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Abstract ( ) 

There are many graphs and hypergraphs defined algebraically over a finite ring 

R. For example, unitary Cayley graphs/hypergraphs, integral circulant graphs, gcd-

graphs, zero divisor graphs, and bilinear form graphs. We develop some tools in 

number theory, linear algebra, character theory and finite commutative ring theory to 

study more deeply on these graphs and hypergraphs over a finite ring or a finite 

commutative ring. The study includes graph/hypergraph structures and their subgraphs, 

spectra of the graphs/hypergraphs and their energy. We also analyze their 

hyperenegeticity, Ramanujan property or other important parameters of the graphs. 
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Objectives 

1. To develop some tools in number theory, linear algebra, character theory and finite 

commutative ring theory to study more deeply on graphs and hypergraphs algebraically defined 

over a finite ring. 

2. To define and study algebraic properties of t-Cayley hypergraphs over finite commutative 

rings. 

3. To study graph/hypergraph structures, spectra of the graphs/hypergraphs and their energy 

and the behavior/structure of the lifting from the residue field when R is a finite local ring. This 



 
 
 

includes the analysis of hyperenegeticity, Ramanujan property, or other important parameters of 

the graphs. 

 

Methodology and Results 

We work on four algebraically defined graphs.  

1. For a finite commutative ring R with unit group Rx and the set of zero divisors Z(R), we 

know that R = {0}  Rx  Z(R). The zero divisor graph of R is a graph whose vertex set is the 

set of all zero divisor of R, and two zero divisors are adjacent if and only if their product is zero. 

We first study zero divisor graphs over finite chain rings. We determine their rank, determinant, 

and eigenvalues using reduction graphs.  

Theorem  The determinant of the zero divisor graph of a finite chain ring R is 0 unless R is 

isomorphic to Z2[x]/(x2) or Z4 where the determinant equals 1.  

Theorem  For any finite chain ring R with nilpotency t and residue field k, the rank of the zero 

divisor graph is t – 1 and the multiplicity of the eigenvalue 0 is |k|t – 1. 

 Moreover, we extend the work to zero divisor graphs over finite commutative principal ideal 

rings by using a combinatorial method, find the number of positive eigenvalues and the number 

of negative eigenvalues, and find upper and lower bounds for the largest eigenvalue (§4 of the 

paper). We also characterize all finite commutative principal ideal rings such that their zero divisor 

graphs are complete and compute the Wiener index of the zero divisor graphs over finite 

commutative principal ideal rings (Theorem 5.2 of the paper).  

 Write R = R1  …  Rk where Ri is a finite chain ring of nilpotency ti for all i.  

Theorem  The rank of the zero divisor graph of R is (t1+1)  (tk+1) – 2, and the determinant is 

1 if R is isomorphic to Z2[x]/(x2) or Z4, –1 if R is isomorphic to (Z2)k for some k  2, and 0 

otherwise.  

Theorem  If N = (t1+1)  (tk+1) – 2, the number of positive eigenvalues and the number of 

negative eigenvalues of the zero divisor graph of R are N/2  and N/2 . 

 This work may be extended to study the zero divisor graphs over any finite commutative 

rings in the future. The paper appears in Rattanakangwanwong J. and Meemark Y., Eigenvalues 

of zero divisor graphs of principal ideal rings, Linear Multilinear Algebra 2021. 

DOI:10.1080/03081087.2021.1917501. 



 
 
 

2. Suppose that R is a finite commutative ring and m, n, d are positive integers such that 2  

d  min{m,n}. The matrix graph of type (m,n,d) over R is the graph whose vertices are m  n 

matrices over R, and two m  n matrices A and B are adjacent if and only if 0 < rank (A-B) < d. 

We show that this matrix graph is a connected vertex transitive graph. We determine the distance, 

diameter, independence number, clique number and chromatic number of this graph over finite 

principal ideal rings (§3 of the paper). The matrix graph can be applied to study MRD codes over 

a finite commutative ring R. We prove that if R is a finite principal ideal ring, then the MRD codes 

coincide with the maximal independent sets of the matrix graph (§4 of the paper). Consequently, 

we have the existence of linear MRD codes over finite principal ideal rings in our last theorem. 

For future work, we can propose to study the matrix graph over any finite commutative rings. This 

work is published in Sirisuk S. and Meemark Y., Matrix graphs and MRD codes over finite principal 

ideal rings, Finite Fields Appl. 2020; 66: #101705. 

3. For a finite ring R with identity, the unitary Cayley graph of R, C(R), is the graph with vertex 

set R and for each x, y in R, x and y are adjacent if and only if x –  y is a unit of R. Let R be a 

finite commutative ring and n a positive integer. Let Mn(R) denote the ring of n  n matrices over 

R. we study the unitary Cayley graph C(Mn(R)) of the matrix ring over R. If F is a field, we use 

the additive characters of Mn(F) to determine three eigenvalues of C(Mn(F)) and use them to 

analyze strong regularity and hyperenegetic graphs. We find conditions on R and n such that 

C(Mn(R)) is strongly regular. Without explicitly having the spectrum of the graph, we can show 

that C(Mn(R)) is hyperenergetic and characterize R and n such that C(Mn(R)) is Ramanujan. 

Moreover, we compute the clique number, the chromatic number and the independence number 

of the graph. This work appears in Rattanakangwanwong J. and Meemark Y., Unitary Cayley 

graphs of matrix rings over finite commutative rings, Finite Fields Appl. 2020; 65: #101689. 

 Let G be a graph and x a vertex of G. The first subconstituent of G at x is the subgraph of 

G induced by the set of neighborhoods of x and the second subconstituent of G at x is the 

subgraph of G induced by the set of vertices which is non-adjacent to x except x itself. Now, we 

discuss the subconstituents of the unitary Cayley graph of Mn(R). Let R be a finite ring with 

identity. The set of neighborhood of a vertex x of the graph C(R) is denoted by N(x). For x in R, 

the maps f from N(0) to N(x) and g from R – (N(0)  {0}) to R – (N(x)  {x}) which both send 

y to x–y are graph isomorphisms. Hence, we may only study the subconstituents at x = 0 and 

we write C(1)(R) and C(2)(R) for the first subconstituent and the second subconstituent of C(R) at 

x = 0 in R, respectively. Let F be a finite field. We study C(1)(Mn(F)) and C(2)(Mn(F)). The graph 

C(1)(Mn(F)) is defined on the group of invertible n  n matrices over F and the graph C(2)(Mn(F)) 



 
 
 

is defined on the set of nonzero non-invertible matrices over F. We have the structure of 

C(1)(Mn(F)) and C(2)(Mn(F)). We can determine the spectra of C(1)(M2(F)) and C(2)(M2(F)) and 

conclude hyperenergeticity and Ramanujan property for both graphs. In addition, we compute the 

clique number, the chromatic number and the independence number of C(1)(M2(F)) and 

C(2)(M2(F)). This work is published in Rattanakangwanwong J. and Meemark Y., Subconstituents 

of unitary Cayley graph of matrix algebras, Finite Fields Appl. 2022; 80: #102004. 

4. A hypergraph H is a pair (V(H),E(H)) where V(H) is a finite set, called the vertex set of H, 

and E(H) is a family of subsets of V(H), called the edge set of H. Let (G, ) be a finite group with 

the identity e and S a subset of G – {e} such that S = S–1. For a positive integer t and 2  t  

max{o(x) : x in S}, the t-Cayley hypergraph of G over S is a hypergraph H with vertex set V(H) = 

G and E(H) = {{yxi : 0  i  t – 1 } : x in S and y in G}. It is denoted by t-Cay(G,S). We study 

spectral properties of this graph. We characterize integral 2-Cayley hypergraphs of G when G is 

abelian.  

Theorem  Let G be a finite abelian group and S a subset of G–{e} such that S = S–1. Suppose 

G = Zn1  …  Znr and S = S1  …  Sr. The Cayley graph 2-Cay(G, S) is integral if and only if 

for any i in {1, … , r} such that Si  {0}, the 2-Cay(Gi, Si) is integral. 

 In addition, we obtain the algebraic degree of t-Cayley hypergraphs of Zn.  

Theorem  Let H = t-Cay(Zn,S) and C = S  2S  …  (t-1)S – {0}. Let m be the number of y 

in {0,1, … , n-1} such that gcd(y,n) = 1 and there is a positive integer ny with C = C1  …  

Cny, yCl  Cl mod n and a0,k = a0,yk for all k in Cl and l in {1,2, … ,ny}. Then  

deg H = (n)/m  (n)/2. 

 This work appears in Sripaisan N. and Meemark Y., Algebraic degree of spectra of Cayley 

hypergraphs, Discret. Appl. Math. 6, 2022, 87–94. 

 

Keywords ( ) : Cayley hypergraph, Eigenvalue, Matrix graph, Unitary Cayley graph, Zero 

divisor graph. 
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Chapter 1

Eigenvalues of Zero Divisor Graphs of

Principal Ideal Rings

Throughout this chapter, a ring always contains the multiplicative identity 1 �= 0.

1.1 Zero divisor graphs of finite chain rings

Let R be a finite commutative ring. We denote its group of units by R× and write Z(R) for the set of its
zero divisors. Recall that we have the disjoint union R = {0}∪R×∪Z(R). The set Z(R) can be empty if R
is a field. Note that if u is a unit of R and z is a zero divisor of R, then uz is a zero divisor of R. Thus, the
left multiplication induces an action of the group of units of R on the set of zero divisors of R. The zero
divisor graph of R, ZR, is a graph whose vertex set is the set of all zero divisors of R and two zero divisors
are adjacent if and only if their product is zero.

A local ring is a commutative ring with unique maximal ideal. A finite commutative ring R is called a
finite chain ring if for any ideals I and J of R, we have I ⊆ J or J ⊆ I . It is clear that a finite chain ring
must be a local ring and every finite field and the ring of integers modulo a prime power are finite chain
rings. Also, we can show that if R is a finite chain ring with maximal ideal M and θ ∈ M \ M2, then
M = Rθ. In other words, the maximal ideal of a finite chain ring is principal. It is also known that a ring
is a finite chain ring if and only if it is a finite principal ideal ring. In particular, the unique maximal ideal
of a finite chain ring is a principal ideal generated by a nilpotent element.

Now, let R be a finite chain ring with unique principal maximal ideal M = Rθ for some θ ∈ M \M2

and k ∼= R/M its residue field. Then R× = R \ Rθ and Z(R) = Rθ \ {0}. We shall repeatedly use basic
properties of a finite chain ring taken from [3, 5] and recorded in the next proposition.

Proposition 1.1.1. 1. There is the smallest positive integer t such that θt = 0, called the nilpotency of R.

2. For any non-zero element r in R, there is a unique integer i, 0 ≤ i < t such that r = uθi for some unit u in
R.

3. Assume that 1 ≤ i < j ≤ t and r ∈ R. If rθi ∈ Rθj , then r ∈ Rθj−i. In particular, if rθi = 0, then
r ∈ Rθt−i.

4. If {v1, . . . , vq} is a system of coset representatives of M in R where q = |k|, then for each r in R, there are
unique r0, . . . , rt−1 in {v1, . . . , vq} such that

r = r0 + r1θ + · · ·+ rt−1θ
t−1.
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5. |Rθi| = |k|t−i for all i ∈ {0, 1, . . . , t− 1}.

6. For each i ∈ {0, 1, . . . , t− 1}, |Rθi/Rθi+1| = |k|.
The orbits under action of the unit groups are R× · θi, 1 ≤ i ≤ t. The size of the stabilizers and the size

of the orbits are determined in the following propositions.

Proposition 1.1.2. | StabR×(θi)| = |k|i and |R× · θi| = |k|t−i − |k|t−i−1 = |k|t−i−1(|k| − 1) for all i ∈
{1, 2, . . . , t− 1}.
Proof. Let i ∈ {1, 2, . . . , t − 1}. Note that for a ∈ R, we have a ∈ StabR×(θi) ⇔ (a − 1)θi = 0. It follows
from Proposition 1.1.1 (3) that StabR×(θi) = {1 + dθt−i : d ∈ R}. Since

1 + d1θ
t−i = 1 + d2θ

t−i ⇔ d1 − d2 ∈ Rθi,

the size of StabR×(θi) is |R/Rθ| = |k|i. The orbit-stabilizer theorem implies that the size of the orbit

|R× · θi| = |R×|
StabR×(θi)

=
|k|t − |k|t−1

|k|i = |k|t−i − |k|t−i−1.

This completes the proof.

To study the zero divisor graph of R, we may assume that R is not a field. So we have t ≥ 2. Further-
more, our definition allows the zero divisor graph to have loops. Note that if a and b are zero divisors in
the same orbit R× · θi for some 1 ≤ i < t, then a = uθi and b = vθi for some units u and v, for any zero
divisor z of R, we have

az = 0 ⇔ uθiz = 0 ⇔ θiz = 0 ⇔ vθiz = 0 ⇔ bz = 0.

Next, assume that a is in the orbit R× · θi and b is in the orbit R× · θj for some 1 ≤ i, j < t. Then a = uθi

and b = vθj for some units u and v in R. If ab = 0, then i+ j must be at least t, so awθj = uwθi+j = 0 for
any unit w in R. Hence, we have the following lemma.

Lemma 1.1.3. Let a and b be zero divisors of R.

1. If a and b are in the same orbit of the action of units by left multiplication, then a and b have the same neighbors
in ZR.

2. If a is adjacent to b in the zero divisor graph, then a is adjacent to all zero divisors in the same orbit of b.

For each 1 ≤ i < t, let Hi be the subgraph of ZR induced by R× ·θi. Then there are t−1 such subgraphs.
It is easy to see that these subgraphs are either complete or empty (having no edges) and Hi is complete
if and only if 2i ≥ t. Moreover, if 1 ≤ i < j < t such that i + j ≥ t and Hi and Hj are empty, then
the subgraph induced by R× · θi ∪ R× · θj is a complete bipartite graph by Lemma 1.1.3. We record this
observation in the next theorem.

Theorem 1.1.4. 1. There are t− ⌈
t
2

⌉
induced subgraphs which are complete.

2. There are
⌈
t
2

⌉− 1 induced subgraphs which have no edges.

3. If i and j are two integers such that 1 ≤ i < j < t and i + j ≥ t and Hi and Hj have no edges, then the
subgraph induced by R× · θi ∪R× · θj is a complete bipartite graph.

2



The determinant, rank, nullity and eigenvalues of the adjacency matrix of a graph are called the deter-
minant, rank, nullity and eigenvalues of a graph. First, we find the determinant of the zero divisor graph of
R. Note that if there is an orbit containing more than one element, then each element in the same orbit has
the same neighborhood by Lemma 1.1.3, so the rows corresponding to them are identical and force that
its determinant becomes zero. Next, we consider the case that every orbit contains exactly one element.
Since |R× · θ| = |k|t−2(|k| − 1), we have t = 2 and |k| = 2. Then |R| = |k|2 = 4. Hence, R is a finite
chain ring of order 4 with maximal ideal of size 2, so Z(R) = {a} is a singleton and a2 = 0. Therefore,
the determinant is 1. Finally, we remark from [5] that a finite chain ring R of order 4 with maximal ideal
of size 2 is Z2[x]/(x

2) of characteristic two or Z4 of characteristic four. We conclude the result of the zero
divisor graph of a finite chain ring in the next proposition.

Proposition 1.1.5. The determinant of the zero divisor graph of a finite chain ring of R is 0 unless R is isomorphic
to Z2[x]/(x

2) or Z4 where the determinant equals 1.

Assume that R is a finite chain ring in which the determinant of the zero divisor graph ZR is 0. It
follows that 0 is an eigenvalue of ZR with multiplicity being the nullity of ZR. From the rank theorem,
we also know that the sum of the nullity of ZR and the rank of ZR is the number of zero divisors of R
which equals |Rθ| − 1 = |k|t−1 − 1. Hence, to determine the multiplicity of the eigenvalue 0, we may
compute the rank of ZR. We eliminate the redundant of the repeated rows by considering the reduction
graph πZR whose vertices are the orbits: R× · θ,R× · θ2, . . . , R× · θt−1 and the vertices R× · θi and R× · θj
are adjacent if and only if i+ j ≥ t. This reduction graph is also called the compressed zero divisor graphs
studied in [4]. Write A(ZR) and A(πZR) for the adjacency matrix of ZR and πZR, respectively. Since
for each element in the orbit R× · θi, its row in A(ZR) is identical, we have rankA(ZR) ≤ t − 1. Also,
rankA(πZR) ≥ rankA(ZR) because A(πZR) is obtained by deleting repeated rows in A(ZR). We proceed
to show that:

Proposition 1.1.6. rank(A(ZR)) = t− 1.

Proof. From the above inequalities, it suffices to show that rank(A(πZR)) = t − 1. Since πZR has t − 1

vertices and

A(πZR) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 . . . 0 0 1

0 0 . . . 0 1 1

0 0 . . . 1 1 1
...

. . .
...

1 1 . . . 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
directly from its definition, rankA(πZR) = t− 1.

Observe that if R is isomorphic to Z2[x]/(x
2) or Z4, then the rank of A(ZR) is 1 which also equals t−1.

Hence, we have shown:

Theorem 1.1.7. For any finite chain ring R with nilpotency t, the rank of the graph ZR is t−1 and the multiplicity
of the eigenvalue 0 is |k|t − t.

For i ∈ {1, 2, . . . , t− 1}, let mi = |R× · θi| = |k|t−i−1(|k| − 1). Then

A(ZR) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J1

J2

J3
...

Jt−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}m1

}m2

}m3

}mt−1
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where Ji is the all-one matrix of dimension mi × (mt−i + · · · +mt−2 +mt−1) for all i ∈ {1, 2, . . . , t − 1}.
Thus, the eigenvectors of ZR corresponding to the eigenvalue 0 are the ones coming from the nullspace
of the echelon matrix ⎡⎢⎢⎢⎢⎢⎢⎣

�J1
�J2

�J3
. . .

�Jt−1

⎤⎥⎥⎥⎥⎥⎥⎦
where �Ji is the all-one row vector of size mi for all i ∈ {1, 2, . . . , t− 1}.

Assume that λ is a nonzero eigenvalue of A(ZR) with an eigenvector �V . Then �V can be divided into a
block vector

�V =

⎡⎢⎢⎢⎢⎢⎢⎣
�v1
�v2
...

�vt−2

�vt−1

⎤⎥⎥⎥⎥⎥⎥⎦ where �vi =

⎡⎢⎢⎢⎣
vi1
vi2
...

vi,mi

⎤⎥⎥⎥⎦ for all i ∈ {1, 2, . . . , t− 1}

such that

J1�vt−1 = λ�v1, J2

[
�vt−2

�vt−1

]
= λ�v2, . . . , Jt−1

�V = λ�vt−1.

Since λ �= 0, we have vi1 = vi2 = . . . = vimi for all i ∈ {1, 2, . . . , t− 1}. It follows that

mt−1vt−1,1 = λv1,1

mt−2vt−2,1 +mt−1vt−1,1 = λv2,1

...

m1v1,1 + · · ·+mt−2vt−2,1 +mt−1vt−1,1 = λvt−1,1

and so λ is an eigenvalue of A =

⎡⎢⎢⎢⎣
0 · · · 0 mt−1

0 · · · mt−2 mt−1

...
...

...
m1 · · · mt−2 mt−1

⎤⎥⎥⎥⎦ with an eigenvector

⎡⎢⎢⎢⎣
�v1,1
�v2,1

...
�vt−1,1

⎤⎥⎥⎥⎦. Moreover, the

remaining t − 1 independent eigenvectors of ZR corresponding to nonzero eigenvalues can be obtained
from the ones of A. This completes the study of the eigenvalues and eigenvectors of the zero divisor graph
ZR where R is a finite chain ring.

1.2 Zero divisor graphs of principal ideal rings

Let R be a finite commutative principal ideal ring. Then every ideal of R is principal. Recall that a finite
commutative ring is a direct product of finite local rings. Since every ideal of R is principal, so are its
factors. Therefore, R is a direct product of finite chain rings.

Write R ∼= R1 × R2 × · · · × Rk where Ri is a finite chain ring with maximal ideal Riθi of nilpotency ti
and residue field ki = Ri/Riθi for all i ∈ {1, 2, . . . , k}. Note that the set of zero divisors of R is the union
of the direct product of orbits of the form

R×
1 · θs11 ×R×

2 · θs22 × · · · ×R×
k · θskk

4



where 0 ≤ si ≤ ti for all i ∈ {1, 2, . . . , k} except R×
1 ×R×

2 × · · · ×R×
k and {(0, 0, . . . , 0)}. Now, we consider

the reduction graph πZR of ZR whose vertices are

z(s1, s2, . . . , sk) = R×
1 · θs11 ×R×

2 · θs22 × · · · ×R×
k · θskk

where 0 ≤ si ≤ ti for all i ∈ {1, 2, . . . , k} except s1 = s2 = · · · = sk = 0 or (s1 = t1, s2 = t2, . . . , sk = tk)

and z(s1, s2, . . . , sk) and z(s′1, s
′
2, . . . , s

′
k) are adjacent if and only if si + s′i ≥ ti for all i ∈ {1, 2, . . . , k}.

Then, the graph πZR has
k∏

i=1

(ti + 1)− 2 vertices.

Remark. For Zn
∼= Zp1

α1 × · · · × Zpk
αk where n = p1

α1p2
α2 . . . pk

αk , p1, p2, . . . , pk are distinct primes and
α1, α2, . . . , αk ∈ N, z(s1, . . . , sk) can be considered as the set S(d) in Young [6] where d = p1

s1p2
s2 . . . pk

sk

is a divisor of n.

We order them by the lexicographical order, namely, z(s1, s2, . . . , sk) < z(s′1, s
′
2, . . . , s

′
k) if and only if

(s1 < s′1) or (s1 = s′1 and s2 < s′2) or . . . or (s1 = s′1, . . . , sk−1 = s′k−1 and sk < s′k).

Thus, the first vertex is z(0, 0, . . . , 0, 1) and the last one is z(t1, t2, . . . , tk−1, tk − 1). Under this order of
vertices, we have the adjacency matrix being in the form

A(πZR) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 . . . 0 1

0 0 . . . 1 ∗
...

...
...

...
0 1 . . . ∗ ∗
1 ∗ . . . ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎦ . (1.2.1)

To see this, we determine the position of z(s1, s2, . . . , sk) in A(πZR) by counting the number of vertices
before it. From the definition of < excluding (0, 0, . . . , 0), this number equals

k∑
i=1

si

k∏
j=i+1

(tj + 1)− 1,

so the position of z(s1, s2, . . . , sk) in A(πZR) is
k∑

i=1

si

k∏
j=i+1

(tj + 1).

Now, let r1, r2, . . . , rk be such that 0 ≤ ri ≤ ti and ri + si ≥ ti for all i ∈ {1, 2, . . . , k}. In other words,
the vertices z(r1, r2, . . . , rk) and z(s1, s2, . . . , sk) are adjacent. Then

k∑
i=1

(ri + si)

k∏
j=i+1

(tj + 1) ≥
k∑

i=1

ti

k∏
j=i+1

(tj + 1).

The sum on the right hand side can be simplified to

k∑
i=1

ti

k∏
j=i+1

(tj + 1) =
k−2∑
i=1

ti

k∏
j=i+1

(tj + 1) + tk−1(tk + 1) + tk + 1− 1

=

k−2∑
i=1

ti

k∏
j=i+1

(tj + 1) + (tk−1 + 1)(tk + 1) + tk + 1

...

= (t1 + 1)
k∏

j=2

(tj + 1)− 1 =
k∏

j=1

(tj + 1)− 1 = |Z(R)|+ 1
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Thus,
k∑

i=1

ri

k∏
j=i+1

(tj + 1) +

k∑
i=1

si

k∏
j=i+1

(tj + 1) ≥ |Z(R)|+ 1

and equality holds if and only if ri + si = ti for all {1, 2, . . . , k}. This proves (1.2.1) and it follows from
(1.2.1) that

rankA(πZR) =
k∏

i=1

(ti + 1)− 2.

Since rankA(ZR) = rankA(πZR), we have shown:

Proposition 1.2.1. rankA(ZR) =

k∏
i=1

(ti + 1)− 2.

Remark. The entries of A(πZR) below the diagonal from bottom-left corner to top-right corner may not
always be 1 when R is not local. For example, if R = Z12

∼= Z4 × Z3, then

A(πZR) =

⎡⎢⎢⎣
0 0 0 1

0 0 1 0

0 1 1 1

1 0 1 0

⎤⎥⎥⎦ .

Next, we compute the determinant of A(ZR). From the reduction graph πZR, if a vertex z(s1, s2, . . . , sk)

contains more than one element, then A(ZR) has some repeated rows, so detA(ZR) = 0. Now, we con-
sider the case that every vertex of πZR is a singleton. It follows that |Ri

× · θisi | = 1 for all 0 ≤ si ≤ ti and
i ∈ {1, 2, . . . , k}. Since Ri is a local ring, Ri is isomorphic to Z2 or Z4 or Z2[x]/(x

2) for i ∈ {1, 2, . . . , k}. If
k = 1, then Ri must be Z4 or Z2[x]/(x

2) presented in Proposition 1.1.5. Assume that k ≥ 2. If for some
i, Ri

∼= Z4 or Z2[x]/(x
2), then |Ri

×| = 2 and so |z(t1, . . . , ti−1, 0, ti+1, . . . , tk)| > 1. Hence, Ri
∼= Z2 for all

i ∈ {1, 2, . . . , k}, so |A(ZR)| = 2k − 2 and

det(A(ZR)) = (−1)2
k−1(−1)2

k−2(−1)2
k−3 . . . (−1)3(−1)2 = −1

because k ≥ 2. We record the determinant of A(ZR) in:

Proposition 1.2.2. det(A(ZR)) =

⎧⎪⎪⎨⎪⎪⎩
1 if R ∼= Z4 or Z2[x]/(x

2),

−1 if R ∼= (Z2)
k for some k ≥ 2,

0 otherwise.

If the determinant of ZR is 0, then ZR has 0 as an eigenvalue with multiplicity being the nullity
of A(ZR) because A(ZR) is diagonalizable. Thus, the rank theorem gives that the nullity is |Z(R)| −
rankA(ZR). Since |Z(R)| = |R|− |R×|−1, using this fact and proposition 1.2.1 gives the next proposition.

Proposition 1.2.3. If 0 is an eigenvalue of the graph ZR, then its multiplicity is given by

k∏
i=1

|ki|ti −
k∏

i=1

(|ki|ti − |ki|ti−1)−
k∏

i=1

(ti + 1) + 1.

Recall that we order the vertices of the reduction graph πZR by the lexicographical order. With this
order, we may write the vertex set as {z1, z2, . . . , zN} where N =

∏k
i=1(ti + 1) − 2 and we denote by nj

the number of elements in zj for all j ∈ {1, 2, . . . , N}. The (0, 1)-adjacency matrix A = [aij ] of πZR of size
N in (1.2.1) lifts to the adjacency matrix A(ZR) = [Aij ] of ZR where Aij is a block matrix of dimension
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mi×mj with all-zero or all-one entries depending on the entry aij of A(πZR) is 0 or 1, respectively. Thus,
A(ZR) is a matrix of the form ⎡⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 J1
0 0 . . . J2 ∗
...

...
...

...
0 JN−1 . . . ∗ ∗
JN ∗ . . . ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎦
where Jj is the all-one matrix of dimension nj × nj for all j ∈ {1, 2, . . . , N}. Hence, the eigenvectors of
ZR corresponding to the eigenvalue 0 are the ones coming from the nullspace of the echelon matrix⎡⎢⎢⎢⎢⎢⎢⎣

�J1
�J2

. . .
�JN−1

�JN

⎤⎥⎥⎥⎥⎥⎥⎦
where �Jj is the all-one row vector of size nj for all j ∈ {1, 2, . . . , N}.

The independence number of a graph Γ is the size of the largest set of pairwise nonadjacent vertices. We
denote the independence number of Γ by α(Γ). Brouwer and Haemers [2] showed that for a graph Γ,

α(Γ) ≤ r(Γ)− r+(Γ) and α(Γ) ≤ r(Γ)− r−(Γ)

where r(Γ), r+(Γ) and r−(Γ) are the number of eigenvalues, number of positive eigenvalues and number
of negative eigenvalues of Γ, respectively.

Recall that N = rankA(ZR) = rankA(πZR). It follows from the adjacency in Eq. (1.2.1) that α(πZR) =⌊
N
2

⌋
and the reduction graph πZR has a nonzero determinant, so its eigenvalues are positive or negative.

Then N is the number of nonzero eigenvalues of πZR. We can calculate r+(πZR) and r−(πZR) as follows.
Since ⌊

N
2

⌋ ≤ r(Γ)− r+(Γ) and
⌊
N
2

⌋ ≤ r(Γ)− r−(Γ),

we have

r+(πZR) ≤ N − ⌊
N
2

⌋
, r−(πZR) ≤ N − ⌊

N
2

⌋
and N = r+(πZR) + r−(πZR).

If N is even, they force that r+(πZR) = r−(πZR) =
N
2 . Assume that N is odd. Then r+(πZR) and r−(πZR)

are less than or equal to N+1
2 . Since their sum is N , we get {r+(πZR), r−(πZR)} = {N+1

2 , N−1
2 }. But the

determinant of πZR is (−1)
N−1

2 and the minus sign depends on r−(πZR), so we must have r+(πZR) =
N+1
2 and r−(πZR) =

N−1
2 . Proposition 1 of [1] implies that r+(πZR) = r+(ZR) and r−(πZR) = r−(ZR).

Since N = rankπZR = rankZR is also the number of nonzero eigenvalues of ZR, we obtain the number
of positive and negative eigenvalues of ZR as follows.

Theorem 1.2.4. r+(ZR) =
⌈
N
2

⌉
and r−(ZR) =

⌊
N
2

⌋
.

Now, assume that λ is a nonzero eigenvalue of A(ZR) with an eigenvector �V . Then �W can be divided
into a block vector

�W =

⎡⎢⎢⎢⎢⎢⎢⎣
�wN

�wN−1

...
�w2

�w1

⎤⎥⎥⎥⎥⎥⎥⎦ where �wi =

⎡⎢⎢⎢⎣
wi1

wi2

...
wi,mi

⎤⎥⎥⎥⎦ for all i ∈ {1, 2, . . . , N}.
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Note that J1 �w1 = λ�w1 implies w11 = w12 = · · · = w1n1
because of λ �= 0. Since ∗ in A(ZR) is all-zero

or all-one block, we may inductively deduce that wi1 = wi2 = . . . = wini for all i ∈ {1, 2, . . . , N}. It

follows that λ is an eigenvalue of B =

⎡⎢⎢⎢⎣
0 · · · 0 n1

0 · · · n2 b2N
...

...
...

nN · · · bN,N−1 bNN

⎤⎥⎥⎥⎦ where for i < j, bij = 0 if aij = 0 and

bij = nj if aij = 1, with an eigenvector

⎡⎢⎢⎢⎣
wN,1

wN−1,1

...
w1,1

⎤⎥⎥⎥⎦. Hence, the remaining N independent eigenvectors of

ZR corresponding to nonzero N eigenvalues can be obtained from the ones of B.

1.3 Bounds for eigenvalues

Let R be a finite commutative principal ideal ring. Write R ∼= R1×R2× · · ·×Rk where Ri is a finite chain
ring with maximal ideal Riθi of nilpotency ti and residue field ki = Ri/Riθi for all i ∈ {1, 2, . . . , k}. We
proceed to find upper and lower bounds for the zero divisor graph of R in this section. Recall that the set
of zero divisors of R is the union of the direct product of orbits of the form

z(s1, s2, . . . , sk) = R×
1 · θs11 ×R×

2 · θs22 × · · · ×R×
k · θskk

where 0 ≤ si ≤ ti for all i ∈ {1, 2, . . . , k} except R×
1 ×R×

2 ×· · ·×R×
k and {(0, 0, . . . , 0)}. Consider the vertex

(u1θ
s1
1 , u2θ

s2
2 , . . . , ukθ

sk
k ). It is adjacent to vertices (v1θ

r1
1 , v2θ

r2
2 , . . . , vkθ

rk
k ) where vi ∈ R×

i and ri + si ≥ ti
for all i ∈ {1, 2, . . . , k} except (0, 0, . . . , 0), so the degree of the vertex (u1θ

s1
1 , u2θ

s2
2 , . . . , ukθ

sk
k ) is⎛⎝ k∏

i=1

∑
ri+si≥ti

|R×
i · θrii |

⎞⎠− 1.

Suppose that we order the eigenvalues of ZR as λ1 ≥ λ2 ≥ · · · ≥ λ�. It follows from Propostion 3.1.2
of Brouwer and Haemers [2] that

degZR ≤ λ1 ≤ maxdeg(ZR)

where degZR is the average of degree of vertices of ZR given by∑
v∈Z(R) deg v

|Z(R)| =

∑
v∈Z(R) deg v

|R| − |R×| − 1

since R is a finite commutative ring. Next, we determine the maximum degree and the average of degree
of vertices of ZR. We shall assume further that |k1| ≤ |k2| ≤ · · · ≤ |kk|. Note that for each i ∈ {1, 2, . . . , k},
we have by Proposition 1.1.2 that∑

ri+si≥ti

|R×
i · θrii | = 1 +

∑
ti−si≤ri≤ti−1

|R×
i · θrii | = 1 +

∑
ti−si≤ri≤ti−1

|ki|ti−ri−1(|ki| − 1),

so the geometric sum simplifies the right hand side to

1 + (|ki| − 1)
∑

1≤r′i≤si

|ki|r′i−1 = 1 + (|ki|si − 1) = |ki|si .
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Therefore, the degree of the vertex (u1θ
s1
1 , u2θ

s2
2 , . . . , ukθ

sk
k ) is |k1|s1 |k2|s2 . . . |kk|sk − 1 and the maximum

degree attains when s1 = t1 − 1 and si = ti for all i ≥ 2 and equals

maxdeg(ZR) = |k1|t1−1|k2|t2 . . . |kk|tk − 1.

