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Let 0k >  and X  be a complete CAT( k ) space whose diameter is smaller than 
2 k
π . We 

show that if C  is a nonempty compact convex subset of ,X  then C  is the closed convex hull of its 

set of extreme points. This is an extension of the Krein-Milman theorem in the setting of CAT( k ) 

spaces. Furthermore, we prove strong and ∆ − convergence theorems of some iterative processes 

for some generaliezed multi-valued nonexpansive mappings in complete CAT(0) spaces. Our results 

extend and improve many results in the literature. 
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                                                     เน้ือหางานวิจยั 

 
Let ( , )X ρ  be a metric space. A geodesic path joining x X∈  to y X∈  is a function φ  

from the closed interval [0, ( , )]x yρ  to X  such that (0) , ( ( , )) ,x x y yφ φ ρ= =  and  

                        ( ( ), ( )) | |t t t tρ φ φ ′ ′= −  for all , [0, ( , )].t t x yρ′∈  

The image of φ  is called a geodesic segment joining x  and y  which is denoted by [ , ]x y  

when it is unique. This means that [ , ]z x y∈  if and only if there exists [0,1]α ∈  such that 

( , ) (1 ) ( , )x z x yρ α ρ= −  and ( , ) ( , ).y z x yρ αρ=  In this case, we write (1 ) .z x yα α= ⊕ −  The 

space ( , )X ρ  is said to be a geodesic space (resp. D − geodesic space) if every two points of X  

(resp. every two points of distance smaller than D ) are joined by a geodesic path. A subset C  of 

X  is said to be compact if every sequence in C  has a convergent subsequence whose limit is 

contained in .C  The set C  is said to be convex if C  includes every geodesic segment joining any 

two of its points. The closed convex hull of C  is defined by  

                        ( ) : { :conv C A X C A= ⊆ ⊆  and A  is closed and convex}.  

Let C  be a convex subset of .X  A subset A  of C  is called an extremal subset if it is 

nonempty, closed and satisfies the following property: if ,x y C∈ and (1 )x y Aα α⊕ − ∈  for some 

(0,1),α ∈  then , .x y A∈  A point z  in C  is called an extreme point of C  if { }z  is an extremal 

subset of .C  We denote by ( )Ext C  the set of all extreme points of .C  

Given 0,k ≥  we denote by 2
kM  the following metric spaces: 

(i) if 0k =  then 2
kM  is the Euclidean space 2;  

(ii) if 0k >  then 2
kM  is obtained from the spherical space by multiplying the distance 

function by 1/ .k  

A geodesic triangle ( , , )x y z∆  in a geodesic space ( , )X ρ  consists of three points , ,x y z  in 

X  (the vertices of ∆ ) and three geodesic segments between each pair of vertices (the edges of 

∆ ). A comparison triangle for a geodesic triangle ( , , )x y z∆  in ( , )X ρ  is a triangle ( , , )x y z∆  in 
2
kM  such that 2( , ) ( , ),

kMx y d x yρ =  2( , ) ( , ),
kMy z d y zρ =  and 2( , ) ( , ).

kMx z d x zρ =  It is well known 

that such a comparison triangle exists if ( , ) ( , ) ( , ) 2 ,kx y y z x z Dρ ρ ρ+ + <  where /kD kπ=  for 

0k >  and 0 .D = ∞  Notice also that the comparison triangle is unique up to isometry. A point 

[ , ]u x y∈  is called a comparison point for [ , ]u x y∈  if 2( , ) ( , ).
kMx u d x uρ =  

A metric space ( , )X ρ  is said to be a CAT( k ) space if it is kD − geodesic and for each two 

points ,u v  of any geodesic triangle ( , , )x y z∆  in X  with ( , ) ( , ) ( , ) 2 kx y y z x z Dρ ρ ρ+ + <  and for 

their comparison points ,u v in ( , , )x y z∆  the CAT( k ) inequality 2( , ) ( , )
kMu v d u vρ ≤  holds.  
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It is known from [7] that if X  is a complete CAT( k ) space with 0k >  and the diameter of 

X  is smaller than 
2 k
π , then there exists 0R >  such that  

   2 2 2 2( , (1 ) ) (1 ) ( , ) ( , ) (1 ) ( , ),
2
Rx y z x y x z y zρ α α α ρ αρ α α ρ− ⊕ ≤ − + − −  

for all , ,x y z  in X  and [0,1].α ∈  

Let ( , )X ρ  be a geodesic space. The distance from a point x  in X  to a subset C  of X  is 

defined by ( , ) : inf{ ( , ) : }.dist x C d x y y C= ∈  The set C  is called bounded if  

                         ( ) : sup{ ( , ) : , } .diam C x y x y Cρ= ∈ < ∞  

We denote by ( )CB C  the family of nonempty closed bounded subsets of ,C  by ( )K C  the family 

of nonempty compact subsets of ,C  and by ( )KC C  the family of nonempty compact convex 

subsets of .C  The Hausdorff metric on ( )CB C  is defined by 

           ( , ) : max sup ( , ),sup ( , )
x A y B

H A B dist x B dist y A
∈ ∈

 
=  

 
 for , ( ).A B CB C∈  

Let : ( )T C CB C→  be a multi-valued mapping. A point x  in C  is called a fixed point of T  if  

.x Tx∈  Moreover, if { } ,x Tx=  then x  is called an endpoint of .T  It is denoted by ( )F T  the set of 

all fixed points of T  and by ( )E T  the set of all endpoints of .T  We say that T  satisfies the 

endpoint condition if ( ) ( ).F T E T=  A mapping : ( )T C CB C→  is said to be 

(i) nonexpansive [4] if ( , ) ( , )H Tx Ty x yρ≤  for all , ;x y C∈  

(ii) quasi-nonexpansive [9] if ( )F T ≠ ∅  and ( , ) ( , )H Tx Tp x pρ≤  for all x C∈  and 

( );p F T∈  

(iii) continuous if ( , ) 0nH Tx Tx →  whenever .nx x→  

(iv) hemicompact if for any sequence { }nx  in C  such that lim ( , ) 0n nn
dist x Tx

→∞
= , there 

exists a subsequence { }
inx  of { }nx  such that lim ;

ini
x p C

→∞
= ∈  

(v) diametrically regular [8] if there exists a net { }tx  in C  such that lim ( ) 0.t tdiam Tx =  In 

this case, we call { }tx  a diametrically regular net for .T  

 A mapping : ( )T C CB C→  is said to satisfy condition (E) [3] if there exists 1µ ≥  such that  

                               ( , ) ( , ) ( , )dist x Ty dist x Tx x yµ ρ≤  for all , .x y C∈  

Let { }nx  be a bounded sequence in a geodesic space ( , ).X ρ  The asymptotic radius ( ){ }nr x  of 

{ }nx  is defined by 

                                   ( ){ } : inf limsup ( , ) : .n n
n

r x x x x Xρ
→∞

 = ∈ 
 

 

The asymptotic center ( ){ }nA x  of { }nx  is the set 

                              ( ) ( ){ } : : limsup ( , ) { } .n n n
n

A x x X x x r xρ
→∞

 = ∈ = 
 
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It is known from [2] that in a complete CAT(0) space, ( ){ }nA x  consists of exactly one point. A 

bounded sequence { }nx  in X  is said to ∆ − converge to x  in X  if ( ){ } { }
inA x x=  for every 

subsequence { }
inx  of { }.nx  In this case, we write lim nn

x x
→∞

∆ − =  and call x  the ∆ − limit of { }.nx  

One of the fundamental and celebrated results in functional analysis related to extreme 

points is the Krein-Milman theorem. In [5], the authors proved that every compact convex subset of 

a locally convex Hausdorff space is the closed convex hull of its set of extreme points. This result 

was extended to a special class of metric spaces, namely, CAT(0) spaces, by Niculescu [6] in 2007. 

Notice that Niculescu's result can be applied to CAT( k ) spaces with 0k ≤ since any CAT( k ) space 

is a CAT( k′ ) space for k k′ ≥  (see e.g., [1]). However, the result for 0k >  is still unknown. In this 

project, we extend Niculescu's result to the setting of CAT( k ) spaces with 0.k >  We also prove 

strong and ∆ − convergence theorems of some iterative process for some generaliezed multi-valued 

nonexpansive mappings in complete CAT(0) spaces. Our main discoveries are the following 

theorems. 

 

Theorem 1. Let 0k >  and ( , )X ρ  be a complete CAT( k ) space whose diameter is smaller 

than 
2 k
π . If C  is a nonempty compact convex subset of ,X  then every extremal subset of C  

has an extreme point.  

 

Theorem 2. Let 0k >  and ( , )X ρ  be a complete CAT( k ) space whose diameter is smaller 

than 
2 k
π . If C  is a nonempty compact convex subset of ,X  then C  is the closed convex hull of 

its set of extreme points.  

