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Let (X, p) be a metric space. A geodesic path joining xe X to ye X is a function ¢

from the closed interval [0, p(X,y)] to X such that ¢(0) =X, #(o(x,y)) =Y, and
p(#(1), ¢(t)) =[t—t| for all t,t" [0, p(x, y)].

The image of ¢ is called a geodesic segment joining X and Yy which is denoted by [X, Y]
when it is unique. This means that ze[X,y] if and only if there exists « €[0,1] such that
p(X,2)=Q-a)p(x,y) and p(y,z)=ap(X,y). In this case, we write Z=ax® (l—-a)y. The
space (X, p) is said to be a geodesic space (resp. D —geodesic space) if every two points of X
(resp. every two points of distance smaller than D) are joined by a geodesic path. A subset C of
X is said to be compact if every sequence in C has a convergent subsequence whose limit is
contained in C. The set C is said to be convex if C includes every geodesic segment joining any
two of its points. The closed convex hull of C is defined by

COT/(C) ={Ac X:Cc A and A is closed and convex}.

Let C be a convex subset of X. A subset A of C is called an extremal subset if it is
nonempty, closed and satisfies the following property: if X,yeCand ax® (1-a)y e A for some
a €(0,1), then x,ye A. A point z in C is called an extreme point of C if {z} is an extremal
subset of C. We denote by Ext(C) the set of all extreme points of C.

Given k >0, we denote by Mk2 the following metric spaces:

(i) if k=0 then Mk2 is the Euclidean space [1 ?;

(i) if k>0 then Mk2 is obtained from the spherical space by multiplying the distance
function by 1/k.

A geodesic triangle A(X,Y,z) in a geodesic space (X, p) consists of three points X, Y,z in
X (the vertices of A) and three geodesic segments between each pair of vertices (the edges of
A). A comparison triangle for a geodesic triangle A(X,Y,z) in (X, p) is a triangle X(i,?,i) in
Mk2 such that p(X,Y) :dez(;,y), p(Y,2) :de@,E), and p(X,2) :dez(g,E). It is well known
that such a comparison triangle exists if p(X,y)+ po(Y,z)+ p(X,z) < 2D,, where D, = /K for
k>0 and D, =co. Notice also that the comparison triangle is unique up to isometry. A point
ue[x,y] is called a comparison point for U e[Xx,y] if p(x,u) = dez(;, u).

A metric space (X, p) is said to be a CAT(k ) space if it is D, —geodesic and for each two
points U,V of any geodesic triangle A(X,Yy,z) in X with p(X,y)+ po(Y,2)+ p(X,z) <2D, and for
their comparison points U,Vvin A(X,Y,z) the CAT(K ) inequality p(u,v) < dez(G, \_/) holds.



It is known from [7] that if X is a complete CAT(k ) space with k >0 and the diameter of

X is smaller than L, then there exists R >0 such that

2k
P (- a)y @ a2) < (- ) (X )+ (x,2) ~ S all-)p?(1,2),
forall x,y,z in X and a €[0,1].
Let (X, p) be a geodesic space. The distance from a point X in X to a subset C of X is
defined by dist(x,C):=inf{d(x,y):y e C}. The set C is called bounded if
diam(C) :=sup{p(x,y): X,y € C} < 0.
We denote by CB(C) the family of nonempty closed bounded subsets of C, by K(C) the family
of nonempty compact subsets of C, and by KC(C) the family of nonempty compact convex
subsets of C. The Hausdorff metric on CB(C) is defined by
H(AB) = max{sup dist(x, B),supdist(y,A)} for A,B e CB(C).
xeA yeB
Let T:C —» CB(C) be a multi-valued mapping. A point X in C is called a fixed point of T if
X € TX. Moreover, if {Xx}=Tx, then X is called an endpoint of T. It is denoted by F(T) the set of
all fixed points of T and by E(T) the set of all endpoints of T. We say that T satisfies the
endpoint condition if F(T)=E(T). A mapping T :C — CB(C) is said to be
(i) nonexpansive [4] if H(Tx,Ty) < p(x,y) for all x,y eC,;
(i) quasi-nonexpansive [9] if F(T)#& and H(TX,Tp) < p(x,p) for all xeC and
peF(T)
(iii) continuous if H(Tx,,TX) = 0 whenever X, — X.

(iv) hemicompact if for any sequence {Xx,} in C such that limdist(x,,Tx,)=0, there

N—o0

exists a subsequence {X, } of {Xx,} such that limx, = peC;

oo

(v) diametrically regular [8] if there exists a net {X} in C such that lim, diam(Tx,) =0. In
this case, we call {x,} a diametrically regular net for T.

A mapping T :C — CB(C) is said to satisfy condition (E) [3] if there exists £ >1 such that

dist(x,Ty) < udist(x,Tx) p(x,y) for all X,y eC.
Let {x,} be a bounded sequence in a geodesic space (X, p). The asymptotic radius r({xn}) of
{Xx,} is defined by
r({x,})=inf {Iimsupp(xn, X):Xxe X }

n—o0

The asymptotic center A({X,}) of {x,} is the set

A({x.}) = {x e X :limsup p(X,,X) = r({xn})}.

N—o0



It is known from [2] that in a complete CAT(0) space, A({Xn}) consists of exactly one point. A
bounded sequence {X,} in X is said to A—converge to X in X if A({Xni})={x} for every

subsequence {x, } of {X,}. In this case, we write A—lim X, =X and call X the A—limit of {X,}.

N—o0

One of the fundamental and celebrated results in functional analysis related to extreme
points is the Krein-Milman theorem. In [5], the authors proved that every compact convex subset of
a locally convex Hausdorff space is the closed convex hull of its set of extreme points. This result
was extended to a special class of metric spaces, namely, CAT(0) spaces, by Niculescu [6] in 2007.
Notice that Niculescu's result can be applied to CAT(k ) spaces with k <0 since any CAT(K ) space
is a CAT(k") space for k' >k (see e.g., [1]). However, the result for k >0 is still unknown. In this
project, we extend Niculescu's result to the setting of CAT(k ) spaces with k > 0. We also prove
strong and A —convergence theorems of some iterative process for some generaliezed multi-valued
nonexpansive mappings in complete CAT(0) spaces. Our main discoveries are the following

theorems.

Theorem 1. Let k >0 and (X, p) be a complete CAT(k ) space whose diameter is smaller

than L. If C is a nonempty compact convex subset of X, then every extremal subset of C

2k

has an extreme point.

Theorem 2. Let k >0 and (X, p) be a complete CAT(k ) space whose diameter is smaller

than L. If C is a nonempty compact convex subset of X, then C is the closed convex hull of

2k

its set of extreme points.

Theorem 3. Let C be a nonempty bounded closed convex subset of a complete CAT(0)
space (X,p) and T :C — K(C) be a nonexpansive mapping wWhich is diametrically regular with

a diametrically regular net {x,}. Suppose that lim, dist(x,,Tx,) =0.Then T has an endpoint in C.

Theorem 4. Let C be a nonempty closed convex subset of a complete CAT(0) space
(X,p) and T:C — K(C) be a nonexpansive mapping. Fix ueC. For each t(0,1), let X, be a
fixed point of G, :C — K(C) defined by G,(X):=(1—t)u@tTX. Suppose that {x} is diametrically
regular for T. Then T has an endpoint if and only if {X} is bounded as t > 1. In this case, {X}

converges strongly to the unique point X in E(T) such that p(u,?) =min{p(u,e):ec E(T)}.



Theorem 5. Let C be a nonempty closed convex subset of a complete CAT(0) space
(X,p) and let {T;} be a countable family of continuous and quasi-nonexpansive multi-valued
mappings of C into CB(C) with ﬂilF(I'i)#@ and T,p={p} forall iell and peﬂ:ilF(I'i).
Given X, € C, and let {Xx,} be the sequence generated by

Xy = A0YO @ 10yD @...@ AMy™ forall nell,
where y@=x, y®WeTx and the sequences {Zéi)}c(o,l) satisfying Zi”zoﬂn(‘):l and

lim ,15‘) exist for all iell U{0}. Assume that one member of the family {T;} is hemicompact.
n—oo

Then, {X,} converges strongly to a common fixed point of {T;}.

