รายงานวิจัยฉบับสมบูรณ์

Effects of coconut oil/or proteins isolated from mature coconut kernels on vascular functions of middle-aged male rats

โดย ศาสตราจารย์ ดร. ฉวีวรรณ จั๋นสกุล

รายงานวิจัยฉบับสมบูรณ์

Effects of coconut oil/or proteins isolated from mature coconut kernels on vascular functions of middle-aged male rats

ศาสตราจารย์ ดร. ฉวีวรรณ จั่นสกุล คณะการแพทย์แผนไทย มหาวิทยาลัยสงขลานครินทร์ หาดใหญ่

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (สกสว.)
และมหาวิทยาลัยสงขลานครินทร์

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกสว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ (Acknowledgement)

โครงการนี้ได้รับทุนอุดหนุนการวิจัยจากกองทุนสนับสนุนการวิจัย (TRF) (รหัสโครงการ RSA 5980045 ลงวันที่ 16 มิถุนายน 2559) เป็นเวลา 3 ปี นับตั้งแต่วันที่ 16 มิถุนายน 2559 ถึงวันที่ 15 มิถุนายน 2562 และได้รับอนุญาตให้ขยายเวลาต่อไปอีก 6 เดือน จนถึงวันที่ 15 ธันวาคม 2562 ผู้วิจัย ขอขอบพระคุณเป็นอย่างสูง

ขอขอบคุณคณะการแพทย์แผนไทย คณะการจัดการสิ่งแวดล้อม และสถานสัตว์ทดลองภาคใต้ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ที่อนุญาตให้ใช้สถานที่ และอำนวยความสะดวกในการ ทำการวิจัยในครั้งนี้

ศาสตราจารย์ ดร. ฉวีวรรณ จั่นสกุล

15 ธันวาคม 2562

รายละเอียดโครงการ

สัญญาเลขที่ RSA 5980045

ชื่อโครงการ (ไทย) ผลของน้ำมันมะพร้าว/หรือโปรตีนที่แยกได้จากมะพร้าวแก่สดต่อการทำงานของ หลอดเลือดในหนูแรทเพศผู้วัยกลางชีวิต

ชื่อโครงการ (อังกฤษ) Effects of coconut oil/or proteins isolated from mature coconut kernels on vascular functions of middle-aged male rats

หัวหน้าโครงการ ศาสตราจารย์ ดร. ฉวีวรรณ จั่นสกุล สังกัด คณะการแพทย์แผนไทย มหาวิทยาลัยสงขลานครินทร์ อ. หาดใหญ่ จ. สงขลา 90110

ผู้ประกอบการผู้ร่วมทุน มหาวิทยาลัยสงขลานครินทร์

งบประมาณ 1,500,000 บาท ระยะเวลา 3 ปี ระหว่างวันที่ 16 มิถุนายน 2559 ถึง วันที่ 15 มิถุนายน 2562 และได้รับอนุมัติให้ขยายเวลาต่อไปอีก 6 เดือน ถึงวันที่ 15 ธันวาคม 2562

Abstract

Project Code: RSA 5980045

Project Title: Effects of coconut oil/or proteins isolated from mature coconut kernels on

vascular functions of middle-aged male rats

Investigator: Prof. Chaweewan jansakul, Ph.D., Faculty of Traditional Thai medicine,

Prince of Songkla University, Hat-yai

E-mail Address: chaweewan.j@psu.ac.th

Project period: 3 years with an extension for 6 months

We previously found that coconut milk consumption in middle-aged male rats caused beneficial effects on the cardiovascular system: increased blood vessel eNOS and CSE protein expression, and decreased fasting blood glucose and liver cell lipid accumulation. In the present study we aimed to identify which coconut milk components: coconut milk oil (CO) or coconut milk protein (CMP) is responsible for the effects. CO was isolated from dried coconut milk by centrifugation. The CO was isolated from the coconut milk precipitate with 50% ethanol. CO (1 or 3 ml/kg), CMP (1 g/kg) or distilled water was orally gavaged to the middle-aged male rats for 6 weeks, 6-8 rats per group. Animal body weight and food intake, internal organ weight, blood biochemistry, lipid profile, basal blood pressure and heart rate and vascular functions were investigated.

In comparison to a distilled water control group, no differences were observed in any of the parameters studied in the group fed 1 ml/kg of CO except for an increase in retroperitoneal fat accumulation. Feeding 3 ml/kg of CO caused decreased fasting blood glucose, plasma alkaline phosphatase, blood urea nitrogen and liver cell lipid accumulation, but increased retroperitoneal fat tissue. It also caused decreased maximal contractile response of endothelium-intact thoracic aortic rings to phenylephrine although the effect disappeared in the presence of N-nitro-L-arginine (L-NA) or after removal of the endothelium. DL-propargylglycine (PAG) together with L-NA caused a higher contraction to phenylephrine in the CO-treated groups than in the control group. It also caused an increase in vasodilatation to acetylcholine, but not to glyceryl trinitrate, of the phenylephrine pre-contracted aortic rings. CO treatment caused increased vascular wall eNOS and CSE protein expression.

CMP caused decreased body fat and lipid accumulation in liver cells and the internal wall of the aortic arch, with no changes in blood biochemistry or CBC except that the platelete count of the CMP group was lower than that of the DW control group. CMP caused no changes in basal blood pressure or heart rate in anesthetized rats and no changes in vascular

responsiveness to phenylephrine, acetylcholine or sodium nitroprusside, but caused increased vasorelaxation to glyceryl trinitrate (GTN). PAG caused increased vasoconstriction to phenylephrine, and decreased vasorelaxation to all vasorelaxant drugs to the same extent in both groups. The expression in blood vessels of the proteins, eNOS, CSE and sGC was not different between the CMP-treated group and the DW control group. A low concentration (0.1 µM) of ODQ inhibited the vasorelaxation to GTN to the same extent in both groups, while a higher concentration (1 µM) almost completely inhibited the relaxant activity of the GTN in both groups. The basal blood vessel cGMP of the CMP-treated group was not different from the DW-treated group. However, when GTN was also added, the cGMP as well as the NO concentration of the CMP-treated group was greater than that of the DW control group. Diadzin inhibited blood vessel NO generation to the same extent in both groups, thus the NO concentration of the CMP-treated group was still greater than that of the DW control group.

Shelf-life study of the CMP was done by packaging the CMP into an aluminium laminate and incubating in the control room at 25 °C, relative humidity 75% for three months. Moisture, water activity, color (L* a* b*) and TBA were measured every month. Results showed that CMP could be kept in this condition for at least 3 months, as all of these parameters did not differ from the first month before packaging.

Taken together, CO at a dose of 3 ml/kg causes some decrease in cardiovascular risk factors in middle-aged male rats, although the amount of CO consumption should be limited as it caused an increase in retroperitoneal fat. CMP caused decreased fat accumulation, decreased platelet count, and appears to have increased the enzymatic pathway for GTN biotransformation, which resulted in an increase in NO and thus cGMP, resulting in an increase in vasorelaxation, which is beneficial in delaying or preventing GTN tolerance that normally occurs after long-term GTN treatment in humans (Jabs et al., 2015; Munzel et al., 2011& 2013). Thus, CMP is a novel protein that should be developed as a health food ingredient to prevent/slow down the development of cardiovascular disease in humans, especially from middle-age onwards.

Key words: Coconut oil; coconut protein; blood vessel; liver lipid; NO; H₂S

บทคัดยอ

รหัสโครงการ: RSA 5980045

ชื่อโครงการ : Effects of coconut oil/or proteins isolated from mature coconut kernels on

vascular functions of middle-aged male rats

ชื่อนักวิจัย : ศาสตราจารย์ ดร. ฉวีวรรณ จั่นสกุล คณะการแพทย์แผนไทย

มหาวิทยาลัยสงขลานครินทร์ อ. หาดใหญ่

E-mail Address: chaweewan.j@psu.ac.th

ระยะเวลาโครงการ: 3 ปี และได้รับอนุมัติให้ขยายเวลาอีก 6 เดือน

กลุ่มเราได้ทำการศึกษาก่อนหน้านี้โดยให้หนูแรทวัยกลางชีวิตกินกะทิสดแห้งพบว่าเป็นผลดีต่อ ระบบหัวใจและหลอดเลือด โดยมีผลทำให้เพิ่มระดับเอ็นไซม์ eNOS และ CSE ที่ผนังหลอดเลือด ลด ระดับน้ำตาลในเลือด และการสะสมไขมันที่เซลล์ตับ การศึกษาครั้งนี้จึงมีวัตถุประสงค์ที่จะศึกษาว่า องค์ประกอบหลักส่วนใดของกะทิ : น้ำมันมะพร้าว หรือกะทิโปรตีน ที่แสดงฤทธิ์ดังกล่าว ทำการทดลอง โดยนำจากกะทิสดแห้งมาปั่นด้วยความเร็วสูง ได้น้ำมันมะพร้าว (CO) อยู่ส่วนบน ส่วนล่างเป็นตะกอน ซึ่งนำไปตกตะกอนโปรตีนด้วย 50% เอทานอล กำจัดเอทานอลของตะกอนโปรตีนออกด้วยเครื่องกลั่น แบบลดความดัน แล้วนำไปทำแห้งด้วยเครื่อง freeze dry ได้เป็นกะทิโปรตีนแห้ง (CMP) ป้อน CO ขนาด 1 หรือ 3 ml/kg หรือโปรตีนขนาด 1 g/kg ให้หนูแรทเพศผู้วัยกลางชีวิตวันละ 1 ครั้ง นาน 6 สัปดาห์ เปรียบเทียบผลกับกลุ่มควบคุมที่ป้อนน้ำกลั่น ผลการทดลองเมื่อเทียบกับกลุ่มควบคุมพบว่า CO ขนาด 1 ml/kg ไม่มีผลต่อปัจจัยใดใดที่ทำการศึกษา ยกเว้นมีผลทำให้เพิ่มการสะสมไขมันในช่อง ท้องบริเวณด้านหลัง (retro-peritoneal fat) แต่ CO ขนาด 3 ml/kg มีผลทำให้ลดระดับน้ำตาลในเลือด ลดระดับ alkaline phosphatase และ urea nitrogen ในเลือด แต่เพิ่มการสะสมไขมันในช่องบริเวณ ด้านหลัง มีผลลดความแรงในการหดตัวสูงสุดของหลอดเลือดต่อ phenylephrine แต่ผลดังกล่าวจะหมด สิ้นไปถ้าถูกยับยั้งการสร้าง nitric oxide (NO) ด้วย N-nitro-L-arginine (L-NA) หรือโดยการทำลาย เนื้อเยื่อ endothelium ของหลอดเลือด การยับยั้งการสร้าง H₂S ด้วย DL-propargylglycine (PAG) ใน หลอดเลือดที่มี L-NA อยู่ด้วย มีผลทำให้เพิ่มความแรงในการหดตัวของหลอดเลือดต่อ phenylephrine โดยกลุ่มที่กิน CO หดตัวได้สูงกว่ากลุ่มควบคุมที่กินน้ำกลั่น ผลต่อการคลายตัวของหลอดเลือดพบว่า กลุ่มที่กิน CO มีผลทำให้การคลายตัวของหลอดเลือดต่อ acetylcholine คลายตัวได้มากกว่าของกลุ่ม ควบคุมที่กินน้ำกลั่น แต่ไม่พบการเปลี่ยนแปลงการคลายตัวของหลอดเลือดต่อ glyceryl (GTN) นอกจากนี้ยังพบว่าการแสดงออกของโปรตีน eNOS และ CSE ที่ผนังหลอดเลือดของกลุ่มที่กิน CO สูงกว่าของกลุ่มควบคุมที่กินน้ำกลั่น

การกิน CMP มีผลทำให้ลดการสะสมไขมันในร่างกาย ที่เซลล์ตับ และที่ผนังด้านในของ aortic arch โดยที่ไม่มีผลทำให้เกิดการเปลี่ยนแปลงผลทางชีวเคมีในน้ำเลือด รวมทั้งความสมบูรณ์ของเม็ด เลือด ยกเว้นจำนวนเกล็ดเลือดที่พบว่ามีจำนวนน้อยกว่าของกลุ่มควบคุมที่กินน้ำกลั่น การกิน CMP ไม่ มีผลต่อความดันโลหิตหรืออัตราการเต้นของหัวใจพื้นฐานในหนูแรทสลบ และไม่ทำให้เกิดการ

เปลี่ยนแปลงการตอบสนองของหลอดเลือดต่อ phenylephrine, acetylcholine หรือ sodium nitroprusside แต่มีผลเพิ่มการคลายตัวของหลอดเลือดต่อ GTN การยับยั้งการสร้าง H₂S ด้วย PAG มี ผลเพิ่มการหดตัวของหลอดเลือดต่อ phenylephrine และลดการคลายตัวของหลอดเลือดต่อ acetylcholine, sodium nitroprusside และ GTN ในขนาดที่เท่ากันทั้งกลุ่มที่กิน CMP และกลุ่มควบคุมที่ กินน้ำกลั่น การแสดงออกของโปรตีน eNOS, CSE และ sGC ที่หลอดเลือดไม่มีความแตกต่างกัน ระหว่างกลุ่มที่กิน CMP กับกลุ่มควบคุมที่กินน้ำกลั่น การยับยั้งการทำงานของ soluble guanylate cyclase ด้วย ODQ ที่ความเข้มข้นต่ำ (0.1 µM) มีผลยับยั้งการคลายตัวของหลอดเลือดต่อ GTN ใน ขนาดที่เท่ากันระหว่างกลุ่มที่กิน CMP กับกลุ่มควบคุมที่กินน้ำกลั่น แต่เมื่อความเข้มขันของ ODQ เป็น 1 µM มีผลยับยั้งการคลายตัวของหลอดเลือดต่อ GTN ได้เกือบหมดทั้งของทั้งสองกลุ่ม ระดับ cGMP พื้นฐานของหลอดเลือดทั้งสองกลุ่มไม่มีความแตกต่างกัน แต่เมื่อหลอดเลือดถูกกระตุ้นด้วย GTN พบว่า ระดับ cGMP และ NO ของหลอดเลือดของกลุ่มที่กิน CMP มีค่าสูงกว่าของกลุ่มควบคุมที่กินน้ำกลั่น การยับยั้งการทำงานของเอ็นไซม์ ALDH-2 ด้วย diadzin ในการเปลี่ยน GTN เป็น NO พบว่าสามารถ ยับยั้งได้ในขนาดที่เท่ากันทั้งสองกลุ่ม ส่งผลให้ระดับของ NO ของกลุ่มที่กิน CMP ยังคงสูงกว่าของกลุ่ม ที่กินน้ำกลั่น

การศึกษา shelf-life ของกะทิโปรตีน ทำโดยบรรจุกะทิโปรตีนในซอง Aluminium laminate เก็บ ไว้ที่อุณหภูมิ 25 ℃ มีความชื้นสัมพัทธ์ 75% นาน 3 เดือน ผลการทดสอบค่าความชื้น ค่า water activity (a_w) ค่าความหืนโดยหาค่า TBA และค่าสี (L*, a*, b*) พบว่าค่าต่าง ๆเหล่านี้ไม่มีความแตกต่าง จากจุดเริ่มตันก่อนทำการทดลอง

จากผลการทดลองทั้งหมดนี้สรุปได้ว่าการกิน CO ขนาด 3 ml/kg สามารถลดความเสี่ยงในการ พัฒนาเป็นโรคระบบหัวใจและหลอดเลือดได้ แต่ควรจำกัดปริมาณที่บริโภค เนื่องจากการกิน CO ทั้ง ขนาดที่ 1 และ 3 ml/kg มีผลทำให้เพิ่มการสะสมไขมันในช่องท้องที่บริเวณด้านหลัง แต่การกิน CMP มี ผลทำให้ลดการสะสมไขมันในร่างกาย รวมทั้งที่เชลล์ตับ และที่ผนังหลอดเลือดบริเวณขั้วหัวใจ มีผลเพิ่ม การคลายตัวของหลอดเลือดต่อ GTN ซึ่งน่าจะเป็นผลมาจากทำให้เพิ่มการทำงานใน enzymatic pathway ในการเปลี่ยน GTN เป็น NO แล้วส่งผลทำให้เพิ่มระดับ NO ซึ่งทำให้เพิ่มระดับ cGMP ส่งผล ให้มีหลอดเลือดคลายตัวเพิ่มขึ้น ซึ่งเป็นปัจจัยเชิงบวกในการชะลอ หรือป้องกันการเกิดภาวะดื้อยา GTN (GTN tolerance) ซึ่งมักจะเกิดขึ้นกับผู้ป่วยที่มีการใช้ GTN ในการรักษาโรคหลอดเลือดหัวใจตีบเป็น ระยะเวลานาน (Jabs et al., 2015; Munzel et al., 2011& 2013) ดังนั้นอาจกล่าวได้ว่า CMP เป็น novel protein ที่ควรที่จะได้รับการพัฒนาเป็นอาหารเสริมเพื่อสุขภาพเพื่อป้องกัน/ ชะลอการพัฒนาเป็น โรคระบบหัวใจและหลอดเลือดในคนโดยเฉพาะจากวัยกลางคนเป็นตันไป

คำหลัก : น้ำมันมะพร้าว; กะทิโปรตีน; หลอดเลือด; ไขมันตับ; NO; H₂S

Executive summary

Globally, cardiovascular disease is the leading cause of death (Mc Namara, et al., 2019; World-Health-Organization, 2017; Yazdanyar and Newman, 2009). Its etiology is multifactorial; age (Lakatta, 2002; 2015; Lakatta and Levy, 2003) and unhealthy nutrition are two of the main risk factors. Advancing age is associated with thickening and elastic impairment of the vascular wall (Aquaro et al., 2013; Collins 2014) and endothelial dysfunction; decreased vascular eNOS and CSE expression and thereby decreased nitric oxide and H₂S production, respectively (Novella et al., 2013; Yang et al., 2008). These changes result in a reduction of vascular compliance or distensibility (Avolio et al., 1983; Vaitkevicius et al., 1993) which is the early state of pathophysiological changes for the development of cardiovascular disease (Bhayadia et al., 2015; Marchesi et al., 2000; Rudolph et al., 2007).

Coconut, Cocos nucifera, is one of the most economically important palm species and is cultivated mainly for its nutritional endosperm: coconut milk and coconut oil are its main products (Gwee, 1988). The main constituents of coconut milk are lipids (coconut oil, 41.5%) with a small amount of carbohydrates (5.2%) and proteins (4.5%) (Pehowich, Gomes, Barnes, 2000). There is still reluctance among consumers about consuming coconut products since they are mainly composed of saturated fatty acids (40-60 %) (Dab Mandal and Mandal, 2011; Pehowich, Gomes, Barnes, 2000), which are considered an atherogen and thus potentially causative of atherosclerosis in man. Therefore, previous reports of coconut product consumption having a beneficial effect on cardiovascular risk are still controversial due to differences in the process of coconut oil preparation and study in young animals. In a recent study, Jansakul et al. (2018) demonstrated that the consumption of pure dried fresh coconut milk (CCM) for six weeks by middle-aged male rats caused up-regulation of blood vessel endothelial nitric oxide synthase (eNOS) and cystathionine γ -lyase (CSE) protein expression, which re-stored the endothelial dysfunction of the middle-aged rats to be healthy like a youngage rat, with a decreased fasting plasma glucose level. Thus, the present study aimed to investigate which component of the dried fresh coconut milk: oil or protein would be responsible for those effects.

Methods

Coconut oil and coconut milk protein preparation

Fresh mature coconut kernel was grated and compressed to obtain a fresh aqueous coconut milk and followed by lyophilization to obtain dried fresh coconut milk (CCM), which was centrifuged (3,200 rpm) at room temperature to achieve pure coconut milk oil (CO), and precipitate. The precipitate was dissolve in distilled water and the protein was precipitated with 50% ethanol. The protein precipitate was collected and the ethanol removed in an evaporator before lyophilization to obtain dried crude CMP for pharmacological- and shelf-life study.

Pharmacological studies

Middle-aged (12-14 month old) male Wistar rats were oral by administered of CO (1 or 3 ml/kg) or CMP (1 g/kg) with the control animals receiving distilled water (DW) once a day for six weeks. The body weight and 24 h food intake were recorded every consecutive 7th day over the 6-week period. At the end of treatment the basal blood pressure and heart rate of each rat was measured under anesthetized condition. After that blood sample was collected for blood biochemistry analysis and for complete blood cell count. The decapitated rats were dissected to remove aortic arch for oil red-O staining and thoracic aorta for vascular function study. Then internal organs, visceral and subcutaneous fats were removed and weighed, and a piece of liver was removed for cryostat-section and stained with oil red-O for liver cell lipid accumulation analysis.

Results

In comparison to distilled water control group, no differences were observed in any of the parameters studied in the group fed 1 ml/kg of CO except for an increase in retroperitoneal fat accumulation. Feeding 3 ml/kg of CO caused decreased fasting blood glucose, plasma alkaline phosphatase and blood urea nitrogen and liver cell lipid accumulation, but increased retroperitoneal fat tissue. It also caused decreased maximal contractile response of endothelium-intact thoracic aortic rings to phenylephrine although the effect disappeared in the presence of N-nitro-L-arginine (L-NA) or removal of the endothelium. DL-propargylglycine (PAG) together with L-NA caused a higher contraction to phenylephrine in the CO-treated groups than in the control group. It also caused an increase in vasodilatation to acetylcholine, but not to glyceryl trinitrate, of the phenylephrine pre-contracted aortic rings. CO treatment caused increased vascular wall eNOS and CSE protein expression.

CMP caused decreased body fat and lipid accumulation in liver cells and the internal wall of the aortic arch, with no changes in blood biochemistry or CBC except that the platelete count of the CMP group was lower than that of the DW control group. CMP caused no changes in basal blood pressure or heart rate in anesthetized rats nor any changes in vascular responsiveness to phenylephrine, acetylcholine or sodium nitroprusside, but caused increased vasorelaxation to glyceryl trinitrate (GTN). DL-propargylglycine (PAG) caused increased vasoconstriction to phenylephrine, and decreased vasorelaxation to all vasorelaxant drugs to the same extent in both groups. The expression in blood vessels of the proteins, eNOS, CSE and sGC was not different between the CMP-treated group and the DW control group. A low concentration (0.1 µM) of ODQ inhibited the vasorelaxation to GTN to the same extent in both groups, while a higher concentration (1 µM) almost completely inhibited the relaxant activity of the GTN in both groups. The basal blood vessel cyclic Guanosine monophosphate (cGMP) of the CMP-treated group was not different from the DW-treated group. However, when GTN was also added, the cGMP as well as the NO concentration of the CMP-treated group was greater than that of the DW control group. Diadzin inhibited blood vessel NO generation to the same extent in both groups, thus the NO concentration of the CMP-treated group was still greater than that of the DW control group.

Shelf-life study of the CMP was done by packaging the CMP into aluminium laminate and incubating in the control room at 25 °C, relative humidity 75% for three months. Then moisture, water activity, color (L* a* b*) and TBA were measured every month. Results showed that CMP could be kept in this condition for at least 3 months, as all of these parameters did not differ from the first month before packaging.

Conclusions

The study suggests that the consumption of CO at 3 ml/kg caused both beneficial and harmful effects by decreasing the fasting serum glucose and liver lipid accumulation and an increase in blood vessel eNOS and CSE protein expression, which resulted in an increase in NO and H₂S production, which, in turn, attenuated vasoconstriction to phenylephrine and facilitated relaxation to acetylcholine. However, the increase in retroperitoneal fat accumulation is a negative indicator for metabolic syndrome development and is a matter of concern for the long-term consumption of CO and the consumption of CO should thus be limited.

In case of CMP consumption, it decreased body fat and liver cell and aortic arch lipid accumulation, with a decrease in the platelet count but with no effect on any other blood biochemistry parameters. Although CMP did not affect the basal blood pressure or heart rate, it

caused potentiated relaxation of the aortic rings to GTN, which is beneficial in delaying or preventing GTN tolerance that normally occurs after long-term GTN treatment in humans (Jabs et al., 2015; Munzel et al., 2011& 2013). Thus, CMP is a novel protein that should be developed as a health food ingredient to prevent/slow down the development of cardiovascular disease in man, especially from middle-age onwards. However, further study would need to be conducted to identify the active component(s) of crude CMP.

บทสรุปสำหรับผู้บริหาร

โรคระบบหัวใจและหลอดเลือดเป็นสาเหตุหลักของการเสียชีวิตของประชากรโลก (Mc Namara, et al., 2019; World-Health-Organization, 2017; Yazdanyar and Newman, 2009) สาเหตุของโรค เกิดจากหลายปัจจัยมาเสริมกัน การเพิ่มขึ้นของอายุ (Lakatta, 2002; 2015; Lakatta and Levy, 2003) และการบริโภคอาหารที่ไม่มีคุณภาพเป็นสองปัจจัยเสี่ยงที่สำคัญในการพัฒนาไปเป็นโรคระบบหัวใจและ หลอดเลือด อายุที่เพิ่มขึ้นหลอดเลือดก็มีความหนาเพิ่มขึ้นพร้อมกับความยืดหยุ่นของผนังหลอดเลือด ลดลง (Aquaro et al., 2013; Collins 2014) และการทำงานของเยื่อบุผิวหลอดเลือดมีความผิดปกติ (endothelial dysfunction) ลดการหลั่ง nitric oxide (NO) (Novella et al., 2013) และ/หรือ H₂S (Yang et al., 2008) การเปลี่ยนแปลงดังกล่าวทำให้หลอดเลือดมีความยืดหยุ่นลดลง (Avolio et al., 1983; Vaitkevicius et al., 1993) ซึ่งเป็นระยะเริ่มต้นของการพัฒนาไปเป็นโรคระบบหัวใจและหลอดเลือด (Bhayadia et al., 2015; Marchesi et al., 2000; Rudolph et al., 2007)

มะพร้าว (Cocos nucifera L.) เป็นพืชเศรษฐกิจชนิดหนึ่งที่ปลูกเพื่อผลผลิตทางอาหารของเนื้อ มะพร้าวแก่เพื่อผลิตกะทิและน้ำมันมะพร้าว (Gwee, 1988) องค์ประกอบหลักของกะทิเป็นไขมัน (น้ำมัน มะพร้าว 41.5%) ตามมาด้วย carbohydrate (5.2%) และโปรตีน (4.5%) (Pehowich et al., 2000) นับ ถึงปัจจุบันผู้บริโภคยังขาดความมั่นใจในการบริโภคผลิตภัณฑ์จากเนื้อมะพร้าว เนื่องจากองค์ประกอบ หลักของไขมันเป็นชนิดอิ่มตัว (saturated fatty acids) ซึ่งมีประมาณ 40-60% (Dab Mandal and Mandal, 2011; Pehowich, Gomes, Barnes, 2000) และเชื่อว่าเป็นใขมันร้ายที่จะเกาะที่ผนังหลอด ทำให้พัฒนาเป็นโรคหลอดเลือดแข็งตัว (atherosclerosis) เลือด (atherogen) อย่างไรก็ตามผล การศึกษาทางวิทยาศาสตร์ที่รายงานว่าการกินผลิตภัณฑ์จากมะพร้าวเป็นผลดี หรือเสี่ยงต่อระบบหัวใจ และหลอดเลือดยังขัดแย้งกันอยู่ ทั้งนี้เนื่องจากวิธีการเตรียมน้ำมันมะพร้าวแตกต่างกัน และทำการศึกษา ในสัตว์ทดลองวัยรุ่น เมื่อเร็ว ๆ นี้ Jansakul et al. (2018) ได้ทำการทดลองในหนูแรท วัยกลางชีวิต ซึ่ง เป็นช่วงอายุที่มีเยื่อบุผิวหลอดเลือดบกพร่อง (endothelial dysfunction) โดยป้อนกะทิสดแห้งเป็นระยะ เวลานาน 6 สัปดาห์ พบว่ามีผลทำให้เพิ่มระดับเอ็นไซม์ eNOS และ CSE ที่ผนังหลอดเลือดส่งผลให้ หลั่ง NO และ H₂S ออกมาเพิ่มขึ้น นั่นคือทำให้หลอดเลือดกลับคืนสภาพมามีคุณภาพดีคล้ายกับหลอด เลือดของหนูวัยรุ่น และมีผลลดระดับน้ำตาลในเลือดด้วย ดังนั้นการศึกษาในครั้งนี้จึงมีวัตถุประสงค์ที่จะ ศึกษาว่าองค์ประกอบใดของกะทิสดแห้ง : น้ำมันมะพร้าว หรือ กะทิโปรตีน ที่แสดงฤทธิ์ดังกล่าว

วิธีทำการทดลอง

1. การเตรียมกะทิ น้ำมันมะพร้าว และโปรตีนจากกะทิ

กะทิเตรียมจากเนื้อมะพร้าวแก่สด นำมาขูดเป็นชิ้นเล็ก ๆ และคั้นโดยไม่เติมน้ำ แล้วนำไปทำ แห้งทันที่ด้วยวิธี lyophillization ได้เป็นกะทิสดแห้ง (dried fresh coconut milk, CCM) นำมาปั่นเหวี่ยง ที่ความสูงได้เป็นส่วนที่เป็นน้ำมันใส (CO) อยู่ด้านบน และส่วนที่เป็นตะกอน (precipitate) อยู่ที่กัน หลอด นำมาละลายด้วยน้ำกลั่น แล้วตกตะกอนโปรตีนด้วย 50% ethanol นำไปปั่นเหวี่ยงอีกครั้ง แยก ส่วนที่เป็นตะกอนไปกำจัด ethanol ด้วยเครื่องกลั่นแบบลดความดัน แล้วนำไปแห้งด้วยเครื่อง freeze dry ได้เป็นผงโปรตีน (CMP) นำไปศึกษาผลในสัตว์ทดลอง และศึกษา shelf-life

2 การศึกษาผลทางเภสัชวิทยา และสรีรวิทยา ในสัตว์ทดลอง

ทำการศึกษาในหนูแรทวัยเพศผู้กลางชีวิต (12-14 เดือน) โดยป้อน CO (1 หรือ 3 ml/kg) หรือ CMP (1 g/kg) ให้สัตว์ทดลองทุกวัน วันละ 1 ครั้ง นาน 6 สัปดาห์ ชั่งน้ำหนัก และอาหารที่กินสัปดาห์ละ ครั้ง เมื่อป้อนครบ 6 สัปดาห์ นำหนูแรทแต่ละตัวมาวัดความดันโลหิต และอัตราการเต้นหัวใจพื้นฐาน ในขณะสลบ จากนั้นเก็บเลือดเพื่อนำไปตรวจผลทางชีวเคมี และความสมบูรณ์ของเม็ดเลือด จากนั้นทำ ทารุณยฆาตรสัตว์ทดลอง แล้วจึงตัดแยกหลอดเลือดแดงใหญ่จากขั้วหัวใจไปย้อมด้วย oil red-O เพื่อ วิเคราะห์การสะสมไขมันที่ผนังหลอดเลือด และตัดหลอดเลือดแดงใหญ่ทรวงอก (thoracic aorta) เพื่อ นำมาศึกษาการทำงานของหลอดเลือดใน Organ bath ซากสัตว์ที่เหลือนำไปซำแหละแยกอวัยวะภายใน และไขมันในช่องท้อง และที่บริเวณใต้ผิวหนังไปซั่งน้ำหนัก เก็บตับพูกลางไปตัดเป็นชิ้นบาง ๆ ย้อมด้วย oil red-O เพื่อวิเคราะห์การสะสมไขมันในเซลล์ตับ

ผลการทดลอง

เปรียบเทียบผลการทดลองกับกลุ่มควบคุมที่ป้อนน้ำกลั่น พบว่าการกิน CO ขนาด 1 ml/kg ไม่มี ผลต่อปัจจัยใดใดที่ทำการศึกษา ยกเว้นมีผลทำให้เพิ่มการสะสมไขมันในช่องท้องบริเวณด้านหลัง (retroperitoneal fat) แต่ถ้าเพิ่มขนาดเป็น 3 ml/kg มีผลทำให้ลดระดับน้ำตาลในเลือด ลดระดับ alkaline phosphatase และ urea nitrogen ในเลือด แต่เพิ่มการสะสมไขมันในช่องท้องบริเวณด้านหลังเช่นกัน มี ผลลดความแรงในการหดตัวสูงสุดของหลอดเลือดต่อ phenylephrine แต่ผลดังกล่าวจะหมดสิ้นไปถ้า ยับยั้งการสร้าง nitric oxide (NO) ด้วย N-nitro-L-arginine (L-NA) หรือโดยการทำลายเนื้อเยื่อ endothelium ของหลอดเลือด การยับยั้งการสร้าง H₂S ด้วย DL-propargylglycine (PAG) ในหลอด เลือดที่มี L-NA อยู่ด้วย มีผลทำให้เพิ่มความแรงในการหดตัวของหลอดเลือดต่อ phenylephrine โดย กลุ่มที่กิน CO หดตัวได้สูงกว่ากลุ่มควบคุมที่กินน้ำกลั่น ผลต่อการคลายตัวของหลอดเลือดพบว่ากลุ่มที่กิน CO มีผลทำให้การคลายตัวของหลอดเลือดต่อ acetylcholine ได้มากกว่าของกลุ่มควบคุมที่กินน้ำ กลั่น แต่ไม่พบการเปลี่ยนแปลงการคลายตัวของหลอดเลือดต่อ glyceryl trinitrate (GTN) นอกจากนี้ยัง พบว่าการแสดงออกของโปรตีน eNOS และ CSE ที่ผนังหลอดเลือดของกลุ่มที่กิน CO สูงกว่าของกลุ่ม ควบคุมที่กินน้ำกลั่น

การกิน CMP มีผลทำให้ลดการสะสมไขมันในร่างกาย ที่เซลล์ตับ และที่ผนังด้านในของ aortic arch โดยที่ไม่มีผลทำให้เกิดการเปลี่ยนแปลงผลทางชีวเคมีในน้ำเลือด รวมทั้งความสมบูรณ์ของเม็ด เลือด ยกเว้นจำนวนเกล็ดเลือดที่พบว่ามีจำนวนน้อยกว่าของกลุ่มควบคุมที่กินน้ำกลั่น การกิน CMP ไม่ มีผลต่อความดันโลหิต หรืออัตราการเต้นของหัวใจพื้นฐานในหนูแรทสลบ และไม่ทำให้เกิดการ เปลี่ยนแปลงการตอบสนองของหลอดเลือดต่อ phenylephrine, acetylcholine หรือ sodium nitroprusside แต่มีผลเพิ่มการคลายตัวของหลอดเลือดต่อ GTN การยับยั้งการสร้าง H₂S ด้วย PAG มี

ผลเพิ่มการหดตัวของหลอดเลือดต่อ phenylephrine และลดการคลายตัวของหลอดเลือดต่อ acetylcholine, sodium nitroprusside และ GTN ในขนาดที่เท่ากันทั้งกลุ่มที่กิน CMP และกลุ่มควบคุมที่ กินน้ำกลั่น การแสดงออกของโปรตีน eNOS, CSE และ soluble guanylate cyclase (sGC) ที่หลอด เลือดไม่มีความแตกต่างกันระหว่างกลุ่มที่กิน CMP กับกลุ่มควบคุมที่กินน้ำกลั่น การยับยั้งการทำงาน ของ sGC ด้วย ODQ ที่ความเข้มขันต่ำ (0.1 µM) มีผลยับยั้งการคลายตัวของหลอดเลือดต่อ GTN ใน ขนาดที่เท่ากันของทั้งสองกลุ่ม แต่เมื่อความเข้มขันของ ODQ เป็น 1 µM มีผลยับยั้งการคลายตัวของ หลอดเลือดต่อ GTN ได้เกือบหมดทั้งสองกลุ่มเช่นกัน ระดับ cGMP พื้นฐานของหลอดเลือดไม่มีความ แตกต่างกันระหว่างกลุ่มที่กิน CMP กับกลุ่มที่กินน้ำกลั่น แต่เมื่อหลอดเลือดถูกกระตุ้นด้วย GTN พบว่า ระดับ cGMP และ NO ของหลอดเลือดของกลุ่มที่กิน CMP มีค่าสูงกว่าของกลุ่มควบคุมที่กินน้ำกลั่น การยับยั้งการทำงานของเอ็นไซม์ ALDH-2 ด้วย diadzin ในการเปลี่ยน GTN เป็น NO พบว่าสามารถ ยับยั้งได้ในขนาดที่เท่ากันทั้งสองกลุ่ม ส่งผลให้ระดับของ NO ของกลุ่มที่กิน CMP ยังคงสูงกว่าของกลุ่ม ควบคุมที่กินน้ำกลั่น

การศึกษา shelf-life ของ CMP ทำโดยบรรจุ CMP ในซอง aluminium laminate เก็บไว้ที่ อุณหภูมิ 25 °C มีความชื้นสัมพัทธ์ 75% นาน 3 เดือน แต่ละเดือนนำ CMP จำนวน 4 ซอง (n=4) มา ทดสอบหาค่าความชื้น, ค่า water activity (a_w), TBA และค่าสี (L* a* b*) ผลการทดลองพบว่า การเก็บ CMP นาน 3 เดือน ไม่มีผลทำให้เกิดการเปลี่ยนแปลงค่าความชื้น ค่า water activity (a_w) ค่าความหืน โดยวัดค่า TBA และค่าสี เมื่อเปรียบเทียบกับค่าของวันก่อนที่จะทำการบรรจุซอง

สรุปผลการทดลอง

จากผลการทดลองทั้งหมดนี้สรุปได้ว่าการกิน CO ขนาด 3 ml/kg สามารถลดความเสี่ยงในการ พัฒนาเป็นโรคระบบหัวใจและหลอดเลือดได้ แต่ควรจำกัดปริมาณที่บริโภค เนื่องจากการกิน น้ำมัน มะพร้าวทั้งขนาด 1 และ 3 ml/kg มีผลทำให้เพิ่มการสะสมไขมันในช่องท้องที่บริเวณด้านหลัง แต่การกิน CMP มีผลทำให้ลดการสะสมไขมันในร่างกาย รวมทั้งที่เซลล์ตับ และที่ผนังหลอดเลือดบริเวณขั้วหัวใจ มี ผลเพิ่มการคลายตัวของหลอดเลือดต่อ GTN ซึ่งน่าจะเป็นผลมาจากทำให้เพิ่มการทำงานใน enzymatic pathway ในการเปลี่ยน GTN เป็น NO แล้วส่งผลทำให้เพิ่มระดับ NO ซึ่งทำให้เพิ่มระดับ cGMP ส่งผล ให้มีหลอดเลือดคลายตัวเพิ่มขึ้น ซึ่งเป็นปัจจัยเชิงบวกในการชะลอ หรือป้องกันการเกิดภาวะดื้อยา GTN (GTN tolerance) ซึ่งมักจะเกิดขึ้นกับผู้ป่วยที่มีการใช้ GTN ในการรักษาโรคหลอดเลือดหัวใจดีบเป็น ระยะเวลานาน (Jabs et al., 2015; Munzel et al., 2011& 2013) ดังนั้นอาจกล่าวได้ว่ากะทิโปรตีนเป็น novel protein ที่ควรที่จะได้รับการพัฒนาเป็นอาหารเสริมเพื่อสุขภาพเพื่อป้องกัน/ชะลอการพัฒนาเป็น โรคระบบหัวใจและหลอดเลือดในคนโดยเฉพาะจากวัยกลางคนเป็นต้นไป

xiv

สารบัญเรื่อง (Table of Contents)	หน้า
กิตติกรรมประกาศ	i
รายละเอียดโครงการ	ii
Abstract	iii
บทคัดย่อ	v
Executive summary	vii
บทสรุปผู้บริหาร	хi
สารบัญเรื่อง	xiv
สารบัญตาราง	xvi
สารบัญรูป	xvii
คำอธิบายสัญญูลักษณ์และคำย่อที่ใช้ในการวิจัย	xviii
บทที่ 1 บทนำ	
1.1 ที่มาของโครงการวิจัย	1
1.2 วัตถุประสงค์ของโครงการวิจัย	4
บทที่ 2 ระเบียบวิธีการวิจัย	
- วัสดุ อุปกรณ์และสารเคมี	5
- การเตรียมกะทิ น้ำมันมะพร้าว และกะทิโปรตีน	5
- การศึกษาผลทางสรีรวิทยาและเภสัชวิทยา	6
การเตรียมน้ำมันมะพร้าว และกะทิโปรตีนสำหรับป้อนสัตว์ทดลอง	6
การเตรียมสัตว์ทดลอง	7
การศึกษาผลของการกินน้ำมันมะพร้าว	7
การศึกษาผลของการกินกะทิโปรตีน	10
- การวิเคราะห์ข้อมูล	12
บทที่ 3 ผลการศึกษาการกินน้ำมันมะพร้าว	
- องค์ประกอบของน้ำมันมะพร้าว	13
- ผลต่อน้ำหนักตัวและการกินอาหาร และการสะสมของไขมันในร่างกาย	14
- ผลต่อระดับน้ำตาล ไขมัน สารชีวเคมีในเลือด และความสมบูรณ์ของเม็ดเลือด	16

