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Abstract

Project Code: RSA6080051
Project Title: Advanced Signal Processing Schemes
for Ultra-high Density Magnetic Recording
Investigator: Assoc. Prof. Dr. Chanon Warisarn
King Mongkut’s Institute of Technology Ladkrabang, KMITL
E-mail Address: chanon.wa@kmitl.ac.th

Project Period: May 2017 — May 2020

Bit-patterned magnetic recording (BPMR) is expected to be one of the new magnetic recording
technologies that can provide areal densities (ADs) of 1 Tera-bit per square inch (Tbpsi) or higher. To achieve
these areal densities, the space between tracks must be reduced, bringing them closer and closer together,
leading to significant inter-track interference (ITl). Track mis-registration (TMR) or head offset can further
degrade overall system performance. To mitigate the effects of ITI and TMR, we propose using a single
reader/two-track reading (SRTR) scheme together with an over-sampling technique on a staggered BPMR
system. We also propose a TMR estimation technique based on a readback signal. Here, the readback
signal is separated into two sequences, one odd and one even. Then, the energy ratio is calculated using
these data sequences. The obtained relationship between the energy ratio and head offset can be utilized
to predict the actual head offset occurrence in the reading process. Finally, a pairing of a monic constraint
target and an equalizer that accordingly matches each estimated head offset level is adopted to deal with
the TMR effect. The SRTR system can provide better BER performance. Moreover, when TMR effects appear
in the reading process, our proposed SRTR system with a TMR mitigation technique can yield better BER

performance, especially at high head offset levels.

Keywords: Intertrack interference, Bit-patterned media recording, Single-reader/two-track reading
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a o ] A A v et a € a 6 1 o Y a Y a & A 6 Y & 1
NwiTeed g iedasnunaluladaniadarlainazsisvldvienguaaaiadartlaiwldiduiidszna
nsfyaaainsnfianumunsanediwnaluladaniadarlasiuasiguiasiaguaamunisunieud
A | Y Aa 1 gq/ a 6 a o 6 v o
walduussgslalividnnaridogunmiauszguinmrsanuuunianmsiidnanludszinalng (g
1 1 s =) ‘é 1 o Y a v l:l ‘2’ o s
sauannagludszinaanizoining) Setrhliifenmsamuludszimauaziimadisnwinisaudiay
myduiindayalugduuudieeadunioulfnuduatiann esndayadaddids (multimedia)
1 T v an s 1 1 & =S 1 Il tﬂ‘d
srulngidudeyauvudines drathagu Indgunm TWdnmouas uazlwdinas Ssfiadndulnsniiame
Ingjuazlinunlunsiaivdayaigs lastoyadineamafazgniafivasgninidwivdafivtays iou
sadanlasw, 46 (CD: compact disc), @36 (DVD: digital versatile disc), #3alafaaianlasw (SSD: solid
. = o o & o & Ao ) o v & o v & A @ v &
state drive) 1iudu asuudsdindunideswam gl nanidafivdayaldlianuygsdu ihesassumadaiiu
Toyaluawiaa snfedarlaiwiiaduduanfonnislunmsdaiiudeyadidnea innzduguniaifidanuy
@ A A . ' A & . A A A a a o &
Toyageun wazilaifisumandeniisfinzlud (Giga byte) fladdimagnunniiiawSouifisunugunsal
v =& o A & & a & | @ & o &
niaiiudayadszinndug wananiaiadanlasWdauduadnisinsduiinuuunis (permanent
. A o ) 3 v v A 6 1 1 A a ) o & e gl' € a 6
recording) S3viliisdanisfdaya WeguUnsaldulagiuniaiiatiie amuludaadui sniedariaiv
] v v o a 6 1 < 1 oA ) ¥ o 6 1 ) v € v
lila@lilduivaauiiaesiviu uddsfinmsiandszendldnunuadnsaldnseg igu Insvias ndaq
aa aa Y A . & @
Aalauuu@lnen Naos9eTla LaziaIadLawmned udn
dniumstufindoyavesaniadarlain Tuduanmalulagmatufinuuuuniuas (longitudinal
. i A ana ' = o A o P a
magnetic recording, LMR) T9dfiantspasawiansinanawiunnudatnin uaziamalulad LMR i
Fadrnaluniaiuauydoya inaluladnistufiniBaniwAnuuuuuIa9 (perpendicular magnetic
A &

recording, PMR) 39 laldnanunud dsiifian1svasamuudininasannuietindin lasnalulad PMR &9
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lmagluﬁaguuuazﬁmmqLmﬁuﬂqaq szt 1 Tblin® [1-2] "Nﬂ’]a\‘lL“ll’]lﬂﬂﬂ@]ﬁ]’]ﬂ@l%ﬂ’]il,w&lﬂ’n?LI?«:]IL°1i\']

A ﬁuﬁamnﬁwquL%aﬁuﬁém‘?ﬂmﬂ‘[u‘[aﬁ PMR 3t dudaiaauuiauadinswialnan (magnetic
grain) luﬁlau”uﬁﬂw%aamhmumsu@iamiu"'uﬁﬂm”ayja%ﬁaﬁ@ LA a99INNITRATWI AT BN THLALAE NAE
liifaanuldisiorsasenuiduudingn w gunndves %aﬂswngmsfﬁﬁﬁﬂﬂ'jﬁaﬁﬁ@ma@T'msgLﬂas’
WATIWUNLHEN (superparamagnetic limit) [1-5] a3sin3sldTeudsoiiAsidasnumaluladnsiuinuuy
Tnaitgnanunudmalulad PMR [3] 11w talulafmstuiingeuimanuounisldanuiewdisis (heat
assisted magnetic recording, HAMR) [6] tnalulagnisiufiniGausiimanuuy 2 4@ (two dimensional
magnetic recording, TDMR) [7] wazinalulagnismsiuviinuuuiaunaiisuiife (vit-patterned media
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recording, BPMR) [1-2] atid lsfianunuidbisjasinldfiinalulad BPMR Gianunsniiunnugdaiuile
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§9819 4 Tbfin® [1] wazoiinalulad BPMR anldsaanumsldwassudngig (energy assisted) fgnansn
ﬁﬂﬁl,ﬁ'uqu"lﬁqdﬁa 10 Tb/in? [1]

#nsuinalulad BPMR ﬁaﬁ'uﬁﬂ%gm‘i'm:Lﬁﬂﬂﬁﬁé'nwmuﬂuvlauami‘ (island) #19A3UUWAN
Teyaudazda (V\ﬁavl,al,l,au@?ﬁa%ﬁamjwaamsuuﬂmﬁﬂ) 6'1?\1Lwiazvl,aLLa%@Tﬁ&ﬂwm:Lﬂuﬁmﬁiwé“@ﬁ'aﬁﬁ
uatasnin 15 wilwaes [2] lasFeuiinaslsznaudiosesdiude sauwidaninanuduuivan (oin
fa lauauddwinduiindaya) wazdud lfanmwanuduuaiingn (non-magnetic) Aausiamsau g zasla
LK Lﬁadﬁ)’mizﬂzﬁ’]di:ﬁ’i’mLLYI%T]“ITE]HQﬁ‘EzUzﬁIﬂﬁLﬁﬂdﬁuaEh\ul’m (FzAUW UL AT) @”owfué'tyzyﬁm
§1UNAY (readback signal) Tunszuaunisdudayauanainaziianisuningaasznindyansol (inter-
symbol interference, ISI) uea g9nialiinaiianIsunINgaaszningunin (inter-track interference, ITl) [2] 8n
CeH ‘nuﬁaNaﬂiwuﬁl,ﬁ@mnmsdmuaﬂng‘nﬁaﬂaﬁlﬁmﬁu‘lﬁaah\‘mﬂmﬂ”ﬁmm%ﬁaﬂaaglnﬁﬁu Gl
mqmsrﬁﬁ%%mﬁﬂdnmmfuvl,@?dwamwuaa’w;wma@iaammuwaﬁzuumsﬁuﬁn"ﬁagaL%aLLaJ'mﬁn
wUU BPMR
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FRIF N 0F ANNFNRUTVBISATIHIUNSINUBIFY Y AN TDUNI BANAINA LR BUNNT
81UnaNUNINVBIRI B L6 lumgu@lauqmﬁwLi’mzLﬁaﬂWﬂﬁLﬂ@]LLazﬁﬂ'savl,aLsna'ifﬁﬁmmzawﬂ”mwia:a
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1. INBANHINANITNUNAAIINNTUNINFEATERINIFU AN WL (inter-symbol interference, ISI) LLaEN13

! = i . { & & \ o ) @ a -
WNINFBATZHINIWNIN (inter-track interference, ITI) ﬁmmﬂumaamgtyﬁmmsuuﬁﬂmayjmmuwmammu
JaunnIndiae
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2. AN INARANIYIzaN ru,@hmidmuamm?ﬂﬁagaum:uumsﬁuﬁnm”ay]aﬁ@lLLW@]Lﬁ‘fuﬁL@ gni
AMIINILUULE DI
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LALARNLN Elia\‘]i‘]JL‘ﬂﬂIuIﬂ Elslflﬁll?l a3 El']i@@]afﬂ@i%ﬂ%au']ﬂ@]



NAYNINIUIZNIOHATYYIUTUGI (IR.ATTIUW 23317 ARy aul RSAG080051)
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1. ﬂﬂl‘l”]LLNZ@?’]GLLUU’%WQ@GT@GﬁﬂJﬂJ']flm'liUuﬂﬂ“IJE]QaL‘NLL&JL‘HE\]ﬂLLU‘UU(ﬂLLW%L‘I’]?%&JL@]U (BPMR) I%N
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o 1 [V [V a ] (~4
RUUINADIBDISA LY TUN mm‘m%ﬁnﬁaaﬂa gl NLRan

LY a 1 [3 a a
2.1 m‘suuﬁnifagaLmu,umanLmunmmmm‘s‘uﬁtﬁﬂ (BPMR Channel Model)

a

walulagmsuunnigangivanuuy BPMR iuinalulaglnindiasazidnaiwnunmalulad

[
A

AN MENLULLWGS (PVMR) ﬁI%agﬂuﬂaqﬁ'u INI1232UU PMR vlsja'lmsmﬁuﬂ’nm;r’ﬁawu
"I,@TLﬁaaﬁ)'mﬂiﬁﬂgﬂ'lmisgLﬂafwwm uunudn lagszuy BPMR mmsmﬁw%ofruﬁ"l@i”ﬁa 4 Tbfin® #38
unnin eldsiwnumalulafdanufoudisie [1] Eﬂ‘ﬁ' 2.1 UEAIANULANAITZHIIFTWANY D
32UU BPMR Waz32uy PMR lagszuy BPMR ﬁ]:ﬁgﬂmead?au"’uﬁnﬁﬁmwmtﬂuau Gofianwasdu
imztayanialouaudiBaudingn (magnetic island) lasudazlowaudazldinmuuaiinin 1 invuuazd
yuaitasnin 20 wiluwaas I@ngfmaazhaLﬂmuﬁﬂuum”aqﬁvlajﬁamwmwmﬂuu&im% (non-
magnetic material) [2,3] 13RI T pwuazwIs el FLULLE s iuR LT DD MItuAnuuurialy Tod
28435UU BPMR ﬁammﬁummgtﬁaﬁyuﬁ Usanndyuimsuniuiiiiannnisid dauaniue
(transition noise) LLazﬂ’l‘iLﬁiauﬁ@lLLiJ‘JJvLaJLfl‘juL%GL's%’% (nonlinear bit shift) [4] 2819 15AMNTTUY BPMR 69
AT A AU DUNTUT A RAR Y B §8 NKANTENUAMAYLIMILNIUANFATUAN n13eu
wanuNINTaYA (track mis-registration, TMR) [3-4,5-7] LLazﬁtymﬁé’m@ﬁammmﬂaamzm’wLwﬁn
(1Tl) F9azdanarnldifadefanaadalunszuinmiasa nunssautladeafanaauuuria il

RINITNTANINULBRANAIANLAAIINAITNITUNINFDATERINIUNINT I AW D

Patterned Media

Granular Media \_\

Q00000
3o 28 o%eee
w@% bit period
——
magnetic = © () W
transition bit period Q00 (] . }track
L —_— n
e ¥ ol e single domain
track{:u 7 VIR magnetic island

©+ magnetization
grains - magnetization

31 2.1: WinuifisuReufin PMR nufetufinuuy BPMR [4]
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, MR read head

upper track D D D B' I -
main track D D D B_
lower track D D D| DI Tcross-track

_— ‘Tx,

along-track

3111 2.2: MIduveIRIEULLL MR UnFaUWNNVDIT2 UL BPMR

t

Z

|

Eﬂ‘ﬁ 2.3: L3IAWUATBIRIBBULL MR LLE]&VL@LLG%@T

+—>
a

ai o 1 @ N a o R
JUN 22 UEAIANBIALNITE1HVBIRIBIBULL MR (magnetoresistive) UuFatuiinasIzu
a \ ' A & o4 = & ¢ & da o a =
BPMR lagfiszoerngseningnenandlonauanitstaninaidlonananiinfanulufanisaaunsn
@ a . a . . ' oA la o
(along-track) 3z81¥inAL Tx 1Seninseazda (bit period) wazszazrniTeninensnanslanananaanilu
AAN192219UNTN (cross-track) F3z821NNU Tz 158n313282UN3N (track pitch) lun19d Ju@szuy
= " v o a A ' o o 4 = a A
BPMR {insuninaanatsiunu 2 ianis Aa nsuningaasznindyansol (IS 49iianda
Taasslufianisauunin uaznsunsnaaaszniIeunin (T Wunansznuandetradesluiianig
< & ' & a o Aa . A
2719un3n lagmsunsnaaanigadadndiisonTINABINANTUNTAREAULY 2 6 (2D interference) 44
ﬁiwam:‘ﬂuazmgw,l,iwias:uumsﬁ'uﬁnﬁayﬁ BPMR
lagvdlUuuudnsaseinanauauads LN MWARFEIRAT lnanraswilazaNuazIBnadautng
[% [ o & A [ ' o o o o a 6 . =2 ¥ o
gauazainslann asiwielwiedansviunodiaesdmivlysunsuneuiaines Nabavi [4] 34161
mMIdszanmi sy mWassaslAuuLIMASan lagRasonanispintierainis iyl MR wazle
& P ~ A . A Y o A \
waudugasluzln 2.3 e t Ao AnunwIzaIRIgIu, Was anunivesridiu, g Ae szaziig
JLRINIRIBUNLTaa (shield) waz d Aaszaziuvasniann (fly height) §msunisdiaasvadlowans a

A v & A 6al 1 | A a @ o . A
ﬂ@ﬂ’l'l&lﬂ’ﬁd“llé]\‘lvlal,l,ﬂu@]LNSQBLLQ%@NEU‘EWGL?J%&L%QElll"ﬂ(?jliﬁ (squared island), Lae & Ad mwgwaa
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& a PUEY : o o ¢ aa & a v o
vLaLLﬂu(ﬂ I@] EW]ﬁa\lﬂqiﬂqﬂﬂqﬂﬂqiﬂizwqm@qwa@]a‘]Jﬁuﬂﬂafyfy']mv‘lﬂﬁﬁaGNﬂLLUULﬂqﬁLmﬂuﬂvLﬂ'ﬂqﬂ

a 6 A = v &)
NIULABIANNATITNN 2.1 mmmmﬂuaumﬂmﬂu

1 X2 22 (2.1)
H(z,x)=Aexp-—| ——+——
P 2\ w? w?

A9 2.1: WITLAD3VIRIEN U MR WazFaUWANVBITZULUNNTUUNAN BPMR

Parameters Symbol Default value (nm)
Square island a 11
Thickness S5 10

Fly height d 10
Thickness of the MR head t 4

Width of the MR head w 16

Gap to gap width g 16
Along-track PW50 w, 19.8
Cross-track PW50 w, 24.8

A A a a

LW AAATLANNRIARINA Y

U u“ 9

ANAIAY 1, W, = PW50,,,,/2.3548, W, = PW50,,,,/2.3548,
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location fluctuation / MR read element
upper track (=== oo
|
i i e e read-
! i IA head
main track - Lot A -oYe "~ Offset
|
i H track
! |
| H Tz pitch
lower track I:' ..... ) SO I S ., A
|[——>]
size fluctuation T, (bit period)

optimum position

gﬂﬁ 2.5 Unuumsiwindayanvudaunniniuiiae

gﬂﬁ' 2.5 uaeadymandyanmsuniwndetiufinvesszuy BPMR lasutisléiiu 2 dezan
D AUHLHILYBILBNNWATLA (amplitude fluctuation) FaAeduanamavasudaslonaudsiliduen
31 (non-uniform) URZAIUNBHIUYBIGLALI (location fluctuation) s'fial,ﬁ@mﬂvl,aLLau@Tﬁmaaguufm}ﬁ
Lifenudusdindninsnseanldidussdoy swsunansznuain TMR Hiaanwswaioufiaan
ANUNINWAN (main track) vL‘]Jluﬁﬂ‘ﬂ’N“ll’J’NLm%ﬂLl,ﬁ@mlu?;‘ﬂ‘ﬁl 25 1ila A, Aaszpzunineavisa
(track offset) I@]&lﬁﬂ%uﬂmﬂﬁwmi‘ﬁ‘ (2.2) [4]

TMR = AT_T x100% (2.2)
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1D equalizer
Gork r(t y(t z —
N N L T e | e B A B