Theorem 6. Let C be a nonempty closed convex subset of a complete CAT(0) space
(X, p) and let {T;} be a countable family of quasi-nonexpansive multi-valued mappings of C into
KC(C) satisfying condition (E). Assume that ﬂ?ilF(Ti);tQ and T,p={p} for all iell and
pe ﬂle(Ti). Given X, € C, and let {x,} be the sequence generated by

%1 = A0YO @ 10O ©...@ 1PY™ forall nell,
where y¥ =x . yWeTx and the sequences {Z,S”}C(O,l) satisfying Zinzoﬂéi)zl and

lim ,15‘) exist for all i €[] U{0}. Then, {X,} A—converges to a common fixed point of {T;}.

n—o0
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ABSTRACT. In this paper, we propose a new one-step iterative process
for a countable family of quasi-nonexpansive multi-valued mappings in a
CAT(0) space. We also prove strong and Delta-convergence theorems of
the proposed iterative process under some control conditions. Our main
results extend and generalize many results in the literature.

Keywords: Fixed point, quasi-nonexpansive multi-valued mappings,
CAT(0) spaces.
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1. Introduction

Let (X,d) be a metric space. A geodesic joining x to y (where z,y € X)
is a map ~ from a closed interval [0,]] C R to X such that v(0) = z,v(l) =y
and d(y(t1),v(t2)) = [t1 — to| for all £1,t2 € [0,]. Thus v is an isometry and
d(x,y) = l. The image of v is called a geodesic (or metric) segment joining x and
y. When it is unique, this geodesic is denoted by [z,y]. We write ax @ (1 —a)y
for the unique point z in the geodesic segment joining from x to y such that
d(z,z) = (1 — a)d(z,y) and d(y,z) = ad(z,y) for a € [0,1]. The space X
is said to be a geodesic metric space if every two points of X are joined by a
geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic
joining x and y for each x,y € X. A subset D of X is said to be convex if D
includes every geodesic segment joining any two of its points.

Following [3], a metric space X is said to be a CAT(0) space if it is geodesi-
cally connected and if every geodesic triangle in X is at least as thin as its com-
parison triangle in the Euclidean plane E2. It is well known that any complete,

Article electronically published on 31 October, 2017.
Received: 3 July 2015, Accepted: 5 May 2016.
*Corresponding author.

(©2017 Iranian Mathematical Society
1127
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simply connected Riemannian manifold having nonpositive sectional curvature
is a CAT(0) space. Other examples include Pre-Hilbert spaces [3], R-trees [18],

the complex Hilbert ball with a hyperbolic metric [15], and many others. It
follows from [3] that CAT(0) spaces are uniquely geodesic metric spaces. The
fixed point theory in CAT(0) spaces was first studied by Kirk [16,17]. He

showed that every nonexpansive (single-valued) mapping defined on a bounded
closed convex subset of a complete CAT(0) space always has a fixed point.
Since then, there have been many researches concerning the existence and the
convergence of fixed points for single-valued and multi-valued mappings in such

spaces (e.g., see [2,5,7,8,18-20]).
The study of fixed points for nonexpansive multi-valued mappings using
the Pompeiu-Hausdorff metric was initiated by Markin [21]. Different itera-

tive processes have been used to approximate fixed points of nonexpansive and
quasi-nonexpansive multi-valued mappings; in particular, Sastry and Babu [24]
considered Mann and Ishikawa iterative processes for a multi-valued mapping T’
with a fixed point p and proved that these iterative processes converge to a fixed
point ¢ of T under certain conditions in Hilbert spaces. Moreover, they illus-
trated that fixed point ¢ may be different from p. Later, in 2007, Panyanak [22]
generalized the results of Sastry and Babu [24] to uniformly convex Banach
spaces and proved a convergence theorem of Mann iterative processes for a
mapping defined on a noncompact domain. Since then, the strong convergence
of the Mann and Ishikawa iterative processes for multi-valued mappings has
been rapidly developed, and many papers have appeared (e.g., see [6,12,25,28]).
Among other things, Shahzad and Zegeye [26] defined two types of Ishikawa it-
erative processes and proved strong convergence theorems for such iterative
processes involving quasi-nonexpansive multi-valued mappings in uniformly
convex Banach spaces. Recently, Abkar and Eslamian [1] established strong
and Delta-convergence theorems for the multi-step iterative process for a fi-
nite family of quasi-nonexpansive multi-valued mappings in complete CAT(0)
spaces.

In this paper, motivated by the above results, we propose a new one-step it-
erative process for a countable family of quasi-nonexpansive multi-valued map-
pings in CAT(0) spaces and prove strong and Delta-convergence theorems for
the proposed iterative process in CAT(0) spaces. We finally provide an example
to support our main result.

2. Preliminaries

For a nonempty set X, we let P(X) be the power set of X and 2¥ =
P(X) — {@}. For a metric space (X,d), x € X, and A, B € 2%, let B(x,¢) =
{y € X : d(z,y) < €}, dist(z, B) = inf{d(z,y) : y € B}, and h(A,B) =
sup{dist(x, B) : x € A}.



1129 Suantai, Panyanak and Phuengrattana

We now recall some definitions of continuity for multi-valued mappings (see
[4,14] for more details). Let (X, d) and (Y, d) be metric spaces. A multi-valued
mapping T : X — 2Y is said to be

e Hausdorff upper semi-continuous at «x if for each € > 0, there is § > 0
such that h(Ty,Tx) < € for each y € B(x,0);

o Hausdorff lower semi-continuous at x if for each € > 0, there is § > 0
such that h(Tx,Ty) < € for each y € B(z,J);

o continuous at x if T' is Hausdorff upper and lower semi-continuous at
x.

We say that the multi-valued mapping 7' is continuous if it is continuous at
each point in X.

Let D be a nonempty subset of a metric space X. Let CB(D) and KC(D)
denote the families of nonempty closed bounded subsets and nonempty compact
convex subsets of D, respectively. The Pompeiu-Hausdorff distance [23] on
CB(D) is defined by

H(A, B) = max {sup dist(z, B), sup dist(y, A)} for A,B € CB(D),
T€A yeB

where dist(z, D) = inf{d(z,y) : y € D} is the distance from a point z to a

subset D.

Note that a continuous multi-valued mapping behaves like a continuous
single-valued mapping [14], that is, if a multi-valued mapping T': D — C'B(D)
is continuous then for every sequence {z,} in D such that lim, . z, = x, we
have lim,,_, oo H(Txz,,Tx) = 0.

The set of fixed points of a multi-valued mapping T : D — CB(D) will be
denoted by F(T)={x € D : x € Tx}.

Definition 2.1. A multi-valued mapping T : D — CB(D) is said to be
(i) nonexpansive [21] if H(Tx,Ty) < d(z,y), for all z,y € D,
(ii) quasi-nonezpansive [24] if F(T) # 0 and H(Tx,Tp) < d(z,p), for all
x €D and p e F(T),
(iii) hemicompact if for any sequence {x,} in D such that
lim,, oo dist(xy,, Txy,) = 0 there exists a subsequence {z,,} of {z,}
such that lim; ,oc z,, =p € D.

Definition 2.2. A multi-valued mapping T : D — CB(D) is said to satisfy
condition (E,) provided that

dist(z, Ty) < pdist(z, Tx) + d(z,y)

for each z,y € D. We say that T satisfies condition (E) whenever T satisfies
(E,) for some p > 1.

Remark 2.3. From the above definitions, it is clear that:
(i) if T is nonexpansive, then T satisfies the condition (E);
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(ii) if D is compact, then T is hemicompact.

