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This study focuses on the problem of global state regulation with stability for time-delay 
nonlinear systems with unknown control directions. Using a dynamic (time-varying) gain-
based method for counteracting time-delay nonlinearity and the Nussbaum gain function 
for dealing with unknown control directions, we develop a dynamic state feedback control 
strategy that solves the problem. A novel construction of Lyapunov-Krasovskii functionals 
is presented and plays a key role in handling nonlinearity with delayed states and 
unknown control directions simultaneously. The proposed dynamic state feedback 
compensators are shown to guarantee: i) global asymptotic convergence of the system 
state to the origin; and ii) global boundedness of the resulting closed-loop systems. The 
proposed control design can be apply to various physical systems with/without delay. 
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วตัถปุระสงค ์ 
1) Develop a delay-independent control that regulates the nonlinear system  

 
without imposing any growth condition on the lower-triangular vector fields and the 
unknown parameters. 
2) Develop a delay-independent time-varying control that regulates the p-normal form 
system with state delay  

 
without imposing any growth condition on the lower-triangular vector fields and the 
unknown parameters. 
3) Develop a delay-independent time-varying control for a physical system with state 
delay and test the performance the time-varying controller with actual system. 
 
 
วิธีทดลอง  
1) Review related publications in the area of time-varying control, nonlinear system with 
state delay and new discoveries in nonlinear control. 
2) Formulate the control problems that can be solved and choose a mechanical system 
that will be implemented in a test rig. 
3) Propose new time-varying controllers. 
4) Test the performance of the proposed controllers by using computer simulations  
5) Design a mechanical test rig to study the characteristics and performance of the 
propose controllers. 
6) Build and assemble the test rig.  
7) Gather the test results and evaluate the controller performance. 
8) Prepare journal papers and reports 
 
  



บทน า 
Time-delay systems extensively exist in a variety of applications including, but not 

limited to, network control, mechanical systems, biological systems and chemical 
processes. For example, models of milling processes, drilling processes and fluid flow or 
heating systems all exhibit time-delay phenomena. While many of these controlled plants 
are approximately modeled by linear systems, the work [2] presented a chemical reactor 
example that is described by a lower-triangular nonlinear system with time-delays in the 
state. To address control problems of time-delay systems, various analysis and synthesis 
approaches have been developed in the literature. Among them, the Lyapunov-Krasovskii 
and Lyapunov-Razumikhin methods are two powerful tools in the stability analysis of time-
delay systems [1, 3, 16, 15]. There are primarily three types of time-delay systems that 
have received considerable attention. One class includes the delay in the system state 
[1, 12, 17, 14] and the other one contains the delay in the control input [10, 11, 5]. Of 
course, a more complex situation involves time-delays in both states and actuators of 
controlled plants. For each category of time-delay systems, many results have been 
obtained and reported; see, for instance, [12], [10], [11, 5, 4]. In [10], a saturation state 
feedback controller was proposed for global asymptotic stabilization of a chain of 
integrators with a delay in the input, without requiring the knowledge of the delay. In [5], 
control of a class of nonlinear systems with input delay was investigated with the condition 
that the system under consideration is forward complete. For a strict feedback system 
with delayed states, an attempt was first made in [12] to design a delay-independent, 
smooth state feedback controller. Later, it was found that the result of [12] is false, due 
to a circular argument in the state feedback design. Such a technical issue was addressed 
in [2, 4] under the assumption that the upper bound of time-delay is known, and later in 
[17, 19], by using dynamic instead of static state feedback. The dynamic gain-based 
designs or the dynamic state feedback control schemes [17, 19] have shown to be 
effective in counteracting the nonlinearities with delayed states, thus making it possible 
to remove restrictive conditions imposed on time-delay nonlinear systems, which were 
commonly assumed in the literature when using delay-independent static state feedback. 
Most of the afore-mentioned works concentrated on time-delay nonlinear systems with 
known control directions, e.g., the signs of all coefficients of the chain of integrator are 
assumed to be known. If this crucial information is not available, a new method needs to 
be developed for the control of time-delay systems. When no time-delay is involved, 
feedback design approaches have been studied for uncertain nonlinear systems with 
unknown control directions [18], using the so-called Nussbaum functions from universal 



adaptive stabilization of minimum-phase linear systems with unknown sign of high-
frequency gain [13]. Since the sign of the control input often represents, for instance, 
motion directions of mechanical systems such as robotics modeled by the Lagrange 
equation and may be unknown, it is certainly important to investigate how to control time 
delay systems with unknown control directions. 

We first focus our attention on the following class of time-delay nonlinear system 
with unknown control directions: 

 
For the time-delay system with unknown control directions (1), global stabilization by 
delay-independent state feedback is a nontrivial problem and has not been addressed so 
far. There are perhaps two reasons: i) when the signs of coefficients of a chain of 
integrators are unknown, the design of virtual controllers is less intuitive and more involved 
as the uncertainties cannot be cancelled directly by a conventional backstepping design; 
ii) the presence of time-delay nonlinearities makes a delay-free, static state feedback law 
insufficient for mitigating the effects of time-delay, and hence a dynamic instead of static 
state feedback may be necessary. Motivated by the universal control idea [13, 6, 7, 8] 
and the recent development [19, 17], we propose in this work a novel construction of a 
set of Lyapunov-Krasovskii functionals and a delay-independent, dynamic state feedback 
control scheme for counteracting the effects of time-delay nonlinearities and unknown 
control directions in the system (1) simultaneously. With the help of the new dynamic 
gain-based Lyapunov-Krasovskii functionals, we are able to design a time-delay 
independent, dynamic state feedback compensator step-by-step, resulting in a solution to 
the global state regulation of the time-delay system (1) with stability. Interestingly, it is 
worth pointing out that the approach presented in this paper provides a new yet simpler 
way of designing state feedback controllers that achieve global stabilization of the 
nonlinear system (1) with unknown control directions, in the absence of time-delay, i.e., d 
= 0. 
 
ผลการทดลอง 
Dynamic State Feedback Design 

In this section, we first construct a delay-independent, dynamic state feedback 
compensator, by means of the Nussbaum-gain function [13], a set of new Lyapunov-



Krasovskii functionals (due to the presence of unknown control directions) and the 
dynamic gain-based design philosophy [19]. 
Step 1: For the x1-subsystem of (1), view the state x2 as a virtual control and consider 
the Lyapunov function 𝑉1(𝑥1, 𝑙1) =

1

2
(1 +

1

𝑙1
) 𝜉1

2 where l1 is a dynamic gain to be 
determined in Step 2. 
A direct calculation gives 

 
where 𝜉2 = 𝑥2 − 𝑥2

∗ 
It can be proved that 

 
We now use the bound from (4) to construct the Lyapunov-Krasovskii functional 

 
whose time derivative satisfies (by (3)-(4)) 

 
where c1 = 2+n: Because the sign of 𝜃1is unknown, we use the idea from [13], namely, 
the Nussbaum function to design a controller. In fact, from (5) a virtual controller with the 
Nussbaum gain can be constructed as 

 
This, together with l1 > 1, results in 

 
Step 2: For the (x1; x2)-subsystem of (1), treat the state x3 as a virtual control 
and consider the Lyapunov-Krasovskii functional 

 
where l2 > 1 is a dynamic gain to be determined in Step 3. 

In view of (7) and the properties that lj > 1, j = 1; 2, we have 



 
Using 𝜉2 = 𝑥2 − 𝑥2

∗, (6) and the fact that l1 > 1 and k1> 1, we arrive at (withthe aid of 
Lemmas 5.1-5.3) 

 

 
With the help of (10), we construct the Lyapunov-Krasovskii functional 

 
With 𝜉3 = 𝑥3 − 𝑥3

∗, we deduce from (9)-(10) that 

 
Based on (12), one can design the Riccati-like update law 

 



to mitigate the effects of the time-delay nonlinearity. 
By construction, it is clear from (13) that 

 
As a consequence, 

 
Substituting (13) and (16) into (12) leads to 

 
Similar to Step 1, because of the unknown sign of 𝜃2, we need to design a virtual 
controller 𝑥3

∗ with the Nussbaum gain as 

 
such that the inequality (17) becomes 

 
Inductive Step: Suppose at Step i - 1, there are a Lyapunov-Krasovskii functional 
V(i-1)LK, a set of dynamic gains lj j = 1,…,i-1, given by 

 
and a set of virtual controllers 𝑥1

∗, … , 𝑥𝑖
∗ with the Nussbaum gains (updated by a set of 

universal controllers) defined by 



 
with 𝜌𝑗 > 0 and 𝛽𝑗 > 0 being smooth functions, such that 

 
where ci > 0 is a constant and k0 = 1. Clearly, (22) reduces to (19) when i = 3.  

Recursively, it can be shown that (22) also holds at Step i. To this end, consider 
the Lyapunov-Krasovskii functional 

 
where li > 1 is a dynamic gain to be designed. 

Using (22) and the properties that lj > 1; kj > 1; we have 

 
The terms in (24) can be estimated and the properties of ki > 1 and li > 1 as follows. 



 
 

 

 

 



 
From the estimations above, which are related to the delay terms, one can construct the 
Lyapunov-Krasovskii functional 

 
Then, in view of (24)-(30), we have 

 



Following the idea and design given in Step 2, we can construct (based on (32)) the 
delay-free gain update law 

 
with li-1(0) = 1, and 

 
By construction, it is easy to verify that 

 
As a consequence, 

 
Substituting (36) and (37) into (32), we obtain 

 
To mitigate the effects of the unknown sign of 𝜃𝑖, we design the following virtual controller 
with a Nussbaum gain (updated by a universal controller 𝑘𝑖̇) 

 
Substituting (39) into (38) leads to the claim that (22) holds at Step i. The inductive 
argument so far has indicated that (22) holds for i = n+1 with 𝑢 = 𝑥𝑛+1 − 𝑥𝑛+1

∗ . As a 



consequence, a dynamic state feedback controller that is composed of (20) with i = n + 
1 and a universal-like control law 

 
renders 

 
We end this subsection with an observation that the dynamic state feedback compensator 
designed so far, namely, (40) and (20)-(21) with i = n + 1, is exactly of the form (2). 
 
Remark In the case when 𝜃i’s are known constants, all the ki = 1. Then, the Lyapunov 
inequality (41) reduces to 

 
from which it is concluded that global asymptotic state regulation of the time-delay 
nonlinear system (1) and boundedness of the closed-loop system are achieved by the 
delay-independent, dynamic state feedback compensator (40) and (20)-(21), with ki = 1, 
N(ki) = constant for i = 1;…, n, 
Asymptotic State Regulation with Boundedness 

In this subsection, we complete the proof of Theorem 2.1 by showing that the 
universallike, dynamic state feedback controller (40) and (20) designed in subsection A 
ensures not only the convergence of the system state x but also boundedness of the 
resulting closed-loop system. 

First of all, from the Lyapunov inequalities (22) and (41) it is concluded that ki(t), 
i = 1,…, n; are bounded. 

By the boundedness of ki(t), 1< I < n; it follows from (41) that 

 
thus implying the boundedness of ∫

0

𝑡
𝜉𝑛

2 𝑑𝑠. Repeating the same argument for the 
Lyapunov-Krasovskii functionals V(n-1)LK, …, V1LK; we can conclude that ∫

0

𝑡
𝜉𝑖

2 𝑑𝑠 , i=2,…,n 
 are bounded. On the other hand, from the inequality (43) and the boundedness of ki(t), i 
= 1,…,n, it is straightforward to prove that the Lyapunov-Krasovskii functional VnLK 



evaluated on the solution trajectory of the closed-loop system is bounded. In view of the 
construction of VnLK, in particular, (31) and (23), we deduce that the boundedness of VnLK 

implies the boundedness of x1, 
𝑘1

2…𝑘𝑖−1
2

𝑙1…𝑙𝑖−1
𝜉𝑖

2 , I = 1,…,n. 
Keeping the boundedness of x1 and k1 in mind, it is trivial to verify that the gain l1 

designed by (13)-(14) is monotone non-deceasing. Moreover, l1 is also bounded. In fact, 
if it is unbounded, then lim

𝑡→∞
𝑙1(𝑡) = +∞. By continuity of 𝜌1, 𝜌1 is bounded due to the 

boundedness of k1 and x1. As a consequence, there is a time instant T > 0 such that 
−𝑙1

2 + 𝑙1𝜌1(𝑘1, 𝑥1) ≤. This, together with (15), results in 𝑙1̇ = 0, which contradicts to the 
unboundedness of l1. Therefore, l1 must be bounded. This, combined with the 
boundedness of k1, implies the boundedness of 𝑥2

∗ and 𝜉2 = 𝑥2 − 𝑥2
∗ and so does x2. 

With the help of the boundedness of ki(1 < i < n); the boundedness of li and xi can be 
proved in the iterative manner of 𝑥2 → 𝑙2 → 𝑥3 → ⋯ → 𝑙𝑛−1 → 𝑥𝑛 by using (20) and 
(21). In conclusion, all the signals of the closed-loop system (1)-(40)-(20) are bounded. 

Finally, note that 𝜉𝑖̇ ,  i = 1 ,…, n are also bounded and ∫
0

+∞
𝜉𝑖

2 𝑑𝑡 < +∞ . It 
is thus deduced from the Barbalat’s lemma that 𝜉𝑖 , i = 1 ,…, n converge to zero as t ! 
+1. This, in view of the coordinate transformation (21), implies that the state x tends to 
the origin. In this way, the proof is completed. 
 
Example 1 Consider the time-delay planar system with unknown control directions: 

 
Using the proposed design procedure, the following controller   

 
can globally regulate the closed-loop system. 
The simulations of the trajectories (x1, x2) and (l1; k) of the closed-loop system are shown 
in the figure below, with the parameters 𝜃2 = -1, d = 1:25 and the initial condition (x1(0), 
x2(0)) = (0:75, -1:25). Notably, the proposed controller is independent of the time-delay, 
and hence it also works for a large delay d as long as d is finite. 



 

 
Fig 1: example 1 state tragetories of closed-loop system 

 
Extension to P-normal form 
 

Control of time-delay systems is a frequently encountered problem in various real 
world applications. In fact, network systems, chemical processes, biological systems, 
milling processes, drilling processes and fluid flow, to name just a few, all involve the 
time-delay issue. This paper first considers a family of time-delay nonlinear systems with 
unknown control directions of the form 

  
When the time-delay system (44) has a known control direction, the global stabilization 
problem has been addressed recently by non-smooth state feedback, although the 
nonlinear system (44) is in general not stabilizable, even locally, by smooth state feedback 



(this is true even if the time-delay d = 0, due to the presence of the uncontrollable/unstable 
linearization at the origin).  
 
Nonsmooth Dynamic State Feedback With The Nussbaum Functions 
 

In this section, we adapt the idea from universal control coupled with the feedback 
control strategy, to design a delay-free, dynamic state compensator that achieves global 
asymptotic state regulation with boundedness for the time-delay nonlinear system (44) 
with unknown control direction. As we shall see, the proposed dynamic compensator 
contains two sets of dynamic state feedback control laws. One of them is capable of 
mitigating the effects of the unknown control direction, while the other one is able to 
counteract the time-delay nonlinearities of the system (44). Notably, the idea of utilizing 
two sets of gain update laws has been explored in the area of adaptive control of nonlinear 
systems with unknown parameters by output feedback. In this work, we demonstrate how 
a similar philosophy can be applied to effectively control the time-delay system (44) with 
unknown control direction. 
 
Step 1: For the x1-subsystem of the time-delay system (44) with the unknown sign of 𝜃1, 
one can regard x2 as a virtual control. Similarly to the previous design, define 𝜉1 = 𝑥1 
and construct the Lyapunov function 𝑉1(𝑥1, 𝑙1) =

1

2
(1 +

1

𝑙1
) 𝜉1

2  is a dynamic gain to be 
designed in Step 2. Then, a direct computation gives 

 

 
where 𝜉2 = 𝑥2 − 𝑥2

∗ 
Construct the Lyapunov-Krasovskii functiona 

 
From (45)-(46), it follows that 

 



To cope with the unknown sign of 𝜃1, we use the Nussbaum function for the design of a 
virtual controller. Specically, a virtual controller with the Nussbaum gain can be 
constructed as 

 
This, together with l1>1, results in 

 
Step 2: For the (x1; x2) subsystem of the time-delay system (44) with the unknown 
sign of 𝜃2, we construct the Lyapunov-Krasovskii functional 

 
where l2>1 is a dynamic gain to be designed in the next step. Following the same 
argument in previous section, one can prove that W2(k1; x1; x2) is C1 and its partial 
derivatives are 

 
Since lj >1, it is deduced from (49) and (51) that 

 
From 𝜉2 = 𝑥2

𝑝1 − 𝑥2
∗𝑝1 , (48) and (51), it is not difficult to obtain, 

 



One can construct the Lyapunov-Krasovskii functional 

 
Then, it is deduced from (52) and (53) that 

 
The inequality above is derived by neglecting the negative terms that are related 

to 𝑙1̇. From (55), it is not difficult to show that the dynamic state compensator 

 
can counteract the effect of the time-delay nonlinearity. In fact, by construction the 
gain l1 satisfies 

 
As a consequence, 

 
Moreover, 



 
where 𝜉3 = 𝑥3

𝑝1𝑝2 − 𝑥3
∗𝑝1𝑝2 . 

Substituting (59) and (60) into (55), we arrive at 

 
Similar to Step 1, because of the unknown sign of 𝜃2, we design the virtual controller 

 
with the Nussbaum gain k2 that is updated dynamically. Clearly, the dynamic com- 
pensator (62) leads to 

 
Inductive Step: At step i-1, assume that there are a Lyapunov-Krasovskii functional V(i-

1)LK, a set of dynamic gains lj> 1, j = 1,…,i-1, updated by 

 
with 𝛼𝑗 =  

1

2
𝑝1…𝑝𝑗−1−1

, and a set of non-smooth but C0 virtual controllers with the 
Nussbaum gains, given by 

 
such that  



 
where ci > 0 is a constant and k0 = 1. Clearly, (66) reduces to (63) when i = 3. We claim 
that (66) also holds at Step i. To prove this claim, consider the Lyapunov-Krasovskii 
functional 

 
where li>1 is a dynamic gain to be designed, and 

 
for a positive constant mi. 

Repeating the same argument in Step 2, there are the delay-free gain update law 

 
and 

 
and a non-smooth virtual controller with the Nussbaum gain 



 
In addition, (66), also holds at Step i. Using the claim for i = n+1 with 𝑢 = 𝑥𝑛+1 =

𝑥𝑛+1
∗ , we conclude that the dynamic state feedback controller that is composed of (64) 

with i = n + 1 and 

 
is such that 

 
State regulation and boundedness of closed-loop trajectories can be proved in a similar 
fashion to the proof in the previous section. Therefore, we can conclude that the problem 
of state regulation of (44) can be solved by (73). 
 



สรปุและวิจารณ์ผลการทดลอง  
In this study, we have investigated the problem of global state regulation with 

stability for nonlinear systems with both time-delay uncertainties and unknown control 
directions. A delay-free, dynamic state feedback control strategy has been developed 
based on the dynamic gain-based design technique [19] and the idea of universal control 
with the Nussbaum function [13]. The proposed dynamic state feedback compensators 
consists of two sets of gain update laws, which are a reminiscent of the work [6, 7, 8] on 
universal control of nonlinear systems with unknown parameters by output feedback. One 
set of gain update laws is a Riccati-type, effective in counteracting the time-delay 
nonlinearities, while the other set of dynamic update laws is an universal control-like using 
the Nussbaum function, capable of mitigating the effects of unknown control directions. 
In contrast to the work [19], a set of new Lyapunov-Krasovskii functionals have been 
constructed in this paper, in order to cope with both time-delay uncertainties and unknown 
control directions simultaneously. It has been shown that the proposed dynamic state 
feedback control scheme can be extended to a class of p-normal form in which a new 
continuous controller has to be used since this type of systems is not stabilizable, even 
locally, by smooth state feedback. 
 
ข้อเสนอแนะส าหรบังานวิจยัในอนาคต 

For future study, this type of controller can possibly be applied to control traffic of 
an interconnected network system where delay is naturally occurred. The main 
advantage of this control design is the delay free design. Since the controller does not 
depend on the delay of the system, it is possible to use a single controller to control 
many system with different delay.  
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Summary

The problem of global stabilization by nonsmooth state feedback is investigated
for a family of time-delay nonlinear systems with unknown control direction.
Using the idea of the Nussbaum function from universal control, we present a
delay-free, nonsmooth dynamic state feedback strategy to achieve asymptotic
state regulation with boundedness of the closed-loop system. The proposed con-
trol scheme allows one to design a set of Lyapunov-Krasovskii functionals and
nonsmooth dynamic compensators simultaneously, by the technique of adding
a power integrator. It is shown that while the effects of unknown control direc-
tion can be mitigated by the Nussbaum-type gains, the strong nonlinearity with
time delay can be effectively dealt with by nonsmooth state feedback controllers
whose gains are updated dynamically.

KEYWORDS

dynamic state compensation, nonlinear systems, nonsmooth feedback, time-delay, unknown
control directions

1 INTRODUCTION

Control of time-delay systems is a frequently encountered problem in various real-world applications. In fact, network
systems, chemical processes, biological systems, milling processes, drilling processes, and fluid flow, to name just a few,
all involve the time-delay issue.

This paper first considers a family of time-delay nonlinear systems with unknown control directions of the form

ẋi = 𝜃ix
pi
i+1 + 𝑓i (x1, … , xi, x1(t − d), … , xi(t − d)) ,

ẋn = 𝜃nupn + 𝑓n (x, x(t − d)) ,

x(s) = 𝜁 (s), s ∈ [−d, 0], (1)

where i = 1, … ,n − 1, x ∈ Rn and u ∈ R are the system state an input, respectively. The constant d ≥ 0 is an unknown
time-delay of the system, pi > 0 are odd integers, 𝑓i ∶ R2i → R are C1 mappings with fi(0, 0) = 0, and 𝜁 (s) ∈ Rn is a
continuous function defined on [ − d, 0]. The coefficients 𝜃i ≠ 0, 1 ≤ i ≤ n, are unknown constants whose bound is
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known. They represent unknown control direction and can be either positive or negative. The motivation for studying
the unknown control direction problem was already explained in the context of universal control (see, for instance, the
works of Nussbaum1 and Willems and Byrnes2) where even for the one-dimensional linear system

ẋ = ax + bu, x ∈ R,
with a and b ≠ 0 being unknown constants, it was illustrated how adaptive control of the linear system (a, b) is naturally
connected to the problem of unknown control direction.

When the time-delay system (1) has a known control direction (eg, 𝜃i = 1 for i = 1, … ,n), the global stabilization
problem has been addressed recently by nonsmooth state feedback,3 although the nonlinear system (1) is in general not
stabilizable, even locally, by smooth state feedback (this is true even if the time delay d = 0, due to the presence of the
uncontrollable/unstable linearization at the origin).