AT 2D target

G(D,.D,) »(+ W

A
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m:_lk =-00

(4)

o Hzx) fio naaauaUIRY N MWARULLRIR, AT fe szozeavimataswienu, ni) de i
SUNMWLLLLMAFINIULLLIN (AWGN: additive white Gaussian noise) fidanunwILiualaasuias
(power spectrum density, PSD) WL U898 %LAIAL Ny2 §uNn1359 (2.4) fadnduwuuudaes
TaIs ™% BPMR fidaiitasmain
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Aadnwinuninuaz 2N+1 Aannusaestessupmlwianmeauunin laaviallgessmynm BPMR
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0,-1 0,0 0,1 (2.6)
1,-1 hl,O hl,l
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INABANIITNA28819LA KT (Oversampling) ﬁumﬂﬁﬂmsauﬂugaqmmwa@lauaummamu (PRML)
unu laginafian1senunaisunsn (multi-track reading technique: MRT) ﬁagﬂuuumid’mm’]mm%
NALRIBTULAL? @“’aﬁuamlugﬂﬁ 3.1 LLa:VL@TaaﬂLLuugﬂLLuumim‘Tﬁﬁauagmﬁ'uﬁﬁé’mwﬁa 5/6 1T
savufinuuuianozlnuealasawizindas Lﬁﬂ@iaéﬂmﬂ’ﬂNE%LLN“DQGﬂ’ﬁLmiﬂai’J@LLfU‘]_I 2 §5 lufitinafia
MIBTURANBUNTN (MRT) ﬁ]ﬂﬁlﬁiﬁﬁaﬁamuLﬁamu“ﬁagaaaum%nw%”awﬁ'u sUuunvaImanIREUeINs
m]aaa‘f:ﬁ]:ﬁﬁnﬁiﬁ‘i’ﬂlﬁﬂaﬁm"’uﬁ@ﬁagaatmmm:au w1 g5 2 LLﬂ%ﬂﬁh@”Mya%mﬁﬁuﬁn%dLﬂuv{ugﬂumaa
;JﬂLLU1_|°1TaQaﬁlﬁﬂuﬁﬁﬁﬂumﬁdéim%’ummﬁﬁﬁ'a%é’dﬁnm‘jmﬁa:gm_Tuﬁﬂuumsu”uﬁnﬁaylaL%dLL&imﬁﬂ
falouausuuuiias

Tagmysaasmsuaansar ldmeWasauwlaeslununuans asgunisn 3.1 uaz 3.2 @oldan

mM3saadlnludaaiundaadiif (2D finite elements method) [32]

v(x,y) =a, {tanh(al X+ a,) — tanh(a, x— az)}{tanh(aBy +a,)— tanh(a,y — 0@)} (3.1)

m?>“m?

o, =((H.G,T.U.h,.t,.t.) . w,) (3.2)

15



NAYNTNTUTZNINHARY AT UFY (3R.AT.TIUUN 23817 ATYry1LaaN RSAG080051)

A A 6 o ] o IS 6 o ' o a a U
Wa yxy Aoenduanudenlnivesiisiu a, uwsrruzlinsasiadiwiiaannuanuiduses
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WBU £, ABITHZWNIMIMAD £, Aaanunivastuiniindayavasunutiuiindaya ¢ fAaaanunm
< & , e & A & i o o A & & o
PRITUIRNANTBIUHBTUNNTYAULRE w, AeWarTud9inun muamlugﬂ‘n 3.2 LRAIDININTUAINY

daulwizasiiduiignataesnnaumin 3.1 uaz 3.2 lagldauisengg

Reader bottom view
structure Reader sensitivity
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G _—
£ o
£
w
Z g 5
® |H T =
e h
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o
o
v 0.2
*—F
vy U -
Side shield
20 40 0 BO 100 120

Down-track (nm)
317 3.2 Mydeaslsnduanudenlnivesnignu (Reader sensitivity)
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U

o

dl v 1 Qs s { ld o 1 04 aa 1
71 3.3 aldsyyrmdmnduaizun 3.4 Sausaslugduuudyanmdunsuuuusesda v ldlasnisdulu

° 1 ' [~ ¥ o <3 et | v 04 3 o 4 an
ALHRWIANT € SL‘I«LLLu'J‘IJ'J’]GLLYliﬂLLN’J‘I«L'IN'WWQE]@l?')ilﬂ%LiJ%LLN%ﬂ'l‘W RINABINIIRTYTYIWDTUNIUAUIN AL

suIn lalagnaidena g mlud s nsunIniaasmai o rinuun Lo

e e e e e e ® ® % e ® 0 ® O e e
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e ]
T e e e e e e e 0 e P e P e 0 e e e
e e
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L
400 " 1000 1200 1400 1800

31 3.4 Ayprdrunausesdlieldiisulugui 3.2 sruunurutiuiindayaluzli 3.3
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3.2 MsaanuuuaasrasduanmamIuiatwinuumangslnuaa

AWGN noise

X
k.l -
§ : . v a
| k.l 1D Vite > e
> 1 > bty > Decoder —]b

Equalizer detector >

- Encoder

X1+

317 3.5 wwudwastess mdEmiLFeUuAnuuuEnazInuesfiltinafia MRT

wuudraestesdyyImvasdnivietuiinuuuianozinueaunuidaslaslununadnsvauas

o A

namv&aww“msmﬂumsmaaaﬁmm‘mLLam"L@T@”agﬂﬁ 3.5 lun1Inasash laNa1saIn132190 6 bauana

2 ! = ! ‘é o f a . N
wuuidasniugwnindsudadidudigudnats 12 nm uazauvesia (bit period) 7 16.0 nm Uaz 14.5 nm

' 2

] [ o ' a g d . o a
TIRDAARNOINUAINAUILUWLTINUNAVES 2.5 WAE 3.0 Tb/in® I@]U‘Y]']ﬂ']ia&l“llﬂwﬂFJ%W@]LL‘U‘U‘I‘.U%"I‘%

JNIeY )
a, € {1} dumsdrsialagiimadrsian ldiiauerialilddoya 2 unin {xk’l, xk’m} aufiaz
u”uﬁﬂﬁaylamuuﬁau”uﬁﬂ gaufiniasy Fygime1unauInaIduiuniTaenlgTusaIfia (20
convolution) TeWiN9EN WA WILILRENYBIFOTUANUAZNINTUNA AELEUEIVD IR 8% @”ﬂtfu;d“’?ﬁﬁ“ﬂvl,@“’l%
mﬂﬁﬂmsﬁmﬂugaqwaawa@auauaomad’m (PRML) Laztnadan13analagn19iinais (Oversampling)
TN ﬁm%“ummaauﬁagavaa”amnéwum”agamn&iau”uﬁﬂ I@]Ué’@li’]msﬁ'ﬂ@”’aa:huﬁm%aa:ayj’ﬁmm’am

Uszunuauu3oiuuy (perfect timing) 0.57 wad9niu é’m”um”agamaoé’@@nmémﬂfﬁ”ngﬂﬁmavla@i”'asJ

o =

A ¢ & aa A Yo (e [ A C R a ea
E]ﬂ’JE]VLE\]L‘Iiai“V\%GlJ@lLWE]QLﬂWL@] mumagawmumsamavla Sry LLaﬁlzgﬂﬂa%ﬁﬂqﬂd‘i}‘iﬂ‘i’ﬁ]%’nLV]E]T]JVM\‘I
aa @ o > £ d‘ @ K L7 o > v ::lsv I I ' d‘ 1 ]

46 (VD) "lﬂmm@mmaga“ngn %‘Y]TIVL'J Xt I@Ummu"uagangmmnaamﬂu 2 Lminnaungnama"l,ﬂ

]
=

ﬂ'm"'mam%”auagm"ﬁ'u Lﬁamﬁm"'uﬁagaﬁuvg@l a, ﬁmiauﬂumn‘ﬂq@

3.3 m‘saanu,utunwd’*wﬁ'auaznamsﬁ'auagLm}'ué'm'ﬁﬁ'a 5/6
N130aNLUUNITINSAREAZAITNAATARL I LA AN S LazyinMInTIIEa U LLuumaoﬂTa;daﬁ%ﬁ

a vV A d o v Aa 1 a IQ A 1 1 1 4
37‘]_]LL‘].I‘]J°1IENﬂ’]iLﬂ@]“llQN@]‘Wﬁ’]@]ﬁ‘ﬂ’]l‘ﬁLﬂﬂﬂﬁLLﬂNWﬂﬂ@]ﬁN@]Wﬁ’](ﬂ "Iidsl,%ﬂ"liﬁﬂ‘];ﬂW‘]_l’J’]ﬁ?%l%fgﬁ]:ﬂi']ﬂgLﬁﬂ

2
% ) o @

a P \ a4 o & v o A &
ANANBIUSATIVINNUNUU AU LD xkl, xk 1417 kal ) ‘ﬁﬂuuaf]ﬁ]"ﬂzLﬂuvL@ a3n 1, -1, 1] ¥iva [1,

£

o & { . A o v & { o 1Y A W v @ o
1, -1] daBu3UN 3.6 JUuvumanidagninualfidusduuundasiagsazlildsuauaaliiuinaslu

2 ]
=

d'l o K y.di d'l o v £ aa I v g 091' = Y o
gouunn laglhionladNarinvue wazdumgL LLuumawaQammmLﬂuMVt@ WRZLANIZEY AI14439 bAvin

aaa

=1 v v Qq// lé 2 o Q/
mnaangmmumagamm@ 32 SYuuy mngﬂuumagamv&m 64 gﬂLLuusﬁaﬁleLmﬂumwa (codewords)
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31 3.6 duupveImufateianaanvilifaduaunizandanaia (n) duauwianawlaiuamyyim

'
a A

TUNIN (V) ANLDNWRIAN

U

ANaIaAawIIN ufyfyﬂﬂﬁﬂﬂ’)%

1.2 T T T T T T 0

1t s { o2t 1
08 4 -04f .
06 1 -06F .
04 1 -08 1
02 F 1 4 ]

0 12 : : : : : :

M) (2)

311 3.7 duaundsevessyyrasrunauvasiandanmwziasanuwagimzngunu (n) Jandaniuzidu 1

v
[ a

nanua (1) dandaouwaidn -1 nanua
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0.3 T 04

02 1 03f 1

01} 1 02F ]
0 f

A |
VA | A

031 1 -02¢f 1

-04 L L 03 L L 1 1 !
(n) ()
311 3.8 duaunisavasayyradunauvesianiianiucarstunuwey (n) Jandaniuziidn 1 Ay -1

u u“
]

a

gaun® (1) dandaousidn -1 U 1 gaunNB

A o Aad o <& A v o @
matman;sﬂuumayjawawq@ 32 gﬂu,uu mngﬂuuwayjammm 64 gﬂl,l,uum:"l,mﬂumwa

=

(codewords) wuazfinanmudan Aelidanfaniuadvinuagimzngunuldunfigarinarile iiasan

Danflaausidoinuazyiufiansgaaiuvadeuauniae (amplitude) va9snyIma1wnaLIddUUNEIA
NgaunaazUin 3.7 uazazyimvaniassdandaniusassdiunumznguns Lowu [1 -1 1] uag [-11 -1]

' ]
a a

WasndandanuzassinunuasiniiansaanawyaddLounaga (amplitude) V898 Y148 WNAL I

]
a

fi'lLLauwﬁngﬂa@wauau"[ﬂﬁa"l@”@hLLanwﬁg@ﬁvlsimoﬂ”uﬁwﬁaQaﬁda"[ﬂ@”\igﬂﬁ 3.8

A o @ \ o [ a 0y aAad
I%ﬂu'ﬂzﬂf]ﬂq?ﬂﬂ@naﬂqﬂﬂqjﬁﬁ (codewords) Wa%lugﬂuﬂﬂmaﬂaﬂﬂﬂq@ 32 El]LLUU "iﬂﬂEl]LLUU

a v A

Toyansnaa 64 JUuuuldiiaualuiu Aegunddadayada (11111 17 uaz [-1 -1 -1 1 -1 -1] lanazviy

'
> KR a v al

nMIusEaIcIatNaILdTUAsuM IR UInAtwndatayafinatadu dudeunfadnyyimsruwnay

Aaan A LAl a ' ' o R v a e K
BTE]G&J@IL&JQI‘H%?@W%GL%?JY] 3.2 DYUUBLNBUUNNVDNINUNBN

u“

ﬂﬁ@myagaﬁmhw”'mﬁu LLazmgu@lauq@ﬁ'l afla
&ngrynmdmna”m:ﬁ@hLLauwﬁg@maaﬁ@%gaﬁmﬁﬁnﬁu Fanuirfaluduniadi 4 szgnaananaInia
SNE! 'ﬁﬁamu:maiﬁun”uﬁﬂﬁtﬁ@ms’lﬁﬁhLLauwﬁgmaaﬁmyaylmfuﬁmwmﬂ windasmaduiadayalu
FuMIITAEIUAUELA ) walunandL i eenuULRNIWE (codewords) ﬁﬁnauaifm:ﬁwmi@mn
ﬁ'ryryﬁmmunﬁ'wawhLLan‘wﬁg(ﬂmaaﬁwﬁaﬂaLﬂum‘wmuﬂ%m@%‘aﬁﬂmﬂuﬁﬁﬁaﬁaglugﬂLLuuﬁaga‘ﬁ'ﬁ

@Tma@ﬂugﬂﬁ 3.9 LA ;Jﬂﬁ 3.10
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100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400

Iy T
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(M) ()
P o A v & Ao 2 A v o ' e aa A Y '
gﬂ‘n 3.9 mimaadaauuwnﬂuuﬂnumaga [(1-1-11-1-1](n) mytyﬁmmuﬂauaaommalmmmumu

vnuHuTuiintdays (1) dygimdunauvaddwauniavasiatayaring
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1 1
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[

311 3.10 midaesFetuiinnuiindadays [1 1 1 -1 1 1] (n) dygrmdwnsurasiidilalimduauou

[

v
4

wHwiuiindays (1) FygrmswnauveldLauniInvaiatayatineg

o
£ 2 a €

ﬁﬁmimﬁsﬁauagmﬁ'ué'm’ﬁﬁ'a 5/6 wuulnihw dataua 5 16 IUNINENTUWIA 1x5 6 LT

U

€

a, a,., a a, .., a azgnuaswduding 6 Oa lwansng x Afawa 2x3 e (3ada
ko Yerrr Aios Ayzo Qpyg | Y

a A v o a U a a 1
TNR) maﬂi:naumayjammu 2 umlﬁm"uawagaauwm:gmﬁﬂﬂuﬂaauﬁmn [xkl, xk l+1} RIH

o 4 v

& v & a a a v o
ADRNNUNTDI |:xk+1,l’ xk+1’l+1:| mgnhmuw\auwm 2 U@Ivli(ilidﬂa’]d LRCADRNUTANNEY

X
Y& Aa A o 9 a ' a . A A

[xkﬂ’l, xk+2’l+l} mgn‘lmﬂumauwmmmuqﬂmﬂLLawummumu (redundant bit) mmuamlugﬂﬂ 3.11
‘=§ nd;: d‘lv £ a
(n) FERduuwImINugnsesgluuumM I

ehummamﬁaﬁ@ﬁgﬂﬁuﬁnmugﬂmeaoﬁﬁﬁa 6 U6 X ﬁ]:gﬂé’@gﬂLl,uusl,mivl,@ﬁﬂuﬁ@]iayja

A A &2 A v o a . .
lavdszano 5 da @ Tovzuaaslugdi 3.111 () lasldwannaniszuznisgadia (Euclidean distance) lu

NINAATRAALL
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1 2
A=y ~ - 2
d(xk,xk) B \/zz(xk+m,l+n_xk+m,l+n) (3.7)
m=0 n=0
Ad acent traok Adjacent track
Adjauent track IE IE lE
Encoding process l
= Adjacent track
Adjacent track Jaceii A

@ @ @ X chcoding,proccss
‘ ‘ ‘ Adjacent lJack

Adjacent track Ade(,ent lmn,k

(n) (2)

{ v o [ A oo o a a & A o [ a d
311 3.1 glununsdha (n) waznInaasna (v) Sudhiviadaduna 1x5 10u 6 dadsraluaningnd

U@ 2x3 Ua LLazaamﬁaﬁ@ﬁQﬂﬁuﬁﬂ 6 06 10w 1x5 Daduna AN

A o o v A o &
M13191 3.1 @nﬁ\‘mummmuaauuﬂmmuLanmiﬂuaa (look-up table)

5-bit input data. a:, X, 5-bit input data. ai X,

8 By Ao A3 Ay | codeword A Qi A Age3  Ages | codeword

o = «f Cyo
o & 1 Cs
-1 | 1 -1 Cas
-1 -1 1 1 Cy
-1 I = Cas
| I 1 Cis
-1 | 1 -1 Cy
| 1 1 1 Ciy

S T I (G (R S { S s S I R (A S L o

-1 I &4 A4 4 C, | (P (R | Cy
-1 1 4 4 1 G, I~ [ 1 Cso
-1 I 4 | Css /I | I Cs
<1 I 4 1 1 Cy | | 1 1 G
4| 1 1 -1 -1 Cyy | 1 1 -1 Cys
-1 1 T | 1 Cy 1 I < 1 Cas
-1 1 1 | Cs 1 1 R Cs
N 1 1 1 1 Cy 1 1 1 1 Cs
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G 9 o Cig
-1]-11-1 -1(-11-1 -1]-11-1 1-11]1
-1]-11-1 -1]-1]1 111 111

2 Cs S Ci
-1]-11-1 -1 11 1)1 (-1 NN
1)1 (-1 -1]-1]1 1)1 (-1 11 (-1

¢y Cpy Cas €0
-1]-11-1 -1(-11-1 -1]-1]1 -1]-17 1
111]-1 11-111 -1]-1]1 11 1] 1

17 Ci3 Cs Ca
-1-11]1 1011 1)1 (-1 1|11
-1)-11-1 111 1-1 11111 11111

Cy Cs Cag Cy7
1|-1]-1 1]-11-1 -171]-1 1011
-1-11-1 -1-111 1]11/(-1 1011
Ca6 Ci6 Co4 Ci4
101 (-1 1]11(-1 1111 11111
-1-11-1 11111 111]-1 1011
Cx C30 C31 C;
1]-1]-1 1]-1]-1 11111 11-111
1|-1]-1 1]-1]1 1]-1]1 11111
Cis Ca3 Cs C3
1117]-1 11111 111]-1 11111
1-11-1 11(-1]-1 111]-1 11111

317 3.12 f3v# (codeword) 7ilAannsaBNLUL
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Unn 4
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2.5 way 3.0 To/in? lasinualhszosrneszninede T, uasseozrinaseninaunin T, winny 16 was 14.5 nm
audey munsadswdusumsldesiaumsi 2.7 Alenanluunnawwinie saunsluansien 2.1 Seas
LEAIRIAN T, uaz Tz luA1anunuiuiu Saiu (AD) iy uaziialiiiansidsouifisusussnuzuas
JYUUan 9 Aiiauiwin azlgenanunuusiulgom (UD: user density) fiivinudatalssintnnaes
5201 Twawdsoitazldananumunusiuldens (UD) windud 2.5 Tolin? Tasen UD snansadiwiaslsdann

User density (UD) = 4D x R 4.1)
\ilo R = 5/6 fada e (code rate) maasv&"'auagLaﬁuﬁﬁmaualmm"aﬁ'm Fasanyvmasdanyinn 0.833 viait
mawIsuifisusussauzvasszuvazgnimualieglusdunusesdrdandeiianaiavasda (BER: biterror
rate) GoANSATIRIRTAIVBIRTY YN UADTNAIVBIFTY Y WILNI% (SNR: signal to noise ratio) Felunatlfiid
A1 SNR luayn s unguazauRus iU wamnudadaiwad (it cell) Ta1 SNR #ileaziniaodwadiua
(dB: deciBel) sansadowmiuaumslaasit
SNR=10log,,(1/ Rc™*) (4.2)

Wadn o AdInUKIINAPIUVRITYYIUIUMKR ABDATIRE (code rate) Uz 1 ABFITBILDUNAIA

Qo 1 Qs a v ‘;/ va I
gdq@maaamwrgﬂmmuﬂau Elummwmﬂ%ummu 1
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Aawaaiatredadsiesga (MMSE) Avhliszuuifiadandadawaia (BER) iy 107 uaziwualv 1

\BniaaT (sector) 4 4096 a A43U7 4.1

311 4.1 YUAVDILTNLADT LN T LA L)

3UN 42 usavoaindalanalavasszuy T,@ﬂlﬁs:uuﬁi"ﬁmiaaﬂLLUﬁJﬂﬂiL%iﬁ'ﬁ&lagwﬁ'ul,muﬂ”’svl,ﬂ [1] 2z
a o o o A

fis19731 “Conv-2D Mod Code” NUT=UUNITA1TaaALLLASIENSAENaALaTWLU LA LanadzRonudn

u
[

“Proposed-2D Mod Code” 1a8RaNTalN b AMNAUWILUWLTINUNANLYINAK (AD) 2.5 Laz 3.0 Thin? ANEGL
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[
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e
-------
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:
N N

,' Areal density of 3.0 Tb/in?

