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Abstract
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Abstract :

We performed a genome-wide association study (GWAS) of Alzheimer's disease
(AD). In confrast to conventional markers like single nucleotide polymorphisms (SNPs), we
analyzed microsatellite markers in the whole human genome. Microsatellite variants were
called from the whole genome sequencing data of 128 AD patients and 267 normal
subjects. The analysis of microsatellite markers lead to the discovery of novel genes that
had never been identified by means of SNP analysis. We have identified 70 statistically
significant microsatellite loci in the AKIRINZ2, TOMM40, MCU, EML6, and other genes.
Those genes were substantially relevant to the pathogenesis of AD, and could become a
new target for medication. Despite the lack of complete understanding in the biological
mechanism, the microsatellite markers were immediately useful for predicting the chance

of developing AD and the age of disease onset.
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Executive Summary

Initially, the research project was broadly titled “A Computing Platform for Finding Tandem
Repeats in the Whole Genomes and a Discovery of their Biological Functions.” Later, we focused on a
specific class of tandem repeats called “microsatellites” and their biological functions in Alzheimer’s
disease. We have built a computational platform fo identify microsatellite markers in the whole human
genome. However, we planned to publish the computational platform after the study of Alzheimer's
disease and ther neurological diseases. At the time of writing this report, the study of Alzheimer’s
disease is nearly complete. We are writing the manuscript and preparing for submission to the Genome
Research journal (IF = 11.351 in 2015). A tentative title of the manuscript would be “genome-wide scan
of microsatellite markers unravels novel genes associated with Alzheimer's disease”

The published research paper namely “Indexing Simple Graphs by Means of the Resistance
Distance” (Appendix 1) was a polynomial-time solution to the graph isomorphism problem. The idea
was developed during the annual TRF meeting. The algorithm was correct for small graphs, but we
could not prove the correctness for larger graphs. Although this research artficle did not overlap with

the aim and scope of this grant, we had acknowledged TRF for kind support.
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1. Infroduction

“Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disorder manifested by
cognitive and memory deterioration, progressive impairment of activities of daily living, and a variety of
neuropsychiatric symptoms and behavioral disturbances” [1]. AD symptoms in chronological order
include short-term memory loss, loss of some motor skills and languages, long-term memory loss,
disoriented, bedridden, and death due to infection such as pneumonia.

The pathogenesis of AD is characterized by the accumulation of amyloid plagues and neurofibrillary
tangles in brain cortex (2). Amyloid precursor protein (APP) locates at the membrane of brain neurons.
One end of an APP molecule is in the cell, and the other end is outside the cell. It is believed that
APP helps a neuron grow and repair itself after an injury. In a normal recycle process, an APP
molecule gets chopped into three soluble peptides by an enzyme namely alpha secretase and gamma
secretase. If alpha secretase is replaced with beta secretase, a leftover peptide is not soluble and
creates a monomer call amyloid beta. These monomers bond together outside neurons and form beta
amyloid plaques. The plaques between neurons disrupt cell-to-cell signaling. Beside, these plaques can
frigger an immune response and induce inflammation which may damage surrounding neurons. As
opposed to the beta-amyloid plagues, neurofibrillary tangles occur inside neurons. In a neuron,
cytoskeleton is partly made of microfubules which fransport nuirients inside the cell. A protein called
tfau supports the microtubules from breaking apart. It is hypothesized that beta amyloid plagues activate
kinase enzyme which fransfers phosphate groups fo tau protein. Subsequently, tau molecules detach
from microtubules, clump up, and form a neurofibrillary tangle which leads to apoptosis and cell death.
The amyloid plague and neurofibrillary tangle are illustrated in Figure 1.

In 2015, 46.8 million people are living with dementia (approximately 0.65% of the worldwide population).
It is expected to be 74.7 million and 131.5 million in 2030 and 2050, respectively [3]. In Thailand, there
were 600,000 AD patients in 2016 (approximately 0.91% of Thai population). It is estimated that the
number of AD patients in Thailand will reach one million in 2029. There are several approaches for
medications such as anti-amyloid therapies, neuro-protection, antioxidants, etc. However, there are no
medications that clearly and definitively halt the progression of AD. As a result, AD is one of the
most devastating diseases worldwide.

Genetic factors play a crucial role in developing AD [4]. People with some genetic variants are more
susceptible to AD than the others. There are two major types of Alzheimer's disease: Early-Onset
Alzheimer's Disease (EOAD) and Late-Onset Alzheimer's Disease (LOAD). EOAD or sporadic AD
occurs between a person’s 30s to mid-60s and accounts only 10% of all AD patients. At least three



causative genes (APP, PSEN1, PSENZ2) have been identified. A genetic mutation in APP gene can
alter the normal property of amyloid precursor protein. PSEN1 and PSENZ2 genes encode proteins that
are subunits of gamma secretase. A mutation on PSEN1 or PSENZ2 genes can change the cleavage
position on APP molecules. All these mutations lead to amyloid plagues. The genetfic inheritance of
these mutated genes is known as familial Alzheimer’'s disease (FAD). A child who carries a genetic
mutation for FAD is highly susceptible to AD and early age of disease onset.

In contrast to EOAD, about 90% of AD patients are LOAD which occurs in a person’s 60s and later
(4). From now on, AD means late-onset AD if not specified anything else. The genesis of AD is not
yet completely understood. However, the risk of a person fo develop AD seems to be affected by a
combination of genetic factors, environmental factor, and life style. At present, no specific genes that
directly cause AD have been found, but a genetic risk factor has been identified. A genetic variant in
apolipoprotein E (APOE) gene on chromosome 19 substantially increases the risk of developing AD.
There are 3 different alleles of APOE gene (rs429358 and rs7412).
® APQO-E2 is relatively rare as compared to APO-E3 and APO-E4. A person with this
allele does not develop AD or develop later in life than a person with APO-E4 dllele.
Thus, APO-E2 is protfective allele by reducing the risk and prolonging the onset of AD.
® APO-E3 is the most common dllele. It is believed that APO-E3 does not decrease or

increase the risk of developing AD.
® APO-&4 increases the risk for AD and accelerates the age of disease onset. A number
of APO-E4 alleles in a person is proportional to the risk and the early onset of AD.

Apolipoprotein E helps break down beta-amyloid, but the APO-E4 seems to be less effective than the
other alleles. Therefore, the risk of AD increases with the number of APO-E4 dalleles. The amino acid

difference of Apo-€2, Apo-E3, and Apo-E4 proteins is shown in Figure 2.
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Apo-E4 Arg Arg 13.7 36.7

Figure 2. The amino acid difference of Apo-E2, Apo-E3, and Apo-E4.

Although APOE gene is an indisputable hallmark of AD, there are other potential genes such as
SORL1, A2M, GST01, GST02, and GAB2 (5). Gene association studies and genome-wide association
studies have shown a number of genes that are statistically associated with the risk of AD [6]. A
database was created to systematically manage a large number of conflicting reports. As of June
2018, the top ten genes on www.alzgene.org are APOE, BIN1, CLU, ABCA7, CR1, PICALM, MS4ABA,
CD33, MS4A4E, CD2AP, respectively.



Single-nucleotide polymorphisms (SNPs) are commonly used as genetfic markers for studying AD. In
contrast, microsatellites or tandem repeats of 1-6 bp are abundant in the human genome and usually
show high levels of length polymorphism due to DNA replication [7]. For instance, ATATATATAT is
called a di-nucleotide repeat because the repeat unit (AT) is repeated five times. A form of mutation
called replication slippage or slipped-strand mispairing can add or remove multiple units simultaneously.
Microsatellite instability can cause many neurological diseases (8,9). However, microsatellites have
been rarely reported in the etiology of AD [10,11,12,13,14]. Recent findings show that polymorphic
mononucleotide T-repeat in an intron of the TOMMA40 gene is associated with AD risk [15,16].
Moreover, the length of T-repeat can predict the age of AD onset. The protein encoded by this gene is
localized in the outer membrane of the mitochondria (MT). Mitochondrial dysfunction and oxidative
stress are a common property of neurodegenerative diseases where MT struggle to provide sufficient
energy for the cell [17]). Nevertheless, the biological relevance between TOMM40 and AD remains
largely unknown.

