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Abstract (nwﬁmsia)

There are many graphs and hypergraphs defined algebraically over a finite ring
R. For example, unitary Cayley graphs/hypergraphs, integral circulant graphs, gcd-
graphs, zero divisor graphs, and bilinear form graphs. We develop some tools in
number theory, linear algebra, character theory and finite commutative ring theory to
study more deeply on these graphs and hypergraphs over a finite ring or a finite
commutative ring. The study includes graph/hypergraph structures and their subgraphs,
spectra of the graphs/hypergraphs and their energy. We also analyze their

hyperenegeticity, Ramanujan property or other important parameters of the graphs.
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Objectives

1.  To develop some tools in number theory, linear algebra, character theory and finite
commutative ring theory to study more deeply on graphs and hypergraphs algebraically defined
over a finite ring.

2. To define and study algebraic properties of t-Cayley hypergraphs over finite commutative
rings.

3.  To study graph/hypergraph structures, spectra of the graphs/hypergraphs and their energy

and the behavior/structure of the lifting from the residue field when R is a finite local ring. This
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includes the analysis of hyperenegeticity, Ramanujan property, or other important parameters of

the graphs.

Methodology and Results

We work on four algebraically defined graphs.

1. For a finite commutative ring R with unit group R* and the set of zero divisors Z(R), we
know that R = {0} \U R* U Z(R). The zero divisor graph of R is a graph whose vertex set is the
set of all zero divisor of R, and two zero divisors are adjacent if and only if their product is zero.
We first study zero divisor graphs over finite chain rings. We determine their rank, determinant,

and eigenvalues using reduction graphs.

Theorem The determinant of the zero divisor graph of a finite chain ring R is 0 unless R is

isomorphic to Z,[x]/(x?) or Z, where the determinant equals 1.

Theorem For any finite chain ring R with nilpotency t and residue field k, the rank of the zero

divisor graph is t — 1 and the multiplicity of the eigenvalue 0 is |k|' — 1.

Moreover, we extend the work to zero divisor graphs over finite commutative principal ideal
rings by using a combinatorial method, find the number of positive eigenvalues and the number
of negative eigenvalues, and find upper and lower bounds for the largest eigenvalue (§4 of the
paper). We also characterize all finite commutative principal ideal rings such that their zero divisor
graphs are complete and compute the Wiener index of the zero divisor graphs over finite

commutative principal ideal rings (Theorem 5.2 of the paper).

Write R = Ry X ... X R where R; is a finite chain ring of nilpotency t; for all i.

Theorem The rank of the zero divisor graph of Ris (t;+1) ... (t+1) — 2, and the determinant is
1 if R is isomorphic to Z,[x]/(x?) or Z,, —1 if R is isomorphic to (Z,)* for some k > 2, and 0

otherwise.

Theorem If N = (t4+1) ... (t+1) — 2, the number of positive eigenvalues and the number of

negative eigenvalues of the zero divisor graph of R are [N/2]and [N/2].

This work may be extended to study the zero divisor graphs over any finite commutative
rings in the future. The paper appears in Rattanakangwanwong J. and Meemark Y., Eigenvalues
of zero divisor graphs of principal ideal rings, Linear Multilinear Algebra 2021.

DOI:10.1080/03081087.2021.1917501.



2. Suppose that R is a finite commutative ring and m, n, d are positive integers such that 2 <
d < min{m,n}. The matrix graph of type (m,n,d) over R is the graph whose vertices are m X n
matrices over R, and two m X n matrices A and B are adjacent if and only if 0 < rank (A-B) < d.
We show that this matrix graph is a connected vertex transitive graph. We determine the distance,
diameter, independence number, clique number and chromatic number of this graph over finite
principal ideal rings (§3 of the paper). The matrix graph can be applied to study MRD codes over
a finite commutative ring R. We prove that if R is a finite principal ideal ring, then the MRD codes
coincide with the maximal independent sets of the matrix graph (§4 of the paper). Consequently,
we have the existence of linear MRD codes over finite principal ideal rings in our last theorem.
For future work, we can propose to study the matrix graph over any finite commutative rings. This
work is published in Sirisuk S. and Meemark Y., Matrix graphs and MRD codes over finite principal

ideal rings, Finite Fields Appl. 2020; 66: #101705.

3. For a finite ring R with identity, the unitary Cayley graph of R, C(R), is the graph with vertex
set R and for each x, y in R, x and y are adjacent if and only if x — y is a unit of R. Let R be a
finite commutative ring and n a positive integer. Let M,(R) denote the ring of n X n matrices over
R. we study the unitary Cayley graph C(M,(R)) of the matrix ring over R. If F is a field, we use
the additive characters of M, (F) to determine three eigenvalues of C(M,(F)) and use them to
analyze strong regularity and hyperenegetic graphs. We find conditions on R and n such that
C(M,(R)) is strongly regular. Without explicitly having the spectrum of the graph, we can show
that C(M,(R)) is hyperenergetic and characterize R and n such that C(M,(R)) is Ramanujan.
Moreover, we compute the clique number, the chromatic number and the independence number
of the graph. This work appears in Rattanakangwanwong J. and Meemark Y., Unitary Cayley
graphs of matrix rings over finite commutative rings, Finite Fields Appl. 2020; 65: #101689.

Let G be a graph and x a vertex of G. The first subconstituent of G at x is the subgraph of
G induced by the set of neighborhoods of x and the second subconstituent of G at x is the
subgraph of G induced by the set of vertices which is non-adjacent to x except x itself. Now, we
discuss the subconstituents of the unitary Cayley graph of M (R). Let R be a finite ring with
identity. The set of neighborhood of a vertex x of the graph C(R) is denoted by N(x). For x in R,
the maps f from N(0) to N(x) and g from R — (N(0) U {0}) to R — (N(x) U {x}) which both send
y to x—y are graph isomorphisms. Hence, we may only study the subconstituents at x = 0 and
we write C"(R) and C?(R) for the first subconstituent and the second subconstituent of C(R) at
x = 0 in R, respectively. Let F be a finite field. We study C"(M,(F)) and C®(M,(F)). The graph
C(M,(F)) is defined on the group of invertible n X n matrices over F and the graph C?(M,(F))
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is defined on the set of nonzero non-invertible matrices over F. We have the structure of
C(M,(F)) and C®(M,(F)). We can determine the spectra of C"(M,(F)) and C®(M,(F)) and
conclude hyperenergeticity and Ramanujan property for both graphs. In addition, we compute the
clique number, the chromatic number and the independence number of C!"(M,(F)) and
C(z)(Mz(F)). This work is published in Rattanakangwanwong J. and Meemark Y., Subconstituents

of unitary Cayley graph of matrix algebras, Finite Fields Appl. 2022; 80: #102004.

4. A hypergraph H is a pair (V(H),E(H)) where V(H) is a finite set, called the vertex set of H,

and E(H) is a family of subsets of V(H), called the edge set of H. Let (G,*) be a finite group with
the identity e and S a subset of G — {e} such that S = S™". For a positive integer t and 2 < t <
max{o(x) : x in S}, the t-Cayley hypergraph of G over S is a hypergraph H with vertex set V(H) =
Gand EH)={{yx :0<i<t—1}:xinSandyin G} Itis denoted by t-Cay(G,S). We study
spectral properties of this graph. We characterize integral 2-Cayley hypergraphs of G when G is

abelian.

Theorem Let G be a finite abelian group and S a subset of G—{e} such that S = S™'. Suppose
G= Zn1 X ... X an and S = S; X ... X S,. The Cayley graph 2-Cay(G, S) is integral if and only if
for any iin {1, ..., r} such that S; # {0}, the 2-Cay(G,, S)) is integral.

In addition, we obtain the algebraic degree of t-Cayley hypergraphs of Z,.
Theorem Let H =t-Cay(Z,,S)and C=S U 2S U ... U (t-1)S — {0}. Let m be the number of y
in {0,1, ..., n-1} such that gcd(y,n) = 1 and there is a positive integer n, with C = C; U ... U
Cny, yC, = C,mod n and agy = ag for all k in C,and l'in {1,2, ... ,n,}. Then

deg H = G(nym < d(n)/2.
This work appears in Sripaisan N. and Meemark Y., Algebraic degree of spectra of Cayley

hypergraphs, Discret. Appl. Math. 316, 2022, 87-94.

Keywords (ﬁ’mﬁ’n) : Cayley hypergraph, Eigenvalue, Matrix graph, Unitary Cayley graph, Zero

divisor graph.
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Chapter 1

Eigenvalues of Zero Divisor Graphs of
Principal Ideal Rings

Throughout this chapter, a ring always contains the multiplicative identity 1 # 0.

1.1 Zero divisor graphs of finite chain rings

Let R be a finite commutative ring. We denote its group of units by R* and write Z(R) for the set of its
zero divisors. Recall that we have the disjoint union R = {0} UR* U Z(R). The set Z(R) can be empty if R
is a field. Note that if u is a unit of R and z is a zero divisor of R, then uz is a zero divisor of R. Thus, the
left multiplication induces an action of the group of units of R on the set of zero divisors of R. The zero
divisor graph of R, Zp, is a graph whose vertex set is the set of all zero divisors of R and two zero divisors
are adjacent if and only if their product is zero.

A local ring is a commutative ring with unique maximal ideal. A finite commutative ring R is called a
finite chain ring if for any ideals I and J of R, we have I C J or J C I. It is clear that a finite chain ring
must be a local ring and every finite field and the ring of integers modulo a prime power are finite chain
rings. Also, we can show that if R is a finite chain ring with maximal ideal M and § € M \ M?, then
M = R0. In other words, the maximal ideal of a finite chain ring is principal. It is also known that a ring
is a finite chain ring if and only if it is a finite principal ideal ring. In particular, the unique maximal ideal
of a finite chain ring is a principal ideal generated by a nilpotent element.

Now, let R be a finite chain ring with unique principal maximal ideal M = R# for some 6§ € M \ M?>
and k = R/M its residue field. Then R* = R\ Rf and Z(R) = RO \ {0}. We shall repeatedly use basic
properties of a finite chain ring taken from [3, 5] and recorded in the next proposition.

Proposition 1.1.1. 1. There is the smallest positive integer t such that 0* = 0, called the nilpotency of R.

2. For any non-zero element r in R, there is a unique integer i, 0 < i < t such that r = u" for some unit u in

R.

3. Assume that 1 < i < j < tandr € R. Ifr0' € R, then r € RO’~". In particular, if r6* = 0, then
r € RO

4. If {v1,...,vq} is a system of coset representatives of M in R where ¢ = |k|, then for each r in R, there are
unique ro, . ..,r—1 in {v,..., vy} such that

r=ro+rf—+- - +r_1600



5. |ROY| = |k|" forall i € {0,1,...,t—1}.
6. Foreachi € {0,1,...,t — 1}, |RO*/ RO = |K|.

The orbits under action of the unit groups are R* - 0*,1 < i < t. The size of the stabilizers and the size
of the orbits are determined in the following propositions.

Proposition 1.1.2. |Stabgx (0°)| = |k|* and |R* - 07| = |k|*=" — [k|*7"=! = |k['""""1(|k| — 1) forall i €
(1,2, t—1}.

Proof. Leti € {1,2,...,t — 1}. Note that for a € R, we have a € Stabgx (0°) < (a — 1)6° = 0. It follows
from Proposition 1.1.1 (3) that Stabry (0%) = {1 + d#*~" : d € R}. Since

1+ dletii =1+ dgetii S di—dy € R@Z,
the size of Stabpry (0°) is |R/Rf| = |k|". The orbit-stabilizer theorem implies that the size of the orbit

; RX kt_kt—l
P L B i

_ _ = . — kt—i_ kt—i—l.
StabRx (92> ‘]k|z | | | |

This completes the proof. O

To study the zero divisor graph of R, we may assume that R is not a field. So we have t > 2. Further-
more, our definition allows the zero divisor graph to have loops. Note that if « and b are zero divisors in
the same orbit R* - §° for some 1 < i < ¢, then a = uf’ and b = v for some units u and v, for any zero
divisor z of R, we have

az=0suz=002:=0sv0z=0< bz =0.

Next, assume that a is in the orbit R* - #’ and b is in the orbit R* - §/ for some 1 < i,j < t. Then a = uf’
and b = v8’ for some units v and v in R. If ab = 0, then ¢ + j must be at least ¢, so aw§’ = wwd*+7 = 0 for
any unit w in R. Hence, we have the following lemma.

Lemma 1.1.3. Let a and b be zero divisors of R.

1. Ifaand bare in the same orbit of the action of units by left multiplication, then a and b have the same neighbors
n ZR.

2. If ais adjacent to b in the zero divisor graph, then a is adjacent to all zero divisors in the same orbit of b.

Foreach 1 < < t,let H; be the subgraph of Zy induced by R* -6". Then there are ¢t — 1 such subgraphs.
It is easy to see that these subgraphs are either complete or empty (having no edges) and H; is complete
if and only if 2¢ > ¢. Moreover, if 1 < ¢ < j < tsuch thati+ j > ¢ and H; and H; are empty, then
the subgraph induced by R* - " U R* - ¢/ is a complete bipartite graph by Lemma 1.1.3. We record this
observation in the next theorem.

Theorem 1.1.4. 1. Thereare t — [ %] induced subgraphs which are complete.
2. There are | £ — 1 induced subgraphs which have no edges.

3. If i and j are two integers such that 1 < i < j < tand i+ j > t and H; and H; have no edges, then the
subgraph induced by R* - 6" U R* - 67 is a complete bipartite graph.



The determinant, rank, nullity and eigenvalues of the adjacency matrix of a graph are called the deter-
minant, rank, nullity and eigenvalues of a graph. First, we find the determinant of the zero divisor graph of
R. Note that if there is an orbit containing more than one element, then each element in the same orbit has
the same neighborhood by Lemma 1.1.3, so the rows corresponding to them are identical and force that
its determinant becomes zero. Next, we consider the case that every orbit contains exactly one element.
Since |R* - 0| = |k|'"2(]k|] — 1), we have t = 2 and |k| = 2. Then |R| = |k|?> = 4. Hence, R is a finite
chain ring of order 4 with maximal ideal of size 2, so Z(R) = {a} is a singleton and a? = 0. Therefore,
the determinant is 1. Finally, we remark from [5] that a finite chain ring R of order 4 with maximal ideal
of size 2 is Zs[z]/(2?) of characteristic two or Z, of characteristic four. We conclude the result of the zero
divisor graph of a finite chain ring in the next proposition.

Proposition 1.1.5. The determinant of the zero divisor graph of a finite chain ring of R is 0 unless R is isomorphic
to Zo|x]/(x?) or Zy where the determinant equals 1.

Assume that R is a finite chain ring in which the determinant of the zero divisor graph Zp is 0. It
follows that 0 is an eigenvalue of Zp with multiplicity being the nullity of Zr. From the rank theorem,
we also know that the sum of the nullity of Zx and the rank of Zp is the number of zero divisors of R
which equals |Rf| — 1 = |k|'~! — 1. Hence, to determine the multiplicity of the eigenvalue 0, we may
compute the rank of Zr. We eliminate the redundant of the repeated rows by considering the reduction
graph mZr whose vertices are the orbits: R* -0, R* - 6%,...  R* - '~! and the vertices R* - 0" and R* - 07
are adjacent if and only if i 4 j > ¢. This reduction graph is also called the compressed zero divisor graphs
studied in [4]. Write A(Zr) and A(7nZR) for the adjacency matrix of Zr and 72, respectively. Since
for each element in the orbit R* - ¢7, its row in A(Zp) is identical, we have rank A(Zg) < t — 1. Also,
rank A(mZr) > rank A(ZR) because A(mZp) is obtained by deleting repeated rows in A(Zr). We proceed
to show that:

Proposition 1.1.6. rank(A(Zg)) =1t — 1.

Proof. From the above inequalities, it suffices to show that rank(A(7Zr)) = t — 1. Since 72 has ¢ — 1
vertices and

0 0 0 0 1
0 0 0 1 1
A(rZg) =10 0 . 111
1 1 1 1 1
directly from its definition, rank A(mZr) =t — 1. O

Observe that if R is isomorphic to Zs[x]/(2?) or Z4, then the rank of A(ZR) is 1 which also equals t — 1.
Hence, we have shown:

Theorem 1.1.7. For any finite chain ring R with nilpotency t, the rank of the graph Zg is t — 1 and the multiplicity
of the eigenvalue 0 is |k|* — t.

Fori e {1,2,...,t — 1}, let m; = |R* - 0| = |k|'""*~!(|k| — 1). Then

b
pms

A(Zg) = ( J3 ) }ms

[ Ji—1 J ] }mtfl




where J; is the all-one matrix of dimension m; x (m;_; +-+-+my_o + my_1) forall i € {1,2,...,t — 1}.
Thus, the eigenvectors of Zp corresponding to the eigenvalue 0 are the ones coming from the nullspace
of the echelon matrix

where J; is the all-one row vector of size m; for all i € {1,2,...,t —1}.
Assume that ) is a nonzero eigenvalue of A(Zr) with an eigenvector V. Then V' can be divided into a
block vector

01
o Vi1
V2
- . Vi2 )
V=1 : | whered; = . foralli € {1,2,...,t—1}
Ty 2
— /Ui,mi
Vt—1
such that
. _ Tp_o L = L
Jﬂ]t_l =>\Ul, J2 N =/\v2,...,Jt_1V:/\vt_1.
Vt—1
Since A # 0, we have v;; = vj2 = ... = v;y, foralli € {1,2,...,¢t — 1}. It follows that
my—1Vt—1,1 = )\01,1
My_2V¢—21 +Myp_1Ve—1,1 = AV21
MV - MoV 1 + My V1,1 = AV—1,1
o .- 0 me_1 U11
. . _ 0 - my_o M| ) Ua,1
and so A is an eigenvalue of A = | | . . with an eigenvector . . Moreover, the
mi o My—2 M1 17t—1,1

remaining ¢ — 1 independent eigenvectors of Z corresponding to nonzero eigenvalues can be obtained
from the ones of A. This completes the study of the eigenvalues and eigenvectors of the zero divisor graph
Zpr where R is a finite chain ring.

1.2 Zero divisor graphs of principal ideal rings

Let R be a finite commutative principal ideal ring. Then every ideal of R is principal. Recall that a finite
commutative ring is a direct product of finite local rings. Since every ideal of R is principal, so are its
factors. Therefore, R is a direct product of finite chain rings.

Write R = R; X Ry X --- X Ry, where R; is a finite chain ring with maximal ideal R;0; of nilpotency ¢;
and residue field k; = R;/R;0; foralli € {1,2,...,k}. Note that the set of zero divisors of R is the union
of the direct product of orbits of the form

X 51 X S92 X Sk
Ry 07" xRy - 05 x--- xR -0,



where 0 < 's; <t; foralli € {1,2,...,k} except Ry x R} x ---x R} and {(0,0,...,0)}. Now, we consider
the reduction graph mZr of Z whose vertices are

2(81,82,...,86) = Ry - 07" X RS - 052 X -+« X R - 07F
where 0 < s; < ¢; foralli € {1,2,...,k} except sy = s =--- = s =00r (s1 = t1,52 = to,..., Sk = tg)
and z(s1, 82, ...,sx) and z(s], 85, ..., s;) are adjacent if and only if s; + s} > ¢; for alli € {1,2,... k}.

k

Then, the graph 72 has H (t; +1) — 2 vertices.

i=1
Remark. For Z,, = Zy, o1 X -+ X Zp,ox Where n = p1®1p2®? ... pp®*, p1,p2, . .., Dk are distinct primes and
ag,0,. .., 05 €N, z(s1,...,s;) can be considered as the set S(d) in Young [6] where d = p1°1p2®2 ... py®*
is a divisor of n.

We order them by the lexicographical order, namely, z(s1, s2,. .., i) < 2(s}, s5, ..., s},) if and only if
(s1 <sh)or(sy =syand sy < sh)or...or(s;1 =sp,...,8,-1 = s},_, and s, < s7.).

Thus, the first vertex is z(0,0,...,0,1) and the last one is z(t1,t2,...,tx—1,tx — 1). Under this order of
vertices, we have the adjacency matrix being in the form

00 ... 01
0 0 1 =*
AmZg)=|! o (1.2.1)
0 1 * %
1 = * %
To see this, we determine the position of z(s1, s2,. .., si) in A(mZg) by counting the number of vertices
before it. From the definition of < excluding (O, 0,...,0), this number equals

k
Zsz (t; +1) -1,

=1 Jj=i+1

so the position of z(s1, s2,. .., sx) in A(mZ2R) is Z S; H (tj +1).

i=1  j=it+l
Now, let ry, 79, ..., besuch that 0 <r; < t;and r; +s; > ¢; foralli € {1,2,...,k}. In other words,
the vertices z(r1,72,...,7,) and z(s1, 2, . . ., i) are adjacent. Then
k k k k
S TL+0> 300 1] ¢
i=1 j=it+1 i=1  j=i
The sum on the right hand side can be simplified to
k k k
Dot I] i+ Zt [T G+ + e+ )+t +1-1
=1 gjJ=i+1 =1 gJ=i+1
k
=St [] G+ + o + Dtk + 1)+t + 1
i=1  j=it+l
k k
=+ ][+ -1=]]¢t;+1)-1=]2(R)|+1
j=2 j=1



Thus,

k k k k
> T w1+ s IT 5+ 1) 2 12(R)+1
=1 j=i+1 i=1 Jj=i+1

and equality holds if and only if ; + s; = ¢; for all {1,2,...,k}. This proves (1.2.1) and it follows from
(1.2.1) that

k
rank A(nZR) = H (t; +1)
i=1

Since rank A(Zr) = rank A(7Zg), we have shown:

k
Proposition 1.2.1. rank A(Zr) = H(ti +1)—2.
i=1
Remark. The entries of A(mZr) below the diagonal from bottom-left corner to top-right corner may not
always be 1 when R is not local. For example, if R = Z13 = Z4 x Zg, then

0 0 0 1
0 0 1 0
A(rZR) =
2R =10 1 1 1
1 010
Next, we compute the determinant of A(Zp). From the reduction graph 7 Zg, if a vertex z(s1, sz, . .., Sk)

contains more than one element, then A(Zg) has some repeated rows, so det A(Zr) = 0. Now, we con-
sider the case that every vertex of 72y is a singleton. It follows that |R;* - 6,°| = 1 forall 0 < s; < ¢; and
i€{1,2,...,k}. Since R; is a local ring, R; is isomorphic to Zy or Z4 or Zs[z]/(z?) fori € {1,2,...,k}. If
k = 1, then R; must be Z4 or Zs[z]/(2?) presented in Proposition 1.1.5. Assume that k > 2. If for some
i, Ri & Z4 or Zs[z]/(2?), then |R;*| = 2 and so |2(t1,...,ti—1,0,tit1,...,tx)| > 1. Hence, R; = Z, for all
i€{1,2,...,k},s0|A(Zg)| = 2% — 2and

det(A(Zg)) = (1> H(=1)¥ 2(-1)¥ 3. (1)} (-1)% = 1

because k > 2. We record the determinant of A(Zp) in:

1 if R Zyor Lylz]/(2?),
Proposition 1.2.2. det(A(Zg)) = { -1 ifR= (Zz)kfor some k > 2,
0  otherwise.
If the determinant of Zp is 0, then Zx has 0 as an eigenvalue with multiplicity being the nullity

of A(Zgr) because A(ZR) is diagonalizable. Thus, the rank theorem gives that the nullity is |Z(R)| —
rank A(Zg). Since |Z(R)| = |R| — |R*| — 1, using this fact and proposition 1.2.1 gives the next proposition.

Proposition 1.2.3. If 0 is an eigenvalue of the graph Zg, then its multiplicity is given by

k
H|k |t —H (' = il =) =TTt + 1) +
=1 =1

Recall that we order the vertices of the reduction graph 7Zp by the lexicographical order. With this
order, we may write the vertex set as {z1, 22, ..., 2y} where N = Hle(ti + 1) — 2 and we denote by n;
the number of elements in z; forall j € {1,2,..., N}. The (0, 1)-adjacency matrix A = [a;;] of 72 of size
N in (1.2.1) lifts to the adjacency matrix A(Zr) = [A;;] of Zr where A;; is a block matrix of dimension



m; x m; with all-zero or all-one entries depending on the entry a;; of A(mZg) is 0 or 1, respectively. Thus,
A(ZR) is a matrix of the form

0 o ... 0 J
0 0 ... Jp
0 JN—l ce * *
JN * L.k ok
where J; is the all-one matrix of dimension n; x n; forall j € {1,2,..., N}. Hence, the eigenvectors of

Zp corresponding to the eigenvalue 0 are the ones coming from the nullspace of the echelon matrix

J1

where .J; is the all-one row vector of size n; forall j € {1,2,..., N}.
The independence number of a graph I is the size of the largest set of pairwise nonadjacent vertices. We
denote the independence number of I by «(I"). Brouwer and Haemers [2] showed that for a graph T,

al) <r(T) —ry@) and o) <rI)—r_(T)

where ('), 74 (') and r_ (I") are the number of eigenvalues, number of positive eigenvalues and number
of negative eigenvalues of I, respectively.

Recall that N = rank A(Zr) = rank A(wZg). It follows from the adjacency in Eq. (1.2.1) that a(72Zr) =
| & | and the reduction graph 7 Z has a nonzero determinant, so its eigenvalues are positive or negative.
Then N is the number of nonzero eigenvalues of 7 Z. We can calculate ry (7Zg) and r_ (72g) as follows.
Since

| X <r(@)—ri(@) and 5] <r(I) —r_(I),
we have

ri(m2Zr) < N—|&],r-(n2g) <N — || and N =ry(72g)+r_(72g).

If N is even, they force thatr, (TZg) = r_(7ZR) = 5. Assume that N is odd. Then r (7 2g) and r_(7Zr)

are less than or equal to 2}, Since their sum is N, we get {r, (7Zr),r_(72r)} = {&FL, 251}, But the

determinant of 72p, is (—1)¥ and the minus sign depends on r_(7Zr), so we must have r (72r) =
N and r_(72g) = 252, Proposition 1 of [1] implies that ro (1Z2g) = r4(2g) and r_(72g) = r_(Zg).
Since N = rank mZp = rank Zp is also the number of nonzero eigenvalues of Zr, we obtain the number

of positive and negative eigenvalues of Zy as follows.

Theorem 1.2.4. 7 (Zg) = [5 ] and r_(Zg) = | 5 |.

Now, assume that ) is a nonzero eigenvalue of A(Zp) with an eigenvector V. Then W can be divided
into a block vector

Wy
o w;1
WN -1
N W;2
W = : where w; = . foralli € {1,2,...,N}.
Wo
- Wi m,;
wq



Note that J1w; = A implies wy; = wiz = --+ = wyy, because of A # 0. Since * in A(ZR) is all-zero

or all-one block, we may inductively deduce that w;; = wje = ... = wyy, foralli € {1,2,...,N}. Tt
0o ... 0 ny
O oo N9 b2N
follows that ) is an eigenvalue of B = | | . . | where fori < j, b;; = 0if a;; = 0 and
ny - byn-1 ONN
WN,1
. . . wN_lvl .. . .
bi; = n; if a;; = 1, with an eigenvector . . Hence, the remaining N independent eigenvectors of
w11

Zp corresponding to nonzero N eigenvalues can be obtained from the ones of B.

1.3 Bounds for eigenvalues

Let R be a finite commutative principal ideal ring. Write R = R; X Ry X - -- X Rj, where R; is a finite chain
ring with maximal ideal R;6; of nilpotency ¢; and residue field k; = R;/R;0; for alli € {1,2,...,k}. We
proceed to find upper and lower bounds for the zero divisor graph of R in this section. Recall that the set
of zero divisors of R is the union of the direct product of orbits of the form

2(81,82,...,56) = Ry - 07" X RS - 052 X -+ x R - 07F

where 0 < s; <t;foralli € {1,2,...,k} except R x R} x---x R; and {(0,0,...,0)}. Consider the vertex
(w107, 2052, ... urb;*). It is adjacent to vertices (v107",v2052, ..., v50;*) where v; € R and r; +s; > t;
foralli € {1,2,...,k} except (0,0,...,0), so the degree of the vertex (u67",u2057, ..., u,0;") is

— 1.

k
> o

i=17r;+s;>1;

Suppose that we order the eigenvalues of Zr as A\; > Ay > --- > Ay It follows from Propostion 3.1.2
of Brouwer and Haemers [2] that
deg Zr < A\; < maxdeg(Zr)

where deg Zp, is the average of degree of vertices of Z given by

ZvEZ(R) degv ZveZ(R) degv

Z(®) R |R<[ -1

since R is a finite commutative ring. Next, we determine the maximum degree and the average of degree
of vertices of Zr. We shall assume further that |k; | < |ks| < --- < |ki|. Note that for each i € {1,2,...,k},
we have by Proposition 1.1.2 that

SORS-0F =14+ > RS =1+ > |k

ri+si >t ti—s;<r;<t;—1 ti—s;<r;<t;—1

B | 1),

so the geometric sum simplifies the right hand side to

Sq

L+ (il = 1) >0 [kl =14 (ki

1<r,<s;

1) = [k




Therefore, the degree of the vertex (u107", u2052, ..., urb;*) is |ki|* [ko|*2 ... |kg|* — 1 and the maximum
degree attains when s; = ¢; — 1 and s; = ¢; for all ¢ > 2 and equals

max deg(Zr) = |ky|"* " ko|®2 ... kgl — 1.

From the set-up at the beginning of Section 2 and the above calculation of the degree of a vertex, we obtain
the average of degree of vertices of the zero divisor graph Zp as

> (k™ kol k] = 1)|2(s1, 52, -, 56)| — (k| k| [k | — 1)

0<s1<ty,
0<s2<ta,
OSSliStk
k k
[T il = [0l = il -1
i=1 i=1
where i
|z(51,32,...7sk)|:H|RiX-9;" = H I [t <1_|k-|>
i=1 Gysj<t;j—1 J
forall0 <s; <t;andi € {1,2,...,k}. Hence, we have an upper bound and a lower bound for the largest

eigenvalue of Zp.

1.4 Wiener index

Througout this section, R is a finite commutative principal ideal ring. Write R = R; X Ry X - - - X R}, where
R; is a finite chain ring with maximal ideal R;0; of nilpotency ¢; and residue field k; = R;/R;0; for all
i € {1,2,..., k}. The Wiener index of a connected graph G is thesum v da(u,v) where dg(u,v) is
the distance of u and v in the graph G. We will compute the Wiener index of Z. First, we characterize all
finite commutative principal ideal rings such that their zero divisor graphs are complete. It is clear that
if R is a finite chain ring with nilpotency 2 or R = F; x F5, where F and F3 is a finite field, then Z5 is
a complete graph. Next, assume k£ > 3. Thus, elements in R} x {0} x R x --- x R} are not adjacent to
elements in R x Ry x {0} x --- x R;. Now, assume that R = Ry x Ry. Suppose t; > 2 or to > 2, say
ty > 2. It follows that elements in R} x {0} are not adjcent to elements in R;‘0; x Ry . Hence, we can
conclude that R; and R, must be fields. Finally, we assume that R is a finite chain ring such that Zp is
a complete graph. If R has nilpotency ¢ > 3, then the elements in R* ¢ are not adjacent, so R must have
nilpotency 2. We record this result in the following theorem.

Theorem 1.4.1. Let R be a finite principal ideal ring. Then Zp is a complete graph if and only if R is a finite chain

ring with nilpotency 2 or R = F x F5 where I and F; are finite fields. In this case, its Wiener index is given by
(12
5 ).

Theorem 1.4.2. Let R = Ry x - -- X Ry, where Ry, . .., Ry, are finite chain rings. Assume that Zp is not a complete
graph. For a proper subset X of {1,2, ..., k}, we define

2(X) ={z(s1,...,86) € V(n2Rr):0<s; <t;foralli € X and s; =0foralli ¢ X}.

Under the set-up at the beginning of this section, we have the following statements.



(1) If k =1, that is, R is a finite chain ring with nilpotency t, then the Wiener index of Zg is given by

Z ‘RX~6‘S||RX-05/‘+2 Z |RX'98HRX'98/|,

0<s,s' <t 0<s,s' <t
s-‘rs/zt s+s'<t

(2) If k > 2, then the Wiener index of Zp is given by

> [2(s1, s se) (51 - 53]

2(81eees81 )~ 2(5] ovnr8))

! "
+2Z |2(s1, -5 s6)||2(sh, oy sk)] +3Z |2(81, -y sp)||2(87, -+ 8%

!
where Z is the sum over z(s1,...,sx) € 2(X) and z(s,. .., s}) € z(Y) which are non-adjacent in nZp

1
and X NY # 0 and Z is the sum over z(sq,...,s;) € z(X) and z(s},...,s},) € z(Y) which are
non-adjacent in tZr and X NY = (.

Proof. Recall that the set V(7 ZR) is a partition of the set of zero divisors of R. Then for any v € Z(R),
there exists a unique z, € V(nZg) containing u. It follows that dz, (u,v) = drz, (24, 2,). We use this
observation to calculate the Wiener index of Zg.

First, we handle the case R being a finite chain ring with nilpotency ¢. Let s, s’ be such that 0 < s,s" <t
and s + s’ < t. Letk = max{t — s,t —s'}. Wehave 0 < k < t,k+s>tand k+ s >t. Then R* -6 is
adjacent to both R* - 6* and R* - 05" in mZp, so drzp(R* -0 R* - 95/) = 2 whenever s + s’ < t. Hence, its
Wiener index is given by

Z |RX'95||RX~05/|+2 Z |R><.03HR><.95'|.

0<s,s' <t 0<s,s' <t
s-‘rs/Zt s+s'<t

Second, we assume that k£ > 2 and let X, Y be proper subsets of {1,2,...,k}. Let z(s1,...,s;) € 2(X)
and z(s},...,s}) € z(Y) be nonadjacent vertices in 7 Z. Suppose that X N'Y # (). There are two cases to
consider.

Case 1. There exists i € X NY such that s;, s, < t;. Then d,z, (2(s1,...,sk),2(s],...,s;)) = 2 by the same
method as in the case where R was a finite chain ring above.
Case 2. s, = s; = t; forall i € X NY. For simplicity, we assume X NY = {1,2,...,m}. Then

Ry x -+ x RY x {0} x --- x {0} is adjacent to both z(sy,...,s;) and z(s},...,s}), so we also have
drzp(2(81,. .., 88),2(8h, ..., 8,)) = 2.
Next, we assume that X and Y are disjoint. We may write X = {1,...,p}and Y = {p+1,..., ¢} where
q < k. We can see that z(sq,. .., sx) and z(s], . . ., s;.) have no common neighbors. However,
2(81,. .., 88) ~ 2(t1 — 81, tp — Sp,tpgi, .- s tk)

~ 2ttt — Sty tg = Sy tgrts e tr)

~ (8], SE)-
where ~ means adjacency in 7Zr. We can conclude that dz, (2(s1, ..., sk), 2(s,...,s}.)) = 3.

From the above calculations, the Wiener index can be obtained from the sum

Z |2(s1, -5 s6)||2(sh, oy s%)]
! 1
+2)  z(sn,usi)ll2(sh, sl 3D [2(sn, sl |2(sh, - sy
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/
where Z is the sum over z(s1,...,s;) € 2(X) and z(s7,...,s},) € z(Y) which are non-adjacent in 7Zp

1"
and X NY # 0 and Z is the sum over z(s1,...,s;) € 2(X) and z(s},...,s}) € z(Y) which are non-

adjacentin rZp and X NY = 0. O

Finally, we deduce the Wiener index of Zz, foralln € Nand n > 3. Let n = p;*' p2®2 ... pp“* where
P1, P2, - - ., Pk are distinct primes and a1, as, ... a; € N,andlet0 < s; < o; foralli € {1,...,k}. According
to the first remark in Section 3, we have z(s1, ..., si) is the set S(p1°' p2®2 . .. p.°* ) so we know from Young
[6] that

n
|z(51,...,86)| = @ (M)

where ¢ is the Euler phi-function. In other words, if d = p1°'p2®2 ... pi°* is a divisor of n, then |z(s1, ..., si)| =
¢ (). Moreover, let d; and d; be nonadjacent vertices in Zz,, corresponding to the vertex z(sy, sz, ..., sk) €

z(X) and z(s'1,5"2,...,5y) € 2(Y) where X and Y are proper subsets of {1,2,...,n}, respectively. Note
that d; and d; are relatively prime if X NY = () and they have a common divisor otherwise. Using this
observation, Theorem 1.4.2 (2) gives us the Wiener index of Zz,,.

Corollary 1.4.3. Let n be a positive integer greater than 3. Let dy, ..., d; be all proper divisors of n. Then the
Wiener index of Zz,, is given by

n n n n n n
o)) 2 o(@)e@) T o(0)e(a)
diNdj dlf)(/dj di/)(/dj

ng(dL,dJ)?él ng(di7dj):1

Here, ¢ is the Euler phi-function.
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Chapter 2

Matrix Graphs and MRD Codes over
Finite Principal Ideal Rings

Throughout the chapter, our rings always contain the identity 1 # 0.

2.1 Ranks and background from graph theory

In this section, we first discuss the rank and the McCoy rank of matrices. Then we define the matrix graph
and recall some terminologies and results from graph theory. We divide them into two subsections.

2.1.1 Rank of matrices

Let R be a commutative ring. We write R* for the set of unit in R and the set of m x n matrices with
entries in R is denoted by R™*". Cohn [5] introduced the concept of rank of matrices over commutative
rings which generalizes the usual rank of matrices over fields.

For a nonzero matrix A in R™*", the rank of A, denoted by rank A4, is the least positive integer ¢ such
that A = BC where B € R™*" and C' € R'*". The rank of the zero matrix is defined to be 0.

This rank of matrices has some basic properties as the usual rank over fields. For instance, if A, B €
R™*™, then rank A < min{m,n}, rank A = 0 if and only if A = 0, rank(A + B) < rank(A) + rank(B), and
rank A = rank PAQ where P € GL,,(R) and Q € GL,(R), see [5],[6],[11] for more properties.

Now, we assume that R is a finite commutative ring. It is well known that R can be decomposed as
R = Ry X Ry X --- x Ry where Ry, Ry, ... R are finite local rings. Let p; be the projection map from R to
R;foralli € {1,2,...,¢}. Here, a local ring is a commutative ring with unique maximal ideal. Recall that
if Ris a local ring with unique maximal ideal M, then R* = R\ M and the field R/M is called the residue
field equipped with the canonical map 7 : R — R/M given by n(r) =r + M for all r € R.

Proposition 2.1.1. If A € R™*", then

rank A = lnél?gg{rank pi(A)}.
Proof. Suppose that rank A = t. Then A = BC for some B € R™*" and C' € R'™*". For each i €
{1,2,...,¢},wehave p;(A) = p;(B)p;(C), so that rank p;(A) < t. On the other hand, let rank p;(A) = t; for
alli € {1,2,...,¢}. Then for each i € {1,2,...,¢}, we have ¢, is the least integer such that p;,(A) = B.C]
where B! € R**" and C! € R;**"™. Without loss of generality, suppose that max;<;<,{rank p;(4)} = t;.

12



!
Set B; = (B.,0) € R™** and C; = (CO’> € R'"*" Then A = BC where B = (By, B, ..., By) € R™*t
and C = (C1,Cs,...,C;) € R"*". Thus, rank A < t;. Therefore, rank A = max; <;,<,{rank p;(A4)}. O

Later, McCoy [13] gave another definition of rank of matrices over commutative rings which also
generalizes the usual rank of matrices over fields. This rank is described by the annihilators of ideals as
follows.

Let R be a commutative ring and A € R™*". We define I, = R and I;(A) to be the ideal of R generated
by the ¢ x t minors of A for 1 <t¢ < min{m, n}. Note that

and so

{0} = Anng Io(A) € Anng [1(A) C -+ C Anng Ininfm,n} (4)
where the annihilator of I is givenby Anng I = {r € R : ra = 0 for all a € I'}. The Mc-rank of A, Mc-rank A,
is the largest integer r such that Anng I,(A) = {0}. If R is a field, then Mc-rank A coincides with the
maximal number of linearly independent columns of A, so it is the usual rank. To compute the Mc-rank
of matrices over finite commutative rings, we have the following propositions.

Proposition 2.1.2. [3] Let R be a finite local ring with maximal ideal M and m : R — R/M a canonical map.
Then for each A € R™*", Mc-rank A = rank w(A).

Proposition 2.1.3. [2] Let R be a finite commutative ring decomposed as R = Ry x Ry X --- X Ry where R; is a
finite local ring with the projection map p; : (r1,7r2,...,7¢) — 7 foralli € {1,2,... £} If A € R™*™, then

Mc-rank A = 11&12@{Mc-rank pi(A)}.

2.1.2 Matrix graphs

Suppose that R is a finite commutative ring and m, n, d are positive integers such that 2 < d < min{m, n}.
The matrix graph of type (m,n,d) over R, denoted by I'y(R™*"), is the graph whose vertices are m x n
matrices over R, and two matrices A, B € R™*™ are adjacent if and only if 0 < rank(A — B) < d. We write
A ~ Bwhen A and B are adjacent.

The graph I'y (F;**™) is the matrix graph studied in [10]. Besides, the graphs I'y(Z;:*") and T'4(Z;:*")
are the bilinear form graphs in [11] and the generalized bilinear form graphs in [12], respectively.