0
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OO lIIII

Bit-Error Rate (BER)

Areal density of 2.5 Tb/in?
1 075 L
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A Simple Inter-Track Interference Subtraction Technique in
Bit-Patterned Media Recording (BPMR) Systems

Chaiwat BUAJONG', Nonmember and Chanon WARISARN'®, Member

SUMMARY In this paper, we demonstrate how to subtract the inter-
track interference (ITI) before the decoding process in multi-track multi-
head bit-patterned media recording (BPMR) system, which can obtain a
better bit error rate (BER) performance. We focus on the three-track/three-
head BPMR channel and propose the ITI subtraction technique that per-
forms together with a rate-5/6 two dimensional (2D) modulation code.
Since the coded system can provide the estimated recorded bit sequence
with a high reliability rate for the center track. However, the upper and
lower data sequences still be interfered with their sidetracks, which results
to have a low reliability rate. Therefore, we propose to feedback the data
from the center and upper tracks for subtracting the ITI effect of the lower
track. Meanwhile, the feedback data from the center and lower tracks will
be also used to subtract the ITI effect of the upper track. The use of our
proposed technique can effectively reduce the severity of ITI effect which
caused from the two sidetracks. The computer simulation results in the
presence of position and size fluctuations show that the proposed system
yields better BER performance than a conventional coded system, espe-
cially when an areal density (AD) is ultra high.

key words: 2D modulation code, multi-track multi-head recording, bit-
patterned media recording (BPMR), intertrack interference (ITI) subtrac-
tion

1. Introduction

Currently, a hard disk drive (HDD) employs a perpendicu-
lar magnetic recording (PMR) technology, which is reach-
ing to its limited capacity at an areal density (AD) of
about 1 terabit per square inch (Tb/in?) referred to as the
super-paramagnetic limit and arises from the so-called mag-
netic recording trilemma [1]. Thus, the advanced record-
ing technologies such as heat-assisted magnetic record-
ing (HAMR) [1], [2], two-dimensional magnetic recording
(TDMR) [1], [3], [4], and bit-patterned media recording
(BPMR) [1], [5], are needed for achieving the AD beyond
the current limit imposed by HDD design.

Among the possibly proposed recording technologies,
BPMR is the promising technology that is expected to
achieve the AD up to 4 Tb/in? [5]. However, the two di-
mensional (2D) interference consists of inter-symbol inter-
ference (ISI) and inter-track interference (ITI) also increases
with the increasing of the AD. The both of these interfer-
ences can significantly destroy overall system performance.
Therefore, the precaution techniques such as 2D modulation
encoding schemes need to be taken in the magnetic record-
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ing systems.

The several 2D coding schemes have recently been pro-
posed [6]—[8] to deal with the 2D interference effect. For
example, Kurihara et al. [7] introduced a constructive ITI-
coded partial-response (PR) maximum-likelihood system
based on a two-track model for PMR. Specifically, the con-
structive ITI code has designed based on the equalized level
such that the opposite polar level can never occur simultane-
ously after class-I PR equalization. Moreover, Shao et al. [8]
proposed a rate-5/6 2D coding scheme for the BPMR read-
back signal with overshoot to mitigate the ISI effect, which
yields a good performance.

Recently, a recorded-bit patterning (RBP) schemes
were proposed to combat the 2D interference in both of
regular and staggered BPMR channel [9], [10] but it had
high complexity and required large buffer memory. There-
fore, the easier encoding schemes [11]-[13] such as the ITI-
mitigating 5/6 2D modulation code in BPMR system [11]
is proposed to remove the fatal ITI data patterns i.e.,
[-1, 1, —=1]and [1, —1, 1] in across-track direction, which
converts an input data sequence into a 3-track recorded se-
quence based on a look-up table before recording them onto
the 3 tracks of the magnetic medium, simultaneously. Al-
though these 2D coding schemes[11]-[13] can guarantee
that the BPMR readback signal of the inner track will not
be interfered with the severe ITI; however, both of two outer
tracks i.e., the upper and lower most tracks can unavoid-
ably be interfered from their sidetracks. Here, we consider
the three-track/three-head (3T3H) BPMR system; therefore,
this situation can severely affect the decoding process of the
rate-5/6 2D modulation code. That means both upper and
lower data tracks still have a poor bit error rate (BER) per-
formance.

To improve this shortcoming; therefore, this paper pro-
poses the ITI subtraction technique by utilizing the reliable
feedback data from the center track, which performs to-
gether with the rate-5/6 2D modulation code before the de-
coding process. The feedback data from center and lower
tracks will be used for reproducing the remained ITI data
sequence to subtract the ITI effect of the upper track. Mean-
while, the feedback data from center and upper tracks will
be also used for subtracting the ITI effect of the lower track.
The results show that the proposed I'TI subtraction technique
can significantly improve the BER performance of the 3T3H
BPMR system, especially at the high AD.

The rest of this paper is organized as follows. The
BPMR channel will be described in Sect.2. Then, the pro-

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers
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posed ITI subtraction technique and our simulation results
will be deeply explained in Sects. 3 and 4, respectively. Fi-
nally, the conclusion of this paper will be given at Sect. 5.

2. Channel Model

We consider the 3T3H BPMR system, which includes the
rate-5/6 2D modulation code and the proposed ITI subtrac-
tion technique as illustrated in Fig.1. A binary input se-
quence, a; represents the k-th data bit with bit period T
which is assumed to be independent identically distributed,
is encoded by the rate-5/6 2D modulation code [11] to obtain
three encoded data sequences for each of the /-th data track,
[Xi—1.4s X1k xl+1,k]T, before recording them onto a medium,
[#]T is the transpose operator. In this paper, we define the
pixel size of the medium to be 0.01 x 0.01 nm?. Then,
the circular bit islands of the medium are constructed us-
ing many small pixels until they reach their size limit. In
addition, the writing process is assumed to be perfectly writ-
ing, where the recording field of the write head covers only
within a bit pixel area. Therefore, its magnetization will
always be the same as with the recorded bit. Moreover,
the sidetracks are also covered with the readhead sensitiv-
ity function that means the readback signal is not only in-
terfered from desired data tracks, but also interfered from
their neighboring sidetracks as shown in Fig.2. It is very

a,
k 5/6 2D
Encoder
zeroes sequence
—{ =
Target =
& xl*l.k r SI*IJ( r; 1.k g
« | 562D [ 2DVB <[ 20 s .2
Decoder p O i 58
Detector Equalizer De— 3 =
% Siin By o
141,k 2D
zeroes sequence Target

Fig.1 Channel model of the three-track/three-head recording system
combined with a rate-5/6 2D modulation code and the proposed ITI sub-
traction technique by utilizing the feedback data from the center track.
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Fig.2  Configuration of the circular bit islands in BPMR for the AD of
3.0 Tb/in? under the readhead sensitivity response that covers more than 3
data tracks.
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important to note that the encoded data sequences will be
written one by one into the medium using only one single
writer with the help of buffer memory. The readback signal,
r(x,y) as a function of x (in nm) and y (in nm) coordinates is
given by 2D convolution between the magnetization of each
pixel point m(x,y) € {1} and the reader sensitivity function
h(x,y) [14], which can be expressed as

r(x,y) = f f m(&, mh(x — &,y —ndédn + n(x,y), (1)

where n(x,y) is an additive white Gaussian noise (AWGN)
for electronics noise with zero mean and variance 0. In
this paper, we assume that the three readback signals are
obtained by using an array of three readheads read all three
data tracks simultaneously. Then, these readback signals are
sampled at time ¢ = kT, assuming perfect synchronization
at the center of the ideal bit island to obtain the three read-
back sequences, [ri_1x, 7k, rl+1,k]T. We have to be con-
scious that the noises from adjacent tracks have seriously
influence to the BER gains [15]; however, these noises were
neglected in this study.

At receiver, the three readback sequences are equal-
ized by the 2D equalizers that are designed based on the
minimum mean-squared error (MMSE) criterion with the
2D target[16]. These equalized data sequences, [s;_ix,
Siks sm,k]T are then sent to according 2D Viterbi detec-
tors [16], [17] to determine the most likely recorded bit se-
quences, [Xi-14 Xik fc,+1,k]T. Then, an ITI subtraction
technique is employed after the operation of 2D Viterbi de-
tectors. These estimated recorded data sequences will be
fedback and convoluted with 2D target before sending to
subtract with the equalized data sequences. In this paper,
the center and upper estimated data sequences will be con-
voluted with 2D target and are then subtracted with the
equalized data sequence of the lower track. In the same
time, the center and lower estimated data sequences will be
also convoluted with 2D target and are then subtracted with
the equalized data sequence of the upper track as shown in
Fig. 1. The new equalized data sequences will then be sent
to according 2D Viterbi detector again to produce the new
estimated recorded data sequences, these sequences will be
decoded by the rate-5/6 2D modulation code to obtain the
estimated binary input sequence, d;. Finally, we calculate
the BER performance for evaluating the proposed system
performances.

3. Proposed Technique

Since the conventional 2D modulation code[11] was only
designed to avoid the fatal ITI patterns for the center track.
Therefore, the estimated recorded sequence of the center
track can have a high reliability rate. However, the upper
and lower data tracks (i.e., the / — 1-th and [/ + 1-th tracks)
yield a relatively low reliability rate, because they are still
interfered from their sidetracks (i.e., the [ — 2-th and [ + 2-
th tracks), which results to severely degraded BER perfor-
mance of existing decoding algorithm.



406

Consequently, we propose to use the feedback data
from center track to cope with this problem. The estimated
recorded data sequences of the center and upper tracks, i.e.,
Xox and X_;, will be fedback and convoluted with the 2D
target for generating the remained ITI sequence, §; x to sub-
tract with the equalized data sequence of the lower track as
shown in Fig. 3. Note that the zeroes sequence will be also
used for generating the remained ITI sequence. In this pa-
per, we consider the 2D target matrix, H as a symmetric
matrix with the size of 3 X 3, which can be defined as fol-
lows,

ho11ho1oho1) a b a
H=| ho—1 hoo hop |=]|c 1 ¢ |, 2
h1,_1 h1!0 ]’l1,1 a b a

where a is the ITI and ISI coefficient, b and c are the ITI and
ISI coefficients, respectively. If we assume that we are con-
sidering the ITI subtraction of the lower track as illustrated
in Fig.3. The ideal equalized data sequence of the lower
track, sz, can then be defined as follows,

1 1
S1k = Z Z hm,nxl—m,k—n

m=-1n=-1

=axpi+1 t+ b.Xz’k + axp k-1 (3)
+ CX k41 + Xk + CXy -1

+ axogs1 + bxox + axop-1,

where x,4 is the recorded data of the sidetrack. The re-
mained ITI sequence of the lower track can then be created
from the following equation,

11
§1,k = Z Z hm,nfcl—m,k—n
m=-1n=-1 (4)
=g Xkt Ao

+ a)AC()’k.,.l + b)?()!k + a)?fo’k_l.

As we mentioned above that the estimated recorded
data sequence of the center track provides a high reliability
rate. Therefore, we can assume that the last line of Eq. (3)
is equal to the last line of Eq.(4). Consequently, we can
product the new equalized data sequence of the lower tract,
§1x which is already subtracted the ITI effect by using the
following equation,

Sk =Stp+ Sike &)

Zeroes sequence A~
» 2D ik
Target
Sk
—
So.x
~ 2D-VB =
xl,k Detector Sia-Yi sl,k

Fig.3  The proposed ITI subtraction technique by utilizing the feedback
data from the center and upper tracks to subtract the ITI effect of the lower
tract.
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Then, this new equalized sequence will be sent to ac-
cording 2D Viterbi detector again. The process of the ITI
subtraction for the upper track can be also operated similar
as the lower track operation. Here, this subtraction process
is operated just one time iteration. We also found that the
third iterations can provide the better performance, signifi-
cantly.

4. Simulation Results

We consider the diameter of circular bit island of 10 nm, the
bit period T, and track pitch T, are 16.0 nm, which corre-
spond to the AD of 2.5 Tb/in?>. We also consider the AD of
3.0 Tb/in? to obtain the higher ITI effect by decreasing the
bit period and track pitch to be 14.5 nm and the readhead
sensitivity response width is around 64 nm as similar to [14]
as illustrated in Fig.2. This paper, we define the signal-to-
noise ratio (SNR) as

SNR = 10log,, (V,/0?), (6)

in decibel (dB), where V, = 1 is assumed to be the peak
amplitude of the readback signal and o is standard deviation
of AWGN.

Figure 4 shows the BER performance comparison be-
tween the coded BPMR system with and without our pro-
posed ITI subtraction technique at the AD of 2.5 Tb/in.
It is clear that the coded BPMR system that performs to-
gether with the proposed ITI subtraction technique provides
the better BER performance when compared with the coded
BPMR system without proposed ITI subtraction technique.
At BER of about 107>, the proposed system can yield the
performance gain for about 0.8 dB over another system. In
addition, the proposed system is superior to the conventional
coded system when the AD was increased to 3.0 Tb/in? as
illustrated in Fig. 5. It is evident that, at BER of about 1073,

-2
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Areal density = 2.5 Th/in®

10°F =—@— A rate—5/6 modulation code

A rate—5/6 modulation code
with ITI subtraction technique

0 2 4 6 8 10 12 14 16
SNR (dB)

Fig.4 BER performance between the coded BPMR system with and
without our proposed ITI subtraction technique at the AD of 2.5 Tb/in.
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Fig.5 BER performance between the coded BPMR system with and
without our proposed ITI subtraction technique at the AD of 3.0 Tbyin.

the proposed system can provide about 3.0 dB gains over the
conventional coded BPMR system. The reason that we can
obtain more performance gains when the proposed system
operated at higher AD (i.e., 3.0 Tb/in?) is because the feed-
back utilization of center track that properly used in pro-
posed ITI subtraction technique can efficiently handle the
severe ITI effect.

Moreover, we also compare the BER performance of
both systems by plotting the BER as a function of the media
noises, i.e., the position and size fluctuation amounts. In this
paper, the percentage of the position fluctuation, Ppyctation
can be defined as

Tﬂuctuation
= —— x 100, 7
T, (7

P fluctuation

where Tauctuation 1S the one o distance that the center of bit
island will be deviated from its ideal location according to
a Gaussian distribution. The percentage of the island size
fluctuation, S fucuation 1 defined from the shrinking or ex-
panding of islands, which can be defined as

Lﬂuctuation

Sﬂuctuatlon - Lx X 100, (8)
where Lgyctuation 18 the range that the island size will be devi-
ated from its ideal size according to a Gaussian distribution
such that the island size will fall in the range of L+ Lg,ctation
nm, and L, is the diameter of the bit islands.

