TN WILRUL a:uymf

mimuqmmuLﬂﬁmum&lnmﬁm%'mzuuﬁﬁmwma
e L LT ILF
Time-varying control for delayed and inherently

nonlinear systems

I@U?ﬂdﬂ’]ﬁ@]??ﬁﬂiﬂ" ®3. ITad W\‘l‘iﬂ'f'g@ﬁ‘ﬁiill

LAOUN HAAN 2563



Tuafl RSA6080027

189U LU awyifﬁf

mimuqmmuLﬂﬁwmmnma%m%’m:uuﬁﬁmimm
e LT LT ILH %
Time-varying control for delayed and inherently

nonlinear systems

TRIFNRATIANTY AT, AN waﬁ'g‘@ﬁﬁsw

AL AFINTIVFAIRSS NRIINYIR LTI LA

8T mg,ui@] ﬂﬁ%ﬁﬁfmmﬂamuaﬁu AR o

LazNAIINRLLT s lna

@Enunlunenuiiduwwesiss an. uaz aninmaodoaln

lddududaaiumeizualy)



naansIsnlsznd@

ﬂm:;ﬁiﬂlﬂima°11auqmﬁwﬁfmmﬂamuafmagumﬁﬁ'ﬂ wazunInensedoslng Al
mmﬁmguimamﬁﬁﬂﬁu VOVDLIA Db TR Fusuiadt Alkeutiowasuasyin
winfidseauanmduadied °11amauqmmﬂ%ﬁmﬂﬁwLﬂ%‘aaﬂa AIALAAINITINANENS
Y1 IneasLBaslng ﬁlﬁmmﬁuagumaﬁmamuﬁ'lums@hLﬁummum:ﬁa
Imaﬂ’]ﬁiﬂﬁﬁ%’n%}@d’mﬁ’wﬁ amzdsudanuninduotefsinmuissiazaunsainly

dagaauna ks lomiagnininsunnsda iy



UNAAEL D

81AT9N1T : RSAB080027

A A o (% Aa ' s P
Falayans msmuquu,mJLﬁJaUu@nunmmmm:uummwmaLm:vl,mﬁwml,au
FAUNIY :  WuTay waﬁg@fﬁﬁﬁu AR IAINTINANEAT NAINLRY L Be9lna
E-mail Address : radomp@gmail.com

ez lateniy : 3 0

’Lumsﬁﬂmﬁﬁﬂmiﬁﬂmﬂzymmimuqmuﬂ°nLLumaﬂ’?ﬂaz%m%’mzuuﬁﬁmwm\a 4l
dwdadu warlinnufiansealasmunesasdaiugy heszuidymitdgmlauia
(URBULYRIANLIAT) gﬂﬁﬂmlﬁﬁai@miﬁumwmaLLaz@ﬁQmmamwgﬂlﬁﬁa
FanInaaIssnineraIdInugui linufienis s lavinsuddymalesldd

Aa o A 2 A 6 a6 |d
muqmmwmm@]mmawuﬂmmunmimzm’msmaLaﬂguaM-ﬂWﬁaWamLmulﬂmm

o o o v ~ 2 ' . A A 2 [ '

WHuwialadganlunsudynid aannisdinwwudn i ITUVUIANIFLUMUUIININGIA
iLia i) amﬂgﬂﬁhﬁ’mmmdﬂi’n uanmnﬁ%%‘ﬁﬁﬁmmmﬁn"l,ﬂUizqﬂ@?ﬁm%'mzuuma

Aa A '
nanduaz luin1Iniag

° o A Aa . P& oA v
ANNAN ﬂ’]iﬂ’JUQNLLUULﬂaﬂu@l’]m’m’l, FLUUNUNITINRWIN, 3$UU‘1NLﬂuL°ﬁGLﬁu



JUuuY Abstract (UnAaca)

Project Code : RSA6080027

Project Title : Time-varying control for delayed and inherently nonlinear systems
Investigator : Mr. Radom Pongvuthithum, Faculty of Engineering, Chaing Mai University
E-mail Address : radomp@gmail.com

Project Period : 3 years

This study focuses on the problem of global state regulation with stability for time-delay
nonlinear systems with unknown control directions. Using a dynamic (time-varying) gain-
based method for counteracting time-delay nonlinearity and the Nussbaum gain function
for dealing with unknown control directions, we develop a dynamic state feedback control
strategy that solves the problem. A novel construction of Lyapunov-Krasovskii functionals
is presented and plays a key role in handling nonlinearity with delayed states and
unknown control directions simultaneously. The proposed dynamic state feedback
compensators are shown to guarantee: i) global asymptotic convergence of the system
state to the origin; and ii) global boundedness of the resulting closed-loop systems. The

proposed control design can be apply to various physical systems with/without delay.

Keywords : time-varying control, delayed system, inherently nonlinear system



TanUszase

1) Develop a delay-independent control that regulates the nonlinear system
i‘,‘ = 9111’1+1+fi(l"1:'“ ,;I',',;I'l(ffd),"' ,;Z’r;(tf(l)),
in = Opu+ fule,x(t—d), i=1,-,n—1,
;Z’(S) = C(g) 5 € [7(150}3
without imposing any growth condition on the lower-triangular vector fields and the
unknown parameters.
2) Develop a delay-independent time-varying control that regulates the p-normal form

system with state delay

B = 9;.1'1,-11 + filzy, oz, (t—d), -+ ,x;(t — d)),
Ly = 0;1 uPr 4 f,,(.l’. l(f — (1))
z(s) = ((s), se[-d0],

without imposing any growth condition on the lower-triangular vector fields and the
unknown parameters.
3) Develop a delay-independent time-varying control for a physical system with state

delay and test the performance the time-varying controller with actual system.

BNAand

1) Review related publications in the area of time-varying control, nonlinear system with
state delay and new discoveries in nonlinear control.

2) Formulate the control problems that can be solved and choose a mechanical system
that will be implemented in a test rig.

3) Propose new time-varying controllers.

4) Test the performance of the proposed controllers by using computer simulations

5) Design a mechanical test rig to study the characteristics and performance of the
propose controllers.

6) Build and assemble the test rig.

7) Gather the test results and evaluate the controller performance.

8) Prepare journal papers and reports
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Time-delay systems extensively exist in a variety of applications including, but not
limited to, network control, mechanical systems, biological systems and chemical
processes. For example, models of milling processes, drilling processes and fluid flow or
heating systems all exhibit time-delay phenomena. While many of these controlled plants
are approximately modeled by linear systems, the work [2] presented a chemical reactor
example that is described by a lower-triangular nonlinear system with time-delays in the
state. To address control problems of time-delay systems, various analysis and synthesis
approaches have been developed in the literature. Among them, the Lyapunov-Krasovskii
and Lyapunov-Razumikhin methods are two powerful tools in the stability analysis of time-
delay systems [1, 3, 16, 15]. There are primarily three types of time-delay systems that
have received considerable attention. One class includes the delay in the system state
[1, 12, 17, 14] and the other one contains the delay in the control input [10, 11, 5]. Of
course, a more complex situation involves time-delays in both states and actuators of
controlled plants. For each category of time-delay systems, many results have been
obtained and reported; see, for instance, [12], [10], [11, 5, 4]. In [10], a saturation state
feedback controller was proposed for global asymptotic stabilization of a chain of
integrators with a delay in the input, without requiring the knowledge of the delay. In [5],
control of a class of nonlinear systems with input delay was investigated with the condition
that the system under consideration is forward complete. For a strict feedback system
with delayed states, an attempt was first made in [12] to design a delay-independent,
smooth state feedback controller. Later, it was found that the result of [12] is false, due
to a circular argument in the state feedback design. Such a technical issue was addressed
in [2, 4] under the assumption that the upper bound of time-delay is known, and later in
[17, 19], by using dynamic instead of static state feedback. The dynamic gain-based
designs or the dynamic state feedback control schemes [17, 19] have shown to be
effective in counteracting the nonlinearities with delayed states, thus making it possible
to remove restrictive conditions imposed on time-delay nonlinear systems, which were
commonly assumed in the literature when using delay-independent static state feedback.
Most of the afore-mentioned works concentrated on time-delay nonlinear systems with
known control directions, e.g., the signs of all coefficients of the chain of integrator are
assumed to be known. If this crucial information is not available, a new method needs to
be developed for the control of time-delay systems. When no time-delay is involved,
feedback design approaches have been studied for uncertain nonlinear systems with

unknown control directions [18], using the so-called Nussbaum functions from universal



adaptive stabilization of minimum-phase linear systems with unknown sign of high-
frequency gain [13]. Since the sign of the control input often represents, for instance,
motion directions of mechanical systems such as robotics modeled by the Lagrange
equation and may be unknown, it is certainly important to investigate how to control time
delay systems with unknown control directions.

We first focus our attention on the following class of time-delay nonlinear system
with unknown control directions:

& = Biripr + filer, - s e (t—d), -0 xi(t—d)),
= bpu+ fole,z(t —d)), i=1,.n—1,
x(s) = ¢(s), s€[=d.0], (1)

For the time-delay system with unknown control directions (1), global stabilization by
delay-independent state feedback is a nontrivial problem and has not been addressed so
far. There are perhaps two reasons: i) when the signs of coefficients of a chain of
integrators are unknown, the design of virtual controllers is less intuitive and more involved
as the uncertainties cannot be cancelled directly by a conventional backstepping design;
ii) the presence of time-delay nonlinearities makes a delay-free, static state feedback law
insufficient for mitigating the effects of time-delay, and hence a dynamic instead of static
state feedback may be necessary. Motivated by the universal control idea [13, 6, 7, 8]
and the recent development [19, 17], we propose in this work a novel construction of a
set of Lyapunov-Krasovskii functionals and a delay-independent, dynamic state feedback
control scheme for counteracting the effects of time-delay nonlinearities and unknown
control directions in the system (1) simultaneously. With the help of the new dynamic
gain-based Lyapunov-Krasovskii functionals, we are able to design a time-delay
independent, dynamic state feedback compensator step-by-step, resulting in a solution to
the global state regulation of the time-delay system (1) with stability. Interestingly, it is
worth pointing out that the approach presented in this paper provides a new yet simpler
way of designing state feedback controllers that achieve global stabilization of the
nonlinear system (1) with unknown control directions, in the absence of time-delay, i.e., d

= 0.

HAaN1INeaaad
Dynamic State Feedback Design
In this section, we first construct a delay-independent, dynamic state feedback

compensator, by means of the Nussbaum-gain function [13], a set of new Lyapunov-



Krasovskii functionals (due to the presence of unknown control directions) and the
dynamic gain-based design philosophy [19].

Step 1: For the x4-subsystem of (1), view the state x, as a virtual control and consider
the Lyapunov function V;(x,1;) = %(1 +%) 512 where |, is a dynamic gain to be
determined in Step 2.

A direct calculation gives

Vi = (1+ 1,11)61[81'2‘2 + filzr,x1(t —d))] — )[2 £2
) 1 .
< (1+E)91E11‘5+2|915152| + 2|6 f1(-)] — jlfff (3)

where &, = x, — x5
It can be proved that
2081 f1 ()| < 26871 (1) + & + G (t — )T (w1 (¢ — d)). (4)

We now use the bound from (4) to construct the Lyapunov-Krasovskii functional

Tvth —Tv ll IJ_ /ﬁl (I_]_( ))(l‘%

—d

whose time derivative satisfies (by (3)-(4))
. ‘ 7 1 . ‘
Vi € =n&f + (L4 2)6i6005 + 68

o L i . i}
+a & (1 + 291 (1) + 712 (1)) — ﬁff (5)
1
where ¢, = 2+n: Because the sign of 6,is unknown, we use the idea from [13], namely,

the Nussbaum function to design a controller. In fact, from (5) a virtual controller with the

Nussbaum gain can be constructed as

w3 = &GN+ 25 (21) + 377 (a1)]
= &N(k1)Bi(xy)
b= (), Ri(0) = 1. ©

This, together with /1 > 1, results in
- A i . N _
Vik < —néf + (01N (k1) + &1 )ky + 2 — ZTlgff (7)
1

Step 2: For the (x1; x2)-subsystem of (1), treat the state x3 as a virtual control

and consider the Lyapunov-Krasovskii functional

(63 + ki&3)

—
oo
—

Vo = ‘1LR+ 152 le

where [, > 1 is a dynamic gain to be determined in Step 3.

In view of (7) and the properties that /> 1, j = 1; 2, we have



. ‘ ] o o
Vo < —n€+ (01N (k1) 4 &)k + 262 — 2—;255
1

1 2 .
+ll( L )92 6o (nh 4 15 — I§)+H’Cf|€2fz )N+ A 116245
I Z lo + 110y . o
glfl + — l» l»l&g lg’l” gz -2 D) 21 2(£f +Af£§) (9)
I o1 STEE

Using &, = xy — xS, (6) and the fact that /, > 1 and k,> 1, we arrive at (withthe aid of

Lemmas 5.1-5.3)
%’Cf|§2f2(')| < kffg'rzl(kljz) + if%’fzz(k‘lnﬁl) + &3t —d)
21(ka(t = d), Z2(t = d)) + 7 51( d) Y5y (ki(t — d), 1t — d))
%kf|€2f§| + i‘glél‘ + —klj»‘lﬁg < ki€ P (K1, T2)
+o 51‘1’22% 1)+ ﬁl(T* d) Do (w1 (t — d)) (10)

I Lla+lly, 5 o
D ki&s — W(ﬁ + k&) < T 12(51 +&3)

With the help of (10), we construct the Lyapunov-Krasovskii functional

Vorxk = ’2+/€2 )T 31 (k1(s). Z2(s))ds

t—d

With £3 = x3 — x3, we deduce from (9)-(10) that

Vark < —n&2 4 (0N (ky) + & )ky — legl

T, N | )
Jrr + T)szfngg + ek € + K21+ co + Yoy (ky, 72)
1 9

- _ 1 .
+ Py (ky, T2) + Ty (k1 T2)] + Hﬁf [Tz (k1 x1)
+@22(k, 1’1) + T (ky, 1) + @y ()]

1~ s )m )Xk (¢~ d). 1 (1 — d)

05, (1 (1~ d))] —

(1

21 Ig (51 +£2) (12)

Based on (12), one can design the Riccati-like update law

Zlfmax{ 12+ 1ypy(ky,x1) . 0}, I ( (13)
piki o) = 2[Taa() + To() + Poa(:) + ‘1’22(')]~ (14)



to mitigate the effects of the time-delay nonlinearity.

By construction, it is clear from (13) that

0<ly <lLpi(-), h >=B+1Lp(-). L(t)>L(t—d) > 1. (15)
As a consequence,
[ 2 2 I,
— < —d—_d'llf'.'.'
2[f£1 < & 2l1£1p1( 1,21)
1 1
- <
I L (t — d) o
Substituting (13) and (16) into (12) leads to

Vark < —(n—1)& — (n— DEES + (01N (k1) + &1 )y
1 Lo, ) ,
(1 )0aki&ons + k€] + aakiel

1 2

'[1 + Tgl(.l.’l, fg) -+ (I)Ql(.l.’l,i’g) + Tgl(lxl‘fz”

il 2 2 -

(&2 4+ & 17

Similar to Step 1, because of the unknown sign of 8,, we need to design a virtual
controller x3 with the Nussbaum gain as
w3 = LEN(R)[1+ Tor(o) + Par(-) + T3 (-)]
= hgg:\r(kg)'}z(ﬂlfz)

by = (Hé)a&s’g(h,rz), Fa(0) = 1, (18)

such that the inequality (17) becomes
Vorr < —(n—1)[€ + k32 + (01N (k1) + &)k

2y (19)

H(B2N (ko) + &2)k3hey + cak?es — =25

Inductive Step: Suppose at Step i - 1, there are a Lyapunov-Krasovskii functional

Vv a set of dynamic gains /;j = 1,...,i-1, given by

(-1)LK?
I, = max{—I} + 11 p1 (k1. z1), 0},
o = max{—12+lypo(ly. ks, T2),0},
(20)
liio = max{—1? 5+ i apio(li_3,ki 2,7 2),0},

and a set of virtual controllers x7, ..., x; with the Nussbaum gains (updated by a set of

universal controllers) defined by



7 =0 § = a1 — ]
wh = N (k1) 5y (1) §o = a2 — 13
kr = (1+£)&61()

: : (21)
wp =l li2)& i N(kio1) &G =x—a]
) Bi_ 1(12 3 ’llz 2, Ti_ 1)
'l“i—l:(;l#’lill);lgz l()
with p; > 0 and B; > 0 being smooth functions such that
V(fé—l)LK <—(n—(1-2)) H Am |+ ciky e k7,6
m=0
i—1
+ [(HJN )+ 2)( H K2k } ~ 5 212 Z{, (22)
7=1 m=0 1

where ¢, > 0 is a constant and k, = 1. Clearly, (22) reduces to (19) when i = 3.
Recursively, it can be shown that (22) also holds at Step i. To this end, consider

the Lyapunov-Krasovskii functional

i . 1 9 2 2
Vi = Vi—nok + mkl SRt

1 5
o [ k] (23)
20y -+ 1
where /> 1 is a dynamic gain to be designed.
Using (22) and the properties that /> 1; k. > 1; we have

v, g—(n.f(ifz)z;{nkm }

m=0

+E (9 \' + (_] H km :| + (ka e k;{zgf

m=0
fi—l i1 .2 Af}&
T, SR g e

2. k2, .
+f‘92‘£1’5i+1 + & filh) — &l

ll lz 1
1 i—1
+ll lrflz£j£J+ll X [ {Zkk Hkm 1}
= =RE
1 i—1 i—1 )
o T {Z( H lm)lj} Wik &
281 o .I"zfl i=1 m=1
rn#j
{Z Hlfm }Zé R, (24)
=g

The terms in (24) can be estimated and the properties of k;> 1 and /, > 1 as follows.



U2 k2 S
444444H¢ﬁ(ﬂ < K2 k22 (Lo Ry 7))

Iy -1
1 ! L
+11”T(Z§12')Ti2(5172-kiq,fifl)
+5 (t *d)Tfl(ir o(t *d) o1 (t—d), Ti(t — d))

+h,”hJ2;§ﬂt—dn

Yo, (Ta(t — d). Ty (t — d). Fi_s (t — d)

W2k , o
ﬁlgi‘ril < kT ki O (o ki )

i—1
1 . -
e O ONL LIV
i

+afgﬁ—ﬁ§:§ﬁt—dn
B (Li_a(t — d). ki_y (t — d), Zi_1 (t — d))

2%k

Lo, 6:6i&iaa| S kT k22 ek kR 2

i—1
1 . . ‘ .
T SIGEl < Kk
11— le

2¢7 ‘ 12 2 2 7 L
7{2 (kjk; H k2 } < kieeki Gwilliog, kg, Ti)

(25)

(26)

(27)

(28)

(29)



1 i—1 1 m—
/ 17?1#;
1 g
fg[znm 5 kg
7=1 m=1
m+j

IA
L
=
\./
nﬁ

(30)

From the estimations above, which are related to the delay terms, one can construct the

Lyapunov-Krasovskii functional

Vi = Vit f €2(5) T8 (Tra(9). i (). Fs))ds

t

- [ a7 (S S0 e s i

t—d

0% ([a(s). Rt (). a1 () + W3 (Tia(s), Faa (). Ty (5)))ds

Then, in view of (24)-(30), we have

Viek < —(n—( z—?)Z[(Hkm)f}

m=0
i—1
+Z[9 \(k)Jrcj(Hkm } T Z&z
j=1 m=0 I 1_ =
k2 1 .
o (U 0T ek R

+}<\.f 'iflg-i {24—6,:4-’1‘51([;_2.]4.}_1 ?) <I>,-1(I1- 2, E’i 1, ?)

