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บทคัดย่อ
ในงานวิจัยนี้ เราได้ศึกษาในปัญหาค่าเหมาะหลายค่าสำหรับข้อจำกัดเชิงกรวยโดยไม่ใช้ความเป็นเซตคอนเวกซ์ของ
เซตที่เป็นไปได้ และ ความเป็นคอนเวกซ์ของฟังก์ชันจุดประสงค์รวมทั้งฟังก์ชันข้อจำกัดด้วย เราได้เริ่มต้นศึกษา
เงื่อนไขข้อบังคับจำกัดสำหรับปัญหาดังกล่าว พร้อมทั้งศึกษาเงื่อนไขค่าเหมาะสมที่เป็นเงื่อนไขที่จำเป็น และ เพียง
พอ (KKT) สำหรับผลเฉลยที่มีประสิทธิภาพสำหรับ weak Pareto minimum พร้อมทั้ง Pareto minimum

Abstract
This project deals with a class of differentiable multi­objective optimization problems (MOP) over
cone constraints without the convexity of the feasible set, and the cone­convexity of objectives
and constraint functions. We present constraint qualifications for these (MOP) problems and
establish the relationships between them. We also present necessary and sufficient the Karush­
Kuhn­Tucker (KKT) optimality conditions for weak Pareto minimum as well as Pareto minimum.
Our main results improve some recent ones in the literature.
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Chapter 1
Main Results

1.1 Some characterizations of robust solution sets for uncer­
tain convex optimization problems with locally Lipschitz
inequality constraints

The study of characterizations of solution sets has become an important research direction for
many mathematical programming problems. Based on understanding characterizations of solu­
tion sets, solution methods for solving mathematical programs that have multiple solutions can
be developed. The notion of characterizations of solution sets was first introduced and studied
by Mangasarian for a convex extrema problem with differentiable function [29]. Some useful
examples clarifying such characterizations of solution sets can be found in [7] for characterizing
the problems that have weak sharp minimum. This being a reason why several characterizations
of solution sets for some classes of constrained optimization problems have appeared in the
literature (see [6, 8, 13, 14, 19, 23, 32, 33, 36, 38, 39] and other references therein).

However, dealing with real­world optimization problems, the input data associated with the
objective function and the constraints of programs are uncertain due to prediction error or mea­
surement errors (see [1, 2, 3, 4]). Moreover, in many situations often we need to make decisions
now before we can know the true values or have better estimations of the parameters. Robust
optimization is one of the basic methodologies to protect the optimal solution that it is no longer
feasible after realization of actual values of parameters. This means that any feasible points must
satisfy all constraints including each set of constraints corresponding to a possible realization of
the uncertain parameters from the uncertainty sets. Precisely stated, let us first consider the
following optimization problem :

min
x∈Rn

{f(x) : gi(x) ≤ 0, i = 1, . . . ,m}, (P)

where f, gi : Rn → R, i = 1, . . . ,m, are functions. The problem (P) in the face of data
uncertainty both in the objective and constraints can be written by the following optimization
problems:

min
x∈Rn

{f(x, u) : gi(x, vi) ≤ 0, i = 1, . . . ,m}, (UP)
where f : Rn × Rq0 → R, and gi : Rn × Rqi → R, i = 1, . . . ,m, are functions, u and
vi are uncertain parameters and they belong to the specified nonempty convex and compact
uncertainty sets U ⊆ Rq0 and Vi ⊆ Rqi , respectively. The robust (worst case) counterpart of
(UP), by construction in [3], is obtained by solving the single problem:

min
x∈Rn

{max
u∈U

f(x, u) : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m}, (RP)

1
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where the objective and constraints are enforced for every possible value of the parameters
within their prescribed uncertainty sets U and Vi. The set of feasible solutions of problem (RP),

F := {x ∈ Rn : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m},

refer to robust feasible set of the problem (UP). The optimal solution to the problem (RP) is
known as a robust optimal solution of (UP). A successful treatment of the robust optimization
approaches for treating convex optimization programs with data uncertainty to derive charac­
terizations of robust optimal solution sets was given in [15, 27, 34, 35]. For issues related to
optimality conditions and duality properties, see [5, 11, 16, 17, 18, 25, 26] and other references
therein.

This paper is an attempt to investigate optimality conditions and to derive characterizations
of robust solution sets of (UP). Unlike various related works in the literature mentioned above,
in the present paper, appearing constraint functions are not convex necessarily while the robust
feasible set F is convex. In this way, we refer to convex problems without convex representation
in the sense that the constraint functions to represent the convex feasible set are non necessarily
convex. Optimality conditions and characterizations of convexity of feasible set for such problems
in the absent of data uncertainty can be found in [24] for differentiable case, and in [6, 14, 21]
for non­differentiable case.

To the best of our knowledge, completely characterizations of robust solutions for uncertain
scalar and multi­objective optimization problems over a robust convex feasible set described
by non necessarily convex functions within the framework of robust optimization approach are
not available in the literature. So, in this paper we examine a robust optimization framework
for studying characterizations of the robust optimal solution set for uncertain convex optimiza­
tion problems with a robust convex feasible set described by locally Lipschitz constraints. First,
complete optimality conditions for uncertain convex optimization problems are given. In order
to characterize the robust optimal solution set of a given problem, we introduce the so­called
pseudo­Lagrange function and then, we show that pseudo­Lagrange function is constant on the
robust optimal solution set. Afterwards, we then use this property to derive various characteri­
zations of the robust optimal solution set that these are expressed in terms of convex subdiffer­
entials, Clarke subdifferentials and Lagrange multipliers. Finally, the results are then applied to
derive characterizations of weakly robust efficient solution set and properly robust efficient solu­
tion set of uncertain convex multi­objective optimization problems without convexity assumption
on constraint functions.

We begin this section by fixing certain notations, definitions and preliminary results that will
be used throughout the paper. We denote by Rn the Euclidean space with dimension n whose
norm is denoted by ‖ · ‖ and 〈x, y〉 denotes the usual inner product between two vectors x, y
in Rn, that is, 〈x, y〉 = xTy. Let Rn

+ := {x := (x1, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, . . . , n} be
non­negative orthant of Rn. Note also that the interior non­negative orthant of Rn is denoted
by intRn

+ and is defined by intRn
+ := {x ∈ Rn : xi > 0, i = 1, . . . , n}. Given a set A ⊆ Rn,

we recall that a set A is convex whenever λx+ (1− λ)y ∈ A for all λ ∈ [0, 1], x, y ∈ A. A set
A is said to be a cone if λA ⊆ A for all λ ≥ 0. We denote the convex hull and the conical hull
generated by A, by convA and coneA, respectively. The normal cone at x to a closed convex
set A, denoted by N(A, x), is defined by

N(A, x) := {ξ ∈ Rn : 〈ξ, y − x〉 ≤ 0, ∀y ∈ A}.

A function f : Rn → R is said to be convex if for all λ ∈ [0, 1] and x, y ∈ Rn,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).
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It is a well known fact that a convex function need not be differentiable everywhere. However if
f : Rn → R is a convex function then the one­sided or rather right­sided directional derivative
always exists and is finite. The right­sided directional derivative of f at x ∈ Rn in the direction
d ∈ Rn is denoted by denoted by f ′(x; d), is defined as

f ′(x; d) := lim
t→0+

f(x+ td)− f(x)

t
.

It is important to note that for every fixed x the function f ′(x; .) is a positively homogeneous
convex function. The subdifferential of convex function f at x is defined as

∂f(x) := {ξ ∈ Rn : f(y) ≥ f(x) + 〈ξ, y − x〉, for all y ∈ Rn}.

We now recall the following useful result, which is a subdifferential max­function rule of convex
functions over a compact set, that will be used later in the paper.

Lemma 1. [15, Lemma 2.1] Let U ⊆ Rp be a convex compact set, and let f : Rn × Rq0 → R
be a function such that for each fixed u ∈ U , f(·, u) is a convex function on Rn and for each
fixed x ∈ Rn, f(x, ·) is a concave function on Rq0 . Then,

∂

(
max
u∈U

f(·, u)
)
(x̄) =

⋃
u∈U(x̄)

∂f(·, u)(x̄),

where U(x̄) := {ū ∈ U : f(x̄, ū) = maxu∈U f(x̄, u)}.
Definition 2. A function h : Rn → R is said to be locally Lipshitz at x ∈ Rn, if there exists a
positive scalar L and a neighborhood N of x such that, for all y, z ∈ N , one has

|h(y)− h(z)| ≤ L‖y − z‖.

Definition 3. [9] Let h : Rn → R be locally Lipshitz at a given point x ∈ Rn. The Clarke
generalized directional derivative of h at x in the direction d ∈ Rn, denoted ho(x; d), is defined
as

ho(x; d) := lim sup
y→x
t→0+

h(y + td)− h(y)

t
,

Definition 4. [9] Let h : Rn → R be locally Lipshitz at a given point x ∈ Rn. The Clarke
generalized subdifferential of h at x, denoted by ∂oh(x), is defined as

∂oh(x) := {ξ ∈ Rn : ho(x; d) ≥ 〈ξ, d〉 for all d ∈ Rn}.

From the definition of the Clarke generalized subdifferential, it follows that

ho(x; d) = max
ξ∈∂oh(x)

〈ξ, d〉, ∀d ∈ Rn.

Definition 5. Let h : Rn → R be locally Lipshitz at a given point x ∈ Rn. The function h is
said to be regular at x ∈ Rn if, for each d ∈ Rn, the directional derivative h′(x; d) exists and
coincides with ho(x; d).

For a given compact subset V of Rq and a given function g : Rn × Rq → R, the following
conditions will be considered in this paper.
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(C1) for every x ∈ Rn the function V 3 v 7−→ g(x, v) is upper semicontinuous;
(C2) g is locally Lipschitz in x, uniformly for v in V , that is, for each x ∈ Rn, there exist an open

neighborhood U of x and a constant L > 0 such that for all y and z in U , and v ∈ V ,
one has

|g(y, v)− g(z, v)| ≤ L‖y − z‖;

(C3) for each (x, v) ∈ Rn × V , the function g(·, v) is regular at x, that is,
gox(x, v; ·) = g′x(x, v; ·)

(the derivatives being with respect to x);
(C4) set­valued map Rn × V 3 (x, v) 7−→ ∂og(·, v)(x) is upper semicontinuous where

∂og(·, v)(x) denotes the Clarke subdifferential of g with respect to x.
Remark 6. In a suitable setting, if the function g is convex in x and continuous in v, the conditions
(C2), (C3), and (C4) are then automatically satisfied. These conditions also hold whenever the
derivative ∇xg(x, v) with respect to x exists and is continuous in (x, v).
Remark 7. [25] Under the conditions (C1) and (C2) the function ψ : Rn → R,

ψ(x) := max{g(x, v) : v ∈ V},

is defined and finite. Further, ψ is locally Lipschitz on Rn, and hence for each x ∈ Rn the set
V(x) defined as

V(x) := {v ∈ V : g(x, v) = ψ(x)},
is a nonempty closed subset of Rq .

We conclude this section by the following lemmas which will be useful in our later analysis.
Lemma 8. [9] Let the function ψ be defined in Remark 7. Suppose that the conditions (C1) ­
(C4) are fulfilled. Then the usual one­sided directional derivative ψ′(x; d) exists, and satisfies
the following : for each x, d ∈ Rn,

ψ′(x; d) = ψo(x; d) = max{gox(x, v; d) : v ∈ V(x)}
= max{〈ξ, d〉 : ξ ∈ ∂og(·, v)(x), v ∈ V(x)}.

Lemma 9. [26] For a given compact convex subset V of Rq and a given function g : Rn×Rq →
R, suppose that the basic conditions (C1) ­ (C4) are fulfilled. Further, suppose that g(x, ·) is
concave on V , for each x ∈ Rn. Then

∂oψ(x) = {ξ ∈ Rn : ∃v ∈ V(x) such that ξ ∈ ∂og(·, v)(x)}.

In this section, we give a multiplier characterization for the robust optimal solution of (UP),
which will play an important role in deriving characterizations of the robust optimal solution
sets in the next section. Let us recall the following robust (worst case) counterpart optimization
problem of (UP) :

min
x∈Rn

{max
u∈U

f(x, u) : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m}, (RP)

where f : Rn × Rq0 → R, and gi : Rn × Rqi → R, i = 1, . . . ,m, are given functions and for
each i = 1, 2, . . . ,m, (u, vi) ∈ U×Vi ⊆ Rq0 ×Rqi , where U and Vi are the specified nonempty
convex and compact uncertainty sets. The robust feasible set of (UP) is defined by

F := {x ∈ Rn : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m}.



1.1. SOME CHARACTERIZATIONS OF ROBUST SOLUTION SETS 5

Assumption 10. Throughout this paper, we always assume that F 6= ∅, f : Rn × U → R is
a convex­concave in the sense that f(·, u) is a convex function for any u ∈ U , and f(x, ·) is
a concave function for any x ∈ Rn while gi(x, ·), i = 1, . . . ,m, are concave functions for any
x ∈ Rn. Further, let the functions gi, i = 1, . . . ,m, be satisfied the conditions (C1) and (C2).
Definition 11. We say that x̄ ∈ F is a robust optimal solution of (UP) if and only if x̄ is an optimal
solution of (RP).

By using Proposition 2.2 in [6], we can derive the following characterization of convexity for
robust feasible set of (UP) in terms of the Clarke directional derivative. Before doing so let us
denote, for each x ∈ F ,

I(x) :=

{
i ∈ {1, . . . ,m} : max

vi∈Vi

gi(x, vi) = 0

}
,

and for all i = 1, . . . ,m,

Vi(x) :=
{
v̄i ∈ Vi : gi(x, v̄i) = max

vi∈Vi

gi(x, vi)

}
.

Proposition 12. Let the system gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m, be satisfied the robust
Slater constraint qualification, that is, there exists x0 ∈ Rn such that

gi(x0, vi) < 0, for any vi ∈ Vi, i = 1, . . . ,m.

For each x ∈ F and i ∈ I(x), let the function gi be satisfied the conditions (C3), (C4), and
0 /∈ ∂ogi(·, vi)(x) whenever vi ∈ Vi(x). Then F is convex if and only if

F = {y ∈ Rn : goix(x, vi; y − x) ≤ 0, ∀x ∈ F, ∀i ∈ I(x), ∀vi ∈ Vi(x)}.

Proof. For each i = 1, . . . ,m, define a function ψi : Rn → R by

ψi(x) := max
vi∈Vi

gi(x, vi) for all x ∈ Rn.

Applying the conditions (C1) and (C2), we have, for each i = 1, . . . ,m, ψi is locally Lipschitz on
Rn. To achieve the result, we will use Proposition 2.2 in [6] and then we need to justify that for
any x ∈ F , ψi, i ∈ I(x), are regular in the sense of Clarke and 0 /∈ ∂oψi(x), and the system
ψi(x) ≤ 0, i = 1, . . . ,m, satisfies the Slater condition. The first and the second requirements
will follow from Lemma 38 and Lemma 21 that for any x ∈ F ,

ψ′
i(x; d) = ψoi (x; d) = max{goix(x, vi; d) : vi ∈ Vi(x)}, ∀i ∈ I(x), (1.1.1)

and for each i ∈ I(x)

0 ∈
⋂
vi∈Vi

gi(x,vi)=0

Rn\
(
∂ogi(·, vi)(x)

)
= Rn\

( ⋃
vi∈Vigi(x,vi)=ψi(x)

∂ogi(·, vi)(x)
)

= Rn\∂oψi(x).

Finally, the robust Slater constraint qualification leads us to the following strict inequality

ψi(x0) = max{gi(x0, vi) : vi ∈ Vi} < 0, ∀i = 1, . . . ,m,
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which means that the system x ∈ Rn, ψi(x) ≤ 0 (i = 1, . . . ,m) satisfies the Slater’s condition1.
Now applying [6, Proposition 2.2] and taking (1.1.1) into consideration, we obtain the desired
results.

Remark 13. It should be noted that in Proposition 12 without robust Slater constraint qualification
and 0 /∈ ∂ogi(·, vi)(x) whenever x ∈ F , i ∈ I(x), and vi ∈ Vi(x), we easily obtain that if F is
convex then

F ⊆ {y ∈ Rn : goix(x, vi; y − x) ≤ 0, ∀x ∈ F, ∀i ∈ I(x), ∀vi ∈ Vi(x)}.

Furthermore, for every x ∈ F one has

∂ogi(·, vi)(x) ⊆ N(F, x) whenever i ∈ I(x) and vi ∈ Vi(x).

In order to establish a multiplier characterization for the robust optimal solution of (UP), we
first recall a robust basic constraint qualification which was introduced in [5].

Definition 14. Let x ∈ F be a robust feasible solution of (UP). The robust basic constraint
qualification is satisfied at x if

N(F, x) =
⋃

λi≥0, vi∈Vi
λigi(x,vi)=0, i=1,...,m

m∑
i=1

λi∂
ogi(·, vi)(x).

Now the following theorem declares a result that the robust basic constraint qualification
defined in Definition 14 is a necessary and sufficient constraint qualification of a robust optimal
solution for the given problem, that is, the robust basic constraint qualification holds if and only
if the Lagrange multiplier conditions are satisfied for a robust optimal solution.

Theorem 15 (Characterizing the robust basic constraint qualification ). Suppose that for each
x ∈ F and i ∈ I(x), the function gi satisfies the conditions (C3) and (C4). Then, the following
statements are equivalent:

(i) the robust basic constraint qualification holds at x̄ ∈ F ;

(ii) for each real­valued convex­concave function f on Rn×U , the following statements are
equivalent:

(a) maxu∈U f(x, u) ≥ maxu∈U f(x̄, u) for all x ∈ F ,
(b) there exist ū ∈ U , λ̄i ≥ 0, and v̄i ∈ Vi, i = 1, . . . ,m such that

0 ∈ ∂f(·, ū)(x̄) +
m∑
i=1

λ̄i∂
ogi(·, v̄i)(x̄), λ̄igi(x̄, v̄i) = 0, ∀i = 1, . . . ,m, (1.1.2)

and
f(x̄, ū) = max

u∈U
f(x̄, u). (1.1.3)

1the system x ∈ Rn, gi(x) ≤ 0 (i = 1, . . . ,m) satisfies the Slater’s condition if there exists x0 ∈ Rn such
that gi(x0) < 0 for all i = 1, . . . ,m.
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Proof. [(i) ⇒ (ii)] Suppose that (i) holds. Let f be a real­valued convex­concave function on
Rn × U . Firstly, we assume that (a) holds. Then, x̄ is a solution of the following constrained
convex optimization problem:

Minimize max
u∈U

f(x, u) subject to x ∈ F,

which can be equivalently expressed as,

0 ∈ ∂(max
u∈U

f(·, u))(x̄) +N(F, x̄).

By (i), there are λ̄i ≥ 0, and v̄i ∈ Vi, i = 1, . . . ,m such that

0 ∈ ∂(max
u∈U

f(·, u))(x̄) +
m∑
i=1

λ̄i∂
ogi(·, v̄i)(x̄) and λ̄igi(x̄, v̄i) = 0, ∀i = 1, . . . ,m.

Then, it follows from Lemma 1 that there exists ū ∈ U such that (1.1.2) and (1.1.3) hold.
To prove sufficiency, assume that there exist ū ∈ U , λ̄i ≥ 0, and v̄i ∈ Vi, i = 1, . . . ,m

such that (1.1.2) and (1.1.3) hold. According to (1.1.2), we can find ξ ∈ ∂f(·, ū)(x̄) and ηi ∈
∂ogi(·, v̄i)(x̄), i = 1, . . . ,m, such that

ξ +
m∑
i=1

λ̄iηi = 0. (1.1.4)

It stems from ξ ∈ ∂f(·, ū)(x̄) and ηi ∈ ∂ogi(·, v̄i)(x̄), i = 1, . . . ,m, we get

f(x, ū)− f(x̄, ū) ≥ 〈ξ, x− x̄〉 (1.1.5)

and
goix(x̄, v̄i;x− x̄) ≥ 〈ηi, x− x̄〉 ∀i = 1, . . . ,m, (1.1.6)

for any x ∈ Rn. Multiplying each of inequalities in (1.4.5) by λ̄i and summing up the obtained
inequalities with (1.2.8), we obtain that, for all x ∈ Rn,

f(x, ū)− f(x̄, ū) +
m∑
i=1

λ̄ig
o
ix(x̄, v̄i;x− x̄) ≥ 〈ξ +

m∑
i=1

λ̄iηi, x− x̄〉.

Taking (1.4.1) into account together with the condition λ̄igi(x̄, v̄i) = 0, i = 1, . . . ,m, we deduce

f(x, ū)− f(x̄, ū) +
∑
i∈I(x̄)

λ̄ig
o
ix(x̄, v̄i;x− x̄) ≥ 0, ∀x ∈ Rn.

Note that for each i ∈ I(x̄) with gi(x̄, v̄i) 6= 0, λ̄i = 0. So, we consider in the case of
gi(x̄, v̄i) = 0 for i ∈ I(x̄), and hence v̄i ∈ Vi(x̄). By Remark 13, the last inequality becomes

f(x, ū)− f(x̄, ū) ≥ 0 for all x ∈ F.

Thus, together with maxu∈U f(x, u) ≥ f(x, ū) for all x ∈ Rn and (1.1.3), we obtain

max
u∈U

f(x, u)−max
u∈U

f(x̄, u) ≥ 0, ∀x ∈ F.

It means that x̄ is a robust optimal solution of problem (UP).
[(ii) ⇒ (i)] The proof is similar to the one in [35, Theorem 3.1], and so is omitted.
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In the uncertainty free case, we can easily obtain the following result, which was obtained
by Yamamoto and Kuroiwa in [23].
Corollary 16. [23, Theorem 3.2] Let x̄ ∈ F ′ := {x ∈ Rn : gi(x) ≤ 0, ∀i = 1, . . . ,m} be a
feasible solution, gi : Rn → R, i = 1, . . . ,m, be locally Lipschitz on Rn. Assume further that
for any x ∈ F ′ and any i = 1, . . . ,m such that gi(x) = 0, the function gi is regular, and F ′ is
convex. Then the following statement are equivalent:

(i) N(F ′, x̄) =
⋃

λi≥0
λigi(x̄)=0, i=1,...,m

∑m
i=1 λi∂

ogi(x̄);

(ii) for each real­valued function f on Rn, the following statements are equivalent:
(a) f(x) ≥ f(x̄) for all x ∈ F ′;
(b) there exist λ̄i ≥ 0, i = 1, . . . ,m such that

0 ∈ ∂f(x̄) +
m∑
i=1

λ̄i∂
ogi(x̄) and λ̄igi(x̄) = 0, ∀i = 1, . . . ,m.

Example 17. Let x := (x1, x2) ∈ R2, v1 := (v1,1, v1,2), v2 := (v2,1, v2,2), v3 := (v3,1, v3,2),
V1 := {(v1, v2) ∈ R2 : v21 + v22 ≤ 1}, V2 := [0, 1]× [1, 2], V3 := [2, 3]× [0, 1],

g1(x, v1) := v1,1x1 + v1,2x2 − x31 − 2,

g2(x, v2) = −v2,1x31 + v2,2max{−x2,−x32},
g3(x, v3) = v3,1x1 + v3,2x2,

F := {x ∈ R2 : g1(x, v1) ≤ 0, g2(x, v2) ≤ 0, g3(x, v3) ≤ 0, ∀vi ∈ Vi, i = 1, 2, 3}

and x̄ := (0, 0). Then F = {x ∈ R2 :
√
x21 + x22−x31− 2 ≤ 0, 2x1+x2 ≤ 0, −x1−x2 ≤ 0},

I(x̄) = {2, 3}, ∂og2(·, v2)(x̄) = {0} × [−v2,2, 0] and ∂og3(·, v3)(x̄) = {(v3,1, v3,2)}. It can be
observed that

N(F, x̄) = cone {(−1,−1), (2, 1)}
and ⋃

λi≥0, vi∈Vi
λigi(x̄,vi)=0, i=1,2,3

3∑
i=1

λi∂
ogi(·, vi)(x̄) = cone {(0,−1), (2, 1)} .

Hence, we have the condition (i) of Theorem 45 does not hold. Thus for some convex­concave
function f : R2×U → R, it is impossible to characterize a sufficient condition for robust optimal
solution for the following uncertain problem by using Theorem 45,

minimize f(x, u) subject to x ∈ R2, gi(x, vi) ≤ 0, i = 1, 2, 3.

Actually, let u := (u1, u2) be an uncertain parameter belong to uncertainty set U := {(u1, u2) ∈
R2 : u21 + u22 ≤ 1}, and f(x, u) := ex1 − u1x1 − u2x2. Selecting ū := (1, 0), v̄1 := (1, 0),
v̄2 := (1, 1), v̄3 := (2, 0), λ̄1 := 0, λ̄2 := 1 and λ̄3 := 1 we obtain λ̄igi(x̄, v̄i) = 0 for all
i = 1, 2, 3,

f(x̄, ū) = 1 = max
u∈U

f(x̄, u)

and

(0, 0) ∈ {(−2, 0)}+ {0} × [−1, 0] + {(2, 0)} = ∂f(·, ū)(x̄) +
3∑
i=1

λ̄i∂
ogi(·, v̄i)(x̄).
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However, by taking x := (−1
2
,
√
3
2
) ∈ F , maxu∈U f(x̄, u) = e1/2 − 1 < 1 = f(x̄, ū) =

maxu∈U f(x̄, u) which shows x̄ is not a minimizer of maxu∈U f(·, u) on F . □

In this section, we will establish some characterizations of robust optimal solution set in terms
of a given robust solution point of the given problem.

We begin by recalling the following constrained convex optimization problem in the face of
data uncertainty (UP):

min
x∈Rn

{f(x, u) : gi(x, vi) ≤ 0, i = 1, . . . ,m}, (UP)

where f : Rn×U → R is a convex­concave function, the functions gi, i ∈ I , satisfy the condition
(C1) and (C2), gi(x, ·) : Vi → R, i ∈ I , are concave functions for any x ∈ Rn, and the robust
feasible set F is convex. Assume that the robust solution set of the problem (UP), denoted by

S := {a ∈ F : max
u∈U

f(a, u) ≤ max
u∈U

f(x, u), ∀x ∈ F},

is nonempty. In what follows, for any given y ∈ Rn, λ := (λ1, . . . , λm) ∈ Rm
+ , u ∈ U , vi ∈ Vi,

i ∈ I and v := (v1, . . . , vm), we introduce the so­called pseudo Lagrangian­type function
LP (·, y, λ, u, v) by, for all x ∈ Rn,

LP (x, y, λ, u, v) := f(x, u) +
∑
i∈I(y)

λig
o
ix(y, vi;x− y).

Now, show that the pseudo Lagrangian­type function associated with a Lagrange multiplier vector
and uncertainty parameters according to a solution is constant on S.
Proposition 18. Assume all conditions of Theorem 45 hold. Let a ∈ S be a robust optimal
solution fulfilling the robust basic constraint qualification. Then there exist a Lagrange multiplier
vector λa := (λa1, . . . , λ

a
m) ∈ Rm

+ , and uncertainty parameters ua ∈ U , vai ∈ Vi, i ∈ I , such
that for any x ∈ S, λai goix(a, vai ;x − a) = 0, ∀i ∈ I(a), f(x, ua) = maxu∈U f(x, u), and
LP (·, a, λa, ua, va) is constant on S.
Proof. It follows from a ∈ S and Theorem 45 that there exist a Lagrange multiplier vector λa :=
(λa1, . . . , λ

a
m) ∈ Rm

+ , and uncertainty parameters ua ∈ U , vai ∈ Vi, i ∈ I , satisfying the conditions
(1.1.2) and (1.1.3). Then, it stems from the fact that ∂ogi(·, vai )(a) = ∂goix(a, v

a
i ; · − a)(a) for all

i ∈ I(a) and (1.1.2), we get

0 ∈ ∂f(·, ua)(a) +
∑
i∈I(a)

λai ∂g
o
ix(a, v

a
i ; · − a)(a) ⊆ ∂LP (·, a, λa, ua, va)(a),

which is noting else than

f(x, ua) +
∑
i∈I(a)

λai g
o
ix(a, v

a
i ;x− a) ≥ f(a, ua) = max

u∈U
f(a, u) for all x ∈ Rn. (1.1.7)

Notice that
max
u∈U

f(x, u) = max
u∈U

f(a, u), for any a ∈ S and x ∈ S, (1.1.8)

and taking this into account, (1.1.7) deduces∑i∈I(a) λ
a
i g
o
ix(a, v

a
i ;x−a) ≥ 0, for any x ∈ S. Let

us notice that for indices i ∈ I(a) such that λai > 0, we have gi(a, vai ) = 0, and consequently,
vai ∈ Vi(a). This in turn, by Remark 13, implies that

λai g
o
ix(a, v

a
i ;x− a) = 0, ∀i ∈ I(a). (1.1.9)
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Now, we prove that
f(x, ua) = max

u∈U
f(x, u), for any x ∈ S. (1.1.10)

In fact, by (1.1.7) and (1.4.9), we get the assertion

max
u∈U

f(x, u) ≥ f(x, ua) ≥ max
u∈U

f(a, u).

This together with (1.4.8), (1.1.10) holds. Therefore, for any x ∈ S, (1.1.3), (1.4.8), (1.4.9) and
(1.1.10) entail

LP (x, a, λa, ua, va) = f(x, ua) +
∑
i∈I(a)

λai g
o
ix(a, v

a
i ;x− a)

= f(x, a) = max
u∈U

f(x, u) = max
u∈U

f(a, u) = f(a, ua),

showing that LP (·, a, λa, ua, va) is constant on S, and this completes the proof.

Remark 19. It is worth noting that if gi(·, vi), i ∈ I , are convex functions for any vi ∈ Vi then,
for each i ∈ I , Proposition 18 gives

λai gi(x, v
a
i )− λai gi(a, v

a
i ) ≥ λai g

′
i(a, v

a
i ;x− a) = λai g

o
i (a, v

a
i ;x− a) = 0 for any x ∈ S.

This together with x ∈ F and λai gi(a, vai ) = 0, i ∈ I , arrives λai gi(x, vai ) = 0, i ∈ I . Further­
more, it yields

LP (x, a, λa, ua, va) = f(x, ua) +
∑
i∈I(a)

λai g
o
ix(a, v

a
i ;x− a)

= f(x, ua)

= f(x, ua) +
m∑
i=1

λai gi(x, v
a
i ), ∀x ∈ S.

This shows that pseudo Lagrangian­type function collapses to the well­known Lagran­gian­type
function on the robust solution set S.

In the sequel, we are now in a position to establish the characterizations of the robust solution
set for problem (UP) in terms of convex subdifferentials, Clarke subdifferentials and Lagrange
multipliers. But before doing so it will thus be convenient to denote the following :

Ĩ(a) := {i ∈ I(a) : λai > 0},
C(x) := {ξ ∈ ∂f(·, ua)(a) : 〈ξ, x− a〉 ≥ 0} for any given x ∈ F.

Theorem 1 (Characterizing the robust solution set). Assume all conditions of Theorem 45 hold.
Let a ∈ S be a robust optimal solution fulfilling the robust basic constraint qualification. Then
there exist a Lagrange multiplier vector λa := (λa1, . . . , λ

a
m) ∈ Rm

+ , and uncertainty parameters
ua ∈ U , vai ∈ Vi, i ∈ I , such that the robust solution set for the problem (UP) is characterized
by

S = S1 = S2 = S3 = S4 = S5 = S6 = S7,
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where
S1 := {x ∈ F : 〈ηi, x− a〉 = 0 for some ηi ∈ ∂ogi(·, vai )(a), ∀i ∈ Ĩ(a);

〈ζ, a− x〉 = 0 for some ζ ∈ ∂f(·, ua)(x) ∩ ∂f(·, ua)(a);
f(x, ua) = max

u∈U
f(x, u)},

S2 := {x ∈ F : 〈ηi, x− a〉 = 0 for some ηi ∈ ∂ogi(·, vai )(a), ∀i ∈ Ĩ(a);

〈ζ, a− x〉 ≥ 0 for some ζ ∈ ∂f(·, ua)(x) ∩ ∂f(·, ua)(a);
f(x, ua) = max

u∈U
f(x, u)},

S3 := {x ∈ F : 〈ηi, x− a〉 = 0 for some ηi ∈ ∂ogi(·, vai )(a), ∀i ∈ Ĩ(a);

〈ξ, x− a〉 = 〈ζ, a− x〉 = 0 for some ζ ∈ ∂f(·, ua)(x) and ξ ∈ C(x);

f(x, ua) = max
u∈U

f(x, u)},

S4 := {x ∈ F : 〈ηi, x− a〉 = 0 for some ηi ∈ ∂ogi(·, vai )(a), ∀i ∈ Ĩ(a);

〈ξ, x− a〉 = 〈ζ, a− x〉 for some ζ ∈ ∂f(·, ua)(x) and ξ ∈ C(x);

f(x, ua) = max
u∈U

f(x, u)},

S5 := {x ∈ F : 〈ηi, x− a〉 = 0 for some ηi ∈ ∂ogi(·, vai )(a), ∀i ∈ Ĩ(a);

〈ξ, x− a〉 ≤ 〈ζ, a− x〉 for some ζ ∈ ∂f(·, ua)(x) and ξ ∈ C(x);

f(x, ua) = max
u∈U

f(x, u)},

S6 := {x ∈ F : 〈ηi, x− a〉 = 0 for some ηi ∈ ∂ogi(·, vai )(a), ∀i ∈ Ĩ(a);

〈ζ, a− x〉 = 0 for some ζ ∈ ∂f(·, ua)(x);
f(x, ua) = max

u∈U
f(x, u)},

S7 := {x ∈ F : 〈ηi, x− a〉 = 0 for some ηi ∈ ∂ogi(·, vai )(a), ∀i ∈ Ĩ(a);

〈ζ, a− x〉 ≥ 0 for some ζ ∈ ∂f(·, ua)(x);
f(x, ua) = max

u∈U
f(x, u)}.

Proof. Evidently, the following containments hold:

S1 ⊆ S2 ⊆ S7,

S1 ⊆ S6 ⊆ S7,

S1 ⊆ S3 ⊆ S4 ⊆ S5 ⊆ S7.

Hence, we only have to show that S ⊆ S1 and S7 ⊆ S. In order to establish S ⊆ S1, let x ∈ S
be arbitrarily given. It follows from (1.1.2), we therefore obtain vectors ζ ∈ ∂f(·, ua)(a) and
ξi ∈ ∂ogi(·, vai )(a), i ∈ I(a), such that

ζ +
∑
i∈I(a)

λai ξi = 0 (1.1.11)

(since λai = 0 for i /∈ I(a)). According to ζ ∈ ∂f(·, ua)(a), ξi ∈ ∂ogi(·, vai )(a), i ∈ I(a), and
x, a ∈ S, one has

f(x, ua)− f(a, ua) ≥ 〈ζ, x− a〉 (1.1.12)
and

goix(a, v
a
i ;x− a) ≥ 〈ξi, x− a〉, ∀i ∈ I(a). (1.1.13)
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Once we have shown, in Proposition 18, that λai goix(a, vai ;x−a) = 0, ∀i ∈ I(a), after multiplying
both sides of (1.4.12) by λai , i ∈ I(a) we get

0 ≥ 〈λai ξi, x− a〉, ∀i ∈ Ĩ(a).

Summing up these inequalities and using (1.4.10) we obtain that

0 ≥
〈 ∑
i∈I(a)

λai ξi, x− a
〉
= 〈−ζ, x− a〉. (1.1.14)

Again, it follows from Proposition 18 that

f(x, ua) = max
u∈U

f(x, u), (1.1.15)

and for each i ∈ Ĩ(a), maxηi∈∂ogi(·,vai )(a)〈ηi, x− a〉 = goix(a, v
a
i ;x− a) = 0, the latter which in

turn leads to there exists ηi ∈ ∂ogi(·, vai )(a) such that

〈ηi, x− a〉 = 0.

On the one hand, taking (1.1.3) and (1.4.16) into account (1.4.11) we obtain

〈ζ, x− a〉 ≤ f(x, ua)− f(a, ua) = max
u∈U

f(x, u)−max
u∈U

f(a, u) = 0.

This together with (1.4.14) arrives at

〈ζ, x− a〉 = 0.

Now, we only need to prove that ζ ∈ ∂f(·, ua)(x). In fact, for any y ∈ Rn,

f(y, ua)− f(x, ua) = f(y, ua)− f(a, ua)

≥ 〈ζ, y − a〉
= 〈ζ, y − x〉+ 〈ζ, x− a〉 = 〈ζ, y − x〉,

which means ζ ∈ ∂f(·, ua)(x) and so, x ∈ S1. This proves S ⊆ S1.
To obtain S7 ⊆ S, we now let x be arbitrary point of S7. It follows that x ∈ F , and it is easy

to see that

max
u∈U

f(a, u)−max
u∈U

f(x, u) = f(a, ua)− f(x, ua) ≥ 〈ζ, a− x〉 ≥ 0.

The last inequality together with the fact that a ∈ S gives x ∈ S, and the proof is complete.
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1.2 Necessary and sufficient KKT optimality conditions in non­
convex multi­objective optimization problems with cone
constraints

Multi­objective (vector­valued) optimization is a subject of mathematical programming that ex­
tensively studied and applied in various decision­making contexts like economics, human decision
making, control engineering, transportation and many others. We refer the reader to [24, 18, 19].
For comprehensive treatment of theoretical issues concerning multi­objective optimization can
be found in [17, 13, 9, 2]. In the multi­objective setting, the scalar concept of optimality does
not apply directly due to the fact that all the objectives can not be simultaneously optimized
with a single solution. To this effect, we must decide which objective to improve, and so com­
promise solutions must be considered. In this way, we refer to a weak Pareto optimum (resp.
Pareto optimum [15]) which usually uses coordinate­wise ordering (induced by the positive or­
thant as ordering cone) to examine the objective vectors. However, in real­world multi­objective
problems concerning especially fractional programming even computational aspects of Pareto
optimum, not only the coordinate­wise ordering appears but also the cone defining the lexi­
cographic partial order is of practical interest [7]. This being a reason, study of multi­objective
optimization problems involving general ordering cones has gained attention. Precisely stated,
in this paper we will mainly focus on the problem of multi­objective optimization problem with
cone constraint:

K − Minimize f(x) (MOP)
subject to x ∈ Rn, −g(x) ∈ Q,

where f := (f1, . . . , fp)
T : Rn → Rp and g := (g1, . . . , gm)

T : Rn → Rm, are differentiable
functions,K andQ are closed convex cones with non­empty interiors inRp andRm, respectively.
Let

X := {x ∈ Rn : −g(x) ∈ Q} (1.2.1)



16 CHAPTER 1. CHAPTER 1 : MAIN RESULTS

be the set of all feasible solutions of (MOP). The notation “K − Minimize ”refers to the weak
Pareto (resp. Pareto optimum) with respect to the ordering cone K for the problem (MOP),
namely a point x∗ ∈ X such that for every x ∈ X , f(x∗) − f(x) /∈ intK (resp. f(x∗) − f(x) /∈
K\{0}).

Recall that a feasible point x∗ ∈ X is said to be a KKT point if there exist multipliers λ ∈
K∗\{0} and µ ∈ Q∗ such that the following Karush­Kuhn­Tucker (KKT) optimality conditions
hold:

(i) λT∇f(x∗) + µT∇g(x∗) = 0;

(ii) µT g(x∗) = 0,

when K∗, K∗ := {z ∈ Rp : xT z ≥ 0 for all x ∈ K}, denotes the dual (positive polar) cone
of K . In this paper, the above feasible point x∗ is also called a non­trivial KKT point if the
corresponding µ is a non­zero vector.

The search for weak Pareto (resp. Pareto optimum) to (MOP) has been carried out through
the study of the KKT optimality conditions provided that some constraint qualifications hold,
and of the convexity of the functions f and g. In the current work, with the introduction of
scalar convex optimization without convexity of constraint functions by Lasserre [12], Suneja
et al. [21] successfully obtained a new direction to the search for weak Pareto (resp. Pareto
optimum) of multi­objective convex optimization problem. The authors showed that even if the
convex feasible set is not necessarily described by cone­convex constraint, the Slater­type cone
constraint qualification2 and additionally a mild non­degeneracy conditions (see Assumption 1
in the next section) render the KKT optimality conditions both necessary and sufficient. For
non­smooth versions of Lasserre’s result, see [6, 14]. A more recent exhaustive treatment of
constraint qualifications can be found in [23, 5].

Recently, Ho [8] went further in the case of scalar differentiable problems but moreover
without the convexity of the feasible set and of the functions that are involved, and necessary and
sufficient KKT optimality conditions are then considered in relation to the presence of convexity
of the level sets of objective function. The aim of this brief paper is to extend the Ho’results to
the problem (MOP). And in order to do that, we are going to consider the feasible point x∗ under
the question in which satisfies the following property:

∀x ∈ X , ∃tn → 0+ such that x∗ + tn(x − x∗) ∈ X . (1.2.2)
Admittedly, some non­convex sets that satisfy the condition (1.4.1) will illustrate in Example 31
in Section 3. Further, we will see that the condition to impose on the cone constraints in this
paper suffers from of Ho’results in the point that the Slater’s condition3 is non­necessarily to
be assumed. Actually, in order to prove our results we need to assume only non­degeneracy
at a point x∗. The connections among non­degeneracy condition, Slater­type cone constraint
qualification, and Slater’s condition are investigated ones.

The rest of the paper is organized as follows. In Sect. ?? we recall some basic definitions and
points out important results that will be used later in the paper. Section ?? presents relation­
ships among constraint qualifications of multi­objective optimization problem (MOP) over cone
constraint (1.2.1) and establishes necessary and sufficient KKT optimality conditions for a feasi­
ble point under the question to be a weak Pareto minimum of (MOP). We finally give sufficient

2The feasible set X as in (1.2.1) is said to satisfy Slater­type cone constraint qualification [9] at x ∈ X if there
exists x̂ ∈ Rn such that g(x) +∇g(x)(x̂ − x) ∈ −intQ.

3The feasible setX as in (1.2.1) is said to satisfy Slater’s condition if there exists x̂ ∈ Rn such that−g(x̂) ∈ intQ.
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conditions for guaranteeing a weak Pareto minimum to be a Pareto minimum of the problem
(MOP).

In this section, we briefly overview some notations, basic definitions, and preliminary results
which will be used throughout the paper. All spaces under consideration are n­dimensional
Euclidean space Rn. All vectors are considered to be column vectors which can be transposed
to a row vector by the superscript T . A nonempty subsetK of Rp is said to be a cone if tK ⊆ K
for all t ≥ 0. For a set A in Rn, by intA (resp. coneA) we will denote the interior (resp. conical
hull) of the set A. We say A is convex whenever tx1+(1−t)x2 ∈ A for all t ∈ [0, 1], x1, x2 ∈ A.
The normal cone to a closed convex set A at x ∈ A, denoted by

N(A, x) := {u ∈ Rn : uT (y − x) ≤ 0, ∀y ∈ A}.

A set A ⊆ Rn is called strictly convex at x ∈ A if uT (y − x) < 0 for every y ∈ A\{x} and
u ∈ N(A, x)\{0}. It is worth noting that the strict convexity of A at some point x does not
guarantee the convexity of A. For instance, the set A := {(x1, x2)T ∈ R2 : x2 > 0}∪{(0, 0)T}
is strictly convex at (0, 0)T while A is not convex.

For a closed convex cone K ⊆ Rp, a vector valued function f := (f1, . . . , fp)
T : Rn → Rp

is said to be K­convex (K­pseudoconvex [1, 22]) at a point x∗ ∈ Rn if for every x ∈ Rn

f(x)− f(x∗)−∇f(x∗)(x − x∗) ∈ K

(resp. −∇f(x∗)(x−x∗) /∈ intK ⇒ f(x∗)−f(x) ∈ intK), where∇f(x∗) := (∇f1(x∗), . . . ,∇fp(x∗))T
is the p×n Jacobian matrix of f at x∗ and for each k = 1, 2, . . . , p,∇fk(x∗) =

(
∂fk(x∗)
∂x1

, ∂fk(x
∗)

∂x2
, . . . , ∂fk(x

∗)
∂xn

)T
is the n×1 gradient vector of fk at x∗. If f isK­convex (K­pseudoconvex) at every point x∗ ∈ Rn

then f is said to be K­convex (resp. K­pseudoconvex) on Rn.
Now, let us recall the following results which will be useful in the sequel.

Lemma 20. [9, Lemma 3.21, p. 77] Let K be a convex cone in Rp.
(i) If K is closed, then

K = {x ∈ Rp : xT z ≥ 0 for all z ∈ K∗}.

(ii) If intK 6= ∅, then

intK = {x ∈ Rp : xT z > 0 for all z ∈ K∗\{0}}.

Lemma 21. [20, Lemma 1] Consider the problem (MOP). If x∗ ∈ X is a weak Pareto minimum
of (MOP), then there exist λ ∈ K∗ and µ ∈ Q∗ not both zero such that(

λT∇f(x∗) + µT∇g(x∗)
)
(x − x∗) ≥ 0, ∀x ∈ Rn

and
µT g(x∗) = 0.

Now, we recall the following important result which can be found in [11] and will play a key
role in deriving a feasible point to be a weak Pareto minimum as well as a Pareto minimum of
(MOP).
Proposition 22. [11, Proposition 2.2.] Let f : Rn → R be differentiable at x∗ with ∇f(x∗) 6= 0.
Then:
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(i) N(L<f (x∗), x∗) = {d ∈ Rn : d = r∇f(x∗), for some r ≥ 0} provided that

L<f (x∗) := {x ∈ Rn : f(x) < f(x∗)}

is convex.
(ii) N(Lf (x∗), x∗) = {d ∈ Rn : d = r∇f(x∗), for some r ≥ 0} provided that

Lf (x∗) := {x ∈ Rn : f(x) ≤ f(x∗)}

is convex.
We conclude this section by the following useful lemma, which will be crucial in the sequel.

Lemma 23. Let X be as in (1.2.1). Assume that the condition (1.4.1) is satisfied at a feasible
point x∗ ∈ X . Then for every µ ∈ Q∗\{0} for which µT g(x∗) = 0, one has

µT∇g(x∗)(v − x∗) ≤ 0 for all v ∈ X .

Proof. Suppose on contrary that there exists v ∈ X such that (µT∇g(x∗))(v − x∗) > 0. Then,
by the first order approximation together with the condition (1.4.1), we can find some tn small
enough such that

µT g(x∗ + tn(v − x∗)) = µT g(x∗) + tnµ
T∇g(x∗)(v − x∗) + o(tn) > 0, (1.2.3)

where o(t)
t

→ 0 as t→ 0+, and x∗+tn(v−x∗) ∈ X . The latter means that−g(x∗+tn(v−x∗)) ∈
Q and consequently, µT g(x∗ + tn(v − x∗)) ≤ 0, which contradicts (1.2.3).

In this section, we present the constraint qualifications that are used to derive the KKT con­
ditions for (MOP) and their connections. Afterward, we will establish necessary and sufficient
KKT optimality conditions for a weak Pareto minimum of (MOP). In addition, we also establish
sufficient conditions for guaranteeing a weak Pareto minimum to be a Pareto minimum of the
problem (MOP).

At first, we recall one of constraint qualifications the so­called non­degeneracy condition at
some feasible point x∗ ∈ X in the vector setting, which introduced in [21].
Assumption 1 : (Non­degeneracy condition [21]) Consider (MOP), for every µ ∈ Q∗\{0},

µT∇g(x∗) 6= 0 whenever µT g(x∗) = 0.

Remark 24 (Sufficient condition for non­degeneracy condition to be valid). Note that if the Slater­
type cone constraint qualification at x∗ holds, then the non­degeneracy condition is satisfied at
x∗. Indeed, if there exists x̂ ∈ Rn such that g(x∗)+∇g(x∗)(x̂−x∗) ∈ −intQ, then for every µ ∈
Q∗\{0} for which µT g(x∗) = 0, one has µT∇g(x∗)(x̂−x∗) = µT g(x∗)+µT∇g(x∗)(x̂−x∗) < 0
which implies that µT∇g(x∗) 6= 0.

The following example shows that the Slater­type cone constraint qualification is not implied
by the non­degeneracy condition alone.
Example 25. Let x := (x1, x2)

T ∈ R2, Q := {x ∈ R2 : x1 ≥ 0, x2 ≥ 0} and g(x) :=
(x32 + x2 − x1, x1 − x2)

T . We see that g(−3,−2) = (−7,−1)T ∈ −intQ, that is, Slater’s
condition holds. Also, one has∇g(x) =

(
−1 3x22 + 1
1 −1

)
and a short calculation shows that the
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non­degeneracy holds at x∗ := (0, 0)T ∈ X , while the Slater­type cone constraint qualification
is invalid at x∗. In fact, we can not find out x̂ := (x̂1, x̂2)

T ∈ R2 such that(
−x̂1 + x̂2
x̂1 − x̂2

)
=

(
−1 1
1 −1

)(
x̂1
x̂2

)
= g(x∗) +∇g(x∗)(x̂ − x∗) ∈ −intQ.

□

Remark 26. The Slater’s condition can also be guaranteed by the Slater­type cone constraint
qualification at some point x∗ as well. To see this, it follows from the Slater­type cone constraint
qualification that ∇g(x∗)(x̂− x∗) ∈ −intQ− g(x∗) for some x̂ ∈ Rn. This together with the fact
that g(x∗ + t(x̂ − x∗))− g(x∗)

t
= ∇g(x∗)(x̂ − x∗) + o(t),

where o(t)
t

→ 0 as t→ 0+, for some t0 > 0 sufficiently small, it holds
g(x∗ + t0(x̂ − x∗)) ∈ (1− t0)g(x∗)− t0intQ ⊆ −intQ.

Hence, the Slater’s condition has been justified.
Now, we present some sufficient conditions for the Slater­type cone constraint qualification

to be valid.
Theorem 2. Let X be as in (1.2.1). Assume that the Slater’s condition holds and the condition
(1.4.1) is satisfied at a feasible point x∗ ∈ X . If the non­degeneracy condition holds at x∗, then
the Slater­type cone constraint qualification also holds at x∗.
Proof. Suppose that the non­degeneracy condition holds at x∗. Assume on contrary that for
every x ∈ Rn, one has g(x∗) +∇g(x∗)(x − x∗) /∈ −intQ, equivalently,

−[g(x∗) +∇g(x∗)(Rn − x∗)] ∩ intQ = ∅.

So, by the Eidelheit separation theorem, there exists µ ∈ Rm\{0} such that
µT g(x∗) + µT∇g(x∗)(x − x∗) + µTy ≥ 0, ∀x ∈ Rn, ∀y ∈ Q. (1.2.4)

By taking x = x∗ and y = 0 in (1.2.4), we would have µT g(x∗) = 0. Hence, with regard to (1.2.4)
with x = x∗, we get µ ∈ Q. Therefore, in view of (1.2.4), we find a vector µ ∈ Q∗\{0} with
µT g(x∗) = 0 such that

µ̂T∇g(x∗)(x − x∗) ≥ 0, ∀x ∈ Rn. (1.2.5)
On the other hand, by assumption, there exists x̂ ∈ Rn such that −g(x̂) ∈ intQ. Then, since g is
continuous at x̂, there exists r > 0 such that g(x̂+ru) ⊆ −Q for all u ∈: = {x ∈ Rn : ‖x‖ ≤ 1}.
Consequently, x̂+ ru ∈ X for all u ∈�. So, as x∗ ∈ X and x∗ satisfies the condition (1.4.1), we
conclude from Lemma 23 that

µT∇g(x∗)(x̂ + ru − x∗) ≤ 0, ∀u ∈ . (1.2.6)

In particular, put u = 0 ∈�, one has µT∇g(x∗)(x̂ − x∗) ≤ 0. Thus, with regard to (1.2.5),
µT∇g(x∗)(x̂ − x∗) = 0, and hence we deduce from (1.2.6) that

µT∇g(x∗)u ≤ 0, ∀u ∈ .

So, µT∇g(x∗) must ultimately be zero vector, which contradicts the validity of non­degeneracy
condition at x∗.
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Remark 27. In the absence of the condition (1.4.1) at x∗, the validity of both Slater and the
non­degeneracy conditions at x∗ does not guarantee the validity of Slater­type cone constraint
qualification at x∗. We note that, in Example 25, the condition (1.4.1) is invalid at x∗ = (0, 0)T .

Remark 28. In the case of Q = Rm
+ := {(x1, x2, . . . , xm)T ∈ Rm : xi ≥ 0, ∀i = 1, . . . ,m},

non­degeneracy conditions at x∗ can be view as the Mangasarian­Fromovitz constraint qualifi­
cation4 at x∗ and non­degeneracy conditions at x∗ in [12, 8] as well. Indeed,

∃v ∈ Rn such that ∇gi(x∗)T v < 0, ∀i ∈ I(x∗)
⇔0 /∈ cone{∇gi(x∗) : i ∈ I(x∗)}

⇔∀µ := (µ1, µ2, . . . , µm)
T ∈ Rm

+\{0} with µigi(x∗) = 0, i = 1, 2, . . . ,m, one has
m∑
i=1

µi∇gi(x∗) 6= 0,

and for each i ∈ {1, 2, . . . ,m}, by taking µ := ei, where ei is the unit vector in Rm with the ith
component is 1 and the others 0, one has ∇gi(x∗) 6= 0 whenever i ∈ I(x∗). Note that Slater­
type cone constraint qualification at x∗ also is equivalent to the Robinson constraint qualification5

at x∗ [4, Lemma 2.99, p. 69]. Then, as the considered set {x ∈ Rn, gi(x) ≤ 0, i = 1, 2, . . . ,m}
is not necessarily convex, one can notice that Theorem 2 extends [5, Theorem 2.1] to non­convex
setting on the set {x ∈ Rn, gi(x) ≤ 0, i = 1, 2, . . . ,m}.

Now, we are in the position to give necessary and sufficient KKT optimality conditions for a
weak Pareto minimum of (MOP).

Theorem 3. Consider the problem (MOP) and let both Assumption 1 and the condition (1.4.1)
be satisfied at a feasible point x∗.

(i) If x∗ is a weak Pareto minimum of (MOP) then x∗ is a KKT point.

(ii) Conversely, if x∗ is a non­trivial KKT point with multipliers λ and µ, and L<
λT f(x∗) is convex

then x∗ is a weak Pareto minimum of (MOP).

Proof. (i) Let x∗ ∈ X be a weak Pareto minimum of (MOP). By Lemma 21, there exist λ ∈ K∗

and µ ∈ Q∗ not both zero such that µT g(x∗) = 0 and(
λT∇f(x∗) + µT∇g(x∗)

)
(x − x∗) ≥ 0, ∀x ∈ Rn. (1.2.7)

As the inequality (1.2.7) holds for every x ∈ Rn, we conclude that

λT∇f(x∗) + µT∇g(x∗) = 0 and µT g(x∗) = 0.

Moreover, we assert that λ = 0. Otherwise, it follows in turn that µ 6= 0, which stands in
contradiction to Assumption 1, and therefore, λ 6= 0.

(ii) Let x∗ ∈ X be an arbitrary non­trivial KKT point, i.e.,

λT∇f(x∗) + µT∇g(x∗) = 0; µT g(x∗) = 0,

4The set {x ∈ Rn, gi(x) ≤ 0, i = 1, 2, . . . ,m} is said to satisfy the Mangasarian­Fromovitz constraint
qualification [4] at x∗ if there exsits v ∈ Rn such that ∇gi(x∗)T v < 0 for each i ∈ I(x∗) := {i ∈ {1, 2, . . . ,m} :
gi(x∗) = 0}.

5One says that the set {x ∈ Rn, gi(x) ≤ 0, i = 1, 2, . . . ,m} satisfies the Robinson constraint qualification
at x∗ if 0 ∈ int{g(x∗) +∇g(x∗)(Rn − x∗) + Rm

+} when g(x) := (g1(x), g2(x), . . . , gm(x))T .
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for some non­zero vectors λ ∈ Rp, µ ∈ Rm. This together with Assumption 1 implies that
λT∇f(x∗) must ultimately be non­zero vector. It can be seen that if the set L<

λT f(x∗) is empty,
then x∗ actually is a weak Pareto minimum of (MOP). In fact, if x∗ is not a weak Pareto minimum
of (MOP), there exists x ∈ X such that f(x∗) − f(x) ∈ intK . So, by the virtue of Lemma 38,
λT f(x∗) > λT f(x), which contradicts to the fact that L<

λT f(x∗) = ∅. Let us consider in the case
L<
λT f(x∗) 6= ∅. Applying Proposition 22(i) with f(x) := λT f(x), we obtain that

λT∇f(x∗)(u − x∗) ≤ 0, ∀u ∈ L<
λT f(x∗). (1.2.8)

Therefore, by Lemma 23,

λT∇f(x∗)(v − x∗) = −µT∇g(x∗)(v − x∗) ≥ 0, ∀v ∈ X . (1.2.9)

Note that,
{y ∈ Rn : f(x∗)− f(y) ∈ intK} ⊆ L<

λT f(x∗).
Thus, in order to obtain that x∗ is a weak Pareto minimum of (MOP), it suffices to show that
X ⊆ Rn\L<

λT f(x∗) or consequently, L<
λT f(x∗) ∩ X = ∅. Suppose, ad absurdum, L<

λT f(x∗) ∩
X 6= ∅. Thus, from (1.2.8) and (1.4.5) we get the assertion λT∇f(x∗)(w − x∗) = 0 for any
w ∈ L<

λT f(x∗) ∩ X . Furthermore, as the set L<
λT f(x∗) being open, for each d ∈ Rn we can find

t > 0 small enough such that w + td ∈ L<
λT f(x∗). Hence,

tλT∇f(x∗)d = λT∇f(x∗)(w + td − x∗)− λT∇f(x∗)(w − x∗) ≤ 0.

This means λT∇f(x∗) = 0, a contradiction. Thus, L<
λT f(x∗) ∩ X = ∅, and x∗ is a weak Pareto

minimum of (MOP) as desired.

We now demonstrate with the following an example to guarantee that Theorem 45 is indi­
cated to be conveniently applied in some cases where Theorem 3.1 and Theorem 3.2 of [21]
cannot be used even when the feasible set X is convex.

Example 29. Consider the following muti­objective optimization problem (MOP) over cones:

K− Minimize f(x) := (x+ 1, x3 − 5x2 + 8x− 3)T

subject to x ∈ X := {x ∈ R : −g(x) ∈ Q},

where g(x) := (x − 1, x2 − x − 1)T , K := {(x1, x2)T ∈ R2 : x1 ≥ 0, x2 ≥ 0} and
Q := {(x1, x2)T ∈ R2 : x1 ≤ 0, x2 ≤ x1}. A straightforward calculation shows that:

• X = [2,+∞),

• K∗ = K ,

• Q∗ = {(x1, x2)T ∈ R2 : x2 ≤ 0, x2 ≤ −x1},

• x∗ := 2 satisfies the non­trivial KKT conditions by taking λ := (2, 0)T and µ := (1,−1)T ,

• L<
λT f(x

∗) = (−∞, 2) is convex,

• It is easily to seen that Assumption 1 and the Condition 1.4.1 are satisfied.
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Applying Theorem 45 (ii), we can conclude that x∗ is a weak Pareto minimum of (MOP). However,
it can be checked that g is not Q­convex, i.e.

g(1)− g(2)−∇g(2)(1− 2) = (0, 1)T /∈ Q,

but the feasible set X is convex. Furthermore, the function f is notK­pseudoconvex at x∗ := 2,
because if we take x = 0 then

−∇f(x∗)(x− x∗) = (2, 0)T /∈ intK, but f(x∗)− f(x) = (2, 4)T ∈ intK.

Hence, the corresponding results [21] is not applicable. □

Note that the multiplier vector µ is assumed to be non­zero vector (the non­triviality of the
KKT conditions) in order to ensure that λT∇f(x∗) 6= 0 in Theorem 45(ii). The following example
demonstrates that this assumption cannot be dropped.

Example 30. Let f(x) := (x+ 1,−(x− 2)3)T , g(x) := (x2 − 1, 2x− 1)T , K := {(x1, x2)T ∈
R2 : x2 ≥ −x1, x1 ≥ 0} and Q := {(x1, x2)T ∈ R2 : x1 ≥ x2, x1 ≥ 0}. It is not hard to
check that X = [1, 2], x∗ := 2 is a KKT point with λ := (0,−1)T and µ := (0, 0)T , and all the
conditions in Theorem 45 (ii) are fullfilled. However x∗ is not even a weak Pareto minimum, i.e.,
if we take x := 3

2
then f(x∗)− f(x) = (3, 0)T − (5

2
, 1
8
)T = (1

2
,−1

8
)T ∈ intK . The main reason

is that x∗ is not a non­trivial KKT point. □

To appreciate Theorem 45 we present an example that is applicable while the aforemen­
tioned result in [21] is not.

Example 31. Consider the following multi­objective optimization problem (MOP) over cones :

K− Minimize f(x) := (x2 − 1,−x3 + 5x2 − 8x+ 5)T

subject to x ∈ X := {x ∈ R : −g(x) ∈ Q},

where g(x) := (x3 + x2 + x, x3 + 2x2 − 5x+ 8)T , K := {(x1, x2)T ∈ R2 : x1 ≥ 0, x2 ≤ x1}
and Q := {(x1, x2)T ∈ R2 : x1 ≤ 0, x2 ≤ x1}. Evidently, f, and g are not K , and Q­convex,
respectively. Indeed, f(1)−f(0)−∇f(0)(1−0) = (1, 4)T /∈ K, and g(1)−g(0)−∇g(0)(1−0) =
(2, 3)T /∈ Q. It is easy to verify that X = [0, 2] ∪ [4,+∞). Then we have already seen that the
feasible set X is not convex. Therefore, the results in [21] cannot be applicable. However, it is
not hard to verify that

• K∗ = {(x1, x2)T ∈ R2 : x2 ≤ 0, x2 ≥ −x1},

• Q∗ = {(x1, x2)T ∈ R2 : x2 ≤ 0, x2 ≤ −x1},

• x∗ := 0 satisfies the non­trivial KKT conditions by takingλ := (1,−1)T andµ := (−8, 0)T ,

• Assumption 1 and the condition 1.4.1 are satisfied,

• L<
λT f(x

∗) = (−∞, 0), which is convex.

Hence, Theorem 45 (ii) indicates that x∗ is a weak Pareto minimum of (MOP). □

Next, we will see now how the convexity of LλT f(x∗) together with the strict convexity of
LλT f(x∗) at a non­trivial KKT point x∗ possess x∗ to be a Pareto minimum of (MOP).
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Theorem 32. Consider the problem (MOP) and let both Assumption 1 and the condition (1.4.1) be
satisfied at a feasible point x∗. If x∗ is a non­trivial KKT point with multipliers λ and µ, LλT f(x∗)
is convex, and additionally LλT f(x∗) is strictly convex at x∗, then x∗ is a Pareto minimum of
(MOP).
Proof. In a similar manner of the second argument as the proof of Theorem 45, by the KKT
conditions and Proposition 22(ii), we arrive at the following assertion

λT∇f(x∗)(v − x∗) ≥ 0 ≥ λT∇f(x∗)(u − x∗), ∀v ∈ X ,∀u ∈ LλT f(x∗), (1.2.10)
and λT∇f(x∗) 6= 0. To establish the desired results, we argue first by using Lemma 38 that

{y ∈ Rn : f(x∗)− f(y) ∈ K\{0}} ⊆ LλT f(x∗)\{x∗}.
Thus, we only need to justify this containment

X ⊆ Rn\(LλT f(x∗)\{x∗})
We argue by contradiction that there exists some w ∈ X such that w 6= x∗ and w ∈ LλT f(x∗).
Taking (1.4.6) into account we actually have

λT∇f(x∗)(w − x∗) = 0.

Furthermore, as λT∇f(x∗) ∈ N(LλT f(x∗), x∗)\{0} (by the second inequality in (1.4.6)) and
LλT f(x∗) is strictly convex set, then λT∇f(x∗)(w− x∗) < 0. This is a contradiction, and thereby
implying that x∗ is a Pareto minimum of (MOP).
Remark 33. In Example 31 with λ := (1,−1)T , it is evident that LλT f(x

∗) is strictly convex at
x∗ := 0, by Theorem 50, and hence x∗ is a Pareto minimum of (MOP) (see the below figure).

f1

f2

f(x∗) 5

−1 3

(−K + f(x∗)) ∩ f(X ) = {f(x∗)}

f([0, 2])

−K

In Example 31, x∗ := 0 is a Pareto minimum of (MOP).

Remark 34. It should be noted that to obtain a Pareto minimum from a drawback (see [9, 21]
and other references therein), the multiplier vector λ in KKT conditions need to be taken from
the strict positive dual cone of K , Ks∗ , which defined as

Ks∗ := {z ∈ Rn : xT z > 0 for all x ∈ K\{0}}.

However, in this case study the multiplier vector λ is not necessarily to take from the strict
positive dual cone. In fact, as K defined in Example 31 and λ := (1,−1)T , Then elementary
calculations give us

Ks∗ = {(x1, x2)T ∈ R2 : x1 > 0, x2 > −x1}

and so, λ /∈ Ks∗ .
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Now we give an example showing that the strict convexity of LλT f(x
∗) with corresponding

multiplier λ is essential for x∗ under the question to be a Pareto minimum of (MOP) in Theorem
50.

Example 35. Let x := (x1, x2)
T ∈ R2, f(x) := (x21, x2−x1)T , g(x) := (−x31+3x1+x2, x1−x2)T

and K = Q := {x ∈ R2 : x1 ≤ 0, x2 ≥ 0}. It is easy to check that the feasible set X is not
convex and the condition (1.4.1) is valid at x∗ := (1, 1)T ∈ X . Then elementary calculations
give us

• K∗ = Q∗ = K ,

• g(x∗) = (3, 0)T , ∇g(x∗) =
(
0 1
1 −1

)
, f(x∗) = (1, 0)T , ∇f(x∗) =

(
2 0
−1 1

)
,

• x∗ satisfies Assumption 1 and the non­trivial KKT conditions by taking λ = µ := (0, 1)T ,

• L<
λT f(x∗) = {(x1, x2)T ∈ R2 : x2 < x1} and LλT f(x∗) = {(x1, x2)T ∈ R2 : x2 ≤ x1} are

convex sets.

By Theorem 45 (ii), we can conclude that x∗ is a weak Pareto minimum of (MOP). However, the
set LλT f(x∗) is not a strictly convex set at x∗, i.e., it is clear that N(LλT f(x∗), x∗) = {(−r, r)T ∈
R2 : r ≥ 0}. So, by taking u := (−1, 1)T ∈ N(LλT f(x∗), x∗)\{(0, 0)T} and y := (2, 2)T ∈
LλT f(x∗)\{(0, 0)T}, uT (y − x∗) = 0. Actually, a point x∗ is not even a Pareto minimum, i.e., if
we take x̄ := (−2,−2)T ∈ X , one has

f(x∗)− f(x̄) = (−3, 0)T ∈ K\{(0, 0)T}.

Remark 36. It is worth noting that the convexity of L<
λT f(x∗) (resp. LλT f(x∗)) in Theorem 45

(resp. in Theorem 50) can be viewed as a generalized quasiconvexity of f at x∗ due to the
notion of ∗­quasiconvexity [10] in the sense that for each λ ∈ K∗ the function λT f : Rn → R
is quasiconvex6. It is quite clear from the definition that ∗­quasi­convexity of f guarantees the
convexity of the level set L<

λT f(x∗) or of LλT f(x∗). In fact, the function f in Example 35 is not a
∗­quasiconvexity, i.e., by taking λ := (−1, 1)T ∈ K∗ and x := (1, 1)T , the sublevel set Lf (x)
is non­convex. For related conditions for cone quasiconvex mappings we refer the reader to
[13, 16, 3].
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1.3 Characterizing robust weak sharp solution sets of convex
optimization problems with uncertainty

The notion of a weak sharp minimizer in general mathematical programming problems was first
introduced in [1]. It is an extension of a sharp minimizer (or equivalently, strongly unique mini­
mizer) in [2] to include the possibility of non­unique solution set. It has been acknowledged that
the weak sharp minimizer plays important roles in stability/sensitivity analysis and convergence
analysis of a wide range of numerical algorithms in mathematical programming (see [3, 4, 5, 6, 7, 8]
and references therein).

In the context of optimization, much attention has been paid to concerning sufficient and/or
necessary conditions for weak sharp minimizers/solutions and characterizing weak sharp solution
sets (of such weak sharp minimizers) in various types of problems. Particularly, the study of
characterizations of the weak sharp solution sets covers both single­objective and multi­objective
optimization problems (see,[9, 10, 11, 12] and references therein) and, recently, is extended to
mathematical programs with inequality constraints and semi­infinite programs (see, e.g., [13, 14]).
As it might be seen, the study of characterizations of the weak sharp solution sets has been
popular in many optimization problems. How about the issue of this study, particularly,in a
robust optimization?

Robust (convex) optimization has been known as an important class of convex optimization
deals with uncertainty in the data of the problems [15, 16]. The goal of robust optimization is to
immunize an optimization problem against uncertain parameters in the problem. In the last two
decades, it has been through a rapid development owing to the practical requirement and its
effective implementation in real­world applications of optimization.(see, e.g., [17, 18, 19, 20, 21]
and the references therein). A successful treatment of the robust optimization approaches to
convex optimization problems under data uncertainty was given in ([15, 16, 22, 23, 24]).

While the characterizations of optimal solution sets have been in the limelight presently,
there has been no research concerning the characterizations robust weak sharp solution sets for
such problems. Indeed, a robust weak sharp solution of an uncertain optimization problem is
the weak sharp minimizer of the robust counterpart of such problem. Our main goal in this paper
is to establish characterizations of the robust weak sharp solution set of the convex optimization
problem under the data uncertainty.

This paper is organized as follows. In section 2, we recall the basic definitions. In Section 3,
we establish necessary conditions for a robust weak sharp solution, constancy of Lagrangian­type
function on the robust weak sharp solution set, and some characterizations of robust weak sharp
solution sets are established respectively. Some properties of subdiferentials of convex functions
and the (RSCQ), which was introduced in [24], are employed in the section. Finally, in section
4, we consider the characterizations of the robust weak sharp weakly efficient solutions for the
multi­objective optimization problem under data uncertainty.

Throughout the paper, let Rn, n ∈ N, be the n­dimensional Euclidean space, and the inner
product and the norm of Rn are denoted respectively by 〈·, ·〉 and ‖ · ‖. The symbol B(x, r)
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stands for the open ball centered at x ∈ Rn with the radius r > 0 while the BRn stands for
the closed unit ball in Rn. For a nonempty subset A ⊆ Rn, we denote the notations of the
closure, boundary and convex hull of A by clA, bdA, and coA, respectively. In particular, when
λx ∈ E ⊆ Rn for every λ ≥ 0 and every x ∈ E, the set E in Rn is said to be a cone. A dual
cone E∗ of the cone E is given as E∗ := {x ∈ Rn : 〈x, y〉 ≥ 0 for all y ∈ E}. Observe that
the dual cone E∗ is always closed and convex (regardless of E).

In general, for a given nonempty set A ⊆ Rn, the indicator function δA : Rn → R ∪ {+∞}
of A and the support function σA : Rn → R ∪ {+∞} of A are, respectively, defined by

δA(x) =

{
0, if x ∈ A;

+∞, otherwise,

and
σA(x

∗) := sup
x∈A

〈x∗, x〉.

The distance function dA : Rn → R+ : [0,+∞) is defined by

dA(x) := inf
y∈A

‖x− y‖.

A normal cone of the set A at the point x is the following set:

NA(x) =

{
{y ∈ Rn : 〈y, a− x〉 ≤ 0 for all a ∈ A} , if x ∈ A;

∅, otherwise.