We next recall some terminologies and properties of graphs. Let G be a graph. An automorphism of a
graph G is a bijection ¢ from G to G such that g; is adjacent to g, if and only if 0(g1) is adjacent to o(g2).
A graph G is said to be vertex transitive if for any two vertices of G, there is an automorphism carrying
one to the other. An independent set of G is a set I of vertices of G in which no two distinct vertices of I are
adjacent. An independent set of G with the largest size of vertices is called a maximal independent set. We
write a(G) for the size of a maximal independent set of G and call it the independence number of G. A clique
C of G is a complete subgraph of G, that is, any two vertices of C' are adjacent and a maximal clique of G is
a clique of G which has the largest size of vertices. Denoted by w(G), the number of vertices in a maximal
clique is called the cliqgue number of G. The chromatic number of G, denoted by x(G), is the smallest number
of colors needed to color the vertices of G in which no adjacent vertices have the same color. If GG is vertex
transitive, we have
V(G|

a(@)
Let G1,Gs, ..., Gy be graphs. The strong product of graphs G1,Ga, ... Gy, denoted by G K Gy X --- K G,
is the graph whose vertex set is V(G1) x V(G2) x --- x V(Gy), and g = (91,92, --.,9¢) is adjacent to
g = (41,95, ...,9p) if g # ¢’ and g; is either equal or adjacent to ¢; in G; for all i € {1,2,...,¢}.

w(G) < < x(G).
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2.2 Matrix graphs over finite principal ideal rings

In this section, we study the matrix graphs over finite principal ideal rings. We show that our graph is con-
nected and vertex transitive. We determine the distance between any two vertices of the graph. Moreover,
the independence number, the clique number and the chromatic number of the graph are computed.

A finite commutative ring R is called a finite chain ring if for any ideal I, J of R, either I C Jor J C I.
Clearly, a finite chain ring is a local ring. One can show that if R is a finite chain ring, then its maximal
ideal M is principal and generated by 6 for some § € M \ M?. The smallest positive integer e such that
0¢ = 0 is called the nilpotency of R. A principal ideal ring (PIR) is a commutative ring in which all of its
ideals are principal. Recall that a finite commutative ring is a direct product of finite local rings. If every
ideal of a ring is principal, so are its factors. Thus, a finite PIR can be decomposed as a direct product
of finite chain rings. With this nice relation of PIRs and finite chain rings, we first study some properties
of matrices over finite chain rings. Some properties of finite chain rings are recorded in the following
proposition.

Proposition 2.2.1. [14] Let R be a finite chain ring with maximal ideal M = R0, residue field F,, nilpotency e
and V = {v1,va, ..., vy} a system of coset representatives of M in R.

1. For any nonzero element r in R, there exists a unique integer i with 0 < i < e such that r = uf" for some
ue R”.

2. Foreachr € R, r can be uniquely written as
r=1ro+7r10+190%+ - Fr._10°!
where rg,r1,...,7e_1 € V.
3. The ideals of R are in the chain
{0} =RO°C RO°PCRI“*C---C RO*C ROCR.
4. |RO'| = q* " foralli € {0,1,...,e}.
5. R/RO' is a finite chain ring with nilpotency i and |R/RO"| = ¢’ foralli € {1,... e}.
6. Foreachi € {1,2,...,e}, we have
R/R@i ={ro+mrf+ 7902 4+ 4110V RO g, e, i € V.

Thus, an element v = 1o + 110 + r90% + -+ + 7,101 + RO® in R/RO" can be viewed as an element
r = 1o+ 710+ r0® + - + 11071 + RO in R/ROTL. Moreover, a unit in R/RO" is a unit in
R/ RO,

There is a useful property in computing the rank and Mc-rank of matrices over finite chain rings.

Lemma 2.2.2. [4] Let R be a finite chain ring with maximal ideal RO and nilpotency e. If A is a nonzero matrix in
R™*™ then there exist P € GL,,(R) and Q € GL,,(R) such that

Iy,

oI,

021,
A=P , Q (2.2.1)

6‘6_1Ite,1
0

where to,t1, ..., te_1 are non-negative integers. Moreover, this form is unique when 6 is fixed.
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Proposition 2.2.3. Let R be a finite chain ring with maximal ideal RO and nilpotency e and A a nonzero matrix in
R™*™ of the form (2.2.1). Then

rank A =tg+t; + -+ te_y and Mc-rank A = t,.
Proof. Lett =to+1t1 + -+ te—1. From (2.2.1), we can write

A = Pdiag(D,0)Q where D = diag(I;,,01;,,...,0° "I, ) € R*™*".

Write P = (P, P») and Q = (2221), where P, € R™** and Q; € R**". We have A = P, DQ;. Therefore,
2

rank A < t.
On the other hand, suppose that rank A = s. Then A = BC where B € R"** and C € R**".
By Lemma 2.2.2, there exist P, € GL,,(R),Q1 € GLs(R),P, € GLs(R) and Q2 € GL,(R) such that

B =D (%1) Q1 and C' = P5(D3,0)Q2 where Dy and D, are diagonal matrices in R**°. Hence, A =

Py diag(D1 Q1 P2D2,0)Q2 where D1Q1 P, Dy € R**®. Since the form of A is unique, s > ¢. Thus, rank A = ¢.
Next, let 7 : R — R/R0 be the canonical map. Then 7(A) = 7(P) diag(w(D), 0)7(Q). It is obvious that
rank m(A) = to. By Proposition 2.1.2, we have Mc-rank A = rank m(A) = ¢. O

By Proposition 2.2.1 (6), we note that a matrix A over R/R0* can be viewed as a matrix A over R/Rf*+!
and if A is invertible over R/R0?, then A is invertible over R/R0"*'. We apply Proposition 2.2.3 to prove
the next proposition.

Proposition 2.2.4. Let A be an m x n matrix of rank t over R/R6". Then A and A0 are m x n matrices of rank t
over R/RO™*.

Proof. From Proposition 2.2.1 and Lemma 2.2.2, we can write A = Pdiag(ly,,01;,,...,0 'L, ,,0)Q
where P € GL,,(R/R0") and Q € GL,(R/R0") witht = tg +t; + ...t;_1. It follows that both A and
Af = Pdiag(01;,,0%I,,,...,0'I;_,,0)Q are m x n matrices over R/R#**!. Since P and @ are invertible
over R/R0', they are invertible over R/R0!. Hence, A and A# are of rank ¢ over R/RO**. O

Let R be a finite PIR decomposed as R £ Ry X Ry x --- x Ry where R; is a finite chain ring for all
ie{1,2,...,0}. Letp; : (r1,re,...,7¢) — 7; be a projection map for all i € {1,2,...,¢}. The isomor-
phism ¢ gives R™*" = RT"" x Ry™" x --- x R)"™". Thus, we can view the vertex set of I'q(R™*")
as {(p1(A), p2(A),...,pe(A4)) : A € R™*"}. By Proposition 2.1.1, if A = (p1(A4), p2(4),...,pe(A)) and
B = (p1(B), p2(B), ..., pe(B)) are two vertices of I'g(R™*™), then

A~B<<=0< fgaé(g{rank(pi(/l) —pi(B))} < d.
With this relation, we proceed to prove the following strong product of graphs theorem.
Theorem 2.2.5. Let R be a finite PIR decomposed as R = Ry X Ry X - - - x Ry where R; is a finite chain ring. Then
Lg(R™ ™) =Tq(RT ™)K Tg(Ry*™) K - - R Tg(R;™™).

Proof. Let G = T'y(RY"") KT (Ry™ ™)K --- W Tq(R;)"*™). As mentioned, the vertex sets of graphs G and
I'y(R™*™) are the same. Let A = (p1(A4), p2(A4),...,pi(A)) and B = (p1(B), p2(B), ..., pe(B)) be two
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vertices. Then
A~BinTy(R™") & 0< max {rank(pl( )—pi(B))} <d
)

= A#Bandrank(pl( ) —pi(B)) <dforallie {1,2,...,¢}

& A # Band either p;(A) = p;(B) or p;(A) ~ p;(B) in Tq(R]"*"™)
foralli € {1,2,...,¢}

< A~ Bing.

This completes the proof. O

Theorem 2.2.6. Let R be a finite PIR. Then the graph T q(R™*™) is connected. Moreover, for two vertices A, B €
R™*™, the distance between A and B is

dot 5y = [EA=5]

Consequently, the diameter of Tq(R™*™) is equal to [ ™2m.nk],

Proof. We first prove the desired result in the case that R is a finite chain ring. Assume that R is a fi-
nite chain ring with maximal ideal Rf and nilpotency e. Let A, B € R™*" with rank(B — A) = t. By
Lemma 2.2.2, there exist P € GL,,(R) and Q € GL,(R) such that

ok
ok

o
0

where 0 < k; < -+ <k <e—1. Ift <d-1,then A ~ B, and so dg(A4, B) = 1. We assume that
t > d. Writet = (d — 1)q + r where ¢,r are integers with ¢ > land 0 <r <d—1. Let Ag = A and
A; = A+ Pdiag(0*,0%2, ... 0F«-0: 0)Q foralli € {1,...,q}. Then for eachi € {0,1,...,q — 1}, A;11 —
A; = Pdiag(0,0%@-vit1 . gka-netn 0)Q, so rank(A; 11 — A;) < d and thus A;; ~ A;. Now, we have
Ag~ Ay ~ Ay ~ - ~ A, Note that B — A, = P diag(0, §%@-va+1 ... gFa-vair 0)Q. So rank(B — 4,) <
r < d. This implies that B = A, if r = 0or B ~ A, if r > 0. Thus, I'q(R™*") is connected. Moreover,
da(A, B) equals either g or ¢ + 1, that is, dg (A4, B) < [ 451

On the other hand, let dg (A, B) = s. Then there exist Cy,Cs,...,Cs_1 € R™*™ such that A ~ Cy ~
Cy ~ -+~ Cs_1 ~ B. By properties of the rank of matrices, we have

t =rank(A — B) < rank(A — C;) + rank(C; — Cs) + - - - + rank(Cs_1 — B)

<
< s(d—1).

Thus, dg (A, B) = s > [ ]. Therefore, dg (A4, B) = fww
Next suppose that R is decomposed as R = R; x Ry X --- X Ry, where R; is a finite chain ring. By
Theorem 2.2.5, we have

Tg(R™™) = Tg(RI™™) R Tg(RYX™) & - - & Tg(RIX™).
Let A = (p1(A), p2(A4),...,p(A)) and B = (p1(B), p2(B), ..., pe(B)) be two vertices in I';(R™*"™). Since

Iy(R™*™) is connected for all ¢ € {1,2,...,¢}, we can suppose that dg(p;(A4),p;(B)) = t; for all i €
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{1,2,...,¢}. For convenience, we write p;(A) = X,y and p;(B) = X;;,. Then for each i € {1,2,...,/(},
there exist X1, X2, ..., X;(,—1) such that

pi(A) = Xio ~ Xi ~ Xig ~ -+ ~ Xit, = pi(B).

Without loss of generality, we assume that t; < to < --- < ¢,. Foreach j € {0,1,...,%,}, we set X; =
(X1j7X2j, ey X[j) where Xij = pz(B) if t; < ] < ty. Then

A=Xo~X;~Xg~ -~ X, = B.

This implies that I'q(R™*") is connected and dg (A, B) < t; = maxi<;<¢{da(pi(4), p:(B))}.

Conversely, assume that dg(A, B) = t. Then there exist X1, X»,...,X;—1 such that A := Xy ~ X; ~
X2 ~ e Y Xt,1 ~ Xt = B. Leti € {1,2,,6} Since Xj ~ Xj+1, we have pl(X]) = pi(XjJrl) or
pi(X;) ~ pi(X,q1) in Tg(R™™) forall j € {0,1,...,t — 1}. Thus, dg(p;(A), pi(B)) < t. It follows that
maxi<i<¢{da(pi(4), pi(B))} < t = da(4, B).

Finally, the distance over finite chain rings implies

464, B) = max (A6 ((A), pu(B))} = o, { [ =By

By Proposition 2.1.1, we have dg (A4, B) = [%]. The diameter of I'y(R™*™) is obtained from
Lemma 2.2.2 together with choosing A = 0 and B = (I, 0)if m <nor B = <I(;’) if n < m. Hence,
rank(A — B) = min{m, n}. O
Proposition 2.2.7. If R is a finite PIR, then the matrix graph T 4(R™*™) is vertex transitive.

Proof. Let A,B € R™*". Define 0 : R™*" — R™*" by o(X) = X — (A — B) for all X € R™*". For
X, Y € R™*", we have rank(c(X) — o(Y)) = rank((X — (A— B)) — (Y — (A — B))) = rank(X — Y). Then
X ~Yifand onlyif 0(X) ~ o(Y) in I'y(R™*"). Thus, ¢ is a graph automorphism which maps A to B.
Therefore, I'q( R™*™) is vertex transitive. O

Remark 2.2.8. It is well known that a vertex transitive graph is regular, that is, every vertex has the
same degree. Thus the matrix graph I';(R™*™) is regular. For the degree of this regular graph, we can
determine the degree of the zero matrix. Then the degree of I';(R™*™) is the number of all nonzero m x n
matrices over R of rank less than d.

We next compute the independence numbers and clique numbers of the matrix graphs. The results
over finite fields are given in [12] as follows.

Lemma 2.2.9. [12] If F, is the finite field of q elements, then
a(rd(F;nxn)) _ qmaX{m,n}(min{m,n}*dJrl) and w(rd(F;nX")) _ qmax{m,n}(dfl)'

For the case of finite PIRs, we first consider the sets

Ci = { (é) A€ R(d_l)xn} and Cp := { (A O) A€ Rmx(d_l)}.

Since rank A < min{m,n} for A € R™*", it follows that both C; and C, are cliques of I';(R™*™). Thus,
w(Tg(R™*™)) > |R[max{m.n}(d=1) This provides the lower bound of the clique number. We shall apply it
to compute both clique number and independence number.
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Theorem 2.2.10. Let R be a finite PIR. Then

a(Tg(R™*™M)) = |R|maX{M,n}(min{m’n},d+1)
and
w(Fd(Rmxn)) _ |R|max{m,n}(d_1).

Proof. We first suppose that R is a finite chain ring with maximal ideal R, nilpotency e and a canonical
map 7 : R — R/Rf. Let m < n. Then Lemma 2.2.9 implies that a(T'4((R/RO)™*")) = ¢"(m~4+D) .= q.
Let A be a maximal independent set of I';((R/R6)™*™). So rank(A — B) > d over R/R# for all distinct
A, B in A. By Proposition 2.2.4, we have that a matrix A over R/R6 can be considered as a matrix A over
R/ RO with the same rank for alli € {1,2,...,e}. Thus, rank(A — B) > d over R for all distinct A, B in A.
Next, let

IT=A+A0+ A0+ + A0 = {Ag+ 410 + As0* + -+ Ac_10°7" 1 A; € A}

By Proposition 2.2.1 (2), it is easy to see that 7 is a set of size a®. We show that 7 is an independent
set of T'y(R™*"). Let A,B € T with A # B. Then A = Ay + A0 + Ax0? +--- + A._10° ' and B =
By + B160 4+ B26? + - + B._10°"! where A;, B; € Aand A; # Bj for some j € {0,1,...,e — 1}. Hence,
A—B=(Ay— By)+ (A1 — B1)0 + (A2 — B3)0? + -+ - + (Ac—1 — Be—1)0°"!. We apply Propositions 2.1.2
and 2.2.3 to show that rank(A — B) > d.

First, if Ag # By, then rank(A — B) > Mc-rank(A — B) = Mc-rank (A — B) = Mc-rank(Ag — By) =
rank(Ag — By) > d. So we suppose that Ay # By. Let j € {1,2,...,e — 1} be the first index such
that AJ 75 BJ Then A — B = ((AJ — Bj) + (AjJrl — Bj+1)9 e (Ae,1 — Be,l)ﬁe_(j‘*‘l))@j. Write
C:=(A;j—Bj)+(Aji1—Bj11)0+ -+ (Acy — Be_1)0°" U+t Then A — B = C#7 . Note that C can also
be viewed as a matrix over R/ R0, By Proposition 2.2.4, both C' and C07 are matrices over R/R0° = R
with the same rank as considering them over R/R§°~7. Therefore, rank(A — B) = rank(C67) = rank(C) >
Mec-rank(C) = Mc-rank7(C) = Mc-rank(4; — B;) = rank(A; — B;) > d. This implies that Z is an
independent set of I'y(R™*™) of size a® = ¢°"("~4+1) Tt follows that a(I'z(R™*")) > gn(m—d+1),

Recall that w(I'g(R™*™)) > ¢°*¢~1). Since I'g(R™*™) is vertex transitive,

‘V(Fd(Rmxn)H < qemn :qcn(m,—d+1)
w(]_"d(Ran)) - qen(d—l) '

a(Fd(RmX’n)) S

Therefore, a(Tq(R™*")) = ¢**(m=4+1) Again,

[V{Ta(R™™))| ¢ -
MXNY) < — — en(d—1)
W(Fd(R )) = a(rd(Ran)) qen(m—d+1) q

Thus, w(Ty(R™*™)) = ¢*(?~1). So we obtain the result over finite chain rings.

Next, assume that the PIR R is decomposed as R = R1 X Ry x --- x Ry where R; is a finite local ring
with nilpotency e; and residue field F,,. By Theorem 2.2.5, I'q(R™*") = T'y(R"") K T4(Ry"") X --- X
Lq(R})™™). Note that if Z; is an independent set of I'y(R]"*") for all i € {1,2,...,¢}, then it is easy to see
that

IT=1yx1Iy x--- XI@Z{(Al,AQ,...,Ag)ZAi GII‘}

is an independent set of I'( R *™). Hence,

a(Lg(R™™)) = a(Tq(RT™*™)a(Ta(RTX™)) ... a(Ta(R;™)).
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The previous result on finite chain rings implies that a(Iq(R**")) = %m foralli e {1,2,...,/¢}.

Moreover, I'g(R]"™") is vertex transitive for all i € {1,2,...,¢} by Proposition 2.2.7. Thus, it follows from
[16] Corollary 1 that

a(Tg(R™ ™)) < aCa(RT™)a(Ta(RE*™)) ... o Ta( Ry ™™)).
Therefore,

a(Ta(R™")) = aTa(R ")) a(Ta(Ry ™)) - a(Ta( R "))

ein(m—d+1) esn(m—d+1) eon(m—d+1)
1 45 e qf

_ ‘R|n(m_d+1).

Finally, we determine the clique number of the graph. It is proved in [1] that w(G X H) = w(G)w(H).
Consequently,

w(la(R™ ") = w(la(Ry"™"))w(Ta(Rg™")) .. w(Ta(Ry™))

_ qfln(d—l)qggn(d—l) o q;gn(d—l)

_ | R|n(d—1).
The case n < m can be proved in a similar way. O
Remark 2.2.11. 1. The cliques C; and C; mentioned earlier are maximal cliques.

2. Let R be a finite chain ring with maximal ideal R and nilpotency e. If 4 is a maximal independent
set of T'y((R/RO)™*™), then
T=A+A0+ A9+ + A0}

is a maximal independent set of I'g(R™*™).

3. For a finite PIR R & Ry X Ry x --- X Ry, if Z; is a maximal independent set of I'4(R["*") for all
ie{l,2,...,¢}, then

T=1T1 XTIy x--- XIg:{(Al,AQ,...,Az)ZAi GIZ}
is a maximal independent set of I'y(R™*™).

Let G be a finite group and S a subset of G which does not contain the identity and is closed under
taking inverses. The Cayley graph Cay(G, S) is an undirected graph with vertex set G and for two vertices
91,92 € G, g1 and g» are adjacent if g1g5 tisin S. A Cayley graph Cay(G, S) is normal if gCg~' = C for all
g€ @G.

To determine the chromatic number of the matrix graph, we use the following property of a normal
Cayley graph.

Lemma 2.2.12. [9] If G is a normal Cayley graph with a(G) = ‘Z((g))‘ , then x(G) = w(G).

Note that R™*" is an additive group. Let S be the set of nonzero matrices of rank less than d. It

is easy to see that S does not contain the zero matrix and is closed under taking additive inverses. For
A, B € T'y(R™*™), we have

A~B<=0<rank(A—B)<d<= A—-BecS.

Thus, I'q(R™*™) is a Cayley graph. Moreover, it is a normal Cayley graph since R™*" is an abelian

group. By Theorem 2.2.10, we have o(T'q(R™*™)) = %. It follows from the above lemma that

w(Tg(R™*™)) = x(Ty(R™*™)). Hence, we have shown:
Proposition 2.2.13. If R is a finite PIR, then x (I 4(R™*")) = |R|™>{m.ni(d=1),
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2.3 MRD codes

This section is devoted to study MRD codes over PIRs. We give the concepts of matrix codes and rank
distance of matrix codes. We shall see that matrix codes relate to matrix graphs. Indeed, maximal inde-
pendent sets of matrix graphs are MRD codes and vice versa. Finally, we show the existence of linear
MRD codes over a PIR by lifting linear MRD codes over a direct product of finite fields.

Let R be a finite commutative ring. A (matrix) code of size m x n is defined to be a subset C of R™*™.
For two matrices A, B € R™*", we define the rank distance between A and B, denoted by d,k(4, B), to be
rank(A — B). Note that the rank distance is a metric on R™*™. Indeed, d,x(A4, B) > 0, d,x(A, B) = 0 if and
only if A = B, d(A4, B) = di(B, A) and d,k (A4, C) < dik(A4, B) + di(B,C) forall A, B,C € R™*". For a
code C of size m x n over R, the rank distance of C is defined to be

dx(€C) = min{d,k(4, B) : A, B € C with A # B}.

We call a code C of size m x n with rank distance d an (m x n,d)-code. If C C R™*"™ is a submodule of
R™*™ over R, we call C a linear code.

Suppose m < n. Let C be an (m X n, d)-code. We can consider a matrix Ain C as A = (1, Z2,...,Tm)
where #; € R" is an i-th row of A. This means we can study C C (R")™ as a code of length m over a set
of alphabet R" and find the Hamming distance of C. Hence, a code C with the Hamming distance du(C)
agrees with the Singleton bound du(C) < m —log . [C| + 1. Thatis, |C| < | R dn(©)FL),

Over the finite field F,, it is shown in [8] that a matrix code C of size m x n with rank distance d,k(C)
has a Singleton like bound which satisfies |C| < ¢"(m~dx(C)+1) We show that matrix codes over finite PIRs
have a similar bound by using independent sets of the matrix graphs.

Let R be a finite PIR and C C R™*™. Then C is both a matrix code and a set of vertices in the matrix
graph I'y(R™*™) . Moreover, if d > 2, then we have that for any A, B € C with A # B, d\x(4,B) =
rank(A — B) > dif and only if A is not adjacent to B in I'y(R™*™). This implies the next proposition.

Proposition 2.3.1. Let R be a finite PIR and 2 < d < m < n. Fora code C C R™*", d,«(C) > d if and only if C
is an independent set of the graph I'g(R™*™).

This proposition and the independence number in Theorem 2.2.10 implies that if C is a code with
d,i(C) = d where d > 2, then |C| < a(Tq(R™*™)) = |R|™(™~4*+1) For the case d,(C) = 1, it is obvious that
|C| < |R|"™™. Thus, we have the Singleton like bound for the matrix codes over finite PIRs as follows.

Corollary 2.3.2. Let R be a finite PIR and m < n. For a code C C R™*™, we have |C| < |R|"("~dmn(C)+1),

An (mxn, d)-code C over a PIR R is called a maximum rank distance code (MRD code) if |C| = | R|"(m—4+1).
Obviously, the only (m x n,1)-MRD code is R™*". So we may assume d > 2 to study MRD codes.

Next, suppose that Ris a PIR and d < m < n. Let C C R™*™. Note that if C is either a maximal inde-
pendent set of I';(R™*™) or an (m x n,d)-MRD code, then |C| = |R|*(™~%+1) = o(T'y(R™*")). Moreover,
IC| = |R[™™=4+1) implies |R|"(™~4+1) = |C| < |R|"("~dx(C)+1) by Corollary 2.3.2, so we have d > d,(C).
Applying Proposition 2.3.1 results in

Cisan (m x n,d)-MRD code © d,(C) = dand |C| = |R|""™~4+D
& Cis an independent set of T'4(R™*") and |C| = |R|"(™~4+D

& C is a maximal independent set of I'q(R™*").

Therefore, we have shown:

Theorem 2.3.3. Let R bea finite PIR, 2 < d < m < nand C C R™*™. Then C is an (m x n, d)-MRD code if and
only if C is a maximal independent set of T q(R™*™).
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We have seen that (m xn, d)-MRD codes coincide with maximal independent sets of the matrix graphs.
We next construct linear MRD codes over PIRs by using maximal independent sets of the graphs.

Theorem 2.3.4. Let R be a finite PIR decomposed as R = Ry X Ry X --- x Ry where R; is a finite chain ring
with maximal ideal R, , nilpotency e; and residue field F,, for all i € {1,2,...,¢}. For any m,n,d with 2 <
d < min{m,n}, there exists a linear (m x n,d)-MRD code over R. Moreover, this linear (m X n,d)-MRD code
is of the form C = Cy x Ca X --- x Cq where each C; is a linear (m x n, d)-MRD code over R; which is of the form
Ci=Ci+Cil; +Ci0? + -+ Ci05 " where C; is a linear (m x n, d)-MRD code over T,

Proof. Let m,n,d be positive integers with 2 < d < m < n. Suppose that R is a finite chain ring with
maximal ideal R, nilpotency e and residue field R/R# = F,. It is shown in [8] that there exists a linear
(m x n,d)-MRD code over F,. We shall lift this linear MRD code C over F, to obtain a linear MRD code
over R.

Theorem 2.3.3 implies that C is a maximal independent set of I'q(F;"*"). Remark 2.2.11 (2) shows that

C:=C+CO+CO* + - +CO  ={Ag+ A10 + A0 + -+ + Ac_10°7' 1 A4, € C}

is a maximal independent set of I'¢(R™*"). From another direction of Theorem 2.3.3, C is an (m x n,d)-
MRD code over R. Since C is a linear code over F,, we can employ Proposition 2.2.1 (2) to obtain a linear
code C over R.

Finally, suppose that R is a PIR decomposed as Ry x R2 X - - - x R¢ where R; is a finite chain ring. Then
there exists a linear (m x n, d)-MRD code C; over R; foralli € {1,2,...,¢}. By Theorem 2.3.3, C; is a linear
independent set of I'q(R;"*"). Again, by Remark 2.2.11 (3), we have

6201><C2><--~ng:{(Al,Ag,...,A[):AiECi}

is a maximal independent set of T';(R™*™). Thus, C is an (m x n, d)-MRD code over R. Since C; is a linear
(m x n,d)-MRD code over R; foralli € {1,2,...,¢},Cis also a linear (m x n,d)-MRD code over R. This
completes the proof. O

Remark 2.3.5. Linear MRD codes over finite fields have been intensively applied to linear network coding,
and also connected to many areas such as McEliece like public key cryptosystems, semifields, linearized
polynomials, see [15] for details. From the above theorem, we obtain linear (m x n, d)-MRD codes for any
parameters m, n, d not only over the field alphabet F, but also the ring alphabet of any sizes (finite PIRs).
Indeed, the ring alphabets are more optimal than field alphabets in some cases to study network coding,
see [7]. Moreover, these linear MRD codes over PIRs generalize those over Z,- in [12].
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Chapter 3

Unitary Cayley Graphs of Matrix Rings
over Finite Commutative Rings

3.1 Unitary Cayley graphs and

For a finite ring R with identity, the unitary Cayley graph of R, Cg, is the graph with vertex set R and for
each z,y € R, x and y are adjacent if and only if « — y is a unit of R. The unitary Cayley graphs have
been widely studied by many authors (see, for example, [2, 8, 4, 1, 5]). As discovered in [1, 5], if Ris a
finite commutative ring, then R can be decomposed as a direct product of finite local rings Ry, ..., Ry and
Cr is the tensor product of the graphs Cg, ,...,Cg, where the tensor product of graphs G and H, G ® H,
is the graph defined on V(G) x V(H) where (a,b) is adjacent to (¢, d) if and only if a is adjacent to ¢ in
G and b is adjacent to d in H. In addition, if R is a finite local ring with maximal ideal M, then Cp is a
complete multi-partite graph whose partite sets are the cosets of M. Thus, the unitary Cayley graphs of
finite commutative rings are well studied. Their spectral properties including the energies are also well
known (see [5]).

Let G be a graph and V(@) the vertex set of G. We give some terminologies from graph theory as
follows. A cligue is a subgraph that is a complete graph and clique number of G is the size of largest clique
in G, denoted by w(G). A set I of vertices of G is called an independent set if no distinct vertices of I
are adjacent. The independence number of G is the size of a maximal independent set, denoted by «(G).
The chromatic number of G is the least number of colors needed to color the vertices of G so that no two
adjacent vertices share the same color. We write x(G) for the chromatic number of G. If every vertex of G
is adjacent to k vertices, then G is a k-regular graph. Finally, we say that a k-regular graph G is edge regular
if there exists a parameter A such that for any two adjacent vertices, there are exactly \ vertices adjacent
to both of them. If an edge regular graph with parameters k, A also satisfies an additional property that
for any two non-adjacent vertices, there are exactly 1 vertices adjacent to both of them, then it is called a
strongly reqular graph with parameters k, A, ju.

Let Rbe aring and n € N. Let R* denote the group of units of R. Let M,,(R) denote the ring of n x n
matrices over R and the group of all invertible matrices over R is denoted by GL,,(R). Throughout this
work, we denote I, is the n x n identity matrices and denote 0,,,x,, is the m x n zero matrix.

An eigenvalue of a graph G is an eigenvalue of the adjacency matrix of a graph G. The energy of a
graph G, E(G), is the sum of absolute value of its eigenvalues. The spectrum of a graph G is the list of its

eigenvalues together with their multiplicities. If Aq,..., A, are eigenvalues of a graph G with multiplic-
Mo A .
ities my, ..., m,, respectively, we write Spec G = (ml m ) to describe the spectrum of G and so
1 .- r
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E(G) = mi|Ai| + -+ + m,|\.|. A graph G on n vertices is said to be hyperenergytic if its energy exceeds
the energy of the complete graph K, that is, E(G) > 2(n — 1). A k-regular graph G is a Ramanujan
graph if || < 2v/k — 1 for all eigenvalues A of G other than k. A Ramanujan graph is a regular graph
whose spectral gap is almost as large as possible. It is an excellent spectral expander. Its name comes from
Lubotzky, Phillips and Sarnak [10] who used the Ramanujan conjecture to construct an infinite family of
such graphs.

To introduce our methodology, we recall some results on character of finite abelian groups. For more
detail, see [9]. Let G be a finite abelian group. A map x : G — (C\ {0}, ") is a character if x is a group
homomorphism. The set of all characters of G, denoted by G, forms an abelian group under point-wise
multiplication, that is, for any characters x1, x2 of G, we define x1 - x2 : G — (C\ {0},-) where (x1 -
x2)(9) = x1(9)x2(g) forall g € G.

Let F be the finite field extension of Z, which has order p" for some r € N and a prime p. The
trace map from F to Z, is the Z,-linear map Tr : = — x + 2P 4 --- + ar According to [9], each
character of the group (F,+) is given by x.(z) = e 5 T(a2) for all # € F where a € F is fixed. Note that
(M, (F),+) = (F,+) x (F,+) x x (F,+) (n? Coples) Recall that if we have Gy, G are finite abelian
groups, then there is a canonical isomorphism G1 X G2 — G1/>-<\G2 given by (x1, x2) — x1x2. Hence, we
may identify a character of M,,(F’) as xa = H Xa;; Where A = [a;j]nxn is in M, (F') and so it follows

1<i,j<n
from Theorem 2 of [11] that the eigenvalues of (JZMn( ) are given by

pa= Y, xal9)

SEGL, (F)

as A ranges over all matrices in M,, (F).

In the next section, we shall use the additive characters discussed in the previous paragraph to com-
pute some eigenvalues (namely, p4,, p4, and pa,) and use them to study strong regularity of the unitary
Cayley graph Cy;, () of a matrix algebra over a finite field F' of ¢ elements. This new approach also al-
lows us to conclude that the multiplicities of eigenvalues are at least the number of matrices of the same
rank (Theorem 3.2.1). Without completely having the spectrum of the graph, we work on the eigenvalue
pa, and show that Cyy, (r) is hyperenergetic and characterize n and ¢ such that Cy;,, (r) is Ramanujan in
Section 3.

The final section presents the study of the unitary Cayley graph of product of matrix rings over finite
local rings. We start by working on a finite local ring R with unique maximal ideal M and residue field k.
We determine the canonical graph isomorphism from the graph Cyy, (i ®M,,(M) onto the graph Cyy, (r)
induced from lifting elements of k to R via M (Theorem 3.4.2). This isomorphism allows us to obtain
the clique number, the chromatic number and the independence number of the unitary Cayley graph of
product of matrix rings over finite local rings. Since every finite commutative ring is isomorphic to a
direct product of finite local rings, we have these numbers for unitary Cayley graphs of a matrix ring over
a finite commutative ring. Moreover, the work in Sections 2 and 3 is generalized to matrix rings over finite
local rings and finite commutative rings in Section 4.

3.2 Strong regularity of M,,(F')

Throughout this section, let /" be the finite field of ¢ elements and n € N. Our main work is to show that
the graph Cy,, () is strongly regular if and only if n = 2. We begin by determining some eigenvalues of
the graph by considering three matrices in M,,(F'), namely,
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1 0 0 0 1 1 0 0

0o o0 o0 --- 0 1 0 0 0
Al = 0,xn, A2 = 1. . . . and A3 = .

0 0 O 0 1 0 0 0

Clearly, we have

Note that

PA; = Z Nm€2gi T(m)
meF

where N,, is the number of invertible matrices with m at the left-top corner for all m € F'. If an invertible
matrix has the left-top corner being 0, then the other n — 1 elements in the first column cannot be all zeros,
so there are ¢ — 1 choices for the first column. Thus,

No=(""-D@" )" —¢*)...(¢" —¢" ")

because the second column must not be multiple of the first column, and the jth column must not be a
linear combination of the previous j — 1 columns for all j € {2,...,n}. Now, we have

@ =" N =) " =) .. (" —¢"")

invertible matrices with the top—left corner being nonzero. Since NV,,, = N; for all m # 0, we have

(¢— 1N =(¢"—¢"")g" —a)(@" —¢*)...(¢" —¢q" ")

SO
N =q¢"""¢"—q)(¢" —¢*)...(¢" —¢"7").
It follows that
2mi Ty 278 Tr(m,
pa, = Noe v " 4 N, Ze g )
m#0
_ 2mi Ty
=—("- " =) ... (" ="+ N Y e T

meF
By Hilbert’s theorem 90, we know that the trace map is surjective, so we get

Z 7 0" = |ker Tr| Z e =0

meF mEZLy

Therefore,
A, = _(qn _ q)(qn _ q2) o (qn _ qn—l).

Finally, we determine p4,. Since

§ : o 2B Tr(matmat e mn+mn 1)

PAs = N(m17m27 . 'amn+1)

mi,ma,...,Mp1EF

where N(mq,ma,...,m,4+1) is the number of invertible matrices of the form
ml mn+1 e *
ma * e %
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and my,mg,...,mpy1 € F. For m; = 0, we can determine N (0, mag,...,my41) according to my41 as
follows. If my4+1 # 0, then the first column and the second column are linearly independent, so the
second column can be arbitrarily chosen. If m,4; = 0, then the second column must not be multiple
of the first column and the jth column must not be a linear combination of the previous j — 1 columns
forall j € {2,...,n}. Thus, N(0,ma,...,0) = (¢" 1) (¢" —¢*)...(¢" — ¢" 1) and N(0,ma,...,mp41) =
(@ (" — ¢®)...(¢" — ¢ ') if myy1 # 0. Now, assume that m; # 0. Then N(mq,ma,...,mpi11) =

N(1,ma,...,mus1) forallms, ..., myy; € F. Tofind N(1,ma,...,my41), we note that the second column
cannot be m,,+;-multiple of the first column and similarly the jth column must not be a linear combination
of the previous j — 1 columns forall j € {2,...,n}, so

N(1,ma,....,mps1) = (" =1)(¢" =) ... (¢" —q" ).
Now, we compute
— n n n— n I 2mi mo—+...my
pay =@ =" =) ... (¢ =" )"+ 1)) e Tt

+ qnfl(qn o (]2) o (qn _ qnil) Z' Z e2:i Tr(ma+...mp+mpi1)

Mp4170
+ (qn—l o 1)((]” o q2) o (qn o qn—l) Z Z’ Z e%Tr(m1+m2+...mn+mn+1)
m1#0 My 1 €EF
my
/ m2 . . . .
where Z denotes the sum over mo,...,m, € F such that | . | is the first column of an invertible
my

. . 2mi . .
matrix. Since E er Tr(mnt1) — 0, the last sum is 0, so we can rewrite p A aS

Mp41E€F
/ 2mi
n—1/ 1 2 1 Tr(mo+...mp+mq,
pas =" Nq" =) (@ =Y Y e )
Mmpy1€EF
—alq"— ). (" =) "2 Tr(matmn)
The first sum is again zero because m, 1 varies over F. Now, since m; = 0, ma,...,m, cannot be all
zeros and so
2 :/6% Tr(mat...mn) _ 2 : 62;” Tr(ma+...mn) _ 2 : 62;’” Tr(mot..ma) _ 1 — _q
{ma,..., my }#£{0} ma,..., mn€F

Hence, pa, = q¢(¢" — ¢*) ... (¢" — ¢ 1).

Let A and B be n x n matrices over F. Assume that rank A = rank B. Then there exist invertible
matrices P and @ such that A = PBQ. Consider A = [ay], .., B = [bijl, v, P = [Pijl,x, and Q =
[i5],, ., FOr S = [545],...,, € GL,.(F), we have

xa(S) =er Tr(Crciy<n 0id5is)
From

Z AijSij = Z ( Z pilblekj>5ij

1<ij<n 1<ij<n 1<k,l<n

> > bulpusijar)

1<4,5<n 1<k, I<n

Db Y (Pasiar)-

1<k,l<n  1<ij<n
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and Z PitSiiQe; = (PtSQt)lk, it follows that x4(S) = xp(P!SQ?"). Since P and @ are invertible,
1<4,5<n

GL,(F) = P*GL,(F)Q?, so

Yoo oxal®) = > xs(S)

SEGL, (F) SEGL, (F)

Hence, we have shown:
Theorem 3.2.1. If A and B are n x n matrices over F of the same rank, then pa = pp.

Since Cyy,, () is connected and |GL,, (F))|-regular, p4, induced from the zero matrix has multiplicity 1.
Observe that p4, and p4, are induced by matrices of rank 1 and 2, respectively. Since the set of characters
are linearly independent, the multiplicities of them are the number of matrices of such rank. Suppose

n = 2. The number of matrices of rank 1 is (qz%f = (¢ — 1)(g¢ + 1)? and the number of matrices of rank 2
is (¢ — 1)(¢*> — q). We record this result in:
(@-D(*-a  —(®—q) q )
Theorem 3.2.2. SpecC =
pee ) ( 1 (@—Dl@+1?* (¢ —1)(¢* —q)

and E(Cy,(py) = 2q(¢*> — 1)%

Ifn = 3, then pa, (¢° —=1)(¢° —9)(¢* = ¢°), pa, = —(¢* —4)(¢* — ¢*) and pa, = q(¢* — ¢°) are eigenvalues
of Cyy,(r) induced from matrices of rank 0, 1 and 2, respectively. Let A be the eigenvalue induced from
matrices of rank 3. Counting the number of matrices of each rank gives

(¢° —1)?
q—1
o (@ = 1)%(¢* — @)
) (¢* —1)(¢*> —q)

Dividing by (¢® — 1)(¢* — ¢)(¢® — ¢°) implies A = —¢3. This proves the following theorem.

(@ - =@ - —(@®—a(®—¢*)

@ -1 - )@ =) — (@ — ) —*)

+q(q® - +(* = 1)@ — )(¢® — P)A=0.

Theorem 3.2.3. Spec Cy,(r) = (

1 (@ =1)(¢*+q+1)
a(¢* — %) —q )
(@ -D(@ =@ +a+1) (- - -/

Recall from Chapter 10 of [3] that a connected regular graph is strongly regular if and only if it has
exactly three distinct eigenvalues. So, we can conclude from Theorem 3.2.2 that Cyy, () is strongly regular.
Next, we assume that n > 3 and Cyy, () is strongly regular. Then Cyy, (r) has only three eigenvalues. From
our computation, they must be pa,,pa, and pa,. Suppose the multiplicities of p4, and pa, are mo and
mg, respectively. Since the sum of eigenvalues of Cy;, () is 0, we have

@ -G " —q)...(¢" =" = (" —q)...(¢" —¢" Imata(¢" —¢*)...(¢" —¢")ms = 0.
Dividing by (¢" — ¢*) ... (¢" — ¢"~ ') gives
(" =" —q) — (¢" — @)mz + gms = 0.

