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Abstract

Project Code: RSA 6080005
Project Title: Investigation antihypertensive mechanism of hesperidin in nitric oxide-deficient and
2K-1C hypertensive rats
Investigator: Associate Professor Poungrat Pakdeechote, Khon Kaen University
E-mail Address: ppoung@kku.ac.th
Project Period: 3 years

Hesperidin, a flavonoid derived from citrus fruits, possesses several beneficial effects
including anti-oxidation and anti-inflammation. The aim of this study was to investigate the effects of
hesperidin on cardiovascular parameters in animal models of hypertension, two-kidney, one-clipped
(2K-1C) hypertensive rats and L-NAME hypertensive rats. were treated with hesperidin at 20mg/kg
or 40mg/kg or losartan at 1 0 mg/kg beginning at three weeks after surgery and then continued for
four weeks (n=8/group). Hesperidin reduced blood pressure in a dose-dependent manner in
hypertensive rats compared to untreated rats (p < 0:05). This antihypertensive effect was associated
with suppression of the renin-angiotensin system (RAS) cascade that mediated oxidative stress and
sympathoexcitation in 2K-1C-hypertensive rats (p < 0:05). In L-NAME hypertensive rats, they were
treated with L-NAME (40 mg/kg); L-NAME plus hesperidin (15 mg/kg), or hesperidin (30 mg/kg), or
captopril (2.5 mg/kg) for five weeks (n=8/group). Hesperidin or captopril significantly prevented L-
NAME induced hypertension and cardiac remodeling. These were associated with reducing oxidative
stress and inflammatory markers and enhancing plasma nitric oxide metabolite (NOx) in L-NAME
treated groups. Based on these results, it can be presumed that hesperidin has antihypertensive and
cardioprotective effects. Its antihypertensive action might be associated with reducing RAS cascade-
induced NOX2 over-expression and sympathoexcitation in 2K-1 C hypertensive rats. Subsequently,
its cardioprotective effects in L-NAME hypertensive rats may involve its antioxidant and anti-
inflammatory effects.
Keywords: hesperidin; the renin-angiotensin system; sympathoexcitation; cardiovascular function

and remodeling; oxidative stress; inflammation.
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It is well established that activation of the renin-angiotensin system (RAS) mainly mediates
the development of hypertension in an animal model of two-kidney, one-clip (2K-1C) rats (1). This
was supported by several studies in that an elevation of renin (2), and angiotensin converting enzyme
(ACE) activities, angiotensin Il (Ang Il) levels (3), as well as upregulation of angiotensin Il type 1
receptor (AT, receptor) protein expression in the 2K-1C model were observed (4). Although Ang I,
the main effector peptide of RAS, primarily causes hypertension via binding to AT, receptors to
develop high vascular resistance and salt water retention, other important mechanisms such as Ang
II-mediated oxidative stress (5) and sympathoexcitation have recently been proposed (6).

There is increasing evidence to confirm that oxidative stress is implicated in pathophysiology
of 2K-1C Goldbatt hypertension (7, 8). The mRNA levels of AT, receptor, NADPH oxidase (NOX)

subunits p47°"* and gp91°"*

(NOX2) in renal cortex and aortic tissue of 2K-1C rats were elevated
(4, 8). NOXs are primary sources of reactive oxygen species (9). NOX2 is mainly identified in
endothelial cells and possibly in vascular smooth muscle cells, thus, overexpression of NOX2 in
endothelial cells has been reported to promote Ang ll-induced vascular oxidative stress and
endothelial dysfunction in mice (10, 11). Overexpression of gp91°"* in aortas (4) and systemic
oxidative stress (12) were revealed in 2K-1C hypertension. Subsequently, up-regulation of p47°"
protein associated with an increase in vascular superoxide (O,”) production and endothelial
dysfunction were displayed in 2K-1C rats (12).
There is substantial evidence showing that Ang Il potentiates sympathetic nerve stimulation
in rat mesenteric arteries via increased noradrenaline (NA) release from presynaptic sites (13, 14).
Activation of sympathetic vasomotor tone in RAS-dependent hypertension has been clearly
demonstrated (15). This sympathoexcitation during renovascular hypertension is involved in the
upregulation of AT, receptor protein in the rostral ventrolateral medulla (RVLM) of 2K-1C hypertensive
animals (16). Koyama and coworkers reported the enhancement of sympathetic neurotransmission
in mesenteric vascular beds of renovascular hypertensive rats (17). Moreover, Zimmerman and
coworkers reported that chronic renovascular hypertension was associated with an elevation in
mesenteric vascular responses to sympathetic nerve stimulation (18).
Nitric oxide (NO) is a crucial vasodilator derived from vascular endothelium to regulate vascular

tone [1]. A reduction of NO production results in increased vascular resistance and high blood

pressure. N®-nitro L-arginine methyl ester (L-NAME), an L-arginine analogue, is widely used as an

inhibitor of nitric oxide synthase (NOS) activity to represent an animal model of hypertension. It has



been reported that L-NAME-induced hypertension in rats is characterized by insufficient NO
production, increased systemic oxidative stress, inflammation and endothelial dysfunction [2].
Furthermore, L-NAME-induced hypertension associated cardiovascular remodeling has also been
reported in rats. For example, L-NAME (40mg/kg) administration for 4 or 5 weeks causes high blood
pressure and cardiovascular remodeling including, left ventricular hypertrophy, myocardial fibrosis
and thickening of vascular wall [3-5]. It is generally known that the main sequel of cardiovascular
remodeling is heart failure, which is the major cause of death worldwide [6].

The initial stage of cardiac remodeling is myocardial hypertrophy because of the adaptive
response to a high-pressure load to preserve cardiac function and obtain normal cardiac work. In
addition, the cardiac remodeling process in L-NAME treated rats is involved in a production of
myocardial fibrosis [7]. There are substantial data to show the molecular mechanism of extensive
areas of cardiac fibrosis which is associated with the activation of various downstream inflammatory
[8] and oxidative stress initiatives [9, 10]. For example, a high level of tumor necrosis factor (TNF-
Q), a pro-inflammatory cytokine, developing in response to oxidative stress in L-NAME induced
hypertension has been reported [4, 11]. These inflammatory responses subsequently activate the
profibrotic mediator of the transforming growth factor B1 (TGF-B1) [11]. It is well established that
TGF-B1 has a key role in fibrogenesis by activating apoptosis, collagen and matrix protein synthesis
[12-14]. For vascular structural changes in hypertension, it is known to be an adaptive response to
an increase in wall tension [15]. This response is also related to extracellular matrix degradation of
elastic fibers since the up-regulation of matrix metalloproteinase-2 (MMP-2) and matrix
metalloproteinase-9 (MMP-9) expression in vessel tissue has been confirmed in animal models of
hypertension. Several lines of evidence have indicated that activation of MMP-2/9 protein expression
found in the vascular remodeling process is mediated by the inflammatory cytokine, TNF-OL [16-18].
Thus, it is noteworthy that natural products with high anti-oxidant and anti-inflammatory activities
might be useful to alleviate cardiovascular alterations induced by nitric oxide deficiency.

Hesperidin is a flavanone glycoside, a subclass of flavonoids, abundantly found in citrus fruits
such as lemon or orange peels or juices [24]. Numerous beneficial effects of hesperidin have been
published. For example, the antioxidant effect of hesperidin has been reported to be able to sequester
1,1-diphenyl-2-picrylhydrazyl (DPPH) and protect cell injury-induced by paraquat and hydrogen
peroxide [25], reduce plasma levels of lipid peroxidation markers and increase antioxidant enzyme
activities in heart tissue in experimentally ischemic myocardial rats [26]. Hesperidin has also exhibited

an anti-inflammatory effect by reducing circulating inflammatory markers, i.e. TNF-Q,, interleukin 6
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(IL-6), and a high-sensitivity C-reactive protein (hs-CRP), in patients with type 2 diabetes [27] and
suppressed inflammatory responses in lipopolysaccharide-induced RAW 264.7 cells [28].
Subsequently, a clinical study revealed that a combination of hesperidin, diosmin and troxerutin was
effective to relieve the symptoms of acute hemorrhoidal disease [29]. Hesperidin can inhibit lipase
activity from the porcine pancreas (19). The beneficial effect of hesperidin on microcirculation has
been shown that in a combination of hesperidin and diosmin in Raynaud's syndrome treatment,
capillary circulation can be improved and edema of the fingers of the hands is reduced (20).
Presently, hesperidin is used as an effective supplementary treatment to relieve hemorrhoids,
varicose veins, and poor circulation as in venous stasis (21, 22). Additionally, a previous study
reported that hesperidin had an antihypertensive effect associated with reducing endothelial
dysfunction and oxidative stress in spontaneously hypertensive rats (23). Recently, the current
authors have demonstrated an antihypertensive effect of hesperidin in renovascular hypertensive rats
that involved the suppression of the renin-angiotensin system [30].

Captopril is an angiotensin converting enzyme (ACE) inhibitor and commonly used as an anti-
hypertensive drug [19]. Its mechanism of action is well documented to reduce angiotensin Il
production which subsequently suppresses renin-angiotensin-aldosterone system (RAAS)[19]. Other
possible anti-hypertensive mechanisms include increase of bradykinin and prostaglandins levels [20],
inhibition of superoxide production [21], and free radical scavenging effect [22]. Many studies have
already reported on cardiovascular effects of captopril in nitric oxide-deficient hypertensive rats, i.e.
lowering the high blood pressure, improvement of vascular function [21], and prevention of
cardiovascular remodeling [23]. In L-NAME hypertensive rats, there is an evidence showing the up-
regulation of angiotensin Il receptor type 1 (AT1R) which mediates nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase expression and superoxide formation [10]. This study used captopril to
be a positive control agent because the L-NAME hypertension model is also involved with activation
of RAAS, where captopril inhibits the RAAS.

Losartan, a selective non-peptide angiotensin AT, receptor antagonist, was used as a positive
control in this study. It has been well established to target RAS to manage hypertension. Several
studies reported other potential effects that are linked to its antihypertensive effects including,
antioxidant, anti-inflammatory, and anti-proliferative effects (2, 7, 24, 25). Of special importance is
that losartan can inhibit sympathetic nerve activity and AT, receptor expression in 2K-1C hypertensive

rats (7).



There are two main aims of the present study, 1) to explore whether hesperidin could prevent
L-NAME-induced hypertension and cardiovascular remodeling in rats, 2) to investigate whether
hesperidin could reduce blood pressure, inhibit the RAS cascade, and suppress sympathetic nerve

activity and NOXs protein expression in renovascular hypertensive rats.

AB/NINAADI
Part |
Animals and experimental protocols

Male Sprague-Dawley rats weighing 150-180 g were obtained from Nomura Siam
International Co., Ltd., Bangkok, Thailand. They were housed at 25 + 2°C with a 12 h dark-light
cycle at the Northeast Laboratory Animal Center, Khon Kaen University, Khon Kaen, Thailand. All
procedures complied with the standards for the care and use of experimental animals and were
approved by the Animal Ethics Committee of Khon Kaen University, Khon Kaen, Thailand (AEKKU-
NELAC 37/2559). After a week of acclimatization, rats were anesthetized with pentobarbital sodium
(60 mg/kg, ip.) and then a silver clip (0.2 mm i.d.) was placed on to the left renal artery. The sham-
operated group had the same surgical procedure but the clips were not applied on the left renal
arteries. Three weeks after the surgery, the 2K-1C rats were divided into 5 groups of 8-9 rats each.

Group | Sham + vehicle or polyethylene glycol (PG) (0.5 ml/100 mg/BW; p.o.)

Group Il 2K-1C + vehicle or PG (0.5 ml/100 mg/BW; p.o.)

Group llIl 2K-1C + hesperidin (20 mg/kg/BW; p.o.)

Group IV 2K-1C + hesperidin (40 mg/kg/BW; p.o.)

Group V 2K-1C + losartan (10 mg/kg/BW; p.o.)
Hesperidin, losartan, and PG were intragastrically administered daily for 4 weeks of the study.
Indirect measurement of blood pressures and heart rates (HR) in conscious rats

Indirect blood pressures were measured once a week for 8 weeks. Systolic blood pressures
(SP) and HRs were measured in conscious rats by the tail-cuff plethysmography (IITC model 179
blood pressure analyzer) method. In brief, conscious rats were placed in a restrainer and allowed
to calm prior to blood pressure measurement. The tail of each rat was placed inside the tail cuff,
and the cuff was automatically inflated and released. For each rat, blood pressures and HRs were
recorded as the mean values from the three measurements at 15 min intervals.

Direct measurement of blood pressures and HRs in unconscious rats



Direct blood pressure and HR were determined at the end of study. Briefly, rats were
anesthetized by intra-peritoneal administration of pentobarbital-sodium (60 mg/kg). Body
temperatures were monitored. A polyethylene tube was inserted into a femoral artery for blood
pressure measurement. SP, diastolic blood pressures (DP), mean arterial pressures (MAP) and HRs
were continuously monitored by way of pressure transducers and recorded using the Acknowledge
Data Acquisition and Analysis Software (BIOPAC Systems Inc., California, USA).

Measurement of oxidative stress markers

Blood was collected from abdominal aortas, mixed with EDTA and placed on ice for plasma
malondialdehyde (MDA) measurements. The concentration of plasma MDA was measured as
thiobarbituric acid-reactivity (TBA) reactive substances by a spectrophotometric method as previously
described (12). Productions of O,” in vascular tissues were determined by lucigenin-enhanced
chemiluminescence. The carotid artery was rapidly removed and placed in ice-cold saline, and
connective tissues and adherent fat was cleaned off. The vessel was cut into 1 cm lengths and
incubated with 1 mL oxygenated Krebs-KCI buffer and allowed to equilibrate at pH 7.4, 37 °C for 30
min. Thereafter, lucigenin was added to the sample tube and placed in a luminometer (Turner
Biosystems, Sunnyvale, CA, USA). Luminometer counts were recorded every 30 s for 5 min and
averaged. Vascular tissue O," production was expressed as relative light unit counts per minute per
milligram of dried tissue weight.

Biochemical measurements

The concentration of plasma Ang Il was measured using an Ang Il Enzyme immunoassay
(EIA) kit (St. Louis, MO, USA). ACE activity was evaluated in plasma using a fluorescent assay
following the basic method with some modifications (26). Plasma NA was determined by HPLC with
an electrochemical detector (DECADE Il, Waters, Milford, MA) using commercial kits (RECIPE,
Dessauerstralte 3, D-80992 Munich, Germany). Plasma nitric oxide metabolites (NOx) were assayed
using an enzymatic conversion method with some modifications (12).

Vascular Function Study
Experimental protocols in isolated mesenteric vascular beds

After exsanguination, mesenteric vascular beds were carefully isolated and then placed on a
stainless-steel grid in a humid chamber. The preparations were perfused with physiological Krebs’
solution at a constant flow rate of 5 ml/min, using a peristaltic pump (07534-04, Cole-Palmer
Instrument, lllinois, USA). Kreb’s solution is composed of the following (mM): NaCl 118, NaHCO,
25, KCI 4.8, KH,PO, 1.2, MgS0,.7H,0 1.2, CaCl, 1.25 and glucose 11.1. The mesenteric vascular



beds were pretreated with a desensitizing agent, capsaicin (0.1 yM), for 20 min followed by a 30 min
washout period to facilitate a desensitization of vanilloid receptors and to cause a diminution of
sensory neurotransmitters. After the washout period, electrical field stimulation (EFS) (5-40 Hz, 90
V, 1 ms, for 30 s at 5-min intervals) was performed. Contractile responses to EFS were detected as
changes in mean perfusion pressure (mmHg) using a pressure transducer and data recorded via the
BIOPAC System (BIOPAC Systems Inc., California, USA). The preparations were allowed to
equilibrate for 30 min before the next trial. After the resting period, NA (0.15 nmol-15 nmol) was
applied to evaluate the contractile responses to exogenous NA. To determine vasoactive
performance of resistance small arteries, methoxamine (5-7 uM) was added into Kreb’s solution to
raise tone 70-90 mmHg above baseline. Subsequently, different doses of vasoactive agents,
acetylcholine (ACh, 1 nM-0.01 uM) or sodium nitroprusside (SNP, 1 nM-0.01 uM) were applied.

Experimental protocols in isolated aortic rings

The thoracic aorta was rapidly removed and cut into rings 2-3 mm long for tension
measurements. They were mounted in 15 ml baths containing Krebs’ solution at 37 °C and gassed
with a 95% O, and 5% CO, gas mixture. Isometric contractions were recorded with a resting tension
of 1 g using a transducer connected to a 4-channel bridge amplifier and a PowerLab A/D converter
and a PC running Chart v5 (PowerLab System, AD Instruments, Australia). ACh (0.01 uyM-3 uM)
induced endothelial mediated-relaxations and SNP (0.01 uM-3 pM) were assessed by pre-contracting
with phenylephrine (10 uM) and relaxations were expressed as % relaxation.

Western blot analysis

phox phox

AT, receptor, p47~™" and gp91 protein expressions in the thoracic aorta were measured
using the Western blot method following a previous publication as described with some modifications
(12). The vessels were homogenized and the proteins determined by electrophoresis on a sodium
dodecylsulfate polyacrylamide gel electrophoresis system. Thereafter, the proteins were
electrotransfered onto a polyvinylidene difluoride membrane and blocked with 5% skimmed milk for
2 hours at room temperature before overnight incubation at 4°C with mouse monoclonal antibodies
to p47°"* and gp91°"* (BD Biosciences, CA, USA) or rabbit polyclonal antibodies to AT, receptor
(Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA). After the incubation period, the membranes
were washed with tris-buffered saline with tween and then incubated for 2 hours at room temperature
with horseradish peroxidase conjugated secondary antibody. The blots were developed in
Amersham™ ECL™ Prime solution (Amersham Biosciences Corp., Piscataway, NJ, USA), and

densitometric analysis was performed using an ImageQuantTM 400 (GE Healthcare Life Sciences,



Piscataway, NJ, USA). The intensities of AT, receptor, p47°" and gp91°"* bands were normalized
to that of 3-actin, and data were expressed as a percentage of the values determined in the control

group from the same gel.

Partll
Materials and Methods
Drugs and chemicals

Hesperidin (purity 2 98%) was purchased from Chem Faces Company (Hubei, China). N(G)-
Nitro-L-arginine methyl ester hydrochloride (L-NAME) and captopril were purchased from Sigma-
Aldrich Corp (St Louis, MO, USA). All other chemicals used in this study were obtained from standard
companies and were of analytical grade quality.

Animals and Experimental protocols

Male Sprague-Dawley rats (body weight 220-250 g) were supplied by Nomura Siam International
Co., Ltd., Bangkok, Thailand. The animals were housed in a HVAC (Heating, Ventilation and Air-
Conditioning) System (25+2 °C) facility and maintained on a 12 h light and 12 h dark cycle with free
access to a standard rat diet and water at the Northeast Laboratory Animal Center, Khon Kaen
University. All experimental protocols in this study were in accordance with the standards for the care
and use of experimental animals and the approval for all experiments were obtained from the Animal
Ethics Committee of Khon Kaen University, Khon Kaen, Thailand (AEKKU-NELAC 37/2559).

After seven days of an acclimatization period, rats were randomly assigned to 5 groups (8/group).
The control group animals received tap water and were orally administrated propylene glycol (PG,
1.5 mL/Kg) as a vehicle. L-NAME treated rats received L-NAME (40 mg/kg/day) in their drinking
water and were further divided into 4 following groups; L-NAME plus PG, L-NAME plus hesperidin
at dose 15 mg/kg (L-NAME+H15 group), L-NAME plus hesperidin 30 mg/kg (L-NMAE+H30 group),
L-NAME group plus captopril at a dose 2.5 mg/kg (L-NAME+Cap group). Additionally, normal rats
(n=5) were orally treated with hesperidin (30 mg/kg) for 5 weeks to test the hypotensive effect of
hesperidin. Hesperidin and captopril were dissolved in vehicle and intragastrically administered once
daily for five weeks. The doses of hesperidin and captopril used in this study were influenced by
previous studies in this laboratory [10, 30].

Blood pressure measurements

To monitor blood pressure changes throughout the experimental period, systolic blood pressure

(SP) was obtained in awake rats once a week for 5 weeks using tail-cuff plethysmography (IITC/Life

7



Science Instrument model 229 and model 179 amplifier; Woodland Hills, CA, USA). At the end of
the final experimental day, rats were anesthetized with pentobarbital sodium (60 mg/kg, ip.). Then,
the femoral artery was cannulated and connected to a pressure transducer for monitoring baseline
values of SP, diastolic blood pressure (DP), mean arterial pressure (MAP), and heart rate (HR) using
the Acknowledge Data Acquisition software (Biopac Systems Inc., Santa Barbara, CA, USA).

Collection of blood and organs

After blood pressure measurement, rats were sacrificed by exsanguination and blood samples
were collected from abdominal aortas into EDTA or heparin tubes for assays of oxidative stress and
inflammatory markers. The carotid arteries were rapidly excised for analysis of superoxide (O,")
production. The thoracic aortas and heart tissues were collected for western blotting and
morphometric analysis.

Assays of vascular 02'_ production, plasma malondialdehyde (MDA), plasma nitric oxide
metabolite (nitrate/nitrite, NOx), plasma TNF-Ol and plasma TGF- |31 levels

The carotid arteries were cleaned from connective tissues and cut into 0.5 cm length and
incubated with 1 mL oxygenated Krebs-KClI solution at pH 7.4, 37 °C for 30 minutes. Production of
0O, in carotid arteries was determined by lucigenin-enhanced chemiluminescence as previously
described [31] with some modifications [32]. Plasma NOx was assayed using an enzymatic
conversion method [33] with some modifications [32]. The concentrations of plasma TNF-OL and TGF-
[31 were measured using enzyme-immunoassay assay (ELISA) kits (eBioscienc, Inc., San Diego,
CA, USA and ab119557, Abcam Plc, Cambridge, UK).

Morphometric analysis of thoracic aorta and heart tissue

Heart weight (HW) and left ventricular weight (LVW) were measured, and calculated as an
LVW/BW ratio. Thereafter, the left ventricles and thoracic aortas were fixed with 4%
paraformaldehyde and then embedded in paraffin and cut into serial 5-flm-thick sections. Each
section was stained with hematoxylin and eosin (H&E) and/or Picrosirius Red. Sections were
captured with a Digital sight DS-2MV light microscope (Nikon, Tokyo, Japan) or a stereoscope (Nikon
SMZ745T with NIS-elements D 3.2, Tokyo, Japan). Morphometric evaluations of the sections were
performed with Image J software (National Institutes of Health, Bethesda, MD, USA).

Western blot analysis of tumor necrosis factor receptor 1 (TNF-R1), TGF- B1, MMP-2 and

MMP-9 protein expressions in cardiac and aortic tissues



Protein samples were prepared by homogenization of cardiac and aortic tissues in a lysis buffer
(Cell Signaling Technology Inc., Danvers, MA, USA). The proteins were then electrophoresed on a
sodium dodecylsulfate polyacrylamide gel electrophoresis system and transferred to a polyvinylidene
fluoride membrane (Millipore Corporation, Bedford, MA, USA). The membranes were blocked with
5% skimmed milk in Tris-buffered saline (TBS) with 0.1% Tween 20 for 2 hours at room temperature
before overnight incubation at 4°C with primary antibodies against TNF-R1, TGF-B1, MMP-2, MMP-
9 or B-actin (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA). Thereafter, the membranes
were washed three times with TBS and then incubated for 2 hours at room temperature with
horseradish peroxidase conjugated secondary antibody. The protein bands were detected using
Luminata™ Forte HRP detection reagent (Merck KGaA, Darmstadt, Germany) and densitometric
analysis was performed using ImageQuantTM 400 (GE Healthcare Life Sciences, Piscataway, NJ,
USA). The intensity of each band was normalized to that of B-actin, and data were expressed as a
percentage of the values determined in the control group from the same gel.