The normal cone NA(x) is always closed and convex for any set A.
For any extended real­valued function h : Rn → R := [−∞,+∞] the following notations

stand, respectively, for its effective domain and epigraph:

domh := {x ∈ Rn : h(x) < +∞},

and
epih := {(x, r) ∈ Rn × R : h(x) ≤ r}.

The function h is said to be a proper function if and only if h(x) > −∞ for every x ∈ Rn and
domh is nonempty. Further, it is said to be a convex function if for any x, y ∈ Rn and λ ∈ [0, 1],

h(λx+ (1− λ)y) ≤ λh(x) + (1− λ)h(y),

or equivalently, epih is convex. On the other hand, the function h is said to be a concave function
if and only if −h is a convex function. In the case of vector valued function, let h̃ : Rn → Rp

be a given function and D ⊆ Rp is a convex set. The function h̃ is said to be D­convex if and
only if for any x, y ∈ Rn and λ ∈ [0, 1],

h̃(λx+ (1− λ)y)− λh̃(x)− (1− λ)h̃(y) ∈ −D.

Simultaneously, the function h is called a lower semicontinuous at x ∈ Rn if for every sequence
{xk} ⊆ Rn converging to x,

h(x) ≤ lim inf
k→∞

h(xk).

Equivalently,
h(x) ≤ lim inf

y→x
h(y),
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where the term on the right­hand side of the inequality denotes the lower limit of the function
h defined as

lim inf
y→x

h(y) = lim
r↓0

inf
y∈B(x,r)

h(y).

For any proper and convex function h : Rn → R, the subdifferential of h at x̂ ∈ domh, is
defined by

∂h(x̂) := {ξ ∈ Rn : 〈ξ, x− x̂〉 ≤ h(x)− h(x̂), ∀x ∈ Rn}.

More specifically, for each ε ≥ 0, the ε­subdifferential of h at x̂ ∈ domh, is defined by

∂εh(x̂) := {ξ ∈ Rn : 〈ξ, x− x̂〉 ≤ h(x)− h(x̂) + ε, ∀x ∈ Rn}.

It is obvious that for ε ≥ ε′, we have ∂ε′h(x̂) ⊆ ∂εh(x̂). In particular, if h is a proper lower
semicontinuous convex function, then for every x̂ ∈ domh, the ε­subdifferential ∂εh(x̂) is a
nonempty closed convex set and

∂h(x̂) =
⋂
ε>0

∂εh(x̂).

If x /∈ domh, then we set ∂h(x) = ∅. Simultaneously, for the nonempty subset A of Rn we get
∂δA(x) = NA(x) and ∂dA(x) = BRn ∩NA(x).

The conjugate function h∗ : Rn → R of any h : Rn → R is defined by

h∗(x∗) := sup
x∈Rn

{〈x∗, x〉 − h(x)}

for all x ∈ Rn. The function h∗ is lower semicontinuous convex irrespective of the nature of h
but for h∗ to be proper, we need h to be a proper convex function.

Next, let us recall some basic concepts dealing a DC problem/programming. A DC function
is the difference of two convex functions. The minimization (or maximization) problem of a DC
function is called a DC problem, i.e., the DC proplem concerned about finding

inf
x∈Rn

h(x) := f(x)− ϕ(x)

where f, ϕ : Rn → R are convex. Note that the function h is DC and it is not expected to be
convex.

It shall be found later that some DC problems are considered and their properties, in particular
the following lemma, are employed.

Lemma 37. [25] Let h1, h2 : Rn → R be two proper lower semicontinuous convex functions.
Then

1. A point x̂ ∈ domh1 ∩ domh2 is a (global) minimizer of the DC problem :

inf
x∈Rn

{h1(x)− h2(x)}

if and only if for any ε ≥ 0, ∂εh2(x̂) ⊆ ∂εh1(x̂).
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2. If x̂ ∈ domh1 ∩ domh2 is a local minimizer of the DC problem :
inf
x∈Rn

{h1(x)− h2(x)}

then ∂h2(x̂) ⊆ ∂h1(x̂).
Lemma 38. [19] Let U ⊆ Rp be a convex compact set, and f : Rn × Rp → R be a function
such that, f(·, u) is a convex function for any u ∈ U , and f(x, ·) is a concave function for any
x ∈ Rn. Then,

∂

(
max
u∈U

f(·, u)
)
(x̂) =

⋃
u∈U(x̂)

∂f(·, u)(x̂),

where
U(x̂) :=

{
û ∈ U : f(x̂, û) = max

u∈U
f(x̂, u)

}
.

Let C ⊆ Rn be a nonempty closed convex set. Let D ⊆ Rp be a nonempty closed convex
cone. Consider the following convex optimization problem:

min f(x) s.t. x ∈ C, g(x) ∈ −D (P)
where f : Rn → R is a convex function and g : Rn → Rm is a D­convex function. The feasible
set of (P) is defined by

K0 := {x ∈ C : g(x) ∈ −D}.
The problem (P) in the face of data uncertainty both in the objective and constraints can be
captured by the following uncertain optimization problem :

min {f(x, u) : x ∈ C, g(x, v) ∈ −D} . (UP)
where U ⊆ Rp and V ⊆ Rq are convex and compact uncertainty sets, f : Rn × U → R is a
given real­valued function such that, for any uncertain parameter u ∈ U , f(·, u) is convex as
well as f(x, ·) is concave for any x ∈ Rn, g : Rn × V → Rm is a vector­valued function such
that, for any uncertain parameter v ∈ V , g(·, v) is D­convex as well as g(x, ·) is D­concave for
any x ∈ Rn. The uncertain sets can be apprehended in the sense that the parameter vectors u
and v are not known exactly at the time of the decision.

For examining the uncertain optimization problem (UP), one usually associates with its robust
(worst­case) counterpart, which is the following problem:

min

{
max
u∈U

f(x, u) : x ∈ C, g(x, v) ∈ −D, ∀v ∈ V
}
. (RUP)

It is worth observing here that the robust counterpart, which is termed as the robust optimiza­
tion problem, finds a worst­case possible solution that can be immunized opposed the data
uncertainty.

The problem (RUP) is said to be feasible if the robust feasible set K is nonempty where it is
denoted by

K := {x ∈ C : g(x, v) ∈ −D, ∀v ∈ V}. (1.3.1)
Now, we recall the following concept of solutions, which was introduced in [26].

Definition 39. [26] A point x̂ ∈ K is said to be a robust optimal solution for (UP) if it is an optimal
solution for (RUP), i.e., for all x ∈ K ,

max
u∈U

f(x, u)−max
u∈U

f(x̂, u) ≥ 0.
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The robust optimal solution set of (UP) is the set which consists of all robust optimal solutions
of (UP) and is given by

S :=

{
x ∈ K : max

u∈U
f(x, u) ≤ max

u∈U
f(y, u), ∀y ∈ K

}
.

In this paper, using the idea of weak sharp minimizer, and the robust optimal solution,we
introduce a new concept of solutions for (UP), which related to the sharpness, namely the robust
weak sharp solution.

Definition 40. A point x̂ ∈ K is said to be a (or an optimal) weak sharp solution for (RUP) if
there exist a real number η > 0 such that for all x ∈ K ,

max
u∈U

f(x, u)−max
u∈U

f(x̂, u) ≥ ηdK̃(x)

where K̃ :=

{
x ∈ K : max

u∈U
f(x, u) = max

u∈U
f(x̂, u)

}
.

Definition 41. A point x̂ ∈ K is said to be a (or an optimal) robust weak sharp solution for (UP)
if it is a weak sharp solution for (RUP). The robust weak sharp solution set of (UP) is given by

S̃ :=

{
x̂ ∈ K : ∃η > 0 s.t. max

u∈U
f(y, u)−max

u∈U
f(x̂, u) ≥ ηdK̃(y), ∀y ∈ K

}
.

Throughout the paper, we assume that S̃ is nonempty.

Remark 42. It is worthwhile to be noted that every robust weak sharp solution for (UP) is a robust
optimal solution. In general, the reverse implication need not to be valid.

1.4 Characterizations of robust weak sharp solutions
In this section, we establish some optimality conditions for the robust weak sharp solution in

convex uncertain optimization problems as well as obtain characterizations of the robust weak
sharp solution sets for the considered problems. For any x̂ ∈ Rn, we use the following notations:

U(x̂) :=
{
û ∈ U : f(x̂, û) = max

u∈U
f(x̂, u)

}
,

and
V(x̂) :=

{
v̂ ∈ V : g(x̂, v̂) = max

v∈V
g(x̂, v)

}
.

The following definition, which was introduced in [24], plays a vital role in determining charac­
terizations of robust optimal weak sharp solution sets.

Definition 43. [24] The robust type subdifferential constraint qualification (RSCQ) is said to be
satisfied at x̂ ∈ K if

∂δK(x̂) ⊆ ∂δC(x̂) +
⋃

µ∈D∗,v∈V
(µg)(x̂,v)=0

∂(µg)(·, v)(x̂).
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Remark 44. In an excellent work, [24], Sun et. al. introduced the (RSCQ) and then obtained some
characterizations of the the robust optimal solution set, for an uncertain convex optimization
problem.

Although it has been used as a guideline for dealing with the (UP), our attention is paid to
characterizing the sets containing the robust weak sharp solutions of such problem. Furthermore,
the presence of the term dK̃(x) in this paper has led us to deal with some different tools and
methods from those in work of Sun et.al.

The following theorem presents that the robust type subdifferential constraint qualification
(RSCQ) defined in Definition 43 is fulfilled if and only if optimality conditions for a robust weak
sharp solution of (UP) are satisfied.
Theorem 45. Let f : Rn × Rp → R and g : Rn × Rq → Rm satisfy the following properties :

1. for any u ∈ U and v ∈ V , f(·, u) is convex and continuous as well as g(·, v) is D­convex
on Rn;

2. for any x ∈ Rn, f(x, ·) is concave on U and g(x, ·) is D­concave on V .
Then, the following statements are equivalent:

(a) The (RSCQ) is fulfilled at x̂ ∈ K;

(b) x̂ ∈ Rn is a robust weak sharp solution of (UP) if and only if there exists a positive constant
η such that

NK̃(x̂) ∩ ηBRn

⊆
⋃

u∈U(x̂)

∂f(·, u)(x̂) + ∂δC(x̂) +
⋃

µ∈D∗,v∈V
(µg)(x̂,v)=0

∂ ((µg)(·, v)) (x̂). (1.4.1)

Proof. (a) ⇒ (b) Assume that the (RSCQ) is satisfied at x̂ ∈ K. Let x̂ be a robust weak sharp
solution of (UP). Consequently, there exists η > 0 such that

max
u∈U

f(x, u)−max
u∈U

f(x̂, u) ≥ ηdK̃(x). (1.4.2)

By (1.4.2), we obtain that for all x ∈ K,

max
u∈U

f(x, u) + δK(x)− ηdK̃(x) ≥ max
u∈U

f(x̂, u)

= max
u∈U

f(x̂, u) + δK(x̂)− ηdK̃(x̂),

thereby implying that, for all ξd ∈ ∂ηdK̃(x),(
max
u∈(U

f(·, u) + δK

)
(x)−

(
max
u∈U

f(·, u) + δK

)
(x̂)

≥ ηdK̃(x)− ηdK̃(x̂)

≥〈ξd, x− x̂〉.

Thus, ξd ∈ ∂ (maxu∈U f(·, u) + δK) (x̂). Hence,

∂(ηdK̃)(x̂) ⊆ ∂

(
max
u∈U

f(·, u) + δK

)
(x̂).
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As max
u∈U

f(·, u) is continuous on Rnand δK is proper lower semicontinuous convex on Rn, we
have

∂(ηdK̃)(x̂) ⊆ ∂(max
u∈U

f(·, u))(x̂) + ∂δK(x̂).

It can be noted that ∂dK̃(x) = NK̃(x)∩BRn . Since (RSCQ) is satisfied at x̂, we have the following:

NK̃(x) ∩ BRn = ∂(ηdK̃)(x̂)

⊆
⋃

u∈U(x̂)

∂f(·, u)(x̂) + ∂δC(x̂) +
⋃

µ∈D∗,v∈V
(µg)(x̂,v)=0

∂ (µg)(·, v)) (x̂),

which implies that (1.4.1) holds.
Conversely, assume that there is a positive number η such that (1.4.1) holds. Since NK̃(x̂)∩

ηBRn always contains 0, it is a nonempty set and so is
⋂
ε>0

∂ε(ηdK̃)(x̂). Thus, for any ε ≥ 0,

∂ε(ηdK̃)(x̂) 6= ∅. Let ε > 0 be arbitrary and let ξ ∈ ∂ε(ηdK̃)(x̂). Then for any x ∈ K,

ηdK̃(x)− ηdK̃(x̂) ≥ 〈ξ, x− x̂〉 − ε. (1.4.3)

Note that 0 ∈ ∂ε(ηdK̃(x̂). It follows that

ηdK̃(x̂) ≤ inf
x∈Rn

ηdK̃(x) + ε ≤ inf
x∈K

ηdK̃(x) + ε.

Above inequality and (1.4.3) imply that

0 ≥ 〈ξ, x− x̂〉 − ε. (1.4.4)

Simultaneously, there exist û ∈ U(x̂), µ̂ ∈ D∗, v̂ ∈ V(x̂)
ξf ∈ ∂f(·, û)(x̂), ξδ ∈ ∂δC(x̂), and ξµ̂g ∈ ∂ ((µ̂g)(·, v̂)) (x̂) such that

ξf + ξδ + ξµ̂g = 0, (1.4.5)

and for any x ∈ Rn, we have

f(x, û)− f(x̂, û) ≥ 〈ξf , x− x̂〉,
δC(x)− δC(x̂) ≥ 〈ξδ, x− x̂〉, and

(µ̂g)(x, v̂)− (µ̂g)(x̂, v̂) ≥ 〈ξµ̂g, x− x̂〉.

Adding these above inequalities implies that for each x ∈ K

f(x, û)− f(x̂, û) + (µ̂g)(x, v̂)− (µ̂g)(x̂, v̂) ≥ 〈0, x− x̂〉 = 0.

Since û belongs to U(x̂), for each x ∈ K, above inequality becomes

max
u∈U

f(x, u)−max
u∈U

f(x̂, u) + (µ̂g)(x, v̂)− (µ̂g)(x̂, v̂) ≥ 0.

This along with (µ̂g)(x, v̂) ≤ 0, (µ̂g)(x̂, v̂) = 0, and (1.4.5) imply

max
u∈U

f(x, u)−max
u∈U

f(x̂, u) ≥ 0, (1.4.6)
for all x ∈ K. Observe that, combining inequalities (1.4.4) and (1.4.6) leads to

max
u∈U

f(x, u)−max
u∈U

f(x̂, u) ≥ 〈ξ, x− x̂〉 − ε, ∀x ∈ K.
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This means ξ ∈ ∂ε(max
u∈U

f(·, u))(x̂), and so ∂ε(ηdK̃)(x̂) ⊆ ∂ε(max
u∈U

f(·, u))(x̂). Since the inclu­
sion holds for arbitrary ε ≥ 0, it follows from the Lemma 37 that x̂ is a minimizer of the DC
problem: inf

x∈Rn
{max
u∈U

f(x, u)− ηdK̃(x)} and hence for any x ∈ K

max
u∈U

f(x, u)−max
u∈U

f(x̂, u)−
(
ηdK̃(x)− ηdK̃(x̂)

)
≥ 0.

Therefore, for any x ∈ K,

max
u∈U

f(x, u)−max
u∈U

f(x̂, u) ≥ ηdK̃(x).

This means x̂ is a robust weak sharp solution of (UP).

(b) ⇒ (a) Let ξδ ∈ ∂δK(x̂) be given. Then, we have

0 = δK(x)− δK(x̂) ≥ 〈ξδ, x− x̂〉

holds for all x ∈ K. Let η̄ > 0 be given, and then, set f(x, u) := −〈ξδ, x〉+ η̄dK̃(x). Thus, for
any x ∈ K,

max
u∈U

f(x, u)− η̄dK̃(x) = −〈ξδ, x〉

≥ −〈ξδ, x̂〉+ η̄dK̃(x̂)

= max
u∈U

f(x̂, u).

Thus, x̂ is a robust weak sharp solution of (UP). By hypothesis, there is η := η̄ such that (1.4.1)
is fulfilled. Since for any u ∈ U , ∂f(·, u)(x̂) ⊆ {−ξδ} + ∂(ηdK̃)(x̂), we obtain that for any
x∗ ∈ NK̃(x̂) ∩ ηBRn , there exist û ∈ U(x̂), v̂ ∈ V and µ̂ ∈ D∗ such that

x∗ ∈ {−ξδ}+ ∂(ηdK̃)(x̂) + ∂δC(x̂) + ∂ ((µ̂g)(·, v̂)) (x̂) and (µ̂g)(x̂, v̂) = 0.

As 0 ∈ NK̃(x̂) ∩ ηBRn , we obtain

ξδ ∈ ∂δC(x̂) + ∂ ((µ̂g)(·, v̂)) (x̂) and (µ̂g)(x̂, v̂) = 0.

It follows that
ξδ ∈ ∂δC(x̂) +

⋃
µ∈D∗,v∈V
(µg)(x̂,v)=0

∂ ((µg)(·, v)) (x̂),

and so we get the desired inclusion. Therefore, the proof is complete.

Remark 46. In [27], the necessary conditions for weak sharp minima in cone constrained op­
timization problems, which can be captured by weak sharp minima in cone constrained robust
optimization problems, were established by means of upper Studniarski or Dini directional deriva­
tives. With the result in Theorem 45, the mentioned necessary conditions are established by an
alternative method different from the referred work.

The following result is established easily by means of the basic concepts of variational anal­
ysis.

Corollary 47. Let f : Rn × Rp → R and g : Rn × Rq → Rp satisfying the following properties:
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1. for any u ∈ U , and v ∈ V , f(·, u) is convex and continuous as well as g(·, v) is D­convex
on Rn;

2. for any x ∈ Rn, f(x, ·) is concave on U and g(x, ·) is D­concave on V , respectively.

The following two below statements are equivalent:

(a) The (RSCQ) is fulfilled at x̂ ∈ K;

(b) x̂ ∈ Rn is a robust weak sharp solution of (UP) if and only if there exists a real number
η > 0 such that for any x∗ ∈ NK̃(x̂) ∩ ηBRn , there exist û ∈ U(x̂), v̂ ∈ V and µ̂ ∈ D∗

yield

x∗ ∈ ∂f(·, û) + ∂δC(x̂) + ∂ ((µ̂g)(·, v̂)) (x̂), and (µ̂g)(x̂, v̂) = 0. (1.4.7)

The result, which deals with a special case that U and V are singleton sets, can be obtained
easily and be presented as follows:

Corollary 48. Let f : Rn → R is convex and continuous and g : Rn → Rm is D­convex. The
following statements are equivalent:

1. The (SCQ) is fulfilled at x̂ ∈ K

2. x̂ ∈ Rn is a weak sharp solution of (P) if and only there exists a real number η > 0 such
that for any x∗ ∈ NK̃(x̂) ∩ ηBRn , there exist µ̂ ∈ D∗ such that

x∗ ∈ ∂f(x̂) + ∂δC(x̂) + ∂(µ̂g)(x̂) and (µ̂g)(x̂) = 0. (1.4.8)

Next, a characterization of robust weak sharp solution sets in terms of a given robust weak
sharp solution point of our considered problem is also illustrated in this section. In order to
present the mentioned characterization, we first prove that the Lagrangian­type function associ­
ated with fixed Lagrange multiplier and uncertainty parameters corresponding to a robust weak
sharp solution is constant on the robust weak sharp solution solution set under suitable condi­
tions. In what follows, let u ∈ U , v ∈ V and µ ∈ D∗. The Lagrangian­type function L(·, µ, u, v)
is given by

L(x, µ, u, v) = f(x, u) + (µg)(x, v), ∀x ∈ Rn.

Now, we denote by

S̃ :=

{
x ∈ K : ∃η > 0 s.t. max

u∈U
f(y, u) ≥ max

u∈U
f(x, u) + ηdK̃(y),∀y ∈ K

}
.

the robust weak sharp solution set of (UP), and then we prove that the Lagrangian­type function
associated with a Lagrange multiplier corresponding to a robust weak sharp solution is constant
on the robust weak sharp solution set.

Theorem 49. Let x̂ ∈ S̃ be given. Suppose that the (RSCQ) is satisfied at x̂. Then, there exist
uncertainty parameters û ∈ U , v̂ ∈ V , and Lagrange multiplier µ̂ ∈ D∗, such that for any x ∈ S̃,

(µ̂g)(x, v̂) = 0, û ∈ U(x), and L(x, µ̂, û, v̂) is a constant on S̃.



1.4. CHARACTERIZATIONS OF ROBUST WEAK SHARP SOLUTIONS 35

Proof. Since x̂ ∈ S̃ with the real number η1 > 0 and the (RSCQ) is satisfied at this point x̂, by
Theorem 45 we have that (1.4.1) holds for η := η1. Clearly NK̃(x̂) ∩ ηBRn contains 0, then it is
nonempty and so is any ∂ε(ηdK̃)(x̂) where ε > 0. Let ε > 0 and x∗ ∈ ∂ε(ηdK̃)(x̂) be arbitrary.
Again, we obtain that there exist û ∈ U , v̂ ∈ V and µ̂ ∈ D∗ such that (1.4.1) is fulfilled. Let
x ∈ S̃ be arbitrary, then we have

f(x, û)− f(x̂, û) + (µ̂g)(x, v̂)− (µ̂g)(x̂, v̂) ≥ 〈x∗, x− x̂〉,

and so
f(x, û)− f(x̂, û) + (µ̂g)(x, v̂)− (µ̂g)(x̂, v̂) ≥ 〈x∗, x− x̂〉 − ε. (1.4.9)

Since f(·, u) and g(·, v) are convex, for all u ∈ U and v ∈ V respectively,

x∗ ∈ ∂ε(f(·, u) + λg(·, v))(x̂).

Therefore, we obtain ∂ε(ηdK̃)(x̂) ⊆ ∂ε (f(·, u) + λg(·, v)) (x̂), and so

f(x, û) + (µ̂g)(x, v̂)− ηdK̃(x) ≥ f(x̂, û) = max
u∈U

f(x̂, u). (1.4.10)

Note that, as x ∈ S̃, there exists η2 > 0 such that

max
u∈U

f(y, u) ≥ max
u∈U

f(x, u) + η2dK̃(y), ∀y ∈ S̃,

and so
max
u∈U

f(x̂, u) ≥ max
u∈U

f(x, u) + η2dK̃(x̂) = max
u∈U

f(x, u). (1.4.11)

From µ̂ ∈ D∗, g(x, v̂) ∈ −D, and (1.4.10), it is not hard to see that

(µ̂g)(x, v̂) = 0. (1.4.12)

Then, by (1.4.10) and the positivity of ηdK̃(x), we see that

max
u∈U

f(x, u) ≥ f(x, û) ≥ max
u∈U

f(x̂, u) + ηdK̃(x) ≥ max
u∈U

f(x̂, u), (1.4.13)

which together with (1.4.11) leads to

max
u∈U

f(x, u) = f(x, û). (1.4.14)

It follows that L(x, µ̂, û, v̂) = f(x̂, û), which is constant. Since x ∈ S̃ was arbitrary, we finish
the proof.

Theorem 50. For the problem (UP), let S̃ be the robust weak sharp solutions set of (UP) and
x̂ belongs to it. Suppose that the (RSCQ) is satisfied at x̂ ∈ S̃. Then, there exist uncertain
parameters û ∈ U , v̂ ∈ V and Lagrange multiplier µ̂ ∈ D∗ such that

S̃ =
{
x ∈ K : ∃η > 0, ∃ξf ∈ ∂εf(·, û)(x̂) ∩ ∂εf(·, û)(x),∃ε > ηdK̃(x),

〈ξf , x̂− x〉 = ηdK̃(x), (µg)(x, v̂) = 0,max
u∈U

f(x, u) = f(x, û)
}
. (1.4.15)
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Proof. (⊆) Let x ∈ S̃ be given. Then there exists η > 0 such that (1.4.1) holds. Hence, there
exist ξf ∈ ∂f(·, û)(x), ξδ ∈ ∂δC(x̂) and ξµ̂g ∈ ∂ ((µ̂g)(·, v̂)) (x̂) such that

0 = ξf + ξδ + ξµ̂g since 0 ∈ NK̃(x̂) ∩ ηBRn , (1.4.16)

and
(µ̂g)(x̂, v̂) = 0. (1.4.17)

Since ξδ ∈ ∂δC(x̂) and ξµ̂g ∈ ∂((µ̂g)(·, v̂))(x̂),

δC(x)− δC(x̂) + (µ̂g)(x, v̂)− (µ̂g)(x̂, v̂) ≥ 〈ξδ + ξµ̂g, x− x̂〉. (1.4.18)

By the same fashion in the proof of Theorem 45, we have

(µ̂g)(x, v̂) = (µ̂g)(x̂, v̂) = 0,

and
max
u∈U

f(x, u) = f(x, û).

Therefore, it follows from (1.4.18) that

0 ≥ 〈ξδ + ξµ̂g, x− x̂〉,

and so by (1.4.16), we obtain
ηdK̃(x) ≥ 〈ξf , x̂− x〉.

Simultaneously, since ξf ∈ ∂f(·, û)(x̂), we have

〈ξf , x̂− x〉 ≥ f(x̂, û)− f(x, û).

By (1.4.14) in the proof of Theorem 45, we obtain

〈ξf , x̂− x〉 ≥ max
u∈U

f(x̂, û)−max
u∈U

f(x, u) ≥ 0 = ηdK̃(x). (1.4.19)

Hence, we have that 〈ξf , x̂− x〉 = ηdK̃(x). Now, we prove that for ξf ∈ ∂εf(·, û)(x), there is
an ε > ηdK̃(x) ≥ 0. In fact, we can show that for any y ∈ Rn,

〈ξf , y − x〉 = 〈ξf , y − x̂〉+ 〈ξf , x̂− x〉 ≤ 〈ξf , y − x̂〉

as 〈ξf , x̂− x〉 ≤ 0. Since ξf ∈ ∂f(·, û)(x̂) and f(x, û) = f(x̂, û) by (1.4.13) and (1.4.11),

〈ξf , y − x〉 ≤ f(y, û)− f(x̂, û) = f(y, û)− f(x, û),

which means ξf ∈ ∂f(·, û)(x).
(⊇) Let

x ∈
{
x ∈ K : ∃η > 0,∃ξf ∈ ∂εf(·, û)(x̂) ∩ ∂εf(·, û)(x),∃ε > ηdK̃(x),

〈ξf , x− x̂〉 = ηdK̃(x), (µg)(x, v̂) = 0,max
u∈U

f(x, u) = f(x, û)
}
.
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Since x̂ ∈ S̃, it is clear that ηdK̃(x̂) = 0. By assumption and ξf ∈ ∂εf(·, û)(x) for some ε > 0,
we get

−ηdK̃(x̂) = 0

= 〈ξf , x̂− x〉 − ηdK̃(x)

≤ f(x̂, û)− f(x, û) + ε− ηdK̃(x)

= f(x̂, û)− f(x, û)− ηdK̃(x) + ηdK̃(x)

= f(x̂, û)− f(x, û). (1.4.20)

Therefore, we obtain

max
u∈U

f(x, u) ≤ max
u∈U

f(x, u) + ηdK̃(x̂).

Since x̂ ∈ S̃ and x ∈ K, the conclusion that x ∈ S̃ is satisfied.

In the case that D := R+, which is a closed convex (and pointed) cone in R, the problem
is reduced to be an inequality constrain problem. Suppose that f : Rn × U → R is a function
such that f(·, u) is convex for any u ∈ U and f(x, ·) is concave for any x ∈ Rn as well as
g : Rn × V → R is a function such that g(·, v) is convex for any v ∈ V and g(x, ·) is concave
for any x ∈ Rn. Here, the problem (UP) is represented as

min {f(x, u) : g(x, v) ≤ 0, ∀v ∈ V} ,

and its robust counter part is

min

{
max
u∈U

f(x, u) : g(x, v) ≤ 0, ∀v ∈ V
}
.

In this case, we can see that robust feasible set K is denoted by

K := {x ∈ Rn : g(x, v) ≤ 0,∀v ∈ V} .

1.5 Applications to multi­objective optimization
In this section, in order to apply our general results of the previous section, we investigate the
class multi­objective optimization problem

min
x∈Rn

{(f1(x), f2(x), . . . , fl(x)) : x ∈ C, g(x) ∈ −D} , (MP)

where where C ⊆ Rn is a nonempty convex set,D ⊆ Rm, fi : Rn → R is a convex function for
any i ∈ I and g : Rn → Rm is a D­convex function. The feasible set of (MP) is defined by

K0 := {x ∈ C : g(x) ∈ −D} .

The problem (MP) in the face of data uncertainty both in the objective and constraint can be
captured by the following multi­objective optimization problem

min
x∈Rn

{(f1(x, u1), f2(x, u2), . . . , fl(x, ul)) : x ∈ C, g(x, v) ∈ −D} , (UMP)
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where fi : Rn × Rp → R, i = 1, . . . l, and g : Rn × Rq → Rm. ui, i = 1, . . . , l, and v are
uncertain parameters, and they belong to the corresponding convex and compact uncertainty
sets U ⊆ Rp, and V ⊆ Rq. Suppose that for any ui ∈ Ui, i ∈ I, the function fi(·, ui) is convex
on Rn and for any x ∈ Rn, fi(x, ·) is concave on Ui, i ∈ I. Besides, suppose that for any v ∈ V ,
the function g(·, v) is D­convex on Rn and for any x ∈ Rn, g(x, ·) is D­concave on V .

Similarly, we obtain some characterizations of the robust weak sharp weakly efficient solutions
of (UMP) by using investigation of its robust (worst case) counterpart:

min
x∈Rn

{(
max
u1∈U1

f1(x, u1), . . . ,max
ul∈Ul

fl(x, ul)

)
: x ∈ C, g(x, v) ∈ −D

}
(RUMP)

where the robust feasible set of (UMP) is also defined by

K := {x ∈ C : g(x, v) ∈ −D, } .

Now, we recall the following concepts of robust weak sharp weakly efficient solutions in
multi­objective optimization, which can be found in the literature; see e.g.,[21] and [12].

Definition 51. [21] A point x̂ ∈ K is said to be a weakly robust efficient solution of for (UMP)
if it is a weakly efficient solution solution for (RUMP) i.e., there does not exist x ∈ K such that

max
ui∈Ui

fi(x, ui) < max
ui∈Ui

fi(x̂, ui), for all i ∈ I.

Definition 52. [12] A point feasible element x̂ is said to be a weak sharp efficient solution for
(MP) if there exists a real number η > 0 such that for any x ∈ K

max
1≤k≤l

{fk(x)− fk(x̂)} ≥ ηdK̂(x)}

where K̂ := {x ∈ K : f(x) = f(x̂)}.

Now, we introduce a new concept of solution, which related to the sharpness, namely the
robust weak sharp weakly efficient solutions.

Definition 53. A point x̂ ∈ K is said to be a weak sharp weakly efficient solution for (RUMP) if
and only if there exist a real number η > 0 such that there does not exist y ∈ K \{x̂} satisfying

max
ui∈Ui

fi(y, ui)−max
ui∈Ui

fi(x̂, ui) < ηdK̃(y), for all i ∈ I,

or equivalently, for all x ∈ K

max
i∈I

{
max
ui∈Ui

fi(x, ui)−max
ui∈Ui

fi(x̂, ui)

}
≥ ηdK̃(x)

where K̃ :=

{
x ∈ K : max

u∈U
fi(x, u) = max

u∈U
fi(x̂, u), i ∈ I

}
.

Definition 54. A point x̂ ∈ K is said to be a robust weak sharp weakly efficient solution for
(UMP) if it is a weakly weak sharp weakly efficient solution for (RUMP).

The following lemma is useful for establishing our results in this section.
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Lemma 55. [30] Let U1, . . . ,Ul be nonempty convex and compact sets of Rp and for any ui ∈
Ui, i ∈ I, the function fi(·, ui) : Rn → R be convex as well as for any x ∈ Rn, fi(x, ·) : Ui → R
be concave where i ∈ I. Then, for any λi ≥ 0, i ∈ I,

∂

(
max

u∈
∏

i∈I Ui(x̂)

∑
i∈I

λifi(·, ui)

)
(x̂) =

⋃
u∈

∏
i∈I Ui(x̂)

∑
i∈I

λi (fi(·, ui)) (x̂),

where
∏
i∈I

Ui(x̂) :=

{
(û1, . . . , ûi) ∈

∏
i∈I

Ui

:
∑
i∈I

λifi(x̂, ûi) = max
u∈

∏
i∈I Ui

∑
i∈I

λifi(x̂, ui)

}

Now, by using the similar methods of Section 3, we can characterize the corresponding robust
weak sharp weakly efficient solutionss of (UMP).

Theorem 56. Let f : Rn×Rp → Rl and g : Rn×Rq → Rm satisfying the following properties:

1. for any ui ∈ Ui, i ∈ I and vj ∈ Vj, j ∈ J, fi(·, ui) is convex and continuous as well as
g(·, v) is D­convex on Rn;

2. for any x ∈ Rn, fi(x, ·) is concave on Ui, i ∈ I and g(x, ·) is D­concave on V .

Then, the following statements are equivalent:

(a) The (RSCQ) is fulfilled at x̂ ∈ K;

(b) x̂ ∈ Rn is a robust weak sharp weakly efficient solutions of (UMP) if and only if there exists
η > 0 such that for any x∗ ∈ NK̃(x̂) ∩ ηBRn , there exist ûi ∈ Ui(x̂), σi ≥ 0, i ∈ I, not
all zero, v̂ ∈ V , and µ̂ ≥ 0 such that

0 ∈ {−x∗}+
∑
i∈I

σ̂i (∂fi(·, ûi)(x̂)) + ∂δC(x̂) + ∂ ((µ̂g)(·, v̂)) (x̂) (1.5.1)

(µ̂jgj)(x̂, v̂j) = 0, (1.5.2)
and

σifi(x̂, ûi) = σimax
ui∈Ui

fi(x̂, ui), i ∈ I. (1.5.3)

Proof. (a)⇒(b) Assume that the (RSCQ) is satisfied at x̂ ∈ Rn. Let x̂ be a robust weak sharp weakly
efficient solutions of (UMP) i.e., there exists η > 0 such that there does not exist y ∈ K \ {x̂}
satisfying

max
ui∈Ui

fi(y, ui)−max
ui∈Ui

fi(x̂, ui) < ηdK̃(y), for all i ∈ I,

or equivalently, for any x ∈ K,

max
i∈I

{
max
ui∈Ui

fi(x, ui)−max
ui∈Ui

fi(x̂, ui)

}
≥ ηdK̃(x). (1.5.4)
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By (1.5.4), there is s ∈ I such that for all x ∈ K,

max
us∈Us

fs(x, us) + δK(x)− ηdK̃(x) ≥ max
us∈Us

f(x̂, us)

= max
us∈Us

fs(x̂, us) + δK(x̂)− ηdK̃(x̂). (1.5.5)

Besides, according to (1.5.5), we follow the techniques used in Theorem 45 and obtain that for
any ξ ∈ ∂ηdK̃(x),

〈ξ, x− x̂〉
≤ max

us∈Us

fs(x, us) + δK(x)− max
us∈Us

fs(x̂, us)− δK(x̂). (1.5.6)

Therefore,
∂(ηdK̃)(x̂) ⊆ ∂

(
max
us∈Us

fs(·, u) + δK

)
(x̂), (1.5.7)

Note that the right hand side term of above inclusion is in the subdifferential of the max function:

ϕ(x) = max
i∈I

ϕi(x) := max
i∈I

(
max
ui∈Ui

fi(·, ui) + δK

)
(x).

Due to the well­known fact, subdifferential of maximum of functions at x is the convex hull of
the union of subdifferentials of the active functions at x, the inclusion (1.5.7) becomes

∂(ηdK̃)(x̂) ⊆ co (∪{∂ϕi(x̂) : ϕi(x̂) = ϕ(x)}) ,

thereby
∂(ηdK̃)(x̂) ⊆

∑
i∈I(x̂)

σi∂ϕi(x̂),

where σi ≥ 0, i ∈ I(x̂) with
∑
i∈I(x̂)

σi = 1 and I(x̂) := {k ∈ I : ϕk(x̂) = ϕ(x̂)}. Further, setting

σ̂i = σ, i ∈ I(x̂), and otherwise equals to 0 leads to

∂(ηdK̃)(x̂) ⊆
∑
i∈I

σ̂i∂ϕi(x̂).

By the definition of ϕi, i ∈ I, the continuity of max
ui∈Ui

fi(·, ui), i ∈ I and the lower semicontinuity
and convexity of δK , we have

∂(ηdK̃)(x̂) ⊆
∑
i∈I

σ̂i∂

(
max
ui∈Ui

f(·, ui)
)
(x̂) +

∑
i∈I

σ̂i (∂δK(x̂)) .

It follows from Lemma 55 and the hypothesis such (RSCQ) is satisfied at x̂ ∈ K that

∂(ηdK̃)(x̂) ⊆
⋃

u∈
∏l

i=1 Ui(x̂)

∑
i∈I

σ̂i∂fi(·, ui)(x̂) +
∑
i∈I

σ̂i (∂δC(x̂))

+
⋃

µ∈D∗,v∈V
(µg)(x̂,v)=0

∂ ((µg)(·, v)) (x̂).
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Because σ̂i ≥ 0, i = 1, 2 . . . , l, all nonzero, thereby

∂(ηdK̃)(x̂) ⊆
⋃

u=(ui)
l
i=1,

u∈
∏l

i=1 Ui(x̂)

∑
i∈I

σ̂i (∂fi(·, ui)(x̂)) + ∂δC(x̂)

+
⋃

µ∈D∗,v∈V
(µg)(x̂,v)=0

∂ ((µg)(·, v)) (x̂).

As ∂dK̃(x) = NK̃(x) ∩ BRn , we obtain (1.5.1) as desired.
Conversely, assume that there is η > 0 such that (1.5.1)­(1.5.3) hold. Then, for any x∗ ∈

NK̃(x̂) ∩ ηBRn , there exist û := (û1, . . . ûl) ∈
∏

i∈I Ui(x̂), v̂ ∈ V and µ̂ ∈ D∗ such that

x∗ ∈
∑
i∈I

σ̂i (∂fi(·, ûi)(x̂)) + ∂δC(x̂) + ∂ ((µ̂g)(·, v̂)) (x̂), and

(µ̂g)(x̂, v̂) = 0. (1.5.8)

Since 0 ∈ NK̃(x̂) ∩ ηBRn =
⋂
ε>0

∂ε(ηdK̃)(x̂), for each positive ε, ∂ε(ηdK̃)(x̂) is nonempty. Let

ε > 0 and ξ ∈ ∂ε(ηdK̃)(x̂) be arbitrary, then for any x ∈ K

ηdK̃(x)− ηdK̃(x̂) ≥ 〈ξ, x− x̂〉 − ε. (1.5.9)

Therefore, we obtain

ηdK̃(x̂) ≤ inf
x∈Rn

ηdK̃(x) + ε ≤ inf
x∈K

ηdK̃(x) + ε.

Above inequality and (1.5.9) imply that

0 ≥ 〈ξ, x− x̂〉 − ε. (1.5.10)

Further, since 0 ∈ NK̃(x̂) ∩ ηBRn , we have that there exist ξf ∈
∑
i∈I

σ̂i (∂fi(·, ûi)(x̂)) , ξδ ∈

∂δC(x̂), and ξµ̂g ∈ ∂ ((µ̂g)(·, v̂)) (x̂) such that

ξf + ξδ + ξµ̂g = 0. (1.5.11)

As ξf ∈
∑
i∈I

σ̂i (∂fi(·, ûi)(x̂)) = ∂

(∑
i∈I

σ̂ifi(·, ûi)

)
(x̂), ξδ ∈ ∂δC(x̂) and ξµ̂g ∈ ∂ ((µ̂g)(·, v̂)) (x̂),

we have ∑
i∈I

σ̂ifi(x, ûi)−
∑
i∈I

σ̂ifi(x̂, ûi) ≥ 〈ξf , x− x̂〉,

δC(x)− δC(x̂) ≥ 〈ξδ, x− x̂〉, and
(µ̂g)(x, v̂)− (µ̂g)(x̂, v̂) ≥ 〈ξµ̂g, x− x̂〉.

Then, adding these inequalities yields

〈0, x− x̂〉 ≤
∑
i∈I

σ̂ifi(x, ûi)−
∑
i∈I

σ̂ifi(x̂, ûi)

+ (µ̂g)(x, v̂)− (µ̂g)(x̂, v̂).
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Since ûi belongs to Ui(x̂), above inequality becomes the following one:

0 ≤
∑
i∈I

σ̂imax
ui∈Ui

fi(x, ui)−
∑
i∈I

max
ui∈Ui

fi(x̂, ui))

+ (µ̂g)(x, v̂)− (µ̂g)(x̂, v̂).

This together with (µ̂g)(x, v̂) ≤ 0, (µ̂g)(x̂, v̂) = 0, and (1.5.11), for any x ∈ K,∑
i∈I

σ̂imax
ui∈Ui

fi(x, ui)−
∑
i∈I

σ̂imax
ui∈Ui

fi(x̂, ui) ≥ 〈0. (1.5.12)

By summing (1.5.12) with (1.5.9), for any x ∈ K, we obtain∑
i∈I

σ̂imax
ui∈Ui

fi(x, ui)−
∑
i∈I

σ̂imax
ui∈Ui

f(x̂, ui) ≥ 〈ξ, x− x̂〉 − ε,

which means ξ ∈ ∂ε

(∑
i∈I

σ̂imax
ui∈Ui

fi(·, ui)

)
(x̂), and so ∂ε(ηdK̃)(x̂) ⊆

∂ε

(∑
i∈I

σ̂imax
ui∈Ui

fi(·, ui)

)
(x̂). As ε > 0 was arbitrary, for each x ∈ K,

0 ≤
∑
i∈I

σ̂imax
ui∈Ui

fi(x, ui)−
∑
i∈I

σ̂imax
ui∈Ui

fi(x̂, ui)

−
(
ηdK̃(x)− ηdK̃(x̂)

)
,

which is equivalent to the following inequality: for all x ∈ K∑
i∈I

σ̂imax
ui∈Ui

fi(x, ui)− ηdK̃(x) ≥
∑
i∈I

σ̂imax
ui∈Ui

fi(x̂, ui)− ηdK̃(x̂).

It follows that∑
i∈I

σ̂i

(
max
ui∈Ui

fi(x, ui)− ηdK̃(x)

)
≥
∑
i∈I

σ̂i

(
max
ui∈Ui

fi(x̂, ui)− ηdK̃(x̂)

)
,

for any x ∈ K, which yields for any i ∈ I,

max
ui∈Ui

fi(x, ui)− ηdK̃(x) ≥ max
ui∈Ui

fi(x̂, ui)− ηdK̃(x̂), ∀x ∈ K.

Therefore, for any x ∈ K

max
i∈I

{
max
ui∈Ui

fi(x, ui)−max
ui∈Ui

fi(x̂, ui)

}
≥ ηdK̃(x).

This means x̂ is a robust weak sharp weakly efficient solutions of (UMP).

(b) ⇒ (a) Let η̄ > 0 be given. Consider fi(x, ui) := −〈ξδ, x〉 + η̄dK̃(x), i ∈ I. Thus, for any
x ∈ K,

max
ui∈Ui

fi(x, ui)− η̄dK̃(x) = −〈ξδ, x〉

≥ −〈ξδ, x̂〉+ η̄dK̃(x̂)

= max
ui∈Ui

fi(x̂, ui).
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Thus, x̂ is a robust weak sharp weakly efficient solutions of (UMP). By hypothesis, there is η := η̄
such that (1.5.1) is fulfilled. Since for any ui ∈ Ui, ∂fi(·, ui)(x̂) ⊆ {−ξδ}+ ∂(ηdK̃)(x̂), one has∑

i∈I

σ̂i (∂fi(·, ui)(x̂)) ⊆ {−ξδ}+ ∂(ηdK̃)(x̂),

where σ̂i ≥ 0, i ∈ I and all nonzero. Thus, we obtain that for any x∗ ∈ NK̃(x̂) ∩ ηBRn , there
exist ûi ∈ Ui(x̂), v̂ ∈ V and µ̂ ∈ D∗ such that

x∗ ∈ {−ξδ}+ ∂(ηdK̃)(x̂) + ∂δC(x̂) + ∂ ((µ̂g)(·, v̂)) (x̂) and (µ̂g)(x̂, v̂) = 0.

As 0 ∈ NK̃(x̂) ∩ ηBRn , we obtain

ξδ ∈ ∂δC(x̂) + ∂ ((µ̂g)(·, v̂)) (x̂) and (µ̂g)(x̂, v̂) = 0.

It follows that
ξδ ∈ ∂δC(x̂) +

⋃
µ∈D∗,v∈V
(µg)(x̂,v)=0

∂ ((µg)(·, v)) (x̂),

and so we get the desired inclusion. Therefore, the proof is complete.

Remark 57. (i) In [28] and [29], the authors presented the necessary condition for the local
sharp efficiency for the semi­infinite vector optimization problem by using the different
method with Theorem 56. In fact, they employed the exact sum rule for Fréchet subdif­
ferentials to obtained their results.

(ii) In [31], the exact sum rule for Mordukhovich subdifferentials was used as a vital tool under
some regularity and differentiability assumptions for establishing their results. This means
Theorem 56 use the different medthod from the mentioned work.

Next, by using the similar methods of section 3, a characterization of robust weak sharp weakly
efficient solution sets in terms of a given robust weak sharp weakly efficient solution point of the
problem is also illustrated in this section. In order to present the mentioned characterization,
we start by deriving constant Lagrangian­type property for robust weak sharp weakly efficient
solution sets of (MP). In what follows, let u = (u1, . . . , ul) ∈ U1×, . . .×Ul, σ = (σ1, . . . , σl) ∈
Rl

+, v ∈ V and µ ≥ 0. The Lagrangian­type function L(·, σµ, u, v) is given by

L(x, σ, µ, u, v) =
∑
i∈I

σifi(x, ui) + (µg)(x, v), ∀x ∈ Rn.

Theorem 58. Let x ∈ S̃ be given. Suppose that the (RSCQ) is fulfilled at x̂. Then, there exist
a positive valued vector σ̂ := (σ̂1, . . . , σ̂l) ∈ Rl

+, σ̂i, i ∈ I all nonzero, uncertain parameters
û := (u1, . . . , ul) ∈ U = U1 × . . .×Ul, v̂ ∈ V , and Lagrange multiplier µ̂ ≥ 0 such that for any
x ∈ S̃,

(µ̂g)(x, v̂) = 0, û ∈ U(x), and L(x, σ̂, µ̂, û, v̂) is a constant on S̃.

Proof. Since x̂ ∈ S̃ with the real number η1 > 0 and the (RSCQ) is satisfied at this point x̂, by
Theorem 56, (1.5.1) holds for η := η1. Since NK̃(x̂) ∩ ηBRn is nonempty we can let ε > 0 be
arbitrary and x∗ ∈ ∂ε(ηdK̃)(x̂) be given. Besides, there exist σ̂ ∈ Rl

+, all nonzero, û ∈ U , v̂ ∈ V



44 CHAPTER 1. CHAPTER 1 : MAIN RESULTS

and µ̂ ∈ D∗ such that (1.5.1) is fulfilled. Let x ∈ S̃ be arbitrary. By the same fashion using in the
proof of Theorem 45 we have

〈x∗, x− x̂〉 ≤
∑
i∈I

σ̂ifi(x, ûi)−
∑
i∈I

σ̂ifi(x̂, ûi)

+ (µ̂g)(x, v̂)− (µ̂g)(x̂, v̂),

and so

〈x∗, x− x̂〉 − ε ≤
∑
i∈I

σ̂ifi(x, ûi)−
∑
i∈I

σ̂ifi(x̂, ûi)

+ (µ̂g)(x, v̂)− (µ̂g)(x̂, v̂), (1.5.13)

As fi(·, ui), i ∈ I and g(·, v) are convex, for any ui ∈ Ui and v ∈ V ,we have x∗ ∈ ∂ε

(∑
i∈I

σ̂i(fi(·, ui) + λg(·, v))

)
(x̂).

Hence, one has

∂ε(ηdK̃)(x̂) ⊆ ∂ε

(∑
i∈I

σ̂i (fi(·, ui) + λg(·, v))

)
(x̂),

thereby ∑
i∈I

σ̂ifi(x, ûi) + (µ̂g)(x, v̂)− ηdK̃(x) ≥
∑
i∈I

σ̂ifi(x̂, ûi)

=
∑
i∈I

σ̂imax
ui∈Ui

fi(x̂, ui). (1.5.14)

Note that, as x ∈ S̃, then there exists η2 > 0 such that for all y ∈ K,

max
ui∈Ui

fi(y, ui) ≥ max
ui∈Ui

fi(x, ui) + η2dK̃(y),

which implies ∑
i∈I

σ̂imax
ui∈Ui

fi(y, ui) ≥
∑
i∈I

σ̂i

(
max
ui∈Ui

fi(x, ui) + η2dK̃(y)

)
=
∑
i∈I

σ̂imax
ui∈Ui

fi(x, ui) + η2dK̃(y)

=
∑
i∈I

σ̂imax
ui∈Ui

fi(x, ui),

for all y ∈ S̃. Since x̂ ∈ S̃,∑
i∈I

σ̂imax
ui∈Ui

fi(x̂, ui) ≥
∑
i∈I

σ̂imax
ui∈Ui

fi(x, ui). (1.5.15)

From µ̂ ≥ 0, g(x, v̂) ≤ 0, and (1.5.14), it is not hard to see that

(µ̂g)(x, v̂) = 0. (1.5.16)
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Moreover, by (1.5.14) and the positivity of ηdK̃(x), we see that∑
i∈I

σ̂imax
ui∈Ui

fi(x, ui) ≥
∑
i∈I

σ̂ifi(x, ûi)

≥
∑
i∈I

σ̂imax
ui∈Ui

fi(x̂, ui) + ηdK̃(x)

≥
∑
i∈I

σ̂imax
ui∈Ui

fi(x̂, ui). (1.5.17)

This together with (1.5.16) leads to∑
i∈I

σ̂imax
ui∈Ui

fi(x, ui) =
∑
i∈I

σ̂ifi(x, ûi). (1.5.18)

Thus, L(·, σ̂, µ̂, û, v̂) is constant on S̃ as follows:

L(x, σ̂, µ̂, û, v̂) =
∑
i∈I

σ̂ifi(x, ui) + (µ̂g)(x, v̂)

=
∑
i∈I

σ̂imax
ui∈Ui

fi(x, ui) + (µ̂g)(x, v̂)

=
∑
i∈I

σ̂imax
ui∈Ui

fi(x̂, ui) + (µ̂g)(x, v̂)

=
∑
i∈I

σ̂imax
ui∈Ui

fi(x̂, ui).

This completes the proof.
Theorem 59. For the problem (UMP), let S̃ be the robust weak sharp weakly efficient solution set
of (UMP) and x̂ ∈ S̃. Suppose that the (RSCQ) is fulfilled at x̂ ∈ S̃. Then, there exist σ̂i ≥ 0, i ∈ I,
all non zero, û := (û1, . . . , ûl) ∈ U = U1 × . . . ,×Ul, v̂ ∈ V and µ̂ ≥ 0 such that

S̃ =

x ∈ K : ∃η > 0,∃a ∈
⋂

y∈{x,x̂}

∂ε

(∑
i∈I

σ̂ifi(·, ûi)

)
(ŷ),

∃ε > ηdK̃(x), 〈a, x̂− x〉 = ηdK̃(x), (µg)(x, v̂) = 0,

max
ui∈Ui

fi(x, ui) = fi(x, ûi), i ∈ I

}
.

Proof. (⊆) Let x ∈ S̃ be given. Then there exists η > 0 such that (1.5.1) holds. Thus, there
exist û ∈ U , v̂ ∈ V and µ̂ ≥ 0 such that (1.5.1) is fulfilled. Hence, we have that there exist
ξf ∈

∑
i∈I

σ̂i (∂fi(·, ûi)(x)) , ξδ ∈ ∂δC(x̂) and ξµ̂g ∈ ∂ ((µ̂g)(·, v̂)) (x̂) such that

0 = ξf + ξδ + ξµ̂g, since 0 ∈ NK̃(x̂) ∩ ηBRn , (1.5.19)

and
(µ̂g)(x̂, v̂) = 0. (1.5.20)

Since ξδ ∈ ∂δC(x̂) and ξµ̂g ∈ ∂((µ̂g)(·, v̂))(x̂),

δC(x)− δC(x̂) + (µ̂g)(x, v̂)− (µ̂g)(x̂, v̂) ≥ 〈ξδ + ξµ̂g, x− x̂〉. (1.5.21)
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By the same fashion in the proof of Theorem 56, we have
(µ̂g)(x, v̂) = (µ̂g)(x̂, v̂) = 0,

and ∑
i∈I

σ̂imax
ui∈Ui

fi(x, ui) =
∑
i∈I

σ̂ifi(x, ûi).

Therefore, it follows from (1.5.21) that
ηdK̃(x) = 0 ≥ 〈b+ c, x− x̂〉,

and so by (1.5.19), we obtain
ηdK̃(x) ≥ 〈ξf , x̂− x〉.

Simultaneously, since ξf ∈
∑
i∈I

σ̂i (∂fi(·, ûi)(x̂)) = ∂

(∑
i∈I

σ̂ifi(·, ûi)

)
(x̂), we have

〈ξf , x̂− x〉 ≥
∑
i∈I

σ̂ifi(x̂, ûi)−
∑
i∈I

σ̂ifi(x, ûi).

By (1.5.12) in the proof of Theorem 56, we obtain

〈ξf , x̂− x〉 ≥
∑
i∈I

σ̂imax
ui∈Ui

fi(x̂, ûi)−
∑
i∈I

σ̂imax
ui∈Ui

fi(x, ui) =≥ 0 = ηdK̃(x). (1.5.22)

Hence, we have that 〈ξf , x̂− x〉 = ηdK̃(x). Next, we shall prove that there is ε > ηdK̃(x) ≥ 0
such that

ξf ∈ ∂ε

(∑
i∈I

σ̂ifi(·, ûi)

)
(x).

In fact, we can show that ξf ∈ ∂

(∑
i∈I

σ̂ifi(·, ûi)

)
(x). For any y ∈ Rn,

〈ξf , y − x〉 = 〈ξf , y − x̂〉+ 〈ξf , x̂− x〉 ≤ 〈ξf , y − x̂〉

as 〈ξf , x̂− x〉 ≤ 0. Since a ∈ ∂

(∑
i∈I

σ̂ifi(·, ûi)

)
(x̂) and fi(x, ûi) = fi(x̂, ûi), i ∈ I,

〈ξf , y − x〉 ≤
∑
i∈I

σ̂ifi(y, ûi)−
∑
i∈I

σ̂ifi(x̂, ûi)

=
∑
i∈I

σ̂ifi(y, ûi)−
∑
i∈I

σ̂ifi(x, ûi),

which means ξf ∈ ∂

(∑
i∈I

σ̂ifi(·, ûi)

)
(x).

(⊇) Let

x ∈
{
x ∈ K : ∃η > 0,∃ξf ∈

⋂
y∈{x,x̂}

∂ε

(∑
i∈I

σ̂ifi(·, ûi)

)
(x̂), ∃ε > ηdK̃(x),

〈ξf , x− x̂〉 = ηdK̃(x), (µg)(x, v̂) = 0,max
ui∈Ui

fi(x, ui) = fi(x, ûi)
}
.
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Since x̂ ∈ S̃, ηdK̃(x̂) = 0 and so the assumption dealing with ξf lead to
−ηdK̃(x̂) = 0

= 〈ξf , x̂− x〉 − ηdK̃(x)

≤
∑
i∈I

σ̂ifi(x̂, ûi)−
∑
i∈I

σ̂ifi(x, ûi)− ηdK̃(x) + ε

=
∑
i∈I

σ̂ifi(x̂, ûi)−
∑
i∈I

σ̂ifi(x, ûi)− ηdK̃(x) + ηdK̃(x)

=
∑
i∈I

σ̂ifi(x̂, ûi)−
∑
i∈I

σ̂ifi(x, ûi), (1.5.23)

for any σ̂i ≥ 0, i ∈ I, all nonzero. Therefore, we obtain∑
i∈I

σ̂imax
ui∈Ui

fi(x, ui) ≤
∑
i∈I

σ̂imax
ui∈Ui

fi(x̂, ui) + ηdK̃(x̂)

=
∑
i∈I

σ̂imax
ui∈Ui

fi(x̂, ui).

Since x̂ ∈ S̃ and x ∈ K, the conclusion that x ∈ S̃ is satisfied.

1.5.1 Bibliography
1 M.C. Ferris, Weak sharp minima and penalty functions in mathematical programming,

Ph.D. thesis, Universiy of Cambridge, Cambridge, UK, 1988.
2 B.T. Polyak, Sharp Minima,Institute of Control Sciences Lecture Notes, Moscow, USSR, 1979;

Presented at the IIASA Workshop on Generalized Lagrangians and Their Applications, IIASA,
Laxenburg, Austria, 1979.

3 J.V. Burke, A. Lewis, M. Overton, Optimization matrix stability, Proc. Am. Math. Soc. 129.
(2000), 1635­1642.

4 J.V. Burke, A. Lewis, M. Overton, Optimization stability and eigenvalue multiplicity, Found.
Comput. Math. 1.(2001), 205­225.

5 A. Jourani, Hoffman’s error bounds, local controbility and sensitivity analysis, SIAM J. Con­
trol Optim. 38. (2000), 947­970.

6 A.S. Lewis, J.S. Pang, Error bounds for convex inequality systems In: Crouzeix, J.P. (ed.)
Proceedings of the Fifth Symposium on Generalized Convexity, Luminy­Marseille (1996).

7 J.V. Burke and M.C. Ferris, A Gauss­Newton method for convex composite optimization,
Math. Program.71. (1995), 179­194.

8 J.V. Burke and M.C. Ferris, Weak sharp minima in mathematical programming, SIAM J.
Control Optim. 36. (1993), 1340­1359.

9 J.V. Burke, S. Deng, Weak sharp minima revisited, part I: Basic theory, Control Cybern. 31.
(2002), 439­469.

10 J.V. Burke, S. Deng, Weak sharp minima revisited, part II: Application to linear regularity
and error bounds, Math. Program., Ser. B 104. (2005), 235­261.



48 CHAPTER 1. CHAPTER 1 : MAIN RESULTS

11 J.V. Burke, S. Deng, Weak sharp minima revisited, part III: Error bounds for differentiable
convex inclusions, Math. Program., Ser. B 116. (2009), 37­56.

12 S. K. Zhu, Weak sharp efficiency in multi­objective optimization, Optim Lett.10.(2016) 1287­
1301.

13 X.Y. Zheng, K.F. Ng,Strong KKT conditions and weak sharp minima in convex­composite
optimization, Math. Program. 126. (2009), 259­279.

14 X.Y. Zheng, X.Q. Yang, Weak sharp minima for semi­infinite optimization problems with
applications, SIAM J. Optim. 18.(2004), 573­588.

15 A. Ben­Tal and A. Nemirovski, Robust convex optimization, Math. Oper. Res. 23. (1998),
769­805.

16 A. Ben­Tal and A. Nemirovski, Robust optimization­methodology and applications, Math.
Program. Ser.B 92. (2002), 453­480.

17 V. Jeyakumar, Constraint qualifications characterizing lagrangian duality in convex opti­
mization, J. Optim. Theo. Appl. 136. (2008), 31­41.

18 X.K.Sun, Regularity conditions characterizing Fenchel­Lagrange duality and Farkas­type
results in DC infinite programming, J. Math. Anal. Appl. 414. (2014), 590­611.

19 V. Jeyakumar, G.M. Lee and G.Y. Li, Characterizing robust solution sets of convex programs
under data uncertainty, J. Optim. Theory Appl. 164. (2015), 407­435.

20 V. Jeyakumar, G.M. Lee and G. Li, Characterizing robust solution sets of convex programs
under data uncertainty, J. Optim Theory. 164. (2015), 407­435.

21 D. Kuroiwa and G.M. Lee, On Robust Multiobjective Optimization, Vietnam Journal of Math­
ematics, 40:2­3.(2012), 305­317.

22 A. Ben­Tal, L.E. Ghaoui and A. Nemirovski, Robust Optimization, In: Princeton Series in
Applied Mathematics (2009).

23 D. Bertsimas, D.B. Brown and C. Caramanis, Theory and applications of robust optimization,
SIAM Rev. 53. (2011), 464–501.

24 X.K. Sun, Z.Y. Peng and X. Le Guo, Some characterizations of robust optimal solutions for
uncertain convex optimization problems, Optim Lett. 10. (2016), 1463­1478.

25 J. B. Hiriart­Urruty, ε­Subdifferential calculus, in Convex Analysis and Optimization, J.P.
Aubin and R. Vinter, eds., Pitman, London, England, (1980), 43­92.

26 A. Beck and A. Ben­Tal, Duality in robust optimization: primal worst equals dual best,
Oper. Res. Lett. 37. (2009), 1­6.

27 W.Y. Zhang, S. Xu and S.J. Li, Necessary Conditions for Weak Sharp Minima in Cone­
Constrained Optimization Problems, Abstract and Applied Analysis. 11. (2012), 1­11.

28 T.D. Chuong, Optimality and duality for proper and isolated efficiencies in multi­objective
optimization, Nonlinear Anal. 76. (2013), 93­104.



1.5. APPLICATIONS TO MULTI­OBJECTIVE OPTIMIZATION 49

29 T.D. Chuong and J.C. Yao, Isolated and proper efficiencies in semi­infinite vector optimiza­
tion problems, J. Optim. Theor. Appl. 162.(2014), 447­462.

30 X.K. Sun, X. J. Long, H.Y. Fu and X. B. Li, Some Characterizations of robust optimal solutions
for uncertain fractional optimization and applications,JIMO. 13(2). (2017), 803­824.

31 J.C. Zhou, B.S. Mordukhovich and N.H. Xiu, Complete characterizations of local weak sharp
minima with applications to semi­infinite optimization and complementarity, Nonlinear
Anal. 75(2012), 1700­1718.



50 CHAPTER 1. CHAPTER 1 : MAIN RESULTS



Chapter 2
Output

1. Ali P. Farajzadeh, R. Wangkeeree, Kerdkaew, On the Existence of Solutions of
Symmetric Vector Equilibrium Problems via Nonlinear Scalarization, Bulletin
of the Iranian Mathematical Society, (2018) Doi.org/10.1007/s41980­ 018­
0118­6.
(ISI, Impact Factor : 0.88)

2. P. Boonman and R. Wangkeeree, Levitin­Polyak well­posedness for paramet­
ric quasivariational inclusion and disclusion problems, CARPATHIAN J. MATH.
34 (2018), No. 3.

3. N. Sisarat, R. Wangkeeree and G. M. Lee, Some characterizations of ro­ bust
solution sets for uncertain convex optimization problems with locally Lip­
schitz inequality constraints, (2018), Journal of Industrial & Management
Optimization, Doi: 10.3934/jimo.2018163.

4. Pham Thi Vui, Lam Quoc Anh and R. Wangkeeree, Levitin–Polyak well­
posedness for set optimization problems involving set order relations, Pos­
itivity volume 23, 599­616 (2019).

5. Lam Quoc Anh, Rabian Wangkeeree and Pham Thi Vui, B­well­posedness
for set optimization problems involving set order relations, Thai Journal of
Mathematics : (2018) 302­316.

6. N. Sisarat, R. Wangkeeree and G. M. Lee, Necessary and sufficient KKT opti­
mality conditions in non­convex multi­objective optimization problems with
cone constraints, Pacific Journal of Optimization, Vol. 15, No. 3, 477 ­ 490,
(2019).

7. R. Wangkeeree, Kerdkaew, Characterizing robust weak sharp solution sets
of convex optimization problems with uncertainty, Journal of Industrial &
Management Optimization, (2019) doi:10.3934/jimo.2019074.

51



52 CHAPTER 2. OUTPUT

8. N. Sisarat, R. Wangkeeree, Characterizing the solution set of convex opti­
mization problems without convexity of constraints, Optimization Letters
(2019).

9. N. Sisarat, R. Wangkeeree and G. M. Lee, On Set Containment Characteriza­
tions for Sets Described by Set­Valued Maps with Applications, Journal of
Optimization Theory and Applications (2020) 184: 824 ­ 84.



Chapter 3
Appendix

53



1 23

Bulletin of the Iranian Mathematical
Society
 
ISSN 1017-060X
 
Bull. Iran. Math. Soc.
DOI 10.1007/s41980-018-0118-6

On the Existence of Solutions of Symmetric
Vector Equilibrium Problems via Nonlinear
Scalarization

Ali P. Farajzadeh, R. Wangkeeree &
J. Kerdkaew



1 23

Your article is protected by copyright and

all rights are held exclusively by Iranian

Mathematical Society. This e-offprint is for

personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Bulletin of the Iranian Mathematical Society
https://doi.org/10.1007/s41980-018-0118-6

ORIG INAL PAPER

On the Existence of Solutions of Symmetric Vector
Equilibrium Problems via Nonlinear Scalarization

Ali P. Farajzadeh1 · R. Wangkeeree2,3 · J. Kerdkaew2

Received: 1 March 2017 / Accepted: 27 January 2018
© Iranian Mathematical Society 2018

Abstract
In this paper, by proposing a new type of generalized C-quasiconvexity for the set-
valued mappings and using the nonlinear scalarization function ξq and its properties,
without assumption of monotonicity and boundedness, some existence results of the
solutions for the symmetric vector equilibrium problems and symmetric scalar equi-
librium problems are established. Moreover, the convexity of solution sets is also
investigated. Finally, some examples to support our results are provided.
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1 Introduction

In 1994, the equilibrium problem was proposed in Blum and Oettli [8]. Then it has
been intensively studied and extended. After that, more general equilibrium problems
(see [7,8]) have been extended to the case of vector-valued bifunctions, namely vector
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equilibrium problems, which provides a unified model of several classes of problems
including vector variational inequality problems, vector complementarity problems,
vector optimization problems and vector saddle point problems (see, for example,
[4,6,12,22,24,25]).

The system of vector equilibrium problems, which is a family of equilibrium prob-
lems for vector-valued bifunctions defined on a product set was introduced in 2000,
by Ansari et al. [5]. Furthermore, its applications in vector optimization problems and
Nash equilibrium problem for vector-valued functions were presented by the authors.
Nowadays, it is well known that the system of equilibrium problems, systems of vector
variational inequalities, system of vector variational-like inequalities, system of opti-
mization problems, fixed point problems and several related topics as special cases
(see more in [2,3,5,13,15,26,27,29–31]) contained in the system of vector equilibrium
problems.

On the other hand, the symmetric vector equilibrium problem which is a general-
ization of the equilibrium problem has been studied by many authors. A main topic of
current research is to establish existence theorems (see, for example, [16,18,20,23]).
Another important topic is to study the topological properties of the solution sets,
as it provides the possibility of continuously moving from one solution to any other
solution.

Recently, reducing a vector optimization problem to a scalar optimization problem
is a useful approach for analyzing it. The classical scalarization approaches using
linear functionals have been already used for studying the existence of solutions of
symmetric vector equilibrium problems (see [19,34]). On the other hand, nonlinear
scalarization functions play a vital role in this reduction. The nonlinear scalarization
function ξq , which was commonly known as the Gerstewitz function in the theory
of vector optimization [11,32], has been used to studying many vector optimization
problems. It is well known that the nonlinear scalarization function ξq has many good
properties, such as continuity, sublinearity, convexity and (strict) monotonicity. These
properties have been fully exploited in the literature to deal with various nonconvex
problems with vector objectives, such as existence of solutions, gap functions, duality,
vector variational principles, well-posedness, vector minimax inequalities and vector
network equilibriumproblems.However, to the best of our knowledge, there is nopaper
dealing with the existence theorems for the symmetric vector equilibrium problem
using a nonlinear scalarization method. So, it is natural to raise and give an answer to
the following question.

Question Can one establish existence theorems for the symmetric vector equilibrium
problem using a nonlinear scalarization method?

Motivated by the works mentioned above, by proposing a new type of C-
quasiconvexity for a set-valued mapping together with using a nonlinear scalarization
function and its properties, without assumption of monotonicity and boundedness,
some existence results of the solutions for the symmetric vector equilibrium problems
and symmetric scalar equilibrium problems are established. Moreover, the convexity
of solution sets are investigated. Finally, some examples to support our results are
provided.
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2 Preliminaries

Throughout this paper, let X ,Y , E and Z be real Hausdorff topological vector spaces.
Let A ⊆ X and B ⊆ E be nonempty closed convex subsets, F : A × B × A → 2Y

and G : A × B × B → 2Z be two set-valued mappings. Let C ⊆ Y and P ⊆ Z be
two closed convex pointed cones with intC �= ∅ and int P �= ∅. Let Y ∗ and Z∗ be the
topological dual spaces of Y and Z , respectively. Let C∗ and P∗ be the dual cones of
C and P , respectively, that is,

C∗ = { f ∈ Y ∗ : 〈 f , y〉 ≥ 0, for all y ∈ C}

and

P∗ = {g ∈ Z∗ : 〈g, y〉 ≥ 0, for all y ∈ P}.

The two symmetric vector equilibrium problems under our consideration are as
follows: (SVEP1): find (x, y) ∈ A × B such that

{
F(x, y, u) � (−intC), ∀u ∈ A,

G(x, y, v) � (−int P), ∀v ∈ B,
(SVEP1)

and (SVEP2): find (x, y) ∈ A × B such that

{
F(x, y, u) ∩ (−intC) = ∅, ∀u ∈ A,

G(x, y, v) ∩ (−int P) = ∅, ∀v ∈ B.
(SVEP2)

It is clear that the solution set of (SVEP2) is a subset of (SVEP1). It is remark that
(SVEP1) is a special problem of the symmetric multivalued vector quasiequilibrium
problems studied by Anh and Khan [1]. They obtained some sufficient conditions for
the solution existence in topological vector spaces. However, in this paper, we will
discuss for the solution existence by utilizing the nonlinear scalarization method.

Remark 2.1 (Special cases)

(i) IfC = P, f : A× B → Y and g : A× B → Z are two single-valued mappings,

F(x, y, u) = { f (u, y) − f (x, y)}, ∀(x, y, u) ∈ A × B × A

and

G(x, y, v) = {g(x, v) − g(x, y)}, ∀(x, y, v) ∈ A × B × B,

then the problem (SVEP2) reduces to the single-valued symmetric vector equi-
librium problem considered by [16,18,20];

(ii) If G ≡ 0 and F(x, y, u) = { f (x, u)} for any (x, y, u) ∈ A × B × A, then the
problem (SVEP2) is the equilibrium problem which was considered and studied
by many authors (for example, [5,7,10,21]);
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(iii) IfG ≡ 0 and T is amapping from A to L(X ,Y )where L(X ,Y ) denotes the space
of all continuous linear operators from X to Y , and F(x, y, u) = {〈T x, u − x〉}
for any (x, y, u) ∈ A × B × A, then the problem (SVEP2) is the classic vector
variational inequality problem which was introduced by Giannessi [21].

Now, we are going to recall the nonlinear scalarization function ξq : Y → R, where
q ∈ intC , as follows.

Definition 2.2 [12,32] Given a fixed point q ∈ intC, the nonlinear scalarization func-
tion ξq : Y → R is defined by

ξq(y) = min{t ∈ R : y ∈ tq − C}.

