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Abstract

This project deals with a class of differentiable multi-objective optimization problems (MOP) over
cone constraints without the convexity of the feasible set, and the cone-convexity of objectives
and constraint functions. We present constraint qualifications for these (MOP) problems and
establish the relationships between them. We also present necessary and sufficient the Karush-
Kuhn-Tucker (KKT) optimality conditions for weak Pareto minimum as well as Pareto minimum.
Our main results improve some recent ones in the literature.
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Chapter 1

Main Results

1.1 Some characterizations of robust solution sets for uncer-
tain convex optimization problems with locally Lipschitz
inequality constraints

The study of characterizations of solution sets has become an important research direction for
many mathematical programming problems. Based on understanding characterizations of solu-
tion sets, solution methods for solving mathematical programs that have multiple solutions can
be developed. The notion of characterizations of solution sets was first introduced and studied
by Mangasarian for a convex extrema problem with differentiable function [29]. Some useful
examples clarifying such characterizations of solution sets can be found in [7] for characterizing
the problems that have weak sharp minimum. This being a reason why several characterizations
of solution sets for some classes of constrained optimization problems have appeared in the
literature (see [6, 8, 13, 14, 19, 23, 32, 33, 36, 38, 39] and other references therein).

However, dealing with real-world optimization problems, the input data associated with the
objective function and the constraints of programs are uncertain due to prediction error or mea-
surement errors (see [1, 2, 3, 4]). Moreover, in many situations often we need to make decisions
now before we can know the true values or have better estimations of the parameters. Robust
optimization is one of the basic methodologies to protect the optimal solution that it is no longer
feasible after realization of actual values of parameters. This means that any feasible points must
satisfy all constraints including each set of constraints corresponding to a possible realization of
the uncertain parameters from the uncertainty sets. Precisely stated, let us first consider the
following optimization problem :

min{f(z) : gi(x) <0, i =1,....m}, )
TeR™
where f,g; : R" — R, ¢ = 1,...,m, are functions. The problem (P) in the face of data

uncertainty both in the objective and constraints can be written by the following optimization
problems:

m%gn{f(x,u) gi(z,v;) <0,i=1,...,m}, (UP)
reR"™
where f : R" x R® — R and ¢g; : R" x R% — R, ¢ = 1,...,m, are functions, u and

v; are uncertain parameters and they belong to the specified nonempty convex and compact
uncertainty sets Y C R% and V; C R%, respectively. The robust (worst case) counterpart of
(UP), by construction in [3], is obtained by solving the single problem:

i gz, v;) < eV, i=1,...
916161]%11{%16%( flz,u) : gi(z,v;) <0, Vo, €V, i =1,...,m}, (RP)
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2 CHAPTER 1. CHAPTER 1 : MAIN RESULTS

where the objective and constraints are enforced for every possible value of the parameters
within their prescribed uncertainty sets U and V;. The set of feasible solutions of problem (RP),

F:={zeR": gz, v;) <0, Vo, €V;, i=1,...,m},

refer to robust feasible set of the problem (UP). The optimal solution to the problem (RP) is
known as a robust optimal solution of (UP). A successful treatment of the robust optimization
approaches for treating convex optimization programs with data uncertainty to derive charac-
terizations of robust optimal solution sets was given in [15, 27, 34, 35]. For issues related to
optimality conditions and duality properties, see [5, 11, 16, 17, 18, 25, 26] and other references
therein.

This paper is an attempt to investigate optimality conditions and to derive characterizations
of robust solution sets of (UP). Unlike various related works in the literature mentioned above,
in the present paper, appearing constraint functions are not convex necessarily while the robust
feasible set F'is convex. In this way, we refer to convex problems without convex representation
in the sense that the constraint functions to represent the convex feasible set are non necessarily
convex. Optimality conditions and characterizations of convexity of feasible set for such problems
in the absent of data uncertainty can be found in [24] for differentiable case, and in [6, 14, 21]
for non-differentiable case.

To the best of our knowledge, completely characterizations of robust solutions for uncertain
scalar and multi-objective optimization problems over a robust convex feasible set described
by non necessarily convex functions within the framework of robust optimization approach are
not available in the literature. So, in this paper we examine a robust optimization framework
for studying characterizations of the robust optimal solution set for uncertain convex optimiza-
tion problems with a robust convex feasible set described by locally Lipschitz constraints. First,
complete optimality conditions for uncertain convex optimization problems are given. In order
to characterize the robust optimal solution set of a given problem, we introduce the so-called
pseudo-Lagrange function and then, we show that pseudo-Lagrange function is constant on the
robust optimal solution set. Afterwards, we then use this property to derive various characteri-
zations of the robust optimal solution set that these are expressed in terms of convex subdiffer-
entials, Clarke subdifferentials and Lagrange multipliers. Finally, the results are then applied to
derive characterizations of weakly robust efficient solution set and properly robust efficient solu-
tion set of uncertain convex multi-objective optimization problems without convexity assumption
on constraint functions.

We begin this section by fixing certain notations, definitions and preliminary results that will
be used throughout the paper. We denote by R" the Euclidean space with dimension n whose
norm is denoted by || - || and (z, y) denotes the usual inner product between two vectors x, y
in R, that is, (z,y) = 2’y. Let R := {& := (21,...,2,) ER":2; >0, i =1,...,n} be
non-negative orthant of R™. Note also that the interior non-negative orthant of R™ is denoted
by intR"} and is defined by intR" := {z € R" : 2; >0, i = 1,...,n}. Given aset A C R",
we recall that a set A is convex whenever Az + (1 — Ay € Aforall A € [0,1], z,y € A. A set
A is said to be a cone if AA C A for all A > 0. We denote the convex hull and the conical hull
generated by A, by convA and coneA, respectively. The normal cone at x to a closed convex
set A, denoted by N(A, z), is defined by

N(A,z):={§€R": ({,y —x) <0, Yy € A}.
A function f : R™ — R is said to be convex if forall A € [0, 1] and x,y € R",

fOz+ (1= Ny) <AMf(z)+ 1 =N F(y).
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It is @ well known fact that a convex function need not be differentiable everywhere. However if
f: R™ — R is a convex function then the one-sided or rather right-sided directional derivative
always exists and is finite. The right-sided directional derivative of f at € R"™ in the direction
d € R™ is denoted by denoted by f'(x;d), is defined as

f(x;d) := lim flattd) - f(a:)

t—0t t

It is important to note that for every fixed = the function f’(x;.) is a positively homogeneous
convex function. The subdifferential of convex function f at x is defined as

Of () :={€ e R": fy) = f(x) + (§,y — ), forally € R"}.

We now recall the following useful result, which is a subdifferential max-function rule of convex
functions over a compact set, that will be used later in the paper.

Lemma 1. [15, Lemma 2.1] Let U C RP be a convex compact set, and let f : R™ x R®® — R
be a function such that for each fixed u € U, f(-,u) is a convex function on R™ and for each
fixed x € R", f(z,-) is a concave function on R®. Then,

0 maxf(-,u) (:f) = 8f(7u)(j:)7
<ueu ) ueLl/{J(i)
where U(Z) :={u e U : f(Z,u) = max,ey f(ZT,u)}.

Definition 2. A function h : R®™ — R is said to be locally Lipshitz at xz € R", if there exists a
positive scalar L and a neighborhood N of x such that, for all y, 2z € N, one has

|h(y) = h(2)] < Llly — 2|

Definition 3. [9] Let h : R” — R be locally Lipshitz at a given point z € R". The Clarke
generalized directional derivative of h at x in the direction d € R™, denoted h°(x; d), is defined
as

he(z;d) := lim sup h(y +td) — h(y)

y—T t
t—0t

Y

Definition 4. [9] Let h : R® — R be locally Lipshitz at a given point x € R™. The Clarke
generalized subdifferential of h at z, denoted by 0°h(z), is defined as

O°h(z) :={£ € R" : h?(x;d) > (£,d) forall d € R"}.
From the definition of the Clarke generalized subdifferential, it follows that

h°(z;d) = ma ,d), Yd € R".

(z;d) geao;&)@ )

Definition 5. Let h : R® — R be locally Lipshitz at a given point x € R"™. The function h is
said to be regular at x € R™ if, for each d € R", the directional derivative h/(x; d) exists and
coincides with h°(x; d).

For a given compact subset V of R? and a given function g : R™ x R? — R, the following
conditions will be considered in this paper.
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(C1) for every x € R™ the function V 2 v — g¢(x, v) is upper semicontinuous;

(C2) gis locally Lipschitz in x, uniformly for v in V, that is, for each x € R", there exist an open
neighborhood U of x and a constant L > 0 such that for all y and z in U, and v € V,
one has

9(y,v) = g(z,v)] < Llly — =[};
(C3) for each (z,v) € R™ x V, the function g(-,v) is regular at x, that is,

go(x,v;) = g, ;)
(the derivatives being with respect to z);

(C4) set-valued map R" x V 3 (x,v) —— 0°(-,v)(x) is upper semicontinuous where
0°¢g(-,v)(x) denotes the Clarke subdifferential of g with respect to z.

Remark 6. In a suitable setting, if the function g is convex in 2 and continuous in v, the conditions
(C2), (C3), and (C4) are then automatically satisfied. These conditions also hold whenever the
derivative V,g(x,v) with respect to x exists and is continuous in (z, v).

Remark 7. [25] Under the conditions (C1) and (C2) the function ¥ : R™ — R,

(x) := max{g(x,v) : v € V},
is defined and finite. Further, 1 is locally Lipschitz on R", and hence for each x € R" the set
V(z) defined as
V() :={veV:g(x,v) =19z},
is a nonempty closed subset of RY.

We conclude this section by the following lemmas which will be useful in our later analysis.

Lemma 8. [9] Let the function i) be defined in Remark 7. Suppose that the conditions (C1) -
(C4) are fulfilled. Then the usual one-sided directional derivative 1'(x;d) exists, and satisfies
the following : for each xz,d € R",

V(2 d) = ¢°(x;d) = max{g;(z,v;d) : v € V(z)}
= max{({,d) : { € Og(-,v)(z),v € V(z)}.
Lemma 9. [26] For a given compact convex subset V of R? and a given function g : R" x R? —

R, suppose that the basic conditions (C1) - (C4) are fulfilled. Further, suppose that g(x,-) is
concave on V, for each x € R™. Then

0°Y(x) = {€ € R" : Jv € V(x) such that £ € °g(-,v)(x)}.

In this section, we give a multiplier characterization for the robust optimal solution of (UP),
which will play an important role in deriving characterizations of the robust optimal solution
sets in the next section. Let us recall the following robust (worst case) counterpart optimization
problem of (UP) :

i L g ) < ; sl =1,... RP
91521%{%16%( flz,u) s gi(z,v;) <0, Vo, €V, i =1,...,m}, (RP)
where f: R" x R® — R,and g; : R" x R¥ — R, i =1,...,m, are given functions and for

eachi=1,2,...,m, (u,v;) € UxV; CR® x R%, where i and V; are the specified nonempty
convex and compact uncertainty sets. The robust feasible set of (UP) is defined by

Fi={z eR": gi(z,v;) <0, Vo; € V;, i =1,...,m}.
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Assumption 10. Throughout this paper, we always assume that F # (0, f : R* xU — Ris
a convex-concave in the sense that f(-,u) is a convex function for any u € U, and f(x,-) is
a concave function for any x € R™ while g;(z,-), i = 1,...,m, are concave functions for any
x € R™. Further, let the functions g;, i = 1, ..., m, be satisfied the conditions (C1) and (C2).

Definition 11. We say that € Fis a robust optimal solution of (UP) if and only if Z is an optimal
solution of (RP).

By using Proposition 2.2 in [6], we can derive the following characterization of convexity for
robust feasible set of (UP) in terms of the Clarke directional derivative. Before doing so let us
denote, for each x € F,

v; EV;

I(z) = {z € {1,...,m} : max gi(z, v;) = 0} ,

andforallz=1,...,m,

Vi(x) = {vi eV gi(x,v;) = maxgi(x,vi)} .

v, €V;

Proposition 12. Let the system g;(z,v;) < 0, Yv; € V;, i = 1,...,m, be satisfied the robust
Slater constraint qualification, that is, there exists xq € R" such that

gi(zo,v;) <0, foranyv; € Vy, i=1,...,m.

For each x € F and i € I(x), let the function g; be satisfied the conditions (C3), (C4), and
0 ¢ 0°gi(-, v;)(x) whenever v; € V;(x). Then F is convex if and only if

F={yeR": ¢ (r,u;y—x) <0, Vel Viellx), Yo, € Vi(z)}.
Proof. Foreach i =1,...,m, define a function ¥; : R™ — R by

vi(x) == maécgi(x, v;) forall z € R™.
Vi€V

Applying the conditions (C1) and (C2), we have, for each i = 1,...,m, v; is locally Lipschitz on
R™. To achieve the result, we will use Proposition 2.2 in [6] and then we need to justify that for
any z € F, 1;, 1 € I(x), are regular in the sense of Clarke and 0 ¢ 0°1;(x), and the system
Yi(x) < 0,7 =1,...,m, satisfies the Slater condition. The first and the second requirements
will follow from Lemma 38 and Lemma 21 that for any z € F/,

Yi(x;d) = ) (x;d) = max{g,(z,v;;d) : v; € Vi(x)}, Vi € I(x), (1.1.1)

and for each i € I(x)

oe () BA(Zgtu@) =R\ U atw@)

Vi EV; v;€V;gi(z,v;)=v;(x)
gi(z,v;)=0
= R"\0%¢;(x).
Finally, the robust Slater constraint qualification leads us to the following strict inequality

Vi(xo) = max{g;(xo,v;) :v; €Vi} <0, Vi=1,...,m,
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which means that the system 2 € R, ¢;(z) <0 (i = 1,...,m) satisfies the Slater’s condition'.
Now applying [6, Proposition 2.2] and taking (1.1.1) into consideration, we obtain the desired
results.

[]

Remark 13. It should be noted that in Proposition 12 without robust Slater constraint qualification
and 0 ¢ 0°g;(+,v;)(x) whenever z € F, i € I(z), and v; € V;(x), we easily obtain that if F'is
convex then

FC{yeR": gl (z,v5y—2) <0, Ve € F, Viel(x), Y, € Vi(x)}.
Furthermore, for every x € F' one has
0°gi(+,v;)(x) € N(F,x) whenever i € I(z) and v; € V;(x).

In order to establish a multiplier characterization for the robust optimal solution of (UP), we
first recall a robust basic constraint qualification which was introduced in [5].

Definition 14. Let x € F be a robust feasible solution of (UP). The robust basic constraint
qualification is satisfied at x if

N(F,z) = U Z)\iaogi(',vi)(ﬂf)'

)‘120’ UZGV’L
Xigi(2,0;)=0, i=1,....,m

Now the following theorem declares a result that the robust basic constraint qualification
defined in Definition 14 is a necessary and sufficient constraint qualification of a robust optimal
solution for the given problem, that is, the robust basic constraint qualification holds if and only
if the Lagrange multiplier conditions are satisfied for a robust optimal solution.

Theorem 15 (Characterizing the robust basic constraint qualification ). Suppose that for each
x € Fandi € I(x), the function g; satisfies the conditions (C3) and (C4). Then, the following
statements are equivalent:

(i) the robust basic constraint qualification holds at € F;

(i) for each real-valued convex-concave function f on R"™ x U, the following statements are
equivalent:

(@) maxy,ey f(x,u) > max,ey f(Z,u) forall x € F,

(b) there existu € U, \; > 0, and v; € V,, i = 1, ..., m such that

0€df(u)(x)+ > Nd°gi(-0:)(F), Niga(Z,0) =0, Vi=1,...,m, (1.1.2)
=1
and
f(z,a) = ma&cf(f,u) (1.1.3)
ue
lthe system z € R™, g;(x) < 0 (i = 1,...,m) satisfies the Slater’s condition if there exists g € R™ such

that g;(zp) < Oforalli =1,...,m.
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Proof. [(i) = (ii)] Suppose that () holds. Let f be a real-valued convex-concave function on
R™ x U. Firstly, we assume that (a) holds. Then, Z is a solution of the following constrained
convex optimization problem:

Minimize max f(z,u) subject to x € F,
ue

which can be equivalently expressed as,

0 € d(max f(-,u))(Z) + N(F,z).

ueU

By (i), there are N >0,and v, €V, 0 = 1,...,m such that
0e 8(maxf Z (z) and \igi(z,0;) =0, Vi=1,...,m.

Then, it follows from Lemma 1 that there exists u € U such that (1.1.2) and (1.1.3) hold.

To prove sufficiency, assume that there exist @ € U, \; > 0,and o; € V;, i = 1,...,m
such that (1.1.2) and (1.1.3) hold. According to (1.1.2), we can find £ € 9f(-,u)(Z) and n; €
9°g;(+,0;)(Z), i =1,...,m, such that

4+ Ami=0. (1.1.9)

It stems from & € Of(-,u)(z) and n; € 0°g;(+,0;)(Z), 1 =1,...,m, we get

flz,u) — f(z,u) > &,z —T) (1.1.5)

and
9o (T, 00— ) > (piyx —2) Vi=1,...,m, (1.1.6)

for any € R". Multiplying each of inequalities in (1.4.5) by \; and summing up the obtained
inequalities with (1.2.8), we obtain that, for all z € R",

f(l',u) f x u +Z)\Zgzx m U’L? €+Z)\an7
=1
Taking (1.4.1) into account together with the condition \;g;(Z,%;) = 0, i = 1,...,m, we deduce
flz,u) — f(z,u) Z)\lgmxvl, z) >0, Vr e R™
1€I(Z)

Note that for each i € I(z) with ¢;(Z,7;) # 0, \; = 0. So, we consider in the case of
9i(Z,v;) = 0 fori € I(Z), and hence v; € V;(Z). By Remark 13, the last inequality becomes

f(z,u) — f(z,u) > 0foralz € F.
Thus, together with maxy,ey f(z,u) > f(x, ) for all x € R™ and (1.1.3), we obtain

— T > .
%Zaﬁcf(m,u) max f(z,u) >0, Yz € F

It means that Z is a robust optimal solution of problem (UP).
[(i) = ()] The proof is similar to the one in [35, Theorem 3.1], and so is omitted. ]
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In the uncertainty free case, we can easily obtain the following result, which was obtained

by Yamamoto and Kuroiwa in [23].
gi(z) <0, Vi=1,...,m} bea

Corollary 16. [23, Theorem 3.2] Let & € F' := {x € R"
m, be locally Lipschitz on R". Assume further that

feasible solution, g; : R* - R, ¢ =1,...,m,
forany x € F' and any i = 1,...,m such that g;(x) = 0, the function g; is regular, and F" is
convex. Then the following statement are equivalent.
O NFZ)=U 20 D ity Xi0°gi(Z);
)\igi(:f)zo, i=1,....m
i) for each real-valued function f on R", the following statements are equivalent

@ f(x) > f(z)forall x € F’;

(b) there exist \; > 0,7 =1,...,m such that
0e€df(z)+ 25\23 g:(Z) and \igi(z) =0, Yi=1,...,m
i=1
Example 17. Let z := (l’l,fﬁg) - R , U1 1= (Ul 1,211 2) Vg = (’0271,’0272), V3 = (’U371,U3,2),
Vl = {(Ul,'l]g) € R2 Ul —|—U2 S 1} VQ [ 1] [1 2], V = [2,3} X [0, 1],
g1(x,v1) == v1101 + V1 2T2 — r3 -2,
G2(,v2) = =917 + Vg max{—xq, —75},
g3(x,v3) = v3 121 + V3 222,
F {.Z' S RQ : gl<37,1}1) S 07 92(‘7;702) S 07 g3(xuv3> S 07 sz € Vw = 17273}

—2<0, 2z14+22 <0, —27 — 22 <0},
)(@) = {(vs1,v32)}. It can be

and 7 := (0,0). Then F = {x € R? : /2?2 + 2% —

I(Z) = {2,3}, 8ga(-, 05)(&) = {0} X [—v2.5, 0] and Pgs(-, v
observed that
N(Fa i‘) = cone {(_L _1)a (27 1)}

and
U Z Xi0°g;i(+,v;)(Z) = cone {(0,—1),(2,1)}.

Ai>0, v, €EV; =1
)\igi(ilvvi):07 7’:17273
Hence, we have the condition (i) of Theorem 45 does not hold. Thus for some convex-concave

function f : R2x U — R, it is impossible to characterize a sufficient condition for robust optimal
solution for the following uncertain problem by using Theorem 45
minimize f(x,u) subject to z € R?, g;i(z,v;) <0, i =1,2,3

u1, uz) be an uncertain parameter belong to uncertainty set U := {(u1, us) €
0 = (1,0)
(

— w1 — UpTy. Selecting @ := (1,0), vy ,
[

Actuall y, letu = (
R2 cud +ud < 1} and f(z,u) = e
v := (1,1), U3 := (2,0), Ay := 0, Ao := 1 and A3 := 1 we obtain \;g;(Z,7;) = 0 for a
=1,2,3,
f(@ 1) =1 =max f(z,u)
and
3
1,01+ {(2,0)} = (-, ZA (7).

(0,0) € {(=2,0)} + {0} x
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However, by taking z := (—%,‘/73) € F, max,ey f(Z,u) = 2 -1 < 1 = f(z,0) =

max,ey f(Z,u) which shows Z is not a minimizer of max,ey f(+,u) on F. O

In this section, we will establish some characterizations of robust optimal solution set in terms
of a given robust solution point of the given problem.
We begin by recalling the following constrained convex optimization problem in the face of
data uncertainty (UP):
mﬁgn{f(%u) : gi<x7vi) < 07 1= 1,...,771}, (UP)
xeR™
where f : R" xU — Ris a convex-concave function, the functions g;, ¢ € I, satisfy the condition
(C1) and (C2), gi(x, ) : V; — R, i € I, are concave functions for any € R™, and the robust
feasible set F'is convex. Assume that the robust solution set of the problem (UP), denoted by

-— . <
S:={ac€ F.r{tleeg{f(a,u) < r{}gj{f(x,u), Vo € F},

is nonempty. In what follows, for any given y € R™, A := (A1,...,\n) € RT,u e U, v; €V,
i € I andv := (vq,...,0y), we introduce the so-called pseudo Lagrangian-type function
LY(-,y,\,u,v) by, forall z € R",

LP(%% )\,U,U) = f(.’lf,U) + Z )\Zgzox(yvvlux - y)

i€l(y)

Now, show that the pseudo Lagrangian-type function associated with a Lagrange multiplier vector
and uncertainty parameters according to a solution is constant on S.

Proposition 18. Assume all conditions of Theorem 45 hold. Let a € S be a robust optimal
solution fulfilling the robust basic constraint qualification. Then there exist a Lagrange multiplier
vector A* := (A},..., %) € R, and uncertainty parameters u® € U, v € V;, i € I, such
that for any © € S, Mgl (a,v¢;0 —a) = 0, Vi € I(a), f(z,u*) = max,ey f(z,u), and
LT (-, a, % u®, v*) is constant on S.

Proof. It follows from a € S and Theorem 45 that there exist a Lagrange multiplier vector A* :=
(AL, A8 € R, and uncertainty parameters u® € U, v{ € V;, @ € I, satisfying the conditions
(1.1.2) and (1.1.3). Then, it stems from the fact that 0°g; (-, v{)(a) = 0g3,(a,vd; - — a)(a) for all
i € I(a) and (1.1.2), we get

0¢€ 8f(~,ua)(a) + Z )\?agfx(a,vf; T a)(@) - 8LP('7G7 )\a7ua’va)(a>,
)

i€l(a

which is noting else than

flz,u®) + Z Mgl (a,vf; 2 —a) > f(a,u”) = max f(a,u) forall z € R". (1.1.7)

ueU
i€l(a)
Notice that
max flz,u) = mfg(f(a,u), foranya € Sandz € S, (1.1.8)
uUE s

and taking this into account, (1.1.7) deduces ;. r(,) A7 95 (a, vf; 2 —a) > 0, forany z € S. Let
us notice that for indices i € I(a) such that A¢ > 0, we have g;(a,v{") = 0, and consequently,
v € V;(a). This in tun, by Remark 13, implies that

Ngo(a, v e —a) =0, Vi€ I(a). (1.1.9)
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Now, we prove that

flz,u®) = meadcf(x,u), forany x € S. (1.1.10)

In fact, by (1.1.7) and (1.4.9), we get the assertion

max f(z,u) 2 f(z,u") > max f(a,u).

This together with (1.4.8), (1.1.10) holds. Therefore, for any x € S, (1.1.3), (1.4.8), (1.4.9) and
(1.1.10) entail

L (x,a, A u®,v") = f(x,u®) + Z Ago (a,vf; 2 — a)
i€l(a)

= f(w,0) = max f(z,u) = max f(a,u) = f(a,u"),

showing that L (-, a, A%, u®, v®) is constant on S, and this completes the proof. []

Remark 19. It is worth noting that if g;(-,v;), ¢ € I, are convex functions for any v; € V; then,
for each ¢ € I, Proposition 18 gives

Agi(z,vf) = Mgi(a,vf) > Mgi(a,vf 2 —a) = Mgf(a,vf;2 —a) = 0forany z € S.

This together with x € F and \g;(a,v{) = 0,1 € I, arrives A¢g;(z,vf) = 0, i € I. Further-
more, it yields

LP(x,a, \*, u®,v*) = f(z,u®) + Z Algo (a,vf; 0 —a)

i€l(a)

= f(z,u")

= [z, u®) + ) Ngi(w,0f), Vo € S,
=1

This shows that pseudo Lagrangian-type function collapses to the well-known Lagran-gian-type
function on the robust solution set S.

In the sequel, we are now in a position to establish the characterizations of the robust solution
set for problem (UP) in terms of convex subdifferentials, Clarke subdifferentials and Lagrange
multipliers. But before doing so it will thus be convenient to denote the following :

I(a) := {i € I(a) : \* > 0},
C(z) ={¢€af(-,u")(a): (& —a) >0} forany given x € F.

Theorem 1 (Characterizing the robust solution set). Assume all conditions of Theorem 45 hold.
Let a € S be a robust optimal solution fulfilling the robust basic constraint qualification. Then
there exist a Lagrange multiplier vector \* := (A{,..., A% ) € R, and uncertainty parameters
u® € U, v} €V, 1 € I, such that the robust solution set for the problem (UP) is characterized
by

S =051=252=.53=54=55= 5= 57,
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where

Sy :={x € F: (n,x—a)=0forsomen; € gl-,v)(a), Vi € I(a);
(C,a—x)=0forsome ¢ € df(-,u”)(x)NIf(-,u")(a);
") = ma f(a. )},

Sy:={x € F: (n,x—a)=0forsome n; € g(-,v%)(a), Vi € I(a);

((,a—x) > 0forsome ¢ € df(-,u)(x)NAf(-,u")(a);
f(x7ua) = IB&Xf(I,U)},

Sy :={z € F:(n,z—a)=0forsome n; € 0°g;(-,v})(a), Vi € f(a);
(&, —a)=(C,a—x)=0forsome ¢ € df(-,u)(z)and £ € C(z);
") = max f(a. )},

Sy:={z € F:{(n,xz—a)=0forsome n; € 9°g;(-,v})(a), Vi € 7(@);
(&, 2 —a) =(¢,a—z) forsome ¢ € If(-,u*)(z) and & € C(z);
f(xvua) :maxf(a:,u)},

Ss:={z € F:(n,x—a)=0forsome 1 € 8°gi(-,v")(a), Vi € I(a);
(&, 2 —a) < ((,a—z) for some ¢ € If(-,u)(x)and £ € C(x);
fla,u®) = max f(z,u)},

Se :={x € F: (n;,x —a) =0 forsomen; € 9°g;(-,v})(a), Vi € T(CL);
((,a—x) =0forsome ¢ € If(-,u?)(x);
[z, u®) :maxf(m7u)}’

Sy :={z € F:(n,z—a)=0forsome n; € 0°g;(-,v})(a), Vi € ]—“(a);
((,a—x) > 0forsome ¢ € If(-,u?)(x);
f @, u®) = max f(z, u)}.

Proof. Evidently, the following containments hold:

S1 € 5y C 57,
S1 C S C 57,
S1 € 53 C 54 C S5 C 5y

Hence, we only have to show that S C S; and S; € S. In order to establish S C Sy, letx € S
be arbitrarily given. It follows from (1.1.2), we therefore obtain vectors ( € df(-,u®)(a) and
& € 0°gi(+,v8)(a), i € I(a), such that

C+ > M&E=0 (1.1.11)
i€l(a)
(since A} = 0 fori ¢ I(a)). According to ¢ € Of(-,u®)(a), & € 0°¢;(-,v¢)(a), i € I(a), and
r,a € S, one has
flz,u®) = fla,u) > ((,z — a) (1.1.12)

and
g (a, vl e —a) > (&,x —a), Vi € I(a). (1.1.13)
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Once we have shown, in Proposition 18, that A?g?, (a, v¢; x—a) = 0, Vi € I(a), after multiplying

)

both sides of (1.4.12) by \?, i € I(a) we get

02> (A&, z —a), Vi€ l(a)
Summing up these inequalities and using (1.4.10) we obtain that
0> < Z NE o — a> =(-(,x—a). (1.1.14)
1€l(a)
Again, it follows from Proposition 18 that

flx,u®) = max f(z,u), (1.1.15)

and for each i € I(a), max,,caog,(-.v2)(a)(Mi; T — @) = gf.(a,vf; x — a) = 0, the latter which in
turn leads to there exists 1; € 9°g;(-, v{")(a) such that

<ni7 Tr— CL) =0.
On the one hand, taking (1.1.3) and (1.4.16) into account (1.4.11) we obtain

¢,z —a) < f(x,u*) — f(a,u”) = max f(z,u) — max f(a,u) = 0.

ueU ueU

This together with (1.4.14) arrives at
((,x—a)=0.
Now, we only need to prove that ¢ € df(-,u®)(x). In fact, for any y € R”,
fly,u®) = f2,u®) = f(y,u”) = fla, u?)

> <<7y_a>
= <C,y—x>+(§,x—a> = <ny_x>,

which means ¢ € 9f(-,u®)(x) and so, x € S;. This proves S C 5.
To obtain S7 C S, we now let x be arbitrary point of S7. It follows that = € F, and it is easy
to see that

ng/){(f(&,'d) _mgzj(f(x’u) = f(a7ua) - f(:z:,ua) > <C7a_$> > 0.

The last inequality together with the fact that a € S gives x € S, and the proof is complete. []
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1.2 Necessary and sufficient KKT optimality conditions in non-
convex multi-objective optimization problems with cone
constraints

Multi-objective (vector-valued) optimization is a subject of mathematical programming that ex-
tensively studied and applied in various decision-making contexts like economics, human decision
making, control engineering, transportation and many others. We refer the reader to [24, 18, 19].
For comprehensive treatment of theoretical issues concerning multi-objective optimization can
be found in [17, 13, 9, 2]. In the multi-objective setting, the scalar concept of optimality does
not apply directly due to the fact that all the objectives can not be simultaneously optimized
with a single solution. To this effect, we must decide which objective to improve, and so com-
promise solutions must be considered. In this way, we refer to a weak Pareto optimum (resp.
Pareto optimum [15]) which usually uses coordinate-wise ordering (induced by the positive or-
thant as ordering cone) to examine the objective vectors. However, in real-world multi-objective
problems concerning especially fractional programming even computational aspects of Pareto
optimum, not only the coordinate-wise ordering appears but also the cone defining the lexi-
cographic partial order is of practical interest [7]. This being a reason, study of multi-objective
optimization problems involving general ordering cones has gained attention. Precisely stated,
in this paper we will mainly focus on the problem of multi-objective optimization problem with
cone constraint:

K — Minimize f(x) (MOP)
subject tox € R", —g(x) € @,

where f:= (f1,..., f)T : R" > RP and g := (g1, .,9m)" : R" — R™, are differentiable
functions, K and () are closed convex cones with non-empty interiors in RP and R™, respectively.
Let

X :={xeR": —g(x) € Q} (1.2.1)



16 CHAPTER 1. CHAPTER 1 : MAIN RESULTS

be the set of all feasible solutions of (MOP). The notation “K — Minimize "refers to the weak
Pareto (resp. Pareto optimum) with respect to the ordering cone K for the problem (MOP),
namely a point X* € X such that for every x € X, f(x*) — f(x) ¢ intK (resp. f(x*) — f(x) ¢
K\{0}).

Recall that a feasible point x* € X is said to be a KKT point if there exist multipliers A €
K*\{0} and p € Q* such that the following Karush-Kuhn-Tucker (KKT) optimality conditions
hold:

() ATVE(x*) + puTVg(x*) = 0;
(i) phg(x") =0,

when K*, K* := {z € RP : xI'z > 0forallx € K}, denotes the dual (positive polar) cone
of K. In this paper, the above feasible point x* is also called a non-trivial KKT point if the
corresponding i is @ non-zero vector.

The search for weak Pareto (resp. Pareto optimum) to (MOP) has been carried out through
the study of the KKT optimality conditions provided that some constraint qualifications hold,
and of the convexity of the functions f and g. In the current work, with the introduction of
scalar convex optimization without convexity of constraint functions by Lasserre [12], Suneja
et al. [21] successfully obtained a new direction to the search for weak Pareto (resp. Pareto
optimum) of multi-objective convex optimization problem. The authors showed that even if the
convex feasible set is not necessarily described by cone-convex constraint, the Slater-type cone
constraint qualification? and additionally a mild non-degeneracy conditions (see Assumption 1
in the next section) render the KKT optimality conditions both necessary and sufficient. For
non-smooth versions of Lasserre’s result, see [6, 14]. A more recent exhaustive treatment of
constraint qualifications can be found in [23, 5].

Recently, Ho [8] went further in the case of scalar differentiable problems but moreover
without the convexity of the feasible set and of the functions that are involved, and necessary and
sufficient KKT optimality conditions are then considered in relation to the presence of convexity
of the level sets of objective function. The aim of this brief paper is to extend the Ho’results to
the problem (MOP). And in order to do that, we are going to consider the feasible point x* under
the question in which satisfies the following property:

Vx € X, 3t, — 07 such that x* + t,(x — x*) € X. (1.2.2)

Admittedly, some non-convex sets that satisfy the condition (1.4.1) will illustrate in Example 31
in Section 3. Further, we will see that the condition to impose on the cone constraints in this
paper suffers from of Ho’results in the point that the Slater’s condition® is non-necessarily to
be assumed. Actually, in order to prove our results we need to assume only non-degeneracy
at a point x*. The connections among non-degeneracy condition, Slater-type cone constraint
qualification, and Slater’s condition are investigated ones.

The rest of the paper is organized as follows. In Sect. ?? we recall some basic definitions and
points out important results that will be used later in the paper. Section ?? presents relation-
ships among constraint qualifications of multi-objective optimization problem (MOP) over cone
constraint (1.2.1) and establishes necessary and sufficient KKT optimality conditions for a feasi-
ble point under the question to be a weak Pareto minimum of (MOP). We finally give sufficient

“The feasible set X as in (1.2.1) is said to satisfy Slater-type cone constraint qualification [9] at x € X if there
exists x € R™ such that g(x) + Vg(x)(x — x) € —intQ.
3The feasible set X asin (1.2.1) is said to satisfy Slater’s condition if there exists x € R™ such that —g(X) € intQ.
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conditions for guaranteeing a weak Pareto minimum to be a Pareto minimum of the problem
(MOP).

In this section, we briefly overview some notations, basic definitions, and preliminary results
which will be used throughout the paper. All spaces under consideration are n-dimensional
Euclidean space R™. All vectors are considered to be column vectors which can be transposed
to a row vector by the superscript 7. A nonempty subset K of RP? is said to be a cone if t K C K
forallt > 0. For a set Ain R", by intA (resp. coneA) we will denote the interior (resp. conical
hull) of the set A. We say A is convex whenever tx; +(1—t)xo € Aforallt € [0, 1], %1, xg € A.
The normal cone to a closed convex set A at x € A, denoted by

N(A,x) :={ueR":u'(y—x) <0, Vy € A}.

Aset A C R" is called strictly convex at x € A if ul(y —x) < 0 for every y € A\{x} and
u € N(A,x)\{0}. Itis worth noting that the strict convexity of A at some point x does not
guarantee the convexity of A. For instance, the set A := {(z1,22)T € R?: 25, > 0} U{(0,0)T}
is strictly convex at (0, 0)7 while A is not convex.

For a closed convex cone K C RP, a vector valued function f := (f1,... ,fp)T :R* — RP
is said to be K-convex (K-pseudoconvex [1, 22]) at a point x* € R"™ if for every x € R"

f(x) — f(x*) — Vf(x")(x = x") € K

(resp. —Vf(x*)(x—x*) ¢ int K = f(x*)—f(x) € intK), where V f(x*) := (Vf1(x*),..., Vf(x*))"
, D, ka(x*> — (afk(X*) O fr(x*) 8fk(x*)>T

Or1 7 Oxze V777 Oxzp
is the n x 1 gradient vector of f at x*. If fis K-convex (K -pseudoconvex) at every point x* € R"
then f is said to be K-convex (resp. K-pseudoconvex) on R™.

Now, let us recall the following results which will be useful in the sequel.

is the pxn Jacobian matrix of f at x* and foreach k = 1,2, ...

Lemma 20. [9, Lemma 3.21, p. 77] Let K be a convex cone in RP.
(i) If K is closed, then

K={xcRl:x'z>0forallze K*}.
(i) If int K # 0, then
intK = {x € R? :x'z>0forallze K*\{0}}.

Lemma 21. [20, Lemma 1] Consider the problem (MOP). If x* € X is a weak Pareto minimum
of (MOP), then there exist A € K* and p € Q* not both zero such that

(}\TVf(x*) + uTVg(x*)> (x—x*) >0, Vz e R"
and
pe(x") = 0.

Now, we recall the following important result which can be found in [11] and will play a key
role in deriving a feasible point to be a weak Pareto minimum as well as a Pareto minimum of
(MOP).

Proposition 22. [11, Proposition 2.2.] Let f : R™ — R be differentiable at x* with V f(x*) # 0.
Then:
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() N(L7(x*),x") ={d € R" :d =rV f(x*), for some r > 0} provided that

Ly (x) = {x e R": f(x) < f(x")}

(i) N(Lf(x*),x*) ={d € R":d =rV f(x*), for some r > 0} provided that

Li(x") :={x e R": f(x) < f(x")}

We conclude this section by the following useful lemma, which will be crucial in the sequel.

Lemma 23. Let X be as in (1.2.1). Assume that the condition (1.4.1) is satisfied at a feasible
point x* € X. Then for every p € Q*\{0} for which u’'g(x*) = 0, one has

p ' Ve(x*)(v—x*) <0forallve X.

Proof. Suppose on contrary that there exists v € X such that (u? Vg(x*))(v — x*) > 0. Then,
by the first order approximation together with the condition (1.4.1), we can find some t,, small
enough such that

P8 + ta(v —x*)) = ple(x") + t,pu Ve(x) (v — x*) + o(t,) > 0, (1.2.3)

where 2 ( ) 5 0ast — 0T, and x*+t,(v—x*) € X. The latter means that —g(x* +t,(v—x*)) €
Q and consequentty, plg(x* +t,(v—x*)) < 0, which contradicts (1.2.3). []

In this section, we present the constraint qualifications that are used to derive the KKT con-
ditions for (MOP) and their connections. Afterward, we will establish necessary and sufficient
KKT optimality conditions for a weak Pareto minimum of (MOP). In addition, we also establish
sufficient conditions for guaranteeing a weak Pareto minimum to be a Pareto minimum of the
problem (MOP).

At first, we recall one of constraint qualifications the so-called non-degeneracy condition at
some feasible point x* € X in the vector setting, which introduced in [21].

Assumption 1 : (Non-degeneracy condition [21]) Consider (MOP), for every p € Q*\{0},
p''Ve(x*) # 0 whenever u’'g(x*) = 0.

Remark 24 (Sufficient condition for non-degeneracy condition to be valid). Note that if the Slater-
type cone constraint qualification at x* holds, then the non-degeneracy condition is satisfied at
x*. Indeed, if there exists x € R™ such that g(x*) + Vg(x*)(x —x*) € —int(), then for every p €
Q*\{0} for which uTg(x*) = 0, one has u” Vg(x*) (x—x*) = plg(x*) +pu’ Vg(x*)(x—x*) < 0
which implies that u? Vg(x*) # 0.

The following example shows that the Slater-type cone constraint qualification is not implied
by the non-degeneracy condition alone.

€ R?: 2y >0, 2 > 0} and g(x) =
= (

Example 25. Let x := (z1,72)7 € R% Q = {x
— —7,—1)T € —intQ, that is, Slater’s
2
x5

(23 + 13 — 21,71 — x2)T. We see that g( ,—2)
1 3z5+1
—1

condition holds. Also, one has Vg(x) = (_1 and a short calculation shows that the
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non-degeneracy holds at x* := (0,0)7 € X, while the Slater-type cone constraint qualification
is invalid at x*. In fact, we can not find out X := (21, #2)7 € R? such that

_",%1 + .’i’g - -1 1 :i‘l B . RO p
( Ty — Ty ) N ( 1 —1) (@) = g(x") + Vg(x)(x — x*) € —intQ.
]

Remark 26. The Slater’s condition can also be guaranteed by the Slater-type cone constraint
qualification at some point x* as well. To see this, it follows from the Slater-type cone constraint
qualification that Vg(x*)(x — x*) € —int@ — g(x*) for some x € R™. This together with the fact
that
g +1(x —x)) — 8(x")
t

where @ — 0ast — 0T, for some ty > 0 sufficiently small, it holds

— Ve(x') (k- x°) + oft),

g(x" + lo(x —x")) € (1 —1o)g(x") — toint@ C —intQ.
Hence, the Slater’s condition has been justified.

Now, we present some sufficient conditions for the Slater-type cone constraint qualification
to be valid.

Theorem 2. Let X be as in (1.2.1). Assume that the Slater’s condition holds and the condlition
(1.4.1) is satisfied at a feasible point x* € X. If the non-degeneracy condition holds at x*, then
the Slater-type cone constraint qualification also holds at x*.

Proof. Suppose that the non-degeneracy condition holds at x*. Assume on contrary that for
every x € R™, one has g(x*) + Vg(x*)(x — x*) ¢ —intQ, equivalently,

—[8(x) + V(<) (R" — x)] N intQ = .
So, by the Eidelheit separation theorem, there exists g € R™\{0} such that
ple(x*) + ' Ve(x*)(x — x*) + uly > 0, ¥x € R", Wy € Q. (1.2.4)

By taking x = x* and 'y = 0 in (1.2.4), we would have uTg(x*) = 0. Hence, with regard to (1.2.4)
with x = x*, we get pu € Q. Therefore, in view of (1.2.4), we find a vector p € Q*\{0} with
puTg(x*) = 0 such that

0 Vg(x) (x — x*) >0, Vx € R™. (1.2.5)
On the other hand, by assumption, there exists x € R™ such that —g(x) € intQ@. Then, since g is
continuous at x, there exists 7 > 0 such that g(x+ru) C —Q forallu €: = {x € R™: ||x|| < 1}.

Consequently, £ +ru € X forallu GD. So, as x* € X and x* satisfies the condition (1.4.1), we
conclude from Lemma 23 that

p'Ve(x)(x+ru—x") <0, Vue. (1.2.6)

In particular, put u = 0 ell, one has pTVe(x*)(x — x*) < 0. Thus, with regard to (1.2.5),
pr'Ve(x*)(x — x*) = 0, and hence we deduce from (1.2.6) that

p'Ve(x)u <0, Yu e .

So, uT'Vg(x*) must ultimately be zero vector, which contradicts the validity of non-degeneracy
condition at x*. ]
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Remark 27. In the absence of the condition (1.4.1) at x*, the validity of both Slater and the
non-degeneracy conditions at x* does not guarantee the validity of Slater-type cone constraint
qualification at x*. We note that, in Example 25, the condition (1.4.1) is invalid at x* = (0, O)T.

Remark 28. In the case of @ = R := {(z1,22,...,2m)" € R™ 1 2; >0, Vi=1,...,m},
non-degeneracy conditions at x* can be view as the Mangasarian-Fromovitz constraint qualifi-
cation® at x* and non-degeneracy conditions at x* in [12, 8] as well. Indeed,

Jv € R" such that Vg;(x*)"v < 0, Vi € I(x*)
<0 ¢ cone{Vg;(x*) :i € I(x)}
‘i’vlﬁ = (Ml?ﬂ’?? s num)T € RT\{O} with Mzgz(x*) = 07 L= 17 2a ..., M, ONne has Zﬂzv.gl(x*) 7& 07
i=1

and foreach i € {1,2,...,m}, by taking  := e;, where e; is the unit vector in R™ with the ith
component is 1 and the others 0, one has Vg;(x*) # 0 whenever i € I(x*). Note that Slater-
type cone constraint qualification at x* also is equivalent to the Robinson constraint qualification’
at x* [4, Lemma 2.99, p. 69]. Then, as the considered set {x € R", ¢;(x) <0, i=1,2,...,m}
is not necessarily convex, one can notice that Theorem 2 extends [5, Theorem 2.1] to non-convex
setting on the set {x € R", ¢;(x) <0, i =1,2,...,m}.

Now, we are in the position to give necessary and sufficient KKT optimality conditions for a
weak Pareto minimum of (MOP).

Theorem 3. Consider the problem (MOP) and let both Assumption 1 and the condition (1.4.1)
be satisfied at a feasible point x*.

(i) If x* is a weak Pareto minimum of (MOP) then x* is a KKT point.

(i) Conversely, if x* is a non-trivial KKT point with multipliers A and p, and L;T f(x*) is convex
then x* is a weak Pareto minimum of (MOP).

Proof. (i) Let x* € X be a weak Pareto minimum of (MOP). By Lemma 21, there exist A € K*
and p € Q* not both zero such that pu?g(x*) = 0 and

<)\TVf(x*) n uTVg(x*)) (x —x*) > 0, Vz € R". (1.2.7)
As the inequality (1.2.7) holds for every x € R", we conclude that
A'VE(x*) + u"Ve(x*) = 0 and p’g(x*) = 0.

Moreover, we assert that A = 0. Otherwise, it follows in turn that g # 0, which stands in
contradiction to Assumption 1, and therefore, XA # 0.
(i) Let x* € X be an arbitrary non-trivial KKT point, i.e.,

ATVE(x) + p''Ve(x*) = 0; p'g(x") =0,

“The set {x € R", g;(x) < 0, i = 1,2,...,m} is said to satisfy the Mangasarian-Fromovitz constraint
qualification [4] at x* if there exsits v € R™ such that Vg;(x*)Tv < 0 for each i € I(x*) := {i € {1,2,...,m}:
gi(x7) = 0}.

One says that the set {x € R™, g;(x) <0, i = 1,2,...,m} satisfies the Robinson constraint qualification
at x* if 0 € int{g(x*) + Vg(x*)(R" — x*) + R7"} when g(x) := (g1(x), g2(x), - . . , gm (x))T".
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for some non-zero vectors A € RP, pu € R™. This together with Assumption 1 implies that
ATVF(x*) must ultimately be non-zero vector. It can be seen that if the set Lr (x*) is empty,
then x* actually is a weak Pareto minimum of (MOP). In fact, if x* is not a weak Pareto minimum
of (MOP), there exists x € X such that f(x*) — f(x) € intK. So, by the virtue of Lemma 38,

ATf(x*) > ATf(x), which contradicts to the fact that L3z (x*) = 0. Let us consider in the case

L7 (X*) # 0. Applying Proposition 22() with f(x) := ATf(x), we obtain that
ATVE(x)(u—x*) <0, Yu € L5 (x). (1.2.8)
Therefore, by Lemma 23,
ATVE(x*) (v — x*) = = Vg(x*) (v —x*) > 0, W € X. (1.2.9)

Note that,
{y € R £(x) — fly) € intK} € L, (x").

Thus, in order to obtain that x* is a weak Pareto minimum of (MOP), it suffices to show that

X C R\ L3y (x*) or consequently, Ly (x*) N X = (). Suppose, ad absurdum, L3, (x*) N

X # (. Thus, from (1.2.8) and (1.4.5) we get the assertion AT Vf(x*)(w — x*) = 0 for any
wE L)\Tf( x*) N X. Furthermore, as the set L<Tf(x*) being open, for each d € R™ we can find
t > 0 small enough such that w +td € L3, (x*). Hence,

tIATVE(x*)d = AT VE(x") (w + td — x*) — ATVE(x") (w — x*) < 0.

This means AT Vf(x*) = 0, a contradiction. Thus, L (x*) N X =0, and x* is a weak Pareto
minimum of (MOP) as desired. [

We now demonstrate with the following an example to guarantee that Theorem 45 is indi-
cated to be conveniently applied in some cases where Theorem 3.1 and Theorem 3.2 of [21]
cannot be used even when the feasible set X" is convex.

Example 29. Consider the following muti-objective optimization problem (MOP) over cones:

K— Minimize f(z) := (z + 1,23 — 52% + 8z — 3)7
subjecttoz € X :={x € R: —g(x) € Q},

where g(z) == (v — 1,22 — 2z — )T, K = {(z;,2)T € R* : 2y > 0, x5 > 0} and
Q = {(x1,22)T € R? : 7y < 0,79 < 71}. A straightforward calculation shows that:

o X=[2+00),
[ ] K*:K’
o Q" ={(z1,22)" € R* 1 2, <0, 1y < —11},

e 1* := 2 satisfies the non-trivial KKT conditions by taking X := (2,0)7 and p := (1, —1)7,

Lr (2%) = (—00,2) is convex,

It is easily to seen that Assumption 1 and the Condition 1.4.1 are satisfied.
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Applying Theorem 45 (ii), we can conclude that z* is a weak Pareto minimum of (MOP). However,
it can be checked that g is not ()-convex, i.e.

g(1) —8(2) = Ve(2)(1-2) = (0,1)" ¢ Q,

but the feasible set X" is convex. Furthermore, the function f is not K-pseudoconvex at x* := 2,
because if we take x = 0 then

~Vf(z*)(x — 2*) = (2,0)" ¢ intK, but f(z*) — f(x) = (2,4)” € intK.
Hence, the corresponding results [21] is not applicable. U

Note that the multiplier vector p is assumed to be non-zero vector (the non-triviality of the
KKT conditions) in order to ensure that )\TVf(x*) # 0 in Theorem 45(ii). The following example
demonstrates that this assumption cannot be dropped.

Example 30. Let f(z) := (z + 1, — (2 — 2)3)T, g(x) := (22 — 1,22 — 1)T, K := {(21,22)T €
R? : xy > —xy, 11 > 0} and Q = {(z1,79)" € R?* : zy > xy, 1 > 0}. It is not hard to
check that X = [1,2], z* := 2 is a KKT point with X := (0, —1)7 and p := (0,0)7, and all the
conditions in Theorem 45 (i) are fullfilled. However x* is not even a weak Pareto minimum, i.e.,
if we take 2 := 3 then f(2*) — f(z) = (3,0)" = (3,5)" = (5, —%)" € intK. The main reason
is that 2™ is not a non-trivial KKT point. O

To appreciate Theorem 45 we present an example that is applicable while the aforemen-
tioned result in [21] is not.