Although the condition (E) implies the quasi-nonexpansiveness for single-
valued mappings [13], but it is not true for multi-valued mappings as the fol-
lowing example.

Example 2.4 ([27, Example 1]). Let D = [0,00) and T : D — CB(D) be
defined by
Tz = [x,22] for all z € D.

Then T satisfies condition (E) and is not quasi-nonexpansive.

Notice also that the classes of (multi-valued) quasi-nonexpansive mappings,
continuous mappings and mappings satisfying condition (E) are different (see
Examples 2.5-2.7).

Example 2.5 ([13, Example 2]|). Let D = [-1,1] and T : D — CB(D) be

defined by
_ {%msin(%)} if 0
{0} if x=0.
Then T is quasi-nonexpansive and does not satisfy condition (E).

Example 2.6 ([5, p. 984]). Let D =[0,1] and T : D — C'B(D) be defined by

To — {mQ} if 0<z<1;
{0} if =1,

Then T is quasi-nonexpansive and is not continuous. Notice also that the
mapping T'x = {xz} on [0, 1] is continuous but is not quasi-nonexpansive nor
satisfies condition (E).

Example 2.7 ([13, Example 3]). Let D = [-2,1] and T : D — CB(D) be

defined by
{{'“’2'} if —2<z<l;
Tr =

{-1} if z=1

Then T satisfies condition (E) and is not continuous.

The notion of the asymptotic center can be introduced in the general setting
of a CAT(0) space X as follows: Let {x,} be a bounded sequence in X. For
x € X, we define a mapping (-, {z,}) : X — [0,00) by

r(z,{z,}) = limsupd(x, x,).

n—roo

The asymptotic radius of {x,} is given by
r({z,}) =inf {r(z, {z,}) 2 € X},
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and the asymptotic center of {x,} is the set

A({zn}) ={z e X v (@ {za}) = ({za})}-
It is known by [10] that in a CAT(0) space, the asymptotic center A ({x,})
consists of exactly one point.

We now give the definition and collect some basic properties of the A-
convergence which will be used in the sequel.

Definition 2.8 ([19]). A sequence {z,} in a CAT(0) space X is said to A-
converge to x € X if x is the unique asymptotic center of {u,} for every
subsequence {u,} of {z,}. In this case, we write A-lim,,_,~, ©, = 2 and call z
the A-limit of {z,}.

Lemma 2.9 ([19]). Every bounded sequence in a CAT(0) space has a A-
convergent subsequence.

Lemma 2.10 ([9]). If D is a nonempty closed convex subset of a CAT(0) space
X and if {x,} is a bounded sequence in D, then the asymptotic center of {x,}
15 in D.
Lemma 2.11 ([L1]). Let {z,} be a sequence in a CAT(0) space X with
A({zn}) = {z}. If {u,} is a subsequence of {x,} with A({u,}) = {u} and
{d(zn,u)} converges, then x = u.
Lemma 2.12 ([3]). Let X be a geodesic metric space. The following are equiv-
alent:

(i) X is a CAT(0) space.

(i) X satisfies the (CN) inequality: If x,y € X and *2¥ is the midpoint

of x and y, then

coy)® 1 1 1
d (z, 5 y) < §d(z,x)2 + id(z,y)2 - Zd(a:,y)Q, forall z € X.

The following lemma is a generalization of the (CN) inequality which can
be found in [11].

Lemma 2.13. Let X be a CAT(0) space. Then
d(z, 2z ® (1 —N)y)? < Md(z,2)? + (1 = Nd(z,9)? — M1 — N)d(z,y)?,
for any A € 10,1] and xz,y,z € X.

In 2012, Dhompongsa et al. [8] introduced the following notation in CAT(0)
spaces: Let z1,...,x, be points in a CAT(0) space X and \q,...,\, € (0,1)
with "1 | A; = 1, we write

(2.1)

i )\1 )\2 )\n—l
Nzi = (1= Ay @ 1) © An
Z@ 2 o= )(1Anx1@1/\nx2@ © {15 o1 ) @ Aea
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The definition of € is an ordered one in the sense that it depends on the order
of points z1,...,2,. Under (2.1) we obtain that

d (@ )\iwi,y> < Z Aid(z;,y) for each y € X.

i=1 i=1
3. Main results

In this section, we first introduce a new one-step iterative process for a count-
able family of quasi-nonexpansive multi-valued mappings in CAT(0) spaces.
Let D be a nonempty closed convex subset of a CAT(0) space X and let {7;}
be a countable family of quasi-nonexpansive multi-valued mappings of D into
CB(D) with N2, F(T;) # 0 and T;p = {p} for all i € N and p € N2, F(T;).
For z1 € D, the sequence {z,} generated by

(3.1) Tpg1 = @)\g)yg), for all n € N,
i=0
where y%o) = Ty, yg) € Tz, and the sequences {/\ﬁf)} C (0,1) satisfying

Z?:o )‘gli) =1
Note that, if we put

Wi = @ syl
=0

(i,m) AP

where 6,7 = == N for+=0,1,...,m, then we get
o A
wim
(0,m) (1,m) (m—1,m)
_ (1 _ s(tm,m) on on W o o On (m—1)
= (1= simm) (1 S ® T s @@

& 5yl
_ (1 . 6;m,m)) (620”"’1%” @6T(L1,m71)y’21) OO 65Lm71,m71)y51mfl)) @5§Lm,m)y§lm)

o A A MY e mom), (m
=(1-armm) | paeme i e Y | @ sy
P > A > A
j=0 =0 j=0

_ (1 _ 67(Lm,m)) Wr(Lm—l) ® 5§Lm,m)y7(1m)

m—1

X A (m)

3=0 Wim=1 g An (m)
3 AQ) TS
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Therefore, the following result holds:

m—1 .
X A (m)
(3.2) wim = va(lm—l) ® An” (m).,
S AP S AT
5=0 §=0

The following two lemmas are useful and crucial for our main theorems.
Lemma 3.1. Let D be a nonempty closed convex subset of a complete CAT(0)
space X and let {T;} be a countable family of quasi-nonexpansive multi-valued
mappings of D into CB(D) with N2, F(T;) # 0 and Tip = {p} for alli € N
and p € N2, F(T;). For 1 € D, consider the sequence {x,} generated by
(3.1). Then, lim, o0 d(xy,p) exists for all p € N2 F(T;).

Proof. For p € N2, F(T;), we have by (3.1) that
d(wns1,p) = d (@ /\Sf)yé”7p>
i=0
<> A p)
=0
=D Adist(y, Tip)
=0

<Y ANVH(Tian, Tip)
=0

IN
M: -~

o

ADd(2,p)
= d(Zn, D).

This implies that lim,, . d(x,,p) exists for all p € N2, F(T;). O

Lemma 3.2. Let D be a nonempty closed convex subset of a complete CAT(0)
space X and let {T;} be a countable family of quasi-nonexpansive multi-valued
mappings of D into CB(D) with N2, F(T;) # 0 and T;p = {p} for all i €
N and p € N2, F(T;). For x1 € D, consider the sequence {x,} generated
by (3.1). If lim, oo 2D exists for all i € NU {0} and lies in (0,1), then
lim,, o dist(zy, Tizy) =0 for all i € N.
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Proof. For each p € N2, F(T;), we obtain by (3.1) that

n n 7
o AD
d(@ns1,p) = d (EB Aﬁf)yﬂp) —d | P ——v.p | =dW M, p).
i=0 i=0 » AP
j=0
It follows by Lemma 2.13 and (3.2) that
2
PPt (n)
d@nsp)? = d| S WD g 2y
i=o0 j=0
n—1
— _ )\nn
< 2 —aw Y p)? + o d  p)?
A A
j=0 j=0
SN
() 2 M
_An =0 d(Wﬁ”’l) ;n))z
) AW zn: AW
j=0 j=0
n—1 . n—1 .
= S AW Y ) 4 A A p)? = A0 ST AP awt T, y)?
=0 =0
2
) AW )
n— n n—
o = n— >\n n— n n
SRV ] T iy e I
=0 > Ay > Ay
7=0 7=0
n—1
(n) () (n—1)  (n)y2
= D N AW )
j=0
) A )
= 5| =" _ A _
< AP | I a2k o d(y( Y, p)?
=0 Dy A7) pDjy AY
2
) AW )
n— n n—
o j— n— >\n n— n n
= Z )\g)d %Wé 2 S5} ﬁ?h(z 1)717 + /\51 >d(y51 ),p)2
=0 > Ay > Ay
j=0 j=0

n—1
AT AP w2
7=0
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"2 0)
n—1 Z An n—1
G) | 5=0 2y o, ATV )
< Z An ﬁd(Wn ,P)° + ﬁd(yn ,D)
7=0 > A > a7
j=0 Jj=0
2 .
()
jgo)\n {n-1) (n=2) , (n=1)y2 (n) 5, (n) 2
- ————d(Wy 2|+ A d(yn",p)

