บทคัดย่อ

การดัดแปรหมู่ฟังก์ชันด้วยสารชีวโมเลกุลได้อย่างมีประสิทธิภาพมีความสำคัญต่อการพัฒนาวัสดุสำหรับการ ประยุกต์ทางเทคโนโลยีชีวภาพครอบคลุมตั้งแต่อุปกรณ์รับรู้ทางชีวภาพ การนำส่งยาและยืนแบบมีเป้าหมาย พอลิเมอร์เป็นวัสดุที่ได้รับความสนใจเพิ่มมากขึ้นเป็นลำดับสำหรับการตรึงสารชีวโมเลกุล อปกรณ์ทางชีวการแพทย์ เนื่องจากสามารถปรับให้มีหมู่ฟังก์ชันได้หลากหลายในสัดส่วนที่ควบคุมได้โดยการเลือกใช้การผสมผสานมอนอเมอร์ห ลายชนิดในสัดส่วนที่เหมาะสมในขั้นการทำปฏิกิริยาพอลิเมอไรเซชัน งานวิจัยนี้แสดงให้เห็นการพัฒนา(โค)พอลิเมอร์เป็น วัสดุฟังก์ชันนัลสำหรับการประยุกต์ทางเทคโนโลยีชีวภาพประเภทต่างๆ ได้แก่ การดัดแปรหลังพอลิเมอไรเซชันแบบเป็น ขั้นตอนของโฮโมพอลิเมอร์ที่มีหมู่เพนทาฟลูออโรเฟนิลเอสเทอร์เพียงชนิดเดียวสามารถใช้เป็นวิธีการที่สะดวกในการ นำไปสู่การเตรียมนาโนเจลตอบสนองต่อตัวรีดิวซ์ที่มีความเข้ากันได้ทางชีวภาพ และพาหะนาโนนำส่งยารักษามะเร็งที่ ตอบสนองต่อพีเอชอย่างมีประสิทธิภาพ โคพอลิเมอร์ระหว่าง 2-เมทาคริโลอิลออกซีเอทิลฟอสโฟริลโคลีน และ กรดได ไฮโดรไลโปอิกที่มีหมู่เมทาคริเลต สามารถใช้เป็นวัสดุเคลือบแบบสากลที่ต้านการเกิดฟาวลิงบนวัสดุทางชีวการแพทย์ทั้ง ที่เป็นโลหะและพอลิเมอร์ โคพอลิเมอร์แบบสุ่มของพอลิเมทาคริลิกแอซิด และ พอลิ(2-เมทาคริโลอิลออกซีเอทิลฟอสโฟ ริลโคลีน) ที่มีหมู่ปลายเป็นไทออลและมีหมู่ว่องไวสำหรับการเชื่อมต่อกับยารักษามะเร็งและหมู่ที่แสดงสมบัติต้านการเกิด ฟาวลิง สามารถนำมาใชเป็นสารทำให้แท่งนาโนทองคำเสถียร เพื่อนำไปพัฒนาเป็นพาหะที่มีความเข้ากับได้ทางชีวภาพ และมีหลายหน้าที่สำหรับการรักษามะเร็งแบบที่ออกฤทธิ์เสริมกันระหว่างผลของการเกิดความร้อนจากแสงและเคมี บำบัด อนุภาคนาโนแม่เหล็กที่ทำให้เสถียรด้วยพอลิแอคริลิกแอซิดคอนจูเกตกับโดเมนที่เชื่อมกับผนังเซลล์ที่ได้จากออโต มิวตาโนไลซิน สามารถใช้การแยกและการตรวจวัดมิวแทนส์สเตรปโตคอค ซึ่งเป็นสาเหตุสำคัญที่ทำให้เกิดฟันพุ ไคอาศัย หลักการของการแยกด้วยแม่เหล็กและการกรองด้วยเมมเบรนเลือกขนาด โปรตีนรีคอมบิแนนท์ของออสทิโอพอนตินที่ ผลิตจากพืช (p-rhOPN) ซึ่งตรึงบนพื้นผิวของกระจกเป็นสารชีวโมเลกุลที่ส่งเสริมการยึดเกาะและการแปรสภาพของ เซลล์กระดูก p-rhOPN ที่คอนจูเกตบนพื้นผิวของแบคทีเรียลเซลลูโลสเมมเบรนส่งเสริมการแปรสภาพของเซลล์กระดูก และการเกิดแคลเซียมเมื่อทดสอบกับเซลล์ต้นกำเนิดเอ็นปริทันต์ของคน แสดงถึงศักยภาพในการพัฒนาเป็นแผ่นกั้น เนื้อเยื่อสำหรับการประยุกต์ทางวิศวกรรมเนื้อเยื่อของกระดูก

คำสำคัญ: พรีเคอร์เซอร์พอลิเมอร์, ตอบสนองต่อสิ่งเร้า, ต้านการเกิดไบโอฟิล์ม, พาหะนำส่งยา, การตรวจวัดแบคทีเรีย, ออสติโอพอนทิน, การฟื้นฟูเนื้อเยื่อกระดูก

ABSTRACT

Effective functionalization with bioactive molecules is certainly important for the development of materials desirable for biotechnology-related applications ranging from biosensor, targeted drug/gene delivery to biomedical devices. Polymeric platform has become increasingly attractive for biomolecule immobilization because a variety of functional groups can conveniently be incorporated and proportionally customized employing a combination of specific monomers in the polymerization step. This research features the development of (co)polymers as functional materials for a number of biotechnology-related applications. Sequential post-polymerization modification of a single pentafluorophenyl ester-containing homopolymer can be used as a convenient route to biocompatible redox-responsive nanogels and effective pH-responsive nanocarrriers for anticancer drug. A copolymer of 2-methacryloyloxyethyl phosphorylcholine (MPC) and a methacrylatesubstituted dihydrolipoic acid can be employed as a universal antifouling coating on various biomedically relevant substrates including metal and polymeric substrates. A thiol-terminated random copolymer of poly(methacrylic acid) and PMPC having both active sites for anticancer drug conjugation and anti-fouling characteristic was applied as polymeric stabilizer for gold nanorods in order to develop biocompatible and multifunctional carrier for synergistic cancer therapy based on a combination of photothermal effect and chemotherapy. Magnetic nanoparticles stabilized with poly(acrylic acid) conjugated with cell-wall-binding-domain of automutanolysin for mutans streptococci separation/detection was based on a combination of immunomagnetic separation and size-selective membrane filtration. Glass-immobilized plant-derived recombinant human osteopontin (p-rhOPN) was found to be effective biomolecule that can promote osteoblast adhesion and differentiation. p-rhOPN conjugated on the surface of bacterial cellulose membrane also promoted osteogenic differentiation as well as calcification when tested against human periodontal ligament stem cells. This demonstrates its potential to be developed into guided tissue regeneration membrane for bone tissue engineering applications.

Keywords: precursor polymer, stimuli responsive, antibiofilm formation, drug carriers, bacterial detection, osteopontin, bone tissue regeneration