Example 31. Consider the following multi-objective optimization problem (MOP) over cones :

K— Minimize f(z) := (22 — 1, —2® + 522 — 8z + 5)T
subjecttoz € X .= {z € R: —g(z) € Q},

where g(z) == (23 + 22 + 2,23 + 222 — 5z + 8)T, K := {(z1,22)T € R? 1 2, >0, w9 < 71}
and Q = {(z1,72)7 € R? : 21 < 0,25 < 21}. Evidently, f, and g are not K, and Q-convex,
respectively. Indeed, f(1)—f(0)—VF(0)(1-0) = (1,4)" ¢ K,and g(1)—g(0)—Vg(0)(1-0) =
(2,3)T ¢ Q. Itis easy to verify that X = [0,2] U [4, +00). Then we have already seen that the
feasible set X is not convex. Therefore, the results in [21] cannot be applicable. However, it is
not hard to verify that

o K*={(z1,20)T €R?: 13, <0, 29 > —11},

o Q" ={(z1, 1) €R?: 2, <0, 13 < —11},

e 1" := () satisfies the non-trivial KKT conditions by taking X := (1, —1)% and p := (—8,0)7,
e Assumption 1 and the condition 1.4.1 are satisfied,

o [T

Sre(@7) = (—00,0), which is convex.

Hence, Theorem 45 (ii) indicates that z* is a weak Pareto minimum of (MOP). O

Next, we will see now how the convexity of L,r¢(x*) together with the strict convexity of
Lyr(x*) at a non-trivial KKT point x* possess x* to be a Pareto minimum of (MOP).
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Theorem 32. Consider the problem (MOP) and let both Assumption 1 and the condition (1.4.1) be
satisfied at a feasible point x*. If x* is a non-trivial KKT point with multipliers X and p, Lyr¢(x*)
is convex, and additionally Lyr(x*) is strictly convex at x*, then x* is a Pareto minimum of
(MOP).

Proof. In a similar manner of the second argument as the proof of Theorem 45, by the KKT
conditions and Proposition 22(ii), we arrive at the following assertion

ATV (v — x*) > 0 > XTVF(x*) (U — x*), W € X,Vu € Lyre(x*), (1.2.10)
and )\TVf(x*) = 0. To establish the desired results, we argue first by using Lemma 38 that
{y e R" - f(x") — fly) € K\{0}} € Lyre(x")\{x"}.
Thus, we only need to justify this containment
A C R\ (Lyre(x)\{x"})

We argue by contradiction that there exists some w € X such that w # x* and w € Lyr(x").
Taking (1.4.6) into account we actually have

AT'VF(x*) (w — x*) = 0.

Furthermore, as AT Vf(x*) € N(Lyr(x*),x*)\{0} (by the second inequality in (1.4.6)) and
Lyr(x*) is strictly convex set, then AT Vf(x*)(w — x*) < 0. This is a contradiction, and thereby
implying that x* is a Pareto minimum of (MOP). []

Remark 33. In Example 31 with A := (1, —1)7, it is evident that Lyr¢(z*) is strictly convex at
x* := 0, by Theorem 50, and hence z* is a Pareto minimum of (MOP) (see the below figure).

fng T f(@*) N(X) = {f(z"))

f([0,2])
3 - f1

-1

In Example 31, z* := 0 is a Pareto minimum of (MOP).

Remark 34. It should be noted that to obtain a Pareto minimum from a drawback (see [9, 21]
and other references therein), the multiplier vector A in KKT conditions need to be taken from
the strict positive dual cone of K, K*", which defined as

K :={zcR":x"z>0forallx € K\{0}}.

However, in this case study the multiplier vector X is not necessarily to take from the strict
positive dual cone. In fact, as K defined in Example 31 and A := (1, —l)T, Then elementary
calculations give us

K = {(z1,22)T € R*: 2, >0, 5 > —21}

and so, A ¢ K%,
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Now we give an example showing that the strict convexity of Lyr¢(z*) with corresponding
multiplier A is essential for x* under the question to be a Pareto minimum of (MOP) in Theorem
50.

Example 35. Letx := (71, 72)7 € R?, f(x) := (23, m0—21)7, g(x) := (—23 43z, +19, 11 —79)
and K =@ :={x € R?: 2, <0, 29 > 0}. It is easy to check that the feasible set X’ is not

convex and the condition (1.4.1) is valid at x* := (1,1)7 € X. Then elementary calculations
give us
° K* — Q* — K,

o 26) = (3,07, V) = (1 L) )ot) = 07 v = (2 ),

e x* satisfies Assumption 1 and the non-trivial KKT conditions by taking A = p := (0,1)7,

o L5 () = {(z1,22)" € R? 12y < 21} and Lyre(x*) = {(w1, 12)" € R? 1wy <1} are

convex sets.

By Theorem 45 (i), we can conclude that x* is a weak Pareto minimum of (MOP). However, the
set Lyr¢(x*) is not a strictly convex set at x*, i.e., it is clear that N (Lyr¢(x*),x*) = {(—r,7)’ €
R? : r > 0}. So, by taking u := (—=1,1)T € N(Lyr¢(x*),x*)\{(0,0)7} and y := (2,2)T €
Lyr(x*)\{(0,0)"}, uT(y — x*) = 0. Actually, a point x* is not even a Pareto minimum, i.e., if
we take x := (=2, —2)T € X, one has

f(x*) — f(x) = (=3,0)" € K\{(0,0)"}.

Remark 36. It is worth noting that the convexity of L3 (x*) (resp. Lyr¢(x*)) in Theorem 45
(resp. in Theorem 50) can be viewed as a generalized quasiconvexity of f at x* due to the
notion of x-quasiconvexity [10] in the sense that for each A € K* the function ATf : R* — R
is quasiconvex®. It is quite clear from the definition that x-quasi-convexity of f guarantees the
convexity of the level set L3y (x*) or of Lyr¢(x*). In fact, the function f in Example 35 is not a
*x-quasiconvexity, i.e., by taking A := (=1,1)7 € K* and x := (1,1)%, the sublevel set L;(x)
is non-convex. For related conditions for cone quasiconvex mappings we refer the reader to
[13, 16, 3].
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1.3  Characterizing robust weak sharp solution sets of convex
optimization problems with uncertainty

The notion of a weak sharp minimizer in general mathematical programming problems was first
introduced in [1]. It is an extension of a sharp minimizer (or equivalently, strongly unique mini-
mizer) in [2] to include the possibility of non-unique solution set. It has been acknowledged that
the weak sharp minimizer plays important roles in stability/sensitivity analysis and convergence
analysis of a wide range of numerical algorithms in mathematical programming (see [3, 4, 5, 6, 7, 8]
and references therein).

In the context of optimization, much attention has been paid to concerning sufficient and/or
necessary conditions for weak sharp minimizers/solutions and characterizing weak sharp solution
sets (of such weak sharp minimizers) in various types of problems. Particularly, the study of
characterizations of the weak sharp solution sets covers both single-objective and multi-objective
optimization problems (see,[9, 10, 11, 12] and references therein) and, recently, is extended to
mathematical programs with inequality constraints and semi-infinite programs (see, e.g., [13, 14]).
As it might be seen, the study of characterizations of the weak sharp solution sets has been
popular in many optimization problems. How about the issue of this study, particularly,in a
robust optimization?

Robust (convex) optimization has been known as an important class of convex optimization
deals with uncertainty in the data of the problems [15, 16]. The goal of robust optimization is to
immunize an optimization problem against uncertain parameters in the problem. In the last two
decades, it has been through a rapid development owing to the practical requirement and its
effective implementation in real-world applications of optimization.(see, e.g., [17, 18, 19, 20, 21]
and the references therein). A successful treatment of the robust optimization approaches to
convex optimization problems under data uncertainty was given in ([15, 16, 22, 23, 24]).

While the characterizations of optimal solution sets have been in the limelight presently,
there has been no research concerning the characterizations robust weak sharp solution sets for
such problems. Indeed, a robust weak sharp solution of an uncertain optimization problem is
the weak sharp minimizer of the robust counterpart of such problem. Our main goal in this paper
is to establish characterizations of the robust weak sharp solution set of the convex optimization
problem under the data uncertainty.

This paper is organized as follows. In section 2, we recall the basic definitions. In Section 3,
we establish necessary conditions for a robust weak sharp solution, constancy of Lagrangian-type
function on the robust weak sharp solution set, and some characterizations of robust weak sharp
solution sets are established respectively. Some properties of subdiferentials of convex functions
and the (RSCQ), which was introduced in [24], are employed in the section. Finally, in section
4, we consider the characterizations of the robust weak sharp weakly efficient solutions for the
multi-objective optimization problem under data uncertainty.

Throughout the paper, let R",n € N, be the n-dimensional Euclidean space, and the inner
product and the norm of R™ are denoted respectively by (-,-) and || - ||. The symbol B(z, )
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stands for the open ball centered at € R"™ with the radius » > 0 while the Bgn stands for
the closed unit ball in R™. For a nonempty subset A C R", we denote the notations of the
closure, boundary and convex hull of A by clA, bdA, and coA, respectively. In particular, when
Ar € E C R"forevery A > 0 and every x € E, the set E in R" is said to be a cone. A dual
cone E* of the cone E'is given as E* := {x € R" : (z,y) > 0forall y € E'}. Observe that
the dual cone E* is always closed and convex (regardless of F).

In general, for a given nonempty set A C R", the indicator function 64 : R" — R U {+00}
of A and the support function 04 : R"™ — R U {+00} of A are, respectively, defined by

5a(2) 0, if v € A,
x =
4 +00, otherwise,

and

oa(x™) :=sup(z*, ).
z€A

The distance function d4 : R™ — R, : [0, 4+00) is defined by
d = inf ||z — y||.
az) = inf Jlz =y

A normal cone of the set A at the point x is the following set:

Naa) {yeR": (y,a—z) <0foralla € A}, ifzxe€ A;
xTr) =
4 0, otherwise.

The normal cone N4(z) is always closed and convex for any set A.
For any extended real-valued function h : R" — R := [—o00, +00] the following notations
stand, respectively, for its effective domain and epigraph:

domh := {z € R" : h(z) < +o0},

and
epih = {(z,r) e R" xR : h(z) <r}.

The function h is said to be a proper function if and only if h(x) > —oo for every z € R™ and
domh is nonempty. Further, it is said to be a convex function if for any z,y € R™ and A € [0, 1],

h(Az + (1 = AN)y) < Ah(z) + (1= A)h(y),

or equivalently, epih is convex. On the other hand, the function A is said to be a concave function
if and only if —A is a convex function. In the case of vector valued function, let A : R" — RP
be a given function and D C RP is a convex set. The function h is said to be D-convex if and
only if for any ,y € R™ and A € [0, 1],

Rz 4 (1= N)y) — M(z) — (1 = Ah(y) € —D.

Simultaneously, the function h is called a lower semicontinuous at x € R™ if for every sequence
{zx} € R" converging to z,
h(z) < li;n inf h(zg).
—00

Equivalently,
h(xz) < liminf h(y),

Yy—T
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where the term on the right-hand side of the inequality denotes the lower limit of the function

h defined as m
liminf h(y) =lim inf h(y).
im in @)7%%§m)@>

For any proper and convex function h : R" — R, the subdifferential of h at & € dombh, is
defined by
Oh(z) :={£ e R": ({,x — ) < h(z) — h(z),Vz € R"}.

More specifically, for each € > 0, the e-subdifferential of h at & € domh, is defined by
Oh(z):={£ eR": ({,z — ) < h(x) — h(Z) +¢,Vz € R"}.

It is obvious that for € > &', we have d.h(z) C 0.h(z). In particular, if h is a proper lower
semicontinuous convex function, then for every & € domh, the e-subdifferential 0.h(Z) is a
nonempty closed convex set and

On() = () 0-h(2).
e>0
If z ¢ domh, then we set Oh(z) = (). Simultaneously, for the nonempty subset A of R™ we get
85A(1’) = NA(SL‘) and adA(l‘) = Bgrn N NA<$)
The conjugate function h* : R® — R of any h : R® — R is defined by

B (a*) = sup{(a",z) — h(x)}

zeR™

for all z € R™. The function h* is lower semicontinuous convex irrespective of the nature of h
but for h* to be proper, we need h to be a proper convex function.

Next, let us recall some basic concepts dealing a DC problem/programming. A DC function
is the difference of two convex functions. The minimization (or maximization) problem of a DC
function is called a DC problem, i.e., the DC proplem concerned about finding

inf h(z) = f(z) - ¢(x)

z€R™

where f,¢ : R" — R are convex. Note that the function h is DC and it is not expected to be
convex.

It shall be found later that some DC problems are considered and their properties, in particular
the following lemma, are employed.

Lemma 37. [25] Let hy, ho : R — R be two proper lower semicontinuous convex functions.
Then

1. Apoint £ € dom hy N dom hy is a (global) minimizer of the DC problem :

inf {hy(x) — ha(x)}

zeR™

if and only if for any € > 0, 0.ho(2) C 0-h1(2).
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2. If £ € dom hy N dom hy is a local minimizer of the DC problem :
inf {I(2) — ha(a)}

then Ohy(Z) C Ohy(Z).

Lemma 38. [19] Let Y C RP be a convex compact set, and f : R® x R? — R be a function
such that, f(-,u) is a convex function for any u € U, and f(z,-) is a concave function for any
z € R™ Then,

0 (maxf(-,u)) @)= U )c’)f(-,u)(fc),

ueU
uelU (&

where

ueU

U(d) = {u cU: fa,0) = maxf(:i“,u)} .

Let C' C R™ be a nonempty closed convex set. Let D C RP be a nonempty closed convex
cone. Consider the following convex optimization problem:

min f(z) st. x € C,g(z) € =D (P)

where f: R™ — R is a convex function and ¢g : R” — R™ is a D-convex function. The feasible
set of (P) is defined by
Ky:={zxe€C:g(x) € =D}.

The problem (P) in the face of data uncertainty both in the objective and constraints can be
captured by the following uncertain optimization problem :

min {f(xz,u) : x € C,g(z,v) € =D}. (UP)

where Y C RP and ¥V C RY are convex and compact uncertainty sets, f : R* x U — Ris a
given real-valued function such that, for any uncertain parameter u € U, f(-,u) is convex as
well as f(x,-) is concave for any z € R", g : R" x V — R™ is a vector-valued function such
that, for any uncertain parameter v € V, g(+,v) is D-convex as well as g(z, -) is D-concave for
any x € R™. The uncertain sets can be apprehended in the sense that the parameter vectors u
and v are not known exactly at the time of the decision.

For examining the uncertain optimization problem (UP), one usually associates with its robust
(worst-case) counterpart, which is the following problem:

min {rqrgdcf(x,u) cx € C g(x,v) € —=D,Yv € V} : (RUP)
It is worth observing here that the robust counterpart, which is termed as the robust optimiza-
tion problem, finds a worst-case possible solution that can be immunized opposed the data
uncertainty.
The problem (RUP) is said to be feasible if the robust feasible set K is nonempty where it is
denoted by
K:={zxeC :g(z,v) € =D,Vv € V}. (1.3.1)

Now, we recall the following concept of solutions, which was introduced in [26].

Definition 39. [26] A point & € K is said to be a robust optimal solution for (UP) if it is an optimal
solution for (RUP), i.e., forall z € K,

— 7 > .
max f(z, u) —max f(z,u) 2 0
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The robust optimal solution set of (UP) is the set which consists of all robust optimal solutions
of (UP) and is given by

= : < .
S {wGK max f(z,u) < max f(y, u), VyEK}

In this paper, using the idea of weak sharp minimizer, and the robust optimal solution,we
introduce a new concept of solutions for (UP), which related to the sharpness, namely the robust
weak sharp solution.

Definition 40. A point £ € K is said to be a (or an optimal) weak sharp solution for (RUP) if
there exist a real number 17 > 0 such that for all x € K,

— 7 > nd~
max f(z,u) —max f(z,u) > ndg(v)

where K := {x € K : Tgff(x’u) = rilgd(f(:c,u)} :

Definition 41. A point € K is said to be a (or an optimal) robust weak sharp solution for (UP)
if it is a weak sharp solution for (RUP). The robust weak sharp solution set of (UP) is given by

S = {:% € K:dnp>0st magf(y,u) — nlz%j(f(fc,u) > ndz(y), Yy € K} .
ue ue

Throughout the paper, we assume that S'is nonempty.

Remark 42. It is worthwhile to be noted that every robust weak sharp solution for (UP) is a robust
optimal solution. In general, the reverse implication need not to be valid.

1.4 Characterizations of robust weak sharp solutions

In this section, we establish some optimality conditions for the robust weak sharp solution in
convex uncertain optimization problems as well as obtain characterizations of the robust weak
sharp solution sets for the considered problems. Forany 2 € R", we use the following notations:

U(i) = {u eU: f(3,4) = maxf(gz,u)} ,

ueU

and

V() = {@ eV:g(d,b) = maxg(:i",v)} .

veEY

The following definition, which was introduced in [24], plays a vital role in determining charac-
terizations of robust optimal weak sharp solution sets.

Definition 43. [24] The robust type subdifferential constraint qualification (RSCQ) is said to be
satisfied at z € K if

D0k (2) C (@) + | o) 0)(#).
neD* veY
(ng)(&,v)=0
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Remark 44. In an excellent work, [24], Sun et. al. introduced the (RSCQ) and then obtained some
characterizations of the the robust optimal solution set, for an uncertain convex optimization
problem.

Although it has been used as a guideline for dealing with the (UP), our attention is paid to
characterizing the sets containing the robust weak sharp solutions of such problem. Furthermore,
the presence of the term d () in this paper has led us to deal with some different tools and
methods from those in work of Sun et.al.

The following theorem presents that the robust type subdifferential constraint qualification
(RSCQ) defined in Definition 43 is fulfilled if and only if optimality conditions for a robust weak
sharp solution of (UP) are satisfied.

Theorem 45. Let f : R" x R? — R and g : R” x RY — R™ satisfy the following properties :

1. foranyu € U and v € V, f(-,u) is convex and continuous as well as g(-,v) is D-convex
on R™;

2. forany x € R, f(x,-) is concave on U and g(x, ) is D-concave on V.
Then, the following statements are equivalent:
(@) The (RSCQ) is fulfilled at 7 € K;

(b) z € R™is a robust weak sharp solution of (UP) if and only if there exists a positive constant
7 such that

c | artw@ +asc@+ | ok 0) (@) (14.1)
u€U() neD* vey
(ng)(2,v)=0

Proof. (a) = (b) Assume that the (RSCQ) is satisfied at & € K. Let & be a robust weak sharp
solution of (UP). Consequently, there exists n > 0 such that

max flz,u) — max f(@,u) > ndg(z). (1.4.2)

By (1.4.2), we obtain that for all z € K,
max f(z,u) + 0x (x) — ndg(z) = max f(Z, u)

thereby implying that, for all £; € Ond (),

(1 )+ ) (o) = (e )+ ) (@)
>ndg(r) —ndz(2)
> (&g, x — T).

Thus, & € 0 (max,ey f(-,u) + dk) (). Hence,

00z )(0) < 0 (a1, + 6 ) 2),
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As max f(-,u) is continuous on R™and dx is proper lower semicontinuous convex on R”, we
uel

have
D(ndz)(2) € Dmas f(,w)(2) + 055 (2).
It can be noted that 0dz (x) = N (2)NBgn. Since (RSCQ) is satisfied at &, we have the following:
Ni(z) N Brr = 0(nd)(Z)
< U artw@ + i@+ |J 9, 0) (@),
weU(Z) neD* veY
(1g)(&,0)=0

which implies that (1.4.1) holds.
Conversely, assume that there is a positive number 7 such that (1.4.1) holds. Since Nz ()N

nBg~ always contains 0, it is a nonempty set and so is ﬂ 0-(ndz)(Z). Thus, for any € > 0,
O:(ndz)(z) # 0. Let € > 0 be arbitrary and let £ € 88(77;[;0) (Z). Then forany x € K,
ndp(z) —ndz(2) > (v —2) —«. (1.4.3)
Note that 0 € 0.(ndz(Z). It follows that
ndz(z) < xiengn ndg(x) +¢ < ;g’( ndz(x) + €.
Above inequality and (1.4.3) imply that
0> (& x—1)—e. (1.4.4)

Simultaneously, there exist & € U(Z), it € D*,0 € V(z)
1 € OF (-, 0)(2), & € BBc(2), and €, € ((29)(-+9)) (2) such that

§r+&+E&y =0, (1.4.5)

and for any x € R", we have

Adding these above inequalities implies that for each x € K
fz,0) = f(2,4) + (hg)(2,0) = (ig)(#,0) = (0,2 — &) = 0.
Since @ belongs to U(z), for each x € K, above inequality becomes
max f(z,u) — max f(z,u) + (ig)(2,0) — (ig)(2,0) = 0.
This along with (f1g)(x,0) <0, (f1g)(&,0) = 0, and (1.4.5) imply

— ) >
max [z, u) max f(z,u) >0, (1.4.6)

for all z € K. Observe that, combining inequalities (1.4.4) and (1.4.6) leads to

_ 5 > — 5\ —
max f(z,u) —max f(z,u) 2 ({2 — &) —¢, Vo € K.
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This means £ € 6€(mad< f(-,u))(2), and so O-(ndz)(z) C 8€(ma&< f(-,u))(2). Since the inclu-
ue uc
sion holds for arbitrary € > 0, it follows from the Lemma 37 that & is a minimizer of the DC

problem: ian {mag{c f(z,u) —ndz(z)} and hence for any z € K
zeR™ ~ ue

max (2, u) —max f(&,u) — (ndg(x) = ndg(2)) = 0.

Therefore, for any x € K,

— 7 > ~
max f(z, u) —max f(z,u) > ndg(z).

This means 2 is a robust weak sharp solution of (UP).
(b) = () Let & € DIk (Z) be given. Then, we have
0 =0k (r) = 0x(Z) = (&, 2 — &)
holds for all z € K. Let ) > 0 be given, and then, set f(x,u) := —(&5,x) + ndz(z). Thus, for

any r € K,

max f(z,u) —ndg(x) = — (&,

uel

Thus, 2 is a robust weak sharp solution of (UP). By hypothesis, there is 1 := 7 such that (1.4.1)
is fulfilled. Since for any w € U,0f(-,u)(z) C {=&} + A(ndz)(z), we obtain that for any
r* € Ni(Z) NnBgn, there exist & € U(2),0 € V and i € D* such that

wt € {=&} + 0(ndg)(2) + 90 () + 0 ((ag)(-, 0)) (£) and (fig)(E, 0) = 0.

As 0 € Nz(Z) N nBgn, we obtain

& € 90c () + 0 ((Ag)(+ 0)) (£) and (fg)(Z, 0) = 0.

It follows that
&Gedo@+ | 0((ug)(v) (@),

neD* veY
(1g)(&,v)=0

and so we get the desired inclusion. Therefore, the proof is complete. []

Remark 46. In [27], the necessary conditions for weak sharp minima in cone constrained op-
timization problems, which can be captured by weak sharp minima in cone constrained robust
optimization problems, were established by means of upper Studniarski or Dini directional deriva-
tives. With the result in Theorem 45, the mentioned necessary conditions are established by an
alternative method different from the referred work.

The following result is established easily by means of the basic concepts of variational anal-
ysis.

Corollary 47. Let f: R®" x R? — R and g : R™ x R? — RP? satisfying the following properties:
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1. foranyuw € U,and v € V, f(-,u) is convex and continuous as well as g(-, v) is D-convex
on R™;

2. forany x € R™, f(x,-) is concave on U and g(z, -) is D-concave on V, respectively.
The following two below statements are equivalent:
(@) The (RSCQ) is fulfilled at = € K;

(b) £ € R™ is a robust weak sharp solution of (UP) if and only if there exists a real number
n > 0 such that for any 2* € Nz (&) N nBgn, there exist & € U(£),0 € V and fi € D*
yield

ot € Af (-, 4) + 85c(2) + 8 ((ig) (-, 0)) (&), and (jig) (i, &) = 0. (1.4.7)

The result, which deals with a special case that U and V are singleton sets, can be obtained
easily and be presented as follows:

Corollary 48. Let f : R®™ — R is convex and continuous and g : R® — R™ is D-convex. The
following statements are equivalent:

1. The (SCQ) is fulfilled at € K

2. £ € R™is a weak sharp solution of (P) if and only there exists a real number 1 > 0 such
that for any 2* € Nz (Z) N nBgn, there exist fi € D* such that

ot € 0f (&) + 06c(&) + O(fug) (&) and (fug) (&) = 0. (1.4.8)

Next, a characterization of robust weak sharp solution sets in terms of a given robust weak
sharp solution point of our considered problem is also illustrated in this section. In order to
present the mentioned characterization, we first prove that the Lagrangian-type function associ-
ated with fixed Lagrange multiplier and uncertainty parameters corresponding to a robust weak
sharp solution is constant on the robust weak sharp solution solution set under suitable condi-
tions. In what follows, let uw € U, v € V and p € D*. The Lagrangian-type function L(+, , u, v)
is given by

L(z, p,u,v) = f(x,u) + (ug)(z,v), Vo € R™

Now, we denote by

S = {a: € K:3dn>0st. mEaZj(f(y,u) > meazjif(x,u) +ndz(y), Yy € K}.

the robust weak sharp solution set of (UP), and then we prove that the Lagrangian-type function
associated with a Lagrange multiplier corresponding to a robust weak sharp solution is constant
on the robust weak sharp solution set.

Theorem 49. Let & € S be given. Suppose that the (RSCQ) is satisfied at Z. Then, there exist
uncertainty parameters & € U, v € V, and Lagrange multiplier ft € D*, such that forany z € S,

(ig)(z,9) = 0, @ € U(z), and L(x, fi, @, ) is a constant on .
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Proof. Since z € S with the real number n > 0 and the (RSCQ) is satisfied at this point z, by
Theorem 45 we have that (1.4.1) holds for 7 := 1. Clearly Nz(Z) N nBr~ contains 0, then it is
nonempty and so is any 0.(ndz)(Z) where € > 0. Let € > 0 and 2* € 0.(ndz)(&) be arbitrary.
Again, we obtain that there exist 4 € U, € V and i € D* such that (1.4.1) is fulfilled. Let
x € S be arbitrary, then we have

and so
Faya) = F(o )+ (ig) (@, 0) — (ig)(3,0) > (2", 2 — ) — <. (149
Since f(-,u) and g(-,v) are convex, for all u € U and v € V respectively,

z" € 0.(f( u) + Ag(-,v))(2).

Therefore, we obtain 0:(ndz)(2) € 0- (f(-,u) + Ag(+,v)) (&), and so

fla @) + (Ag)(x, 0) —ndg () > f(2,4) = max f(z,u). (1.4.10)

Note that, as z € §, there exists 179 > 0 such that

g ~ ~
max f(y,u) > max flz,u) +mdi(y), Yy € S,

and so
max f(&,u) > max f(z,u) + 1n2d3(2) = max f(z,u). (1.4.11)

ueU ueU uel

From i1 € D*, g(x,0) € —D, and (1.4.10), it is not hard to see that
(ig)(z, ) = 0. (1.4.12)
Then, by (1.4.10) and the positivity of ndz(x), we see that

max f(z,u) 2 f(z,a) 2 max f(&,u) +ndg(v) = max f(z, u), (1.4.13)

which together with (1.4.11) leads to

I}ngd(f(m,u) = f(z,u). (1.4.14)

It follows that L(x, 1,4, ) = f(&, @), which is constant. Since z € S was arbitrary, we finish
the proof. []

Theorem 50. For the problem (UP), let S be the robust weak sharp solutions set of (UP) and
Z belongs to it. Suppose that the (RSCQ) is satisfied at & € S. Then, there exist uncertain
parameters & € U, v € V and Lagrange multiplier ji € D* such that

3 :{x €K :3n>0,3 € 0.£(.0) (&) N Of (i) (x), 3 > ndz(z),

(&5, @ — ) = ndg(2), (ng)(z,0) = 0,max f(z,u) = f(z, ﬂ)}- (1.4.15)
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Proof. (C) Letx € S be given. Then there exists 7 > 0 such that (1.4.1) holds. Hence, there
exist &y € Of (-, 1) (x),& € 06c(2) and &y € O ((1g)(+,0)) () such that

0=~E&r+ & + &y since 0 € Ni(2) N nBgn, (1.4.16)

and
(f9)(&,0) = 0. (1.4.17)

Since & € A0c(#) and &, € A((fig) (-, ))(2),
5o (e) — 60(2) + (ig) (@, ) — (79)(2,0) > (6 + Eag e — 2). (14.18)
By the same fashion in the proof of Theorem 45, we have
(g)(x,0) = (fig)(%,0) = 0,
and

max f(z,u) = f(z,0).

ueU

Therefore, it follows from (1.4.18) that
0> (& + &ugrz — 3),
and so by (1.4.16), we obtain
ndg(r) > (&, & — ).
Simultaneously, since £ € Of (-, 4)(Z), we have
&r, 2 —x) > f(z,u) — f(x,q).

By (1.4.14) in the proof of Theorem 45, we obtain

(&r, & —x) > max f(z,u) — I}}gg{(f(%,u) >0 =ndz(x). (1.4.19)

Hence, we have that ({7, & — x) = ndz(z). Now, we prove that for {; € 0. f(-,1)(z), there is
an € > ndg(x) > 0. In fact, we can show that for any y € R",

Ery—m) =y —2)+ &t —x) <€y — 1)
as ({5, —x) <0.Since & € Of (-, ) (2) and f(z,u) = f(&,u) by (1.4.13) and (1.4.11),
<ff,y_1‘> < f(y,ﬂ)—f(:f,fb) :f(y,fb)—f(l‘,ﬂ),

which means &y € Of (-, u)(z).
(D) Let

= {x € K : 3> 0,36 € 0.£(-,a)(&) N O-f (-, a)(x), 3e > ndz(z),

(&5, = &) = ndg(2), (ng) (2, ) = 0, max [, ) = f(2,0) }.

ueld
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Since & € S, it is clear that ndz(2) = 0. By assumption and &; € 0. f (-, 0)(x) for some € > 0,
we get

—ndg(2) =0

:<£f,SAC—JI> ndK( )

< f(@,a) — f(=, )+€—77d (z)

= f(&,a) = f(z,a) — ndg(x) + ndg(z)

= f(z,4) — f(z,q). (1.4.20)
Therefore, we obtain

<
max f(z, u) < max f(z, u) + 17dg(2).

Since 2 € Sand z € K, the conclusion that x € S is satisfied. []

In the case that D := R, which is a closed convex (and pointed) cone in R, the problem
is reduced to be an inequality constrain problem. Suppose that f : R” x &/ — R is a function
such that f(-,u) is convex for any u € U and f(z,-) is concave for any = € R" as well as
g : R" xV — Ris a function such that g(+,v) is convex for any v € V and g(z, -) is concave
for any x € R™. Here, the problem (UP) is represented as

min { f(z,u) : g(x,v) <0, Yv € V},

and its robust counter part is

min {maxf(x u):g(x,v) <0, Yo € V} :

uelU
In this case, we can see that robust feasible set K is denoted by

K :={z eR" : g(z,v) <0,Yv e V}.

1.5 Applications to multi-objective optimization

In this section, in order to apply our general results of the previous section, we investigate the
class multi-objective optimization problem

min {(f1(x), fa(z),..., filx)) 1z € C,g(x) € =D}, (MP)

TeR™

where where C' C R" is a nonempty convex set,D C R™, f; : R™ — R is a convex function for
any i € [ and g : R® — R™ is a D-convex function. The feasible set of (MP) is defined by

Ky:={zxe€C:g(x) e —=D}.

The problem (MP) in the face of data uncertainty both in the objective and constraint can be
captured by the following multi-objective optimization problem

910161]% {(fi(z,w1), fo(z,ua),. .., filz,w)) : x € C,g(x,v) € =D}, (UMP)
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where f; : R" xRP —- R4 =1,...[, andg : R" x R? — R™. u;,2 = 1,...,l, and v are
uncertain parameters, and they belong to the corresponding convex and compact uncertainty
sets U C RP, and ¥V C RY. Suppose that for any u; € U;,i € I, the function f;(-, u;) is convex
on R™ and for any = € R™, f;(z,-) is concave on U;, i € 1. Besides, suppose that for any v € V,
the function g(+, v) is D-convex on R™ and for any € R™, g(z, -) is D-concave on V.

Similarly, we obtain some characterizations of the robust weak sharp weakly efficient solutions
of (UMP) by using investigation of its robust (worst case) counterpart:

min { (max filx,uy),. .. , nax filx, ul)) cx € Cg(x,v) € —D} (RUMP)

zER™ u1 €U
where the robust feasible set of (UMP) is also defined by
K:={zxeC:g(x,v)e-D,}.

Now, we recall the following concepts of robust weak sharp weakly efficient solutions in
multi-objective optimization, which can be found in the literature; see e.g.,[21] and [12].

Definition 51. [21] A point £ € K is said to be a weakly robust efficient solution of for (UMP)
if it is a weakly efficient solution solution for (RUMP) i.e., there does not exist € K such that

max filz,u;) < max fi(z,u;), forallie I.

Definition 52. [12] A point feasible element Z is said to be a weak sharp efficient solution for
(MP) if there exists a real number n > 0 such that for any z € K

max { fr(z) — fu(2)} > ndp(x)}

1<k<l
where K = {z € K : f(z) = f(2)}.

Now, we introduce a new concept of solution, which related to the sharpness, namely the
robust weak sharp weakly efficient solutions.

Definition 53. A point 2 € K is said to be a weak sharp weakly efficient solution for (RUMP) if
and only if there exist a real number 1 > 0 such that there does not exist y € K \ {Z} satisfying

max f;(y,w;) — mag{( fi(@,w;) < ndg(y), forallie I,
u; €U;

u; EU;

or equivalently, forall z € K

max {max fi(z,u;) — max fz(i,ul)} > ndz(x)

icl u; EU; u; EU;

uel

where K := {x € K :max f;(x,u) = max fi(Z,u),i € I} .
U

Definition 54. A point £ € K is said to be a robust weak sharp weakly efficient solution for
(UMP) if it is a weakly weak sharp weakly efficient solution for (RUMP).

The following lemma is useful for establishing our results in this section.
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Lemma 55. [30] Let Uy, . .. ,U; be nonempty convex and compact sets of R? and for any u; €
U;,i € I, thefunction f;(-,u;) : R™ — R be convexas well as forany z € R”, fi(z,:) : U; — R
be concave where i € I. Then, forany \; > 0,7 € I,

0 ( ma>b<{_ R Z)\zfz(auz)> (i") = U Z)\i (fz(vUZ)) (5%)7
uGHiEI (&) il uenielu’i(i) icl
where

[Tw@) = {(al, i) e []u

i€l i€l

DY ONSild ) = L Z)\ifi(fﬁyui)}
T Ger

el

Now, by using the similar methods of Section 3, we can characterize the corresponding robust
weak sharp weakly efficient solutionss of (UMP).

Theorem 56. Let f : R" x R? — R!and g : R™ x R? — R™ satisfying the following properties:

1. forany u; € U;,1 € I and v; € V;,j € J, fi(-,u;) is convex and continuous as well as
g(-,v) is D-convex on R™;

2. forany x € R", f;(x,) is concave on U;,i € I and g(x,-) is D-concave on V.
Then, the following statements are equivalent:
(a) The (RSCQ) is fulfilled at = € K;
(b) € R™is a robust weak sharp weakly efficient solutions of (UMP) if and only if there exists

n > 0 such that for any * € Nz(Z) N nBgn, there exist u; € U;(2),0; > 0,1 € I, not
all zero, v € V, and i > 0 such that

0€ {2} + > 6:(0fi(-,d)(@)) + 0o (@) + 0 (1) (- 9)) (&) (1.5.1)
i€l
(Hj9;)(2,7;) = 0, (1.5.2)
and

Proof. (a)=-(b) Assume that the (RSCQ) is satisfied at & € R™. Let & be a robust weak sharp weakly
efficient solutions of (UMP) i.e., there exists > 0 such that there does not exist y € K \ {z}
satisfying

max f;(y, u;) — max fi(@,u;) < ndg(y), forallie I,

u; EU;
or equivalently, forany z € K,

max {max fi(z,u;) — max fz(i,ul)} > ndz(x). (1.5.4)

el u; EU; u; €U;
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By (1.5.4), there is s € I such that forall z € K,

max fo(z, us) + 0k (v) — ndg(x) = max f(Z, us)

= max f(Z,us) + I (2) — ndz(2). (1.5.5)

usEUs

Besides, according to (1.5.5), we follow the techniques used in Theorem 45 and obtain that for
any £ € Ondg(x),

(€2 — 1)
< max fs(x,us) + o (x) — max fs(Z,us) — 0k (T). (1.5.6)
Therefore,
Ond)(&) € 0 (mzji fulew) + aK) (@), (157)

Note that the right hand side term of above inclusion is in the subdifferential of the max function:

6(x) = max ¢y () = max (maX fi(-,ui)+§K) (2).

el el u; EU;

Due to the well-known fact, subdifferential of maximum of functions at x is the convex hull of
the union of subdifferentials of the active functions at z, the inclusion (1.5.7) becomes

A(ndg)(2) € co (U{0¢i(2) : ¢i(2) = o(x)}),

thereby

B)C Y 0i0¢i(i)
i€l(2)

where g; > 0,4 € I(z) with Z o;=1and [(2) := {k € I : ¢(Z) = ¢(Z)}. Further, setting
o; =o0,i € 1(z),and othervviii;(zquals to 0 leads to
) C Z&ia@(@
iel
By the definition of ¢;, 4 € I, the continuity of max f;(+, u;), 7 € I and the lower semicontinuity

u; €U;
and convexity of dx, we have

#) € 300 (mae ) ) (2) + 3 64 (00 (2)

el el

It follows from Lemma 55 and the hypothesis such (RSCQ) is satisfied at € K that

welli, Us(2) €1 icl
+ U 0lug)v) (@).

ueED* veY
(1g)(2,v)=0
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Because 6; > 0,7 =1,2...,1, all nonzero, thereby

I(ndz)(z) € U Zaz Ofi(, ui)(2)) + 00 (2)

U—(Uz) 1 i€l
uel'[zfl U; (z)

+ | 2k v) (@)
i) ()0

As Odz(x) = Ngz(x) N Bgn, we obtain (1.5.1) as desired.
Conversely, assume that there is > 0 such that (1.5.1)<(1.5.3) hold. Then, for any x* €
Nz () N nBgn, there exist @ := (U1, ... 10) € [[,c,Ui(2),0 € V and i € D* such that

v €Y 6:(fi(,0)(&)) + 0o (@) + 0 ((g) (-, 8)) (&), and

el

(fig)(z,0) = 0. (1.5.8)

Since 0 € Nz(2) NnBrn = ﬂ 0-(ndz)(Z), for each positive €, 0-(ndz)(2) is nonempty. Let
e>0
e>0and € 0:(ndg) (&) be arbitrary, then for any z € K

ndp(x) —ndgz(2) > (€, 2 — ) —«. (1.5.9)
Therefore, we obtain

ndg(2) < inf ndg(z) +e < inf ndg(z) +e.

Above inequality and (1.5.9) imply that

0> (& x—1)—e. (1.5.10)

Further, since 0 € Nz(&) N nBgrn, we have that there exist &; € Z&i (Ofi(-,u)(2)), & €

06c(2), and &4y € O ((f29)(+,0)) (Z) such that “

§r+ &+ &y =0. (1.5.11)
As gf € Zgz afz 5 z = (Z Ulfl ) i > )755 € 850(‘%) and gﬂg € a((ﬂg)<7@)) (:%)7
we havezel el

Z&ifi(:v,ul Zazfz z ff,l'—%)

el i€l

oc(x) = dc(2) > (&, v — ), a
(f1g)(w,0) — (1g)(Z,0) > (pg, v — T).

Then, adding these inequalities yields

(0,2 —2) <> Gifila, i) =Y Gifi(d, 0

el i€l

+ (ﬂg)(w7@) - (lag)(‘%:@)
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Since u; belongs to U;(z), above inequality becomes the following one:

O<Zazma}<:fzavuZ Zmaxfzacuz

el i€l

+ (fg)(x,0) — (f1g)(, D).
This together with (fig)(x,0) < 0, (f19)(&,0) = 0, and (1.5.11), for any = € K,
Zaz max fz T, u;) ZO’Z max fZ z,u;) > (0. (1.5.12)
el

By summing (1.5.12) with (1.5.9), for any z € K, we obtain

E g; max fi(x, u;) E gimax f(z,u;) > ({,x — ) — ¢,
u; €EU; u, €EU;
el iel

which means & € 0. (Z 0i max fz( ul)> (2), and so 0-(ndz)(2) C

el

0 (Z G; max fz(,ul)) (Z). As € > 0 was arbitrary, for each = € K,

0 < g o; max f;(z,u;) E o; max f;(z,u;)
ui €U; wi €U
el el

— (ndg(z) = ndg(2)) ,
which is equivalent to the following inequality: for all x € K

ZO‘Z maxfZ T, u) — ) > ZUZ maxfl &, u;) — ndz().

i€l i€l
It follows that
o (1 o) g (0)) > (1m0~ nd(2))
forany z € K, which yields for any ¢ € I,
max filz,w) —ndz(x) > max fi(@,w) —ndz(2), Yz € K.

Uj

Therefore, forany ©x € K

max {max fi(z,u;) — max fz(i,uz)} > ndz(x).

el u; EU; u; EU;
This means Z is a robust weak sharp weakly efficient solutions of (UMP).

(b) = (@) Let 7 > 0 be given. Consider f;(z,u;) = —(&,x) + ndz(x),i € I. Thus, for any
r €K,

max f,(z, us) — fdi () = — (65, )

u; €U;
> —(&, &) + 1dg ()

= max fi(@,w).
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Thus, & is a robust weak sharp weakly efficient solutions of (UMP). By hypothesis, there is ) := 7
such that (1.5.1) is fulfilled. Since for any u; € U;, 0.f; (-, w;)(2) € {—=&} + d(ndz)(Z), one has

Y6 (@i u)(&) € {=&s} + Ondz) (&),

il

where ¢; > 0,4 € I and all nonzero. Thus, we obtain that for any 2* € Nz(Z) N nBgn, there
exist u; € U;(Z),0 € V and f1 € D* such that

As 0 € Nz(2) N nBgrn, we obtain

&5 € 000 (%) + 9 ((1g) (-5 0)) (

=
SN—
Q
>
o
Y
>
K
S~—
—~
=
Sy
N—
I
(@)

It follows that

Gedbo@+ | o)) (@),
neED* veY
(rg)(2,0)=0

and so we get the desired inclusion. Therefore, the proof is complete. []

Remark 57. (i) In [28] and [29], the authors presented the necessary condition for the local
sharp efficiency for the semi-infinite vector optimization problem by using the different
method with Theorem 56. In fact, they employed the exact sum rule for Fréchet subdif-
ferentials to obtained their results.

(i) In [31], the exact sum rule for Mordukhovich subdifferentials was used as a vital tool under
some regularity and differentiability assumptions for establishing their results. This means
Theorem 56 use the different medthod from the mentioned work.

Next, by using the similar methods of section 3, a characterization of robust weak sharp weakly
efficient solution sets in terms of a given robust weak sharp weakly efficient solution point of the
problem is also illustrated in this section. In order to present the mentioned characterization,
we start by deriving constant Lagrangian-type property for robust weak sharp weakly efficient
solution sets of (MP). In what follows, let u = (uy,...,u) € Ui X, ... x U, 0 = (01,...,0,) €
R’ ,v €V and p > 0. The Lagrangian-type function L(-, oy, u,v) is given by

L(z,0,p,u,v) = Z%fi(%%‘) + (pg)(z,v), Vo € R™

iel

Theorem 58. Let z € S be given. Suppose that the (RSCQ) is fulfilled at z. Then, there exist
a positive valued vector 6 := (61,...,0;) € ]Ri,&i,i € [ all nonzero, uncertain parameters

U= (U,...,u) EU=U; X ... XU, €V, and Lagrange multiplier iz > 0 such that for any

x €S,

AAAAA

Proof. Since & € S with the real number 17 > 0 and the (RSCQ) is satisfied at this point Z, by
Theorem 56, (1.5.1) holds for 7 := 7,. Since N (&) N nBrn is nonempty we can let € > 0 be
arbitrary and z* € 8-(ndj)(Z) be given. Besides, there exist & € R, , all nonzero, & € U, € V
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and i € D* such that (1.5.1) is fulfilled. Let z € S be arbitrary. By the same fashion using in the
proof of Theorem 45 we have

(%2 — ) Sz&ifi(x Zszz

i€l el

+ (Ag)(z, 0) — (fg) (2, 0),
and so

iel icl

+ (ig)(z,0) = (9)(7,0), (1.5.13)

As fi(+,u;),i € T'and g(+,v) are convex, forany u; € U; andv € V, we have z* € 0. (Z Gi(fi(s,w) + Ag(-, v
icl
Hence, one has

O (nd)(2) € O (Z & (fil+ us) + /\g('av))> (%),

i€l

thereby

Z&zfz<x7ﬂz) + (ﬂ )(.1' ’U Zazfz

el i€l
= Zal max f;(Z, u;). (1.5.14)
i€l ui €t

Note that, as x € §, then there exists 7y > 0 such that for all y € K,

max f;(y, u;) > mazji fix,us) +n2d iz (y),

u; EU;

which implies

ZU’ max fl(y,uz ) > Z o; (max filz,u;) + nadz(y ))

u; EU,
el e

_ZO'Z max f;(z,u;) + nedz(y)

u EU;
el
= Z o; max f;(x,u;),
w; €U;
icl
forall y € S. Since & € §,
ZUZ max f;(Z,u;) > Z 0i max fZ T, ;). (1.5.15)
iel i€t iel

From it > 0, g(x,0) < 0, and (1.5.14), it is not hard to see that

(f1g)(x,0) = 0. (1.5.16)
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Moreover, by (1.5.14) and the positivity of ndz(z), we see that

Z o) {Lﬂgg{( filz,w;) > Z i fi(w, ;)

i€l el
> gimax fi(2,w) + ndg ()
el
> Z 0 geag{( fi(@, u;). (1.5.17)
el
This together with (1.5.16) leads to
ZUZ max f;(z, u;) ZalfZ x,U;). (1.5.18)
u; €EU;
el i€l

Thus, £(-, &, i, @, ) is constant on S as follows:

L(x,6,f1,0,0) =Y 6:fix,u) + (fig)(z, D)

i€l
= Z o, max f;(z,u;) + (fug)(x, 0)
icl i€t
= Zal max f;(Z,u;) + (f1g)(z,0)
il wi€Us
=> 6 ma fi(, ),
el
This completes the proof. []

Theorem 59. For the problem (UMP), let S be the robust weak sharp weakly efficient solution set
of (UMP)and & € S. Suppose that the (RSCQ) is fulfilled at & € S. Then, there exist 5; > 0,7 € I,

all non zero, @ := (Gy,..., ) EU =Uy X ..., xU;,, 0 € V and i > 0 such that
ye{z,é} iel

Je > ndf(<x)7 <a7§j - $> = nd[?<x)7 (Mg)(%@) =0,

max f;(z,u;) = fi(x,4;),1 € ]} :

u; EU;

Proof. (C) Let & € S be given. Then there exists 7 > 0 such that (1.5.1) holds. Thus, there
exist u € U,v € V and 1 > 0 such that (1.5.1) is fulfilled. Hence, we have that there exist

&€ 376, (0f( ) (), & € Doe(@) and &, € O ((jag) (-, D)) (2) such that

el
0=¢& +& + &g, since 0 € Nf((.f?) N nBgn, (1.5.19)

and
1g)(Z,0) = 0. (1.5.20)

dc(x) = 0c(2) + (fg)(x, 0) = (f1g)(,0) = (& + &g, & — ). (1.5.21)
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By the same fashion in the proof of Theorem 56, we have

(Ag)(x,0) = (1g)(2,0) = 0,
Zozggffz T, ;) Zazfl T, U;).

i€l el
Therefore, it follows from (1.5.21) that

and

ndp(x) =0> (b+c,x — 1),

and so by (1.5.19), we obtain
ndg(x) > (5,4 — ).

Simultaneously, since &5 € Z&i Ofi(-,u;)(2)) (Z aifi(-, U > T), we have

el el
(&, &8 —x) > Z&z’fi(iﬁ,ﬁi) - Z@fi(%ﬁi)-
iel icl

By (1.5.12) in the proof of Theorem 56, we obtain

(Ep, & —x) > Zal max f;(&, 4;) Zaz max f;(z,u;) => 0 = ndz(x). (1.5.22)

u; €U, u; €U,
iel = iel o=

Hence, we have that (£f, 2 — x) = ndz(x). Next, we shall prove that there is € > ndz(x) > 0

such that

i€l
In fact, we can show that & € 0 (Z ai fi(-, az)> (x). Forany y € R™,
i€l
<€f7y_$> = <€f,y—i'>+<§f,[i’—flf> S <€f7y_j7>
as ({¢,& —x) < 0.Sincea € 0 (Z @fi(-,ﬂi)) (%) and fi(z,0;) = fi(2,0;),1 € 1,

i€l

(Ery—a) < oifily, i) = Y oifili,d

iel i€l
= Z&ifi(yaﬂi) - Z@'fi(%ﬁz‘)a
i€l i€l

which means & € 0 (Z 6z~f1~(~,ﬂi)> ().
(2) Lot el
G{x €K:I>03e () o (Z afifi(-,ai)> (2), 3e > ndz(z),
ye{z,z} iel

(&, v — &) = ndg (), (ng)(x,0) =0, max filw, ;) = filw, U)}

i
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Since & € S, ndz(2) = 0 and so the assumption dealing with {¢ lead to

—ndg (%) =0
= (&, & — ) = ndg(z)
< Z@fi(@%) - Z 0 fiw, ;) — ndg(x) + €

el el

= 6:fi(@, 1) = ) 6ifilw, @) — ndg(x) + ndg (v)
el i€l

= Gifi(@ @) = Y Gifilw, ), (15.23)
el el

forany g; > 0,7 € I, all nonzero. Therefore, we obtain

Zaz max f;(z,u;) < Zal max f;(z,u;) + ndgz(2)

u; EU; u; EU;
el i€l
= Zaz max [i(Z, ;).
el
Since 2 € Sand z € K, the conclusion that x € S is satisfied. []
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Abstract

In this paper, by proposing a new type of generalized C-quasiconvexity for the set-
valued mappings and using the nonlinear scalarization function &, and its properties,
without assumption of monotonicity and boundedness, some existence results of the
solutions for the symmetric vector equilibrium problems and symmetric scalar equi-
librium problems are established. Moreover, the convexity of solution sets is also
investigated. Finally, some examples to support our results are provided.

Keywords Symmetric vector equilibrium problem - Nonlinear scalarization
function - Generalized C-quasiconvexity - Upper and lower semicontinuity
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1 Introduction

In 1994, the equilibrium problem was proposed in Blum and Oettli [8]. Then it has
been intensively studied and extended. After that, more general equilibrium problems
(see [7,8]) have been extended to the case of vector-valued bifunctions, namely vector
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equilibrium problems, which provides a unified model of several classes of problems
including vector variational inequality problems, vector complementarity problems,
vector optimization problems and vector saddle point problems (see, for example,
[4,6,12,22,24,25]).

The system of vector equilibrium problems, which is a family of equilibrium prob-
lems for vector-valued bifunctions defined on a product set was introduced in 2000,
by Ansari et al. [S]. Furthermore, its applications in vector optimization problems and
Nash equilibrium problem for vector-valued functions were presented by the authors.
Nowadays, it is well known that the system of equilibrium problems, systems of vector
variational inequalities, system of vector variational-like inequalities, system of opti-
mization problems, fixed point problems and several related topics as special cases
(see more in [2,3,5,13,15,26,27,29-31]) contained in the system of vector equilibrium
problems.