(")ZA(J)d WD 2

= Z AP AW p)2 + ATV, p)? + A, p)?
j=0
AG=D 53 0)
LIS ) )z )\(n)z)\(a)d WD 2

> a7 1=0
3=0
n—3 )
< SoAPaw Y )2+ A0 a0 + AT VY p)?
j=0
n—3 .
AU DR
My p)? - 7%2]:0 AW yln=2)y2
> Ay
7=0
(n-1) "=\ ()
AU ;0 AU i
— a2 A ST AP a2
> A §=0
7=0
© 4 © 12 4 S Ry e = =) (h—1) (k)12
< A d(Wn 7p) +Z>\n yn 7p Z k (Wn > Yn )
k=1 k=1 ) )\nﬂ)
j=0
k—1 .
. . AT A
(k) 2 3=0 (k=1)  (k)\2
< I;)/\n d(zn,p)* = > — dWiED gy

k=1 Z /\(J)
j=o0
k=1 .
L A
i=0 _
= d(wn,p)? =Y ———dWFT )2
k=1 > /\glj)
j=0
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This implies that
n
(3.3) Z (W““ Y yN?2 < d(@n,p)? — d(zns1,p)>

Since 0 < )\%0) < Z )\(j) <1lforall k=1,2,...,n, we have 0 < A%O))\%k) <

. (k) §~k=1 3(5)

)\;k) Z?:o )\51]). So, 0 < )\( ))\(k) < % forall k =1,2,...,n. Then
(3.3) becomes

(3.4) D ADALAWEY, y9)? < d(an,p)? — d(znsr,p)*.

k=1

By Lemma 3.1 and the condition lim,, o A exists for all i € NU {0} and lies
n (0,1), we get that

(3.5) lim d(z,,yV) =0 and lim d(WFY yF)) =0 for all k > 2.
n—oo

n—0o0

Then, for k > 2, we have
d(n,y ) < d(w,, WFED) +d(WFY, 4 P)

k=1 (i)
=d | zp, @ v | + AW,y )
=0 Z )\nj)
7=0
k=l () ‘
<Y —d(@n,y) + AWy )
=0 )\%7)
7=0
k=14 G)
=3 —d(w, yD) + AW, ).
i=1 )\nj)
3=0

This implies by (3.5) that lim,, 00 d(mn,y,(L )) = 0 for all £ > 1. Since

dist(zp, Tizy,) < d(wn, ) for all ¢ € N, it follows that lim,, o dist(z,,, T;z,)
=0 forall i € N. O

In what follows we get a A-convergence theorem for a countable family of
quasi-nonexpansive multi-valued mappings in complete CAT(0) spaces.

Theorem 3.3. Let D be a nonempty closed convex subset of a complete CAT(0)
space X and let {T;} be a countable family of quasi-nonexpansive multi-valued
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mappings of D into KC(D) satisfying the condition (E). Assume that
NX,F(T;) # 0 and Tip = {p} for alli € N and p € N2, F(T;). Suppose
that lim,,_, o0 2D epists for alli € NU{0} and lies in (0,1). Then, the sequence
{z,} generated by (3.1) A-converges to a common fized point of {T;}.

Proof. By Lemmas 3.1 and 3.2, we have lim,_,o d(z,,p) exists for all p €
N2, F(T;) and lim,_, o dist(zy,, T;z,) = 0 for all ¢ € N. Thus the sequence
{zn} is bounded. We put wa(z,) := |JA({un}), where the union is taken
over all subsequences {u,} of {z,}. Let u € wa(z,). Then, there exists a
subsequence {u,} of {x,} such that A({u,}) = {u}. By Lemma 2.9, there
exists a subsequence {uy,} of {u,} such that A-lim; o u,; =z € D. We will
show that z € Ty z. Since T}z is compact, for all j € N, we can choose Yn; € T12
such that d(un;,yn;) = dist(un;, T12) and {y,,} has a convergent subsequence
{yn, } with limg_,o0 yn, = ¢ € T12z. By condition (E), we have

dist(un,,, T12) < pdist(wn, , T1tn, ) + d(tn,, 2).
Then we have

d(tny, > q) < d(ting s Yny,) + d(Yny, 9)
= dist(un,, T12) + d(Yn,, q)
< pdist(un,, Titing, ) + d(tny, 2) + d(Yny s q)-
This implies that
lim sup d(tn,,, ¢) < limsup d(u,, , 2).

k—o0 k—o0
By the uniqueness of asymptotic centers, we have z = g € Tyz. Similarly, it
can be shown that z € T;z for all i = 2,...,N. Then, z € N2, F(T;) and so
lim,, o d(z,, 2) exists. Suppose that u # z. By the uniqueness of asymptotic
centers, we have
lim sup d(uy,;, 2) < limsup d(uy,,u)
j—00 Jj—o0
< lim sup d(uy,, u)
n—oo

< lim sup d(uy, 2)

n—oo

n—oo

(
= limsup d(zy, 2)
= limsup d(un,, 2).
Jj—oo
This is a contradiction, hence u = z € N2, F(T;). This shows that wa(x,) C
N2, F(T;).
Next, we show that wa(z,) consists of exactly one point. Let {u,} be

a subsequence of {z,} with A({u,}) = {p} and let A({z,}) = {q}. Since
p € walx,) C NZ,F(T;), it follows that lim,, o d(xy, p) exists. By Lemma
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2.11, we obtain that p = ¢q. Hence, the sequence {x,,} A-converges to a common
fixed point of {T;}. O

The following result is a strong convergence theorem for a countable family
of quasi-nonexpansive multi-valued mappings in complete CAT(0) spaces.

Theorem 3.4. Let D be a nonempty closed convex subset of a complete CAT(0)
space X and let {T;} be a countable family of continuous and quasi-nonexpansive
multi-valued mappings of D into CB(D) with N2, F(T;) # 0 and T;p = {p}
for alli € N and p € N2, F(T;). Let the sequence {x,} generated by (3.1)
with limy,_ee A exist for all i € NU {0} and lie in (0,1). Assume that one
member of the family {T;} is hemicompact. Then, {x,} converges strongly to
a common fized point of {T;}.

Proof. By Lemma 3.2, lim,,_, dist(x,, T;x,) for all : € N. Without loss of
generality, we assume that 77 is hemicompact. Then there exists a subse-
quence {w,,} of {x,} such that lim; ., ,, = p € D. By continuity of T;,
we have lim;_, o dist(zy,,, Tiwy,) = dist(p, Tip) for all i € N. This implies that
dist(p, T;p) = 0 for all ¢ € N and hence p € N2, F(T;). It follows by Lemma
3.1 that {z,} converges strongly to p. g

Remark 3.5. Since any CAT(k) space is a CAT(x') space for &’ > £ (see [3]),
all our results immediately apply to any CAT(x) space with x < 0.

Finally, we give a numerical example supporting Theorems 3.3 and 3.4.

Example 3.6. Let X be a real line with the Euclidean norm and D = [0, 1].
Forx € D,i=1,2,..., we define mappings T; on D as follows:

Tix = [0, %} for all ¢ € N.

