaining BPS equations read

2¢2 + 2ase ¥ %2 — /2,23

/ J—
f= 6%
, 2gy—4ase 8% — /2g, %3
&= 135 ’
1
2=-3 (gz tase 2632 4+ «/§g123) . (132)

A numerical solution to these equations is shown in Fig. 6.
Similar to an analogous solution in the compact gauge group,
this solution is the same as the universal RG flow considered
in [28] since it does not involve scalars from vector multiplets.

5 Conclusions and discussions

We have studied gauged N = 4 supergravity in five dimen-
sions coupled to five vector multiplets with compact and
non-compact gauge groups U(1) x SU(2) x SU(2) and
U()xSO@3,1).ForU(1) x SU(2) x SU(2) gauge group,
we have recovered two supersymmetric N = 4 Ad S5 vacua
with U(1) x SU(2) x SU(2) and U(1) x SU(2)diag Sym-
metries together with the RG flow interpolating between
them found in [11]. However, we have also given the full
mass spectra for scalar fields at both critical points which
have not been studied in [11]. These should be useful in
the holographic context since it provides information about
dimensions of operators dual to the supergravity scalars. For
U(l) x SO(3, 1) gauge group, there is only one N = 4
supersymmetric AdSs critical point with vanishing vector
multiplet scalars. We have given an RG flow solution from
an N = 2 SCFT dual to this vacuum to a non-conformal field
theory dual to a singular geometry. However, this singular-
ity is unphysical within the framework of N = 4 gauged
supergravity. It would be interesting to embed this solution
in ten or eleven dimensions and further investigate whether
this singularity is resolved or has any physical interpretation
in the context of string/M-theory.
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We have also considered Ad S3 x X, solutions by turning
on gauge fields along ¥. We have found that in order to
preserve eight supercharges, the twists from the U (1) factor
in the gauge group and the Cartan U(1) C SU(2), denoted
by the parameters ag and as, cannot be performed simulta-
neously. It should also be noted that for less supersymmetric
solutions, both ag and a5 can be non-vanishing such as %-BPS
solutions found in [30] for pure N = 4 gauged supergravity
with U (1) x SU (2) gauge group. It would also be interesting
to look for more general solutions of this type.

For U(1) x SU(2) x SU(2) gauge group, we have iden-
tified a number of AdS; x H? solutions preserving eight
supercharges. We have given numerical RG flow solutions
from the two AdSs vacua to these AdS3 x H? geometries.
For U(1) x SO(3, 1) gauge group, there is one AdS3 x H>
solution when all scalars from vector multiplets vanish. The
solution preserves eight supercharges similar to the solutions
in the compact gauge group. A numerical RG flow between
this solution and the N = 4 AdSs5 vacuum has also been
given. All of these solutions describe twisted compactifica-
tions of N = 2 SCFTs on H? and should be of interest
in holographic studies of N = 2 SCFTs in four dimen-
sions and in the context of supersymmetric black strings.
It is noteworthy that the space of AdSs; and AdS3 solu-
tions in the compact gauge group is much richer than that
of the non-compact gauge group. This is in line with sim-
ilar studies of half-maximal gauged supergravities in other
dimensions.

There are a number of future works extending our results
presented here. Itis interesting to consider flow solutions with
non-vanishing two-form fields similar to the recently found
solutions in seven and six dimensions in [40—42]. These solu-
tions will also give a description of conformal defects in the
dual N = 2 SCFTs. Furthermore, finding Janus solution
within this N = 4 gauged supergravity is also of particular
interest. This can be done by an analysis similar to that ini-
tiated in [43] and [44]. Up to now, this type of solutions has
only appeared in N = 8 and N = 2 gauged supergravities,
see for example [45,46].
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Abstract We study supersymmetric AdS3 x ¥, and Ad S,
X 23 solutions, with ¥, = S2 H?and Y3 = $3, H3,in five-
dimensional N = 4 gauged supergravity coupled to five vec-
tor multiplets. The gauge groups considered here are U (1) x
SUR)xSUQ2),U(1)xSO@3,1)and U (1) x SL(3, R). For
U(l) x SUQ2) x SU(2) gauge group admitting two super-
symmetric N = 4 AdSs vacua, we identify a new class of
AdS3 x %5 and Ad S, x H? solutions preserving four super-
charges. Holographic RG flows describing twisted compacti-
fications of N = 2 four-dimensional SCFT's dual to the Ad S5
vacua to the SCFTs in two and one dimensions dual to these
geometries are numerically given. The solutions can also be
interpreted as supersymmetric black strings and black holes
in asymptotically Ad S5 spaces with near horizon geometries
given by AdS3 x ¥ and AdS> x H 3 respectively. These
solutions broaden previously known black brane solutions
including half-supersymmetric AdSs black strings recently
found in N = 4 gauged supergravity. Similar solutions are
also studied in non-compact gauge groups U (1) x SO(3, 1)
and U(1) x SL(3, R).

1 Introduction

Black branes of different spatial dimensions play an impor-
tant role in the develoment of string/M-theory. They lead
to many insightful results such as the construction of gauge
theories in various dimensions and the celebrated AdS/CFT
correspondence [1]. According to the latter, black branes in
asymptotically AdS spaces are of particular interest since
they are dual to RG flows across dimensions from super-
conformal field theories (SCFTs) dual to the asymptotically
AdS spaces to lower-dimensional fixed points dual to the

2e-mail: hl.dao@u.nus.edu
b

e-mail: parinya.ka@hotmail.com

near horizon geometries [2]. Recently, a new approach for
computing microscopic entropy of AdSs balck holes has
been introduced based on twisted partition functions of three-
dimensional SCFTs [3-11]. This has also been applied to
Ad S black holes in other dimensions [12—18].

In this paper, we are interested in supersymmetric black
holes and black strings in asymptocally AdSs spaces from
five-dimensional N = 4 gauged supergravity coupled to vec-
tor multiplets constructed in [19,20] using the embedding
tensor formalism [21-23]. These solutions have near hori-
zon geometries of the forms AdS; x ¥3 and AdS3 x %o,
respectively. We will consider X3 in the form of a three-
sphere (S3) and a three-dimensional hyperbolic space (H3).
Similarly, ¥, will be given by a two-sphere (S?) and a two-
dimensional hyperbolic space (H?), or a Riemann surface
of genus g > 1. Similar solutions have previously been
found in minimal and maximal gauged supergravities, see for
example [24-32]. This type of solutions has also appeared
in pure N = 4 gauged supergravity in [33], and recently,
half-supersymmetric black strings with hyperbolic horizons
have been found in matter-coupled N = 4 gauged supergrav-
ity with compact U (1) x SU(2) x SU (2) and non-compact
U(1) x SO(3, 1) gauge groups [34].

We will look for more general solutions of AdSs black
strings with both hyperbolic and spherical horizons and pre-
serving % of the N = 4 supersymmetry in five dimensions.
The solutions interpolate between N = 4 supersymmetric
AdSs vacua of the gauged supergravity and near horizon
geometries of the form AdS3 x X». In addition, we will look
for supersymmetric black holes interpolating between Ad Ss
vacua and near horizon geometries Ad S> x ¥3. According to
the AdS/CFT correspondence, these solutions describe RG
flows across dimensions from the dual N = 2 SCFTs to
two- and one-dimensional SCFTs in the IR. The IR SCFTs
are obtained via twisted compactifications of N = 2 SCFTs
in four dimensions. Many solutions of this type have been
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found in various space-time dimensions, see [35—47] for an
incomplete list.

We mainly consider N = 4 gauged supergravity coupled
to five vector multiplets with gauge groups entirely embed-
ded in the global symmetry SO(5, 5). We will also restrict
ourselves to gauge groups that lead to supersymmetric Ad Ss
vacua. These gauge groups have been shown in [48] to take
the form of U(1) x Hy x H with the U (1) gauged by the
graviphoton that is a singlet under USp(4) ~ SO(5) R-
symmetry. The H C SO(n 4+ 3 — dim Hy) is a compact
group gauged by vector fields in the vector multiplets, and
Hj is a non-compact group gauged by three of the gravipho-
tons and dim Hy — 3 vectors from the vector multiplets. The
remaining two graviphotons in the fundamental represen-
tation of SO(5) are dualized to massive two-form fields.
In addition, Hy must contain an SU (2) subgroup. For the
case of five vector multiplets, possible gauge groups that
admit supersymmetric AdSs vacua and can be embedded in
SO5,5)areU(1) x SUR) x SU(2),U(1) x SO(3, 1) and
U(1) x SL(3, R). We will look for AdSs black string and
black hole solutions in all of these gauge groups.

The paper is organized as follow. In Sect. 2, we review
N = 4 gauged supergravity in five dimensions coupled
to vector multiplets using the embedding tensor formalism.
In Sect. 3, we find supersymmetric AdS3 x X, solutions
preserving four supercharges and give numerical RG flow
solutions interpolating between these geometries and super-
symmetric AdSs vacua. An AdS, x H? solution together
with an RG flow interpolating between Ad S5 vacua and this
geometry will also be given. In Sects. 4 and 5, we repeat
the same analysis for non-compact U(1) x SO(3,1) and
U (1) x SL(3, R) gauge groups. Since the U (1) x SL(3, R)
gauge group has not been studied in [34], we will discuss
its construction and supersymmetric AdSs vacuum in detail.
The full scalar mass spectrum at this critical point will also be
given. This should be useful in the holographic context since
it contains information on dimensions of operators dual to
supergravity scalars. We end the paper with some conclu-
sions and comments in Sect. 6.

2 Five dimensional N = 4 gauged supergravity coupled
to vector multiplets

In this section, we briefly review the structure of five dimen-
sional N = 4 gauged supergravity coupled to vector mul-
tiplets with the emphasis on formulae relevant for find-
ing supersymmetric solutions. The detailed construction of
N = 4 gauged supergravity can be found in [19,20].