On the other hand, the symmetric vector equilibrium problem which is a general-
ization of the equilibrium problem has been studied by many authors. A main topic of
current research is to establish existence theorems (see, for example, [16,18,20,23]).
Another important topic is to study the topological properties of the solution sets,
as it provides the possibility of continuously moving from one solution to any other
solution.

Recently, reducing a vector optimization problem to a scalar optimization problem
is a useful approach for analyzing it. The classical scalarization approaches using
linear functionals have been already used for studying the existence of solutions of
symmetric vector equilibrium problems (see [19,34]). On the other hand, nonlinear
scalarization functions play a vital role in this reduction. The nonlinear scalarization
function &,, which was commonly known as the Gerstewitz function in the theory
of vector optimization [11,32], has been used to studying many vector optimization
problems. It is well known that the nonlinear scalarization function &; has many good
properties, such as continuity, sublinearity, convexity and (strict) monotonicity. These
properties have been fully exploited in the literature to deal with various nonconvex
problems with vector objectives, such as existence of solutions, gap functions, duality,
vector variational principles, well-posedness, vector minimax inequalities and vector
network equilibrium problems. However, to the best of our knowledge, there is no paper
dealing with the existence theorems for the symmetric vector equilibrium problem
using a nonlinear scalarization method. So, it is natural to raise and give an answer to
the following question.

Question Can one establish existence theorems for the symmetric vector equilibrium
problem using a nonlinear scalarization method?

Motivated by the works mentioned above, by proposing a new type of C-
quasiconvexity for a set-valued mapping together with using a nonlinear scalarization
function and its properties, without assumption of monotonicity and boundedness,
some existence results of the solutions for the symmetric vector equilibrium problems
and symmetric scalar equilibrium problems are established. Moreover, the convexity
of solution sets are investigated. Finally, some examples to support our results are
provided.
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2 Preliminaries

Throughout this paper, let X, Y, E and Z be real Hausdorff topological vector spaces.
Let A € X and B C E be nonempty closed convex subsets, F: A x B x A — 2Y
and G: A x B x B — 27 be two set-valued mappings. Let C € Y and P C Z be
two closed convex pointed cones with int C # @ and int P # (J. Let Y* and Z* be the
topological dual spaces of Y and Z, respectively. Let C* and P* be the dual cones of
C and P, respectively, that is,

C*={feY*:(f,y) =0, forally € C}
and
P*={geZ*: (g, y) =0, forall y € P}.

The two symmetric vector equilibrium problems under our consideration are as
follows: (SVEP): find (x, y) € A x B such that

F(x, y,u) ,¢_ (—intC), Yu e A,
{G(x, y,v) ¢ (—int P), Vv € B, (SVEP)
and (SVEP,): find (x, y) € A x B such that
F(x,)%u)ﬂ(—intC):Qj’ Yu € A,
{G(x’ Yy, U)m(—intP) :@7 Yv € B. (SVEPZ)

It is clear that the solution set of (SVEP,) is a subset of (SVEP)). It is remark that
(SVEP)) is a special problem of the symmetric multivalued vector quasiequilibrium
problems studied by Anh and Khan [1]. They obtained some sufficient conditions for
the solution existence in topological vector spaces. However, in this paper, we will
discuss for the solution existence by utilizing the nonlinear scalarization method.

Remark 2.1 (Special cases)
(i) fC=P,f: AxB — Yandg: Ax B — Z are two single-valued mappings,
Fl,y,u) ={f@,y) = fx.y}, Y, yu)eAxBxA
and
G(x,y,v) ={g(x,v) —glx,»)}, V(x,y,v) € AxBXxB,

then the problem (SVEP,) reduces to the single-valued symmetric vector equi-
librium problem considered by [16,18,20];

(1) f G =0and F(x,y,u) = {f(x,u)} forany (x, y,u) € A x B x A, then the
problem (SVEP») is the equilibrium problem which was considered and studied
by many authors (for example, [5,7,10,21]);
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(iii) If G = 0and T is amapping from A to L(X, Y) where L(X, Y) denotes the space
of all continuous linear operators from X to Y, and F(x, y,u) = {{Tx, u — x)}
for any (x, y,u) € A x B x A, then the problem (SVEP») is the classic vector
variational inequality problem which was introduced by Giannessi [21].

Now, we are going to recall the nonlinear scalarization function &, : ¥ — R, where
q € int C, as follows.

Definition 2.2 [12,32] Given a fixed point ¢ € int C, the nonlinear scalarization func-
tion &, : ¥ — R is defined by
() =min{t e R:y etqg - C}.

In the special case of ¥ = R, C = Rﬂr andg = (1,1,...,1) € int R, , the
nonlinear scalarization function can be expressed in the following equivalent form
[12, Corollary 1.46]:

£,(y) = max {y;}, Vy= (1, y2,..., ) €R.
1<i<l

The following results express some useful properties of the nonlinear scalarization
function &,.

Lemma 2.3 [12, Proposition 1.43] For any fixed g € intC, y € Y and r € R. Then

i) &) <r&yerg—itC(ie, §,(y) >r &y ¢rqg—intC);
(i) & <rsyerq—C,
(iii) &,(y) =r & y € rq — dC, where dC denotes the boundary of C;
(iv) &(rq) =r;
(v) &, is continuous, positive homogeneous, subadditive and convex on Y
(vi) &, is monotone (i.e., y2 — y1 € C = §,(y1) < &,(y2)) and strictly monotone
(i.e, y2» —y1 € —intC = §,(y1) < &;(32)) (see [12,32]).

The property (i) of Lemma 2.3 will play a vital role in scalarization. In fact, as the
definition of &,, the property (iv) of Lemma 2.3 could be strengthened to that

E,(+rq) =) +r, VyeY, rekR 2.1)
For any g € int C, the set C? defined by
Cl:={"eC:(yq)=1)
is a weak™-compact set of Y* (see [12]). In addition, for the forms of &, which were

used in [28, Proposition 2.2] and [12, Corollary 2.1], the following equivalent form of
&, can be deduced from both of them.

Proposition 2.4 [9, Proposition 2.2] Let ¢ € intC. Then for y € Y, &(y) =
max,seca (y*, y).
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Proposition 2.5 [9, Proposition 2.3] &, is Lipschitz on Y, and its Lipschitz constant is

1
L:= sup ||y*| € |:—,+oo).
y*eCd gl

The following example can be found in [9, Example 2.1].

Example 2.6 (i) In the scalar case of Y = R and C = R, the Lipschitz constant of
E,is L = 5 (g > 0). Then,

1
184 (x) =& = glx =l

forallx,y e Rand g > 0.
(i) fY =R%?and C = {(y1, y2) € R%: }y; <y, <2yi}. Takeq = (2,3) € int C.
Then,

C?={(y1,y) €eR:2y1+ 3y, =1,y € [-0.1,2]}.

Then, Lipschitz constant is L = sup«ccq [y*ll = (=2, D] = V/5. Hence,

18,(v) — £,V = V5ly — ],
forall y,y € R.

Definition 2.7 Let X and Y be real Hausdorff topological vector spaces. A set-valued
mapping 7: X — 2" is said to be

(1) closed if its graph
Gr(T)y={(x,y) e X xY:yeTkx)}
isclosedin X x Y;

(i1) upper semicontinuous (u.s.c) if, for every x € X and every open set V satisfying
T (x) C V, there exists a neighborhood U of x such that

TW)=JT0 <V

yeU

(iii) lower semicontinuous (1.s.c) if, for any x € X, y € T (x) and any neighborhood
V of y, there exists a neighborhood U of x such that

TNV #£Y

forallz e U.

@ Springer



Bulletin of the Iranian Mathematical Society

Lemma 2.8 [33]A set-valued mapping T : X — 2Y is lower semicontinuous at x € X
if and only if, for any net {x;} such that x; — x and y € T (x), there exists a net {y;}
with y; € T (x;) such that y; — y.

Now we recall some concepts related to the C-convexity for the set-valued mapping.

Definition 2.9 [34]Let T: A — 2Y be a set-valued mapping, where A is a nonempty
convex subset of X. T is said to be

(i) C-convex if for every z1,z2 € Aand t € [0, 1],
1T)+A-0T(z2) STz + (1 —0z22) +C.
(i) C-quasiconvex if for every z1,z2 € A and t € [0, 1], either
T(z1) €Ttz + (1 —1)z2) + C;
or
T(z2) CT(tz1 + (1 —t)z2) + C.

In this paper, we introduce a new type of C-quasiconvexity for the given set-valued
mapping which is a generalization of both C-convexity and C-quasiconvexity.

Definition 2.10 Let 7: A — 2Y be a set-valued mapping, where A is a nonempty
convex subset of X. Then 7 is said to be generalized C-quasiconvex if for every
z1,22 € Dand t € [0, 1], either

T(z) [Ttz + (1 = )z2) + C) # W;

or
T(z) [ (T 21 + (1 = )22) + C) # 0.

Remark 2.11 It can be seen from the above definition that every C-quasiconvex map-
ping is a generalized C-quasiconvex mapping. However, the converse does not hold
in general which can be found in Example 3.12 in Sect. 3.

The following lemma plays a key role in results reported in many works (for exam-
ple, [12,34]). Furthermore, we need it in the sequel.

Lemma 2.12 [14] Let {X;}ics be a family of nonempty convex sets where each X; is
contained in a Hausdorff topological vector space E;. Let X = []..; X;. For each
i el let Pi: X — 2%i be a set-valued mapping such that

iel
(1) foreachi € I, P;(x) is convex for all x = (xj)iey;

(ii) foreach x € X, x; ¢ P;(x);

(iii) for each y; € X;, Pf](yi) ={x e X: Pi(x) 2 {yi}} isopenin X;
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(iv) foreachi € I, there exists a nonempty compact subset N of X and a nonempty
compact convex subset B; of X; such that for each x € X\N, thereisani € I
satisfying P;(x) N B; # .

Then there exists x € X such that P;(x) = @ foralli € I.

3 Symmetric Vector Equilibrium Problems

In this section, we present the scalar symmetric equilibrium problems which are
equivalent to the symmetric vector equilibrium problems (SVEP;) and (SVEP»). The
relationships between the solution sets and the existence results for them were estab-
lished.

For any g € int C and ¢’ € int P, we also consider the following scalar symmetric
equilibrium problems: (SSEP;(£)): find (x, y) € A x B, such that

Yue A,z € F(x,y,u):&,(z) >0,
{Vv € B,3w e G(x, y,v) : é’q,(w) >0 (SSEP1(£))
and (SSEP,(£)): find (x, y) € A x B, such that
&(F(x,y,u)) SRy, VucA,
{éZr(G(x, y,v)) CR,, VveB. (SSEP2(£)

We denote the solution sets of (SVEP7), (SVEP»), (SSEP;(§)) and (SSEP»(&)) by
S1, 82, S1(€§) and S$7 (), respectively.

Before we give the existence of solutions for (SVEP) and (SVEP,), we first need
the following simple fact which illustrates the relationship between the solution sets
S1 and S1(§).

Lemma 3.1 For any fixed q € int C and q' € int P, the following assertion is valid:

S = 516).

Proof First, we assume that (x’, y’) € S;. Hence, for any u € A, there exists z €
F(x',y', u) such that

z ¢ —intC.
Similarly, for any v € B, there exists w € G(x’, y’, v) such that
w ¢ —int P.

So, it follows from Lemma 2.3(i) that for any (u, v) € A x B, there exists (z, w) such
that

£;(z) >0 and &, (w)>0.
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Therefore, we immediately getthat (x’, y') € S} (§). Conversely, assume that (x’, y') €
S1(§), then we can prove that (x’, y') € S| using Lemma 2.3 with the reverse way of
the above part. O

Theorem3.2 Let A C X and B C E be nonempty convex subsets, let C C Y and
P C Z be closed convex pointed cone with g € intC # @ and q' € int P # (.
Suppose F: A x Bx A — 2¥ and G: A x B x B — 2% are two set-valued
mappings satisfying the following conditions:

(i) foreach (x,y) € AXx B, F(x,y,x)NC # @, and G(x,y,y) N P #£ @,

(i) foreach (x,y) € A x B, F(x, v, -) is C-quasiconvex on A as well as G(x, y, -)
is P-quasiconvex on B;

(iii) for each u € A, F(-,-,u) is lower semicontinuous on A x B and for each
v eB, G(,-,v) is lower semicontinuous on A x B,

(iv) there exists nonempty compact convex sets D1 C A and Dy C B such that for
each (x, y) € (A x B)\(Dy x D»), there exist x' € Dy such that F(x, y,x") C
—int C or y' € Dy such that G(x, y, y') C —int P.

Then the set S| is nonempty.

Proof For each (x,y) € A x B, define Pj: A x B — 24 and Py: A x B — 28 as
follows:

Pi(x,y) ={ueA:Vze F(x,y u),& ) ¢ R4}
and
Py(x,y) = {v e B:Vw e G(x, y,v), & (w) ¢ Ry).

We will show that P; and P, satisfy all conditions of Lemma 2.12. First, we prove
that P (x, y) and P> (x, y) are convex for all (x, y) € A x B. Suppose on the contrary
that for some (x, y) € A x B, Pi(x, y) is not convex. Then there exists t1, t> € [0, 1]
with ;1 +# = land uy, up € Pi(x, y) such that tyu; + rhuy ¢ P1(x, y). This means
that

&,(z) eRy, 3Jz e F(x,y, hiuy + tuz).
By assumption (ii), we have either

F(x,y,u1) € F(x,y, tiuy + hus) + C,
or

F(x,y,uz) € F(x,y, tiuy + raup) + C.
Hence, we get either

§g(F(x,y,u1)) S & (F(x,y, nuy + nuz)) +§,(C) S Ry,
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or

§g(F(x,y,u2)) S & (F(x,y, nuy + nuz)) +§,(C) S Ry,

which contradicts uy, u» € Pj(x, y). Similarly, we can show that P>(x, y) is convex.

Next, we want to verify condition (ii) of Lemma 2.12, in fact we have to show that
foreach (x,y) €e AXx B,x ¢ Pi(x,y)andy ¢ P>(x,y).Foreach (x,y) € A x B, it
follows from assumption (i) that F(x, y,x) N C # @ and G(x, y, y) N P # @. Thus,
there exists (z, w) € F(x, y, x) x G(x, y, y) such that

&,(zx) eRy and &, (w) e Ry.
Invoking the definitions of P;(x, y) and P>(x, y), we have
x & Pi(x,y) and y ¢ Pa(x,y).
To prove condition (iii) of Lemma 2.12, assume that (#, v) € A x B. Note that
(P W) ={(x,y) e Ax B:3z€ F(x,y,u)st. &) e R} (3.1

Let {(x;. yi)} S (P;" ()¢ with (x;, ;) — (x0. Y0). As F(xo, yo. u) # #, we choose
z0 € F(xo, y0,u). By Lemma 2.8, there exists a net {z;} € F(x;, y;, u) such that
z; — z0. Hence, using the continuity of &, we get

&, (zi) — &4(20).

The condition (3.1) yields that &,(zg) > 0. Therefore, (xo, yo) € (Pl_1 (u))¢ and so
(Pf1 (1)) is closed. Thus, we have that P~ ! (u) is open on A. Similarly, we can prove
that P, Y(v) is open on B. This completes the proof of condition (iii) of Lemma 2.12.

Finally, we have to show that condition (iv) of Lemma 2.12 holds. By assump-
tion (iv), there exists nonempty compact set D1 x D> € A x B such that for any
(x,y) € (A x B)\(D; x D), there exists x’ € Dy such that F(x, y, x’) € —int C or
y' € Dj; such that G(x, y, y’) € —int P. Therefore, for each (z, w) € F(x, y, x') x
G(x,y,¥).5() ¢ Ry, or &y (w) ¢ Ry. So, we immediately obtain, by the defini-
tions of Py(x, y) and P>(x, y), that x’ € Pi(x, y) or y' € Py(x, y). This completes
the proof of the condition (iv) of Lemma 2.12.

Consequently, the set-valued mappings P; and P; satisfy all conditions given in
Lemma 2.12. So, there exists (x, y) € A x B such that

Pi(x,y)=0 and Pr(x,y) =0.

Then, for each (u,v) € A x B, there exists (z, w) € F(x,y,u) x G(x, ¥y, v) such
that

£/(zx) e Ry and &y (w) eRy.
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Therefore, we have (x,y) € S1(£). Using Lemma 3.1, we conclude that Sy is
nonempty. O

Remark 3.3 Comparing Theorem 3.2 and the results obtained in Anh and Khan [1],
we can see that the main difference is that our techniques are based on the utilizing
the nonlinear scalarization method while the mentioned work employed the relaxed
quasiconvexities of the multivalued mappings F (-, y,-) and G(:, x, -) as the main
tools.

Now, we give the following example to illustrate Theorem 3.2.
Example3.4 let X =Y =Z =R, A= B =[0,1],C = P = R, and define the

mappings F: A x Bx A — 2" and G: A x B x B — 27 by, for any (x, y,u) €
AXx Bx Aand (x,y,v) € AX B x B,

F(x,y,u)=[x—u,u] and G(x,y,v) =[y—v,v].
It is clear that (i) given in Theorem 3.2 is satisfied. To establish the assumption (ii) of
Theorem 3.2, letu;, up € Aandty, t, € [0, 1] witht; +1 = 1. Assume that u; < uy,
then for each z € F(x, y, u1)
X—Uuy<z=<uj.
Then, we can get that
X —thuy —huy <z < fiuy + huy,
which means
F(x,y,u1) € F(x,y, tiuy +uz) € F(x,y, tiuy + thuz) +C
and so F(x,y,-) is C-quasiconvex on A. By the same fashion, we can show that
G(x,y, ) also is P-quasiconvex on B.

Next, we prove the assumption (iii) of Theorem 3.2. Let u € A be arbitrarily fixed.
Let (x',y') € A x B,z € F(x',y',u) and U be any neighborhood of z. Then, for
each (x, y) in a neighborhood [x’, 1] x B of (x', y’), we have

F(x,y,u) =[x —u,u] D [x" —u,ul.
Thus, F(x, y,u) NU 2D {z} # #,VY(x, y) € [x/, 1] x B and so the first statement of
assumption (iii) of Theorem 3.2 is true. Similarly, we can check that the second one
is also true.

Finally, take D; = [4,1] € A and D, = [}, 1] € B. Then, for each (x, y) €
(A x B)\(D; x D), there exist x’ = 1 € Dy and y/ = 1 € D; such that

F(x,y,x)=[x—1,1] and G(x,y,y)=[y—1,1].
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Thus, we have
F(x,y,x') C[-1,0) C —intC and P(x,y,y) C[-1,0) C —int P,

for all (x, y) € (A x B)\(D1 x D). The assumption (iv) of Theorem 3.2 is proved.
Now, we will show that §; # @. Taking (x, y) = (1,1) € A x B leads to

Fx,y,u)=F{,1,u) =[1 —u,ul,
and
Gx,y,v)=G{,1,v)=[1—-v,v],
which, respectively, follows that
F(l,lL,uy=[1—u,u] ¢ —intRy = —intC, VueA
and
G(,1l,u)=[1-v,v] £ —intRy = —int P, Vv € B.

This yields (1, 1) € . o

We give the following examples to show that all of the assumptions of Theorem 3.2
are essential and cannot be dropped.

Example 3.5 (Assumption (i) of Theorem 3.2 isessential) Let X =Y =Z =R, A =
B =[0,1],C = P = R, and define the mappings F: A x B x A — 2 and
G: Ax BxB—2%as

1 1
F(x,y,u) = (—u — 5 u) and G(x,y,v) = (—v — 5 v) .
First, to show that assumption (i) does not hold, take x = y = 0. So, we have that
1
F(x,y,x)NC =F(0,0,00)NR; = —5,0 NRy =0
and

1
G(x,y,y)NP =G(0,0,00NR, = (—5,0) NR, = 0.

We can verify all of the other assumptions of Theorem 3.2. However, the prob-
lem SVEP; has no solution, i.e., S{(F, G) = @ since for each (x,y) € A x B,
there exists (1, v) = (0,0) € A x B such that

1
F(x,y,u)=F(x,y,0) = (_E’ 0) C —intRy = —intC

@ Springer



Bulletin of the Iranian Mathematical Society

and
1 . .
G(x,y,v) =G(x,y,0) = <—§,O> C —intRy = —int P.

The reason is assumption (i) of Theorem 3.2 is violated.

Example 3.6 (Assumption (ii) of Theorem 3.2 isessential) Let X =Y =Z =R, A =
B = [0,1],C = P = R, and define the mappings F: A x B x A — 2Y and
G: Ax B x B — 2% by

1

~ (> u=x,
F(x,y,u) = {2}
(—u —1,u — 1], otherwise,

and

1
=1 v=y,
Glx, y,v) = {2} g
(—v—1,v—1], otherwise.

It is clear that assumptions (i), (iii) and (iv) of Theorem 3.2 are satisfied. However,
assumption (ii) of Theorem 3.2 is violated. Indeed, let x = y = %, t = %, up =1
and up, = 0. So, we have that

11
Fx,y,u)=F| 3, 5,
(x, y,u1) <22
11
2727

1) =(=2.1],

F(x,y,u2)=F< 0) =(-1,0]

and

F(t—l—t)—Flll—l
-xaya 1“1 2”2 - 25 272 - 2 .

Thus, we have that

F(x,y,u1) € F(x,y, tiu; + thup) + C
and

F(x,y,us) g F(x,y, tiu; + thup) + C.

Note that S1(F, G) = . Since for each (x, y) € A x B, there exists (u, v) = (0,0) €
A x B such that

F(x,y,u) = (=2, 1] € —intR, = —int C
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and
Gx,y,v) =(-2,-1]C —intRy = —int P.

Thus, assumption (ii) of Theorem 3.2 cannot be dropped. O

Example 3.7 (Assumption (iii) of Theorem 3.2 is essential) Let X = Y = Z =
R,A =B =[-1,1],C = P = R, and define the mappings F: A x B x A — 2¥
and G: A x B x B — 2% as

{x_l/i}, .XSO,

[— %, %), otherwise,
and

{y - U}v y = Ov
G()C, yv U) = 1 v .

[—3.%). otherwise.
To show that assumption (iii) of Theorem 3.2 is not satisfied, take x’ = y' = 0, u =
1. Then, we have F(x’,y',u) = {—1}. Let z € F(x',y’,u), then (—%, —%) is a
neighborhood of z. Thus, for each neighborhood V of (x’, y’) we have

3 1 3 1 11
— A A nv = — A A N N =®’
22 22 22
for all (x,y) € V withx > x’ = 0. In fact, it is not hard to show that all of other
assumptions in Theorem 3.2 are satisfied, especially assumption (i) and (ii), which are

clear by the definitions of ' and G. However, S1(F, G) = (. Foreach (x, y) € Ax B,
consider the following two cases:

ifx <0, then F(x,y,u) = {x —u} € —intR,, Yu € (0, —1],
if x > 0, then F(x,y,u) = [—%, %) C —intR4, Yu € [—1,0]. The reason is
assumption (iii) of Theorem 3.2 is dropped. O

Example 3.8 (Assumption (iv) of Theorem 3.2 is essential) Let X = Y = Z =
R,A =B =[0,1],C = P = R, and define the mappings F: A x B x A — 2V
and G: A x B x B — 27 as

(—xu —x,xu), x=y#0,
F(x,y,u)= .
[—1,xu), otherwise
and
—yv-—y, , = 0,
Gx,y, vy = | TV TV X =y F
[—1,yv), otherwise.
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We can show that almost all of the assumptions of Theorem 3.2 are satisfied, except
assumption (iv). To show that assumption (iv) of Theorem 3.2 is violated, for any
nonempty compact set D1 x Dy € A x B, wetake (x,y) = (1, 1) € (A x B)\(D x
D). Then, for each (x, y') € (D x D), we have

F(x, yv-x/) = (—)C/ -1, )C/) g —intR,,
G(x.y.y)=(=y' —1.y) € —intRy.

Then, the problem (SVEP/ ) has no solution since for each (x, y) € A x B, there exists
(u,v) = (0,0) € A x B, such that

(—x,0) € —intR;, x=y#0,
Flx,y,u) = . .
[—1,0) € —intR,, otherwise
and
(=y,0) € —intRy, x=y #0,
G(x,y,v) = . .
[—1,0) € —intR,, otherwise.
Hence, assumption (iii) of Theorem 3.2 is essential. O

Now we shall discuss about a link between the solution sets S and S»>(&) for
(SVEP).

Lemma 3.9 For any fixed g € —int C and q’ € —int P,
$2 = $2(8).

Proof First, we assume that (x’, y') € S,(F, G), which means

F(x',y,u)N(—intC) =@, forallu € A
and

G(x',y,v)yN(~int P) =9, forallv e B.
So, by Lemma 2.3 we obtain that for any (u, v) € A x B,

z¢ —intC and w ¢ —int P

for all (z, w) € F(x',y',u) x G(x',y’, v). So, it follows that, for any pair (u, v) €
A X B,

§,(2) e Ry and &, (w) e Ry
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forall (z, w) € F(x', y',u) x G(x', ', v). Therefore, we get by the definition of &,
and &,/ that

E(F(X',y u) SRy, VYueA
and
"Eq’(G(x/’ y,v) CR4, VveB.

Hence, (x', y") € S»(&). Conversely, assume that (x’, y') € S»(&), then we can prove
that (x’, y') € S, using the same argument given in the proof of Lemma 2.3. O

Now a result on existence of solutions of the (SVEP,) is verified by making use of
the nonlinear scalarization function.

Theorem3.10 Let A € X and B C E be nonempty convex subsets, let C C Y and
P C Z be closed convex cones with q € intC # @ and q¢' € intP # @. Suppose
F:AxBxA—2Yand G: A x B x B — 2% are two set-valued mappings which
satisfy the following conditions:

(i) foreach (x,y) e Ax B, F(x,y,x) C Cand G(x,y,y) C P;
(ii) foreach (x,y) € A x B, F(x, Yy, ) is generalized C-quasiconvex on A as well
as G(x,y, -) is generalized C-quasiconvex on B;
(iii) for each (x,y,u) € A x B x A with F(x,y,u) N —intC # @,

z€ F(x,y,u)=>z—C C —intC
and also for each (x, y,v) € A X B x B with G(x, y,v) N —int P # @,
weGkx,y,v)=w— P C —int P;
@iv) for each u € A, F(-, -, u) is lower semicontinuous on A x B and for each
v e B, G(-,-,v) is lower semicontinuous on A X B;
(V) there exist nonempty compact convex sets D1 € A and D> C B such that for

each (x, y) € (A x B)\(D| x D), there exists x' € Dy such that F(x, y, x")N
—intC # @ ory’ € Dy such that G(x,y, y') N —int P # (.

Then the solution set S is nonempty.

Proof Let the set-valued mappings Py : Ax B — 24 and P,: Ax B — 2% be defined
by, for any (x,y) € A x B,

Pl(x,)’)z{“ EA:gq(F(x’yvu)) gR+}

and
PZ(xv )’) = {U €EB: Eq/(G(x, Y, U)) ,Q_ R+}
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We first show that P; and P, satisfy all the conditions given in Lemma 2.12. First,
we prove that Pj(x, y), P»(x, y) are convex for all (x,y) € A x B. Assume on the
contrary that P;(x, y) is not convex. Then there exists 71, t, € [0, ] witht; + 1, =1
and u1, up € Pi(x,y) such that tju; + rhur ¢ Pi(x, y), which gives that
& (F(x,y, huy + u)) S Ry.
By assumption (ii), we have either
F(x,y, uy) ﬂ(F(X, v, tiuy + tuz) +C) # 9,
or
F(x,y.up) [ \(F(x.y. iy + taug) + C) # 0.
It follows that there is z € F(x, y, tju1 + thus) such that either
z=2z1—c¢, 3z1 € F(x,y,uy), 3ceC
or
z=z—c, 3z e F(x,y,u), I’ e C.
Thus, by assumption (iii), we have either
Sq(z) = Sq(Z] - C) < Oy
or
£(2) =&4(z2 — ') <.
This contradicts to tju; + touy ¢ Pp(x,y). Similarly, we can show hat P>(x, y) is
convex.

Next, we verify condition (ii) of Lemma 2.12. In fact, we have to show that x ¢
Pi(x,y)and y ¢ P>(x, y). Let (x, y) € A x B. By assumption (i), for each (z, w) €
F(x,y,x) x G(x,y,y). This says z € C and w € P, and so

z¢ —intC and w ¢ —int P.
Hence, by Lemma 2.3(i), we get that
gq (z) e R4 and gq’(w) € Ry

for all (z, w) € F(x,y,x) x G(x, y,y), which means

Eq(F(xv y7x)) §R+ and ‘i:q/(F(xv yvx)) ER‘F
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It follows that, for all (x, y) € A x B,

x ¢ Pi(x,y) and y ¢ Px(x,y).

To verify condition (iii) of Lemma 2.12, assume that (u, v) € A x B. Note that
(P ) = {(x.y) € Ax B: £ (F(x,y,u)) SR}

Let {(x;, yi)} € (Pf1 (u))€ with (x;, yi) = (x0, y0). By assumption (iv), for each zg €
F(xo, yo, u), thereexistz; € F(x;, y;, u) suchthatz; — zo.Since &, (F (x;, y;, u)) C
Ry, &,(z;) € Ry. By the continuity of &,, we get §,(z0) € R;. As z¢ is an arbitrary,
we obtain & (F (xo, Yo, #)) € Ry. Thus, (xo, yo) € (P ()¢, and so (P " (u)) is
closed. Hence, we have that Pl_1 (u) is open on A. Similarly, we can prove that Pz_l (v)
is open on B. Finally, we have to show that condition(iv) of Lemma 2.12 is satisfied.
By assumption (v), there exist nonempty compact sets D; x Dy € A x B such that
for any (x, y) € (A x B)\(D| x D), there exists x’ € D; such that F(x, y, x") N
—int C # @ or there exists y' € D5 such that G(x, y, y') N —int P # @. Thus, for any
(x,y) € (AxB)\(D1 x D), weobtain that &, (F (x, y, x")) € Ry, for some x’ € D;
or éc/l(G(x, y,¥)) € Ry, forsomey € D;. So, we immediately obtain by the
definition of P;(x, y) that

x" € Pi(x,y), forsomex’ € D;
or
y € Py(x,y), forsomey € Dj.

Therefore, we proved condition (iv) of Lemma 2.12 and so P; and P, satisfy all
conditions of Lemma 2.12. Hence, we can conclude that there exists (¥, y) € A x B
such that

Pi(x,y) =0 and Py(x,y) = 0.
This means there exists (x, y) € A x B such that
E(F(x,y,u)) SRy, VueA
and
£/(G(x,y,v)) SRy, VYveB.

Therefore, (x,y) € S$>(£) and so by Lemma 3.1 we complete the proof that S is
nonempty. O
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Remark 3.11 Comparing Theorem 3.10 and the results obtained in Anh and Khan [1]
and Lemma 2.3 in Zhong et al. [34], we can see that the main difference is that our
techniques are based on the utilizing the nonlinear scalarization method. Further, the C-
quasiconvexity of the mapping F(x, y, -) and G(x, y, -) are weakened by generalized
C-quasiconvexity. Hence, Theorem 3.10 can be applicable in the following situation
while the afore-cited results do not work as in the following example.

Example3.12 Let X =Y =Z =R, A = B =10, 1],C = P = R and define the
mappings F: Ax Bx A—2YandG: A x B x B — 2% as

1 < x;
F(x,y,u) = @ ut 1), us=x
[—I/l,l), X <Uu;
and
1 <vy;
Glx.y.v) = (v,v+1), v=y;
[—v, 1), y<w.

First, we show that F' is not C-quasiconvex. Taking x = % u; = l,up = 0, and
H=1t= %, we have the following relations:

1
F(x,y,u2) = (0, 1) ¢ (5, +oo>

1 3
= <§ 5) +Ry = F(x,y, tiua + thuy) + C

and
1
F(x,y,up)=[-1,1) ¢ (5, +00) = F(x,y, tiuz + tuz) + C.

Hence, F is not C-quasiconvex. However, all assumptions given in Theorem 3.10 are
satisfied. First, it is clear that the assumption (i) given in Theorem 3.10 is satisfied.
Next, we shall establish the assumption (ii). To this end, for fixed (x, y) € A x B, let
up,up € Aandty, trp € [0, 1] with 11 + 1, = 1. Assume that u; < u,. Then, we have
the following three cases.

Casel: If u; < up < x, then fju; + Hhur < upy < x and

F(x,y,ux) N (F(x,y, tiu; + thaup) + C)
= (u2, up + 1) N (tiu1 + tous, +00) # P.
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Case II: If u; < x < uy, then we have either tju; + thup > x or tjuy + rhuy < x.
Thus, we have either

F(x,y,u2) N (F(x,y, tiuy + thup) + C)
= [~uz, 1) N[~tiu1 — tauz, +00) # ¥

or

F(x,y,u2) N (F(x,y, tiu1 + thup) + C)
= [—up, 1) N (tju) + tauy, +00) # @.

Case IIl: If x < uy < up, then tju; + trup > x, and hence
F(x,y,u2) N (F(x,y, tiuy + tup) + C) = [—uz, 1) N [~tiuy — tua, +00) # .

Hence, we have that F' is generalized C-quasiconvex. Similarly, we can show that G
is generalized C-quasiconvex.

To verify assumption (iii), notice that for each element u € A, F(x,y,u) N
—intC # ¢ if u > x. Assume that z € F(x, y, u), then z also belongs [—u, 1) C
[—1, 1). It is not hard to see that z — C € —int C. Similarly, we can show that G also
satisfies this assumption.

Next, to verify assumption (iv) of Theorem 3.10, let (x’,y") € A x B and z €
F(x',y, u).

Case I: If u < x/, then z € (x/, x" + 1). Let U be arbitrary neighborhood of z. For
each (x, y) belonging to neighborhood (u, x'] x B of (x’, y"), we have

F(x,y,u) D (x',x’+1), Vxeux]

Hence, F(x,y,u) NU # @, V(x,y) € (u, x'] x B.

Case II: If u > x’, then z € [—u, 1). Let U be arbitrary neighborhood of z. For each

(x, y) belonging to neighborhood [x/, 1] x B of (x’, y), we have
Fx,y,u)=[-u,1)>z.

Hence, F(x,y,u) NU £ @, Y(x,y) € [x, 1] x B. Therefore, F(-, -, u) satisfies the
condition (iv) on A. Similarly, G (-, -, v) satisfies the condition (iv) on B.

Finally, we show that the assumption (iv) of Theorem 3.10 holds, take D; =
[%, 1] € Aand D, = [%, 1] C B. Then, for each element (x, y) belongs (A x
B)\(D1 x D), there existx’ = 1 € Dy and y' = 1 € D5 such that

F(x,y,x)N—intC = [—1, 00) N —int R = [—1, 0) # 0.

Therefore, all assumptions in Theorem 3.10 are satisfied. In fact, it is easy to see that
(1, 1) € $. ]
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4 Convexity of the Solution Set of Symmetric Vector Equilibrium
Problem

In this section, we study the convexity of the solution set S». The sufficient conditions
for the convexity of S, were established. Now, we recall the following useful features,
which lead us to obtain our results in the sequel.

Definition 4.1 [17] Let K be a subset of a topological vector space E. A set-valued
mapping F: K — 25\{@)} is said to be a KKM mapping if for any {x1, x2, ..., x,} C
K,

n
CO{X],XZ, . ‘a'xl’l} g U F(xl)5

i=1

where 25\ {8} stands for the family of all nonempty subsets of E, while the notion
co{xy, x2, ..., x,} denotes the convex hull of {x, x2, ..., x,}.

The following well-known lemma plays vital role in our results in this section.

Lemma4.2 [17] Let K be a subset of a topological vector space E. A set-valued
mapping F: K — 2X be a KKM mapping with closed values in K. Assume that there
exists a nonempty compact convex subset B of K such that (g F (x) is compact.
Then,

ﬂ F(x) # §.

xeK

Theorem4.3 Let A C X and B C E be nonempty convex subsets, let C C Y and
P C Z be closed convex pointed cone with ¢ € intC # @ and q' € int P # (.
Suppose F: A x Bx A — 2Y and G: A x B x B — 2% are two set-valued
mappings which satisfy the following conditions:

(i) foreach (x,y) e Ax B, F(x,y,x) CCand G(x,y,y) C P;

(ii) for each (x,y) € A x B, F(x,y, ) is C-convex on A as well as G(x,y, ) is
P-convex on B;

(iii) for each u € A, F(-,-,u) is lower semicontinuous on A x B and for each
v e B, G(-, -, v) is lower semicontinuous on A X B;

(iv) there exist nonempty compact convex set D1 x Dy € A X B and compact set
My x My C A x B such that for each (x,y) € (A x B)\(M x M>), there
exists (x', y') € Dy x Dy such that F(x,y,x") N —intC # @ or y' € D such
that G(x,y,y' )N —int P # @.

Then, the solution set S>(§) is a nonempty compact subset of A x B. Furthermore,
S» is convex.

Proof Let g € —int C, and g’ € —int P. Define a set-valued mapping 7: A x B —
A X B by

T(Z7 w) = {(x’ y) € AxB : Eq(F(X, Y, Z)) g R+’ Eq/(G(x, Y, w)) g R+}
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Note that S>(§) = ﬂ(z’w)e Axp I'(z, w). We assert that the set-valued mapping T
fulfills all the assumptions of Lemma 4.2. First, we will show that is a KKM mapping.
Suppose on the contrary, then there exists a subset {(x1, y1), ..., (X, yu)} of A X B
and (z, w) € A x B such that

n
(2. w) € cof(x1, Y1), - - Gonn YN T (xi 30).
i=1
Hence, there exists oy, .. ., @, € Ry such that
n n
Zoei =1 and (z,w) = Zai(xi, yi).
i=1 i=1
Thus, foralli =1, 2, ..., n, we have
E(F(z,w,x)) € Ry or £/(G(z,w,y)) € Ry. 4.1

By assumption (ii), the C-quasiconvexity and P-quasiconvexity of F and G are ful-
filled, respectively, and so

F(iz,w,x;)) C F(z,w,z)+C, forsomei=1,2,...,n

and
G(z,w,y;)) CG(z,w,w)+C, forsomei=1,2,...,n.
Hence, there is i € {1, 2, ..., n} such that
§q(F(z,w, xi)) S & (F(z,w,2)) +§(C) S Ry
and

§7G((z,w, yi) Sy (G(z, w, w)) +&(C) SRy
This contradicts (4.1), and so T is a KKM mapping. Next, we will show that for each
(z, w) € AxB,theset T (z, w)isclosed. Let (z, w) € Ax Band {(z;, w;)} C T (z, w)
be a net converges to (z1, wz). Since (z;, w;) € T (z, w) for all i, we have

§(F(zi,wi,2)) SRy and §(G(zi, wi, w)) SRy, Vi

Let (hy, h2) € &;(F(z1,w2,2)) X §(G(z1, w2, w)). Then there exists the pair
(z2, w3) € F(z1, w2, z2) X G(z1, w2, w) such that

(h1, h2) = (§4(22), &4 (w3)).
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By assumption (iii), there is (¢, s;) € F(z;, w;, z) X G(z;i, w;, w) such that
(ti, 5i) = (22, w3).
Since (t;, s;) € F(z;i, w;, z) x G(z;, w;, w) for all i, we have
§,(t) 20 and &y (s;) >0  foralli.
Therefore, by the continuity of &, and § ', we get
hy >0 and hp > 0.

Since (h1, h2) is arbitrary element belongs to &, (F'(z1, w2, 2)) X £,/ (G (21, w2, w)),
we get

§(F(z1,w2,2)) SRy and §,(G(z1, w2, w)) € Ry

Hence, (z1, wz) € T(z, w) and so T(z, w) is closed for any (z, w) € A x B. Now,
all the assumptions of Lemma 4.2 are fulfilled and so S>(§) is nonempty. Further, it
follows from assumption (iv) that

$2(8) € M| x M,

and so it completes the proof that S»(£) is a nonempty compact subset of A x B. By
Lemma 3.9, S, is also nonempty and compact. Finally, the C-convexity of F'(x, y, -)
on A and the P-convexity of G(x, y,-) on B imply the set T (z, w) is convex for
all (z, w) € A x B. Hence, the set S;(£) is convex (The intersection of the convex
sets is convex.). Therefore, by Lemma 3.9, S, is also convex. This completes the
proof. O

5 Conclusions

In this paper, we considered the problems (SVEP;), (SVEP,), (SSEP;(§)) and
(SSEP;(§)). By introducing the new type of C-quasiconvexity for a set-valued map-
ping and using a nonlinear scalarization function &, and its properties, we obtained
some existence results of the solutions for the symmetric vector equilibrium problems
and symmetric scalar equilibrium problems. In fact, our studying is without assump-
tion of monotonicity and boundedness. Moreover, the convexity of solution sets are
investigated. Finally, some examples to support our results are provided.
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Levitin-Polyak well-posedness for parametric
quasivariational inclusion and disclusion problems

PANATDA BOONMAN and RABIAN WANGKEEREE

ABSTRACT. In this paper, we aim to suggest the new concept of Levitin-Polyak (for short, LP) well-posedness
for the parametric quasivariational inclusion and disclusion problems (for short, (QVIP) (resp. (QVDP))). Neces-
sary and sufficient conditions for LP well-posedness of these problems are proved. As applications, we obtained
immediately some results of LP well-posedness for the quasiequilibrium problems and for a scalar equilibrium
problem.

1. INTRODUCTION

Well-posedness is very important concept in optimization theory, for well-posed op-
timization problems, which guarantees that, for every approximating solution sequence,
there is a subsequence which converges to a solution. In 1966, well-posedness of uncon-
strained and constrained scalar optimization problems was first introduced and studied
by Tykhonov [24] and Levitin and Polyak [15], respectively. Well-posedness for various
problems related to optimization has been recently intensively considered, see e.g: for op-
timization problems [11, 12, 13, 21, 23, 31, 32], for variational inequalities [5,7, 9, 10, 17, 25],
for Nash equilibria [18, 20], for inclusion problems [10, 26, 27, 28], for equilibrium pro-
blems [2, 8, 16, 30] and for fixed point problems [6, 10, 22].

Lin and Chuang [19] studied and extended the well-posedness to variational inclu-
sion and disclusion problems and optimization problems with variational inclusion and
disclusion problems as constraints. They proved some results concerned with the well-
posedness in the generalized sense, the well-posedness for optimization problems for va-
riational inclusion problems and variational disclusion problems and scalar equilibrium
problems as constraint. Recently, Wang and Huang [26] introduced and studied LP well-
posedness for generalized quasivariational inclusion and disclusion problems. Necessary
and sufficient conditions for LP well-posedness of these problems are proved.

On the other hand, in [3], Anh, Khanh and Quy introduced and studied the parame-
tric generalized quasivariational inclusion problem (QVIP) which contains many kinds
of problems such as generalized quasivariational inclusion problems, quasioptimization
problems, quasiequilibrium problems, quasivariational inequalities, complementarity pro-
blems, vector minimization problems, Nash equilibria, fixed-point and coincidence-point
problems, traffic networks, etc. It is well known that a quasioptimization problem is more
general than an optimization one as constraint sets depend on the decision variable as
well. It is investigated in [3] the semicontinuity properties of solution maps to (QVIP). In
2016, Wangkeeree, Anh and Boonman [29] studied the new concept of well-posdness for
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the general parametric quasivariational inclusion problems (QVIP). The corresponding
concepts of well-poseness in the generalized sense are also introduced and investigated
for (QVIP). Some metric characterizations of well-posedness for (QVIP) are also studied.

Motivated and inspired by the works mentioned above [3, 19, 26, 29], there is no work
to provide the concept of LP well-posedness for (QVIP) (resp. (QVDP)). In this paper, our
main aim is to suggest the new concept of LP well-posedness for (QVIP) (resp. (QVDP)).
Necessary and sufficient conditions for LP well-posedness of these problems are proved.
As applications, we obtained immediately some results of LP well-posedness for the qua-
siequilibrium problems and for a scalar equilibrium problem.

2. PRELIMINARIES

Let X and Y be two metric spaces, T : X — 2¥ be a multivalued map. T is said to
be upper semicontinuous (u.s.c., shortly) (resp. lower semicontinuous (l.s.c., shortly)) at
zo € X if for any open set V C Y, where T'(zg) C V (resp. T'(xzo) NV # 0), there exists a
neighborhood U C X of z such that T'(z) C V (resp. T'(x) NV # 0),Va € U; T(-) is said
to be u.s.c. (resp. Ls.c.) on X if itis u.s.c. (resp. Ls.c.) at every x € X; T is continuous on
X if it is both u.s.c. and l.s.c. on X; T'is closed if gr(T) := {(z,y) e X xY |y € T'(x)} isa
closed set X x Y; T is open if graph of T"is openin X x Y.

Lemma 2.1. [4] Let X and Y be two metric spaces, T : X — 2¥ a multivalued mapping.

(i) If T is u.s.c. and closed-valued, then T is closed.
(ii) If T is u.s.c. at T and T'(z) is compact, then for any sequence {x,,} converging to x, every
sequence {y, } with y, € T(z,) has a subsequence convering to some point in T'(z). If,
in addition, T'(z) = {y} is a singleton, then such a sequnece {y,, } must converge to .
(iii) T is L.s.c. at T if and only if for any sequence {z,,} with x,, — Z and any point y € T(Z),
there is a sequence {y,, } with y,, € S(x,) converging to y.

Definition 2.1. [14] Let (£, d) be a complete metric space. The Kuratowski measure of
noncompactness of subset M of E is defined by
(M) :inf{6>0:M§ UMZ and diamM; < e,i = 1,2,...,n},
i=1

where diamM/; denotes the diameter of M; and is defined by diamM; = sup{d(x1,z2) :
r1,xo € MZ}

Definition 2.2. Let A and B be nonempty subset of a metric space (E, d). The Hausdorff
distance H(-,-) between A and B is defined by H(A, B) := max{H*(A, B), H*(B,A)},
where H*(A, B) := sup,¢c 4 d(a, B) with d(a, B) = infycp d(a, b).

Lemma 2.2. [14] Let (X, d) be a complete metric space. If (F,,) is a decreasing sequence of
nonempty, closed and bounded subsets of X such that lim p(F,) = 0, then the intersection
n—oo

Fo =N, F, is a nonempty and compact subset of X.

3. LP WELL-POSEDNESS FOR PARAMETRIC QUASIVARIATIONAL INCLUSION AND
DISCLUSION PROBLEMS

Throughout this article, unless otherwise specified, we use the following notations.
Let (E,d) and (E’,d’) be two metric spaces and X and A be nonempty closed subsets
of £ and E’, respectively. Let Z be a Hausdorff topological vector space. Let K, K> :
X xA—=2%and Fy,Fy : X x X x A — 2% be multivalued mappings. Lete : X — Z be
a continuous mapping. We consider the following parametric quasivariational inclusion and
disclusion problems, for each A € A,
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(QVIP), : Finding z € K(z, A) such that 0 € F;(Z,y, ), foreach y € Ko(Z, \);
(QVDP), : Finding z € K;(z, A) such that 0 ¢ F5(Z,y, \), foreachy € Ko(Z, A).
Denote by (QVIP) (resp. (QVDP)) the families {(QVIP), : A € A} (resp. {(QVDP), : X €
A}). Foreach A € A, let Svip), (resp. Sgvpp), ) be solution sets of (QVIP), (resp.(QVDP),).
For each a € E and each r > 0, we denote by B(a, r) the closed ball centered at a with
radius . When E = R, we denote by B (0, r) the closed interval [0, r].

Definition 3.3. Let A € A and let {\,} C A be any sequence such that \,, — \. A
sequence {z,} C X is called a LP approximating solution sequence for (QVIP), if there
exists a sequence {¢,} of positive real numbers with ¢, — 0 such that, for each n € N,
d(zp, Ki(xn, \n)) <enpand 0 € Fy(z,, y, \n) + BT(0,e,)e(xy), Yy € Ko(xn, \p).

Definition 3.4. Let A € A and let {\,} C A be any sequence such that A\,, — A. A
sequence {z,} C X is called a LP approximating solution sequence for (QVDP), if there
exists a sequence {e, } of positive real numbers with £,, — 0 such that, for each n € N,
Az, Ki(xn, \n)) <enpand 0 € Fo(z,,y, \n) + BT(0,e,)e(xy,), Yy € Koz, \p).

Definition 3.5. (i) (QVIP) is said to be LP well-posed if for every A € A, (QVIP), has a
unique solution z, and for every sequence {\, } € A with \,, = X, every approxi-
mating solution sequence for (QVIP), corresponding to {\,, } converges to z, and
(QVIP) is said to be LP well-posed in the generalized sense if for every A € A, (QVIP),
has a nonempty solution set Siqvip),, and for every sequence {\,} C A with
An — A, every approximating solution sequence for (QVIP), corresponding to
{\n} has a subsequence which converges to a point of Sqvrp), -

(ii) (QVDP) is said to be LP well-posed if for every A € A, (QVDP), has a unique solu-
tion x, and for every sequence {),,} C A with \,, — A, every approximating so-
lution sequence for (QVDP), corresponding to {\, } converges to =, and (QVDP)
is said to be LP well-posed in the generalized sense if for every A € A, (QVDP), has a
nonempty solution set Sgvpp), , and for every sequence {\,} C A with \,, — A,
every approximating solution sequence for (QVDP), corresponding to {),,} has a
subsequence which converges to a point of Sqvpp), -

Remark 3.1. Definition 3.3 generalizes Definition 3.1 of [29]. Indeed, the condition (i) of
Definition 3.1in [29] “z,, € Ki(xy, \,) 7, implies that d(x,,, K1 (2, Ay)) = 0. So, Definition
3.3 generalizes Definition 3.1 of [29].

For each )\ € A, the approximating solution set for (QVIP), and (QVDP),, respectively,
are defined by, for all d,e >0, Q(QVIP)A ((5, 6) = UA’GB(A,S) S(QVIP)X ()\/, 6),
where §(QVIP)A : A x R" is defined by, forall \' € A,e € R,

3 roN L d(xz, Ki(z,\')) <eand
(31) S(QVIP)X ()\ 75) = { rze X ’ 0c F1<l‘,y,/\/) + B+(O,€)e(x),‘v’y c Kz(.’l?,)\,) s

and Q(QVDP)A (5, 6) = U)\’EB()\,S) §(QVDP))\ ()\,, 8), where §(QVDP)A : A x R* is defined by,
forall ' € A,e € RT,

Q ’ L d(ﬂ?, K1($, )\/)) <e and
(32) S(QVDP)A ()\ ;5) = { re X ' 0 ¢ Fg(x,y,)\/) + B+(0,€)€<.’E>,vy c KQ(.T, /\/)

Clearly, we have, for every A € A, (i) Siqvip), = g(Q\/ﬂ')))\()\,O) C Qv (0,¢), Vé,e >0
and S(QVDP)/\ = g(QVDP)k ()\,0) - Q(QVDP)X (5, 8), V5,8 > 0, (11) if 0 < 51 < (52 and 0 < e1 <
g2, then Qquip), (91,21) € Qquip), (02, €2) and Qqvpp), (d2,£2) € Qqvpp), (1,€1)-

Lemma 3.3. Assume that K, is closed-valued and u.s.c. and K is l.s.c..
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(i) If, foreachz € X, Fi(x, .,.) is closed, then Sqvip), = s>0.c50 S2Qvip), (6, €) for each
A€eA.

(ii) If, for each x € X, Fy(x,.,.) is open, then Siqvpp), = ﬂ5>07€>0 Qqvpp), (9,€) for
each A € A.