Note that 1 + mg + m3 = q"z, SO m3 = q"2 — mg — 1. Putting mg in the previous equation gives my =
q(g" ! — 1)(q"2_" — 1). Recall from Corollary 8.1.3 of [3] that the sum of square of eigenvalues of the
adjacency matrix A is the trace of A? which is twice of the number of edges of the graph. Since our graph
is |GL,,(F)|-regular, if E,, is the number of edges, then

2 —
2B, =q¢" (¢" —1)...(¢" —¢" ).
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This yields another relation on ms and mgs given by

(@ =" =) (" =)+ {q"—q) ... (¢" —q""))*ma
(g = %) (@ = ")) Pmy = (" = 1) (¢ g,

Dividing by (¢" — ¢%) ... (¢" — ¢" ') and substituting my = ¢(¢"~* — 1)(¢"" ™" — 1) give

(" —1%¢"—q)?. . (" =" D+ =" =) ... (" —q" )ms

+alq" =) (" =" )" =D T =)
=" (¢" — 1)(¢" — q)

Since ¢"* " — 1 = (¢" )" — 1, the left hand side is divisible by (¢"~' — 1), so (¢"~' — 1) divides
q”2 (g™ —1)(¢" — q). Tt follows that ¢"~! — 1 divides q"’2+1(q’L —1). Since g and ¢" — 1 are relatively prime,
we have ¢! — 1 divides ¢" — 1 = ¢ — ¢+ (¢ — 1), s0 ¢" ! — 1 divides ¢ — 1 which is a contradiction
because n > 3. Therefore, we have our desired result.

Theorem 3.2.4. The graph Cyy,, () is strongly regular if and only if n = 2.

From the above theorem, we learn that Cy,(r) is not strongly regular for n > 3. Since it is edge
regular with A = e, there are more than one value of the number of common neighborhoods of non-
adjacent vertices in Cyy,, (). If A, B € M,,(F) and rank(A — B) = r for some 0 < r < n, then there exist
invertible matrices P, ) such that

P(A— B)Q _ |: I, Orx(n—r) :|

O(nfr)xr 0(n7r)><(n7r)
For A € M,,(F), let N(A) be the set of neighbors of A. According to Kiani (Lemma 2.1 of [7]), we have

I, 0

IN(A) N N(B)| = ‘ ({0 O} + GLn(F)> n GLn(F)‘

forall A, B € M,,(F) with A # B. It gives the number of common neighbors of any pair of two vertices A
and Bin M,,(F). For 1 <r < n, we define

d(n,r) = ‘ ([{) g} + GLn(F)) N GLn(F)’ .

Since two matrices A and B are adjacent if and only if rank(A — B) = n, we have d(n,n) = e, where e,, is

mentioned in Section 1. Observe that d(n, r) is the number of invertible matrices A such that A — {I(; g]

is also invertible. Now, let {é1, €5, . .., €, } be the standard basis of F". Consider the set X" of vectors given
by

X:{A: [C_il as ... 6n] GGLn(F):aleél +Span{d'2,...,6n}}.
Note that if A € X, then A is invertible but A — K)T g] is not invertible. We proceed to compute d(n, 1).
Since d(n,1) = |GL,(F)| — |X|, we shall determine the cardinality of X. Let A = [a;;]nxn be in X.

Then rank A = n and rank (A — [(1) g}) = n — 1. It follows that @; & Span{as,...,d,} buta; € & +
Span{ds, ..., d,}. This forces that &; ¢ Span{ds,...,d,}. Also, {ds, ..., a,} must be linearly independent.
Thus, there are (¢" — q)...(¢" — q¢" 1) choices for {as,...,d,}. As for dy, it suffices to count under a
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condition @; € €; + Span{ds,...,d,} becauseif d; € Span{ds,...,d,}, then ey € Span{ds,...,d,}, which
is absurd, so there are ¢" ! choices for @;. Hence,

X =¢"" " —q)... (¢" —¢" 7).
Then
Theorem 3.2.5. d(n,1) = |GL,(F)| —|X|=(¢" —¢" ' —1)(¢" —q)...(¢" — ¢" ).
A 0
B C
where A, Band C arer x r, (n —r) x r and (n — r) x (n — r) matrices, respectively. It is easy to see that

detY = det Adet C, and det (X — [Ir 0

Remark. For r > 2, we can find a lower bound for d(n,r). Consider a matrix of the form ¥V = [

0 0]) = det(A — I,) det C. If we choose A to be a derangement

T

0
,q"("=") choices for B, and (¢" " —1)...(¢" " —q"~"~!) choices for C, we have d(n,r) > e,q" ") (¢" " —
1) L (qn—r _ qn—r—l) — er(qn _ qr) L (qn _ qn—l).

matrix and C'is an invertible matrix, thenY and Y — [ 0} are invertible. Since there are e, choices for A4

3.3 Hyperenegetic graphs and Ramanujan graphs

Let F' be a finite field of ¢ elements. In this section, without explicitly computing the spectrum of the
graph, we show that the graph Cy;, (r) is hyperenergetic for all n > 2 and characterize n and ¢ such that
Cwm,, () is Ramanujan.

Sinceq®* —1=(q—1)(*+q+1) > ¢ +q wegetqlg>—1) = ¢ —q > ¢+ 1,50 E(Cyy(r)) =
2¢(¢*> —1)* > 2(¢* — 1). Then Cy, () is hyperenergetic. Next, we assume that n > 3. Recall that p4, =
(¢" = D*(¢" —g)°

(@ =1 —q)

—
==

a(q" — ¢*)...(¢" — ¢" ') is an eigenvalue of Cy, (r) with multiplicities at least

follows that ) )
(¢" = 1)*(¢" —q)
(®—=1)(¢* —q)

E(Cy,m) > 4(q" = %) (d" = ¢" )
Thus, to show that Cy;, () is hyperenergetic, it suffices to prove

(" —1)2(¢™ — q)? n?
@D —q 2~V

Since | GL,,(F)| = (¢" — 1)(¢" — q) ... (¢"™ — ¢" '), the above inequality is equivalent to

q(g" = q*) ... (¢" —q¢" ")

2(¢> — 1)(¢*> — q)(¢™ — 1)
qq" =" —q)

We shall use induction on n > 3 to show that this inequality holds and conclude that Cy, (r) is hyperen-
ergetic. If n = 3, then the right-hand side becomes

22 - —q)(¢”=1) 20q—1), ¢, 3
-1 —-q9 g @+ +D)

| GL, (F)| >

and
|GL3(F)| = (¢ — 1)%(¢° +2¢° + 2¢" + ¢*) > (¢ — 1)*(¢° + ¢* + 1).
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Since ¢ > 2, we have ¢(q — 1)? > 2. Then (¢ — 1)% >

2(¢—1)
q

and the inequality is valid for n = 3. Now,
let n > 4 and assume that
2(¢* — 1)(¢* — ) (¢ D" — 1)
9(¢" "t = D(¢" " —q)
2q(¢* — 1)(¢* — g)(g" V" — 1)
a(¢" —a)(¢" " —q)
L 20(@ =)@~ a)(¢" D"~ 1)
a(¢" — @) (q" = 1)
where the last inequality comes from ¢" — 1 — (¢"~' — ¢q) = (¢""' + 1)(¢ — 1) > 0. Since |GL,,(F)| =
(@ =1)(q"—q)...(¢" —q¢" ') = ¢ *(¢" — 1)|GL,—1(F)|, it follows from the previous inequality that
29(¢* = 1)(¢* — g)(¢" V" - 1)
q9(¢" —q)(g" = 1)
and so it remains to show that ¢"(¢" — 1)((1(”*1)2 -1)> ¢"° — 1. Rewrite
qn(qn _ 1)(q(n71)2 _ 1) _ qn2 +1= q’n(an*n‘i’l _ qn272n+1 _ qn + 1) _ qn2 +1
2 277’7. n2 n n
=¢" T =" T g P+ L
2
=gv it (q”_l(q —-1) - 1) — "+ "+ 1.

|GLn 1 (F)] 2

|GL,(F)| > ¢" ' (¢" = 1)

Sincen >4 and q > 2,
2 2 2 q
qn —n+1 (qnfl(q o 1) o 1) o q2n > qn —n+1 q2n — an(qn —3n+1 1) > 0.
This completes the proof of the next theorem.
Theorem 3.3.1. Cyy, () is hyperenergetic for all n > 2.

Recall that a k-regular graph is Ramanujan if |A\| < 2v/k — 1 for all eigenvalues A other than +k. Since
eigenvalues of a graph are real numbers, this inequality is equivalent to A — 4(k — 1) < 0. We know that
Cwm, (r) is regular with parameter k = (¢" — 1)(¢" — q) ... (¢" — ¢"~'). If n = 2, then its eigenvalues are
(¢> = 1)(¢* — q), —(¢®> — q) and q. Since ¢ > 2, we have ¢*> — ¢ > 2, so

?+4<4¢®> and (¢* —q)* +4<4(¢* —q).

The first inequality gives ¢> +4 < 4¢(q+1)(¢—1)? which is equivalent to ¢* —4(¢* — 1)(¢* —¢) +4 < 0 and
the second inequality directly proves (¢* — q)* < 4(¢* — 1)(¢* — q) — 4. Thus, Cy1,(r) is Ramanujan. Now
suppose that n > 3 and Cy,, (r) is a Ramanujan graph. From the computation in the previous section,
pas = (@ —q)(¢" — ¢*) ... (¢" — ¢" ') is an eigenvalue of Cwm,,(F), 8O

0>p%, — 4" =1 —q)...(¢" —q" ") +4=p%, —4q" — Dpa, + 4= (pa, +2)> —4q"pa,.

It follows that 4¢"pa, > (pa, + 2)? > p1243, so 4¢™ > pa,. For n = 3, this must imply that ¢ = 2 and for

n >4, wehaven +2 < (27Un

5— and so

n (n—1)n n— n—

A" > paz=q = (" =D -1)...(¢-1)>¢q
which leads to a contradiction for all ¢ > 2. Finally, if n = 3 and ¢ = 2, by Theorem 3.2.3, we have
—(2% —2)(2° — 2%) = —24,2(2% — 2?) = 8 and —2° = —8 are eigenvalues of Cy,(z,) and 4((2* — 1)(2° —
2)(2% — 2%) — 1) = 668 is greater than 24% and 8. Hence, Cyy,(z,) is also Ramanujan.

We record this result in the following theorem.

(n—1)n
2

Theorem 3.3.2. The graph Cy;, () is Ramanujan if and only if n = 2 or (n = 3and I = Zs).
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3.4 The unitary Cayley graph of product of matrix rings over finite
local rings

Let R be a local ring with unique maximal ideal M and residue field k. Recall that R/M = k results in
M, (R)/M,, (M) = M,, (k). Then elements in R can be partitioned into cosets of M and can be viewed as
lifting from elements of k. Suppose [M| = m and [k| = g. We fix Ay,..., A .2 to be coset representatives
of M,, (M) in M,,(R).

Lemma 3.4.1. Let A € M,,(R) and X € M,,(M). Then

det(A+ X) = (det A) + m for some m € M.
In particular, A is invertible if and only if A + X is invertible.
Proof. Write A = [a;j]nxn and X = [m;;]nxn. Then

det(A+ X) = Z (sgno)(aio1y + Mio)) - - - (Gnom) + Muo(n))
oESy,

= Z (sgno)(aio(1) - - - Gno(n)) +m = (det A) +m
ocES,

for some m € M. O

The above lemma directly implies the following theorem.

Theorem 3.4.2. 1. For A,B € M,(R), A and B are adjacent in Cyy, gy if and only if A + M, (M) and
B +M,,(M) are adjacent in Cyy, ().

2. The set My, (R)/ My, (M) = {A1 + My, (M), ..., A .2 + M, (M)} is a partition of the vertex set of Cw, (r)
such that

(a) foreachic {1,..., '}, any two distinct vertices in A; + M,, (M) are nonadjacent vertices, and
(b) fori,je{l,...,q"}, A and Aj are adjacent in Cyy, () if and only if A; +M,, (M) and A; +M,, (M)
are adjacent in Cyy, (i)

3. Let M,,(M) be the complete graph of | M,,(M)| vertices with a loop on every vertex. Define f : M, (k) x
M, (M) = M, (R) by f(A; + M,,(M),X) = A, + X forall i € {1,...,¢" }and X € M,,(M). Then f is
an isomorphism from the graph Cyy, i1y @ My, (M) onto the graph Cy, (g)-

Proof. The above discussion implies (1) and (2) For (3), we first show that f is an injection. Leti,j €
{1,...,¢""} and X, Y € M, (M) such that 4; + X = Aj+Y. Then A;, — A; =Y — X € M,(M). This
forces that A; + M,,(M) = A; + M,(M) in M,,(k), so i = jand X = Y. Since |M,, (k) x M,,(M)| =
|M,,(R)|, f is a bijection. Finally, for i,j € {1,...,¢" } and X,Y € M, (M), we have (4; + M,,(M), X)
and (A; + M,,(M),Y) are adjacent in Cyy,, (1) ® M,, (M) if and only if A; + M,,(M) and A; + M,,(M) are
adjacent if and only if A; and A; are adjacent by (2). Hence, f is a graph isomorphism. O

Next, we assume that R is a finite local ring which is not a field with unique maximal ideal M and
residue field k. Let | M| = m and |k| = ¢. Since the adjacency matrix of M,, (M) is the all-ones matrix of size
2
o m' 0
mn2’ we have SpeC(Mn(M)) = ( 1 mn2 B 1) and (qn — ]_)(q'”f _ q) Ce (qn _ q’ﬂfl)’ 7(qn o q) . (qn _
¢" ') and q(¢" — ¢?)...(¢" — ¢" ") are eigenvalues of Cy;, (). Since the eigenvalues of G @ H are \;p;
where \;’s and p;’s are eigenvalues of G and H, respectively, we can conclude from the isomorphism in
Theorem 3.4.2 (3) that 0, m™ (¢" — 1)(¢" — q) ... (¢" — "~ 1), —m™ (¢" — q) ... (¢" — ¢"~ 1) and m" q(q" —

q*)...(¢" — ¢"~") are distinct eigenvalues of Cyy, (g)- Then we have shown the following theorem.

31



Theorem 3.4.3. If R is a local ring which is not a field and n > 2, then Cyy, (g is not strongly regular.
However, it turns out that the graph Cyy, (r) is hyperenergetic.
Theorem 3.4.4. If R is a local ring, then Cy;, () is hyperenergetic for all n > 2.

Proof. Let k be the residue field of R and assume that |k| = ¢. Recall that Cyy, (i) is hyperenergetic and
(¢" = 1)*(¢" — )
(¢ = 1)(¢* = q)

n

Cwm,, (r) has —m"zq(q” —q?)...(¢" — ¢" ') as an eigenvalue with multiplicities at least

The proof of Theorem 3.3.1 tells us that

n 2 n n—1 (qn — 1)2(qn — q)2 n?
— e — > 2 -1
aq"=q7) ... (" —q") @D =g (q )
Note that the left-hand side is a multiple of ¢. It follows that
B n_1 2(,n _ \2 5
q(¢" =) ... (" —q"") @ 1" —a) 2q"

(> =1(*—q) —
Multiplying by m™ both sides gives

(" —1)*(¢" — q)*
(¢* = 1)(¢* — q)

which completes the proof. O

m"q(q" — ) ... (q" —q" ) > 2(mq)" > 2((mg)"™ — 1)

Theorem 3.4.5. If R is a local ring which is not a field, then Cy;, () is not Ramanujan for all n > 2

Proof. For simplicity, letr = | GL,,(k)|. We first handle case n > 3 and ¢ > 3. Then Cy;,, i is not Ramanujan
by Theorem 3.3.2. From the proof of Theorem 3.3.2, we have (¢" — q) ... (¢" — ¢" ') > 2y/r — 1. Thus,

2

2 — n
m" (¢"—q)...(¢" — ¢" 1)22m r—1,

so we must show that m™ /7 — 1 > vVm"*r — 1. Rewrite
m?" (r—1)— (m™r — 1) = (m™ — 1)(m”2r - 1).

Since R is not a field, we have m > 2, so (m”2 —1) (m"2r —mn — 1) > 0 and the desired inequality follows.
Next, we assume that n = 3 and ¢ = 2. Then —m?(2® — 2)(2% — 22) = —24m? is an eigenvalue of Cyy,(r)-
Moreover, 7 = m?(23—1)(23-2)(23-22) = 168m°. We have 576m '8 —4(168m° —1) = m?(576m° —672) +4.
Since m > 2, we get 24m® > 2v/168m? — 1. Finally, if n = 2, then —m*(¢* — ¢) is an eigenvalue of Cy, (r)
and r = m*(¢* — 1)(¢®> — q), so

m®(¢® — q)* —4(m* (> = 1)(¢" —q) = 1) =m*(¢* — ¢)* — 4m*(¢" — 1)(¢* — q) + 4
m®(q® —q)* —4m*(¢* —q)* +4
(m® —4m*)(¢® — q)* +4>0

Y

because m > 2. Hence, Cyy,(r) is not Ramanujan. O
Let Ry,..., R, be finite local rings with maximal ideals My, ..., M, and residue fields ky, ..., ks, re-
spectively. Let R = M,,, (R1) X - -- X M,,, (Rs) where ny,...ns € N. By Theorem 3.8 of [6], we have

X(Cr) = w(Cr) = w(Cw,, (k1) x-xMy, (k) = g}gs{lki
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Finally, we compute o(Cx). Theorem 3.4.2 (3) gives
Cr = (Caty () @ @ Cot, (1) ® (Mg (M) @ - @ M, (My)).

Since the second product is a complete graph with a loop on each vertex, we can see that

a(Cr) = (Cwm,,, (k) @ @ Cwm,_ i) [ [ M, (M)

i=1
s
H |Mnl i s

R|
= T iy H‘Mm i) =
1@13{\k| bz Jin (k™ }
Thus, we prove:
R|

Theorem 3.4.6. w(Cr) = x(Cr) =

A" and a(Cr) =

1<i<s ' }

For each 1 < 1 <s, let |Mz| =m; and |kl| = q;. Recall that Pi = —mi"izqi(qin — %2) . (qin — qin—l)
(@" = 1*(¢" — q:)*
(¢:* = D(@® — @)

[I;_, pi is an eigenvalue of Cx with multiplicities at least [[}_, t;. By Theorem 3.4.3, we have p;t; >
2(|My, (R;)] — 1) for all 1 < i < s. Note that the left-hand side is a multiple of ¢;. We can conclude that
pit; > 2|Ri|"i2. It follows that

1o 10t = Tot: = TT2Mo ()] = 2 ] 1M (R)] > 2 (HMW(R» - 1) .
=1 =1 =1 =1

i=1 i=1

for all . Hence,

is an eigenvalue of Cy;, (g,) with multiplicities at least ¢; where ¢; =

This shows that:

Theorem 3.4.7. The graph Cr is hyperenergetic. In particular, if R is a finite commutative ring, then Cyy, (g is
hypergeometric for all n > 2.

Remark. The later statement comes from the fact that every finite commutative ring is isomorphic to a
direct product of finite local rings. Indeed, we can use this fact and Theorem 3.4.6 to compute the clique
number, chromatic number and independence number for the unitary Cayley graph of a matrix ring over
a finite commutative ring.
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Chapter 4

Subconstituents of Unitary Cayley
Graph of Matrix Algebras

4.1 Introduction

Let G be a finite abelian group and S be a subset of G not containing the identity and S = S~! where
S—1 = {s71: s € S}. The Cayley graph of G associated to S is the undirected graph Cay(G, S) whose vertex
set is G and for each g, h € G, g is adjacent to h if and only if g = hs for some s € S. We say that a Cayley
graph is normal if S is a union of conjugacy classes of G.

For a finite ring R with identity 1 # 0, we know that (R, +) is an abelian group and we denote its
group of units by R*. The unitary Cayley graph of R, Cg, is the graph Cay(R, R*), that is, its vertex set is R
and for each z,y € R, = is adjacent to y if and only if x —y € R*. Since a finite commutative ring R can be
decomposed as a direct product of finite local rings Ry, ..., R, the graph Cp, is the tensor product of the
graphs Cg,,...,Cg,. Here, for graphs G and H with vertex sets V(G) and V (H), the tensor product G and
H, G ® H, is the graph with vertex set V(G) x V(H) such that (a, b) is adjacent to (¢, d) if and only if a is
adjacent to ¢in G and b is adjacent to d in H forall a,c € V(G) and b,d € V(H). In addition, if R is a finite
local ring with maximal ideal A/, it follows from Proposition 2.2 of [1] that Cr is a complete multi-partite
graph whose partite sets are the cosets of M. Thus, the unitary Cayley graphs of finite commutative rings
are well studied.

Let G be a graph and V(G) the vertex set of G. We give some terminologies from graph theory as
follows. A cligue is a subgraph that is a complete graph and clique number of G is the size of largest clique
in G, denoted by w(G). A set I of vertices of G is called an independent set if no distinct vertices of I
are adjacent. The independence number of G is the size of a maximal independent set, denoted by «(G).
The chromatic number of G is the least number of colors needed to color the vertices of G so that no two
adjacent vertices share the same color. We write x(G) for the chromatic number of G. If every vertex of G
is adjacent to k vertices, then G is a k-regular graph. Clearly, the above Cayley graph associated to a set
S is a |S|-regular graph. Finally, we say that a k-regular graph G is edge regular if there exists a parameter
A such that for any two adjacent vertices, there are exactly A vertices adjacent to both of them. If an edge
regular graph with parameters &, A also satisfies an additional property that for any two non-adjacent
vertices, there are exactly y vertices adjacent to both of them, then it is called a strongly reqular graph with
parameters k, A, [i.

An eigenvalue of a graph G is an eigenvalue of the adjacency matrix of a graph G. The energy of a
graph G, E(G), is the sum of absolute value of its eigenvalues. The spectrum of a graph G is the list of its
eigenvalues together with their multiplicities. If Ay, ..., A, are eigenvalues of a graph G with multiplic-
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Moo
my ... my
E(G) = mi|A| +--- +m,|\:|. A graph G on n vertices is hyperenergetic if its energy exceeds the energy of
the complete graph K, that is, E(G) > 2(n — 1). A k-regular connected graph G is a Ramanujan graph if
|A] < 2vk — 1 for all eigenvalues \ of G other than +k.

For aring R with identity 1 # 0 and n € N, M,,(R) is the ring of n x n matrices over R and the group of
all invertible matrices over R is denoted by GL,,(R). Throughout this work, I,, is the n x n identity matrix
and 0,,, x, is the m x n zero matrix for all m,n € N.

In the previous chapter, we used additive characters of M,,(F') where F is a finite field and n € N
to determine three distinct eigenvalues of Cy;,(r) and use them to conclude that the graph Cyy, (s is
strongly regular if and only if n = 2. We also showed that Cy;, (r) is always hyperenergetic and gave a
criterion for being a Ramanujan graph. Chen et al. [3] obtained all eigenvalues of Cy,, (r) using Bruhat’s
decomposition.

Let G be a graph and z a vertex of G. The first subconstituent of G at x is the subgraph of G induced
by the set of neighborhoods of « and the second subconstituent of G at x is the subgraph of G induced by
the set of vertices which is non-adjacent to = except x itself. Subconstituents of strongly regular graphs
are studied in many graphs and have many interesting properties. The second subconstituent of the
Hoffman-Singleton graph is determined by its spectrum in [5]. Moreover, the discovery of which graph
has strongly regular subconstituents interests mathematicians. For example, Cameron et al. [4] used the
Bose-Mesner algebra of a strongly regular graph to classify strongly regular graphs whose subconstituents
are strongly regular, and Kasikova [8] used the same tools to classify distance-regular graph which has
strongly regular subconstituents. In addition, we can use eigenvalues of subconstituents to prove the
uniqueness of strongly regular of some parameter, e.g., Clebsch graph is a unique strongly regular graph
with parameters (16, 5,0, 2) (see [7] p.230).

Now, we turn to the subconstituents of the unitary Cayley graph. Let R be a finite ring with identity
1 # 0. The set of neighborhood of a vertex « of the graph Cr is denoted by N(z). For « € R, the maps
f:N(@O) - N(z)and g : R~ (N(0)U{0}) = R~ (N(x)U{z}) which both send y to = — y are graph
isomorphisms. Hence, we may only study the subconstituents at + = 0 and we write Cg) and Cg) for
the first subconstituent and the second subconstituent of Cr at « = 0 € R, respectively. Let F' be a finite

ities my, ..., m,, respectively, we write Spec G = ( ) to describe the spectrum of G and so

field and n € N. In this work, we study Cl(vﬂ( ) and Cﬁi( ). The graph CI(\/E( r) is defined on the group

GL,(F') and the graph CI(\,ZI) () is defined on the set of nonzero non-invertible matrices over F'. We have

the structure of CI(VE( ) and Cﬁz( )~ We can determine the spectra of CI(\/E( ) and Cc®  and conclude

F
hyperenergeticity and Ramanujan property for both graphs. In addition, we Computelvﬁie )Clique number,
the chromatic number and the independence number of Cl(\/i)l () and Cﬁ; (F)-

Next, we recall some results from representation theory used in this work. We refer the reader to [6]
for more detail. Let (G be a finite group and V' a finite-dimensional complex vector space. A representation
of G on V is a homomorphism p : G — GL(V') where GL(V) denotes the group of automorphisms on V.
For a representation p of G on V, a subspace W of V' is p-invariant under G if p(¢g)(W) C W forall g € G.
If p has no proper invariant subspace of V, then we say that p is an irreducible representation. Next, we
define a character of a representation. Let p be a representation of G on V. Then for each g € G, p(g) isa
linear transformation on V. A character x corresponding to p is the complex-valued function on G defined
by x(g9) = tr(p(g)) for all ¢ € G where tr(p(g)) is the trace of the matrix representation of p(g) on V. A
character is said to be irreducible if they are induced from an irreducible representation. The dimension of
a character is the dimension of vector space V. It is easy to see that x(1) = dim V where 1 is the identity
of the group G, and x(ghg~!) = x(h) for all g, h € G. Thus, a character is a constant on a conjugacy class
of G. Moreover, we have known from [10] that if S is a union of conjugacy classes of G’ and x1, ..., X, are
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irreducible characters of G, then the eigenvalues of Cay(G, S) are

1
Aj = msezSXj(S)

with multiplicity m; = Z xk(1)? forall j € {1,...,r}.

k=1
Ae=A;

Let I be the finite field of order ¢g. Recall that the multiplicative group of nonzero elements of [ is
2wimk

cyclic. Write F* = (a) for some a € F*. The irreducible characters of the group (F'*,-) are xx(z) = e a1 ,
where x = a™ € F* and k € {0,1,2,...,q — 2}. In addition, we have

{q—l ifk =0,

Theorem 4.1.1. Fork € {0,1,...,q— 2}, Z Xk(x) =

oy 0 otherwise.

The conjugacy classes of GL(F') are given in the following table.

Representatives Number of elements | Number of classes
aga:(aj 0>,x7é0 1 q—1
0 =z
bx:(w 1>,x7é0 -1 g—1
0 =
0 —1)(g—2
Cayy = g >,x¢yandm7y#0 7 +4q = a=?)
Y 2
dypy = (5 Zy) .y # 0 (¢ is odd)
2 q(g — 1)
qa —q 9
0 zatl
d, = (1 z—f—zq) ,2 € EX F (qiseven)

where ¢ € F ~ F?. Here, Czy and ¢, , are conjugate, d, , and d, _, are conjugate, and d. and d.. are
conjugate. Moreover, let E = F'[/] an extension of F' of degree two. We can identify the matrices d, , as
¢ = z + yy/e and the matrices d, as z in E ~ F. Now, let «, 3 be distinct irreducible character of F'* and
© an irreducible characters of E* such that ¢? # ¢ and ¢ is not an irreducible character of F*. The next
table presents all irreducible characters of GLy(F'). As mentioned earlier, it suffices to specify their values
on each conjugacy class of GLy(F).

qis odd q is even
gy = <x 0) by = (m 1) Coy = <$ 0) x ey 0 2ot
x — x — T,y — _ _ o _
0 = 0 =z 0 y dzyy—<y x)-( dz—<1 z—i—zq)_z

Ua a(z?) a(z?) a(zy) a(¢?) a(z?)

Va qo(z®) 0 a(zy) —a(¢) —a(z9)
Was | (¢+ Da(z)B(x) a(z)B(z) a(z)B(y) + aly)B(z) 0 0

X (¢ — Dep(z) —p(z) 0 —(p(Q) + (<) —(p(2) + (%))

Moreover, Uy, Vo, Wo g and X, are of dimension 1, ¢,¢ + 1 and g — 1, respectively.

The paper is organized as follows. In the next section, we prove that the graph Cl(\/i)l( ) is a normal
Cayley graph and we determine all eigenvalues of the graph C](VB (ry Dy using the two tables above. We
show further that it is hyperenergetic and Ramanujan if ¢ > 3. In section 3, we show that the graph
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(1)
Chz(p)

spectrum. We apply this result to conclude that C ) is hyperenergetic but it is not Ramanujan if ¢ > 5.
We compute the clique number, chromatic number and the independence number of the subconstituents
of the graph Cyy, (r) in the final section.

is the tensor product between a complete graph and a complete multi-partite graph, and obtain its

4.2 Spectral properties of Cl(vl[) (F

In this section, we study spectral properties of CM ()~ We start by showing that CM (ry is Cay (GL,(F),
(I, + GL,(F)) N GL,(F)). To see this, let A, B € GL,,(F). Then AB~! € GL,,(F) and
A—BeGL,(F) < (AB™' —1,)B™! € GL,(F)
= (AB™!' —1,) € GL,(F)
<= AB ' € (I, + GL,(F)) N GL,(F).
It also follows that the graph CM () 1s regular of degree |(I, + GL,(F)) N GL,(F)| = e,, defined in the
previous section. Moreover, for A B € GL,(F), we have
ABA™' € (I, + GL,(F)) NGL,(F) < ABA™ —1,, € GL,(F)
< A(B-1,)A"' € GL,(F)
<~ (B —-1,) € GL,(F)
<— B e (I, + GL,(F)) N GL,(F).
Thus, (I, + GL,(F)) N GL,(F) is a union of conjugacy classes, so ct
record this result in

Theorem 4.2.1. The graph CM ()
GL,,(F) and it is regular of degree e,,.

M .(r) is a normal Cayley graph. We

is the normal Cayley graph of GL,,(F') associated with (I,, + GL,(F)) N

Next, we determine all eigenvalues of C( ) (F) Letk € {0,1,...,q — 2} and consider yj, an irreducible
character of F'*. We first handle the case ¢ is odd by showing some lemmas on sums of characters of F'*.

Lemma 4.2.2. If ¢ is odd, then for k € {0,1,...,q — 2},

> @) = {‘1—1 ifk € {07q—21},

zEFX 0 otherwise.

Proof. We know that

q—2 q—2 q—2
47rzmk
> ) = Y wlat) = 3 = 3 ()
zeFX m=0 m=0 m=0
ik -1 1
Note that ¢ ©“T = 1 if and onlyif k =0ork = %.Ifk € { K 5 } then %) = ¢ — 1. Finally,
eFx

ifk & {0, qgl}’ then
rEFX 1- ( 4m)

and the proof completes. O
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Lemma 4.2.3. If q is odd, then for k € {0,1,...,q — 2} and € € F ~ F, we have

> —5q+6 ifk=0,

) -1
@ 3 oy =q-q+3  ifk="T— and
wyel ;Zy{l} 2 otherwise,

¢ —q ifk=0,
(b) Z k(@ —ey?) =4 —g+1 ifk::g7

2
(z,y)EFXF 0 otherwise.

Proof. We note that

S xelzy) = ( > Xk($)> Do | = D (@)

z,y€F* {1} TEFX yeFX zeFX
and x#y
- > x@- ) x)
zEFX~{1} yeF*x~{1}
2
= ( > Xk(ﬂﬂ)) - < > Xk(ﬂfz)) -2 ( > Xk(@) +2.
zel* reFx reF'X

-1
If k = 0, then applying Lemma 4.2.2 gives the right-hand side equals ¢> — 5 + 6. If k = qT, then the

-1
right-hand side is —¢+ 3. Finally, if k ¢ {0, qT }, then the summands on the right-hand side are all gone

and we get 2 left. This proves (a).

For (b), since e € F \ F?, E = F[/] an extension of degree two of F. Thus, E = {z +y\/z : 2,y € F}.
Moreover, let N be the norm map. Recall that for 2,y € F, Ng,p(z+y\/€) = 2?2 — ey? and by Hilbert’s
Theorem 90, N/ is surjective with kernel of size ¢ + 1. Consider the sum

> @ —ey) = > xi(@® —ey?) = Y xu(a?)

(z,y)EFXF* (z,y)EFx F\{(0,0)} reFX
= > Xe(Npyp(z+yve) — > xul(a?)
(z,y)eFx F\{(0,0)} TEFX
= |kerNg, 5| Z Xk () — Z xk(z?)
zEFX wEF*
=(q+1) > xkl@) — > xla?).
reFX reFX

-1
If k = 0, then the right-hand side becomes ¢ — ¢, and if k = qT, then the right-hand side is —(¢ — 1)

-1
by Lemma 4.2.2. Finally, for k ¢ {0, qT }, it also follows that each summand on the right-hand side is
O

Lemma 4.2.4. For k,l € {0,1,...,q — 2} such that k # [, we have

S (@) + xe(@)xi(x)] =

z,yeF* {1}
and x#y

4 ifO<k+l<q—1k1+0,
2(3 —q) otherwise.
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Proof. We consider the sum

> @) +x@xa@l =2 > xe@)x)

z,y€F* {1} zyeF* {1}
and z#y and z#y
=2 (Z xk(x)> doxw | = > w@a@ - Y @ - D b
xeF X yeFx zEFX zeEF*X~{1} yeF*~{1}
Recall that

Z Xk (z)xi(x) =

rze X
Sincek £ 1,k+1#0.Ifk+1=q—1,then k,l # 0 because 0 < k,l < q — 2. It follows that

> @) + xe@xa(@)] =2(—(g— 1) +2) =2(3 - g).

z,yeF* {1}
and z#y

q—1 ifk+l=q—-1,
0 otherwise.

Assume that k& + [ # ¢ — 1. We distinguish two cases.
Casel. k =0o0r!=0,say k = 0. Then [ # 0 and so

> @@ +xe@)xi(@)] =2(=(g—1)+2) =23 - g).

z,yeF* {1}
and z#y

Case 2. k,l # 0. Then we conclude that
> a@xiw) + k()] = 2.

z,y€F "~ {1}
and z#y

This completes the proof. O

Remark. Assume that ¢ is odd. Before computing the eigenvalues of CI(\/E (ry, We note that for each z,y €
F,

(a) a, € GLQ(F) N (12 + GLQ(F

~—

)ifand only if z # 1
)

~—

(b) by € GLa(F) N (Iz + GLy(F)) if and only if z # 1
)

)

)

(©) czy € GLo(F) N (Iz + GLo(F)) if and only if z,y # 1

(d) dyy € GLo(F) N (I2 4+ GLo(F)) forall z € F and y # 0.

To verify (d), we suppose that there exist + € F and y € F* such that det (x; ! xa_y 1) =0, so0
(r —1)? —ey? = 0in F. Thus, z + y/z = 1in E. Since {1, \/¢} is an F-basis of E, we have y = 0 which is
absurd.

From the character table of GLy(F') mentioned at the introduction, let A, denote an eigenvalue induced
from an irreducible character x. Since the character U,, has dimension one, the above remark gives

My = Y w@ @)Y

zeF*X~{1} reEFX~{1}
2 2
q+q q —q
+ > xkley) + > k@’ —ey?).
z,yeF* {1} (z,y)EFXFX*
and z#y
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According to Lemmas 4.2.2 and 4.2.3, we have Ay, = ¢* — 2¢° — ¢* + 3¢, Av,, , =gand

*+q

Moy, = (D + (@ = D)+ I+ = g

Xk
—1
ifk <0, qT . It follows that the eigenvalues of CI(\/E( ry Obtained from Uy, are ¢t —2¢> — ¢*> + 3¢ and
q with multiplicities 1 and g — 2, respectively.
Now, we work on V,, . Since V,, has dimension ¢, we have

2 2
A, =g Y o)+l +q Yo - Y e e
g 2 2
rEFX {1} zy€FX {1} (z,y)EF X FX
and x#y

Again, applying Lemmas 4.2.2 and 4.2.3 gives Ay, | = —¢* + ¢+ 1, Avi,, =4 and
2

1
M = (q<—1> 4

@ +q

(1+1)>—q

—1
if k ¢ {0, QT} Thus, the eigenvalues of Cl(vg( ) obtained from V,, are —¢* + ¢+ 1 and ¢ with multiplic-

ities ¢* and ¢ + ¢*(q — 3) = ¢® — 2¢?, respectively.
Next, we consider the eigenvalues induced from the character W,, ,, with & # I. Since W, ,, has
dimension ¢ + 1, we have

M= — (@) T wen@r@-1) Y @)

Q+1 zeF*~{1} zeEF*~{1}

TS @) + ()

2
z,y€F* {1}
and z#y

First, we assume that k +1 = ¢ — 1. Thus, k,[ # 0. Note that there are q

choices of such k, I. It follows

from Lemma 4.2.4 that
1 *+q
A = 1)(q —2 2 _1)(g—-2)+2 3— =q.
Wi q+1((q+ g —2)+(¢° —1)(¢—2) + < 5 )( q)> q
If0 < k+ 1< qg— 1, then we have two cases to consider. If k = 0 or [ = 0, then there are ¢ — 2 choices of k
and [, and
2
q +q
M = 7 (D0 + @ -0 +2 (DY) 6-0) = —ala-2),

2

If k,1 # 0, then there are (g _23) choices of k and [, and

)‘kayxz = q+1

(@ D+ @ -y + (L) @) -

Thus, the eigenvalues of Cﬁi () Obtained from Wy, are —q(¢—2) and g with multiplicities (¢+ 1)%(¢—2)

and 4T 1)2(q2— 2)(q —3)

, respectively.
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Finally, let ¢ be an irreducible character of E* such that ¢? # . Hence, ¢ is a non-trivial character

and there are g g choices of ¢. Since X, has dimension ¢ — 1, we have

o= —— (-0 Y w@w-@-1) Y ew@

¢—1 z€F X~ {1} zEFX~{1}

2

~L 20N (plr + yvE) + el — yVE))

2 (z,y)EFXFX
= q% (@’ =) Y e+ (-9 - (@ —a Y, el@+y/e)
reEFX (z,y)EFXFX
- q—% <—(q2 —q) x;ﬂ: (@) +(¢* — q)) =

—1)2(g? —
Hence, the eigenvalue from this case is ¢ with multiplicity W

Summing all multiplicities of the eigenvalue ¢ from each character gives its total multiplicity ¢* —
2¢® — 2¢° + 4q + 1. Therefore, we obtain the spectrum of CI(\/}E (P in the case that ¢ is odd. For ¢ even and
q > 4, we can find all eigenvalues corresponding to each U,, V, and X in the similar manner without

-1 -1
the case k = qT Note that the eigenvalue obtained from the case k = qT when ¢ is odd is always

g. Hence, the eigenvalues corresponding to those characters of the case ¢ is even and ¢ > 4 are equal to
the eigenvalues in the case ¢ is odd. As for eigenvalues corresponding to W,, ,,, we have multiplicities
(g+1D%(¢=2) ,(a+1)*(@=4)(g-2) (a+1)%*(¢—2)(¢—3)

2 2
multiplicities of ¢ when ¢ is even stays same.

of ¢ become whose sum is again , so the

Finally, if ¢ = 2, then the graph CI(VE( F) has (22 — 1)(22 — 2) = 6 vertices and is two copies of K3, so its
spectra are 2 of multiplicity 2 and —1 of multiplicity 4. Thus, we completely determine the spectrum for
the graph Cl(\z( )

Theorem 4.2.5. (a) If ¢ = 2, then Spec Cﬁiw) = (; _41) :

(b) If ¢ > 3, then

o (=2 - +3q q > +q+1 —¢*+2q
SpecCyy, gy = 4 3 2 2 2
2(F) 1 " —2¢° —2¢° +4q +1 q (¢+1)*(¢—2)

Moreover, E(CI(\/};(F)) =2¢° — 2¢* — 8¢ + 6¢> + 8q forall ¢ > 2.
Furthermore, for all ¢ > 3, we have

B(Cyy) p) = 20" — 2¢" — 8¢ + 66> + 8¢ — 2 ((¢* — 1)(¢* —¢) — 1)
=2¢° — 4¢* — 6¢° + 8¢* + 6¢ + 2 > 2¢° — 4¢* — 6¢° = 2¢*(q — 3)(¢ + 1) > 0.

(1)

This proves hyperenergeticity of the graph Ciy(F

cause its energy is 8 < 2(6 — 1).

. (1) (1)
Since CM2(22 M, (F)

q > 3.Since | —¢*+q+1| > |—q(g—2)| > g, it suffices to show that 2,/(¢* —2¢® —¢> + 3¢ — 1> ¢*—q—1

) when ¢ > 3, while Cl(\/ﬁ (z,) 18 not hyperenergetic be-

) is disconnected, it is not Ramanujan. To show that the graph C is Ramanujan for
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which is equivalent to 4(¢* — 2¢®> — ¢*> + 3¢ — 1) > (¢*> — ¢ — 1)?, and we have

Aq' -2¢° —¢* +3¢—1) = (¢ —q—1)* =3¢" — 6¢° = 3¢> +10¢ — 5
>3¢" —6¢° —3¢° =3¢*((g—1)* —2) > 0.

We record this work in

Theorem 4.2.6. The graph CI(VE (r is hyperenergetic and Ramanujan. Moreover, CI(\}[Z (z,) 18 neither hyperenergetic
nor Ramanujan.