For the analysis and synthesis of time-delay systems,4-6 the Lyapunov-Krasovskii and Lyapunov-Razumikhin methods
are two popular tools that have been found wide applications. In the literature, research of time-delay systems can be
classified primarily into three different categories. The first category of study focuses on the time delay in the system
state,4 whereas the second one is aimed at the time delay in the control input.7,8 The last category addresses a general case
where the time delay is present in both the control input and the system state. For each category of time-delay nonlinear
control problems, substantial progress has been made and various results have been obtained (see, for instance, other
related works3,7,9 and the references therein).

Following the line of the research in the work of Zhang et al,3 we study in this work the global stabilization of the
time-delay nonlinear system (1) by nonsmooth state feedback in the presence of unknown control directions. Most of the
aforementioned works concentrated on time-delay nonlinear systems with known control directions, ie, the signs of all
coefficients of the chain of “nonlinear integrators” are assumed to be known. If this crucial information is not available, a
new feedback design method needs to be developed for the control of time-delay systems. When no time delay is involved
and the linearized system is controllable (eg, d = 0 and pi = 1, i = 1, … ,n in (1)), a feedback control scheme based on
the Nussbaum functions1 was proposed in the work of Ye10 for a class of lower-triangular systems. It was shown that the
idea of the Nussbaum functions is effective1,2 in dealing with the unknown control direction issue.

Note that the sign of the control input often represents motion direction of mechanical systems (for example, robotics
modeled by the Lagrange equation) and may be unknown. Therefore, it is certainly important necessary to investigate
the question of how to control time-delay nonlinear systems when control directions are not known. Motivated by the
universal control idea1,11-14 and the recent development,3 we propose in this work a delay-free, nonsmooth dynamic state
feedback compensation scheme, together with the idea of Nussbaum functions, to globally stabilize the time-delay non-
linear system (1) with unknown control directions. In particular, an iterative algorithm is developed for the construction
of a set of Lyapunov-Krasovskii functionals as well as a delay-free, dynamic state compensator that mitigates the effects of
time-delay nonlinearities and unknown control direction in the nonlinear system (1) simultaneously. More specifically,
global state regulation of the time-delay system (1) with boundedness of all the signals is guaranteed by the proposed non-
smooth dynamic compensator. Based on this main result, we further show how it can be generalized to a much boarder
class of time-delay nonlinear systems with uncertainty, under a homogeneous-like growth condition that can be viewed
as a natural extension of the well-known lower-triangular condition. Finally, a simple but nontrivial example is presented
to illustrate the significance of the finding obtained in this paper.

Notation. Denote v̄i = [v1, … , vi]T ∈ Ri, for i = 1, … ,n. For instance, x̄i = [x1, … , xi]T , x̄i(t − d) =
[x1(t − d), … , xi(t − d)]T and l̄i = [l1, … , li]T . A Nussbaum function N(k) = k2 cos(k), which is obviously an even
function, will be used throughout this work. It is not difficult to verify that it satisfies the following properties:
(i) limk→+∞ sup 1

k
∫ k

0 N(s)ds = +∞; (ii) limk→+∞ inf 1
k
∫ k

0 N(s)ds = −∞.

2 PRELIMINARY

This section collects a number of useful lemmas to be frequently used in this paper.

Lemma 1. (See the works of Qian and Lin15,16)
For positive real numbers m,n and a real-valued function 𝜋(x, y) > 0, the following inequality holds ∀x, 𝑦 ∈ R:

|x|m|𝑦|n ≤ m
m + n

𝜋(x, 𝑦)|x|m+n + n
m + n

𝜋−m∕n(x, 𝑦)|𝑦|m+n. (2)
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Lemma 2. (See the works of Lin and Qian17)
For a C0 function f (x, y), there are smooth functions a(x) ≥ 0, b( y) ≥ 0, c(x) ≥ 1 and d( y) ≥ 1, such that|𝑓 (x, 𝑦)| ≤ a(x) + b(𝑦), |𝑓 (x, 𝑦)| ≤ c(x)d(𝑦). (3)

Lemma 3. (See the works of Qian and Lin15,16)
Let x, 𝑦 ∈ R and p ≥ 1 be an integer. Then,|x + 𝑦|p ≤ 2p−1 |x p + 𝑦p| ,

(|x| + |𝑦|) 1
p ≤ |x| 1

p + |𝑦| 1
p ≤ 2

p−1
p (|x| + |𝑦|) 1

p . (4)

If p is an odd positive integer, then |x − 𝑦|p ≤ 2p−1|x p − 𝑦p|. (5)

Lemma 4. (See the work of Zhang et al3)
For a C0 function f (x, y) and a positive integer k, there exist smooth functions g(x) ≥ 0 and h( y) ≥ 0, such that

𝑓 (x, 𝑦)
(|x|k + |𝑦|k) ≤ g(x)|x|k + h(𝑦)|𝑦|k. (6)

Lemma 5. (See the work of Zhang et al3)
For the C1 function 𝑓i(x̄i, x̄i(t − d)) with fi(0, 0) = 0, there exist smooth functions 𝛾̄i𝑗(x𝑗) ≥ 0 and 𝛾̄∗i𝑗(x𝑗 (t − d)) ≥ 0, 𝑗 =
1, … , i, such that

|𝑓i(·)| ≤ i∑
𝑗=1

(
𝛾̄i𝑗(x𝑗)|x𝑗| + 𝛾̄∗i𝑗(x𝑗 (t − d))|x𝑗 (t − d)|) . (7)

3 NONSMOOTH DYNAMIC STATE FEEDBACK WITH THE NUSSBAUM
FUNCTIONS

In this section, we adapt the idea from universal control,1,11-14 coupled with the feedback control strategy in the work
of Zhang et al,3 to design a delay-free, dynamic state compensator that achieves global asymptotic state regulation with
boundedness for the time-delay nonlinear system (1) with unknown control direction. As we shall see, the proposed
dynamic compensator contains two sets of dynamic state feedback control laws. One of them is capable of mitigating the
effects of the unknown control direction, whereas the other one is able to counteract the time-delay nonlinearities of the
system (1). Notably, the idea of utilizing two sets of gain update laws has been explored in the area of adaptive control
of nonlinear systems with unknown parameters by output feedback.11-14 In this work, we demonstrate how a similar
philosophy can be applied to effectively control the time-delay system (1) with unknown control direction.

Theorem 1. For the time-delay nonlinear system (1) whose control directions are not known, there exists a delay-free,
dynamic state feedback controller of the form

L̇ = 𝜂(L, k, x), k̇ = h(L, k, x), u = 𝛼(L, k, x), (8)

with 𝛼(L, k, 0) = 0, such that the system state x converges to the origin while maintaining boundedness of the closed-loop
system, where 𝜂 ∶ Rn−1 ×Rn ×Rn → Rn−1, h ∶ Rn−1 ×Rn ×Rn → Rn and 𝛼 ∶ Rn−1 ×Rn ×Rn → R are C0 mappings.

Proof. We apply the adding of a power integrator technique,15,16 together with the idea of utilizing the Nussbaum
functions1 and dynamic gains,3,11-14 to design a delay-free, nonsmooth dynamic state compensator (8) that does
the job.

Step 1: For the x1-subsystem of the time-delay system (1) with the unknown sign of 𝜃1, one can regard x2 as a virtual
control. Define 𝜉1 = x1 and construct the Lyapunov function V1(x1, l1) = 1

2
(1 + 1

l1
)𝜉2

1 , where l1(·) ≥ 1 is a dynamic gain
to be designed in Step 2. Then, a direct computation gives

V̇1 ≤
(

1 + 1
l1

)
𝜃1𝜉1x∗p1

2 − l̇1

2l2
1
𝜉2

1 + 2c̄|𝜉1𝜉2| + 2 |𝜉1𝑓1(x1, x1(t − d))| , (9)

where 𝜉2 = x p1
2 − x∗p1

2 .
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In view of Lemma 5, we have

|𝑓1(·)| ≤ 𝛾̄1 (x1) |x1| + 𝛾̄∗1 (x1 (t − d)) |x1 (t − d)| ,
for some smooth functions 𝛾̄1(·) ≥ 0 and 𝛾̄∗1 (·) ≥ 0. Hence,

2 |𝜉1𝑓1(·)| ≤ 2𝜉2
1 𝛾̄1 (x1) + 𝜉2

1 + 𝜉2
1 (t − d) 𝛾̄∗2

1 (x1 (t − d)) . (10)

Use the bound 𝛾̄∗1 (·) to construct the Lyapunov-Krasovskii functional

V1LK = V1(x1, l1) +

t

∫
t−d

𝜉2
1(s)𝛾̄

∗2
1 (x1(s)) ds.

From (9)-(10), it follows that

V̇1LK ≤ −n𝜉2
1 +

(
1 + 1

l1

)
𝜃1𝜉1x∗p1

2 − l̇1

2l2
1
𝜉2

1 + 𝜉2
1
(
2 + n + 2𝛾̄1(·) + 𝛾̄∗2

1 (·)
)
+ c2𝜉

2
2 . (11)

To cope with the unknown sign of 𝜃1, we use the Nussbaum function1 for the design of a virtual controller. Specifically,
a virtual controller with the Nussbaum gain can be constructed as

x∗p1
2 = 𝜉1N(k1)

(
2 + n + 2𝛾̄1(·) + 𝛾∗2

1 (·)
)
∶= 𝜉1N(k1)𝛽1(x1)

k̇1 =
(

1 + 1
l1

)
𝜉2

1𝛽1(x1), k1(0) = 1. (12)

This, together with l1(·) ≥ 1, results in

V̇1LK ≤ −n𝜉2
1 + (𝜃1N(k1) + 1) k̇1 + c2𝜉

2
2 − l̇1

2l2
1
𝜉2

1 . (13)

Step 2: For the (x1, x2)-subsystem of the time-delay system (1) with the unknown sign of 𝜃2, we construct the
Lyapunov-Krasovskii functional

V2 = V1LK + 1
l1

k2
1W2(·) +

1
l1l2

[
𝜉2

1

2
+ k2

1W2(·)

]

W2(k1, x1, x2) =

x2

∫
x∗2

(
sp1 − x∗p1

2
)2−1∕p1 ds, (14)

where l2(·) ≥ 1 is a dynamic gain to be designed in the next step.
Following the argument in the works of Qian and Lin,15,16 one can prove that W2(k1, x1, x2) is C1 and its partial

derivatives are

𝜕W2

𝜕x2
= 𝜉

2−1∕p1
2 , (15)

𝜕W2

𝜕x1
= −

(
2 − 1

p1

)
𝜕x∗p1

2

𝜕x1

x2

∫
x∗2

(
sp1 − x∗p1

2
)1−1∕p1 ds

𝜕W2

𝜕k1
= −

(
2 − 1

p1

)
𝜕x∗p1

2

𝜕k1

x2

∫
x∗2

(
sp1 − x∗p1

2
)1−1∕p1 ds.

Moreover, m2(x2 − x∗2)
2p1 ≤ W2(k1, x1, x2) ≤ (2p1 − 1)𝜉2

2 , for a positive constant m2.
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Since lj ≥ 1, it is deduced from (13) and (15) that

V̇2 ≤ −n𝜉2
1 + (𝜃1N(k1) + 1)k̇1 + c2𝜉

2
2 − l̇1

2l2
1
𝜉2

1 +
k2

1

l1

(
1 + 1

l2

)
𝜃2𝜉

2−1∕p1
2

(
x∗p2

3 + xp2
3 − x∗p2

3
)

+ 2
l1

|||||k2
1

[
𝜉

2−1∕p1
2 𝑓2(·) +

𝜕W2

𝜕x1
ẋ1 +

𝜕W2

𝜕k1
k̇1

]
+ k1k̇1W2(·)

||||| + 1
l1l2

𝜉1ẋ1 −
l̇1

l2
1

k2
1W2(·) −

l̇1l2 + l1 l̇2

l2
1l2

2

(
𝜉2

1

2
+ k2

1W2(·)

)
.

(16)
From 𝜉2 = xp1

2 − x∗p1
2 , (12) and (15), it is not difficult to obtain (by Lemma 1 and Lemmas 3-5)

2k2
1

l1

|||𝜉2−1∕p1
2 𝑓2(·)

||| ≤ k2
1𝜉

2
2Υ21(k1, x1, x2) +

1
l1
𝜉2

1Υ22(k1, x1) +
1
l1
𝜉2

1(t − d)Υ∗
22 (k1(t − d), x1(t − d))

+ 𝜉2
2(t − d)Υ∗

21 (k1(t − d), x1(t − d), x2(t − d)) ,
2k2

1

l1

||||𝜕W2

𝜕x1
ẋ1 +

𝜕W2

𝜕k1
k̇1
|||| + 2

l1
k1k̇1W2(·) +

1
l1l2

𝜉1ẋ1 ≤ k2
1𝜉

2
2Φ21(k1, x1, x2) +

1
l1
𝜉2

1Φ22(k1, x1) +
1
l1
𝜉2

1(t − d)Φ∗
2(x1(t − d)), (17)

where Υ2j(·) ≥ 0, Υ∗
2 𝑗(·) ≥ 0, Φ2 j(·) ≥ 0, and Φ∗

2(·) ≥ 0, j = 1, 2, are smooth functions. Using the bounds Υ∗
2𝑗(·) and Φ∗

2(·)
thus obtained, one can construct the Lyapunov-Krasovskii functional

V2LK = V2 +

t

∫
t−d

𝜉2
2(s)Υ

∗
21 (k1(s), x1(s), x2(s)) ds +

t

∫
t−d

1
l1(s)

𝜉2
1(s)

[
Υ∗

22 (k1(s), x1(s)) + Φ∗
2(x1(s))

]
ds. (18)

Then, it is deduced from (16) and (17) that

V̇2LK ≤ −n𝜉2
1 − (n − 1)k2

1𝜉
2
2 + (𝜃1N(k1) + 1)k̇1 −

l̇1

2l2
1
𝜉2

1 + 1
l1
𝜉2

1
[
Υ22(k1, x1) + Υ∗

22(k1, x1) + Φ22(k1, x1) + Φ∗
2(x1)

]
+

k2
1

l1

(
1 + 1

l2

)
𝜃2𝜉

2−1∕p1
2 x∗p2

3 + 2c̄
l1

k2
1
|||𝜉2−1∕p1

2
(

x p2
3 − x∗p2

3
)||| + k2

1𝜉
2
2 [c2 + (n − 1) + Υ21(k1, x1, x2)

+ Υ∗
21(k1, x1, x2) + Φ21(k1, x1, x2)] −

l̇2

l1l2
2

(
𝜉2

1

2
+ W2(·)

)
. (19)

The inequality above is derived by neglecting the negative terms that are related to l̇1 and using the facts that −k2
1W2(·) ≤

−W2(·) and 1
l1
− 1

l1(t−d)
≤ 0 (see (22)).

From (19), it is not difficult to show that the dynamic state compensator

l̇1 = max
{
−l2

1 + l1𝜌1(k1, x1), 0
}
, l1(0) = 1, (20)

𝜌1(k1, x1) = 2
[
Υ22(·) + Υ∗

22(·) + Φ22(·) + Φ∗
2(·)

]
(21)

can counteract the effect of the time-delay nonlinearity. In fact, by construction the gain l1 satisfies

0 ≤ l̇1 ≤ l1𝜌1(·), l̇1 ≥ −l2
1 + l1𝜌1(·), l1 ≥ l1(t − d) ≥ 1. (22)

As a consequence,

− l̇1

2l2
1
𝜉2

1 ≤ 𝜉2
1 − 1

2l1
𝜉2

1𝜌1(k1, x1). (23)

Moreover,
2c̄2

l1
k2

1
|||𝜉2−1∕p1

2 (x p2
3 − x∗p2

3 )||| ≤ c̄2k2
1𝜉

2
2 + c3k2

1𝜉
2
3 , (24)

where 𝜉3 = xp1p2
3 − x∗p1p2

3 , c̄2 and c3 are positive constants.
Substituting (23) and (24) into (19), we arrive at

V̇2LK ≤ −(n − 1)𝜉2
1 − (n − 1)k2

1𝜉
2
2 + (𝜃1N(k1) + 1)k̇1 + c3k2

1𝜉
2
3 +

k2
1

l1

(
1 + 1

l2

)
𝜃2𝜉

2−1∕p1
2 x∗p2

3

+ k2
1𝜉

2
2
[
c2 + c̄2 + n − 1 + Υ21(·) + Υ∗

21(·) + Φ21(·)
]
− l̇2

l1l2
2

(
𝜉2

1

2
+ W2(·)

)
. (25)
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Similar to Step 1, because of the unknown sign of 𝜃2, we design the virtual controller

x∗p2
3 = l1N(k2)𝜉

1∕p1
2

[
c2 + c̄2 + n − 1 + Υ21(·) + Υ∗

21(·) + Φ21(·)
]

∶= l1N(k2)(𝜉2𝛽2(k1, x1, x2))1∕p1

k̇2 =
(

1 + 1
l2

)
𝜉2

2𝛽
1∕p1
2 (k1, x1, x2), k2(0) = 1 (26)

with the Nussbaum gain k2 that is updated dynamically. Clearly, the dynamic compensator (26) leads to

V̇2LK ≤ −(n − 1)
(
𝜉2

1 + k2
1𝜉

2
2
)
+ (𝜃1N(k1) + 1)k̇1 + c3k2

1𝜉
2
3 + (𝜃2N(k2) + 1)k2

1k̇2 −
l̇2

l1l2
2

(
𝜉2

1

2
+ W2(·)

)
. (27)

Inductive Step: At step i − 1, assume that there are a Lyapunov-Krasovskii functional V(i−1)LK , a set of dynamic gains
lj(·) ≥ 1, j = 1, … , i − 1, updated by

l̇1 = max
{
−l2

1 + l1𝜌1(k1, x1), 0
}
,

l̇2 = max
{
−𝛼2l2

2 + l2𝜌2(l1, k1, k2, x1, x2), 0
}
,

⋮

l̇i−2 = max
{
−𝛼i−2l2

i−2 + li−2𝜌i−2
(

l̄i−3, k̄i−2x̄i−2
)
, 0

}
,

(28)

with 𝛼𝑗 = 1∕(2p1· · ·p𝑗−1 −1), and a set of nonsmooth but C 0 virtual controllers x∗1 , … , x∗i , with the Nussbaum gains, given by

x∗1 = 0 𝜉1 = x1 − x∗1
x∗p1

2 = 𝜉1N(k1)𝛽1(x1) 𝜉2 = x p1
2 − x∗p1

2

k̇1 =
(

1 + 1
l1

)
𝜉2

1𝛽1(·)

⋮ ⋮

x∗p1· · ·pi−1
i = (l1· · ·li−2N(ki−1))p1· · ·pi−2𝜉i−1𝛽i−1

(
l̄i−3, k̄i−2, x̄i−1

)
𝜉i = xi

p1· · ·pi−1 − x∗p1· · ·pi−1
i

k̇i−1 =
(

1 + 1
li−1

)
𝜉2

i−1𝛽
1∕p1· · ·pi−2
i−1 (·),

(29)

with 𝜌j(·) > 0 and 𝛽 j(·) > 0 being smooth functions, such that

V̇(i−1)LK ≤ −(n − (i − 2))
i−1∑
𝑗=1

[(
𝑗−1∏
m=0

k2
m

)
𝜉2
𝑗

]
+ cik2

1· · ·k
2
i−2𝜉

2
i +

i−1∑
𝑗=1

[
(𝜃𝑗N(k𝑗) + 1)

(
𝑗−1∏
m=0

k2
m

)
k̇𝑗

]

− l̇i−1

l1· · ·li−2l2
i−1

(
𝜉2

1

2
+

i−1∑
𝑗=2

W𝑗

(
l̄𝑗−2, k̄𝑗−1, x̄𝑗

))
, (30)

where ci > 0 is a constant and k0 = 1. Clearly, (30) reduces to (27) when i = 3.
We claim that (30) also holds at Step i. To prove this claim, consider the Lyapunov-Krasovskii functional

Vi = V(i−1)LK +
k2

1· · ·k
2
i−1

l1· · ·li−1
Wi

(
l̄i−2, k̄i−1, x̄i

)
+ 1

l1· · ·li

[
𝜉2

1

2
+

i−1∑
𝑗=2

W𝑗

(
l̄𝑗−2, k̄𝑗−1, x̄𝑗

)
+ k2

1· · ·k
2
i−1Wi

(
l̄i−2, k̄i−1, x̄i

)]

Wi =

xi

∫
x∗i

(
sp1· · ·pi−1 − x∗p1· · ·pi−1

i

)2−1∕(p1· · ·pi−1)ds, (31)
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where li(·) ≥ 1 is a dynamic gain to be designed. Similar to the argument in Step 2, one can show that Wi(·) =
Wi(l̄i−2, k̄i−1, x̄i) is C1. Moreover,

𝜕Wi

𝜕xi
= 𝜉

2−1∕(p1· · ·pi−1)
i

𝜕Wi

𝜕x𝑗
= −

(
2 − 1

p1· · ·pi−1

)
𝜕x∗p1· · ·pi−1

i

𝜕x𝑗

xi

∫
x∗i

(
sp1· · ·pi−1 − x∗p1· · ·pi−1

i

)1− 1
( p1 · · ·pi−1 ) ds

𝜕Wi

𝜕k𝑗

= −
(

2 − 1
p1· · ·pi−1

)
𝜕x∗p1· · ·pi−1

i

𝜕k𝑗

xi

∫
x∗i

(
sp1· · ·pi−1 − x∗p1· · ·pi−1

i

)1− 1
( p1 · · ·pi−1 ) ds

𝜕Wi

𝜕l𝑗
= −

(
2 − 1

p1· · ·pi−1

)
𝜕x∗p1· · ·pi−1

i

𝜕l𝑗

xi

∫
x∗i

(
sp1· · ·pi−1 − x∗p1· · ·pi−1

i

)1− 1
( p1 · · ·pi−1 ) ds

mi
(

xi − x∗i
)2p1· · ·pi−1 ≤ Wi(·) ≤ (2p1· · ·pi−1 − 1)𝜉2

i , 1 ≤ 𝑗 ≤ i − 1, (32)

for a positive constant mi.
Analogous to the derivation of (19), using the facts that lj ≥ 1 and −k2

1· · ·k
2
i−1Wi(·) ≤ −Wi(·), we deduce from (30)-(32)

that (by neglecting the negative terms which are related to l̇𝑗 , 𝑗 = 1, … , i − 1)

V̇i ≤ − (n − (i − 2))
i−1∑
𝑗=1

[(
𝑗−1∏
m=0

k2
m

)
𝜉2
𝑗

]
+ cik2

1· · ·k
2
i−2𝜉

2
i +

i−1∑
𝑗=1

[
(𝜃𝑗N(k𝑗) + 1)

(
𝑗−1∏
m=0

k2
m

)
k̇𝑗

]

