

บทคัดย่อ

งานวิจัยนี้ดำเนินการทดสอบในห้องปฏิบัติการ และวิเคราะห์ผลการทดสอบหลักการลาดติน อนันต์เพื่อบูรณาการความเข้าใจพื้นฐานเกี่ยวกับตินโคลนคลุมแบบตื้นและเป็นแนวทางในการพัฒนาระบบที่อนภัยดินคลุม ผลการทดสอบเพื่อศึกษาอิทธิพลของความเข้มฝน และความชื้นลาดติน ต่อการตอบสนองเชิงอุทกวิทยาในลาดตินตื้น พบว่า การตอบสนองทางอุทกวิทยาภายใต้ฝนสามารถแบ่งได้เป็น 2 ช่วง ได้แก่ การตอบสนองต่อช่วงการซึม (Infiltration phase) และช่วงการอิ่มตัวด้วยน้ำ (Saturation phase) ในช่วงการซึม ปริมาณความชื้นสูงสุดในติน หรือความชื้นหลังระนาบความชื้น (Water content behind wetting front, θ_{wb}) พบรากชื้นอยู่กับความเข้มฝนเพียงอย่างเดียว โดยจะไม่เปลี่ยนแปลงตามการเปลี่ยนแปลงของความชื้นลาดติน เมื่อนำข้อสรุปดังกล่าวไปประเมินระนาบวิบัติด้วยหลักการลาดตินอนันต์ พบราก รูปแบบการวิบัติในลาดตินตื้นสามารถจำแนกด้วยค่าดัชนีเสถียรภาพ (Stability index, $\tan \phi' / \tan \beta$) ได้ 3 รูปแบบหลัก ประกอบด้วย 1) การวิบัติตามแนวชั้นทึบน้ำ (Along the impervious layer mode) 2) การวิบัติระดับตื้น (Shallow depth mode) และ 3) การวิบัติในช่วงเปลี่ยนผ่าน (Transitional mode) โดยการวิบัติในช่วงเปลี่ยนผ่านเท่านั้นที่อ่อนไหวต่อการเปลี่ยนแปลงดัชนีการซึม (Infiltration index, i/k_s) ส่งผลให้ตัวแหน่งของระนาบวิบัติสามารถเกิดขึ้นได้ที่ทุกระดับความลึกในลาดติน

นอกจากนี้งานวิจัยได้ทำการศึกษาปัจจัยที่ส่งผลกระทบต่อตินโคลนคลุมระดับตื้นผ่านกราฟความลึกวิกฤติ ซึ่งแสดงความสัมพันธ์ระหว่าง ความลึกที่ระนาบวิบัติ ความชื้นของลาดติน ความเข้มของฝน และมุ่งเสียดทานของตินพบว่า อัตราการลดลงของเสถียรภาพลาดตินจะเพิ่มขึ้นตามการเพิ่มของปริมาณความเข้มฝน แต่จะคงที่เมื่อความเข้มฝนมากกว่าหรือเท่ากับความสามารถในการซึมผ่าน ได้ของตินที่สภาวะอิ่มตัวด้วยน้ำ ($i \geq k_s$) นอกจากนี้ ความสามารถในการซึมผ่านได้ของตินที่สภาวะอิ่มตัวด้วยน้ำยังแสดงบทบาทสำคัญต่อกราฟน้ำฝนวิกฤติในการความคุณปริมาณความเข้มฝนที่สามารถกระตุ้นการวิบัติของลาดติน กล่าวคือ เมื่อปริมาณความเข้มฝนอยู่ในช่วงต่ำกว่าความสามารถในการซึมผ่านได้ของตินที่สภาวะอิ่มตัวด้วยน้ำ เวลาในการวิบัติของลาดตินตื้นจะเร็วขึ้นตามปริมาณความเข้มฝนที่เพิ่มขึ้น แต่เมื่อให้รากตามที่ปริมาณความเข้มฝนมีค่าสูงกว่าหรือเท่ากับความสามารถของตินดังกล่าว เวลาในการวิบัติของลาดตินจะไม่เปลี่ยนแปลง สำหรับความชื้นลาดตินจะแสดงบทบาทหลักต่อการควบคุมเสถียรภาพเริ่มต้นของลาดติน โดยที่เสถียรภาพเริ่มต้นของลาดตินจะลดลงตามความชื้นที่เพิ่มขึ้น