4.3 Spectral properties of Cl(\/21)2 (F)

We study the second subconstituent of Cyy, () in this section. We first show that the graph is a tensor
product of a complete graph and a complete multi-partite graph and so we can calculate its eigenvalues.
Let F2*! denote the set of column vectors of size 2 x 1 over F. Since a 2 x 2 matrix is non-invertible if and
only if its column vectors are parallel, we can conclude that

My(F) ~ (GLa(F) U {02x2}}) = U {(a7 %):acF} U{(ﬁ @:U€F2X1\{6}}

TEF2X1 {0}

)

L(y We need the next

where 0 denotes the zero vector of F>*!. Before giving a structure of the graph Cl(\i
lemma.

Lemma 4.3.1. Let A, B be non-invertible matrices in My(F), a,b € F and 7, € F2*' < {0}.

(a) If A= (a¥ ©)and B = (b ), then A — B is non-invertible if and only if a = b or ¥, are linearly
dependent, or equivalently, A — B is invertible if and only if a # b and U, W are linearly independent.

(b) IfA= (a¥ ©)and B = (w 0), then A— B is non-invertible if and only if ¥ and 1 are linearly dependent.
Proof. Observe that
A — Bisnon-invertible <= (a? — b)) = ¢(¥ — @) for some ¢ € F.

Assume that A — B is non-invertible and ¥, are linearly independent. Then @ = cand b = ¢, so a = b.
Conversely, the case a = b is clear. If & = ¢t for some ¢ € F, then A — B = ((a —bc)7 (1 —c)7) is
non-invertible. This proves (a). For (b), we have

A — B is non-invertible <= a¥ — @ = c¥ for some c € F

<= (a —¢)U = for some c € F,
which is equivalent to ¢ and « are linearly dependent. O

In the next step, we define two graphs GG and H as follows: G is the complete graph on ¢ 4 1 vertices
parametrized by the set of projective lines P! (F) = {[a,1] : a € F} U{[1,0]} and the vertex set of H is
F2¥1 < {0} and for any ¥, € F?*' \ {0}, ¥ and & are adjacent if and only if & and & are not parallel.
Note that H is the complete (¢ + 1)-partite graph such that each partite has ¢ — 1 vertices.
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Let f : C(2 () — G ® H defined by (av @) — ([a,1],7) and (¥ 0) ~ ([1,0],9) for any a € F and
7€ F2x1\ {0} Thus, f is bijective. Now, let A, B be nonzero non-invertible matrices in My (F'),a,b € F
and 7,7 € F?*!, A= (a¥ ¥)and B= (b&y ). Lemma 4.3.1 (a) implies

A—B e GLy(F) <= a # b and ¥, W are linearly independent
< ([a,1],7) isadjacentto ([b,1], ).

Next, we assume that A = (a7 @) and B = (@ 0). From Lemma 4.3.1 (b), we have

A — B e GLy(F) <= vand @ are linearly independent
<= ([a,1],7) isadjacentto ([1,0],w).

Hence, f is a graph isomorphism, so we have the structure of the graph C1(v1) (F)"

Theorem 4.3.2. The graph C1(v21; () Is the tensor product of the complete graph on q + 1 vertices and the complete
(q + 1)-partite graph such that each partite has q — 1 vertices, and it is a (¢* — q*)-regular graph.

Recall from [7] thatif Aq, ..., A are eigenvalues of a graph G1 and (11, . . ., 14; are eigenvalues of a graph
G, then the eigenvalues of the tensor product G; ® G5 are \;u; where i € {1,...,k}and j € {1,...,1}.
Since the eigenvalues of G are ¢ of multiplicity 1 and —1 of multiplicity ¢ and the eigenvalues of H are
¢* — ¢, —q + 1 and 0 of multiplicities 1, g and ¢? — ¢ — 2, respectively, we obtain the spectrum and energy

(2)
of the graph Cy,’ 1.y
Theorem 4.3.3. We have
3 2
¢ -9 —q+q q-1 0
Spec CM (F) = ( 1 % 2 —3q— 2) .

Moreover, E(Cﬁz( F)) = 4¢3 — 4¢.
. . 2 .
Since the number of vertices of Cl(\/[i(F) is [Ma(F) \ (GL2(F)U{0})|=¢*+¢* —g—1and
4> —4¢° = 2(¢° +¢* —q—2) =2¢° — 6¢° +2¢ +4=2(q — 2)(¢° —q— 1) > 0,

Thus, CM) (r is hyperenergetic unless g = 2. Finally, we show that the graph CM (p) is not Ramanujan if

g > 5. Since ¢? —q is an eigenvalue of CM2 (Fy We claim that (¢* —¢)* > 4(¢® —¢*>—1), which is equivalent to
the inequality ¢* —6¢>+5¢*+4 > 0. This holds for ¢ > 5 because ¢* —6¢°+5¢>+4 = ¢*(¢—1)(¢—5)+4 > 0.
For ¢ = 2,3 or 4, it is easily seen that CM (r) is Ramanujan. We record both results in

Theorem 4.3.4. The graph CNQIQ( F) I8 hyperenergetic if and only if ¢ > 3, and it is Ramanujan if and only if ¢ < 4.

44 Clique number, chromatic number and independence number

In this section, we compute the clique number, the chromatic number and the independence number of
subconstituents of Cyy,(ry. Recall from the proof of Theorem 3.4 of [9] that the ring M,,(F) contains a
subfield K of order ¢". We start w1th the first subconstituent. Note that 0,,x, € K and so K ~ {0, xn}
forms a complete subgraph in CM (F)" Hence, w (Cl(\/[ (7)) = @" — 1. On the other hand, let J be the set of
matrices in M, (F') whose all entries in the first row are zero. We can see that J is an ideal of M,,(F') of
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n

¢"" ™ elements. Write M, (F) = | J(B; + J) as a union of cosets of J where the coset B; + J = J. Note
1

2

.
that each coset forms an independent set and 0,,x,, € J. It follows that GL,,(F') is a subset of U (B; +J)
i=2

and hence X(C(l) ) < ¢™ — 1. Since W(Cl(vﬂ( F)) < X(Cﬁi( F)), we have the following theorem.

M, (F)

Theorem 4.4.1. w(Cl(vll) ) = X(CI(\/},)I(F)) =q¢"— L

n(F)
T¥er V(G| :
Recall from [2] p.147 that if G is a graph, then o(G) > @ Theorem 4.4.1 gives
X
GL" F n n n—
a(Cyy) ) 2 % =" ~q)...(¢" —q¢"7).
X(Cy, (1))

Consider the group K* as a multiplicative subgroup of GL,, (F). Let X = AM and Y = AN where
M,N € K* suchthat M # N and A € GL,,(F). Then X—Y = A(M—N) is invertible because M, N € K *.
It follows that each coset forms a complete graph. This implies that O‘(Cl(vﬁ( F)) <@ —q)...(¢" —q¢" ).
Hence, we have shown

Theorem 4.4.2. a(CI(VE(F)) =(q"—q)...(¢" —q" ).

By Theorem 4.3.2, we have the second subconstituent of Cyy, () is the tensor product of the complete
graph on ¢ + 1 vertices G and the complete ¢ + 1-partite graph H such that each partite has ¢ — 1 vertices.
Since x(G) = x(H) = ¢+ 1, we can conclude that X(Cl(\iz(F)) < ¢+ 1. Moreover, let V(G) = {a1,...,aq41}
and V4,. .., V41 be the partites of H. Choose v; € V; foralli € {1, ..., ¢+1}. We can see that the subgraph
of G® H induced by {(a1,v1),. .., (@g+1,v4+1)} is a complete graph, so w(G® H) > g+ 1. Thus, we obtain
the clique number and the chromatic number of the graph Cﬁz (F)

Theorem 4.4.3. w(Cﬁ;(F)) = x(Cﬁ;(F)) =q+1L

(2)

Our final theorem gives the independence number of Cy) ).

Theorem 4.4.4. a(Cl(\z(F)) =¢ -1

Proof. Similar to the proof of Theorem 4.4.2, we know from Theorem 4.4.3 that

o€ ) > MU CLalP) U 00| _ P —a=1
X(CMH(F)) q+1
q2
Write My (F) = | J(A4; + K) as a union of cosets of K. Then an independent set of CI(\,QIZ( ) 18 contained

i=1

q2

in U (A; + K). Since each coset forms a complete subgraph, we have a(Cﬁ;( F)) < ¢*> — 1 and the result
i=2

follows. O
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Chapter 5

Algebraic Degree of Spectra of Cayley
Hypergraphs

5.1 Hypergraphs

A hypergraph H is a pair (V (H), E(H)) where V(H) is a finite set, called the vertex set of H, and E(H) is a
family of subsets of V' (H), called the edge set of H. The elements in V' (H) are called vertices and the elements
in E(H) are called hyperedges. In particular, if £(H) consists only of 2-subsets of V' (H), then H is a simple
graph. For v € V(H), we write ©(v) for the set of all hyperedges containing the vertex v and the number
of elements in © (v) is the degree of the vertex v, denoted by degv. A hypergraph in which all vertices have
the same degree £ > 0 is called k-regular and it is said to be reqular if it is k-regular for some k£ > 0. A
hypergraph in which all hyperedges have the same cardinality [ > 0 is an l-uniform hypergraph. A path of
length s in His an alternating sequence vy E1v2 Eovs . .. vsEsvs11 of distinct vertices vy, v, ..., vs41 € V(H)
and distinct hyperedges E1, Es, ..., E; € E(H) satisfying v;,v;11 € E; forany i = 1,2,...,s. The distance
between two vertices v and w, denoted by d(v, w), is the smallest length of a path from v to w. If there is
no path from v to w, we define d(v,w) = co. The diameter of H is diam(H) = max{d(v,w) : v,w € V(H)}.
A hypergraph H is connected if diam(H) < oo.

For a hypergraph H with vertex set {v1, ..., v, }, the adjacency matrix of H, denoted by A(H), is the n xn
matrix whose entry a;;, ¢ # j, is the number of hyperedges that contain both of v; and v; and a;; = 0 for all
1 <'i,j < n. This concept was investigated by Bretto [1]. Evidently, it is a generalization of the adjacency
matrix of a graph. An equivalent definition of the adjacency matrix is given in [4] by using the bipartite
graph associated to H which is the graph whose vertex set is the union of two independent sets V' (H) and
E(H) and for any v € V(H) and E € E(H), they are adjacent whenever v € E. In particular, if H is an
l-uniform hypergraph, there is another way to define an adjacency matrix by using hypermatrix, see [3]
and [5]. In this work, our hypergraphs may not be I-uniform, so we follow Bretto’s. The Laplacian matrix
of H, denoted by L(H), is the n x n matrix defined by L(H) = E(H) — A(H) where E(H) is the diagonal
matrix [degv;], <;<n- This version of Laplacian matrix was introduced by Rodriguez [10]. The distance
matrix of a connected hypergraph H, denoted by D(H), is the n x n matrix in which entry d;; = d(v;, v;)
foralll <i,j <n.

The spectrum of H, denoted by Spec(H), is the set of all eigenvalues of A(H) including multiplicity.
Observe that A(H) is a real symmetric matrix, so Spec(H) contains only real eigenvalues. Since the char-
acteristic polynomial of A(H) is monic with integral coefficients, its rational roots are integers. A hyper-
graph is integral if all eigenvalues of this hypergraph are integers. Similarly, we can define Lspec(H) and
Dspec(H) as the sets of all eigenvalues of L(H) and D(H), respectively. Also, an L-integral hypergraph is a
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hypergraph with integral Laplacian eigenvalues and a D-integral hypergraph is a hypergraph with integral
distance eigenvalues.

For hypergraphs H; and Hy, the Cartesian product of H; and Hy, denoted by H; [ Hy, is the hypergraph
with V(H; OHy) = V(Hy) x V(H) and E(H; OHy) = {{z} X E' : x € V(H1),E' € E(H2)} U{E x {y} :
E € E(Hy) and y € V(Hz)}. Observe that A(H; OHsy) = (A(H1) ® Iy w,)) + (Ljvm,) ® A(Hz)) where
A ® B denotes the Kronecker product of matrices A and B. Therefore,

Spec(Hy OHy) = {A+ 5 : A € Spec(H;) and 8 € Spec(Hz)}. (A)

Let H; and Hy be t-uniform hypergraphs. Following Pearson [9], the tensor product of H; and Ho,
denoted by Hy ® Hy, is the t-uniform hypergraph with V(H; ® Hy) = V(H;) x V(Hz) and E(H; ® Hy) =
@iy )s (@i, v5) ) - {ziy, .-z, b € EHy), {y),,---,v5, ) € E(Hz)}. It follows that the number
of hyperedges containing both of two vertices (x;,y;) and (x;,y,,) in Hy @ Hy is (¢ — 2)!a;;by,. Hence,
A(H, ®Hs) = (t — 2)!A(Hy) @ A(Hz). Consequently,

Spec(Hy ® Hy) = {(t — 2)I\8 : X € Spec(H;) and 3 € Spec(Hs)}. (B)

5.2 t-Cayley hypergraphs

Throughout this section, we let (G, -) be a finite group with the identity e and S a subset of G ~\ {e} such
that S = S~!. Fort € Nand 2 < t < max{o(x) : z € S}, the t-Cayley hypergraph H = t-Cay(G, S) of G over
S is a hypergraph with vertex set V(H) = G and E(H) = {{yz' : 0<i<t—1}:2 € Sand y € G}. Here,
o(z) denotes the order of = in G.

Example 5.2.1. Form = (my,...,m,)and n = (nq,...,n,) in Z", we define the greatest common divisor
of m and n to be the vector d = (dy,...,d,) where d; = ged(m;,n;) for all i € {1,...,r}. Now, let
n=(ni,...,n,) € Z" and a divisor tupled = (d;,...,d,) of n,ie., d; | n; foralli € {1,...,r}. Define

Gn(d)={x=(z1,...,2,) € Zp, X -+ X Ly, : ged(x,n) = d}.

Let D be a set of divisor tuples of n not containing the zero vector of Z,,, x - - x Zy, and S = J4cp Gn(d).
Fort € Nand 2 < t < max{o(x) : x € S}, the t-Cayley hypergraph of Z,,, x --- x Z,, over S is called a
ged-hypergraph.

Some properties of ¢-Cayley hypergraphs quoted from [2] are as follows.
Proposition 5.2.2. Let H = t-Cay(G, S).
1. H is connected if and only if (S) = G.
t ift < o(x),
o(z) ift > o(x).
3. H is t-uniform if and only if t < o(x) forany x € S.

2. Foranyxz € S,y € G,

{yxizogigt—1}|:{

Clearly, a Cayley graph 2-Cay(G, S) is |S|-regular. We study a Cayley hypergraph t-Cay(G, S) in the
next proposition.

Proposition 5.2.3. A t-Cayley hypergraph of G over S is regular.
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Proof. We prove that t-Cay(G, S) is regular for any 2 < ¢ < max{o(z) : « € S} by induction on ¢. Fort = 2,
we have known that 2-Cay(G, S) is regular. Now, let ¢t € Nand 2 < t < max{o(x) : * € S}. Suppose that
the hypergraph t-Cay(G, S) is regular. To prove the regularity of (¢ + 1)-Cay (G, S), we consider the edge
set {{yz' : 0<i<t}:z€S,yecG}asamulti-set. Letz € S and y € G. It follows that if ¢ > o(x), then
{yzt:0<i<t}={ya':0<i<t-1}andift < o(z), then{yz’: 0 <i <t} ={yz’:0<i<t-1}U{yz’'}.
Note that for each = € S such that ¢t < o(z), we have {yz' : y € G} = G. By the above proposition and
induction hypothesis, any vertex in a multi-hypergraph ¢-Cay (G, S) have the same degree. Thus, the
multi-hypergraph ¢t-Cay(G, S) is regular.

Now, we delete all multiple hyperedges (if it exists). Suppose that there are multiple hyperedges, say
{y1zt 10 <i<t}={yaxh:0<i<t}. Then{{yz} :0<i<t}:yeG}={{yz}:0<i<t}:yeG} By
deleting a collection of hyperedeges {{yz} : 0 <i <t — 1} : y € G}, we have the number of each vertex
in the deleted hyperedges are equal. We continue this process until there is no multiple hyperedges.
Since the multi-hypergraph ¢-Cay(G, S) is regular, the hypergraph ¢-Cay(G, S) is regular by the previous
paragraph. O

Theorem 5.2.4. The Cayley graph 2-Cay(Zy,, S) is integral if and only if S is a union of some G,,(d)’s, where d | n
and G, (d) ={k € {1,2,...,n— 1} : ged(k,n) = d}.

To characterize integral Cayley graphs of finite abelian groups, we first discuss the Cayley graph of
the group (Z,, x Z,,,+). Let § = 51 x Sy be a subset of Z,,, x Z,, ~ {(0,0)} such that S = —S. The
Cayley graph 2-Cay(Zy, X Zn,,S) can be distinguished into three cases.

1. K,,02-Cay(Zy,, S2) if S; = {0} and S, # {0}, where K,, denotes the empty graph on n vertices.
2. 2-Cay(Zy,,S)O K, if S; # {0} and Sy = {0}.
3. 2-Cay(Zy,, S1) ® 2-Cay(Zy,, S2) if S1 # {0} and S5 # {0}.

It is clear that the eigenvalues of an empty graph are zero. By Egs. (A), (B) and the fact that the Cayley
graph always has an integral eigenvalue, the Cayley graph 2-Cay(Z,, X Z,,,S) is integral if and only
if for any 7 € {1,2} such that S; # {0}, the 2-Cay(Z,,, S;) is integral. By the fundamental theorem of
finite abelian groups, a finite abelian group is a direct product of finite cyclic groups. We can obtain a
characterization of the integral Cayley graphs of finite abelian groups similar to the above discussion.

Theorem 5.2.5. Let G be a finite abelian group and S a subset of G ~ {e} such that S = S~1. Suppose G =
Ly X -+ X Ly, and S = Sy x -+ x S.. The Cayley graph 2-Cay (G, S) is integral if and only if for any
ie{l,...,r}such that S; # {0}, the 2-Cay(Z,,, S;) is integral.

For non-integral graphs, Monius et al. [7] defined the algebraic degree of a graph G to be the degree
of extension of the splitting field of the characteristic polynomial of A(G) over Q. Recently, Monius [8]
determined the algebraic degree of Cayley graphs of Z,, where p is a prime number.

Our purposes are to characterize integral ¢-Cayley hypergraphs of Z,, and compute the algebraic de-
gree of t-Cayley hypergraphs of Z,. The paper is organized as follows. In Section 5.3, we study the
spectrum of ¢-Cayley hypergraphs of Z,,. We obtain the characterization of integral ¢-Cayley hypergraphs
of Zy, similar to So [11]. We use this result to study integral ¢-Cayley hypergraphs of finite abelian groups.
Moreover, we show that a gcd-hypergraph is integral. We study non-integral hypergraphs in Section 5.4.
We determine the algebraic degree of t-Cayley hypergraphs of Z,, for all n > 3 which generalizes Monius’
results and provides an answer to his outlook. Our combinatorial approach is different from him and
presented in Lemma 5.4.1.
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5.3 Integral {-Cayley hypergraphs

An n x n matrix is circulant if it is of the form

aq as asz - Qp

G, ay az - Un—1
ap—1 an a1 T (p—2

az as Qg4 - ay

From now on, we let n > 2 and H = t-Cay(Z,,, S). By the natural labeling {0,1,...,n — 1}, it is easy to
see that A(H) = [a;j]o<i,j<n—1 is circulant. To work on the adjacency matrix A(H), it suffices to compute
the first row of A(H), i.e., ap,r, where 0 <k <n —1. LetC = {k : agir # 0} C {1,2,...,n — 1} be the set
of all vertices that adjacent to the vertex 0. It follows that C = SU2SU---U (t — 1)S ~ {0}. Since A(H) is
circulant, we have Spec(H) = {); : j =0,1,...,n — 1} where

)\j _ Z aoyk(€27rji/n)k_

keC
We recall some useful properties taken from [11].

Proposition 5.3.1. 1. Ifdis a proper divisor of n.and x is an nth root of unity, then 3y . (4 x* is an integer.

2. Let w = e2™/" gnd

Wil W12 Wl (n=1)
W21 W22 W2 (n=1)
F =
w(n—1)~1 w(n—l)‘Q . w(n—l)‘(n—l)

IfA={veQ"!: FveQ" '}, then Aisavector space over Q. Moreover, A = Spanf{v, : d | nandd <
n} where v, is the (n — 1)-vector with 1 at the kth entry for all k € G,,(d) and 0 elsewhere.

Now, we prove a criterion for integral ¢-Cayley hypergraphs.
Theorem 5.3.2. Let H = t-Cay(Z,,, S). Then H is integral if and only if C' is a union of some G,,(d)’s where for
each d, there is ¢4 € {1, 2,..., (tf2)} such that ag , = cq for all k € G, (d).

Proof. Letd,...,d, be all proper divisors of n. Without loss of generality, we assume that C' = G,,(d1) U
UGy (dp) forsomel € {1,...,s}. Clearly, \o = >, . ao,r € Z. Forany 1 < j < n—1, by the assumption
and Proposition 5.3.1 (1),

\j = Z a07k(627rji/n)k
keC
= Z a()’k(e%rji/n)k S Z ao’k(e%rji/n)k
kEGn(d1) ke (dr)
= cq, Z (eQTFji/n)k + o+ ca Z (eQﬂ'ji/n)k c7.
keGy(dy) keG, (dy)

50



Conversely, suppose that # is integral. Then \; € Z for any 0 < j < n — 1. We consider the vector
v € Q"1 with ag , for the kth entry for any k € C and 0 elsewhere. Then

1k
Wil w2 o Ll(n=1) @o,1 ZkeC o,kW At
a 3 co a0 pw?F A
. ) ) 0,2 kec @0,kW 2 ne1l
(n—1)-1 (n—1)-2 (n—1)-(n—1) :
“ “ “ agp, S e ao w1 F A
0,n—1 kec Y0,k n—1

It follows that v € A in Proposition 5.3.1 (2), and hence v = d| cqvq for some rational coefficients

n,d<n
ca’s. The definition of v implies that the coefficient ¢4 € {O, L., (") } Therefore, C'is a union of some
G (d)’s where for each such d, we have ag , = ¢4 forall k € G,,(d). O

For H = t-Cay(Z,, S), it is clear that ) # S C C. In particular, for ¢ = 2, we have S = C. Theorem
5.3.2 implies that H = 2-Cay(Z,, S) is integral if and only if S is a union of some G,,(d)’s and for which d,
ag,r = 1forall k € G,,(d). This coincides So’s result recalled in Theorem 5.2.4.

Theorem 5.3.3. A gcd-hypergraph of Z,, is integral.

Proof. Let H = t-Cay(Z,, S) be a gcd-hypergraph. Assume that .S is a union of some G, (d)’s. This implies
C={k:apr #0} =SU25U---U(t—1)S \ {0} is also a union of some G,,(d)’s. All hyperedges in H
containing 0 must be in the following forms

{-(t—-Da,—(t—-2)x,...,—2, 0 {—=(t —2)z, —(t — 3)z,...,0,2},...,
{=2,0,...,(t—3)x, (t —2)x},{0,2,...,(t — 2)z, (t — 1)z}

where x € S. For each d, there is ¢g € {1, 2,..., (tfz)} such that ag j, = ¢4 for any k € G,,(d). Therefore,
H is integral by Theorem 5.3.2. O

Note that the converse of Theorem 5.3.3 may not be true. For example, if H = 9-Cay(Zg, {1}) which
is not a ged-hypergraph of Zg, then E(H) = {{0,1,2,3,4,5,6,7,8}}. Hence, C = Zg . {0} = Go(1) U
Go(3) U Gy(6) and ag , = 1 for any k € C, but H is integral by Theorem 5.3.2.

We next characterize integral ¢-Cayley hypergraphs of finite abelian groups. First, let us consider the
t-Cayley hypergraph of the group (Z,, x Z,,,+). Let S = S1 x Sy be a subset of Z,, x Z,, ~ {(0,0)}
such that S = —S and H = t-Cay(Z,, X Zy,,S). To express H as a product of two hypergraphs, we need
to assume that for any 7 € {1,2} such that S; # {0}, ¢ < min{o(z) : © € S;}. From this assumption, the
hypergraph H = t-Cay(Z,,, X Z,,,S) can be distinguished into the following three cases.

1. FmD t—Cay(Zm, 82) if Sl = {0} and SQ 75 {O}
2. t-Cay(Zn,,S) O K,, if S # {0} and S5 = {0}.

3. t-Cay(Zy, X Zy,,S1 x S2) is a subgraph of ¢t-Cay(Z,,,, S1) @ t-Cay(Z,,, S2) if S1 # {0} and S, # {0}.
In addition, its adjacency matrix is A(t-Cay(Z,,,, 51)) @ A(t-Cay(Zy,, S2).

Extend this argument to a finite product of finite cyclic groups, we obtain the next theorem.

Theorem 5.3.4. Let G be a finite abelian group. Suppose G = Zy, X -+ X Ly, and S = Sy x --- x S,. Lett € N
and 2 < t < min{o(z) : @ € S;} forall S; # {0} and i € {1,...,r}.The t-Cayley hypergraph t-Cay(G, S) is
integral if and only if for any i € {1,...,r} such that S; # {0}, t-Cay(Z,,, S;) is integral.
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Finally, we study L-integral t-Cayley hypergraphs. Let # = t-Cay(G, S) with V(H) = {v1,. ..,
vn }. By Proposition 5.2.3, H is regular, so there exists d € N such that degv; = d forany i € {1,...,n}. It
follows that

L(H) = D(H) — A(H) = dI,, — A(H).
Hence,
Lspec(H) = {\ —d: X € Spec(H)}.

Corollary 5.3.5. Let H = t-Cay(Z,,S). Then H is L-integral if and only if H is integral. In particular, a
ged-hypergraph of Z,, is L-integral.

Now, we consider D-integral ¢-Cayley hypergraphs. For ¢ = 2, Ili¢ [6] showed that if S is a union
of some G, (d)’s, then 2-Cay(Z,,, S) has integral D-spectra. Assume that H = ¢-Cay(Z,, S) is connected.
That s, (S) = G by Proposition 5.2.2 (1). By the natural labeling in D(#), it is clear that D(#) is circulant.
Thus, it suffices to consider the first row of D(H). Since H is connected, the set {k : d(0,k) # 0} =
{1,2,...,n—1}. Hence, we get the characterization of D-integral ¢-Cayley hypergraphs similar to Theorem
53.2.

Theorem 5.3.6. Assume that H = t-Cay(Zy,, S) is connected. Then H is D-integral if and only if for each d | n,
thereis cq € {1,2,...,diam(H)} such that d(0, k) = cq for all k € G, (d).

5.4 Algebraic degree of spectra of {-Cayley hypergraphs of Z,

Let H be a hypergraph on m vertices and f(z) = det(zI,, — A(H)) the characteristic polynomial of H.
Let E be the splitting field of f(z) over Q. The algebraic degree of H is [Ey : Q] and denoted by degH.
In Section 5.3, we have the characterization of integral ¢-Cayley hypergraphs. They are hypergraphs of
algebraic degree one. We study the algebraic degree of t-Cayley hypergraphs in this section.

Letn > 3 and H = ¢-Cay(Z,,, S). Recall from the previous section that the eigenvalues of H are

)\] — Z a07k(62ﬂji/n)k

keC

where C' = {k :ag) # 0} = SU2SU---U(t — 1)S ~ {0}. Let w = ¢*™/™ be a primitive nth root of unity.
By the fundamental theorem of Galois theory,

_ o(n)
|Gal (Q(w)/Q Aoy Aty-vs An_1))]’

where Gal (Q(w)/Q (Ao, A1, ..., An—1)) = {0 € Aut(Q(w)) : o is a Q-automorphism and o(\;) = A; for all j
{0,1,...,n —1}}. We shall determine the size of this group and obtain deg .

deg’Hz [Q()\Q,)\l,...,Anfl) Q] (C)

Lemma 5.4.1. Lety € {0,1,...,n— 1} be such that ged(y,n) = 1 and o, € Aut(Q(w)) be the Q-automorphism
defined by w +— wY. Then o,(\;) = A, forall j € {0,1,...,n — 1} if and only if there is n, € N with C' =
CiU---UCy,, yCr = Cy mod nand ag . = agyk forall k € Crandl € {1,2,...,n,}.
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Proof. 1f there is n, € NwithC = Cy U ---UC,,, yC; = C; mod n and agr = agyx for all k € C; and
le{l1,2,...,ny}, then

ay(Aj) = oy <Z aO,ijk> = Z Z a0,k0y (wjk) = Zy Z ao’kwa’ky

keC =1 keC,; =1 keC,
Ny
ik ik iyk
= E g ag yrw’"Y = g ag yrw’V" = E ag yew’?" = Aj
I=1 keC, keC ykeC

forall j € {0,1,...,n — 1}. On the other hand, suppose that o, (\;) = A; forall j € {0,1,...,n —1}. Then
> kec G0,k (wj)yk =D kec GOk (wj)k forall j € {0,1,...,n—1}. Let p(z) = 3, cc a0k — > 1o ao k.
It is a polynomial of degree at most n — 1. Since 1,w, ..., w™ ! are distinct roots of p(z), we have p(z) = 0.
Define an equivalence relation on C' by k ~ k' whenever ag x = ao . Let C1, ..., C,, be all equivalence
classes of ~. Then C' = Cy; U---UC,, . Since p(x) = 0, we have yC; = C; mod n and so ag . = ag,y for all
keCrandl e {1,2,...,ny}. O

Theorem 5.4.2. Let H = t-Cay(Z,,S) and C = SU2SU--- U (t — 1)S ~ {0}. Let m be the number of y in
{0,1,...,n — 1} such that gcd(y,n) = 1 and there isn, € Nwith C = C;U---UC, , yC; = C; mod n and
agk = aoyk forallk € Cyandl € {1,2,...,n,}. Then

¢(n)

degH = —.
m

d(n
Moreover, deg H < %

Proof. By Lemma 5.4.1, m is the size of Gal (Q(w)/Q (Ao, A1,...,Ap—1)). It follows from Eq. (C) that
degH = % From S = —S mod n, we have C' = —C' mod n. Since {£k} = —{£k} and ag r = ao,—j for
any k € C, 1 and —1 are such y. Hence, m > 2, so ¢(n) < @ ]

m

Consider H = 2-Cay(Z,,S). Then C = S and ap = 1 for any k& € S and ag = 0 otherwise. The
assumption of Theorem 5.4.2 can be reduced to yS = S mod n. In addition, if n = p is a prime number,
Monius showed in the proof of Theorem 2.5 of [8] that m in Theorem 5.4.2 is the maximum number of
M € {1,2,...,]S|} such that M divides ged(]|S],p — 1) and

IS|/M

s=J s
=1

where |S)| = M and foreach ! € {1,...,|S| /M}, k™ = (k') mod p for all k, k" € S;. The next corollary
gives the algebraic degree of Cayley graph of Z,, over S which generalizes Theorem 2.5 of [8].

Corollary 5.4.3. Let H = 2-Cay(Z,, S). If m is the number of y in {0,1,...,n — 1} such that yS = S mod n,
then

degH = M
m

Example 5.4.4. Consider H = 2-Cay(Zs;, S) where S = {£2,4+3,4+10,+12,+£13,£15} = C. Since £1, £5, +6
_ — _ 9(31) _

are all elements of y such that ged(y,31) = 1 and yC' = C' mod 31, by Corollary 5.4.3, deg’H = == = 5.

This coincides Example 2.10 of [8].

In the proof of Theorem 5.4.2, we have known that 1 and —1 are always such y satisfying yC = C
mod n. If only they satisfy this congruence, we have a special case of Theorem 5.4.2 as follows.
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Corollary 5.4.5. Let H = t-Cay(Z,,,S) and C = SU25U---U(t —1)S ~{0}. Ify = land y = —1 are the
only elements in Z,, such that ged(y,n) = 1 and yC' = C' mod n, then

degH = ¢ .
2
We provide some numerical examples using Theorem 5.4.2 and Corollary 5.4.5 as follows.

Example 5.4.6. Consider H = 3-Cay(Zi2,{£1}). We have C' = {£1,+2}. In addition, ap,+1 = 2 and
ap,+2 = 1. The characteristic polynomial of A(#) is

(x — 1)*(z +2)3(z + 3)*(z — 6) (2 — 22 — 11)?

and hence deg H = 2. Since 1 and —1 are the only elements y in Z5 such that gcd(y,12) = 1 and yC' = C
mod 12, by Corollary 5.4.5, deg H = @ =2

Example 5.4.7. Let S = {£1} be a subset of (Zg, +). Them max{o(z) : x € S} = 9,502 <t < 9. The
algebraic degree of ¢-Cayley hypergraph of Zg over S for all ¢ are presented in the following table. The
cases t € {2,3,4} are computed by Corollary 5.4.5 and the others are obtained from Theorem 5.4.2.

’ t ‘ ap,+1 ‘ ag, +2 ‘ Ao +3 ‘ ag, 44 ‘ ywith yC = C mod 9 ‘ deg t-Cay(Zg, S) ‘
2 1 +1 3
3 2 1 +1 3
4 3 2 1 +1 3
5] 4 3 2 1 11,42, +4 3
6 5 4 3 3 +1,+2, +4 3
7| 6 5 5 5 11,42, +4 3
8 7 7 7 7 11,42, +4 1
9 1 1 1 1 11,42, +4 1
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1. Introduction

Throughout the paper, a ring always contains the multiplicative identity 1 # 0.

Let R be a finite commutative ring. We denote its group of units by R* and write Z(R)
for the set of its zero divisors. Recall that we have the disjoint union R = {0} U R* U Z(R).
The set Z(R) can be empty if R is a field. Note that if u is a unit of R and z is a zero divisor
of R, then uz is a zero divisor of R. Thus, the left multiplication induces an action of the
group of units of R on the set of zero divisors of R.

The zero divisor graph of R, Z, is a graph whose vertex set is the set of all zero divisors
of R, and two zero divisors are adjacent if and only if their product is zero. A zero divisor
graph was introduced by Beck [1] and was later modified by Anderson and Livingston
[2]. Sharma et al. [3] analyzed the adjacency matrices of zero-divisor graphs of Z, x Zj
and Z[i] x Zp[i], where p is a prime number and Z,[i] = Z, [x]/(x* + 1) by studying
the neighbourhood set of zero divisors. He observed properties of a zero divisor graph
and its adjacency matrix of some rings such as Z, x Z,, Z;[i], and Z;[i] x Z,[i] before
concluding results to Z, x Z, and Z,[i] x Z,[i]. In addition, he showed that, in Z, x Zj,
the maximum degree of this graph is at least |Z(Z, x Z,)|/2. Later, Young [4] worked on
the adjacency matrix of the zero-divisor graph of Z,. He divided Z, into the set S(d) =
{k € Zy|(k,n) = d} where d is a divisor of n. This shows that the zero divisor graph of Z,,
is a multipartite graph with classes S(d) where d is a proper divisor of n. He showed that

CONTACT Yotsanan Meemark @ yotsanan.m@chula.ac.th @ Department of Mathematics and Computer Science,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

© 2021 Informa UK Limited, trading as Taylor & Francis Group



2 J. RATTANAKANGWANWONG AND Y. MEEMARK

the determinant of the adjacency matrix is zero. In addition, he obtained the rank for all n
and some non-zero eigenvalues for the case n = p> and n = p?>q where p and g are distinct
prime numbers and upper and lower bounds for the largest eigenvalues.

The Wiener index of a connected graph G is the sum Zu’VGV(G) dg(u, v) where dg(u, v)
is the distance of u and v in the graph G. It was introduced by Wiener [5]. This index
is studied extensively as distance-based topological indices in chemical graph theory. In
2011, Ahmadi and Nezhad [6] calculated the Wiener index of the zero divisor graphs of
ZLpq and Zy> where p and g are distinct primes and provided a computer code to find the
Wiener index of the zero divisor graph of Z, where n € N. Reddy et al. [7] obtained the
Wiener index of the zero divisor graphs of Z,; and Z,.,, where p and q are distinct primes.
Mohammad and Authman [8] used Hosoya polynomials to determine the Wiener index
of zero divisor graphs of Z,m and Zym, where p, g are distinct primes and m € N. Later, in
2019, Shuker et al. [9] also applied Hosoya polynomials and obtained the Wiener index of
zero divisor graph of Z,m > where p, q are distinct primes and m € N.

In this paper, our main purpose is to study eigenvalues and the Wiener index of zero
divisor graphs of finite chain rings. The action of the group of units of the set of zero divi-
sor sets when R is a finite chain ring is studied in the next section. We determine their
rank, determinant, and eigenvalues using reduction graphs and basic properties of finite
chain rings and the size of the orbits discussed in the next section. Following Young [4],
in Section 3, we work on zero divisor graphs of commutative principal ideal rings. It turns
out that every principal ideal ring is a finite direct product of finite chain rings. We order
the vertices by the lexicographical order and have a nice adjacency matrix of the reduction
graph. We are able to determine the rank and the independence number and we use them
to find the number of positive eigenvalues and the number of negative eigenvalues, and the
eigenvalues and eigenvectors can be obtained from a smaller matrix which completes the
study of the eigenvalues and eigenvectors of the zero divisor graphs of finite direct prod-
ucts of finite chain rings. The combinatorial approach is different from Young’s and can be
used to answer his problems deeper and can be done over any commutative principal ideal
rings. We present all cardinalities in terms of the residue fields. By using the set-up of R in
Section 3, we can find upper and lower bounds for the largest eigenvalue of the zero divisor
graph Zp in Section 4. Finally, we use the relation between the zero divisor graph and its
reduction graph to compute the distance of any two vertices. This leads us to determine
the Wiener index of our zero divisor graphs in Section 5.

2. Zero divisor graphs of finite chain rings

A local ring is a commutative ring with unique maximal ideal. A finite commutative ring
R is called a finite chain ring if for any ideals I and ] of R, we have I € Jor ] C I. Itis clear
that a finite chain ring must be a local ring and every finite field and the ring of integers
modulo a prime power are finite chain rings. Also, we can show that if R is a finite chain
ring with maximal ideal M and § € M \ M?, then M = R4. In other words, the maximal
ideal of a finite chain ring is principal. It is also known that a ring is a finite chain ring if
and only if it is a finite principal ideal ring. In particular, the unique maximal ideal of a
finite chain ring is a principal ideal generated by a nilpotent element.

Now, let R be a finite chain ring with unique principal maximal ideal M = R6 for some
6 € M\ M? andk = R/M, its residue field. Then, R* = R\ RA and Z(R) = R6 \ {0}. We
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shall repeatedly use basic properties of a finite chain ring taken from Refs. [10,11] and
recorded in the next proposition.

Proposition 2.1: (1) There is the smallest positive integer t such that 6" = 0, called the
nilpotency of R.

(2) For any non-zero element r in R, there is a unique integer i, 0 < i < t, such that r = uf’
for some unit u in R.

(3) Assumethat1 <i < j <tandr € R Ifr0" € ROJ, thenr € RO/, In particular, if r0’ =
0, thenr € RO'™,

(4) If{vi,...,vq} is a system of coset representatives of M in R where q = |K|, then for each
rin R, there are unique ro, . .., 111 in {vi,...,vq} such that

r=ro+n6l+---+ rt_10t_1.

(5) |ROY| = |k|"" foralli e {0,1,...,t — 1}.
(6) Foreachie {0,1,...,t— 1}, |[RO'/ROT| = |Kk|.

The orbits under action of the unit groups are R* - 0,1 < i < t. The size of the stabilizers
and the size of the orbits are determined in the following propositions.

Proposition 2.2: [Stabgx (8)| = |k|' and |R* - 07| = |k|'~" — |k|*7~! = |k|*7 (k| —
1) forallie {1,2,...,t —1}.

Proof: Letie {1,2,...,t — 1}. Note that for a € R, we have a € Stabgx 0 < (a—1)
6" = 0. It follows from Proposition 2.1 (3) that Stabgx (8") = {1 + d0'~" : d € R}. Since

1+ dlet_i =1+ dzet_i &S d —dy e R9i,

the size of Stabgx (67) is |[R/RA| = |k|'. The orbit-stabilizer theorem implies that the size of
the orbit

) RX kt—kt_l
PR Lo B el

— B : — ]kt_i— ]kt—i—l'
Stabg (07) INE k| =

This completes the proof. |

To study the zero divisor graph of R, we may assume that R is not a field. So we have
t > 2. Furthermore, our definition allows the zero divisor graph to have loops. Note that
if a and b are zero divisors in the same orbit R* - 0’ for some 1 < i < ¢, then a = u#’ and
b = v’ for some units u and v, for any zero divisor z of R, we have

az=05ufz=0&02=051Wz=0% bz=0.
Next, assume that a is in the orbit R* - #” and b is in the orbit R* - 6/ for some 1 < i,j < t.

Then, a = u#? and b = v#/ for some units u and vin R. If ab = 0, then i + j must be at least
t, so awd! = uwht/ = 0 for any unit w in R. Hence, we have the following lemma.
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Lemma 2.3: Let a and b be zero divisors of R.

(1) Ifaand b are in the same orbit of the action of units by left multiplication, then a and b
have the same neighbours in Zp.

(2) Ifaisadjacent to b in the zero divisor graph, then a is adjacent to all zero divisors in the
same orbit of b.