− l̇i−1

l1· · ·li−2l2
i−1

(
𝜉2

1

2
+

i−1∑
𝑗=2

W𝑗

(
l̄𝑗−2, k̄𝑗−1, x̄𝑗

))
+

k2
1· · ·k

2
i−1

l1· · ·li−1

(
1 + 1

li

)[|||||𝜉
2− 1

( p1 · · ·pi−1 )

i 𝑓i(·)
|||||

+ 𝜃i𝜉
2− 1

( p1 · · ·pi−1 )

i

(
x∗pi

i+1 − x pi
i+1 + x∗pi

i+1

)
+

||||||
i−1∑
𝑗=1

𝜕Wi

𝜕x𝑗
ẋ𝑗 +

i−1∑
𝑗=1

𝜕Wi

𝜕k𝑗

k̇𝑗 +
i−2∑
𝑗=1

𝜕Wi

𝜕l𝑗
l̇𝑗
||||||
]

+ 2
l1· · ·li−1

⎛⎜⎜⎜⎝
i−1∑
𝑗=1

⎛⎜⎜⎜⎝k𝑗 k̇𝑗

i−1∏
m=1
m≠𝑗

k2
m

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠Wi(·) +

1
l1· · ·li

[ i−1∑
𝑗=2

(
𝑗∑

m=1

𝜕W𝑗

𝜕xm
ẋm +

𝑗−1∑
m=1

𝜕W𝑗

𝜕km
k̇m +

𝑗−2∑
m=1

𝜕W𝑗

𝜕lm
l̇m

)
+ 𝜉1ẋ1

]

− l̇i

l1· · ·li−1l2
i

(
𝜉2

1

2
+

i∑
𝑗=2

W𝑗(·)

)
. (33)

Using an argument similar to the work of Zhang et al,3 we obtain the estimations (34)-(38) (see Appendix A for details)

2k2
1· · ·k

2
i−1

l1· · ·li−1

|||𝜉2−1∕(p1· · ·pi−1)
i 𝑓i

||| ≤ k2
1· · ·k

2
i−1𝜉

2
i Υi1

(
l̄i−2, k̄i−1, x̄i

)
+ 𝜉2

i (t − d)Υ∗
i1
(

l̄i−2(t − d), k̄i−1(t − d), x̄i(t − d)
)

+ 1
l1· · ·li−1

[
𝜉2

1 +
i−1∑
𝑗=2

(
x𝑗 − x∗𝑗

)2p1· · ·p𝑗−1

]
Υi2

(
l̄i−2, k̄i−1, x̄i−1

)
(34)

+ 1
l1· · ·li−1

[ i−1∑
𝑗=2

(
x𝑗(t − d) − x∗𝑗 (t − d)

)2p1· · ·p𝑗−1 + 𝜉2
1(t − d)

]
Υ∗

i2
(

l̄i−2(t − d), k̄i−1(t − d), x̄i−1(t − d)
)
,
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2k2
1· · ·k

2
i−1

l1· · ·li−1

||||||
i−1∑
𝑗=1

𝜕Wi

𝜕x𝑗
ẋ𝑗 +

i−1∑
𝑗=1

𝜕Wi

𝜕k𝑗

k̇𝑗 +
i−2∑
𝑗=1

𝜕Wi

𝜕l𝑗
l̇𝑗
||||||

≤ k2
1· · ·k

2
i−1𝜉

2
i Φi1

(
l̄i−2, k̄i−1, x̄i

)
+ 1

l1· · ·li−1

[
𝜉2

1 +
i−1∑
𝑗=2

(
x𝑗 − x∗𝑗

)2p1· · ·p𝑗−1

]
Φi2

(
l̄i−2, k̄i−1, x̄i−1

)
+ 1

l1· · ·li−1

[ i−1∑
𝑗=2

(
x𝑗(t − d) − x∗𝑗 (t − d)

)2p1· · ·p𝑗−1 + 𝜉2
1 (t − d)

]
Φ∗

i2
(

l̄i−2(t − d), k̄i−1(t − d), x̄i−1(t − d)
)
,

(35)

2
l1· · ·li−1

⎡⎢⎢⎢⎣
i−1∑
𝑗=1

⎛⎜⎜⎜⎝2k𝑗 k̇𝑗

i−1∏
m=1
m≠𝑗

k2
m

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦Wi(·) ≤ k2

1· · ·k
2
i−1𝜉

2
i 𝜔i

(
l̄i−3, k̄i−2, x̄i−1

)
, (36)

2k2
1· · ·k

2
i−1

l1· · ·li−1

|||||𝜃i𝜉
2− 1

p1 · · ·pi−1
i

(
x pi

i+1 − x∗pi
i+1

)||||| ≤ k2
1· · ·k

2
i−1

(
c̄i𝜉

2
i + ci+1𝜉

2
i+1

)
, (37)

1
l1· · ·li

||||||𝜉1ẋ1 +
i−1∑
𝑗=2

[
𝑗∑

m=1

𝜕W𝑗

𝜕xm
ẋm +

𝑗−1∑
m=1

𝜕W𝑗

𝜕km
k̇m +

𝑗−2∑
m=1

𝜕W𝑗

𝜕lm
l̇m

]||||||
≤ 1

l1· · ·li−1
Ψi

(
l̄i−2, k̄i−1, x̄i−1

)[
𝜉2

1 +
i−1∑
𝑗=2

(
x𝑗 − x∗𝑗

)2p1· · ·p𝑗−1

]
+ k2

1· · ·k
2
i−1𝜉

2
i (38)

+ 1
l1· · ·li−1

Ψ∗
i
(

l̄i−2(t − d), k̄i−1(t − d), x̄i−1(t − d)
)[

𝜉2
1(t − d) +

i−1∑
𝑗=2

(
x𝑗(t − d) − x∗𝑗 (t − d)

)2p1· · ·p𝑗−1

]
,

where Υi j(·) ≥ 0, Υ∗
i𝑗(·) ≥ 0, Φi j(·) ≥ 0, Φ∗

i𝑗(·) ≥ 0, Ψi(·) ≥ 0 and Ψ∗
i (·) ≥ 0, 𝜔i(·) ≥ 0 j = 1, 2, are smooth functions.

With the help of the bounds Υ∗
i𝑗(·), Φ

∗
i𝑗(·), and Ψ∗

i (·) thus obtained, which are related to the delay terms, we construct
the Lyapunov-Krasovskii functional

ViLK = Vi +

t

∫
t−d

𝜉2
i (s)Υ

∗
i1
(

l̄i−2(s), k̄i−1(s), x̄i(s)
)

ds +

t

∫
t−d

1
l1(s)· · ·li−1(s)

[
𝜉2

1 (s) +
i−1∑
𝑗=2

(
x𝑗(s) − x∗𝑗 (s)

)2p1· · ·p𝑗−1

]
(39)

·
[
Υ∗

i2
(

l̄i−2(s), k̄i−1(s), x̄i−1(s)
)
+ Φ∗

i2
(

l̄i−2(s), k̄i−1(s), x̄i−1(s)
)
+ Ψ∗

i
(

l̄i−2(s), k̄i−1(s), x̄i−1(s)
)]

ds.

From (33)-(38) and the fact that 1
l1· · ·li−1(t)

≤ 1
l1(t−d)· · ·li−1(t−d)

and ki ≥ 1, i = 1, … , i − 1, a straightforward but tedious
calculation gives

V̇iLK ≤ − (n − (i − 2))
i−1∑
𝑗=1

[(
𝑗−1∏
m=0

k2
m

)
𝜉2
𝑗

]
+

i−1∑
𝑗=1

[
(𝜃𝑗N(k𝑗) + 1)

(
𝑗−1∏
m=0

k2
m

)
k̇𝑗

]
− l̇i−1

l1· · ·li−2l2
i−1

(
𝜉2

1

2
+

i−1∑
𝑗=2

W𝑗(·)

)

+ 1
l1· · ·li−1

[
𝜉2

1 +
i−1∑
𝑗=2

(
x𝑗 − x∗𝑗

)2p1· · ·p𝑗−1

] [
Υi2

(
l̄i−2, k̄i−1, x̄i−1

)
+ Υ∗

i2
(

l̄i−2, k̄i−1, x̄i−1
)

+Φi2
(

l̄i−2, k̄i−1, x̄i−1
)
+ Φ∗

i2
(

l̄i−2, k̄i−1, x̄i−1
)
+ Ψi

(
l̄i−2, k̄i−1, x̄i−1

)
+ Ψ∗

i
(

l̄i−2, k̄i−1, x̄i−1
)]

+
k2

1· · ·k
2
i−1

l1· · ·li−1

(
1 + 1

li

)
𝜃i𝜉

2−1∕(p1· · ·pi−1)
i x∗pi

i+1 + ci+1k2
1· · ·k

2
i−1𝜉

2
i+1 + k2

1· · ·k
2
i−1𝜉

2
i
[
1 + ci + c̄i + Υi1

(
l̄i−2, k̄i−1, x̄i

)
+ Υ∗

i1
(

l̄i−2, k̄i−1, x̄i
)
+ Φi1

(
l̄i−2, k̄i−1, x̄i

)
+ 𝜔i

(
l̄i−3, k̄i−2, x̄i−1

)]
− l̇i

l1· · ·li−1l2
i

(
𝜉2

1

2
+

i∑
𝑗=2

W𝑗(·)

)
. (40)

Based on the inequality above, one can design the delay-free gain update law

l̇i−1 = max
{
−𝛼i−1l2

i−1 + li−1𝜌i−1
(

l̄i−2, k̄i−1, x̄i−1
)
, 0

}
, (41)

with li− 1(0) = 1, 𝛼i−1 = 1∕(2p1· · ·pi−2 − 1) and

𝜌i−1(·) =
1

Mi−1

[
Υi2(·) + Υ∗

i2(·) + Φi2(·) + Φ∗
i2(·) + Ψi(·) + Ψ∗

i (·)
]
, Mi−1 = min

{1
2
,m2, … ,mi−1

}
. (42)
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By construction, the gain thus constructed satisfies

0 ≤ l̇i−1 ≤ li−1𝜌i−1
(

l̄i−2, k̄i−1, x̄i−1
)

(43)

l̇i−1 ≥ −𝛼i−1l2
i−1 + li−1𝜌i−1

(
l̄i−2, k̄i−1, x̄i−1

)
. (44)

Using (32) and (43)-(44), it is not difficult to prove that

−l̇i−1

l1· · ·li−2l2
i−1

(
𝜉2

1

2
+

i−1∑
𝑗=2

W𝑗(·)

)
≤

i−1∑
𝑗=1

[(
𝑗−1∏
m=0

k2
m

)
𝜉2
𝑗

]
− Mi−1𝜌i−1(·)

l1· · ·li−1

[
𝜉2

1 +
i−1∑
𝑗=2

(
x𝑗 − x∗𝑗

)2p1· · ·p𝑗−1

]
. (45)

Substituting (42) into (40) yields

V̇iLK ≤ −(n − (i − 1))
i∑

𝑗=1

(
𝑗−1∏
m=0

k2
m

)
𝜉2
𝑗 +

i−1∑
𝑗=1

[
(𝜃𝑗N(k𝑗) + 1)

((
𝑗−1∏
m=0

k2
m

))
k̇𝑗

]
+

k2
1· · ·k

2
i−1

l1· · ·li−1

(
1 + 1

li

)
𝜃i𝜉

2−1∕(p1· · ·pi−1)
i x∗pi

i+1

+ k2
1· · ·k

2
i−1𝜉

2
i
[
2 + ci + c̄i + n − i + Υi1(·) + Υ∗

i1(·) + Φi1(·) + 𝜔i(·)
]

− l̇i

l1· · ·li−1l2
i

(
𝜉2

1

2
+

i∑
𝑗=2

W𝑗(·)

)
+ ci+1k2

1· · ·k
2
i−1𝜉

2
i+1. (46)

In view of (46), one can design the nonsmooth virtual controller with the Nussbaum gain

x∗pi
i+1 = l1· · ·li−1N(ki)𝜉

1∕(p1· · ·pi−1)
i

[
2 + ci + c̄i + n − i + Υi1(·) + Υ∗

i1(·) + Φi1(·) + 𝜔i(·)
]

∶= l1· · ·li−1N(ki)
(
𝜉i𝛽i

(
l̄i−2, k̄i−1, x̄i

))1∕(p1· · ·pi−1)

k̇i =
(

1 + 1
li

)
𝜉2

i 𝛽
1∕(p1· · ·pi−1)
i (·). (47)

Using the claim for i = n + 1 with u = xn+1 = x∗n+1, we conclude that the dynamic state feedback controller that is
composed of (28) with i = n + 1 and

u = (l1· · ·ln−1N(kn))
1

pn
(
𝜉n𝛽n

(
l̄n−2, k̄n−1, x

)) 1
( p1 · · ·pn)

k̇n = 𝜉2
n𝛽

1
( p1 · · ·pn−1 )

n
(

l̄n−2, k̄n−1, x
)

(48)

is such that

V̇nLK ≤ −
n∑

𝑗=1

[(
𝑗−1∏
m=0

k2
m

)
𝜉2
𝑗

]
+

n∑
𝑗=1

[
(𝜃𝑗N(k𝑗) + 1)

(
𝑗−1∏
m=0

k2
m

)
k̇𝑗

]
. (49)

4 ASYMPTOTIC STATE REGULATION WITH STABILITY

In this section, we use the Lyapunov-Krasovskii inequality (49) to complete the proof of Theorem 1. In particular, it is
shown that the proposed dynamic state feedback controller (48) and (28) can regulate the system state to the origin while
maintaining the boundedness of the closed-loop system.

We begin with the introduction of a key lemma whose proof can be found in Appendix B, based on the
Lyapunov-Krasovskii inequalities (30) and (49).

Lemma 6. The Nussbaum gains ki(t), i = 1, … ,n, given by (47) are bounded ∀t ∈ [0, +∞).

With the aid of Lemma 6, we deduce from (47) that 𝜉2
i (t) ≤ k̇i(t) because, by construction, 𝛽 i(·) ≥ 1 and li(t) ≥ 1.

Hence, ∫ +∞
0 𝜉2

i ds ≤ ki(+∞) − ki(0) = c.
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On the other hand, (49) and the boundedness of ki(t), 1 ≤ i ≤ n, imply that

VnLK(t) ≤
n∑

𝑗=1

t

∫
0

|𝜃𝑗N(k𝑗(s)) + 1|( 𝑗−1∏
m=0

k2
m(s)

)
k̇𝑗(s)ds + VnLK(0)

≤ c1

n∑
𝑗=1

t

∫
0

k̇𝑗(s)ds + c2 ≤ C. (50)

In view of (39) and (31), it is clear that the boundedness of VnLK(·) on [0, +∞) implies the boundedness of x1, k2
1 · · ·k

2
i−1

l1· · ·li−1
Wi(·),

i = 2, … ,n. Using the estimation of Wi(·) in (32), one concludes that x1 and k2
1 · · ·k

2
i−1

l1· · ·li−1
(xi − x∗i )

2p1· · ·pi−1 , i = 2, … ,n, are also
bounded.

Because x1 and k1 are bounded and the gain l1(·) given by (20), (21) is monotone nondecreasing, then l1(·) must be
bounded. If not, limt→+∞l1(t) = +∞. By continuity of 𝜌1(·), 𝜌1(k1, x1) is bounded. Consequently, there is a time instant
T > 0 such that −l2

1 + l1𝜌1(k1, x1) ≤ 0 on [T, +∞). This, together with (22), yields l̇1 = 0 on [T, +∞), which contradicts
to the unboundedness of l1(·). In conclusion, l1(·) is bounded. The boundedness of l1(·) and k1 implies the boundedness of
x∗2 as well as x2 − x∗2 . As such, x2 is also bounded. Similarly, one can prove the boundedness of li(·) and xi in the following
recursive manner: x2 → l2 → x3 → · · · → ln−1 → xn, by the boundedness of ki(·), i = 1, … ,n, (28) and the estimation
(32). Therefore, all the signals of the closed-loop system (1)-(48)-(28) are bounded ∀t ∈ [0, +∞).

To prove the convergence of the system state, we observe that 𝜉̇i, i = 1, … ,n are also bounded and ∫ +∞
0 𝜉2

i (t)dt < +∞. By
the Barbalat's lemma, it is concluded that 𝜉i, i = 1, … ,n converge to zero. This, in view of the coordinate transformation
(29), implies that all the states x1(t), … , xn(t) converge to zero as well, thus completing the proof of Theorem 1.

Because the proposed nonsmooth control scheme is based on the Lyapunov-Krasovskii functional method, it is not
surprising that Theorem 1 is robust with respect to the uncertainty. With this observation in mind, Theorem 1 can be
extended to a larger family of uncertain time-delay systems dominated by a homogeneous system with time delay. In fact,
the following more general result also holds.

Theorem 2. Consider a family of uncertain time-delay systems with unknown control directions

ẋi = 𝜃ix
pi
i+1 + 𝜙i (x, x(t − d), t) , i = 1, … ,n, (51)

where xn + 1 = u and 𝜙i ∶ Rn ×Rn ×R → R is a continuous mapping. Assume that the uncertain function 𝜙i satisfies
the homogeneous growth condition

|𝜙i (x, x(t − d), t)| ≤ 𝛾i (x̄i, x̄i(t − d))
(|x1| 1

p1 · · ·pi−1 + |x2| 1
p2 · · ·pi−1 + · · · + |xi−1| 1

pi−1 + |xi| + |x1(t − d)| 1
p1 · · ·pi−1

+ · · · + |xi−1(t − d)| 1
pi−1 + |xi(t − d)|) , i = 1, … ,n, (52)

with 𝛾i(x̄i, x̄i(t − d)) ≥ 0 being a known smooth function. Then, there is a delay-free, nonsmooth but C0 dynamic state
feedback (8) that steers the state x to zero and keeps the boundedness of the closed-loop system (8)-(51).

Under the homogeneous growth condition (52), the proof of Theorem 2 can be carried out, with some subtle modifi-
cations, by means of an argument analogue to that of Theorem 1. For this reason, the details are left to the reader as an
exercise.

From Theorem 2, it is straightforward to deduce the following robust stabilization result obtained in the work of
Pongvuthithum et al18 recently.

Corollary 1. Consider a family of uncertain time-delay systems with controllable linearization and unknown control
directions

ẋi = 𝜃ixi+1 + 𝜙i (x, x(t − d), t) , i = 1, … ,n, (53)
where xn + 1 = u and 𝜙i ∶ Rn ×Rn ×R → R is a C0 uncertain function satisfying the condition

|𝜙i (x, x(t − d), t)| ≤ 𝛾i (x̄i, x̄i(t − d))

[ i∑
𝑗=1

(|x𝑗| + |x𝑗(t − d)|)] , (54)

where 𝛾i(x̄i, x̄i(t − d)) ≥ 0 is a known smooth function. Then, there is a delay-free, nonsmooth but C0 dynamic state
feedback (8) driving the state x to zero and ensuring the boundedness of the closed-loop system (8)-(53).



5368 RATTANAMONGKHONKUN ET AL.

Remark 1. When the nonlinear system (1) or (51) contains multiple delays, the design of a delay-independent con-
troller remains almost same, except that multiple Lyapunov-Krasovskii functionals with different time delays need
to be used. Specifically, the Lyapunov-Krasovskii functional ∫ t

t−d K(s)ds should be replaced by ∫ t
t−di

K(s)ds in each
step of the recursive design. Hence, for the nonlinear system (1) or (51) with multiple delays d1, … , dm, (39) can be
replaced by

ViLK = Vi +
m∑

l=1

⎛⎜⎜⎜⎝
t

∫
t−dl

𝜉2
i (s)Υ

∗
i1(·)ds +

t

∫
t−dl

1
l1(s)· · ·li−1(s)

·

[
𝜉2

1 (s) +
i−1∑
𝑗=2

(
x𝑗(s) − x∗𝑗 (s)

)2p1· · ·p𝑗−1

] [
Υ∗

i2(·) + Φ∗
i2(·) + Ψ∗

i (·)
]

ds
⎞⎟⎟⎟⎠ .

Of course, a similar philosophy can be used to handle the general case when every subsystem of (1) involves different
time delays.

Remark 2. The assumption that the bound C of unknown coefficients 𝜃i, i = 1, … ,n is known is used only for a
technical convenience and can indeed be removed. When the bound C is unknown, a similar design procedure can
be carried out with slightly different estimations of the right-hand side of V̇(i−1)LK in (30) so that the term (𝜃jN(kj) + 1)
is replaced by (𝜃jN(kj) + Cj), where Cj is an unknown constant. Due to the characteristics of the Nussbaum function
and the monotone property of the adaptive gains kj, 1 ≤ j ≤ n, the same argument in Appendix B can also be used
for the stability proof.

We end this section with a simple but nontrivial example that demonstrates how a Nussbaum gain needs to be
introduced in order to deal with the problem of unknown control direction.

Example 1. Consider a time-delay system in the plane, with strong nonlinearity and unknown control directions, of
the form

ẋ1 = 𝜃1x3
2 + x1

ẋ2 = 𝜃2u + 1
2

x3
2(t − d), (55)

where 𝜃1, 𝜃2 ≠ 0 are unknown constants whose signs are also unknown (either positive or negative) and repre-
sents unknown directions of the actuator. Note that the time-delay system under consideration involves not only
an unknown control direction but also strong nonlinearities. The latter requires the use of a nonsmooth rather
than smooth feedback control strategy. As a matter of fact, even in the case when control directions are known (eg,
𝜃1 = 𝜃2 = 1) and no time delay is involved (ie, d = 0), it is known that the planar system cannot be controlled by
any smooth state feedback, even locally, and a nonsmooth feedback must be used.

Following the control scheme proposed in Section 3, we first consider the Lyapunov function V1(x1, l1) = 1
2
(1 + 1

l1
)𝜉2

1 ,
where 𝜉1 = x1 and the gain l1 is updated by

l̇1 = max
{
−l2

1 + l1𝜌(k1, x1), 0
}
, l1(0) = 1, (56)

with 𝜌1(k1, x1) ≥ 0 being a smooth function to be determined later on.
For the x1-subsystem, it is clear that the nonsmooth virtual control law x∗3

2 = 2x1N(k1), with k̇1 = 2(1 + 1
l1
)x2

1, globally
asymptotically regulates it.