สารบัญเรื่อง (Table of Contents)	หน้า
- ผลต่อการสะสมไขมันที่เซลล์ตับ และที่ aortic arch	19
- ผลต่อความดันโลหิตและอัตราการเต้นของหัวใจ	20
- ผลต่อการทำงานของหลอดเลือด	21
บทที่ 4 ผลการศึกษาต่อการกินกะทิโปรตีน	
- องค์ประกอบของกะทิโปรตีน	23
- ผลต่อน้ำหนักตัวและการกินอาหาร และการสะสมของไขมันในร่างกาย	24
- ผลต่อระดับน้ำตาล ไขมัน สารชีวเคมีในเลือด และความสมบูรณ์ของเม็ดเลือด	25
- ผลต่อการสะสมไขมันที่เซลล์ตับ และที่ aortic arch	28
- ผลต่อความดันโลหิตและอัตราการเต้นของหัวใจ	29
- ผลต่อการทำงานของหลอดเลือด	29
- ผลการศึกษา shelf-life ของกะทิโปรตีน	34
บทที่ 5 วิจารณ์และสรุปผลการทดลอง	35
บทที่ 6 Outcome จากโครงการที่ได้รับทุนจาก สสกว	40
เอกสารอ้างอิง	43
ภาคผนวก 1 ผลงานตีพิมพ์เรื่องกะทิ	48
ภาคผนวก 2 ผลงานตีพิมพ์เรื่องน้ำมันมะพร้าว	49
ภาคผนวก 3 manuscript เรื่องกะทิโปรตีน	50
ภาคผนวก 4 อนุสิทธิบัตร (ร่าง)	51

xvi

สารบัญตาราง (List of Table)	หน้า
บทที่ 3 ผลของน้ำมันมะพร้าว	
ตารางที่ 1 องค์ประกอบของน้ำมันมะพร้าว	13
ตารางที่ 2 ผลต่อน้ำหนักอวัยวะภายใน	15
ตารางที่ 3 ผลต่อน้ำหนักไขมันในร่างกาย	16
ตารางที่ 4 ผลต่อระดับน้ำตาลและไขมันในเลือด	16
ตารางที่ 5 ผลต่อระดับเอนไซม์ตับ และไต และระดับ BUN และ Creatinine ในเลือด	17
ตารางที่ 6 ผลต่อความสมบูรณ์ของเม็ดเลือด	18
ตารางที่ 7 ผลต่อความดันโลหิต	20
บทที่ 4 ผลของกะทิโปรตีน	
ตารางที่ 1 องค์ประกอบของกะทิโปรตีน	23
ตารางที่ 2 ผลต่อน้ำหนักอวัยวะภายใน	24
ตารางที่ 3 ผลต่อน้ำหนักไขมันในร่างกาย	25
ตารางที่ 4 ผลต่อระดับน้ำตาลและไขมันในเลือด	25
ตารางที่ 5 ผลต่อระดับเอนไซม์ตับ และไต และระดับ BUN และ Creatinine ในเลือด	26
ตารางที่ 6 ผลต่อความสมบูรณ์ของเม็ดเลือด	27
ตารางที่ 7 ผลต่อความดันโลหิต	29
ตารางที่ 8 ผลการศึกษา shelf-life ของกะทิโปรตีน	34

xvii

สารบัญรูป (List of Figures)	หน้า
บทที่ 3 ผลการทดลองเรื่องการกินน้ำมันมะพร้าว	
รูปที่ 1 ผลต่อการกินอาหารและน้ำหนักตัว	14
รูปที่ 2 ผลต่อการสะสมไขมันที่เซลล์ตับ	19
รูปที่ 3 ผลต่อการสะสมไขมันที่ผนังหลอดเลือด aortic arch	19
รูปที่ 4 การหดตัวของหลอดเลือดต่อ phenylephrine	21
รูปที่ 5 การคลายตัวของหลอดเลือดต่อ acetylcholine และ glyceryl trinitrate	22
รูปที่ 6 ระดับโปรตีน eNOS และ CSE ที่ผนังหลอดเลือด	22
บทที่ 4 ผลการทดลองเรื่องการกินกะทิโปรตีน	
รูปที่ 1 องค์ประกอบของกะทิโปรตีน	23
รูปที่ 2 ผลต่อการกินอาหารและน้ำหนักตัว	24
รูปที่ 3 ผลต่อการสะสมไขมันที่เซลล์ตับ	28
รูปที่ 4 ผลต่อการสะสมไขมันที่ผนังหลอดเลือด aortic arch	28
รูปที่ 5 การหดตัวของหลอดเลือดต่อ phenylephrine	30
รูปที่ 6 การคลายตัวของหลอดเลือดต่อ acetylcholine, sodium nitroprusside และ	31
glyceryl trinitrate	
รูปที่ 7 ผลของ ODQ ต่อการคลายตัวของหลอดเลือดต่อ glyceryl trinitrate	32
รูปที่ 8 ระดับโปรตีน eNOS, CSE และ sGC ที่ผนังหลอดเลือด	32
รูปที่ 9 ระดับ cGMP ที่ผนังหลอดเลือด	33
รูปที่ 10 ระดับ NO ที่ผนังหลอดเลือด	34

xviii

คำอธิบายสัญลักษณ์และคำย่อที่ใช้ในการวิจัย (List of Abbreviations)

Alp = Alkaline phosphatase

ALDH-2 = Aldehyde dehydrogenase-2

BP = Blood pressure

BUN = Blood Urea Nitrogen

CCM = Coconut milk

CMP = Coconut milk protein

CO = Coconut oil

Chol = Cholesterol

Crea = Creatinine

CSE = Cystathionine- γ -lyase

DW = Distilled water

Endo = Endothelium

Glu = Glucose

Hb = Hemoglobin

Hct = Hematocrit

HDL-C = High density lipoprotein

LDL-C = Low density lipo protein

L-NA = N-nitro-L-arginine

Lymp = Lymphocyte

MAP = Mean arterial blood pressure

MCH = Mean corpuscle hemoglobin

MCHC = Mean corpuscle hemoglobin conc entration

MCV = Mean corpuscle volume

No endo = No endothelium

PAG = DL-propargylglycine

PMN = Polymorphonuclear neutrophil

SGOT = Serum glutamic-oxaloacetic transaminase (Aspartate aminotransferase, AST)

TG = Triglyceride

WBC = White blood cell count

บทที่ 1

บทน้ำ

ที่มาของโครงการวิจัย และทบทวนเอกสาร

อายุเป็นปัจจัยสำคัญที่สุดปัจจัยหนึ่งที่นำไปสู่การเป็นโรคระบบหัวใจและหลอดเลือด (Lakatta, 2002; 2015; Lakatta and Levy, 2003) ซึ่งเป็นสาเหตุหลักของการเสียชีวิต ทุพลภาพ และภาระ ค่าใช้จ่ายอย่างมหาศาลในการดูแลของประชากรโลก (Mc Namara, et al., 2019; World-Health-Organization, 2017; Yazdanyar and Newman, 2009) ในคนหนุ่มเพศชายอายุ 30 ปี แม้ไม่ได้ดูแล ตัวเองในเรื่องอาหารและครอบครัวมีประวัติของโรคหลอดเลือดโคโรนารี ก่อนวัยอันควร (premature coronary heart disease) จะมีอัตราเสี่ยงของการเป็นโรค coronary heart disease ภายใน 10 ปี เพียง 16 % ในขณะที่ผู้สูงวัยมีอายุ 60 ปี มีอัตราเสี่ยงของการเป็นโรค coronary heart disease สูงถึง 50% (Thijssen et.al., 2009) ในโลกปัจจุบันประชากรผู้สูงอายุเพิ่มขึ้นด้วยอัตราสูงในเกือบทุกประเทศ ซึ่งจะ ส่งผลให้มีจำนวนประชากรผู้สูงอายุมากกว่าประชากรหนุ่มสาวใน 10 ปีข้างหน้านี้ (NIA, 2011; UN, 2013) ดังนั้นการดูแลสุขภาพตัวเองตั้งแต่วัยกลางคนโดยการออกกำลังกาย และ/หรือการได้รับ สารอาหารที่เหมาะสมเพื่อป้องกันหรือเสริมการรักษาการเป็นโรคระบบหัวใจและหลอดเลือด จะเป็นการ ป้องกัน และ/ หรือช่วยชลอพัฒนาการของโรคระบบหัวใจและหลอดเลือดให้ดำเนินช้าลง จะส่งผลให้มี คุณภาพชีวิตที่ดียืนยาว ลดภาระของครอบครัว สังคม และค่าใช้จ่ายในการดูแล

การเพิ่มขึ้นของอายุ โครงสร้างของหลอดเลือดมีการเปลี่ยนแปลงร่วมไปด้วย โดยหลอดเลือดมี ความหนาเพิ่มขึ้นพร้อมกับความยืดหยุ่นของผนังหลอดเลือดลดลง (Aquaro et al., 2013; Collins 2014) และการทำงานของเยื่อบุผิวหลอดเลือดมีความผิดปกติ (endothelial dysfunction) คือการ แสดงออกของโปรตีน endothelial nitric oxide synthase (eNOS) ลดลงส่งผลให้หลอดเลือดหลั่ง nitric oxide (NO) ลดน้อยลง (Novella et al., 2013) การเปลี่ยนแปลงดังกล่าวทำให้หลอดเลือดมีความ ยืดหยุ่นลดลง (Avolio et al., 1983; Vaitkevicius et al., 1993) ซึ่งเป็นระยะเริ่มตันของการพัฒนาไป เป็นโรคระบบหัวใจและหลอดเลือด (Bhayadia et al., 2015; Marchesi et al., 2000; Rudolph et al., 2007)

ปัจจุบันเป็นที่ยอมรับแล้วว่า H_2S เป็นสารอีกชนิดหนึ่งที่หลั่งออกมาจากหลอดเลือดโดยการ ทำงานของเอ็นไซม์ cystathionine- γ -lyase (CSE) เปลี่ยน L-cysteine เป็น H_2S (Abe and Kimula, 1996; Hosoki et al., 1997) มีบทบาทสำคัญในการปรับการทำงานของหลอดเลือด การมีระดับ H_2S ที่ หลอดเลือดลดลงมีผลทำให้เกิด endothelial dysfunction และมีความดันโลหิตสูงขึ้นตามอายุของหนู mice ที่เพิ่มขึ้น (Yang et al., 2008)

มะพร้าว (Cocos nucifera L.) โดยเฉพาะอย่างยิ่งในส่วนของเนื้อมะพร้าวแก่เป็นองค์ประกอบ ของอาหารของประชาชนในแถบ Asia-Pacific มาแต่โบราณกาล แต่ในช่วง 20-30 ปีมานี้ เชื่อกันว่าการ บริโภคมะพร้าวเป็นอันตรายต่อสุขภาพ เนื่องจากมะพร้าวมืองค์ประกอบหลักเป็นน้ำมันมะพร้าวซึ่งมี องค์ประกอบหลักเป็นไขมันอิ่มตัว (saturated oil) ทำให้มีการสะสมไขมันที่หลอดเลือด (atherogen) ทำ ให้มีระดับไขมันในเลือดสูง และเป็นโรคหลอดเลือดหัวใจในคน (Dayrit, 2003; Pehowich et al., 2000) อย่างไรก็ตามองค์ประกอบหลักของไขมันอิ่มตัวของไขมันอิ่มตัวของน้ำมันมะพร้าวเป็นไขมันชนิดสาย ยาวปานกลาง (medium chain fatty acid) ที่มีความยาวที่ 8: 0 ถึง 12: 0 ซึ่งจะถูกดูดซึมจากทางเดิน อาหารเข้าสู่ portal vein โดยตรง ยกเว้น lauric acid (12: 0) ที่บางส่วนจะถูกดูดซึมเข้าทางหลอด ้น้ำเหลือง (Mu and Hoy, 2000; 2001; 2002) ดังนั้นคำกล่าวอ้างที่เป็น atherogen ของน้ำมันมะพร้าว จำเป็นต้องมีการทบทวนกันใหม่ ซึ่งก็มีรายงานการศึกษาที่ยืนยันว่ามะพร้าวไม่ได้เป็นโทษดังกล่าว โดย พบว่าระดับ cholesterol ในเลือดของประชากรของประเทศที่บริโภคมะพร้าวเป็นอาหารหลัก เช่น ประชากรที่เกาะ Puka Puka และ Tokelau พบว่าระดับ cholesterol ในเลือดมีค่าประมาณ 170-216 ml/dl ซึ่งอยู่ในระดับเกณฑ์เฉลี่ยปกติ (Prior et al., 1981) Kumar (1997) ศึกษาเปรียบเทียบการกิน อาหารของคนในเมือง Kerala ซึ่งอยู่ทางใต้ของประเทศอินเดียระหว่างคนที่เป็น coronary heart disease กับคนปกติที่ไม่เป็นโรค พบว่าคนทั้งสองกลุ่มนี้กินอาหารที่มีมะพร้าวและน้ำมันมะพร้าวใน ปริมาณเท่า ๆ กัน ปริมาณของไขมัน ไขมันอิ่มตัว และ cholesterol ที่กินก็ไม่แตกต่างกัน จากผล การศึกษานี้ทำให้ Kumar เชื่อว่ามะพร้าวหรือน้ำมันมะพร้าวไม่ใช่ปัจจัยหลักที่ทำให้เกิดเป็นโรค coronary heart disease ในคน การศึกษาในลักษณะคล้ายกันนี้ Lipoeto et al. (2004) ได้ศึกษากับ กลุ่มประชากร Minangkau ที่สุมาตราตะวันตก ประเทศ indonesia พบว่าได้ผลแบบเดียวกัน สำหรับ การศึกษาในสัตว์ทดลองให้ผลที่ขัดแย้งกัน Wilson et al. (2005) เนื่องจากกรรมวิธีในการเตรียมน้ำมัน มะพร้าวแตกต่างกัน กล่าวคือ การศึกษาใน hamster ให้กินอาหารที่ทำให้มีระดับ cholesterol ในเลือด สูง (hypercholesterolemic hamster) โดยให้ hamster กินอาหารที่มีส่วนผสมของน้ำมันปาล์ม หรือ ส่วนผสมของน้ำมันมะพร้าว เป็นเวลา 10 สัปดาห์ พบว่า hamster ที่กินอาหารมีส่วนผสมของน้ำมัน มะพร้าวมีระดับของ plasma lipid hydroperoxide และ esterified cholesterol ที่ thoracic aorta สูงกว่า กลุ่มที่ได้รับอาหารที่มีส่วนผสมของน้ำมันปาล์มซึ่งเป็นการชี้แนะว่า hamster ที่กินอาหารมีส่วนผสมของ น้ำมันมะพร้าวมีความเสี่ยงทำให้หลอดเลือดแข็งตัวมากกว่ากลุ่มที่กินส่วนผสมของน้ำมันปาล์ม ส่วน Nevin and Rajamohan (2004) ทำการศึกษาในหนูแรท (Sprague-Dawley) อายุประมาณ 1 เดือน โดย ให้กิน virgin coconut oil หรือ copra oil (น้ำมันมะพร้าวคั้นจากเนื้อมะพร้าวแห้ง) เป็นเวลา 45 วัน พบว่าหนูแรทที่กิน virgin coconut oil มีระดับ total cholesterol, triglycerides, phospholipids, LDL และ VLDL ในเลือดลดลง แต่กลับมีระดับ HDL เพิ่มขึ้นเมื่อเทียบกับกลุ่มที่กิน copra oil และได้ผลใน ทำนองเดียวกันเมื่อให้หนูแรทขนาดอายุดังกล่าวกิน virgin coconut oil พร้อมกับอาหารที่มี cholesterol เป็นส่วนผสมอยู่ด้วย (Nevin and Rajamohan, 2007) จากข้อมูลดังกล่าวนี้เป็นการชี้แนะว่า virgin coconut oil มีผลทำให้ลดระดับ cholesterol และ triglyceride ในเลือดของหนูแรท วัยรุ่น (อายุประมาณ 1 เดือน) แต่น้ำมันมะพร้าวที่ได้จากการสกัดด้วยวิธีอื่น เช่น copra oil ซึ่งสกัดจากมะพร้าวตากแห้ง หรือ น้ำมันมะพร้าวสกัดร้อนกลับมีผลทำให้เพิ่มระดับ cholesterol และ triglyceride ในเลือดสูงขึ้นซึ่งเป็น ้ ปัจจัยเสี่ยงที่จะนำไปสู่การพัฒนาไปเป็นโรคความดันโลหิตสูงถ้ามีการบริโภคเป็นระยะเวลานาน ดังนั้น สมควรที่จะต้องมีการศึกษาอย่างจริงจังอีกครั้ง เพื่อพิสูจน์ให้เป็นที่แน่ชัดว่าน้ำมันมะพร้าวเอง หรือสาร อื่นในน้ำมันมะพร้าวที่มีผลดีต่อสุขภาพ

ประมาณ 25% ของมะพร้าวที่ใช้บริโภคจะถูกสกัดจากเนื้อมะพร้าวมาใช้ในรูปของกะที (Gwee, 1988) กะทินอกจากมีองค์ประกอบหลักเป็นไขมัน (41.5%) แล้วยังมีส่วนประกอบที่เป็น carbohydrate (5.2 %) โปรตีน 4.5 % วิตามิน (Thiamine (B-1), Niacin และสารเกลือแร่ต่าง ๆ Calcium, Iron, Phosphorus, Potassium, ascorbic acid (Pehowich et al., 2000) และสารพวก cytokinin เช่น zeatin (Kobayashi et al., 1995, 1997) ซึ่งเป็นสารที่มีผลยับยั้งการสร้าง beta-amyloid ที่ทำลายเซลล์ประสาทที่เป็นสาเหตุ ของโรคความจำเสื่อม เพิ่มแรงหดตัวของกล้ามเนื้อหัวใจ (Froldi et al., 1999) และช่วยสร้าง skin fibroblast ช่วยชะลอความแก่ในคน (Rattan et al., 2005) ดังนั้นการกินกะทิอาจจะให้ผลแตกต่างจาก การกินน้ำมันมะพร้าว การศึกษาทางวิทยาศาสตร์เพื่อยืนยันผลของการกินมะพร้าวยังมีไม่มาก เท่าที่มี รายงานเป็นการศึกษาผลของการให้กินเนื้อมะพร้าวสด (fresh coconut kernel) โดย Nair และคณะ (1998) เป็นกลุ่มแรกที่ทำการศึกษาโดยให้หนูแรทเพศผู้กินเนื้อมะพร้าวสด เปรียบเทียบกับกลุ่มที่ให้กิน น้ำมันมะพร้าวอย่างเดียว และกลุ่มที่ให้กินเนื้อมะพร้าวร่วมด้วย พบว่ากลุ่มที่ให้กินเนื้อมะพร้าวอย่าง เดียว หรือร่วมกับน้ำมันมะพร้าวมีค่า serum total cholesterol, HDL cholesterol, VLDL และ LDL cholesterol ลดลง แต่กลับมี triglyceride สูงกว่ากลุ่มที่ให้กิน coconut oil เพียงอย่างเดียว โดยที่ผู้วิจัย กลุ่มนี้เชื่อว่าสารออกฤทธิ์ในเนื้อมะพร้าวน่าจะเป็นสารประเภทโปรตีนเนื่องจากโปรตีนจากเนื้อมะพร้าว เป็นโปรตีนจากพืช โดยได้ความคิดมาจาก Stamler et al. (1958) ที่รายงานว่าการให้กินโปรตีนจากถั่ว เหลืองซึ่งเป็นโปรตีนจากพืชมีผลทำให้ลดการเกิด atherosclerosis ที่หลอดเลือด aorta และที่ coronary artery เมื่อเปรียบเทียบกับกลุ่มที่ให้กิน casein ซึ่งเป็นโปรตีนจากน้ำนม Nair และคณะ จึงได้ ทำการศึกษาเพิ่มเติมโดยสกัดโปรตีนจากเนื้อมะพร้าวแล้วนำมาให้หนูแร็ทกินเปรียบเทียบกับกลุ่มที่ให้ กิน casein พบว่ากลุ่มที่ให้กินโปรตีนจากเนื้อมะพร้าวมีระดับ total cholesterol, phospholipid และ triglycerides ในเลือดลดลงเมื่อเปรียบเทียบกับกลุ่มที่ให้กิน casein ต่อมาในปี 2001, Salil และ Rajamohan ทำการศึกษาผลของการให้กินโปรตีนจากเนื้อมะพร้าวในหนูแรทที่ชักนำให้เป็น hypercholesterolemia (โดยการให้กินอาหารที่มี cholesterol สูง) เปรียบเทียบกับกลุ่มที่ให้กิน Larginine พบว่าหนูทั้งกลุ่มที่ให้กินโปรตีนจากเนื้อมะพร้าวและกลุ่มที่ให้กิน L-arginine มีระดับของ total cholesterol, LDL+VLDL cholesterol, triglycerides และ phospholipids ในเลือดลดลง แต่กลับมี HDL cholesterol ในเลือดสูงขึ้น Mini และ Rajamohan (2004) ทำการทดลองแบบเดียวกันแต่ชักนำให้หนู แรทเป็น hyperlipidemia โดยการให้กิน ethanol พบว่าทั้งกลุ่มที่ให้กินโปรตีนจากเนื้อมะพร้าว และ กลุ่มที่ให้กิน L-arginine มีผลทำให้ลดระดับของไขมันในเลือดแบบเดียวกับกลุ่มที่ชักนำให้เป็น hypercholesterolemia จากผลดังกล่าวนี้ Salil และ Rajamohan เชื่อว่าสารที่ออกฤทธิ์ดังกล่าวใน ์ โปรตีนจากเนื้อมะพร้าวน่าจะเป็น L-arginine ซึ่งต่อมาในปี 2011, Salil และคณะได้ทำการวิเคราะห์หา ชนิด และปริมาณของ amino acid ที่เป็นองค์ประกอบของโปรตีนจากเนื้อมะพร้าว พบว่าโปรตีนจากเนื้อ มะพร้าวเป็นพวก globulin และมี arginine เป็นองค์ประกอบประมาณ 17.8 % ซึ่งมีมากเป็นอันดับที่ 2 รองจาก glutamic acid รวมกับ aspartic acid ซึ่งมีอยู่ประมาณ 24.7 % สำหรับผลของการกินกะทิ มี เพียง 2 รายงาน ทำการทดลองในคนปกติกิน coconut milk porridge 5 วันต่อสัปดาห์ เป็นระยะเวลา 8 สัปดาห์ พบว่ามีผลทำให้ลดระดับ LDL แต่เพิ่ม HDL cholesterol ในเลือด (Ekanayaka et al., 2013) อีก 14 การทดลองทำในสัตว์ทดลองกลุ่มของดิฉัน (Jansakul et al., 2018) ทำการทดลองโดยป้อนกะทิ

สดแห้งขนาด 3 mg/kg ให้หนูเพศผู้วัยกลางชีวิต นาน 6 สัปดาห์พบว่ามีผลทำให้เพิ่มระดับโปรตีน eNOS และ CSE ที่ผนังหลอดเลือด มีผลทำให้หลอดเลือดหลั่ง NO และ H₂S เพิ่มขึ้นส่งผลเพิ่มการ คลายตัวของหลอดเลือดต่อ acetylcholine และต้านการหดตัวของหลอดเลือดต่อ phenyleprine เป็นการ ชี้แนะว่ากะทิสดแห้งมีผลทำให้หลอดเลือดของหนูวัยกลางชีวิตที่มี endothelial dysfunction คืนสภาพ เป็น healthy endothelium คล้ายกับหลอดเลือดของวัยหนุ่ม-สาว ซึ่งเป็นผลดีต่อสุขภาพในการป้องกัน/ ชะลอการพัฒนาไปเป็นโรคระบบหัวใจและหลอดเลือด ดังนั้นจึงเป็นเรื่องที่น่าสนใจเป็นอย่างยิ่งที่ควรจะ ได้มีการศึกษาเพิ่มเติมต่อไปเพื่อค้นหาว่าองค์ประกอบใดของกะทิสดที่มีฤทธิ์ดังกล่าว ดังนั้นใน การศึกษาเจิ้งนี้จึงมีวัตถุประสงค์ที่จะแยกน้ำมัน และโปรตีนจากกะทิแห้งสด แล้วนำมาศึกษาในหนู แรทวัยกลางชีวิตในทำนองเดียวกับการศึกษาผลของการกินกะทิสด พร้อมทั้งพัฒนาโปรตีนจากกะทิเป็น health product สำหรับป้องกัน/ชะลอหลอดเลือดของผู้สูงวัยให้มีคุณภาพดีอย่างยาวนานยิ่งขึ้น

วัตถุประสงค์ของการวิจัย

เพื่อศึกษาผลของการกินน้ำมันมะพร้าว หรือ โปรตีนจากกะทิในหนูแรทเพศผู้วัยกลางชีวิต (12-14 เดือน) นาน 6 สัปดาห์ ต่อ

- 1. น้ำหนักตัว และการกินอาหาร
- 2. การสะสมไขมันในร่างกาย ที่เซลล์ตับ และที่หลอดเลือดติดขั้วหัวใจ (aortic arch)
- 3. ระดับน้ำตาลและไขมัน (glucose, cholesterol, triglyceride, LDL, HDL) ในเลือด
- 4. การทำงานของตับและไต โดยการวัดระดับของ alkaline phosphatase (Alp), SGPT, SGOP, blood urea nitrogen (BUN) และ creatinine (Cr) ในเลือด
 - 5. ความดันเลือดและอัตราการเต้นของหัวใจพื้นฐาน (basal blood pressure and heart rate) ในหนู แรทสลบ
 - 6. การทำงานของหลอดเลือดที่ตัดแยกออกมาศึกษานอกตัว

บทที่ 2

ระเบียบวิธีการวิจัย

1. อุปกรณ์และสารเคมี

- เครื่อง freeze dryer
- เครื่องชั่งอย่างละเอียด
- เครื่องมือผ่าตัดครบชุด พร้อมเข็ม หลอดฉีดยา และใหมเย็บแผล
- ท่อ polyethylene และท่อ silicone ขนาดต่าง ๆ
- เครื่องบันทึกกราฟ (polygraph) พร้อมอุปกรณ์
- Organ bath พร้อมเครื่องควบคุมอุณหภูมิ
- Carbogen gas
- Automatic pipet และ Pipet tip ขนาดต่าง ๆ
- หลอดฉีดยา เข็มฉีดยา ใหมเย็บแผล
- วัสดุเครื่องแก้วต่าง ๆ สำหรับการศึกษาทางสรีรวิทยา
- วัสดุต่าง ๆ สำหรับการเก็บเลือด
- Reference drugs + ยาสลบ
- N-nitro-L-arginine 25 g

2. การเตรียมกะทิ น้ำมันมะพร้าว และโปรตีนจากกะทิ

กะทิเตรียมจากมะพร้าวแก่จัด (อายุ 11-12 เดือน) และสด หลังจากขูดมะพร้าวเป็นชิ้นเล็ก ๆ คั้นกะทิโดยตรงโดยไม่เติมน้ำ แล้วนำไปทำแห้งทันทีด้วยเครื่อง freeze dry ที่หน่วยเครื่องมือกลาง คณะ วิทยาศาสตร์ ได้เป็นกะทิสดแห้ง (dried fresh coconut milk, CCM) เก็บไว้ที่ -20 ℃ จนกว่าจะนำมาใช้

การแยกน้ำมันมะพร้าวจากกะทิสดแห้ง ทำโดยนำกะทิสดแห้งมาวางไว้ที่อุณหภูมิห้อง คนกะทิ ให้เป็นเนื้อเดียวกัน จะได้เป็นของเหลวหนืด ๆ นำมาปั่นเหวี่ยงที่ความเร็ว 3,900 รอบต่อนาที นาน 15 นาที ได้เป็นส่วนที่เป็นน้ำมันใสอยู่ด้านบน และส่วนที่เป็นตะกอน (precipitate) อยู่ที่กันหลอด หลังจาก แยกส่วนที่น้ำมันส่วนบนออกแล้ว ส่วนตะกอนเปียกนำไปทำแห้งด้วยเครื่อง freeze dry ทำซ้ำทั้งหมด 13 ครั้ง จากผลการทดลองนี้พบว่ากะทิแห้งมีน้ำมันอยู่ประมาณ 70.66 ± 2.35% และส่วนที่เป็นตะกอน แห้ง ประมาณ 27.85 ± 2.05% (n=13)

น้ำมันมะพร้าวส่วนหนึ่งนำไปวิเคราะห์องค์ประกอบของ fatty acid ด้วยวิธี LC-MS โดยใช้ บริการที่ศูนย์เครื่องมือมหาวิทยาลัยสงขลานครินทร์

การแยกโปรตีนจากตะกอนกะทิสด (precipitate) นำตะกอนกะทิมาละลายด้วยน้ำกลั่น แล้ว ตกตะกอนโปรตีนด้วย 50% ethanol นำไปปั่นเหวี่ยงด้วยความเร็ว 3,200 รอบต่อนาที นาน 10 นาที แยกส่วนที่เป็นตะกอนไปกำจัด ethanol ด้วยเครื่อง evaporator ที่ 40 ℃ แล้วนำไปทำแห้งด้วยเครื่อง freeze dry ได้เป็นผงโปรตีน แบ่งเป็น 3 ส่วน

ส่วนที่1 นำไปวิเคราะห์หา (1) องค์ประกอบของโปรตีนด้วย 1D- และ 2D-SDS-PAGE gel electrophoresis โดยเปรียบเทียบผลกับแถบโปรตีนมาตรฐานที่มีน้ำหนักโมเลกุลระหว่าง 10.5 -175 kDa (Bio-RAD, USA) (2) ไปวิเคราะห์หาองค์ประกอบ amino acid แต่ละชนิด คิดเป็นเปอร์เซ็น (% total amino acid) ด้วยวิธี in-house method (HPLC-pre-column-AccQ.taq) โดยใช้บริการของศูนย์ เครื่องมือวิทยาศาสตร์ คณะวิทยาศาสตร์ (ศาลายา) มหาวิทยาลัยมหิดล (3) หาองค์ประกอบที่เป็นน้ำมัน ที่หลงเหลืออยู่ โดยใช้วิธี defat ด้วย Hexane โดยใช้กะทิโปรตีน 100 mg ละลายด้วยน้ำกลั่น 100 µl แล้วเอามาผสมกับ Hexane 1 ml และคนให้เข้ากัน จากนั้นแยกส่วนที่เป็น Hexane ออกมาและนำไป กลั่นแบบลดความดันเพื่อกำจัด Hexane ออก ของเหลวที่เหลือคือส่วนที่เป็นน้ำมันมะพร้าว (4) วิเคราะห์หา total sugar content ด้วยวิธี classical colorimetric method (Dubois et al., 1955)

ส่วนที่ 2 นำไปศึกษาผลทางเภสัชวิทยา และสรีรวิทยา ในสัตว์ทดลอง

ส่วนที่ 3 นำไปศึกษา shelf-life ทำการศึกษาโดยบรรจุกะทิโปรตีนในซอง Aluminium laminate ซีลหมดทั้ง 4 ด้าน เก็บไว้ที่อุณหภูมิ 25 °C มีความชื้นสัมพัทธ์ 75% นาน 3 เดือน แต่ละเดือนนำ ตัวอย่างกะทิโปรตีน 4 ซอง (n=4) มาทดสอบหาค่าความชื้น, ค่า water activity (a_w), TBA และค่าสี (L* a* b*) โดย L* คือค่าที่แสดงถึงความสว่าง, ค่า a* คือค่าแสดงสีเขียวถึงแดง และ b* คือค่าแสดงสีน้ำ เงินถึงเหลือง

3. การศึกษาผลทางสรีรวิทยาและเภสัชวิทยา

การทดลองทำที่ห้องวิจัย อาคารคณะการจัดการสิ่งแวดล้อม คณะการแพทย์แผนไทย มหาวิทยาลัยสงขลานครินทร์

3.1 การเตรียมน้ำมันมะพร้าว และ โปรตีนกะทิ สำหรับกรอกสัตว์ทดลอง

น้ำมันมะพร้าวจะนำมาวางไว้ที่อุณหภูมิห้อง 1 คืน ก่อนนำไปกรอกให้สัตว์ทดลองในขนาด 1 หรือ 3 ml/kg กลุ่มควบคุมป้อนน้ำกลั่นในขนาด 1 หรือ 3 ml/kg

กะทิโปรตีนแห้งนำมาละลายด้วยน้ำกลั่นให้มีความเข้มข้น 1 กรัม/มล. สัตว์ทดลองแต่ละตัวจะ ถูกป้อนกะทิโปรตีน หรือ น้ำกลั่น (vehicle control) ปริมาตร 0.1 มล./100 กรัมน้ำหนักตัว

3.2 การเตรียมสัตว์ทดลอง

หนูแรทเพศผู้วัยอายุ 3 เดือน ซื้อจากศูนย์สัตว์ทดลองภาคใต้ คณะวิทวิทยาศาสตร์ มหาวิทยาลัยมหิดล นำมาเลี้ยงไว้ที่สถานสัตว์ทดลองภาคใต้นาน 9-10 เดือน เพื่อให้ได้หนูแรทวัยกลาง ชีวิต ที่มีอายุ 12-14 เดือน เลี้ยงในห้องควบคุมอุณหภูมิ 22 ± 3 °C ความชื้น 40-70 % โดยตั้งเวลาปิด/ เปิดไฟฟ้าแสงสว่าง/มืด เป็น 12/12 ชม. ให้อาหารและน้ำตามต้องการ (ad libitum) 1 เดือนก่อนครบ กำหนด เจาะหูเพื่อทำหมายเลขสัตว์ และให้สัตว์ทดลองชินกับ laboratory environment เป็นเวลา 1 สัปดาห์ก่อนเริ่มทำการทดลอง

การทดลองแบ่งออกเป็น 2 ชุด ชุดที่ 1 ศึกษาผลของการกินน้ำมันมะพร้าว (CO) ชุดที่ 2 ศึกษาผลของการกินกะทิโปรตีน (CMP) เนื่องจากความจำกัดของสถานที่ฝากเลี้ยง และค่าใช้จ่ายในการฝาก เลี้ยง ไม่สามารถซื้อสัตว์ทดลองจำนวนทั้งหมดที่ต้องการมาเลี้ยงในช่วงเวลาใกล้เคียงกันได้ การทดลอง จึงต้องแยกทำกันคนละครั้ง และใช้กลุ่มควบคุม คนละชุดกัน

3.3 การศึกษาผลของการกินน้ำมันมะพร้าว

แบ่งหนูแรทออกเป็น 3 กลุ่ม กลุ่มที่ 1 กรอก vehicle (น้ำกลั่น) ขนาด 1 หรือ 3 ml/kg เป็นกลุ่ม ควบคุม กลุ่มที่ 2 กรอกน้ำมันมะพร้าว ขนาด 1 ml/kg และกลุ่มที่ 3 กรอกน้ำมันมะพร้าว ขนาด 3 ml/kg ทุกวันเป็นเวลานาน 6 สัปดาห์ สัตว์ทดลองแต่ละตัวจะถูกบันทึกน้ำหนักตัวและอาหารที่กินต่อ 1 วัน สัปดาห์ละ 1 ครั้ง หลังจากสัปดาห์ที่ 6 สิ้นสุดการกรอกน้ำมันมะพร้าว หนูแรทแต่ละตัว จะถูกนำมา ศึกษา ผลต่อ

3.3.1 การศึกษาผลต่อระดับ glucose, triglyceride, cholesterol, LDL-C, HDL-C, Alp, SGPT, SGOP, BUN และ creatinine ในเลือด

หลังจากที่ได้กรอกน้ำมันมะพร้าว หรือน้ำกลั่น แก่สัตว์ทดลองครบ 6 สัปดาห์ นำสัตว์ทดลองแต่ ละตัว (อดน้ำ และอดอาหารก่อน 14-16 ชม) มาตัดคอด้วย guillotine เก็บเลือดจากส่วนลำตัวลงใน หลอดขนาด 5 มล. วางไว้ที่อุณหภูมิห้องประมาณ 10 นาทีให้เลือดแข็งตัว (clot blood) แล้วจึงนำไป centrifuge เก็บเอาเฉพาะ serum เพื่อนำไปวิเคราะห์หาปริมาณของ glucose, triglyceride, cholesterol, LDL, HDL, Alp, SGPT, SGOP, BUN และ Creatinine ด้วยวิธี enzymatic method และอีกหลอดหนึ่ง เก็บเลือด 2 มล. ลงในหลอดที่ coat ไว้ด้วย EDTA เพื่อนำไปศึกษาทาง heamatology (CBC, Hct, Hb, platelet count และลักษณะของเม็ดเลือดแดง และเม็ดเลือดขาว) ส่วนลำตัวสัตว์ทดลองนำมาผ่าตัดแยก เอาอวัยวะภายในแต่ละชนิด และไขมันที่อวัยวะภายใน และที่บริเวณใต้ผิวหนังมาชั่งน้ำหนักเพื่อ เปรียบเทียบน้ำหนักอวัยวะภายใน และน้ำหนักไขมันที่สะสมในร่างกายระหว่างกลุ่มที่กินกะทิ กับกลุ่ม ควบคุม

3.3.2 การศึกษาผล ต่อความดันโลหิตและอัตราการเต้นของหัวใจในหนูแรทสลบ

เพื่อที่จะศึกษาว่าการกินน้ำมันมะพร้าว หรือน้ำกลั่นเป็นระยะเวลานานมีผลต่อความดันโลหิต และอัตราการเต้นของหัวใจพื้นฐาน (basal blood pressure and heart rate) หรือไม่ หลังจากที่ได้กรอก น้ำมันมะพร้าว โปรตีนกะทิหรือน้ำกลั่น (vehicle) แก่สัตว์ทดลองเป็นเวลา 6 สัปดาห์ แล้วนำสัตว์ทดลอง แต่ละกลุ่ม (6-8 ตัว/กลุ่ม) มาทำการทดลองโดยฉีด Nembutal sodium ขนาด 50 mg/kg เข้าทางช่อง ท้อง หลังจากที่หนูแรทสลบแล้วผ่าบริเวณลำคอเพื่อสอดท่อ polyethylene tube เข้าที่หลอดลม 1 ท่อ ที่ common carotid artery 1 ท่อ และที่ jugular vein 1ท่อ และวัดความดันโลหิตและอัตราการเต้นของ หัวใจทาง common carotid artery ด้วยเครื่อง polygraph หลังจากที่ได้ equilibrate สัตว์ทดลองนาน 30-40 นาที

3.3.3 การศึกษาผลต่อน้ำหนักอวัยวะภายใน และการสะสมไขมันในช่องท้อง และบริเวณใต้ผิวหนัง

สัตว์ทดลองในข้อ 3.3.2 หลังจากเก็บเลือดเรียบร้อยแล้ว ทำการุณยฆาตรสัตว์ทดลองโดยการ ตัดคอด้วย guillotine ส่วนลำตัวนำมาศึกษาต่อ โดยตัดแยกอวัยวะภายในได้แก่ ตับ ไต ต่อมหมวกไต ม้าม และอัณฑะ ออกมาชั่งน้ำหนัก ซากที่เหลือนำมาตัดแยกส่วนที่เป็นไขมันในช่องท้อง และตัดเลาะ ไขมันส่วนที่อยู่ใต้ผิวหนังออกมาชั่งน้ำหนัก เปรียบเทียบผลระหว่างกลุ่มทดลอง กับกลุ่มควบคุมที่กินน้ำ กลั่น

3.3.4 การศึกษาผลต่อการเก็บสะสมไขมันในเนื้อเยื่อตับ

ซากสัตว์ทดลองในข้อ 3.3.3 หลังจากตัดแยกอวัยวะภายในเรียบร้อยแล้ว แยกตับพูที่มีขนาด ใหญ่ที่สุดออกมาตัดเป็นชิ้นเล็ก ๆ ตลอดความยาวของตับ มีความกว้างประมาณ 0.5 ซม. นำไปแช่แข็ง ไว้ที่ 0 °C ประมาณ 1 ชั่วโมง แล้วนำไปตัดด้วยเครื่อง freezing myotome ให้มีความหนาประมาณ 20 ไมโครเมตร วางลงบนแผ่น glass slide แล้วย้อมด้วยสี oil red-O ทันที ตรวจดูลักษณะของไขมันที่ เนื้อเยื่อตับซึ่งจะเห็นเป็นสีแดงของ oil red-O ภายใต้กล้องจุลทรรศน์พร้อมถ่ายรูปเก็บไว้ จากนั้นนำแผ่น glass slide ที่มีแผ่นตับวางอยู่ไปสกัดสี oil red-O ออกจากเนื้อเยื่อตับด้วย DMSO ได้เป็นของเหลวสี แดงนำไปวัดหาความเข้มข้นของ oil red-O ด้วย spectrophotometer ที่ความยาวคลื่น 520 nM เปรียบเทียบผลระหว่างกลุ่มทดลอง กับกลุ่มควบคุมที่กินน้ำกลั่น

3.3.5 การศึกษาผลต่อการสะสมไขมันที่ผนังหลอดเลือด

ซากสัตว์ทดลองในข้อ 3.3.4 หลังจากเก็บเนื้อเยื่อตับเสร็จเรียบร้อยแล้ว แล้วผ่าช่องอกตัดแยก หลอดเลือดแดงใหญ่ที่ขั้วหัวใจและ aortic arch ออกมาแช่ใน kreb's solution ตัดเลาะไขมันด้านนอก ของหลอดเลือดออกให้หมด แล้วทำการย้อมหลอดเลือด ด้วยด้วยสี oil red-O ทันที ตรวจดูการติดสีด้วย กล้อง binocular ถ่ายรูป แล้วสกัดสี oil red-O ด้วย DMSO ได้เป็นของเหลวสีแดงนำไปวัดหาความ เข้มขันของ oil red-O ด้วย spectrophotometer ที่ความยาวคลื่น 520 nM เปรียบเทียบผลระหว่างกลุ่ม ทดลอง กับควบคุมที่กินน้ำกลั่น