Statistical analysis

Data are expressed as mean + S.E.M. The differences among treatment groups were analyzed
by one-way analysis of variance (ANOVA) followed by Bonferini’'s post-hoc test. A p-value of less

than 0.05 was considered statistically significant.
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Part | Effects of hesperidin and losartan on blood pressure in 2K-1C hypertensive rats during
seven weeks of experiment
Effects of hesperidin and losartan on blood pressure in conscious rats

At the beginning of the experiments, baseline SP was similar in all experimental groups. After
placing a clip on left renal artery for one week, the SP was significantly high in the 2K-1C hypertensive
rats compared to those of sham-operated control rats. Then, SP was gradually increased over 3
weeks of the experiment. Treatment with hesperidin (20 and 40 mg/kg/BW) significantly reduced SP
in a dose-response dependent manner (160.79 + 7.76 and 143.96 + 3.65 mmHg, respectively,
p<0.05) compared to the untreated rats (210.57 £ 11.68 mmHg) (p<0.05). Losartan markedly reduced
SP (141.11 + 3.12 mmHg) (P < 0.05) in hypertensive rats comparing to those of hypertensive rats.
However, there was no significant difference between hesperidin at dose 40 mg/kg/BW, and losartan

treated-hypertensive rats (Fig. 1).
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Figure 1. Effect of hesperidin and losartan on systolic blood pressure in 2K-1C hypertensive rats.
Data were expressed as means + SEM. (n = 8-9/group). *P < 0.05 vs Sham, *P < 0.05 vs
2K-1C, TP < 0.05 vs H20 (Sham = sham-operated control, Los = losartan 10 mg/kg/BW,

H = hesperidin)
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Effect of hesperidin and losartan on blood pressure and heart rate in anesthetized 2K-1C
hypertensive rats

There were significant increases in SP, DP, MAP and HR in 2K-1C hypertensive rats
comparing to sham-operated group (P < 0.05). Daily treatment of hesperidin for 4 weeks significantly
decreased SP, DP and MAP in 2K-1C hypertensive rats comparing to that of untreated group (P <
0.05). Moreover, in hypertensive rats treated with losartan and hesperidin (40 mg/kg/BW) were
significantly lower than those of in the hypertensive rat treatment with hesperidin (20 mg/kg/BW)(P
< 0.05). There were no difference between hesperidin at dose 40 mg/kg/BW and losartan group

(table 1).

Table 1. Effects of hesperidin and losartan on blood pressure and heart rate in anesthetized 2K-

1C hypertensive rats.

Parameters Sham 2K-1C 2K-1C+H20 2K-1C+H40 2K-1C+Los
SP (mmHg) 113.54£1.78 202.48+5.50* 15153:2.99% 133553870 121.200925%7
DP (mmHg) 76.64+1.96 138.63+5.10% 105.22:3.26 *# 01200350 T g4 31acor#t
MAP (mmHg) 88.94+1,36 159.92:4.86* 120.66:3.10 105.38:3.60 1 06.61:7.66%
HR (beat/min) 362.75:6.90 383.25£13.70 378.80+14.03 359.54:7.98 380.75:11.51

Data were expressed as means + SEM. (n = 8-9/group). *P < 0.05 vs Sham, *P < 0.05 vs 2K-1C,

TP < 0.05 vs H20 (Sham = sham-operated control, Los = losartan 10 mg/kg/BW, H = hesperidin)

Effects of hesperidin and losartan on RAS activity in 2K-1C hypertensive rats
Effects of hesperidin and losartan on ACE activity and serum angiotensin i
concentrations in 2K-1C hypertensive rats
The ACE activity was significantly increased in 2K-1C hypertensive rats compared to
sham-operated rats (p < 0.05). A reduction of ACE activity in 2K-1C hypertensive rats treated with
hesperidin (at both concentration) and losartan were observed compared to untreated rats (p< 0.05;

Fig. 2A). Furthermore, the serum Ang Il was significantly high in 2K-1C hypertensive rats compare
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to sham rats. This high levels of serum Ang Il was attenuated by hesperidin and losartan (p< 0.05;
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Fig. 2B).

Figure 2. Effects of hesperidin and losartan on ACE activity (A) and ANG Il (B) in 2K-1C
hypertensive rats. Data were expressed as means + SEM. (n = 6-8/group). *P < 0.05
vs Sham, *P < 0.05 vs 2K-1C (Sham = sham-operated control, Los = losartan 10

mg/kg/BW, H = hesperidin)

Effects of hesperidin and losartan on AT, receptor protein expression

The expression of AT, receptor protein in aortic tissue from 2K-1C hypertensive rats was
significantly upregulated when compared to sham-operated rats (p < 0.05). Administration of
hesperidin significantly suppressed the expression of AT, receptor protein in 2K-1C hypertensive
rats. In addition, losartan also reduced the upregulation of AT, receptor protein expression in 2K-1C

hypertensive rats (P < 0.05; Fig. 3).
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Figure 3. Effect of hesperidin and losartan on ATR protein expression in 2K-1C hypertensive
rats. Data were expressed as means + SEM. (n = 4/group). *P < 0.05 vs Sham, *P <
0.05 vs 2K-1C (Sham = sham-operated control, Los = losartan 10 mg/kg/BW, H =

hesperidin)

Effects of hesperidin and losartan on oxidative stress

phox

Effect of hesperidin and losartan on NOX2 and p47 protein expression in 2K-1C

hypertensive rats

There was overexpression of NOX2 in 2K-1C hypertensive rats compared to those of control
rats. Hesperidin treatment restored overexpression of NOX2 in 2K-1C rats while losartan significantly
suppressed the upregulation of NOX2 in 2K-1C hypertensive rats (P < 0.05; Fig. 4A). Subsequently,
the results also showed the upregulation of p47ph°x in 2K-1C hypertensive rats. This upregulation

was significantly attenuated by hesperidin and losartan (P < 0.05; Fig. 4B).
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Figure 4. Effect of hesperidin and losartan on NOX2 (A) and p47°"* (B) protein expression in
2K-1C hypertensive rats. Data were expressed as means + SEM. (n = 4/group). *P <
0.05 vs Sham, *P < 0.05 vs 2K-1C (Sham = sham-operated control, Los = losartan 10

mg/kg/BW, H = hesperidin)

Effects of hesperidin and losartan on vascular 02'_ production and plasma MDA in 2K-1C

hypertensive rats

There were a significantly increased vascular O,” production in 2K-1C hypertensive
rats compared to sham-operated rats (p<0.05). The rise of O, production was significantly reduced
in 2K-1C hypertensive rats treated with hesperidin (20 and 40 mg/kg/BW) and losartan compared to
untreated rats (p<0.05). However, there was no significant difference of vascular O, production
among hypertensive rats treated with hesperidin and losartan, and sham-operated rats (Figure 5A).
Plasma MDA levels in 2K-1C hypertensive rats was significantly higher than those of sham-operated
rats (p<0.05). Hesperidin significantly reduced plasma MDA levels in 2K-1C hypertensive rats
compared to those of untreated rats (p<0.05). Moreover, losartan treatment reduced plasma MDA

levels in 2K-1C hypertensive rats compared to untreated rats (p<0.05) (Figure 5B).
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Figure 5. Effects of hesperidin and losartan on vascular O, production (A) and plasma MDA levels
(B) in all experimental groups. Data are expressed as mean + SEM (n=6-8 /group), *P <
0.05 vs Sham, *P<0.05vs 2K-1C, TP < 0.05 vs H20 (Sham = sham-operated control, Los

= losartan 10 mg/kg/BW, H = hesperidin)

Effects of hesperidin and losartan on vascular function in 2K-1C hypertensive rats
Effects of hesperidin and losartan on vasorelaxation responses to vasodilator agents in
mesenteric vascular beds and aortic rings and plasma NO metabolites

Vasorelaxation response to ACh (0.1 yM-0.1 mM) in the mesenteric vascular bed was
significantly blunted in 2K-1C hypertensive rats compared to sham-operated rats (p<0.05). Treatment
with hesperidin at dose 40 mg/kg/BW improved the response to ACh in 2K-1C hypertensive rats
compared to untreated rats (p<0.05). Moreover, 2K-1C hypertensive rats treated with losartan
significantly improved the response to ACh compared to 2K-1C hypertensive rats (p<0.05; Fig. 6A).
There was no significant difference in the vasorelaxation responses to SNP among groups, indicating
normal vascular smooth muscle cell function (Data are not show). Endothelium-dependent
vasorelaxation responses to ACh (0.01 uM-3 pM) were significantly blunted in aortic rings from 2K-
1C hypertensive rats compared to sham-operated rats (p<0.05). Hesperidin at dose 40 mg/kg
improved vascular response to ACh compared to untreated rats (p<0.05). Moreover, 2K-1C
hypertensive rats treated with losartan had a significant improvement of the response to ACh
compared to 2K-1C hypertensive rats (p<0.05) (Fig. 6C). In addition, vasorelaxation response to

SNP, an NO donor, did not differ significantly among groups (Data are not show).
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Figure 6. Effects of hesperidin and losartan on vascular responses to exogenous acetylcholine in
mesenteric vascular beds (A); exogenous acetylcholine in thoracic aorta (B) and plasma
NOx (C). Data are expressed as mean + SEM (n=5-6 /group), *P < 0.05 vs Sham, *P <
0.05 vs 2K-1C, TP < 0.05 vs H20 (Sham = sham-operated control, Los = losartan 10

mg/kg/BW, H = hesperidin)

Effects of hesperidin and losartan on contractile responses to EFS and exogenous NE in
mesenteric vascular beds and plasma NE concentration

EFS at 5-40 Hz produced an increased in perfusion pressure that was frequency-dependent
vasoconstriction in all preparations. A significant increase in contractile responses to EFS was
observed in the mesenteric vascular bed isolated from 2K-1C hypertensive rats compared to the
responses in sham-operated rats (p<0.05). Contractile response to EFS in 2K-1C hypertensive rats-

treated with hesperidin and losartan were reduced comparing to those of hypertensive rats (p<0.05)
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(Fig. 7A). However, the contractile response to exogenous NE (0.1 yM-0.1 mM) was not different

among groups (Data are not show). An increase in plasma NE concentrations was found in 2K-1C

hypertensive rats (p<0.05). The elevation of plasma NE concentrations was decreased in hesperidin

treated rats at dose 40 mg/kg/BW compared to those of untreated rats (p<0.05). Moreover, losartan

treatment reduced plasma NE concentrations in 2K-1C hypertensive rats compared to untreated rats

(p<0.05) (Figure 7B).
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Effects of hesperidin and losartan on contractile responses to sympathetic nerve

stimulation (A) and plasma NE concentrations (B). Data are expressed as mean + SEM

(n=5-6 /group). *P < 0.05 vs Sham, *P < 0.05 vs 2K-1C. (Sham = sham-operated control,

Los = losartan 10 mg/kg/BW, H = hesperidin)
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Part Il

Effects of hesperidin and captopril on blood pressure in conscious rats

There were no significant differences in systolic blood pressure of all rats at the beginning of the
study. Administration of L-NAME caused a gradual increase in SP of all rats compared to control
rats (SP at 5" week, 200.21+6.52 vs. 122.14+1.75 mmHg, p < 0.01, Figure 9). Co-administration of
L-NAME and hesperidin at doses of 15 or 30 mg/kg (2.5 mg/kg) significantly partially prevented L-
NAME-induced high blood pressure in a dose dependent manner compared to those of untreated
rats (SP at 5™ week, 177.50+3.91 and 162.74+2.82 mmHg, p < 0.05). Captopril also partially
alleviated L-NAME induced hypertension (152.19+5.01 mmHg) compared with untreated rats (p <
0.05). In addition, captopril produced greater preventive effect on SP than hesperidin (15 and 30

mg/kg).
220- =O= Control
-8~ L-NAME
=i~ L-NAME+H15

=¥ L-NAME+H30
=B L-NAME+Cap

Systolic blood pressure (mmHg)

i
G-!- | L 1 I 1
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Figure 9. Time-course changes in systolic blood pressures of all experimental groups. Data are

expressed as mean + S.E.M (n = 7-8)/ group, * p < 0.05 vs. control, * p < 0.05 vs. L-NAME, s p <
0.05 vs. L-NAME + hesperidin (15 mg/kg), ¢ p<0.05 vs. L-NAME + hesperidin (30 mg/kg) group.
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Effects of hesperidin and captopril on SP, DP, MAP and HR in anesthetized rats

Blood pressure data received from the indirect blood pressure measurement method were
consistent with the values from the direct method since L-NAME treated rats exhibited high blood
pressure including high SP, DP, MAP, and high HR compared to those of control rats (p < 0.05,
Table 1). Hesperidin at doses of 15 and 30 mg/kg significantly decreased SP, DP and MAP in a
dose-dependent manner compared to the untreated group (p < 0.05). Similarly, captopril reduced
the development of hypertension induced by L-NAME compared to untreated rats (p < 0.05).
Hesperidin at a dose 30 mg/kg, however, also affected the elevation of HR compared to untreated
rats (p < 0.05, Table 2). Furthermore, hesperidin had no effect on blood pressure in normotensive

rats (SP=122.29 + 4.05 mmHg, n =4).

Table 2. Effects of hesperidin and captopril on blood pressure and heart rate in anesthetized rats.

Parameters Control L-NAME L-NAME+H15 L-NAME+H30 L-NAME+Cap

SP (mmHg) 120.92 +2.27 205.88+3.19*  179.38 + 16.51 ** 154.07 + 4.88 ***  140.14 + 7.06 **

DP (mmHg) 72.68+3.31 14165+573* 11413+ 1657 * 86.89+574*® 9148+7.36"
MAP

(mmHg) 88.76 + 247 161.41+4.01* 13588 + 16.00"* 109.28 + 5.39 ***  107.70 + 6.27 **
HR

(beat/min)  367.86 + 11.90 419.30 + 11.96 * 391.93 + 14.35  351.44 + 13.47 " 384.28 + 17.31

SP: systolic blood pressure; DP: diastolic blood pressure; MAP: mean arterial pressure; HR: heart
rate. Values are mean + S.E.M (n = 7-8/group), * p < 0.05 vs. control, *p < 0.05 vs. L-NAME, $ p <
0.05 vs. L-NAME+H15.

Effects of hesperidin and captopril on left ventricular (LV) morphometry and fibrosis

Rat body weights did not differ among all experimental groups. After 5 weeks of L-NAME
administration, HW, LVW and LVW/BW ratios were significantly increased compared to those of
control rats. Co-administration of L-NAME and hesperidin or captopril significantly decreased those
values when compared with the untreated group (Table 3). Morphometric analysis of hearts showed
that chronic administration of L-NAME significantly increased LV wall thickness and LV muscle fiber

cross-sectional area (CSA) compared with the normal control group (p < 0.05, Table 2). Hypertensive
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rats that received hesperidin or captopril had significantly reduced wall thicknesses and CSA of the
LV compared to untreated rats (p < 0.05) (Table 3, Figure 10A). LV fibrosis was significantly
increased in L-NAME-treated rats compared to those of the normal control rats (p < 0.05). Hesperidin
or captopril treatment significantly prevented L-NAME-induced LV fibrosis compared to untreated rats

(p < 0.05) (Figure 10B).

Control L-NAME L-NAME + H30 L-NAME +Cap

5.00mm

Control L-NAME L-NAME + H30 L-NAME + Cap

Figure 10. The histology and morphology of LV from control, L-NAME, L-NAME + hesperidin

(30 mg/kg) and L-NAME + captopril (2.5 mg/kg) groups. Representative images of LV sections, (A)
stained with hematoxylin and eosin under stereomicroscopes and (B) stained with picrosirius red

under polarized light microscope using a 20x objective lens.
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Table 3. Effect of hesperidin and captopril on the cardiac mass indices and cardiovascular

structural modifications in left ventricle and thoracic aorta.

Cardiac mass indices

Groups Body weight (g) Heart weight/BW (mg/g) LVW/BW (mg/g)

Control 434 + 6.8 3.14 £ 0.17 2.06 + 0.10

L-NAME 413 £ 16.9 4.21 + 0.26* 3.04 £ 0.18*
L-NAME+H30 406 + 9.7 3.11 £ 0.23" 2.23 £ 0.17%
L-NAME+Cap 401 £ 9.7 3.12 £ 0.18" 2.07 +0.12*

Left ventricle

Groups LV wall thickness (mm) LV CSA (mm?) LV fibrosis (%)

Control 2.72 + 0.05 57.58 + 1.05 0.69 + 0.04

L-NAME 3.28 + 0.04* 72.42 + 0.51* 2.72 £ 0.15*
L-NAME+H30 2.90 + 0.06" 61.12 + 1.75" 0.92 + 0.09"
L-NAME+Cap 2.79 + 0.09* 59.87 + 1.63" 1.00 + 0.06"

Thoracic aorta structural modifications
Groups Wall thickness CSA VSMCs Collagen deposition
(um) (x10% pm?) (cells/CSA) (% area fraction)

Control 106.39 + 1.02 579.00 + 15.16 1298.00 + 73.64 15.78 + 0.70

L-NAME 150.58 + 2.09* 810.50 + 18.64* 2013.71 + 51.62* 31.32 + 1.00*
L-NAME+H30 127.11 + 2.90** 617.95 + 18.65" 1540.16 + 46.88*" 24.84 + 0.69**
L-NAME+Cap 129.91 + 6.50*" 658.38 + 40.22" 1671.78 + 24.90%" 23.68 + 0.63**

LV: left ventricular, LVW: left ventricular weight, BW: body weight, CSA: cross sectional area,
VSMCs: vascular smooth muscle cells. Values are expressed as mean = S.E.M, (n = 6/group). * p

< 0.05 when compared to control group, and#p < 0.05 when compared to L-NAME group.

Effect of hesperidin and captopril on vascular morphology

Vascular wall hypertrophy was observed in thoracic aortas collected from L-NAME hypertensive
rats (Figure 11A) with significant increases in vascular wall thickness, CSA and smooth muscle cells
numbers compared to those of control rats (p < 0.05; Table 3, Figure 11A). Moreover, the relative

amounts of collagen depositions (Figure 11B) in the aortic walls of L-NAME hypertensive rats were
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also clearly observed (p < 0.05; Table 3, Figure 11B). Hesperidin or captopril treatment partially

prevented the vascular structural abnormalities in aortas induced by L-NAME (p < 0.05).

Figure 11. The histology and morphology of thoracic aorta from control, L-NAME, L-NAME +
hesperidin (30 mg/kg) and L-NAME + captopril (2.5 mg/kg) groups. Representative images of aortic
sections, (A) stained with hematoxylin and eosin and (B) stained with picrosirius red under light

microscope using a 20x objective lens.

Effects of hesperidin and captopril supplementation on oxidative stress markers, plasma

nitric oxide metabolites (NOx) levels in L-NAME treated rats

L-NAME treated rats showed a significant increase in production of vascular O, (263.26 +
11.20 vs. 71.42 + 15.97 count/mg dry wt/min, p < 0.001) and plasma MDA levels compared to control
groups (10.24 + 0.4 vs. 3.11 £ 0.27 yM, p < 0.05). When treated with hesperidin or captopril the
elevations of vascular O, and plasma MDA were mitigated compared to those of untreated rats
(7.91 £ 0.92, 4.83 + 0.74 and 3.88 £ 0.25 count/mg dry wt/min and 138.86 + 28.75, 97.28 +16.67
and 92.14 £ 12.90 uM, p < 0.05) (Figure 12A and B). In addition, low levels of plasma NOx were
found in L-NAME hypertensive rats compared with control rats (3.49 £ 1.0 vs. 10.17 £ 0.95 uM, p <
0.05). These low levels of plasma NOx were improved by hesperidin or captopril supplementation

(4.38 £ 1.15,7.48 + 1.03 and 8.48 £ 1.21 uyM , p < 0.05) (Figure 12C).
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Figure 12. Effects of hesperidin and captopril supplementation on vascular O, production (A),
plasma MDA (B) and plasma NOx (C) levels in control, L-NAME, L-NAME + hesperidin (15mg/kg),
L-NAME + hesperidin (30 mg/kg) and L-NAME + captopril (5 mg/kg) groups. Data are expressed

as mean + S.E.M (n = 7-8)/group, * p < 0.05 vs. control, * p < 0.05 vs. L-NAME group, $ p < 0.05
vs. L-NAME+H15.

Effects of hesperidin and captopril on protein expression of TNF-R1 and TGF- B1 in heart

tissues and concentrations of TNF-Ql and TGF- B1 in plasma

Overexpressions of TNF-R1 and TGF- B1 proteins were found in heart tissues collected from

the hypertensive group compared to the control group (p < 0.001). Interestingly, supplementation
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with hesperidin and captopril partially reversed these protein up-regulations (p < 0.01; Figure 13A

and B). These results were consistent with the results in that high levels of plasma TNF-Ql and TGF-

B1 were observed in L-NAME hypertensive rats compared to those of control rats (168.49 + 13.05
vs. 24.21 + 851 pg/mL and 23.54 + 3.91 vs. 490 + 0.50 ng/mL, p < 0.01). Administration of

hesperidin or captopril attenuated these high levels of plasma TNF-Ql (58.23 + 14.71 or 20.97 + 6.97

pg/mL) and TGF- B‘I (5.23 £ 0.32 or 4.79 = 0.55 ng/mL, p < 0.05) in hypertensive rats (Figure 13C
and 13D).
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top panel shows representative bands of TNF-R1 (A) and TGF- [31 (B) protein expression in heart
tissues. Values are mean + S.E.M (n=4 for each group), * p < 0.05 vs. control, * p < 0.05 vs. L-

NAME group.

Effects of hesperidin and captopril on protein expression of MMP-2 and MMP-9 in aortic tissue

A significant increase in of MMP-2 and MMP-9 protein expression was observed in thoracic
aortic tissues collected from the hypertensive group compared with the control group (Figure 14A
and 14B, p < 0.05). Hesperidin or captopril treatment significantly suppressed the level of MMP-2
and MMP-9 protein expression compared with untreated rats, (p < 0.05).
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Figure 14. Effects of hesperidin and captopril on protein expression of MMP-2 (A) and MMP-9
(B) in aortic tissue collected from control, L-NAME, L-NAME + hesperidin (30 mg/kg) and L-NAME +
captopril (2.5 mg/kg) groups. The top panels, shows representative bands of MMP-2 (A) and MMP-
9 (B) protein expression in thoracic aortas. Values are mean + S.E.M (n=4 for each group), * p <

0.05 vs. control, * p < 0.05 vs. L-NAME group.
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The present findings show that hesperidin reduced blood pressure in 2K-1C hypertensive
rats. Hesperidin also affected RAS activation by decreasing ACE activity, plasma Ang Il levels and

suppressed AT, receptor expression in 2K-1C hypertensive rats. Increases in O,” production and

phox phox

plasma MDA as well as p47 and gp91 protein overexpression were alleviated in the 2K-1C
group treated with hesperidin or losartan. Hesperidin and losartan improved endothelial dysfunction
and nitric oxide (NO) bioavailability in 2K-1C hypertensive rats. Sympathetic nerve activation, as
evident by the enhancement of nerve-mediated contractile responses and high levels of plasma NA
were shown in 2K-1C hypertensive rats. This sympathoexcitation was not found in 2K-1C rats treated
with hesperidin or losartan.

High blood pressures associated with increases in plasma ACE activity and plasma Ang |l
were shown in 2K-1C rats in the present study. The elevation of plasma Ang Il observed in this
study was the consequence of RAS activation. This was supported by the findings that a partial
occlusion of one renal artery can develop hyperactivation of RAS in animals (8, 27). Sawamura
and Nakada demonstrated high renal levels of ANG I, Il and ACE activity in the clipped-kidney rats
(3). Ang Il, an octopeptide product of RAS, induces high blood pressure via activation of AT,
receptors to produce vasoconstriction, Na* and water reabsorption, and sympathetic nervous
stimulation (28). The up regualtion of AT, receptors that might enhance Ang ll-mediated hypertensive
effects was found in this animal model. A relevant study indicated that prolonged exposure to Ang I
could induce the upregulation of brain AT, receptors (29). This study, in renovascular hypertensive
rats, it revealed the antihypertensive effect of hesperidin, which involved the suppression of the RAS
pathway. This is the first evidence to report the ACE inhibiting activity of hesperidin in an animal
model of hypertension. The attenuation of plasma ACE activity seems then to be related to
reductions of plasma Ang Il level, AT, receptor expression and then blood pressure. The ACE
inhibitor activity of hesperidin might then be mediated by its flavonoid structure since there is evidence
supporting flavonoids inhibiting ACE activity and then lowering blood pressure (30). Furthermore, a

molecular docking study discovered that flavonoids were able to bind with zinc ion in the active site

of ACE enzymes (31).