Define 𝜉2 = x3
2 − x∗3

2 = x3
2 − 2x1N(k1). From (56), it is easy to see that l1(·) ≥ 1 and l̇1 ≥ −l2

1 + l1𝜌1(k1, x1). Moreover,

V̇1 ≤ −2x2
1 + (𝜃1N(k1) + 1) k̇1 −

1
2l1

𝜉2
1𝜌1(k1, x1). (57)

Then, consider the Lyapunov-Krasovskii functional

V2LK = V1(x1, l1) +
k2

1

l1

x2

∫
x∗2

(
s3 − x∗3

2
)2−1∕3ds +

t

∫
t−d

1
l1(s)

(
𝜉6

2(s) + 2
(

k6
1x3

1(s)
)2
)

ds. (58)
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Following the design procedure in Step 2, one can find a dynamic state compensator that consists of (56) and

u = N(k2)𝜉1∕3
2

(
2
(

k2
1 + 2k1

)2 + 10
3

(
1 + 1

l1

)
x2

1 + l1 + 𝜉4
2

)
k̇2 = 1

l1
𝜉2

2

(
2
(

k2
1 + 2k1

)2 + 10
3

(
1 + 1

l1

)
x2

1 + l1 + 𝜉4
2

)
, (59)

with 𝜌1(k1, x1) = 2(2x4
1k12

1 + 4k6
1 +

5
3
(1 + 1

l1
)x2

1k2
1) in (56) and N(k2) = k2

2 cos(k2), such that

V̇2LK ≤ −x2
1 − k2

1𝜉
2
2 + (𝜃1N(k1) + 1) k̇1 +

(𝜃2N(k2) + 1) k2
1k̇2

l1
,

from which it is deduced, as shown in Section 4, that the delay-free controller (59) and (56) achieves asymptotic state
regulation and maintains the boundedness of the closed-loop system (55), (56), and (59), without the information of the
sign of the parameter 𝜃i, i = 1, 2. The simulation results of the closed-loop system (55)-(56)-(59) are shown in Figures 1
to 3 with 𝜃1 = −1, 𝜃2 = 1, d = 0.1, and (x1(0), x2(0), l(0), k1(0), k2(0)) = ( −0.15, 0.25, 1, 1, 1).
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FIGURE 1 State trajectories (x1, x2) of the closed-loop system (55)-(56)-(59) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Dynamic gains (k, l1) of the system (55)-(56)-(59) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Control input u of the system (55)-(56)-(59) [Colour figure can be viewed at wileyonlinelibrary.com]

5 CONCLUSIONS

A delay-free, nonsmooth dynamic state feedback control scheme has been proposed in this paper to deal with a family
of uncertain time-delay systems with strong nonlinearities and unknown control direction. To cope with the effects of
time-delay nonlinearities and unknown control direction, we have introduced, respectively, two sets of gains that need
to be updated online, in a dynamic manner. One of them is the Nussbaum-type gains from universal control,1 making it
possible to mitigate the effect of unknown control direction, whereas the other one is borrowed the idea from the dynamic
state feedback control method,3 which can counteract the time-delay effects via a delay-free nonsmooth controller. Global
asymptotic state regulation with boundedness of the closed-loop system has been proved to be possible, thanks to the
construction of a set of new Lyapunov-Krasovskii functionals that are different from the previous ones in the literature,
due to the involvement of the Nussbaum functions.
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APPENDIX A

This section gives the proof of inequalities (34), (35), and (38). We begin by introducing two propositions.

Proposition 1. There is a smooth function Ai(l̄i−2, k̄i−1, x̄i−1) ≥ 0 such that for i = 2, … ,n,

|𝜉i| ≤ 2p1· · ·pi−1−1|xi − x∗i |p1· · ·pi−1 +

(|𝜉1| + i−1∑
𝑗=2

|||x𝑗 − x∗𝑗
|||p1· · ·p𝑗−1

)
Ai(·). (A1)

Proof. In view of (29) and (4), we have|𝜉2| = |||(x2 − x∗2 + x∗2
)p1 − x∗p1

2
|||

≤ 2p1−1||x2 − x∗2 ||p1 +
(
2p1−1 + 1

) |||x∗p1
2

||| (A2)

≤ 2p1−1||x2 − x∗2 ||p1 +
(
2p1−1 + 1

) |𝜉1N(k1)| 𝛽1(x1),

which indicates that (A1) holds for k = 2. Now, assume that (A1) holds when k = i − 1. From (29) and (4), it can be
deduced that|𝜉i| = |||(xi − x∗i + x∗i

)p1· · ·pi−1 − x∗p1· · ·pi−1
i

|||
≤ 2p1· · ·pi−1−1||xi − x∗i ||p1· · ·pi−1 +

(
2p1· · ·pi−1−1 + 1

)
(l1· · ·li−2 |N(ki−1)|)p1· · ·pi−2 |𝜉i−1|𝛽i−1

(
l̄i−3, k̄k−2, x̄i−1

)
. (A3)

Substituting the estimation |𝜉i− 1| into (A3), it can be verified that (A1) also holds for k = i.

Proposition 2. For a C∞ function 𝛾(xi) ≥ 0, there are C∞ functions Bi j(·) ≥ 0, j = 1, 2, such that

𝛾(xi)|xi|p1· · ·pi−1 ≤ ||xi − x∗i ||p1· · ·pi−1 Bi1
(

l̄i−2, k̄i−1, x̄i
)
+

(|𝜉1| + i−1∑
𝑗=2

|||x𝑗 − x∗𝑗
|||p1· · ·p𝑗−1

)
Bi2

(
l̄i−2, k̄i−1, x̄i−1

)
. (A4)

https://doi.org/10.1002/rnc.4317
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Proof. By Lemmas 3 and 4, there are smooth functions 𝛾1(xi − x∗i ) ≥ 0 and 𝛾2(x∗i ) ≥ 0, such that

𝛾(xi)|xi|p1· · ·pi−1 = 𝛾
(

xi − x∗i + x∗i
) ||xi − x∗i + x∗i ||p1· · ·pi−1

≤ 𝛾1
(

xi − x∗i
) ||xi − x∗i ||p1· · ·pi−1 + 𝛾2

(
x∗i
) |||x∗p1· · ·pi−1

i
|||

≤ 𝛾1
(

xi − x∗i
) ||xi − x∗i ||p1· · ·pi−1 + 𝛾2

(
x∗i
)
(l1· · ·li−2 |N(ki−1)|)p1· · ·pi−2 |𝜉i−1|𝛽i−1

(
l̄i−3, k̄i−2, x̄i−1

)
. (A5)

Substituting (29) and (A1) into (A5) yields (A4).

With the aid of Propositions 1 and 2, we are able to prove inequalities (34), (35), and (38).

Proof of (34). Using the inequality (2) and Lemma 5, one can find smooth functions 𝛾̂i𝑗(l̄i−2, k̄i−1, x̄i−1) and
𝛾̂∗i𝑗(l̄i−2, k̄i−1, x̄i−1) so that

|||𝜉2−1∕(p1· · ·pi−1)
i 𝑓i(·)

||| ≤ 2i
2p1· · ·pi−1 − 1

p1· · ·pi−1
𝜉2

i + 1
2p1· · ·pi−1

i∑
𝑗=1

[
𝛾̂i𝑗

(
l̄i−2, k̄i−1, x̄i−1

)
𝜉2
𝑗 + 𝛾̂∗i𝑗

(
l̄i−2, k̄i−1, x̄i−1

)
𝜉2
𝑗 (t − d)

]
.

This, combined with Proposition 1, implies that there are smooth functions Υi j(·) ≥ 0 and Υ∗
i𝑗(·) ≥ 0, j = 1, 2, such

that inequality (34) holds.

Proof of (35). Similar to the proof in the works of Qian and Lin,15,16 one has|||||𝜕Wi

𝜕x𝑗

||||| ≤ ai|𝜉i| |||||
𝜕x∗p1· · ·pi−1

i

𝜕x𝑗

||||| , 𝑗 = 1, … , i − 1,

|||||𝜕Wi

𝜕k𝑗

||||| ≤ ai|𝜉i| |||||
𝜕x∗p1· · ·pi−1

i

𝜕k𝑗

||||| , 𝑗 = 1, … , i − 1,

|||||𝜕Wi

𝜕l𝑗

||||| ≤ ai|𝜉i| |||||
𝜕x∗p1· · ·pi−1

i

𝜕l𝑗

||||| , 𝑗 = 1, … , i − 2, (A6)

where ai is a positive constant. Moreover, it follows from (29) that|||||
𝜕x∗p1· · ·pi−1

i

𝜕x𝑗

||||| |ẋ𝑗| ≤
i∑

m=1
|𝜉m|𝜙i1

(
l̄i−2, k̄i−1, x̄i−1

)
+

i−1∑
m=1

|𝜉m(t − d)|𝜙∗
i1
(

l̄i−2(t − d), k̄i−1(t − d), x̄i−1(t − d)
)

|||||
𝜕x∗p1· · ·pi−1

i

𝜕k𝑗

||||| ≤
i−1∑

m=1
|𝜉m|𝜙i2

(
l̄i−2, k̄i−1, x̄i−1

)
|||||
𝜕x∗p1· · ·pi−1

i

𝜕l𝑗

||||| ≤
i−1∑

m=1
|𝜉m|𝜙i3

(
l̄i−2, k̄i−1, x̄i−1

)
(A7)

where 𝜙ir (·) ≥ 0, r = 1, 2, 3, are smooth functions.
Using Lemma 1, Propositions 1 and 2, and Lemma 5, it is not difficult to conclude that (35) holds.

The proof of inequality (38) can be carried out in a manner similar to that of (34) and (35) and, hence, is omitted.

APPENDIX B

To prove Lemma 6, we need the following proposition.

Proposition 3. Let 𝜃 be an unknown constant with unknown sign and k(t) and 𝜎(t) be any positive monotone
nondecreasing functions well defined on [0, tf). Then, the following inequality holds for some constant 𝜖𝜃:

t

∫
0

𝜃
cos (k(s))

𝜎(s)
k̇(s)ds ≤ 𝜖𝜃, ∀t ∈ [0, t𝑓 ). (B1)

Proof. Obviously, (B1) holds when 𝜎(t) or k(t) is bounded on [0, tf]. When both 𝜎(t) and k(t) are unbounded on [0, tf],
𝜎(t) and k(t) must have a finite escape time at tf. Then, two cases need to be considered.
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Case i: If 𝜃 ≥ 0, in this case, there exists a time sequence {tr} such that k(tr) = (2r − 1) 𝜋
2
, r = 1, 2, … . Clearly,

cos(k(tr)) = 0 and cos(k(t)) ≤ 0, ∀t ∈ [t2m− 1, t2m], while cos(k(t)) ≥ 0, when t ∈ [t2m, t2m + 1], for m = 1, 2, … .
With this in mind, we assume that without loss of generality, the time t ∈ [0, t2m + 3). Then, (B1) can be written as

t

∫
0

𝜃 cos (k(s))
𝜎(s)

k̇(s)ds =

t1

∫
0

𝜃 cos (k(s))
𝜎(s)

k̇(s)ds +

t

∫
t2m+1

𝜃 cos (k(s))
𝜎(s)

k̇(s)ds

+
m∑

l=1

⎛⎜⎜⎝
t2l

∫
t2l−1

𝜃 cos (k(s))
𝜎(s)

k̇(s)ds +

t2l+1

∫
t2l

𝜃 cos (k(s))
𝜎(s)

k̇(s)ds
⎞⎟⎟⎠

≤
t1

∫
0

𝜃 cos (k(s))
𝜎(s)

k̇(s)ds +

t

∫
t2m+1

𝜃 cos (k(s))
𝜎(s)

k̇(s)ds

+ 𝜃

𝜎(t2)

⎡⎢⎢⎣
t2

∫
t1

cos (k(s)) k̇(s)ds +

t3

∫
t2

cos (k(s)) k̇(s)ds
⎤⎥⎥⎦ + · · ·

+ 𝜃

𝜎(t2m)

⎡⎢⎢⎣
t2m

∫
t2m−1

cos (k(s)) k̇(s)ds +

t2m+1

∫
t2m

cos (k(s)) k̇(s)ds
⎤⎥⎥⎦

≡
t1

∫
0

𝜃 cos (k(s))
𝜎(s)

k̇(s)ds +

t

∫
t2m+1

𝜃 cos (k(s))
𝜎(s)

k̇(s)ds.

As a consequence,
t

∫
0

𝜃
cos (k(s))

𝜎(s)
k̇(s)ds ≤

[
𝜋𝜃

2𝜎(0)
+ 2𝜋𝜃

𝜎(t2m+1)

]
≤ 5𝜋𝜃

2𝜎(0)
,

as t < t2m + 3. Hence, Proposition 3 is true when 𝜃 ≥ 0.
Case ii: If 𝜃 < 0, an analogous argument with the obvious modification that k(tr) = (2r + 1) 𝜋

2
, for r = 1, 2, … ,

leads to the same conclusion. Thus, Proposition 3 also holds when 𝜃 < 0.

Proof of Lemma 6. Lemma 6 can be proved by a contradiction argument. If ki(t), i = 1, … ,n are unbounded, let
[0, t𝑓i) be the maximal interval of ki, i = 1, … ,n. Then, the following statement holds.

• Claim (1): t𝑓1 ≥ t𝑓2 ≥ t𝑓3 ≥ · · · ≥ t𝑓n .

This conclusion is proved by an inductive argument.
Step 1: For n = 2, suppose that Claim (1) is not true. Then, t𝑓1 < t𝑓2 . This implies that k2(t) is bounded on [0, t𝑓1 ).

Using (13) and the property that 𝜉2
2 ≤ k̇2 from (12), we have

V̇1LK ≤ (𝜃1N(k1) + 1) k̇1 + c2k̇2, ∀t ∈ [0, t𝑓1 ). (B2)

This, in view of N(k) = k2 cos k and

∫ N(k)dk = k2 sin k + 2k cos k − 2 sin k + c, (B3)

leads to

0 ≤ V1LK(t)
k1(t)

≤ 𝜃1k1(t) sin (k1(t)) + C1, ∀t ∈ [0, t𝑓1 ), (B4)

where C1 is a constant.
Because limt→t𝑓1

k1(t) = +∞, the right-hand side of (B4) can become negative when k1(t) is sufficiently large,
regardless of 𝜃1. This is clearly a contradiction. Therefore, tf 1 ≥ tf 2.
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Step i: Suppose that for n = i, i ≥ 3, t𝑓1 ≥ · · · ≥ t𝑓i is true, but t𝑓i ≥ t𝑓i+1 does not hold. That is, t𝑓i < t𝑓i+1 . As such,
ki + 1(t) is bounded on [0, t𝑓i ). Using (30) with index i being replaced by i + 1, dividing both sides by k2

1· · ·k
2
i−1(t) and

then integrating from 0 to t, ∀t ∈ [0, t𝑓i ), we obtain

t

∫
0

V̇iLKds∏i−1
m=0 k2

m(s)
≤

i−1∑
𝑗=1

t

∫
0

𝜃𝑗N(k𝑗(s)) + 1∏i−1
m=𝑗 k2

m(s)
k̇𝑗(s)ds +

t

∫
0

(𝜃iN (ki(s)) + 1) k̇i(s)ds + ci+1

t

∫
0

k̇i+1(s)ds

≤
i−1∑
𝑗=1

t

∫
0

𝜃𝑗 cos(k𝑗(s))∏i−1
m=𝑗+1 k2

m(s)
k̇𝑗(s)ds +

t

∫
0

𝜃iN(ki)dki + ki(t) + c. (B5)

Due to the monotone increasing property of
∏i−1

m=𝑗 k2
m(t) on [0, t𝑓i ), the following inequality holds:

0 ≤ 1∏i−1
m=0 k2

m(t)

t

∫
0

V̇iLKds ≤
t

∫
0

V̇iLKds∏i−1
m=0 k2

m(s)
. (B6)

By Proposition 3, the first term in (B5) is bounded by a constant. This, together with (B3) and (B6), results in

0 <
ViLK(t)∏i−1

m=0 k2
m(t)ki(t)

n ≤ 𝜃iki(t) sin (ki(t)) + C, ∀t ∈ [0, t𝑓 i). (B7)

Since limt→t𝑓i
ki(t) = +∞, the right-hand side of (B7) can become negative when ki(t) is large enough. This is a con-

tradiction. Hence, t𝑓 i ≥ t𝑓i+1 . In this way, we have inductively proved Claim (1). In addition, the argument above, in
particular, (B5)-(B7) also leads to

• Claim (2): ki(t) is bounded if ki + 1(t) is bounded.

In view of Claim (2), it is clear that to prove Lemma 6, we only need to prove that kn is bounded ∀t ∈ [0, +∞). If
kn(t) is unbounded and only defined on [0, t𝑓n), consider inequality (49). The same argument as done in Step i or (B5)
leads to (B7) with i = n. That is, ∀t ∈ [0, t𝑓n),

0 <
VnLK(t)∏n−1

m=0 k2
m(t)kn(t)

≤ 𝜃nkn(t) sin (kn(t)) + Cn, (B8)

where Cn is a constant. Similar to the proof in (B4), a contradiction can be found from (B8). Hence, kn(t) must be
bounded on [0, t𝑓n]. Consequently, the maximal interval [0, tfn) can be extended to [0, +∞). In other words, kn(t) is
bounded ∀t ≥ 0. By Claim (2), kn− 1(t) is also bounded on [0, +∞). Inductively, it is concluded that ki(t), i = 1, … ,n
are bounded on [0, +∞).
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Asymptotic Regulation of Time-Delay Nonlinear Systems
With Unknown Control Directions

Radom Pongvuthithum , Kanya Rattanamongkhonkun, and Wei Lin , Fellow, IEEE

Abstract—This paper studies the problem of global state regula-
tion with stability for time-delay nonlinear systems with unknown
control directions. Using a dynamic gain-based method for coun-
teracting time-delay nonlinearity and the Nussbaum-gain function
for dealing with unknown control directions, we develop a dynamic
state feedback control strategy that solves the problem. A novel
construction of Lyapunov–Krasovskii functionals is presented and
plays a key role in handling nonlinearity with delayed states and un-
known control directions simultaneously. The proposed dynamic
state feedback compensators are shown to guarantee 1) global
asymptotic convergence of the system state to the origin and
2) global boundedness of the resulting closed-loop systems.

Index Terms—Asymptotic state regulation, boundedness, dy-
namic state compensator, nonlinear systems, time delay, unknown
control directions.

I. INTRODUCTION

Time-delay systems extensively exist in a variety of applications
including, but not limited to, network control, mechanical systems,
biological systems, and chemical processes. For example, models of
milling processes, drilling processes, and fluid flow or heating systems
all exhibit time-delay phenomena. While many of these controlled
plants are approximately modeled by linear systems, the work [2]
presented a chemical reactor example that is described by a lower
triangular nonlinear system with time delays in the state.

To address control problems of time-delay systems, various analysis
and synthesis approaches have been developed in the literature. Among
them, the Lyapunov–Krasovskii and Lyapunov–Razumikhin methods
are two powerful tools in the stability analysis of time-delay systems
[1], [3], [15], [16]. There are primarily three types of time-delay systems
that have received considerable attention. One class includes the delay
in the system state [1], [12], [14], [17] and the other one contains the
delay in the control input [5], [10], [11]. Of course, a more complex
situation involves time delays in both states and actuators of controlled

Manuscript received November 15, 2016; revised November 15,
2016, April 3, 2017, and August 11, 2017; accepted August 30, 2017.
Date of publication September 4, 2017; date of current version April
24, 2018. This work was supported in part by the Thailand Re-
search Fund through the Royal Golden Jubilee Ph.D. Program un-
der Grant PHD/0158/2552 and RSA6080027, and in part by the Key
Project of NSFC under Grant 61533009, 111 Project B08015, and Re-
search Projects JCY20130329152125731, JCY20150403161923519,
and KCYKYQD2017005. Recommended by Associate Editor C. M. Kel-
lett. (Corresponding author: Wei Lin.)

R. Pongvuthithum and K. Rattanamongkhonkun are with the Depart-
ment of Mechanical Engineering, Chiang Mai University, Chiang Mai
50200, Thailand (e-mail: radom.p@cmu.ac.th; Kanya_r@cmu.ac.th).

W. Lin is affiliated with Dongguan University of Technology, Guang-
dong 523000, China, and the Department of Electrical Engineering and
Computer Science, Case Western Reserve University, Cleveland, OH
44106 USA (e-mail: linwei@case.edu).

Digital Object Identifier 10.1109/TAC.2017.2748898

plants. For each category of time-delay systems, many results have
been obtained and reported; see, for instance, [4], [5], [10]–[12]. In
[10], a saturation state feedback controller was proposed for global
asymptotic stabilization of a chain of integrators with a delay in the
input, without requiring the knowledge of the delay. In [5], control of
a class of nonlinear systems with input delay was investigated with
the condition that the system under consideration is forward complete.
For a strict feedback system with delayed states, an attempt was first
made in [12] to design a delay-independent, smooth state feedback
controller. Later, it was found that the result of [12] is false, due to a
circular argument in the state feedback design. Such a technical issue
was addressed in [2] and [4] under the assumption that the upper bound
of time delay is known, and later in [17] and [19], by using dynamic
instead of static state feedback. The dynamic gain-based designs or
the dynamic state feedback control schemes [17], [19] have shown
to be effective in counteracting the nonlinearities with delayed states,
thus making it possible to remove restrictive conditions imposed on
time-delay nonlinear systems, which were commonly assumed in the
literature when using delay-independent static state feedback.

Most of the aforementioned works concentrated on time-delay non-
linear systems with known control directions, e.g., the signs of all
coefficients of the chain of integrator are assumed to be known. If
this crucial information is not available, a new method needs to be
developed for the control of time-delay systems. When no time delay
is involved, feedback design approaches have been studied for uncer-
tain nonlinear systems with unknown control directions [18], using the
so-called Nussbaum functions from universal adaptive stabilization of
minimum-phase linear systems with unknown sign of high-frequency
gain [13]. Since the sign of the control input often represents, for
instance, motion directions of mechanical systems such as robotics
modeled by the Lagrange equation and may be unknown, it is cer-
tainly important to investigate how to control time-delay systems with
unknown control directions.

In this paper, we first focus our attention on the following class of
time-delay nonlinear system with unknown control directions:

ẋi = θixi+1 + fi (x1 , . . . , xi , x1 (t − d), . . . , xi (t − d)),

ẋn = θn u + fn (x, x(t − d)), i = 1, . . . , n − 1,

x(s) = ζ(s), s ∈ [−d, 0] (1)

where x ∈ IRn and u ∈ IR are the system state and input, respec-
tively. The constant d ≥ 0 is an unknown time-delay of the sys-
tem, fi : IR2i → IR are C1 mappings with fi (0, . . . , 0) = 0, and
ζ(s) ∈ IRn is a continuous function defined on [−d, 0]. The coeffi-
cients θi �= 0, 1 ≤ i ≤ n, are unknown constants whose signs are also
unknown, but bounded by a known constant c̄. For example, in the
planar case, θ1 may be 1 or −10 while θ2 can be −2 or 3.

For the time-delay system with unknown control directions (1),
global stabilization by delay-independent state feedback is a nontrivial
problem and has not been addressed so far. There are perhaps two
reasons, which are as follows.

0018-9286 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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1) When the signs of coefficients of a chain of integrators are un-
known, the design of virtual controllers is less intuitive and more
involved as the uncertainties cannot be cancelled directly by a
conventional backstepping design.