3.3.6 ศึกษาผลต่อการทำงานของหลอดเลือดแดงที่ตัดแยกออกมาศึกษาแบบ in vitro

ซากสัตว์ทดลองในข้อ 3.3.5 หลังจากเก็บหลอดเลือดขั้วหัวใจเรียบร้อยแล้ว ตัดแยกหลอดเลือดส่วน thoracic aorta ออกมาใส่จานแก้วที่มีน้ำยา kreb's solution ที่มีองค์ประกอบ (mM): NaCl 118.3, KCl 4.7, CaCl₂ 1.9, MgSO₄·7H₂O 0.45, KH₂PO₄ 1.18, NaHCO₃ 25.0, glucose 11.66, Na₂EDTA 0.024 and ascorbic acid 0.09, maintained at 37 °C and bubbled with carbogen (95% O₂ and 5% CO₂ gas mixture) ตัดเลาะส่วนที่เป็นไขมัน และเนื้อเยื่อเกี่ยวพันที่ติดอยู่กับผนังหลอดเลือดอกให้หมด แล้ว ตัดหลอดเลือดออกเป็นท่อสั้น ๆ ขนาด 4-5 mm เป็นหลอดเลือดที่มีเนื้อเยื่อ endothelium (endothelium-intact) ในจำนวนนี้ 1 คู่ จะถูกทำลายเนื้อเยื่อชั้น endothelium ด้วย cotton bud (endothelium-denuded) แล้วนำไปแขวนใน tissue bath ที่มี Kreb-Heseleit solution ที่ 37 °C และให้ carbogen อยู่ตลอดเวลา โดยบันทึกผลการทดลองด้วยเครื่อง Polygraph และ Power lab

Equilibrate หลอดเลือดนาน 60 นาที โดยเปลี่ยนนำยา krebs ทุก ๆ 15 นาที จากนั้นทดสอบ การทำงานของ endothelium ในการหลั่ง nitric oxide โดยให้หลอดเลือดหดตัวด้วย phenylephrine (3 µM) นานประมาณ 5-8 นาที ซึ่งเป็นระยะเวลาที่หลอดเลือดหดตัวสูงสุดคงที่ แล้วหยด acetylcholine (30 µM) ลงไป หลอดเลือดที่มี healthy functional endothelium จะสามารถคลายตัวได้ไม่น้อยกว่า 65 % ส่วนหลอดเลือดที่เนื้อเยื่อ endothelium ถูกทำลาย จะไม่คลายตัวต่อ acetylcholine (Jansakul et al., 1989) หลังจากนั้น equilibrate หลอดเลือดอีก 40 นาที เพื่อให้หลอดเลือดคืนสภาพคลายตัวสู่ระดับปกติ แล้วศึกษาผลในหัวข้อต่อไปนี้ก่อนเริ่มทำการทดลอง

3.3.6.1 เพื่อที่จะศึกษาว่าการให้กินน้ำมันมะพร้าว หรือน้ำกลั่นเป็นเวลานานมีผลทำให้เกิดการ เปลี่ยนแปลงการทำงานของกล้ามเนื้อเรียบหลอดเลือดโดยตรง และ/หรือโดยทางอ้อมผ่านทางเยื่อบุผิว หลอดเลือด (endothelial cells) ในการสร้างหรือหลั่ง nitric oxide หรือไม่ ใช้หลอดเลือด 3 กลุ่ม กลุ่มที่ 1 เป็นหลอดเลือดที่มี endothelium กลุ่มที่ 2 เป็นหลอดเลือดที่มี endothelium และถูกยับยั้งการสร้าง nitric oxide ด้วย N-nitro-L-arginine (LNA) และกลุ่มที่ 3 เป็นหลอดเลือดที่ endothelium ถูกทำลาย โดยวิธี mechanical disruption โดยทำการศึกษา concentration-response relationship ต่อ phenylephrine จากนั้นล้างหลอดเลือดหลาย ๆ ครั้ง แล้ว equilibrate ต่อไปอีก 40 นาที พร้อมกับ เปลี่ยนน้ำยา krebs ทุก ๆ 15 นาที

เพื่อที่จะศึกษาผลในการสร้าง/หลั่ง H_2S ของหลอดเลือด ใช้หลอดเลือดในข้อ 2.3.6.1 ที่มี endothelium และมี LNA อยู่ด้วย หลังจากเสร็จการทดลอง ล้างและ equilibrate ต่อไปอีก 40 นาที แล้ว หยด DL-propargylglycine (PAG) เพิ่มลงไป เพื่อยับยั้งการทำงานของ cystathionine-lyase (CSE) ใน การสร้าง H_2S โดย incubate ต่อไปอีก 10 นาที ก่อนที่จะศึกษา concentration-response relationship ต่อ phenylephrine

3.3.6.2 ศึกษาผลการกินน้ำมันมะพร้าว หรือน้ำกลั่นเป็นเวลานานมีผลทำให้เพิ่มการคลายตัวของหลอด เลือดหรือไม่ และการเปลี่ยนแปลงนั้นเกิดขึ้นที่เนื้อเยื่อ endothelium หรือที่ smooth muscle ทำการ ทดลองโดยศึกษา concentration-response relationship ของ acetylcholine หรือ glyceryl trinitrate ต่อ การคลายตัวของหลอดเลือดให้หดตัวอยู่ก่อนแล้วด้วย phenylephrine

3.3.6.3 ศึกษาผลการกินน้ำมันมะพร้าว หรือน้ำกลั่นเป็นเวลานานมีผลต่อการแสดงออกของโปรตีน eNOS และ CSE หรือไม่ ทำการทดลองโดยใช้ thoracic aorta ของทั้งกลุ่มที่กินน้ำมันมะพร้าว และกลุ่ม ควบคุม ที่ได้ตัดเลาะเอาไขมันและเนื้อเยื่อเกี่ยวพันออกหมดแล้ว มาตัดเป็นท่อเล็ก ๆ เก็บไว้ที่ -20 ℃ ในวันทำการทดลอง นำท่อหลอดเลือดมาตัดเป็นชิ้นเล็ก ๆ แช่ใน Lysis RIPA buffer [25 mM Tris-HCI, pH 7.6, 150 mM NaCI, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS, 0.5 mM EDTA containing the protease inhibitor cocktail (GE Healthcare)] แล้วเอาไปบดให้เป็นเนื้อเดียวกันด้วย เครื่อง sonicator จากนั้นนำไป centrifuge เก็บส่วนที่เป็นของเหลวไปวิเคราะห์หาปริมาณโปรตีนด้วยวิธี Bradford assay ใช้โปรตีนประมาณ 50 μg ในการ ทำ gel electrophoresis (12 % SDS-polyacrylamide) จากนั้นถ่ายแถบโปรตีนไปยัง nitrocellulose membrane เพื่อ detect eNOS หรือ CSE ด้วย primary eNOS, CSE และ β-actin antibody [rabbit eNOS and rabbit β-actin antibodies were from Cell Signaling (U.S.A); mouse CSE was from Abnova (U.S.A)

3.4 การศึกษาผลของการกินกะทิโปรตีน

แบ่งหนูแรทออกเป็น 2 กลุ่ม กลุ่มที่ 1 กรอก vehicle (น้ำกลั่น) เป็นกลุ่มควบคุม กลุ่มที่ 2 กรอก กะทิโปรตีน ขนาด 1 g/kg ทุกวันเป็นเวลานาน 6 สัปดาห์ สัตว์ทดลองแต่ละตัวจะถูกบันทึกน้ำหนักตัว และอาหารที่กินต่อ 1 วัน สัปดาห์ละ 1 ครั้ง หลังจากสัปดาห์ที่ 6 สิ้นสุดการกรอกกะทิโปรตีน หนูแรทแต่ ละตัว จะถูกนำมาศึกษา ผลต่อปัจจัยต่าง ๆ ในทำนองเดียวกับการทดลองที่ให้หนูกินน้ำมันมะพร้าว คือ ผลต่อความดันโลหิตและอัตราการเต้นของหัวใจพื้นฐานในหนูแรทสลบ ผลต่อน้ำหนักอวัยวะภายใน ผล ต่อระดับน้ำตาลและไขมันในเลือด ผลต่อการทำงานของตับและไต ผลต่อการสะสมไขมันในร่างกาย ที่ เซลล์ตับ และที่ผนังหลอดเลือดขั้วหัวใจ ผลต่อการทำงานของหลอดเลือด และผลต่อการแสดงออกของ โปรตีน eNOS, CSE และ soluble gaunylate cyclase ที่ผนังหลอดเลือดซึ่งมีวิธีการทดลองแบบ เดียวกับที่ทำการศึกษาในหนูแรทที่กินน้ำมันมะพร้าว

แต่การศึกษาผลของการกินกะทิโปรตีน ได้เพิ่มการศึกษาเกี่ยวกับการตอบสนองของหลอดเลือด ต่อ sodium nitroprusside และ GTN อีก 3 การทดลองดังนี้

3.4.1 การศึกษาผลการคลายตัวของหลอดเลือดต่อ sodium nitroprusside

เพื่อที่จะศึกษาว่าการกินกะทิโปรตีนมีผลทำให้เกิดการเปลี่ยนแปลงการตอบสนองต่อ NO doner, sodium nitroprusside หรือไม่ ทำการทดลองโดย ศึกษา concentration-response relationship ของหลอดเลือดที่มีเนื้อเยื่อ endothelium ที่ถูกยับยั้งการสร้าง NO ด้วย LNA ที่ให้หดตัวอยู่ก่อนแล้วด้วย phenylephrine ต่อ sodium nitroprusside ทั้งก่อนและหลังยับยั้งการสร้าง H₂S ด้วย PAG

3.4.2 การศึกษาผลของ soluble gaunylate cyclase ต่อการคลายตัวของหลอดเลือดต่อ GTN

เพื่อที่จะศึกษาว่าการกินกะทิโปรตีนมีผลทำให้เพิ่ม activity ของ soluble gaunylate cyclase (sGC) ส่งผลทำให้เพิ่มการคลายตัวของหลอดเลือดต่อ GTN หรือไม่ ทำการทดลองโดยศึกษา concentration-response relationship ต่อ GTN ก่อน และหลังยับยั้งการทำงานของ sGC ด้วย ODQ ที่ ความเข้มขัน 0.1 และ 1.0 µM ตามลำดับ

3.4.3 การศึกษาความเข้มข้นของ cGMP ที่ผนังหลอดเลือดด้วยวิธี ELISA

เพื่อที่จะศึกษาว่าการกินกะทิโปรตีนมีผลทำให้เพิ่มการสร้าง cGMP ที่ผนังหลอดเลือดโดย GTN หรือไม่ ทำการทดลองโดยแบ่งหลอดเลือดของแต่ละกลุ่มออกเป็นกลุ่มละ 2 ชุด ชุดที่ 1 incubate หลอด เลือดในน้ำยา krebs ที่มี LNA อยู่ด้วย ส่วนกลุ่มที่ 2 ทำแบบเดียวกับกลุ่มที่ 1 แต่หลังจากที่ incubate หลอดเลือดด้วย LNA นาน 20 นาที แล้วหยด GTN 1 μM และ incubate ต่อไปอีก 5 นาที แล้วจึงเก็บ หลอดเลือดทั้ง 2 กลุ่ม ซับด้วยกระดาษกรอง นำไปชั่งน้ำหนัก แล้วเก็บไว้ที่ -20 ℃ จนกว่าจะนำมา วิเคราะห์การปริมาณ cGMP ด้วยวิธี ELISA

ในวันที่ทำการทดลอง นำหลอดเลือดของแต่ละกลุ่ม (กลุ่มละ 4n) ออกมาตัดให้เป็นชิ้นเล็ก ๆ แช่ ใน Lysis RIPA buffer [25 mM Tris-HCI, pH 7.6, 150 mM NaCI, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS, 0.5 mM EDTA containing the protease inhibitor cocktail (GE Healthcare)] แล้วเอาไปบดให้เป็นเนื้อเดียวกันด้วยเครื่อง sonicator จากนั้นนำไป centrifuge ที่ 14,000 rpm นาน 10 นาที เก็บส่วนที่เป็นของเหลว ส่วนหนึ่งนำไปวิเคราะห์หาปริมาณโปรตีนด้วยวิธี Bradford assay อีกส่วนหนึ่งนำไปวิเคราะห์หาปริมาณ cGMP ด้วยวิธี ELISA (Enzo Life Science, USA) ตามวิธีการที่อธีบายใน assay kits ปริมาณของ cGMP แสดงในรูปของความเข้มขัน (pM) ต่อ µg ของโปรตีน

3.4.4 การวิเคราะห์หาปริมาณ nitric oxide ที่หลอดเลือด

เพื่อที่จะศึกษาว่าการแสดงฤทธิ์ของ GTN ที่ทำให้หลอดเลือดคลายตัว GTN ต้องเปลี่ยนเป็น NO โดยเอ็นไซม์ aldehyde dehydrogenase-2 (ALDH-2) ทำการทดลองโดยแบ่งหลอดเลือดของแต่ละ กลุ่มออกเป็น 2 กลุ่มย่อย กลุ่มย่อยที่ 1 จะ incubate หลอดเลือดในน้ำยา krebs ที่มี LNA และ GTN กลุ่มย่อยที่ 2 จะ incubate หลอดเลือด ที่มี LNA, GTN และ diadzin (ALDH-2 inhibitor) นาน 10 นาที แล้วจึงเก็บหลอดเลือดซับด้วยกระดาษกรอง ชั่งน้ำหนัก และเก็บไว้ที่ -20 °C จนกว่าจะนำมาวิเคราะห์ หาปริมาณของ NO

ในวันที่ทำการทดลอง นำหลอดเลือดของแต่ละกลุ่ม (กลุ่มละ 4n) ออกมาตัดให้เป็นชิ้นเล็ก ๆ แช่ ใน Lysis RIPA buffer [25 mM Tris-HCl, pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS, 0.5 mM EDTA containing the protease inhibitor cocktail (GE Healthcare)] แล้วเอาไปบดให้เป็นเนื้อเดียวกันด้วยเครื่อง sonicator จากนั้นนำไป centrifuge ที่ 14,000 rpm นาน 10 นาที เก็บส่วนที่เป็นของเหลว ส่วนหนึ่งนำไปวิเคราะห์หาโปรตีนด้วยวิธี Bradford

assay อีกส่วนหนึ่งนำไปวิเคราะห์หาปริมาณ NO ด้วย Griess reagent โดยเทียบปริมาณกับ standard curve ของ sodium nitrate ปริมาณของ NO แสดงในรูปของ ความเข้มข้น (ng) ต่อ mg ของโปรตีน

แต่ละกลุ่ม (ข้อย่อย) ทำการทดลองซ้ำ 6 ครั้ง จากหนูแร็ท 6 ตัว (n=6) และใช้ยาขนาดต่าง ๆ ประมาณ 3-6 ขนาด ยกเว้นกลุ่มที่ศึกษา western blot ใช้หนูกลุ่มละ 4 ตัว (n=4)

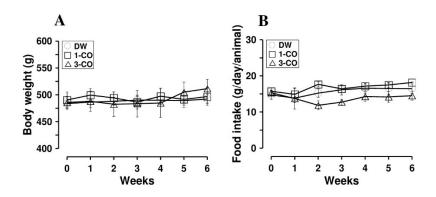
3.5 การวิเคราะห์ข้อมูล

ข้อมูลที่ได้จากการทดลองแสดงเป็นค่าเฉลี่ย \pm ค่าเบี่ยงเบนมาตรฐาน (Mean \pm S.E.M.) และ ทดสอบความแตกต่างในแต่ละกลุ่มโดย Two-tailed t-test หรือ Analysis of variance (ANOVA) และ เปรียบเทียบความแตกต่างระหว่างกลุ่มด้วย Fisher test โดยยอมรับความแตกต่างอย่างมีนัยสำคัญทาง สถิติที่ p < 0.05.

บทที่ 3

ผลการทดลองเรื่องการกินน้ำมันมะพร้าว

1. องค์ประกอบของน้ำมันมะพร้าว


การเตรียมน้ำมันมะพร้าวจากกะทิสดแห้ง โดยการปั่นได้น้ำมันมะพร้าว 70 %ของกะทิสดแห้ง มีองค์ประกอบเป็น lauric acid (40 %), myristic acid (17 %), palmitic acid (8 %), linoleic acid (ω-6-unsaturated fatty acid, 5 %), capric acid (4 %), stearic acid (3 %), ส่วน caprelic acid และ linoleic acid (ω-3-unsaturated fatty acid) มีประมาณ 1 %, cholesterol มีปริมาณน้อยมากไม่สามารถ วิเคราะห์ปริมาณโดยวิธีนี้ได้ และ α-tocopherol (0.09 mg/ 100 g) ดังรายละเอียดในตารางที่ 1

ตารางที่ 1 องค์ประกอบของ Fatty acids (in percent), cholesterol และ vitamin E (**α**-tocopherol) (mg/ 100 g) ของน้ำมันมะพร้าว

Fatty acid nar	ne	% in CO
Caprylic acid	(C8:0), MCF	1.05 ± 0.00
Capric acid	(C10:0), MCF	3.55 ± 0.00
Lauric acid	(C12:0), MCF	40.68 ± 0.08
Myristic acid	(C14:0), LCF	17.53 ± 0.02
Palmitic acid	(C16:0), LCF	7.89 ± 0.00
Stearic acid	(C18:0), LCF	2.87 ± 0.00
Oleic acid	(C18:1), LCF	4.65 ± 0.00
Linoleic acid	(C18:2), LCF	1.01 ± 0.00
Cholesterol		Not detectable
Vitamin E (α -	tocopherol)	0.09 mg/ 100g

2. ผลต่อการกินอาหารและน้ำหนักตัว น้ำหนักอวัยวะภายใน และการสะสมไขมันในช่องท้องและบริเวณ ใต้ผิวหนัง

ผลการทดลองพบว่าการกินน้ำมันมะพร้าว ไม่มีผลต่อน้ำหนักตัว และการกินอาหารของหนูแรท (รูปที่ 1 A และ B) ไม่มีผลต่อน้ำหนักอวัยวะภายใน (ตารางที่ 2) แต่เพิ่มการสะสมไขมันในร่างกาย (ตารางที่ 3) เมื่อเปรียบเทียบกับกลุ่มควบคุมที่ป้อนน้ำกลั่น

ร**ูปที่ 1** ผลของการกินน้ำมันมะพร้าว (CO, 1 or 3 ml/kg) หรือน้ำกลั่น (DW) ต่อน้ำหนักตัว (A) และ อาหารที่กินต่อวันต่อตัว (B) ในหนูแรทเพศผู้วัยกลางชีวิต แต่ละแสดงค่าของ mean ± SEM ของหนู แรท กลุ่มละ 6 ตัว

ตารางที่ 2 ผลของการกินน้ำมันมะพร้าว (CO, 1 or 3 ml/kg) หรือน้ำกลั่น (DW) ของหนูแรทเพศผู้วัยกลางชีวิต ต่อน้ำหนักอวัยวะภายใน แต่ละแสดงค่าของ mean ± SEM ของหนูแรท กลุ่มละ 6 ตัว.

	Organs weight g/100 g body weight									
Treatments Hea	Hoort	Heart Lung	Liver Kidney	Kidnov	Adrenal	Spleen	Testis	Enididymia	Prostate gl.	Seminal
	ricari			gland (mg)	Spieeri	1 69119	Epididymis	Frosiale gi.	vesicle	
DW	0.24 ± 0.03	0.46 ± 0.03	2.24 ± 0.04	0.52 ± 0.02	15.87 ± 0.60	0.16 ± 0.01	0.79 ± 0.02	0.33 ± 0.01	0.18 ± 0.01	0.21 ± 0.01
CO 1 ml/kg	0.26 ± 0.01	0.40 ± 0.04	2.23 ± 0.08	0.46 ± 0.02	14.46 ± 1.40	0.17 ± 0.01	0.79 ± 0.04	0.31 ± 0.02	0.16 ± 0.01	0.19 ± 0.01
CO 3 ml/kg	0.25 ± 0.01	0.42 ± 0.02	2.18 ± 0.07	0.47 ± 0.01	16.01 ± 0.62	0.18 ± 0.01	0.75 ± 0.08	0.30 ± 0.03	0.16 ± 0.01	0.20 ± 0.02

ตารางที่ 3 ผลของการกินน้ำมันมะพร้าว (CO, 1 or 3 ml/kg) หรือน้ำกลั่น (DW) ของหนูแรทเพศผู้วัย กลางชีวิต ต่อน้ำหนักไขมันที่อวัยวะภายในและที่ใต้ผิวหนัง แต่ละแสดงค่าของ mean ± SEM ของหนู แรท กลุ่มละ 6 ตัว.

Tractments	Adipose tissue weight/ 100 g body weight (% g)						
Treatments	Epididymis	Prostate	Retroperitoneal	Subcutaneous			
DW	2.01 ± 0.25	0.09 ± 0.02	2.05 ± 0.22	2.20 ± 0.39	6.71 ± 0.73		
CO 1 ml/kg	2.56 ± 0.34	0.14 ± 0.02	2.13 ± 0.02	3.11 ± 0.49^{a}	7.01 ± 0.78		
CO 3 ml/kg	2.72 ± 0.30	0.15 ± 0.03	2.22 ± 0.03	3.47 ± 0.34^{a}	7.96 ± 0.96		

[์] มีค่าสูงกว่ากลุ่มควบคุมอย่างมีนัยสำคัญทางสถิติ, p < 0.05

3. ผลต่อระดับน้ำตาล ไขมัน สารชีวเคมีในเลือด และความสมบูรณ์ของเม็ดเลือด

ผลการทดลองแสดงไว้ใน**ตารางที่ 4-6** พบว่าการกินน้ำมันมะพร้าวขนาด 1 ml/kg ไม่มีผลต่อ ปัจจัยใด แต่ที่ขนาด 3 ml/kg มีผลทำให้ลดระดับน้ำตาล, alkaline phosphatase (Alp) และ Blood urea nitrogen (BUN) ในเลือด แต่ไม่มีผลต่อระดับไขมัน (ตารางที่ 4) รวมทั้งระดับของ SGOP, SGPT และ Creatinine (ตารางที่ 5) ในเลือด และความสมบูรณ์ของเม็ดเลือด (ตารางที่ 6) เมื่อเทียบผลกับกลุ่ม ควบคุมที่กินน้ำกลั่น

ตารางที่ 4 ผลของการกินน้ำมันมะพร้าว (CO, 1 or 3 ml/kg) หรือน้ำกลั่น (DW) ของหนูแรทเพศผู้วัย กลางชีวิตเพศผู้วัยกลางชีวิต ต่อระดับน้ำตาล และไขมันในเลือด

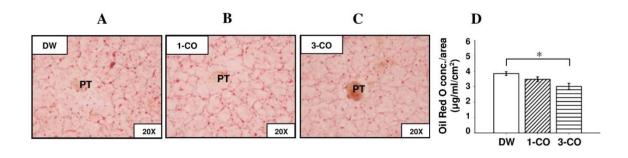
NLAC- MU	Glucose	Triglyceride	Cholesterol	HDL-C	LDL-C	LDL/HDL	
Normal range	122.1–180.8	61.0–164.0	46.0–98.0	_	_	_	
(mg%)	122.1 100.0	01.0 104.0	40.0 00.0				
DW	135.0 ± 8.1	73.4 ± 8.6	76.7 ± 5.6	61.5 ± 4.9	12.1 ± 1.4	0.2 ± 0.01	
CO 1 ml/kg	140.9 ± 9.9	66.7 ± 5.5	70.3 ± 3.8	49.8 ± 2.7	11.1 ± 1.6	0.2 ± 0.02	
CO 3 ml/kg	102.5 ± 7.5 ^a	84.9 ± 19.9	84.7 ± 7.9	60.5 ± 4.1	15.6 ± 1.4	0.3 ± 0.02	

[ื] มีค่าต่ำกว่ากลุ่มควบคุมอย่างมีนัยสำคัญทางสถิติ, p < 0.05

ตารางที่ 5 ผลของการกินน้ำมันมะพร้าว (CO, 1 or 3 ml/kg) หรือน้ำกลั่น (DW) ของหนูแรทเพศผู้วัย กลางชีวิตเพศผู้วัยกลางชีวิต ต่อระดับ alkaline phosphatase (Alp), SGOT, SGPT, Blood urea nitrogen (BUN) and Creatinine (CREAT) ในเลือด

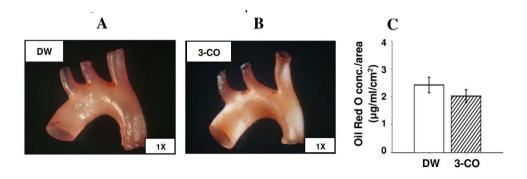
NLAC- MU	ALP (U/L)	SGOP (U/L)	SGPT (U/L)	BUN (mg %)	CREAT (mg %)
normal range	46.0 – 92.0	111.0 - 225.0	25.0 - 64.0	10.3 – 23.6	0.5 – 0.7
DW	85.7 ± 4.2	225.2 ± 31.6	62.6 ± 4.7	21.8 ± 0.6	0.4 ± 0.01
CO 1 ml/kg	95.0 ± 9.4	232.1 ± 30.0	64.0 ± 3.6	21.4 ± 0.9	0.5 ± 0.03
CO 3 ml/kg	68.5 ± 3.4^{a}	249.8 ± 33.9	66.4 ± 2.6	18.5 ± 1.1 ^a	0.4 ± 0.02

[ื] มีค่าต่ำกว่ากลุ่มควบคุมอย่างมีนัยสำคัญทางสถิติ, ho < 0.05


ตารางที่ 6 ผลของการกินน้ำมันมะพร้าว (CO, 1 or 3 ml/kg) หรือน้ำกลั่น (DW) ของหนูแรทเพศผู้วัยกลางชีวิต ต่อความสมบูรณ์ของเม็ดเลือด (Hematology analysis: Complete blood count) แต่ละแสดงค่าของ mean ± SEM ของหนูแรท กลุ่มละ 6 ตัว.

NLAC- MU	n	HCT	HGB	MCV	MCH	MCHC	WBC	Neutrophil	LYMPH	Plt	N/L
		(%)	(g/dL)	(fl)	(pg)	(%)	(x10 ³ /µL)	(%)	(%)	(x10 ⁵ /µL)	ratio
normal range		33.2 – 46.0	13.5 – 17.6	47.5 – 54.7	17.4 – 26.5	34.7 – 51.8	3.0 – 7.2	-	59.0 – 91.0	4.9 – 11.3	-
DW	6	45.2 ± 1.3	15.7 ± 0.3	54.1 ± 0.7	18.2 ± 0.4	33.8 ± 0.4	5.5 ± 0.9	59.2 ± 2.9	37.9 ± 2.5	7.9 ± 0.3	1.7 ± 0.2
CO 1 ml/kg	6	47.9 ± 1.3	16.1 ± 0.3	54.0 ± 0.8	17.6 ± 0.5	32.8 ± 0.5	6.4 ± 0.9	60.1 ± 2.6	34.8 ± 2.7	9.0 ± 0.3	1.7 ± 0.2
CO 3 ml/kg	6	44.0 ± 1.3	15.3 ± 0.5	52.8 ± 0.9	17.8 ± 0.3	33.5 ± 0.2	6.4 ± 0.5	55.2 ± 3.9	39.4 ± 3.3	7.4 ± 0.6	1.5 ± 0.2

4. ผลต่อการสะสมไขมันที่เซลล์ตับ และที่ผนังด้านในของหลอดเลือด aortic arch


ผลการทดลองแสดงไว้ในร**ูปที่ 2** พบว่าการกินน้ำมันมะพร้าวขนาด 1 ml/kg ไม่มีผลต่อการ สะสมไขมันในเซลล์ตับ แต่เมื่อเพิ่มเป็น 3 ml/kg พบว่าการสะสมของไขมันที่เซลล์ตับน้อยกว่าของกลุ่ม ควบคุมที่กินน้ำกลั่นอย่างมีนัยสำคัญทางสถิติ p < 0.05, n=6

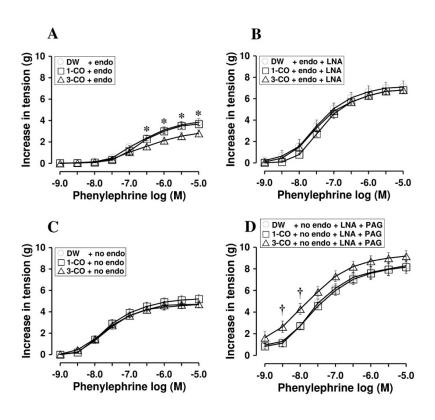
ส่วนผลต่อการสะสมไขมันที่ผนังหลอดเลือด พบว่าการกินน้ำมันมะพร้าวขนาด 3 ml/kg การ สะสมของไขมันที่ aortic arch ไม่มีความแตกต่างจากกลุ่มควบคุมที่กินน้ำกลั่น (ร**ูปที่ 3**)

ร**ูปที่ 2** ผลของการกินน้ำมันมะพร้าว (CO, 1 or 3 ml/kg) หรือน้ำกลั่น (DW) ของหนูแรทวัยกลางชีวิต ต่อการสะสมไขมันที่เซลล์ตับ (A) กินน้ำกลั่น (DW), (B) กินน้ำมันมะพร้าว 1 ml/kg, (C) กินน้ำมัน มะพร้าว 3 ml/kg และ (D) ความเข้มข้นของ oil red O แต่ละแสดงค่าของ mean \pm SEM ของหนูแรท กลุ่มละ 6 ตัว. $\hat{\,}$ มีค่าต่ำกว่ากลุ่มควบคุมอย่างมีนัยสำคัญทางสถิติ, p < 0.05

(PT = Portal triad; oil red O staining of liver tissue frozen section, 20 mm thick, 20X magnification).

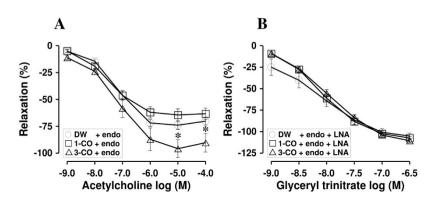
ร**ูปที่ 3** ผลของการกินน้ำมันมะพร้าว (CO, 1 or 3 ml/kg) หรือน้ำกลั่น (DW) ของหนูแรทวัยกลางชีวิต ต่อการสะสมไขมันที่ผนังหลอดเลือดแดงใหญ่ขั้วหัวใจ (aortic arch) (A) กินน้ำกลั่น (DW), (B) กินน้ำมัน มะพร้าว 3 ml/kg และ (C) ความเข้มขันของ oil red O แต่ละกราฟแท่งแสดงค่าของ mean ± SEM ของ หนูแรท กลุ่มละ 6 ตัว

5. ผลต่อความดันโลหิตและอัตราการเต้นของหัวใจในหนูแร็ทสลบ

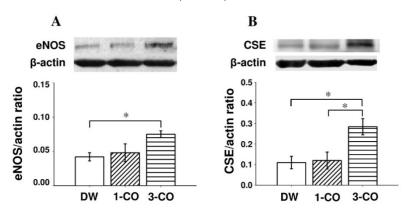

พบว่าการกินน้ำมันมะพร้าวขนาด 1 หรือ 3 ml/kg นาน 6 สัปดาห์ ไม่มีผลทำให้เกิดการ เปลี่ยนแปลงความดันโลหิต และอัตราการเต้นหัวใจพื้นฐานในหนูแรทเพศผู้วัยกลางชีวิตสลบ (ตารางที่ 7)

ตารางที่ 7 การกินน้ำมันมะพร้าวขนาด 1 หรือ 3 ml/kg หรือน้ำกลั่น นาน 6 สัปดาห์ ไม่มีผลทำให้เกิด การเปลี่ยนแปลงความดันโลหิต และอัตราการเต้นหัวใจพื้นฐานในหนูแรทเพศผู้วัยกลางชีวิตสลบ แต่ละ ค่าแสดงค่าของ mean ± SEM ของหนูแรท กลุ่มละ 6 ตัว

	Body weight (Body weight (g)		Basal	Mean Arterial	Basal heart		
Treatments			ents systolic BP		systolic BP	diastolic BP	Pressure	rate
	Initial	Final	(mmHg)	(mmHg)	(mmHg)	(bpm)		
DW	482.3 ± 13.0	493.0 ± 7.8	141.3 ± 7.8	110.3 ± 2.1	120.7 ± 3.7	415.0 ± 8.8		
CO 1 ml/kg	486.2 ± 14.8	511.3 ± 26.0	140.0 ± 4.3	110.0 ± 3.2	120.0 ± 3.5	400.0 ± 7.1		
CO 3 ml/kg	496.7 ± 8.3	511.0 ± 13.7	129.0 ± 10.3	104.0 ± 7.0	120.7 ± 9.2	410.0 ± 7.3		


6. ผลต่อการทำงานของหลอดเลือดที่ตัดแยกออกมาศึกษานอกตัว

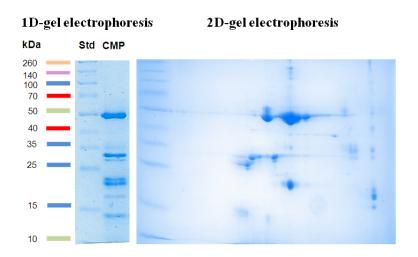
ผลการทดลองแสดงไว้ในร**ูปที่ 4** จากผลการทดลองพบว่าการกินน้ำมันมะพร้าวขนาด 1 ml/kg ไม่มีผลทำให้เกิดการเปลี่ยนแปลงการหดตัวของหลอดเลือดต่อ phenylephrine ไม่ว่าหลอดเลือดมี เนื้อเยื่อ endothelium หรือถูกยับยั้งการสร้าง NO ด้วย LNA หรือยับยั้งการสร้าง H₂S ด้วย PAG แต่ เมื่อเพิ่มขนาดเป็น 3 ml/kg พบว่ามีผลทำให้การหดตัวสูงสุดของหลอดเลือดที่มีเนื้อเยื่อชั้น endothelium มีการหดตัวได้ต่ำกว่ากลุ่มควบคุม และผลดังกล่าวนี้หมดสิ้นไปเมื่อถูกยับยั้งการสร้าง NO ด้วย L-NA หรือเมื่อเนื้อเยื่อชั้น endothelium ถูกทำลาย ในหลอดเลือดที่เนื้อเยื่อถูกทำลายเมื่อยับยั้งการสร้าง NO ด้วย LNA ร่วมกับยับยั้งการสร้าง H₂S ด้วย PAG ร่วมด้วย พบว่ามีผลทำให้กลุ่มที่กินน้ำมันมะพร้าว ขนาด 3 ml/kg มีการหดตัวได้สูงกว่ากลุ่มควบคุมอย่างมีนัยสำคัญทางสถิติ


รูปที่ 4 แสดงผลของการกินน้ำมันมะพร้าวขนาด 1 หรือ 3 ml/kg ต่อการตอบสนองของหลอดเลือดใหญ่ ทรวงอก (thoracic aorta) ต่อ phenylephrine เปรียบเทียบกับกลุ่มควบคุมที่ป้อนน้ำกลั่น รูป A หลอด เลือดที่มี endothelium รูป B หลอดเลือดที่มี endothelium และถูกยับยั้งการสร้าง nitric oxide ด้วย N-nitro-L-arginine (L-NA) รูป C หลอดเลือดที่เนื้อเยื่อชั้น endothelium ถูกทำลาย รูป D หลอดเลือดที่ เนื้อ endothelium ถูกทำลาย และถูกยับยั้งการสร้าง nitric oxide ด้วย L-NA และยับยั้งการสร้าง H_2S ด้วย PAG แต่ละจุดแสดงค่า mean \pm SEM จากสัตว์ทดลอง 6 ตัว ้มีค่าต่ำกว่ากลุ่มควบคุมอย่างมี นัยสำคัญทางสถิติ, p < 0.05 และ † มีค่าสูงกว่ากลุ่มควบคุมอย่างมีนัยสำคัญทางสถิติ, p < 0.05

ผลของการกินน้ำมันมะพร้าว หรือ น้ำกลั่น ต่อการคลายตัวของหลอดเลือดต่อ acetylcholine และ glyceryl trinitrate แสดงไว้ในร**ูปที่ 5** ผลการทดลองพบว่าการกินน้ำมันมะพร้าวขนาด 1 ml/kg ไม่มี ผลทำให้เกิดการเปลี่ยนแปลงการคลายตัวของหลอดเลือดต่อ acetylcholine หรือ GTN แต่เมื่อเพิ่มเป็น ขนาด 3 ml/kg มีผลทำให้เพิ่มการคลายตัวของหลอดเลือดที่ให้หดตัวอยู่ก่อนแล้วด้วย phenylephrine ต่อ acetylcholine แต่ไม่มีผลต่อ glyceryl trinitrate เมื่อเทียบกับกลุ่มควบคุมที่กินน้ำกลั่น

ร**ูปที่ 5** แสดงผลของการกินน้ำมันมะพร้าวขนาด 1 หรือ 3 ml/kg ต่อการตอบสนองโดยการคลายตัวของ หลอดเลือดใหญ่ทรวงอก (thoracic aorta) ที่ให้หดตัวอยู่ก่อนแล้วด้วย phenylephrine ต่อ acetylcholine (A) หรือต่อ glyceryl trinitrate (B) เปรียบเทียบกับกลุ่มควบคุมที่ป้อนน้ำกลั่น แต่ละจุดแสดงค่า mean \pm SEM จากสัตว์ทดลอง 6 ตัว $^{\hat{}}$ มีค่าต่ำกว่ากลุ่มควบคุมอย่างมีนัยสำคัญทางสถิติ, p < 0.05

ผลการแสดงออกของโปรตีน eNOS และ CSE ที่ผนังหลอดเลือด แสดงไว้ในร**ูปที่ 6** พบว่าการ กินน้ำมันมะพร้าวขนาด 1 ml/kg ไม่มีผลทำให้เกิดการเปลี่ยนแปลงการแสดงออกของโปรตีน eNOS และ CSE ที่ผนังหลอดเลือด แต่เมื่อเพิ่มขนาดเป็น 3 ml/kg มีผลทำให้เพิ่มการแสดงออกของโปรตีนทั้ง 2 ชนิด อย่างมีนัยสำคัญทางสถิติ เมื่อเทียบกับกลุ่มควบคุมที่กินน้ำกลั่น

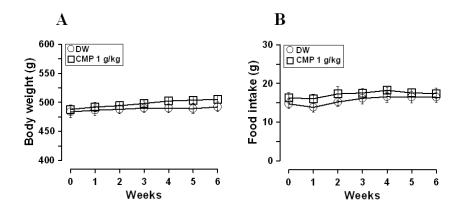

ร**ูปที่ 6** แสดงผลของการกินน้ำมันมะพร้าวขนาด 1 หรือ 3 ml/kg ต่อการแสดงออกของโปรตีน eNOS และ CSE ของหลอดเลือด thoracic aorta เปรียบเทียบกับกลุ่มควบคุมที่ป้อนน้ำกลั่น แต่ละจุดแสดงค่า mean \pm SEM จากสัตว์ทดลอง 4 ตัว $^{\hat{}}$ มีค่าสูงกว่ากลุ่มควบคุมอย่างมีนัยสำคัญทางสถิติ, p < 0.05

บทที่ 4

ผลการทดลองเรื่องการกินกะทิโปรตีน

1. องค์ประกอบของโปรตีน

กะทิโปรตีนที่ได้จากการตกตะกอน precipitate จากการสกัดน้ำมันมะพร้าวด้วย 50% เอทานอล ได้เป็นโปรตีนที่ไม่บริสุทธิ์ ประกอบด้วยส่วนที่เป็นโปรตีนประมาณ 81±0.8 % ส่วนน้ำมัน 9.7±0.8 % และ ส่วนน้ำตาล 6.9±0.8 % ส่วนองค์ประกอบย่อยของโปรตีนในกะทิโปรตีนที่ได้จาก 1D และ 2D gel electrophoresis แสดงไว้ในรูปที่ 1 พบว่ากะทิโปรตีนประกอบด้วยโปรตีนย่อยอย่างน้อย 12 ชนิด และ ชนิดที่เป็นองค์ประกอบหลักมี molecular weight ประมาณ 50 kDa (รูปที่ 1A) องค์ประกอบ total amino acids ของกะทิโปรตีน (รูปที่ 1B ตาราง) มี essential amino acids ครบทุกชนิด (ยกเว้น methionine และ tryptophan ที่ไม่สามารถวิเคราะห์ได้ด้วยวิธีนี้) แต่ละชนิดมีอยู่ประมาณ 1-3% ส่วน amino acid ตัวอื่น ๆ ก็มีปริมาณในช่วงเดียวกับ essential amino acid ยกเว้น arginine กับ glutamic acid ที่มีประมาณ 7-9% ตามลำดับ


Amino Acid (mg/ 100mg of protein)

Essential amino a	cid	Non-essential amino acid		
Isoleucine	1.3	Aspartic acid	3.9	
Leucine	2.7	Serine	2.1	
Lysine	2.1	Glutamic acid	9.4	
Methionine	-	Glycine	1.9	
Phenylalanine	1.9	Alanine	1.7	
Threonine	1.4	Arginine	7.0	
Tryptophan	-	Proline	1.5	
Valine	2.0			
Histidine	1.0			
Tyrosine	0.9			

ร**ูปที่ 1** องค์ประกอบของโปรตีนย่อย (บน) และ total amino acids (ตารางล่าง) ของกะทิโปรตีน

2. ผลต่อการกินอาหารและน้ำหนักตัว น้ำหนักอวัยวะภายใน และการสะสมไขมันในช่องท้องและบริเวณ ใต้ผิวหนัง

ผลการทดลองพบว่าการกินกะทิโปรตีน ไม่มีผลต่อน้ำหนักตัว และการกินอาหารของหนูแรท (รูปที่ 2 A และ B) ไม่มีผลต่อน้ำหนักอวัยวะภายใน (ตารางที่ 2) แต่ลดการสะสมไขมันในร่างกาย (ตารางที่ 3) เมื่อเปรียบเทียบกับกลุ่มควบคุมที่ป้อนน้ำกลั่น

ร**ูปที่ 2** ผลของการกินกะทิโปรตีน 1 g/kg หรือน้ำกลั่น (DW) ต่อน้ำหนักตัว (A) และอาหารที่กินต่อวัน ต่อตัว (B) ในหนูแรทเพศผู้วัยกลางชีวิต แต่ละจุดแสดงค่าของ mean ± SEM ของหนูแรท กลุ่มละ 6 ตัว.