Proof. (i) For any given A € A, it is clear that Siqvip), C (550,50 SkQvip), (0, €).

Thus, we only need to show that (5., .., Q@up), (6:€) € Sqvip), - Suppose on the con-
trary that there exists 2* € 550,50 $2@QVIp), (6,¢) such that * ¢ Sqvp), - Then, for each
d > 0and each e > 0, 2* € Qqvp), (4, €>\S(QVH))>\. In particular, for each n € N, we have

z* € Qup), (%, %) \Siqvip), ; and so there exists A, € B(), +) such that

(33) d(z*, K\ (2", \)) < —, and

S|

1
(34) 0€ Fi(a*,y, ) + B0, )ela®), Wy € Ka(a”,n).

Obviously, A,, — A. Since K is closed-valued, it follow from (3.3) that we can choose
z, € Ki(z*,\,) such that d(z*,z,) < 1, Vn € N. Thus, z,, — z* as n — oc. Since
K, is closed-valued and u.s.c., we have Kj is closed, it follows that z* € K;j(z*,\).
We observe that for each y € Ksy(z*,\), since Ky is l.s.c. at (z*,\) and (z*,\,) —
(x*, A), there exists y, € Ka(x*, \,,) such that y,, — y. Applying (3.4), we have that 0 €
Fi(x*,yn, A\n) + BT <0, %)e(az*) Thus, there exists a sequence {v,} € B*(0, ) such that,
foreachn € N, 0 € Fy(z*, yn, A\n) + yne(z*), which gives that —y,e(z*) € Fi(z*, ypn, An)
that is ((yn, An), —yne(z*)) € Gr(Fi(z*,.,.)). It is clear that {((z*, yn, A\n), —me(z*))} —
((z*,y,A),0). The closedness of the mapping Fi(z, ., .) implies that (y,A), 0)€ Gr(F; (z*, ., .)).
Thatis 0 € Fy(z*,y,\) and so x* € Sqvip), , which is a contradiction. Hence

ﬂ5>0’€>0 Q(QVIP)X ((5, 8) - S(QVIP)A- (ii) For any given \ € Aandlet F} : X x X x A — 2%
be defined by F(x,y,A) = Z\Fs(x,y,\) for each (z,y,\) € X x X x A. Then Sqvip), =
S(QVDP)/\ . For each 6 > 0 and € > 0 we have Q(QVIP)A (5, 8) = Q(QVDP)A (5, 8). Since Fy ({E, . )
is open, we have Fi(z,y, \) is closed. By (i), the proof is complete.

The following example is given to illustrate the case that Lemma 3.3 is applicable.

Example 3.1. Let £ = Z =R, X = [0, +00) and A = [0, 1]. For every (z,y,\) € X x X x A,
let e(x) = 22, Ki(z,)\) = [M\%, +00) and Ka(x,\) = [22 + A2, 22 + 1]. Define a set-valued
mapping F1, Fp : X x X x A — 2Z by Fy(z,y,)\) = (—00,2x —y + A],

Fy(z,y,\) = (2z—y+ A, +00). Obviously, it is to see that all assumptions of Lemma 3.3 are
satisfied. Hence, Siqvip), = (550,50 $4@uip), (0,€) and Sqvoe), = s>0.e0 avop), (9 €)
for each A € A.

Lemma 3.4. For (QVIP) and (QVDP), assume that K is closed-valued and u.s.c. and K
is l.s.c..

(i) If, for each A € A, Fi(.,., ) is closed and K is also compact-valued, then for each
(\,e) € AxRT, g(QVIP) (A, €) is closed subset of X, where §(QVIP) , is defined by (3.1)
and so is Qqvrp), (9, €)-

(ii) If, for each A € A, Fy(.,., ) is open and K is also compact-valued, then for each

(A, e) € A x RT, S‘J(QVDP)A (A, ) is closed subset of X, where §(Q\/Dp)A is defined by
(32) and so is Q(QVDP)/\ (5, €).
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Proof. Let (\,e) € A x RT be fixed and suppose that K is also compact-valued. If z €

clg(QVIp)X (A, €), then there exists a sequence {z,} C §(QVH’A (A, e) such that z,, — = as
n — oo. It follows that, for each n € N, z,, € X such that for each y € Ks(z,, A),

(35) d(2p, K1 (20, ) < &, and

(3.6) 0 € Fi(zn,y,A) + BT(0,)e(wn).
By (3.5), for each n € N, there exists u,, € K;(z,,A) such that

1
(3.7) d(xnyun) <e+ 5

Since K is u.s.c. and compact-valued, there exists a subsequence {u,, } of {u,,} such that
Up, — wask — oco. It follows that d(x, u) = limg—, o0 d(zp, , un, ) < €. Since K7 is u.s.c. and
closed-valued, we have K is closed. Thus v € K;(z, A). This implies that

(3.8) d(z, Ki(x,\)) < e.

For each y € Kj(z, \), since K is Ls.c., there exists a sequence {y,, } with y,, € Ka(zy, \)
such that y,, — y as n — oo. By (3.6), we have 0 € Fy (2, yn, A) + BT (0,¢)e(z,), Vn € N.
Thus there exists a sequence {a,,} € B1(0,¢) such that 0 € Fy (2, Yn, \) + ane(z,), Vn €
N. Observe that BT (0,e) := [0,¢] C R is compact. Assume that o, - a € B1(0,¢)
as n — oo. Since Fi(.,.,A) is closed, one has 0 € Fi(z,y,\) + ae(z) C Fi(z,y,\) +
BT(0,¢)e(x). Therefore z € §(QVIP)A(/\,€), and this implies that §(QVIP)A()\’€) is a clo-
sed subset of X. Now it follows Qqv), (,€) is a closed subset of X. (ii) Let F :
X x X x A — 2% be defined by Fy(z,y,\) = Z\Fy(z,y,\) foreach (z,y,\) € X x
X x A. Then S(QVHJ))\ ()\, 8) = S(QVDP)X ()\, 6) and S(QVIP)A = S(QVDP)A/ and so Q(QVIP)A (5, E) =
Qqvor), (6, €). Since Fy(.,., A) is open, we have Fi(z,y, A) is closed. By (i), the proof is
complete. O

If E is finite-dimension normed space, then the assumption that “K; is also compact-
valued in Lemma 3.4 ” can be removed

Lemma 3.5. Let E be finite-dimensional normed space. For (QVIP) and (QVDP), assume that
K is closed-valued and u.s.c. and K5 is l.s.c..
(i) If, for each A € A, Fy(.,.,\) is closed, then Sqyip), , §(QVIP)A()\, e) and Qgvip), (0,¢) are
closed subset of X.
(ii) If, for each X € A, F»(., ., \) is open, then Siqvpp),, §(QVDP)A()\,5) and Qqvpp), (9,¢) are
closed subset of X.

Proof. We can proceed the proof exactly as that of Lemma 3.4 except for using the As-
sumption that £ is finite-dimension normed space to get d(z, K1(z,\)) < . In fact, since
x, — x, it follows that {z, } is bounded. By (3.7), we have {u,} is also bounded. Thus
there exists a subsequence {u,, } of {u,} such that {u,,} converges to some u € X
as k — o0o. Since K; is closed-valued and u.s.c., we have K; is closed, it follows that
u € Kq(x,\). It follows that d(z,u) = limg_, 00 d(p,,, un, ) < € and so d(z, K1(x,\)) < e.
This complete the proof. 0

Remark 3.2. If K (z, \) = Kz(z, \) = X, then our problem (QVIP) reduces to (VIP) in Lin
and Chuang [19].

Now, we are in a position to state and prove our main results.

Theorem 3.1. For (QVIP), assume that E is complete, K is closed-valued and u.s.c., K is L.s.c.
and F is closed. Then (QVIP) is LP well-posed if and only if for every A € A,

(3.9) Qquip), (0,€) # 0, Vo,e > 0, and diam(Q(qvipy, (6,¢)) — 0as (J,) — (0,0).
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Proof. Supposed that (QVIP) is LP well-posed. Then, for every A € A, (QVIP), has a
unique solution z, Svip), # 0, and so Q,(d,e) # 0, for all §,¢ > 0. Now we shall show
that

(310) diam(Q(Q\/Ip)k ((5, 6)) — 0 as ((5, 8) — (O, 0)

Suppose to the contrary the existences of (3.10), there exist [ > 0, sequences {4, } and {e,, }
of positive real numbers with (d,,,¢,) — (0,0) as n — oo and sequence {z,} and {z/,}
with z,,, 2}, € Quip), (0n, €n) for each n € N such that

(3.11) d(zy,x)) >1, ¥n € N.

For each n € N, since x,, € Qqvip), (0n,n), there exists A, € B (0, ¢,,) such that

d(zyn, Ki(zn, \n)) < en and 0 € Fi(z,y, \n) + BT(0,e,)e(x,) Yy € Ka(xpn, ), and
since ;, € Qqvp), (0n,€n), there exists A}, € B*(0,¢,) such that d(z},, K1(zn, \,,)) < €n
and 0 € Fy(z,,y,\,) + BT(0,e,)e(z),) Yy € Kao(xn,N,). Clearly, A, — Xand A, — A
as n — oo. Hence, {z,,} and {z],} are LP approximating solution sequences for (QVIP),
corresponding to A, \],, respectively. By the LP well-posed of (QVIP),, {z,} and {z/,}
converge to the unique solution = of (QVIP),, which is a contradiction to (3.11). This
implies that (3.10). Conversely, suppose that condition (3.9) holds. Let A € A be fixed.
Let {\,} be any sequence in A with \,, — X as n — oo. Suppose that {z,} is a LP ap-
proximating solution sequence for (QVIP), corresponding to {),}, then there exists a
nonnegative sequence {¢,} | 0 such that for each n € N, d(z,,, K1(z,,\)) < &,, and
0 € Fi(Tn,y,\n) + BT (0,en)e(zy), Yy € Ko(xy,N). For each n € N, let §,, = d'(\n, ).
Then, A\, € B(A,6,) and x,, € Qqvip), (0n,€x) for eachn € N, and 6, — 0 asn — oo. It
follows from (3.9) that {z, } is a Cauchy sequence and so it converges to a point z € X.
By similar arguments as in the proof of Lemma 3.4, we also deduce that = belongs to
S(qvip), - Next, we will show that (QVIP), has a unique solution. Suppose to the contrary,
if (QVIP), has two distinct solutions x; and x5, it is easy to see that x1, x5 € Q(QVIP)X for
all ,& > 0. It follows that 0 < d(z1, r2) < diam(£qvip), (4, €)) which gives a contrdiction
to (3.9). This implies that (QVIP), has a unique solution. This completes the proof. 0

The following example is given to illustrate the case that Theorem 3.1 is applicable.

Example 3.2. Let E = Z =R, X =[0,1]and A = [0, 1]. For every (z,y,\) € X x X x A, let

) 1

|:0, l:| y lf)\#l, [071]7 lf/\#§a

e(z) =1, Ki(z,A) = 2 % and Ky (z,\) = ] )
[0, 1], 1f)\=§, [0,5] , 1f)\:§.

Define a set-valued mapping F; : X x X x A — 2Z by Fy(z,y,\) = (=00, (A + 2)(y —
x)]. Obviously, it is to see that conditions of Theorem 3.1 are satisfied. For every \ €
A, diam(Qqvp), (d,€)) — 0 as (4,¢) — (0,0). By Theorem 3.1, (QVIP), is well-posed. [

Remark 3.3. We can not the supposed LP well-posedness in Theorem 3.1 by generalized
LP well-posedness. Therefore, we have to employ the Kuratowski measure of noncom-
pactness to study characterizations of the LP well-posedness in the generalized sense for

(QVIP).

Theorem 3.2. For (QVIP), assume that E is complete and A is finite dimensional, K, is closed-
valued and u.s.c., Ky is l.s.c. and F is closed. Then (QVIP) is LP well-posed in generalized the
sense if and only if for every A € A, Qqvip), (6, €) # 0, Vo,e > 0, and (Qqvipy, (0,€)) —
0as (0,e) — (0,0).

Proof. Suppose that (QVIP) LP well-posed in the generalized sense. Let A € A be fixed.
Then S(qvip), is nonempty. Now we show that S(qyip), is compact. Indeed, let {z,}
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be any sequence in S(qvip),. Then {z,} is a LP approximating solution sequence for
(QVIP),. By the LP well-posedness in the generalized sense of (QVIP), {z,,} has a sub-
sequence which converges to a point of Sqvip), - Thus S(qvip), is compact. Clearly, for
each d,e > 0, S(qvip), € Q(qvip), (0,¢), and so Q(qvip), (J,€) # 0. Now we will show that

(3.12) (Qqvrp), (0,€)) — 0as (6,¢) — (0,0).

Observe that for every d,e > 0, H(Qqv), (J,€), Svir),) = H*(Qqvp), (4, €), Sqvip), )
and S(gvp), is compact. Indeed, let {z,,} := {(x,, \,)} be arbitraly sequence in Sqvip), -
Then, it is clear that {z,} is a LP approximating sequence of (QVIP). Thus, it has a
subsequence converging to a point in Sqvip),. Therefore, u(Svrr),) = 0. Now for
any a > 0, there are finite sets Af, A%,..., A} for some n, € N such that Svip), C
e A2 and diam A9 < o, forallk =1,2,...,n,. Next, foreach k € {1,2,...,n,},
we define the set M = {z € X : d(z, A7) < H(Qqvp), (4,¢), Svip), ) }- We show that
Qvp), (0,6) C Ure, M. To this end, let z € Qqvp), (0,¢) be given. Thus, we have
d(z, Sqviey, ) < H(avp), (6, €), Siqup), )- As Squipy, € U2, AR, we also get
d(a:, UZil Ag) < d(l‘, S(QVIP))\) < 7‘[(9((2\]113)A ((5, 6), S(QVIP)/\)- Therefore, there exists k‘o S
{1, 2,... ,na} such that d(:l?, A?o> < /H(Q(QVIP)A ((5, 8), S(QVIP)/\)a thereby yleldmg x € M,S;.
Therefore, we get the desired inclusion. Futhermore, we see that, forany k € {1,2,...,n,},

(313) diam Mka S o+ 2H(Q(QVIP)A ((5, 6), S(QVIP)A )

Indeed, forany y,y’ € M and m,m' € AY, d(y,y’) < d(y,m)+d(m,m’)+d(m’,y’), which
gives that d(y,y’) < a+2H(Qqvp), (4, €), Sqvip), ), which leads to the desired result (3.13).
It follows from the definition of ;1 that u(Qqvip), (6,€)) < 2H(Qqvip), (6, €), SQuip),) +
«a, for all a > 0. Therefore, we can conclude that

1(Sqvip, (6,€)) < 2H(Qquip), (9, €), Siquip), ) = 2H" (S qup), (4, €), Squip), )-
To prove (3.8), it is sufficient to show that
(3.14) H* (Q(QVIP)X (5, 5), S(QVIPA) — 0 as (5, E) — (O, 0).

If (3.14) does not hold, then there exist » > 0, sequences {4,,} and {e,,} of positive real
numbers with (6,,,€,) — (0,0) as n — oo and sequence {z,,} with x,, € Qqvip), (0n,n)
for every n € N such that

(3.15) d(fEn, S(QVIPA) >r, Vn € N.

For each n € N, since z,, € Q) (d,,n), there exists A, € B(A, d,,) such that
d<xn7K1($na)\n>) S En and 0 € F(mn,y, )\n) + B+(075n)e(xn)7 \V/y S K2<xn7>\n)-
Clearly A\, = X asn — oo. Hence {z,} is a LP approximating solution sequence for
(QVIP), corresponding to {\,}. Then, by the LP well-posedness in the generalized sense
of (QVIP), {z,} has a subsequence {z,,, } which converges to some point of Sqvrp), - This
contradicts (3.15), and so (3.14) holds. Therefore, (3.8) is proved. Conversely, suppose that
condition (3.7) holds. We will show that (QVIP) is LP well-posed in generalized sense. Let
A € A be fixed. Thus, by Lemma 3.3 and Lemma 3.4, we have Qqvp), is closed. Further,
S(QVIP)A = 067€>0 Q(QVIP)X ((5, E). Since H(Q(QVIP)/\ (5, 6)) — 0 as (5, 5) — (0, 0), by Lemma
2.2, Sqvip), is a nonempty compact subset of X and

(316) H* (Q(QVIP)X ((5, 6)7 S(QVIP)A) — 0 as ((57 8) — (0, 0)

Let {\,,} be any sequence in A with \,, — A as n — co. Suppose that {z,, } is a LP approxi-
mating solution sequence for (QVIP), corresponding to {),, }, then there exists a sequence
{en} of positive real numbers with ¢,, — 0 such that, for each n € N, d(z,,, K1 (2, A\p)) <
enand 0 € Fy(xn,y,\n) + BT(0,en)e(xy,),Vy € Kao(zpn,\,). For each n € N, let 4,, =
d(An,A). Then, A, € B(A,6,) and z,, € Qquip), (0n,6n) for every n € N, and 9, — 0
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as n — oo. It follows from (310) that d(l‘n, S(QVIP)/\) < H*( (QVIP), (67” €n), S(QVIP)X) —
0asn — oo. Since Sqvip), is compact, for each n € N, there exists 7,, € Svip), such
that d(z,,, Z,) = d(zn, Sqvip),) — 0 as n — oo. By the compactness of Sqvp), , {7} has
a subsequence {7, } which converges to a point = € Siqvir), - Hence, the corresponding
subsequence {z,, } of {z,,} converges to z. This implies that (QVIP) is LP well-posed in
the genelized sense. This completes the proof. 0

Remark 3.4. Theorems 3.1, Theorems 3.2 generalizes Theorem 3.8, Theorems 3.11 of [29], re-
spectively.

By Theorems 3.1 and 3.2, we can get the following results.

Theorem 3.3. For (QVDP), assume that E, Ky, K5 as in Theorem 3.1 and F; is closed. Then
(QVDP) is LP well-posed if and only if for every X € A,

Qqvpp), (0,€) # 0,¥0,¢ > 0, and diam(Qqvpp), (0,€)) — 0as (J,¢) — (0,0).

Theorem 3.4. For (QVDP), assume that E, K1, K5 as in Theorem 3.2 and F5 is closed. Then
(QVDP) is LP well-posed in generalized the sense if and only if for every \ € A,

Q(QVDP%\((S? 5) 7£ @,V(S, e > 0, and M(Q(QVDP)A(& 6)) —0as (5, 8) — (0,0)
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ABSTRACT. In this paper, we consider an uncertain convex optimization prob-
lem with a robust convex feasible set described by locally Lipschitz constraints.
Using robust optimization approach, we give some new characterizations of ro-
bust solution sets of the problem. Such characterizations are expressed in terms
of convex subdifferentails, Clarke subdifferentials, and Lagrange multipliers. In
order to characterize the solution set, we first introduce the so-called pseudo
Lagrangian function and establish constant pseudo Lagrangian-type property
for the robust solution set. We then used to derive Lagrange multiplier-based
characterizations of robust solution set. By means of linear scalarization, the
results are applied to derive characterizations of weakly and properly robust
efficient solution sets of convex multi-objective optimization problems with
data uncertainty. Some examples are given to illustrate the significance of the
results.

1. Introduction. The study of characterizations of solution sets has become an im-
portant research direction for many mathematical programming problems. Based
on understanding characterizations of solution sets, solution methods for solving
mathematical programs that have multiple solutions can be developed. The notion
of characterizations of solution sets was first introduced and studied by Mangasarian
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for a convex extrema problem with differentiable function [29]. Some useful exam-
ples clarifying such characterizations of solution sets can be found in [7] for char-
acterizing the problems that have weak sharp minimum. This being a reason why
several characterizations of solution sets for some classes of constrained optimization
problems have appeared in the literature (see [6, 8, 13, 14, 19, 23, 32, 33, 36, 38, 39]
and other references therein).

However, dealing with real-world optimization problems, the input data asso-
ciated with the objective function and the constraints of programs are uncertain
due to prediction error or measurement errors (see [1, 2, 3, 4]). Moreover, in many
situations often we need to make decisions now before we can know the true values
or have better estimations of the parameters. Robust optimization is one of the ba-
sic methodologies to protect the optimal solution that it is no longer feasible after
realization of actual values of parameters. This means that any feasible points must
satisfy all constraints including each set of constraints corresponding to a possible
realization of the uncertain parameters from the uncertainty sets. Precisely stated,
let us first consider the following optimization problem:

;Ielkr}l{f(m):gi(x)SQ i=1,...,m}, (P)

where f,g; : R®” — R, i = 1,...,m, are functions. The problem (P) in the face
of data uncertainty both in the objective and constraints can be written by the
following optimization problems:

mﬁn{f(xvu)gz(xavz)goa Z:L?m}7 (UP)
TER™
where f: R" x R?® — R, and ¢g; : R* x R% — R, i =1,...,m, are functions, v and

v; are uncertain parameters and they belong to the specified nonempty convex and
compact uncertainty sets U C R% and V; C R%, respectively. The robust (worst
case) counterpart of (UP), by construction in [3], is obtained by solving the single
problem:
min {max f(z,u) : g;(z,v;) <0, Vo, €V;, i =1,...,m}, (RP)
z€R™ "~ ueU
where the objective and constraints are enforced for every possible value of the
parameters within their prescribed uncertainty sets U and V;. The set of feasible
solutions of problem (RP),

F:={xeR":g(x,v;) <0, Vv, €V, i=1,...,m},

refer to robust feasible set of the problem (UP). The optimal solution to the problem
(RP) is known as a robust optimal solution of (UP). A successful treatment of the
robust optimization approaches for treating convex optimization programs with
data uncertainty to derive characterizations of robust optimal solution sets was
given in [15, 27, 34, 35]. For issues related to optimality conditions and duality
properties, see [5, 11, 16, 17, 18, 25, 26] and other references therein.

This paper is an attempt to investigate optimality conditions and to derive char-
acterizations of robust solution sets of (UP). Unlike various related works in the
literature mentioned above, in the present paper, appearing constraint functions
are not convex necessarily while the robust feasible set F' is convex. In this way,
we refer to convex problems without convex representation in the sense that the
constraint functions to represent the convex feasible set are non necessarily convex.
Optimality conditions and characterizations of convexity of feasible set for such



ROBUST SOLUTION SETS FOR UNCERTAIN CONVEX OPTIMIZATION PROBLEMS 3

problems in the absent of data uncertainty can be found in [24] for differentiable
case, and in [10, 30, 21] for non-differentiable case.

To the best of our knowledge, completely characterizations of robust solutions
for uncertain scalar and multi-objective optimization problems over a robust convex
feasible set described by non necessarily convex functions within the framework of
robust optimization approach are not available in the literature. So, in this paper
we examine a robust optimization framework for studying characterizations of the
robust optimal solution set for uncertain convex optimization problems with a ro-
bust convex feasible set described by locally Lipschitz constraints. First, complete
optimality conditions for uncertain convex optimization problems are given. In or-
der to characterize the robust optimal solution set of a given problem, we introduce
the so-called pseudo-Lagrange function and then, we show that pseudo-Lagrange
function is constant on the robust optimal solution set. Afterwards, we then use
this property to derive various characterizations of the robust optimal solution set
that these are expressed in terms of convex subdifferentials, Clarke subdifferentials
and Lagrange multipliers. Finally, the results are then applied to derive character-
izations of weakly robust efficient solution set and properly robust efficient solution
set of uncertain convex multi-objective optimization problems without convexity
assumption on constraint functions.

The remainder of the present paper is organized as follows. In Sect. 2, we
gives some notations, definitions and preliminary results. In Sect. 3, we establish
a multiplier characterization for the robust optimal solution of uncertain convex
optimization problem. Sect. 4 provides characterizations of robust solution set of
uncertain convex optimization without convexity assumption on constraint func-
tions. In Sect. 5, we give a sufficient condition that a robust efficient solution of
uncertain multi-objective convex optimization problems can be a properly robust
efficient solution. Moreover, characterizations of weakly robust efficient solution set
and properly robust efficient solution set of such problem are given.

2. Preliminaries. We begin this section by fixing certain notations, definitions and
preliminary results that will be used throughout the paper. We denote by R™ the

Euclidean space with dimension n whose norm is denoted by || - || and {(x,y) denotes
the usual inner product between two vectors x,y in R™, that is, (z,y) = 27y. Let
R% = {z:= (21,...,2,) € R : 7; > 0, ¢ = 1,...,n} be non-negative orthant of

R™. Note also that the interior non-negative orthant of R" is denoted by intR’f and
is defined by intR"} := {x € R" : 2; >0, ¢ = 1,...,n}. Given a set A C R", we
recall that a set A is conver whenever Az + (1 — Ny € Afor all A € [0,1], z,y € A.
A set A is said to be a coneif NA C A for all A > 0. We denote the convex hull and
the conical hull generated by A, by convA and coneA, respectively. The normal
cone at = to a closed convex set A, denoted by N(A,x), is defined by

N(Az) ={€eR": ({,y—z) <0, Yy € A}.
A function f: R™ — R is said to be convez if for all A € [0,1] and z,y € R,
FOz 4+ (1= Ny) <Af(z) + (1 =N f(y).

It is a well known fact that a convex function need not be differentiable everywhere.
However if f : R®” — R is a convex function then the one-sided or rather right-
sided directional derivative always exists and is finite. The right-sided directional
derivative of f at z € R™ in the direction d € R™ is denoted by denoted by f'(z;d),
is defined as



4 NITHIRAT SISARAT, RABIAN WANGKEEREE AND GUE MYUNG LEE

F(@d) = lim 1T =@

t—0+ t

It is important to note that for every fixed x the function f'(z;.) is a positively
homogeneous convex function. The subdifferential of convex function f at z is
defined as

Of(x) :={£ €R": f(y) 2 f(z) + ({,y — x), forall y € R"}.

We now recall the following useful result, which is a subdifferential max-function
rule of convex functions over a compact set, that will be used later in the paper.

Lemma 2.1. [15, Lemma 2.1] Let U C RP be a convex compact set, and let f :
R™ x R?® — R be a function such that for each fized w € U, f(-,u) is a convex
function on R™ and for each fized x € R™, f(x,-) is a concave function on R,
Then,

0 (maxr60)) @ = U 050,
wEU(Z)
where U(Z) :={u €U : f(Z,u) = maxyey f(Z,u)}.

Definition 2.2. A function h : R™ — R is said to be locally Lipshitz at x € R",
if there exists a positive scalar L and a neighborhood N of z such that, for all
y,2 € N, one has

|h(y) — h(z)| < Llly — 2.

Definition 2.3. [9] Let & : R™ — R be locally Lipshitz at a given point = € R™.
The Clarke generalized directional derivative of h at x in the direction d € R”,
denoted h°(z;d), is defined as

h(x;d) := limsup —h(y +td) — h(y) ,
y—z t
t—0t

Definition 2.4. [9] Let h : R™ — R be locally Lipshitz at a given point = € R™.
The Clarke generalized subdifferential of h at x, denoted by 9°h(z), is defined as

0°h(z) :=={€ € R" : h%(x;d) > (£, d) for all d € R"}.
From the definition of the Clarke generalized subdifferential, it follows that

ho(x;d) = ,d), Vd e R™.
(2 d) &£$@@>
Definition 2.5. Let h : R® — R be locally Lipshitz at a given point x € R™. The
function A is said to be regular at x € R"™ if, for each d € R™, the directional
derivative h/(z;d) exists and coincides with h°(z;d).

For a given compact subset V of R? and a given function g : R™ x R? — R, the
following conditions will be considered in this paper.

(C1) for every x € R™ the function V 5 v —— g(z,v) is upper semicontinuous;

(C2) g islocally Lipschitz in z, uniformly for v in V, that is, for each x € R™, there
exist an open neighborhood U of z and a constant L > 0 such that for all y
and z in U, and v € V, one has

lg(y,v) — g(z,v)| < L|ly — 2l|;
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(C3) for each (z,v) € R™ x V, the function g(-,v) is regular at z, that is,

97 (2, 0;) = gy (2, v; )
(the derivatives being with respect to z);
(C4) set-valued map R"xV 5 (z,v) — 9°¢(-,v)(z) is upper semicontinuous where
0°g(-,v)(x) denotes the Clarke subdifferential of g with respect to .

Remark 1. In a suitable setting, if the function g is convex in x and continuous
in v, the conditions (C2), (C3), and (C4) are then automatically satisfied. These
conditions also hold whenever the derivative V,g(z,v) with respect to = exists and
is continuous in (z,v).

Remark 2. [25] Under the conditions (C1) and (C2) the function ¢ : R" — R,

¥(x) := max{g(z,v) : v € V},
is defined and finite. Further, 1 is locally Lipschitz on R™, and hence for each
z € R™ the set V(x) defined as

V(z):={veV:glx,v) =9},
is a nonempty closed subset of RY.

We conclude this section by the following lemmas which will be useful in our
later analysis.

Lemma 2.6. [9] Let the function v be defined in Remark 2. Suppose that the
conditions (C1) - (C4) are fulfilled. Then the usual one-sided directional derivative
V' (x; d) exists, and satisfies the following: for each x,d € R™,

' (x;d) = ¢°(2;d) = max{gl(z,v;d) : v € V(x)}
= max{({,d) : £ € °g(-,v)(z),v € V(z)}.
Lemma 2.7. [26] For a given compact convex subset V of R? and a given function

g : R"xR? — R, suppose that the basic conditions (C1) - (C4) are fulfilled. Further,
suppose that g(z,-) is concave on V, for each x € R™. Then

0°Y(z) ={£ € R" : Jv € V(x) such that £ € 0°g(-,v)(x)}.

3. Multiplier characterization for the robust solution. In this section, we
give a multiplier characterization for the robust optimal solution of (UP), which will
play an important role in deriving characterizations of the robust optimal solution
sets in the next section. Let us recall the following robust (worst case) counterpart
optimization problem of (UP):

min {max f(z,u) : g;(z,v;) <0, Vv; € V;, i =1,...,m}, (RP)
TzERM " uel
where f: R" x R® —» R, and g; : R® x R% — R, 4 =1,...,m, are given functions

and for each i = 1,2,...,m, (u,v;) € U x V; CR% x R% where U and V; are the
specified nonempty convex and compact uncertainty sets. The robust feasible set
of (UP) is defined by

F:={zeR":g(z,v;) <0, Vv, €V;, i =1,...,m}.

Assumption 3.1. Throughout this paper, we always assume that F # 0, f :
R™ x U — R is a convex-concave in the sense that f(-,u) is a conver function
for any uw € U, and f(x,-) is a concave function for any x € R"™ while g;(x,-),
t=1,...,m, are concave functions for any x € R™. Further, let the functions g;,
i=1,...,m, be satisfied the conditions (C1) and (C2).
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Definition 3.1. We say that Z € F' is a robust optimal solution of (UP) if and
only if Z is an optimal solution of (RP).

By using Proposition 2.2 in [10], we can derive the following characterization of
convexity for robust feasible set of (UP) in terms of the Clarke directional derivative.
Before doing so let us denote, for each x € F,

I(z) == {ie {1,...,m}: meaé;gi(x,vi)—O},

and for alli=1,...,m,
Vi(z) = {T)i eV;:gilz,v;) = max gi(x,vi)} )

Proposition 1. Let the system g;(z,v;) < 0, Yv; € V;, i = 1,...,m, be satisfied
the robust Slater constraint qualification, that is, there exists xo € R™ such that

gi(zo,v;) <0, foranyv;, €V, i=1,...,m.

For each x € F and i € I(x), let the function g; be satisfied the conditions (C3),
(C4), and 0 ¢ 0°g; (-, v;)(x) whenever v; € Vi(z). Then F is convez if and only if
F={yeR": g7 (z,vi;y —x) <0, Vx € F, Vi € I(x), Yv; € V;(x)}.

Proof. For each ¢ = 1,...,m, define a function v, : R — R by

Wi(x) == max gi(z,v;) for all z € R™.
vi €V

Applying the conditions (C1) and (C2), we have, for each i = 1,...,m, 1, is locally
Lipschitz on R™. To achieve the result, we will use Proposition 2.2 in [10] and then
we need to justify that for any = € F, 9;, i € I(z), are regular in the sense of
Clarke and 0 ¢ 9°v;(z), and the system t;(z) <0, =1,...,m, satisfies the Slater
condition. The first and the second requirements will follow from Lemma 2.6 and
Lemma 2.7 that for any = € F),

Yi(x;d) = 99 (z;d) = max{g?, (z,v:;d) : v; € Vi(z)}, Vi € I(z), (1)

and for each i € I(x)
oe ) BR\(gutw@)=r\ U oatw@)
Vi €Vy v €Vigi (T,0:)=v; ()
gi(x,v;)=0
= R"™\0%Y; ().
Finally, the robust Slater constraint qualification leads us to the following strict
inequality
¥i(xo) = max{g;(xo,v;) : v; € V;} <0, Vi=1,...,m,

which means that the system z € R™, v¢;(z) <0 (i = 1,...,m) satisfies the Slater’s
condition'. Now applying [10, Proposition 2.2] and taking (1) into consideration,
we obtain the desired results. O

! the system = € R", g;(z) < 0 (i = 1,...,m) satisfies the Slater’s condition if there exists
2o € R™ such that g;(zo) <0 foralli=1,...,m.
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Remark 3. It should be noted that in Proposition 1 without robust Slater con-
straint qualification and 0 ¢ 9°g; (-, v;)(x) whenever © € F, i € I(x), and v; € V;(x),
we easily obtain that if F' is convex then

FC{yeR": g (x,v5y—2) <0, Ve eF, Viel(x), Yo, € V;(2)}.
Furthermore, for every x € F one has

0°gi(-,v;)(x) C N(F,z) whenever i € I(x) and v; € V;(z).

In order to establish a multiplier characterization for the robust optimal solution
of (UP), we first recall a robust basic constraint qualification which was introduced
in [5], where the constraint data uncertainty g¢;(-,v;), ¢ = 1,...,m, are assumed to
be convex for each v; € V;.

Definition 3.2. Let x € F be a robust feasible solution of (UP). The robust basic
constraint qualification is satisfied at z if

m
N(F,z) = U > Xi0°gi (-, vi) (x).
Ai>0, v €V, i=1
Aigi(z,v;)=0, i=1,....,m

Now the following theorem declares a result that the robust basic constraint
qualification defined in Definition 3.2 is a necessary and sufficient constraint quali-
fication of a robust optimal solution for the given problem, that is, the robust basic
constraint qualification holds if and only if the Lagrange multiplier conditions are
satisfied for a robust optimal solution.

Theorem 3.3 (Characterizing the robust basic constraint qualification).
Suppose that for each x € F and i € I(x), the function g; satisfies the conditions
(C3) and (C4). Then, the following statements are equivalent:

(i) the robust basic constraint qualification holds at T € F;

(ii) for each real-valued convex-concave function f on R™ XU, the following state-
ments are equivalent:
(a) maxyuey f(z,u) > maxyey f(Z,u) for allxz € F,
(b) there exist u € U, \; >0, and v; € V;, i = 1,...,m such that

0e 8f(,a)(.’f) + E Xiaogi(-,@i)(is), j\lgz(i',i_},) = 07 Vi = 1, NN (2)
i=1
and

(@) = ma [ (@, ). 3)

Proof. [(i) = (ii)] Suppose that (i) holds. Let f be a real-valued convex-concave
function on R™ x Y. Firstly, we assume that (a) holds. Then, Z is a solution of the
following constrained convex optimization problem:

Minimize max f(z,u) subject to z € F,
ue
which can be equivalently expressed as,
0 € (max f(-,u))(z) + N(F, Z).
ueU

By (i), there are \; > 0, and v; € V;, i = 1,...,m such that

0€ a(rileazjcf(,u))(i) + Z)\Zﬁ 9i(+,0;)(Z) and A\;g;(Z,0;,) =0, Vi=1,...,m.

i=1
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Then, it follows from Lemma 2.1 that there exists @ € U such that (2) and (3) hold.

To prove sufficiency, assume that there exist @ € U, \; > 0, and v; € V;, i =
1,...,m such that (2) and (3) hold. According to (2), we can find £ € 9f(-,a)(Z)
and n; € 0°g;(-,v;)(Z), i =1,...,m, such that

§+> Aini =0, (4)
i=1
It stems from & € Of(-,u)(z) and 7; € 0°¢;(-,0;)(Z), i =1,...,m, we get
f(l’,ﬂ)*f(.’f’,ﬂ)2<§,$*f> (5)
and
95:(Z, 0552 —T) > (ni,x —Z) Vi=1,...,m, (6)

for any x € R™. Multiplying each of inequalities in (6) by ); and summing up the
obtained inequalities with (5), we obtain that, for all x € R™,

f(m7ﬂ) - f(j7ﬂ) + Z;\igfz(j7@i; T — j) > <€ + Zj\ﬂh‘#ﬂ - 53)
i=1 i=1
Taking (4) into account together with the condition Xigi(f,@i) =0,i=1,...,m,
we deduce

f(xaﬂ) - f(:iaﬂ) + Z j\igfx(i‘aﬁi;x - j) 2 Oa vz € R".
iel(®)
Note that for each i € I(z) with g;(z,v;) # 0, A\; = 0. So, we consider in the case
of g;(Z,v;) = 0 for i € I(Z), and hence v; € V;(Z). By Remark 3, the last inequality
becomes
f(z,u) — f(z,a) >0 for all z € F.
Thus, together with max,cy f(z,u) > f(z, ) for all z € R™ and (3), we obtain

— o) > F
gflglicf(w,u) g?ggf(x,U) >0, Vo e

It means that Z is a robust optimal solution of problem (UP).
[(ii) = (i)] The proof is similar to the one in [35, Theorem 3.1], and so is
omitted. O

In the uncertainty free case, we can easily obtain the following result, which was
obtained by Yamamoto and Kuroiwa in [37].

Corollary 1. [37, Theorem 3.2] Let z € F' := {x € R" : g;(x) <0, Vi=1,...,m}
be a feasible solution, g; : R™ — R, i =1,...,m, be locally Lipschitz on R™. Assume
further that for any x € F' and any i = 1,...,m such that g;(x) = 0, the function
gi is reqular, and F' is convex. Then the following statement are equivalent:
(i) N(F,z) =U 220 Yoty Xi0°gi(T);
Xigi (2)=0, i=1,....m
(ii) for each real-valued convex function f on R™, the following statements are
equivalent:
(a) f(x) > f(T) for allx € F';

(b) there exist \; >0, i=1,...,m such that

0€0f(Z)+ Y _ Xid°i(T) and Xigi(z) =0, Vi=1,...,m.
i=1
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Remark 4. Both the robust Slater constraint qualification condition and robust
non-degeneracy at T, i.e.,

0 ¢ 9°g,(-,v)()
whenever ¢ = 1,...,m and v; € V; such that g;(Z,v;) = 0, is a sufficient condition
for the robust basic constraint qualification holds at Z. Indeed, according to Remark
3, we only have to show that

N(F,z) C U > Xi0°gi (-, vi) (7).
Ai>0, v; €V; =1
Xigi(%,vi)=0, i=1,...,m

Let n € N(F,Z) be arbitrarily. Since the robust Slater constraint qualification
condition and robust non-degeneracy are satisfied at z, by Theorem 2.4 in [10] with
fi=(-n,),and g; :=;, i =1,...,m, there exist A; > 0,i=1,...,m, such that

0e—n+ 25\18"1/)1(5:) and j\ll/lz(i’) =0, Vi=1,...,m.

i=1
For i ¢ I(z), we get A; = 0. In the case of i € I(Z), Lemma 2.7 together with
Ai;(Z) =0, Vi =1,...,m, implies there exist v; € V;, i = 1,...,m, such that

n e inaogi(-,ﬁi)(:ﬁ) and S\igi(:f,z_}i) =0.
=1
This shows that

m
ne U > Xi0%gi(-vi)(T),
Ai>0, v, €V; i=1
)\ig,;,(i,vi):(), 1=1,....m

the result as require.

The following example is given to illustrate the condition (i) of Theorem 3.3 is
essential.

Example 3.2. Let z := (21,22) € R?, v; = (v11,v12), v2 = (v21,v22), V3 :=
(v3.1,v32), V1 := {(v1,v2) € R? : 03403 < 1}, Vo :=[0,1] x[1,2], V5 := [2, 3] x[0, 1],

g1(z,v1) = v1 171 + V1 020 — 75 — 2,

92(m,v2) = —v2127 + vo o max{—za, —23},

93(w,v3) = 3171 + V3272,

F:={zeR?: gi(z,v1) <0, ga(x,v2) <0, gs(x,v3) <0, Yoy €V, i =1,2,3}
and & := (0,0). Then F = {zx € R? : /a2 +a3 — 2} -2 < 0, 221 + 2

0, —z1—x2 <0}, I(Z) = {2,3}, 0°g2(-, v2)(Z) = {0} x [—v2,2,0] and 0°g3(-, v3)(Z)
{(v3,1,v3,2)}. It can be observed that

N(F,z) = cone{(—1,-1),(2,1)}

A

and

3
U > Xi0°gi(-,vi)(z) = cone {(0, -1), (2, 1)} .
Ai>0, v, €V; =1
Aigi(T,v;)=0,1=1,2,3

Hence, we have the condition (i) of Theorem 3.3 does not hold. Thus for some
convex-concave function f : RZ x U — R, it is impossible to characterize a sufficient
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condition for robust optimal solution for the following uncertain problem by using
Theorem 3.3,

minimize f(x,u) subject to x € R?, g;(x,v;) <0, i =1,2,3.

Actually, let uw := (u1,u2) be an uncertain parameter belong to uncertainty set
U = {(u,uz) € R? : uf +u3 < 1}, and f(x,u) := €™ — uyxy — upxs. Selecting

= (1,0), o1 := (1,0), 0 := (1,1), 03 := (2,0), Ay := 0, Ay :=1and A3 := 1 we
obtain X\;g;(%,v;) =0 for all i = 1,2, 3,

f(z,a) =1=max f(z,u)

and
(0,0) € {(=2,0)} + {0} x [-1,0] + {(2,0)} = 0f(-,u)(Z) + Z Laogi(-,m)(z).

However, by taking z := (—%, @) € F, maxyey f(Z,u) =e/? -1 < 1= f(z,a) =

maxyey f(Z,u) which shows Z is not a minimizer of maxy,ey f(+,u) on F. O
Remark 5. According to Remark 4, Example 3.2 demonstrates that only robust
Slater constraint qualification condition is not sufficient to ensure the robust basic
constraint qualification holds at consideration point. The reason is that the robust
non-degeneracy condition at such a point is destroyed.

4. Characterizations of the robust solution sets. In this section, we will es-
tablish some characterizations of robust optimal solution set in terms of a given
robust solution point of the given problem.

We begin by recalling the following constrained convex optimization problem in
the face of data uncertainty (UP):

Ig%g%{f(.’[),u) cgi(zyv;) <0, i=1,...,m}, (UP)

where f : R™ x Y — R is a convex-concave function, the functions g;, i € I, satisfy
the condition (C1) and (C2), g;(z,-) : V; = R, ¢ € I, are concave functions for any
x € R", and the robust feasible set F' is convex. Assume that the robust solution
set of the problem (UP), denoted by

= : <
§:={a € F:max f(a,u) < max f(z,u), Yo € F},

is nonempty. In what follows, for any given y € R", A := (A1,...,A\n) € R,
u €U, v €Vy,i €Il andv:= (v1,...,05), we introduce the so-called pseudo
Lagrangian-type function LY (-, y, A\, u,v) by, for all z € R",

LP(%Z%)\;U;U) = f(ac,u) + Z Algfw(y’ Vi3 & — y)
i€l(y)

Now, we show that the pseudo Lagrangian-type function associated with a Lagrange
multiplier vector and uncertainty parameters according to a solution is constant on

S.

Proposition 2. Assume all conditions of Theorem 3.3 hold. Let a € S be a robust
optimal solution fulfilling the robust basic constraint qualification. Then there exist
a Lagrange multiplier vector \* := (A\{,...,\%) € R, and uncertainty parameters
u* €U, v¥ €V, i € I, such that for any x € S, \¢g?.(a, vz —a) =0, Vi € I(a),
f(z,u®) = max,cy f(z,u), and LT (-, a, \*, u®,v?®) is constant on S.
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Proof. Tt follows from a € S and Theorem 3.3 that there exist a Lagrange multiplier
vector A* := (Af,..., %) € R, and uncertainty parameters u® € U, v{ € V,
i € I, satisfying the Conditions (2) and (3). Then, it stems from the fact that
0°¢g;(-,v¥)(a) = 092, (a,v¥; - — a)(a) for all ¢ € I(a) and (2), we get

0€df(-,u)(a) + Z XeDge (a,vd; - —a)(a) € OLY (-, a, A%, u®, v")(a),

i€l(a)

which is noting else than

f(z,u®) Z M gi(a, v —a) > fla,u®) = maxf(a u) for all z € R™.  (7)

ueU
i€l(a)
Notice that
maxf(x u) = maxf(a,u), for any a € S and z € S, (8)
uel ueU

and taking this into account, (7) deduces 3, ;) A7 95, (a, vi;2—a) > 0, for any z €
S. Let us notice that for indices ¢ € I(a) such that A¢ > 0, we have g;(a,v?) = 0,
and consequently, v¢ € V;(a). This in turn, by Remark 3, implies that

Mgy (a,vf;2—a) =0, Vi € I(a). (9)
Now, we prove that

flz,u®) = max f(z,u), for any x € S. (10)

In fact, by (7) and (9), we get the assertion

max f(z,u) > f(z,u®) = max f(a, u).

This together with (8), (10) holds. Therefore, for any x € S, (3), (8), (9) and (10)
entail

Lp(xvav)\avuaava) = f(x’ua) + Z )‘(z’lgfx a‘vvz 3L — a)
i€l(a)

= = = = a
= f(z,a) = max f(z,u) = max f(a,u) = f(a,u®),
showing that LT (-, a, A%, u®,v?) is constant on S, and this completes the proof. [

Remark 6. It is worth noting that if g;(-,v;), @ € I, are convex functions for any
v; € V; then, for each i € I, Proposition 2 gives

Mgi(z,v8) — Mgi(a,vd) > Mgi(a,vd;x —a) = Mgl (a,vi; 2 —a) =0 for any x € S.
This together with « € F and A¢g;(a,v?) =0, i € I, arrives A\lg;(z,v#) =0, i € I.
Furthermore, it yields

LY (z,a, 2% u®,v?) = f(z,u®) + Z g0 (a, vl — a)

i€l(a)

= fla,u?)

= fz,u") + Z)\?g,—(z,vf‘), Vo e S.
i=1

This shows that pseudo Lagrangian-type function collapses to the well-known Lagran-
gian-type function on the robust solution set S.
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In the sequel, we are now in a position to establish the characterizations of the
robust solution set for problem (UP) in terms of convex subdifferentials, Clarke sub-
differentials and Lagrange multipliers. But before doing so it will thus be convenient
to denote the following:

I(a) := {i € I(a) : A\ > 0},

Cz) :={€df(,u*)(a): (¢, —a) > 0} for any given x € F.
Theorem 4.1 (Characterizing the robust solution set). Assume all conditions
of Theorem 3.3 hold. Let a € S be a robust optimal solution fulfilling the robust
basic constraint qualification. Then there exist a Lagrange multiplier vector \* :=
(Af, ... A%) € R, and uncertainty parameters u® € U, vy € Vy, i € I, such that
the robust solution set for the problem (UP) is characterized by

5251252:S3ZS4:S5256:S77

where

S1:={x € F:(n,z—a)=0 for some n; € 9°¢;(-,v{)(a), Vi € I(a);
(¢;a—mz) =0 for some ¢ € df(-,u")(x) NOf(-,u")(a);

Jlz,u) = glggf(x,w},

Sy:={x € F:(n,x—a)=0 for some 1; € 8°g;(-,v%)(a), Vi € I(a);

(C,a—z) >0 for some ¢ € df(-,u®)(z)NIf(-,u)(a);

) = max f(z,w),

Sy :={z € F: (n,z—a) =0 for some 7; € 8g;(-,v%)(a), Vi € I(a);

(&x—a)={C,a—x) =0 for some ¢ € df(-,u*)(x)and &€ C(x);

fla,u) = Igleagff(x,U)},

Sy:={zx € F:(n,z—a)=0 for some n; € °g;(-,v?)(a), Vi € I(a);
(&, 2 —a) = ((,a— x) for some ¢ € If(,u*)(z) and & € C(z);
(@, u?) = max f(z, u)},

Ss:={x € F:(n,x—a)=0 for some 1; € 8°g;(-,v%)(a), Vi € I(a);

(&, 2 —a) <{(,a—z) for some (€ If(-,u”)(z) and & € C(x);

flu) = ma f(w, w)},

Se :=={x € F: (n;,z —a) =0 for some n; € 0°¢g;(-,v})(a), Vi € I(a);
((;a—x) =0 for some ¢ € df(-,u)(z);
@, u®) = max f(z,u)},

S;:={z € F: (n,z—a)=0 for some 7; € g;(-,v%)(a), Vi € I(a);
(¢,a—x) >0 for some ¢ € df(-,u")(x);

[z, u®) = glggf(%U)}

Proof. Evidently, the following containments hold:
S1 C 5 C Sy,
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S1 € Sg C 57,
51 C83C 8 C S5 C Sy
Hence, we only have to show that S C S; and S; C S. In order to establish S C S,

let x € S be arbitrarily given. It follows from (2), we therefore obtain vectors
¢ €0f(-,u*)(a) and & € 9°¢;(-,v¥)(a), ¢ € I(a), such that
C+ Y A&=0 (11)
i€l(a)
(since A* = 0 for ¢ ¢ I(a)). According to ¢ € Of(-,u%)(a), & € 0°¢;(-,v¥)(a),
i€ I(a), and x,a € S, one has
fl,u®) = fla,u®) = (¢, z — a) (12)
and
go.(a, v 0 —a) > (&, —a), Vi € I(a). (13)

Once we have shown, in Proposition 2, that A?¢?, (a,v{;z —a) =0, Vi € I(a), after

multiplying both sides of (13) by A¢, i € I(a) we get
0> (\i&;,z —a), Vi€ I(a).
Summing up these inequalities and using (11) we obtain that
0>( > XNgw—a)=(-Cr—a). (14)
i€l(a)
Again, it follows from Proposition 2 that
ay _ 1
f@,u?) = max f(z, u), (15)

and for each i € I(a), max,,cpeg, (- vo)(a) (i T — @) = g (a,vf';x —a) = 0, the latter

which in turn leads to there exists n; € 9°g;(-,v})(a) such that
(ni,x —a) = 0.
On the one hand, taking (3) and (15) into account (12) we obtain
(G —a) < f(z,u") - fla,u) = max f(z, u) — max f(a,u) = 0.
This together with (14) arrives at
¢, x —a)=0.
Now, we only need to prove that ¢ € 9f(-,u®)(x). In fact, for any y € R",
fly,u®) = flz,u®) = fy,u®) = f(a,u?)
> (Cy—a)
=Gy —a)+{(z—a)=((y—x)

which means ¢ € 9f(-,u®)(x) and so, x € S1. This proves S C 5.
To obtain S; C S, we now let x be arbitrary point of S7. It follows that x € F,
and it is easy to see that

max f(a, u) —max f(z,u) = f(a,u®) = f(z,u*) 2 (¢,a —2) 2 0.

The last inequality together with the fact that a € S gives x € S, and the proof is
complete. O
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Now, we give the following example to illustrate the significance of Theorem 4.1
that at least one of the constraint functions g;(-,v;) for some v; € V;, is not convex
while the robust feasible set is convex. Then the results in [15, 35, 34, 27] may not
be relevant to this example.