The upregulation of NOX subunits (p47°"* and gp91°"* protein expression) in aortic tissues

of 2K-1C hypertensive rats as a sequential activation of circulating Ang Il was observed in this study.

27



This was associated with increases in oxidative stress markers including plasma MDA levels and
vascular O, production. These current findings were supported by other studies performed in the
2K-1C hypertension model. For example, overexpression of p47°"* protein was demonstrated to be
responsible for oxidative stress in RAS- dependent hypertension in rats (12). Wei and coworkers,
indicated that Ang Il can increase reactive oxygen species production through activating NADPH
oxidases (32). Itis now accepted that high O, production promotes the development of hypertension
since O, can rapidly react with NO to form the potent cytotoxic peroxynitrite. It has been clearly
shown that peroxynitrite causes oxidative damage to endothelial cells and decreases NO
bioavailability (33). Jung and coworkers indicated that NO bioavailability was reduced because of
activation of the NOXs and O," production in the 2K-1C model (34). The impairment of endothelium-
dependent vasodilation is supported by reducing the vascular response to ACh but not to SNP and
was clearly shown in the present study. This was consistent with a reduction of NO metabolites
observed in 2K-1C hypertensive rats. Another possible antihypertensive mechanism of hesperidin
proposed in this study involved its antioxidant effect. Hesperidin reduced p47°"* and gp91°"*
expression, O," production and plasma MDA levels in 2K-1C hypertensive rats which was associated
with the improvement of vascular function and plasma NOx level. There are substantial data to
indicate the antioxidant property of hesperidin (35). Yamamoto and coworkers firstly reported the
antihypertensive effect of hesperidin in spontaneously hypertensive rats associated with improved
vascular function and a reduction of oxidative stress (23). In RAS-dependent hypertension in rats,
this study indicated that the antihypertensive effect of hesperidin might involve the antioxidant

property or a sequential suppression of RAS cascade or both.

Sympathetic activation is an important factor to stimulate and maintain high blood pressure
in renovascular hypertensive rats (36). Sympathoexcitation was confirmed in renovascular
hypertension as indicated by a significant rise in low-frequency SP during the mid-developmental and
maintenance phases of the hypertension in 2K-1C hypertensive rats (37). A recent study by Nishi
and coworkers showed sympathetic vasomotor hyperactivity and baroreflex dysfunction which
contributed to the development and maintenance of renovascular arterial hypertension (8). The
present results demonstrated that there was an enhancement of contractile responses to sympathetic
nerve stimulation without affecting the response to exogenous NA in 2K-1C rats, suggesting the
augmentation of NA release from pre-junctional sites. This result could be supported with high

plasma NA in 2K-1C rats. In addition, there is evidence to support findings that an increase in the
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vasoconstrictive response to peri-arterial nerve stimulation was uncovered in isolated mesenteric
vascular beds from 2K-1C rats (18). The authors suggested that this enhancement was partially
mediated by Ang ll-induced facilitation of NA release (18). In fact, Ang Il increases sympathetic
nerve activity via activation of the AT, receptor in the rostral RVLM, a pressor area of the medulla,
and activates sympathetic outflow to enhance NA release from sympathetic nerve terminals (6).
Furthermore, treatment with hesperidin suppressed the nerve-mediated contractile response in 2K-
1C hypertensive rats, which was relevant to a decreased plasma NA level. An intriguing possibility
is that hesperidin inhibited the RAS cascade and subsequently reduced oxidative stress and

sympathoexcitetation.

In the present study, losartan was used as a positive control and was able to decrease blood
pressure, RAS activation, oxidative stress, and improve vascular function in the 2K-1C hypertensive
rats. The antihypertensive actions of losartan as an AT, receptor antagonist in 2K-1C hypertensive
rats were strongly documented (38). Losartan also caused a significant reduction of brain AT,
receptors with attenuation of the brain and plasma oxidative stress in renovascular hypertensive rats

(39).

In conclusion, the results of this present study indicate that hesperidin reduced blood pressure
via suppressing RAS cascade mediated-NOX overexpression and sympatoexcitation or it directly
reduced oxidative stress (Figure 8). It could therefore be suggested that hesperidin might potentially

be further developed as a complimentary agent in the treatment of hypertension.

Part I

This study demonstrates that rats that received L-NAME developed hypertension and
cardiovascular remodeling. Hesperidin mitigated the high blood pressure and cardiac remodeling by
reducing left ventricular hypertrophy and fibrosis associated with down-regulations of TGF-B1 and
TNF-R1 protein expression and a reduction of plasma levels of TGF-B1 in L-NAME induced
hypertension in rats. Vascular remodeling, including vascular hypertrophy and increased collagen
deposition induced by L-NAME in rats was inhibited by hesperidin supplementation. This was
consistent with the decreased protein expression of MMP-2 and MMP-9 in aortic tissue. Furthermore,
hesperidin that prevented cardiovascular remodeling-induced by L-NAME in the present study was
linked to the reduction of an inflammatory cytokine, oxidative stress markers and enhanced NO

availability.
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It was found that chronic treatment of L-NAME produced the development of NO-deficient
hypertension as well as cardiovascular remodeling. These remodelings included increases in
LVW/HW ratio, LV wall thickness, LV CSA, LV fibrosis, aortic wall thickness, aortic cross-sectional
areas, aortic smooth muscle cell numbers and collagen deposition. It has been well accepted that
chronic inhibition of NO synthase using L-NAME results in NO depletion, increased vascular tone
and high blood pressure [34]. Several studies demonstrated that cardiovascular remodeling occurred
after chronic treatment with L-NAME (40 mg/kg) for 5 weeks [4, 10, 35]. The mechanisms involved
in cardiac remodeling in an animal model of nitric oxide deficient hypertension are still unclear,
however, two possible mechanisms related to hemodynamics and non-hemodynamic aspects have
been described [36]. Hemodynamic overload in hypertension provoked left ventricular hypertrophy
because of the adaptive response to conserve cardiac output [37]. A reduction of NO is one of
several non-hemodynamic factors that participate in cardiac remodeling because when NO is
suppressed, hypertensive cardiac remodeling through the cyclic guanosine monophosphate/ protein
kinase G (cGMP/PKG) pathway is initiated to inhibit fibrotic synthesis [38]. It is well documented that
vascular remodeling in hypertension occurs in response to long-term modifications of hemodynamic
conditions [39, 40]. Furthermore, numerous studies reported that vascular remodeling is
characterized by increases in wall thickness, CSA and smooth muscle cell numbers in L-NAME
hypertensive rats [3, 4, 41]. In this present study, hesperidin partially inhibited the development of
hypertension as well as cardiovascular remodeling induced by chronic L-NAME treatment. These
effects may have involved an increase in NO bioavailability, reductions of oxidative stress and
inflammation as further possibilities.

Oxidative stress is one of the important mechanisms of L-NAME induced hypertension since L-
arginine analogues activate eNOS uncoupling leading to an overwhelming vascular superoxide
generation [42] by the fact that superoxide can rapidly react with nitric oxide to form peroxynitrite
[43]. This reaction results in reducing nitric oxide bioavailability [44]. In the present study, increases
in plasma MDA levels and vascular superoxide production were accompanied by decreased plasma
NOx levels that were observed in the L-NAME hypertensive rats. Hesperidin alleviated L-NAME
induced oxidative stress and thus increased NO bioavailability in an increase in plasma NOx level.
A large number of studies have confirmed that hesperidin has strong antioxidant activity [26, 45].
Hesperidin exhibits its antioxidant properties with two main mechanisms including, directly
scavenging reactive oxygen species [46] and boosting cellular antioxidant defense [25]. Thus, this is

one of the possible mechanisms of the cardiovascular protective effects of hesperidin in this study
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that might have involved its antioxidant capability that resulted in increased NO bioavailability, which
reduced vascular resistance.

There is substantial evidence to support that inflammation is one of pathologies that occur in L-
NAME hypertensive rats [47, 48]. Results of the current study proved that as in the previous studies,
there were increases in the levels of the proinflammatory cytokine, TNF-QL, in plasma and expression
of TNF-QL protein in heart tissue of L-NAME hypertensive rats. Myocardial TGF-B protein expression
was also observed in L-NAME hypertensive rats. It is well established that TGF-B plays and an
important role in responses to inflammation to activate fibrogenesis, which is the important
pathological process for cardiac remodeling [49, 50]. The present study has also shown that
hesperidin attenuated cardiac remodeling accompanied by decreased systemic and heart
inflammation in L-NAME hypertensive rats. The protein expression of TGF-B in cardiac tissue was
also down-regulated in the hesperidin supplemented group. The anti-inflammatory effect of hesperidin
has been clearly revealed in both cellular and animal models. In human umbilical vein endothelial
cells, hesperidin significantly suppressed TNF-Q [51]. Li and coworkers demonstrated that hesperidin
decreased the production of IL-1 B IL-6, and TNF-Ql in a rat model of rheumatoid arthritis [52]. Thus,
the current results confirmed that the cardiprotective effect of hesperidin was associated with its great
anti-inflammatory effect.

Additionally, vascular remodeling with collagen deposition was associated with overexpression
of MMP-2 and MMP-9 in aortic tissue in L-NAME hypertensive rats as shown in this study. Several
studies described that MMPs play an important role in physiological processes that contribute to
hypertension-induced maladaptive arterial changes and sustained hypertension [53, 54].
Overexpression of MMP mediated vascular remodeling was stimulated by oxidative stress and
inflammatory cytokines [54]. Del Mauro and coworkers demonstrated that MMP-2 and MMP-9 activity
was a pathologic process in L-NAME induced morphometric alterations in the aorta [55].
Interestingly, the authors of the present study first reported L-NAME induced hypertension and
vascular remodeling in rats in which there was up-regulation of MMP-2 and MMP-9 protein expression
in response to oxidative stress. Hesperidin prevented vascular remodeling induced by L-NAME
associated with down-regulation of MMP-2 and MMP-9. This effect might be involved in its antioxidant
and anti-inflammatory effects, which further inhibited MMPs activation and collagen degradation.

Captopril was used as a positive control to prevent the development of hypertension and

cardiovascular remodeling. It was found that captopril prevented L-NAME-induced the development
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of hypertension and cardiovascular remodeling. These findings are supported by the previous studies
that captopril prevented high blood pressure, left ventricular hypertrophy and vascular remodeling
induced by L-NAME in rats [56, 57]. Captopril also reduced oxidative stress and inflammatory markers
and suppressed protein expressions of TNF-R1, TGF-|31 and MMPs. An antioxidative effect of
captopril in the present study might associate with two main mechanisms, direct and indirect effects.
Captopril contains free sulfhydryl groups that directly scavenging oxygen free radicals [58] or it
suppresses AT1R-mediated NADPH oxidase expression and superoxide production [10]. It has been
demonstrated that captopril improved ventricular hypertrophy in rats by suppressing MMP-2 and
MMP-9 expression [59]. In addition, anti-inflammatory effect of captopril in animal model of
hypertension has been reported [60]. Results showed the greater effect of captopril on SP comparing
hesperidin that may involve the potent ACE inhibitor capacity of captopril or the different titration
doses between two these agents.

In conclusion, the findings of this study indicated that hesperidin had cardiovascular protective
effects by preventing L-NAME-induced development of hypertension and cardiovascular remodeling

in rats. These effects were affirmed by reducing oxidative stress and inflammation.
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Abstract: Hesperidin, a flavonoid derived from citrus fruits, possesses several beneficial
effects including anti-oxidation and anti-inflammation. The aim of this study was to inves-
tigate the effects of hesperidin on the renin-angiotensin system (RAS) cascade that mediated
oxidative stress and sympathoexcitation in two-kidney, one-clipped (2K-1C) hypertensive
rats. 2K-1C hypertension was induced in male Sprague-Dawley rats. Hypertensive rats were
treated with hesperidin at 20 mg/kg or 40 mg/kg or losartan at 10 mg/kg beginning at three
weeks after surgery and then continued for four weeks (n = 8—9/group). Hesperidin reduced
blood pressure in a dose-dependent manner in hypertensive rats compared to untreated rats
(p < 0.05). Increased plasma angiotensin converting enzyme (ACE) activity and angiotensin
II levels, as well as, upregulated AT, receptor protein expression in aortic tissues were
attenuated in hypertensive rats treated with hesperidin. Hesperidin suppressed oxidative
stress markers and NADPH oxidase over-expression, and restored plasma nitric oxide
metabolites in 2K-1C rats. This was associated with improvement of the vascular response to
acetylcholine in isolated mesenteric vascular beds and aortic rings from 2K-1C rats treated
with hesperidin (p < 0.05). Enhancement of nerve-mediated vasoconstriction related to high
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plasma noradrenaline in the 2K-1C group was alleviated by hesperidin treatment (p < 0.05).
Furthermore, losartan exhibited antihypertensive effects by suppressing the RAS cascade and
oxidative stress and improved vascular dysfunction observed in 2K-1C rats (p < 0.05).
Based on these results, it can be presumed that hesperidin is an antihypertensive agent. Its
antihypertensive action might be associated with reducing RAS cascade-induced NOX2
over-expression and sympathoexcitation in 2K-1C hypertensive rats.

Keywords: Hesperidin; 2K-1C  Hypertensive Rats; Renin-Angiotensin ~ System;
Sympathoexcitation.

Introduction

Hesperidin is a bioflavonoid glycoside mostly found in oranges, lemons and other citrus
fruits (Garg et al., 2001). Several biological activities of hesperidin have been revealed
including, anti-oxidation (Homayouni ez al., 2017), anti-inflammation and analgesic
activity (Galati er al., 1994). Hesperidin can inhibit lipase activity from the porcine
pancreas (Kawaguchi er al., 1997). The beneficial effect of hesperidin on microcirculation
has been shown via the combination of hesperidin and diosmin in Raynaud’s syndrome
treatment through which capillary circulation can be improved and edema of the fingers of
the hands is reduced (Zudin et al., 2017). Presently, hesperidin is used as an effective
supplementary treatment to relieve hemorrhoids, varicose veins, and poor circulation as in
venous stasis (Cesarone et al., 2006; Giannini et al., 2015). Additionally, a previous study
reported that hesperidin had an antihypertensive effect associated with reducing endo-
thelial dysfunction and oxidative stress in spontaneously hypertensive rats (Yamamoto
et al., 2008).

It is well established that the activation of the renin-angiotensin system (RAS) mainly
mediates the development of hypertension in an animal model of two-kidney, one-clip (2K-
1C) rats (Ponchon and Elghozi, 1996). This was supported by several studies in that an
elevation of renin (Wilcox ef al., 1996), and angiotensin converting enzyme (ACE) ac-
tivities, angiotensin II (Ang II) levels (Sawamura and Nakada, 1996), as well as upregu-
lation of angiotensin II type 1 receptor (AT; receptor) protein expression in the 2K-1C
model were observed (Santuzzi ef al., 2015). Although Ang II, the main effector peptide of
RAS, primarily causes hypertension via binding to AT, receptors to develop high vascular
resistance and salt water retention, other important mechanisms such as Ang II-mediated
oxidative stress (Bendall ef al., 2007) and sympathoexcitation have recently been proposed
(Oliveira-Sales et al., 2009).

There is increasing evidence to confirm that oxidative stress is implicated in patho-
physiology of 2K-1C Goldbatt hypertension (Nishi e al., 2010, 2013). The mRNA levels
of AT, receptor, NADPH oxidase (NOX) subunits p47P"% and gp91Phox (NOX2) in renal
cortex and aortic tissue of 2K-1C rats were elevated (Nishi er al., 2010; Santuzzi et al.,
2015). NOXs are primary sources of reactive oxygen species (Bedard and Krause, 2007).
NOX2 is mainly identified in endothelial cells and possibly in vascular smooth muscle
cells, and thus, overexpression of NOX2 in endothelial cells has been reported to promote
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Ang II-induced vascular oxidative stress and endothelial dysfunction in mice (Bendall
et al., 2007; Murdoch et al., 2011). Overexpression of gp9lph°" in aortas (Santuzzi et al.,
2015) and systemic oxidative stress (Boonla et al., 2014) were revealed in 2K-1C
hypertension. Subsequently, upregulation of p47P"* protein associated with an increase in
vascular superoxide (O37) production and endothelial dysfunction were displayed in
2K-1C rats (Boonla et al., 2014).

There is substantial evidence showing that Ang II potentiates sympathetic nerve stim-
ulation in rat mesenteric arteries via increased noradrenaline (NA) release from presynaptic
sites (Campbell and Jackson, 1979; Eikenburg et al, 1981). Activation of sympathetic
vasomotor tone in RAS-dependent hypertension has been clearly demonstrated (Oliveira-
Sales et al., 2008). This sympathoexcitation during renovascular hypertension is involved
in the upregulation of AT, receptor protein in the rostral ventrolateral medulla (RVLM) of
2K-1C hypertensive animals (de Oliveira-Sales ez al., 2010). Koyama and coworkers
reported the enhancement of sympathetic neurotransmission in mesenteric vascular beds of
renovascular hypertensive rats (Koyama e al., 2010). Moreover, Zimmerman and cow-
orkers reported that chronic renovascular hypertension was associated with an elevation in
mesenteric vascular responses to sympathetic nerve stimulation (Zimmerman et al., 1987).

Losartan, a selective nonpeptide AT; receptor antagonist, was used as a positive control
in this study. It has been well established to target RAS to manage hypertension. Several
studies reported other potential effects that are linked to its antihypertensive effects in-
cluding, anti-oxidant, anti-inflammatory, and antiproliferative effects (Wilcox et al., 1996;
An et al., 2010; Du et al., 2012; Nishi et al., 2013). Of special importance is that losartan
can inhibit sympathetic nerve activity and AT, receptor expression in 2K-1C hypertensive
rats (Nishi et al., 2013).

The aim of the present study was to investigate whether hesperidin could reduce blood
pressure, inhibit the RAS cascade, and suppress sympathetic nerve activity and NOXs
protein expression in renovascular hypertensive rats.

Materials and Methods
Animals and Experimental Protocols

Male Sprague-Dawley rats weighing 150-180 g were obtained from Nomura Siam Inter-
national Co., Ltd., Bangkok, Thailand. They were housed at 25 4+ 2°C with a 12h dark—
light cycle at the Northeast Laboratory Animal Center, Khon Kaen University, Khon Kaen,
Thailand. All procedures complied with the standards for the care and use of experimental
animals and were approved by the Animal Ethics Committee of Khon Kaen University,
Khon Kaen, Thailand (AEKKU-NELAC 37/2559). After a week of acclimatization, rats
were anesthetized with pentobarbital sodium (60 mg/kg, ip.) and then a silver clip (0.2 mm
i.d.) was placed on to the left renal artery. The sham-operated group had the same surgical
procedure but the clips were not applied on the left renal arteries. Three weeks after the
surgery, the 2K-1C rats were divided into five groups of 8-9 rats each.
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Group I Sham + vehicle or polyethylene glycol (PG) (0.15 ml/100 mg; p.o.)
Group II 2K-1C + vehicle or PG (0.15 ml/100 mg; p.o.)

Group IIT 2K-1C + hesperidin (20 mg/kg; p.o.)

Group IV 2K-1C + hesperidin (40 mg/kg; p.o.)

Group V 2K-1C + losartan (10 mg/kg; p.o.)

Hesperidin, losartan, and PG were intragastrically administered daily for four weeks of
the study.

Indirect Measurement of Blood Pressures and Heart Rates in Conscious Rats

Indirect blood pressures were measured once a week for eight weeks. Systolic blood
pressures (SP) and heart rates (HRs) were measured in conscious rats by the tail-cuff
plethysmography (IITC model 179 blood pressure analyzer) method. In brief, conscious
rats were placed in a restrainer and allowed to calm prior to blood pressure measurement.
The tail of each rat was placed inside the tail cuff, and the cuff was automatically inflated
and released. For each rat, blood pressures and HRs were recorded as the mean values from
the three measurements at 15 min intervals.

Direct Measurement of Blood Pressures and HRs in Unconscious Rats

Direct blood pressure and HR were determined at the end of study. Briefly, rats were
anesthetized by intra-peritoneal administration of pentobarbital-sodium (60 mg/kg). A
polyethylene tube was inserted into a femoral artery for blood pressure measurement. SP,
diastolic blood pressures (DPs), mean arterial pressures (MAPs) and HRs were continu-
ously monitored by way of pressure transducers and recorded using the Acknowledge Data
Acquisition and Analysis Software (BIOPAC Systems Inc., California, USA).

Measurement of Oxidative Stress Markers

Blood was collected from abdominal aortas, mixed with EDTA and placed on ice for
plasma malondialdehyde (MDA) measurements. The concentration of plasma MDA was
measured as thiobarbituric acid-reactivity (TBA) reactive substances by a spectrophoto-
metric method as previously described (Boonla er al., 2014). Productions of O3 in vas-
cular tissues were determined by lucigenin-enhanced chemiluminescence. The carotid
artery was rapidly removed and placed in ice-cold saline, and connective tissues and
adherent fat was cleaned off. The vessel was cut into 1 cm lengths and incubated with 1 ml
oxygenated Krebs-KCI buffer and allowed to equilibrate at pH 7.4, 37°C for 30 min.
Thereafter, lucigenin was added to the sample tube and placed in a luminometer (Turner
Biosystems, Sunnyvale, CA, USA). Luminometer counts were recorded every 30s for
5 min and averaged. Vascular tissue O3~ production was expressed as relative light unit
counts per minute per milligram of dried tissue weight.
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Biochemical Measurements

The concentration of plasma Ang II was measured using an Ang Il enzyme immunoassay
(EIA) kit (St. Louis, MO, USA). ACE activity was evaluated in plasma using a fluorescent
assay following the basic method with some modifications (Friedland and Silverstein,
1979). Plasma NA was determined by HPLC with an electrochemical detector (DECADE
II, Waters, Milford, MA) using commercial kits (RECIPE, Dessauerstral3e 3, D-80992
Munich, Germany). Plasma nitric oxide metabolites (NOx) were assayed using an enzy-
matic conversion method with some modifications (Boonla ez al., 2014).

Vascular Function Study: Experimental Protocols in Isolated Mesenteric
Vascular Beds

After exsanguination, mesenteric vascular beds were carefully isolated and then placed on a
stainless-steel grid in a humid chamber. The preparations were perfused with physiological
Krebs’ solution at a constant flow rate of 5 ml/min, using a peristaltic pump (07534-04,
Cole-Palmer Instrument, Illinois, USA). Kreb’s solution is composed of the following
(mM): NaCl 118, NaHCO; 25, KCl 4.8, KH,PO, 1.2, MgS0O,.7H,0 1.2, CaCl, 1.25 and
glucose 11.1. The mesenteric vascular beds were pretreated with a desensitizing agent,
capsaicin (0.1 uM), for 20 min followed by a 30 min washout period to facilitate a de-
sensitization of vanilloid receptors and to cause a diminution of sensory neurotransmitters.
After the washout period, electrical field stimulation (EFS) (5—40Hz, 90V, 1 ms, for 30 s at
5-min intervals) was performed. Contractile responses to EFS were detected as changes in
mean perfusion pressure (mmHg) using a pressure transducer and data recorded via the
BIOPAC System (BIOPAC Systems Inc., California, USA). The preparations were
allowed to equilibrate for 30 min before the next trial. After the resting period, NA
(0.15-15nmol) was applied to evaluate the contractile responses to exogenous NA. To
determine vasoactive performance of resistance small arteries, methoxamine (5—7 uM) was
added into Kreb’s solution to raise tone 70-90 mmHg above baseline. Subsequently,
different doses of vasoactive agents, acetylcholine (ACh, 1nM-0.01 pM) or sodium
nitroprusside (SNP, 1 nM-0.01 uM) were applied.