ตารางที่ 2 ผลของการกินกินกะทิโปรตีน (1 g/kg) หรือน้ำกลั่น (DW) ของหนูแรทเพศผู้วัยกลางชีวิต ต่อ น้ำหนักอวัยวะภายใน แต่ละค่าแสดงค่า mean ± SEM ของหนูแรท กลุ่มละ 6 ตัว.

	Organs	weight/	100 g bc	dy weight	(% g)				
Treatments	Hoort	Lung	Adrenal Ing Liver Kidney Spleen		Splage	Testis	Epididymis	Prostate	
	Heart	Lung	Livei	Ridiley	gland (mg)	Spieeri	16202	Еріаіаўіпіз	gl.
DW	0.3 ±	0.3 ±	2.7 ±	0.5 ±	13.4 ±	0.2 ±	0.6 ±	0.3 ±	0.2 ±
	0.01	0.01	0.15	0.02	0.99	0.01	0.01	0.01	0.02
CMP	0.3 ±	0.3 ±	2.7 ±	0.6 ±	14.3 ±	0.2 ±	0.6 ±	0.3 ±	0.2 ±
	0.01	0.01	0.16	0.06	0.71	0.01	0.01	0.01	0.02

ตารางที่ 3 ผลของการกินกะทิโปรตีน (1 g/kg) หรือน้ำกลั่น (DW) ของหนูแรทเพศผู้วัยกลางชีวิต ต่อ น้ำหนักไขมันที่อวัยวะภายในและที่ใต้ผิวหนัง แต่ละแสดงค่าของ mean ± SEM ของหนูแรท กลุ่มละ 6 ตัว.

Treatments	Adipose tissue weight/100 g body weight (% g)							
rreatments	Epididymis	Prostate Mesentery		Retroperitoneal	Subcutaneous			
DW	2.48 ± 0.15	0.18 ± 0.03	2.43 ± 0.20	3.23 ± 0.58	7.70 ± 0.68			
CMP	2.22 ± 0.06	0.19 ± 0.00	1.78 ± 0.14 ^a	1.97 ± 0.29 ^a	5.28 ± 0.68 ^a			

[์] มีค่าต่ำกว่ากลุ่มควบคุมอย่างมีนัยสำคัญทางสถิติ, p < 0.05

3. ผลต่อระดับน้ำตาล ไขมัน สารชีวเคมีในเลือด และความสมบูรณ์ของเม็ดเลือด

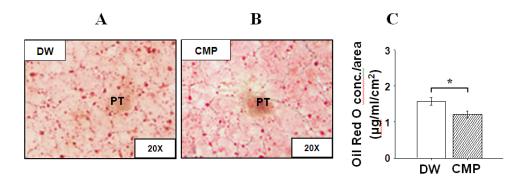
ผลการทดลองแสดงไว้ในตารางที่ 4-6 พบว่าการกินกะทิโปรตีน นาน 6 สัปดาห์ไม่มีผลทำให้ เกิดการเปลี่ยนแปลงระดับน้ำตาล และไขมันในเลือด (ตารางที่ 4) รวมทั้งระดับของ alkaline phosphatase (Alp), SGOP, SGPT, Blood urea nitrogen (BUN) and Creatinine (ตารางที่ 5) ใน เลือด และความสมบูรณ์ของเม็ดเลือด (ตารางที่ 6) แต่อย่างใด เมื่อเทียบผลกับกลุ่มควบคุมที่กินน้ำกลั่น ตารางที่ 4 ผลของการกินกะทิโปรตีน (1 g/kg) หรือน้ำกลั่น (DW) ของหนูแรทเพศผู้วัยกลางชีวิต ต่อ ระดับน้ำตาล และไขมันในเลือด

NLAC-MU	Glucose	Triglyceride	Cholesterol	HDL-C	LDL-C	LDL/HDL
normal range	e					ratio
(mg %)	122.1–180.8	61.0–164.0	46.0–98.0	-	-	-
DW	132.2 ± 5.2	78.2 ± 7.9	95.6 ± 2.6	99.0 ± 5.5	25.3 ± 2.0	0.3 ± 0.03
CMP	131.0 ± 5.9	84.2 ± 11.2	90.8 ± 7.7	98.7 ± 5.6	23.3 ± 3.5	0.2 ± 0.05

ตารางที่ 5 ผลของการกินกะทิโปรตีน (1 g/kg) หรือน้ำกลั่น (DW) ของหนูแรทเพศผู้วัยกลางชีวิต ต่อ ระดับ alkaline phosphatase (Alp), SGOT, SGPT, Blood urea nitrogen (BUN) and Creatinine (CREAT) ในเลือด

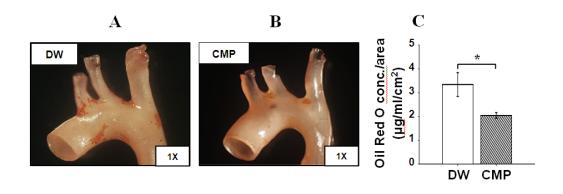
NLAC-MU	ALP (U/L)	SGOT (U/L)	SGPT (U/L)	BUN (mg %)	CREAT (mg %)
normal range	46.0 – 92.0	111.0 – 225.0	25.0 - 64.0	10.3 – 23.6	0.5 – 0.7
DW	74.4 ± 7.8	123.9 ± 12.1	80.7 ± 5.6	23.8 ± 2.3	0.6 ± 0.1
CMP	71.4 ± 4.3	120.7 ± 11.4	77.6 ± 3.5	25.7 ± 3.9	0.7 ± 0.2

Note: NLAC-MU = National Laboratory Animal Center Mahidol University.


ตารางที่ 6 ผลของการกินกะทิโปรตีน (1 g/kg) หรือน้ำกลั่น (DW) ของหนูแรทเพศผู้วัยกลางชีวิต ต่อความสมบูรณ์ของเม็ดเลือด (Hematology analysis: Complete blood count) แต่ละแสดงค่าของ mean ± SEM ของหนูแรท กลุ่มละ 6 ตัว.

NLAC- MU	n	HCT	HGB	MCV	MCH	MCHC	WBC	Neutrophil	LYMPH	Plt	N/L
		(%)	(g/dl)	(fl)	(pg)	(%)	(x10 ³ /µl)	(%)	(%)	(x10 ⁵ /µl)	ratio
normal range		33.2 – 46.0	13.5 – 17.6	47.5 – 54.7	17.4 – 26.5	34.7 – 51.8	3.0 – 7.2	-	59.0 – 91.0	4.9 – 11.3	-
DW	6	46.8 ± 2.7	16.0 ± 0.8	51.6 ± 0.2	17.4 ± 0.2	33.4 ± 0.7	5.5 ± 0.6	68.2 ± 6.1	31.4 ± 6.1	8.6 ± 0.3	2.7 ± 0.6
CMP	6	46.1 ± 2.3	16.2 ± 0.7	52.9 ± 1.2	18.4 ± 0.4	34.7 ± 0.4	4.4 ± 0.3	63.3 ± 4.8	35.4 ± 4.9	7.4 ± 0.6^{a}	2.1 ± 0.4

[ื] มีค่าต่ำกว่ากลุ่มควบคุมอย่างมีนัยสำคัญทางสถิติ, p < 0.05


4. ผลต่อการสะสมไขมันที่เซลล์ตับ และที่ aortic arch

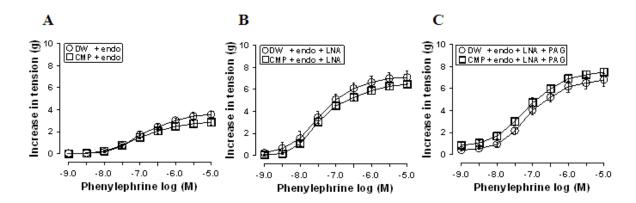
ผลการทดลองแสดงไว้ในร**ูปที่ 3 และ 4** พบว่าการกินกะทิโปรตีนขนาด 1 g/kg มีผลทำให้การ สะสมไขมันในเซลล์ตับ และที่ผนังด้านในของหลอดเลือด aortic arch น้อยกว่าของกลุ่มควบคุมที่กินน้ำ กลั่นอย่างมีนัยสำคัญทางสถิติ p < 0.05, n=6

ร**ูปที่ 3** ผลของการกินกะทิโปรตีน (1 g/kg) หรือน้ำกลั่น (DW) ของหนูแรทวัยกลางชีวิต ต่อการสะสม ไขมันที่เซลล์ตับ (A) กินน้ำกลั่น (DW), (B) กะทิโปรตีน 1 g/kg และ (C) ความเข้มข้นของ oil red O แต่ ละกราฟแท่งแสดงค่าของ mean \pm SEM ของหนูแรท กลุ่มละ 6 ตัว. ้ มีค่าต่ำกว่ากลุ่มควบคุมอย่างมี นัยสำคัญทางสถิติ, p < 0.05

(PT = Portal triad; oil red O staining of liver tissue frozen section, 20 mm thick, 20X magnification).

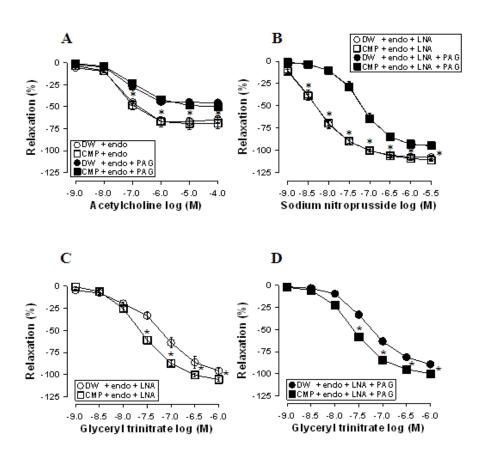
ร**ูปที่ 4** ผลของการกินกะทิโปรตีน (1 g/kg) หรือน้ำกลั่น (DW) ของหนูแรทวัยกลางชีวิต ต่อการสะสม ไขมันที่ผนังหลอดเลือดแดงใหญ่ขั้วหัวใจ (aortic arch) (A) กินน้ำกลั่น (DW), (B) กินกะทิโปรตีน 1 g/kg และ (C) ความเข้มข้นของ oil red O แต่ละกราฟแท่งแสดงค่าของ mean \pm SEM ของหนูแรท กลุ่ม ละ 6 ตัว $^{\hat{}}$ มีค่าต่ำกว่ากลุ่มควบคุมอย่างมีนัยสำคัญทางสถิติ, p < 0.05

5. ผลต่อความดันโลหิตและอัตราการเต้นของหัวใจในหนูแร็ทสลบ

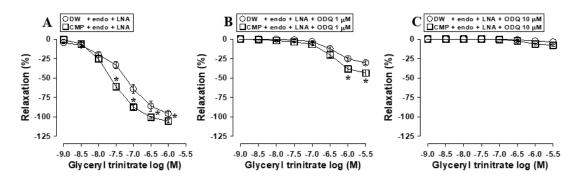

พบว่าการกินกะทิโปรตีนขนาด 1 g/kg หรือน้ำกลั่น นาน 6 สัปดาห์ ไม่มีผลทำให้เกิดการ เปลี่ยนแปลงความดันโลหิต และอัตราการเต้นหัวใจพื้นฐานในหนูแรทเพศผู้วัยกลางชีวิตสลบ (ตารางที่ 7)

ตารางที่ 7 การกินกะทิโปรตีนขนาด 1 g/kg หรือน้ำกลั่น นาน 6 สัปดาห์ ไม่มีผลทำให้เกิดการ เปลี่ยนแปลงความดันโลหิต และอัตราการเต้นหัวใจพื้นฐานในหนูแรทเพศผู้วัยกลางชีวิตสลบ แต่ละค่า แสดงค่าของ mean ± SEM ของหนูแรท กลุ่มละ 6 ตัว

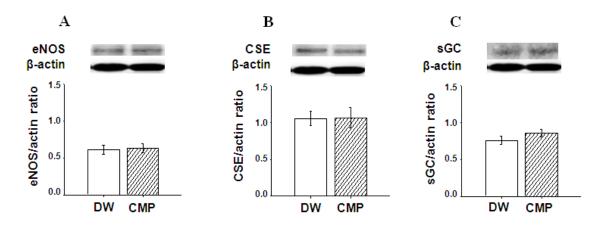
	Body weight		Basal	Basal	Mean Arterial	Basal		
Treatments	(g)		(g)		systolic BP	diastolic BP	Pressure	heart rate
	Initial	Final	(mmHg)	(mmHg)	(mmHg)	(bpm)		
DW	481.9 ± 13.1	492.1 ± 8.4	134.2 ± 5.4	109.2 ± 4.6	120.8 ±2.0	425.0 ± 11.2		
CMP	488.0 ± 7.9	505.1 ± 7.2	136.7 ± 9.6	109.6 ± 8.0	118.6 ± 8.5	428.3 ± 10.9		


6. ผลต่อการทำงานของหลอดเลือดที่ตัดแยกออกมาศึกษานอกตัว

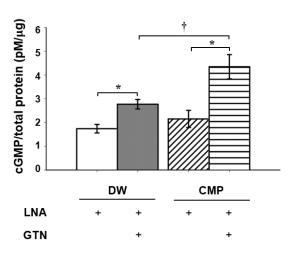
ผลการทดลองแสดงไว้ในร**ูปที่ 5** จากผลการทดลองพบว่าการกินกะทิโปรตีนขนาด 1 g/kg ไม่มี ผลทำให้เกิดการเปลี่ยนแปลงการหดตัวของหลอดเลือดต่อ phenylephrine ไม่ว่าหลอดเลือดมีเนื้อเยื่อ endothelium หรือถูกยับยั้งการสร้าง NO ด้วย LNA หรือยับยั้งการสร้าง H₂S ด้วย PAG


ร**ูปที่ 5** แสดงผลของการกินกะทิโปรตีนขนาด 1 g/kg ต่อการตอบสนองของหลอดเลือดใหญ่ทรวงอก (thoracic aorta) ต่อ phenylephrine เปรียบเทียบกับกลุ่มควบคุมที่ป้อนน้ำกลั่น รูป A หลอดเลือดที่มี endothelium รูป B หลอดเลือดที่มี endothelium และถูกยับยั้งการสร้าง nitric oxide ด้วย N-nitro-L-arginine (L-NA) รูป C หลอดเลือดมีเนื้อเยื่อ endothelium ถูกยับยั้งการสร้าง nitric oxide ด้วย L-NA และยับยั้งการสร้าง H_2 S ด้วย PAG แต่ละจุดแสดงค่า mean \pm SEM จากสัตว์ทดลอง 6 ตัว

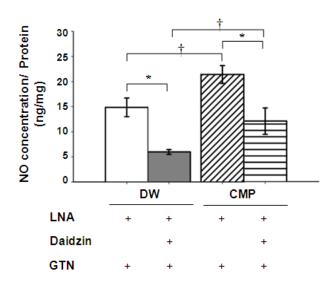
ผลของการกินกะทิโปรตีน หรือ น้ำกลั่น ต่อการคลายตัวของหลอดเลือดต่อ acetylcholine, sodium nitroprusside และ glyceryl trinitrate แสดงไว้ใน**รูปที่ 6** ผลการทดลองพบว่าการกินกะทิ โปรตีนไม่มีผลทำให้เกิดการเปลี่ยนแปลงการคลายตัวของหลอดเลือดต่อ acetylcholine และ sodium nitroprusside แต่มีผลทำให้การคลายตัวของหลอดเลือดต่อ GTN ได้มากกว่ากลุ่มควบคุมที่กินน้ำกลั่น


รูปที่ 6 แสดงผลของการกินกะทิโปรตีนขนาด 1 g/kg ต่อการตอบสนองโดยการคลายตัวของหลอดเลือด ใหญ่ทรวงอก (thoracic aorta) ที่ให้หดตัวอยู่ก่อนแล้วด้วย phenylephrine ต่อ acetylcholine (A), sodium nitroprusside (B) หรือ glyceryl trinitrate ทั้งก่อน (C) และหลัง (D) ยับยั้งการสร้าง H_2 S ด้วย PAG เปรียบเทียบกับกลุ่มควบคุมที่ป้อนน้ำกลั่น แต่ละจุดแสดงค่า mean \pm SEM จากสัตว์ทดลอง 6 ตัว † มีค่าต่ำกว่ากลุ่มควบคุมอย่างมีนัยสำคัญทางสถิติ, p < 0.05

ผลของ ODQ ต่อการคลายตัวของหลอดเลือดต่อ GTN แสดงไว้ในร**ูปที่ 7** พบว่า ODQ ที่ความเข้มข้น 0.1 µM สามารถยับยั้งการคลายตัวของหลอดเลือดต่อ GTN ได้ในระดับที่เท่า ๆ กันระหว่างหลอดเลือด ของกลุ่มที่กินกะทิโปรตีนกับกลุ่มควบคุม ส่งผลให้การคลายตัวของหลอดเลือดต่อ GTN ของกลุ่มที่กิน กะทิโปรตีนยังคงคลายตัวได้มากกว่ากลุ่มควบคุม แต่เมื่อเพิ่มความเข้มข้นของ ODQ เป็น 1 µM การ คลายตัวของหลอดเลือดต่อ GTN ถูกยับยั้งได้เกือบ 100% ทั้ง 2 กลุ่ม


รูปที่ 7 แสดงผลของการกินกะทิโปรตีนขนาด 1 g/kg ต่อการตอบสนองโดยการคลายตัวของหลอดเลือด ใหญ่ทรวงอก (thoracic aorta) ที่ถูกยับยั้งการสร้าง NO ด้วย LNA และให้หดตัวอยู่ก่อนแล้วด้วย phenylephrine ต่อ glyceryl trinitrate (A), ถูกยับยั้งการทำงานของ sGC ด้วย ODQ ความเข้มข้น 0.1 μ M (B) และถูกยับยั้งการทำงานของ sGC ด้วย ODQ ความเข้มข้น 1 μ M (C) เปรียบเทียบกับกลุ่ม ควบคุมที่ป้อนน้ำกลั่น แต่ละจุดแสดงค่า mean \pm SEM จากสัตว์ทดลอง 6 ตัว $^{\hat{}}$ มีค่าต่ำกว่ากลุ่มควบคุม อย่างมีนัยสำคัญทางสถิติ, p < 0.05

ผลการแสดงออกของโปรตีน eNOS, CSE และ sGC ที่ผนังหลอดเลือด แสดงไว้ในร**ูปที่ 8** พบว่าการกินกะทิโปรตีนขนาด 1 g/kg ไม่มีผลทำให้เกิดการเปลี่ยนแปลงการแสดงออกของโปรตีน eNOS, CSE หรือ sGC ที่ผนังหลอดเลือด เมื่อเทียบกับกลุ่มควบคุมที่กินน้ำกลั่น


ร**ูปที่ 8** แสดงผลของการกินกะทิโปรตีนขนาด 1 g/kg ต่อการแสดงออกของโปรตีน eNOS, CSE และ sGC ของหลอดเลือด thoracic aorta เปรียบเทียบกับกลุ่มควบคุมที่ป้อนน้ำกลั่น แต่ละจุดแสดงค่า mean ± SEM จากสัตว์ทดลอง 4 ตัว

ผลของ GTN ต่อระดับของ cGMP ของหลอดเลือด แสดงไว้ในรู**ปที่ 9** พบว่า ระดับ cGMP พื้นฐานของหลอดเลือดที่ถูกยับยั้งการสร้าง NO ด้วย LNA ไม่มีความแตกต่างกันระหว่างกลุ่มที่กินกะทิ โปรตีนกับกลุ่มที่กินน้ำกลั่น แต่เมื่อหลอดเลือดถูกกระตุ้นด้วย GTN พบว่าระดับของ cGMP ของหลอด เลือดกลุ่มที่กินกะทิโปรตีนมีค่าสูงกว่าของกลุ่มควบคุมที่กินน้ำกลั่นอย่างมีนัยสำคัญทางสถิติ, p < 0.05

ร**ูปที่ 9** แสดงผลของการกินกะทิโปรตีนขนาด 1 g/kg ต่อระดับ cGMP ที่ผนังหลอดเลือด เปรียบเทียบ กับกลุ่มควบคุมที่ป้อนน้ำกลั่น แต่ละจุดแสดงค่า mean \pm SEM จากสัตว์ทดลอง 4 ตัว *มีค่าสูงกว่าของ กลุ่มควบคุมที่กินน้ำกลั่นอย่างมีนัยสำคัญทางสถิติ, p < 0.05

ผลของ diadzin ต่อระดับ NO ของหลอดเลือดที่ถูกกระตุ้นโดย GTN แสดงไว้ในร**ูปที่ 10** พบว่า หลอดเลือดของกลุ่มที่กินกะทิโปรตีน เมื่อถูกกระตุ้นด้วย GTN ทำให้หลอดเลือดมีความเข้มข้นของ NO ที่หลอดเลือดสูงกว่าของกลุ่มควบคุมที่กินน้ำกลั่นอย่างมีนัยสำคัญทางสถิติ, p < 0.05 การยับยั้งการ ทำงานของ ALDH-2 (30 mM) ซึ่งเชื่อว่าเป็นเอ็นไซม์ตัวหนึ่งที่ทำหน้าที่เปลี่ยน GTN เป็น NO มีผลทำ ให้ลดความเข้มข้นของ NO ในหลอดเลือดลงในปริมาณที่เท่ากัน จึงยังส่งผลให้ระดับ NO ของหลอด เลือดกลุ่มที่กินกะทิโปรตีนยังคงมีความเข้มข้นสูงกว่าของกลุ่มควบคุมที่กินน้ำกลั่น

ร**ูปที่ 10** แสดงผลของการกินกะทิโปรตีนขนาด 1 g/kg ต่อระดับ NO ที่ผนังหลอดเลือด เปรียบเทียบกับ กลุ่มควบคุมที่ป้อนน้ำกลั่น แต่ละจุดแสดงค่า mean \pm SEM จากสัตว์ทดลอง 4 ตัว \star มีค่าสูงกว่าของ กลุ่มควบคุมที่กินน้ำกลั่นอย่างมีนัยสำคัญทางสถิติ, p < 0.05

การศึกษา shelf life ของกะทิโปรตีน

ผลการทดลองแสดงไว้ใน**ตารางที่ 8** พบว่าการเก็บกะทิโปรตีนนาน 3 เดือน ไม่มีผลทำให้เกิด การเปลี่ยนแปลง ปริมาณความชื้น ค่า water activity (a_w) ค่าความหืนโดยวัดค่า TBA, และค่าสี อย่างมี นัยสำคัญทางสิถิติ เมื่อเปรียบเทียบกับค่าของเดือน 0 คือวันก่อนที่จะนำไปเก็บไว้ในห้องอุณหภูมิ 25 °C ที่มีความชื้นสัมพัทธ์ 75%

ตารางที่ 8 แสดงค่าปริมาณความชื้น ค่า water activity (a_w), TBA และค่าสี (L* a* b*) แต่ละค่าแสดง ค่าของ mean ± SEM ของตัวอย่างกะทิโปรตีนชุดละ 4 ตัวอย่าง (n=4)

เดือน	ปริมาณ ความชื้น	ค่า a _w	ค่า TBA maloaldehyde (mg/kg)	ค่าสี L*	ค่าสี a*	ค่าสี b*
0	2.52 ± 0.16	0.13 ± 0.01	4.27 ± 0.19	84.21 ± 0.13	1.92 ± 0.20	9.74 ± 0.28
1	2.63 ± 0.30	0.12 ± 0.05	5.10 ± 0.01	84.67 ± 0.12	1.46 ± 0.07	10.89 ± 0.28
2	2.83 ± 0.65	0.14 ± 0.04	6.18 ± 0.08	84.41 ± 0.35	1.55 ± 0.08	11.42 ± 0.46
3	2.40 ± 0.85	0.11 ± 0.02	4.05 ± 0.01	83.30 ± 1.01	1.64 ± 0.29	11.99 ± 0.44

บทที่ 5

วิจารณ์และสรุปผลการทดลอง

จากผลการทดลองพบว่าการกินน้ำมันมะพร้าวที่สกัดจากกะทิสดแห้ง ขนาด 1 ml/kg ไม่มีผลทำ ให้เกิดการเปลี่ยนแปลงต่อปัจจัยใดใดที่ทำการศึกษา ยกเว้นมีผลทำให้เพิ่มการสะสมไขมันที่ด้านหลัง ของช่องท้อง (retroperitoneal fat) แต่ถ้าให้กินเพิ่มเป็น 3 ml/kg มีผลทำให้เพิ่มการแสดงออกของ โปรตีน eNOS และ CSE ที่ผนังหลอดเลือด ส่งผลให้หลอดเลือดเพิ่มการหลั่ง NO และ H₂S ซึ่งจะมีผล ไปต้านการหดตัวของหลอดเลือดต่อ phenylephrine และเสริมการคลายตัวของหลอดเลือดต่อ acetylcholine ซึ่งเป็นผลดีต่อระบบหัวใจและหลอดเลือด Chongsa et al. (2015) พบว่าหนูแรทวัยกลาง ชีวิต (12-14 เดือน) หลอดเลือด thoracic aorta และ mesenteric artery มีภาวะ endothelium dysfunction กล่าวคือ มีระดับโปรตีน eNOS และ CSE ลดลง ส่งผลให้การหลั่ง NO และ H₂S ลดลงด้วย ดังนั้นการที่พบว่าการกินน้ำมันมะพร้าวขนาด 3 ml/kg มีผลทำให้หลอดเลือด thoracic aorta เพิ่มการ แสดงออกของโปรตีน eNOS และ CSE และหลั่ง NO และ H₂S เพิ่มขึ้นเมื่อเทียบกับกลุ่มควบคุมที่กินน้ำ กลั่น เป็นการชี้แนะว่าการกินน้ำมันมะพร้าวสกัดจากกะทิสดแห้งในขนาดดังกล่าวนี้ เป็นผลดีต่อหลอด เลือดคือทำให้หลอดเลือดที่แก่ตัว (aging) กลับมามีคุณภาพดีเหมือนหลอดเลือดของวัยหนุ่ม-สาว ซึ่งผล ต่อหลอดเลือดเหมือนกับผลของการกินกะทิสดแห้งขนาด 3 g/kg (Jansakul et al., 2018)

การกินน้ำมันมะพร้าวขนาด 3 ml/kg ยังมีผลลดระดับน้ำตาลในเลือด ให้ผลเหมือนกับการกิน กะทิสดแห้งขนาด 3 g/kg (Jansakul et al., 2018) นอกจากนี้ยังพบว่าการกินน้ำมันมะพร้าวขนาด ดังกล่าวนี้ ยังมีผลลดการสะสมไขมันในเซลล์ตับ ลดระดับ alkaline phosphatase และ Urea nitrogen ในเลือด เป็นการชี้แนะว่าการกินน้ำมันมะพร้าวในขนาดดังกล่าวไม่เป็นอันตรายต่อตับ และต่อการ ทำงานของไต

จากการที่พบว่าการกินน้ำมันมะพร้าวขนาด 3 ml/kg มีผลทำให้เพิ่มการแสดงออกของโปรตีน eNOS และ CSE ที่ผนังหลอดเลือดมีผลทำให้มีการหลั่ง NO ที่ผนังหลอดเลือดเพิ่มขึ้นส่งผลไปต้านการ หดตัวของหลอดเลือดต่อ phenylephrine ทำให้การหดตัวสูงสุดของหลอดเลือด thoracic aorta ของกลุ่ม ที่กินน้ำมันมะพร้าว ต่ำกว่าของกลุ่มควบคุม และไปเสริมการคลายตัวของหลอดเลือดต่อ acetylcholine ทำให้การตอบสนองของหลอดเลือด thoracic aorta ต่อ acetylcholine ของกลุ่มที่กินน้ำมันมะพร้าว คลายตัวได้มากกว่ากลุ่มควบคุม ผลดังกล่าวนี้เหมือนกับผลของการกินกะทิโปรตีน ดังนั้นอาจกล่าวได้ว่า สารที่เป็น active component ของกะทิสดแห้งที่มีฤทธิ์ดังกล่าวนี้ น่าจะเป็นน้ำมันมะพร้าว หรือส่วนที่ ละลายอยู่ในน้ำมันมะพร้าว อย่างไรก็ตามการกินน้ำมันมะพร้าวขนาดดังกล่าวนี้มีผลทำให้เพิ่มการสะสม ไขมันที่บริเวณช่องท้องด้านหลัง ซึ่งก็เป็นปัจจัยเสี่ยงที่ทำให้เกิด metabolic syndrome, insulin resistance, เบาหวาน และโรคระบบหัวใจและหลอดเลือด ดังนั้นจำเป็นอย่างยิ่งที่จะต้องมีการศึกษา เพิ่มเติมเพื่อพิสูจน์ให้ได้ว่า ส่วนที่เป็น active component เป็นส่วนของน้ำมันมะพร้าว หรือสารอื่นที่ ละลายอยู่ในน้ำมันมะพร้าวที่สกัดจากกะทิสดแห้ง ที่มีฤทธิ์ที่ดีต่อระบบหัวใจและหลอดเลือด และสารออก

ฤทธิ์ดังกล่าวทนต่อความร้อนหรือไม่ทั้งนี้เพื่อประโยชน์ในการเตรียมน้ำมันมะพร้าว และ/หรือการนำน้ำ มะพร้าวไปใช้ในการปรุงอาหาร

สำหรับผลต่อกะทิโปรตีนพบว่าการกินกะทิโปรตีนขนาด 1 g/kg มีผลทำให้ลดการสะสมไขมันใน ร่างกายทั้งที่อวัยวะภายใน และที่บริเวณใต้ผิวหนัง ซึ่งผลดังกล่าวนี้แตกต่างจากผลของการกินกะทิสด แห้งของ Jansakul et al. (2018) ที่พบว่าการกินกะทิสดแห้งขนาด 3 g/kg ไม่มีผลต่อการสะสมไขมันใน ร่างกาย แต่กลับพบว่าการกินน้ำมันมะพร้าวที่แยกจากกะทิสดแห้งมีผลทำให้เพิ่มการสะสมไขมันในช่อง ท้อง ทั้งนี้เป็นไปได้ว่าในโปรตีนกะทิสดมีสารที่ทำให้ลดการสะสมไขมันในร่างกายและสามารถต้านการ สะสมไขมันที่เกิดจากจากน้ำมันมะพร้าวได้พอดี จึงทำให้การกินกะทิสดในขนาดดังกล่าวไม่มีผลทำให้ เพิ่มการสะสมไขมันในร่างกาย

การกินกะทิโปรตีนยังมีผลทำให้ลดการสะสมไขมันที่เซลล์ตับ และที่ผนังหลอดเลือดด้วยเมื่อ เทียบกับกลุ่มควบคุมที่กินน้ำกลั่น ซึ่งจะเป็นผลดีต่อระบบหัวใจและหลอดเลือดของหนูแรทวัยกลางชีวิต จากการที่พบว่า ระดับของ Alp, SGOT, SGTP, BUN และ creatinine ในเลือดของกลุ่มที่กินกะทิโปรตีน ไม่แตกต่างจากกลุ่มควบคุมที่กินน้ำกลั่น เป็นการชี้แนะว่าการกินกะทิโปรตีนในขนาดดังกล่าวไม่มีผลต่อ การทำงานของตับและไต

การที่พบว่า completed blood cell count ของกลุ่มที่กินกะทิโปรตีนไม่มีความแตกต่างจากกลุ่ม ควบคุมที่กินน้ำกลั่น ยกเว้น จำนวน platelet count ที่มีจำนวนลดลง เป็นการชี้แนะว่าการกินกะทิ โปรตีนในขนาดดังกล่าวไม่มีผลต่อสร้างเม็ดเลือดชนิดต่าง ๆ ยกเว้นเกล็ดเลือดที่มีจำนวนลดลงเล็กน้อย ซึ่งจะเป็นผลดีต่อระบบหัวใจและหลอดเลือด ที่อาจจะทำให้ลด aggregation ของเม็ดเลือดในน้ำเลือด

การกินกะทิโปรตีนไม่มีผลทำให้เกิดการเปลี่ยนแปลงการตอบสนองโดยการหดัตัวของหลอด เลือดต่อ phenylephrine ไม่ว่าหลอดเลือดจะถูกยับยั้งการสร้าง NO ด้วย LNA หรือหลอดเลือดที่เนื้อเยื่อ endothelium ถูกทำลาย หรือต่อการคลายตัวต่อ acetylcholine เมื่อเปรียบเทียบผลกับกลุ่มควบคุมที่กิน น้ำกลั่น ซึ่งเป็นการซี้แนะว่าการกินกะทิโปรตีนไม่น่าจะมีผลทำให้เพิ่มการหลั่ง NO จากหลอดเลือด และ การที่พบว่าการแสดงออกของโปรตีน eNOS ที่หลอดเลือด ไม่มีความแตกต่างกันระหว่างกลุ่มที่กินกะทิ กับกลุ่มควบคุม ก็เป็นการยืนยันอีกครั้งว่าการกินกะทิโปรตีนไม่มีผลทำให้เพิ่มการหลั่ง NO ที่หลอด เลือด ในทำนองเดียวกัน การกินกะทิโปรตีน ไม่มีผลทำให้เพิ่มการเปลี่ยนแปลงการหลั่ง H2S ที่หลอดเลือด ทั้งนี้เนื่องจาก การยับยั้งการสร้าง H2S ด้วย PAG มีผลทำให้เพิ่มการหดัดวของหลอดเลือดต่อ phenylephrine เพิ่มขึ้นในขนาดที่เท่ากัน และลดการคลายตัวของหลอดเลือดต่อ acetylcholine ในขนาด ที่เท่ากันทั้งกลุ่มที่กินกะทิ และกลุ่มควบคุมที่กินน้ำกลั่น และจากการที่พบว่าการแสดงออกของโปรตีน CSE ที่หลอดเลือดไม่มีความแตกต่างกันระหว่างกลุ่มที่กินกะทิโปรตีนและกลุ่มที่ควบคุมที่กินน้ำกลั่น ซึ่ง ผลดังกล่าวนี้แตกต่างจากผลของการกินกะทิสดแห้งของ Jansakul et al. (2018) ดังนั้นจึงอาจกล่าวได้ ว่า กะทิโปรตีนไม่ได้เป็น active component ของกะทิสดแห้งที่แสดงฤทธิ์เพิ่มการแสดงออกของ eNOS และ CSE และส่งผลเพิ่มการหลั่ง NO และ CSE ที่ผนังหลอดเลือด active component ที่แสดงฤทธิ์ ดังกล่าวนี้อยู่ในส่วนของน้ำมันมะพร้าว

อย่างไรก็ตามการกินกะทิโปรตีนมีผลทำให้เพิ่มการคลายตัวของหลอดเลือดต่อ glyceryl trinitrate ซึ่งเป็น nitric oxide donor ที่ใช้เป็นยาอมใต้ลิ้นในผู้ป่วยที่มีอาการกล้ามเนื้อหัวใจขาดเลือด (angina pectoris) แต่ไม่มีผลต่อการคลายตัวของหลอดเลือดต่อ sodium nitroprusside ซึ่งเป็น nitric oxide donor ที่สามารถแตกตัวเป็น NO ได้โดยตรง ในทำนองเดียวกับ acetylcholine การยับยั้งการ สร้าง H₂S ด้วย PAG มีผลลดการคลายตัวของหลอดเลือดต่อ GTN และ sodium nitroprusside ได้ใน ขนาดที่เท่ากันทั้งของกลุ่มที่กินกะทิโปรตีน และกลุ่มควบคุมที่กินน้ำกลั่น ส่งผลให้การคลายตัวของ หลอดเลือดต่อ GTN ของกลุ่มที่กินกะทิโปรตีนยังคงคลายตัวได้มากกว่ากลุ่มควบคุมที่กินน้ำกลั่น แต่ การคลายตัวของหลอดเลือดต่อ sodium nitroprusside ไม่มีความแตกต่างกันระหว่างกลุ่มที่กะทิโปรตีน และกลุ่มควบคุมที่กินน้ำกลั่น ผลดังกล่าวนี้เป็นการชี้แนะว่าสารออกฤทธิ์ในกะทิโปรตีนมีความจำเพาะ เพิ่มความแรงในการคลายตัวของหลอดเลือดต่อ GTN เท่านั้น

GTN เป็นยาขยายหลอดเลือดที่ใช้รักษาอาการเจ็บหน้าอกเนื่องจากการตีบตันของหลอดเลือด หัวใจ (angina pectoris) หัวใจล้มเหลว (congestive heart failure) และกล้ามเนื้อหัวใจขาดเลือด (myocardial infarction) ซึ่งใช้กันมาตั้งแต่ศตวรรษที่ 19 แต่กลไกในการแสดงฤทธิ์ในระดับโมเลกุลยังไม่ เป็นที่ทราบแน่ชัด (Bonini et al., 2008; Mayer and Beretta, 2008) ข้อมูลการวิจัยต่าง ๆ มาจนถึง ปัจจุบันมีรายงานการวิจัยที่ชี้แนะว่าการแสดงฤทธิ์ของ GTN นั้น GTN จะถูกเปลี่ยนเป็น NO โดยอาศัย กระบวนการที่ต้องใช้เอ็นไซม์จำเพาะภายในเซลล์ (biotransformation) แล้ว NO จึงกระตุ้น soluble gaunylate cyclase (sGC) ให้เปลี่ยน GTP เป็น cGMP แล้วจึงส่งผลให้เกิดการคลายตัวของหลอดเลือด (Diamond & Blisard, 1975; Kawamoto et al., 1990) ได้มีการศึกษาเกี่ยวกับเอ็นไซม์ที่น่าจะเกี่ยวข้อง หลายชนิด แต่ข้อมูลที่มีอยู่และเชื่อว่าน่าจะเป็นไปได้ ได้แก่ aldehyde dehydrogenase -2 (ALDH-2) เป็นเอ็นไซม์ที่อยู่ใน mitochondria ของเซลล์หลอดเลือด (Kollau et al., 2005; Mayer & Beretta, 2008; Opelt et al., 2016; 2018) แต่ก็มีนักวิจัยอีกกลุ่มหนึ่ง Bonini et al. (2008) ได้ทำการทดลอง และ ผลการทดลองของพวกเขาทำให้เชื่อว่า GTN มีผลกระตุ้น constitutive nitric oxide synthase หลั่ง NO ออกมา ในขณะที่ Artz et al. (2001) รายงานว่า GTN มีคุณสมบัติเป็น partial agonist ของ sGC สามารถกระตุ้น sGC ได้โดยตรง ดังนั้นในการศึกษาครั้งนี้จึงมีแผนที่จะศึกษาหากลไกในการที่กินกะทิ โปรตีนแล้วมีผลทำให้เพิ่มการคลายตัวของหลอดเลือดต่อ GTN โดยจะศึกษาในแง่ของ (1) ทำให้เพิ่ม activity ของ sGC, (2) ทำให้เพิ่มการแสดงออกของโปรตีน sGC หรือ (3) ทำให้เพิ่ม activity ของ เอ็นไซม์ ALDH-2 ในการเปลี่ยน GTN เป็น NO โดยใช้เทคนิคทางเภสัชวิทยามาศึกษา โดยใช้สารที่เป็น ์ ตัวยับยั้งเอ็นไซม์ชนิดต่าง (L-NA สำหรับ eNOS, ODQ สำหรับ sGC and diadzin สำหรับALDH-2) ที่ เกี่ยวข้องแล้วศึกษาผลที่เกิดขึ้น และเพื่อป้องกันมิให้มีการรบกวนจาก NO ที่สร้างจาก endothelial cell โดย eNOS ในการศึกษาทั้งหมดต่อจากนี้หลอดเลือดจะถูกยับยั้งการทำงานของ eNOS ด้วย LNA ทุก การทดลอง เพื่อให้แน่ใจว่าผลที่เกิดขึ้นที่เกี่ยวข้องกับ NO เป็นผลที่เกิดขึ้นจาก GTN การศึกษาที่ 1 เพื่อที่จะดูว่าการกินกะทิโปรตีนมีผลทำให้เพิ่มการทำงานของ sGC หรือไม่ ทำการทดลองโดยยับยั้งการ ทำงานของ sGC ด้วย ODQ ที่ 2 ความเข้มข้น พบว่าถ้าความเข้มข้นต่ำที่ 0.1 µM ODQ สามารถยับยั้ง การคลายตัวของหลอดเลือดต่อ GTN ได้ระดับหนึ่งในปริมาณที่เท่ากันทั้งหลอดเลือดของหนูที่กินกะทิ โปรตีน และของกลุ่มควบคุมที่กินน้ำกลั่น ส่งผลให้การคลายตัวของหลอดเลือดต่อ GTN ของกลุ่มที่กิน