In the special case of Y = Rl ,C = Rl+ and q = (1, 1, . . . , 1) ∈ intRl+, the
nonlinear scalarization function can be expressed in the following equivalent form
[12, Corollary 1.46]:

ξq(y) = max
1≤i≤l

{yi }, ∀y = (y1, y2, . . . , yl) ∈ Rl .

The following results express some useful properties of the nonlinear scalarization
function ξq .

Lemma 2.3 [12, Proposition 1.43] For any fixed q ∈ intC, y ∈ Y and r ∈ R. Then

(i) ξq(y) < r ⇔ y ∈ rq − intC (i.e., ξq(y) ≥ r ⇔ y /∈ rq − intC);
(ii) ξq(y) ≤ r ⇔ y ∈ rq − C;
(iii) ξq(y) = r ⇔ y ∈ rq − ∂C, where ∂C denotes the boundary of C;
(iv) ξq(rq) = r;
(v) ξq is continuous, positive homogeneous, subadditive and convex on Y;
(vi) ξq is monotone (i.e., y2 − y1 ∈ C ⇒ ξq(y1) ≤ ξq(y2)) and strictly monotone

(i.e., y2 − y1 ∈ −intC ⇒ ξq(y1) < ξq(y2)) (see [12,32]).

The property (i) of Lemma 2.3 will play a vital role in scalarization. In fact, as the
definition of ξq , the property (iv) of Lemma 2.3 could be strengthened to that

ξq(y + rq) = ξq(y) + r , ∀y ∈ Y , r ∈ R. (2.1)

For any q ∈ intC , the set Cq defined by

Cq := {y∗ ∈ C∗ : 〈y∗, q〉 = 1}

is a weak∗-compact set of Y ∗ (see [12]). In addition, for the forms of ξq which were
used in [28, Proposition 2.2] and [12, Corollary 2.1], the following equivalent form of
ξq can be deduced from both of them.

Proposition 2.4 [9, Proposition 2.2] Let q ∈ intC . Then for y ∈ Y , ξq(y) =
maxy∗∈Cq 〈y∗, y〉.
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Proposition 2.5 [9, Proposition 2.3] ξq is Lipschitz on Y , and its Lipschitz constant is

L := sup
y∗∈Cq

‖y∗‖ ∈
[

1

‖q‖ ,+∞
)

.

The following example can be found in [9, Example 2.1].

Example 2.6 (i) In the scalar case of Y = R and C = R+, the Lipschitz constant of
ξq is L = 1

q (q > 0). Then,

|ξq(x) − ξq(y)| = 1

q
|x − y|.

for all x, y ∈ R and q > 0.
(ii) If Y = R2 andC = {(y1, y2) ∈ R2 : 1

4 y1 ≤ y2 ≤ 2y1}.Take q = (2, 3) ∈ intC .

Then,

Cq = {(y1, y2) ∈ R : 2y1 + 3y2 = 1, y1 ∈ [−0.1, 2]}.

Then, Lipschitz constant is L = supy∗∈Cq ‖y∗‖ = ‖(−2, 1)‖ = √
5. Hence,

|ξq(y) − ξq(y
′)| = √

5|y − y′|,

for all y, y′ ∈ R.

Definition 2.7 Let X and Y be real Hausdorff topological vector spaces. A set-valued
mapping T : X → 2Y is said to be

(i) closed if its graph

Gr(T ) = {(x, y) ∈ X × Y : y ∈ T (x)}

is closed in X × Y ;
(ii) upper semicontinuous (u.s.c) if, for every x ∈ X and every open set V satisfying

T (x) ⊆ V , there exists a neighborhood U of x such that

T (U ) =
⋃
y∈U

T (y) ⊆ V ;

(iii) lower semicontinuous (l.s.c) if, for any x ∈ X , y ∈ T (x) and any neighborhood
V of y, there exists a neighborhood U of x such that

T (z) ∩ V �= ∅

for all z ∈ U .
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Lemma 2.8 [33]A set-valued mapping T : X → 2Y is lower semicontinuous at x ∈ X
if and only if, for any net {xi } such that xi → x and y ∈ T (x), there exists a net {yi }
with yi ∈ T (xi ) such that yi → y.

Nowwe recall some concepts related to theC-convexity for the set-valuedmapping.

Definition 2.9 [34] Let T : A → 2Y be a set-valued mapping, where A is a nonempty
convex subset of X . T is said to be

(i) C-convex if for every z1, z2 ∈ A and t ∈ [0, 1],

tT (z1) + (1 − t)T (z2) ⊆ T (t z1 + (1 − t)z2) + C .

(ii) C-quasiconvex if for every z1, z2 ∈ A and t ∈ [0, 1], either

T (z1) ⊆ T (t z1 + (1 − t)z2) + C;

or

T (z2) ⊆ T (t z1 + (1 − t)z2) + C .

In this paper, we introduce a new type of C-quasiconvexity for the given set-valued
mapping which is a generalization of both C-convexity and C-quasiconvexity.

Definition 2.10 Let T : A → 2Y be a set-valued mapping, where A is a nonempty
convex subset of X . Then T is said to be generalized C-quasiconvex if for every
z1, z2 ∈ D and t ∈ [0, 1], either

T (z1)
⋂

(T (t z1 + (1 − t)z2) + C) �= ∅;

or

T (z2)
⋂

(T (t z1 + (1 − t)z2) + C) �= ∅.

Remark 2.11 It can be seen from the above definition that every C-quasiconvex map-
ping is a generalized C-quasiconvex mapping. However, the converse does not hold
in general which can be found in Example 3.12 in Sect. 3.

The following lemma plays a key role in results reported in many works (for exam-
ple, [12,34]). Furthermore, we need it in the sequel.

Lemma 2.12 [14] Let {Xi }i∈I be a family of nonempty convex sets where each Xi is
contained in a Hausdorff topological vector space Ei . Let X = ∏

i∈I Xi . For each
i ∈ I , let Pi : X → 2Xi be a set-valued mapping such that

(i) for each i ∈ I , Pi (x) is convex for all x = (xi )i∈I ;
(ii) for each x ∈ X , xi /∈ Pi (x);
(iii) for each yi ∈ Xi , P

−1
i (yi ) = {x ∈ X : Pi (x) ⊇ {yi }} is open in X;
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(iv) for each i ∈ I , there exists a nonempty compact subset N of X and a nonempty
compact convex subset Bi of Xi such that for each x ∈ X\N , there is an i ∈ I
satisfying Pi (x) ∩ Bi �= ∅.

Then there exists x ∈ X such that Pi (x) = ∅ for all i ∈ I .

3 Symmetric Vector Equilibrium Problems

In this section, we present the scalar symmetric equilibrium problems which are
equivalent to the symmetric vector equilibrium problems (SVEP1) and (SVEP2). The
relationships between the solution sets and the existence results for them were estab-
lished.

For any q ∈ intC and q ′ ∈ int P , we also consider the following scalar symmetric
equilibrium problems: (SSEP1(ξ)): find (x, y) ∈ A × B, such that

{∀u ∈ A, ∃z ∈ F(x, y, u) : ξq(z) ≥ 0,
∀v ∈ B, ∃w ∈ G(x, y, v) : ξq ′(w) ≥ 0

(SSEP1(ξ))

and (SSEP2(ξ)): find (x, y) ∈ A × B, such that

{
ξq(F(x, y, u)) ⊆ R+, ∀u ∈ A,

ξq ′(G(x, y, v)) ⊆ R+, ∀v ∈ B.
(SSEP2(ξ))

We denote the solution sets of (SVEP1), (SVEP2), (SSEP1(ξ)) and (SSEP2(ξ)) by
S1, S2, S1(ξ) and S2(ξ), respectively.

Before we give the existence of solutions for (SVEP1) and (SVEP2), we first need
the following simple fact which illustrates the relationship between the solution sets
S1 and S1(ξ).

Lemma 3.1 For any fixed q ∈ intC and q ′ ∈ int P, the following assertion is valid:

S1 = S1(ξ).

Proof First, we assume that (x ′, y′) ∈ S1. Hence, for any u ∈ A, there exists z ∈
F(x ′, y′, u) such that

z /∈ −intC .

Similarly, for any v ∈ B, there exists w ∈ G(x ′, y′, v) such that

w /∈ −int P.

So, it follows from Lemma 2.3(i) that for any (u, v) ∈ A× B, there exists (z, w) such
that

ξq(z) ≥ 0 and ξq ′(w) ≥ 0.
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Therefore,we immediately get that (x ′, y′) ∈ S1(ξ). Conversely, assume that (x ′, y′) ∈
S1(ξ), then we can prove that (x ′, y′) ∈ S1 using Lemma 2.3 with the reverse way of
the above part. ��
Theorem 3.2 Let A ⊆ X and B ⊆ E be nonempty convex subsets, let C ⊆ Y and
P ⊆ Z be closed convex pointed cone with q ∈ intC �= ∅ and q ′ ∈ int P �= ∅.
Suppose F : A × B × A → 2Y and G : A × B × B → 2Z are two set-valued
mappings satisfying the following conditions:
(i) for each (x, y) ∈ A × B, F(x, y, x) ∩ C �= ∅, and G(x, y, y) ∩ P �= ∅;
(ii) for each (x, y) ∈ A× B, F(x, y, ·) is C-quasiconvex on A as well as G(x, y, ·)

is P-quasiconvex on B;
(iii) for each u ∈ A, F(·, ·, u) is lower semicontinuous on A × B and for each

v ∈ B, G(·, ·, v) is lower semicontinuous on A × B;
(iv) there exists nonempty compact convex sets D1 ⊂ A and D2 ⊂ B such that for

each (x, y) ∈ (A × B)\(D1 × D2), there exist x ′ ∈ D1 such that F(x, y, x ′) ⊆
−intC or y′ ∈ D2 such that G(x, y, y′) ⊆ −int P.

Then the set S1 is nonempty.

Proof For each (x, y) ∈ A × B, define P1 : A × B → 2A and P2 : A × B → 2B as
follows:

P1(x, y) = {u ∈ A : ∀z ∈ F(x, y, u), ξq(z) /∈ R+}

and

P2(x, y) = {v ∈ B : ∀w ∈ G(x, y, v), ξq ′(w) /∈ R+}.

We will show that P1 and P2 satisfy all conditions of Lemma 2.12. First, we prove
that P1(x, y) and P2(x, y) are convex for all (x, y) ∈ A× B. Suppose on the contrary
that for some (x, y) ∈ A × B, P1(x, y) is not convex. Then there exists t1, t2 ∈ [0, 1]
with t1 + t2 = 1 and u1, u2 ∈ P1(x, y) such that t1u1 + t2u2 /∈ P1(x, y). This means
that

ξq(z) ∈ R+, ∃z ∈ F(x, y, t1u1 + t2u2).

By assumption (ii), we have either

F(x, y, u1) ⊆ F(x, y, t1u1 + t2u2) + C,

or

F(x, y, u2) ⊆ F(x, y, t1u1 + t2u2) + C .

Hence, we get either

ξq(F(x, y, u1)) ⊆ ξq(F(x, y, t1u1 + t2u2)) + ξq(C) ⊆ R+,
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or

ξq(F(x, y, u2)) ⊆ ξq(F(x, y, t1u1 + t2u2)) + ξq(C) ⊆ R+,

which contradicts u1, u2 ∈ P1(x, y). Similarly, we can show that P2(x, y) is convex.
Next, we want to verify condition (ii) of Lemma 2.12, in fact we have to show that

for each (x, y) ∈ A × B, x /∈ P1(x, y) and y /∈ P2(x, y). For each (x, y) ∈ A × B, it
follows from assumption (i) that F(x, y, x) ∩ C �= ∅ and G(x, y, y) ∩ P �= ∅. Thus,
there exists (z, w) ∈ F(x, y, x) × G(x, y, y) such that

ξq(z) ∈ R+ and ξq ′(w) ∈ R+.

Invoking the definitions of P1(x, y) and P2(x, y), we have

x /∈ P1(x, y) and y /∈ P2(x, y).

To prove condition (iii) of Lemma 2.12, assume that (u, v) ∈ A × B. Note that

(P−1
1 (u))c = {(x, y) ∈ A × B : ∃z ∈ F(x, y, u) s.t. ξq(z) ∈ R+)}. (3.1)

Let {(xi , yi )} ⊆ (P−1
1 (u))c with (xi , yi ) → (x0, y0).As F(x0, y0, u) �= ∅,we choose

z0 ∈ F(x0, y0, u). By Lemma 2.8, there exists a net {zi } ⊆ F(xi , yi , u) such that
zi → z0. Hence, using the continuity of ξq we get

ξq(zi ) → ξq(z0).

The condition (3.1) yields that ξq(z0) ≥ 0. Therefore, (x0, y0) ∈ (P−1
1 (u))c and so

(P−1
1 (u))c is closed. Thus, we have that P−1

1 (u) is open on A. Similarly, we can prove
that P−1

2 (v) is open on B. This completes the proof of condition (iii) of Lemma 2.12.
Finally, we have to show that condition (iv) of Lemma 2.12 holds. By assump-

tion (iv), there exists nonempty compact set D1 × D2 ⊆ A × B such that for any
(x, y) ∈ (A× B)\(D1 × D2), there exists x ′ ∈ D1 such that F(x, y, x ′) ⊆ −intC or
y′ ∈ D2 such that G(x, y, y′) ⊆ −int P . Therefore, for each (z, w) ∈ F(x, y, x ′) ×
G(x, y, y′), ξq(z) /∈ R+, or ξq ′(w) /∈ R+. So, we immediately obtain, by the defini-
tions of P1(x, y) and P2(x, y), that x ′ ∈ P1(x, y) or y′ ∈ P2(x, y). This completes
the proof of the condition (iv) of Lemma 2.12.

Consequently, the set-valued mappings P1 and P2 satisfy all conditions given in
Lemma 2.12. So, there exists (x̄, ȳ) ∈ A × B such that

P1(x̄, ȳ) = ∅ and P2(x̄, ȳ) = ∅.

Then, for each (u, v) ∈ A × B, there exists (z, w) ∈ F(x̄, ȳ, u) × G(x̄, ȳ, v) such
that

ξq(z) ∈ R+ and ξq ′(w) ∈ R+.
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Therefore, we have (x̄, ȳ) ∈ S1(ξ). Using Lemma 3.1, we conclude that S1 is
nonempty. ��
Remark 3.3 Comparing Theorem 3.2 and the results obtained in Anh and Khan [1],
we can see that the main difference is that our techniques are based on the utilizing
the nonlinear scalarization method while the mentioned work employed the relaxed
quasiconvexities of the multivalued mappings F(·, y, ·) and G(·, x, ·) as the main
tools.

Now, we give the following example to illustrate Theorem 3.2.

Example 3.4 Let X = Y = Z = R, A = B = [0, 1],C = P = R+ and define the
mappings F : A × B × A → 2Y and G : A × B × B → 2Z by, for any (x, y, u) ∈
A × B × A and (x, y, v) ∈ A × B × B,

F(x, y, u) = [x − u, u] and G(x, y, v) = [y − v, v].

It is clear that (i) given in Theorem 3.2 is satisfied. To establish the assumption (ii) of
Theorem 3.2, let u1, u2 ∈ A and t1, t2 ∈ [0, 1]with t1+ t2 = 1.Assume that u1 ≤ u2,
then for each z ∈ F(x, y, u1)

x − u1 ≤ z ≤ u1.

Then, we can get that

x − t1u1 − t2u2 ≤ z ≤ t1u1 + t2u2,

which means

F(x, y, u1) ⊆ F(x, y, t1u1 + t2u2) ⊆ F(x, y, t1u1 + t2u2) + C

and so F(x, y, ·) is C-quasiconvex on A. By the same fashion, we can show that
G(x, y, ·) also is P-quasiconvex on B.

Next, we prove the assumption (iii) of Theorem 3.2. Let u ∈ A be arbitrarily fixed.
Let (x ′, y′) ∈ A × B, z ∈ F(x ′, y′, u) and U be any neighborhood of z. Then, for
each (x, y) in a neighborhood [x ′, 1] × B of (x ′, y′), we have

F(x, y, u) = [x − u, u] ⊇ [x ′ − u, u].

Thus, F(x, y, u) ∩ U ⊇ {z} �= ∅, ∀(x, y) ∈ [x ′, 1] × B and so the first statement of
assumption (iii) of Theorem 3.2 is true. Similarly, we can check that the second one
is also true.

Finally, take D1 = [ 12 , 1] ⊆ A and D2 = [ 12 , 1] ⊆ B. Then, for each (x, y) ∈
(A × B)\(D1 × D2), there exist x ′ = 1 ∈ D1 and y′ = 1 ∈ D2 such that

F(x, y, x ′) = [x − 1, 1] and G(x, y, y′) = [y − 1, 1].
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Thus, we have

F(x, y, x ′) ⊆ [−1, 0) ⊂ −intC and P(x, y, y′) ⊆ [−1, 0) ⊂ −int P,

for all (x, y) ∈ (A × B)\(D1 × D2). The assumption (iv) of Theorem 3.2 is proved.
Now, we will show that S1 �= ∅. Taking (x, y) = (1, 1) ∈ A × B leads to

F(x, y, u) = F(1, 1, u) = [1 − u, u],

and

G(x, y, v) = G(1, 1, v) = [1 − v, v],

which, respectively, follows that

F(1, 1, u) = [1 − u, u] � −intR+ = −intC, ∀u ∈ A

and

G(1, 1, u) = [1 − v, v] � −intR+ = −int P, ∀v ∈ B.

This yields (1, 1) ∈ S1. ��
We give the following examples to show that all of the assumptions of Theorem 3.2

are essential and cannot be dropped.

Example 3.5 (Assumption (i) of Theorem 3.2 is essential) Let X = Y = Z = R, A =
B = [0, 1],C = P = R+ and define the mappings F : A × B × A → 2Y and
G : A × B × B → 2Z as

F(x, y, u) =
(

−u − 1

2
, u

)
and G(x, y, v) =

(
−v − 1

2
, v

)
.

First, to show that assumption (i) does not hold, take x = y = 0. So, we have that

F(x, y, x) ∩ C = F(0, 0, 0) ∩ R+ =
(

−1

2
, 0

)
∩ R+ = ∅

and

G(x, y, y) ∩ P = G(0, 0, 0) ∩ R+ =
(

−1

2
, 0

)
∩ R+ = ∅.

We can verify all of the other assumptions of Theorem 3.2. However, the prob-
lem SVEP1 has no solution, i.e., S1(F,G) = ∅ since for each (x, y) ∈ A × B,

there exists (u, v) = (0, 0) ∈ A × B such that

F(x, y, u) = F(x, y, 0) =
(

−1

2
, 0

)
⊆ −intR+ = −intC
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and

G(x, y, v) = G(x, y, 0) =
(

−1

2
, 0

)
⊆ −intR+ = −int P.

The reason is assumption (i) of Theorem 3.2 is violated.

Example 3.6 (Assumption (ii) of Theorem 3.2 is essential) Let X = Y = Z = R, A =
B = [0, 1],C = P = R+ and define the mappings F : A × B × A → 2Y and
G : A × B × B → 2Z by

F(x, y, u) =
⎧⎨
⎩

{
1

2

}
, u = x,

(−u − 1, u − 1], otherwise,

and

G(x, y, v) =
⎧⎨
⎩

{
1

2

}
, v = y,

(−v − 1, v − 1], otherwise.

It is clear that assumptions (i), (iii) and (iv) of Theorem 3.2 are satisfied. However,
assumption (ii) of Theorem 3.2 is violated. Indeed, let x = y = 1

2 , t = 1
2 , u1 = 1

and u2 = 0. So, we have that

F(x, y, u1) = F

(
1

2
,
1

2
, 1

)
= (−2, 1],

F(x, y, u2) = F

(
1

2
,
1

2
, 0

)
= (−1, 0]

and

F(x, y, t1u1 + t2u2) = F

(
1

2
,
1

2
,
1

2

)
=

{
1

2

}
.

Thus, we have that

F(x, y, u1) � F(x, y, t1u1 + t2u2) + C

and

F(x, y, u2) � F(x, y, t1u1 + t2u2) + C .

Note that S1(F,G) = ∅. Since for each (x, y) ∈ A× B, there exists (u, v) = (0, 0) ∈
A × B such that

F(x, y, u) = (−2,−1] ⊆ −intR+ = −intC
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and

G(x, y, v) = (−2,−1] ⊆ −intR+ = −int P.

Thus, assumption (ii) of Theorem 3.2 cannot be dropped. ��
Example 3.7 (Assumption (iii) of Theorem 3.2 is essential) Let X = Y = Z =
R, A = B = [−1, 1],C = P = R+ and define the mappings F : A × B × A → 2Y

and G : A × B × B → 2Z as

F(x, y, u) =
{

{x − u}, x ≤ 0,[ − 1
2 ,

u
2

)
, otherwise,

and

G(x, y, v) =
{

{y − v}, y ≤ 0,[ − 1
2 ,

v
2

)
, otherwise.

To show that assumption (iii) of Theorem 3.2 is not satisfied, take x ′ = y′ = 0, u =
1. Then, we have F(x ′, y′, u) = {−1}. Let z ∈ F(x ′, y′, u), then (− 3

2 ,− 1
2 ) is a

neighborhood of z. Thus, for each neighborhood V of (x ′, y′) we have
(

−3

2
,−1

2

)
∩ V =

(
−3

2
,−1

2

)
∩

[
− 1

2
,
1

2

)
= ∅,

for all (x, y) ∈ V with x > x ′ = 0. In fact, it is not hard to show that all of other
assumptions in Theorem 3.2 are satisfied, especially assumption (i) and (ii), which are
clear by the definitions of F andG.However, S1(F,G) = ∅. For each (x, y) ∈ A×B,

consider the following two cases:

if x ≤ 0, then F(x, y, u) = {x − u} ⊆ −intR+,∀u ∈ (0,−1],
if x > 0, then F(x, y, u) = [− 1

2 ,
u
2 ) ⊆ −intR+,∀u ∈ [−1, 0]. The reason is

assumption (iii) of Theorem 3.2 is dropped. ��
Example 3.8 (Assumption (iv) of Theorem 3.2 is essential) Let X = Y = Z =
R, A = B = [0, 1],C = P = R+ and define the mappings F : A × B × A → 2Y

and G : A × B × B → 2Z as

F(x, y, u) =
{

(−xu − x, xu), x = y �= 0,

[ − 1, xu), otherwise

and

G(x, y, v) =
{

(−yv − y, yv), x = y �= 0,

[ − 1, yv), otherwise.

123

Author's personal copy



Bulletin of the Iranian Mathematical Society

We can show that almost all of the assumptions of Theorem 3.2 are satisfied, except
assumption (iv). To show that assumption (iv) of Theorem 3.2 is violated, for any
nonempty compact set D1 × D2 ⊆ A× B, we take (x, y) = (1, 1) ∈ (A× B)\(D1 ×
D2). Then, for each (x ′, y′) ∈ (D1 × D2), we have

F(x, y, x ′) = (−x ′ − 1, x ′) � −intR+,

G(x, y, y′) = (−y′ − 1, y′) � −intR+.

Then, the problem (SVEP1) has no solution since for each (x, y) ∈ A×B, there exists
(u, v) = (0, 0) ∈ A × B, such that

F(x, y, u) =
{

(−x, 0) ⊆ −intR+, x = y �= 0,

[ − 1, 0) ⊆ −intR+, otherwise

and

G(x, y, v) =
{

(−y, 0) ⊆ −intR+, x = y �= 0,

[ − 1, 0) ⊆ −intR+, otherwise.

Hence, assumption (iii) of Theorem 3.2 is essential. ��
Now we shall discuss about a link between the solution sets S2 and S2(ξ) for

(SVEP2).

Lemma 3.9 For any fixed q ∈ −intC and q ′ ∈ −int P,

S2 = S2(ξ).

Proof First, we assume that (x ′, y′) ∈ S2(F,G), which means

F(x ′, y′, u) ∩ (−intC) = ∅, for all u ∈ A

and

G(x ′, y′, v) ∩ (−int P) = ∅, for all v ∈ B.

So, by Lemma 2.3 we obtain that for any (u, v) ∈ A × B,

z /∈ −intC and w /∈ −int P

for all (z, w) ∈ F(x ′, y′, u) × G(x ′, y′, v). So, it follows that, for any pair (u, v) ∈
A × B,

ξq(z) ∈ R+ and ξq ′(w) ∈ R+
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for all (z, w) ∈ F(x ′, y′, u) × G(x ′, y′, v). Therefore, we get by the definition of ξq
and ξq ′ that

ξq(F(x ′, y′, u)) ⊆ R+, ∀u ∈ A

and

ξq ′(G(x ′, y′, v)) ⊆ R+, ∀v ∈ B.

Hence, (x ′, y′) ∈ S2(ξ). Conversely, assume that (x ′, y′) ∈ S2(ξ), then we can prove
that (x ′, y′) ∈ S2 using the same argument given in the proof of Lemma 2.3. ��

Now a result on existence of solutions of the (SVEP2) is verified by making use of
the nonlinear scalarization function.

Theorem 3.10 Let A ⊆ X and B ⊆ E be nonempty convex subsets, let C ⊆ Y and
P ⊆ Z be closed convex cones with q ∈ intC �= ∅ and q ′ ∈ intP �= ∅. Suppose
F : A × B × A → 2Y and G : A × B × B → 2Z are two set-valued mappings which
satisfy the following conditions:
(i) for each (x, y) ∈ A × B, F(x, y, x) ⊆ C and G(x, y, y) ⊆ P;
(ii) for each (x, y) ∈ A × B, F(x, y, ·) is generalized C-quasiconvex on A as well

as G(x, y, ·) is generalized C-quasiconvex on B;
(iii) for each (x, y, u) ∈ A × B × A with F(x, y, u) ∩ −intC �= ∅,

z ∈ F(x, y, u) ⇒ z − C ⊆ −intC

and also for each (x, y, v) ∈ A × B × B with G(x, y, v) ∩ −int P �= ∅,

w ∈ G(x, y, v) ⇒ w − P ⊆ −int P;

(iv) for each u ∈ A, F(·, ·, u) is lower semicontinuous on A × B and for each
v ∈ B, G(·, ·, v) is lower semicontinuous on A × B;

(v) there exist nonempty compact convex sets D1 ⊆ A and D2 ⊆ B such that for
each (x, y) ∈ (A× B)\(D1 × D2), there exists x ′ ∈ D1 such that F(x, y, x ′) ∩
−intC �= ∅ or y′ ∈ D2 such that G(x, y, y′) ∩ −int P �= ∅.

Then the solution set S2 is nonempty.

Proof Let the set-valuedmappings P1 : A×B → 2A and P2 : A×B → 2B be defined
by, for any (x, y) ∈ A × B,

P1(x, y) = {u ∈ A : ξq(F(x, y, u)) � R+}

and

P2(x, y) = {v ∈ B : ξq ′(G(x, y, v)) � R+}.
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We first show that P1 and P2 satisfy all the conditions given in Lemma 2.12. First,
we prove that P1(x, y), P2(x, y) are convex for all (x, y) ∈ A × B. Assume on the
contrary that P1(x, y) is not convex. Then there exists t1, t2 ∈ [0, 1] with t1 + t2 = 1
and u1, u2 ∈ P1(x, y) such that t1u1 + t2u2 /∈ P1(x, y), which gives that

ξq(F(x, y, t1u1 + t2u2)) ⊆ R+.

By assumption (ii), we have either

F(x, y, u1)
⋂

(F(x, y, t1u1 + t2u2) + C) �= ∅,

or

F(x, y, u2)
⋂

(F(x, y, t1u1 + t2u2) + C) �= ∅.

It follows that there is z ∈ F(x, y, t1u1 + t2u2) such that either

z = z1 − c, ∃z1 ∈ F(x, y, u1), ∃c ∈ C

or

z = z2 − c′, ∃z2 ∈ F(x, y, u2), ∃c′ ∈ C .

Thus, by assumption (iii), we have either

ξq(z) = ξq(z1 − c) < 0,

or

ξq(z) = ξq(z2 − c′) < 0.

This contradicts to t1u1 + t2u2 /∈ P1(x, y). Similarly, we can show hat P2(x, y) is
convex.

Next, we verify condition (ii) of Lemma 2.12. In fact, we have to show that x /∈
P1(x, y) and y /∈ P2(x, y). Let (x, y) ∈ A × B. By assumption (i), for each (z, w) ∈
F(x, y, x) × G(x, y, y). This says z ∈ C and w ∈ P, and so

z /∈ −intC and w /∈ −int P.

Hence, by Lemma 2.3(i), we get that

ξq(z) ∈ R+ and ξq ′(w) ∈ R+

for all (z, w) ∈ F(x, y, x) × G(x, y, y), which means

ξq(F(x, y, x)) ⊆ R+ and ξq ′(F(x, y, x)) ⊆ R+.
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It follows that, for all (x, y) ∈ A × B,

x /∈ P1(x, y) and y /∈ P2(x, y).

To verify condition (iii) of Lemma 2.12, assume that (u, v) ∈ A × B. Note that

(P−1
1 (u))c = {(x, y) ∈ A × B : ξq(F(x, y, u)) ⊆ R+}.

Let {(xi , yi )} ∈ (P−1
1 (u))c with (xi , yi ) → (x0, y0).By assumption (iv), for each z0 ∈

F(x0, y0, u), there exist zi ∈ F(xi , yi , u) such that zi → z0. Since ξq(F(xi , yi , u)) ⊆
R+, ξq(zi ) ∈ R+. By the continuity of ξq , we get ξq(z0) ∈ R+. As z0 is an arbitrary,
we obtain ξq(F(x0, y0, u)) ⊆ R+. Thus, (x0, y0) ∈ (P−1

1 (u))c, and so (P−1
1 (u))c is

closed. Hence, we have that P−1
1 (u) is open on A. Similarly, we can prove that P−1

2 (v)

is open on B. Finally, we have to show that condition(iv) of Lemma 2.12 is satisfied.
By assumption (v), there exist nonempty compact sets D1 × D2 ⊆ A × B such that
for any (x, y) ∈ (A × B)\(D1 × D2), there exists x ′ ∈ D1 such that F(x, y, x ′) ∩
−intC �= ∅ or there exists y′ ∈ D2 such that G(x, y, y′)∩−int P �= ∅. Thus, for any
(x, y) ∈ (A×B)\(D1×D2),weobtain that ξq(F(x, y, x ′)) � R+, for some x ′ ∈ D1
or ξ ′

q(G(x, y, y′)) � R+, for some y′ ∈ D2. So, we immediately obtain by the
definition of P1(x, y) that

x ′ ∈ P1(x, y), for some x ′ ∈ D1

or

y′ ∈ P2(x, y), for some y′ ∈ D2.

Therefore, we proved condition (iv) of Lemma 2.12 and so P1 and P2 satisfy all
conditions of Lemma 2.12. Hence, we can conclude that there exists (x̄, ȳ) ∈ A × B
such that

P1(x̄, ȳ) = ∅ and P2(x̄, ȳ) = ∅.

This means there exists (x̄, ȳ) ∈ A × B such that

ξq(F(x̄, ȳ, u)) ⊆ R+, ∀u ∈ A

and

ξq ′(G(x̄, ȳ, v)) ⊆ R+, ∀v ∈ B.

Therefore, (x̄, ȳ) ∈ S2(ξ) and so by Lemma 3.1 we complete the proof that S2 is
nonempty. ��
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Remark 3.11 Comparing Theorem 3.10 and the results obtained in Anh and Khan [1]
and Lemma 2.3 in Zhong et al. [34], we can see that the main difference is that our
techniques are based on the utilizing the nonlinear scalarizationmethod. Further, theC-
quasiconvexity of the mapping F(x, y, ·) and G(x, y, ·) are weakened by generalized
C-quasiconvexity. Hence, Theorem 3.10 can be applicable in the following situation
while the afore-cited results do not work as in the following example.

Example 3.12 Let X = Y = Z = R, A = B = [0, 1],C = P = R+ and define the
mappings F : A × B × A → 2Y and G : A × B × B → 2Z as

F(x, y, u) =
{

(u, u + 1), u ≤ x;
[ − u, 1), x < u;

and

G(x, y, v) =
{

(v, v + 1), v ≤ y;
[ − v, 1), y < v.

First, we show that F is not C-quasiconvex. Taking x = 1
2 , u1 = 1, u2 = 0, and

t1 = t2 = 1
2 , we have the following relations:

F(x, y, u2) = (0, 1) �

(
1

2
,+∞

)

=
(
1

2
,
3

2

)
+ R+ = F(x, y, t1u2 + t2u2) + C

and

F(x, y, u1) = [−1, 1) �

(
1

2
,+∞

)
= F(x, y, t1u2 + t2u2) + C .

Hence, F is not C-quasiconvex. However, all assumptions given in Theorem 3.10 are
satisfied. First, it is clear that the assumption (i) given in Theorem 3.10 is satisfied.
Next, we shall establish the assumption (ii). To this end, for fixed (x, y) ∈ A × B, let
u1, u2 ∈ A and t1, t2 ∈ [0, 1] with t1 + t2 = 1. Assume that u1 ≤ u2. Then, we have
the following three cases.

Case I: If u1 ≤ u2 ≤ x, then t1u1 + t2u2 ≤ u2 ≤ x and

F(x, y, u2) ∩ (F(x, y, t1u1 + t2u2) + C)

= (u2, u2 + 1) ∩ (t1u1 + t2u2,+∞) �= ∅.

123

Author's personal copy



Bulletin of the Iranian Mathematical Society

Case II: If u1 ≤ x < u2, then we have either t1u1 + t2u2 > x or t1u1 + t2u2 ≤ x .
Thus, we have either

F(x, y, u2) ∩ (F(x, y, t1u1 + t2u2) + C)

= [−u2, 1) ∩ [−t1u1 − t2u2,+∞) �= ∅

or

F(x, y, u2) ∩ (F(x, y, t1u1 + t2u2) + C)

= [−u2, 1) ∩ (t1u1 + t2u2,+∞) �= ∅.

Case III: If x < u1 ≤ u2, then t1u1 + t2u2 > x , and hence

F(x, y, u2) ∩ (F(x, y, t1u1 + t2u2) + C) = [−u2, 1) ∩ [−t1u1 − t2u2,+∞) �= ∅.

Hence, we have that F is generalized C-quasiconvex. Similarly, we can show that G
is generalized C-quasiconvex.

To verify assumption (iii), notice that for each element u ∈ A, F(x, y, u) ∩
−intC �= ∅ if u > x . Assume that z ∈ F(x, y, u), then z also belongs [−u, 1) ⊆
[−1, 1). It is not hard to see that z −C ⊆ −intC . Similarly, we can show that G also
satisfies this assumption.

Next, to verify assumption (iv) of Theorem 3.10, let (x ′, y′) ∈ A × B and z ∈
F(x ′, y′, u).

Case I: If u ≤ x ′, then z ∈ (x ′, x ′ + 1). Let U be arbitrary neighborhood of z. For
each (x, y) belonging to neighborhood (u, x ′] × B of (x ′, y′), we have

F(x, y, u) ⊇ (x ′, x ′ + 1), ∀x ∈ (u, x ′].

Hence, F(x, y, u) ∩U �= ∅, ∀(x, y) ∈ (u, x ′] × B.

Case II: If u > x ′, then z ∈ [−u, 1). Let U be arbitrary neighborhood of z. For each
(x, y) belonging to neighborhood [x ′, 1] × B of (x ′, y′), we have

F(x, y, u) = [−u, 1) � z.

Hence, F(x, y, u) ∩U �= ∅, ∀(x, y) ∈ [x ′, 1] × B. Therefore, F(·, ·, u) satisfies the
condition (iv) on A. Similarly, G(·, ·, v) satisfies the condition (iv) on B.

Finally, we show that the assumption (iv) of Theorem 3.10 holds, take D1 =
[ 12 , 1] ⊂ A and D2 = [ 12 , 1] ⊂ B. Then, for each element (x, y) belongs (A ×
B)\(D1 × D2), there exist x ′ = 1 ∈ D1 and y′ = 1 ∈ D2 such that

F(x, y, x ′) ∩ −intC = [−1,∞) ∩ −intR+ = [−1, 0) �= ∅.

Therefore, all assumptions in Theorem 3.10 are satisfied. In fact, it is easy to see that
(1, 1) ∈ S2. ��
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4 Convexity of the Solution Set of Symmetric Vector Equilibrium
Problem

In this section, we study the convexity of the solution set S2. The sufficient conditions
for the convexity of S2 were established. Now, we recall the following useful features,
which lead us to obtain our results in the sequel.

Definition 4.1 [17] Let K be a subset of a topological vector space E . A set-valued
mapping F : K → 2E\{∅} is said to be a KKM mapping if for any {x1, x2, . . . , xn} ⊂
K ,

co{x1, x2, . . . , xn} ⊆
n⋃

i=1

F(xi ),

where 2E\{∅} stands for the family of all nonempty subsets of E , while the notion
co{x1, x2, . . . , xn} denotes the convex hull of {x1, x2, . . . , xn}.

The following well-known lemma plays vital role in our results in this section.

Lemma 4.2 [17] Let K be a subset of a topological vector space E . A set-valued
mapping F : K → 2X be a KKMmapping with closed values in K . Assume that there
exists a nonempty compact convex subset B of K such that

⋂
x∈B F(x) is compact.

Then,

⋂
x∈K

F(x) �= ∅.

Theorem 4.3 Let A ⊆ X and B ⊆ E be nonempty convex subsets, let C ⊆ Y and
P ⊆ Z be closed convex pointed cone with q ∈ intC �= ∅ and q ′ ∈ int P �= ∅.
Suppose F : A × B × A → 2Y and G : A × B × B → 2Z are two set-valued
mappings which satisfy the following conditions:
(i) for each (x, y) ∈ A × B, F(x, y, x) ⊆ C and G(x, y, y) ⊆ P;
(ii) for each (x, y) ∈ A × B, F(x, y, ·) is C-convex on A as well as G(x, y, ·) is

P-convex on B;
(iii) for each u ∈ A, F(·, ·, u) is lower semicontinuous on A × B and for each

v ∈ B, G(·, ·, v) is lower semicontinuous on A × B;
(iv) there exist nonempty compact convex set D1 × D2 ⊆ A × B and compact set

M1 × M2 ⊆ A × B such that for each (x, y) ∈ (A × B)\(M1 × M2), there
exists (x ′, y′) ∈ D1 × D2 such that F(x, y, x ′) ∩ −intC �= ∅ or y′ ∈ D2 such
that G(x, y, y′) ∩ −int P �= ∅.

Then, the solution set S2(ξ) is a nonempty compact subset of A × B. Furthermore,
S2 is convex.

Proof Let q ∈ −intC, and q ′ ∈ −int P. Define a set-valued mapping T : A × B →
A × B by

T (z, w) = {(x, y) ∈ A × B : ξq(F(x, y, z)) ⊆ R+, ξq ′(G(x, y, w)) ⊆ R+}.

123

Author's personal copy



Bulletin of the Iranian Mathematical Society

Note that S2(ξ) = ⋂
(z,w)∈A×B T (z, w). We assert that the set-valued mapping T

fulfills all the assumptions of Lemma 4.2. First, we will show that is a KKMmapping.
Suppose on the contrary, then there exists a subset {(x1, y1), . . . , (xn, yn)} of A × B
and (z, w) ∈ A × B such that

(z, w) ∈ co{(x1, y1), . . . , (xn, yn)}\
n⋃

i=1

T (xi , yi ).

Hence, there exists α1, . . . , αn ∈ R+ such that

n∑
i=1

αi = 1 and (z, w) =
n∑

i=1

αi (xi , yi ).

Thus, for all i = 1, 2, . . . , n, we have

ξq(F(z, w, xi )) � R+ or ξq ′(G(z, w, yi )) � R+. (4.1)

By assumption (ii), the C-quasiconvexity and P-quasiconvexity of F and G are ful-
filled, respectively, and so

F(z, w, xi ) ⊆ F(z, w, z) + C, for some i = 1, 2, . . . , n

and

G(z, w, yi ) ⊆ G(z, w,w) + C, for some i = 1, 2, . . . , n.

Hence, there is i ∈ {1, 2, . . . , n} such that

ξq(F(z, w, xi )) ⊆ ξq(F(z, w, z)) + ξq(C) ⊆ R+

and

ξq ′G((z, w, yi )) ⊆ ξq ′(G(z, w,w)) + ξq ′(C) ⊆ R+.

This contradicts (4.1), and so T is a KKM mapping. Next, we will show that for each
(z, w) ∈ A×B, the set T (z, w) is closed. Let (z, w) ∈ A×B and {(zi , wi )} ⊆ T (z, w)

be a net converges to (z1, w2). Since (zi , wi ) ∈ T (z, w) for all i , we have

ξq(F(zi , wi , z)) ⊆ R+ and ξq ′(G(zi , wi , w)) ⊆ R+, ∀i .

Let (h1, h2) ∈ ξq(F(z1, w2, z)) × ξq ′(G(z1, w2, w)). Then there exists the pair
(z2, w3) ∈ F(z1, w2, z) × G(z1, w2, w) such that

(h1, h2) = (ξq(z2), ξq ′(w3)).
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By assumption (iii), there is (ti , si ) ∈ F(zi , wi , z) × G(zi , wi , w) such that

(ti , si ) → (z2, w3).

Since (ti , si ) ∈ F(zi , wi , z) × G(zi , wi , w) for all i , we have

ξq(ti ) ≥ 0 and ξq ′(si ) ≥ 0 for all i .

Therefore, by the continuity of ξq and ξ ′
q , we get

h1 ≥ 0 and h2 ≥ 0.

Since (h1, h2) is arbitrary element belongs to ξq(F(z1, w2, z)) × ξq ′(G(z1, w2, w)),

we get

ξq(F(z1, w2, z)) ⊆ R+ and ξq ′(G(z1, w2, w)) ⊆ R+.

Hence, (z1, w2) ∈ T (z, w) and so T (z, w) is closed for any (z, w) ∈ A × B. Now,
all the assumptions of Lemma 4.2 are fulfilled and so S2(ξ) is nonempty. Further, it
follows from assumption (iv) that

S2(ξ) ⊆ M1 × M2,

and so it completes the proof that S2(ξ) is a nonempty compact subset of A × B. By
Lemma 3.9, S2 is also nonempty and compact. Finally, the C-convexity of F(x, y, ·)
on A and the P-convexity of G(x, y, ·) on B imply the set T (z, w) is convex for
all (z, w) ∈ A × B. Hence, the set S2(ξ) is convex (The intersection of the convex
sets is convex.). Therefore, by Lemma 3.9, S2 is also convex. This completes the
proof. ��

5 Conclusions

In this paper, we considered the problems (SVEP1), (SVEP2), (SSEP1(ξ)) and
(SSEP2(ξ)). By introducing the new type of C-quasiconvexity for a set-valued map-
ping and using a nonlinear scalarization function ξq and its properties, we obtained
some existence results of the solutions for the symmetric vector equilibrium problems
and symmetric scalar equilibrium problems. In fact, our studying is without assump-
tion of monotonicity and boundedness. Moreover, the convexity of solution sets are
investigated. Finally, some examples to support our results are provided.
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Levitin-Polyak well-posedness for parametric

quasivariational inclusion and disclusion problems

PANATDA BOONMAN and RABIAN WANGKEEREE

ABSTRACT. In this paper, we aim to suggest the new concept of Levitin-Polyak (for short, LP) well-posedness
for the parametric quasivariational inclusion and disclusion problems (for short, (QVIP) (resp. (QVDP))). Neces-
sary and sufficient conditions for LP well-posedness of these problems are proved. As applications, we obtained
immediately some results of LP well-posedness for the quasiequilibrium problems and for a scalar equilibrium
problem.

1. INTRODUCTION

Well-posedness is very important concept in optimization theory, for well-posed op-
timization problems, which guarantees that, for every approximating solution sequence,
there is a subsequence which converges to a solution. In 1966, well-posedness of uncon-
strained and constrained scalar optimization problems was first introduced and studied
by Tykhonov [24] and Levitin and Polyak [15], respectively. Well-posedness for various
problems related to optimization has been recently intensively considered, see e.g: for op-
timization problems [11, 12, 13, 21, 23, 31, 32], for variational inequalities [5, 7, 9, 10, 17, 25],
for Nash equilibria [18, 20], for inclusion problems [10, 26, 27, 28], for equilibrium pro-
blems [2, 8, 16, 30] and for fixed point problems [6, 10, 22].

Lin and Chuang [19] studied and extended the well-posedness to variational inclu-
sion and disclusion problems and optimization problems with variational inclusion and
disclusion problems as constraints. They proved some results concerned with the well-
posedness in the generalized sense, the well-posedness for optimization problems for va-
riational inclusion problems and variational disclusion problems and scalar equilibrium
problems as constraint. Recently, Wang and Huang [26] introduced and studied LP well-
posedness for generalized quasivariational inclusion and disclusion problems. Necessary
and sufficient conditions for LP well-posedness of these problems are proved.

On the other hand, in [3], Anh, Khanh and Quy introduced and studied the parame-
tric generalized quasivariational inclusion problem (QVIP) which contains many kinds
of problems such as generalized quasivariational inclusion problems, quasioptimization
problems, quasiequilibrium problems, quasivariational inequalities, complementarity pro-
blems, vector minimization problems, Nash equilibria, fixed-point and coincidence-point
problems, traffic networks, etc. It is well known that a quasioptimization problem is more
general than an optimization one as constraint sets depend on the decision variable as
well. It is investigated in [3] the semicontinuity properties of solution maps to (QVIP). In
2016, Wangkeeree, Anh and Boonman [29] studied the new concept of well-posdness for
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the general parametric quasivariational inclusion problems (QVIP). The corresponding
concepts of well-poseness in the generalized sense are also introduced and investigated
for (QVIP). Some metric characterizations of well-posedness for (QVIP) are also studied.

Motivated and inspired by the works mentioned above [3, 19, 26, 29], there is no work
to provide the concept of LP well-posedness for (QVIP) (resp. (QVDP)). In this paper, our
main aim is to suggest the new concept of LP well-posedness for (QVIP) (resp. (QVDP)).
Necessary and sufficient conditions for LP well-posedness of these problems are proved.
As applications, we obtained immediately some results of LP well-posedness for the qua-
siequilibrium problems and for a scalar equilibrium problem.

2. PRELIMINARIES

Let X and Y be two metric spaces, T : X ! 2Y be a multivalued map. T is said to
be upper semicontinuous (u.s.c., shortly) (resp. lower semicontinuous (l.s.c., shortly)) at
x0 2 X if for any open set V ✓ Y , where T (x0) ✓ V (resp. T (x0) \ V 6= ;), there exists a
neighborhood U ✓ X of x0 such that T (x) ✓ V (resp. T (x) \ V 6= ;), 8x 2 U ; T (·) is said
to be u.s.c. (resp. l.s.c.) on X if it is u.s.c. (resp. l.s.c.) at every x 2 X ; T is continuous on
X if it is both u.s.c. and l.s.c. on X; T is closed if gr(T ) := {(x, y) 2 X ⇥ Y | y 2 T (x)} is a
closed set X ⇥ Y ; T is open if graph of T is open in X ⇥ Y .

Lemma 2.1. [4] Let X and Y be two metric spaces, T : X ! 2Y a multivalued mapping.
(i) If T is u.s.c. and closed-valued, then T is closed.

(ii) If T is u.s.c. at x̄ and T (x̄) is compact, then for any sequence {xn} converging to x̄, every
sequence {yn} with yn 2 T (xn) has a subsequence convering to some point in T (x̄). If,
in addition, T (x̄) = {ȳ} is a singleton, then such a sequnece {yn} must converge to ȳ.

(iii) T is l.s.c. at x̄ if and only if for any sequence {xn} with xn ! x̄ and any point y 2 T (x̄),
there is a sequence {yn} with yn 2 S(xn) converging to y.

Definition 2.1. [14] Let (E, d) be a complete metric space. The Kuratowski measure of
noncompactness of subset M of E is defined by

µ(M) = inf

(
" > 0 : M ✓

n[

i=1

Mi and diamMi < ", i = 1, 2, . . . , n

)
,

where diamMi denotes the diameter of Mi and is defined by diamMi = sup{d(x1, x2) :
x1, x2 2 Mi}.

Definition 2.2. Let A and B be nonempty subset of a metric space (E, d). The Hausdorff
distance H(·, ·) between A and B is defined by H(A,B) := max{H⇤(A,B), H⇤(B,A)},
where H

⇤(A,B) := supa2A d(a,B) with d(a,B) = infb2B d(a, b).

Lemma 2.2. [14] Let (X, d) be a complete metric space. If (Fn) is a decreasing sequence of
nonempty, closed and bounded subsets of X such that lim

n!1
µ(Fn) = 0, then the intersection

F1 =
T1

n=1 Fn is a nonempty and compact subset of X .

3. LP WELL-POSEDNESS FOR PARAMETRIC QUASIVARIATIONAL INCLUSION AND
DISCLUSION PROBLEMS

Throughout this article, unless otherwise specified, we use the following notations.
Let (E, d) and (E0

, d
0) be two metric spaces and X and ⇤ be nonempty closed subsets

of E and E
0, respectively. Let Z be a Hausdorff topological vector space. Let K1,K2 :

X ⇥ ⇤ ! 2X and F1, F2 : X ⇥X ⇥ ⇤ ! 2Z be multivalued mappings. Let e : X ! Z be
a continuous mapping. We consider the following parametric quasivariational inclusion and
disclusion problems, for each � 2 ⇤,
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(QVIP)� : Finding x̄ 2 K1(x̄,�) such that 0 2 F1(x̄, y,�), for each y 2 K2(x̄,�);
(QVDP)� : Finding x̄ 2 K1(x̄,�) such that 0 /2 F2(x̄, y,�), for each y 2 K2(x̄,�).

Denote by (QVIP) (resp. (QVDP)) the families {(QVIP)� : � 2 ⇤} (resp. {(QVDP)� : � 2

⇤}). For each � 2 ⇤, let S(QVIP)� (resp. S(QVDP)� ) be solution sets of (QVIP)� (resp.(QVDP)�).
For each a 2 E and each r > 0, we denote by B(a, r) the closed ball centered at a with

radius r. When E = R, we denote by B
+(0, r) the closed interval [0, r].

Definition 3.3. Let � 2 ⇤ and let {�n} ✓ ⇤ be any sequence such that �n ! �. A
sequence {xn} ✓ X is called a LP approximating solution sequence for (QVIP)� if there
exists a sequence {"n} of positive real numbers with "n ! 0 such that, for each n 2 N,
d(xn,K1(xn,�n))  "n and 0 2 F1(xn, y,�n) +B

+(0, "n)e(xn), 8y 2 K2(xn,�n).

Definition 3.4. Let � 2 ⇤ and let {�n} ✓ ⇤ be any sequence such that �n ! �. A
sequence {xn} ✓ X is called a LP approximating solution sequence for (QVDP)� if there
exists a sequence {"n} of positive real numbers with "n ! 0 such that, for each n 2 N,
d(xn,K1(xn,�n))  "n and 0 /2 F2(xn, y,�n) +B

+(0, "n)e(xn), 8y 2 K2(xn,�n).

Definition 3.5. (i) (QVIP) is said to be LP well-posed if for every � 2 ⇤, (QVIP)� has a
unique solution x�, and for every sequence {�n} ✓ ⇤ with �n ! �, every approxi-
mating solution sequence for (QVIP)� corresponding to {�n} converges to x�, and
(QVIP) is said to be LP well-posed in the generalized sense if for every � 2 ⇤, (QVIP)�
has a nonempty solution set S(QVIP)� , and for every sequence {�n} ✓ ⇤ with
�n ! �, every approximating solution sequence for (QVIP)� corresponding to
{�n} has a subsequence which converges to a point of S(QVIP)� .

(ii) (QVDP) is said to be LP well-posed if for every � 2 ⇤, (QVDP)� has a unique solu-
tion x�, and for every sequence {�n} ✓ ⇤ with �n ! �, every approximating so-
lution sequence for (QVDP)� corresponding to {�n} converges to x�, and (QVDP)
is said to be LP well-posed in the generalized sense if for every � 2 ⇤, (QVDP)� has a
nonempty solution set S(QVDP)� , and for every sequence {�n} ✓ ⇤ with �n ! �,

every approximating solution sequence for (QVDP)� corresponding to {�n} has a
subsequence which converges to a point of S(QVDP)� .

Remark 3.1. Definition 3.3 generalizes Definition 3.1 of [29]. Indeed, the condition (i) of
Definition 3.1 in [29] “xn 2 K1(xn,�n) ”, implies that d(xn,K1(xn,�n)) = 0. So, Definition
3.3 generalizes Definition 3.1 of [29].

For each � 2 ⇤, the approximating solution set for (QVIP)� and (QVDP)�, respectively,
are defined by, for all �, " > 0, ⌦(QVIP)�(�, ") =

S
�02B(�,�)

eS(QVIP)�(�
0
, "),

where eS(QVIP)� : ⇤⇥ R+ is defined by, for all �0
2 ⇤, " 2 R+,

(3.1) eS(QVIP)�(�
0
, ") :=

⇢
x 2 X

����
d(x,K1(x,�0))  " and
0 2 F1(x, y,�0) +B

+(0, ")e(x), 8y 2 K2(x,�0)

�
,

and ⌦(QVDP)�(�, ") =
S

�02B(�,�)
eS(QVDP)�(�

0
, "), where eS(QVDP)� : ⇤⇥ R+ is defined by,

for all �0
2 ⇤, " 2 R+,

(3.2) eS(QVDP)�(�
0
, ") :=

⇢
x 2 X

����
d(x,K1(x,�0))  " and
0 /2 F2(x, y,�0) +B

+(0, ")e(x), 8y 2 K2(x,�0)

�
.

Clearly, we have, for every � 2 ⇤, (i) S(QVIP)� ⌘ eS(QVIP)�(�, 0) ✓ ⌦(QVIP)�(�, "), 8�, " > 0

and S(QVDP)� ⌘ eS(QVDP)�(�, 0) ✓ ⌦(QVDP)�(�, "), 8�, " > 0, (ii) if 0 < �1  �2 and 0 < "1 

"2, then ⌦(QVIP)�(�1, "1) ✓ ⌦(QVIP)�(�2, "2) and ⌦(QVDP)�(�2, "2) ✓ ⌦(QVDP)�(�1, "1).

Lemma 3.3. Assume that K1 is closed-valued and u.s.c. and K2 is l.s.c..
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(i) If, for each x 2 X , F1(x, ., .) is closed, then S(QVIP)�
=

T
�>0,">0 ⌦(QVIP)�

(�, ") for each
� 2 ⇤.

(ii) If, for each x 2 X , F2(x, ., .) is open, then S(QVDP)�
=

T
�>0,">0 ⌦(QVDP)�

(�, ") for
each � 2 ⇤.

Proof. (i) For any given � 2 ⇤, it is clear that S(QVIP)� ✓
T

�>0,">0 ⌦(QVIP)�(�, ").
Thus, we only need to show that

T
�>0,">0 ⌦(QVIP)�(�, ") ✓ S(QVIP)� . Suppose on the con-

trary that there exists x
⇤
2

T
�>0,">0 ⌦(QVIP)�(�, ") such that x⇤

/2 S(QVIP)� . Then, for each
� > 0 and each " > 0, x⇤

2 ⌦(QVIP)�(�, ")
✏
S(QVIP)� . In particular, for each n 2 N, we have

x
⇤
2 ⌦(QVIP)�

⇣
1
n ,

1
n

⌘✏
S(QVIP)� , and so there exists �n 2 B(�, 1

n ) such that

(3.3) d(x⇤
,K1(x

⇤
,�n)) 

1

n
, and

(3.4) 0 2 F1(x
⇤
, y,�n) +B

+
⇣
0,

1

n

⌘
e(x⇤), 8y 2 K2(x

⇤
,�n).

Obviously, �n ! �. Since K1 is closed-valued, it follow from (3.3) that we can choose
xn 2 K1(x⇤

,�n) such that d(x⇤
, xn) 

1
n , 8n 2 N. Thus, xn ! x

⇤ as n ! 1. Since
K1 is closed-valued and u.s.c., we have K1 is closed, it follows that x

⇤
2 K1(x⇤

,�).
We observe that for each y 2 K2(x⇤

,�), since K2 is l.s.c. at (x⇤
,�) and (x⇤

,�n) !

(x⇤
,�), there exists yn 2 K2(x⇤

,�n) such that yn ! y. Applying (3.4), we have that 0 2

F1(x⇤
, yn,�n) + B

+
⇣
0, 1

n

⌘
e(x⇤). Thus, there exists a sequence {�n} ✓ B

+(0, 1
n ) such that,

for each n 2 N, 0 2 F1(x⇤
, yn,�n) + �ne(x⇤), which gives that ��ne(x⇤) 2 F1(x⇤

, yn,�n)
that is ((yn,�n),��ne(x⇤)) 2 Gr(F1(x⇤

, ., .)). It is clear that {((x⇤
, yn,�n),��ne(x⇤))} !

((x⇤
, y,�), 0). The closedness of the mapping F1(x, ., .) implies that ((y,�), 0)2Gr(F1(x⇤

, ., .)).
That is 0 2 F1(x⇤

, y,�) and so x
⇤
2 S(QVIP)� , which is a contradiction. HenceT

�>0,">0 ⌦(QVIP)�(�, ") ✓ S(QVIP)� . (ii) For any given � 2 ⇤ and let F1 : X ⇥ X ⇥ ⇤ ! 2Z

be defined by F1(x, y,�) = Z\F2(x, y,�) for each (x, y,�) 2 X ⇥X ⇥ ⇤. Then S(QVIP)� =
S(QVDP)� . For each � > 0 and " > 0 we have ⌦(QVIP)�(�, ") = ⌦(QVDP)�(�, "). Since F2(x, ., .)
is open, we have F1(x, y,�) is closed. By (i), the proof is complete. ⇤

The following example is given to illustrate the case that Lemma 3.3 is applicable.

Example 3.1. Let E = Z = R, X = [0,+1) and ⇤ = [0, 1]. For every (x, y,�) 2 X⇥X⇥⇤,
let e(x) = x

2
,K1(x,�) = [�2

,+1) and K2(x,�) = [x2 + �
2
, x

2 + 1]. Define a set-valued
mapping F1, F2 : X ⇥X ⇥ ⇤ ! 2Z by F1(x, y,�) = (�1, 2x� y + �],
F2(x, y,�) = (2x�y+�,+1). Obviously, it is to see that all assumptions of Lemma 3.3 are
satisfied. Hence, S(QVIP)� =

T
�>0,">0 ⌦(QVIP)�(�, ") and S(QVDP)� =

T
�>0,">0 ⌦(QVDP)�(�, ")

for each � 2 ⇤.

Lemma 3.4. For (QVIP) and (QVDP), assume that K1 is closed-valued and u.s.c. and K2

is l.s.c..

(i) If, for each � 2 ⇤, F1(., .,�) is closed and K1 is also compact-valued, then for each
(�, ") 2 ⇤⇥R+, eS(QVIP)�(�, ") is closed subset of X , where eS(QVIP)� is defined by (3.1)
and so is ⌦(QVIP)�(�, ").

(ii) If, for each � 2 ⇤, F2(., .,�) is open and K1 is also compact-valued, then for each
(�, ") 2 ⇤ ⇥ R+, eS(QVDP)�(�, ") is closed subset of X , where eS(QVDP)� is defined by
(3.2) and so is ⌦(QVDP)�(�, ").
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Proof. Let (�, ") 2 ⇤ ⇥ R+ be fixed and suppose that K1 is also compact-valued. If x 2

cleS(QVIP)�(�, "), then there exists a sequence {xn} ✓ eS(QVIP)�(�, ") such that xn ! x as
n ! 1. It follows that, for each n 2 N, xn 2 X such that for each y 2 K2(xn,�),

(3.5) d(xn,K1(xn,�))  ", and

(3.6) 0 2 F1(xn, y,�) +B
+(0, ")e(xn).

By (3.5), for each n 2 N, there exists un 2 K1(xn,�) such that

(3.7) d(xn, un)  "+
1

n
.

Since K1 is u.s.c. and compact-valued, there exists a subsequence {unk} of {un} such that
unk ! u as k ! 1. It follows that d(x, u) = limk!1 d(xnk , unk)  ". Since K1 is u.s.c. and
closed-valued, we have K1 is closed. Thus u 2 K1(x,�). This implies that

(3.8) d(x,K1(x,�))  ".

For each y 2 K2(x,�), since K2 is l.s.c., there exists a sequence {yn} with yn 2 K2(xn,�)
such that yn ! y as n ! 1. By (3.6), we have 0 2 F1(xn, yn,�) + B

+(0, ")e(xn), 8n 2 N.
Thus there exists a sequence {↵n} ✓ B

+(0, ") such that 0 2 F1(xn, yn,�) +↵ne(xn), 8n 2

N. Observe that B
+(0, ") := [0, "] ✓ R is compact. Assume that ↵n ! ↵ 2 B

+(0, ")
as n ! 1. Since F1(., .,�) is closed, one has 0 2 F1(x, y,�) + ↵e(x) ✓ F1(x, y,�) +
B

+(0, ")e(x). Therefore x 2 eS(QVIP)�(�, "), and this implies that eS(QVIP)�(�, ") is a clo-
sed subset of X . Now it follows ⌦(QVIP)�(�, ") is a closed subset of X . (ii) Let F1 :
X ⇥ X ⇥ ⇤ ! 2Z be defined by F1(x, y,�) = Z\F2(x, y,�) for each (x, y,�) 2 X ⇥

X ⇥⇤. Then eS(QVIP)�(�, ") =
eS(QVDP)�(�, ") and S(QVIP)� = S(QVDP)� , and so ⌦(QVIP)�(�, ") =

⌦(QVDP)�(�, "). Since F2(., .,�) is open, we have F1(x, y,�) is closed. By (i), the proof is
complete. ⇤

If E is finite-dimension normed space, then the assumption that “K1 is also compact-
valued in Lemma 3.4 ” can be removed

Lemma 3.5. Let E be finite-dimensional normed space. For (QVIP) and (QVDP), assume that
K1 is closed-valued and u.s.c. and K2 is l.s.c..

(i) If, for each � 2 ⇤, F1(., .,�) is closed, then S(QVIP)� , eS(QVIP)�(�, ") and ⌦(QVIP)�(�, ") are
closed subset of X.

(ii) If, for each � 2 ⇤, F2(., .,�) is open, then S(QVDP)� , eS(QVDP)�(�, ") and ⌦(QVDP)�(�, ") are
closed subset of X.

Proof. We can proceed the proof exactly as that of Lemma 3.4 except for using the As-
sumption that E is finite-dimension normed space to get d(x,K1(x,�))  ". In fact, since
xn ! x, it follows that {xn} is bounded. By (3.7), we have {un} is also bounded. Thus
there exists a subsequence {unk} of {un} such that {unk} converges to some u 2 X

as k ! 1. Since K1 is closed-valued and u.s.c., we have K1 is closed, it follows that
u 2 K1(x,�). It follows that d(x, u) = limk!1 d(xnk , unk)  " and so d(x,K1(x,�))  ".

This complete the proof. ⇤
Remark 3.2. If K1(x,�) ⌘ K2(x,�) ⌘ X, then our problem (QVIP) reduces to (VIP) in Lin
and Chuang [19].

Now, we are in a position to state and prove our main results.

Theorem 3.1. For (QVIP), assume that E is complete, K1 is closed-valued and u.s.c., K2 is l.s.c.
and F1 is closed. Then (QVIP) is LP well-posed if and only if for every � 2 ⇤,

(3.9) ⌦(QVIP)�
(�, ") 6= ;, 8�, " > 0, and diam(⌦(QVIP)�

(�, ")) ! 0 as (�, ") ! (0, 0).
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Proof. Supposed that (QVIP) is LP well-posed. Then, for every � 2 ⇤, (QVIP)� has a
unique solution x�, S(QVIP)� 6= ;, and so ⌦�(�, ") 6= ;, for all �, " > 0. Now we shall show
that

(3.10) diam(⌦(QVIP)�(�, ")) ! 0 as (�, ") ! (0, 0).

Suppose to the contrary the existences of (3.10), there exist l > 0, sequences {�n} and {"n}

of positive real numbers with (�n, "n) ! (0, 0) as n ! 1 and sequence {xn} and {x
0
n}

with xn, x
0
n 2 ⌦(QVIP)�(�n, "n) for each n 2 N such that

(3.11) d(xn, x
0
n) > l, 8n 2 N.

For each n 2 N, since xn 2 ⌦(QVIP)�(�n, "n), there exists �n 2 B
+(0, "n) such that

d(xn,K1(xn,�n))  "n and 0 2 F1(xn, y,�n) + B
+(0, "n)e(xn) 8y 2 K2(xn,�n), and

since x
0
n 2 ⌦(QVIP)�(�n, "n), there exists �

0
n 2 B

+(0, "n) such that d(x0
n,K1(xn,�

0
n))  "n

and 0 2 F1(x0
n, y,�

0
n) + B

+(0, "n)e(x0
n) 8y 2 K2(xn,�

0
n). Clearly, �n ! � and �

0
n ! �

as n ! 1. Hence, {xn} and {x
0
n} are LP approximating solution sequences for (QVIP)�

corresponding to �n,�
0
n, respectively. By the LP well-posed of (QVIP)�, {xn} and {x

0
n}

converge to the unique solution x� of (QVIP)�, which is a contradiction to (3.11). This
implies that (3.10). Conversely, suppose that condition (3.9) holds. Let � 2 ⇤ be fixed.
Let {�n} be any sequence in ⇤ with �n ! � as n ! 1. Suppose that {xn} is a LP ap-
proximating solution sequence for (QVIP)� corresponding to {�n}, then there exists a
nonnegative sequence {"n} # 0 such that for each n 2 N, d(xn,K1(xn,�))  "n, and
0 2 F1(xn, y,�n) + B

+(0, "n)e(xn), 8y 2 K2(xn,�). For each n 2 N, let �n = d
0(�n,�).

Then, �n 2 B(�, �n) and xn 2 ⌦(QVIP)�(�n, "n) for each n 2 N, and �n ! 0 as n ! 1. It
follows from (3.9) that {xn} is a Cauchy sequence and so it converges to a point x 2 X.

By similar arguments as in the proof of Lemma 3.4, we also deduce that x belongs to
S(QVIP)�

. Next, we will show that (QVIP)� has a unique solution. Suppose to the contrary,
if (QVIP)� has two distinct solutions x1 and x2, it is easy to see that x1, x2 2 ⌦(QVIP)�

for
all �, " > 0. It follows that 0 < d(x1, x2)  diam(⌦(QVIP)�(�, ")) which gives a contrdiction
to (3.9). This implies that (QVIP)� has a unique solution. This completes the proof. ⇤

The following example is given to illustrate the case that Theorem 3.1 is applicable.

Example 3.2. Let E = Z = R, X = [0, 1] and ⇤ = [0, 1]. For every (x, y,�) 2 X⇥X⇥⇤, let

e(x) = 1, K1(x,�) =

8
><

>:


0,

1

2

�
, if � 6=

1

2
,

[0, 1], if � =
1

2
,

and K2(x,�) =

8
>><

>>:

[0, 1], if � 6=
1

2
,


0,

1

2

�
, if � =

1

2
.

Define a set-valued mapping F1 : X ⇥ X ⇥ ⇤ ! 2Z by F1(x, y,�) = (�1, (� + 2)(y �

x)]. Obviously, it is to see that conditions of Theorem 3.1 are satisfied. For every � 2

⇤,diam(⌦(QVIP)�(�, ")) ! 0 as (�, ") ! (0, 0). By Theorem 3.1, (QVIP)� is well-posed. ⇤
Remark 3.3. We can not the supposed LP well-posedness in Theorem 3.1 by generalized
LP well-posedness. Therefore, we have to employ the Kuratowski measure of noncom-
pactness to study characterizations of the LP well-posedness in the generalized sense for
(QVIP).

Theorem 3.2. For (QVIP), assume that E is complete and ⇤ is finite dimensional, K1 is closed-
valued and u.s.c., K2 is l.s.c. and F1 is closed. Then (QVIP) is LP well-posed in generalized the
sense if and only if for every � 2 ⇤, ⌦(QVIP)�

(�, ") 6= ;, 8�, " > 0, and µ(⌦(QVIP)�
(�, ")) !

0 as (�, ") ! (0, 0).

Proof. Suppose that (QVIP) LP well-posed in the generalized sense. Let � 2 ⇤ be fixed.
Then S(QVIP)�

is nonempty. Now we show that S(QVIP)�
is compact. Indeed, let {xn}
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be any sequence in S(QVIP)�
. Then {xn} is a LP approximating solution sequence for

(QVIP)�. By the LP well-posedness in the generalized sense of (QVIP), {xn} has a sub-
sequence which converges to a point of S(QVIP)�

. Thus S(QVIP)�
is compact. Clearly, for

each �, " > 0, S(QVIP)�
✓ ⌦(QVIP)�

(�, "), and so ⌦(QVIP)�
(�, ") 6= ;. Now we will show that

(3.12) µ(⌦(QVIP)�(�, ")) ! 0 as (�, ") ! (0, 0).

Observe that for every �, " > 0, H(⌦(QVIP)�(�, "), S(QVIP)�) = H
⇤(⌦(QVIP)�(�, "), S(QVIP)�),

and S(QVIP)� is compact. Indeed, let {xn} := {(xn,�n)} be arbitraly sequence in S(QVIP)� .
Then, it is clear that {xn} is a LP approximating sequence of (QVIP). Thus, it has a
subsequence converging to a point in S(QVIP)� . Therefore, µ(S(QVIP)�) = 0. Now for
any ↵ > 0, there are finite sets A

↵
1 , A

↵
2 , . . . , A

↵
n↵

for some n↵ 2 N such that S(QVIP)� ✓Sn↵

k=1 A
↵
k and diam A

↵
k  ↵, for all k = 1, 2, . . . , n↵. Next, for each k 2 {1, 2, . . . , n↵},

we define the set M↵
k = {z 2 X : d(z,A↵

k )  H(⌦(QVIP)�(�, "), S(QVIP)�)}. We show that
⌦(QVIP)�(�, ") ✓

Sn↵

k=1 M
↵
k . To this end, let x 2 ⌦(QVIP)�(�, ") be given. Thus, we have

d(x, S(QVIP)�)  H(⌦(QVIP)�(�, "), S(QVIP)�). As S(QVIP)� ✓
Sn↵

k=1 A
↵
k , we also get

d (x,
Sn↵

k=1 A
↵
k )  d(x, S(QVIP)�)  H(⌦(QVIP)�(�, "), S(QVIP)�). Therefore, there exists k0 2

{1, 2, . . . , n↵} such that d(x,A↵
k0
)  H(⌦(QVIP)�(�, "), S(QVIP)�), thereby yielding x 2 M

↵
k0
.

Therefore, we get the desired inclusion. Futhermore, we see that, for any k 2 {1, 2, . . . , n↵},

(3.13) diam M
↵
k  ↵+ 2H(⌦(QVIP)�(�, "), S(QVIP)�).

Indeed, for any y, y
0
2 M

↵
k and m,m

0
2 A

↵
k , d(y, y

0)  d(y,m)+d(m,m
0)+d(m0

, y
0), which

gives that d(y, y0)  ↵+2H(⌦(QVIP)�(�, "), S(QVIP)�), which leads to the desired result (3.13).
It follows from the definition of µ that µ(⌦(QVIP)�(�, "))  2H(⌦(QVIP)�(�, "), S(QVIP)�) +
↵, for all ↵ > 0. Therefore, we can conclude that

µ(⌦(QVIP)�(�, "))  2H(⌦(QVIP)�(�, "), S(QVIP)�) = 2H⇤(⌦(QVIP)�(�, "), S(QVIP)�).

To prove (3.8), it is sufficient to show that

(3.14) H
⇤(⌦(QVIP)�(�, "), S(QVIP)�) ! 0 as (�, ") ! (0, 0).