 

Theorem 3. Let C  be a nonempty bounded closed convex subset of a complete CAT(0) 

space ( , )X ρ  and : ( )T C K C→  be a nonexpansive mapping which is diametrically regular with 

a diametrically regular net { }.tx  Suppose that lim ( , ) 0.t t tdist x Tx = Then T  has an endpoint in .C  

 

Theorem 4. Let C  be a nonempty closed convex subset of a complete CAT(0) space 

( , )X ρ  and : ( )T C K C→  be a nonexpansive mapping. Fix .u C∈  For each (0,1),t∈  let tx  be a 

fixed point of : ( )tG C K C→  defined by ( ) : (1 ) .tG x t u tTx= − ⊕  Suppose that { }tx  is diametrically 

regular for .T  Then T  has an endpoint if and only if { }tx  is bounded as 1.t →  In this case, { }tx  

converges strongly to the unique point x  in ( )E T  such that  ( , ) min{ ( , ) : ( )}.u x u e e E Tρ ρ= ∈  
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Theorem 5. Let C  be a nonempty closed convex subset of a complete CAT(0) space 

( , )X ρ  and let { }iT  be a countable family of continuous and quasi-nonexpansive multi-valued 

mappings of C  into ( )CB C  with 
1

( )ii
F T∞

=
≠ ∅  and { }iT p p=  for all i∈  and 

1
( ).ii

p F T∞

=
∈  

Given 1 ,x C∈  and let { }nx  be the sequence generated by  

                          (0) (0) (1) (1) ( ) ( )
1

n n
n n n n n n nx y y yλ λ λ+ = ⊕ ⊕⋅⋅⋅⊕   for all ,n∈  

where (0) ( ), i
n n n i ny x y T x= ∈  and the sequences { }( ) (0,1)i

nλ ⊂  satisfying ( )
0 1n i

ni λ
=

=∑  and 
( )lim i
nn
λ

→∞
 exist for all {0}.i∈ ∪  Assume that one member of the family { }iT  is hemicompact. 

Then, { }nx  converges strongly to a common fixed point of { }.iT  

 

Theorem 6. Let C  be a nonempty closed convex subset of a complete CAT(0) space 

( , )X ρ  and let { }iT  be a countable family of quasi-nonexpansive multi-valued mappings of C  into 

( )KC C  satisfying condition (E). Assume that 
1

( )ii
F T∞

=
≠ ∅  and { }iT p p=  for all i∈  and 

1
( ).ii

p F T∞

=
∈  Given 1 ,x C∈  and let { }nx  be the sequence generated by  

                          (0) (0) (1) (1) ( ) ( )
1

n n
n n n n n n nx y y yλ λ λ+ = ⊕ ⊕⋅⋅⋅⊕   for all ,n∈  

where (0) ( ), i
n n n i ny x y T x= ∈  and the sequences { }( ) (0,1)i

nλ ⊂  satisfying ( )
0 1n i

ni λ
=

=∑  and 
( )lim i
nn
λ

→∞
 exist for all {0}.i∈ ∪  Then, { }nx  ∆ − converges to a common fixed point of { }.iT  
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Abstract. In this paper, we propose a new one-step iterative process
for a countable family of quasi-nonexpansive multi-valued mappings in a
CAT(0) space. We also prove strong and Delta-convergence theorems of
the proposed iterative process under some control conditions. Our main

results extend and generalize many results in the literature.
Keywords: Fixed point, quasi-nonexpansive multi-valued mappings,
CAT(0) spaces.
MSC(2010): Primary: 47H09; Secondary: 47H10; 47J25.

1. Introduction

Let (X, d) be a metric space. A geodesic joining x to y (where x, y ∈ X)
is a map γ from a closed interval [0, l] ⊂ R to X such that γ(0) = x, γ(l) = y
and d(γ(t1), γ(t2)) = |t1 − t2| for all t1, t2 ∈ [0, l]. Thus γ is an isometry and
d(x, y) = l. The image of γ is called a geodesic (ormetric) segment joining x and
y. When it is unique, this geodesic is denoted by [x, y]. We write αx⊕ (1−α)y
for the unique point z in the geodesic segment joining from x to y such that
d(x, z) = (1 − α)d(x, y) and d(y, z) = αd(x, y) for α ∈ [0, 1]. The space X
is said to be a geodesic metric space if every two points of X are joined by a
geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic
joining x and y for each x, y ∈ X. A subset D of X is said to be convex if D
includes every geodesic segment joining any two of its points.

Following [3], a metric space X is said to be a CAT(0) space if it is geodesi-
cally connected and if every geodesic triangle in X is at least as thin as its com-
parison triangle in the Euclidean plane E2. It is well known that any complete,
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simply connected Riemannian manifold having nonpositive sectional curvature
is a CAT(0) space. Other examples include Pre-Hilbert spaces [3], R-trees [18],
the complex Hilbert ball with a hyperbolic metric [15], and many others. It
follows from [3] that CAT(0) spaces are uniquely geodesic metric spaces. The
fixed point theory in CAT(0) spaces was first studied by Kirk [16, 17]. He
showed that every nonexpansive (single-valued) mapping defined on a bounded
closed convex subset of a complete CAT(0) space always has a fixed point.
Since then, there have been many researches concerning the existence and the
convergence of fixed points for single-valued and multi-valued mappings in such
spaces (e.g., see [2, 5, 7, 8, 18–20]).

The study of fixed points for nonexpansive multi-valued mappings using
the Pompeiu-Hausdorff metric was initiated by Markin [21]. Different itera-
tive processes have been used to approximate fixed points of nonexpansive and
quasi-nonexpansive multi-valued mappings; in particular, Sastry and Babu [24]
considered Mann and Ishikawa iterative processes for a multi-valued mapping T
with a fixed point p and proved that these iterative processes converge to a fixed
point q of T under certain conditions in Hilbert spaces. Moreover, they illus-
trated that fixed point q may be different from p. Later, in 2007, Panyanak [22]
generalized the results of Sastry and Babu [24] to uniformly convex Banach
spaces and proved a convergence theorem of Mann iterative processes for a
mapping defined on a noncompact domain. Since then, the strong convergence
of the Mann and Ishikawa iterative processes for multi-valued mappings has
been rapidly developed, and many papers have appeared (e.g., see [6,12,25,28]).
Among other things, Shahzad and Zegeye [26] defined two types of Ishikawa it-
erative processes and proved strong convergence theorems for such iterative
processes involving quasi-nonexpansive multi-valued mappings in uniformly
convex Banach spaces. Recently, Abkar and Eslamian [1] established strong
and Delta-convergence theorems for the multi-step iterative process for a fi-
nite family of quasi-nonexpansive multi-valued mappings in complete CAT(0)
spaces.

In this paper, motivated by the above results, we propose a new one-step it-
erative process for a countable family of quasi-nonexpansive multi-valued map-
pings in CAT(0) spaces and prove strong and Delta-convergence theorems for
the proposed iterative process in CAT(0) spaces. We finally provide an example
to support our main result.

2. Preliminaries

For a nonempty set X, we let P(X) be the power set of X and 2X =
P(X) − {∅}. For a metric space (X, d), x ∈ X, and A,B ∈ 2X , let B(x, ε) =
{y ∈ X : d(x, y) < ε}, dist(x,B) = inf{d(x, y) : y ∈ B}, and h(A,B) =
sup{dist(x,B) : x ∈ A}.
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We now recall some definitions of continuity for multi-valued mappings (see
[4,14] for more details). Let (X, d) and (Y, d) be metric spaces. A multi-valued
mapping T : X → 2Y is said to be

• Hausdorff upper semi-continuous at x if for each ε > 0, there is δ > 0
such that h(Ty, Tx) < ε for each y ∈ B(x, δ);

• Hausdorff lower semi-continuous at x if for each ε > 0, there is δ > 0
such that h(Tx, Ty) < ε for each y ∈ B(x, δ);

• continuous at x if T is Hausdorff upper and lower semi-continuous at
x.

We say that the multi-valued mapping T is continuous if it is continuous at
each point in X.

Let D be a nonempty subset of a metric space X. Let CB(D) and KC(D)
denote the families of nonempty closed bounded subsets and nonempty compact
convex subsets of D, respectively. The Pompeiu-Hausdorff distance [23] on
CB(D) is defined by

H(A,B) = max

{
sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)

}
for A,B ∈ CB(D),

where dist(x,D) = inf{d(x, y) : y ∈ D} is the distance from a point x to a
subset D.

Note that a continuous multi-valued mapping behaves like a continuous
single-valued mapping [14], that is, if a multi-valued mapping T : D → CB(D)
is continuous then for every sequence {xn} in D such that limn→∞ xn = x, we
have limn→∞ H(Txn, Tx) = 0.

The set of fixed points of a multi-valued mapping T : D → CB(D) will be
denoted by F (T ) = {x ∈ D : x ∈ Tx}.

Definition 2.1. A multi-valued mapping T : D → CB(D) is said to be

(i) nonexpansive [21] if H(Tx, Ty) ≤ d(x, y), for all x, y ∈ D,
(ii) quasi-nonexpansive [24] if F (T ) ̸= ∅ and H(Tx, Tp) ≤ d(x, p), for all

x ∈ D and p ∈ F (T ),
(iii) hemicompact if for any sequence {xn} in D such that

limn→∞ dist(xn, Txn) = 0 there exists a subsequence {xni} of {xn}
such that limi→∞ xni = p ∈ D.

Definition 2.2. A multi-valued mapping T : D → CB(D) is said to satisfy
condition (Eµ) provided that

dist(x, Ty) ≤ µdist(x, Tx) + d(x, y)

for each x, y ∈ D. We say that T satisfies condition (E) whenever T satisfies
(Eµ) for some µ ≥ 1.

Remark 2.3. From the above definitions, it is clear that:

(i) if T is nonexpansive, then T satisfies the condition (E1);
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(ii) if D is compact, then T is hemicompact.

Although the condition (E) implies the quasi-nonexpansiveness for single-
valued mappings [13], but it is not true for multi-valued mappings as the fol-
lowing example.

Example 2.4 ([27, Example 1]). Let D = [0,∞) and T : D → CB(D) be
defined by

Tx = [x, 2x] for all x ∈ D.

Then T satisfies condition (E) and is not quasi-nonexpansive.

Notice also that the classes of (multi-valued) quasi-nonexpansive mappings,
continuous mappings and mappings satisfying condition (E) are different (see
Examples 2.5-2.7).