กะทิโปรตีนยังคลายตัวได้มากกว่ากลุ่มควบคุมที่กินน้ำกลั่น แต่ถ้าเพิ่มความเข้มขันของ ODQ ขึ้นอีก 10 เท่า เป็น 1µM, ODQ สามารถยับยั้งการคลายตัวของหลอเลือดต่อ GTN ได้เกือบ 100 % ซึ่งก็เป็นการ ชี้แนะว่า GTN มีผลทำให้เพิ่มระดับ sGC ในหลอดเลือดของกลุ่มที่กินกะทิโปรตีนได้มากกว่ากลุ่ม ควบคุมที่กินน้ำกลั่น การทดลองต่อไปทำการทดลองเพื่อพิสูจน์ว่าการเพิ่มขึ้นของ sGC เป็นผล เนื่องมาจากการเกิด up-regulation ของ sGC หรือไม่ เพื่อพิสูจน์ผลอันนี้ ทำการทดลองโดยวิเคราะห์หา ปริมาณการแสดงออกของโปรตีน sGC ที่ผนังหลอดเลือดด้วยวิธี western blot ผลการทดลองพบว่า การแสดงออกของโปรตีน sGC ที่ผนังหลอดเลือดไม่มีความแตกต่างกันระหว่างหลอดเลือดของกลุ่มที่กิน กะทิโปรตีน กับของกลุ่มควบคุมที่กินน้ำกลั่น จากผลการทดลองนี้ชี้แนะว่าการเพิ่มการคลายตัวของ หลอดเลือดต่อ GTN ของกลุ่มที่กินกะทิโปรตีน ไม่น่าจะเป็นผลมาจาก up-regulation ของ sGC จากผล การทดลองที่พบว่าการกินกะทิโปรตีนไม่ได้ทำให้หลอดเลือดเพิ่มการหลั่ง NO รวมทั้งการคลายตัวของ หลอดเลือดต่อ acetylcholine ก็ไม่มีความแตกต่างกันระหว่างกลุ่มที่กินกะทิโปรตีนกับกลุ่มที่กินน้ำกลั่น ก็เป็นอีกข้อมูลหนึ่งที่ยืนยันว่าการกินกะทิโปรตีนไม่ทำให้เพิ่ม activity ของ sGC นอกจากนี้จากผลการ ทดลองในการทดลองถัดมาโดยทำการวัดระดับ cGMP ของหลอดเลือดทั้งก่อนและหลังกระตุ้นหลอด เลือดด้วย GTN พบว่า ก่อนการกระตุ้นด้วย GTN ระดับ cGMP พื้นฐานของหลอดเลือดทั้ง 2 กลุ่มไม่มี ความแตกต่างกัน แต่เมื่อเพิ่ม GTN ลงไปด้วย มีผลทำให้ระดับ cGMP ของกลุ่มที่กินกะทิโปรตีน มี ระดับ cGMP สูงกว่าของกลุ่มควบคุมที่กินน้ำกลั่น ผลการทดลองนี้ก็เป็นการยืนยันอีกครั้งว่าการกินกะทิ โปรตีนไม่ได้ทำให้เพิ่ม activity ของ sGC ซึ่งถ้ามีการเพิ่ม activity ของ sGC ระดับของ basal cGMP ของกลุ่มที่กินกะทิโปรตีนควรจะมีค่ามากกว่าของกลุ่มควบคุม ดังนั้นการที่พบว่า GTN กระตุ้นหลอด เลือดให้มีระดับ cGMP ของกลุ่มที่กินกะทิโปรตีนสูงกว่าของกลุ่มควบคุมเป็นการชี้แนะว่า การกินกะทิ โปรตีนน่าจะทำให้เพิ่ม activity ของเอ็นไซม์ ที่เกี่ยวข้องกับ biotransformation ของ GTN เป็น NO เพื่อที่จะยืนยันสมมุติฐานนี้ จึงได้ทำการทดลองต่อไปอีก 1 การทดลอง โดยตั้งสมมุติฐานว่า ALDH-2 เป็นเอ็นไซม์ที่เกี่ยวข้องกับ biotransformation ของ GTN เป็น NO ถ้าใช่ ฤทธิ์ของ ALDH-2 ควรจะ สามารถยับยั้งได้ด้วย diadzin จากผลการทดลองพบว่า GTN สามารถกระตุ้นการหลั่ง NO จากกลุ่มที่ กินกะทิโปรตีนได้มากกว่ากลุ่มควบคุม แต่เมื่อหยด diadzin ลงไปด้วยเพื่อยับยั้งการทำงานของ ALDH-2 พบว่าสามารถลดระดับของ NO จากการถูกกระตุ้นด้วย GTN ได้ในระดับเท่า ๆ กันของทั้ง 2 กลุ่ม ส่งผลให้ระดับของ NO ของกลุ่มที่กินกะทิยังคงสูงกว่าของกลุ่มควบคุม จากผลการทดลองนี้ก็เป็นการ ์ชี้แนะว่าการกินกะทิโปรตีนน่าจะส่งผลทำให้เพิ่ม activity ของ ALDH-2 แต่อย่างไรก็ตามเพื่อที่ยืนยัน สมมุติฐานนี้ จำเป็นต้องมีการทำการทดลองที่จำเพาะโดยการวัด activity ของ ALDH-2 โดยตรงต่อไป

สรุปผลการทดลอง

จากผลการทดลองทั้งหมด สรุปได้ว่าทั้งน้ำมันมะพร้าว และกะทิโปรตีน มีสารออกฤทธิ์ที่เป็น ผลดีต่อคุณภาพที่ดีของระบบหัวใจและหลอดเลือด โดยน้ำมันมะพร้าวมีผลทำให้เพิ่มระดับการแสดงออก ของโปรตีน eNOS และ CSE ที่หลอดเลือดทำให้หลอดเลือดของหนูวัยกลางชีวิตมีคุณภาพดีกลับคืน สภาพสู่วัยหนุ่ม-สาว นอกจากนี้ยังมีผลลดระดับน้ำตาลในเลือด ลดการสะสมไขมันในเซลล์ตับ แต่ข้อเสีย คือทำให้เพิ่มการสะสมไขมันในช่องท้อง ซึ่งจะเป็นสาเหตุของ metabolic syndrome ภาวะดื้อ Insulin เบาหวาน และโรคระบบหัวใจและหลอดเลือด

แต่การกินกะทิโปรตีน มีผลทำให้ลดการสะสมไขมันในร่างกาย รวมทั้งที่เซลล์ตับ และที่ผนัง หลอดเลือดบริเวณขั้วหัวใจ มีผลเพิ่มการคลายตัวของหลอดเลือดต่อ GTN ซึ่งน่าจะเป็นผลมาจากทำให้ เพิ่มการทำงานใน enzymatic pathway ในการเปลี่ยน GTN เป็น NO แล้วส่งผลทำให้เพิ่มระดับ NO ซึ่ง ทำให้เพิ่มระดับ cGMP ส่งผลให้มีหลอดเลือดคลายตัวเพิ่มขึ้น ซึ่งเป็นปัจจัยเชิงบวกในการชะลอ หรือ ป้องกันการเกิดภาวะดื้อยา GTN (GTN tolerance) ซึ่งมักจะเกิดขึ้นกับผู้ป่วยที่มีการใช้ GTN ในการ รักษาโรคหลอดเลือดหัวใจตีบเป็นระยะเวลานาน (Jabs et al., 2015; Munzel et al., 2011& 2013) ดังนั้นอาจกล่าวได้ว่ากะทิโปรตีนเป็น novel protein ที่ควรที่จะได้รับการพัฒนาเป็นอาหารเสริมเพื่อ สุขภาพเพื่อป้องกัน/ชลอการพัฒนาเป็นโรคระบบหัวใจและหลอดเลือดในคนโดยเฉพาะจากวัยกลางคน เป็นตันไป

บทที่ 6

Output จากโครงการวิจัยที่ได้รับทุนจาก สสกว.

ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ 2 เรื่อง

- 1. Jansakul, C., Naphatthalung, J., Pradab, S., Somruedee Yorsin, S., Kanokwiroon K. 2018. 6 weeks consumption of pure fresh coconut milk caused up-regulation of eNOS and CSE protein expression in middle-aged male rats. Braz. J. Pharm. Sci., 54 (3): e17259.
- 2. Naphatthalung, J., Chairuk P., Kanokwiroon K., Radenahmad N., Jansakul, C. 2019. Effects of six weeks consumption of coconut milk oil on vascular functions and fasting blood glucose and lipid profile in middle-aged male rats Functional Foods in Health and Disease, 9 (11): 719-734.

Manuscript 1 เรื่อง รอ submit หลังจากที่ได้ submit อนุสิทธิบัตร

Jansakul C., Naphatthalung N., Chailuk P., Kanokwiroon K., Radenahmad N. (50 **submit**). Decreased body-fat accumulation and increased vasorelaxation to glyceryl trinitrate in middleaged male rats following six weeks consumption of coconut milk protein. (**Manuscript**)

อนุสิทธิบัตร (ร่าง) 1 เรื่อง

กรรมวิธีการผลิตน้ำมันมะพร้าว และโปรตีนจากกะทิสด (อนุสิทธิบัตร ยังไม่ได้ submit รอการแก้ไข และคำแนะนำจาก ศูนย์ทรัพย์สินทางปัญญา มหาวิทยาลัยสงขลานครินทร์)

การนำผลงานวิจัยไปใช้ประโยชน์

เชิงพาณิชย์ (มีการนำไปผลิต/ขาย/ก่อให้เกิดรายได้ หรือมีการนำไปประยุกต์ใช้โดยภาคธุรกิจ/บุคคล ทั่วไป)

ได้รับทุนสกสว.ต่อยอด ประจำปีงบประมาณ 2562 เพื่อทำงานร่วมกับบริษัทสกัดน้ำมันมะพร้าวแบบ สกัดเย็น บริษัทเอิร์ธบอร์น จำกัด อ. วัดเพลง จ. ราชบุรี เพื่อสกัดโปรตีนจากสิ่งเหลือทิ้งของโรงงาน และทดสอบฤทธิ์ต่อระบบหัวใจและหลอดเลือดว่ายังคงมีฤทธิ์ต่อระบบหัวใจและหลอดเลือดเหมือนกับ กะทิโปรตีนหรือไม่ ถ้ายังคงมีอยู่ก็จะมีการพัฒนาโปรตีนจากสิ่งเหลือทิ้งจากโรงงานฯ มาใช้เป็นอาหาร เสริมเพื่อสุขภาพต่อระบบหัวใจและหลอดเลือดต่อไป

เชิงนโยบาย (มีการกำหนดนโยบายอิงงานวิจัย/เกิดมาตรการใหม่/เปลี่ยนแปลงระเบียบข้อบังคับหรือวิธี ทำงาน)

ไม่ถี่

เชิงสาธารณะ (มีเครือข่ายความร่วมมือ/สร้างกระแสความสนใจในวงกว้าง)

มีความร่วมมือกับบริษัทผลิตน้ำมันมะพร้าวสกัดเย็น 2 แห่ง คือ

- 1. บริษัทเอิร์ธบอร์น จำกัด อ. วัดเพลง จ. ราชบุรี
- 2. บริษัท เจพี เบฟเวอเรจ ต. บ่อผุด อ. เกาะสมุย จ.สุราษฎร์ธานี

ได้รับทุนวิจัยต่อยอด สกว. ประจำปี 2562 เพื่อทำงานวิจัยต่อยอด โดยใช้วัสดุเหลือทิ้งจากการสกัด น้ำมันมะพร้าวแบบสกัดเย็นของโรงงานมาสกัดโปรตีน และทดสอบฤทธิ์ว่ายังมีฤทธิ์ทางสรีวิทยาต่อ ระบบหัวใจและหลอดเลือดแบบเดียวกับกะทิโปรตีนหรือไม่ ถ้าโปรตีนที่ได้ยังมีฤทธิ์อยู่ จะได้มีการ ดำเนินการต่อเพื่อพัฒนาโปรตีนจากสิ่งเหลือทิ้งจากโรงงานสกัดน้ำมันมะพร้าวมาใช้เป็นอาหารเสริมเพื่อ สุขภาพต่อระบบหัวใจและหลอดเลือด

เชิงวิชาการ (มีการพัฒนาการเรียนการสอน/สร้างนักวิจัยใหม่)
สร้างนักศึกษาระดับปริญญาเอก 1 คน

อื่นๆ (เช่น ผลงานตีพิมพ์ในวารสารวิชาการในประเทศ การเสนอผลงานในที่ประชุมวิชาการ หนังสือ การจดสิทธิบัตร)

เสนอผลงานในการประชุมวิชาการระดับนานาชาติ 1 เรื่อง

นำเสนอผลงานทางวิชาการแบบ Oral presentation เรื่อง Effects of coconut milk oil consumption on blood pressure and vascular functions in middle-aged male rats

ในงานประชุมวิชาการระดับนานาชาติ 13th Asian Congress of Nutrition ที่เมือง Bali ประเทศ Indonesia

เสนอผลงานวันที่ 6 สิงหาคม 2562 เวลา 11.30-12.00 น.

การประชุม "นักวิจัยรุ่นใหม่..พบ..เมธีวิจัยอาวุโส สกว." ครั้งที่ 17 TRF-OHEC Annual Congress 2018 (TOAC 2018) วันที่ 10-12 มกราคม 2561 ณ โรงแรม เดอะรีเจ็นต์ ชะอำบีช รีสอร์ท จังหวัดเพชรบุรี เสนอผลงานแบบ poster หัวข้อเรื่อง Effects of fresh coconut milk oil consumption on blood pressure and vascular functions in middle-aged male rats

กลุ่มงาน BIO: Biomedical Science and Health Science เสนอผลงานวันที่ 11 มกราคม 2561 เวลา 16.30-18.00 น

การประชุม "นักวิจัยรุ่นใหม่..พบ..เมธีวิจัยอาวุโส สกว." ครั้งที่ 18 TRF-OHEC Annual Congress 2019 (TOAC 2019) วันที่ 9-11 มกราคม 2562 ณ โรงแรม เดอะรีเจ็นต์ ชะอำบีช รีสอร์ท จังหวัดเพชรบุรี เสนอผลงานแบบ poster หัวข้อเรื่อง Effects of coconut milk oil consumption on blood pressure and vascular functions in middle-aged male rats

กลุ่มงาน BIO: Biomedical Science and Health Science เสนอผลงานวันที่ 10 มกราคม 2562 เวลา 15.05-15.25 น.

เอกสารอ้างอิง

- 1. Abe, K., Kimura, H. 1996. The possible role of hydrogen sulfide as an endogenous neuromodulator. Journal of Neuroscience 16, 1066-1071.
- Artz JD, Toader V, Zavorin SI, Bennett BM, Thatcher GR. 2001. In vitro activation of soluble guanylyl cyclase and nitric oxide release: a comparison of NO donors and NO mimetics. Biochemistry 40, 9256-9264.
- Aquaro, G.D., Cagnolo, A., Tiwari, K.K., Todiere, G., Bevilacqua, S., Di Bella, G., Ait-Ali, L., Festa, P., Glauber, M. and Lombardi, M. 2013. Age-dependent changes in elastic properties of thoracic aorta evaluated by magnetic resonance in normal subjects. Interact.Cardiovasc. Thorac Surg. 17, 674-679.
- 4. Avolio, A.P., Chen, S.G., Wang, R.P., Zhang, C.L., Li, M.F., O'Rourke, M.F. 1983. Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation 68, 50-8.
- 5. Bhayadia R, Schmidt BM, Melk A, Homme M. 2016. Senescence-induced oxidative stress causes endothelial dysfunction. J Gerontol A BiolSci Med Sci. 71, 161-169.
- Bonini MG, Stadler K, Sueli de Oliviera S, Corbett J, Dore M, Petranka J, et al. 2008.
 Constitutive nitric oxide synthase activation is a significant route for nitroglycerin-mediated vasodilation. Proc Natl Acad Sci USA. 105, 8569–8574.
- 7. Chongsa, W., Kanokwiroon, K., Jansakul, C. 2015. Effects of 6 weeks oral administration of *Phyllanthus acidus* leaf water extract on the vascular functions of middle-aged male rats. J. Ethnopharmacol 156, 162-174.
- 8. Collins, J.A., Munoz, J.V., Patel, T.R., Loukas, M., Tubbs, R.S. 2014. The anatomy of the aging aorta. Clin. Anat. 27, 463-6.
- 9. Dayrit, C. S. 2003. Coconut oil: Atherogenic or not? Phillipine J. Cardiology 31, 97-104.
- DebMandal M, Mandal S. 2011. Coconut (Cocos nucifera L.: Arecaceae): in health promotion and disease prevention. Asian Pac J Trop Med. 4, 241-247.
- 11. Diamond J, Blisard KS. 1976. Effects of stimulant and relaxant drugs on tension and cyclic nucleotide levels in canine femoral artery. Mol Pharmacol. 12, 668–692.
- 12. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem. 28, 350-356.
- 13. Ekanayaka RA, Ekanayaka NK, Perera B, De Silva PG. 2013. Impact of a traditional dietary supplement with coconut milk and soya milk on the lipid profile in normal free living subjects. J Nutr Metab. 481068.

- Froldi, G., Gallo, U., Ragazzi, E., Caparrotta, L. 1999. 6-Benzylaminopurine: a plant derived cytokinin inducing positive inotropism by P2-purinoceptors. Planta Med. 65, 245-249.
- 15. Gwee CN. 1988. New technologies open the passage into new usage of coconut milk products.In: Maneepun S, Varangoon P, Phitakpol B (editors). Food Science and Technology in Industrial Development. Bangkok: Institute of Food Research and Product Development, Kasetsart University, 157-162.
- Hosoki, R., Matsuki, N., Kimura, H.. 1997. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Comm. 237, 527-531.
- 17. Jabs A, Oelze M, Mikhed Y, Stamm P, Kroller-Schon S, Welschof P, et al. 2015. Effect of soluble guanylyl cyclase activator and stimulator therapy on nitroglycerin-induced nitrate tolerance in rats. Vascul Pharmacol. 71, 181-191.
- 18. Jansakul C, Naphatthalung J, Pradab S, Yorsin S, Kanokwiroon K. 2018. 6 weeks consumption of pure fresh coconut milk caused up-regulation of eNOS and CSE protein expression in middle-aged male rats. Braz J Pharm Sci. 54, e17259.
- Jansakul C., Boura A.L.A., King R.G. 1989. Effects of endothelial cell removal on constrictor and dilator responses of aortae of pregnant rats. J. Autno. Pharmacol.9, 93-101.
- 20. Kawamoto F, ejo-Blanco R, Fleck SL, Kawamoto Y, Sinden RE. 1990. Possible roles of Ca²⁺ and cGMP as mediators of the exflagellation of plasmodium berghei and plasmodium falciparum. Mol Biochem Parasit. 42, 101–108.
- 21. Kobayashi, H, Morisaki, N., Hashimoto, Y., Iwasaki, S., Kawachi, E., Nagata, R., Shudo, K. 1995. Identification of a major cytokinin in coconut milk. Experientia. 15, 1081-1084.
- 22. Kobayashi, H., Morisaki, N., Tago, Y., Hashimoto, Y., Iwasaki, S., Kawachi, E., Nagata, R. Shudo, K. 1977. Structural identification of a major cytokinin in coconut milk as 14-O-(3-O-[beta-D-galactopyranosyl-(1--2)-alpha-D-galactopyranosyl-(1--3)-alpha-L-arabinofuranosyl]-4-O-(alpha-L-arabinofuranosyl)-beta-d-galactopyranosyl)-trans-zeatin riboside. Chem. Pharm. Bull (Tokyo). 45, 260-264.
- 23. Kollau A, Hofer A, Russwurm M, Koesling D, Keung WM, Schmidt K, et al. 2005. Contribution of aldehyde dehydrogenase to mitochondrial bioactivation of nitroglycerin: evidence for the activation of purified soluble guanylate cyclase through direct formation of nitric oxide. Biochem J. 385, 769–777.
- 24. Kumar, P.D. 1997. The role of coconut and coconut oil in coronary heart disease in Kerala, South India. Trop. Doct. 27, 215-217.

- 25. Lakatta, E.G., 2002. Cardiovascular ageing in health sets the stage for cardiovascular disease. Heart Lung and Circulation 11(2), 76-91.
- 26. Lakatta, E.G., 2015. So! What's aging? Is cardiovascular aging a disease? J. Mol. Cell. Cardiology 83, 1-13.
- 27. Lakatta, E.G. and Levy, D., 2003. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a "set up" for vascular disease. Circulation 107, 139-146.
- 28. Lipoeto, N.I., Agus, Z., Oenzil, F., Wahlqvist, M, Wattanapenpaiboon, N. 2004. Dietary intake and the risk of coronary heart disease among the coconut-consuming Minangkabau in West Sumatra, Indonesia. Asia Pac. J. Nutr. 13, 377-384.
- 29. Marchesi S, Lupattelli G, Siepi D, Schillaci G, Vaudo G, Roscini AR, et al. 2000. Short-term atorvastatin treatment improves endothelial function in hypercholesterolemic women. J Cardiovasc Pharmacol. 36, 617-621.
- 30. Mayer B, Beretta M. 2008. The enigma of nitroglycerin bioactivation and nitrate tolerance: news, views and troubles. British journal of pharmacology 155, 170-184.
- 31. Mc Namara, K., Alzubaidi, H. and Jackson, J. K. 2019. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integrated pharmacy research & practice 8, 1-11. doi:10.2147/IPRP.S133088.
- 32. Mini S, Rajamohan T. 2002. Cardioprotective effect of coconut kernel protein in isoproterenol administered rats. Indian J Biochem Biophys. 39, 197-200.
- 33. Mini, S., Rajamohan, T. 2004. Influence of coconut kernel protein on lipid metabolism in alcohol fed rats. Indian J. Exp. Biol. 42, 53-57.
- 34. Mu, H., Hoy, C.E. 2000. Effects of different medium-chain fatty acids on intestinal absorption of structured triacylglycerols. Lipids 35, 83-89.
- 35. Mu, H., Hoy, C.E. 2001. Intestinal absorption of specific structured triacylglycerols. J. Lipid Res. 42, 792-8.
- 36. Mu, H. and Hoy, C.E. 2002. Distribution of medium-chain FA in different lipid classes after administration of specific structured TAG in rats. Lipids 37, 329-331.
- 37. Munzel T, Daiber A, Gori T. 2013. More answers to the still unresolved question of nitrate tolerance. Eur Heart J. 34, 2666–2673.
- 38. Munzel T, Daiber A, Gori T. 2011. Nitrate therapy: new aspects concerning molecular action and tolerance. Circulation 123, 2132–2144.
- 39. Nair KGP, Rajamohan T, Kurup PA. 1998. Changes in the metabolism of lipoproteins in rats fed coconut kernel protein, J Clin Biochem Nutr. 25, 159–168.

- 40. Naphatthalung J, Chairuk P, Kanokwiroon K, Radenahmad N, Jansakul C. 2019. Effects of six weeks consumption of coconut milk oil on vascular functions and fasting blood glucose and lipid profile in middle-aged male rats. Funct Food Health Dis. 9, 719-734.
- 41. Nevin, K.G., Rajamohan, T. 2004. Beneficial effects of virgin coconut oil on lipid parameters and in vitro LDL oxidation. Clin. Biochem. 37, 830-835.
- 42. Nevin, K. G., Rajamohan, T. 2007. Influence of virgin coconut oil on blood coagulation factors, lipid levels and LDL oxidation in cholesterol fed Sprangue-Dawley rats. Eur. e-J. Clin. Nutrition and metabolism 3, e1-e8.
- 43. National Institute on Aging (NIA), 2011. Global health and aging. NIH publication no. 11- 7737 October 2011.
- 44. Novella S, Dantas AP, Segarra G, Vidal-Gomez X, Mompeon A, Garabito M, et al. 2013. Medina P. Aging-related endothelial dysfunction in the aorta from female senescence-accelerated mice is associated with decreased nitric oxide synthase expression. Exp Gerontol. 48, 1329-1337.
- 45. Opelt M, Eroglu E, Waldeck-Weiermair M, Russwurm M, Koesling D, Malli R, et al. 2016. Formation of nitric oxide by aldehyde dehydrogenase-2 is necessary and sufficient for vascular bioactivation of nitroglycerin. J Biol Chem. 291, 24076-24084.
- 46. Opelt M, Wolkart G, Eroglu E, Waldeck-Weiermair M, Malli R, Graier WF,et al. 2018. Sustained formation of nitroglycerin-derived nitric oxide by aldehyde dehydrogenase-2 in vascular smooth muscle without added reductants: implications for the development of nitrate tolerance. Mol Pharmacol. 93, 335-343.
- 47. Pehowich DJ, Gomes AV, Barnes JA. 2000. Fatty acid composition and possible health effects of coconut constituents. West Indian Med J. 49, 128-133.
- 48. Prior, I. A., Davidson, F., Salmond, C. E., Czochanska, Z. 1981. Cholesterol, coconuts, and diet on Polynesian and Atolls: A natural experiment: the Pukapuka and Tokelau island studies. Am. J. Nutr. 34, 1552-1561.
- 49. Rattan, S.I.S., Sodagam, L. 2005. Gerontomodulatory and youth-preserving effects of zeatin on human skin fibroblasts undergoing aging in vitro. Rejuvenation Res. 8, 46-57.
- 50. Rudolph TK, Ruempler K, Schwedhelm E, Tan-Andresen J, Riederer U, Boger RH, et al. 2007. Acute effects of various fast-food meals on vascular function and cardiovascular disease risk markers: the Hamburg Burger Trial. Am J Clin Nutr. 86, 334-340.
- 51. Salil G, Nevin KG, Rajamohan T. 2011. Arginine rich coconut kernel protein modulates diabetes in alloxan treated rats. Chem Biol Interact. 189, 107-111.

- 52. Salil G, Rajamohan T. 2001. Hypolipidemic and antiperoxidative effect of coconut protein in hypercholesterolemic rats. Indian J Exp Biol. 39, 1028-1034.
- 53. Stamler, J., Pick, R., Kats, J.N. 1958. Effect of dietary proteins, methionine and vitamins on plasma lipids and atherogenesis in cholesterol fed cockerels. Cir. Res. 6, 442-446.
- 54. Thijissen, D. H. J., Hopman, M. T. E. and Levine, B. D. 2009. Endothelin and aged blood vessels one more reason to get off the couch. Hypertension 50, 292-293.
- 55. World population aging 2013. United State, New York, December 2013.
- 56. Vaitkevicius, P.V., Fleg, J.L., Engel, J.H., O'Connor, F.C., Wright, J.G., Lakatta, L.E., Yin, F.C., Lakatta, E.G. 1993. Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation 88, 1456-62.
- 57. Wilson, T. A., Nicolosi, R. J., Kotyla, T., Sundram, K., Kritchevsky, D. 2005.
 Different palm oil preparations reduce plasma cholesterol concentrations and aortic cholesterol accumulation compared to coconut oil in hypercholesterolemic hamsters.
 J. Nutr. Biochem. 16, 633-640.
- 58. World-Health-Organization. 2017. Fact sheet on cardiovascular diseases. Retrieved June 16, 2019 https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
- 59. Yazdanyar, A., Newman, A.B., 2009. The burden of cardiovascular disease in the elderly: morbidity, mortality, and costs. Clinics in Geriatric Medicine 25, 563-577, vii.
- 60. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, et al. 2008. H₂S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science. 322, 587-590.
- 61. Yorsin S, Kanokwiroon K, Radenahmad N, Jansakul C. 2014. Effects of *Kaempferia* parviflora rhizomes dichloromethane extract on vascular functions in middle-aged male rat. J Ethnopharmacol. 56, 162-174.

6 weeks consumption of pure fresh coconut milk caused up-regulation of eNOS and CSE protein expression in middle-aged male rats

Chaweewan Jansakul^{1,2,*}, Jomkarn Naphatthalung^{1,2}, Sakda Pradab^{1,2}, Somruedee Yorsin⁵, Kanyanatt Kanokwiroon^{3,4}

¹Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, Thailand, ²Natural Product Research Centre of Excellence, Prince of Songkla University, Hat-Yai, Thailand, ³Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hat-Yai, Thailand, ⁴The Excellent Research Laboratory of Cancer Molecular Biology, Prince of Songkla University, Hat-Yai, Thailand, ⁵Faculty of Medicine, Princess of Naradhiwas University, Narathiwas, Thailand

Coconut milk (CCM) has been an important cooking ingredient in the Asia-Pacific region since ancient time. Due to its high content of saturated fatty acids, it has been considered atherogenic. We have tested if chronic consumption of fresh coconut milk by middle-aged male rat affects vascular function, plasma glucose and lipid profiles. Compared to control, CCM caused lower maximal contraction to phenylephrine of thoracic aortic rings and increased relaxation to acetylcholine that was abolished by N^G -nitro-L-arginine (L-NA) or disruption of the endothelium. DL-propargylglycine caused slight increase in baseline tension of L-NA treated aortic rings of CCM-treated rats and produced higher contractile response of the aortic rings to low concentrations of phenylephrine. The aortic eNOS- and cystathionine- γ -lyase(CSE) proteins expression of the CCM-treated rats were also higher than in controls. Except for lower fasting plasma glucose there were no changes in blood chemistry for the CCM treated rats. CCM consumption caused up-regulation of eNOS and CSE protein expression which resulted in increased production of NO and H_2S from the blood vessels with attenuation of vasocontraction to phenylephrine and increased relaxation to acetylcholine. These novel benefits may be expected to reduce the development of cardiovascular risk factors in the aging rat.

Keywords: Coconut milk. NO. H₂S. Plasma glucose. Thoracic aorta.

INTRODUCTION

Age is one of the most important risk factors for cardiovascular disease (Lakatta, 2002; 2015; Lakatta, Levy, 2003), which is the major cause of global death and disability and places a huge burden on healthcare costs (Yazdanyar, Newman, 2009). As population aging is accelerating in nearly all countries of the world, there will soon be more elderly people than children (NIA, 2011; UN, 2013). Thus, it is important that everyone should establish good lifestyle options, and eat diet healthy foods with suitable micronutrients to prolong healthy vascular functions, foster successful aging and reduce their family, social and healthcare burden.

Advancing age is associated with thickening and elastic impairment of vascular wall (Aquaro *et al.*, 2013; Collins, 2014), endothelial dysfunction; decreased vascular eNOS expression and thereby decreased nitric oxide production (Novella *et al.*, 2013). These changes result in reduction of vascular compliance or distensibility (Avolio *et al.*, 1983; Vaitkevicius *et al.*, 1993), which is the early state of pathophysiological changes in the development of cardiovascular disease (Bhayadia *et al.*, 2015; Marchesi *et al.*, 2000; Rudolph *et al.*, 2007).

Recently, it has been accepted that H_2S is another gasotransmitter which is generated in blood vessels mainly from L-cysteine by a cystathionine- γ -lyase (CSE)(Abe, Kimura, 1996; Hosoki, Matsuki, Kimura, 1997). It plays an important role in modulating vascular functions. Deficiency of CSE reduces H_2S production in vascular tissues and leads to endothelial dysfunction and high blood pressure in an age-dependent manner in mice (Yang *et al.*, 2008).

^{*} Correspondence: C. Jansakul. Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, Thailand 90110. Tel. 66-074-286824. Fax. 66-074-282709. E-mail address: chaweewan.j@psu.ac.th

Cocos nucifera L.belongs to the Arecacaea family. Its endosperm, especially the mature coconut kernel, has been an important ingredient of the Asia-Pacific cuisine for centuries. However, in the last few decades, the high content of saturated fatty acids has led to it being considered an atherogen and thus potentially harmful with respect to development of atherosclerosis in man. Nevertheless, since the main saturated fatty acid components of the coconut oil are medium chains of length C8 to C12 which are absorbed via the portal vein (except for C12, lauric acid, which is partly absorbed via the lymphatic system (Mu, Hoy, 2002)), the atherogenicity of the coconut oil needs to be reconsidered.

About 25% of mature coconut kernel consumption has been used in the form of coconut milk (Gwee, 1988), which contains not only lipids (41.5%), but also carbohydrates (5.2%), proteins (4.5%), vitamin (vitamin B1, Niacin) and minerals (calcium, potassium, phosphorus and iron) (Pehowich, Gomes, Barnes, 2000). Other micronutrients such as Zeatin (Kobayashi et al., 1995; 1997) that are found to inhibit β-amyloid to prevent Alzheimer's disease(Froldi et al., 1999) and promote skin fibroblast proliferation (Rattan, Sodagam, 2005) were also reported. Thus, consumption of coconut milk might produce different effects from those taking pure coconut oil. There are few studies about coconut kernel consumption. Available reports are concerned with its effect on the plasma lipid profile and the results are still controversial. Padmakumaran et al.(1999) found that young male rats that consumed fresh coconut kernel alone or together with coconut oil had lower serum total cholesterol, HDL, VLDL and LDL-C but higher serum triglyceride. In contrast, Ekanayaka et al.(2013)studied human subjects and found that 8-weeks consumption of coconut milk porridge caused lower plasma level of LDL with an increased HDL cholesterol. However, there is no report on the effects of coconut kernel consumption on vascular functions, in particular not for middle-aged individuals where the body functions start to decline. In addition, the methods for preparation of the coconut are inconsistent. Thus, the present studies were aimed to investigate whether chronic consumption of the lyophilized coconut milk, prepared from fresh mature coconut kernel without addition of any water or heating, would have any effects on vascular function in middle-aged rats using an impaired-endothelium function model (Chongsa, Kanokwiroon, Jansakul, 2015; Yorsin et al., 2014). Two dosages were used. 1 or 3 g/kg coconut milk, these dosages being comparable (weight-adjusted) to the coconut milk content, respectively, of one serving of green curry and a full set of Thai dishes (a green curry, a chicken coconut soup, and a coconut dessert). Other side effects such as those on animal body weight and food intake, gross internal organ toxicity, body fat accumulation, fasting serum glucose and lipid profile and on the liver and renal functions were also investigated. The results obtained should be of value in determining if it might be an advantage to develop coconut milk as a health product for the aging human.

MATERIAL AND METHODS

Coconut milk preparation

Fresh mature coconut kernel was grated and directly compressed with an electric screw press machine to obtain a large sample of fresh aqueous coconut milk. The milk was then filtered through a cloth filter followed by lyophilisation to achieve a dried fresh coconut milk (CCM). It was kept at -20 °C until used.

Analysis of dried fresh coconut milk composition

Twenty grams of CCM were centrifuged at room temperature at 3000 rpm for 15 min, to achieve coconut oils and residues. The oil separated from CCM was measured with a separated graduated cylinder. The residues were collected and dissolved in distilled water and then the protein was precipitated with analytical grade acetone. The precipitated proteins were re-dissolved with distilled water and acetone removed by a rotary evaporator (40 °C) under reduced pressure and followed by lyophilisation to achieve dried CCM protein powder. The supernatant was collected, followed by rotary evaporation to get rid of the acetone, and then lyophilisation to achieve dried CCM-sugar containing fractions.

The coconut oil was analyzed for its fatty acids composition by LC-MS (using the service of the Central Equipment Center, Prince of Songkla University).

The CCM protein powder was analyzed for its protein composition by 1D SDS-PAGE gel electrophoresis and comparison of the protein bands with the standard protein marker of 10.5 -175 kDa (Bio-RAD, USA).

The CCM-sugar containing fraction was analyzed for its total sugar content by the phenol sulfuric acid method (Dubois *et al.*, 1956).

Drugs

The following drugs were used. Acetylcholine chloride, N^G-nitro-L-arginine (L-NA), norepinephrine, phenylephrine hydrochloride, DL-propagylglycine (PAG), pentobarbital, and oil red O from Sigma, U.S.A. Acetylcholine chloride and phenylephrine were dissolved in a solution containing NaCl 9 g/L, NaH₂PO₄ 0.19 g/L and ascorbic acid 0.03 g/L. Standard animal food contained

crude protein, 24%; Fat,4.5%; fiber, 5% and protein, 53.9% (Metabolizable energy about 3,040 kcal/kg, Perfect Companion Group Company, Thailand).

Pharmacological studies

Middle-aged (12-14 month old) Wistar male rats were provided from the Southern Laboratory Animal Facility, Faculty of Science, Prince of Songkla University. The animals were housed in controlled environmental conditions at 25 °C on a 12 h dark and 12 h light cycle and allowed access to standard food and tap water ad libitum. The animal methods employed in this study were approved by the Prince of Songkla University Animal Ethics Committee (Ethic No. Ref. 08/54). The investigation conformed to the Guide for the Care and Use of Laboratory Animals. The rats were randomly selected into three groups, 6 animals for each group. The experimental group was treated by oral administration of 1 or 3 g/kg CCM once a day for 6 weeks. The vehicle control groups received distilled water once a day using the same volume as that for the coconut milk (1 mL/kg animal body weight) in the same period of 6 weeks. The body weight and 24 h food intake (one day before receiving oral gavage of the vehicle or coconut milk suspension) was recorded at day 0, and again every consecutive7th day over the 6-week period. In addition, the total daily intake of calories, carbohydrates (g x 4,000), lipids (g x 9,000) and proteins (g x 4,000), of the 6th week of control (food) and 1 or 3 g/kg CCM-treated groups were calculated (including food and CCM 1 or 3 g/kg).

Effects of the coconut milk treatment on the basal blood pressure and on the haematology and clinical biochemical analysis

The same methods as previously described (Yorsin et al., 2014) were used. At the end of the 6 weeks, CCM or distilled treatment, each rat (13-15 h fasting) was anaesthetized with pentobarbital (60 mg/kg). A tracheal tube was inserted into the trachea, and a small polyethylene tube was cannulated into the right common carotid artery that had been connected to a pressure transducer and a Polygraph (P7D model, Grass Company) for blood pressure and heart rate recording. The data were collected after a 40-min equilibration period, by which time the basal blood pressure and heart rate of the animal became stable.

After measuring the basal blood pressure and heart rate, the rat was killed by decapitation with a guillotine, and 5 mL and 2 mL of blood samples were collected from the decapitated rat and placed in a glass test tube and a plastic test tube containing EDTA, respectively. The glass container with 5 mL of blood was left at room temperature for 30 min

and then centrifuged at 1200 rpm for 10 min. The serum was then collected and kept at -70 °C until measurements were made for the kidney and liver enzymes, and for glucose and lipid levels. These measurements were made by enzymatic methods using an automatic chemistry analyzer (Hitachi Modular P800, Germany) that was routinely operated at the Prince of Songkla University Hospital. They were carried out within 1 month of sample collection. The 2 mL of blood with EDTA was sent to the hematology laboratory for a total blood count procedure measured by an automated hematology analyzer (Celltac E, Model MEK-7222K, Japan).

Effects of CCM treatment on internal organs and lipid accumulation

The decapitated rat (after removing the thoracic aorta and mesenteric artery) was dissected as previously described (Yorsin *et al.*, 2014). Heart, lung, liver, adrenal gland, kidney, testes; visceral fats from the epididymis, testis and retroperitoneal, and subcutaneous fats were removed and weighed using a MettlerPL2001-Lbalance (Mettler Toledo International Inc., Switzerland).

Two pieces of liver (middle lobe) were cut, embedded into a cryostat gel, the sections (20 μ m thick), stained with oil red O (0.5% in absolute propylene glycol), and mounted with glycerine jelly for observation by light microscopy. The oil red O of each slide was extracted with 1 mL of 100% dimethylsulfoxide (DMSO), and its absorbance was measured at 520 nm using a Thermo Fisher Scientific spectrophotometer (Model G10s UV-VIS, USA). The concentration of the oil red O was obtained from the standard curve of known concentrations of the oil red O in 100% DMSO (μ g/mL). The area of a whole liver thin section was measured using the Auto CAD 2005 program. The amount of the accumulated liver lipid was expressed in terms of μ g/mL/cm² of the liver tissue thin section area.

Preparation of the thoracic aortic rings

The thoracic aorta was removed from the decapitated rat and placed in oxygenated 37 °C Krebs-Henseleit solution, and then adhering connective tissue was carefully removed. Six adjacent rings of 4-5 mm in length were cut. For one ring the endothelium layer was removed by a small cotton bud. Each aortic ring was mounted with two stainless steel hooks in a 20-mL organ bath containing Krebs-Henseleit solution of the following composition (mM): NaCl 118.3, KCl 4.7, CaCl₂ 1.9, MgSO₄·7H₂O 0.45, KH₂PO₄ 1.18, NaHCO₃ 25.0, glucose 11.66, Na₂EDTA 0.024 and ascorbic acid 0.09, maintained at 37 °C and bubbled with carbogen (95% O₂ and 5% CO₂ gas mixture). One of the hooks was fixed at the bottom and the other

was connected to a transducer for recording the isometric tension by a Polygraph. The tissues were equilibrated for 60 min under a resting tension of 1 g and the bath solution was replaced with pre-warmed oxygenated Krebs-Henseleit solution every 15 min.

At the end of the equilibration period, each aortic ring was tested for the viability of the endothelium by precontraction with phenylephrine (3 μM) until the response reached a plateau (5-8 min), and then addition of acetylcholine (30 μM). Endothelial viability was judged by a >65% vasorelaxation back to the tension generated by the ring before adding the phenylephrine. Denudation was confirmed by the absence of vasorelaxation following the response to the addition of acetylcholine. The preparations were then washed several times with Krebs-Henseleit solution, and allowed to fully relax for 45 min before the experimental protocol began.

Effects of the coconut milk treatment on the pharmacological vascular functions

Role of nitric oxide

At the end of the 45-min re-equilibration after the functional endothelium testing, the basal tension of the thoracic aortic rings with intact endothelium and the rings without endothelium was adjusted to the optimal tension of 2 g and equilibrated for another 10 min, and then the contractile response to a cumulative concentration-response (*C-R*) curve of phenylephrine was obtained. This was followed by several washings, and the aortic ring was allowed to fully relax for 50 min. Then the endothelium-intact aortic rings were preincubated with L-NA for 40 min, and then the second *C-R* curve to phenylephrine was obtained.