We first investigate their BER performances that only
depend on the position fluctuation at AD = 3.0 Tb/in?, SNR
is fixed to be 15 dB. Clearly, the system with ITI subtraction
technique performs much better than the system without ITI
subtraction technique for all position fluctuation amounts as
shown in Fig. 6. Then, we consider the BER performances
which depend on both of the position and size fluctuations
at AD = 2.5 Tb/in?, SNR is fixed to be 15 dB. As shown

407

10” T T T T T T T

Areal density = 3.0 Th/in®
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Fig.6  BER performance of the proposed ITI subtraction technique com-

pared with the conventional coded BPMR system at AD = 3.0 Tb/in?, SNR
= 15 dB, under the position fluctuation environment.
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Fig.7  BER performance of the proposed ITI subtraction technique com-
pared with the conventional coded BPMR system at AD = 2.5 Tb/in?, SNR
= 15 dB, under the position and size fluctuations environment.

in Fig. 7, we will see that when the system is not corrupted
with the size fluctuation e.g., 0% size fluctuation, the ITI
subtraction technique can provide the lower BER for all po-
sition fluctuation amounts. Moreover, when the system must
suffer with the both of position and size fluctuations e.g.,
5% size fluctuation, our proposed technique still provide the
lower BER for all position fluctuation amounts. In addition,
it seems that the performance gap between both of systems
is larger when the position and size fluctuations were in-
creased.
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5. Conclusion

The occurrence of inter-track interference from the side-
tracks in three-track/three-head BPMR system can severely
degenerate the overall system performance. In this paper;
therefore, we propose the simple ITI subtraction technique
to improve both of their outer tracks performance. The ITI
subtraction technique must be performed together with the
rate-5/6 2D modulation code that provides a high reliability
for the estimated recorded bit sequence of the center track.
Consequently, we propose to utilize the data feedback from
the center track to subtract the ITI effect that embedded in
the lower and upper data sequences. The computer simu-
lation results indicate that our proposed technique that per-
forms together with the rate-5/6 2D modulation code yields
better BER performance than the conventional coded BPMR
system for all position and size fluctuation amounts, espe-
cially at the high AD.
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Inter-track interference is one of the most severe impairments in bit-patterned media
recording system. This impairment can be effectively handled by a modulation code
and a multi-head array jointly processing multiple tracks; however, such a modula-
tion constraint has never been utilized to improve the soft-information. Therefore,
this paper proposes the utilization of modulation codes with an encoded constraint
defined by the criteria for soft-information flipping during a three-track data detec-
tion process. Moreover, we also investigate the optimal offset position of readheads
to provide the most improvement in system performance. The simulation results
indicate that the proposed systems with and without position jitter are significantly
superior to uncoded systems. © 2017 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5003450

I. INTRODUCTION

In the next few years, the areal density (AD) of hard disk drives will reach its fundamental limit
known as the superparamagnetic limit. This phenomenon causes recorded bits to lose their thermal
stability, thus resulting in information from those recorded bits becoming irretrievable. It means
the AD of the perpendicular magnetic recording will be limited to around 1 Terabit per square inch
(Tb/in?).!? Therefore, new magnetic recording technologies must be invented to achieve higher ADs.
Bit-patterned media recording (BPMR) technology? is one of the proposed alternative technologies
which can surpass this limitation. However, since the track pitch in BPMR is reduced to obtain a
higher AD, inter-track interference (ITI) also increases, which severely degrades the overall system
performance.

A number of techniques, based on different practical requirements, have been proposed to resolve
the ITI problem. Two-dimensional (2D) modulation encoding is one of the effective solutions which
can be employed to cope with severe ITI effects.*° For instance, a rate-5/6 2D modulation code’
was proposed based on a look-up table which maps the 1x5 user bits into a 6-bit codeword in a
matrix form of 3x2 bits for a three-track/three-head (3T/3H) BPMR system as shown in Fig. 1(a).
This coding scheme guarantees that the BPMR readback signal is not corrupted by severe ITI, thus
easing the data detection process. In addition, multi-track processing systems with the help of 2D
detectors, because of their enhanced ability in doing so,” have been introduced to combat severe
ITI. Multiple data sequences are simultaneously read by multiple readers and jointly processed with
multitrack joint 2D signal detection.!®!! Furthermore, the trellis structure of detector can be also
modified based on the modulation constraint,'>!3 which allows error correcting capability and leads
to the obtaining of higher ADs.

However, a 2D modulation constraint has never been utilized to improve soft-information before
the decoding process. Therefore, this paper proposes to use the rate-5/6 2D modulation code with
the encoded constraint to define the criteria of the soft-information flipping (SIF) technique after a

4Corresponding author: chanon.wa@kmitl.ac.th
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FIG. 1. An array of three readheads for (a) the conventional and (b) proposed systems, where the position of the center
readhead is shifted closer to upper track for AT.

three-track data detection process. The estimated soft-information that are obtained from the multi-
track joint 2D soft-output Viterbi detectors (SOVAs)!'*!! is then utilized to check for the possibility
of forbidden pattern occurrence.

Moreover, we also present the optimal position of array readheads where the center readhead is
shifted in an upward direction by the offset distance, AT, while the upper and lower readheads are
still positioned at their track center as shown in Fig. 1(b). Here, AT is defined as the percentage of
track pitch in nanometer (nm). The performance of the proposed systems (i.e., the SIF approach),
performed with and without the center readhead shift, is evaluated with a 3T/3H BPMR channel
model’ in the presence and absence of position jitter. The simulation results show that the proposed
systems are very much superior to both the uncoded and coded systems where neither SIF nor modified
trellis is used in conjunction with 5/6-rate coded channel.

Il. CHANNEL MODEL

We consider a 3T/3H BPMR system as shown in Fig. 2. A binary input sequence a;€{+1} with
bit pitch, T, is encoded by the rate-5/6 2D modulation code? to obtain three encoded data sequences
{X1-1.k> X1k» X141.4 } before recording them onto a medium. The readback signal, ; , of the k™ data
bit on the /™ data track can be expressed as>'*

g = Z Z Mo Xi—mj—n + ik, (D
n m

where x; ;’s are the recorded bits, /e{-1, 0, +1} represent the lower, center, and upper tracks, respec-
tively, A, n’s are the 2D channel coefficients, m and n represent the time indices of bit island in the
across- and along-track directions, and n; x is an additive white Gaussian noise (AWGN) with zero
mean and variance 2.

In practice, the channel coefficients, #,, ,, can be obtained by sampling the 2D Gaussian pulse

response at the integer multiples of the track pitch, T, and the bit pitch, Ty, according to>'*

1 (me A )2 (nTZ + A+ AT )2
+ b

2

Byn =Aexp | ——
mn =AEXPA o2 PW, PW.

where A = 1 is assumed to be the peak amplitude of the pulse response, PW, is the PW5 of the along-
track pulse, PW, is the PW5( of the across-track pulse, PWs is the pulse width at half its maximum,
¢ = 1/2.3548 is a constant to account for the relationship between PW5q and the standard deviation
of a Gaussian, A;‘_m’k_n and A?_m’ «—n are the position fluctuations of each island that are generated by
the Gaussian random variables with the standard deviation which is defined by the percentage of T’
and T, and AT, is the readhead offset used only for the case when the readhead’s position is shifted
and its value will be zero in the normal case.

At the receiver, three readback signals {r;_j x, 7k, 7141,k } are obtained using an array readhead
that reads the three data tracks simultaneously, where the center readhead is shifted closer to the upper
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FIG. 2. A 3T/3H BPMR channel model with the rate-5/6 2D modulation code that performs together with the proposed SIF
technique.

track by AT, while the upper and lower readheads are still positioned at their track center. These
readback signals are firstly equalized by two 2D equalizers to obtain the equalized sequences {s;.1 ,
S1k» Si+1.k - Next, these data sequences are fed to their respective 2D-SOVA detectors to produce log-
likelihood ratios (LLRs) of the estimated three recorded data sequences {/11 1ks Aiks Ai+1.k}- Then,
these LLRs are sent to the SIF block to produce the improved LLRs { Aistio A At & | before being
forwarded to the threshold detectors. Finally, the estimated recorded data sequences are decoded by
the decoder before calculating the BER performance.

lll. PROPOSED SYSTEMS
A. A rate-5/6 2D modulation code

The soft-5/6 modulation code is designed based on the data dependent readback signal.> We
have learnt that the destructive ITI (DITI) data patterns i.e., [1 -1 117 and [-1 1 -1]T should not be
recorded onto the medium across the three tracks because these patterns can severely degrade the
readback signal where [-]T is the transpose operator. These two DITI data patterns; therefore, will be
disallowed from recording onto a medium. Practically, every 1x5 bits from each user data sequence
will be rearranged to become three data sequences in a matrix form of 3x2 bits as depicted in Fig. 3(a).
To design the code, the 23 appropriate patterns from 2° total patterns, which have the highest readback
amplitude according to the desired bit, will be kept as the codewords while the remaining 2° patterns
will be neglected. Then, all possible 2° user bit patterns will be mapped with 2° chosen patterns using
a look-up table. For the decoding process, the Euclidean distance concept is applied in the decoder
to measure the resemblance between the received data pattern and all codewords.

B. A soft-information flipping approach

Usually, the three 2D-SOVA detectors are used to produce the LLR sequences, i.e., ;-1 , A1k,
and A, x for the lower, center, and upper tracks, respectively. Among the three detectors, the center
2D detector11 is designed to generate the LLRs of the center track, 4;, as well as that of its sidetracks,
ie., 4, and /1 .Here, A7} Ik and A! 14 are the estimated LLRs of the lower and upper tracks, respectively.

Smce we know that the DITI data patterns are never recorded due to the encoded constraint,
the SIF process will activate whenever the system observes the differences between the signs of the
estimated LLRs of the upper and lower tracks. Then, it also checks the accordance of the sign between
the estimated LLRs obtained from the center detector and the actual LLRs obtained from the upper
and lower detectors If it is found that the sign of the lower LLR, A1 is different to the estimated
lower LLR, A} Ik and the sign of the upper LLR, 1,1 is different to the estimated upper LLR, 1! Ik
the system will investigate whether the considered pattern is one of the forbidden patterns. If the
considered pattern is one of the forbidden patterns, the LLR with the smallest value among the three
LLRs will be flipped to the opposite sign.

Moreover, we also propose to shift the center readhead from its normal position to an upward
direction by AT as a percentage of track pitch so that the optimal position of array readhead will
be achieved. Since the relationship between both of the upper and center tracks will be increased
through this slight readhead shift, we can obtain a higher accuracy in the estimated recorded data for
both tracks. At the same time, the lower track still provides the same performance gain as when the
readhead is at a normal position.
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FIG. 3. (a) The rate-5/6 2D modulation coding scheme which maps every 1x5 user bit into a 6-bit codeword in a matrix form
of 3x2 bits and (b) performance of proposed system at the various readhead offsets, AT ;.

IV. RESULTS AND DISCUSSION

We evaluated the performance among 1) the uncoded system; 2) the coded system;> 3) the pro-
posed system-I with SIF technique; and 4) the proposed system-II where the SIF technique performs
together with a shift of the center readhead, at ADs of 2.5 and 3.0 Tb/in? for the uncoded and coded
systems, respectively. In this work, the 2D Gaussian pulse response with the along-track PWsg of
19.4 nm and the across-track PWs, of 24.8 nm is considered.’ In simulation, the SNR is defined as
SNR=20logo(1/(Ro)) in decibel (dB), where R = 5/6 is a code rate and o is a standard deviation of
AWGN.

We compared the performance of the proposed systems at the various center readhead offset
positions by plotting the SNR required to achieve BER=10"* as a function of readhead offset position
as shown in Fig. 3(b). It is apparent that the 3% shift provides the best performance. Therefore, we
will use this optimal position for evaluating the performance of the proposed system-II. Fig. 4(a)
shows that the proposed systems are superior to both the uncoded and coded systems. Specifically,

~
2
107
o Position Jitter = 0% 104t Position Jitter = 3% ﬂ O 4
—— gnzogesdeys(em —@— Uncoded System \ Q
—H— Coded System . b —— Coded System (o)
«s:@-+++ Proposed System | Y «es@ -+ Proposed System [ o
wss+++++ Proposed System IT o weeeBeee: Proposed System 11
107 . . . . 107 . - . - N
5 10 15 20 25 5 10 15 20 2
SNR (dB) SNR (dB)
(a) (b)

FIG. 4. BER performance comparison of different systems (a) without and (b) with 3% position jitter.
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at BER=10"%, the proposed system-II is superior to the system-I and uncoded system by about 1.5
and 6 dB, respectively. Moreover, we also compared the BER performance when the systems had
to contend with position jitter at 3% as illustrated in Fig. 4(b). It is clear that the proposed systems
still provide the better performance when compared with other systems. It seems that the proposed
system-II can yield performance gains more than 4 and 9 dB over the proposed system-I and the
uncoded system, respectively.

V. CONCLUSION

This paper proposes that a rate-5/6 2D modulation code should performs together with the
soft-information flipping (SIF) technique for a three-track/three-head BPMR system. The encoded
constraint of the 2D modulation code is used to define the criteria in the SIF process. The soft-
information that are obtained from the 2D-SOVA detectors will be flipped in another direction when
the system observes that they are forbidden patterns. Moreover, we also present the optimal position of
readhead that suits our proposed SIF technique. Simulation results indicate that the proposed systems
can provide a superior performance gain over the uncoded system, especially when the recording
system encounters position jitter.
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An Effective Track Width with a 2D Modulation Code in
Two-Dimensional Magnetic Recording (TDMR) Systems

Kotchakorn PITUSOf, Nonmember, Chanon WARISARNT®, Member,

SUMMARY  When the track density of two-dimensional
magnetic recording (TDMR) systems is increased, intertrack in-
terference (ITI) inevitably grows, resulting in the extreme degra-
dation of an overall system performance. In this work, we present
coding, writing, and reading techniques which allow TDMR sys-
tems with multi-readers to overcome severe ITI. A rate-5/6 two-
dimensional (2D) modulation code is adopted to protect middle-
track data from ITI based on cross-track data dependence. Since
the rate-5/6 2D modulation code greatly improves the reliability
of the middle-track, there is a bit-error rate gap between middle-
track and sidetracks. Therefore, we propose the different track
width writing technique to optimize the reliability of all three
data tracks. In addition, we also evaluate the TDMR system
performance using an user areal density capability (UADC) as
a main key parameter. Here, an areal density capability (ADC)
can be measured by finding the bit-error rate of the system with
sweeping track and linear densities. The UADC is then obtained
by removing redundancy from the ADC. Simulation results show
that a system with our proposed techniques gains the UADC of
about 4.66% over the conventional TDMR systems.

key words: Two-dimensional magnetic recording (TDMR), 2D
modulation code, intertrack interference (ITI).

1. Introduction

Two dimensional magnetic recording (TDMR) [1], [2]
is a promising high-density storage technology, which
is expected to increase an areal density (AD) by up
to 10 terabits per square inch (Tb/in?) [3]. This tech-
nology uses a write-narrow, read-wide technique as op-
posed to the write-wide, read-narrow method on a one-
dimensional (1D) read channel used in perpendicular
magnetic recording (PMR). Narrow track writing op-
erated by shingled writing which can greatly improve
track per inch (TPI) gains. However, the side-reading
effect of the reader is an unwanted consequence as it cre-
ates intertrack interference (ITI) from sidetracks which
degrades overall system bit-error rate (BER) perfor-
mance. Track width reduction, implemented in order
to increase the AD, results to a serious increment of ITI
effect. Consequently, this paper focuses on the main
problem of TDMR - the severe ITT effect. Previously,
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Fig.1 Unbalanced track layout, shingling direction, and read-
ers position before and after adding the head offset.

we have proposed the use of a rate-5/6 two-dimensional
(2D) modulation code (where every 5 bits are encoded
to be 6 bits of codeword [4]) to overcome the severe ITI
effect. This 2D modulation code was designed based
on cross-track data dependent readback. Data patterns
such as [1 -1 1]T and [-1 1 -1]T are poor patterns, which
lead to severe ITI effect, where [O]T is transpose oper-
ator. Therefore, these two patterns should not be al-
lowed to record onto a medium. However, after the en-
coding process, these three data tracks can be written,
which this coherent writing process can be performed
effectively using an advanced Guzik spin-stand feature
as presented in previous research work [5]. The data
bit is protected by a modulation code especially on the
middle-track; thus, the middle-track can provide very
reliable estimated data bits. Unfortunately, the data
of both sidetracks still encounters with an interference
from the outer-tracks as shown in Fig. 1.

Therefore, we proposed the utilization of an ITI
subtraction scheme [4] in order to increase the upper-
and lower-track performances by utilizing the high-
reliable feedback data from the middle-track. The op-
timal array reader position is also detailed in this pa-
per. The position of upper and lower readers are moved
closer to the center reader to avoid any ITI effect com-
ing from the outer-tracks as illustrated in Fig. 1. In
order to benefit from the proposed 2D modulation code
which provides a high-reliable middle-track data se-
quence, we propose using an unbalanced track width
technique where three data tracks have unequal widths.
The difference between our proposed technique and in-
terlaced magnetic recording (IMR) is the track pitch

Copvrigcht @) 200x The Institute of Electronics. Information and Communication Engineers



and bit length in each track of IMR become variable [6],
whereas track pitch is only one variable parameter for
the proposed unbalanced track technique and the shin-
gled manner is employed for writing the data onto the
medium. Using this technique, the middle-track is nar-
rower while the sidetracks i.e., upper- and lower-tracks,
are wider than the middle-track as depicted in Fig. 1.
It is very important to note that the servo and writ-
ing control systems may harder operate for the middle-
track due to its track width has smaller than normal
track of the conventional recording. Therefore, these
two concern issues have to be deeply investigated before
utilizing our proposed technique in the real application.

2. Read/Write Channel Model
2.1 TDMR Channel Model

We model the granular media using a Voronoi diagram,
perfect writing, and reader sensitivity based on Ya-
mashita’s work [7]. The parameters of granular media
are defined as follows: average grain size = 4.6 nm, av-
erage grain boundary = 0.9 nm, and grain size standard
deviation = 9% as displayed in Fig. 2. For perfect writ-
ing, we assume that the write field from the writer only
affects to the write field cell area where the write field
area is 30x30 nm?. Media grain will be magnetized if
its centroid is placed within the writing area. Fig. 2 (a)
illustrates the zoomed-in magnetization pattern using
mentioned method, where the black dash line indicates
bit cell area. The writing track layout consists of three
data tracks i.e., upper-, middle-, and lower-tracks [ —1,
I, 1 + 1] while two outer-tracks [l — 2, | 4+ 2] that are
written by using the random bits as shown in Fig. 1.
The shingled-write direction is begun from the track
[l — 2]-th to [l 4+ 2]-th. The discrete Voronoi media is
magnetized by the perfect writing method with a ran-
dom magnetized background. The reader sensitivity is
generated from the fitting form of a 2D finite element
method output [7]. It results in a reader sensitivity
down-track pulse width at half-maximum (PWjsg) of
11.28 nm, and a cross-track magnetic read width at
half-maximum (MRW) of 18.44 nm as shown in Fig. 2
(b). Three readers are used to read simultaneously with
perfect timing compensation. Generally, readers are
positioned at the center of each data track. However,
we propose to move the upper and lower readers closer
to the middle-track to avoid the ITI effect from the
outer-tracks as depicted in Fig. 1.