The T-repeat (rs10524523) in the TOMM40 gene was discovered by deep sequencing a region of
linkage disequilibrium that encompasses three genes (APOE, TOMMA40, and APOC1) on chromosome
19. In this paper, we have investigated microsatellite loci in the whole human genome using whole
genome sequencing (WGS) data. Our analysis shows that 70 polymorphic microsatellites pass the
statistical threshold for genome-wide significance. Surprisingly, the T-repeat in the TOMM40 gene is in
the list as well as other microsatellites in other genes that play a crucial role in neurological functions.

2. Materials and Methods

2.1 ADNI database

In 2012 - 2013, the whole genome sequencing (WGS) of 818 participants was conducted by
Alzheimer's Disease Neuroimaging Initiative (ADNI) [18,19]. All subjects comprise of 128 AD, 415 mild
cognitive impairment (MCI), 267 normal control subjects, and 8 of uncertain diagnosis. Only AD and
control subjects were included in the analysis. With these subjects, 2 subjects were discarded due to
low quality. All microsatellite loci were extracted from the variant call format (VCF) file in which the
variants were called by ADNI using Broad's Best Practices. The VCF file also provided SNP data for
our analysis. In addition, ADNI dafabase also included the T-repeat alleles (rs10524523) of which the
genotyping was performed by Polymorphic DNA Technologies using PolyT assays.

2.2 Mrep

All allelic sequences in the VCF file were input to the computer program called Mrep [20]. Only mono-,
di-, tri-, tetra, penta-, and hexa-mononucleotide repeats were in our scope. Mrep detected exact repeats
by the following parameters.

mrep -minp 1 -maxp 6 -exp 2.0 -xmloutput <filename> -s <sequence>
Approximate repeats allowed mismatches, insertions, and deletions. Mrep detected approximate repeats
by the following parameters.

mrep -minp 1 -maxp 6 -res 3 -exp 2.0 -xmloutput <filename> -s <sequence>
Finally, all microsatellites loci in the whole human genome were identified.



2.3 Statistical Methods

Every genetic marker was equipped with a p-value which showed its statistical association with AD.
There were only two fypes of genefic markers in our analysis. Firstly, the p-value of a single
nucleotide polymorphism (SNP) was calculated using Fisher's Exact test [21]). Secondly, the p-value of
a microsatellite was calculated using Anderson-Darling test which compared the distribution of
microsatellite length (bp) between AD and normal subjects [22]. The null hypothesis is no difference
between the ftwo distributions. Bonferroni method was applied throughout the paper to correct the
multiple hypothesis testing

2.4Mayo Pilot RNAseq Dataset

RNAseg-based whole transcriptome data of brain samples were publicly available in [23]. The dataset
consisted of two different brain regions, namely cerebellum (CER) and temporal cortex (TCX) brain
regions. CER samples were categorized as 86 Alzheimer's disease (AD), 84 progressive supranuclear
palsy (PSP), 28 pathologic aging, and 80 controls without neurodegenerative diagnoses. TCX samples
were categorized as 84 AD, 84 PSP, 30 pathologic aging, and 80 controls. A differential expression
analysis at gene level was conducted and provided with the dataset.

2.5 Ballgown

We performed a franscription-level expression analysis of the Mayo Pilot RNAseq Datfaset using a
software suite tool namely Ballgown (24]. We strictly followed every step as described in the paper
except the read alignment which had been done at Mayo Clinic using the SNAPR software [25].

3. Results

3.1 The accuracy of microsatellite sequences from WGS data

First of all, we validated the accuracy of whole genome sequencing on microsatellite sequences. This
can be done easily by compared the length of T-repeats (rs10524523) in the TOMMA40 gene. The
repeat length were independently measured by using two different methods, the PolyT assays and the
whole genome sequencing (WGS). Only 156 subjects were measured by the two methods. A
comparison of repeat lengths are shown in Figure 3.

Assuming that the repeat lengths from Poly-T assays are correct, the microsatellites called from WGS
are a fair approximation. Although WGS do not perfectly replicate the repeat lengths, WGS is able to
separate short (<25 bp) and long alleles (> 25bp) at 77.88% accuracy.
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Figure 3. A comparison of repeat lengths called from assays and WGS. A subject has a pair of T-
repeat alleles. One is the minimum-length allele (left), and the other one is the maximum-length allele
(right). The correlation coefficients are 0.50 (left) and 0.62 (right).

3.2 There are several microsatellite loci that might be associated with AD

The result of genome-wide scan of microsatellites is shown in the Manhattan plot below. A total of 70
microsatellite loci pass the Anderson-Darling test (ADtest) and Bonferroni correction (p<0.05). All
significant microsatellite loci are found in the infrons of protein-coding genes. Most microsatellites are
mono- and di-nucleotide repeats, while there are a few of fri-, tetra-, and penta-nucleotide repeats. The
signs of logistic regression coefficients are either positive or negative equally. The list of 70
statistically significant genes are summarized using DAVID Bioinformatics Resource 6.8 [26,27]. We
found that 50 genes (71.4%) produce alternative splicing Protein for which at least two isoforms exist
due to distinct pre-mRNA splicing events. 24 genes (34.3%) encode proteins that are found in the
cytoplasm, the content of a cell within the plasma membrane and, in eukaryotic cells, surrounding the
nucleus. This three-dimensional, jelly-like lattice inferconnects and supports the other solid structures.
The cytosol (the soluble portion of the cytoplasm outside the organelles) is mostly composed of water
and many low molecular weight compounds. In eukaryotes, the cytoplasm also contains a network of

cytoplasmic filaments (cytoskeleton). 34 genes (48.6%) are highly expressed in brain tissues.
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Chr Position Repeat Logit Sign Logit P ADtest P Bonferrf)ni Gene Loc Call
Coef Correction Rate