Example 2.5 ([13, Example 2]). Let D = [−1, 1] and T : D → CB(D) be
defined by

Tx =

{{
x

1+|x| sin(
1
x )
}

if x ̸= 0;

{0} if x = 0.

Then T is quasi-nonexpansive and does not satisfy condition (E).

Example 2.6 ([5, p. 984]). Let D = [0, 1] and T : D → CB(D) be defined by

Tx =

{{
x2
}

if 0 ≤ x < 1;

{0} if x = 1.

Then T is quasi-nonexpansive and is not continuous. Notice also that the
mapping Tx =

{
x2
}
on [0, 1] is continuous but is not quasi-nonexpansive nor

satisfies condition (E).

Example 2.7 ([13, Example 3]). Let D = [−2, 1] and T : D → CB(D) be
defined by

Tx =

{{
|x|
2

}
if − 2 ≤ x < 1;{

− 1
2

}
if x = 1.

Then T satisfies condition (E) and is not continuous.

The notion of the asymptotic center can be introduced in the general setting
of a CAT(0) space X as follows: Let {xn} be a bounded sequence in X. For
x ∈ X, we define a mapping r (·, {xn}) : X → [0,∞) by

r (x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius of {xn} is given by

r ({xn}) = inf {r (x, {xn}) : x ∈ X} ,



1131 Suantai, Panyanak and Phuengrattana

and the asymptotic center of {xn} is the set

A ({xn}) = {x ∈ X : r (x, {xn}) = r ({xn})} .
It is known by [10] that in a CAT(0) space, the asymptotic center A ({xn})
consists of exactly one point.

We now give the definition and collect some basic properties of the ∆-
convergence which will be used in the sequel.

Definition 2.8 ([19]). A sequence {xn} in a CAT(0) space X is said to ∆-
converge to x ∈ X if x is the unique asymptotic center of {un} for every
subsequence {un} of {xn}. In this case, we write ∆-limn→∞ xn = x and call x
the ∆-limit of {xn}.
Lemma 2.9 ([19]). Every bounded sequence in a CAT(0) space has a ∆-
convergent subsequence.

Lemma 2.10 ([9]). If D is a nonempty closed convex subset of a CAT(0) space
X and if {xn} is a bounded sequence in D, then the asymptotic center of {xn}
is in D.

Lemma 2.11 ([11]). Let {xn} be a sequence in a CAT(0) space X with
A({xn}) = {x}. If {un} is a subsequence of {xn} with A({un}) = {u} and
{d(xn, u)} converges, then x = u.

Lemma 2.12 ([3]). Let X be a geodesic metric space. The following are equiv-
alent:

(i) X is a CAT(0) space.
(ii) X satisfies the (CN) inequality: If x, y ∈ X and x⊕y

2 is the midpoint
of x and y, then

d

(
z,

x⊕ y

2

)2

≤ 1

2
d(z, x)2 +

1

2
d(z, y)2 − 1

4
d(x, y)2, for all z ∈ X.

The following lemma is a generalization of the (CN) inequality which can
be found in [11].

Lemma 2.13. Let X be a CAT(0) space. Then

d(z, λx⊕ (1− λ)y)2 ≤ λd(z, x)2 + (1− λ)d(z, y)2 − λ(1− λ)d(x, y)2,

for any λ ∈ [0, 1] and x, y, z ∈ X.

In 2012, Dhompongsa et al. [8] introduced the following notation in CAT(0)
spaces: Let x1, . . . , xn be points in a CAT(0) space X and λ1, . . . , λn ∈ (0, 1)
with

∑n
i=1 λi = 1, we write

n⊕
i=1

λixi := (1− λn)

(
λ1

1− λn
x1 ⊕

λ2

1− λn
x2 ⊕ · · · ⊕ λn−1

1− λn
xn−1

)
⊕ λnxn.

(2.1)
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The definition of
⊕

is an ordered one in the sense that it depends on the order
of points x1, . . . , xn. Under (2.1) we obtain that

d

(
n⊕

i=1

λixi, y

)
≤

n∑
i=1

λid(xi, y) for each y ∈ X.

3. Main results

In this section, we first introduce a new one-step iterative process for a count-
able family of quasi-nonexpansive multi-valued mappings in CAT(0) spaces.
Let D be a nonempty closed convex subset of a CAT(0) space X and let {Ti}
be a countable family of quasi-nonexpansive multi-valued mappings of D into
CB(D) with ∩∞

i=1F (Ti) ̸= ∅ and Tip = {p} for all i ∈ N and p ∈ ∩∞
i=1F (Ti).

For x1 ∈ D, the sequence {xn} generated by

(3.1) xn+1 =

n⊕
i=0

λ(i)
n y(i)n , for all n ∈ N,

where y
(0)
n = xn, y

(i)
n ∈ Tixn and the sequences {λ(i)

n } ⊂ (0, 1) satisfying∑n
i=0 λ

(i)
n = 1.

Note that, if we put

W (m)
n =

m⊕
i=0

δ(i,m)
n y(i)n ,

where δ
(i,m)
n =

λ(i)
n∑m

j=0 λ
(j)
n

for i = 0, 1, . . . ,m, then we get

W (m)
n

=
(
1− δ(m,m)

n

)( δ
(0,m)
n

1− δ
(m,m)
n

xn ⊕ δ
(1,m)
n

1− δ
(m,m)
n

y(1)
n ⊕ · · · ⊕ δ

(m−1,m)
n

1− δ
(m,m)
n

y(m−1)
n

)
⊕ δ(m,m)

n y(m)
n

=
(
1− δ(m,m)

n

)(
δ(0,m−1)
n xn ⊕ δ(1,m−1)

n y(1)
n ⊕ · · · ⊕ δ(m−1,m−1)

n y(m−1)
n

)
⊕ δ(m,m)

n y(m)
n

=
(
1− δ(m,m)

n

) λ
(0)
n

m−1∑
j=0

λ
(j)
n

xn ⊕ λ
(1)
n

m−1∑
j=0

λ
(j)
n

y(1)
n ⊕ · · · ⊕ λ

(m−1)
n

m−1∑
j=0

λ
(j)
n

y(m−1)
n

⊕ δ(m,m)
n y(m)

n

=
(
1− δ(m,m)

n

)
W (m−1)

n ⊕ δ(m,m)
n y(m)

n

=

m−1∑
j=0

λ
(j)
n

m∑
j=0

λ
(j)
n

W (m−1)
n ⊕ λ

(m)
n

m∑
j=0

λ
(j)
n

y(m)
n .
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Therefore, the following result holds:

(3.2) W (m)
n =

m−1∑
j=0

λ
(j)
n

m∑
j=0

λ
(j)
n

W (m−1)
n ⊕ λ

(m)
n

m∑
j=0

λ
(j)
n

y(m)
n .

The following two lemmas are useful and crucial for our main theorems.

Lemma 3.1. Let D be a nonempty closed convex subset of a complete CAT(0)
space X and let {Ti} be a countable family of quasi-nonexpansive multi-valued
mappings of D into CB(D) with ∩∞

i=1F (Ti) ̸= ∅ and Tip = {p} for all i ∈ N
and p ∈ ∩∞

i=1F (Ti). For x1 ∈ D, consider the sequence {xn} generated by
(3.1). Then, limn→∞ d(xn, p) exists for all p ∈ ∩∞

i=1F (Ti).

Proof. For p ∈ ∩∞
i=1F (Ti), we have by (3.1) that

d(xn+1, p) = d

(
n⊕

i=0

λ(i)
n y(i)n , p

)

≤
n∑

i=0

λ(i)
n d(y(i)n , p)

=
n∑

i=0

λ(i)
n dist(y(i)n , Tip)

≤
n∑

i=0

λ(i)
n H(Tixn, Tip)

≤
n∑

i=0

λ(i)
n d(xn, p)

= d(xn, p).

This implies that limn→∞ d(xn, p) exists for all p ∈ ∩∞
i=1F (Ti). □

Lemma 3.2. Let D be a nonempty closed convex subset of a complete CAT(0)
space X and let {Ti} be a countable family of quasi-nonexpansive multi-valued
mappings of D into CB(D) with ∩∞

i=1F (Ti) ̸= ∅ and Tip = {p} for all i ∈
N and p ∈ ∩∞

i=1F (Ti). For x1 ∈ D, consider the sequence {xn} generated

by (3.1). If limn→∞ λ
(i)
n exists for all i ∈ N ∪ {0} and lies in (0, 1), then

limn→∞ dist(xn, Tixn) = 0 for all i ∈ N.
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Proof. For each p ∈ ∩∞
i=1F (Ti), we obtain by (3.1) that

d(xn+1, p) = d

(
n⊕

i=0

λ(i)
n y(i)n , p

)
= d

 n⊕
i=0

λ
(i)
n

n∑
j=0

λ
(j)
n

y(i)n , p

 = d(W (n)
n , p).