From the set-up at the beginning of Section 2 and the above calculation of the degree of a vertex, we obtain
the average of degree of vertices of the zero divisor graph ZR as∑

0≤s1≤t1,
0≤s2≤t2,

...
0≤sk≤tk

(|k1|s1 |k2|s2 . . . |kk|sk − 1)|z(s1, s2, . . . , sk)| − (|k1|t1 |k2|t2 . . . |kk|tk − 1)

k∏
i=1

|ki|ti −
k∏

i=1

(|ki|ti − |ki|ti−1)− 1

where

|z(s1, s2, . . . , sk)| =
k∏

i=1

|R×
i · θsii | =

∏
j, sj≤tj−1

|kj |tj−sj

(
1− 1

|kj |
)

for all 0 ≤ si ≤ ti and i ∈ {1, 2, . . . , k}. Hence, we have an upper bound and a lower bound for the largest
eigenvalue of ZR.

1.4 Wiener index

Througout this section, R is a finite commutative principal ideal ring. Write R ∼= R1×R2×· · ·×Rk where
Ri is a finite chain ring with maximal ideal Riθi of nilpotency ti and residue field ki = Ri/Riθi for all
i ∈ {1, 2, . . . , k}. The Wiener index of a connected graph G is the sum

∑
u,v∈V (G) dG(u, v) where dG(u, v) is

the distance of u and v in the graph G. We will compute the Wiener index of ZR. First, we characterize all
finite commutative principal ideal rings such that their zero divisor graphs are complete. It is clear that
if R is a finite chain ring with nilpotency 2 or R = F1 × F2, where F1 and F2 is a finite field, then ZR is
a complete graph. Next, assume k ≥ 3. Thus, elements in R×

1 × {0} × R×
3 × · · · × R×

k are not adjacent to
elements in R×

1 × R×
2 × {0} × · · · × R×

k . Now, assume that R = R1 × R2. Suppose t1 ≥ 2 or t2 ≥ 2, say
t1 ≥ 2. It follows that elements in R×

1 × {0} are not adjcent to elements in R×
1 θ1 × R×

2 . Hence, we can
conclude that R1 and R2 must be fields. Finally, we assume that R is a finite chain ring such that ZR is
a complete graph. If R has nilpotency t ≥ 3, then the elements in R×θ are not adjacent, so R must have
nilpotency 2. We record this result in the following theorem.

Theorem 1.4.1. Let R be a finite principal ideal ring. Then ZR is a complete graph if and only if R is a finite chain
ring with nilpotency 2 or R = F1 × F2 where F1 and F2 are finite fields. In this case, its Wiener index is given by(|Z(R)|

2

)
.

Theorem 1.4.2. Let R = R1×· · ·×Rk where R1, . . . , Rk are finite chain rings. Assume that ZR is not a complete
graph. For a proper subset X of {1, 2, . . . , k}, we define

z(X) = {z(s1, . . . , sk) ∈ V (πZR) : 0 < si ≤ ti for all i ∈ X and si = 0 for all i �∈ X}.
Under the set-up at the beginning of this section, we have the following statements.
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(1) If k = 1, that is, R is a finite chain ring with nilpotency t, then the Wiener index of ZR is given by∑
0<s,s′<t
s+s′≥t

|R× · θs||R× · θs′ |+ 2
∑

0<s,s′<t
s+s′<t

|R× · θs||R× · θs′ |.

(2) If k ≥ 2, then the Wiener index of ZR is given by∑
z(s1,...,sk)∼z(s′1,...,s

′
k)

|z(s1, . . . , sk)||z(s′1, . . . , s′k)|

+ 2
∑′ |z(s1, . . . , sk)||z(s′1, . . . , s′k)|+ 3

∑′′ |z(s1, . . . , sk)||z(s′1, . . . , s′k)|

where
∑′

is the sum over z(s1, . . . , sk) ∈ z(X) and z(s′1, . . . , s
′
k) ∈ z(Y ) which are non-adjacent in πZR

and X ∩ Y �= ∅ and
∑′′

is the sum over z(s1, . . . , sk) ∈ z(X) and z(s′1, . . . , s
′
k) ∈ z(Y ) which are

non-adjacent in πZR and X ∩ Y = ∅.

Proof. Recall that the set V (πZR) is a partition of the set of zero divisors of R. Then for any u ∈ Z(R),
there exists a unique zu ∈ V (πZR) containing u. It follows that dZR

(u, v) = dπZR
(zu, zv). We use this

observation to calculate the Wiener index of ZR.
First, we handle the case R being a finite chain ring with nilpotency t. Let s, s′ be such that 0 < s, s′ < t

and s + s′ < t. Let k = max{t − s, t − s′}. We have 0 < k < t, k + s ≥ t and k + s′ ≥ t. Then R× · θk is
adjacent to both R× · θs and R× · θs′ in πZR, so dπZR(R

× · θs, R× · θs′) = 2 whenever s+ s′ < t. Hence, its
Wiener index is given by ∑

0<s,s′<t
s+s′≥t

|R× · θs||R× · θs′ |+ 2
∑

0<s,s′<t
s+s′<t

|R× · θs||R× · θs′ |.

Second, we assume that k ≥ 2 and let X,Y be proper subsets of {1, 2, . . . , k}. Let z(s1, . . . , sk) ∈ z(X)

and z(s′1, . . . , s
′
k) ∈ z(Y ) be nonadjacent vertices in πZR. Suppose that X ∩ Y �= ∅. There are two cases to

consider.
Case 1. There exists i ∈ X ∩ Y such that si, s′i < ti. Then dπZR(z(s1, . . . , sk), z(s

′
1, . . . , s

′
k)) = 2 by the same

method as in the case where R was a finite chain ring above.
Case 2. si = s′i = ti for all i ∈ X ∩ Y . For simplicity, we assume X ∩ Y = {1, 2, . . . ,m}. Then
R×

1 × · · · × R×
m × {0} × · · · × {0} is adjacent to both z(s1, . . . , sk) and z(s′1, . . . , s

′
k), so we also have

dπZR(z(s1, . . . , sk), z(s
′
1, . . . , s

′
k)) = 2.

Next, we assume that X and Y are disjoint. We may write X = {1, . . . , p} and Y = {p+1, . . . , q} where
q ≤ k. We can see that z(s1, . . . , sk) and z(s′1, . . . , s

′
k) have no common neighbors. However,

z(s1, . . . , sk) ∼ z(t1 − s1, . . . , tp − sp, tp+1, . . . , tk)

∼ z(t1, . . . , tp, tp+1 − s′p+1, . . . , tq − s′q, tq+1, . . . , tk)

∼ z(s′1, . . . , s
′
k).

where ∼ means adjacency in πZR. We can conclude that dπZR(z(s1, . . . , sk), z(s
′
1, . . . , s

′
k)) = 3.

From the above calculations, the Wiener index can be obtained from the sum∑
z(s1,...,sk)∼z(s′1,...,s

′
k)

|z(s1, . . . , sk)||z(s′1, . . . , s′k)|

+ 2
∑′ |z(s1, . . . , sk)||z(s′1, . . . , s′k)|+ 3

∑′′ |z(s1, . . . , sk)||z(s′1, . . . , s′k)|
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where
∑′

is the sum over z(s1, . . . , sk) ∈ z(X) and z(s′1, . . . , s
′
k) ∈ z(Y ) which are non-adjacent in πZR

and X ∩ Y �= ∅ and
∑′′

is the sum over z(s1, . . . , sk) ∈ z(X) and z(s′1, . . . , s
′
k) ∈ z(Y ) which are non-

adjacent in πZR and X ∩ Y = ∅.

Finally, we deduce the Wiener index of ZZn for all n ∈ N and n ≥ 3. Let n = p1
α1p2

α2 . . . pk
αk where

p1, p2, . . . , pk are distinct primes and α1, α2, . . . αk ∈ N, and let 0 ≤ si ≤ αi for all i ∈ {1, . . . , k}. According
to the first remark in Section 3, we have z(s1, . . . , sk) is the set S(p1s1p2s2 . . . pksk) so we know from Young
[6] that

|z(s1, . . . , sk)| = φ

(
n

p1s1p2s2 . . . pksk

)
where φ is the Euler phi-function. In other words, if d = p1

s1p2
s2 . . . pk

sk is a divisor of n, then |z(s1, . . . , sk)| =
φ
(
n
d

)
. Moreover, let di and dj be nonadjacent vertices in ZZn corresponding to the vertex z(s1, s2, . . . , sk) ∈

z(X) and z(s′1, s′2, . . . , s′k) ∈ z(Y ) where X and Y are proper subsets of {1, 2, . . . , n}, respectively. Note
that di and dj are relatively prime if X ∩ Y = ∅ and they have a common divisor otherwise. Using this
observation, Theorem 1.4.2 (2) gives us the Wiener index of ZZn

.

Corollary 1.4.3. Let n be a positive integer greater than 3. Let d1, . . . , dl be all proper divisors of n. Then the
Wiener index of ZZn is given by

∑
di∼dj

φ

(
n

di

)
φ

(
n

dj

)
+ 2

∑
di �∼dj

gcd(di,dj)�=1

φ

(
n

di

)
φ

(
n

dj

)
+ 3

∑
di �∼dj

gcd(di,dj)=1

φ

(
n

di

)
φ

(
n

dj

)
.

Here, φ is the Euler phi-function.
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Chapter 2

Matrix Graphs and MRD Codes over

Finite Principal Ideal Rings

Throughout the chapter, our rings always contain the identity 1 �= 0.

2.1 Ranks and background from graph theory

In this section, we first discuss the rank and the McCoy rank of matrices. Then we define the matrix graph
and recall some terminologies and results from graph theory. We divide them into two subsections.

2.1.1 Rank of matrices

Let R be a commutative ring. We write R× for the set of unit in R and the set of m × n matrices with
entries in R is denoted by Rm×n. Cohn [5] introduced the concept of rank of matrices over commutative
rings which generalizes the usual rank of matrices over fields.

For a nonzero matrix A in Rm×n, the rank of A, denoted by rankA, is the least positive integer t such
that A = BC where B ∈ Rm×t and C ∈ Rt×n. The rank of the zero matrix is defined to be 0.

This rank of matrices has some basic properties as the usual rank over fields. For instance, if A,B ∈
Rm×n, then rankA ≤ min{m,n}, rankA = 0 if and only if A = 0, rank(A+ B) ≤ rank(A) + rank(B), and
rankA = rankPAQ where P ∈ GLm(R) and Q ∈ GLn(R), see [5],[6],[11] for more properties.

Now, we assume that R is a finite commutative ring. It is well known that R can be decomposed as
R ∼= R1 × R2 × · · · × R� where R1, R2, . . . R� are finite local rings. Let ρj be the projection map from R to
Ri for all i ∈ {1, 2, . . . , 	}. Here, a local ring is a commutative ring with unique maximal ideal. Recall that
if R is a local ring with unique maximal ideal M , then R× = R \M and the field R/M is called the residue
field equipped with the canonical map π : R → R/M given by π(r) = r +M for all r ∈ R.

Proposition 2.1.1. If A ∈ Rm×n, then

rankA = max
1≤i≤�

{rank ρi(A)}.

Proof. Suppose that rankA = t. Then A = BC for some B ∈ Rm×t and C ∈ Rt×n. For each i ∈
{1, 2, . . . , 	}, we have ρi(A) = ρi(B)ρi(C), so that rank ρi(A) ≤ t. On the other hand, let rank ρi(A) = ti for
all i ∈ {1, 2, . . . , 	}. Then for each i ∈ {1, 2, . . . , 	}, we have ti is the least integer such that ρi(A) = B′

iC
′
i

where B′
i ∈ Rm×ti

i and C ′
i ∈ Rti×n

i . Without loss of generality, suppose that max1≤i≤�{rank ρi(A)} = t1.
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Set Bi = (B′
i, 0) ∈ Rm×t1 and Ci =

(
C ′

i

0

)
∈ Rt1×n. Then A = BC where B = (B1, B2, . . . , B�) ∈ Rm×t1

and C = (C1, C2, . . . , C�) ∈ Rt1×n. Thus, rankA ≤ t1. Therefore, rankA = max1≤i≤�{rank ρi(A)}.

Later, McCoy [13] gave another definition of rank of matrices over commutative rings which also
generalizes the usual rank of matrices over fields. This rank is described by the annihilators of ideals as
follows.

Let R be a commutative ring and A ∈ Rm×n. We define I0 = R and It(A) to be the ideal of R generated
by the t× t minors of A for 1 ≤ t ≤ min{m,n}. Note that

R = I0(A) ⊇ I1(A) ⊇ · · · ⊇ Imin{m,n}(A)

and so
{0} = AnnR I0(A) ⊆ AnnR I1(A) ⊆ · · · ⊆ AnnR Imin{m,n}(A)

where the annihilator of I is given by AnnR I = {r ∈ R : ra = 0 for all a ∈ I}. The Mc-rank of A, Mc-rankA,
is the largest integer r such that AnnR Ir(A) = {0}. If R is a field, then Mc-rankA coincides with the
maximal number of linearly independent columns of A, so it is the usual rank. To compute the Mc-rank
of matrices over finite commutative rings, we have the following propositions.

Proposition 2.1.2. [3] Let R be a finite local ring with maximal ideal M and π : R → R/M a canonical map.
Then for each A ∈ Rm×n, Mc-rankA = rankπ(A).

Proposition 2.1.3. [2] Let R be a finite commutative ring decomposed as R = R1 × R2 × · · · × R� where Ri is a
finite local ring with the projection map ρi : (r1, r2, . . . , r�) �→ ri for all i ∈ {1, 2, . . . , 	}. If A ∈ Rm×n, then

Mc-rankA = min
1≤i≤�

{Mc-rank ρi(A)}.

2.1.2 Matrix graphs

Suppose that R is a finite commutative ring and m,n, d are positive integers such that 2 ≤ d ≤ min{m,n}.
The matrix graph of type (m,n, d) over R, denoted by Γd(R

m×n), is the graph whose vertices are m × n

matrices over R, and two matrices A,B ∈ Rm×n are adjacent if and only if 0 < rank(A−B) < d. We write
A ∼ B when A and B are adjacent.

The graph Γ2(Fm×n
q ) is the matrix graph studied in [10]. Besides, the graphs Γ2(Z

m×n
ps ) and Γd(Z

m×n
ps )

are the bilinear form graphs in [11] and the generalized bilinear form graphs in [12], respectively.
We next recall some terminologies and properties of graphs. Let G be a graph. An automorphism of a

graph G is a bijection σ from G to G such that g1 is adjacent to g2 if and only if σ(g1) is adjacent to σ(g2).
A graph G is said to be vertex transitive if for any two vertices of G, there is an automorphism carrying
one to the other. An independent set of G is a set I of vertices of G in which no two distinct vertices of I are
adjacent. An independent set of G with the largest size of vertices is called a maximal independent set. We
write α(G) for the size of a maximal independent set of G and call it the independence number of G. A clique
C of G is a complete subgraph of G, that is, any two vertices of C are adjacent and a maximal clique of G is
a clique of G which has the largest size of vertices. Denoted by ω(G), the number of vertices in a maximal
clique is called the clique number of G. The chromatic number of G, denoted by χ(G), is the smallest number
of colors needed to color the vertices of G in which no adjacent vertices have the same color. If G is vertex
transitive, we have

ω(G) ≤ |V (G)|
α(G)

≤ χ(G).

Let G1, G2, . . . , G� be graphs. The strong product of graphs G1, G2, . . . G�, denoted by G1 �G2 � · · ·�G�,
is the graph whose vertex set is V (G1) × V (G2) × · · · × V (G�), and g = (g1, g2, . . . , g�) is adjacent to
g′ = (g′1, g

′
2, . . . , g

′
�) if g �= g′ and gi is either equal or adjacent to g′i in Gi for all i ∈ {1, 2, . . . , 	}.
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2.2 Matrix graphs over finite principal ideal rings

In this section, we study the matrix graphs over finite principal ideal rings. We show that our graph is con-
nected and vertex transitive. We determine the distance between any two vertices of the graph. Moreover,
the independence number, the clique number and the chromatic number of the graph are computed.

A finite commutative ring R is called a finite chain ring if for any ideal I, J of R, either I ⊆ J or J ⊆ I .
Clearly, a finite chain ring is a local ring. One can show that if R is a finite chain ring, then its maximal
ideal M is principal and generated by θ for some θ ∈ M \ M2. The smallest positive integer e such that
θe = 0 is called the nilpotency of R. A principal ideal ring (PIR) is a commutative ring in which all of its
ideals are principal. Recall that a finite commutative ring is a direct product of finite local rings. If every
ideal of a ring is principal, so are its factors. Thus, a finite PIR can be decomposed as a direct product
of finite chain rings. With this nice relation of PIRs and finite chain rings, we first study some properties
of matrices over finite chain rings. Some properties of finite chain rings are recorded in the following
proposition.

Proposition 2.2.1. [14] Let R be a finite chain ring with maximal ideal M = Rθ, residue field Fq , nilpotency e

and V = {v1, v2, . . . , vq} a system of coset representatives of M in R.

1. For any nonzero element r in R, there exists a unique integer i with 0 ≤ i ≤ e such that r = uθi for some
u ∈ R×.

2. For each r ∈ R, r can be uniquely written as

r = r0 + r1θ + r2θ
2 + · · ·+ re−1θ

e−1

where r0, r1, . . . , re−1 ∈ V .

3. The ideals of R are in the chain

{0} = Rθe � Rθe−1 � Rθe−2 � · · · � Rθ2 � Rθ � R.

4. |Rθi| = qe−i for all i ∈ {0, 1, . . . , e}.

5. R/Rθi is a finite chain ring with nilpotency i and |R/Rθi| = qi for all i ∈ {1, . . . , e}.

6. For each i ∈ {1, 2, . . . , e}, we have

R/Rθi = {r0 + r1θ + r2θ
2 + · · ·+ ri−1θ

i−1 +Rθi : r0, r1, . . . , ri−1 ∈ V }.
Thus, an element r = r0 + r1θ + r2θ

2 + · · · + ri−1θ
i−1 + Rθi in R/Rθi can be viewed as an element

r = r0 + r1θ + r2θ
2 + · · · + ri−1θ

i−1 + Rθi+1 in R/Rθi+1. Moreover, a unit in R/Rθi is a unit in
R/Rθi+1.

There is a useful property in computing the rank and Mc-rank of matrices over finite chain rings.

Lemma 2.2.2. [4] Let R be a finite chain ring with maximal ideal Rθ and nilpotency e. If A is a nonzero matrix in
Rm×n, then there exist P ∈ GLm(R) and Q ∈ GLn(R) such that

A = P

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

It0
θIt1

θ2It2
. . .

θe−1Ite−1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Q (2.2.1)

where t0, t1, . . . , te−1 are non-negative integers. Moreover, this form is unique when θ is fixed.
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Proposition 2.2.3. Let R be a finite chain ring with maximal ideal Rθ and nilpotency e and A a nonzero matrix in
Rm×n of the form (2.2.1). Then

rankA = t0 + t1 + · · ·+ te−1 and Mc-rankA = t0.

Proof. Let t = t0 + t1 + · · ·+ te−1. From (2.2.1), we can write

A = P diag(D, 0)Q where D = diag(It0 , θIt1 , . . . , θ
e−1Ite−1) ∈ Rt×t.

Write P =
(
P1 P2

)
and Q =

(
Q1

Q2

)
, where P1 ∈ Rm×t and Q1 ∈ Rt×n. We have A = P1DQ1. Therefore,

rankA ≤ t.
On the other hand, suppose that rankA = s. Then A = BC where B ∈ Rm×s and C ∈ Rs×n.

By Lemma 2.2.2, there exist P1 ∈ GLm(R), Q1 ∈ GLs(R), P2 ∈ GLs(R) and Q2 ∈ GLn(R) such that

B = P1

(
D1

0

)
Q1 and C = P2(D2, 0)Q2 where D1 and D2 are diagonal matrices in Rs×s. Hence, A =

P1 diag(D1Q1P2D2, 0)Q2 where D1Q1P2D2 ∈ Rs×s. Since the form of A is unique, s ≥ t. Thus, rankA = t.
Next, let π : R → R/Rθ be the canonical map. Then π(A) = π(P ) diag(π(D), 0)π(Q). It is obvious that

rankπ(A) = t0. By Proposition 2.1.2, we have Mc-rankA = rankπ(A) = t0.

By Proposition 2.2.1 (6), we note that a matrix A over R/Rθi can be viewed as a matrix A over R/Rθi+1

and if A is invertible over R/Rθi, then A is invertible over R/Rθi+1. We apply Proposition 2.2.3 to prove
the next proposition.

Proposition 2.2.4. Let A be an m× n matrix of rank t over R/Rθi. Then A and Aθ are m× n matrices of rank t

over R/Rθi+1.

Proof. From Proposition 2.2.1 and Lemma 2.2.2, we can write A = P diag(It0 , θIt1 , . . . , θ
i−1Iti−1 , 0)Q

where P ∈ GLm(R/Rθi) and Q ∈ GLn(R/Rθi) with t = t0 + t1 + . . . ti−1. It follows that both A and
Aθ = P diag(θIt0 , θ

2It1 , . . . , θ
iIti−1 , 0)Q are m × n matrices over R/Rθi+1. Since P and Q are invertible

over R/Rθi, they are invertible over R/Rθi+1. Hence, A and Aθ are of rank t over R/Rθi+1.

Let R be a finite PIR decomposed as R
ϕ∼= R1 × R2 × · · · × R� where Ri is a finite chain ring for all

i ∈ {1, 2, . . . , 	}. Let ρi : (r1, r2, . . . , r�) �→ ri be a projection map for all i ∈ {1, 2, . . . , 	}. The isomor-
phism ϕ gives Rm×n ∼= Rm×n

1 × Rm×n
2 × · · · × Rm×n

� . Thus, we can view the vertex set of Γd(R
m×n)

as {(ρ1(A), ρ2(A), . . . , ρ�(A)) : A ∈ Rm×n}. By Proposition 2.1.1, if A = (ρ1(A), ρ2(A), . . . , ρ�(A)) and
B = (ρ1(B), ρ2(B), . . . , ρ�(B)) are two vertices of Γd(R

m×n), then

A ∼ B ⇐⇒ 0 < max
1≤i≤�

{rank(ρi(A)− ρi(B))} < d.

With this relation, we proceed to prove the following strong product of graphs theorem.

Theorem 2.2.5. Let R be a finite PIR decomposed as R = R1×R2×· · ·×R� where Ri is a finite chain ring. Then

Γd(R
m×n) = Γd(R

m×n
1 )� Γd(R

m×n
2 )� · · ·� Γd(R

m×n
� ).

Proof. Let G = Γd(R
m×n
1 ) � Γd(R

m×n
2 ) � · · · � Γd(R

m×n
� ). As mentioned, the vertex sets of graphs G and

Γd(R
m×n) are the same. Let A = (ρ1(A), ρ2(A), . . . , ρ�(A)) and B = (ρ1(B), ρ2(B), . . . , ρ�(B)) be two
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vertices. Then

A ∼ B in Γd(R
m×n) ⇔ 0 < max

1≤i≤�
{rank(ρi(A)− ρi(B))} < d

⇔ A �= B and rank(ρi(A)− ρi(B)) < d for all i ∈ {1, 2, . . . , 	}
⇔ A �= B and either ρi(A) = ρi(B) or ρi(A) ∼ ρi(B) in Γd(R

m×n
i )

for all i ∈ {1, 2, . . . , 	}
⇔ A ∼ B in G.

This completes the proof.

Theorem 2.2.6. Let R be a finite PIR. Then the graph Γd(R
m×n) is connected. Moreover, for two vertices A,B ∈

Rm×n, the distance between A and B is

dG(A,B) =

⌈
rank(A−B)

d− 1

⌉
.

Consequently, the diameter of Γd(R
m×n) is equal to

⌈min{m,n}
d−1

⌉
.

Proof. We first prove the desired result in the case that R is a finite chain ring. Assume that R is a fi-
nite chain ring with maximal ideal Rθ and nilpotency e. Let A,B ∈ Rm×n with rank(B − A) = t. By
Lemma 2.2.2, there exist P ∈ GLm(R) and Q ∈ GLn(R) such that

B −A = P

⎛⎜⎜⎜⎜⎜⎜⎝
θk1

θk2

. . .
θkt

0

⎞⎟⎟⎟⎟⎟⎟⎠Q

where 0 ≤ k1 ≤ · · · ≤ kt ≤ e − 1. If t ≤ d − 1, then A ∼ B, and so dG(A,B) = 1. We assume that
t ≥ d. Write t = (d − 1)q + r where q, r are integers with q ≥ 1 and 0 ≤ r < d− 1. Let A0 = A and
Ai = A+ P diag(θk1 , θk2 , . . . , θk(d−1)i , 0)Q for all i ∈ {1, . . . , q}. Then for each i ∈ {0, 1, . . . , q − 1}, Ai+1 −
Ai = P diag(0, θk(d−1)i+1 , . . . , θk(d−1)(i+1) , 0)Q, so rank(Ai+1 − Ai) < d and thus Ai+1 ∼ Ai. Now, we have
A0 ∼ A1 ∼ A2 ∼ · · · ∼ Aq . Note that B −Aq = P diag(0, θk(d−1)q+1 , . . . , θk(d−1)q+r , 0)Q. So rank(B −Aq) ≤
r < d. This implies that B = Aq if r = 0 or B ∼ Aq if r > 0. Thus, Γd(R

m×n) is connected. Moreover,
dG(A,B) equals either q or q + 1, that is, dG(A,B) ≤ � t

d−1�.
On the other hand, let dG(A,B) = s. Then there exist C1, C2, . . . , Cs−1 ∈ Rm×n such that A ∼ C1 ∼

C2 ∼ · · · ∼ Cs−1 ∼ B. By properties of the rank of matrices, we have

t = rank(A−B) ≤ rank(A− C1) + rank(C1 − C2) + · · ·+ rank(Cs−1 −B)

≤ s(d− 1).

Thus, dG(A,B) = s ≥ � t
d−1�. Therefore, dG(A,B) = � rank(A−B)

d−1 �.
Next suppose that R is decomposed as R ∼= R1 × R2 × · · · × R� where Ri is a finite chain ring. By

Theorem 2.2.5, we have

Γd(R
m×n) = Γd(R

m×n
1 )� Γd(R

m×n
2 )� · · ·� Γd(R

m×n
� ).

Let A = (ρ1(A), ρ2(A), . . . , ρ�(A)) and B = (ρ1(B), ρ2(B), . . . , ρ�(B)) be two vertices in Γd(R
m×n). Since

Γd(R
m×n
i ) is connected for all i ∈ {1, 2, . . . , 	}, we can suppose that dG(ρi(A), ρi(B)) = ti for all i ∈
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{1, 2, . . . , 	}. For convenience, we write ρi(A) = Xi0 and ρi(B) = Xiti . Then for each i ∈ {1, 2, . . . , 	},
there exist Xi1, Xi2, . . . , Xi(ti−1) such that

ρi(A) = Xi0 ∼ Xi1 ∼ Xi2 ∼ · · · ∼ Xiti = ρi(B).

Without loss of generality, we assume that t1 ≤ t2 ≤ · · · ≤ t�. For each j ∈ {0, 1, . . . , t�}, we set Xj =

(X1j , X2j , . . . , X�j) where Xij = ρi(B) if ti ≤ j ≤ t�. Then

A = X0 ∼ X1 ∼ X2 ∼ · · · ∼ Xt� = B.

This implies that Γd(R
m×n) is connected and dG(A,B) ≤ t� = max1≤i≤�{dG(ρi(A), ρi(B))}.

Conversely, assume that dG(A,B) = t. Then there exist X1, X2, . . . , Xt−1 such that A := X0 ∼ X1 ∼
X2 ∼ · · · ∼ Xt−1 ∼ Xt = B. Let i ∈ {1, 2, . . . , 	}. Since Xj ∼ Xj+1, we have ρi(Xj) = ρi(Xj+1) or
ρi(Xj) ∼ ρi(Xj+1) in Γd(R

m×n
i ) for all j ∈ {0, 1, . . . , t − 1}. Thus, dG(ρi(A), ρi(B)) ≤ t. It follows that

max1≤i≤�{dG(ρi(A), ρi(B))} ≤ t = dG(A,B).
Finally, the distance over finite chain rings implies

dG(A,B) = max
1≤i≤�

{dG(ρi(A), ρi(B))} = max
1≤i≤�

{⌈ rank(ρi(A)− ρi(B))

d− 1

⌉}
.

By Proposition 2.1.1, we have dG(A,B) =
⌈ rank(A−B)

d−1

⌉
. The diameter of Γd(R

m×n) is obtained from

Lemma 2.2.2 together with choosing A = 0 and B =
(
Im 0

)
if m ≤ n or B =

(
In
0

)
if n ≤ m. Hence,

rank(A−B) = min{m,n}.

Proposition 2.2.7. If R is a finite PIR, then the matrix graph Γd(R
m×n) is vertex transitive.

Proof. Let A,B ∈ Rm×n. Define σ : Rm×n → Rm×n by σ(X) = X − (A − B) for all X ∈ Rm×n. For
X,Y ∈ Rm×n, we have rank(σ(X)− σ(Y )) = rank((X − (A−B))− (Y − (A−B))) = rank(X − Y ). Then
X ∼ Y if and only if σ(X) ∼ σ(Y ) in Γd(R

m×n). Thus, σ is a graph automorphism which maps A to B.
Therefore, Γd(R

m×n) is vertex transitive.

Remark 2.2.8. It is well known that a vertex transitive graph is regular, that is, every vertex has the
same degree. Thus the matrix graph Γd(R

m×n) is regular. For the degree of this regular graph, we can
determine the degree of the zero matrix. Then the degree of Γd(R

m×n) is the number of all nonzero m×n

matrices over R of rank less than d.

We next compute the independence numbers and clique numbers of the matrix graphs. The results
over finite fields are given in [12] as follows.

Lemma 2.2.9. [12] If Fq is the finite field of q elements, then

α(Γd(F
m×n
q )) = qmax{m,n}(min{m,n}−d+1) and ω(Γd(F

m×n
q )) = qmax{m,n}(d−1).

For the case of finite PIRs, we first consider the sets

C1 :=

{(
A

0

)
: A ∈ R(d−1)×n

}
and C2 :=

{(
A 0

)
: A ∈ Rm×(d−1)

}
.

Since rankA ≤ min{m,n} for A ∈ Rm×n, it follows that both C1 and C2 are cliques of Γd(R
m×n). Thus,

ω(Γd(R
m×n)) ≥ |R|max{m,n}(d−1). This provides the lower bound of the clique number. We shall apply it

to compute both clique number and independence number.
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Theorem 2.2.10. Let R be a finite PIR. Then

α(Γd(R
m×n)) = |R|max{m,n}(min{m,n}−d+1)

and

ω(Γd(R
m×n)) = |R|max{m,n}(d−1).

Proof. We first suppose that R is a finite chain ring with maximal ideal Rθ, nilpotency e and a canonical
map π : R → R/Rθ. Let m ≤ n. Then Lemma 2.2.9 implies that α(Γd((R/Rθ)m×n)) = qn(m−d+1) := α.
Let A be a maximal independent set of Γd((R/Rθ)m×n). So rank(A − B) ≥ d over R/Rθ for all distinct
A,B in A. By Proposition 2.2.4, we have that a matrix A over R/Rθ can be considered as a matrix A over
R/Rθi with the same rank for all i ∈ {1, 2, . . . , e}. Thus, rank(A−B) ≥ d over R for all distinct A,B in A.
Next, let

I = A+Aθ +Aθ2 + · · ·+Aθe−1 = {A0 +A1θ +A2θ
2 + · · ·+Ae−1θ

e−1 : Ai ∈ A}.

By Proposition 2.2.1 (2), it is easy to see that I is a set of size αe. We show that I is an independent
set of Γd(R

m×n). Let A,B ∈ I with A �= B. Then A = A0 + A1θ + A2θ
2 + · · · + Ae−1θ

e−1 and B =

B0 + B1θ + B2θ
2 + · · · + Be−1θ

e−1 where Ai, Bi ∈ A and Aj �= Bj for some j ∈ {0, 1, . . . , e − 1}. Hence,
A− B = (A0 − B0) + (A1 − B1)θ + (A2 − B2)θ

2 + · · ·+ (Ae−1 − Be−1)θ
e−1. We apply Propositions 2.1.2

and 2.2.3 to show that rank(A−B) ≥ d.
First, if A0 �= B0, then rank(A − B) ≥ Mc-rank(A − B) = Mc-rankπ(A − B) = Mc-rank(A0 − B0) =

rank(A0 − B0) ≥ d. So we suppose that A0 �= B0. Let j ∈ {1, 2, . . . , e − 1} be the first index such
that Aj �= Bj . Then A − B =

(
(Aj − Bj) + (Aj+1 − Bj+1)θ + · · · + (Ae−1 − Be−1)θ

e−(j+1)
)
θj . Write

C := (Aj −Bj)+ (Aj+1 −Bj+1)θ+ · · ·+(Ae−1 −Be−1)θ
e−(j+1). Then A−B = Cθj . Note that C can also

be viewed as a matrix over R/Rθe−j . By Proposition 2.2.4, both C and Cθj are matrices over R/Rθe ∼= R

with the same rank as considering them over R/Rθe−j . Therefore, rank(A−B) = rank(Cθj) = rank(C) ≥
Mc-rank(C) = Mc-rankπ(C) = Mc-rank(Aj − Bj) = rank(Aj − Bj) ≥ d. This implies that I is an
independent set of Γd(R

m×n) of size αe = qen(m−d+1). It follows that α(Γd(R
m×n)) ≥ qen(m−d+1).

Recall that ω(Γd(R
m×n)) ≥ qen(d−1). Since Γd(R

m×n) is vertex transitive,

α(Γd(R
m×n)) ≤ |V (Γd(R

m×n))|
ω(Γd(Rm×n))

≤ qemn

qen(d−1)
= qen(m−d+1).