Using another set of endothelium-intact thoracic aortic rings, each ring was equilibrated under a basal tension of 2 g for 10 min, and was then precontracted with phenylephrine (3 μ M) for 10-15 min (plateau) followed by determination of the cumulative dilator C-R curves to acetylcholine. Following several washings and reequilibration for 40 min, the aortic rings were preincubated with L-NA for 40 min, and the second C-R curve to acetylcholine obtained in the same manner as above

Role of H₂S

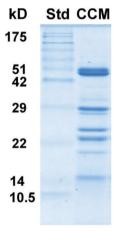
After equilibration, the endothelium-intact thoracic aortic rings were incubated with L-NA for 40 min under a basal tension of 3 g. Then a cumulative *C-R* curve to phenylephrine was obtained in the presence of L-NA, followed by several washings and re-equilibration for 60 min in the presence of L-NA to allow full relaxation

of the blood vessels to their original baseline of 3 g. After that, DL-propargylglycine (PAG, a H₂S inhibitor) was added into the incubation and left for 10-15 min until the aortic contraction reached a plateau, and the cumulative *C-R* curve to phenylephrine was obtained in the presence of L-NA and PAG.

eNOS and CSE Western blot analysis

To analyze the expression of the eNOS and CSE enzyme, the thoracic aorta of the CCM-treated and the distilled water control groups (n=4) were harvested and kept at -70°C until used. Protein extraction from the tissues and Western blot analysis were carried out as previously described (Yorsin et al., 2014). Briefly, each tissue from each animal was chopped on ice and homogenized in lysis buffer with 25 mM Tris-HCl, pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS, 0.5 mM EDTA and the protease inhibitor cocktail (GE Healthcare), centrifuged, and the total protein measured in the supernatants by the Biorad protein assay method. 50 µg of protein was electrophoretically separated on 12% polyacrylamide-SDS gels and the proteins were transferred onto a nitrocellulose membrane. Nonspecific-binding sites were blocked with 5% low fat dry milk in TBS-T (Tris buffer saline- 0.1% Tween 20) and then incubated with primary antibodies against eNOS (1:250), CSE (1:1,000) and β-actin (1:1,000) antibodies dissolved in 1% low fat dry milk in TBS-T overnight at 4°C [rabbit eNOS and rabbit β-actin antibodies were from Cell Signaling (U.S.A); mouse CSE was from Abnova (U.S.A)]. Membranes were incubated with horseradish-peroxidase anti-rabbit IgG antibody diluted to 1:5,000 (eNOS and β-actin) and horseradish-peroxidase anti-mouse IgG antibody diluted to 1:5,000 (CSE) in 1% low fat dry milk in TBS-T for 1 h. After being washed with TBS-T three times, the proteins were detected by an ECL chemiluminescent detection kit (Pierce), and the reaction was visualized by a chemiluminescence imaging instrument (Vilber Lourmat, France). The intensity of the bands was analyzed using the Fusion Capt Advance quantitation analysis program. To ensure equal protein loading, results were normalized to the β -actin protein expression and expressed as units relative to the β -actin densitometry.

Statistical analysis


The results were expressed as the mean \pm standard error of the mean (SEM)(n=6 for vascular function study and n=4 for Western blotting). "n" is the number of animals. Statistical differences were determined by the Student's unpaired *t*-test or by one-way analysis of variance (ANOVA), followed by Tukey's range test using

GraphPad Prism 5.00. A P value < 0.05 was considered to identify a significant difference between values.

RESULTS

Coconut milk yield and chemical composition

Dried fresh coconut milk prepared directly by compressed grated mature coconut kernel, CCM, yielding 16.7% of the fresh grated matured coconut kernel. Total lipid, protein and sugar content in percent of the CCM were 70.08, 19.35 and 5.34, respectively. Protein profile of the CCM, assessed by 1D SDS page gel electrophoresis, showed 7 major bands at the molecular weight about 14-51 kDa (Figure 1). Fatty acid composition of the oil in the CCM is shown in Table I. The CCM contained medium-chain fatty acid (C_8 - C_{12}), lauric acid (40%), caprylic acid and capric acid (5%); long-chain fatty acid (> C_{12}), myristic acid (17%) and palmitic acid (7%); and ω -6-unsaturated fatty acid, linoleic acid (1%).

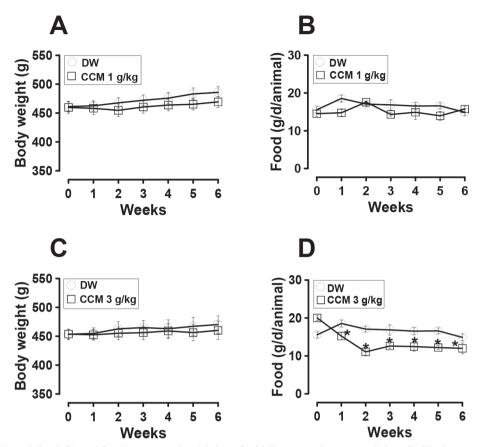
FIGURE 1 - SDS-PAGEgel electrophoresis from standard marker protein (Bio-Rad, USA) and CCM. Lane 1 is MW standards.

Effects of 6-week coconut milk treatment on the body weight, food intake, animal blood pressure, internal organs and adipose tissue and blood chemistry

No changes in body weight were found with either 1 or 3 g/kg CCM treatment, although food intake (standard rat chow in g/animal/day) of the 3 g/kg CCM treatment was markedly (24%) decreased, when compared to that of the distilled water control group (Figure 2). However, when the daily rat chow- and CCM-intake were calculated in term of calories, carbohydrate, fat and protein, at the end of treatment (6th week), the total daily calories of food intake

TABLE I - Fatty acids composition (in percent) of CCM oils obtained from the CCM

Fatty acid name	;	% in CCM oil
Caprylic acid	(C8:0), MCF	1.05 ± 0.00
Capric acid	(C10:0), MCF	3.55 ± 0.00
Lauric acid	(C12:0), MCF	40.68 ± 0.08
Myristic acid	(C14:0), LCF	17.53 ± 0.02
Palmitic acid	(C16:0), LCF	7.89 ± 0.00
Stearic acid	(C18:0), LCF	2.87 ± 0.00
Oleic acid	(C18:1), LCF	4.65 ± 0.00
Linoleic acid	(C18:2), LCF	1.01 ± 0.00


Values are expressed as mean \pm STD; n = 3. MCF, medium chain fatty acid; LCF, long chain fatty acid

of 1 g/kg CCM treatment group (5.8 ± 0.3 kcal, standard rat chow+ CCM intake) and 3 g/kg CCM treatment group $(5.3 \pm 0.6 \text{ kcal}, \text{ standard rat chow} + \text{CCM intake})$ were in the same level as that of the distilled water control group (5.2 \pm 0.2 kcal, standard rat chow). Basal systolic and diastolic pressure and the basal heart rate of anaesthetized rats were similar between the CCM-and the distilled water treated rats (Table I suppl.). None of the internal organs, visceral and subcutaneous adipose tissue weight, liver cell lipid accumulation or the total blood cell count, was found to be altered after the CCM treatment (1 and 3 g/kg) compared to the distilled water control group (Table II-IV suppl., Figure 1 Suppl.). At the dosage of 1 g/kg, CCM caused no changes either in fasting serum glucose and lipids profile (Table II). When the dosage was increased to 3 g/kg, CCM caused lowering in fasting plasma glucose. The other biochemical parameters studied were not different between the CCM and the distilled water control rats (Table V suppl.).

Effects of CCM-treated rats on vascular functions

Effect on contraction and relaxation of the thoracic aorta

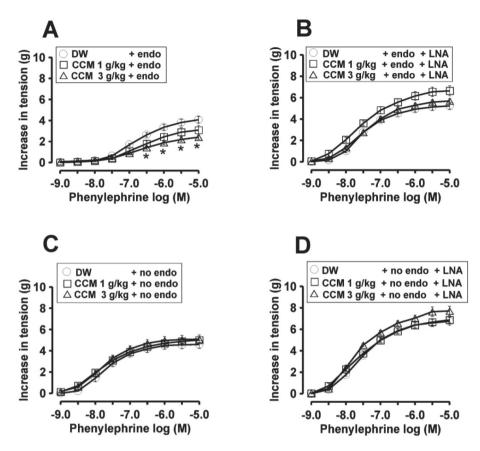
At the dosage of 1g/kg of CCM treatment did not alter vascular activity of the middle-aged rat to phenylephrine and acetylcholine. However, when the dosage of CCM treatment was increased to 3 g/kg, the maximal contractile response to phenylephrine of the intact endothelium aortic rings was lower than that of the vehicle control group. Pretreatment of the intact-aortic rings with L-NA caused an increase in maximal contractile responses of the aortic rings to phenylephrine to the same extent as that of the vehicle control group with a decrease in EC_{50} values of both groups (Figure 3A and B and Table VI suppl.). Denudation of the aortic ring also caused an

FIGURE 2 - The body weight (left) and food consumption (right) of middle age male rats receiving distilled water (DW) or CCM (1 or 3 g/kg), once a day for 6 weeks. Values represent mean ± SEM; n=6. * Significantly lower than distilled water control group, P<0.05.

TABLE II - Effects of CCM (1, 3 g/kg) or distilled water (control) consumption for 6 weeks on the fasting levels of serum glucose and lipids of middle-aged male rats

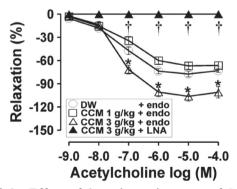
NLAC- MU	Glucose	Triglyceride	Cholesterol	HDL-C	LDL-C
Normal range (mg/dL)	122.10 - 180.80	61.00 – 164.00	46.00 - 98.00	-	-
Control	137.69 ± 5.65	73.41 ± 8.59	76.71 ± 5.61	61.51 ± 4.96	12.05 ± 1.41
CCM 1 g/kg	124.33 ± 5.83	101.67 ± 15.27	73.17 ± 1.64	62.08 ± 1.02	9.57 ± 1.03
CCM 3 g/kg	$115.40 \pm 5.96^{\rm a}$	66.40 ± 6.98	73.40 ± 3.61	62.00 ± 2.49	13.23 ± 2.04

Values are expressed as mean \pm SEM; n = 6. a Significantly lower than control group, P < 0.05.


Note: NLAC-MU normal range = National Laboratory Animal Centre, Mahidol University normal range. HDL-C = High Density Lipoprotein cholesterol and LDL-C = Low Density lipoprotein cholesterol.

increase in maximal contractile response to phenylephrine of the CCM-treated aortic rings to the same extent as that of the vehicle control group whether L-NA presented or not (Figure 3C and D).

The relative relaxation to acetylcholine of aortic rings precontracted with phenylephrine was greater for the aortic rings obtained from the 3 g/kg, but not the 1 g/kg, CCM-treated-compared to that of the distilled water control group, and this effect was abolished by pre-incubating the aortic ring with L-NA (Figure 4 and Table VII suppl.).


Role of H₂S

Addition of PAG to the incubation medium caused a spontaneous contraction of the thoracic aortic rings for all groups. However, those obtained from 3 g/kg CCM (3.89 \pm 0.62 g) were higher than those from 1 g/kg CCM (1.06 \pm 0.43 g), which were higher than those of the distilled water control group (0.38 \pm 0.006 g). These effects subsequently resulted in a greater contraction for low concentrations of the phenylephrine C-R curves of the thoracic aortic rings obtained from

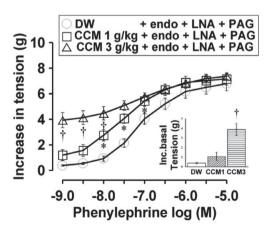


FIGURE 3 - Effects of 6 weeks of oral administration of CCM (1 or 3 g/kg) or distilled water (DW, control) on contractile response to phenylephrine of endothelium-intact (endo, A), endothelium-intact with L-NA (B), without endothelium (no endo, C), or without endothelium with L-NA (D) thoracic aorta. Values represent mean \pm SEM; n=6.*Significantly lower than that of the distilled water control group, P < 0.05.

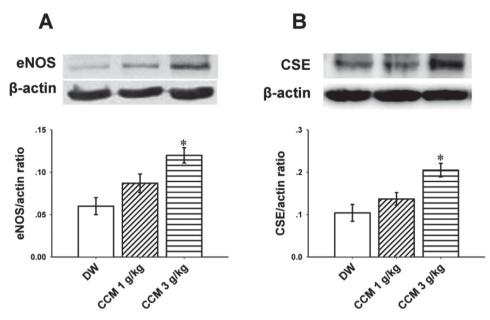

CCM-treated rats than that of the vehicle control group (Figure 5).

FIGURE 4 - Effect of 6 weeks oral gavage of CCM(1 or 3 g/kg) or distilled water (DW, control) on relaxation of the endothelium-intact thoracic aortic ring precontracted with phenylephrine to acetylcholine before and after pre-incubation with L-NA (CCM 3 g/kg+L-NA). Values represent mean \pm SEM; n=6. *Significantly lower than the other groups and †significantly higher than the other groups, P< 0.05.

FIGURE 5 - Effects of 6 weeks oral administration of CCM (1 or 3 g/kg) or distilled water (DW, control) on the contractile response to phenylephrine of L-NA pretreated endothelium-intact (endo) thoracic aortic rings in the presence of PAG. Values represent mean \pm SEM; n=6. *Significantly higher than the control groups and †significantly higher than the other groups, P< 0.05. Note: Miniature bar graphs in Figure 5 showed the increased basal tension after addition of the PAG.

FIGURE 6 - The effect of 6 weeks oral administration of CCM (1 or 3 g/kg) or distilled water on eNOS (A) and CSE (B) protein expression of the thoracic aorta compared to a distilled water control group (DW). For each blot, β -actin expression is shown as a loading control. Values represent as mean \pm SEM; n=4. *Significantly higher than the other groups, P< 0.05.

eNOS and CSE Western blot analysis

The quantitative expression of the eNOS and CSE proteins as determined by Western blotting from the isolated thoracic aorta was significantly higher for those obtained from the 3 g/kg CCM-treated rat compared to that of the vehicle control groups (Figure6A and B). Although at the dosage of 1 g/kg CCM treated rats also showed a trend to an increase of both the eNOS and the CSE proteins, it did not reach statistical significance.

DISCUSSION

The present study demonstrated that consumption of the CCM caused beneficial effects on the cardiovascular system if consumed in a sufficient amount. As shown in the results section, consumption of the CCM at a dosage of 1 g/kg for 6 weeks by the middle-aged rats did not result in any difference in the parameters studied. When the dosage was increased to 3 g/kg, CCM caused lowered food intake. The reduction in food intake was not associated with any change in body weight or in the weight of the organs measured. The reasons for this might be due to high lipid content (70%) of the CCM composition which consists dominantly of medium chain fatty acids (8: 0 to 12: 0; 45%). These fatty acids are absorbed directly to the portal vein except for lauric acid (C12:0) that is partly absorbed via the lymphatic system (Mu, Hoy, 2000; 2001; 2002). More recently, Valente et al. (2017) reported that coconut oil consumption promoted less appetite in women with

excess body fat. In addition, Jambor de Sousa *et al.* (2006) found that hepatic portal vein infusion of caprylic acid, a medium chain fatty acid, caused reduction of food intake by about 40% in 18-h food-deprived male rats. Another possibility is that CCM might contain an active substance that at high doses it causes satiety or reduced appetite resulting in reduced food intake. However, further specific studies would be needed to clarify these possibilities.

The alteration in vascular function, especially endothelial function, is the key event in the pathophysiology of atherosclerosis, as it was shown that endothelial dysfunction preceded and predicted atherosclerosis (Bonetti, Lerman, Lerman, 2003; Davignon, Ganz, 2004). In the present study endothelial dysfunction of the middle-aged male rat(Chongsa et al., 2015) was used to study the effects of chronic consumption of the CCM. Although there were no changes in animal blood pressure and heart rate after taking CCM compared to the distilled water control group, adosage of 3 g/kg but not 1g/kg of CCM, caused some beneficial changes in vascular function. These included reduction in maximal contractile response of thoracic aortic rings to phenylephrine and a higher maximal relaxation to acetylcholine. These effects were abolished by L-NA or removal of the endothelium. which indicates that the lowering of maximal contractile response to phenylephrine of the CCM-treated aortic rings might be due to an increase in nitric oxide production from the vascular endothelium. This was confirmed by the finding that eNOS protein expression of the thoracic aorta obtained from CCM-treated was higher than that of the control rats. Salil, Nevin, Rajamohan (2011, 2012) reported that coconut kernel protein is rich in arginine which was able to rescue the pancreatic β-cells and cytoarchitecture in alloxan-induced diabetic Wistar Albino rat via the arginine-nitric oxide pathway. Thus, it is possible that the up-regulation of the vascular eNOS of the CCM treated middle-aged rat in the present study might be mediated by the coconut protein. However, further study of the isolated CCM protein consumption by the middle-aged rat would be needed to clarify this possibility.

It has been reported that high-fat diet consumption by young rats or mice for 12-14 weeks causes deficiency of aortic CSE and H₂S (Jenkins, Nguyen, Hart, 2016; Peh et al., 2014). Thus, it is possible that chronic consumption by the middle-aged rat of the CCM which contained high content of coconut oil might affect blood vessel H₂S production. To test this possibility another set of the endothelium-intactaortic rings was used and preincubated with L-NA in order to inhibit eNOS activity in order to prevent any disturbances by nitric oxide before adding PAG, a cystathionine-γ-lyase inhibitor; the vasocontraction to phenylephrine was then determined. As shown in the results section, adding PAG to the incubation medium caused a greater increase in basal baseline tension of the aortic rings obtained from CCM-treated rats than that of the control group, suggesting that the activity of the CSE enzyme of the CCM-treated rats was higher than that of the control rats. These results sequentially caused an increase in contractile response to low concentrations of the phenylephrine on the aortic rings that was higher than that of the control group. The finding that the blood vessel CSE protein expression was higher in the CCM treated rats is consistent with the finding that consumption of CCM caused an increase in blood vessel H₂S production. This result is in contrast to those of the Jenkins, Nguyen, Hart(2016) and Peh et al.(2014) who found that high fat diet caused a decrease in vascular CSE and H₂S production. The reason for this might be the differences in the types of fatty acid used. In the present study we used CCM which contained mostly medium-chain fatty acid which was found to cause an increase in mitochondrial and peroxisomal β-oxidation of fatty acids (Arunima, Rajamohan, 2014). In contrast, Jenkins, Nguyen, Hart (2016) and Peh et al. (2014) used western diet and high fat diet, respectively, which contained mostly long-chain fatty acid, which was found to induce vascular oxidative stress and reduce endothelial function. As another possibility, Zhao et al. (2001) found that endogenous H₂S production from different vascular tissues including thoracic aorta was enhanced by the NO. Thus, the increased CSE protein expression which resulted in an increased H₂S production in the present study might be facilitated by the increased NO production elicited by the CCM, as mentioned above. However, further study is needed to clarify these possibilities.

In the present study it was also found that chronic consumption of CCM caused a slight decrease in basal fasting plasma glucose compared to that of the control group. As mentioned above, the reason for this might be due to the increase in basal level of NO since it has been reported that low concentration of NO exerted positive regulation of insulin sensitivity and secretion (Carvalho *et al.*, 2016; Kurohane Kaneko, Ishikawa, 2013). However, to clarify this possibility, further studyto measure basal plasma insulin level and/or the glucose insulin sensitivity of the CCM-treated and the control middle-aged rats would be necessary.

Taken together, consumption of CCM at the dosage of 3 g/kg increased blood vessel eNOS and CSE protein expression resulting in increased NO and H₂S production to attenuate the contractile response of thoracic aortic rings to phenylephrine and potentiate vasodilatation to acetylcholine, all of which could be expected to prolong vascular health of the middle-aged rat. In addition, CCM consumption caused lowering of plasma glucose level with no harm to liver or kidney functions, or on fat metabolism. Thus, CCM could be a novel food to develop as a nutraceutical for vascular health of the aging human being. Nevertheless, further work is required to identify the mechanism that causes CCM to lower plasma glucose and the vascular effects described.

Limitations of the study

The present study did not show whether firstly, CCM consumption by the middle-aged rat has long-term effect. Therefore, the next investigation would be to determine by which time the vascular effects of CCM consumption disappear after quitting CCM consumption, and by which time it is recovered after renewing consumption. Secondly the studies did not measure insulin secretion, and this should be part of future studies.

ACKNOWLEDGEMENTS

This work was supported by Prince of Songkla University (SCI560140S) and the TRF Research Scholar fund (RSA59), Thailand. The authors thank Miss. Srisurat Duangsai for her technical assistance and Dr. Alan Guiter, Prince of Songkla University, for English assistance and Prof. Michael J. Mulvany, Aarhus University, Denmark, for his valuable comments and editing the manuscript.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci. 1996;16(3):1066-71.

Aquaro GD, Cagnolo A, Tiwari KK, Todiere G, Bevilacqua S, Di Bella G, Ait-Ali, L, Festa P, Glauber M, Lombardi M. Age-dependent changes in elastic properties of thoracic aorta evaluated by magnetic resonance in normal subjects. Interact Cardiovasc Thorac Surg. 2013;17(4):674-9.

Arunima S, Rajamohan T. Influence of virgin coconut oilenriched diet on the transcriptional regulation of fatty acid synthesis and oxidation in rats – a comparative study. Br J Nutrition. 2014;111(10):1782-90.

Avolio AP, Chen SG, Wang RP, Zhang CL, Li MF, O'Rourke MF. Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation. 1983;68(1):50-8.

Bhayadia R, Schmidt BM, Melk A, Homme M. Senescence-induced oxidative stresscauses endothelial dysfunction. J Gerontol Series A Biol Sci.2015;71(2):1-9.

Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23(2):168-75.

Carvalho DS, Diniz MM, Haidar AA, Cavanal MF, da Silva Alves E, Carpinelli AR, et al. L-Arginine supplementation improves insulin sensitivity and beta cell function in the offspring of diabetic rats through AKT and PDX-1 activation. Eur J Pharmacol. 2016;791:780-7.

Chongsa W, Kanokwiroon K, Jansakul C. Effects of 6 weeks oral administration of *Phyllanthus acidus* leaf water extract on the vascular functions of middle-aged male rats. J Ethnopharmacol. 2015;176:79-89.

Collins JA, Munoz JV, Patel TR, Loukas M, Tubbs RS. The anatomy of the aging aorta. Clin Anat. 2014;27(3):463-6.

Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109(23 Suppl 1):III27-32.

Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem.1956;28(3):350-6.

Ekanayaka RA, Ekanayaka NK, Perera B, De Silva PG. Impact of a traditional dietary supplement with coconut milk and soya milk on the lipid profile in normal free living subjects. J Nutr Metab. 2013;2013:481068.

Froldi G, Gallo U, Ragazzi E, Caparrotta L. 6-Benzylaminopurine: a plant derived cytokinin inducing positive inotropism by P2-purinoceptors. Planta Med. 1999;65(3):245-9.

Gwee CN. New technologies open the passage into new usage of coconut milk products. In: Maneepun S, Varangoon P, Phitakpol B (editors). Food Science and Technology in Industrial Development. Bangkok: Institute of Food Research and Product Development, Kasetsart University; 1988. v. 1, p. 157-62.

Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Comm. 1997;237(3):527-31.

Jambor de Sousa UL, Arnold M, Langhans W, Geary N, Leonhardt M. Caprylic acid infusion acts in the liver to decrease food intake in rats. Physiol Behav. 2006;87(2):388-95.

Jenkins TA, Nguyen JCD, Hart JL. Decreased vascular H₂S production is associated with vascular oxidative stress in rats fed a high-fat western diet. Naunyn-Schmiedeberg's Arch Pharmacol. 2016;389(7):783-90.

Kobayashi H, Morisaki N, Hashimoto Y, Iwasaki S, Kawachi E, Nagata R, Shudo K. Identification of a major cytokinin in coconut milk. Experientia. 1995;15(11):1081-4.

Kobayashi H, Morisaki N, Tago Y, Hashimoto Y, Iwasaki S, Kawachi E, Nagata R, Shudo K. Structural identification of a major cytokinin in coconut milk as 14-O-(3-O- 19 [beta-D-galactopyranosyl-(1--2)-alpha-D-galactopyranosyl-(1-3)-alpha-L-arabinofuranosyl]-4-O-(alpha-L-arabinofuranosyl)-beta-d-galactopyranosyl)-trans-zeatin riboside. Chem Pharm Bull (Tokyo). 1997;45(2):260-4.

Kurohane Kaneko Y, Ishikawa T. Dual role of nitric oxide in pancreatic beta-cells. J Pharmacol Sci. 2013;123(4):295-300.

Lakatta EG. Cardiovascular ageing in health sets the stage for cardiovascular disease. Heart Lung Circul. 2002;11(2):76-91.

6 weeks consumption of pure fresh coconut milk caused up-regulation of eNOS and CSE protein expression in middle-aged male rats

Lakatta EG. So! What's aging? Is cardiovascular aging a disease? J Mol Cell Cardiol. 2015;83:1-13.

Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a "set up" for vascular disease. Circulation. 2003;107(1):139-46.

Marchesi S, Lupattelli G, Siepi D, Schillaci G, Vaudo G, Roscini AR, Sinzinger H, Mannarino E. Short-term atorvastatin treatment improves endothelial function in hypercholesterolemic women. J Cardiovasc Pharmacol. 2000;36(5):617-21.

Mu H, Hoy CE. Effects of different medium-chain fatty acids on intestinal absorption of structured triacyglycerols. Lipids. 2000;35(1):83-89.

Mu H, Hoy CE. Intestinal absorption of specific structured triacylglycerols. J Lipid Res. 2001;42(5):792-98.

Mu H, Hoy CE. Distribution of medium-chain FA in different lipid classes after administration of specific structured TAG in rats. Lipids. 2002;37(3):329-31.

National Institute on Aging (NIA). Global health and aging. NIH publication no. 11-7737 October 2011 neuromodulator. J Neurosci. 2011;16:1066-71.

Novella S, Dantas AP, Segarra G, Vidal-Gomez X, Mompeon A, Garabito M, Hermenegildo C, Medina P. Aging-related endothelial dysfunction in the aorta from female senescence-accelerated mice is associated with decreased nitric oxide synthase expression. Exp Gerontol. 2013;48(11):1329-37.

Padmakumaran Nair KG, Rajamohan T, Kurup PA. Coconut kernel protein modifies the effect of coconut oil on serum lipids. Plant Foods Hum Nutr. 1999;53(2):133-44.

Peh MT, Anwar AB, Ng DSW, Atan MSBM, Kumar SD, Moore PK. Effect of feeding a high fat diet on hydrogen sulfide (H₂S) metabolism in the mouse. Nitric Oxide. 2014;41:138-45.

Pehowich DJ, Gomes AV, Barnes JA. Fatty acid composition and possible health effects of coconut constituents. West Indian Med J. 2000;49(2):128-33.

Rattan SIS, Sodagam L. Gerontomodulatory and youth-preserving effects of zeatin on human skin fibroblasts undergoing aging in vitro. Rejuvenation Res. 2005;8(1):46-57.

Rudolph TK, Ruempler K, Schwedhelm E, Tan-Andresen J, Riederer U, Boger RH, MaasR. Acute effects of various fast-food meals on vascular function and cardiovascular disease risk markers: the Hamburg Burger Trial. Am J Clin Nutrition. 2007;86(2):334-40.

Salil G, Nevin KG, Rajamohan T. Arginine rich coconut kernel protein modulates diabetes in alloxan treated rats. Chem-Biol Interact. 2011;189(1-2):107-11.

Salil G, Nevin KG, Rajamohan T. Arginine-rich coconut kernel diet influences nitric oxide synthase activity in alloxan diabetic rats. J Sci Food Agric. 2012;92(9):1903-8.

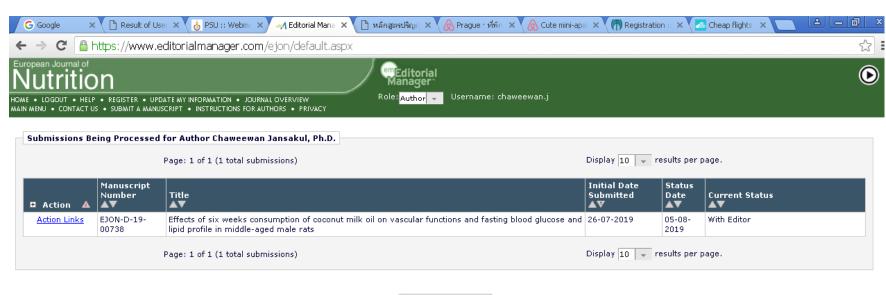
United Nation. UN. World population aging 2013. United State, New York; 2013.

Vaitkevicius PV, Fleg JL, Engel JH, O'Connor FC, Wright JG, Lakatta LE, Yin FC, Lakatta EG. Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation. 1993;88(4Pt.1):1456-62.

Valente FX, Candido FG, Lopes LL, Dias DM, Carvalho SD, Pereira PF, et al. Effects of coconut oil consumption on energy metabolism, cardiometabolic risk markers, and appetitive responses in women with excess body fat. Eur J Nutr. 2017.Doi: 10.1007/s00394-017-1448-5. [Epub ahead of print].

Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, et al. H₂S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gammalyase. Science. 2008;322(5901):587-90.

Yazdanyar A, Newman AB. The burden of cardiovascular disease in the elderly: morbidity, mortality, and costs. Clin Geriat Med. 2009;25(4):563-77.vii.


Yorsin S, Kanokwiroon K, Radenahmad N, Jansakul C. Effects of *Kaempferia parviflora* rhizomes dichloromethane extract on vascular functions in middle-aged male rat. J Ethnopharmacol. 2014;156:162-74.

Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of $\rm H_2S$ as a novel endogenous gaseous KATP channel opener. EMBO J. 2001;20(21):6008-16.

Received for publication on 06th May 2017 Accepted for publication on 19th January 2018

ประวัติการส่งตีพิมพ์

- 1. ได้ submit ไปที่ European J. Nutrition เมื่อวันที่ 26 กรกฎาคม 2562
- 2. ได้รับการตอบกลับ reject ในวันที่ 19 กันยายน 2562 เหตุผล เนื่องจากไม่ได้ทำการทดลองในมนุษย์ (เอกสารแนบ)
- 3. จึงได้ submit ไปที่ Functional Food in Health and Disease และได้รับตีพิมพ์

<< Author Main Menu

Research Article Open Access

Effects of six weeks consumption of coconut milk oil on vascular functions and fasting blood glucose and lipid profile in middle-aged male rats

Jomkarn Naphatthalung^{1,4}, Pilaipan Chairuk^{1,4}, Kanyanatt Kanokwiroon^{2,5}, Nisaudah Radenahmad³, Chaweewan Jansakul^{1,4}

¹Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, 90110, Thailand; ²Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hat-Yai, 90110, Thailand; ³Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat-Yai, 90110, Thailand; ⁴Natural Product Research Centre of Excellence, Prince of Songkla University, Hat-Yai, 90110, Thailand; ⁵The Excellent Research Laboratory of Cancer Molecular Biology, Prince of Songkla University, Hat-Yai, 90110, Thailand

Corresponding author: Chaweewan Jansakul, PhD, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, 90110, Thailand

Submission Date: October 6^{th} , 2019. **Acceptance Date:** November 28^{th} , 2019. **Publication Date:** November 30^{th} , 2019

Citation: Naphatthalung J., Chairuk P., Kanokwiroon K., Radenahmad., Jansakul C. Effects of six weeks consumption of coconut milk oil on vascular functions and fasting blood glucose and lipid profile in middle-aged male rats. *Functional Foods in Health and Disease* 2019; 9(11): 719-734. DOI: https://doi.org/10.31989/ffhd.v9i11.665

ABSTRACT

Background: Coconut milk consumption in middle-aged male rats can cause increased blood vessel endothelial nitric oxide synthase (eNOS) and cystathionine- γ - lyase (CSE) protein expression, and decreased fasting blood glucose.

Objective: The present study aimed to investigate whether coconut milk oil (CO), the major constituents of the coconut milk, was responsible for those effects.

Methods: CO was isolated from dried fresh coconut milk and gavaged (1 and 3 ml/kg) to middle-aged male rats for 6 weeks. Animal body weight and food intake, internal organ weight, blood biochemistry, lipid profile, basal blood pressure and heart rate and vascular functions were investigated.

Results: In comparison to a distilled water control group, no differences were observed in any of the parameters studied in the group fed 1 ml/kg of CO except for an increase in retroperitoneal fat accumulation. Feeding 3 ml/kg of CO caused decreased fasting blood glucose, plasma alkaline phosphatase and blood urea nitrogen and liver cell lipid accumulation, but increased

retroperitoneal fat tissue. It also caused decreased maximal contractile response of endothelium-intact thoracic aortic rings to phenylephrine although the effect disappeared in the presence of N-nitro-L-arginine (L-NA) or removal of the endothelium. DL-propargylglycine together with L-NA caused a higher contraction to phenylephrine in the CO-treated groups than in the control group. It also caused an increase in vasodilatation to acetylcholine, but not to glyceryl trinitrate, of the phenylephrine pre-contracted aortic rings. CO treatment caused increased vascular wall eNOS and CSE protein expression.

Conclusion: CO at a dose of 3 ml/kg causes some decrease in cardiovascular risk factors in middle-aged male rats, although the amount of CO consumption should be limited as it caused an increase in retroperitoneal fat.

Keywords: Coconut oil; blood vessel; liver lipid; NO; H₂S

Animal Ethic No: Ref. 06/57

BACKGROUND

Cardiovascular disease is the leading cause of death globally. Its etiology is multifactorial and unhealthy nutrition is one of the main risk factors. Coconut, *Cocos nucifera*, is one of the most economically important palm species and is cultivated mainly for the nutritional endosperm from which coconut milk and coconut oil are the main products [1]. Coconut milk is used as a common culinary ingredient and coconut oil is used as a cooking oil in many tropical cuisines, most notably those of Southeast Asia, as well as in Brazilian, Caribbean, Polynesian, Indian and Sri Lankan cuisines [2]. The main constituents of coconut milk are lipids (coconut oil, 41.5%) with a small amount of carbohydrates (5.2%) and proteins (4.5%) [3]. However, some consumers are reluctant to consume coconut products since its main constituent is saturated fatty acids (40-60%) [3, 4], which is considered to be an atherogen and thus potentially harmful with respect to the development of atherosclerosis in humans. Thus far, however the cardiovascular risk of the consumption of coconut products is still a matter of controversy.

There are two types of coconut oil, copra or refined coconut oil prepared from the mechanical compression of sun-dried coconut, and virgin coconut oil prepared from fresh coconut milk without heating. A study of copra oil consumption by pregnant rats found no alteration in their hematologic and metabolic parameters [5]. In case of virgin coconut oil consumption, Famurewa et al. [6] found a reduction in total cholesterol, triglycerides and low-density lipoprotein with an increased level of high-density lipoprotein in normal young male rats, whereas Alves et al. [7] found a reduction of oxidative stress in the aortic blood vessels of spontaneously hypertensive rats. In studies on the human consumption of virgin coconut oil, Voon et al. [8] found no alteration in the thrombogenicity indices: cellular adhesion molecules, thromboxane B2 (TXB2) and the TXB2/protacyclin ratio in healthy Malaysian adults. Similarly, Valente et al. [9] found no change in energy metabolism and cardiometabolic risk markers in women with excess body fat after the acute consumption of an isocaloric mixed breakfast containing 25 ml of virgin coconut oil compared to a control group, but the breakfast promoted less appetitive response. However, Cardoso et al. [10] found that a virgin coconut oil-rich diet caused increases in HDL cholesterol and a decreased waist circumference and body mass in coronary artery disease patients.

For coconut milk consumption, our group recently demonstrated that the consumption of pure dried fresh coconut milk for 6 weeks by middle-aged male rats caused an up-regulation of blood vessel endothelial nitric oxide synthase (eNOS) and cystathionine-γ-lyase (CSE) enzyme protein expression. This resulted in an attenuated contractile response to phenylephrine and potentiated relaxation to acetylcholine on the rats' thoracic aortic rings, with a decreased fasting plasma glucose level [11]. The present study aimed to investigate whether the oil from the coconut milk is responsible for those effects. The study has been performed using middle-aged rats (age 12-14 month) as this is the stage associated with endothelial dysfunction and a consequent decrease in NO/ H₂S production [12-13]. It is also the stage for early pathological changes in the development of cardiovascular disease [14-16]. The results have provided new information relating not only to classical risk factors such as blood pressure and the plasma lipid profile, but also to body fat accumulation and vascular function following virgin coconut oil consumption especially in middle-aged rats.

METHODS

Coconut-milk oil preparation

Fresh mature coconut (11-12 month) kernel was grated and compressed using an electric screw press to obtain a large sample of fresh aqueous coconut milk. The milk was then filtered through a cloth filter followed by lyophilization to obtain fresh dried coconut milk, which was kept at -20 °C until use.

The dried coconut milk was centrifuged (3,200 rpm) at room temperature to achieve pure virgin coconut milk oil (CO) with a yield of 70% dried coconut milk and kept at -20 °C until use.

The CO was analyzed for its fatty acid composition by LC-MS at the Central Equipment Center, Kasetart University, and analysed for its cholesterol and α -tocopherol (vitamin E) concentrations by in-house method TE-CH-143 based on AOAC (2016) 976.26 at the Central Laboratory (Thailand) Co., Ltd.

Pharmacological studies

Middle-aged (12-14-month-old) Wistar male rats were bought from the National Laboratory Animal Center, Mahidol University. The animals were housed in controlled environmental conditions at 25 °C on a 12 h dark and 12 h light cycle and allowed access to standard food (Perfect Companion Group Co. Ltd, Thailand) and tap water *ad libitum*. The animal methods employed in this study were approved by the Prince of Songkla University Animal Ethics Committee (Ethic Number: Ref. 06/57). The investigation conformed to the Guide for the Care and Use of Laboratory Animals (CIOMS Guidelines). The rats were randomly allocated to three groups with six animals in each group using sample size calculation formula for comparison between two group, sample size = $2 \text{ SD}^2 (Z^{\alpha/2} + Z^{\beta})^2/d^2$ [17]. The experimental group was treated by oral administration of 1 or 3 ml/kg CO (corresponding to the amount of oil used to prepare one or three servings of Thai fast food, respectively), or distilled water, once a day for 6 weeks. The body weight and 24 h food intake was recorded one day before receiving oral gavage of each oil ration or distilled water (i.e., day 0) and again every 7th day over the 6-week period.

Effects of the CO treatment on the basal blood pressure and on the haematology and clinical biochemical analysis

The same methods as previously described [18] were used for haematology and clinical biochemical analysis. At the end of the 6-week CO or distilled water (DW) treatment, each rat was

anaesthetized with thiopental sodium (60 mg/kg) after fasting for 13-15 h. Their basal systolic and diastolic blood pressure and heart rate were recorded via the right common carotid artery by a polyethylene catheter connected to a polygraph. The data were collected after a 40 min equilibration period.

After measuring the basal blood pressure and heart rate, the rat was sacrificed by decapitation with a guillotine and two blood samples were collected in test tubes. The first was analyzed for glucose and lipid levels by enzymatic methods using an automatic chemistry analyzer routinely operated at Prince of Songkla University Hospital. The other was sent to a hematology laboratory and subjected to a total blood count procedure measured by an automated hematology analyzer.

Effects of CO or DW treatment on internal organs and lipid accumulation

The decapitated rat was dissected as previously described [18]. The heart, lungs, liver, adrenal glands, kidneys, testes, visceral fats from the epididymis, and testis, retroperitoneal and subcutaneous fats were removed and weighed.

Two pieces of liver (middle lobe) were cut, embedded into a cryostat gel, the sections (20 μ m thick) were stained with oil red O (0.5% in absolute propylene glycol), and mounted with glycerine jelly for observation by light microscopy. The aortic arch was collected and was cleared of adhering fat and connective tissue before being stained with oil red-O using the same method as for the liver tissue. The oil red O on each slide of the liver tissue and of the aortic arch was extracted with 1 ml 100% dimethyl sulfoxide (DMSO) and its absorbance was measured at 520 nm. The concentration of the oil red O was obtained from the standard curve of known concentrations of oil red O in 100% DMSO (μ g/ml). The area of a thin section of the whole liver and of the aortic arch was measured using the Auto CAD 2005 program. The accumulated lipid in the liver tissue and at the aortic arch was expressed in terms of μ g/ml/cm² of the liver tissue thin section area and the aortic arch, respectively.

Preparation of the thoracic aortic rings

The thoracic aorta was removed from the decapitated rat and placed in oxygenated 37 °C Krebs-Henseleit solution, and the adhering connective tissue was removed. Six adjacent rings of 4-5 mm in length were cut. For one ring the endothelium layer was removed with a small cotton bud. Each aortic ring was mounted with two stainless steel hooks in a 20 ml organ bath containing Krebs-Henseleit solution of the following composition (mM): NaCl 118.3, KCl 4.7, CaCl₂ 1.9, MgSO₄ 7, H₂O 0.45, KH₂PO₄ 1.18, NaHCO₃ 25.0, glucose 11.66, Na₂EDTA 0.024 and ascorbic acid 0.09, maintained at 37 °C and bubbled with carbogen (95% O₂ and 5% CO₂ gas mixture). One of the hooks was fixed at the bottom and the other was connected to a transducer for recording the isometric tension with a polygraph. The tissues were equilibrated for 60 min under a resting tension of 1 g and the bath solution was replaced with pre-warmed oxygenated Krebs-Henseleit solution every 15 min.

At the end of the equilibration period, each aortic ring was tested for the viability of the endothelium by precontraction with phenylephrine (3 μ M) until the response reached a plateau (5-8 min), and then the addition of acetylcholine (30 μ M). Endothelial viability was judged by a > 65% vasorelaxation back to the tension generated by the ring before adding the phenylephrine. Denudation was confirmed by the absence of vasorelaxation following the response to the addition

of acetylcholine. The preparations were then washed several times with Krebs-Henseleit solution and allowed to fully relax for 45 min before the experimental protocol began.