It follows by Lemma 2.13 and (3.2) that

d(xn+1, p)
2 = d


n−1∑
j=0

λ
(j)
n

n∑
j=0

λ
(j)
n

W
(n−1)
n ⊕

λ
(n)
n

n∑
j=0

λ
(j)
n

y
(n)
n , p


2

≤

n−1∑
j=0

λ
(j)
n

n∑
j=0

λ
(j)
n

d(W
(n−1)
n , p)2 +

λ
(n)
n

n∑
j=0

λ
(j)
n

d(y
(n)
n , p)2

−
λ
(n)
n

n∑
j=0

λ
(j)
n

n−1∑
j=0

λ
(j)
n

n∑
j=0

λ
(j)
n

d(W
(n−1)
n , y

(n)
n )2

=

n−1∑
j=0

λ
(j)
n d(W

(n−1)
n , p)2 + λ

(n)
n d(y

(n)
n , p)2 − λ

(n)
n

n−1∑
j=0

λ
(j)
n d(W

(n−1)
n , y

(n)
n )2

=

n−1∑
j=0

λ
(j)
n d


n−2∑
j=0

λ
(j)
n

n−1∑
j=0

λ
(j)
n

W
(n−2)
n ⊕

λ
(n−1)
n

n−1∑
j=0

λ
(j)
n

y
(n−1)
n , p


2

+ λ
(n)
n d(y

(n)
n , p)2

−λ
(n)
n

n−1∑
j=0

λ
(j)
n d(W

(n−1)
n , y

(n)
n )2

≤
n−1∑
j=0

λ
(j)
n


n−2∑
j=0

λ
(j)
n∑n−1

j=0 λ
(j)
n

d(W
(n−2)
n , p)2 +

λ
(n−1)
n∑n−1

j=0 λ
(j)
n

d(y
(n−1)
n , p)2



=

n−1∑
j=0

λ
(j)
n d


n−2∑
j=0

λ
(j)
n

n−1∑
j=0

λ
(j)
n

W
(n−2)
n ⊕

λ
(n−1)
n

n−1∑
j=0

λ
(j)
n

y
(n−1)
n , p


2

+ λ
(n)
n d(y

(n)
n , p)2

−λ
(n)
n

n−1∑
j=0

λ
(j)
n d(W

(n−1)
n , y

(n)
n )2
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≤
n−1∑
j=0

λ
(j)
n


n−2∑
j=0

λ
(j)
n

n−1∑
j=0

λ
(j)
n

d(W
(n−2)
n , p)2 +

λ
(n−1)
n

n−1∑
j=0

λ
(j)
n

d(y
(n−1)
n , p)2

−

n−2∑
j=0

λ
(j)
n

n−1∑
j=0

λ
(j)
n

λ
(n−1)
n

n−1∑
j=0

λ
(j)
n

d(W
(n−2)
n , y

(n−1)
n )2

+ λ
(n)
n d(y

(n)
n , p)2

−λ
(n)
n

n−1∑
j=0

λ
(j)
n d(W

(n−1)
n , y

(n)
n )2

=

n−2∑
j=0

λ
(j)
n d(W

(n−2)
n , p)2 + λ

(n−1)
n d(y

(n−1)
n , p)2 + λ

(n)
n d(y

(n)
n , p)2

−
λ
(n−1)
n

n−2∑
j=0

λ
(j)
n

n−1∑
j=0

λ
(j)
n

d(W
(n−2)
n , y

(n−1)
n )2 − λ

(n)
n

n−1∑
j=0

λ
(j)
n d(W

(n−1)
n , y

(n)
n )2

≤
n−3∑
j=0

λ
(j)
n d(W

(n−3)
n , p)2 + λ

(n−2)
n d(y

(n−2)
n , p)2 + λ

(n−1)
n d(y

(n−1)
n , p)2

+λ
(n)
n d(y

(n)
n , p)2 −

λ
(n−2)
n

n−3∑
j=0

λ
(j)
n

n−2∑
j=0

λ
(j)
n

d(W
(n−3)
n , y

(n−2)
n )2

−
λ
(n−1)
n

n−2∑
j=0

λ
(j)
n

n−1∑
j=0

λ
(j)
n

d(W
(n−2)
n , y

(n−1)
n )2 − λ

(N)
n

n−1∑
j=0

λ
(j)
n d(W

(n−1)
n , y

(n)
n )2

..

.

≤ λ
(0)
n d(W

(0)
n , p)2 +

n∑
k=1

λ
(k)
n d(y

(k)
n , p)2 −

n∑
k=1

λ
(k)
n

k−1∑
j=0

λ
(j)
n

k∑
j=0

λ
(j)
n

d(W
(k−1)
n , y

(k)
n )2

≤
n∑

k=0

λ
(k)
n d(xn, p)

2 −
n∑

k=1

λ
(k)
n

k−1∑
j=0

λ
(j)
n

k∑
j=0

λ
(j)
n

d(W
(k−1)
n , y

(k)
n )2

= d(xn, p)
2 −

n∑
k=1

λ
(k)
n

k−1∑
j=0

λ
(j)
n

k∑
j=0

λ
(j)
n

d(W
(k−1)
n , y

(k)
n )2.
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This implies that

n∑
k=1

λ
(k)
n

k−1∑
j=0

λ
(j)
n

k∑
j=0

λ
(j)
n

d(W (k−1)
n , y(k)n )2 ≤ d(xn, p)

2 − d(xn+1, p)
2.(3.3)

Since 0 < λ
(0)
n ≤

∑k
j=0 λ

(j)
n ≤ 1 for all k = 1, 2, . . . , n, we have 0 < λ

(0)
n λ

(k)
n ≤

λ
(k)
n
∑k

j=0 λ
(j)
n . So, 0 < λ

(0)
n λ

(k)
n ≤ λ(k)

n

∑k−1
j=0 λ(j)

n∑k
j=0 λ

(j)
n

for all k = 1, 2, . . . , n. Then

(3.3) becomes
n∑

k=1

λ(0)
n λ(k)

n d(W (k−1)
n , y(k)n )2 ≤ d(xn, p)

2 − d(xn+1, p)
2.(3.4)

By Lemma 3.1 and the condition limn→∞ λ
(i)
n exists for all i ∈ N∪{0} and lies

in (0, 1), we get that

lim
n→∞

d(xn, y
(1)
n ) = 0 and lim

n→∞
d(W (k−1)

n , y(k)n ) = 0 for all k ≥ 2.(3.5)

Then, for k ≥ 2, we have

d(xn, y
(k)
n ) ≤ d(xn,W

(k−1)
n ) + d(W (k−1)

n , y(k)n )

= d

xn,
k−1⊕
i=0

λ
(i)
n

k−1∑
j=0

λ
(j)
n

y(i)n

+ d(W (k−1)
n , y(k)n )

≤
k−1∑
i=0

λ
(i)
n

k−1∑
j=0

λ
(j)
n

d(xn, y
(i)
n ) + d(W (k−1)

n , y(k)n )

=

k−1∑
i=1

λ
(i)
n

k−1∑
j=0

λ
(j)
n

d(xn, y
(i)
n ) + d(W (k−1)

n , y(k)n ).

This implies by (3.5) that limn→∞ d(xn, y
(k)
n ) = 0 for all k ≥ 1. Since

dist(xn, Tixn) ≤ d(xn, y
(i)
n ) for all i ∈ N, it follows that limn→∞ dist(xn, Tixn)

= 0 for all i ∈ N. □

In what follows we get a ∆-convergence theorem for a countable family of
quasi-nonexpansive multi-valued mappings in complete CAT(0) spaces.

Theorem 3.3. Let D be a nonempty closed convex subset of a complete CAT(0)
space X and let {Ti} be a countable family of quasi-nonexpansive multi-valued
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mappings of D into KC(D) satisfying the condition (E). Assume that
∩∞
i=1F (Ti) ̸= ∅ and Tip = {p} for all i ∈ N and p ∈ ∩∞

i=1F (Ti). Suppose

that limn→∞ λ
(i)
n exists for all i ∈ N∪{0} and lies in (0, 1). Then, the sequence

{xn} generated by (3.1) ∆-converges to a common fixed point of {Ti}.

Proof. By Lemmas 3.1 and 3.2, we have limn→∞ d(xn, p) exists for all p ∈
∩∞
i=1F (Ti) and limn→∞ dist(xn, Tixn) = 0 for all i ∈ N. Thus the sequence

{xn} is bounded. We put ω∆(xn) :=
∪
A({un}), where the union is taken

over all subsequences {un} of {xn}. Let u ∈ ω∆(xn). Then, there exists a
subsequence {un} of {xn} such that A({un}) = {u}. By Lemma 2.9, there
exists a subsequence {unj} of {un} such that ∆-limj→∞ unj = z ∈ D. We will
show that z ∈ T1z. Since T1z is compact, for all j ∈ N, we can choose ynj ∈ T1z
such that d(unj , ynj ) = dist(unj , T1z) and {ynj} has a convergent subsequence
{ynk

} with limk→∞ ynk
= q ∈ T1z. By condition (E), we have

dist(unk
, T1z) ≤ µdist(unk

, T1unk
) + d(unk

, z).

Then we have

d(unk
, q) ≤ d(unk

, ynk
) + d(ynk

, q)

= dist(unk
, T1z) + d(ynk

, q)

≤ µdist(unk
, T1unk

) + d(unk
, z) + d(ynk

, q).

This implies that

lim sup
k→∞

d(unk
, q) ≤ lim sup

k→∞
d(unk

, z).

By the uniqueness of asymptotic centers, we have z = q ∈ T1z. Similarly, it
can be shown that z ∈ Tiz for all i = 2, . . . , N . Then, z ∈ ∩∞

i=1F (Ti) and so
limn→∞ d(xn, z) exists. Suppose that u ̸= z. By the uniqueness of asymptotic
centers, we have

lim sup
j→∞

d(unj , z) < lim sup
j→∞

d(unj , u)

≤ lim sup
n→∞

d(un, u)

< lim sup
n→∞

d(un, z)

= lim sup
n→∞

d(xn, z)

= lim sup
j→∞

d(unj , z).

This is a contradiction, hence u = z ∈ ∩∞
i=1F (Ti). This shows that ω∆(xn) ⊂

∩∞
i=1F (Ti).
Next, we show that ω∆(xn) consists of exactly one point. Let {un} be

a subsequence of {xn} with A({un}) = {p} and let A({xn}) = {q}. Since
p ∈ ω∆(xn) ⊂ ∩∞

i=1F (Ti), it follows that limn→∞ d(xn, p) exists. By Lemma
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2.11, we obtain that p = q. Hence, the sequence {xn}∆-converges to a common
fixed point of {Ti}. □

The following result is a strong convergence theorem for a countable family
of quasi-nonexpansive multi-valued mappings in complete CAT(0) spaces.