Thef N = 4 gravity multiplet consists of the gravi-
ton e,’f, four gravitini ¥,;, six vectors AY and A’;Z, four
spin—% fields x; and one real scalar X, the dilaton. Space-

@ Springer

time and tangent space indices are denoted respectively by
wov, ... = 0,1,2,3,4 and f1,0,... = 0,1,2,3,4. The
SO(5) ~ USp(4) R-symmetry indices are described by
m,n = 1,...,5 for the SO(5) vector representation and
i,j=1,2,3,4for the SO(5) spinor or U Sp(4) fundamen-
tal representation. The gravity multiplet can couple to an
arbitrary number n of vector multiplets. Each vector mul-
tiplet contains a vector field A, four gaugini A; and five
scalars ¢™. The n vector multiplets will be labeled by indices
a,b=1,...,n,and the components fields within these vec-
tor multiplets will be denoted by (A%, A?, ¢™*). From both
gravity and vector multiplets, there are in total 6 + n vec-
tor fields which will be denoted by Aﬁ/l = (AY, AZ’, AZ).
All fermionic fields are described by symplectic Majorana
spinors subject to the following condition

& = Qi CENHT (1

with C and €2;; being respectively the charge conjugation
matrix and U Sp(4) symplectic form.

The 5n scalar fields from the vector multiplets parametrize
the SO(5,n)/SO(5) x SO (n) coset. To describe this coset
manifold, we introduce a coset representative VMA trans-
forming under the global SO (5, n) and the local SO(5) x
SO (n) by left and right multiplications, respectively. We use
indices M, N,... = 1,2,...,5 + n for global SO(5, n)
indices. The local SO (5) x SO (n) indices A, B, ... will be
split into A = (m, a). We can accordingly write the coset
representative as

VMA — (VMm’VMa)' (2)

The matrix VMA is an element of SO (5, n) and satisfies the
relation

N = YV VnBnag = =V, "V ™ + VY ¢ 3)

with nyn = diag(—1, —1, -1, —1,—1,1, ..., 1) being the
SO (5, n) invariant tensor. Equivalently, the SO (5, n) /S O(5)
x SO (n) coset can also be described in term of a symmetric
matrix

which is manifestly invariant under the SO (5) x SO (n) local
Ssymmetry.

Gaugings promote a given subgroup Gy of the full global
symmetry SO(1, 1) x SO(5, n) of N = 4 supergravity cou-
pled to n vector multiplets to be a local symmetry. These
gaugings are efficiently described by using the embedding
tensor formalism. N = 4 supersymmetry allows three com-
ponents of the embedding tensor €M, EMN = gIMN] apq
Sunp = fimnp[19]. The first component EM describes the
embedding of the gauge group in the SO(1, 1) ~ R factor
identified with the coset space parametrized by the dilaton
3. From the result of [48], the existence of N = 4 supersym-
metric AdSs vacua requires £ = 0. In this paper, we are
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only interested in solutions that are asymptotically Ad S5, so
we will restrict ourselves to the gaugings with € = 0.

For éM = 0, the gauge group is entirely embedded in
SO (5, n) with the gauge generators given by

Xmnt == fmuRor)nt = funt and
Xo)n" = =R @op)n" = &n". ©)

The matrices (fyn) p Q0 — [%4 nnyp are SO (5, n) generators
in the fundamental representation. The full covariant deriva-
tive reads

Dy =V, + AN Xy + A% X0 (6)

where V, is the usual space-time covariant derivative. We use
the convention that the definition of & MN and fmn p includes
the gauge coupling constants. Note also that S O (5, n) indices
M, N, ... are lowered and raised by 1y and its inverse
nMN  respectively.

Generators X o4 = (X, X ) of a consistent gauge group
must form a closed subalgebra of SO (5, n). This requires

EMN and fy v p to satisfy the quadratic constraints, see [19],

friun frol® =0 and &y fonp =0. (7

Gauge groups thatadmit N = 4 supersymmetric Ad S5 vacua
generally take the form of U (1) x Hy x H, see [48] for more
detail. The U (1) is gauged by AY, while H C SO(n + 3 —
dim Hp) is a compact group gauged by vector fields in the
vector multiplets. Hy is anon-compact group gauged by three
of the graviphotons and dim Hy — 3 vectors from the vector
multiplets. Hp must also contain an SU (2) subgroup. For
simple groups, Hy can be SU(2) ~ SO3), SO(3, 1) and
SL(3,R).

In the embedding tensor formalism, there are two-form
fields B,,, ¢ that are introduced off-shell. These two-form
fields do not have kinetic terms and couple to vector fields via
a topological term. They satisfy a first-order field equation
given by, see [19] for more detail,

1 o
SMN [meuv'gkall_{j\?’/’)pk - MNPHZ;U] = 0 (8)

in which Moy = 7% Moy = 0and Myy = Z>Myn.
The field strength H(/a is defined by

MN7,3) MN P
& 7_{p.v,o,/\/' =& |:3D[[Lva]N + 6d/\f’PQA[M
1
x <8UA,?] + anggAzzAf])} 9)
with doyn = dyno = duon = nun and

Xun® =—fun®, Xmo" =0, Xou™ =—-&x™. (10)

In all of the solutions considered here, the Chern—Simons
term in Eq. (9) vanish due to a particular form of the ansatz
for the gauge fields. In addition, the term M NPHLDU in Eq.

(8) also vanish provided that the gauge fields A' and A?
are set to zero. With all these, the two-form fields can be
consistently truncated out. We will accordingly set all the
two-form fields to zero from now on.

The bosonic Lagrangian of a general gauged N = 4 super-
gravity coupled to n vector multiplets can accordingly be
written as

1 1

1
—1 2 M 4 /N —44,0 0
e £:§R_ZE MMNHMUH ”’U—ZE HMVH v

3 1
—EE_ZDMED“E + EDMMMND“MMN
_V+€_1£top (11)

where e is the vielbein determinant. Ly is the topological
term whose explicit form will not be given here since, given
our ansatz for the gauge fields, it will not play any role in the
present discussion.

With vanishing two-form fields, the covariant gauge field
strength tensors read

HM = 200, AN + Xprp™Ma AT (12)

The scalar potential is given by

1 B 1 1
V= [fMNPfQRsE 2 (—MMQMNRMPS — Z/\,,MQnNRnPs

T4 12
1 1

+6nMQnNRnPS> + ZéMNssz“(MM”MNQ —nMPpNC)
V2

+TfMNPé§QREMMNPQRS (13)

where MMN is the inverse of My y, and MMNPORS g
obtained from

MuNPOR = €mnpgr V" V" Vp 'V Vi " (14)

by raising the indices with n™ V.
Supersymmetry transformations of fermionic fields
(Yuis xi» AY) are given by

i ik
SIﬂ,u' = Dpe; + %QijA{ Y€k
i ; NG
< (QU ZVMJ"H%—Tafz 2H8p) (7" =480y e
(15)
3 .
Sxi = —%iz_lDMEy“ei +ﬁA’§fek
1 koM 1w —20kq,0
—35 (BTl E ) e
(16)
8)»? = ink(VMuDMVijM))/MGk + «/EQijAgkjEk
1
—ZEVM“H%,V“”E[ (17)
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in which the fermion shift matrices are defined by
g 1 . .
Allj = —% (\/EEZQk[VMlkVNJISMN
4 . .
+§E_lvlkMVﬂNVPklfMNP) )

Agj = <\/§E2Qk1VMikVNﬂEMN

1
NG
2 ‘ .
_§ElvlkaleVpklfMNP> ,
iy 1 .
A;J — _5 <22VM‘1VN”§MN
—\/Ez—lszkva“vN"kvpﬂfMNP) : (18)

In these equations, V,, / is defined in term of Vy," as

. 1 ..
V'l = 5VM'”ri,{ (19)

where Ff,{ = Q”‘kaj and T',;/ are SO(5) gamma matrices.

Similarly, the inverse element V; jM can be written as

VM ——va(r”) VTR Qi) . (20)

In the subsequent analysis, we use the following explicit
choice of SO(5) gamma matrices I',,;/ given by

=ib®o;, T3=0L®os,
I's=03Q o 21

' = -0 ®oy,
'y =01 ® o2,

where o;,i = 1, 2, 3 are the usual Pauli matrices.
The covariant derivative on €; reads

1
D,€i = du€i + 4“’# Vab€i + Qm e, (22)

where the composite connection is defined by
Oui’ = VMo, Vi — AgSMNVMikVNkj
—AMVNVIE fynp. (23)

In this work, we mainly focus on the case of n = 5 vector
multiplets. To parametrize the scalar coset SO(5,5)/SO(5)
x SO(5), it is useful to introduce a basis for GL(10, R)
matrices

(emMN)Po = dmpPONQ (24)

interms of which SO (5, 5) non-compact generators are given
by

Yina = em,a+5 + €a+5.m, M= 1,2,...,5,
a=12 .5 25)
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3U@1) x SU2) x SU(2) gauge group

For a compact U (1) x SU(2) x SU(2) gauge group, com-
ponents of the embedding tensor are given by

MV = g1 (8578 — 81", (26)
fat2.it2, 542 = —&2€mip, M1, p=1,2,3, (27)
fabc :g3€ab0a a’ b,CZ 17293 (28)

where g1, g2 and g3 are the coupling constants for each factor
inU(l) x SUQ2) x SU((2).

The scalar potential obtained from truncating the scalars
from vector multiplets to U(1) x SUQ2)giag C U(1) x
SU (2) x SU (2) singlets has been studied in [34]. There is one
U (1) x SU (2)diag singletfrom the SO(5, 5)/SO(5) x SO(5)
coset corresponding to the following SO (5, 5) non-compact
generator

Yy = Y31 + Ya2 + Vs3. (29)
With the coset representative given by
V=, (30)

the scalar potential can be computed to be

V =

3757 [32«/§g1g223 cosh® ¢ — 9(g% + g%) cosh(2¢)

—8(g% — g3 — 4v2g183 % sinh> ¢ — gog3 sinh® ¢)
+(83 + g3) cosh(69) . (31)

The potential admits two N = 4 supersymmetric AdSs
critical points given by

itg=0 =1, Vy=-3g (32)
1
ii:¢=§ [83+ ( 8283 ’
83 T 82 /2(g3 _ gz)
%
Vo = —3 a5 ) 33)
2(g3 — 83)

In critical point i, we have set go = —+/2g; to make this
critical point occur at ¥ = 1. However, we will keep g2

explicit in most expressions for brevity. Critical point i is
invariant under the full gauge symmetry U (1) x SU(2) x
SU (2) while critical pointii preserves only U (1) x SU (2) diag
symmetry due to the non-vanising scalar ¢. V denotes the
cosmological constant, the value of the scalar potential at a
critical point.