ผลการจำแนกรูปแบบการวิบัติในงานวิจัยนี้สามารถนำไปใช้ประโยชน์ในการระบุทำแห่งที่เหมาะสมต่อการติดเครื่องมือเพื่อเฝ้าระวังดินโคลนถล่มระดับตื้น และการแจ้งเตือนภัยล่วงหน้าได้โดยลักษณะที่สำคัญที่สุดคือความชันน้อยระนาบวิบัติจะอยู่ตามแนวรอยต่อระหว่างชั้นดินกับชั้นทึบน้ำ จึงควรติดตั้งอุปกรณ์แจ้งเตือนภัยใกล้ๆ ผิวโลกต่อของชั้นทึบน้ำเพื่อตรวจจับการเพิ่มสูงขึ้นของระดับน้ำได้ดี ขณะที่ลาดตัดมีความชันปานกลาง รูปแบบการวิบัติจะเป็นการวิบัติช่วงเปลี่ยนผ่าน ระนาบวิบัติเกิดขึ้นได้หลายระนาบในลาดตัด จึงควรติดตั้งอุปกรณ์แจ้งเตือนภัยประมาณกึ่งกลางชั้นดิน หรือต่ำกว่าผิวหน้าลาดตัดลงไปพอประมาณ เพื่อตรวจจับหาค่าความชันหลังระนาบ ส่วนลาดตัดมีความชันมากรูปแบบการวิบัติจะเป็นการวิบัติระดับตื้น และจะเกิดขึ้นทันทีหลังฝนตกหนัก การแจ้งเตือนภัยจึงเป็นการห้ามผู้คนเข้าไปอยู่อาศัยบริเวณนั้น นอกจากนี้ยังพบว่าการที่ดินมีค่าความยืดหยุ่นมากจะเกิดจาก การมีอยู่ของรากพืชสามารถช่วยเพิ่มความลึกของระนาบวิบัติ และยังลดความไวของระนาบวิบัติที่เปลี่ยนไปต่อการเปลี่ยนความเข้มฝน ดังนั้นการมีอยู่ของรากพืชจึงมีประโยชน์อย่างมากต่อการลดความเสี่ยงภัยต่อการวิบัติของชุมชนโดยรอบ

Abstract

This report consists of two main parts. In first part, a series of experiments were undertaken to evaluate the hydrological responses of shallow slopes of varying steepness subjected to varying intensities of rainfall. An analysis of infinite slopes were also undertaken to develop a fundamental understanding of rainfall-induced shallow landslide characteristics. The hydrological and physical responses were characterized in the infiltration and saturation phases. During the infiltration phase, the maximum water content was found behind the wetting front, termed as the water content behind the wetting front (θ_{wb}). For a certain soil type, the magnitude of θ_{wb} was found to be dependent on the magnitude of rainfall intensity, regardless of the slope gradient and initial water content. Based on the relative depth of the failure plane, the failure can be categorized by three prime modes: 1) along the impervious layer mode, 2) shallow depth mode, and 3) transitional mode. These modes can be characterized by the magnitude of a stability index termed as $\tan\phi'/\tan\beta$ ratio. An infiltration index termed as i/k_s ratio was found to play a role in the depth of failure plane only for the transitional mode. Second part presents a set of parametric study performed via finite element modeling to investigate the effect of saturated permeability of soil, slope angle and antecedent rainfall on instability of a shallow slope. It was found that the rate of reduction in safety factor increases with an increasing the intensity of rainfall, only in a range of lower than the infiltration capacity at soil saturated state. As such the saturated permeability of the soil, which is equal to the infiltration capacity at soil saturated state, plays an important role in the shallow slope failure. The saturated permeability was found also to govern a range of applicability of the rainfall intensity-duration thresholds for initiation of slope failure. If the rainfall intensity is not greater than the infiltration capacity at soil saturated state, the rainfall duration to failure be read from the thresholds. Slope angle and antecedent rainfall were found to play significant roles on instability of shallow slopes, as they control the initial stability of slope, which results in the different linear relationship of thresholds. In addition, the slope angle

might accelerate the rate of rain water infiltration, and hence it reflects the slope of the thresholds.

Based on those failure modes, primary methodology for monitoring device installations to build up physically-based warning system was introduced. Where the mild slope, the failure plane will be along the impervious layer. Should install a warning device near the boundary between the soil layer and impervious layer to detect an increase in water table levels. While the intermediate steep slope is a transitional failure, the failure plane can occur at various depths depending on the stability and infiltration indices. For a given i/k_s , lower values of the strength parameters (both c' and ϕ') result in shallower depths of the failure plane. Furthermore, in cohesionless sloping ground having its steepness angle close to the soil frictional angle, when the rainfall intensity approaches the value of the soil saturated permeability, the variation of rainfall intensity plays the major role in the eventual depth of the failure plane. This study also found that little cohesive strength in sloping ground can reduce the influence of rainfall intensity on the depth of a potential failure plane.