Theorem 3.4. Let D be a nonempty closed convex subset of a complete CAT(0)
space X and let {Ti} be a countable family of continuous and quasi-nonexpansive
multi-valued mappings of D into CB(D) with ∩∞

i=1F (Ti) ̸= ∅ and Tip = {p}
for all i ∈ N and p ∈ ∩∞

i=1F (Ti). Let the sequence {xn} generated by (3.1)

with limn→∞ λ
(i)
n exist for all i ∈ N ∪ {0} and lie in (0, 1). Assume that one

member of the family {Ti} is hemicompact. Then, {xn} converges strongly to
a common fixed point of {Ti}.

Proof. By Lemma 3.2, limn→∞ dist(xn, Tixn) for all i ∈ N. Without loss of
generality, we assume that T1 is hemicompact. Then there exists a subse-
quence {xnj} of {xn} such that limj→∞ xnj = p ∈ D. By continuity of Ti,
we have limj→∞ dist(xnj , Tixnj ) = dist(p, Tip) for all i ∈ N. This implies that
dist(p, Tip) = 0 for all i ∈ N and hence p ∈ ∩∞

i=1F (Ti). It follows by Lemma
3.1 that {xn} converges strongly to p. □
Remark 3.5. Since any CAT(κ) space is a CAT(κ′) space for κ′ ≥ κ (see [3]),
all our results immediately apply to any CAT(κ) space with κ ≤ 0.

Finally, we give a numerical example supporting Theorems 3.3 and 3.4.

Example 3.6. Let X be a real line with the Euclidean norm and D = [0, 1].
For x ∈ D, i = 1, 2, . . ., we define mappings Ti on D as follows:

Tix =
[
0,

x

i

]
for all i ∈ N.

Let the sequence {xn} be generated by

(3.6) xn+1 =

n⊕
i=0

λ(i)
n y(i)n , for all n ∈ N,

where y
(0)
n = xn, y

(i)
n ∈ Tixn and the sequences {λ(i)

n } defined by

λ(i)
n =



1

2i+1

(
n

n+ 1

)
, n ≥ i+ 1

1− n

n+ 1

(
n∑

k=1

1

2k

)
, n = i

0, n < i.

Obviously, Ti is quasi-nonexpansive and satisfies condition (E) for all i ∈ N
and Ti(0) = {0} such that ∩∞

i=1F (Ti) = {0}. It can be observed that all the
assumptions of Theorems 3.3 and 3.4 are satisfied.
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For any arbitrary x1 ∈ D = [0, 1], we put y
(i)
n = xn

5i for all i ∈ N. Then, we
rewrite the algorithm (3.6) as follows:

xn+1 = λ(0)
n xn +

λ
(1)
n xn

5
+

λ
(2)
n xn

10
+ · · ·+ λ

(n)
n xn

5n
, for all n ∈ N,

where

(
λ
(i)
n

)
=



1
4

3
4

0 0 0 0 · · · 0 · · ·
1
3

1
6

1
2

0 0 0 · · · 0 · · ·
3
8

3
16

3
32

11
32

0 0 · · · 0 · · ·
2
5

1
5

1
10

1
20

1
4

0 · · · 0 · · ·
..
.

..

.
..
.

..

.
..
.

..

.
..
.

n
2(n+1)

n
4(n+1)

n
8(n+1)

n
16(n+1)

n
32(n+1)

n
64(n+1)

· · · n
2i(n+1)

· · ·
.
..

.

..
.
..

.

..
.
..

.

..
.
..


The values of the sequence {xn} with different n are reported in Table 1.

Table 1. The values of the sequence {xn} in Example 3.6.

x1 = 0.11 x1 = 0.95

n xn xn

1 0.1100000 0.9500000

2 0.0440000 0.3800000

3 0.0183333 0.1583333

4 0.0081545 0.0704253

5 0.0037986 0.0328065

6 0.0018280 0.0157875

7 0.0009008 0.0077801

8 0.0004520 0.0039036

9 0.0002300 0.0019863

10 0.0001184 0.0010222

..

.
..
.

..

.

17 0.0000014 0.0000118

18 0.0000007 0.0000064

19 0.0000004 0.0000034

20 0.0000002 0.0000019

From Table 1, it is clear that {xn} converges to 0, where {0} = ∩∞
i=1F (Ti).
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On the Krein-Milman theorem in CAT(κ) spaces

BANCHA PANYANAK

ABSTRACT. Let κ > 0 and (X, ρ) be a complete CAT(κ) space whose diameter smaller than
π

2
√
κ

. It is shown

that ifK is a nonempty compact convex subset ofX, thenK is the closed convex hull of its set of extreme points.
This is an extension of the Krein-Milman theorem to the general setting of CAT(κ) spaces.

1. INTRODUCTION AND PRELIMINARIES

One of the fundamental and celebrated results in functional analysis related to extreme
points is the Krein-Milman theorem. In [5], the authors proved that every compact convex
subset of a locally convex Hausdorff space is the closed convex hull of its set of extreme
points. This result was extended to a special class of metric spaces, namely, CAT(0) spaces,
by Niculescu [6] in 2007. Notice that Niculescu’s result can be applied to CAT(κ) spaces
with κ ≤ 0 since any CAT(κ) space is a CAT(κ′) space for κ′ ≥ κ (see e.g., [1]). However,
the result for κ > 0 is still unknown. In this paper, we extend Niculescu’s result to the
setting of CAT(κ) spaces with κ > 0.

Let (P,�) be a partially ordered set. An element p0 ∈ P is maximal in P if for each
p ∈ P, the following implication holds:

p0 � p =⇒ p0 = p.

Similarly, an element q0 ∈ P is minimal in P if for each p ∈ P, the following implication
holds:

p � q0 =⇒ p = q0.

An upper bound (resp. A lower bound) of a nonempty subset Q of P is an element p ∈ P
such that q � p (resp. p � q) for all q ∈ Q. A nonempty subset C of P is called a chain in P
if any two elements p and q in C are comparable, that is, p � q or q � p.

Lemma 1.1. (Zorn) If (P,�) is a partially ordered set such that every chain in P has an upper
(resp. lower) bound in P, then P contains a maximal (resp. minimal) element.

Let (X, ρ) be a metric space. A geodesic path joining x ∈ X to y ∈ X is a function ξ from
the closed interval [0, ρ(x, y)] to X such that ξ(0) = x, ξ(l) = y, and ρ(ξ(t), ξ(t′)) = |t − t′|
for all t, t′ ∈ [0, ρ(x, y)]. The image of ξ is called a geodesic segment joining x and y which
is unique, denoted by [x, y]. This means that z ∈ [x, y] if and only if there exists α ∈ [0, 1]
such that

ρ(x, z) = (1− α)ρ(x, y) and ρ(y, z) = αρ(x, y).

In this case, we write z = αx⊕ (1−α)y. The space (X, ρ) is said to be a geodesic space (resp.
D−geodesic space) if every two points ofX (resp. every two points of distance smaller than

Received: 11.09.2017. In revised form: 25.04.2018. Accepted: 15.07.2018
2010 Mathematics Subject Classification. 47H09, 49J53.
Key words and phrases. CAT(κ) spaces, extreme points, the Krein-Milman theorem.
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D) are joined by a geodesic path. A subset C of X is said to be convex if C includes every
geodesic segment joining any two of its points.

Now we introduce the model spaces M2
κ , for more details on these spaces the reader

is referred to [1, 3, 4, 8, 9]. We denote by 〈·, ·〉 the Euclidean scalar product in R3. By S2
we denote the unit sphere in R3, that is the set

{
(x1, x2, x3) ∈ R3 : x21 + x22 + x23 = 1

}
. The

spherical distance on S2 is defined by

dS2(x, y) := arccos〈x, y〉 for all x, y ∈ S2.

Definition 1.2. Given κ ≥ 0, we denote by M2
κ the following metric spaces:

(i) if κ = 0 then M2
κ is the Euclidean space E2;

(ii) if κ > 0 thenM2
κ is obtained from the spherical space S2 by multiplying the distance

function by 1/
√
κ.

A geodesic triangle 4(x, y, z) in a geodesic space (X, ρ) consists of three points x, y, z
in X (the vertices of 4) and three geodesic segments between each pair of vertices (the
edges of 4). A comparison triangle for a geodesic triangle 4(x, y, z) in (X, ρ) is a triangle
4(x̄, ȳ, z̄) in M2

κ such that

ρ(x, y) = dM2
κ
(x̄, ȳ), ρ(y, z) = dM2

κ
(ȳ, z̄), and ρ(z, x) = dM2

κ
(z̄, x̄).

It is well known that such a comparison triangle exists if ρ(x, y) + ρ(y, z) + ρ(z, x) < 2Dκ,
where Dκ = π/

√
κ for κ > 0 and D0 = ∞. Notice also that the comparison triangle

is unique up to isometry. A point ū ∈ [x̄, ȳ] is called a comparison point for u ∈ [x, y] if
ρ(x, u) = dM2

κ
(x̄, ū).

A metric space (X, ρ) is said to be a CAT(κ) space if it is Dκ−geodesic and for each two
points u, v of any geodesic triangle 4(x, y, z) in X with ρ(x, y) + ρ(y, z) + ρ(z, x) < 2Dκ

and for their comparison points ū, v̄ in4(x̄, ȳ, z̄) the CAT(κ) inequality

ρ(u, v) ≤ dM2
κ
(ū, v̄),

holds. Notice also that Pre-Hilbert spaces, R−trees, Euclidean buildings are examples of
CAT(κ) spaces (see [1, 2]).