+w 1(11 3, kz 2 I‘, 1)+T*1([ ‘ (Zg

[T (f 2, fi‘, 1.5 1) (I)l)(f 2.[2‘1-_1.1‘1'_1)
+¥; ([1 2, ki1, T l) + 7T 3(I 2. }?Cl 1‘;?1-_1)
+ 0% (Lo kit Tima) + U (Lo kg Ty 1)}

1 1 >
+[zl---z1_1 Lt —d)-- ,1t—d)] ;5

Xk (Lo (t — d). ko (t — d). Ty (t — d))
+<I)?2(l_ ot —d). ki_y(t —d),Ti_1)(t —d)
+W7 (l_ ot — d), ki 1t —d), 71 (t —d))]

()

=1

(31)

(32)



Following the idea and design given in Step 2, we can construct (based on (32)) the
delay-free gain update law
[ = max{—[;_ 1+le 1Pic1(li—a. ki_y.7i_1).0}, (33)

with /_,(0) = 1, and
pici(lica ki1, Tio1) = 2[Tia () + Th() + Pia () + ()
() W) (34)
By construction, it is easy to verify that
0 < Loy < lLisapioalica kiiq,Ti1)

jifl 2 *l?—l =+ Eiflpz‘fl(fz'fi @71-.‘?‘1‘,1)
licy > Ly (t—d)>1. (35)
As a consequence,
j i1 p ) i—1
i1 i—1
“any g, (228 < 25:52 “‘*‘**Agizijﬁf] (36)
211"'117217' 1 ? 14
j=1 i=1
! ! < 0. (37)

Lol L(t—=d)- L (t—d) =
Substituting (36) and (37) into (32), we obtain

Ve < oG- ST 80

lenO

§:9‘V )+ ) IIAH

m=0
1 * — 2 2
1+ R Oiliri g + Cki- k4
1+ T:l( )+ (I)il(') Fwi(r) + Y5 ()]

225 +C?+1A ’ 1 1£3+1 (38)

?‘*z

To mitigate the effects of the unknown sign of 6;, we design the following virtual controller

with a Nussbaum gain (updated by a universal controller k 1)
ITJrl = (- L) SN[+ Y (o)
+‘I’z‘1(') wil)+TH0O
= (L Lic) &N (hy) Biliz2. ko1, 75)
ko= (1+ )ﬁ i(lima, ki, ). (39)

Substituting (39) into (38) leads to the claim that (22) holds at Step i. The inductive

argument so far has indicated that (22) holds for i = n+1 with u = x,,1 — Xp41. As a



consequence, a dynamic state feedback controller that is composed of (20) withi = n +
1 and a universal-like control law
w = (I by )N (k) B (L2, by 1)
k, = £72?:'j’ﬂ(17n,2. Fp_1.x) (40)
renders

i

=1
71;’[\. S Z H km Z ( J‘\v(k.])+(f)( H 'L‘?n}'l".]} (41)

j=1 m=0 ji=1 m=0
We end this subsection with an observation that the dynamic state feedback compensator

designed so far, namely, (40) and (20)-(21) with i = n + 1, is exactly of the form (2).

Remark In the case when 6i’'s are known constants, all the k, = 1. Then, the Lyapunov

inequality (41) reduces to
Vi <= & <0, (42)

from which it is concluded that global asymptotic state regulation of the time-delay
nonlinear system (1) and boundedness of the closed-loop system are achieved by the
delay-independent, dynamic state feedback compensator (40) and (20)-(21), with k; = 1,
N(k) = constant fori = 1;..., n
Asymptotic State Regulation with Boundedness

In this subsection, we complete the proof of Theorem 2.1 by showing that the
universallike, dynamic state feedback controller (40) and (20) designed in subsection A
ensures not only the convergence of the system state x but also boundedness of the
resulting closed-loop system.

First of all, from the Lyapunov inequalities (22) and (41) it is concluded that k1),
i=1,..., n; are bounded.

By the boundedness of k(t), 1< | < n; it follows from (41) that

k(1
n K 9 \

H” iIAQ /ﬁgds <Z f n ) _.{_—( )dk + e,
m=1

JH 772 J ?ﬂ

(43)

t
thus implying the boundedness of fo E,ZI ds. Repeating the same argument for the
t
Lyapunov-Krasovskii functionals V .1k, ..., Vik; we can conclude that fo g‘iz ds ., i=2,...,n
are bounded. On the other hand, from the inequality (43) and the boundedness of ki(t), i

= 1,...,n, it is straightforward to prove that the Lyapunov-Krasovskii functional V, «



evaluated on the solution trajectory of the closed-loop system is bounded. In view of the
construction of V, k, in particular, (31) and (23), we deduce that the boundedness of V, k
implies the boundedness of x4, li—i‘;flz =1,...,n.

Keeping the boundedness of x4 and k; in mind, it is trivial to verify that the gain /,
designed by (13)-(14) is monotone non-deceasing. Moreover, /, is also bounded. In fact,
if it is unbounded, then tll_)rg) l,(t) = +o0. By continuity of p;, p; is bounded due to the
boundedness of k; and x4. As a consequence, there is a time instant T > 0 such that
—12 + 1,p,(kq,x1) <. This, together with (15), results in [; = 0, which contradicts to the
unboundedness of /,. Therefore, I, must be bounded. This, combined with the
boundedness of k,, implies the boundedness of x5 and &, = x, — x5 and so does X,.
With the help of the boundedness of k(1 < i < n); the boundedness of /. and x; can be
proved in the iterative manner of x, = [, = x3 = -+ = [,,_; — x, by using (20) and
(21). In conclusion, all the signals of the closed-loop system (1)-(40)-(20) are bounded.

Finally, note that &, , i =1 ..., n are also bounded and f0+oofi2 dt < +oo . It
is thus deduced from the Barbalat's lemma that &; , i =1 ,..., n converge to zero as t !

+1. This, in view of the coordinate transformation (21), implies that the state x tends to

the origin. In this way, the proof is completed.

Example 1 Consider the time-delay planar system with unknown control directions:

Il = I

12 — 92 1 -+ I%(f — fl)
Using the proposed design procedure, the following controller
61 17 . o«
uw = k?cos(k)&[2l; + T + (Tf + €2 4+ 23]
. . 61 17 . .-
ko= @lh+ o+ (T‘ + 2+ a2)2),

can globally regulate the closed-loop system.

The simulations of the trajectories (x4, X,) and (l; k) of the closed-loop system are shown
in the figure below, with the parameters 8, = -1, d = 1:25 and the initial condition (x4(0),
X5(0)) = (0:75, -1:25). Notably, the proposed controller is independent of the time-delay,

and hence it also works for a large delay d as long as d is finite.
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Fig 1: example 1 state tragetories of closed-loop system

Extension to P-normal form

Control of time-delay systems is a frequently encountered problem in various real
world applications. In fact, network systems, chemical processes, biological systems,
milling processes, drilling processes and fluid flow, to name just a few, all involve the
time-delay issue. This paper first considers a family of time-delay nonlinear systems with

unknown control directions of the form

T; = Hi;l??ilJrff(Il,”' ,;Fi,;Fl(t—d),"- ,;I?é(t—d)),
iy o= OpuPm + f(x,x(t —d)),
x(s) = ((s), se[=d0], (44)

When the time-delay system (44) has a known control direction, the global stabilization
problem has been addressed recently by non-smooth state feedback, although the

nonlinear system (44) is in general not stabilizable, even locally, by smooth state feedback



(this is true even if the time-delay d = 0, due to the presence of the uncontrollable/unstable

linearization at the origin).
Nonsmooth Dynamic State Feedback With The Nussbaum Functions

In this section, we adapt the idea from universal control coupled with the feedback
control strategy, to design a delay-free, dynamic state compensator that achieves global
asymptotic state regulation with boundedness for the time-delay nonlinear system (44)
with unknown control direction. As we shall see, the proposed dynamic compensator
contains two sets of dynamic state feedback control laws. One of them is capable of
mitigating the effects of the unknown control direction, while the other one is able to
counteract the time-delay nonlinearities of the system (44). Notably, the idea of utilizing
two sets of gain update laws has been explored in the area of adaptive control of nonlinear
systems with unknown parameters by output feedback. In this work, we demonstrate how
a similar philosophy can be applied to effectively control the time-delay system (44) with

unknown control direction.

Step 1: For the x4-subsystem of the time-delay system (44) with the unknown sign of 61,

one can regard x, as a virtual control. Similarly to the previous design, define &; = x;

and construct the Lyapunov function V;(x4,1;) = %(1 + ll) 512 is a dynamic gain to be
1

designed in Step 2. Then, a direct computation gives
. 1 oo I
1’1 < (1 + E)glglifgp — Qlff%
Jr?@‘fl{?‘ +2‘£1f1(1171,171(f*d))| , (45)
2060 f1 () <2691 (21) + & (t = )3 (21 (t = d)) (46)

where &, = x, — x5

Construct the Lyapunov-Krasovskii functiona
o .

Vi =Vilor ) = [ € (9312 (o () .
— . t—d
From (45)-(46), it follows that
. 2 ! o
Vibk < —n& + (1 + —)0i&ias™ — 5580
Iy 207

+E2 40+ 20() + 720 + @l (47)



To cope with the unknown sign of 8;, we use the Nussbaum function for the design of a
virtual controller. Specically, a virtual controller with the Nussbaum gain can be
constructed as

5" =GN (k) (2 + 0+ 27:() +972() = &N (k1) B (1)

m—(r+%ﬁ%umx k1(0) = 1. (43)

This, together with /,>1, results in

VLLK S —Hff + (91]\ (lxl) + 1)/\4 + (’,265 — #55 (49)
=1
Step 2: For the (x1; x2) subsystem of the time-delay system (44) with the unknown
sign of 6,, we construct the Lyapunov-Krasovskii functional

1.5
Vo= Vick + FRI() + [+ wwa()

Lily
Wo(ky,x1,20) = / | (sPt — :I?Zpl)gfl/plds, (50)

'3
where /,>1 is a dynamic gain to be designed in the next step. Following the same
argument in previous section, one can prove that Wy(k; Xq; X) is c' and its partial

derivatives are

dWs 2-1/p1 =
= & , 51
0;’1‘?2 52 ’ () )
oWy 1 dr*pl '/'IQ ‘ ‘
: — 9 gP1 — pEP1y 1=/ g
diﬁl ( 1 ) dl’rl @b ( 2 )
oWy 1 0.’1?;19 rorra 1/
= (2 - = sP1 _ prpyi=1/p1gg
Ok ( pl) Oy / (s =) )

Since /,>1, it is deduced from (49) and (51) that
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LZ -1/p 2 i QA ey A W
-2 [ fa)+ St + S | k()
1 I Lo+ 1y €2 5
iy — RIa() — 2R (L a2 ) (52)
Z 1l l lLZQ 2

From &, = xé’l — xz , (48) and (51), it is not difficult to obtain,
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1 .
< k%€§¢>21(l€1:$1,éfz) + E5f®22(hﬁﬁ)
51( d)P5(x 1 (t — d)), (53)

One can construct the Lyapunov-Krasovskii functional

t
Vork = Vg+/£ $)Y5, (k1 (8), 21(8), x2(s))ds
d

t—

t
1 .
+ ] S O (5),1() + B (1 (5)))ds (54)
—d
Then, it is deduced from (52) and (53) that
Vork < —néf — (n = 1)ki&3 + (01N (k1) + 1)k 252

1
+[—f% [ng(kl,;lfl) + Tég(lx’l,fl) + (1)22(1{15171) + (I);(I'l)}
1

.2
+’;11( )9 & M + AZEQ VI (afr — )|
i (o + (n—1) + Tzl(’wlwfl,fz) + 15 (k1,71 72)
+ 0 (ky, 2y, 22)| — B 12(51 + Wa(4). (55)

The inequality above is derived by neglecting the negative terms that are related

to l'l. From (55), it is not difficult to show that the dynamic state compensator

[ = max{— 3 +11p1(ky ) . 0}, 14 (0 (56)
pi(ki,ar) = 2[Tas(-) + T3o() + ‘1)22(') + ‘1)2(')} (5

can counteract the effect of the time-delay nonlinearity. In fact, by construction the

gain /, satisfies
0<hi<lip(). h =B +hp(). L =ht—d) >1 (58)

As a consequence,

Z‘.l l
_ﬂff 35%_2_h5%p1(/»:1,;r1) (59)

Moreover,
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I, x| < eokT &3 + eskiés, (60)
where &5 = x§1P2 — x;P1P2,
Substituting (59) and (60) into (55), we arrive at
Vorx <-—né&j — ( — DETES + (01N (ky) + 1)k + cskiés
.2
Zl( )952 /P, T5P2 +A152[(’2+02+n—1
1
FY21() + T3, () + b ()] Mz(gl FW() (61)
Similar to Step 1, because of the unknown sign of 8,, we design the virtual controller
22 = LN (k)& [ 4 4 Tor () + Ty (1) + oy (4)]
= N (ko) (2B (ky, 21, 22)) /P
Jio (14 1—)53/35/”1 (kv oy, m9). ka(0) =1. (62)
/2

with the Nussbaum gain k, that is updated dynamically. Clearly, the dynamic com-
pensator (62) leads to

Vork < —(n—1)(6] + k1€3) + (1N (k1) + 1)ker + eshi€s

) Iy € j
+(0aN (ko) + 1)k2ky — — (5l + Wa(-)). (63)
nductive Step: At step i-1, assume that there are a Lyapunov-Krasovskii functional V

l112
1)Lk, @ set of dynamic gains Ij> 1,j=1,...,i-1, updated by

I, = max{—lf +lipy(ky,xy), 0},
[-2 = max{—oggl% +5202(51,1{-1,1&2,;171,.'172),0},
' (64)
lio = max{—ai_2l? o+ li_opi_a(li_3. ki_2Ti_2),0}.

with aj = Py and a set of non-smooth but C° virtual controllers with the
Nussbaum gains, given by

o =0 51*1“1—2171‘.
a5 =GN ( 1)B1(x1) o = aht —as?”
Fa 1+ D)ERs ()
: | (65)
m;‘pl'”piij* ([1 Zz 27\T(]L ))Pl"'pzzQ Si — 'I’qpl"'pi 1
51 l/g'r 1(51 3, IIL _9, f’,[ l) I’*pl “Pi—1
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such that
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where c¢; > 0 is a constant and k, = 1. Clearly, (66) reduces to (63) when i = 3. We claim

that (66) also holds at Step i. To prove this claim, consider the Lyapunov-Krasovskii

functional
V;'LI\" = ‘/1 —+ f f?(@)”fﬁ(ﬁ,g(?). i:“.l-,l(s), ;'_.,'(S))d.s’
t—d
; 1 9 = , % 2p1-pja
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where />1 is a dynamic gain to be designed, and
TT?,L'(;I?{ _ I?‘)Qpl"'pi—l < H’L() < (Qpl“'Pi—l _ 1)&2 (69)
for a positive constant m.,.

Repeating the same argument in Step 2, there are the delay-free gain update law

jif1:1113‘X{—0i71l;2,1 -+ Zq'flpifl(Lé?a ',:31'71: 4171'71), 0} (70)
and
pior() = T [Tal) + Th() + Bal) + B40)
FW () + TE()]
M,_y = min{l/2.mg,- - ,m;_1}. (71)

and a non-smooth virtual controller with the Nussbaum gain
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In addition, (66), also holds at Step i. Using the claim for j = n+1 with U = X}, 41 =
x,";ﬂ, we conclude that the dynamic state feedback controller that is composed of (64)

withi=n + 1 and

B _ 1
u = (Zl te anl*]\‘r(kn))ﬁ (‘Sn B (anQa "f-nfl,ﬁr)) (P1pn)
. — — 1
kn - 53.’371([71725knfl,'r)(plmpnil) (73)
is such that
n Jj—1 n -1
APEEI [ | EAGED CIIHERIE | AL
J=1 m=0 i=1 m=0

State regulation and boundedness of closed-loop trajectories can be proved in a similar
fashion to the proof in the previous section. Therefore, we can conclude that the problem

of state regulation of (44) can be solved by (73).
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In this study, we have investigated the problem of global state regulation with
stability for nonlinear systems with both time-delay uncertainties and unknown control
directions. A delay-free, dynamic state feedback control strategy has been developed
based on the dynamic gain-based design technique [19] and the idea of universal control
with the Nussbaum function [13]. The proposed dynamic state feedback compensators
consists of two sets of gain update laws, which are a reminiscent of the work [6, 7, 8] on
universal control of nonlinear systems with unknown parameters by output feedback. One
set of gain update laws is a Riccati-type, effective in counteracting the time-delay
nonlinearities, while the other set of dynamic update laws is an universal control-like using
the Nussbaum function, capable of mitigating the effects of unknown control directions.
In contrast to the work [19], a set of new Lyapunov-Krasovskii functionals have been
constructed in this paper, in order to cope with both time-delay uncertainties and unknown
control directions simultaneously. It has been shown that the proposed dynamic state
feedback control scheme can be extended to a class of p-normal form in which a new
continuous controller has to be used since this type of systems is not stabilizable, even

locally, by smooth state feedback.

PoLAWBUBEAINILINWIY Ihan1AR

For future study, this type of controller can possibly be applied to control traffic of
an interconnected network system where delay is naturally occurred. The main
advantage of this control design is the delay free design. Since the controller does not
depend on the delay of the system, it is possible to use a single controller to control

many system with different delay.
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1 | INTRODUCTION

Control of time-delay systems is a frequently encountered problem in various real-world applications. In fact, network
systems, chemical processes, biological systems, milling processes, drilling processes, and fluid flow, to name just a few,
all involve the time-delay issue.

This paper first considers a family of time-delay nonlinear systems with unknown control directions of the form

X = Gixiiil + fi (G, ..

LXp,x(t—d), ..., xi(t—d)),
Xy = OpuPr + f, (X, x(t — d)),
x(s) = ¢(s), s € [~d, 0], »
wherei=1, ... ,n—1,x € R"and u € R are the system state an input, respectively. The constantd > 0 is an unknown

time-delay of the system, p; > 0 are odd integers, f; : R¥ — R are C' mappings with £;(0,0) = 0, and {(s) € R"is a
continuous function defined on [ — d, 0]. The coefficients 8; # 0,1 < i < n, are unknown constants whose bound is

5358 | © 2018 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/rnc Int J Robust Nonlinear Control. 2018;28:5358-5374.
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known. They represent unknown control direction and can be either positive or negative. The motivation for studying
the unknown control direction problem was already explained in the context of universal control (see, for instance, the
works of Nussbaum' and Willems and Byrnes?) where even for the one-dimensional linear system

X = ax + bu, X ER,
with a and b # 0being unknown constants, it was illustrated how adaptive control of the linear system (a, b) is naturally
connected to the problem of unknown control direction.

When the time-delay system (1) has a known control direction (eg, §; = 1fori = 1, ..., n), the global stabilization
problem has been addressed recently by nonsmooth state feedback,?® although the nonlinear system (1) is in general not
stabilizable, even locally, by smooth state feedback (this is true even if the time delay d = 0, due to the presence of the
uncontrollable/unstable linearization at the origin).