Example 4.1. Let us denote z := (21,22) € R?, u = (u1,uz2), v1 := (v1,1,012),
vy 1= (v21,v22), vz = (v31,032), U = {(ur,u2) € R* : uf +uj < 1}, V1 =
{(v1,v2) € RZ : 02 + 02 < 1}, Vo :=[0,1] x [1,2] and V3 := [0, 1] x [0, 1]. Consider

1
the following constrained optimization problem with uncertainty data (UP):
Minimize f(z,u) (UP)
subject to € R?, gi(z,v1) <0, ga(x,v2) <0, gs(x,v3) < 0.
where u e U, v; € V;, 1 =1,2,3,
[z, u) == uiwy + ugws — 1 — T2,
gi(z,v1) = v11%1 + V1222 — T} — 2,
g2 (1, v9) 1= vo max{—x1, —x3} — vy 279,
g3(z,v3) = v3171 — V3 273

A robust solution of (UP) is obtained by solving its robust (worst-case) counterpart
(RP)

Minimize max f(z,u) (RP)
ue

gl(wvvl) S 07 vvl € V17

g2(z,v2) <0, Yuy € Vs,

g3(z,v3) <0, Yuz € Vs,
z € R?

subject to z € F' :=

Then F = {x € R? : \/2? + 23 — 23 —2 <0, —21 — 22 <0, 21 < 0}. Evidently,
the function f : R? x U — R is a convex-concave function. Let us notice that

maz/){(f(x,u) =\/2?+ 23 — 21 — 2o, for all z € R?,
ue

> e =0=
rgleagff(x,u) > |zo| —z2 =0 Tg&{f(((),()),u), for all z € F.

and

Thus a := (a1, a2) = (0,0) € S, I(a) = {2,3}, 9°g2(-, v2)(a) = {(r, —va,2) : —v21 <
r < 0} for each vy € V5 and 0°¢3(-,v3)(a) = {(vs,1,0)} for each vg € V3. So,

3
N(F,a,) :COne{(—L—l)’(l’O)}: U Z)‘iaogi(',vi)(a),
Ai>0, v; €V, i=1
Xigi(a,v;)=0, i€l

which means that the robust basic constraint qualification holds at a. Also, for each
u € U, the convex subdifferential of f(-,u) at any point x is given by

Af (- u)(z) = (ug — Lug — 1).

Let us select A% := (A%, A%, \%) = (0,0,1), u®:= (0,1), v§ := (1,1) and v§ := (1,0).
Therefore, I(a) = {3} and by solving the following system, for € R?
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z1 = ((1,0), (z1,22)) = 0,

\/E—QSO,

—X2 < O,
Of(,u®)(x) NOf(-,u?)(a) = {(—1,0)},
((=1,0),(0,z2)) =0,
—X1 = MaXyecy f(.T,’U/),
the robust solution set can be described simply as
5251:{$€R22I1:O, 0§1’2§2}
O

With the help of Proposition 2, we see now how the robust solution set can be
characterized in terms of pseudo Lagrangian-type function.

Proposition 3. Assume all conditions of Theorem 3.3 hold. Let a € S be a robust
optimal solution fulfilling the robust basic constraint qualification. Then there exist
a Lagrange multiplier vector \* := (A{,...,A%) € R, and uncertainty parameters
u* elU, v} eV, i el, such that

S={ze€F:(m,z—a)=0, for some n; € 9°¢g;(-,v})(a), Vi € I(a);
0€ LY (-,a, 2\ u®,v*)(z) and f(x,u”) = mab){(f(x,u)}.
ue

Proof. Tt will thus be convenient to denote

S*:={x e F:{(n,x—a)=0, for some n; € 8g;(-,v%)(a), Vi € I(a);

)

0€ LY (-, a, A% u®,v*)(z) and  f(z,u®) = maz/)[(f(x,u)}.
ue

By Proposition 2, we have that for each z € S, A\¢¢9,.(a,v¢;2 —a) =0, Vi € I(a),
f(z,u®) = max,ey f(z,u), and LY(-,a, A%, u® v*) is constant on S. The latter
means that

aLP('v a, )\a’ ua7 Ua)(m) = {0}7
and so, S C S*. To obtain the converse inclusion, let x € S* be given. Then, by

the definition of S*, z € F, there exist n; € 9°g;(-,v¢)(a), Vi € ]:(LL)7 such that

i,z —a) =0, Vi € I(a),
a — 1
(o) = mave 7, ) (16)
and
Fu®) + 3 gl (a,08y — a) = L (3,0, X%, u, 07)
i€l(a)
< LP(x,a, A%, u®, v®)
= f(x7ua> + Z )‘?gfx(av U?;.T - a)
i€l(a)
= f(ac,u“) + Z )‘?giow(aavzq;x - a)
iel(a)
= f(z,u?) for all y € R".
Using (16) and taking y = a in the last inequality, we get that

max f(z,u) 2 max f(a,u) 2 f(a,u*) 2 f(z,u*) = max f(z,u).
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Hence,
max f(a,u) = max f(x,u
mavx f(a,u) = ma f(z, ),
which is noting else than = € S. O

In the special case when U and V;, ¢ € I, are singletons, we can easily obtain the
following results.

Corollary 2. For the problem (P), let f : R™ — R be convex function and F' :=
{r e R": g;(x) <0, i € I} be convexr. Assume that for any x € F' and i € I'(x) :=
{i € I: g;(x) = 0} the functions g; are locally Lipschitz and regular in the sense
of Clarke, a € 8" is an optimal solution fulfilling N(F',a) = cone Uiel,(a) 9°gi(a),

and there exists a Lagrange multiplier vector A* := (A{,..., A%) € R such that
0€df(a)+ Z A0%gi(a) and Aigi(a) =0, Vi=1,...,m. (17)
i=1

Let further I(a) := {i € I'(a) : A* > 0} and C(z) = {¢ € df(a) : (£, x —
a) > 0} for any given x € F'. Then, the solution set S’ of the problem (P) is
characterized by
S'=8]=5,=8,=5,=5L=5;=25%,
where
S :={z e F :(ng,x—a)=0 for some n; € 8g;(a), Vi e I(a)';
(¢,a—x) =0 for some ¢ €df(x)Nadf(a)},
Sy :={x e F": (n,z—a)=0 for some n; € 3°;(a), Vi € I(a)’;
(¢,a—x) >0 for some ¢ € df(x)Ndf(a)},
S4:={x e F : (n,z—a)=0 for some n; € 3°;(a), Vi € I(a);
(€,2—a) = (C,a—x) =0 for some ¢ € df(x) and & € C(x)'},
Sh:={xeF :(n,z—a)=0 for some n; € 8°;(a), Vi € I(a)’;
(€,2 —a) = (C,a —x) for some ¢ € df(x) and & € C(x)'},
SL:={zeF :(ng,z—a)=0 for some 7; € 3g;(a), Vi e I(a)';
(&,x —a) <{(,a—z) for some ¢ € df(x) and £ € C(x)'},
Si:={zx e F :(ng,x—a)=0 for some 7; € 3°g;(a), Vi I(a)';
(¢,a —x) =0 for some ¢ € df(x)},
St :={zeF :(ng,x—a)=0 for some 7; € 3g;(a), Vi e I(a)';
(¢,a—x) >0 for some ¢ € df(x)}.
Corollary 3. For the problem (P), let f : R™ — R be convex function and F' :=
{r € R" : g;(x) <0, i € I} be conver. Assume that for any x € F' and i € I'(x)
the functions g; are locally Lipschitz and regular in the sense of Clarke, a € S’ is
an optimal solution fulfilling N(F',a) = cone Uz’e]’(a) 0°g;(a), and the optimality

conditions (17) hold with a Lagrange multiplier vector A* := (A{,...,\%) € R}
Then,

S ={zeF :(n,x—a)=0,3n € ga), Vi € I(a) and 0 € AL (-,a,\*)(z)},
where LY (x,a,\*) := f(x) + Yicr(a) M9 (a;z — a).
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5. Application to robust multi-objective optimization problems. In this
section, as an application of the general results of the previous section, we examine
the class of multiple-objective programs in the face of data uncertainty both in
the objective and constraints that can be written by the following multi-objective
optimization problem:

felﬁri{(fl(x’ul)’ o Pz up)) tgi(z,v) <0, 0=1,...,m}, (UMP)

where f; : R"xR% — R, k =1,...,p, are convex-concave functions, g; : R xR% —
R, ¢ = 1,...,m, are functions satisfying the condition (C1) and (C2), g;(z,-) are
concave functions for any x € R", and u; and v; are uncertain parameters and they
belong to nonempty convex compact sets Uy C R and V; C R%, respectively.

We associate with (UMP) its robust counterpart, which is the worst case of
(UMP),

gﬁ{g{(ggﬁ filz,ug), ... ’ur?eal?l(p fp(x,up)) cx € FY, (RMP)

where F' stands for the robust feasible set of (UMP), defined by

F:={xeR":gi(z,0;) <0, Vv; €V;, i=1,...,m}.

In the same way, we will give three kind robust solutions for the problems (UMP)
which has been introduced in [22].
Z € F is said to be a robust efficient solution of (UMP) if there does not exist a
robust feasible solution  of (UMP) such that
urﬁlgg{(k Jr(z,ug) < urilgl)jk Ji(Z,ug) forall k =1,...,p,
and

max fi(x,u;) < max f;(z,u;) for some [.
u €U fl( ’ l) uleulfl( ’ l)

T € F is called a weakly robust efficient solution of (UMP) if there does not exist

a robust feasible solution = of (UMP) such that
urzlg&ck fre(zyug) < urkpeagk fiu(Zyug) forallk=1,...,p.

Z € F is said to be a properly robust efficient solution of (UMP) if it is a
robust efficient solution of (UMP) and there is a number M > 0 such that for all
ke{l,...,p} and x € F satisfying max,,, ey, fr(z,ur) < maxy, ey, fk(Z,ux), there
exists an index [ € {1,...,p} such that max,, ey, f1(Z,w) < maxy, ey, fi(z,w) and

maxu, v, Sk (T, k) — maxu, ev, fi (2, ur)
maxy, ey fi(€, wr) — maxu,ery, f1(Z,wr)
According to these definitions, it is evidently that z € F is a robust efficient
solution (resp. weakly, properly robust efficient solution) of (UMP) if and only if
T € F is a efficient solution (resp. weakly, properly efficient solution) of (RMP).
The search for an efficient solution (resp. weakly, properly efficient solution) to
multi-objective optimization problem has been carried out through solving a single
(scalar) or a family of single objective optimization problems, possibly depending
on some appropriate parameters. We refer the reader to [28, 12, 31, 20] and other
references therein for necessary and sufficient conditions for (weakly, properly) ef-
ficient solutions to a multiobjective optimization by parameterization and linear
scalarization (weighted sum approach).
In this section, we present characterizations of weakly robust efficient solution
set (WR(F)) and properly robust efficient solution set (PR(F')) of the problem

<M.
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(UMP) by using linear scalarization approach. Before presenting, in the cases of
study, let us consider the following scalar convex problem of (RMP) depending on
a parameter 0 := (61,...,0,) € R}:

TERM

p
min {; 0 ur,?ngti fre(zyug):x € F} . (RPy)

Suppose that the solution set of problem (RFP;), denoted by Sy is nonempty. It is
well-known, in the literature, that weakly efficient solutions and properly efficient
solutions of (RMP) can be characterized by solving some scalar parameterized con-
vex problems (RPy). More precisely,

(i) € WR(F) if and only if there exists § € R} \{0} such that Z € Sy.

(ii) € PR(F) if and only if there exists 6 € intR% such that z € Sp.

Thus, by using Theorem 3.3, we can obtain immediately the following necessary

and sufficient optimality conditions for weakly robust efficient solution as well as
properly robust efficient solution of (UMP).

Theorem 5.1. For the problem (UMP), suppose all conditions of Theorem 3.3 hold
and T € F :={z € R" : g;(z,v;) <0, Yv; € V;, i € I} fulfilling the robust basic
constraint qualification. Assume further that the set F' is convex. Then,
(i) T € F is a weakly robust efficient solution of (UMP) if and only if there exist
0, >0, k=1,...,p, not all zero, \; >0,i=1,....m, ux €U, k=1,...,p
and v; € V;, i =1,...,m such that

0> 0k0fi( ) (@) + D Xid°gi(-0:) (),
k=1 i=1

Aigi(Z,v;) =0, Vi=1,...,m, and
fe(Z,ur) = max fi(z,ug), k=1,...,p.
ug €U
(i) T € F is a properly robust efficient solution of (UMP) if and only if there

exist O, >0, k=1,...,p, \; > 0,i=1,....m, up € Uy, k =1,...,p and
v; €V, i =1,...,m such that

p m
06> 0:0fi( ) (@) + Y \id°gi(-0:) (),
k=1 i=1
Aigi(Z,0;) =0, Vi=1,...,m, and
fk('iaﬁk) = max fk('/fvuk)a k= 1,' -y D
u, €U

Proof. (i) As Z € F is a weakly robust efficient solution of (UMP) if and only if
T € F is a weakly efficient solution of (RMP), there exist 8 > 0,k =1,...,p, not all
zero, such that Z € F is a solution of (RFPy). In the other word, Z € F is a robust
solution of the following uncertain (only in the constraints) convex optimization
problem:

TER™ up EUy

p
min {ZOk max fr(x,ur) : gi(z,v;) <0, i € I}.
k=1 '

Applying Theorem 3.3, we get that there exist A; > 0, and 7; € V;, i € I such that

p m
o (; O magx f’“("”’“)> (@) + > Xid°gi () (@), Nigi(x,0) =0, Vie I.

i=1
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By employing the summation, positively homogeneous and max-function of convex
subdifferential rule, the result as required.
(ii) The proof of (ii) is quite similar to that of (i) and so is omitted.
O

In the following proposition, we give a sufficient condition that a robust efficient
solution of (UMP) can be a properly robust efficient solution of (UMP).

Proposition 4. For the problem (UMP), let Z € F be a robust feasible solution for
(UMP). Assume all conditions of Theorem 3.3 hold. Assume further that the set F'
is convex, F N F(Z) # 0 and

N(FNF(z),z) = cone { (Uukeuk(m)afk('auk)(j)> U (Umevi(x)aogi('wi)(f)) } ;
k=1,...,p i€I1(Z)
(18)

where

F(z):={x € R": max fr(x,ux) < max fr(Z,ug), Vk=1,...,p}, and

up €U uy €Uy,
Uel@) = (e € Ue s ful@, 1) = max fel@,w)}, k=1,....p,
Ul k

Vi(Z) ={v; €V, : 9:(T,0;) = max 9i(Z,v;)}, i € I(Z).
If T is a robust efficient solution of (UMP), then T is a properly robust efficient
solution of (UMP).

Proof. Let T be a robust efficient solution of (UMP). Then Z is a minimizer of the
following scalar convex problem:

zER” up €U

P
min {Z max fr(z,ug):z € FOF(I)} ,
k=1
or equivalently,
P
0 0 . )+ N(FNF(Z),Zx).
€D 0l St} @) + NPV F(E).
It follows that there exists n € N(F N F(Z),Z) such that
P
—ne kZ:l 8(532511 S uk)) (@)

Then, by the condition (18), there exist 0 > 0, 4y € Uk, & € Ofx(-,u)(T),
kE=1,...,p, A\; >0, 9; € Vi(z) and ¢; € 9°g;(-,v;)(Z), © € I(Z), such that

p
=Y 0kt Y NG
k=1

i€l (z)

and

fk(j:7ﬂ’) = max fk(:iauk)v Vk=1,....p.
ur EUL

which implies that

0=—n+n€d o(max fil,ue)) @)+ Y O:Dfe(w)(@) + Y Xd°gil-0:)(@)
k=1 k=1

i€l(x)
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c

8( max fk uk .f' + ng< U 6fk(,uk)(£)> + N(F, .f')

>

k=1 u EU p o

p
:;a(ul?gb)l(kfk(" +th9k max ol ur))(@) + N(F, z)

M@

1+ Qk)a(ulknélg{(k fi(,uR)) (@) + N(F, Z).

>
Il
—_

Therefore,

P
Z(l + 0) max fk(:r ug) > Z(l + 6;) max fe(Z,uy) for all z € F,
k=1 k=1 Ui
which gives that # € Sz with 0 := (1461,...,146,) € intRY , and so Z is a properly
robust efficient solution of (UMP). O

Let 6 € RE\{0} (resp. intR%) and a’ € Sy. We have seen already that if the
robust basic constraint quahﬁcatlon holds at a?, the set of Lagrange multiplier and
uncertain parameters M (a?) for (RP) corresponding to a?, given as

M(a%) :=
{( uf v)ERmxHRq’“xHRqL'

i=1

0 3 B0f( ) (a) + ZAfaogz o)),

k=1
)\fgi(a ,vz) =0, Vie I and fk(a U )7 max fk(ae,uk), Vk = L...,p}7
up €U

is nonempty where A% := (X{,... A9, u? := (uf,...,uf) and v? := (of,... 0f).
Let further I(a?) := {i € I : 3v? € V; such that g;(a?,v?) = 0} and I(a?) := {i €
I(a?) : )\ > 0}.

By means of linear scalarization applied in Theorem 4.1, we can get character-
izations of the weakly robust efficient solution sets W R(F') and properly robust

efficient solution set PR(F') of the problem (UMP) immediately.
Theorem 5.2. For the problem (UMP), assume all conditions of Theorem 3.3 hold,

and the set F' is convex.

(i) Suppose further that for each 6 € RE\{0}, Sy is non-empty. Let a’ € Sy and
the robust basic constraint qualification holds at a®. Let (X, u?,v?) € M(a?).
Then

WR(F)

= U {x eF:(n? a—a =0 for some n! € °gi(-,v0)(a?), Vi € I(a?);
0cRY \{0}

P P
(¢%, x —a%) =0 for some (% e Zek(?fk(-,ua)(x) N Zekafk(-,ub’)(aé’) and

fk(x?ug) = mag{( fk($7uk)a Vk = 17ap}

uk €U
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(i) If for each 6 € intR", Sy is non-empty, a’ € Sy is fulfilled the robust basic
constraint qualification, (\?,u® v%) € M(a%), then

PR(F)
= U {x e F:(n?,x—a’ =0 for some n! € 8°g;(-,v0)(a?), Vi € I(a%);
o€ intRY

P P

(¢% & —a’) =0 for some (% ¢ Zekafk(-,ue)(z) N Zb’k@fk(-,ue)(ae) and
k=1 k=1

fk(‘rvug) = malf[( fk(xvuk)a Vk = 15717}

uk €U

0

To close this section, we give an example illustrating Theorem 5.2 which is indi-
cated to be conveniently applied is applicable while the aforementioned result, due
to Sun et al. [34, Theorem 4.7], are not. It means that at least one of the constraint
functions ¢;(-,v;) for some v; € V;, is not convex while the robust feasible set is
convex.

Example 5.1. Let x := (.1'171'2) S RQ, Uy ‘= (U171,U172)7 Ug 1= (U271,U272)7 v =
(v1,1,v1,2), V2 == (v2,1,V22), U3 = (v3,1,V3,2), Va4 = (Va1,0a2), Ur = Us := [0,1],
V1= {(v1,v2) € R2 102 + 02 < 1}, Vo = [-2,—1] x [-2, 1], V3 := [4,5] x [2,3]

and V4 :=[0,1] x [0, 1].
We now consider the following constrained multiobjective optimization problem
with uncertainty data :

Minimize (f1(z,u1), fa(z, uz))
subject tox € RQ? gl(xavl) < 07 92(1',1]2) < O: 93(1371]3) < 07 94(%1)4) < 0,

where
Ji(w,ur) i= ug g,
Ja(w, uz) := usxs,
g1(x,v1) = w1121 + V1022 + 3 -2,
g2(x,v2) 1= vp 171 + V2272 + 1,
g3(x,v3) 1= —v3121 — V3222 + 3,
ga(x,vq) == —vg 121 — v472x§,

and its robust counterpart

Minimize (7212&(1 fl(x,ul),urglgb)é fa(z,u2))

91(1'7“1) S 07 le S V17
g2(x,v2) <0, Yoy € Vo,

subject to x € F:=< g3(z,v3) <0, Yvz € Vs,
94(1371)4) S 07 Vv4 S V47
z € R?

We obtain that for every = € R2,

max Ji(w,ur) = @1,
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max fo(X,Ug) = X2
mas fo(a, ) = a5
F={zcR*: /o2 +a3+a}-2<0, —z; —29+1<0, —4z; — 215 +3 <0,

— X1 S 0}7

as a straightforward calculation shows. Let us denote

A= {(91,92) S R? : 01+ 6y = 1}7
intA := {(91,92) S R? . 01 >0, 05 >0, 0, +060; = 1}.

We now consider the following possibilities:

(1)

If 0 := (61,02) = (1,0) then (RPy) reads as follows:
Minimize 3

subject to =z € F.

As 0121 +0220 = 21 > 0, Vo € F, we can take a’ := (0, 2) € Sy and so, I( %)
{1,4}. Let us choose \? := (0,0,0,1), uf := (1 1), v¥ = (01,1)2,1)3, )
((0,1),(=1,-1),(4,2),(1,0)), and we also have I(a’) = {4} Let

Ag:={z e F: ! z—a’ =0 for some n! € 8°g;(-,v?)(a?), Vi € I(a®);

(i)

(iii)

(iv)

(v)

3¢% € (0:0£1(,uf) (@) + 020 f2(-, uf) ()
N (01011( ui)(a”) + 020 fo (-, u5) (a”));

<€07$ - a0> = 0’ ur?ng{i fl(l',ul) = fl(xauli)a UI?EaZ/)Ii f2($7u2) = fQ(xauZ)}

Then Ay can be easily calculated 49 = {z e R2:2; =0, % < a9 <2}
Similarly, if § = (0,1) then we can take a = (1,0) € Sp and so, I(a?) =
{1,2,4}. Let us choose \? := (1,1,0,0), u (1,1),1}0 = (v],v5,v5,v9) =
((1,0), (—1,-1),(4,2),(0,1)), and we also have I(a?) = {1,2}. Thus Ay =
{(1,0)}.

If 0 € {(61,02) € R%: % <61 <1, 02>0, 61 + 0 =1} then (RP) becomes

Minimize 0121 + 0319
subject to x € F.

AS (911‘1 + (921‘2 > 91%’1 - 2021’1 + 392 = (391 - 2)%’1 + 392 = 392, Vl‘ S F,

then we can take a’ := (0,3) € Sy and so, I(a?) = {2,4}. Let us choose
= (0, 0,2 3 ,01 —2603) (note that 6; > £ and 01 +92 = 1 imply 6; — 2605 > 0),
= (1,1), 0% = (of 08,08, 0f) = ((1, 0) (—1,-1),(4,2),(1,0)), and we also

have f(ae) = {274}. In this case, it is easy to see that Ag = {(0,3)}.
Similarly, if 6 € {(01702) c R?: % < 0 < %7 0y > 0, 01+ 0, = 1} then
Ap ={(0,1)} and if € {(01,62) €ER?*:0 <6y <3, 0>0, 0,+6; =1} =
{(01,92) ceR?:1 < 0y < 1, 01 > 0, 01+ 0y = ].} then Ay = {(1 0)}

If 6 : ( , ) then91m1+02x2_%, Vz € F. Take af := (5 )659 and
so, I(a’) = {2,3,4}. Let us choose X’ := (0,%,0,0), u’ := (1 1), v? =
(¢, 08,08, v9) = ((1,0), (=1, —1), (4,2), (1,0)), and we also have I(a?) = {2}.
Then elementary calculations give us Ag = {x € R2: —2y —zo + 1 =0, z1 >
0, x2 > 0}.
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(vi) Similarly, if 8 = (%,
and so,

1) then we can take a’ = (1,1)7 € Sp, A? = (0,0, ,0)

A@:{x€R22—4x1—2wg+3=0, x1 >0, 9 > 0}.

Therefore, by Theorem 5.2, weakly and properly robust efficient solution sets of

(UMP) look like
WR(F) U 4= 4
9€R? \{0} I

:{CL‘ER2:x1:O, 1 <2y <2}
U{z eR?: —4x; — 215, +3=0, 21 >0, 25 > 0}
U{xE]RQ:*zlfngrl:O, x1 >0, 9 > 0}

and

PR(F) = U Ay = U Ay

Oeint]R2+ OcintA
={reR?: —4x; — 225 +3=0, 21 >0, 25 > 0}
U{$€R2Z—$1—.’E2+1:O, xr1 ZO, .7}220}

6. Conclusions. In this paper, following the framework of robust optimization, we
consider an uncertain convex optimization problem without convexity assumption
on constraint functions. We provide a new pseudo Lagrangian-type function which
is constant on the robust optimal solution set. We also obtain some characteriza-
tions of the robust optimal solution set of all robust optimal solutions of a given
problem. Furthermore, as applications, we obtain some characterizations of both
weakly robust efficient solution set and properly robust efficient solution set for a
convex multi-objective optimization problem with data uncertainty.
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Abstract

Some characterizations of solution sets of a convex optimization problem with a
convex feasible set described by tangentially convex constraints are given. The
results are expressed in terms of convex subdifferentials, tangential subdifferentials,
and Lagrange multipliers. In order to characterize the solution set, we first intro-
duce the so-called pseudo Lagrangian-type function and establish a constant pseudo
Lagrangian-type property for the solution set. This property is still valid in the case of a
pseudoconvex locally Lipschitz objective function, and then used to derive Lagrange
multiplier-based characterizations of the solution set. Some examples are given to
illustrate the significances of our theoretical results.

Keywords Convex optimization problems - Pseudo Lagrangian functions -
Tangentially convex functions - Solution sets

1 Introduction

Characterizations and properties of the solution sets play an important role for under-
standing the behavior of solution methods for mathematical programs that have
multiple optimal solutions, see [1-3]. Mangasarian [4] initially presented several
characterizations of the solution set for convex programs when one solution is known.
This study was further extended to convex/nonconvex optimization problems, see, e.g.,
[5-13]. In addition, Lagrange multipliers and its properties are employed to charac-
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terize the solution set of some classes of constrained optimization problems published
such as [14-23].

In a recent paper, under Slater’s condition together with an additional condition
on the constraints, Lagrange multipliers for differentiable convex problems without
the convexity of the constraint functions have been obtained by Lasserre [24]. Further
study has been done for non-differentiability case, see [25,26]. The primary aim of
this paper is to investigate the characterization of solution sets of the following convex
optimization problem:

min f(x)s.t.x € K, P)
xeR”

where f : R" — R is a convex function, the feasible set K, defined by
K={xeR":g(x)<0,iel}

is a nonempty convex subset of the Euclidean space R" and the functions g; : R" —
R,i € I :={1,2,...,m}, are continuous, but they are not assumed to be convex
functions. Assume that the solution set of problem (P), denoted by

S:={xekK:f(x)=f(y), VyeKj,

is nonempty.

It is remarkable that the characterization of solution sets of (P) is done by applying
[21, Corollary 3.10.] if the functions g; : R* — R, i € I, are restricted to be locally
Lipschitz and regular in the sense of Clarke [27] and additionally the pseudoconvexity
in the first argument of the Lagrange function,

L2 = fC)+ Y higi(), VA= (A1, A2, ..., Am) € RY,

iel

is satisfied. However, the pseudoconvexity assumption of L(-, 1) for every A € R}
often fails (see Remark 7 in Sect. 4). Further, regularity requirements of g;s may fail
even if g;s are differentiable functions due to the fact that differentiable functions are
not necessarily regular unless they are continuously differentiable.

Motivated and inspired by the facts mentioned above, we aim to give characteriza-
tions of the solution set of (P) without the pseudoconvexity assumption of Lagrange
function. In order to make use of the obtained results for both the differentiable set-
ting and the regular locally Lipschitz setting, we deal with the problem (P) with
continuous tangentially convex constraint functions (see [26]). First, we give the weak-
est constraint qualification for guaranteeing the Lagrange multiplier conditions to be
necessary and sufficient for optimality of (P). After introducing the so-called pseudo-
Lagrange function, we then establish the constant pseudo-Lagrange property and
employ it to derive a characterization of the solution set of (P). These are expressed in
terms of convex subdifferentials, tangential subdifferentials and Lagrange multipliers.
Moreover, Lagrange multiplier characterizations of the solution set for optimization
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problems with a pseudoconvex locally Lipschitz objective function, without convexity
of the constraint functions are given.

The paper is organized as follows: Sect. 2 gives some notations, definitions and
preliminary results. In Sect. 3, we establish a multiplier characterization for the optimal
solution of (P). Section 4 provides characterizations of the solution set of a convex
optimization problem. Finally, characterizations of the solution set for optimization
problems with a pseudoconvex locally Lipschitz objective function, without convexity
of the constraint functions are given in Sect. 5.

2 Preliminaries

We begin this section by defining notation and preliminary results which shall be used
later in this paper. All spaces under consideration are the n-dimensional Euclidean
space R" with the inner product (-, -). The norm of x € R" is defined by ||x| =
/(x, x). The closed (resp, open, left closed right open) interval between o, B € R
witha < Bisdenoted by [«, B] (resp. le, B[, [, B[). The non-negative orthant of R" is
denoted by R’| and is defined by R} :={(x,...,x,) e R" : x; >0, i =1,...,n}.
Givenaset A C R”,theset Aisaconeif uA C A forall u > 0. We denote the conical
hull generated by A, by coneA. The set A is convex whenever pua; + (1 — p)ax € A
forall u € [0, 1], a1, ap € A. The normal cone at a to a closed convex set A, denoted
by N(A, a), is defined by N(A,a) :={u € R" : (u,x —a) <0, Vx € A}. Let f
be a function from R” to R. A function f is said to be convex if for all u € [0, 1],
f(uar+ (1 —p)az) < Af(ay)+ (1 —2) f(ap) forall aj, ap € R". The subdifferential
of a convex function f at a is defined as 9 f(a) := {u € R" : Vx € R”, f(x) >
f(a) + (u,x — a)}. The function f : R" — R is said to be tangentially convex at
x € R" (see [28,29]) if for every d € R" the right-sided directional derivative of f at
X

fx +1d) — f(x)
t

f(x,d) := lim
t—0t

exists, is finite, and is a convex function of d.

Example 1 [Classes of tangentially convex functions] The following points are taken
from [26].

(a) Every convex function which has an open domain is tangentially convex at each
point of its domain.

(b) Every function which is Gateaux differentiable at a point x is tangentially convex
at x by the linearity of the directional derivative f’(x, -).

(c) Every locally Lipschitz function which is regular (in the sense of Clarke) at a
point x is tangentially convex at x, since in such a case the classical one-sided
directional derivative is convex because it coincides with the Clarke directional
derivative.
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(d) The class of tangentially convex functions at a given point is a real vector space,
and hence some tangentially convex functions (not necessarily convex and dif-
ferentiable) will follow from the sum of a convex function with a differentiable
function.

The concept of subdifferential for tangentially convex function is implicitly given
in [28]. The tangential subdifferential of (a tangentially convex function) f at x € R”
is the set dr f (x) given as

orf(x) :={uelR": (u,d) < f'(x,d), Vd e R"},

which is a nonempty compact convex set. It is important to note that if f is tangentially
convex at x € R” such that f(x) € R, the function f’(x, -) is the support function of
the tangential subdifferential, that is,

f'(x,d)= max (u,d), foralld e R". (1)
uear f(x)

Let f : R" — R be tangentially convex at x € R”". The tangential subdifferentials
enjoy nice calculus properties including the positive homogeneous rule and the sum
rule, i.e.,

(i) forevery u > 0, a7 (uf)(x) = wdr £ (x);
(i1) if f and g is tangentially convex at the same point x, one has

or (f +8)(x) = dr f(x) + drg(x).

Remark 1 For a given tangentially convex function f : R" — Ratx € R”,itis easily
to verify that the function y —> f’(x, y — x) is convex and

Irf() =df'(x,- —0)(x) =3 f(x,)(0).

Example2 Let f : R2 — R be defined as f(x1,x2) := ,/xlz + x% — x13 — x%. Then,
for every (di, d») € R2, we can verify that

£((0,0) +1(di, dr)) — £(0,0) 23 273
; = \Jd} +d5 —t*d; —t°d; forallt > 0.

Letting # — 0T, we get f/((0,0), (di, d»)) = ,/d} + d3, from which it follows that
(dy1, dr) —> f((0,0), (dy, dp)) is convex. So, f is tangentially convex at (0, 0) and
its tangential subdifferential at (0, 0) is

37 £(0,0) = 3 f'((0,0),)((0,0) = [~1, 1T x [=1, 1].

@ Springer



Characterizing the solution set of convex optimization problems without convexity of constraints

We conclude this section with the following useful result which will be used in the
proofs of the main results.

Lemma 1 Letx € Kand I(x) :={i € I : gi(x) = 0}. Assume that for everyi € I(x)
the function g; is tangentially convex at x. If the set K is convex, then for any y € K,
one has

gi(x,y—x) <0, Vi € I(x). )

Moreover, for eachi € I(x), 0rgi(x) € N(K, x).

Proof 1t is proved in [26, Proposition 1] that
KC{yeR":g/(x,y—x) <0, V(x,i) € K x I(x)},

without the Slater’s condition together with an additional condition on the constraints.
Thus, for any y € K, (2) holds.

Furthermore, (1) and (2) yield, for any u € drg;(x), (u,y —x) < 0,Vy € K,
which gives that u € N(K, x), thereby establishing the desired result. O

3 Multiplier characterization for the optimal solution

In this section, we give some constraint qualifications for guaranteeing the Lagrange
multiplier conditions to be necessary and sufficient for optimality of (P).

It should be noted that, in convex programs, Slater’s condition is usually used
to obtain the Lagrange multiplier conditions which characterize optimality (see
[14,16,17,19-21] and other references therein). However, the Lagrange multiplier
conditions for the convex optimization problems without convexity of the constraint
functions may fail under the Slater’s condition. Recently, Lagrange multiplier con-
ditions have been obtained under the Slater’s condition together with an additional
condition on the constraints. Some constraint qualifications, which are also necessary
for the existence of Lagrange multipliers for convex optimization problems without
convexity of the constraint functions, has been introduced in [30,31]. In an analo-
gous manner as [30], we introduce the following constraint qualification in terms of
tangential subdifferentials and show that it is the weakest constraint qualification for
guaranteeing the Lagrange multiplier conditions to be necessary and sufficient for
optimality of (P).

Definition1 Let x € K and g;, i € I(x), be tangentially convex at x. The normal
cone condition is satisfied at x if

N(K.x)=cone | J drgi(x).
iel(x)

Theorem 1 [Weakest CQ for Lagrange multiplier conditions] Let X € K be given, and

for every i € I(x) the functions g; be tangentially convex at x. Then, the following
assertions are equivalent:
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(1) The normal cone condition is satisfied at x;
(ii) For each convex function f : R" — R attaining its global minimizer over K at
X, there exist A; > 0, i € I, such that

0€df@ + ) hidrgi(¥), 3)
iel
and
rigi(¥) =0, Viel. 4)

Proof [(i) = (ii)]. Suppose that (i) holds. Let f : R” — R be any convex function
such that x € K is a global minimizer of (P). The convexity of K implies that, for
eachr € [0, 1], f(x) < f(x +t(x — X)), Vx € K, which gives

(& x—%)=0< f(%x—%), Vx € K. 5)

It means that X is a minimizer of the convex function f’(x, - — X) over K and it can
be equivalently expressed as, by Remark 1,

0€df(x, —X)(x)+N(K,X)=0f(x)+ N(K,X). (6)

The condition (i) yields that there exists A; > 0, i € I(x), such that
0€df(®+ Y ridrgi(x).
iel (%)
Setting ; = 0 for i ¢ I(x), the above expression can be rewritten as
0edf(x)+ ZAiBTg,-()E) and A;g;(x) =0, Viel,
iel

and hence (ii) has been justified.
[(i1)) = (i)]. Suppose that (ii) holds. By the virtue of Lemma 1, we only need to
prove that

N(K,x) S cone | J orgi(¥).
iel (%)

In fact, let u € N(K, x) be given. The definition of N (K, x) yields that (—u, x) <
(—u, x) for all x € K. It can be seen that f(x) := (—u,x), x € R", is a convex
function attaining its global minimizer over K at x. So, from (ii) and 9 f (x) = {—u},
there exist A; > 0, i € I, such that

0€{—u}+ Y xdrgi(x) and Agi(x)=0, Viel,

iel
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which follows that

we Y xidrgi(x) Scone ) drgi(®),

iel(x) iel(x)
thereby leading to the desired result. O

Remark 2 [Sufficient condition for the normal cone condition] As seen before, for each
u € N(K,x), f(x) := (—u,x), x € R", is a convex function attaining its global
minimizer over K at x. Thus, if the system g;(x) < 0,i € I, satisfies the Slater’s
condition and the non-degeneracy condition at x, i.e., for every i € 1(x),

0 ¢ drgi(x),

then [26, Theorem 9] guarantees the existence of multipliers A; > 0, i € I, such that

0€{—u}+ > rdrgi(¥)and agi(¥) =0, Viel,

iel

consequently, u € cone Ui eI (@) or gi (x). Therefore, the normal cone condition holds
at x.

Remark 3 In view of the proof of (5) and (6) in the proof of Theorem 1, one can notice
that if “For each convex function f : R" — R attaining its global minimizer over
K at x” is replaced by “For each tangentially convex and pseudoconvex' function
f : R" — R at x attaining its global minimizer over K at x”, then its conclusions
hold also true when the convex subdifferential d f (x) is replaced by the tangential
subdifferential a7 f (x).

The following example illustrates that if the normal cone condition, (i), in Theorem
1 does not hold, then the optimality condition in Theorem 1 is not derived for a convex
objective function.

Example 3 [Failure of Multiplier Characterization] Let us denote x := (x, x2) €
R g1(0) = \/x{ + x5 — %] =2, ©2(x) = —x] + max{—x2, —x3}, g3(x) =
2x1+x2, K:={x eR?:g(x) <0, iel:={1,23}}and x := (0, 0). It is easy
to verify that K = {x € R?: \/x} + x7 —x} =2 <0, 2x; +x, <0, —x; —x2 < O},
I(x) = {2,3}, 0rg2(x) = {0} x [—1,0] and 97 g3(x) = {(2, 1)}. It can be observed
that

N(K,x)=cone{(—1,—1), (2, 1)}

and
cone(dr g2(x) U drgs(x)) = cone {(0, —1), (2, 1)}.

1" A tangentially convex function f : R” — R atx € R” is said to be pseudoconvex at x (see [26]) if
Vy eR", f'(x,y =x) > 0= f(3) = f(x).
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Hence, we have that condition (i) of Theorem 1 does not hold. Thus for some pseu-
doconvex function f : R*> — R at X, it is impossible to characterize a sufficient
condition for global optimality for the following problem by using Theorem 1,

min f(x)s.t.x € K.
xeR?

Actually, let f(x) := e —x; — 2x2. Put Ay := 0, A := 1 and A3 := 2, then

0,0) € {(=2, =2)} + ({0} x [-1,0D) +2{(1, D} =9 f (x) + Z;\ﬁrgi(i)-

iel

However, by taking x := (—% JT§) €K, f(x) := \Je+ % —V3<1= f(@),
which shows that x is not a global minimizer of f over K. ]

Remark 4 1In the case that for any x € K and i € I(x), g; are locally Lipschitz and
regular in the sense of Clarke, Theorem 3.2 in [30] can be obtained immediately by
Theorem 1.

4 Characterizations of the solution sets of convex optimization
problems

In this section, we will present some characterizations of the solution sets in terms of
a given solution point of the convex minimization problem (P).

Letx € Sbeagiven solution point fulfilling the normal cone condition and for every
i € I(x), the functions g; be tangentially convex at x. Let ro= (il, e, )_»m) € R’jf
be a Lagrange multiplier vector corresponding to x such that (3) and (4) hold.

It is important to note that the constant Lagrangian-type property for the solution
sets are commonly used to establish characterizations of solution sets for constrained
optimization problems involving convex/pseudoconvex functions (see [14,16,17,19,
21] and other references therein). However, the constant Lagrangian-type property
for the solution sets may fail when some g; are not convex even if the objective
function is convex, for instance, let us define f(x) := max{—x — 1,0}, g1(x) :=
max{x, x3} for x € R. We can see that f is a convex function while g1 is not a convex
function. Moreover, x := 0 is a minimizer of f on a convex set K := ] — oo, 0] with
Lagrange multiplier A := 1, and the solution setis S = [—1, 0]. However, the standard
Lagrangian-type function L(x, x) = fx)+ )_»gl (x) is not constant on the solution
set §. In fact, £(¥, ) = 0 # —1 = L£(—1, 1). This situation motivates us to consider
the so-called pseudo Lagrangian-type function LF (-, %, 1), defined by

L, %,0) = f(x) + Z rigl(X, x —X), forallx € R",

iel (%)

instead of the standard Lagrangian-type function. It can be seen that LP(, %, 1) is
constant on S, since £P(x, X, A) = max{—x — 1, 0} + max{x, 0} for any x € R and
LP(x,%,20) =0 forany x € S.
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Next, we are in a position to prove that the pseudo Lagrangian function associated
with a Lagrange multiplier corresponding to a solution is constant on S.

Proposition 1 [Constant pseudo Lagrangian-type property] For the problem (P),
assume that x € § satisfies the normal cone condition and the optimality condi-
tions (3) and (4) hold with a Lagrange multiplier vector *i= (M, .oy hy) € R’f_.
Then for any x € S,

Ligi(X,x —%) =0, iel(x)

and £F (-, X, 1) is constant on S.

Proof By Remark 1, d7g;(x) = Gg;()f, -—Xx)(x) foralli € I(x). It follows from (3)
and (4) that

0€df(®)+ Y Adg/(x,-—H)(F) S IL (% D),
iel (%)

and so,
m
@)+ RiglEx—5) = f(@) forallx e R".
i=1

By (4), it is easy to observe that X; = 0 for all i ¢ I(x). Therefore, by the fact that
f(x) = f(x),Vx € S, the above expression can be rewritten as

> higi@,x—%) =0 forallxes.
iel(x)

Applying Lemma 1, we obtain
)»,-glf(i, x —x) =0, Vi € I(x). Therefore, for any x € S,

LP@ RN = f+ Y LiglE - —DE) = () = f(),

iel(%)
thus yielding the desired results. O

Remark 5 [Pseudo Lagrangian-type function coincides with standard Lagrangian-type
function] It is worth noting that if g;, i € I(x), are pseudoconvex functions at x then,
by Proposition 1, for any x € S,
(higi) (X, x — %) = Aig{(¥, x — %) = 0 = Aigi (x) = higi(¥) = 0.
This together with x € K yields, i gi(x) =0, i € I(x). Furthermore,
m
LPx 50 =f@O+ Y hgiEx—3) =fx)+ )Y Aigix), VxeS.

iel(¥) i=1
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It means that the pseudo Lagrangian-type function is the standard Lagrangian-type
function on the solution set S. ]

Remark 6 In Proposition 1, if f is Locally Lipschitz, regular in the sense of Clarke
and pseudoconvex, it is proved in [12, Lemma 3] that Vx, y € R”, one has

FO) = f&) = f2x,y—x) 0. (N

Applying (7), we can show that the conclusions given in Proposition 1 are still valid.
Indeed, as x € S, Theorem 1 asserts that there exists a Lagrange multiplier vector
L= (A, ..., Am) € R such that (3) and (4) hold. The fact that 3° f (X) = 97 f (%)
along with tangential subdifferential calculus rules at x imply that

/G x—X)+ Y gk, x—X) >0, VxeR"
iel (%)

Using (7) with the fact that f(x) = f(x), Vx € § and regularity of f, we deduce
Ziewz) Aigi(x,x —%) =0, Vx € S, and hence, by Lemma 1, we obtain A; g (X, x —
xX) =0, Vi € I(x), and forany x € S, L (x, X, 1) = f(%). O

In the sequel, we present characterizations of the solution set for problem (P) in
terms of convex subdifferentials, tangential subdifferentials and Lagrange multipliers.

Theorem 2 [Characterization of the solution set] For the problem (P), assume all
conditions of Proposition 1. Then, the solution set S is characterized by

S={xeK:Vie IN()E), Av; € Irgi(x), (vi,x —x)=0;
uedf(x)Naf(x), (u,x —x) =0},
where 7(32) ={ielX):x >0}

Proof [C]. Let x € § be arbitrarily given. Then, x belongs to K. Furthermore, by
(1) and Proposition 1, we have that for each i € I(X), maxy, e g (x)(vi, ¥ — X) =
glf (x, x — x) = 0. Therefore, for each i € I(x), there exists v; € drg;(x) such that

(vi,x — %) = 0.

On the other hand, it follows from (3) and (4) that there exist u € 9 f(x) such that
—u € Ziel AioTgi(x) = aT(Ziel Aigi)(x). That is, for any d € R",

/

YogiEd =Y he| & ad= (Ziig,-) & d) = (—u,d), (8

iel (%) iel(%) iel
where the second equality follows from (4). Note from x, x € S that f(x) = f(x).

Letting d := x — X in (8), one has Zie,(i) )_Lig;(i,x — %) > (—u,x — x), which
together with Lemma 1 and u € 9 f (x) implies that
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Characterizing the solution set of convex optimization problems without convexity of constraints

0> Y Aigi(Fx—0) = (~u,x —3) = f(D) — f(x) =0.

iel (%)

So, (u,x — x) = 0. It remains to prove that u € 9 f(x). Now, for any y € R”, we
have

SO =f)=f) = fQ) =Wy —=x)=@y—x)+ux—x)=(uy-=x).

Therefore, u € 9 f (x).

[2]. Conversely, let x be an arbitrary point of S| := {x € K : Vi € T (x), Jv; €
orgi(x), (vi,x —x)=0; Juedf(x)Naf(x), (u,x —x) =0}. Then, x € K and
there exists # € d f(x) N 3d f(x) such that (u, x — x) = 0. So

JE) = fx) = {u,x —x) =0,
which together with the fact that x € § yields f(x) = f(x),andsox € S. O

As tangential convexity collapses to regularly locally Lipschitz setting and differ-
entiability, the following corollaries are immediately direct consequences as special
cases of Theorem 2.

Corollary 1 For the problem (P), let for any x € K and i € I(x) the functions g; be
locally Lipschitz and regular in the sense of Clarke, x € S be an optimal solution
fulfilling the condition: N (K, X) = cone Uiel();) 0°gi(x), where 3°g; (x) denotes the
Clarke subdifferential of g; at x. Assume that the optimality conditions (3) and (4)
hold with a Lagrange multiplier vector A= (Xl, R )_»m) S Rﬁ. Then, the solution
set is characterized by

S={xeK:Viel(®), Jv €dg), (vi,x —%) =0;
W edf(x)NIfE), (u,x —x) =0}

Proof The desired results can be obtained immediately by Theorem 2, since every
locally Lipschitz regular function g; is tangentially convex at every point x, with
orgi(x) = 07gi(x), Vi € 1(X). o

Corollary 2 For the problem (P), let f : R" — R be a convex differentiable function
and gi :R" - R (i = 1,2,...,m) be differentiable functions, x € S be an optimal
solution of (P) fulfilling the condition: N(K,x) = cone Ul-e]@ {Vgi(x)}. Assume
that the optimality conditions (3) and (4) hold with a Lagrange multiplier vector
k=1, ..., m) € RY. Then,

S={xeK:(Vgi(X),x—x)=0, Vi € I(X), Vf(x) = Vf(&).
Proof 1t is clear that every differentiable functions g; are tangentially convex at every

point x, with drg;(x) = {Vgi(x)}, Vi € IN(JE). It follows from Theorem 2 with
d f(x) = {Vf(x)} for every point x € R”" that
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S={xeK:(Vg(E),x—% =0, Vi e [(X), Vf(x) = V[,
(VF(x), x —x) =0}.

Further, since x satisfies optimality condition (3), we have

0= <Z AiVgi (%), x — x> = (Vf(@E),x — %) = (-Vf(x),x — ).

i=1

Thus, the condition (V f(x), x — x) = 0 is superfluous. Therefore, § = {x € K :
(Vgi(x),x —x) =0, Vi e I(x), Vf(x) =V[f()} o

When one solution of the considered problem is known, by using Theorem 2,
we can find all of solutions of the convex optimization problem that have multiple
solutions, and moreover at least one of the constraint functions g; is not convex while
the constraint set is convex. So, Theorem 2.2 and Corollary 2.1 in [14] cannot be
applied in the following example.

Example 4 [Verifying solution set] Let us denote x := (x1,x2) € R2. Consider the
following constrained optimization problem:

min f(x) s.t.x € K :={x e R*: g1(x) <0, g2(x) <0, g5(x) <0},
xeR”?

where f(x) := ,/xlz—i—x% —x1 —x2, g1(x) = ,/x%+x§ — xf -2, g2x) =

max{—xi, —xf} — x2, g3(x) := x1. Evidently, the function f is a convex function.
Let us notice that

f(x):,/x%—i—x%—xl—xzz |x2] —x2 =0, forallx € K.

Thus x := (X1, x2) = (0,0) € S, I(x) = {2,3}, 9rg2(x) = {(r, —1) : r € [-1,0]}
and drg3z(x) = {(1,0)}. It is easy to verify that this problem satisfies the Slater
condition and non-degeneracy at X.

Also, the convex subdifferential of f at any point x is given by

{(-1,-D}+B if x = (0, 0),
af(x) = .
{[—%] (xl,x2>+(—1,—1>} if x # (0,0),

where B := {w € R? : ||w|| < 1}. Let us select » := (A1, A2, A3) = (0,0, 1).
Therefore, by using Theorem 2, the solution set can be described simply as
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Characterizing the solution set of convex optimization problems without convexity of constraints

S ={x € K:{(v3,1,v32), (x1, x2)) = 0 for some (v3,1, v3,2) € drg3(x),
((u1,u2), (x1, x2)) = 0 for some (uy,uz) € 3 f(x) N3 f(x)}

=1{x GRZ:,/xlz—l—x%—x‘f—ZSO, max{—xl,—x?}—xzfo, x1 <0,

X1 X2

<(150)7 (XI,XZ)) :07 < _15 -1 ,(Xl,x2)>=O
\/x%—i—x% \/xf—i—x%

={xeR?:x; =0, \/2—250, —x2 =0}

:{xeRZ:)q:O, 0<x <2}

]

Next, we give a characterization of § using subdifferentials of the pseudo
Lagrangian-type function. To this aim, we need the following lemma.

Lemma 2 For the problem (P), assume all conditions of Proposition 1. Then for each
x €S,

ALl (. x, M(x) =Ll (-, %, M) ().

Proof Now take any u € dLF (-, ¥, 1)(x). Then, by the definition of convex subdif-
ferential, B B
Ll %, 0) = LP(x, %, ) > (u, y —x), Vy e R". 9)

Since £” (-, X, A) is constant on S (Proposition 1) and X € S, it follows from (9) that
(u,x —x) =0and so, (u,y —x) = (u,y —x) + (u, x —x) = (u,y — x) for all
y € R". This together with (9) entails

PGy, x, 0 =P, 5,0 > (u, y— ), Vy e R,
whichshows thatu € dLF (-, X, A)(X). Therefore, dLF (-, ¥, M) (x) € ALF (-, %, M) (X).

The proof of the converse inclusion is quite a similar argument and will be
omitted. O

With the help of Proposition 1 and Lemma 2, we see now how the solution set can
be characterized in terms of the pseudo Lagrangian-type function.