Experimental Protocols in Isolated Aortic Rings

The thoracic aorta was rapidly removed and cut into rings 2-3 mm long for tension
measurements. They were mounted in 15 ml baths containing Krebs’ solution at 37°C and
gassed with a 95% O, and 5% CO, gas mixture. Isometric contractions were recorded with
a resting tension of 1 g using a transducer connected to a 4-channel bridge amplifier and a
PowerLab A/D converter and a PC running Chart v5 (PowerLab System, AD Instruments,
Australia). ACh (0.01-3 uM) induced endothelial mediated-relaxations and SNP (0.01-
3 uM) were assessed by pre-contracting with phenylephrine (10 pM) and relaxations were
expressed as % relaxation.
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Western Blot Analysis

AT, receptor, p47P"°% and gp91P"* protein expressions in the thoracic aorta were
measured using the Western blot method following a previous publication as described
with some modifications (Boonla er al., 2014). The vessels were homogenized and the
proteins determined by electrophoresis on a sodium dodecylsulfate polyacrylamide gel
electrophoresis system. Thereafter, the proteins were electrotransfered onto a poly-
vinylidene difluoride membrane and blocked with 5% skimmed milk for 2h at room
temperature before overnight incubation at 4°C with mouse monoclonal antibodies to
p47Phox and gp91Phox (BD Biosciences, CA, USA) or rabbit polyclonal antibodies to AT,
receptor (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA). After the incubation
period, the membranes were washed with tris-buffered saline with tween and then in-
cubated for 2h at room temperature with horseradish peroxidase conjugated secondary
antibody. The blots were developed in Amersham™ ECL™ Prime solution (Amersham
Biosciences Corp., Piscataway, NJ, USA), and densitometric analysis was performed
using an ImageQuantTM 400 (GE Healthcare Life Sciences, Piscataway, NJ, USA). The
intensities of AT, receptor, p47Ph°* and gp91P"* bands were normalized to that of
B-actin, and data were expressed as a percentage of the values determined in the control
group from the same gel.

Statistical Analysis

Results are reported as means = SEM. Comparisons between groups were performed using
one-way ANOVA followed by Fisher’s Least Significant Difference tests. A probability
value of less than 0.05 was considered statistically significant.

Results

Effects of Hesperidin and Losartan on Blood Pressure in 2K-1C Hypertensive
Rats During Seven Weeks of The Experiment: Hesperidin and Losartan
on Blood Pressures in Conscious Rats

At the beginning of the experiments, baseline SP was similar in all experimental groups.
After placing a clip on left renal artery for one week, the SP was significantly higher in
the 2K-1C hypertensive rats compared to those of sham-operated control rats. Then, SP
gradually increased over three weeks of the experiment. Treatment with hesperidin
with 20mg/kg and 40 mg/kg significantly reduced SP in a dose-response dependent
manner at 160.79 £ 7.76 mmHg and 143.96 &+ 3.65 mmHg, p < 0.05, compared to the
untreated rats at 210.57 & 11.68 mmHg (p < 0.05). Losartan markedly reduced SP to
141.11 £3.12mmHg (p < 0.05) in losartan hypertensive rats comparing to those of
untreated hypertensive rats. There were no significant differences, however, between
hesperidin at the dose 40 mg/kg and losartan treated hypertensive rats (Fig. 1).
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Figure 1. Effect of hesperidin and losartan on SP in 2K-1C hypertensive rats. Data are expressed as means + SEM
(n = 8-9/group). *p < 0.05 vs. Sham, #p < 0.05 vs. 2K-1C, 8p < 0.05 vs. H20 (Sham = sham-operated control,
Los = losartan 10 mg/kg, H = hesperidin).

Effect of Hesperidin and Losartan on Blood Pressure and HR in Anesthetized 2K-1C
Hypertensive Rats

There were significant increases in SP, DP, MAP and HR in 2K-1C hypertensive rats
compared to the sham-operated group (p < 0.05). Daily treatment of hesperidin for four
weeks significantly decreased SP, DP and MAP in 2K-1C hypertensive rats compared to
those of untreated group (p < 0.05). Moreover, in hypertensive rats treated with losartan or
hesperidin (40 mg/kg) were significantly lower than those of in the hypertensive rat
treatment with hesperidin (20 mg/kg) (p < 0.05). There were no differences between
hesperidin at a dose 40 mg/kg and the losartan group (Table 1).

Effects of Hesperidin and Losartan on RAS Activity in 2K-1C Hypertensive Rats:
Hesperidin and Losartan on ACE Activity and Plasma Ang Il Concentrations
in 2K-1C Hypertensive Rats

The ACE activity was significantly increased in 2K-1C hypertensive rats compared to
sham-operated rats (p < 0.05). A reduction of ACE activity in 2K-1C hypertensive rats

Table 1. Effects of Hesperidin and Losartan on Blood Pressure and HR in Anesthetized 2K-1C Hyper-
tensive Rats

Parameters Sham 2K-1C 2K-1C+H20 2K-1C+H40 2K-1C+Los

SP (mmHg) 113.54 £ 1.78 202.48 £ 5.50*% 151.53 & 2.99%# 133.55 4 3.83*#5  121.20 + 9.25#8
DP (mmHg) 76.64 + 1.96 138.63 £ 5.10% 105.22 & 3.26%#  91.29 £ 3.50%#8 8431 £+ 6.91#8
MAP (mmHg) 88.94 & 1.36 159.92 £ 4.86* 120.66 + 3.10%# 105.38 + 3.60*#8  96.61 + 7.66#5
HR (beat/min) 362.75 + 6.90 383.25 & 13.70 378.89 & 14.03  359.54 + 7.98 380.75 + 11.51

Notes: Data are expressed as means &= SEM (n = 8-9/group). *p < 0.05 vs. Sham, #p < 0.05 vs. 2K-1C,
Bp < 0.05 vs. H20 (Sham = sham-operated control, 2K-1C = two-kidney, one-clip, Los = losartan 10 mg/kg,
H = hesperidin).
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Figure 2. Effects of hesperidin and losartan on ACE activity (A) and Ang II level (B) in 2K-1C hypertensive rats.
Data are expressed as means += SEM (n = 6-8/group). *p < 0.05 vs. Sham, #p < 0.05 vs. 2K-1C (Sham = sham-
operated control, Los = losartan 10 mg/kg, H = hesperidin).

treated with hesperidin (40 mg/kg) and losartan were observed compared to untreated rats
(p < 0.05; Fig. 2A). Furthermore, the plasma Ang II was significantly higher in 2K-1C
hypertensive rats compared to sham rats. These high levels of plasma Ang II were atten-
uated by hesperidin and losartan (p < 0.05; Fig. 2B).

Effects of Hesperidin and Losartan on AT, Receptor Protein Expression

The expression of AT, receptor protein in aortic tissues from 2K-1C hypertensive rats was
significantly upregulated when compared to sham-operated rats (p < 0.05). Administration
of hesperidin significantly suppressed the expression of AT, receptor protein in 2K-1C
hypertensive rats. In addition, losartan also reduced the upregulation of AT, receptor
protein expression in 2K-1C hypertensive rats (p < 0.05; Fig. 3).

Effects of Hesperidin and Losartan on Oxidative Stress: Hesperidin and Losartan on
NOX2 and p47°hox Protein Expression in 2K-1C Hypertensive Rats

There was overexpression of NOX2 in 2K-1C hypertensive rats compared to that of control
rats. Hesperidin treatment reduced overexpression of NOX2 in 2K-1C rats while losartan
significantly suppressed the upregulation of NOX2 in 2K-1C hypertensive rats (p < 0.05;
Fig. 4A). Subsequently, the results also showed the upregulation of p47P"°% in 2K-1C
hypertensive rats. This upregulation was significantly attenuated by hesperidin and losartan
(p < 0.05; Fig. 4B).

Effects of Hesperidin and Losartan on Vascular O3~ Production and Plasma
MDA in 2K-1C Hypertensive Rats

There was significantly increased vascular O3~ production in 2K-1C hypertensive rats
compared to sham-operated rats (p < 0.05). The rise of O35~ production was significantly
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Figure 3. Effects of hesperidin and losartan on AT, receptor protein expression in 2K-1C hypertensive rats. Data
are expressed as means + SEM (n = 4/group). *p < 0.05 vs. Sham, #p < 0.05 vs. 2K-1C (Sham = sham-
operated control, Los = losartan 10 mg/kg, H = hesperidin).

reduced in 2K-1C hypertensive rats treated with hesperidin and losartan compared to
untreated rats (p < 0.05). There were no significant differences of vascular O3~ production
between hypertensive rats treated with hesperidin and losartan and sham-operated rats
(Fig. 5A). Plasma MDA levels in 2K-1C hypertensive rats were significantly higher than
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Figure 4. Effects of hesperidin and losartan on NOX2 (A) and p47P"* (B) protein expression in 2K-1C hyper-
tensive rats. Data are expressed as means &= SEM (n = 4/group). *p < 0.05 vs. Sham, #p < 0.05 vs. 2K-1C
(Sham = sham-operated control, Los = losartan 10 mg/kg, H = hesperidin).
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Figure 5. Effects of hesperidin and losartan on vascular O3~ production (A) and plasma MDA levels (B) in all
experimental groups. Data are expressed as mean &= SEM (n = 8/group). *p < 0.05 vs. Sham, #p < 0.05 vs. 2K-
1C (Sham = sham-operated control, Los = losartan 10 mg/kg, H = hesperidin).

those of sham-operated rats (p < 0.05). Hesperidin significantly reduced plasma MDA
levels in 2K-1C hypertensive rats compared to those of untreated rats (p < 0.05). More-
over, losartan treatment also reduced plasma MDA levels in 2K-1C hypertensive rats
compared to untreated rats (p < 0.05) (Fig. 5B).

Effects of Hesperidin and Losartan on Vascular Function in 2K-1C Hypertensive Rats:
Hesperidin and Losartan on Vasorelaxation Responses to Vasodilator Agents
in Mesenteric Vascular Beds, Aortic Rings and Plasma NOx

The vasorelaxation response to ACh (0.1 uM-0.1 mM) in the mesenteric vascular bed
was significantly blunted in 2K-1C hypertensive rats compared to sham-operated rats
(p < 0.05). Treatment with hesperidin at a dose of 40 mg/kg improved the response to
ACh in 2K-1C hypertensive rats compared to untreated rats (p < 0.05). Moreover, 2K-1C
hypertensive rats treated with losartan significantly improved the response to ACh com-
pared to 2K-1C hypertensive rats (p < 0.05) (Fig. 6A). There were no significant differ-
ences in the vasorelaxation responses to SNP among groups, indicating normal vascular
smooth muscle cell function (data not shown). Endothelium-dependent vasorelaxation
responses to ACh (0.01-3 uM) were significantly blunted in aortic rings from 2K-1C
hypertensive rats compared to sham-operated rats (p < 0.05). Hesperidin at a dose
40 mg/kg improved vascular responses to ACh compared to untreated rats (p < 0.05).
Moreover, 2K-1C hypertensive rats treated with losartan had a significant improvement of
the response to ACh compared to 2K-1C hypertensive rats (p < 0.05) (Fig. 6B). The
vasorelaxation response to SNP, an NO donor, did not differ significantly among groups
(data not shown). In addition, a significant decrease in plasma NOx concentration was
found in 2K-1C hypertensive rats compared to sham-operated rats (p < 0.05). The level of
plasma NOx was significantly increased in 2K-1C rats treated with hesperidin and losartan
(p < 0.05) (Fig. 6C).
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Figure 6. Effects of hesperidin and losartan on vascular responses to exogenous ACh in mesenteric vascular beds
(A); in thoracic aortas (B) and plasma nitric oxide metabolites (C). Data are expressed as mean + SEM
(n = 6/group). *p < 0.05 vs. Sham, #p < 0.05 vs. 2K-1C (Sham = sham-operated control, Los = losartan 10 mg/
kg, H = hesperidin).

Effects of Hesperidin and Losartan on Contractile Responses to EFS and Exogenous
NA in Mesenteric Vascular Beds and Plasma NA Concentration

EFS at 5-40 Hz produced an increase in perfusion pressure that was frequency-dependent
vasoconstriction in all preparations. Significant increases in contractile responses to EFS
were observed in the mesenteric vascular bed isolated from 2K-1C hypertensive rats
compared to the responses in sham-operated rats (p < 0.05). Contractile responses to EFS
in 2K-1C hypertensive rats-treated with hesperidin and losartan were reduced compared to
those of hypertensive rats (p < 0.05) (Fig. 7A). The contractile responses to exogenous
NA, however, (0.1 uM—-0.1 mM) were not different among groups (data are not shown). An
increase in plasma NA concentrations was found in 2K-1C hypertensive rats (p < 0.05).
The elevation of plasma NA concentrations was decreased in hesperidin treated rats at a
dose of 40 mg/kg compared to those of untreated rats (p < 0.05). Moreover, losartan
treatment reduced plasma NA concentrations in 2K-1C hypertensive rats compared to
untreated rats (p < 0.05) (Fig. 7B).
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Figure 7. Effects of hesperidin and losartan on contractile responses to sympathetic nerve stimulation
(A) and plasma NA concentrations (B). Data are expressed as mean == SEM (n = 6/group). *p < 0.05 vs. Sham,
#p < 0.05 vs. 2K-1C (Sham = sham-operated control, Los = losartan 10 mg/kg, H = hesperidin).

Discussion

The present findings show that hesperidin reduced blood pressure in 2K-1C hypertensive
rats. Hesperidin also affected RAS activation by decreasing ACE activity, plasma Ang II
levels and suppressed AT; receptor expression in 2K-1C hypertensive rats. Increases in
035~ production and plasma MDA as well as p47P"* and gp91P"°* protein overexpression
were alleviated in the 2K-1C group treated with hesperidin or losartan. Hesperidin and
losartan improved endothelial dysfunction and nitric oxide (NO) bioavailability in 2K-1C
hypertensive rats. Sympathetic nerve activation, as evident by the enhancement of nerve-
mediated contractile responses and high levels of plasma NA were shown in 2K-1C
hypertensive rats. This sympathoexcitation was not found in 2K-1C rats treated with
hesperidin or losartan.

High blood pressure was associated with increases in plasma ACE activity and plasma
Ang II was shown in 2K-1C rats in the present study. The elevation of plasma Ang II
observed in this study was the consequence of RAS activation. This was supported by the
findings that a partial occlusion of one renal artery can develop hyperactivation of RAS in
animals (Romero et al., 1997; Nishi et al., 2010). Sawamura and Nakada demonstrated
high renal levels of ANG I, II and ACE activity in the clipped-kidney rats (Sawamura and
Nakada, 1996). Ang II, an octopeptide product of RAS, induces high blood pressure via
activation of AT receptors to produce vasoconstriction, Na™ and water reabsorption, and
sympathetic nervous stimulation (Fyhrquist et al, 1995). The upregulation of AT,
receptors that might enhance Ang II-mediated hypertensive effects was found in this animal
model. A relevant study indicated that prolonged exposure to Ang II could induce the
upregulation of brain AT, receptors (Mitra et al., 2010). This study, in renovascular
hypertensive rats, revealed the antihypertensive effect of hesperidin, which involved the
suppression of the RAS pathway. This is the first evidence to report the ACE inhibiting
activity of hesperidin in an animal model of hypertension. The attenuation of plasma ACE
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activity seems then to be related to reductions of plasma Ang II level, AT, receptor
expression and then blood pressure. The ACE inhibitor activity of hesperidin might then be
mediated by its flavonoid structure since there is evidence supporting flavonoids inhibiting
ACE activity and then lowering blood pressure (Kameda er al., 1987). Furthermore, a
molecular docking study discovered that flavonoids were able to bind with zinc ion in the
active site of ACE enzymes (Shafaei et al., 2016).

The upregulation of NOX subunits (p47Ph* and gp91P"°* protein expression) in aortic
tissues of 2K-1C hypertensive rats as a sequential activation of circulating Ang I was
observed in this study. This was associated with increases in oxidative stress markers
including plasma MDA levels and vascular O3~ production. These current findings were
supported by other studies performed in the 2K-1C hypertension models. For example,
overexpression of p47Ph°X protein was demonstrated to be responsible for oxidative stress
in RAS-dependent hypertension in rats (Boonla ez al., 2014). Wei and coworkers indicated
that Ang II can increase reactive oxygen species production through activating NOXs (Wei
et al., 2006). It is now accepted that high O3~ production promotes the development of
hypertension since O3~ can rapidly react with NO to form the potent cytotoxic perox-
ynitrite. It has clearly been shown that peroxynitrite causes oxidative damage to endothelial
cells and decreases NO bioavailability (Forstermann and Li, 2011). Jung and coworkers
indicated that NO bioavailability was reduced because of activation of the NOXs and O3~
production in the 2K-1C model (Jung er al., 2004). The impairment of endothelium-
dependent vasodilation is supported by reducing the vascular response to ACh but not to
SNP and was clearly shown in the present study. This was consistent with a reduction of
NO metabolites observed in 2K-1C hypertensive rats. Another possible antihypertensive
mechanism of hesperidin proposed in this study involved its anti-oxidant effect. Hesperidin
reduced p47PP% and gp91PPo* expression, O3~ production and plasma MDA levels in
2K-1C hypertensive rats which were associated with the improvement of vascular function
and plasma NOx level. There are substantial data to indicate the anti-oxidant property of
hesperidin (Homayouni et al., 2017). Yamamoto and coworkers firstly reported the anti-
hypertensive effect of hesperidin in spontaneously hypertensive rats associated with im-
proved vascular function and a reduction of oxidative stress (Yamamoto et al., 2008). In
RAS-dependent hypertension in rats, this study indicated that the antihypertensive effect of
hesperidin might involve the anti-oxidant property or a sequential suppression of RAS
cascade or both.

Sympathetic activation is an important factor to stimulate and maintain high blood
pressure in renovascular hypertensive rats (Bergamaschi et al., 1995). Sympathoexcitation
was confirmed in renovascular hypertension as indicated by a significant rise in low-
frequency SP during the mid-developmental and maintenance phases of the hypertension in
2K-1C hypertensive rats (Oliveira-Sales et al., 2014). A recent study by Nishi and cow-
orkers showed sympathetic vasomotor hyperactivity and baroreflex dysfunction which
contributed to the development and maintenance of renovascular arterial hypertension
(Nishi et al., 2010). The present results demonstrated that there was an enhancement of
contractile responses to sympathetic nerve stimulation without affecting the response
to exogenous NA in 2K-1C rats, suggesting the augmentation of NA release from
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pre-junctional sites. This result could be supported with high plasma NA in 2K-1C rats. In
addition, there is evidence to support findings that an increase in the vasoconstrictive
response to peri-arterial nerve stimulation was uncovered in isolated mesenteric vascular
beds from 2K-1C rats (Zimmerman ef al, 1987). The authors suggested that this
enhancement was partially mediated by Ang Il-induced facilitation of NA release
(Zimmerman et al., 1987). In fact, Ang II increases sympathetic nerve activity via
activation of the AT, receptor in the rostral RVLM, a pressor area of the medulla, and
activates sympathetic outflow to enhance NA release from sympathetic nerve terminals
(Oliveira-Sales et al., 2009). Furthermore, treatment with hesperidin suppressed the nerve-
mediated contractile response in 2K-1C hypertensive rats, which was relevant to a
decreased plasma NA level. An intriguing possibility is that hesperidin inhibited the RAS
cascade and subsequently reduced oxidative stress and sympathoexcitation.

In the present study, losartan was used as a positive control and was able to decrease
blood pressure, RAS activation, oxidative stress, and improve vascular function in the 2K-
1C hypertensive rats. The antihypertensive actions of losartan as an AT, receptor antag-
onist in 2K-1C hypertensive rats were strongly documented (Martins-Oliveira et al., 2013).
Losartan also caused a significant reduction of brain AT, receptors with attenuation of the
brain and plasma oxidative stress in renovascular hypertensive rats (Boshra and Abbas,
2017).
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Figure 8. Proposed mechanisms of action of hesperidin. TPR represents total peripheral resistance.
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In conclusion, the results of this present study indicate that hesperidin reduced blood
pressure by suppressing RAS cascade mediated-NOX overexpression and sympathoexci-
tation or it directly reduced oxidative stress (Fig. 8). It could therefore be suggested that
hesperidin might potentially be further developed as a complimentary agent in the treat-
ment of hypertension.
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Abstract: Hesperidin is a major flavonoid isolated from citrus fruits that exhibits several biological
activities. This study aims to evaluate the effect of hesperidin on cardiovascular remodeling induced
by N-nitro L-arginine methyl ester (L-NAME) in rats. Male Sprague-Dawley rats were treated with
L-NAME (40 mg/kg), L-NAME plus hesperidin (15 mg/kg), hesperidin (30 mg/kg), or captopril
(2.5 mg/kg) for five weeks (n = 8/group). Hesperidin or captopril significantly prevented the
development of hypertension in L-NAME rats. L-NAME-induced cardiac remodeling, i.e., increases in
wall thickness, cross-sectional area (CSA), and fibrosis in the left ventricular and vascular remodeling,
i.e., increases in wall thickness, CSA, vascular smooth muscle cells, and collagen deposition in the
aorta were attenuated by hesperidin or captopril. These were associated with reduced oxidative
stress markers, tumor necrosis factor-alpha (TNF-«), transforming growth factor-beta 1 (TGF-f31),
and enhancing plasma nitric oxide metabolite (NOx) in L-NAME treated groups. Furthermore,
up-regulation of tumor necrosis factor receptor type 1 (TNF-R1) and TGF- 31 protein expression and
the overexpression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9)
was suppressed in L-NAME rats treated with hesperidin or captopril. These data suggested that
hesperidin had cardioprotective effects in L-NAME hypertensive rats. The possible mechanism may
involve antioxidant and anti-inflammatory effects.

Keywords: hesperidin; L-NAME; cardiovascular remodeling; oxidative stress; inflammation

1. Introduction

Nitric oxide (NO) is a crucial vasodilator derived from vascular endothelium to regulate vascular
tone [1]. A reduction of NO production results in increased vascular resistance and high blood
pressure. N%-nitro L-arginine methyl ester (L-NAME), an L-arginine analogue, is widely used as
an inhibitor of nitric oxide synthase (NOS) activity to represent an animal model of hypertension.
It has been reported that L-NAME-induced hypertension in rats is characterized by insufficient
NO production, increased systemic oxidative stress, inflammation, and endothelial dysfunction [2].
Furthermore, L-NAME-induced hypertension and cardiovascular remodeling have also been reported
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in rats. For example, the administration of L-NAME (40 mg/kg) for four or five weeks causes high
blood pressure and cardiovascular remodeling, including left ventricular hypertrophy, myocardial
fibrosis, and thickening of the vascular wall [3-5]. It is generally known that the main sequel of
cardiovascular remodeling is heart failure, which is the major cause of death worldwide [6].

The initial stage of cardiac remodeling is myocardial hypertrophy because of the adaptive response
to a high-pressure load to preserve cardiac function and obtain normal cardiac work. In addition,
the cardiac remodeling process in L-NAME-treated rats is involved in the production of myocardial
fibrosis [7]. There are substantial data to show the molecular mechanism of extensive areas of cardiac
fibrosis which is associated with the activation of various downstream inflammatory [8] and oxidative
stress initiatives [9,10]. For example, a high level of tumor necrosis factor (TNF-«), a pro-inflammatory
cytokine, developed in response to oxidative stress in L-NAME-induced hypertension has been
reported [4,11]. These inflammatory responses subsequently activate the profibrotic mediator of the
transforming growth factor 31 (TGF-31) [11]. It is well-established that TGEF-31 plays a key role in
fibrogenesis by activating apoptosis, collagen, and matrix protein synthesis [12-14]. For vascular
structural changes in hypertension, it is known to be an adaptive response to an increase in wall
tension [15]. This response is also related to the extracellular matrix degradation of elastic fibers since
the up-regulation of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9)
expression in vessel tissue has been confirmed in animal models of hypertension. Several lines of
evidence have indicated that the activation of MMP-2/9 protein expression found in the vascular
remodeling process is mediated by the inflammatory cytokine, TNF-« [16-18]. Thus, it is noteworthy
that natural products with high antioxidant and anti-inflammatory activities might be useful for
alleviating cardiovascular alterations induced by nitric oxide deficiency.