Therefore, α(Γd(R
m×n)) = qen(m−d+1). Again,

ω(Γd(R
m×n)) ≤ |V (Γd(R

m×n))|
α(Γd(Rm×n))

=
qemn

qen(m−d+1)
= qen(d−1).

Thus, ω(Γd(R
m×n)) = qen(d−1). So we obtain the result over finite chain rings.

Next, assume that the PIR R is decomposed as R = R1 × R2 × · · · × R� where Ri is a finite local ring
with nilpotency ei and residue field Fqi . By Theorem 2.2.5, Γd(R

m×n) = Γd(R
m×n
1 ) � Γd(R

m×n
2 ) � · · · �

Γd(R
m×n
� ). Note that if Ii is an independent set of Γd(R

m×n
i ) for all i ∈ {1, 2, . . . , 	}, then it is easy to see

that
I = I1 × I2 × · · · × I� = {(A1, A2, . . . , A�) : Ai ∈ Ii}

is an independent set of Γd(R
m×n). Hence,

α(Γd(R
m×n)) ≥ α(Γd(R

m×n
1 ))α(Γd(R

m×n
2 )) . . . α(Γd(R

m×n
� )).
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The previous result on finite chain rings implies that α(Γd(R
m×n
i )) =

|V (Γd(R
m×n
i ))|

ω(Γd(R
m×n
i ))

for all i ∈ {1, 2, . . . , 	}.

Moreover, Γd(R
m×n
i ) is vertex transitive for all i ∈ {1, 2, . . . , 	} by Proposition 2.2.7. Thus, it follows from

[16] Corollary 1 that

α(Γd(R
m×n)) ≤ α(Γd(R

m×n
1 ))α(Γd(R

m×n
2 )) . . . α(Γd(R

m×n
� )).

Therefore,

α(Γd(R
m×n)) = α(Γd(R

m×n
1 ))α(Γd(R

m×n
2 )) . . . α(Γd(R

m×n
� ))

= q
e1n(m−d+1)
1 q

e2n(m−d+1)
2 . . . q

e�n(m−d+1)
�

= |R|n(m−d+1).

Finally, we determine the clique number of the graph. It is proved in [1] that ω(G �H) = ω(G)ω(H).
Consequently,

ω(Γd(R
m×n)) = ω(Γd(R

m×n
1 ))ω(Γd(R

m×n
2 )) . . . ω(Γd(R

m×n
� ))

= q
e1n(d−1)
1 q

e2n(d−1)
2 . . . q

e�n(d−1)
�

= |R|n(d−1).

The case n ≤ m can be proved in a similar way.

Remark 2.2.11. 1. The cliques C1 and C2 mentioned earlier are maximal cliques.

2. Let R be a finite chain ring with maximal ideal Rθ and nilpotency e. If A is a maximal independent
set of Γd((R/Rθ)m×n), then

I = A+Aθ +Aθ2 + · · ·+Aθe−1

is a maximal independent set of Γd(R
m×n).

3. For a finite PIR R ∼= R1 × R2 × · · · × R�, if Ii is a maximal independent set of Γd(R
m×n
i ) for all

i ∈ {1, 2, . . . , 	}, then

I = I1 × I2 × · · · × I� = {(A1, A2, . . . , A�) : Ai ∈ Ii}
is a maximal independent set of Γd(R

m×n).

Let G be a finite group and S a subset of G which does not contain the identity and is closed under
taking inverses. The Cayley graph Cay(G,S) is an undirected graph with vertex set G and for two vertices
g1, g2 ∈ G, g1 and g2 are adjacent if g1g−1

2 is in S. A Cayley graph Cay(G,S) is normal if gCg−1 = C for all
g ∈ G.

To determine the chromatic number of the matrix graph, we use the following property of a normal
Cayley graph.

Lemma 2.2.12. [9] If G is a normal Cayley graph with α(G) = |V (G)|
ω(G) , then χ(G) = ω(G).

Note that Rm×n is an additive group. Let S be the set of nonzero matrices of rank less than d. It
is easy to see that S does not contain the zero matrix and is closed under taking additive inverses. For
A,B ∈ Γd(R

m×n), we have

A ∼ B ⇐⇒ 0 < rank(A−B) < d ⇐⇒ A−B ∈ S.

Thus, Γd(R
m×n) is a Cayley graph. Moreover, it is a normal Cayley graph since Rm×n is an abelian

group. By Theorem 2.2.10, we have α(Γd(R
m×n)) = |V (Γd(R

m×n))|
ω(Γd(Rm×n)) . It follows from the above lemma that

ω(Γd(R
m×n)) = χ(Γd(R

m×n)). Hence, we have shown:

Proposition 2.2.13. If R is a finite PIR, then χ(Γd(R
m×n)) = |R|max{m,n}(d−1).
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2.3 MRD codes

This section is devoted to study MRD codes over PIRs. We give the concepts of matrix codes and rank
distance of matrix codes. We shall see that matrix codes relate to matrix graphs. Indeed, maximal inde-
pendent sets of matrix graphs are MRD codes and vice versa. Finally, we show the existence of linear
MRD codes over a PIR by lifting linear MRD codes over a direct product of finite fields.

Let R be a finite commutative ring. A (matrix) code of size m × n is defined to be a subset C of Rm×n.
For two matrices A,B ∈ Rm×n, we define the rank distance between A and B, denoted by drk(A,B), to be
rank(A−B). Note that the rank distance is a metric on Rm×n. Indeed, drk(A,B) ≥ 0, drk(A,B) = 0 if and
only if A = B, drk(A,B) = drk(B,A) and drk(A,C) ≤ drk(A,B) + drk(B,C) for all A,B,C ∈ Rm×n. For a
code C of size m× n over R, the rank distance of C is defined to be

drk(C) = min{drk(A,B) : A,B ∈ C with A �= B}.

We call a code C of size m × n with rank distance d an (m × n, d)-code. If C ⊆ Rm×n is a submodule of
Rm×n over R, we call C a linear code.

Suppose m ≤ n. Let C be an (m× n, d)-code. We can consider a matrix A in C as A = (�x1, �x2, . . . , �xm)

where �xi ∈ Rn is an i-th row of A. This means we can study C ⊆ (Rn)m as a code of length m over a set
of alphabet Rn and find the Hamming distance of C. Hence, a code C with the Hamming distance dH(C)
agrees with the Singleton bound dH(C) ≤ m− log|R|n |C|+ 1. That is, |C| ≤ |R|n(m−dH(C)+1).

Over the finite field Fq , it is shown in [8] that a matrix code C of size m × n with rank distance drk(C)
has a Singleton like bound which satisfies |C| ≤ qn(m−drk(C)+1). We show that matrix codes over finite PIRs
have a similar bound by using independent sets of the matrix graphs.

Let R be a finite PIR and C ⊆ Rm×n. Then C is both a matrix code and a set of vertices in the matrix
graph Γd(R

m×n) . Moreover, if d ≥ 2, then we have that for any A,B ∈ C with A �= B, drk(A,B) =

rank(A−B) ≥ d if and only if A is not adjacent to B in Γd(R
m×n). This implies the next proposition.

Proposition 2.3.1. Let R be a finite PIR and 2 ≤ d ≤ m ≤ n. For a code C ⊆ Rm×n, drk(C) ≥ d if and only if C
is an independent set of the graph Γd(R

m×n).

This proposition and the independence number in Theorem 2.2.10 implies that if C is a code with
drk(C) = d where d ≥ 2, then |C| ≤ α(Γd(R

m×n)) = |R|n(m−d+1). For the case drk(C) = 1, it is obvious that
|C| ≤ |R|nm. Thus, we have the Singleton like bound for the matrix codes over finite PIRs as follows.

Corollary 2.3.2. Let R be a finite PIR and m ≤ n. For a code C ⊆ Rm×n, we have |C| ≤ |R|n(m−drk(C)+1).

An (m×n, d)-code C over a PIR R is called a maximum rank distance code (MRD code) if |C| = |R|n(m−d+1).
Obviously, the only (m× n, 1)-MRD code is Rm×n. So we may assume d ≥ 2 to study MRD codes.

Next, suppose that R is a PIR and d ≤ m ≤ n. Let C ⊆ Rm×n. Note that if C is either a maximal inde-
pendent set of Γd(R

m×n) or an (m× n, d)-MRD code, then |C| = |R|n(m−d+1) = α(Γd(R
m×n)). Moreover,

|C| = |R|n(m−d+1) implies |R|n(m−d+1) = |C| ≤ |R|n(m−drk(C)+1) by Corollary 2.3.2, so we have d ≥ drk(C).
Applying Proposition 2.3.1 results in

C is an (m× n, d)-MRD code ⇔ drk(C) = d and |C| = |R|n(m−d+1)

⇔ C is an independent set of Γd(R
m×n) and |C| = |R|n(m−d+1)

⇔ C is a maximal independent set of Γd(R
m×n).

Therefore, we have shown:

Theorem 2.3.3. Let R be a finite PIR, 2 ≤ d ≤ m ≤ n and C ⊆ Rm×n. Then C is an (m× n, d)-MRD code if and
only if C is a maximal independent set of Γd(R

m×n).
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We have seen that (m×n, d)-MRD codes coincide with maximal independent sets of the matrix graphs.
We next construct linear MRD codes over PIRs by using maximal independent sets of the graphs.

Theorem 2.3.4. Let R be a finite PIR decomposed as R = R1 × R2 × · · · × R� where Ri is a finite chain ring
with maximal ideal Rθi , nilpotency ei and residue field Fqi for all i ∈ {1, 2, . . . , 	}. For any m,n, d with 2 ≤
d ≤ min{m,n}, there exists a linear (m × n, d)-MRD code over R. Moreover, this linear (m × n, d)-MRD code
is of the form C = C1 × C2 × · · · × C� where each Ci is a linear (m× n, d)-MRD code over Ri which is of the form
Ci = Ci + Ciθi + Ciθ

2
i + · · ·+ Ciθ

ei−1
i where Ci is a linear (m× n, d)-MRD code over Fqi .

Proof. Let m,n, d be positive integers with 2 ≤ d ≤ m ≤ n. Suppose that R is a finite chain ring with
maximal ideal Rθ, nilpotency e and residue field R/Rθ ∼= Fq . It is shown in [8] that there exists a linear
(m × n, d)-MRD code over Fq . We shall lift this linear MRD code C over Fq to obtain a linear MRD code
over R.

Theorem 2.3.3 implies that C is a maximal independent set of Γd(Fm×n
q ). Remark 2.2.11 (2) shows that

C := C + Cθ + Cθ2 + · · ·+ Cθe−1 = {A0 +A1θ +A2θ
2 + · · ·+Ae−1θ

e−1 : Ai ∈ C}

is a maximal independent set of Γd(R
m×n). From another direction of Theorem 2.3.3, C is an (m × n, d)-

MRD code over R. Since C is a linear code over Fq , we can employ Proposition 2.2.1 (2) to obtain a linear
code C over R.

Finally, suppose that R is a PIR decomposed as R1×R2×· · ·×R� where Ri is a finite chain ring. Then
there exists a linear (m×n, d)-MRD code Ci over Ri for all i ∈ {1, 2, . . . , 	}. By Theorem 2.3.3, Ci is a linear
independent set of Γd(R

m×n
i ). Again, by Remark 2.2.11 (3), we have

C = C1 × C2 × · · · × C� = {(A1, A2, . . . , A�) : Ai ∈ Ci}

is a maximal independent set of Γd(R
m×n). Thus, C is an (m× n, d)-MRD code over R. Since Ci is a linear

(m× n, d)-MRD code over Ri for all i ∈ {1, 2, . . . , 	}, C is also a linear (m× n, d)-MRD code over R. This
completes the proof.

Remark 2.3.5. Linear MRD codes over finite fields have been intensively applied to linear network coding,
and also connected to many areas such as McEliece like public key cryptosystems, semifields, linearized
polynomials, see [15] for details. From the above theorem, we obtain linear (m×n, d)-MRD codes for any
parameters m,n, d not only over the field alphabet Fq but also the ring alphabet of any sizes (finite PIRs).
Indeed, the ring alphabets are more optimal than field alphabets in some cases to study network coding,
see [7]. Moreover, these linear MRD codes over PIRs generalize those over Zps in [12].
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Chapter 3

Unitary Cayley Graphs of Matrix Rings

over Finite Commutative Rings

3.1 Unitary Cayley graphs and

For a finite ring R with identity, the unitary Cayley graph of R, CR, is the graph with vertex set R and for
each x, y ∈ R, x and y are adjacent if and only if x − y is a unit of R. The unitary Cayley graphs have
been widely studied by many authors (see, for example, [2, 8, 4, 1, 5]). As discovered in [1, 5], if R is a
finite commutative ring, then R can be decomposed as a direct product of finite local rings R1, . . . , Rs and
CR is the tensor product of the graphs CR1 , . . . ,CRs where the tensor product of graphs G and H , G ⊗H ,
is the graph defined on V (G) × V (H) where (a, b) is adjacent to (c, d) if and only if a is adjacent to c in
G and b is adjacent to d in H . In addition, if R is a finite local ring with maximal ideal M , then CR is a
complete multi-partite graph whose partite sets are the cosets of M . Thus, the unitary Cayley graphs of
finite commutative rings are well studied. Their spectral properties including the energies are also well
known (see [5]).

Let G be a graph and V (G) the vertex set of G. We give some terminologies from graph theory as
follows. A clique is a subgraph that is a complete graph and clique number of G is the size of largest clique
in G, denoted by ω(G). A set I of vertices of G is called an independent set if no distinct vertices of I

are adjacent. The independence number of G is the size of a maximal independent set, denoted by α(G).
The chromatic number of G is the least number of colors needed to color the vertices of G so that no two
adjacent vertices share the same color. We write χ(G) for the chromatic number of G. If every vertex of G
is adjacent to k vertices, then G is a k-regular graph. Finally, we say that a k-regular graph G is edge regular
if there exists a parameter λ such that for any two adjacent vertices, there are exactly λ vertices adjacent
to both of them. If an edge regular graph with parameters k, λ also satisfies an additional property that
for any two non-adjacent vertices, there are exactly μ vertices adjacent to both of them, then it is called a
strongly regular graph with parameters k, λ, μ.

Let R be a ring and n ∈ N. Let R× denote the group of units of R. Let Mn(R) denote the ring of n× n

matrices over R and the group of all invertible matrices over R is denoted by GLn(R). Throughout this
work, we denote In is the n× n identity matrices and denote 0m×n is the m× n zero matrix.

An eigenvalue of a graph G is an eigenvalue of the adjacency matrix of a graph G. The energy of a
graph G, E(G), is the sum of absolute value of its eigenvalues. The spectrum of a graph G is the list of its
eigenvalues together with their multiplicities. If λ1, . . . , λr are eigenvalues of a graph G with multiplic-

ities m1, . . . ,mr, respectively, we write SpecG =

(
λ1 . . . λr

m1 . . . mr

)
to describe the spectrum of G and so
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E(G) = m1|λ1| + · · · + mr|λr|. A graph G on n vertices is said to be hyperenergytic if its energy exceeds
the energy of the complete graph Kn, that is, E(G) > 2(n − 1). A k-regular graph G is a Ramanujan
graph if |λ| ≤ 2

√
k − 1 for all eigenvalues λ of G other than ±k. A Ramanujan graph is a regular graph

whose spectral gap is almost as large as possible. It is an excellent spectral expander. Its name comes from
Lubotzky, Phillips and Sarnak [10] who used the Ramanujan conjecture to construct an infinite family of
such graphs.

To introduce our methodology, we recall some results on character of finite abelian groups. For more
detail, see [9]. Let G be a finite abelian group. A map χ : G → (C \ {0} , ·) is a character if χ is a group
homomorphism. The set of all characters of G, denoted by Ĝ, forms an abelian group under point-wise
multiplication, that is, for any characters χ1, χ2 of G, we define χ1 · χ2 : G → (C \ {0} , ·) where (χ1 ·
χ2)(g) = χ1(g)χ2(g) for all g ∈ G.

Let F be the finite field extension of Zp which has order pr for some r ∈ N and a prime p. The
trace map from F to Zp is the Zp-linear map Tr : x �→ x + xp + · · · + xpr−1

. According to [9], each
character of the group (F,+) is given by χa(x) = e

2πi
p Tr(ax) for all x ∈ F where a ∈ F is fixed. Note that

(Mn(F ),+) ∼= (F,+) × (F,+) × · · · × (F,+) (n2 copies). Recall that if we have G1, G2 are finite abelian
groups, then there is a canonical isomorphism Ĝ1 × Ĝ2 → ̂G1 ×G2 given by (χ1, χ2) �→ χ1χ2. Hence, we
may identify a character of Mn(F ) as χA =

∏
1≤i,j≤n

χaij where A = [aij ]n×n is in Mn(F ) and so it follows

from Theorem 2 of [11] that the eigenvalues of CMn(F ) are given by

ρA =
∑

S∈GLn(F )

χA(S)

as A ranges over all matrices in Mn(F ).
In the next section, we shall use the additive characters discussed in the previous paragraph to com-

pute some eigenvalues (namely, ρA1 , ρA2 and ρA3 ) and use them to study strong regularity of the unitary
Cayley graph CMn(F ) of a matrix algebra over a finite field F of q elements. This new approach also al-
lows us to conclude that the multiplicities of eigenvalues are at least the number of matrices of the same
rank (Theorem 3.2.1). Without completely having the spectrum of the graph, we work on the eigenvalue
ρA3 and show that CMn(F ) is hyperenergetic and characterize n and q such that CMn(F ) is Ramanujan in
Section 3.

The final section presents the study of the unitary Cayley graph of product of matrix rings over finite
local rings. We start by working on a finite local ring R with unique maximal ideal M and residue field k.
We determine the canonical graph isomorphism from the graph CMn(k) ⊗M̊n(M) onto the graph CMn(R)

induced from lifting elements of k to R via M (Theorem 3.4.2). This isomorphism allows us to obtain
the clique number, the chromatic number and the independence number of the unitary Cayley graph of
product of matrix rings over finite local rings. Since every finite commutative ring is isomorphic to a
direct product of finite local rings, we have these numbers for unitary Cayley graphs of a matrix ring over
a finite commutative ring. Moreover, the work in Sections 2 and 3 is generalized to matrix rings over finite
local rings and finite commutative rings in Section 4.

3.2 Strong regularity of Mn(F )

Throughout this section, let F be the finite field of q elements and n ∈ N. Our main work is to show that
the graph CMn(F ) is strongly regular if and only if n = 2. We begin by determining some eigenvalues of
the graph by considering three matrices in Mn(F ), namely,
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A1 = 0n×n, A2 =

⎡⎢⎢⎢⎣
1 0 0 · · · 0

0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

⎤⎥⎥⎥⎦ and A3 =

⎡⎢⎢⎢⎣
1 1 0 · · · 0

1 0 0 · · · 0
...

...
...

...
1 0 0 · · · 0

⎤⎥⎥⎥⎦.

Clearly, we have
ρA1 = |GLn(F )| = (qn − 1)(qn − q) . . . (qn − qn−1).

Note that
ρA2 =

∑
m∈F

Nme
2πi
p Tr(m)

where Nm is the number of invertible matrices with m at the left-top corner for all m ∈ F . If an invertible
matrix has the left-top corner being 0, then the other n−1 elements in the first column cannot be all zeros,
so there are qn − 1 choices for the first column. Thus,

N0 = (qn−1 − 1)(qn − q)(qn − q2) . . . (qn − qn−1)

because the second column must not be multiple of the first column, and the jth column must not be a
linear combination of the previous j − 1 columns for all j ∈ {2, . . . , n}. Now, we have

(qn − qn−1)(qn − q)(qn − q2) . . . (qn − qn−1)

invertible matrices with the top−left corner being nonzero. Since Nm = N1 for all m �= 0, we have

(q − 1)N1 = (qn − qn−1)(qn − q)(qn − q2) . . . (qn − qn−1)

so
N1 = qn−1(qn − q)(qn − q2) . . . (qn − qn−1).

It follows that

ρA2
= N0e

2πi
p Tr(0) +N1

∑
m �=0

e
2πi
p Tr(m)

= −(qn − q)(qn − q2) . . . (qn − qn−1) +N1

∑
m∈F

e
2πi
p Tr(m).

By Hilbert’s theorem 90, we know that the trace map is surjective, so we get∑
m∈F

e
2πi
p Tr(m) = |ker Tr|

∑
m∈Zp

e
2πi
p m = 0.

Therefore,
ρA2 = −(qn − q)(qn − q2) . . . (qn − qn−1).

Finally, we determine ρA3 . Since

ρA3 = N(m1,m2, . . . ,mn+1)
∑

m1,m2,...,mn+1∈F

e
2πi
p Tr(m1+m2+···+mn+mn+1)

where N(m1,m2, . . . ,mn+1) is the number of invertible matrices of the form⎡⎢⎢⎢⎣
m1 mn+1 · · · ∗
m2 ∗ · · · ∗

...
...

. . .
...

mn ∗ · · · ∗

⎤⎥⎥⎥⎦
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and m1,m2, . . . ,mn+1 ∈ F . For m1 = 0, we can determine N(0,m2, . . . ,mn+1) according to mn+1 as
follows. If mn+1 �= 0, then the first column and the second column are linearly independent, so the
second column can be arbitrarily chosen. If mn+1 = 0, then the second column must not be multiple
of the first column and the jth column must not be a linear combination of the previous j − 1 columns
for all j ∈ {2, . . . , n}. Thus, N(0,m2, . . . , 0) = (qn−1)(qn − q2) . . . (qn − qn−1) and N(0,m2, . . . ,mn+1) =

(qn−1)(qn − q2) . . . (qn − qn−1) if mn+1 �= 0. Now, assume that m1 �= 0. Then N(m1,m2, . . . ,mn+1) =

N(1,m2, . . . ,mn+1) for all m2, . . . ,mn+1 ∈ F . To find N(1,m2, . . . ,mn+1), we note that the second column
cannot be mn+1-multiple of the first column and similarly the jth column must not be a linear combination
of the previous j − 1 columns for all j ∈ {2, . . . , n}, so

N(1,m2, . . . ,mn+1) = (qn−1 − 1)(qn − q2) . . . (qn − qn−1).

Now, we compute

ρA3 = (qn−1 − q)(qn − q2) . . . (qn − qn−1)(qn + 1)
∑′

e
2πi
p Tr(m2+...mn)

+ qn−1(qn − q2) . . . (qn − qn−1)
∑′ ∑

mn+1 �=0

e
2πi
p Tr(m2+...mn+mn+1)

+ (qn−1 − 1)(qn − q2) . . . (qn − qn−1)
∑
m1 �=0

∑′ ∑
mn+1∈F

e
2πi
p Tr(m1+m2+...mn+mn+1)

where
∑′

denotes the sum over m2, . . . ,mn ∈ F such that

⎡⎢⎢⎢⎣
m1

m2

...
mn

⎤⎥⎥⎥⎦ is the first column of an invertible

matrix. Since
∑

mn+1∈F

e
2πi
p Tr(mn+1) = 0, the last sum is 0, so we can rewrite ρA3 as

ρA3
= qn−1(qn − q2) . . . (qn − qn−1)

∑′ ∑
mn+1∈F

e
2πi
p Tr(m2+...mn+mn+1)

− q(qn − q2) . . . (qn − qn−1)
∑′

e
2πi
p Tr(m2+...mn)

The first sum is again zero because mn+1 varies over F . Now, since m1 = 0, m2, . . . ,mn cannot be all
zeros and so∑′

e
2πi
p Tr(m2+...mn) =

∑
{m2,...,mn}�={0}

e
2πi
p Tr(m2+...mn) =

∑
m2,...,mn∈F

e
2πi
p Tr(m2+...mn) − 1 = −1.

Hence, ρA3 = q(qn − q2) . . . (qn − qn−1).
Let A and B be n × n matrices over F . Assume that rankA = rankB. Then there exist invertible

matrices P and Q such that A = PBQ. Consider A = [aij ]n×n, B = [bij ]n×n, P = [pij ]n×n and Q =

[qij ]n×n. For S = [sij ]n×n ∈ GLn(F ), we have

χA(S) = e
2πi
p Tr(

∑
1≤i,j≤n aijsij)

From ∑
1≤i,j≤n

aijsij =
∑

1≤i,j≤n

( ∑
1≤k,l≤n

pilblkqkj

)
sij

=
∑

1≤i,j≤n

∑
1≤k,l≤n

blk(pilsijqkj)

=
∑

1≤k,l≤n

blk
∑

1≤i,j≤n

(pilsijqkj).
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and
∑

1≤i,j≤n

pilsijqkj =
(
P tSQt

)
lk

, it follows that χA(S) = χB(P
tSQt). Since P and Q are invertible,

GLn(F ) = P t GLn(F )Qt, so ∑
S∈GLn(F )

χA(S) =
∑

S∈GLn(F )

χB(S).

Hence, we have shown:

Theorem 3.2.1. If A and B are n× n matrices over F of the same rank, then ρA = ρB .

Since CMn(F ) is connected and |GLn(F )|-regular, ρA1 induced from the zero matrix has multiplicity 1.
Observe that ρA2 and ρA3 are induced by matrices of rank 1 and 2, respectively. Since the set of characters
are linearly independent, the multiplicities of them are the number of matrices of such rank. Suppose
n = 2. The number of matrices of rank 1 is (q2−1)2

q−1 = (q − 1)(q + 1)2 and the number of matrices of rank 2

is (q2 − 1)(q2 − q). We record this result in:

Theorem 3.2.2. Spec CM2(F ) =

(
(q2 − 1)(q2 − q) −(q2 − q) q

1 (q − 1)(q + 1)2 (q2 − 1)(q2 − q)

)
and E(CM2(F )) = 2q(q2 − 1)2.

If n = 3, then ρA1(q
3−1)(q3−q)(q3−q2), ρA2 = −(q3−q)(q3−q2) and ρA3 = q(q3−q2) are eigenvalues

of CM3(F ) induced from matrices of rank 0, 1 and 2, respectively. Let λ be the eigenvalue induced from
matrices of rank 3. Counting the number of matrices of each rank gives

(q3 − 1)(q3 − q)(q3 − q2)− (q3 − q)(q3 − q2)
(q3 − 1)2

q − 1

+ q(q3 − q2)
(q3 − 1)2(q3 − q)2

(q2 − 1)(q2 − q)
+ (q3 − 1)(q3 − q)(q3 − q2)λ = 0.

Dividing by (q3 − 1)(q3 − q)(q3 − q2) implies λ = −q3. This proves the following theorem.

Theorem 3.2.3. Spec CM3(F ) =

(
(q3 − 1)(q3 − q)(q3 − q2) −(q3 − q)(q3 − q2)

1 (q3 − 1)(q2 + q + 1)

q(q3 − q2) −q3

(q3 − 1)(q3 − q)(q2 + q + 1) (q3 − 1)(q3 − q)(q3 − q2)

)
.

Recall from Chapter 10 of [3] that a connected regular graph is strongly regular if and only if it has
exactly three distinct eigenvalues. So, we can conclude from Theorem 3.2.2 that CM2(F ) is strongly regular.
Next, we assume that n ≥ 3 and CMn(F ) is strongly regular. Then CMn(F ) has only three eigenvalues. From
our computation, they must be ρA1 , ρA2 and ρA3 . Suppose the multiplicities of ρA2 and ρA3 are m2 and
m3, respectively. Since the sum of eigenvalues of CMn(F ) is 0, we have

(qn − 1)(qn − q) . . . (qn − qn−1)− (qn − q) . . . (qn − qn−1)m2 + q(qn − q2) . . . (qn − qn−1)m3 = 0.

Dividing by (qn − q2) . . . (qn − qn−1) gives

(qn − 1)(qn − q)− (qn − q)m2 + qm3 = 0.

Note that 1 + m2 + m3 = qn
2

, so m3 = qn
2 − m2 − 1. Putting m3 in the previous equation gives m2 =

q(qn−1 − 1)(qn
2−n − 1). Recall from Corollary 8.1.3 of [3] that the sum of square of eigenvalues of the

adjacency matrix A is the trace of A2 which is twice of the number of edges of the graph. Since our graph
is |GLn(F )|-regular, if En is the number of edges, then

2En = qn
2

(qn − 1) . . . (qn − qn−1).
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This yields another relation on m2 and m3 given by

((qn − 1)(qn − q) . . . (qn − qn−1))2 + ((qn − q) . . . (qn − qn−1))2m2

+ (q(qn − q2) . . . (qn − qn−1))2m3 = qn
2

(qn − 1) . . . (qn − qn−1).

Dividing by (qn − q2) . . . (qn − qn−1) and substituting m2 = q(qn−1 − 1)(qn
2−n − 1) give

(qn − 1)2(qn − q)2 . . . (qn − qn−1) + q2(qn − q)2(qn − q2) . . . (qn − qn−1)m3

+ q(qn − q2) . . . (qn − qn−1)(qn−1 − 1)(qn
2−n − 1)

= qn
2

(qn − 1)(qn − q)

Since qn
2−n − 1 =

(
qn−1

)n − 1, the left hand side is divisible by (qn−1 − 1)2, so (qn−1 − 1)2 divides
qn

2

(qn − 1)(qn − q). It follows that qn−1 − 1 divides qn
2+1(qn − 1). Since q and qn − 1 are relatively prime,

we have qn−1 − 1 divides qn − 1 = qn − q + (q − 1), so qn−1 − 1 divides q − 1 which is a contradiction
because n ≥ 3. Therefore, we have our desired result.

Theorem 3.2.4. The graph CMn(F ) is strongly regular if and only if n = 2.

From the above theorem, we learn that CMn(F ) is not strongly regular for n ≥ 3. Since it is edge
regular with λ = en, there are more than one value of the number of common neighborhoods of non-
adjacent vertices in CMn(F ). If A,B ∈ Mn(F ) and rank(A − B) = r for some 0 < r ≤ n, then there exist
invertible matrices P,Q such that

P (A−B)Q =

[
Ir 0r×(n−r)

0(n−r)×r 0(n−r)×(n−r)

]
For A ∈ Mn(F ), let N(A) be the set of neighbors of A. According to Kiani (Lemma 2.1 of [7]), we have

|N(A) ∩N(B)| =
∣∣∣∣([Ir 0

0 0

]
+ GLn(F )

)
∩ GLn(F )

∣∣∣∣
for all A,B ∈ Mn(F ) with A �= B. It gives the number of common neighbors of any pair of two vertices A
and B in Mn(F ). For 1 ≤ r ≤ n, we define

d(n, r) =

∣∣∣∣([Ir 0

0 0

]
+ GLn(F )

)
∩ GLn(F )

∣∣∣∣ .
Since two matrices A and B are adjacent if and only if rank(A−B) = n, we have d(n, n) = en where en is

mentioned in Section 1. Observe that d(n, r) is the number of invertible matrices A such that A−
[

Ir 0

0 0

]
is also invertible. Now, let {�e1, �e2, . . . , �en} be the standard basis of Fn. Consider the set X of vectors given
by

X =
{
A =

[
�a1 �a2 . . . �an

] ∈ GLn(F ) : �a1 ∈ �e1 + Span{�a2, . . . ,�an}
}
.

Note that if A ∈ X , then A is invertible but A−
[
Ir 0

0 0

]
is not invertible. We proceed to compute d(n, 1).

Since d(n, 1) = |GLn(F )| − |X |, we shall determine the cardinality of X . Let A = [aij ]n×n be in X .

Then rankA = n and rank

(
A−

[
1 0

0 0

])
= n − 1. It follows that �a1 �∈ Span{�a2, . . . ,�an} but �a1 ∈ �e1 +

Span{�a2, . . . ,�an}. This forces that �e1 �∈ Span{�a2, . . . ,�an}. Also, {�a2, . . . ,�an} must be linearly independent.
Thus, there are (qn − q) . . . (qn − qn−1) choices for {�a2, . . . ,�an}. As for �a1, it suffices to count under a
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condition �a1 ∈ �e1 + Span{�a2, . . . ,�an} because if �a1 ∈ Span{�a2, . . . ,�an}, then �e1 ∈ Span{�a2, . . . ,�an}, which
is absurd, so there are qn−1 choices for �a1. Hence,

|X | = qn−1(qn − q) . . . (qn − qn−1).

Then

Theorem 3.2.5. d(n, 1) = |GLn(F )| − |X | = (qn − qn−1 − 1)(qn − q) . . . (qn − qn−1).

Remark. For r ≥ 2, we can find a lower bound for d(n, r). Consider a matrix of the form Y =

[
A 0

B C

]
where A,B and C are r × r, (n − r) × r and (n − r) × (n − r) matrices, respectively. It is easy to see that

detY = detA detC, and det

(
X −

[
Ir 0

0 0

])
= det(A − Ir) detC. If we choose A to be a derangement

matrix and C is an invertible matrix, then Y and Y −
[
Ir 0

0 0

]
are invertible. Since there are er choices for A

, qr(n−r) choices for B, and (qn−r−1) . . . (qn−r−qn−r−1) choices for C, we have d(n, r) ≥ erq
r(n−r)(qn−r−

1) . . . (qn−r − qn−r−1) = er(q
n − qr) . . . (qn − qn−1).

3.3 Hyperenegetic graphs and Ramanujan graphs

Let F be a finite field of q elements. In this section, without explicitly computing the spectrum of the
graph, we show that the graph CMn(F ) is hyperenergetic for all n ≥ 2 and characterize n and q such that
CMn(F ) is Ramanujan.

Since q3 − 1 = (q − 1)(q2 + q + 1) > q2 + q, we get q(q2 − 1) = q3 − q > q2 + 1, so E(CM2(F )) =

2q(q2 − 1)2 > 2(q4 − 1). Then CM2(F ) is hyperenergetic. Next, we assume that n ≥ 3. Recall that ρA3
=

q(qn − q2) . . . (qn − qn−1) is an eigenvalue of CMn(F ) with multiplicities at least
(qn − 1)2(qn − q)2

(q2 − 1)(q2 − q)
. It

follows that

E(CMn(F )) > q(qn − q2) . . . (qn − qn−1)
(qn − 1)2(qn − q)2

(q2 − 1)(q2 − q)
.

