Abstract

Project Code: RSA5980048

Project Title: Novel approach for combating a clique of multi-drug resistant "ESKAPE": a

Pseudomonas aeruginosa model

Investigator: Associate Professor Dr. Nitaya Indrawattana

E-mail Address: nitaya.ind@mahidol.ac.th

Project Period: June 2016-June 2019

ESKAPE is an acronym of Enterococcus faecium, Staphylococcus aureus, Klebseilla pneumoniae, Acinetobacter baumannii, Pseudomnas aeruginosa and Enterbacter species which are common causative agents of life-threatening nosocomial infections among critically ill and immunocompromised individuals. These microorganisms are endowed with new paradigms in pathogenesis, transmission, and drug resistance. Currently, there is an urgent/immediate need of a broadly effective agent that can cope with these multi-drug resistant (MDR) pathogens. In this study a novel approach to combat with the MDR ESKAPE is proposed by using P. aeruginosa as a model for proving of concept. Engineered human single chain antibodies (human scFv) or humanized-nanobodies specific to the bacterial virulence factors including invasin (elastase), toxin (exotoxin A; ETA) and quorum sensing molecules (Nacyl-L-homoserine lactones; C12-HSL) were produced in vitro by using phage display technology. The HuscFv tested for their neutralizing activities by using several functional versus functional inhibition assays. Molecular mechanisms leading to the neutralizing capacity of the small antibodies were investigated by using phage mimotope search and computerized homology modeling and intermolecular docking. It is envisaged that the so-produced fully human scFv or humanized-nanobodies in their right mixture should be a safe and novel remedy for combating against the drug resistant pathogen. Similar approach can be adopted for inventing prototypic therapeutics for other members of the ESKAPE and other pathogens.

Keywords: AHLs, Biofilm, Elastase, Exotoxin A, Human monoclonal scFv/nanobodies,

Pseudomonas aeruginosa, Quorum sensing

บทคัดย่อ

รหัสโครงการ: RSA5980048

ชื่อโครงการ: แนวทางใหม่สำหรับการรักษากลุ่มเชื้อดื้อยา "ESKAPE" โดยใช้โมเดล *Pseudomonas*

aeruginosa

ชื่อนักวิจัย: รองศาสตราจารย์ ดร.นิตยา อินทราวัฒนา

อีเมล์: nitaya.ind@mahidol.ac.th

ระยะเวลาโครงการ: มิถุนายน 2559 - มิถุนายน 2561

ESKAPE คือชื่อของกลุ่มแบคทีเรียที่ประกอบด้วย Enterococcus faecium, Staphylococcus aureus, Klebseilla pneumoniae, Acinetobacter baumannii, Pseudomnas aeruginosa และ Enterbacter ซึ่งแบคทีเรียกลุ่มนี้เป็นสาเหตุที่พบได้บ่อยที่ก่อให้เกิดการติดเชื้อในผู้ป่วยในโรงพยาบาล โดยเฉพาะอย่างยิ่งผู้ป่วยที่มีภาวะภูมิคุ้มกันบกพร่อง แบคทีเรียกลุ่มนี้มีการแพร่กระจายไปทั่วโลก อีกทั้งยังมี แนวโน้มการดื้อต่อยาปฏิชีวนะที่ใช้รักษาเพิ่มขึ้นเรื่อยๆ และรวมถึงกลุ่มเชื้อแบคทีเรียที่ดื้อยาปฏิชีวนะหลาย ชนิด (Multi-drug resietance, MDR) ในปัจจุบันมีความต้องการเร่งด่วนและทันทีเพื่อหาวิธีการรับมือกับ เชื้อโรคที่ดื้อยาปฏิชีวนะเหล่านี้ ในการศึกษาครั้งนี้ได้นำเสนอแนวทางใหม่ในการต่อสู้กับ MDR-ESKAPE โดย ใช้ P. aeruginosa เป็นแบบจำลอง โดยทำการผลิตแอนติบอดีสายเดี่ยวของมนุษย์ (human scFv) ด้วย เทคนิค phage display library ซึ่งแอนติบอดีที่ผลิตได้นี้ความจำเพาะต่อปัจจัยความรุนแรงของแบคทีเรีย เช่น elastase (LasB), exotoxin A (ETA, recombinant ETA, recombinant-ETA-subdomains) and quorum sensing molecules (N-acyl-L-homoserine lactones; C12-HSL) ซึ่งพบว่า ETA-bound HuscFvs จำนวน 3 โคลน สามารถยับยั้ง ETA ในการเหนี่ยวนำให้เกิด apoptosis ของ mammalian cell และ C12-HSL-bound HuscFvs จำนวน 4 โคลน สามารถยับยั้ง C12-HSL ในการเหนี่ยวนำให้เกิด apoptosis ของเซลล์ด้วยเช่นกัน และ LasB-bound HuscFvs จำนวน 2 โคลน สามารถยับยั้งการทำงานของ LasB เมื่อทำการตรวจสอบโครงสร้างของ specific HuScFv กับ antigen ด้วยโปรแกรมคอมพิวเตอร์จะพบ HuScFv จับกับส่วนที่เป็น active site ของแอนติเจนจึงทำให้สามารถยับยั้งการทำงานของแอนติเจนได้ ผล จากการศึกษานี้ชี้ให้เห็นว่า HuscFvs มีประสิทธิภาพมีศักยภาพสูงและปลอดภัย ซึ่งสามารถนำมาพัฒนาเป็น วิธีการรักษาการติดเชื้อ P. aeruginosa และแบคทีเรียชนิดอื่นๆ ได้

Keywords: AHLs, Biofilm, Elastase, Exotoxin A, Human monoclonal scFv/nanobodies, *Pseudomonas aeruginosa*, Quorum sensing