If (3.14) does not hold, then there exist r > 0, sequences {�n} and {"n} of positive real
numbers with (�n, "n) ! (0, 0) as n ! 1 and sequence {xn} with xn 2 ⌦(QVIP)�(�n, "n)
for every n 2 N such that

(3.15) d(xn, S(QVIP)�) > r, 8n 2 N.
For each n 2 N, since xn 2 ⌦�(�n, "n), there exists �n 2 B(�, �n) such that
d(xn,K1(xn,�n))  "n and 0 2 F (xn, y,�n) + B

+(0, "n)e(xn), 8y 2 K2(xn,�n).
Clearly �n ! � as n ! 1. Hence {xn} is a LP approximating solution sequence for
(QVIP)� corresponding to {�n}. Then, by the LP well-posedness in the generalized sense
of (QVIP), {xn} has a subsequence {xnk} which converges to some point of S(QVIP)� . This
contradicts (3.15), and so (3.14) holds. Therefore, (3.8) is proved. Conversely, suppose that
condition (3.7) holds. We will show that (QVIP) is LP well-posed in generalized sense. Let
� 2 ⇤ be fixed. Thus, by Lemma 3.3 and Lemma 3.4, we have ⌦(QVIP)� is closed. Further,
S(QVIP)� =

T
�,">0 ⌦(QVIP)�(�, "). Since µ(⌦(QVIP)�(�, ")) ! 0 as (�, ") ! (0, 0), by Lemma

2.2, S(QVIP)� is a nonempty compact subset of X and

(3.16) H
⇤(⌦(QVIP)�(�, "), S(QVIP)�) ! 0 as (�, ") ! (0, 0).

Let {�n} be any sequence in ⇤ with �n ! � as n ! 1. Suppose that {xn} is a LP approxi-
mating solution sequence for (QVIP)� corresponding to {�n}, then there exists a sequence
{"n} of positive real numbers with "n ! 0 such that, for each n 2 N, d(xn,K1(xn,�n)) 
"n and 0 2 F1(xn, y,�n) + B

+(0, "n)e(xn), 8y 2 K2(xn,�n). For each n 2 N, let �n =
d(�n,�). Then, �n 2 B(�, �n) and xn 2 ⌦(QVIP)�(�n, "n) for every n 2 N, and �n ! 0
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as n ! 1. It follows from (3.10) that d(xn, S(QVIP)�)  H
⇤(⌦(QVIP)�(�n, "n), S(QVIP)�) !

0 as n ! 1. Since S(QVIP)� is compact, for each n 2 N, there exists x̄n 2 S(QVIP)� such
that d(xn, x̄n) = d(xn, S(QVIP)�) ! 0 as n ! 1. By the compactness of S(QVIP)� , {x̄n} has
a subsequence {x̄nk} which converges to a point x̄ 2 S(QVIP)� . Hence, the corresponding
subsequence {xnk} of {xn} converges to x̄. This implies that (QVIP) is LP well-posed in
the genelized sense. This completes the proof. ⇤

Remark 3.4. Theorems 3.1, Theorems 3.2 generalizes Theorem 3.8, Theorems 3.11 of [29], re-
spectively.

By Theorems 3.1 and 3.2, we can get the following results.

Theorem 3.3. For (QVDP), assume that E,K1,K2 as in Theorem 3.1 and F2 is closed. Then
(QVDP) is LP well-posed if and only if for every � 2 ⇤,

⌦(QVDP)�
(�, ") 6= ;, 8�, " > 0, and diam(⌦(QVDP)�

(�, ")) ! 0 as (�, ") ! (0, 0).

Theorem 3.4. For (QVDP), assume that E,K1,K2 as in Theorem 3.2 and F2 is closed. Then
(QVDP) is LP well-posed in generalized the sense if and only if for every � 2 ⇤,

⌦(QVDP)�
(�, ") 6= ;, 8�, " > 0, and µ(⌦(QVDP)�

(�, ")) ! 0 as (�, ") ! (0, 0).
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CPl_L�G P6 AL.lah_A�G �L. /QB,RyXjNj9fDBKQXkyR3Rej
J�L�:1J1Lh PShAJAw�hAPL

aPJ1 *>�_�*h1_Aw�hAPLa P6 _P"lah aPGlhAPL a1ha
6P_ lL*1_h�AL *PLo1s PShAJAw�hAPL S_P"G1Ja qAh>

GP*�GGu GASa*>Ahw AL1Zl�GAhu *PLah_�ALha

LBi?B`�i aBb�`�i1

1.2T�`iK2Mi Q7 J�i?2K�iB+b- 6�+mHiv Q7 a+B2M+2
L�`2bm�M lMBp2`bBiv- S?Bib�MmHQF e8yyy- h?�BH�M/

_�#B�M q�M;F22`221,2,∗

1.2T�`iK2Mi Q7 J�i?2K�iB+b- 6�+mHiv Q7 a+B2M+2
L�`2bm�M lMBp2`bBiv- S?Bib�MmHQF e8yyy- h?�BH�M/

2_2b2�`+? +2Mi2` 7Q` �+�/2KB+ 1t+2HH2M+2 BM J�i?2K�iB+b
L�`2bm�M lMBp2`bBiv- S?Bib�MmHQF e8yyy- h?�BH�M/

:m2 JvmM; G223

3.2T�`iK2Mi Q7 �TTHB2/ J�i?2K�iB+b
SmFvQM; L�iBQM�H lMBp2`bBiv- "mb�M 938Rj- EQ`2�

U*QKKmMB+�i2/ #v _2M�i� aQiB`QpV

�#bi`�+iX AM i?Bb T�T2`- r2 +QMbB/2` �M mM+2`i�BM +QMp2t QTiBKBx�iBQM T`Q#@
H2K rBi? � `Q#mbi +QMp2t 72�bB#H2 b2i /2b+`B#2/ #v HQ+�HHv GBTb+?Bix +QMbi`�BMibX
lbBM; `Q#mbi QTiBKBx�iBQM �TT`Q�+?- r2 ;Bp2 bQK2 M2r +?�`�+i2`Bx�iBQMb Q7 `Q@
#mbi bQHmiBQM b2ib Q7 i?2 T`Q#H2KX am+? +?�`�+i2`Bx�iBQMb �`2 2tT`2bb2/ BM i2`Kb
Q7 +QMp2t bm#/Bz2`2Mi�BHb- *H�`F2 bm#/Bz2`2MiB�Hb- �M/ G�;`�M;2 KmHiBTHB2`bX AM
Q`/2` iQ +?�`�+i2`Bx2 i?2 bQHmiBQM b2i- r2 }`bi BMi`Q/m+2 i?2 bQ@+�HH2/ Tb2m/Q
G�;`�M;B�M 7mM+iBQM �M/ 2bi�#HBb? +QMbi�Mi Tb2m/Q G�;`�M;B�M@ivT2 T`QT2`iv
7Q` i?2 `Q#mbi bQHmiBQM b2iX q2 i?2M mb2/ iQ /2`Bp2 G�;`�M;2 KmHiBTHB2`@#�b2/
+?�`�+i2`Bx�iBQMb Q7 `Q#mbi bQHmiBQM b2iX "v K2�Mb Q7 HBM2�` b+�H�`Bx�iBQM- i?2
`2bmHib �`2 �TTHB2/ iQ /2`Bp2 +?�`�+i2`Bx�iBQMb Q7 r2�FHv �M/ T`QT2`Hv `Q#mbi
2{+B2Mi bQHmiBQM b2ib Q7 +QMp2t KmHiB@Q#D2+iBp2 QTiBKBx�iBQM T`Q#H2Kb rBi?
/�i� mM+2`i�BMivX aQK2 2t�KTH2b �`2 ;Bp2M iQ BHHmbi`�i2 i?2 bB;MB}+�M+2 Q7 i?2
`2bmHibX

RX AMi`Q/m+iBQMX h?2 bim/v Q7 +?�`�+i2`Bx�iBQMb Q7 bQHmiBQM b2ib ?�b #2+QK2 �M BK@
TQ`i�Mi `2b2�`+? /B`2+iBQM 7Q` K�Mv K�i?2K�iB+�H T`Q;`�KKBM; T`Q#H2KbX "�b2/
QM mM/2`bi�M/BM; +?�`�+i2`Bx�iBQMb Q7 bQHmiBQM b2ib- bQHmiBQM K2i?Q/b 7Q` bQHpBM;
K�i?2K�iB+�H T`Q;`�Kb i?�i ?�p2 KmHiBTH2 bQHmiBQMb +�M #2 /2p2HQT2/X h?2 MQiBQM
Q7 +?�`�+i2`Bx�iBQMb Q7 bQHmiBQM b2ib r�b }`bi BMi`Q/m+2/ �M/ bim/B2/ #v J�M;�b�`B�M

kyRy J�i?2K�iB+b am#D2+i *H�bbB}+�iBQMX S`BK�`v, Ny*k8- Ny*9ec a2+QM/�`v, Ny*kNX
E2v rQ`/b �M/ T?`�b2bX _Q#mbi QTiBK�H bQHmiBQMb- bm#/Bz2`2MiB�H- mM+2`i�BM +QMp2t QTiBKBx�@

iBQM- KmHiB@Q#D2+iBp2 QTiBKBx�iBQMX
h?Bb `2b2�`+? r�b bmTTQ`i2/ #v i?2 h?�BH�M/ _2b2�`+? 6mM/ i?`Qm;? i?2 _Qv�H :QH/2M Cm@

#BH22 S?X.X S`Q;`�K U:`�Mi LQX S>.fyykefk888V- i?2 h?�BH�M/ _2b2�`+? 6mM/- :`�Mi LQX
_a�ey3yydd �M/ L�`2bm�M lMBp2`bBiv- �M/ i?2 L�iBQM�H _2b2�`+? 6QmM/�iBQM Q7 EQ`2� UL_6V
;`�Mi 7mM/2/ #v i?2 EQ`2� ;Qp2`MK2Mi UJaAhV U:`�Mi LQX kyRd_R1R�R�yjyeNNjRVX

∗ *Q``2bTQM/BM; �mi?Q`, _�#B�M q�M;F22`22X

R
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7Q` � +QMp2t 2ti`2K� T`Q#H2K rBi? /Bz2`2MiB�#H2 7mM+iBQM (kN)X aQK2 mb27mH 2t�K@
TH2b +H�`B7vBM; bm+? +?�`�+i2`Bx�iBQMb Q7 bQHmiBQM b2ib +�M #2 7QmM/ BM (d) 7Q` +?�`@
�+i2`BxBM; i?2 T`Q#H2Kb i?�i ?�p2 r2�F b?�`T KBMBKmKX h?Bb #2BM; � `2�bQM r?v
b2p2`�H +?�`�+i2`Bx�iBQMb Q7 bQHmiBQM b2ib 7Q` bQK2 +H�bb2b Q7 +QMbi`�BM2/ QTiBKBx�iBQM
T`Q#H2Kb ?�p2 �TT2�`2/ BM i?2 HBi2`�im`2 Ub22 (e- 3- Rj- R9- RN- kj- jk- jj- je- j3- jN)
�M/ Qi?2` `272`2M+2b i?2`2BMVX

>Qr2p2`- /2�HBM; rBi? `2�H@rQ`H/ QTiBKBx�iBQM T`Q#H2Kb- i?2 BMTmi /�i� �bbQ@
+B�i2/ rBi? i?2 Q#D2+iBp2 7mM+iBQM �M/ i?2 +QMbi`�BMib Q7 T`Q;`�Kb �`2 mM+2`i�BM
/m2 iQ T`2/B+iBQM 2``Q` Q` K2�bm`2K2Mi 2``Q`b Ub22 (R- k- j- 9)VX JQ`2Qp2`- BM K�Mv
bBim�iBQMb Q7i2M r2 M22/ iQ K�F2 /2+BbBQMb MQr #27Q`2 r2 +�M FMQr i?2 i`m2 p�Hm2b
Q` ?�p2 #2ii2` 2biBK�iBQMb Q7 i?2 T�`�K2i2`bX _Q#mbi QTiBKBx�iBQM Bb QM2 Q7 i?2 #�@
bB+ K2i?Q/QHQ;B2b iQ T`Qi2+i i?2 QTiBK�H bQHmiBQM i?�i Bi Bb MQ HQM;2` 72�bB#H2 �7i2`
`2�HBx�iBQM Q7 �+im�H p�Hm2b Q7 T�`�K2i2`bX h?Bb K2�Mb i?�i �Mv 72�bB#H2 TQBMib Kmbi
b�iBb7v �HH +QMbi`�BMib BM+Hm/BM; 2�+? b2i Q7 +QMbi`�BMib +Q``2bTQM/BM; iQ � TQbbB#H2
`2�HBx�iBQM Q7 i?2 mM+2`i�BM T�`�K2i2`b 7`QK i?2 mM+2`i�BMiv b2ibX S`2+Bb2Hv bi�i2/-
H2i mb }`bi +QMbB/2` i?2 7QHHQrBM; QTiBKBx�iBQM T`Q#H2K,

min
x∈Rn

{f(x) : gi(x) ≤ 0, i = 1, . . . ,m}, USV

r?2`2 f, gi : Rn → R- i = 1, . . . ,m- �`2 7mM+iBQMbX h?2 T`Q#H2K USV BM i?2 7�+2
Q7 /�i� mM+2`i�BMiv #Qi? BM i?2 Q#D2+iBp2 �M/ +QMbi`�BMib +�M #2 r`Bii2M #v i?2
7QHHQrBM; QTiBKBx�iBQM T`Q#H2Kb,

min
x∈Rn

{f(x, u) : gi(x, vi) ≤ 0, i = 1, . . . ,m}, UlSV

r?2`2 f : Rn ×Rq0 → R- �M/ gi : Rn ×Rqi → R- i = 1, . . . ,m- �`2 7mM+iBQMb- u �M/
vi �`2 mM+2`i�BM T�`�K2i2`b �M/ i?2v #2HQM; iQ i?2 bT2+B}2/ MQM2KTiv +QMp2t �M/
+QKT�+i mM+2`i�BMiv b2ib U ⊆ Rq0 �M/ Vi ⊆ Rqi - `2bT2+iBp2HvX h?2 `Q#mbi UrQ`bi
+�b2V +QmMi2`T�`i Q7 UlSV- #v +QMbi`m+iBQM BM (j)- Bb Q#i�BM2/ #v bQHpBM; i?2 bBM;H2
T`Q#H2K,

min
x∈Rn

{max
u∈U

f(x, u) : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m}, U_SV

r?2`2 i?2 Q#D2+iBp2 �M/ +QMbi`�BMib �`2 2M7Q`+2/ 7Q` 2p2`v TQbbB#H2 p�Hm2 Q7 i?2
T�`�K2i2`b rBi?BM i?2B` T`2b+`B#2/ mM+2`i�BMiv b2ib U �M/ ViX h?2 b2i Q7 72�bB#H2
bQHmiBQMb Q7 T`Q#H2K U_SV-

F := {x ∈ Rn : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m},

`272` iQ `Q#mbi 72�bB#H2 b2i Q7 i?2 T`Q#H2K UlSVX h?2 QTiBK�H bQHmiBQM iQ i?2 T`Q#H2K
U_SV Bb FMQrM �b � `Q#mbi QTiBK�H bQHmiBQM Q7 UlSVX � bm++2bb7mH i`2�iK2Mi Q7 i?2
`Q#mbi QTiBKBx�iBQM �TT`Q�+?2b 7Q` i`2�iBM; +QMp2t QTiBKBx�iBQM T`Q;`�Kb rBi?
/�i� mM+2`i�BMiv iQ /2`Bp2 +?�`�+i2`Bx�iBQMb Q7 `Q#mbi QTiBK�H bQHmiBQM b2ib r�b
;Bp2M BM (R8- kd- j9- j8)X 6Q` Bbbm2b `2H�i2/ iQ QTiBK�HBiv +QM/BiBQMb �M/ /m�HBiv
T`QT2`iB2b- b22 (8- RR- Re- Rd- R3- k8- ke) �M/ Qi?2` `272`2M+2b i?2`2BMX

h?Bb T�T2` Bb �M �ii2KTi iQ BMp2biB;�i2 QTiBK�HBiv +QM/BiBQMb �M/ iQ /2`Bp2 +?�`@
�+i2`Bx�iBQMb Q7 `Q#mbi bQHmiBQM b2ib Q7 UlSVX lMHBF2 p�`BQmb `2H�i2/ rQ`Fb BM i?2
HBi2`�im`2 K2MiBQM2/ �#Qp2- BM i?2 T`2b2Mi T�T2`- �TT2�`BM; +QMbi`�BMi 7mM+iBQMb
�`2 MQi +QMp2t M2+2bb�`BHv r?BH2 i?2 `Q#mbi 72�bB#H2 b2i F Bb +QMp2tX AM i?Bb r�v-
r2 `272` iQ +QMp2t T`Q#H2Kb rBi?Qmi +QMp2t `2T`2b2Mi�iBQM BM i?2 b2Mb2 i?�i i?2
+QMbi`�BMi 7mM+iBQMb iQ `2T`2b2Mi i?2 +QMp2t 72�bB#H2 b2i �`2 MQM M2+2bb�`BHv +QMp2tX
PTiBK�HBiv +QM/BiBQMb �M/ +?�`�+i2`Bx�iBQMb Q7 +QMp2tBiv Q7 72�bB#H2 b2i 7Q` bm+?
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T`Q#H2Kb BM i?2 �#b2Mi Q7 /�i� mM+2`i�BMiv +�M #2 7QmM/ BM (k9) 7Q` /Bz2`2MiB�#H2
+�b2- �M/ BM (Ry- jy- kR) 7Q` MQM@/Bz2`2MiB�#H2 +�b2X

hQ i?2 #2bi Q7 Qm` FMQrH2/;2- +QKTH2i2Hv +?�`�+i2`Bx�iBQMb Q7 `Q#mbi bQHmiBQMb
7Q` mM+2`i�BM b+�H�` �M/ KmHiB@Q#D2+iBp2 QTiBKBx�iBQM T`Q#H2Kb Qp2` � `Q#mbi +QMp2t
72�bB#H2 b2i /2b+`B#2/ #v MQM M2+2bb�`BHv +QMp2t 7mM+iBQMb rBi?BM i?2 7`�K2rQ`F Q7
`Q#mbi QTiBKBx�iBQM �TT`Q�+? �`2 MQi �p�BH�#H2 BM i?2 HBi2`�im`2X aQ- BM i?Bb T�T2`
r2 2t�KBM2 � `Q#mbi QTiBKBx�iBQM 7`�K2rQ`F 7Q` bim/vBM; +?�`�+i2`Bx�iBQMb Q7 i?2
`Q#mbi QTiBK�H bQHmiBQM b2i 7Q` mM+2`i�BM +QMp2t QTiBKBx�iBQM T`Q#H2Kb rBi? � `Q@
#mbi +QMp2t 72�bB#H2 b2i /2b+`B#2/ #v HQ+�HHv GBTb+?Bix +QMbi`�BMibX 6B`bi- +QKTH2i2
QTiBK�HBiv +QM/BiBQMb 7Q` mM+2`i�BM +QMp2t QTiBKBx�iBQM T`Q#H2Kb �`2 ;Bp2MX AM Q`@
/2` iQ +?�`�+i2`Bx2 i?2 `Q#mbi QTiBK�H bQHmiBQM b2i Q7 � ;Bp2M T`Q#H2K- r2 BMi`Q/m+2
i?2 bQ@+�HH2/ Tb2m/Q@G�;`�M;2 7mM+iBQM �M/ i?2M- r2 b?Qr i?�i Tb2m/Q@G�;`�M;2
7mM+iBQM Bb +QMbi�Mi QM i?2 `Q#mbi QTiBK�H bQHmiBQM b2iX �7i2`r�`/b- r2 i?2M mb2
i?Bb T`QT2`iv iQ /2`Bp2 p�`BQmb +?�`�+i2`Bx�iBQMb Q7 i?2 `Q#mbi QTiBK�H bQHmiBQM b2i
i?�i i?2b2 �`2 2tT`2bb2/ BM i2`Kb Q7 +QMp2t bm#/Bz2`2MiB�Hb- *H�`F2 bm#/Bz2`2MiB�Hb
�M/ G�;`�M;2 KmHiBTHB2`bX 6BM�HHv- i?2 `2bmHib �`2 i?2M �TTHB2/ iQ /2`Bp2 +?�`�+i2`@
Bx�iBQMb Q7 r2�FHv `Q#mbi 2{+B2Mi bQHmiBQM b2i �M/ T`QT2`Hv `Q#mbi 2{+B2Mi bQHmiBQM
b2i Q7 mM+2`i�BM +QMp2t KmHiB@Q#D2+iBp2 QTiBKBx�iBQM T`Q#H2Kb rBi?Qmi +QMp2tBiv
�bbmKTiBQM QM +QMbi`�BMi 7mM+iBQMbX

h?2 `2K�BM/2` Q7 i?2 T`2b2Mi T�T2` Bb Q`;�MBx2/ �b 7QHHQrbX AM a2+iX k- r2
;Bp2b bQK2 MQi�iBQMb- /2}MBiBQMb �M/ T`2HBKBM�`v `2bmHibX AM a2+iX j- r2 2bi�#HBb?
� KmHiBTHB2` +?�`�+i2`Bx�iBQM 7Q` i?2 `Q#mbi QTiBK�H bQHmiBQM Q7 mM+2`i�BM +QMp2t
QTiBKBx�iBQM T`Q#H2KX a2+iX 9 T`QpB/2b +?�`�+i2`Bx�iBQMb Q7 `Q#mbi bQHmiBQM b2i Q7
mM+2`i�BM +QMp2t QTiBKBx�iBQM rBi?Qmi +QMp2tBiv �bbmKTiBQM QM +QMbi`�BMi 7mM+@
iBQMbX AM a2+iX 8- r2 ;Bp2 � bm{+B2Mi +QM/BiBQM i?�i � `Q#mbi 2{+B2Mi bQHmiBQM Q7
mM+2`i�BM KmHiB@Q#D2+iBp2 +QMp2t QTiBKBx�iBQM T`Q#H2Kb +�M #2 � T`QT2`Hv `Q#mbi
2{+B2Mi bQHmiBQMX JQ`2Qp2`- +?�`�+i2`Bx�iBQMb Q7 r2�FHv `Q#mbi 2{+B2Mi bQHmiBQM b2i
�M/ T`QT2`Hv `Q#mbi 2{+B2Mi bQHmiBQM b2i Q7 bm+? T`Q#H2K �`2 ;Bp2MX

kX S`2HBKBM�`B2bX q2 #2;BM i?Bb b2+iBQM #v }tBM; +2`i�BM MQi�iBQMb- /2}MBiBQMb �M/
T`2HBKBM�`v `2bmHib i?�i rBHH #2 mb2/ i?`Qm;?Qmi i?2 T�T2`X q2 /2MQi2 #v Rn i?2
1m+HB/2�M bT�+2 rBi? /BK2MbBQM n r?Qb2 MQ`K Bb /2MQi2/ #v ∥ ·∥ �M/ ⟨x, y⟩ /2MQi2b
i?2 mbm�H BMM2` T`Q/m+i #2ir22M irQ p2+iQ`b x, y BM Rn- i?�i Bb- ⟨x, y⟩ = xT yX G2i
Rn

+ := {x := (x1, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, . . . , n} #2 MQM@M2;�iBp2 Q`i?�Mi Q7
RnX LQi2 �HbQ i?�i i?2 BMi2`BQ` MQM@M2;�iBp2 Q`i?�Mi Q7 Rn Bb /2MQi2/ #v BMiRn

+ �M/
Bb /2}M2/ #v BMiRn

+ := {x ∈ Rn : xi > 0, i = 1, . . . , n}X :Bp2M � b2i A ⊆ Rn- r2
`2+�HH i?�i � b2i A Bb +QMp2t r?2M2p2` λx+ (1− λ)y ∈ A 7Q` �HH λ ∈ [0, 1]- x, y ∈ AX
� b2i A Bb b�B/ iQ #2 � +QM2 B7 λA ⊆ A 7Q` �HH λ ≥ 0X q2 /2MQi2 i?2 +QMp2t ?mHH �M/
i?2 +QMB+�H ?mHH ;2M2`�i2/ #v A- #v +QMpA �M/ +QM2A- `2bT2+iBp2HvX h?2 MQ`K�H
+QM2 �i x iQ � +HQb2/ +QMp2t b2i A- /2MQi2/ #v N(A, x)- Bb /2}M2/ #v

N(A, x) := {ξ ∈ Rn : ⟨ξ, y − x⟩ ≤ 0, ∀y ∈ A}.
� 7mM+iBQM f : Rn → R Bb b�B/ iQ #2 +QMp2t B7 7Q` �HH λ ∈ [0, 1] �M/ x, y ∈ Rn-

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Ai Bb � r2HH FMQrM 7�+i i?�i � +QMp2t 7mM+iBQM M22/ MQi #2 /Bz2`2MiB�#H2 2p2`vr?2`2X
>Qr2p2` B7 f : Rn → R Bb � +QMp2t 7mM+iBQM i?2M i?2 QM2@bB/2/ Q` `�i?2` `B;?i@
bB/2/ /B`2+iBQM�H /2`Bp�iBp2 �Hr�vb 2tBbib �M/ Bb }MBi2X h?2 `B;?i@bB/2/ /B`2+iBQM�H
/2`Bp�iBp2 Q7 f �i x ∈ Rn BM i?2 /B`2+iBQM d ∈ Rn Bb /2MQi2/ #v /2MQi2/ #v f ′(x; d)-
Bb /2}M2/ �b
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f ′(x; d) := lim
t→0+

f(x+ td)− f(x)

t
.

Ai Bb BKTQ`i�Mi iQ MQi2 i?�i 7Q` 2p2`v }t2/ x i?2 7mM+iBQM f ′(x; .) Bb � TQbBiBp2Hv
?QKQ;2M2Qmb +QMp2t 7mM+iBQMX h?2 bm#/Bz2`2MiB�H Q7 +QMp2t 7mM+iBQM f �i x Bb
/2}M2/ �b

∂f(x) := {ξ ∈ Rn : f(y) ≥ f(x) + ⟨ξ, y − x⟩, 7Q` �HH y ∈ Rn}.

q2 MQr `2+�HH i?2 7QHHQrBM; mb27mH `2bmHi- r?B+? Bb � bm#/Bz2`2MiB�H K�t@7mM+iBQM
`mH2 Q7 +QMp2t 7mM+iBQMb Qp2` � +QKT�+i b2i- i?�i rBHH #2 mb2/ H�i2` BM i?2 T�T2`X

G2KK� kXRX (R8- G2KK� kXR) G2i U ⊆ Rp #2 � +QMp2t +QKT�+i b2i- �M/ H2i f :
Rn × Rq0 → R #2 � 7mM+iBQM bm+? i?�i 7Q` 2�+? }t2/ u ∈ U - f(·, u) Bb � +QMp2t
7mM+iBQM QM Rn �M/ 7Q` 2�+? }t2/ x ∈ Rn- f(x, ·) Bb � +QM+�p2 7mM+iBQM QM Rq0 X
h?2M-

∂

(
max
u∈U

f(·, u)
)
(x̄) =

⋃

u∈U(x̄)

∂f(·, u)(x̄),

r?2`2 U(x̄) := {ū ∈ U : f(x̄, ū) = maxu∈U f(x̄, u)}X

.2}MBiBQM kXkX � 7mM+iBQM h : Rn → R Bb b�B/ iQ #2 HQ+�HHv GBTb?Bix �i x ∈ Rn-
B7 i?2`2 2tBbib � TQbBiBp2 b+�H�` L �M/ � M2B;?#Q`?QQ/ N Q7 x bm+? i?�i- 7Q` �HH
y, z ∈ N - QM2 ?�b

|h(y)− h(z)| ≤ L∥y − z∥.

.2}MBiBQM kXjX (N) G2i h : Rn → R #2 HQ+�HHv GBTb?Bix �i � ;Bp2M TQBMi x ∈ RnX
h?2 *H�`F2 ;2M2`�HBx2/ /B`2+iBQM�H /2`Bp�iBp2 Q7 h �i x BM i?2 /B`2+iBQM d ∈ Rn-
/2MQi2/ ho(x; d)- Bb /2}M2/ �b

ho(x; d) := lim sup
y→x
t→0+

h(y + td)− h(y)

t
,

.2}MBiBQM kX9X (N) G2i h : Rn → R #2 HQ+�HHv GBTb?Bix �i � ;Bp2M TQBMi x ∈ RnX
h?2 *H�`F2 ;2M2`�HBx2/ bm#/Bz2`2MiB�H Q7 h �i x- /2MQi2/ #v ∂oh(x)- Bb /2}M2/ �b

∂oh(x) := {ξ ∈ Rn : ho(x; d) ≥ ⟨ξ, d⟩ 7Q` �HH d ∈ Rn}.

6`QK i?2 /2}MBiBQM Q7 i?2 *H�`F2 ;2M2`�HBx2/ bm#/Bz2`2MiB�H- Bi 7QHHQrb i?�i

ho(x; d) = max
ξ∈∂oh(x)

⟨ξ, d⟩, ∀d ∈ Rn.

.2}MBiBQM kX8X G2i h : Rn → R #2 HQ+�HHv GBTb?Bix �i � ;Bp2M TQBMi x ∈ RnX h?2
7mM+iBQM h Bb b�B/ iQ #2 `2;mH�` �i x ∈ Rn B7- 7Q` 2�+? d ∈ Rn- i?2 /B`2+iBQM�H
/2`Bp�iBp2 h′(x; d) 2tBbib �M/ +QBM+B/2b rBi? ho(x; d)X

6Q` � ;Bp2M +QKT�+i bm#b2i V Q7 Rq �M/ � ;Bp2M 7mM+iBQM g : Rn × Rq → R- i?2
7QHHQrBM; +QM/BiBQMb rBHH #2 +QMbB/2`2/ BM i?Bb T�T2`X
U*RV 7Q` 2p2`v x ∈ Rn i?2 7mM+iBQM V ∋ v -−→ g(x, v) Bb mTT2` b2KB+QMiBMmQmbc
U*kV g Bb HQ+�HHv GBTb+?Bix BM x- mMB7Q`KHv 7Q` v BM V- i?�i Bb- 7Q` 2�+? x ∈ Rn- i?2`2

2tBbi �M QT2M M2B;?#Q`?QQ/ U Q7 x �M/ � +QMbi�Mi L > 0 bm+? i?�i 7Q` �HH y
�M/ z BM U - �M/ v ∈ V - QM2 ?�b

|g(y, v)− g(z, v)| ≤ L∥y − z∥;



_P"lah aPGlhAPL a1ha 6P_ lL*1_h�AL *PLo1s PShAJAw�hAPL S_P"G1Ja 8

U*jV 7Q` 2�+? (x, v) ∈ Rn × V- i?2 7mM+iBQM g(·, v) Bb `2;mH�` �i x- i?�i Bb-
gox(x, v; ·) = g′x(x, v; ·)

Ui?2 /2`Bp�iBp2b #2BM; rBi? `2bT2+i iQ xVc
U*9V b2i@p�Hm2/ K�T Rn×V ∋ (x, v) -−→ ∂og(·, v)(x) Bb mTT2` b2KB+QMiBMmQmb r?2`2

∂og(·, v)(x) /2MQi2b i?2 *H�`F2 bm#/Bz2`2MiB�H Q7 g rBi? `2bT2+i iQ xX
_2K�`F RX AM � bmBi�#H2 b2iiBM;- B7 i?2 7mM+iBQM g Bb +QMp2t BM x �M/ +QMiBMmQmb
BM v- i?2 +QM/BiBQMb U*kV- U*jV- �M/ U*9V �`2 i?2M �miQK�iB+�HHv b�iBb}2/X h?2b2
+QM/BiBQMb �HbQ ?QH/ r?2M2p2` i?2 /2`Bp�iBp2 ∇xg(x, v) rBi? `2bT2+i iQ x 2tBbib �M/
Bb +QMiBMmQmb BM (x, v)X
_2K�`F kX (k8) lM/2` i?2 +QM/BiBQMb U*RV �M/ U*kV i?2 7mM+iBQM ψ : Rn → R-

ψ(x) := max{g(x, v) : v ∈ V},
Bb /2}M2/ �M/ }MBi2X 6m`i?2`- ψ Bb HQ+�HHv GBTb+?Bix QM Rn- �M/ ?2M+2 7Q` 2�+?
x ∈ Rn i?2 b2i V(x) /2}M2/ �b

V(x) := {v ∈ V : g(x, v) = ψ(x)},
Bb � MQM2KTiv +HQb2/ bm#b2i Q7 RqX

q2 +QM+Hm/2 i?Bb b2+iBQM #v i?2 7QHHQrBM; H2KK�b r?B+? rBHH #2 mb27mH BM Qm`
H�i2` �M�HvbBbX
G2KK� kXeX (N) G2i i?2 7mM+iBQM ψ #2 /2}M2/ BM _2K�`F kX amTTQb2 i?�i i?2
+QM/BiBQMb U*RV @ U*9V �`2 7mH}HH2/X h?2M i?2 mbm�H QM2@bB/2/ /B`2+iBQM�H /2`Bp�iBp2
ψ′(x; d) 2tBbib- �M/ b�iBb}2b i?2 7QHHQrBM;, 7Q` 2�+? x, d ∈ Rn-

ψ′(x; d) = ψo(x; d) = max{gox(x, v; d) : v ∈ V(x)}
= max{⟨ξ, d⟩ : ξ ∈ ∂og(·, v)(x), v ∈ V(x)}.

G2KK� kXdX (ke) 6Q` � ;Bp2M +QKT�+i +QMp2t bm#b2i V Q7 Rq �M/ � ;Bp2M 7mM+iBQM
g : Rn×Rq → R- bmTTQb2 i?�i i?2 #�bB+ +QM/BiBQMb U*RV @ U*9V �`2 7mH}HH2/X 6m`i?2`-
bmTTQb2 i?�i g(x, ·) Bb +QM+�p2 QM V- 7Q` 2�+? x ∈ RnX h?2M

∂oψ(x) = {ξ ∈ Rn : ∃v ∈ V(x) bm+? i?�i ξ ∈ ∂og(·, v)(x)}.

jX JmHiBTHB2` +?�`�+i2`Bx�iBQM 7Q` i?2 `Q#mbi bQHmiBQMX AM i?Bb b2+iBQM- r2
;Bp2 � KmHiBTHB2` +?�`�+i2`Bx�iBQM 7Q` i?2 `Q#mbi QTiBK�H bQHmiBQM Q7 UlSV- r?B+? rBHH
TH�v �M BKTQ`i�Mi `QH2 BM /2`BpBM; +?�`�+i2`Bx�iBQMb Q7 i?2 `Q#mbi QTiBK�H bQHmiBQM
b2ib BM i?2 M2ti b2+iBQMX G2i mb `2+�HH i?2 7QHHQrBM; `Q#mbi UrQ`bi +�b2V +QmMi2`T�`i
QTiBKBx�iBQM T`Q#H2K Q7 UlSV,

min
x∈Rn

{max
u∈U

f(x, u) : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m}, U_SV

r?2`2 f : Rn × Rq0 → R- �M/ gi : Rn × Rqi → R- i = 1, . . . ,m- �`2 ;Bp2M 7mM+iBQMb
�M/ 7Q` 2�+? i = 1, 2, . . . ,m- (u, vi) ∈ U × Vi ⊆ Rq0 × Rqi - r?2`2 U �M/ Vi �`2 i?2
bT2+B}2/ MQM2KTiv +QMp2t �M/ +QKT�+i mM+2`i�BMiv b2ibX h?2 `Q#mbi 72�bB#H2 b2i
Q7 UlSV Bb /2}M2/ #v

F := {x ∈ Rn : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m}.
�bbmKTiBQM jXRX h?`Qm;?Qmi i?Bb T�T2`- r2 �Hr�vb �bbmK2 i?�i F ̸= ∅- f :
Rn × U → R Bb � +QMp2t@+QM+�p2 BM i?2 b2Mb2 i?�i f(·, u) Bb � +QMp2t 7mM+iBQM
7Q` �Mv u ∈ U - �M/ f(x, ·) Bb � +QM+�p2 7mM+iBQM 7Q` �Mv x ∈ Rn r?BH2 gi(x, ·)-
i = 1, . . . ,m- �`2 +QM+�p2 7mM+iBQMb 7Q` �Mv x ∈ RnX 6m`i?2`- H2i i?2 7mM+iBQMb gi-
i = 1, . . . ,m- #2 b�iBb}2/ i?2 +QM/BiBQMb U*RV �M/ U*kVX
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.2}MBiBQM jXRX q2 b�v i?�i x̄ ∈ F Bb � `Q#mbi QTiBK�H bQHmiBQM Q7 UlSV B7 �M/
QMHv B7 x̄ Bb �M QTiBK�H bQHmiBQM Q7 U_SVX

"v mbBM; S`QTQbBiBQM kXk BM (Ry)- r2 +�M /2`Bp2 i?2 7QHHQrBM; +?�`�+i2`Bx�iBQM Q7
+QMp2tBiv 7Q` `Q#mbi 72�bB#H2 b2i Q7 UlSV BM i2`Kb Q7 i?2 *H�`F2 /B`2+iBQM�H /2`Bp�iBp2X
"27Q`2 /QBM; bQ H2i mb /2MQi2- 7Q` 2�+? x ∈ F -

I(x) :=

{
i ∈ {1, . . . ,m} : max

vi∈Vi

gi(x, vi) = 0

}
,

�M/ 7Q` �HH i = 1, . . . ,m-

Vi(x) :=

{
v̄i ∈ Vi : gi(x, v̄i) = max

vi∈Vi

gi(x, vi)

}
.

S`QTQbBiBQM RX G2i i?2 bvbi2K gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m- #2 b�iBb}2/
i?2 `Q#mbi aH�i2` +QMbi`�BMi [m�HB}+�iBQM- i?�i Bb- i?2`2 2tBbib x0 ∈ Rn bm+? i?�i

gi(x0, vi) < 0, 7Q` �Mv vi ∈ Vi, i = 1, . . . ,m.

6Q` 2�+? x ∈ F �M/ i ∈ I(x)- H2i i?2 7mM+iBQM gi #2 b�iBb}2/ i?2 +QM/BiBQMb U*jV-
U*9V- �M/ 0 /∈ ∂ogi(·, vi)(x) r?2M2p2` vi ∈ Vi(x)X h?2M F Bb +QMp2t B7 �M/ QMHv B7

F = {y ∈ Rn : goix(x, vi; y − x) ≤ 0, ∀x ∈ F, ∀i ∈ I(x), ∀vi ∈ Vi(x)}.

S`QQ7X 6Q` 2�+? i = 1, . . . ,m- /2}M2 � 7mM+iBQM ψi : Rn → R #v

ψi(x) := max
vi∈Vi

gi(x, vi) 7Q` �HH x ∈ Rn.

�TTHvBM; i?2 +QM/BiBQMb U*RV �M/ U*kV- r2 ?�p2- 7Q` 2�+? i = 1, . . . ,m- ψi Bb HQ+�HHv
GBTb+?Bix QM RnX hQ �+?B2p2 i?2 `2bmHi- r2 rBHH mb2 S`QTQbBiBQM kXk BM (Ry) �M/ i?2M
r2 M22/ iQ DmbiB7v i?�i 7Q` �Mv x ∈ F - ψi- i ∈ I(x)- �`2 `2;mH�` BM i?2 b2Mb2 Q7
*H�`F2 �M/ 0 /∈ ∂oψi(x)- �M/ i?2 bvbi2K ψi(x) ≤ 0- i = 1, . . . ,m- b�iBb}2b i?2 aH�i2`
+QM/BiBQMX h?2 }`bi �M/ i?2 b2+QM/ `2[mB`2K2Mib rBHH 7QHHQr 7`QK G2KK� kXe �M/
G2KK� kXd i?�i 7Q` �Mv x ∈ F -

ψ′
i(x; d) = ψo

i (x; d) = max{goix(x, vi; d) : vi ∈ Vi(x)}, ∀i ∈ I(x), URV

�M/ 7Q` 2�+? i ∈ I(x)

0 ∈
⋂

vi∈Vi
gi(x,vi)=0

Rn\
(
∂ogi(·, vi)(x)

)
= Rn\

( ⋃

vi∈Vigi(x,vi)=ψi(x)

∂ogi(·, vi)(x)
)

= Rn\∂oψi(x).

6BM�HHv- i?2 `Q#mbi aH�i2` +QMbi`�BMi [m�HB}+�iBQM H2�/b mb iQ i?2 7QHHQrBM; bi`B+i
BM2[m�HBiv

ψi(x0) = max{gi(x0, vi) : vi ∈ Vi} < 0, ∀i = 1, . . . ,m,

r?B+? K2�Mb i?�i i?2 bvbi2K x ∈ Rn, ψi(x) ≤ 0 (i = 1, . . . ,m) b�iBb}2b i?2 aH�i2`Ƕb
+QM/BiBQM1X LQr �TTHvBM; (Ry- S`QTQbBiBQM kXk) �M/ i�FBM; URV BMiQ +QMbB/2`�iBQM-
r2 Q#i�BM i?2 /2bB`2/ `2bmHibX

1 i?2 bvbi2K x ∈ Rn, gi(x) ≤ 0 (i = 1, . . . ,m) b�iBb}2b i?2 aH�i2`Ƕb +QM/BiBQM B7 i?2`2 2tBbib
x0 ∈ Rn bm+? i?�i gi(x0) < 0 7Q` �HH i = 1, . . . ,mX
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_2K�`F jX Ai b?QmH/ #2 MQi2/ i?�i BM S`QTQbBiBQM R rBi?Qmi `Q#mbi aH�i2` +QM@
bi`�BMi [m�HB}+�iBQM �M/ 0 /∈ ∂ogi(·, vi)(x) r?2M2p2` x ∈ F - i ∈ I(x)- �M/ vi ∈ Vi(x)-
r2 2�bBHv Q#i�BM i?�i B7 F Bb +QMp2t i?2M

F ⊆ {y ∈ Rn : goix(x, vi; y − x) ≤ 0, ∀x ∈ F, ∀i ∈ I(x), ∀vi ∈ Vi(x)}.
6m`i?2`KQ`2- 7Q` 2p2`v x ∈ F QM2 ?�b

∂ogi(·, vi)(x) ⊆ N(F, x) r?2M2p2` i ∈ I(x) �M/ vi ∈ Vi(x).

AM Q`/2` iQ 2bi�#HBb? � KmHiBTHB2` +?�`�+i2`Bx�iBQM 7Q` i?2 `Q#mbi QTiBK�H bQHmiBQM
Q7 UlSV- r2 }`bi `2+�HH � `Q#mbi #�bB+ +QMbi`�BMi [m�HB}+�iBQM r?B+? r�b BMi`Q/m+2/
BM (8)- r?2`2 i?2 +QMbi`�BMi /�i� mM+2`i�BMiv gi(·, vi)- i = 1, . . . ,m- �`2 �bbmK2/ iQ
#2 +QMp2t 7Q` 2�+? vi ∈ ViX
.2}MBiBQM jXkX G2i x ∈ F #2 � `Q#mbi 72�bB#H2 bQHmiBQM Q7 UlSVX h?2 `Q#mbi #�bB+
+QMbi`�BMi [m�HB}+�iBQM Bb b�iBb}2/ �i x B7

N(F, x) =
⋃

λi≥0, vi∈Vi
λigi(x,vi)=0, i=1,...,m

m∑

i=1

λi∂
ogi(·, vi)(x).

LQr i?2 7QHHQrBM; i?2Q`2K /2+H�`2b � `2bmHi i?�i i?2 `Q#mbi #�bB+ +QMbi`�BMi
[m�HB}+�iBQM /2}M2/ BM .2}MBiBQM jXk Bb � M2+2bb�`v �M/ bm{+B2Mi +QMbi`�BMi [m�HB@
}+�iBQM Q7 � `Q#mbi QTiBK�H bQHmiBQM 7Q` i?2 ;Bp2M T`Q#H2K- i?�i Bb- i?2 `Q#mbi #�bB+
+QMbi`�BMi [m�HB}+�iBQM ?QH/b B7 �M/ QMHv B7 i?2 G�;`�M;2 KmHiBTHB2` +QM/BiBQMb �`2
b�iBb}2/ 7Q` � `Q#mbi QTiBK�H bQHmiBQMX
h?2Q`2K jXj U*?�`�+i2`BxBM; i?2 `Q#mbi #�bB+ +QMbi`�BMi [m�HB}+�iBQMVX
amTTQb2 i?�i 7Q` 2�+? x ∈ F �M/ i ∈ I(x)- i?2 7mM+iBQM gi b�iBb}2b i?2 +QM/BiBQMb
U*jV �M/ U*9VX h?2M- i?2 7QHHQrBM; bi�i2K2Mib �`2 2[mBp�H2Mi,

UBV i?2 `Q#mbi #�bB+ +QMbi`�BMi [m�HB}+�iBQM ?QH/b �i x̄ ∈ F c
UBBV 7Q` 2�+? `2�H@p�Hm2/ +QMp2t@+QM+�p2 7mM+iBQM f QM Rn×U - i?2 7QHHQrBM; bi�i2@

K2Mib �`2 2[mBp�H2Mi,
U�V maxu∈U f(x, u) ≥ maxu∈U f(x̄, u) 7Q` �HH x ∈ F -
U#V i?2`2 2tBbi ū ∈ U - λ̄i ≥ 0- �M/ v̄i ∈ Vi- i = 1, . . . ,m bm+? i?�i

0 ∈ ∂f(·, ū)(x̄) +
m∑

i=1

λ̄i∂
ogi(·, v̄i)(x̄), λ̄igi(x̄, v̄i) = 0, ∀i = 1, . . . ,m, UkV

�M/
f(x̄, ū) = max

u∈U
f(x̄, u). UjV

S`QQ7X [(i) ⇒ (ii)] amTTQb2 i?�i UBV ?QH/bX G2i f #2 � `2�H@p�Hm2/ +QMp2t@+QM+�p2
7mM+iBQM QM Rn × U X 6B`biHv- r2 �bbmK2 i?�i U�V ?QH/bX h?2M- x̄ Bb � bQHmiBQM Q7 i?2
7QHHQrBM; +QMbi`�BM2/ +QMp2t QTiBKBx�iBQM T`Q#H2K,

JBMBKBx2 max
u∈U

f(x, u) bm#D2+i iQ x ∈ F,

r?B+? +�M #2 2[mBp�H2MiHv 2tT`2bb2/ �b-
0 ∈ ∂(max

u∈U
f(·, u))(x̄) +N(F, x̄).

"v UBV- i?2`2 �`2 λ̄i ≥ 0- �M/ v̄i ∈ Vi- i = 1, . . . ,m bm+? i?�i

0 ∈ ∂(max
u∈U

f(·, u))(x̄) +
m∑

i=1

λ̄i∂
ogi(·, v̄i)(x̄) �M/ λ̄igi(x̄, v̄i) = 0, ∀i = 1, . . . ,m.
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h?2M- Bi 7QHHQrb 7`QK G2KK� kXR i?�i i?2`2 2tBbib ū ∈ U bm+? i?�i UkV �M/ UjV ?QH/X
hQ T`Qp2 bm{+B2M+v- �bbmK2 i?�i i?2`2 2tBbi ū ∈ U - λ̄i ≥ 0- �M/ v̄i ∈ Vi- i =

1, . . . ,m bm+? i?�i UkV �M/ UjV ?QH/X �++Q`/BM; iQ UkV- r2 +�M }M/ ξ ∈ ∂f(·, ū)(x̄)
�M/ ηi ∈ ∂ogi(·, v̄i)(x̄)- i = 1, . . . ,m- bm+? i?�i

ξ +
m∑

i=1

λ̄iηi = 0. U9V

Ai bi2Kb 7`QK ξ ∈ ∂f(·, ū)(x̄) �M/ ηi ∈ ∂ogi(·, v̄i)(x̄)- i = 1, . . . ,m- r2 ;2i
f(x, ū)− f(x̄, ū) ≥ ⟨ξ, x− x̄⟩ U8V

�M/
goix(x̄, v̄i;x− x̄) ≥ ⟨ηi, x− x̄⟩ ∀i = 1, . . . ,m, UeV

7Q` �Mv x ∈ RnX JmHiBTHvBM; 2�+? Q7 BM2[m�HBiB2b BM UeV #v λ̄i �M/ bmKKBM; mT i?2
Q#i�BM2/ BM2[m�HBiB2b rBi? U8V- r2 Q#i�BM i?�i- 7Q` �HH x ∈ Rn-

f(x, ū)− f(x̄, ū) +
m∑

i=1

λ̄ig
o
ix(x̄, v̄i;x− x̄) ≥ ⟨ξ +

m∑

i=1

λ̄iηi, x− x̄⟩.

h�FBM; U9V BMiQ �++QmMi iQ;2i?2` rBi? i?2 +QM/BiBQM λ̄igi(x̄, v̄i) = 0, i = 1, . . . ,m-
r2 /2/m+2

f(x, ū)− f(x̄, ū) +
∑

i∈I(x̄)

λ̄ig
o
ix(x̄, v̄i;x− x̄) ≥ 0, ∀x ∈ Rn.

LQi2 i?�i 7Q` 2�+? i ∈ I(x̄) rBi? gi(x̄, v̄i) ̸= 0- λ̄i = 0X aQ- r2 +QMbB/2` BM i?2 +�b2
Q7 gi(x̄, v̄i) = 0 7Q` i ∈ I(x̄)- �M/ ?2M+2 v̄i ∈ Vi(x̄)X "v _2K�`F j- i?2 H�bi BM2[m�HBiv
#2+QK2b

f(x, ū)− f(x̄, ū) ≥ 0 7Q` �HH x ∈ F.

h?mb- iQ;2i?2` rBi? maxu∈U f(x, u) ≥ f(x, ū) 7Q` �HH x ∈ Rn �M/ UjV- r2 Q#i�BM
max
u∈U

f(x, u)−max
u∈U

f(x̄, u) ≥ 0, ∀x ∈ F.

Ai K2�Mb i?�i x̄ Bb � `Q#mbi QTiBK�H bQHmiBQM Q7 T`Q#H2K UlSVX
(UBBV ⇒ UBV) h?2 T`QQ7 Bb bBKBH�` iQ i?2 QM2 BM (j8- h?2Q`2K jXR)- �M/ bQ Bb

QKBii2/X

AM i?2 mM+2`i�BMiv 7`22 +�b2- r2 +�M 2�bBHv Q#i�BM i?2 7QHHQrBM; `2bmHi- r?B+? r�b
Q#i�BM2/ #v u�K�KQiQ �M/ Em`QBr� BM (jd)X

*Q`QHH�`v RX (jd- h?2Q`2K jXk) G2i x̄ ∈ F ′ := {x ∈ Rn : gi(x) ≤ 0, ∀i = 1, . . . ,m}
#2 � 72�bB#H2 bQHmiBQM- gi : Rn → R- i = 1, . . . ,m- #2 HQ+�HHv GBTb+?Bix QM RnX �bbmK2
7m`i?2` i?�i 7Q` �Mv x ∈ F ′ �M/ �Mv i = 1, . . . ,m bm+? i?�i gi(x) = 0- i?2 7mM+iBQM
gi Bb `2;mH�`- �M/ F ′ Bb +QMp2tX h?2M i?2 7QHHQrBM; bi�i2K2Mi �`2 2[mBp�H2Mi,

UBV N(F ′, x̄) =
⋃

λi≥0
λigi(x̄)=0, i=1,...,m

∑m
i=1 λi∂

ogi(x̄)c

UBBV 7Q` 2�+? `2�H@p�Hm2/ +QMp2t 7mM+iBQM f QM Rn- i?2 7QHHQrBM; bi�i2K2Mib �`2
2[mBp�H2Mi,
U�V f(x) ≥ f(x̄) 7Q` �HH x ∈ F ′c
U#V i?2`2 2tBbi λ̄i ≥ 0- i = 1, . . . ,m bm+? i?�i

0 ∈ ∂f(x̄) +
m∑

i=1

λ̄i∂
ogi(x̄) �M/ λ̄igi(x̄) = 0, ∀i = 1, . . . ,m.
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_2K�`F 9X "Qi? i?2 `Q#mbi aH�i2` +QMbi`�BMi [m�HB}+�iBQM +QM/BiBQM �M/ `Q#mbi
MQM@/2;2M2`�+v �i x̄- BX2X-

0 /∈ ∂ogi(·, vi)(x̄)
r?2M2p2` i = 1, . . . ,m �M/ vi ∈ Vi bm+? i?�i gi(x̄, vi) = 0- Bb � bm{+B2Mi +QM/BiBQM
7Q` i?2 `Q#mbi #�bB+ +QMbi`�BMi [m�HB}+�iBQM ?QH/b �i x̄X AM/22/- �++Q`/BM; iQ _2K�`F
j- r2 QMHv ?�p2 iQ b?Qr i?�i

N(F, x̄) ⊆
⋃

λi≥0, vi∈Vi
λigi(x̄,vi)=0, i=1,...,m

m∑

i=1

λi∂
ogi(·, vi)(x̄).

G2i η ∈ N(F, x̄) #2 �`#Bi`�`BHvX aBM+2 i?2 `Q#mbi aH�i2` +QMbi`�BMi [m�HB}+�iBQM
+QM/BiBQM �M/ `Q#mbi MQM@/2;2M2`�+v �`2 b�iBb}2/ �i x̄- #v h?2Q`2K kX9 BM (Ry) rBi?
f := ⟨−η, ·⟩- �M/ gi := ψi- i = 1, . . . ,m- i?2`2 2tBbi λ̄i ≥ 0- i = 1, . . . ,m- bm+? i?�i

0 ∈ −η +
m∑

i=1

λ̄i∂
oψi(x̄) �M/ λ̄iψi(x̄) = 0, ∀i = 1, . . . ,m.

6Q` i /∈ I(x̄)- r2 ;2i λ̄i = 0X AM i?2 +�b2 Q7 i ∈ I(x̄)- G2KK� kXd iQ;2i?2` rBi?
λ̄iψi(x̄) = 0, ∀i = 1, . . . ,m- BKTHB2b i?2`2 2tBbi v̄i ∈ Vi- i = 1, . . . ,m- bm+? i?�i

η ∈
m∑

i=1

λ̄i∂
ogi(·, v̄i)(x̄) �M/ λ̄igi(x̄, v̄i) = 0.

h?Bb b?Qrb i?�i

η ∈
⋃

λi≥0, vi∈Vi
λigi(x̄,vi)=0, i=1,...,m

m∑

i=1

λi∂
ogi(·, vi)(x̄),

i?2 `2bmHi �b `2[mB`2X
h?2 7QHHQrBM; 2t�KTH2 Bb ;Bp2M iQ BHHmbi`�i2 i?2 +QM/BiBQM UBV Q7 h?2Q`2K jXj Bb

2bb2MiB�HX
1t�KTH2 jXkX G2i x := (x1, x2) ∈ R2- v1 := (v1,1, v1,2)- v2 := (v2,1, v2,2)- v3 :=
(v3,1, v3,2)- V1 := {(v1, v2) ∈ R2 : v21+v22 ≤ 1}- V2 := [0, 1]×[1, 2]- V3 := [2, 3]×[0, 1]-
g1(x, v1) := v1,1x1 + v1,2x2 − x3

1 − 2,

g2(x, v2) = −v2,1x
3
1 + v2,2 max{−x2,−x3

2},
g3(x, v3) = v3,1x1 + v3,2x2,

F := {x ∈ R2 : g1(x, v1) ≤ 0, g2(x, v2) ≤ 0, g3(x, v3) ≤ 0, ∀vi ∈ Vi, i = 1, 2, 3}

�M/ x̄ := (0, 0)X h?2M F = {x ∈ R2 :
√

x2
1 + x2

2 − x3
1 − 2 ≤ 0, 2x1 + x2 ≤

0, −x1−x2 ≤ 0}- I(x̄) = {2, 3}- ∂og2(·, v2)(x̄) = {0}×[−v2,2, 0] �M/ ∂og3(·, v3)(x̄) =
{(v3,1, v3,2)}X Ai +�M #2 Q#b2`p2/ i?�i

N(F, x̄) = +QM2 {(−1,−1), (2, 1)}
�M/

⋃

λi≥0, vi∈Vi
λigi(x̄,vi)=0, i=1,2,3

3∑

i=1

λi∂
ogi(·, vi)(x̄) = +QM2 {(0,−1), (2, 1)} .

>2M+2- r2 ?�p2 i?2 +QM/BiBQM UBV Q7 h?2Q`2K jXj /Q2b MQi ?QH/X h?mb 7Q` bQK2
+QMp2t@+QM+�p2 7mM+iBQM f : R2×U → R- Bi Bb BKTQbbB#H2 iQ +?�`�+i2`Bx2 � bm{+B2Mi
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+QM/BiBQM 7Q` `Q#mbi QTiBK�H bQHmiBQM 7Q` i?2 7QHHQrBM; mM+2`i�BM T`Q#H2K #v mbBM;
h?2Q`2K jXj-

KBMBKBx2 f(x, u) bm#D2+i iQ x ∈ R2, gi(x, vi) ≤ 0, i = 1, 2, 3.

�+im�HHv- H2i u := (u1, u2) #2 �M mM+2`i�BM T�`�K2i2` #2HQM; iQ mM+2`i�BMiv b2i
U := {(u1, u2) ∈ R2 : u2

1 + u2
2 ≤ 1}- �M/ f(x, u) := ex1 − u1x1 − u2x2X a2H2+iBM;

ū := (1, 0)- v̄1 := (1, 0)- v̄2 := (1, 1)- v̄3 := (2, 0)- λ̄1 := 0, λ̄2 := 1 �M/ λ̄3 := 1 r2
Q#i�BM λ̄igi(x̄, v̄i) = 0 7Q` �HH i = 1, 2, 3-

f(x̄, ū) = 1 = max
u∈U

f(x̄, u)

�M/

(0, 0) ∈ {(−2, 0)}+ {0}× [−1, 0] + {(2, 0)} = ∂f(·, ū)(x̄) +
3∑

i=1

λ̄i∂
ogi(·, v̄i)(x̄).

>Qr2p2`- #v i�FBM; x := (− 1
2 ,

√
3
2 ) ∈ F - maxu∈U f(x̄, u) = e1/2 − 1 < 1 = f(x̄, ū) =

maxu∈U f(x̄, u) r?B+? b?Qrb x̄ Bb MQi � KBMBKBx2` Q7 maxu∈U f(·, u) QM F X !
_2K�`F 8X �++Q`/BM; iQ _2K�`F 9- 1t�KTH2 jXk /2KQMbi`�i2b i?�i QMHv `Q#mbi
aH�i2` +QMbi`�BMi [m�HB}+�iBQM +QM/BiBQM Bb MQi bm{+B2Mi iQ 2Mbm`2 i?2 `Q#mbi #�bB+
+QMbi`�BMi [m�HB}+�iBQM ?QH/b �i +QMbB/2`�iBQM TQBMiX h?2 `2�bQM Bb i?�i i?2 `Q#mbi
MQM@/2;2M2`�+v +QM/BiBQM �i bm+? � TQBMi Bb /2bi`Qv2/X

9X *?�`�+i2`Bx�iBQMb Q7 i?2 `Q#mbi bQHmiBQM b2ibX AM i?Bb b2+iBQM- r2 rBHH 2b@
i�#HBb? bQK2 +?�`�+i2`Bx�iBQMb Q7 `Q#mbi QTiBK�H bQHmiBQM b2i BM i2`Kb Q7 � ;Bp2M
`Q#mbi bQHmiBQM TQBMi Q7 i?2 ;Bp2M T`Q#H2KX

q2 #2;BM #v `2+�HHBM; i?2 7QHHQrBM; +QMbi`�BM2/ +QMp2t QTiBKBx�iBQM T`Q#H2K BM
i?2 7�+2 Q7 /�i� mM+2`i�BMiv UlSV,

min
x∈Rn

{f(x, u) : gi(x, vi) ≤ 0, i = 1, . . . ,m}, UlSV

r?2`2 f : Rn × U → R Bb � +QMp2t@+QM+�p2 7mM+iBQM- i?2 7mM+iBQMb gi- i ∈ I- b�iBb7v
i?2 +QM/BiBQM U*RV �M/ U*kV- gi(x, ·) : Vi → R- i ∈ I- �`2 +QM+�p2 7mM+iBQMb 7Q` �Mv
x ∈ Rn- �M/ i?2 `Q#mbi 72�bB#H2 b2i F Bb +QMp2tX �bbmK2 i?�i i?2 `Q#mbi bQHmiBQM
b2i Q7 i?2 T`Q#H2K UlSV- /2MQi2/ #v

S := {a ∈ F : max
u∈U

f(a, u) ≤ max
u∈U

f(x, u), ∀x ∈ F},

Bb MQM2KTivX AM r?�i 7QHHQrb- 7Q` �Mv ;Bp2M y ∈ Rn, λ := (λ1, . . . ,λm) ∈ Rm
+ -

u ∈ U - vi ∈ Vi- i ∈ I �M/ v := (v1, . . . , vm)- r2 BMi`Q/m+2 i?2 bQ@+�HH2/ Tb2m/Q
G�;`�M;B�M@ivT2 7mM+iBQM LP (·, y,λ, u, v) #v- 7Q` �HH x ∈ Rn-

LP (x, y,λ, u, v) := f(x, u) +
∑

i∈I(y)

λig
o
ix(y, vi;x− y).

LQr- r2 b?Qr i?�i i?2 Tb2m/Q G�;`�M;B�M@ivT2 7mM+iBQM �bbQ+B�i2/ rBi? � G�;`�M;2
KmHiBTHB2` p2+iQ` �M/ mM+2`i�BMiv T�`�K2i2`b �++Q`/BM; iQ � bQHmiBQM Bb +QMbi�Mi QM
SX
S`QTQbBiBQM kX �bbmK2 �HH +QM/BiBQMb Q7 h?2Q`2K jXj ?QH/X G2i a ∈ S #2 � `Q#mbi
QTiBK�H bQHmiBQM 7mH}HHBM; i?2 `Q#mbi #�bB+ +QMbi`�BMi [m�HB}+�iBQMX h?2M i?2`2 2tBbi
� G�;`�M;2 KmHiBTHB2` p2+iQ` λa := (λa1 , . . . ,λ

a
m) ∈ Rm

+ - �M/ mM+2`i�BMiv T�`�K2i2`b
ua ∈ U - vai ∈ Vi- i ∈ I- bm+? i?�i 7Q` �Mv x ∈ S- λai goix(a, vai ;x− a) = 0- ∀i ∈ I(a)-
f(x, ua) = maxu∈U f(x, u)- �M/ LP (·, a,λa, ua, va) Bb +QMbi�Mi QM SX
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S`QQ7X Ai 7QHHQrb 7`QK a ∈ S �M/ h?2Q`2K jXj i?�i i?2`2 2tBbi � G�;`�M;2 KmHiBTHB2`
p2+iQ` λa := (λa1 , . . . ,λ

a
m) ∈ Rm

+ - �M/ mM+2`i�BMiv T�`�K2i2`b ua ∈ U - vai ∈ Vi-
i ∈ I- b�iBb7vBM; i?2 +QM/BiBQMb UkV �M/ UjVX h?2M- Bi bi2Kb 7`QK i?2 7�+i i?�i
∂ogi(·, vai )(a) = ∂goix(a, v

a
i ; ·− a)(a) 7Q` �HH i ∈ I(a) �M/ UkV- r2 ;2i

0 ∈ ∂f(·, ua)(a) +
∑

i∈I(a)

λai ∂g
o
ix(a, v

a
i ; ·− a)(a) ⊆ ∂LP (·, a,λa, ua, va)(a),

r?B+? Bb MQiBM; 2Hb2 i?�M

f(x, ua) +
∑

i∈I(a)

λai g
o
ix(a, v

a
i ;x− a) ≥ f(a, ua) = max

u∈U
f(a, u) 7Q` �HH x ∈ Rn. UdV

LQiB+2 i?�i
max
u∈U

f(x, u) = max
u∈U

f(a, u), 7Q` �Mv a ∈ S �M/ x ∈ S, U3V

�M/ i�FBM; i?Bb BMiQ �++QmMi- UdV /2/m+2b
∑

i∈I(a) λ
a
i g

o
ix(a, v

a
i ;x−a) ≥ 0, 7Q` �Mv x ∈

S. G2i mb MQiB+2 i?�i 7Q` BM/B+2b i ∈ I(a) bm+? i?�i λai > 0- r2 ?�p2 gi(a, vai ) = 0-
�M/ +QMb2[m2MiHv- vai ∈ Vi(a)X h?Bb BM im`M- #v _2K�`F j- BKTHB2b i?�i

λai g
o
ix(a, v

a
i ;x− a) = 0, ∀i ∈ I(a). UNV

LQr- r2 T`Qp2 i?�i
f(x, ua) = max

u∈U
f(x, u), 7Q` �Mv x ∈ S. URyV

AM 7�+i- #v UdV �M/ UNV- r2 ;2i i?2 �bb2`iBQM
max
u∈U

f(x, u) ≥ f(x, ua) ≥ max
u∈U

f(a, u).

h?Bb iQ;2i?2` rBi? U3V- URyV ?QH/bX h?2`27Q`2- 7Q` �Mv x ∈ S- UjV- U3V- UNV �M/ URyV
2Mi�BH

LP (x, a,λa, ua, va) = f(x, ua) +
∑

i∈I(a)

λai g
o
ix(a, v

a
i ;x− a)

= f(x, a) = max
u∈U

f(x, u) = max
u∈U

f(a, u) = f(a, ua),

b?QrBM; i?�i LP (·, a,λa, ua, va) Bb +QMbi�Mi QM S- �M/ i?Bb +QKTH2i2b i?2 T`QQ7X

_2K�`F eX Ai Bb rQ`i? MQiBM; i?�i B7 gi(·, vi)- i ∈ I- �`2 +QMp2t 7mM+iBQMb 7Q` �Mv
vi ∈ Vi i?2M- 7Q` 2�+? i ∈ I- S`QTQbBiBQM k ;Bp2b
λai gi(x, v

a
i )− λai gi(a, v

a
i ) ≥ λai g

′
i(a, v

a
i ;x− a) = λai g

o
i (a, v

a
i ;x− a) = 0 7Q` �Mv x ∈ S.

h?Bb iQ;2i?2` rBi? x ∈ F �M/ λai gi(a, v
a
i ) = 0- i ∈ I- �``Bp2b λai gi(x, vai ) = 0, i ∈ IX

6m`i?2`KQ`2- Bi vB2H/b

LP (x, a,λa, ua, va) = f(x, ua) +
∑

i∈I(a)

λai g
o
ix(a, v

a
i ;x− a)

= f(x, ua)

= f(x, ua) +
m∑

i=1

λai gi(x, v
a
i ), ∀x ∈ S.

h?Bb b?Qrb i?�i Tb2m/Q G�;`�M;B�M@ivT2 7mM+iBQM +QHH�Tb2b iQ i?2 r2HH@FMQrM G�;`�M@
;B�M@ivT2 7mM+iBQM QM i?2 `Q#mbi bQHmiBQM b2i SX
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AM i?2 b2[m2H- r2 �`2 MQr BM � TQbBiBQM iQ 2bi�#HBb? i?2 +?�`�+i2`Bx�iBQMb Q7 i?2
`Q#mbi bQHmiBQM b2i 7Q` T`Q#H2K UlSV BM i2`Kb Q7 +QMp2t bm#/Bz2`2MiB�Hb- *H�`F2 bm#@
/Bz2`2MiB�Hb �M/ G�;`�M;2 KmHiBTHB2`bX "mi #27Q`2 /QBM; bQ Bi rBHH i?mb #2 +QMp2MB2Mi
iQ /2MQi2 i?2 7QHHQrBM;,

Ĩ(a) := {i ∈ I(a) : λai > 0},
C(x) := {ξ ∈ ∂f(·, ua)(a) : ⟨ξ, x− a⟩ ≥ 0} 7Q` �Mv ;Bp2M x ∈ F.

h?2Q`2K 9XR U*?�`�+i2`BxBM; i?2 `Q#mbi bQHmiBQM b2iVX �bbmK2 �HH +QM/BiBQMb
Q7 h?2Q`2K jXj ?QH/X G2i a ∈ S #2 � `Q#mbi QTiBK�H bQHmiBQM 7mH}HHBM; i?2 `Q#mbi
#�bB+ +QMbi`�BMi [m�HB}+�iBQMX h?2M i?2`2 2tBbi � G�;`�M;2 KmHiBTHB2` p2+iQ` λa :=
(λa1 , . . . ,λ

a
m) ∈ Rm

+ - �M/ mM+2`i�BMiv T�`�K2i2`b ua ∈ U - vai ∈ Vi- i ∈ I- bm+? i?�i
i?2 `Q#mbi bQHmiBQM b2i 7Q` i?2 T`Q#H2K UlSV Bb +?�`�+i2`Bx2/ #v

S = S1 = S2 = S3 = S4 = S5 = S6 = S7,

r?2`2
S1 := {x ∈ F : ⟨ηi, x− a⟩ = 0 7Q` bQK2 ηi ∈ ∂ogi(·, vai )(a), ∀i ∈ Ĩ(a);

⟨ζ, a− x⟩ = 0 7Q` bQK2 ζ ∈ ∂f(·, ua)(x) ∩ ∂f(·, ua)(a);

f(x, ua) = max
u∈U

f(x, u)},

S2 := {x ∈ F : ⟨ηi, x− a⟩ = 0 7Q` bQK2 ηi ∈ ∂ogi(·, vai )(a), ∀i ∈ Ĩ(a);

⟨ζ, a− x⟩ ≥ 0 7Q` bQK2 ζ ∈ ∂f(·, ua)(x) ∩ ∂f(·, ua)(a);

f(x, ua) = max
u∈U

f(x, u)},

S3 := {x ∈ F : ⟨ηi, x− a⟩ = 0 7Q` bQK2 ηi ∈ ∂ogi(·, vai )(a), ∀i ∈ Ĩ(a);

⟨ξ, x− a⟩ = ⟨ζ, a− x⟩ = 0 7Q` bQK2 ζ ∈ ∂f(·, ua)(x) �M/ ξ ∈ C(x);

f(x, ua) = max
u∈U

f(x, u)},

S4 := {x ∈ F : ⟨ηi, x− a⟩ = 0 7Q` bQK2 ηi ∈ ∂ogi(·, vai )(a), ∀i ∈ Ĩ(a);

⟨ξ, x− a⟩ = ⟨ζ, a− x⟩ 7Q` bQK2 ζ ∈ ∂f(·, ua)(x) �M/ ξ ∈ C(x);

f(x, ua) = max
u∈U

f(x, u)},

S5 := {x ∈ F : ⟨ηi, x− a⟩ = 0 7Q` bQK2 ηi ∈ ∂ogi(·, vai )(a), ∀i ∈ Ĩ(a);

⟨ξ, x− a⟩ ≤ ⟨ζ, a− x⟩ 7Q` bQK2 ζ ∈ ∂f(·, ua)(x) �M/ ξ ∈ C(x);

f(x, ua) = max
u∈U

f(x, u)},

S6 := {x ∈ F : ⟨ηi, x− a⟩ = 0 7Q` bQK2 ηi ∈ ∂ogi(·, vai )(a), ∀i ∈ Ĩ(a);

⟨ζ, a− x⟩ = 0 7Q` bQK2 ζ ∈ ∂f(·, ua)(x);

f(x, ua) = max
u∈U

f(x, u)},

S7 := {x ∈ F : ⟨ηi, x− a⟩ = 0 7Q` bQK2 ηi ∈ ∂ogi(·, vai )(a), ∀i ∈ Ĩ(a);

⟨ζ, a− x⟩ ≥ 0 7Q` bQK2 ζ ∈ ∂f(·, ua)(x);

f(x, ua) = max
u∈U

f(x, u)}.