The TDMR system diagram with the rate-5/6
2D modulation code and ITI subtraction scheme can
be shown in Fig. 3. The readback signals obtained
from the upper, center and lower readers are given as
vi—1 (t), v (t), and vi4q (t), respectively. These signals
are produced by convolving the magnetization of dis-
crete Voronoi grains with each reader sensitivity func-
tion where the center of each reader is positioned at
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Fig.2 (a) Bit cell area of magnetization pattern written by
random data on the media modeled by Voronoi model. (b)
Reader sensitivity function.

the desired position according with head offset defini-
tion. Since spatial noise exists due to a zigzag grain
boundary, the noise-free signal is extracted using an
ensemble of a waveform signal to noise ratio method,
and the signal power is then calculated [8]. An ad-
ditive white Gaussian noise (AWGN), n; (t) is gener-
ated for electronic and time random noises. Here the
signal to time random noise ratio is in the range of
20-25 dBs. The readback waveform can be obtained
by combining readback signals with AWGN noises,
ie, r(t) = v (t)+n; (t) as shown in Fig. 3. How-
ever, there is a slight difference with the conventional
TDMR system, on the write channel, an user sequence
ugp € {1} of length 12,240 bits is split into three se-
quences {ay,} € {£1} with a length of 4080 bits. Then,
the sequences {ag,;} will be perfectly written onto a
granular medium as described above which they do not
need to be encoded before writing process for the con-
ventional TDMR system. On the read channel, the
readback waveforms, r;_1 (t), 7 (¢), and, r;4; (¢) are fil-
tered using a low pass filter and sampled into discrete
time sequences. The readback samples {ry;} are then
equalized by 2D finite impulse response (FIR) equal-
izers, which are designed based on a minimum mean-
squared error approach with a fixed 3x3 2D generalized
partial response (GPR) target [9],[10]. The 2D GPR
target coefficients can be obtained from the reader sen-
sitivity by sampling the reader sensitivity at the center
of the bit cell area at center bit and its 8 neighboring
bits. Then, the equalized samples {sy,;} are sent to a
modified 2D soft output Viterbi algorithm (SOVA) [11],
which exchanges the soft information among each track
with Ngoya = 3 iterations.

2.2 Rate-5/6 2D Modulation Code and ITI Subtrac-
tion

The system diagram of the proposed techniques in-
cludes the rate-5/6 2D modulation coding, and an ITI
subtraction scheme is shown in Fig. 3. The user data
sequence uy € {£1} of length 10,200 bits is encoded by
the rate-5/6 modulation code [4] that results in 3 se-
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quences {ax;} € {£1} with a length of 4080 bits. The
rate-5/6 2D modulation coding scheme, designed based
on cross-track I'TI avoidance, results in the middle-track
will encounter a lower ITI effect because destructive
ITI patterns such as [1 -1 1] and [-1 1 -1]T are never
recorded onto the medium [4]. As shown in Fig. 4, the
middle-track BER of the coded systems can provide
a significant improvement when the width of all three
tracks are equal. At a linear density of 3386 kBPI,
considering at BER = -2 decades, track density of the
coded system can be increased by about 180 kTPI over
a conventional TDMR system. However, the coded sys-
tem cannot improve sidetrack performance as shown in
Fig. 5. This is due to the fact that the coded system is
only designed to protect the ITI effect on the middle-
track while the sidetracks still encounter with the in-
terference from the outer-tracks. Consequently, an ITI
subtraction scheme was presented to improve sidetrack
performance.

The idea of ITI subtraction is to utilize the middle-
track data sequence to produce the remaining side-
track ITI sequences before subtracting both upper- and
lower-tracks as described in [4]. To achieve this, we first
assume that the lower-track is being considered by giv-

Ay 1
2D FIR a4y, 56 g,
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Block diagram of the TDMR system with the rate-5/6 2D modulation code, and
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Fig.5 Average sidetrack (upper- and lower-tracks) BER per-

formance versus the kTPI of various systems. Bit length is 7.5
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ing the [-th = 0. The estimated coded sequences of the
middle- and upper-tracks, i.e., a0 and a1, are fed-
back and convoluted with the 2D target to generate the
remaining I'TI sequence of the lower-track, nx,1. The re-
maining I'TT sequence is then subtracted from the noise-
less data sequence of the lower-track that comes out of
a recording 2D channel, s; ;. Note that the zeroes se-
quence will be also used to generate the remaining I'TI
sequence. For this paper, a 2D target matrix, H as
a symmetric matrix with the size 3x3 was considered
and can be defined as follows;

h_1,—1h_10h_11 a B «
H=| ho—1 hoo ho: =14 1 ¢ |,(1)
hi,—1 hio hia a B «

where, « represents the I'TI and ISI coefficients and §
and (3 are the IST and ITT coefficients, respectively. The
noiseless data sequence of the lower-track, s ; can then
be defined as follows;

Sk,1 = Eizfl 27171:71 hn,mak—n,l—m
= aap41,2 + Bage + aag—12+
dapt1,1 +ag +dag_11+
aagy1,0 + Bak,o + aag_1,0,



where, ay 2 is the data of the outer-track that directly
affects to the lower-track performance. However, the
way to mitigate this I'TI effect will be described in Sec-
tion 3.2. The estimated remaining ITT sequence of the
lower-track can then be produced using the following
equation:

1 1 .
Ne,1 = Zn:—l Zm:—l hn,mak—n,l—m
= k1,1 + Gk, —1 + daxk_1,_1+ (3)
41,0 + Bak,o + alr—1,0.

As mentioned above, the estimated recorded se-
quence of the middle-track can provide the high-reliable
data. Therefore, we may assume that the last line of
equation (2) is equal to the final three terms of equation
(3). Consequently, we can use this data to produce the
new equalized sequence of the lower-track with its ITI
effect already subtracted using si,1 - ng,1. It is impor-
tant to note that this subtraction process is operated
just one time iteration and the symmetry 2D targets are
employed for all three tracks. Then, this new equalized
sequence is re-sent to modified 2D SOVA. This ITT sub-
traction process can be applied with the upper-track as
operated on the lower-track.

As shown in Fig. 4, we will see that the ITI sub-
traction scheme do not affect to BER performance of
the middle-track for all track densities because we only
utilize the high-reliable data sequence of the middle-
track to improve its neighboring tracks. However, the
ITT subtraction scheme can improve the average side-
track BER performance especially at higher track den-
sity as shown in Fig. 5. At BER = -2 decades, track
density can be increased of about 80 kTPI over a tra-
ditional coded system. Moreover, we also propose to
move upper and lower readers to avoid outer-track read-
ing. Using an optimal offset value by 10% of sidetrack
width as demonstrated in [4], the BER of sidetracks
is dramatically improved with track density gains of
more than 130 and 200 kTPI over the codeded with
ITT subtraction and conventional TDMR systems, re-
spectively. However, we found that the middle-track
BER performance (Fig. 4) is slightly better than the
average sidetrack BER performance (Fig. 5) when com-
pared with the coded TDMR system that performed
together with ITI subtraction scheme and moving up-
per and lower readers position. To improve this gap
performance; therefore, the use of an unbalanced track
width technique is then proposed.

3. Optimization of the Unbalanced Track
Width Setting

3.1 User Areal Density Metric
An areal density capability (ADC) is one of the main

parameters that is used to evaluate the performance
of magnetic recording systems [12]. The ADC test is a
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simple test performed that measures variable bit aspect
ratio (BAR) [13].

During this test, the bit length and track width
were swept across the upper-, middle-, and lower-
tracks. For each sweep testing, the multiple data tracks
are written on media with a certain linear density and
squeezing-track width. Then, the readers read the me-
dia before sending readback signals to the read channel
for data detection. Usually, there are many detection
targets. Bit length and track width are swept until
there is no erroneous bit in many data sectors after a
low-density parity-check (LDPC) is performed using an
iterative decoder [12]. To reduce simulation time, many
research works have assumed that the BER of around
-1.5 to -2 decades at the SOVA detector output is ade-
quate for LDPC. It can correct the codewords perfectly,
eliminating errors within full iterations [14], [15].

Therefore, for this paper, we used a BER target
of -2 decades as well as the BER target that was pro-
posed by Seagate [15]. Thus, a BER = -2 decades line
can be obtained during the sweeping of a bit length
and track width. The bits per inch (BPI) and TPI are
picked up from the BER = -2 decades line so that its bit
length and track width provide the maximum produc-
tion of BPI and TPI. Eventually, this maximum AD
is calculated by BPIXTPI which is defined as ADC.
While, BAR can be also calculated from BAR = track
width/bit length. However, the ADC of the coded sys-
tems includes the number of redundancy bits added by
2D modulation code. We need to remove the redun-
dancy to reveal the number of user data bit in 1 square
inch. Finally, an user areal density capability (UADC)
can be calculated by multiplying ADC with code rate
(R) ie., UADC = ADCxR. In addition, UADC =
ADC for uncoded system.
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3.2 Pre-evaluation for Derivation of Unbalanced
Track Width

Since the middle-track BER can be improved by us-
ing the rate-5/6 2D modulation code. However, side-
tracks are still weak against outer-tracks ITI. Besides
the presentation of 10% reader offset, we also propose
to reduce the middle-track width and enlarge sidetrack
widths to improve sidetrack performances. Here, we
can find the optimal width by measuring overall BER
versus the change of sidetrack width. Fig. 6 shows the
overall BER as a function of various sidetrack widths
for 3 total widths. The green up-pointing triangles rep-
resent the BER bathtub of an unbalanced track width
system where the total width of three tracks is 45 nm
i.e., [upper: middle: lower] = [15:15:15] nm. The green,
vertical line located at 15 nm indicates that the upper-,
middle-, and lower-track widths are equal to 15 nm. It
is clear that the peak of the bathtub is located on the
right of the balanced track lines. Therefore, it is pos-
sible to set the track width both sidetracks to be 15.5
nm, while the middle-track width should be reduced to
be 14 nm to get the best performance for a total width
of 45 nm i.e., [upper: middle: lower| = [15.5:14:15.5]
nm, (1693 kTPI). Similarly, the other total widths also
have their bathtub peak on the right side of their bal-
anced points, which implies that we can also increase
track density by reducing the total width and writing
the unbalanced tracks.

Since the track sizes are different, the ADC eval-
uation of unbalanced track recording is not the same
as balanced track recording. Here, each total width
needs to be verified in terms of its performance for var-
ious middle- and sidetrack widths. To do so, the peak
of each bathtub needs to be plotted for various linear
densities as shown in Fig. 7. The average track density

can be picked up at BER = -2 decades and analyzed
using a plot on a BPI-TPI plane. This then allows us
to get the ADC evaluation.

3.3 Areal Density Evaluation of Unbalanced Track
Width

As mentioned in the previous section, the ADC can
be defined as a line of BER = -2 decades on the BPI-
TPI plane. To do so, in a balanced TDMR system,
the linear and track densities are varied in ranges of
2400 - 4000 kBPT and 1100 - 2100 kTPI, respectively.
Each BPI and TPI value was set for the writing process.
The data bits were then generated randomly and fed to
the read/write channel with the rate-5/6 2D modula-
tion code and the ITI subtraction scheme as depicted
in Fig. 3.

Consequently, the read channel outputs the esti-
mated bits, and BER can be calculated. For an unbal-
anced track system, a BER = -2 decades line can be
specified from bathtub peak at various average track
and linear densities. Fig. 8 shows BER = -2 decades
lines for various TDMR systems. The results show
that the conventional TDMR provides the ADC = 5.15
Tb/in? at BAR = 2.24 while the TDMR combined with
the rate-5/6 2D modulation code can improve ADC =
5.61 Th/in? at BAR = 2.11. However, since the coded
systems have to add a redundant bit every 5 bits, the
UADC becomes 4.67 Tb/in?. For the TDMR with the
rate-5/6 2D modulation code and I'TT subtraction tech-
nique, the system gains TPI but loses small BPI, and
yields the ADC = 5.83 Tb/in? (UADC = 4.85 Tb/in?)
at BAR = 2. The TDMR with a rate-5/6 2D modu-
lation code, ITI subtraction technique, and 10% offset
reader can provide the ADC of 6.18 Tb/in? (UADC =
5.15 Tb/in?). Finally, with proposed unbalanced track
writing, ADC is improved to 6.47 Tb/in? (UADC =
5.39 Tb/in?) at BAR = 1.9.

As expected, BPI gain is small while TPI gain in-
creases dramatically because all of the proposed tech-
niques are designed to cope with severe ITI effects.
Especially at lower BAR, the increment of BER = -2
decades location in BPI-TPI plane is larger than higher
BAR. The interference sources in lower BAR mostly
come from I'TT and it can be dealt by using our proposed
techniques. However, reducing the bit length is very
hard to do because it is limited by grain size. There-
fore, BER = -2 decades location in BPI-TPI plane at
higher BAR cannot be improved as much as lower BAR.
Although the TDMR system with the rate-5/6 2D mod-
ulation code and ITI subtraction has higher ADC com-
pared with the conventional TDMR system, but the
UADOC is significant lower due to the rate loss. These
results reveal that the narrowing width of middle-track
and the rate-loss of the rate-5/6 2D modulation code
become a trade-off to get higher UADC. To overcome
the UADC of the conventional TDMR system, all tech-
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niques need to be integrated together. Thus, the un-
balanced tracks TDMR system with the rate-5/6 mod-
ulation code performed together the ITI subtraction
scheme and 10% reader offset can offer the performance
gain of about 4.66% over the conventional TDMR sys-
tem (UADC = ADC = 5.15 Tb/in?).

4. Conclusion

We considered an user areal density capability (UADC)
metrics of various two-dimensional magnetic recording
(TDMR) systems using a variable bit aspect ratio tech-
nique. The TDMR system with a rate-5/6 2D mod-
ulation code, intertrack interference (ITI) subtraction
scheme, and off-track reading yields the best bit-error
rate (BER) performance using the proposed effective
track width with the middle-track narrower than upper-
and lower-tracks. The proposed techniques can improve
the UADC of about 4.66% over a conventional TDMR,
which mostly gains in track density.
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Abstract—To improve the bit-error-rate (BER) performance of an ultrahigh-density bit-patterned magnetic recording
(BPMR) system, the intersymbol interference and intertrack interference (ITI) effects resulting from the reduction of spacing
between bit islands in both along-track and across-track directions must be efficiently handled. Array-reader-based BPMR
is considered a key technology for future magnetic recording due to its advantages, such as its diversity gain against noise
and ITI cancellation. This letter proposes a three-reader, four-track system where a simple rate-3/4 two-dimensional (2-D)
modulation code and a new ITI subtraction technique are used to improve recording system performance. Moreover, a 2-D
Viterbi detector is modified in accordance with the ITI subtraction scheme, which leads to lower complexity and better BER
performance. Simulations demonstrate improvement in performance gains under position and size fluctuation effects.

Index Terms—Information storage, array reader magnetic recording, bit-patterned magnetic recording, intertrack interference.

[. INTRODUCTION

As we know, perpendicular magnetic recording is about to reach
its recording density limit due to the magnetic recording trilemma
[Piramanayagam 2009]. However, the demand for huge data storage
capacity continues to increase due to the fast development of informa-
tion technology. In an attempt to resolve this issue, alternative mag-
netic recording technologies have been proposed by many researchers
with a view to increasing the areal density (AD) of hard disk drives.
Array reader magnetic recording (ARMR) is expected to become a
promising magnetic recording technology that can provide ADs of
1 Tb/in? or higher [Mathew 2014]. The multiple readback signals that
are obtained from at least two readers are jointly operated, which
enables reliable data retrieval under high linear densities compared
with a single-reader system. This reading technique can be practica-
bly adopted with both bit-patterned magnetic recording (BPMR) and
two-dimensional (2-D) magnetic recording (TDMR) systems [Hwang
2017, Myint 2017, Pituso 2017, Yao 2017].

To achieve higher ADs in BPMR systems, the space between tracks
must be reduced by bringing the tracks closer and closer together. This
leads to a significant increase in the effect of 2-D interference, which
can then further degrade the overall bit-error-rate (BER) performance
of the recording system. It should be noted that the 2-D interference
consists of intersymbol interference (ISI) and intertrack interference
(ITI). Many alternative techniques for dealing with these two serious
effects have recently been proposed and studied. For example, the work
in Nutter [2005] revealed that BER performance could be improved
by using staggered array islands instead of rectangular array islands
for the same recording density because staggered array islands help
reduce the effect of ITI due to the presence of adjacent tracks.

IEEE Magnetics Society Magnetic Frontiers: Magnetic Sensors, Lisbon, Portugal,
24-27 June 2019.

Corresponding author: Chanon Warisarn (e-mail: chanon.wa@kmitl.ac.th).
Digital Object Identifier 10.1109/LMAG.2019.2940201

Moreover, 2-D modulation codes were proposed for a multihead
multitrack BPMR system: an ARMR technology capable of elimi-
nating severe ITI, resulting in BER performance improvement of the
coded system. A rate-7/9 2-D coding scheme [Groenland 2007] was
introduced to avoid 2-D interference including IST and ITT effects by
placing the redundant bits in fixed positions at every 3 x 3 data array.
Then, a rate-5/6 2-D coding scheme was presented in Shao [2011],
which had lower redundancy and yielded better performance than the
rate-7/9 one [Groenland 2007]. The previously mentioned schemes
were intensely studied in perpendicularly magnetized media without
a soft underlayer. In addition, rate-4/5 and rate-5/6 modulation codes
were also proposed for both BPMR and TDMR systems, which are
designed based on a data-dependent readback signal [Warisarn 2015a,
2015b, Pituso 2016, 2017] under the media with a soft underlayer.
The main idea is to avoid destructive ITI data patterns, i.e., [1 —1 1]
and [—1 1 —1] in an across-track direction, which severely degrade
the readback signal. These two forbidden patterns are not allowed onto
the medium. The results imply that the use of encoding techniques can
efficiently improve the BER performance.