Thus, to show that CMn(F ) is hyperenergetic, it suffices to prove

q(qn − q2) . . . (qn − qn−1)
(qn − 1)2(qn − q)2

(q2 − 1)(q2 − q)
> 2(qn

2 − 1).

Since |GLn(F )| = (qn − 1)(qn − q) . . . (qn − qn−1), the above inequality is equivalent to

|GLn(F )| > 2(q2 − 1)(q2 − q)(qn
2 − 1)

q(qn − 1)(qn − q)
.

We shall use induction on n ≥ 3 to show that this inequality holds and conclude that CMn(F ) is hyperen-
ergetic. If n = 3, then the right-hand side becomes

2(q2 − 1)(q2 − q)(q9 − 1)

q(q3 − 1)(q3 − q)
=

2(q − 1)

q
(q6 + q3 + 1)

and
|GL3(F )| = (q − 1)3(q6 + 2q5 + 2q4 + q3) > (q − 1)3(q6 + q3 + 1).
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Since q ≥ 2, we have q(q − 1)2 ≥ 2. Then (q − 1)3 ≥ 2(q − 1)

q
and the inequality is valid for n = 3. Now,

let n ≥ 4 and assume that

|GLn−1(F )| ≥ 2(q2 − 1)(q2 − q)(q(n−1)2 − 1)

q(qn−1 − 1)(qn−1 − q)

=
2q(q2 − 1)(q2 − q)(q(n−1)2 − 1)

q(qn − q)(qn−1 − q)

≥ 2q(q2 − 1)(q2 − q)(q(n−1)2 − 1)

q(qn − q)(qn − 1)

where the last inequality comes from qn − 1 − (qn−1 − q) = (qn−1 + 1)(q − 1) ≥ 0. Since |GLn(F )| =
(qn − 1)(qn − q) . . . (qn − qn−1) = qn−1(qn − 1)|GLn−1(F )|, it follows from the previous inequality that

|GLn(F )| ≥ qn−1(qn − 1)
2q(q2 − 1)(q2 − q)(q(n−1)2 − 1)

q(qn − q)(qn − 1)

and so it remains to show that qn(qn − 1)(q(n−1)2 − 1) ≥ qn
2 − 1. Rewrite

qn(qn − 1)(q(n−1)2 − 1)− qn
2

+ 1 = qn(qn
2−n+1 − qn

2−2n+1 − qn + 1)− qn
2

+ 1

= qn
2+1 − qn

2−n+1 − qn
2 − q2n + qn + 1

= qn
2−n+1

(
qn−1(q − 1)− 1

)− q2n + qn + 1.

Since n ≥ 4 and q ≥ 2,

qn
2−n+1

(
qn−1(q − 1)− 1

)− q2n ≥ qn
2−n+1 − q2n = q2n(qn

2−3n+1 − 1) ≥ 0.

This completes the proof of the next theorem.

Theorem 3.3.1. CMn(F ) is hyperenergetic for all n ≥ 2.

Recall that a k-regular graph is Ramanujan if |λ| ≤ 2
√
k − 1 for all eigenvalues λ other than ±k. Since

eigenvalues of a graph are real numbers, this inequality is equivalent to λ2 − 4(k − 1) ≤ 0. We know that
CMn(F ) is regular with parameter k = (qn − 1)(qn − q) . . . (qn − qn−1). If n = 2, then its eigenvalues are
(q2 − 1)(q2 − q),−(q2 − q) and q. Since q ≥ 2, we have q2 − q ≥ 2, so

q2 + 4 ≤ 4q2 and (q2 − q)2 + 4 ≤ 4(q2 − q).

The first inequality gives q2+4 ≤ 4q(q+1)(q−1)2 which is equivalent to q2−4(q2−1)(q2−q)+4 ≤ 0 and
the second inequality directly proves (q2 − q)2 < 4(q2 − 1)(q2 − q)− 4. Thus, CM2(F ) is Ramanujan. Now
suppose that n ≥ 3 and CMn(F ) is a Ramanujan graph. From the computation in the previous section,
ρA3

= (qn − q)(qn − q2) . . . (qn − qn−1) is an eigenvalue of CMn(F ), so

0 ≥ ρ2A3
− 4(qn − 1)(qn − q) . . . (qn − qn−1) + 4 = ρ2A3

− 4(qn − 1)ρA3 + 4 = (ρA3 + 2)2 − 4qnρA3 .

It follows that 4qnρA3 ≥ (ρA3 + 2)2 > ρ2A3
, so 4qn > ρA3 . For n = 3, this must imply that q = 2 and for

n ≥ 4, we have n+ 2 ≤ (n−1)n
2 and so

4qn > ρA3 = q
(n−1)n

2 (qn−1 − 1)(qn−2 − 1) . . . (q − 1) > q
(n−1)n

2

which leads to a contradiction for all q ≥ 2. Finally, if n = 3 and q = 2, by Theorem 3.2.3, we have
−(23 − 2)(23 − 22) = −24, 2(23 − 22) = 8 and −23 = −8 are eigenvalues of CM3(Z2) and 4((23 − 1)(23 −
2)(23 − 22)− 1) = 668 is greater than 242 and 82. Hence, CM3(Z2) is also Ramanujan.

We record this result in the following theorem.

Theorem 3.3.2. The graph CMn(F ) is Ramanujan if and only if n = 2 or (n = 3 and F = Z2).

30



3.4 The unitary Cayley graph of product of matrix rings over finite

local rings

Let R be a local ring with unique maximal ideal M and residue field k. Recall that R/M ∼= k results in
Mn(R)/Mn(M) ∼= Mn(k). Then elements in R can be partitioned into cosets of M and can be viewed as
lifting from elements of k. Suppose |M | = m and |k| = q. We fix A1, . . . , Aqn2 to be coset representatives
of Mn(M) in Mn(R).

Lemma 3.4.1. Let A ∈ Mn(R) and X ∈ Mn(M). Then

det(A+X) = (detA) +m for some m ∈ M .

In particular, A is invertible if and only if A+X is invertible.

Proof. Write A = [aij ]n×n and X = [mij ]n×n. Then

det(A+X) =
∑
σ∈Sn

(sgnσ)(a1σ(1) +m1σ(1)) . . . (anσ(n) +mnσ(n))

=
∑
σ∈Sn

(sgnσ)(a1σ(1) . . . anσ(n)) +m = (detA) +m

for some m ∈ M .

The above lemma directly implies the following theorem.

Theorem 3.4.2. 1. For A,B ∈ Mn(R), A and B are adjacent in CMn(R) if and only if A + Mn(M) and
B + Mn(M) are adjacent in CMn(k).

2. The set Mn(R)/Mn(M) = {A1 + Mn(M), . . . , Aqn2 + Mn(M)} is a partition of the vertex set of CMn(R)

such that

(a) for each i ∈ {1, . . . , qn2}, any two distinct vertices in Ai + Mn(M) are nonadjacent vertices, and

(b) for i, j ∈ {1, . . . , qn2}, Ai and Aj are adjacent in CMn(R) if and only if Ai+Mn(M) and Aj +Mn(M)

are adjacent in CMn(k).

3. Let M̊n(M) be the complete graph of |Mn(M)| vertices with a loop on every vertex. Define f : Mn(k) ×
Mn(M) → Mn(R) by f(Ai + Mn(M), X) = Ai +X for all i ∈ {1, . . . , qn2} and X ∈ Mn(M). Then f is
an isomorphism from the graph CMn(k) ⊗ M̊n(M) onto the graph CMn(R).

Proof. The above discussion implies (1) and (2) For (3), we first show that f is an injection. Let i, j ∈
{1, . . . , qn2} and X,Y ∈ Mn(M) such that Ai + X = Aj + Y . Then Ai − Aj = Y − X ∈ Mn(M). This
forces that Ai + Mn(M) = Aj + Mn(M) in Mn(k), so i = j and X = Y . Since |Mn(k) × Mn(M)| =
|Mn(R)|, f is a bijection. Finally, for i, j ∈ {1, . . . , qn2} and X,Y ∈ Mn(M), we have (Ai + Mn(M), X)

and (Aj + Mn(M), Y ) are adjacent in CMn(k) ⊗ M̊n(M) if and only if Ai + Mn(M) and Aj + Mn(M) are
adjacent if and only if Ai and Aj are adjacent by (2). Hence, f is a graph isomorphism.

Next, we assume that R is a finite local ring which is not a field with unique maximal ideal M and
residue field k. Let |M | = m and |k| = q. Since the adjacency matrix of Ṁn(M) is the all-ones matrix of size

mn2

, we have Spec
(

M̊n(M)
)
=

(
mn2

0

1 mn2 − 1

)
and (qn − 1)(qn − q) . . . (qn − qn−1),−(qn − q) . . . (qn −

qn−1) and q(qn − q2) . . . (qn − qn−1) are eigenvalues of CMn(k). Since the eigenvalues of G ⊗ H are λiμj

where λi’s and μj ’s are eigenvalues of G and H , respectively, we can conclude from the isomorphism in
Theorem 3.4.2 (3) that 0,mn2

(qn − 1)(qn − q) . . . (qn − qn−1),−mn2

(qn − q) . . . (qn − qn−1) and mn2

q(qn −
q2) . . . (qn − qn−1) are distinct eigenvalues of CMn(R). Then we have shown the following theorem.
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Theorem 3.4.3. If R is a local ring which is not a field and n ≥ 2, then CMn(R) is not strongly regular.

However, it turns out that the graph CMn(R) is hyperenergetic.

Theorem 3.4.4. If R is a local ring, then CMn(R) is hyperenergetic for all n ≥ 2.

Proof. Let k be the residue field of R and assume that |k| = q. Recall that CMn(k) is hyperenergetic and

CMn(R) has −mn2

q(qn− q2) . . . (qn− qn−1) as an eigenvalue with multiplicities at least
(qn − 1)2(qn − q)2

(q2 − 1)(q2 − q)
.

The proof of Theorem 3.3.1 tells us that

q(qn − q2) . . . (qn − qn−1)
(qn − 1)2(qn − q)2

(q2 − 1)(q2 − q)
> 2(qn

2 − 1).

Note that the left-hand side is a multiple of q. It follows that

q(qn − q2) . . . (qn − qn−1)
(qn − 1)2(qn − q)2

(q2 − 1)(q2 − q)
≥ 2qn

2

Multiplying by mn2

both sides gives

mn2

q(qn − q2) . . . (qn − qn−1)
(qn − 1)2(qn − q)2

(q2 − 1)(q2 − q)
≥ 2(mq)n

2

> 2((mq)n
2 − 1)

which completes the proof.

Theorem 3.4.5. If R is a local ring which is not a field, then CMn(R) is not Ramanujan for all n ≥ 2

Proof. For simplicity, let r = |GLn(k)|. We first handle case n ≥ 3 and q ≥ 3. Then CMn(k) is not Ramanujan
by Theorem 3.3.2. From the proof of Theorem 3.3.2, we have (qn − q) . . . (qn − qn−1) ≥ 2

√
r − 1. Thus,

mn2

(qn − q) . . . (qn − qn−1) ≥ 2mn2√
r − 1,

so we must show that mn2√
r − 1 >

√
mn2r − 1. Rewrite

m2n2

(r − 1)− (mn2

r − 1) = (mn2 − 1)(mn2

r −mn2 − 1).

Since R is not a field, we have m ≥ 2, so (mn2 −1)(mn2

r−mn2 −1) > 0 and the desired inequality follows.
Next, we assume that n = 3 and q = 2. Then −m9(23 − 2)(23 − 22) = −24m9 is an eigenvalue of CM3(R).
Moreover, r = m9(23−1)(23−2)(23−22) = 168m9. We have 576m18−4(168m9−1) = m9(576m9−672)+4.
Since m ≥ 2, we get 24m9 > 2

√
168m9 − 1. Finally, if n = 2, then −m4(q2 − q) is an eigenvalue of CM2(R)

and r = m4(q2 − 1)(q2 − q), so

m8(q2 − q)2 − 4(m4(q2 − 1)(q2 − q)− 1) = m8(q2 − q)2 − 4m4(q2 − 1)(q2 − q) + 4

≥ m8(q2 − q)2 − 4m4(q2 − q)2 + 4

= (m8 − 4m4)(q2 − q)2 + 4 > 0

because m ≥ 2. Hence, CM2(R) is not Ramanujan.

Let R1, . . . , Rs be finite local rings with maximal ideals M1, . . . ,Ms and residue fields k1, . . . , ks, re-
spectively. Let R = Mn1(R1)× · · · × Mns(Rs) where n1, . . . ns ∈ N. By Theorem 3.8 of [6], we have

χ(CR) = ω(CR) = ω(CMn1 (k1)×···×Mnk
(kk)) = min

1≤i≤s
{|ki|ni}
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Finally, we compute α(CR). Theorem 3.4.2 (3) gives

CR ∼= (
CMn1 (k1)

⊗ · · · ⊗ CMns (ks)

)⊗ (
M̊n1(M1)⊗ · · · ⊗ M̊ns(Ms)

)
.

Since the second product is a complete graph with a loop on each vertex, we can see that

α(CR) = α(CMn1 (k1)
⊗ · · · ⊗ CMns (ks)

)
s∏

i=1

|Mni(Mi)|

=

s∏
i=1

|Mni(ki)|

min
1≤i≤s

{|ki|ni}
s∏

i=1

|Mni(Mi)| = |R|
min
1≤i≤s

{|ki|ni} .

Thus, we prove:

Theorem 3.4.6. ω(CR) = χ(CR) = min
1≤i≤s

{|ki|ni} and α(CR) =
|R|

min
1≤i≤s

{|ki|ni} .

For each 1 ≤ i ≤ s, let |Mi| = mi and |ki| = qi. Recall that ρi = −mi
ni

2

qi(qi
n − qi

2) . . . (qi
n − qi

n−1)

is an eigenvalue of CMni
(Ri) with multiplicities at least ti where ti =

(qi
n − 1)2(qi

n − qi)
2

(qi2 − 1)(qi2 − qi)
for all i. Hence,∏s

i=1 ρi is an eigenvalue of CR with multiplicities at least
∏s

i=1 ti. By Theorem 3.4.3, we have ρiti >

2(|Mni(Ri)| − 1) for all 1 ≤ i ≤ s. Note that the left-hand side is a multiple of qi. We can conclude that
ρiti ≥ 2|Ri|ni

2

. It follows that

s∏
i=1

ρi

s∏
i=1

ti =

s∏
i=1

ρiti ≥
s∏

i=1

2|Mni(Ri)| = 2s
s∏

i=1

|Mni(Ri)| > 2

(
s∏

i=1

|Mni(Ri)| − 1

)
.

This shows that:

Theorem 3.4.7. The graph CR is hyperenergetic. In particular, if R is a finite commutative ring, then CMn(R) is
hypergeometric for all n ≥ 2.

Remark. The later statement comes from the fact that every finite commutative ring is isomorphic to a
direct product of finite local rings. Indeed, we can use this fact and Theorem 3.4.6 to compute the clique
number, chromatic number and independence number for the unitary Cayley graph of a matrix ring over
a finite commutative ring.
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Chapter 4

Subconstituents of Unitary Cayley

Graph of Matrix Algebras

4.1 Introduction

Let G be a finite abelian group and S be a subset of G not containing the identity and S = S−1 where
S−1 = {s−1 : s ∈ S}. The Cayley graph of G associated to S is the undirected graph Cay(G,S) whose vertex
set is G and for each g, h ∈ G, g is adjacent to h if and only if g = hs for some s ∈ S. We say that a Cayley
graph is normal if S is a union of conjugacy classes of G.

For a finite ring R with identity 1 �= 0, we know that (R,+) is an abelian group and we denote its
group of units by R×. The unitary Cayley graph of R, CR, is the graph Cay(R,R×), that is, its vertex set is R
and for each x, y ∈ R, x is adjacent to y if and only if x− y ∈ R×. Since a finite commutative ring R can be
decomposed as a direct product of finite local rings R1, . . . , Rs, the graph CR is the tensor product of the
graphs CR1 , . . . ,CRs . Here, for graphs G and H with vertex sets V (G) and V (H), the tensor product G and
H , G⊗H , is the graph with vertex set V (G)× V (H) such that (a, b) is adjacent to (c, d) if and only if a is
adjacent to c in G and b is adjacent to d in H for all a, c ∈ V (G) and b, d ∈ V (H). In addition, if R is a finite
local ring with maximal ideal M , it follows from Proposition 2.2 of [1] that CR is a complete multi-partite
graph whose partite sets are the cosets of M . Thus, the unitary Cayley graphs of finite commutative rings
are well studied.

Let G be a graph and V (G) the vertex set of G. We give some terminologies from graph theory as
follows. A clique is a subgraph that is a complete graph and clique number of G is the size of largest clique
in G, denoted by ω(G). A set I of vertices of G is called an independent set if no distinct vertices of I

are adjacent. The independence number of G is the size of a maximal independent set, denoted by α(G).
The chromatic number of G is the least number of colors needed to color the vertices of G so that no two
adjacent vertices share the same color. We write χ(G) for the chromatic number of G. If every vertex of G
is adjacent to k vertices, then G is a k-regular graph. Clearly, the above Cayley graph associated to a set
S is a |S|-regular graph. Finally, we say that a k-regular graph G is edge regular if there exists a parameter
λ such that for any two adjacent vertices, there are exactly λ vertices adjacent to both of them. If an edge
regular graph with parameters k, λ also satisfies an additional property that for any two non-adjacent
vertices, there are exactly μ vertices adjacent to both of them, then it is called a strongly regular graph with
parameters k, λ, μ.

An eigenvalue of a graph G is an eigenvalue of the adjacency matrix of a graph G. The energy of a
graph G, E(G), is the sum of absolute value of its eigenvalues. The spectrum of a graph G is the list of its
eigenvalues together with their multiplicities. If λ1, . . . , λr are eigenvalues of a graph G with multiplic-
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ities m1, . . . ,mr, respectively, we write SpecG =

(
λ1 . . . λr

m1 . . . mr

)
to describe the spectrum of G and so

E(G) = m1|λ1|+ · · ·+mr|λr|. A graph G on n vertices is hyperenergetic if its energy exceeds the energy of
the complete graph Kn, that is, E(G) > 2(n − 1). A k-regular connected graph G is a Ramanujan graph if
|λ| ≤ 2

√
k − 1 for all eigenvalues λ of G other than ±k.

For a ring R with identity 1 �= 0 and n ∈ N, Mn(R) is the ring of n×n matrices over R and the group of
all invertible matrices over R is denoted by GLn(R). Throughout this work, In is the n×n identity matrix
and 0m×n is the m× n zero matrix for all m,n ∈ N.

In the previous chapter, we used additive characters of Mn(F ) where F is a finite field and n ∈ N
to determine three distinct eigenvalues of CMn(F ) and use them to conclude that the graph CMn(F ) is
strongly regular if and only if n = 2. We also showed that CMn(F ) is always hyperenergetic and gave a
criterion for being a Ramanujan graph. Chen et al. [3] obtained all eigenvalues of CMn(F ) using Bruhat’s
decomposition.

Let G be a graph and x a vertex of G. The first subconstituent of G at x is the subgraph of G induced
by the set of neighborhoods of x and the second subconstituent of G at x is the subgraph of G induced by
the set of vertices which is non-adjacent to x except x itself. Subconstituents of strongly regular graphs
are studied in many graphs and have many interesting properties. The second subconstituent of the
Hoffman-Singleton graph is determined by its spectrum in [5]. Moreover, the discovery of which graph
has strongly regular subconstituents interests mathematicians. For example, Cameron et al. [4] used the
Bose-Mesner algebra of a strongly regular graph to classify strongly regular graphs whose subconstituents
are strongly regular, and Kasikova [8] used the same tools to classify distance-regular graph which has
strongly regular subconstituents. In addition, we can use eigenvalues of subconstituents to prove the
uniqueness of strongly regular of some parameter, e.g., Clebsch graph is a unique strongly regular graph
with parameters (16, 5, 0, 2) (see [7] p.230).

Now, we turn to the subconstituents of the unitary Cayley graph. Let R be a finite ring with identity
1 �= 0. The set of neighborhood of a vertex x of the graph CR is denoted by N(x). For x ∈ R, the maps
f : N(0) → N(x) and g : R � (N(0) ∪ {0}) → R � (N(x) ∪ {x}) which both send y to x − y are graph
isomorphisms. Hence, we may only study the subconstituents at x = 0 and we write C(1)

R and C(2)
R for

the first subconstituent and the second subconstituent of CR at x = 0 ∈ R, respectively. Let F be a finite
field and n ∈ N. In this work, we study C(1)

Mn(F ) and C(2)
Mn(F ). The graph C(1)

Mn(F ) is defined on the group

GLn(F ) and the graph C(2)
Mn(F ) is defined on the set of nonzero non-invertible matrices over F . We have

the structure of C(1)
Mn(F ) and C(2)

M2(F ). We can determine the spectra of C(1)
M2(F ) and C(2)

M2(F ) and conclude
hyperenergeticity and Ramanujan property for both graphs. In addition, we compute the clique number,
the chromatic number and the independence number of C(1)

Mn(F ) and C(2)
M2(F ).

Next, we recall some results from representation theory used in this work. We refer the reader to [6]
for more detail. Let G be a finite group and V a finite-dimensional complex vector space. A representation
of G on V is a homomorphism ρ : G → GL(V ) where GL(V ) denotes the group of automorphisms on V .
For a representation ρ of G on V , a subspace W of V is ρ-invariant under G if ρ(g)(W ) ⊆ W for all g ∈ G.
If ρ has no proper invariant subspace of V , then we say that ρ is an irreducible representation. Next, we
define a character of a representation. Let ρ be a representation of G on V . Then for each g ∈ G, ρ(g) is a
linear transformation on V . A character χ corresponding to ρ is the complex-valued function on G defined
by χ(g) = tr(ρ(g)) for all g ∈ G where tr(ρ(g)) is the trace of the matrix representation of ρ(g) on V . A
character is said to be irreducible if they are induced from an irreducible representation. The dimension of
a character is the dimension of vector space V . It is easy to see that χ(1) = dimV where 1 is the identity
of the group G, and χ(ghg−1) = χ(h) for all g, h ∈ G. Thus, a character is a constant on a conjugacy class
of G. Moreover, we have known from [10] that if S is a union of conjugacy classes of G and χ1, . . . , χr are
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irreducible characters of G, then the eigenvalues of Cay(G,S) are

λj =
1

χj(1)

∑
s∈S

χj(s)

with multiplicity mj =
r∑

k=1
λk=λj

χk(1)
2 for all j ∈ {1, . . . , r}.

Let F be the finite field of order q. Recall that the multiplicative group of nonzero elements of F is
cyclic. Write F× = 〈a〉 for some a ∈ F×. The irreducible characters of the group (F×, ·) are χk(x) = e

2πimk
q−1 ,

where x = am ∈ F× and k ∈ {0, 1, 2, . . . , q − 2}. In addition, we have

Theorem 4.1.1. For k ∈ {0, 1, . . . , q − 2},
∑

x∈F×
χk(x) =

{
q − 1 if k = 0,

0 otherwise.

The conjugacy classes of GL2(F ) are given in the following table.

Representatives Number of elements Number of classes

ax =

(
x 0

0 x

)
, x �= 0 1 q − 1

bx =

(
x 1

0 x

)
, x �= 0 q2 − 1 q − 1

cx,y =

(
x 0

0 y

)
, x �= y and x, y �= 0 q2 + q

(q − 1)(q − 2)

2

dx,y =

(
x εy

y x

)
, y �= 0 (q is odd)

dz =

(
0 zq+1

1 z + zq

)
, z ∈ E � F (q is even)

q2 − q
q(q − 1)

2

where ε ∈ F � F 2. Here, cx,y and cy,x are conjugate, dx,y and dx,−y are conjugate, and dz and dzq are
conjugate. Moreover, let E = F [

√
ε] an extension of F of degree two. We can identify the matrices dx,y as

ζ = x + y
√
ε and the matrices dz as z in E � F . Now, let α, β be distinct irreducible character of F× and

ϕ an irreducible characters of E× such that ϕq �= ϕ and ϕ is not an irreducible character of F×. The next
table presents all irreducible characters of GL2(F ). As mentioned earlier, it suffices to specify their values
on each conjugacy class of GL2(F ).

ax =

(
x 0

0 x

)
bx =

(
x 1

0 x

)
cx,y =

(
x 0

0 y

) q is odd

dx,y =

(
x εy

y x

)
= ζ

q is even

dz =

(
0 zq+1

1 z + zq

)
= z

Uα α(x2) α(x2) α(xy) α(ζq) α(zq)

Vα qα(x2) 0 α(xy) −α(ζq) −α(zq)

Wα,β (q + 1)α(x)β(x) α(x)β(x) α(x)β(y) + α(y)β(x) 0 0

Xϕ (q − 1)ϕ(x) −ϕ(x) 0 − (ϕ(ζ) + ϕ(ζq)) − (ϕ(z) + ϕ(zq))

Moreover, Uα, Vα,Wα,β and Xϕ are of dimension 1, q, q + 1 and q − 1, respectively.
The paper is organized as follows. In the next section, we prove that the graph C(1)

Mn(F ) is a normal

Cayley graph and we determine all eigenvalues of the graph C(1)
M2(F ) by using the two tables above. We

show further that it is hyperenergetic and Ramanujan if q ≥ 3. In section 3, we show that the graph
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C(1)
M2(F ) is the tensor product between a complete graph and a complete multi-partite graph, and obtain its

spectrum. We apply this result to conclude that C(2)
M2(F ) is hyperenergetic but it is not Ramanujan if q ≥ 5.

We compute the clique number, chromatic number and the independence number of the subconstituents
of the graph CM2(F ) in the final section.

4.2 Spectral properties of C(1)
M2(F )

In this section, we study spectral properties of C(1)
M2(F ). We start by showing that C(1)

Mn(F ) is Cay
(
GLn(F ),

(In +GLn(F )) ∩GLn(F )
)
. To see this, let A,B ∈ GLn(F ). Then AB−1 ∈ GLn(F ) and

A−B ∈ GLn(F ) ⇐⇒ (AB−1 − In)B−1 ∈ GLn(F )

⇐⇒ (AB−1 − In) ∈ GLn(F )

⇐⇒ AB−1 ∈ (In +GLn(F )) ∩GLn(F ).

It also follows that the graph C(1)
Mn(F ) is regular of degree |(In +GLn(F )) ∩GLn(F )| = en, defined in the

previous section. Moreover, for A,B ∈ GLn(F ), we have

ABA−1 ∈ (In +GLn(F )) ∩GLn(F ) ⇐⇒ ABA−1 − In ∈ GLn(F )

⇐⇒ A(B − In)A−1 ∈ GLn(F )

⇐⇒ (B − In) ∈ GLn(F )

⇐⇒ B ∈ (In +GLn(F )) ∩GLn(F ).

Thus, (In +GLn(F )) ∩ GLn(F ) is a union of conjugacy classes, so C(1)
Mn(F ) is a normal Cayley graph. We

record this result in

Theorem 4.2.1. The graph C(1)
Mn(F ) is the normal Cayley graph of GLn(F ) associated with (In +GLn(F )) ∩

GLn(F ) and it is regular of degree en.

Next, we determine all eigenvalues of C(1)
M2(F ). Let k ∈ {0, 1, . . . , q − 2} and consider χk an irreducible

character of F×. We first handle the case q is odd by showing some lemmas on sums of characters of F×.

Lemma 4.2.2. If q is odd, then for k ∈ {0, 1, . . . , q − 2},

∑
x∈F×

χk(x
2) =

⎧⎨⎩q − 1 if k ∈
{
0,

q − 1

2

}
,

0 otherwise.

Proof. We know that ∑
x∈F×

χk(x
2) =

q−2∑
m=0

χk(a
2m) =

q−2∑
m=0

e
4πimk
q−1 =

q−2∑
m=0

(
e

4πik
q−1

)m

.

Note that e
4πik
q−1 = 1 if and only if k = 0 or k =

q − 1

2
. If k ∈

{
0,

q − 1

2

}
, then

∑
x∈F×

χk(x
2) = q − 1. Finally,

if k �∈
{
0,

q − 1

2

}
, then

∑
x∈F×

χk(x
2) =

1−
(
e

4πik
q−1

)q−1

1−
(
e

4πik
q−1

) = 0,

and the proof completes.
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Lemma 4.2.3. If q is odd, then for k ∈ {0, 1, . . . , q − 2} and ε ∈ F � F 2, we have

(a)
∑

x,y∈F×
�{1}

and x �=y

χk(xy) =

⎧⎪⎪⎨⎪⎪⎩
q2 − 5q + 6 if k = 0,

−q + 3 if k =
q − 1

2
,

2 otherwise,

and

(b)
∑

(x,y)∈F×F×
χk(x

2 − εy2) =

⎧⎪⎪⎨⎪⎪⎩
q2 − q if k = 0,

−q + 1 if k =
q − 1

2
,

0 otherwise.

Proof. We note that

∑
x,y∈F×

�{1}
and x �=y

χk(xy) =

( ∑
x∈F×

χk(x)

)⎛⎝ ∑
y∈F×

χk(y)

⎞⎠−
∑

x∈F×
χk(x

2)

−
∑

x∈F×�{1}
χk(x)−

∑
y∈F×�{1}

χk(y)

=

( ∑
x∈F×

χk(x)

)2

−
( ∑

x∈F×
χk(x

2)

)
− 2

( ∑
x∈F×

χk(x)

)
+ 2.

If k = 0, then applying Lemma 4.2.2 gives the right-hand side equals q2 − 5q + 6. If k =
q − 1

2
, then the

right-hand side is −q+3. Finally, if k �∈ {0, q − 1

2
}, then the summands on the right-hand side are all gone

and we get 2 left. This proves (a).
For (b), since ε ∈ F �F 2, E = F [

√
ε] an extension of degree two of F . Thus, E = {x+ y

√
ε : x, y ∈ F}.

Moreover, let NE/F be the norm map. Recall that for x, y ∈ F , NE/F (x+ y
√
ε) = x2 − εy2 and by Hilbert’s

Theorem 90, NE/F is surjective with kernel of size q + 1. Consider the sum∑
(x,y)∈F×F×

χk(x
2 − εy2) =

∑
(x,y)∈F×F\{(0,0)}

χk(x
2 − εy2)−

∑
x∈F×

χk(x
2)

=
∑

(x,y)∈F×F\{(0,0)}
χk(NE/F (x+ y

√
ε))−

∑
x∈F×

χk(x
2)

=
∣∣kerNE/F

∣∣ ∑
x∈F×

χk(x)−
∑

x∈F×
χk(x

2)

= (q + 1)
∑

x∈F×
χk(x)−

∑
x∈F×

χk(x
2).

If k = 0, then the right-hand side becomes q2 − q, and if k =
q − 1

2
, then the right-hand side is −(q − 1)

by Lemma 4.2.2. Finally, for k �∈
{
0,

q − 1

2

}
, it also follows that each summand on the right-hand side is

0.

Lemma 4.2.4. For k, l ∈ {0, 1, . . . , q − 2} such that k �= l, we have

∑
x,y∈F×

�{1}
and x �=y

[χk(x)χl(y) + χk(y)χl(x)] =

{
4 if 0 < k + l < q − 1, k, l �= 0,

2(3− q) otherwise.
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Proof. We consider the sum∑
x,y∈F×

�{1}
and x �=y

[χk(x)χl(y) + χk(y)χl(x)] = 2
∑

x,y∈F×
�{1}

and x �=y

χk(x)χl(y)

= 2

⎡⎣( ∑
x∈F×

χk(x)

)⎛⎝ ∑
y∈F×

χl(y)

⎞⎠−
∑

x∈F×
χk(x)χl(x)−

∑
x∈F×�{1}

χk(x)−
∑

y∈F×�{1}
χl(y)

⎤⎦ .

Recall that ∑
x∈F×

χk(x)χl(x) =

{
q − 1 if k + l = q − 1,

0 otherwise.

Since k �= l, k + l �= 0. If k + l = q − 1, then k, l �= 0 because 0 ≤ k, l ≤ q − 2. It follows that∑
x,y∈F×

�{1}
and x �=y

[χk(x)χl(y) + χk(y)χl(x)] = 2 (−(q − 1) + 2) = 2(3− q).

Assume that k + l �= q − 1. We distinguish two cases.
Case 1. k = 0 or l = 0, say k = 0. Then l �= 0 and so∑

x,y∈F×
�{1}

and x �=y

[χk(x)χl(y) + χk(y)χl(x)] = 2 (−(q − 1) + 2) = 2(3− q).

Case 2. k, l �= 0. Then we conclude that∑
x,y∈F×

�{1}
and x �=y

[χk(x)χl(y) + χk(y)χl(x)] = 2.

This completes the proof.

Remark. Assume that q is odd. Before computing the eigenvalues of C(1)
M2(F ), we note that for each x, y ∈

F ,

(a) ax ∈ GL2(F ) ∩ (I2 +GL2(F )) if and only if x �= 1

(b) bx ∈ GL2(F ) ∩ (I2 +GL2(F )) if and only if x �= 1

(c) cx,y ∈ GL2(F ) ∩ (I2 +GL2(F )) if and only if x, y �= 1

(d) dx,y ∈ GL2(F ) ∩ (I2 +GL2(F )) for all x ∈ F and y �= 0.

To verify (d), we suppose that there exist x ∈ F and y ∈ F× such that det

(
x− 1 εy

y x− 1

)
= 0, so

(x− 1)2 − εy2 = 0 in F . Thus, x+ y
√
ε = 1 in E. Since {1,√ε} is an F -basis of E, we have y = 0 which is

absurd.