For the analysis and synthesis of time-delay systems,*® the Lyapunov-Krasovskii and Lyapunov-Razumikhin methods
are two popular tools that have been found wide applications. In the literature, research of time-delay systems can be
classified primarily into three different categories. The first category of study focuses on the time delay in the system
state,* whereas the second one is aimed at the time delay in the control input.”® The last category addresses a general case
where the time delay is present in both the control input and the system state. For each category of time-delay nonlinear
control problems, substantial progress has been made and various results have been obtained (see, for instance, other
related works>” and the references therein).

Following the line of the research in the work of Zhang et al,®> we study in this work the global stabilization of the
time-delay nonlinear system (1) by nonsmooth state feedback in the presence of unknown control directions. Most of the
aforementioned works concentrated on time-delay nonlinear systems with known control directions, ie, the signs of all
coefficients of the chain of “nonlinear integrators” are assumed to be known. If this crucial information is not available, a
new feedback design method needs to be developed for the control of time-delay systems. When no time delay is involved
and the linearized system is controllable (eg,d = Oandp; = 1,i = 1, ... ,nin (1)), a feedback control scheme based on
the Nussbaum functions' was proposed in the work of Ye'° for a class of lower-triangular systems. It was shown that the
idea of the Nussbaum functions is effective* in dealing with the unknown control direction issue.

Note that the sign of the control input often represents motion direction of mechanical systems (for example, robotics
modeled by the Lagrange equation) and may be unknown. Therefore, it is certainly important necessary to investigate
the question of how to control time-delay nonlinear systems when control directions are not known. Motivated by the
universal control idea'''"** and the recent development,® we propose in this work a delay-free, nonsmooth dynamic state
feedback compensation scheme, together with the idea of Nussbaum functions, to globally stabilize the time-delay non-
linear system (1) with unknown control directions. In particular, an iterative algorithm is developed for the construction
of a set of Lyapunov-Krasovskii functionals as well as a delay-free, dynamic state compensator that mitigates the effects of
time-delay nonlinearities and unknown control direction in the nonlinear system (1) simultaneously. More specifically,
global state regulation of the time-delay system (1) with boundedness of all the signals is guaranteed by the proposed non-
smooth dynamic compensator. Based on this main result, we further show how it can be generalized to a much boarder
class of time-delay nonlinear systems with uncertainty, under a homogeneous-like growth condition that can be viewed
as a natural extension of the well-known lower-triangular condition. Finally, a simple but nontrivial example is presented
to illustrate the significance of the finding obtained in this paper.

Notation. Denote ¥; = [vy, ...,»]T € R, fori = 1,...,n For instance, ; = [x, ...,x]%, %t — d) =
bat—d), ..., x(t—d)]" and I; = [I, ... ,1;]7. A Nussbaum function N(k) = k? cos(k), which is obviously an even
function, will be used throughout this work. It is not difficult to verify that it satisfies the following properties:
(i) limy— 4 SUp i /ok N(s)ds = +o0; (ii) limy_ 4o inf i fok N(s)ds = —c0.

2 | PRELIMINARY

This section collects a number of useful lemmas to be frequently used in this paper.

Lemma 1. (See the works of Qian and Lin!>'6)
For positive real numbers m, n and a real-valued function z(x,y) > 0, the following inequality holds Vx, y € R:

x| ™ y]" <

m no__
w0 Y™+ ——— a7 (x, )|y (2
n m+n
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Lemma 2. (See the works of Lin and Qian'7)
Fora C° function f(x,y), there are smooth functions a(x) > 0, b(y) > 0, c(x) > 1and d(y) > 1, such that

|f Gl <a)+b(y), 10y < cd(y). (3)

Lemma 3. (See the works of Qian and Lin!>'¢)
Letx,y € Randp > 1 be an integer. Then,

Ix + y|P <27 |xP + yP|,
1 1 1 1 1
(xl +1yDe < Ix|2 + |yl» <22 (|x] + |y])>. “4)

Ifp is an odd positive integer, then
e — yIP < 2P7M P — yP). (5)

Lemma 4. (See the work of Zhang et al®)
For a C° function f(x,y) and a positive integer k, there exist smooth functions g(x) > 0 and h(y) > 0, such that

£y (IX1F+ [y1*) < geolxl® + h(y)lylk. (6)

Lemma 5. (See the work of Zhang et al®)
For the C* function fi(X;,%(t — d)) with £i(0,0) = 0, there exist smooth functions y;;(x;) > 0 and 7;(xj (t=d)) >0,j=
1, ..., i, such that

A0 X (7aboll+ 70 = D)l (¢ = D) )
j=1

3 | NONSMOOTH DYNAMIC STATE FEEDBACK WITH THE NUSSBAUM
FUNCTIONS

In this section, we adapt the idea from universal control,»''"** coupled with the feedback control strategy in the work
of Zhang et al,’ to design a delay-free, dynamic state compensator that achieves global asymptotic state regulation with
boundedness for the time-delay nonlinear system (1) with unknown control direction. As we shall see, the proposed
dynamic compensator contains two sets of dynamic state feedback control laws. One of them is capable of mitigating the
effects of the unknown control direction, whereas the other one is able to counteract the time-delay nonlinearities of the
system (1). Notably, the idea of utilizing two sets of gain update laws has been explored in the area of adaptive control
of nonlinear systems with unknown parameters by output feedback.'"* In this work, we demonstrate how a similar
philosophy can be applied to effectively control the time-delay system (1) with unknown control direction.

Theorem 1. For the time-delay nonlinear system (1) whose control directions are not known, there exists a delay-free,
dynamic state feedback controller of the form

L=nLkx), k=hLkx)., u=alkx), (®)
with a(L, k,0) = 0, such that the system state x converges to the origin while maintaining boundedness of the closed-loop

system, wheren : R xR*"xR" - R* 1, h : R™!'xR"xR" - R"and a : R*!xR"xR" - R are C° mappings.

Proof. We apply the adding of a power integrator technique,'>!¢ together with the idea of utilizing the Nussbaum
functions' and dynamic gains,>"''* to design a delay-free, nonsmooth dynamic state compensator (8) that does
the job. O

Step 1: For the x;-subsystem of the time-delay system (1) with the unknown sign of 6,, one can regard x, as a virtual
control. Define £&; = x; and construct the Lyapunov function V;(x;, ) = %(1 + ll)ff, where [;(-) > 1is a dynamic gain
1
to be designed in Step 2. Then, a direct computation gives

. 1 . I _
Vi< (1 + l—) 016" — 2—11255 +20188| + 218 /1 x (- d))] 9
1 1

— +vP1 _ P
where & =x,' —x,"".
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In view of Lemma 5, we have
[AAOI <7 ) Il + 77 Gt =d) |x (6= a)],
for some smooth functions 7,(-) > 0 and y,'(-) > 0. Hence,
216001 <28 ) + & +E (- D7 (a (t = d)). (10)

Use the bound j;(-) to construct the Lyapunov-Krasovskii functional

¢
Vit = Vile, h) + /ff(s)ﬁz (x1(8)) ds.
t—d

From (9)-(10), it follows that
. 1 . I _ .
Vik < —néf + <1 + l—) 016" — 2—11253 +& (2414200 +77°0)) + 8. (11
1 1

To cope with the unknown sign of 6;, we use the Nussbaum function® for the design of a virtual controller. Specifically,
a virtual controller with the Nussbaum gain can be constructed as

XM= ENGa) (24 n+2n0) +77°¢) 1= ENK)Ax)

ey = <1 + %) Eh(). k() =1. (12)

This, together with [;(-) > 1, results in

. . i
Vik < —né + (0:N(ky) + 1) ki + 282 — 2—;253. (13)
1

Step 2: For the (x;, x;)-subsystem of the time-delay system (1) with the unknown sign of 8,, we construct the
Lyapunov-Krasovskii functional
&
2

1 1
Vo =Vik + l—k%WZ(') + — l
1

+ kE2W,(-)
Li,

X

Wa(ka, x1,%2) = / (sP1 —x;pl)z_l/plds, (14)

.
X

where [;(-) > 1is a dynamic gain to be designed in the next step.
Following the argument in the works of Qian and Lin,'>'¢ one can prove that W,(k;,X;,X,) is C' and its partial
derivatives are

oW,y _ 2-1p
ey 15
0x2 2 ( )
d *P1 %2
X o 1
e (2-2) 5 [y s
0x1 D1/ 0x;

2

X
ax*Pl B
W _ _(,_ L 2 /(Spl_x;kpl)l Up g
akl D1 akl )

*
X,

Moreover, m,(x; — xz*)zl’1 < Wiky,x1,x) < (2P — 1)55, for a positive constant m,.
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Since l; > 1, itis deduced from (13) and (15) that

. : I Kt 5 .
Vs < —n& + (0:N(ky) + Dk + 262 — 2—11253 + < ) 6,67 P (P 4o — xP)
1 1

&
2

I L, + Ll
=&k — l;k%Wzo— u(

0W2 ()Wzk
! 22
172

2 Kt [52 - ]+k1k1W2(') +kEWs()
ok,

Ll

(16)
From & = x)' —x,”, (12) and (15), it is not difficult to obtain (by Lemma 1 and Lemmas 3-5)

2k 5 1 1
T a7 R0| < BEYatkxx) + 8 alka.xn) + L& = DY, (Rt - d)x( - d)
1 1 1

+Et— )Y, (ka(t = d),x1(t — d), xa(t — d)),
2k?
i

ow, + ow,
ax1 ! ()kl

ki

2. 1, . 1 1 .
+ l—k1k1W2(') + ﬁfpﬁ < KEDy (ki,x1,%2) + l—ff(bzz(kl,xl) + l—ff(t - )P (t—d)), (17)
1 b2 1 1

where Y(-) > 0, Y;‘j(-) > 0, D,j(-) > 0,and ®}(-) > 0,j = 1,2, are smooth functions. Using the bounds YZ(-) and ®3(-)
thus obtained, one can construct the Lyapunov-Krasovskii functional

t

Vork = Vo + / E$)Y5, (ki(s), x1(5), X2(5)) ds + / E1(s) [ Y3, (ki(8), x1(5)) + D5 (x1(5))] ds. (18)
—d

hL(s)

Then, it is deduced from (16) and (17) that

. . 1 . .
Vark < —né& — (n— Dki& + (01N (k) + Dk — 2—;255 + l—ff [Yaa(ki, x1) + Y5, (k1, X1) + @aa(ky, x1) + @5 (x1)]
1

k2 «
+ l_ < l ) 9252 1/p, *Pz + k2 |§2 1/P1 32 x3P2)
1

+ kfﬁ;[cz + (M =1)+ Yok, X1, x2)

+ Y5, ki, X1, X2) + @a1(k1, X1, X2)] — ; l2 <§21 Wa( )> (19)
1

The inequality above is derived by neglecting the negative terms that are related to I; and using the facts that —kiW,() <

—Ws(") and ! by (t 5 < 0 (see (22)).
From (19) it is not difficult to show that the dynamic state compensator
11 = max {—lf + lip1(k1, x1), 0} , h(0)=1, (20)
pr(kr,xn) =2 [Yor() + Y5,() + Poa() + D5()] (2D
can counteract the effect of the time-delay nonlinearity. In fact, by construction the gain [; satisfies
0<h <hp(), h2-B+hp(), h2ht-d>1 (22)
As a consequence,
21
212 51 ‘51 - z_llilpl(klaxl)- (23)
Moreover,
2C * _
2 |5 - | < @kl + ek, (24)

where & = x0'"? — xP'*, ¢, and c; are posmve constants.
Substituting (23) and (24) into (19), we arrive at

k2 .
Vark < —(n—1E — (n — DE2E + (01N (k1) + Dk + c3k3E2 + T < >e§2 P
1

52
+kiE [+ G +n—1+ Y50+ Y50+ Pu()] - b < = 2()> (25)

Le
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Similar to Step 1, because of the unknown sign of 6,, we design the virtual controller

X2 = ING)E ™ (e + 8 + 1= 14 Y () + Y5() + @ ()]
1= LN (ky)(&2faky, X1, %)) /P!

ky = ( > &6,7 (ki x1,%2),  ka(0) = 1 (26)

with the Nussbaum gain k; that is updated dynamically. Clearly, the dynamic compensator (26) leads to

Vak < —(n=1) (& + k1) + (01N (ky) + Dk + c3ki&2 + (6:N (ko) + Dkiks — ﬁ <§—1 + Wa(: )) 27)
1

Inductive Step: At step i — 1, assume that there are a Lyapunov-Krasovskii functional V(;_1).k, a set of dynamic gains
i) >1,j=1,..,i = 1,updated by

I = max {~13 + Lp1(k1,x1),0} ,

I, = max {—a,l + Lpa(l, k1, k2, X1.%2),0} 28)

li-y = max {—aial?, +lizapiz (lims, kiaXiz) L0},

with @; = 1/(2Pr " Pi-1 —1), and a set of nonsmooth but C 0 virtual controllers Xps oe xl* with the Nussbaum gains, given by

X =0 & =x1—X]
P1 _ —_ +P1 _ D
x, ' = &N (k1) pr () &=x'—X,
i 1
ky = <1 + l_> ERC)
. ' (29)
x;kpl = (11 LaN(kic)P P& By (lis ki, Xim1) & = xPv P —xi*plmp"‘]
; 1
ki, = <1+E>§i2_ 1/p1 sz()

with p;(-) > 0and f;(-) > 0 being smooth functions, such that

i-1 j-1 i-1 j-1
Vienik < (n—(l—2))z KH}&) ] +okd kL E Y l(HjN(kj)+1)<Hkﬁ1) k,]
j=1 m=0

m=0

ii_ é i-1
- (2 +2WJ kil %) |, (30)
L Lk

i-1

where ¢; > 0is a constant and ky = 1. Clearly, (30) reduces to (27) wheni = 3.
We claim that (30) also holds at Step i. To prove this claim, consider the Lyapunov-Krasovskii functional

R L [ = o
Vi= Vi + #Wi (liczs ki1, %) + 1 l -+ ZW -2 ki %;) + kg ok Wi (Lo, kim1, X1)
AR L

H/i = / (Spl' “Dic xi*Pl' *Di1 )2_1/(P1' . 'piil)dS, (31)
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where [;(-) > 1 is a dynamic gain to be designed. Similar to the argument in Step 2, one can show that W;(-) =
Wi(li_s, ki1, %) is C'. Moreover,

Wi _ 2-1/(py- i)
e
Xi

oW, P I i
o = — <2_ 1 > i / (Spl"'Pi—l _xfkpl”'pi—l)l_(Pl“'Pi—l)dS
0X; D1+ Di-1 0x; ) !

i

oW, ax*Pl' *Pi-1 % L
Wi (-1 i / (5P P — PP ) I s
ok; pi--Pi-1 ok; i

X;
g ) _*Pl' “Pier
% =— <2 - 1 ) Xi / (SP1"'Pi_1 — P -p"_l)l_(Pl'_'l'Pifl)ds
dlj pl' . 'pi—l 011 . l
X
mi(x—x;) TP < W) <@ P - DE, 1< <i-, 32)

for a positive constant m;.

Analogous to the derivation of (19), using the facts that[; > 1 and —kf- . ~kl.2_1Wi(-) < —Wi(), we deduce from (30)-(32)
that (by neglecting the negative terms which are related to I =1, ...,i-1)

i-1 [ /-1 i1 i
Vis-(n--2) ), KH"fn> ff] +aki kL8 Y l(e NGk +1) (H >i<,-]
J=1 m=0 Jj=1 m=0
(&8 Kbk (L (e,
Ll 21121<2 +ZWJ 2.k 17x1)>+m<1+l—i> ¢ Sfi()
Z ' Zawk Zawl ]
~ &9,

i-1 i-1 1 ) Jj=2 )
+ll-~2 > kka2 W()+— l2<2 Lx Z%sz(glﬁm)ﬁm]
Xm =1 m m=1 Y'm

1
(p1--pi-1) (x*Pi *Pl

i+1 l+1 1+1

2—
+ 6;&.

1

j=1 j
m#/

.i g i
‘ﬁ( 1+2W<>) G33)
1° " cli-1

Using an argument similar to the work of Zhang et al,> we obtain the estimations (34)-(38) (see Appendix A for details)

2k2- - k2

ST g0 pl <2 g2 Yy (g ko, %) + €3t — DY (Tt — ), ki (t — d), (e — d)
1" b

.i_

léf + Z g 2p1 p”l Yi (71'—2, I_Ci—l’xi—l) (34)

i—1
- 11 lZ Xj(t—d) = xi(t — d)) P +§1(z—d)]
j=2

Y, (lia(t = d), kica (t = d), Xia (¢ = )



RATTANAMONGKHONKUN ET AL. W l L EY 5365

2Kk | oW, ; oW,
k l
_1 ;1 Z Z al
Sk &0 (oo oo, %) + lgl + Z 2p1 pj_l] ®iy (liz2. ki1, %ic1) (35)
i-1
] l (x;(t —d) — x;(t = d))zpl. R A d)] @ (Lot — d), kia (t — d). Xt — d))
IR
i-1 i-1
Z 2k;k; Hk%n Wi() < ki ki Ew; (lis kioaa X1 (36)
o m#j
2k2 l 1 b piL Pi—1 Di *p; k k2 2 2
Ly 0; é (xi+1 - x1+1) (cifi + Ci+1§i+1) ) (37)
i-1 J j-2
1 . ow; . 0W aW
ll li 51.7(,'1 + /;2 lrnzﬂﬁxm 2 ak k Z al
i-1
<3 Ly, (lica, kic1, Xio lgl + Z o) ] + I &2 (38)
1l
1 i—1
(1 k X * 2Py Pja
+ #‘Pi (La(t = d), kia (t = d), % (t = d)) [ﬁf(t —d)+ Z(xj(t —d)-xit-d)P? ] ,
1l =

where Y;(-) > 0, ij(~) >0,®;() > 0, CIDZ.(~) >0, ¥i() > 0and ¥;(-) 2 0,wi(") 2 0j = 1,2, are smooth functions.
With the help of the bounds Y;‘j(~), CI>;‘J.(~), and W7 (-) thus obtained, which are related to the delay terms, we construct
the Lyapunov-Krasovskii functional

t

. el : 2 * _' _' _' ;
Vik =Vi+ /51' O, (526, kira(8).%:(5)) ds + /dll(S)- -liza(s) l
"

A (Lima(8), kima(9), Xim1(5)) + @3 (Lima(8), kim1(9),. Xim1(8)) + 7 (Lia(8), kic1(5). Xi-1(5)) | dis.

i—1
£+ Y (x(9) - xi9) " "] (39)
j=2

1 1

- <
From (33)-(38) and the fact that e S e D

calculation gives

i-1 j—1 i-1 j-1 5
Vak S=(n—(i-2) Y, [(Hki) 5}] +2 l(ejN(kj) +1) (kan> fcj] l l} : E < * ZW ¢ )>
j=1 m=0 m=0 12

j=1

and k; > 1,i = 1, ... ,i — 1, a straightforward but tedious

i-1
- léf + Z(xj - x;f)zpl' - 'p’*] [(Yio (lic2s kic1, Xi1) + Y5 (lica, kioy, Xic1)

Ll ~

+ @ (liz kim1, Xim1) + @ (liczs kicy, Xim1) + Wi (licas ki1, Xict ) + W (lica, ki, %1 |

k2 k2 -
# T (14 1) 08O TR ke Ay I K (1644 Yo (i)
1l

+ Y5 (lica, ki1, %) + @it (lica ki1, i) + @i (liza, ki, Xich )| — ] l lz < + ZW (- )> (40)
1l

Based on the inequality above, one can design the delay-free gain update law
liog =max {-ai.12 | +li1pict (liz ki, %icr) , O, (41)
with[;_1(0) = 1, @;_; = 1/(2Pr P2 — 1) and

pi_l(-)=]\ﬁ[ 20)+ Y50+ Bal) + 0 + %) + O], My =min { Zoms, oo miy | 42)
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By construction, the gain thus constructed satisfies

0 < lioy < limapio (lica kic1, Xica) (43)

li 2 il |+ lipia (Zi—z,l_ci—1,5ci—1) . (44)

Using (32) and (43)-(44), it is not difficult to prove that

i-1 j i-1
l _lll ll2 < +ZW()> Z l(sz >§2] _ M;_ 1.01 1) lgl + Z 2P1 P/—]] ) (45)
1" -2

Substituting (42) into (40) yields

i Jj-1 i-1 Jj-1 ) k2' . k2
Vig <—(n—(-1) ) (Hk2 > &+ 2 l(a N(k;) +1) ((ka,,)) k,] + F < . > gl (P Py
m=0

j=1 \\m=0 'll—l
ki kL 2T =i Y () + YO + Pa() + oi()]

I &<
T < -+ ZW ¢ )) + Cinaki- kL (46)
1 cbim1l

In view of (46), one can design the nonsmooth virtual controller with the Nussbaum gain

DT Y (S i P‘1>[2+cl+cl+n—l+m(>+¥ () + @it () + oi()]
1/(py - pi-1)

i= - LN (&8 (T kit %))
ki = <1 + [) &6 0. “

Using the claim fori = n + 1 with u = x,11 = x*
composed of (28) withi = n + 1 and

1> we conclude that the dynamic state feedback controller that is

1

u= (-l 1N(kn))p” (fnﬂn ( n—25 Kn-1, x))<p1~--pn)
kn = éﬁﬂ,;pl Pn-1) (7n_2,kn_1,X) (48)

is such that

j=1 =0

Vark < 2 Ksz > 52] + 2 l(e Nk +1) (]‘i >k,] : (49)

4 | ASYMPTOTIC STATE REGULATION WITH STABILITY

In this section, we use the Lyapunov-Krasovskii inequality (49) to complete the proof of Theorem 1. In particular, it is
shown that the proposed dynamic state feedback controller (48) and (28) can regulate the system state to the origin while
maintaining the boundedness of the closed-loop system.