S`QQ7X 1pB/2MiHv- i?2 7QHHQrBM; +QMi�BMK2Mib ?QH/,
S1 ⊆ S2 ⊆ S7,
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S1 ⊆ S6 ⊆ S7,

S1 ⊆ S3 ⊆ S4 ⊆ S5 ⊆ S7.

>2M+2- r2 QMHv ?�p2 iQ b?Qr i?�i S ⊆ S1 �M/ S7 ⊆ SX AM Q`/2` iQ 2bi�#HBb? S ⊆ S1-
H2i x ∈ S #2 �`#Bi`�`BHv ;Bp2MX Ai 7QHHQrb 7`QK UkV- r2 i?2`27Q`2 Q#i�BM p2+iQ`b
ζ ∈ ∂f(·, ua)(a) �M/ ξi ∈ ∂ogi(·, vai )(a)- i ∈ I(a)- bm+? i?�i

ζ +
∑

i∈I(a)

λai ξi = 0 URRV

UbBM+2 λai = 0 7Q` i /∈ I(a)VX �++Q`/BM; iQ ζ ∈ ∂f(·, ua)(a)- ξi ∈ ∂ogi(·, vai )(a)-
i ∈ I(a)- �M/ x, a ∈ S- QM2 ?�b

f(x, ua)− f(a, ua) ≥ ⟨ζ, x− a⟩ URkV
�M/

goix(a, v
a
i ;x− a) ≥ ⟨ξi, x− a⟩, ∀i ∈ I(a). URjV

PM+2 r2 ?�p2 b?QrM- BM S`QTQbBiBQM k- i?�i λai goix(a, vai ;x− a) = 0- ∀i ∈ I(a)- �7i2`
KmHiBTHvBM; #Qi? bB/2b Q7 URjV #v λai , i ∈ I(a) r2 ;2i

0 ≥ ⟨λai ξi, x− a⟩, ∀i ∈ Ĩ(a).

amKKBM; mT i?2b2 BM2[m�HBiB2b �M/ mbBM; URRV r2 Q#i�BM i?�i

0 ≥
〈 ∑

i∈I(a)

λai ξi, x− a
〉
= ⟨−ζ, x− a⟩. UR9V

�;�BM- Bi 7QHHQrb 7`QK S`QTQbBiBQM k i?�i
f(x, ua) = max

u∈U
f(x, u), UR8V

�M/ 7Q` 2�+? i ∈ Ĩ(a)- maxηi∈∂ogi(·,va
i )(a)

⟨ηi, x− a⟩ = goix(a, v
a
i ;x− a) = 0- i?2 H�ii2`

r?B+? BM im`M H2�/b iQ i?2`2 2tBbib ηi ∈ ∂ogi(·, vai )(a) bm+? i?�i
⟨ηi, x− a⟩ = 0.

PM i?2 QM2 ?�M/- i�FBM; UjV �M/ UR8V BMiQ �++QmMi URkV r2 Q#i�BM
⟨ζ, x− a⟩ ≤ f(x, ua)− f(a, ua) = max

u∈U
f(x, u)−max

u∈U
f(a, u) = 0.

h?Bb iQ;2i?2` rBi? UR9V �``Bp2b �i
⟨ζ, x− a⟩ = 0.

LQr- r2 QMHv M22/ iQ T`Qp2 i?�i ζ ∈ ∂f(·, ua)(x)X AM 7�+i- 7Q` �Mv y ∈ Rn-
f(y, ua)− f(x, ua) = f(y, ua)− f(a, ua)

≥ ⟨ζ, y − a⟩
= ⟨ζ, y − x⟩+ ⟨ζ, x− a⟩ = ⟨ζ, y − x⟩,

r?B+? K2�Mb ζ ∈ ∂f(·, ua)(x) �M/ bQ- x ∈ S1X h?Bb T`Qp2b S ⊆ S1X
hQ Q#i�BM S7 ⊆ S- r2 MQr H2i x #2 �`#Bi`�`v TQBMi Q7 S7X Ai 7QHHQrb i?�i x ∈ F -

�M/ Bi Bb 2�bv iQ b22 i?�i
max
u∈U

f(a, u)−max
u∈U

f(x, u) = f(a, ua)− f(x, ua) ≥ ⟨ζ, a− x⟩ ≥ 0.

h?2 H�bi BM2[m�HBiv iQ;2i?2` rBi? i?2 7�+i i?�i a ∈ S ;Bp2b x ∈ S- �M/ i?2 T`QQ7 Bb
+QKTH2i2X



R9 LAh>A_�h aAa�_�h- _�"A�L q�L:E11_11 �L. :l1 JulL: G11

LQr- r2 ;Bp2 i?2 7QHHQrBM; 2t�KTH2 iQ BHHmbi`�i2 i?2 bB;MB}+�M+2 Q7 h?2Q`2K 9XR
i?�i �i H2�bi QM2 Q7 i?2 +QMbi`�BMi 7mM+iBQMb gi(·, vi) 7Q` bQK2 vi ∈ Vi- Bb MQi +QMp2t
r?BH2 i?2 `Q#mbi 72�bB#H2 b2i Bb +QMp2tX h?2M i?2 `2bmHib BM (R8- j8- j9- kd) K�v MQi
#2 `2H2p�Mi iQ i?Bb 2t�KTH2X

1t�KTH2 9XRX G2i mb /2MQi2 x := (x1, x2) ∈ R2- u := (u1, u2)- v1 := (v1,1, v1,2)-
v2 := (v2,1, v2,2)- v3 := (v3,1, v3,2)- U := {(u1, u2) ∈ R2 : u2

1 + u2
2 ≤ 1}- V1 :=

{(v1, v2) ∈ R2 : v21 + v22 ≤ 1}- V2 := [0, 1] × [1, 2] �M/ V3 := [0, 1] × [0, 1]X *QMbB/2`
i?2 7QHHQrBM; +QMbi`�BM2/ QTiBKBx�iBQM T`Q#H2K rBi? mM+2`i�BMiv /�i� UlSV,

JBMBKBx2 f(x, u) UlSV
bm#D2+i iQ x ∈ R2, g1(x, v1) ≤ 0, g2(x, v2) ≤ 0, g3(x, v3) ≤ 0.

r?2`2 u ∈ U - vi ∈ Vi- i = 1, 2, 3-
f(x, u) := u1x1 + u2x2 − x1 − x2,

g1(x, v1) := v1,1x1 + v1,2x2 − x3
1 − 2,

g2(x, v2) := v2,1 max{−x1,−x3
1}− v2,2x2,

g3(x, v3) := v3,1x1 − v3,2x
2
2.

� `Q#mbi bQHmiBQM Q7 UlSV Bb Q#i�BM2/ #v bQHpBM; Bib `Q#mbi UrQ`bi@+�b2V +QmMi2`T�`i
U_SV

JBMBKBx2 max
u∈U

f(x, u) U_SV

bm#D2+i iQ x ∈ F :=

⎧
⎪⎪⎨

⎪⎪⎩

g1(x, v1) ≤ 0, ∀v1 ∈ V1,
g2(x, v2) ≤ 0, ∀v2 ∈ V2,
g3(x, v3) ≤ 0, ∀v3 ∈ V3,
x ∈ R2

⎫
⎪⎪⎬

⎪⎪⎭
.

h?2M F = {x ∈ R2 :
√

x2
1 + x2

2 − x3
1 − 2 ≤ 0, −x1 − x2 ≤ 0, x1 ≤ 0}X 1pB/2MiHv-

i?2 7mM+iBQM f : R2 × U → R Bb � +QMp2t@+QM+�p2 7mM+iBQMX G2i mb MQiB+2 i?�i

max
u∈U

f(x, u) =
√

x2
1 + x2

2 − x1 − x2, 7Q` �HH x ∈ R2,

�M/
max
u∈U

f(x, u) ≥ |x2|− x2 = 0 = max
u∈U

f((0, 0), u), 7Q` �HH x ∈ F.

h?mb a := (a1, a2) = (0, 0) ∈ S- I(a) = {2, 3}- ∂og2(·, v2)(a) = {(r,−v2,2) : −v2,1 ≤
r ≤ 0} 7Q` 2�+? v2 ∈ V2 �M/ ∂og3(·, v3)(a) = {(v3,1, 0)} 7Q` 2�+? v3 ∈ V3X aQ-

N(F, a) = +QM2{(−1,−1), (1, 0)} =
⋃

λi≥0, vi∈Vi
λigi(a,vi)=0, i∈I

3∑

i=1

λi∂
ogi(·, vi)(a),

r?B+? K2�Mb i?�i i?2 `Q#mbi #�bB+ +QMbi`�BMi [m�HB}+�iBQM ?QH/b �i aX �HbQ- 7Q` 2�+?
u ∈ U - i?2 +QMp2t bm#/Bz2`2MiB�H Q7 f(·, u) �i �Mv TQBMi x Bb ;Bp2M #v

∂f(·, u)(x) = (u1 − 1, u2 − 1).

G2i mb b2H2+i λa := (λa1 ,λ
a
2 ,λ

a
3) = (0, 0, 1)- ua := (0, 1)- va2 := (1, 1) �M/ va3 := (1, 0)X

h?2`27Q`2- Ĩ(a) = {3} �M/ #v bQHpBM; i?2 7QHHQrBM; bvbi2K- 7Q` x ∈ R2
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1 = ⟨(1, 0), (x1, x2)⟩ = 0,√
x2
2 − 2 ≤ 0,

−x2 ≤ 0,
∂f(·, ua)(x) ∩ ∂f(·, ua)(a) = {(−1, 0)},
⟨(−1, 0), (0, x2)⟩ = 0,
−x1 = maxu∈U f(x, u),

i?2 `Q#mbi bQHmiBQM b2i +�M #2 /2b+`B#2/ bBKTHv �b
S = S1 = {x ∈ R2 : x1 = 0, 0 ≤ x2 ≤ 2}.

!
qBi? i?2 ?2HT Q7 S`QTQbBiBQM k- r2 b22 MQr ?Qr i?2 `Q#mbi bQHmiBQM b2i +�M #2

+?�`�+i2`Bx2/ BM i2`Kb Q7 Tb2m/Q G�;`�M;B�M@ivT2 7mM+iBQMX

S`QTQbBiBQM jX �bbmK2 �HH +QM/BiBQMb Q7 h?2Q`2K jXj ?QH/X G2i a ∈ S #2 � `Q#mbi
QTiBK�H bQHmiBQM 7mH}HHBM; i?2 `Q#mbi #�bB+ +QMbi`�BMi [m�HB}+�iBQMX h?2M i?2`2 2tBbi
� G�;`�M;2 KmHiBTHB2` p2+iQ` λa := (λa1 , . . . ,λ

a
m) ∈ Rm

+ - �M/ mM+2`i�BMiv T�`�K2i2`b
ua ∈ U - vai ∈ Vi- i ∈ I- bm+? i?�i

S = {x ∈ F : ⟨ηi, x− a⟩ = 0, 7Q` bQK2 ηi ∈ ∂ogi(·, vai )(a), ∀i ∈ Ĩ(a);

0 ∈ ∂LP (·, a,λa, ua, va)(x) �M/ f(x, ua) = max
u∈U

f(x, u)}.

S`QQ7X Ai rBHH i?mb #2 +QMp2MB2Mi iQ /2MQi2
S∗ : = {x ∈ F : ⟨ηi, x− a⟩ = 0, 7Q` bQK2 ηi ∈ ∂ogi(·, vai )(a), ∀i ∈ Ĩ(a);

0 ∈ ∂LP (·, a,λa, ua, va)(x) �M/ f(x, ua) = max
u∈U

f(x, u)}.

"v S`QTQbBiBQM k- r2 ?�p2 i?�i 7Q` 2�+? x ∈ S- λai goix(a, vai ;x − a) = 0- ∀i ∈ I(a)-
f(x, ua) = maxu∈U f(x, u)- �M/ LP (·, a,λa, ua, va) Bb +QMbi�Mi QM SX h?2 H�ii2`
K2�Mb i?�i

∂LP (·, a,λa, ua, va)(x) = {0},
�M/ bQ- S ⊆ S∗X hQ Q#i�BM i?2 +QMp2`b2 BM+HmbBQM- H2i x ∈ S∗ #2 ;Bp2MX h?2M- #v
i?2 /2}MBiBQM Q7 S∗- x ∈ F - i?2`2 2tBbi ηi ∈ ∂ogi(·, vai )(a), ∀i ∈ Ĩ(a)- bm+? i?�i
⟨ηi, x− a⟩ = 0, ∀i ∈ Ĩ(a),

f(x, ua) = max
u∈U

f(x, u) UReV

�M/
f(y, ua) +

∑

i∈I(a)

λai g
o
ix(a, v

a
i ; y − a) = LP (y, a,λa, ua, va)

≤ LP (x, a,λa, ua, va)

= f(x, ua) +
∑

i∈I(a)

λai g
o
ix(a, v

a
i ;x− a)

= f(x, ua) +
∑

i∈Ĩ(a)

λai g
o
ix(a, v

a
i ;x− a)

= f(x, ua) 7Q` �HH y ∈ Rn.

lbBM; UReV �M/ i�FBM; y = a BM i?2 H�bi BM2[m�HBiv- r2 ;2i i?�i
max
u∈U

f(x, u) ≥ max
u∈U

f(a, u) ≥ f(a, ua) ≥ f(x, ua) = max
u∈U

f(x, u).
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>2M+2-
max
u∈U

f(a, u) = max
u∈U

f(x, u),

r?B+? Bb MQiBM; 2Hb2 i?�M x ∈ SX

AM i?2 bT2+B�H +�b2 r?2M U �M/ Vi- i ∈ I- �`2 bBM;H2iQMb- r2 +�M 2�bBHv Q#i�BM i?2
7QHHQrBM; `2bmHibX
*Q`QHH�`v kX 6Q` i?2 T`Q#H2K USV- H2i f : Rn → R #2 +QMp2t 7mM+iBQM �M/ F ′ :=
{x ∈ Rn : gi(x) ≤ 0, i ∈ I} #2 +QMp2tX �bbmK2 i?�i 7Q` �Mv x ∈ F ′ �M/ i ∈ I ′(x) :=
{i ∈ I : gi(x) = 0} i?2 7mM+iBQMb gi �`2 HQ+�HHv GBTb+?Bix �M/ `2;mH�` BM i?2 b2Mb2
Q7 *H�`F2- a ∈ S′ Bb �M QTiBK�H bQHmiBQM 7mH}HHBM; N(F ′, a) = cone

⋃
i∈I′(a) ∂

ogi(a),
�M/ i?2`2 2tBbib � G�;`�M;2 KmHiBTHB2` p2+iQ` λa := (λa1 , . . . ,λ

a
m) ∈ Rm

+ bm+? i?�i

0 ∈ ∂f(a) +
m∑

i=1

λai ∂
ogi(a) �M/ λai gi(a) = 0, ∀i = 1, . . . ,m. URdV

G2i 7m`i?2` Ĩ(a)′ := {i ∈ I ′(a) : λai > 0} �M/ C(x)′ := {ξ ∈ ∂f(a) : ⟨ξ, x −
a⟩ ≥ 0} 7Q` �Mv ;Bp2M x ∈ F ′X h?2M- i?2 bQHmiBQM b2i S′ Q7 i?2 T`Q#H2K USV Bb
+?�`�+i2`Bx2/ #v

S′ = S′
1 = S′

2 = S′
3 = S′

4 = S′
5 = S′

6 = S′
7,

r?2`2
S′
1 := {x ∈ F ′ : ⟨ηi, x− a⟩ = 0 7Q` bQK2 ηi ∈ ∂0gi(a), ∀i ∈ Ĩ(a)′;

⟨ζ, a− x⟩ = 0 7Q` bQK2 ζ ∈ ∂f(x) ∩ ∂f(a)},

S′
2 := {x ∈ F ′ : ⟨ηi, x− a⟩ = 0 7Q` bQK2 ηi ∈ ∂0gi(a), ∀i ∈ Ĩ(a)′;

⟨ζ, a− x⟩ ≥ 0 7Q` bQK2 ζ ∈ ∂f(x) ∩ ∂f(a)},

S′
3 := {x ∈ F ′ : ⟨ηi, x− a⟩ = 0 7Q` bQK2 ηi ∈ ∂0gi(a), ∀i ∈ Ĩ(a)′;

⟨ξ, x− a⟩ = ⟨ζ, a− x⟩ = 0 7Q` bQK2 ζ ∈ ∂f(x) �M/ ξ ∈ C(x)′},

S′
4 := {x ∈ F ′ : ⟨ηi, x− a⟩ = 0 7Q` bQK2 ηi ∈ ∂0gi(a), ∀i ∈ Ĩ(a)′;

⟨ξ, x− a⟩ = ⟨ζ, a− x⟩ 7Q` bQK2 ζ ∈ ∂f(x) �M/ ξ ∈ C(x)′},

S′
5 := {x ∈ F ′ : ⟨ηi, x− a⟩ = 0 7Q` bQK2 ηi ∈ ∂0gi(a), ∀i ∈ Ĩ(a)′;

⟨ξ, x− a⟩ ≤ ⟨ζ, a− x⟩ 7Q` bQK2 ζ ∈ ∂f(x) �M/ ξ ∈ C(x)′},

S′
6 := {x ∈ F ′ : ⟨ηi, x− a⟩ = 0 7Q` bQK2 ηi ∈ ∂0gi(a), ∀i ∈ Ĩ(a)′;

⟨ζ, a− x⟩ = 0 7Q` bQK2 ζ ∈ ∂f(x)},

S′
7 := {x ∈ F ′ : ⟨ηi, x− a⟩ = 0 7Q` bQK2 ηi ∈ ∂0gi(a), ∀i ∈ Ĩ(a)′;

⟨ζ, a− x⟩ ≥ 0 7Q` bQK2 ζ ∈ ∂f(x)}.

*Q`QHH�`v jX 6Q` i?2 T`Q#H2K USV- H2i f : Rn → R #2 +QMp2t 7mM+iBQM �M/ F ′ :=
{x ∈ Rn : gi(x) ≤ 0, i ∈ I} #2 +QMp2tX �bbmK2 i?�i 7Q` �Mv x ∈ F ′ �M/ i ∈ I ′(x)
i?2 7mM+iBQMb gi �`2 HQ+�HHv GBTb+?Bix �M/ `2;mH�` BM i?2 b2Mb2 Q7 *H�`F2- a ∈ S′ Bb
�M QTiBK�H bQHmiBQM 7mH}HHBM; N(F ′, a) = +QM2

⋃
i∈I′(a) ∂

ogi(a)- �M/ i?2 QTiBK�HBiv
+QM/BiBQMb URdV ?QH/ rBi? � G�;`�M;2 KmHiBTHB2` p2+iQ` λa := (λa1 , . . . ,λ

a
m) ∈ Rm

+

h?2M-
S′ = {x ∈ F ′ : ⟨ηi, x− a⟩ = 0, ∃ηi ∈ ∂ogi(a), ∀i ∈ Ĩ(a)′ �M/ 0 ∈ ∂LP (·, a,λa)(x)},
r?2`2 LP (x, a,λa) := f(x) +

∑
i∈I′(a) λ

a
i g

o
i (a;x− a)X
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8X �TTHB+�iBQM iQ `Q#mbi KmHiB@Q#D2+iBp2 QTiBKBx�iBQM T`Q#H2KbX AM i?Bb
b2+iBQM- �b �M �TTHB+�iBQM Q7 i?2 ;2M2`�H `2bmHib Q7 i?2 T`2pBQmb b2+iBQM- r2 2t�KBM2
i?2 +H�bb Q7 KmHiBTH2@Q#D2+iBp2 T`Q;`�Kb BM i?2 7�+2 Q7 /�i� mM+2`i�BMiv #Qi? BM
i?2 Q#D2+iBp2 �M/ +QMbi`�BMib i?�i +�M #2 r`Bii2M #v i?2 7QHHQrBM; KmHiB@Q#D2+iBp2
QTiBKBx�iBQM T`Q#H2K,

min
x∈Rn

{(f1(x, u1), . . . , fp(x, up)) : gi(x, vi) ≤ 0, i = 1, . . . ,m}, UlJSV

r?2`2 fk : Rn×Rqk → R- k = 1, . . . , p- �`2 +QMp2t@+QM+�p2 7mM+iBQMb- gi : Rn×Rqi →
R- i = 1, . . . ,m- �`2 7mM+iBQMb b�iBb7vBM; i?2 +QM/BiBQM U*RV �M/ U*kV- gi(x, ·) �`2
+QM+�p2 7mM+iBQMb 7Q` �Mv x ∈ Rn- �M/ uk �M/ vi �`2 mM+2`i�BM T�`�K2i2`b �M/ i?2v
#2HQM; iQ MQM2KTiv +QMp2t +QKT�+i b2ib Uk ⊆ Rqk �M/ Vi ⊆ Rqi - `2bT2+iBp2HvX

q2 �bbQ+B�i2 rBi? UlJSV Bib `Q#mbi +QmMi2`T�`i- r?B+? Bb i?2 rQ`bi +�b2 Q7
UlJSV-

min
x∈Rn

{
(
max
u1∈U1

f1(x, u1), . . . , max
up∈Up

fp(x, up)
)
: x ∈ F}, U_JSV

r?2`2 F bi�M/b 7Q` i?2 `Q#mbi 72�bB#H2 b2i Q7 UlJSV- /2}M2/ #v
F := {x ∈ Rn : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m}.

AM i?2 b�K2 r�v- r2 rBHH ;Bp2 i?`22 FBM/ `Q#mbi bQHmiBQMb 7Q` i?2 T`Q#H2Kb UlJSV
r?B+? ?�b #22M BMi`Q/m+2/ BM (kk)X

x̄ ∈ F Bb b�B/ iQ #2 � `Q#mbi 2{+B2Mi bQHmiBQM Q7 UlJSV B7 i?2`2 /Q2b MQi 2tBbi �
`Q#mbi 72�bB#H2 bQHmiBQM x Q7 UlJSV bm+? i?�i

max
uk∈Uk

fk(x, uk) ≤ max
uk∈Uk

fk(x̄, uk) 7Q` �HH k = 1, . . . , p,

�M/
max
ul∈Ul

fl(x, ul) < max
ul∈Ul

fl(x̄, ul) 7Q` bQK2 l.

x̄ ∈ F Bb +�HH2/ � r2�FHv `Q#mbi 2{+B2Mi bQHmiBQM Q7 UlJSV B7 i?2`2 /Q2b MQi 2tBbi
� `Q#mbi 72�bB#H2 bQHmiBQM x Q7 UlJSV bm+? i?�i

max
uk∈Uk

fk(x, uk) < max
uk∈Uk

fk(x̄, uk) 7Q` �HH k = 1, . . . , p.

x̄ ∈ F Bb b�B/ iQ #2 � T`QT2`Hv `Q#mbi 2{+B2Mi bQHmiBQM Q7 UlJSV B7 Bi Bb �
`Q#mbi 2{+B2Mi bQHmiBQM Q7 UlJSV �M/ i?2`2 Bb � MmK#2` M > 0 bm+? i?�i 7Q` �HH
k ∈ {1, . . . , p} �M/ x ∈ F b�iBb7vBM; maxuk∈Uk fk(x, uk) < maxuk∈Uk fk(x̄, uk)- i?2`2
2tBbib �M BM/2t l ∈ {1, . . . , p} bm+? i?�i maxul∈Ul fl(x̄, ul) < maxul∈Ul fl(x, ul) �M/

maxuk∈Uk fk(x̄, uk)−maxuk∈Uk fk(x, uk)

maxul∈Ul fl(x, ul)−maxul∈Ul fl(x̄, ul)
≤ M.

�++Q`/BM; iQ i?2b2 /2}MBiBQMb- Bi Bb 2pB/2MiHv i?�i x̄ ∈ F Bb � `Q#mbi 2{+B2Mi
bQHmiBQM U`2bTX r2�FHv- T`QT2`Hv `Q#mbi 2{+B2Mi bQHmiBQMV Q7 UlJSV B7 �M/ QMHv B7
x̄ ∈ F Bb � 2{+B2Mi bQHmiBQM U`2bTX r2�FHv- T`QT2`Hv 2{+B2Mi bQHmiBQMV Q7 U_JSVX
h?2 b2�`+? 7Q` �M 2{+B2Mi bQHmiBQM U`2bTX r2�FHv- T`QT2`Hv 2{+B2Mi bQHmiBQMV iQ
KmHiB@Q#D2+iBp2 QTiBKBx�iBQM T`Q#H2K ?�b #22M +�``B2/ Qmi i?`Qm;? bQHpBM; � bBM;H2
Ub+�H�`V Q` � 7�KBHv Q7 bBM;H2 Q#D2+iBp2 QTiBKBx�iBQM T`Q#H2Kb- TQbbB#Hv /2T2M/BM;
QM bQK2 �TT`QT`B�i2 T�`�K2i2`bX q2 `272` i?2 `2�/2` iQ (k3- Rk- jR- ky) �M/ Qi?2`
`272`2M+2b i?2`2BM 7Q` M2+2bb�`v �M/ bm{+B2Mi +QM/BiBQMb 7Q` Ur2�FHv- T`QT2`HvV 27@
}+B2Mi bQHmiBQMb iQ � KmHiBQ#D2+iBp2 QTiBKBx�iBQM #v T�`�K2i2`Bx�iBQM �M/ HBM2�`
b+�H�`Bx�iBQM Ur2B;?i2/ bmK �TT`Q�+?VX

AM i?Bb b2+iBQM- r2 T`2b2Mi +?�`�+i2`Bx�iBQMb Q7 r2�FHv `Q#mbi 2{+B2Mi bQHmiBQM
b2i UWR(F )V �M/ T`QT2`Hv `Q#mbi 2{+B2Mi bQHmiBQM b2i UPR(F )V Q7 i?2 T`Q#H2K
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UlJSV #v mbBM; HBM2�` b+�H�`Bx�iBQM �TT`Q�+?X "27Q`2 T`2b2MiBM;- BM i?2 +�b2b Q7
bim/v- H2i mb +QMbB/2` i?2 7QHHQrBM; b+�H�` +QMp2t T`Q#H2K Q7 U_JSV /2T2M/BM; QM
� T�`�K2i2` θ := (θ1, . . . , θp) ∈ Rp

+,

min
x∈Rn

{
p∑

k=1

θk max
uk∈Uk

fk(x, uk) : x ∈ F

}
. URPθV

amTTQb2 i?�i i?2 bQHmiBQM b2i Q7 T`Q#H2K URPθV- /2MQi2/ #v Sθ Bb MQM2KTivX Ai Bb
r2HH@FMQrM- BM i?2 HBi2`�im`2- i?�i r2�FHv 2{+B2Mi bQHmiBQMb �M/ T`QT2`Hv 2{+B2Mi
bQHmiBQMb Q7 U_JSV +�M #2 +?�`�+i2`Bx2/ #v bQHpBM; bQK2 b+�H�` T�`�K2i2`Bx2/ +QM@
p2t T`Q#H2Kb URPθVX JQ`2 T`2+Bb2Hv-

UBV x̄ ∈ WR(F ) B7 �M/ QMHv B7 i?2`2 2tBbib θ ∈ Rp
+\{0} bm+? i?�i x̄ ∈ SθX

UBBV x̄ ∈ PR(F ) B7 �M/ QMHv B7 i?2`2 2tBbib θ ∈ BMiRp
+ bm+? i?�i x̄ ∈ SθX

h?mb- #v mbBM; h?2Q`2K jXj- r2 +�M Q#i�BM BKK2/B�i2Hv i?2 7QHHQrBM; M2+2bb�`v
�M/ bm{+B2Mi QTiBK�HBiv +QM/BiBQMb 7Q` r2�FHv `Q#mbi 2{+B2Mi bQHmiBQM �b r2HH �b
T`QT2`Hv `Q#mbi 2{+B2Mi bQHmiBQM Q7 UlJSVX
h?2Q`2K 8XRX 6Q` i?2 T`Q#H2K UlJSV- bmTTQb2 �HH +QM/BiBQMb Q7 h?2Q`2K jXj ?QH/
�M/ x̄ ∈ F := {x ∈ Rn : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i ∈ I} 7mH}HHBM; i?2 `Q#mbi #�bB+
+QMbi`�BMi [m�HB}+�iBQMX �bbmK2 7m`i?2` i?�i i?2 b2i F Bb +QMp2tX h?2M-

UBV x̄ ∈ F Bb � r2�FHv `Q#mbi 2{+B2Mi bQHmiBQM Q7 UlJSV B7 �M/ QMHv B7 i?2`2 2tBbi
θk ≥ 0- k = 1, . . . , p- MQi �HH x2`Q- λi ≥ 0- i = 1, . . . ,m- ūk ∈ Uk- k = 1, . . . , p
�M/ v̄i ∈ Vi- i = 1, . . . ,m bm+? i?�i

0 ∈
p∑

k=1

θk∂fk(·, ūk)(x̄) +
m∑

i=1

λi∂
ogi(·, v̄i)(x̄),

λigi(x̄, v̄i) = 0, ∀i = 1, . . . ,m, �M/
fk(x̄, ūk) = max

uk∈Uk

fk(x̄, uk), k = 1, . . . , p.

UBBV x̄ ∈ F Bb � T`QT2`Hv `Q#mbi 2{+B2Mi bQHmiBQM Q7 UlJSV B7 �M/ QMHv B7 i?2`2
2tBbi θk > 0- k = 1, . . . , p- λi ≥ 0- i = 1, . . . ,m- ūk ∈ Uk- k = 1, . . . , p �M/
v̄i ∈ Vi- i = 1, . . . ,m bm+? i?�i

0 ∈
p∑

k=1

θk∂fk(·, ūk)(x̄) +
m∑

i=1

λi∂
ogi(·, v̄i)(x̄),

λigi(x̄, v̄i) = 0, ∀i = 1, . . . ,m, �M/
fk(x̄, ūk) = max

uk∈Uk

fk(x̄, uk), k = 1, . . . , p.

S`QQ7X UBV �b x̄ ∈ F Bb � r2�FHv `Q#mbi 2{+B2Mi bQHmiBQM Q7 UlJSV B7 �M/ QMHv B7
x̄ ∈ F Bb � r2�FHv 2{+B2Mi bQHmiBQM Q7 U_JSV- i?2`2 2tBbi θk ≥ 0- k = 1, . . . , p- MQi �HH
x2`Q- bm+? i?�i x̄ ∈ F Bb � bQHmiBQM Q7 URPθVX AM i?2 Qi?2` rQ`/- x̄ ∈ F Bb � `Q#mbi
bQHmiBQM Q7 i?2 7QHHQrBM; mM+2`i�BM UQMHv BM i?2 +QMbi`�BMibV +QMp2t QTiBKBx�iBQM
T`Q#H2K,

min
x∈Rn

{
p∑

k=1

θk max
uk∈Uk

fk(x, uk) : gi(x, vi) ≤ 0, i ∈ I

}
.

�TTHvBM; h?2Q`2K jXj- r2 ;2i i?�i i?2`2 2tBbi λ̄i ≥ 0- �M/ v̄i ∈ Vi- i ∈ I bm+? i?�i

0 ∈ ∂

(
p∑

k=1

θk max
uk∈Uk

fk(·, uk)

)
(x̄) +

m∑

i=1

λ̄i∂
ogi(·, v̄i)(x̄), λ̄igi(x̄, v̄i) = 0, ∀i ∈ I.
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"v 2KTHQvBM; i?2 bmKK�iBQM- TQbBiBp2Hv ?QKQ;2M2Qmb �M/ K�t@7mM+iBQM Q7 +QMp2t
bm#/Bz2`2MiB�H `mH2- i?2 `2bmHi �b `2[mB`2/X

UBBV h?2 T`QQ7 Q7 UBBV Bb [mBi2 bBKBH�` iQ i?�i Q7 UBV �M/ bQ Bb QKBii2/X

AM i?2 7QHHQrBM; T`QTQbBiBQM- r2 ;Bp2 � bm{+B2Mi +QM/BiBQM i?�i � `Q#mbi 2{+B2Mi
bQHmiBQM Q7 UlJSV +�M #2 � T`QT2`Hv `Q#mbi 2{+B2Mi bQHmiBQM Q7 UlJSVX
S`QTQbBiBQM 9X 6Q` i?2 T`Q#H2K UlJSV- H2i x̄ ∈ F #2 � `Q#mbi 72�bB#H2 bQHmiBQM 7Q`
UlJSVX �bbmK2 �HH +QM/BiBQMb Q7 h?2Q`2K jXj ?QH/X �bbmK2 7m`i?2` i?�i i?2 b2i F
Bb +QMp2t- F ∩ F (x̄) ̸= ∅ �M/

N(F ∩ F (x̄), x̄) = +QM2
{(

∪uk∈Uk(x̄)
k=1,...,p

∂fk(·, uk)(x̄)

)⋃
(
∪vi∈Vi(x̄)

i∈I(x̄)

∂ogi(·, vi)(x̄)
)}

,

UR3V
r?2`2

F (x̄) := {x ∈ Rn : max
uk∈Uk

fk(x, uk) ≤ max
uk∈Uk

fk(x̄, uk), ∀k = 1, . . . , p}, �M/

Uk(x̄) := {ūk ∈ Uk : fk(x̄, ūk) = max
uk∈Uk

fk(x̄, uk)}, k = 1, . . . , p,

Vi(x̄) := {v̄i ∈ Vi : gi(x̄, v̄i) = max
vi∈Vi

gi(x̄, vi)}, i ∈ I(x̄).

A7 x̄ Bb � `Q#mbi 2{+B2Mi bQHmiBQM Q7 UlJSV- i?2M x̄ Bb � T`QT2`Hv `Q#mbi 2{+B2Mi
bQHmiBQM Q7 UlJSVX
S`QQ7X G2i x̄ #2 � `Q#mbi 2{+B2Mi bQHmiBQM Q7 UlJSVX h?2M x̄ Bb � KBMBKBx2` Q7 i?2
7QHHQrBM; b+�H�` +QMp2t T`Q#H2K,

min
x∈Rn

{
p∑

k=1

max
uk∈Uk

fk(x, uk) : x ∈ F ∩ F (x̄)

}
,

Q` 2[mBp�H2MiHv-

0 ∈
p∑

k=1

∂( max
uk∈Uk

fk(·, uk))(x̄) +N(F ∩ F (x̄), x̄).

Ai 7QHHQrb i?�i i?2`2 2tBbib η ∈ N(F ∩ F (x̄), x̄) bm+? i?�i

−η ∈
p∑

k=1

∂( max
uk∈Uk

fk(·, uk))(x̄).

h?2M- #v i?2 +QM/BiBQM UR3V- i?2`2 2tBbi θk ≥ 0- ūk ∈ Uk- ξk ∈ ∂fk(·, ūk)(x̄)-
k = 1, . . . , p- λi ≥ 0- v̄i ∈ Vi(x̄) �M/ ζi ∈ ∂ogi(·, v̄i)(x̄)- i ∈ I(x̄)- bm+? i?�i

η =
p∑

k=1

θkξk +
∑

i∈I(x̄)

λiζi

�M/
fk(x̄, ū) = max

uk∈Uk

fk(x̄, uk), ∀k = 1, . . . , p.

r?B+? BKTHB2b i?�i

0 = −η + η ∈
p∑

k=1

∂( max
uk∈Uk

fk(·, uk))(x̄) +
p∑

k=1

θk∂fk(·, ūk)(x̄) +
∑

i∈I(x̄)

λi∂
ogi(·, v̄i)(x̄)
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⊆
p∑

k=1

∂( max
uk∈Uk

fk(·, uk))(x̄) +
p∑

k=1

θk
( ⋃

uk∈Uk(x̄)

∂fk(·, uk)(x̄)
)
+N(F, x̄)

=
p∑

k=1

∂( max
uk∈Uk

fk(·, uk))(x̄) +
p∑

k=1

θk∂( max
uk∈Uk

fk(·, uk))(x̄) +N(F, x̄)

=
p∑

k=1

(1 + θk)∂( max
uk∈Uk

fk(·, uk))(x̄) +N(F, x̄).

h?2`27Q`2-
p∑

k=1

(1 + θk) max
uk∈Uk

fk(x, uk) ≥
p∑

k=1

(1 + θk) max
uk∈Uk

fk(x̄, uk) 7Q` �HH x ∈ F,

r?B+? ;Bp2b i?�i x̄ ∈ Sθ̃ rBi? θ̃ := (1+θ1, . . . , 1+θp) ∈ BMiRp
+- �M/ bQ x̄ Bb � T`QT2`Hv

`Q#mbi 2{+B2Mi bQHmiBQM Q7 UlJSVX

G2i θ ∈ Rp
+\{0} U`2bTX BMiRp

+V �M/ aθ ∈ SθX q2 ?�p2 b22M �H`2�/v i?�i B7 i?2
`Q#mbi #�bB+ +QMbi`�BMi [m�HB}+�iBQM ?QH/b �i aθ- i?2 b2i Q7 G�;`�M;2 KmHiBTHB2` �M/
mM+2`i�BM T�`�K2i2`b M(aθ) 7Q` URPθV +Q``2bTQM/BM; iQ aθ- ;Bp2M �b

M(aθ) :=

{
(λθ, uθ, vθ) ∈ Rm

+ ×
p∏

k=1

Rqk ×
m∏

i=1

Rqi :

0 ∈
p∑

k=1

θk∂fk(·, uθk)(aθ) +
m∑

i=1

λθi ∂
ogi(·, vθi )(aθ),

λθi gi(a
θ, vθi ) = 0, ∀i ∈ I �M/ fk(a

θ, uθ) = max
uk∈Uk

fk(a
θ, uk), ∀k = 1, . . . , p

}
,

Bb MQM2KTiv r?2`2 λθ := (λθ1, . . . ,λ
θ
m)- uθ := (uθ1, . . . , u

θ
p) �M/ vθ := (vθ1 , . . . , v

θ
m)X

G2i 7m`i?2` I(aθ) := {i ∈ I : ∃vθi ∈ Vi bm+? i?�i gi(aθ, vθi ) = 0} �M/ Ĩ(aθ) := {i ∈
I(aθ) : λθi > 0}X

"v K2�Mb Q7 HBM2�` b+�H�`Bx�iBQM �TTHB2/ BM h?2Q`2K 9XR- r2 +�M ;2i +?�`�+i2`@
Bx�iBQMb Q7 i?2 r2�FHv `Q#mbi 2{+B2Mi bQHmiBQM b2ib WR(F ) �M/ T`QT2`Hv `Q#mbi
2{+B2Mi bQHmiBQM b2i PR(F ) Q7 i?2 T`Q#H2K UlJSV BKK2/B�i2HvX

h?2Q`2K 8XkX 6Q` i?2 T`Q#H2K UlJSV- �bbmK2 �HH +QM/BiBQMb Q7 h?2Q`2K jXj ?QH/-
�M/ i?2 b2i F Bb +QMp2tX

UBV amTTQb2 7m`i?2` i?�i 7Q` 2�+? θ ∈ Rp
+\{0}- Sθ Bb MQM@2KTivX G2i aθ ∈ Sθ �M/

i?2 `Q#mbi #�bB+ +QMbi`�BMi [m�HB}+�iBQM ?QH/b �i aθX G2i (λθ, uθ, vθ) ∈ M(aθ)X
h?2M

WR(F )

=
⋃

θ∈Rp
+\{0}

{
x ∈ F : ⟨ηθi , x− aθ⟩ = 0 7Q` bQK2 ηθi ∈ ∂ogi(·, vθi )(aθ), ∀i ∈ Ĩ(aθ);

⟨ζθ, x− aθ⟩ = 0 7Q` bQK2 ζθ ∈
p∑

k=1

θk∂fk(·, uθ)(x) ∩
p∑

k=1

θk∂fk(·, uθ)(aθ) �M/

fk(x, u
θ) = max

uk∈Uk

fk(x, uk), ∀k = 1, . . . , p
}
.
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UBBV A7 7Q` 2�+? θ ∈ BMiRp
+- Sθ Bb MQM@2KTiv- aθ ∈ Sθ Bb 7mH}HH2/ i?2 `Q#mbi #�bB+

+QMbi`�BMi [m�HB}+�iBQM- (λθ, uθ, vθ) ∈ M(aθ)- i?2M
PR(F )

=
⋃

θ∈BMiRp
+

{
x ∈ F : ⟨ηθi , x− aθ⟩ = 0 7Q` bQK2 ηθi ∈ ∂ogi(·, vθi )(aθ), ∀i ∈ Ĩ(aθ);

⟨ζθ, x− aθ⟩ = 0 7Q` bQK2 ζθ ∈
p∑

k=1

θk∂fk(·, uθ)(x) ∩
p∑

k=1

θk∂fk(·, uθ)(aθ) �M/

fk(x, u
θ) = max

uk∈Uk

fk(x, uk), ∀k = 1, . . . , p
}
.

!
hQ +HQb2 i?Bb b2+iBQM- r2 ;Bp2 �M 2t�KTH2 BHHmbi`�iBM; h?2Q`2K 8Xk r?B+? Bb BM/B@

+�i2/ iQ #2 +QMp2MB2MiHv �TTHB2/ Bb �TTHB+�#H2 r?BH2 i?2 �7Q`2K2MiBQM2/ `2bmHi- /m2
iQ amM 2i �HX (j9- h?2Q`2K 9Xd)- �`2 MQiX Ai K2�Mb i?�i �i H2�bi QM2 Q7 i?2 +QMbi`�BMi
7mM+iBQMb gi(·, vi) 7Q` bQK2 vi ∈ Vi- Bb MQi +QMp2t r?BH2 i?2 `Q#mbi 72�bB#H2 b2i Bb
+QMp2tX

1t�KTH2 8XRX G2i x := (x1, x2) ∈ R2- u1 := (u1,1, u1,2)- u2 := (u2,1, u2,2)- v1 :=
(v1,1, v1,2)- v2 := (v2,1, v2,2)- v3 := (v3,1, v3,2)- v4 := (v4,1, v4,2)- U1 = U2 := [0, 1]-
V1 := {(v1, v2) ∈ R2 : v21 + v22 ≤ 1}- V2 := [−2,−1] × [−2,−1]- V3 := [4, 5] × [2, 3]
�M/ V4 := [0, 1]× [0, 1]X

q2 MQr +QMbB/2` i?2 7QHHQrBM; +QMbi`�BM2/ KmHiBQ#D2+iBp2 QTiBKBx�iBQM T`Q#H2K
rBi? mM+2`i�BMiv /�i� ,

JBMBKBx2 (f1(x, u1), f2(x, u2))

bm#D2+i iQ x ∈ R2, g1(x, v1) ≤ 0, g2(x, v2) ≤ 0, g3(x, v3) ≤ 0, g4(x, v4) ≤ 0,

r?2`2
f1(x, u1) := u1x1,

f2(x, u2) := u2x2,

g1(x, v1) := v1,1x1 + v1,2x2 + x3
1 − 2,

g2(x, v2) := v2,1x1 + v2,2x2 + 1,

g3(x, v3) := −v3,1x1 − v3,2x2 + 3,

g4(x, v4) := −v4,1x1 − v4,2x
2
2,

�M/ Bib `Q#mbi +QmMi2`T�`i
JBMBKBx2 ( max

u1∈U1

f1(x, u1), max
u2∈U2

f2(x, u2))

bm#D2+i iQ x ∈ F :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g1(x, v1) ≤ 0, ∀v1 ∈ V1,
g2(x, v2) ≤ 0, ∀v2 ∈ V2,
g3(x, v3) ≤ 0, ∀v3 ∈ V3,
g4(x, v4) ≤ 0, ∀v4 ∈ V4,
x ∈ R2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

q2 Q#i�BM i?�i 7Q` 2p2`v x ∈ R2-
max
u1∈U1

f1(x, u1) = x1,
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max
u2∈U2

f2(x, u2) = x2,

F = {x ∈ R2 :
√
x2
1 + x2

2 + x3
1 − 2 ≤ 0, −x1 − x2 + 1 ≤ 0, −4x1 − 2x2 + 3 ≤ 0,

− x1 ≤ 0},

�b � bi`�B;?i7Q`r�`/ +�H+mH�iBQM b?QrbX G2i mb /2MQi2

Λ := {(θ1, θ2) ∈ R2 : θ1 + θ2 = 1},
BMiΛ := {(θ1, θ2) ∈ R2 : θ1 > 0, θ2 > 0, θ1 + θ2 = 1}.

q2 MQr +QMbB/2` i?2 7QHHQrBM; TQbbB#BHBiB2b,
UBV A7 θ := (θ1, θ2) = (1, 0) i?2M URPθV `2�/b �b 7QHHQrb,

JBMBKBx2 x1

bm#D2+i iQ x ∈ F.

�b θ1x1+θ2x2 = x1 ≥ 0- ∀x ∈ F - r2 +�M i�F2 aθ := (0, 2) ∈ Sθ �M/ bQ- I(aθ) =
{1, 4}X G2i mb +?QQb2 λθ := (0, 0, 0, 1)- uθ := (1, 1)- vθ := (vθ1 , v

θ
2 , v

θ
3 , v

θ
4) =

((0, 1), (−1,−1), (4, 2), (1, 0))- �M/ r2 �HbQ ?�p2 Ĩ(aθ) = {4}X G2i

Aθ : = {x ∈ F : ⟨ηθi , x− aθ⟩ = 0 7Q` bQK2 ηθi ∈ ∂ogi(·, vθi )(aθ), ∀i ∈ Ĩ(aθ);

∃ζθ ∈ (θ1∂f1(·, uθ1)(x) + θ2∂f2(·, uθ2)(x))
∩ (θ1∂f1(·, uθ1)(aθ) + θ2∂f2(·, uθ2)(aθ));

⟨ζθ, x− aθ⟩ = 0, max
u1∈U1

f1(x, u1) = f1(x, u
θ
1), max

u1∈U1

f2(x, u2) = f2(x, u
θ
2)}.

h?2M Aθ +�M #2 2�bBHv +�H+mH�i2/ Aθ = {x ∈ R2 : x1 = 0, 3
2 ≤ x2 ≤ 2}.

UBBV aBKBH�`Hv- B7 θ = (0, 1) i?2M r2 +�M i�F2 aθ := (1, 0) ∈ Sθ �M/ bQ- I(aθ) =
{1, 2, 4}X G2i mb +?QQb2 λθ := ( 14 , 1, 0, 0)- uθ := (1, 1)-vθ := (vθ1 , v

θ
2 , v

θ
3 , v

θ
4) =

((1, 0), (−1,−1), (4, 2), (0, 1))- �M/ r2 �HbQ ?�p2 Ĩ(aθ) = {1, 2}X h?mb Aθ =
{(1, 0)}X

UBBBV A7 θ ∈ {(θ1, θ2) ∈ R2 : 2
3 < θ1 < 1, θ2 > 0, θ1 + θ2 = 1} i?2M URPθV #2+QK2b

JBMBKBx2 θ1x1 + θ2x2

bm#D2+i iQ x ∈ F.

�b θ1x1 + θ2x2 ≥ θ1x1 − 2θ2x1 + 3
2θ2 = (3θ1 − 2)x1 + 3

2θ2 ≥ 3
2θ2- ∀x ∈ F -

i?2M r2 +�M i�F2 aθ := (0, 3
2 ) ∈ Sθ �M/ bQ- I(aθ) = {2, 4}X G2i mb +?QQb2

λθ := (0, 0, θ22 , θ1−2θ2) UMQi2 i?�i θ1 > 2
3 �M/ θ1+θ2 = 1 BKTHv θ1−2θ2 > 0V-

uθ := (1, 1)- vθ := (vθ1 , v
θ
2 , v

θ
3 , v

θ
4) = ((1, 0), (−1,−1), (4, 2), (1, 0))- �M/ r2 �HbQ

?�p2 Ĩ(aθ) = {2, 4}X AM i?Bb +�b2- Bi Bb 2�bv iQ b22 i?�i Aθ = {(0, 3
2 )}X

UBpV aBKBH�`Hv- B7 θ ∈ {(θ1, θ2) ∈ R2 : 1
2 < θ1 < 2

3 , θ2 > 0, θ1 + θ2 = 1} i?2M
Aθ = {(0, 1)} �M/ B7 θ ∈ {(θ1, θ2) ∈ R2 : 0 < θ1 < 1

2 , θ2 > 0, θ1 + θ2 = 1} =
{(θ1, θ2) ∈ R2 : 1

2 < θ2 < 1, θ1 > 0, θ1 + θ2 = 1} i?2M Aθ = {(1, 0)}X
UpV A7 θ := ( 12 ,

1
2 )- i?2M θ1x1 + θ2x2 ≥ 1

2 - ∀x ∈ F X h�F2 aθ := ( 12 ,
1
2 ) ∈ Sθ �M/

bQ- I(aθ) = {2, 3, 4}X G2i mb +?QQb2 λθ := (0, 1
2 , 0, 0)- uθ := (1, 1)- vθ :=

(vθ1 , v
θ
2 , v

θ
3 , v

θ
4) = ((1, 0), (−1,−1), (4, 2), (1, 0))- �M/ r2 �HbQ ?�p2 Ĩ(aθ) = {2}X

h?2M 2H2K2Mi�`v +�H+mH�iBQMb ;Bp2 mb Aθ = {x ∈ R2 : −x1 − x2 + 1 = 0, x1 ≥
0, x2 ≥ 0}.
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UpBV aBKBH�`Hv- B7 θ = ( 23 ,
1
3 ) i?2M r2 +�M i�F2 aθ = ( 14 , 1)

T ∈ Sθ- λθ = (0, 0, 1
6 , 0)

�M/ bQ-
Aθ = {x ∈ R2 : −4x1 − 2x2 + 3 = 0, x1 ≥ 0, x2 ≥ 0}.

h?2`27Q`2- #v h?2Q`2K 8Xk- r2�FHv �M/ T`QT2`Hv `Q#mbi 2{+B2Mi bQHmiBQM b2ib Q7
UlJSV HQQF HBF2

WR(F ) =
⋃

θ∈R2
+\{0}

Aθ =
⋃

θ∈Λ

Aθ

= {x ∈ R2 : x1 = 0, 1 ≤ x2 ≤ 2}
∪ {x ∈ R2 : −4x1 − 2x2 + 3 = 0, x1 ≥ 0, x2 ≥ 0}
∪ {x ∈ R2 : −x1 − x2 + 1 = 0, x1 ≥ 0, x2 ≥ 0}

�M/
PR(F ) =

⋃

θ∈BMiR2
+

Aθ =
⋃

θ∈BMiΛ
Aθ

= {x ∈ R2 : −4x1 − 2x2 + 3 = 0, x1 ≥ 0, x2 ≥ 0}
∪ {x ∈ R2 : −x1 − x2 + 1 = 0, x1 ≥ 0, x2 ≥ 0}.

eX *QM+HmbBQMbX AM i?Bb T�T2`- 7QHHQrBM; i?2 7`�K2rQ`F Q7 `Q#mbi QTiBKBx�iBQM- r2
+QMbB/2` �M mM+2`i�BM +QMp2t QTiBKBx�iBQM T`Q#H2K rBi?Qmi +QMp2tBiv �bbmKTiBQM
QM +QMbi`�BMi 7mM+iBQMbX q2 T`QpB/2 � M2r Tb2m/Q G�;`�M;B�M@ivT2 7mM+iBQM r?B+?
Bb +QMbi�Mi QM i?2 `Q#mbi QTiBK�H bQHmiBQM b2iX q2 �HbQ Q#i�BM bQK2 +?�`�+i2`Bx�@
iBQMb Q7 i?2 `Q#mbi QTiBK�H bQHmiBQM b2i Q7 �HH `Q#mbi QTiBK�H bQHmiBQMb Q7 � ;Bp2M
T`Q#H2KX 6m`i?2`KQ`2- �b �TTHB+�iBQMb- r2 Q#i�BM bQK2 +?�`�+i2`Bx�iBQMb Q7 #Qi?
r2�FHv `Q#mbi 2{+B2Mi bQHmiBQM b2i �M/ T`QT2`Hv `Q#mbi 2{+B2Mi bQHmiBQM b2i 7Q` �
+QMp2t KmHiB@Q#D2+iBp2 QTiBKBx�iBQM T`Q#H2K rBi? /�i� mM+2`i�BMivX
�+FMQrH2/;K2MibX h?2 �mi?Q`b rQmH/ HBF2 iQ i?�MF i?2 �MQMvKQmb `272`22b �M/
i?2 �bbQ+B�i2 2/BiQ` 7Q` i?2B` p�Hm�#H2 bm;;2biBQMb �M/ +QKK2Mib- r?B+? ?2HT2/ iQ
BKT`Qp2 i?2 T�T2`X

_161_1L*1a

(R) �X "2+F �M/ �X "2M@h�H- .m�HBiv BM `Q#mbi QTiBKBx�iBQM, T`BK�H rQ`bi 2[m�Hb /m�H #2bi- PT2`X
_2bX G2iiX- jd UkyyNV- RĜeX

(k) �X "2M@h�H- GX 1X :?�QmB �M/ �X L2KB`QpbFB- _Q#mbi PTiBKBx�iBQM- S`BM+2iQM lMBp2`bBiv-
S`BM+2iQM- kyyNX

(j) �X "2M@h�H �M/ �X L2KB`QpbFB- _Q#mbi PTiBKBx�iBQM@K2i?Q/QHQ;v �M/ �TTHB+�iBQMb- J�i?X
S`Q;`�KX a2`X "- Nk UkyykV- 98jĜ93yX

(9) .X "2`ibBK�b- .X aX "`QrM �M/ *X *�`�K�MBb- h?2Q`v �M/ �TTHB+�iBQMb Q7 `Q#mbi QTiBKBx�iBQM-
aA�J _2pX- 8j UkyRRV- 9e9Ĝ8yRX

(8) _X AX "Qȥ- oX C2v�FmK�` �M/ :X uX GB- _Q#mbi /m�HBiv BM T�`�K2i`B+ +QMp2t QTiBKBx�iBQM-
a2i@o�Hm2/ o�`X �M�HX- kR UkyRjV- RddĜR3NX

(e) CX oX "m`F2 �M/ JX 62``Bb- *?�`�+i2`Bx�iBQM Q7 bQHmiBQM b2ib Q7 +QMp2t T`Q;`�Kb- PT2`X _2bX
G2iiX- Ry URNNRV- 8dĜeyX

(d) CX oX "m`F2 �M/ JX *X 62``Bb- q2�F b?�`T KBMBK� BM K�i?2K�iB+�H T`Q;`�KKBM;- aA�J CX
*QMi`QH PTiBKX- jR URNNjV- Rj9yĜRj8NX

(3) JX *�bi2HH�MB �M/ JX :BmHB- � +?�`�+i2`Bx�iBQM Q7 i?2 bQHmiBQM b2i Q7 Tb2m/Q+QMp2t 2ti`2KmK
T`Q#H2Kb- CX *QMp2t �M�HX- RN UkyRkV- RRjĜRkjX

(N) 6X >X *H�`F2- PTiBKBx�iBQM �M/ LQMbKQQi? �M�HvbBb- qBH2v- L2r uQ`F- RN3jX
(Ry) CX .mii� �M/ *X aX G�HBi?�- PTiBK�HBiv +QM/BiBQMb BM +QMp2t QTiBKBx�iBQM `2pBbBi2/- PTiBKX

G2iiX- d UkyRjV- kkRĜkkNX
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(RR) JX�X :Q#2`M�- oX C2v�FmK�`- :X GB �M/ JX GQT2x- _Q#mbi HBM2�` b2KB@BM}MBi2 T`Q;`�KKBM;
/m�HBiv- J�i?X S`Q;`�K- a2`B2b "- RjN UkyRjV- R38ĜkyjX

(Rk) CX C�?M- o2+iQ` PTiBKBx�iBQM, h?2Q`v- �TTHB+�iBQMb �M/ 1ti2MbBQMb- a2`B2b BM PT2`�iBQMb
_2b2�`+? �M/ .2+BbBQM h?2Q`v- aT`BM;2`- L2r uQ`F- kyy9X

(Rj) oX C2v�FmK�`- :X JX G22 �M/ LX .BM?- *?�`�+i2`Bx�iBQMb Q7 bQHmiBQM b2ib Q7 +QMp2t p2+iQ`
KBMBKBx�iBQM T`Q#H2Kb- 1m`X CX PT2`X _2bX- Rd9 UkyyeV- Rj3yĜRjN8X

(R9) oX C2v�FmK�`- :X JX G22 �M/ LX .BM?- G�;`�M;2 KmHiBTHB2` +QM/BiBQMb +?�`�+i2`BxBM; QTiBK�H
bQHmiBQM b2ib Q7 +QMp2t T`Q;`�Kb- CX PTiBKX h?2Q`v �TTHX- Rkj Ukyy9V- 3jĜRyjX

(R8) oX C2v�FmK�`- :X JX G22 �M/ :X uX GB- *?�`�+i2`BxBM; `Q#mbi bQHmiBQM b2ib Q7 +QMp2t T`Q;`�Kb
mM/2` /�i� mM+2`i�BMiv- CX PTiBKX h?2Q`v �TTHX- Re9 UkyR8V- 9ydĜ9j8X

(Re) oX C2v�FmK�` �M/ :X GB- *?�`�+i2`BxBM; `Q#mbi b2i +QMi�BMK2Mib �M/ bQHmiBQMb Q7 mM+2`i�BM
HBM2�` T`Q;`�Kb rBi?Qmi [m�HB}+�iBQMb- PT2`X _2bX G2iiX j3 UkyRyV- R33ĜRN9X

(Rd) oX C2v�FmK�` �M/ :X GB- ai`QM; /m�HBiv BM `Q#mbi +QMp2t T`Q;`�KKBM;, *QKTH2i2 +?�`�+i2`@
Bx�iBQMb- aA�J CX PTiBKX- ky UkyRyV- jj39Ĝj9ydX

(R3) oX C2v�FmK�`- :X GB �M/ CX >X q�M;- aQK2 `Q#mbi +QMp2t T`Q;`�Kb rBi?Qmi � /m�HBiv ;�T-
CX *QMp2t �M�HX- ky UkyRjV- jddĜjN9X

(RN) oX C2v�FmK�` �M/ sX ZX u�M;- PM +?�`�+i2`BxBM; i?2 bQHmiBQM b2ib Q7 Tb2m/QHBM2�` T`Q;`�Kb-
CX PTiBKX h?2Q`v �TTHX- 3d URNN8V- d9dĜd88X

(ky) oX C2v�FmK�` �M/ �X w�z�`QMB- �bvKTiQiB+ +QM/BiBQMb 7Q` r2�F �M/ T`QT2` QTiBK�HBiv BM
BM}MBi2 /BK2MbBQM�H +QMp2t p2+iQ` QTiBKBx�iBQM- LmK2` 6mM+ �M�H PTiX- Rd URNNeV- jkjĜj9jX

(kR) �X E�#;�MB- JX aQH2BK�MB@/�K�M2? �M/ JX w�K�MB- PTiBK�HBiv +QM/BiBQMb BM QTiBKBx�iBQM
T`Q#H2Kb rBi? +QMp2t 72�bB#H2 b2i mbBM; +QMp2tB}+�iQ`b- J�i? J2i? PT2` _2bX- 3e UkyRdV-
RyjĜRkRX

(kk) .X Em`QBr� �M/ :X JX G22- PM `Q#mbi +QMp2t KmHiBQ#D2+iBp2 QTiBKBx�iBQM- CX LQMHBM2�`
*QMp2t �M�HX- R8 UkyR9V- RRk8ĜRRjeX

(kj) *X aX G�HBi?� �M/ JX J2?i�- *?�`�+i2`Bx�iBQMb Q7 bQHmiBQM b2ib Q7 K�i?2K�iB+�H T`Q;`�Kb BM
i2`Kb Q7 G�;`�M;2 KmHiBTHB2`b- PTiBKBx�iBQM- 83 UkyyNV- NN8ĜRyydX

(k9) CX "X G�bb2``2- PM `2T`2b2Mi�iBQMb Q7 i?2 72�bB#H2 b2i BM +QMp2t QTiBKBx�iBQM- PTiBKX G2iiX- 9
UkyRyV- RĜ8X

(k8) :X JX G22 �M/ CX >X G22- PM MQMbKQQi? QTiBK�HBiv i?2Q`2Kb 7Q` `Q#mbi KmHiBQ#D2+iBp2 QTiB@
KBx�iBQM T`Q#H2Kb- CX LQMHBM2�` *QMp2t �M�HX- Re UkyR8V- kyjNĜky8kX

(ke) :X JX G22 �M/ SX hX aQM- PM MQMbKQQi? QTiBK�HBiv i?2Q`2Kb 7Q` `Q#mbi QTiBKBx�iBQM T`Q#@
H2Kb- "mHHX EQ`2�M J�i?X aQ+X- 8R UkyR9V- k3dĜjyRX

(kd) sX@"X GB �M/ aX q�M;- *?�`�+i2`Bx�iBQMb Q7 `Q#mbi bQHmiBQM b2i Q7 +QMp2t T`Q;`�Kb rBi?
mM+2`i�BM /�i�- PTiBKX G2iiX- Rk UkyR3V- Rj3dĜR9ykX

(k3) .X hX Gm+- h?2Q`v Q7 o2+iQ` PTiBKBx�iBQM- G2+im`2 LQi2b 1+QMX J�i?X avbiX jRNX aT`BM;2`-
"2`HBM- RN3NX

(kN) PX GX J�M;�b�`B�M- � bBKTH2 +?�`�+i2`Bx�iBQM Q7 bQHmiBQM b2ib Q7 +QMp2t T`Q;`�Kb- PT2`X _2bX
G2iiX- d URN33V- kRĜkeX

(jy) CX 1X J�`iBM2x@G2;�x- PTiBK�HBiv +QM/BiBQMb 7Q` Tb2m/Q+QMp2t KBMBKBx�iBQM Qp2` +QMp2t b2ib
/2}M2/ #v i�M;2MiB�HHv +QMp2t +QMbi`�BMib- PTiBKX G2iiX- N UkyR8V- RyRdĜRykjX

(jR) uX a�r�`�;B- >X L�F�v�K� �M/ hX h�MBMQ- h?2Q`v Q7 JmHiBQ#D2+iBp2 PTiBKBx�iBQM- J�i?2@
K�iB+b BM a+B2M+2 �M/ 1M;BM22`BM;- pQHX RdeX �+�/2KB+ S`2bb- P`H�M/Q- RN38X

(jk) hX ZX aQM �M/ LX .BM?- *?�`�+i2`Bx�iBQMb Q7 QTiBK�H bQHmiBQM b2ib Q7 +QMp2t BM}MBi2 T`Q;`�Kb-
hPSX- Re Ukyy3V- R9dĜRejX

(jj) hX ZX aQM �M/ .X aX EBK- � M2r �TT`Q�+? iQ +?�`�+i2`Bx2 i?2 bQHmiBQM b2i Q7 � Tb2m/Q+QMp2t
T`Q;`�KKBM; T`Q#H2K- CX *QKTmiX �TTHX J�i?X- keR UkyR9V- jjjĜj9yX

(j9) sX EX amM- sX CX GQM;- >X uX 6m �M/ sX "X GB- aQK2 +?�`�+i2`Bx�iBQMb Q7 `Q#mbi QTiBK�H
bQHmiBQMb 7Q` mM+2`i�BM 7`�+iBQM�H QTiBKBx�iBQM �M/ �TTHB+�iBQMb- CX AM/X J�M�;X PTiBKX- Rj
UkyRdV- 3yjĜ3k9X

(j8) sX EX amM- wX uX S2M; �M/ sX GX :mQ- aQK2 +?�`�+i2`Bx�iBQMb Q7 `Q#mbi QTiBK�H bQHmiBQMb 7Q`
mM+2`i�BM +QMp2t QTiBKBx�iBQM T`Q#H2Kb- PTiBKX G2iiX- Ry UkyReV- R9ejĜR9d3X

(je) wX GX qm �M/ aX uX qm- *?�`�+i2`Bx�iBQMb Q7 i?2 bQHmiBQM b2ib Q7 +QMp2t T`Q;`�Kb �M/ p�`B�@
iBQM�H BM2[m�HBiv T`Q#H2Kb- CX PTiBKX h?2Q`v �TTHX- Rjy UkyyeV- jjNĜj83X

(jd) aX u�K�KQiQ �M/ .X Em`QBr�- *QMbi`�BMi [m�HB}+�iBQMb 7Q` EEh QTiBK�HBiv +QM/BiBQM BM
+QMp2t QTiBKBx�iBQM rBi? HQ+�HHv GBTb+?Bix BM2[m�HBiv +QMbi`�BMib- GBM2�` LQMHBM2�` �M�HX- k
UkyReV- RyRĜRRRX

(j3) sX JX u�M;- PM +?�`�+i2`BxBM; i?2 bQHmiBQM b2ib Q7 Tb2m/QBMp2t 2ti`2KmK T`Q#H2Kb- CX PTiBKX
h?2Q`v �TTHX- R9y UkyyNV- 8jdĜ89kX



_P"lah aPGlhAPL a1ha 6P_ lL*1_h�AL *PLo1s PShAJAw�hAPL S_P"G1Ja k8

(jN) EX ZX w?�Q �M/ sX JX u�M;- *?�`�+i2`Bx�iBQMb Q7 i?2 bQHmiBQM b2i 7Q` � +H�bb Q7 MQMbKQQi?
QTiBKBx�iBQM T`Q#H2Kb- PTiBKX G2iiX- d UkyRjV- e38ĜeN9X

_2+2Bp2/ LQp2K#2` kyRdc `2pBb2/ 62#`m�`v kyR3X
1@K�BH �//`2bb, MBi?B`�ib!?QiK�BHX+QK
1@K�BH �//`2bb, `�#B�Mr!MmX�+Xi?
1@K�BH �//`2bb, ;KH22!TFMmX�+XF`
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Abstract
Some characterizations of solution sets of a convex optimization problem with a
convex feasible set described by tangentially convex constraints are given. The
results are expressed in terms of convex subdifferentials, tangential subdifferentials,
and Lagrange multipliers. In order to characterize the solution set, we first intro-
duce the so-called pseudo Lagrangian-type function and establish a constant pseudo
Lagrangian-type property for the solution set. This property is still valid in the case of a
pseudoconvex locally Lipschitz objective function, and then used to derive Lagrange
multiplier-based characterizations of the solution set. Some examples are given to
illustrate the significances of our theoretical results.

Keywords Convex optimization problems · Pseudo Lagrangian functions ·
Tangentially convex functions · Solution sets

1 Introduction

Characterizations and properties of the solution sets play an important role for under-
standing the behavior of solution methods for mathematical programs that have
multiple optimal solutions, see [1–3]. Mangasarian [4] initially presented several
characterizations of the solution set for convex programs when one solution is known.
This studywas further extended to convex/nonconvex optimization problems, see, e.g.,
[5–13]. In addition, Lagrange multipliers and its properties are employed to charac-
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terize the solution set of some classes of constrained optimization problems published
such as [14–23].

In a recent paper, under Slater’s condition together with an additional condition
on the constraints, Lagrange multipliers for differentiable convex problems without
the convexity of the constraint functions have been obtained by Lasserre [24]. Further
study has been done for non-differentiability case, see [25,26]. The primary aim of
this paper is to investigate the characterization of solution sets of the following convex
optimization problem:

min
x∈Rn

f (x) s.t. x ∈ K , (P)

where f : Rn → R is a convex function, the feasible set K , defined by

K := {x ∈ R
n : gi (x) ≤ 0, i ∈ I },

is a nonempty convex subset of the Euclidean space Rn and the functions gi : Rn →
R, i ∈ I := {1, 2, . . . ,m}, are continuous, but they are not assumed to be convex
functions. Assume that the solution set of problem (P), denoted by

S := {x ∈ K : f (x) ≤ f (y), ∀y ∈ K },

is nonempty.
It is remarkable that the characterization of solution sets of (P) is done by applying

[21, Corollary 3.10.] if the functions gi : Rn → R, i ∈ I , are restricted to be locally
Lipschitz and regular in the sense of Clarke [27] and additionally the pseudoconvexity
in the first argument of the Lagrange function,

L(·, λ) := f (·) +
∑

i∈I
λi gi (·), ∀λ := (λ1, λ2, . . . , λm) ∈ R

m+,

is satisfied. However, the pseudoconvexity assumption of L(·, λ) for every λ ∈ R
m+

often fails (see Remark 7 in Sect. 4). Further, regularity requirements of g,
i s may fail

even if g,
i s are differentiable functions due to the fact that differentiable functions are

not necessarily regular unless they are continuously differentiable.
Motivated and inspired by the facts mentioned above, we aim to give characteriza-

tions of the solution set of (P) without the pseudoconvexity assumption of Lagrange
function. In order to make use of the obtained results for both the differentiable set-
ting and the regular locally Lipschitz setting, we deal with the problem (P) with
continuous tangentially convex constraint functions (see [26]). First, we give theweak-
est constraint qualification for guaranteeing the Lagrange multiplier conditions to be
necessary and sufficient for optimality of (P). After introducing the so-called pseudo-
Lagrange function, we then establish the constant pseudo-Lagrange property and
employ it to derive a characterization of the solution set of (P). These are expressed in
terms of convex subdifferentials, tangential subdifferentials and Lagrange multipliers.
Moreover, Lagrange multiplier characterizations of the solution set for optimization
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Characterizing the solution set of convex optimization problems without convexity of constraints

problems with a pseudoconvex locally Lipschitz objective function, without convexity
of the constraint functions are given.

The paper is organized as follows: Sect. 2 gives some notations, definitions and
preliminary results. In Sect. 3, we establish amultiplier characterization for the optimal
solution of (P). Section 4 provides characterizations of the solution set of a convex
optimization problem. Finally, characterizations of the solution set for optimization
problems with a pseudoconvex locally Lipschitz objective function, without convexity
of the constraint functions are given in Sect. 5.

2 Preliminaries

We begin this section by defining notation and preliminary results which shall be used
later in this paper. All spaces under consideration are the n-dimensional Euclidean
space R

n with the inner product 〈·, ·〉. The norm of x ∈ R
n is defined by ‖x‖ =√〈x, x〉. The closed (resp, open, left closed right open) interval between α, β ∈ R

withα < β is denoted by [α, β] (resp. ]α, β[, [α, β[). The non-negative orthant ofRn is
denoted by Rn+ and is defined by Rn+ := {(x1, . . . , xn) ∈ R

n : xi ≥ 0, i = 1, . . . , n}.
Given a set A ⊆ R

n , the set A is a cone ifμA ⊆ A for allμ ≥ 0.We denote the conical
hull generated by A, by coneA. The set A is convex whenever μa1 + (1 − μ)a2 ∈ A
for all μ ∈ [0, 1], a1, a2 ∈ A. The normal cone at a to a closed convex set A, denoted
by N (A, a), is defined by N (A, a) := {u ∈ R

n : 〈u, x − a〉 ≤ 0, ∀x ∈ A}. Let f
be a function from R

n to R. A function f is said to be convex if for all μ ∈ [0, 1],
f (μa1+(1−μ)a2) ≤ λ f (a1)+(1−λ) f (a2) for all a1, a2 ∈ R

n . The subdifferential
of a convex function f at a is defined as ∂ f (a) := {u ∈ R

n : ∀x ∈ R
n, f (x) ≥

f (a) + 〈u, x − a〉}. The function f : Rn → R is said to be tangentially convex at
x ∈ R

n (see [28,29]) if for every d ∈ R
n the right-sided directional derivative of f at

x

f ′(x, d) := lim
t→0+

f (x + td) − f (x)

t

exists, is finite, and is a convex function of d.

Example 1 [Classes of tangentially convex functions] The following points are taken
from [26].

(a) Every convex function which has an open domain is tangentially convex at each
point of its domain.

(b) Every function which is Gateaux differentiable at a point x is tangentially convex
at x by the linearity of the directional derivative f ′(x, ·).