Recall that a geodesic space (X, ρ) is said to be R−convex for R ∈ (0, 2] ([7]) if for any
three points x, y, z ∈ X , we have

(1.1) ρ2(x, (1− α)y ⊕ αz) ≤ (1− α)ρ2(x, y) + αρ2(x, z)− R

2
α(1− α)ρ2(y, z).

The following lemmas will be needed.

Lemma 1.3. ([7]) Let κ > 0 and (X, ρ) be a complete CAT(κ) space with diam(X) ≤ π/2− ε√
κ

for some ε ∈ (0, π/2). Then (X, ρ) is R−convex for R = (π − 2ε) tan(ε).

Lemma 1.4. ([1]) Let κ > 0 and (X, ρ) be a complete CAT(κ) space with diam(X) ≤ π/2− ε√
κ

for some ε ∈ (0, π/2). Then

ρ((1− α)x⊕ αy, z) ≤ (1− α)ρ(x, z) + αρ(y, z),

for all x, y, z ∈ X and α ∈ [0, 1].

Let (X, ρ) be a geodesic space. The distance from a point x in X to a subset C of X is
defined by

dist(x,C) := inf{ρ(x, y) : y ∈ C}.
The set C is bounded if diam(C) := sup{ρ(x, y) : x, y ∈ C} <∞.
Definition 1.5. Let f : C → R be a function. Then
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(i) f is said to be convex if f(αx⊕ (1− α)y) ≤ αf(x) + (1− α)f(y) for all α ∈ [0, 1] and
x, y ∈ C;

(ii) f is said to be strictly convex if f(αx⊕(1−α)y) < αf(x)+(1−α)f(y) for all α ∈ (0, 1)
and x, y ∈ C with x 6= y.

Let A be a nonempty subset of X. The closed convex hull of A is defined by

conv(A) :=
⋂
{B ⊆ X : A ⊆ B and B is closed and convex}.

Let C be a convex subset of X. A subset A of C is called an extremal subset if it is
nonempty, closed and satisfies the following property: If x, y ∈ C and αx⊕ (1− α)y ∈ A
for some α ∈ (0, 1), then x, y ∈ A. Notice that if A is an extremal subset of B and B is an
extremal subset of C, then A is an extremal subset of C. A point z in C is called an extreme
point of C if {z} is an extremal subset of C. We denote by Ext(C) the set of all extreme
points of C.

Example 1.6. In the Euclidean space R2, the square A := {(x, y) : |x| ≤ 1, |y| ≤ 1} has four
extreme points while the strip B := {(x, y) : 0 ≤ x ≤ 1, y ∈ R} does not have an extreme
point.

2. MAIN RESULTS

We begin this section by proving a crucial lemma.

Lemma 2.1. Let κ > 0 and (X, ρ) be a complete CAT(κ) space with diam(X) ≤ π/2− ε√
κ

for

some ε ∈ (0, π/2). If K is a nonempty compact convex subset of X, then every extremal subset of
K has an extreme point.

Proof. Let C be the family of all nonempty extremal subset of K. Since K ∈ C, it follows
that C is nonempty and it can be partially ordered by set inclusion. By Zorn’s Lemma, C
has a minimal element, say M. It is enough to show that M consists of exactly one point.
Suppose that it contains at least two points, say x0 and y0. Let f : M → R be defined by

f(x) := ρ2(x0, x) for all x ∈M.

Since x0 6= y0, f is not a constant function. By (1.1), f is strictly convex. Let M0 := {x ∈
M : f(x) = supy∈M f(y)}. Since f is continuous and K is compact, M0 is nonempty.
Notice also that it is a closed proper subset of M. Next, we show that M0 is an extremal
subset of M. Let x′, x′′ ∈ M and M0 contains a point (1 − α)x′ ⊕ αx′′ for some α ∈ (0, 1).
By (1.1), we have

sup
y∈M

f(y) = f((1− α)x′ ⊕ αx′′)

≤ (1− α)f(x′) + αf(x′′)− α(1− α)ρ2(x′, x′′)

≤ sup
y∈M

f(y)− α(1− α)ρ2(x′, x′′),

which implies that x′ = x′′ ∈ M0. Thus M0 ∈ C which contradicts to the minimality of M
and hence the proof is complete. �

Theorem 2.2. Let κ > 0 and (X, ρ) be a complete CAT(κ) space with diam(X) ≤ π/2− ε√
κ

for

some ε ∈ (0, π/2). If K is a nonempty compact convex subset of X, then conv(Ext(K)) = K.
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Proof. (This proof is patterned after the proof of Theorem 3.1 in [6]). By Lemma 2.1,
Ext(K) 6= ∅. Clearly, conv(Ext(K)) ⊆ K. Suppose that conv(Ext(K)) 6= K. Let g : K → R
be defined by g(x) := dist(x, conv(Ext(K))) and let K0 := {x ∈ K : g(x) = supy∈K g(y)}.
Since g is continuous and K is compact, K0 is nonempty. Notice also that it is a closed
subset of K. Since conv(Ext(K)) 6= K, we get that sup{g(y) : y ∈ K} > 0. By Lemma 1.4
for x, y ∈ K, α ∈ [0, 1] and z ∈ conv(Ext(K)) we have

ρ((1− α)x⊕ αy, z) ≤ (1− α)ρ(x, z) + αρ(y, z),

which implies that g is convex. Notice also that K0 is an extremal subset of K. Again, by
Lemma 2.1 there is a point z in K0 ∩ Ext(K). Thus 0 = g(z) = sup{g(y) : y ∈ K} which is
a contradiction. Hence conv(Ext(K)) = K. �

As a consequence of Theorem 2.2, we obtain the following corollary.

Theorem 2.3. ([6, Theorem 1]) Let (X, ρ) be a complete CAT(0) space and K be a nonempty
compact convex subset of X. Then conv(Ext(K)) = K.

Proof. It is well known that every convex subset of a CAT(0) space, equipped with the
induced metric, is a CAT(0) space (see e.g., [1]). Thus (K, ρ) is a CAT(0) space and hence
it is a CAT(κ) space for all κ > 0. Notice also that it is R−convex for R = 2. Since K

is bounded, we can choose ε ∈ (0, π/2) and κ > 0 such that diam(K) ≤ π/2− ε√
κ

. The

conclusion follows from Theorem 2.2. �
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ABSTRACT
In this paper, we introduce the class of diametrically regular
mappings and prove that it includes the class of multi-valued
mappings having endpoints. We also prove the existence of
endpoints and the convergence of an iterative process for
mappings of this class. Our approach provides a new idea of
proving Browder’s theorem without the endpoint condition.
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1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space ðH, h�, �iÞ
and q be the metric induced by h�, �i: Let g : C ! C be a single-valued non-
expansive mapping and FðgÞ :¼ fx 2 C : gðxÞ ¼ xg: Fix u 2 C: Consider
the following convex optimization problem:

minqðu, vÞ subject to v 2 FðgÞ: (1)

One of the fundamental and celebrated results for finding the solution of
(1) was given by Browder [1] in 1967.

Theorem 1.1. Let C be a nonempty bounded closed convex subset of a real
Hilbert space and g : C ! C be a nonexpansive mapping. Fix u 2 C: For
each t 2 ð0, 1Þ, let xt be defined by

xt :¼ ð1�tÞu� tgðxtÞ:

Then fxtg converges strongly as t ! 1 to the unique solution of (1).
If T : C ! KðCÞ is a multi-valued nonexpansive mapping, then the map-

ping G : C ! KðCÞ defined by GðxÞ :¼ ð1�tÞu� tTðxÞ is a multi-valued
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contractive mapping. By Nadler’s theorem [2], for each t 2 ð0, 1Þ there
exists xt in C such that

xt 2 GðxtÞ ¼ ð1�tÞu� tTðxtÞ: (2)

Browder’s theorem has many useful applications in mathematical science, for
instance, in fixed point theory and optimization theory. A natural question
arises whether Browder’s theorem can be extended to multi-valued nonexpan-
sive mappings. The first result regarding this question was proved by Pietramala
[3] in 1991. He gave the strong convergence of fxtg defined by (2) under the
endpoint condition. Since then the strong convergence of fxtg in various classes
of spaces has been developed and many papers have appeared, see e.g., [4–10].
However, all those results require the endpoint condition which is a strong one.
In particular, Dhompongsa et al. [4] proved the following theorem.

Theorem 1.2. Let C be a nonempty closed convex subset of a Hadamard
space X and T : C ! KðCÞ be a nonexpansive mapping satisfying the end-
point condition. Fix u 2 C and let fxtg be defined by (2). Then T has an
endpoint if and only if fxtg is bounded as t ! 1: In this case, fxtg converges
strongly to the unique endpoint of T which is nearest u.

It was quickly noted by Dhompongsa et al. [11] that the endpoint condi-
tion in Theorem 1.2 can be omitted if the space X is restricted to a com-
plete R�tree. Unfortunately, the class of R�trees does not include real
Hilbert spaces. Therefore, there is no any result in real Hilbert spaces
which extends Browder’s theorem to multi-valued nonexpansive mappings
without the endpoint condition.
In this paper, we introduce the concept of diametrically regular map-

pings and prove that it is more general than the concept of endpoint con-
dition for multi-valued nonexpansive mappings in Hadamard spaces. We
also prove the existence of endpoints for diametrically regular mappings
and show that if the net fxtg defined by (2) is diametrically regular for T,
then fxtg converges strongly to the unique endpoint of T which is nearest
u. This method provides a new idea of proving Browder’s theorem without
the endpoint condition.