For each 1 <i < t, let H; be the subgraph of Zy induced by R* - 6. Then there are
t—1 such subgraphs. It is easy to see that these subgraphs are either complete or empty
(having no edges) and H; is complete if and only if 2i > t. Moreover, if 1 <i < j < t such
that i +j > t and H; and H; are empty, then the subgraph induced by R* - ' UR* -6/ is
a complete bipartite graph by Lemma 2.3. We record this observation in the next theorem.

Theorem 2.4: (1) There are t — [t/2] induced subgraphs which are complete.

(2) There are [t/2] — 1 induced subgraphs which have no edges.

(3) Ifiandjare two integers such that 1 < i < j < tandi+j > t and H; and H; have no
edges, then the subgraph induced by R* - 6' U R* - 0/ is a complete bipartite graph.

The determinant, rank, nullity, and eigenvalues of the adjacency matrix of a graph are
called the determinant, rank, nullity, and eigenvalues of a graph. First, we find the deter-
minant of the zero divisor graph of R. Note that if there is an orbit containing more
than one element, then each element in the same orbit has the same neighbourhood by
Lemma 2.3, so the rows corresponding to them are identical and force that its determinant
becomes zero. Next, we consider the case that every orbit contains exactly one element.
Since [R* - 0] = |k|*~2(|k| — 1), we have t = 2 and |k| = 2. Then, |R| = |k|?> = 4. Hence,
R is a finite chain ring of order 4 with maximal ideal of size 2, so Z(R) = {a} is a singleton
and a? = 0. Therefore, the determinant is 1. Finally, we remark from [5] that a finite chain
ring R of order 4 with maximal ideal of size 2 is Z;[x]/ (x?) of characteristic two or Z4 of
characteristic four. We conclude the result of the zero divisor graph of a finite chain ring
in the next proposition.

Proposition 2.5: The determinant of the zero divisor graph of a finite chain ring of R is 0
unless R is isomorphic to Z;[x]/ (x?) or Z4 where the determinant equals 1.

Assume that R is a finite chain ring in which the determinant of the zero divisor graph
Zp is 0. It follows that 0 is an eigenvalue of Zr with multiplicity being the nullity of Zp.
From the rank theorem, we also know that the sum of the nullity of Zg and the rank of Zp is
the number of zero divisors of R which equals |R| — 1 = |k|~! — 1. Hence, to determine
the multiplicity of the eigenvalue 0, we may compute the rank of Zr. We eliminate the
redundant of the repeated rows by considering the reduction graph 7w Zr whose vertices are
the orbits: R* - 9, R* - 62,...,R* - 0"~ and the vertices R* - 6" and R* - 6/ are adjacent if
and only if i + j > t. This reduction graph is also called the compressed zero divisor graphs
studied in Ref. [12]. Write A(ZR) and A(w ZR) for the adjacency matrix of Zr and 7 Zp,
respectively. Since for each element in the orbit R* - 0%, its row in A(ZR) is identical, we
have rank A(ZR) < t — 1. Also, rank A(;r Zg) > rank A(ZR) because A(;r ZR) is obtained
by deleting repeated rows in A(Zg). We proceed to show that
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Proposition 2.6: rank (A(ZR)) =t — L

Proof: From the above inequalities, it suffices to show that rank (A(7 Zg)) = t — 1. Since
7t ZR has t—1 vertices and

0 0 0 0 1
0O 0 ... 0 1 1
A(T ZR) = 0O 0 ... 1 1 1
11 ... 1 1 1]
directly from its definition, rank A(w Zg) =t — 1. [

Observe that if R is isomorphic to Z;[x]/(x?) or Zy, then the rank of A(Zp) is 1 which
also equals t—1. Hence, we have shown

Theorem 2.7: For any finite chain ring R with nilpotency t, the rank of the graph Zp is t—1
and the multiplicity of the eigenvalue 0 is |k|' — t.

Fori€ {1,2,...,t — 1}, letm; = [R* - 0'| = [k|""""'(|k| — 1). Then,

}ma
}ma
A(ZR) = ( J3 )| yms
_( Ji-1 J i P
where J; is the all-one matrix of dimension m; x (m;_; + - +ms_o +my_1) forall i €
{1,2,...,t — 1}. Thus, the eigenvectors of Zr corresponding to the eigenvalue 0 are the

ones coming from the nullspace of the echelon matrix

where J; is the all-one row vector of size m; for all i € {1,2,...,t — 1}
Assume that A is a nonzero eigenvalue of A(Zg) with an eigenvector V. Then, V can be
divided into a block vector

- - —

V1
V2
V= ,  wherev;, = . | forallie{1,2,...,t—1}
Vi—2 v
| Vi1 | b
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such that

-

- - V— - = -
Jivi-c1 =Avi, |2 |:17; ?] =M. i1V = Ave.
Since A # 0, we have vjj = vip = ... = vy, foralli € {1,2,...,¢t — 1}. It follows that

Mi_1Vi—1,1 = AV1,1,

M_Vi—21 + Mi—_1Vi—1,1 = AV2,1,

MV + o MoV o1 + M1V = AVi—1,1,

and so A is an eigenvalue of

0 e 0 M1
_ 0 - m2 m
A=
mp -0 Mp—2 M-
with an eigenvector
V1,1
V2,1
Vi-1,1

Moreover, the remaining t—1 independent eigenvectors of Zr corresponding to
nonzero eigenvalues can be obtained from the ones of A. This completes the study of the
eigenvalues and eigenvectors of the zero divisor graph Zr where R is a finite chain ring.

3. Zero divisor graphs of principal ideal rings

Let R be a finite commutative principal ideal ring. Then every ideal of R is principal. Recall
that a finite commutative ring is a direct product of finite local rings. Since every ideal of
R is principal, so are its factors. Therefore, R is a direct product of finite chain rings.

Write R = R; X Ry X -+ X Ry where R; is a finite chain ring with maximal ideal R;0; of
nilpotency t; and residue field k; = R;/R;0; foralli € {1, 2, ..., k}. Note that the set of zero
divisors of R is the union of the direct product of orbits of the form

X S1 X $2 X Sk
Ry -0 xR, -0, x---ka -Qk,

where 0 <'s; < t; forall i € {1,2,...,k} except R x R} x --- x R and {(0,0,...,0)}.
Now, we consider the reduction graph 7w Zg of Zr whose vertices are

2(s1,82, .. »5K) = R - 0] X RS -0, x -+« x R - 6%,

where 0 <s; <t;forallie {1,2,...,k} excepts; =s, =---=sg=0o0r (s =t1,5 =
try ...,k = tr) and z(s1, 52, . . ., s¢) and z(s}, 55, . . . ,s;<) are adjacent if and only if s; + s} >
tiforalli € {1,2,...,k}. Then, the graph mw Zp has ]_[i;l (t; + 1) — 2 vertices.
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Remark 3.1: For Z, = Zp 1 X -+ X Lpox where n = p1*1p%2 ... pr, p1,p2, ..., pk
are distinct primes and a1, @y, ..., 0 € N, z(sy, ..., s;) can be considered as the set S(d)
in Ref. [4] where d = p*'p>°2 ... pi’F is a divisor of n.

We order them by the lexicographical order, namely, z(s1, 52, . . ., k) < 2(s], 55, .- -5 5})s
if and only if

(s1 <spor(si=siands; <sy)or - or(sy =sj,...,5—1 = s_; and s < ).

Thus, the first vertex is z(0, 0, . .., 0, 1) and the last one is z(t1, t2, . . ., tk—1, tx — 1). Under
this order of vertices, we have the adjacency matrix being in the form

0 0 0
0O 0 ... 1 =«
A(TL’ZR)Z . (1)
0O 1 ... x =%
R

To see this, we determine the position of z(sj, s, . . ., sk) in A( Zr) by counting the num-
ber of vertices before it. From the definition of < excluding (0,0,...,0), this number
equals

k
dosi[] G+v-1,

i=1 j=i+l

.. . . k k
so the position of z(s, 52, ..., sk) iIn A(w ZR) is ) i, si ]_[jzl-Jrl (i + 1).
Now, let r1,72,..., 7 besuchthat 0 < r; < tjandr;+s; > t;foralli € {1,2,...,k}. In
other words, the vertices z(ry, 12, ..., k) and z(s1, s, . . ., 5g) are adjacent. Then

k k kKo k
Y ri+s) [[G+0=) 6] ¢+0.
i=1

j=it1 i=1  j=i+1

The sum on the right-hand side can be simplified to

k k k—2 k
Yu [l G+v=> "t ] G+D+tuatc+ D+t +1-1
i=1  j=i+1 i=1 j=it+1

k—2 k
=Y 4[] G+ D+ B+ D+ D+t +1
=1 j=i+1

-

k k
=m+D[[G+D-1=]]¢; +D—1=1Z®)| +1.
j=2 j=1
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Thus,

k k k
Yo []a+0+)Y s [[G+D = 1Z®)+1

i=1  j=i+l i=1  j=it+1
and equality holdsifand onlyifr; + s; = t; forall {1,2,. .., k}. This proves (1) and it follows
from (1) that
k
rank A( Zp) = [ [ i + 1) — 2.
i=1

Since rank A(ZR) = rank A(7r ZR), we have shown
Proposition 3.1: rank A(Zg) = [~ (i + 1) — 2.

Remark 3.2: The entries of A(w Zg) below the diagonal from bottom-left corner to top-
right corner may not always be 1 when R is not local. For example, if R = Z1y = Z4 X Z3,
then

00 0 1
00 1 0
AZR) =10 1 1
1 0 1 0

Next, we compute the determinant of A(ZR). From the reduction graph m Zg, if some
vertex z(s1,$2, .. .,Sk) contains more than one element, then A(Zg) has some repeated
rows, so det A(Zr) = 0. Now, we consider the case that every vertex of 7 Zp, is a singleton.
It follows that [R;* - 6;%| = 1forall0 <s; < t;andi € {1,2,...,k}. Since R; is alocal ring,
R; is isomorphic to Z, or Z, or Zy[x]/(x?) for i € {1,2,...,k}. If k = 1, then R; must be
Z4 or Z;[x)/(x*) presented in Proposition 2.5. Assume that k > 2. If for some i, R; = 7,4
or Z,[x]/(x?), then |R;*| = 2 and so |z(t1,...,ti—1,0,tix1,...,t)| > 1. Hence, R; = Z,
foralli € {1,2,...,k}, s0 |A(ZR)| = 2K — 2 and

det(A(Zp) = (¥ =D 2=DP P )PP = -1
because k > 2. We record the determinant of A(ZR) in

1 if RE Zy or Zo[x]/(x%),
Proposition 3.2: det(A(ZR)) = -1 ifRE (Zz)kfor somek > 2,

0 otherwise.

If the determinant of Zy is 0, then Zg has 0 as an eigenvalue with multiplicity being
the nullity of A(ZR) because A(ZR) is diagonalizable. Thus, the rank theorem gives that
the nullity is |[Z(R)| — rank A(ZR). Since |Z(R)| = |R| — |R*| — 1, using this fact and
proposition 3.1 gives the next proposition.

Proposition 3.3: If 0 is an eigenvalue of the graph Zg, then its multiplicity is given by

k k k
[ [l = [T kil = il ™D = [ [t + D+ 1.
i=1 i=1

i=1
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Recall that we order the vertices of the reduction graph 7 Zp by the lexicographical
order. With this order, we may write the vertex set as {z1, 22, . . ., 2y} where N = ]_[5-;1 (t; +
1) — 2 and we denote by n; the number of elements in z; forall j € {1,2, ..., N}. The (0, 1)-
adjacency matrix A = [a;;] of  Z of size N in (1) lifts to the adjacency matrix A(ZR) =
[Ajj] of Zg where Aj; is a block matrix of dimension m; x m; with all-zero or all-one entries
depending on the entry a;; of A(7r ZR) is 0 or 1, respectively. Thus, A(ZR) is a matrix of the
form

0 0 0 J;]
0 0 I %
0 JN-1 * ok
I * *
where Jiis the all-one matrix of dimension nj X n; forallj € {1,2,...,N}. Hence, the eigen-

vectors of Zp corresponding to the eigenvalue 0 are the ones coming from the nullspace of
the echelon matrix

I ]
wherej'j is the all-one row vector of size n; for allj € {1,2,...,N}.
The independence number of a graph I is the size of the largest set of pairwise nonadja-

cent vertices. We denote the independence number of I' by «(I"). Brouwer and Haemers
[13] showed that for a graph I',

a(l’) =r(M) —rp (') and (") = (") —r—(I),

where r(I"), r1-(I'), and r_ (I") are the number of eigenvalues, number of positive eigenval-
ues, and number of negative eigenvalues of I', respectively.

Recall that N = rank A(Zr) = rank A(w Zg). It follows from the adjacency in
Equation (1) that (7 Zg) = [N/2] and the reduction graph 7 Zr has a nonzero deter-
minant, so its eigenvalues are positive or negative. Then, N is the number of nonzero
eigenvalues of 7 Zp. We can calculate 4 (m Zg) and r_ (7 Zg) as follows. Since

N N
LEJ <r(') —ry(I') and LEJ <r() —r_(I),
we have
N N
r(mZr) < N — LEJ, r—(mZg) <N — {EJ , and N =r (7 2R)+ r_(w 2R).
If N is even, they force that (7 Zg) = r_ (7 Zg) = N/2. Assume that N is odd. Then

r+(mZr) and r_(w Zg) are less than or equal to (N + 1)/2. Since their sum is N,
we get {ry (mZR),r— (7 2Zr)} = {(N + 1)/2,(N — 1)/2}. But the determinant of 7 Zy is
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(—1)N=D/2 and the minus sign depends on r_ (7 ZR), so we must have ry (7 2Zg) =
(N+1)/2and r_(w Zr) = (N — 1)/2. Proposition 1 of Ref. [14] implies that r (7 Zr) =
r+(Zr) and r_(w Zg) = r—_(ZR). Since N = rank 7 Z = rank Zj, is also the number of
nonzero eigenvalues of Zg, we obtain the number of positive and negative eigenvalues of
Zx as follows.

Theorem 3.4: r, (Zr) = [N/2] and r_(Zr) = [N/2].

Now, assume that X is a nonzero eigenvalue of A(ZR) with an eigenvector V. Then, W
can be divided into a block vector

= e T
WN-1
R B Wi ,
W = : ,  Wherew; = . foralli € {1,2,...,N}.
Wo '
- Wi,mi
| Wi
Note that J;w; = Aw; implies wi; = wip = -+ - = wy,, because of A # 0. Since * in A(ZR)
is all-zero or all-one block, we may inductively deduce that w;; = wjp = ... = wyy, for all

ie{l,2,...,N}. It follows that X is an eigenvalue of

0 e 0 ni
0 e ny bZN

B = R
nN -+ bnNn-—1 ONN

where for i <j, bij =0 if ajj = 0and bj; = n; if ajj = 1, with an eigenvector

WN,1
WN-1,1

wi,1

Hence, the remaining N independent eigenvectors of Zg corresponding to nonzero N
eigenvalues can be obtained from the ones of B.

4. Bounds for eigenvalues

Let R be a finite commutative principal ideal ring. Write R = R; x Ry X - -- X Ry where R;
is a finite chain ring with maximal ideal R;6; of nilpotency t; and residue field k; = R;/R;6;
for all i € {1,2,...,k}. We proceed to find upper and lower bounds for the zero divisor
graph of R in this section. Recall that the set of zero divisors of R is the union of the direct
product of orbits of the form

Z(s1,82, > 8K) = R - 07 X R - 02 x -« x R - 0},

where 0 <'s; < t; for all i € {1,2,...,k} except R x R} x --- x R/ and {(0,0,...,0)}.
Consider the vertex (u16;', 4265, ..., ukeik). It is adjacent to vertices (v160;',v20,, ...,
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vke,:k) where v; € R and r; +s; > t; for all i € {1,2,...,k} except (0,0,...,0), so the
degree of the vertex (116", u205%, . .., quIik) is

(ﬁ > |R,.X-9{f|)—1.

i=1ri+si>t;

Suppose that we order the eigenvalues of Zp as A1 > Ay > --- > Ay, It follows from
Proposition 3.1.2 of Brouwer and Haemers [13] that

deg Zr < A; < maxdeg(ZR),
where deg Zp is the average of degree of vertices of Zr given by

ZveZ(R) degv _ ZveZ(R) degv
|Z(R)| IR| — |[RX| =1

since R is a finite commutative ring. Next, we determine the maximum degree and the
average of degree of vertices of Zp. We shall assume further that |k;| < |ky| < --- < |kg|.
Note that for each i € {1,2,..., k}, we have by Proposition 2.2 that

YR =1+ 3 IR =1+ Y kT (ki - D),
ritsi=t ti—si<ri<ti—1 ti—sisri<ti—1
so the geometric sum simplifies the right-hand side to

Lkl =D Y il =1+ (il = 1) = [kl

1<ri<s;

Therefore, the degree of the vertex (116;", 12657, . . ., ux8;%) is [k [ [k2|*2 . . . |kg|* — 1and
the maximum degree attains when s; = t; — 1 and s; = t; for all i > 2 and equals

max deg(Zgr) = ky | ko2 L kg — 1.

From the set-up at the beginning of Section 2 and the above calculation of the degree of a
vertex, we obtain the average of degree of vertices of the zero divisor graph Zp as

D (ki kol L Kl = D21, 52, - -5 0] — (K[ ko[ L. kgl = 1)

0<s1=ty,
0=<s3<ty,
0<sk=tx
k k ’
[ Tl = ] [t — it — 1
where
£ 1
_ X S| _ (ti—Si T
2ot os0l = [TIRE 671 = [T o (1 |kj|>
i=1 ],ijtj—l
forall0 <s; < tjandi € {1,2,...,k}. Hence, we have an upper bound and a lower bound

for the largest eigenvalue of Zg.
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5. Wiener index

Throughout this section, R is a finite commutative principal ideal ring. Write R = R; x
Ry x - -+ x Ry where R; is a finite chain ring with maximal ideal R;0; of nilpotency ¢; and
residue field k; = R;/R;0; for all i € {1,2,...,k}. We will compute the Wiener index of
Zp. First, we characterize all finite commutative principal ideal rings such that their zero
divisor graphs are complete. It is clear that if R is a finite chain ring with nilpotency 2 or R =
F) x F»,where F; and F, are finite fields, then Zp is a complete graph. Next, assume k > 3.
Thus, elements in R} x {0} x Ry X - -+ X RZ are not adjacent to elements in Ry X R}’ X
{0} x --- x le. Now, assume that R = R; x R,. Suppose t; > 2 or t, > 2, say t; > 2. It
follows that elements in R;" x {0} are not adjacent to elements in R} - ; x R;'. Hence, we
can conclude that R; and R, must be fields. Finally, we assume that R is a finite chain ring
such that Zp is a complete graph. If R has nilpotency t > 3, then the elements in R*6 are
not adjacent, so R must have nilpotency 2. We record this result in the following theorem.

Theorem 5.1: Let R be a finite principal ideal ring. Then Zg is a complete graph if and only
if R is a finite chain ring with nilpotency 2 or R = Fy x F, where F, and F, are finite fields.
In this case, its Wiener index is given by
|Z(R)|
, )

Theorem 5.2: Let R = Ry X --- X Ry where Ry, ..., Ry are finite chain rings. Assume that
Zp is not a complete graph. For a proper subset X of {1,2, ..., k}, we define

z(X) = {z(s1,...,5k) € V(T 2ZR) : 0 < s; < ti foralli € X ands; = 0 forall i & X}.

Under the set-up at the beginning of this section, we have the following statements.

(1) Ifk = 1, that is, R is a finite chain ring with nilpotency t, then the Wiener index of Zg
is given by

Z |RX95||RXGS/|+2 Z |RX-95||RX-9$/|_

0<s,s' <t 0<s,s' <t
s+s'>t s+s' <t

(2) Ifk > 2, then the Wiener index of Zg is given by

Yoo lene sl sl

Z(815055K) ~2Z(S 50008}

/
+2) 2t sollz(shs s
17
+3) 7z s0llz(s) s,

/
where Z is the sum over z(si, . . ., k) € z(X) and z(s}, . . . ,s;{) € z(Y) which are non-

adjacent in 1 Zg and XN'Y # () and ZN is the sum over z(s1,...,s;) € z(X) and
z(s, . ..»8)) € z(Y) which are non-adjacent in w Zp and X N'Y = 0.
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Proof: Recall that the set V(71 ZR) is a partition of the set of zero divisors of R. Then for
any u € Z(R), there exists a unique z, € V(1 Zr) containing u. It follows that d z, (u, v) =
dr 2z (zu> 2y). We use this observation to calculate the Wiener index of Zp.

First, we handle the case R being a finite chain ring with nilpotency ¢. Let s, s’ be such
that 0 <s,s’ <tands+s <t Let k=max{t —s,t—s'}. Wehave 0<k<t, k+s>1t,
and k + s’ > t. Then R* - 9% is adjacent to both R* - 6°* and R* - 6% in 7 ZR, 80 dn z (R™ -
6%, R* - 6°) = 2 whenever s + s’ < t. Hence, its Wiener index is given by

Z |RX05||R><05/|+2 Z |RX‘95||RX'QS/|.
0<s,s' <t 0<s,s' <t

s+s'>t s+s' <t

Second, we assume that kK > 2 and let X, Y be proper subsets of {1,2,...,k}. Let
z(s1,...»sK) € z(X) and z(s}, . . ., 5;) € z(Y) be nonadjacent vertices in 7 Zg. Suppose that
X N'Y # (. There are two cases to consider.

Case 1. Thereexistsi € X N Y such thats;, s; < t;. Thendy z, (2(s1, . . ., k), 2(5}, . . ., 5})) =
2 by the same method as in the case where R was a finite chain ring above.

Case2.s; = s; = tiforalli € X N Y. For simplicity, weassume X N Y = {1,2,...,m}. Then
R x -+ X R x {0} x --- x {0} is adjacent to both z(s1, . .., s¢) and z(s], . . ., s}), so we
also have d;; z, (z(s1, . . ., $k), 2(s]> . . ., 5})) = 2.

Next, we assume that X and Y are disjoint. We may write X = {1,...,p} and Y =
{p+1,...,q) whereq < k. We can see that z(s, . . ., s) and z(s, . . ., s;{) have no common
neighbours. However,

z(s1, ..., 8k) ~ z(t —51,...,tp —Sp,tp+1,...,tk)

~ 2t oty bl = Sy st = S tgts oo B)

~zZ(s 55,

where ~ means adjacency in 7w Zg. We can conclude that dy z,(2(s1, . . ., k), 2(s}, - - -
sp)) = 3.
From the above calculations, the Wiener index can be obtained from the sum

> 12(s1, - - > si)|12(s)s - - -5 5}

Z(81 500 055K) ~Z (500587,

/
+2) 21,5 s0l126] -5
1
43> fz(st sz sl

/
where Z is the sum over z(s, . ..,s) € z(X) and z(s}, . ... ,s%) € z(Y) which are non-

V
adjacent in mZg and XNY # § and Z is the sum over z(sy,...,sx) € z(X) and
z(s},...»s)) € z(Y) which are non-adjacent in 7 Zg and X N Y = 0. [ ]

Finally, we deduce the Wiener index of Zz for all ne N and n > 3. Let
n = p1%1p2% ... p* where p1,pa,. .., px are distinct primes and o1, a2, ... o € N, and
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let 0 <s; <« forallie{l,...,k}. According to the first remark in Section 3, we have
z(s1,. .., sk) is the set S(p1°1p2*2 . . . px’*) so we know from Ref. [4] that

n
|Z(51,..-;5k)| - ¢ (p151p252 pksk) >

where ¢ is the Euler phi-function. In other words, if d = p;*1p>* ... pi’* is a divisor of
n, then |z(s1, . ..,sx)| = ¢(n/d). Moreover, let d; and d; be nonadjacent vertices in Zz,
corresponding to z(s1,$2, . . .,$k) € z(X) and z(s'1,5'2, .. .,5'k) € z(Y) where X and Y are
proper subsets of {1,2,...,n}, respectively. Note that d; and d; are relatively prime if X N
Y = ) and they have a common divisor otherwise. Using this observation, Theorem 5.2
(2) gives us the Wiener index of Z7,.

Corollary 5.3: Let n be a positive integer greater than 3. Let d, . . ., dj be all proper divisors
of n. Then the Wiener index of Z7, is given by

n n n n n n
Yo(g)e(@) e 2 e(@)e(@) X2 ¢(5)e(@)
di~d; di 9 ditd; di 4 ditd, d 9

gcd(d,',dj)#l gcd(d,-,dj)zl

Here, ¢ is the Euler phi-function.
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Matrices and the concept of rank of matrices have been playing important roles in
graph theory and coding theory. They have been applied to define and study many types
of graphs.

One famous graph applied by the rank of matrices is the bilinear form graph. The
bilinear form graph or matrix graph is a graph whose vertices are m X n matrices over
a finite field, and two vertices A and B are adjacent if and only if rank(A — B) = 1.
This graph has been widely studied, see [34], [25], [23], [5] and [28]. In 2014, Huang et
al. [18] also explored many properties of this graph such as the regularity, connectivity,
independence number, clique number and chromatic number. In addition, alternating
form graphs [19], quadratic form graphs [22] and Hermitian form graphs [5] are defined
by the rank of matrices over fields.

Not only graphs over finite fields but also graphs over finite commutative rings have
been vastly studied by applying the rank of matrices. The rank of matrices over rings has
been investigated in many directions such as the one defined by McCoy [26] and the one
defined by Cohn [7]. Recently, McCoy rank was used to define the adjacency conditions in
generalized symplectic graphs and generalized orthogonal graphs over finite commutative
rings, see [32]. Huang et al. [20] applied the concept of Cohn rank to generalize bilinear
from graphs over finite fields by studying the graph over the ring Z,s of integers modulo
p®. They also called this graph a bilinear form graph. The bilinear form graph over Z,s
is the graph whose vertex set is the set of m x n matrices over Z,s and two vertices A
and B are adjacent if and only if rank(A — B) = 1. They obtained properties of this
graph over Z,s similar to those over finite fields.

A year later, Huang [21] generalized the bilinear form graphs over Z,: by twisting
the adjacency condition. Let d,m,n be positive integers where 1 < d < min{m,n}.
The generalized bilinear form graph over Z,s is the graph whose vertex set is the set of
m X n matrices over Z,s, and two distinct vertices A and B are adjacent if and only
if rank(A — B) < d. So when d = 2, it is a usual bilinear form graph over Z,:. This
generalized bilinear form graph has applications in the existence of linear MRD codes.

Delsarte [11] considered a collection of matrices over a finite field as a code. He defined
the distance of codes using the rank of matrices and called it rank distance. He showed
that these codes have a Singleton like bound. A code that meets this bound is called a
maximum rank distance (MRD) code. MRD codes over finite fields have been extensively
studied such as their various applications in error correcting codes and network codings,
see [15], [29], [17], [10]. Codes over finite rings are also active topics. As a generalization
of the field Z,, codes over the ring Z,, were investigated such as MRD codes over Z,,x
[14], MDS codes over Z,m [31] and self-dual codes over Z,m [24]. As well, the concept of
MRD codes over Z,: is another type of codes over rings studied by Huang [21]. These
MRD codes over Z,s arise from the generalized bilinear form graphs over Z,s. More
generally, many codes over finite chain rings and finite principal ideal rings continue
being more interesting, see [12], [13], [1].

The purpose of this paper is to study matrix graphs over finite principal ideal rings
which generalize the matrix graphs over finite fields, bilinear form graphs and generalized
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bilinear form graphs over Z,s. We use the concept of the rank of matrices over finite
commutative rings to define our graphs. Moreover, we apply the graphs to study MRD
codes over finite principal ideal rings.

2. Ranks and background from graph theory

In this section, we first discuss the rank and the McCoy rank of matrices. Then we
define the matrix graph and recall some terminologies and results from graph theory.
We divide them into two subsections.

2.1. Rank of matrices

Let R be a commutative ring. We write R* for the set of unit in R and the set of
m X n matrices with entries in R is denoted by R™*™. Cohn [7] introduced the concept
of rank of matrices over commutative rings which generalizes the usual rank of matrices
over fields.

For a nonzero matrix A in R™*", the rank of A, denoted by rank A, is the least
positive integer ¢ such that A = BC where B € R™*! and C € R*™. The rank of the
zero matrix is defined to be 0.

This rank of matrices has some basic properties as the usual rank over fields. For
instance, if A, B € R™*", then rank A < min{m,n}, rank A = 0 if and only if A =0,
rank(A + B) < rank(A) 4 rank(B), and rank A = rank PAQ where P € GL,,(R) and
Q € GL,(R), see [7], [8], [20] for more properties.

Now, we assume that R is a finite commutative ring. It is well known that R can
be decomposed as R = Ry X Ry X --- X Ry where Ry, Ro, ..., Ry are finite local rings.
Let p; be the projection map from R to R; for all i € {1,2,...,¢}. Here, a local ring
is a commutative ring with unique maximal ideal. Recall that if R is a local ring with
unique maximal ideal M, then R* = R\ M and the field R/M is called the residue field
equipped with the canonical map 7 : R — R/M given by w(r) =r + M for all r € R.

Proposition 2.1. If A € R™*"™, then

rank A = 1H§1?§£{rank pi(A)}.

Proof. Suppose that rank A = t. Then A = BC for some B € R™*! and C € R'*".
For each i € {1,2,...,¢}, we have p;(A) = p;(B)p;(C), so that rank p;(A) < t. On the
other hand, let rank p;(A) = t; for all i € {1,2,...,¢}. Then for each i € {1,2,...,¢},
we have t; is the least integer such that p;(A) = B/C! where B, € R"*" and C! €
Rfixn. Without loss of generality, suppose that max;<;</{rank p;(A)} = t;. Set B; =

!
(B!,0) € R™*" and C; = (COZ> € R"*" Then A = BC where B = (By,Ba,...,By) €
R™" and C = (C1,Cs,...,Cp) € R1"*™. Thus, rank A < t;. Therefore, rank A =
max;<;<¢{rank p;(4)}. O
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Later, McCoy [26] gave another definition of rank of matrices over commutative rings
which also generalizes the usual rank of matrices over fields. This rank is described by
the annihilators of ideals as follows.

Let R be a commutative ring and A € R"™*". We define Iy = R and I;(A) to be the
ideal of R generated by the ¢ x ¢ minors of A for 1 <t < min{m,n}. Note that

R = I()(A) ) II(A) 2D 2 Imin{m,n}(A)
and so
{0} = Anng I()(A) C Anng I (A) C.--C Anng Imin{m,n}(A)

where the annihilator of I is given by Anngl = {r € R : ra = 0 for all a € I}. The
Mec-rank of A, Mc-rank A, is the largest integer r such that AnngI.(A) = {0}. If R
is a field, then Mc-rank A coincides with the maximal number of linearly independent
columns of A, so it is the usual rank. To compute the Mc-rank of matrices over finite
commutative rings, we have the following propositions.

Proposition 2.2. [}/ Let R be a finite local ring with mazimal ideal M and m: R — R/M
a canonical map. Then for each A € R™*"™, Mc-rank A = rank 7(A).

Proposition 2.3. /3] Let R be a finite commutative ring decomposed as R = Ry X Rg X
-+ X Ry where R; is a finite local ring with the projection map p; : (r1,72,...,7¢) — 14
forallie{1,2,...,0}. If A€ R™*™, then

Mc-rank A = 1rgg£{Mc—rank pi(A)}.

2.2. Matriz graphs

Suppose that R is a finite commutative ring and m, n, d are positive integers such that
2 < d < min{m,n}. The matriz graph of type (m,n,d) over R, denoted by T'y(R™*"),
is the graph whose vertices are m x n matrices over R, and two matrices A, B € R™*"
are adjacent if and only if 0 < rank(A — B) < d. We write A ~ B when A and B are
adjacent.

The graph DIp(F;**") is the matrix graph studied in [18]. Besides, the graphs
[o(Zy ") and T'y(Z,2 ™) are the bilinear form graphs in [20] and the generalized bilinear
form graphs in [21], respectively.

We next recall some terminologies and properties of graphs. Let G be a graph with
vertex set V(G). An automorphism of a graph G is a bijection o from G to G such that
g1 is adjacent to go if and only if o(gy1) is adjacent to o(g2). A graph G is said to be
vertex transitive if for any two vertices of GG, there is an automorphism carrying one to
the other. An independent set of G is a set I of vertices of G in which no two distinct
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vertices of I are adjacent. An independent set of G with the largest size of vertices is
called a maximal independent set. We write a(G) for the size of a maximal independent
set of G and call it the independence number of G. A clique C' of G is a complete
subgraph of G, that is, any two vertices of C are adjacent and a mazimal clique of G
is a clique of G which has the largest size of vertices. Denoted by w(G), the number of
vertices in a maximal clique is called the clique number of G. The chromatic number
of G, denoted by x(G), is the smallest number of colors needed to color the vertices
of G in which no adjacent vertices have the same color. If G is vertex transitive, we
have

V(G)]
a(G)

w(G) < < x(G).

Let G1,Gs, ..., Gy be graphs. The strong product of graphs G1,Gs, ... Gy, denoted by
G XGy K- - K Gy, is the graph whose vertex set is V(G1) x V(G3) x --- x V(Gy), and
g = (91,92,...,9¢) is adjacent to ¢’ = (g1, 95,--.,9;) if g # ¢’ and g, is either equal or
adjacent to g, in G; for all i € {1,2,...,¢}.

In what follows, we show some properties of rank of matrices over finite chain rings
in Section 3. We present the results on matrix graph over finite principal ideal rings.
We determine distance, connectivity, vertex transitivity, independence number, clique
number and chromatic number in this section. In Section 4, we introduce the MRD
codes over finite principal ideal rings. We prove that the MRD codes coincide with the
maximal independent sets of the matrix graph. Consequently, we have the existence of
linear MRD codes over finite principal ideal rings in our last theorem.

3. Matrix graphs over finite principal ideal rings

In this section, we study the matrix graphs over finite principal ideal rings. We show
that our graph is connected and vertex transitive. We determine the distance between
any two vertices of the graph. Moreover, the independence number, the clique number
and the chromatic number of the graph are computed.

A finite commutative ring R is called a finite chain ring if for any ideals I,J of R,
either I C J or J C I. Clearly, a finite chain ring is a local ring. One can show that if R
is a finite chain ring, then its maximal ideal M is principal and generated by 6 for some
6 € M\ M?. The smallest positive integer e such that ¢ = 0 is called the nilpotency
of R. A principal ideal ring (PIR) is a commutative ring in which all of its ideals are
principal. Recall that a finite commutative ring is a direct product of finite local rings. If
every ideal of a ring is principal, so are its factors. Thus, a finite PIR can be decomposed
as a direct product of finite chain rings. With this nice relation of PIRs and finite chain
rings, we first study some properties of matrices over finite chain rings. Some properties
of finite chain rings are recorded in the following proposition.
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Proposition 3.1. [27] Let R be a finite chain ring with mazimal ideal M = RO, residue
field ¥y, nilpotency e and V = {v1,va,...,v4} a system of coset representatives of M in

R.

(1) For any nonzero element r in R, there exists a unique integer i with 0 <i < e such
that r = ub® for some u € RX.

(2) For each r € R, v can be uniquely written as
r=rog+r0+r0%+ - 41,101

where o, 11, ...,Te_1 € V.
(8) The ideals of R are in the chain

{0} =RO°*C RO CRO*?>C---C RO>C ROCR.

(4) |RO| = ¢~ for alli € {0,1,...,e}.
(5) R/RO is a finite chain ring with nilpotency i and |R/RO'| = q* for alli € {1,... e}.
(6) For eachi € {1,2,...,e}, we have

R/R@Z = {’I“() +7“16+7“292 + "'+7ﬂi—101’_1 +R07' T, T, ..., Ti—1 € V}

Thus, an element r = 1o +1r10 + 1202 4+ -+ 1,10~ + RO" in R/R@i can be viewed
as an element r = ro +r10 +1r20% + - +r; 1071 + RO in R/ROTL. Moreover,
a unit in R/RO" is a unit in R/RO*T.

There is a useful property in computing the rank and Mc-rank of matrices over finite
chain rings.

Lemma 3.2. /6] Let R be a finite chain ring with mazximal ideal RO and nilpotency e. If
A is a nonzero matriz in R™*™, then there exist P € GLy,(R) and Q € GL,(R) such
that
It()
01,
921152

Qe—ljte_l
0

where to,t1,...,te_1 are non-negative integers. Moreover, this form is unique when 6 is

fized.

Proposition 3.3. Let R be a finite chain ring with mazximal ideal RO and nilpotency e and
A a nonzero matrix in R™*™ of the form (3.1). Then



S. Sirisuk, Y. Meemark / Finite Fields and Their Applications 66 (2020) 101705 7

rank A =tg+1t1 + - +te_1 and Mc-rank A = t,.

Proof. Let t =ty +t; + -+ te—1. From (3.1), we can write A = P diag(D,0)Q where
D = diag(Iy,,01;,,...,0°7 ;) € Rt Write P = (P; P») and Q = (8;), where

P, € R™*t and Q; € R?*™. We have A = P,DQ;. Therefore, rank A < t.
On the other hand, suppose that rank A = s. Then A = BC where B € R™** and
C € R**™. By Lemma 3.2, there exist P, € GL,,(R),Q1 € GLs(R), P, € GLs(R) and

Q2 € GL,(R) such that B = P; (l())l> @1 and C = Py(D2,0)Q2 where Dy and Dy are

diagonal matrices in R**%. Hence, A = P diag(D1Q1P>D>,0)Q2 where D1Q1P,Dsy €
R**%. Since the form of A is unique, s > t. Thus, rank A = t.

Next, let 7 : R — R/R6 be the canonical map. Then 7(A) = 7(P) diag(w (D), 0)7(Q).
It is obvious that rank w(A) = to. By Proposition 2.2, we have Mc-rank A = rank 7(A) =
to. O

By Proposition 3.1 (6), we note that a matrix A over R/ R can be viewed as a matrix
A over R/RO'™ and if A is invertible over R/Rf, then A is invertible over R/RO**1,
We apply Proposition 3.3 to prove the next proposition.

Proposition 3.4. Let A be an m x n matriz of rank t over R/RO*. Then A and Af are
m x n matrices of rank t over R/RO'1.

Proof. From Proposition 3.1 and Lemma 3.2, we can write A = Pdiag(l;,,0I,,...,
0=, ,,0)Q where P € GL,,(R/R#") and Q € GL,,(R/RO") with t = to+t1+---+1;_1.
It follows that both A and A0 = P diag(0l;,,0°I;,,...,0';, ,,0)Q are m x n matrices
over R/RO*TL. Since P and (Q are invertible over R/R0*, they are invertible over R/ RO,
Hence, A and A6 are of rank t over R/RO*™. 0O

Let R be a finite PIR decomposed as R é Ri X Ry x --- x Ry where R; is a finite
chain ring for all i € {1,2,...,¢}. Let p; : (r1,72,...,7¢) — 1r; be a projection map for all
i€{1,2,...,¢}. The isomorphism ¢ gives R™*™ = R{"*" x RJ"™"™ x -+ x R)"™". Thus,
we can view the vertex set of I'y(R™*™) as {(p1(A), p2(A),...,pe(A)): A€ R™*"}. By
Proposition 2.1, if A = (p1(A), p2(A),...,pe(A)) and B = (p1(B), p2(B), ..., pe(B)) are
two vertices of I'g(R™*"™), then

A~B—=0< 1@&2{({1‘&111{(,02-(14) —pi(B))} < d.
With this relation, we proceed to prove the following strong product of graphs theorem.

Theorem 3.5. Let R be a finite PIR decomposed as R = Ry X Ry X -+ X Ry where R; is
a finite chain ring. Then

Tg(R™™) = Ta(RP¥™) R Tq(RyZ™) R - - R T(Ry ™).
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Proof. Let G = T'y(RT"") K Ty(Ry™) W --- K T'y(R;"*™). As mentioned, the vertex
sets of graphs G and I'y(R™*™) are the same. Let A = (p1(A), p2(A),...,pe(A)) and
B = (p1(B), p2(B),...,pe(B)) be two vertices. Then

A~BinTy(R™") <0< 1n<1a§£{rank(pi(A) —pi(B))} <d

& A # B and rank(p;(A) — p;(B)) < d for all i € {1,2,...,/¢}

& A # B and either p;(A) = p;(B) or p;i(A) ~ p;(B) in Tg(R**"™)
forall i € {1,2,...,¢}

& A~BinG.

This completes the proof. O

Theorem 3.6. Let R be a finite PIR. Then the graph T'3(R™*™) is connected. Moreover,
for two vertices A, B € R™*"™, the distance between A and B is

rank(A — B)
dg(A,B) = | ————=|.
Consequently, the diameter of T q(R™*™) is equal to [%W

Proof. We first prove the desired result in the case that R is a finite chain ring. Assume
that R is a finite chain ring with maximal ideal Rf and nilpotency e. Let A, B € R™*"
with rank(B — A) = t. By Lemma 3.2, there exist P € GL,,(R) and Q € GL,(R) such
that

where 0 < k; < -+ <k <e—1.1ft <d—1, then A ~ B, and so dg(A4, B) = 1.
We assume that ¢ > d. Write ¢ = (d — 1)q + r where ¢,r are integers with ¢ > 1
and 0 <r<d—1. Let Ag = A and A; = A + Pdiag(6*,0%, ..., 0%a-v: 0)Q for all
i € {1,...,q}. Then for each i € {0,1,...,q — 1}, A;41 — A; = Pdiag(0,0%@-vit1
GF@-n6+1, 0)Q, so rank(A;.1 — A;) < d and thus A;1; ~ A;. Now, we have Ag ~
Ay ~ Ay ~ --- ~ A, Note that B — A, = Pdiag(0,0F@-vat1 ... gFa-neir 0)Q. So
rank(B — A,) < r < d. This implies that B = A, if r = 0 or B ~ A, if r > 0. Thus,
[g(R™*™) is connected. Moreover, dg (A, B) is at most ¢+ 1, that is, dg (4, B) < [75].
On the other hand, let dg(A, B) = s. Then there exist C1,Co,...,Cs_1 € R™*™ such
that A~ Cy ~Cy ~ -+~ (Cys_1 ~ B. By properties of the rank of matrices, we have
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t =rank(A — B) <rank(A — C1) + rank(C; — C3) + -+ - + rank(Cs_1 — B)
< s(d—1).