In addition, multitrack detection schemes were continuously devel-
oped for both TDMR and BPMR systems in order to increase AD. An
iterative ITI mitigation method [Warisarn 2014] using three modified
2-D soft-output Viterbi algorithm (2D-SOVA) detectors in conjunction
with an iterative processing technique was proposed to combat 2-D
interference where all three 2D-SOVA detectors exchange their soft
information to improve the reliability of a priori information, which
leads to improved BER performance of the TDMR system. Multitrack
joint detectors have recently attracted much attention in the literature
for mitigating ITI effects [Saito 2015, Wang 2017, Myint 2018] in the
BPMR system. Unlike 1-D detectors, these 2-D detectors operate mul-
titrack signals jointly and estimate the recorded bits on multiple tracks
using array readers so that ITI effects among the detecting tracks can
be internally handled using the combined trellis of the 2-D detector.

However, in this letter, we propose a simple rate-3/4 2-D modula-
tion code, which operates together with the proposed ITI subtraction

1949-307X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Regular bit-patterned media with an array reader that is con-
sidered under an AD of 3.0 Tb/in2. Three readers are used to read four
data tracks immediately. Here, the bit islands were constructed (top)
without and (bottom) with 5% position and size fluctuations.

technique. Moreover, we also propose a modified 2-D Viterbi detector
that accordingly performs together with both the proposed modulation
code and ITI subtraction technique. Then, all three proposed methods
will be jointly operated under an array-reader-based BPMR system.
For rate-3/4 2-D modulation encoding, the user data sequences are por-
tioned into three data sequences. Then, these sequences are encoded
to become four encoded data sequences before recording onto media.
The second user data sequence is copied, and the replica sequence is
then defined as the redundant data sequence, which is recorded onto
the third track, as shown in Fig. 1 (top). Meanwhile, the first, second,
and third user data sequences are recorded onto the first, second, and
fourth tracks, respectively.

In this letter, three readers are used to read four recorded data
sequences. The first and third readers are placed at the center of the
first and fourth tracks, respectively. Meanwhile, the second reader is
positioned between the second and third tracks, as depicted in Fig. 1
(bottom). Due to the size of this desire track, i.e., the combination
of the second and third tracks is twice as big as the regular track
size, which implies that the second readback signal obtained from
the second reader can provide high reliability. Therefore, we can
utilize this data sequence to subtract the ITI effects of the first and
third readback signals in order to increase first and fourth track
performances, respectively.

For the ITI subtracting process, the second data sequence is fed
back to convolute with ITI coefficients to produce the remaining
sidetrack ITI sequences before subtracting both first and third data
sequences. Then, we can obtain both refined data sequences before
sending them to the corresponding 2-D Viterbi detectors. Moreover,
the 2-D Viterbi detectors used to detect the first and third refined
data sequences are also modified accordingly with the ITI subtraction
technique, which not only leads to lower complexity but also yields
better BER performance.

The rest of this letter is organized as follows. Section II briefly de-
scribes the recording model, and Section III explains all our proposed
methods. BER performance evaluation is given in Section IV. Finally,
Section V concludes this letter.

II. CHANNEL MODELING

In this letter, we study a proposed three-reader, four-track
(3R4T) based BPMR channel model, as depicted in Fig. 2.
Before writing the user bit data sequence a; € {£1} onto the bit

a P T
v JEC T 34 /
user bits % encoder |, ...
a,
. ~ k-1
estimated ITI coeff S
user bits P z i r
a | e ) 8 '_':”.i"
Y [ Viterbi fzers |
X | Fe—| equalizers Lo o
B | detectors [ T T
1 k-1
Wy Wy, _y
81, electronics noise

Fig. 2. Block diagram of the transmitter and receiver of the 3R4T
BPMR system, which consists of the proposed rate-3/4 2-D modulation
encoder, ITI subtraction technique, and modified 2-D Viterbi algorithms.

islands of the media, it is separated into three data sequences, e.g.,
Ak, ago, and a; _; with a length of 4096 bits. Then, these three se-
quences are encoded by a rate-3/4 modulation code to generate four
recorded data sequences. For this letter, we assume that all recorded
bits are perfectly written. This means the data bit islands are always
magnetized according to the recorded bits. Circular bit islands with
a regular arrangement that have a diameter of 10 nm are used in this
letter. The bit period 7, and track pitch 7, can be adjusted to obtain
various ADs. For example, if 7, = T, = 14.5nm, the AD equals 3.0
Tb/in?. Each high-resolution bit island is constructed from many small
pixels until they reach their size limit, where the pixel size is defined
as 0.01 x 0.01 nm? [Warisarn 2019], as depicted in Fig. 1 where
each bit island is separated by a nonmagnetic boundary. Moreover,
we also consider media noise that consists of both size and position
fluctuations, as shown in Fig. 1 (bottom). Here, the size and posi-
tion fluctuation percentages can be defined from their ideal bit island
diameter and bit period, respectively.

To generate the readback signals, which are obtained using an array
of three readers to read all four data tracks simultaneously, we consider
the media plane m(x, y) € {£1} as a function of x (in nm) and y (in nm)
coordinates and a reader sensitivity function A(x, y) [ Yamashita 2011]
to represent the magnetization of each small pixel point and reader
response, respectively. This time, three readers are used to read the bit
islands from the media and are positioned at their proper points, as
shown in Fig. 1 (bottom). We can then produce each readback signal
r(x, y) from the following equation:

r(x,y) = // m&, Mh(x =&,y —ndédn +wx,y) (1)

where w(x, y) is an electronic noise, which is revealed as an additive
white Gaussian noise. By the way, the readback signal r(x, y) can also
be considered in the time domain. The continuous readback signal ()
can be constructed from the readback signal of x and y coordinates
r(x,y) as r(t) = r(t, i), where 7 is the center of reader sensitivity function
in an across-track direction. Then, the data sequence of the /th track
¢, can be generated from the continuous readback signal as ry; =
r(k x Ty, ), which is assumed to produce perfect synchronization.
Here, there are three data sequences produced at the reading point, as
illustrated in Fig. 2.

After obtaining the readback data sequences ry;, they are sent to
equalizers to produce the equalized data sequences sy ;, according to
their target response before being sent to Viterbi detectors to estimate
the most likely recoded bit sequences of each track £y ;. The estimated
recoded bit sequence of the second sequence is then fed back and
convoluted with ITI coefficients to reproduce the two remaining ITI
sequences § ;. These two sequences are then used to subtract from
the first and third equalized data sequences, respectively, as shown
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Fig. 3. Simple rate-3/4 2-D modulation encoding process.

in Fig. 2. After subtracting, we can obtain the refined equalized data
sequences §;;, which are fed to Viterbi detectors again in the second
iteration. It is important to note that the 2-D Viterbi detector and 2-D
equalizer [Karakulak 2010] are only used to process the first and third
data sequences. Meanwhile, the second data sequence is processed
using only a 1-D Viterbi detector and a 1-D equalizer [Moon 1995].
Furthermore, the modified 2-D Viterbi detector will only be utilized
for processing the first and third data sequences at the second iteration.
Note that the numbers of 1-D and 2-D equalizer taps are fixed to be
11 and 3 x 7 taps, respectively.

Ill. PROPOSED METHODS

A. Encoding Process

The simple encoding process of the proposed rate-3/4 2-D modula-
tion code can be achieved by copying one of the user data sequences.
Then, the copied sequence is recorded beside the track of the primary
user data sequence. In this letter, we encode three user data sequences
to obtain four encoded data sequences. We designate these four data
sequences as the recorded data sequences, which will be recorded onto
four tracks, as shown in Fig. 3. Here, the second user data sequence is
first copied. Then, the copied data sequence is recorded onto the third
track of the media beside the track of the primary user data sequence.
The aim of this encoding is to expand the width of the two middle
tracks so that they become as big as a regular track. As a result, the
middle reader amongst the three readers can provide a better readback
signal because it reads the data from a bigger track or it has less ITI
interference. Therefore, the obtained data sequence can be used to
generate the remaining ITI sequence that will be utilized to subtract
the ITI, as described in the following section.

B. ITI Subtraction Technique

As shown in Fig. 2, to generate the remaining ITI sequences 3y,
we start by feeding back the estimated recorded data sequence of the
middle data sequence £ to convolute with the ITI coefficients. Here,
we can obtain the ITI coefficient from the 2-D target matrix, H, as a
symmetric matrix with a size of 3 x 3, which can be defined as follows:

hoy—1 ho—i hi—
H=| h_ip 1 hio (2)
hoa hon  hig
where h_y _y = h,_y = h_; = h;; are the ITI and ISI coefficient,

and ho_; = ho; and h_; o= hy are the ITI and ISI coefficient,
respectively. All the 2-D target coefficients according to their ADs
that were used in this letter can be illustrated in Table 1. For ITI
subtraction, we first consider the ideal equalized data sequence of the

Table 1. Two-dimensional target coefficients according to their ADs.

AD 2D target coefficients AD

0.0074 0.1984 0.0074

2.0 0.0372 1.0000 0.0372 3.5
0.0074 0.1984 0.0074
0.0198 0.2676 0.0198

2.5 0.0740 1.0000 0.0740 4.0
0.0198 0.2676 0.0198
0.0402 0.3310 0.0402

3.0 0.1214 1.0000 0.1214
0.0402 0.3310 0.0402

2D target coefficients

0.0629 0.3787 0.0629
0.1662 1.0000 0.1662
0.0629 0.3787 0.0629
0.0963 0.4307 0.0963
0.2236  1.0000 0.2236
0.0963 0.4307 0.0963

first data sequence sy ;, which can be defined as follows:

1 1
Sk,1 = E E hm.nxkfm.lfn

m=—1n=—1
=h X120+ ho1Xk2 +ho 1 Xepro + RioXe—1 + X
+ oy 0Xkg1,1 R X0 + RoaXeo + Ao X0 (3)

when x; ; is the recorded bit of the kth bit and the /th track.
Then, we can generate the remaining ITI sequence of the first data
sequence §; ; from the following equation:

1
§k,1 = E hn,—lek—n,O

n=—1
=h_1 _1Xk110 + ho,—1%k0 + hi 1 Xk—10- 4

‘We know that the middle data sequence can provide high reliability;
therefore, we can assume that the last line of (4) is equal to the last
line of (3). Then, we can generate the refined equalized data sequence
of the first data sequence 3y ; before feeding back to its corresponding
detector using the following equation:

Sk = Sk,1 — Sk
=hy X120+ ho—1Xk2 +hog 1 X2
+ hioXe—11 + X1+ Rl 0Xeg- 5

From (5), we found that the refined equalized data sequence 3§ ;
contains only one-side ITI. Therefore, we also propose to modify the
3 x 3 target of a conventional 2-D Viterbi detector to become the 2 x 3
target of the modified 2-D Viterbi detector at the second iteration. The
modified detector not only yields better BER performance due to the
2 x 3 2-D target whose trellis is designed by considering only one-
side ITI effect but also reduces complexity, as described in following
section [Koonkarnkhai 2019]. It should be noted that the process of
ITI subtraction for the third data sequence can also be performed in the
same manner as the first data sequence. In this letter, the subtraction
process operates with just two time iterations, and the third iteration
does not yield significantly different performance because the middle
data sequence does not improve using the ITI subtraction technique.

C. Modified 2-D Viterbi Algorithm

Due to the use of an ITI subtraction scheme, the trellis used in the
modified 2-D Viterbi detector can then be constructed using only the
bits from the detecting tracks, i.e., / =1, 2 and / = —1,—2 for the first
and third data sequences, respectively. Thus, the 2 x 3 2-D target of
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the first data sequence H,, is defined as

Hup _ h—l.*l hO.—l hl,—l ) (6)
h—l,O 1 hl,O

Similarly, the 2 x 3 2-D target of the third data sequence Hj, can

be defined as
h_io 1 hip
H), = . @)
h_yi hoi hi

Using the 2 x 3 2-D target, the input symbol of the trellis will consist
of just two bits. Consequently, the trellis diagram of the proposed 2-D
Viterbi detector has only 2* = 16 states with 2> = 4 incoming/outgoing
branches at each state. Meanwhile, the full 2-D Viterbi detector re-
quires 2% = 64 states with 23 = 8 incoming/outgoing branches at each
state.

IV. PERFORMANCE EVALUATION

In this letter, we considered all four systems to evaluate the proposed
methods, which consist of the following.

1) The “Conventional System,” which represents the system that

operates without any coding, ITI subtraction, and a modified
2-D Viterbi detector.

2) The “5/6 Mod System,” which represents the system that oper-
ates by using the rate-5/6 2-D modulation code [Buajong 2018],
ITI subtraction, and a 2-D Viterbi detector.

3) The “Proposed System II,” which represents the system that
operates by using the rate-3/4 2-D modulation code, ITI sub-
traction, and a 2-D Viterbi detector.

4) The “Proposed System I,” which operates in the same manner as
the proposed system II, but the modified 2-D detector is instead
used at the second iteration.

Here, we separate the consideration into two cases that are the
recording system without and with 5% position and size fluctuations.
The signal-to-noise ratio (SNR) is defined as SNR = 10logo(A/o?)
in decibels, where A is the saturated level of the isolated waveform,
calculated using an ideal bit island medium with a circular shape where
o is a standard deviation of electronic noise.

Fig. 4 shows the SNR requirement to achieve BER = 107 in
various ADs of different BPMR systems with and without position
and size fluctuations. It is clear that the proposed systems can provide
lower SNR to achieve BER = 10~ than the rate-5/6 2-D modulation
code and conventional systems for all ADs. Moreover, it seems that
both proposed systems yield higher performance gains, especially
at higher ADs. In addition, for fair comparison, we compared their
performances under the same user density (UD), UD = AD x R,
where R is the code rate. The proposed systems still provided better
performances over the other systems. For example, when we consider
the system without media noise at UD = 3 Tb/in?, the “Proposed
System I” and “Proposed System II”” that must be considered at AD =
4 Tb/in? (the highest IT] effect) can provide SNRs at 17 and 18.5 dB-s,
respectively. Meanwhile, the “5/6 Mod System” that was considered
at an AD ~ 3.5 Tb/in?> (moderate ITI effect) provides an SNR at
19 dB. Finally, the “Conventional System” that was considered at
an AD = 3 Tb/in> (lower ITI effect) requires an SNR of 31 dB to
achieve BER = 107*. Therefore, we can summarize that the best
proposed system can provide a performance gain of more than 2 and
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Fig. 4. SNR requirement to achieve BER = 10~* dB comparison as a
function of various ADs without and with 5% position and size fluctuation
effects.

14 dB-s compared with the previously proposed and conventional
BPMR systems, respectively.

V. CONCLUSION

To deal with the severe ITI effect and improve BER performance of
array-reader-based BPMR systems, this letter proposes a simple rate-
3/4 2-D modulation that performs together with an ITI subtraction
technique. On top of that, we also propose a modified 2-D Viterbi
detector, which can satisfactorily operate with an ITI subtraction
technique. The aim of encoding is to expand the data track to twice
the size of a regular track. This bigger track can provide higher relia-
bility, which implies that this data sequence can be used to create its
sidetracks’ remaining ITI sequences. Fortunately, these remaining ITI
sequences can then be utilized to subtract the ITI effect in their be-
ginning equalized data sequences. Then, these refined equalized data
sequences can be detected accordingly using the proposed modified
2-D Viterbi detector. The use of an ITI subtraction technique allows us
to modify the trellis diagram so we can reduce the complexity of the
2-D Viterbi detector. The simulation results show that the proposed
systems yield better BER performance gains over both conventional
systems and the rate-5/6 2-D modulation code system that performs
together with ITI subtraction technique when compared at the same
UD. We also found that a significant performance gain under position
and size fluctuation effects consideration can be achieved using our
proposed systems.
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Mitigating the Effects of Track Mis-Registration in
Single-Reader/Two-Track Reading BPMR Systems

Chanon Warisarn

College of Advanced Manufacturing Innovation, King Mongkut’s Institute of Technology
Ladkrabang, Bangkok 10520, Thailand

Bit-recording technologies that can provide areal densities (ADs) [patterned magnetic recording (BPMR) is expected to be one of
the new magnetic ADs] of 1 Tera-bit per square inch or higher. To achieve these ADs, the space between tracks must be reduced,
bringing them closer and closer together, leading to significant inter-track interference (ITI). Track mis-registration (TMR) or head
offset can further degrade overall system performance. To mitigate the effects of ITI and TMR, we propose using a single-reader/
two-track reading (SRTR) scheme together with an over-sampling technique on a staggered BPMR system. We also propose a TMR
estimation technique based on a readback signal. Here, the readback signal is separated into two sequences, one odd and one even.
Then, the energy ratio is calculated using these data sequences. The obtained relationship between the energy ratio and head offset
can be utilized to predict the actual head offset occurrence in the reading process. Finally, a pairing of a monic constraint target and
an equalizer that accordingly matches each estimated head offset level is adopted to deal with the TMR effect. The SRTR system
can provide better bit-error-rate (BER) performance. Moreover, when TMR effects appear in the reading process, our proposed
SRTR system with a TMR mitigation technique can yield better BER performance, especially at high head offset levels.

Index Terms— Bit-patterned magnetic recording (BPMR), single-reader/two-track reading (SRTR), track mis-registration (TMR).

I. INTRODUCTION

IT-PATTERNED magnetic recording (BPMR) [1] is one

of the several new magnetic recording technologies
being investigated to achieve magnetic recording areal den-
sities (ADs) of 1 Tera-bit per square inch (Tbpsi) or higher.
Because the use of each individual grain or island represents a
bit of data, BPMR can offer advantages over other alternative
technologies such as transition and track edge noise reduction,
packing more data into the same space, non-linear bit-shift
reduction and simplified tracking [2], [3].

To obtain higher AD in BPMR, the spacing between bit-
islands must be reduced, bringing them closer and closer
together. Unfortunately, 2-D interference, which consists of
inter-symbol interference and inter-track interference (ITI),
will unavoidably increase. Also, a track mis-registration
(TMR) effect or head offset is inevitable, and the ITI effect
may become more critical because the reader easily senses
the magnetic islands of the wrong tracks. These effects
can easily further degrade the performance of the recording
system [4], [5].