Captopril is an angiotensin-converting enzyme (ACE) inhibitor and is commonly used as an
anti-hypertensive drug [19]. Its mechanism of action has been well-documented to reduce angiotensin
II production, which subsequently suppresses the renin-angiotensin-aldosterone system (RAAS) [19].
Other possible anti-hypertensive mechanisms include increased bradykinin and prostaglandins
levels [20], the inhibition of superoxide production [21], and the free radical scavenging effect [22].
Many studies have already reported on the cardiovascular effects of captopril in nitric oxide-deficient
hypertensive rats, i.e., lowering high blood pressure, improving vascular function [21], and preventing
cardiovascular remodeling [23]. In L-NAME hypertensive rats, there is evidence showing the
up-regulation of angiotensin II receptor type 1 (AT1R) which mediates nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase expression and superoxide formation [10]. This study
used captopril as a positive control agent because the L-NAME hypertension model is also involved in
the activation of the RAAS, where captopril inhibits the RAAS.

Hesperidin is a flavanone glycoside, a subclass of flavonoids, abundantly found in citrus fruits
such as lemon or orange peels or juices [24]. Numerous beneficial effects of hesperidin have been
published. For example, the antioxidant effect of hesperidin has been reported to be able to sequester
1,1-diphenyl-2-picrylhydrazyl (DPPH) and protect cell injury-induced by paraquat and hydrogen
peroxide [25], reduce plasma levels of lipid peroxidation markers, and increase antioxidant enzyme
activities in heart tissue in experimentally ischemic myocardial rats [26]. Hesperidin has also exhibited
an anti-inflammatory effect by reducing circulating inflammatory markers, i.e., TNF-«, interleukin
6 (IL-6), and a high-sensitivity C-reactive protein (hs-CRP), in patients with type 2 diabetes [27] and
suppressed inflammatory responses in lipopolysaccharide-induced RAW 264.7 cells [28]. Subsequently,
a clinical study revealed that a combination of hesperidin, diosmin, and troxerutin was effective
in relieving the symptoms of acute hemorrhoidal disease [29]. Recently, the current authors have
demonstrated an anti-hypertensive effect of hesperidin in renovascular hypertensive rats that involved
the suppression of the renin-angiotensin system [30]. This study was intended to further explore
whether hesperidin could prevent L-NAME-induced hypertension and cardiovascular remodeling
in rats.



Nutrients 2018, 10, 1549 3o0f15

2. Materials and Methods

2.1. Drugs and Chemicals

Hesperidin (purity > 98%) was purchased from Chem Faces Company (Wuhan, Hubei, China).
N(G)-Nitro-L-arginine methyl ester hydrochloride (L-NAME) and captopril were purchased from
Sigma-Aldrich Corp (St. Louis, MO, USA). All the other chemicals used in this study were obtained
from standard companies and were of analytical grade quality.

2.2. Animals and Experimental Protocols

Male Sprague-Dawley rats (body weight 220-250 g) were supplied by Nomura Siam
International Co., Ltd., Bangkok, Thailand. The animals were housed in a Heating, Ventilation and
Air-Conditioning (HVAC) System (25 & 2 °C) facility and maintained on a 12 h light and 12 h dark cycle
with free access to a standard rat diet and water at the Northeast Laboratory Animal Center, Khon Kaen
University. All the experimental protocols in this study were in accordance with the standards for
the care and use of experimental animals and approval for all the experiments was obtained from the
Animal Ethics Committee of Khon Kaen University, Khon Kaen, Thailand (AEKKU-NELAC 37/2559).

After a seven-day acclimatization period, the rats were randomly assigned to 5 groups (8/group).
The control group animals received tap water and were orally administrated propylene glycol (PG,
1.5mL/Kg) as a vehicle. L-NAME treated rats received L-NAME (40 mg/kg/day) in their drinking
water and were further divided into the following 4 groups; L-NAME plus PG, L-NAME plus
hesperidin at a dose of 15 mg/kg (L-NAME + H15 group), L-NAME plus hesperidin 30 mg/kg
(L-NMAE + H30 group), L-NAME group plus captopril at a dose of 2.5 mg/kg (L-NAME + Cap
group). Additionally, normal rats (1 = 5) were orally treated with hesperidin (30 mg/kg) for 5 weeks
to test the hypotensive effect of hesperidin. Hesperidin and captopril were dissolved in vehicle and
intragastrically administered once daily for five weeks. The doses of hesperidin and captopril used in
this study were influenced by previous studies in this laboratory [10,30].

2.3. Blood Pressure Measurements

To monitor blood pressure changes throughout the experimental period, systolic blood pressure
(SP) was obtained in awake rats once a week for 5 weeks using tail-cuff plethysmography (IITC/Life
Science Instrument model 229 and model 179 amplifier; Woodland Hills, CA, USA). At the end of
the final experimental day, the rats were anesthetized with pentobarbital sodium (60 mg/kg, ip.).
Then, the femoral artery was cannulated and connected to a pressure transducer for monitoring the
baseline values of SP, diastolic blood pressure (DP), mean arterial pressure (MAP), and heart rate (HR)
using the Acknowledge Data Acquisition software (Biopac Systems Inc., Santa Barbara, CA, USA).

2.4. Collection of Blood and Organs

After the blood pressure measurement, the rats were sacrificed by exsanguination and blood
samples were collected from abdominal aortas into Ethylenediaminetetraacetic acid (EDTA) or heparin
tubes for assays of oxidative stress and inflammatory markers. The carotid arteries were rapidly
excised for analysis of superoxide (O,°~) production. The thoracic aortas and heart tissues were
collected for western blotting and morphometric analysis.

2.5. Assays of Vascular O,°~ Production, Plasma Malondialdehyde (MDA), Plasma Nitric Oxide Metabolite
(Nitrate/Nitrite, NOx), Plasma TNF-a and Plasma TGE- B1 Levels

The carotid arteries were cleaned of connective tissues, cut into 0.5 cm lengths, and incubated with
1 mL oxygenated Krebs-KCl solution at pH 7.4, 37 °C for 30 min. The production of O,*~ in the carotid
arteries was determined by lucigenin-enhanced chemiluminescence, as previously described [31],
with some modifications [32]. Plasma NOx was assayed using an enzymatic conversion method [33],
with some modifications [32]. The concentrations of plasma TNF-« and TGF-1 were measured
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using enzyme-immunoassay assay (ELISA) kits (eBioscienc, Inc., San Diego, CA, USA and ab119557,
Abcam Plc, Cambridge, UK).

2.6. Morphometric Analysis of Thoracic Aorta and Heart Tissue

Heart weight (HW) and left ventricular weight (LVW) were measured, and calculated as an
LVW/BW ratio. Thereafter, the left ventricles and thoracic aortas were fixed with 4% paraformaldehyde
and then embedded in paraffin and cut into serial 5-pm-thick sections. Each section was stained with
hematoxylin and eosin (H&E) and/or Picrosirius Red. Sections were captured with a Digital sight
DS-2MV light microscope (Nikon, Tokyo, Japan) or a stereoscope (Nikon SMZ745T with NIS-elements
D 3.2, Tokyo, Japan). Morphometric evaluations of the sections were performed with Image J software
(National Institutes of Health, Bethesda, MD, USA).

2.7. Western Blot Analysis of Tumor Necrosis Factor Receptor 1 (TNF-R1), TGF- 1, MMP-2 and MMP-9
Protein Expressions in Cardiac and Aortic Tissues

Protein samples were prepared through the homogenization of cardiac and aortic tissues in a lysis
buffer (Cell Signaling Technology Inc., Danvers, MA, USA). The proteins were then electrophoresed on
a sodium dodecylsulfate polyacrylamide gel electrophoresis system and transferred to a polyvinylidene
fluoride membrane (Millipore Corporation, Bedford, MA, USA). The membranes were blocked with
5% skimmed milk in Tris-buffered saline (TBS) with 0.1% Tween 20 for 2 h at room temperature before
overnight incubation at 4 °C with primary antibodies against TNF-R1, TGF-31, MMP-2, MMP-9,
or [3-actin (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA). Thereafter, the membranes were
washed three times with TBS and then incubated for 2 h at room temperature with a horseradish
peroxidase conjugated secondary antibody. The protein bands were detected using Luminata™
Forte horseradish peroxidase (HRP) detection reagent (Merck KGaA, Darmstadt, Germany) and
the densitometric analysis was performed using ImageQuantTM 400 (GE Healthcare Life Sciences,
Piscataway, NJ, USA). The intensity of each band was normalized to that of (3-actin, and data were
expressed as a percentage of the values determined in the control group from the same gel.

2.8. Statistical Analysis

Data are expressed as mean £ S.E.M. The differences among the treatment groups were analyzed
through a one-way analysis of variance (ANOVA) followed by Bonferini’s post-hoc test. A p-value of
less than 0.05 was considered as statistically significant.

3. Results

3.1. Effects of Hesperidin and Captopril on Blood Pressure in Conscious Rats

There were no significant differences in the systolic blood pressure of all the rats at the beginning
of the study. The administration of L-NAME caused a gradual increase in the SP of all the rats
compared to the control rats (SP at 5th week, 200.21 £ 6.52 vs. 122.14 £ 1.75 mmHg, p < 0.01, Figure 1).
The co-administration of L-NAME and hesperidin at doses of 15 or 30 mg/kg (2.5 mg/kg) partially
prevented L-NAME-induced high blood pressure in a dose-dependent manner compared to that of
untreated rats (SP at 5th week, 177.50 £ 3.91 and 162.74 4+ 2.82 mmHg, p < 0.05). Captopril also
partially alleviated L-NAME-induced hypertension (152.19 & 5.01 mmHg) compared to untreated rats
(p < 0.05). In addition, captopril produced a greater preventive effect on SP than hesperidin (15 and
30 mg/kg).
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Figure 1. Time-course changes in systolic blood pressures of all experimental groups. Data are expressed
as mean = S.EM (n = 7-8/group), * p < 0.05 vs. control, # p <0.05 vs. L-NAME, $ p <0.05 vs. L-NAME +
hesperidin (15 mg/kg), ® p < 0.05 vs. L-NAME + hesperidin (30 mg/kg) group.

3.2. Effects of Hesperidin and Captopril on SP, DP, MAP, and HR in Anesthetized Rats

The blood pressure data obtained using the indirect blood pressure measurement method were
consistent with the values from the direct method since L-NAME treated rats exhibited high blood
pressure, including high SP, DP, MAP, and high HR compared to those of control rats (p < 0.05,
Table 1). Hesperidin at doses of 15 and 30 mg/kg significantly decreased SP, DP, and MAP in a
dose-dependent manner compared to the untreated group (p < 0.05). Similarly, captopril reduced the
development of hypertension induced by L-NAME compared to untreated rats (p < 0.05). Hesperidin
at a dose 30 mg/kg, however, also affected the elevation of HR compared to untreated rats (p < 0.05,
Table 1). Furthermore, hesperidin had no effect on blood pressure in normotensive rats (SP = 122.29 £
4.05 mmHg, n =4).

Table 1. Effects of hesperidin and captopril on blood pressure and heart rate in anesthetized rats.

Parameters Control L-NAME L-NAME + H15 L-NAME + H30 L-NAME + Cap
SP (mmHg) 12092 4227  205.884+3.19* 179.38 + 16,51 **  154.07 + 4.88 **%  140.14 + 7.06 *$
DP (mmHg) 72.68 & 3.31 141.65 £ 5.73* 11413 £ 1657 **  86.89 £ 574 **% 9148 +7.36%%

MAP (mmHg) 8876 +247 16141 +4.01* 13588 +16.00** 109.28 £ 5.39*#%  107.70 £ 6.27 #$
HR (beat/min)  367.86 +11.90 41930 £ 11.96*  391.93 +1435  351.44 + 1347%5  384.28 + 17.31

SP: systolic blood pressure; DP: diastolic blood pressure; MAP: mean arterial pressure; HR: heart rate. Values are
mean + S.EM (n = 7-8/group), * p < 0.05 vs. control, # p < 0.05 vs. L-NAME, ® p < 0.05 vs. L-NAME + H15.

3.3. Effects of Hesperidin and Captopril on Left Ventricular (LV) Morphometry and Fibrosis

Rat body weights did not differ among all experimental groups. After 5 weeks of L-NAME
administration, the HW, LVW, and LVW /BW ratios were significantly increased compared to those of
control rats. The co-administration of L-NAME and hesperidin or captopril significantly decreased
those values when compared to the untreated group (Table 2). Morphometric analysis of hearts
showed that the chronic administration of L-NAME significantly increased LV wall thickness and
LV muscle fiber cross-sectional area (CSA) compared to the normal control group (p < 0.05, Table 2).
Hypertensive rats that received hesperidin or captopril had significantly reduced wall thicknesses and
CSA of the LV compared to untreated rats (p < 0.05) (Table 2, Figure 2A). LV fibrosis was significantly
increased in the L-N AME-treated rats compared to the normal control rats (p < 0.05). Hesperidin or
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captopril treatment significantly prevented L-NAME-induced LV fibrosis compared to the untreated
rats (p < 0.05) (Figure 2B).

Table 2. Effect of hesperidin and captopril on the cardiac mass indices and cardiovascular structural
modifications in left ventricle and thoracic aorta.

Cardiac Mass Indices

Groups Body Weight (g) Heart Weight/BW (mg/g) LVW/BW (mg/g)
Control 434+6.8 3.14+0.17 2.06 £0.10
L-NAME 413+16.9 421+0.26% 3.04+0.18*
L-NAME + H30 406 +9.7 3.11+£0.23% 223+0.17%
L-NAME + Cap 401 +9.7 3.12+0.18 % 2.07+0.12%
Left Ventricle
Groups LV Wall Thickness (mm) LV CSA (mm?) LV Fibrosis (%)
Control 2.72 +0.05 57.58 +1.05 0.69 +0.04
L-NAME 3.28+0.04* 7242 +0.51* 2.72+0.15*
L-NAME + H30 2.90+0.06 # 61.12+1.75¢ 0.92£0.09 #
L-NAME + Cap 2.79+0.09 * 59.87 +1.63 1.00 +0.06 *
Thoracic Aorta Structural Modifications
Groups Wall Thickness CSA VSMCs Collagen Deposition
(um) (x103 pm?) (cells/CSA) (% Area Fraction)
Control 106.39 +1.02 579.00 £ 15.16 1298.00 + 73.64 15.78 +£0.70
L-NAME 150.58 £2.09 * 810.50 + 18.64 * 2013.71 £51.62* 31.32+1.00 *
L-NAME + H30 127.11 +2.90 *# 617.95+18.65 * 1540.16 + 46.88 *# 24.84 +0.69 **
L-NAME + Cap 129.91 + 6.50 ** 658.38 +40.22 ¢ 1671.78 +24.90 ** 23.68 £ 0.63 **

LV: left ventricular, LVW: left ventricular weight, BW: body weight, CSA: cross-sectional area, VSMCs: vascular
smooth muscle cells. Values are expressed as mean + S.E.M, (1 = 6/group). * p < 0.05 when compared to the control
group, and # p < 0.05 when compared to the L-NAME group.

L-NAME + H30

Control L-NAME

L-NAME +Cap

Control L-NAME + H30

L-NAME + Cap

Figure 2. The histology and morphology of LV from control, L-NAME, L-NAME + hesperidin
(30 mg/kg) and L-NAME + captopril (2.5 mg/kg) groups. Representative images of LV sections,
(A) stained with hematoxylin and eosin under stereomicroscopes, and (B) stained with picrosirius red
under a polarized light microscope using a 20x objective lens.

3.4. Effect of Hesperidin and Captopril on Vascular Morphology

Vascular wall hypertrophy was observed in thoracic aortas collected from L-NAME hypertensive
rats (Figure 3A) with significant increases in vascular wall thickness, CSA, and smooth muscle cells
numbers compared to those of the control rats (p < 0.05; Table 2, Figure 3A). Moreover, the relative
amounts of collagen depositions (Figure 3B) in the aortic walls of L-NAME hypertensive rats were also
clearly observed (p < 0.05; Table 2, Figure 3B). Hesperidin or captopril treatment partially prevented
the vascular structural abnormalities in aortas induced by L-NAME (p < 0.05).
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Figure 3. The histology and morphology of thoracic aorta from control, L-NAME, L-NAME + hesperidin
(30 mg/kg), and L-NAME + captopril (2.5 mg/kg) groups. Representative images of aortic sections,
(A) stained with hematoxylin and eosin and (B) stained with picrosirius red under a light microscope
using a 20x objective lens.

3.5. Effects of Hesperidin and Captopril Supplementation on Oxidative Stress Markers, Plasma Nitric Oxide
Metabolites (NOx) Levels in L-NAME Treated Rats

L-NAME treated rats showed a significant increase in the production of vascular O,*~ (263.26 +
11.20 vs. 71.42 £ 15.97 count/mg dry wt/min, p < 0.001) and plasma MDA levels compared to the
control groups (10.24 £ 0.4 vs. 3.11 & 0.27 uM, p < 0.05). When treated with hesperidin or captopril,
the elevations of vascular O,°~ and plasma MDA were mitigated compared to those of untreated
rats (7.91 4 0.92, 4.83 & 0.74 and 3.88 & 0.25 count/mg dry wt/min and 138.86 & 28.75, 97.28 + 16.67
and 92.14 + 12.90 uM, p < 0.05) (Figure 4A,B). In addition, low levels of plasma NOx were found
in L-NAME hypertensive rats compared to control rats (3.49 £ 1.0 vs. 10.17 £ 0.95 uM, p < 0.05).
These low levels of plasma NOx were improved by hesperidin or captopril supplementation (4.38 +
1.15,7.48 £+ 1.03 and 8.48 £ 1.21 uM, p < 0.05) (Figure 4C).
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Figure 4. Cont.
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Figure 4. Effects of hesperidin and captopril supplementation on vascular O,°~ production, (A) plasma
MDA (B) and plasma NOx (C) levels in control, L-NAME, L-NAME + hesperidin (15 mg/kg), L-NAME
+ hesperidin (30 mg/kg) and L-NAME + captopril (5 mg/kg) groups. Data are expressed as mean +
S.E.M (1 = 7-8/group), * p < 0.05 vs. control, * p < 0.05 vs. L-NAME group, * p < 0.05 vs. L-NAME

+ H15.

3.6. Effects of Hesperidin and Captopril on Protein Expression of TNF-R1 and TGF-B1 in Heart Tissues and
Concentrations of TNF-a and TGF-B1 in Plasma

Over-expressions of TNF-R1 and TGF-f1 proteins were found in heart tissues collected from
the hypertensive group compared to the control group (p < 0.001). Interestingly, supplementation
with hesperidin and captopril partially reversed these protein up-regulations (p < 0.01; Figure 5A,B).
These results were consistent with the results in that high levels of plasma TNF-oc and TGF-31 were
observed in L-NAME hypertensive rats compared to those of control rats (168.49 £ 13.05 vs. 24.21 &+
8.51 pg/mL and 23.54 &+ 3.91 vs. 4.90 & 0.50 ng/mL, p < 0.01). The administration of hesperidin or
captopril attenuated these high levels of plasma TNF-« (58.23 £ 14.71 or 20.97 + 6.97 pg/mL) and

TGF-1 (5.23 £ 0.32 or 4.79 £ 0.55 ng/mL, p < 0.05) in hypertensive rats (Figure 5C,D).
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Figure 5. Effects of hesperidin and captopril on protein expression of TNF-R1, (A) and TGF-31, (B) in
heart tissue and on concentrations of plasma TNF-«, (C) and TGF-$1, (D) collected from control,
L-NAME, L-NAME + hesperidin (30 mg/kg) and L-NAME + captopril (2.5 mg/kg) groups. The top
panel shows the representative bands of TNF-R1, (A) and TGF-f1, (B) protein expression in heart tissues.
Values are mean + S.E.M (n = 4 for each group), * p < 0.05 vs. control, * p < 0.05 vs. L-NAME group.

3.7. Effects of Hesperidin and Captopril on Protein Expression of MMP-2 and MMP-9 in Aortic Tissue

A significant increase in MMP-2 and MMP-9 protein expression was observed in thoracic aortic
tissues collected from the hypertensive group compared to the control group (Figure 6A,B, p < 0.05).
Hesperidin or captopril treatment significantly suppressed the level of MMP-2 and MMP-9 protein
expression compared to untreated rats, (p < 0.05).
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Figure 6. Effects of hesperidin and captopril on protein expression of MMP-2, (A) and MMP-9, (B) in
aortic tissue collected from control, L-NAME, L-NAME + hesperidin (30 mg/kg) and L-NAME +
captopril (2.5 mg/kg) groups. The top panels show the representative bands of MMP-2, (A) and
MMP-9, (B) protein expression in thoracic aortas. Values are mean + S.EM (n = 4 for each group),
* p < 0.05 vs. control, * p < 0.05 vs. L-NAME group.

4. Discussion

This study demonstrates that rats that received L-NAME developed hypertension and
cardiovascular remodeling. Hesperidin mitigated high blood pressure and cardiac remodeling by
reducing the left ventricular hypertrophy and fibrosis associated with down-regulations of TGF-f31 and
TNF-R1 protein expression and a reduction of plasma TGF-f31 levels in L-NAME-induced hypertension
in rats. Vascular remodeling, including vascular hypertrophy and increased collagen deposition,
induced by L-NAME in rats was inhibited by hesperidin supplementation. This was consistent with
the decreased protein expression of MMP-2 and MMP-9 in aortic tissue. Furthermore, hesperidin
preventing cardiovascular remodeling induced by L-NAME in the present study was linked to the
reduction of an inflammatory cytokine, oxidative stress markers, and enhanced NO availability.

It was found that chronic treatment of L-NAME led to the development of NO-deficient
hypertension as well as cardiovascular remodeling. These remodelings included increases in LVW /HW
ratio, LV wall thickness, LV CSA, LV fibrosis, aortic wall thickness, aortic cross-sectional areas,
aortic smooth muscle cell numbers, and collagen deposition. It is well-accepted that the chronic
inhibition of NO synthase using L-NAME results in NO depletion, increased vascular tone, and high
blood pressure [34]. Several studies have demonstrated that cardiovascular remodeling occurs after
chronic treatment with L-NAME (40 mg/kg) for five weeks [4,10,35]. The mechanisms involved
in cardiac remodeling in an animal model of nitric oxide-deficient hypertension are still unclear;
however, two possible mechanisms related to hemodynamics and non-hemodynamic aspects have
been described [36]. Hemodynamic overload in hypertension provoked left ventricular hypertrophy
because of the adaptive response to conserve cardiac output [37]. A reduction in NO is one of several
non-hemodynamic factors that participate in cardiac remodeling because when NO is suppressed,
hypertensive cardiac remodeling through the cyclic guanosine monophosphate/protein kinase G
(cGMP/PKG) pathway is initiated to inhibit fibrotic synthesis [38]. It is well-documented that
vascular remodeling in hypertension occurs in response to long-term modifications of hemodynamic
conditions [39,40]. Furthermore, numerous studies have reported that vascular remodeling is
characterized by increases in wall thickness, CSA, and smooth muscle cell numbers in L-NAME
hypertensive rats [3,4,41]. In this study, hesperidin partially inhibited the development of hypertension
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as well as cardiovascular remodeling induced by chronic L-NAME treatment. These effects may
have involved an increase in NO bioavailability, reductions of oxidative stress, and inflammation as
further possibilities.

Oxidative stress is one of the important mechanisms of L-NAME-induced hypertension since
L-arginine analogues activate eNOS uncoupling, leading to an overwhelming vascular superoxide
generation [42]. Then, superoxide can rapidly react with nitric oxide to form peroxynitrite [43].
This reaction results in reducing nitric oxide bioavailability [44]. In the present study, increases in
plasma MDA levels and vascular superoxide production were accompanied by decreased plasma
NOx levels observed in the L-NAME hypertensive rats. Hesperidin alleviated L-NAME-induced
oxidative stress and thus increased NO bioavailability with an increase in the plasma NOx level.
Many studies have confirmed that hesperidin has a strong antioxidant activity [26,45]. Hesperidin
exhibits its antioxidant properties with two main mechanisms, including directly scavenging reactive
oxygen species [46], and boosting cellular antioxidant defense [25]. Thus, this is one of the possible
mechanisms of the cardiovascular protective effects of hesperidin in this study that might have involved
its antioxidant capability, resulting in increased NO bioavailability, which reduced vascular resistance.