We begin with the introduction of a key lemma whose proof can be found in Appendix B, based on the
Lyapunov-Krasovskii inequalities (30) and (49).

Lemma 6. The Nussbaum gains k;(t),i = 1, ... ,n, given by (47) are bounded Vt € [0, + o).

With the aid of Lemma 6, we deduce from (47) that <§i2(t) < k;(t) because, by construction, §;(-) > 1 and [j(t) > 1.
Hence, f0+°° &ds < ki(+00) — k;(0) = c.
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On the other hand, (49) and the boundedness of k;(t),1 < i < n, imply that

n t Jj-1
ITCEDD / |6;N(k;(s)) +1] <Hkﬁ1<s>> k;(s)ds + Vi (0)
j=1 o m=0

t
n
< clz/kj(s)ds +c, LC. (50)
=19
2., .2
In view of (39) and (31), it is clear that the boundedness of V,,;x(-) on [0, + c0) implies the boundedness of x;, 1;1 ;{"‘1 Wi(),
17" i1
2, .12
i = 2, ... ,n. Using the estimation of W;(-) in (32), one concludes that x; and %(xi — xi*)ZPr P =2, ...,n,are also
17"t
bounded.

Because x; and k; are bounded and the gain ;(-) given by (20), (21) is monotone nondecreasing, then [;(-) must be
bounded. If not, lim;_, ;. /;(tf) = +oc0. By continuity of p;(-), p;(k1,X;) is bounded. Consequently, there is a time instant
T > 0such that —lf + l1p1(k1,x1) < 0on [T, + o). This, together with (22), yields I; = 0 on [T, + o0), which contradicts
to the unboundedness of [;(-). In conclusion, ;(-) is bounded. The boundedness of [;(-) and k; implies the boundedness of
x5 as well as x; — xJ. As such, x; is also bounded. Similarly, one can prove the boundedness of ;(-) and x; in the following
recursive manner: x, - I, - x3 - -+ = l,_1 = X;,, by the boundedness of k;(-),i = 1, ... ,n, (28) and the estimation
(32). Therefore, all the signals of the closed-loop system (1)-(48)-(28) are bounded Vt € [0, + o0).

To prove the convergence of the system state, we observe that &,i=1, ...,narealsobounded and f0+°° fiz(t)dt < +o0. By
the Barbalat's lemma, it is concluded that &;,i = 1, ... , n converge to zero. This, in view of the coordinate transformation
(29), implies that all the states x;(f), ... ,X,(f) converge to zero as well, thus completing the proof of Theorem 1.

Because the proposed nonsmooth control scheme is based on the Lyapunov-Krasovskii functional method, it is not
surprising that Theorem 1 is robust with respect to the uncertainty. With this observation in mind, Theorem 1 can be
extended to a larger family of uncertain time-delay systems dominated by a homogeneous system with time delay. In fact,
the following more general result also holds.

Theorem 2. Consider a family of uncertain time-delay systems with unknown control directions

X =0 +pix(t—d),t), i=1,...,n, (51)

i+1
wherex,+1 = uand ¢; : R" X R" xR - R is a continuous mapping. Assume that the uncertain function ¢; satisfies
the homogeneous growth condition

1 1 ; 1
[ (¢, x(t = d), )| < yi (i, Xi(t — d) <|Xl|"1”""'*1 + o]z e P [P+ ]+ (= d)| e
o
Food = DI + = d)l ), =1, ., (52)

with y;(%;, X;(t — d)) > 0 being a known smooth function. Then, there is a delay-free, nonsmooth but C° dynamic state
feedback (8) that steers the state x to zero and keeps the boundedness of the closed-loop system (8)-(51).

Under the homogeneous growth condition (52), the proof of Theorem 2 can be carried out, with some subtle modifi-
cations, by means of an argument analogue to that of Theorem 1. For this reason, the details are left to the reader as an
exercise.

From Theorem 2, it is straightforward to deduce the following robust stabilization result obtained in the work of
Pongvuthithum et al'® recently.

Corollary 1. Consider a family of uncertain time-delay systems with controllable linearization and unknown control
directions
X =01 + G (6, x(t—d),0), i=1,...,n, (53)

wherex, 41 = uand ¢; : R" x R" x R = R is a C° uncertain function satisfying the condition
|i o, x(t = d), D)| < y; (6, Xi(t — d)) lz(lle + |x;(t - d)|)] , (54)
j=1

where y(X;, Xi(t — d)) > 0 is a known smooth function. Then, there is a delay-free, nonsmooth but C° dynamic state
feedback (8) driving the state x to zero and ensuring the boundedness of the closed-loop system (8)-(53).
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Remark 1. When the nonlinear system (1) or (51) contains multiple delays, the design of a delay-independent con-
troller remains almost same, except that multiple Lyapunov-Krasovskii functionals with different time delays need
to be used. Specifically, the Lyapunov-Krasovskii functional ft K(s)ds should be replaced by /t K(s)ds in each
step of the recursive design. Hence, for the nonlinear system (1) or (51) with multiple delays d;, .. dm, (39) can be
replaced by

m i-1
1 % 1" Pj-1 * £ *
Vik =Vi+ ) /éz(s)Y (ds + / oG léf(s) + Y (x() = x] )7 P Y50 + D50 + )] ds|.
=1 " 108 l 1 j=2
Of course, a similar philosophy can be used to handle the general case when every subsystem of (1) involves different
time delays.

Remark 2. The assumption that the bound C of unknown coefficients 6;,i = 1, ... ,n is known is used only for a
technical convenience and can indeed be removed. When the bound C is unknown, a similar design procedure can
be carried out with slightly different estimations of the right-hand side of V;_1).x in (30) so that the term (OiN(kj) + 1)
is replaced by (6;N(k;) + C;), where C; is an unknown constant. Due to the characteristics of the Nussbaum function
and the monotone property of the adaptive gains k;,1 < j < n, the same argument in Appendix B can also be used
for the stability proof.

We end this section with a simple but nontrivial example that demonstrates how a Nussbaum gain needs to be
introduced in order to deal with the problem of unknown control direction.

Example 1. Consider a time-delay system in the plane, with strong nonlinearity and unknown control directions, of
the form

X = Hlxg + X

Xy = Ou + %xg(t —d), (55)

where 61,6, # 0 are unknown constants whose signs are also unknown (either positive or negative) and repre-
sents unknown directions of the actuator. Note that the time-delay system under consideration involves not only
an unknown control direction but also strong nonlinearities. The latter requires the use of a nonsmooth rather
than smooth feedback control strategy. As a matter of fact, even in the case when control directions are known (eg,
0, = 0, = 1) and no time delay is involved (ie, d = 0), it is known that the planar system cannot be controlled by
any smooth state feedback, even locally, and a nonsmooth feedback must be used.

Following the control scheme proposed in Section 3, we first consider the Lyapunov function V;i(x;,1;) = %(1 + [l)ff,
where £, = x; and the gain [; is updated by

h = max {~5 + Lplki,x1), 0}, h(0) =1, (56)

with p,(k1,%;) > 0being a smooth function to be determined later on.

For the x;-subsystem, it is clear that the nonsmooth virtual control law x§3 = 2x,N(ky), with &y = 2(1 + ll)xf, globally
asymptotically regulates it. 1

Define & = x; — x}> = X — 2x;N(k;). From (56), it is easy to see that [;(-) > 1 and li > =B + Lip1(k1, x1). Moreover,

. - 1
Vi < =2x7 + (01N(k1) + D) kg — f@fﬂl(kl,xﬂ' (57)
1

Then, consider the Lyapunov-Krasovskii functional

X, t
5 2

k
Varg = Vita. b)) + — / (s —x?) " ds + / 1 (gg(s) + 2(k;’>xf(s))2) ds. (58)
L Li(s)

x5 t—d
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Following the design procedure in Step 2, one can find a dynamic state compensator that consists of (56) and

u=N(kpg,” (2(kf +2k)" + % <1 + ll> X4l + 53)
1

kzzllgg <2(kf+2k1)2+% <1+ll>xf+ll+§;‘>, (59)
1 1

with py(ky,x;) = 22x1k]? + 4kS + g(l + ll)xfkf) in (56) and N(k) = k3 cos(k,), such that

(0:N(ky) + 1) K2k,
L ’

Vark < —x7 — k3E2 + (O1N(ky) + D kg +

from which it is deduced, as shown in Section 4, that the delay-free controller (59) and (56) achieves asymptotic state
regulation and maintains the boundedness of the closed-loop system (55), (56), and (59), without the information of the
sign of the parameter 6;,i = 1, 2. The simulation results of the closed-loop system (55)-(56)-(59) are shown in Figures 1
to3withf; = —1,0, = 1,d = 0.1, and (x;(0), x2(0), [(0), k1(0), k»(0)) = (-0.15,0.25,1,1,1).

1.2

0.8 b

0.2 [} b

02 \/ i

04 H 1

system states

-0.6 [ b

0.8 I I I I I I

time (s)

FIGURE1 State trajectories (x;,X;) of the closed-loop system (55)-(56)-(59) [Colour figure can be viewed at wileyonlinelibrary.com]

adaptive gains
(o)
T

0 L L L L L L
0 2 4 6 8 10 12 14

time (s)

FIGURE 2 Dynamic gains (k, l;) of the system (55)-(56)-(59) [Colour figure can be viewed at wileyonlinelibrary.com]
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20 I I I I I I
0 2 4 6 8 10 12 14

time (s)

FIGURE 3 Control input u of the system (55)-(56)-(59) [Colour figure can be viewed at wileyonlinelibrary.com]

5 | CONCLUSIONS

A delay-free, nonsmooth dynamic state feedback control scheme has been proposed in this paper to deal with a family
of uncertain time-delay systems with strong nonlinearities and unknown control direction. To cope with the effects of
time-delay nonlinearities and unknown control direction, we have introduced, respectively, two sets of gains that need
to be updated online, in a dynamic manner. One of them is the Nussbaum-type gains from universal control,' making it
possible to mitigate the effect of unknown control direction, whereas the other one is borrowed the idea from the dynamic
state feedback control method,® which can counteract the time-delay effects via a delay-free nonsmooth controller. Global
asymptotic state regulation with boundedness of the closed-loop system has been proved to be possible, thanks to the
construction of a set of new Lyapunov-Krasovskii functionals that are different from the previous ones in the literature,
due to the involvement of the Nussbaum functions.
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APPENDIX A

This section gives the proof of inequalities (34), (35), and (38). We begin by introducing two propositions.

Proposition 1. There is a smooth function A;(li_5, ki_1,%i_1) > 0 such that fori = 2, ... ,n,
i-1 o
B ) B —_— B s N 1‘..‘71
e e WETES Ve B VO (A1)
j=2
Proof. In view of (29) and (4), we have
& = '(xz x5 +x5)" =xP
<P g =X+ (207 4+ 1) P (A2)

<27 =X+ (227 4 1) 1aNGR) | fuoa),

which indicates that (A1) holds for k = 2. Now, assume that (A1) holds when k = i — 1. From (29) and (4), it can be
deduced that

|§l| = ’ (xi — x;k +x:‘)p1' “Pir _ x:‘pl‘ *Pin
< 2P P g — o PP (2P0 P 1 1) (- - L INCRi) DY P2 G | B (liss Koy i ) - (A3)
Substituting the estimation |&;_, | into (A3), it can be verified that (A1) also holds for k = i. 0

Proposition 2. Fora C* function y(x;) > 0, there are C* functions Bj(-) > 0,j = 1,2, such that

P11 Pj1 = = _
By (lica kic1, %ica) - (A4)

i-1
YO lPr P < |xi _x;klpl"'Pileil (li_z,ki_l,)_Ci) +| &)+ Z|xj —x/’.‘
j=2
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Proof. By Lemmas 3 and 4, there are smooth functions y; (x; — xl.*) > 0and yz(xlf") > 0, such that

yODbalP P =y (x = ) e —xp g
<n (=) =X PP e (o)
< (% =x) e =X PP s (xF) (G- - lica ING—DDP P2 (& | fict (Timss Ko X ) - (A5)
Substituting (29) and (A1) into (A5) yields (A4). -

With the aid of Propositions 1 and 2, we are able to prove inequalities (34), (35), and (38).

Proof of (34). Using the inequality (2) and Lemma 5, one can find smooth functions ?i,(L_z,l'c,-_l,xi_l) and
?;(li—z, ki_1,X;-1) so that

pr_ -1 i N _ _ _ s T — _
;1' : 'lpil—1 £+ D1 P 21 [Yij (lizs kica, X)) &7 + 7i; (hiozs kia, X ) £ — d)] -

j=

g )| < 2i

This, combined with Proposition 1, implies that there are smooth functions Y;;(-) > 0 and Y;*j(-) >0,j = 1,2,such
that inequality (34) holds. O

Proof of (35). Similar to the proof in the works of Qian and Lin,'>!® one has

*P1 Pie1
oW ox;
— | <algl|————|. j=1 ...,i—-1,
dxj 0xj
*P1 Pi-1
oW, ox |
<alé||————|, j=1, ...,i—1,
()kj < ailé&l akj J
*P1 Pi-1
oW, ox |
— | L alé| | —————)|. j=1, ...,i—2, A6
()lj < ailé&l alj J (A6)

where g; is a positive constant. Moreover, it follows from (29) that
i i-1

;| < Z |&mlpir (lioas ki1, Xi1) + Z |&m(t — d)| @3 (Lia(t — d), ki (t — d), i (£ — d)
m=1 m=1

ax*Pr “Pia
i

an
axz*Pl' “Pic1
i
ok,

ax'*Pl' *Pi1
i

al,

i-1

< Z|§m|¢i2 (lie2 kic1. Xic1)
m=1

i-1

< Z |&ml iz (lio2s kic1, Xic1) (A7)
m=1

where ¢;.(-) > 0,r = 1,2, 3, are smooth functions.
Using Lemma 1, Propositions 1 and 2, and Lemma 5, it is not difficult to conclude that (35) holds. O

The proof of inequality (38) can be carried out in a manner similar to that of (34) and (35) and, hence, is omitted.

APPENDIX B

To prove Lemma 6, we need the following proposition.
Proposition 3. Let 0 be an unknown constant with unknown sign and k(t) and o(t) be any positive monotone

nondecreasing functions well defined on [0, ty). Then, the following inequality holds for some constant ey:

t

JL o
o(s)
0

Proof. Obviously, (B1) holds when o(¢) or k(t) is bounded on [0, ff]. When both ¢(f) and k(t) are unbounded on [0, ],
o(t) and k(f) must have a finite escape time at 7. Then, two cases need to be considered.



RATTANAMONGKHONKUN ET AL. W l L EY 5373

Case i: If & > 0, in this case, there exists a time sequence {t.} such that k(t,) = 2r — 1)%, r=1,2, ....Clearly,
cos(k(t,)) = 0 and cos(k(t)) < 0,Vt € [tym_1,tam], While cos(k(t)) > 0, when t € [tym, toms1], form = 1,2, ...
With this in mind, we assume that without loss of generality, the time t € [0, t2,+3). Then, (B1) can be written as

t t t

/ 9c0s((l;(s))k (5)ds = / 9cos((l;(s))k ()ds + / 0cos((l§(s))k (5)ds
0

t2m+1

2

6 cos (k 6 cos (k
+Z/ cos( (S))k( Vs + / cos(()(s))k( s)ds

-1 by
t t

< / 9cos((l;(s))k (5)ds + / 6’008((15(S))k( )ds
0

t2m+1

153 [
+ 9 / cos (k(s)) k(s)ds + / cos (k(s)) k(s)ds [+ - - -
o(t2) t /

t2m t2m+1

+ / cos (k(s)) k(s)ds + / cos (k(s)) k(s)ds
o(tam) ; /
t m—. [ m
_ /Gcos((l;(s))k( $)ds + / Gcos((l;(s))k( $)ds.

[2m+1

As a consequence,
t

/ecos(k(s))k(s) dss[ 70 270 ] L 576

NS 2000) ot | = 20(0)°

ast < tyy+3. Hence, Proposition 3 is true when 6 > 0.
Case ii: If 6 < 0, an analogous argument with the obvious modification that k(t,) = 2r + 1)%, forr = 1,2, ...,

leads to the same conclusion. Thus, Proposition 3 also holds when 8 < 0. O
Proof of Lemma 6. Lemma 6 can be proved by a contradiction argument. If k;(f),i = 1, ... ,n are unbounded, let
[0, t£,) be the maximal interval of k;,i = 1, ... , n. Then, the following statement holds.

o Claim (1): by, 21ty 2tp 2---21f.