3.1 Supersymmetric black strings
We now consider vacuum solutions of the form AdS3; x X»

with %, being $? or H2. A number of AdS; x H? solu-
tions that preserve eight supercharges together with RG flows
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interpolating between them and supersymmetric AdSs crit-
ical points have already been given in [34]. In this section,
we look for more general solutions that preserve only four
supercharges.

We begin with the metric ansatz for the ¥, = S case

ds* = ezf(r)dxlz’l + dr? 4 €20 (d6? + sin® 0d¢?)

(34
where dxlz,l is the flat metric in two dimensions. For X, =
H?, the metric is given by
ds* = ¥ Vdxi | +dr* + ) (d6* + sinh? 6d¢?).

(35

As r — 00, the metric becomes locally Ad S5 with f(r) ~

gr)y ~ LA’d > while the near horizon geometry is character-

ized by the conditions f(r) ~

r
LAd53

and constant g(r), or
equivalently g’(r) = 0.

To preserve some amount of supersymmetry, we perform
a twist by cancelling the spin connection along the ¥, by
some suitable choice of gauge fields. We will first consider
abelian twists from the U(1) x U(1) x U(1) subgroup of
the U(1) x SU(2) x SU(2) gauge symmetry. The gauge
fields corresponding to this subgroup will be denoted by
(A%, A%, A®). The ansatz for these gauge fields will be cho-
sen as

AM=058 — 4 cosOdep . G0
for the S2 case and
AM=058 — 4 coshOdg . G

for the H? case.
3.1.1 Solutions with U (1) x U(1) x U(1) symmetry

There are three singlets from the SO(5,5)/SO(5) x SO(5)
coset corresponding to the SO (5, 5) non-compact genera-
tors Y53, Y54 and Yss. However, these can be consistently
truncated to only a single scalar with the coset representative
given by

V= et (38)

We now begin with the analysis for ¥, = §2. With the rele-
vant component of the spin connection w?? = ¢~ cot fe?,
we find the covariant derivative of €; along the ¢ direction

1 .
Dgei = -+ + se"Fcotd [Véééi —iapgi(o2 ® 03)i’€;
+iasga(oy ®01)ij€j] (39

where - - - refers to the term involving g’ that is not relevant
to the present discussion. Note also that ag does not appear
in the above equation since A8 is not part of the R-symmetry

under which the gravitini and supersymmetry parameters are
charged.

For half-supersymmetric solutions considered in [34], it
has been shown that the twists from A? and A3 can not be
performed simultaneously, and there exist only AdS3 x H>
solutions. However, if we allow for an extra projector such
that only ‘1—1 of the original supersymmetry is unbroken, it
is possible to keep both the twists from A? and A non-
vanishing. To achieve this, we note that

ior ® 03 =i(01 @ 01)(03 ® 02). (40)
We then impose the following projector to make the two
terms with ag and as in (39) proportional

(03 @ 00)ilej = €. (41)
To cancel the spin connection, we then impose another pro-
jector

ivgsei = —(01 @ a1)i’ €. (42)
and the twist condition

aog1 +asgr = L. (43)

It should be noted that the condition (43) reduces to that of
[34] for either ay = 0 or as = 0. However, the solutions in
this case preserve only four supercharges, or N = 2 super-
symmetry in three dimensions, due to the additional projector
(41).

To setup the BPS equations, we also need the y, projection
due to the radial dependence of scalars. Following [34], this
projector is given by

yrei = LIi'¢; (44)
with I;/ defined by
I/ = (0y ®03)i’. (45)

The covariant field strength tensors for the gauge fields in
(36) can be straightforwardly computed, and the result is

HM = —a,,sin0d6 A de. (46)

For ¥, = H?2, the cancellation of the spin connection w?? =

=8 coth Be? is again achieved by the gauge field ansatz (37)
using the conditions (41), (42) and (43). On the other hand,
the covariant field strengths are now given by

HM = apsinh6dO A dg. (47)

which have opposite signs to those of the S case. This results
in a sign change of the parameter (ag, as, ag) in the corre-
sponding BPS equations.

With all these, we obtain the following BPS equations

1
¢ = 52_1€_¢_2g [gzezg(ez‘p -1
— (a5 — ag — ¥ (a5 + ag))]. (48)
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Fig. 1 An RG flow from N = 4 AdSs critical point with U(1) x SU(2) x SU(2) symmetry to N = 2 AdS; x S geometry in the IR with

U(l) x U(1) x SU(2) symmetry and g; = 1,a5 = 1 andag =0

1 1
> = _§(ﬁg123 + gz cosh @) + 52_16_2g[—\/§fca0
+x 23 (as cosh ¢ + ag sinh ¢)], (49)

1
g = 82_2 [ﬁgﬁl“ — 2V 2kage™ %8 — 2grcoshgX

— 43¢ (a5 cosh @ + ag sinh (p)] , (50)
1
f = 62_2 [ﬁgﬁ)“ + v2kage ™28 — 2g; cosh X
+2c23e~28 (as cosh ¢ + a sinh (p)]. (51)
In these equations, xk = 1 and x = —1 referto X, = 52 and

Y, = H?, respectively. It can also be readily verified that
these equations also imply the second order field equations.

We now look for AdS3 solutions from the above BPS
equations. These solutions are characterized by the condi-
tions g = ¢ =¥ =0and f' = ldsz. We find the

=
following Ad S3 solutions.

e For ¢ = 0, Ad S3 solutions only exist for ag = 0 and are

given by
2%;( 1 261;1
Y = T 8 = 8 ln —2 s
(asg1)3 81
7 2
26a]
Ladgs; = —/——. (52)

gi (1 — kasgr)

This should be identified with similar solutions of pure
N = 4 gauged supergravity found in [33]. Since ag
and ¢ vanish in this case, the AdS; solution has a
larger symmetry U (1) x U(1) x SU(2). Note also that
unlike half-supersymmetric solutions that exist only for
Y = H%, both ¥y = S? and £, = H? are possible by
appropriately chosen values of ag, as and g1, recall that
82 = —ﬁg 1.

@ Springer

e For ¢ # 0, we find a class of solutions

o= 1m [(as — ag)(aog1 — asgz)]
2 L(as +as)(aog1 +agg) |’
1
3
2
5 - V2kag 7
V(@ —ad)adst - aied)

¢ = 1 In |:2a§(a§ — ag)j|

~— ¢ 2.2 2.2
6 ap81 — ag8s

7 1 1 1
7 2 ovloo o 5 ol
26ag (a5 — ag)3 (apgy — a385)3

Laasy = (53)

aog1 (1 — kasgy) — kgia3

Note that when ag = 0, we recover the AdS3 solutions
in (52). As in the previous solution, it can also be verified
that these AdS3 solutions exist for both £, = S2 and
¥, = H>.

Examples of numerical solutions interpolating between N =
4 AdSs vacuum with U (1) x SU(2) x SU(2) symmetry to
these AdS3 x X are shown in Figs. 1 and 2. At large r, the
solutions are asymptotically N = 4 supersymmetric AdSs
critical point i given in (32). It should also be noted that the
flow solutions preserve only two supercharges due to the y;
projector imposed along the flow.

3.1.2 Solutions with U (1) x U(1)giag sSymmetry

We now move to a set of scalars with smaller unbroken sym-
metry U (1) x U(1)diag With U (1)giag being a diagonal sub-
groupof U(1) x U(1) C SU(2) x SU(2). As pointed out in
[34], there are five singlets from the vector multiplet scalars
but these can be truncated to three scalars corresponding to
the following non-compact generators of SO (5, 5)

Yo =VYs3, Y3="Y3—Ya.

Y1 = Y31 + Yaa, (54)
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Fig. 2 An RG flow from N = 4 AdSs critical point with U(1) x SU(2) x SU(2) symmetry to N = 2 AdS3 x S geometry in the IR with

U(l) x U(1) x U(1) symmetry and gy = 1, as =2 and ag = —1

The coset representative is then given by &

V= 6‘<Z>11?1 e¢2f’ze¢3f’3 ) (55)

To implement the U (1)diag gauge symmetry, we impose an ¥ =

additional condition on the parameters as and ag as follow
g2as5 = g3as. (56)

We can repeat the previous analysis for the U(1) x U(1) x
U (1) twists, and the result is the same as in the previous case
with the twist condition (43) and projectors (41), (42) and
(44).

With the same procedure as in the previous case, we obtain g =

the following BPS equations
1
¢} = 537 'sech(2¢3) sinh(21) (g2 cosh ¢ + g3 sinh ¢2),
(57
1
P = 5271 cosh(2¢) cosh(2¢3) (g2 sinh 2 + g3 cosh ¢)

1 /
+§E_1(g2 sinh ¢, — g3 cosh ¢) =
asK .
+gie “?¢ % (g2 cosh ¢ + g3 sinh ¢), (58)
3

% %! cosh(2¢) sinh(2¢3)

x (g2 cosh ¢ + g3 sinh ¢), (59)
1

— >l [— 2Kk as 23(g3 cosh ¢

0g3

+g> sinh ¢) + 2«/§Kg3a0

+e*8g3 % [cosh(2¢>1) cosh(2¢3)

x (g2 cosh ¢ + g3 sinh )

g cosh ¢y — g3 sinh ¢ + 2+/2g) 23]] , (60)
I .