6 88406417 | (A)n 2.33 + 1.64E-04 1.64E-14 7.78E-09 AKIRIN2 infron 23.35
19 45403048 | (T)n 0.05 + 5.36E-07 3.04E-14 1.44E-08 TOMM40 infron 62.63
10 74540269 | (GT)n 0.18 + 5.45E-03 1.29E-13 6.12E-08 MCU infron 37.58
2 55135058 | (AGAT)n -0.27 - 1.54E-05 1.65E-12 7.83E-07 EML6 intron 66.03
14 93265617 | (T)n -1.42 - 2.69E-02 1.98E-11 9.39E-06 GOLGAS intron 58.81
7 10662405 | (AAGA)n|(AAGG)n -0.17 - 7.25E-06 3.82E-11 1.81E-05 MGC4859 intron 67.3
8 107417369 | (AT)n 0.06 + 2.03E-05 5.89E-11 2.79E-05 OXR1 infron 72.4
17 12462174 | (T)n -0.51 - 2.92E-03 1.08E-10 5.12E-05 LINC00670 infron 58.39
16 24659595 | (T)n -0.19 - 4.89E-04 2.75E-10 1.30E-04 TNRC6A infron 26.75
9 118994045 | (T)n -0.41 . 1.30E-02 1.09E-09 5.17E-04 PAPPA intron 8.28
4 113350995 | (A)n -0.7 . 4.00E-03 1.18E-09 5.60E-04 ALPK1 intron 34.82
4 185987071 (A)n -0.05 - 5.65E-01 1.19E-09 5.64E-04 LINC02436 intron 40.76
2 122275434 | (T)n -0.08 - 2.26E-03 2.07E-09 9.82E-04 CLASP1 infron 59.45
22 40477311 (T)n -0.8 - 3.04E-04 2.38E-09 1.13E-03 TNRC6B infron 45.65
il 127204840 | (GT)nl(GC)n 0.27 + 1.10E-03 2.67E-09 1.27E-03 LOC101929497 infron 52.02
13 102813966 | (AAG)n 0.21 + 7.88E-05 3.78E-09 1.79E-03 FGF14 intron 21.02
3 142047545 | (TA)n 0.07 + 9.69E-05 4.28E-09 2.03E-03 XRN1 intron 64.12
3 115883448 | (AT)n -0.7 - 5.39E-05 4.55E-09 2.16E-03 LSAMP intron 56.69
19 8480629 | (A)n 0.11 + 3.73E-02 4.97E-09 2.36E-03 MARCH2 infron 27.39
7 94565963 | (GT)n -0.43 - 1.14E-04 6.12E-09 2.90E-03 PPP1R9A infron 91.72
1 225838550 | (A)n -0.71 - 5.71E-03 6.16E-09 2.92E-03 ENAH infron 29.72
20 48042207 | (TA)n -0.11 - 2.92E-04 7.33E-09 3.48E-03 KCNB1 intron 84.5
18 18658302 | (AC)n -0.7 - 2.80E-05 9.61E-09 4.56E-03 ROCK1 intron 85.35
3 180868166 | (TA)n* -0.09 - 1.68E-04 1.03E-08 4.89E-03 S0X2-0T intron 92.99
2 120317621 (T)n -1.01 - 4.42E-04 1.04E-08 4.93E-03 CFAP221 infron 24.2
30000863 | (A)n -0.1 - 3.09E-04 1.10E-08 5.22E-03 MBOAT4 infron 98.94
15 37288175 | (AT)n -0.05 - 1.26E-04 1.10E-08 5.22E-03 MEIS2 infron 37.58
10 96334855 | (T)n 0.27 + 1.53E-01 1.18E-08 5.60E-03 HELLS intron 78.34
20 48046980 | (CATC)n -0.31 - 2.78E-03 1.22E-08 5.79E-03 KCNB1 intron 99.15
5 128928070 | (A)n 1.62 + 3.70E-04 1.22E-08 5.79E-03 ADAMTS19 intron 16.99
5 58539274 | (T)n -0.85 - 1.40E-03 1.33E-08 6.31E-03 PDE4D infron 76.86
15 28205736 | (TCTA)n -2.41 - 1.33E-02 1.52E-08 7.21E-03 OCA2 infron 100
10 12776451 (TA)N|(CA)N -0.1 - 1.52E-04 1.86E-08 8.82E-03 CAMKI1D infron 87.9
20 4145696 | (T)n -0.33 - 1.80E-04 2.01E-08 9.53E-03 SMOX intron 259
4 98993735 | (AAAAT)n -0.23 - 1.28E-04 2.17E-08 1.03E-02 STPG2 intron 60.93
7 30862243 | (TTTA)n -0.13 - 3.03E-04 2.25E-08 1.07E-02 MINDY 4[INMT intron 99.36
4 10618431 (AT)n -0.16 - 1.65E-04 2.33E-08 1.11E-02 CLNK infron 27.6
1 97596334 | (TTC)n*|(TCC)n* 13.79 + 9.82E-01 2.38E-08 1.13E-02 DPYD-AS1|DPYD infron 29.72
20 32178985 | (A)n -0.15 - 8.99E-04 2.56E-08 1.21E-02 CBFA2T2 infron 29.51
6 87683034 | (TG)n 1.94 + 9.66E-01 2.61E-08 1.24E-02 HTRIE intron 97.88
22 18151796 | (T)n -0.5 - 9.97E-04 2.70E-08 1.28E-02 BCL2L13 intron 20.81
7 154128537 | (TTTTC)n 0.18 + 2.90E-04 3.09E-08 1.47E-02 DPP6 intron 13.8
17 4776912 | (T)n -0.36 - 1.13E-02 3.14E-08 1.49E-02 MINK1 infron 27.6
9 129708812 | (A)n 0.26 + 6.20E-02 3.20E-08 1.52E-02 RALGPS1 infron 22.29
15 52889386 | (ATTCT)n -0.1 - 2.07E-04 3.41E-08 1.62E-02 FAM214A infron 98.73
9 9980624 | (A)n 0.2 + 1.12E-03 3.67E-08 1.74E-02 PTPRD intron 90.23
2 144392763 | (T)n -15.46 - 9.85E-01 3.93E-08 1.86E-02 ARHGAP15 intron 36.31
1 117852225 | (AAAG)n 0.42 + 1.03E-03 3.96E-08 1.88E-02 LINCO1525 intron 25.27
5 139247358 | (GT)n 0.07 + 3.01E-02 4.37E-08 2.07E-02 NRG2 infron 56.48
8 114124640 | (AT)n 0.07 + 2.29E-04 4.69E-08 2.22E-02 CSMD3 infron 14.65
9 113006579 | (TA)n|(CA)n 0.06 + 1.78E-04 5.03E-08 2.39E-02 TXN infron 7441
5 170024801 (TA)N 0.08 + 1.95E-04 5.15E-08 2.44E-02 KCNIP1 intron 46.28
5 147589560 | (CGTA)n* 0.29 + 1.77E-04 5.47E-08 2.59E-02 SPINK6 intron 87.05
12 8197814 (T)n -0.17 - 1.96E-03 5.65E-08 2.68E-02 FOXJ2 intron 61.57
6 11726132 | (A)n 0.13 + 1.08E-04 5.88E-08 2.79E-02 ADTRP infron 45.44
21710485 | (GT)n 0.32 + 5.79E-04 6.01E-08 2.85E-02 DNAH11 infron 97.03
4 162704799 | (CT)nl(TT)n -0.22 - 6.36E-04 6.29E-08 2.98E-02 FSTLS intron 97.66
2 71876267 (A)n -1.22 - 1.50E-03 6.35E-08 3.01E-02 DYSF intron 11.89
18 64255842 | (AT)n 0.26 + 4.30E-04 6.42E-08 3.05E-02 CDH19 intron 81.74
19 19156302 | (T)n 0.73 + 3.28E-01 6.59E-08 3.13E-02 ARMC6 intron 121
22 18067188 | (GAAA)N|(GAAG)n 0.15 + 1.79E-04 7.34E-08 3.48E-02 LOC101929372| intron 91.72

SLC25A18

23 106465140 | (ATA)n 0.33 + 5.53E-05 7.55E-08 3.58E-02 PIH1D3 infron 90.66
22 39009419 (TA)N* 0.01 + 2.75E-02 7.74E-08 3.67E-02 FAM227A intron 27.39
3 155343999 | (A)n 0.05 + 2.08E-04 8.02E-08 3.80E-02 PLCH1 intron 99.79
2 48826033 (A)n 0.41 + 2.31E-04 8.05E-08 3.82E-02 STON1-GTF2A1L intron 5.52
17 32371125 | (CA)n|(CG)n 0.07 + 2.63E-04 8.25E-08 3.91E-02 ASIC2 intron 93.63
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12 15660384 | (TAAA)N|(TAAC)n 0.22 + 7.67E-05 8.56E-08 4.06E-02 PTPRO infron 99.79
1 114030659 | (G)n 017 + 2.96E-02 8.79E-08 4.17E-02 ZBTB16 infron 74.31
18 57361096 | (T)n 0.54 + 7.83E-03 8.80E-08 4.17E-02 CCBEH1 infron 57.75
1 174403246 | (AC)n -0 - 7.71E-02 1.03E-07 4.89E-02 RABGAPIL infron 57.96

Significant p-values indicate that the distribution of microsatellite lengths in AD group is not identical
to that in normal group. However, microsatellite length may affect AD risk in a subtle way. The
distributions of microsatellite length in the AKIRIN, TOMM40, MCU, and EML6 genes are shown in
Figure 4. Long repeats in the AKIRIN, TOMM40, and MCU genes may increase the risk of AD,

whereas in the EML6 the risk increases with short repeats.