(c) Every locally Lipschitz function which is regular (in the sense of Clarke) at a
point x is tangentially convex at x , since in such a case the classical one-sided
directional derivative is convex because it coincides with the Clarke directional
derivative.
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(d) The class of tangentially convex functions at a given point is a real vector space,
and hence some tangentially convex functions (not necessarily convex and dif-
ferentiable) will follow from the sum of a convex function with a differentiable
function.

The concept of subdifferential for tangentially convex function is implicitly given
in [28]. The tangential subdifferential of (a tangentially convex function) f at x ∈ R

n

is the set ∂T f (x) given as

∂T f (x) := {u ∈ R
n : 〈u, d〉 ≤ f ′(x, d), ∀d ∈ R

n},

which is a nonempty compact convex set. It is important to note that if f is tangentially
convex at x ∈ R

n such that f (x) ∈ R, the function f ′(x, ·) is the support function of
the tangential subdifferential, that is,

f ′(x, d) = max
u∈∂T f (x)

〈u, d〉, for all d ∈ R
n . (1)

Let f : Rn → R be tangentially convex at x ∈ R
n . The tangential subdifferentials

enjoy nice calculus properties including the positive homogeneous rule and the sum
rule, i.e.,

(i) for every μ ≥ 0, ∂T (μ f )(x) = μ∂T f (x);
(ii) if f and g is tangentially convex at the same point x , one has

∂T ( f + g)(x) = ∂T f (x) + ∂T g(x).

Remark 1 For a given tangentially convex function f : Rn → R at x ∈ R
n , it is easily

to verify that the function y 
−→ f ′(x, y − x) is convex and

∂T f (x) = ∂ f ′(x, · − x)(x) = ∂ f ′(x, ·)(0).

Example 2 Let f : R2 → R be defined as f (x1, x2) :=
√
x21 + x22 − x31 − x32 . Then,

for every (d1, d2) ∈ R
2, we can verify that

f ((0, 0) + t(d1, d2)) − f (0, 0)

t
=
√
d21 + d22 − t2d31 − t2d32 for all t > 0.

Letting t → 0+, we get f ′((0, 0), (d1, d2)) =
√
d21 + d22 , from which it follows that

(d1, d2) 
−→ f ′((0, 0), (d1, d2)) is convex. So, f is tangentially convex at (0, 0) and
its tangential subdifferential at (0, 0) is

∂T f (0, 0) = ∂ f ′((0, 0), ·)((0, 0)) = [−1, 1] × [−1, 1].

��
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Characterizing the solution set of convex optimization problems without convexity of constraints

We conclude this section with the following useful result which will be used in the
proofs of the main results.

Lemma 1 Let x ∈ K and I (x) := {i ∈ I : gi (x) = 0}. Assume that for every i ∈ I (x)
the function gi is tangentially convex at x. If the set K is convex, then for any y ∈ K,
one has

g′
i (x, y − x) ≤ 0, ∀i ∈ I (x). (2)

Moreover, for each i ∈ I (x), ∂T gi (x) ⊆ N (K , x).

Proof It is proved in [26, Proposition 1] that

K ⊆ {y ∈ R
n : g′

i (x, y − x) ≤ 0, ∀(x, i) ∈ K × I (x)},

without the Slater’s condition together with an additional condition on the constraints.
Thus, for any y ∈ K , (2) holds.

Furthermore, (1) and (2) yield, for any u ∈ ∂T gi (x), 〈u, y − x〉 ≤ 0,∀y ∈ K ,

which gives that u ∈ N (K , x), thereby establishing the desired result. ��

3 Multiplier characterization for the optimal solution

In this section, we give some constraint qualifications for guaranteeing the Lagrange
multiplier conditions to be necessary and sufficient for optimality of (P).

It should be noted that, in convex programs, Slater’s condition is usually used
to obtain the Lagrange multiplier conditions which characterize optimality (see
[14,16,17,19–21] and other references therein). However, the Lagrange multiplier
conditions for the convex optimization problems without convexity of the constraint
functions may fail under the Slater’s condition. Recently, Lagrange multiplier con-
ditions have been obtained under the Slater’s condition together with an additional
condition on the constraints. Some constraint qualifications, which are also necessary
for the existence of Lagrange multipliers for convex optimization problems without
convexity of the constraint functions, has been introduced in [30,31]. In an analo-
gous manner as [30], we introduce the following constraint qualification in terms of
tangential subdifferentials and show that it is the weakest constraint qualification for
guaranteeing the Lagrange multiplier conditions to be necessary and sufficient for
optimality of (P).

Definition 1 Let x ∈ K and gi , i ∈ I (x), be tangentially convex at x . The normal
cone condition is satisfied at x if

N (K , x) = cone
⋃

i∈I (x)
∂T gi (x).

Theorem 1 [Weakest CQ for Lagrange multiplier conditions] Let x̄ ∈ K be given, and
for every i ∈ I (x̄) the functions gi be tangentially convex at x̄ . Then, the following
assertions are equivalent:
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(i) The normal cone condition is satisfied at x̄;
(ii) For each convex function f : Rn → R attaining its global minimizer over K at

x̄ , there exist λi ≥ 0, i ∈ I , such that

0 ∈ ∂ f (x̄) +
∑

i∈I
λ̄i∂T gi (x̄), (3)

and
λ̄i gi (x̄) = 0, ∀i ∈ I . (4)

Proof [(i) ⇒ (ii)]. Suppose that (i) holds. Let f : Rn → R be any convex function
such that x̄ ∈ K is a global minimizer of (P). The convexity of K implies that, for
each t ∈ [0, 1], f (x̄) ≤ f (x̄ + t(x − x̄)), ∀x ∈ K , which gives

f ′(x̄, x̄ − x̄) = 0 ≤ f ′(x̄, x − x̄), ∀x ∈ K . (5)

It means that x̄ is a minimizer of the convex function f ′(x̄, · − x̄) over K and it can
be equivalently expressed as, by Remark 1,

0 ∈ ∂ f ′(x̄, · − x̄)(x̄) + N (K , x̄) = ∂ f (x̄) + N (K , x̄). (6)

The condition (i) yields that there exists λi ≥ 0, i ∈ I (x̄), such that

0 ∈ ∂ f (x̄) +
∑

i∈I (x̄)
λi∂T gi (x̄).

Setting λi = 0 for i /∈ I (x̄), the above expression can be rewritten as

0 ∈ ∂ f (x̄) +
∑

i∈I
λi∂T gi (x̄) and λi gi (x̄) = 0, ∀i ∈ I ,

and hence (ii) has been justified.
[(ii) ⇒ (i)]. Suppose that (ii) holds. By the virtue of Lemma 1, we only need to

prove that

N (K , x̄) ⊆ cone
⋃

i∈I (x̄)
∂T gi (x̄).

In fact, let u ∈ N (K , x̄) be given. The definition of N (K , x̄) yields that 〈−u, x̄〉 ≤
〈−u, x〉 for all x ∈ K . It can be seen that f (x) := 〈−u, x〉, x ∈ R

n , is a convex
function attaining its global minimizer over K at x̄ . So, from (ii) and ∂ f (x̄) = {−u},
there exist λi ≥ 0, i ∈ I , such that

0 ∈ {−u} +
∑

i∈I
λi∂T gi (x̄) and λgi (x̄) = 0, ∀i ∈ I ,
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which follows that

u ∈
∑

i∈I (x̄)
λi∂T gi (x̄) ⊆ cone

⋃

i∈I (x̄)
∂T gi (x̄),

thereby leading to the desired result. ��
Remark 2 [Sufficient condition for the normal cone condition]As seen before, for each
u ∈ N (K , x̄), f (x) := 〈−u, x〉, x ∈ R

n , is a convex function attaining its global
minimizer over K at x̄ . Thus, if the system gi (x) ≤ 0, i ∈ I , satisfies the Slater’s
condition and the non-degeneracy condition at x̄ , i.e., for every i ∈ I (x̄),

0 /∈ ∂T gi (x̄),

then [26, Theorem 9] guarantees the existence of multipliers λi ≥ 0, i ∈ I , such that

0 ∈ {−u} +
∑

i∈I
λi∂T gi (x̄) and λgi (x̄) = 0, ∀i ∈ I ,

consequently, u ∈ cone
⋃

i∈I (x̄) ∂T gi (x̄). Therefore, the normal cone condition holds
at x̄ .

Remark 3 In view of the proof of (5) and (6) in the proof of Theorem 1, one can notice
that if “For each convex function f : Rn → R attaining its global minimizer over
K at x̄” is replaced by “For each tangentially convex and pseudoconvex1 function
f : Rn → R at x̄ attaining its global minimizer over K at x̄”, then its conclusions
hold also true when the convex subdifferential ∂ f (x̄) is replaced by the tangential
subdifferential ∂T f (x̄).

The following example illustrates that if the normal cone condition, (i), in Theorem
1 does not hold, then the optimality condition in Theorem 1 is not derived for a convex
objective function.

Example 3 [Failure of Multiplier Characterization] Let us denote x := (x1, x2) ∈
R
2, g1(x) =

√
x21 + x22 − x31 − 2, g2(x) = −x31 + max{−x2,−x32 }, g3(x) =

2x1 + x2, K := {x ∈ R
2 : gi (x) ≤ 0, i ∈ I := {1, 2, 3}} and x̄ := (0, 0). It is easy

to verify that K = {x ∈ R
2 :

√
x21 + x22 − x31 −2 ≤ 0, 2x1 + x2 ≤ 0, −x1 − x2 ≤ 0},

I (x̄) = {2, 3}, ∂T g2(x̄) = {0} × [−1, 0] and ∂T g3(x̄) = {(2, 1)}. It can be observed
that

N (K , x̄) = cone {(−1,−1), (2, 1)}
and

cone(∂T g2(x̄) ∪ ∂T g3(x̄)) = cone {(0,−1), (2, 1)} .

1 A tangentially convex function f : Rn → R at x ∈ R
n is said to be pseudoconvex at x (see [26]) if

∀y ∈ R
n , f ′(x, y − x) ≥ 0 �⇒ f (y) ≥ f (x).
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Hence, we have that condition (i) of Theorem 1 does not hold. Thus for some pseu-
doconvex function f : R

2 → R at x̄ , it is impossible to characterize a sufficient
condition for global optimality for the following problem by using Theorem 1,

min
x∈R2

f (x) s.t. x ∈ K .

Actually, let f (x) := e−x1 − x1 − 2x2. Put λ̄1 := 0, λ̄2 := 1 and λ̄3 := 2, then

(0, 0) ∈ {(−2,−2)} + ({0} × [−1, 0]) + 2{(1, 1)} = ∂ f (x̄) +
∑

i∈I
λ̄i∂T gi (x̄).

However, by taking x :=
(
− 1

2 ,
√
3
2

)
∈ K , f (x) := √

e + 1
2 − √

3 < 1 = f (x̄),

which shows that x̄ is not a global minimizer of f over K . �

Remark 4 In the case that for any x ∈ K and i ∈ I (x), gi are locally Lipschitz and
regular in the sense of Clarke, Theorem 3.2 in [30] can be obtained immediately by
Theorem 1.

4 Characterizations of the solution sets of convex optimization
problems

In this section, we will present some characterizations of the solution sets in terms of
a given solution point of the convex minimization problem (P).

Let x̄ ∈ S be a given solution point fulfilling the normal cone condition and for every
i ∈ I (x̄), the functions gi be tangentially convex at x̄ . Let λ̄ := (λ̄1, . . . , λ̄m) ∈ R

m+
be a Lagrange multiplier vector corresponding to x̄ such that (3) and (4) hold.

It is important to note that the constant Lagrangian-type property for the solution
sets are commonly used to establish characterizations of solution sets for constrained
optimization problems involving convex/pseudoconvex functions (see [14,16,17,19,
21] and other references therein). However, the constant Lagrangian-type property
for the solution sets may fail when some gi are not convex even if the objective
function is convex, for instance, let us define f (x) := max{−x − 1, 0}, g1(x) :=
max{x, x3} for x ∈ R. We can see that f is a convex function while g1 is not a convex
function. Moreover, x̄ := 0 is a minimizer of f on a convex set K := ] − ∞, 0] with
Lagrangemultiplier λ̄ := 1, and the solution set is S = [−1, 0]. However, the standard
Lagrangian-type function L(x, λ̄) := f (x) + λ̄g1(x) is not constant on the solution
set S. In fact, L(x̄, λ̄) = 0 �= −1 = L(−1, λ̄). This situation motivates us to consider
the so-called pseudo Lagrangian-type function LP (·, x̄, λ̄), defined by

LP (x, x̄, λ̄) := f (x) +
∑

i∈I (x̄)
λ̄i g

′
i (x̄, x − x̄), for all x ∈ R

n,

instead of the standard Lagrangian-type function. It can be seen that LP (·, x̄, λ̄) is
constant on S, since LP (x, x̄, λ̄) = max{−x − 1, 0} + max{x, 0} for any x ∈ R and
LP (x, x̄, λ̄) = 0 for any x ∈ S.
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Next, we are in a position to prove that the pseudo Lagrangian function associated
with a Lagrange multiplier corresponding to a solution is constant on S.

Proposition 1 [Constant pseudo Lagrangian-type property] For the problem (P),
assume that x̄ ∈ S satisfies the normal cone condition and the optimality condi-
tions (3) and (4) hold with a Lagrange multiplier vector λ̄ := (λ̄1, . . . , λ̄m) ∈ R

m+.
Then for any x ∈ S,

λ̄i g
′
i (x̄, x − x̄) = 0, i ∈ I (x̄)

and LP (·, x̄, λ̄) is constant on S.

Proof By Remark 1, ∂T gi (x̄) = ∂g′
i (x̄, · − x̄)(x̄) for all i ∈ I (x̄). It follows from (3)

and (4) that

0 ∈ ∂ f (x̄) +
∑

i∈I (x̄)
λ̄i∂g

′
i (x̄, · − x̄)(x̄) ⊆ ∂LP (·, x̄, λ̄)(x̄),

and so,

f (x) +
m∑

i=1

λ̄i g
′
i (x̄, x − x̄) ≥ f (x̄) for all x ∈ R

n .

By (4), it is easy to observe that λ̄i = 0 for all i /∈ I (x̄). Therefore, by the fact that
f (x) = f (x̄), ∀x ∈ S, the above expression can be rewritten as

∑

i∈I (x̄)
λ̄i g

′
i (x̄, x − x̄) ≥ 0 for all x ∈ S.

Applying Lemma 1, we obtain
λ̄i g′

i (x̄, x − x̄) = 0, ∀i ∈ I (x̄). Therefore, for any x ∈ S,

LP (x, x̄, λ̄) = f (x) +
∑

i∈I (x̄)
λ̄i g

′
i (x̄, · − x̄)(x̄) = f (x) = f (x̄),

thus yielding the desired results. ��
Remark 5 [PseudoLagrangian-type function coincideswith standard Lagrangian-type
function] It is worth noting that if gi , i ∈ I (x̄), are pseudoconvex functions at x̄ then,
by Proposition 1, for any x ∈ S,

(λ̄i gi )
′(x̄, x − x̄) = λ̄i g

′
i (x̄, x − x̄) = 0 �⇒ λ̄i gi (x) ≥ λ̄i gi (x̄) = 0.

This together with x ∈ K yields, λ̄i gi (x) = 0, i ∈ I (x̄). Furthermore,

LP (x, x̄, λ̄) = f (x) +
∑

i∈I (x̄)
λ̄i g

′
i (x̄, x − x̄) = f (x) +

m∑

i=1

λ̄i gi (x), ∀x ∈ S.
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It means that the pseudo Lagrangian-type function is the standard Lagrangian-type
function on the solution set S. �

Remark 6 In Proposition 1, if f is Locally Lipschitz, regular in the sense of Clarke
and pseudoconvex, it is proved in [12, Lemma 3] that ∀x, y ∈ R

n , one has

f (y) ≤ f (x) �⇒ f o(x, y − x) ≤ 0. (7)

Applying (7), we can show that the conclusions given in Proposition 1 are still valid.
Indeed, as x̄ ∈ S, Theorem 1 asserts that there exists a Lagrange multiplier vector
λ̄ := (λ̄1, . . . , λ̄m) ∈ R

m+ such that (3) and (4) hold. The fact that ∂o f (x̄) = ∂T f (x̄)
along with tangential subdifferential calculus rules at x̄ imply that

f ′(x̄, x − x̄) +
∑

i∈I (x̄)
λ̄i g

′
i (x̄, x − x̄) ≥ 0, ∀x ∈ R

n .

Using (7) with the fact that f (x) = f (x̄), ∀x ∈ S and regularity of f , we deduce∑
i∈I (x̄) λ̄i g′

i (x̄, x − x̄) ≥ 0, ∀x ∈ S, and hence, by Lemma 1, we obtain λ̄i g′
i (x̄, x −

x̄) = 0, ∀i ∈ I (x̄), and for any x ∈ S, LP (x, x̄, λ̄) = f (x̄). ��
In the sequel, we present characterizations of the solution set for problem (P) in

terms of convex subdifferentials, tangential subdifferentials and Lagrange multipliers.

Theorem 2 [Characterization of the solution set] For the problem (P), assume all
conditions of Proposition 1. Then, the solution set S is characterized by

S = {x ∈ K : ∀i ∈ Ĩ (x̄), ∃vi ∈ ∂T gi (x̄), 〈vi , x − x̄〉 = 0;
∃u ∈ ∂ f (x) ∩ ∂ f (x̄), 〈u, x − x̄〉 = 0},

where Ĩ (x̄) := {i ∈ I (x̄) : λ̄i > 0}.
Proof [⊆]. Let x ∈ S be arbitrarily given. Then, x belongs to K . Furthermore, by
(1) and Proposition 1, we have that for each i ∈ Ĩ (x̄), maxvi∈∂T gi (x̄)〈vi , x − x̄〉 =
g′
i (x̄, x − x̄) = 0. Therefore, for each i ∈ Ĩ (x̄), there exists vi ∈ ∂T gi (x̄) such that

〈vi , x − x̄〉 = 0.

On the other hand, it follows from (3) and (4) that there exist u ∈ ∂ f (x̄) such that
−u ∈ ∑

i∈I λ̄i∂T gi (x̄) = ∂T (
∑

i∈I λ̄i gi )(x̄). That is, for any d ∈ R
n ,

∑

i∈I (x̄)
λ̄i g

′
i (x̄, d) =

⎛

⎝
∑

i∈I (x̄)
λ̄i gi

⎞

⎠
′
(x̄, d) =

(
∑

i∈I
λ̄i gi

)′
(x̄, d) ≥ 〈−u, d〉, (8)

where the second equality follows from (4). Note from x, x̄ ∈ S that f (x) = f (x̄).
Letting d := x − x̄ in (8), one has

∑
i∈I (x̄) λ̄i g′

i (x̄, x − x̄) ≥ 〈−u, x − x̄〉, which
together with Lemma 1 and u ∈ ∂ f (x̄) implies that
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0 ≥
∑

i∈I (x̄)
λ̄i g

′
i (x̄, x − x̄) ≥ 〈−u, x − x̄〉 ≥ f (x̄) − f (x) = 0.

So, 〈u, x − x̄〉 = 0. It remains to prove that u ∈ ∂ f (x). Now, for any y ∈ R
n , we

have

f (y) − f (x) = f (y) − f (x̄) ≥ 〈u, y − x̄〉 = 〈u, y − x〉 + 〈u, x − x̄〉 = 〈u, y − x〉.

Therefore, u ∈ ∂ f (x).
[⊇]. Conversely, let x be an arbitrary point of S1 := {x ∈ K : ∀i ∈ Ĩ (x̄), ∃vi ∈

∂T gi (x̄), 〈vi , x − x̄〉 = 0; ∃u ∈ ∂ f (x) ∩ ∂ f (x̄), 〈u, x − x̄〉 = 0}. Then, x ∈ K and
there exists u ∈ ∂ f (x) ∩ ∂ f (x̄) such that 〈u, x̄ − x〉 = 0. So

f (x̄) − f (x) ≥ 〈u, x̄ − x〉 = 0,

which together with the fact that x̄ ∈ S yields f (x) = f (x̄), and so x ∈ S. ��
As tangential convexity collapses to regularly locally Lipschitz setting and differ-

entiability, the following corollaries are immediately direct consequences as special
cases of Theorem 2.

Corollary 1 For the problem (P), let for any x ∈ K and i ∈ I (x) the functions gi be
locally Lipschitz and regular in the sense of Clarke, x̄ ∈ S be an optimal solution
fulfilling the condition: N (K , x̄) = cone

⋃
i∈I (x̄) ∂ogi (x̄), where ∂ogi (x̄) denotes the

Clarke subdifferential of gi at x̄ . Assume that the optimality conditions (3) and (4)
hold with a Lagrange multiplier vector λ̄ := (λ̄1, . . . , λ̄m) ∈ R

m+. Then, the solution
set is characterized by

S = {x ∈ K : ∀i ∈ Ĩ (x̄), ∃vi ∈ ∂ogi (x̄), 〈vi , x − x̄〉 = 0;
∃u ∈ ∂ f (x) ∩ ∂ f (x̄), 〈u, x − x̄〉 = 0}.

Proof The desired results can be obtained immediately by Theorem 2, since every
locally Lipschitz regular function gi is tangentially convex at every point x , with
∂T gi (x̄) = ∂ogi (x̄), ∀i ∈ Ĩ (x̄). ��
Corollary 2 For the problem (P), let f : Rn → R be a convex differentiable function
and gi : Rn → R (i = 1, 2, . . . ,m) be differentiable functions, x̄ ∈ S be an optimal
solution of (P) fulfilling the condition: N (K , x̄) = cone

⋃
i∈I (x̄) {∇gi (x̄)} . Assume

that the optimality conditions (3) and (4) hold with a Lagrange multiplier vector
λ̄ := (λ̄1, . . . , λ̄m) ∈ R

m+. Then,

S = {x ∈ K : 〈∇gi (x̄), x − x̄〉 = 0, ∀i ∈ Ĩ (x̄), ∇ f (x) = ∇ f (x̄)}.

Proof It is clear that every differentiable functions gi are tangentially convex at every
point x , with ∂T gi (x̄) = {∇gi (x)}, ∀i ∈ Ĩ (x̄). It follows from Theorem 2 with
∂ f (x) = {∇ f (x)} for every point x ∈ R

n that
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S = {x ∈ K : 〈∇gi (x̄), x − x̄〉 = 0, ∀i ∈ Ĩ (x̄), ∇ f (x) = ∇ f (x̄),

〈∇ f (x), x − x̄〉 = 0}.

Further, since x̄ satisfies optimality condition (3), we have

0 =
〈

m∑

i=1

λ̄i∇gi (x̄), x − x̄

〉
= 〈∇ f (x̄), x − x̄〉 = 〈−∇ f (x), x − x̄〉.

Thus, the condition 〈∇ f (x), x − x̄〉 = 0 is superfluous. Therefore, S = {x ∈ K :
〈∇gi (x̄), x − x̄〉 = 0, ∀i ∈ Ĩ (x̄), ∇ f (x) = ∇ f (x̄)}. ��

When one solution of the considered problem is known, by using Theorem 2,
we can find all of solutions of the convex optimization problem that have multiple
solutions, and moreover at least one of the constraint functions gi is not convex while
the constraint set is convex. So, Theorem 2.2 and Corollary 2.1 in [14] cannot be
applied in the following example.

Example 4 [Verifying solution set] Let us denote x := (x1, x2) ∈ R
2. Consider the

following constrained optimization problem:

min
x∈Rn

f (x) s.t. x ∈ K := {x ∈ R
2 : g1(x) ≤ 0, g2(x) ≤ 0, g3(x) ≤ 0},

where f (x) :=
√
x21 + x22 − x1 − x2, g1(x) :=

√
x21 + x22 − x31 − 2, g2(x) :=

max{−x1,−x31 } − x2, g3(x) := x1. Evidently, the function f is a convex function.
Let us notice that

f (x) =
√
x21 + x22 − x1 − x2 ≥ |x2| − x2 = 0, for all x ∈ K .

Thus x̄ := (x̄1, x̄2) = (0, 0) ∈ S, I (x̄) = {2, 3}, ∂T g2(x̄) = {(r ,−1) : r ∈ [−1, 0]}
and ∂T g3(x̄) = {(1, 0)}. It is easy to verify that this problem satisfies the Slater
condition and non-degeneracy at x̄ .

Also, the convex subdifferential of f at any point x is given by

∂ f (x) =

⎧
⎪⎨

⎪⎩

{(−1,−1)} + B if x = (0, 0),{[
1√

x21+x22

]
(x1, x2) + (−1,−1)

}
if x �= (0, 0),

where B := {w ∈ R
2 : ‖w‖ ≤ 1}. Let us select λ̄ := (λ̄1, λ̄2, λ̄3) = (0, 0, 1).

Therefore, by using Theorem 2, the solution set can be described simply as
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S = {x ∈ K : 〈(v3,1, v3,2), (x1, x2)〉 = 0 for some (v3,1, v3,2) ∈ ∂T g3(x̄),

〈(u1, u2), (x1, x2)〉 = 0 for some (u1, u2) ∈ ∂ f (x) ∩ ∂ f (x̄)}

=
⎧
⎨

⎩x ∈ R
2 :

√
x21 + x22 − x31 − 2 ≤ 0, max{−x1,−x31 } − x2 ≤ 0, x1 ≤ 0,

〈(1, 0), (x1, x2)〉 = 0,

〈⎛

⎝ x1√
x21 + x22

− 1,
x2√

x21 + x22

− 1

⎞

⎠ , (x1, x2)

〉
= 0

⎫
⎬

⎭

= {x ∈ R
2 : x1 = 0,

√
x22 − 2 ≤ 0, −x2 ≤ 0}

= {x ∈ R
2 : x1 = 0, 0 ≤ x2 ≤ 2}.

��
Next, we give a characterization of S using subdifferentials of the pseudo

Lagrangian-type function. To this aim, we need the following lemma.

Lemma 2 For the problem (P), assume all conditions of Proposition 1. Then for each
x ∈ S,

∂LP (·, x̄, λ̄)(x) = ∂LP (·, x̄, λ̄)(x̄).

Proof Now take any u ∈ ∂LP (·, x̄, λ̄)(x). Then, by the definition of convex subdif-
ferential,

LP (y, x̄, λ̄) − LP (x, x̄, λ̄) ≥ 〈u, y − x〉, ∀y ∈ R
n . (9)

Since LP (·, x̄, λ̄) is constant on S (Proposition 1) and x̄ ∈ S, it follows from (9) that
〈u, x̄ − x〉 = 0 and so, 〈u, y − x〉 = 〈u, y − x̄〉 + 〈u, x̄ − x〉 = 〈u, y − x̄〉 for all
y ∈ R

n . This together with (9) entails

LP (y, x̄, λ̄) − LP (x̄, x̄, λ̄) ≥ 〈u, y − x̄〉, ∀y ∈ R
n,

which shows that u ∈ ∂LP (·, x̄, λ̄)(x̄). Therefore, ∂LP (·, x̄, λ̄)(x) ⊆ ∂LP (·, x̄, λ̄)(x̄).
The proof of the converse inclusion is quite a similar argument and will be
omitted. ��

With the help of Proposition 1 and Lemma 2, we see now how the solution set can
be characterized in terms of the pseudo Lagrangian-type function.

Proposition 2 For the problem (P), assume all conditions of Proposition 1. Then,

S = {x ∈ K : ∀i ∈ Ĩ (x̄), ∃vi ∈ ∂T gi (x̄), 〈vi , x − x̄〉 = 0 and 0 ∈ ∂LP (·, x̄, λ̄)(x)}.

Proof Denote

S∗ := {x ∈ K : ∀i ∈ Ĩ (x̄), ∃vi ∈∂T gi (x̄), 〈vi , x − x̄〉=0 and 0∈∂LP (·, x̄, λ̄)(x)}.
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By Lemma 2 and the optimality condition (3), we get 0 ∈ ∂LP (·, x̄, λ̄)(x) for all
x ∈ S. This together with Proposition 1 implies easily that S ⊆ S∗. To establish the
converse inclusion, let x ∈ S∗ be given. Then, by the definition of S∗, x ∈ K and for
each i ∈ Ĩ (x̄) there exist vi ∈ ∂T gi (x̄) such that

〈vi , x − x̄〉 = 0,

which implies, for every y ∈ R
n , that

f (y) +
∑

i∈I (x̄)
λ̄i g

′
i (x̄, y − x̄)

≥ f (x) +
∑

i∈I (x̄)
λ̄i g

′
i (x̄, x − x̄)

= f (x) +
∑

i∈I (x̄)\ Ĩ (x̄)
λ̄i g

′
i (x̄, x − x̄) +

∑

i∈ Ĩ (x̄)
λ̄i g

′
i (x̄, x − x̄)

= f (x) +
∑

i∈ Ĩ (x̄)
λ̄i g

′
i (x̄, x − x̄)

≥ f (x) +
∑

i∈ Ĩ (x̄)
λ̄i 〈vi , x − x̄〉 = f (x).

Taking y := x̄ in the last inequality, we get that f (x̄) ≥ f (x), and hence, for all
y ∈ K ,

f (y) ≥ f (y) +
∑

i∈I (x̄)
λ̄i g

′
i (x̄, y − x̄) ≥ f (x̄) ≥ f (x),

where the first inequality follows from Lemma 1. This proves that x ∈ S. ��
It turns out that Theorem 2 and Proposition 2 immediately yield the characteriza-

tions of the solution set for convex programs that was proposed in [14, Corollary 2.1
and Corollary 2.6].

Corollary 3 For the problem (P), let the functions gi : Rn → R, i ∈ I be convex,
and x̄ ∈ S an optimal solution fulfilling the normal cone condition and the optimality
conditions (3) and (4) hold with a Lagrange multiplier vector λ̄ := (λ̄1, . . . , λ̄m) ∈
R
m+. Then, the solution set S of (P) is characterized by

S = {x ∈ R
n : gi (x) = 0, ∀i ∈ Ĩ (x̄), gi (x) ≤ 0, ∀i ∈ I\ Ĩ (x̄),

∃u ∈ ∂ f (x) ∩ ∂ f (x̄), 〈u, x − x̄〉 = 0}.

Proof By Theorem 2, we have that

S = {x ∈ K : ∀i ∈ Ĩ (x̄), ∃vi ∈ ∂T gi (x̄), 〈vi , x − x̄〉 = 0;
∃u ∈ ∂ f (x) ∩ ∂ f (x̄), 〈u, x − x̄〉 = 0}.
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As 〈vi , x − x̄〉 = 0 for some vi ∈ ∂T gi (x̄), ∀i ∈ Ĩ (x̄), we have g′
i (x̄, x − x̄) ≥

〈vi , x − x̄〉 = 0 for each i ∈ Ĩ (x̄). This together with x ∈ K , by Lemma 1, yields
g′
i (x̄, x − x̄) = 0, ∀i ∈ Ĩ (x̄). Moreover, by Remark 5, we get that

[x ∈ K , ∀i ∈ Ĩ (x̄), ∃vi ∈ ∂T gi (x̄), 〈vi , x − x̄〉 = 0]
�⇒ [x ∈ R

n, gi (x) = 0, ∀i ∈ Ĩ (x̄), gi (x) ≤ 0, ∀i ∈ I\ Ĩ (x̄)].

��
Corollary 4 For the problem (P), let the functions gi : Rn → R, i ∈ I be convex,
and x̄ ∈ S an optimal solution fulfilling the normal cone condition and the optimality
conditions (3) and (4) hold with a Lagrange multiplier vector λ̄ := (λ̄1, . . . , λ̄m) ∈
R
m+. Then,

S = {x ∈ R
n : gi (x) = 0, ∀i ∈ Ĩ (x̄), gi (x) ≤ 0, ∀i ∈ I\ Ĩ (x̄), 0 ∈ ∂L(·, λ̄)(x)}.

5 Characterizations of the solution sets of pseudoconvex
minimization problems

In this section, we derive characterizations of the solution set of the following pseu-
doconvex minimization problem over a convex set (P′):

min
x∈Rn

f (x) s.t. x ∈ K , (P′)

where f : Rn → R is locally Lipschitz, regular in the sense of Clarke and pseudo-
convex, and gi : Rn → R, i ∈ I , are continuous functions and the feasible set K is
a nonempty convex subset of Rn . In view of Remark 6, we can obtain the following
results.

Theorem 3 For the problem (P′), let S′ be the optimal solution set of (P′), x̄ ∈ S′ an
optimal solution fulfilling the normal cone condition and the optimality conditions (3)
and (4) hold with a Lagrange multiplier vector λ̄ := (λ̄1, . . . , λ̄m) ∈ R

m+, and the
functions gi , i ∈ I (x̄), be tangentially convex at x̄ . Then,

S′ = {x ∈ K : ∀i ∈ Ĩ (x̄), ∃vi ∈ ∂T gi (x̄), 〈vi , x − x̄〉 = 0;
∃px > 0, ∃u ∈ ∂o f (x) ∩ px∂o f (x̄), 〈u, x − x̄〉 = 0}.

Proof [⊆]. Let us assume that x ∈ S′. By the same arguments given in the proof of
Theorem 2, we can obtain that, for each i ∈ Ĩ (x̄), there exists vi ∈ ∂T gi (x̄) such that
〈vi , x − x̄〉 = 0. Furthermore, by Lee and Yao [23, Lemma 3.4], there exists a real
number px > 0 (depending on x) such that

∂o f (x) ∩ px∂o f (x̄) �= ∅.
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It follows that there exists u ∈ R
n such that u ∈ ∂o f (x) and u

px ∈ ∂o f (x̄). As
x, x̄ ∈ S′, f (x) = f (x̄). It follows from [12, Lemma 3] that f o(x, x − x̄) ≤ 0 and
f o(x̄, x̄ − x) ≤ 0. So,

〈u, x − x̄〉 ≤ 0 and

〈
u

px
, x̄ − x

〉
≤ 0,

and hence 〈u, x − x̄〉 = 0.
[⊇]. For every x ∈ S2 := {x ∈ K : ∀i ∈ Ĩ (x̄), ∃vi ∈ ∂T gi (x̄), 〈vi , x − x̄〉 =

0; ∃px > 0, ∃u ∈ ∂o f (x) ∩ px∂o f (x̄), 〈u, x − x̄〉 = 0}, we get that x ∈ K ,
u
px ∈ ∂o f (x̄) and 〈 u

px , x − x̄〉 = 0 for some px > 0 and u ∈ ∂o f (x). In addition, for
any v ∈ R

n such that 〈 u
px , v〉 ≥ 0, one has f o(x, v) ≥ 〈u, v〉 ≥ 0. Therefore,

x ∈ {z ∈ K : ∃ξ ∈ ∂o f (x̄), 〈ξ, z − x̄〉; ∀v ∈ R
n, 〈ξ, v〉 ≥ 0 ⇒ f o(z, v) ≥ 0},

and hence, [12, Theorem 9] leads to x ∈ S′, thus yielding the desired results. ��
Before we end this section, let us illustrate the usefulness of Theorem 3 via an

example.

Example 5 Consider the constrained optimization problem (P′) where f (x) :=
max{0, 1

2 x
2 − 1

2 , (x − 1)3 + 1}, g1(x) := max{x, x3}, g2(x) := 4x − x3, g3(x) :=
|x − 1| − 3. Evidently, the function f is a locally Lipschitz pseudoconvex function.
Let us notice that

f (x) ≥ 0 = max

{
0,−1

2
, 0

}
= f (0), for all x ∈ K .

Then x̄ := 0 ∈ S′, I (x̄) = {1, 2} and each gi , i ∈ I (x̄), is tangentially convex at x̄ .
We can verify that

K = [−2, 0], ∂T g1(x̄) = [0, 1], ∂T g2(x̄) = {4}, ∂T g3(x̄) = {−1}.

Also, the Clarke subdifferential of f at any point x is given by

∂o f (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{x} if x ∈ ] − ∞,−1[,
[ − 1, 0] if x = −1,
{0} if x ∈ ] − 1, 0[,
[0, 3] if x = 0,
{3(x − 1)2} if x ∈ ]0,+∞[.

We can see that this problem does not satisfy non-degeneracy at x̄ , the normal cone
condition is fulfilled. Let us select λ̄ := (λ̄1, λ̄2, λ̄3) = (1, 0, 0). Observe that for any
x ∈ [−1, 0[, we can find px > 0 and u ∈ ∂o f (x) ∩ px∂o f (x̄) such that 〈u, x −
x̄〉 = 0. So, by Theorem 3, we can obtain that the solution set can be described as
S′ = [−1, 0]. ��
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Remark 7 In Example 5,

(i) g1 is not pseudoconvex at x̄ := 0, i.e., taking y := −1 we have g′(x̄, y − x̄) =
max{0, y} = 0, but g1(y) = −1 < 0 = g1(x̄). Then Theorems 4.1 and 4.2 in
[19] may not be relevant to this example.

(ii) The standard Lagrangian-type function with Lagrange multiplier λ̄ := (1, 0, 0),
L(x, λ̄) = f (x) +∑3

i=1 λ̄i gi (x), is not pseudoconvex at x̄ , i.e., by taking y :=
−1 we get L(·, λ̄)′(x̄, y − x̄) = max{4y, 0} = 0 while L(y, λ̄) = −1 < 0 =
L(x̄, λ̄). So, Theorem 3.3 in [21] cannot be applied.

(iii) Theorem3.2 andCorollary 3.1 in [16]maynot actually be relevant to this example
because the constraint functions are not linear, and moreover, f is not pseudo-
concave, i.e. − f is not pseudoconvex, by considering y := 2 and x̄ = 0 we have
(− f )′(x̄, y − x̄) = 0, but (− f )(y) = −2 < 0 = (− f )(x̄).
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1 Introduction

The concept of well-posedness was firstly introduced by Tikhonov [36]. Beside the
requirement about the uniqueness of the solution, Tikhonov well-posedness requested
the convergence of each minimizing sequence to the unique solution. Therefore, well-
posedness plays a vital role to make connections between stability properties and
solution methods for problems related to optimization. On this topic, many research
results have been devoted to a lot of important problems such as variational inequalities
[7], equilibrium problems [1], inclusion problems [37] and the references therein.
Several generalizations of Tikhonov well-posedness were introduced and investigated
for various kinds of optimization problems [4,10,30–32]. Levitin–Polyak (LP) well-
posedness is an extension of Tikhonov well-posedness and was originally proposed
in [28]. Every minimizing sequence must belong to the feasible set in Tikhonov well-
posedness, whereas it can be outside of the feasible region but the distance between it
and this set has to approach zero in LP well-posedness. There have been many studies
of LP well-posedness (see, e.g., [18,27] and the references therein).

Kuroiwa et al. [26] proposed set order relations including lower set less relation,
upper set less relation and set less relation (combination of the lower and the upper set
less relation). This gave a new way to formulate the solution of set-valued optimiza-
tion problems which is called solutions concept based on the set approach [25], and
hence the optimization problems in this approach are called set optimization problems
involving set order relations [21,24]. As pointed out in [19], the set less relation is
generalized and more appropriate in practical problems than both the lower and upper
set less relations. Furthermore, the set less relation plays a center role in relationships
with other new order relations for sets proposed in [5,19] which are more useful in
set optimization. Although set optimization is a new direction in the field of optimiza-
tion, it has attracted a great deal of attention of researchers with many important and
interesting results [11,13,17,20]. Useful applications of set optimization in practical
problems were reported, for example, the application in socio-economic [34] (to man-
age noise disturbance in the region surrounding the Frankfurt Airport in Germany),
the application in finance [14] (to evaluate the risk of a multivariate random outcome).
Moreover, relationships between set optimizations and other important problems such
as variational inequalities [8], KyFan inequality problems (so-called equilibriumprob-
lems) [35] were investigated. For further reading and references, we refer to books
[15,21].

The first introduction of well-posedness for set optimization problems was pre-
sented by Zhang et al. [38]. The authors established both sufficient and necessary
conditions for set optimization problems involving the lower set less relation to be
well-posed and obtained criteria as well as characterizations of well-posedness for
these problems by the scalarization method. This research was generalized by Gutiér-
rez et al. [12] under assumptions of cone properness. After that, Dhingra and Lalitha
[9] introduced a concept of well-setness for such problems and proved that it is an
extension of the generalized well-posedness which was considered in [38]. Recently,
well-posedness of set optimization problems involving not only the lower but also
the upper set less relation have been discussed in [16,22,29]. For LP well-posedness,
to the best of our knowledge there is only the paper of Khoshkhabar-amiranloo and
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Khorram [22] which studied set optimization problem involving the lower set less
relation. Of course such an important topic as LP well-posedness for set optimization
problems must be the aim of many works. Moreover, the scalarization method which
is the main tool used in papers mentioned above investigates difficultly set optimiza-
tion problems involving different set order relations, some other approaches to study
well-posedness for such problems should be considered.

Motivated and inspired by works mentioned above, in this paper, without using
the scalarization method, we investigate different types of LP well-posedness for set
optimization problems involving several kinds of set order relations. More precisely,
we concern set optimization problems involving three types of set order relations.
Then, we introduce concepts of LP well-posedness for such problems and discuss
relationships among them. Moreover, necessary and/or sufficient conditions for these
concepts of well-posedness are investigated. Applying Kuratowski measure of non-
compactness, we study characterizations of such concepts. Finally, approximating
solution mappings and their stability are studied to build the connection between
stability of approximating problem and LP well-posedness of the set optimization
problem.

Theoutline of this paper is given as follows. InSect. 2,we recall somedefinitions and
results needed in what follows. Sect. 3 introduces various kinds of LP well-posedness
for set optimization problems and investigates their relationships. Furthermore, suffi-
cient and/or necessary conditions of pointwise LP well-posedness for such problems
are also obtained. In this section, characterizations of these types of pointwise LP
well-posedness are surveyed by using measure of noncompactness. In the last sec-
tion, Sect. 4, we study sufficient conditions for such problem to be metrically LP
well-posed and their relationships.

2 Preliminaries

Let X be a normed space and Y be a real Hausdorff topological linear space. Let K be
a closed convex pointed cone in Y with intK �= ∅, where intK denotes the interior of
K . The space Y is endowed with an order relation induced by cone K in the following
way

x ≤K y ⇔ y − x ∈ K ,

x <K y ⇔ y − x ∈ intK .

The cone K induces various set orderings in Y . These such orderings as the fol-
lowing were presented in [19,21,25]. LetP(Y ) be the family of all nonempty subsets
of Y . For A, B ∈ P(Y ), lower set less relation, upper set less relation and set less
relation, respectively, are defined by

A ≤l B if and only if B ⊂ A + K ,

A ≤u B if and only if A ⊂ B − K ,

A ≤s B if and only if A ⊂ B − K and B ⊂ A + K .
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Remark 2.1 The relationship between the lower set less relation ≤l and the upper set
less relation ≤u was given by Remark 2.6.10 in [21] as the following

A ≤l B ⇔ −B ≤u −A.

Definition 2.1 [19] The binary relation ≤ is said to be

(i) compatible with the addition if and only if A ≤ B and D ≤ E imply A + D ≤
B + E for all A, B, D, E ∈ P(Y );

(ii) compatible with the multiplication with a nonnegative real number if and only
if A ≤ B implies λA ≤ λB for all scalars λ ≥ 0 and all A, B ∈ P(Y );

(iii) compatible with the conlinear structure ofP(Y ) if and only if it is compatible
with both the addition and the multiplication with a nonnegative real number.

Proposition 2.1 [19]

(i) Theorder relations≤l ,≤u and≤s are pre-order (i.e., these relations are reflexive
and transitive).

(ii) The order relations ≤l , ≤u and ≤s are compatible with the conlinear structure
of P(Y ).

(iii) In general, the order relations ≤l , ≤u and ≤s are not antisymmetric; more
precisely, for arbitrary sets A, B ∈ P(Y ) we have

(A ≤l B and B ≤l A) ⇔ A + K = B + K ,

(A ≤u B and B ≤u A) ⇔ A − K = B − K ,

(A ≤s B and B ≤s A) ⇔ (A + K = B + K and A − K = B − K ).

For α ∈ {l, u, s}, we say that

A ∼α B if and only if A ≤α B and B ≤α A.

Let F : X ⇒ Y be a set-valued mapping with nonempty values on X . For each
α ∈ {l, u, s}, we consider the following set optimization problem

(Pα) α-MinF(x)

subject to x ∈ M,

where M is a nonempty closed subset of X . A point x̄ ∈ M is said to be an α-minimal
solution of (Pα) if and only if for any x ∈ M such that F(x) ≤α F(x̄) then F(x̄) ≤α

F(x). The set of all α-minimal solutions of (Pα) is denoted by Sα-MinF .

Remark 2.2 It can be seen that if x̄ ∈ Sα-MinF and F(x̄) ∼α F(x̂) for some x̂ ∈ M ,
then x̂ ∈ Sα-MinF .

We recall the following definitions of semicontinuity for a set-valued mapping and
their properties used in the sequel.

Definition 2.2 ([3], p. 38, 39) Let F : X ⇒ Y be a set-valued mapping.
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(i) F is said to be upper semicontinuous at x0 ∈ X if and only if for any open subset
U of Y with F(x0) ⊂ U , there is a neighborhood N of x0 such that F(x) ⊂ U
for every x ∈ N .

(ii) F is said to be lower semicontinuous at x0 ∈ X if and only if for any open
subset U of Y with F(x0) ∩ U �= ∅, there is a neighborhood N of x0 such that
F(x) ∩U �= ∅ for all x ∈ N .

(iii) F is said to be lower (upper) semicontinuous on a subset S of X if and only if
it is lower (upper) semicontinuous at every x ∈ S.

Lemma 2.1 Let F : X ⇒ Y be a set-valued mapping.

(i) ([3], p. 39) F is lower semicontinuous at x0 ∈ X if and only if for any net
{xα} ⊂ X converging to x0 and for any y ∈ F(x0), there exist yα ∈ F(xα) such
that {yα} converges to y.

(ii) ([2]) If F(x0) is compact, then F is upper semicontinuous at x0 ∈ X if and
only if for any net {xα} converging to x0 and for any yα ∈ F(xα), there exist
y0 ∈ F(x0) and a subnet {yβ} of {yα} such that {yβ} converges to y0. If, in
addition, F(x0) = {y0} is a singleton, then for the above nets, {yβ} converges
to y0.

Now we recall the concepts of Hausdorff distance and Hausdorff convergence of
sequence of sets. If S is a nonempty subset of X and x ∈ X , then the distance d
between x and S is defined by

d(x, S) := inf
u∈S ‖x − u‖ .

If S1 and S2 are two nonempty subsets of X , then Hausdorff distance between S1 and
S2, denoted by H(S1, S2), is defined by

H(S1, S2) := max{H∗(S1, S2), H∗(S2, S1)},

where H∗(S1, S2) := supx∈S1 d(x, S2).

Definition 2.3 ([23], p. 359) Let {An} be a sequence of subsets of X . We say that An

converge to A ⊂ X in the sense of the Hausdorff metric, denoted by An → A, if and
only if H(An, A) → 0 as n → ∞.

Next, we recall the concept of Kuratowski measure of noncompactness and it’s
properties used in the sequel.

Definition 2.4 ([33],Definition 2.1)LetM be a nonempty subset of X . TheKuratowski
measure of noncompactness μ of the set M is defined by

μ(M) := inf

{
ε > 0 | M ⊂

n⋃
i=1

Mi , diamMi < ε, i = 1, · · · , n for some n ∈ N

}
,

where diamMi := sup{d(x, y) | x, y ∈ Mi } is the diameter of Mi .
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Lemma 2.2 ([33], Proposition 2.3) The following assertions are true:

(i) μ(M) = 0 if M is compact;
(ii) μ(M) ≤ μ(N ) whenever M ⊂ N ;
(iii) if {Mn} is a sequence of closed subsets in X satisfying Mn+1 ⊂ Mn for every

n ∈ N and limn→∞ μ(Mn) = 0, then K := ⋂
n∈N Mn is nonempty compact

and limn→∞ H(Mn, K ) = 0.

Lemma 2.3 Let X be a normed space and A, B be subsets of X. If A is compact and
B is closed, then A + B is closed.

Proof Assume that {an + bn}, an ∈ A, bn ∈ B, converges to c for some c ∈ X . We
show that c ∈ A + B. In fact, since A is compact, there exist a subsequence {ank } of
sequence {an} and a ∈ A such that {ank } converges to a. We have∥∥bnk − c + a

∥∥ = ∥∥(bnk + ank ) − c + (a − ank )
∥∥ ≤ ∥∥bnk + ank − c

∥∥ + ∥∥a − ank
∥∥ .

We obtain that {bnk } converges to c − a. Since B is closed, we get c − a ∈ B. Hence,
there exists b ∈ B such that b = c − a. Then, c = a + b ∈ A + B. So, A + B is
closed. ��
Lemma 2.4 Let M be a nonempty subset of a normed space X. Then, for every x, y ∈
X, |d(x, M) −d(y, M)| ≤ ‖x − y‖.
Proof Let x, y ∈ X , we have ‖x − y‖ + d(y, M) = ‖x − y‖ + inf z∈M ‖y − z‖ =
inf z∈M {‖x − y‖ + ‖y − z‖} ≥ inf z∈M ‖x − z‖ = d(x, M). Hence, ‖x − y‖ ≥
d(x, M) − d(y, M). Similarly, we also get ‖x − y‖ ≥ d(y, M) − d(x, M). We con-
clude that |d(x, M) − d(y, M)| ≤ ‖x − y‖. ��

3 Pointwise LP well-posedness and generalized pointwise LP
well-posedness

Motivated by the study [22] on the pointwise LPwell-posedness for (Pl), we are going
to establish characterizations of this type of well-posedness for (Pα)without using the
scalarization method. Consider the problem (Pα), for a given x̄ ∈ Sα-MinF , the LP
approximating solution mapping at x̄ , Sα-MinF (x̄, ·) : {x̄} × R+ ⇒ M is defined by

Sα-MinF (x̄, ε) := {x ∈ X | d(x, M) ≤ ε, F(x) ≤α F(x̄) + εe},

for each ε ∈ R+.
Inspired by ideas in [22] (Definition 5.1), we extend some notions for the problem

(Pl) in [22] to the problem (Pα) and propose some new concepts for the problem (Pα).
Let e ∈ intK .

Definition 3.1 Let x̄ ∈ Sα-MinF be given. A sequence {xn} ⊂ X is said to be a LP-
minimizing sequence for the problem (Pα) at x̄ if and only if there exists a sequence
{εn} ⊂ R+\{0} converging to 0 such that

d(xn, M) ≤ εn, F(xn) ≤α F(x̄) + εne.
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The equivalence of this concept is given by the following result.

Proposition 3.1 {xn} ⊂ X is a LP-minimizing sequence for the problem (Pα) at x̄ ∈
Sα-MinF if and only if there exists a sequence {dn} ⊂ K\{0} converging to 0 such that

d(xn, M) → 0, F(xn) ≤α F(x̄) + dn .

Proof We only prove the assertion for the case α = s; the proofs of the assertion for
the cases α = l and α = u are similar. Let {xn} ⊂ X and {dn} ⊂ K\{0} converging
to 0 such that d(xn, M) → 0 and F(xn) ≤s F(x̄) + dn , i.e.,

F(x̄) + dn ⊂ F(xn) + K , F(xn) ⊂ F(x̄) + dn − K . (1)

Since e−K is a neighborhood of the origin 0 inY , there exists ε > 0 such that εB(0, 1)
⊂ e− K where B(x, r) is the closed ball centered x with radius r . For a given n ∈ N,
we have dn ∈ ‖dn‖ B(0, 1) ⊂ ‖dn‖ ε−1(e − K ) = ‖dn‖ ε−1e − K . For each n ∈ N,
taking εn = ‖dn‖ ε−1, then {εn} ⊂ R+\{0} converges to 0 and εne − dn ∈ K . It
follows from (1) that

F(x̄) + εne ⊂ F(xn) + K , F(xn) ⊂ F(x̄) + εne − K ,

i.e., F(xn) ≤s F(x̄) + εne. So, {xn} is a LP-minimizing sequence for (Ps) at x̄ .
Conversely, it is clear that if {xn} ⊂ X is a LP-minimizing sequence for (Ps) at
x̄ ∈ Ss-MinF , then the assertion is satisfied by setting dn = εne. ��
Definition 3.2 The problem (Pα) is said to be

(i) LP well-posed at x̄ ∈ Sα-MinF if and only if any LP-minimizing sequence for
(Pα) at x̄ converges to x̄ ;

(ii) generalized LP well-posed at x̄ ∈ Sα-MinF if and only if any LP-minimizing
sequence for (Pα) at x̄ has a subsequence converging to an element x̂ ∈
Sα-MinF (x̄, 0).

Remark 3.1 When α = l, the concept of pointwise well-posedness becomes the cor-
responding concepts studied in [22] (Definitions 5.1 and 5.2, respectively), even for
this special case, the concept of generalized well-posedness is a new one.

The following examples illustrate the above-introduced concepts.

Example 3.1 Let X = Y = R, M = R, K = R+. Let F : X ⇒ Y be defined by
F(x) = [0, 1] for all x ∈ X . Let e = 1 ∈ intK and x̄ = 0. We have Sα-MinF (x̄, 0) =
Sα-MinF = R. Setting xn = n, {xn} is a LP-minimizing sequence for (Pα) at x̄ = 0.
Since {xn} admits no convergent subsequence, (Pα) is not both LP well-posed and
generalized LP well-posed at 0.

Example 3.2 Let X = Y = R, M = R, K = R+. Let F : X ⇒ Y be defined by

F(x) =
{ [0, 1], if − 1 ≤ x ≤ 1,

[1, 1 + x2], otherwise.
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Let e = 1 ∈ intK and x̄ = 0. By direct computations, we have Sα-MinF (x̄, 0) =
[−1, 1]. Setting xn = 1 − 1

n , {xn} is a LP-minimizing sequence for (Pα) at x̄ = 0
and converges to 1. Hence, (Pα) is not LP well-posed at 0, but it is generalized LP
well-posed at 0. Indeed, if {x̂n} is a LP-minimizing sequence for (Pα) at x̄ = 0,
then there is a sequence {εn} ⊂ R+\{0} converging to 0 such that d(x̂n, M) ≤ εn
and F(x̂n) ≤α F(0) + εne = [εn, 1 + εn]. This implies that −1 ≤ x̂n ≤ 1 for n
sufficiently large, and hence there exists a subsequence of {x̂n} converging to some
point of Sα-MinF (x̄, 0).

Example 3.3 Let X = R, M = R, K = R+. Let F : X ⇒ Y be defined by F(x) =
[x2, 2x2] for all x ∈ X . Let e = 1 ∈ intK and x̄ = 0. Direct cacullations give us
Sα-MinF (x̄, 0) = {0}. Let {xn} be a LP-minimizing sequence for (Pα) at x̄ = 0. Then,
there exists a sequence {εn} ⊂ R+\{0} converging to 0 such that d(xn, M) ≤ εn and
F(xn) ≤α F(0) + εne = {εn}. It leads to x2n ≤ εn , so {xn} converges to 0. Therefore,
(Pα) is LP well-posed at 0.

Lemma 3.1 If (Pα) is generalized LP well-posed at x̄ ∈ Sα-MinF , then Sα-MinF (x̄, 0)
is compact.

Proof For every sequence {xn} ⊂ Sα-MinF (x̄, 0), we always have d(xn, M) = 0 and

F(xn) ≤α F(x̄) + εne

for any {εn} ⊂ R+\{0} converging to 0. This means that {xn} is a LP-minimizing
sequence for (Pα) at x̄ . By the generalized LP well-posedness of (Pα) at x̄ , there exists
a subsequence {xnk } of {xn} such that {xnk } converges to an element x̂ ∈ Sα-MinF (x̄, 0).
This leads to the compactness of Sα-MinF (x̄, 0). ��

The next results give some properties of themapping Sα-MinF (x̄, ·)which are useful
in the sequel.

Proposition 3.2 Let x̄ ∈ Sα-MinF be given. Then, the following statements are true:

(i) Sα-MinF = ⋃
z∈Sα-MinF

Sα-MinF (z, 0);
(ii) if ε1 ≤ ε2, then Sα-MinF (x̄, ε1) ⊂ Sα-MinF (x̄, ε2);
(iii)

⋂
ε>0 Sα-MinF (x̄, ε) = Sα-MinF (x̄, 0) if F is compact-valued on M.

Proof We only demonstrate the proof of the assertions (i)-(iii) for the case α = s; the
proofs of these assertions for the cases α = l and α = u are similar.

(i) Let z ∈ Ss-MinF be given. Since z ∈ Ss-MinF (z, 0), Ss-MinF ⊂ ⋃
z∈Ss-MinF

Ss-MinF (z, 0). Moreover, let x ∈ ⋃
z∈Ss-MinF

Ss-MinF (z, 0), there exists z ∈ Ss-MinF
such that x ∈ Ss-MinF (z, 0). Therefore, d(x, M) = 0 and F(x) ≤s F(z). Since
z ∈ Ss-MinF , x ∈ Ss-MinF . It implies that

⋃
z∈Ss-MinF

Ss-MinF (z, 0) ⊂ Ss-MinF .
(ii) Assume ε1 ≤ ε2. Let x ∈ Ss-MinF (x̄, ε1), then d(x, M) ≤ ε1 and F(x) ≤s

F(x̄) + ε1e. It follows from the definition of set less relation ≤s that

F(x) ≤l F(x̄) + ε1e and F(x) ≤u F(x̄) + ε1e,
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i.e.,

F(x̄) + ε1e ⊂ F(x) + K and F(x) ⊂ F(x̄) + ε1e − K .

We observe that

F(x̄) + ε2e − K = F(x̄) + ε1e − K + (ε2 − ε1)e.

Combining the convexity of K with Proposition 2.1, we obtain that

F(x̄) + ε2e ⊂ F(x) + K ,

and

F(x) ⊂ F(x̄) + ε1e − K ⊂ F(x̄) + ε2e − K .

Thus, F(x) ≤l F(x̄) + ε2e and F(x) ≤u F(x̄) + ε2e. Since x̄ ∈ Ss-MinF , F(x) ≤s

F(x̄)+ε2e.Moreover, d(x, M) ≤ ε2 as d(x, M) ≤ ε1. Therefore, x ∈ s-MinF(x̄, ε2).
We conclude that Ss-MinF (x̄, ε1) ⊂ Ss-MinF (x̄, ε2).

(iii) Let x ∈ Ss-MinF (x̄, 0). It is clear that x ∈ Ss-MinF (x̄, ε) for any ε > 0.
Therefore, x ∈ ⋂

ε>0 Ss-MinF (x̄, ε). For the converse, let x ∈ ⋂
ε>0 Ss-MinF (x̄, ε), we

have x ∈ Ss-MinF (x̄, ε) for any ε > 0. It follows from definition of Ss-MinF (x̄, ε) that
d(x, M) ≤ ε and F(x) ≤s F(x̄) + εe, i.e.,

d(x, M) ≤ ε, F(x̄) + εe ⊂ F(x) + K and F(x) ⊂ F(x̄) + εe − K . (2)

By the compact-valuedness of F and Lemma 2.3, F(x)−K and F(x̄)−K are closed.
From (2), let ε → 0, we obtain that

d(x, M) = 0, F(x̄) ⊂ F(x) + K and F(x) ⊂ F(x̄) − K ,

i.e.,

d(x, M) = 0, F(x) ≤s F(x̄).

Hence, x ∈ Ss-Min F (x̄, 0). We get
⋂

ε>0 Ss-Min F (x̄, ε) ⊂ Ss-Min F (x̄, 0). ��
Next, using the Kuratowski measure of noncompactness of LP approximating

solution sets, we establish metric characterizations of two types of pointwise LP
well-posedness for (Pα).

Theorem 3.1 (i) If (Pα) is generalized LP well-posed at x̄ ∈ Sα-MinF , then
μ(Sα-MinF (x̄, ε)) → 0 as ε → 0.

(ii) If (Pα) is LP well-posed at x̄ ∈ Sα-MinF , then diam(Sα-MinF (x̄, ε)) → 0 as ε → 0.
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Proof (i) Suppose that (Pα) is generalized LP well-posed at x̄ ∈ Sα-MinF . First of all,
we show that H(Sα-MinF (x̄, ε), Sα-MinF (x̄, 0)) → 0 as ε → 0. Indeed, we observe
that, for each ε > 0, Sα-MinF (x̄, 0) ⊂ Sα-MinF (x̄, ε), and hence

H∗(Sα-MinF (x̄, 0), Sα-MinF (x̄, ε)) = 0.

It is sufficient to show that H∗(Sα-MinF (x̄, ε), Sα-MinF (x̄, 0)) → 0 as ε → 0. Suppose
by contrary that there exist a real number r > 0 and a sequence {εn} ⊂ R+\{0}
converging to 0, and for each n ∈ N there exists xn ∈ Sα-MinF (x̄, εn) such that
d(xn, Sα-MinF (x̄, 0)) ≥ r . We have d(xn, M) ≤ εn and F(xn) ≤α F(x̄) + εne. This
means that {xn} is a LP-minimizing sequence for (Pα) at x̄ , and hence {xn} has a
subsequence {xnk } converging to some point x̂ ∈ Sα-MinF (x̄, 0). Therefore, for nk
sufficiently large, we have

∥∥xnk − x̂
∥∥ < r which is a contradiction.

Next, we prove thatμ(Sα-MinF (x̄, ε)) → 0 as ε → 0. ByLemma 3.1, Sα-MinF (x̄, 0)
is compact. Now, for any ε > 0, there are sets M1, M2, . . . Mn for some n ∈ N

such that Sα-MinF (x̄, 0) ⊂ ∪n
i=1Mi with diamMi ≤ ε for all i = 1, . . . , n. For each

i ∈ {1, . . . , n}, denote

Ni := {x ∈ X | d(x, Mi ) ≤ H(Sα-MinF (x̄, ε), Sα-MinF (x̄, 0))}.

We claim that Sα-MinF (x̄, ε) ⊂ ∪n
i=1Ni . Indeed, let x ∈ Sα-MinF (x̄, ε) be arbitrary, we

have

d(x, Sα-MinF (x̄, 0)) ≤ H(Sα-MinF (x̄, ε), Sα-MinF (x̄, 0)).

Since Sα-MinF (x̄, 0) ⊂ ∪n
i=1Mi , we conclude that

d(x,∪n
i=1Mi ) ≤ H(Sα-MinF (x̄, ε), Sα-MinF (x̄, 0)).

So, there is k0 ∈ {1, 2, . . . , n} such that

d(x, Mk0) ≤ H(Sα-MinF (x̄, ε), Sα-MinF (x̄, 0)).

It means that x ∈ Nk0 . Therefore, Sα-MinF (x̄, ε) ⊂ ∪n
i=1Ni . Notice further that

diamNi = diamMi + 2H(Sα-MinF (x̄, ε), Sα-MinF (x̄, 0))

≤ ε + 2H(Sα-MinF (x̄, ε), Sα-MinF (x̄, 0)).

Hence, we get

μ(Sα-MinF (x̄, ε)) ≤ μ(Sα-MinF (x̄, 0)) + 2H(Sα-MinF (x̄, ε), Sα-MinF (x̄, 0)).

Since Sα-MinF (x̄, 0) is compact, we have μ(Sα-MinF (x̄, 0)) = 0. Therefore,

μ(Sα-MinF (x̄, ε)) ≤ 2H(Sα-MinF (x̄, ε), Sα-MinF (x̄, 0)).
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It follows that μ(Sα-MinF (x̄, ε)) → 0 as ε → 0.
(ii) Suppose, to the contrary, that there exist a sequence {εn} ⊂ R+\{0} and a pos-

itive real number r such that diam(Sα-MinF (x̄, εn)) > r . Because x̄ ∈ Sα-MinF (x̄, εn),
for each n, there exists xn ∈ Sα-MinF (x̄, εn) such that ‖xn − x̄‖ > r

2 . However, since{xn} is a LP-minimizing sequence for (Pα) at x̄ , {xn} converges to x̄ which is a
contradiction. ��

The next result gives sufficient conditions for the closedness of approximating
solution set.

Proposition 3.3 Sα-MinF (x̄, ε) is closed for each ε ≥ 0 if F is continuous and compact-
valued on M.

Proof We only prove the assertion for the case α = s. Taking ε ≥ 0, let {xn} ⊂
Ss-MinF (x̄, ε) converge to x , we need to prove that x ∈ Ss-MinF (x̄, ε). Since xn ∈
Ss-MinF (x̄, ε), d(xn, M) ≤ ε and

F(xn) ≤s F(x̄) + εe. (3)

By the continuity of the function d(., M), d(x, M) ≤ ε. Next, we show that F(x) ≤s

F(x̄) + εe. Indeed, from (3), we have

F(x̄) + εe ⊂ F(xn) + K , (4)

and
F(xn) ⊂ F(x̄) + εe − K . (5)

Let y ∈ F(x) be arbitrary. Since F is lower semicontinuous and {xn} converges to x ,
there exist yn ∈ F(xn) such that {yn} converges to y. Combining this with (5), there
exist wn ∈ F(x̄) such that

yn ∈ wn + εe − K . (6)

Since F(x̄) is compact, we can assume that {wn} converges to somew ∈ F(x̄). By (6),
there exist kn ∈ K such that yn = wn+εe−kn . This leads to limn→∞ kn = w+εe−y.
Moreover, we get w + εe − y ∈ K as K is closed. Therefore, there exists k ∈ K
such that w + εe − y = k. We have y = w + εe − k ∈ w + εe − K . It yields that
y ∈ F(x̄) + εe − K as w ∈ F(x̄). We arrive at the fact that F(x) ⊂ F(x̄) + εe − K ,

i.e., F(x) ≤u F(x̄) + εe.
Similarly, let t ∈ F(x̄) be arbitrary, it follows from (4) that, for each n ∈ N, there

exists vn ∈ F(xn) such that
t ∈ vn − εe + K . (7)

Since F is upper semicontinuous and compact-valued at x , we can assume that {vn}
converges to some element v ∈ F(x). It implies from (7) that there exist kn ∈ K
such that t = vn − εe + kn . Hence, kn = t + εe − vn . This leads to limn→∞ kn =
t + εe − v. Since K is closed, there exists k ∈ K such that t + εe − v = k. We
get t = v − εe + k ∈ v − εe + K . It yields that t ∈ F(x) − εe + K as v ∈ F(x).
We have F(x̄) ⊂ F(x) − εe + K . It means that F(x) ≤l F(x̄) + εe. So, we obtain
F(x) ≤s F(x̄) + εe. The proof is complete. ��
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Theorem 3.2 Suppose that F is continuous and compact-valued on M. Then,

(i) (Pα) is generalized LP well-posed at x̄ ∈ Sα-MinF if μ(Sα-MinF (x̄, ε)) → 0 as
ε → 0.

(ii) (Pα) is L P well-posed at x̄ ∈ Sα-MinF if diam(Sα-MinF (x̄, ε)) → 0 as ε → 0.

Proof (i) Suppose thatμ(Sα-MinF (x̄, ε)) → 0 as ε → 0. Let {xn} be a LP-minimizing
sequence for (Pα) at x̄ . Therefore, there exists a sequence {εn} ⊂ R+\{0} converging
to 0 such that d(xn, M) ≤ εn and F(xn) ≤α F(x̄) + εne. This means that xn ∈
Sα-MinF (x̄, εn). It is clear that μ(Sα-MinF (x̄, εn)) → 0 as n → ∞, and hence by
Lemma 2.2 (iii), we have ∩n∈NSα-MinF (x̄, εn) is a nonempty compact set and

H(Sα-MinF (x̄, εn),∩n∈NSα-MinF (x̄, εn)) → 0

as n → ∞. Note further from Proposition 3.2 (iii) that

Sα-MinF (x̄, 0) = ∩n∈NSα-MinF (x̄, εn).

Hence, we conclude that Sα-MinF (x̄, 0) is compact and

H(Sα-MinF (x̄, εn), Sα-MinF (x̄, 0)) → 0

as n → ∞. Thus,
d(xn, Sα-MinF (x̄, 0)) → 0. (8)

Therefore, there exists a sequence {x̂n} ⊂ Sα-MinF (x̄, 0) such that d(xn, x̂n) → 0 as
n → ∞. Since Sα-MinF (x̄, 0) is compact, there is a subsequence {x̂nk } of {x̂n} con-
verging to some x̂ ∈ Sα-MinF . This implies that {xn} has a corresponding subsequence
{xnk } converging to x̂ . Hence, (Pα) is generalized LP well-posed at x̄ .

(ii) Assume that diam(Sα-MinF (x̄, ε)) → 0 as ε → 0. Then,μ(Sα-MinF (x̄, ε)) → 0
as ε → 0, and hence (Pα) is generalized LP well-posed at x̄ . By Proposition 3.2,
Sα-MinF (x̄, 0) is a singleton. By Lemma 2.1 (ii), (Pα) is LP well-posed at x̄ . ��

The below example shows that Theorem 3.2 is applicable.

Example 3.4 Let X = R, Y = R
2, M = [0, 1], K = R

2+. Let F : X ⇒ Y be defined
by

F(x) = [x, x + 1] × [x, x + 1],∀x ∈ X .

Let e = (1, 1) ∈ intK , x̄ = 0. Clearly, all assumptions of Theroem 3.2 hold.
By direct cacullations, we get Sα-MinF (0, ε) = [0, ε] and Sα-MinF = {0}. So,
diam(Sα-MinF (x̄, ε)) → 0 as ε → 0. Applying Theorem 3.2, the problem (Pα)

is LP well-posed at x̄ = 0. In fact, if {xn} is a LP minimizing sequence for (Pα) at x̄ ,
then there is a sequence {εn} ⊂ R+\{0} converging to 0 such that d(xn, M) ≤ εn and
F(xn) ≤α F(0) + εne = [εn, εn + 1] × [εn, εn + 1]. We get 0 ≤ xn ≤ εn , and hence
{xn} converges to 0. So, (Pα) is LP well-posed at 0.

The following example shows that the continuity of F in Theorem 3.2 is crucial.
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Example 3.5 Let X = R, Y = R
2, M = [−1, 1], K = R

2+. Let F : X ⇒ Y be defined
by

F(x) =
{ [0, 1] × [0, 1], if x < 0,

[1, 2] × [1, 2], if x ≥ 0.

Let e = (1, 1) ∈ intK , x̄ = − 1
2 . Then, F is compact-valued on M . Direct compu-

tations give us that Sα-MinF (x̄, ε) = [−1, 0), and hence μ(Sα-MinF (x̄, ε)) → 0 as
ε → 0. However, the problem (Pα) is not generalized LP well-posed at x̄ . Indeed,
setting xn = − 1

n , we have {xn} is a LP minimizing sequence for (Pα) at x̄ but {xn}
converges to 0 /∈ Sα-MinF (x̄, 0). The reason here is that F is not continuous.

Next, employing properties of the approximating solutionmapping of (Pα), the con-
nection between LP well-posedness of (Pα) and stability of approximating problem
is established.

Theorem 3.3 Let x̄ ∈ Sα-MinF .

(i) Problem (Pα) is generalized LP well-posed at x̄ if and only if Sα-MinF (x̄, ·) is
upper semicontinuous and compact-valued at 0.

(ii) Problem (Pα) is L P well-posed at x̄ if and only if Sα-MinF (x̄, ·) is upper semi-
continuous at 0 and Sα-MinF (x̄, 0) = {x̄}.