Let the sequence {z,} be generated by

(3.6) T = @ APy, forall n €N,
i=0
where y,(LO) = T, y,@ € T;z, and the sequences {,\S )} defined by
1 n S ial
2 \nt1)’ nzi+
Aﬁf) = n no1
1_ 1 _
”+1<k§12k>’ e
0, n < 1.

Obviously, T; is quasi-nonexpansive and satisfies condition (F) for all i € N
and T;(0) = {0} such that N2, F(T;) = {0}. It can be observed that all the
assumptions of Theorems 3.3 and 3.4 are satisfied.
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For any arbitrary 21 € D = [0, 1], we put yg) = %= for all i € N. Then, we
rewrite the algorithm (3.6) as follows:

mnH:)\;O)acn—l—u Ry 4 2" foralln e N,
5 10
where
1 3
7 3 0 0 0 0 0
1 1 1
3 G 3 0 0 0 0
3 3 3 11
g 16 32 32 0 0 0
2 1 1 1 1
(,\53')): 5 5 io 30 1 0 0
2(nn+1) 4(nn+1) S(nrfkl) 16(77LL+].) 32(:Z+1) 64(:LL+1) Qi(:LL+1)

The values of the sequence {x,,} with different n are reported in Table 1.

TABLE 1. The values of the sequence {z,} in Example 3.6.

r1 =0.11 | 21 =0.95

n| x, T
1 0.1100000 | 0.9500000
2 0.0440000 | 0.3800000
3 0.0183333 | 0.1583333
4 0.0081545 | 0.0704253
5 0.0037986 | 0.0328065
6 0.0018280 | 0.0157875
7 | 0.0009008 | 0.0077801
8 0.0004520 | 0.0039036
9 0.0002300 | 0.0019863
10 | 0.0001184 | 0.0010222

17 | 0.0000014 | 0.0000118
18 | 0.0000007 | 0.0000064
19 | 0.0000004 | 0.0000034
20 | 0.0000002 | 0.0000019

From Table 1, it is clear that {x,} converges to 0, where {0} = N2, F(T;).
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On the Krein-Milman theorem in CAT(x) spaces

BANCHA PANYANAK

™

ABSTRACT. Letx > 0and (X, p) be acomplete CAT(x) space whose diameter smaller than N It is shown
K

that if K is a nonempty compact convex subset of X, then K is the closed convex hull of its set of extreme points.
This is an extension of the Krein-Milman theorem to the general setting of CAT(x) spaces.

1. INTRODUCTION AND PRELIMINARIES

One of the fundamental and celebrated results in functional analysis related to extreme
points is the Krein-Milman theorem. In [5], the authors proved that every compact convex
subset of a locally convex Hausdorff space is the closed convex hull of its set of extreme
points. This result was extended to a special class of metric spaces, namely, CAT(0) spaces,
by Niculescu [6] in 2007. Notice that Niculescu’s result can be applied to CAT(x) spaces
with k < 0 since any CAT(k) space is a CAT(x') space for k' > k (see e.g., [1]). However,
the result for > 0 is still unknown. In this paper, we extend Niculescu’s result to the
setting of CAT(k) spaces with x > 0.

Let (P, <) be a partially ordered set. An element py € P is maximal in P if for each
p € P, the following implication holds:

Po2p == po=Dp-
Similarly, an element gy € P is minimal in P if for each p € P, the following implication
holds:

P=q == P=qo-
An upper bound (resp. A lower bound) of a nonempty subset Q of P is an element p € P
such that ¢ < p (resp. p < ¢) for all ¢ € Q. A nonempty subset C of P is called a chain in P
if any two elements p and ¢ in C are comparable, thatis, p < gor ¢ < p.

Lemma 1.1. (Zorn) If (P, <) is a partially ordered set such that every chain in P has an upper
(resp. lower) bound in P, then P contains a maximal (resp. minimal) element.

Let (X, p) be a metric space. A geodesic path joining € X to y € X is a function £ from
the closed interval [0, p(x, y)] to X such that £(0) = z,£(I) = y, and p(£(¢),E(t)) = [t — /|
for all ¢,¢" € [0, p(x,y)]. The image of ¢ is called a geodesic segment joining = and y which
is unique, denoted by [z, y]. This means that z € [z, y] if and only if there exists o € [0, 1]
such that

p(z,z) = (1 —a)p(z,y) and p(y,z) = ap(z,y).
In this case, we write z = ax @ (1 — a)y. The space (X, p) is said to be a geodesic space (resp.
D—geodesic space) if every two points of X (resp. every two points of distance smaller than
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D) are joined by a geodesic path. A subset C of X is said to be convex if C includes every
geodesic segment joining any two of its points.

Now we introduce the model spaces M?2, for more details on these spaces the reader
is referred to [1, 3, 4, 8, 9]. We denote by (-, -) the Euclidean scalar product in R3. By S?
we denote the unit sphere in R?, that is the set { (21,22, 23) € R® : 23 + 23 + 23 = 1} . The
spherical distance on S? is defined by

ds>(z,y) := arccos(z,y) forall z,y € S%

Definition 1.2. Given x > 0, we denote by M? the following metric spaces:

(i) if &k = 0 then M? is the Euclidean space E?;

(ii) if k > 0 then M}? is obtained from the spherical space S? by multiplying the distance
function by 1//k.

A geodesic triangle A(z,y, z) in a geodesic space (X, p) consists of three points z,y, z
in X (the vertices of A) and three geodesic segments between each pair of vertices (the
edges of A). A comparison triangle for a geodesic triangle A(x,y, z) in (X, p) is a triangle
A(Z,7,z) in M2 such that

p($7 y) = dME (jj? g)a p(y7 Z) = dM,g (:‘77 2)7 and p(Z, aj) = dME (Za ‘f)
It is well known that such a comparison triangle exists if p(z, y) + p(y, 2) + p(z,x) < 2Dy,
where D,, = 7/\/k for K > 0 and Dy = oo. Notice also that the comparison triangle
is unique up to isometry. A point @ € [z,y] is called a comparison point for u € [z,y] if
p(x,u) = dp2(T, ).

A metric space (X, p) is said to be a CAT(k) space if it is D,,—geodesic and for each two
points u, v of any geodesic triangle A(x,y, z) in X with p(z,y) + p(y, 2) + p(z,x) < 2D,
and for their comparison points @, v in A(Z, 7, Z) the CAT(k) inequality

p(uv 7)) < dME (ﬂa ’17),
holds. Notice also that Pre-Hilbert spaces, R—trees, Euclidean buildings are examples of
CAT(k) spaces (see [1, 2]).

Recall that a geodesic space (X, p) is said to be R—convex for R € (0,2] ([7]) if for any

three points z, y, z € X, we have

R
1D (1 -a)y®az) < (1-a)p(ey) + op(r,2) — S ol - a)(y, ).
The following lemmas will be needed.

Lemma 1.3. ([7]) Let x > 0 and (X, p) be a complete CAT(k) space with diam(X) <
for some € € (0,7/2). Then (X, p) is R—convex for R = (1 — 2¢) tan(e).

Lemma 1.4. ([1]) Let x > 0 and (X, p) be a complete CAT (k) space with diam(X) < ———
for some e € (0,7/2). Then

p((1—a)e @ ay,2) < (1 - a)p(x, 2) + ap(y, 2),
forall z,y,z € X and o € [0,1].

Let (X, p) be a geodesic space. The distance from a point = in X to a subset C' of X is
defined by
dist(z, C) := inf{p(z,y) : y € C}.
The set C is bounded if diam(C) := sup{p(z,y) : z,y € C} < co.
Definition 1.5. Let f : C' — R be a function. Then
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(i) f is said to be convex if f(ax @ (1 — a)y) < af(x) + (1 —a)f(y) forall @ € [0,1] and
x,y € C;

(ii) f is said to be strictly convex if f(ax®(1—a)y) < af(z)+(1—a)f(y) forall « € (0,1)
and z,y € C with z # y.

