บทคัดย่อ

รหัสโครงการ : RSA 5980043

ชื่อโครงการ: การทดสอบฤทธิ์ต้านเชื้อแบคทีเรียก่อโรคในกุ้งและในคนของสารสกัดเอทานอลจากสาหร่ายผมนาง (Gracilaria fisheri): กลไกการต้านแบคทีเรียและบ่งชี้สารออกฤทธิ์

ชื่อหักวิจัย:รศ. ดร. กนกพรรณ วงศ์ประเสริฐ สังกัดภาควิชากายวิภาคศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

E-mail Address :sckbp@yahoo.com, kanokpan.won@mahidol.edu ระยะเวลาโครงการ: 16 มิถุนายน 2559 ถึงวันที่ 15 ธันวาคม 2562

งานวิจัยนี้ทำการประเมินฤทธิ์ต้านเชื้อแบคทีเรียและต้านการสร้างใบโอฟิล์มของสารสกัดเอทานอลจากสาหร่าย ผมนางต่อแบคทีเรียก่อโรคในกุ้งคือเชื้อแบคทีเรียเรื่องแสง Vibrio harveyi แบคทีเรียก่อโรคตายด่วน Vibrio parahaemolyticus และแบคที่เรียก่อโรคในมนุษย์บางชนิด ผลการศึกษาพบว่าสารสกัดจากเอทานอลออกฤทธิ์ต้าน เชื้อแบคทีเรียก่อโรคในกุ้งทั้ง V. harveyi และ V. parahaemolyticus เชื้อก่อโรคในมนุษย์ ได้แก่ Bacilus subtilis, Staphylococcus epidermidis, Pseudomonas aeruginosa, Propionibacterium acnes และ Staphylococcus aureus โดยความเข้มข้นของสารที่น้อยที่สุดในการยับยั้งการเจริญของแบคทีเรียอยู่ในช่วง 0.51-10.43 มิลลิกรัมต่อ มิลลิลิตร เมื่อตรวจวัดปริมาณไบโอฟิล์มโดยวิธีย้อมสีคริสตัลไวโอเลทและภาพถ่ายจาก confocal laser scanning microscopy พบว่าสารสกัดลดการสร้างใบโอฟิล์มของ V. harveyi, V. parahaemolyticus และแบคทีเรียก่อโรคของ มนุษย์ จากการศึกษาผลของสารสกัดต่อการรบกวนสารที่ใช้ในการสื่อสารระหว่างแบคทีเรียโดยใช้สายพันธุ์ autoinducer *V. harveyi* ที่กลายพันธุ์ต่างๆ พบว่าสารสกัดเอทานอลลดการการเรื่องแสงที่ผลิตโดย *V. harveyi* โดย การรบกวน quorum sensing ของแบคที่เรียผ่านเส้นทาง Al-2 การสารสกัดบริสุทธิ์แยกสารออกฤทธิ์ทางชีวภาพ ด้วยวิธีโครมาโตกราฟีและบ่งชี้โครงสร้างของสารโดยวิธี FTIR, NMR และ HR-TOF-MS ได้สารสกัดบริสุทธิ์สอง ชนิด คือ N-benzyl cinnamamide และ กรด α-resorcylic เมื่อประเมินฤทธิ์การต้านเชื้อแบคทีเรียและต้านการ สร้างใบโอฟิล์มสารทั้งสองต่อแบคทีเรีย V. harveyi, V. parahaemolyticus, S. aureus และ S. epidermidis พบว่า N-benzyl cinnamamide มีศักยภาพการยับยั้งมากกว่ากรด α-resorcylic โดยมี MIC น้อยกว่า 10 เท่า เมื่อ ตรวจสอบการต้านการสร้างใบโอฟิล์มของสารสกัดเอทานอลในกุ้งที่ให้ติดเชื้อ V. harveyi พบมีการเกาะของเชื้อ V. harveyi ที่เยื่อบุทางเดินอาหารกุ้งน้อยกว่ากุ้งที่ไม่ได้รับสารสกัดจากเอทานอล และกุ้งมีอัตราการรอดสูงกว่า จากผล การทดลองแสดงให้เห็นว่าสารสกัดจากเอทานอลมีสารออกฤทธิ์ยับยั้งการสร้างไบโอฟิล์มของแบคทีเรียสายพันธุ์ ์ ต่างๆ โดยป้องกันการเกาะและสร้างใบโอฟิล์มของแบคทีเรีย สารออกฤทธิ์สำคัญคือ N-benzyl cinnamamide การศึกษาครั้งนี้แสดงให้เห็นถึงศักยภาพในการนำสารสกัดเอทานอล และ N-benzyl cinnamamide จากสาหร่าย ผมนางไปพัฒนาต่อยอดการวิจัยเพื่อใช้ประโยชน์ในการผลิตยาต้านแบคทีเรีย