From the character table of GL2(F ) mentioned at the introduction, let λχ denote an eigenvalue induced
from an irreducible character χ. Since the character Uχk

has dimension one, the above remark gives

λUχk
=

∑
x∈F×�{1}

χk(x
2) + (q2 − 1)

∑
x∈F×�{1}

χk(x
2)

+
q2 + q

2

∑
x,y∈F×

�{1}
and x �=y

χk(xy) +
q2 − q

2

∑
(x,y)∈F×F×

χk(x
2 − εy2).
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According to Lemmas 4.2.2 and 4.2.3, we have λUχ0
= q4 − 2q3 − q2 + 3q, λUχ q−1

2

= q and

λUχk
= (−1) + (q2 − 1)(−1) +

q2 + q

2
(1 + 1) = q

if k �∈
{
0,

q − 1

2

}
. It follows that the eigenvalues of C(1)

M2(F ) obtained from Uχk
are q4 − 2q3 − q2 + 3q and

q with multiplicities 1 and q − 2, respectively.
Now, we work on Vχk

. Since Vχk
has dimension q, we have

λVχk
=

1

q

⎛⎜⎜⎝q
∑

x∈F×�{1}
χk(x

2) +
q2 + q

2

∑
x,y∈F×

�{1}
and x�=y

χk(xy)− q2 − q

2

∑
(x,y)∈F×F×

χk(x
2 − εy2)

⎞⎟⎟⎠ .

Again, applying Lemmas 4.2.2 and 4.2.3 gives λVχ0
= −q2 + q + 1, λVχ q−1

2

= q and

λVχk
=

1

q

(
q(−1) +

q2 + q

2
(1 + 1)

)
= q

if k �∈ {0, q − 1

2
}. Thus, the eigenvalues of C(1)

M2(F ) obtained from Vχk
are −q2 + q+1 and q with multiplic-

ities q2 and q2 + q2(q − 3) = q3 − 2q2, respectively.
Next, we consider the eigenvalues induced from the character Wχk,χl

with k �= l. Since Wχk,χl
has

dimension q + 1, we have

λWχk,χl
=

1

q + 1

⎛⎝(q + 1)
∑

x∈F×�{1}
χk(x)χl(x) + (q2 − 1)

∑
x∈F×�{1}

χk(x)χl(x)

+
q2 + q

2

∑
x,y∈F×

�{1}
and x�=y

(χk(x)χl(y) + χk(y)χl(x))

⎞⎟⎟⎠ .

First, we assume that k + l = q − 1. Thus, k, l �= 0. Note that there are
q − 3

2
choices of such k, l. It follows

from Lemma 4.2.4 that

λWχk,χl
=

1

q + 1

(
(q + 1)(q − 2) + (q2 − 1)(q − 2) + 2

(
q2 + q

2

)
(3− q)

)
= q.

If 0 < k + l < q − 1, then we have two cases to consider. If k = 0 or l = 0, then there are q − 2 choices of k
and l, and

λWχk,χl
=

1

q + 1

(
(q + 1)(−1) + (q2 − 1)(−1) + 2

(
q2 + q

2

)
(3− q)

)
= −q(q − 2).

If k, l �= 0, then there are
(q − 3)2

2
choices of k and l, and

λWχk,χl
=

1

q + 1

(
(q + 1)(−1) + (q2 − 1)(−1) +

(
q2 + q

2

)
(4)

)
= q.

Thus, the eigenvalues of C(1)
M2(F ) obtained from Wχk,χk

are −q(q−2) and q with multiplicities (q+1)2(q−2)

and
(q + 1)2(q − 2)(q − 3)

2
, respectively.
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Finally, let ϕ be an irreducible character of E× such that ϕq �= ϕ. Hence, ϕ is a non-trivial character

and there are
q2 − q

2
choices of ϕ. Since Xϕ has dimension q − 1, we have

λXϕ =
1

q − 1

⎛⎝(q − 1)
∑

x∈F×�{1}
ϕ(x)− (q2 − 1)

∑
x∈F×�{1}

ϕ(x)

− q2 − q

2

∑
(x,y)∈F×F×

(
ϕ(x+ y

√
ε) + ϕ(x− y

√
ε)
)⎞⎠

=
1

q − 1

⎛⎝−(q2 − q)
∑

x∈F×
ϕ(x) + (q2 − q)− (q2 − q)

∑
(x,y)∈F×F×

ϕ(x+ y
√
ε)

⎞⎠
=

1

q − 1

(
−(q2 − q)

∑
x∈E×

ϕ(x) + (q2 − q)

)
= q.

Hence, the eigenvalue from this case is q with multiplicity
(q − 1)2(q2 − q)

2
.

Summing all multiplicities of the eigenvalue q from each character gives its total multiplicity q4 −
2q3 − 2q2 + 4q + 1. Therefore, we obtain the spectrum of C(1)

M2(F ) in the case that q is odd. For q even and
q ≥ 4, we can find all eigenvalues corresponding to each Uχ, Vχ and Xϕ in the similar manner without

the case k =
q − 1

2
. Note that the eigenvalue obtained from the case k =

q − 1

2
when q is odd is always

q. Hence, the eigenvalues corresponding to those characters of the case q is even and q ≥ 4 are equal to
the eigenvalues in the case q is odd. As for eigenvalues corresponding to Wχk,χl

, we have multiplicities

of q become
(q + 1)2(q − 2)

2
and

(q + 1)2(q − 4)(q − 2)

2
whose sum is again

(q + 1)2(q − 2)(q − 3)

2
, so the

multiplicities of q when q is even stays same.
Finally, if q = 2, then the graph C(1)

M2(F ) has (22 − 1)(22 − 2) = 6 vertices and is two copies of K3, so its
spectra are 2 of multiplicity 2 and −1 of multiplicity 4. Thus, we completely determine the spectrum for
the graph C(1)

M2(F ).

Theorem 4.2.5. (a) If q = 2, then SpecC(1)
M2(F ) =

(
2 −1

2 4

)
.

(b) If q ≥ 3, then

SpecC(1)
M2(F ) =

(
q4 − 2q3 − q2 + 3q q −q2 + q + 1 −q2 + 2q

1 q4 − 2q3 − 2q2 + 4q + 1 q2 (q + 1)2(q − 2)

)
.

Moreover, E(C(1)
M2(F )) = 2q5 − 2q4 − 8q3 + 6q2 + 8q for all q ≥ 2.

Furthermore, for all q ≥ 3, we have

E(C(1)
M2(F )) = 2q5 − 2q4 − 8q3 + 6q2 + 8q − 2

(
(q2 − 1)(q2 − q)− 1

)
= 2q5 − 4q4 − 6q3 + 8q2 + 6q + 2 > 2q5 − 4q4 − 6q3 = 2q3(q − 3)(q + 1) ≥ 0.

This proves hyperenergeticity of the graph C(1)
M2(F ) when q ≥ 3, while C(1)

M2(Z2)
is not hyperenergetic be-

cause its energy is 8 < 2(6− 1).
Since C(1)

M2(Z2)
is disconnected, it is not Ramanujan. To show that the graph C(1)

M2(F ) is Ramanujan for

q ≥ 3. Since |−q2+q+1| > |−q(q−2)| > q, it suffices to show that 2
√
(q4 − 2q3 − q2 + 3q − 1 ≥ q2−q−1
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which is equivalent to 4(q4 − 2q3 − q2 + 3q − 1) ≥ (q2 − q − 1)2, and we have

4(q4 − 2q3 − q2 + 3q − 1)− (q2 − q − 1)2 = 3q4 − 6q3 − 3q2 + 10q − 5

≥ 3q4 − 6q3 − 3q2 = 3q2((q − 1)2 − 2) ≥ 0.

We record this work in

Theorem 4.2.6. The graph C(1)
M2(F ) is hyperenergetic and Ramanujan. Moreover, C(1)

M2(Z2)
is neither hyperenergetic

nor Ramanujan.

4.3 Spectral properties of C(2)
M2(F )

We study the second subconstituent of CM2(F ) in this section. We first show that the graph is a tensor
product of a complete graph and a complete multi-partite graph and so we can calculate its eigenvalues.
Let F 2×1 denote the set of column vectors of size 2× 1 over F . Since a 2× 2 matrix is non-invertible if and
only if its column vectors are parallel, we can conclude that

M2(F )� (GL2(F ) ∪ {02×2}}) =
⎛⎝ ⋃̇

�v∈F 2×1�{�0}

{(
a�v �v

)
: a ∈ F

}⎞⎠ ∪
{(

�v �0
)
: �v ∈ F 2×1 � {�0}

}

where �0 denotes the zero vector of F 2×1. Before giving a structure of the graph C(2)
M2(F ), we need the next

lemma.

Lemma 4.3.1. Let A,B be non-invertible matrices in M2(F ), a, b ∈ F and �v, �w ∈ F 2×1 � {�0}.

(a) If A =
(
a�v �v

)
and B =

(
b�w �w

)
, then A − B is non-invertible if and only if a = b or �v, �w are linearly

dependent, or equivalently, A−B is invertible if and only if a �= b and �v, �w are linearly independent.

(b) If A =
(
a�v �v

)
and B =

(
�w �0

)
, then A−B is non-invertible if and only if �v and �w are linearly dependent.

Proof. Observe that

A−B is non-invertible ⇐⇒ (a�v − b�w) = c(�v − �w) for some c ∈ F.

Assume that A − B is non-invertible and �v, �w are linearly independent. Then a = c and b = c, so a = b.
Conversely, the case a = b is clear. If �w = c�v for some c ∈ F , then A − B =

(
(a− bc)�v (1− c)�v

)
is

non-invertible. This proves (a). For (b), we have

A−B is non-invertible ⇐⇒ a�v − �w = c�v for some c ∈ F

⇐⇒ (a− c)�v = �w for some c ∈ F,

which is equivalent to �v and �w are linearly dependent.

In the next step, we define two graphs G and H as follows: G is the complete graph on q + 1 vertices
parametrized by the set of projective lines P1(F ) = {[a, 1] : a ∈ F} ∪ {[1, 0]} and the vertex set of H is
F 2×1 � {�0} and for any �v, �w ∈ F 2×1 � {�0}, �v and �w are adjacent if and only if �v and �w are not parallel.
Note that H is the complete (q + 1)-partite graph such that each partite has q − 1 vertices.
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Let f : C(2)
M2(F ) → G ⊗ H defined by

(
a�v �v

) �→ ([a, 1], �v) and
(
�v �0

) �→ ([1, 0], �v) for any a ∈ F and

�v ∈ F 2×1 \ {�0}. Thus, f is bijective. Now, let A,B be nonzero non-invertible matrices in M2(F ), a, b ∈ F

and �v, �w ∈ F 2×1, A =
(
a�v �v

)
and B =

(
b�w �w

)
. Lemma 4.3.1 (a) implies

A−B ∈ GL2(F ) ⇐⇒ a �= b and �v, �w are linearly independent

⇐⇒ ([a, 1], �v) is adjacent to ([b, 1], �w) .

Next, we assume that A =
(
a�v �v

)
and B =

(
�w �0

)
. From Lemma 4.3.1 (b), we have

A−B ∈ GL2(F ) ⇐⇒ �v and �w are linearly independent

⇐⇒ ([a, 1], �v) is adjacent to ([1, 0], �w) .

Hence, f is a graph isomorphism, so we have the structure of the graph C(2)
M2(F ).

Theorem 4.3.2. The graph C(2)
M2(F ) is the tensor product of the complete graph on q + 1 vertices and the complete

(q + 1)-partite graph such that each partite has q − 1 vertices, and it is a (q3 − q2)-regular graph.

Recall from [7] that if λ1, . . . , λk are eigenvalues of a graph G1 and μ1, . . . , μl are eigenvalues of a graph
G2, then the eigenvalues of the tensor product G1 ⊗ G2 are λiμj where i ∈ {1, . . . , k} and j ∈ {1, . . . , l}.
Since the eigenvalues of G are q of multiplicity 1 and −1 of multiplicity q and the eigenvalues of H are
q2 − q,−q + 1 and 0 of multiplicities 1, q and q2 − q − 2, respectively, we obtain the spectrum and energy
of the graph C(2)

M2(F ).

Theorem 4.3.3. We have

SpecC(2)
M2(F ) =

(
q3 − q2 −q2 + q q − 1 0

1 2q q2 q3 − 3q − 2

)
.

Moreover, E(C(2)
M2(F )) = 4q3 − 4q2.

Since the number of vertices of C(2)
M2(F ) is |M2(F )� (GL2(F ) ∪ {0}) | = q3 + q2 − q − 1 and

4q3 − 4q2 − 2(q3 + q2 − q − 2) = 2q3 − 6q2 + 2q + 4 = 2(q − 2)(q2 − q − 1) ≥ 0,

Thus, C(2)
M2(F ) is hyperenergetic unless q = 2. Finally, we show that the graph C(2)

M2(F ) is not Ramanujan if

q ≥ 5. Since q2−q is an eigenvalue of C(2)
M2(F ), we claim that (q2−q)2 > 4(q3−q2−1), which is equivalent to

the inequality q4−6q3+5q2+4 > 0. This holds for q ≥ 5 because q4−6q3+5q2+4 = q2(q−1)(q−5)+4 > 0.
For q = 2, 3 or 4, it is easily seen that C(2)

M2(F ) is Ramanujan. We record both results in

Theorem 4.3.4. The graph C(2)
M2(F ) is hyperenergetic if and only if q ≥ 3, and it is Ramanujan if and only if q ≤ 4.

4.4 Clique number, chromatic number and independence number

In this section, we compute the clique number, the chromatic number and the independence number of
subconstituents of CM2(F ). Recall from the proof of Theorem 3.4 of [9] that the ring Mn(F ) contains a
subfield K of order qn. We start with the first subconstituent. Note that 0n×n ∈ K and so K � {0n×n}
forms a complete subgraph in C(1)

Mn(F ). Hence, ω(C(1)
Mn(F )) ≥ qn − 1. On the other hand, let J be the set of

matrices in Mn(F ) whose all entries in the first row are zero. We can see that J is an ideal of Mn(F ) of
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qn
2−n elements. Write Mn(F ) =

qn⋃
i=1

(Bi + J) as a union of cosets of J where the coset B1 + J = J . Note

that each coset forms an independent set and 0n×n ∈ J . It follows that GLn(F ) is a subset of
qn⋃
i=2

(Bi + J)

and hence χ(C(1)
Mn(F )) ≤ qn − 1. Since ω(C(1)

Mn(F )) ≤ χ(C(1)
Mn(F )), we have the following theorem.

Theorem 4.4.1. ω(C(1)
Mn(F )) = χ(C(1)

Mn(F )) = qn − 1.

Recall from [2] p.147 that if G is a graph, then α(G) ≥ |V (G)|
χ(G)

. Theorem 4.4.1 gives

α(C(1)
Mn(F )) ≥

|GLn(F )|
χ(C(1)

Mn(F ))
= (qn − q) . . . (qn − qn−1).

Consider the group K× as a multiplicative subgroup of GLn(F ). Let X = AM and Y = AN where
M,N ∈ K× such that M �= N and A ∈ GLn(F ). Then X−Y = A(M−N) is invertible because M,N ∈ K×.
It follows that each coset forms a complete graph. This implies that α(C(1)

Mn(F )) ≤ (qn − q) . . . (qn − qn−1).
Hence, we have shown

Theorem 4.4.2. α(C(1)
Mn(F )) = (qn − q) . . . (qn − qn−1).

By Theorem 4.3.2, we have the second subconstituent of CM2(F ) is the tensor product of the complete
graph on q+1 vertices G and the complete q+1-partite graph H such that each partite has q− 1 vertices.
Since χ(G) = χ(H) = q+1, we can conclude that χ(C(2)

M2(F )) ≤ q+1. Moreover, let V (G) = {a1, . . . , aq+1}
and V1, . . . , Vq+1 be the partites of H . Choose vi ∈ Vi for all i ∈ {1, . . . , q+1}. We can see that the subgraph
of G⊗H induced by {(a1, v1), . . . , (aq+1, vq+1)} is a complete graph, so ω(G⊗H) ≥ q+1. Thus, we obtain
the clique number and the chromatic number of the graph C(2)

M2(F ).

Theorem 4.4.3. ω(C(2)
M2(F )) = χ(C(2)

M2(F )) = q + 1.

Our final theorem gives the independence number of C(2)
M2(F ).

Theorem 4.4.4. α(C(2)
M2(F )) = q2 − 1.

Proof. Similar to the proof of Theorem 4.4.2, we know from Theorem 4.4.3 that

α(C(2)
M2(F )) ≥

|M2(F )� (GL2(F ) ∪ {0n×n}) |
χ(C(2)

Mn(F ))
=

q3 + q2 − q − 1

q + 1
= q2 − 1.

Write M2(F ) =

q2⋃
i=1

(Ai + K) as a union of cosets of K. Then an independent set of C(2)
M2(F ) is contained

in
q2⋃
i=2

(Ai +K). Since each coset forms a complete subgraph, we have α(C(2)
M2(F )) ≤ q2 − 1 and the result

follows.
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Chapter 5

Algebraic Degree of Spectra of Cayley

Hypergraphs

5.1 Hypergraphs

A hypergraph H is a pair (V (H), E(H)) where V (H) is a finite set, called the vertex set of H, and E(H) is a
family of subsets of V (H), called the edge set of H. The elements in V (H) are called vertices and the elements
in E(H) are called hyperedges. In particular, if E(H) consists only of 2-subsets of V (H), then H is a simple
graph. For v ∈ V (H), we write D(v) for the set of all hyperedges containing the vertex v and the number
of elements in D(v) is the degree of the vertex v, denoted by deg v. A hypergraph in which all vertices have
the same degree k ≥ 0 is called k-regular and it is said to be regular if it is k-regular for some k ≥ 0. A
hypergraph in which all hyperedges have the same cardinality l ≥ 0 is an l-uniform hypergraph. A path of
length s in H is an alternating sequence v1E1v2E2v3 . . . vsEsvs+1 of distinct vertices v1, v2, . . . , vs+1 ∈ V (H)

and distinct hyperedges E1, E2, . . . , Es ∈ E(H) satisfying vi, vi+1 ∈ Ei for any i = 1, 2, . . . , s. The distance
between two vertices v and w, denoted by d(v, w), is the smallest length of a path from v to w. If there is
no path from v to w, we define d(v, w) = ∞. The diameter of H is diam(H) = max{d(v, w) : v, w ∈ V (H)}.
A hypergraph H is connected if diam(H) < ∞.

For a hypergraph H with vertex set {v1, . . . , vn}, the adjacency matrix of H, denoted by A(H), is the n×n

matrix whose entry aij , i �= j, is the number of hyperedges that contain both of vi and vj and aii = 0 for all
1 ≤ i, j ≤ n. This concept was investigated by Bretto [1]. Evidently, it is a generalization of the adjacency
matrix of a graph. An equivalent definition of the adjacency matrix is given in [4] by using the bipartite
graph associated to H which is the graph whose vertex set is the union of two independent sets V (H) and
E(H) and for any v ∈ V (H) and E ∈ E(H), they are adjacent whenever v ∈ E. In particular, if H is an
l-uniform hypergraph, there is another way to define an adjacency matrix by using hypermatrix, see [3]
and [5]. In this work, our hypergraphs may not be l-uniform, so we follow Bretto’s. The Laplacian matrix
of H, denoted by L(H), is the n × n matrix defined by L(H) = E(H) − A(H) where E(H) is the diagonal
matrix

[
deg vi

]
1≤i≤n

. This version of Laplacian matrix was introduced by Rodrı́guez [10]. The distance
matrix of a connected hypergraph H, denoted by D(H), is the n × n matrix in which entry dij = d(vi, vj)

for all 1 ≤ i, j ≤ n.
The spectrum of H, denoted by Spec(H), is the set of all eigenvalues of A(H) including multiplicity.

Observe that A(H) is a real symmetric matrix, so Spec(H) contains only real eigenvalues. Since the char-
acteristic polynomial of A(H) is monic with integral coefficients, its rational roots are integers. A hyper-
graph is integral if all eigenvalues of this hypergraph are integers. Similarly, we can define Lspec(H) and
Dspec(H) as the sets of all eigenvalues of L(H) and D(H), respectively. Also, an L-integral hypergraph is a

47



hypergraph with integral Laplacian eigenvalues and a D-integral hypergraph is a hypergraph with integral
distance eigenvalues.

For hypergraphs H1 and H2, the Cartesian product of H1 and H2, denoted by H1 �H2, is the hypergraph
with V (H1 �H2) = V (H1) × V (H2) and E(H1 �H2) = {{x} × E′ : x ∈ V (H1), E

′ ∈ E(H2)} ∪ {E × {y} :

E ∈ E(H1) and y ∈ V (H2)}. Observe that A(H1 �H2) = (A(H1) ⊗ I|V (H2)|) + (I|V (H1)| ⊗ A(H2)) where
A⊗B denotes the Kronecker product of matrices A and B. Therefore,

Spec(H1 �H2) = {λ+ β : λ ∈ Spec(H1) and β ∈ Spec(H2)}. (A)

Let H1 and H2 be t-uniform hypergraphs. Following Pearson [9], the tensor product of H1 and H2,
denoted by H1 ⊗H2, is the t-uniform hypergraph with V (H1 ⊗H2) = V (H1) × V (H2) and E(H1 ⊗H2) =

{{(xi1 , yj1), . . . , (xit , yjt)} : {xi1 , . . . , xit} ∈ E(H1), {yj1 , . . . , yjt} ∈ E(H2)}. It follows that the number
of hyperedges containing both of two vertices (xi, yl) and (xj , ym) in H1 ⊗H2 is (t − 2)!aijblm. Hence,
A(H1 ⊗H2) = (t− 2)!A(H1)⊗A(H2). Consequently,

Spec(H1 ⊗H2) = {(t− 2)!λβ : λ ∈ Spec(H1) and β ∈ Spec(H2)}. (B)

5.2 t-Cayley hypergraphs

Throughout this section, we let (G, ·) be a finite group with the identity e and S a subset of G � {e} such
that S = S−1. For t ∈ N and 2 ≤ t ≤ max{o(x) : x ∈ S}, the t-Cayley hypergraph H = t-Cay(G,S) of G over
S is a hypergraph with vertex set V (H) = G and E(H) = {{yxi : 0 ≤ i ≤ t− 1} : x ∈ S and y ∈ G}. Here,
o(x) denotes the order of x in G.

Example 5.2.1. For m = (m1, . . . ,mr) and n = (n1, . . . , nr) in Zr, we define the greatest common divisor
of m and n to be the vector d = (d1, . . . , dr) where di = gcd(mi, ni) for all i ∈ {1, . . . , r}. Now, let
n = (n1, . . . , nr) ∈ Zr and a divisor tuple d = (d1, . . . , dr) of n, i.e., di | ni for all i ∈ {1, . . . , r}. Define

Gn(d) = {x = (x1, . . . , xr) ∈ Zn1 × · · · × Znr : gcd(x,n) = d}.

Let D be a set of divisor tuples of n not containing the zero vector of Zn1 ×· · ·×Znr and S =
⋃

d∈D Gn(d).
For t ∈ N and 2 ≤ t ≤ max{o(x) : x ∈ S}, the t-Cayley hypergraph of Zn1 × · · · × Znr over S is called a
gcd-hypergraph.

Some properties of t-Cayley hypergraphs quoted from [2] are as follows.

Proposition 5.2.2. Let H = t-Cay(G,S).

1. H is connected if and only if 〈S〉 = G.

2. For any x ∈ S, y ∈ G,
∣∣{yxi : 0 ≤ i ≤ t− 1}∣∣ = {

t if t ≤ o(x),

o(x) if t > o(x).

3. H is t-uniform if and only if t ≤ o(x) for any x ∈ S.

Clearly, a Cayley graph 2-Cay(G,S) is |S|-regular. We study a Cayley hypergraph t-Cay(G,S) in the
next proposition.

Proposition 5.2.3. A t-Cayley hypergraph of G over S is regular.
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Proof. We prove that t-Cay(G,S) is regular for any 2 ≤ t ≤ max{o(x) : x ∈ S} by induction on t. For t = 2,
we have known that 2-Cay(G,S) is regular. Now, let t ∈ N and 2 ≤ t < max{o(x) : x ∈ S}. Suppose that
the hypergraph t-Cay(G,S) is regular. To prove the regularity of (t+ 1)-Cay(G,S), we consider the edge
set {{yxi : 0 ≤ i ≤ t} : x ∈ S, y ∈ G} as a multi-set. Let x ∈ S and y ∈ G. It follows that if t ≥ o(x), then
{yxi : 0 ≤ i ≤ t} = {yxi : 0 ≤ i ≤ t−1} and if t < o(x), then {yxi : 0 ≤ i ≤ t} = {yxi : 0 ≤ i ≤ t−1}∪{yxt}.
Note that for each x ∈ S such that t < o(x), we have {yxt : y ∈ G} = G. By the above proposition and
induction hypothesis, any vertex in a multi-hypergraph t-Cay(G,S) have the same degree. Thus, the
multi-hypergraph t-Cay(G,S) is regular.

Now, we delete all multiple hyperedges (if it exists). Suppose that there are multiple hyperedges, say
{y1xi

1 : 0 ≤ i ≤ t} = {y2xi
2 : 0 ≤ i ≤ t}. Then {{yxi

1 : 0 ≤ i ≤ t} : y ∈ G} = {{yxi
2 : 0 ≤ i ≤ t} : y ∈ G}. By

deleting a collection of hyperedeges {{yxi
2 : 0 ≤ i ≤ t − 1} : y ∈ G}, we have the number of each vertex

in the deleted hyperedges are equal. We continue this process until there is no multiple hyperedges.
Since the multi-hypergraph t-Cay(G,S) is regular, the hypergraph t-Cay(G,S) is regular by the previous
paragraph.

Theorem 5.2.4. The Cayley graph 2-Cay(Zn, S) is integral if and only if S is a union of some Gn(d)’s, where d | n
and Gn(d) = {k ∈ {1, 2, . . . , n− 1} : gcd(k, n) = d}.

To characterize integral Cayley graphs of finite abelian groups, we first discuss the Cayley graph of
the group (Zn1 × Zn2 ,+). Let S = S1 × S2 be a subset of Zn1 × Zn2 � {(0, 0)} such that S = −S. The
Cayley graph 2-Cay(Zn1 × Zn2 , S) can be distinguished into three cases.

1. Kn1� 2-Cay(Zn2 , S2) if S1 = {0} and S2 �= {0}, where Kn denotes the empty graph on n vertices.

2. 2-Cay(Zn1 , S)� Kn2 if S1 �= {0} and S2 = {0}.

3. 2-Cay(Zn1 , S1)⊗ 2-Cay(Zn2 , S2) if S1 �= {0} and S2 �= {0}.

It is clear that the eigenvalues of an empty graph are zero. By Eqs. (A), (B) and the fact that the Cayley
graph always has an integral eigenvalue, the Cayley graph 2-Cay(Zn1 × Zn2 , S) is integral if and only
if for any i ∈ {1, 2} such that Si �= {0}, the 2-Cay(Zni , Si) is integral. By the fundamental theorem of
finite abelian groups, a finite abelian group is a direct product of finite cyclic groups. We can obtain a
characterization of the integral Cayley graphs of finite abelian groups similar to the above discussion.

Theorem 5.2.5. Let G be a finite abelian group and S a subset of G � {e} such that S = S−1. Suppose G =

Zn1 × · · · × Znr and S = S1 × · · · × Sr. The Cayley graph 2-Cay(G,S) is integral if and only if for any
i ∈ {1, . . . , r} such that Si �= {0}, the 2-Cay(Zni , Si) is integral.

For non-integral graphs, Mönius et al. [7] defined the algebraic degree of a graph G to be the degree
of extension of the splitting field of the characteristic polynomial of A(G) over Q. Recently, Mönius [8]
determined the algebraic degree of Cayley graphs of Zp where p is a prime number.

Our purposes are to characterize integral t-Cayley hypergraphs of Zn and compute the algebraic de-
gree of t-Cayley hypergraphs of Zn. The paper is organized as follows. In Section 5.3, we study the
spectrum of t-Cayley hypergraphs of Zn. We obtain the characterization of integral t-Cayley hypergraphs
of Zn similar to So [11]. We use this result to study integral t-Cayley hypergraphs of finite abelian groups.
Moreover, we show that a gcd-hypergraph is integral. We study non-integral hypergraphs in Section 5.4.
We determine the algebraic degree of t-Cayley hypergraphs of Zn for all n ≥ 3 which generalizes Mönius’
results and provides an answer to his outlook. Our combinatorial approach is different from him and
presented in Lemma 5.4.1.
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5.3 Integral t-Cayley hypergraphs

An n× n matrix is circulant if it is of the form⎡⎢⎢⎢⎢⎢⎢⎣
a1 a2 a3 · · · an
an a1 a2 · · · an−1

an−1 an a1 · · · an−2

...
...

...
. . .

...
a2 a3 a4 · · · a1

⎤⎥⎥⎥⎥⎥⎥⎦ .

From now on, we let n ≥ 2 and H = t-Cay(Zn, S). By the natural labeling {0, 1, . . . , n − 1}, it is easy to
see that A(H) = [aij ]0≤i,j≤n−1 is circulant. To work on the adjacency matrix A(H), it suffices to compute
the first row of A(H), i.e., a0,k where 0 ≤ k ≤ n − 1. Let C = {k : a0,k �= 0} ⊆ {1, 2, . . . , n − 1} be the set
of all vertices that adjacent to the vertex 0. It follows that C = S ∪ 2S ∪ · · · ∪ (t− 1)S � {0}. Since A(H) is
circulant, we have Spec(H) = {λj : j = 0, 1, . . . , n− 1} where

λj =
∑
k∈C

a0,k(e
2πji/n)k.

We recall some useful properties taken from [11].

Proposition 5.3.1. 1. If d is a proper divisor of n and x is an nth root of unity, then
∑

k∈Gn(d)
xk is an integer.

2. Let ω = e2πi/n and

F =

⎡⎢⎢⎢⎣
ω1·1 ω1·2 · · · ω1·(n−1)

ω2·1 ω2·2 · · · ω2·(n−1)

...
...

. . .
...

ω(n−1)·1 ω(n−1)·2 · · · ω(n−1)·(n−1)

⎤⎥⎥⎥⎦ .

If A = {v ∈ Qn−1 : Fv ∈ Qn−1}, then A is a vector space over Q. Moreover, A = Span{vd : d | n and d <

n} where vd is the (n− 1)-vector with 1 at the kth entry for all k ∈ Gn(d) and 0 elsewhere.

Now, we prove a criterion for integral t-Cayley hypergraphs.

Theorem 5.3.2. Let H = t-Cay(Zn, S). Then H is integral if and only if C is a union of some Gn(d)’s where for
each d, there is cd ∈

{
1, 2, . . . ,

(
n

t−2

)}
such that a0,k = cd for all k ∈ Gn(d).

Proof. Let d1, . . . , ds be all proper divisors of n. Without loss of generality, we assume that C = Gn(d1) ∪
· · ·∪Gn(dl) for some l ∈ {1, . . . , s}. Clearly, λ0 =

∑
k∈C a0,k ∈ Z. For any 1 ≤ j ≤ n−1, by the assumption

and Proposition 5.3.1 (1),

λj =
∑
k∈C

a0,k(e
2πji/n)k

=
∑

k∈Gn(d1)

a0,k(e
2πji/n)k + · · ·+

∑
k∈Gn(dl)

a0,k(e
2πji/n)k

= cd1

∑
k∈Gn(d1)

(e2πji/n)k + · · ·+ cdl

∑
k∈Gn(dl)

(e2πji/n)k ∈ Z.
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Conversely, suppose that H is integral. Then λj ∈ Z for any 0 ≤ j ≤ n − 1. We consider the vector
v ∈ Qn−1 with a0,k for the kth entry for any k ∈ C and 0 elsewhere. Then

Fv =

⎡⎢⎣ ω1·1 ω1·2 · · · ω1·(n−1)

...
...

. . .
...

ω(n−1)·1 ω(n−1)·2 · · · ω(n−1)·(n−1)

⎤⎥⎦
⎡⎢⎢⎢⎣

a0,1
a0,2

...
a0,n−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
∑

k∈C a0,kω
1·k∑

k∈C a0,kω
2·k

...∑
k∈C a0,kω

(n−1)·k

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
λ1

λ2

...
λn−1

⎤⎥⎥⎥⎦ ∈ Zn−1.

It follows that v ∈ A in Proposition 5.3.1 (2), and hence v =
∑

d|n,d<n cdvd for some rational coefficients

cd’s. The definition of v implies that the coefficient cd ∈
{
0, 1, . . . ,

(
n

t−2

)}
. Therefore, C is a union of some

Gn(d)’s where for each such d, we have a0,k = cd for all k ∈ Gn(d).

For H = t-Cay(Zn, S), it is clear that ∅ �= S ⊆ C. In particular, for t = 2, we have S = C. Theorem
5.3.2 implies that H = 2-Cay(Zn, S) is integral if and only if S is a union of some Gn(d)’s and for which d,
a0,k = 1 for all k ∈ Gn(d). This coincides So’s result recalled in Theorem 5.2.4.

Theorem 5.3.3. A gcd-hypergraph of Zn is integral.

Proof. Let H = t-Cay(Zn, S) be a gcd-hypergraph. Assume that S is a union of some Gn(d)’s. This implies
C = {k : a0,k �= 0} = S ∪ 2S ∪ · · · ∪ (t − 1)S � {0} is also a union of some Gn(d)’s. All hyperedges in H
containing 0 must be in the following forms

{−(t− 1)x,−(t− 2)x, . . . ,−x, 0},{−(t− 2)x,−(t− 3)x, . . . , 0, x}, . . . ,
{−x, 0, . . . , (t− 3)x, (t− 2)x}, {0, x, . . . , (t− 2)x, (t− 1)x}

where x ∈ S. For each d, there is cd ∈
{
1, 2, . . . ,

(
n

t−2

)}
such that a0,k = cd for any k ∈ Gn(d). Therefore,

H is integral by Theorem 5.3.2.