There is substantial evidence to suggest that inflammation is one of pathologies that occurs in
L-NAME hypertensive rats [47,48]. The results of this study proved that, as in the previous studies,
there were increases in the levels of pro-inflammatory cytokine, TNF-«, in plasma and expression of
TNF-« protein in the heart tissue of L-NAME hypertensive rats. Myocardial TGF-§3 protein expression
was also observed in L-NAME hypertensive rats. It is well-established that TGF-f3 plays an important
role in responses to inflammation to activate fibrogenesis, which is an important pathological process
for cardiac remodeling [49,50]. The present study has also shown that hesperidin attenuated cardiac
remodeling, accompanied by decreased systemic and heart inflammation in L-NAME hypertensive
rats. The protein expression of TGF-f in cardiac tissue was also down-regulated in the hesperidin
supplemented group. The anti-inflammatory effect of hesperidin has been clearly revealed in both
cellular and animal models. In human umbilical vein endothelial cells, hesperidin significantly
suppressed TNF-« [51]. Li and coworkers demonstrated that hesperidin decreased the production of
IL-1p3, IL-6, and TNF-« in a rat model of rheumatoid arthritis [52]. Thus, the current results confirmed
that the cardiprotective effect of hesperidin was associated with its great anti-inflammatory effect.

Additionally, vascular remodeling with collagen deposition was associated with the
overexpression of MMP-2 and MMP-9 in aortic tissue in L-NAME hypertensive rats, as shown in
this study. Several studies report that MMPs play an important role in physiological processes that
contribute to hypertension-induced maladaptive arterial changes and sustained hypertension [53,54].
The overexpression of MMP-mediated vascular remodeling was stimulated by oxidative stress and
inflammatory cytokines [54]. Del Mauro and coworkers demonstrated that MMP-2 and MMP-9 activity
was a pathologic process in L-NAME-induced morphometric alterations in the aorta [55]. Interestingly,
the authors of the present study first reported L-NAME-induced hypertension and vascular remodeling
in rats in which there was an up-regulation of MMP-2 and MMP-9 protein expression in response
to oxidative stress. Hesperidin prevented vascular remodeling induced by L-NAME associated with
the down-regulation of MMP-2 and MMP-9. This effect might be involved in its antioxidant and
anti-inflammatory effects, which further inhibited MMP activation and collagen degradation.

Captopril was used as a positive control to prevent the development of hypertension and
cardiovascular remodeling. These findings are supported by previous studies that found that captopril
prevented high blood pressure, left ventricular hypertrophy, and vascular remodeling induced by
L-NAME in rats [56,57]. Captopril also reduced oxidative stress and inflammatory markers and
suppressed protein expressions of TNF-R1, TGF-f1, and MMPs. An antioxidative effect of captopril
in the present study might be associated with two main mechanisms, direct and indirect effects.
Captopril contains free sulfhydryl groups that directly scavenge oxygen free radicals [58], or it
suppresses AT1R-mediated NADPH oxidase expression and superoxide production [10]. It has
been demonstrated that captopril improved ventricular hypertrophy in rats by suppressing MMP-2
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and MMP-9 expression [59]. In addition, an anti-inflammatory effect of captopril in the animal model
of hypertension has been reported [60].

In conclusion, the findings of this study indicated that hesperidin had cardiovascular protective
effects by preventing the L-NAME-induced development of hypertension and cardiovascular
remodeling in rats. These effects were affirmed by reducing oxidative stress and inflammation.
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Nobiletin alleviates vascular alterations through modulation of
Nrf-2/HO-1 and MMPs pathways in L-NAME induced hypertensive
rats

Prapassorn Potue,® Chutamas Wunpathe,® Putcharawipa Maneesai,®¢ Upa Kukongviriyapan,®¢
Parichat Prachaney b¢ and Poungrat Pakdeechote *2¢

Nobiletin, a citrus flavonoid, exerts a wide range of biological activities. This study investigated the effect of nobiletin on
vascular dysfunction and remodeling in L-NAME-induced hypertensive rats. Male Sprague-Dawley rats were given L-NAME
(40 mg/kg) for five weeks to induce hypertension and treated with nobiletin (20 or 40 mg/kg) or captopril (5 mg/kg) for the
last two weeks. Nobiletin or captopril significantly reduced blood pressure and the enhancement of the contractile
response to sympathetic nerve stimulation in the mesenteric vascular beds of L-NAME rats (p<0.05). Both agents improved
the impairment of vasorelaxation responses to acetylcholine in mesenteric vascular beds and aortic rings in L-NAME rats
(p<0.05). Moreover, nobiletin and captopril decreased oxidative stress markers, restored the abnormality of plasma NOx
and protein expression of eNOS, Nrf-2 and HO-1 observed in L-NAME rats (p<0.05). Increases in aortic wall thickness, cross
sectional area, vascular smooth muscle cells and collagen deposition that occurred in L-NAME rats were reduced by
nobiletin or captopril (p<0.05). These reductions were associated with suppression of matrix metalloproteinase (MMP)-2
and MMP-9 protein expression (p<0.05). These findings indicated that nobiletin had antihypertensive effects with
amelioration of vascular alterations. The molecular mechanism is likely to involve the restoration of Nrf-2/HO-1/MMPs

signaling pathways.

1. Introduction

Flavonoid is found in vegetables and fruits and is reported to
reduce risks of hypertension by its beneficial effects such as
vasorelaxation, anti-inflammation and  antioxidation.1:2
Nobiletin, a polymethoxylated flavone, is a unique flavonoid
exclusively found in citrus peels which possess extensive
bioactivities.>* A growing body of evidence suggests that
nobiletin has strong anti-inflammatory and antioxidant effects.
For example, 4’-demethylnobiletin, a major metabolite of
nobiletin, significantly reduced expression of pro-inflammatory
cytokines such as interleukin (IL)-1B, IL-6 and inducible nitric
oxide synthase (iNOS) in lipopolysaccharide-treated RAW
264.7 macrophages. It also activated antioxidant transcription
factor nuclear factor erythroid 2—related factor 2 (Nrf-2) and
its dependent genes, heme oxygenase-1 (HO-1), and NAD(P)H
dehydrogenase (quinone 1) (NQO1).> Furthermore, it has been
reported that nobiletin prevented cardiac hypertrophy via
inhibition of nicotinamide adenine dinucleotide phosphate
(NAPDH) oxidases and alleviated endoplasmic reticulum stress
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in mice.® Supplementation of nobiletin ameliorated cardiac
dysfunction, stress and inflammation in
streptozotocin-induced  diabetic cardiomyopathy mice.”
lkemura and co-workers demonstrated the protective effect of

oxidative

nobiletin on hypertension and thrombogenicity in cerebral
vessels of stroke-prone spontaneously hypertensive rats. They
suggested the mechanisms underlying these beneficial effects
of nobiletin are mediated by strong antioxidant properties
and, therefore increasing NO bioavailability.® Additional
indicated that reduced dyslipidemia,
increased insulin sensitivity and attenuated atherosclerosis in

studies nobiletin
mice with diet-induced insulin resistance.®

N®-nitro-L-arginine methyl ester (L-NAME) inhibits nitric
oxide (NO) synthesis by competitive binding with L-arginine to
the NO synthase.10 It is generally accepted that NO is a potent
vasodilator and plays an important role in vascular tone
regulation.!? Chronic inhibition of NO production by L-NAME
promotes persistent peripheral
contributes to hypertension.!? Previous studies indicated that
L-NAME induced high blood pressure which contributed to
endothelial dysfunction and vascular remodeling.1314 L-NAME

vasoconstriction and

hypertensive rats had an impairment of endothelium-
dependent vasorelaxation in both conduit and resistance
vessels.1516 Moreover, sympathetic overactivity was found in
L-NAME NO depletion enhanced
endogenous release
adrenergic sites.1”® This vascular dysfunction was supported

treated rats since

noradrenaline from postganglionic
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by the reduction of eNOS protein expression in vessels and
systemic nitric oxide metabolites (NOx) levels in L-NAME
hypertensive rats.1®2° Subsequently, it was shown that matrix
metalloproteinases (MMPs) are involved in vascular
remodeling processes since MMP-2 and MMP-9 are mainly
expressed in arteries in animal models of hypertension.2%22
Recently, Lee and Griendling provided evidence to support
that the alterations of vascular morphology and function are
mediated by overproduction of reactive oxygen species (ROS)
in vasculature.??

Oxidative stress has been addressed to play an important
role in pathogenesis of L-NAME induced hypertension in rats?*
because increases in tissue and systemic oxidative stress
markers were observed in this animal model.?> In fact,
oxidative stress can reduce NO bioavailability as superoxide
(05*) rapidly binds to NO to form peroxynitrite (ONOO).26 In
addition, an imbalance between ROS production and the
endogenous antioxidant mechanism in rats treated with L-
NAME has been revealed.?”?®2 These conditions may involve
the suppression of the Nrf-2 signaling pathway. Nrf-2 is a
cytoprotective transcription factor which exists to protect cells
under stress conditions by influencing the transcription of
antioxidative genes including HO-1.2°:39 Recently, Omobowale
and coworkers reported that there was a reduction of Nrf-2
expression in L-NAME-induced hypertensive rats.3!

Captopril is a standard anti-hypertensive drug with its
angiotensin converting enzyme (ACE) inhibitor effect.3? It also
has a vasodilator property in hypertensive patients.33
Moreover, other possible mechanisms, the increase of NO
generation and decrease of reactive oxygen species, which
may respond for beneficial effects of an ACE inhibitor in
addition to direct reduction of angiotensin Il and elevation of
bradykinin production have been clearly demonstrated in
animal models of hypertension.3*3> For example, captopril
decreases blood pressure associated with improving vascular
function and structure and reducing oxidative stress in
spontaneously hypertensive rats.3® In L-NAME hypertensive
rats, captopril has cardioprotective effects resulting from its
antioxidant effect and enhancing NO bioavailbility.3” There is,
however, no evidence regarding the effect of nobiletin on high
blood pressure, vascular alterations in NO-deficient rats. This
study aimed to investigate the effects of nobiletin on blood
pressure, vascular dysfunction and vascular remodeling as well
as the underlying mechanisms involved in L-NAME-induced
hypertensive rats.

2. Materials and methods
2.1. Drugs

Nobiletin (99%) was purchased from INDOFINE Chemical
Company, Inc. (NJ, USA). L-NAME and captopril were
purchased from Sigma-Aldrich Corp (St Louis, MO, USA). All
other chemicals used in this study were obtained from
standard companies and were of analytical grade quality.

2.2.  Animals and Experimental Protocols

2| J. Name., 2012, 00, 1-3

Male Sprague-Dawley rats weighing 220-250 g weye pyrghased
from Nomura Siam International Co, LtBQ!'B&ERakK, STREAAMH
Rats were housed in the HVAC (Heating, Ventilation and Air-
Conditioning) System (25+2°C) with a 12 h dark-light cycle at
Northeast Laboratory Animal Center. All procedures were
complied with the standards for the care and use of
experimental animals and approved by Animal Ethics
Committee of Khon Kaen University, Khon Kaen, Thailand
(ACUC-KKU-29/60). After seven days of adaptation, the
animals were divided into a control group that received
drinking water and an L-NAME treated group that received L-
NAME (40 mg/kg) in drinking water for five weeks to induce
hypertension. Hypertensive rats were subdivided into 4 groups
and they were intragastrically administered propylene glycol
(vehicle) or nobiletin (20 or 40 mg/kg) or captopril (5 mg/kg)
for the last two weeks (n=8/each group).

2.3. Indirect measurement of blood pressure in conscious
rats

Systolic blood pressure (SP) was measured in conscious rats by
the tail-cuff plethysmography (IITC/Life Science Instrument
model 229 and model 179 amplifier; Woodland Hills, CA, USA)
method for recording SP weekly throughout five weeks of the
experimental period.

2.4. Direct measurement of blood pressure in unconscious
rats

At the end of the experimental period, rats were anesthetized
with pentobarbital sodium (60 mg/kg, ip.). The left femoral
artery was identified, cleaned of connective tissue and
cannulated by a polyethylene tube. Baseline values of SP,
diastolic blood pressure (DP), mean arterial pressure (MAP),
and heart rate (HR) were continuously monitored for 20 min
and recorded using Acknowledge Data Acquisition software
(Biopac Systems Inc., Santa Barbara, CA, USA).

2.5. Vascular Function Study

2.5.1.
vascular beds

Experimental protocols in isolated mesenteric

The animals were killed by exsanguinations after
hemodynamic assessment. The superior mesenteric artery was
cannulated the hypodermic needle and gently separated. The
isolated mesenteric vascular beds were placed on a stainless-
steel grid (7x5 cm) in a humid chamber. The preparations
were perfused with physiological Krebs’ solution at a constant
flow rate of 5 ml/min, using a peristaltic pump (07534-04,
Cole-Palmer Instrument, lllinois, USA). Kreb’s solution was
composed of the following (mM): NaCl 118, NaHCO3; 25, KCI
4.8, KH,PO,4 1.2, MgS0,4.7H,0 1.2, CaCl, 1.25 and glucose 11.1.
38 The solution was maintained at 37°C and continually gassed
with a 95% O, and 5% CO, gas mixture. The mesenteric
vascular beds were pretreated with capsaicin (0.1 uM) for 20
min followed by 30 min washout period to facilitate a
desensitization of vanilloid receptors and to cause a
diminution of sensory neurotransmitters.3® After the washout
period, electrical field stimulation (EFS) (5-40 Hz, 90 V, 1 ms,
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for 30 s at 5-min intervals) was performed with a Grass SD9
stimulator (Grass SD9 B Square Pulse Stimulator, Rhode Island,
USA). This stimulator passes a current between the needle and
the wire grid on which the preparation placed. The
preparation was allowed to achieve a stable baseline, then the
mesenteric vascular beds were evaluated for contractile
responses to exogenous noradrenaline (NA) (0.15-15 nmol).
The preparations were allowed to equilibrate for 30 min
before the next trial. To determine vasoactive performance of
small resistance arteries, methoxamine (5-7 uM) was added to
the Kreb’s solution to raise tone (70-90 mmHg above baseline).
Subsequently, different doses of vasoactive agents,
acetylcholine, endothelium-dependent vasorelaxation, (ACh, 1
nM-0.01 pM) and sodium nitroprusside, a nitric oxide donor,
(SNP, 1 nM-0.01 uM) were injected. Contractile responses and
relaxation responses to vasoactive agents of the preparations
were detected as changes in mean perfusion pressure (mmHg)
using a pressure transducer and recorded via the BIOPAC
System (BIOPAC Systems Inc., California, USA).

2.5.2. Experimental protocols in isolated aortic rings

To assess vasoactive performance of the conduit arteries, the
thoracic aorta was rapidly isolated, carefully cleaned of
adhering connective tissues and cut into rings 2-3 mm in
length for tension measurement. The rings were suspended in
baths containing Krebs’ solution at 37°C and gassed with a 95%
0, and 5% CO, gas mixture. Isometric contractions were
recorded with a resting tension of 1g using a transducer
connected to a 4-channel bridge amplifier and a PowerLab A/D
converter and a PC running Chart v5 (PowerlLab System,
ADInstruments, Australia). Vascular responses to ACh (0.01-3
uM) and SNP (0.01-3 uM) were assessed under raised tone
conditions with phenylephrine, al-adrenoceptor agonist, (10
uM) and relaxation expressed as percent of the phenylephrine-
induced contraction.

2.6. Measurement of vascular O,°~ production and plasma
malondialdehyde (MDA)

0,°" production in carotid arteries was determined by
lucigenin-enhanced chemiluminescence as previously
described?*® with some modifications.*! Both sides of carotid
artery were rapidly removed and placed in ice-cold saline and
clean off connective tissues. The vessel was cut into 1 cm in
length and incubated with 1 mL oxygenated Krebs-KCl solution
at pH 7.4, 37 °C for 30 minutes. Thereafter, lucigenin 100 mM
was added in sample tube and placed in a luminometer
(Turner Biosystems, CA, USA). Luminometer counts were
integrated every 30 second for 5 minutes and averaged.
Vascular tissue O,°~ production was expressed as relative light
unit counts per minute per dried weight of vascular tissues.
Blood samples were collected from the abdominal aorta in
an EDTA tube and placed on ice for plasma MDA
measurement. The concentration of plasma MDA was
measured as thiobarbituric acid reactive substances by a
spectrophotometric method as previously described.’® The
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absorbance of the supernatant was measured at\532,hm &y, @
spectrophotometer. DOI: 10.1039/C8FO02408A

2.7.  Assay of plasma nitric oxide metabolites
(nitrate/nitrite)

Accumulation of nitrate/nitrite, the end products of NO
metabolism was used as index of NOS activity by using Griess
reagents, and the resulting reaction product, an azoic
compound, was measured spectrophotometrically at 540 nm.
Plasma samples were deprotenized by ultrafiltration using
centrifugal concentrations (NANOSEPTM, PI Filtration, USA).
The supernatant was mixed with 1.2 uM NADPH, 4 mM G-6-P,
1.28 unit/ml G-6-PD and 0.8 unit nitrate reductase, and then
incubated at 30°C for 30 minutes. After that, the mixer was
reacted with a Griess solution of 4% sulfanilamide in 0.3% N-
naphthyl-ethylenediamine for 15 min. The absorbance of
samples was measured on a plate reader with a filter
wavelength of 540 nm (Tecan GmbH., Groding Australia). A
standard curve was established with a set of serial dilution of
NaNO,.4!

2.8. Histology and morphometry

The thoracic aorta was fixed for 24 h in 4% paraformaldehyde
then embedded in paraffin and cut into serial 5-um thick
sections. Sections were stained with hematoxylin and eosin
(Bio-Optica Milano SpA., Milano, Italy) and by picro-sirius red
(Polysciences, Warrington, PA, USA). Images were obtained
under DS-2Mv light microscope and Eclipse LV100 POL
polarized light microscope (Nikon, Tokyo, Japan).
Morphometric evaluations were analyzed with the Image)
morphometric software (National Institutes of Health,
Bethesda, MD, USA). Aortic collagen deposition was expressed
as a percentage of positively stained area to medial area.

2.9. Western blot analysis

The aortic tissues were homogenized and the proteins were
electrophoresed on a sodium dodecylsulfate polyacrylamide
gel electrophoresis system. Thereafter, the proteins were
electrotransfered onto a polyvinylidenedifluoride membrane
and blocked with 5 % skimmed milk in Tris-buffered saline with
0.1 % Tween 20 (TBST) for 2 h at room temperature followed
by incubation overnight at 4 °C with mouse monoclonal
antibodies to eNOS (BD Biosciences, CA, USA), mouse
monoclonal antibodies to Nrf-2, HO-1, MMP-2 and MMP-9 and
goat polyclonal IgG to B-actin (Santa Cruz Biotechnology,
Indian Gulch, CA, USA). After the incubation period, the
membranes were washed with TBST and then incubated for 2
h at room temperature with horseradish peroxidase-
conjugated secondary antibody. The blots were developed in
Luminata™ Forte Western HRP Substrate (Millipore Corp.,
Billerica, MA, USA), and densitometric analysis was performed
using an Amersham Imager 600 (GE Healthcare Life Sciences,
Uppsala, Sweden). The intensity of bands was normalized to
that of B-actin, and data were expressed as a percentage of
the values determined in control group from the same gel.
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2.10. Statistical analysis

Data were expressed as mean + S.E.M. The differences among
treatment groups were analyzed by one-way analysis of
variance (ANOVA). A p-value of less than 0.05 was considered
statistically significant.

3. Results
3.1. Effects of nobiletin on blood pressure in L-NAME-
induced hypertensive rats

3.1.1.
conscious rats

Effects of nobiletin on blood pressure in

There are no significant differences of body weight in all
groups of rats as shown in figure 1A. At baseline, SP was not
significant different among experimental groups. Daily
administration of L-NAME for five weeks caused significant
increase in SP (200.00 + 5.66 mmHg) compared to the control
group (124.29 + 2.68 mmHg) (p<0.05). Treatment with

Table 1 Effects of nobiletin on blood pressure and heart rate in anesthetized rats

nobiletin at 20 or 40 mg/kg significantly reduced $B,in.ad9ses
response dependent manner (163.00 + 299 HhIU8H G402
mmHg, p<0.05) compared to untreated group (p<0.05). Thus,
this present study used nobiletin at dose 40 mg/kg as an
effective dose. Moreover, captopril significantly reduced SP
142.95 + 3.57 mmHg in L-NAME rats compared to L-NAME-
untreated rats (p<0.05, Fig. 1B).

3.1.2. Effects of nobiletin on blood pressure and heart
rate in anesthetized rats
The value of blood pressure obtained for direct method was
consistent with those of indirect method since after 5 weeks of
experimental period, SP, DP, MAP and HR in L-NAME group
were significantly increased compared to those of control
group (p<0.05). Nobiletin significantly decreased SP, DP, MAP
and HR in L-NAME rats comparing to L-NAME-untreated rats
(p<0.05).  Moreover, captopril significantly
hypertension induced by L-NAME as there were reductions of
SP, DP and MAP in L-NAME treated rats that received captopril
(p<0.05, Table 1).

reduced

3.2. Effects of nobiletin on vascular function in L-NAME-
induced hypertensive rats

3.2.1. Effects of nobiletin on contractile responses to
electrical field stimulation (EFS) and exogenous NA in mesenteric
vascular beds
To investigate the role of sympathetic nerve activity, EFS was
performed to produce an increase in perfusion pressure that
was frequency-dependent vasoconstriction in all preparations.
The contractile responses evoked by sympathetic nerve
stimulation was larger in the mesenteric vascular bed isolated
from L-NAME hypertensive rats than those found in control
rats (at 40 Hz, 76.24 + 1.67 vs. 44.72 + 7.95 mmHg, p<0.05).
Contractile response to EFS in L-NAME hypertensive rats-
treated with nobiletin at dose 40 mg/kg and rats treated with
captopril were markedly reduced (at 40 Hz, 44.97 + 4.46 and
43.66 + 5.02 mmHg, respectively, p<0.05) compared to the
response from L-NAME hypertensive rats (Fig. 2A). The
contractile response to exogenous NA (0.15-15 nmol),
however, was not different among groups (Fig. 2B).

3.2.2. Effects of nobiletin on vascular responses to
vasoactive agents in perfused mesenteric vascular beds of the rats
Vasorelaxation responses to ACh and SNP was expressed as a
reduction of perfusion pressure. Vasorelaxation response to

Parameters Control L-NAME L+NOB20 L+NOB40 L+Cap

SP (mmHg) 119.76+3.10 185.81+5.77 * 152.09+4.62 *# 137.68+ 3.90*# 134.40+ 2.81 *#

DP (mmHg) 74.47+3.81 132.46+3.92 * 109.40+ 2.63 *# 101.06% 4.46 *# 95.42+ 3.63**
MAP (mmHg) 89.56 + 3.06 150.24 #3. 11 * 123.63+2.84 ** 113.26% 4.06 *#5 108.414 3.28 *#5
HR (beat/min) 354.70+ 11.88 417.57+10.58 * 384.08+8.81 *# 365.35+ 5.29% 369.11+£8.17#

SP: systolic blood pressure; DP: diastolic blood pressure; MAP: mean arterial pressure; HR: heart rate; NOB: nobiletin; Cap: captopril. Data are expressed as mean +

SEM (n=8/group). “p<0.05 vs. control; #p<0.05 vs. L-NAME; *p<0.05 vs. L+NOB20
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ACh (0.1 uM-0.1 mM) in the mesenteric vascular bed were
significantly blunted in L-NAME group compared to control
group (0.1 mM ACh, 13.23 + 2.27 vs. 48.78 + 4.62 mmHg)
(p<0.05).  Treatment with nobiletin at dose 40 mg/kg
improved the response to ACh in L-NAME treated rats
compared to untreated rats (0.1 mM ACh, 40.18 + 7.22 mmHg)
(p<0.05). Moreover, L-NAME rats treated with captopril
significantly improved the response to ACh compared to L-
NAME hypertensive rats (0.1 mM ACh, 42.37 + 7.04 mmHg)
(p<0.05; Fig. 3A). There were no significant differences in the
vasorelaxation responses to SNP among groups, indicating
normal vascular smooth muscle cell function (Fig. 3B).