3.3 Linkage Disequilibrium between microsatellites and SNPs

Similarly to the T-repeat in the TOMM40 gene, there might be linkage disequilibrium (LD) between
microsatellite loci and single nucleotide polymorphism (SNPs) that are in close proximity. If the LD
holds, the SNPs around microsatellite loci should be associated with AD. Figure 5 shows that there
are many SNPs around the T-repeat in the TOMM40 gene. Those significant SNPs implicitly confirm
the strong LD previously found in this region. Less significant SNPs in the AKIRINZ2, MCU, and EML6
genes suggest very modest or no LD. Note that two significant SNPs (p > 10"4) are on the

microsatellite sequence, and their polymorphism may disrupt the very long intact AGAT-repeat.
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3.4 Differential expression of microsatellite-embedded genes in cerebral cortex

We have investigated the differentially expressed (DE) genes in cerebral cortex between AD and
normal subjects. The microsatellite loci are not significantly associated with the differential expression
of their host genes (OR = 0.72, p = 0.80). The microsatellite-embedded genes that differentially
expressed cerebral cortex are shown in Figure 6.

Significant DE genes | Non-significant DE

genes
Significant microsatellite loci 3 67
Non-significant microsatellite loci 959 15,408

959 67

w

ZBTB16
MINK1
ROCK1

Figure 6. The intersection between the 70 microsatellite-embedded genes and the differentially
expressed genes in cerebral cortex.

3.5 Differential expression of microsatellite-embedded genes in temporal cortex

We have investigated the differentially expressed (DE) genes in femporal cortex between AD and
normal subjects. Microsatellite-embedded genes are not significantly associated with the differential
expression of their host genes (OR = 0.62, p = 0.31). The microsatellite-embedded genes that

differentially expressed temporal cortex are shown in Figure 7.

Significant DE genes | Non-significant DE
genes
Significant microsatellite loci 7 63
Non-significant microsatellite loci 2,488 13,879
2488 7 63

MINK1 SMOX
DPP6 CSMD3
RABGAP1L TOMMA40

Figure 7. The intersection between the 70 microsatellite-embedded genes and the differentially
expressed genes in temporal cortex.
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3.6 No isoform switches in Alzheimer’'s disease

We have searched for isoform switches in both cerebral and temporal cortex by analyzing the Mayo
Pilot RNAseq Dataset at franscript level. The microsatellite-embedded transcripts and their expression
levels are shown in Figure 8, 9, and 10, and 11. Note that EML6 transcripts have not been found in

both cerebral and temporal cortex subjects.

Cerebral B -
cortex
r | 1 | | — r T I 1 | T
87675000 87685000 87695000 87675000 87685000 87695000
Temporal ~ ~
cortex
r | | | | — r T | 1 | —
87675000 87685000 87695000 87675000 87685000 87695000

Figure 8. Transcript variants of the AKIRINZ2 genes and their expression levels.
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3.7 Novel transcripts are missing in AD subjects

We detected novel transcripts in cerebral and temporal cortex by means of de-novo transcriptome
assembly. These novel transcripts were not annotated in the human transcriptome reference. Moreover,
some novel exons and loci were missing in AD subjects, but found in normal subjects. The table
below shows the comparison between the de-novo transcripfome assembly and the reference

transcriptome.

Cerebral cortex

AD subjects Normal subjects
Missed exons 0/ 567213 0.0% 0/ 567213 0.0%
Novel exons 5177 / 577935 0.9% 5941 / 578500 1.0%
Missed introns 2126 / 347401 0.6% 2126 / 347401 0.6%
Novel introns 0 / 347401 0.0% 0 / 347401 0.0%
Missed loci 0 / 57036 0.0% 0 / 57036 0.0%
Novel loci 4719 / 61845 7.6% 5396 / 62678 8.6%

Temporal cortex

AD subjects

Normal subjects

Missed exons 0 / 567213 0.0% 0 / 567213 0.0%
Novel exons 3946 / 575261 0.7% 5692 / 577504 1.0%
Missed introns 2126 / 347401 0.6% 2126 / 347401 0.6%
Novel introns 0 / 347401 0.0% 0 / 347401 0.0%
Missed loci 0 / 57036 0.0% 0 / 57036 0.0%
Novel loci 3575 / 60863 5.9% 5211 / 62576 8.3%

4. Discussion

The pathogenesis of AD is dominated by the amyloid hypothesis because of the accumulation of
amyloid plaques in brains. As a result, previous genetic studies have been focusing on amyloid-related
genes such as the APOE gene. APO-E3 and APO-E4 dlleles, which are composed of two SNPs, are
strongly associated with the risk of developing AD. Both SNPs are in exons, and are non-synonymous
SNPs. Thus, it is convenient to explain the biological mechanism of amyloid hypothesis. Although the
amyloid hypothesis have been firmly established, there are sfill no proofs that amyloid plagues are the
frue cause of AD. On the other hand, the discovery of linkage disequilibrium around the APOE gene
suggests that the long T-repeat in the TOMM40 gene might be the true risk factor. This because the
long T-repeat is a single risk allele at a single locus, whereas APO-E3 and APO-E4 are two risk
alleles at two loci. Note that the long T-repeat is also associated with APO-E3 and APO-E4. The
Occam’s razor suggests the T-repeat because it is a shorter hypothesis. Although the biological
function of TOMMA40 protein is relevant to the genesis of AD, it is not easy to elucidate the biological
function of T-repeat which is in the intron of TOMM40 gene.

Our genome-wide scan of microsatellites in AD subjects shows that the T-repeat is not the only
microsatellite that is associated with the risk of AD. Other classes of microsatellite such as di- and
tetra-nucleotide repeats may be implicated in the development of AD. The genome-wide scan found the
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microsatellite repeat in the TOMM40 gene as well as in the other genes such as the AKIRIN2, MCU,
and EML6 genes. These genes are biologically relevant to AD.
® Akirin2 is essential for the formation of the cerebral cortex. Akirin2 KD in mice results in
early embryonic lethal. Analyzing control and knockout transcriptomes using RNA sequencing
suggests that Akirin2 is critical for activating genes maintaining progenitor fate, and for
repressing the genes associated with neuronal differentiation [28,29).

® MCU encodes mitochondrial inner membrane calcium uniporter that mediates calcium uptake
info mitochondria. The imbalance of calcium ions in the mitochondriac may contribute to
neurodegenerative diseases. A number of studies suggest that the alteration of calcium ions
homeostasis is a hallmark of AD [30,31].

® EML6 encodes a protein in a family of microtubule-associated proteins (MAPSs). This protein is
found on microtubules and regulate microtubule dynamics. EML mutations are found in neuronal
disorders and oncogenic fusions in human cancers [32). We postulated that the EML6 gene
may be involved in the collapse of microtubules and forming neurofibrillary tangles observed in
AD patients.

Although the functions of microsatellite-embedded genes are pertinent to the AD pathogenesis, it is
obscure to conclude that the microsatellites are truly genetic risk factors. There might be two
possibilities. Firstly, SNPs in LD with microsatellite loci are the true genetic risk factors. However,
highly significant SNPs are only found in the cluster of the APOE, TOMM40, and APOC1 genes.
GWAS could not detect modest-effect SNPs individually, but a microsatellite marker that represents its
local haplotype would be an easier target. Secondly, the microsatellites are the true genetic risk
factors. A mutatfion in intronic microsatellites can modulate gene expression and alternative splicing.
Moreover, expanded repeats produce toxic RNAs that disrupt RNA-binding proteins. However, more
studies are needed to confirm that microsatellites are one of the genetic risk factors. As WGS is
becoming a standard practice, genome-wide scans of microsatellites in other neurodegenerative
disorders will unravel the secret of repetitive non-coding sequences which in the past were presumably
junk DNA.