This conclusion is proved by an inductive argument.
Step 1: For n = 2, suppose that Claim (1) is not true. Then, t;, < ty,. This implies that k,(t) is bounded on [0, ¢/,).
Using (13) and the property that ég < k, from (12), we have

Vitk < (0:1N(ki) + D ki + c2ka, V2 € [0, 14,). (B2)

This, in view of N(k) = k? cosk and

/N(k)dk = k?sink + 2kcosk — 2sink +c, (B3)
leads to
VlLK(t)
R < 01k (O sin (ki (1) + C1, Vi € [0, ¢y,), (B4)
1

where C; is a constant.
Because lim;_,; " ki(t) = +o0, the right-hand side of (B4) can become negative when k;(¢) is sufficiently large,
regardless of 8. This is clearly a contradiction. Therefore, tr; > tf,.
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Step i: Suppose thatforn = i, i > 3,ts, >--- >ty istrue, butt; >ty  doesnot hold. Thatis, t;, <ty . Assuch,
ki1 1(t) is bounded on [0, t,). Using (30) with index i being replaced by i + 1, dividing both sides by kf- . ~kl.2_1(t) and
then integrating from 0 to ¢, V¢ € [0, t,), we obtain

t t

i-1
/ T Vards Z / IO L s + / (ON (ki(5)) + 1) ki(s)ds + cien / kiva(s)ds

C1k2,(s) IT2, ks "
i-1 t 9 k t
<y / B costsG) 4 oyds + / O:N(kidk; + ki(t) + c. (B3)
Jj=1 —J+1 ke (s) 0

Due to the monotone increasing property of Hln;i ; k2, (t) on [0, t), the following inequality holds:

t t
< ; .iLKdS < VIL—KdS (B6)
Hl 1 k2 (t) Hl—l k2 (S)
0 m=0 "m
By Proposition 3, the first term in (B5) is bounded by a constant. This, together with (B3) and (B6), results in

Virk (D)

mn < 0ik;(t) sin (kl(t)) +C, vVt €0, l'fi). (B7)
m=0 "m i

Since lim,_,, » ki(t) = +o0, the right-hand side of (B7) can become negative when k;(¢) is large enough. This is a con-
tradiction. Hence, t7; > ty,,-In this way, we have inductively proved Claim (1). In addition, the argument above, in

particular, (B5)-(B7) also leads to
o Claim (2): k;(t) is bounded if k; . 1 (¢) is bounded.

In view of Claim (2), it is clear that to prove Lemma 6, we only need to prove that k, is bounded V¢t € [0, + o0). If
kn(t) is unbounded and only defined on [0, ¢y, ), consider inequality (49). The same argument as done in Step i or (B5)
leads to (B7) with i = n. That s, Vt € [0, 1),

Viurx (0

m < 0,k () sin (k,(£)) + Ch, (B8)

where C, is a constant. Similar to the proof in (B4), a contradiction can be found from (B8). Hence, k,(f) must be
bounded on [0, ¢, |. Consequently, the maximal interval [0, f7,) can be extended to [0, + c0). In other words, k() is
bounded V¢t > 0. By Claim (2), k,,_1(¢) is also bounded on [0, + o). Inductively, it is concluded that k;(¢),i = 1, ... ,n
are bounded on [0, + o). O
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Asymptotic Regulation of Time-Delay Nonlinear Systems
With Unknown Control Directions

Radom Pongvuthithum

Abstract—This paper studies the problem of global state regula-
tion with stability for time-delay nonlinear systems with unknown
control directions. Using a dynamic gain-based method for coun-
teracting time-delay nonlinearity and the Nussbaum-gain function
for dealing with unknown control directions, we develop a dynamic
state feedback control strategy that solves the problem. A novel
construction of Lyapunov—Krasovskii functionals is presented and
plays a key role in handling nonlinearity with delayed states and un-
known control directions simultaneously. The proposed dynamic
state feedback compensators are shown to guarantee 1) global
asymptotic convergence of the system state to the origin and
2) global boundedness of the resulting closed-loop systems.

Index Terms—Asymptotic state regulation, boundedness, dy-
namic state compensator, nonlinear systems, time delay, unknown
control directions.

|. INTRODUCTION

Time-delay systems extensively exist in a variety of applications
including, but not limited to, network control, mechanical systems,
biological systems, and chemical processes. For example, models of
milling processes, drilling processes, and fluid flow or heating systems
all exhibit time-delay phenomena. While many of these controlled
plants are approximately modeled by linear systems, the work [2]
presented a chemical reactor example that is described by a lower
triangular nonlinear system with time delays in the state.

To address control problems of time-delay systems, various analysis
and synthesis approaches have been developed in the literature. Among
them, the Lyapunov—Krasovskii and Lyapunov—Razumikhin methods
are two powerful tools in the stability analysis of time-delay systems
[11,[3],[15], [16]. There are primarily three types of time-delay systems
that have received considerable attention. One class includes the delay
in the system state [1], [12], [14], [17] and the other one contains the
delay in the control input [5], [10], [11]. Of course, a more complex
situation involves time delays in both states and actuators of controlled
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plants. For each category of time-delay systems, many results have
been obtained and reported; see, for instance, [4], [5], [10]-[12]. In
[10], a saturation state feedback controller was proposed for global
asymptotic stabilization of a chain of integrators with a delay in the
input, without requiring the knowledge of the delay. In [5], control of
a class of nonlinear systems with input delay was investigated with
the condition that the system under consideration is forward complete.
For a strict feedback system with delayed states, an attempt was first
made in [12] to design a delay-independent, smooth state feedback
controller. Later, it was found that the result of [12] is false, due to a
circular argument in the state feedback design. Such a technical issue
was addressed in [2] and [4] under the assumption that the upper bound
of time delay is known, and later in [17] and [19], by using dynamic
instead of static state feedback. The dynamic gain-based designs or
the dynamic state feedback control schemes [17], [19] have shown
to be effective in counteracting the nonlinearities with delayed states,
thus making it possible to remove restrictive conditions imposed on
time-delay nonlinear systems, which were commonly assumed in the
literature when using delay-independent static state feedback.

Most of the aforementioned works concentrated on time-delay non-
linear systems with known control directions, e.g., the signs of all
coefficients of the chain of integrator are assumed to be known. If
this crucial information is not available, a new method needs to be
developed for the control of time-delay systems. When no time delay
is involved, feedback design approaches have been studied for uncer-
tain nonlinear systems with unknown control directions [18], using the
so-called Nussbaum functions from universal adaptive stabilization of
minimum-phase linear systems with unknown sign of high-frequency
gain [13]. Since the sign of the control input often represents, for
instance, motion directions of mechanical systems such as robotics
modeled by the Lagrange equation and may be unknown, it is cer-
tainly important to investigate how to control time-delay systems with
unknown control directions.

In this paper, we first focus our attention on the following class of
time-delay nonlinear system with unknown control directions:

a':i = 91'.1‘1'+1 +fi(xl,..-7$z‘7ml(t_d)7~“7xi(t_d))7
T, = O,u+ [ (z,2(t — d)), i=1,....,n—1,
z(s) = ((s), se€[—d,0] (1)

where z € IR" and u € IR are the system state and input, respec-
tively. The constant d > 0 is an unknown time-delay of the sys-
tem, f; : IR* — IR are C'' mappings with f£;(0,...,0) =0, and
¢(s) € R" is a continuous function defined on [—d, 0]. The coeffi-
cients §; # 0, 1 < i < n, are unknown constants whose signs are also
unknown, but bounded by a known constant ¢. For example, in the
planar case, #; may be 1 or —10 while 6> can be —2 or 3.

For the time-delay system with unknown control directions (1),
global stabilization by delay-independent state feedback is a nontrivial
problem and has not been addressed so far. There are perhaps two
reasons, which are as follows.

0018-9286 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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1) When the signs of coefficients of a chain of integrators are un-
known, the design of virtual controllers is less intuitive and more
involved as the uncertainties cannot be cancelled directly by a
conventional backstepping design.

2) The presence of time-delay nonlinearities makes a delay-free, static
state feedback law insufficient for mitigating the effects of time
delay, and hence a dynamic instead of static state feedback may be
necessary.

Motivated by the universal control idea [6]-[8], [13] and the recent
development [17], [19], we propose in this paper a novel construction
of a set of Lyapunov—Krasovskii functionals and a delay-independent,
dynamic state feedback control scheme for counteracting the effects
of time-delay nonlinearities and unknown control directions in the
system (1) simultaneously. With the help of the new dynamic gain-
based Lyapunov—Krasovskii functionals, we are able to design a time-
delay independent, dynamic state feedback compensator step-by-step,
resulting in a solution to the global state regulation of the time-delay
system (1) with stability. Interestingly, it is worth pointing out that the
approach presented in this paper provides a new yet simpler way of
designing state feedback controllers that achieve global stabilization
of the nonlinear system (1) with unknown control directions, in the
absence of time delay, i.e., d = 0.

Notations: In this paper, an even Nussbaum function N (k) =
k% cos(k) is chosen, which clearly satisfies the properties 1)

limy o sup L [F N(s)ds = +00; 2) limg_inf L jo s)ds =
—o0. For the sake of convenience, denote v; = [vy, ..., v;]" 6 IF{l for
i=1,...,n. For example, z; = [11,...,7;]T, L(t - d) [1(t —
d),. oot =) =, L) and ky = [ky, ..., k)T, where

l; and k; are controller gains to be designed step-by-step in the next
section.

II. UNIVERSAL CONTROL-BASED DYNAMIC STATE FEEDBACK

In this section, we employ the idea of universal control [6]-[8], [13]
to design a dynamic state feedback compensator that is composed of
two sets of gain update laws, in the spirit of [6]-[8]. A set of them
is expected to mitigate the effects of the unknown control directions
present in the system (1), while the other set is capable of counteracting
the time-delay nonlinearities of the system (1). The idea of utilizing
two sets of gain update laws have been explored in a different con-
text, particularly, in the case of adaptive output feedback stabilization
of nonlinear systems with unknown parameters [6]—[8]. In this pa-
per, we further explore the potential/power of the idea by showing its
new application in the control of the time-delay system (1) with un-
known control directions. The main result of this paper is the following
theorem.

Theorem 2.1: For the time-delay system with unknown control di-
rections (1), there exists a delay-independent, dynamic state feedback
controller

L=n(L,K,z), k=h(LK,z), =o(L, K, z) )

with «(L, K,0) = 0, such that the state z is regulated to the origin
while keeping all the signals of the closed-loop system bounded.

Remark 2.2: As shown in Section II-A, a delay-independent, dy-
namic state feedback compensator (2) can be explicitly designed and
given by, for instance, (40) and (20)-(21), with L = (Iy,..., 1, )T
and K = (ky,...,ky).

The proof of Theorem 2.1 is divided into two parts. The first part
contains a recursive procedure for the design of a universal-like dy-
namic state compensator (2), while the second part provides stability
analysis of the closed-loop system.

A. Dynamic State Feedback Design

In this section, we first construct a delay-independent, dynamic state
feedback compensator, by means of the Nussbaum-gain function [13],
a set of new Lyapunov—Krasovskii functionals (due to the presence
of unknown control directions) and the dynamic gain-based design
philosophy [19].

Step 1: For the x;-subsystem of (1), view the state z, as a virtual
control and consider the Lyapunov function Vi (z1,11) = (1 + 7)€
with & = z1, where [; (-) > 1 is a dynamic gain to be determined in
Step 2.

A direct calculation gives

Vi

(1+ )51[91$2+f1($1,$1(t ))]*%ff
1

IA

(1 + I ) Or&1a5 + 200,61 & |+ 2|16 f1 ()] — %ff (3)
1

where & = xy — 5.

From Lemma 4.3 in the Appendix, it is clear that there exist
smooth functions 7; (z1) >0 and 7; (z; (¢t —d)) > 0 such that
1 @y, (8= d)[ < 31 (1) 22|+ 37 (21 (8 = d)) |21 (¢ = d)].
Consequently,

206 () S 267 (21) + & +E (- D (an (t—d). @
In addition, 2|60, £; & | < €2 + ¢9 &3, for a constant ¢y > 0.

We now use the bound #;2(+) from (4) to construct the Lyapunov—

Krasovskii functional

Vieg =Vi(li,z1) / & ()77 (21 (s)) ds

whose time derivative satisfies [by (3) and (4)]

. . 1
VlLK S —nff + (1 + 7) 91513?3 + szg
1

— — = X l.
a1+ 25 (@) + 77 (@) - gl 6
1
where ¢, = 2 + n. Because the sign of ¢, is unknown, we use the
idea from [13], namely, the Nussbaum function to design a controller.
In fact, from (5) a virtual controller with the Nussbaum gain can be
constructed as

x5 = &Nk + 2% (z1) + 37 (21)]
= LN (k)G (1)
b= (143 )€t mO=1 ®

This, together with /; (-) > 1, results in

View < —n&} + (01N (k1) + El)kl + 05 — 21) fl (7

Step 2: For the (z1, 2 )-subsystem of (1), treat the state x3 as a
virtual control and consider the Lyapunov—Krasovskii functional

Vo = Virk + kaz — (& + k&) (®)

2ll

where [, > 1 is a dynamic gain to be determined in Step 3.
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In view of (7) and the properties that [; > 1, j = 1,2, we have By construction, it is clear from (13) that
. s [ 0<l <lLpi(), h>=LC+Upm(), LK) >L({t—d) >1. (15
‘/2S7TL§12+(91N(]€1)+C1)]€1+62£§7i§f <L <bpi(), b= -0 1p1(1)s L) = hi( ) > 1..(15)
1 As a consequence
3 (14 ) Bkt 0 = 35) 4 TR 1
1
251 < &= &k, m)
2 2 - 2l 2[1
+ Ekl‘@xﬂ

l — # < 0. (16)
1.2, B A h h(t=d
Tt kikg - 2lgk & - W(& + k&) o .
2 1 1b2 © Substituting (13) and (16) into (12) leads to
Vark < —(n—1)& — (n— k3 + (0, N(ky) + & )k
Using & = xo — x5, (6) and the fact that /; (1) > 1 and k; () > 1, we i < —(n =D& = (n=Dki& + GV k) + ek
arrive at (with the aid of Lemmas 4.1-4.3) +111 (1 + ZQ) 0, k2§2x3 + C3k1§3 + 02k 52
2 2 2 ¢2 = 1 2 2
Ekl €2 f2()] < k185 Tan (1, 22) + E&Tm(kl’xl) +&(t—d) 1+ T21(k173_02) o+ By, (ki o) + Ty (k1 72)]
* = 1 y *
S5y (b (= d), 2 (¢ — d))+7£f (t=d) 5, (k1 (t=d), 21 (t—d)) 2l & Te) an
k2|§2x2\ + |£1 & + k1k1§2 <KDy, (K, ) where ¢; = ¢y + n. Similar to Step 1, because of the unknown sign
of 65, we need to design a virtual controller =% with the Nussbaum
+ §1<I>22(/c1,x1)+ 51( d)®3, (1 (t — d)) gamn as
vy = L&N (k)14 Tor(4) + Por () + 5, (1))
g - Ml e ey < Bo@ ) o)
2l2 2 21213 sl = 2l l2 Lo = L& N (k) B (k, T2)
where Ty;(+) > 0,73;(-) = 0, ®y;(-) = 0,and @3, () 2 0,5 = 1,2, ky = (1 + ) By (ky,Ty), ka(0) =1 (18)
are smooth functions.

With the help of the smooth functions Y3, () and @3, (-) obtained

. : h that the i lity (1
from (10), we construct the Lyapunov—Krasovskii functional such that the inequality (17) becomes

Vark < —(n =D& + K&+ (0: N (ki) + 61)1%1
wLK_-w-+/ €2(5) L3, (k1 (), 32 (s))ds

+(02 N (kz) + &2)ki ks + c3k1€3 — (& +£5).(19)

2l 12

*fdh<ﬁ“”mﬂhwkﬁwn+%xa@mw<n>

Inductive Step: Suppose at Step ¢ — 1, there are a Lyapunov—
Observing that %(1 + i)k%|92€2(353 —x3)| < k& + cski&l, with ?r%sovskil {unctlopa_l 1V(ifl)“;)’ a set of dynamic gains I;(-) > 1 =
& = x3 — a4 and ¢3 > 0, we deduce from (9) and (10) that i0), 7 =1,.... » glven by

. Ih = max{~l{ + Lpi(k1,21),0},

V; ki) + . -
2LK > nfl ( ( 1) Cl) l2§1 l2 _ max{—lg +l2p2(ll7k27fi2)70}7

1 1 .
+ (”7) Orki&omh + cshi & + K11+ ¢ + Tor (K1, Z2) : (20)
1 2

1 i = max{—li +11'72/%'72(1_;'737]_€i72757172)70}
+ @y (ky, Zo) + Y5y (ky, Z2)] + 7512 (Yoo (ki, 1) ’
1

and a set of virtual controllers x7,...,z; with the Nussbaum gains
+ @20 (ki, 21) + T3y (K1, 1) + P39 (21)] (updated by a set of universal controllers) defined by
+(%fmﬁjﬂﬁuf@wmm@fwmuf@> 7 =0 S
x5 =& N (k)b (1) §o =10 — 13
P35 (21 (t = d))] = 21 lz (€8 +&). (12) oy = (1 n %) £5,()
Based on (12), one can design the Riccati-like update law 21
I, = max{—1? + I py (k1,21), 0}, 1, (0) =1 (13) = (1 lig)& A N(ki—1) & =x —af
prlkian) = 2[Ta() + Toy() + @oa() + 3, ()] (14) Bir (- 1%%ﬁ
to mitigate the effects of the time-delay nonlinearity. ki = (1 + i, ) 1B ()
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with p; () > 0 and 3, (-) > 0 being smooth functions, such that

<H k) ] +ek? -
m=0
lz’—l

: i—1
o )i] -t St
m=0 1 j=1

2
'li72l1:71 j

‘./(i,—l)LKS_(n_(i_Q Ez Y kP ,&

i—1
J’_
i=1

(22)

where ¢; > 0 is a constant and k; = 1. Clearly, (22) reduces to (19)
when i = 3.

Recursively, it can be shown that (22) also holds at Step 4. To this
end, consider the Lyapunov—Krasovskii functional

Vi= Vi-yk + k?qf?

P
2l !

1
by |

i—1 ¢2 2
Si o, s TR

k& ] (23)

where [;(-) > 1 is a dynamic gain to be designed.
Using (22) and the properties that [; > 1, k; > 1, we have

(1) <]

-1
+352Y | (0;N (k) + ¢5) (H kfn> k| 4 cik? - k2,8
m=0
lzfl -1 k/'2 k‘?fl 1
YA N S (14 2 ) b
2l1"'l172l-2 15 + l .. l171 +lz f,x7+1
2% - kP .
+l]71|0£t£,+1+g,ft() &)
-1 i—1
Zg]g] Z k k:m 5[2
= m;/
i1
——— LI
2[% . l?71 % 1 kl—] 52
j=1 m= 1
m#j
i i—1
212 Z I ti| |+ kii2,e|. ea
ji=1 m=1 =1
m#j

The terms in (24) can be estimated by using Lemma 4.2 and the prop-
erties of k; > 1 and [; > 1 as follows:

2%2 - kf .