Proof (i) Suppose that (Pα) is generalized LP well-posed at x̄ . By Lemma 3.1,
Sα-MinF (x̄, 0) is compact. Suppose by contrary that Sα-MinF (x̄, ·) is not upper semi-
continuous at 0. Then, there exists an open set N ⊃ Sα-MinF (x̄, 0) such that for any
δ > 0, there exists ε ∈ [0, δ), Sα-MinF (x̄, ε) �⊂ N . It means that there exists a sequence
{εn} converging to 0 such that for each n ∈ N, we have Sα-MinF (x̄, εn) �⊂ N . Thus,
for each n ∈ N, there is xn ∈ Sα-MinF (x̄, εn), xn /∈ N . Then, d(xn, M) ≤ εn and
F(xn) ≤α F(x̄) + εne, which imply that {xn} is a LP-minimizing sequence for (Pα)

at x̄ . Because (Pα) is generalized LP well-posed at x̄ , there is a subsequence of {xn},
denoted by {xnk }, converging to an element x̂ ∈ Sα-MinF (x̄, 0) ⊂ N . This is impossible
as xnk /∈ N for all k.

Conversely, let {xn} ⊂ X be a LP-minimizing sequence for (Pα) at x̄ . Then, there
exists a sequence {εn} ⊂ R+\{0} converging to 0 such that

d(xn, M) ≤ εn, F(xn) ≤α F(x̄) + εne.

So, xn ∈ Sα-MinF (x̄, εn). It follows from the upper semicontinuity and compact-
valuedness of Sα-MinF (x̄, ·) at 0, Lemma 2.1 (ii) implies that there exist an element
x̂ ∈ Sα-MinF (x̄, 0) and a subsequence {xnk } of {xn} such that {xnk } converges to x̂ . So,
(Pα) is generalized LP well-posed at x̄ .

(ii) Let {xn} ⊂ X be a LP-minimizing sequence for (Pα) at x̄ , then there exists
a sequence {εn} ⊂ R+\{0} converging to 0 such that d(xn, M) ≤ εn and F(xn) ≤α

F(x̄) + εne. This means that, for each n ∈ N,

xn ∈ Sα-MinF (x̄, εn). (9)

Since Sα-MinF (x̄, ·) is upper semicontinuous at 0, for any open set N , Sα-MinF (x̄, 0) ⊂
N , there is a neighborhood U of 0 such that for all t ∈ U , t ≥ 0, we have
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Sα-MinF (x̄, t) ⊂ N . Since {εn} converges to 0, there exists n0 ∈ N such that εn ∈
B(0, 1

n0
) for all n ≥ n0. Combining this with (9), we obtain xn ∈ Sα-MinF (x̄, εn) ⊂ N

for all n ≥ n0. Therefore, for every neighborhoodW of 0, xn ∈ Sα-MinF (x̄, 0)+W for
all n ≥ n0. Since Sα-MinF (x̄, 0) = {x̄}, {xn} converges to x̄ . So, (Pα) is LP well-posed
at x̄ .

For the converse, suppose that (Pα) is LP well-posed at x̄ . Using (i), Sα-MinF (x̄, ·)
is upper semicontinuous and compact-valued at 0. We show that Sα-MinF (x̄, 0) is
a singleton. Suppose by the contrary that there exist x1, x2 ∈ Sα-MinF (x̄, 0) with
x1 �= x2. Putting x2n+k = xk where k = 1 or k = 2. Clearly, {xn} is a LP-minimizing
sequence for (Pα) at x̄ . However, {xn} is not convergent. This is a contradiction.
Therefore, Sα-MinF (x̄, 0) is a singleton.Moreover, it is obvious that x̄ ∈ Sα-MinF (x̄, 0).
So, Sα-MinF (x̄, 0) = {x̄}. ��

The assumption about the upper semicontinuity of approximating solution map-
ping of (Pα) is used in Theorem 3.3. Next, we give the sufficient conditions for this
assumption.

Proposition 3.4 Suppose that the following conditions hold:

(i) M is compact;
(ii) F is continuous and compact-valued on M.

Then, Sα-MinF (x̄, ·) is upper semicontinuous at 0.
Proof By the similarity, we only focus on the proof of the assertion for the case α = u.
By contradiction, suppose that Su-MinF (x̄, ·) is not upper semicontinuous at 0. Then,
there exist an open set N ⊃ Su-MinF (x̄, 0) and a sequence {εn} ⊂ R

+\{0} converging
to 0 such that for each n, there exists xn satisfying

xn ∈ Su-MinF (x̄, εn)\W0. (10)

Since xn ∈ Su-MinF (x̄, εn),
d(xn, M) ≤ εn (11)

and
F(xn) ⊂ F(x̄) + εne − K . (12)

It implies from (11) that there exist x̂n ∈ M such that d(xn, x̂n) ≤ εn . By the com-
pactness of M , we can assume that {x̂n} converges to an element x0 ∈ M . Hence, {xn}
converges to x0. Next, we prove that

F(x0) ⊂ F(x̄) − K . (13)

Indeed, by the compact-valuedness of F , the closedness of K and Lemma 2.3,
F(x̄) − K is closed. From (12), taking n → ∞, we obtain (13). It means that
x0 ∈ Su-MinF (x̄, 0). Combining this, (10) and the convergence to x0 of {xn}, we
get a contradiction. Therefore, Su-MinF (x̄, ·) is upper semicontinuous at 0. ��
Corollary 3.1 Suppose that the following conditions hold:
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(i) M is compact;
(ii) F is continuous and compact-valued on M.

Then,

(a) (Pα) is generalized LP well-posed at x̄ ∈ Sα-MinF if Sα-MinF (x̄, 0) is closed.
(b) (Pα) is L P well-posed at x̄ ∈ Sα-MinF if Sα-MinF (x̄, 0) = {x̄}.

4 Metrically LP well-posed set optimization problems

Picking up the ideas in [22], we introduce the following new concepts of LP well-
posedness related to metrically approach for the problem (Pα).

Definition 4.1 A sequence {xn} ⊂ X is said to be a

(i) metrically LP-minimizing sequence for problem (Pl) at x̄ ∈ Sl-MinF if and only
if H∗(F(x̄), F(xn)) → 0 and d(xn, M) → 0 as n → ∞.

(ii) metrically LP-minimizing sequence for problem (Pu) at x̄ ∈ Su-MinF if and only
if H∗(F(xn), F(x̄)) → 0 and d(xn, M) → 0 as n → ∞.

(iii) metrically LP-minimizing sequence for problem (Ps) at x̄ ∈ Ss-MinF if and only
if H(F(x̄), F(xn)) → 0 and d(xn, M) → 0 as n → ∞.

Definition 4.2 The problem (Pα) is said to be metrically LP well-posed if and only if
Sα-MinF �= ∅ and for any metrically LP-minimizing sequence {xn} for problem (Pα)

at some x̄ ∈ Sα-MinF , we have d(xn, Sα-MinF ) → 0 as n → ∞.

Remark 4.1 When α = l, concepts introduced in Definitions 4.1 (i) and 4.2 are similar
to the corresponding ones studied in Definitions 4.5 (ii) and 4.6 (ii) in [22].

Example 4.1 (a) Let X = Y = R, M = [0, 1], K = R+, and let F : X ⇒ Y be
defined by F(x) = [1, 2] for all x ∈ X . Obviously, Sα-MinF = [0, 1] = M , and
the problem (Pα) is metrically LP well-posed.

(b) Let X = Y = R, M = K = R+. Let F : X ⇒ Y be defined by F(x) =
[x2, 3x2] for all x ∈ X . Direct cacullations give us Sα-MinF = {0} and the
problem (Pα) is metrically LP well-posed. Indeed, let {xn} be a metrically LP-
minimizing sequence for (Pα) at x̄ = 0, it implies from definition of metrically
LP-minimizing sequence for (Pα) at x̄ = 0 that {xn} converges to x̄ . Therefore,
d(xn, Sα-MinF ) → 0.

Example 4.2 Let X = Y = R, M = [−1, 1], K = R+, and F : X ⇒ Y is defined by

F(x) =
{ [0, 1), if x ≤ 0,

(0, 1], if x > 0.

By direct computations, we get Sα-MinF = [−1, 0]. Taking xn = 1 + 1
n , then {xn} is

a metrically LP-minimizing sequence for the problem (Pα) at x̄ = 0 ∈ Sα-MinF , but
d(xn, Sα-MinF ) → 1. Therefore, the problem (Pα) is not metrically LP well-posed.

Next, we introduce a generalized form of the above concept.

123

Author's personal copy



P. T. Vui et al.

Definition 4.3 The problem (Pα) is said to be generalized metrically LP well-posed
if and only if Sα-MinF �= ∅ and for any metrically LP-minimizing sequence {xn}
for (Pα) at some x̄ ∈ Sα-MinF , {xn} has a subsequence, denoted by {xnk }, such that
d(xnk , Sα-MinF ) → 0 as k → ∞.

It is clear that if (Pα) is metrically LP well-posed, then it is generalized metrically
LP well-posed.

These following results give the relationships between these kinds of LP well-
posedness considered in this study.

Theorem 4.1 (i) If (Pα) is LP well-posed at all x̄ ∈ Sα-MinF , then (Pα) is metrically
LP well-posed.

(ii) If (Pα) is generalized LP well-posed at all x̄ ∈ Sα-MinF , then (Pα) is generalized
metrically LP well-posed.

Proof (i) By the similarity we verify the assertions (i), (ii) for the case α = s as an
example. Let {xn} be a metrically LP-minimizing sequence for problem (Ps) at some
x̄ ∈ Ss-MinF . We need to prove that d(xn, Ss-MinF ) → 0. In fact, since {xn} is a metri-
cally LP-minimizing sequence for problem (Ps) at some x̄ ∈ Ss-MinF , d(xn, M) → 0
and

H(F(x̄), F(xn)) → 0. (14)

Observe that we can choose a sequence {εn} ⊂ R+\{0} converging to 0 satisfying
d(xn, M) ≤ εn , both −εne + K and εne − K are neighborhoods of the origin in Y .
By (14), there exists n0 ∈ N such that for all n > n0 we have

F(x̄) ⊂ F(xn) − εne + K and F(xn) ⊂ F(x̄) + εne − K .

This implies that F(xn) ≤s F(x̄)+ εne. Hence, {xn} is a LP-minimizing sequence for
(Ps) at x̄ . By the LP well-posedness of (Ps) at x̄ , {xn} converges to x̄ . Moreover, since
x̄ ∈ Ss-MinF , d(xn, Ss-MinF ) ≤ ‖xn − x̄‖ → 0. So, (Ps) is metrically LP well-posed.

(ii) Using a similar argument with one above, we can prove that the statement (ii)
is satisfied. ��
Remark 4.2 When α = l, (Pα) reduces to (Pl) studied in [22]. To obtain the metrically
LP well-posedness for (Pl), the authors used an important assumption about the K -
closed values of F on M , i.e., F(x) + K is closed for all x ∈ M . Using another
approach, as in Theorem 4.1, we can remove this assumption but also obtain the
metrically LP well-posedness for (Pα).

Combining Theorem 4.1 and Corollary 3.1, we obtain the following results.

Theorem 4.2 Suppose that the following conditions are satisfied:

(i) M is compact;
(ii) F is continuous and compact-valued on M.

Then,
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(a) (Pα) is metrically LP well-posed if Sα-MinF (x̄, 0) = {x̄} for every x̄ ∈
Sα-MinF .

(b) (Pα) is generalized metrically L P well-posed if Sα-MinF (x̄, 0) is closed for
every x̄ ∈ Sα-MinF .

Remark 4.3 Very recently, in [6], the authors studied several kinds of well-posedness
for set optimization problems via the lower set less relation, including B-well-
posedness, L-well-posedness, DH -well-posedness, and they obtained many inter-
esting results related to this topic. In this paper, we consider the Levitin–Polyak
well-posedness and the generalized Levitin–Polyak well-posedness for set optimiza-
tion problems involving various kinds of set less relations, and hence the concepts of
well-posedness investigated in this paper are different from those in [6]. Therefore, it
could not compare our results with theirs.
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1 Introduction

Set order relations were firstly introduced by Kuroiwa et al. in [1] and then
they were generalized in [2]. These concepts gave a new way, so-called set approach,
to formulate the optimal of set-valued optimization problems [3]. In this approach,
all images of the set-valued objective mapping were compared by set order relations
[4,5], and hence, it is a truely natural and practical approach. Therefore, this field
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has attracted a great deal of attention of researchers although it is a young direction
in optimization. Many interesting and important results have been obtained in
different topics in this area [6–11].

Well-posedness was originally proposed by Tikhonov in [12]. This concept
requires two conditions, namely the uniqueness of solution and the convergence
of each minimizing sequence to the unique solution. In other words, whenever
we are able to compute approximately the optimal value then we automatically
do approximate the optimal solution. So, well-posedness plays an important role
in both theory results and numerical methods, and hence it has been attracted
much attention of researchers (see e.g., [13–15] and the reference therein). Later on,
generalizations of Tikhonov well-posedness were proposed and studied widely. One
of these extensions is the so-called B-well-posedness proposed by Bednarczuck for
vector optimization problems in [16]. After that, this notion has been intensively
considered for various problems related to optimization [17–21]

Studying on well-posedness for set optimization problems was initialed by
Zhang et al. in [22]. The authors obtained sufficient, necessary conditions and
characterizations for set optimization problems involving the lower set less rela-
tion to be well-posed by the scalarization method. After that, some different types
of well-posedness for these problems introduced and investigated [23–26]. In 2013,
as the first authors concerned B-well-posedness for set optimization problems,
Long and Peng [24] introduced three types of B-well-posedness for set optimiza-
tion problems involving upper set less relations ≤u and established some relations
among these kinds of B-well-posedness. Moreover, the authors also provided nec-
essary and sufficient conditions of these notions for set optimization problems.
To extend the research in [24], Han and Huang [8] studied B-well-posedness for
set optimization problems involving set order relations ≤l and ≤u. They gave
characterizations for the generalized l-B-well-posedness and the generalized u-B-
well-posedness and provided the semicontinuity of solution mapping.

As mentioned in [2,27] that among three kinds of set order relations introduced
in [1], the set less relation ≤s is generalized and more appropriate in practical
problems than both the lower and upper set less relations; and it also occupies an
important role in relationships with other new order relations for sets proposed
in [2] which are more useful in real world. Moreover, to the best of our knowledge,
there is no paper devoted to well-posedness for set optimization problems involving
set less relation, and hence the well-posedness properties for such problems are
deserved to study more. Consequently, we aim to investigate both pointwise and
global B-well-posedness as well as pointwise L-well-posedness for set optimization
problems involving three kinds of set order relations.

The outline of this paper is as follows. In Sect. 2, some concepts and re-
sults used in what follows are recalled. Sect. 3 studies global B-well-posedness
for set optimization problems, including B-well-posedness and generalized B-well-
posedness. Relationships between them are discussed. Moreover, sufficient con-
ditions of B-well-posedness for such problems are provided. In Sect. 4, we pay
more attention on pointwise B-well-posedness. Characterizations as well as re-
lationships between pointwise B-well-posedness and global B-well-posedness are
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studied. In the last section, Sect. 5, pointwise L-well-posedness is investigated.
Then, relationships between it and pointwise B-well-posedness are researched.

2 Preliminaries

Let X and Y be normed spaces. We denote the closed unit ball of Y by BY .
Let K be a closed convex pointed cone in Y with intK ̸= ∅, where intK denotes
the interior of K. Orderings induced by cone K in the space Y are defined as the
following

x ≤K y ⇔ y − x ∈ K,

x <K y ⇔ y − x ∈ intK.

To compare two subsets of Y , we use set order relations introduced in [2,5,28].
We list here three kinds of set order relations used in this paper. Let P(Y ) be
the family of all nonempty subsets of Y . For A,B ∈ P(Y ), lower set less relation,
upper set less relation and set less relation, respectively, are defined by

A ≤l B if and only ifB ⊂ A+K,

A ≤u B if and only ifA ⊂ B −K,

A ≤s B if and only ifA ⊂ B −K and B ⊂ A+K.

Definition 2.1. [2] We say that the binary relation ≤ is

(i) compatible with the addition if and only if A ≤ B and D ≤ E imply
A+D ≤ B + E for all A,B,D,E ∈ P(Y ).

(ii) compatible with the multiplication with a nonnegative real number if and
only if A ≤ B implies λA ≤ λB for all scalars λ ≥ 0 and all A,B ∈ P(Y ).

(iii) compatible with the conlinear structure of P(Y ) if and only if it is compat-
ible with both the addition and the multiplication with a nonnegative real
number.

Proposition 2.1. [2]

(i) The set order relations ≤l, ≤u and ≤s are pre-order (i.e., these relations are
reflexive and transitive).

(ii) The set order relations ≤l, ≤u and ≤s are compatible with the conlinear
structure of P(Y ).

(iii) In general, the set order relations ≤l, ≤u and ≤s are not antisymmetric;
more precisely, for arbitrary sets A,B ∈ P(Y ) we have

(A ≤l B and B ≤l A) ⇔ A+K = B +K,

(A ≤u B and B ≤u A) ⇔ A−K = B −K,

(A ≤s B and B ≤s A) ⇔ (A+K = B +K and A−K = B −K).
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For α ∈ {u, l, s}, we say that

A ∼α B if and only ifA ≤α B andB ≤α A.

Let F : X ⇒ Y be a set-valued mapping with nonempty values on X, we
denote F (M) = ∪x∈MF (x). For each α ∈ {u, l, s}, we consider the following set
optimization problem

(Pα) α -MinF(x)

subject to x ∈ M,

where M is a nonempty subset of X. A point x̄ ∈ M is said to be an α-minimal
solution of (Pα) if for any x ∈ M such that F (x) ≤α F (x̄), then F (x̄) ≤α F (x).
The set of all α-minimal solutions of (Pα) is called the solution set of (Pα) and
denoted by Sα -MinF .

Remark 2.2. It can be seen that if x̄ ∈ Sα -MinF and F (x̄) ∼α F (x) for some
x ∈ M , then x ∈ Sα -MinF .

Next, we recall definitions of semicontinuity for a set-valued mapping and their
properties used in the sequel.

Definition 2.2. [29] A set-valued mapping F : X ⇒ Y is said to be

(i) upper semicontinuous at x0 ∈ DomF if and only if for any open subset V
of Y with F (x0) ⊂ V there is a neighborhood U of x0 such that F (x) ⊂ V
for all x ∈ U ;

(ii) lower semicontinuous at x0 ∈ DomF if and only if for any open subset V of
Y with F (x0)∩V ̸= ∅ there is a neighborhood U of x0 such that F (x)∩V ̸= ∅
for all x ∈ U ;

(iii) lower (upper) semicontinuous on a subset D of X if it is lower (upper)
semicontinuous at every x ∈ D;

where DomF = {x ∈ X | F (x) ̸= ∅}.

Lemma 2.3. [30] Let F : X ⇒ Y be a set-valued mapping.

(i) F is lower semicontinuous at x0 ∈ DomF , if for every {xn} converging to x0

and for every y ∈ F (x0) there exists {yn} with yn ∈ F (xn) such that {yn}
converges to y.

(ii) If F (x0) is compact and F is upper semicontinuous at x0 ∈ DomF , then for
every {xn} converging to x0 and yn ∈ F (xn) there exist y0 ∈ F (x0) and a
subsequence {ynk

} of {yn} such that {ynk
} converges to y0.

Definition 2.3. [30] A set-valued mapping F : X ⇒ Y is said to be
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(i) Hausdorff upper semicontinuous at x0 ∈ DomF if and only if for each neigh-
borhood V of the origin in Y, there exists a neighborhood U of x0 such that
F (x) ⊂ F (x0) + V for all x ∈ U ∩X.

(ii) Hausdorff lower semicontinuous at x0 ∈ DomF if and only if for any neigh-
borhood V of the origin in Y, there exists a neighborhood U of x0 such that
F (x0) ⊂ F (x) + V for all x ∈ U ∩X.

(iii) Hausdorff lower (upper) semicontinuous on a subset D of X if and only if
F is Hausdorff lower (upper) semicontinuous at every point of D.

Remark 2.4. [31] If F is upper semicontinuous at x0 ∈ DomF , then F is Haus-
dorff upper semicontinuous at x0; the converse implication is true when F (x0) is
compact.

Next, we recall concepts of Hausdorff distance and Hausdorff convergence of
sequence of sets. Let S be a nonempty subset of X and x ∈ X. The distance d
between x and S is defined as

d(x, S) = infu∈Sd(x, u).

Let S1 and S2 be two nonempty subsets of X. The Hausdorff distance between
S1 and S2, denoted by H(S1, S2), is defined as

H(S1, S2) = max{H∗(S1, S2),H
∗(S2, S1)},

where H∗(S1, S2) = supx∈S1
d(x, S2).

Definition 2.4. [32] Let {An} be a sequence of subsets of X. We say that

(i) An converge to A ⊂ X in the sense of the upper Hausdorff set-convergence,
denoted by An ⇀ A, if and only if H∗(An, A) → 0.

(ii) An converge to A ⊂ X in the sense of the lower Hausdorff set-convergence,
denoted by An ⇁ A, if and only if H∗(A,An) → 0.

(iii) An converge to A ⊂ X in the sense of the Hausdorff set-convergence, denoted
by An → A, if and only if H(An, A) → 0.

3 B-well-posedness for set optimization problems

In this section, two kinds of global B-well-posedness for the problem (Pα) are
considered and their relationships are discussed. Moreover, we also provide char-
acterizations and sufficient conditions of B-well-posedness for such problems.

We observe from the definitions of set order relations that ≤s is a combination
of ≤l and ≤u. For relationships between ≤l and ≤u, they were given in Remark
2.6.10 of [4] as the following

A ≤l B ⇔ −B ≤u −A.

Some properties about these set order relations are demonstrated in next re-
sults.
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Proposition 3.1. The following statements are true:

(i) If A ≤α B, then λA ≤α λB, ∀λ > 0;

(ii) A ≤l B ⇔ λA ≥u λB, ∀λ < 0;

(iii) A ≤s B ⇔ λA ≥s λB, ∀λ < 0.

Proof. (i) We give the proof of the assertion (i) for the case α = s, proofs of this
assertion for other cases α = l and α = u are similar. Since A ≤s B, B ⊂ A+K
and A ⊂ B −K. Clearly, for any λ > 0, we get λB ⊂ λA+K and λA ⊂ λB −K.
Hence, λA ≤s λB.

(ii) We have B ⊂ A+K as A ≤l B. For any λ < 0, this yields λB ⊂ λA−K,
i.e., λB ≤u λA.

(iii) Since A ≤s B, B ⊂ A +K and A ⊂ B −K. For any λ < 0, this implies
that λB ⊂ λA−K and λA ⊂ λB +K. So, λA ≥s λB.

We define a set-valued mapping Q : K ⇒ M as follows

Q(k) =
∪

y∈Sα−MinF

{x ∈ M | F (x) ≤α F (y) + k}. (3.1)

The following results provide some properties of this mapping.

Proposition 3.2. These assertions hold:

(i) If k1 ≤K k2, then Q(k1) ⊂ Q(k2);

(ii) Sα-MinF ⊂ Q(0);

(iii) Q(0) = ∩k∈KQ(k).

Proof. (i) We only demonstrate the proof of the above assertion for the case α = s,
proofs of this assertion for other cases are proved similarly. Let x ∈ Q(k1) be
given, then there exists y ∈ Sα-MinF such that F (x) ≤s F (y)+k1, i.e., F (y)+k1 ⊂
F (x) + K and F (x) ⊂ F (y) + k1 − K. Combining this with k1 ≤K k2, we get
F (y) + k2 = F (y) + k1 + (k2 − k1) ⊂ F (x) + K and F (x) ⊂ F (y) + k1 − K =
F (y) + k2 + (k1 − k2)−K ⊂ F (y) + k2 −K. This means that F (x) ≤l F (y) + k2
and F (x) ≤u F (y) + k2. Hence, x ∈ Q(k2).

(ii) It is clear that for every x ∈ Sα-MinF, we have F (x) ≤α F (x), and hence
x ∈ Q(0). Therefore, Sα-MinF ⊂ Q(0).

(iii) It is obvious that Q(0) ⊂ Q(k) for all k ∈ K, and thus Q(0) ⊂ ∩k∈KQ(k).
Conversely, suppose that there exists x ∈ ∩k∈KQ(k) but x ̸∈ Q(0), i.e., x ̸∈
∪y∈Sα-MinF{z ∈ M |F (z) ≤α F (y)}. Then, F (x) ̸≤α F (y) for any y ∈ Sα-MinF. On
the other hand, since x ∈ ∩k∈KQ(k), x ∈ Q(k) for all k ∈ K. Therefore, there is
y ∈ Sα-MinF such that F (x) ≤α F (y) + k for all k ∈ K. Particularly, for k = 0,
there exists y ∈ Sα-MinF such that F (x) ≤α F (y) which is a contradiction.

Next, we give two concepts related to global B-well-posedness for (Pα).
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Definition 3.1. Problem (Pα) is said to be

(i) B-well-posed if and only if Sα-MinF ̸= ∅ and Q is upper semicontinuous at
k = 0.

(ii) generalized B-well-posed if and only if Sα-MinF ̸= ∅ and Q is Hausdorff upper
semicontinuous at k = 0.

Remark 3.3. Clearly, if the problem (Pα) is B-well-posedness, then it is gener-
alized B-well-posedness. It follows from Proposition 3.2(ii) and Remark 2.4 that
the converse holds if Sα-MinF is compact. In the sequel, we focus on generalized
B-well-posedness.

Definition 3.2. A sequence {xn} ⊂ M is said to be a generalized B-minimizing
sequence of (Pα) if and only if there exist {kn} ⊂ K converging to 0 and {yn} ⊂
Sα-MinF such that F (xn) ≤α F (yn) + kn.

Equivalently, {xn} is a generalized B-minimizing sequence of (Pα) if and only if
there exist {kn} ⊂ K converging to 0 and {yn} ⊂ Sα-MinF such that xn ∈ Q(kn).

Remark 3.4. When α = u, concepts in Definitions 3.1 and 3.2 reduce to ones in
Definitions 3.1-3.3 in [24], respectively.

Characterizations for B-well-posedness of (Pα) are provided in the next result
through the B-minimizing sequence.

Theorem 3.5. Problem (Pα) is generalized B-well-posed if and only if these fol-
lowing conditions are satisfied

(a) Sα-MinF ̸= ∅;
(b) for every generalized B-minimizing sequence {xn} ⊂ M and for every neigh-
borhood U of the origin in X, there exists n0 ∈ N such that xn ∈ Q(0) + U for all
n ≥ n0.

Proof. Suppose that (Pα) is generalized B-well-posed. Let {xn} ⊂ M be a gener-
alized B-minimizing sequence of (Pα), then there exist {kn} ⊂ K converging to 0
and {yn} ⊂ Sα-MinF such that xn ∈ Q(kn). Since (Pα) is generalized B-well-posed,
Q is Hausdorff upper semicontinuous at 0. Let U be a neighborhood of the origin
in X, there exists n0 ∈ N such that Q(kn) ⊂ Q(0) + U for all n ≥ n0. Therefore,
we get xn ∈ Q(0) + U for all n ≥ n0.

Conversely, suppose on the contrary that (Pα) is not generalized B-well-posed.
Thus, Q is not Hausdorff upper semicontinuous at 0. Then, there exists a neigh-
borhood U of the origin in X such that Q(k) ̸⊂ Q(0) + U for some k belongs
to a neighborhood of 0. So, we can build a sequence {kn} ⊂ K converging to 0
such that Q(kn) ̸⊂ Q(0) + U . It leads to the existence of a sequence {xn} with
xn ∈ Q(kn) satisfying xn ̸∈ Q(0) + U which contradicts the assumption (b). This
completes the proof.

We now give sufficient conditions for (Pα) to be generalized B-well-posed.
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Theorem 3.6. Suppose that Sα-MinF ̸= ∅ and for any ε > 0 there exists δ > 0
such that

(F (M)− F (Sα-MinF)) ∩ (δBY −K) ⊂ εBY . (3.2)

Then,

(i) (Pl) is generalized B-well-posed if each sequence of sets {An} ⊂ M with
F (An) ⇁ F (Sl-MinF) satisfies An ⇁ Sl-MinF.

(ii) (Pu) is generalized B-well-posed if each sequence of sets {An} ⊂ M with
F (An) ⇀ F (Su-MinF) satisfies An ⇀ Su-MinF.

(iii) (Ps) is generalized B-well-posed if each sequence of sets {An} ⊂ M with
F (An) → F (Ss-MinF) satisfies An → Ss-MinF.

Proof. (i) By contradiction, suppose that (Pl) is not generalized B-well-posed. It
follows from Theorem 3.5 that there exist a generalized B-minimizing sequence
{xn} and a neighborhood U of the origin in X such that for some n0 ∈ N, xn ̸∈
Q(0) + U for all n ≥ n0. Combining this with Proposition 3.2(ii), we get

xn ̸∈ Sl-MinF + U, ∀n ≥ n0. (3.3)

Since {xn} is a generalized B-minimizing sequence, there exist {kn} ⊂ K converg-
ing to 0 and {yn} ⊂ Sl-MinF such that

F (xn) ≤l F (yn) + kn. (3.4)

We consider two following cases:
Case 1 : If F (xn) ⇁ F (Sl-MinF), then choosing An = {xn}. It implies from the
hypothesis that {xn} ⇁ Sl-MinF, and hence H∗(Sl-MinF, {xn}) → 0. Therefore,
d(xn, Sl-MinF) → 0 which contradicts (3.3).
Case 2 : If F (xn) ̸⇁ F (Sl-MinF), then supx∈Sl-MinF

d(x, F (xn)) ̸→ 0. So, there
exists x ∈ Sl-MinF such that d(x, F (xn)) ̸→ 0, i.e., there exist n1 ∈ N and a
neighborhood V of the origin in Y such that

x ̸∈ F (xn) + V, ∀n ≥ n1. (3.5)

Take ε such that εBY ⊂ V . For δ satisfying (3.2), since {kn} ⊂ K converges to 0,
there exists n2 ∈ N such that for n ≥ n2, we have

kn ∈ δBY . (3.6)

By (3.4), we get F (yn) + kn ⊂ F (xn) +K. Therefore, F (yn) ⊂ F (xn)− kn +K ⊂
F (xn) + δBY + K. This implies that for an arbitrary zn ∈ F (yn), there exists
z̄n ∈ F (xn) such that zn ∈ z̄n + δBY + K, and thus zn − z̄n ∈ δBY + K. So,
z̄n − zn ∈ δBY − K. On the other hand, we have z̄n − zn ∈ F (xn) − F (yn) ⊂
F (M) − F (Sl-MinF). It derives from (3.2) that z̄n − zn ∈ εBY ⊂ V . So, now we
get zn ∈ z̄n + V ⊂ F (xn) + V which contradicts (3.5).

For (ii) (iii), the proofs of these assertions are technically similar to that of the
assertion (i).
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4 Pointwise B-well-posedness for set optimiza-
tion problems

In this section, we consider a notion of pointwise B -well-posedness for the problem
(Pα). At a reference point x0 ∈ M , we define a corresponding set-valued mapping
as follows Qx0

: K ⇒ M , Qx0
(k) = {x ∈ M | F (x) ≤α F (x0) + k}.

Definition 4.1. Problem (Pα) is said to be B -well-posed at x0 ∈ Sα-MinF if and
only if Qx0

is upper semicontinuous at k = 0.

We observe that Qx0
(0) = {x ∈ M | F (x) ∼α F (x0)} for each x0 ∈ Sα-MinF.

The next results give some properties of the mapping Qx0
.

Proposition 4.1. The following statements are true:

(i) If k1 ≤K k2, then Qx0
(k1) ⊂ Qx0

(k2);

(ii) Qx0
(0) ⊂ Sα-MinF with x0 ∈ Sα-MinF;

(iii) x0 ∈ Qx0
(0) ⊂ Qx0

(k) for every k ∈ K;

(iv) Q(0) = ∪x0∈Sα-MinF
Qx0

(0).

Proof. (i) The statement is proved by a similar argument in Proposition 3.2(i).
(ii) By the similarity, we prove the assertion for the case α = s. Let x ∈ Qx0

(0)
and y ∈ M such that

F (y) ≤s F (x), (4.1)

we need to show that F (x) ≤s F (y). Since x ∈ Qx0
(0),

F (x) ≤s F (x0). (4.2)

Combining (4.1) and (4.2), we get F (y) ≤s F (x0). Because x0 ∈ Sα-MinF,
F (x0) ≤s F (y). Therefore, F (x) ≤s F (y).

For (iii) and (iv), these assertions were implied by definitions of mappings Q
and Qx0

.

Now we discuss the converse of (ii) of the above proposition. Because the proof
of this assertion is elementary, we would like to omit it.

Lemma 4.2. If x0 ∈ Sα-MinF, then Sα-MinF ⊂ Qx0
(0) if and only if F (x) ∼α F (y)

for all x, y ∈ Sα-MinF.

Definition 4.3. A sequence {xn} ⊂ M is said to be an x0-minimizing sequence
of (Pα) where x0 ∈ Sα-MinF if and only if there exists {kn} ⊂ K converging to 0
such that

F (xn) ≤α F (x0) + kn.
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Definition 4.3 reduces to Definition 3.3 in [25] when α = u.
Clearly, for each x0 ∈ Sα-MinF, {xn} ⊂ M is an x0-minimizing sequence if and

only if there exists {kn} ⊂ K converging to 0 such that xn ∈ Qx0
(kn).

The next result illustrates the relationship between the pointwise B -well-
posedness and B -well-posedness for (Pα).

Theorem 4.2. If Sα-MinF is a finite set and (Pα) is pointwise B-well-posed at
every x ∈ Sα-MinF, then it is B-well-posed.

Proof. Let Sα-MinF = {x1, . . . , xn} and V be an open set in X such that Q(0) ⊂ V .
By Proposition 4.1(iv), Qxi

(0) ⊂ V for all i = 1, . . . , n. Since (Pα) is pointwise
B -well-posed at every xi, Qxi

is upper semicontinuous at k = 0, and hence for each
i ∈ {1, . . . , n}, there exists a neighborhood Uxi

of 0 such that Qxi
(Uxi

) ⊂ V . Let
U = ∩n

i=1Uxi , this finite intersection of neighborhoods Uxi is also a neighborhood
of 0. Obviously, we have Qxi(U) ⊂ V for all i = 1, . . . , n. By definitions of
mappings Qxi

and Q, we also get Q(U) ⊂ V . It leads to the upper semicontinuity
at k = 0 of Q. We conclude that (Pα) is B -well-posed.

We next investigate characterizations of pointwise B-well-posedness for (Pα).

Theorem 4.3. Problem (Pα) is pointwise B-well-posed at x0 ∈ Sα-MinF if and
only if for a given e ∈ intK, the set-valued mapping Q+

x0
: R+ ⇒ M defined as

Q+
x0
(t) = {x ∈ M | F (x) ≤α F (x0) + te}

is upper semicontinuous at t = 0.

Proof. Assume that (Pα) is pointwise B -well-posed at x0 ∈ Sα-MinF, then Qx0 is
upper semicontinuous at k = 0. Let V be an open set in X such that Q+

x0
(0) ⊂ V ,

we get Qx0
(0) ⊂ V . By the upper semicontinuity of Qx0

, there is a positive number
r such that Qx0

(k) ⊂ V for all k ∈ B(0, r) ∩ K, where B(0, r) is the open ball
centered at the origin in Y with radius r. Then, there exists a positive number
β such that [0, βe) ⊂ B(0, r), where [0, βe) = {te | t ∈ [0, β)}. For t ∈ [0, β) and
x ∈ Q+

x0
(t), we have F (x) ≤α F (x0) + te, which implies that x ∈ Qx0(te). This

fact, together with te ∈ B(0, r), yields x ∈ V , and so Q+
x0
(t) ⊂ V . We conclude

that Q+
x0

is upper semicontinuous at t = 0.
Conversely, suppose that Q+

x0
is upper semicontinuous at t = 0. Let V be an

open set in X such that Qx0
(0) ⊂ V , then Q+

x0
(0) ⊂ V . It follows from the upper

semicontinuity of Q+
x0

that there exists a positive number β such that Q+
x0
(t) ⊂ V

for every t ∈ [0, β). For convenience in writing, we only prove the assertion for
case α = s because proofs of this assertion for other cases α = l and α = u are
similar. Let γ ∈ [0, β), there exists a positive number r such that B(0, r) ⊂ γe−K
and B(0, r) ⊂ −γe +K. Let k ∈ B(0, r) ∩K and x ∈ Qx0

(k), it follows from the
definition of Qx0

that
F (x) ≤u F (x0) + k, (4.3)

and
F (x) ≤l F (x0) + k. (4.4)
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It yields from (4.3) that F (x) ⊂ F (x0) + k−K ⊂ F (x0) + γe−K as k ∈ γe−K.
On other hand, by (4.4), we get F (x0) + k ⊂ F (x) + K, and hence F (x0) ⊂
F (x)− k +K. Since −k ∈ B(0, r) ⊂ −γe+K, we have F (x0) ⊂ F (x)− γe+K,
i.e., F (x0) + γe ⊂ F (x) +K. So, we now get F (x) ≤s F (x0) + γe. It implies that
x ∈ Q+

x0
(γ), and thus x ∈ V and Qx0

(k) ⊂ V . The proof is complete.

Theorem 4.4. If Sα-MinF is closed and (Pα) is pointwise B-well-posed at x0 ∈
Sα-MinF, then for every x0-minimizing sequence {xn} ⊂ M\Sα-MinF, one can ex-
tract a subsequence {xnk

} of {xn} such that {xnk
} converges to some x̄ ∈ Sα-MinF.

Proof. Assume that (Pα) is pointwise B -well-posed at x0 ∈ Sα-MinF. Then, Qx0

is upper semicontinuous at k = 0. By contradiction, suppose that there exists an
x0-minimizing sequence {xn} ⊂ M\Sα-MinF which admits no subsequence {xnk

}
converging to some x̄ ∈ Sα-MinF. By the closedness of Sα-MinF, we may find an
open set V ⊂ X such that Sα-MinF ⊂ V and xn ̸∈ V . We have Qx0(0) ⊂ V
due to Qx0(0) ⊂ Sα-MinF and Proposition 4.1(ii). Since {xn} is an x0-minimizing
sequence, there exists {kn} ⊂ K converging to 0 such that xn ∈ Qx0

(kn). It
follows from the upper semicontinuity of Qx0

at k = 0 that Qx0
(kn) ⊂ V . Hence,

xn ∈ V which is a contradiction. So, we get the desired result.

Remark 4.5. Our results extend the corresponding results of Long and Peng [24].
More precisely,

(i) When α = l or α = s, our results here are new. To the best of our knowl-
edge, there is no paper devoted to this type of well-posedness for set optimization
problem involving the set less relation ≤s.

(ii) When α = u, the corresponding set optimization problem (Pu) was studied
in [24].

5 Pointwise L-well-posedness and relationship with
pointwise B-well-posedness

Motivated by the studies in [22,25], we introduce the concept of pointwise L-well-
posedness for the problem (Pα).

Definition 5.1. Problem (Pα) is said to be L-well-posed at x0 ∈ Sα-MinF if and
only if every x0-minimizing sequence of (Pα) has a subsequence converging to some
element x̄ ∈ Sα-MinF.

Remark 5.1. When α = l, Definition 5.1 reduces to Definition 2.1 in [22].

We are going to study sufficient and necessary conditions of pointwise L-well-
posedness for (Pα).

Theorem 5.2. Let x0 ∈ Sα-MinF be given.



B-well-posedness for set optimization problems involving set order relations 313

(i) If (Pα) is L-well-posed at x0 and Qx0(0) = Sα -MinF , then Qx0 is upper
semicontinuous and compact-valued at 0.

(ii) If Qx0
is upper semicontinuous and compact-valued at 0, then (Pα) is L-

well-posed at x0.

Proof. (i) Assume that (Pα) is L-well-posed at x0. First of all, we show that Qx0

is upper semicontinuous at 0. By contradiction, suppose that Qx0
is not upper

semicontinuous at 0. Then, there exist a neighborhood U of Qx0
(0) and {kn} ⊂ K

converging to 0 such that for each n ∈ N, there exists xn ∈ Qx0
(0) \ U , i.e.,

xn ̸∈ U (5.1)

and
F (xn) ≤α F (x0) + kn. (5.2)

It follows from (5.2) that {xn} is an x0-minimizing sequence of (Pα). Because
(Pα) is L-well-posed at x0, there exists a subsequence of {xn}, denoted by {xnk

},
converging to some element x̄ ∈ Sα-MinF, and thus we get x̄ ∈ Qx0

(0). Therefore,
x̄ ∈ U which contradicts (5.1). So, Qx0

is upper semicontinuous at 0.
Next, we prove that Qx0

(0) is compact. Indeed, for every sequence {xn} ⊂
Qx0

(0), we have F (xn) ≤α F (x0) + kn where {kn} ⊂ K converges to 0. This
means that {xn} is an x0-minimizing sequence of (Pα). By the L-well-posedness
of (Pα) at x0, there exists a subsequence {xnk

} of {xn} such that {xnk
} converges

to an element x̄ ∈ Sα -MinF . Therefore, x̄ ∈ Qx0
(0). This leads to the compactness

of Qx0
(0).

(ii) Let {xn} ⊂ M be an x0-minimizing sequence of (Pα), there exists {kn} ⊂
K converging to 0 such that F (xn) ≤α F (x0) + kn. Hence, xn ∈ Qx0

(kn). Since
Qx0

is upper semicontinuous and compact-valued at 0, there exists a subsequence
of {xn}, denoted by {xnk

}, converging to some x̄ ∈ Qx0
(0). Combining this with

Proposition 4.1(ii), we get x̄ ∈ Sα -MinF . So, (Pα) is L-well-posed at x0.

The next results illustrate relationships between the pointwise L-well-posedness
and pointwise B-well-posedness for the problem (Pα).

Theorem 5.3. Let x0 ∈ Sα-MinF be given.

(i) If (Pα) is L-well-posed at x0 and Qx0(0) = Sα-MinF, then it is B-well-posed
at x0.

(ii) If (Pα) is B-well-posed at x0 and Sα-MinF is compact, then it is L-well-posed
at x0.

Proof. (i) By contradiction, suppose that (Pα) is not B-well-posed at x0. We get
that Qx0

is not upper semicontinuous at k = 0. Hence, there exist a neighborhood
V of Qx0

(0) and {kn} ⊂ K converging to 0 such that for each n ∈ N, there exists
xn ∈ Qx0

(kn) \ V . By definition of Qx0
, we have F (xn) ≤α F (x0) + kn, i.e., {xn}

is an x0-minimizing sequence of (Pα). It follows from the L-well-posedness at x0
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of (Pα) that there exists a subsequence {xnk
} of {xn} such that {xnk

} converges
to an element x̄ ∈ Sα-MinF. Therefore, x̄ ∈ Qx0

(0), and hence we now get

x̄ ∈ Qx0
(0) ⊂ V. (5.3)

On the other hand, since xn ̸∈ V , xn ∈ X \ V . By the closedness of X \ V , we
have x̄ ∈ X \ V which contradicts (5.3). So, (Pα) is B-well-posed at x0.

(ii) Suppose that (Pα) is B-well-posed at x0. Let {xn} be an x0-minimizing
sequence of (Pα), we consider two cases as follows:

Case 1 : {xn} has infinite elements which belong to Sα-MinF.
Since Sα-MinF is compact, there exists a subsequence {xnk

} of {xn} such that
{xnk

} converges to some x̄ ∈ Sα-MinF. Hence, (Pα) is L-well-posed at x0.
Case 2 : {xn} has infinite elements which do not belong to Sα-MinF. Without

lost of generality, we can assume that {xn} ⊂ M\Sα-MinF. By Theorem 4.4, {xn}
has a subsequence {xnk

} converging to some x̄ ∈ Sα-MinF. Therefore, (Pα) is
L-well-posed at x0.
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Abstract. We introduce robust weak sharp and robust sharp solution to a
convex programming with the objective and constraint functions involved un-
certainty. The characterizations of the sets of all the robust weak sharp solu-
tions are obtained by means of subdiferentials of convex functions, DC fuctions,
Fermat rule and the robust-type subdifferential constraint qualification, which
was introduced in X.K. Sun, Z.Y. Peng and X. Le Guo, Some characteriza-
tions of robust optimal solutions for uncertain convex optimization problems,
Optim Lett. 10. (2016), 1463-1478. In addition, some applications to the
multi-objective case are presented.

1. Introduction. The notion of a weak sharp minimizer in general mathematical
programming problems was first introduced in [1]. It is an extension of a sharp
minimizer (or equivalently, strongly unique minimizer) in [2] to include the possi-
bility of non-unique solution set. It has been acknowledged that the weak sharp
minimizer plays important roles in stability/sensitivity analysis and convergence
analysis of a wide range of numerical algorithms in mathematical programming
(see [3, 4, 5, 6, 7, 8] and references therein).

In the context of optimization, much attention has been paid to concerning suffi-
cient and/or necessary conditions for weak sharp minimizers/solutions and charac-
terizing weak sharp solution sets (of such weak sharp minimizers) in various types
of problems. Particularly, the study of characterizations of the weak sharp so-
lution sets covers both single-objective and multi-objective optimization problems
(see,[9, 10, 11, 12] and references therein) and, recently, is extended to mathematical
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programs with inequality constraints and semi-infinite programs (see, e.g., [13, 14]).
As it might be seen, the study of characterizations of the weak sharp solution sets
has been popular in many optimization problems. How about the issue of this study,
particularly,in a robust optimization?

Robust (convex) optimization has been known as an important class of convex
optimization deals with uncertainty in the data of the problems [15, 16]. The goal
of robust optimization is to immunize an optimization problem against uncertain
parameters in the problem. In the last two decades, it has been through a rapid
development owing to the practical requirement and its effective implementation
in real-world applications of optimization.(see, e.g., [17, 18, 19, 20, 21] and the
references therein). A successful treatment of the robust optimization approaches
to convex optimization problems under data uncertainty was given in ([15, 16, 22,
23, 24]).

While the characterizations of optimal solution sets have been in the limelight
presently, there has been no research concerning the characterizations robust weak
sharp solution sets for such problems. Indeed, a robust weak sharp solution of an
uncertain optimization problem is the weak sharp minimizer of the robust counter-
part of such problem. Our main goal in this paper is to establish characterizations
of the robust weak sharp solution set of the convex optimization problem under the
data uncertainty.

This paper is organized as follows. In section 2, we recall the basic definitions.
In Section 3, we establish necessary conditions for a robust weak sharp solution,
constancy of Lagrangian-type function on the robust weak sharp solution set, and
some characterizations of robust weak sharp solution sets are established respec-
tively. Some properties of subdiferentials of convex functions and the (RSCQ),
which was introduced in [24], are employed in the section. Finally, in section 4, we
consider the characterizations of the robust weak sharp weakly efficient solutions
for the multi-objective optimization problem under data uncertainty.

2. Preliminary. Throughout the paper, let Rn, n ∈ N, be the n-dimensional Eu-
clidean space, and the inner product and the norm of Rn are denoted respectively by
⟨·, ·⟩ and ∥ · ∥. The symbol B(x, r) stands for the open ball centered at x ∈ Rn with
the radius r > 0 while the BRn stands for the closed unit ball in Rn. For a nonempty
subset A ⊆ Rn, we denote the notations of the closure, boundary and convex hull of
A by clA, bdA, and coA, respectively. In particular, when λx ∈ E ⊆ Rn for every
λ ≥ 0 and every x ∈ E, the set E in Rn is said to be a cone. A dual cone E∗ of the
cone E is given as E∗ := {x ∈ Rn : ⟨x, y⟩ ≥ 0 for all y ∈ E}. Observe that the dual
cone E∗ is always closed and convex (regardless of E).

In general, for a given nonempty set A ⊆ Rn, the indicator function δA : Rn →
R∪{+∞} of A and the support function σA : Rn → R∪{+∞} of A are, respectively,
defined by

δA(x) =

{
0, if x ∈ A;

+∞, otherwise,
and

σA(x
∗) := sup

x∈A
⟨x∗, x⟩.

The distance function dA : Rn → R+ : [0,+∞) is defined by
dA(x) := inf

y∈A
∥x− y∥.
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A normal cone of the set A at the point x is the following set:

NA(x) =

{
{y ∈ Rn : ⟨y, a− x⟩ ≤ 0 for all a ∈ A} , if x ∈ A;

∅, otherwise.

The normal cone NA(x) is always closed and convex for any set A.
For any extended real-valued function h : Rn → R := [−∞,+∞] the following

notations stand, respectively, for its effective domain and epigraph:
domh := {x ∈ Rn : h(x) < +∞},

and
epih := {(x, r) ∈ Rn × R : h(x) ≤ r}.

The function h is said to be a proper function if and only if h(x) > −∞ for every
x ∈ Rn and domh is nonempty. Further, it is said to be a convex function if for any
x, y ∈ Rn and λ ∈ [0, 1],

h(λx+ (1− λ)y) ≤ λh(x) + (1− λ)h(y),

or equivalently, epih is convex. On the other hand, the function h is said to be a
concave function if and only if −h is a convex function. In the case of vector valued
function, let h̃ : Rn → Rp be a given function and D ⊆ Rp is a convex set. The
function h̃ is said to be D-convex if and only if for any x, y ∈ Rn and λ ∈ [0, 1],

h̃(λx+ (1− λ)y)− λh̃(x)− (1− λ)h̃(y) ∈ −D.

Simultaneously, the function h is called a lower semicontinuous at x ∈ Rn if for
every sequence {xk} ⊆ Rn converging to x,

h(x) ≤ lim inf
k→∞

h(xk).

Equivalently,
h(x) ≤ lim inf

y→x
h(y),

where the term on the right-hand side of the inequality denotes the lower limit of
the function h defined as

lim inf
y→x

h(y) = lim
r↓0

inf
y∈B(x,r)

h(y).

For any proper and convex function h : Rn → R, the subdifferential of h at x̂ ∈
domh, is defined by

∂h(x̂) := {ξ ∈ Rn : ⟨ξ, x− x̂⟩ ≤ h(x)− h(x̂),∀x ∈ Rn}.
More specifically, for each ε ≥ 0, the ε-subdifferential of h at x̂ ∈ domh, is defined
by

∂εh(x̂) := {ξ ∈ Rn : ⟨ξ, x− x̂⟩ ≤ h(x)− h(x̂) + ε,∀x ∈ Rn}.
It is obvious that for ε ≥ ε′, we have ∂ε′h(x̂) ⊆ ∂εh(x̂). In particular, if h is a proper
lower semicontinuous convex function, then for every x̂ ∈ domh, the ε-subdifferential
∂εh(x̂) is a nonempty closed convex set and

∂h(x̂) =
⋂
ε>0

∂εh(x̂).

If x /∈ domh, then we set ∂h(x) = ∅. Simultaneously, for the nonempty subset A of
Rn we get ∂δA(x) = NA(x) and ∂dA(x) = BRn ∩NA(x).
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The conjugate function h∗ : Rn → R of any h : Rn → R is defined by
h∗(x∗) := sup

x∈Rn

{⟨x∗, x⟩ − h(x)}

for all x ∈ Rn. The function h∗ is lower semicontinuous convex irrespective of the
nature of h but for h∗ to be proper, we need h to be a proper convex function.

Next, let us recall some basic concepts dealing a DC problem/programming.
A DC function is the difference of two convex functions. The minimization (or
maximization) problem of a DC function is called a DC problem, i.e., the DC
proplem concerned about finding

inf
x∈Rn

h(x) := f(x)− ϕ(x)

where f, ϕ : Rn → R are convex. Note that the function h is DC and it is not
expected to be convex.

It shall be found later that some DC problems are considered and their properties,
in particular the following lemma, are employed.

Lemma 2.1. [25] Let h1, h2 : Rn → R be two proper lower semicontinuous convex
functions. Then

(i) A point x̂ ∈ domh1 ∩ domh2 is a (global) minimizer of the DC problem :
inf

x∈Rn
{h1(x)− h2(x)}

if and only if for any ε ≥ 0, ∂εh2(x̂) ⊆ ∂εh1(x̂).
(ii) If x̂ ∈ domh1 ∩ domh2 is a local minimizer of the DC problem :

inf
x∈Rn

{h1(x)− h2(x)}

then ∂h2(x̂) ⊆ ∂h1(x̂).

Lemma 2.2. [19] Let U ⊆ Rp be a convex compact set, and f : Rn × Rp → R
be a function such that, f(·, u) is a convex function for any u ∈ U , and f(x, ·) is a
concave function for any x ∈ Rn. Then,

∂

(
max
u∈U

f(·, u)
)
(x̂) =

⋃
u∈U(x̂)

∂f(·, u)(x̂),

where
U(x̂) :=

{
û ∈ U : f(x̂, û) = max

u∈U
f(x̂, u)

}
.

Let C ⊆ Rn be a nonempty closed convex set. Let D ⊆ Rp be a nonempty closed
convex cone. Consider the following convex optimization problem:

min f(x) s.t. x ∈ C, g(x) ∈ −D (P)
where f : Rn → R is a convex function and g : Rn → Rm is a D-convex function.
The feasible set of (P) is defined by

K0 := {x ∈ C : g(x) ∈ −D}.
The problem (P) in the face of data uncertainty both in the objective and constraints
can be captured by the following uncertain optimization problem :

min {f(x, u) : x ∈ C, g(x, v) ∈ −D} . (UP)
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where U ⊆ Rp and V ⊆ Rq are convex and compact uncertainty sets, f : Rn×U → R
is a given real-valued function such that, for any uncertain parameter u ∈ U , f(·, u)
is convex as well as f(x, ·) is concave for any x ∈ Rn, g : Rn ×V → Rm is a vector-
valued function such that, for any uncertain parameter v ∈ V, g(·, v) is D-convex as
well as g(x, ·) is D-concave for any x ∈ Rn. The uncertain sets can be apprehended
in the sense that the parameter vectors u and v are not known exactly at the time
of the decision.

For examining the uncertain optimization problem (UP), one usually associates
with its robust (worst-case) counterpart, which is the following problem:

min

{
max
u∈U

f(x, u) : x ∈ C, g(x, v) ∈ −D, ∀v ∈ V
}
. (RUP)

It is worth observing here that the robust counterpart, which is termed as the robust
optimization problem, finds a worst-case possible solution that can be immunized
opposed the data uncertainty.

The problem (RUP) is said to be feasible if the robust feasible set K is nonempty
where it is denoted by

K := {x ∈ C : g(x, v) ∈ −D, ∀v ∈ V}. (1)
Now, we recall the following concept of solutions, which was introduced in [26].

Definition 2.3. [26] A point x̂ ∈ K is said to be a robust optimal solution for (UP)
if it is an optimal solution for (RUP), i.e., for all x ∈ K,

max
u∈U

f(x, u)−max
u∈U

f(x̂, u) ≥ 0.

The robust optimal solution set of (UP) is the set which consists of all robust optimal
solutions of (UP) and is given by

S :=

{
x ∈ K : max

u∈U
f(x, u) ≤ max

u∈U
f(y, u), ∀y ∈ K

}
.

In this paper, using the idea of weak sharp minimizer, and the robust optimal
solution,we introduce a new concept of solutions for (UP), which related to the
sharpness, namely the robust weak sharp solution.

Definition 2.4. A point x̂ ∈ K is said to be a (or an optimal) weak sharp solution
for (RUP) if there exist a real number η > 0 such that for all x ∈ K,

max
u∈U

f(x, u)−max
u∈U

f(x̂, u) ≥ ηdK̃(x)

where K̃ :=

{
x ∈ K : max

u∈U
f(x, u) = max

u∈U
f(x̂, u)

}
.

Definition 2.5. A point x̂ ∈ K is said to be a (or an optimal) robust weak sharp
solution for (UP) if it is a weak sharp solution for (RUP). The robust weak sharp
solution set of (UP) is given by

S̃ :=

{
x̂ ∈ K : ∃η > 0 s.t. max

u∈U
f(y, u)−max

u∈U
f(x̂, u) ≥ ηdK̃(y), ∀y ∈ K

}
.

Throughout the paper, we assume that S̃ is nonempty.

Remark 1. It is worthwhile to be noted that every robust weak sharp solution for
(UP) is a robust optimal solution. In general, the reverse implication need not to
be valid.
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3. Characterizations of robust weak sharp solutions. In this section, we
establish some optimality conditions for the robust weak sharp solution in convex
uncertain optimization problems as well as obtain characterizations of the robust
weak sharp solution sets for the considered problems. For any x̂ ∈ Rn, we use the
following notations:

U(x̂) :=
{
û ∈ U : f(x̂, û) = max

u∈U
f(x̂, u)

}
,

and
V(x̂) :=

{
v̂ ∈ V : g(x̂, v̂) = max

v∈V
g(x̂, v)

}
.

The following definition, which was introduced in [24], plays a vital role in deter-
mining characterizations of robust optimal weak sharp solution sets.

Definition 3.1. [24] The robust type subdifferential constraint qualification (RSCQ)
is said to be satisfied at x̂ ∈ K if

∂δK(x̂) ⊆ ∂δC(x̂) +
⋃

µ∈D∗,v∈V
(µg)(x̂,v)=0

∂(µg)(·, v)(x̂).

Remark 2. In an excellent work, [24], Sun et. al. introduced the (RSCQ) and
then obtained some characterizations of the the robust optimal solution set, for an
uncertain convex optimization problem.

Although it has been used as a guideline for dealing with the (UP), our attention
is paid to characterizing the sets containing the robust weak sharp solutions of such
problem. Furthermore, the presence of the term dK̃(x) in this paper has led us to
deal with some different tools and methods from those in work of Sun et.al.

The following theorem presents that the robust type subdifferential constraint
qualification (RSCQ) defined in Definition 3.1 is fulfilled if and only if optimality
conditions for a robust weak sharp solution of (UP) are satisfied.

Theorem 3.2. Let f : Rn × Rp → R and g : Rn × Rq → Rm satisfy the following
properties :

(i) for any u ∈ U and v ∈ V, f(·, u) is convex and continuous as well as g(·, v) is
D-convex on Rn;

(ii) for any x ∈ Rn, f(x, ·) is concave on U and g(x, ·) is D-concave on V.
Then, the following statements are equivalent:

(a) The (RSCQ) is fulfilled at x̂ ∈ K;
(b) x̂ ∈ Rn is a robust weak sharp solution of (UP) if and only if there exists a

positive constant η such that

NK̃(x̂) ∩ ηBRn

⊆
⋃

u∈U(x̂)

∂f(·, u)(x̂) + ∂δC(x̂) +
⋃

µ∈D∗,v∈V
(µg)(x̂,v)=0

∂ ((µg)(·, v)) (x̂). (2)

Proof. (a) ⇒ (b) Assume that the (RSCQ) is satisfied at x̂ ∈ K. Let x̂ be a robust
weak sharp solution of (UP). Consequently, there exists η > 0 such that

max
u∈U

f(x, u)−max
u∈U

f(x̂, u) ≥ ηdK̃(x). (3)



CHARACTERIZING ROBUST WEAK SHARP SOLUTION SETS 7

By (3), we obtain that for all x ∈ K,

max
u∈U

f(x, u) + δK(x)− ηdK̃(x) ≥ max
u∈U

f(x̂, u)

= max
u∈U

f(x̂, u) + δK(x̂)− ηdK̃(x̂),

thereby implying that, for all ξd ∈ ∂ηdK̃(x),(
max
u∈(U

f(·, u) + δK

)
(x)−

(
max
u∈U

f(·, u) + δK

)
(x̂)

≥ ηdK̃(x)− ηdK̃(x̂)

≥⟨ξd, x− x̂⟩.

Thus, ξd ∈ ∂ (maxu∈U f(·, u) + δK) (x̂). Hence,

∂(ηdK̃)(x̂) ⊆ ∂

(
max
u∈U

f(·, u) + δK

)
(x̂).

As max
u∈U

f(·, u) is continuous on Rnand δK is proper lower semicontinuous convex
on Rn, we have

∂(ηdK̃)(x̂) ⊆ ∂(max
u∈U

f(·, u))(x̂) + ∂δK(x̂).

It can be noted that ∂dK̃(x) = NK̃(x) ∩ BRn . Since (RSCQ) is satisfied at x̂, we
have the following:

NK̃(x) ∩ BRn = ∂(ηdK̃)(x̂)

⊆
⋃

u∈U(x̂)

∂f(·, u)(x̂) + ∂δC(x̂) +
⋃

µ∈D∗,v∈V
(µg)(x̂,v)=0

∂ (µg)(·, v)) (x̂),

which implies that (2) holds.
Conversely, assume that there is a positive number η such that (2) holds. Since

NK̃(x̂)∩ηBRn always contains 0, it is a nonempty set and so is
⋂
ε>0

∂ε(ηdK̃)(x̂). Thus,

for any ε ≥ 0, ∂ε(ηdK̃)(x̂) ̸= ∅. Let ε > 0 be arbitrary and let ξ ∈ ∂ε(ηdK̃)(x̂). Then
for any x ∈ K,

ηdK̃(x)− ηdK̃(x̂) ≥ ⟨ξ, x− x̂⟩ − ε. (4)
Note that 0 ∈ ∂ε(ηdK̃(x̂). It follows that

ηdK̃(x̂) ≤ inf
x∈Rn

ηdK̃(x) + ε ≤ inf
x∈K

ηdK̃(x) + ε.

Above inequality and (4) imply that
0 ≥ ⟨ξ, x− x̂⟩ − ε. (5)

Simultaneously, there exist û ∈ U(x̂), µ̂ ∈ D∗, v̂ ∈ V(x̂)
ξf ∈ ∂f(·, û)(x̂), ξδ ∈ ∂δC(x̂), and ξµ̂g ∈ ∂ ((µ̂g)(·, v̂)) (x̂) such that

ξf + ξδ + ξµ̂g = 0, (6)
and for any x ∈ Rn, we have

f(x, û)− f(x̂, û) ≥ ⟨ξf , x− x̂⟩,
δC(x)− δC(x̂) ≥ ⟨ξδ, x− x̂⟩, and

(µ̂g)(x, v̂)− (µ̂g)(x̂, v̂) ≥ ⟨ξµ̂g, x− x̂⟩.
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Adding these above inequalities implies that for each x ∈ K

f(x, û)− f(x̂, û) + (µ̂g)(x, v̂)− (µ̂g)(x̂, v̂) ≥ ⟨0, x− x̂⟩ = 0.

Since û belongs to U(x̂), for each x ∈ K, above inequality becomes

max
u∈U

f(x, u)−max
u∈U

f(x̂, u) + (µ̂g)(x, v̂)− (µ̂g)(x̂, v̂) ≥ 0.

This along with (µ̂g)(x, v̂) ≤ 0, (µ̂g)(x̂, v̂) = 0, and (6) imply

max
u∈U

f(x, u)−max
u∈U

f(x̂, u) ≥ 0, (7)

for all x ∈ K. Observe that, combining inequalities (5) and (7) leads to

max
u∈U

f(x, u)−max
u∈U

f(x̂, u) ≥ ⟨ξ, x− x̂⟩ − ε, ∀x ∈ K.

This means ξ ∈ ∂ε(max
u∈U

f(·, u))(x̂), and so ∂ε(ηdK̃)(x̂) ⊆ ∂ε(max
u∈U

f(·, u))(x̂). Since
the inclusion holds for arbitrary ε ≥ 0, it follows from the Lemma 2.1 that x̂ is
a minimizer of the DC problem: inf

x∈Rn
{max
u∈U

f(x, u) − ηdK̃(x)} and hence for any
x ∈ K

max
u∈U

f(x, u)−max
u∈U

f(x̂, u)−
(
ηdK̃(x)− ηdK̃(x̂)

)
≥ 0.

Therefore, for any x ∈ K,

max
u∈U

f(x, u)−max
u∈U

f(x̂, u) ≥ ηdK̃(x).

This means x̂ is a robust weak sharp solution of (UP).

(b) ⇒ (a) Let ξδ ∈ ∂δK(x̂) be given. Then, we have

0 = δK(x)− δK(x̂) ≥ ⟨ξδ, x− x̂⟩

holds for all x ∈ K. Let η̄ > 0 be given, and then, set f(x, u) := −⟨ξδ, x⟩+ η̄dK̃(x).
Thus, for any x ∈ K,

max
u∈U

f(x, u)− η̄dK̃(x) = −⟨ξδ, x⟩

≥ −⟨ξδ, x̂⟩+ η̄dK̃(x̂)

= max
u∈U

f(x̂, u).

Thus, x̂ is a robust weak sharp solution of (UP). By hypothesis, there is η := η̄
such that (2) is fulfilled. Since for any u ∈ U , ∂f(·, u)(x̂) ⊆ {−ξδ}+ ∂(ηdK̃)(x̂), we
obtain that for any x∗ ∈ NK̃(x̂) ∩ ηBRn , there exist û ∈ U(x̂), v̂ ∈ V and µ̂ ∈ D∗

such that

x∗ ∈ {−ξδ}+ ∂(ηdK̃)(x̂) + ∂δC(x̂) + ∂ ((µ̂g)(·, v̂)) (x̂) and (µ̂g)(x̂, v̂) = 0.

As 0 ∈ NK̃(x̂) ∩ ηBRn , we obtain

ξδ ∈ ∂δC(x̂) + ∂ ((µ̂g)(·, v̂)) (x̂) and (µ̂g)(x̂, v̂) = 0.

It follows that
ξδ ∈ ∂δC(x̂) +

⋃
µ∈D∗,v∈V
(µg)(x̂,v)=0

∂ ((µg)(·, v)) (x̂),

and so we get the desired inclusion. Therefore, the proof is complete.
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Remark 3. In [27], the necessary conditions for weak sharp minima in cone con-
strained optimization problems, which can be captured by weak sharp minima in
cone constrained robust optimization problems, were established by means of up-
per Studniarski or Dini directional derivatives. With the result in Theorem 3.2, the
mentioned necessary conditions are established by an alternative method different
from the referred work.

The following result is established easily by means of the basic concepts of vari-
ational analysis.

Corollary 1. Let f : Rn × Rp → R and g : Rn × Rq → Rp satisfying the following
properties:

1. for any u ∈ U , and v ∈ V, f(·, u) is convex and continuous as well as g(·, v) is
D-convex on Rn;

2. for any x ∈ Rn, f(x, ·) is concave on U and g(x, ·) is D-concave on V, respec-
tively.

The following two below statements are equivalent:
(a) The (RSCQ) is fulfilled at x̂ ∈ K;
(b) x̂ ∈ Rn is a robust weak sharp solution of (UP) if and only if there exists a real

number η > 0 such that for any x∗ ∈ NK̃(x̂)∩ηBRn , there exist û ∈ U(x̂), v̂ ∈ V
and µ̂ ∈ D∗ yield

x∗ ∈ ∂f(·, û) + ∂δC(x̂) + ∂ ((µ̂g)(·, v̂)) (x̂), and (µ̂g)(x̂, v̂) = 0. (8)

The result, which deals with a special case that U and V are singleton sets, can
be obtained easily and be presented as follows:

Corollary 2. Let f : Rn → R is convex and continuous and g : Rn → Rm is
D-convex. The following statements are equivalent:

1. The (SCQ) is fulfilled at x̂ ∈ K
2. x̂ ∈ Rn is a weak sharp solution of (P) if and only there exists a real number

η > 0 such that for any x∗ ∈ NK̃(x̂) ∩ ηBRn , there exist µ̂ ∈ D∗ such that
x∗ ∈ ∂f(x̂) + ∂δC(x̂) + ∂(µ̂g)(x̂) and (µ̂g)(x̂) = 0. (9)

Next, a characterization of robust weak sharp solution sets in terms of a given
robust weak sharp solution point of our considered problem is also illustrated in this
section. In order to present the mentioned characterization, we first prove that the
Lagrangian-type function associated with fixed Lagrange multiplier and uncertainty
parameters corresponding to a robust weak sharp solution is constant on the robust
weak sharp solution solution set under suitable conditions. In what follows, let
u ∈ U , v ∈ V and µ ∈ D∗. The Lagrangian-type function L(·, µ, u, v) is given by

L(x, µ, u, v) = f(x, u) + (µg)(x, v), ∀x ∈ Rn.

Now, we denote by

S̃ :=

{
x ∈ K : ∃η > 0 s.t. max

u∈U
f(y, u) ≥ max

u∈U
f(x, u) + ηdK̃(y),∀y ∈ K

}
.

the robust weak sharp solution set of (UP), and then we prove that the Lagrangian-
type function associated with a Lagrange multiplier corresponding to a robust weak
sharp solution is constant on the robust weak sharp solution set.
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Theorem 3.3. Let x̂ ∈ S̃ be given. Suppose that the (RSCQ) is satisfied at x̂.
Then, there exist uncertainty parameters û ∈ U , v̂ ∈ V, and Lagrange multiplier
µ̂ ∈ D∗, such that for any x ∈ S̃,

(µ̂g)(x, v̂) = 0, û ∈ U(x), and L(x, µ̂, û, v̂) is a constant on S̃.

Proof. Since x̂ ∈ S̃ with the real number η1 > 0 and the (RSCQ) is satisfied at this
point x̂, by Theorem 3.2 we have that (2) holds for η := η1. Clearly NK̃(x̂) ∩ ηBRn

contains 0, then it is nonempty and so is any ∂ε(ηdK̃)(x̂) where ε > 0. Let ε > 0
and x∗ ∈ ∂ε(ηdK̃)(x̂) be arbitrary. Again, we obtain that there exist û ∈ U , v̂ ∈ V
and µ̂ ∈ D∗ such that (2) is fulfilled. Let x ∈ S̃ be arbitrary, then we have

f(x, û)− f(x̂, û) + (µ̂g)(x, v̂)− (µ̂g)(x̂, v̂) ≥ ⟨x∗, x− x̂⟩,

and so
f(x, û)− f(x̂, û) + (µ̂g)(x, v̂)− (µ̂g)(x̂, v̂) ≥ ⟨x∗, x− x̂⟩ − ε. (10)

Since f(·, u) and g(·, v) are convex, for all u ∈ U and v ∈ V respectively,

x∗ ∈ ∂ε(f(·, u) + λg(·, v))(x̂).

Therefore, we obtain ∂ε(ηdK̃)(x̂) ⊆ ∂ε (f(·, u) + λg(·, v)) (x̂), and so

f(x, û) + (µ̂g)(x, v̂)− ηdK̃(x) ≥ f(x̂, û) = max
u∈U

f(x̂, u). (11)

Note that, as x ∈ S̃, there exists η2 > 0 such that

max
u∈U

f(y, u) ≥ max
u∈U

f(x, u) + η2dK̃(y), ∀y ∈ S̃,

and so
max
u∈U

f(x̂, u) ≥ max
u∈U

f(x, u) + η2dK̃(x̂) = max
u∈U

f(x, u). (12)

From µ̂ ∈ D∗, g(x, v̂) ∈ −D, and (11), it is not hard to see that

(µ̂g)(x, v̂) = 0. (13)

Then, by (11) and the positivity of ηdK̃(x), we see that

max
u∈U

f(x, u) ≥ f(x, û) ≥ max
u∈U

f(x̂, u) + ηdK̃(x) ≥ max
u∈U

f(x̂, u), (14)

which together with (12) leads to

max
u∈U

f(x, u) = f(x, û). (15)

It follows that L(x, µ̂, û, v̂) = f(x̂, û), which is constant. Since x ∈ S̃ was arbitrary,
we finish the proof.