คำหลัก สาหร่ายผมนาง; สารสกัดเอทานอล; การต้านเชื้อแบคทีเรีย; การยับยั้งการสร้างไบโอฟิล์ม; N-benzyl cinnamamide

Abstract

Project Code: RSA 5580037

Project Title: Investigation of the anti-bacterial effect of the ethanol extract from the red seaweed *Gracilaria fisheri* against shrimp pathogenic bacteria *V. parahaemolyticus*, *V. harveyi*, and human pathogenic bacteria: the underlining mechanism and bioactive compound

Investigator: Assiciate Professor Kanokpan Wongprasert, Department of Anatomy, Faculty of Science,

Mahidol University

E-mail Address: sckbp@yahoo.com, kanokpan@mahidol.edu

Project Period : June 16, 2016 - Dec 15, 2019

The present research evaluated the antibacterial and antibiofilm activities of the ethanolic extract from Gracilaria fisheri against shrimp bacteria Vibrio harveyi and Vibrio parahaemolyticus, and against a set of common human pathogenic bacteria. The bioactive compounds in the ethanolic extract were identified. Our results demonstrated that the ethanolic extract showed antibacterial activity against shrimp bacteria V. harveyi and V. parahaemolyticus and human infected bacteria including Bacilus subtilis, Staphylococcus epidermidis and Pseudomonas aeruginosa, Propionibacterium acnes and Staphylococcus aureus. The minimal inhibitory concentrations were in the range of 0.51- 10.43 mg/ml. The confocal laser scanning electron microscopy and biofilm biomass assay revealed the extract decreased biofilm formation of V. harveyi, V. parahaemolyticus, and these human pathogenic bacteria. Study by using different autoinducer V. harveyi reference strains we found that the ethanolic extract decreased the bioluminescence quorum sensing produced by V. harveyi via interfering bacterial Al-2 pathway. Following chromatographic separation of the bioactive fractions from the ethanolic extract, two pure compounds were isolated and their structures were elucidated using FTIR, NMR, and HR-TOF-MS. The compounds were N-benzyl cinnamamide and α-resorcylic acid. They were tested antibacterial and antibiofilm activities against V. harveyi, V. parahaemolyticus, S. aureus and S. epidermidis. The N-benzyl cinnamamide was more potent than Q-resorcylic acid with 10 times lesser MIC. Moreover, in vivo study of antibiofilm effect in shrimp infected with V. harveyi revealed that shrimp treated with the ethanolic extract showed less V. harveyi adhesion to the luminal surface of the digestive tract and more survival rate than control shrimp. The overall results from this study indicate that the ethanolic extract which contains the active compounds inhibits biofilm formation of various bacteria species and prevents bacteria adhesion to the host surface. Furthermore, the present study suggests the beneficial property of the N-benzyl cinnamamide from the ethanol extract as a lead antibacterial drug.

Keywords: *Gracilaria fisheri*; Ethanolic extract; Antibacterial, Antibiofilm, Quorum sensing; N-benzyl cinnamamide