Normally, 2-D interference can be mitigated using 2-D mod-
ulation encoding techniques [6]—[8], adopted to avoid forbid-
den data patterns that lead to severe ITI situations. This shows
that 2-D modulation encoding can significantly improve bit-
error-rate (BER) performance, especially when 2-D modula-
tion encoding is performed together with an ITI subtraction
technique [8]. Moreover, the ITI effect can be suppressed
with two-track reading/wide-track reader techniques [9], [10]
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where the single reader reads two tracks immediately and the
data bits or bit-islands are arranged in a staggered pattern.
In [9] and [10], they indicate that a substantial performance
gain can be achieved when compared with a conventional
reading scheme. In practice, the TMR effect was dealt with
a servo mechanism [5] by processing the overhead servo
information sequences and recording them on media ahead of
the data sequences. However, the system can easily experience
TMR, not only at the beginning of the reading process but also
at any time during the reading of data sequences on the track.
Therefore, a modified Viterbi algorithm (MVA) was proposed
to mitigate the effect of ITI in the presence of TMR, which
was processed without a servo mechanism [4], [11]. In MVA,
the trellis branches of the conventional Viterbi algorithm were
modified, which can lead to improved BER performance.
Moreover, in our previous works [12], [13], TMR mitigation
methods were also introduced based on readback signals
by utilizing a multiple reader on a multi-track multi-head
BPMR system. The energy ratio between the readback signals
of the upper and lower readers was used to estimate the
TMR level [13]. Then, the TMR effect was fixed using a
2-D target and its corresponding 2-D equalizer. This showed
that a very high percentage accuracy of TMR estimation could
be achieved, leading to better BER performance over the
conventional system.

Therefore, for practical reasons, we assume a single-reader
system. In this paper, we propose to use a single-reader/
two-track reading (SRTR) scheme used together with an over-
sampling technique on a staggered BPMR system as shown in
Fig. 1. The BER performances of the SRTR and conventional
reading systems were first evaluated to confirm that the SRTR
system could provide a better BER performance. This implied
that the use of an SRTR technique could mitigate the effect
of ITI. We then investigated the effects of TMR on the

0018-9464 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Staggered bit-patterned media with an SRTR technique under an
AD of 3.0 Tbpsi. The reader is moved to simulate the TMR situation. Here,
the bit-islands were constructed without (top) and with 5% position and size
fluctuations (bottom). Black islands: upward magnetization. White islands:
downward magnetization.

performance of SRTR systems in the absence and presence
of media noise, e.g., position and size fluctuations. After that,
we utilized the readback data sequences of the odd and even
tracks obtained from using only a single reader to produce the
relationship between the energy ratio and head offset level.

The obtained relationship can be derived from the rela-
tionship equation of the energy ratio, and the head offset
occurrence. Therefore, we can easily estimate head offset
occurrence in the SRTR system by using that relationship
equation. Finally, we propose using a pairing of a monic
constrained generalized partial response (GPR) target [14] and
a 1-D equalizer that matches with each estimated head offset
level accordingly to deal with the effects of TMR. Simulation
results demonstrate that the performance gains can be achieved
using the proposed methods.

The rest of this paper is organized as follows. Section II
briefly describes the SRTR channel model, and Section III
explains the proposed methods. Performance evaluation is
given in Section IV. Finally, Section V concludes this paper.

II. SRTR CHANNEL MODEL

In this paper, we consider an SRTR BPMR channel model
as illustrated in Fig. 2. Before writing the user bit sequence,
ay € {£1}, onto the bit-islands of the medium, it is separated
into two recorded bit sequences, xi,; and x4+ for odd and
even tracks, respectively. The writing process is assumed to be
perfect. Therefore, the data bit-islands are always magnetized
according to the recorded bits.

To obtain the bit-patterned medium model, we first create
circular bit-islands with a diameter of 10 nm. The bit period,
Ty, and the track pitch, T;, are defined to be 14.5 nm, which
corresponds to an AD of 3.0 Tbpsi. Each high-resolution bit-
island is constructed from many small pixels until they reach
their size limit where the pixel size is given to be 0.01 x
0.01 nm? [10]. Moreover, to obtain a more realistic SRTR
channel model, we have also considered its size and position
fluctuations and given them as media noise.

Here, the size fluctuation percentage can be defined as

Size Fluctuation = %D % 100 (1

where op is a variance of the bit-island diameter defined as a
Gaussian distribution and D is the diameter of the ideal bit-
islands that is given to be 10 nm. Although the percentage of

IEEE TRANSACTIONS ON MAGNETICS, VOL. 55, NO. 7, JULY 2019

a
I——
\ user bits
a . ] s 7,
k
1D Viterbi |- k ID k
estimated| detector equalizer
user bits
r}{Odd electronics noise
&\ head off n AWGN
% estimator |«
&
D. even
- T
Fig. 2. Block diagram of the SRTR BPMR system that consists of the

proposed head offset estimator, equalizer, and target selector.

position fluctuation can also be defined as
Position Fluctuation = OTP x 100 2)

where op is a variance of the distance that is compared
between the center of the bit-island and the center of the
ideal bit-island according to Gaussian distribution, and L is
the length of the bit period. Note that the size and position
fluctuations investigated in this paper are independent and
identically distributed random variables.

In reading process, the readback signal, as a function of
x (in nanometers) and y (in nanometers) coordinates, can
be obtained by 2-D convolution between the magnetization
of each small pixel point m(x,y) € {£1} and the reader
sensitivity function z(x, y) [15], [16]. Here, the reader will
be positioned between two desire tracks as shown in Fig. 1.
Therefore, we can express the readback signal, r(x, y) as
follows:

r(r,y) = / / mE mhix — &,y — pdédy. )

When the reading process is considered in the time domain,
the continuous readback signal, r(¢) can be constructed from
the readback signal of x- and y-coordinates, r(x, y) as r(t) =
r(t, 1), where [ is the center of reader sensitivity function
in across-track direction. Then, it is disturbed by electronic
noise, n(t), which is given as an additive white Gaussian
noise. The over-sampled sequence, r¢, can then be generated
from the continuous readback signal as ry = r(k x 0.5T%)
which is assumed to be perfect synchronization. This over-
sampled sequence is then sent along two paths. The first
path leads to both the 1-D equalizer and Viterbi detector to
produce the equalized data sequence, si, and to output the
estimated user bits, ax, respectively. The second path passes
to the head offset estimator to estimate the head offset level.
The estimated head offset is then sent to the equalizer and
target selector to select a pair of proper 1-D equalizer and
1-D GPR targets for dealing with the effects of TMR as
depicted in Fig. 2. It is very important to note that the head
offset, a, is easily defined by moving the position of the
reader sensitivity function to other positions in an across-track
direction to sense the magnetization of the media plane and
one data sector is affected with the same head offset level as
shown in Fig. 1.



WARISARN: MITIGATING THE EFFECTS OF TMR IN SRTR BPMR SYSTEMS

1.6 T T T

151

Lal Areal Density = 3.0 Tbpsi. SNR=10:2:20 dB |
’ Position Fluctuation = 0%

13+ Size Fluctuation = 0% B

,_.

(%)
T
L

Energy Ratio

0.8 7

0.6 . . .
-2.5 -1.25 0 1.25 2.5

(a) Head Offset, & (nm)
1.6 T T T

Areal Density = 3.0 Tbpsi.
Position Fluctuation = 5%
Size Fluctuation = 5%

SNR =10:2:20 dB

Energy Ratio

0.9 ]
0.8 ]
0.7 1
0.6 _ 1 1 1
-2.5 -1.25 0 1.25 2.5
(b) Head Offset, & (nm)
Fig. 3. Head offset, a, versus the energy ratio in several SNRs under the
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Here, the blue and red curves are obtained from averaging all of SNR curves.

III. PROPOSED METHODS

A. Head Offset Estimator

To estimate the head offset levels, we propose utilizing the
energy ratio of the readback signal which is normally obtained
from a reading process. Here, the energy ratio, v, can be easily
calculated from the following equation:

N/2 N/2
odd)2 even)2
“:Z(Vk ) Z(Vk ) )
k=1 k=1
where r,?dd and r;"®" are the readback data sequences that are

obtained from the odd and even tracks, respectively, and N is
the length of the readback sequence, i.e., N = 4096 bits for
a data sector. To consider the relationship between the energy
ratio versus head offset occurrence, we collected energy ratios
by varying the head offset level of several signal-to-noise
ratios (SNRs), i.e., 10-20 dB as shown in Fig. 3. Here,
the head offset is varied from —2.5 to 2.5 nm in both
upward and downward directions. In this paper, we study the
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Fig. 4. Reader sensitivity function [15], [16].

relationship between two alternatives: the system without and
the system with a 5% position and size fluctuations, as shown
in Fig. 3(a) and (b), respectively. It is apparent that position
and size fluctuations slightly affect the relationship between
the energy ratio and head offset occurrence. Meanwhile,
we also found that SNR levels have a small effect on their
relationship as shown by the thin lines, especially at low to
moderate head offset levels, e.g., from —1 to 1 nm. However,
we used an averaging technique to average the relationship
curves of all SNR levels as shown by the thick line.

As a result, we can easily create a relationship equation for
the energy ratio and head offset occurrence from these curves
named the “TMR estimation equation.” However, in this paper,
we selected a relationship curve that creates a system without
media noise, where the position and size fluctuations are
defined as 0%, as depicted in Fig. 3(a), to be the representative
curve. It is important to note that, due to the magnetic reader
width and across- and along-track reader sensitivity functions
have an effect to the relationship between the energy ratio and
head offset, the across- and along-track reader sensitivity func-
tions are fixed to be 64 nm as similarly used in [15] and [16],
and can be illustrated in Fig. 4.

In this paper, a quadratic function was adopted for approx-
imating their relationship, which can be shown as follows:

+bv+c 5)

where ¢ is the estimated head offset level, a, b, and ¢ € R are
the constant coefficients, and v is the energy ratio which can
be obtained from (4).

To evaluate the performance of the proposed head offset
estimation method, we investigated the percentage accuracy
of the proposed method as shown in Fig. 5. We can see that,
at low SNR, e.g., 10-12 dB, the proposed estimation method
yields a low percentage accuracy. However, it can provide a
higher percentage accuracy of around 85% at low to moderate
head offset occurrence, e.g., from —0.75 to 0.75 nm. Moreover,
our proposed method provides more than 95% for all head
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obtained from the energy ratio in several SNRs under the AD of 3.0 Tbpsi
without position and size fluctuations. Here, the head offset varies from
—1.25 to 1.25 nm.

offset levels when the SNR is higher than 14 dB as illustrated
in Fig. 5. This result implies that we can utilize a readback
signal to estimate its head offset occurrence.

However, this paper has never considered a skew angle
of the reader which is one of the major challenges in both
writing and reading processes of the ultrahigh-density mag-
netic recording system [17]—-[19]. The variation of the effective
width covered by the reader is also an important issue in SRTR
recording system because it directly affects to the severity
of the skew angle which has to be investigated carefully.
However, in this paper, the degree skew angle is fixed to be 0°
for all head offset levels. Therefore, it should be remarked that
this proposed head offset estimation method may improperly
operate when it performs at different skew angles.

B. Monic Constraint Target

After obtaining the estimated head offset level from the first
step as described earlier, we then propose to mitigate the TMR
effect by using a pairing of a GPR target and a 1-D equalizer
that matches with each estimated head offset level accordingly.
In this paper, we focus on a monic constraint based on a mini-
mum mean-squared error approach [20] because it provides the
best performance when compared with other constraints. The
design of a monic constraint GPR target can be described as
follows: given that G = [go g1 gz]T denotes the GPR target and
F=[fs---fo-- fs] denotes the 1-D equalizer, g; and f
are the target and equalizer coefficients, respectively, and [¢]7
is the transpose operation. In this paper, the numbers of GPR
target and equalizer coefficients are fixed to 3 and 11 taps,
respectively.

Given that the noise sequence, e, is the difference between
the desired channel output without the noise sequence, by,
and the real output sequence, sx, of the equalizer, we can
design the 1-D GPR target, g; and 1-D equalizer, f; by mini-
mizing the noise sequence such that £ {e,%} will be minimized
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in the minimum mean squared sense using the following
equation:

E{e?} = E{l(ri * fi) — (ax * g%} (6)

where E{e} is the expectation operator, and * is the convo-
lution operator. For the monic constraint, go will be given
a value of 1 to avoid reaching the trivial solutions of G =
F = 0. Therefore, if we minimize (6) according to the monic
constraint, we will obtain [14]

1
A= I’(A —_PTR-P) I )
G=lA-P'R'P)I )
F =R 'PG 9)

where 1 is the Lagrange multiplier, I = [1 0 0], A is the
3 x 3 autocorrelation matrix of the user data sequence, ag,
R is the 11 x 11 autocorrelation matrix of the readback data
sequence ry, and P is the 11 x 3 cross correlation matrix of the
sequences r and ai. Then, we design all 11 pairings of GPR
target and 1-D equalizer for all of the considered head offset
levels, e.g., 0:0.25:2.5 nm. These pairings of GPR target and
1-D equalizer will be kept in a lookup table as shown in Table I
and the proper pairing will then be selected by the equalizer
and target selector to deal with the effect of TMR.

It is important to note that each pairing is designed by using
the readback signal in presence of each head offset levels.
This means the over-sampled sequences, ry, that were used
for designing all pairings of GPR target and 1-D equalizer
are different. They depend on the head offsets of the reader
which were used for generating each continuous readback
signal, r (7). For example, when we need to design a pairing
of GPR target and 1-D equalizer that accordingly matches to
1.0 nm head offset level, the position of the reader sensitivity
function will then be moved from its original position to
upward direction in 1.0 nm for generating the continuous
readback signal. At this time, we assume that the single reader
only moves in an upward direction.

IV. PERFORMANCE EVALUATION

We evaluated the BER performances of the conventional
and proposed SRTR systems in a staggered BPMR channel
model as illustrated in Fig. 2. In this paper, we considered the
AD of 3.0 Tbpsi, i.e., Ty and T, to be 14.5 nm. The SNR
was defined as 10logio(A/c2) in decibels, where A was the
saturated level of the isolated waveform which was calculated
by using an ideal bit-islands medium with a circular shape, and
o is a standard deviation of electronic noise. Each BER point
was computed using as many 4096 bit data sectors as needed
to collect 500 error bits. In Fig. 6, the “conventional system”
denotes the recording system that reads the recorded bits at the
center of the desired track and the two sidetracks are recorded
with random data, while the “proposed SRTR system” means
the reader that is positioned between both desired tracks to
read the recorded bits. Both systems are operated using a
1-D GPR target and a 1-D equalizer. To compare the BER
performances of both, therefore, the TMR effect, size and
position fluctuations will not be considered at this time. It is
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TABLE I
ALL 11 PAIRINGS OF GPR TARGET AND 1-D EQUALIZER WHICH
ARE DEPENDENT ON THE HEAD OFFSET LEVELS

Offset, & 1D GPR target 1D equalizer
(in nm) coefficients coefficients
0.00 [10.800.28] [0.014 -0.050 0.069 0.028 -0.526 1.525
0.906 0.114 -0.089 0.019 0.006]
0.25 [10.750.25] [-0.010 -0.009 0.027 0.029 -0.4911.543
0.804 0.093 -0.073 0.001 0.021]
0.50 [10.750.23] [0.011-0.039 0.037 0.0197 -0.481 1.519
0.840 0.049 -0.066 0.010 0.005]
0.75 [10.70 0.21] [0.005 -0.018 0.054 0.009 -0.523 1.544
0.777 0.006 -0.045 0.014 -0.012]
1.00 [10.700.17] [0.031 -0.029 0.026 0.006 -0.487 1.545
0.776 -0.038 -0.066 0.040 -0.025]
1.25 [10.680.18] [-0.005 -0.023 0.053 -0.003 -0.475
1.547 0.707 -0.020 -0.018 -0.002 0.011]
1.50 [10.60 0.15] [0.017 -0.025 0.062 0.000 -0.482 1.568
0.603 -0.042 -0.037 0.023 -0.016]
1.75 [10.60 0.10] [0.003 -0.025 0.044 0.026 -0.491 1.558
0.594 -0.134 0.019 -0.004 -0.004]
2.00 [10.56 0.09] [-0.029 0.011 0.020 -0.009 -0.482 1.582
0.528 -0.138 0.000 -0.021 0.011]
2.25 [10.520.07] [-0.017 0.001 0.032 0.016 -0.469 1.575
0.477 -0.129 -0.014 0.043 -0.031]
2.50 [10.49 0.06] [-0.006 -0.037 0.053 0.026 -0.500 1.594
0.390 -0.173 0.064 -0.019 0.000]
10°
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Fig. 6. BER performances of the conventional and SRTR systems. Here,

the single reader is positioned at the center of desired track for the conven-
tional system at the AD of 3.0 Tbpsi. The position and size fluctuations are
set to be 0% and head offset is also set to be 0 nm.

clear that the proposed SRTR system can provide superior
BER performance, especially at high SNR as shown in Fig. 6.
This is because the SRTR system with an over-sampling
technique can efficiently deal with the severity of the ITI effect
over a conventional system. For instance, at a target BER =
1073, the SRTR system outperforms the conventional system
by about 7.5 dB. Therefore, we will consider only the SRTR
system when we have to investigate the TMR effect.

We then compared the performance of our proposed SRTR
system when it is corrupted with the TMR effect by plotting
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Fig. 7. Performance comparison of the proposed SRTR system with and
without TMR mitigation technique in the presence and absence of media
noses at the AD of 3.0 Tbpsi.

the SNR required to achieve BER = 107> as a function of
head offset levels as shown in Fig. 7. Here, we separated the
consideration into two systems. The SRTR system performed
with and without our proposed TMR mitigation technique,
which are denoted as “SRTR with TMR Mitigation” and
“SRTR without TMR Mitigation,” respectively. The 1-D GPR
target and 1-D equalizer, which were designed in the absence
of head offset, will be used for the second system. The size and
position fluctuations are set to be 0% and 5%, which are rep-
resented with “media noise = 0%” and “media noise = 5%,”
respectively. The AD is also set to be 3.0 Tbpsi. The
head offset varies from 0 to 2.5 nm as mentioned in
Section III-B.

From Fig. 7, we see that the SRTR system, performing
together with our proposed TMR mitigation technique can
yield better performance for all head offset levels, especially at
high head offset levels. Moreover, it seems that the proposed
TMR mitigation technique provides significantly higher per-
formance gains in the presence of media noise. For instance,
at head offset = 1.5 nm, the use of the TMR mitigation tech-
nique can improve SNR by about 4 and 7 dBs over the SRTR
system without our proposed TMR mitigation technique, in the
absence or presence of media noise, respectively.