Despite the limited knowledge fto reach a conclusion, microsatellite markers are immediately useful for
predicting the risk of development and the age of disease onset. We believe that the prediction
accuracy can be improved by combining mulfiple microsatellite markers. In addition, multiple markers are
more robust when a population is composed of different ethnic groups.
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ABSTRACT For every simple connected graph, we present a polynomial time algorithm for computing a
numerical index, which is composed of primary and secondary parts. Given a graph G = (V, E) where
V and E are, respectively, vertex and edge sets, the primary part of the index is a set of |V| fractions and
the secondary part of the index is a set of |B| x |V| fractions, where B is the partition of the vertex set V.
Basically, each fraction in the primary and secondary parts is the electrical resistance between two vertices
when every edge in the graph is replaced with a unit resistor (1 €2). The experimental results show that our
indexing algorithm produced a unique index for every simple connected graph with <10 vertices, including
all graphs that are counterexamples for detecting graph isomorphism by resistance spectrum comparison.
The strength of our indexing algorithm lies in its extreme simplicity. An index of a graph is solely derived
from the determinants of reduced Laplacian matrices, which represent the graph. Therefore, the performance
of our indexing algorithm only depends on how fast the matrix determinants can be computed.

INDEX TERMS Electrical resistance, graph indexing, graph isomorphism, resistance distance, simple

connected graphs.

I. INTRODUCTION

Graph is a data structure that has been used for representing
data in a wide range of applications including an EXtensible
Markup Language (XML), chemical compounds, multime-
dia databases, social networks, biological pathways, protein-
protein interaction networks, semantic webs, and business
process models [1]. The increasing popularity in these appli-
cations produces a plethora of graph databases which demand
an efficient querying method. A graph database could be
either a single extremely large graph (e.g., social networks)
or a large collection of small graphs (e.g., chemical com-
pounds). Basically there are three types of query in graph
databases.

o Exact matching query. The task is to search for graphs
in a database which are exactly matched or isomorphic
with the query graph. Let V and E respectively represent
vertex and edge sets in a graph. Graphs G = (Vg, Eg)
and H = (Vy, Eg) are isomorphic if and only if there
exists a permutation matrix P such that Ay = PAGP™!

where Ag and Ay are respectively the adjacency matri-
ces that represent graphs G and H [2].

o Subgraph/supergraph query. This task is to search for
graphs in a database in which the query graph is a
subgraph or a supergraph. It relates to the subgraph iso-
morphism problem which determines whether graph G
contains a subgraph that is isomorphic to graph H. This
problem is known to be NP-complete [3].

o Similarity (approximate matching) query. This task is to
search for graphs in a database which share some simi-
larities with the query graph. The degree of similarity is
defined by edit distance between two graphs [4].

Although the exact matching query, which searches for

isomorphic graphs, is the simplest one, a polynomial time
algorithm for the task has not been found. The fastest known
algorithm, standing for more than three decades, has the time

complexity 20(vnTogn) where  is the number of vertices [5].
Thus, it is still interesting to limit our scope to the exact
matching query.
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We propose a graph index which is a numerical array of
fractions. The indexing algorithm is carried out by replac-
ing every edge in a graph with a unit resistor (1 €2). The
graph can then be viewed as an electronic circuit with some
electrical properties. Finally, the graph index is constructed
from the resistance characteristics of the circuit. Our indexing
algorithm is empirically proven to be perfect (no collisions
between non-isomorphic graphs) for all simple connected
graphs with <10 vertices. The algorithm is not limited to
only connected graphs because a disconnected graph can be
decomposed into multiple connected subgraphs. The index
of each subgraph can be computed independently and can be
merged later into a single index.

The computational time for computing an index grows in
a polynomial relationship with the number of vertices. For
larger graphs with >10 vertices, although there might be
some collisions, we did not find a counterexample — two non-
isomorphic graphs that produce the same index. Since finding
such a counterexample is not trivial, we estimate that our
algorithm is effective for indexing graphs in general.

Nauty and its variant Traces are outstanding algorithms
for canonical labeling of graphs [6]. These algorithms relabel
vertices in such a way that isomorphic graphs become identi-
cal after canonical labeling. Determining the isomorphism of
canonized graphs is a direct comparison in a convenient rep-
resentation, for instance, comparing their adjacency matrices.
Moreover, a canonized graph is guaranteed to have a unique
index for exact matching queries. Nauty uses a search-tree
approach for canonical labeling. At the root of the search
tree, the first vertex is chosen for labeling. Branches from the
root are choices of the second vertex for labeling and so on.
The relabeled graphs appear at leaf nodes of the search
tree and only one of them is canonical labeling. Nauty
dramatically speeds up the search by exploiting a graph
automorphism — the isomorphism of a graph to itself.
An automorphism of a graph G is a permutation P such
that A = PAGP~! where Ag is the adjacency matrix of
graph G. With the innovative use of automorphisms, Nauty
avoids an exhaustive search by pruning the search tree. Traces
is a variance of Nauty with a major improvement in per-
formance. Although the time complexity of Traces is not
bounded by a polynomial, in practice Traces outperforms
other algorithms [6]. The performance of Traces is not con-
sistently uniform; it varies significantly with different graph
families.

Alternatively, an undirected graph can be indexed using
eigenvalues of its adjacency matrix. Unfortunately, two non-
isomorphic graphs may produce the same set of eigenvalues.
The smallest counterexample is a pair of non-isomorphic
connected graphs with six vertices [7]. However, there are
polynomial time algorithms for a special case of isomor-
phism testing where the eigenvalues of an undirected graph
have bounded multiplicity. Deterministic and Las Vegas
algorithms respectively have time complexity O(n*"*¢) and
O(n*"*¢) where n is the number of vertices, m is the mul-
tiplicity of eigenvalues, and ¢ is an absolute constant [8].
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In practice, bounded multiplicity might be too restricted for
general use.

Other graph indexing algorithms do not focus only on
an exact matching query but are more concerned with sub-
graph/supergraph and similarity queries. This kind of indexes
is made of local structures such as paths in GraphGrep [9],
trees in GCoding [10], and subgraphs in GDIndex [11]. The
local structures of graphs are more difficult to manipulate
than numerical indexes and the size of local-structure indexes
may increase drastically with the size of database. Some
indexing methods are designed for specific applications, for
instance, GString considers the semantics of chemical struc-
tures and uses them as index features [12]. A common query-
ing strategy is to use indexes for filtering candidate graphs
which are related to the query. Next, each candidate is verified
that it really satisfies the conditions of the query. This line of
research was reviewed elsewhere [1].

The resistance distance was proposed by Klein and Randié.
“If fixed resistors are assigned to each edge of a connected
graph, then the effective resistance between pairs of vertices
is a graphical distance’ [13]. This novel distance function
has established a number of graph theorems and success-
ful applications in cyclicity, which is a structural feature in
graphs [14]-[16]. An efficient method for calculating effec-
tive resistance between any two vertices is needed to com-
pute the resistance distance. A common method in electrical
engineering is Nodal Anaylsis [17]. However, there is a more
efficient way to calculate the resistance between all vertex
pairs at once. Given a graph G = (V, E), the following matrix
operations result in a resistance-distance matrix €2, whose
element Q2;; is the effective resistance between vertex v; € V
and vertex v; € V. Let L = (l;) be the Laplacian matrix
of graph G. It is similar to the adjacency matrix except that
the diagonal element /; is equal to the degree of vertex v;,
elements /;; = [j;, and element /;; = —1 if there is an edge
between vertices v; and v;. Let ® be an auxiliary matrix whose
all elements are equal to one. Consequently,

I"'=[L+1/|V|x ®]! )
and

Q=T = 2I"; + T 2

where |V| is the number of vertices in graph G. A more
elegant method for calculating the effective resistance is
solely derived from determinants of reduced Laplacian
matrices [18]. The effective resistance is given by

_ detL(i.))

U= TdetL() )

where L(i) is the matrix resulting from removing the i row
and the i column of Laplacian matrix L, L(i, j) is the matrix
resulting from removing both the i and j" rows as well as
the i and j" columns of Laplacian matrix L, and det denotes
a determinant operation.

An example of the calculation of effective resistance using
Equation 3 is given in Fig. 1. It is noted that det L(i) equals
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Remove the rows and the columns
in the rectangles.