Effects of the CO or DW treatment on the pharmacological vascular functions Role of nitric oxide

At the end of the 45-min re-equilibration period after the functional endothelium testing, the basal tension of the thoracic aortic rings with intact endothelium and the rings without endothelium was adjusted to the optimal tension of 2 g and equilibrated for another 10 min, and the contractile response to a cumulative concentration-response (*C-R*) curve of phenylephrine was then obtained. This was followed by several washings, and the aortic ring was allowed to fully relax for 50 min. Then the endothelium-intact aortic rings were pre-incubated with N-nitro-L-arginine (L-NA) for 40 min, and then a second *C-R* curve to phenylephrine was obtained.

Using another set of endothelium-intact thoracic aortic rings, each ring was equilibrated under a basal tension of 2 g for 10 min and was then precontracted with phenylephrine (3 μ M) for 10-15 min followed by the determination of the cumulative dilator *C-R* curves to acetylcholine.

Role of H_2S

After equilibration, the endothelium-denuded thoracic aortic rings were incubated with L-NA for 40 min under a basal tension of 3 g. Then a cumulative *C-R* curve to phenylephrine was obtained in the presence of L-NA, followed by several washings and re-equilibration for 60 min in the presence of L-NA to allow full relaxation of the blood vessels to their original baseline of 3 g. After that, PAG was added to the incubation and left for 10-15 min until the aortic contraction reached a plateau, and a further cumulative *C-R* curve to phenylephrine was obtained in the presence of L-NA and PAG.

eNOS and CSE Western blot analysis

The thoracic agrae of the CO-treated groups and the distilled water control groups (n = 4) were obtained in order to measure the expression level of the enzymes, eNOS and CSE. After removal of the adhering connective tissue, the blood vessel was then cut into small rings and the endothelium removed with a small cotton bud. The rings were then kept at -70 °C until use. Protein extraction from the tissues and Western blot analysis were carried out as previously described. Briefly, the total proteins extracted from the homogenized tissue of each animal in lysis RIPA buffer (25 mM Tris-HCl, pH 7.6), 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS, 0.5 mM EDTA containing a GE Healthcare protease inhibitor cocktail. The protein lysate of each animal was centrifuged and the supernatant used to quantify the protein content by Bradford assay. Protein at 50 µg was run on 12% SDS-polyacrylamide gel electrophoresis. Then, the protein bands were transferred onto nitrocellulose membranes. The membranes were blocked with 5% low fat dry milk in Tris buffer saline- 0.1% Tween 20 (TBS-T) for 1 h, followed by primary antibody incubation against eNOS (1:250), CSE (1:1,000) and β-actin (1:1,000) dissolved in 1% low fat dry milk in TBS-T overnight at 4°C (the rabbit eNOS and rabbit β-actin antibodies used were from Cell Signalling Technology, USA, and the mouse CSE was from Abnova, USA). The membranes were then incubated with HRP-conjugated rabbit IgG (1:5,000) for eNOS and β-actin and mouse IgG antibody (1:5,000) for CSE. The membranes were incubated with a chemiluminesescence

detection kit (Pierce, Rockford, USA) and the protein signal was detected by Fusion FX5XT spectra/ Superbright (Vilber Lourmat).

Drugs

The following drugs were used: Acetylcholine chloride, N^G-nitro-L-arginine (L-NA), norepinephrine, phenylephrine hydrochloride, DL-propagylglycine (PAG), pentobarbital, and oil red O from Sigma, USA. Glyceryl trinitrate was obtained from Mycomed, Denmark. Acetylcholine chloride and phenylephrine were dissolved in a solution containing NaCl 19 g/l, NaH₂PO₄ 0.19 g/l and ascorbic acid 0.03 g/l.

Statistical analysis

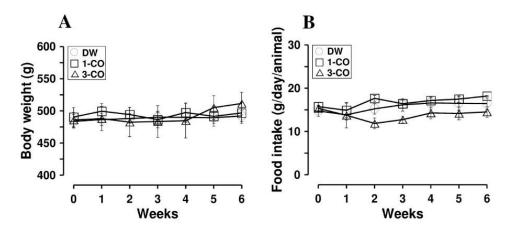
The results were expressed as the mean \pm standard error of the mean (SEM) (n=6 for vascular function study and n=4 for Western blotting, where n is the number of animals). Maximal contractile response and EC50 values were calculated for vascular reactivity experiments using GraphPad Prism V.5.00. Statistical differences were determined by t-test or by one-way analysis of variance (ANOVA), followed by Tukey's range test using GraphPad Prism V.5.0. A p value < 0.05 was considered to indicate a significant difference between values.

RESULTS

Fatty acid composition of the CO

The main component of the fatty acid composition of the CO was similar to that previously reported [11]: lauric acid (40%) followed by myristic acid (17%), palmitic acid (8%), linoleic acid (ω -6-unsaturated fatty acid, 5%), capric acid (4%), stearic acid (3%) and caprelic acid and linoleic acid (ω -3-unsaturated fatty acid, 1%). The cholesterol and α -tocopherol content were 0 (not detectable) and 0.09 mg/100 g, respectively (Table 1).

Table 1. Fatty acids (in percent), and cholesterol and vitamin E (α -tocopherol) (mg/ 100 g) composition of the coconut oil (CO).


Fatty acid name	% in CCM oil
Caprylic acid (C8:0), MCF	1.05 ± 0.00
Capric acid (C10:0), MCF	3.55 ± 0.00
Lauric acid (C12:0), MCF	40.68 ± 0.08
Myristic acid (C14:0), LCF	17.53 ± 0.02
Palmitic acid (C16:0), LCF	7.89 ± 0.00
Stearic acid (C18:0), LCF	2.87 ± 0.00
Oleic acid (C18:1), LCF	4.65 ± 0.00
Linoleic acid (C18:2), LCF	1.01 ± 0.00
Cholesterol	No detectable
Vitamin E (α-tocopherol)	0.09 mg/100g

Effects of CO treatment on the body weight, food intake, internal organs, adipose tissue and blood chemistry

In comparison to the DW control group, there was no difference in animal body weight, food intake (Figure 1), complete blood cell count or the internal organ weights (supplementary Table 1-2) after treatment with 1 or 3 ml/kg CO. Both 1 ml/kg and 3 ml/kg CO caused an increase in retroperitoneal fat accumulation (Table 2), whereas 3 ml/kg but not 1 ml/kg CO caused a decrease in liver cell lipid accumulation (Figure 2) but there was no significant difference in the lipid accumulation for the internal wall of the aortic arch (Figure 3). At 3 ml/kg but not at 1 ml/kg, CO treatment caused lower plasma levels of alkaline phosphatase, blood urea nitrogen, and glucose compared to that of the DW-treated group (Table 3-4).

Effects of CO treatment on blood pressure

CO treatment did not affect the basal arterial blood pressure and heart rate of the anesthetized middle-aged rats when compared to that of the DW control group (supplementary Table 3).

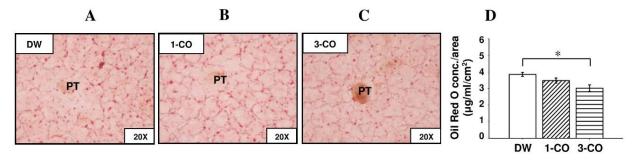


Figure 1. Effects of CO- (1 or 3 ml/kg) or distilled water (DW) consumption by the middle-aged male rats on body weight (left) and food intake (right). Each point represents mean \pm SEM of 6 rats.

Table 2. Effects of 6 weeks coconut oil (CO) consumption (1 or 3 ml/kg) on body adipose tissue accumulation in middle-aged rats.

Treatments	Adipose tissue weight/ 100 g body weight (% g)								
Treatments	Epididymis	Prostate	Mesentery	Retroperitoneal	Subcutaneous				
DW	2.01±0.25	0.09±0.02	2.05±0.22	2.20±0.39	6.71±0.73				
CO 1 ml/kg	2.56±0.34	0.14 ± 0.02	2.13±0.02	3.11±0.49 ^a	7.01±0.78				
	(<i>p</i> =.21)	(p=.11)	(p=.66)	(p=.04)	(p=.78)				
CO 3 ml/kg	2.72±0.30	0.15±0.03	2.22±0.03	3.47 ± 0.34^{a}	7.96±0.96				
	(p=.09)	(p=.06)	(p=.36)	(p=.04)	(p=.31)				

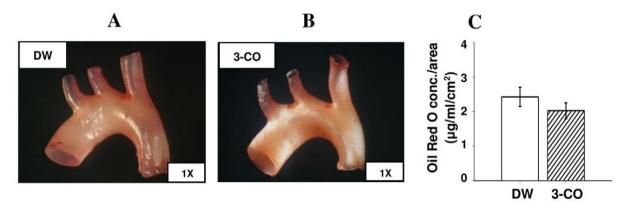

^a significantly higher than control group, p < 0.05.

Figure 2. Effects of CO- (1 or 3 ml/kg) or distilled water (DW) consumption by the middle-aged male rats on liver cell lipid accumulation. (A) distilled water (DW), (B) CO 1 ml/kg, (C) CO 3 ml/kg and (D) oil red O concentration. Values represent mean ± SEM of 6 experiments.

*significantly lower than that of the distilled water control group, p < 0.05.

(PT = Portal triad; oil red O staining of liver tissue frozen section, 20 mm thick, 20X magnification).

Figure 3. Effects of CO 3 ml/kg or distilled water (DW) consumption by the middle-aged male rats on lipid accumulation at the aortic arch. (A) distilled water (DW), (B) CO 3 ml/kg and (C) oil red O concentration. Values represent mean ± SEM of 6 experiments.

Table 3. Effects of 6 weeks coconut oil (CO) consumption (1 or 3 ml/kg) on liver and kidney enzymes in middle-aged rats.

NLAC-MU-	ALP (U/L)	BUN (mg %)	CREAT (mg %)
normal range	46.00–92.00	10.30-23.60	0.54-0.69
DW	85.7 ± 4.2	21.8 ± 0.6	0.4 ± 0.01
CO 1 ml/kg	95.0 ± 9.4	21.4 ± 0.9	0.5 ± 0.03
	(p=.36)	(p=.71)	(p=.08)
CO 3 ml/kg	68.5 ± 3.4^a	18.5 ± 1.1^{a}	0.4 ± 0.02
	(p=.01)	(p=.02)	(p=.09)

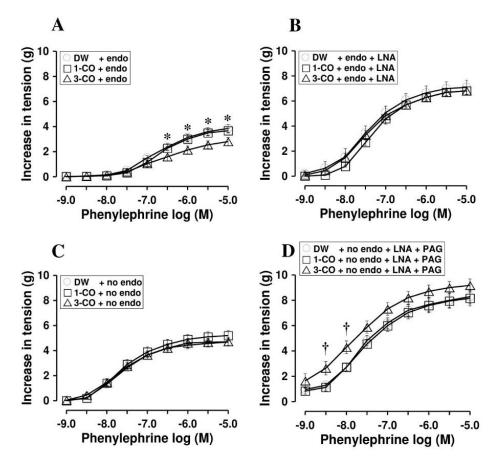
^asignificantly lower than control group, p < 0.05.

Table 4. Effects of 6 weeks coconut oil (CO) consumption (1 or 3 ml/kg) on fasting blood glucose and lipid profile in middle-aged male rats.

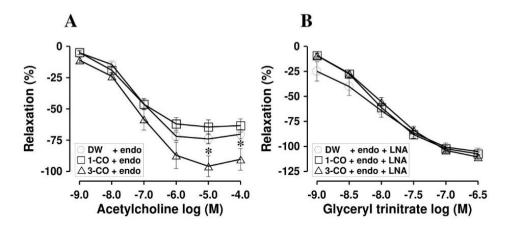
NLAC- MU-	Glucose	Triglyceride	Cholesterol	HDL-C	LDL-C	LDL/HDL
Normal range (mg %)	122.1–180.8	61.0–164.0	46.0–98.0	-	-	-
DW	135.0 ± 8.1	73.4 ± 8.6	76.7 ± 5.6	61.5 ± 4.9	12.1 ± 1.4	0.2 ± 0.01
CO 1 ml/kg	140.9 ± 9.9	66.7 ± 5.5	70.3 ± 3.8	49.8 ± 2.7	11.1 ± 1.6	0.2 ± 0.02
	(p=.65)	(p=.54)	(p=.38)	(p=.07)	(p=.61)	(p=.34)
CO 3 ml/kg	102.5 ±7.5 ^a	84.9 ± 19.9	84.7 ± 7.9	60.5 ± 4.1	15.6 ± 1.4	0.3 ± 0.02
	(p=.01)	(p=.39)	(p=.42)	(p=.88)	(p=.11)	(p=.15)

^a significantly lower than control group, p < 0.05.

Effects of CO treatment on vascular functions


Effect on contraction and relaxation of the thoracic aorta

CO-treatment caused decreased maximal contractile responses with no changes in EC₅₀ to phenylephrine of the endothelium-intact thoracic aortic rings in comparison to the DW control group (Figure 4A and Table 5). The effect disappeared in the presence of L-NA or the removal of the vascular endothelium (Figure 4B-C). The addition of PAG into the incubation medium caused a spontaneous contraction of the endothelium-denuded thoracic aortic rings in the presence of L-NA for all groups, DW (0.63 \pm 0.11 g), 1 ml/kg CO (0.78 \pm 0.22 g) and 3 ml/kg CO (1.39 \pm 0.56 g). However, the 3 ml/kg CO-treated group caused about 2-fold increased spontaneous contraction of the aortic rings compared to that of the DW- or 1 ml/kg CO-treated groups. This effect subsequently resulted in a greater contraction of the phenylephrine *C-R* curves of the thoracic aortic rings obtained from the 3 ml/kg CO-treated rats than that of the other groups (Figure 4D).


The relative relaxation to acetylcholine of the endothelium-intact aortic rings pre-contracted with phenylephrine obtained from the 3 ml/kg (but not the 1 ml/kg CO-treated rats) was higher than that of the DW control group (Figure 5A and Table 6). However, the relaxation to glyceryl trinitrate of the endothelium-intact tissue in the presence of L-NA of the CO-treated (1 or 3 ml/kg) groups were not different from the DW control group (Figure 5B).

eNOS and CSE Western blot analysis

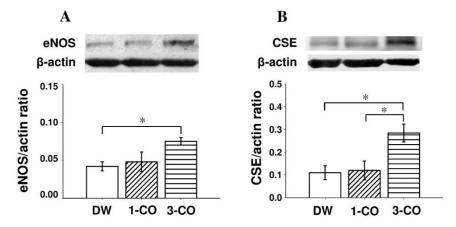

The quantitative expression of the vascular eNOS and CSE protein expression of the CO-treated rats was significantly higher than that of the DW control group (Figure 6).

Figure 4. Effects of 6 weeks oral administration of CO- (1 or 3 ml/kg) or distilled water (DW, control) by middle-aged male rats on contractile response to phenylephrine of endothelium-intact (endo, a), endothelium-intact with L-NA (B), without endothelium (no endo, C), or without endothelium in the present of L-NA and PAG thoracic aorta (D). Values represent as mean \pm SEM; n = 6.* significantly lower than the control group and † significantly higher than the other groups, p < 0.05.

Figure 5. Effect of 6 weeks oral gavage of CO- (1 or 3 ml/kg) or distilled water (DW, control) on relaxation of the endothelium-intact thoracic aortic ring precontracted with phenylephrine to acetylcholine (A) or to glyceryl trinitrate (GTN) in the presence of L-NA (B). Values represent as mean \pm SEM; n = 6. *significantly lower than the control group, p < 0.05.

Figure 6. The effect of 6 weeks oral administration of CO- (1 or 3 ml/kg), or distilled water (DW) on eNOS protein expression (A), or CSE protein expression (B) of the thoracic aorta. For each blot, β-actin expression is shown as a loading control. Values represent as mean \pm SEM; n=4. *significantly higher than that of the distilled water control group, p < 0.05.

Table 5. EC₅₀ and E_{max} values of contractile responses to phenylephrine of the thoracic rings obtained from 1-3 ml/kg CO- or distilled water (DW) -treated middle-aged male rat.

	EC ₅₀ (nM)	: 95 % confiden	tial limit		Ema	_x (g)
	DW	C	0	DW	CO	
		1 ml/kg	3 ml/kg	•	1 ml/kg	3 ml/kg
Phenylephrine						
Endo	186.6	213.0	243.1	3.9±0.3	3.7±0.2	2.8±0.3a
	(142.7-244.0)	(178.0-254.9)	(175.3-337.3)		(p=.77)	(p=.03)
Endo+L-NA	34.4	46.2	42.5	7.1±0.6	6.8±0.3 ^b	6.8±0.3 ^b
	(28.3-41.7)	(35.9-59.4)	(34.5-53.0)		(p=.00)	(p=.00)
Endo+L-NA+PAG	78.3	58.0	46.8	6.8±0.6	7.3±0.7 ^b	7.6±0.2 ^b
	(62.1-98. 7)	(45.3-74.1)	(38.5-56.9)		(p=.00)	(p=.00)
No endo	21.7	22.0	19.7	4.7±0.3	5.2±0.4 ^b	4.7±0.3 ^b
	(17.0-27.7)	(14.9-32.5)	(15.8-24.7)		(p=.00)	(p=.00)
No endo+L-NA	16.4	27.8	18.9	6.7±0.4	7.0 ± 0.6^{b}	6.9 ± 0.4^{b}
	(8.6-31.5)	(17.3-44.8)	(12.1-29.5)		(p=.00)	(p=.00)
No endo+L-NA	25.2	25.7	14.4	8.3±0.6	8.2±0.6 ^b	9.2±0.5 ^b
+ PAG	(17.1-37.0)	(17.6-37.6)	(12.2–17.0)		(p=.00)	(p=.00)

^a significantly lower than the DW-treated and 1 ml/kg CO-treated group and ^bsignificantly higher than endothelium-intact group (Endo), p < 0.05.

Table 6. EC₅₀ and E_{max} values of vasodilatory responses to acetylcholine or glyceryl trinitrate of the thoracic rings precontracted with phenylephrine obtained from 1 or 3 ml/kg CO- or distilled water (DW) -treated middle-aged male rat.

	EC ₅₀ (nM)	: 95 % confid	lential limit		$\mathbf{E}_{\max}\left(\mathbf{g}\right)$		
	DW	(20	DW	C	O	
		1 ml/kg	3 ml/kg		1 ml/kg	3 ml/kg	
Acetylcholine							
Endo+L-NA	64.5	32.7	67.2	70.3±3.8	63.4±5.3	90.3±8.7 ^a	
	(25.1-165.4)	(18.9-56.7)	(23.6-191.4)		(p=.35)	(p=.03)	
Glyceryl trini	trate						
Endo+L-NA	8.9	8.0	10.4	105.1±2.8	107.4±1.8	110.6±2.2	
	(7.1-11.2)	(6.7-9.6)	(7.9-13.7)		(p=.85)	(p=.34)	

^asignificantly higher than the control group, p < 0.05.

DISCUSSION

It has been previously demonstrated that coconut milk consumption at a dosage of 3 mg/kg but not 1 mg/kg produced some beneficial effects on the cardiovascular system in middle-aged male rats [11]. The present study thus investigated whether it is coconut oil which is responsible for such effects. To this end, dried fresh coconut milk was prepared as previously described, from which the oil (CO) fractions were isolated by centrifugation. Thus, the CO obtained used in this investigation was not heated. This is referred to as a virgin coconut oil type, the chemical composition being the same as in dried fresh coconut milk.

In the present study rats were treated at CO dosages of 1 ml/kg and 3 ml/kg which correspond to the amount of oil used to prepare one and three servings of Thai fast food. It was found that a dosage of 1 ml/kg of CO did not cause any change in the parameters studied except that the fat accumulation in the retroperitoneal tissue was increased. A dosage of 3 ml/kg of CO also caused increased retroperitoneal fat accumulation, but several beneficial effects on the cardiovascular system were found. Firstly, CO caused decreased fasting-plasma glucose and liver-cell lipid accumulation. These results were analogous to those reported by Naravanankutty et al. [19], and Zicker et al. [20] who found that virgin CO in the diet lowered the increase in blood glucose level and reduced hepatic damage and steatosis than the one with coconut oil in the diet of high-fructosefed rats and those with a high-refined carbohydrate-containing diet alone mice. Which might be due, respectively, to the high antioxidant efficacy and high content of medium chain fatty acid of the virgin coconut oil diet. Secondly, it caused a slight decrease in the plasma alkaline phosphatase (ALP) and blood urea nitrogen (BUN) levels which indicated that CO consumption at this dosage did not harm the liver and kidney functions. As it is well known that if there is a cholestasis or bile duct ligation, it would increase plasma ALP level [21-24], as well as chronic kidney disease would increase BUN level [25-27]. Thirdly, although CO treatment did not affect the basal blood pressure

and heart rate, it caused a decreased maximal contractile response to phenylephrine in the thoracic aortic rings compared to that of the DW control group. The effect was abolished by L-NA or the removal of the vascular endothelium. In addition, the vasodilatation to acetylcholine of the aortic ring precontracted with phenylephrine in the CO-treated rats was significantly higher than that of the DW control group, which suggested that CO treatment might cause increased NO production from the vascular endothelium. This was confirmed by the finding that aortic blood vessel eNOS enzyme expression in the CO treated groups was significantly greater than that of the DW control group. However, the increased NO availability might also be modified by other factors such as: post-translational regulation of eNOS activity, the availability of eNOS substrate and cofactors, or level of endogenous NOS inhibitors or oxidative stress, of which parameters are needed for further extensive studies.

In our previous publication, it was also found that coconut milk consumption caused increased blood vessel H₂S production [11]. Thus, the present study investigated whether CO consumption would affect H₂S production by studying the C-R curve to phenylephrine in the presence of PAG after the aortic ring had been incubated with L-NA, in order to prevent any disturbance by the NO. It was found that PAG caused increased vascular responsiveness to phenylephrine compared to the DW control group in the 3 ml/kg CO-treated group but not in the 1 ml/kg CO-treated group. This result suggests that CO might cause increased blood vessel H₂S production, and the finding of greater blood vessel CSE enzyme expression for the CO treated group than that of the DW control group confirmed this finding. These results are similar to those of the finding related to coconut milk consumption. However, both dosages of CO (1 and 3 ml/kg) caused increased retroperitoneal fat accumulation, whereas dried fresh coconut milk-treatment did not affect body lipid accumulation, suggesting that some other bioactive components besides the CO of the dried fresh coconut milk antagonizes the accumulation of CO in the body fat. As coconut milk composition are not only lipids (coconut oil, 41.5%), but with a small amount of carbohydrates (5.2%) and proteins (4.5%) [3]. Thus, further experiments to isolate and study the activities of the crude coconut protein and/or crude carbohydrates/sugars from the precipitate left over from the coconut milk oil separation of the dried fresh coconut milk, would be needed to clarify this possibility.

CONCLUSIONS

The study suggests that the consumption of CO at 1 ml/kg did not have any effect on the cardiovascular system except for the increase in retroperitoneal fat accumulation. When the consumption was increased to 3 ml/kg, it caused both beneficial and harmful effects by decreasing the fasting serum glucose and liver lipid accumulation and an increase in blood vessel eNOS and CSE protein expression, which resulted in an increase in NO and H₂S production, which, in turn, attenuated vasoconstriction to phenylephrine and facilitated relaxation to acetylcholine. However, the increase in retroperitoneal fat accumulation is a negative indicator for metabolic syndrome development which is a matter of concern for the long-term consumption of CO and the consumption of CO should thus be limited. Nevertheless, to date, this is the first report of the use of appropriate methods to provide good evidence that CO also produces beneficial cardiovascular effects in middle-aged male rats.

List of Abbreviations: endothelial nitric oxide synthase (eNOS), cystathionine-γ-lyase (CSE), coconut milk oil (CO), N-nitro-L-arginine (L-NA), DL-propargylglycine (PAG)

Competing interests: The study was supported by the Thailand Research Fund, Thailand (the grant No. RSA 5980045). The authors declared no conflict of interest.

Authors'contributions: CJ designed, conducted the research and wrote the manuscript. JN and PC conducted the research and performed statistical analysis. KK assisted for western blot technique and NR assisted for oil red O staining technique. All authors read and approved the final version of the manuscript.

Acknowledgments: This work was supported by the Thailand Research Fund, Thailand. The authors thank Miss. Srisurat Duangsai for her technical assistance and Prof. Michael J. Mulvany, Aarhus University, Denmark, for his valuable comments and editing the manuscript.

REFERENCES

- 1. Gwee CN: New technologies open the passage into new usage of coconut milk products. In: Maneepun S, Varangoon P, Phitakpol B (editors). Food Science and Technology in Industrial Development. Bangkok: Institute of Food Research and Product Development, Kasetsart University. 1988;157-162.
- 2. D'Amato A, Fasoli E, Righetti PG: Harry belafonte and the secret proteome of coconut milk. J Proteomics. 2012; 75:914-920.
- 3. Pehowich DJ, Gomes AV, Barnes JA: Fatty acid composition and possible health effects of coconut constituents. West Indian Med J. 2000; 49:128-133.
- 4. DebMandal M, Mandal S: Coconut (*Cocos nucifera* L.: Arecaceae): in health promotion and disease prevention. Asian Pac J Trop Med. 2011; 4:241-247.
- 5. Nandakumaran M, Angelaki E, Al-Azemi N, Al-Sarraf H, Al-Saleh E: Influence of coconut oil administration on some hematologic and metabolic parameters in pregnant rats. J Matern Fetal Neonatal Med. 2011; 24:1254-1258.
- 6. Famurewa AC, Ufebe OG, Egedigwe CA, Nwankwo OE, Obaje GS: Virgin coconut oil supplementation attenuates acute chemotherapy hepatotoxicity induced by anticancer drug methotrexate via inhibition of oxidative stress in rats. Biomed Pharmacother. 2017; 87:437-442.
- 7. Alves NF, Porpino SK, Monteiro MM, Gomes ER, Braga VA: Coconut oil supplementation and physical exercise improves baroreflex sensitivity and oxidative stress in hypertensive rats. Appl Physiol Nutr Metab. 2015; 40:393-400.
- 8. Voon PT, Ng TK, Lee VK, Nesaretnam K: Virgin olive oil, palm olein and coconut oil diets do not raise cell adhesion molecules and thrombogenicity indices in healthy Malaysian adults. Eur J Clin Nutr. 2015; 69:712-716.
- 9. Valente FX, Candido FG, Lopes LL, Dias DM, Carvalho SDL, Pereira PF, Bressan J: Effects of coconut oil consumption on energy metabolism, cardiometabolic risk markers, and appetitive responses in women with excess body fat. Eur J Nutr. 2018; 57:1627-1637.

- 10. Cardoso DA, Moreira AS, De Oliveira GM, Raggio Luiz R, Rosa G: A coconut extra virgin oil-rich diet Increases HDL cholesterol and decreases waist circumference and body mass in coronary artery disease patients. Nutr Hosp. 2015; 32:2144-2152.
- 11. Jansakul C, Naphatthalung J, Pradab S, Yorsin S, Kanokwiroon K: 6 weeks consumption of pure fresh coconut milk caused up-regulation of eNOS and CSE protein expression in middle-aged male rats. Braz J Pharm Sci. 2018; 54: e17259.
- 12. Novella S, Dantas AP, Segarra G, Vidal-Gomez X, Mompeon A, Garabito M, Hermenegildo C, et al.: Aging-related endothelial dysfunction in the aorta from female senescence-accelerated mice is associated with decreased nitric oxide synthase expression. Exp Gerontol. 2013; 48:1329-1337.
- 13. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, et al.: H₂S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science. 2008; 322:587-590.
- 14. Bhayadia R, Schmidt BM, Melk A, Homme M: Senescence-induced oxidative stress causes endothelial dysfunction. J Gerontol A Biol Sci Med Sci. 2016; 71:161-169.
- 15. Marchesi S, Lupattelli G, Siepi D, Schillaci G, Vaudo G, Roscini AR, Sinzinger H, et al.: Short-term atorvastatin treatment improves endothelial function in hypercholesterolemic women. J Cardiovasc Pharmacol. 2000; 36:617-621.
- 16. Rudolph TK, Ruempler K, Schwedhelm E, Tan-Andresen J, Riederer U, Boger RH, Maas R: Acute effects of various fast-food meals on vascular function and cardiovascular disease risk markers: the Hamburg Burger Trial. Am J Clin Nutr. 2007; 86:334-340.
- 17. Charan J, Kantharia ND: How to calculate sample size in animal studies?. J Pharmacol Pharmacother. 2013; 4:303-306.
- 18. Yorsin S, Kanokwiroon K, Radenahmad N, Jansakul C: Effects of *Kaempferia parviflora* rhizomes dichloromethane extract on vascular functions in middle-aged male rat. J Ethnopharmacol. 2014; 56:162-174.
- 19. Narayanankutty A, Mukesh RK, Ayoob SK, Ramavarma SK, Suseela IM, Manalil JJ, Kuzhivelil BT, et al.: Virgin coconut oil maintains redox status and improves glycemic conditions in high fructose fed rats. J Food Sci Technol. 2016; 53:895-901.
- 20. Zicker MC, Silveira ALM, Lacerda DR, Rodrigues DF, Oliveira CT, De Souza Cordeiro LM, Lima LCF, et al.: Virgin coconut oil is effective to treat metabolic and inflammatory dysfunction induced by high refined carbohydrate-containing diet in mice. J Nutr Biochem. 2019; 63:117-128.
- 21. Frederiks WM, Van Noorden CJ, Aronson DC, Marx F, Bosch KS, Jonges GN, Vogels MC, et al.: Quantitative changes in acid phosphatase, alkaline phosphatase and 5'-nucleotidase activity in rat liver after experimentally induced cholestasis. Liver. 1990; 10:158-166.
- 22. Grewal R, Mahmood A: Coordinated secretion of alkaline phosphatase into serum and intestine in fat-fed rats. Indian J Gastroenterol. 2004; 23:175-177.
- 23. Kaplan MM: Induction of rat liver alkaline phosphatase by bile duct ligation. Yale J Biol Med. 1979; 52:69-75.

- 24. Seetharam S, Sussman NL, Komoda T, Alpers DH: The mechanism of elevated alkaline phosphatase activity after bile duct ligation in the rat. Hepatology. 1986; 6:374-380.
- 25. Askari H, Seifi B, Kadkhodaee M: Evaluation of renal-hepatic functional indices and blood pressure based on the progress of time in a rat model of chronic kidney disease. Nephrourol. 2016; Mon 8:e37840.
- 26. Diwan V, Mistry A, Gobe G, Brown L: Adenine-induced chronic kidney and cardiovascular damage in rats. J Pharmacol Toxicol Methods. 2013; 68:197-207.
- 27. Diwan V, Gobe G, Brown L: Glibenclamide improves kidney and heart structure and function in the adenine-diet model of chronic kidney disease. Pharmacol Res. 2014; 79:104-110.

Subject: EJON-D-19-00738 - Our decision on your submission to European Journal of Nutrition

From: "Editorial Office (EJON)"

<em@editorialmanager.com<mailto:em@editorialmanager.com>>

Date: Thu, September 19, 2019 10:27 pm

To: "ChaweewanJansakul" <chaweewan.j@psu.ac.th<mailto:chaweewan.j@psu.ac.th>>

.-----

CC: eicejon@surrey.ac.uk<mailto:eicejon@surrey.ac.uk>, eurjnutr@gmail.com<mailto:eurjnutr@gmail.com>

Ref.: Ms. No. EJON-D-19-00738

Effects of six weeks consumption of coconut milk oil on vascular functions and fasting blood glucose and lipid profile in middle-aged male rats European Journal of Nutrition

Dear Dr. Jansakul,

Thank you for submitting your manuscript to the European Journal of Nutrition. I read your paper with great interest. However, I regret to inform you that it will not be possible to publish your manuscript for the reason outlined below.

This will be disappointing news, but the European Journal of Nutrition has been receiving an increasing number of papers over the last few years, which has prevented us from publishing some promising manuscripts. The purpose of this quick

editorial decision is to avoid delay, so authors can find an alternative journal in which to publish their research.

I hope you will consider the European Journal of Nutrition for future submissions.

Yours sincerely,

Bruce A. Griffin, PhD

Editor-in-Chief

European Journal of Nutrition

COMMENTS TO THE AUTHOR:

This is an interesting area and well performed study. However, there are major limitations to the study design, largely because of issues with the translation of the outcome in the chosen animal model to human physiology.

The research question under study; the effect of coconut milk oil on the primary endpoint measure of vascular function, would be more informative if it were examined in humans.

Supplementary Table

Table 1 Effects of CMP- (1 mg/kg) or distilled water (DW, control) consumption by middle-aged male rats on fasting plasma glucose and lipid profile.

NLAC-MU	Glucose	Triglyceride	Cholesterol	HDL-C	LDL-C	LDL/HDL
normal range						ratio
(mg %)	122.1–180.8	61.0–164.0	46.0–98.0	-	-	-
DW	132.2 ± 5.2	78.2 ± 7.9	95.6 ± 2.6	99.0 ± 5.5	25.3 ± 2.0	0.3 ± 0.03
CMP	131.0 ± 5.9	84.2 ± 11.2	90.8 ± 7.7	98.7 ± 5.6	23.3 ± 3.5	0.2 ± 0.05

Note: NLAC-MU = National Laboratory Animal Center Mahidol University.

Table 2 Effects of CMP- (1 mg/kg) or distilled water (DW, control) consumption by middle-aged male rats on the plasma levels of alkaline phosphatase (Alp), SGOP, SGPT, Blood urea nitrogen (BUN) and Creatinine.

NLAC-MU	ALP (U/L)	SGOT (U/L)	SGPT (U/L)	BUN (mg %)	CREAT (mg %)
normal range	46.0 – 92.0	111.0 – 225.0	25.0 – 64.0	10.3 – 23.6	0.5 - 0.7
DW	74.4 ± 7.8	123.9 ± 12.1	80.7 ± 5.6	23.8 ± 2.3	0.6 ± 0.1
CMP	71.4 ± 4.3	120.7 ± 11.4	77.6 ± 3.5	25.7 ± 3.9	0.7 ± 0.2

Note: NLAC-MU = National Laboratory Animal Center Mahidol University.

Table 3 Effects of CMP- (1 mg/kg) or distilled water (DW, control) consumption by middle-aged male rats on adipose tissue accumulation at the internal organs and subcutaneously (g/100 g body weight).

_	Organs weight/100 g body weight (% g)								
Treatments	Heart	Lung	Liver	Kidney	Adrenal gland (mg)	Spleen	Testis	Epididymis	Prostate gl.
DW	0.3 ± 0.01	0.3 ± 0.01	2.7 ± 0.15	0.5 ± 0.02	13.4 ± 0.99	0.2 ± 0.01	0.6 ± 0.01	0.3 ± 0.01	0.2 ± 0.02
CMP	0.3 ± 0.01	0.3 ± 0.01	2.7 ± 0.16	0.6 ± 0.06	14.3 ± 0.71	0.2 ± 0.01	0.6 ± 0.01	0.3 ± 0.01	0.2 ± 0.02

Table 4 Effects of CMP- (1 mg/kg) or distilled water (DW, control) consumption by middle-aged male rats on blood pressure and heart rate in the anesthetize rats.

	Body weight			Basal	Basal	Mean Arterial	Basal
Treatments	(g	<u>(</u>)		systolic BP	diastolic BP	Pressure	heart rate
	Initial	Final	-	(mmHg)	(mmHg)	(mmHg)	(bpm)
DW	481.9 ± 13.1	492.1 ± 8.4	6	134.2 ± 5.4	109.2 ± 4.6	120.8 ±2.0	425.0 ± 11.2
CMP	488.0 ± 7.9	505.1 ± 7.2	6	136.7 ± 9.6	109.6 ± 8.0	118.6 ± 8.5	428.3 ± 10.9

 $\label{eq:Table 5} \textbf{Table 5} \ Effects \ of \ CMP-\ (1\ mg/kg) \ or \ distilled \ water \ (DW, \ control) \ consumption \ by \ middleaged \ male \ rats \ on \ EC_{50} \ and \ E_{max} values.$

	EC ₅₀ (nM): 95%	E _{ma}	_x (g)	
·	DW	CMP	DW	CMP
Phenylephrine				
Endo	14.0 (7.8-25.2)	25.2 (16.0-39.7)	3.6 ± 0.3	2.9 ± 0.3
Endo+L-NA	19.3 (13.3-31.2)	24.0 (15.7-37.0)	7.1 ± 0.6	6.5 ± 0.4
Endo+L-NA+PAG	67.6 (34.6-98.0)	30.1 (19.2-49.7)	6.8 ± 0.6	7.5 ± 0.5
No endo	26.2 (8.6-79.6)	33.7 (14.7-77.0)	4.7 ± 0.3	4.8 ± 0.2
No endo+L-NA	No endo+L-NA 21.1 (9.2-48.4)		6.7 ± 0.4	6.9 ± 0.1
No endo+L-NA+PAG	21.7 (10.7-44.2)	11.3 (6.3-20.3)	8.3 ± 0.6	8.2 ± 0.2

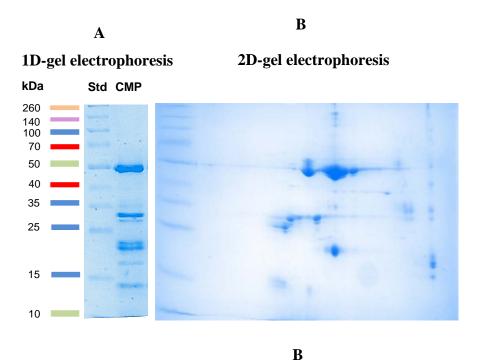
Table1 Effects of CMP- (1 mg/kg) or distilled water (DW) consumption by middle-aged male rats on complete blood count.

NLAC- MU	n	НСТ	HGB	MCV	МСН	MCHC	WBC	Neutrophil	LYMPH	Plt	N/L
		(%)	(g/dl)	(f1)	(pg)	(%)	$(x10^3/\mu l)$	(%)	(%)	$(x10^5/\mu l)$	ratio
normal range		33.2 – 46.0	13.5 – 17.6	47.5 – 54.7	17.4 – 26.5	34.7 – 51.8	3.0 – 7.2	-	59.0 – 91.0	4.9 – 11.3	-
DW	6	46.8 ± 2.7	16.0 ± 0.8	51.6 ± 0.2	17.4 ± 0.2	33.4 ± 0.7	5.5 ± 0.6	68.2 ± 6.1	31.4 ± 6.1	8.6 ± 0.3	2.7 ± 0.6
CMP	6	46.1 ± 2.3	16.2 ± 0.7	52.9 ± 1.2	18.4 ± 0.4	34.7 ± 0.4	4.4 ± 0.3	63.3 ± 4.8	35.4 ± 4.9	7.4 ± 0.6 *	2.1 ± 0.4

^{*}significantly lower than the DW control group, p < 0.05.

Note: NLAC-MU = National Laboratory Animal Center Mahidol University

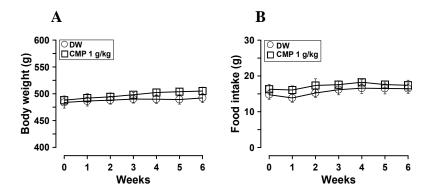
Table 2 Effects of CMP- (1 mg/kg) or distilled water (DW) consumption by middle-aged male rats on the relative adipose tissue weight (g/100 g body weight).

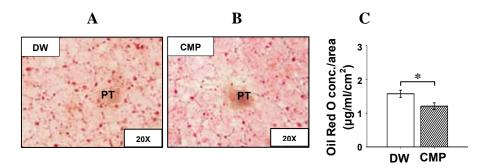

Treatments	Adipose tissue weight/100 g body weight (% g)							
Treatments	Epididymis	Prostate	Mesentery	Retroperitoneal	Subcutaneous			
DW	2.48 ± 0.15	0.18 ± 0.03	2.43 ± 0.20	3.23 ± 0.58	7.70 ± 0.68			
CMP	2.22 ± 0.06	0.19 ± 0.00	$1.78 \pm 0.14^*$	$1.97 \pm 0.29^*$	$5.28 \pm 0.68^*$			

^{*}significantly lower than DW control group, p < 0.05.

 $\label{eq:Table 3} \textbf{ Effects of CMP- (1 mg/kg) or distilled water (DW) consumption by middle-aged}$ $male \ rats \ on \ EC_{50} \ and \ E_{max} \ values.$

	EC ₅₀ (nM): 95%	confidential limit	E _{max} (g)		
	DW	CMP	DW	CMP	
Acetylcholine					
Endo	53.6 (5.1-268.0)	62.7 (5.3-297.5)	64.6 ± 4.6	68.8 ± 6.3	
Endo+PAG	72.0 (9.8-329.0)	128.9 (10.0-366.9)	45.7 ± 3.0	50.2 ± 3.2	
Sodium nitroprusside					
Endo	13.5 (9.9-18.2)	11.9 (10.8-13.1)	119.0 ± 4.7	125.4 ± 2.9	
Endo+L-NA	3.7 (2.6-5.2)	3.3 (2.2-5.1)	108.1 ± 2.5	111.2 ± 1.8	
Endo+L-NA+PAG	61.3(55.4-67.9)	59.8(55.8-64.1)	95.1 ± 2.9	94.9 ± 1.8	
Glyceryltrinitrate					
Endo	64.4 (32.6-117.5)	35.0 (29.1-42.0)	68.1 ± 4.1	$93.8 \pm 4.1^*$	
Endo+L-NA	48.7 (28.1-84.3)	27.4 (11.3-66.7)	95.9 ± 3.4	$105.6 \pm 2.1^*$	
Endo+L-NA+PAG	50.5 (34.8-73.3)	27.4 (9.6-78.6)	89.4 ± 2.7	$100.0 \pm 1.3^*$	


^{*}significantly higher than the control group, p < 0.05.