Note that the converse of Theorem 5.3.3 may not be true. For example, if H = 9-Cay(Z9, {±1}) which
is not a gcd-hypergraph of Z9, then E(H) = {{0, 1, 2, 3, 4, 5, 6, 7, 8}}. Hence, C = Z9 � {0} = G9(1) ∪
G9(3) ∪G9(6) and a0,k = 1 for any k ∈ C, but H is integral by Theorem 5.3.2.

We next characterize integral t-Cayley hypergraphs of finite abelian groups. First, let us consider the
t-Cayley hypergraph of the group (Zn1 × Zn2 ,+). Let S = S1 × S2 be a subset of Zn1 × Zn2 � {(0, 0)}
such that S = −S and H = t-Cay(Zn1 × Zn2 , S). To express H as a product of two hypergraphs, we need
to assume that for any i ∈ {1, 2} such that Si �= {0}, t ≤ min{o(x) : x ∈ Si}. From this assumption, the
hypergraph H = t-Cay(Zn1 × Zn2 , S) can be distinguished into the following three cases.

1. Kn1� t-Cay(Zn2 , S2) if S1 = {0} and S2 �= {0}.

2. t-Cay(Zn1 , S) � Kn2 if S1 �= {0} and S2 = {0}.

3. t-Cay(Zn1 ×Zn2 , S1 ×S2) is a subgraph of t-Cay(Zn1 , S1)⊗ t-Cay(Zn2 , S2) if S1 �= {0} and S2 �= {0}.
In addition, its adjacency matrix is A(t-Cay(Zn1 , S1))⊗A(t-Cay(Zn2 , S2).

Extend this argument to a finite product of finite cyclic groups, we obtain the next theorem.

Theorem 5.3.4. Let G be a finite abelian group. Suppose G = Zn1 × · · · × Znr and S = S1 × · · · × Sr. Let t ∈ N
and 2 ≤ t ≤ min{o(x) : x ∈ Si} for all Si �= {0} and i ∈ {1, . . . , r}.The t-Cayley hypergraph t-Cay(G,S) is
integral if and only if for any i ∈ {1, . . . , r} such that Si �= {0}, t-Cay(Zni , Si) is integral.
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Finally, we study L-integral t-Cayley hypergraphs. Let H = t-Cay(G,S) with V (H) = {v1, . . . ,
vn}. By Proposition 5.2.3, H is regular, so there exists d ∈ N such that deg vi = d for any i ∈ {1, . . . , n}. It
follows that

L(H) = D(H)−A(H) = dIn −A(H).

Hence,

Lspec(H) = {λ− d : λ ∈ Spec(H)}.

Corollary 5.3.5. Let H = t-Cay(Zn, S). Then H is L-integral if and only if H is integral. In particular, a
gcd-hypergraph of Zn is L-integral.

Now, we consider D-integral t-Cayley hypergraphs. For t = 2, Ilić [6] showed that if S is a union
of some Gn(d)’s, then 2-Cay(Zn, S) has integral D-spectra. Assume that H = t-Cay(Zn, S) is connected.
That is, 〈S〉 = G by Proposition 5.2.2 (1). By the natural labeling in D(H), it is clear that D(H) is circulant.
Thus, it suffices to consider the first row of D(H). Since H is connected, the set {k : d(0, k) �= 0} =

{1, 2, . . . , n−1}. Hence, we get the characterization of D-integral t-Cayley hypergraphs similar to Theorem
5.3.2.

Theorem 5.3.6. Assume that H = t-Cay(Zn, S) is connected. Then H is D-integral if and only if for each d | n,
there is cd ∈ {1, 2, . . . , diam(H)} such that d(0, k) = cd for all k ∈ Gn(d).

5.4 Algebraic degree of spectra of t-Cayley hypergraphs of Zn

Let H be a hypergraph on m vertices and f(x) = det(xIm − A(H)) the characteristic polynomial of H.
Let Ef be the splitting field of f(x) over Q. The algebraic degree of H is [Ef : Q] and denoted by degH.
In Section 5.3, we have the characterization of integral t-Cayley hypergraphs. They are hypergraphs of
algebraic degree one. We study the algebraic degree of t-Cayley hypergraphs in this section.

Let n ≥ 3 and H = t-Cay(Zn, S). Recall from the previous section that the eigenvalues of H are

λj =
∑
k∈C

a0,k(e
2πji/n)k

where C = {k : a0,k �= 0} = S ∪ 2S ∪ · · · ∪ (t− 1)S � {0}. Let ω = e2πi/n be a primitive nth root of unity.
By the fundamental theorem of Galois theory,

degH = [Q (λ0, λ1, . . . , λn−1) : Q] =
φ(n)

|Gal (Q(ω)/Q (λ0, λ1, . . . , λn−1))| , (C)

where Gal (Q(ω)/Q (λ0, λ1, . . . , λn−1)) = {σ ∈ Aut(Q(ω)) : σ is a Q-automorphism and σ(λj) = λj for all j ∈
{0, 1, . . . , n− 1}}. We shall determine the size of this group and obtain degH.

Lemma 5.4.1. Let y ∈ {0, 1, . . . , n− 1} be such that gcd(y, n) = 1 and σy ∈ Aut(Q(ω)) be the Q-automorphism
defined by ω �→ ωy . Then σy(λj) = λj for all j ∈ {0, 1, . . . , n − 1} if and only if there is ny ∈ N with C =

C1 ∪ · · · ∪ Cny , yCl ≡ Cl mod n and a0,k = a0,yk for all k ∈ Cl and l ∈ {1, 2, . . . , ny}.
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Proof. If there is ny ∈ N with C = C1 ∪ · · · ∪ Cny
, yCl ≡ Cl mod n and a0,k = a0,yk for all k ∈ Cl and

l ∈ {1, 2, . . . , ny}, then

σy(λj) = σy

(∑
k∈C

a0,kω
jk

)
=

ny∑
l=1

∑
k∈Cl

a0,kσy

(
ωjk

)
=

ny∑
l=1

∑
k∈Cl

a0,kω
jky

=

ny∑
l=1

∑
k∈Cl

a0,ykω
jky =

∑
k∈C

a0,ykω
jyk =

∑
yk∈C

a0,ykω
jyk = λj

for all j ∈ {0, 1, . . . , n− 1}. On the other hand, suppose that σy(λj) = λj for all j ∈ {0, 1, . . . , n− 1}. Then∑
k∈C a0,k

(
ωj
)yk

=
∑

k∈C a0,k
(
ωj
)k for all j ∈ {0, 1, . . . , n− 1}. Let p(x) =

∑
k∈C a0,kx

yk −∑
k∈C a0,kx

k.
It is a polynomial of degree at most n− 1. Since 1, ω, . . . , ωn−1 are distinct roots of p(x), we have p(x) = 0.
Define an equivalence relation on C by k ∼ k′ whenever a0,k = a0,k′ . Let C1, . . . , Cny be all equivalence
classes of ∼. Then C = C1 ∪ · · · ∪Cny . Since p(x) = 0, we have yCl ≡ Cl mod n and so a0,k = a0,yk for all
k ∈ Cl and l ∈ {1, 2, . . . , ny}.

Theorem 5.4.2. Let H = t-Cay(Zn, S) and C = S ∪ 2S ∪ · · · ∪ (t − 1)S � {0}. Let m be the number of y in
{0, 1, . . . , n − 1} such that gcd(y, n) = 1 and there is ny ∈ N with C = C1 ∪ · · · ∪ Cny

, yCl ≡ Cl mod n and
a0,k = a0,yk for all k ∈ Cl and l ∈ {1, 2, . . . , ny}. Then

degH =
φ(n)

m
.

Moreover, degH ≤ φ(n)
2 .

Proof. By Lemma 5.4.1, m is the size of Gal (Q(ω)/Q (λ0, λ1, . . . , λn−1)). It follows from Eq. (C) that
degH = φ(n)

m . From S ≡ −S mod n, we have C = −C mod n. Since {±k} = −{±k} and a0,k = a0,−k for
any k ∈ C, 1 and −1 are such y. Hence, m ≥ 2, so φ(n)

m ≤ φ(n)
2 .

Consider H = 2-Cay(Zn, S). Then C = S and a0,k = 1 for any k ∈ S and a0,k = 0 otherwise. The
assumption of Theorem 5.4.2 can be reduced to yS ≡ S mod n. In addition, if n = p is a prime number,
Mönius showed in the proof of Theorem 2.5 of [8] that m in Theorem 5.4.2 is the maximum number of
M ∈ {1, 2, . . . , |S|} such that M divides gcd(|S| , p− 1) and

S =

|S|/M⋃
l=1

Sl

where |Sl| = M and for each l ∈ {1, . . . , |S| /M}, kM = (k′)M mod p for all k, k′ ∈ Sl. The next corollary
gives the algebraic degree of Cayley graph of Zn over S which generalizes Theorem 2.5 of [8].

Corollary 5.4.3. Let H = 2-Cay(Zn, S). If m is the number of y in {0, 1, . . . , n− 1} such that yS ≡ S mod n,
then

degH =
φ(n)

m
.

Example 5.4.4. Consider H = 2-Cay(Z31, S) where S = {±2,±3,±10,±12,±13,±15} = C. Since ±1,±5,±6

are all elements of y such that gcd(y, 31) = 1 and yC ≡ C mod 31, by Corollary 5.4.3, degH = φ(31)
6 = 5.

This coincides Example 2.10 of [8].

In the proof of Theorem 5.4.2, we have known that 1 and −1 are always such y satisfying yC ≡ C

mod n. If only they satisfy this congruence, we have a special case of Theorem 5.4.2 as follows.
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Corollary 5.4.5. Let H = t-Cay(Zn, S) and C = S ∪ 2S ∪ · · · ∪ (t − 1)S � {0}. If y = 1 and y = −1 are the
only elements in Zn such that gcd(y, n) = 1 and yC ≡ C mod n, then

degH =
φ(n)

2
.

We provide some numerical examples using Theorem 5.4.2 and Corollary 5.4.5 as follows.

Example 5.4.6. Consider H = 3-Cay(Z12, {±1}). We have C = {±1,±2}. In addition, a0,±1 = 2 and
a0,±2 = 1. The characteristic polynomial of A(H) is

(x− 1)2(x+ 2)3(x+ 3)2(x− 6)(x2 − 2x− 11)2

and hence degH = 2. Since 1 and −1 are the only elements y in Z12 such that gcd(y, 12) = 1 and yC ≡ C

mod 12, by Corollary 5.4.5, degH = φ(12)
2 = 2.

Example 5.4.7. Let S = {±1} be a subset of (Z9,+). Them max{o(x) : x ∈ S} = 9, so 2 ≤ t ≤ 9. The
algebraic degree of t-Cayley hypergraph of Z9 over S for all t are presented in the following table. The
cases t ∈ {2, 3, 4} are computed by Corollary 5.4.5 and the others are obtained from Theorem 5.4.2.

t a0,±1 a0,±2 a0,±3 a0,±4 y with yC ≡ C mod 9 deg t-Cay(Z9, S)

2 1 ±1 3

3 2 1 ±1 3

4 3 2 1 ±1 3

5 4 3 2 1 ±1,±2,±4 3

6 5 4 3 3 ±1,±2,±4 3

7 6 5 5 5 ±1,±2,±4 3

8 7 7 7 7 ±1,±2,±4 1

9 1 1 1 1 ±1,±2,±4 1
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ABSTRACT
In this paper, we first study zero divisor graphs over finite chain rings.
We determine their rank, determinant, and eigenvalues using reduc-
tion graphs. Moreover, we extend the work to zero divisor graphs
over finite commutative principal ideal rings using a combinatorial
method, finding the number of positive eigenvalues and the num-
ber of negative eigenvalues, and finding upper and lower bounds for
the largest eigenvalue. Finally, we characterize all finite commutative
principal ideal rings such that their zero divisor graphs are complete
and compute the Wiener index of the zero divisor graphs over finite
commutative principal ideal rings.
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1. Introduction

Throughout the paper, a ring always contains the multiplicative identity 1 �= 0.
Let R be a finite commutative ring. We denote its group of units by R× and write Z(R)

for the set of its zero divisors. Recall that we have the disjoint union R = {0} ∪ R× ∪ Z(R).
The set Z(R) can be empty if R is a field. Note that if u is a unit of R and z is a zero divisor
of R, then uz is a zero divisor of R. Thus, the left multiplication induces an action of the
group of units of R on the set of zero divisors of R.

The zero divisor graph of R,ZR, is a graph whose vertex set is the set of all zero divisors
of R, and two zero divisors are adjacent if and only if their product is zero. A zero divisor
graph was introduced by Beck [1] and was later modified by Anderson and Livingston
[2]. Sharma et al. [3] analyzed the adjacency matrices of zero-divisor graphs of Zp × Zp
and Zp[i] × Zp[i], where p is a prime number and Zp[i] = Zp[x]/(x2 + 1) by studying
the neighbourhood set of zero divisors. He observed properties of a zero divisor graph
and its adjacency matrix of some rings such as Z2 × Z2, Z2[i], and Z2[i] × Z2[i] before
concluding results toZp × Zp andZp[i] × Zp[i]. In addition, he showed that, inZp × Zp,
the maximum degree of this graph is at least |Z(Zp × Zp)|/2. Later, Young [4] worked on
the adjacency matrix of the zero-divisor graph of Zn. He divided Zn into the set S(d) =
{k ∈ Zn|(k, n) = d} where d is a divisor of n. This shows that the zero divisor graph of Zn
is a multipartite graph with classes S(d) where d is a proper divisor of n. He showed that

CONTACT Yotsanan Meemark yotsanan.m@chula.ac.th Department of Mathematics and Computer Science,
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the determinant of the adjacency matrix is zero. In addition, he obtained the rank for all n
and some non-zero eigenvalues for the case n = p3 and n = p2qwhere p and q are distinct
prime numbers and upper and lower bounds for the largest eigenvalues.

TheWiener index of a connected graph G is the sum
∑

u,v∈V(G)dG(u, v) where dG(u, v)
is the distance of u and v in the graph G. It was introduced by Wiener [5]. This index
is studied extensively as distance-based topological indices in chemical graph theory. In
2011, Ahmadi and Nezhad [6] calculated the Wiener index of the zero divisor graphs of
Zpq and Zp2 where p and q are distinct primes and provided a computer code to find the
Wiener index of the zero divisor graph of Zn where n ∈ N. Reddy et al. [7] obtained the
Wiener index of the zero divisor graphs ofZp3 andZp2q, where p and q are distinct primes.
Mohammad and Authman [8] used Hosoya polynomials to determine the Wiener index
of zero divisor graphs of Zpm and Zpmq where p, q are distinct primes andm ∈ N. Later, in
2019, Shuker et al. [9] also applied Hosoya polynomials and obtained the Wiener index of
zero divisor graph of Zpmq2 where p, q are distinct primes andm ∈ N.

In this paper, our main purpose is to study eigenvalues and the Wiener index of zero
divisor graphs of finite chain rings. The action of the group of units of the set of zero divi-
sor sets when R is a finite chain ring is studied in the next section. We determine their
rank, determinant, and eigenvalues using reduction graphs and basic properties of finite
chain rings and the size of the orbits discussed in the next section. Following Young [4],
in Section 3, we work on zero divisor graphs of commutative principal ideal rings. It turns
out that every principal ideal ring is a finite direct product of finite chain rings. We order
the vertices by the lexicographical order and have a nice adjacency matrix of the reduction
graph. We are able to determine the rank and the independence number and we use them
to find the number of positive eigenvalues and the number of negative eigenvalues, and the
eigenvalues and eigenvectors can be obtained from a smaller matrix which completes the
study of the eigenvalues and eigenvectors of the zero divisor graphs of finite direct prod-
ucts of finite chain rings. The combinatorial approach is different from Young’s and can be
used to answer his problems deeper and can be done over any commutative principal ideal
rings. We present all cardinalities in terms of the residue fields. By using the set-up of R in
Section 3, we can find upper and lower bounds for the largest eigenvalue of the zero divisor
graph ZR in Section 4. Finally, we use the relation between the zero divisor graph and its
reduction graph to compute the distance of any two vertices. This leads us to determine
the Wiener index of our zero divisor graphs in Section 5.

2. Zero divisor graphs of finite chain rings

A local ring is a commutative ring with unique maximal ideal. A finite commutative ring
R is called a finite chain ring if for any ideals I and J of R, we have I ⊆ J or J ⊆ I. It is clear
that a finite chain ring must be a local ring and every finite field and the ring of integers
modulo a prime power are finite chain rings. Also, we can show that if R is a finite chain
ring with maximal ideal M and θ ∈ M \ M2, then M = Rθ . In other words, the maximal
ideal of a finite chain ring is principal. It is also known that a ring is a finite chain ring if
and only if it is a finite principal ideal ring. In particular, the unique maximal ideal of a
finite chain ring is a principal ideal generated by a nilpotent element.

Now, let R be a finite chain ring with unique principal maximal idealM = Rθ for some
θ ∈ M \ M2 and k ∼= R/M, its residue field. Then, R× = R \ Rθ and Z(R) = Rθ \ {0}. We
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shall repeatedly use basic properties of a finite chain ring taken from Refs. [10,11] and
recorded in the next proposition.

Proposition 2.1: (1) There is the smallest positive integer t such that θ t = 0, called the
nilpotency of R.

(2) For any non-zero element r in R, there is a unique integer i, 0 ≤ i < t, such that r = uθ i
for some unit u in R.

(3) Assume that 1 ≤ i < j ≤ t and r ∈ R. If rθ i ∈ Rθ j, then r ∈ Rθ j−i. In particular, if rθ i =
0, then r ∈ Rθ t−i.

(4) If {v1, . . . , vq} is a system of coset representatives of M in R where q = |k|, then for each
r in R, there are unique r0, . . . , rt−1 in {v1, . . . , vq} such that

r = r0 + r1θ + · · · + rt−1θ
t−1.

(5) |Rθ i| = |k|t−i for all i ∈ {0, 1, . . . , t − 1}.
(6) For each i ∈ {0, 1, . . . , t − 1}, |Rθ i/Rθ i+1| = |k|.

The orbits under action of the unit groups are R× · θ i, 1 ≤ i ≤ t. The size of the stabilizers
and the size of the orbits are determined in the following propositions.

Proposition 2.2: |StabR×(θ i)| = |k|i and |R× · θ i| = |k|t−i − |k|t−i−1 = |k|t−i−1(|k| −
1) for all i ∈ {1, 2, . . . , t − 1}.

Proof: Let i ∈ {1, 2, . . . , t − 1}. Note that for a ∈ R, we have a ∈ StabR×(θ i) ⇔ (a − 1)
θ i = 0. It follows from Proposition 2.1 (3) that StabR×(θ i) = {1 + dθ t−i : d ∈ R}. Since

1 + d1θ t−i = 1 + d2θ t−i ⇔ d1 − d2 ∈ Rθ i,

the size of StabR×(θ i) is |R/Rθ | = |k|i. The orbit-stabilizer theorem implies that the size of
the orbit

|R× · θ i| = |R×|
StabR×(θ i)

= |k|t − |k|t−1

|k|i = |k|t−i − |k|t−i−1.

This completes the proof. �

To study the zero divisor graph of R, we may assume that R is not a field. So we have
t ≥ 2. Furthermore, our definition allows the zero divisor graph to have loops. Note that
if a and b are zero divisors in the same orbit R× · θ i for some 1 ≤ i < t, then a = uθ i and
b = vθ i for some units u and v, for any zero divisor z of R, we have

az = 0 ⇔ uθ iz = 0 ⇔ θ iz = 0 ⇔ vθ iz = 0 ⇔ bz = 0.

Next, assume that a is in the orbit R× · θ i and b is in the orbit R× · θ j for some 1 ≤ i, j < t.
Then, a = uθ i and b = vθ j for some units u and v in R. If ab = 0, then i+ jmust be at least
t, so awθ j = uwθ i+j = 0 for any unit w in R. Hence, we have the following lemma.
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Lemma 2.3: Let a and b be zero divisors of R.

(1) If a and b are in the same orbit of the action of units by left multiplication, then a and b
have the same neighbours in ZR.

(2) If a is adjacent to b in the zero divisor graph, then a is adjacent to all zero divisors in the
same orbit of b.

For each 1 ≤ i < t, let Hi be the subgraph of ZR induced by R× · θ i. Then there are
t−1 such subgraphs. It is easy to see that these subgraphs are either complete or empty
(having no edges) and Hi is complete if and only if 2i ≥ t. Moreover, if 1 ≤ i < j < t such
that i + j ≥ t and Hi and Hj are empty, then the subgraph induced by R× · θ i ∪ R× · θ j is
a complete bipartite graph by Lemma 2.3. We record this observation in the next theorem.

Theorem 2.4: (1) There are t − 
t/2� induced subgraphs which are complete.
(2) There are 
t/2� − 1 induced subgraphs which have no edges.
(3) If i and j are two integers such that 1 ≤ i < j < t and i + j ≥ t and Hi and Hj have no

edges, then the subgraph induced by R× · θ i ∪ R× · θ j is a complete bipartite graph.

The determinant, rank, nullity, and eigenvalues of the adjacency matrix of a graph are
called the determinant, rank, nullity, and eigenvalues of a graph. First, we find the deter-
minant of the zero divisor graph of R. Note that if there is an orbit containing more
than one element, then each element in the same orbit has the same neighbourhood by
Lemma 2.3, so the rows corresponding to them are identical and force that its determinant
becomes zero. Next, we consider the case that every orbit contains exactly one element.
Since |R× · θ | = |k|t−2(|k| − 1), we have t = 2 and |k| = 2. Then, |R| = |k|2 = 4. Hence,
R is a finite chain ring of order 4 with maximal ideal of size 2, so Z(R) = {a} is a singleton
and a2 = 0. Therefore, the determinant is 1. Finally, we remark from [5] that a finite chain
ring R of order 4 with maximal ideal of size 2 is Z2[x]/(x2) of characteristic two or Z4 of
characteristic four. We conclude the result of the zero divisor graph of a finite chain ring
in the next proposition.

Proposition 2.5: The determinant of the zero divisor graph of a finite chain ring of R is 0
unless R is isomorphic to Z2[x]/(x2) or Z4 where the determinant equals 1.

Assume that R is a finite chain ring in which the determinant of the zero divisor graph
ZR is 0. It follows that 0 is an eigenvalue of ZR with multiplicity being the nullity of ZR.
From the rank theorem,we also know that the sumof the nullity ofZR and the rank ofZR is
the number of zero divisors of Rwhich equals |Rθ | − 1 = |k|t−1 − 1. Hence, to determine
the multiplicity of the eigenvalue 0, we may compute the rank of ZR. We eliminate the
redundant of the repeated rows by considering the reduction graphπZR whose vertices are
the orbits: R× · θ ,R× · θ2, . . . ,R× · θ t−1 and the vertices R× · θ i and R× · θ j are adjacent if
and only if i + j ≥ t. This reduction graph is also called the compressed zero divisor graphs
studied in Ref. [12]. Write A(ZR) and A(πZR) for the adjacency matrix of ZR and πZR,
respectively. Since for each element in the orbit R× · θ i, its row in A(ZR) is identical, we
have rankA(ZR) ≤ t − 1. Also, rankA(πZR) ≥ rankA(ZR) because A(πZR) is obtained
by deleting repeated rows in A(ZR). We proceed to show that



LINEAR ANDMULTILINEAR ALGEBRA 5

Proposition 2.6: rank (A(ZR)) = t − 1.

Proof: From the above inequalities, it suffices to show that rank (A(πZR)) = t − 1. Since
πZR has t−1 vertices and

A(πZR) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0 1
0 0 . . . 0 1 1
0 0 . . . 1 1 1
...

. . .
...

1 1 . . . 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

directly from its definition, rankA(πZR) = t − 1. �

Observe that if R is isomorphic to Z2[x]/(x2) or Z4, then the rank of A(ZR) is 1 which
also equals t−1. Hence, we have shown

Theorem 2.7: For any finite chain ring R with nilpotency t, the rank of the graphZR is t−1
and the multiplicity of the eigenvalue 0 is |k|t − t.

For i ∈ {1, 2, . . . , t − 1}, letmi = |R× · θ i| = |k|t−i−1(|k| − 1). Then,

where Ji is the all-one matrix of dimension mi × (mt−i + · · · + mt−2 + mt−1) for all i ∈
{1, 2, . . . , t − 1}. Thus, the eigenvectors of ZR corresponding to the eigenvalue 0 are the
ones coming from the nullspace of the echelon matrix

⎡
⎢⎢⎢⎢⎢⎣

�J1
�J2

�J3
. . .

�Jt−1

⎤
⎥⎥⎥⎥⎥⎦ ,

where �Ji is the all-one row vector of sizemi for all i ∈ {1, 2, . . . , t − 1}.
Assume that λ is a nonzero eigenvalue of A(ZR) with an eigenvector �V . Then, �V can be

divided into a block vector

�V =

⎡
⎢⎢⎢⎢⎢⎣

�v1
�v2
...

�vt−2
�vt−1

⎤
⎥⎥⎥⎥⎥⎦ , where �vi =

⎡
⎢⎢⎢⎣

vi1
vi2
...

vi,mi

⎤
⎥⎥⎥⎦ for all i ∈ {1, 2, . . . , t − 1}
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such that

J1�vt−1 = λ�v1, J2
[�vt−2
�vt−1

]
= λ�v2, . . . , Jt−1 �V = λ�vt−1.

Since λ �= 0, we have vi1 = vi2 = . . . = vimi for all i ∈ {1, 2, . . . , t − 1}. It follows that
mt−1vt−1,1 = λv1,1,

mt−2vt−2,1 + mt−1vt−1,1 = λv2,1,

...

m1v1,1 + · · · + mt−2vt−2,1 + mt−1vt−1,1 = λvt−1,1,

and so λ is an eigenvalue of

A =

⎡
⎢⎢⎢⎣

0 · · · 0 mt−1
0 · · · mt−2 mt−1
...

...
...

m1 · · · mt−2 mt−1

⎤
⎥⎥⎥⎦

with an eigenvector ⎡
⎢⎢⎢⎣

�v1,1
�v2,1
...

�vt−1,1

⎤
⎥⎥⎥⎦ .

Moreover, the remaining t−1 independent eigenvectors of ZR corresponding to
nonzero eigenvalues can be obtained from the ones of A. This completes the study of the
eigenvalues and eigenvectors of the zero divisor graph ZR where R is a finite chain ring.

3. Zero divisor graphs of principal ideal rings

Let R be a finite commutative principal ideal ring. Then every ideal of R is principal. Recall
that a finite commutative ring is a direct product of finite local rings. Since every ideal of
R is principal, so are its factors. Therefore, R is a direct product of finite chain rings.

Write R ∼= R1 × R2 × · · · × Rk where Ri is a finite chain ring with maximal ideal Riθi of
nilpotency ti and residue field ki = Ri/Riθi for all i ∈ {1, 2, . . . , k}. Note that the set of zero
divisors of R is the union of the direct product of orbits of the form

R×
1 · θ

s1
1 × R×

2 · θ
s2
2 × · · · × R×

k · θ
sk
k ,

where 0 ≤ si ≤ ti for all i ∈ {1, 2, . . . , k} except R×
1 × R×

2 × · · · × R×
k and {(0, 0, . . . , 0)}.

Now, we consider the reduction graph πZR of ZR whose vertices are

z(s1, s2, . . . , sk) = R×
1 · θ

s1
1 × R×

2 · θ
s2
2 × · · · × R×

k · θ
sk
k ,

where 0 ≤ si ≤ ti for all i ∈ {1, 2, . . . , k} except s1 = s2 = · · · = sk = 0 or (s1 = t1, s2 =
t2, . . . , sk = tk) and z(s1, s2, . . . , sk) and z(s′1, s

′
2, . . . , s

′
k) are adjacent if and only if si + s′i ≥

ti for all i ∈ {1, 2, . . . , k}. Then, the graph πZR has
∏k

i=1 (ti + 1) − 2 vertices.
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Remark 3.1: For Zn ∼= Zp1α1 × · · · × Zpkαk where n = p1α1p2α2 . . . pkαk , p1, p2, . . . , pk
are distinct primes and α1,α2, . . . ,αk ∈ N, z(s1, . . . , sk) can be considered as the set S(d)
in Ref. [4] where d = p1s1p2s2 . . . pksk is a divisor of n.

We order them by the lexicographical order, namely, z(s1, s2, . . . , sk) < z(s′1, s
′
2, . . . , s

′
k),

if and only if

(s1 < s′1) or (s1 = s′1 and s2 < s′2) or · · · or (s1 = s′1, . . . , sk−1 = s′k−1 and sk < s′k).

Thus, the first vertex is z(0, 0, . . . , 0, 1) and the last one is z(t1, t2, . . . , tk−1, tk − 1). Under
this order of vertices, we have the adjacency matrix being in the form

A(πZR) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 1
0 0 . . . 1 ∗
...

...
...

...
0 1 . . . ∗ ∗
1 ∗ . . . ∗ ∗

⎤
⎥⎥⎥⎥⎥⎦ . (1)

To see this, we determine the position of z(s1, s2, . . . , sk) in A(πZR) by counting the num-
ber of vertices before it. From the definition of < excluding (0, 0, . . . , 0), this number
equals

k∑
i=1

si
k∏

j=i+1
(tj + 1) − 1,

so the position of z(s1, s2, . . . , sk) in A(πZR) is
∑k

i=1 si
∏k

j=i+1 (tj + 1).
Now, let r1, r2, . . . , rk be such that 0 ≤ ri ≤ ti and ri + si ≥ ti for all i ∈ {1, 2, . . . , k}. In

other words, the vertices z(r1, r2, . . . , rk) and z(s1, s2, . . . , sk) are adjacent. Then

k∑
i=1

(ri + si)
k∏

j=i+1
(tj + 1) ≥

k∑
i=1

ti
k∏

j=i+1
(tj + 1).

The sum on the right-hand side can be simplified to

k∑
i=1

ti
k∏

j=i+1
(tj + 1) =

k−2∑
i=1

ti
k∏

j=i+1
(tj + 1) + tk−1(tk + 1) + tk + 1 − 1

=
k−2∑
i=1

ti
k∏

j=i+1
(tj + 1) + (tk−1 + 1)(tk + 1) + tk + 1

...

= (t1 + 1)
k∏

j=2
(tj + 1) − 1 =

k∏
j=1

(tj + 1) − 1 = |Z(R)| + 1.
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Thus,
k∑

i=1
ri

k∏
j=i+1

(tj + 1) +
k∑

i=1
si

k∏
j=i+1

(tj + 1) ≥ |Z(R)| + 1

and equality holds if and only if ri + si = ti for all {1, 2, . . . , k}. This proves (1) and it follows
from (1) that

rankA(πZR) =
k∏

i=1
(ti + 1) − 2.

Since rankA(ZR) = rankA(πZR), we have shown

Proposition 3.1: rankA(ZR) = ∏k
i=1(ti + 1) − 2.

Remark 3.2: The entries of A(πZR) below the diagonal from bottom-left corner to top-
right corner may not always be 1 when R is not local. For example, if R = Z12 ∼= Z4 × Z3,
then

A(πZR) =

⎡
⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 1 1
1 0 1 0

⎤
⎥⎥⎦ .

Next, we compute the determinant of A(ZR). From the reduction graph πZR, if some
vertex z(s1, s2, . . . , sk) contains more than one element, then A(ZR) has some repeated
rows, so detA(ZR) = 0. Now, we consider the case that every vertex of πZR is a singleton.
It follows that |Ri× · θi

si | = 1 for all 0 ≤ si ≤ ti and i ∈ {1, 2, . . . , k}. Since Ri is a local ring,
Ri is isomorphic to Z2 or Z4 or Z2[x]/(x2) for i ∈ {1, 2, . . . , k}. If k = 1, then Ri must be
Z4 or Z2[x]/(x2) presented in Proposition 2.5. Assume that k ≥ 2. If for some i, Ri ∼= Z4
or Z2[x]/(x2), then |Ri×| = 2 and so |z(t1, . . . , ti−1, 0, ti+1, . . . , tk)| > 1. Hence, Ri ∼= Z2
for all i ∈ {1, 2, . . . , k}, so |A(ZR)| = 2k − 2 and

det(A(ZR)) = (−1)2
k−1(−1)2

k−2(−1)2
k−3 · · · (−1)3(−1)2 = −1

because k ≥ 2. We record the determinant of A(ZR) in

Proposition 3.2: det(A(ZR)) =

⎧⎪⎨
⎪⎩
1 if R ∼= Z4 or Z2[x]/(x2),
−1 if R ∼= (Z2)

k for some k ≥ 2,
0 otherwise.

If the determinant of ZR is 0, then ZR has 0 as an eigenvalue with multiplicity being
the nullity of A(ZR) because A(ZR) is diagonalizable. Thus, the rank theorem gives that
the nullity is |Z(R)| − rankA(ZR). Since |Z(R)| = |R| − |R×| − 1, using this fact and
proposition 3.1 gives the next proposition.

Proposition 3.3: If 0 is an eigenvalue of the graph ZR, then its multiplicity is given by

k∏
i=1

|ki|ti −
k∏

i=1
(|ki|ti − |ki|ti−1) −

k∏
i=1

(ti + 1) + 1.
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Recall that we order the vertices of the reduction graph πZR by the lexicographical
order.With this order, wemay write the vertex set as {z1, z2, . . . , zN}whereN = ∏k

i=1(ti +
1) − 2 and we denote by nj the number of elements in zj for all j ∈ {1, 2, . . . ,N}. The (0, 1)-
adjacency matrix A = [aij] of πZR of size N in (1) lifts to the adjacency matrix A(ZR) =
[Aij] ofZR whereAij is a blockmatrix of dimensionmi × mj with all-zero or all-one entries
depending on the entry aij ofA(πZR) is 0 or 1, respectively. Thus,A(ZR) is a matrix of the
form ⎡

⎢⎢⎢⎢⎢⎣

0 0 . . . 0 J1
0 0 . . . J2 ∗
...

...
...