2. Preliminaries

Throughout this paper, N stands for the set of natural numbers and R

stands for the set of real numbers. Let ðX, qÞ be a metric space and x, y 2 X:
A geodesic joining x to y is a mapping / from a closed interval ½0, L� to X
such that /ð0Þ ¼ x,/ðLÞ ¼ y, and qð/ðsÞ,/ðtÞÞ ¼ js�tj for all s, t 2 ½0, L�:
The image of / is called a geodesic segment joining x and y which when
unique is denoted by ½x, y�: The space ðX, qÞ is said to be a geodesic space if
every two points in X are joined by a geodesic, and X is said to be uniquely
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geodesic if for each x and y in X there is exactly one geodesic joining them.
A subset C of X is said to be convex if every pair of points x, y in C can be
joined by a geodesic in X and the image of every such geodesic is contained
in C. A geodesic space ðX, qÞ is said to be a Hadamard space if X is a com-
plete metric space and for each x, y, z 2 X, one has

q2ðx,mÞ � 1
2
q2ðx, yÞ þ 1

2
q2ðx, zÞ� 1

4
q2ðy, zÞ,

where m is the midpoint of ½y, z�: For other equivalent definitions and basic
properties of Hadamard spaces, we refer the reader to standard texts such
as [12, 13]. It is well-known that every Hadamard space is uniquely geo-
desic. Notice also that Pre-Hilbert spaces, R�trees, Euclidean buildings are
examples of Hadamard spaces, see [12, 14].
Let C be a nonempty closed convex subset of a Hadamard space ðX, qÞ:

It follows from Proposition 2.4 of [12] that for each x in X, there exists a
unique point x0 in C such that

qðx, x0Þ ¼ distðx,CÞ :¼ inffqðx, cÞ : c 2 Cg:
In this case, x0 is called the unique nearest point of x in C. By Lemma 2.1
of [15], for each x, y 2 X and t 2 ½0, 1�, there exists a unique point z in
½x, y� such that

qðx, zÞ ¼ tqðx, yÞ and qðy, zÞ ¼ ð1�tÞqðx, yÞ: (3)

We denote by ð1�tÞx� ty the unique point z satisfying (3). The following
lemma can be found in [15].

Lemma 2.1. Let ðX, qÞ be a Hadamard space, x, y, z 2 X and t 2 ½0, 1�. Then
the following inequalities hold:

(i) qðð1�tÞx� ty, zÞ � ð1�tÞqðx, zÞ þ tqðy, zÞ;
(ii) q2ðð1�tÞx� ty, zÞ � ð1�tÞq2ðx, zÞ þ tq2ðy, zÞ�tð1�tÞq2ðx, yÞ:
Let C be a nonempty subset of a Hadamard space ðX, qÞ and x 2 X: The

radius of C relative to x is defined by

Rðx,CÞ :¼ supfqðx, yÞ : y 2 Cg:
The diameter of C is defined by

diamðCÞ :¼ supfqðx, yÞ : x, y 2 Cg:
The set C is called bounded if diamðCÞ<1: It is denoted by KðCÞ : the
family of nonempty compact subsets of C. The Pompeiu-Hausdorff distance
on KðCÞ is given by

HðA,BÞ :¼ max

�
sup
a2A

distða,BÞ, sup
b2B

distðb,AÞ
�

for all A,B 2 KðCÞ:
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A multi-valued mapping T : C ! KðXÞ is said to be contractive if there
exists a constant k 2 ½0, 1Þ such that

HðTðxÞ,TðyÞÞ � k qðx, yÞ for all x, y 2 C: (4)

If (4) is valid when k ¼ 1, then T is said to be nonexpansive. The mapping
T is called a single-valued mapping if T(x) is a singleton for every x in C.
An element x in C is called a fixed point of T if x 2 TðxÞ: Moreover, if
fxg ¼ TðxÞ, then x is called an endpoint of T. It is denoted by FðTÞ : the
set of all fixed points of T and by EðTÞ : the set of all endpoints of T. The
existence of endpoints for multi-valued nonexpansive mappings was
studied by many researchers, see e.g., [16–19]. Notice also that if C is a
nonempty closed convex subset of a Hadamard space and T : C ! KðXÞ is
a nonexpansive mapping, then E(T) is a closed convex subset of C,
see [18].
A multi-valued mapping T : C ! KðXÞ is said to be diametrically regular

if there exists a net fxag in C such that lima diamðTðxaÞÞ ¼ 0: In this case,
we call fxag a diametrically regular net for T. The mapping T is said to sat-
isfy the endpoint condition if FðTÞ ¼ EðTÞ: Obviously, if T has an endpoint
then T is diametrically regular.
The following result shows that the diametric regularity of a nonexpan-

sive mapping T is weaker than the endpoint condition.

Proposition 2.2. Let C be a nonempty closed convex subset of a Hadamard
space X, u 2 C, and T : C ! KðCÞ be a nonexpansive mapping with
FðTÞ 6¼ ;. Then the following statement holds:
(�) if T satisfies the endpoint condition, then T has a diametrically regular
net fxtg in C such that xt 2 ð1�tÞu� tTðxtÞ for all t 2 ð0, 1Þ:

Proof. Let fxtg be defined by (2) and let ~x be the unique nearest point of u
in EðTÞ: By Theorem 1.2, limt!1 xt ¼ ~x: For v,w 2 TðxtÞ we have

qðv,wÞ � qðv, ~xÞ þ qð~x,wÞ
� distðv,Tð~xÞÞ þ distðw,Tð~xÞÞ
� 2HðTðxtÞ,Tð~xÞÞ
� 2qðxt, ~xÞ:

This implies that limt!1 diamðTðxtÞÞ ¼ 0 and hence fxtg is diametrically
regular for T. �

The endpoint condition in Proposition 2.2 is necessary as shown in the
following example. Notice also that the converse of (�) does not hold, see
Example 3.7.
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Example 2.3. Let C ¼ ½0, 1� and T : C ! KðCÞ be defined by

TðxÞ :¼ 0, 1½ � for all x 2 C:

Then T is a nonexpansive mapping with FðTÞ ¼ ½0, 1� and EðTÞ ¼ ;: Since
diamðTðxÞÞ ¼ 1 for all x 2 C, there is no a net fxtg in C which is diamet-
rically regular for T.
Let fxng be a bounded sequence in a Hadamard space ðX, qÞ: The

asymptotic radius rðfxngÞ of fxng is defined by

rðfxngÞ :¼ infflimsup
n!1

qðxn, xÞ : x 2 Xg:

The asymptotic center AðfxngÞ of fxng is the set

AðfxngÞ :¼ fx 2 X : limsup
n!1

qðxn, xÞ ¼ rðfxngÞg:

It is known from Proposition 7 of [20] that in a Hadamard space,
AðfxngÞ consists of exactly one point. A sequence fxng in X is said to D�
converge to x 2 X if AðfxnkgÞ ¼ fxg for every subsequence fxnkg of fxng:
In this case, we write D� limn!1 xn ¼ x or xn!D x and call x the D�limit
of fxng: Now, we collect some basic properties of D�convergence.

Lemma 2.4. Let C be a nonempty closed convex subset of a Hadamard space
X and T : C ! KðCÞ be a nonexpansive mapping. Then the following state-
ments hold:

(i) [21, Page 3690] Every bounded sequence in X always has a
D�convergent subsequence.

(ii) [18, Lemma 4.6] If fxng is a sequence in C and x 2 X, then the conditions
xn!D x, distðxn,TðxnÞÞ ! 0, and diamðTðxnÞÞ ! 0 imply x 2 EðTÞ:

Let ðX, qÞ be a metric space. We denote a pair ða, bÞ 2 X � X by ab
�!

and call it a vector. The quasi-linearization is a mapping h�, �i from ðX �
XÞ � ðX � XÞ to R defined by

h ab�!, cd
!i :¼ 1

2
½q2ða, dÞ þ q2ðb, cÞ � q2ða, cÞ � q2ðb, dÞ� for all a, b, c, d 2 X:

It is easy to see that h ab�!, cd
!i ¼ hcd!, ab

�!i, h ab�!, cd
!i ¼ �h ba�!, cd

!i, and
h ax�!, cd

!i þ h xb�!, cd
!i ¼ h ab�!, cd

!i for all a, b, c, d, x 2 X: We say that ðX, qÞ
satisfies the Cauchy-Schwarz inequality if

jh ab�!, cd
!ij � qða, bÞqðc, dÞ for all a, b, c, d 2 X:

It is known from Corollary 3 of [22] that every Hadamard space satisfies
the Cauchy-Schwarz inequality. Some other properties of quasi-linearization
are included as the following lemma.
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Lemma 2.5. Let ðX, qÞ be a Hadamard space. Then the following state-
ments hold:

(i) [23, Theorem 3.1] Let C be a nonempty closed convex subset of X, u 2
X and x 2 C: Then x is the unique nearest point of u in C if and only
if h xu�!, vx!i � 0 for all v 2 C:

(ii) [24, Lemma 2.10] Let p, q 2 X: For each t 2 ½0, 1�, we set ut ¼
ð1�tÞp� tq: Then, for x 2 X, we have

hutx�!, utx
�!i � ð1�tÞh px�!, utx

�!i þ th qx�!, utx
�!i:

(iii) [25, Theorem 2.6] A sequence fxng in X D�converges to x in X if and
only if limsupn!1hxnx�!, ux�!i � 0 for all u 2 X:

3. Main results

This section is begun by proving the existence of endpoints for diametric-
ally regular mappings. For this we will make use of the following facts.