3.2.3. Effects of nobiletin on vascular responses to vasoactive
agents in the thoracic aorta

Endothelium-dependent vasorelaxation responses to ACh
(0.01-3 uM) were significantly blunted in aortic rings from L-
NAME hypertensive rats compared to control rats (3 uM ACh,
10.96 + 0.74 vs. 93.23 = 7.41% of relaxation) (p<0.01).
Nobiletin at a dose of 40 mg/kg improved vascular response to
ACh compared to untreated group (3 UM ACh, 33.04 + 2.26%
of relaxation; p<0.05). Moreover, rats treated with captopril
had significant improvement of the response to ACh compared
to L-NAME hypertensive rats (3 uM ACh, 40.17 + 5.70% of
relaxation; p<0.05) (Fig. 4A). In addition, the vasorelaxation
response to SNP, a NO donor, did not differ significantly
among groups (Fig. 4B).
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3.3. Effects of nobiletin on vascular 03€ prdductioH ane08A
plasma MDA in L-NAME-induced hypertensive rats

There were a significant increase in vascular O,* production
(167.63 + 29.31 vs. 43.62 + 6.57 count/mg dry wt/min, p<0.01)
and plasma MDA (8.96 + 0.80 vs. 2.85 + 0.25 uM, p<0.05) in L-
NAME hypertensive group compared to control group. The
rise of O,* production and plasma MDA were significantly
reduced in L-NAME rats treated with nobiletin (20 and 40
mg/kg) or captopril compared to L-NAME untreated rats
(91.16 + 5.97, 52.31 * 6.40 and 39.60 * 8.17 count/mg dry
wt/min and 5.19 + 0.52, 4.83 + 0.30 and 3.39 * 0.43 uM,
respectively, p<0.05) (Fig. 5A and B). This study, we measured
MDA in plasma to indicate systemic oxidative stress, which
might be fair representative for ROS source from vascular and
other tissues.

3.4. Effects of nobiletin on plasma NOx and eNOS protein
expression in L-NAME-induced hypertensive rats

Plasma NOx concentration was decreased in L-NAME-induced
hypertensive rats compared to those of control rats (3.42 £
0.57 vs. 9.86 + 0.43 uM, p<0.01). The level of plasma NOx was
significantly restored in L-NAME rats treated with nobiletin at
20 mg/kg, 6.12 £ 0.16 and at 40 mg/kg 6.96 + 0.53 or captopril
at 7.83 + 0.75 puM, p<0.05, compared with untreated rats (Fig.
6A). This was consistent with the downregulation of eNOS
protein expression in aortic tissue of L-NAME hypertensive

B
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Fig. 5 Effects of nobiletin and captopril supplementation on vascular O,* production (A) and plasma MDA (B) in all experimental groups. Data are expressed as mean +

SEM (n=7-8 /group), *p<0.05 vs. control; #p<0.05 vs. L-NAME; $p<0.05 vs. L+NOB20.
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rats. Nobiletin or captopril treatment significantly restored
eNOS protein expression compared with untreated group (Fig.
6B, p<0.05).

3.5. Effects of nobiletin on Nrf-2 and HO-1 protein
expression in aortic tissue

L-NAME hypertensive group had low level of Nrf-2 and HO-1
protein expression compared with the control group (Fig. 7A
and B, respectively, p<0.05). Nobiletin treatment significantly
upregulated Nrf-2 and HO-1 protein expression compared with
untreated rats (p<0.05).

3.6. Effects of nobiletin on vascular morphology and
collagen deposition in L-NAME-induced hypertensive rats

Increases in vascular wall thickness, cross sectional area,
wall/lumen ratio and vascular smooth muscle cell nhumbers
were observed in thoracic aortas of L-NAME treated group
compared with those of controls. Treatment with nobiletin
significantly attenuated abnormalities of vascular morphology
in L-NAME-induced hypertensive rats (Fig. 8A, C, D, F and G,
p<0.05). There were no significant differences in luminal
diameters among groups (Fig. 8E). In addition, collagen
deposition was significantly increased in the L-NAME group
and this was attenuated in nobiletin and captopril treated
groups (Fig. 8B and H, p<0.05).

3.7. Effects of nobiletin on MMP-2 and MMP-9 protein
expression in aortic tissue

Protein expressions of MMP-2 and MMP-9 were upregulated
in hypertensive rats compared with the control group (Fig. 9A
and B, p<0.05). Nobiletin and captopril treatment significantly
decreased the level of MMP-2 and MMP-9 protein expressions
compared with untreated rats (p<0.05).

4, Discussion

This journal is © The Royal Society of Chemistry 20xx

The present study demonstrated that rats treated with L-
NAME for five weeks had high blood pressure, vascular
dysfunction and vascular remodeling. Nobiletin improved
endothelial-dependent vasorelaxation in both aortic rings and
mesenteric vascular beds. The augmentation of nerve-
mediated contractile responses in mesenteric vascular beds
collected from L-NAME treated rats was found and this was
diminished by nobiletin and captopril treatment. L-NAME-
induced hypertensive rats showed increases in oxidative stress
markers and a low level of NO metabolites, eNOS, Nrf-2 and
HO-1 protein expression. Moreover, nobiletin and captopril
alleviated L-NAME induced vascular morphology abnormalities
and collagen deposition. These results were associated with
increases in MMP-2 and MMP-9 protein expression.

Hypertension induced by L-NAME in rats in the present
study was alleviated by nobiletin. This antihypertensive effect
of nobiletin was possibly linked to improving vascular function.
It is well established that blood pressure is determined by
cardiac output and total peripheral resistance. Vascular
diameter is partially regulated by adrenergic, cholinergic,
nitrergic and sensory innervations.*? EFS produces a
vasoconstrictor response of mesenteric arteries by releasing
NA from adrenergic nerves.3843 |t has been reported that NO
can modulate sympathetic activity by decreasing biological
activity of NA released from sympathetic nerves.** This was
supported by the study that L-NAME enhanced a nerve-
mediated contractile response and NA overflow in mesenteric
vascular beds.*>4® In the present study, chronic inhibition of
NO production augmented sympathetic vasoconstriction
mediated by enhancement of prejunctional sites indicated by
the fact that vasoconstrictive responses to exogenous NA did
not differ among groups. NO deficiencies have been
characterized by endothelial dysfunction and an increase in
total peripheral resistance contributing to hypertension.?” The
present study is consistent with the previous study when the
vasorelaxation responses to ACh in both aortic rings and
mesenteric vascular beds were blunted in L-NAME
hypertensive rats. In contrast, vascular responses to SNP, a NO

J. Name., 2013, 00, 1-3 | 7
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L+NOB40.

donor, did not differ indicating normal smooth muscle cell
functions. The impairment of endothelium-dependent
vasorelaxation in L-NAME-induced hypertension is associated
with oxidative stress and decreased eNOS expression and NO
metabolite levels.1>4%4% Nobiletin reduced the contractile
responses to EFS as well as improved endothelium-dependent
vasorelaxation in L-NAME hypertensive rats. Yang and
coworkers (2016) demonstrated that nobiletin had an
endothelium-dependent vasodilatory effect in rats.>® The
effect of nobiletin on vascular dysfunction in this study was
associated with its antioxidant capacity since oxidative stress
markers were decreased in the nobiletin treated group. This
was consistent with the restoration of eNOS protein
expression and plasma NOx after nobiletin treatment in L-
NAME hypertensive rats.

One of the principal mechanisms in L-NAME-induced
hypertension is oxidative stress. This study found the elevation
of oxidative stress markers in hypertensive rats associated
with downregulation of Nrf-2 and HO-1 protein expression in
L-NAME-induced hypertensive rats. It is possible that L-NAME

8| J. Name., 2012, 00, 1-3

competitively bound at the L-arginine binding site led to eNOS
uncoupling, which stimulated the production of 0, in
vasculature. 0,° then quickly reacted with NO to form ONOO-
which can damage blood vessels extensively.>%52 When
excessive production of ROS is determined by O,°- production,
MDA in L-NAME-induced hypertension in animals has been
reported.>354 Moreover, impairment of endogenous
antioxidant system in NO deficient rats has been introduced.?”
Nrf-2 is a crucial transcription factor that regulates various
antioxidant genes. Under stress conditions, Nrf-2 is activated
and translocated to the nucleus and subsequently bonded to
antioxidant response elements. This signaling pathway causes
transcription of many antioxidant genes especially HO-1. HO-1
degrades heme to biliverdin, ferrous iron, and carbon
monoxide that mitigates oxidative stress induced cell injury.>>
It was found that Nrf-2 downregulation resulted in an
imbalance between antioxidant capacity and oxidative stress
and vascular dysfunction.®® In L-NAME-induced hypertensive
rats there was suppression of Nrf-2 expression.3! In the
present study, nobiletin normalized the Nrf-2/HO-1 cascade as

This journal is © The Royal Society of Chemistry 20xx
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well as oxidative stress markers, which raised NO
bioavailability and then improved vascular function. The
antioxidant capacity of nobiletin reducing oxidative stress and
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Fig. 9 Effects of nobiletin and captopril on protein expressions of MMP-2 (A) and MMP-9 (B) in aortic tissues of control, L-NAME, L-NAME + nobiletin (40 mg/kg) and L-
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increasing antioxidant levels in various models of
cardiovascular diseases has been supported by several
studies.®57

Vascular remodeling associated with upregulation of MMP-
2/9 expression was observed in L-NAME hypertensive rats in
the present study. There were two main factors that affected
the vascular remodeling process.>® The vascular morphology
changes in response to long-term exposure to hemodynamic
alterations has been revealed.>® Besides the role of NO, a non-
hemodynamic factor involved in vascular remodeling has been
proposed since loss of NO bioavailability with increased
oxidative stress caused by L-NAME led to remodeling of
aortas.2%60 NO is well accepted to have an antiproliferative
effect.®! This effect was confirmed by the study that NO
showed inhibitory effect on VSMC proliferation, collagen levels
and a production of extracellular matrix components.6263 The
possible underlying L-NAME
hypertensive rats in the present study may have involved two
main factors as mentioned above since there were both
pressure overload and NO deficiency in this animal model.
Furthermore, the vascular remodeling process in hypertension
is involved in the upregulation of MMPs.54 It is well established
that excessive ROS and cytokines generation can modulate
MMPs activity resulting in a synthesis or degradation of the
matrix and collagen deposition.®566 |nterestingly, there is
evidence showing that Nrf2/HO-1 axis mediated the
expression of MMP-2 and MMP-9.67.68 The inhibitory effect of
NO on MMP-induced fibrosis has been suggested.®® This was
associated with the role of NO that suppressed NADPH
oxidase-mediated O,* production via activation of HO-1.70

induction mechanism of

This journal is © The Royal Society of Chemistry 20xx

this current study firstly showed the association of Nrf2/HO-1
axis and MMPs expression in L-NAME induced vascular
remodeling. Subsequently, nobiletin alleviated aortic
remodeling with downregulation of MMP-2 and MMP-9
protein expressions in aortic tissues. It is likely to be associated
with increased Nrf-2/HO-1 expression and increased NO
bioavailability observed in the present study.

Captopril was used as a positive control agent. The results
showed that captopril is efficient in treatment of hypertension
and has beneficial effects on vascular function and remodeling.
These results are congruent with many studies in that in NO-
deficient models, captopril decreased high blood pressure,
improved endothelial-dependent vasorelaxation and vascular
abnormalities associated with reducing oxidative stress and
increasing NO.*>7! Moreover, captopril was capable to
increase the expression of Nrf-2 in L-NAME hypertension 31
The beneficial effects of captopril on hypertension treatment
are not only by ACE inhibition, it also has a potent antioxidant
effect related to the thiol-containing molecule, which directly
scavenges free radical molecules.3* The effect of captopril (5
mg/kg) in comparison to nobiletin (40 mg/kg) on blood
pressure is comparable in the present study. Moreover,
nobiletin is as effective as captopril in suppression of oxidative
stress and increased nitric oxide bioavailability. However,
captopril was more effective on reducing collagen deposition
and MMP-9 protein expression than nobiletin group. The long
term efficacy in prevention of cardiovascular disease of
nobiletin is yet to be studied. The dose of nobiletin used in this
study followed a previous study.® These doses can be
translated for appropriate doses in human using the formula
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for dose translation.”? The doses in rats of 20 and 40 mg/kg
were translated to human, being 3.24 or 6.48 mg/kg,
respectively. Similarly, the dose of captopril (5mg/kg BW) used
in rats was calculated based on the dose in human of 40
mg/day in human weighing 50 kg. which is consistent with the
recommended dose in clinical practice in hypertensive patients
(25-50 mg/day).”3

5. Conclusion

In conclusion, the results of present study showed that
nobiletin had an antihypertensive effect, alleviated vascular
dysfunction and vascular remodeling and decreased oxidative
stress in L-NAME-induced hypertensive rats. The possible
molecular mechanisms were associated with the ability of
nobiletin to up-regulate the Nrf-2/HO-1 axis and suppressed
MMP expression in hypertensive rats.
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Tangeretin mitigates L-NAME-induced ventricular dysfunctiono
remodeling through AT;R/pERK1/2/pJNK signaling pathway in rats

Chutamas Wunpathe,c Putcharawipa Maneesai,> Siwayu Rattanakanokchai,” Sarawoot
Bunbupha,d Upa Kukongviriyapan, ¢ Terdthai Tong-un? and Poungrat Pakdeechote 2¢*

Tangeretin is a citrus flavonoid that exerts several beneficial effects, including anti-inflammation, anti-oxidation and
neuroprotection. For this study, the aim was to test the effect of tangeretin on N“-Nitro-L-arginine methyl ester (L-NAME)-
induced high blood pressure, left ventricular dysfunction and remodeling in rats. Rats were divided into five groups
(n=8/each group): a control group, an L-NAME group and three L-NAME groups treated with tangeretin (15mg/kg) or
tangeretin (30 mg/kg) or captopril (5 mg/kg) for the final two weeks. After five weeks of experiment, L-NAME groups had
high systolic blood pressures, ventricular dysfunction and remodeling. Overexpression of angiotensin Il type 1 receptor,
phosphorylated-extracellular-regulated kinase 1/2 (pERK1/2), phosphorylated-c-Jun N-terminal kinases (pJNK) protein but
downregulation of endothelial nitric oxide synthase (eNOS) protein expression in ventricular tissues were shown in
hypertensive rats while protein expression of phosphorylated-mitogen activated protein kinase p38 did not differ among
groups. Decrease in plasma NOx and increases in vascular superoxide generation, plasma malondialdehyde, angiotensin-
converting enzyme activity and angiotensin Il levels were found in hypertensive rats. These alterations were suppressed in
hypertensive rats treated with tangeretin or captopril. In conclusion, tangeretin exhibits antihypertensive effects and
alleviates ventricular dysfunction and remodeling in hypertensive rats. These effects are associated with inhibition of renin
angiotensin system activation and restoration of pERK1/2, pJNK, eNOS protein expressions along with reducing oxidative

stress and raising NO bioavailability

1. Introduction

Chronic administration of N“-Nitro-L-arginine methyl ester (L-
NAME) causes nitric oxide (NO) deficiency resulting in
hypertension in rats.? 2 Subsequently, L-NAME-induced
deteriorations of cardiovascular morphology and function have
been reported.3-> Previous studies found that left ventricular
(LV) hypertrophy and fibrosis occurred in rats treated with L-
NAME for 5 weeks.®8 In addition to pathological conditions of
myocardial damage, ventricular pressure and volume overload
that causes LV remodelling, the renin angiotensin system (RAS)
has been proposed to involve the mechanism of L-NAME
induced cardiac remodelling.? Gao and co-workers reported
that administration of L-NAME increases angiotensin Il (Ang Il)
levels and cardiac hypertrophy.1°® Recently, overexpression of
Ang Il Type | Receptor (AT;R) has been proposed to be
associated with L-NAME-induced LV wall hypertrophy and
fibrosis in rats.!’ Once activated, AT;R also transactivates
serine/threonine kinases such as mitogen-activated protein
kinases (MAPKs) to mediate cell growth and hypertrophy. Three
MAPK families have been clearly described and called for their
terminal components: extracellular signal-regulated kinases
(ERK) 1/2, p38MAPK, and c-Jun N-terminal kinases (JNKs) that
are implicated in cell growth, hypertrophy, and cell
proliferation.? Activation of ERK1/2 is a key element to produce
cardiac hypertrophy while activation of the p38MAPK cascades

o Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen
40002, Thailand. E-mail: ppoung@kku.ac.th; Tel.: +6643348394; Fax:
+6643348394

b-\eterinary Teaching Hospital, Faculty of Veterinary Medicine, Khon Kaen
University, Khon Kaen 40002, Thailand

¢ Cardiovascular Research Group, Khon Kaen University, Khon Kaen 40002,
Thailand

4 Faculty of Medicine, Mahasarakham University, Mahasarakham 44150, Thailand

is predominantly involved in the inflammatory response and
cardiac remodelling. Gdmez-Guzman and co-workers showed
that the administration of L-NAME could produce pERK1/2 up-
regulation and cardiac hypertrophy in rats.'3

In an animal model of L-NAME-induced hypertension, the
main consequence of ventricular remodelling is ventricular
dysfunction, which is an important cause of heart failure. Under
physiological conditions, NO is derived from endocardial
endothelial cells, coronary microvascular and cardiac myocytes
by eNOS to promote myocardial relaxation and diastolic
properties.’*1® Under pathological conditions, such as
ischemia—reperfusion, LV hypertrophy, heart failure and
myocarditis, NO is synthesized by eNOS to improve myocardial
contractility.!” That depletion of NO undoubtedly impairs
cardiac function is supported by a previous study where cardiac
dysfunction was observed in the NO-deficient model of
hypertension.'® In addition, Sheng and co-workers found that
cardiac remodelling and dysfunction were associated with
decreased eNOS phosphorylation, NOS activity, and NO
guantity in L-NAME rats.’® There is evidence that L-NAME
induces eNOS uncoupling resulting in increased reactive oxygen
species, especially superoxide, which in turn reduces NO
bioavailability.?° Increases in vascular superoxide production 2%
and lipid peroxidation product?> 23 in L-NAME-induced
hypertension in rats have been documented.

Tangeretin is a polymethoxylated flavonoid; one of the most
abundant compounds in citrus fruit peel.?* Numerous
pharmacological activities of tangeretin have been reported
including, anti-neurodegeneration, anti-inflammation, and anti-
oxidation.?*> 26 Tangeretin can reduce inflammation, oxidative
stress, and modulate MAPKs and apoptotic pathways in
cisplatin-induced acute hepatic injury.?” It also decreases
inflammatory markers and improves glucose uptake in
adipocytes.?® Eun and coworkers suggested that daily intake of
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tangeretin attenuates colitis in mice through suppression of
interleukin 12 and tumor necrosis factor-a expression and
nuclear factor kappa B activation.?? Furthermore, tangeretin
improves renal function and reduces the cognitive and memory
impairments in chronic kidney disease related to its anti-oxidant
and anti-inflammatory properties.3° The effect of tangeretin on
cardiac alterations induced by NO deficiency, however, is
unknown.

Captopril inhibits angiotensin-converting enzyme (ACE) to
convert angiotensin | to Ang Il and is a common anti-
hypertensive agent. It reduces blood pressure (BP) by
suppressing the RAS and increasing bradykinin and
prostaglandin levels.3! Captopril contains sulfhydryl (SH) groups
that can exhibit the free radical scavenging effects or
antioxidant properties.3? Several lines of evidence have
reported other beneficial effects of captopril on the
cardiovascular organ since it alleviates cardiac and vascular
remodelling induced by L-NAME.® 1! A previous study
demonstrated that captopril upregulated antioxidant enzyme
and eNOS protein expression in the heart, but suppressed the
RAS components.33

The previous study by the present authors demonstrated
the overactivation of RAS system, rises in Ang Il levels and
vascular AT;R protein expression, induced by NO deficiency.34
In this study, the signalling downstream of AT;R activation
related to ventricular remodelling and dysfunction are further
explored. Thus, the objective of this study was to evaluate
whether tangeretin could decrease BP, alleviate cardiac
alterations, suppress the activation of RAS and AT;R signalling
pathways and increase NO bioavailability in NO-deficient
hypertensive rats.

2. Materials and methods
2.1 Drugs and chemicals

Tangeretin (purity = 98%) was obtained from ChemFaces
(Hubei, China). Propylene glycol (PG) was obtained from Ajax
Finechem Pty Ltd. (NSW, Australia). L-NAME, captopril and
ethylenediaminetetraacetic acid were purchased from Sigma-
Aldrich Corp (St Louis, MO, USA). Lucigenin were obtained from
Fluka Chemika Co. Ltd. (Buchs, Switzerland). Paraformaldehyde
was obtained from Electron Microscopy Sciences (Hatfield, PA,
USA). Xylene was purchased from Panreac Quimica S.A.U., E.U.
Alcohol was purchased from ACI Lanscan., Thailand. Paraffin
wax was purchased from Scientific, UK. Hematoxylin and Eosin
(H&E) were purchased from Bio-Optica Milano SpA, Italy.
Picrosirius Red Stain Kit was purchased from Polysciences, Inc.,
USA.

2.2 Animals and experimental protocols

Male Sprague-Dawley rats (220-240 g body weight) were
purchased from Nomura Siam International Co., Ltd., Bangkok,
Thailand. They were housed in plastic cages in a room with a
regular 12-h dark—light cycle at a controlled temperature (22-24
°C) at the Northeast Laboratory Animal Center, Khon Kaen
University, Khon Kaen, Thailand. All animal procedures were

2| J. Name., 2012, 00, 1-3

performed in accordance with the Guidelines for Gare and-Use
of Laboratory Animals of Khon Kaen UnivefsitiPalNde&BErimerts
were approved by the Animal Ethics Committee of Khon Kaen
University, Thailand (IACUC-KKU-98/60). Rats were allowed a
week to acclimatize, then, hypertension was induced by
addition of L-NAME (40 mg/kg/day) in their drinking water
whereas control rats were given tap water. After three weeks of
L-NAME treatment, high blood pressure was observed in rats.
Thereafter, the rats were randomly divided into 5 groups with 8
rats each, as follows.

Group | Control + PG (1.5 ml/kg; p.o.; Control)

Group Il L-NAME + PG (1.5 ml/kg; p.o.; L-NAME)

Group Il L-NAME + tangeretin (15 mg/kg; p.o.; L+T15)

Group IV L-NAME + tangeretin (30 mg/kg; p.o.; L+T30)

Group V L-NAME + captopril (5 mg/kg; p.o.; L+Cap)

Tangeretin, captopril, and PG were orally administered daily
for the last 2 weeks of the experiments. The choice of
concentrations of tangeretin used in the present study was
influenced by previous reports3>-37 and a preliminary study. The
results from the preliminary study showed that tangeretin at
doses 30 or 50 mg/kg could reduce blood pressure in a similar
manner. Therefore, it was decided to choose tangeretin at
doses of 15 and 30 mg/kg to observe a dose-dependent
antihypertensive effect.

2.3 BP and heart rate (HR) and cardiac function measurement

Systolic BP (SP) and HR were measured weekly in conscious rats
using non-invasive tail-cuff plethysmography (IITC/Life Science
Instrument model 229 and model 179 amplifier; Woodland
Hills, CA, USA) for 5 weeks. For each rat, SP and HR were
detected and the mean values from the three detections with
15 min intervals were expressed. After five weeks of the
experiment, rats were anesthetized with pentobarbital sodium
(60 mg/kg/BW). Their chests were shaved and cleaned and they
were placed on one side on a specially designed apparatus. An
echocardiogram was performed using Model LOGIQ S7 (GE
Healthcare, WI, USA). LV structure and function were assessed
from two-dimentional short-axis views and then M-mode
tracings were recorded for LV internal dimensions at end-
diastole (LVIDd), LV internal dimensions at end-systole (LVIDs),
interventricular septum at end-diastole (1VSd), interventricular
septum at end-systole (IVSs), LV posterior wall thickness at end-
diastole (LVPWd), LV posterior wall thickness at end-systole
(LVPWs), end-diastolic volume (EDV), end-systolic volume (ESV)
and stroke volume (SV) from three consecutive cardiac cycles.
The LV fractional shortening (% LVFS) was calculated from
equation: %FS= [(LVIDd-LVIDs)/LVIDd] x 100. After the cardiac
function study, direct measurement of BP was determined.
Briefly, a femoral artery was separated from the femoral vein,
and a polyethylene tube was inserted. SP, diastolic BP (DP),
mean arterial pressure (MAP) and HR were constantly
monitored and recorded using the Acknowledge Data
Acquisition and Analysis Software (BIOPAC Systems Inc.,
California, USA).