2) The presence of time-delay nonlinearities makes a delay-free, static
state feedback law insufficient for mitigating the effects of time
delay, and hence a dynamic instead of static state feedback may be
necessary.

Motivated by the universal control idea [6]–[8], [13] and the recent
development [17], [19], we propose in this paper a novel construction
of a set of Lyapunov–Krasovskii functionals and a delay-independent,
dynamic state feedback control scheme for counteracting the effects
of time-delay nonlinearities and unknown control directions in the
system (1) simultaneously. With the help of the new dynamic gain-
based Lyapunov–Krasovskii functionals, we are able to design a time-
delay independent, dynamic state feedback compensator step-by-step,
resulting in a solution to the global state regulation of the time-delay
system (1) with stability. Interestingly, it is worth pointing out that the
approach presented in this paper provides a new yet simpler way of
designing state feedback controllers that achieve global stabilization
of the nonlinear system (1) with unknown control directions, in the
absence of time delay, i.e., d = 0.

Notations: In this paper, an even Nussbaum function N (k) =
k2 cos(k) is chosen, which clearly satisfies the properties: 1)
limk→∞ sup 1

k

∫ k

0 N (s)ds = +∞; 2) limk→∞ inf 1
k

∫ k

0 N (s)ds =
−∞. For the sake of convenience, denote v̄i = [v1 , . . . , vi ]T ∈ IRi for
i = 1, . . . , n. For example, x̄i = [x1 , . . . , xi ]T , x̄i (t − d) = [x1 (t −
d), . . . , xi (t − d)]T , l̄i = [l1 , . . . , li ]T , and k̄i = [k1 , . . . , ki ]T , where
li and ki are controller gains to be designed step-by-step in the next
section.

II. UNIVERSAL CONTROL-BASED DYNAMIC STATE FEEDBACK

In this section, we employ the idea of universal control [6]–[8], [13]
to design a dynamic state feedback compensator that is composed of
two sets of gain update laws, in the spirit of [6]–[8]. A set of them
is expected to mitigate the effects of the unknown control directions
present in the system (1), while the other set is capable of counteracting
the time-delay nonlinearities of the system (1). The idea of utilizing
two sets of gain update laws have been explored in a different con-
text, particularly, in the case of adaptive output feedback stabilization
of nonlinear systems with unknown parameters [6]–[8]. In this pa-
per, we further explore the potential/power of the idea by showing its
new application in the control of the time-delay system (1) with un-
known control directions. The main result of this paper is the following
theorem.

Theorem 2.1: For the time-delay system with unknown control di-
rections (1), there exists a delay-independent, dynamic state feedback
controller

L̇ = η(L, K, x), k̇ = h(L, K, x), u = α(L, K, x) (2)

with α(L, K, 0) = 0, such that the state x is regulated to the origin
while keeping all the signals of the closed-loop system bounded.

Remark 2.2: As shown in Section II-A, a delay-independent, dy-
namic state feedback compensator (2) can be explicitly designed and
given by, for instance, (40) and (20)–(21), with L = (l1 , . . . , ln−1 )T

and K = (k1 , . . . , kn ).
The proof of Theorem 2.1 is divided into two parts. The first part

contains a recursive procedure for the design of a universal-like dy-
namic state compensator (2), while the second part provides stability
analysis of the closed-loop system.

A. Dynamic State Feedback Design

In this section, we first construct a delay-independent, dynamic state
feedback compensator, by means of the Nussbaum-gain function [13],
a set of new Lyapunov–Krasovskii functionals (due to the presence
of unknown control directions) and the dynamic gain-based design
philosophy [19].

Step 1: For the x1 -subsystem of (1), view the state x2 as a virtual
control and consider the Lyapunov function V1 (x1 , l1 ) = 1

2 (1 + 1
l1

)ξ2
1

with ξ1 = x1 , where l1 (·) ≥ 1 is a dynamic gain to be determined in
Step 2.

A direct calculation gives

V̇1 =
(

1 +
1
l1

)

ξ1 [θ1x2 + f1 (x1 , x1 (t − d))] − l̇1
2l21

ξ2
1

≤
(

1 +
1
l1

)

θ1ξ1x
∗
2 + 2|θ1ξ1ξ2 | + 2|ξ1f1 (·)| − l̇1

2l21
ξ2

1 (3)

where ξ2 = x2 − x∗
2 .

From Lemma 4.3 in the Appendix, it is clear that there exist
smooth functions γ̄1 (x1 ) ≥ 0 and γ̄∗

1 (x1 (t − d)) ≥ 0 such that
|f1 (x1 , x1 (t − d))| ≤ γ̄1 (x1 ) |x1 | + γ̄∗

1 (x1 (t − d)) |x1 (t − d)| .
Consequently,

2|ξ1f1 (·)| ≤ 2ξ2
1 γ̄1 (x1 ) + ξ2

1 + ξ2
1 (t − d)γ̄∗2

1 (x1 (t − d)). (4)

In addition, 2|θ1ξ1ξ2 | ≤ ξ2
1 + c2ξ

2
2 , for a constant c2 > 0.

We now use the bound γ̄∗2
1 (·) from (4) to construct the Lyapunov–

Krasovskii functional

V1LK = V1 (l1 , x1 ) +
∫ t

t−d

ξ2
1 (s) γ̄∗2

1 (x1 (s)) ds

whose time derivative satisfies [by (3) and (4)]

V̇1LK ≤ −nξ2
1 +

(

1 +
1
l1

)

θ1ξ1x
∗
2 + c2ξ

2
2

+ c̄1ξ
2
1 (1 + 2γ̄1 (x1 ) + γ̄∗2

1 (x1 )) − l̇1
2l21

ξ2
1 (5)

where c̄1 = 2 + n. Because the sign of θ1 is unknown, we use the
idea from [13], namely, the Nussbaum function to design a controller.
In fact, from (5) a virtual controller with the Nussbaum gain can be
constructed as

x∗
2 = ξ1N (k1 )[1 + 2γ̄1 (x1 ) + γ̄∗2

1 (x1 )]

:= ξ1N (k1 )β1 (x1 )

k̇1 =
(

1 +
1
l1

)

ξ2
1 β1 (x1 ), k1 (0) = 1. (6)

This, together with l1 (·) ≥ 1, results in

V̇1LK ≤ −nξ2
1 + (θ1N (k1 ) + c̄1 )k̇1 + c2ξ

2
2 − l̇1

2l21
ξ2

1 (7)

Step 2: For the (x1 , x2 )-subsystem of (1), treat the state x3 as a
virtual control and consider the Lyapunov–Krasovskii functional

V2 = V1LK +
1

2l1
k2

1 ξ2
2 +

1
2l1 l2

(ξ2
1 + k2

1 ξ2
2 ) (8)

where l2 ≥ 1 is a dynamic gain to be determined in Step 3.
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In view of (7) and the properties that lj ≥ 1, j = 1, 2, we have

V̇2 ≤ −nξ2
1 + (θ1N (k1 ) + c̄1 )k̇1 + c2ξ

2
2 − l̇1

2l21
ξ2

1

+
1
l1

(

1 +
1
l2

)

θ2k
2
1 ξ2 (x∗

3 + x3 − x∗
3 ) +

2
l1

k2
1 |ξ2f2 (·)|

+
2
l1

k2
1 |ξ2 ẋ

∗
2 |

+
1

l1 l2
ξ1 ẋ1 +

2
l1

k1 k̇1ξ
2
2 − l̇1

2l21
k2

1 ξ2
2 − l̇1 l2 + l1 l̇2

2l21 l22
(ξ2

1 + k2
1 ξ2

2 ).

(9)

Using ξ2 = x2 − x∗
2 , (6) and the fact that l1 (·) ≥ 1 and k1 (·) ≥ 1, we

arrive at (with the aid of Lemmas 4.1–4.3)

2
l1

k2
1 |ξ2f2 (·)| ≤ k2

1 ξ2
2 Υ21 (k1 , x̄2 ) +

1
l1

ξ2
1 Υ22 (k1 , x1 ) + ξ2

2 (t − d)

· Υ∗
21 (k1 (t−d), x̄2 (t − d))+

1
l1

ξ2
1 (t−d)Υ∗

22 (k1 (t−d), x1 (t−d))

2
l1

k2
1 |ξ2 ẋ

∗
2 | +

1
l1 l2

|ξ1 ξ̇1 | + 2
l1

k1 k̇1ξ
2
2 ≤ k2

1 ξ2
2 Φ21 (k1 , x̄2 )

+
1
l1

ξ2
1 Φ22 (k1 , x1 ) +

1
l1

ξ2
1 (t − d)Φ∗

22 (x1 (t − d))

− l̇1
2l21

k2
1 ξ2

2 − l̇1 l2 + l1 l̇2
2l21 l22

(ξ2
1 + k2

1 ξ2
2 ) ≤ − l̇2

2l1 l22
(ξ2

1 + ξ2
2 ) (10)

where Υ2j (·) ≥ 0, Υ∗
2j (·) ≥ 0, Φ2j (·) ≥ 0, and Φ∗

22 (·) ≥ 0, j = 1, 2,
are smooth functions.

With the help of the smooth functions Υ∗
2j (·) and Φ∗

22 (·) obtained
from (10), we construct the Lyapunov–Krasovskii functional

V2LK = V2 +
∫ t

t−d

ξ2
2 (s)Υ∗

21 (k1 (s), x̄2 (s))ds

+
∫ t

t−d

1
l1 (s)

ξ2
1 (s)[Υ∗

22 (k1 (s), x1 (s))+Φ∗
22 (x1 (s))]ds .(11)

Observing that 1
l1

(1 + 1
l2

)k2
1 |θ2ξ2 (x3 − x∗

3 )| ≤ k2
1 ξ2

2 + c3k
2
1 ξ2

3 , with
ξ3 = x3 − x∗

3 and c3 > 0, we deduce from (9) and (10) that

V̇2LK ≤ −nξ2
1 + (θ1N (k1 ) + c̄1 )k̇1 − l̇1

2l21
ξ2

1

+
1
l1

(

1 +
1
l2

)

θ2k
2
1 ξ2x

∗
3 + c3k

2
1 ξ2

3 + k2
1 ξ2

2 [1 + c2 + Υ21 (k1 , x̄2 )

+Φ21 (k1 , x̄2 ) + Υ∗
21 (k1 , x̄2 )] +

1
l1

ξ2
1 [Υ22 (k1 , x1 )

+Φ22 (k1 , x1 ) + Υ∗
22 (k1 , x1 ) + Φ∗

22 (x1 )]

+
(

1
l1

− 1
l1 (t − d)

)

ξ2
1 (t − d)[Υ∗

22 (k1 (t − d), x1 (t − d))

+Φ∗
22 (x1 (t − d))] − l̇2

2l1 l22
(ξ2

1 + ξ2
2 ). (12)

Based on (12), one can design the Riccati-like update law

l̇1 = max{−l21 + l1ρ1 (k1 , x1 ), 0}, l1 (0) = 1 (13)

ρ1 (k1 , x1 ) = 2 [Υ22 (·) + Υ∗
22 (·) + Φ22 (·) + Φ∗

22 (·)] (14)

to mitigate the effects of the time-delay nonlinearity.

By construction, it is clear from (13) that

0 ≤ l̇1 ≤ l1ρ1 (·), l̇1 ≥ −l21 + l1ρ1 (·), l1 (t) ≥ l1 (t − d) ≥ 1. (15)

As a consequence

− l̇1
2l21

ξ2
1 ≤ ξ2

1 − 1
2l1

ξ2
1 ρ1 (k1 , x1 )

1
l1

− 1
l1 (t − d)

≤ 0. (16)

Substituting (13) and (16) into (12) leads to

V̇2LK ≤ −(n − 1)ξ2
1 − (n − 1)k2

1 ξ2
2 + (θ1N (k1 ) + c̄1 )k̇1

+
1
l1

(

1 +
1
l2

)

θ2k
2
1 ξ2x

∗
3 + c3k

2
1 ξ2

3 + c̄2k
2
1 ξ2

2

·[1 + Υ21 (k1 , x̄2 ) + Φ21 (k1 , x̄2 ) + Υ∗
21 (k1 , x̄2 )]

− l̇1
2l1 l22

(ξ2
1 + ξ2

2 ) (17)

where c̄2 = c2 + n. Similar to Step 1, because of the unknown sign
of θ2 , we need to design a virtual controller x∗

3 with the Nussbaum
gain as

x∗
3 = l1ξ2N (k2 )[1 + Υ21 (·) + Φ21 (·) + Υ∗

21 (·)]
:= l1ξ2N (k2 )β2 (k1 , x̄2 )

k̇2 =
(

1 +
1
l2

)

ξ2
2 β2 (k1 , x̄2 ), k2 (0) = 1 (18)

such that the inequality (17) becomes

V̇2LK ≤ −(n − 1)[ξ2
1 + k2

1 ξ2
2 ] + (θ1N (k1 ) + c̄1 )k̇1

+(θ2N (k2 ) + c̄2 )k2
1 k̇2 + c3k

2
1 ξ2

3 −
l̇2

2l1 l22
(ξ2

1 +ξ2
2 ).(19)

Inductive Step: Suppose at Step i − 1, there are a Lyapunov–
Krasovskii functional V(i−1)LK , a set of dynamic gains lj (·) ≥ 1 =
lj (0), j = 1, . . . , i − 1, given by

l̇1 = max{−l21 + l1ρ1 (k1 , x1 ), 0},
l̇2 = max{−l22 + l2ρ2 (l1 , k̄2 , x̄2 ), 0},

... (20)

l̇i−2 = max{−l2i−2 + li−2ρi−2 (l̄i−3 , k̄i−2 , x̄i−2 ), 0}

and a set of virtual controllers x∗
1 , . . . , x

∗
i with the Nussbaum gains

(updated by a set of universal controllers) defined by

x∗
1 = 0 ξ1 = x1 − x∗

1

x∗
2 = ξ1N (k1 )β1 (x1 ) ξ2 = x2 − x∗

2

k̇1 =
(

1 +
1
l1

)

ξ2
1 β1 (·)

...
...

x∗
i = (l1 · · · li−2 )ξi−1N (ki−1 ) ξi = xi − x∗

i

·βi−1 (l̄i−3 , k̄i−2 , x̄i−1 )

k̇i−1 =
(

1 +
1

li−1

)

ξ2
i−1βi−1 (·)

(21)
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with ρj (·) > 0 and βj (·) > 0 being smooth functions, such that

V̇(i−1)LK ≤−(n − (i − 2))Σi−1
j=1

[(
j−1∏

m =0

k2
m

)

ξ2
j

]

+ cik
2
1 · · · k2

i−2ξ
2
i

+
i−1∑

j=1

[

(θj N (kj ) + c̄j )

(
j−1∏

m =0

k2
m

)

k̇j

]

− l̇i−1

2l1 · · · li−2 l2i−1

i−1∑

j=1

ξ2
j

(22)

where ci > 0 is a constant and k0 = 1. Clearly, (22) reduces to (19)
when i = 3.

Recursively, it can be shown that (22) also holds at Step i. To this
end, consider the Lyapunov–Krasovskii functional

Vi = V(i−1)LK +
1

2l1 · · · li−1
k2

1 · · · k2
i−1ξ

2
i

+
1

2l1 · · · li
[
Σi−1

j=1ξ
2
j + k2

1 · · · k2
i−1ξ

2
i

]
(23)

where li (·) ≥ 1 is a dynamic gain to be designed.
Using (22) and the properties that lj ≥ 1, kj ≥ 1, we have

V̇i ≤ −(n − (i − 2))Σi−1
j=1

[(
j−1∏

m =0

k2
m

)

ξ2
j

]

+Σi−1
j=1

[

(θj N (kj ) + c̄j )

(
j−1∏

m =0

k2
m

)

k̇j

]

+ cik
2
1 · · · k2

i−2ξ
2
i

− l̇i−1

2l1 · · · li−2 l2i−1
Σi−1

j=1ξ
2
j +

k2
1 · · · k2

i−1

l1 · · · li−1

(

1 +
1
li

)

θi ξix
∗
i+1

+
2k2

1 · · · k2
i−1

l1 · · · li−1
|θi ξi ξi+1 + ξifi (·) − ξi ẋ

∗
i |

+
1

l1 · · · li−1

i−1∑

j=1

ξj ξ̇j +
2

l1 · · · li−1

⎡

⎢
⎣

i−1∑

j=1

⎛

⎜
⎝kj k̇j

i−1∏

m =1
m �= j

k2
m

⎞

⎟
⎠ ξ2

i

⎤

⎥
⎦

− 1
2l21 · · · l2i−1

⎡

⎢
⎣

i−1∑

j=1

⎛

⎜
⎝

i−1∏

m =1
m �= j

lm

⎞

⎟
⎠ l̇j

⎤

⎥
⎦ k2

1 · · · k2
i−1ξ

2
i

− 1
2l21 · · · l2i

⎡

⎢
⎣

i∑

j=1

(
i∏

m =1
m �= j

lm )l̇j

⎤

⎥
⎦

[
i−1∑

j=1

ξ2
j + k2

1 · · · k2
i−1ξ

2
i

]

. (24)

The terms in (24) can be estimated by using Lemma 4.2 and the prop-
erties of ki ≥ 1 and li ≥ 1 as follows:

2k2
1 · · · k2

i−1

l1 · · · li−1
|ξifi (·)| ≤ k2

1 · · · k2
i−1ξ

2
i Υi1 (l̄i−2 , k̄i−1 , x̄i )

+
1

l1 · · · li−1

(
i−1∑

j=1

ξ2
j

)

Υi2 (l̄i−2 , k̄i−1 , x̄i−1 )

+ξ2
i (t − d)Υ∗

i1 (l̄i−2 (t − d), k̄i−1 (t − d), x̄i (t − d))

+
1

l1 · · · li−1

(
i−1∑

j=1

ξ2
j (t − d)

)

· Υ∗
i2 (l̄i−2 (t − d), k̄i−1 (t − d), x̄i−1 (t − d)) (25)

2k2
1 · · · k2

i−1

l1 · · · li−1
|ξi ẋ

∗
i | ≤ k2

1 · · · k2
i−1ξ

2
i Φi1 (l̄i−2 , k̄i−1 , x̄i )

+
1

l1 · · · li−1

(
i−1∑

j=1

ξ2
j

)

Φi2 (l̄i−2 , k̄i−1 , x̄i−1 )

+
1

l1 · · · li−1

(
i−1∑

j=1

ξ2
j (t − d)

)

· Φ∗
i2 (l̄i−2 (t − d), k̄i−1 (t − d), x̄i−1 (t − d)) (26)

2k2
1 · · · k2

i−1

l1 · · · li−1
|θi ξi ξi+1 | ≤ k2

1 · · · k2
i−1ξ

2
i + ci+1k

2
1 · · · k2

i−1ξ
2
i+1 (27)

1
l1 · · · li−1

i−1∑

j=1

|ξj ξ̇j | ≤ k2
1 · · · k2

i−1ξ
2
i

+
1

l1 · · · li−1

(
i−1∑

j=1

ξ2
j

)

Ψi (l̄i−2 , k̄i−1 , x̄i−1 ) +
1

l1 · · · li−1

·
(

i−1∑

j=1

ξ2
j (t − d)

)

Ψ∗
i (l̄i−2 (t − d), k̄i−1 (t − d), x̄i−1 (t − d))

(28)

2ξ2
i

l1 · · · li−1

⎡

⎢
⎣

i−1∑

j=1

⎛

⎜
⎝kj k̇j

i−1∏

m =1
m �= j

k2
m

⎞

⎟
⎠

⎤

⎥
⎦ ≤ k2

1 · · · k2
i−1ξ

2
i ωi

× (l̄i−3 , k̄i−2 , x̄i−1 ) (29)

− 1
2l21 · · · l2i−1

⎡

⎢
⎣

i−1∑

j=1

⎛

⎜
⎝

i−1∏

m =1
m �= j

lm

⎞

⎟
⎠ l̇j

⎤

⎥
⎦ k2

1 · · · k2
i−1ξ

2
i

− 1
2l21 · · · l2i

⎡

⎢
⎣

i∑

j=1

⎛

⎜
⎝

i∏

m =1
m �= j

lm

⎞

⎟
⎠ l̇j

⎤

⎥
⎦

[
i−1∑

j=1

ξ2
j + k2

1 · · · k2
i−1ξ

2
i

]

≤ − l̇i
2l1 · · · li−1 l2i

(
i∑

j=1

ξ2
j

)

(30)

where Υij (·) ≥ 0, Υ∗
ij (·) ≥ 0, Φij (·) ≥ 0, Φ∗

ij (·) ≥ 0, Ψi (·) ≥ 0,
Ψ∗

i (·) ≥ 0, j = 1, 2, and ωi (·) ≥ 0 are smooth functions.
With the aid of the bounding functions Υ∗

ij (·), Φ∗
ij (·), and Ψ∗

i (·)
from the estimations above, which are related to the delay terms, one
can construct the Lyapunov–Krasovskii functional

ViLK = Vi +
∫ t

t−d

ξ2
i (s)Υ∗

i1 (l̄i−2 (s), k̄i−1 (s), x̄i (s))ds

+
∫ t

t−d

1
l1 (s) · · · li−1 (s)

(
i−1∑

j=1

ξ2
j (s)

)

[Υ∗
i2 (l̄i−2 (s), k̄i−1 (s), x̄i−1 (s))

+Φ∗
i2 (l̄i−2 (s), k̄i−1 (s), x̄i−1 (s))+Ψ∗

i (l̄i−2 (s), k̄i−1 (s), x̄i−1 (s))]ds.
(31)
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Then, in view of (24)–(30), we have

V̇iLK ≤ −(n − (i − 2))
i−1∑

j=1

[(
j−1∏

m =0

k2
m

)

ξ2
j

]

+
i−1∑

j=1

[

(θj N (kj ) + c̄j )

(
j−1∏

m =0

k2
m

)

k̇j

]

− l̇i−1

2l1 · · · li−2 l2i−1

i−1∑

j=1

ξ2
j

+
k2

1 · · · k2
i−1

l1 · · · li−1

(

1 +
1
li

)

θi ξix
∗
i+1 + ci+1k

2
1 · · · k2

i−1ξ
2
i+1

+ k2
1 · · · k2

i−1ξ
2
i [2 + ci + Υi1 (l̄i−2 , k̄i−1 , x̄i ) + Φi1 (l̄i−2 , k̄i−1 , x̄i )

+ ωi (l̄i−3 , k̄i−2 , x̄i−1 ) + Υ∗
i1 (l̄i−2 , k̄i−1 , x̄i )] +

1
l1 · · · li−1

(
i−1∑

j=1

ξ2
j

)

· [Υi2 (l̄i−2 , k̄i−1 , x̄i−1 ) + Φi2 (l̄i−2 , k̄i−1 , x̄i−1 )