Amino Acid (mg/100 mg of protein)

Essential amino a	cid	Non-essential amino acid		
Isoleucine	1.3	Aspartic acid	3.9	
Leucine	2.7	Serine	2.1	
Lysine	2.1	Glutamic acid	9.4	
Methionine	-	Glycine	1.9	
Phenylalanine	1.9	Alanine	1.7	
Threonine	1.4	Arginine	7.0	
Tryptophan	-	Proline	1.5	
Valine	2.0			
Histidine	1.0			
Tyrosine	0.9			

Figure 1 Protein composition of coconut milk protein analyzed by 1D and 2D-gel electrophoresis (A) and its total amino acid composition analyzed by in-house method (HPLC-precolum-AccQ.Tag (B).

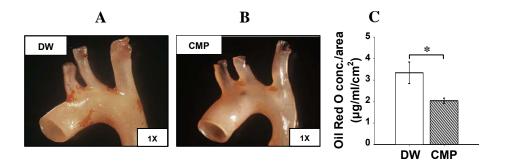


Figure 2 Effects of CMP- (1 mg/kg) or distilled water (DW) consumption by the middle-aged male rats on body weight (left) and food intake (right). Each point represents mean \pm SEM of 6 rats.

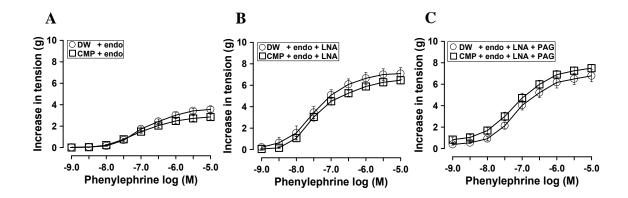
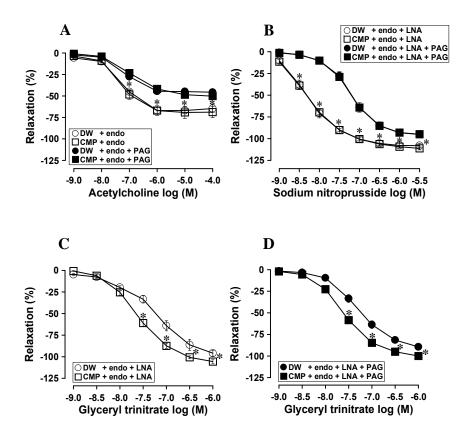
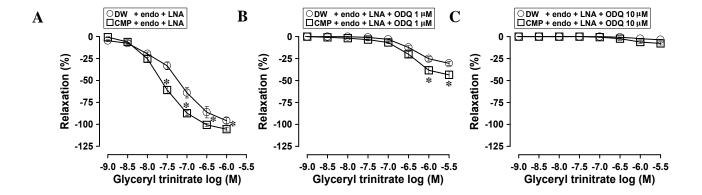
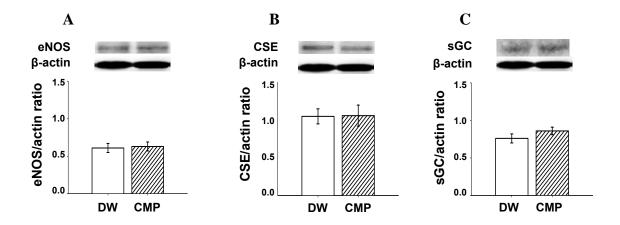
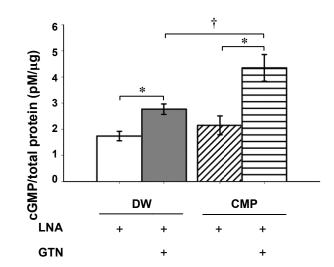


Figure 3 Effects of CMP- (1 mg/kg) or distilled water (DW) consumption by the middle-aged male rats on liver cell lipid accumulation. (a) distilled water (DW), (b) CMP and (c) oil red O concentration. Values represent mean \pm SEM of 6 experiments. * significantly lower than that of the distilled water control group, p < 0.05.


(PT = Portal triad; oil red O staining of liver tissue frozen section, 20 mm thick, 20X magnification).


Figure 4 Effects of CMP- (1 mg/kg) or distilled water (DW) consumption by the middle-aged male rats on aortic arch lipid accumulation. (a) distilled water (DW), (b) CMP and (c) oil red O concentration. Values represent mean \pm SEM of 6 experiments. * significantly lower than that of the distilled water control group, p < 0.05.


Figure 5 Effects of CMP- (1 mg/kg) or distilled water (DW, control) consumption by the middle-aged male rats on contractile response to phenylephrine of endothelium-intact (endo, a), endothelium-intact with L-NA (b), endothelium-intact in the present of L-NA and PAG thoracic aorta (c). Values represent as mean \pm SEM; n = 6.


Figure 6 Effects of CMP- (1 mg/kg) or distilled water (DW, control) consumption by the middle-aged male rats on relaxation of the endothelium-intact thoracic aortic ring precontracted with phenylephrine to acetylcholine (a), to sodium nitroprusside (b), to glyceryl trinitrate (c) or to glyceryl trinitrate in the presence of L-NA and PAG (d). Values represent as mean \pm SEM; n = 6. *significantly lower than the DWcontrol group, p < 0.05.

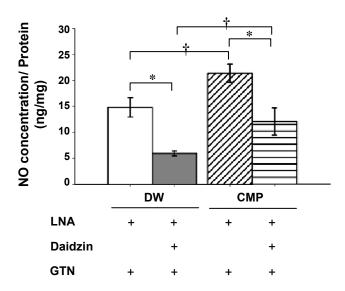

Figure 7 Effects of CMP- (1 mg/kg) or distilled water (DW, control) consumption by the middle-aged male rats on relaxation of the endothelium-intact thoracic aortic ring precontracted with phenylephrine to glyceryl trinitrate in the presence of (a) L-NA, (b) L-NA and 1 μ M ODQ and (c) L-NA and 10 μ M ODQ. Values represent as mean \pm SEM; n = 6. * significantly lower than the DW control group, p < 0.05.

Figure 8 Effects of CMP- (1 mg/kg) or distilled water (DW, control) consumption by the middle-aged male rats on eNOS protein expression (a), CSE protein expression (b), or sGC protein expression of the thoracic aorta. For each blot, β -actin expression is shown as a loading control. Values represent as mean \pm SEM; n = 4.

Figure 9 Effects of CMP- (1 mg/kg) or distilled water (DW, control) consumption by the middle-aged male rats on blood vessel cGMP level. * significantly higher than their corresponding control, and † significantly higher than the DW control group, p < 0.05.

Figure 10 Effects of CMP- (1 mg/kg) or distilled water (DW, control) consumption by the middle-aged male rats on NO concentration/protein (ng/mg) in aortic rings. * significantly lower than their corresponding control, and † significantly higher than the DW control group, p < 0.05.

Decreased body-fat accumulation and increased vasorelaxation to glyceryl trinitrate in

middle-aged male rats following six weeks consumption of coconut milk protein

Chaweewan Jansakul^a, Jomkarn Naphatthalung^a, Pilaipun Chailuk^a, Kanyanatt

Kanokwiroon^{b,d}, Nisaudah Radenahmad^c

^aFaculty of Traditional Thai Medicine, ^bDepartment of Biomedical Sciences, Faculty of

Medicine, ^cDepartment of Anatomy, Faculty of Science, ^dThe Excellent Research Laboratory

of Cancer Molecular Biology, Prince of Songkla University, Hat-Yai, Thailand

Corresponding Author: Prof. Chaweewan Jansakul, Ph.D.

Faculty of Traditional Thai Medicine

Prince of Songkla University, Hat-Yai, Thailand 90110

E-mail address: chaweewan.j@psu.ac.th

Telephone number: 66-074-286824

The present study investigated whether coconut milk protein (CMP) is partly responsible for the beneficial effects of coconut milk consumption on cardiovascular health markers that we have previously shown in middle-aged rats. CMP was isolated from dried fresh coconut milk precipitate and gavaged (1 g/kg) to middle-aged male rats for six weeks. Controls (DWcontrol) received distilled water. Compared to controls, CMP caused decreased body fat and lipid accumulation in liver cells and the internal wall of the aortic arch, with no changes in blood biochemistry or CBC except platelet count was lower. CMP caused no changes in basal blood pressure or heart rate in anesthetized rats. Compared to DW-control, no changes were observed in vascular responsiveness to phenylephrine, DL-propargylglycine (PAG), acetylcholine or sodium nitroprusside, but increased vasorelaxation to glyceryl trinitrate (GTN). The effects of ODQ on vasorelaxation to GTN were similar in both groups. Expression of blood vessel eNOS, CSE and sGC was normal. Cyclic guanosine monophosphate (cGMP) of the CMP-treated group was normal but when GTN was added, the cGMP as well as the NO concentration of the CMP-treated group was greater than that of controls, an effect not altered by addition of diadzin. Taken together, CMP consumption caused decreased fat accumulation, decreased platelet count. CMP appears to have increased the enzymatic pathway for GTN biotransformation resulting in increased NO and thus increased cGMP and increased vasorelaxation. Thus, CMP appears to be partially responsible for the improvement in cardiovascular health markers caused by coconut milk in middle-aged male rats.

Key words: Coconut protein; blood vessel; liver lipid; NO; glyceryl trinitrate

Introduction

Globally, cardiovascular disease is the leading cause of death. Its etiology is multifactorial and unhealthy nutrition is one of the main risk factors. Coconut, *Cocos nucifera*, is one of the most economically important palm species and is cultivated mainly for its nutritional endosperm: coconut milk and coconut oil are its main products (Gwee, 1988). Coconut milk is a common culinary ingredient and its oil is common cooking oil in many tropical cuisines, most notably those of Southeast Asia, as well as in Brazilian, Caribbean, Polynesian, Indian and Sri Lankan cuisines (D'Amato et al. (2011). The main constituents of coconut milk are lipids (coconut oil, 41.5%) with a small amount of carbohydrates (5.2%) and proteins (4.5%) (Pehowich, Gomes, Barnes, 2000). There is still reluctance among consumers about consuming coconut products since it is mainly composed of saturated fatty acids (40-60 %) (Dab Mandal and Mandal, 2011; Pehowich, Gomes, Barnes, 2000), which are considered to be atherogen and thus potentially causative of atherosclerosis in man. Therefore, previous reports of coconut product consumption having a beneficial effect on cardiovascular risk are still controversial.

Coconut kernel or coconut milk derived from it contains not only lipids but also a certain amount of protein and Padmakumaran et al.(1999) found that young male rats that consumed fresh coconut kernel alone or together with coconut oil had lower serum total cholesterol and a lower lipid profile but higher serum triglyceride. In contrast, Ekanayaka et al. (2013) studied human subjects and found that eight weeks consumption of coconut milk porridge caused a lower plasma level of LDL with increased HDL cholesterol. Vijayakumar et al. (2018) studied a diet enriched with 100 g fresh coconut consumed daily for 90 days and found a reduction in plasma glucose and body weight in normal healthy individuals.

There have been reports of the beneficial effects of coconut protein consumption, on the cardiovascular system including decreased levels of cholesterol serum in tissues (aorta, heart and liver), lower triglycerides and phospholipids, and decreased lipogenesis in the liver and the intestine of rats (Nair et al., 1998) as well as reduced hyperlipidemia and a peroxidative effect in rats fed a high fat/cholesterol diet (Salil and Rajamohan, 2001). In addition, Mini and Rajamohan (2002) found a cardio-protective effect in rat-isoproterenol induced myocardial infarction. Salil et al. (2011a, b) discovered antidiabetic activity through the arginine-NO pathway in rats with alloxan- and streptozotocin-induced diabetes, which led to pancreatic beta cell regeneration. Recently, Li et al. (2018) reported that coconut cake protein fraction also exhibited antioxidant activities in *in vitro* studies.

In a recent study by the present authors, it was demonstrated that the consumption of pure dried fresh coconut milk (CCM) for six weeks by middle-aged male rats caused up-regulation of blood vessel endothelial nitric oxide synthase (eNOS) and cystathionine γ-lyase (CSE) protein expression, which resulted in an attenuation of the contractile response to phenylephrine and potentiate relaxation to acetylcholine on the rats thoracic aortic rings, with a decreased fasting plasma glucose level (Jansakul et al., 2018). Later, it was found that dried fresh coconut milk oil at 3 ml/kg caused almost the same effects as those of coconut milk consumption, although with increased retroperitoneal fat accumulation, which was not found in case of the coconut milk indicating that there must be some other active component(s) in the fresh dried coconut milk that caused body fat accumulation to reduce (Naphatthalung et al., 2019).

Coconut milk contains not only oil, but also some protein (4.5%) and carbohydrate (5.2%) (Pehowich, 2000). Thus, the present study aimed to investigate whether the coconut milk protein is responsible for the body-fat reduction effect. For this experiment, the fresh dried coconut milk was prepared as previously described, but the coconut milk protein (CMP)

fractions were isolated and the effects of the consumption of CMP explored in middle-aged rats.

Methods

Coconut milk protein preparation

Fresh mature coconut kernel was grated and compressed using an electric screw press to obtain a large sample of fresh aqueous coconut milk. The milk was then filtered through a cloth filter followed by lyophilization to obtain fresh dried coconut milk, which was kept at -20 °C until used.

The dried fresh coconut milk was centrifuged (3,200 rpm) at room temperature to achieve pure coconut milk oil (CMO), comprising 70% of the dried coconut milk, and precipitate. The precipitate was dissolve in distilled water and the protein was precipitated with 50% ethanol. The protein precipitate was collected and the ethanol removed in an evaporator before lyophilization to obtain dried crude CMP, yielding 19 % of the dried coconut milk). In the remainder of the text the abbreviation CMP is used to represent crude coconut milk protein, except at some points in the text where emphasis is required, the word "crude" is used before the abbreviation CMP.

The crude CMP was characterized for its protein, oil and sugar content. Its trace oil content was determined using the hexane defatted method, by liquefying 100 mg CMP with 100 µl distilled water and then stirring thoroughly with 1ml hexane. The hexane solution was separated and the hexane removed by evaporation to obtain the coconut oil. The total sugar content was determined by the classical colorimetric method (Dubois et al., 1955) and the protein content was determined by Bradford assay. Each experiment was repeated four times with different samples (n=4).

The CMP was analyzed for its protein composition by 1D and 2D-gel electrophoresis and its total amino acid composition was determined by an in-house method (HPLC-precolum-AccQ. Tag, using the service of the Central Instrument Facility, Faculty of Science, Mahidol University, Bangkok, Thailand).

Pharmacological studies

Middle-aged (12-14 month old) male Wistar rats were bought from the National Laboratory Animal Center, Mahidol University. The animals were housed in controlled environmental conditions at 25 °C on a 12 h dark and 12 h light cycle and allowed access to standard food (Perfect Companion Group Co. Ltd, Thailand), and tap water *ad libitum*. The animal methods employed in this study were approved by the Prince of Songkla University Animal Ethics Committee (Ethic Number: Ref. 06/57). The investigation conformed to the Guide for the Care and Use of Laboratory Animals (CIOMS Guidelines). The rats were randomly divided into five groups, with six animals in each group. The experimental group was treated by oral administration of 1g/kg coconut protein with the control animals receiving distilled water (DW) once a day for six weeks. The body weight and 24 h food intake (one day before receiving oral gavage of CMP or DW) were recorded at day 0, and again every consecutive 7th day over the 6-week period.

Effects of the CMP or DW treatment on the basal blood pressure and on the haematology and clinical biochemical analysis

The same methods as previously described by Yorsin et al. (2014) were used. At the end of the 6-week CMP or DW treatment, after fasting for 13-15 h, the rats were anaesthetized with thiopental sodium (60 mg/kg). Their blood pressure and heart rate were recorded via the right common carotid artery by a polyethylene catheter connected to a polygraph, the data being collected after a 40-min equilibration period.

Following this, the rat was sacrificed by decapitation with a guillotine and two tubes of blood samples were collected. The first was used for the analysis of the glucose and lipid levels by enzymatic methods using an automatic chemistry analyzer routinely operated at the Prince of Songkla University Hospital. The other was sent to the haematology laboratory for the analysis of its total blood count measured by an automated haematology analyzer.

Effects of CMP or DW treatment on internal organs and lipid accumulation

The decapitated rats were dissected as previously described (Yorsin et al. 2014). The heart, lung, liver, adrenal gland, kidney and testes, and the visceral fats from the epididymis, testis, retroperitoneal, and subcutaneous fats were removed and weighed.

Two pieces of liver (middle lobe) were cut, embedded into a cryostat gel, and the sections (20 µm thick) were stained with oil red O (0.5% in absolute propylene glycol), and mounted with glycerine jelly for observation by light microscopy. The aortic arch was collected and was cleared of adhered fat and connective tissue before being stained with oil red-O using the same method as for the liver tissue. The oil red O of each slide of the liver tissue and of the aortic arch was extracted with 1 ml of 100% dimethyl sulfoxide (DMSO), and its absorbance was measured at 520 nm. The concentration of the oil red O was obtained from the standard curve of known concentrations of oil red O in 100% DMSO (µg/ml). The area of a thin whole-liver section and of the aortic arch was measured using the Auto CAD 2005 program.

The amount of the accumulated liver lipid was expressed in terms of $\mu g/ml/cm^2$ of the thin liver-tissue section area and the aortic arch.

Preparation of the thoracic aortic rings

The thoracic aorta was removed from the decapitated rat and placed in oxygenated Krebs-Henseleit solution at 37 °C and the adhering connective tissue was removed. Six adjacent rings of 4-5 mm in length were cut. Each aortic ring was mounted with two stainless steel hooks in a 20-ml organ bath containing Krebs-Henseleit solution of the following composition (mM): NaCl 118.3, KCl 4.7, CaCl₂ 1.9, MgSO₄·7H₂O 0.45, KH₂PO₄ 1.18, NaHCO₃ 25.0, glucose 11.66, Na₂EDTA 0.024 and ascorbic acid 0.09, maintained at 37 °C and bubbled with carbogen (95% O₂ and 5% CO₂ gas mixture). One of the hooks was fixed at the bottom and the other was connected to a transducer in order to record the isometric tension using a polygraph. The tissues were equilibrated for 60 min under a resting tension of 1 g and the bath solution was replaced with pre-warmed oxygenated Krebs-Henseleit solution every 15 min.

At the end of the equilibration period, each aortic ring was tested for the viability of the endothelium by precontraction with phenylephrine (3 μ M) until the response reached a plateau (5-8 min), and then the addition of acetylcholine (30 μ M). Endothelial viability was judged by a > 65% vasorelaxation back to the tension generated by the ring before the addition of the phenylephrine. The preparations were then washed several times with Krebs-Henseleit solution, and allowed to fully relax for 45 min and the basal tension of the thoracic aortic rings was adjusted to the optimal tension of 2 g before the experimental protocol began.

Effects of the CMP or DW treatment on the pharmacological vascular functions

Effects on contraction to phenylephrine and role of NO and H_2S

After equilibration, the contractile response to the cumulative concentration-response (*C-R*) curve of phenylephrine was obtained. This was followed by several washings, and the aortic rings were allowed to fully relax for 50 min. They were then pre-incubated with L-NA for 40 min, and the second *C-R* curve to phenylephrine was then obtained. After repeated washings and re-equilibrations for 40 min, the third *C-R* curve to phenylephrine was obtained in the presence of DL-propargylglycine (PAG) and L-NA.

Effects on relaxation to acetylcholine, glyceryl trinitrate and sodium nitroprusside and role of NO, H_2S and sGC

Another set of aortic rings were precontracted with phenylephrine (3 µM) for 10-15 min (plateau phase) following which the cumulative dilator *C-R* curves to acetylcholine were determined. After repeated washing to remove the agonists and re-equilibration for 40 min, the second *C-R* curve to acetylcholine was obtained in the presence of DL-propargylglycine (PAG).

Using the above protocol and separate sets of aortic rings, the cumulative dilator C-R curves to glyceryl trinitrate (GTN) or sodium nitroprusside were obtained in the presence of L-NA alone and then together with PAG. Using the sets of aortic rings, the cumulative dilator C-R curves to GTN were performed in the presence of L-NA alone and then together with 0.1 μ M or 1 μ M ODQ (1H-(1,2,4) Oxadiazolo (4,3-a) quinoxalin-1-one), sequentially.

eNOS, CSE and sGC western blot analysis

The thoracic agrae of the CMP- treated groups and the distilled water control groups (n = 4)were obtained in order to measure the expression level of the enzymes, eNOS, CSE and sGC. After removal of the adhering connective tissue, the blood vessel was cut into small rings and kept at -70 °C until used. Protein extraction from the tissues and western blot analysis were carried out as previously described. Briefly, the total proteins were extracted from the homogenized tissue of each animal in lysis RIPA buffer [25 mMTris-HCl, pH 7.6, 150 mMNaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS, 0.5 mM EDTA containing aprotease inhibitor cocktail (GE Healthcare)]. The protein lysate of each animal was centrifuged and the supernatant was used to quantitate the protein content by Bradford assay. Protein at 50 µg was run on 12% SDS-polyacrylamide gel electrophoresis. Then, the protein bands were transferred onto nitrocellulose membranes. The membranes were blocked with 5% low fat dry milk in TBS-T (Tris buffer saline- 0.1% Tween 20) for 1 h, followed by primary antibody incubation against eNOS (1:250), CSE (1:1,000), sGC (1:500) and β-actin (1:1,000) dissolved in 1% low fat dry milk in TBS-T overnight at 4 °C [the rabbit eNOS and rabbit β-actin antibodies were from Cell Signaling (USA); the mouse CSE was from Abnova (USA); the mouse sGC was from Enzo Life Sciences, USA]. The membranes were then incubated with HRP-conjugated rabbit IgG (1:5,000) for eNOS and β-actin; mouse IgG antibody (1:5,000) for CSE and sGC antibody. The membranes were incubated with a chemiluminesescence detection kit (Pierce, Rockford, USA) and the protein signal was detected by Fusion FX5XT spectra/Superbright (Vilber Lourmat).

Cyclic Guanosine monophosphate (cGMP) measurement by ELISA

Thoracic aortic rings from the CMP-treated groups and the DW control groups (n = 4) were incubated in tissue baths containing L-NA (3 mM) alone (control) or with 3 μ M GTN for 10 min. The aortic rings from each incubating medium were collected and kept in -70°C until

used. Each frozen aortic ring was chopped on ice and homogenized in 0.1 M HCl (0.4 g of tissue in 1 ml of 0.1 M HCl). The lysates were centrifuged (14,000 rpm for 10 min) and the supernatants were collected for cyclic nucleotide ELISA (Enzo Life Science, USA) was performed according to the manufacture's guidelines. The cyclic nucleotide content was normalized to sample the total protein content of each sample by Bradford assay.

Nitric oxide concentration measurement

Thoracic aortic rings from the CMP- treated groups and the DW control groups (n = 4) were incubated in tissue-baths containing L-NA (3 mM) alone (control) or together with (1) 3 μ M GTN or (2) 3 μ M GTN plus diadzin (3 mM) for 10 min. The aortic rings from each incubating medium were collected and kept at -70 °C until used. Each frozen aortic ring was chopped on ice and homogenized in 0.1 M HCl (0.4 g of tissue in 1 ml of 0.1 M HCl). The lysates were centrifuged (14,000 rpm for 10 min) and the supernatants were collected for nitric oxide determination using Griess's reagent (Sigma, USA), the nitrite content was calculated using sodium nitriteas as the standard, and the total protein was determined by Bradford assay. The NO content was normalized to sample the total protein content of each sample.

Drugs

The following drugs were used: Acetylcholine chloride, N^G-nitro-L-arginine (L-NA), norepinephrine, phenylephrine hydrochloride, DL-propagylglycine (PAG), pentobarbital, diadzin, sodium nitroprusside, sodium nitrite, Griess reagentand oil red O from Sigma, USA. GTN was obtained from Mycomed, Denmark. The acetylcholine chloride and phenylephrine

were dissolved in a solution containing NaCl 9 g/L, NaH₂P0₄ 0.19 g/L and ascorbic acid 0.03 g/L.

Statistical analysis

The results were expressed as the mean \pm standard error of the mean (SEM) (n=6 for vascular function study and n=4 for western blot analysis). Statistical differences were determined by unpaired t-test or by one-way analysis of variance (ANOVA), followed by Tukey's range test using GraphPad Prism 5.00. A p value < 0.05 was considered to identify a significant difference between values.

Results

Composition of crude CMP and its amino acid composition

The crude CMP was composed of 81±0.8 % protein, 9.7±0.8 % oil and 6.9±0.8 % sugar (n=4). Based on 1D and 2D gel electrophoresis, the CMP contained at least 12 different proteins, and the main one had a molecular weight of about 50 kDa (Fig.1a). The total amino acid composition (%) of the CMP is shown in Figure 1b. CMP contains all of the essential amino acids in the range of 1-3%, except for methionine and tryptophan for which detection is limited in this method. The other seven non-essential amino acids were also found to be in the same range as that of the essential amino acids except arginine and glutamic acid which were found to represent about 7-9%.

Effects of CMP treatment on body weight, food intake, blood biochemistry, internal organ weight and body fat accumulation

In comparison to the DW control group, there was no difference in animal body weight, food intake, blood biochemistry or any of the elements of the complete blood cell count except for the platelet count which was found to be lower in the CMP-treatment group (Figure 2, Supplementary table 1-2 and Table 1). None of the internal organ weights was found to be increased after treatment with CMP (Supplementary Table 3). CMP caused decreased accumulation of mesentery, retroperitoneal and subcutaneous fat (Table 2), as well as decreased fat in the liver cells and internal wall of the aortic arch (Figure 3-4).

Effects of CMP treatment on blood pressure

CMP treatment did not affect the basal arterial blood pressure or heart rate of the anesthetized middle-aged rats when compared to that of the DW control group (Supplementary Table 4).

Effects of CMP treatment on vascular functions

Effect on contraction and relaxation of the thoracic aorta

No significant difference was found in the contractile responsiveness to phenylephrine of the thoracic aortic rings obtained from the CMP-treatment group compared to that of the DW control group. This situation persisted in the presence of L-NA, and even when PAG was also added (Figure 5).

The relative relaxation to acetylcholine of endothelium-intact aortic rings precontracted with phenylephrine was not different between the CMP- and the DW-treatment group. PAG

caused lower relaxation of the aortic rings of both groups in the same extent (Fig. 6a). Similarly, vasorelaxation to sodium nitroprusside of the thoracic aortic rings of the CMP-treatment group was similar to that of the DW control group both in the presence and absence of PAG (Fig. 6b). In the case of GTN, the vasorelaxation of the endothelium-intact aortic rings in the presence of L-NA of the CMP-treated rats was greater than that of the DW control group (Fig. 6c) and this effect was not modified by PAG (Fig. 6d). A low concentration of ODQ (1μ M) was able to decrease the relaxation of the aortic ring to GTN of both groups, but the relaxation of the CMP-treated group was still higher than that of the DW control group. However, when the concentration of ODQ was increased to 10μ M, almost complete inhibition of the GTN induced relaxation was noted (Fig. 7).

eNOS, CSE and sGC western blot analysis

The expression of the vascular eNOS, CSE and sGC proteins by the CMP-treated rats was similar to that of the DW control group (Figure 8).

Aortic ring cGMP levels

The basal cGMP level of the thoracic rings in the presence of L-NA obtained from the CMP-treated group was not significantly higher than that of the DW control group. In the presence of GTN, the blood vessel cGMP levels were significantly increased in both groups and that of the CMP-treated group was higher than that of the DW control group (Fig. 9).

Effects of GTN and diadzin on blood vessel nitric oxide concentration

In the presence of L-NA, GTN stimulated higher release of NO from the aortic rings of the CMP-treated rats than that of the DW control group. Diadzin inhibited the NO production of the aortic vessel from both the CMP- and DW-treated rats in the same extent, thus the aortic

vessel NO concentration of the CMP-treated rats was still higher than that of the DW control group (Fig. 10).

Discussion

The present study demonstrates that CMP consumption caused decreased body and internal organ fat accumulation, as well as liver cell lipid accumulation. This result is analogous to that report by Nair et al. (1998) who found that the consumption of coconut kernel protein by young adult rats caused decreased levels of cholesterol, triglycerides and phospholipids in the serum and tissues (aorta, heart and liver) and also lower lipogenesis in the liver. Moreover, Salil and Rajamohan (2001) found a reduction of hyperlipidemia and a peroxidative effect in rats fed a high fat cholesterol diet. In addition, CMP consumption also caused decreased lipid accumulation at the internal wall of the aortic arch, although the plasma-lipid profile level did not decrease.

CMP consumption did not alter the basal blood pressure nor the heart rate but caused a beneficial change in the blood vessels with increased relaxation of the aortic ring when exposed to GTN, but not to sodium nitroprusside, a direct nitric oxide donor. GTN is a vasodilator drug that has been used clinically since the late nineteenth century for the treatment of angina pectoris, congestive heart failure and myocardial infarction, but the mode of action of the drug is still a matter of debate (Bonini et al., 2008; Mayer and Beretta, 2008). To date, however, the evidence suggests that the molecular mechanisms of GTN firstly need it to be bio-transformed to NO which results in vascular cGMP accumulation and vasorelaxation (Diamond & Blisard, 1975; Kawamoto et al., 1990), and mitochondrial aldehyde dehydrogenase -2 (ALDH-2) might be one of the enzymes responsible in the pathway (Kollau et al., 2005; Mayer & Beretta, 2008; Opelt et al., 2016; 2018). Meanwhile,

Bonini et al. (2008) demonstrated that GTN triggers eNOS to generate NO, while Arts et al. (2001) reported that GTN behaves as a partial agonist with respect to sGC activation. In the present study, therefore, we investigated whether the increased vasorelaxant activity of the GTN might involve (1) increased sGC activity, (2) the up-regulation of blood vessel sGC protein expression, or (3) increased ALDH-2 activity involving the biotransformation of the GTN to NO. In order to reveal these possibilities, classical pharmacologic methods using different inhibitors (L-NA for eNOS, ODQ for sGC and diadzin for ALDH-2) were used to test the relaxation responsiveness of the aortic rings to GTN. In order to prevent any disturbance from NO, all the experiments were performed in the presence of L-NA to inhibit the eNOS activity. As shown in the Results section, only a high concentration of ODQ abolished the relaxation of the aortic rings of both groups, while a low concentration of ODQ was only able to partial inhibit relaxation in both groups but in the same extent. Therefore, the maximal relaxation of the CMP-treated group was still higher than that of the DW control group. This result suggests that CMP consumption might cause increased sGC activity. Consistent with this, the basal blood vessel cGMP level was not different between the CMPtreated group and the DW control group, but GTN caused a higher increase in the blood vessel cGMP level of the CMP-treated group than that of the DW control group. However, it is unlikely that the increased cGMP level was due to the up-regulation of blood vessel sGC protein expression, since sGC expression measured by western blot analysis was not found to be different between the CMP-treated group and the DW control group. Another possible explanation of the higher cGMP level caused by GTN stimulation might be due to increased activity of the enzyme, ALDH-2 transforming the GTN to NO. To investigate this possibility, experiments were conducted in the presence of diadzin, a specific ALDH-2 inhibitor, and the NO concentration of the blood vessels was measured in the presence of GTN with the expectation that if the ALDH-2 had increased, the NO concentration of the CMP group

would increase more in the experimental group than in the control group with the same concentration of diadzin. Accordingly, it was found that the NO concentration of the CMP-treatment group was higher than the DW control group after partial inhibition by diadzin, indicating that CMP consumption might cause increased ALDH-2 activity to convert GTN to NO. However, further specific experiments based on directly measuring blood vessel ALDH-2 activity would need to be conducted to confirm this.

CMP consumption did not affect the relaxation of the aortic ring to acetylcholine compared to that of the DW control group, indicating that consumption of CMP did not affect the basal and muscarinic stimulated release of the endothelial NO production of the aortic blood vessel. This is consistent with the finding that eNOS protein expression did not increase. However, this finding is different from that reported by Salil et al. (2011a, b) who claimed that high arginine-coconut protein consumption by rats produced antidiabetic activity through the arginine-NO pathway, leading to pancreatic beta cell regeneration in rats suffering from alloaxan-and streptozotocin-induced diabetes. The reason for this might be due to differences in the coconut protein composition, in the present study crude coconut protein was used isolated directly from dried fresh coconut milk, whereas Salil et al. used a saline globulin protein fraction isolated from petroleum defatted coconut kernel, which process might remove the active components.

In our previous study, it was found that coconut milk consumption caused an increase in blood vessel CSE expression resulting in increased H₂S which attenuated the vasoconstriction of the aortic rings to phenylephrine. In order to reveal whether CMP might be responsible for this effect, experiments were performed on the aortic rings of both the CMP- and DW-treated groups. It was found that PAG significantly inhibited the contraction of the aortic rings to phenylephrine, and relaxation to acetylcholine, GTN or sodium nitroprusside to the same extent for the CMP-and DW-treated rats, indicating that CMP consumption did not affect

blood vessel H₂S production, and this was confirmed by the finding that the blood vessel CSE expression was not different between the CMP- and the DW-treated rats.

Conclusions

The present study demonstrated that consumption of CMP by middle-aged male rats caused decreased body fat and liver cell and aortic arch lipid accumulation, with a decrease in the platelet count but with no effect on any other blood biochemistry parameters. Although CMP did not affect the basal blood pressure and heart rate, it caused potentiated relaxation of the aortic rings to GTN which is beneficial in prolonging or preventing GTN tolerance which normally occurs after long-term GTN treatment in humans (Jabs et al., 2015; Munzel et al., 2011& 2013). Thus, CMP is a novel protein that should be developed as a health food ingredient to prevent/slow down the development of cardiovascular disease in man, especially from middle-age onwards. However, further study would need to be conducted to identify the active component(s) of crude CMP.

Acknowledgements

This work was supported by the Thailand Research Fund, Thailand and Graduate School, Prince of Songkla University. The authors thank Miss. Srisurat Duangsai for her technical assistance and Prof. Michael J. Mulvany, Aarhus University, Denmark, for his valuable comments and editing the manuscript.

Disclosure statement

The authors declare no conflicts of interest.

References

- Artz JD, Toader V, Zavorin SI, Bennett BM, Thatcher GR. In vitro activation of soluble guanylyl cyclase and nitric oxide release: a comparison of NO donors and NO mimetics. Biochemistry. 2001; 40:9256-9264.
- 2. Bhayadia R, Schmidt BM, Melk A, Homme M. Senescence-induced oxidative stress causes endothelial dysfunction. J Gerontol A BiolSci Med Sci. 2016; 71:161-169.
- 3. Bonini MG, Stadler K, Sueli de Oliviera S, Corbett J, Dore M, Petranka J, et al. Constitutive nitric oxide synthase activation is a significant route for nitroglycerin-mediated vasodilation. Proc Natl Acad Sci USA. 2008; 105:8569–8574.
- 4. D'Amato A, Fasoli E, Righetti PG. Harry belafonte and the secret proteome of coconut milk. J Proteomics. 2012; 75:914-920.
- 5. DebMandal M, Mandal S. Coconut (*Cocos nucifera* L.: Arecaceae): in health promotion and disease prevention. Asian Pac J Trop Med. 2011; 4:241-247.
- 6. Diamond J, Blisard KS. Effects of stimulant and relaxant drugs on tension and cyclic nucleotide levels in canine femoral artery. Mol Pharmacol. 1976; 12:668–692.
- 7. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956; 28:350-356.
- 8. Ekanayaka RA, Ekanayaka NK, Perera B, De Silva PG. Impact of a traditional dietary supplement with coconut milk and soya milk on the lipid profile in normal free living subjects. J Nutr Metab. 2013; 2013:481068.
- 9. Folin O, Ciocalteu V. On tyrosine and tryptophane determinations in proteins. J Biol Chem. 1927; 73:627-650.
- 10. Gwee CN. New technologies open the passage into new usage of coconut milk products. In: Maneepun S, Varangoon P, Phitakpol B (editors). Food Science and

- Technology in Industrial Development. Bangkok: Institute of Food Research and Product Development, Kasetsart University. 1988:157-162.
- 11. Jabs A, Oelze M, Mikhed Y, Stamm P, Kroller-Schon S, Welschof P, et al. Effect of soluble guanylyl cyclase activator and stimulator therapy on nitroglycerin-induced nitrate tolerance in rats. Vascul Pharmacol. 2015; 71:181-191.
- 12. Jansakul C, Naphatthalung J, Pradab S, Yorsin S, Kanokwiroon K. 6 weeks consumption of pure fresh coconut milk caused up-regulation of eNOS and CSE protein expression in middle-aged male rats. Braz J Pharm Sci. 2018; 54: e17259.
- 13. Kawamoto F, ejo-Blanco R, Fleck SL, Kawamoto Y, Sinden RE. Possible roles of Ca²⁺ and cGMP as mediators of the exflagellation of plasmodium berghei and plasmodium falciparum. Mol Biochem Parasit. 1990; 42: 101–108.
- 14. Kollau A, Hofer A, Russwurm M, Koesling D, Keung WM, Schmidt K, et al. Contribution of aldehyde dehydrogenase to mitochondrial bioactivation of nitroglycerin: evidence for the activation of purified soluble guanylate cyclase through direct formation of nitric oxide. Biochem J. 2005; 385:769–777.
- 15. Li Y, Zheng Y, Zhang Y, Xu J, Gao G. Antioxidant Activity of Coconut (*Cocos nucifera* L.) Protein Fractions. Molecules. 2018; 23.
- 16. Marchesi S, Lupattelli G, Siepi D, Schillaci G, Vaudo G, Roscini AR, et al. Short-term atorvastatin treatment improves endothelial function in hypercholesterolemic women. J Cardiovasc Pharmacol. 2000; 36:617-621.
- 17. Mayer B, Beretta M. The enigma of nitroglycerin bioactivation and nitrate tolerance: news, views and troubles. British journal of pharmacology. 2008; 155:170-184.
- 18. Mayer B, Beretta M. The enigma of nitroglycerin bioactivation and nitrate tolerance: news, views and troubles. Br J Pharmacol. 2008; 155:170–184.

- 19. Mini S, Rajamohan T. Cardioprotective effect of coconut kernel protein in isoproterenol administered rats. Indian J Biochem Biophys. 2002; 39:197-200.
- 20. Munzel T, Daiber A, Gori T. More answers to the still unresolved question of nitrate tolerance. Eur Heart J. 2013; 34: 2666–2673.
- 21. Munzel T, Daiber A, Gori T. Nitrate therapy: new aspects concerning molecular action and tolerance. Circulation. 2011; 123:2132–2144.
- 22. Nair KGP, Rajamohan T, Kurup PA. Changes in the metabolism of lipoproteins in rats fed coconut kernel protein. J Clin Biochem Nutr. 1998; 25:159–168.
- 23. Nair KGP, Rajamohan T, Kurup PA. Changes in the metabolism of lipoproteins in rats fed coconut kernel protein, J Clin Biochem Nutr. 1998; 25:159–168.
- 24. Naphatthalung J, Chairuk P, Kanokwiroon K, Radenahmad N, Jansakul C. Effects of six weeks consumption of coconut milk oil on vascular functions and fasting blood glucose and lipid profile in middle-aged male rats. Funct Food Health Dis. 2019; 9: 719-734.
- 25. Novella S, Dantas AP, Segarra G, Vidal-Gomez X, Mompeon A, Garabito M, et al. Medina P. Aging-related endothelial dysfunction in the aorta from female senescence-accelerated mice is associated with decreased nitric oxide synthase expression. Exp Gerontol. 2013; 48:1329-1337.
- 26. Opelt M, Eroglu E, Waldeck-Weiermair M, Russwurm M, Koesling D, Malli R, et al. Formation of nitric oxide by aldehyde dehydrogenase-2 is necessary and sufficient for vascular bioactivation of nitroglycerin. J Biol Chem. 2016; 291:24076-24084.
- 27. Opelt M, Wolkart G, Eroglu E, Waldeck-Weiermair M, Malli R, Graier WF, et al. Sustained formation of nitroglycerin-derived nitric oxide by aldehyde dehydrogenase-2 in vascular smooth muscle without added reductants: implications for the development of nitrate tolerance. Mol Pharmacol. 2018; 93:335-343.

- 28. Padmakumaran Nair KG, Rajamohan T, Kurup PA. Coconut kernel protein modifies the effect of coconut oil on serum lipids. Plant Foods Hum Nutr. 1999; 53:133-144.
- 29. Pehowich DJ, Gomes AV, Barnes JA. Fatty acid composition and possible health effects of coconut constituents. West Indian Med J. 2000; 49:128-133.
- 30. Rudolph TK, Ruempler K, Schwedhelm E, Tan-Andresen J, Riederer U, Boger RH, et al. Acute effects of various fast-food meals on vascular function and cardiovascular disease risk markers: the Hamburg Burger Trial. Am J Clin Nutr. 2007; 86:334-340.
- 31. Salil G, Nevin KG, Rajamohan T. Arginine rich coconut kernel protein modulates diabetes in alloxan treated rats. Chem Biol Interact. 2011; 189:107-111.
- 32. Salil G, Rajamohan T. Hypolipidemic and antiperoxidative effect of coconut protein in hypercholesterolemic rats. Indian J Exp Biol. 2001; 39:1028-1034.
- 33. Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999; 299:152-178.
- 34. Vijayakumar V, Shankar NR, Mavathur R, Mooventhan A, Anju S, Manjunath NK. Diet enriched with fresh coconut decreases blood glucose levels and body weight in normal adults. J Complement Integr Med. 2018; 15.
- 35. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, et al. H₂S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science. 2008; 322:587-590.
- 36. Yorsin S, Kanokwiroon K, Radenahmad N, Jansakul C. Effects of *Kaempferia* parviflora rhizomes dichloromethane extract on vascular functions in middle-aged male rat. J Ethnopharmacol. 2014; 56:162-174.