(l#1] -1 +o0/+0]]]
-1 +3 -1|-1
+0 -1 +2|-1
Effective resistance  [[x0[-1 -1 [+2
between v; and vy = —— —— =5/30
(|+1]-1 +0+0 ||
143 -1 -1
+0| -1 +2-1
+0-1 -1 +2

L—

FIGURE 1. An example shows the calculation of effective distance between vertices v, and v,.

the number of spanning trees in the graph represented by
Laplacian matrix L. Equations 1, 2, and 3 are suitable for
connected graphs. In the case of disconnected graphs, the
matrix inversion in Equation 1 cannot be performed while
det L(i)= 0 leads to a division by zero in Equation 3. To cope
with disconnected graphs, effective resistance £2;; must be set
to +00 when vertices v; and v; are not connected.

A resistance spectrum refers to a set of effective resistance
between every pair of vertices in a graph. The original idea
of solving the graph isomorphism problem by means of resis-
tance spectrums was discussed elsewhere [19]. A simple algo-
rithm replaces every edge in a graph with a 1- resistor and
calculates the resistance spectrum. It was hypothesized that
two graphs are isomorphic if and only if their resistance spec-
trums are identical. However, this hypothesis was rejected
quickly after the discovery of counterexamples [20], [21].
Fig. 2 shows 13 pairs of non-isomorphic graphs that
every pair produces the same resistance spectrum given
in Table 1.

Our indexing algorithm uses an approach similar to
that leading to resistance spectrums. However, it is further
improved by multiple steps of graph perturbation and resis-
tance measurement. In the Results, it will be shown that our
algorithm produced a unique index for every counterexample
in Fig. 2.

Il. METHODS
A. INDEXING ALGORITHM
Algorithm 1 computes an index (P, §) of a simple connected
graph G = (V, E) in two main steps. The first step com-
putes the primary part P which is a set of |V| fractions. The
second step computes the secondary part S which is a set of
|B| x |V| fractions where B is a partition of the vertex set V.
An example of the algorithm is given in Fig. 3. There are three
major steps.

The first step is to build the primary part of the index.
A crucial step is to add a dummy vertex vy to the graph,
and add |V| edges to connect the dummy vertex vy with all
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TABLE 1. Resistance spectrums of the graphs.

Graph Resistance spectrum
pair
1 6(1) 6(2) 24(40)
2 3(2/3) 6(1) 12(5/3) 6(2) 9(8/3)
3 8(1) 13(2) 12(3) 3(4)
4 8(3/4) 6(1) 4(3/2) 8(7/4) 4(2) 4(11/4) 2(3)
5 6(1) 4(2) 2(3) 24(+)
6 8(1) 10(2) 10(3) 6(4) 2(5)
7 4(3/4) 7(1) 4(7/4) 6(2) 4(11/4) 5(3) 2(15/4) 3(4) 1(5)
8 1(1/2) 4(5/8) 6(1) 2(3/2) 8(13/8) 4(2) 1(5/2) 6(21/8) 2(3) 2(29/8)
9 10(2/3) 5(1) 4(4/3) 10(5/3) 2(2) 2(7/3) 3(8/3)
10 4(3/4) 7(1) 4(7/4) 6(2) 4(11/4) 5(3) 2(15/4) 3(4) 1(5)
11 2(1/2) 8(5/8) 4(1) 4(5/4) 8(13/8) 4(2) 4(21/8) 2(3)
12 4(3/4) 18(1) 16(7/4) 22(2) 32(11/4) 24(3) 32(15/4) 18(4)
16(19/4) 8(5)

13 29(1) 38(2) 50(3) 64(4) 78(5) 82(6) 64(7) 26(8) 4(9)

The effective resistance between vertices v; and v; are shown in ascending
order. n(a/b) denotes n occurrences of the fraction a/b.

original vertices vy, ..., vy|. Next, the Laplacian matrix L
that corresponds to the new graph is constructed so that
the effective resistance between vertices vg and v; can be
calculated using the formula P; = det L(0, i)/ det L(0). The
fraction P; is then labeled to the original vertex v;. Finally,
the primary part is composed of |V| fractions in the vertex-
ordered list P. The vertex-ordered list P is not yet sorted but
it will be sorted at the end of the algorithm. The sorting is
to canonize the index so that isomorphic graphs produce the
same index.

The second step is to partition the vertex set V by vertex
labels in the vertex-ordered list P. Basically all vertices with
the same label are put in the same block. The resulting
partition is a set of |B| blocks where each block is a set
of vertices. In addition, the blocks are sorted so that the
vertex label (effective resistance) associated with block b;
is always less than the vertex label associated with block b;
when i < j. Sorting the blocks is a preparation for canonizing
the secondary part of the index.

The third step is to build the secondary part of the index.
Itis noted that if there is only one block in the partition B, then
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FIGURE 2. Pairs of non-isomorphic graphs that produce the same resistance spectrum.

the secondary part is an empty list. The graph is perturbed
using information in the partition B to make the secondary
part differs from the primary part. The perturbation is done
sequentially for each block b; where it starts with block
by and ends with block b|p| in the following manner. First,
a dummy vertex is added and is connected to all vertices in
graph G except the vertices in the block b;. Next, the effective
resistance from the dummy vertex vg to every original vertex
is calculated in a similar fashion to the calculation performed
for building the primary part. The effective resistance can
reach the value of +oo if the graph is disconnected. For each
perturbation, the effective resistance calculation begins from
the original vertices in the first block »; and ends at the
original vertices in the last block bjp|. The resistance values

VOLUME 4, 2016

obtained for each block are sorted in ascending order and are
appended to the list S. The sorting here is to canonize the
secondary part.

Two indexes can be immediately compared with no extra
computation. Indexes of graphs G and H are respectively
denoted by (Pg, Sg) and (Py, Sy) where Pg and Py are the
primary parts of the index while S and Sy are the secondary
parts of the index. Two indexes are exactly matched if and
only if the primary parts Pg[i] = Pgli] for all i and
the secondary parts Sg[j] = Sgljl for all j. In practice,
the primary parts are compared first because most
non-isomorphic graphs can be distinguished using only the
primary parts. In the Results, it will be shown that there were
only 1.63% of simple connected graphs with <10 vertices that
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Algorithm 1 Computation of the Primary and the Secondary Parts of the Index

Input: A graph G = (V, E) with V = {vy, ..., vy}

Output: The primary part P which is an ordered list of |V| fractions and the secondary part S which is an ordered list of

|B| x |V| fractions where B is the partition of the vertex set V.

1:  // building the primary part

2: P =anempty list of fractions; / P; denotes the i element in the list P, 1 < i < |V].
3: G’ =the graph G augmented by a dummy vertex vo and edges connecting the dummy vertex vy to all vertices in the

vertex set V;

fori=1to|V|do

P; = the fraction in the lowest terms of
end
0: // partitioning the vertex set V
I: B={b,..

el —a AR A

L = the Laplacian matrix of graph G’ whose rows and columns 0 to |V| correspond to vertices vo to vjy;
denominator = det L(0); // The matrix L(0) is the Laplacian matrix L in which row and column 0 are removed.

numerator = det L(0, i); // The matrix L(0, i) is the matrix L(0) in which row and column i are removed.
numerator
denominator >

., b B\} is a partition of the vertex set V and consists of |B| blocks;

/[Vertices v; and v; are in the same block if vertex labels P; = P;.
12: //Vertex labels Py < Py if and only if vertices vy € b; and vy € bj, and i < j.

13: // building the secondary part

14: S = an empty list of fractions; // S; denotes the i element in the list S, 1 <i < |B|] x |V].

15: if |B| = 1 then

16: Sort P in ascending order;

17: return (P, S);

18: end

19: fori = 1to |B| do // Perturbing graph G in |B| different ways.

20: G’ = the graph G augmented by a dummy vertex vo and edges connecting the dummy vertex vg to all vertices in
21: the vertex set V \ b;;

22: L = the Laplacian matrix of graph G’ whose rows and columns 0 to |V| correspond to vertices vo to vjy;
23: denominator = det L(0);

24: for b; € B do

25: X = an empty list of fractions.