+ Ψi (l̄i−2 , k̄i−1 , x̄i−1 ) + Υ∗
i2 (l̄i−2 , k̄i−1 , x̄i−1 )

+ Φ∗
i2 (l̄i−2 , k̄i−1 , x̄i−1 ) + Ψ∗

i (l̄i−2 , k̄i−1 , x̄i−1 )]

+
[

1
l1 · · · li−1

− 1
l1 (t − d) · · · li−1 (t − d)

]( i−1∑

j=1

ξ2
j (t − d)

)

· [Υ∗
i2 (l̄i−2 (t − d), k̄i−1 (t − d), x̄i−1 (t − d))

+ Φ∗
i2 (l̄i−2 (t − d), k̄i−1 (t − d), x̄i−1 (t − d))

+ Ψ∗
i (l̄i−2 (t − d), k̄i−1 (t − d), x̄i−1 (t − d))]

− l̇i
2l1 · · · li−1 l2i

(
i∑

j=1

ξ2
j

)

. (32)

Following the idea and design given in Step 2, we can construct [based
on (32)] the delay-free gain update law

l̇i−1 = max{−l2i−1 + li−1ρi−1 (l̄i−2 , k̄i−1 , x̄i−1 ), 0} (33)

with li−1 (0) = 1, and

ρi−1 (l̄i−2 , k̄i−1 , x̄i−1 ) = 2[Υi2 (·) + Υ∗
i2 (·) + Φi2 (·) + Φ∗

i2 (·)
+Ψi (·) + Ψ∗

i (·)]. (34)

By construction, it is easy to verify that

0 ≤ l̇i−1 ≤ li−1ρi−1 (l̄i−2 , k̄i−1 , x̄i−1 )

l̇i−1 ≥ −l2i−1 + li−1ρi−1 (l̄i−2 , k̄i−1 , x̄i−1 )

li−1 ≥ li−1 (t − d) ≥ 1. (35)

As a consequence,

− l̇i−1

2l1 · · · li−2 l2i−1

(
i−1∑

j=1

ξ2
j

)

≤
i−1∑

j=1

ξ2
j − ρi−1 (·)

2l1 · · · li−1

[
i−1∑

j=1

ξ2
j

]

(36)

1
l1 · · · li−1

− 1
l1 (t − d) · · · li−1 (t − d)

≤ 0. (37)

Substituting (36) and (37) into (32), we obtain

V̇iLK ≤ −(n − (i − 1))
i∑

j=1

(
j−1∏

m =0

k2
m

)

ξ2
j

+
i−1∑

j=1

[

(θj N (kj ) + c̄j )

(
j−1∏

m =0

k2
m

)

k̇j

]

+
k2

1 · · · k2
i−1

l1 · · · li−1

·
(

1 +
1
li

)

θi ξix
∗
i+1 + c̄i k

2
1 · · · k2

i−1ξ
2
i

· [1 + Υi1 (·) + Φi1 (·) + ωi (·) + Υ∗
i1 (·)]

− l̇i
2l1 · · · li−1 l2i

i∑

j=1

ξ2
j + ci+1k

2
1 · · · k2

i−1ξ
2
i+1 (38)

where c̄i = 2 + ci + (n − i).
To mitigate the effects of the unknown sign of θi , we design the fol-

lowing virtual controller with a Nussbaum gain (updated by a universal
controller k̇i )

x∗
i+1 = (l1 · · · li−1 )ξiN (ki )[1 + Υi1 (·)

+Φi1 (·) + ωi (·) + Υ∗
i1 (·)]

:= (l1 · · · li−1 )ξiN (ki )βi (l̄i−2 , k̄i−1 , x̄i )

k̇i =
(

1 +
1
li

)

ξ2
i βi (l̄i−2 , k̄i−1 , x̄i ). (39)

Substituting (39) into (38) leads to the claim that (22) holds at
Step i. The inductive argument so far has indicated that (22) holds
for i = n + 1 with u = xn +1 = x∗

n +1 . As a consequence, a dynamic
state feedback controller that is composed of (20) with i = n + 1 and
a universal-like control law

u = (l1 · · · ln−1 )ξn N (kn )βn (l̄n−2 , k̄n−1 , x)

k̇n = ξ2
n βn (l̄n−2 , k̄n−1 , x) (40)

renders

V̇n L K ≤ −
n∑

j=1

[(
j−1∏

m =0

k2
m

)

ξ2
j

]

+
n∑

j=1

[

(θj N (kj ) + c̄j )

(
j−1∏

m =0

k2
m

)

k̇j

]

. (41)

We end this section with an observation that the dynamic state feed-
back compensator designed so far, namely, (40) and (20)–(21) with
i = n + 1, is exactly of the form (2) with L = (l1 , . . . , ln−1 )T and
K = (k1 , . . . , kn ).

Remark 2.3: In the case when θi ’s are known constants (e.g., θi =
1), all the ki = 1 and k̇i = 0. Then, the Lyapunov inequality (41)
reduces to

V̇n L K ≤ −
n∑

j=1

ξ2
j ≤ 0 (42)

from which it is concluded that global asymptotic state regulation of the
time-delay nonlinear system (1) and boundedness of the closed-loop
system are achieved by the delay-independent, dynamic state feedback
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compensator (40) and (20)–(21), with ki = 1, k̇i = 0 and N (ki ) =
constant for i = 1, . . . , n.

B. Asymptotic State Regulation With Boundedness

In this section, we complete the proof of Theorem 2.1 by showing
that the universal-like, dynamic state feedback controller (40) and (20)
designed in Section II-A ensures not only the convergence of the system
state x but also boundedness of the resulting closed-loop system.

First of all, from the Lyapunov inequalities (22) and (41) it is con-
cluded that ki (t), i = 1 · · ·n, are bounded. The proof of this claim is
given in Appendix B.

By the boundedness of ki (t), 1 ≤ i ≤ n, it follows immediately
from (39) that ξ2

i (t) ≤ k̇i (t) because βi (·) ≥ 1 and li (t) ≥ 1. Hence,∫ +∞
0 ξ2

i ds ≤ ki (+∞) − ki (0) = C .
On the other hand, it follows from (41) that

Vn L K (t) ≤
n∑

j=1

t∫

0

|θj N (kj (s)) + c̄j |
(

j−1∏

m =0

k2
m (s)

)

k̇j (s)ds + c,

≤ c̄
n∑

j=1

t∫

0

k̇j (s)ds + c. (43)

From the inequality (43) and the boundedness of ki (t), i = 1 · · ·n,
it is straightforward to prove that the Lyapunov–Krasovskii functional
Vn L K (·) evaluated on the solution trajectory of the closed-loop system
is bounded ∀t ∈ [0, +∞). In view of the construction of Vn L K (·), in
particular, (31) and (23), we deduce that the boundedness of Vn L K (·)
implies the boundedness of x1 ,

k 2
1 ···k 2

i−1
l1 ···l i−1

ξ2
i , i = 1, . . . , n.

Keeping the boundedness of x1 and k1 in mind, it is trivial to verify
that the gain l1 (·) designed by (13) and (14) is monotone nondeceas-
ing. Moreover, l1 (·) is also bounded. In fact, if it is unbounded, then
limt→+∞ l1 (t) = +∞. By continuity of ρ1 (·), ρ1 (k1 , x1 ) is bounded
due to the boundedness of k1 and x1 . As a consequence, there is a time
instant T > 0 such that −l21 + l1ρ1 (k1 , x1 ) ≤ 0 on [T, +∞). This,
together with (15), results in l̇1 = 0 on [T, +∞), which contradicts to
the unboundedness of l1 (·). Therefore, l1 (·) must be bounded. This,
combined with the boundedness of k1 , implies the boundedness of x∗

2
and ξ2 = x2 − x∗

2 , and so does x2 . With the help of the boundedness
of ki (1 ≤ i ≤ n), the boundedness of li (·) and xi can be proved in
the iterative manner of x2 → l2 → x3 → · · · → ln−1 → xn , by using
(20) and (21). In conclusion, all the signals of the closed-loop system
(1)–(40)–(20) are bounded ∀t ∈ [0, +∞).

Finally, note that ξ̇i , i = 1, . . . , n are also bounded and∫ +∞
0 ξ2

i (t)dt < +∞. It is thus deduced from the Barbalat’s lemma
that ξi , i = 1, . . . , n converge to zero as t → +∞. This, in view
of the coordinate transformation (21), implies that the state x tends
to the origin as t → +∞. In this way, the proof of Theorem 2.1 is
completed.

III. EXTENSION AND DISCUSSION

So far Theorem 2.1 has been established for the time-delay system
(1) with unknown control directions. Due to the robust nature of the
Lyapunov– Krasovskii functional based design in Section III, it is easy
to show that Theorem 2.1 can be extended to a family of uncertain
nonlinear systems with time delay, as long as their bounding system
has a lower triangular structure.

Corollary 3.1: For the following family of uncertain time-delay
systems with unknown control directions

ẋi = θixi+1 + φi (x, x(t − d), u, t), i = 1, . . . , n (44)

where xn +1 = u and φi : Rn ×Rn ×R×R → R is a continuous
mapping with uncertainty satisfying, for i = 1, . . . , n

|φ(x, x(t − d), u, t)| ≤ γi (x̄i , x̄i (t − d))

(
i∑

j=1

(|xj | + |xj (t − d)|)
)

(45)
with γi (x̄i , x̄i (t − d)) ≥ 0 being a known smooth function. Then, there
is a delay-independent, dynamic state feedback compensator of the
form (2), driving the system state x to the origin while keeping bound-
edness of the closed-loop system (44) and (2).

A difference between Theorem 2.1 and Corollary 3.1 lies in that the
former requires the controlled plant (1) to be precisely known, while
the latter needs no accurate information of the time-delay system (44),
i.e., φi (x, x(t − d), u, t) may involve uncertainty but does need the
knowledge of the bounding system, or, γi (x̄i , x̄i (t − d)) in (45).

The next result illustrates how a simplified delay-free, dynamic state
feedback compensator, with a set of reduced control gains, can be
designed to achieve global asymptotic state regulation with stability
for the time-delay nonlinear system (45) with uncertainty.

Corollary 3.2: Under the growth condition (45), a family of time-
delay uncertain systems (44) with unknown control directions is glob-
ally asymptotically regulated by the delay-free, dynamic state feedback
compensator

u = ξn N (kn )βn (l̄n−1 , k̄n−1 , x), βn (·) > 0,

k̇n =
1

l1 · · · ln−1
ξ2

n βn (l̄n−1 , k̄n−1 , x) (46)

where the gains li and ki (1 ≤ i ≤ n − 1) are updated by (20) with the
coordinate transformation

x∗
1 = 0 ξ1 = x1 − x∗

1

x∗
2 = ξ1N (k1 )β1 (x1 ) ξ2 = x2 − x∗

2

k̇1 =
(

1 +
1
l1

)

ξ2
1 β1 (·)

...
...

x∗
n = ξn−1N (kn−1 )βn−1 (l̄n−2 , k̄n−2 , x̄n−1 ) ξn = xn − x∗

n

k̇n−1 =
1

l1 · · · ln−2

(

1 +
1

ln−1

)

ξ2
n−1βn−1 (·).

(47)

Remark 3.3: Compared with the dynamics state feedback law (40)
and (20) with (21), the dynamic state controller given by Corollary 3.2
is simpler and has much smaller gains, by removing l1 · · · ln−1 from
the controller (40) and l1 · · · li−1 from the virtual controllers (21), and
reducing the gains of the universal control laws k̇i simultaneously.

Corollary 3.2 can be proved in a manner similar to that of Theo-
rem 2.1. However, the proof is less intuitive and involves more sub-
tle/tedious estimations. Details are omitted for the reason of space.

The following example demonstrates the application of
Corollary 3.2, showing how a delay-free, dynamic state feedback com-
pensator can be designed.

Example 3.4: Consider the time-delay planar system with unknown
control directions

ẋ1 = x2

ẋ2 = θ2u + x2
2 (t − d). (48)

To handle the nonlinearity with the delayed state, we use the Lyapunov
function V1 = 1

2 (1 + 1
l1

)ξ2
1 with ξ1 = x1 , and introduce the gain up-

date law

l̇1 = max{−l21 + l1ρ1 (k1 , x1 ), 0}, l1 (0) = 1 (49)

where ρ1 (k1 , x1 ) ≥ 0 is a smooth function to be given later.
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Fig. 1. State trajectories of the closed-loop system (50)-(54).

For the planar system (48), design the virtual controller x∗
2 = −3ξ1

and define ξ2 = x2 − x∗
2 . Using the fact that l1 ≥ 1 and l̇1 ≥ −l21 +

l1ρ1 (k1 , x1 ) leads to

V̇1 =
(

1 +
1
l1

)

ξ1x2 − l̇1
2l21

ξ2
1 ≤ −2ξ2

1 + ξ2
2 − 1

2l1
ρ1 (k1 , x1 )ξ2

1 .

Since the sign of x2 is known, the virtual controller x∗
2 is designed

directly without using the Nussbaum gain, i.e., simply set k1 = 1.
Following a design procedure similar to the one presented in

Section II, we construct the Lyapunov–Krasovskii functional

V2LK = V1 +
1

2l1
ξ2

2 +
∫ t

t−d

1
l1 (s)

ξ2
2 (s)

[
17
4

+ x2
1 + ξ2

2

]2

ds

+
∫ t

t−d

1
l1 (s)

ξ2
1 (s)[10 + x2

1 (s)]
2ds. (50)

Then, a direct calculation gives

V̇2LK ≤ −2ξ2
1 − 2ξ2

2 − 1
2l1

ρ1 (k1 , x1 )ξ2
1 +

1
l1

θ2ξ2u

+
1
l1

ξ2
2

[

2l1 +
49
4

+
(

17
4

+ ξ2
2 + x2

1

)2
]

+
1
l1

x2
1

[
9
2

+ (10 + x2
1 )

2
]

(51)

from which it is deduced that the delay-free dynamic state controller

ρ1 (k1 , x1 ) = 2
[

9
2

+ (10 + x2
1 )

2
]

u = k2 cos(k)ξ2

[

2l1 +
61
4

+
(

17
4

+ ξ2
2 + x2

1

)2
]

k̇ = ξ2
2

[

2l1 +
61
4

+
(

17
4

+ ξ2
2 + x2

1

)2
]

(52)

together with the gain update law (49), asymptotically regulates the
state (x1 , x2 ) of the system (48) to (0, 0), while keeping the signals
(l1 , k, x1 , x2 ) of the closed-loop system bounded.

The simulations of the trajectories (x1 , x2 ) and (l1 , k) of the
closed-loop system (48)–(49) and (52) are shown in the figure
above, with the parameters θ2 = −1, d = 1.25 and the initial condi-
tion (x1 (0), x2 (0)) = (0.75,−1.25). Notably, the proposed dynamic
compensator (49) and (52) is independent of the time delay, and hence
it also works for a large delay d in the nonlinear system (48), as long
as d is finite.

IV. CONCLUSION

In this paper, we have investigated the problem of global state regu-
lation with stability for nonlinear systems with both time-delay uncer-
tainties and unknown control directions. A delay-free, dynamic state
feedback control strategy has been developed based on the dynamic
gain-based design technique [19] and the idea of universal control with
the Nussbaum function [13]. The dynamic state feedback compensators
proposed in Theorem 2.1 or Corollary 3.1 consist of two sets of gain
update laws, which are a reminiscent of the work [6]–[8] on univer-
sal control of nonlinear systems with unknown parameters by output
feedback. One set of gain update laws is a Riccati-type, effective in
counteracting the time-delay nonlinearities, while the other set of dy-
namic update laws is an universal control-like using the Nussbaum
function, capable of mitigating the effects of unknown control direc-
tions. In contrast to the work in [19], a set of new Lyapunov–Krasovskii
functionals have been constructed in this paper, in order to cope with
both time-delay uncertainties and unknown control directions simulta-
neously. It has been shown that the proposed dynamic state feedback
control scheme guarantees not only the convergence of the system state
to the origin but also global boundedness of the resultant closed-loop
system.

APPENDIX A

This Appendix collects three lemmas that are used in this paper.
Lemma 4.1: [9], [20] Let x ∈ Rn , y ∈ Rm and f : Rn × Rm →

R be a continuous function. Then, there are smooth functions a (x) ≥
0, b (y) ≥ 0, c (x) ≥ 1 and d (y) ≥ 1, such that

|f (x, y)| ≤ a(x) + b(y), |f (x, y) | ≤ c (x) d (y) . (53)

Lemma 4.2: [19] Let x ∈ Rn , y ∈ Rm and f : Rn × Rm → R be
a real-valued continuous function. Then, there exist smooth functions
g(x) ≥ 0 and h(y) ≥ 0, such that

f (x, y) (‖x‖ + ‖y‖) ≤ g (x) ‖x‖ + h (y) ‖y‖ . (54)

Lemma 4.3: For x̄i ∈ Ri and x̄i (t − d) ∈ Ri denoting x̄i at time
t − d, let fi : Ri × Ri → R be a real-valued continuous function with
fi (0̄, 0̄) = 0. Then, there exist smooth functions γ̄ij (x̄j ) ≥ 0 and
γ̄∗

ij (x̄j (t − d)) ≥ 0, j = 1, . . . , i, such that

|fi (x̄i , x̄i (t − d))| ≤ Σi
j=1 (γ̄ij (xj ) ‖x̄j ‖

+γ̄∗
ij (x̄j (t − d)) ‖x̄j (t − d)‖) . (55)

The last lemma is a direct consequence of the mean value theorem
with an integration remainder, as shown in [19], [20].

APPENDIX B

The boundedness of ki (t), i = 1, . . . , n on [0, +∞) can be proved
by a contradiction argument. For simplicity, we first prove the claim
for the case of n = 2. In this case, if ki (t), i = 1, 2 are unbounded,
let [0, tf 1 ) and [0, tf 2 ) be the maximum intervals of k1 (t) and k2 (t),
respectively. Then,

� Fact (a): tf 1 ≥ tf 2 must hold.
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If not, tf 1 < tf 2 . This implies that k2 (t) is bounded on [0, tf1 ). From
(7) and the property that ξ2

2 ≤ k̇2 (by (18)), we have

V̇1LK ≤ (θ1N (k1 ) + c̄1 )k̇1 + c2 k̇2 , ∀t ∈ [0, tf1 ). (56)

This, together with the relation that
∫

N (k)dk = k2 sin k + 2k cos k − 2 sin k + c, (57)

results in

0 ≤ V1LK (t)
k1 (t)

≤ θ1k1 (t) sin(k1 (t)) + C1 , ∀t ∈ [0, tf1 ) (58)

where C1 is a constant.
Since limt→t f 1

k1 (t) = +∞, the right hand side of (58) can become
negative when k1 (t) is large enough, regardless of θ1 . This clearly leads
to a contradiction. Hence, tf 1 ≥ tf 2 .

As a consequence of Fact (a), k1 (t) is well-defined on [0, tf 2 ). In
addition, the argument above, in particular, (56)–(58), also implies that

� Fact (b): k1 (t) is bounded if k2 (t) is bounded.
With this in mind, we only need to prove that k2 is bounded. If k2 (t) is
unbounded and only define on [0, tf2 ), consider the inequality (41) with
n = 2, or, equivalently, (19) with l̇2 = 0 and ξ3 = 0. Dividing k2

1 (t)
on the both sides of (41) and integrating from 0 to t, ∀t ∈ [0, tf 2 ), we
arrive at

∫ t

0

V̇2LK (s)
k2

1 (s)
ds ≤

∫ t

0

(

θ1 cos(k1 ) +
c̄1

k2
1

)

dk1

+
∫ k 2 (t)

k 2 (0)
(θ2N (k2 ) + c̄2 ) dk2 ,

which, combined with (57) and the monotone increasing property of
k1 (t) on [0, tf 2 ), yields

0 ≤ V2LK (t)
k2

1 (t)k2 (t)
≤ θ2k2 (t) sin(k2 (t)) + C2 , ∀t ∈ [0, tf 2 ) (59)

where C2 is a constant.
Similar to the proof in (58), a contradiction can be drawn from

(59). Thus, k2 (t) must be bounded for all 0 ≤ t ≤ tf 2 . As a such, the
maximal interval [0, tf 2 ) of k2 (t) can be extended to [0, +∞). In other
words, k2 (t) is bounded ∀t ≥ 0. By Fact (b), k1 (t) is also bounded on
[0, +∞).

When n > 2, an analogous but more tedious proof can also be carried
out. If the claim is not true, there is at least one ki (t) that is unbounded.
Let [0, tf i ) be the maximum interval of ki (t). Then, we can prove
that by the proposed design, tf 1 ≥ tf 2 ≥ · · · ≥ tf n . Note that (58)
also holds for the n-dimensional system. From (22) and the fact that
ξ2

i ≤ k̇i , ∀i = 1, . . . , n, we have

V̇iLK ≤
i∑

j=1

[(θj N (kj ) + c̄j )

(
j−1∏

m =0

k2
m

)

k̇j ] + ci+1k
2
1 · · · k2

i−1 k̇i+1

(60)

Using (60) and proceeding a similar argument as done in (58) recur-
sively from i = 1 to i = n, one can conclude that: (i) tf 1 ≥ · · · ≥ tf n ,
and (ii) ki is bounded if ki+1 is bounded.

Finally, similar to (60), by dividing
∏n−1

m =0 k2
m (t) on the both sides

of (41) and integrating from 0 to t, ∀t ∈ [0, tf n ), it can be shown that
kn (t) is bounded on [0, +∞). With the help of the property (ii), one can
prove recursively, from i = n − 1 to i = 1, that all ki (t)’s are bounded
∀t ≥ 0.
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LgV -Type Adaptive Controllers for Uncertain Non-Affine Systems and
Application to a DC-Microgrid with PV and Battery

Wei Lin , Fellow, IEEE, Kanya Rattanamongkhonkun , and Radom Pongvuthithum

Abstract—Adaptive control of general nonlinear systems with
nonlinear parameterization is studied in this paper. Under the as-
sumptions that the system has stable free dynamics and satisfies
controllability-like conditions characterized by the Lie brackets of
affine vector fields, it is proved that there exist LgV -type adaptive
controllers that not only asymptotically regulate the state of the
nonlinearly parameterized system but also guarantee global sta-
bility of the closed-loop system. The design of LgV -type adaptive
controllers is also included. Applications of the proposed adaptive
control scheme are presented, including an interesting case of a
dc-microgrid with photovoltaic (PV) and battery system.

Index Terms—Adaptive control, dc-microgrid with PV and Bat-
tery, nonaffine systems, nonlinear parameterization, bounded feed-
back, passivity.