— X [83 % (g3 sinh ¢

0g3

—gp cosh @) — 2«/§Kaog3e*2g

— 3 cosh(2¢1) cosh(2¢3) (g2 cosh ¢

+g3sinh ¢n) + v2g1g3*

—dxase ¥ (g cosh gy + gasinh )|, (61)
I ,

— X [83 % (g3 sinh ¢

643

— g2 cosh ¢n) + v2kapgze ¢
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— > cosh(2¢1) cosh(2¢3) (g2 cosh ¢
+g3sinh¢n) + v2g1g3*

1 2rase" 2 23 (g3 cosh ¢ + g sinh ¢2)] . (62)

From these equations, we find the following AdS3 x X
solutions.

e For ¢1 = ¢3 = 0, there is a family of AdS; solutions
given by

l (g2 — 83)(g3as — apg1g3)
I:¢p =
2 (g2 + g3)(g3as + apg183)

8= lln 2a0a5 (g3 - g2)2
6 | e3(ajetel —aled |
ﬁaog§
as\/(g3 — g3)(aggies — a3gs)

Y =-

(63)

We refrain from giving the explicit form of L 445, at this
vacuum due to its complexity.
e For ¢35 = 0, we find

3 2
o= T2 [§3+Z2:|
3
2
5 _ V2K g3

g1as\/83 — g3

2
g Lin[ 26— 5]
6 g7e3

8+/2a2(g3 — g3)
Ladas, = 5 5_3 23 : (64)
8183(1 — kasga)

e Finally, for ¢1 = 0, we find

3 — &2
IH:¢2=¢>3= [g g}
g+ &
3
2
5 — V2K g3

g1as\/&3 — &3

4 2
T C R
g183

(65)

Laasy; =

6
|:8«/—a (83_82 :|

2183(1 — kasgy)?
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Unlike the previous case, at large r, we find that solutions
to these BPS equations can be asymptotic to any of the two
N = 4 supersymmetric Ad S5 vacuaiandii given in (32) and
(33). Therefore, we can have RG flows from the two AdSs
vacua to any of these AdS3 x X; solutions. Some examples
of these solutions for ¥, = S2 are givenin Figs. 3,4, 5 and 6.

3.2 Supersymmetric black holes

We now move to another type of solutions, supersymmetric
Ad S5 black holes. We will consider near horizon geometries
of the form AdS, x ¥3 for 3 = S3 and £3 = H3. The
twist procedure is still essential to preserve supersymmetry.
For the S case, we take the metric to be
ds®> = e Dar® + dr? + 280

x [dy? + sin® Y (d6? + sin® 049 | (66)

With the following choice of vielbein

e'/} = efdvy,
¢® = ¢% sin ¢ sin d¢, (67)

ef = efdt, ¢ = dr,
¢ = % sin ydo,

we obtain non-vanishing components of the spin connection

oy =, oi=gel oy =g o =g
h cotf 7
by = ot
sin
a)%f =e¢Scotye?, w 1!/ =e 8 cot we (68)

We then turn on gauge fields corresponding to the U (1) x
SU2)diag C U(1) x SU(2) x SU(2) symmetry and con-
sider scalar fields that are singlet under U (1) x SU (2)diag.
Using the coset representative (30), we find components of
the composite connection that involve the gauge fields

. i o .
0,/ = —EglAO(Gz ® 03)i’ + 782 [A3(02 ® 1)’
—AY o3 @ 01)i! + A (o) ®01)i-/]. (69)

The components of the spin connection on S> that need to be
w? " and o’ " To impose the twist, we
set A? = 0 and take the SU (2)diag gauge fields to be

cancelled are w? e

A = az cos yrdo, At = ascosfde,
A® = ascos Y sin0d¢ (70)
together with A3+ = §—§A’” form = 3,4, 5.

By considering the covariant derivative of €; along 6 and

¢ directions, we find that the twist is achieved by imposing
the following conditions

g2a3 = graq = gras =1 (71)
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Fig. 3 An RG flow from AdSs critical point with U (1) x SU(2) x SU(2) symmetry to AdS3 x S2 critical point I for gy = 1, g3 = 2g; and

1
as =g

and projectors o'y =g, oi=ge, ot =g,
. ; . . W'y = —e_gef, 'y = —e_gez, W= flef 75
ivgpei = (2 ®@D)i’ej, iyzzei = (03 @ o1)i’e;, ? ? p=t (7>
ivp€ = (01 ®@01) ile j (72)  where various components of the vielbein are given by
. . . N X N R 8
Note that the last projector 1§ not independent of the first two. o =eldr, & =dr, & = e dx,
Therefore, the AdS, solutions preserve four supercharges y
of the original supersymmetry. Condition (71) also implies 5 e ;€8
. e’ = —dy, e =—dz. (76)
a3 = a4 = as. We will then set az = a4 = as = a from now y y
on. Using the definition (12), we find the gauge covariant
field strengths Since there are only two components, »” 5 and w5, of the
. . . . spin connection to be cancelled in the twisting process, we
HY = —ae eV nef, HY = —ae 28 A e?, turn on the following SU (2) gauge fields
H = —ae eV Ae? (73) ~
3_ 4 4 5_4
A’ =—-dx, A"=0, A’=-dz (77)
and H31T" = g—iH’” form = 3,4,5. Yy y
_ g3 :
For ¥3 = H~, we use the metric ansatz and AM3 — %Am, form = 3.4, 5.
2g Repeating the same analysis as in the S3 case, we find the
2 2f 1.2 2., ¢ 2 2 2
ds* = —e* dt* + dr? + 7(dx +dy”® +dz”) (749 twist conditions
with non-vanishing components of the spin connection gra =gra=1 (78)
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Fig. 4 An RG flow from AdSs critical point with U (1) x SU(2) x SU(2) symmetry to AdS3 X $2 critical point II for g; = 1, g3 = 2g; and
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Fig. 5 AnRG flow from Ad Ss critical point with U (1) x SU(2) x SU(2) symmetry to AdSs critical point with U (1) x SU (2)gjag Symmetry and
finally to AdS3 x S? critical point Il for g; = 1, g3 = 2g; and a5 = %
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Fig. 6 An RG flow from AdSs critical point with U(1) x SU(2) x SU(2) symmetry to AdS; x S critical point III for g; = 1, g3 = 2g; and
1

CISZZ

and projectors

iysiei = (2 ®I)i'ej, iysze = (01 @ o1)il€;,

ivizei = (03 ® 01)i’ €. (79)

The last projector is not needed for the twist with A* = 0. In
addition, it follows from the first two projectors as in the $3
case. The twist condition (78) again implies that a = a, and
the covariant field strengths in this case are given by

H? = ae 28 AoV, H*=ae et Al

H = ae 286t A&V (80)

and H™13 = i—iH’", for m = 3,4, 5. Note that although
A* = 0, we have non-vanishing H* due to the non-abelian
nature of SU (2) field strengths.

With all these ingredients, the following BPS equations
are straightforwardly obtained

1
¢ = —3 e gy — g3+ ™ (g5 + g3)]
8¢3
x [g3e2g(e4"’ -+ 4Kaez¢22] : (81)
1
%' = 5 [grcosh®p + gysin® 6 + Vg 5]
+ 5 4e28 52 (g3 cosh ¢ + g2 sinh @), (82)

83

/ 1 -1 3 3 1 2
8 —52 (g2 cosh” ¢ + g3 sinh ¢)+§glE

— L 467285 (g5 cosh ¢ + g2 sinh ), (83)
83
1 ) 1
f'==3%" (g2 cosh’ § + gz sinh’ §) + — g1 3
+ 5 467285 (g5 cosh ¢ + g sinh ). (84)
83
As in the Ad S3 solutions, k = 1 and k = —1 corresponds to
Y3 = 83 and 3 = H?, respectively.
It turns out that only x = —1 leads to an AdS> solution
given by
1
1 — 24/2
¢:§ln[g3+gz] s | 228 ’
83T 82 g1y/8 — &
2 1
1| 2a(g3 — g))3 (g3 — 83)3
g=on| =575 |, Las =777
8188, V2818383
(85)
This solution preserves N = 4 supersymmetry in two

dimensions and U (1) x SU(2)gjag Symmetry. As r — 00,
f ~ g ~ r,solutions to the above BPS equations are locally
asymptotic to either of the N = 4 AdSs vacua in (32) and
(33). RG flow solutions interpolating between these AdSs
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Fig. 7 An RG flow from AdSs critical point with U (1) x SU(2) x SU(2) symmetry to AdS> x H?3 critical point for gy = 1 and g3 = 2g

vacua and the Ad S x H? solution in (85) are shown in Figs.
7 and 8. In particular, the flow in Fig. 8 connects three critical
points similar to the solution given in the previous section.

We end this section by a comment on the possibility of
turning on the twist from A° along with those from the
SU (2)diag gauge fields. As in the previous section, if we
impose an additional projector

L ®o3)ile; = —e, (86)

the projection matrix of the A term in the composite connec-
tion (69) will be proportional to that of A3. We will consider
the S3 case for concreteness and take the ansatz for A” to be

A® = aycos ydo (87)

and proceed as in the A? = 0 case. This results in the pro-
jectors given in (72) and the twist conditions

g2a4 = goas =1 and giap + gaz =1. (88)

We can see that at this stage the parameter a3 needs not be
equal to a4 and as. However, consistency of the BPS equa-
tions from §A{ conditions require a3 = a4 = as and hence
ap = 0 by the conditions in (88). This is because A9 does

@ Springer

notappear in §A¢ variation. The resulting BPS equations then
reduce to those of the previous case with A9 = 0. So, we con-
clude that the A® twist cannot be turned on along with the
SU (2)diag twists.

4 U1) x SO@3,1) gauge group

Fornon-compact U (1) x SO (3, 1) gauge group, components
of the embedding tensor are given by

EMN = g1 (831s] — s, (89)
f3a5 = f378 = — faes = — fs61 = —&2.. (90

This gauge group has already been studied in [34]. The scalar
potential admits one supersymmetric N = 4 Ad S5 vauum at
which all scalars from vector multiplets vanish and ¥ = 1
after choosing g» = —+/2g1. At the vacuum, the gauge group
is broken down to its maximal compact subgroup U(1) x
SO (3). A holographic RG flow from this critical point to a
non-conformal field theory in the IR and a flow to Ad S3 x H>
vacuum preserving eight supercharges have also been studied
in [34]. In this case, AdS3 x S2 solutions do not exist.
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Fig. 8 AnRG flow from Ad S5 critical point with U (1) x SU(2) x SU(2) symmetry to Ad Ss critical point with U (1) x SU(2)diag Symmetry and

finally to AdSy x H?3 critical point for g; = 1 and g3 = 2g;

In this section, we will study AdS; x X, and AdS, X
33 solutions preserving four supercharges. The analysis is
closely parallel to that performed in the previous section, so
we will give less detail in order to avoid repetition.