2.4 Morphometric analysis of heart tissue

This journal is © The Royal Society of Chemistry 20xx
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Wet heart weights (HW) and LV weights (LVW) were calculated,
and LVW to body weight (BW) ratios (LVW/BW) were measured.
The LV tissues were fixed in 4% paraformaldehyde for 24 hours,
routinely embedded into paraffin and carefully cut to 5 um of
thickness. LV hypertrophy was assessed using H&E staining of
LV sections. Images were assessed under a SMZ745T
stereomicroscope (Nikon, Tokyo, Japan). The LV wall thickness
was measured every 45° interval around the cardiac
circumference. Cross-sectional areas were assessed using the
differences between the values of the external circumferential
areas of the hearts and the chamber areas. LV Fibrosis was
measured using picrosirius red stained LV sections. All sections
were depicted with an Eclipse LV100 POL polarized light
microscope (Nikon, Tokyo, Japan). LV fibrosis was calculated as
a percentage of the positively stained area to medial area.
Morphometric assessments were measured using Image-pro
plus software (Media Cybernetics, MD, USA) and Image)
morphometric software (National Institutes of Health,
Bethesda, MD, USA).

2.5 Western blot assay

AT;R, pERK1/2, pJNK, pp38MAPK and eNOS protein expressions
in LV tissue were detected using the Western blot method
following a previously explained method with some
adjustments.38 The tissues were carefully homogenized on ice.
A sodium dodecylsulfate polyacrylamide gel electrophoresis
system was used for protein electrophoresis, and then the
proteins were transferred onto a polyvinylidene difluoride
membrane and blocked with 5% BSA for 2 hours at room
temperature. Subsequently, proteins were incubated with
mouse primary antibodies to pERK1/2 and pJNK (Cell Signaling,
Danvers, MA, USA) and eNOS (BD Biosciences, CA, USA) or
rabbit primary antibodies to AT;R (Santa Cruz Biotechnology,
Inc., Santa Cruz, CA, USA) and pp38MAPK (Cell Signaling,
Danvers, MA, USA) overnight at 4°C. The membranes were
rinsed with tris-buffered saline with tween and then incubated
with horseradish peroxidase conjugated secondary antibody for
2 hours at room temperature. The blots were seen in
Amersham™ ECL™ Prime solution (Amersham Biosciences
Corp., Piscataway, NJ, USA), and densitometric analysis was
measured using an ImageQuant™ 400 (GE Healthcare Life
Sciences, Piscataway, NJ, USA). The intensities of AT4R,
pPERK1/2, pJNK, pp38MAPK and eNOS bands were compared to
those of the loading controls, B-actin.

2.6 Measurement of plasma Ang I, ACE activity, NO metabolites
(NOx), malondialdehyde (MDA) and vascular superoxide
production

Blood samples were drawn from abdominal aorta to analyze
plasma Ang Il, ACE activity, NOx and MDA levels. In this study,
an Ang Il EIA kit (St. Louis, MO, USA) was used to detect plasma
Ang Il concentration. ACE activity was measured using the o-
phthaldialdehyde (OPA)-chromogenic reaction for histidyl-
leucine. In brief, 25 pL sample of plasma and 50 pL of 15 mM
Hip-His-Leu solution were mixed in 100 uL buffer (20 mM
sodium borate and 300 mM NacCl, pH 8.3), and incubated at 37

This journal is © The Royal Society of Chemistry 20xx
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°C for 30 min. Background absorbance was determined. from
plasma samples diluted in 150 pL buffeROThe 188Pu? redction
was formed by adding OPA reagent (1 mM OPA and 1 mM 2-
meraptoethanol in buffer containing 0.1 M sodium borate and
0.2 M NaOH, pH 12). After incubation at room temperature for
20 mins, the absorbance was measured at 390 nm with a
spectrophotometer (Ultrospec 6300 pro. Bichrom Ltd., U.K.).
Results were calibrated according to a standard curve of ACE
solution (15-120 mU/mL).3® The end products of NO
metabolism, nitrate/nitrite, in plasma were investigated using
an enzymatic conversion method and Griess reagents as
described in a previous method with some modification.*°
Plasma MDA was evaluated with thiobarbituric acid reactive
substances assay as previously described.*  Superoxide
production in carotid arteries was detected by luciginin-
enhanced chemiluminescence.*°

2.7 Statistical analysis

Data are shown as means + SEM. The differences between
groups were analyzed using one-way ANOVA followed by
Fisher's Least Significant Difference tests. A statistical
significance was considered when a p-value is less than 0.05.

3. Results

3.1. Effects of tangeretin and captopril on SP in L-NAME-induced
hypertensive rats.

3.1.1. Effects of tangeretin and captopril on SP

Rat-baseline SP did not differ in all groups. Rats treated with L-
NAME for a week had significantly increased SP compared to
normal control rats. Over 3 weeks of the experiment, SP in L-
NAME treated rats gradually increased (Fig. 1A). Tangeretin (15
or 30 mg/kg) significantly reduced SP in hypertensive rats in a
dose-response dependent manner (167.37 + 1.80 and 147.98 +
2.00 mmHg, P<0.05) compared with the untreated rats (196.99
+ 5.99 mmHg, P<0.05). Captopril significantly decreased SP
(141.99 + 2.53 mmHg, P<0.05) in L-NAME treated rats
compared to untreated rats. Furthermore, no significant
differences in SP were detected between rats treated with
captopril and tangeretin at 30 mg/kg (Fig. 1B).

3.1.2. Effect of tangeretin and captopril on BP and HR in
anesthetized L-NAME-induced hypertension in rats

Blood pressure data measured by the direct method were
consistent with the results obtained by the indirect method
since SP, DP, MAP and HR were significantly increased in L-
NAME treated rats compared to control rats (P<0.05).
Hypertensive rats that received tangeretin had significantly
decreased BP compared to untreated rats (P<0.05).
Subsequently, the SPs of hypertensive rats treated with
captopril or tangeretin (30 mg/kg) were significantly lower than
those of in the hypertensive rats treated with tangeretin (15
mg/kg) (P<0.05). There were no significant differences of blood
pressures between the captopril group and tangeretin at 30
mg/kg (Table 1).

J. Name., 2013, 00, 1-3 | 3
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Fig. 1 The effect of 3-week-L-NAME treatment on systolic blood pressure (A) and the effect of 2-week-tangeretin and captopril treatment in L-NAME-treated rats (B). Results
are shown as means + SEM. (n = 8/group). *P<0.05 vs control, #P<0.05 vs L-NAME, 2P<0.05 vs T15.

Table 1 Effects of tangeretin and captopril on SP. DP, MAP and HR in rats.

Parameters Control L-NAME L+T15 L+T30 L+Cap

SP (mmHg) 120.39+2.33 197.3146.64* 157.5746.26*# 142.3244.82%*# 140.0343.70*#

DP (mmHg) 74.59+2.95 137.48+5.31* 106.86+3.75*# 98.71+3.60*# 98.87+2.84*#
MAP (mmHg) 89.86+2.02 157.42+5.29* 123.76+4.43*# 113.25+3.94*# 112.5942.95%#A

HR (beat/min)

363.57+15.02

413.52+15.02*

334.86+13.01%

339.81+15.69"

367.43+10.63"

SP: systolic blood pressure; DP: diastolic blood pressure; MAP: mean arterial pressure; HR: heart rate. Results are shown as means + SEM. (n = 8/group). *P<0.05 vs

control, #P<0.05 vs L-NAME, 2P<0.05 vs T15.

Table 2 Effects of tangeretin and captopril on cardiac function in L-NAME-induced hypertensive rats.

Parameters Control L-NAME L+T15 L+T30 L+Cap
1IVSd (cm) 0.21+0.01 0.27+0.02* 0.230.01*# 0.20+0.01# 0.18+0.02#
IVSs (cm) 0.28+0.01 0.35+0.03* 0.32+0.02# 0.30£0.01# 0.28+0.02#
LVIDd (cm) 0.65+0.03 0.52+0.03* 0.56x0.02*# 0.59+0.01*# 0.59+0.02¢
LVIDs (cm) 0.37+0.03 0.34+0.02 0.34+0.03 0.33+0.02 0.35+0.02
LVPWd (cm) 0.21+0.01 0.29+0.02* 0.25+0.02# 0.22+0.01# 0.21+0.01#
LVPWs (cm) 0.30+0.02 0.34+0.02 0.34+0.03 0.32+0.02 0.28+0.02#
EDV (ml) 0.67+0.08 0.350.06* 0.430.04* 0.48+0.03* 0.49+0.04*
ESV (ml) 0.14+0.03 0.10+0.02 0.11+0.02 0.10+0.02 0.11+0.01
EF (%) 79.51+2.94 70.21+2.74* 76.23%3.29 82.30%2.17% 77.11+1.24%
SV (ml) 0.53+0.06 0.25+0.05* 0.32+0.03*# 0.380.02*# 0.38+0.03*#
FS (%) 44.03£3.50 34.95+1.99* 40.88+3.18 43.51+2.90* 40.631.14

IVSd: Interventricular septum thickness at end diastole; I1VSs: Interventricular septum thickness at end systole; LVIDd: LV internal dimension at end-diastole; LVIDs: LV
internal dimension at end-systole; LVPWd: LV posterior wall thickness in diastole; LVPWs: LV posterior wall thickness in systole; EDV: end-diastolic volume; ESV: end
systolic volume; EF: ejection fraction; SV: stroke volume; FS: fractional shortening. Data are expressed as means + SEM. (n = 7/group). *P<0.05 vs control, #P<0.05 vs L-
NAME, 2P<0.05 vs T15.

Table 3 Effects of tangeretin and captopril on cardiac mass indices in L-NAME-induced hypertensive rats.

Parameters Control L-NAME L+T15 L+T30 L+Cap

BW (g) 476x14.15 445+16.25 453+5.48 470%7.93 468+7.48
HW/BW (mg/g) 2.65+0.03 2.97+0.02* 2.61+0.02% 2.46+0.05% 2.62+0.04%
LVW/BW (mg/g) 1.86+0.03 2.15+0.03* 1.85+0.02% 1.75+0.02% 1.75+0.03#

HW: heart weight; BW: body weight; LV: left ventricular; LVW: left ventricular weight. Data are expressed as means + SEM. (n = 8/group). *P<0.05 vs control, #P<0.05 vs
L-NAME, 2P<0.05 vs T15.
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3.2. Effects of tangeretin and captopril on ventricular function in L-
NAME-induced hypertension in rats

L-NAME rats showed significant increases in 1VSd, IVSs and
LVPWd with decreases in LVIDd, EDV, SV, %EF and %FS
compared with the control rats (P<0.05, Table 2). These
alterations of ventricular function were consistent with the
development of LV remodelling (Table 3 and Fig. 2). Tangeretin
or captopril alleviated EDV and SV alterations and fully
recovered the other abnormal cardiac parameters in
hypertensive rats (Table 3).

3.3. Effect of tangeretin and captopril on cardiac mass indices

BW among all groups was not significantly different, however,
HW/BW and LVW/BW ratios were increased in rats that
received L-NAME comparing to the control group (P<0.05; Table
3). Moreover, tangeretin or captopril restored HW/BW and
LVW/BW ratios compared to untreated rats (P<0.05).

3.4. Effects of tangeretin and captopril on ventricular morphology
in L-NAME-induced hypertensive rats

Histomorphometric analysis showed that long-term treatment
with L-NAME caused significant increases in wall thicknesses
and the cross-sectional areas and a reduction of luminal areas
in the LV comparing to the control group (P<0.05, Fig. 2). These
alterations could be restored by tangeretin. Captopril also
alleviated these signs of LV hypertrophy in L-NAME
hypertensive rats (P<0.05). Additionally, there was increased
myocardial fibrosis calculated from the picrosirius red-stained
LV sections by polarized light microscopy in hypertensive rats
(P<0.05; Fig. 3). This fibrotic change presented in hypertensive

Control L-NAME

L+T15

ARTICLE

rats was restored in tangeretin and mitigated,;in, captonri
treated groups (P<0‘05) DOI: 10.1039/C9FO02365H

3.5. Effects of tangeretin and captopril on RAS activation and AT;R
cascades in L-NAME-induced hypertensive rats

Plasma ACE activity and Ang Il levels were significantly higher in
hypertensive rats compared to control rats (P<0.05; Fig. 4).
These abnormalities could be restored by tangeretin or
captopril. The expressions of AT;R, pERK1/2 and pJNK protein in
myocardial tissue from L-NAME-induced hypertensive rats were
significantly upregulated comparing to control rats (P<0.05).
Supplementation of tangeretin markedly downregulated AT;R,
pERK1/2 and pJNK protein expression in L-NAME-induced
hypertensive rats (P<0.05). Additionally, captopril also
suppressed the upregulation of AT;R and pERK1/2 protein
expression in rats that received L-NAME (P<0.05; Fig. 5A, 5B and
5C). The expression of pp38MAPK, however, was not different
among groups (Fig. 5D).

3.6. Effects of tangeretin and captopril on eNOS protein
expression in LV tissues and plasma NOx from L-NAME-induced
hypertensive rats

Suppression of eNOS protein expression was observed in L-
NAME-induced hypertensive rats. Tangeretin and captopril
significantly raised the expression of eNOS protein in L-NAME-
induced hypertensive rats (P<0.05; Fig. 6A). These alterations of
protein expression were accompanied with a reduction of
plasma NOx concentration in L-NAME-induced hypertensive
rats (P<0.05). Tangeretin and captopril could restore the low
level of plasma NOx in hypertensive rats (P<0.05) (Fig. 6B).

L+T30
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Fig. 2 Effect of tangeretin and captopril on LV morphology in rats. Representative figures of LV sections stained with hematoxylin and eosin under stereomicroscopy using a 1x
objective lens, scale bars = 5.0 mm (A), and values of LV wall thickness (B), LV cross--sectional area (C) and LV luminal area (D). Results are shown as means + SEM. (n = 8/group).

*P<0.05 vs control, #P<0.05 vs L-NAME.

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 5

Please do not adjust margins



https://doi.org/10.1039/c9fo02365h

== Food & Function = =11

. . Vijew Article Onlin.
3.7. Effects of tangeretin and captopril on plasma MDA and demonstrated in hypertensive rats treatad ; with orantopfil

vascular superoxide production in L-NAME-induced hypertensive (P<0.05). There was a significant increase in superoxide
rats production in carotid arteries isolated from L-NAME treated rats

compared to control rats (P<0.05). This rise of superoxide

An increa‘lse in plasma MDA levels in L—NAME-induced production in hypertensive rats was fully recovered by
hypertensive rats was observed (P<0.05). Tangeretin restored tangeretin or captopril treatment compared to untreated rats
plasma MDA concentrations in L-NAME-treated rats compared (P<0.05) (Fig. 7)

to untreated rats (P<0.05). The antioxidant effect was also

Control L-NAME L+T15 L+T30 L+Cap

2.0

n

LV fibrosis (%)
s

=
in

Control  L-NAM ] L+T30

Fig. 4 Effect of tangeretin and captopril on myocardial fibrosis in L-NAME-induced hypertensive rats. Representative images of LV sections stained with picrosirius red under light
microscopy (A) and polarized light microscopy (B) using a 10x objective lens, scale bars = 0.1 mm, and values of percentage areas of LV fibrosis (C). Data are expressed as means +
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4, Discussion

The findings of this study are that in a rat model of L-NAME-
induced hypertension, the animals exhibited high systemic
blood pressure, impairment of LV function, and LV hypertrophy
and fibrosis. These signs of cardiac alterations were related to
overexpression of the cardiac AT;R, pERK1/2 and pJNK signhaling
cascade and reduction of cardiac eNOS protein expression and
plasma NO metabolites, along with increases in ACE activity,
plasma Ang Il levels, and oxidative stress markers in L-NAME
treated rats. Tangeretin and captopril reduced BP and alleviated
altered ventricular function and remodelling by suppressing the
activation of RAS and expression of the AT4R signaling pathway
in L-NAME-induced hypertensive rats. Tangeretin and captopril
increased cardiac eNOS protein expression. The reduction in
oxidative stress by treatment with tangeretin or captopril was

able to improve NO bioavailability in L-NAME-induced
hypertensive rats.

LV dysfunction characterized by decreasing EF, SV and FS
was shown in L-NAME hypertensive rats in the present study.
Moreover, it was found that there was a reduction of EDV,
indicating impairment of diastolic function in these
hypertensive rats. It is well established that chronic changes in
cardiac morphology subsequently result in cardiac dysfunction.
Additionally, NO has clearly been known to influence cardiac
performance since NO augments the Frank-Starling response
and enhances myocardial relaxation.??  Furthermore,
intracardiac NO promotes ventricular diastolic distensibility and
inhibits diastolic stiffness.*3> 44 Prendergast and co-workers
indicated that preload-induced increases in cardiac output were
significantly attenuated by NOS inhibition in the isolated
ejecting guinea pig heart. They suggested involvement of direct
effects of NO on myocardial diastolic and/or systolic function.®


https://doi.org/10.1039/c9fo02365h

Published on 13 January 2020. Downloaded on 1/16/2020 6:18:55 AM.

Food & Function

A recent study found that L-NAME significantly increased blood
pressure, cardiac remodelling and dysfunction accompanied by
a decrease in eNOS expression and NO bioavailability.'® In
addition, Kumar and co-workers reported that upregulation of
eNOS expression attenuated cardiac remodelling and LV
dysfunction in L-NAME-induced hypertensive rats.*>

Rats that received L-NAME developed high BP associated
with ventricular hypertrophy as evident by increases in HW/BW,
LVW/BW ratios, the cross-sectional areas, wall thicknesses, and
a decrease in luminal areas of the LV. Subsequently, LV fibrosis
was accumulated in L-NAME hypertensive rats, confirming LV
remodelling in this animal model. Since L-NAME has been
developed to inhibit NO production resulting in hypertension,
other consequences of hypertension in this animal model have
been extensively studied.*® Pechanova and coworkers found
systemic high BP related to LV remodelling in NO-deficient
hypertensive rats.*” At least two possible mechanisms,
hemodynamic and non-hemodynamic factors have been found
to contribute to ventricular hypertrophy.*® Hemodynamic
overload from hypertension-induced cardiac adaptation to
preserve normal cardiac output is well documented.*® It was
further reported that activation of RAS and depletion of NO
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remodelling.> 47 There is substantial evidence to show that
increases in plasma Ang Il, AT;R expression, associated with
cardiac remodelling were observed in L-NAME hypertensive
rats.’® 34 |n this present study, the overactivation of RAS and
AT;R signalling downstream expressions, ERK1/2 and JNK but
not pp38MAPK in ventricular tissues from L-NAME hypertensive
rats were found. These results suggest that activation of the
AT;R/MAP kinases (ERK1/2/JNK) pathway could mediate the
induction of ventricular hypertrophy and remodelling in NO
deficient rats. It is noteworthy that activation of the AT;R/MAP
kinases signalling cascades is implicated in cell growth and
hypertrophy.1? Several studies confirmed the important role of
AT;R and its signalling cascade on cardiac morphology. For
example, overexpression of AT;R in the heart of transgenic mice
was obviously related with cardiac hypertrophy, interstitial
collagen deposition, myolysis, and cardiac remodelling.>° Bueno
and co-workers indicated that cardiac hypertrophy was
mediated by the activation of the MEK1-ERK1/2 signalling
pathway in transgenic mice.>!
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This study demonstrated low levels of eNOS protein
expression in LV tissue and plasma NOx in L-NAME hypertensive
rats. NO is one of the non-hemodynamic factors preventing
maladaptive remodelling of hearts since upregulation of eNOS
protein expression has been shown to reduce -cardiac
hypertrophy in  mice.®> Kobayashi and co-workers
demonstrated that the downregulation of eNOS in the LV may
participate in the myocardial structural changes in L-NAME
rats.>® Itis well known that NO is able to inhibit cell growth and
proliferation.>® A previous study demonstrated that eNOS
protects against myocardial remodelling and dysfunction in the
rat myocardial infarction model.>> NO can inhibit cell
proliferation by modulating the expression of cell cycle
regulatory proteins.>® Therefore, NO is recognized to have
beneficial effects on cardiac morphology and function. The
current results are consistent with the previous study since this
study also found the downregulation of eNOS protein
expression in cardiac tissues and a decrease in plasma NOx
concentration in L-NAME-induced hypertensive rats. Moreover,
decreased NO bioavailability in this study was associated with
increased oxidative stress markers, plasma MDA levels, and
vascular superoxide production, however, tangeretin was able
to decrease BP and improve LV dysfunction and hypertrophy in
L-NAME-induced hypertensive rats. The anti-hypertensive
effect of tangeretin in the present study was due to
upregulation of eNOS protein expression, along with a rise in
plasma NOx.

That tangeretin raised NO bioavailability might be mediated
by its antioxidant property as high levels of oxidative stress
markers in L-NAME hypertensive rats were attenuated in the
tangeretin treated group. In the fact that superoxide is quick to
react with NO to form peroxynitrite, resulting in reducing NO
bioavailability.>” There is direct evidence that tangeretin
inhibited ERK1/2 phosphorylation in human T47D mammary
cancer cells®® and JNK phosphorylation in liver tissues of
cisplatin-induced acute hepatic injury.?” The results of the
current study showed that tangeretin suppressed RAS
activation and AT;R signaling pathway expression in L-NAME
hypertensive rats. The mechanism that is implicated in
tangeretin reducing plasma Ang Il level in the present study
might be related to its inhibitory effect on ACE activity. It is
possible that oxidative stress®® and high circulating Ang I
levels®® 61 participated in the overexpression of AT;R in
hypertensive rats in the present study, thus, tangeretin reduced
oxidative stress and plasma Ang Il levels and subsequently
suppressed ATiR expression. Furthermore, there is strong
evidence to support the suppressive effect of tangeretin on RAS
since the highest accumulation of tangeretin was observed in
the kidney compared to other vital organs.3’ Tangeretin
alleviated L-NAME-induced LV remodelling in the present study;
it may be the consequence of the antihypertensive effect of
tangeretin to reduce the pressure load on the heart or its effect
on non-hemodynamic factors or both. Furthermore, the
improved cardiac function in tangeretin treated L-NAME
hypertensive rats is related to its ability to reduce cardiac
hypertrophy, which may be associated with increased eNOS

This journal is © The Royal Society of Chemistry 20xx
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protein expression and plasma NOx P43 §ise&34ed Oabve!
Interestingly, tangeretin produced a dose-dependent response
in efficacy to reduce blood pressure and improve the other
abnormal parameters in this study. Itis possible that tangeretin
at a dose 30 mg/kg BW is an optimal dose or an effective dose
in this study Blood pressure, some parameters of cardiac
function, LV diameter and eNOS protein expression, however,
were not fully recovered by treatment, thus a longer treatment
of captopril or tangeretin to restore these parameters might be
more effective. The results of this study could suggest that
tangeretin can be used as a food supplement to obtain a
beneficial effect on reducing cardiovascular disease. There is
evidence to support that the greatest tangeretin concentration
was found in the flavedo of Florida citrus peel, especially King
mandarin.®? Therefore, consumption of the citrus peel, a good
source of tangeretin, may provide more nutritional benefits on
health promotion.

In the present study, captopril is an ACE inhibitor to treat
hypertension. It was able to decrease blood pressure, improve
cardiac alterations, suppress AT;R/MAP kinase pathways,
upregulate eNOS protein expression, reduce oxidative stress,
and increase NO bioavailability in the L-NAME-induced
hypertensive rats. The antihypertensive effect of captopril has
been clearly recognized.3*%3 In addition, captopril exhibits
antioxidant properties with its SH group.32

Conclusions

The results of the present study indicate that tangeretin can
decrease BP and mitigate LV dysfunction and remodelling in
NO-deficient hypertensive rats. These effects are associated
with reducing RAS activation and the AT;R/pERK/pJNK signaling
cascade and raising NO availability along with reducing
oxidative stress.
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