...
0 JN−1 . . . ∗ ∗
JN ∗ . . . ∗ ∗

⎤
⎥⎥⎥⎥⎥⎦ ,

where Jj is the all-onematrix of dimensionnj × nj for all j ∈ {1, 2, . . . ,N}. Hence, the eigen-
vectors ofZR corresponding to the eigenvalue 0 are the ones coming from the nullspace of
the echelon matrix ⎡

⎢⎢⎢⎢⎢⎣

�J1
�J2

. . .
�JN−1

�JN

⎤
⎥⎥⎥⎥⎥⎦ ,

where �Jj is the all-one row vector of size nj for all j ∈ {1, 2, . . . ,N}.
The independence number of a graph � is the size of the largest set of pairwise nonadja-

cent vertices. We denote the independence number of � by α(�). Brouwer and Haemers
[13] showed that for a graph �,

α(�) ≤ r(�) − r+(�) and α(�) ≤ r(�) − r−(�),

where r(�), r+(�), and r−(�) are the number of eigenvalues, number of positive eigenval-
ues, and number of negative eigenvalues of �, respectively.

Recall that N = rankA(ZR) = rankA(πZR). It follows from the adjacency in
Equation (1) that α(πZR) = �N/2� and the reduction graph πZR has a nonzero deter-
minant, so its eigenvalues are positive or negative. Then, N is the number of nonzero
eigenvalues of πZR. We can calculate r+(πZR) and r−(πZR) as follows. Since⌊

N
2

⌋
≤ r(�) − r+(�) and

⌊
N
2

⌋
≤ r(�) − r−(�),

we have

r+(πZR) ≤ N −
⌊
N
2

⌋
, r−(πZR) ≤ N −

⌊
N
2

⌋
, and N = r+(πZR) + r−(πZR).

If N is even, they force that r+(πZR) = r−(πZR) = N/2. Assume that N is odd. Then
r+(πZR) and r−(πZR) are less than or equal to (N + 1)/2. Since their sum is N,
we get {r+(πZR), r−(πZR)} = {(N + 1)/2, (N − 1)/2}. But the determinant of πZR is
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(−1)(N−1)/2 and the minus sign depends on r−(πZR), so we must have r+(πZR) =
(N + 1)/2 and r−(πZR) = (N − 1)/2. Proposition 1 of Ref. [14] implies that r+(πZR) =
r+(ZR) and r−(πZR) = r−(ZR). Since N = rank πZR = rankZR is also the number of
nonzero eigenvalues of ZR, we obtain the number of positive and negative eigenvalues of
ZR as follows.

Theorem 3.4: r+(ZR) = 
N/2� and r−(ZR) = �N/2�.

Now, assume that λ is a nonzero eigenvalue of A(ZR) with an eigenvector �V . Then, �W
can be divided into a block vector

�W =

⎡
⎢⎢⎢⎢⎢⎣

�wN
�wN−1
...
�w2
�w1

⎤
⎥⎥⎥⎥⎥⎦ , where �wi =

⎡
⎢⎢⎢⎣

wi1
wi2
...

wi,mi

⎤
⎥⎥⎥⎦ for all i ∈ {1, 2, . . . ,N}.

Note that J1 �w1 = λ�w1 impliesw11 = w12 = · · · = w1n1 because of λ �= 0. Since ∗ inA(ZR)

is all-zero or all-one block, we may inductively deduce that wi1 = wi2 = . . . = wini for all
i ∈ {1, 2, . . . ,N}. It follows that λ is an eigenvalue of

B =

⎡
⎢⎢⎢⎣

0 · · · 0 n1
0 · · · n2 b2N
...

...
...

nN · · · bN,N−1 bNN

⎤
⎥⎥⎥⎦ ,

where for i< j, bij = 0 if aij = 0 and bij = nj if aij = 1, with an eigenvector⎡
⎢⎢⎢⎣

wN,1
wN−1,1

...
w1,1

⎤
⎥⎥⎥⎦ .

Hence, the remaining N independent eigenvectors of ZR corresponding to nonzero N
eigenvalues can be obtained from the ones of B.

4. Bounds for eigenvalues

Let R be a finite commutative principal ideal ring.Write R ∼= R1 × R2 × · · · × Rk where Ri
is a finite chain ring with maximal ideal Riθi of nilpotency ti and residue field ki = Ri/Riθi
for all i ∈ {1, 2, . . . , k}. We proceed to find upper and lower bounds for the zero divisor
graph of R in this section. Recall that the set of zero divisors of R is the union of the direct
product of orbits of the form

z(s1, s2, . . . , sk) = R×
1 · θ

s1
1 × R×

2 · θ
s2
2 × · · · × R×

k · θ
sk
k ,

where 0 ≤ si ≤ ti for all i ∈ {1, 2, . . . , k} except R×
1 × R×

2 × · · · × R×
k and {(0, 0, . . . , 0)}.

Consider the vertex (u1θ s11 , u2θ s22 , . . . , ukθ
sk
k ). It is adjacent to vertices (v1θ r11 , v2θ r22 , . . . ,
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vkθ
rk
k ) where vi ∈ R×

i and ri + si ≥ ti for all i ∈ {1, 2, . . . , k} except (0, 0, . . . , 0), so the
degree of the vertex (u1θ s11 , u2θ s22 , . . . , ukθ

sk
k ) is( k∏

i=1

∑
ri+si≥ti

|R×
i · θ

ri
i |

)
− 1.

Suppose that we order the eigenvalues of ZR as λ1 ≥ λ2 ≥ · · · ≥ λ�. It follows from
Proposition 3.1.2 of Brouwer and Haemers [13] that

degZR ≤ λ1 ≤ max deg(ZR),

where degZR is the average of degree of vertices of ZR given by∑
v∈Z(R) deg v
|Z(R)| =

∑
v∈Z(R) deg v

|R| − |R×| − 1
,

since R is a finite commutative ring. Next, we determine the maximum degree and the
average of degree of vertices ofZR. We shall assume further that |k1| ≤ |k2| ≤ · · · ≤ |kk|.
Note that for each i ∈ {1, 2, . . . , k}, we have by Proposition 2.2 that∑

ri+si≥ti

|R×
i · θ

ri
i | = 1 +

∑
ti−si≤ri≤ti−1

|R×
i · θ

ri
i | = 1 +

∑
ti−si≤ri≤ti−1

|ki|ti−ri−1(|ki| − 1),

so the geometric sum simplifies the right-hand side to

1 + (|ki| − 1)
∑

1≤r′i≤si

|ki|r′i−1 = 1 + (|ki|si − 1) = |ki|si .

Therefore, the degree of the vertex (u1θ s11 , u2θ s22 , . . . , ukθ
sk
k ) is |k1|s1 |k2|s2 . . . |kk|sk − 1 and

the maximum degree attains when s1 = t1 − 1 and si = ti for all i ≥ 2 and equals

max deg(ZR) = |k1|t1−1|k2|t2 . . . |kk|tk − 1.

From the set-up at the beginning of Section 2 and the above calculation of the degree of a
vertex, we obtain the average of degree of vertices of the zero divisor graphZR as∑

0≤s1≤t1,
0≤s2≤t2,

...
0≤sk≤tk

(|k1|s1 |k2|s2 . . . |kk|sk − 1)|z(s1, s2, . . . , sk)| − (|k1|t1 |k2|t2 . . . |kk|tk − 1)

k∏
i=1

|ki|ti −
k∏

i=1
(|ki|ti − |ki|ti−1) − 1

,

where

|z(s1, s2, . . . , sk)| =
k∏

i=1
|R×

i · θ
si
i | =

∏
j, sj≤tj−1

|kj|tj−sj
(
1 − 1

|kj|
)

for all 0 ≤ si ≤ ti and i ∈ {1, 2, . . . , k}. Hence, we have an upper bound and a lower bound
for the largest eigenvalue of ZR.
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5. Wiener index

Throughout this section, R is a finite commutative principal ideal ring. Write R ∼= R1 ×
R2 × · · · × Rk where Ri is a finite chain ring with maximal ideal Riθi of nilpotency ti and
residue field ki = Ri/Riθi for all i ∈ {1, 2, . . . , k}. We will compute the Wiener index of
ZR. First, we characterize all finite commutative principal ideal rings such that their zero
divisor graphs are complete. It is clear that ifR is a finite chain ringwith nilpotency 2 orR =
F1 × F2, where F1 and F2 are finite fields, thenZR is a complete graph. Next, assume k ≥ 3.
Thus, elements in R×

1 × {0} × R×
3 × · · · × R×

k are not adjacent to elements in R×
1 × R×

2 ×
{0} × · · · × R×

k . Now, assume that R = R1 × R2. Suppose t1 ≥ 2 or t2 ≥ 2, say t1 ≥ 2. It
follows that elements in R×

1 × {0} are not adjacent to elements in R×
1 · θ1 × R×

2 . Hence, we
can conclude that R1 and R2 must be fields. Finally, we assume that R is a finite chain ring
such that ZR is a complete graph. If R has nilpotency t ≥ 3, then the elements in R×θ are
not adjacent, so Rmust have nilpotency 2. We record this result in the following theorem.

Theorem 5.1: Let R be a finite principal ideal ring. ThenZR is a complete graph if and only
if R is a finite chain ring with nilpotency 2 or R = F1 × F2 where F1 and F2 are finite fields.
In this case, its Wiener index is given by (|Z(R)|

2

)
.

Theorem 5.2: Let R = R1 × · · · × Rk where R1, . . . ,Rk are finite chain rings. Assume that
ZR is not a complete graph. For a proper subset X of {1, 2, . . . , k}, we define

z(X) = {z(s1, . . . , sk) ∈ V(πZR) : 0 < si ≤ ti for all i ∈ X and si = 0 for all i �∈ X}.
Under the set-up at the beginning of this section, we have the following statements.

(1) If k = 1, that is, R is a finite chain ring with nilpotency t, then the Wiener index of ZR
is given by ∑

0<s,s′<t
s+s′≥t

|R× · θ s||R× · θ s
′ | + 2

∑
0<s,s′<t
s+s′<t

|R× · θ s||R× · θ s
′ |.

(2) If k ≥ 2, then the Wiener index of ZR is given by∑
z(s1,...,sk)∼z(s′1,...,s′k)

|z(s1, . . . , sk)||z(s′1, . . . , s′k)|

+ 2
∑′ |z(s1, . . . , sk)||z(s′1, . . . , s′k)|

+ 3
∑′′ |z(s1, . . . , sk)||z(s′1, . . . , s′k)|,

where
∑′

is the sum over z(s1, . . . , sk) ∈ z(X) and z(s′1, . . . , s
′
k) ∈ z(Y)which are non-

adjacent in πZR and X ∩ Y �= ∅ and
∑′′

is the sum over z(s1, . . . , sk) ∈ z(X) and
z(s′1, . . . , s

′
k) ∈ z(Y) which are non-adjacent in πZR and X ∩ Y = ∅.
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Proof: Recall that the set V(πZR) is a partition of the set of zero divisors of R. Then for
any u ∈ Z(R), there exists a unique zu ∈ V(πZR) containing u. It follows that dZR(u, v) =
dπZR(zu, zv). We use this observation to calculate the Wiener index ofZR.

First, we handle the case R being a finite chain ring with nilpotency t. Let s, s′ be such
that 0 < s, s′ < t and s + s′ < t. Let k = max{t − s, t − s′}. We have 0< k< t, k + s ≥ t,
and k + s′ ≥ t. Then R× · θk is adjacent to both R× · θ s and R× · θ s

′
in πZR, so dπZR(R× ·

θ s,R× · θ s
′
) = 2 whenever s + s′ < t. Hence, its Wiener index is given by

∑
0<s,s′<t
s+s′≥t

|R× · θ s||R× · θ s
′ | + 2

∑
0<s,s′<t
s+s′<t

|R× · θ s||R× · θ s
′ |.

Second, we assume that k ≥ 2 and let X, Y be proper subsets of {1, 2, . . . , k}. Let
z(s1, . . . , sk) ∈ z(X) and z(s′1, . . . , s

′
k) ∈ z(Y) be nonadjacent vertices inπZR. Suppose that

X ∩ Y �= ∅. There are two cases to consider.
Case 1. There exists i ∈ X ∩ Y such that si, s′i < ti. Then dπZR(z(s1, . . . , sk), z(s′1, . . . , s

′
k)) =

2 by the same method as in the case where R was a finite chain ring above.
Case 2. si = s′i = ti for all i ∈ X ∩ Y . For simplicity, we assumeX ∩ Y = {1, 2, . . . ,m}. Then
R×
1 × · · · × R×

m × {0} × · · · × {0} is adjacent to both z(s1, . . . , sk) and z(s′1, . . . , s
′
k), so we

also have dπZR(z(s1, . . . , sk), z(s′1, . . . , s
′
k)) = 2.

Next, we assume that X and Y are disjoint. We may write X = {1, . . . , p} and Y =
{p + 1, . . . , q}where q ≤ k.We can see that z(s1, . . . , sk) and z(s′1, . . . , s

′
k) have no common

neighbours. However,

z(s1, . . . , sk) ∼ z(t1 − s1, . . . , tp − sp, tp+1, . . . , tk)

∼ z(t1, . . . , tp, tp+1 − s′p+1, . . . , tq − s′q, tq+1, . . . , tk)

∼ z(s′1, . . . , s
′
k),

where ∼ means adjacency in πZR. We can conclude that dπZR(z(s1, . . . , sk), z(s′1, . . . ,
s′k)) = 3.

From the above calculations, the Wiener index can be obtained from the sum∑
z(s1,...,sk)∼z(s′1,...,s′k)

|z(s1, . . . , sk)||z(s′1, . . . , s′k)|

+ 2
∑′ |z(s1, . . . , sk)||z(s′1, . . . , s′k)|

+ 3
∑′′ |z(s1, . . . , sk)||z(s′1, . . . , s′k)|,

where
∑′

is the sum over z(s1, . . . , sk) ∈ z(X) and z(s′1, . . . , s
′
k) ∈ z(Y) which are non-

adjacent in πZR and X ∩ Y �= ∅ and
∑′′

is the sum over z(s1, . . . , sk) ∈ z(X) and
z(s′1, . . . , s

′
k) ∈ z(Y) which are non-adjacent in πZR and X ∩ Y = ∅. �

Finally, we deduce the Wiener index of ZZn for all n ∈ N and n ≥ 3. Let
n = p1α1p2α2 . . . pkαk where p1, p2, . . . , pk are distinct primes and α1,α2, . . . αk ∈ N, and
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let 0 ≤ si ≤ αi for all i ∈ {1, . . . , k}. According to the first remark in Section 3, we have
z(s1, . . . , sk) is the set S(p1s1p2s2 . . . pksk) so we know from Ref. [4] that

|z(s1, . . . , sk)| = φ

(
n

p1s1p2s2 . . . pksk

)
,

where φ is the Euler phi-function. In other words, if d = p1s1p2s2 . . . pksk is a divisor of
n, then |z(s1, . . . , sk)| = φ(n/d). Moreover, let di and dj be nonadjacent vertices in ZZn

corresponding to z(s1, s2, . . . , sk) ∈ z(X) and z(s′1, s′2, . . . , s′k) ∈ z(Y) where X and Y are
proper subsets of {1, 2, . . . , n}, respectively. Note that di and dj are relatively prime if X ∩
Y = ∅ and they have a common divisor otherwise. Using this observation, Theorem 5.2
(2) gives us the Wiener index of ZZn .

Corollary 5.3: Let n be a positive integer greater than 3. Let d1, . . . , dl be all proper divisors
of n. Then the Wiener index of ZZn is given by

∑
di∼dj

φ

(
n
di

)
φ

(
n
dj

)
+ 2

∑
di �∼dj

gcd(di,dj)�=1

φ

(
n
di

)
φ

(
n
dj

)
+ 3

∑
di �∼dj

gcd(di,dj)=1

φ

(
n
di

)
φ

(
n
dj

)
.

Here, φ is the Euler phi-function.
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Matrices and the concept of rank of matrices have been playing important roles in 
graph theory and coding theory. They have been applied to define and study many types 
of graphs.

One famous graph applied by the rank of matrices is the bilinear form graph. The 
bilinear form graph or matrix graph is a graph whose vertices are m × n matrices over 
a finite field, and two vertices A and B are adjacent if and only if rank(A − B) = 1. 
This graph has been widely studied, see [34], [25], [23], [5] and [28]. In 2014, Huang et 
al. [18] also explored many properties of this graph such as the regularity, connectivity, 
independence number, clique number and chromatic number. In addition, alternating 
form graphs [19], quadratic form graphs [22] and Hermitian form graphs [5] are defined 
by the rank of matrices over fields.

Not only graphs over finite fields but also graphs over finite commutative rings have 
been vastly studied by applying the rank of matrices. The rank of matrices over rings has 
been investigated in many directions such as the one defined by McCoy [26] and the one 
defined by Cohn [7]. Recently, McCoy rank was used to define the adjacency conditions in 
generalized symplectic graphs and generalized orthogonal graphs over finite commutative 
rings, see [32]. Huang et al. [20] applied the concept of Cohn rank to generalize bilinear 
from graphs over finite fields by studying the graph over the ring Zps of integers modulo 
ps. They also called this graph a bilinear form graph. The bilinear form graph over Zps

is the graph whose vertex set is the set of m × n matrices over Zps and two vertices A
and B are adjacent if and only if rank(A − B) = 1. They obtained properties of this 
graph over Zps similar to those over finite fields.

A year later, Huang [21] generalized the bilinear form graphs over Zps by twisting 
the adjacency condition. Let d, m, n be positive integers where 1 < d ≤ min{m, n}. 
The generalized bilinear form graph over Zps is the graph whose vertex set is the set of 
m × n matrices over Zps , and two distinct vertices A and B are adjacent if and only 
if rank(A − B) < d. So when d = 2, it is a usual bilinear form graph over Zps . This 
generalized bilinear form graph has applications in the existence of linear MRD codes.

Delsarte [11] considered a collection of matrices over a finite field as a code. He defined 
the distance of codes using the rank of matrices and called it rank distance. He showed 
that these codes have a Singleton like bound. A code that meets this bound is called a 
maximum rank distance (MRD) code. MRD codes over finite fields have been extensively 
studied such as their various applications in error correcting codes and network codings, 
see [15], [29], [17], [10]. Codes over finite rings are also active topics. As a generalization 
of the field Zp, codes over the ring Zn were investigated such as MRD codes over Zpk

[14], MDS codes over Zpm [31] and self-dual codes over Zpm [24]. As well, the concept of 
MRD codes over Zps is another type of codes over rings studied by Huang [21]. These 
MRD codes over Zps arise from the generalized bilinear form graphs over Zps. More 
generally, many codes over finite chain rings and finite principal ideal rings continue 
being more interesting, see [12], [13], [1].

The purpose of this paper is to study matrix graphs over finite principal ideal rings 
which generalize the matrix graphs over finite fields, bilinear form graphs and generalized 
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bilinear form graphs over Zps . We use the concept of the rank of matrices over finite 
commutative rings to define our graphs. Moreover, we apply the graphs to study MRD 
codes over finite principal ideal rings.

2. Ranks and background from graph theory

In this section, we first discuss the rank and the McCoy rank of matrices. Then we 
define the matrix graph and recall some terminologies and results from graph theory. 
We divide them into two subsections.

2.1. Rank of matrices

Let R be a commutative ring. We write R× for the set of unit in R and the set of 
m × n matrices with entries in R is denoted by Rm×n. Cohn [7] introduced the concept 
of rank of matrices over commutative rings which generalizes the usual rank of matrices 
over fields.

For a nonzero matrix A in Rm×n, the rank of A, denoted by rankA, is the least 
positive integer t such that A = BC where B ∈ Rm×t and C ∈ Rt×n. The rank of the 
zero matrix is defined to be 0.

This rank of matrices has some basic properties as the usual rank over fields. For 
instance, if A, B ∈ Rm×n, then rankA ≤ min{m, n}, rankA = 0 if and only if A = 0, 
rank(A + B) ≤ rank(A) + rank(B), and rankA = rankPAQ where P ∈ GLm(R) and 
Q ∈ GLn(R), see [7], [8], [20] for more properties.

Now, we assume that R is a finite commutative ring. It is well known that R can 
be decomposed as R ∼= R1 × R2 × · · · × R� where R1, R2, . . . , R� are finite local rings. 
Let ρj be the projection map from R to Ri for all i ∈ {1, 2, . . . , �}. Here, a local ring
is a commutative ring with unique maximal ideal. Recall that if R is a local ring with 
unique maximal ideal M , then R× = R \ M and the field R/M is called the residue field
equipped with the canonical map π : R → R/M given by π(r) = r + M for all r ∈ R.

Proposition 2.1. If A ∈ Rm×n, then

rankA = max
1≤i≤�

{rank ρi(A)}.

Proof. Suppose that rankA = t. Then A = BC for some B ∈ Rm×t and C ∈ Rt×n. 
For each i ∈ {1, 2, . . . , �}, we have ρi(A) = ρi(B)ρi(C), so that rank ρi(A) ≤ t. On the 
other hand, let rank ρi(A) = ti for all i ∈ {1, 2, . . . , �}. Then for each i ∈ {1, 2, . . . , �}, 
we have ti is the least integer such that ρi(A) = B′

iC
′
i where B′

i ∈ Rm×ti
i and C ′

i ∈
Rti×n

i . Without loss of generality, suppose that max1≤i≤�{rank ρi(A)} = t1. Set Bi =

(B′
i, 0) ∈ Rm×t1 and Ci =

(
C ′

i
0

)
∈ Rt1×n. Then A = BC where B = (B1, B2, . . . , B�) ∈

Rm×t1 and C = (C1, C2, . . . , C�) ∈ Rt1×n. Thus, rankA ≤ t1. Therefore, rankA =
max1≤i≤�{rank ρi(A)}. �
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Later, McCoy [26] gave another definition of rank of matrices over commutative rings 
which also generalizes the usual rank of matrices over fields. This rank is described by 
the annihilators of ideals as follows.

Let R be a commutative ring and A ∈ Rm×n. We define I0 = R and It(A) to be the 
ideal of R generated by the t × t minors of A for 1 ≤ t ≤ min{m, n}. Note that

R = I0(A) ⊇ I1(A) ⊇ · · · ⊇ Imin{m,n}(A)

and so

{0} = AnnR I0(A) ⊆ AnnR I1(A) ⊆ · · · ⊆ AnnR Imin{m,n}(A)

where the annihilator of I is given by AnnR I = {r ∈ R : ra = 0 for all a ∈ I}. The 
Mc-rank of A, Mc-rankA, is the largest integer r such that AnnR Ir(A) = {0}. If R

is a field, then Mc-rankA coincides with the maximal number of linearly independent 
columns of A, so it is the usual rank. To compute the Mc-rank of matrices over finite 
commutative rings, we have the following propositions.

Proposition 2.2. [4] Let R be a finite local ring with maximal ideal M and π : R → R/M

a canonical map. Then for each A ∈ Rm×n, Mc-rankA = rank π(A).

Proposition 2.3. [3] Let R be a finite commutative ring decomposed as R = R1 × R2 ×
· · · × R� where Ri is a finite local ring with the projection map ρi : (r1, r2, . . . , r�) 	→ ri

for all i ∈ {1, 2, . . . , �}. If A ∈ Rm×n, then

Mc-rankA = min
1≤i≤�

{Mc-rank ρi(A)}.

2.2. Matrix graphs

Suppose that R is a finite commutative ring and m, n, d are positive integers such that 
2 ≤ d ≤ min{m, n}. The matrix graph of type (m, n, d) over R, denoted by Γd(Rm×n), 
is the graph whose vertices are m × n matrices over R, and two matrices A, B ∈ Rm×n

are adjacent if and only if 0 < rank(A − B) < d. We write A ∼ B when A and B are 
adjacent.

The graph Γ2(Fm×n
q ) is the matrix graph studied in [18]. Besides, the graphs 

Γ2(Zm×n
ps ) and Γd(Zm×n

ps ) are the bilinear form graphs in [20] and the generalized bilinear 
form graphs in [21], respectively.

We next recall some terminologies and properties of graphs. Let G be a graph with 
vertex set V (G). An automorphism of a graph G is a bijection σ from G to G such that 
g1 is adjacent to g2 if and only if σ(g1) is adjacent to σ(g2). A graph G is said to be 
vertex transitive if for any two vertices of G, there is an automorphism carrying one to 
the other. An independent set of G is a set I of vertices of G in which no two distinct 
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vertices of I are adjacent. An independent set of G with the largest size of vertices is 
called a maximal independent set. We write α(G) for the size of a maximal independent 
set of G and call it the independence number of G. A clique C of G is a complete 
subgraph of G, that is, any two vertices of C are adjacent and a maximal clique of G
is a clique of G which has the largest size of vertices. Denoted by ω(G), the number of 
vertices in a maximal clique is called the clique number of G. The chromatic number
of G, denoted by χ(G), is the smallest number of colors needed to color the vertices 
of G in which no adjacent vertices have the same color. If G is vertex transitive, we 
have

ω(G) ≤ |V (G)|
α(G)

≤ χ(G).

Let G1, G2, . . . , G� be graphs. The strong product of graphs G1, G2, . . . G�, denoted by 
G1 � G2 � · · · � G�, is the graph whose vertex set is V (G1) × V (G2) × · · · × V (G�), and 
g = (g1, g2, . . . , g�) is adjacent to g′ = (g′

1, g
′
2, . . . , g′

�) if g �= g′ and gi is either equal or 
adjacent to g′

i in Gi for all i ∈ {1, 2, . . . , �}.
In what follows, we show some properties of rank of matrices over finite chain rings 

in Section 3. We present the results on matrix graph over finite principal ideal rings. 
We determine distance, connectivity, vertex transitivity, independence number, clique 
number and chromatic number in this section. In Section 4, we introduce the MRD 
codes over finite principal ideal rings. We prove that the MRD codes coincide with the 
maximal independent sets of the matrix graph. Consequently, we have the existence of 
linear MRD codes over finite principal ideal rings in our last theorem.

3. Matrix graphs over finite principal ideal rings

In this section, we study the matrix graphs over finite principal ideal rings. We show 
that our graph is connected and vertex transitive. We determine the distance between 
any two vertices of the graph. Moreover, the independence number, the clique number 
and the chromatic number of the graph are computed.

A finite commutative ring R is called a finite chain ring if for any ideals I, J of R, 
either I ⊆ J or J ⊆ I. Clearly, a finite chain ring is a local ring. One can show that if R
is a finite chain ring, then its maximal ideal M is principal and generated by θ for some 
θ ∈ M \ M2. The smallest positive integer e such that θe = 0 is called the nilpotency
of R. A principal ideal ring (PIR) is a commutative ring in which all of its ideals are 
principal. Recall that a finite commutative ring is a direct product of finite local rings. If 
every ideal of a ring is principal, so are its factors. Thus, a finite PIR can be decomposed 
as a direct product of finite chain rings. With this nice relation of PIRs and finite chain 
rings, we first study some properties of matrices over finite chain rings. Some properties 
of finite chain rings are recorded in the following proposition.
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Proposition 3.1. [27] Let R be a finite chain ring with maximal ideal M = Rθ, residue 
field Fq, nilpotency e and V = {v1, v2, . . . , vq} a system of coset representatives of M in 
R.

(1) For any nonzero element r in R, there exists a unique integer i with 0 ≤ i ≤ e such 
that r = uθi for some u ∈ R×.

(2) For each r ∈ R, r can be uniquely written as

r = r0 + r1θ + r2θ
2 + · · · + re−1θe−1

where r0, r1, . . . , re−1 ∈ V .
(3) The ideals of R are in the chain

{0} = Rθe � Rθe−1 � Rθe−2 � · · · � Rθ2 � Rθ � R.

(4) |Rθi| = qe−i for all i ∈ {0, 1, . . . , e}.
(5) R/Rθi is a finite chain ring with nilpotency i and |R/Rθi| = qi for all i ∈ {1, . . . , e}.
(6) For each i ∈ {1, 2, . . . , e}, we have

R/Rθi = {r0 + r1θ + r2θ
2 + · · · + ri−1θi−1 + Rθi : r0, r1, . . . , ri−1 ∈ V }.

Thus, an element r = r0+ r1θ+ r2θ
2+ · · ·+ ri−1θi−1+Rθi in R/Rθi can be viewed 

as an element r = r0 + r1θ + r2θ
2 + · · · + ri−1θi−1 + Rθi+1 in R/Rθi+1. Moreover, 

a unit in R/Rθi is a unit in R/Rθi+1.

There is a useful property in computing the rank and Mc-rank of matrices over finite 
chain rings.

Lemma 3.2. [6] Let R be a finite chain ring with maximal ideal Rθ and nilpotency e. If 
A is a nonzero matrix in Rm×n, then there exist P ∈ GLm(R) and Q ∈ GLn(R) such 
that

A = P

⎛⎜⎜⎜⎜⎜⎜⎝

It0
θIt1

θ2It2
. . .

θe−1Ite−1
0

⎞⎟⎟⎟⎟⎟⎟⎠Q (3.1)

where t0, t1, . . . , te−1 are non-negative integers. Moreover, this form is unique when θ is 
fixed.

Proposition 3.3. Let R be a finite chain ring with maximal ideal Rθ and nilpotency e and 
A a nonzero matrix in Rm×n of the form (3.1). Then



S. Sirisuk, Y. Meemark / Finite Fields and Their Applications 66 (2020) 101705 7

rankA = t0 + t1 + · · · + te−1 and Mc-rankA = t0.

Proof. Let t = t0 + t1 + · · · + te−1. From (3.1), we can write A = P diag(D, 0)Q where 

D = diag(It0 , θIt1 , . . . , θe−1Ite−1) ∈ Rt×t. Write P = (P1 P2 ) and Q =
(

Q1
Q2

)
, where 

P1 ∈ Rm×t and Q1 ∈ Rt×n. We have A = P1DQ1. Therefore, rankA ≤ t.
On the other hand, suppose that rankA = s. Then A = BC where B ∈ Rm×s and 

C ∈ Rs×n. By Lemma 3.2, there exist P1 ∈ GLm(R), Q1 ∈ GLs(R), P2 ∈ GLs(R) and 

Q2 ∈ GLn(R) such that B = P1

(
D1
0

)
Q1 and C = P2(D2, 0)Q2 where D1 and D2 are 

diagonal matrices in Rs×s. Hence, A = P1 diag(D1Q1P2D2, 0)Q2 where D1Q1P2D2 ∈
Rs×s. Since the form of A is unique, s ≥ t. Thus, rankA = t.

Next, let π : R → R/Rθ be the canonical map. Then π(A) = π(P ) diag(π(D), 0)π(Q). 
It is obvious that rankπ(A) = t0. By Proposition 2.2, we have Mc-rankA = rank π(A) =
t0. �

By Proposition 3.1 (6), we note that a matrix A over R/Rθi can be viewed as a matrix 
A over R/Rθi+1 and if A is invertible over R/Rθi, then A is invertible over R/Rθi+1. 
We apply Proposition 3.3 to prove the next proposition.

Proposition 3.4. Let A be an m × n matrix of rank t over R/Rθi. Then A and Aθ are 
m × n matrices of rank t over R/Rθi+1.

Proof. From Proposition 3.1 and Lemma 3.2, we can write A = P diag(It0 , θIt1 , . . . ,

θi−1Iti−1 , 0)Q where P ∈ GLm(R/Rθi) and Q ∈ GLn(R/Rθi) with t = t0+t1+· · ·+ti−1. 
It follows that both A and Aθ = P diag(θIt0 , θ2It1 , . . . , θiIti−1 , 0)Q are m × n matrices 
over R/Rθi+1. Since P and Q are invertible over R/Rθi, they are invertible over R/Rθi+1. 
Hence, A and Aθ are of rank t over R/Rθi+1. �

Let R be a finite PIR decomposed as R
ϕ∼= R1 × R2 × · · · × R� where Ri is a finite 

chain ring for all i ∈ {1, 2, . . . , �}. Let ρi : (r1, r2, . . . , r�) 	→ ri be a projection map for all 
i ∈ {1, 2, . . . , �}. The isomorphism ϕ gives Rm×n ∼= Rm×n

1 × Rm×n
2 × · · · × Rm×n

� . Thus, 
we can view the vertex set of Γd(Rm×n) as {(ρ1(A), ρ2(A), . . . , ρ�(A)) : A ∈ Rm×n}. By 
Proposition 2.1, if A = (ρ1(A), ρ2(A), . . . , ρ�(A)) and B = (ρ1(B), ρ2(B), . . . , ρ�(B)) are 
two vertices of Γd(Rm×n), then

A ∼ B ⇐⇒ 0 < max
1≤i≤�

{rank(ρi(A) − ρi(B))} < d.

With this relation, we proceed to prove the following strong product of graphs theorem.

Theorem 3.5. Let R be a finite PIR decomposed as R = R1 × R2 × · · · × R� where Ri is 
a finite chain ring. Then

Γd(Rm×n) = Γd(Rm×n
1 )� Γd(Rm×n

2 )� · · · � Γd(Rm×n
� ).
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Proof. Let G = Γd(Rm×n
1 ) � Γd(Rm×n

2 ) � · · · � Γd(Rm×n
� ). As mentioned, the vertex 

sets of graphs G and Γd(Rm×n) are the same. Let A = (ρ1(A), ρ2(A), . . . , ρ�(A)) and 
B = (ρ1(B), ρ2(B), . . . , ρ�(B)) be two vertices. Then

A ∼ B in Γd(Rm×n) ⇔ 0 < max
1≤i≤�

{rank(ρi(A) − ρi(B))} < d

⇔ A �= B and rank(ρi(A) − ρi(B)) < d for all i ∈ {1, 2, . . . , �}
⇔ A �= B and either ρi(A) = ρi(B) or ρi(A) ∼ ρi(B) in Γd(Rm×n

i )

for all i ∈ {1, 2, . . . , �}
⇔ A ∼ B in G.

This completes the proof. �
Theorem 3.6. Let R be a finite PIR. Then the graph Γd(Rm×n) is connected. Moreover, 
for two vertices A, B ∈ Rm×n, the distance between A and B is

dG(A, B) =
⌈
rank(A − B)

d − 1

⌉
.