Proposition 2 For the problem (P), assume all conditions of Proposition 1. Then,
S={xeK:Viel),€drgi(X), (vi,x —x)=0and0 e LY (-, %, 1)(x)}.
Proof Denote

S*:={x € K :Viel(®),3v;edrgi(®), (vi,x —x)=0and 0L (-, %, M) (x)}.
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By Lemma 2 and the optimality condition (3), we get 0 € L (-, X, 1) (x) for all
x € S. This together with Proposition 1 implies easily that § C S§*. To establish the
converse chlusion, let x € S* be given. Then, by the definition of $*, x € K and for
eachi € I(x) there exist v; € drg;(x) such that

(vi, x —Xx) =0,

which implies, for every y € R”, that

fO)+ Y gy —%)

iel(x)
> f)+ Y higi(E,x — %)
iel(x)
=fM+ Y Mgi(Fx—X)+ Y kgl x—X)
iel\I(@) iel(¥)
=fO)+ Y higlx x—%)
iel (%)
> @)+ Y Ailvix —X) = f(x).
iel(%)

Taking y := X in the last inequality, we get that f(x) > f(x), and hence, for all
yeKk,

fOY=ZFO)+ Y higi(F,y—5) = f(E) = f(x),
iel(%)
where the first inequality follows from Lemma 1. This proves that x € S. O

It turns out that Theorem 2 and Proposition 2 immediately yield the characteriza-
tions of the solution set for convex programs that was proposed in [14, Corollary 2.1
and Corollary 2.6].

Corollary 3 For the problem (P), let the functions g; : R" — R, i € I be convex,
and x € S an optimal solution fulfilling the normal cone condition and the optimality
conditions (3) and (4) hold with a Lagrange multiplier vector Y=, ..., m) €
R, Then, the solution set S of (P) is characterized by

S={xeR":g(x)=0, Vie (), gix) <0, Vi e I\ (%),
uedfx)NIfE), (U, x — %) =0}

Proof By Theorem 2, we have that

S={xeK:Viel(), I €drg ), (vi,x —x)=0;
Juedf(x)NIfE), (u,x —x)=0}.
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As (vi,x — x) = 0 forsomev; € drg;i(x), Vi € IN()E), we have g/(X,x — X) >
(vi,x — x) = 0 for each i € I(x). This together with x € K, by Lemma 1, yields
glf()E, x —x) =0, Vi € I(x). Moreover, by Remark 5, we get that

[x € K, Viel(x), v € orgi(x), (vi,x —x) =0]
— [x eR", gi(x) =0, Vi € I(¥), gi(x) <0, Vi € I\I(¥)].

O

Corollary 4 For the problem (P), let the functions g; : R" — R, i € I be convex,
and x € S an optimal solution fulfilling the normal cone condition and the optimality
conditions (3) and (4) hold with a Lagrange multiplier vector Xi= 1, ..., hm) €
R, Then,

S={xeR":gx)=0, Vi e [(X), gi(x) <0, Vi e I\NI(X), 0 € dL(-, 1) (x)}.

5 Characterizations of the solution sets of pseudoconvex
minimization problems

In this section, we derive characterizations of the solution set of the following pseu-
doconvex minimization problem over a convex set (P’):

min f(x)s.t.x € K, (P"
xeR”

where f : R" — R is locally Lipschitz, regular in the sense of Clarke and pseudo-
convex, and g; : R" — R, i € I, are continuous functions and the feasible set K is
a nonempty convex subset of R”. In view of Remark 6, we can obtain the following
results.

Theorem 3 For the problem (P'), let S’ be the optimal solution set of (P'), x € S" an
optimal solution fulfilling the normal cone condition and the optimality conditions (3)
and (4) hold with a Lagrange multiplier vector Xi= M, ..., hm) € R and the
functions g;, i € 1(x), be tangentially convex at x. Then,

S'={xeK:Vie IN()E), Jv; € argi(x), (vi,x —x)=0;

Ap* >0, Ju € 3°f(x) N p*3° f(X), (u,x —x) = 0}.
Proof [C]. Let us assume that x € S’. By the same arguments given in the proof of
Theorem 2, we can obtain that, for each i € 1(x), there exists v; € drg;(x) such that

(vi, x — x) = 0. Furthermore, by Lee and Yao [23, Lemma 3.4], there exists a real
number p* > 0 (depending on x) such that

97 f(x) N p o f(X) # 0.
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It follows that there exists # € R" such that u € 9° f(x) and ;‘—X € 3°f(x). As
x,x €8, f(x) = f(x). It follows from [12, Lemma 3] that f°(x,x — X) < 0 and
f%x,x —x) <0.So,

(u,x —x) <0and <— x—x> 0,
p*

and hence (u, x — x) = 0.

[2]. Forevery x € S :=={x € K : Vi € 1(x) Jv; € drgi(x), (vi,x —X) =
0; dp* > 0, Ju € 8"f(x) N p*a°f(x), (u,x —x) = 0}, we get that x € K,
i € 9% f(x) and ( L x —x) =0 forsome p* > 0and u € 9° f(x). In addition, for

any v € R" such that ( ik v) > 0, one has f°(x, v) > (u, v) > 0. Therefore,

xef{zeK:3 e€d’f(x), (§,z—%); YveR", (£,v) >0= f°(z,v) =0},
and hence, [12, Theorem 9] leads to x € §’, thus yielding the desired results. |

Before we end this section, let us illustrate the usefulness of Theorem 3 via an
example.

Example 5 Consider the constrained optimization problem (P") where fx) =
max{0, %xz — L =13 +1y, g1 (x) == max{x, x3}, go(x) :=4x —x3, g3(x) :=

|[x — 1] — 3. Evidently, the function f is a locally Lipschitz pseudoconvex function.
Let us notice that

fx) 20=max{0,—%,0} = f(0), forallx € K.

Then x := 0 € 8, I(x) = {1, 2} and each g;, i € I(X), is tangentially convex at X.
We can verify that

=[-2.01, 9rgi1(x) = [0, 1], drg2(x) = {4}, 9rg3(x) = {—1}.

Also, the Clarke subdifferential of f at any point x is given by

{x} ifx € ] — o0, —1[,
[—1,0] if x = —1,

3’ f(x) =1 {0} ifx e]—1,0][,
[0, 3] if x =0,

{3(x — %} ifx €10, +00[.

We can see that this problem does not satisfy non-degeneracy at X, the normal cone
condition is fulfilled. Let us select A := (A1, A2, A3) = (1, 0, 0). Observe that for any
x € [—1,0[, we can find p* > 0 and u € 3°f(x) N p*3° f(x) such that (u, x —
x) = 0. So, by Theorem 3, we can obtain that the solution set can be described as
S =[-1,0]. O
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Characterizing the solution set of convex optimization problems without convexity of constraints

Remark 7 In Example 5,

(i) g1 is not pseudoconvex at X := 0, i.e., taking y := —1 we have ¢g’(X, y — X) =

max{0, y} = 0, but g;(y) = —1 < 0 = g1(x). Then Theorems 4.1 and 4.2 in
[19] may not be relevant to this example.

(ii) The standard Lagrangian-type function with Lagrange multiplier A := (1, 0, 0),

L(x, 1) = S+ 21'3:1 X gi (x), is not pseudoconvex at x, i.e., by taking y :=
—1 we get L(, A (x,y —x) = max{4y, 0} = 0 while L(y, 1) = -1 < 0 =
L(x, 2). So, Theorem 3.3 in [21] cannot be applied.

(iii) Theorem 3.2 and Corollary 3.1 in [16] may not actually be relevant to this example

because the constraint functions are not linear, and moreover, f is not pseudo-
concave, i.e. — f is not pseudoconvex, by considering y := 2 and x = 0 we have

(=f)E y—=x0)=0,but (-f)(y) = -2 < 0= (= H®.
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1 Introduction

The concept of well-posedness was firstly introduced by Tikhonov [36]. Beside the
requirement about the uniqueness of the solution, Tikhonov well-posedness requested
the convergence of each minimizing sequence to the unique solution. Therefore, well-
posedness plays a vital role to make connections between stability properties and
solution methods for problems related to optimization. On this topic, many research
results have been devoted to a lot of important problems such as variational inequalities
[7], equilibrium problems [1], inclusion problems [37] and the references therein.
Several generalizations of Tikhonov well-posedness were introduced and investigated
for various kinds of optimization problems [4,10,30-32]. Levitin—Polyak (L P) well-
posedness is an extension of Tikhonov well-posedness and was originally proposed
in [28]. Every minimizing sequence must belong to the feasible set in Tikhonov well-
posedness, whereas it can be outside of the feasible region but the distance between it
and this set has to approach zero in L P well-posedness. There have been many studies
of L P well-posedness (see, e.g., [18,27] and the references therein).

Kuroiwa et al. [26] proposed set order relations including lower set less relation,
upper set less relation and set less relation (combination of the lower and the upper set
less relation). This gave a new way to formulate the solution of set-valued optimiza-
tion problems which is called solutions concept based on the set approach [25], and
hence the optimization problems in this approach are called set optimization problems
involving set order relations [21,24]. As pointed out in [19], the set less relation is
generalized and more appropriate in practical problems than both the lower and upper
set less relations. Furthermore, the set less relation plays a center role in relationships
with other new order relations for sets proposed in [5,19] which are more useful in
set optimization. Although set optimization is a new direction in the field of optimiza-
tion, it has attracted a great deal of attention of researchers with many important and
interesting results [11,13,17,20]. Useful applications of set optimization in practical
problems were reported, for example, the application in socio-economic [34] (to man-
age noise disturbance in the region surrounding the Frankfurt Airport in Germany),
the application in finance [14] (to evaluate the risk of a multivariate random outcome).
Moreover, relationships between set optimizations and other important problems such
as variational inequalities [8], Ky Fan inequality problems (so-called equilibrium prob-
lems) [35] were investigated. For further reading and references, we refer to books
[15,21].

The first introduction of well-posedness for set optimization problems was pre-
sented by Zhang et al. [38]. The authors established both sufficient and necessary
conditions for set optimization problems involving the lower set less relation to be
well-posed and obtained criteria as well as characterizations of well-posedness for
these problems by the scalarization method. This research was generalized by Gutiér-
rez et al. [12] under assumptions of cone properness. After that, Dhingra and Lalitha
[9] introduced a concept of well-setness for such problems and proved that it is an
extension of the generalized well-posedness which was considered in [38]. Recently,
well-posedness of set optimization problems involving not only the lower but also
the upper set less relation have been discussed in [16,22,29]. For L P well-posedness,
to the best of our knowledge there is only the paper of Khoshkhabar-amiranloo and
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Khorram [22] which studied set optimization problem involving the lower set less
relation. Of course such an important topic as L P well-posedness for set optimization
problems must be the aim of many works. Moreover, the scalarization method which
is the main tool used in papers mentioned above investigates difficultly set optimiza-
tion problems involving different set order relations, some other approaches to study
well-posedness for such problems should be considered.

Motivated and inspired by works mentioned above, in this paper, without using
the scalarization method, we investigate different types of L P well-posedness for set
optimization problems involving several kinds of set order relations. More precisely,
we concern set optimization problems involving three types of set order relations.
Then, we introduce concepts of L P well-posedness for such problems and discuss
relationships among them. Moreover, necessary and/or sufficient conditions for these
concepts of well-posedness are investigated. Applying Kuratowski measure of non-
compactness, we study characterizations of such concepts. Finally, approximating
solution mappings and their stability are studied to build the connection between
stability of approximating problem and L P well-posedness of the set optimization
problem.

The outline of this paper is given as follows. In Sect. 2, we recall some definitions and
results needed in what follows. Sect. 3 introduces various kinds of L P well-posedness
for set optimization problems and investigates their relationships. Furthermore, suffi-
cient and/or necessary conditions of pointwise L P well-posedness for such problems
are also obtained. In this section, characterizations of these types of pointwise L P
well-posedness are surveyed by using measure of noncompactness. In the last sec-
tion, Sect. 4, we study sufficient conditions for such problem to be metrically L P
well-posed and their relationships.

2 Preliminaries

Let X be a normed space and Y be a real Hausdorff topological linear space. Let K be
a closed convex pointed cone in ¥ with intK # ¢, where intK denotes the interior of
K. The space Y is endowed with an order relation induced by cone K in the following
way

X<gy<&y—xek,
X <gy<&y—xe€intK.

The cone K induces various set orderings in Y. These such orderings as the fol-
lowing were presented in [19,21,25]. Let £?(Y) be the family of all nonempty subsets
of Y. For A, B € Z2(Y), lower set less relation, upper set less relation and set less
relation, respectively, are defined by

A <' Bifandonlyif B C A+ K,
A <" Bifandonlyif A C B — K,
A <’ Bifandonlyif ACB— K and BC A+ K.
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Remark 2.1 The relationship between the lower set less relation <! and the upper set
less relation <" was given by Remark 2.6.10 in [21] as the following

A<!'Be —B<"—A.

Definition 2.1 [19] The binary relation < is said to be

(i) compatible with the addition if andonlyif A < Band D < Eimply A+ D <
B+ Eforall A,B,D,E € Z2(Y);
(i) compatible with the multiplication with a nonnegative real number if and only
if A < B implies LA < AB for all scalars A > Oand all A, B € Z(Y);
(iii) compatible with the conlinear structure of £ (Y) if and only if it is compatible
with both the addition and the multiplication with a nonnegative real number.

Proposition 2.1 [19]

(i) The order relations <! <" and <5 are pre-order (i.e., these relations are reflexive
and transitive).

(i1) The order relations <! <" and <* are compatible with the conlinear structure
of 2 (Y).

(iii) In general, the order relations 51, <" and <°* are not antisymmetric; more
precisely, for arbitrary sets A, B € Z(Y) we have

(A<'B and B<'A)& A+K=B+K,
(A<"B and B<"A) &< A—K=B—-K,
(A<*B and B<*A) & (A+K=B+K and A—K =B —K).

For @ € {I, u, s}, we say that
A ~% Bifand only if A <® Band B <% A.

Let F : X = Y be a set-valued mapping with nonempty values on X. For each
a € {l,u, s}, we consider the following set optimization problem
(Py)  «-MinF(x)
subjectto x € M,
where M is a nonempty closed subset of X. A pointx € M is said to be an o-minimal

solution of (P) if and only if for any x € M such that F(x) <* F(x) then F(x) <*
F(x). The set of all «-minimal solutions of (P,) is denoted by Sy -MinF-

Remark 2.2 Tt can be seen that if X € Sy-minF and F(x) ~% F(x) for some x € M,
then X € Sy-MinF-

We recall the following definitions of semicontinuity for a set-valued mapping and
their properties used in the sequel.

Definition 2.2 ([3], p. 38,39) Let F : X = Y be a set-valued mapping.
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(i) F issaidto be upper semicontinuous at xo € X if and only if for any open subset
U of Y with F(xg) C U, there is a neighborhood N of x¢ such that F(x) C U
for every x € N.

(ii) F is said to be lower semicontinuous at xo € X if and only if for any open
subset U of Y with F(xg) N U # @, there is a neighborhood N of x¢ such that
Fx)yNU #@forallx € N.

(iii) F 1is said to be lower (upper) semicontinuous on a subset S of X if and only if
it is lower (upper) semicontinuous at every x € S.

Lemma 2.1 Let F : X =2 Y be a set-valued mapping.

1) ([3], p- 39) F is lower semicontinuous at xo € X if and only if for any net
{xq} C X converging to xo and for any y € F(xo), there exist y, € F(xy) such
that {yy} converges to y.

(1) ([2]) If F(xo) is compact, then F is upper semicontinuous at xo € X if and
only if for any net {x,} converging to xo and for any y, € F(xy), there exist
Yo € F(xo) and a subnet {yg} of {ya} such that {yg} converges to yo. If, in
addition, F(xo) = {yo} is a singleton, then for the above nets, {yg} converges
1o yo.

Now we recall the concepts of Hausdorff distance and Hausdorff convergence of
sequence of sets. If S is a nonempty subset of X and x € X, then the distance d
between x and S is defined by

d(x,S) = ;relg llx — ull .

If S1 and S5 are two nonempty subsets of X, then Hausdorff distance between S and
S>, denoted by H (51, S2), is defined by

H (81, $) == max{H*(S1, $2), H* (52, S1)},

where H*(S1, $?) = SUDPycs, d(x, S2).

Definition 2.3 ([23], p. 359) Let {A,,} be a sequence of subsets of X. We say that A,
converge to A C X in the sense of the Hausdorff metric, denoted by A, — A, if and
only if H(A,, A) — 0asn — oo.

Next, we recall the concept of Kuratowski measure of noncompactness and it’s
properties used in the sequel.

Definition 2.4 ([33], Definition2.1) Let M be anonempty subset of X. The Kuratowski
measure of noncompactness p of the set M is defined by

n
u(M) = inf e>O|MCUMi,diamMi <egi=1,---,nforsomen € Ng,
i=1

where diamM; := sup{d(x, y) | x, y € M;} is the diameter of M;.
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Lemma 2.2 ([33], Proposition 2.3) The following assertions are true:
(1) u(M) =0 if M is compact;
(i) w(M) < u(N) whenever M C N;
(i) if {M,} is a sequence of closed subsets in X satisfying M, 1 C M, for every
n € Nandlim,_, oo (M) = 0, then K := (), oy My is nonempty compact
and lim,_, o H(M,, K) = 0.

Lemma 2.3 Let X be a normed space and A, B be subsets of X. If A is compact and
B is closed, then A + B is closed.

Proof Assume that {a, + b,}, a, € A, b, € B, converges to ¢ for some ¢ € X. We
show that ¢ € A 4 B. In fact, since A is compact, there exist a subsequence {a,, } of
sequence {a,} and a € A such that {a,, } converges to a. We have

|6, — ¢ +al| = [|bue +an) = + (@ —an)| < [|bay +an, — | +|la—an]| -

We obtain that {b,, } converges to ¢ — a. Since B is closed, we get ¢ — a € B. Hence,
there exists b € B suchthatb = ¢ —a. Then,c =a+b € A+ B.So, A+ B is
closed. O

Lemma 2.4 Let M be a nonempty subset of a normed space X. Then, for every x,y €
X, |d(x, M) —d(y, M)| < |lx — yll.

Proof Let x,y € X, we have ||[x — y|| + d(y, M) = |lx — y|| +inf,eps |y — 2l =
infep{llx —yll + lly —zll} = infep lx —zll = d(x, M). Hence, |lx —y| >

d(x, M) —d(y, M). Similarly, we also get |x — y|| > d(y, M) —d(x, M). We con-
clude that |d(x, M) —d(y, M)| < [x — y]. =

3 Pointwise LP well-posedness and generalized pointwise LP
well-posedness

Motivated by the study [22] on the pointwise LP well-posedness for (P;), we are going
to establish characterizations of this type of well-posedness for (P, ) without using the
scalarization method. Consider the problem (P, ), for a given x € Sy-MminrF, the LP
approximating solution mapping at X, Sy-MinF (X, -) : {¥} x Ry =% M is defined by

Sa-MinF (X, &) :=={x € X | d(x, M) <&, F(x) <* F(X) + ge},

foreach ¢ € Ry.

Inspired by ideas in [22] (Definition 5.1), we extend some notions for the problem
(Py) in [22] to the problem (P ) and propose some new concepts for the problem (Py).
Lete € intK.

Definition 3.1 Let x € S, Mminr be given. A sequence {x,} C X is said to be a LP-
minimizing sequence for the problem (P, ) at x if and only if there exists a sequence
{en} € R4 \{0} converging to O such that

dx,, M) <&y, F(xp) <* F(x) + gpe.
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The equivalence of this concept is given by the following result.

Proposition 3.1 {x,} C X is a LP-minimizing sequence for the problem (Py) at x €
Se-minF if and only if there exists a sequence {d,} C K\{0} converging to 0 such that

d(xp, M) = 0, F(xp) <* F(X)+d,.

Proof We only prove the assertion for the case « = s; the proofs of the assertion for
the cases « = [ and o = u are similar. Let {x,} C X and {d,,} C K\{0} converging
to O such that d(x,,, M) — 0 and F(x,) <° F(x) 4+ d,, i.e.,

F(x)+d, C F(x,) + K, F(x,) C F(x)+d,—K. (1)

Since e — K is aneighborhood of the origin 0 in Y, there exists ¢ > 0 such thateB(0, 1)
C e — K where B(x, r) is the closed ball centered x with radius r. For a givenn € N,
we have d, € ||d,|| B(0, 1) C |ld,|le""(e — K) = |ld,|| e 'e — K. Foreachn € N,
taking &, = ||d,| e~', then {e,} C R4 \{0} converges to 0 and ,¢ — d,, € K. It
follows from (1) that

F(x)+ee CF(xy)+ K, F(x,) C F(x)+¢epe—K,

ie., F(x,) <% F(x) 4+ ene. So, {x,} is a LP-minimizing sequence for (Py) at x.
Conversely, it is clear that if {x,} C X is a LP-minimizing sequence for (Py) at
X € Ss-MinF, then the assertion is satisfied by setting d,, = ¢,e. O

Definition 3.2 The problem (P,,) is said to be

(1) LP well-posed at X € Sy-minr if and only if any LP-minimizing sequence for
(Py) at x converges to X;

(ii) generalized LP well-posed at x € S,.minr if and only if any LP-minimizing
sequence for (P,) at X has a subsequence converging to an element X €
Sa—MinF()z’ 0)

Remark 3.1 When « = [, the concept of pointwise well-posedness becomes the cor-
responding concepts studied in [22] (Definitions 5.1 and 5.2, respectively), even for
this special case, the concept of generalized well-posedness is a new one.

The following examples illustrate the above-introduced concepts.

Example3.1 let X =Y =R, M = R, K = R;. Let F : X =% Y be defined by
F(x)=1[0,1]forall x € X.Lete = 1 € intK and x = 0. We have Sy_-minr(x,0) =
Se-MinF = R. Setting x, = n, {x,} is a LP-minimizing sequence for (P,) at x = 0.
Since {x,} admits no convergent subsequence, (Py) is not both LP well-posed and
generalized LP well-posed at 0.

Example3.2 let X =Y =R, M =R, K =R;.Let F : X =2 Y be defined by

[0, 1], if —1<x<1,
[1, 1+ x2], otherwise.

F(x):{
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Lete = 1 € intK and x = 0. By direct computations, we have Sy-Minr(X,0) =
[—1, 1]. Setting x, = 1 — %, {x,} is a LP-minimizing sequence for (P,) at x = 0
and converges to 1. Hence, (Py) is not LP well-posed at 0, but it is generalized LP
well-posed at 0. Indeed, if {X,} is a LP-minimizing sequence for (P,) at x = O,
then there is a sequence {¢,} C R4 \{0} converging to O such that d(%,, M) < &,
and F(x,) <* F(0) + ¢,e = [en, | + &,]. This implies that —1 < %, < 1 for n
sufficiently large, and hence there exists a subsequence of {X,} converging to some
point of Sy-Minr (X, 0).

Example3.3 Let X =R, M = R, K = Ry.Let F : X == Y be defined by F(x) =
[x2,2x2] forall x € X.Lete = | € intK and ¥ = 0. Direct cacullations give us
Se-MinF (X, 0) = {0}. Let {x,,} be a LP-minimizing sequence for (P,) at x = 0. Then,
there exists a sequence {¢,} C R4 \{0} converging to O such that d(x,, M) < g, and
F(x,) <* F(0) + g,e = {&,}. It leads to x,% < &y, 0 {x,} converges to 0. Therefore,
(Py) is LP well-posed at 0.

Lemma 3.1 If (Py) is generalized LP well-posed at x € Sq-minF, then Sy-pinF (X, 0)
is compact.

Proof For every sequence {x,} C Sy-minr (X, 0), we always have d(x,, M) = 0 and
F(x,) <% F(X) +¢pe

for any {&,} C R\{0} converging to 0. This means that {x,} is a L P-minimizing
sequence for (Py) at x. By the generalized L P well-posedness of (P,) at x, there exists
asubsequence {xp, } of {x,} such that {x,, } converges to an element X € Sy-minr (X, 0).
This leads to the compactness of Sy-Minr (X, 0). O

The next results give some properties of the mapping Sy-minr (X, -) which are useful
in the sequel.

Proposition 3.2 Let x € Sy pminr be given. Then, the following statements are true:

() Sa-minF = U, es, iy Sa-MinF (2, 0);
(ii) ifer < &, then Sy-minr (X, €1) C Sa-MinF (X, €2);
(iii) ﬂ6>0 Se-MinF (X, €) = Sq-minr (X, 0) if F is compact-valued on M.

Proof We only demonstrate the proof of the assertions (i)-(iii) for the case o« = s; the
proofs of these assertions for the cases o« = [ and o = u are similar.

(i) Let z € Sy.minF be given. Since z € Seminr (2, 0), Simine € Ues, yinr
Se-MinF (z, 0). Moreover, let x € UZE SoMinF Se-MinF (z, 0), there exists z € Sy-MinF
such that x € S;.Mminr(z, 0). Therefore, d(x, M) = 0 and F(x) <’ F(z). Since
7 € Ss-MinF»> X € Ss-MinF- It implies that UzeSS-MiﬂF Ss-MinF (2, 0) C Ss-MinF-

(ii) Assume €] < &3. Let x € Seminr (X, €1), then d(x, M) < g1 and F(x) <*
F(x) + e1e. It follows from the definition of set less relation <* that

F(x) <! F&) +e1e and F(x) <" F(ZX) + e1e,
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ie.,
Fx)+eceCF(kx)+K and F(x)C F(x)+¢e1e — K.

We observe that

F(x)+ee—K=F(x)+ee— K+ (e2—¢1)e.
Combining the convexity of K with Proposition 2.1, we obtain that

F(x)+e&ecC F(x)+ K,
and
F(x) CF(Xx)+¢ee—KC F(x)+ee—K.

Thus, F(x) <! F(X) + ere and F(x) <" F(¥) + ese. Since X € Sy-minr, F(x) <*
F(x)+e&ze.Moreover,d(x, M) < gyasd(x, M) < g;.Therefore, x € s-MinF (x, &3).
We conclude that Ss_ming (X, €1) C Ss-Minf (X, €2).

(iii) Let x € Sg-minr(x,0). It is clear that x € Ssminr (X, &) for any ¢ > 0.
Therefore, x € (), Ss-MinF (¥, €). For the converse, let x € (), Ss-MinF (X, €), we
have x € Ss-minF (%, €) for any ¢ > 0. It follows from definition of S MinF (X, €) that
d(x,M) <eand F(x) <* F(x) + €e, i.e.,

dix,M)<e, Fx)+eeCF(x)+ K and F(x) C F(x)+ee—K. (2)

By the compact-valuedness of F and Lemma 2.3, F(x) — K and F(x) — K are closed.
From (2), let ¢ — 0, we obtain that

dix,M)=0, Fx) C Fx)+ K and F(x)C F(x) — K,
ie.,
dix,M) =0, F(x) <* F(x).

Hence, x € Sg-Min £ (X, 0). We get (1), Ss-Min F (X, &) C Ss-Min £ (¥, 0). a

Next, using the Kuratowski measure of noncompactness of L P approximating
solution sets, we establish metric characterizations of two types of pointwise L P
well-posedness for (Py).

Theorem 3.1 (i) If (Py) is generalized LP well-posed at x € Sy pminF, then
W(Sq-pminr(x,€)) = 0ase — 0.
(ii) If (Py) is LP well-posed at x € Sy-pinF, then diam(Sy-pinr (X, €)) — Oase — 0.
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Proof (i) Suppose that (P,) is generalized L P well-posed at X € Sq-Minr . First of all,
we show that H (Sy-Mminr (X, ), Se-Minr (X, 0)) — 0 as ¢ — 0. Indeed, we observe
that, for each ¢ > 0, Sy-MminF (X, 0) C Se-MinF (X, €), and hence

H* (Sy-minF (X, 0), Se-minr (X, €)) = 0.

It is sufficient to show that H* (S, -MinF (X, €), Se-MinF (X, 0)) = 0as e — 0. Suppose
by contrary that there exist a real number » > 0 and a sequence {g,} C R;\{0}
converging to 0, and for each n € N there exists x, € Sy-minF (X, &,) such that
d(x,, Se-minF (x,0)) > r. We have d(x,,, M) < ¢, and F(x,) <* F(x) + g,e. This
means that {x,} is a L P-minimizing sequence for (P,) at x, and hence {x,} has a
subsequence {x,,} converging to some point X € Sy-minr (X, 0). Therefore, for ny
sufficiently large, we have ”xnk —X H < r which is a contradiction.

Next, we prove that (4 (Sy-minF (X, €)) = 0ase — 0. By Lemma 3.1, Sy-minr (X, 0)

is compact. Now, for any ¢ > 0, there are sets M|, M», ... M, for some n € N
such that Sy minr (X, 0) C U?ZIM[ with diamM; < ¢ foralli = 1, ..., n. For each
i €{l,...,n}, denote

Ni:={xeX|dx, M;) < H(S¢-MinF (X, ), Se-MinF (X, 0))}.

We claim that S, _pinr (X, €) C U;’zl N;.Indeed, let x € Sy-minF (X, €) be arbitrary, we
have

d(x, Su-MinF (%, 0)) < H(Sa-MinrF (X, €), Sg-MinF (X, 0)).
Since Sy-Minr (X, 0) C U?_; M;, we conclude that
d(x, Ui_ M) < H(Sa-MinF (X, &), Sa-MinF (¥, 0)).
So, there is kg € {1, 2, ..., n} such that
d(x, Miy) < H(Se-MinF (X, €), Sa-Minr (X, 0)).
It means that x € Ny,. Therefore, Sy_Mminr (X, £) C U7_, N;. Notice further that

diamN; = diamM; + 2H (Sy-MinF (X, €), Se-MinF (X, 0))
< &+ 2H(Sq-minF (X, €), Se-MinF (X, 0)).

A

Hence, we get
U (Sa-MinF (X, €)) < u(Sa-MinF (X, 0)) + 2H (Se-MinF (X, €), Sg-MinF (X, 0)).
Since Sy-MminF (X, 0) is compact, we have ©(Sg-Minr (X, 0)) = 0. Therefore,
W (Sa-MinF (X, €)) < 2H (Sg-MinF (X, €), Sa-MinF (X, 0)).
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It follows that p(Se-minr (X, €)) — 0 ase — 0.

(i1) Suppose, to the contrary, that there exist a sequence {¢,} C R4+ \{0} and a pos-
itive real number » such that diam(S,-minr (X, €,)) > r. Because X € Sy-minF (X, €,),
for each n, there exists x,, € Sy-minF (X, &) such that ||x,, — x|| > % However, since
{x,} is a L P-minimizing sequence for (P,) at x, {x,} converges to x which is a
contradiction. O

The next result gives sufficient conditions for the closedness of approximating
solution set.

Proposition 3.3 S,.yinr (X, €) is closed for each e > Oif F is continuous and compact-
valued on M.

Proof We only prove the assertion for the case @« = s. Taking ¢ > 0, let {x,} C
Ss-MinF (X, &) converge to x, we need to prove that x € S .minr (X, €). Since x,, €
Ss-MinF (X, €), d(xn, M) < & and

F(xy) =¥ F(X) + ee. 3

By the continuity of the function d(., M), d(x, M) < &. Next, we show that F(x) <*
F (x) + ge. Indeed, from (3), we have

F(X)+¢ee C F(x,) + K, 4

and
F(x,) C F(x) +ee—K. )

Let y € F(x) be arbitrary. Since F is lower semicontinuous and {x,} converges to x,
there exist y, € F(x,) such that {y,} converges to y. Combining this with (5), there
exist w, € F(x) such that

Yp € Wy +ce — K. (6)

Since F(x) is compact, we can assume that {w,, } converges to some w € F(x). By (6),
there existk, € K suchthaty, = w,+¢&e—k, . Thisleadstolim, . k;, = w+ee—y.
Moreover, we get w 4+ e —y € K as K is closed. Therefore, there exists k € K
such that w +ce —y = k. Wehave y = w + ce — k € w + ¢e — K. It yields that
y € F(x)+¢ce— K asw € F(x). We arrive at the fact that F(x) C F(x) +ee — K,
ie., F(x) <" F(x) + ¢ce.
Similarly, let t € F(x) be arbitrary, it follows from (4) that, for each n € N, there
exists v, € F(x,) such that
tev, —ee+ K. (7)

Since F is upper semicontinuous and compact-valued at x, we can assume that {v,}
converges to some element v € F(x). It implies from (7) that there exist k, € K
such that r = v,, — €e + k,,. Hence, k, = t + ge — v,. This leads to lim,,_, o0 k;, =
t + ge — v. Since K is closed, there exists k € K such thatt + e — v = k. We
gett =v—cece+kecv—ce+ K. Ityieldsthatr € F(x) —ee + K asv € F(x).
We have F(x) C F(x) — ee + K. It means that F(x) <! F(%) + ge. So, we obtain
F(x) < F(x) + ge. The proof is complete. O

@ Springer



P.T.Vuietal.

Theorem 3.2 Suppose that F is continuous and compact-valued on M. Then,

(1) (Py) is generalized L P well-posed at x € Sy-pinF if W(Sa-MinF (X, €)) — 0 as
e — 0.
(1) (Py) is L P well-posed at X € Sy-pminr if diam(Sy_pinF (X, €)) — O as e — 0.

Proof (i) Suppose that 1t (Sy-Minr (X, €)) = 0ase — 0.Let {x,} be a L P-minimizing
sequence for (Py) at x. Therefore, there exists a sequence {¢,} C R, \{0} converging
to 0 such that d(x,, M) < g, and F(x,;) <% F(x) + &,e. This means that x, €
Sa-MinF (X, &7). It is clear that pu(Se-MminF (X, €,)) — 0 as n — oo, and hence by
Lemma 2.2 (iii), we have N, eNSy-MinF (X, €,) 18 @ nonempty compact set and

H (Sa-MinF (X, €n), NpeNSa-MinF (X, €n)) — 0
as n — oo. Note further from Proposition 3.2 (iii) that
Sa-MinF (X, 0) = NpeNSe-MinF (X, &n).
Hence, we conclude that Sy-pinr (X, 0) is compact and

H (Sq-minF (X, €1), Sa-MinF (X, 0)) = 0

as n — o0. Thus,
d(x,, Se-MinF (X, 0)) — 0. (8)

Therefore, there exists a sequence {X,} C Sq-minr (X, 0) such that d(x,, X,) — 0 as
n — o0o. Since Sy-Minfr (¥, 0) is compact, there is a subsequence {X,,} of {X,} con-
verging to some X € Sy.Minr- This implies that {x, } has a corresponding subsequence
{xn,} converging to x. Hence, (P,) is generalized L P well-posed at .

(i1) Assume that diam(Sy_minr (X, €)) — 0ase — 0. Then, u(Sy-Minr (X, €)) — 0
as ¢ — 0, and hence (Py) is generalized L P well-posed at x . By Proposition 3.2,
Se-MinF (X, 0) is a singleton. By Lemma 2.1 (ii), (Py) is L P well-posed at x. O

The below example shows that Theorem 3.2 is applicable.

Example3.4 Let X =R, Y =R?> M =[0,1], K = R3.Let F : X = Y be defined
by

F(x)=[x,x+1] x[x,x +1],Vx € X.

Let e = (1,1) € intK, x = 0. Clearly, all assumptions of Theroem 3.2 hold.
By direct cacullations, we get S,-minr(0,¢) = [0,¢] and Sy-minr = {0}. So,
diam(Sy-minr (¥, €)) — 0 as e — 0. Applying Theorem 3.2, the problem (Py)
is LP well-posed at x = 0. In fact, if {x,} is a LP minimizing sequence for (Py) at X,
then there is a sequence {¢,} C R4 \{0} converging to O such that d(x,, M) < &, and
F(x,) <* F(O) +ene = [en, &y + 1] X [, &1 + 1]. We get 0 < x,, < ¢,, and hence
{x,} converges to 0. So, (P,) is LP well-posed at 0.

The following example shows that the continuity of F in Theorem 3.2 is crucial.
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Example3.5 Let X =R, Y =R>, M =[-1,1], K = R3.Let F : X = Y be defined

by
] 10, 1] x [0, 1], if x <O,
F@x) = {[1,2] x[1,2], if x>0.
Lete = (1,1) € intK, x = —%. Then, F is compact-valued on M. Direct compu-

tations give us that Sy-minr (X, &) = [—1, 0), and hence 1 (Sy-MminF(X,€)) — 0 as
¢ — 0. However, the problem (Py) is not generalized LP well-posed at x. Indeed,
setting x,, = —%, we have {x,} is a LP minimizing sequence for (P,) at x but {x,}
converges to 0 ¢ Sy-Mminr (¥, 0). The reason here is that F' is not continuous.

Next, employing properties of the approximating solution mapping of (P, ), the con-
nection between L P well-posedness of (P, ) and stability of approximating problem
is established.

Theorem 3.3 Let X € Sy pinF-

(i) Problem (Py) is generalized L P well-posed at x if and only if Sy-pinF (X, -) is
upper semicontinuous and compact-valued at 0.

(i) Problem (Py) is L P well-posed at x if and only if Sy-yminF (X, -) is upper semi-
continuous at 0 and Sy pinp (X, 0) = {x}.

Proof (i) Suppose that (P,) is generalized LP well-posed at x. By Lemma 3.1,
Se-MinF (X, 0) is compact. Suppose by contrary that S,-minr (X, -) is not upper semi-
continuous at 0. Then, there exists an open set N O Sy-MinF (X, 0) such that for any
8 > 0, thereexists ¢ € [0, §), Sy-MinF (X, &) ¢ N.It means that there exists a sequence
{en} converging to O such that for each n € N, we have Sy-minr (X, €,) ¢ N. Thus,
for each n € N, there is x, € Sq-Minr (X, €n), Xn ¢ N. Then, d(x,, M) < &, and
F(x,) <% F(x) 4+ &,e, which imply that {x,} is a L P-minimizing sequence for (P,)
at x. Because (Py) is generalized L P well-posed at x, there is a subsequence of {x,},
denoted by {x,, }, converging to an element X € Sy-minr (¥, 0) C N. Thisisimpossible
as x,, ¢ N forall k.

Conversely, let {x,} C X be a L P-minimizing sequence for (Py) at x. Then, there
exists a sequence {&,} C R \{0} converging to O such that

d(x,, M) <é&,, F(xp) < F(x) + gqe.

So, x, € Sq-MinF (X, €,). It follows from the upper semicontinuity and compact-
valuedness of Sy-MinF (X, -) at 0, Lemma 2.1 (ii) implies that there exist an element
X € Sq-Minr (¥, 0) and a subsequence {x,, } of {x,} such that {x,, } converges to X. So,
(Py) is generalized L P well-posed at x.

(i1) Let {x,} C X be a L P-minimizing sequence for (P,) at x, then there exists
a sequence {e,} C R4 \{0} converging to O such that d(x,, M) < ¢, and F(x,) <%
F (x) + &, e. This means that, for eachn € N,

Xp € So-MinF (X, &r). 9)

Since Sy-MminrF (X, -) is upper semicontinuous at 0, for any open set N, Sy-minr (¥, 0) C
N, there is a neighborhood U of O such that for all + € U,t > 0, we have
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Se-MinF (X,1) C N. Since {g,} converges to 0, there exists nop € N such that ¢, €
B(0, %) for all n > ny. Combining this with (9), we obtain x,, € Sy-Minr (X, €,) C N
for alln > ng. Therefore, for every neighborhood W of 0, x,, € Sy-minr (X, 0) + W for
alln > nop. Since Sy-minr (X, 0) = {x}, {x,,} converges to x. So, (P,) is L P well-posed
at x.

For the converse, suppose that (P,) is L P well-posed at x. Using (i), S¢-MinF (X, -)
is upper semicontinuous and compact-valued at 0. We show that S, minr (¥, 0) is
a singleton. Suppose by the contrary that there exist x1, x2 € Sy-MminrF (X, 0) with
X1 # Xxo. Putting x2,, 4+ = x; where k = 1 or k = 2. Clearly, {x,} is a L P-minimizing
sequence for (P,) at x. However, {x,} is not convergent. This is a contradiction.
Therefore, Sy-MminF (¥, 0) is a singleton. Moreover, itis obvious that X € Sy-minF (X, 0).
So, Se-minrF (X, 0) = {x}. |

The assumption about the upper semicontinuity of approximating solution map-
ping of (P,) is used in Theorem 3.3. Next, we give the sufficient conditions for this
assumption.

Proposition 3.4 Suppose that the following conditions hold:

(i) M is compact;
(i1) F is continuous and compact-valued on M.

Then, Sy_yminF (X, -) is upper semicontinuous at 0.

Proof By the similarity, we only focus on the proof of the assertion for the case @ = u.
By contradiction, suppose that S, MinF (X, -) is not upper semicontinuous at 0. Then,
there exist an open set N O S, .minr (X, 0) and a sequence {&,} C RT\{0} converging
to 0 such that for each n, there exists x,, satisfying

Xn € Su-MinF (X, €2)\Wo. (10)
Since x,; € Sy-MinF (X, €n),
d(xy, M) < &, (11)
and
F(x,) C F(x) + &, — K. (12)

It implies from (11) that there exist X, € M such that d(x,, X,) < &,. By the com-
pactness of M, we can assume that {X, } converges to an element xo € M. Hence, {x,}
converges to xo. Next, we prove that

F(xp) C F(x) — K. (13)

Indeed, by the compact-valuedness of F, the closedness of K and Lemma 2.3,
F(x) — K is closed. From (12), taking n — oo, we obtain (13). It means that
x0 € Su-MinF (X, 0). Combining this, (10) and the convergence to xo of {x,}, we
get a contradiction. Therefore, S, -minr (X, -) is upper semicontinuous at 0. O

Corollary 3.1 Suppose that the following conditions hold:
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(i) M is compact;
(i1) F is continuous and compact-valued on M.

Then,

(a) (Py) is generalized L P well-posed at x € Sy pminF if Sa-minF (X, 0) is closed.
(b) (Py) is LP well-posed at X € Sy pinF if Sa-minr (X, 0) = {x}.

4 Metrically LP well-posed set optimization problems

Picking up the ideas in [22], we introduce the following new concepts of L P well-
posedness related to metrically approach for the problem (Py).

Definition 4.1 A sequence {x,} C X is said to be a

(i) metrically LP-minimizing sequence for problem (P;) at x € S;.minr if and only
if H*(F(x), F(x,)) = 0and d(x,, M) — O asn — oc.
(ii) metrically LP-minimizing sequence for problem (P,) atx € S, Minr if and only
if H*(F (x,), F(x)) —» 0Oand d(x,, M) — O asn — o0.
(ii1) metrically LP-minimizing sequence for problem (Py) at x € S;.MminF if and only
if H(F(x), F(x;)) — 0and d(x,, M) — 0 asn — oo.

Definition 4.2 The problem (P, ) is said to be metrically LP well-posed if and only if
Se-MinF 7 ¥ and for any metrically LP-minimizing sequence {x,} for problem (Py)
at some x € Sy-MinF, We have d(x,, Sy-mMinr) — 0 asn — oo.

Remark 4.1 When o = [, concepts introduced in Definitions 4.1 (i) and 4.2 are similar
to the corresponding ones studied in Definitions 4.5 (ii) and 4.6 (ii) in [22].

Example4.1 (a) Let X =Y =R, M =[0,1], K =Ry, andlet F : X = Y be
defined by F(x) = [1, 2] for all x € X. Obviously, Sy-minr = [0, 1] = M, and
the problem (P,,) is metrically LP well-posed.

D) Let X =Y =R, M =K =Ry.Let F: X == Y be defined by F(x) =
[xz, 3x2] for all x € X. Direct cacullations give us Sq-minr = {0} and the
problem (P,) is metrically LP well-posed. Indeed, let {x,} be a metrically LP-
minimizing sequence for (Py) at x = 0, it implies from definition of metrically
LP-minimizing sequence for (P,) at x = 0O that {x, } converges to x. Therefore,
d(xy, Se-MinF) — 0.

Example4.2 Let X =Y =R, M =[—1,1], K =Ry, and F : X =2 Y is defined by

[0,
0

1), if x <0,
(0, 1]

F(x)z{ . if x>0

By direct computations, we get Sq-ming = [—1, 0]. Taking x, = 1 + %, then {x,} is

a metrically LP-minimizing sequence for the problem (Py) at x = 0 € Sy-MinF, but

d(xy, Se-minr) — 1. Therefore, the problem (P,) is not metrically LP well-posed.
Next, we introduce a generalized form of the above concept.
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Definition 4.3 The problem (P,) is said to be generalized metrically LP well-posed
if and only if Sy-minr # ¥ and for any metrically LP-minimizing sequence {x,}
for (Py) at some X € Sy-MinF, {Xn} has a subsequence, denoted by {x,, }, such that
d(Xn;, Se-MinF) — 0 ask — oo.

It is clear that if (Py) is metrically LP well-posed, then it is generalized metrically
LP well-posed.

These following results give the relationships between these kinds of LP well-
posedness considered in this study.

Theorem 4.1 (i) If (Py) is LP well-posed at all X € Sy pinF, then (Py) is metrically
LP well-posed.

(i) If (Py) is generalized LP well-posed at all x € Sy pinF, then (Py) is generalized
metrically LP well-posed.

Proof (i) By the similarity we verify the assertions (i), (ii) for the case @ = s as an
example. Let {x, } be a metrically LP-minimizing sequence for problem (Ps) at some
X € Sg-MinF- We need to prove that d(x,,, Ss-minr) — 0. In fact, since {x,} is a metri-
cally LP-minimizing sequence for problem (Py) at some X € SgMinr, d(x,, M) — 0
and

H(F(x), F(x,)) — 0. (14)

Observe that we can choose a sequence {&,} C R4\{0} converging to O satisfying
d(xy, M) < &, both —g,e + K and ¢,e — K are neighborhoods of the origin in Y.
By (14), there exists ng € N such that for all n > ng we have

F(x)C F(x,) —epe+ K and F(x,) C F(x) +&,e — K.

This implies that F(x,) <* F(x)+ ¢&,e. Hence, {x,} is a LP-minimizing sequence for
(Py) at x. By the LP well-posedness of (Py) at x, {x, } converges to x. Moreover, since
X € Ss-MinF»> d(Xn, Ss-MinF) < |lx, — x|l = 0. So, (Py) is metrically LP well-posed.

(i1) Using a similar argument with one above, we can prove that the statement (ii)
is satisfied. O

Remark 4.2 When « = [, (P,) reduces to (P;) studied in [22]. To obtain the metrically
LP well-posedness for (P;), the authors used an important assumption about the K-
closed values of F on M, i.e., F(x) + K is closed for all x € M. Using another
approach, as in Theorem 4.1, we can remove this assumption but also obtain the
metrically LP well-posedness for (Py).

Combining Theorem 4.1 and Corollary 3.1, we obtain the following results.
Theorem 4.2 Suppose that the following conditions are satisfied:

(i) M is compact;
(i1) F is continuous and compact-valued on M.

Then,
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(a) (Py) is metrically LP well-posed if Sq-pminr(x,0) = {x} for every x €
Sa-MinF~

(b) (Py) is generalized metrically L P well-posed if Sq-minr (X, 0) is closed for
every X € Sq-MinF-

Remark 4.3 Very recently, in [6], the authors studied several kinds of well-posedness
for set optimization problems via the lower set less relation, including B-well-
posedness, L-well-posedness, D H-well-posedness, and they obtained many inter-
esting results related to this topic. In this paper, we consider the Levitin—Polyak
well-posedness and the generalized Levitin—Polyak well-posedness for set optimiza-
tion problems involving various kinds of set less relations, and hence the concepts of
well-posedness investigated in this paper are different from those in [6]. Therefore, it
could not compare our results with theirs.
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1 Introduction

Set order relations were firstly introduced by Kuroiwa et al. in [i] and then
they were generalized in [B]. These concepts gave a new way, so-called set approach,
to formulate the optimal of set-valued optimization problems [B]. In this approach,
all images of the set-valued objective mapping were compared by set order relations

[@,5], and hence, it is a truely natural and practical approach. Therefore, this field
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has attracted a great deal of attention of researchers although it is a young direction
in optimization. Many interesting and important results have been obtained in
different topics in this area [B-IT].

Well-posedness was originally proposed by Tikhonov in [I2]. This concept
requires two conditions, namely the uniqueness of solution and the convergence
of each minimizing sequence to the unique solution. In other words, whenever
we are able to compute approximately the optimal value then we automatically
do approximate the optimal solution. So, well-posedness plays an important role
in both theory results and numerical methods, and hence it has been attracted
much attention of researchers (see e.g., [[3-15] and the reference therein). Later on,
generalizations of Tikhonov well-posedness were proposed and studied widely. One
of these extensions is the so-called B-well-posedness proposed by Bednarczuck for
vector optimization problems in [[6]. After that, this notion has been intensively
considered for various problems related to optimization [I'7-21]

Studying on well-posedness for set optimization problems was initialed by
Zhang et al. in [22]. The authors obtained sufficient, necessary conditions and
characterizations for set optimization problems involving the lower set less rela-
tion to be well-posed by the scalarization method. After that, some different types
of well-posedness for these problems introduced and investigated [23-26]. In 2013,
as the first authors concerned B-well-posedness for set optimization problems,
Long and Peng [74] introduced three types of B-well-posedness for set optimiza-
tion problems involving upper set less relations <" and established some relations
among these kinds of B-well-posedness. Moreover, the authors also provided nec-
essary and sufficient conditions of these notions for set optimization problems.
To extend the research in [24], Han and Huang [§] studied B-well-posedness for
set optimization problems involving set order relations <! and <*. They gave
characterizations for the generalized [- B-well-posedness and the generalized u-B-
well-posedness and provided the semicontinuity of solution mapping.

As mentioned in [7,27] that among three kinds of set order relations introduced
in [@], the set less relation <® is generalized and more appropriate in practical
problems than both the lower and upper set less relations; and it also occupies an
important role in relationships with other new order relations for sets proposed
in [2] which are more useful in real world. Moreover, to the best of our knowledge,
there is no paper devoted to well-posedness for set optimization problems involving
set less relation, and hence the well-posedness properties for such problems are
deserved to study more. Consequently, we aim to investigate both pointwise and
global B-well-posedness as well as pointwise L-well-posedness for set optimization
problems involving three kinds of set order relations.

The outline of this paper is as follows. In Sect. B, some concepts and re-
sults used in what follows are recalled. Sect. B studies global B-well-posedness
for set optimization problems, including B-well-posedness and generalized B-well-
posedness. Relationships between them are discussed. Moreover, sufficient con-
ditions of B-well-posedness for such problems are provided. In Sect. B, we pay
more attention on pointwise B-well-posedness. Characterizations as well as re-
lationships between pointwise B-well-posedness and global B-well-posedness are
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studied. In the last section, Sect. B, pointwise L-well-posedness is investigated.
Then, relationships between it and pointwise B-well-posedness are researched.

2 Preliminaries

Let X and Y be normed spaces. We denote the closed unit ball of Y by By.
Let K be a closed convex pointed cone in Y with intK # (), where int K denotes
the interior of K. Orderings induced by cone K in the space Y are defined as the
following

r<gy<ey—rek,

rT<gyey—zcintk.
To compare two subsets of Y, we use set order relations introduced in [2,5,28].
We list here three kinds of set order relations used in this paper. Let P(Y) be
the family of all nonempty subsets of Y. For A, B € P(Y), lower set less relation,
upper set less relation and set less relation, respectively, are defined by
A<'Bifand only if BC A+ K,
A <" Bifand only if A C B — K,
A<’ Bifand only if AC B— K and BC A+ K.
Definition 2.1. [?] We say that the binary relation < is

(i) compatible with the addition if and only if A < B and D < E imply
A+D< B+ Eforal A, B,D,E € P(Y).