I. INTRODUCTION

Motivated by the recent development in the area of voltage regulation
and maximal power point tracking (MPPT) control for dc-microgrid
with photovoltaic (PV) and battery in island mode [20], where a dc-
microgrid that consists of a PV array, a battery storage, a dc bus,
dc/dc converters and loads with different voltage levels are modeled
by a nonaffine nonlinear system with parameters, we investigate in this
paper the problem of adaptive control of general nonlinear systems
with parametric uncertainty. The objective is to develop a new adaptive
control strategy based on the theory of nonaffine passive systems [10],
[11], for nonlinearly parameterized systems with a general structure

ẋ = f (x, u, θ) (1)

y = h(x, u, θ) (2)

where x ∈ IRn , u ∈ IRm , and y ∈ IRm are the system state, input and
output, respectively. The parameter θ ∈ IRr is assumed to be a constant
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vector, the vector fields f : IRn × IRm × IRr → IRn and h : IRn ×
IRm × IRr → IRm are smooth with f (0, 0, θ) = 0 and h(0, 0, θ) =
0 ∀θ.

For affine systems with stable free dynamics, global stabilization via
state feedback has been studied extensively in the literature by passive
systems theory. The notions of passivity and dissipativity for nonlin-
ear systems were originally introduced in [21], which are naturally
evolved from a series of studies on the positive-real transfer function,
the Kalman–Yakubovitch–Popov (KYP) Lemma and their various ap-
plications in linear systems and adaptive control. Extensions of [21]
to affine systems and a nonlinear analogue of the KYP lemma were
obtained in [4]. For a class of affine systems whose unforced dynamics
are stable, Lg V controllers were proposed in [7]. Further extensions
and developments can be found in a series of papers [1], [6], [8], [9],
[17], [18]. Using the concepts and synthesis techniques from passive
systems, together with the geometric approach [5], a framework was
developed in the paper [2] for global stabilization of minimum-phase
nonlinear systems. It was proved that the aforementioned results and
generalization thereof can all be unified and rederived by passivity and
feedback equivalence. When affine systems involve a structural uncer-
tainty, a robust version of nonlinear KYP lemma and its application to
robust feedback stabilization were carried out in [13].

Since the seminar work of [2], attempts have been made in
developing a more general passive system theory that goes beyond
affine systems, for example, for nonlinear systems which are not linear
in the control input, such as nonaffine systems of the form (1)-(2). In
[10], a solution to the local stabilization problem was first addressed
for the nonaffine system (1) without parametric uncertainty, i.e., θ = 0,
by means of the passivity of nonaffine systems. In the subsequent work
[11], it was shown that similar to the affine case [2], [4], a passive sys-
tem (1)-(2) with θ = 0 is globally asymptotically stabilizable by static
output feedback if it is zero-state detectable. A criterion for zero-state
detectability of the nonaffine passive system (1)-(2) was characterized
by the Lie brackets of the vector fields f (x, 0) and ∂ f

∂ u
(x, 0). Based on

these results and the feedback equivalence of rendering a system (1)
passive via a suitable dummy output, a controllability-like condition
was derived for a nonaffine system (1) [11], under which global
asymptotic stabilizability is achievable by bounded state feedback.

All the results reviewed so far have been focused on nonlinear
systems without parametric uncertainty. When a nonaffine system
such as the dc-microgrid with PV and battery [20] involves uncertainty
or unknown parameters, how to control this type of nonaffine
systems with nonlinear parameterization is certainly an interesting
question that is worth of studying. In this paper, we tackle the
problem and present an adaptive control strategy for global asymptotic
regulation of the nonlinearly parameterized system (1) with stability.
In particular, we show how the nonaffine passive systems theory [10]
together with the techniques of feedback passivation and bounded
control [11], can be employed to design a LgV -type adaptive
controller, which solves the problem of global adaptive stabilization
of general nonlinear systems with stable free dynamics. Examples and
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applications to a dc-microgrid with PV and battery [20] are presented
to highlight the contribution of the paper and some key features of the
Lg V -like adaptive control scheme.

The paper is organized as follows: In Section II, we review some
basic concepts and properties of passive systems with a nonaffine struc-
ture. We then briefly discuss applications of passivity to the feed-
back stabilization and the characterization of a controllability-like rank
condition — a dual of zero-state detectability. Using the results in
Section II, we present in Section III sufficient conditions for the exis-
tence of globally stabilizing adaptive controllers. In addition, we also
show how a Lg V -type adaptive control law can be constructed for the
nonlinearly parameterized system (1). The crucial idea behind our de-
sign is the use of “small control” technique from [11]. Examples and
an application to the dc-microgrid with PV and battery are presented in
both Sections III and IV, respectively, for the validation of the proposed
Lg V -like adaptive control scheme.

II. PASSIVITY, DETECTABILITY AND BOUNDED FEEDBACK

We briefly review in this section some basic concepts and stabil-
ity properties from passive systems theory [2], [4], [10], [11], [21],
which play a vital role in the development of adaptive control for the
nonlinearly parameterized system (1).

Recall that an input-output system (1)-(2) with the parameter θ is
said to be passive if there exists a continuous nonnegative function
V : IRn × IRr → IR, with V (0, θ) = 0, such that for each θ ∈ IRr

V0 (x(t), θ) − V0 (x0 , θ) ≤
∫ t

0
yT (s)u(s)ds, ∀u ∈ IRm , ∀x0 ∈ IRn

(3)
where x(t) = φθ (t, x0 , u) is a solution of (1) from x(0) = x0 .

If V0 is C1 , the passivity inequality (3) can be simplified as

V̇0 ≤ yT u, ∀u ∈ IRm . (4)

Moreover, system (1)-(2) is called lossless if (4) becomes an identity.
A fundamental property of affine passive systems is characterized

by the well-known KYP Lemma [4]. It has been shown that the KYP
Lemma is instrument in solving the feedback equivalence problem
between affine passive systems and minimum-phase nonlinear systems
with relative degree {1, 1, . . . , 1} [2]. For the input-output passive
system (1)-(2), an analogue of the KYP lemma does not exist due to
the loss of an affine structure. However, a necessary condition can still
be obtained for the nonaffine system (1)-(2) to be passive.

Lemma 2.1: [10] Let Ω0
Δ= {x ∈ IRn : Lf0 V0 = 0}. If the param-

eterized input-output system (1)-(2) is passive with a C1 storage func-
tion V0 . Then, for each θ ∈ IRr

Lf0 V0 ≤ 0, ∀x ∈ IRn (5)

∂V0

∂x

∂f

∂u
(x, 0, θ) = hT (x, 0, θ), ∀x ∈ Ω0 . (6)

With the help of Lemma 2.1:, it is possible to characterize some
intrinsic properties of the parameterized passive system (1)-(2) such
as zero-state detectability, observability, and stabilizability, which are
crucial in the design of globally stabilizing state feedback controllers
for the nonaffine system (1).

An input-output nonlinear system of the form (1)-(2) is said to be
zero-state detectable if for each θ ∈ IRr and x0 = x ∈ IRn

y = h (φθ (t, x, u), u, θ)|u=0 = 0 ∀t ≥ 0 ⇒ lim
t→∞

φθ (t, x, 0) = 0.

The system (1)-(2) is zero-state observable if

y = h (φθ (t, x; u), u)|u=0 = 0 ∀t ≥ 0 ⇒ x = 0.

Using the notion of zero-state detectability, one can prove the fol-
lowing stabilization result.

Lemma 2.2 ([10]): A passive system (1)-(2) with a C� (� ≥ 1) stor-
age function V0 , which is positive definite and proper, is globally
asymptotically stabilizable by u = −s(y) if it is zero-state detectable,
where s : IRm → IRm is a smooth functions satisfying yT s(y) >
0 ∀y 	= 0 and s(0) = 0.

For a passive system with the nonaffine structure (1)-(2), zero-state
detectability and observability can be characterized by the Lie deriva-
tives and Lie brackets of the affine vector fields associated with the sys-
tem (1) [10], [11]. In fact, for each θ ∈ IRr , let f0 (x, θ) = f (x, 0, θ)
and g0

i (x, θ) = gi (x, 0, θ) = ∂ f
∂ u i

(x, 0, θ) denote the smooth vec-
tor fields in IRn , 1 ≤ i ≤ m. Define the Jacobian of f w.r.t.
u at u = 0 as g0 (x, θ) := ∂ f

∂ u
(x, 0, θ) = [g0

1 (x, θ), . . . , g0
m (x, θ)] ∈

IRn×m . Using the vector fields f0 , g
0
1 , . . . , g0

m , we introduce the
distribution

Dθ = span {adk
f0

g0
i : 0 ≤ k ≤ n − 1, 1 ≤ i ≤ m}

and two sets Ωθ and Sθ defined by

Ωθ = {x ∈ IRn : Lk
f0

V0 (x, θ) = 0, k = 1, . . . , �} (7)

Sθ = {x ∈ IRn : Lk
f0

Lτ V0 (x, θ) = 0, ∀τ ∈ Dθ , 0 ≤ k ≤ � − 1}.
(8)

With the aid of the notations above and in view of Lemmas 2.1 and 2.2, a
computable criterion can be obtained for testing zero-state detectability
and observability of the parameterized passive system (1)-(2), by virtue
of the affine vector fields f0 (x, θ), g0

i (x, θ) and their Lie derivatives
and Lie brackets.

Lemma 2.3 ([10]): Consider the passive system (1)-(2) with a C1

storage function V0 , which is positive definite and proper. Then,
1) the system is zero-state detectable if Ωθ ∩ Sθ = {0}. Moreover, if

the system (1)-(2) is lossless, then
2) the system is zero-state observable if and only if Sθ = {0}.

Putting Lemmas 2.3 and 2.2 together, we have the following propo-
sition to be used in Section III.

Proposition 2.4 ([11]): Assume that the input/output nonaffine sys-
tem (1)-(2) is passive with a C1 storage function V0 , which is
positive definite and proper. If Ωθ ∩ Sθ = {0}, the system is glob-
ally asymptotically stabilized by the static output feedback controller
u = −s(y), for instance, by u = −y or a small bounded feedback law
u = −β y

1+ ||y ||2 , ∀β ∈ (0, 1).
Finally, we recall the following parameter separation lemma from

[15], [16] to deal with the issue of nonlinear parameterization.
Lemma 2.5: For a real-valued continuous function f (x, θ), there

exist smooth scalar functions α(x) ≥ 0, b(θ) ≥ 0, c(x) ≥ 1, and
d(θ) ≥ 1, such that

|f (x, θ)| ≤ a(x) + b(θ) and |f (x, θ)| ≤ c(x)d(θ). (9)

III. ADAPTIVE STABILIZATION BY STATE FEEDBACK

We now study the adaptive control of the nonaffine system (1) with
parametric uncertainty. In this paper, we make the following assumption
that characterizes a class of nonlinear systems (1).
A1) There is a C� (� ≥ 1) function V0 : IRn → IR, which is positive

definite and proper, such that the unforced dynamics with an

unknown constant vector θ, i.e., ẋ = f (x, 0, θ) Δ= f0 (x, θ) is
Lyapunov stable, i.e., Lf0 V0 (x) ≤ 0, ∀(x, θ) ∈ IRn × IRr .
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As illustrated by Examples 3.8 and 3.9 or the dc-microgrid with PV
and battery, many physical systems of interest satisfy the assumption
(A1). In what follows, we apply the theory of passive systems reviewed
in the previous section to develop an adaptive control strategy for the
nonlinearly parameterized system (1) with stable free dynamics. In
particular, we show how an adaptive controller that achieves global
asymptotic state regulation with stability can be designed, by means of
the concepts of passivity and feedback equivalence, as well as the idea
of bounded feedback shown in Proposition 2.4.

We begin by observing that a smooth nonlinear system (1) can be
decomposed as

ẋ = f0 (x, θ) + g(x, u, θ)u = f0 (x, θ) + Σm
i=1gi (x, u, θ)ui (10)

or, what is the same,

ẋ = f0 (x, θ) + g0 (x, θ)u + Σm
i=1ui (Ri (x, u, θ)u) (11)

where g0 (x, θ) is defined in Section II and the n × m smooth ma-

trix g(x, u, θ) =
∫ 1

0
∂ f
∂ η

(x, η, θ)
∣∣∣
η =λu

dλ can be obtained by the mean

value theorem with an integration remainder, i.e.,

f (x, u, θ) − f (x, 0, θ) =

(∫ 1

0

∂f

∂η
(x, η, θ)

∣∣∣∣
η =λu

dλ

)
u

:= g(x, u, θ)u = [g1 (·), . . . , gn (·)]u.
(12)

By the same reasoning, Ri (x, u, θ) is an n × m matrix that can be
computed from the relationship

gi (x, u, θ) − gi (x, 0, θ) =

(∫ 1

0

∂gi

∂η
(x, η, θ)

∣∣∣∣
η =λu

dλ

)
u

= Ri (x, u, θ)u (13)

for i = 1, . . . , m. Clearly, (11) follows immediately from (10) and
(13).

To address adaptive control of the nonaffine system (11) with para-
metric uncertainty by a Lg V -type feedback, we make the following
assumption.

(A2) g0 (x, θ) = ∂ f
∂ u

(x, 0, θ) is independent of the unknown
parameter θ.

Remark 3.1: The assumption (A2) basically requires that the affine
part of the nonlinearly parameterized system (1) or (11), i.e., the term
of g0 (x, θ)u, be independent of the parameter θ. Clearly, a significant
class of nonaffine systems with unknown parameters satisfies (A2), as
shown by Examples 3.8 and 3.9 or the uncertain nonaffine systems (24)
and (27).

Under the assumptions (A1) and (A2), we prove that the
controllability-like condition - Ωθ ∩ Sθ = {0} is sufficient for the ex-
istence of a Lg V -type adaptive controller that adaptively stabilizes the
nonaffine system (1) with parametric uncertainty. The proof is carried
out by designing an adaptive law based on the idea of bounded control
combined with feedback equivalence to a passive system.

Theorem 3.2: Assume that the nonaffine system (1) or (11) with
parametric uncertainty satisfies the assumptions (A1) and (A2). If Ωθ ∩

Sθ = {0}, the following Lg V -like adaptive control law

˙̂Θ = β
α(x, Θ̂)‖Lg 0 V0‖2

(1 + Θ̂2 )(1 + ‖Lg 0 V0‖2 )
(14)

u(x, Θ̂) = − α(x, Θ̂)
(Lg 0 V0 (x))T

1 + ‖Lg 0 V0 (x)‖2 (15)

α(x, Θ̂) =
β

m(1 + Θ̂2 )
· 1

1 + ρ2 (x)
∥∥∂V0

∂x

∥∥2
, 0 < β < 1 (16)

with ρ(x) being satisfying (17), globally asymptotically steers the state
x to zero while maintaining global stability of the closed-loop system
(1) and (14)–(16).

Proof: By Lemma 2.5, it is easy to see that there exist a smooth
function ci (x) ≥ 1 and a constant di (θ) ≥ 1, such that ∀ ||u|| ≤ 1

‖Ri (x, u, θ)‖ ≤ γi (x, θ) ≤ ci (x)di (θ) ≤ Θρ(x), i = 1, . . . , m
(17)

where ρ(x) ≥ Σm
i=1ci (x) (or, ρ(x) ≥ max1≤i≤m ci (x)) is a smooth

function and Θ = max1≤i≤m di (θ) ≥ 1.
By the assumption (A1), there exists a C1 Lyapunov function V0 ,

which is positive definite and proper, such that the unforced dynamic
system ẋ = f (x, 0, θ) = f0 (x, θ) is globally stable. Let Θ̂ be the
estimate of the unknown parameter Θ. Define the estimation error
Θ̃ = Θ − Θ̂.

Now, consider the Lyapunov function

V (x, Θ̃) = V0 (x) +
1
2
Θ̃2 (18)

for the closed-loop system (11) and (14)–(16). Then,

V̇ (x, Θ̃) = Lf0 V0 (x) + Lg 0 V0 (x)u + uT LR (x,u ,θ )V0 (x)u − Θ̃ ˙̂Θ
(19)

where the m × m matrix

LR (x,u ,θ )V0 (x) =

⎡
⎢⎢⎢⎣

LR 1 (x,u ,θ )V0 (x)

...

LR m (x,u ,θ )V0 (x)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

∂V0

∂x
R1 (x, u, θ)

...

∂V0

∂x
Rm (x, u, θ)

⎤
⎥⎥⎥⎥⎥⎦

.

(20)
From (17) and (20), it follows that

‖LR (x,u ,θ )V0 (x)‖ ≤
(

m‖∂V0

∂x
‖2
) 1

2 (
Σm

i=1‖Ri (x, u, θ)‖2) 1
2

≤ √
m‖∂V0

∂x
‖ (mΘ2ρ2 (x)

) 1
2 ≤ mρ(x)‖∂V0

∂x
‖Θ.

This, together with (A1), (19), and (15), yields

V̇ ≤ Lg 0 V0 (x)u(x, Θ̂) + ‖u(x, Θ̂)‖2‖LR (x,u ,θ )V0 (x)‖ − Θ̃ ˙̂Θ

≤ α(x, Θ̂)
‖Lg 0 V0 (x)‖2

1 + ‖Lg 0 V0 (x)‖2

⎡
⎢⎣α(·)

mρ(x)||∂V0

∂x
||Θ

1 + ‖Lg 0 V0 (x)‖2 − 1

⎤
⎥⎦−Θ̃ ˙̂Θ.
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In view of (16) and Θ ≥ 1, we have

V̇ ≤ −Θ̃ ˙̂Θ + α(x, Θ̂)
‖Lg 0 V0 (x)‖2

1 + ‖Lg 0 V0 (x)‖2

×

⎡
⎢⎢⎣

β
∥∥∂V0

∂x

∥∥ρ(x)

(1 + Θ̂2 )
[
1 +

∥∥∂V0

∂x

∥∥2
ρ2 (x)

] Θ
(1 + ‖Lg 0 V0 (x)‖2 )

− 1

⎤
⎥⎥⎦

≤ −Θ̃ ˙̂Θ − α(·)‖Lg 0 V0 (x)‖2

1 + ‖Lg 0 V0 (x)‖2

+
βα(·)
1 + Θ̂2

[
(Θ̂ + Θ̃)‖Lg 0 V0 (x)‖2

1 + ‖Lg 0 V0 (x)‖2

]

≤
[
β

Θ̂

1 + Θ̂2
− 1

]
α(·)‖Lg 0 V0‖2

1 + ‖Lg 0 V0‖2

+ Θ̃

[
βα(·)‖Lg 0 V0‖2

(1 + Θ̂2 )(1 + ‖Lg 0 V0‖2 )
− ˙̂Θ

]

≤
(

β
Θ̂

1 + Θ̂2
− 1

)
α(x, Θ̂)‖Lg 0 V0 (x)‖2

1 + ‖Lg 0 V0 (x)‖2 ≤ 0. (21)

The last inequality is deduced from (14) and the fact that 1 > β Θ̂
1+ Θ̂ 2

.

By the Lyapunov theorem, (21) implies that the closed-loop system
(11) and (14)–(16) is globally stable. To prove asymptotic convergence
of the state x, we let V̇ (x, Θ̃) = 0. Then, it is deduced from (19) and
(21) that

Lf0 V0 (x) = 0 and Lg 0 V0 (x) = 0. (22)

Using an inductive argument, we arrive at

Lk+1
f0

V0 (x) = 0, Lk
f0

Lτ V0 (x) = 0, ∀τ ∈ Dθ , 0 ≤ k ≤ � − 1.
(23)

By the La Salle’s invariance principle, all the bounded trajectories of
the closed-loop system (11)–(14)–(15) eventually approach the largest
invariant set in {(x, Θ̃) : V̇ (x, Θ̃) = 0}, which is contained by (Sθ ∩
Ωθ ) × IR.

Because Ωθ ∩ Sθ = {0}, {(x, Θ̃) : V̇ (x, Θ̃) = 0} = {0} × IR.
This means that limt→+∞ x(t) = 0. That is, global asymptotic state
regulation is achieved. �

From Theorem 3.2, we can deduce some interesting corollaries on
adaptive stabilization of nonaffine systems with parametric uncertainty.
The first result is a direct consequence of Theorem 3.2.

Corollary 3.3: Consider the single-input nonlinearly parameterized
system with a polynomial input

ẋ = f0 (x, θ) + g0 (x)u + g2 (x, θ)u2 + · · · + gp (x, θ)up (24)

where gi : IRn × IR → IRn , 2 ≤ i ≤ p, are smooth vector fields. Sup-
pose (A1) holds and Ωθ ∩ Sθ = {0}. Then, the nonlinearly parameter-
ized system (24) is globally adaptively stabilizable by the controller

˙̂Θ =
β

(1 + Θ̂2 )(1 + ρ2 (x)‖∂V0

∂x
‖2 )

(Lg 0 V0 (x))2

1 + (Lg 0 V0 (x))2 , 0 < β < 1

u(x, Θ̂) = − β

(1 + Θ̂2 )(1 + ρ2 (x)‖∂V0

∂x
‖2 )

Lg 0 V0 (x)
1 + (Lg 0 V0 (x))2 (25)

where ρ(x) is a bounding function satisfying the inequality (26).
Proof: In the single-input case, it is clear from (11) and (24) that

R1 (x, u, θ) = g2 (x, θ) + g3 (x, θ)u + · · · + gp (x, θ)up−2 .

By construction, |u| ≤ 1. Thus, it follows from Lemma 2.5 that there
exist smooth functions c̄i (x) ≥ 1 and d̄i (θ) ≥ 1, such that

‖R1 (x, u, θ)‖ ≤ ‖g2 (x, θ)‖ + ‖g3 (x, θ)‖‖u‖
+ · · · + ‖gp (x, θ)‖‖u‖p−2

≤ Σp
i=2 c̄i (x)d̄i (θ) ≤ Θρ(x), (26)

where ρ(x) ≥ Σp
i=2 c̄i (x) is a smooth function and

Θ = max2≤i≤p di (θ) ≥ 1.

Using the bounding function ρ(x) thus obtained,
Corollary 3.3 follows directly from Theorem 3.2. �

In the multi-input case, an analogous result can also be deduced
from Theorem 3.2, which will find an interesting application to the
dc-microgrid with PV and battery, as illustrated in Section IV.

Corollary 3.4: Consider the multi-input nonaffine system with non-
linear parameterization

ẋ = f0 (x, θ) + Σm
i=1g

0
i (x)ui + Σm

i1 =1Σ
m
i2 =1gi1 i2 (x, θ)ui1 ui2

+ · · · + Σm
i1 =1 · · ·Σm

ip =1gi1 ···ip (x, θ)ui1 · · ·uip . (27)

Under (A1) and Ωθ ∩ Sθ = {0}, the adaptive controller (14)–(16) not
only renders the nonlinearly parameterized system (27) globally stable
but also steers the state x to the origin asymptotically.