4.1 Supersymmetric black strings

We will use the same metric ansatz as in Egs. (34) and (35)
and consider the twist from U (1) x U (1) gauge fields. The
second U (1) is a subgroup of the SO(3) C SO(3, 1). There
are in total five scalars that are singlet under this U (1) x U (1),
but as in the compact U (1) x SU(2) x SU (2) gauge group,
these can be truncated to three singlets corresponding to the
following SO (5, 5) non-compact generators
Yi=Y3 + Y, Yo=Yy —Yy, Y3=7Ys. On
With the embedding tensor (90), the compact SO (3) sym-
metry is generated by X3, X4 and X5 generators.

Using the coset representative of the form

L = etﬁl)~’1ett>2}-’ze¢3l737 (92)

we can repeat all the analysis of the previous section by using
the ansatz for the gauge fields

A® = aygcosOdp and A = ascos0de, (93)
for £y = $2 and
A% = g¢ cosh 0d¢ and A> = as cosh 0do, 94)

for £, = H?. The result is similar to the compact case with
the projectors (41) and (42) and the twist condition (43).

Using the y, projection (44), the BPS equations in this
case read

1
24%2
_ 2 + A1 +2¢2 + PRl + 4e2@1+¢3)

= e 2012 =2(d3+g) [621; [1 —

— H1+93) +462(¢1+¢2+¢3)
_e2rtads e4¢1+2¢2+4¢3] P2

_4ﬁKa0€2¢1+¢2+2¢3 _ 4Ka5€2(¢1+¢3) (1 + €2¢2) 3

_4ﬁEZ¢1+¢2+2(¢3+g)g1 24] ) 95)
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1

_ —2¢1—¢2—2(¢3+8) | _ 281 _ ,4¢
T ] BT L
) + A1 +2¢2 + PRl + 42 D1+03)
— HMo1t+¢3) +4€2(¢>1+¢2+¢3)
—e2tads e4¢1+2¢2+4¢3] Py
—8K«/§a062¢1+¢2+2¢3 _ 8Ka5e2(¢1+¢3) (1 + e2¢2) 53
42621 +¢2+2(¢3+g)g1 24] , (96)
s = 1 e 201—2=2(d3+g) [ — %8 (1 _ g
24X
) +e4¢1+2¢2 + Pals) +462(¢1+¢3)
— M1t+¢3) + 42 @1+d2+¢3)
_e2atas e4¢1+2¢2+4¢3) PP
—8K«/§a062¢1+¢2+2¢3 + 4Ka562(¢1+¢3) (1 + 62¢2) 3
_8ﬁ62¢1+¢2+2(¢3+g)g1 24] , 97)
o e 201—¢2+2¢3 (1 + e4¢1) (62¢2 — 1) o ©8)
' 2(1+e:) 3 ’
1
@, = 8726—2¢1—¢2—2<¢3+g) [ezg ("1 — &2
+e4¢1+2¢2 — M3 _ Y2 d1+¢3)
+e4(¢1+¢3) — 1+ 42 @1+d2+¢3)
_ 22143 + e4¢1+2¢2+4¢3) o
+dicase* P1+e3) (e2¢2 — 1) 22] , 99
2b1—n—2d3 (4 2 4
o — e 201—d2 ¢3(€ ¢1—1)(e4’2—1)(e¢3—1)g2
3 8% '
(100)

This set of equations admits an Ad S3 solution given by

1
NOTAN
h=¢p=0, X= ( ,
asgi
1
1 ﬁaz ﬁaz 3 2
g=In S, Lagsy = > .
3 81 81 (1 —«kasg2)
(101)

As in the compact case, X, can be either S? or H?2, depending
on the values of as, ag, g1 and g, such that the twist condition
(43)is satisfied. This is in contrast to the half-supersymmetric
solution found in [34] for which only ¥, = H 2 s
possible.

To find a domain wall interpolating between the AdSs
vacuum to this AdS3 x X, solution, we further truncate the
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BPS equations by setting ¢; = Ofori = 1, 2, 3. The resulting
equations are given by

f = 6721126_25’ (ﬁkao —26% g, T + 2cas T — ﬁezgg124> ,
(102)
g = —éefzg <2ﬁkao +26X g, T + dkas T + V2e*8 g 24) ,
(103)
¥ = _3%6—257 (ﬁ/{ao + e80T —kasT’ + ﬁezgglE“) .
(104)

An example of numerical solutions is shown in Fig. 9.

4.2 Supersymmetric black holes

We now consider AdS; x X3 solutions within this non-
compact gauge group. We will look for solutions with
U(l) x SO3) Cc U(1) x SO(3, 1) symmetry. There is one
U(1) x SO(3) singlet from the SO(5,5)/SO(5) x SO(5)
coset corresponding to the non-compact generator

Y =Y31 + Y4 — Ys3. (105)
The coset representative can be written as
L=e". (106)

Using the metric ansatz (66) and (74) together with the gauge
fields (70) and (77), we find that the twist can be implemented
by using the projectors given in (72). Furthermore, the twist
condition also implies that a3 = a4 = as = a with gra =1,
and the twist from A° cannot be turned on. The AdS, x 3
solutions preserve four supercharges.

Using the projector (44), we can derive the following BPS
equations

1
s [e_3¢ (1 — 3% — 364 + e6¢) 2
+6Kcae P28 (1 + €2¢> 2+ 2«/§g1 23] ,
1
g = Ty [e_3¢ (1 —3e?? — 364 4 e6¢) 2
—6kae ?28 (1 + €2¢> 2+ 2«/§g1 23] ,
1

X = Ee_3¢_2g [ezg (1 —3¢%? — 364

+e6¢) &+ 6rae’® (1 + 62¢> x?

—4x/§e3¢+2gg123] ,
1
I~ ,73¢-2
¢ =1z
X (ez¢ — 1) (ezg (1 + e4¢) g — 2K6162¢22) .

(110)

f =
107)

(108)

(109)
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Fig. 9 An RG flow solution from supersymmetric AdSs with U(1) x SO(3) symmetry to AdS3 x 52 geometry in the IR for U(1) x SO(3, 1)

gauge group and g1 = 1,a5 =1
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Fig. 10 An RG flow solution from Ad S5 with U (1) x SO(3) symmetry to AdS> x H> geometry in the IR for U(1) x SO(3, 1) gauge group and

g1=1

These equations admit one AdS, x H? solution given by

¢ =0, 2:—@(2)3

81
(g1s2)° 1

a o Laas, = ——
V2(8183)°
a1

while AdS> x S3 solutions do not exist.
By setting ¢ = 0, we find a numerical solution to the
above BPS equations as shown in Fig. 10.

5U@1) x SL(3, R) gauge group

In this section, we consider non-compact U (1) x SL(3, R)
gauge group. This has not been studied in [34], so we will
give more detail about the construction of this gauged super-
gravity and possible supersymmetric Ad S5 vacua.

Components of the embedding tensor for this gauge group
are given by

MV = g1 (8578 — 811, (112)
f345 = f380 = fae3 = fa97 = f569 = f578 = — &2,
fr67 =282, fa9.10= fss.10 = V3g. (113)

fun®? can be extracted from SL(3,R) generators
idg ks iz A A3 A Ag A . :

(B2 s U M da d ke U8y with o i = 1,2,...,8
being the usual Gell-Mann matrices. The compact SO (3) C

SL(3, R) symmetry is generated by X3, X4 and Xs.

5.1 Supersymmetric AdSs vacuum

The SL(3, R) factor is embedded in SO(3,5) C SO(5,5)
such that its adjoint representation is identified with the
fundamental representation of SO(3,5). The SO3) C
SL(3, R)isembeddedin SL(3, R) suchthat3 — 3. Decom-
posing the adjoint representation of SO (3, 5) to SL(3, R)
and SO(3), we find that the 25 scalars transform under
SO@3) Cc SL(3,R) as

2A1%x5) +3x5=3+3x5+7. (114)

Unlike the U (1) x SO(3, 1) gauge group, there is no singlet
under the compact SO(3) symmetry. Taking into account
the embedding of the U(1) factor in the gauge group as
described in (112), we find the transformation of the scalars
under U(1) x SO(3)

30+50+70+5+5, (115)

with the subscript denoting the U (1) charges.
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Table 1 Scalar masses at the N = 4 supersymmetric AdSs critical
point with U (1) x SO (3) symmetry and the corresponding dimensions
of dual operators for the non-compact U (1) x SL(3, R) gauge group.
The scalars are organized into representations of U (1) x SO(3) with
the singlet corresponding to the dilaton ¥

Scalar field representations m2L? A
1o —4 2
30 32 8
5o 0 4
7o 12 6
5., 21 7
5 21 7

It can be readily verified by studying the correspond-
ing scalar potential or recalling the result of [48] that this
U() x SL(3,R) gauge group admits a supersymmetric
N = 4 AdSs vacuum at which all scalars from vector multi-
plets vanish with

=1 and Vy=—3g}. (116)

We have, as in other gauge groups, set go = —«/igl to
bring this vacuum to the value of ¥ = 1. All scalar masses
at this vacuum are given in Table 1. Massless scalars in 5g
representation are Goldstone bosons corresponding to the
symmetry breaking SL(3, R) — SO(3).

5.2 Supersymmetric black strings

We now consider U(1) x U(1) c U(l) x SOQ3) C
U(1) x SL(3,R) invariant scalars. We will choose the
U(1) € SO(3) generator to be X5. From the vector mul-
tiplets, there are three singlet scalars corresponding to the
following non-compact generators

Yi=Y3 — Yag, Yo=Yy +Ys, V3=+/3s55— Vs
117)
The coset representative can be written as
L = Y e¢2fze¢3f3 (118)
which gives rise to the scalar potential
1 4
— o Hd2te3) 4¢
V=1em2¢ g2[<3+6" ’
436392 | 30803 _ 30,4(42+43) 4 3,8(¢2+¢3)
+6e4¢2+8¢3> g2 — 4/262@2+43)
X (\/5 — 262 — /342 — 34
/3l p2titn) g 53] (119)

Notice that V doesn’t depend on ¢1, consistent with the fact
that ¢, is part of the Goldstone bosons in 5 representation.