Let A be a nonempty subset of X. The closed convex hull of A is defined by
conv(A) := ﬂ{B C X : AC B and B is closed and convex}.

Let C be a convex subset of X. A subset A of C is called an extremal subset if it is
nonempty, closed and satisfies the following property: If z,y € Cand az & (1 —a)y € A
for some « € (0,1), then z,y € A. Notice that if A is an extremal subset of B and B is an
extremal subset of C, then A is an extremal subset of C. A point z in C'is called an extreme
point of C' if {z} is an extremal subset of C. We denote by Ext(C') the set of all extreme
points of C.

Example 1.6. In the Euclidean space R?, the square A := {(z,y) : |z| < 1,|y| < 1} has four
extreme points while the strip B := {(z,y) : 0 < z < 1,y € R} does not have an extreme
point.

2. MAIN RESULTS
We begin this section by proving a crucial lemma.

T/2—¢

Lemma 2.1. Let k > 0 and (X, p) be a complete CAT (k) space with diam(X) <

for

some ¢ € (0,7/2). If K is a nonempty compact convex subset of X, then every extremal subset of
K has an extreme point.

Proof. Let C be the family of all nonempty extremal subset of K. Since K € C, it follows
that C is nonempty and it can be partially ordered by set inclusion. By Zorn’s Lemma, C
has a minimal element, say M. It is enough to show that M consists of exactly one point.
Suppose that it contains at least two points, say z¢ and yo. Let f : M — R be defined by

f(z) == p*(xo,2) forall z € M.

Since g # Yo, f is not a constant function. By (1.1), f is strictly convex. Let My := {z €
M : f(z) = sup,ep f(y)}. Since f is continuous and K is compact, M, is nonempty.
Notice also that it is a closed proper subset of M. Next, we show that A is an extremal
subset of M. Let 2/, 2" € M and M, contains a point (1 — &)z’ @ az” for some « € (0,1).
By (1.1), we have

(1= o)’ & ax”)

sup f(y)
yeM

(1= a)f(2') + af(2") — a(l — a)p®(a’,2")

<
< sup f(y) —a(l —a)p?(a’,2"),
yeM

which implies that 2’ = " € Mj. Thus M, € C which contradicts to the minimality of M
and hence the proof is complete. O

T/2—¢

Theorem 2.2. Let k > 0 and (X, p) be a complete CAT (k) space with diam(X) < for

some ¢ € (0,7/2). If K is a nonempty compact convex subset of X, then conv(Ext(K)) = K.



404 Bancha Panyanak

Proof. (This proof is patterned after the proof of Theorem 3.1 in [6]). By Lemma 2.1,
Ext(K) # 0. Clearly, conv(Ext(K)) C K. Suppose that conv(Ext(K)) # K.Letg: K — R
be defined by g(z) := dist(z,conv(Ext(K))) and let K¢ := {z € K : g() = sup,cx 9(y)}-
Since g is continuous and K is compact, Ky is nonempty. Notice also that it is a closed
subset of K. Since conv(Ext(K)) # K, we get that sup{g(y) : y € K} > 0. By Lemma 1.4
forz,y € K, a € [0,1] and z € conv(Ext(K)) we have

p(I—a)z @ ay,z) < (1-a)p(z,2) +ap(y, 2),
which implies that g is convex. Notice also that K is an extremal subset of K. Again, by

Lemma 2.1 there is a point z in K¢ N Ext(K). Thus 0 = g(z) = sup{g(y) : vy € K} which is
a contradiction. Hence conv(Ext(K)) = K. O

As a consequence of Theorem 2.2, we obtain the following corollary.

Theorem 2.3. ([6, Theorem 1]) Let (X, p) be a complete CAT(0) space and K be a nonempty
compact convex subset of X. Then conv(Ext(K)) = K.

Proof. It is well known that every convex subset of a CAT(0) space, equipped with the
induced metric, is a CAT(0) space (see e.g., [1]). Thus (X, p) is a CAT(0) space and hence
it is a CAT(x) space for all k > 0. Notice also that it is R—convex for R = 2. Since K

is bounded, we can choose ¢ € (0,7/2) and x > 0 such that diam(K) < 7T/\2f_€ The
K

conclusion follows from Theorem 2.2. O
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1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space (H, (-, -))
and p be the metric induced by (-,-). Let g : C — C be a single-valued non-
expansive mapping and F(g) := {x € C: g(x) = x}. Fix u € C. Consider
the following convex optimization problem:

min p(u, v) subject to v € F(g). (1)

One of the fundamental and celebrated results for finding the solution of
(1) was given by Browder [1] in 1967.

Theorem 1.1. Let C be a nonempty bounded closed convex subset of a real
Hilbert space and g: C — C be a nonexpansive mapping. Fix u € C. For
each t € (0,1), let x, be defined by

xe = (1—t)u D tg(x;).

Then {x;} converges strongly as t — 1 to the unique solution of (1).
If T:C— K(C) is a multi-valued nonexpansive mapping, then the map-
ping G:C — K(C) defined by G(x) := (1-t)uDtT(x) is a multi-valued
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contractive mapping. By Nadler’s theorem [2], for each t € (0,1) there
exists x;, in C such that

x € G(xy) = (1-)uD tT(x;). (2)

Browder’s theorem has many useful applications in mathematical science, for
instance, in fixed point theory and optimization theory. A natural question
arises whether Browder’s theorem can be extended to multi-valued nonexpan-
sive mappings. The first result regarding this question was proved by Pietramala
[3] in 1991. He gave the strong convergence of {x;} defined by (2) under the
endpoint condition. Since then the strong convergence of {x; } in various classes
of spaces has been developed and many papers have appeared, see e.g., [4-10].
However, all those results require the endpoint condition which is a strong one.
In particular, Dhompongsa et al. [4] proved the following theorem.

Theorem 1.2. Let C be a nonempty closed convex subset of a Hadamard
space X and T : C — K(C) be a nonexpansive mapping satisfying the end-
point condition. Fix u € C and let {x;} be defined by (2). Then T has an
endpoint if and only if {x;} is bounded as t — 1. In this case, {x;} converges
strongly to the unique endpoint of T which is nearest u.

It was quickly noted by Dhompongsa et al. [11] that the endpoint condi-
tion in Theorem 1.2 can be omitted if the space X is restricted to a com-
plete R—tree. Unfortunately, the class of R—trees does not include real
Hilbert spaces. Therefore, there is no any result in real Hilbert spaces
which extends Browder’s theorem to multi-valued nonexpansive mappings
without the endpoint condition.

In this paper, we introduce the concept of diametrically regular map-
pings and prove that it is more general than the concept of endpoint con-
dition for multi-valued nonexpansive mappings in Hadamard spaces. We
also prove the existence of endpoints for diametrically regular mappings
and show that if the net {x;} defined by (2) is diametrically regular for T,
then {x;} converges strongly to the unique endpoint of T which is nearest
u. This method provides a new idea of proving Browder’s theorem without
the endpoint condition.

2. Preliminaries

Throughout this paper, N stands for the set of natural numbers and R
stands for the set of real numbers. Let (X, p) be a metric space and x,y € X.
A geodesic joining x to y is a mapping ¢ from a closed interval [0,L] to X
such that ¢(0) = x,¢(L) =y, and p(¢(s), d(t)) = |s—t| for all s, ¢ € [0, L].
The image of ¢ is called a geodesic segment joining x and y which when
unique is denoted by [x, y|. The space (X, p) is said to be a geodesic space if
every two points in X are joined by a geodesic, and X is said to be uniquely
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geodesic if for each x and y in X there is exactly one geodesic joining them.
A subset C of X is said to be convex if every pair of points x, y in C can be
joined by a geodesic in X and the image of every such geodesic is contained
in C. A geodesic space (X, p) is said to be a Hadamard space if X is a com-
plete metric space and for each x, y,z € X, one has

1 1 1
p(xm) < pAxy) +5p (6 2)= 70" (12),

where m is the midpoint of [y, z]. For other equivalent definitions and basic
properties of Hadamard spaces, we refer the reader to standard texts such
as [12, 13]. It is well-known that every Hadamard space is uniquely geo-
desic. Notice also that Pre-Hilbert spaces, R—trees, Euclidean buildings are
examples of Hadamard spaces, see [12, 14].