1 k& (Lo, kior, 2)
1

i—1
< f) io(lico kioy, &iy)
Jj=1

FE (= )Tl (ot — d) Ry (¢ — d), 2, (t — d)

Th(Lio(t —d), ki (t —d), T4 (t — d)) 25)
%\@ F| <Kk & i (o ki, 2:)
+; <§£2(td)>

Lol ~ J
Ol (et = d), Rica (£~ d), Zica (£~ ) (26)
2R g o < R K€ ek KL, QD)

i—1
1 . .
ll l 1 § |§]§]‘ S kfk?—1§2
-1

i—1
1 oo
- 2\ W (] ki T -
+l1-“li,1 < é‘]) l(lz 27kt 15T 1)+l1~-~l,i71

S (t=d), T (t —d))

Jj=1
(28)
2 9 i—1 . i—1
1 gll k/ ki H krzn < k% 151‘,2"‘)2
1 il j=1 m=1
m#j
x (I; 3, kioo, T 1) (29)
1 i-1 [ i1 ' ]
212 12 H I lj k? : k/';z—lgiz
1 =1 lj=1 \m=1
m#j |
1 i i [i—1
B GRS
I; o,
S 2l1 . l,',ll,z 5] (30)
i i =1

where T”() > O, Tj]() > 0, (1)”() > O, (I)jj() > 0, \Ijl() > O,
Ui(-) >0,7=1,2,and w;(-) > 0 are smooth functions.

With the aid of the bounding functions Y7, (-), ®;;(-), and ¥} (:)
from the estimations above, which are related to the delay terms, one
can construct the Lyapunov—Krasovskii functional

t
S IO LA R

+/t7d 51(5)<Z§ )[TzZ i—2(8), ki—1(s), Zi-1(s))
a(8), ki (8), Zio1 (8)) 4 (lioa (8), ki1 (8), Zi—1 (s)))ds.
(€29)]

Vibk = Vi ~1(8),zi(s))ds

+85, (7
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Then, in view of (24)—(30), we have Substituting (36) and (37) into (32), we obtain
Viw < —(n— (-2 [(H k) f?} Ve s G Z <H0k )
j=1 L \m=0 m

s s (e )'] e glewen (I)s] s

++¢f:;:z%¢ <1+ o vt i . e g

k2 k224 + Yo (los ki1, @) + ®iy (o, ki 71) I+ Ta () + <I>1.,1 () +wi()+ 15 0)]

Fwilliog ko, @) + 05 (Lo, kir, 2)] + ﬁ (21: 5?) T2 ..l.izi_lzg }2:5/2 + i ki k€ (38)

Yo (lima, ko1, Ziy) + Pia (-2, ki1, 1)

+ \I/i(l:l—%];i—l;fvﬁ—l) + Y5 (lica, kica, i)
+ q>:2(l7i72:];'i—l>i’i—l) + qj:(zi—%jﬂi—hi’i—l)}

+ i

X5 (Lo (t—d) ki (8 —d), 71 (t — d))
+ @7 (Lo (t —d), ki1 (t —d), Ty (t — d))
+ U (Lo (t—d), ki (t—d), 21 (t — d))]

I; o,
S 2yl 12 (;51)

Following the idea and design given in Step 2, we can construct [based
on (32)] the delay-free gain update law

1 i—1

1 - 2
i ll(t*d)”-lf,l(t—d)} <‘1£j(t_d)>

J

(32)

li-n = max{—12 | + li_1pi-1(li—a, ki1, 2i-1),0} (33)
with /;_; (0) = 1, and

pica(li, ki, @ix) = 2[Tia () + 5o () + Pia () + @5 ()

+Vi () + i) (34)
By construction, it is easy to verify that
0< li < Licapioi(livo, iy, Tiy)
lis1 > —l?,l +lioipioa (Ld%i—h@ﬂ)
liin > lia(t—d)>1. (35)
As a consequence
liy - 2 .- 2 pi-1 (") - 2
2 < — .
2y -1 ol2 (J_lf] = ‘]_:15/ 20 -l _}.:15’
(36)
1 1
0 37
L hi—d i i=d = 37)

where ¢; = 2+ ¢; + (n — ).

To mitigate the effects of the unknown sign of 6;, we design the fol-
lowing virtual controller with a Nussbaum gain (updated by a universal
controller l%:i)

i = (I Lo)&GN (k)1 + T (0)
+®i1 () +wi (1) + 17, ()]
= (ll 'll?])gi ( )ﬂz(z 27 i— 17$z)

k- ( (39)

Substituting (39) into (38) leads to the claim that (22) holds at
Step ¢. The inductive argument so far has indicated that (22) holds
fori =mn+1 withu = x,,1 = z;, . As a consequence, a dynamic
state feedback controller that is composed of (20) with ¢ = n + 1 and
a universal-like control law

)6 /81(7 27 i— 11I,)-

u = (ll"'lnfl)gn ( n)/Bn(n 27 n— 1737)
ifn = gzﬁn (lin—%]%n,fl,m) (40)
renders
ok -3 KH k) }
j=1 m=0
+)° [(@N )+ ¢) <H k) ' } . @D
Jj=1 m=0

We end this section with an observation that the dynamic state feed-
back compensator designed so far, namely, (40) and (20)—(21) with
i=mn+1, is exactly of the form (2) with L = (I;,...,1, 1)T and
K= (ki,...,ky).

Remark 2.3: In the case when 6;’s are known constants (e.g., 0; =
1), all the k; = 1 and k; = 0. Then, the Lyapunov inequality (41)
reduces to

42)

n
Virg < *Zf? <0
=1

from which it is concluded that global asymptotic state regulation of the
time-delay nonlinear system (1) and boundedness of the closed-loop
system are achieved by the delay-independent, dynamic state feedback
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compensator (40) and (20)—(21), with k; = 1, k; =0 and N (ki) =
constant forz = 1,...,n.

B. Asymptotic State Regulation With Boundedness

In this section, we complete the proof of Theorem 2.1 by showing
that the universal-like, dynamic state feedback controller (40) and (20)
designed in Section II-A ensures not only the convergence of the system
state = but also boundedness of the resulting closed-loop system.

First of all, from the Lyapunov inequalities (22) and (41) it is con-
cluded that k;(t),i = 1---n, are bounded. The proof of this claim is
given in Appendix B.

By the boundedness of k;(t),1 <i <n, it follows immediately
from (39) that £2(t) < k; (t) because 3;(-) > 1 and I;(t) > 1. Hence,
[ € ds < ki(+00) — ki (0) = C.

On the other hand, it follows from (41) that

no 1
VHLK(t)S Z/w N( +CJ|<Hkm ) )ds—i—(’,

(43)

From the inequality (43) and the boundedness of k; (¢),i =1---n
it is straightforward to prove that the Lyapunov—Krasovskii functional
Vi1 k (+) evaluated on the solution trajectory of the closed-loop system
is bounded Vt € [0, +00). In view of the construction of V,, k (), in
particular, (31) and (23), we deduce that the boundedness of V,, 1 x (+)

k2..k2
11 1 =LEEi=1,.

Keeping the boundedness of z; and k1 in rmnd, itis tr1v1al to verify
that the gain /; (-) designed by (13) and (14) is monotone nondeceas-
ing. Moreover, [; (-) is also bounded. In fact, if it is unbounded, then
lim; ., « l1 (t) = +o00. By continuity of p; (-), p1 (k1,2 ) is bounded
due to the boundedness of k; and z;. As a consequence, there is a time
instant 7' > 0 such that —I? + 1, py (k1,21) <0 on [T, +oc). This,
together with (15), results in [, =0on [T, +00), which contradicts to
the unboundedness of [ (). Therefore, [; (-) must be bounded. This,
combined with the boundedness of k;, implies the boundedness of x;
and & = xo — x5, and so does x,. With the help of the boundedness
of k;(1 < i <n), the boundedness of /;(-) and z; can be proved in
the iterative manner of zo — ly — 3 — -+ — [, 1 — x,, by using
(20) and (21). In conclusion, all the signals of the closed-loop system
(1)~(40)—(20) are bounded V¢ € [0, +00).

Finally, note that éi, i=1,...,n are also bounded and

"% €2(4)dt < 4oo0. It is thus deduced from the Barbalat’s lemma
that &, ¢ =1,...,n converge to zero as ¢t — +oo. This, in view
of the coordinate transformation (21), implies that the state x tends
to the origin as t — +oc. In this way, the proof of Theorem 2.1 is
completed.

implies the boundedness of x,

IIl. EXTENSION AND DISCUSSION

So far Theorem 2.1 has been established for the time-delay system
(1) with unknown control directions. Due to the robust nature of the
Lyapunov— Krasovskii functional based design in Section III, it is easy
to show that Theorem 2.1 can be extended to a family of uncertain
nonlinear systems with time delay, as long as their bounding system
has a lower triangular structure.

Corollary 3.1: For the following family of uncertain time-delay
systems with unknown control directions
@ = eixiJrl + ¢L(x7 l‘(t - d)7 u7t)7

i=1,...,n (44

where z,.; =wu and ¢; : R" x R" x R x R — R is a continuous
mapping with uncertainty satisfying, fori =1,...,n

0z, 2(t = d),u,t)] < 7 (2, i (¢ - d)) <Z(Iw.j + fa; (= d)|)>
j=1
(45)
with; (Z;, Z; (t — d)) > 0being aknown smooth function. Then, there
is a delay-independent, dynamic state feedback compensator of the
form (2), driving the system state x to the origin while keeping bound-
edness of the closed-loop system (44) and (2).

A difference between Theorem 2.1 and Corollary 3.1 lies in that the
former requires the controlled plant (1) to be precisely known, while
the latter needs no accurate information of the time-delay system (44),
ie., ¢;(z,z(t — d),u,t) may involve uncertainty but does need the
knowledge of the bounding system, or, v; (Z;, Z; (t — d)) in (45).

The next result illustrates how a simplified delay-free, dynamic state
feedback compensator, with a set of reduced control gains, can be
designed to achieve global asymptotic state regulation with stability
for the time-delay nonlinear system (45) with uncertainty.

Corollary 3.2: Under the growth condition (45), a family of time-
delay uncertain systems (44) with unknown control directions is glob-
ally asymptotically regulated by the delay-free, dynamic state feedback
compensator

u

& N (K,
o
ll e lnfl

where the gains /; and k; (1 < i < n — 1) are updated by (20) with the
coordinate transformation

)/8"(" 15 kn 17I)7
giﬂn(l_nfl;];‘nfl,fl’)

ﬁn () > 07

b = (46)

z; =0 &L =x — o)
x5 = &GN (k)b (21) £ = a2 — 1)
. 1
ky = (1 + 7) &)
1
: 47
ZL‘; = En—] N( n— l)ﬁn 1( n—2, k)n,—Zai'n—l) fn =Ty — "L;

. 1 1
knfl = 1+ 672171 Bn—l(')'
ll o ln—? ln—l

Remark 3.3: Compared with the dynamics state feedback law (40)
and (20) with (21), the dynamic state controller given by Corollary 3.2
is simpler and has much smaller gains, by removing [; ---[,, 1 from
the controller (40) and [; - - - [;_; from the virtual controllers (21), and
reducing the gains of the universal control laws k; simultaneously.

Corollary 3.2 can be proved in a manner similar to that of Theo-
rem 2.1. However, the proof is less intuitive and involves more sub-
tle/tedious estimations. Details are omitted for the reason of space.

The following example demonstrates the application of
Corollary 3.2, showing how a delay-free, dynamic state feedback com-
pensator can be designed.

Example 3.4: Consider the time-delay planar system with unknown
control directions

i’1:$2

Oyu 4 23 (t — d). (48)

Ty =

To handle the nonlinearity with the delayed state, we use the Lyapunov
function V; = 5 (1 + ; )51 with ¢, = z;, and introduce the gain up-
date law

Iy = max{—1? + Iy py (k1,21),0}, 1,(0)=1 (49)

where p; (k1,21) > 0 is a smooth function to be given later.
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Closed-loop trajectories (x,x,) w0 Control law u

time t time t

Trajectory |0

Trajectory k(Y
. » rajectory k(t)

1.18

200 116

1.14

150 1.12

10

100 1.08

1.06

50 104

1.02

0 1 2 3 4 5 0 1 2 3 4 5
time t time t

Fig. 1. State trajectories of the closed-loop system (50)-(54).

For the planar system (48), design the virtual controller x5 = —3¢;
and define & = o — 5. Using the fact that [, > 1 and [, > —I? +
lip1(ky, ) leads to

U= (14 1) € - g€ <2648 - gl
1 1 1
Since the sign of x, is known, the virtual controller z7 is designed
directly without using the Nussbaum gain, i.e., simply set k; = 1.
Following a design procedure similar to the one presented in
Section II, we construct the Lyapunov—Krasovskii functional

‘ 1
—a hi(s)

1 ‘ 7. ’
Vark = V1+7§§+/ &(s) | = +al+&| ds
2 : 1

t
1 . .
+/ E2(s)[10 + 22 (s)]ds. (50)
1—a l1(8)
Then, a direct calculation gives
y 2 2 1 2, 1
Vorw < =26 — 2§ — RA (ky,21)& + 79252U
1 1
1. 49 17 50 L\
T |2 (Z+§§ +wf) }
1 9
+7x§ {5+(10+x‘f)2} (51)
1

from which it is deduced that the delay-free dynamic state controller

9
pl(k’l,ljl) = 2 |:§ -+ (10+.’E?)2:|

. 61 (17 ’
, ) 61 17, L\
k= & 211+z+ z+52+$1 (52)

together with the gain update law (49), asymptotically regulates the
state (z1,z2) of the system (48) to (0, 0), while keeping the signals
(Iy,k,z1,z5) of the closed-loop system bounded.

The simulations of the trajectories (z1,z2) and (I;,k) of the
closed-loop system (48)—(49) and (52) are shown in the figure
above, with the parameters 0, = —1, d = 1.25 and the initial condi-
tion (x1(0), z2(0)) = (0.75, —1.25). Notably, the proposed dynamic
compensator (49) and (52) is independent of the time delay, and hence
it also works for a large delay d in the nonlinear system (48), as long
as d is finite.

IV. CONCLUSION

In this paper, we have investigated the problem of global state regu-
lation with stability for nonlinear systems with both time-delay uncer-
tainties and unknown control directions. A delay-free, dynamic state
feedback control strategy has been developed based on the dynamic
gain-based design technique [19] and the idea of universal control with
the Nussbaum function [13]. The dynamic state feedback compensators
proposed in Theorem 2.1 or Corollary 3.1 consist of two sets of gain
update laws, which are a reminiscent of the work [6]-[8] on univer-
sal control of nonlinear systems with unknown parameters by output
feedback. One set of gain update laws is a Riccati-type, effective in
counteracting the time-delay nonlinearities, while the other set of dy-
namic update laws is an universal control-like using the Nussbaum
function, capable of mitigating the effects of unknown control direc-
tions. In contrast to the work in [19], a set of new Lyapunov—Krasovskii
functionals have been constructed in this paper, in order to cope with
both time-delay uncertainties and unknown control directions simulta-
neously. It has been shown that the proposed dynamic state feedback
control scheme guarantees not only the convergence of the system state
to the origin but also global boundedness of the resultant closed-loop
system.

APPENDIX A

This Appendix collects three lemmas that are used in this paper.

Lemma4.1: [9], [20] Let z € R",y € R™ and f: R" x R" —
R be a continuous function. Then, there are smooth functions a (z) >
0,b(y) >0,c(x) >1andd(y) > 1, such that

[f (@, y)| < alx) +b(y), |f(z,p)]<cz)d(y).

Lemma 4.2: [19]Letz € R",y € R™ and f: R" x R™ — Rbe
a real-valued continuous function. Then, there exist smooth functions
g(x) > 0and h(y) > 0, such that

(53)

f@y) Azl +llyl) < g (@) Izl + @)yl (54)

Lemma 4.3: For z; € R and 7;(t — d) € R’ denoting T; at time
t—d,letf; : R x R — R be areal-valued continuous function with
£:(0,0) = 0. Then, there exist smooth functions ¥;; (Z;) > 0 and
35, (Z; (t—d)) >0,j =1,...,4, such that

i (@, 2 (= d)| < 252, (3 (a5) |75 |
+73i5 (5 (= d)) |lz; (t = d)])

The last lemma is a direct consequence of the mean value theorem
with an integration remainder, as shown in [19], [20].

. (55)

APPENDIX B

The boundedness of k; (¢),i = 1,...,n on [0, +00) can be proved
by a contradiction argument. For simplicity, we first prove the claim
for the case of n = 2. In this case, if k;(t),7 = 1,2 are unbounded,
let [0,%71) and [0,%y5) be the maximum intervals of k; (¢) and k» (),
respectively. Then,

® Fact(a): tyy > tyo must hold.

Authorized licensed use limited to: Chiang Mai University provided by UniNet. Downloaded on May 22,2020 at 04:12:04 UTC from IEEE Xplore. Restrictions apply.



1502

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 63, NO. 5, MAY 2018

If not, £y < tyo. This implies that k; (¢) is bounded on [0, ¢, ). From
(7) and the property that &2 < ks (by (18)), we have

Viek < (BN (ky) + )y + coky, VE€[0,87,).  (56)
This, together with the relation that
/N k*sink + 2k cosk — 2sink + ¢, 57)
results in
0< Lkl g b W sin( (1) + Cu, WEE[0,L)  (58)

- k()

where ('} is a constant.
Sincelimy ., ki (t) =
negative when k; (t) is large enough, regardless of ;. This clearly leads
to a contradiction. Hence, t71 > /5.
As a consequence of Fact (a), ki (t) is well-defined on [0, ¢y5). In
addition, the argument above, in particular, (56)—(58), also implies that
® Fact (b): ki (t) is bounded if k5 (¢) is bounded.
With this in mind, we only need to prove that k5 is bounded. If k, () is
unbounded and only define on [0, ¢, ), consider the inequality (41) with
n = 2, or, equivalently, (19) with Iy = 0 and & = 0. Dividing k2 (t)
on the both sides of (41) and integrating from 0 to ¢,Vt € [0,¢7,), we

arrive at
tT t
Vark (s) /
<
/(; k’Q( ) ————ds g 91 COS(]Cl) ]{j2 dk]

ko (t)
+/ (62N (ko) + C) dks,
k2 (0)

+00, the right hand side of (58) can become

which, combined with (57) and the monotone increasing property of
ki(t) on[0,%ys), yields

Vark (1)
'S Foko =

where C, is a constant.

Similar to the proof in (58), a contradiction can be drawn from
(59). Thus, k, (t) must be bounded for all 0 < ¢ < ¢;,. As a such, the
maximal interval [0, %) of k2 (¢) can be extended to [0, 4+00). In other
words, ks (t) is bounded V¢t > 0. By Fact (b), k; (¢) is also bounded on
[0, +00).

Whenn > 2, an analogous but more tedious proof can also be carried
out. If the claim is not true, there is at least one k; (¢) that is unbounded.
Let [0,%7;) be the maximum interval of k;(¢). Then, we can prove
that by the proposed design, ty; >ty > --- > ty, . Note that (58)
also holds for the n-dimensional system. From (22) and the fact that
€ <k;,Yi=1,...,n, we have

Vik < Z[ (6, N (k (H k) S [ERY RO I

j=1 m=0
(60)

< Osky (1) sin(ka (t)) + Co, VE € [0,872)  (59)

Using (60) and proceeding a similar argument as done in (58) recur-
sively from 7 = 1 to 7 = n, one can conclude that: (1) ¢y, > --- > ty,,
and (ii) k; is bounded if k; ; is bounded.