(ii) compatible with the multiplication with a nonnegative real number if and
only if A < B implies AA < AB for all scalars A > 0 and all A, B € P(Y).

(iii) compatible with the conlinear structure of P(Y") if and only if it is compat-
ible with both the addition and the multiplication with a nonnegative real
number.

Proposition 2.1. [7]

(i) The set order relations gl, <" and <* are pre-order (i.e., these relations are
reflexive and transitive).

(ii) The set order relations §l, <" and <° are compatible with the conlinear
structure of P(Y).

(iii) In general, the set order relations <!, < and <*® are not antisymmetric;
more precisely, for arbitrary sets A, B € P(Y) we have

(A<'B and B<'A)e A+ K=B+K,

(A<*B and B<"A) s A-K=DB-K,
(A<*B and B<*A)< (A+K=B+K and A—-K=B-K).
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For o € {u,1, s}, we say that
A ~% Bif and only if A <% Band B <% A.

Let FF: X = Y be a set-valued mapping with nonempty values on X, we
denote F(M) = Ugzep F(x). For each o € {u,l, s}, we consider the following set
optimization problem

(Pa) a-Min F(z)
subject to e M,

where M is a nonempty subset of X. A point Z € M is said to be an c-minimal
solution of (P,) if for any x € M such that F(z) <* F(z), then F(z) <% F(x).
The set of all a-minimal solutions of (P,) is called the solution set of (P,) and
denoted by Sq -Min F-

Remark 2.2. Tt can be seen that if Z € Sy minr and F(Z) ~* F(x) for some
reM, then = € Sy Min F-

Next, we recall definitions of semicontinuity for a set-valued mapping and their
properties used in the sequel.

Definition 2.2. [29] A set-valued mapping F : X = Y is said to be

(i) upper semicontinuous at xg € DomF if and only if for any open subset V'
of Y with F(x) C V there is a neighborhood U of zg such that F(z) C V
for all x € U;

(if) lower semicontinuous at ¢ € DomF if and only if for any open subset V' of
Y with F(z¢)NV # 0 there is a neighborhood U of g such that F(z)NV # (
for all x € U;

(iii) lower (upper) semicontinuous on a subset D of X if it is lower (upper)
semicontinuous at every x € D;

where DomF = {z € X | F(x) # 0}.

Lemma 2.3. [B0] Let F': X =Y be a set-valued mapping.

(i) F is lower semicontinuous at o € DomF, if for every {z,} converging to zg
and for every y € F(zg) there exists {y,} with y,, € F(x,) such that {y,}
converges to y.

(if) If F(zo) is compact and F is upper semicontinuous at xy € DomF', then for
every {x,} converging to x¢ and y, € F(z,) there exist yo € F(zp) and a
subsequence {y,, } of {y,} such that {y,,} converges to yo.

Definition 2.3. [30] A set-valued mapping F': X =Y is said to be
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(i) Hausdorff upper semicontinuous at g € DomF if and only if for each neigh-
borhood V of the origin in Y, there exists a neighborhood U of xg such that
F(z) C F(zg)+V forallz e UN X.

(ii) Hausdorff lower semicontinuous at ¢ € DomF if and only if for any neigh-
borhood V of the origin in Y, there exists a neighborhood U of z( such that
F(zg) C F(z)+V forallz e UN X.

(iii) Hausdorff lower (upper) semicontinuous on a subset D of X if and only if
F is Hausdorff lower (upper) semicontinuous at every point of D.

Remark 2.4. [B1] If F is upper semicontinuous at £o € DomF, then F is Haus-
dorff upper semicontinuous at xo; the converse implication is true when F(xg) is
compact.

Next, we recall concepts of Hausdorff distance and Hausdorff convergence of
sequence of sets. Let S be a nonempty subset of X and z € X. The distance d
between x and S is defined as

d(z,S) = inf,esd(x, u).

Let S; and S; be two nonempty subsets of X. The Hausdorff distance between
Sp and S, denoted by H(Sq,53), is defined as

H(Sy,52) = max{H" (51, S2), H* (52, 51)},
where H*(S1,S2) = sup,eg, d(z, S2).
Definition 2.4. [32] Let {A4,} be a sequence of subsets of X. We say that

(i) A, converge to A C X in the sense of the upper Hausdorff set-convergence,
denoted by A, — A, if and ouly if H*(A,,A) — 0.

(ii) A, converge to A C X in the sense of the lower Hausdorff set-convergence,
denoted by A4,, — A, if and only if H*(A4, 4,,) — 0.

(iii) A, converge to A C X in the sense of the Hausdorfl set-convergence, denoted
by A, — A, if and only if H(A,,A) — 0.

3 B-well-posedness for set optimization problems

In this section, two kinds of global B-well-posedness for the problem (P,) are
considered and their relationships are discussed. Moreover, we also provide char-
acterizations and sufficient conditions of B-well-posedness for such problems.

We observe from the definitions of set order relations that <® is a combination
of <! and <. For relationships between <! and <%, they were given in Remark
2.6.10 of [@] as the following

A<!Be —-B<* —A.

Some properties about these set order relations are demonstrated in next re-
sults.
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Proposition 3.1. The following statements are true:
(i) If A <* B, then AA <* AB, VA > 0;
(ii) A<!B& MA>"\B, VA < 0;
(iii) A<®* B AA>°AB, VA <0.

Proof. (i) We give the proof of the assertion (i) for the case a = s, proofs of this
assertion for other cases o =1 and @ = w are similar. Since A <* B, BC A+ K
and A C B— K. Clearly, for any A > 0, we get AB C AMA+ K and AMA C AB — K.
Hence, AA <° AB.

(ii) We have B C A+ K as A <! B. For any \ < 0, this yields A\B C A — K,
ie., AB <" \A.

(iii) Since A <* B, BC A+ K and A C B — K. For any A < 0, this implies
that AB C M — K and AA C AB + K. So, AA >* \B. O

We define a set-valued mapping @ : K = M as follows

Qk)= |J {zeM|F(@)<F(y)+k}. (3.1)

YESa—MinF
The following results provide some properties of this mapping.

Proposition 3.2. These assertions hold:
(i) If k1 <k ks, then Q(k1) C Q(k2);
(il) Sa-minr C Q(0);

(iti) Q(0) = NkexQ(k).

Proof. (i) We only demonstrate the proof of the above assertion for the case o = s,
proofs of this assertion for other cases are proved similarly. Let x € Q(k1) be
given, then there exists y € S,.minr such that F(z) <® F(y)+kq, i.e., F(y)+k C
F(z) + K and F(z) C F(y) + k1 — K. Combining this with k; <g ks, we get
F(y)+k2 = F(y)+k1—|—(k2—k‘1) C F(x)+K and F(JJ) C F(y)—l—k‘l - K =
F(y) + ky + (k1 — ko) — K C F(y) + ko — K. This means that F(z) <! F(y) + k2
and F(z) <* F(y) + kz. Hence, x € Q(k2).

(ii) It is clear that for every x € Su-minr, we have F(z) <® F'(z), and hence
x € Q(0). Therefore, Sy minr C Q(0).

(iii) It is obvious that Q(0) C Q(k) for all k € K, and thus Q(0) C NkexQ(k).
Conversely, suppose that there exists z € Npexg@(k) but = ¢ Q(0), ie., z ¢
UyGSa.Mqu{Z € M|F(Z) Sa F(y)} Thenv F(x) ﬁa F(y) for any y € Sa-MinF- On
the other hand, since x € NkexQ(k), x € Q(k) for all k& € K. Therefore, there is
Yy € Sa-MminF such that F(x) <* F(y) + k for all k € K. Particularly, for k = 0,
there exists y € Sy minF such that F(x) <* F(y) which is a contradiction. O

Next, we give two concepts related to global B-well-posedness for (P,,).



308 L. Q. Anh, R. Wangkeeree and P. T. Vui

Definition 3.1. Problem (P,) is said to be

(i) B-well-posed if and only if S, mine # @ and Q is upper semicontinuous at
k=0.

(ii) generalized B-well-posed if and only if S, mink # 0 and @ is Hausdorff upper
semicontinuous at k = 0.

Remark 3.3. Clearly, if the problem (P,) is B-well-posedness, then it is gener-
alized B-well-posedness. It follows from Proposition B2(ii) and Remark Z4 that
the converse holds if S, minr is compact. In the sequel, we focus on generalized
B-well-posedness.

Definition 3.2. A sequence {z,} C M is said to be a generalized B-minimizing
sequence of (P,) if and only if there exist {k,} C K converging to 0 and {y,} C
Sa-MinF such that F(z,) < F(y,) + k.

Equivalently, {z,,} is a generalized B-minimizing sequence of (P,) if and only if
there exist {k,} C K converging to 0 and {y,} C SqminF such that z,, € Q(k,).

Remark 3.4. When a = u, concepts in Definitions B and B reduce to ones in
Definitions 3.1-3.3 in [24], respectively.

Characterizations for B-well-posedness of (P, ) are provided in the next result
through the B-minimizing sequence.

Theorem 3.5. Problem (P,) is generalized B-well-posed if and only if these fol-
lowing conditions are satisfied

(a) So-mink # 0;

(b) for every generalized B-minimizing sequence {x,} C M and for every neigh-
borhood U of the origin in X, there exists ng € N such that z,, € Q(0) + U for all
n>mng.

Proof. Suppose that (P,) is generalized B-well-posed. Let {z,} C M be a gener-
alized B-minimizing sequence of (P, ), then there exist {k,} C K converging to 0
and {y,} C Sa-minr such that z, € Q(k,). Since (P,) is generalized B-well-posed,
Q@ is Hausdorff upper semicontinuous at 0. Let U be a neighborhood of the origin
in X, there exists ng € N such that Q(k,) C Q(0) + U for all n > ng. Therefore,
we get ©, € Q(0) + U for all n > ny.

Conversely, suppose on the contrary that (P,) is not generalized B-well-posed.
Thus, @ is not Hausdorff upper semicontinuous at 0. Then, there exists a neigh-
borhood U of the origin in X such that Q(k) ¢ Q(0) + U for some k belongs
to a neighborhood of 0. So, we can build a sequence {k,} C K converging to 0
such that Q(k,) ¢ Q(0) + U. It leads to the existence of a sequence {x,} with
Zn € Q(ky) satistying z,, € Q(0) + U which contradicts the assumption (b). This
completes the proof. O

We now give sufficient conditions for (P,) to be generalized B-well-posed.
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Theorem 3.6. Suppose that So_prnr # O and for any € > 0 there exists § > 0
such that
(F(M) — F(Sa—MinF)) N ((SBY — K) C eBy. (32)

Then,

(i) (P) is generalized B-well-posed if each sequence of sets {A,} C M with
F(An) il F(Sl-MmF) satisﬁes An —7 Sl-MinF'

(ii) (Py.) is generalized B-well-posed if each sequence of sets {A,} C M with
F(An) - F(Su—MmF) satisﬁes An - Su-MmF'

(iii) (Ps) is generalized B-well-posed if each sequence of sets {An} C M with
F(A,) = F(Ss-minr) satisfies Ap — Ss_Minp-

Proof. (i) By contradiction, suppose that (F;) is not generalized B-well-posed. It
follows from Theorem B3 that there exist a generalized B-minimizing sequence
{z,} and a neighborhood U of the origin in X such that for some ng € N, z,, &
Q(0) 4+ U for all n > ngy. Combining this with Proposition B4(ii), we get

Tn & SiminF + U, Vn > ng. (3.3)

Since {z,} is a generalized B-minimizing sequence, there exist {k,} C K converg-
ing to 0 and {y,} C Siminr such that

F(zn) <' F(yn) + kn. (3.4)

We consider two following cases:

Case 1: If F(x,) — F(Si.Minr), then choosing A4,, = {x,,}. It implies from the
hypothesis that {z,} — SiMminr, and hence H*(S;minF, {zn}) — 0. Therefore,
(2, Si-Minr) — 0 which contradicts (833).

Case 2: If F(x,) # F(SiMinr), then sup,cg, . d(z,F(x,)) # 0. So, there
exists © € Siynr such that d(z, F(xz,)) # 0, ie., there exist n; € N and a
neighborhood V' of the origin in Y such that

x € F(zn)+V, ¥n > ny. (3.5)

Take € such that eBy C V. For § satisfying (82), since {k,} C K converges to 0,
there exists ny € N such that for n > nsy, we have

kn € 6By. (3.6)

By (B3), we get F(yn)+ kn C F(z,)+ K. Therefore, F(y,) C F(x,) —kn+ K C
F(z,) + 0By + K. This implies that for an arbitrary z, € F(y,), there exists
Z, € F(x,) such that z, € z, + By + K, and thus z, — z, € By + K. So,
Zn — zn € 0By — K. On the other hand, we have z,, — z, € F(z,) — F(yn) C
F(M) — F(S;.minr). It derives from (B3) that z, — 2z, € eBy C V. So, now we
get z, € 2, +V C F(x,) + V which contradicts (B3F).

For (ii) (iii), the proofs of these assertions are technically similar to that of the
assertion (i). O
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4  Pointwise B-well-posedness for set optimiza-
tion problems
In this section, we consider a notion of pointwise B-well-posedness for the problem

(Po). At a reference point xg € M, we define a corresponding set-valued mapping
as follows Qg, : K = M, Qqu, (k) ={z € M | F(x) <* F(zo) + k}.

Definition 4.1. Problem (P,) is said to be B-well-posed at zg € Su minF if and
only if @4, is upper semicontinuous at k = 0.

We observe that Q.,(0) = {x € M | F(x) ~* F(x0)} for each 29 € Sy MinF-
The next results give some properties of the mapping @, .

Proposition 4.1. The following statements are true:
(i) If k1 <k ka, then Qu,(k1) C Quy(k2);
(il) Quo(0) C Su-minF with xo € Sa-MinF;
(iil) @o € Quy(0) C Qg (k) for every k € K
(iv) Q(0) = UsyeSa-sine@ao (0)-

Proof. (i) The statement is proved by a similar argument in Proposition B2(i).
(ii) By the similarity, we prove the assertion for the case a = s. Let € Q,,(0)
and y € M such that

F(y) <° F(z), (4.1)
we need to show that F(x) <® F(y). Since z € Q,,(0),

F(z) <* F(xo). (4.2)

Combining (BT0) and (B3), we get F(y) <°® F(xo). Because g € So-MinFs
F(z9) <® F(y). Therefore, F(z) <® F(y).

For (iii) and (iv), these assertions were implied by definitions of mappings @
and Q- O

Now we discuss the converse of (ii) of the above proposition. Because the proof
of this assertion is elementary, we would like to omit it.

Lemma 4.2. Ifxg € So-pinr, then So-pine C Qu,(0) if and only if F(x) ~* F(y)
for all x,y € So_pring-

Definition 4.3. A sequence {z,} C M is said to be an zo-minimizing sequence
of (P,) where xy € Sy Mminr if and only if there exists {k,} C K converging to 0
such that

F(xn) < F(JZQ) + kn.
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Definition B3 reduces to Definition 3.3 in [25] when o = .

Clearly, for each xg € S minF, {Zn} C M is an zo-minimizing sequence if and
only if there exists {k,} C K converging to 0 such that =, € Q,(kn).

The next result illustrates the relationship between the pointwise B-well-
posedness and B-well-posedness for (P,,).

Theorem 4.2. If Sy arinr is a finite set and (P,) is pointwise B-well-posed at
every & € So-MinF, then it is B-well-posed.

Proof. Let Sqminr = {21,...,2,} and V be an open set in X such that Q(0) C V.
By Proposition E(iv), Q,,(0) C V for all ¢ = 1,...,n. Since (P,) is pointwise
B-well-posed at every z;, @), is upper semicontinuous at k¥ = 0, and hence for each
i € {1,...,n}, there exists a neighborhood U,, of 0 such that Q,,(U,,) C V. Let
U =nN}_,U,,, this finite intersection of neighborhoods U,, is also a neighborhood
of 0. Obviously, we have Q.,(U) C V for all i = 1,...,n. By definitions of
mappings Q., and Q, we also get Q(U) C V. It leads to the upper semicontinuity
at k =0 of Q. We conclude that (P,) is B-well-posed. O

We next investigate characterizations of pointwise B-well-posedness for (P).

Theorem 4.3. Problem (P,) is pointwise B-well-posed at xo € So_pink if and
only if for a given e € intK, the set-valued mapping Q. : Ry =3 M defined as
F@#t)={xe M| F(zx) <* F(zo) + te}

)
15 upper semicontinuous at t = 0.

Proof. Assume that (P,) is pointwise B-well-posed at xg € So-Minr, then @, is
upper semicontinuous at k = 0. Let V be an open set in X such that @ (0) C V,
we get Qg,(0) C V. By the upper semicontinuity of @, , there is a positive number
r such that @, (k) C V for all k € B(0,r) N K, where B(0,r) is the open ball
centered at the origin in Y with radius . Then, there exists a positive number
B such that [0, Be) C B(0,r), where [0,8e) = {te | t € [0,8)}. For t € [0,5) and
x € Qf (t), we have F(z) <* F(x0) + te, which implies that 2 € Q,(te). This
fact, together with te € B(0,r), yields € V, and so Qj (t) C V. We conclude
that Qjo is upper semicontinuous at ¢ = 0.

Conversely, suppose that Q;“O is upper semicontinuous at ¢ = 0. Let V be an
open set in X such that Q,(0) C V, then Q (0) C V. It follows from the upper
semicontinuity of Q' that there exists a positive number § such that Qf (t) C V
for every t € [0,8). For convenience in writing, we only prove the assertion for
case a = s because proofs of this assertion for other cases o = [ and o = u are
similar. Let v € [0, 8), there exists a positive number r such that B(0,7) C ye— K
and B(0,7) C —ye + K. Let k € B(0,7) N K and = € Q,,(k), it follows from the
definition of @, that

F(z) <" F(x9) + k, (4.3)

and
F(z) <! F(xo) + k. (4.4)
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It yields from (E=3) that F(x) C F(zo) +k— K C F(z9) +ve— K as k € yve — K.
On other hand, by (B4), we get F(xo) + kK C F(z) + K, and hence F(xg) C
F(z) — k+ K. Since —k € B(0,r) C —ve + K, we have F(zg) C F(z) —ve + K,
ie., F(xg)+ve C F(x)+ K. So, we now get F(x) <® F(xg) + ve. It implies that
z € QF (v), and thus x € V and Q, (k) C V. The proof is complete. O

Theorem 4.4. If S, pinr is closed and (P,,) is pointwise B-well-posed at z¢ €
So-MinF, then for every xo-minimizing sequence {x,} C M\Su_prinF, one can ex-
tract a subsequence {x,, } of {x,} such that {x,,} converges to some T € Sq-minr-

Proof. Assume that (P,) is pointwise B-well-posed at xg € Sa-minr- Then, Qg,
is upper semicontinuous at k = 0. By contradiction, suppose that there exists an
xo-minimizing sequence {x,} C M\Sq, Mminr Which admits no subsequence {x,, }
converging to some T € Sy Mminr. By the closedness of S, minp, we may find an
open set V. C X such that Soming € V and x, ¢ V. We have Q,,(0) C V
due to Q4,(0) C So-minr and Proposition BT(ii). Since {z,} is an xo-minimizing
sequence, there exists {k,} C K converging to 0 such that z, € Qu,(kn). It
follows from the upper semicontinuity of Q,, at k = 0 that Q.,(k,) C V. Hence,
z, € V which is a contradiction. So, we get the desired result. O

Remark 4.5. Our results extend the corresponding results of Long and Peng [24].
More precisely,

(i) When a =1 or @ = s, our results here are new. To the best of our knowl-
edge, there is no paper devoted to this type of well-posedness for set optimization
problem involving the set less relation <°.

(ii) When o = u, the corresponding set optimization problem (P,) was studied
in [24).

5 Pointwise L-well-posedness and relationship with
pointwise B-well-posedness

Motivated by the studies in [22,25], we introduce the concept of pointwise L-well-
posedness for the problem (P,).

Definition 5.1. Problem (P,) is said to be L-well-posed at x¢ € Sq minr if and
only if every xg-minimizing sequence of (P, ) has a subsequence converging to some
element T € S, MinF-

Remark 5.1. When « = [, Definition B reduces to Definition 2.1 in [22].

We are going to study sufficient and necessary conditions of pointwise L-well-
posedness for (P,).

Theorem 5.2. Let vy € So_pinry be given.



B-well-posedness for set optimization problems involving set order relations 313

(i) If (Py) is L-well-posed at o and Qu,(0) = So-MinF, then Qg, is upper
semicontinuous and compact-valued at 0.

(ii) If Qu, is upper semicontinuous and compact-valued at 0, then (P,) is L-
well-posed at xg.

Proof. (i) Assume that (P,) is L-well-posed at xg. First of all, we show that Q,,
is upper semicontinuous at 0. By contradiction, suppose that ), is not upper
semicontinuous at 0. Then, there exist a neighborhood U of @, (0) and {k,} C K
converging to 0 such that for each n € N, there exists x,, € Q4,(0) \ U, i.e.,

Ty €U (5.1)

and
F(x,) <% F(x0) + k. (5.2)

It follows from (B32) that {z,} is an z¢-minimizing sequence of (P,). Because
(P,) is L-well-posed at g, there exists a subsequence of {x,}, denoted by {z,, },
converging to some element T € S, Minr, and thus we get Z € Q,,(0). Therefore,
Z € U which contradicts (B1). So, @4, is upper semicontinuous at 0.

Next, we prove that @Q.,(0) is compact. Indeed, for every sequence {z,} C
Qz,(0), we have F(x,) <* F(xg) + k,, where {k,} C K converges to 0. This
means that {x,} is an zo-minimizing sequence of (P,). By the L-well-posedness
of (P,) at g, there exists a subsequence {z,, } of {x,} such that {z,,} converges
to an element T € Sy, \in . Therefore, T € Q,,(0). This leads to the compactness
of Qq, (0).

(ii) Let {zn} C M be an z-minimizing sequence of (P, ), there exists {k,} C
K converging to 0 such that F(z,) <* F(xzo) + k,. Hence, x,, € Qu,(k,). Since
(Qz, is upper semicontinuous and compact-valued at 0, there exists a subsequence
of {z,}, denoted by {z,,}, converging to some Z € Q,(0). Combining this with
Proposition BT(ii), we get Z € So-min . S0, (Po) is L-well-posed at xo. O

The next results illustrate relationships between the pointwise L-well-posedness
and pointwise B-well-posedness for the problem (P,).

Theorem 5.3. Let g € Su_pinr be given.

(i) If (Pa) is L-well-posed at o and Q,(0) = Sa-rinr, then it is B-well-posed
at xg.

(ii) If (Po) is B-well-posed at xg and So_ppinr is compact, then it is L-well-posed
at xg.

Proof. (i) By contradiction, suppose that (P,) is not B-well-posed at zy. We get
that ()5, is not upper semicontinuous at k = 0. Hence, there exist a neighborhood
V of Q4,(0) and {k,} C K converging to 0 such that for each n € N, there exists
Zn € Quy(kn) \ V. By definition of Q,,, we have F(x,) <* F(x¢) + kn, i.€., {zn}

is an xo-minimizing sequence of (P,). It follows from the L-well-posedness at xg
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of (P,) that there exists a subsequence {xy, } of {z,} such that {z,, } converges
to an element T € S, minF- Therefore, T € Q,,(0), and hence we now get

T € Qg (0) C V. (5.3)

On the other hand, since x,, € V', x,, € X \ V. By the closedness of X \ V, we
have z € X \ V which contradicts (B3). So, (Pa) is B-well-posed at x.

(ii) Suppose that (P,) is B-well-posed at z¢. Let {z,} be an xo-minimizing
sequence of (P,), we consider two cases as follows:

Case 1: {x,} has infinite elements which belong to S MinF-

Since Sy MinF IS compact, there exists a subsequence {x,, } of {x,} such that
{zn, } converges to some Z € Sy -Mminr. Hence, (P,) is L-well-posed at x.

Case 2: {x,} has infinite elements which do not belong to S, -minr. Without
lost of generality, we can assume that {z,,} C M\Ss.minr. By Theorem 84, {z,,}
has a subsequence {z,,} converging to some T € S, Mminr. Therefore, (P,) is
L-well-posed at zq. O
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ABSTRACT. We introduce robust weak sharp and robust sharp solution to a
convex programming with the objective and constraint functions involved un-
certainty. The characterizations of the sets of all the robust weak sharp solu-
tions are obtained by means of subdiferentials of convex functions, DC fuctions,
Fermat rule and the robust-type subdifferential constraint qualification, which
was introduced in X.K. Sun, Z.Y. Peng and X. Le Guo, Some characteriza-
tions of robust optimal solutions for uncertain convex optimization problems,
Optim Lett. 10. (2016), 1463-1478. In addition, some applications to the
multi-objective case are presented.

1. Introduction. The notion of a weak sharp minimizer in general mathematical
programming problems was first introduced in [1]. It is an extension of a sharp
minimizer (or equivalently, strongly unique minimizer) in [2] to include the possi-
bility of non-unique solution set. It has been acknowledged that the weak sharp
minimizer plays important roles in stability /sensitivity analysis and convergence
analysis of a wide range of numerical algorithms in mathematical programming
(see [3, 4, 5, 6, 7, 8] and references therein).

In the context of optimization, much attention has been paid to concerning suffi-
cient and/or necessary conditions for weak sharp minimizers/solutions and charac-
terizing weak sharp solution sets (of such weak sharp minimizers) in various types
of problems. Particularly, the study of characterizations of the weak sharp so-
lution sets covers both single-objective and multi-objective optimization problems
(see,[9, 10, 11, 12] and references therein) and, recently, is extended to mathematical
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programs with inequality constraints and semi-infinite programs (see, e.g., [13, 14]).
As it might be seen, the study of characterizations of the weak sharp solution sets
has been popular in many optimization problems. How about the issue of this study,
particularly,in a robust optimization?

Robust (convex) optimization has been known as an important class of convex
optimization deals with uncertainty in the data of the problems [15, 16]. The goal
of robust optimization is to immunize an optimization problem against uncertain
parameters in the problem. In the last two decades, it has been through a rapid
development owing to the practical requirement and its effective implementation
in real-world applications of optimization.(see, e.g., [17, 18, 19, 20, 21] and the
references therein). A successful treatment of the robust optimization approaches
to convex optimization problems under data uncertainty was given in ([15, 16, 22,
23, 24]).

While the characterizations of optimal solution sets have been in the limelight
presently, there has been no research concerning the characterizations robust weak
sharp solution sets for such problems. Indeed, a robust weak sharp solution of an
uncertain optimization problem is the weak sharp minimizer of the robust counter-
part of such problem. Our main goal in this paper is to establish characterizations
of the robust weak sharp solution set of the convex optimization problem under the
data uncertainty.

This paper is organized as follows. In section 2, we recall the basic definitions.
In Section 3, we establish necessary conditions for a robust weak sharp solution,
constancy of Lagrangian-type function on the robust weak sharp solution set, and
some characterizations of robust weak sharp solution sets are established respec-
tively. Some properties of subdiferentials of convex functions and the (RSCQ),
which was introduced in [24], are employed in the section. Finally, in section 4, we
consider the characterizations of the robust weak sharp weakly efficient solutions
for the multi-objective optimization problem under data uncertainty.

2. Preliminary. Throughout the paper, let R",n € N, be the n-dimensional Eu-
clidean space, and the inner product and the norm of R™ are denoted respectively by
(+,+y and || - ||. The symbol B(z,r) stands for the open ball centered at x € R™ with
the radius r > 0 while the Bg~ stands for the closed unit ball in R™. For a nonempty
subset A C R"™, we denote the notations of the closure, boundary and convex hull of
A by clA, bdA, and coA, respectively. In particular, when Ax € E C R" for every
A>0and every x € F, the set F in R” is said to be a cone. A dual cone E* of the
cone F is given as E* := {x € R" : (x,y) > 0 for all y € E}. Observe that the dual
cone E* is always closed and convex (regardless of E).

In general, for a given nonempty set A C R"”, the indicator function d4 : R® —
RU{+o0} of A and the support function o4 : R" — RU{+o0} of A are, respectively,

defined by
0 if x € A,
5 — ) bl
al@) {—i—oo, otherwise,

and

oalx™) = stelg(x*,x).
x

The distance function d4 : R™ — R : [0, +00) is defined by

da(a) i= int o .
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A normal cone of the set A at the point «x is the following set:

{yeR": (y,a—zy<O0forallaec A}, ifz e A;
NA (x) = .

0, otherwise.

The normal cone N(z) is always closed and convex for any set A.
For any extended real-valued function h : R — R := [—00, +00] the following
notations stand, respectively, for its effective domain and epigraph:
domh :={z € R" : h(z) < +o0},
and
epih == {(z,7) € R" x R: h(z) < r}.

The function h is said to be a proper function if and only if h(z) > —oo for every
x € R™ and domh is nonempty. Further, it is said to be a convex function if for any
z,y € R" and X € [0,1],

h(Az + (1 = N)y) < Ab(z) + (1= Mh(y),
or equivalently, epih is convex. On the other hand, the function h is said to be a
concave function if and only if —h is a convex function. In the case of vector valued
function, let h : R™ — RP be a given function and D C R? is a convex set. The
function h is said to be D-convex if and only if for any =,y € R™ and A € [0, 1],

h(Az + (1 = A)y) — Ah(z) — (1= Nh(y) € —D.
Simultaneously, the function h is called a lower semicontinuous at x € R™ if for
every sequence {z;} C R" converging to z,
h(z) < liminf h(zg).
k—oc0

Equivalently,
h(z) < liminf h(y),
y—x

where the term on the right-hand side of the inequality denotes the lower limit of
the function h defined as

liminf h(y) = lim inf h(y).
im in (y) i (y)

For any proper and convex function h : R® — R, the subdifferential of h at & €
domh, is defined by

Oh(z) :={£ e R": ({,x — 2) < h(z) — h(Z),Vz € R"}.
More specifically, for each € > 0, the e-subdifferential of h at & € domh, is defined
by
0:h(2) :={( eR": ({,z — &) < h(x) — h(Z) + ¢,Vz € R"}.
It is obvious that for € > &', we have 0./h(&) C 9.h(&). In particular, if h is a proper

lower semicontinuous convex function, then for every & € domh, the e-subdifferential
0-h(Z) is a nonempty closed convex set and

Oh(z) = ) 0:h(%).
e>0

If x ¢ domh, then we set Oh(x) = §). Simultaneously, for the nonempty subset A of
R™ we get 004(x) = Na(x) and 0da(z) = Brn N Na(x).
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The conjugate function A* : R® — R of any h : R — R is defined by

h*(x*) = ms;gﬂ{(x*w) — h(x)}

for all z € R™. The function A* is lower semicontinuous convex irrespective of the
nature of h but for A* to be proper, we need h to be a proper convex function.

Next, let us recall some basic concepts dealing a DC problem/programming.
A DC function is the difference of two convex functions. The minimization (or
maximization) problem of a DC function is called a DC problem, i.e., the DC
proplem concerned about finding

inf h(z) = f(x) - 6()

where f,¢ : R® — R are convex. Note that the function h is DC and it is not
expected to be convex.

It shall be found later that some DC problems are considered and their properties,
in particular the following lemma, are employed.

Lemma 2.1. [25] Let hy, ho : R® — R be two proper lower semicontinuous convex
functions. Then
(i) A point & € dom hy N dom hy is a (global) minimizer of the DC problem :

inf {ha(2) — hale)}

if and only if for any e > 0, 0-ha(&) C 0-h1(Z).
(ii) If & € dom hy N dom hy is a local minimizer of the DC problem :

inf (n(x) — b))
then 8h2 (JA?) g 8h1 (.’f?)
Lemma 2.2. [19] Let & C RP be a convex compact set, and f : R" x R? — R

be a function such that, f(-,u) is a convex function for any u € U, and f(z,-) is a
concave function for any x € R™. Then,

O (max f(-,u) ) (&) = of (-, u)(2),
<u€2/l ) uELZ:IJ(aE)
where

UE) = {u cU: f(z,a) = maxf(:z,u)} .

u€eU

Let C' C R™ be a nonempty closed convex set. Let D C RP be a nonempty closed
convex cone. Consider the following convex optimization problem:

min f(z) s.t. x € C,g(x) € =D (P)

where f : R™ — R is a convex function and ¢ : R™ — R™ is a D-convex function.
The feasible set of (P) is defined by

Ko:={x € C:g(zx) € —D}.

The problem (P) in the face of data uncertainty both in the objective and constraints
can be captured by the following uncertain optimization problem :

min {f(z,u) : x € C,g(z,v) € =D}. (UP)
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where Y C RP and V C RY are convex and compact uncertainty sets, f : R” xUf — R
is a given real-valued function such that, for any uncertain parameter v € U, f(-,u)
is convex as well as f(z,-) is concave for any z € R™, g : R” x ¥V — R™ is a vector-
valued function such that, for any uncertain parameter v € V, g(-,v) is D-convex as
well as g(z, ) is D-concave for any « € R™. The uncertain sets can be apprehended
in the sense that the parameter vectors u and v are not known exactly at the time
of the decision.

For examining the uncertain optimization problem (UP), one usually associates
with its robust (worst-case) counterpart, which is the following problem:

min {m&){( flz,u) :z € C g(x,v) € =D,Vv € V} . (RUP)

It is worth observing here that the robust counterpart, which is termed as the robust
optimization problem, finds a worst-case possible solution that can be immunized
opposed the data uncertainty.
The problem (RUP) is said to be feasible if the robust feasible set K is nonempty
where it is denoted by
K:={zeC :g(zx,v) € —D,Yv € V}. (1)
Now, we recall the following concept of solutions, which was introduced in [26].

Definition 2.3. [26] A point & € K is said to be a robust optimal solution for (UP)
if it is an optimal solution for (RUP), i.e., for all z € K,

— th > 0.
g o) g () 2

The robust optimal solution set of (UP) is the set which consists of all robust optimal
solutions of (UP) and is given by

= : < .
S {mGK max f(z,u) < max f(y, u), VyeK}

In this paper, using the idea of weak sharp minimizer, and the robust optimal
solution,we introduce a new concept of solutions for (UP), which related to the
sharpness, namely the robust weak sharp solution.

Definition 2.4. A point & € K is said to be a (or an optimal) weak sharp solution
for (RUP) if there exist a real number n > 0 such that for all z € K,

— 7 > nd~
max f(z,u) — max f(%,u) 2 ndg ()
where K := {x e K: quléig{(f(m,u) = r;leaglcf(x,u)} .

Definition 2.5. A point & € K is said to be a (or an optimal) robust weak sharp
solution for (UP) if it is a weak sharp solution for (RUP). The robust weak sharp
solution set of (UP) is given by

S = {9% € K:3dnp>0s.t. m&){(f(y,u) —mgg{cf(;%,u) >ndg(y), Yy € K}.

Throughout the paper, we assume that S is nonempty.

Remark 1. It is worthwhile to be noted that every robust weak sharp solution for
(UP) is a robust optimal solution. In general, the reverse implication need not to
be valid.
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3. Characterizations of robust weak sharp solutions. In this section, we
establish some optimality conditions for the robust weak sharp solution in convex
uncertain optimization problems as well as obtain characterizations of the robust
weak sharp solution sets for the considered problems. For any & € R™, we use the
following notations:

Uz = {u cU: f(i,a) = maxf(:%,u)} :

ueU

and
V(&) = {f; €V:g(a,i) = rilea‘)}(g(:fr,v)} .

The following definition, which was introduced in [24], plays a vital role in deter-
mining characterizations of robust optimal weak sharp solution sets.

Definition 3.1. [24] The robust type subdifferential constraint qualification (RSCQ)
is said to be satisfied at 2 € K if

k() Cdo(@) +  |J  ang)(v)(@).
pneD* vey
(ng)(&,v)=0
Remark 2. In an excellent work, [24], Sun et. al. introduced the (RSCQ) and
then obtained some characterizations of the the robust optimal solution set, for an
uncertain convex optimization problem.

Although it has been used as a guideline for dealing with the (UP), our attention
is paid to characterizing the sets containing the robust weak sharp solutions of such
problem. Furthermore, the presence of the term dg(x) in this paper has led us to
deal with some different tools and methods from those in work of Sun et.al.

The following theorem presents that the robust type subdifferential constraint
qualification (RSCQ) defined in Definition 3.1 is fulfilled if and only if optimality
conditions for a robust weak sharp solution of (UP) are satisfied.

Theorem 3.2. Let f: R™ x RP — R and g : R® x R? — R™ satisfy the following
properties :
(i) for any uw € Y and v € V, f(-,u) is convex and continuous as well as g(-,v) is
D-convex on R";
(ii) for any = € R™, f(x,-) is concave on U and g(x,-) is D-concave on V.

Then, the following statements are equivalent:

(a) The (RSCQ) is fulfilled at & € K;
(b) & € R™ is a robust weak sharp solution of (UP) if and only if there exists a
positive constant 7 such that

Ny (&) NnBan
c U artw@+asc@+ |J  0ug)v) (@) (2)
weU(&) pneD* vey

(rg)(2,v)=0

Proof. (a) = (b) Assume that the (RSCQ) is satisfied at & € K. Let & be a robust
weak sharp solution of (UP). Consequently, there exists 77 > 0 such that

max f(z, u) —max f(,u) 2 ndg (z). (3)
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By (3), we obtain that for all z € K,
— ~ > o
max f(z,u) + 0k (¢) — ndg(z) > max f(2,u)

= max f(@,u) + 6k (2) — ndg(2),

thereby implying that, for all &; € Ondz(z),

. ) _ . ) 7
(1 70+ 6 ) (@) = (e ) 46 ) 0

> g (x) — ndg (&)

> <£d7 T — j>
Thus, &; € 0 (maxyecy f(+,u) + dx) (£). Hence,

O(nd)(#) C 0 (mggfﬂ-,u) + 5K) (#).
As méigl( f(-,u) is continuous on R™and dx is proper lower semicontinuous convex
on R", we have
Dlnd)(2) € lmas [(-,w))(2) + Dxc(2).

It can be noted that ddz(z) = Nz(x) N Bra. Since (RSCQ) is satisfied at &, we
have the following:

Nf((x) N Brn = 8(77d}~()(j:)
c |J orw@ +osc@+  |J 0ug)(0) (@),

weU(Z) nED™ weEY
(kg)(&,v)=0

which implies that (2) holds.
Conversely, assume that there is a positive number 7 such that (2) holds. Since
Ng(2)NnBrn always contains 0, it is a nonempty set and so is ﬂ 0:(ndg)(2). Thus,

e>0
for any e > 0, 0-(nd)(2) # 0. Let € > 0 be arbitrary and let § € 0:(ndz)(2). Then

for any z € K,
ndz(x) — ndg(3) > (€5 — &) —e. (4)
Note that 0 € 9.(nd (). It follows that

(3 < i - < -
ndz(2) < wleann ndp(z) +e < Ilg( ndp(z) +e.
Above inequality and (4) imply that
0> (60— ) —. (5)

Simultaneously, there exist & € U(Z), i1 € D*, 9 € V(&)
Er € Of(-,0)(2),& € 0dc(Z), and &9 € O ((219)(+,0)) () such that

ff + 56 + gﬂg = 0, (6)

and for any z € R", we have
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Adding these above inequalities implies that for each x € K
[z, ) = f(2,4) + (pg)(z, ) — (Ag)(,0) = (0,2 — &) = 0.

Since @ belongs to U(&), for each = € K, above inequality becomes
max f(x,u) — max f(&,u) + (fug)(z,0) — (ag)(&,0) > 0.
ueUu ueU

This along with (ig)(z,9) <0, (fig)(Z,9) = 0, and (6) imply

max f(z,u) — max f(,u) 2 0, (7)

for all € K. Observe that, combining inequalities (5) and (7) leads to
)

— Pou) > —2) - .
glggf(x,w glggf(x,u)_@,x e, Vo e K

This means £ € 85(11?2&( f(,u))(2), and so O-(ndz)(Z) C ﬁs(rl?eagl( f(-,u))(Z). Since

the inclusion holds for arbitrary € > 0, it follows from the Lemma 2.1 that & is
a minimizer of the DC problem: inf {mazic f(x,u) — ndgz(x)} and hence for any

zER™ " ue
reK

max f(z,u) —max f(2,u) - (ndg (x) —ndz(2)) = 0.

Therefore, for any = € K,

max f(z,u) — max f(z,u) 2 ndg ().

This means Z is a robust weak sharp solution of (UP).

(b) = (a) Let & € 00k (&) be given. Then, we have
0=0k(z) -0 () = (&0 — 2)

holds for all z € K. Let ) > 0 be given, and then, set f(x,u) := —(&s,x) +ndg(x).
Thus, for any x € K,

max f(z,u) — g (2) = —(&, )
> — (&, ) + ndz(2)
B R
Thus, & is a robust weak sharp solution of (UP). By hypothesis, there is 5 := 7
such that (2) is fulfilled. Since for any u € U, 0f(-,u)(Z) € {—&s} + O(ndz)(2), we
obtain that for any z* € Nz (&) N nBgn, there exist @ € U(Z),? € V and i € D*

such that

xt € {=&} + 0(ndg) (&) + 96¢ (L) + 9 ((Ag)(+,0)) (£) and (Ag)(Z,0) = 0.
As 0 € Ni(2) N nBgn, we obtain

It follows that
Gedbo@+ | a(rg)(v) (@),

neED™ wEY
(ng)(2,0)=0

and so we get the desired inclusion. Therefore, the proof is complete. O
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Remark 3. In [27], the necessary conditions for weak sharp minima in cone con-
strained optimization problems, which can be captured by weak sharp minima in
cone constrained robust optimization problems, were established by means of up-
per Studniarski or Dini directional derivatives. With the result in Theorem 3.2, the
mentioned necessary conditions are established by an alternative method different
from the referred work.

The following result is established easily by means of the basic concepts of vari-
ational analysis.

Corollary 1. Let f: R" x RP — R and g : R” x R? — RP? satisfying the following
properties:
1. for any u € U, and v € V, f(-,u) is convex and continuous as well as g(-,v) is
D-convex on R™;
2. for any = € R", f(z,-) is concave on U and g(z,-) is D-concave on V, respec-
tively.
The following two below statements are equivalent:

(a) The (RSCQ) is fulfilled at & € K;

(b) & € R™ is a robust weak sharp solution of (UP) if and only if there exists a real
number 7 > 0 such that for any 2* € Ny (&)NnBgn, there exist 4 € U(z),0 € V
and i € D* yield

zt € Of (-, a) + 96c () + 0 ((g)(,0)) (2), and (ig)(2,0) = 0. (8)

The result, which deals with a special case that ¢/ and V are singleton sets, can
be obtained easily and be presented as follows:

Corollary 2. Let f : R®™ — R is convex and continuous and g : R® — R™ is
D-convex. The following statements are equivalent:

1. The (SCQ) is fulfilled at & € K
2. & € R™ is a weak sharp solution of (P) if and only there exists a real number
n > 0 such that for any z* € Nz (2) N nBgrn, there exist 4 € D* such that

z" € 0f(2) + 0dc (%) + 0(jig)(2) and (fg)(E) = 0. (9)

Next, a characterization of robust weak sharp solution sets in terms of a given
robust weak sharp solution point of our considered problem is also illustrated in this
section. In order to present the mentioned characterization, we first prove that the
Lagrangian-type function associated with fixed Lagrange multiplier and uncertainty
parameters corresponding to a robust weak sharp solution is constant on the robust
weak sharp solution solution set under suitable conditions. In what follows, let
u€eU,v €V and u € D*. The Lagrangian-type function L(-, u, u,v) is given by

L(x,p,u,v) = f(z,u) + (ug)(x,v), Vo € R™.

Now, we denote by
S = {m € K:3dnp>0s.t. mgg{cf(y,u) > meagl(f(m,u) +ndz(y),Vy € K} .

the robust weak sharp solution set of (UP), and then we prove that the Lagrangian-
type function associated with a Lagrange multiplier corresponding to a robust weak
sharp solution is constant on the robust weak sharp solution set.
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Theorem 3.3. Let & € S be given. Suppose that the (RSCQ) is satisfied at Z.
Then, there exist uncertainty parameters ¢ € U,0 € V, and Lagrange multiplier
i1 € D*, such that for any x € S,

(2g)(z,9) = 0, @ € U(x), and L(z, fi, @, ) is a constant on S.

Proof. Since & € S with the real number 7, > 0 and the (RSCQ) is satisfied at this
point &, by Theorem 3.2 we have that (2) holds for 1 := 7. Clearly Nz (&) N nBgn»
contains 0, then it is nonempty and so is any 0. (ndg)(#) where ¢ > 0. Let € > 0
and z* € 0.(ndz)(Z) be arbitrary. Again, we obtain that there exist & € U,0 € V

and fi € D* such that (2) is fulfilled. Let € S be arbitrary, then we have
f(@, ) = f(Z,4) + (hg)(z,0) — (Ag)(Z,0) = (z",z — &),
and so
flz i) = f(2,4) + (pg)(x,0) — (Ag)(2,0) = (2", x — T) — . (10)
Since f(-,u) and g(-,v) are convex, for all u € U and v € V respectively,
z" € 0:(f( u) + Ag(, ) (2).
Therefore, we obtain 0. (ndz)(2) C 0- (f(-,u) + Ag(-,v)) (), and so
)+ (i9) e, 0) — mdig (@) > (2, 8) = max (2, 0) ()
Note that, as = € g, there exists 7o > 0 such that
- ) ~
max f(y, u) > max f(z,u) + m2dg (y), ¥y € 5,
and so

max f (%, u) 2 max f(z,u) + npdg (2) = max f(z, u). (12)

From i € D*, g(x,0) € —D, and (11), it is not hard to see that

(f1g)(x,9) = 0. (13)
Then, by (11) and the positivity of ndz (), we see that
> u) > T ~ > T
max f(z,u) 2 f(2,4) 2 max f(2,u) + ndg (z) = max f(2, ), (14)
which together with (12) leads to
= ). 1
max f(z,u) = f(z,4) (15)

It follows that L(x, fi, 4, ) = f(Z,4), which is constant. Since x € S was arbitrary,
we finish the proof. O

Theorem 3.4. For the problem (UP), let S be the robust weak sharp solutions set
of (UP) and & belongs to it. Suppose that the (RSCQ) is satisfied at & € S. Then,
there exist uncertain parameters @ € U, v € V and Lagrange multiplier it € D* such
that

S :{:E €K :3n>0,3¢ € 0-f(-,0)(2) NOf (-, ) (), Fe > nd (),

(€50 = 2) = ndg (@), (ng) (@, 0) = 0,max f(,u) = flw,0) . (16)
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Proof. (C) Let z € S be given. Then there exists 7 > 0 such that (2) holds. Hence,
there exist &5 € Of(-,0)(x),&s € 00c () and Esy € O ((fg)(+, ) (&) such that

0=¢&p + & + &g since 0 € Ng(Z) NnBgn, (17)
and
(g)(3,5) = 0. (18)
Since &5 € ddc () and &y € A((f29) (-, 0)) (),
éc(z) = 6c(@) + (Ag)(z, ) — (Ag)(2,0) = (& + &ugr @ — 2). (19)

By the same fashion in the proof of Theorem 3.2, we have

(fg)(z,0) = (bg)(&,0) =0,
and

max f(x,u) = f(z,q).

uel
Therefore, it follows from (19) that

0 Z <§5 +§ﬂg7$ - i>a
and so by (17), we obtain

Simultaneously, since £y € 0f(-,4)(Z), we have
&,z —x) > f(&,0) — fz,a0).
By (15) in the proof of Theorem 3.2, we obtain
P — ) > & @) — >0=nd=(z).
{€r,% — 2) 2 max f(%,4) — max f(z,u) 2 0 = ndg(z) (20)

Hence, we have that ({y, & —x) = ndz(z). Now, we prove that for {; € 0. f(-, 1) (),
there is an € > ndz(x) > 0. In fact, we can show that for any y € R",

Ery—a)=(y—2)+ (&2 —x) <&y —2)
as ({7, & —x) <0. Since §; € Of (-, u)(2) and f(z,0) = f(&,4) by (14) and (12),
€ry—o) < fly,a) - f(2,0) = f(y,a) - f(x, ),
which means £, € 9f (-, 4)(x).
(D) Let
= {x € K:3n>0,3¢ € 0-f(-,0)(2) N0 f(-, ) (x),Ie > ndg(x),

(€52 — &) = ndg (), (ug) (@,0) = 0, max f(z,u) = f(2,0)}.

Since & € S, it is clear that ndp(2) = 0. By assumption and &§; € 0. f(-,4)(x) for
some ¢ > 0, we get

Therefore, we obtain

< ~(Z).
max f(z,u) < max f(z,u) +ndg(2)
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Since # € S and z € K, the conclusion that x € S is satisfied. O

In the case that D := Ry, which is a closed convex (and pointed) cone in R,
the problem is reduced to be an inequality constrain problem. Suppose that f :
R™ x U — R is a function such that f(-,u) is convex for any u € Y and f(x,-) is
concave for any x € R™ as well as g : R” x V — R is a function such that g(-,v) is
convex for any v € V and g(z, -) is concave for any « € R™. Here, the problem (UP)
is represented as

min {f(z,u) : g(z,v) <0, Yv € V},

and its robust counter part is

min {mealjcf(m?u) sg(z,v) <0, Vo € V} .

In this case, we can see that robust feasible set K is denoted by
K :={x eR" : g(z,v) <0,Yv € V}.
Corollary 3. Let f: R" x R? — R and g : R” x R? — R satisfying the following
properties:
1. for any u € U, and v € V, f(-,u) is convex and continuous as well as g(-,v) is
convex on R";
2. for any z € R"™, f(x,-) and g(z,-) are concave on U and V, respectively.
The following statements are equivalent:
(a) The (RSCQ) is fulfilled at & € K;
(b) & € R™ is a robust weak sharp solution of (UP) if and only if there exists a real
number 7 > 0 such that for any 2* € Ng(2)NnBgn, there exist 4 € U(z),0 € V
and f > 0 yield

z" € Of (- a)(&) + 80c(2) + O(fg)(-,0)(2), and (fg)(&, D) = 0.

Corollary 4. Let & € S be given. Suppose that the (RSCQ) is satisfied at &. Then,
there exist uncertain parameters @ € ¢, v € V, and Lagrange multiplier 4 > 0 such
that for any = € S,

(2g)(z,8) = 0, & € U(z), and L(z, fi, @, D) is constant on S.

Corollary 5. For the problem (UP), let S be the robust weak sharp solutions set
of (UP) and & belongs to it. Suppose that the (RSCQ) is satisfied at & € S. Then,
there exist uncertain parameters @ € U, 0 € V and Lagrange multiplier 4 > 0 such
that

S :{x €K :3n>0,3a € 0.£(,0)(&) N Of(a)(x), I > ndj (),
(@, —z) = Wd;?(x)a (1g)(z,0) = O’ng,}{( f(z,u) = f(xaﬂ)} (22)
4. Applications to multi-objective optimization. In this section, in order to

apply our general results of the previous section, we investigate the class multi-
objective optimization problem

min {(/1(2), f2(2), -, fi(w) 0 € C,g(a) € =D}, (MP)
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where where C' C R”™ is a nonempty convex set,D C R™, f; : R® — R is a convex
function for any i € I and g : R™ — R™ is a D-convex function. The feasible set of
(MP) is defined by
Ky:={z € C:g(zx) € —D}.
The problem (MP) in the face of data uncertainty both in the objective and
constraint can be captured by the following multi-objective optimization problem

znel]gh {(fl(xaul)’fQ(x7u2)7 e 'afl(x7ul)) HES C’g(l‘vv) € _D}’ (UMP)

where f; :R" xRP - R,¢=1,...[, and g : R*" x R? - R™. u;,i =1,...,[, and v
are uncertain parameters, and they belong to the corresponding convex and compact
uncertainty sets 4 C RP, and V C RY. Suppose that for any u; € U;,7 € I, the
function f;(-,u;) is convex on R™ and for any = € R"™, f;(x,-) is concave on U;,i € I.
Besides, suppose that for any v € V, the function g(-,v) is D-convex on R™ and for
any € R", g(x,) is D-concave on V.