Let C be a nonempty closed convex subset of a Hadamard space (X, p).
It follows from Proposition 2.4 of [12] that for each x in X, there exists a
unique point xp in C such that

p(x,x0) = dist(x, C) := inf{p(x,¢) : c € C}.
In this case, xq is called the unique nearest point of x in C. By Lemma 2.1

of [15], for each x,y € X and t € [0,1], there exists a unique point z in
[x,y] such that

p(x.z) = tp(x.y) and p(y,z) = (1=t)p(x.y). 3)

We denote by (1—t)x® ty the unique point z satisfying (3). The following
lemma can be found in [15].

Lemma 2.1. Let (X, p) be a Hadamard space, x,y,z € X and t € [0, 1]. Then
the following inequalities hold:

D) p((1-t)xDty,z) < (1-t)p(x,2) + tp(y, 2);
(i) P ((1-t)xD@ty,z) < (1-1)p*(x,2) + tp* (3, 2)—t(1—1)p* (%, y).

Let C be a nonempty subset of a Hadamard space (X, p) and x € X. The
radius of C relative to x is defined by

R(x,C) := sup{p(x,y) : y € C}.
The diameter of C is defined by
diam(C) := sup{p(x,y) : x,y € C}.

The set C is called bounded if diam(C)<oo. It is denoted by K(C) : the
family of nonempty compact subsets of C. The Pompeiu-Hausdorff distance
on IC(C) is given by

H(A,B) := max{ sup dist(a, B), sup dist(b,A)} for all A,Be K(C).

acA beB
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A multi-valued mapping T : C — K(X) is said to be contractive if there
exists a constant A € [0,1) such that

H(T(x), T(y)) < Z p(x,y) foral x,yeC. (4)

If (4) is valid when 4 =1, then T is said to be nonexpansive. The mapping
T is called a single-valued mapping it T(x) is a singleton for every x in C.
An element x in C is called a fixed point of T if x € T(x). Moreover, if
{x} = T(x), then x is called an endpoint of T. It is denoted by F(T) : the
set of all fixed points of T and by E(T) : the set of all endpoints of T. The
existence of endpoints for multi-valued nonexpansive mappings was
studied by many researchers, see e.g., [16-19]. Notice also that if C is a
nonempty closed convex subset of a Hadamard space and T : C — K(X) is
a nonexpansive mapping, then E(T) is a closed convex subset of C,
see [18].

A multi-valued mapping T : C — K(X) is said to be diametrically regular
if there exists a net {x,} in C such that lim, diam(T(x,)) = 0. In this case,
we call {x,} a diametrically regular net for T. The mapping T is said to sat-
isfy the endpoint condition if F(T) = E(T). Obviously, if T has an endpoint
then T is diametrically regular.

The following result shows that the diametric regularity of a nonexpan-
sive mapping T is weaker than the endpoint condition.

Proposition 2.2. Let C be a nonempty closed convex subset of a Hadamard
space X, ue€ C, and T:C— K(C) be a nonexpansive mapping with
F(T) # (. Then the following statement holds:

(x) if T satisfies the endpoint condition, then T has a diametrically regular
net {x;} in C such that x, € (1—t)u®tT(x;) for all t € (0,1).

Proof. Let {x;} be defined by (2) and let x be the unique nearest point of u
in E(T). By Theorem 1.2, lim;_,; x; = X. For v,w € T(x;) we have
p(v,w) < p(v,%) + p(%, w)
< dist(v, T(x)) + dist(w, T(X))
< 2H(T(x:), T(x))
< 2p(xp, X).

This implies that lim,_,; diam(T(x;)) = 0 and hence {x;} is diametrically
regular for T. u

The endpoint condition in Proposition 2.2 is necessary as shown in the
following example. Notice also that the converse of (x) does not hold, see
Example 3.7.
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Example 2.3. Let C=[0,1] and T : C — K(C) be defined by
T(x):=10,1] forall xeC.

Then T is a nonexpansive mapping with F(T) = [0,1] and E(T) = (. Since
diam(T(x)) =1 for all x € C, there is no a net {x;} in C which is diamet-
rically regular for T.
Let {x,} be a bounded sequence in a Hadamard space (X,p). The
asymptotic radius r({x,}) of {x,} is defined by
r({x,}) := inf{limsup p(x,, x) : x € X}.

The asymptotic center A({x,}) of {x,} is the set
A({x,}) := {x € X : limsup p(x,,x) = r({x,})}.

n—oo
It is known from Proposition 7 of [20] that in a Hadamard space,
A({x,}) consists of exactly one point. A sequence {x,} in X is said to A—
converge to x € X if A({x,,}) = {x} for every sAubsequence {x,,} of {x,}.
In this case, we write A—lim,_,., X, = x or x,—x and call x the A—limit
of {x,}. Now, we collect some basic properties of A—convergence.

Lemma 2.4. Let C be a nonempty closed convex subset of a Hadamard space
X and T : C — K(C) be a nonexpansive mapping. Then the following state-
ments hold:

(i) [21, Page 3690] Every bounded sequence in X always has a
A—convergent subsequence.

(ii) [ISA Lemma 4.6] If {x,} is a sequence in C and x € X, then the conditions
xy—x, dist(x,, T(x,)) — 0, and diam(T(x,)) — 0implyx € E(T).

Let (X, p) be a metric space. We denote a pair (a,b) € X x X by ab
and call it a vector. The quasi-linearization is a mapping (-,-) from (X X

X) x (X x X) to R defined by
—_— — 1
(ab,cd) := 5 [0*(a,d) + p*(b,c) — p*(a,c) — p*(b,d)] for all a,b,c,d € X.

—

_ . —— — —_— —
It is easy to_see that (ab,cd) = (cd, ab),(ab,cd) = —(ba,cd), and
.= — -
("ax’,cd) + (xb ,cd) = (ab ,cd) for all a,b,c,d,x € X. We say that (X, p)
satisties the Cauchy-Schwarz inequality if

—_— —
|(ab,cd)| < p(a,b)p(c,d) for all a,b,c,decX.

!

It is known from Corollary 3 of [22] that every Hadamard space satisfies
the Cauchy-Schwarz inequality. Some other properties of quasi-linearization
are included as the following lemma.
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Lemma 2.5. Let (X,p) be a Hadamard space. Then the following state-
ments hold:

(i) [23, Theorem 3.1] Let C be a nonempty closed convex subset of X, u €
X and x € C. Then x is the unique nearest point of u in C if and only
if (xu',vx) >0 for all v e C.

(i) [24, Lemma 2.10] Let p,q € X. For each t€[0,1], we set u, =
(1—t)pDtq. Then, for x € X, we have

(uk, uik) < (1=)(px', wik ) + t(qx’, ux).

(iii)  [25, Theorem 2.6] A sequence {x,} in X A—converges to x in X if and
only if limsup, (XX, ux') <0 for all u € X.

3. Main results

This section is begun by proving the existence of endpoints for diametric-
ally regular mappings. For this we will make use of the following facts.

Lemma 3.1. [18, Theorem 4.7] Let C be a nonempty bounded closed convex
subset of a Hadamard space (X,p) and T : C — K(X) be a nonexpansive
mapping. Then T has an endpoint if and only if inf{R(x, T(x)) : x € C} = 0.
Lemma 3.2. [18, Proposition 2.4] Let C be a nonempty subset of a
Hadamard space (X, p), {x,} be a net in C and T : C — K(X) be a map-
ping. Then lim,R(x,, T(xy)) =0 if and only if lim,dist(x,, T(x,)) =0
and lim, diam(T(x,)) = 0.