Thus, dg(A, B) = s > [745]. Therefore, dg(4, B) = (rank(A B)1.
Next suppose that R is decomposed as R = Ry X Ry X -+ X Ry where R; is a finite
chain ring. By Theorem 3.5, we have

Tg(R™ ™) = Tg(RI™) KT 4(RF*") K - - - K Tg(RI™).

Let A= (p1(A), p2(A),...,pi(A)) and B = (p1(B), p2(B),...,pe(B)) be two vertices in
Ly(R™* ™). Since I'y(R;**™) is connected for all ¢ € {1,2,...,¢}, we can suppose that
da(pi(A), pi(B)) =t; for all i € {1,2,...,¢}. For convenience, we write p;(A) = X;9 and
pi(B) = Xjt,. Then for each i € {1,2,...,/}, there exist X;1, X2, ..., Xj,—1) such that

pi(A) = Xio ~ Xi1 ~ Xig ~ - ~ Xy, = pi(B).

Without loss of generality, we assume that ¢; <ty < .- <t,. For each j € {0,1,...,t},
we set Xj = (le,XQj, ce ,ng) where Xij = pz(B) if tz S] S tg. Then

A=Xo~X; ~Xo~ -~ X, =B.

This implies that I';(R™*™) is connected and dg(A4, B) < ty = maxi<i<¢{da(pi(4),
pi(B))}.

Conversely, assume that dg(A, B) = t. Then there exist X, Xs,..., X¢—1 such that
A=Xo~ X1~ Xo~--~ X4 1 ~Xy=B. Leti € {1,2,...,/¢}. Since X; ~ X1, we
have pz(Xg) = pi(Xj—l—l) or pl(XJ) ~ pi(Xj—l—l) in Fd(R;an) for allj i~ {O, 1, . ,t — 1}
Thus, da(pi(A), pi(B)) < t. It follows that max;<;<¢{dc(pi(A), pi(B))} <t =dc(A4, B).

Finally, the distance over finite chain rings implies dg(A, B) = maxi<;<¢{da(pi(4),
pi(B))} = maxlgig{(rank(pi(A)_pi(B))W}. By Proposition 2.1, we have dg(4,B) =

d—1
(%] The diameter of T'y(R™*™) is obtained from Lemma 3.2 together with

choosing A=0and B= (I,, 0)ifm <norB= (%) if n < m. Hence, rank(A—B) =

min{m,n}. O
Proposition 3.7. If R is a finite PIR, then the matriz graph T 3(R™*™) is vertex transitive.

Proof. Let A,B € R™*™. Define o : R™*"™ — R™*" by 0(X) = X — (A — B) for all
X € R™*" For X,Y € R™*", we have rank(c(X) — o(Y)) = rank((X — (A — B)) —
(Y —(A—B))) =rank(X —Y). Then X ~ Y if and only if o(X) ~ o(Y) in T'4(R™*™).
Thus, o is a graph automorphism which maps A to B. Therefore, I'y(R™*™) is vertex
transitive. O
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Remark 3.8. It is well known that a vertex transitive graph is regular, that is, every
vertex has the same degree. Thus the matrix graph I'y(R™*™) is regular. For the degree
of this regular graph, we can determine the degree of the zero matrix. Then the degree
of I'y(R™*™) is the number of all nonzero m X n matrices over R of rank less than d.

We next compute the independence numbers and clique numbers of the matrix graphs.
The results over finite fields are given in [21] as follows.

Lemma 3.9. [21] If F, is the finite field of q elements, then
a(Fd(]F;nxn)) — qmax{m,n}(min{m,n}—d—i-l) and w(Fd(F;an)) — qmax{m,n}(d—l).

For the case of finite PIRs, we first consider the sets

Cy = { (61) A€ R<d—1>xn} and Cy := { (A 0):Ac€ RW<d—1>}.

Since rank A < min{m,n} for A € R™*" it follows that both C; and Cy are cliques of
L4(R™*™). Thus, w(Ig(R™*™)) > |R|™@{mn}Hd=1)  This provides the lower bound of
the clique number. We shall apply it to compute both clique number and independence
number.

Theorem 3.10. Let R be a finite PIR. Then

Oé(Fd(Rmxn)) — ’R’max{mm}(min{mm},dJrl)

and
w(rd(Ran)) _ |R|max{m,n}(d—1).

Proof. We first suppose that R is a finite chain ring with maximal ideal R, nilpo-
tency e and a canonical map m : R — R/RA. Let m < n. Then Lemma 3.9 implies
that a(Ty((R/RO)™*™)) = ¢*(m=4+D) = 4. Let A be a maximal independent set of
Ca((R/RO)™*™). So rank(A — B) > d over R/Rf for all distinct A, B in A. By Propo-
sition 3.4, we have that a matrix A over R/Rf can be considered as a matrix A over
R/RO" with the same rank for all i € {1,2,...,e}. Thus, rank(A — B) > d over R for all
distinct A, B in A. Next, let

T=A+A0+A0? + -+ A0 = {Ag+ A10 + Ax0? + -+ A, 101 A; € A}
By Proposition 3.1 (2), it is easy to see that Z is a set of size a®. We show that Z is

an independent set of I'y(R™*™). Let A,B € Z with A # B. Then A = Ay + A0 +
A202 + -+ Ae_196*1 and B = BO + B10 —+ B292 + -+ Be_196*1 where Al,Bl c A
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and A; # B, for some j € {0,1,...,e —1}. Hence, A— B = (Ay — By) + (A1 — B1)0 +
(Ay — B2)0? + -+ (Ae_1 — Be_1)0" 1. We apply Propositions 2.2 and 3.3 to show that
rank(A — B) > d.

First, if Ay # By, then rank(A — B) > Mc-rank(A — B) = Mc-ranknw(A — B) =
Mc-rank(Ay — By) = rank(Ag — Bp) > d. So we suppose that Ag # By. Let j €
{1,2,...,e—1} be the first index such that A; # B;. Then A—B = ((4; — B;)+(Aj41—
Bjt1)0+ -+ (Aem1 — Be—1)0°UTD) 07 Write C := (A — By) + (Ajp1 — Bjs1)0+- -+
(Aeq — Befl)He_(jH). Then A — B = C87. Note that C can also be viewed as a matrix
over R/R0°~7. By Proposition 3.4, both C' and C§’ are matrices over R/R0¢ = R with
the same rank as considering them over R/R0°~7. Therefore, rank(A— B) = rank(C67) =
rank(C') > Mc-rank(C) = Mc-rank 7(C') = Mc-rank(A; — B;) = rank(A; —B;) > d. This
implies that Z is an independent set of T'y(R™*™) of size a° = ¢e(m—d+1) Tt follows
that a(Tg(R™*™)) > genim=d+1),

Recall that w(Tg(R™*™)) > ¢¢™4=1) Since T'y(R™*") is vertex transitive,

|V(Pd(Rmxn))| qemn o qen(m—d—i—l)'

a(Fd(Rmxn)) < w(rd(Ran)) = qen(d—l) -

Therefore, a(T'g(R™*™)) = ¢*"(m=9+1) Again,

V(La(R™ ")) g -
mxXn < ‘ — — en(d 1)_
W(Fd(R )) = a(rd(Rmxn)) qen(m—d—H) q

Thus, w(Tg(R™*™)) = ¢4~ So we obtain the result over finite chain rings.

Next, assume that the PIR R is decomposed as R = R; X Ry X -+ x Ry where R; is a
finite local ring with nilpotency e; and residue field F,,. By Theorem 3.5, I'g(R™*") =
Lg(RT™) R Te(Ry™ ™) K --- K Ty(R)™"). Note that if Z; is an independent set of
Lg(R™™) for all i € {1,2,..., ¢}, then it is easy to see that

IT=11 XTIy x--- XIg:{(Al,AQ,...,Ag) DA EIi}
is an independent set of I'y(R™*™). Hence,
a(la(R™")) = ala(RY"))a(Ta(Ry ")) - a(Ta(Ry")).

The previous result on finite chain rings implies that a(Ig(R* ")) = %m for
CACEY)

all i € {1,2,...,¢}. Moreover, I';(R"*™) is vertex transitive for all ¢ € {1,2,...,¢} by
Proposition 3.7. Thus, it follows from [33] Corollary 1 that

a(la(R™*")) < a(la(RY"))a(Ta(Ry™")) - - a(Ta(Ry ™).

Therefore,
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a(lq(R™*")) = a(la(RY"))a(Ta(Ry™")) - - a(Ta(Ry* "))
_ q;ln(mfd+l)q;2n(mfd+1) o q;ln(m7d+l)
— ‘R‘n(m—d—f—l).

Finally, we determine the clique number of the graph. It is proved in [2] that w(G K
H) = w(G)w(H). Consequently,

w(la(R™")) = w(la(R™™))w(Ta(Rg™™)) - - w(Ta(Ry™))
_ qiln(d—l)qggn(d—l) o ngn(d—l)

— |R‘n(d_1).
The case n < m can be proved in a similar way. O

Remark 3.11.

(1) The cliques C; and C, mentioned earlier are maximal cliques.
(2) Let R be a finite chain ring with maximal ideal Rf and nilpotency e. If A is a
maximal independent set of T'y((R/R6)™*™), then

I=A+ A9+ A9* + - 4 A0

is a maximal independent set of I'g(R™*™).
(3) For a finite PIR R = Ry X Ry X -+ X Ry, if Z; is a maximal independent set of
Lg(R™™) for all i € {1,2,...,¢}, then

T=T11 X1y X--- XIg:{(Al,AQ,...,Ag) DA E:Z,-i}
is a maximal independent set of I'y(R™*™).

Let G be a finite group and S a subset of G which does not contain the identity and
is closed under taking inverses. The Cayley graph Cay(G, S) is an undirected graph with
vertex set G and for two vertices g1,92 € G, g1 and g are adjacent if g5 lisin S. A
Cayley graph Cay(G, S) is normal if gSg=! = S for all g € G.

To determine the chromatic number of the matrix graph, we use the following property
of a normal Cayley graph.

Lemma 3.12. [16] If G is a normal Cayley graph with o(G) = |Z((g))| , then x(G) = w(G).

Note that R™*" is an additive group. Let S be the set of nonzero matrices of rank
less than d. It is easy to see that S does not contain the zero matrix and is closed under
taking additive inverses. For A, B € I'3(R™*"), we have
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A~B<—=0<rank(A—B)<d<= A—BeS.

Thus, I'y(R™*™) is a Cayley graph. Moreover, it is a normal Cayley graph since R™*"
is an abelian group. By Theorem 3.10, we have o(T'y(R™*™)) = %. It follows
from the above lemma that w(I'y(R™*™)) = x(I'q(R™*™)). Hence, we have shown:

Proposition 3.13. If R is a finite PIR, then x(I'q(R™*™)) = ]R|max{mv”}(d_l),
4. MRD codes

This section is devoted to study MRD codes over PIRs. We give the concepts of matrix
codes and rank distance of matrix codes. We shall see that matrix codes relate to matrix
graphs. Indeed, maximal independent sets of matrix graphs are MRD codes and vice
versa. Finally, we show the existence of linear MRD codes over a PIR by lifting linear
MRD codes over a direct product of finite fields.

Let R be a finite commutative ring. A (matriz) code of size m x n is defined to
be a subset C of R™*". For two matrices A, B € R™*™, we define the rank distance
between A and B, denoted by d,x(A, B), to be rank(A — B). Note that the rank distance
is a metric on R"™*". Indeed, d;x(A,B) > 0, dix(A,B) = 0 if and only if A = B,
dik(A, B) = dik(B, A) and dx(A,C) < di(A, B) + dw (B, C) for all A, B,C € R™*™.
For a code C of size m x n over R, the rank distance of C is defined to be

dyx(C) = min{d,x(A, B) : A, B € C with A # B}.

We call a code C of size m x n with rank distance d an (m x n,d)-code. If C C R"™*" is
a submodule of R™*™ over R, we call C a linear code.

Suppose m < n. Let C be an (m x n,d)-code. We can consider a matrix A in C
as A = (¥1,%,...,%Ty,) where &; € R™ is an i-th row of A. This means we can study
C C (R™)™ as a code of length m over a set of alphabet R™ and find the Hamming distance
of C. Hence, a code C with the Hamming distance dy(C) agrees with the Singleton bound
d(C) < m —log g« |C| + 1. That is, |C| < [R|"(" 4@+,

Over the finite field Fy, it is shown in [11] that a matrix code C of size m x n with
rank distance d,(C) has a Singleton like bound which satisfies |C| < ¢™(m~dx(O)+1) We
show that matrix codes over finite PIRs have a similar bound by using independent sets
of the matrix graphs.

Let R be a finite PIR and C € R™*"™. Then C is both a matrix code and a set of
vertices in the matrix graph I'g(R"™*"™). Moreover, if d > 2, then we have that for any
A,B € C with A # B, d;x(A, B) =rank(A — B) > d if and only if A is not adjacent to
B in I'y(R™*™). This implies the next proposition.

Proposition 4.1. Let R be a finite PIR and 2 < d < m < n. For a code C C R™*",
dik(C) > d if and only if C is an independent set of the graph T'g(R™*™).
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This proposition and the independence number in Theorem 3.10 implies that if C is
a code with d, (C) = d where d > 2, then |C| < a(T'y(R™*™)) = |R|™™~4*+1) For the
case d;x(C) = 1, it is obvious that |C| < |R|™". Thus, we have the Singleton like bound
for the matrix codes over finite PIRs as follows.

Corollary 4.2. Let R be a finite PIR and m < n. For a code C C R™*", we have
c| < |R|n(m—drk(c)+l)'

An (m x n,d)-code C over a PIR R is called a mazimum rank distance code (MRD
code) if |C| = |R|™(™~4+1) Obviously, the only (m x n,1)-MRD code is R™*". So we
may assume d > 2 to study MRD codes.

Next, suppose that R is a PIR and d < m < n. Let C C R™*"™. Note that if C
is either a maximal independent set of I'y(R™*™) or an (m x n,d)-MRD code, then
IC| = |R|™(m—4+D) = o(T4(R™*™)). Moreover, |C| = |R|™™~4+1) implies |R|m—d+1) =
IC| < |R|™Mm=dn(C)H+D) By Corollary 4.2, so we have d > d,i(C). Applying Proposition 4.1
results in

C is an (m X n,d)-MRD code
< dk(C) =d and |C| = |R|”(m_d+1)
& C is an independent set of T'g(R™*") and |C| = |R|n(m—d+1)

< C is a maximal independent set of T'g(R™*"™).
Therefore, we have shown:

Theorem 4.3. Let R be a finite PIR, 2 < d < m < n and C C R™*"™. Then C is an
(m x n,d)-MRD code if and only if C is a mazximal independent set of T'q(R™*™).

We have seen that (m x n,d)-MRD codes coincide with maximal independent sets of
the matrix graphs. We next construct linear MRD codes over PIRs by using maximal
independent sets of the graphs.

Theorem 4.4. Let R be a finite PIR decomposed as R = R X Ry X -+ X Ry where R;
is a finite chain ring with mazimal ideal RO;, nilpotency e; and residue field F,, for
all i € {1,2,...,0}. For any m,n,d with 2 < d < min{m,n}, there exists a linear
(m x n,d)-MRD code over R. Moreover, this linear (m x n,d)-MRD code is of the form
C=0Cy xCq X -+ xCy where each C; is a linear (m x n,d)-MRD code over R; which is
of the form C; = C; + C;0; + 51012 4+ -+ @9;“1 where C; is a linear (m x n,d)-MRD
code over Iy, .

Proof. Let m,n,d be positive integers with 2 < d < m < n. Suppose that R is a finite
chain ring with maximal ideal R, nilpotency e and residue field R/R6 = F,. It is shown
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in [11] that there exists a linear (m x n,d)-MRD code over F,. We shall lift this linear
MRD code C over F, to obtain a linear MRD code over R.

Theorem 4.3 implies that C is a maximal independent set of La(F"*™). Re-
mark 3.11 (2) shows that

C:=C+CO+CO* + - +CO = {Ag+ A10+ A0 +-- -+ A._10°71 : A, €C)

is a maximal independent set of I';(R™*"™). From another direction of Theorem 4.3, C
is an (m x n,d)-MRD code over R. Since C is a linear code over F,, we can employ
Proposition 3.1 (2) to obtain a linear code C over R.

Finally, suppose that R is a PIR decomposed as R; X Ry X --- X Ry, where R; is
a finite chain ring. Then there exists a linear (m x n,d)-MRD code C; over R; for all
i€{1,2,...,0}. By Theorem 4.3, C; is a linear independent set of I';(R]"*"). Again, by
Remark 3.11 (3), we have

CzclXCQX“'XC[Z{(Al,Ag,...,Ag)ZAiECi}

is a maximal independent set of I'y(R™*™). Thus, C is an (m x n,d)-MRD code over R.
Since C; is a linear (m x n,d)-MRD code over R; for all i € {1,2,...,/¢}, C is also a linear
(m x n,d)-MRD code over R. This completes the proof. O

Remark 4.5. Linear MRD codes over finite fields have been intensively applied to linear
network coding, and also connected to many areas such as McEliece like public key
cryptosystems, semifields, linearized polynomials, see [30] for details. From the above
theorem, we obtain linear (m x n,d)-MRD codes for any parameters m,n,d not only
over the field alphabet F, but also the ring alphabet of any sizes (finite PIRs). Indeed,
the ring alphabets are more optimal than field alphabets in some cases to study network
coding, see [9]. Moreover, these linear MRD codes over PIRs generalize those over Z s
in [21].

Acknowledgment

The first author is supported in part by the Research Assistantship Funding from Fac-
ulty of Science, Chulalongkorn University under the contract number RAF 2561 023.
The second author is supported in part by the Thailand Research Fund (TRF) grant
under the contract number RSA 6280060. They would like to acknowledge both organi-
zations for their contributions in the grant. The authors thank anonymous referees for
their valuable comments.

References

[1] A. Batoul, K. Guenda, T.A. Gulliver, et al., Constacyclic codes over finite principal ideal rings,
Codes, Cryptol. Inf. Secur. (2017) 161-175.



16 S. Sirisuk, Y. Meemark / Finite Fields and Their Applications 66 (2020) 101705

[2] C. Berge, Graphs and Hypergraphs, North Holland, 1973.
[3] D. Bollman, H. Ramirez, On enumeration of matrices over finite commutative rings, Am. Math.
Mon. 76 (1969) 1019-1023.
[4] J.V. Brawley, L. Carlitz, Enumeration of matrices with prescribed row and column sums, Linear
Algebra Appl. 6 (1973) 165-174.
[5] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer Verlag, Berlin, 1989.
[6] W.C. Brown, Matrices over Commutative Rings, Marcel Dekker, Inc., New York, 1993.
[7] P.M. Cohn, Free Rings and Their Relations, second edition, Academic Press, London, 1985.
[8] P.M. Cohn, Free Ideal Rings and Localization in General Rings, Cambridge University Press, Cam-
bridge, 2006.
[9] J. Connelly, K. Zeger, Linear network coding over rings—part I: scalar codes and commutative
alphabets, IEEE Trans. Inf. Theory 64 (2018) 274—291.
[10] A. Cossidente, G. Marino, F. Pavese, Non-linear maximum rank distance codes, Des. Codes Cryp-
togr. 79 (3) (2016) 597-609.
[11] P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Comb. Theory,
Ser. A 25 (1978) 226—241.
[12] H.Q. Dinh, S.R. Lopez-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans.
Inf. Theory 50 (2004) 1728-1744.
[13] S.T. Dougherty, J.L. Kim, S. Kulosman, MDS codes over finite principal ideal rings, Des. Codes
Cryptogr. 50 (2009) 77-92.
[14] S.T. Dougherty, K. Shiromoto, MDR codes over Zj, IEEE Trans. Inf. Theory 46 (2000) 265—269.
[15] E.M. Gabidulin, Theory of codes with maximum rank distance, Probl. Inf. Transm. 21 (1985) 1-12.
[16] C. Godsil, Interesting graphs and their colourings, 2004, unpublished notes.
[17] A. Horlemann-Trautmann, K. Marshall, New criteria for MRD and Gabidulin codes and some
rank-metric code constructions, Adv. Math. Commun. 11 (3) (2017) 533-548.
[18] L.-P. Huang, Z. Huang, C.-K. Li, et al., Graphs associated with matrices over finite fields and there
endomorphisms, Linear Algebra Appl. 447 (2014) 2-25.
[19] L.-P. Huang, J.-Q. Huang, K. Zhao, On endomorphisms of alternating forms graph, Discrete Math.
338 (2015) 110-121.
[20] L.-P. Huang, H.D. Su, G.H. Tang, et al., Bilinear forms graphs over residue class rings, Linear
Algebra Appl. 523 (2017) 13-32.
[21] L.-P. Huang, Generalized bilinear forms graphs and MRD codes over a residue class ring, Finite
Fields Appl. 51 (2018) 306-324.
[22] L.-P. Huang, Endomorphisms and cores of quadratic forms graphs in odd characteristic, Finite
Fields Appl. 55 (2019) 284-304.
[23] T. Huang, A characterization of the association schemes of bilinear forms, Eur. J. Comb. 8 (1987)
159-173.
[24] H. Lee, Y. Lee, Construction of self-dual codes over finite rings Z,=, J. Comb. Theory, Ser. A 115
(2008) 407-422.
[25] W.J. Martin, X.J. Zhu, Anticodes for the Grassmann and bilinear forms graphs, Des. Codes Cryp-
togr. 6 (1995) 73-79.
[26] N.H. McCoy, Rings and Ideals, Menasha, George Banta Company, Inc., 1948.
[27] B.R. McDonald, Finite Rings with Identity, Marcel Dekker, New York, 1974.
[28] K. Metsch, On a characterization of bilinear forms graphs, Eur. J. Comb. 20 (1999) 293-306.
[29] R.M. Roth, Maximum-rank array codes and their application to crisscross error correction, IEEE
Trans. Inf. Theory 37 (1991) 328-336.
[30] J. Sheekey, MRD codes: constructions and connections, arXiv:1904.05813, 2019.
[31] K. Shiromoto, Note on MDS codes over the integers modulo p™, Hokkaido Math. J. 29 (2000)
149-157.
[32] S. Sirisuk, Y. Meemark, Generalized symplectic graphs and generalized orthogonal graphs over finite
commutative rings, Linear Multilinear Algebra 67 (12) (2019) 2427-2450.
[33] E. Sonnemann, O. Krafft, Independence numbers of product graphs, J. Comb. Theory, Ser. B 17
(1974) 133-142.
[34] H. Tanaka, Classification of subsets with minimal width and dual width in Grassmann, bilinear
forms and dual polar graphs, J. Comb. Theory, Ser. A 113 (2006) 903-910.



Finite Fields and Their Applications 65 (2020) 101689

Contents lists available at ScienceDirect
Finite Fields and Their Applications

www.elsevier.com /locate/ffa

Unitary Cayley graphs of matrix rings over finite n

commutative rings

Check for
updates

Jitsupat Rattanakangwanwong, Yotsanan Meemark *

Department of Mathematics and Computer Science, Faculty of Science,
Chulalongkorn University, Bangkok, 10330, Thailand

ARTICLE INFO

ABSTRACT

Article history:

Received 9 December 2019
Accepted 23 April 2020

Available online 15 May 2020
Communicated by Dieter Jungnickel

MSC:
05C50
05C25

Keywords:

Character sum

Matrix ring

Strongly regular graph
Unitary Cayley graph

Let R be a finite commutative ring and n a positive integer.
In this paper, we study the unitary Cayley graph Cy, (r) of
the matrix ring over R. If F' is a field, we use the additive
characters of M, (F') to determine three eigenvalues of Cys, ()
and use them to analyze strong regularity and hyperenergetic
graphs. We find conditions on R and n such that Cyp, (g
is strongly regular. Without explicitly having the spectrum
of the graph, we can show that Cy (gr) is hyperenergetic
and characterize R and n such that Cy (g) is Ramanujan.
Moreover, we compute the clique number, the chromatic
number and the independence number of the graph.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

For a finite ring R with identity, the unitary Cayley graph of R, Cg, is the graph with

vertex set R and for each x,y € R, x and y are adjacent if and only if x — y is a unit

* The first author is under the H.M. the King Bhumibhol Adulyadej’s 72nd Birthday Anniversary
Scholarship from Graduate School, Chulalongkorn University. The second author is supported in part by
the Thailand Research Fund (TRF) grant under the contract number RSA 6280060.

* Corresponding author.

E-mail addresses: new__type@hotmail.com (J. Rattanakangwanwong), yotsanan.m@chula.ac.th
(Y. Meemark).

https://doi.org/10.1016 /j.ffa.2020.101689
1071-5797/© 2020 Elsevier Inc. All rights reserved.



2 J. Rattanakangwanwong, Y. Meemark / Finite Fields Appl. 65 (2020) 101689

of R. The unitary Cayley graphs have been widely studied by many authors (see, for
example, [2,8,4,1,5]). As discovered in [1,5], if R is a finite commutative ring, then R can
be decomposed as a direct product of finite local rings Ry,..., Rs and Cg is the tensor
product of the graphs Cg,, ..., Cr, where the tensor product of graphs G and H, G® H,
is the graph defined on V(G) x V(H) where (a,b) is adjacent to (c,d) if and only if a
is adjacent to ¢ in G and b is adjacent to d in H. In addition, if R is a finite local ring
with maximal ideal M, then Cpg is a complete multi-partite graph whose partite sets are
the cosets of M. Thus, the unitary Cayley graphs of finite commutative rings are well
studied. Their spectral properties including the energies are also well known (see [5]).

Let G be a graph and V(G) the vertex set of G. We give some terminologies from
graph theory as follows. A clique is a subgraph that is a complete graph and clique
number of G is the size of largest clique in G, denoted by w(G). A set I of vertices of G
is called an independent set if no distinct vertices of I are adjacent. The independence
number of G is the size of a maximal independent set, denoted by «(G). The chromatic
number of G is the least number of colors needed to color the vertices of G so that no
two adjacent vertices share the same color. We write x(G) for the chromatic number of
G. If every vertex of GG is adjacent to k vertices, then G is a k-regular graph. Finally, we
say that a k-regular graph G is edge regular if there exists a parameter A\ such that for
any two adjacent vertices, there are exactly A vertices adjacent to both of them. If an
edge regular graph with parameters k, A also satisfies an additional property that for any
two non-adjacent vertices, there are exactly u vertices adjacent to both of them, then it
is called a strongly regular graph with parameters k, A, p.

Let R be a ring and n € N. Let R* denote the group of units of R. Let M,,(R) denote
the ring of n x n matrices over R and the group of all invertible matrices over R is
denoted by GL,(R). Throughout this work, I,, is the n x n identity matrices and 0,,xx
is the m x n zero matrix.

For non-commutative rings, Kiani et al. [6] worked on unitary Cayley graphs of the
ring M, (Fy) x -+ x M,,, (Fk) where ny,...,n; € N and Fy,..., F) are finite fields.
They obtained the clique number, the chromatic number and the independence number
of the graph. They also studied the role between Cpr and the structure of R. Later
in [7], they proved that if F' is a finite field, then Cy, () is an edge regular graph
with £ = | GL,(F)| and A = |(I,, + GL,(F)) N GL,(F)| = e, where e, is the number
of invertible matrices which do not fix any non-zero vector. Such matrices are called
derangement matrices. We know from [11] that e,, satisfies the recursion e,, = e,,_1(¢" —
l)q”_l—F(—l)”q”(”_l)/2 and eg = 1. Kiani showed further that Cyy,(p) is strongly regular

([(1) 8] +GL2(F)) A GLy(F)

An eigenvalue of a graph G is an eigenvalue of the adjacency matrix of a graph G.

with p =

but Cy,(r) is not strongly regular.

The energy of a graph G, E(G), is the sum of absolute value of its eigenvalues. The
spectrum of a graph G is the list of its eigenvalues together with their multiplicities.

If \i,..., A\ are eigenvalues of a graph G with multiplicities m, ..., m,., respectively,
we write SpecG = (2\111 :;;) to describe the spectrum of G and so E(G) =
.
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my|A1|+ -+ m,|A-|. A graph G on n vertices is said to be hyperenergetic if its energy
exceeds the energy of the complete graph K, that is, E(G) > 2(n — 1). A k-regular
graph G is a Ramanugan graph if || < 2¢/k — 1 for all eigenvalues \ of G other than +k.
A Ramanujan graph is a regular graph whose spectral gap is almost as large as possible.
It is an excellent spectral expander. Its name comes from Lubotzky, Phillips and Sarnak
[10] who used the Ramanujan conjecture to construct an infinite family of such graphs.

To introduce our methodology, we recall some results on characters of finite abelian
groups. For more detail, see [9]. Let G be a finite abelian group. A map x : G —
(C\ {0},) is a character if x is a group homomorphism. The set of all characters of G,

~

denoted by G, forms an abelian group under point-wise multiplication, that is, for any
characters x1, X2 of GG, we define x1-x2 : G — (C \ {0}, -) where (x1-x2)(9) = x1(9)x2(9)
for all g € G.

Let F' be the finite field extension of Z,, which has p" elements for some » € N and a
prime p. The trace map from F' to Z,, is the Z,-linear map Tr : x — x + 2P +--- —I—.:Uprfl.
According to [9], each character of the group (F,+) is given by xq(z) = 5 Triaz)
for all x € F where a € F is fixed. Note that (M, (F),+) = (F,4) x (F,4+) x -+ X

(F,+) (n? copies). Recall that if we hav/egl, G are finite abelian groups, then there is

a canonical isomorphism G x Ga — G x G given by (x1, x2) — X1X2. Hence, we may

identify a character of M,,(F') as x4 = H Xa;; Where A = [a;;]nxn is in M, (F) and
1<i,j<n

so it follows from Theorem 2 of [12] that the eigenvalues of Cyy, () are given by

pa= > xals)

SEGL, (F)

as A ranges over all matrices in M, (F).

In the next section, we shall use the additive characters discussed in the previous para-
graph to compute some eigenvalues (namely, pa,,pa, and pa,) and use them to study
strong regularity of the unitary Cayley graph Cy, (ry of a matrix algebra over a finite
field F' of ¢ elements. This new approach also allows us to conclude that the multiplici-
ties of eigenvalues are at least the number of matrices of the same rank (Theorem 2.1).
Without completely having the spectrum of the graph, we work on the eigenvalue p4,
and show that Cyy, (p) is hyperenergetic and characterize n and ¢ such that Cy, (p) is
Ramanujan in Section 3.

The final section presents the study of the unitary Cayley graph of product of matrix
rings over finite local rings. We start by working on a finite local ring R with unique
maximal ideal M and residue field k. We determine the canonical graph isomorphism
from the graph Cyy,, k) ®1\°/[n(M ) onto the graph Cy;, () induced from lifting elements of
k to R via M (Theorem 4.2). This isomorphism allows us to obtain the clique number, the
chromatic number and the independence number of the unitary Cayley graph of product
of matrix rings over finite local rings. Since every finite commutative ring is isomorphic
to a direct product of finite local rings, we have these numbers for unitary Cayley graphs
of a matrix ring over a finite commutative ring. Moreover, the work in Sections 2 and 3
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is generalized to matrix rings over finite local rings and finite commutative rings in
Section 4.

2. Strong regularity of M,, (F)
Throughout this section, let F' be the finite field of ¢ elements and n € N. Our main

work is to show that the graph Cy, (r) is strongly regular if and only if n = 2. We begin
by determining some eigenvalues of the graph by considering three matrices in M, (F),

namely,
1 0 0 --- 0 1 1 0 0
o o0 o0 --- 0 1 0 0 0
Al =0pxpn, A2=1|. . . ) and Az =
00 0 0 10 0 0

Clearly, we have

Note that

Pz = ) Npe's Trm)
meF

where N,, is the number of invertible matrices with m at the left-top corner for all
m € F. If an invertible matrix has the left-top corner being 0, then the other n — 1
elements in the first column cannot be all zeros, so there are ¢" — 1 choices for the first
column. Thus,

No=(""=D("—a)(d"—¢)...(¢" —¢" ")

because the second column must not be multiple of the first column, and the jth column
must not be a linear combination of the previous j — 1 columns for all j € {2,...,n}.
Now, we have

@ =" " =)@ =) ... (" =)

invertible matrices with the top-left corner being nonzero. Since N,,, = N; for all m # 0,
we have

(g—DN1=(¢"—q¢"")¢"—a)(d"—¢*)...(¢" —¢" ")

SO
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Ni=q" " —)(q" —¢*)...(¢" —¢" 1)

It follows that

= N O 4, Y O
m=#0

_ 271 r(m
=" )@ ). ("= ")+ N Y e T,
meF

By Hilbert’s theorem 90, we know that the trace map is surjective, so we get

Z e 5 Trlm) = [ker Tr| Z e ™ = 0.

meF meZy,

Therefore,

pas=—(a"—a)(@" —¢*)...(¢" —q
Finally, we determine p4,. Since

pas = N(mi,ma,...,Mpyi1) E e b Tr(mitmad dmptmnis)

mlam27"'7mn+1€F

where N(mq, ma,...,my4+1) is the number of invertible matrices of the form
ml mn+1 .. *
mo * cee %
mn * PR *
and my,ma,...,my11 € F. For m; = 0, we can determine N (0, mo, ..., m,11) according

to my41 as follows. If m, 1 # 0, then the first column and the second column are
linearly independent, so the second column can be arbitrarily chosen. If m,, 11 = 0, then
the second column must not be multiple of the first column and the jth column must
not be a linear combination of the previous j — 1 columns for all j € {2,...,n}. Thus,
N(0,mz,...,0) = (¢""(¢"—q¢*) ...(¢"—q" 1) and N(0,mz,...,mui1) = (¢" 1) (¢" —
) ... (¢"—q" 1) if m,,1 # 0. Now, assume that my # 0. Then N(my,ma,...,mpi1) =
N(1,msg,...,mus1) for all mo,...,myy1 € F. To find N(1,ms,...,m,11), we note
that the second column cannot be m,4i-multiple of the first column and similarly the
jth column must not be a linear combination of the previous j — 1 columns for all
j€{2,...,n}, so

N(1,ma,...,mui1) = ("' =1)(¢" —¢*) ... (¢" —¢" ).

Now, we compute
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— n n n— n I 2mi r(mao+...Mmy
pa = (" =)@ =) ("= TN+ e Tt

+ qn—l(qn _ q2) o (qn o qn—1) Z/ Z ez;m' Tr(ma+...Mp+Mni1)

mn+17éo
/ g3
F@ D@ ) (@ = Y YT YT e B matmatmay)
m17#0 Mpp1€F
mq
/ mo
where Z denotes the sum over mo,...,m, € F such that | . | is the first column of
mpy

27

an invertible matrix. Since E e p Lr(mnt1) — 0, the last sum is 0, so we can rewrite

Mpt1€F
PAs as
/ 27
_ —1 2 —1 Tr(mao+..mp+my
pas=q""Hq" =) .. ("= ") D ew Tlmatematag)
mn+1€F
I 2mi
_ q(qn . q2) o (qn - qnfl) E : e p Tr(mg—i-...mn).
The first sum is again zero because m,, 41 varies over F. Now, since m; = 0, mao, ..., my,

cannot be all zeros and so

/

{ma,...,m, }#{0}

_ Z 62;\'1' Tr(m2+...mn) _ 1 = —]_.

mo,...,Mp EF

Hence, pa, = q(q” — q2) . (qn - qn_l)-

Let A and B be n xn matrices over F'. Assume that rank A = rank B. Then there exist
invertible matrices P and @ such that A = PBQ. Consider A = [a;;] ..., B = [bi], .,
P = [pij]an and Q = [qij]an. For S = [sij]an € GL,,(F), we have

xa(S) = 62;” Tr<21§i,j§n aijsij>'

From

Z a;jSij = Z ( Z pilblekzj>5ij

1<i,j<n 1<i,j<n  1<k,l<n

— Z Z ik (Pi1SijQr;)

1<i,j<n 1<k,l<n

— Z bk Z (Pi1SiQn;)

1<ki<n  1<i,j<n
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and Z PilSijQrj = (PtSQt)lk, it follows that x4(S) = xp(P'SQ"). Since P and Q
1<ij<n

are invertible, GL,, (F') = P* GL,(F)Q", so

Yo oxal®) = > xs(S)

SeGL,, (F) SeGL, (F)

Hence, we have shown:
Theorem 2.1. If A and B are n x n matrices over F' of the same rank, then pp = pp.

Since Cyy,, (py is connected and |GLy, (F')|-regular, p4, induced from the zero matrix
has multiplicity 1. Observe that p4, and pa, are induced by matrices of rank 1 and
2, respectively. Since the set of characters are linearly independent, the multiplicities of
them are the number of matrices of such rank. Suppose n = 2. The number of matrices of

rank 1 is (q:%)z = (¢—1)(¢+1)? and the number of matrices of rank 2 is (¢ —1)(¢* —q).
We record this result in:
(-9  —(*—0q) q
Th 2.2. Spec C _ ((a
eorem pec L, (F) < 1 (q . 1)((] + 1)2 (q2 . 1)(612 B q)

and E(Cy,(ry) = 2q(¢® — 1),

If n =3, then pa, = (¢* — 1)(¢* — 9)(¢® = ¢*), pa, = —(¢® — @) (¢® — ¢°) and pa, =
q(¢*>—q?) are eigenvalues of Cyy,(py induced from matrices of rank 0, 1 and 2, respectively.
Let A be the eigenvalue induced from matrices of rank 3. Counting the number of matrices
of each rank gives

(¢* —1)?
q—1

+(@@ - - @ —)A=0.

(@ —D(* —a)(@®—¢*) — (@ —a)(¢® — ¢°)

(¢° —1)*(¢* — ¢)?
(¢* = 1)(¢*> — q)

+ald® —¢*)
Dividing by (¢> —1)(¢® — ¢)(¢® — ¢°) implies A = —¢3. This proves the following theorem.
Theorem 2.3.

- (4 90 e
q(q* — ¢*) — >
@ =D =P +q+1) (=B =) (=) )

Recall from Chapter 10 of [3] that a connected regular non-complete graph is strongly
regular if and only if it has exactly three distinct eigenvalues. So, we can conclude from
Theorem 2.2 that Cyp,(py is strongly regular. Next, we assume that n > 3 and Cyy,, (r) is
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strongly regular. Then Cy;, () has only three eigenvalues. From our computation, they
must be pa,,pa, and pa,. Suppose the multiplicities of pa, and pa, are mo and ms,
respectively. Since the sum of eigenvalues of Cy;,, (r) is 0, we have

(@ -1)(¢"=q)... (¢"—=¢"")—(¢"—q) ... (¢"—q" " )ma+q(¢"—¢*) ... (¢"—¢"")m3 = 0.

n=1) gives

Dividing by (¢" — ¢?)...(¢" — q

(" = 1)(¢" — q) — (¢" — ¢)ma + gm3 = 0.

Note that 1 +mo +mg = q”z, SO Mo = q”2 — mg — 1. Putting this my in the previous
equation gives ms = q(¢" ' — 1)(¢"" =™ — 1). Recall from Corollary 8.1.3 of [3] that the
sum of square of eigenvalues of the adjacency matrix A is the trace of A% which is twice
of the number of edges of the graph. Since our graph is |GL, (F)|-regular, if E,, is the
number of edges, then

This yields another relation on me and ms given by

(" =D(¢"=q) - (@" = ¢ )N+ ((¢"—q).-(¢" = ¢"")*ma

+(q(q" = q%) ... (" =" ))Pmz=q¢" (" —1)...(¢" — ¢"").

’I’L2—’fl

n—l)

Dividing by (¢" —¢*)...(¢" — ¢ and substituting ms = q¢(¢"~* — 1)(q —1) give

(@ =% =) (@" = ")+ ("~ a)*(¢" ~¢*) ... (¢" — ¢")m2
+ q3(q” — q2) - (q" — q”_l)(qn—l _ 1)(qn2—n _ 1)

=¢" (¢" = 1)(¢" — q).

Since q”z_” —1= (q"‘l)n —1, the left hand side is divisible by (¢! —1)2, so (¢"~1—1)2
divides ¢" (¢" — 1)(¢" — q). It follows that ¢"~! — 1 divides ¢" +1(¢" — 1). Since ¢ and
q" — 1 are relatively prime, we have ¢"~! —1 divides ¢" —1 = ¢" —q+(q—1),s0 "1 —1
divides ¢ — 1 which is a contradiction because n > 3. Therefore, we have our desired
result.

Theorem 2.4. The graph Cyy, (ry is strongly regqular if and only if n = 2.