Finally, similar to (60), by dividing []"_, k2, () on the both sides

m= m

of (41) and integrating from O to ¢, Vt € [0, t #n ), it can be shown that
k,, (t) is bounded on [0, +o00). With the help of the property (ii), one can
prove recursively, fromi = n — 1 to¢ = 1, thatall k; (¢)’s are bounded
vt > 0.
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L,V -Type Adaptive Controllers for Uncertain Non-Affine Systems and
Application to a DC-Microgrid with PV and Battery

Wei Lin

Abstract—Adaptive control of general nonlinear systems with
nonlinear parameterization is studied in this paper. Under the as-
sumptions that the system has stable free dynamics and satisfies
controllability-like conditions characterized by the Lie brackets of
affine vector fields, it is proved that there exist L, V-type adaptive
controllers that not only asymptotically regulate the state of the
nonlinearly parameterized system but also guarantee global sta-
bility of the closed-loop system. The design of L, V-type adaptive
controllers is also included. Applications of the proposed adaptive
control scheme are presented, including an interesting case of a
dc-microgrid with photovoltaic (PV) and battery system.

Index Terms—Adaptive control, dc-microgrid with PV and Bat-
tery, nonaffine systems, nonlinear parameterization, bounded feed-
back, passivity.

|. INTRODUCTION

Motivated by the recent development in the area of voltage regulation
and maximal power point tracking (MPPT) control for dc-microgrid
with photovoltaic (PV) and battery in island mode [20], where a dc-
microgrid that consists of a PV array, a battery storage, a dc bus,
dc/dc converters and loads with different voltage levels are modeled
by a nonaffine nonlinear system with parameters, we investigate in this
paper the problem of adaptive control of general nonlinear systems
with parametric uncertainty. The objective is to develop a new adaptive
control strategy based on the theory of nonaffine passive systems [10],
[11], for nonlinearly parameterized systems with a general structure

z = f(z,u,0) (1)
y = h(z,u,0) (2)

where z € IR", u € IR™, and y € IR™ are the system state, input and
output, respectively. The parameter § € IR is assumed to be a constant
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vector, the vector fields f: IR" x IR™ x IR" — IR" and h: IR" x
R™ x IR" — IR™ are smooth with f(0,0,6) =0 and h(0,0,0) =
0Vve.

For affine systems with stable free dynamics, global stabilization via
state feedback has been studied extensively in the literature by passive
systems theory. The notions of passivity and dissipativity for nonlin-
ear systems were originally introduced in [21], which are naturally
evolved from a series of studies on the positive-real transfer function,
the Kalman—Yakubovitch-Popov (KYP) Lemma and their various ap-
plications in linear systems and adaptive control. Extensions of [21]
to affine systems and a nonlinear analogue of the KYP lemma were
obtained in [4]. For a class of affine systems whose unforced dynamics
are stable, L,V controllers were proposed in [7]. Further extensions
and developments can be found in a series of papers [1], [6], [8], [9],
[17], [18]. Using the concepts and synthesis techniques from passive
systems, together with the geometric approach [5], a framework was
developed in the paper [2] for global stabilization of minimum-phase
nonlinear systems. It was proved that the aforementioned results and
generalization thereof can all be unified and rederived by passivity and
feedback equivalence. When affine systems involve a structural uncer-
tainty, a robust version of nonlinear KYP lemma and its application to
robust feedback stabilization were carried out in [13].

Since the seminar work of [2], attempts have been made in
developing a more general passive system theory that goes beyond
affine systems, for example, for nonlinear systems which are not linear
in the control input, such as nonaffine systems of the form (1)-(2). In
[10], a solution to the local stabilization problem was first addressed
for the nonaffine system (1) without parametric uncertainty, i.e., § = 0,
by means of the passivity of nonaffine systems. In the subsequent work
[11], it was shown that similar to the affine case [2], [4], a passive sys-
tem (1)-(2) with # = 0 is globally asymptotically stabilizable by static
output feedback if it is zero-state detectable. A criterion for zero-state
detectability of the nonaffine passive system (1)-(2) was characterized
by the Lie brackets of the vector fields f(z,0) and Z—{L (z,0). Based on
these results and the feedback equivalence of rendering a system (1)
passive via a suitable dummy output, a controllability-like condition
was derived for a nonaffine system (1) [11], under which global
asymptotic stabilizability is achievable by bounded state feedback.

All the results reviewed so far have been focused on nonlinear
systems without parametric uncertainty. When a nonaffine system
such as the dc-microgrid with PV and battery [20] involves uncertainty
or unknown parameters, how to control this type of nonaffine
systems with nonlinear parameterization is certainly an interesting
question that is worth of studying. In this paper, we tackle the
problem and present an adaptive control strategy for global asymptotic
regulation of the nonlinearly parameterized system (1) with stability.
In particular, we show how the nonaffine passive systems theory [10]
together with the techniques of feedback passivation and bounded
control [11], can be employed to design a LgV-type adaptive
controller, which solves the problem of global adaptive stabilization
of general nonlinear systems with stable free dynamics. Examples and

0018-9286 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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applications to a dc-microgrid with PV and battery [20] are presented
to highlight the contribution of the paper and some key features of the
L,V -like adaptive control scheme.

The paper is organized as follows: In Section II, we review some
basic concepts and properties of passive systems with a nonaffine struc-
ture. We then briefly discuss applications of passivity to the feed-
back stabilization and the characterization of a controllability-like rank
condition — a dual of zero-state detectability. Using the results in
Section II, we present in Section III sufficient conditions for the exis-
tence of globally stabilizing adaptive controllers. In addition, we also
show how a L,V -type adaptive control law can be constructed for the
nonlinearly parameterized system (1). The crucial idea behind our de-
sign is the use of “small control” technique from [11]. Examples and
an application to the dc-microgrid with PV and battery are presented in
both Sections III and IV, respectively, for the validation of the proposed
L,V -like adaptive control scheme.

Il. PASSIVITY, DETECTABILITY AND BOUNDED FEEDBACK

We briefly review in this section some basic concepts and stabil-
ity properties from passive systems theory [2], [4], [10], [11], [21],
which play a vital role in the development of adaptive control for the
nonlinearly parameterized system (1).

Recall that an input-output system (1)-(2) with the parameter 6 is
said to be passive if there exists a continuous nonnegative function
V:IR" xR — IR, with V(0,0) = 0, such that for each € IR"

t
Vo(x(t),0) — Vi (z0,0) < / y* (s)u(s)ds, Yu € R™,Vz; € R"
0

3)
where z(t) = ¢4 (t, 29, ) is a solution of (1) from z(0) = =,.
If V; is C', the passivity inequality (3) can be simplified as
Vo <y'u, YucIR™. )

Moreover, system (1)-(2) is called lossless if (4) becomes an identity.

A fundamental property of affine passive systems is characterized
by the well-known KYP Lemma [4]. It has been shown that the KYP
Lemma is instrument in solving the feedback equivalence problem
between affine passive systems and minimum-phase nonlinear systems
with relative degree {1,1,...,1} [2]. For the input-output passive
system (1)-(2), an analogue of the KYP lemma does not exist due to
the loss of an affine structure. However, a necessary condition can still
be obtained for the nonaffine system (1)-(2) to be passive.

Lemma 2.1: [10]Let Qo = {x € R" : Ly, Vi = 0}. If the param-
eterized input-output system (1)-(2) is passive with a C'!' storage func-
tion V. Then, for each 6 € IR"

Ly Vo <0, VoeIR" (5)

o, 0f

9x 9y (@ 0,60) =" (,0,6),

Ve e Q. (6)

With the help of Lemma 2.1:, it is possible to characterize some
intrinsic properties of the parameterized passive system (1)-(2) such
as zero-state detectability, observability, and stabilizability, which are
crucial in the design of globally stabilizing state feedback controllers
for the nonaffine system (1).

An input-output nonlinear system of the form (1)-(2) is said to be
zero-state detectable if for each # € IR” and xp = 2 € IR"

y=nh(oy(t,z,u),u,0)|,_,=0vt>0 = flim @9 (t,2,0) = 0.

The system (1)-(2) is zero-state observable if
y=nh(oy(t,z;u),u)l,_, =0 Vt>0 = z=0.

Using the notion of zero-state detectability, one can prove the fol-
lowing stabilization result.

Lemma 2.2 ([10]): A passive system (1)-(2) witha C* (¢ > 1) stor-
age function V|, which is positive definite and proper, is globally
asymptotically stabilizable by u = —s(y) if it is zero-state detectable,
where s:IR™ — IR™ is a smooth functions satisfying 37 s(y) >
0Vy # 0 and s(0) = 0.

For a passive system with the nonaffine structure (1)-(2), zero-state
detectability and observability can be characterized by the Lie deriva-
tives and Lie brackets of the affine vector fields associated with the sys-
tem (1) [10], [11]. In fact, for each 6 € R", let fy(z,0) = f(x,0,0)
and ¢ (z,0) = g;(z,0,0) = %(1’,0,9) denote the smooth vec-
tor fields in IR", 1 <¢ < m. Define the Jacobian of f w.r.t.
uat u=0 as go(z,0):= %(I,O,Q) =[¢(z,0),...,9% (z,0)] €
IR" ™. Using the vector fields fy,g?,...,¢" , we introduce the
distribution

Dgzspan{adﬁog?: 0<k<n-1,1<i<m}
and two sets €2y and Sy defined by
Q ={zeR": Lj Vy(z,0) =0, k=1,....0} ©)

Sy ={x eR" : Lj L, Vy(x,0) = 0,¥7 € Dy,0 < k < £ —1}.
®)

With the aid of the notations above and in view of Lemmas 2.1 and 2.2, a
computable criterion can be obtained for testing zero-state detectability
and observability of the parameterized passive system (1)-(2), by virtue
of the affine vector fields f(x,6), g?(z,0) and their Lie derivatives
and Lie brackets.

Lemma 2.3 ([10]): Consider the passive system (1)-(2) with a C!
storage function Vj,, which is positive definite and proper. Then,

1) the system is zero-state detectable if Qy NS, = {0}. Moreover, if
the system (1)-(2) is lossless, then
2) the system is zero-state observable if and only if Sy = {0}.
Putting Lemmas 2.3 and 2.2 together, we have the following propo-
sition to be used in Section III.

Proposition 2.4 ([11]): Assume that the input/output nonaffine sys-
tem (1)-(2) is passive with a C! storage function Vj, which is
positive definite and proper. If Qy NSy = {0}, the system is glob-
ally asymptotically stabilized by the static output feedback controller
u = —s(y), for instance, by u = —y or a small bounded feedback law
u= *ﬁHfW’ V5 e (0,1).

Finally, we recall the following parameter separation lemma from
[15], [16] to deal with the issue of nonlinear parameterization.

Lemma 2.5: For a real-valued continuous function f(x,0), there
exist smooth scalar functions a(z) >0, b(f) >0, c(z) > 1, and
d(#) > 1, such that

|f(,0)] <a(x)+b0) and

[f(z,0)] < c(x)d(0).  (9)

IIl. ADAPTIVE STABILIZATION BY STATE FEEDBACK

We now study the adaptive control of the nonaffine system (1) with
parametric uncertainty. In this paper, we make the following assumption
that characterizes a class of nonlinear systems (1).

Al) There is a C*(¢ > 1) function V; : IR® — IR, which is positive
definite and proper, such that the unforced dynamics with an
unknown constant vector 6, i.e., # = f(z,0,0) =S fo(x,0) is
Lyapunov stable, i.e., Ly, Vo (z) <0, V(z,0) € R" xIR".
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As illustrated by Examples 3.8 and 3.9 or the dc-microgrid with PV
and battery, many physical systems of interest satisfy the assumption
(A1). In what follows, we apply the theory of passive systems reviewed
in the previous section to develop an adaptive control strategy for the
nonlinearly parameterized system (1) with stable free dynamics. In
particular, we show how an adaptive controller that achieves global
asymptotic state regulation with stability can be designed, by means of
the concepts of passivity and feedback equivalence, as well as the idea
of bounded feedback shown in Proposition 2.4.

We begin by observing that a smooth nonlinear system (1) can be
decomposed as

= fo(z,0)+ g(z,u,0)u = fo(z,0) + X", g;(x,u,0)u; (10)
or, what is the same,
&= fo(z,0) + go(z,0)u+ 37" u; (R (x,u, 0)u) (11)

where gy (z,0) is defined in Section II and the n X m smooth ma-

19
;S|

value theorem with an integration remainder, i.e.,

dr | u
n=>iu

7gn(')}u'
(12)

trix g(z,u,0) = d) can be obtained by the mean
Au

f(z7u79) I7070 ( x "77 )

=g(z,u,0)u=[g1(-),...

By the same reasoning, R;(x,u, ) is an n x m matrix that can be
computed from the relationship

' dg:
gi(z,u,0) — g;(x,0,0) = (z,m,0) dr | u
0 877 7= Au
= R;(x,u,0)u (13)
for e =1,...,m. Clearly, (11) follows immediately from (10) and

(13).

To address adaptive control of the nonaffine system (11) with para-
metric uncertainty by a L,V -type feedback, we make the following
assumption.

(A2) go(z,0) = d—f (2,0,0) is independent of the unknown
parameter 6.

Remark 3.1: The assumption (A2) basically requires that the affine
part of the nonlinearly parameterized system (1) or (11), i.e., the term
of gy (z, 0)u, be independent of the parameter 6. Clearly, a significant
class of nonaffine systems with unknown parameters satisfies (A2), as
shown by Examples 3.8 and 3.9 or the uncertain nonaffine systems (24)
and (27).

Under the assumptions (Al) and (A2), we prove that the
controllability-like condition - Q4 NSy = {0} is sufficient for the ex-
istence of a L,V -type adaptive controller that adaptively stabilizes the
nonaffine system (1) with parametric uncertainty. The proof is carried
out by designing an adaptive law based on the idea of bounded control
combined with feedback equivalence to a passive system.

Theorem 3.2: Assume that the nonaffine system (1) or (11) with
parametric uncertainty satisfies the assumptions (A1) and (A2). If 2y N

Sy = {0}, the following L,V -like adaptive control law

afz, ©)[ Ly, Vol

6=p—21 (14)
(1+02)(1 4 || Ly, Vol?)
Dy a (Lgo%(x))T
w0 = =l O L Vi 1
R 3 1
a(z,0) = — - ,0< <1 (16)
m(l+ ©2?) 14 p2( ”aVOH

with p(x) being satisfying (17), globally asymptotically steers the state
x to zero while maintaining global stability of the closed-loop system
(1) and (14)—(16).
Proof: By Lemma 2.5, it is easy to see that there exist a smooth
function ¢; (z) > 1 and a constant d; (§) > 1, such that V |u|| < 1
IR: (2, 0,0)| < i (x.0) < c;(x)d; (0) < Op(z), i = 1

e, M

an

where p(z) > X" ¢;(x) (or, p(x) > maxi <<, ¢;(x)) is a smooth
function and © = max;<;<,, d;(0) > 1.

By the assumption (A1), there exists a C' Lyapunov function V,
which is positive definite and proper, such that the unforced dynamic
system & = f(x,0,0) = fo(x,0) is globally stable. Let © be the
estimate of the unknown parameter ©. Define the estimation error
0=0-0.

Now, consider the Lyapunov function

Vi(z,0) =V, (x )+ @2 (18)

for the closed-loop system (11) and (14)—(16). Then,

V(z,0) = Ly, Vo(x) 4+ Ly, Vo (z)u + u" Ly u.0)Vo(a )u—@@
(19)
where the m x m matrix
oV;
LRI(TAUH,(;')‘/O(I) TJRl (‘T7u79)
L T,u 6)%( ) -
LRm (Ju,e)‘/()(x) %Rm (.”L',’U,,e)
(20)

From (17) and (20), it follows that

o=

o,
ox

Loy Va(2)]| < (mu ) (S R, 0)])

oV,

<WH*||( 0 (x))* < mp(x)| =110

This, together with (A1), (19), and (15), yields
V < Ly Vi()u(w,0) + [[u(z, ©)| | Lr (., m( )| - 66

(C] .
A Ly Vo (@) “ =
< af(z,0 — 1| —
< of )1+||anvu E 1+HL40V0( e
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In view of (16) and © > 1, we have

Ly Vo ()7
L+ [|Lg, Vo ()2

10A%,
AR e o
(1+@2 {1+ Havﬂ || pz(x)} (1+ HLQU VO(QT)HZ)

V< —é@) + a(z, C:))

~ N

86 _ 2Ol Ly, Vo ()|
- L[|y, Vo ()2

L Bal) <é+é>||Lg[,vo<x>|2}

1402 | 14]Ly Vo(@)|?

59 _
1+ 062

Bo()[[Lg, Vol
(14+©2)(1 + Ly, Voll*)

G
|
<<ﬂ1+(~)2 )

By the Lyapunov theorem, (21) implies that the closed-loop system
(11) and (14)—(16) is globally stable. To prove asymptotic convergence
of the state x, we let V(m, ©) = 0. Then, it is deduced from (19) and
(21) that

()|l Ly, Vol
L[| Lg, Volf?

-6

a(,0)||Ly, Vo ()|
L[| Ly, Vo (@)

<0. 1)

Ly, Vo(z) =0 and L, Vy(z) = 0. (22)

Using an inductive argument, we arrive at

L Vo (z) =0, Lk L, Vo(x) =0, V7 € Dy, 0< k<€ — 1.
(23)
By the La Salle’s invariance principle, all the bounded trajectories of
the closed-loop system (11)—(14)—(15) eventually approach the largest
invariant set in {(z, ©) : V(z,©) = 0}, which is contained by (Ss N
Qg) x IR.

Because NSy = {0}, {(2,0):V(z,0)=0}={0} x R.
This means that lim, ., ., 2(¢) = 0. That is, global asymptotic state
regulation is achieved. |

From Theorem 3.2, we can deduce some interesting corollaries on
adaptive stabilization of nonaffine systems with parametric uncertainty.
The first result is a direct consequence of Theorem 3.2.

Corollary 3.3: Consider the single-input nonlinearly parameterized
system with a polynomial input

&= folx,0) + go(®)u + go(z,0)u* + - + g, (v, ) (24)

where g; : IR" x IR — IR", 2 <14 < p, are smooth vector fields. Sup-
pose (A1) holds and Q4 NSy, = {0}. Then, the nonlinearly parameter-
ized system (24) is globally adaptively stabilizable by the controller

g (Lgy Vo ())?

D)-

= —,0< <1
(1481 + gt @) e oy * F (P 02V
u(z,0) = — p Loy Vol@) s

AL

(1487 (1+ ()| S o) 1T T

%)
where p(z) is a bounding function satisfying the inequality (26).

Proof: In the single-input case, it is clear from (11) and (24) that

Ry (2,u,0) = go(2,0) + g3(2,0)u+ - + g, (x,0)ul 2.

By construction, |u| < 1. Thus, it follo_ws from Lemma 2.5 that there
exist smooth functions ¢; (z) > 1 and d; (f) > 1, such that

1B (2, w, O)|| < [lg2(, )| + [lgs (, O)[[[|w]
+oo ot llgp (2, O) |l

< Tei(2)di(6) < Op(a), (26)
where p(z) > X_, ¢ (x) is a smooth function and
© = maxy<;<,d; (0) > 1.
Using the bounding function p(z) thus obtained,
Corollary 3.3 follows directly from Theorem 3.2. |

In the multi-input case, an analogous result can also be deduced
from Theorem 3.2, which will find an interesting application to the
dc-microgrid with PV and battery, as illustrated in Section IV.