As an immediate consequence of Lemmas 3.1 and 3.2, we can obtain the
following theorem.

Theorem 3.3. Let C be a nonempty bounded closed convex subset of a
Hadamard space (X,p) and T :C — K(X) be a nonexpansive mapping
which is diametrically regular with a diametrically regular net {x,}. Suppose
that lim, dist(x,, T(x,)) = 0. Then T has an endpoint in C.

The following example shows that the condition lim, dist(x,, T(x,)) =0
in Theorem 3.3 cannot be omitted.

Example 3.4. [18] Let X =R, C=[0,1] and T : C — K(X) be defined by
T(x) =[0,1—x] for all xeC.

Then T is a nonexpansive mapping with lim, ,; diam(T(x)) = 0.
However,

lirr% dist(x, T(x)) = 1.
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Notice also that T does not have an endpoint in C.
Now we prove the main theorem.

Theorem 3.5. Let C be a nonempty closed convex subset of a Hadamard
space (X, p) and T : C — K(C) be a nonexpansive mapping. Fix u € C and
let {x;} be defined by (2). Suppose that {x;} is diametrically regular for T.
Then T has an endpoint if and only if {x;} is bounded as t — 1. In this
case, {x;} converges strongly to the unique point X in E(T) such that

p(u,x) = min{p(u,e) : e € E(T)}.

Proof. Let e € E(T). From (2), for each t € (0,1) there exists y; € T(x;)
such that x; = (1—t)u®® ty,. Since T is nonexpansive,

p(ye) = dist(y, T(e)) < H(T(x:), T(e)) < p(xs- ).
By Lemma 2.1 (i), we have
p(xie) < (1=t)p(ue) +tp(ye) < (1=t)p(u€) + tp(xs,e).

Thus p(x;,e) < p(u,e). Therefore, {x;} is bounded. Conversely, suppose that
{x;} is bounded. Let a sequence {f,} in (0, 1) converging to 1 and put x, :=
x,. Foreachn € N, lety, € T(x,) be such thatx, = (1—t,)u® t,y,. Then

dist(x,,, T(x,)) < p(xp, yn) = (1=ty)p(,y,) — 0 as n— oo.

By Lemma 2.4, there exists a subsequence {x, } of {x,} and a point X in
E(T) such that A—limy_ x, = X. This implies that E(T) # (). Let z be
the unique nearest point of u in E(T). We will show that lim; ., x; = z. Let
{x,} be as above. It suffices to show that there exists a subsequence of
{x,} which converges strongly to z. Let {x, } and X be as above. Then
A—limy_,» x,, = X and X € E(T). By Lemma 2.5 (ii), we have

~ —= —=
pz(xﬂk’x) = <x”kx"x"k'x>
T—t) (UR , X X) + b (Y X5 X )
¥ by O 2 )
+ tw H(T (%), T(%)) p (%, X)
5‘: +t”kp ('x”k’x)

IN A

1—t, ){ ux , x,.x

k k

)(ux
1=t ) (4, 0, X
) (ux

1-t,

< ( o X)
( X X)
( X X)
(1=t )
which yields o

P% (% X) < {UX X, X). (5)

Since A—limy_, x,, = X, by Lemma 2.5 (iii), we have

limsup (ux Xy X > <0.
k—o00
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This, together with (5), implies that {x, } converges strongly to x. Next,
we show that X = z. By Lemma 2.1 (ii), for each p € E(T) we have

pz(xﬂk’p) < (l—tnk)pz(u,p) + tnkpz(yﬂk’p)_tnk(l_tﬂk)pz(u’ynk)

< (1=t ) p* (6, p) + tuH2 (T (), T(p)) =t (1=t ) 0 (14, y,)
< (1=t ) 7 (ths ) + b (s ) =, (1=t )7 (1 Y )
This implies that
P* (X ) < 2 (s )~ L (14 Yy ) -

Taking k — oo, we get that p?(x,p) < p*(u, p)—p*(u, x). Thus
1 —_— —
0 <[P (%X) + p*(u.p) = p*(%.p) = p*(w%)] = (Xu,, px'), for all p € E(T).

By Lemma 2.5 (i), x = z and hence the proof is complete. |

As an immediate consequence of Theorem 3.5, we obtain the follow-
ing corollary.

Corollary 3.6. Let C be a nonempty closed convex subset of a real Hilbert
space and T : C — K(C) be a nonexpansive mapping. Fix u € C and let
{x;} be defined by (2). Suppose that {x,} is diametrically regular for T.
Then T has an endpoint if and only if {x;} is bounded as t — 1. In this
case, {x;} converges strongly to the unique point x in E(T) such that

p(u,x) = min{p(u,e) : e € E(T)}.
The following example shows that the diametric regularity of {x;} in
Theorem 3.5 is necessary.

Example 3.7. [3, 26] Let X be the Euclidean space R* and C = [0,1] x
[0,1]. Let T : C — K(C) be defined by

T(a,b) := the closed convex hull of {(0,0),(a,0),(0,b)}.

Then T is a nonexpansive mapping with F(T) = {(a,b) € C: ab =0} and
E(T) ={(0,0)}. Fix u € C. For each t € (0,1), let x; = (1—¢t)u. It is easy
to see that {x;} satisfies (2) and is diametrically regular for T. By Corollary
3.6, lim;; x; = (0,0) (see Table 1 for numerical experiments and Figure 1
for comparison of errors). However, in the case of u = (1,0), if we let z; =
u then {z} satisfies (2) but is not diametrically regular for T.
Moreover, lim,_,; z; = u # (0,0).

4. Numerical experiments and comparison of errors

Let X, C and T be as in Example 3.7. For each n € N, let t, := £ and
Xy = x¢, = (1—t,)u, where u € C be fixed. We see that, in any case of u,

the sequence {x,} converges to (0, 0) as n tends to oo.




Table 1. Numerical experiments.
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u=(1,04) u=(03,0.5) u=(0.6,0.6) u=(0,1)
n boundary case interior case diagonal case corner case
Xn Xn Xn Xn
1 (0.50000,0.20000) (0.15000,0.25000) (0.30000,0.30000) (0,0.50000)
2 (0.25000,0.10000) (0.07500,0.12500) (0.15000,0.15000) (0,0.25000)
3 (0.12500,0.05000) (0.03750,0.06250) (0.07500,0.07500) (0,0.12500)
4 (0.06250,0.02500) (0.01875,0.03125) (0.03750,0.03750) (0,0.06250)
5 (0.03125,0.01250) (0.00938,0.01563) (0.01875,0.01875) (0,0.03125)
6 (0.01563,0.00625) (0.00469,0.00781) (0.00938,0.00938) (0,0.01563)
7 (0.00781,0.00313) (0.00234,0.00391) (0.00469,0.00469) (0,0.00781)
8 (0.00391,0.00156) (0.00117,0.00195) (0.00234,0.00234) (0,0.00391)
9 (0.00195,0.00078) (0.00059,0.00098) (0.00117,0.00117) (0,0.00195)
10 (0.00098,0.00039) (0.00029,0.00049) (0.00059,0.00059) (0,0.00098)
" (0.00049,0.00020) (0.00015,0.00024) (0.00029,0.00029) (0,0.00049)
12 (0.00024,0.00010) (0.00007,0.00012) (0.00015,0.00015) (0,0.00024)
13 (0.00012,0.00005) (0.00004,0.00006) (0.00007,0.00007) (0,0.00012)
14 (0.00006,0.00002) (0.00002,0.00003) (0.00004,0.00004) (0,0.00006)
T T
—»—u=(1,0.4)
05h- —e—u=(0.3,0.5)| |
—=&—u=(0.6,0.6)
—4—u=(0,1)
04r .
1
2 03r B
i
02r B
0.1 =
0 &—= B— A
0 10 14

Figure 1. Comparison of errors.
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