@ Springer

It can be verified that this potential admits only one super-
symmetric AdSs critical point at ¢ = ¢ = ¢3 = 0 and
¥ = 1for go = —/2g1.

We first consider AdS3 x X solutions preserving eight
supercharges. We will omit some detail since the same anal-
ysis has been carried out in [34]. By turning on gauge fields
AY and A> along % and performing the twist in Eq. (39) by
imposing only one projector
Y€ = aog1(02 ® 03)i’€j —asga(o1 ®o)i’ej,  (120)
we find that consistency of this projection condition, namely
(i)/(j;é)2 = I4, implies apas = 0, see [34] for more detail.
Therefore, for half-supersymmetric solutions, the twists from
A and A3 cannot be turned on simultaneously. Furthermore,
as shown in [34], see also a similar discussion in [39], the
twist with as = 0 does not lead to an AdS3 fixed point. We
will accordingly consider only the case of ap = Oand as # 0
which leads to the twist condition a5, = 1 and the projector

iVéqgfi = —(01 ®01)ij6j. (121)

The resulting BPS equations read

1
Ee—2(¢2+¢3+g) [eZg <\/§ el

—3e22 _ 3643 + 3t P2+643)
—2€2¢2+4¢3> g + 2/{(1562‘1J2 (1 + e4¢3) »?

124/262 @2+ 43+8) g123] ,

1
o5 o~ 2rHd3+2) [ezg (ﬁ _0p22

— 3% — /3643 4 \/3eH P2 t93)
_2ez¢z+4¢3> @ — dicase®® (1 + e4¢3) ¥2

124/22 @03t 4, 23] ,

s — %6—2(¢2+¢3+g) [e2g (\/5 — g2

—V3e*2 — /36403 4 /34 P2 403
_262¢2+4¢3> 2 + 2icase?® (1 + e4¢3) ¥2

_4ﬁ62(¢2+¢3+g)g1 23] i

$1=0

. N/ 3e 2(d2t¢3) (1 + e4¢2) (e4¢3 — 1) 2
¢ = — 45 )
o) = _ée—2(¢z+¢3+g) [ezg (zezm A3
4436492 — /3643 4 /3ot P21¢3)
—262¢2+4¢3> g2 — 2kase*? (644’3 — 1) 22] .

=

(122)

(123)

(124)
(125)

(126)

(127)
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Fig. 11 An RG flow solution from AdSs with U(1) x SO(3) symmetry to N = 4 AdS; x H? geometry in the IR for U(1) x SL(3, R) gauge

group and g1 = 1

The Killing spinors ¢; are subject to the projection conditions
(44) and

ivppei = —(01 ® 1)’ €. (128)

Asinthe U(1) x SO (3, 1) gauge group studied in [34], there
is only one supersymmetric AdS3 x H? critical point given
by

1
V2 \®
$1 =y =3 =0, z=—< 821
81
1 1
Lol g\’ . V2\°
=—=mn| — | — AdS; = :
8 2 as \ 2 : 2183

(129)

This solution is dual to a two-dimensional N = (2, 2) SCFT.
By setting ¢1 = ¢» = ¢3 = 0, we find a domain wall inter-
polating between this critical point and the supersymmetric
AdSs as shown in Fig. 11.

We now move to AdS3 x X; solutions preserving four
supercharges. The analysis follows the same line as in the
previous two gauge groups, so we will be very brief in this
section. By the same analysis as in the previous two gauge
groups, we obtain the following BPS equations

F= 12122 o202 05+8) [zﬁKaOeZ(¢z+¢3)

—e%8 («/3 — 2622 _ /36492 _ /364
+ 3 b2ts) _ 262¢2+4¢3) P>
+ 2K615€2¢2 (1 + e4¢3) »3

1222 @ 4340) g, 24] ,

1 2(pr+¢3+ +
—2(¢2+¢3+8) [4\/5 2(¢2+¢3)
e Kape
12%2 0

+e28 (ﬁ _ 2022 _ 342 _ \[3043

(130)

/

g =~

/3t B2t03) _ 262¢2+4¢3) P>

+dicase?® (1 + e4¢3) >3

_2ﬁ82(¢2+¢3+g)g124] , (131)
s 1212 o202 +05+8) [_4¢§Ka062(¢z+¢3>

+e% («/§ — 26772 — /3642 — /36493

+ 3 d2t3) _ 2e2¢72+4¢3) P>

+2kase’®? (1 + e4¢3) »3

—4\/§e2<¢2+¢’3+g)g124] , (132)
¢ =0, (133)
o — _ﬁe—2(¢2+¢3) (1 + e4¢2) (e4¢3 — 1) 2 134

i 4% ’

¢ = _8%6—2(¢2+¢3+g) [e2g (262¢2 -3

43642 — [3e403 /34 ($2103)

—2e2¢2+4¢3> g — 2kase’?? (e4¢3 — 1) 22] .

(135)

These equations admit one supersymmetric Ad S3 x X solu-
tion given by

1
NITAS
pr=¢3=0, X = ( ,
asg
1
1 \/Eaz \/§a2 3 2
g=xIn 2, Lagsy = 3 ,
3 81 81 (1 —«xasg2)
(136)

and a domain wall interpolating between this critical point
and the supersymmetric Ad Ss is shown in Fig. 12. It should
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Fig. 12 An RG flow solution from AdSs with U (1) x SO(3) symmetry to N = 2 AdS3 X 52 geometry in the IR for U (1) x SL(3, R) gauge

groupand g1 = 1,a5 =1

also be noted that this AdS3 x X, solution is the same as in
U(1) x SO(3, 1) gauge group.

5.3 Supersymmetric black holes

We end this section with an analysis of AdS> x X3 solu-
tions and domain walls connecting these solutions to the
supersymmetric AdSs. In order to preserve supersymmetry,
SO@3) C SL(3,R) gauge fields must be turned on. How-
ever, in the present case, there is no SO (3) singlet scalar
from the vector multiplets. After using the twist condition
gra = 1 and projectors in (72) and (79) together with the
ansatz for the gauge fields in (70) and (77), we obtain the
BPS equations

1
;o _ —28y2 _ 3
f= ol (2g2 brae 8% —2g% )’ (137)
1
g =—— (Zgz + 6kae 2852 — «/§g123> , (138)
6%
1
Y = -3 <g2 —3kae %% + V2g; 23) . (139)

These equations turn out to be the same as in the SO (3, 1)
case after setting all the scalars from vector multiplets to
zero. A single AdS, x H? critical point is again given by
(111).

6 Conclusions and discussions

We have found a new class of supersymmetric black strings
and black holes in asymptotically AdSs space within N = 4
gauged supergravity in five dimensions coupled to five vec-
tor multiplets with gauge groups U (1) x SU((2) x SU(2),
U() x SO@3,1) and U(1) x SL(3,R). These generalize
the previously known black string solutions preserving eight
supercharges by including more general twists along X,. Fur-
thermore, unlike the half-supersymmetric solutions which
only exhibit hyperbolic horizons, the ;lt—supersymmetric

@ Springer

black strings can have both S and H? horizons. On the other
hand, the Ad S5 black holes only feature H> horizons.

For U(1) x SU(2) x SU(2) gauge group, we have iden-
tified a number of AdS; x X, solutions preserving four
supercharges. The solutions have U (1) x U(1) x U(1) and
U(1) x U(1)diag symmetries and correspond to N = (0, 2)
SCFTs in two dimensions. We have given many examples of
numerical RG flow solutions from the two supersymmetric
AdSs vacua to these AdS3 x ¥, geometries. We have also
found a supersymmetric AdS, x H? solution describing the
near horizon geometry of a supersymmetric black hole in
AdSs. For U(1) x SO@3,1) and U(1) x SL(3,R) gauge
groups, all AdS3 x ¥ and AdS» x H 3 solutions exist only
for vanishing scalar fields from vector multiplets and have
the same form for both gauge groups.

It would be interesting to compute twisted partition func-
tions and twisted indices in the dual N = 2 SCFTs com-
pactified on ¥, and ¥3. These should provide a micro-
scopic description for the entropy of the aforementioned
black strings and black holes in AdSs space. On the other
hand, it is also interesting to find supersymmetric rotating
Ad S5 black holes similar to the solutions found in minimal
and maximal gauged supergravities [49,50] or black holes
with horizons in the form of a squashed three-sphere [51-53].
Furthermore, embedding these solutions in string/M-theory
is of particular interest and should give a full holograpic inter-
pretation for the RG flows across dimensions identified here.
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1 Introduction

Supersymmetric anti-de Sitter (AdS) vacua and their moduli spaces of gauged supergrav-
ities are of particular interest in the AdS/CFT correspondence [1]. The AdS vacua corre-
spond to conformal fixed points of the holographically dual field theories while the moduli
spaces describe the conformal manifolds near these fixed points [2, 3]. The latter encode
useful information about the exactly marginal deformations of the corresponding super-
conformal field theories (SCFTs).

AdS backgrounds of gauged supergravities and their moduli spaces have been studied
in various space-time dimensions with different numbers of supercharges. In this paper
we exclusively focus on the half-maximal gauged N = (1,1) supergravity in six space-
time dimensions (d = 6) and their maximally supersymmetric AdSg backgrounds.! This
supergravity is also known as F'(4) supergravity and was first constructed in [6]. It is
non-chiral and can be coupled to an arbitrary number n of vector multiplets. Each vector
multiplet contains four scalars and together with the dilaton in the gravity multiplet, they
parametrize the (4n + 1)-dimensional coset manifold R™ x SO(4,n)/SO(4) x SO(n). The
corresponding gauged supergravity was constructed in [7, 8] by extending the pure F'(4)
supergravity using the geometric group manifold approach. [7, 8] also showed that for a
gauge group SU(2)r x G and G C SO(n) a maximally supersymmetric AdSg vacuum exists
where the full SU(2)g x G symmetry is realized at the origin of the scalar manifold. This
vacuum could be identified with the near horizon geometry of the D4-D8 brane system [9)].
For the case of n = 3 vector multiplets and G = SO(3), another non-trivial AdSg vacuum
breaking the SU(2)r x SO(3) symmetry to SO(3)diag and preserving the full N = (1,1)
supersymmetry has been identified in [10].