Theorem 3.4. For the problem (UP), let S̃ be the robust weak sharp solutions set
of (UP) and x̂ belongs to it. Suppose that the (RSCQ) is satisfied at x̂ ∈ S̃. Then,
there exist uncertain parameters û ∈ U , v̂ ∈ V and Lagrange multiplier µ̂ ∈ D∗ such
that

S̃ =
{
x ∈ K : ∃η > 0,∃ξf ∈ ∂εf(·, û)(x̂) ∩ ∂εf(·, û)(x),∃ε > ηdK̃(x),

⟨ξf , x̂− x⟩ = ηdK̃(x), (µg)(x, v̂) = 0,max
u∈U

f(x, u) = f(x, û)
}
. (16)
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Proof. (⊆) Let x ∈ S̃ be given. Then there exists η > 0 such that (2) holds. Hence,
there exist ξf ∈ ∂f(·, û)(x), ξδ ∈ ∂δC(x̂) and ξµ̂g ∈ ∂ ((µ̂g)(·, v̂)) (x̂) such that

0 = ξf + ξδ + ξµ̂g since 0 ∈ NK̃(x̂) ∩ ηBRn , (17)
and

(µ̂g)(x̂, v̂) = 0. (18)
Since ξδ ∈ ∂δC(x̂) and ξµ̂g ∈ ∂((µ̂g)(·, v̂))(x̂),

δC(x)− δC(x̂) + (µ̂g)(x, v̂)− (µ̂g)(x̂, v̂) ≥ ⟨ξδ + ξµ̂g, x− x̂⟩. (19)
By the same fashion in the proof of Theorem 3.2, we have

(µ̂g)(x, v̂) = (µ̂g)(x̂, v̂) = 0,

and
max
u∈U

f(x, u) = f(x, û).

Therefore, it follows from (19) that
0 ≥ ⟨ξδ + ξµ̂g, x− x̂⟩,

and so by (17), we obtain
ηdK̃(x) ≥ ⟨ξf , x̂− x⟩.

Simultaneously, since ξf ∈ ∂f(·, û)(x̂), we have
⟨ξf , x̂− x⟩ ≥ f(x̂, û)− f(x, û).

By (15) in the proof of Theorem 3.2, we obtain
⟨ξf , x̂− x⟩ ≥ max

u∈U
f(x̂, û)−max

u∈U
f(x, u) ≥ 0 = ηdK̃(x). (20)

Hence, we have that ⟨ξf , x̂−x⟩ = ηdK̃(x). Now, we prove that for ξf ∈ ∂εf(·, û)(x),
there is an ε > ηdK̃(x) ≥ 0. In fact, we can show that for any y ∈ Rn,

⟨ξf , y − x⟩ = ⟨ξf , y − x̂⟩+ ⟨ξf , x̂− x⟩ ≤ ⟨ξf , y − x̂⟩
as ⟨ξf , x̂− x⟩ ≤ 0. Since ξf ∈ ∂f(·, û)(x̂) and f(x, û) = f(x̂, û) by (14) and (12),

⟨ξf , y − x⟩ ≤ f(y, û)− f(x̂, û) = f(y, û)− f(x, û),

which means ξf ∈ ∂f(·, û)(x).
(⊇) Let

x ∈
{
x ∈ K : ∃η > 0,∃ξf ∈ ∂εf(·, û)(x̂) ∩ ∂εf(·, û)(x),∃ε > ηdK̃(x),

⟨ξf , x− x̂⟩ = ηdK̃(x), (µg)(x, v̂) = 0,max
u∈U

f(x, u) = f(x, û)
}
.

Since x̂ ∈ S̃, it is clear that ηdK̃(x̂) = 0. By assumption and ξf ∈ ∂εf(·, û)(x) for
some ε > 0, we get

−ηdK̃(x̂) = 0

= ⟨ξf , x̂− x⟩ − ηdK̃(x)

≤ f(x̂, û)− f(x, û) + ε− ηdK̃(x)

= f(x̂, û)− f(x, û)− ηdK̃(x) + ηdK̃(x)

= f(x̂, û)− f(x, û). (21)
Therefore, we obtain

max
u∈U

f(x, u) ≤ max
u∈U

f(x, u) + ηdK̃(x̂).
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Since x̂ ∈ S̃ and x ∈ K, the conclusion that x ∈ S̃ is satisfied.

In the case that D := R+, which is a closed convex (and pointed) cone in R,
the problem is reduced to be an inequality constrain problem. Suppose that f :
Rn × U → R is a function such that f(·, u) is convex for any u ∈ U and f(x, ·) is
concave for any x ∈ Rn as well as g : Rn × V → R is a function such that g(·, v) is
convex for any v ∈ V and g(x, ·) is concave for any x ∈ Rn. Here, the problem (UP)
is represented as

min {f(x, u) : g(x, v) ≤ 0, ∀v ∈ V} ,
and its robust counter part is

min

{
max
u∈U

f(x, u) : g(x, v) ≤ 0, ∀v ∈ V
}
.

In this case, we can see that robust feasible set K is denoted by

K := {x ∈ Rn : g(x, v) ≤ 0,∀v ∈ V} .

Corollary 3. Let f : Rn × Rp → R and g : Rn × Rq → R satisfying the following
properties:

1. for any u ∈ U , and v ∈ V, f(·, u) is convex and continuous as well as g(·, v) is
convex on Rn;

2. for any x ∈ Rn, f(x, ·) and g(x, ·) are concave on U and V, respectively.
The following statements are equivalent:

(a) The (RSCQ) is fulfilled at x̂ ∈ K;
(b) x̂ ∈ Rn is a robust weak sharp solution of (UP) if and only if there exists a real

number η > 0 such that for any x∗ ∈ NK̃(x̂)∩ηBRn , there exist û ∈ U(x̂), v̂ ∈ V
and µ̂ ≥ 0 yield

x∗ ∈ ∂f(·, û)(x̂) + ∂δC(x̂) + ∂(µ̂g)(·, v̂)(x̂), and (µ̂g)(x̂, v̂) = 0.

Corollary 4. Let x̂ ∈ S̃ be given. Suppose that the (RSCQ) is satisfied at x̂. Then,
there exist uncertain parameters û ∈ U , v̂ ∈ V, and Lagrange multiplier µ̂ ≥ 0 such
that for any x ∈ S̃,

(µ̂g)(x, v̂) = 0, û ∈ U(x), and L(x, µ̂, û, v̂) is constant on S̃.

Corollary 5. For the problem (UP), let S̃ be the robust weak sharp solutions set
of (UP) and x̂ belongs to it. Suppose that the (RSCQ) is satisfied at x̂ ∈ S̃. Then,
there exist uncertain parameters û ∈ U , v̂ ∈ V and Lagrange multiplier µ̂ ≥ 0 such
that

S̃ =
{
x ∈ K : ∃η > 0,∃a ∈ ∂εf(·, û)(x̂) ∩ ∂εf(·, û)(x),∃ε > ηdK̃(x),

⟨a, x̂− x⟩ = ηdK̃(x), (µg)(x, v̂) = 0,max
u∈U

f(x, u) = f(x, û)
}
. (22)

4. Applications to multi-objective optimization. In this section, in order to
apply our general results of the previous section, we investigate the class multi-
objective optimization problem

min
x∈Rn

{(f1(x), f2(x), . . . , fl(x)) : x ∈ C, g(x) ∈ −D} , (MP)
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where where C ⊆ Rn is a nonempty convex set,D ⊆ Rm, fi : Rn → R is a convex
function for any i ∈ I and g : Rn → Rm is a D-convex function. The feasible set of
(MP) is defined by

K0 := {x ∈ C : g(x) ∈ −D} .
The problem (MP) in the face of data uncertainty both in the objective and

constraint can be captured by the following multi-objective optimization problem
min
x∈Rn

{(f1(x, u1), f2(x, u2), . . . , fl(x, ul)) : x ∈ C, g(x, v) ∈ −D} , (UMP)

where fi : Rn × Rp → R, i = 1, . . . l, and g : Rn × Rq → Rm. ui, i = 1, . . . , l, and v
are uncertain parameters, and they belong to the corresponding convex and compact
uncertainty sets U ⊆ Rp, and V ⊆ Rq. Suppose that for any ui ∈ Ui, i ∈ I, the
function fi(·, ui) is convex on Rn and for any x ∈ Rn, fi(x, ·) is concave on Ui, i ∈ I.
Besides, suppose that for any v ∈ V, the function g(·, v) is D-convex on Rn and for
any x ∈ Rn, g(x, ·) is D-concave on V.

Similarly, we obtain some characterizations of the robust weak sharp weakly
efficient solutions of (UMP) by using investigation of its robust (worst case) coun-
terpart:

min
x∈Rn

{(
max
u1∈U1

f1(x, u1), . . . , max
ul∈Ul

fl(x, ul)

)
: x ∈ C, g(x, v) ∈ −D

}
(RUMP)

where the robust feasible set of (UMP) is also defined by
K := {x ∈ C : g(x, v) ∈ −D, } .

Now, we recall the following concepts of robust weak sharp weakly efficient so-
lutions in multi-objective optimization, which can be found in the literature; see
e.g.,[21] and [12].

Definition 4.1. [21] A point x̂ ∈ K is said to be a weakly robust efficient solution
of for (UMP) if it is a weakly efficient solution solution for (RUMP) i.e., there does
not exist x ∈ K such that

max
ui∈Ui

fi(x, ui) < max
ui∈Ui

fi(x̂, ui), for all i ∈ I.

Definition 4.2. [12] A point feasible element x̂ is said to be a weak sharp efficient
solution for (MP) if there exists a real number η > 0 such that for any x ∈ K

max
1≤k≤l

{fk(x)− fk(x̂)} ≥ ηdK̂(x)}

where K̂ := {x ∈ K : f(x) = f(x̂)}.

Now, we introduce a new concept of solution, which related to the sharpness,
namely the robust weak sharp weakly efficient solutions.

Definition 4.3. A point x̂ ∈ K is said to be a weak sharp weakly efficient solution
for (RUMP) if and only if there exist a real number η > 0 such that there does not
exist y ∈ K \ {x̂} satisfying

max
ui∈Ui

fi(y, ui)− max
ui∈Ui

fi(x̂, ui) < ηdK̃(y), for all i ∈ I,

or equivalently, for all x ∈ K

max
i∈I

{
max
ui∈Ui

fi(x, ui)− max
ui∈Ui

fi(x̂, ui)

}
≥ ηdK̃(x)
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where K̃ :=

{
x ∈ K : max

u∈U
fi(x, u) = max

u∈U
fi(x̂, u), i ∈ I

}
.

Definition 4.4. A point x̂ ∈ K is said to be a robust weak sharp weakly efficient
solution for (UMP) if it is a weakly weak sharp weakly efficient solution for (RUMP).

The following lemma is useful for establishing our results in this section.

Lemma 4.5. [30] Let U1, . . . ,Ul be nonempty convex and compact sets of Rp and
for any ui ∈ Ui, i ∈ I, the function fi(·, ui) : Rn → R be convex as well as for any
x ∈ Rn, fi(x, ·) : Ui → R be concave where i ∈ I. Then, for any λi ≥ 0, i ∈ I,

∂

(
max

u∈
∏

i∈I Ui(x̂)

∑
i∈I

λifi(·, ui)

)
(x̂) =

⋃
u∈

∏
i∈I Ui(x̂)

∑
i∈I

λi (fi(·, ui)) (x̂),

where ∏
i∈I

Ui(x̂) :=

{
(û1, . . . , ûi) ∈

∏
i∈I

Ui

:
∑
i∈I

λifi(x̂, ûi) = max
u∈

∏
i∈I Ui

∑
i∈I

λifi(x̂, ui)

}
Now, by using the similar methods of Section 3, we can characterize the corre-

sponding robust weak sharp weakly efficient solutionss of (UMP).

Theorem 4.6. Let f : Rn×Rp → Rl and g : Rn×Rq → Rm satisfying the following
properties:

1. for any ui ∈ Ui, i ∈ I and vj ∈ Vj , j ∈ J, fi(·, ui) is convex and continuous as
well as g(·, v) is D-convex on Rn;

2. for any x ∈ Rn, fi(x, ·) is concave on Ui, i ∈ I and g(x, ·) is D-concave on V.
Then, the following statements are equivalent:

(a) The (RSCQ) is fulfilled at x̂ ∈ K;
(b) x̂ ∈ Rn is a robust weak sharp weakly efficient solutions of (UMP) if and

only if there exists η > 0 such that for any x∗ ∈ NK̃(x̂) ∩ ηBRn , there exist
ûi ∈ Ui(x̂), σi ≥ 0, i ∈ I, not all zero, v̂ ∈ V, and µ̂ ≥ 0 such that

0 ∈ {−x∗}+
∑
i∈I

σ̂i (∂fi(·, ûi)(x̂)) + ∂δC(x̂) + ∂ ((µ̂g)(·, v̂)) (x̂) (23)

(µ̂jgj)(x̂, v̂j) = 0, (24)
and

σifi(x̂, ûi) = σi max
ui∈Ui

fi(x̂, ui), i ∈ I. (25)

Proof. (a)⇒(b) Assume that the (RSCQ) is satisfied at x̂ ∈ Rn. Let x̂ be a robust
weak sharp weakly efficient solutions of (UMP) i.e., there exists η > 0 such that
there does not exist y ∈ K \ {x̂} satisfying

max
ui∈Ui

fi(y, ui)− max
ui∈Ui

fi(x̂, ui) < ηdK̃(y), for all i ∈ I,

or equivalently, for any x ∈ K,

max
i∈I

{
max
ui∈Ui

fi(x, ui)− max
ui∈Ui

fi(x̂, ui)

}
≥ ηdK̃(x). (26)
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By (26), there is s ∈ I such that for all x ∈ K,

max
us∈Us

fs(x, us) + δK(x)− ηdK̃(x) ≥ max
us∈Us

f(x̂, us)

= max
us∈Us

fs(x̂, us) + δK(x̂)− ηdK̃(x̂). (27)

Besides, according to (27), we follow the techniques used in Theorem 3.2 and obtain
that for any ξ ∈ ∂ηdK̃(x),

⟨ξ, x− x̂⟩
≤ max

us∈Us

fs(x, us) + δK(x)− max
us∈Us

fs(x̂, us)− δK(x̂). (28)

Therefore,

∂(ηdK̃)(x̂) ⊆ ∂

(
max
us∈Us

fs(·, u) + δK

)
(x̂), (29)

Note that the right hand side term of above inclusion is in the subdifferential of the
max function:

ϕ(x) = max
i∈I

ϕi(x) := max
i∈I

(
max
ui∈Ui

fi(·, ui) + δK

)
(x).

Due to the well-known fact, subdifferential of maximum of functions at x is the
convex hull of the union of subdifferentials of the active functions at x, the inclusion
(29) becomes

∂(ηdK̃)(x̂) ⊆ co (∪{∂ϕi(x̂) : ϕi(x̂) = ϕ(x)}) ,

thereby
∂(ηdK̃)(x̂) ⊆

∑
i∈I(x̂)

σi∂ϕi(x̂),

where σi ≥ 0, i ∈ I(x̂) with
∑

i∈I(x̂)

σi = 1 and I(x̂) := {k ∈ I : ϕk(x̂) = ϕ(x̂)}.

Further, setting σ̂i = σ, i ∈ I(x̂), and otherwise equals to 0 leads to

∂(ηdK̃)(x̂) ⊆
∑
i∈I

σ̂i∂ϕi(x̂).

By the definition of ϕi, i ∈ I, the continuity of max
ui∈Ui

fi(·, ui), i ∈ I and the lower
semicontinuity and convexity of δK , we have

∂(ηdK̃)(x̂) ⊆
∑
i∈I

σ̂i∂

(
max
ui∈Ui

f(·, ui)

)
(x̂) +

∑
i∈I

σ̂i (∂δK(x̂)) .

It follows from Lemma 4.5 and the hypothesis such (RSCQ) is satisfied at x̂ ∈ K
that

∂(ηdK̃)(x̂) ⊆
⋃

u∈
∏l

i=1 Ui(x̂)

∑
i∈I

σ̂i∂fi(·, ui)(x̂) +
∑
i∈I

σ̂i (∂δC(x̂))

+
⋃

µ∈D∗,v∈V
(µg)(x̂,v)=0

∂ ((µg)(·, v)) (x̂).
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Because σ̂i ≥ 0, i = 1, 2 . . . , l, all nonzero, thereby

∂(ηdK̃)(x̂) ⊆
⋃

u=(ui)
l
i=1,

u∈
∏l

i=1 Ui(x̂)

∑
i∈I

σ̂i (∂fi(·, ui)(x̂)) + ∂δC(x̂)

+
⋃

µ∈D∗,v∈V
(µg)(x̂,v)=0

∂ ((µg)(·, v)) (x̂).

As ∂dK̃(x) = NK̃(x) ∩ BRn , we obtain (23) as desired.
Conversely, assume that there is η > 0 such that (23)-(25) hold. Then, for any

x∗ ∈ NK̃(x̂) ∩ ηBRn , there exist û := (û1, . . . ûl) ∈
∏

i∈I Ui(x̂), v̂ ∈ V and µ̂ ∈ D∗

such that

x∗ ∈
∑
i∈I

σ̂i (∂fi(·, ûi)(x̂)) + ∂δC(x̂) + ∂ ((µ̂g)(·, v̂)) (x̂), and

(µ̂g)(x̂, v̂) = 0. (30)

Since 0 ∈ NK̃(x̂) ∩ ηBRn =
⋂
ε>0

∂ε(ηdK̃)(x̂), for each positive ε, ∂ε(ηdK̃)(x̂) is

nonempty. Let ε > 0 and ξ ∈ ∂ε(ηdK̃)(x̂) be arbitrary, then for any x ∈ K

ηdK̃(x)− ηdK̃(x̂) ≥ ⟨ξ, x− x̂⟩ − ε. (31)

Therefore, we obtain

ηdK̃(x̂) ≤ inf
x∈Rn

ηdK̃(x) + ε ≤ inf
x∈K

ηdK̃(x) + ε.

Above inequality and (31) imply that

0 ≥ ⟨ξ, x− x̂⟩ − ε. (32)

Further, since 0 ∈ NK̃(x̂)∩ηBRn , we have that there exist ξf ∈
∑
i∈I

σ̂i (∂fi(·, ûi)(x̂)) , ξδ ∈

∂δC(x̂), and ξµ̂g ∈ ∂ ((µ̂g)(·, v̂)) (x̂) such that

ξf + ξδ + ξµ̂g = 0. (33)

As ξf ∈
∑
i∈I

σ̂i (∂fi(·, ûi)(x̂)) = ∂

(∑
i∈I

σ̂ifi(·, ûi)

)
(x̂), ξδ ∈ ∂δC(x̂) and ξµ̂g ∈

∂ ((µ̂g)(·, v̂)) (x̂), we have∑
i∈I

σ̂ifi(x, ûi)−
∑
i∈I

σ̂ifi(x̂, ûi) ≥ ⟨ξf , x− x̂⟩,

δC(x)− δC(x̂) ≥ ⟨ξδ, x− x̂⟩, and
(µ̂g)(x, v̂)− (µ̂g)(x̂, v̂) ≥ ⟨ξµ̂g, x− x̂⟩.

Then, adding these inequalities yields

⟨0, x− x̂⟩ ≤
∑
i∈I

σ̂ifi(x, ûi)−
∑
i∈I

σ̂ifi(x̂, ûi)

+ (µ̂g)(x, v̂)− (µ̂g)(x̂, v̂).



CHARACTERIZING ROBUST WEAK SHARP SOLUTION SETS 17

Since ûi belongs to Ui(x̂), above inequality becomes the following one:

0 ≤
∑
i∈I

σ̂i max
ui∈Ui

fi(x, ui)−
∑
i∈I

max
ui∈Ui

fi(x̂, ui))

+ (µ̂g)(x, v̂)− (µ̂g)(x̂, v̂).

This together with (µ̂g)(x, v̂) ≤ 0, (µ̂g)(x̂, v̂) = 0, and (33), for any x ∈ K,∑
i∈I

σ̂i max
ui∈Ui

fi(x, ui)−
∑
i∈I

σ̂i max
ui∈Ui

fi(x̂, ui) ≥ ⟨0. (34)

By summing (34) with (31), for any x ∈ K, we obtain∑
i∈I

σ̂i max
ui∈Ui

fi(x, ui)−
∑
i∈I

σ̂i max
ui∈Ui

f(x̂, ui) ≥ ⟨ξ, x− x̂⟩ − ε,

which means ξ ∈ ∂ε

(∑
i∈I

σ̂i max
ui∈Ui

fi(·, ui)

)
(x̂), and so ∂ε(ηdK̃)(x̂) ⊆

∂ε

(∑
i∈I

σ̂i max
ui∈Ui

fi(·, ui)

)
(x̂). As ε > 0 was arbitrary, for each x ∈ K,

0 ≤
∑
i∈I

σ̂i max
ui∈Ui

fi(x, ui)−
∑
i∈I

σ̂i max
ui∈Ui

fi(x̂, ui)

−
(
ηdK̃(x)− ηdK̃(x̂)

)
,

which is equivalent to the following inequality: for all x ∈ K∑
i∈I

σ̂i max
ui∈Ui

fi(x, ui)− ηdK̃(x) ≥
∑
i∈I

σ̂i max
ui∈Ui

fi(x̂, ui)− ηdK̃(x̂).

It follows that∑
i∈I

σ̂i

(
max
ui∈Ui

fi(x, ui)− ηdK̃(x)

)
≥
∑
i∈I

σ̂i

(
max
ui∈Ui

fi(x̂, ui)− ηdK̃(x̂)

)
,

for any x ∈ K, which yields for any i ∈ I,

max
ui∈Ui

fi(x, ui)− ηdK̃(x) ≥ max
ui∈Ui

fi(x̂, ui)− ηdK̃(x̂), ∀x ∈ K.

Therefore, for any x ∈ K

max
i∈I

{
max
ui∈Ui

fi(x, ui)− max
ui∈Ui

fi(x̂, ui)

}
≥ ηdK̃(x).

This means x̂ is a robust weak sharp weakly efficient solutions of (UMP).

(b) ⇒ (a) Let η̄ > 0 be given. Consider fi(x, ui) := −⟨ξδ, x⟩+ η̄dK̃(x), i ∈ I. Thus,
for any x ∈ K,

max
ui∈Ui

fi(x, ui)− η̄dK̃(x) = −⟨ξδ, x⟩

≥ −⟨ξδ, x̂⟩+ η̄dK̃(x̂)

= max
ui∈Ui

fi(x̂, ui).
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Thus, x̂ is a robust weak sharp weakly efficient solutions of (UMP). By hypothesis,
there is η := η̄ such that (23) is fulfilled. Since for any ui ∈ Ui, ∂fi(·, ui)(x̂) ⊆
{−ξδ}+ ∂(ηdK̃)(x̂), one has∑

i∈I

σ̂i (∂fi(·, ui)(x̂)) ⊆ {−ξδ}+ ∂(ηdK̃)(x̂),

where σ̂i ≥ 0, i ∈ I and all nonzero. Thus, we obtain that for any x∗ ∈ NK̃(x̂) ∩
ηBRn , there exist ûi ∈ Ui(x̂), v̂ ∈ V and µ̂ ∈ D∗ such that

x∗ ∈ {−ξδ}+ ∂(ηdK̃)(x̂) + ∂δC(x̂) + ∂ ((µ̂g)(·, v̂)) (x̂) and (µ̂g)(x̂, v̂) = 0.

As 0 ∈ NK̃(x̂) ∩ ηBRn , we obtain

ξδ ∈ ∂δC(x̂) + ∂ ((µ̂g)(·, v̂)) (x̂) and (µ̂g)(x̂, v̂) = 0.

It follows that
ξδ ∈ ∂δC(x̂) +

⋃
µ∈D∗,v∈V
(µg)(x̂,v)=0

∂ ((µg)(·, v)) (x̂),

and so we get the desired inclusion. Therefore, the proof is complete.

Remark 4. (i) In [28] and [29], the authors presented the necessary condition
for the local sharp efficiency for the semi-infinite vector optimization problem
by using the different method with Theorem 4.6. In fact, they employed the
exact sum rule for Fréchet subdifferentials to obtained their results.

(ii) In [31], the exact sum rule for Mordukhovich subdifferentials was used as a
vital tool under some regularity and differentiability assumptions for estab-
lishing their results. This means Theorem 4.6 use the different medthod from
the mentioned work.

Next, by using the similar methods of section 3, a characterization of robust weak
sharp weakly efficient solution sets in terms of a given robust weak sharp weakly
efficient solution point of the problem is also illustrated in this section. In order to
present the mentioned characterization, we start by deriving constant Lagrangian-
type property for robust weak sharp weakly efficient solution sets of (MP). In what
follows, let u = (u1, . . . , ul) ∈ U1×, . . .×Ul, σ = (σ1, . . . , σl) ∈ Rl

+, v ∈ V and µ ≥ 0.
The Lagrangian-type function L(·, σµ, u, v) is given by

L(x, σ, µ, u, v) =
∑
i∈I

σifi(x, ui) + (µg)(x, v), ∀x ∈ Rn.

Theorem 4.7. Let x ∈ S̃ be given. Suppose that the (RSCQ) is fulfilled at x̂.
Then, there exist a positive valued vector σ̂ := (σ̂1, . . . , σ̂l) ∈ Rl

+, σ̂i, i ∈ I all
nonzero, uncertain parameters û := (u1, . . . , ul) ∈ U = U1 × . . . × Ul, v̂ ∈ V, and
Lagrange multiplier µ̂ ≥ 0 such that for any x ∈ S̃,

(µ̂g)(x, v̂) = 0, û ∈ U(x), and L(x, σ̂, µ̂, û, v̂) is a constant on S̃.

Proof. Since x̂ ∈ S̃ with the real number η1 > 0 and the (RSCQ) is satisfied at this
point x̂, by Theorem 4.6, (23) holds for η := η1. Since NK̃(x̂) ∩ ηBRn is nonempty
we can let ε > 0 be arbitrary and x∗ ∈ ∂ε(ηdK̃)(x̂) be given. Besides, there exist
σ̂ ∈ Rl

+, all nonzero, û ∈ U , v̂ ∈ V and µ̂ ∈ D∗ such that (23) is fulfilled. Let x ∈ S̃
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be arbitrary. By the same fashion using in the proof of Theorem 3.2 we have

⟨x∗, x− x̂⟩ ≤
∑
i∈I

σ̂ifi(x, ûi)−
∑
i∈I

σ̂ifi(x̂, ûi)

+ (µ̂g)(x, v̂)− (µ̂g)(x̂, v̂),

and so
⟨x∗, x− x̂⟩ − ε ≤

∑
i∈I

σ̂ifi(x, ûi)−
∑
i∈I

σ̂ifi(x̂, ûi)

+ (µ̂g)(x, v̂)− (µ̂g)(x̂, v̂), (35)
As fi(·, ui), i ∈ I and g(·, v) are convex, for any ui ∈ Ui and v ∈ V, we have

x∗ ∈ ∂ε

(∑
i∈I

σ̂i(fi(·, ui) + λg(·, v))

)
(x̂). Hence, one has

∂ε(ηdK̃)(x̂) ⊆ ∂ε

(∑
i∈I

σ̂i (fi(·, ui) + λg(·, v))

)
(x̂),

thereby ∑
i∈I

σ̂ifi(x, ûi) + (µ̂g)(x, v̂)− ηdK̃(x) ≥
∑
i∈I

σ̂ifi(x̂, ûi)

=
∑
i∈I

σ̂i max
ui∈Ui

fi(x̂, ui). (36)

Note that, as x ∈ S̃, then there exists η2 > 0 such that for all y ∈ K,

max
ui∈Ui

fi(y, ui) ≥ max
ui∈Ui

fi(x, ui) + η2dK̃(y),

which implies∑
i∈I

σ̂i max
ui∈Ui

fi(y, ui) ≥
∑
i∈I

σ̂i

(
max
ui∈Ui

fi(x, ui) + η2dK̃(y)

)
=
∑
i∈I

σ̂i max
ui∈Ui

fi(x, ui) + η2dK̃(y)

=
∑
i∈I

σ̂i max
ui∈Ui

fi(x, ui),

for all y ∈ S̃. Since x̂ ∈ S̃,∑
i∈I

σ̂i max
ui∈Ui

fi(x̂, ui) ≥
∑
i∈I

σ̂i max
ui∈Ui

fi(x, ui). (37)

From µ̂ ≥ 0, g(x, v̂) ≤ 0, and (36), it is not hard to see that
(µ̂g)(x, v̂) = 0. (38)

Moreover, by (36) and the positivity of ηdK̃(x), we see that∑
i∈I

σ̂i max
ui∈Ui

fi(x, ui) ≥
∑
i∈I

σ̂ifi(x, ûi)

≥
∑
i∈I

σ̂i max
ui∈Ui

fi(x̂, ui) + ηdK̃(x)

≥
∑
i∈I

σ̂i max
ui∈Ui

fi(x̂, ui). (39)
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This together with (38) leads to∑
i∈I

σ̂i max
ui∈Ui

fi(x, ui) =
∑
i∈I

σ̂ifi(x, ûi). (40)

Thus, L(·, σ̂, µ̂, û, v̂) is constant on S̃ as follows:

L(x, σ̂, µ̂, û, v̂) =
∑
i∈I

σ̂ifi(x, ui) + (µ̂g)(x, v̂)

=
∑
i∈I

σ̂i max
ui∈Ui

fi(x, ui) + (µ̂g)(x, v̂)

=
∑
i∈I

σ̂i max
ui∈Ui

fi(x̂, ui) + (µ̂g)(x, v̂)

=
∑
i∈I

σ̂i max
ui∈Ui

fi(x̂, ui).

This completes the proof.

Theorem 4.8. For the problem (UMP), let S̃ be the robust weak sharp weakly
efficient solution set of (UMP) and x̂ ∈ S̃. Suppose that the (RSCQ) is fulfilled
at x̂ ∈ S̃. Then, there exist σ̂i ≥ 0, i ∈ I, all non zero, û := (û1, . . . , ûl) ∈ U =
U1 × . . . ,×Ul, v̂ ∈ V and µ̂ ≥ 0 such that

S̃ =

x ∈ K : ∃η > 0,∃a ∈
⋂

y∈{x,x̂}

∂ε

(∑
i∈I

σ̂ifi(·, ûi)

)
(ŷ),

∃ε > ηdK̃(x), ⟨a, x̂− x⟩ = ηdK̃(x), (µg)(x, v̂) = 0,

max
ui∈Ui

fi(x, ui) = fi(x, ûi), i ∈ I

}
.

Proof. (⊆) Let x ∈ S̃ be given. Then there exists η > 0 such that (23) holds. Thus,
there exist û ∈ U , v̂ ∈ V and µ̂ ≥ 0 such that (23) is fulfilled. Hence, we have that
there exist ξf ∈

∑
i∈I

σ̂i (∂fi(·, ûi)(x)) , ξδ ∈ ∂δC(x̂) and ξµ̂g ∈ ∂ ((µ̂g)(·, v̂)) (x̂) such

that
0 = ξf + ξδ + ξµ̂g, since 0 ∈ NK̃(x̂) ∩ ηBRn , (41)

and
(µ̂g)(x̂, v̂) = 0. (42)

Since ξδ ∈ ∂δC(x̂) and ξµ̂g ∈ ∂((µ̂g)(·, v̂))(x̂),
δC(x)− δC(x̂) + (µ̂g)(x, v̂)− (µ̂g)(x̂, v̂) ≥ ⟨ξδ + ξµ̂g, x− x̂⟩. (43)

By the same fashion in the proof of Theorem 4.6, we have
(µ̂g)(x, v̂) = (µ̂g)(x̂, v̂) = 0,

and ∑
i∈I

σ̂i max
ui∈Ui

fi(x, ui) =
∑
i∈I

σ̂ifi(x, ûi).

Therefore, it follows from (43) that
ηdK̃(x) = 0 ≥ ⟨b+ c, x− x̂⟩,

and so by (41), we obtain
ηdK̃(x) ≥ ⟨ξf , x̂− x⟩.
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Simultaneously, since ξf ∈
∑
i∈I

σ̂i (∂fi(·, ûi)(x̂)) = ∂

(∑
i∈I

σ̂ifi(·, ûi)

)
(x̂), we have

⟨ξf , x̂− x⟩ ≥
∑
i∈I

σ̂ifi(x̂, ûi)−
∑
i∈I

σ̂ifi(x, ûi).

By (34) in the proof of Theorem 4.6, we obtain

⟨ξf , x̂− x⟩ ≥
∑
i∈I

σ̂i max
ui∈Ui

fi(x̂, ûi)−
∑
i∈I

σ̂i max
ui∈Ui

fi(x, ui) =≥ 0 = ηdK̃(x). (44)

Hence, we have that ⟨ξf , x̂ − x⟩ = ηdK̃(x). Next, we shall prove that there is
ε > ηdK̃(x) ≥ 0 such that

ξf ∈ ∂ε

(∑
i∈I

σ̂ifi(·, ûi)

)
(x).

In fact, we can show that ξf ∈ ∂

(∑
i∈I

σ̂ifi(·, ûi)

)
(x). For any y ∈ Rn,

⟨ξf , y − x⟩ = ⟨ξf , y − x̂⟩+ ⟨ξf , x̂− x⟩ ≤ ⟨ξf , y − x̂⟩

as ⟨ξf , x̂− x⟩ ≤ 0. Since a ∈ ∂

(∑
i∈I

σ̂ifi(·, ûi)

)
(x̂) and fi(x, ûi) = fi(x̂, ûi), i ∈ I,

⟨ξf , y − x⟩ ≤
∑
i∈I

σ̂ifi(y, ûi)−
∑
i∈I

σ̂ifi(x̂, ûi)

=
∑
i∈I

σ̂ifi(y, ûi)−
∑
i∈I

σ̂ifi(x, ûi),

which means ξf ∈ ∂

(∑
i∈I

σ̂ifi(·, ûi)

)
(x).

(⊇) Let

x ∈
{
x ∈ K : ∃η > 0,∃ξf ∈

⋂
y∈{x,x̂}

∂ε

(∑
i∈I

σ̂ifi(·, ûi)

)
(x̂), ∃ε > ηdK̃(x),

⟨ξf , x− x̂⟩ = ηdK̃(x), (µg)(x, v̂) = 0, max
ui∈Ui

fi(x, ui) = fi(x, ûi)
}
.

Since x̂ ∈ S̃, ηdK̃(x̂) = 0 and so the assumption dealing with ξf lead to

−ηdK̃(x̂) = 0

= ⟨ξf , x̂− x⟩ − ηdK̃(x)

≤
∑
i∈I

σ̂ifi(x̂, ûi)−
∑
i∈I

σ̂ifi(x, ûi)− ηdK̃(x) + ε

=
∑
i∈I

σ̂ifi(x̂, ûi)−
∑
i∈I

σ̂ifi(x, ûi)− ηdK̃(x) + ηdK̃(x)

=
∑
i∈I

σ̂ifi(x̂, ûi)−
∑
i∈I

σ̂ifi(x, ûi), (45)
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for any σ̂i ≥ 0, i ∈ I, all nonzero. Therefore, we obtain∑
i∈I

σ̂i max
ui∈Ui

fi(x, ui) ≤
∑
i∈I

σ̂i max
ui∈Ui

fi(x̂, ui) + ηdK̃(x̂)

=
∑
i∈I

σ̂i max
ui∈Ui

fi(x̂, ui).

Since x̂ ∈ S̃ and x ∈ K, the conclusion that x ∈ S̃ is satisfied.

Conclusion. In this paper, we examined convex optimization problems with un-
certain constraints and have defined a robust weak sharp solution by studying weak
sharp solution of robust convex optimization problems where the uncertain con-
straints are enforced for all possible uncertainties within prescribed uncertainty
sets. By employing tools of convex analysis and the valuable of constraint qualifi-
cations, we have established the necessary and sufficient conditions of robust weak
sharp solutions, and characterizations of robust weak sharp solution set. As an
application, we provided the characterization of the robust weak sharp weakly effi-
cient solution sets for multi-objective convex optimization problems with uncertain
constraints.
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ment Scholarship of Thailand and Naresuan university.
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Necessary and sufficient KKT optimality conditions in non-convex
multi-objective optimization problems with cone constraints

Nithirat Sisarat1 and Rabian Wangkeeree2

Abstract: This paper deals with a class of differentiable multi-objective optimization problems (MOP)
over cone constraints without the convexity of the feasible set, and the cone-convexity of objectives and
constraint functions. We present constraint qualifications for these (MOP) problems and establish the
relationships between them. We also present necessary and sufficient the Karush-Kuhn-Tucker (KKT)
optimality conditions for weak Pareto minimum as well as Pareto minimum. Our main results improve some
recent ones in the literature. Illustrative examples are also provided to guarantee the advantages of each of
our results.

Keywords: Non-convex multi-objective optimization, Cone-convex functions, Level set, Karush-Kuhn-
Tucker optimality conditions
Mathematics Subject Classification: 90C26, 90C29, 90C46

1 Introduction
Multi-objective (vector-valued) optimization is a subject of mathematical programming that extensively

studied and applied in various decision-making contexts like economics, human decision making, control
engineering, transportation and many others. We refer the reader to [18, 19, 24]. For comprehensive
treatment of theoretical issues concerning multi-objective optimization can be found in [2, 9, 13, 17]. In the
multi-objective setting, the scalar concept of optimality does not apply directly due to the fact that all the
objectives can not be simultaneously optimized with a single solution. To this effect, we must decide which
objective to improve, and so compromise solutions must be considered. In this way, we refer to a weak
Pareto minimum (resp. Pareto minimum [15]) which usually uses coordinate-wise ordering (induced by the
positive orthant as ordering cone) to examine the objective vectors. However, in real-world multi-objective
problems concerning especially fractional programming even computational aspects of Pareto optimum, not
only the coordinate-wise ordering appears but also the cone defining the lexicographic partial order is of
practical interest [7]. This being a reason, study of multi-objective optimization problems involving general
ordering cones has gained attention. Precisely stated, in this paper we will be mainly concerned with the
multi-objective optimization problem with cone constraint (MOP) given as

K − Minimize f(x) (MOP)
subject to x ∈ Rn, −g(x) ∈ Q,

where f := (f1, . . . , fp)T : Rn → Rp and g := (g1, . . . , gm)T : Rn → Rm, are differentiable functions, K and
Q are closed convex cones with non-empty interiors in Rp and Rm, respectively. Let

X := {x ∈ Rn : −g(x) ∈ Q} (1.1)

be the set of all feasible solutions of (MOP). The notation “K − Minimize ”refers to the weak Pareto
minimum (resp. Pareto minimum) with respect to the ordering cone K for the problem (MOP), namely a
point x∗ ∈ X such that for every x ∈ X , f(x∗)− f(x) /∈ intK (resp. f(x∗)− f(x) /∈ K\{0}).

Recall that a feasible point x∗ ∈ X is said to be a KKT point if there exist multipliers λ ∈ K∗\{0} and
µ ∈ Q∗ such that the following Karush-Kuhn-Tucker (KKT) optimality conditions hold:

(i) λT∇f(x∗) + µT∇g(x∗) = 0;
(ii) µT g(x∗) = 0,

1This research was supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D.
Program (Grant No. PHD/0026/2555) and the second author was partially supported by the Thailand
Research Fund, Grant No. RSA6080077.

2Corresponding author.
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where K∗, K∗ := {z ∈ Rp : xT z ≥ 0 for all x ∈ K}, denotes the dual (positive polar) cone of K. In this
paper, the above feasible point x∗ is also called a non-trivial KKT point if the corresponding µ is a non-zero
vector.

As far as we know, the search for weak Pareto minimum (resp. Pareto minimum) to (MOP) has been
carried out through the study of the KKT optimality conditions provided that some constraint qualifications
hold, and of the convexity of the functions f and g. In the current work, with the introduction of scalar
convex optimization without convexity of constraint functions by Lasserre [12], studies have been done on
establishing KKT optimality conditions for weak Pareto minimum (resp. Pareto minimum) of some classes
of multi-objective convex optimization problems. In particular, the authors have shown in [21] that even if
the convex feasible set is not necessarily described by cone-convex constraint, the Slater-type cone constraint
qualification3 renders the KKT optimality conditions both necessary and sufficient.

The classes of scalar convex optimization problems without convexity of constraint functions have been
studied in the literature [6, 12, 14] where apart from [12] in other references inequality constraints are not
assumed to be differentiable. A more recent exhaustive treatment of constraint qualifications can be found
in [5, 23]. Recently, Ho [8] went further in the case of scalar differentiable problems but moreover without
the convexity of the feasible set and of the functions that are involved, and showed that necessary and
sufficient KKT optimality conditions are then considered in relation to the presence of convexity of the
level sets of objective function. It is therefore of interest to investigate KKT optimality conditions for weak
Pareto minimum and Pareto minimum of (MOP) without the convexity of the feasible set X and of the
vector-valued functions f, g. The main purpose of this paper is to make an effort in this direction. Since we
now focus our investigations to (MOP) in which the feasible set X is not necessarily convex, we are going
to consider the feasible point x∗ under the question in which satisfies the following property [8]:

∀x ∈ X , ∃tn → 0+ such that x∗ + tn(x − x∗) ∈ X , (1.2)
which can be seen as generalized convexity of the feasible set X . Admittedly, some non-convex sets that
satisfy the condition (1.2) will illustrate in Example 3.11 in Section 3. It is important to note that Slater’s
condition together with a mild non-degeneracy conditions on the constraints has been shown to guarantee
that the KKT conditions are necessary and sufficient for optimality of the scalar problems ([6, 8, 12, 14]).
Now, for the problem (MOP), we will assume only non-degeneracy at the point x∗ under consideration
(see Assumption 1 in the next section). In what follows the connections among non-degeneracy condition,
Slater-type cone constraint qualification, and Slater’s condition4 for cone-constraint are also investigated
ones. Further, illustrative examples are also provided to demonstrate that our results generalize and improve
the corresponding known results obtained in [21] for the problem (MOP) in some appropriate situations.

The rest of the paper is organized as follows. In Sect. 2 we recall some basic definitions and points out
important results that will be used later in the paper. Section 3 presents relationships among constraint
qualifications of multi-objective optimization problem (MOP) over cone constraint (1.1) and establishes
necessary and sufficient KKT optimality conditions for a feasible point under the question to be a weak
Pareto minimum of (MOP). We finally give sufficient conditions for guaranteeing a weak Pareto minimum
to be a Pareto minimum of the problem (MOP).

2 Preliminaries
In this section, we briefly overview some notations, basic definitions, and preliminary results which will
be used throughout the paper. All spaces under consideration are n-dimensional Euclidean space Rn. All
vectors are considered to be column vectors which can be transposed to a row vector by the superscript T .
A nonempty subset K of Rp is said to be a cone if tK ⊆ K for all t ≥ 0. For a set A in Rn, we say A is
convex whenever tx1 + (1− t)x2 ∈ A for all t ∈ [0, 1], x1, x2 ∈ A. By intA (resp. coA) we will denote the
interior (resp. convex hull) of the set A. The normal cone to a closed convex set A at x ∈ A, denoted by

N(A,x) := {u ∈ Rn : uT (y − x) ≤ 0, ∀y ∈ A}.

A set A ⊆ Rn is called strictly convex at x ∈ A if uT (y−x) < 0 for every y ∈ A\{x} and u ∈ N(A,x)\{0}.
It is worth noting that the strict convexity of A at some point x does not guarantee the convexity of A.
For instance, the set A := {(x1, x2)T ∈ R2 : x2 > 0} ∪ {(0, 0)T } is strictly convex at (0, 0)T while A is not
convex.

3The feasible set X as in (1.1) is said to satisfy Slater-type cone constraint qualification [9] at x ∈ X if
there exists x̂ ∈ Rn such that g(x) +∇g(x)(x̂ − x) ∈ −intQ.

4The feasible set X as in (1.1) is said to satisfy Slater’s condition if there exists x̂ ∈ Rn such that
−g(x̂) ∈ intQ.
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For a closed convex cone K ⊆ Rp, a vector valued function f := (f1, . . . , fp)T : Rn → Rp is said to be
K-convex (K-pseudoconvex [1, 22]) at a point x∗ ∈ Rn if for every x ∈ Rn

f(x)− f(x∗)−∇f(x∗)(x − x∗) ∈ K

(resp. −∇f(x∗)(x − x∗) /∈ intK ⇒ f(x∗)− f(x) ∈ intK), where ∇f(x∗) := (∇f1(x∗), . . . ,∇fp(x∗))T is the
p× n Jacobian matrix of f at x∗ and for each k = 1, 2, . . . , p, ∇fk(x∗) =

(
∂fk(x∗)

∂x1
,
∂fk(x∗)

∂x2
, . . . ,

∂fk(x∗)
∂xn

)T

is the n× 1 gradient vector of fk at x∗. If f is K-convex (K-pseudoconvex) at every point x∗ ∈ Rn then f
is said to be K-convex (resp. K-pseudoconvex) on Rn.

Now, let us recall the following results which will be useful in the sequel.

Lemma 2.1. [9, Lemma 3.21, p. 77] Let K be a convex cone in Rp.
(i) If K is closed, then

K = {x ∈ Rp : xT z ≥ 0 for all z ∈ K∗}.
(ii) If intK ̸= ∅, then

intK = {x ∈ Rp : xT z > 0 for all z ∈ K∗\{0}}.

Lemma 2.2. [20, Lemma 1] Consider the problem (MOP). If x∗ ∈ X is a weak Pareto minimum of (MOP),
then there exist λ ∈ K∗ and µ ∈ Q∗ not both zero such that(

λT∇f(x∗) + µT∇g(x∗)
)
(x − x∗) ≥ 0, ∀x ∈ Rn

and
µT g(x∗) = 0.

Now, we recall the following important result which can be found in [11] and will play a key role in
deriving a feasible point to be a weak Pareto minimum as well as a Pareto minimum of (MOP).

Proposition 2.3. [11, Proposition 2.2.] Let f : Rn → R be differentiable at x∗ with ∇f(x∗) ̸= 0. Then:
(i) N(L<

f (x∗),x∗) = {d ∈ Rn : d = r∇f(x∗), for some r ≥ 0} provided that

L<
f (x∗) := {x ∈ Rn : f(x) < f(x∗)}

is convex.
(ii) N(Lf (x∗),x∗) = {d ∈ Rn : d = r∇f(x∗), for some r ≥ 0} provided that

Lf (x∗) := {x ∈ Rn : f(x) ≤ f(x∗)}

is convex.

We conclude this section by the following useful lemma, which will be crucial in the sequel.

Lemma 2.4. Let X be as in (1.1). Assume that the condition (1.2) is satisfied at a feasible point x∗ ∈ X .
Then for every µ ∈ Q∗\{0} for which µT g(x∗) = 0, one has

µT∇g(x∗)(v − x∗) ≤ 0 for all v ∈ X .

Proof. Suppose on contrary that there exists v ∈ X such that (µT∇g(x∗))(v − x∗) > 0. Then, by the first
order approximation together with the condition (1.2), we can find some tn small enough such that

µT g(x∗ + tn(v − x∗)) = µT g(x∗) + tnµ
T∇g(x∗)(v − x∗) + o(tn) > 0, (2.1)

where o(t)
t

→ 0 as t→ 0+, and x∗ + tn(v − x∗) ∈ X . The latter means that −g(x∗ + tn(v − x∗)) ∈ Q and
consequently, µT g(x∗ + tn(v − x∗)) ≤ 0, which contradicts (2.1).

3 Main results
In this section, we present the constraint qualifications that are used to derive the KKT conditions for (MOP)
and their connections. Afterward, we will establish necessary and sufficient KKT optimality conditions for
a weak Pareto minimum of (MOP). In addition, we also establish sufficient conditions for guaranteeing a
weak Pareto minimum to be a Pareto minimum of the problem (MOP).

At first, we recall one of constraint qualifications the so-called non-degeneracy condition at some feasible
point x∗ ∈ X in the vector setting, which introduced in [21].

Assumption 1: (Non-degeneracy condition [21]) Consider (MOP), for every µ ∈ Q∗\{0},
µT∇g(x∗) ̸= 0 whenever µT g(x∗) = 0.

3



Remark 3.1 (Sufficient condition for non-degeneracy condition to be valid). Note that if the Slater-type
cone constraint qualification at x∗ holds, then the non-degeneracy condition is satisfied at x∗. Indeed, if there
exists x̂ ∈ Rn such that g(x∗)+∇g(x∗)(x̂−x∗) ∈ −intQ, then for every µ ∈ Q∗\{0} for which µT g(x∗) = 0,
one has µT∇g(x∗)(x̂ − x∗) = µT g(x∗) + µT∇g(x∗)(x̂ − x∗) < 0 which implies that µT∇g(x∗) ̸= 0.

Remark 3.2. The Slater’s condition can also be guaranteed by the Slater-type cone constraint qualification
at some point x∗ as well. To see this, it follows from the Slater-type cone constraint qualification that
∇g(x∗)(x̂ − x∗) ∈ −intQ− g(x∗) for some x̂ ∈ Rn. This together with the fact that

g(x∗ + t(x̂ − x∗))− g(x∗)

t
= ∇g(x∗)(x̂ − x∗) + o(t),

where o(t)
t

→ 0 as t→ 0+, for some t0 > 0 sufficiently small, it holds

g(x∗ + t0(x̂ − x∗)) ∈ (1− t0)g(x∗)− t0intQ ⊆ −intQ.

Hence, the Slater’s condition has been justified.

Now, we present some sufficient conditions for the Slater-type cone constraint qualification to be valid.

Theorem 3.3. Let X be as in (1.1). Assume that the Slater’s condition holds and the condition (1.2) is
satisfied at a feasible point x∗ ∈ X . If the non-degeneracy condition holds at x∗, then the Slater-type cone
constraint qualification also holds at x∗.

Proof. Suppose that the non-degeneracy condition holds at x∗. Assume on contrary that for every x ∈ Rn,
one has g(x∗) +∇g(x∗)(x − x∗) /∈ −intQ, equivalently,

−[g(x∗) +∇g(x∗)(Rn − x∗)] ∩ intQ = ∅.

So, by the Eidelheit separation theorem, there exists µ ∈ Rm\{0} such that

µT g(x∗) + µT∇g(x∗)(x − x∗) + µT y ≥ 0, ∀x ∈ Rn, ∀y ∈ Q. (3.1)

By taking x = x∗ and y = 0 in (3.1), we would have µT g(x∗) = 0. Hence, with regard to (3.1) with x = x∗,
we get µ ∈ Q. Therefore, in view of (3.1), we find a vector µ ∈ Q∗\{0} with µT g(x∗) = 0 such that

µ̂T∇g(x∗)(x − x∗) ≥ 0, ∀x ∈ Rn. (3.2)

On the other hand, by assumption, there exists x̂ ∈ Rn such that −g(x̂) ∈ intQ. Then, since g is continuous
at x̂, there exists r > 0 such that g(x̂ + ru) ∈ −Q for all u ∈ B := {x ∈ Rn : ∥x∥ ≤ 1}. Consequently,
x̂+ ru ∈ X for all u ∈ B. So, as x∗ ∈ X and x∗ satisfies the condition (1.2), we conclude from Lemma 2.4
that

µT∇g(x∗)(x̂ + ru − x∗) ≤ 0, ∀u ∈ B. (3.3)
In particular, put u = 0 ∈ B, one has µT∇g(x∗)(x̂ − x∗) ≤ 0. Thus, with regard to (3.2), µT∇g(x∗)(x̂ −
x∗) = 0, and hence we deduce from (3.3) that

µT∇g(x∗)u ≤ 0, ∀u ∈ B.

So, µT∇g(x∗) must ultimately be zero vector, which contradicts the validity of non-degeneracy condition
at x∗.

Remark 3.4. In the absence of the condition (1.2) at x∗, the validity of both Slater and the non-degeneracy
conditions at x∗ does not guarantee the validity of Slater-type cone constraint qualification at x∗, for
instance, let x := (x1, x2)T ∈ R2, Q := {x ∈ R2 : x1 ≥ 0, x2 ≥ 0} and g(x) := (x32 + x2 − x1, x1 − x2)T .
We see that g(−3,−2) = (−7,−1)T ∈ −intQ, that is, Slater’s condition holds. Also, one has ∇g(x) =(
−1 3x22 + 1
1 −1

)
and a short calculation shows that the non-degeneracy holds at x∗ := (0, 0)T ∈ X , while

the condition (1.2) together with the Slater-type cone constraint qualification is invalid at x∗. In fact, let
us consider x0 := (−2,−1)T ∈ X and arbitrary sequence {tn}n∈N ⊂ (0,+∞) such that tn → 0 as n→ +∞.
So, tn0 < 1 for some n0 ∈ N and x∗ + tn0 (x0 − x∗) = tn0x0 /∈ X . Otherwise, we have that

tn0 (1− tn0 )(1 + tn0 ) = (−tn0 )
3 + (−tn0 )− (−2tn0 ) ≤ 0,

whence, 1 ≤ tn0 . This contradicts to the fact that tn0 < 1. In addition, we can not find out x̂ := (x̂1, x̂2)T ∈
R2 such that (

−x̂1 + x̂2
x̂1 − x̂2

)
=

(
−1 1
1 −1

)(
x̂1
x̂2

)
= g(x∗) +∇g(x∗)(x̂ − x∗) ∈ −intQ.
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Remark 3.5. (i) It is worth noticing that there is a partial overlapping between Slater’s condition and
non-degeneracy condition at a given point x∗ in general. For example, it is easy to check that Slater’s
condition fails to hold for X := {x ∈ Rn : −g(x) ∈ Q}, where Q := {x ∈ R2 : x1 ≥ 0, x2 ≥ 0} and
g(x) := (−x1+x2, x1−x2)T for all x ∈ R2, while non-degeneracy condition holds at x∗ := (0, 0)T . In
contrast, redefining g(x) := (x31 −x2 +1,−x21 +x2 − 1)T for all x ∈ R2, we get −g(−1, 1) = (1, 1)T ∈
intQ and so, Slater’s condition holds. Now we see that non-degeneracy does not hold at x∗. Indeed,
taking µ0 := (1, 1)T ∈ Q∗\{0} entails that µT

0 g(x∗) = 0 and

µT
0 ∇g(x∗) =

(
1 1

)(0 −1
0 1

)
=

(
0
0

)
,

showing that non-degeneracy fails to hold at x∗.
(ii) In addition to the Q-convexity of g at a given point x∗, if Slater’s condition holds, then non-degeneracy

condition is satisfied at x∗. To see this, suppose now by contradiction that there exists µ0 ∈ Q∗\{0}
satisfying µT

0 g(x∗) = 0 and µT
0 ∇g(x∗) = 0. It then follows from Q-convexity of g at x∗ that

µT
0 g(x̂) − µT

0 g(x∗) = µT
0 g(x̂) − µT

0 g(x∗) − µT
0 ∇g(x∗)(x̂ − x∗) ≥ 0 for a Slater’s point x̂. This

contradicts to the fact that µT
0 g(x̂) < 0 = µT

0 g(x∗).

Remark 3.6. In the case of Q = Rm
+ := {(x1, x2, . . . , xm)T ∈ Rm : xi ≥ 0, ∀i = 1, . . . ,m}, non-

degeneracy conditions at x∗ can be view as the Mangasarian-Fromovitz constraint qualification5 at x∗ and
non-degeneracy conditions at x∗ in [12, 8] as well. Indeed,

∃v ∈ Rn such that ∇gi(x∗)T v < 0, ∀i ∈ I(x∗)

⇔0 /∈ co{∇gi(x∗) : i ∈ I(x∗)}

⇔∀µ := (µ1, µ2, . . . , µm)T ∈ Rm
+ \{0} with µigi(x∗) = 0, i = 1, 2, . . . ,m, one has

m∑
i=1

µi∇gi(x∗) ̸= 0,

and for each i ∈ {1, 2, . . . ,m}, by taking µ := ei, where ei is the unit vector in Rm with the ith component
is 1 and the others 0, one has ∇gi(x∗) ̸= 0 whenever i ∈ I(x∗). Note that Slater-type cone constraint
qualification at x∗ also is equivalent to the Robinson constraint qualification6 at x∗ [4, Lemma 2.99, p. 69].
Then, as the considered set {x ∈ Rn, gi(x) ≤ 0, i = 1, 2, . . . ,m} is not necessarily convex, one can notice that
Theorem 3.3 extends [5, Theorem 2.1] to non-convex setting on the set {x ∈ Rn, gi(x) ≤ 0, i = 1, 2, . . . ,m}.

Now, we are in the position to give necessary and sufficient KKT optimality conditions for a weak Pareto
minimum of (MOP).

Theorem 3.7. Consider the problem (MOP) and let both Assumption 1 and the condition (1.2) be satisfied
at a feasible point x∗.

(i) If x∗ is a weak Pareto minimum of (MOP), then x∗ is a KKT point.
(ii) Conversely, if x∗ is a non-trivial KKT point with multipliers λ and µ, and L<

λT f(x
∗) is convex then

x∗ is a weak Pareto minimum of (MOP).

Proof. (i) Let x∗ ∈ X be a weak Pareto minimum of (MOP). By Lemma 2.2, there exist λ ∈ K∗ and
µ ∈ Q∗ not both zero such that µT g(x∗) = 0 and(

λT∇f(x∗) + µT∇g(x∗)
)
(x − x∗) ≥ 0, ∀x ∈ Rn. (3.4)

As the inequality (3.4) holds for every x ∈ Rn, we conclude that

λT∇f(x∗) + µT∇g(x∗) = 0 and µT g(x∗) = 0.

Moreover, we assert that λ = 0. Otherwise, it follows in turn that µ ̸= 0, which stands in contradiction to
Assumption 1, and therefore, λ ̸= 0.

(ii) Let x∗ ∈ X be an arbitrary non-trivial KKT point, i.e.,

λT∇f(x∗) + µT∇g(x∗) = 0; µT g(x∗) = 0,

5The set {x ∈ Rn, gi(x) ≤ 0, i = 1, 2, . . . ,m} is said to satisfy the Mangasarian-Fromovitz con-
straint qualification [4] at x∗ if there exsits v ∈ Rn such that ∇gi(x∗)T v < 0 for each i ∈ I(x∗) := {i ∈
{1, 2, . . . ,m} : gi(x∗) = 0}.

6One says that the set {x ∈ Rn, gi(x) ≤ 0, i = 1, 2, . . . ,m} satisfies the Robinson constraint qualification
at x∗ if 0 ∈ int{g(x∗) +∇g(x∗)(Rn − x∗) + Rm

+ } where g(x) := (g1(x), g2(x), . . . , gm(x))T .
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for some non-zero vectors λ ∈ Rp, µ ∈ Rm. This together with Assumption 1 implies that λT∇f(x∗) must
ultimately be non-zero vector. It can be seen that if the set L<

λT f(x
∗) is empty, then x∗ actually is a weak

Pareto minimum of (MOP). In fact, if x∗ is not a weak Pareto minimum of (MOP), there exists x ∈ X
such that f(x∗) − f(x) ∈ intK. So, by the virtue of Lemma 2.1, λT f(x∗) > λT f(x), which contradicts to
the fact that L<

λT f(x
∗) = ∅. Let us consider in the case L<

λT f(x
∗) ̸= ∅. Applying Proposition 2.3(i) with

f(x) := λT f(x), we obtain that
λT∇f(x∗)(u − x∗) ≤ 0, ∀u ∈ L<

λT f(x
∗). (3.5)

Therefore, by Lemma 2.4,
λT∇f(x∗)(v − x∗) = −µT∇g(x∗)(v − x∗) ≥ 0, ∀v ∈ X . (3.6)

Note that,
{y ∈ Rn : f(x∗)− f(y) ∈ intK} ⊆ L<

λT f(x
∗).

Thus, in order to obtain that x∗ is a weak Pareto minimum of (MOP), it suffices to show that X ⊆
Rn\L<

λT f(x
∗) or consequently, L<

λT f(x
∗) ∩ X = ∅. Suppose, ad absurdum, L<

λT f(x
∗) ∩ X ̸= ∅. Thus, from

(3.5) and (3.6) we get the assertion λT∇f(x∗)(w−x∗) = 0 for any w ∈ L<
λT f(x

∗)∩X . Furthermore, as the
set L<

λT f(x
∗) being open, for each d ∈ Rn we can find t > 0 small enough such that w + td ∈ L<

λT f(x
∗).

Hence,
tλT∇f(x∗)d = λT∇f(x∗)(w + td − x∗)− λT∇f(x∗)(w − x∗) ≤ 0.

This means λT∇f(x∗) = 0, a contradiction. Thus, L<
λT f(x

∗)∩X = ∅, and x∗ is a weak Pareto minimum of
(MOP) as desired.

Remark 3.8. It is worth mentioning here that Proposition 2.3 plays a significant role in Theorem 3.7(ii)
for ensuring a feasible point x∗ to be a weak Pareto minimum of (MOP). Beside, non-degeneracy condition
(Assumption 1) at x∗ need to be assumed for guaranteeing λT∇f(x∗) ̸= 0 with correspond to multiplier
vector λ ∈ K∗\{0}. In contrast, it generally does not need constraint qualification to establish the sufficient
optimality conditions. Therefore, it might be reasonably assumed the assertion λT∇f(x∗) ̸= 0 instead of
assuming the non-degeneracy condition at x∗. However, keeping in mind the fact that we need to justify
the convexity of L<

λT f(x
∗) with the same choice λ, and so in this case the multiplier vector λ turn out to

be difficult to determine for which satisfying all conditions in Theorem 3.7(ii) simultaneously. This being a
reason why non-degeneracy condition make used in Theorem 3.7(ii). Another reason is that non-degeneracy
condition is actually justified to check a feasible point that can be a weak Pareto minimum of (MOP) or not
before to justify sufficient optimality conditions.

We now demonstrate with the following example to guarantee that Theorem 3.7 is indicated to be
conveniently applied in some cases where Theorem 3.1 and Theorem 3.2 of [21] cannot be used even when
the feasible set X is convex.

Example 3.9. Consider the following muti-objective optimization problem (MOP) over cones:

K− Minimize f(x) := (x+ 1, x3 − 5x2 + 8x− 3)T

subject to x ∈ X := {x ∈ R : −g(x) ∈ Q},

where g(x) := (x − 1, x2 − x − 1)T , K := {(x1, x2)T ∈ R2 : x1 ≥ 0, x2 ≥ 0} and Q := {(x1, x2)T ∈ R2 :
x1 ≤ 0, x2 ≤ x1}. A straightforward calculation shows that:

• X = [2,+∞),
• K∗ = K,
• Q∗ = {(x1, x2)T ∈ R2 : x2 ≤ 0, x2 ≤ −x1},
• x∗ := 2 satisfies the non-trivial KKT conditions by taking λ := (2, 0)T and µ := (1,−1)T ,
• L<

λT f(x
∗) = (−∞, 2) is convex,

• It is easily to seen that Assumption 1 and the condition (1.2) are satisfied.
Applying Theorem 3.7 (ii), we can conclude that x∗ is a weak Pareto minimum of (MOP). However, it can
be checked that g is not Q-convex, i.e.

g(1)− g(2)−∇g(2)(1− 2) = (0, 1)T /∈ Q,

but the feasible set X is convex. Furthermore, the function f is not K-pseudoconvex at x∗ := 2, because if
we take x = 0 then

−∇f(x∗)(x− x∗) = (2, 0)T /∈ intK, but f(x∗)− f(x) = (2, 4)T ∈ intK.

Hence, the corresponding results [21] is not applicable. □
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Note that the multiplier vector µ is assumed to be non-zero vector (the non-triviality of the KKT
conditions) in order to ensure that λT∇f(x∗) ̸= 0 in Theorem 3.7(ii). The following example demonstrates
that this assumption cannot be dropped.

Example 3.10. Let f(x) := (x + 1,−(x − 2)3)T , g(x) := (x2 − 1, 2x − 1)T , K := {(x1, x2)T ∈ R2 :
x2 ≥ −x1, x1 ≥ 0} and Q := {(x1, x2)T ∈ R2 : x1 ≥ x2, x1 ≥ 0}. It is not hard to check that
X = [1, 2], x∗ := 2 is a KKT point with λ := (0,−1)T and µ := (0, 0)T , and all the conditions in
Theorem 3.7 (ii) are fullfilled. However x∗ is not even a weak Pareto minimum, i.e., if we take x := 3

2
then

f(x∗)− f(x) = (3, 0)T − ( 5
2
, 1
8
)T = ( 1

2
,− 1

8
)T ∈ intK. The main reason is that x∗ is not a non-trivial KKT

point. □

To appreciate Theorem 3.7 we present an example that is applicable while the aforementioned result in
[21] is not.

Example 3.11. Consider the following multi-objective optimization problem (MOP) over cones :

K− Minimize f(x) := (x2 − 1,−x3 + 5x2 − 8x+ 5)T

subject to x ∈ X := {x ∈ R : −g(x) ∈ Q},

where g(x) := (x3 + x2 + x, x3 + 2x2 − 5x + 8)T , K := {(x1, x2)T ∈ R2 : x1 ≥ 0, x2 ≤ x1} and
Q := {(x1, x2)T ∈ R2 : x1 ≤ 0, x2 ≤ x1}. Evidently, f, and g are not K, and Q-convex, respectively.
Indeed, f(1)− f(0)−∇f(0)(1− 0) = (1, 4)T /∈ K, and g(1)− g(0)−∇g(0)(1− 0) = (2, 3)T /∈ Q. It is easy to
verify that X = [0, 2]∪ [4,+∞). Then we have already seen that the feasible set X is not convex. Therefore,
the results in [21] cannot be applicable. However, it is not hard to verify that

• K∗ = {(x1, x2)T ∈ R2 : x2 ≤ 0, x2 ≥ −x1},
• Q∗ = {(x1, x2)T ∈ R2 : x2 ≤ 0, x2 ≤ −x1},
• x∗ := 0 satisfies the non-trivial KKT conditions by taking λ := (1,−1)T and µ := (−8, 0)T ,
• Assumption 1 and the condition (1.2) are satisfied,
• L<

λT f(x
∗) = (−∞, 0), which is convex.

Hence, Theorem 3.7 (ii) indicates that x∗ is a weak Pareto minimum of (MOP). □

Next, we will see now how the convexity of LλT f(x∗) together with the strict convexity of LλT f(x∗) at
a non-trivial KKT point x∗ possess x∗ to be a Pareto minimum of (MOP).

Theorem 3.12. Consider the problem (MOP) and let both Assumption 1 and the condition (1.2) be satisfied
at a feasible point x∗. If x∗ is a non-trivial KKT point with multipliers λ and µ, LλT f(x∗) is convex, and
additionally LλT f(x∗) is strictly convex at x∗, then x∗ is a Pareto minimum of (MOP).

Proof. In a similar manner of the second argument as the proof of Theorem 3.7, by the KKT conditions
and Proposition 2.3(ii), we arrive at the following assertion

λT∇f(x∗)(v − x∗) ≥ 0 ≥ λT∇f(x∗)(u − x∗), ∀v ∈ X , ∀u ∈ LλT f(x∗), (3.7)

and λT∇f(x∗) ̸= 0. To establish the desired results, we argue first by using Lemma 2.1 that

{y ∈ Rn : f(x∗)− f(y) ∈ K\{0}} ⊆ LλT f(x∗)\{x∗}.

Thus, we only need to justify this containment

X ⊆ Rn\(LλT f(x∗)\{x∗})

We argue by contradiction that there exists some w ∈ X such that w ̸= x∗ and w ∈ LλT f(x∗). Taking (3.7)
into account we actually have

λT∇f(x∗)(w − x∗) = 0.

Furthermore, as λT∇f(x∗) ∈ N(LλT f(x∗),x∗)\{0} (by the second inequality in (3.7)) and LλT f(x∗) is
strictly convex, then λT∇f(x∗)(w − x∗) < 0. This is a contradiction, and thereby implying that x∗ is a
Pareto minimum of (MOP).

Remark 3.13. In Example 3.11 with λ := (1,−1)T , it is evident that LλT f(x
∗) is strictly convex at x∗ := 0,

by Theorem 3.12, and hence x∗ is a Pareto minimum of (MOP) (see the below figure).
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f1

f2

f(x∗) 5

−1 3

(−K + f(x∗)) ∩ f(X ) = {f(x∗)}

f([0, 2])

−K

In Example 3.11, x∗ := 0 is a Pareto minimum of (MOP).

Remark 3.14. It should be noted that to obtain a Pareto minimum from a drawback (see [9, 21] and other
references therein), the multiplier vector λ in KKT conditions need to be taken from the strict positive dual
cone of K, Ks∗ , which defined as

Ks∗ := {z ∈ Rn : xT z > 0 for all x ∈ K\{0}}.

However, in this case study the multiplier vector λ is not necessarily to take from the strict positive dual
cone. In fact, as K defined in Example 3.11 and λ := (1,−1)T , Then elementary calculations give us

Ks∗ = {(x1, x2)T ∈ R2 : x1 > 0, x2 > −x1}

and so, λ /∈ Ks∗ .

To this end, we now give an example showing that the strict convexity of LλT f(x
∗) with corresponding

multiplier λ is essential for x∗ under the question to be a Pareto minimum of (MOP) in Theorem 3.12.

Example 3.15. Let x := (x1, x2)T ∈ R2, f(x) := (x21, x2 − x1)T , g(x) := (−x31 + 3x1 + x2, x1 − x2)T and
K = Q := {x ∈ R2 : x1 ≤ 0, x2 ≥ 0}. It is easy to check that the feasible set X is not convex and the
condition (1.2) is valid at x∗ := (1, 1)T ∈ X . Then elementary calculations give us

• K∗ = Q∗ = K,

• g(x∗) = (3, 0)T , ∇g(x∗) =

(
0 1
1 −1

)
, f(x∗) = (1, 0)T , ∇f(x∗) =

(
2 0
−1 1

)
,

• x∗ satisfies Assumption 1 and the non-trivial KKT conditions by taking λ = µ := (0, 1)T ,
• L<

λT f(x
∗) = {(x1, x2)T ∈ R2 : x2 < x1} and LλT f(x∗) = {(x1, x2)T ∈ R2 : x2 ≤ x1} are convex sets.

By Theorem 3.7 (ii), we can conclude that x∗ is a weak Pareto minimum of (MOP). However, the set
LλT f(x∗) is not a strictly convex set at x∗, i.e., it is clear that N(LλT f(x∗),x∗) = {(−r, r)T ∈ R2 : r ≥
0}. So, by taking u := (−1, 1)T ∈ N(LλT f(x∗),x∗)\{(0, 0)T } and y := (2, 2)T ∈ LλT f(x∗)\{(0, 0)T },
uT (y − x∗) = 0. Actually, a point x∗ is not even a Pareto minimum, i.e., if we take x̄ := (−2,−2)T ∈ X ,
one has

f(x∗)− f(x̄) = (−3, 0)T ∈ K\{(0, 0)T }.

Remark 3.16. It is worth noting that the convexity of L<
λT f(x

∗) (resp. LλT f(x∗)) in Theorem 3.7 (resp. in
Theorem 3.12) can be viewed as a generalized quasiconvexity of f at x∗ due to the notion of ∗-quasiconvexity
[10] in the sense that for each λ ∈ K∗ the function λT f : Rn → R is quasiconvex7. It is quite clear from the
definition that ∗-quasiconvexity of f guarantees the convexity of the level set L<

λT f(x
∗) or of LλT f(x∗). In

fact, the function f in Example 3.15 is not ∗-quasiconvex, i.e., by taking λ := (−1, 1)T ∈ K∗ and x := (1, 1)T ,
the sublevel set Lf (x) is non-convex. For related conditions for cone quasiconvex mappings we refer the
reader to [13, 16, 3].

7A function f : Rn → R is said to be quasiconvex if its sublevel set Lf (x) at x is convex for all x ∈ Rn

or, equivalently, the strict sublevel set L<
f (x) at x is convex for all x ∈ Rn.
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4 Conclusions
In this paper, we have established necessary and sufficient the Karush-Kuhn-Tucker optimality conditions for
weak Pareto minimum as well as Pareto minimum of a differentiable multi-objective optimization problem
(MOP) over cone constraint without the convexity of the feasible set, and the cone-convexity of objective
and constraint functions. We also have proposed constraint qualifications, and discussed the relationship
between them which can be summarized in following diagram whenever x∗ ∈ X :

Slater’s condition

g is K-convex at x∗

Non-degeneracy condition at x∗

Slater-type cone
constraint qualification at x∗

condition (1.2)
is satisfied at x∗
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