From the above theorem, we learn that Cyy, () is not strongly regular for n > 3. Since
it is edge regular with A = e,,, there are more than one value of the number of common
neighborhoods of non-adjacent vertices in Cyy,, (). If A, B € M,,(F) and rank(A—B) =r
for some 0 < r < n, then there exist invertible matrices P, () such that
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P(A—B)Q _ [ I, Orx(n—r) ] )

O(n—r)xr O(n—r)x(n—r)

For A € M,,(F'), let N(A) be the set of neighbors of A. According to Kiani (in the proof
of Lemma 2.1 of [7]), we have

IN(A) N N(B)| = | (l{) 8] + GLn(F)) n GLn(F)'

for all A, B € M,,(F) with A # B. It gives the number of common neighbors of any pair
of two vertices A and B in M,,(F). For 1 <r <n, we define

d(n,r) = ‘ Q{) 8] + GLn(F)) n GLn(F)’ |

Since two matrices A and B are adjacent if and only if rank(A — B) = n, we have

d(n,n) = e, where e, is mentioned in Section 1. Observe that d(n,r) is the number of
invertible matrices A such that A — 16 8] is also invertible. Now, let {€1,€é5,..., €}

be the standard basis of F". Consider the set X of vectors given by

X:{A:[C_ﬁ as ... 6n]EGLn(F)151€€1+Span{62,...,dn}}‘

0 O
to compute d(n,1). Since d(n,1) = | GL,,(F')| — |X|, we shall determine the cardinality

of X. Let A = [a;j]nxn be in X. Then rank A = n and rank (A— ll 01) =n-—1.

Note that if A € X, then A is invertible but A — Vr 01 is not invertible. We proceed

0 O
It follows that @y ¢ Span{ds,...,d,} but d; € €1 + Span{ds,...,d,}. This forces that
€1 ¢ Span{ds, ..., d,}. Also, {ds,...,d,} must be linearly independent. Thus, there are
(¢ —q)...(¢" — ¢"1) choices for {@s,...,d,}. As for @i, it suffices to count under
a condition @; € €; + Span{ds,...,d,} because if @, € Span{ds,...,d,}, then &) €
Span{ads, ..., d,}, which is absurd, so there are ¢" ! choices for @;. Hence,

‘X| — qn—l(qn o q) o (qn o qn—l).
Then
Theorem 2.5. d(n,1) = | GL,(F)| — |X| = (¢" —¢" ' = 1)(¢" — q) ... (¢" — ¢"1).

Remark. For r > 2, we can find a lower bound for d(n, ). Consider a matrix of the form

Y = lé g] where A, B and C are r x r, (n —r) X r and (n —r) X (n — r) matri-

ces, respectively. It is easy to see that detY = det Adet C, and det (X — [{; g]) =
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det(A — I.)det C. If we choose A to be a derangement matrix and C' is an invert-

ible matrix, then ¥ and Y — “) 8] are invertible. Since there are e, choices for

A, ¢"™ ") choices for B, and (¢"~" — 1)...(¢"" — ¢ ") choices for C, we have
d(n,r) > erqr(n r)(qn r_ ) (qn r qn r— 1) — er(qn _ qr) o (qn _ qnfl).

3. Hyperenergetic graphs and Ramanujan graphs

Let F' be a finite field of ¢ elements. In this section, without explicitly computing the
spectrum of the graph, we show that the graph Cy, () is hyperenergetic for all n > 2
and characterize n and ¢ such that Cy, (r) is Ramanujan.

Since ¢> —1=(¢q—1)(¢*+q+1) >¢>+q weget q(¢>?—1)=¢>—q>q¢>+1, 50
E(Cuy(ry) = 2q(¢* — 1)* > 2(¢* — 1). Then Cyy,(r) is hyperenergetic. Next, we assume
that n > 3. Recall that pa, = q(¢" — ¢*) ... (¢" —¢" ') is an eigenvalue of Cy, () with

o (¢" —1)*(¢" — q)?
multiplicities at least @D —q) . It follows that
E(Cum,m) > a(d" —¢%) ... (¢" —¢") (( i)gq — 5; :

Thus, to show that Cy;, (p) is hyperenergetic, it suffices to prove

n__ 2 n_ n—1 (qn_l)Q(qn_q)Q n?
a(q" —q°)-.. (" —¢q )(qg_l)(qg_q) >2(¢" —1).

Since | GL,(F)| = (¢" — 1)(¢" — q) ... (¢" — ¢" 1), the above inequality is equivalent to

2(¢> —1)(¢* — q)(¢" — 1)
(" = 1)(g"—q)

| GLn (F)] >

We shall use induction on n > 3 to show that this inequality holds and conclude that
Cwm,, () is hyperenergetic. If n = 3, then the right-hand side becomes

2(¢* - 1)(¢* —aq)(¢’ —1) _ 2(¢—1)
9(¢® = 1)(¢° — q)

(¢°+¢*+1)
and

|GL3(F)| = (¢ — 1)*(¢° +2¢° + 2¢* + ¢*) > (¢ — 1)*(¢° + ¢* + 1).

> 2(q—1)

Since ¢ > 2, we have ¢(¢ — 1)? > 2. Then (¢ —1)3 and the inequality is valid

for n = 3. Now, let n > 4 and assume that
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2(¢* - (¢ — q)(¢" D" — 1)
| GLn—1(F)] > q(g»=1 = 1)(¢q" 1 —q)
_29(¢* = 1)(¢* —g)(¢" V" - 1)
4" —a)(¢"" — )
L 20(¢ =)@~ )"~ 1)
q(q™ —q)(q" — 1)

where the last inequality comes from ¢" — 1 — (¢""* —¢) = (¢" "1 +1)(¢ — 1) > 0. Since
|GL,(F)|=(¢" = 1)(¢" —q) ... (¢" —¢" ') = ¢" (¢ — 1)| GL,,_1(F)|, it follows from
the previous inequality that

)2q(q2 —1)(¢® — q) (¢ V" — 1)

Gl = = D e g - D)

and so it remains to show that ¢"(¢" — 1)(¢""V* — 1) > ¢"" — 1. Rewrite

—1)2 n? n( n’—n n?—2n n n?
(" =) =) =g+ L=q"(g" T =" T " 1) — ¢ + 1
_ qn2+1 o qn27n~|»1 o an o q2n 4 qn +1

—_ qn2_n+1 <qn—1(q_ 1) o 1) . q2n +qn +1.

Since n > 4 and q > 2,

qn2_n+1 (qn—l(q . 1) i 1) o q2n Z qn2_n—|—1 . q2n _ q2n(qn2_3n+l i 1) 2 0.

This completes the proof of the next theorem.
Theorem 3.1. Cyy, () s hyperenergetic for all n > 2.

Recall that a k-regular graph is Ramanujan if |A\| < 2v/k — 1 for all eigenvalues A other
than £k. Since eigenvalues of a graph are real numbers, this inequality is equivalent to
A? — 4(k — 1) < 0. We know that Cyy, () is regular with parameter k = (¢" — 1)(¢"™ —

q)...(¢" —q"")
Since ¢ > 2, we have ¢> —q > 2, so

n

. If n = 2, then its eigenvalues are (¢ — 1)(¢*> — q), —(¢®> — ¢) and q.

P +4<4¢® and (¢ —q)* +4<4(¢* —q).

The first inequality gives ¢ + 4 < 4q(q + 1)(¢ — 1)? which is equivalent to ¢* — 4(¢* —
1)(¢®>—q)+4 < 0 and the second inequality directly proves (¢>—q)? < 4(¢*>—1)(¢*—q) —4.
Thus, Cy, () is Ramanujan. Now suppose that n > 3 and Cy,, () is a Ramanujan graph.
From the computation in the previous section, pa, = (¢" — ¢)(¢" — ¢*) ... (¢" — ¢ 1) is
an eigenvalue of Cyy, (r), so
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0> ph,—4(¢"=1)(q"=q) ... (¢"—=¢" ) +4 = ph, —4(q" —D)pay+4 = (pa,+2)> —4q" pa,.

It follows that 4¢™pa, > (pa, +2)* > p2,, 50 4¢™ > pa,. For n = 3, this must imply
that ¢ = 2 and for n > 4, we have n + 2 < @ and so

(n—=1)n (n—1)n

A" > pag=q 2 (" =D =1)..(¢-1)>q >

which leads to a contradiction for all ¢ > 2. Finally, if n = 3 and ¢ = 2, by Theorem 2.3,
we have —(23 — 2)(2% — 22) = —24,2(23 — 2?) = 8 and —2% = —8 are eigenvalues of
Chs(z,) and 4((2% —1)(2° — 2)(2° — 2%) — 1) = 668 is greater than 24 and 8°. Hence,
Cu,(z,) is also Ramanujan.

We record this result in the following theorem.

Theorem 3.2. The graph Cy, (py is Ramanujan if and only if n = 2 or (n = 3 and
F=175).

4. The unitary Cayley graph of product of matrix rings over finite local rings

Let R be a local ring with unique maximal ideal M and residue field k. Recall that
R/M = k results in M,,(R)/M,, (M) = M,, (k). Then elements in R can be partitioned
into cosets of M and can be viewed as lifting from elements of k. Suppose |M| = m and
k| =g. We fix Ay,..., A 2 to be coset representatives of M, (M) in My (R).

Lemma 4.1. Let A € M,,(R) and X € M,,(M). Then

det(A+ X) = (det A) +m for some m € M.
In particular, A is invertible if and only if A+ X is invertible.
Proof. Write A = [a;;]nxn and X = [mj;]nxn. Then

det(A + X) = Z (Sgn U) (a’la(l) + mlo(l)) s (ana(n) + mna(n))
ogES,

= Z (sgno)(ais(1) - - - Gno(n)) +m = (det A) +m
oeS,

for some m e M. 0O
The above lemma directly implies the following theorem.

Theorem 4.2.

(1) For A,B € M,(R), A and B are adjacent in Cy, gy if and only if A+ M, (M) and
B + M, (M) are adjacent in Cyp,, (k).
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(2) The set My, (R)/ My, (M) = {A1 + Mp(M), ..., Anz + My (M)} is a partition of the
vertez set of Cyr, (r) such that
(a) for eachi € {1,...,q" }, any two distinct vertices in A; + M, (M) are nonadja-

cent vertices, and
(b) fori,j € {1,.. .,q”z}, A; and Aj are adjacent in Cy, (r) if and only if A; +
M, (M) and Aj + M, (M) are adjacent in Cyr,, ().

(3) Let M, (M) be the complete graph of | M, (M)| vertices with a loop on every ver-
tex. Define f : M, (k) x M,,(M) — M,(R) by f(A; + M,,(M),X) = A; + X for
all i € {1,...,q"2} and X € M, (M). Then f is an isomorphism from the graph
Ca,, (k) ®1\°/In(M) onto the graph Cyi, (g)-

Proof. The above discussion implies (1) and (2) For (3), we first show that f is an
injection. Let i,5 € {1,...,¢" } and X,Y € M, (M) such that 4; + X = A; + Y. Then
A, —A; =Y — X € M,,(M). This forces that A; + M, (M) = A; + M,,(M) in M, (k),
soi=jand X =Y. Since | M,, (k) x M,,(M)| = |M,(R)|, f is a bijection. Finally, for
i,je{l,...,q" } and X,Y € M, (M), we have (A; + M, (M), X) and (A; + M, (M),Y)
are adjacent in Cyy,, 1) ® M,, (M) if and only if A;+M,, (M) and A;+M,, (M) are adjacent
if and only if A; and A; are adjacent by (2). Hence, f is a graph isomorphism. O

Next, we assume that R is a finite local ring which is not a field with unique maximal

ideal M and residue field k. Let |M| = m and |k| = ¢. Since the adjacency matrix of
n2
Mn(M) is the all-ones matrix of size m™", we have Spec (Mn (M)) = (ml n20 1)
m pa—

and (¢"=1)(¢"—q) ... (¢"=¢"7),—(¢"—q) ... (¢"—¢"" ") and q(¢" = ¢*) ... (¢" —¢" ")
are eigenvalues of Cyy, (k). Since the eigenvalues of G ® H are A;u; where \;’s and p;’s
are eigenvalues of G and H, respectively, we can conclude from the isomorphism in
Theorem 4.2 (3) that 0, m"’ (@ =1)(q"—q)...(¢"—q" ), —m" (" —q)...(¢"—q" 1)
and m'”?q(q” —q?)...(q" —q" ') are distinct eigenvalues of Cu,, (r)- Then we have shown
the following theorem.

Theorem 4.3. If R is a local ring which is not a field and n > 2, then Cyy,(r) s not
strongly reqular.

However, it turns out that the graph Cyy, (gr) is hyperenergetic.
Theorem 4.4. If R is a local ring, then Cy, (r) is hyperenergetic for all n > 2.

Proof. Let k be the residue field of R and assume that |k| = ¢. Recall that Cyy, ) is
n—1
—q")

" as an eigenvalue with

hyperenergetic and Cyy,(g) has —m™ qlq" — ¢)...(q
(¢" —1)*(¢" — q)?

(¢* —1)(¢*> — q)

multiplicities at least . The proof of Theorem 3.1 tells us that
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_12 n __ 2
(4" =) > 2(q"2 —1).

n __ n—1 (qn )
) (¢* = 1)(¢* — q)

Note that the left-hand side is a multiple of ¢. It follows that

0 2 n oo (@ =D =) )
A" =) 0"~ g )(q2—1)(q2—q) =2

Multiplying by m™ both sides gives

2 n ) (¢" —1)*(¢" — q)

m" q(q" —q°)...(¢" —q @& - D —a) > 2(mgq)" > 2((mq)" —1)

which completes the proof. O

Theorem 4.5. If R is a local ring which is not a field, then Cyp, (r) is not Ramanujan for
all n > 2.

Proof. For simplicity, let » = | GL,,(k)|. We first handle case n > 3 and ¢ > 3. Then
Cw,, () is not Ramanujan by Theorem 3.2. From the proof of Theorem 3.2, we have

(" —q)...(¢" —¢"*) > 2y/r — 1. Thus,

n

2 o n?
m" (¢" —q)...(¢" —¢" 1) >2m" Vr—1,
so we must show that m”zx/r —1>+vVm"r — 1. Rewrite
mznz(r —-1)— (m"2r —1)=m" =1)(m" r—m" —1).

Since R is not a field, we have m > 2, so (m”2 - 1)(m”2r —mn - 1) > 0 and the desired
inequality follows. Next, we assume that n = 3 and ¢ = 2. Then —m?(23 — 2)(23 —
22) = —24m? is an eigenvalue of Cyy,(g). Moreover, r = m?(2% — 1)(2% — 2)(2% — 22) =
168m°. We have 576m!® — 4(168m° — 1) = m?(576m° — 672) + 4. Since m > 2, we get
24m° > 24/168m9 — 1. Finally, if n = 2, then —m*(¢> — q) is an eigenvalue of Cams(R)
and r = m*(¢®> — 1)(¢®> — q), so

(¢ —q)* —4m*(¢* = 1)(¢* — ¢) + 4
m®(q* — q)* — 4m*(¢® — q)* + 4
 —dmM)(¢* —q)* +4>0

m®(q* — q)* —4(m*(¢* = 1)(¢* —q) — ) m®

(

because m > 2. Hence, Cyr,(g) is not Ramanujan. 0O

Let Rq,..., Rs be finite local rings with maximal ideals M, ..., My and residue fields
ki, ..., ks, respectively. Let R = M,,,(R1) X -+ x M, (Rs) where ni,...ns € N. By
Theorem 3.8 of [6], we have
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X(Cr) =w(Cr) = w(CMnl(ﬂ(l)X~-~XMnk (kk)) = min {|k;|""}.

1<i<s

Finally, we compute a(Cg). Theorem 4.2 (3) gives

Cr = (CMnl(kl) Q- Q CMns(ks)) & (M’m (Ml) Q- ® Mns (Ms))

Since the second product is a complete graph with a loop on each vertex, we can see
that

a(Cr) =a(Cwm,, (k) ®- - ®Cwm,_ (k.)) H M., (M;)|
=1

= Y 1_[1 My, (M;)| = i {7}

1211'125{“]«1 1= 1<i<s }

Thus, we prove:

IR
min {|k;|"*}"

1<i<s

Theorem 4.6. w(Cr) = x(Cr) = 1121121 {|k;|"*} and a(Cr) =

For each 1 < i < s, let |[M;| = m; and |k;| = ¢;. Recall that p; = —mi”qui(qi” —

%) .- (@™ —g¢;""") is an eigenvalue of Cyy, (gr,) With multiplicities at least ¢; where t; =

(¢." = 1)*(¢" — @)

(¢* = 1)(¢:* — i)
at least [[;_, ¢;. By Theorem 4.3, we have p;it; > 2(|M,,(R;)| — 1) for all 1 < i < s.

Note that the left-hand side is a multiple of ¢;. We can conclude that p;t; > 2|R; n® Tt
follows that

for all i. Hence, [[;_, p; is an eigenvalue of Cx with multiplicities

[Iei 11t =T1riti = [T 2IMn (R)] = 2° [ [ I Mo, (R)| > 2 <H|Mni(Rz‘)| - 1) :
i=1  i=1 i=1 i=1 i=1 i=1

This proves

Theorem 4.7. The graph Cr is hyperenergetic. In particular, if R is a finite commutative
ring, then Cy, (r) 98 hyperenergetic for all n > 2.

Remark. The later statement comes from the fact that every finite commutative ring
is isomorphic to a direct product of finite local rings. Indeed, we can use this fact and
Theorem 4.6 to compute the clique number, chromatic number and independence number
for the unitary Cayley graph of a matrix ring over a finite commutative ring.



16 J. Rattanakangwanwong, Y. Meemark / Finite Fields Appl. 65 (2020) 101689

References

[1] R. Akhtar, M. Boggess, T. Jackson-Henderson, I. Jimenez, R. Karpman, A. Kinzel, D. Pritikin, On
the unitary Cayley graph of a finite ring, Electron. J. Comb. 16 (2009) R117.
[2] I. Dejter, R.E. Giudici, On unitary Cayley graphs, J. Comb. Math. Comb. Comput. 18 (1995)
121-124.
[3] C. Godsil, R. Royle, Algebraic Graph Theory, Springer, New York, 2001.
[4] I. Tli¢, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009) 1881-1889.
[5] D. Kiani, M.M.H. Aghaei, Y. Meemark, B. Suntornpoch, Energy of unitary Cayley graphs and
ged-graphs, Linear Algebra Appl. 435 (2011) 1336-1343.
[6] D. Kiani, M.M.H. Aghaei, On unitary Cayley graphs of a ring, Electron. J. Comb. 19 (2) (2012),
#P10.
[7] D. Kiani, M.M.H. Aghaei, On the unitary Cayley graphs of matrix algebras, Linear Algebra Appl.
466 (2015) 421-428.
[8] W. Klotz, T. Sander, Some properties of unitary Cayley graphs, Electron. J. Comb. 14 (2007),
#RA45.
[9] E. Kowalski, Exponential Sums over Finite Fields: Elementary Methods, ETH Ziirich, 2018.
[10] A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan graphs, Combinatorica 8 (3) (1988) 261-277.
[11] K.E. Morrison, Integer sequences and matrices over finite fields, J. Integer Seq. 9 (2006), article
06.2.1.
[12] F. Nowroozi, M. Ghorbani, On the spectrum of Cayley graphs via character table, J. Math. Nanosci.
4 (1) (2014) 1-11.



Finite Fields and Their Applications 80 (2022) 102004

Contents lists available at ScienceDirect

Finite Fields and Their Applications

ELSI ,\ I [ ‘R www.elsevier.com/locate/ffa

Subconstituents of unitary Cayley graph of matrix n
algebras ™ ey

Jitsupat Rattanakangwanwong, Yotsanan Meemark *

Department of Mathematics and Computer Science, Faculty of Science,
Chulalongkorn University, Bangkok, 10330, Thailand

ARTICLE INFO ABSTRACT
Article history: Let F' be a finite field, n € N and Cy;, (ry denote the unitary
Received 22 July 2021 Cayley graph of the matrix algebra M, (F). In this paper,

2R062C§ived in revised form 18 January we study the first and second subconstituents of Cyy, (). We

Accepted 25 January 2022 dejcermlne the spectra of the subconstituents of CMZ(F.) by
Available online 2 February 2022 using the character table of GL2(F') and elementary linear
algebra, and conclude their hyperenergeticity and Ramanujan
property. Moreover, we compute the clique number, the
MSC: chromatic number and the independence number of those
05C50 subconstituents.

05C25 © 2022 Elsevier Inc. All rights reserved.

Communicated by Dieter Jungnickel

Keywords:

Character of GL2(F)
Subconstituent
Unitary Cayley graph

1. Introduction

Let G be a finite abelian group and S be a subset of G not containing the identity
and S = S where S™! = {57! : s € S}. The Cayley graph of G associated to S is the

* The authors are supported in part by the Thailand Research Fund (TRF) grant under the contract
number RSA 6280060.
* Corresponding author.

E-mail addresses: new__type@hotmail.com (J. Rattanakangwanwong), yotsanan.m@chula.ac.th
(Y. Meemark).

https://doi.org/10.1016/j.ffa.2022.102004
1071-5797/© 2022 Elsevier Inc. All rights reserved.



2 J. Rattanakangwanwong, Y. Meemark / Finite Fields Appl. 80 (2022) 102004

undirected graph Cay(G,S) whose vertex set is G and for each g,h € G, g is adjacent
to h if and only if g = hs for some s € S. We say that a Cayley graph is normal if S is
a union of conjugacy classes of G.

For a finite ring R with identity 1 # 0, we know that (R, +) is an abelian group and
we denote its group of units by R*. The unitary Cayley graph of R, Cg, is the graph
Cay(R, R*), that is, its vertex set is R and for each z,y € R, x is adjacent to y if and
only if x —y € R*. Many properties of the unitary Cayley graphs have been extensively
studied by many authors such as [1,5,9,11,14]. Since a finite commutative ring R can
be decomposed as a direct product of finite local rings R;,..., R, the graph Cg is the
tensor product of the graphs Cg,,...,Cg, . Here, for graphs G and H with vertex sets
V(G) and V(H), the tensor product G and H, G ® H, is the graph with vertex set
V(G) x V(H) such that (a,b) is adjacent to (c,d) if and only if a is adjacent to ¢ in G
and b is adjacent to d in H for all a,c € V(G) and b,d € V(H). In addition, if R is a
finite local ring with maximal ideal M, it follows from Proposition 2.2 of [1] that Cp is a
complete multi-partite graph whose partite sets are the cosets of M. Thus, the unitary
Cayley graphs of finite commutative rings are well studied. Their spectral properties
including energies are completely determined in [11].

Let G be a graph and V(G) the vertex set of G. We give some terminologies from
graph theory as follows. A clique is a subgraph that is a complete graph and clique
number of G is the size of largest clique in G, denoted by w(G). A set I of vertices of G
is called an independent set if no distinct vertices of I are adjacent. The independence
number of G is the size of a maximal independent set, denoted by a(G). The chromatic
number of G is the least number of colors needed to color the vertices of G so that no
two adjacent vertices share the same color. We write x(G) for the chromatic number of
G. If every vertex of G is adjacent to k vertices, then G is a k-regular graph. Clearly,
the above Cayley graph associated to a set S is a |S|-regular graph. Finally, we say
that a k-regular graph G is edge reqular if there exists a parameter A such that for any
two adjacent vertices, there are exactly A\ vertices adjacent to both of them. If an edge
regular graph with parameters k, A also satisfies an additional property that for any two
non-adjacent vertices, there are exactly p vertices adjacent to both of them, then it is
called a strongly regular graph with parameters k, \, .

An eigenvalue of a graph G is an eigenvalue of the adjacency matrix of a graph G.
The energy of a graph G, E(G), is the sum of absolute value of its eigenvalues. The
spectrum of a graph G is the list of its eigenvalues together with their multiplicities.

If A\1,..., A\, are eigenvalues of a graph G with multiplicities mq, ..., m,, respectively,
Al A

to describe the spectrum of G and so E(G) =
ma e iy

we write SpecG =

my|A1] + - -+ 4+ my|A:|. A graph G on n vertices is hyperenergetic if its energy exceeds
the energy of the complete graph K,,, that is, E(G) > 2(n — 1). A k-regular connected
graph G is a Ramanujan graph if |A\| < 2v/k — 1 for all eigenvalues A of G other than
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+k. Spectral gap of Ramanujan graph is almost as large as possible, so it is a great
spectral expander. Its name comes from Lubotzky, Phillips and Sarnak [15] who used
the Ramanujan conjecture to construct an infinite family of such graphs.

For a ring R with identity 1 # 0 and n € N, M,,(R) is the ring of n X n matrices over
R and the group of all invertible matrices over R is denoted by GL, (R). Throughout
this work, I,, is the n x n identity matrix and 0,,x, is the m X n zero matrix for all
m,n € N.

Kiani et al. [12] worked on the unitary Cayley graph of the ring M, (F}) x -+ X
M,,, (Fx) where ni,...,ny € N and Fy,...,F) are finite fields. They computed the
clique number, the chromatic number and the independence number of the graph. Later
in [13], they proved that Cy,(ry is an edge regular graph with & = |GL,(F)| and
A = |(I, +GL,(F)) N GL,(F)| = e, where F' is a finite field and e,, is the number of
derangement matrices. (A derangement matriz in M,,(F) is an invertible matrix that does
not fix any nonzero vectors in F.) We know from [16] that if |F'| = ¢, then e,, satisfies

the recursion e, = e,_1(¢" — 1)¢" "' + (=1)"¢™ ™~ 1/2 and ey = 1. Kiani proved further

that Cy,(p) is strongly regular with p = '(l(l) 8] + GLQ(F)) N GLQ(F)’ but Cyi,(r)

is not strongly regular where F' is a finite field. Recently, the authors [17] used additive
characters of M,,(F') where F' is a finite field and n € N to determine three distinct
eigenvalues of Cyy, (py and use them to conclude that the graph Cy, (g is strongly
regular if and only if n = 2. We also showed that Cyy, (r) is always hyperenergetic and
gave a criterion for being a Ramanujan graph. Chen et al. [3] obtained all eigenvalues of
Cu,, (Fy using Bruhat’s decomposition.

Let G be a graph and x a vertex of G. The first subconstituent of G at x is the subgraph
of G induced by the set of neighborhoods of x and the second subconstituent of G at x
is the subgraph of G induced by the set of vertices which is non-adjacent to x except x
itself. Subconstituents of strongly regular graphs are studied in many graphs and have
many interesting properties. The second subconstituent of the Hoffman-Singleton graph
is determined by its spectrum in [6]. Moreover, the discovery of which graph has strongly
regular subconstituents interests mathematicians. For example, Cameron et al. [4] used
the Bose-Mesner algebra of a strongly regular graph to classify strongly regular graphs
whose subconstituents are strongly regular, and Kasikova [10] used the same tools to
classify distance-regular graph which has strongly regular subconstituents. In addition,
we can use eigenvalues of subconstituents to prove the uniqueness of strongly regular of
some parameter, e.g., Clebsch graph is a unique strongly regular graph with parameters
(16,5,0,2) (see [8] p.230).

Now, we turn to the subconstituents of the unitary Cayley graph. Let R be a finite
ring with identity 1 # 0. The set of neighborhood of a vertex x of the graph Cg is
denoted by N(z). For x € R, the maps f : N(0) — N(z) and g : R~ (N(0)U{0})
— R~ (N(z)U{x}) which both send y to  — y are graph isomorphisms. Hence, we
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may only study the subconstituents at x = 0 and we write Cg) and Cg) for the first
subconstituent and the second subconstituent of Cr at x = 0 € R, respectively. Let

F be a finite field and n € N. In this work, we study Cl(vl[l(F) and Cl(\ii(F).
C(l)

M, (F) 1S defined on the group GL, (F') and the graph c? is defined on the set of

M, (F)
nonzero non-invertible matrices over F'. We have the structure of Cl(\/llzl( ) and Cl(\/zli( F)
(1)

We can determine the spectra of CMQ( P and Cl(\ii (F) and conclude hyperenergeticity and

The graph

Ramanujan property for both graphs. In addition, we compute the clique number, the
chromatic number and the independence number of Cl(vlli( ) and Cl(\z( F)

Next, we recall some results from representation theory used in this work. We refer
the reader to [7] for more detail. Let G be a finite group and V' a finite-dimensional
complex vector space. A representation of G on V is a homomorphism p : G — GL(V)
where GL(V') denotes the group of automorphisms on V. For a representation p of G on
V', a subspace W of V' is p-invariant under G if p(g)(W) C W for all g € G. If p has
no proper invariant subspace of V', then we say that p is an irreducible representation.
Next, we define a character of a representation. Let p be a representation of G on V.
Then for each g € G, p(g) is a linear transformation on V. A character x corresponding
to p is the complex-valued function on G defined by x(g) = tr(p(g)) for all g € G where
tr(p(g)) is the trace of the matrix representation of p(g) on V. A character is said to be
irreducible if they are induced from an irreducible representation. The dimension of a
character is the dimension of vector space V. It is easy to see that x(1) = dim V' where
1 is the identity of the group G, and x(ghg—') = x(h) for all g,h € G. Thus, a character
is a constant on a conjugacy class of G. Moreover, we have known from [18] that if S
is a union of conjugacy classes of G and x4, ..., X, are irreducible characters of GG, then
the eigenvalues of Cay (G, S) are

Aj = ! > xi(s)

Xj(l) seSs

with multiplicity m; = Z xk(1)? for all j € {1,...,r}.

k=1
AR=A;

Let F' be the finite field of ¢ elements. Recall that the multiplicative group of nonzero
elements of F is cyclic. Write F'* = (a) for some a € F'*. The irreducible characters of

2mimk

the group (F'*,:) are xx(x) = e a1 , where z = a™ € F* and k € {0,1,2,...,q — 2}.
In addition, we have

Theorem 1.1. For k € {0,1,...,q — 2}, Z Xk(x) =

PP 0 otherwise.

{q—l ifk =0,

The conjugacy classes of GLa(F") are given in the following table.
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Representatives Number of elements | Number of classes
az:<g 2>,x7$0 1 g—1
0 q—1)(g—2
cw:(g y>,w¢yandx,y¢o @ +q %
T € .
dz,y=<y f),y#O(qlsodd) . da—1)
d. = (Y = z € E N F (qis even) v 2
2T\ z429) q

where ¢ € F' . F?. Here, czy and ¢, ., are conjugate, d, , and d, _, are conjugate, and
d. and d,¢ are conjugate. Moreover, let E = F'[y/¢] an extension of F' of degree two. We
can identify the matrices d, , as ( = £+ y+/c and the matrices d, as z in E~\ F. Now, let
«, B be distinct irreducible character of F'* and ¢ an irreducible characters of E* such
that ? # ¢ and ¢ is not an irreducible character of F'*. The next table presents all
irreducible characters of GLo(F'). As mentioned earlier, it suffices to specify their values
on each conjugacy class of GLy(F).

(z 0 b (® 1 (z 0 q is odd q is even
az =\ 4 c=\0 Cx,y = | Yy dm,y:<x sy):CdZ:<O zQ+1):Z

Yy 1 z+4 24
Ua a(z?) a(z?) a(zy) a(¢?) o(z9)
Vo gou(z?) 0 a(zy) —a(¢7) —a(z?)
Wa,g|(g+Da(@)B(z)| a(z)B(z) |alz)B(y)+ a(y)b(z) 0 0
Xo | (a—1Dp(z) —p(x) 0 — (p(¢) +»(¢?)) — (p(2) + p(27))

Moreover, Uy, Vo, Wq g and X, are of dimension 1,q,q + 1 and ¢ — 1, respectively.

The paper is organized as follows. In the next section, we prove that the graph Cl(\/lli( )

is a normal Cayley graph and we determine all eigenvalues of the graph Cl(\z (F) by
using the two tables above. We show further that it is hyperenergetic and Ramanujan
if ¢ > 3. In Section 3, we show that the graph Cl(vl[l(F) is the tensor product between a
complete graph and a complete multi-partite graph, and obtain its spectrum. We apply
this result to conclude that Cl(\/zli( P is hyperenergetic but it is not Ramanujan if ¢ > 5.
We compute the clique number, chromatic number and the independence number of the
subconstituents of the graph Cy, gy in the final section.

2. Spectral properties of C1(\/111(F)

In this section, we study spectral properties of Cl(\/lli (F)- We start by showing that

CyL. () i Cay (GLy(F), (I, + GLn(F)) N GLy(F)). To see this, let A,B € GL,(F).
Then AB~! € GL,,(F) and

A—BeGL,(F) <= (AB™' —1,)B™! € GL,(F)
< (AB~!' —1,) € GL,(F)
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< AB™! € (I, + GL,(F)) N GL,(F).

It also follows that the graph Cl(\/llzl(F) is regular of degree |(I,, + GL,,(F)) N GL,(F)| =
én, defined in the previous section. Moreover, for A, B € GL,,(F'), we have

ABA™' € (I, + GL,(F)) NGL,(F) <= ABA ! -1, € GL,(F)
= A(B—1,)A"! € GL,(F)
«— (B-1,) € GL,(F)
= B e (I, + GL,(F)) N GL,(F).

Thus, (I, + GL,,(F)) N GL,,(F) is a union of conjugacy classes, so Cf\/lIl(F) is a normal

Cayley graph. We record this result in

Theorem 2.1. The graph Cl(vlli(F) is the normal Cayley graph of GL, (F') associated with
(I, + GL,(F)) N GL,(F) and it is reqular of degree e,.

Next, we determine all eigenvalues of Cl(vl[i(F). Let k € {0,1,...,q — 2} and consider
Xt an irreducible character of F'*. We first handle the case ¢ is odd by showing some

lemmas on sums of characters of F'*.

Lemma 2.2. If q is odd, then for k € {0,1,...,q— 2},

—1
g—1 ifke {0%}

> xkla?) =

zEFX 0 otherwise.

Proof. We know that

2 -2 dmimk -2 anik \ M
TN T
D (@) = Y @) = Y] e = YT ()

47i —1 —1
Note that et = 1 if and only if k = 0 or k = qT If £ € {O,QT}, then
2 . . q_l
Z Xk(z7) = ¢ — 1. Finally, if £ ¢ < 0, [ then

rzeF~x

1 ( 47ri{c>q_1
Z Xk('rz) - Amik =0,
reF X 1- <6qT1)

and the proof completes. O




J. Rattanakangwanwong, Y. Meemark / Finite Fields Appl. 80 (2022) 102004 7

Lemma 2.3. If q is odd, then for k € {0,1,...,q—2} and e € F ~ F?, we have

@ —5¢+6 ifk=0,

-1
(@) Y. xkley) =< -q¢+3 iszqT, and
wyaigz;;l} 2 otherwise,
@ —q if k=0,
-1
(b) Z Xe(@z? —ey®) = ¢ —q+1 iszqTa
(z,y)EF x FX :
0 otherwise.

Proof. We note that

Z Xk(zy) = ( Z Xk(@) Z Xe(y) | — Z X (2?)

z,yeF*~ {1} zeFXx yeFXx zeFX
and z#y

- Z Xk(T) — Z Xk(Y)

wEFX~{1} yeF*~{1}
2
= ( > Xk:(@) - ( > Xk:($2)> —2 ( > Xk(»r)) + 2.
zEFX TEFX zEFX
If £ = 0, then applying Lemma 2.2 gives the right-hand side equals ¢> — 5¢ + 6. If
k = %, then the right-hand side is —g + 3. Finally, if £ ¢ {0, %}, then the

summands on the right-hand side are all gone and we get 2 left. This proves (a).

For (b), since ¢ € F \ F?, E = F[\/g] an extension of degree two of F. Thus,
E = {z +yye : x,y € F}. Moreover, let Ng,r be the norm map. Recall that for
z,y € F, Ngp(x +yyec) = z2 — ey? and by Hilbert’s Theorem 90, Ng,F is surjective
with kernel of size ¢ + 1. Consider the sum

Y. @ —ey) = > Xi(@® —ey®) = Y x(@?)

(z,y)EF X FX (z,y)EFxF\{(0,0)} xEFX
= > Xe(Ngsp(@+yvE) = > xu(@?)
(z,y)€FxF\{(0,0)} TEFX
= |ker Ng, 5| Z k() — Z Xk (2?)
zeFx zeFx

= (q+1) > xrl@) = D> xul@®).

rxEF X xEF X
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-1
If £ = 0, then the right-hand side becomes ¢ — ¢, and if k = qT, then the right-hand

—1
side is —(¢ — 1) by Lemma 2.2. Finally, for k& ¢ {0, q?}’ it also follows that each

summand on the right-hand side is 0. O

Lemma 2.4. For k,l € {0,1,...,q — 2} such that k # 1, we have

4 fO<k+l<qg—1,kI1#0,
> @) + xew)xi(e)] = {2 ; b
z,y€EF* {1} (3—4q) otherwise.
and x#y

Proof. We consider the sum

> k@) +xewx@] =2 > xe(@)xa)

z,yeF {1} z,yeF {1}
and x#y and x#y

= !( Z Xk(a:)) Z xi(y) | — Z Xk (@)xi(x)

yeFx zEFX

- Z Xk(2) — Z Xl(y)]-

zeFX~A{1} yeF*X~ {1}

Recall that

Z Xk(z)xi(z) =

reFX

g—1 ifk+l=q—1,
0 otherwise.

Since k #l,k+1#0.If k+1=¢q— 1, then k,I # 0 because 0 < k,l < q — 2. It follows
that

> @)+ xe@xi(@)] =2(—(¢—1) +2) =2(3—q).

z,yeF*~ {1}
and z#y

Assume that k 4+ [ # g — 1. We distinguish two cases.
Case 1. k=0o0r =0, say k=0. Then [ # 0 and so

> @)+ xe@xi(@)] =2(=(g - 1) +2) =2(3 - q).

ryeF* {1}
and x#y

Case 2. k,l # 0. Then we conclude that

S @@ + xe@xi()] = 2.

zy€ X~ {1}
and z#y
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This completes the proof. O
Remark. Assume that ¢ is odd. Before computing the eigenvalues of Cl(\/l[l (F)» We note
that for each x,y € F,

(a) a, € GLo(F) N (Io + GLy(F)) if and only if  # 1

(b) b, € GLa(F) N (I2 + GLo(F)) if and only if x # 1

(c) czy € GL2(F) N (Io + GLo(F)) if and only if z,y # 1
(d) dyy € GLo(F) N (Iz + GLo(F)) for all x € F and y # 0.

r—1
=0,50 (z—1)2—ey?> =01in F. Thus, z +y/z = 1 in E. Since {1,+/2} is an F-basis of
E, we have y = 0 which is absurd.

To verify (d), we suppose that there exist x € F'and y € F* such that det (aC ; L ey )

From the character table of GL2(F) mentioned at the introduction, let A, denote
an eigenvalue induced from an irreducible character . Since the character U,, has
dimension one, the above remark gives

Av,, = Z xk(@?) + (¢ = 1) Z Xk (2?)

zeF X~ {1} reF X~ {1}
2 2
¢’ +q ¢ —q s
T E Xk (zy) + 5 E k(2 —ey®).
z,y€F " {1} (@,y)EF X I
and z#y

According to Lemmas 2.2 and 2.3, we have Ay, = ¢* —2¢° — ¢* + 3¢, Ay, | =g and

2

@ +q

Ay, = (=1) + (¢* = 1)(-1) +

Xk

(1+1)=gq

-1
if k¢ <0, qT} It follows that the eigenvalues of Cl(vl[l( y Obtained from U,, are

q* — 2¢° — ¢* + 3¢ and ¢ with multiplicities 1 and g — 2, respectively.

Now, we work on V,, . Since V,, has dimension ¢, we have

Awk=:1<q Y x@?) + ! ;q > xu(zy)

q zeF*X~A{1} z,y€F* {1}
and x#y
¢ —q
— 5 Z Xk(xQ o €y2) )
(z,y)€F X FX

Again, applying Lemmas 2.2 and 2.3 gives Ay, = >+ q+1, Av, L. =4 and

2
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1

2
_.|_
M, =4 <q(_1) +1 14

(1+1)> =q

if & ¢ {0, %} Thus, the eigenvalues of Cl(vlli(F) obtained from V,, are —¢®+¢+1 and
q with multiplicities ¢? and ¢ + ¢*(q — 3) = ¢ — 2¢?, respectively.

Next, we consider the eigenvalues induced from the character W, ,, with k # [. Since
Wy .y, has dimension ¢ + 1, we have

@+1) Y @@+ @-1 Y @)

zeF*X~{1} zeF*X~{1}

/\WXkJCl = q+ 1

LS @) )@

2
z,y€F*~{1}
and z#y

choices of

First, we assume that k +1 = ¢q — 1. Thus, k,l # 0. Note that there are 7=
such k, (. It follows from Lemma 2.4 that

1
)\WkaXl = q_|_ 1

(6 06a-2+@-n6a-2+2 (551 6-0) =0

If0 < k+1<qg—1, then we have two cases to consider. If k =0 or [ = 0, then there are
q — 2 choices of k and [, and

e = g (a0 +@ - +2 () 6-0)) = -2

_9)2
If k,1 # 0, then there are @ choices of k and [, and

1

ey = 5 (a0 +@ -0+ (D) @) =

Thus, the eigenvalues of Cl(\/lli( ) obtained from W,, ,, are —q(q — 2) and ¢ with multi-

(q+1)*(¢—2)(qg—3)
2

Finally, let ¢ be an irreducible character of E* such that ¢? # ¢. Hence, ¢ is a
2

plicities (¢ + 1)?(¢ — 2) and , respectively.

non-trivial character and there are choices of ¢. Since X, has dimension ¢ — 1,

we have
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Ax, = p— (¢—1) Z p(x) = (¢* = 1) Z o(z)
q zeF*X~{1} zeF*X~A{1}
2 _
. 5 TS (pla+yveE) + ez —yve)
(z,y)EF X Fx
- qi—l (=9 Y e@)+ @ -9 - —q D el@t+yVe)
x€eFX (z,y)eF X FX
= qi—1 (—(q2 —q) Y ela)+ (¢ - Q)> = q.