In this paper we do not specify the gauge group upfront but instead follow the strategy
of [11-15] in that we first determine the general conditions on the parameters of the gauged

n fact, the N = (1,1) supergravity is the only gauged supergravity in d = 6 that admits maximally
supersymmetric AdS¢ backgrounds [4]. This in turn is consistent with the known classification of the AdS
superalgebras given in [5].



supergravity such that AdSg backgrounds which preserve all supercharges can exist. In
half-maximal supergravities it is then possible to also give all possible gauge groups that
can have such vacua. Concretely we find that the gauge group has to be of the form
G’ x G" € SO(4,n) where G’ C SO(3,m) and G” C SO(1,n —m). In the AdSg vacua this
gauge group is broken to its maximal compact subgroup SO(3)x H'x H"” where H' C SO(m)
and H” C SO(n —m). The SO(3) ~ SU(2) factor precisely is the R-symmetry and it is
gauged by three of the four graviphotons. Finally, we derive the necessary conditions for
the existence of a supersymmetric moduli space near these vacua. For the case at hand
we find that no moduli space is possible which is again consistent with the fact that the
holographically dual SCFTs have no supersymmetric exactly marginal deformations.

In the AdS/CFT correspondence, AdSg vacua are also relevant for studying strongly
coupled five-dimensional SCFTs arising from the dynamics of D4-D8 branes [9, 16]. The
interpretation in terms of AdSg geometry in [17] inspired various studies considering grav-
ity duals of these SCFTs including a recent generalization to quiver gauge theories in [18].
Finding AdSg solutions in type II and eleven dimensional supergravities also deserves de-
tailed investigations.? In this paper, however, we stay in d = 6 throughout the analysis
leaving the higher dimensional origins of these vacua for future work.

The paper is organized as follow. In section 2, we set the stage for our analysis and
recall the relevant features of N = (1,1) gauged supergravity. The conditions for the
existence of maximally supersymmetric AdSg vacua are then derived in section 3, and the
analysis of the moduli space is carried out in section 4. We finally end the paper by giving
some conclusions and comments on the results in section 5.

2 N = (1,1) gauged supergravity in six dimensions

In this section, we briefly review N = (1,1) gauged supergravity coupled to n vector
multiplets in order to set up the notation for the later analysis. More details on this
gauged supergravity can be found in [7, 8]. We will follow most of the conventions in these
two references.

The possible supermultiplets are the gravitational multiplet and n vector multiplets
given respectively by

(GZW?,A%BMWXAJ) and (AuaA/tha)I' (2'1)

The bosonic fields of the supergravity multiplet are given by the graviton ey, the dilaton
«
vector, A,, and four scalars, ¢¢. Two sets of indices o, 3,... = 0,1,2,3 and I, J,... =

o, four graviphotons A¢, and a two-form field B, while each vector multiplet contains a
1,...,n label the n + 4 vector fields. Space-time and tangent space indices are denoted
respectively by py,v = 0,...,5 and a,b = 0,...,5. We will also follow the mostly minus
space-time signature (+ — — — ——) of [7, §].

The fermionic fields consist of two gravitini @Df}, two spin—% fields x4 and 2n gaug-

A

inos )\{4. All of these fields and the supersymmetry parameter e” are eight-component

2See [19-22] for recent results along this direction and references therein.



pseudo-Majorana spinors and transform in the fundamental representation of the SU(2) g ~
USp(2) g R-symmetry denoted by indices A, B = 1,2.
The dilaton and the 4n scalars ¢! of the vector multiplets span the coset manifold

Rt x SO(4,n)/SO(4) x SO(n) . (2.2)

The second factor can in turn be parametrized by the coset representative LAE with
AY,...=1,2,....,n+ 4. It is convenient to split the indices transforming under the
compact group SO(4) x SO(n) as A = (a,I) and further under the SO(3)r x SO(n) as
A= (0,r,1) with r,s,... =1,2,3. The SO(3)g is identified with the diagonal subgroup of
SO(3) x SO(3) ~ SO(4). The coset representative can be accordingly decomposed as

LAE = (LAou LAI) = (LA07 LAT? LAI) . (23)

Furthermore, all of the n+4 vector fields will be collectively denoted by Aﬁ = (Ag, Al Aﬁ)
Being SO(4,n) matrices, the L, satisfy the relation

nmay = L0\ L0 + L' \Lis — LT\ L' (2.4)

with may = (1,1,1,1,-1,—1,...,—1).

We now turn to the gauged version of this supergravity. The most complete gauged
N = (1,1) supergravity up to now is given in [7, 8]. As in seven dimensions, the full
SO(4, n) covariant formulation in terms of the embedding tensors has not been worked out
yet although the corresponding components of the embedding tensor have been identified
in [23] using the Kac-Moody approach. In this paper, we will restrict ourselves to the
gauged supergravity constructed in [7, §].

Gauging is implemented by making a particular subgroup G of SO(4, n) local such that
the adjoint representation of G' can be embedded in the fundamental representation, n + 4,
of SO(4,n), and nay contains the Cartan-Killing form of the gauge group. Consistency
with supersymmetry requires that the structure constants are totally anti-symmetric, i.e.
fasn = f Azrnpn = fiasm]- In the embedding tensor formalism, this condition is called the
linear constraint.

The f AEF appear as structure constants in the gauge algebra

[Ta, Ts] = fax"Tr (2.5)

in which Ty are gauge generators. These structure constants must satisfy the Jacobi
identity

f[EFAfA}AH =0 (2.6)
which in the embedding tensor formalism is the so-called quadratic constraint. In general,
this constraint comes from the requirement that the gauge generators, obtained from ap-
propriate projections of the global symmetry generators by the embedding tensor, form a
closed Lie algebra of the corresponding gauge group.

The bosonic Lagrangian with only the metric and scalars non-vanishing reads

1 1
e 1L = — R+ 0u00"0 + Z<PJDPF0 +PI'PL) -V, (2.7)



where the scalar kinetic term is written in terms of the Maurer-Cartan one-forms
Ply = (LY \(dL" + fiopATLY), PLo= (LY \(dLA, + fArpATLY) . (2.8)
The scalar potential V' is given by

1 1
V=-5 m(AeU + 6me_3"L00)2 + E(Bie" — 2me 37 Lg;)?

1 1
+ m(Ae" — 18TrLe_3"Lgo)2 + E(Biea + 6me_3"L0i)2 (2.9)

1
+ Z(Cltclt + 4DItDIt)eQU — m2e_6UL0[LO]

where m is the mass of the two-form in the gravitational multiplet and we abbreviated

A=Ky, B' = " Ky, (2.10)
Cil ="K, D = Ko , ‘
with the “dressed” structure constants given by
Ko = fasnLA(L71)2LY, Ko = fasnLh (L7171,
Ap—1y S7I0 A(r—1\y 711 (2.11)
Kt = fasuLl’.(L77) LYy, Kort = fasuL’o (L) "L

The supersymmetry transformations of the fermions which will play an important role
in the following analysis are given by

5P ay = Dyea + Saprue®,
7
oxaA = 57"8“0@; + Nype®, (2.12)
SN, = —iPTIiUTABﬁuqﬁiv“eB + iPOIieABOquﬁiw?fy”eB + M geP,

where the fermion-shift matrices are defined as

Sip = 22—4 [Ae” + 6m6_3”(L_1)00] €AB — % [Bte(’ — 2me_3”(L_1)t0] 77023,

1 1
Nap = 21 [Ae” — 18me 37 (L™ )g0] ean + 3 [Bie” + 6me 37 (L™ 1)) v 0ly 5, (2.13)

Mle = (—Clt + 2i77DIt)e“af43 — 2me_3U(L_1)10776AB .

In the present convention, the anti-symmetric matrix eqp = —epa is taken to be €19 =
€2 =1. The oy matrices are related to the usual Pauli matrices atAB by the relation®

ohp =0Cgeca. (2.14)
Finally, the chirality matrix 7 is defined by

7 = 1Y0Y172737475 (2.15)

with v2 = —I and 77 = —97.

3Note that o’z = O'EAB).



3 Maximally supersymmetric AdSg vacua

We now determine the maximally supersymmetric AdSg vacua preserving all sixteen su-
percharges. In order to do so, we impose that the following conditions vanish for all
supercharges in the background

(Ovua) =0,  (6xa)=0,  (6AL)=0. (3.1)

Due to the symmetries of oy ; = J’E AB) and €eop = €[4p], the linear independence of 77 and
I and by using (2.12) and (2.13) we infer that the second and third equations imply

(Ae? — 18me 37 (L™ H)go) = 0, (3.2)
(e 7(L7hp) =0, (3-3)
(Bie + 6me 37 (L™ 1)) = 0, (3.4)
<Clt> = <DIt> =0. (3.5)
From (2.10) we learn that the first condition in (3.5) is equivalent to
€ K15 =0. (3.6)
The second condition in (3.5) yields Ko = 0 so that together we have
K5 = Kope = 0. (3.7)
Using (2.10) we can rewrite condition (3.2) as
€ K g = 18me™ 7 (L™ g0) (3.8)
which is solved by
Kyst = gérst (39)

for an arbitrary SU(2)g gauge coupling g. We can accordingly determine the background
value of the dilaton by inserting (3.9) into (3.8)

oty oy 9
e (LT oo) = 5 - (3.10)

The remaining conditions (3.3) and (3.4) give
(L) =0, (B)=—6me (L)) (3.11)

Using the component-(0) and -(0i) of the relation (2.4) and the identity L= = nL™y, we
find that Lg; = 0 implies Lg; = 0 and thus

(By) =0. (3.12)
Using the definition of B; given in (2.10) we thus arrive at

Ko =0. (3.13)



By taking the (00)-component of the relation (2.4), we find that Loy = Lg; = 0 also implies
Loo = 1. Inserting the results obtained so far into (2.9) we conclude that the background
value of the scalar potential (related to the cosmological constant) in an AdSg vacuum is
given by
3
<V>::—2mn2(£1)2. (3.14)

3m

We see that AdS vacua do not exist for m = 0 as already pointed out in [7, 8].* This is very
similar to AdS backgrounds of half-maximal supergravities in seven dimensions [13, 24, 25].
Note also that by shifting the value of (o) we can choose g = 3m as in [7, 8.