26: for vy € bj do

27: numerator = det L(0, k);

28: Append the fraction in the lowest terms of ML v, the [ist X ;

29: end

30: Sort X in ascending order;

31: Append X to S;

32: end

33: end

34: Sort P in ascending order;
35: return (P, S);

their non-isomorphisms must be decided by the secondary
parts.

The computation of primary and secondary parts of an
index depends mostly on the calculation of matrix determi-
nants. The computation of the primary part calculates n + 1
determinants (n numerators, det L(0, i), and one denomina-
tor, det L(0)) where n is the number of vertices excluding
the dummy vertex. In the worst case, the partition produces
the maximum n blocks and the computation of secondary
part calculates (n + 1) determinants for each block. Totally,
n+1) +nm+1) = (n+1)* or O(n?) determinants are
calculated for an index of a graph. The determinant of an
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n x n matrix can be computed in O(r®) time using LU decom-
position [22]. Therefore, the time complexity of computing
an index is O(n°).

However, the effective resistance is stored as a precise
fraction. Therefore, the time complexity also depends on
the memory space used for storing fractions. A fraction is
composed of a numerator and a denominator, and both are
matrix determinants. The largest matrix is L(0), which is the
Laplacian matrix reduced by removing the first row and
the first column. The determinant of matrix L(0), which is
denoted by det L(0), equals the number of spanning trees in
the Laplacian matrix L. Fortunately, many upper bounds for

VOLUME 4, 2016



C. Aporntewan et al.: Indexing Simple Graphs by Means of the Resistance Distance

IEEE Access

A dummy vertex attached

Uy
Graph G ,T~
RN
’ 1 ~
PN
. .
— o —=@ — o —=»

L1 V2 U3 k! V2 V3
v, v, vy

Primary part (unsorted):  5/8 1/2 5/8

Partition: {by={v;}, by={vy, v3}} Yo
I‘\
/, \\
[ i V3 e AN
*-——ae—»
Secondary part (unsorted): 1 3/4 3/4 vy A U3

Sort each box

T
L

The final index: P =1/2,5/8, 5/8 v, v, vy

S=1,3/4,3/4,1,2,2

A dummy vertex attached

Vo
Graph H A
RN
s 1 ~
AN
. N
— o o [ P
U1 U3 V2 Uy U3 U2
vy vy vy

Primary part (unsorted):  5/8 5/8 1/2

Partition: {by={v3}, by={vy, v2}} Vo
I‘\
SN
. N
U3 vy v, e AN
*—e——»
Secondary part (unsorted): 3/4 3/4 vy U3 V2

Sort each box

(2] [2 2] Yo
L

The final index: P =1/2, 5/8,5/8 v,
$=1,3/4,3/4,1,2,2

FIGURE 3. An illustration of our indexing algorithm. Two isomorphic graphs G and H produce the same index.

the number of spanning trees in a graph were proposed [23].
An upper bound for the number of spanning trees in a
graph G, denoted by x(G), was proposed by Grimmett [24]

and is given by
1/ 2 \"!
k(G) < - 4
n\n—1

where n and e are the number of vertices and the num-
ber of edges in graph G, respectively. In the worst case, a
fully-connected graph has (n?> — n)/2 edges. Subsequently,
k (G) can be rewritten only in terms of n as

5 ("22_") n—1

u®sl )
n n—1
or
K(G) < n""% < o(m™). (©6)

Therefore, det L(0) is no more than O(n"). In computer hard-
ware, this number occupies only O(log n") or O(n log n) bits
under the assumption that the implementation of Big Integer
in modern programming languages is space efficient. More-
over, the time complexity of basic arithmetic operations such
as addition and multiplication increases not faster than a poly-
nomial of the problem size. It is noted that there are sharper
bounds for x(G) [23] but using Grimmett’s upper bound is
sufficient to show that the time complexity of building an
index is bounded by a polynomial.

Two isomorphic graphs always produce the same index.
However, two graphs with the same index are not necessarily
isomorphic. We cannot prove that the index is unique for
every simple connected graph. If it can be proved, the graph
isomorphism problem will immediately be in the complexity
class P. In the Results, it will be shown that the index may be

VOLUME 4, 2016

unique for every simple connected graph and the proof of the
conjecture is hence worth the pursuit.

B. GRAPH DATASETS
Two datasets were used for benchmarking our indexing
algorithm.

o The first dataset was proposed as counterexamples
against the use of resistance spectrums for solving
the graph isomorphism problem [25]. In this dataset,
each pair of non-isomorphic graphs produces the same
resistance spectrum. Therefore, the non-isomorphism
between two graphs cannot be detected by comparing
their resistance spectrums.

o The second dataset contains all simple connected
graphs with <10 vertices. This dataset was taken
from McKay’s collection of combinatorial data
at the Australian National University’s website:
http://cs.anu.edu.au/~bdm/ data/graphs.html.

C. BIG FRACTION

The effective resistance between vertices v; and v; can be
written as a fraction of det L(i, j)/ det L(i). This fraction can-
not be stored in a 32-bit or 64-bit floating-point register
because the precision will be lost. Thus, we developed a
new data structure called Big Fraction. The numerator and
the denominator of a Big Fraction are stored separately
as Big Integer, which is a data structure for integers with
no limitation on the maximum value. The only limitation
is the available computer memory. Big Integer is a com-
mon data type in modern programming languages such as
Java and C#. Every time a new fraction is calculated, the
numerator and the denominator are divided by their great-
est common divisor (GCD) so that the fraction is always
reduced to its lowest terms. Euclidean algorithm makes
the calculation of GCD very efficient. LU decomposition
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provides a means for the calculation of a Laplacian matrix
determinant [22].

Ill. RESULTS

Our indexing algorithm was tested for correctness using the
first two graph datasets described in the Methods. First, we
built an index of every counterexample against the use of
resistance spectrums for solving the graph isomorphism prob-
lem. Second, an index of every simple connected graph with
<10 vertices was generated. Each index was checked whether
it collides with the indexes of other non-isomorphic graphs.

TABLE 2. Primary part of the indexes of the graphs.

we generated an index for every simple connected graphs
with <10 vertices. The collisions between the primary parts
of the index were observed when the number of vertices
reaches eight as shown in Table 3. An example of the col-
lisions is given in Fig. 4. There were a small percentage of
graphs that their primary parts of the index collide. Nonethe-
less, a unique index for every graph was produced once
its primary and secondary parts of the index are combined.
In practice, the primary part of the index is sufficient
for distinguishing the vast majority of graphs. More-
over, the demand for the secondary part of the index
appeared to be unnecessary with the decreasing of the
graph size.