V. CONCLUSION

In this paper, we studied the relationship between the head
offset and energy ratio of an SRTR BPMR system. Since
the TMR severely affects the overall system performance,
two techniques were proposed to deal with this situation.
We first presented the head offset estimation method through
the TMR estimation equation that was obtained from the
relationship between the head offset and energy ratio. Here,
we utilized the readback data sequences of the odd and even
tracks to produce the energy ratios. We then proposed to use a
pairing of a monic constraint GPR target and a 1-D equalizer
that matches each estimated head offset level accordingly to
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deal with the effects of TMR. Simulation results demonstrate
that performance gains can be achieved using the proposed
methods, especially when the recording system experiences
severe size and position fluctuations.
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A reduction in the track width of magnetic recording systems results in a welcome increase in Areal Density (AD),
but can severely deteriorate system performance in the unfortunate appearance of extreme Inter-Track Interfer-
ence (ITI). The effect of severe ITI may be mitigated by using coding schemes. In this paper, therefore, we present
a rate-5/6 2-Dimensional (2D) modulation code based on a proposed Single-Reader/Two-track Reading (SRTR)
technique to cope with this serious problem in staggered Bit-Patterned Magnetic Recording (BPMR) systems. We

then evaluate the Bit-Error Rate (BER) performance of the proposed system in the presence of media noises, e.g.,
position and size fluctuations. Our simulation results indicate that, at the same User Density (UD), the proposed
system performs better than an uncoded system by about 1.0 dB at the BER of 107> and is also superior to the

conventional recording system.

1. Introduction

To increase an Areal Density (AD) of magnetic recording technology,
the Bit-Patterned Magnetic Recording (BPMR) is one of the promising
candidates for the next generation of Hard Disk Drive (HDD) technolo-
gies, which is expected to extend the AD by up to 4 terabit per square inch
(Tb/inz) [1]. However, when the track pitch and bit length in BPMR
systems are much reduced to obtain a higher AD, the reader’s sensitivity
response still has a wider width than the written track width, and the
2-Dimensional (2D) interferences consisting of Inter-Symbol Interference
(ISD) and Inter-Track Interference (ITI) [2] will also unavoidably increase.
Moreover, severe ITI can degrade the overall system performance
significantly. Therefore, ITI cancelation or precaution techniques, such as
ITI cancellers [3,4], multi-head/multi-track schemes [5], and 2D mod-
ulation codes [6-8] have been considered to prevent and combat this
situation.

In the previous study [9], H. Muraoka and S. J. Greaves proposed the
two-track reading with a wide-track reader that performs together with a
staggered recorded magnetization. The results are satisfactory for their
proposed channel; however, we have not yet considered them for a
staggered array BPMR channel. C. Buajong and C. Warisarn [10] intro-
duced a multitrack reading scheme with a single reader in a staggered

* Corresponding author.

BPMR system as shown in Fig. 1. An over-sampling technique and the
Partial-Response Maximum-Likelihood (PRML) detection were used
together with a two-track reading scheme in a staggered BPMR system.
The simulation results indicate that the effects of severe ITI can be
mitigated using a multitrack reading scheme with a wide-track reader.

Recently, several 2D encoding/decoding schemes have been pro-
posed [11-13] to deal with the severe 2D interference effect. For
instance, Kurihara et al. [12] introduced a constructive ITI-coded Parti-
al-Response (PR) maximum likelihood system based on a two-track
model for Perpendicular Magnetic Recording (PMR). Specially, the
constructive ITI code has been designed based on the equalized level such
that the opposite polar level can never occur simultaneously after class-I
PR equalization. Moreover, Recorded-Bit Patterning (RBP) schemes were
also presented to combat the 2D interference in both regular [6] and
staggered [14] BPMR channels, but they had high complexities and
required large buffer memory. Therefore, easier encoding schemes, such
as the ITI-mitigating 5/6 2D modulation code in BPMR system [15], were
proposed to remove the fatal ITI data patterns, i.e., [-1 +1 -1] and [+1 -1
+1] in across track direction, which converts an input data sequence into
a 3-track recorded sequence based on a look-up table before recording
them onto the 3 tracks of the magnetic medium simultaneously, which
yields a good performance.
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Fig. 1. Configuration of the proposed Single-Reader/Two-track Reading (SRTR)
technique at the AD of 3.0 Tb/in? under the readhead sensitivity response that
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To improve the BER performance of the multitrack reading scheme in
the staggered BPMR system, we propose a rate-5/6 2D modulation code,
which can guarantee that the BPMR readback signal will not be corrupted
by severe interference, thus easing the data detection process. Our
encoding process based on a look-up table operates easily, and the
Euclidean distance [16] concept is applied in the decoding process to
make sure that the received data can be decoded accordingly. The results
show that our proposed system has a greater performance than an un-
coded system under the SRTR technique and is superior to the conven-
tional recording system at the same User Density (UD). Moreover, we also
evaluate the BER performance of the proposed system in the presence of
media noises, e.g., position and size fluctuations. The simulation results
indicate that, at the same UD, our proposed system provides better per-
formance for all position and size fluctuation levels. Furthermore, it
seems that the size fluctuation has a greater influence on the proposed
system than the position fluctuation.

The rest of this paper is organized as follows: Section 2 briefly de-
scribes the staggered BPMR channel model; Section 3 explains the pro-
posed encoding and decoding schemes; simulation results are given in
Section 4; and finally, Section 5 concludes this paper.

2. Channel model

The staggered BPMR system with the proposed encoder and decoder
considered in this paper is illustrated in Fig. 3. We consider a hexagonal
island with a diameter of 12 nm and a bit period of 16.0 and 14.5 nm,
which correspond to ADs of 2.5 and 3.0 Tb/in? respectively. The bit
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Fig. 3. Block diagram of the SRTR technique combined with the proposed rate-
5/6 2D modulation code in a staggered BPMR system.

islands are arranged as a staggered array and covered with a readhead
sensitivity response [17] as shown in Fig. 1. Here, the cross and down
track readhead sensitivity functions are fixed to be 64 nm as similarly
used in Ref. [4], as illustrated in Fig. 2. In this paper, we define the pixel
size to be 0.01 x 0.01 nm?. Then, the hexagonal bit islands of the medium
are constructed using many small pixels until they reach their size limits
[10,18]. A binary input sequence a, € {£1} with bit period T is encoded
by the proposed 2D modulation code to obtain two data tracks Xy, Xk 11,
where xi; € {1} before recording them onto a medium. In addition, the
writing process is assumed to be precise, where the recording field of the
write head covers only a bit pixel area. Therefore, its magnetization will
always be the same as that of the recorded bit. Here, the sidetracks are
also covered with a readhead sensitivity function, which implies that the
readback signal is not only interfered by two desired data tracks but also
corrupted by their sidetracks. It is very important to note that the enco-
ded data sequences will be written one by one into the medium using
only one single writer with the help of buffer memory.

At the receiver, the readback signal is simply obtained from the 2D
convolution between the magnetization and the readhead sensitivity
response of the reader whose track width covers more than two whole
neighboring tracks. The center of the readhead sensitivity function is
positioned at the intermediate point between the parallel tracks as
illustrated in Fig. 1.

In this work, we first consider the readback signal as a function of x
(in nm) and y (in nm) coordinates, r(x,y), which can be produced from
the following equation,

r(x,y) = //m(é nh(x— &,y —n)dédn, @

where m(x,y) is the magnetization of bit island in the media plane, and
h(x,y) is the readhead sensitivity response of the reader. The continuous
readback signal r(t) can also be constructed from the readback signal of x
and y coordinates as r(t) = r(t, i), where i is the middle point of the
obtained readback signal of x and y coordinates in an across-track di-
rection. Then, the readback signal is further corrupted by electronics
noise that is modeled as an Additive-White Gaussian Noise (AWGN) with
zero-mean and variance ¢2. To obtain the sample amplitudes, the read-
back signal is perfectly over-sampled at the sampling period, 0.5 Ty,
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Fig. 4. The proposed (a) encoding and (b) decoding schemes, which encodes the 1 x 5 user bits to be the 2 x 3 coded bits and decodes the 2 x 3 estimated recorded

bits to be the 1 x 5 estimated user bits, respectively.

which is located at the center of the recorded magnetization. Next, the
readback data sequence ry, is equalized by a 1D equalizer [19] to obtain
the data sequence s, and is fed to the 1D Viterbi detector to produce the
estimated data sequence. Finally, this sequence will be rearranged to
become two data sequences, i.e., X and Xy .1, before being passed on to
the proposed decoder to produce the estimated user bits. It is very
important to note that the partial response channel (1, 2, 1) or PR2 is
used to design the 1D equalizer and the equalizer’s length is given to be
11 taps [10] that was designed based on Minimum Mean Square Error
(MMSE) criterion [19].

3. Proposed technique

We first analyze the peak amplitude of all possible 2° = 64 data
patterns in a matrix form of 2 x 3 bits that are arranged as a staggered
array BPMR, where the peak amplitudes of each data pattern are ob-
tained from the 2D convolution between their magnetizations without
sidetrack data and readhead sensitivity response, as shown in Fig. 1.
Since we find that the desired bit peak amplitude will always reverse in
the opposite direction when the data bits of each pattern contain many
1’s and -1’s which easily cause an error during the data recovery process.
We name these data patterns as destructive data patterns. To avoid this
unwanted situation, therefore, this condition will be defined as a crite-
rion for designing a codeword, which can efficiently avoid such
destructive data patterns. In this work, we select all 32 data patterns that
provide the highest peak amplitude according to their bits status. Then,
those data patterns are all defined as 32 code patterns for single-reader
two-track reading BPMR systems. The details of the encoding and
decoding processes can be explained as follows.

3.1. Encoding scheme

Since we consider 6 data bits to be a codeword, there will be 2% = 64
possible data patterns composed of 2 bits in the first column [x, Xk 1:1], 2
bits in the second column [xy17, Xi+1,+1], and lastly, 2 bits in the third
column [X21, Xk+214+1), as shown in Fig. 4 (a). We have selected the best
32 data patterns that provide the biggest group from the same data bit
i.e., the 1’s data bits should be grouped together with 1’s, while the -1’s
data bits should be also grouped together with -1’s.

The best 32 data patterns are then assigned to be the 32 code patterns
and they become the proposed codewords as shown in Fig. 5. Then, we
match the 5 input bits, a = [ax, ax1, Gki2, ki3, Akia] With a 6-bit

codeword, X = [Xk1, Xk1i1; Xkr1ds Xki1i015 Xkio Xerz1i1]Ts [0 is the
transpose operator, as illustrated in Table 1. Moreover, to create more
accuracy in the decoding process, we have partially defined a mapping
condition to create a codeword so that the first two input bits match the
first column of the codeword, the second two input bits match the second
column of the codeword, while the remaining input bit corresponds with
the upper track in the third column of the codeword. Unfortunately, 14
patterns that cannot match still remain after using the above conditions;
however, these patterns are still among the best 32 patterns. Thus, they
can output an appropriate readback signal. It is very important to note
that the specified constrains at the boundaries between each codeword
are not considered in this proposed encoding scheme.

3.2. Decoding scheme

The estimated recorded data sequences, Xx; and X1, are decoded
by the rate-5/6 2D modulation decoder, which employs the same look-up
table as Table 1, to determine the estimated user bits ay, as shown in
Fig. 4(b). Here, a group of 3 symbols from the estimated recorded data
sequences, X = [Xis, Xkri15 Xkill Xkilli1; Xki2l Xkiz2i1] > will be
rearranged to become the estimated user bit vector, a = [dx, dx;1, Ak 2,
dx.3, drs4]. Due to severe interference and electronics noise, however,
the decoding process may operate incorrectly for some received patterns
that are inconsistent with the codewords in Tables 1, i.e., x # X. To solve
this problem, therefore, we apply the Euclidean distance [16] concept in
the decoder to measure the similarity between X and x. Here, the decoder
computes the Euclidean distance of the estimated recorded data sequence
x for each codeword x, according to

21
d(i X) = Z Z (jx\/(er,H»n - xk+m.[+n)2'

m=0 n=0

(2)

Thus, the estimated user bit vector, a, corresponding to the codeword
x that yields the minimum Euclidean distance in (1), will be defined as
the output of the decoder.

4. Results and discussion

We compare the BER performance of 1) the proposed SRTR system
that performs together with the proposed 5/6 2D modulation code; 2) the
proposed SRTR system [10], in which the sidetracks of both systems
contain random data; and 3) a conventional reading system which uses
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Fig. 5. The list of 32 codewords that yield good readback signals.

one reader that reads the data from one track i.e., an input sequence q is where R is a code rate, i.e., R = 0.833. The Signal-to-Noise Ratio (SNR) is
written onto a single track with random data on sidetracks. For a fair defined as SNR = 10 log;, (1/6?) in decibel (dB), where ¢ is a standard
comparison, the staggered BPMR system’s performance should be deviation of the AWGN.

compared using the UD. In this paper, the UD is defined as UD = AD x R, In this paper, the percentage of the position fluctuation A, can be
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Table 1
A look-up table of the proposed coding scheme for SRTR in staggered BPMR
systems.

All possible 5-bit input data, a X
ax k41 Qi 42 Qi3 [« P codewords
-1 -1 -1 -1 -1 C
-1 -1 -1 -1 1 Co
-1 -1 -1 1 -1 Cio
-1 -1 -1 1 1 Cis
-1 -1 1 -1 -1 Cy
1 -1 1 -1 1 C3
-1 -1 1 1 -1 Ciu
-1 -1 1 1 1 Cig
1 1 -1 -1 -1 Cy
-1 1 -1 -1 1 Ci2
-1 1 -1 1 -1 Cas
-1 1 -1 1 1 Ca0
1 1 1 -1 -1 Ciy
-1 1 1 -1 1 Ci3
-1 1 1 1 -1 Cs
-1 1 1 1 1 Ca1
1 -1 -1 -1 -1 Co9
1 -1 -1 -1 1 Ce
1 -1 -1 1 -1 Cas
1 -1 -1 1 1 Coy
1 -1 1 -1 -1 Cas
1 -1 1 -1 1 Cis
1 -1 1 1 -1 Ca4
1 -1 1 1 1 Ci4
1 1 -1 -1 -1 Ca
1 1 -1 -1 1 Cso
1 1 -1 1 -1 Ca1
1 1 -1 1 1 Cy
1 1 1 -1 -1 Cis
1 1 1 -1 1 Cas
1 1 1 1 -1 Cg
1 1 1 1 1 Cap
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Fig. 6. Histogram of the normalized received intensities of the (a) uncoded and
(b) coded systems without position fluctuation.

defined as A, = (Aq/Tx) x 100, where Aq is the maximum possible
distance from the center of a bit island to the center of the ideal target
island according to Gaussian distribution, and Ty is the length of the bit
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Fig. 7. Histogram of the normalized received intensities of the (a) uncoded and
(b) coded systems with 3 % position fluctuation.
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Fig. 8. The comparison of BER performance in different systems at the UD of
2.5 Tb/in.

period. The percentage of the island size fluctuation A is defined ac-
cording to the shrinking or expanding of islands, which can be defined as
As = (Aw/Ly) x 100, where A, is the maximum possible width of the
island size compared with the ideal island size that has a Gaussian dis-
tribution, and L, is the diameter of the bit island [18].

We first study the histograms of the normalized received intensities at
the input of receiver to evaluate the performance of the uncoded and
proposed coded systems using a single-reader/two-track reading scheme
under the effect of 2D interference. Fig. 6 shows the histograms of the
raw signal and the signal obtained from the proposed code without
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Fig. 9. The comparison of BER performance versus the (a) position and (b) size
fluctuations between the proposed SRTR with and without code systems at the
UD of 2.5 Tb/in®.

position fluctuation. Here, the effect of 2D interference is revealed by the
overlapping area between the -1’ and ‘1’ bits as shown in Fig. 6(a) for the
raw signal. It seems that the overlapping area is significantly reduced
when the proposed code is used, as shown in Fig. 6(b). Furthermore, we
also analyze the overlapping area when the system encounters a 3%
position fluctuation as illustrated in Fig. 7. It is clear that the signal
produced with the proposed code outperforms the raw signal of the un-
coded system.

In addition, we also consider the comparison of BER performances in
different systems as shown in Fig. 8. It is clear that the proposed SRTR
system that performs together with the proposed 5/6 2D modulation
code at the UD of 2.5 Tb/in? (i.e., corresponds to the AD of 3.0 Tb/in?) is
better than the uncoded SRTR system of about 1.0 dB at the BER = 107>
and is superior to the conventional reading system. Moreover, we also
consider the position and size fluctuations at the UD of 2.5 Tb/in2. The
SNR is fixed at 19 dB for all position and size fluctuation levels. Evidently,
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our proposed system can yield the best BER performance over the un-
coded SRTR system as shown in Fig. 8. However, the BER performance of
the proposed system gets slightly closer to the uncoded SRTR system at
higher position and size fluctuation levels as illustrated in Fig. 9(a) and
Fig. 9(b), respectively. However, our proposed system still provides
better performance for all position and size fluctuation levels. Moreover,
it seems that the size fluctuation has a greater influence on the proposed
system than the position fluctuation.

5. Conclusion

To extend the real density capability of bit-patterned magnetic
recording systems, we propose using a rate-5/6 2D modulation code that
performs together with an SRTR technique. Here, the over-sampling
technique is used to obtain data samples, which provides the data rate
twice as rapidly as the conventional reading. The encoding and decoding
schemes operate based on a look-up table, which matches each of the 1 x
5 user bits to a 6-bit codeword in a matrix form of 2 x 3 data bits. Above
all, the merit of the proposed 2D modulation codes is that they avoid a
destructive data pattern that easily causes an error during the data re-
covery process before being recorded onto a magnetic medium. The
simulation results indicate that the proposed system provides a greater
performance gain compared with the one without a coding system, and it
is also superior to the conventional reading system at the same user
density. Furthermore, our proposed system yields more performance
gains than other systems when they encounter with position and size
fluctuations.
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