Proof: By construction, ‖u‖ ≤ 1. This, together with Lemma 2.5,
implies the existence of smooth functions ci1 i2 (x), . . . , ci1 . . . , ip (x),
and di1 i2 (θ), . . . , di1 . . . , ip (θ), ij = 1, . . . , m, j = 1, . . . , p, all of
them bounded below by one, such that

‖Σm
i1 =1Σ

m
i2 =1gi1 i2 (x, θ)ui1 ui2 + · · · + Σm

i1 =1 · · ·Σm
ip =1gi1 ···ip (x, θ)

· ui1 · · ·uip ‖ ≤ Σm
i1 =1Σ

m
i2 =1 ci1 i2 (x)di1 i2 (θ) + · · ·

+ Σm
i1 =1 · · ·Σm

ip =1 ci1 ···ip (x)di1 ···ip (θ) ≤ Θρ(x) (28)

where ρ(x) ≥
∑m

i1 =1

∑m

i2 =1
ci1 i2 (x) + · · · +

∑m

i1 =1
· · ·

;
∑m

ip =1
ci1 ···ip (x) ≥ 1 is a smooth function and the unknown

constant

Θ ≥ max{di1 ···ip (θ) : 1 ≤ ij ≤ m, 1 ≤ j ≤ p} ≥ 1.

Using the bounding function ρ(x) in (28), it is straightforward to
deduce Corollary 3.4 from Theorem 3.2. �

Finally, based on Theorem 3.2 and the backstepping design, we can
establish the following adaptive control result for a class of weakly
minimum-phase systems with nonlinear parameterization

ẋ = f (x, ξ1 , θ)
ξ̇1 = ξ2 + f1 (x, ξ1 , θ)

...
ξ̇q−1 = ξr + fq−1 (x, ξ1 , . . . , ξq−1 , θ)

ξ̇q = v + fq (x, ξ1 , . . . , ξq , θ)

(29)

where v ∈ IR is the control, (x, ξ) ∈ IRn × IRq is the system state.
Corollary 3.5: Assume that the zero-dynamic system ẋ =

f (x, u, θ) with u = ξ1 satisfies (A1), (A2) and Ωθ ∩ Sθ = {0}. Then,
the problem of global adaptive stabilization of the nonlinearly param-
eterized system (29) is solvable.

Proof: By Theorem 3.2, the adaptive controller (14)–(16) that is of
the form

˙̂Θ = η(Θ̂, x), η(Θ̂, 0) = 0

ξ∗1 = γ(Θ̂, x), γ(Θ̂, 0) = 0 (30)
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globally adaptively stabilizes the zero-dynamic system

ẋ = f (x, ξ1 , θ) = f0 (x, θ) + g(x, ξ1 , θ)ξ1 (31)

when the state ξ1 is viewed as a control input. In particular, there is a
Lyapunov function V (x, θ̃) defined by (18), such that

V̇ (x, Θ̃) ≤ Lf0 V0 (x) −
[
1 − β

Θ̂

1 + Θ̂2

]
α(x, Θ̂)‖Lg 0 V0 (x)‖2

1 + ‖Lg 0 V0 (x)‖2 ≤ 0

(32)

for the closed-loop system (31)–(30) with the virtual controller ξ∗1 =
γ(Θ̂, x) and γ(Θ̂, 0) = 0.

By the backstepping design, combined with the adaptive domination
method [15], [16] for dealing with the nonlinear parameterization, one
can prove that the augmented system

ẋ = f (x, ξ1 , θ)

ξ̇1 = ξ2 + f1 (x, ξ1 , θ) (33)

which is obtained by adding an integrator to the zero-dynamic system
(31) with the perturbation f1 (x, ξ1 , θ), is still globally stabilizable by
the same form of the adaptive controller (30), in which the unknown pa-
rameter Θ and its estimation Θ̂ needed to be modified accordingly, and
η(Θ̂, x) and γ(Θ̂, x) are replaced by the new adaptive law η(Θ̂, x, ξ1 )
and the virtual controller ξ∗2 = γ(Θ̂, x, ξ1 ). In addition, the control
Lyapunov function in this step is given by

V1 (x, ξ1 , θ̃) = V (x, Θ̃) +
1
2
(ξ1 − ξ∗1 )

2

when ξ2 is treated as an input for the augmented system (33).
Inductively, one can carry out, similar to the one in [16], an adaptive

domination design step-by-step, by modifying the parameter Θ and its
estimation Θ̂, as well as the adaptive update law η(·) and the virtual
controller γ(·) at each step. At the qth step, a true adaptive controller
of the form (with a bit abuse of the notations η and γ)

˙̂Θ = η(Θ̂, x, ξ1 , . . . , ξq ), η(Θ̂, 0, 0, . . . , 0) = 0

v = γ(Θ̂, x, ξ1 , . . . , ξq ), γ(Θ̂, 0, 0, . . . , 0) = 0 (34)

is found, rendering the nonlinearly parameterized system (29) globally
stable and limt→+∞(x(t), ξ(t)) = 0. �

Remark 3.6: Analogue to the analysis in [15], [16], by Lemma 2.5
and reparameterization, we can prove that Theorem 3.2 and its corol-
laries remain true even if the parameter θ is a time-varying signal rather
than a constant vector, as long as θ : IR → IRs is a periodic function
of t, whose norm bounded by an unknown constant θ̄, In other words,
Theorem 3.2 and Corollaries 3.3-3.5 are also applicable to nonlinearly
parameterized systems such as (1), (27), and (29) (weakly minimum-
phase), in which the parameter θ = θ(t) represents unknown periodic
signals and satisfies ||θ(t)|| ≤ θ̄ ∀t ∈ [0, +∞).

Remark 3.7: Notably, Corollary 3.5 has refined the previous results
on minimum-phase systems with nonlinear parameterization. For ex-
ample, the class of nonlinear systems in [16] requires that the system
(29) be globally asymptotically and locally exponentially minimum
phase, i.e., the zero-dynamics of (29) ẋ = f (x, 0, θ) is globally asymp-
totically and locally exponentially stable at x = 0, for each θ ∈ IRr .
This assumption has been relaxed by a weaker condition, namely, the
weakly minimum-phase property. That is, the zero-dynamics of (29)
is only globally stable. The trade-off is, however, a controllability-like
condition needs to be imposed on the zero-dynamic system (31).

We end this section with two examples that illustrate the applications
and interesting features of the proposed adaptive controllers.

Example 3.8: Consider the single-input nonaffine system

ẋ1 = −ωx2

ẋ2 = ωx3
1 + x2 sin u + u3 ln(1 + (θx1 )2 ) (35)

where ω 	= 0 and θ are unknown constants.
Clearly, system (35) is of the form (1) or (11) with

f0 (x, ω) =
[−ωx2

ωx3
1

]
, g0 (x) =

[
0
x2

]

R(x, u, θ) =
[

0
x2

sin u−u
u 2 + u ln(1 + (θx1 )2 )

]
.

Note that sin u−u
u 2 is a well-defined analytic function and bounded when

u is bounded. Then, whenever |u| ≤ 1

‖R(x, u, θ)‖2 ≤ |x2 | + |θ||x1 | ≤ (1 + |θ|)(1 + x2
1 + x2

2 ) := Θρ(x).

The constant Θ = 1 + |θ| is a new parameter to be estimated, and the
bounding function ρ(x) = 1 + x2

1 + x2
2 will be used to design adaptive

controllers for the uncertain system (35).
Now, consider the Lyapunov function V0 (x) = 1

4 x4
1 + 1

2 x2
2 . It is

easy to see that Lf0 (x,ω )V0 (x) = 0, ∀ω ∈ IR. As a such, Ωθ = IR2

and the assumption (A1) holds. Note that (A2) is also true as g0 (x) =
[0 x2 ]T is independent of the unknown parameters (ω, θ). According
to Theorem 3.2, the Lg V -type adaptive controller

˙̂Θ = α(x, Θ̂)
x4

2

(1 + Θ̂2 )(1 + x4
2 )

, u(x, Θ̂) = −α(x, Θ̂)
x2

2

1 + x4
2

(36)

with Θ̂ being the estimate of Θ = 1 + |θ| and α(x, Θ̂) =
1

2+2Θ̂ 2
[ 1
1+ (x 6

1 +x 2
2 )(1+x 2

1 +x 2
2 )2 ], drives the state (x1 , x2 ) of (35) to

(0, 0) asymptotically and maintains global stability of the closed-
loop system (35)-(36), if the system (35) satisfies the condition
Ωθ ∩ Sθ = {0}.

It turns out that an inductive calculation based on (23) results in
x1 = x2 = 0, and hence Sθ = {0} or Ωθ ∩ Sθ = IR2 ∩ {0} = {0}.
Intuitively, the adaptive controller (36) renders the system (35) globally
stable as the closed-loop system (35)-(36) satisfies the inequality (21).
From (21) and the La Salle’s invariance principle, it is deduced that
Lg 0 V0 (x) = x2

2 = 0 → x2 = 0. This, in turn, implies that ẋ2 (t) = 0
and u = u(x, Θ̂) = 0. Hence, x1 = 0. In other words, asymptotic state
regulation with global stability is achieved.

Example 3.9: Consider the two-input nonaffine system

ẋ1 = θ1x
3
2 + x1u1 +

θ3x3

(1 + θ0x1x2 )2 + x2
1x

2
2
u1u2

ẋ2 = θ2x3 − θ1x
3
1 + x2u2

ẋ3 = −θ2x
3
2 (37)

with θi , 0 ≤ i ≤ 3 being unknown constants and θ2 	= 0.
The uncertain system (37) is of the form (27) with m = 2 and

f0 (x, θ) =

⎡
⎢⎣

θ1x
3
2

θ2x3 − θ1x
3
1

−θ2x
3
2

⎤
⎥⎦ , g0

1 (x) =

⎡
⎢⎣

x1

0
0

⎤
⎥⎦ , g0

2 (x) =

⎡
⎢⎣

0
x2

0

⎤
⎥⎦

g11 (·) = g22 (·) =

⎡
⎢⎣

0
0
0

⎤
⎥⎦ , g12 (·) + g21 (·) =

⎡
⎢⎣

θ3 x 3
(1+ θ0 x 1 x 2 )2 +x 2

1 x 2
2

0
0

⎤
⎥⎦ .

Choose the Lyapunov function V0 (x1 , x2 , x3 ) = 1
4 (x4

1 + x4
2 ) + 1

2 x2
3 .

It is easy to see that Lf0 V0 (x) = 0 for all the unknown parameters
(θ1 , θ2 ) ∈ IR2 . This indicates that (A1) holds and Ωθ = IR3 .
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Fig. 1. DC-microgrid system with PV and battery.

In view of Corollary 3.4, the nonaffine system (37) with nonlinear
parameterization is globally adaptively stabilized by an adaptive control
law of the form (14)–(16), provided that Ωθ ∩ Sθ = IR3 ∩ Sθ = Sθ =
{0}. In what follows, we show that this is indeed the case.

By Corollary 3.4, once Sθ = {0}, global adaptive regulation of the
nonaffine system (37) with parametric uncertainty is possible. In fact,
an adaptive controller that achieves asymptotic state regulation with
global stability can be designed as follows.

First of all, observe that the function (1 + θ0x1x2 )2 + x2
1x

2
2 reaches

its minimal value at the hyperplane x1x2 = −θ0/(1 + θ2
0 ). Hence,

||g12 (x, θ) + g21 (x, θ)|| ≤ | θ3x3

(1 + θ0x1x2 )2 + x2
1x

2
2
| ≤ Θ|x3 |

where Θ = |θ3 |(1 + θ2
0 ) is an unknown constant and ρ(x) = |x3 |.

Let Θ̂ be the estimate of the parameter Θ and define the estima-
tion error Θ̃ = Θ − Θ̂. Following the adaptive control design in the
previous section, we obtain the adaptive controller

[
u1

u2

]
=

−α(x, Θ̂)
1 + x8

1 + x8
2

[
x4

1
x4

2

]

˙̂Θ =
α(x, Θ̂)(x8

1 + x8
2 )

(1 + Θ̂2 )(1 + x8
1 + x8

2 )
(38)

with α(x, Θ̂) = 1
4+4Θ̂ 2

· 1
1+ (x 6

1 +x 6
2 +x 2

3 )x 2
3
, which globally stabilizes

the nonaffine system (37). In particular, it can be shown that the closed-
loop system (37)–(38) satisfies

V̇ (x, Θ̃) ≤ −
(

1 − Θ̂

2 + 2Θ̂2

)
α(x, Θ̂)‖Lg 0 V0 (x)‖2

1 + ‖Lg 0 V0 (x)‖2 ≤ 0 (39)

for V (x, Θ̃) = 1
4 (x4

1 + x4
2 ) + 1

2 x2
3 + 1

2 Θ̃2 .
Finally, to prove asymptotic state regulation, or, equivalently, to see

why Sθ = {0}, we note that

Lg 1
0
V0 (x) = x4

1 = 0 and Lg 2
0
V0 (x) = x4

2 = 0

which imply that u = [u1 (x, Θ̂) u2 (x, Θ̂)]T = [0 0]T and ẋ1 = ẋ2 =
0. This, in turn, yields x3 = 0 because of θ2 	= 0.

The discussion above shows that Sθ = {0}, and hence
limt→+∞(x1 (t), x2 (t), x3 (t)) = 0, ∀(x(0), Θ̂(0)) ∈ IR4 .

IV. APPLICATION TO A DC-MICROGRID WITH PV AND BATTERY

We now apply the Lg V -type adaptive control scheme in the last
section to a dc-microgrid with PV and Battery in island mode [20],
which is modeled by a nonaffine system with three inputs. The dc-
microgrid consists of a PV array, a battery storage, a dc bus, three
dc/dc converters and two loads that work on different voltage levels, as
shown in Fig. 1.

A dc/dc boost converter is used between PV and dc bus to maximize
the power output from the PV array. The battery connects to the dc
bus through a bidirectional dc/dc buck-boost converter to maintain the
voltage on the dc bus. A bus load directly connects to the dc bus while
another load connects to the dc bus via a dc/dc buck converter, which
can be viewed as a constant power load.

In what follows, we consider the case when the battery resistor r
is small comparing to the loads modeled by constant resistors R1 and
R2 . Then, the battery resistor r can be neglected and a corresponding
model of the dc-microgrid with PV and battery is given by the state
space equation (1), i.e., ˙̄x = f (x̄, u) with [20]

f (x, u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
L 1

[x2 − x4 + (x4 + x�
4 )u1 ]

1
C 1

[−x1 − x 2
R p

− I0e
ax�

2 (eax 2 − 1)]
1

L 2
[−rx3 − (x4 + x�

4 )u2 ]

1
C 2

[x1 − x 4
R 1

− x5 − (x1 + x�
1 )u1

+(x3 + x�
3 )u2 + (x5 + x�

5 )u3 ]
1

L 3
[x4 − RL x5 − x6 +

(
2(x5 + x�

5 )

−(x4 + x�
4 )
)
u3 − RL (x5 + x�

5 )u2
3 ]

1
C 3

[x5 − x 6
R 2

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(40)

where x = [x1 , x2 , x3 , x4 , x5 , x6 ]T = [i1 , v1 , i2 , v2 , i3 , v3 ]T as illus-
trated in Fig. 1, x∗ is the equilibrium and x̄ = x − x∗ is a translation,
so that the dc-microgrid system in the coordinate x̄ has an equilib-
rium x̄ = 0 ∈ IR6 . I0 > 0 is the reverse saturation of the diode and
a = q

n kT
> 0 are the PV parameter described in [20], both of them are

assumed to be constants.
There are three control inputs in the dc-microgrid model. The control

signals are duty cycles of the converters in Fig. 1 and have a physical
constraint: 0 ≤ ui ≤ 1, i = 1, 2, 3. As illustrated in Fig. 1, u1 controls
the power output of the PV, u2 controls the dc bus voltage and the
charge/discharge of the battery, and u3 controls the load voltage.

The control objectives are to maximize the power output of PV panel
and maintain the dc bus voltage and load voltage, which can be proved
to be equivalent to a set point regulation of the voltages v1 , v2 , and v3

in Fig. 1. Detailed discussions and derivations can be found in [20] on
how the MPPT problem can be addressed by a passivity-based control
strategy.

For the purpose of illustration, we consider the stabilization of the
system (40) that can be expressed as ( with u = [u1 u2 u3 ]T )

ẋ = f0 (x) + g0 (x)u + g33 (x)u2
3 (41)

where g33 (x) = [0 0 0 0 − R L
L 3

(x5 + x�
5 ) 0]T , gi1 i2 (x̄) = 0 ∈ IR6 ,

for all ik = 1, 2, 3, k = 1, 2, except for i1 i2 = 33, and, eq. (42) shown
at the bottom of next page. Then, it is easy to prove that the quadratic
Lyapunov function

V0 (x) =
1
2

(
L1x

2
1 + C1x

2
2 + L2x

2
3 + C2x

2
4 + L3x

2
5 + C3x

2
6

)

which is positive definite and proper, satisfies (by neglecting the register
r, i.e., r = 0)

Lf0 V0 (x) = − x2
2

Rp

− I0e
ax�

2 (eax 2 − 1)x2 − x2
4

R1
− RL x2

5 − x2
6

R2

≤ 0, ∀x̄ ∈ IR6 (43)

because a, I0e
ax�

2 are positive constants and (eax 2 − 1)x2 ≥ 0, ∀x̄2 ∈
IR. Consequently, the unforced dynamics of the dc-microgrid with PV
and battery is globally stable.
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On the other hand, note that

(Lg 0 V0 )T =

⎡
⎢⎣

x�
4 x1 − x�

1 x4

−x�
4 x3 + x�

3 x4

x�
5 x4 − x�

4 x5 + 2(x5 + x�
5 )x5

⎤
⎥⎦ . (44)

Then, a tedious but direct computation shows that Lg 0 V0 (x) = 0 im-
plies that x̄ = 0, indicating that the dc-microgrid system (41) which is
nonaffine is globally asymptotically stabilized by the bounded feedback

law u = −α(x̄) (L g 0 V (x ))T

1+ ||L g 0 V (x ) ||2 if the resistors, inductors, capacitors of

the dc-microgrid system, the PV parameters a and I0 , and the loads R1

and R2 are known constants.
When the dc-microgrid system involves parametric uncertainty, for

instance, the register RL is uncertain or even time varying but bounded
by an unknown constant Θ, the dc-microgrid system (41) with a non-
affine structure can still be, according to Corollary 3.4, globally con-
trolled by the Lg V -like adaptive regulator (14)–(16). For the purpose
of illustration, hereafter we use the following set of parameters in
[20] to conduct adaptive control design and simulations: L1 = L2 =
L3 = 5 mH, C1 = 200 μF, C2 = 2000 μF, C3 = 300 μF, R1 =
144 Ω, R2 = 9 Ω,r = 1 Ω, E = 20 V, and Iph = 9 A, q = 1.6 ×
10−19 , k = 1.38 × 10−23 , a = q/(70 k(273 + 25)) = 0.767, I0 =
10−9 , Rp = 106 Ω. The equilibrium point is

x∗ = [4.286 40.074 20 40.074 4.007 36.067]T . (45)

Using the parameters above, we design the following Lg V -like adap-
tive controller (with β = 0.9)

˙̂Θ = 0.9
α(x̄, Θ̂)‖Lg 0 V0‖2

(1 + Θ̂2 )(1 + ‖Lg 0 V0‖2 )

u =

⎡
⎢⎣

u1

u2

u3

⎤
⎥⎦ =

−0.9 α(x̄, Θ̂)
1 + ‖Lg 0 V0‖2

⎡
⎢⎣

40.074x1 − 4.286x4

−40.074x3 + 20x4

4.007x4 − 32.06x5 + 2x2
5

⎤
⎥⎦ (46)

Fig. 2. Transient response of the state (x̄1 , x̄2 ).

Fig. 3. Transient response of the state (x̄4 , x̄5 , x̄6 ).

where

‖Lg 0 V0‖2 = (40.074x1 − 4.286x4 )2 + (20x4 − 40.074x3 )2

+ (4.007x4 − 32.06x5 + 2x2
5 )

2

α(x̄, Θ̂) =
0.3

1 + Θ̂2
· 1

1 + (0.2x5 + 0.8014)2
∥∥∂V0

∂x̄

∥∥2

∂V0

∂x̄
= [5x1 200x2 5x3 2000x4 5x5 300x6 ]. (47)

The simulation results shown in Figs. 2–5 are conducted for the case
when RL = 1 Ω. It is demonstrated that the Lg V -type adaptive con-
troller (46), (47) regulates all the states x̄ = [x̄1 x̄2 · · · x̄6 ]T of the
dc-microgrid (41) with PV and battery to the origin. Equivalently, the

f0 (x) = f (x, 0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
L 1

(x2 − x4 )

1
C 1

(−x1 − 1
R p

x2 − I0e
ax�

2 (eax 2 − 1))

− r
L 2

x3

1
C 2

(x1 − 1
R 1

x4 − x5 )
1

L 3
(x4 − RL x5 − x6 )

1
C 3

(x5 − x 6
R 2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

g0 (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
L 1

(x4 + x�
4 ) 0 0

0 0 0

0 − 1
L 2

(x4 + x�
4 ) 0

−1
C 2

(x1 + x�
1 ) 1

C 2
(x3 + x�

3 ) 1
C 2

(x5 + x�
5 )

0 0 1
L 3

[2(x5 + x�
5 ) − x4 − x�

4 ]

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (42)
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Fig. 4. Transient response of the state x̄3 .

Fig. 5. Adaptive gain Θ̂.

system state x = [i1 v1 i2 v2 i3 v3 ]T illustrated in Fig. 1 converges to
the equilibrium point x∗ defined by (45).

For the initial conditions [x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 ]T (0) = (1 − 1 0.2 1 −
1 0.2)T and Θ̂(0) = 3, the simulations show that due to the nature of
the low-gain feedback, the transient performance of the state x̄3 is
poor compared with the other system states. As shown in Fig. 4, x̄3 (t)
converges to zero very slowly. For the same reasoning, in particular,
from the relationships (46) and (47), it is clear that the adaptive law
(46) is updated in a “low-gain” fashion. Consequently, the adaptive gain
Θ̂(t) has a little transient and remains almost a constant, as indicated
in Fig. 5.

V. CONCLUDING REMARKS

The problem of global adaptive stabilization was investigated in this
paper for nonlinearly parameterized systems with a nonaffine structure.
Under a controllability-like rank condition, together with a paramet-
ric independent requirement on the affine vector field, it was proved
that a general nonaffine system with parametric uncertainty is glob-
ally adaptively stabilizable by state feedback if the unforced dynamic
system is stable. Moreover, a globally stabilizing Lg V -type adaptive
controller has been explicitly designed. Three examples, including the
dc-microgrid with PV and battery, were presented to demonstrate the
applications of the proposed adaptive controllers.

As a subsequent of this paper, future research will include: first, how
to use the Lg V -like adaptive controller proposed in this paper to inves-
tigate the global adaptive regulation of a larger class of upper-triangular
nonlinear systems considered in [14] with parametric uncertainty; and
second, adaptive control of nonaffine systems with parametric uncer-
tainty in discrete-time, in particular, studying if the adaptive control

results obtained so far can be generalized to the discrete-time nonaffine
system in [12].
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