In order to continue let us recall that we are left with the unconstrained structure
constants

K, g, K1y, Korg, Kk, (3.15)

whose choice specify the particular supergravity at hand. We can now use the quadratic
constraint to determine the corresponding gauge groups. These are the gauge groups which
can occur in the supergravities that admit maximally supersymmetric AdSg vacua. For the
case at hand the quadratic constraint reduces to the usual Jacobi identity given in (2.6).

As a warm up let us first consider the simple situation where K,;;5 = Ko;j = Kjjx =0
and we only have K¢ non-zero. In this case, equation (2.6) reduces to the Jacobi identity
of an SO(3) algebra with the structure constants K,s = ge,st. We then simply recover the
pure F'(4) gauged supergravity with an SU(2) ~ SO(3) gauge group constructed in [6].

For K,r; = Ko7y = 0 but K7y # 0, the condition (2.6) gives rise to two separate
Jacobi identities for K, and Krjx which correspond to two commuting compact groups.
The gauge group is accordingly SO(3) x H with H C SO(n) and compact. This gauge
group and the resulting AdSg vacuum together with the dual five-dimensional SCFT have
already been studied in [7, §].

As a next step let us also take K,;; # 0 but still have Ky;; = 0. In this case the
SO(3)-singlet graviphoton A® decouples from all other gauge bosons. This is very similar
to the seven-dimensional case studied in [13] where the gauge groups are embedded in
SO(3,n) € SO(4,n). If one additionally assumes that the gauge group is semi-simple
one can in fact list all possibilities. The Cartan-Killing form of these gauge groups must
be embeddable in the SO(3,n) invariant tensor n = (d,s, —07s) which imposes a strong
constraint. Furthermore, the existence of supersymmetric AdSg vacua requires that the
gauge groups must contain SO(3) as a subgroup. The only possible semisimple gauge
groups are then given by

G x H (3.16)
where G = SO(3),80(3,1) or SL(3,R) and H € SO(n + 3 — dim G) is a compact group.

We finally consider the most general case with all structure constants in (3.15) non-
zero. Follow a similar analysis in [14] we introduce the gauge generators embedded in
SO(4,n) as

(Ta)p™ = fa™2 (tza)r™ = far" (3.17)

4Recall that m is the mass parameter of the two-form in the gravitational multiplet.




where (tga)p!! = 5[1;77A]F are SO(4,n) generators in the vector representation. Splitting
the indies A = (0,4, ) decomposes the gauge generators as

(To)r" = for 1, (T = fir ™, (T = frp ™, (3.18)

which couple to the vector fields A°, A* and A!, respectively.
It is more convenient to write down the various independent components of the Jacobi
identity. They read

Ky, Ky ™ =0, (3.19)

Ky K + K 'K ) + KK, =0, (3.20)

K K" + Ky K"+ Ky Kt =0, (3.21)
Ko K, "+ K/ K, =0, (3.22)

K" Ko™ + Kot Kiey™ + K" Kyei" =0, (3.23)
K[IJOKK]OM + K[IJTKK}TM + K[IJLKK]LM =0. (3.24)

The first two relations (3.19), (3.20) imply that the SO(3) generators T; have non-vanishing
elements in both SO(3) and SO(n) blocks. We therefore split the indices I, J, K, ... into
two sets f,j,f( =1,...,mand I,J,K = 1,...n — m such that only the f,j,.f( indices
mix with 7,s,¢ indices. Or, in other word, we have K ;; # 0 and K, ;; = 0. With this
convention the SO(3) generators take the form

T, = gl - , (3.25)

where 0,, indicates an n X n zero matrix.
The relation (3.22) corresponds to [T}, Tp] = 0 and thus Ty and 7; cannot have common
I, J, K indices or equivalently K;; = K;;; = 0. This determines the 7y generator to be

0
0
Ty = K 0 . (3.26)
i
Koj

Equation (3.21) and the (I,J, K, M) components of relation (3.24) imply that the T;

generators are given by
0
03 K.XK
; S (3.27)
K" Ky

On—m

Therefore, the (T3, T;) generators together form a non-compact group G’ CSO(3,m), m <n.



Finally, the relation (3.23) and the (I,.J, K, M) components of relation (3.24) deter-
mine the structure of T to be

T; = : (3.28)
0 K
Kij Kij

These generators together with T form another non-compact group G” € SO(1,n — m).
We then conclude that the general gauge group admitting maximally supersymmetric AdSg
vacua take the form

G xG" (3.29)

where G’ € SO(3,m) and G” C SO(1,n —m). In an AdSg background, the gauge group
is broken to its maximal compact subgroup SO(3) x H' x H” in which H' C SO(m) and
H" c SO(n —m).

To confirm this, we inspect the massive vector fields arising from the above symmetry
breaking. Defining Al = (L_l)fAAA and Al = (L_l)fAAA, we find that various compo-
nents of the Maurer-Cartan one-form Pla are given by

PfO _ (L_l)fAdLAO, PI; — (L—l)fAdLAT + KfjrAj,
Ply= (L \dLY + K5 A7, PL= (L7 \dL", . (3.30)

By computing the scalar kinetic terms, we can indeed see that there is precisely one massive
vector field corresponding to each non-compact generators K 7 jr and K 7 jo. These massive
vectors correspond to the broken non-compact generators of the full gauge group.

4 Moduli space of supersymmetric AdSg vacua

In this section, we determine the flat directions of the scalar potential V' which preserve
all 16 supercharges. These are the moduli of the AdSg backgrounds corresponding to
supersymmetric marginal deformations of the five-dimensional superconformal field theories
dual to the AdSg vacua identified in the previous section.

Similar to the analysis of [12-14], a necessary condition for the existence of these
moduli can be determined by considering possible deformations of the supersymmetry
conditions (3.1) near the AdSg vacua. By varying the conditions in (3.5), we find

5(e*A) = 4(A)do + eMV6A =0, (4.1)
6C!, = 6D, =6B; =0.

We now introduce a parametization of the variation of the coset representative with respect
to the 4n scalars ¢!

SLA, = (LA)og™! LA, = (LM,)d¢™ (4.3)



and their inverse
(LT ==L )de™,  S(LTHA = —{(L7h) ) ae (44)
Using these relations and the decomposition of indices o = (0, ), we find
0L = (LY)og™,  SLA = (Lh)ae,  OLY = (LA)0o% + (LY, )de" (4.5)

and

S(L) = (L) 66", S = e,
S = —((L) a6 — (L) )09 (46)

With the help of these relations, we can rewrite the conditions (4.1) and (4.2) as

0= d(e* A) = 4eM) (A)do + 3¢X9)(C, )69 (4.7)
0=0B; = (C11)0¢°! + 2€,46 (D11 )00, (4.8)
0=0C", = 26" K|, 170057 — € Knos0” — € K,i56¢, (4.9)
0= 06D, = Kop6¢" + Ko1500" — Kopidg't (4.10)

where
Korg = fasn L% (LY FLY, Koy = fasnlS (071205 (4.11)

Using the AdSg conditions (3.5), (3.7) and (3.13) obtained in the previous section, we find
00 =0, Kyj00,;7=0, Kuid¢;=0, 2K ;50045 + Kpady;=0.  (412)

From these conditions, we immediately obtain d¢,; = 0 for K,g # 0.
The last equation in (4.12) is similar to the one considered in [12, 13], and it has been
shown in [12] that this equation has general solutions of the form

56 ;=K M. (4.13)

shJ
The remaining scalars that are not fixed by the above conditions are d¢,;. We can readily
recognize that ¢ ; and d¢,; correspond to Goldstone bosons of the symmetry breaking
G'xG" — SO(3) x H' x H", with H' € SO(m) and H"” C SO(n—m) in the AdSg vacuum.
These massless scalars are eaten by the massive gauge fields mentioned in the previous
section. Thus, all of the flat directions correspond to Goldstone bosons and no moduli
exist. This in turn is consistent with the fact that there are no marginal deformations
preserving all supersymmetry in the dual five-dimensional SCFTs.

5 Conclusions

In this paper, we have analyzed the general conditions for the existence of maximally
supersymmetric AdSg vacua in the N = (1,1) half-maximal gauged supergravities in six
dimensions. We have found that three of the graviphotons have to gauge an SU(2)gr
R-symmetry while the forth one can be used to gauge a commuting non-compact group.



The fact that the SU(2) g R-symmetry must be gauged is similar to the results in d = 4,6, 7.
This is in general a necessary condition for the existence of AdS vacua as shown in [4]. Tt
is also consistent with the important role played by the corresponding R-symmetry in the
dual field theories [16]. Furthermore, all vacua we have identified have no flat directions
which preserve all supercharges corresponding to the absence of supersymmetric exactly
marginal deformations in the dual five-dimensional SCFTs.

We end the paper by briefly giving some comments on the RT x SO(4,n) covariant
formulation in term of the embedding tensor. As shown in [23], there are two components
of the embedding tensor given by &* and fasr as well as a massive deformation of the
two-form field. The & is involved in gauging of the R* factor. Due to many similarities
between the six-dimensional N = (1, 1) gauged supergravity considered here and the N = 2
gauged supergravity in seven dimensions, we expect that the R* gauging and the massive
deformation could not be turned on simultaneously. Therefore, the existence of maximally
supersymmetric AdSg vacua would require €% = 0 as shown in [13] for the seven-dimensional
case. It would be of particular interest to explore this issue in particular to construct the
complete gauging of N = (1,1) supergravity in the embedding tensor formulation.
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