Similarly, we obtain some characterizations of the robust weak sharp weakly
efficient solutions of (UMP) by using investigation of its robust (worst case) coun-
terpart:

min { (gleaglcl filz,uq),... ,ggg{(l fl(x,ul)) cx € C,g(z,v) € —D} (RUMP)

where the robust feasible set of (UMP) is also defined by
K:={zxeC:g(z,v)e-D,}.

Now, we recall the following concepts of robust weak sharp weakly eflicient so-
lutions in multi-objective optimization, which can be found in the literature; see
e.g.,[21] and [12].

Definition 4.1. [21] A point & € K is said to be a weakly robust efficient solution
of for (UMP) if it is a weakly efficient solution solution for (RUMP) i.e., there does
not exist x € K such that

7ineag{c filz,u;) < l{ng&( fi(#,u;), foralliel.

Definition 4.2. [12] A point feasible element Z is said to be a weak sharp efficient
solution for (MP) if there exists a real number 1 > 0 such that for any z € K

max { fx(z) — fr(2)} > ndg(z)}

1<k<l
where K := {z € K : f(z) = f(2)}.
Now, we introduce a new concept of solution, which related to the sharpness,

namely the robust weak sharp weakly efficient solutions.

Definition 4.3. A point & € K is said to be a weak sharp weakly efficient solution
for (RUMP) if and only if there exist a real number n > 0 such that there does not
exist y € K \ {#} satisfying

’Elaﬁ{i fl(yaul) - ’Eleali fi(xaui) < Wdf((y)» for all i € I>
or equivalently, for all x € K
o { e o) e i) | 2 e 0

i€l | ui€U; u; €EU;
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where K := {x € K: rjlgg{cfl(m,u) = rggg{cfi(%u),z € I} .

Definition 4.4. A point € K is said to be a robust weak sharp weakly efficient
solution for (UMP) if it is a weakly weak sharp weakly efficient solution for (RUMP).

The following lemma is useful for establishing our results in this section.

Lemma 4.5. [30] Let Uy, ..., U; be nonempty convex and compact sets of RP and
for any u; € U;,1 € I, the function f;(-,u;) : R™ — R be convex as well as for any
z € R", fi(x,) : U; — R be concave where i € I. Then, for any A\; > 0,7 € I,

et TS ) 0= U Shan )

iel wel, e, Ui(@) €T

where

[Tuiz) = {(al,...,ai) e [Ju:

icl i€l

LD Aifi(#,4) = max ZAifi(a:ui)}
iel uellier Ui 527

Now, by using the similar methods of Section 3, we can characterize the corre-
sponding robust weak sharp weakly efficient solutionss of (UMP).

Theorem 4.6. Let f : R” xR? — R! and ¢ : R” x R? — R™ satisfying the following
properties:
1. for any w; € U;,i € I and v; € V;,5 € J, fi(-,u;) is convex and continuous as
well as ¢(-,v) is D-convex on R";
2. for any z € R™, f;(x,-) is concave on U;,i € I and g(z,-) is D-concave on V.
Then, the following statements are equivalent:
(a) The (RSCQ) is fulfilled at & € K
(b) & € R™ is a robust weak sharp weakly efficient solutions of (UMP) if and
only if there exists n > 0 such that for any z* € Nz (Z) N 7Bgn, there exist
U; € Ui (Z),0; > 0,1 € I, not all zero, 0 € V, and & > 0 such that

0€ {—a"} + Y 6, (0fi(-, i) (2)) + Doc (&) + 0 ((Ag) (-, 0)) (2) (23)

el
(tg94)(2,4;) =0, (24)
and
o fi(Z,4;) = o0y max fi(®,u;),i € 1. (25)
u; €EU;

Proof. (a)=(b) Assume that the (RSCQ) is satisfied at & € R™. Let & be a robust
weak sharp weakly efficient solutions of (UMP) i.e., there exists 7 > 0 such that
there does not exist y € K \ {#} satisfying

ma‘z/){{_ fi(yaui) - mealf{{ f'i(jjaui) < Wdf((ll)7 for all 7 € 17

Us

or equivalently, for any = € K|

max 4 max fi(e, u;) — max fi(&,u;) p > ndg(2). (26)
{ J

i€l | ui €U; u; EU;
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By (26), there is s € I such that for all x € K|
— ~ > Ea
nax fs(@,us) + 0k (x) —ndg(x) > Inax f(&,us)
= max fo(®,us) + 0 (&) — ndz (). (27)

Besides, according to (27), we follow the techniques used in Theorem 3.2 and obtain
that for any & € Ond(x),

<€7 T — ‘%>
< Inax fs(x,us) + 0 () — nax fs(&,us) — 0k (). (28)
Therefore,
0nd)(@) € 0 s f.C.)+ 6 ) (@), (29)

Note that the right hand side term of above inclusion is in the subdifferential of the
max function:

é(z) = max ¢;(x) := max <max Filoug) + 5K> ().

el iel u; €U;

Due to the well-known fact, subdifferential of maximum of functions at x is the
convex hull of the union of subdifferentials of the active functions at x, the inclusion
(29) becomes

d(ndg)(2) C co (U{0¢i(2) : ¢i(2) = ¢(2)}),
thereby
Ondg)(®) € > 5:0¢(#),

iel(@)
where 0; > 0,4 € I(2) with Y o7 = 1 and I(2) := {k € I : ¢() = ¢(2)}.
iel(2)
Further, setting ; = 0,7 € I(Z), and otherwise equals to 0 leads to
Ondg) (&) C Y 6:0¢:(2).
iel
By the definition of ¢;,7 € I, the continuity of meagli fi(-,u;),i € I and the lower
Ug i

semicontinuity and convexity of dx, we have

Ondg) (@) € Y 60 (mu f«u») (8) + > 6 (961 (2)).

i€l i€l

It follows from Lemma 4.5 and the hypothesis such (RSCQ) is satisfied at & € K
that

welTi, Us (&) *€T icl
+ U oo @.

HED™ weY
(ng)(&,v)=0
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Because 6; > 0,: =1,2...,1, all nonzero, thereby

dmdg)@) | D6 (0fi(-wi) (@) + 0 (&)
u=(u;)i_,, t€l
well ) U (&)

+ U are)v) (@)
pneD* weY
(ng)(&,v)=0
As ddz(x) = Ng(x) N Bgrn, we obtain (23) as desired.
Conversely, assume that there is n > 0 such that (23)-(25) hold. Then, for any
z* € N (&) N nBgn, there exist 4 := (t1,...1%) € [[;c;Ui(%),0 € V and i € D*
such that

2 €36 (0fi(-10:)(2)) + 96 (@) + 0 ((ug)(-,0)) (&), and

iel
(g)(&,0) = 0. (30)
Since 0 € Ng(&) N nBrn = ﬂ 0-(ndz)(&), for each positive €,0:.(ndz)(&) is
nonempty. Let € > 0 and £ € 8;(>770d 7)(&) be arbitrary, then for any » € K
ndp(x) —ndg(2) > (€, r— 1) —c. (31)

Therefore, we obtain

ndz(2) < wleann ndp(z) +e < Ilélf{ ndp(z) +e.

Above inequality and (31) imply that

0> (o —32)—e. (32)
Further, since 0 € Nz (Z)NnBgn, we have that there exist £ € Z G (0fi(-,0:)(T)) , & €
060(2), and &3, € B (jig)()) (&) such that

§r+& + &g = 0. (33)

As & € Y 6 (Ofi 1) (2) = a(Z&ﬁc,a») (),& € 9dc(#) and &y €
i€l i€l
J((fg)(-,0)) (Z), we have

Z@'fi(% ;) — an‘fi(fﬂ,ﬁi) > (&r,x — 3,
do(z) — dc () > (5,2 — &), and
(f19)(x,0) — (g)(2,9) > (§pg, T — T).

Then, adding these inequalities yields
(0,2 —12) < Z@fi(%ﬁi) - Zé—ifi(‘%aﬂi)
iel i€l
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Since 4; belongs to U; (&), above inequality becomes the following one:

0<Zolmaxfzxul Zmaxflxul)

i€l
+ (/,Lg)(l‘,’f}) - (Mg)('%v )

This together with (fig)(z,?) <0, (iig)(Z,0) = 0, and (33), for any z € K,

ZOZ max fZ T, U;i) ZU’ max fl(a: u;) > (0. (34)

i€l ’ i€l

>

By summing (34) with (31), for any x € K, we obtain
Zazmaxfzxuz Zazmaxfxul) &,z — 1) —¢,

i€l el

which means & € 9. (Z G max fl( ul)> (%), and so O-(ndz ) (%) C

el

(Z G; max fz( u1)> (). As € > 0 was arbitrary, for each = € K,
i€l

0 < ZUZ max filz,u;) ZU’ max Fi(@,uy)

i€l el s
- (ndf((%) —ndg (&),
which is equivalent to the following inequality: for all x € K
Zaz max fz(x uz) > ZUZ maX fz(x uz) 77df<(55)
i€l s el S
It follows that
57 (e i) = (o)) = S (e i) — (@) )
icl el
for any = € K, which yields for any i € I,

- > (5 ) — nd~(4
max fi(w,us) —ndg(x) > max fi(@,u;) —ndgz(2), Vo € K.

Therefore, for any z € K

max{max filx,u;) — max f;(Z, ul)} > ndz(x).

iel u; EU. u; €EU;
This means Z is a robust weak sharp weakly efficient solutions of (UMP).

(b) = (a) Let 7 > 0 be given. Consider f;(z,u;) := —(&5,x) +7dz(x),i € 1. Thus,
for any =z € K,

max f;(z,u;) — ﬁdf{(ff) = —(&, )

u; €U;
— (&, &) + nd g (2)
= max fl(x uz)

u; €EU;
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Thus, Z is a robust weak sharp weakly efficient solutions of (UMP). By hypothesis,
there is n := 7 such that (23) is fulfilled. Since for any u; € U;, df; (-, u;)(Z) C
{—&} +0(ndz)(2), one has

> 0: (0fi(ui) (@) € {=&} + 0(ndg) (@),

il
where ¢; > 0,i € I and all nonzero. Thus, we obtain that for any z* € Nz (&) N
NBgn, there exist 4; € U;(Z),0 € V and i € D* such that

et € {=&) + 0(ndg)(2) + 900 (&) + 0 ((Ag)(+ 0)) (£) and (4g)(2,0) = 0.
As 0 € Ni(Z) NnBgn, we obtain

It follows that
Gedo@+  |J ong)(v) (@),

neD* vey
(ng)(&,0)=0

and so we get the desired inclusion. Therefore, the proof is complete. O

Remark 4. (i) In [28] and [29], the authors presented the necessary condition
for the local sharp efficiency for the semi-infinite vector optimization problem
by using the different method with Theorem 4.6. In fact, they employed the
exact sum rule for Fréchet subdifferentials to obtained their results.

(ii) In [31], the exact sum rule for Mordukhovich subdifferentials was used as a
vital tool under some regularity and differentiability assumptions for estab-
lishing their results. This means Theorem 4.6 use the different medthod from
the mentioned work.

Next, by using the similar methods of section 3, a characterization of robust weak
sharp weakly efficient solution sets in terms of a given robust weak sharp weakly
efficient solution point of the problem is also illustrated in this section. In order to
present the mentioned characterization, we start by deriving constant Lagrangian-
type property for robust weak sharp weakly efficient solution sets of (MP). In what
follows, let w = (u1,...,w) €Urx,...xU;,0 = (01,...,00) €R,,v € Vand p > 0.
The Lagrangian-type function £(-,ou,u,v) is given by

ﬁ(iC,O',ILL,'UJ, ’l)) = Zo—lfl(xaul) + (ug)(x,v), Vr e R™.
il
Theorem 4.7. Let z € S be given. Suppose that the (RSCQ) is fulfilled at Z.
Then, there exist a positive valued vector 6 := (61,...,6;) € Rﬂr,&i,i e I all
nonzero, uncertain parameters @ := (uy,...,u;) € U = U; X ... X U, € V, and
Lagrange multiplier i > 0 such that for any x € S ,

(i) (z,0) = 0, @ € U(x), and L(z, 6, fi, @, 0) is a constant on S.

Proof. Since & € S with the real number 7; > 0 and the (RSCQ) is satisfied at this
point &, by Theorem 4.6, (23) holds for 1 := ;. Since Nz(Z) N 7nBg~ is nonempty
we can let ¢ > 0 be arbitrary and 2* € 9.(ndz)(Z) be given. Besides, there exist
s RL, all nonzero, & € U, € V and ji € D* such that (23) is fulfilled. Let z € S
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be arbitrary. By the same fashion using in the proof of Theorem 3.2 we have
(z% 2 — 1) < Za'ifi(xvai) - Z@'fi(fa ;)

iel i€l

+ (i) (z,0) — (fg)(Z, 0),
and so

(@0 — &) —e <Y Gifiw i) — Y 6 fi(@, )
i€l iel

+ (fg)(x,9) — (Ag) (&, D), (35)

As fi(-,u;),i € I and g(-,v) are convex, for any u; € U; and v € V, we have

x* € 0 Z&i(fi(~,ui) + Ag(-m))) (#). Hence, one has

i€l

5’5(77df<)(33) - 86 <Z é'z (fl(7ul) + )\Q(,U))) ('i‘)a

el
thereby
> 6ifilw, @) + (fig)(x,9) — ndg(x) > Y 6, i@, 1)
el el
:Z“ifga’é fi(#, ;). (36)
el

Note that, as = € §, then there exists 7y > 0 such that for all y € K,

which implies

Z&z' glggz fily,uy) > 261' (max filz, u;) + nzdf((y))

il ier s
:Z6i . filw,ui) + m2d i (y)
ier T
=> 6 max filz, uq),
i€l
for all y € S. Since & € S,
ZUZ- max fi(@,u;) > ZJZ- bt filz,u;). (37)
i€l iel
From i > 0, g(x,0) <0, and (36), it is not hard to see that
(Ag)(x,0) = 0. (38)

Moreover, by (36) and the positivity of ndz(z), we see that
5 ) N> 5. F 0
Z o ggﬁ fz(xa uz) = Z szz(xv uz)
i€l i€l
> ; 6: max fi(#, wi) +ndg ()

Z;@gggfi fi(@, ). (39)
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This together with (38) leads to
Z:crZ max fz X, u;) Z:crzfz X, Uj). (40)
i€l el
Thus, L(-, &, fi, @, D) is constant on S as follows:
L(w,6,f1,0,0) =Y _ 6 filw, ) + (fug) (x, D)
iel
=D i max fi(z,ui) + (g)(x, )
el i

7202 max fz(if Uz) (,ug)(x,f))

i€l
= Zaz maX fz(z ;).
i€l
This completes the proof. O
Theorem 4.8. For the problem (UMP), let S be the robust weak sharp weakly
efficient solution set of (UMP) and & € S. Suppose that the (RSCQ) is fulfilled

at @ € S. Then, there exist 6; > 0,7 € I, all non zero, 4 := (t1,...,%4) € U =
Uy X ..., xU;, v €V and i > 0 such that

S={zeK:3Ip>03ac ﬂ 0- (Z@f:’('ﬁi)) (@),

ye{z,z} i€l

Je > Ud;}(x), <a’§7 - SC> = Udk(x), (ug)(x, 17) =0,

max fi(r, ;) = fi, i), € I}.

Uj

Proof. (C) Let 2 € S be given. Then there exists n > 0 such that (23) holds. Thus,
there exist 4 € U, v € V and i > 0 such that (23) is fulfilled. Hence, we have that

there exist {; € Z&i (Ofi(-,0:)(x)), & € 0dc(Z) and &g € O ((21g)(+,0)) (&) such

that <
0=2¢&r +& + &g, sinceOENf((a?)ﬁnBRn, (41)
and
(g)(2,0) = 0. (42)
Since & € 960 (2) and &y € A((29)(-, ) (@),
dc(x) —0c(2) + (ig)(x, 0) — (Ag)(2,0) = (&5 + Eag, @ — T). (43)

By the same fashion in the proof of Theorem 4.6, we have

(fg)(z,0) = (pg)(&,0) =0,
Zazmaxfzxul Zazfzxuz

el iel
Therefore, it follows from (43) that

ndp(x) =02> (b+c,x — 1),

and

and so by (41), we obtain
ndg () = (&, & — x).
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Simultaneously, since {; € Z&i Ofi(-,4;)(2)) =0 (Z c}ifi(~,ﬂi)> (), we have

i€l iel
(&rod—a) > 6ifil@ i) — Y 6ifilw, ).
iel iel
By (34) in the proof of Theorem 4.6, we obtain
(€@ —z) > 251 nax fi(#@,4;) — Z(}i ax filw,ui) =2 0 =ndg(z). (44)
iel e iel e

Hence, we have that ({;,& — x) = ndg(x). Next, we shall prove that there is
€ > ndg(x) > 0 such that

§r €0 (Z @:fi(':ﬁi)> ().

el
In fact, we can show that &; € 9 (Z Gifi(- ai)> (z). For any y € R",
iel
Ery—a)=Eny—2)+ ¢t —x) <y —2)
as (€f,4 —x) < 0. Since a € 9 (Z &ifi(~,ﬁi)> (#) and fi(z, ;) = fi(2,4;),i € 1,
el

Ery—a) < Z&ifi(yvﬁi) - Z&ifi(fa a;)

icl il
= Z6ifi(yaﬁi) - Zé—ifi(xa a;),
icl il

which means §f € 0 (Z a'ifi('7ai)> (2).
(2) Lot i€l

T E{x €K :3n>0,3 € ﬂ O (Z a'ifi('7ai)> (#), Je > ndz(z),

ye€{z,2} iel

(€f,x —2) =ndg(z), (ug)(w,0) = 0, max filw,us) = fi(%ﬁi)}-

Since & € 5, ndz(#) = 0 and so the assumption dealing with {; lead to
)=20

£ @ —x) —ndg(x)

<D 6ifild i) = Y Gufilw, @) —ndg () + ¢

_ndﬁ(i‘

—~

icl el
= Z‘%‘fi(-@'@) - Z&ifi(% ;) — ndg(v) +nd ()
icl el

:Zﬁifi(@vai)—zﬁifi(%ﬁi), (45)

icl el
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for any 6; > 0,4 € I, all nonzero. Therefore, we obtain

A . ) < -~ (4 . ~ (7
Zaz glgl/}{i fz(xvuz) > Zal 5{16&13[(1 fl(ivul) —i—’l]dK((E)

iel iel
= Z&i max f;(Z,u;)
u; €U;
iel
Since # € S and z € K, the conclusion that x € S is satisfied. O

Conclusion. In this paper, we examined convex optimization problems with un-
certain constraints and have defined a robust weak sharp solution by studying weak
sharp solution of robust convex optimization problems where the uncertain con-
straints are enforced for all possible uncertainties within prescribed uncertainty
sets. By employing tools of convex analysis and the valuable of constraint qualifi-
cations, we have established the necessary and sufficient conditions of robust weak
sharp solutions, and characterizations of robust weak sharp solution set. As an
application, we provided the characterization of the robust weak sharp weakly effi-
cient solution sets for multi-objective convex optimization problems with uncertain
constraints.

Acknowledgments. This research is partially supported by the Science Achive-
ment Scholarship of Thailand and Naresuan university.
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Necessary and sufficient KKT optimality conditions in non-convex
multi-objective optimization problems with cone constraints

NITHIRAT SISARAT! AND RABIAN WANGKEEREE?

Abstract: This paper deals with a class of differentiable multi-objective optimization problems (MOP)
over cone constraints without the convexity of the feasible set, and the cone-convexity of objectives and
constraint functions. We present constraint qualifications for these (MOP) problems and establish the
relationships between them. We also present necessary and sufficient the Karush-Kuhn-Tucker (KKT)
optimality conditions for weak Pareto minimum as well as Pareto minimum. Our main results improve some
recent ones in the literature. Illustrative examples are also provided to guarantee the advantages of each of
our results.

Keywords: Non-convex multi-objective optimization, Cone-convex functions, Level set, Karush-Kuhn-
Tucker optimality conditions
Mathematics Subject Classification: 90C26, 90C29, 90C46

1 Introduction

Multi-objective (vector-valued) optimization is a subject of mathematical programming that extensively
studied and applied in various decision-making contexts like economics, human decision making, control
engineering, transportation and many others. We refer the reader to [18, 19, 24]. For comprehensive
treatment of theoretical issues concerning multi-objective optimization can be found in [2, 9, 13, 17]. In the
multi-objective setting, the scalar concept of optimality does not apply directly due to the fact that all the
objectives can not be simultaneously optimized with a single solution. To this effect, we must decide which
objective to improve, and so compromise solutions must be considered. In this way, we refer to a weak
Pareto minimum (resp. Pareto minimum [15]) which usually uses coordinate-wise ordering (induced by the
positive orthant as ordering cone) to examine the objective vectors. However, in real-world multi-objective
problems concerning especially fractional programming even computational aspects of Pareto optimum, not
only the coordinate-wise ordering appears but also the cone defining the lexicographic partial order is of
practical interest [7]. This being a reason, study of multi-objective optimization problems involving general
ordering cones has gained attention. Precisely stated, in this paper we will be mainly concerned with the
multi-objective optimization problem with cone constraint (MOP) given as

K — Minimize f(x) (MOP)
subject to x € R", —g(x) € Q,
where £:= (f1,..., fp)T :R®” - RP and g := (g1,...,9m)T : R” — R™, are differentiable functions, K and
Q@ are closed convex cones with non-empty interiors in R? and R™, respectively. Let
X:={xeR": —g(x) € Q} (1.1)

be the set of all feasible solutions of (MOP). The notation “K — Minimize "refers to the weak Pareto
minimum (resp. Pareto minimum) with respect to the ordering cone K for the problem (MOP), namely a
point x* € X such that for every x € X, f(x*) — f(x) ¢ intK (resp. f(x*) — f(x) ¢ K\{0}).

Recall that a feasible point x* € X is said to be a KKT point if there exist multipliers A € K*\{0} and
p € Q* such that the following Karush-Kuhn-Tucker (KKT) optimality conditions hold:

() ATVEx") + uT Veg(x*) = 0;

(i) u"g(x*) =0,

1This research was supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D.
Program (Grant No. PHD/0026/2555) and the second author was partially supported by the Thailand

Research Fund, Grant No. RSA6080077.
2Corresponding author.




where K*, K* := {z € RP : xTz > 0 for all x € K}, denotes the dual (positive polar) cone of K. In this
paper, the above feasible point x* is also called a non-trivial KKT point if the corresponding g is a non-zero
vector.

As far as we know, the search for weak Pareto minimum (resp. Pareto minimum) to (MOP) has been
carried out through the study of the KKT optimality conditions provided that some constraint qualifications
hold, and of the convexity of the functions f and g. In the current work, with the introduction of scalar
convex optimization without convexity of constraint functions by Lasserre [12], studies have been done on
establishing KKT optimality conditions for weak Pareto minimum (resp. Pareto minimum) of some classes
of multi-objective convex optimization problems. In particular, the authors have shown in [21] that even if
the convex feasible set is not necessarily described by cone-convex constraint, the Slater-type cone constraint
qualification® renders the KKT optimality conditions both necessary and sufficient.

The classes of scalar convex optimization problems without convexity of constraint functions have been
studied in the literature [6, 12, 14] where apart from [12] in other references inequality constraints are not
assumed to be differentiable. A more recent exhaustive treatment of constraint qualifications can be found
in [5, 23]. Recently, Ho [8] went further in the case of scalar differentiable problems but moreover without
the convexity of the feasible set and of the functions that are involved, and showed that necessary and
sufficient KKT optimality conditions are then considered in relation to the presence of convexity of the
level sets of objective function. It is therefore of interest to investigate KKT optimality conditions for weak
Pareto minimum and Pareto minimum of (MOP) without the convexity of the feasible set X and of the
vector-valued functions f, g. The main purpose of this paper is to make an effort in this direction. Since we
now focus our investigations to (MOP) in which the feasible set X is not necessarily convex, we are going
to consider the feasible point x* under the question in which satisfies the following property [8]:

Vx € X, Jt, — 07 such that x* + t,(x — x*) € X, (1.2)

which can be seen as generalized convexity of the feasible set X. Admittedly, some non-convex sets that
satisfy the condition (1.2) will illustrate in Example 3.11 in Section 3. It is important to note that Slater’s
condition together with a mild non-degeneracy conditions on the constraints has been shown to guarantee
that the KKT conditions are necessary and sufficient for optimality of the scalar problems ([6, 8, 12, 14]).
Now, for the problem (MOP), we will assume only non-degeneracy at the point x* under consideration
(see Assumption 1 in the next section). In what follows the connections among non-degeneracy condition,
Slater-type cone constraint qualification, and Slater’s condition* for cone-constraint are also investigated
ones. Further, illustrative examples are also provided to demonstrate that our results generalize and improve
the corresponding known results obtained in [21] for the problem (MOP) in some appropriate situations.

The rest of the paper is organized as follows. In Sect. 2 we recall some basic definitions and points out
important results that will be used later in the paper. Section 3 presents relationships among constraint
qualifications of multi-objective optimization problem (MOP) over cone constraint (1.1) and establishes
necessary and sufficient KKT optimality conditions for a feasible point under the question to be a weak
Pareto minimum of (MOP). We finally give sufficient conditions for guaranteeing a weak Pareto minimum
to be a Pareto minimum of the problem (MOP).

2 Preliminaries

In this section, we briefly overview some notations, basic definitions, and preliminary results which will
be used throughout the paper. All spaces under consideration are n-dimensional Euclidean space R™. All
vectors are considered to be column vectors which can be transposed to a row vector by the superscript 7'
A nonempty subset K of RP is said to be a cone if tK C K for all ¢ > 0. For a set A in R™, we say A is
convez whenever tx1 + (1 —t)x2 € A for all t € [0,1], x1, x2 € A. By intA (resp. coA) we will denote the
interior (resp. convez hull) of the set A. The normal cone to a closed convex set A at x € A, denoted by

N(A,x):={ueR":ul(y —x) <0, Vy € A}.

A set A C R” is called strictly convex at x € A if u” (y —x) < 0 for every y € A\{x} and u € N(4,x)\{0}.
It is worth noting that the strict convexity of A at some point x does not guarantee the convexity of A.
For instance, the set A := {(x1,22)T € R? : 22 > 0} U {(0,0)T'} is strictly convex at (0,0)” while A is not
convex.

3The feasible set X as in (1.1) is said to satisfy Slater-type cone constraint qualification [9] at x € X if
there exists X € R™ such that g(x) + Vg(x) (%X — x) € —intQ.

4The feasible set X as in (1.1) is said to satisfy Slater’s condition if there exists * € R™ such that
—g(x) € intQ.



For a closed convex cone K C RP, a vector valued function f := (f1,..., fp)T : R™ — RP is said to be
K -conver (K-pseudoconvez [1, 22]) at a point x* € R" if for every x € R™

f(x) — f(x*) — VE(x")(x —x*) € K
(resp. —VI(x*)(x — x*) ¢ intK = f(x*) — f(x) € intK), where Vf( ) = (Vfi(x*),..., Vfp(x*))T is the
o\ T
p X n Jacobian matrix of f at x* and for each k =1,2,...,p, Vfr(x <6f’“(x ), afk(x ),..., 8fg(x )>

Oxo T
is the n x 1 gradient vector of fi at x*. If f is K-convex (K- pseudoconvex at every point x* € R™ then f
is said to be K-convex (resp. K-pseudoconvex) on R"™.

Now, let us recall the following results which will be useful in the sequel.

Lemma 2.1. [9, Lemma 3.21, p. 77] Let K be a convex cone in R?.

(i) If K is closed, then
K={xecRP:xTz >0 for all z € K*}.
(ii) If intK # 0, then
intK = {x €RP : xTz > 0 for all z € K*\{0}}.

Lemma 2.2. [20, Lemma 1] Consider the problem (MOP). If x* € X is a weak Pareto minimum of (MOP),
then there exist A € K* and p € Q* not both zero such that

()\TVf(x*) + y,TVg(x*)> (x —x") >0, Vz € R"
and
plg(x*) =0.

Now, we recall the following important result which can be found in [11] and will play a key role in
deriving a feasible point to be a weak Pareto minimum as well as a Pareto minimum of (MOP).

Proposition 2.3. [11, Proposition 2.2.] Let f : R™ — R be differentiable at x* with V f(x*) # 0. Then:
i) N(LT(x*),x*) ={d €R":d = rVf(x*), for some r > 0} provided that
() N(LS
L (x") = {x € B : f(x) < f(x")}
is convex.
(if) N(Ly(x*),x*) ={d € R" : d =7V f(x*), for some 7 > 0} provided that
Lp(x") = {x eR": f(x) < f(x")}
is convex.

We conclude this section by the following useful lemma, which will be crucial in the sequel.

Lemma 2.4. Let X be as in (1.1). Assume that the condition (1.2) is satisfied at a feasible point x* € X.
Then for every g € Q*\{0} for which u”g(x*) = 0, one has
pTVvg(x*) (v —x*) <0 forallveX.

Proof. Suppose on contrary that there exists v € X such that (uT Vg(x*))(v — x*) > 0. Then, by the first
order approximation together with the condition (1.2), we can find some ¢, small enough such that

P + tn(v — x7)) = uTg(x") + T VE(x") (v = x7) + 0ltn) > 0, (2.1)

where @ —0ast— 0F, and x* +t,(v — x*) € X. The latter means that —g(x* + t, (v — x*)) € Q and
consequently, uTg(x* + t, (v — x*)) < 0, which contradicts (2.1). O

3 Main results

In this section, we present the constraint qualifications that are used to derive the KKT conditions for (MOP)
and their connections. Afterward, we will establish necessary and sufficient KKT optimality conditions for
a weak Pareto minimum of (MOP). In addition, we also establish sufficient conditions for guaranteeing a
weak Pareto minimum to be a Pareto minimum of the problem (MOP).

At first, we recall one of constraint qualifications the so-called non-degeneracy condition at some feasible
point x* € X in the vector setting, which introduced in [21].

Assumption 1: (Non-degeneracy condition [21]) Consider (MOP), for every pu € Q*\{0},
uTVg(x*) # 0 whenever pTg(x*) = 0.



Remark 3.1 (Sufficient condition for non-degeneracy condition to be valid). Note that if the Slater-type
cone constraint qualification at x* holds, then the non-degeneracy condition is satisfied at x*. Indeed, if there
exists X € R™ such that g(x*)+Vg(x*)(x—x*) € —intQ, then for every p € Q*\{0} for which uTg(x*) = 0,
one has pTVg(x*)(x — x*) = uTg(x*) + uT Vg(x*) (k% — x*) < 0 which implies that pu? Vg(x*) # 0.

Remark 3.2. The Slater’s condition can also be guaranteed by the Slater-type cone constraint qualification
at some point x* as well. To see this, it follows from the Slater-type cone constraint qualification that
Vg(x*) (% —x*) € —intQ — g(x*) for some % € R™. This together with the fact that

g(x* + (% —x")) — g(x")
t

= Vg(x")(x —x") +o(1),

where o(tt) — 0 as t — 0T, for some tg > 0 sufficiently small, it holds

B(x" + to(% — x*)) € (1 — to)g(x") — toint@ C —intQ.
Hence, the Slater’s condition has been justified.

Now, we present some sufficient conditions for the Slater-type cone constraint qualification to be valid.

Theorem 3.3. Let X be as in (1.1). Assume that the Slater’s condition holds and the condition (1.2) is
satisfied at a feasible point * € X. If the non-degeneracy condition holds at x*, then the Slater-type cone
constraint qualification also holds at x*.

Proof. Suppose that the non-degeneracy condition holds at x*. Assume on contrary that for every x € R",
one has g(x*) + Vg(x*)(x — x*) ¢ —intQ, equivalently,

—[g(x*) + Vg(x*)(R" — x*)] NintQ = 0.
So, by the Eidelheit separation theorem, there exists u € R™\{0} such that
pTeg(x*) + pTvgx*)(x —x*) + uTy >0, ¥x €R", Vy € Q. (3.1)

By taking x = x* and y = 0 in (3.1), we would have pTg(x*) = 0. Hence, with regard to (3.1) with x = x*,
we get u € Q. Therefore, in view of (3.1), we find a vector p € Q*\{0} with uTg(x*) = 0 such that

T vg(x*)(x — x*) >0, Vx € R™. (3.2)

On the other hand, by assumption, there exists % € R™ such that —g(%) € intQ. Then, since g is continuous
at X, there exists r > 0 such that g(x +ru) € —Q for all u € B := {x € R" : ||x]| < 1}. Consequently,
Z+ru € X for all u € B. So, as x* € X and x* satisfies the condition (1.2), we conclude from Lemma 2.4
that

pIVg(x*) (%X +ru—x*) <0, Yu € B. (3.3)
In particular, put u = 0 € B, one has u” Vg(x*)(x — x*) < 0. Thus, with regard to (3.2), u7 Vg(x*)(x —
x*) = 0, and hence we deduce from (3.3) that

pTVeg(x*)u <0, vu e B.

So, uTVg(x*) must ultimately be zero vector, which contradicts the validity of non-degeneracy condition
at x*. O

Remark 3.4. In the absence of the condition (1.2) at x*, the validity of both Slater and the non-degeneracy
conditions at x* does not guarantee the validity of Slater-type cone constraint qualification at x*, for
instance, let x := (zl,xQ)T €R2 Q:= {x € R2:2; >0, o0 > 0} and g(x) := (x% +xzo — 1,21 — xg)T.
We see that g(—3,—2) = (=7,—1)T € —intQ, that is, Slater’s condition holds. Also, one has Vg(x) =
(71 323 +1
1 —1
the condition (1.2) together with the Slater-type cone constraint qualification is invalid at x*. In fact, let
us consider xq := (=2, —1)T € X and arbitrary sequence {tn }nen C (0, 4+00) such that t, — 0 as n — 4-o0.
S0, tny < 1 for some ng € N and z* + tn,(®o — 2*) = tnoxo ¢ X. Otherwise, we have that

tno(l - tno)(l + tno) = (7t’ﬂ0)3 + (7tno) - (7215710) <0,

) and a short calculation shows that the non-degeneracy holds at x* := (0,0)T € X, while

whence, 1 < ty,. This contradicts to the fact that t,, < 1. In addition, we can not find out % := (21,22)T €

R2 such that . . .
(ﬁl * m) = (711 _11) (ml) = g(x") + Vg(x")(X —x") € —intQ.

i‘l — 532 iQ



Remark 3.5. (i) It is worth noticing that there is a partial overlapping between Slater’s condition and
non-degeneracy condition at a given point x* in general. For example, it is easy to check that Slater’s
condition fails to hold for X := {x € R" : —g(x) € Q}, where Q := {x € R? : 1 > 0, 22 > 0} and
g(x) := (—x1+x2, 1 —x2)T for all x € R%, while non-degeneracy condition holds at x* := (0,0)”. In
contrast, redefining g(x) := (3 — z2 + 1, —22 + 22 — 1) for all x € R?, we get —g(-1,1) = (1,1)T €
int@ and so, Slater’s condition holds. Now we see that non-degeneracy does not hold at x*. Indeed,
taking pg := (1,1)T € Q*\{0} entails that p'g(x*) =0 and

wivee) =0 0 (g 7= ().

showing that non-degeneracy fails to hold at x*.

(ii) In addition to the Q-convexity of g at a given point x*, if Slater’s condition holds, then non-degeneracy
condition is satisfied at x*. To see this, suppose now by contradiction that there exists pg € Q*\{0}
satisfying pul g(x*) = 0 and ung(x*) = 0. It then follows from Q-convexity of g at x* that
ulgx) — u%g(x*) = plgx) — ple(x*) — pfve(x*)(x — x*) > 0 for a Slater’s point #. This
contradicts to the fact that pd'g(x) < 0= pul'g(x*).

Remark 3.6. In the case of Q@ = R := {(z1,22,...,2m)T € R™ : x; > 0, Vi = 1,...,m}, non-
degeneracy conditions at x* can be view as the Mangasarian-Fromovitz constraint qualification® at x* and
non-degeneracy conditions at x* in [12, 8] as well. Indeed,

Jv € R™ such that Vg;(x*)Tv <0, Vi € I(x*)
<0 ¢ co{Vg;(x*) 11 € I(x*)}

m
eV = (p1,p2,- - pm)" € RP\{0} with pigi(x*) =0, i =1,2,...,m, one has »  u;Vgi(x*) #0,

i=1

and for each i € {1,2,...,m}, by taking pu := e;, where e; is the unit vector in R™ with the ith component
is 1 and the others 0, one has Vg;(x*) # 0 whenever ¢ € I(x*). Note that Slater-type cone constraint
qualification at x* also is equivalent to the Robinson constraint qualification® at x* [4, Lemma 2.99, p. 69].
Then, as the considered set {x € R", g;(x) <0, i =1,2,...,m} is not necessarily convex, one can notice that
Theorem 3.3 extends [5, Theorem 2.1] to non-convex setting on the set {x € R", g;(x) <0, i =1,2,...,m}.

Now, we are in the position to give necessary and sufficient KKT optimality conditions for a weak Pareto
minimum of (MOP).

Theorem 3.7. Consider the problem (MOP) and let both Assumption 1 and the condition (1.2) be satisfied
at a feasible point x*.
(i) If * is a weak Pareto minimum of (MOP), then * is a KKT point.

<

(ii) Conwversely, if * is a non-trivial KKT point with multipliers A and p, and LA

Tf(:l:*) is convex then

*

z* is a weak Pareto minimum of (MOP).

Proof. (i) Let x* € X be a weak Pareto minimum of (MOP). By Lemma 2.2, there exist A € K* and
1 € Q* not both zero such that pTg(x*) = 0 and

(ATVf(x*) + uTVg(x*)) (x — x*) > 0, Vz € R". (3.4)
As the inequality (3.4) holds for every x € R™, we conclude that
ATVEx*) + uTVg(x*) = 0 and pTg(x*) = 0.

Moreover, we assert that A = 0. Otherwise, it follows in turn that g # 0, which stands in contradiction to
Assumption 1, and therefore, A # 0.
(ii) Let x* € X be an arbitrary non-trivial KKT point, i.e.,

ATVE(x") + p' Ve(x*) = 0; plg(x*) =0,

5The set {x € R", g;(x) < 0, i = 1,2,...,m} is said to satisfy the Mangasarian-Fromovitz con-
straint qualification [4] at x* if there exsits v € R™ such that Vg;(x*)Tv < 0 for each i € I(x*) := {i €
{1,2,...,m}: g;(x*) =0}.

60ne says that the set {x € R, g;(x) <0, i = 1,2,...,m} satisfies the Robinson constraint qualification
at x* if 0 € int{g(x") + Vg(x*)(R" — x*) + R} where g(x) := (g1(x), g2(%), - - - L, gm ()T



for some non-zero vectors A € RP, pu € R™. This together with Assumption 1 implies that A7 Vf(x*) must
ultimately be non-zero vector. It can be seen that if the set L:Tf(x*) is empty, then x* actually is a weak
Pareto minimum of (MOP). In fact, if x* is not a weak Pareto minimum of (MOP), there exists x € X
such that f(x*) — f(x) € intK. So, by the virtue of Lemma 2.1, ATf(x*) > ATf(x), which contradicts to
the fact that L;Tf(x*) = (. Let us consider in the case L;Tf(x*) # 0. Applying Proposition 2.3(i) with
f(x) := ATf(x), we obtain that

ATVE") (u—x*) <0, Yu € L5p(x"). (3.5)
Therefore, by Lemma 2.4,
ATVEx*) (v — x*) = —puTVg(x*)(v —x*) > 0, Vv € X. (3.6)

Note that,

{y eR" : f(x*) — f(y) € intK} C L;Tf(x*).

Thus, in order to obtain that x* is a weak Pareto minimum of (MOP), it suffices to show that X C
R?\L<, (x*) or consequently, L;Tf(x*) N X = . Suppose, ad absurdum, L, (x*) N X # 0. Thus, from

ATf ATE
(3.5) and (3.6) we get the assertion AT Vf(x*)(w — x*) = 0 for any w € L:Tf(x*) N X. Furthermore, as the
set Lin(x*) being open, for each d € R™ we can find ¢t > 0 small enough such that w +td € Lin(x*).
Hence,

IATVE(x*)d = ATVEx*)(w + td — x*) = ATVE(x*)(w — x*) < 0.
This means AT Vf(x*) = 0, a contradiction. Thus, Lin(x*) NX =0, and x* is a weak Pareto minimum of
(MOP) as desired. O

Remark 3.8. It is worth mentioning here that Proposition 2.3 plays a significant role in Theorem 3.7(ii)
for ensuring a feasible point x* to be a weak Pareto minimum of (MOP). Beside, non-degeneracy condition
(Assumption 1) at x* need to be assumed for guaranteeing AT Vf(x*) # 0 with correspond to multiplier
vector A € K*\{0}. In contrast, it generally does not need constraint qualification to establish the sufficient
optimality conditions. Therefore, it might be reasonably assumed the assertion }\TVf(x*) # 0 instead of
assuming the non-degeneracy condition at x*. However, keeping in mind the fact that we need to justify
the convexity of L;Tf(x*) with the same choice A, and so in this case the multiplier vector A turn out to
be difficult to determine for which satisfying all conditions in Theorem 3.7(ii) simultaneously. This being a
reason why non-degeneracy condition make used in Theorem 3.7(ii). Another reason is that non-degeneracy
condition is actually justified to check a feasible point that can be a weak Pareto minimum of (MOP) or not
before to justify sufficient optimality conditions.

We now demonstrate with the following example to guarantee that Theorem 3.7 is indicated to be
conveniently applied in some cases where Theorem 3.1 and Theorem 3.2 of [21] cannot be used even when
the feasible set X" is convex.

Example 3.9. Consider the following muti-objective optimization problem (MOP) over cones:
K— Minimize f(z) := (z + 1,23 — 522 + 82 — 3)T
subject to z € X :={z € R: —g(z) € Q},

where g(z) := (z — 1,22 —z — )T, K := {(z1,22)7 € R? : 21 > 0, 22 > 0} and Q := {(x1,22)T € R? :
21 < 0,z2 < z1}. A straightforward calculation shows that:

o X = [29 JrOO),

e K* =K,

o Q* ={(z1,22)T €R?:22<0, 22 < —11},

e z* := 2 satisfies the non-trivial KKT conditions by taking X := (2,0)T and p := (1,—1)7T,

° Lin
e It is easily to seen that Assumption 1 and the condition (1.2) are satisfied.

(z*) = (—00,2) is convex,

Applying Theorem 3.7 (ii), we can conclude that z* is a weak Pareto minimum of (MOP). However, it can
be checked that g is not Q-convex, i.e.

g(1) —g(2) ~ Vg@)(1-2)=(0,)" ¢ Q,

but the feasible set X' is convex. Furthermore, the function f is not K-pseudoconvex at z* := 2, because if
we take x = 0 then

—Vi(z*)(z — %) = (2,0)T ¢ intK, but f(z*) — f(z) = (2,4)T € intK.

Hence, the corresponding results [21] is not applicable. O



Note that the multiplier vector p is assumed to be non-zero vector (the non-triviality of the KKT
conditions) in order to ensure that AT Vf(x*) # 0 in Theorem 3.7(ii). The following example demonstrates
that this assumption cannot be dropped.

Example 3.10. Let f(z) := (z + 1,—(z — 2)3)7T, g(z) := (® — 1,22 — )T, K := {(x1,22)T € R? :
zo > —x1, 1 > 0} and Q := {(x1,22)T € R® : 21 > =, 21 > 0}. It is not hard to check that
X = [1,2], z* := 2 is a KKT point with A := (0,—1)7 and p := (0,0)T, and all the conditions in

Theorem 3.7 (ii) are fullfilled. However z* is not even a weak Pareto minimum, i.e., if we take z := % then
fla*) — f(z) = (3,0)T — (%, é)T = %, f%)T € int K. The main reason is that «* is not a non-trivial KKT
point. O

To appreciate Theorem 3.7 we present an example that is applicable while the aforementioned result in
[21] is not.

Example 3.11. Consider the following multi-objective optimization problem (MOP) over cones :

K— Minimize f(z) := (22 — 1, —2% + 522 — 8z + 5)T
subject to z € X := {z € R: —g(x) € Q},
where g(z) = (2% + 22 + 2,25 4+ 222 — 52 + 8)T, K = {(z1,22)T € R® : 21 > 0, 22 < 1} and
Q = {(z1,22)T € R? : 1 < 0,22 < z1}. Evidently, f, and g are not K, and Q-convex, respectively.
Indeed, f(1) — £(0) — V£(0)(1 —0) = (1,4)T ¢ K, and g(1) — g(0) — Vg(0)(1 —0) = (2,3)T ¢ Q. It is easy to
verify that X = [0,2]U[4, +00). Then we have already seen that the feasible set X' is not convex. Therefore,
the results in [21] cannot be applicable. However, it is not hard to verify that

o K* ={(z1,22)T €R?: 22 <0, 22 > —21},
e Q"= {(ml,mz)T ER2: 125 <0, 2 < —z1},
e z* := 0 satisfies the non-trivial KKT conditions by taking A := (1, 71)T and p = (*8,O)T,

e Assumption 1 and the condition (1.2) are satisfied,

. L;Tf(z*) = (—00,0), which is convex.
Hence, Theorem 3.7 (ii) indicates that z* is a weak Pareto minimum of (MOP). O

Next, we will see now how the convexity of Lyr¢(x*) together with the strict convexity of Lyrg(x*) at
a non-trivial KKT point x* possess x* to be a Pareto minimum of (MOP).

Theorem 3.12. Consider the problem (MOP) and let both Assumption 1 and the condition (1.2) be satisfied
at a feasible point x*. If x* is a non-trivial KKT point with multipliers X and w, L}\Tf(w*) is convezx, and
additionally L}\Tf(w*) is strictly convex at «*, then =* is a Pareto minimum of (MOP).

Proof. In a similar manner of the second argument as the proof of Theorem 3.7, by the KKT conditions
and Proposition 2.3(ii), we arrive at the following assertion

ATVEx*) (v — x*) > 0 > ATVEx*)(u — x*), Vv € X,Vu € Lyre(x*), (3.7)
and }\TVf(x*) # 0. To establish the desired results, we argue first by using Lemma 2.1 that
{y e R™ 1 £(x7) — f(y) € K\{0}} C Lyrg(x")\{x"}.
Thus, we only need to justify this containment
X CRM\(Lare(x)\{x"})

We argue by contradiction that there exists some w € X such that w # x* and w € Lyr¢(x*). Taking (3.7)
into account we actually have

ATVf(x*)(w — x*) = 0.
Furthermore, as ATVf(x*) € N(Lyre(x*),x*)\{0} (by the second inequality in (3.7)) and Lyrg(x*) is
strictly convex, then AT Vf(x*)(w — x*) < 0. This is a contradiction, and thereby implying that x* is a
Pareto minimum of (MOP). O

Remark 3.13. In Example 3.11 with X := (1, —1)7, it is evident that Lyrg(x*) is strictly convex at z* := 0,
by Theorem 3.12, and hence z* is a Pareto minimum of (MOP) (see the below figure).
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In Example 3.11, z* := 0 is a Pareto minimum of (MOP).

Remark 3.14. It should be noted that to obtain a Pareto minimum from a drawback (see [9, 21] and other
references therein), the multiplier vector A in KKT conditions need to be taken from the strict positive dual

cone of K, K S*, which defined as
K= {z € R" : xTz > 0 for all x € K\{0}}.

However, in this case study the multiplier vector A is not necessarily to take from the strict positive dual
cone. In fact, as K defined in Example 3.11 and X := (1,—1)T, Then elementary calculations give us

K = {($1,$2)T €eR?:z1 >0, z2 > —z1}
and so, A ¢ Ks".

To this end, we now give an example showing that the strict convexity of Lyr¢(z*) with corresponding
multiplier X is essential for x* under the question to be a Pareto minimum of (MOP) in Theorem 3.12.

Example 3.15. Let x := (z1,22)T € R?, f(x) := (22,22 — z1)T, g(x) := (—z} + 321 + 22,71 — 22)T and
K=Q :={xcR?:2; <0, 2 > 0}. It is easy to check that the feasible set X is not convex and the
condition (1.2) is valid at x* := (1,1)7 € X. Then elementary calculations give us

o K*=Q* =K,

o 56c) = 3,07 Veee) = (1 1))roe) = oy vieey = (2 9),

e x* satisfies Assumption 1 and the non-trivial KKT conditions by taking A = u := (0,1)7T,

. Lin(x*) = {(z1,22)T € R? : 33 < z1} and Ly7¢(x*) = {(z1,22)T € R? : 22 < z1} are convex sets.
By Theorem 3.7 (ii), we can conclude that x* is a weak Pareto minimum of (MOP). However, the set
Lyr¢(x*) is not a strictly convex set at x*, i.e., it is clear that N(Lyzg(x*),x*) = {(-r,7)T € R : r >
0} So, by taking u i= (—1,1)7 € N(Lyre(x),x\{(0,0)T} and 'y = (2,2)T € Lyre(x*)\{(0,0)7},
ul(y —x*) = 0. Actually, a point x* is not even a Pareto minimum, i.e., if we take x := (-2,-2)T € &,
one has

f(x") — (%) = (=3,0)" € K\{(0,0)"}.

<
ATf
Theorem 3.12) can be viewed as a generalized quasiconvexity of f at x* due to the notion of *-quasiconvezity
[10] in the sense that for each A € K* the function ATf: R® — R is quasiconvex?. It is quite clear from the
definition that *-quasiconvexity of f guarantees the convexity of the level set Lin(x*) or of Lyr¢(x*). In
fact, the function f in Example 3.15 is not *-quasiconvex, i.e., by taking X := (—1,1)7 € K* and x := (1,1)7,
the sublevel set L;(x) is non-convex. For related conditions for cone quasiconvex mappings we refer the
reader to [13, 16, 3].

Remark 3.16. It is worth noting that the convexity of LY, (x*) (resp. Lyrg(x*)) in Theorem 3.7 (resp. in

TA function f : R" — R is said to be quasiconvez if its sublevel set L(x) at x is convex for all x € R™

or, equivalently, the strict sublevel set Ljf (x) at x is convex for all x € R™.
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Conclusions

In this paper, we have established necessary and sufficient the Karush-Kuhn-Tucker optimality conditions for
weak Pareto minimum as well as Pareto minimum of a differentiable multi-objective optimization problem
(MOP) over cone constraint without the convexity of the feasible set, and the cone-convexity of objective
and constraint functions. We also have proposed constraint qualifications, and discussed the relationship
between them which can be summarized in following diagram whenever x* € X

‘ Slater’s condition

Slater-type cone
constraint qualification at x™ * 0 4101 o)

’ is satisfied at x™*

g is K-convex at x*

Non-degeneracy condition at x*
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