—1)2%(g% —
Hence, the eigenvalue from this case is ¢ with multiplicity (g )"lg Q).

Summing all multiplicities of the eigenvalue ¢ from each character gives its total

(1)
M2 (F)

the case that ¢ is odd. For ¢ even and ¢ > 4, we can find all eigenvalues corresponding

multiplicity ¢* — 2¢® — 2¢® + 4q + 1. Therefore, we obtain the spectrum of C in

to each U,,V, and X, in the similar manner without the case k = q% Note that

—1
the eigenvalue obtained from the case k = qT when ¢ is odd is always ¢q. Hence, the

eigenvalues corresponding to those characters of the case ¢ is even and g > 4 are equal
to the eigenvalues in the case ¢ is odd. As for eigenvalues corresponding to W,, ,,, we
(g+1)*(¢-2) . (a+1)*¢-4)(g-2)

5 whose sum is

have multiplicities of ¢ become
(¢+1)*(g—2)(¢—3)

again 5 , so the multiplicities of ¢ when ¢ is even stays the same.
Finally, if ¢ = 2, then the graph Cl(\/lli(F) has (22 — 1)(22 — 2) = 6 vertices and is two

copies of K3, so its spectra are 2 of multiplicity 2 and —1 of multiplicity 4. Thus, we

completely determine the spectrum for the graph c

Mo (F)®
Theorem 2.5.
2 —1
(a) If ¢ = 2, then Spec Cl(\/lli(F) — (2 | )
(b) If ¢ > 3, then
(1) o
Spec CMQ(F) —
<q4_2q3—q2—|—3q q —q2_|_q_|_1 _q2+2q >
! q' = 2¢° = 2" +4q + 1 ¢ (¢+1)%*@=2))"

Moreover, E(Cl(\/lIZ(F)) = 2¢° — 2¢* — 8¢® + 6¢% 4 8q for all ¢ > 2.
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Furthermore, for all ¢ > 3, we have

E(CY) ) = 20" — 24" — 8¢° + 6¢* + 8¢ — 2 ((¢* = 1)(¢* — ¢) — 1)

=2¢° —4q* — 6¢> +8¢° +6q+2 > 2¢° — 4¢* — 64> =2¢°(¢—3)(¢+1) >0,

This proves hyperenergeticity of the graph Cl(vl[i( ) when ¢ > 3, while CI(\}Ii(ZQ) is not

hyperenergetic because its energy is 8 < 2(6 — 1).

(1)

M2 (F)
is Ramanujan for ¢ > 3. Since | — ¢®> + ¢+ 1| > | — q(¢ — 2)| > ¢, it suffices to show that

2¢/(q* — 2¢3 — ¢ + 3¢ — 1 > ¢®> — ¢ — 1 which is equivalent to 4(¢* —2¢®> —¢*> +3¢—1) >

(¢*> — q¢—1)%, and we have

Since Cl(\/lli (Z>) is disconnected, it is not Ramanujan. To show that the graph C

Aq* —2¢° = +3q—1) — (¢* —q—1)* = 3¢* —6¢°> —3¢> + 10¢ — 5
>3q" —6¢° —3¢> = 3¢°((¢—1)> —2) > 0.

We record this work in

Theorem 2.6. The graph Cl(vl[l(F) is hyperenergetic and Ramanujan when q > 3. Moreover,

CI(\}[i(ZQ) is neither hyperenergetic nor Ramanujan.

3. Spectral properties of Cf\il(F)

We study the second subconstituent of Cyr,(py in this section. We first show that the
graph is a tensor product of a complete graph and a complete multi-partite graph and
so we can calculate its eigenvalues. Let F2*! denote the set of column vectors of size
2 x 1 over F. Since a 2 X 2 matrix is non-invertible if and only if its column vectors are
parallel, we can conclude that

Mz (F) N (GL2(F) U{02x2}}) =

|  {(av ®):acF}|Uu{(s 0):0e P> < {0}}
Fe F2x1 {0}

(2)

where 0 denotes the zero vector of F2*!. Before giving a structure of the graph CMQ( Py

we need the next lemma.

Lemma 3.1. Let A, B be non-invertible matrices in Ma(F),a,b € F and v,% € F?*1 <

{0}.

(a) If A= (a¥ ) and B= (bW ), then A— B is non-invertible if and only if a = b
or U,w are linearly dependent, or equivalently, A— B is invertible if and only if a # b
and U,w are linearly independent.
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(b) If A= (a¥ ¥) and B= (& 0), then A— B is non-invertible if and only if ¥ and
w are linearly dependent.

Proof. Observe that
A — B is non-invertible <= (a¥ — bw) = ¢(v — W) for some ¢ € F.

Assume that A — B is non-invertible and v, are linearly independent. Then a = ¢ and
b = ¢, so a = b. Conversely, the case a = b is clear. If W = c¢v for some ¢ € F, then
A—B=((a—bc)U (1—c)¥) is non-invertible. This proves (a). For (b), we have

A — B is non-invertible <= a¥ — W = cv for some ¢ € I

<= (a — ¢)U = for some c € F,
which is equivalent to ' and w are linearly dependent. O

In the next step, we define two graphs GG and H as follows: G is the complete graph on
q+1 vertices parametrized by the set of projective lines P1(F) = {[a,1] : a € F}U{[1,0]}
and the vertex set of H is F2*'~ {0} and for any 7, @ € F?*'~ {0}, ¥ and @ are adjacent
if and only if ¥ and w are not parallel. Note that H is the complete (q+ 1)-partite graph
such that each partite has ¢ — 1 vertices.

Let f: C) 1 — G ® H defined by (a¥ ¥) = ([a,1],7) and (7 §) ~ ([1,0],7)
for any a € F and @ € F?*1\ {0}. Thus, f is bijective. Now, let A, B be nonzero non-
invertible matrices in My (F),a,b € F and ¥,% € F?*', A= (a¥ ¢)and B = (bW o).
Lemma 3.1 (a) implies

A—B e GLy(F) <= a# b and ¥, are linearly independent

<~ ([a,1],7) is adjacent to ([b, 1], ).
Next, we assume that A = (at @) and B = (& 0). From Lemma 3.1 (b), we have

A — B € GLa(F) <= vand are linearly independent

< ([a,1],7) is adjacent to ([1,0], ).
Hence, f is a graph isomorphism, so we have the structure of the graph CI(\Z( F)

Theorem 3.2. The graph Cl(\ii(F) is the tensor product of the complete graph on q + 1

vertices and the complete (q + 1)-partite graph such that each partite has q — 1 vertices,

and it is a (¢ — q*)-regular graph.

Recall from [8] that if A\q,...,\; are eigenvalues of a graph G; and pq,...,u; are
eigenvalues of a graph G, then the eigenvalues of the tensor product G1 ® G are \;p;
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where i € {1,...,k} and j € {1,...,1}. Since the eigenvalues of G are g of multiplicity 1
and —1 of multiplicity ¢ and the eigenvalues of H are ¢> —q, —g+1 and 0 of multiplicities

1,q and ¢ — ¢ — 2, respectively, we obtain the spectrum and energy of the graph Cl(\/QIi(F)'

Theorem 3.3. We have

3 2 2
@2 _ (-9 —qg+q qg—1 0
SpeCCMQ(F) = ( 1 2% 2 P —3¢— 2) :

Moreowver, E(Cl(\/le(F)) = 4q> — 4¢°.

Since the number of vertices of Cl(\ii(F) is [Ma(F) N (GLo(F)U{0}) | =¢*+¢*>—q—1

and

4° —4¢* —2(* +¢* —q—2) =2¢° —6¢° +2¢+4=2(¢ —2)(¢> —q¢— 1) > 0.

(2)
M (F)

we claim that

Thus, Cl(\z (F) is hyperenergetic unless ¢ = 2. Finally, we show that the graph C
(2)

is not Ramanujan if ¢ > 5. Since ¢> — ¢ is an eigenvalue of CMQ(F),
(¢> — q)® > 4(¢® — ¢> — 1), which is equivalent to the inequality ¢* — 6¢> + 5¢% + 4 > 0.
This holds for ¢ > 5 because ¢* — 6¢° +5¢*> +4 = ¢*(¢ — 1)(¢ — 5) +4 > 0. For ¢ = 2,3
or 4, it is easily seen that Cl(\/z[i (F) is Ramanujan. We record both results in

Theorem 3.4. The graph Cf\ii(F) is hyperenergetic if and only if ¢ > 3, and it is Ramanu-
jan if and only if ¢ < 4.

4. Clique number, chromatic number and independence number

In this section, we compute the clique number, the chromatic number and the inde-
pendence number of subconstituents of Cy,(r). Recall from the proof of Theorem 3.4
of [12] that the ring M,,(F') contains a subfield K of order ¢". We start with the first
subconstituent. Note that 0,,x, € K and so K ~\ {0,,«,} forms a complete subgraph in
Cl(\/lli(F)' Hence, w(Cl(vl[i(F)) > ¢"™ — 1. On the other hand, let J be the set of matrices
in M,,(F) whose all entries in the first row are zero. We can see that J is an ideal of

n

M,,(F) of ¢" ™™ elements. Write M, (F) = J(B; + J) as a union of cosets of J where

s

i=1
the coset By + J = J. Note that each coset forms an independent set and 0,,x, € J.

n

q

It follows that GL, (F') is a subset of U(BZ + J) and hence X(Cl(\/l[l(F)) < ¢"™ — 1. Since
i=2

w(Cl(vl[l(F)) < X(Cl(vlll(F)), we have the following theorem.

Theorem 4.1. w(Cl(lei(F)) = X(Cl(\/lIl(F)) =q" -1
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v
Recall from [2] p.147 that if G is a graph, then a(G) > | ((g))| Theorem 4.1 gives
X
|GLTL(F)| n n n—
a(Cy () = — =" ). (" ")
X(CMn(F))

Consider the group K* as a multiplicative subgroup of GL,, (F). Let X = AM and Y =
AN where M, N € K* such that M # N and A € GL,(F'). Then X -Y = A(M —N) is
invertible because M, N € K*. It follows that each coset forms a complete graph. This

n—l)

implies that a(cl(\/lIl(F)) <@ —=q)...(¢" —q . Hence, we have shown

Theorem 4.2. a(Cyy 1) = (¢" = q)...(¢" — ¢" ).

By Theorem 3.2, we have the second subconstituent of Cyy,(py is the tensor product
of the complete graph on ¢ + 1 vertices G and the complete g + 1-partite graph H such
that each partite has ¢ — 1 vertices. Since x(G) = x(H) = ¢ + 1, we can conclude that
X(Cl(\ii(F)) < g+1. Moreover, let V(G) = {a1,...,aq4+1} and Vi,..., V 41 be the partites
of H. Choose v; € V; for all i € {1,...,q+ 1}. We can see that the subgraph of G ® H

induced by {(a1,v1),...,(ag+1,v4+1)} is a complete graph, so w(G ® H) > ¢+ 1. Thus,

(2)

we obtain the clique number and the chromatic number of the graph CMQ( F)

Theorem 4.3. W(CI(\Z(F)) = X(CI(VQIQ(F)) =q+1

(2)

Our final theorem gives the independence number of CM2( F)

Theorem 4.4. a(CI(VQIl(F)) =q¢ -1

Proof. Similar to the proof of Theorem 4.2, we know from Theorem 4.3 that

_ [M(F) ~ (CLo(F) U{0uen}) | _ @ +a2—g—1 _ ,

a(C(z) 5 q° — 1.
X(Cl(\/ll(F)) ¢+1

M2(F)) =

2
q
Write My (F) = U(AZ + K) as a union of cosets of K. Then an independent set of
i=1

q2

Cl(\/2[i () 18 contained in U(AZ + K). Since each coset forms a complete subgraph, we
i=2

have a(C\2) ) < ¢2 — 1 and the result follows. O

M2 (F)
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1. Introduction

This section contains some terminologies from algebraic graph and hypergraph theory. We also discuss many earlier
results on this topic. Our objective is to provide some algebraic properties of eigenvalues of t-Cayley hypergraphs.

1.1. Hypergraphs

A hypergraph H is a pair (V(H), E(H)) where V(H) is a finite set, called the vertex set of H, and E(H) is a family of subsets
of V(H), called the edge set of H. The elements in V(H) are called vertices and the elements in E(H) are called hyperedges. In
particular, if E(H) consists only of 2-subsets of V(H), then H is a simple graph. For v € V(H), we write ©(v) for the set of all
hyperedges containing the vertex v and the number of elements in ©(v) is the degree of the vertex v, denoted by deg v. A
hypergraph in which all vertices have the same degree k > 0 is called k-regular and it is said to be regular if it is k-regular
for some k > 0. A hypergraph in which all hyperedges have the same cardinality [ > 0 is an [-uniform hypergraph. A path
of length s in H is an alternating sequence v{E;v2E,vs3 . .. vsEsvsy 1 of distinct vertices vy, vo, ..., vsi1 € V(H) and distinct
hyperedges Eq, E,, ..., E; € E(H) satisfying v;, viy1 € E; for any i € {1, 2, ..., s}. The distance between two vertices v and
w, denoted by d(v, w), is the smallest length of a path from v to w. If there is no path from v to w, we define d(v, w) = oc.
The diameter of H is diam(H) = max{d(v, w) : v, w € V(H)}. A hypergraph H is connected if diam(H) < oo.

For a hypergraph H with vertex set {v1, ..., vy}, the adjacency matrix of H, denoted by A(H), is the n x n matrix whose
entry aj, i # j, is the number of hyperedges that contain both of v; and v; and a; = 0 for all 1 <, j < n. This concept was
investigated by Bretto [1]. Evidently, it is a generalization of the adjacency matrix of a graph. An equivalent definition of
the adjacency matrix is given in [6] by using the bipartite graph associated to H which is the graph whose vertex set is
the union of two independent sets V(H) and E(H) and for any v € V(H) and E € E(H), they are adjacent whenever v € E.
In particular, if H is an [-uniform hypergraph, there is another way to define an adjacency matrix by using hypermatrix,
see [4,8]. In this work, our hypergraphs may not be [-uniform, so we follow Bretto’s. The Laplacian matrix of H, denoted
by L(H), is the n x n matrix defined by L(H) = D(H) — A(H) where D(H) is the diagonal matrix [deg v,-] .+ This version

1<i<
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of Laplacian matrix was introduced by Rodriguez [16]. The distance matrix of a connected hypergraph H, denoted by D(H),
is the n x n matrix in which entry dj = d(v;, v;) forall 1 <i,j <n.

The spectrum of H, denoted by Spec(H), is the multi-set of all eigenvalues of A(H) including multiplicity. Observe
that A(H) is a real symmetric matrix, so Spec(H) contains only real eigenvalues. Since the characteristic polynomial of
A(H) is monic with integral coefficients, its rational roots are integers. A hypergraph is integral if all eigenvalues of this
hypergraph are integers. Similarly, we can define Lspec(H) and Dspec(H) as the sets of all eigenvalues of L(H) and D(H),
respectively. Also, an L-integral hypergraph is a hypergraph with integral Laplacian eigenvalues and a D-integral hypergraph
is a hypergraph with integral distance eigenvalues.

For hypergraphs H; and Hj, the Cartesian product of H; and H,, denoted by H;[OH,, is the hypergraph with V(H;OH,) =
V(H;) x V(Hy) and E(H1OH,) = {{x} x E’ : x € V(Hq),E’ € E(Hy)} U{E x {y} : E € E(H;) and y € V(H;)}. Observe that
A(H1OHy) = (A(H1) ® Ly(uy)) + v,y ®A(Hz)) where A® B denotes the Kronecker product of matrices A and B. Therefore,

Spec(HOHy) = {A + B : X € Spec(H;) and B € Spec(H,)}. (A)

Let H; and H, be t-uniform hypergraphs. Following Pearson [15], the tensor product of Hy and H,, denoted by H; ® Hj,
is the t-uniform hypergraph with V(H; ® Hy) = V(H;) x V(Hy) and E(H; @ Hy) = {{(Xi,, ¥}, )s - - -» (Xie, Vi )} = {Xips -2, Xip ) €
E(H1), (¥, - -» ¥} € E(Hy)}. It follows that the number of hyperedges containing both of two vertices (x;, y;) and (x;, ym)
in H; ® Hy is (t — 2)!a;by,. Hence, A(H; ® Hy) = (t — 2)!A(H;) ® A(Hy). Consequently,

Spec(Hy ® Hy) = {(t — 2)!AB : & € Spec(H;) and S € Spec(H,)}. (B)

Several properties of hypergraphs have been studied such as diameter, connectivity and chromatic number. Spectral
and combinatorial properties of hypergraphs are widely related (see for example [5,6,12,16]). Feng and Li [6] showed
the relation between the diameter of H and its eigenvalues. They proved that if {H;},cy is a collection of k-regular and
[-uniform hypergraphs with lim,,_, », |V(H;)| = oo, then lim,_, o, diam(H,) = oo by using the second largest eigenvalue of
H,. Later, Rodriguez [16] showed that if b + 1 is the number of distinct Laplacian eigenvalues of a connected hypergraph
H, then diam(H) < b.

1.2. t-Cayley Hypergraphs

Throughout this section, we let (G, -) be a finite group with the identity e and S a subset of G ~ {e} such that S = S~'.
Fort € Nand 2 < t < max{o(x) : x € S}, the t-Cayley hypergraph H = t-Cay(G, S) of G over S is a hypergraph with vertex
set V(H)=Gand EH)={{yx' : 0 <i<t—1}:x €S and y € G}. Here, o(x) denotes the order of x in G.

Example 1.1. Form = (mq,...,m,;)and n = (nq, ..., n,) in Z", we define the greatest common divisor of m and n to
be the vector d = (dq, ..., d;) where d; = gcd(m;, n;) for alli € {1,...,r}. Now, let n = (nq,...,n;) € Z" and a divisor
tupled =(dq,...,d;)of n,i.e, d; | n; foralli € {1,...,r}. Define

Gn(d) = {X=(X1,...,X) € Zp, X -+ X Ly, : gcd(x, m) = d}.

Let D be a set of divisor tuples of n not containing the zero vector of Z, x -+ X Z,, and S = |Jp Gn(d). For t € N and
2 <t < max{o(x) : x € S}, the t-Cayley hypergraph of Z,, x --- x Z, over S is called a gcd-hypergraph.

Some properties of t-Cayley hypergraphs quoted from [2] are as follows.

Proposition 1.2. Let H = t-Cay(G, S).
(1) H is connected if and only if (S) = G.

; t ift < ,
(2)Foranyxe5,yeG,|{yx':0§i§t—1}’= lf = o)
o(x) ift > o(x).
(3) H is t-uniform if and only if t < o(x) for any x € S.
Clearly, a Cayley graph 2-Cay(G, S) is |S|-regular. We study a Cayley hypergraph t-Cay(G, S). For any y € G, we have
that all hyperedges (may not be distinct) containing y are

t=1) 1 (t=2) t—2

{yx D yx Ly Ly D k3 oy ), Ly, X k)
where x € S. This implies
degy:|{{yxi*j:05i§t—1}:ijft—],xeSH
=[{x7:0<i<t—1}:0<j<t—1x€eS}.
for all y € G. Hence, we have shown
Proposition 1.3. A t-Cayley hypergraph of G over S is regular of degree equal to the number of distinct subsets {x'7 : 0 <
i<t—1}where0<j<t—1landxeS.
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Cayley graphs, as known as Cayley color graphs or Cayley color diagrams were first introduced by Cayley [3] in 1878.
They are regularly studied and have many applications. Harary and Schwenk [7] asked “Which graphs have integral
spectra?”. From this question, the integral Cayley graphs are widely studied, e.g., [9-12,17]. A well-studied Cayley graph
is the 2-unitary Cayley graph of a finite ring. Klotz and Sander [12] studied combinatorial properties of the unitary Cayley
graph 2-Cay(Z,, Z;'). They explored the chromatic number, the clique number, the independence number, the diameter
and the vertex connectivity of this graph. In addition, they showed that the gcd-graphs are integral. A few year later, Ili¢ [9]
determined the energy of unitary Cayley graph 2-Cay(Z,, Z, ). Kiani et al. [11] worked on the eigenvalues of the unitary
Cayley graph of finite local rings and extended the result to finite commutative rings. So [17] completely characterized
integral Cayley graphs of (Z,, +) as follows.

Theorem 1.4. The Cayley graph 2-Cay(Zy,S) is integral if and only if S is a union of some G,(d)’s, where d | n and
Gu(d)={ke{1,2,...,n—1}: gcd(k, n) = d}.

To characterize integral Cayley graphs of finite abelian groups, we first discuss the Cayley graph of the group
(Zny X Zn,, +). Let S = 51 x S, be a subset of Z;, x Z,, ~ {(0, 0)} such that S = —S. The Cayley graph 2-Cay(Z,, x Zp,,S)
can be distinguished into three cases.

(1) Rn]D 2—Cay(Zn2,_52) if S = {0} and S, # {0}, where K, denotes the empty graph on n vertices.
(2) 2-Cay(Zy,, S)d K, if S; # {0} and S, = {0}.
(3) 2-Cay(Zy,, S1) ® 2-Cay(Zy,, S;) if S1 # {0} and S, # {0}.

It is clear that the eigenvalues of an empty graph are zero. By Eqgs. (A), (B) and a Cayley graph always has an integral
eigenvalue, the Cayley graph 2-Cay(Z,, x Zp,,S) is integral if and only if for any i € {1,2} such that S; # {0}, the
2-Cay(Zy,, S;) is integral. By the fundamental theorem of finite abelian groups, a finite abelian group is a direct product
of finite cyclic groups. We can obtain a characterization of the integral Cayley graphs of finite abelian groups similar to
the above discussion.

Theorem 1.5. Let G be a finite abelian group and S a subset of G ~. {e} such that S = S~'. Suppose G = Ly X -+ X L,
and S = Sy x --- x S;. The Cayley graph 2-Cay(G, S) is integral if and only if for any i € {1, ..., r} such that S; # {0}, the
2-Cay(Zy,, S;) is integral.

For non-integral graphs, Monius et al. [14] defined the algebraic degree of a graph G to be the degree of extension of
the splitting field of the characteristic polynomial of A(G) over Q. Recently, Monius [13] determined the algebraic degree
of Cayley graphs of Z, where p is a prime number.

Our purposes are to characterize integral t-Cayley hypergraphs of Z, and compute the algebraic degree of t-Cayley
hypergraphs of Z,. The paper is organized as follows. In Section 2, we study the spectrum of t-Cayley hypergraphs of Z,.
We obtain the characterization of integral t-Cayley hypergraphs of Z, similar to So [17]. We use this result to show that
a gcd-hypergraph of Z, is integral, L-integral and D-integral. In addition, we can determine the first row of the circulant
adjacency matrix of a gcd-hypergraph of Z, (Theorem 2.3). We study non-integral hypergraphs in Section 3. We compute
the algebraic degree of t-Cayley hypergraphs of Z, for all n > 3 which generalizes Monius’ results and provides an answer
to his outlook. Our combinatorial approach is different from him and presented in Lemma 3.1.

2. Integral t-Cayley hypergraphs of Z,

A circulant matrix is a square matrix in which each row is obtained by a right cyclic shift of the preceding row.
From now on, we let n > 2 and H = t-Cay(Z,, S). By the natural labeling {0, 1,...,n — 1} of Z,, it is easy to see that
A(H) = [ajlo<ij<n—1 is circulant. To work on the adjacency matrix A(H), it suffices to compute the first row of A(H). Let C
be the set of vertices adjacent to the vertex 0. Since all hyperedges containing 0 are of the form {(i —j)x: 0 <i <t — 1}

wherex € Sand 0 <j <t —1,and S = —S, we have the union of all hyperedges containing 0 is
U G-is= (J ks=su2su..-u(—1%s.
0<i,j<t—1 —(t—1)<k=<t—-1

It follows that C =SU2SU---U(t — 1)S ~ {0}. Since A(H) is circulant, the eigenvalues of H are
= Y aouEmiiny

keC

where 0 < j < n — 1. We recall some useful properties taken from [17].

Proposition 2.1.
(1) If d is a proper divisor of n and x is an nth root of unity, then Zkecn(d) xK is an integer.
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(2) Let w = e*™/" and

ol PRE: RS GRS
w21 w22 ce 2D
F=
Q=D D2 1)

IfA={veQ"!:FveQ"1} then Ais a vector space over Q. Moreover, A = Span{vg : d | n and d < n} where vq
is the (n — 1)-vector with 1 at the kth entry for all k € G,(d) and O elsewhere.

Now, we prove a criterion for integral t-Cayley hypergraphs.

Theorem 2.2. Let H = t-Cay(Z,, S). Then H is integral if and only if C is a union of some G,(d)’s where for each d, there is
cae{1,2,...,(,",)} such that ag ) = cq for all k € Gy(d).

Proof. Letdy,...,d; be all proper divisors of n. Without loss of generality, we assume that C = G,(d;) U - - - U G,(d;) for
some [ € {1,...,s}. Clearly, A\g = ), . Gok € Z. For any 1 < j < n — 1, by the assumption and Proposition 2.1 (1),
)\j — Z ao,k(ehﬁ/n)k
keC
— Z ao 1 ( 271]1/n k 4 Z 27t]1/n
keGn(dy) keGn(dy)
= ¢, Z (Eani/n)k 4t Ca) Z (827111/11) c7.
keGn(dq) keGn(d))

Conversely, suppose that H is integral. Then A; € Z for any 0 < j < n — 1. We consider the vector v € Q" ! with ag for
the kth entry for any k € C and 0 elsewhere. Then

1k
11 12 o 1(n—1) do,1 > kec Q0.k@ A
@ @ @ a > e Aok A
. . ) 02 kec ©0k 2 n—1
FU = . . T . . . = . = . e Z .
(n—1)-1 (n—1)-2 (n—1)-(n—1) : : :
13 10 e N
do.n-1 > kec dg "k An—1

It follows that v € A in Proposition 2.1 (2), and hence v = de d<n Cdvq for some rational coefficients c,'s. The definition
of v implies that the coefficient ¢4 € {0, 1,..., ([ 2)} Therefore, C is a union of some G,(d)’s where for each such d, we
have ap = ¢4 for all k € Gp(d). O

Remark. In particular, for t = 2, we have S = C. Theorem 2.2 implies that H = 2-Cay(Z,, S) is integral if and only if S is
a union of some Gp(d)’s and for which d, ap = 1 for all k € Gp(d). This coincides So’s result recalled in Theorem 1.4.

Let H = t-Cay(Z,, S) be a gcd-hypergraph. We shall use Theorem 2.2 to show that H is integral. By Example 1.1,
S = U,cp Gn(e) for some set D of proper divisors of n. Since IG,(e) = Gu(gcd(l, n)e) for any I € {1,2,...,n — 1}, we have
C=5SU25U---U(t—1)S~ {0} equals | J,p Gn(d) for some set D' of proper divisors of nand D € D'. Let d € D" and
k € Gu(d). We aim to show that ag’s are identical for all k € Gp(d). Let d € D" and k, k' € Gp(d). There is u € G,(1) such
that k' = uk. Since hyperedges containing 0 are {(i —j)x : 0 <i <t — 1} wherex € Sand 0 < j < t — 1, we count
such hyperedges containing k. For each e € D, let Ny (e) be the number of hyperedges containing 0 and k of the form
{(i—jx:0<i<t— 1} with x € Gy(e). For any e, f € D with e # f, such hyperedges with x € G,(e) and x € G,(f) are
distinct, so

dor =Y  Nale)

eeD

Let Sy ={l:1<1<t—1andk € IGy(e)}. Since G,(d) = IG,(e) for all | € S, and k' = uk, it follows that N4 (e) = Ny (e).
Hence,

Qo = ZNd,k(e) = ZNcl,k’(e) = do

eeD eeD

Therefore, we can conclude that H is integral by Theorem 2.2. We record this result in the following theorem.

Theorem 2.3. Let H = t-Cay(Zy, S) be a gcd-hypergraph of Z, where S = | J,., Gu(e) for some set D of proper divisors of
nand C =SU2SU---U(t — 1)S ~ {0} = U, Gn(d) for some set D' of proper divisors of n and D € D'. Let d € D’ and
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k € Gn(d). For each e € D, let Nq (e) be the number of hyperedges containing 0 and k of the form {(i —j)x : 0 <i <t — 1}
with x € Gy(e). Then

K= Z Ng.k(e)

eeD

Moreover, ag i's are identical for all k € G,(d) and H is an integral hypergraph.

Remark. Letd € D', k € Gy(d)and e € D.If k & IGy(e) for all | € {1,2,...,t — 1}, then hyperedges containing 0
of the form {(i —j)x : 0 < i <t — 1} where x € Gy(e) and 0 < j < t — 1 do not contain k, so Ngi(e) = 0. Next,
assume that Sy = {l : 1 < I <t —Tandk € IG,(e)} # ¥. Note that o(x) = 7 for all x € Gy(e). If £ < ¢, then
{i—jx:0<i<t—1} = (x) =eZ, forallx € Gy(e) and 0 <j <t — 1, so we have only one hyperedge containing 0 and
k and Ng(e) = 1. Suppose that g > t. Let [ € S;. Since k € IG,(e), there is x € G,(e) such that k = Ix. We wish to find the
number of elements y in G,(e) such that k = ly. Since k € IG,(e), we have d = gcd(l, n)e, so

Gp(d) = Gp(ged(l, n)e) = IGy(e) = leGn(l).

Suppose that k = Ix = leu for some u € Gn ( ). To find the number of such y’s in G,(e), it is equivalent to find the number
of elements v in GE( ) such that k = lev. Now, we count such v’s. For any v € Ge( ) with k = lev, we have lev = leu
mod n,so (v—u)=0 mod 7.Ifv—u=0 mod 7, then!-0=0 mod 7, and if v—u 0 mod %, then there are q € Z

andr € {1,2,..., ; — 1} such that v = u+ ;q+r. Consequently, (v —u) = 0 mod g ifand only if Ir =0 mod 3. Thus,
the number of v in Gn ( ) such that k = lev mod n equals the number of r in {0, 1, % _1}suchthatlr=0 mod
Note that |G,(e)| = ¢( ) if e is a divisor of n. Since this number is independent of k there are exactly n ”;2) elements
say vy, Uz, ...,V stare), in Gn(1) such that k = lev; for all i € {1,2,..., Z;Z)} Lety; = ev; for alli e {1 2., ¢(2;§)}.
Since o(y;) = % > t, the sets

{(I=t+ Dy, (I =t)yi, ..., 0, .., b, (L= )y, (L= € = Vyi, ..., 0, by, (L4 Tyl

{0,y (T )y, o, (8 — 1)y

are hyperedges of H containing 0 and k for all i € {1, 2,..., igﬂjg; } Thus,

Nax(e ‘U{l—)ym O<i<t—1}:0<j<t—1—L1<m< ZE%H

1S

However, these hyperedges may not be distinct, so Ny < Z,esk —-1)- %.

Example 2.4. By Theorem 1.4, an integral 2-Cay(Z,, S) is a gcd-graph. However, an integral t-Cay(Z,,S) may not
be a gcd-hypergraph when t > 3. For example, if H = 5-Cay(Zs, {£1}) which is not a gcd-hypergraph of Zs, then
E(H) = {{0, 1, 2, 3, 4}}. Hence, C = Z5 ~ {0} = Gs(1) and apx = 1 for any k € C, but H is integral by Theorem 2.2.

Finally, we study L-integral and D-integral t-Cayley hypergraphs. We start with a simple result on L-integral t-Cayley
hypergraphs obtained by Proposition 1.3, Theorems 2.2 and 2.3. Let H = t-Cay(Z,, S). By Proposition 1.3, H is regular, so
there exists d € N such that degk = d for any 0 < k < n — 1. It follows that

Hence,
Lspec(H) = {d — A : A € Spec(H)}.
By Theorems 2.2 and 2.3, we easily get
Corollary 2.5. Let H = t-Cay(Z,, S). Then H is L-integral if and only if H is integral. In particular, a gcd-hypergraph of Z, is
L-integral.

Now, we consider D-integral t-Cayley hypergraphs. For t = 2, 1li¢ [10] showed that a gcd-graph of Z, is D-integral.
Assume that H = t-Cay(Z,, S) is connected. That is, (S) = G by Proposition 1.2 (1). By the natural labeling in D(H), it is
clear that D(H) is circulant. Thus, it suffices to consider the first row of D(H). Since H is connected, the set {k : d(0, k) #
0} ={1,2,...,n— 1}. Hence, we get a characterization of D-integral t-Cayley hypergraphs similar to Theorem 2.2.

Theorem 2.6. Assume that H = t-Cay(Z,,S) is connected. Then H is D-integral if and only if for each d | n, there is
cqg € {1,2,...,diam(H)} such that d(0, k) = c4 for all k € Gp(d).
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Let H = t-Cay(Z,, S). We observe that d(0, k) is the distance between 0 and k in 2-Cay(Z,, C) where C = SU2S U
---U(t —1)S\ {0}. Hence, the distance matrix D(H) = D(2-Cay(Z,, C)). If H is a gcd-hypergraph, then 2-Cay(Z,, C) is also
a gcd-graph. This implies that 2-Cay(Z,, C) is D-integral [10]. Consequently, H is D-integral and we obtain the following
theorem.

Theorem 2.7. A gcd-hypergraph of Z, is D-integral.

Remark. Let S = S; x S, be a subset of Z;, x Z,, ~ {(0,0)} such that S = —S and H = t-Cay(Z,, X Z,, S). Suppose
that S; # {0} and S, # {0}. We observe that t-Cay(Z,, x Zn,,S1 X Sy) is a subgraph of t-Cay(Zy,, S1) ® t-Cay(Zy,, S2).
Fix two vertices (X1, ¥1), (X2, ¥2) € Zn, X Zp,. Let {x +ix’' : 0 < i <t — 1} be a hyperedge in t-Cay(Z,,, S1) containing
both of x; and x, and let {y +1iy’ : 0 < i < t — 1} a hyperedge in t-Cay(Zy,, S;) containing both of y; and y,. Then
{(x,y)+i(x',y"): 0 < i < t—1}is a hyperedge in t-Cay(Z,, X Zn,, S1 X S;). But when t > 3, the problem is that it may not
contain (x, y1) and (x,, y2). This means that A(t-Cay(Z,, X Zn,, S1 xS2)) may not equal to A(t-Cay(Zy,, S1)®@t-Cay(Zy,, S2))
when t > 3. Hence, a characterization of integral t-Cayley hypergraphs of finite abelian groups is still an open problem
when t > 3.

3. Algebraic degree of spectra of t-Cayley hypergraphs of Z,

Let H be a hypergraph on m vertices and f(x) = det(xl,, —A(H)) the characteristic polynomial of H. Let E; be the splitting
field of f(x) over Q. The algebraic degree of H is [Ef : Q] and denoted by deg H. By Theorem 2.2, we have a characterization
of integral t-Cayley hypergraphs of Z,. They are hypergraphs of Z, of algebraic degree one. We study the algebraic degree
of t-Cayley hypergraphs of Z, in this section.

Let n > 3 and H = t-Cay(Z,, S). Recall from the beginning of Section 2 that the eigenvalues of H are

)\j — Zao.k(eﬁnﬁ/n)k

keC
where C = {k:ap) #0} =SU2SU---U(t —1)S~ {0} andj e {0,1,...,n— 1}. Let ® = e*"/" be a primitive nth root
of unity. By the fundamental theorem of Galois theory,
¢(n) ©)
|Gal (Q(a))/Q ()"03 )"h RN )\'nfl))| '

where Gal (Q(w)/Q (Ao, A1, ..., p=1)) = {0 € Aut(Q(w)) : o isa Q-automorphism and o(};) = A; forall j €
{0, 1,...,n— 1}}. We shall determine the size of this group and obtain the algebraic degree of H.

degH =[Q (Ao, A1, ..., An—1) : Q] =

Lemma 3.1. Lety € {0,1,...,n — 1} be such that gcd(y, n) = 1 and o, € Aut(Q(w)) be the Q-automorphism defined by
w > o”. Then oy(X;) = A; for all j € {0, 1, ..., n— 1} if and only if there is n, € NwithC = G U---UG,, yG=C mod n
and ag = aoy forallk € Gand l € {1,2,...,n,}.

Proof. If thereisann, e NwithC=CU---UG,,yG=C mod nand apr = aoy forallk e Gandl € {1,2,...,ny},

then
My ny
Uy()»j) = 0y (Z ao,ka)’k) = Z Z ao,kdy (a)’k) = Z Z ao,ka)’"y
keC I=1 keq I=1 ke
Ny
= ZZGO ,a)iky = Zao ka)’yk = Zao ,a)’yk = A
YK Sy YK ]
=1 keC keC ykeC

forallj € {0, 1, ..., n—1}. On the other hand, suppose that oy,(1;) = 2; forallj € {0, 1,...,n—1}.Then ), _ do (c(,\")y’< =
> rec o,k (aﬂ)k forallj € {0,1,...,n— 1}. Let p(x) = Y cc Qo — 3¢ Gokx*. It is a polynomial of degree at most
n— 1. Since 1, w, ..., " ! are distinct roots of p(x), we have p(x) = 0. Define an equivalence relation on C by k ~ k
whenever agx = ao . Let Cy, ..., Gy, be all equivalence classes of ~. Then C = C; U --- U Gy,. Since p(x) = 0, we have
yG=C modnandsoay =apy forallke Gandle {1,2,...,n,}. O

Theorem 3.2. Let H = t-Cay(Z,,S)and C =SU2S U ---U(t — 1)S ~ {0}. Let m be the number of y in {0, 1,...,n— 1}

such that ged(y, n) = 1 and there is an ny, € N with C = C; U --- U Gy, yG = G mod n and ap = do yk for all k € C; and
le{1,2,...,ny}. Then
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Proof. By Lemma 3.1, m is the size of Gal (Q(w)/Q (A9, A1, ..., An_1)). It follows from Eq. (C) that degH = %. From
= —S mod n, we have C = —C mod n. Since {£k} = —{=£k} and apx = ap._, for any k € C, 1 and —1 are such y.
Hence, m > 2, so % < @ O
Consider H = 2-Cay(Z,,S). Then C = S and apx = 1 forany k € S and apx = O otherwise. The assumption of
Theorem 3.2 can be reduced to yS = S mod n. In addition, if n = p is a prime number, Mo6nius showed in the proof

of Theorem 2.5 of [13] that m in Theorem 3.2 is the maximum number of M € {1,2,...,|S|} such that M divides
ged(|S|,p— 1) and
ISI/M
S = U S,
I=1
where |S| = M and for each | € {1,2,...,|S| /M, kM = (K') mod p} for all k, k' € S;. The next corollary gives the

algebraic degree of Cayley graph of Z, over S which generalizes Theorem 2.5 of [13].

Corollary 3.3. Let H = 2-Cay(Zy,, S). If m is the number of y in {0, 1, ..., n — 1} such that yS =S mod n, then

degH = M
m

Example 3.4. Consider H = 2-Cay(Zs31,S) where S = {%2, 3, 10, £12, £13, +15} = C. Since *1, 45, &6 are all
elements of y such that gcd(y, 31) = 1 and yC = C mod 31, by Corollary 3.3, degH = @ = 5. This coincides Example
2.10 of [13].

In the proof of Theorem 3.2, we have known that 1 and —1 are always such y satisfying yC = C mod n. If only they
satisfy this congruence, we have a special case of Theorem 3.2 as follows.

Corollary 3.5. Let H = t-Cay(Z,,S)and C =SU2SU---U(t —1)S~{0}. Ify = 1 and y = —1 are the only elements in
Zy, such that gcd(y,n) = 1 and yC = C mod n, then

_ ¢
degH = i

We provide some numerical examples using Theorem 3.2 and Corollary 3.5 as follows.

Example 3.6. Consider H = 3-Cay(Zi,, {£1}). We have C = {£1, £2}. In addition, ap.;1 = 2 and ap 4+, = 1. The
characteristic polynomial of A(H) is

(x — 12 (x +23(x + 3)%(x — 6)(x* —2x — 11)?
and hence degH = 2. Since 1 and —1 are the only elements y in Z, such that gcd(y, 12) = 1 and yC = C mod 12, by
Corollary 3.5, degH = @ = 2.

Example 3.7. Let S = {#1} be a subset of (Zg, +). Them max{o(x) : x € S} = 9,s02 <t < 9. The algebraic degree of
t-Cayley hypergraph of Zg over S for all t are presented in the following table. The cases t € {2, 3, 4} are computed by
Corollary 3.5 and the others are obtained from Theorem 3.2.

t ao,+1 Qo +2 Qo +3 ao,+4 y with yc=C mod 9 deg t—CaY(Zg, S)
2 1 +1 3
3 2 1 +1 3
4 3 2 1 +1 3
5 4 3 2 1 +1,£2,4+4 3
6 5 4 3 3 +1, 42, 4+4 3
7 6 5 5 5 +1, 42, +4 3
8 7 7 7 7 +1,+£2,4+4 1
9 1 1 1 1 +1, 42, 4+4 1
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