Lemma 3.1. [18, Theorem 4.7] Let C be a nonempty bounded closed convex
subset of a Hadamard space ðX, qÞ and T : C ! KðXÞ be a nonexpansive
mapping. Then T has an endpoint if and only if inffRðx,TðxÞÞ : x 2 Cg ¼ 0:

Lemma 3.2. [18, Proposition 2.4] Let C be a nonempty subset of a
Hadamard space ðX, qÞ, fxag be a net in C and T : C ! KðXÞ be a map-
ping. Then lima Rðxa,TðxaÞÞ ¼ 0 if and only if lima distðxa,TðxaÞÞ ¼ 0
and lima diamðTðxaÞÞ ¼ 0:

As an immediate consequence of Lemmas 3.1 and 3.2, we can obtain the
following theorem.

Theorem 3.3. Let C be a nonempty bounded closed convex subset of a
Hadamard space ðX, qÞ and T : C ! KðXÞ be a nonexpansive mapping
which is diametrically regular with a diametrically regular net fxag. Suppose
that lima distðxa,TðxaÞÞ ¼ 0: Then T has an endpoint in C.

The following example shows that the condition lima distðxa,TðxaÞÞ ¼ 0
in Theorem 3.3 cannot be omitted.

Example 3.4. [18] Let X ¼ R, C ¼ ½0, 1� and T : C ! KðXÞ be defined by

TðxÞ ¼ 0, 1�x½ � for all x 2 C:

Then T is a nonexpansive mapping with limx!1 diamðTðxÞÞ ¼ 0:
However,

lim
x!1

distðx,TðxÞÞ ¼ 1:
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Notice also that T does not have an endpoint in C.
Now we prove the main theorem.

Theorem 3.5. Let C be a nonempty closed convex subset of a Hadamard
space ðX, qÞ and T : C ! KðCÞ be a nonexpansive mapping. Fix u 2 C and
let fxtg be defined by (2). Suppose that fxtg is diametrically regular for T.
Then T has an endpoint if and only if fxtg is bounded as t ! 1: In this
case, fxtg converges strongly to the unique point ~x in E(T) such that

qðu, ~xÞ ¼ minfqðu, eÞ : e 2 EðTÞg:

Proof. Let e 2 EðTÞ: From (2), for each t 2 ð0, 1Þ there exists yt 2 TðxtÞ
such that xt ¼ ð1�tÞu� tyt: Since T is nonexpansive,

qðyt, eÞ ¼ distðyt,TðeÞÞ � HðTðxtÞ,TðeÞÞ � qðxt, eÞ:
By Lemma 2.1 (i), we have

qðxt, eÞ � ð1�tÞqðu, eÞ þ tqðyt, eÞ � ð1�tÞqðu, eÞ þ tqðxt, eÞ:
Thus qðxt, eÞ � qðu, eÞ: Therefore, fxtg is bounded. Conversely, suppose that
fxtg is bounded. Let a sequence ftng in (0, 1) converging to 1 and put xn :¼
xtn : For each n 2 N, let yn 2 TðxnÞ be such that xn ¼ ð1�tnÞu� tnyn: Then

distðxn,TðxnÞÞ � qðxn, ynÞ ¼ ð1�tnÞqðu, ynÞ ! 0 as n ! 1:

By Lemma 2.4, there exists a subsequence fxnkg of fxng and a point ~x in
E(T) such that D� limk!1 xnk ¼ ~x: This implies that EðTÞ 6¼ ;: Let z be
the unique nearest point of u in EðTÞ: We will show that limt!1 xt ¼ z: Let
fxng be as above. It suffices to show that there exists a subsequence of
fxng which converges strongly to z. Let fxnkg and ~x be as above. Then
D� limk!1 xnk ¼ ~x and ~x 2 EðTÞ: By Lemma 2.5 (ii), we have

q2ðxnk , ~xÞ ¼ hxnk~x
��!

, xnk~x
��!i

� ð1�tnkÞh u~x
�!

, xnk~x
��!i þ tnkhynk~x

��!
, xnk~x
��!i

� ð1�tnkÞh u~x
�!

, xnk~x
��!i þ tnkqðynk , ~xÞqðxnk , ~xÞ

� ð1�tnkÞh u~x
�!

, xnk~x
��!i þ tnkHðTðxnkÞ,Tð~xÞÞqðxnk , ~xÞ

� ð1�tnkÞh u~x
�!

, xnk~x
��!i þ tnkq

2ðxnk , ~xÞ,
which yields

q2ðxnk , ~xÞ � h u~x�!, xnk~x
��!i: (5)

Since D� limk!1 xnk ¼ ~x, by Lemma 2.5 (iii), we have

limsup
k!1

h u~x�!, xnk~x
��!i � 0:
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This, together with (5), implies that fxnkg converges strongly to ~x: Next,
we show that ~x ¼ z: By Lemma 2.1 (ii), for each p 2 EðTÞ we have

q2ðxnk , pÞ � ð1�tnkÞq2ðu, pÞ þ tnkq
2ðynk , pÞ�tnkð1�tnkÞq2ðu, ynkÞ

� ð1�tnkÞq2ðu, pÞ þ tnkH2ðTðxnkÞ,TðpÞÞ�tnkð1�tnkÞq2ðu, ynkÞ
� ð1�tnkÞq2ðu, pÞ þ tnkq

2ðxnk , pÞ�tnkð1�tnkÞq2ðu, ynkÞ:
This implies that

q2ðxnk , pÞ � q2ðu, pÞ�tnkq
2ðu, ynkÞ:

Taking k ! 1, we get that q2ð~x, pÞ � q2ðu, pÞ�q2ðu, ~xÞ: Thus
0 � 1

2
½q2ð~x, ~xÞ þ q2ðu, pÞ � q2ð~x, pÞ � q2ðu, ~xÞ� ¼ h ~xu�!, p~x

�!i, for all p 2 EðTÞ:

By Lemma 2.5 (i), ~x ¼ z and hence the proof is complete. �

As an immediate consequence of Theorem 3.5, we obtain the follow-
ing corollary.

Corollary 3.6. Let C be a nonempty closed convex subset of a real Hilbert
space and T : C ! KðCÞ be a nonexpansive mapping. Fix u 2 C and let
fxtg be defined by (2). Suppose that fxtg is diametrically regular for T.
Then T has an endpoint if and only if fxtg is bounded as t ! 1: In this
case, fxtg converges strongly to the unique point ~x in E(T) such that

qðu, ~xÞ ¼ minfqðu, eÞ : e 2 EðTÞg:
The following example shows that the diametric regularity of fxtg in

Theorem 3.5 is necessary.

Example 3.7. [3, 26] Let X be the Euclidean space R
2 and C ¼ ½0, 1� �

½0, 1�: Let T : C ! KðCÞ be defined by

Tða, bÞ :¼ the closed convex hull of fð0, 0Þ, ða, 0Þ, ð0, bÞg:
Then T is a nonexpansive mapping with FðTÞ ¼ fða, bÞ 2 C : ab ¼ 0g and
EðTÞ ¼ fð0, 0Þg: Fix u 2 C: For each t 2 ð0, 1Þ, let xt ¼ ð1�tÞu: It is easy
to see that fxtg satisfies (2) and is diametrically regular for T. By Corollary
3.6, limt!1 xt ¼ ð0, 0Þ (see Table 1 for numerical experiments and Figure 1
for comparison of errors). However, in the case of u ¼ ð1, 0Þ, if we let zt 	
u then fztg satisfies (2) but is not diametrically regular for T.
Moreover, limt!1 zt ¼ u 6¼ ð0, 0Þ:

4. Numerical experiments and comparison of errors

Let X, C and T be as in Example 3.7. For each n 2 N, let tn :¼ 2n�1
2n and

xn :¼ xtn ¼ ð1�tnÞu, where u 2 C be fixed. We see that, in any case of u,
the sequence fxng converges to (0, 0) as n tends to 1:
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Figure 1. Comparison of errors.

Table 1. Numerical experiments.

n
u ¼ ð1, 0:4Þ

boundary case
u ¼ ð0:3, 0:5Þ
interior case

u ¼ ð0:6, 0:6Þ
diagonal case

u ¼ ð0, 1Þ
corner case

xn xn xn xn
1 (0.50000,0.20000) (0.15000,0.25000) (0.30000,0.30000) (0,0.50000)
2 (0.25000,0.10000) (0.07500,0.12500) (0.15000,0.15000) (0,0.25000)
3 (0.12500,0.05000) (0.03750,0.06250) (0.07500,0.07500) (0,0.12500)
4 (0.06250,0.02500) (0.01875,0.03125) (0.03750,0.03750) (0,0.06250)
5 (0.03125,0.01250) (0.00938,0.01563) (0.01875,0.01875) (0,0.03125)
6 (0.01563,0.00625) (0.00469,0.00781) (0.00938,0.00938) (0,0.01563)
7 (0.00781,0.00313) (0.00234,0.00391) (0.00469,0.00469) (0,0.00781)
8 (0.00391,0.00156) (0.00117,0.00195) (0.00234,0.00234) (0,0.00391)
9 (0.00195,0.00078) (0.00059,0.00098) (0.00117,0.00117) (0,0.00195)
10 (0.00098,0.00039) (0.00029,0.00049) (0.00059,0.00059) (0,0.00098)
11 (0.00049,0.00020) (0.00015,0.00024) (0.00029,0.00029) (0,0.00049)
12 (0.00024,0.00010) (0.00007,0.00012) (0.00015,0.00015) (0,0.00024)
13 (0.00012,0.00005) (0.00004,0.00006) (0.00007,0.00007) (0,0.00012)
14 (0.00006,0.00002) (0.00002,0.00003) (0.00004,0.00004) (0,0.00006)
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