We tested the algorithm on the counterexamples against the
use of resistance spectrums in Fig. 2. The graph indexes are
given in Table 2. Using only the primary part of the index
was sufficient for distinguishing the non-isomorphic graphs.
Therefore, the secondary part of the index is not shown. Next,
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Graph pair Index
Left 202/5) 633/5) 1(1) TABLE 3. Number of collisions between the primary parts of the indexes
1 Right | 1(1/3) 4(7/12) 4(273) of all simple connected graphs with <10 vertices.
5 [ Left | 2(50/187) 1(7/17) 6(106/187) ST e i e o
Right | 1(5/21) 2(22/63) 4(47/8%) 2(37/63) . < #Graphs that their indexes collide w.lt' the others
5 [Left [ I(35/116) 1(9/29) 1(13/29) 2(267/464) 3(67/116) 1(71/116) 8 S 2 _ ' Combining the
Right | 1(5/19) 3(42/95) 2(43/76) 3(58/95) 5 £ g | Usingonly the primary primary and
4 | Left | I(35/117) 1(73/234) 2(97/234) 2(17/39) 1(53/117) 2(541/936) % 2 | partof the index secondary parts of
Right | 1(35/136) 4(1223/2856) 1(15/34) 2(107/238) 1(83/136) the index
s | Left 1(5/13) 1(6/13) 2(31/52) 1(8/13) 4(2/3) 2 1 0 0
Right | 4(10/21) 4(13/21) 1(1) 3 2 0 0
Left | 1(130/431) I(185/431) 2(966/2155) 1(202/431) 1(248/431) 4 6 0 0
p 2(1319/2155) 1(266/431) 5 21 0 0
Right | 1(186/529) 1(190/529) 1(197/529) 1(242/529) 1(311/529) 6 112 0 0
8 1(312/529) 2(1255/2116) 1(325/529) 7 353 0 0
Left | L(30/431) 1(185/431) 2(966/2155) 1(202/431) 1(248/431) 3 1,117 244 (2.19%) 0
; 2(1319/2155) 1(266/431) 9 261,080 768 (0.29%) 0
Right | |(455/1528) 1(655/1528) 2(1997/4584) 1(171/382) 10 | 11,716,571 194,556 (1.66%) 0
1(173/382) 1(179/382) 1(935/1528) 1(943/1528) Towl T 11959563 195348 (1.63%) 0
Left 1(130/431) 1(185/431) 2(966/2155) 1(202/431) 1(248/431) 2o 2 =27
2(1319/2155) 1(266/431) . .
8 ot | L(120/457) 1(317/914) 2(1136/3199) 1(202/457) 1(517/914) Whefl the number of yertlces is eight, there were
& 2(3767/6398) 1(279/457) 122 pairs of non-isomorphic graphs where each pair has
Left ;EB%‘E)55‘)(‘1222463/‘1‘;12)(966/2‘55)‘(202/431)‘(248/43‘) the same primary part of the index. When the number
9 o T(767293) 24091 72 1(106725%) T(125/398) 2076171758 of vertices 1§ mne., the collisions between the primary
g 1(331/586) 1(173/293) parts of the index increased as observed from 384 graph
Let | 1(130/431) 1(185/431) 2(966/2155) 1(202/431) 1(248/431) pairs. When the number of vertices is 10, three and four
0 2(1319/2155) 1(266/431) . hi hs with th . f th
Riaht | [@55/1528) 1(655/1528) 2(1997/4584) 1(171/382) NON-1SOMOrphIc graphs with the same primary part 0 t ©
& 1(173/382) 1(179/382) 1(935/1528) 1(943/1528) index were first observed. There were 94,000 graph pairs,
Left ;8;?/9‘%)5 51)(1152/6463/}‘% 12)(%6/2155) 1(202/431) 1248/431) 2,148 graph triplets, and 28 graph quadruplets that lead to the
11 o | TSI 1(73/254) 2G0T T70) 2G468) 1G5 TT) collisions. Wél‘, expected that collisions between the p.rlmary
g 2(541/936) parts of the index would occur more frequently with the
Left ;Eg%‘gi)551511523/6463/‘1‘;%)(966/2‘55) 1(202/431) 1(248/431) increasing of the graph size. For instance, collisions among
12 2(58095/212624) 2(14655/53156) 2(19347/53156) three or four graphs would expand to 00111510n§ among any
Right | 4(117931/265780) 2(120967/212624) 4(125659/212624) number of graphs. Unfortunately, further experiments were
‘I‘E?;‘g;‘f;l/ )12513;;2‘)31) AT T TETT not feasible due to the extremely large number of connected
Left | 5 (1319/2155) 1(266/431) graphs. There are 1,006,700,565 graphs with 11 vertices, and
1(55104/170581) 1(55118/170581) 2(14614899/43668736) 64,059,830,476 graphs with 12 vertices.
2(58093535/173310296) 2(15487915/43327574)
13 2(16180123/43668736) 2(18957635/43668736)
Right | 2(19654771/43327574) 2(9904548/21663787) IV. DISCUSSION
2(5125179/10917184) 2(102143063/173310296) We presented a graph indexing algorithm for an exact match-
4(103517595/174674944) 2(106309919/173310296) in rv. A numerical index of a eraph can nstr
2(26616061/43327574) 2(26959547/43668736) g query. umerical index of a graph can be constructed

in polynomial time. The index is composed of primary and
secondary parts. The primary part is a list of n fractions where
n is the number of vertices. On the other hand, the secondary
part is a list of fractions of which its size is variable with the
partitioning of vertices. Features of our indexing algorithm
are discussed as follows.
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Graph G

FIGURE 4. Two non-isomorphic graphs have the same primary part of the index. The primary part of the index is (19/65,
19/65, 179/520, 179/520, 179/520, 179/520, 28/65, 28/65). However, their secondary parts of the index are different. The
secondary part of the index of graph G (left) is (31/80, 31/80, 31/80, 31/80, 31/80, 31/80, 31/80, 31/80, 142/231,
142/231, 142/231, 142/231, 142/231, 142/231, 142/231, 142/231, 65/168, 65/168, 65/168, 65/168, 65/168, 65/168,
65/168, 65/168). On the other hand, the secondary part of the index of graph H (right) is (71/159, 74/159, 481/1272,
481/1272, 71/159, 74/159, 71/159, 74/159, 137/321, 149/321, 137/321, 149/321, 86/107, 86/107, 137/321, 149/321,

11/32, 89/96, 11/32, 137/384, 137/384, 89/96, 11/32, 89/96).

« The major difference between our indexing algorithm
and the resistance spectrum method is that our algorithm
adds a dummy vertex to a graph. The dummy vertex
plays an important role for being a reference point dur-
ing vertex labeling. Every original vertex is labeled by
the effective resistance between itself and the dummy
vertex. The vertex labels become the primary part of
the index and allow the partitioning of vertices. Each
block in the partition is perturbed so that the vertices are
relabeled to form the secondary part of the index.

o The index is hierarchically separated into primary and
secondary parts. Most non-isomorphic graphs can be
distinguished by the primary part of the index, which
has a fixed length and is easily computed. There were
only a few graphs that their non-isomorphisms must be
decided by the secondary part of the index, which is
length variable and can be computed using more efforts.

o The time complexity of our indexing algorithm is
bounded by a polynomial. More precisely, computing an
index requires no more than (n + 1)? calculations of the
determinant of an n x n matrix. This is a sharp contrast to
the canonical labeling algorithms, which its asymptotic
bound is difficult to estimate.

o The calculation of a matrix determinant was effi-
ciently implemented in many software libraries such as
LINPACK [26], MATLAB [27], and Mathematica [28].
However, a matrix of Big Fractions was not provided.
Thus, we had to implement Big Fraction and used LU
decomposition, which is a standard method for calculat-
ing a matrix determinant. In the case of sparse matrices,
several optimization techniques can speed up the com-
putation of determinants [29]. Moreover, each determi-
nant can be computed independently and extremely fast
on a massively parallel computer.

o The performance of determinant computation in our
indexing algorithm largely suffers from the lack of
primitive operators for Big Fraction. In theory, the time
complexity of arithmetic operators for Big Fraction
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implemented in software grows in a polynomial rela-
tionship with the problems size but the execution time in
practice is slower than primitive data types by orders of
magnitude. This problem can be solved only by imple-
menting arithmetic hardware for Big Fraction.

« We cannot prove that every simple connected graph
produces a unique index. If the index is unique, the
graph isomorphism problem will immediately be in the
complexity class P. The potential of using our index-
ing algorithm for solving the graph isomorphism prob-
lem remains an open problem. On the other hand, a
counterexample such as two non-isomorphism graphs
producing the same index is also useful for further
improvement of our indexing algorithm.

o Our indexing algorithm is not only limited to connected
graphs but it is also applicable to disconnected graphs.
A disconnected graph can be decomposed into multiple
connected subgraphs. The index of each subgraph can
be computed individually and can be combined later to
form the index of the disconnected graph.

Although some issues mentioned above remain unsolved,
our indexing algorithm illustrated an interconnection between
graph isomorphism, electrical resistance, and linear algebra.
More importantly, our indexing algorithm suggested a poly-
nomial time algorithm for solving the graph isomorphism
problem. We sincerely persuade other researchers to prove
the conjecture that every simple connected graph produces
a unique index or show a counterexample that disproves the
conjecture.
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