Corollary 3.4: Consider the multi-input nonaffine system with non-
linear parameterization

&= fol@,0) + DL g7 (@) + 37 57193y (2, 0) s, iy

SRR S YANPIEEED Y SY T (@, 0)ui, -y, 27)

Under (A1) and ©y N Sy = {0}, the adaptive controller (14)—(16) not
only renders the nonlinearly parameterized system (27) globally stable
but also steers the state x to the origin asymptotically.

Proof: By construction, ||u|| < 1. This, together with Lemma 2.5,
implies the existence of smooth functions ¢;, i, (), ..., ¢, .., (),
and d; i, (0),...,di,..i,(0), i =1,....m, j=1,...,p, all of
them bounded below by one, such that

Hzm

S Gy (2 O iy A S B, (2,0)
T Uiy UGy, H < E?lbflzgzlcillé (m)diliZ (9) +
SIS (28)

L) > ZT?L l Zm - Zm
i]=

m
; iy i, () >1 is a smooth function and the unknown
’ ip:l 1 P

. E:;l;:] Ciy ip (T)dil ip (9) < @p(m)

where Civiy (

constant

© >max{d;, ..., (0) : 1<i; <m, 1<j<p}>1

Using the bounding function p(x) in (28), it is straightforward to
deduce Corollary 3.4 from Theorem 3.2. |

Finally, based on Theorem 3.2 and the backstepping design, we can
establish the following adaptive control result for a class of weakly
minimum-phase systems with nonlinear parameterization

:’E = f(l'7§179)
& =6+ fi(z,&,0)
: (29)

éq—.l :fl‘ +fq—1(x7£17"'a€q—170)
5(1 :U+fq(m7£17“‘7€q79)

where v € IR is the control, (z,£) € IR" x IRY is the system state.
Corollary 3.5: Assume that the zero-dynamic system =
f(z,u, 0) with u = & satisfies (Al), (A2) and Qp NSy = {0}. Then,
the problem of global adaptive stabilization of the nonlinearly param-
eterized system (29) is solvable.
Proof: By Theorem 3.2, the adaptive controller (14)—(16) that is of
the form

(30)
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globally adaptively stabilizes the zero-dynamic system

:f(x7§179):f()(x79)+g(x75110)€l (31)

when the state §; is viewed as a control input. In particular, there is a
Lyapunov function V (z, 0) defined by (18), such that

)
14 ©2

a(z, 0Ly, o (@[> _
L+ Lo o @)P
(32

V(x,0) < Ly, Vi(z) — {1ﬁ

for the closed-loop system (31)—(30) with the virtual controller £ =
7(6,z) and v(6,0) = 0.

By the backstepping design, combined with the adaptive domination
method [15], [16] for dealing with the nonlinear parameterization, one
can prove that the augmented system

‘L:f(x>£l70)
51 =&+ fi(w,6,0)

which is obtained by adding an integrator to the zero-dynamic system
(31) with the perturbation f; (x,&;,0), is still globally stabilizable by
the same form of the adaptive controller (30), in which the unknown pa-
rameter © and its estimation © needed to be modified accordingly, and
7(©,z) and v(O, x) are replaced by the new adaptive law n(0,z,&)
and the virtual controller & = w(@w,&). In addition, the control
Lyapunov function in this step is given by

(33)

Vi(z,&,0) = (fl—ff)z

when &, is treated as an input for the augmented system (33).

Inductively, one can carry out, similar to the one in [16], an adaptive
domination design step-by-step, by modifying the parameter © and its
estimation ©, as well as the adaptive update law 7)(-) and the virtual
controller 7(-) at each step. At the gth step, a true adaptive controller
of the form (with a bit abuse of the notations 7 and ~)

V(z,0) +

(—:):77((;:)7:1;7617'“76(1)7 ’7((;)7070,70):0
:7(671’,7517"'76-(1)7 7(670707"'70):0 (34)
is found, rendering the nonlinearly parameterized system (29) globally
stable and lim, ., o (x(¢),&(t)) = 0. [ |

Remark 3.6: Analogue to the analysis in [15], [16], by Lemma 2.5
and reparameterization, we can prove that Theorem 3.2 and its corol-
laries remain true even if the parameter 6 is a time-varying signal rather
than a constant vector, as long as 6 : IR — IR* is a periodic function
of ¢, whose norm bounded by an unknown constant 6, In other words,
Theorem 3.2 and Corollaries 3.3-3.5 are also applicable to nonlinearly
parameterized systems such as (1), (27), and (29) (weakly minimum-
phase), in which the parameter § = 0(t) represents unknown periodic
signals and satisfies ||0()|| < 6 Vt € [0, +00).

Remark 3.7: Notably, Corollary 3.5 has refined the previous results
on minimum-phase systems with nonlinear parameterization. For ex-
ample, the class of nonlinear systems in [16] requires that the system
(29) be globally asymptotically and locally exponentially minimum
phase, i.e., the zero-dynamics of (29) & = f(x, 0, 0) is globally asymp-
totically and locally exponentially stable at 2 = 0, for each 6 € IR".
This assumption has been relaxed by a weaker condition, namely, the
weakly minimum-phase property. That is, the zero-dynamics of (29)
is only globally stable. The trade-off is, however, a controllability-like
condition needs to be imposed on the zero-dynamic system (31).

We end this section with two examples that illustrate the applications
and interesting features of the proposed adaptive controllers.

Example 3.8: Consider the single-input nonaffine system
T1 = —WTsy

By = wad + 2o sinu + v In(1 4 (02,)?) (35)

where w # 0 and 6 are unknown constants.
Clearly, system (35) is of the form (1) or (11) with

folz,w) = {—w?} o go(x) = [ O}

way i

0
R(x7 u, 0) = |:x2 sinU:sz—u + uln(l + (9.7)1 )2) :| .
Note that ““ul# is a well-defined analytic function and bounded when
w is bounded. Then, whenever |u| < 1

IR(z, w, O)[* < |wo] + [0]]a1 ] < (14 [0])(1 + 2 + 23) == Op(x).

The constant © = 1 + || is a new parameter to be estimated, and the
bounding function p(2) = 1 + 2} + 23 will be used to design adaptive
controllers for the uncertain system (35).

Now, consider the Lyapunov function Vj(z) = Laf + $a3. It is
easy to see that L, (, .)Vo(z) =0, Vw € IR. As a such, Qg R?
and the assumption (A1) holds. Note that (A2) is also true as gy (z) =
[0 24]T is independent of the unknown parameters (w, ). According
to Theorem 3.2, the L,V -type adaptive controller

A ~ 24 N ~ 2
0=0a(,0)——>2—— u(z,0) = —a(z,0) —2
(1+02)(1+a3) L+
(36)
with © being the estimate of © =1+ [0 and ofz,®)=

2+;62 [1+(JJ?+I§)(1+L +[
(0,0) asymptotically and mamtams global stability of the closed-
loop system (35)-(36), if the system (35) satisfies the condition
Qy NSy ={0}.

It turns out that an inductive calculation based on (23) results in
21 =z = 0, and hence Sy = {0} or Qy NSy =R?> N {0} = {0}.
Intuitively, the adaptive controller (36) renders the system (35) globally
stable as the closed-loop system (35)-(36) satisfies the inequality (21).
From (21) and the La Salle’s invariance principle, it is deduced that
L, Vo(z) = 23 = 0 — x5 = 0. This, in turn, implies that i, (t) = 0
andu = u(z, @)) = 0. Hence, x; = 0. In other words, asymptotic state
regulation with global stability is achieved.

Example 3.9: Consider the two-input nonaffine system

] drives the state (x;,z2) of (35) to

(933?3
(1 —+ OO.ZEI.ZCQ) + .Ll

. 3
T =6y +ruy + 2u1u2

. 3
Ty = bhas — O1x] + xous

with 6;, 0 <14 < 3 being unknown constants and 05 # 0.
The uncertain system (37) is of the form (27) with m = 2 and

9137% T 0
fo(2,0) = | s — 0127 | g0 ()= | O | ,g8(x) = |2
—192.7/'% 0 0
O33
0 (1+Hn:l‘112)2+1%.’l)§
g11(:) = g22() = [ 0|, g12(:) + 921 (") = 0
0 0

Choose the Lyapunov function Vg (21, 22, x3) = (2 + 23) + $a3.
It is easy to see that Ly, V(2) = 0 for all the unknown parameters
(61,0) € IR?. This indicates that (A1) holds and Qy = IR?
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DC/DC buck converter

DC bus

DC/DC boost converter
M
B
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I Bidirectional DC/DC
I buck-boost converter
|

Fig. 1. DC-microgrid system with PV and battery.

In view of Corollary 3.4, the nonaffine system (37) with nonlinear
parameterization is globally adaptively stabilized by an adaptive control
law of the form (14)—(16), provided that Qy NSy = IR* N Sy = Sy =
{0}. In what follows, we show that this is indeed the case.

By Corollary 3.4, once S, = {0}, global adaptive regulation of the
nonaffine system (37) with parametric uncertainty is possible. In fact,
an adaptive controller that achieves asymptotic state regulation with
global stability can be designed as follows.

First of all, observe that the function (1 + fyx1 22)* + 2323 reaches
its minimal value at the hyperplane z; 2o = —6, /(1 + 62 ). Hence,

0523

< O|z:
(14 6gzy20)? +1’%1’%|_ 3]

llg12 (2, 0) + ga1(,0)[| < |

where © = |03](1 + 62) is an unknown constant and p(z) = |z;].

Let © be the estimate of the parameter © and define the estima-
tion error © = © — ©. Following the adaptive control design in the
previous section, we obtain the adaptive controller

u | —a(z,0) xf
uy | 14 ad +ad | @

o(z,8)(a} +3)

o= — —— (38)
(1+62)(1+af +a3)
with a(x,(:)) = i(’)\Z T 1ﬁ+ T which globally stabilizes
+46 Ty TEyTEZ)TY

the nonaffine system (37). In particular, it can be shown that the closed-
loop system (37)—(38) satisfies

6 ) a(z,0)]| Ly, Vo (2)|?

<0 (39

V(z,0)<—[1- -
( 21267 ) 1+ Ly, (@)
for V(z,0) = L(z! +z4) + La? + 107,
Finally, to prove asymptotic state regulation, or, equivalently, to see
why Sy = {0}, we note that

LgéVo(x) =21=0 and Lg(%Vo(x) =23=0

which imply that u = [u; (2, 0) us (z,0)]” = [00]” and &, = iy =
0. This, in turn, yields x3 = 0 because of 05 # 0.

The discussion above shows that Sy = {0},
limy oo (1 (8), 2 (8), 23(¢)) = 0,V(2(0),0(0)) € R*.

and hence

IV. APPLICATION TO A DC-MICROGRID WITH PV AND BATTERY

We now apply the L,V -type adaptive control scheme in the last
section to a dc-microgrid with PV and Battery in island mode [20],
which is modeled by a nonaffine system with three inputs. The dc-
microgrid consists of a PV array, a battery storage, a dc bus, three
dc/dc converters and two loads that work on different voltage levels, as
shown in Fig. 1.

A dc/dc boost converter is used between PV and dc bus to maximize
the power output from the PV array. The battery connects to the dc
bus through a bidirectional dc/dc buck-boost converter to maintain the
voltage on the dc bus. A bus load directly connects to the dc bus while
another load connects to the dc bus via a dc/dc buck converter, which
can be viewed as a constant power load.

In what follows, we consider the case when the battery resistor r
is small comparing to the loads modeled by constant resistors ; and
R, . Then, the battery resistor 7 can be neglected and a corresponding
model of the dc-microgrid with PV and battery is given by the state
space equation (1), i.e., # = f(Z, u) with [20]

[ (T2 — Tu + (T + 2w

o[- = 7 Tpet i (e — 1))
L]—Q[—rfg — (Ty + ) us]
L[fl I —55 — (fl +1”1()’U/1
f@u)y =" Rl (40)

+(Ts + 23 )us + (Ts5 + 27 Jus)
;—S[m —R.T5 — T + (2(T5 + 1)
—(@y +a}))us — Ry (Ts5 + a3)u3]
o] |
where © = [.’131 B $2,$3,$4,$5,$6]T = [ll , U1, iQ,’UQ, ig,U;}]T as illus-
trated in Fig. 1, 2* is the equilibrium and & = x — z* is a translation,
so that the dc-microgrid system in the coordinate & has an equilib-
rium z = 0 € IR®. I, > 0 is the reverse saturation of the diode and
a= n;fT > () are the PV parameter described in [20], both of them are
assumed to be constants.

There are three control inputs in the dc-microgrid model. The control
signals are duty cycles of the converters in Fig. 1 and have a physical
constraint: 0 < u; < 1,7 = 1,2, 3. Asillustrated in Fig. 1, u; controls
the power output of the PV, uy controls the dc bus voltage and the
charge/discharge of the battery, and u3 controls the load voltage.

The control objectives are to maximize the power output of PV panel
and maintain the dc bus voltage and load voltage, which can be proved
to be equivalent to a set point regulation of the voltages vy, vy, and v3
in Fig. 1. Detailed discussions and derivations can be found in [20] on
how the MPPT problem can be addressed by a passivity-based control
strategy.

For the purpose of illustration, we consider the stabilization of the
system (40) that can be expressed as ( with u = [u; us uz]”)

]l
=

[@s —

-

5]

Q

3

Z = fo(T) + 9o (T)u + g33(T)u3 (41)

where g33(F) = [000 0 — (@5 +23) 0], g;,4, (2) = 0 € RS,
foralli, = 1,2,3,k = 1,2, except for i, 75 = 33, and, eq. (42) shown
at the bottom of next page. Then, it is easy to prove that the quadratic
Lyapunov function

1 1 K K
Vo(Z) = 3 <L@f + C\ T3 + LT + CoT2 + LyT2 + O;,fé)

which is positive definite and proper, satisfies (by neglecting the register
r,ie,r =0)

=2 B =2 =2
Ly Vo(®@) = — 2= — T3 (™ — 1)z, — 1‘% ~ R, 7~ 1%
P
<0, vz € RS (43)

because a, Ioe*"2 are positive constants and (e*™2 — 1)T, > 0, VI, €
IR. Consequently, the unforced dynamics of the dc-microgrid with PV
and battery is globally stable.
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On the other hand, note that

.T)Zfl — l”l(f_l

(Lgy Vo))" = — 2Ty + 23Ty (44)

Then, a tedious but direct computation shows that L, V;(Z) = 0 im-
plies that & = 0, indicating that the dc-microgrid system (41) which is
nonaffine is globally asymptotically stabilized by the bounded feedback
—a(@)

g V (@)l
the dc-microgrid system, the PV parameters a and I, and the loads R,
and R, are known constants.

When the dc-microgrid system involves parametric uncertainty, for
instance, the register R is uncertain or even time varying but bounded
by an unknown constant ©, the dc-microgrid system (41) with a non-
affine structure can still be, according to Corollary 3.4, globally con-
trolled by the L, V'-like adaptive regulator (14)—(16). For the purpose
of illustration, hereafter we use the following set of parameters in
[20] to conduct adaptive control design and simulations: L; = Ly =
L3 =5 mH, ¢, =200uF, Cy =2000 uF, C3 =300 uF, R,
1449, R, =9Qr=1Q, E=20V, and [, =9A, ¢=1.6x
10719, k= 1.38 x 107**, a = q/(70k(273 + 25)) = 0.767, I, =

law u = if the resistors, inductors, capacitors of

.
x1
0.8 =l
0.6
0.4
0.2 |\ 4
il
02H
-0.4
el
08
—10 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Fig. 2. Transient response of the state (z1,Z2).
3
x4
x5 |
=6 |
o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1079, R, = 10° Q. The equilibrium point is Fig. 8. Transient response of the state (4, Z5, Z¢ ).
o where
x* = [4.286 40.074 20 40.074 4.007 36.067]". (45)
[|Ly Vol = (40.0747, — 4.2867,)* + (20, — 40.07473)*
- _ = —212
Using the parameters above, we design the following L,V -like adap- + (40077, —32.067; + 277)
tive controller (with 5 = 0.9) PN 0.3 1
0.8 = av
PHOT 14 (.27 + 08014 | 2|
6 0o @ O)L, Vi o
T (14 02)(1+ 1Ly, Voll2) T 5z, 2007, 573 20007, 575 300Zg]. 47)
Uy S 40.0747; — 4.286x4 The simulation results shown in Figs. 2-5 are conducted for the case
w=|u | = —0.9 a(z,0) —40.074%4 + 20T, (46) when R; = 1 Q. It is demonstrated that the L,V -type adaptive con-
L+ [|Lg, Vo [? - B o, troller (46), (47) regulates all the states T = [T, Zy --- Tg]? of the
us 4.007z, — 32.0675 + 273 dc-microgrid (41) with PV and battery to the origin. Equivalently, the
i [}T(an — f_;) ]
o (=71 — %fz — Ipe™*2 (e"™2 — 1))
o o — 7573
fo@=f@o)=1| " _
Cs (le - ﬂm - 955)
Llj(h — RyT5 —T)
Lo (@ — &) _
i Ll—l(m +a3) 0 0 7
0 0
0 *L(f/l + ZL‘Z)
W@ = Ly “2)
o, @1 +ay) & (T +ai) oy (@5 + 3)
0 0 I [2(T5 +a3) — 7y — 2]
L 0 J
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Fig. 4. Transient response of the state z3.
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Fig. 5. Adaptive gain ©.

system state - = [i; vy 4y vy i3 v3]7 illustrated in Fig. 1 converges to
the equilibrium point 2* defined by (45).

For the initial conditions [Z; Zs T3 T4 T5 T]7 (0) = (1 —10.21 —
10.2)7 and ©(0) = 3, the simulations show that due to the nature of
the low-gain feedback, the transient performance of the state Zj is
poor compared with the other system states. As shown in Fig. 4, 5 (t)
converges to zero very slowly. For the same reasoning, in particular,
from the relationships (46) and (47), it is clear that the adaptive law
(46) is updated in a “low-gain” fashion. Consequently, the adaptive gain
@(t) has a little transient and remains almost a constant, as indicated
in Fig. 5.

V. CONCLUDING REMARKS

The problem of global adaptive stabilization was investigated in this
paper for nonlinearly parameterized systems with a nonaffine structure.
Under a controllability-like rank condition, together with a paramet-
ric independent requirement on the affine vector field, it was proved
that a general nonaffine system with parametric uncertainty is glob-
ally adaptively stabilizable by state feedback if the unforced dynamic
system is stable. Moreover, a globally stabilizing L,V -type adaptive
controller has been explicitly designed. Three examples, including the
dc-microgrid with PV and battery, were presented to demonstrate the
applications of the proposed adaptive controllers.

As a subsequent of this paper, future research will include: first, how
to use the L,V -like adaptive controller proposed in this paper to inves-
tigate the global adaptive regulation of a larger class of upper-triangular
nonlinear systems considered in [14] with parametric uncertainty; and
second, adaptive control of nonaffine systems with parametric uncer-
tainty in discrete-time, in particular, studying if the adaptive control

results obtained so far can be generalized to the discrete-time nonaffine
system in [12].
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