Consequently, the diameter of Γd(Rm×n) is equal to 
⌈min{m,n}

d−1
⌉
.

Proof. We first prove the desired result in the case that R is a finite chain ring. Assume 
that R is a finite chain ring with maximal ideal Rθ and nilpotency e. Let A, B ∈ Rm×n

with rank(B − A) = t. By Lemma 3.2, there exist P ∈ GLm(R) and Q ∈ GLn(R) such 
that

B − A = P

⎛⎜⎜⎜⎜⎝
θk1

θk2

. . .
θkt

0

⎞⎟⎟⎟⎟⎠Q

where 0 ≤ k1 ≤ · · · ≤ kt ≤ e − 1. If t ≤ d − 1, then A ∼ B, and so dG(A, B) = 1. 
We assume that t ≥ d. Write t = (d − 1)q + r where q, r are integers with q ≥ 1
and 0 ≤ r < d − 1. Let A0 = A and Ai = A + P diag(θk1 , θk2 , . . . , θk(d−1)i , 0)Q for all 
i ∈ {1, . . . , q}. Then for each i ∈ {0, 1, . . . , q − 1}, Ai+1 − Ai = P diag(0, θk(d−1)i+1 , . . . ,

θk(d−1)(i+1) , 0)Q, so rank(Ai+1 − Ai) < d and thus Ai+1 ∼ Ai. Now, we have A0 ∼
A1 ∼ A2 ∼ · · · ∼ Aq. Note that B − Aq = P diag(0, θk(d−1)q+1 , . . . , θk(d−1)q+r , 0)Q. So 
rank(B − Aq) ≤ r < d. This implies that B = Aq if r = 0 or B ∼ Aq if r > 0. Thus, 
Γd(Rm×n) is connected. Moreover, dG(A, B) is at most q+1, that is, dG(A, B) ≤ � t

d−1�.
On the other hand, let dG(A, B) = s. Then there exist C1, C2, . . . , Cs−1 ∈ Rm×n such 

that A ∼ C1 ∼ C2 ∼ · · · ∼ Cs−1 ∼ B. By properties of the rank of matrices, we have
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t = rank(A − B) ≤ rank(A − C1) + rank(C1 − C2) + · · · + rank(Cs−1 − B)

≤ s(d − 1).

Thus, dG(A, B) = s ≥ � t
d−1�. Therefore, dG(A, B) = � rank(A−B)

d−1 �.
Next suppose that R is decomposed as R ∼= R1 × R2 × · · · × R� where Ri is a finite 

chain ring. By Theorem 3.5, we have

Γd(Rm×n) = Γd(Rm×n
1 )� Γd(Rm×n

2 )� · · · � Γd(Rm×n
� ).

Let A = (ρ1(A), ρ2(A), . . . , ρ�(A)) and B = (ρ1(B), ρ2(B), . . . , ρ�(B)) be two vertices in 
Γd(Rm×n). Since Γd(Rm×n

i ) is connected for all i ∈ {1, 2, . . . , �}, we can suppose that 
dG(ρi(A), ρi(B)) = ti for all i ∈ {1, 2, . . . , �}. For convenience, we write ρi(A) = Xi0 and 
ρi(B) = Xiti

. Then for each i ∈ {1, 2, . . . , �}, there exist Xi1, Xi2, . . . , Xi(ti−1) such that

ρi(A) = Xi0 ∼ Xi1 ∼ Xi2 ∼ · · · ∼ Xiti
= ρi(B).

Without loss of generality, we assume that t1 ≤ t2 ≤ · · · ≤ t�. For each j ∈ {0, 1, . . . , t�}, 
we set Xj = (X1j , X2j , . . . , X�j) where Xij = ρi(B) if ti ≤ j ≤ t�. Then

A = X0 ∼ X1 ∼ X2 ∼ · · · ∼ Xt�
= B.

This implies that Γd(Rm×n) is connected and dG(A, B) ≤ t� = max1≤i≤�{dG(ρi(A),
ρi(B))}.

Conversely, assume that dG(A, B) = t. Then there exist X1, X2, . . . , Xt−1 such that 
A := X0 ∼ X1 ∼ X2 ∼ · · · ∼ Xt−1 ∼ Xt = B. Let i ∈ {1, 2, . . . , �}. Since Xj ∼ Xj+1, we 
have ρi(Xj) = ρi(Xj+1) or ρi(Xj) ∼ ρi(Xj+1) in Γd(Rm×n

i ) for all j ∈ {0, 1, . . . , t − 1}. 
Thus, dG(ρi(A), ρi(B)) ≤ t. It follows that max1≤i≤�{dG(ρi(A), ρi(B))} ≤ t = dG(A, B).

Finally, the distance over finite chain rings implies dG(A, B) = max1≤i≤�{dG(ρi(A),
ρi(B))} = max1≤i≤�

{⌈ rank(ρi(A)−ρi(B))
d−1

⌉}
. By Proposition 2.1, we have dG(A, B) =⌈ rank(A−B)

d−1
⌉
. The diameter of Γd(Rm×n) is obtained from Lemma 3.2 together with 

choosing A = 0 and B = (Im 0) if m ≤ n or B =
(

In

0

)
if n ≤ m. Hence, rank(A −B) =

min{m, n}. �
Proposition 3.7. If R is a finite PIR, then the matrix graph Γd(Rm×n) is vertex transitive.

Proof. Let A, B ∈ Rm×n. Define σ : Rm×n → Rm×n by σ(X) = X − (A − B) for all 
X ∈ Rm×n. For X, Y ∈ Rm×n, we have rank(σ(X) − σ(Y )) = rank((X − (A − B)) −
(Y − (A − B))) = rank(X − Y ). Then X ∼ Y if and only if σ(X) ∼ σ(Y ) in Γd(Rm×n). 
Thus, σ is a graph automorphism which maps A to B. Therefore, Γd(Rm×n) is vertex 
transitive. �
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Remark 3.8. It is well known that a vertex transitive graph is regular, that is, every 
vertex has the same degree. Thus the matrix graph Γd(Rm×n) is regular. For the degree 
of this regular graph, we can determine the degree of the zero matrix. Then the degree 
of Γd(Rm×n) is the number of all nonzero m × n matrices over R of rank less than d.

We next compute the independence numbers and clique numbers of the matrix graphs. 
The results over finite fields are given in [21] as follows.

Lemma 3.9. [21] If Fq is the finite field of q elements, then

α(Γd(Fm×n
q )) = qmax{m,n}(min{m,n}−d+1) and ω(Γd(Fm×n

q )) = qmax{m,n}(d−1).

For the case of finite PIRs, we first consider the sets

C1 :=
{(

A
0

)
: A ∈ R(d−1)×n

}
and C2 :=

{
(A 0) : A ∈ Rm×(d−1)

}
.

Since rankA ≤ min{m, n} for A ∈ Rm×n, it follows that both C1 and C2 are cliques of 
Γd(Rm×n). Thus, ω(Γd(Rm×n)) ≥ |R|max{m,n}(d−1). This provides the lower bound of 
the clique number. We shall apply it to compute both clique number and independence 
number.

Theorem 3.10. Let R be a finite PIR. Then

α(Γd(Rm×n)) = |R|max{m,n}(min{m,n}−d+1)

and

ω(Γd(Rm×n)) = |R|max{m,n}(d−1).

Proof. We first suppose that R is a finite chain ring with maximal ideal Rθ, nilpo-
tency e and a canonical map π : R → R/Rθ. Let m ≤ n. Then Lemma 3.9 implies 
that α(Γd((R/Rθ)m×n)) = qn(m−d+1) := α. Let A be a maximal independent set of 
Γd((R/Rθ)m×n). So rank(A − B) ≥ d over R/Rθ for all distinct A, B in A. By Propo-
sition 3.4, we have that a matrix A over R/Rθ can be considered as a matrix A over 
R/Rθi with the same rank for all i ∈ {1, 2, . . . , e}. Thus, rank(A − B) ≥ d over R for all 
distinct A, B in A. Next, let

I = A + Aθ + Aθ2 + · · · + Aθe−1 = {A0 + A1θ + A2θ
2 + · · · + Ae−1θe−1 : Ai ∈ A}.

By Proposition 3.1 (2), it is easy to see that I is a set of size αe. We show that I is 
an independent set of Γd(Rm×n). Let A, B ∈ I with A �= B. Then A = A0 + A1θ +
A2θ

2 + · · · + Ae−1θe−1 and B = B0 + B1θ + B2θ
2 + · · · + Be−1θe−1 where Ai, Bi ∈ A
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and Aj �= Bj for some j ∈ {0, 1, . . . , e − 1}. Hence, A − B = (A0 − B0) + (A1 − B1)θ +
(A2 − B2)θ2+ · · ·+(Ae−1 − Be−1)θe−1. We apply Propositions 2.2 and 3.3 to show that 
rank(A − B) ≥ d.

First, if A0 �= B0, then rank(A − B) ≥ Mc-rank(A − B) = Mc-rank π(A − B) =
Mc-rank(A0 − B0) = rank(A0 − B0) ≥ d. So we suppose that A0 �= B0. Let j ∈
{1, 2, . . . , e −1} be the first index such that Aj �= Bj . Then A −B =

(
(Aj −Bj) +(Aj+1−

Bj+1)θ+ · · ·+(Ae−1−Be−1)θe−(j+1))θj . Write C := (Aj −Bj) +(Aj+1−Bj+1)θ+ · · ·+
(Ae−1 − Be−1)θe−(j+1). Then A − B = Cθj . Note that C can also be viewed as a matrix 
over R/Rθe−j . By Proposition 3.4, both C and Cθj are matrices over R/Rθe ∼= R with 
the same rank as considering them over R/Rθe−j . Therefore, rank(A −B) = rank(Cθj) =
rank(C) ≥ Mc-rank(C) = Mc-rank π(C) = Mc-rank(Aj −Bj) = rank(Aj −Bj) ≥ d. This 
implies that I is an independent set of Γd(Rm×n) of size αe = qen(m−d+1). It follows 
that α(Γd(Rm×n)) ≥ qen(m−d+1).

Recall that ω(Γd(Rm×n)) ≥ qen(d−1). Since Γd(Rm×n) is vertex transitive,

α(Γd(Rm×n)) ≤ |V (Γd(Rm×n))|
ω(Γd(Rm×n))

≤ qemn

qen(d−1) = qen(m−d+1).

Therefore, α(Γd(Rm×n)) = qen(m−d+1). Again,

ω(Γd(Rm×n)) ≤ |V (Γd(Rm×n))|
α(Γd(Rm×n))

=
qemn

qen(m−d+1) = qen(d−1).

Thus, ω(Γd(Rm×n)) = qen(d−1). So we obtain the result over finite chain rings.
Next, assume that the PIR R is decomposed as R = R1 × R2 × · · · × R� where Ri is a 

finite local ring with nilpotency ei and residue field Fqi
. By Theorem 3.5, Γd(Rm×n) =

Γd(Rm×n
1 ) � Γd(Rm×n

2 ) � · · · � Γd(Rm×n
� ). Note that if Ii is an independent set of 

Γd(Rm×n
i ) for all i ∈ {1, 2, . . . , �}, then it is easy to see that

I = I1 × I2 × · · · × I� = {(A1, A2, . . . , A�) : Ai ∈ Ii}

is an independent set of Γd(Rm×n). Hence,

α(Γd(Rm×n)) ≥ α(Γd(Rm×n
1 ))α(Γd(Rm×n

2 )) · · · α(Γd(Rm×n
� )).

The previous result on finite chain rings implies that α(Γd(Rm×n
i )) = |V (Γd(Rm×n

i ))|
ω(Γd(Rm×n

i ))
for 

all i ∈ {1, 2, . . . , �}. Moreover, Γd(Rm×n
i ) is vertex transitive for all i ∈ {1, 2, . . . , �} by 

Proposition 3.7. Thus, it follows from [33] Corollary 1 that

α(Γd(Rm×n)) ≤ α(Γd(Rm×n
1 ))α(Γd(Rm×n

2 )) · · · α(Γd(Rm×n
� )).

Therefore,
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α(Γd(Rm×n)) = α(Γd(Rm×n
1 ))α(Γd(Rm×n

2 )) · · · α(Γd(Rm×n
� ))

= q
e1n(m−d+1)
1 q

e2n(m−d+1)
2 · · · q

e�n(m−d+1)
�

= |R|n(m−d+1).

Finally, we determine the clique number of the graph. It is proved in [2] that ω(G �
H) = ω(G)ω(H). Consequently,

ω(Γd(Rm×n)) = ω(Γd(Rm×n
1 ))ω(Γd(Rm×n

2 )) · · · ω(Γd(Rm×n
� ))

= q
e1n(d−1)
1 q

e2n(d−1)
2 · · · q

e�n(d−1)
�

= |R|n(d−1).

The case n ≤ m can be proved in a similar way. �
Remark 3.11.

(1) The cliques C1 and C2 mentioned earlier are maximal cliques.
(2) Let R be a finite chain ring with maximal ideal Rθ and nilpotency e. If A is a 

maximal independent set of Γd((R/Rθ)m×n), then

I = A + Aθ + Aθ2 + · · · + Aθe−1

is a maximal independent set of Γd(Rm×n).
(3) For a finite PIR R ∼= R1 × R2 × · · · × R�, if Ii is a maximal independent set of 

Γd(Rm×n
i ) for all i ∈ {1, 2, . . . , �}, then

I = I1 × I2 × · · · × I� = {(A1, A2, . . . , A�) : Ai ∈ Ii}

is a maximal independent set of Γd(Rm×n).

Let G be a finite group and S a subset of G which does not contain the identity and 
is closed under taking inverses. The Cayley graph Cay(G, S) is an undirected graph with 
vertex set G and for two vertices g1, g2 ∈ G, g1 and g2 are adjacent if g1g−1

2 is in S. A 
Cayley graph Cay(G, S) is normal if gSg−1 = S for all g ∈ G.

To determine the chromatic number of the matrix graph, we use the following property 
of a normal Cayley graph.

Lemma 3.12. [16] If G is a normal Cayley graph with α(G) = |V (G)|
ω(G) , then χ(G) = ω(G).

Note that Rm×n is an additive group. Let S be the set of nonzero matrices of rank 
less than d. It is easy to see that S does not contain the zero matrix and is closed under 
taking additive inverses. For A, B ∈ Γd(Rm×n), we have
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A ∼ B ⇐⇒ 0 < rank(A − B) < d ⇐⇒ A − B ∈ S.

Thus, Γd(Rm×n) is a Cayley graph. Moreover, it is a normal Cayley graph since Rm×n

is an abelian group. By Theorem 3.10, we have α(Γd(Rm×n)) = |V (Γd(Rm×n))|
ω(Γd(Rm×n)) . It follows 

from the above lemma that ω(Γd(Rm×n)) = χ(Γd(Rm×n)). Hence, we have shown:

Proposition 3.13. If R is a finite PIR, then χ(Γd(Rm×n)) = |R|max{m,n}(d−1).

4. MRD codes

This section is devoted to study MRD codes over PIRs. We give the concepts of matrix 
codes and rank distance of matrix codes. We shall see that matrix codes relate to matrix 
graphs. Indeed, maximal independent sets of matrix graphs are MRD codes and vice 
versa. Finally, we show the existence of linear MRD codes over a PIR by lifting linear 
MRD codes over a direct product of finite fields.

Let R be a finite commutative ring. A (matrix) code of size m × n is defined to 
be a subset C of Rm×n. For two matrices A, B ∈ Rm×n, we define the rank distance 
between A and B, denoted by drk(A, B), to be rank(A − B). Note that the rank distance 
is a metric on Rm×n. Indeed, drk(A, B) ≥ 0, drk(A, B) = 0 if and only if A = B, 
drk(A, B) = drk(B, A) and drk(A, C) ≤ drk(A, B) + drk(B, C) for all A, B, C ∈ Rm×n. 
For a code C of size m × n over R, the rank distance of C is defined to be

drk(C) = min{drk(A, B) : A, B ∈ C with A �= B}.

We call a code C of size m × n with rank distance d an (m × n, d)-code. If C ⊆ Rm×n is 
a submodule of Rm×n over R, we call C a linear code.

Suppose m ≤ n. Let C be an (m × n, d)-code. We can consider a matrix A in C
as A = (�x1, �x2, . . . , �xm) where �xi ∈ Rn is an i-th row of A. This means we can study 
C ⊆ (Rn)m as a code of length m over a set of alphabet Rn and find the Hamming distance 
of C. Hence, a code C with the Hamming distance dH(C) agrees with the Singleton bound
dH(C) ≤ m − log|R|n |C| + 1. That is, |C| ≤ |R|n(m−dH(C)+1).

Over the finite field Fq, it is shown in [11] that a matrix code C of size m × n with 
rank distance drk(C) has a Singleton like bound which satisfies |C| ≤ qn(m−drk(C)+1). We 
show that matrix codes over finite PIRs have a similar bound by using independent sets 
of the matrix graphs.

Let R be a finite PIR and C ⊆ Rm×n. Then C is both a matrix code and a set of 
vertices in the matrix graph Γd(Rm×n). Moreover, if d ≥ 2, then we have that for any 
A, B ∈ C with A �= B, drk(A, B) = rank(A − B) ≥ d if and only if A is not adjacent to 
B in Γd(Rm×n). This implies the next proposition.

Proposition 4.1. Let R be a finite PIR and 2 ≤ d ≤ m ≤ n. For a code C ⊆ Rm×n, 
drk(C) ≥ d if and only if C is an independent set of the graph Γd(Rm×n).
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This proposition and the independence number in Theorem 3.10 implies that if C is 
a code with drk(C) = d where d ≥ 2, then |C| ≤ α(Γd(Rm×n)) = |R|n(m−d+1). For the 
case drk(C) = 1, it is obvious that |C| ≤ |R|nm. Thus, we have the Singleton like bound 
for the matrix codes over finite PIRs as follows.

Corollary 4.2. Let R be a finite PIR and m ≤ n. For a code C ⊆ Rm×n, we have 
|C| ≤ |R|n(m−drk(C)+1).

An (m × n, d)-code C over a PIR R is called a maximum rank distance code (MRD 
code) if |C| = |R|n(m−d+1). Obviously, the only (m × n, 1)-MRD code is Rm×n. So we 
may assume d ≥ 2 to study MRD codes.

Next, suppose that R is a PIR and d ≤ m ≤ n. Let C ⊆ Rm×n. Note that if C
is either a maximal independent set of Γd(Rm×n) or an (m × n, d)-MRD code, then 
|C| = |R|n(m−d+1) = α(Γd(Rm×n)). Moreover, |C| = |R|n(m−d+1) implies |R|n(m−d+1) =
|C| ≤ |R|n(m−drk(C)+1) by Corollary 4.2, so we have d ≥ drk(C). Applying Proposition 4.1
results in

C is an (m × n, d)-MRD code

⇔ drk(C) = d and |C| = |R|n(m−d+1)

⇔ C is an independent set of Γd(Rm×n) and |C| = |R|n(m−d+1)

⇔ C is a maximal independent set of Γd(Rm×n).

Therefore, we have shown:

Theorem 4.3. Let R be a finite PIR, 2 ≤ d ≤ m ≤ n and C ⊆ Rm×n. Then C is an 
(m × n, d)-MRD code if and only if C is a maximal independent set of Γd(Rm×n).

We have seen that (m × n, d)-MRD codes coincide with maximal independent sets of 
the matrix graphs. We next construct linear MRD codes over PIRs by using maximal 
independent sets of the graphs.

Theorem 4.4. Let R be a finite PIR decomposed as R = R1 × R2 × · · · × R� where Ri

is a finite chain ring with maximal ideal Rθi, nilpotency ei and residue field Fqi
for 

all i ∈ {1, 2, . . . , �}. For any m, n, d with 2 ≤ d ≤ min{m, n}, there exists a linear 
(m × n, d)-MRD code over R. Moreover, this linear (m × n, d)-MRD code is of the form 
C = C1 × C2 × · · · × C� where each Ci is a linear (m × n, d)-MRD code over Ri which is 
of the form Ci = Ci + Ciθi + Ciθ

2
i + · · · + Ciθ

ei−1
i where Ci is a linear (m × n, d)-MRD 

code over Fqi
.

Proof. Let m, n, d be positive integers with 2 ≤ d ≤ m ≤ n. Suppose that R is a finite 
chain ring with maximal ideal Rθ, nilpotency e and residue field R/Rθ ∼= Fq. It is shown 
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in [11] that there exists a linear (m × n, d)-MRD code over Fq. We shall lift this linear 
MRD code C over Fq to obtain a linear MRD code over R.

Theorem 4.3 implies that C is a maximal independent set of Γd(Fm×n
q ). Re-

mark 3.11 (2) shows that

C := C + Cθ + Cθ2 + · · · + Cθe−1 = {A0 + A1θ + A2θ
2 + · · · + Ae−1θe−1 : Ai ∈ C}

is a maximal independent set of Γd(Rm×n). From another direction of Theorem 4.3, C
is an (m × n, d)-MRD code over R. Since C is a linear code over Fq, we can employ 
Proposition 3.1 (2) to obtain a linear code C over R.

Finally, suppose that R is a PIR decomposed as R1 × R2 × · · · × R� where Ri is 
a finite chain ring. Then there exists a linear (m × n, d)-MRD code Ci over Ri for all 
i ∈ {1, 2, . . . , �}. By Theorem 4.3, Ci is a linear independent set of Γd(Rm×n

i ). Again, by 
Remark 3.11 (3), we have

C = C1 × C2 × · · · × C� = {(A1, A2, . . . , A�) : Ai ∈ Ci}

is a maximal independent set of Γd(Rm×n). Thus, C is an (m × n, d)-MRD code over R. 
Since Ci is a linear (m ×n, d)-MRD code over Ri for all i ∈ {1, 2, . . . , �}, C is also a linear 
(m × n, d)-MRD code over R. This completes the proof. �
Remark 4.5. Linear MRD codes over finite fields have been intensively applied to linear 
network coding, and also connected to many areas such as McEliece like public key 
cryptosystems, semifields, linearized polynomials, see [30] for details. From the above 
theorem, we obtain linear (m × n, d)-MRD codes for any parameters m, n, d not only 
over the field alphabet Fq but also the ring alphabet of any sizes (finite PIRs). Indeed, 
the ring alphabets are more optimal than field alphabets in some cases to study network 
coding, see [9]. Moreover, these linear MRD codes over PIRs generalize those over Zps

in [21].
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Let R be a finite commutative ring and n a positive integer. 
In this paper, we study the unitary Cayley graph CMn(R) of 
the matrix ring over R. If F is a field, we use the additive 
characters of Mn(F ) to determine three eigenvalues of CMn(F )
and use them to analyze strong regularity and hyperenergetic
graphs. We find conditions on R and n such that CMn(R)
is strongly regular. Without explicitly having the spectrum 
of the graph, we can show that CMn(R) is hyperenergetic 
and characterize R and n such that CMn(R) is Ramanujan. 
Moreover, we compute the clique number, the chromatic 
number and the independence number of the graph.
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of R. The unitary Cayley graphs have been widely studied by many authors (see, for 
example, [2,8,4,1,5]). As discovered in [1,5], if R is a finite commutative ring, then R can 
be decomposed as a direct product of finite local rings R1, . . . , Rs and CR is the tensor 
product of the graphs CR1 , . . . , CRs

where the tensor product of graphs G and H, G ⊗H, 
is the graph defined on V (G) × V (H) where (a, b) is adjacent to (c, d) if and only if a
is adjacent to c in G and b is adjacent to d in H. In addition, if R is a finite local ring 
with maximal ideal M , then CR is a complete multi-partite graph whose partite sets are 
the cosets of M . Thus, the unitary Cayley graphs of finite commutative rings are well 
studied. Their spectral properties including the energies are also well known (see [5]).

Let G be a graph and V (G) the vertex set of G. We give some terminologies from 
graph theory as follows. A clique is a subgraph that is a complete graph and clique 
number of G is the size of largest clique in G, denoted by ω(G). A set I of vertices of G
is called an independent set if no distinct vertices of I are adjacent. The independence 
number of G is the size of a maximal independent set, denoted by α(G). The chromatic 
number of G is the least number of colors needed to color the vertices of G so that no 
two adjacent vertices share the same color. We write χ(G) for the chromatic number of 
G. If every vertex of G is adjacent to k vertices, then G is a k-regular graph. Finally, we 
say that a k-regular graph G is edge regular if there exists a parameter λ such that for 
any two adjacent vertices, there are exactly λ vertices adjacent to both of them. If an 
edge regular graph with parameters k, λ also satisfies an additional property that for any 
two non-adjacent vertices, there are exactly μ vertices adjacent to both of them, then it 
is called a strongly regular graph with parameters k, λ, μ.

Let R be a ring and n ∈ N. Let R× denote the group of units of R. Let Mn(R) denote 
the ring of n × n matrices over R and the group of all invertible matrices over R is 
denoted by GLn(R). Throughout this work, In is the n × n identity matrices and 0m×n

is the m × n zero matrix.
For non-commutative rings, Kiani et al. [6] worked on unitary Cayley graphs of the 

ring Mn1(F1) × · · · × Mnk
(Fk) where n1, . . . , nk ∈ N and F1, . . . , Fk are finite fields. 

They obtained the clique number, the chromatic number and the independence number 
of the graph. They also studied the role between CR and the structure of R. Later 
in [7], they proved that if F is a finite field, then CMn(F ) is an edge regular graph 
with k = | GLn(F )| and λ = |(In +GLn(F )) ∩ GLn(F )| = en where en is the number 
of invertible matrices which do not fix any non-zero vector. Such matrices are called 
derangement matrices. We know from [11] that en satisfies the recursion en = en−1(qn −
1)qn−1+(−1)nqn(n−1)/2 and e0 = 1. Kiani showed further that CM2(F ) is strongly regular 

with μ =
∣∣∣∣([1 0

0 0

]
+GL2(F )

)
∩ GL2(F )

∣∣∣∣ but CM3(F ) is not strongly regular.

An eigenvalue of a graph G is an eigenvalue of the adjacency matrix of a graph G. 
The energy of a graph G, E(G), is the sum of absolute value of its eigenvalues. The 
spectrum of a graph G is the list of its eigenvalues together with their multiplicities. 
If λ1, . . . , λr are eigenvalues of a graph G with multiplicities m1, . . . , mr, respectively, 

we write SpecG =
(

λ1 . . . λr

m1 . . . mr

)
to describe the spectrum of G and so E(G) =
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m1|λ1| + · · ·+ mr|λr|. A graph G on n vertices is said to be hyperenergetic if its energy 
exceeds the energy of the complete graph Kn, that is, E(G) > 2(n − 1). A k-regular 
graph G is a Ramanujan graph if |λ| ≤ 2

√
k − 1 for all eigenvalues λ of G other than ±k. 

A Ramanujan graph is a regular graph whose spectral gap is almost as large as possible. 
It is an excellent spectral expander. Its name comes from Lubotzky, Phillips and Sarnak 
[10] who used the Ramanujan conjecture to construct an infinite family of such graphs.

To introduce our methodology, we recall some results on characters of finite abelian 
groups. For more detail, see [9]. Let G be a finite abelian group. A map χ : G →
(C \ {0} , ·) is a character if χ is a group homomorphism. The set of all characters of G, 
denoted by Ĝ, forms an abelian group under point-wise multiplication, that is, for any 
characters χ1, χ2 of G, we define χ1·χ2 : G → (C \ {0} , ·) where (χ1·χ2)(g) = χ1(g)χ2(g)
for all g ∈ G.

Let F be the finite field extension of Zp which has pr elements for some r ∈ N and a 
prime p. The trace map from F to Zp is the Zp-linear map Tr : x 	→ x +xp + · · ·+xpr−1

. 
According to [9], each character of the group (F, +) is given by χa(x) = e

2πi
p Tr(ax)

for all x ∈ F where a ∈ F is fixed. Note that (Mn(F ), +) ∼= (F, +) × (F, +) × · · · ×
(F, +) (n2 copies). Recall that if we have G1, G2 are finite abelian groups, then there is 
a canonical isomorphism Ĝ1 × Ĝ2 → ̂G1 × G2 given by (χ1, χ2) 	→ χ1χ2. Hence, we may 
identify a character of Mn(F ) as χA =

∏
1≤i,j≤n

χaij
where A = [aij ]n×n is in Mn(F ) and 

so it follows from Theorem 2 of [12] that the eigenvalues of CMn(F ) are given by

ρA =
∑

S∈GLn(F )

χA(S)

as A ranges over all matrices in Mn(F ).
In the next section, we shall use the additive characters discussed in the previous para-

graph to compute some eigenvalues (namely, ρA1 , ρA2 and ρA3) and use them to study 
strong regularity of the unitary Cayley graph CMn(F ) of a matrix algebra over a finite 
field F of q elements. This new approach also allows us to conclude that the multiplici-
ties of eigenvalues are at least the number of matrices of the same rank (Theorem 2.1). 
Without completely having the spectrum of the graph, we work on the eigenvalue ρA3

and show that CMn(F ) is hyperenergetic and characterize n and q such that CMn(F ) is 
Ramanujan in Section 3.

The final section presents the study of the unitary Cayley graph of product of matrix 
rings over finite local rings. We start by working on a finite local ring R with unique 
maximal ideal M and residue field k. We determine the canonical graph isomorphism 
from the graph CMn(k) ⊗M̊n(M) onto the graph CMn(R) induced from lifting elements of 
k to R via M (Theorem 4.2). This isomorphism allows us to obtain the clique number, the 
chromatic number and the independence number of the unitary Cayley graph of product 
of matrix rings over finite local rings. Since every finite commutative ring is isomorphic 
to a direct product of finite local rings, we have these numbers for unitary Cayley graphs 
of a matrix ring over a finite commutative ring. Moreover, the work in Sections 2 and 3
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is generalized to matrix rings over finite local rings and finite commutative rings in 
Section 4.

2. Strong regularity of Mn(F )

Throughout this section, let F be the finite field of q elements and n ∈ N. Our main 
work is to show that the graph CMn(F ) is strongly regular if and only if n = 2. We begin 
by determining some eigenvalues of the graph by considering three matrices in Mn(F ), 
namely,

A1 = 0n×n, A2 =

⎡⎢⎢⎣
1 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

⎤⎥⎥⎦ and A3 =

⎡⎢⎢⎣
1 1 0 · · · 0
1 0 0 · · · 0
...

...
...

...
1 0 0 · · · 0

⎤⎥⎥⎦ .

Clearly, we have

ρA1 = |GLn(F )| = (qn − 1)(qn − q) . . . (qn − qn−1).

Note that

ρA2 =
∑

m∈F

Nme
2πi

p Tr(m)

where Nm is the number of invertible matrices with m at the left-top corner for all 
m ∈ F . If an invertible matrix has the left-top corner being 0, then the other n − 1
elements in the first column cannot be all zeros, so there are qn − 1 choices for the first 
column. Thus,

N0 = (qn−1 − 1)(qn − q)(qn − q2) . . . (qn − qn−1)

because the second column must not be multiple of the first column, and the jth column 
must not be a linear combination of the previous j − 1 columns for all j ∈ {2, . . . , n}. 
Now, we have

(qn − qn−1)(qn − q)(qn − q2) . . . (qn − qn−1)

invertible matrices with the top-left corner being nonzero. Since Nm = N1 for all m �= 0, 
we have

(q − 1)N1 = (qn − qn−1)(qn − q)(qn − q2) . . . (qn − qn−1)

so
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N1 = qn−1(qn − q)(qn − q2) . . . (qn − qn−1).

It follows that

ρA2 = N0e
2πi

p Tr(0) + N1
∑
m�=0

e
2πi

p Tr(m)

= −(qn − q)(qn − q2) . . . (qn − qn−1) + N1
∑

m∈F

e
2πi

p Tr(m).

By Hilbert’s theorem 90, we know that the trace map is surjective, so we get∑
m∈F

e
2πi

p Tr(m) = |ker Tr|
∑

m∈Zp

e
2πi

p m = 0.

Therefore,

ρA2 = −(qn − q)(qn − q2) . . . (qn − qn−1).

Finally, we determine ρA3 . Since

ρA3 = N(m1, m2, . . . , mn+1)
∑

m1,m2,...,mn+1∈F

e
2πi

p Tr(m1+m2+···+mn+mn+1)

where N(m1, m2, . . . , mn+1) is the number of invertible matrices of the form⎡⎢⎢⎣
m1 mn+1 · · · ∗
m2 ∗ · · · ∗
...

...
. . .

...
mn ∗ · · · ∗

⎤⎥⎥⎦
and m1, m2, . . . , mn+1 ∈ F . For m1 = 0, we can determine N(0, m2, . . . , mn+1) according 
to mn+1 as follows. If mn+1 �= 0, then the first column and the second column are 
linearly independent, so the second column can be arbitrarily chosen. If mn+1 = 0, then 
the second column must not be multiple of the first column and the jth column must 
not be a linear combination of the previous j − 1 columns for all j ∈ {2, . . . , n}. Thus, 
N(0, m2, . . . , 0) = (qn−1)(qn −q2) . . . (qn −qn−1) and N(0, m2, . . . , mn+1) = (qn−1)(qn −
q2) . . . (qn −qn−1) if mn+1 �= 0. Now, assume that m1 �= 0. Then N(m1, m2, . . . , mn+1) =
N(1, m2, . . . , mn+1) for all m2, . . . , mn+1 ∈ F . To find N(1, m2, . . . , mn+1), we note 
that the second column cannot be mn+1-multiple of the first column and similarly the 
jth column must not be a linear combination of the previous j − 1 columns for all 
j ∈ {2, . . . , n}, so

N(1, m2, . . . , mn+1) = (qn−1 − 1)(qn − q2) . . . (qn − qn−1).

Now, we compute
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ρA3 = (qn−1 − q)(qn − q2) . . . (qn − qn−1)(qn + 1)
∑′

e
2πi

p Tr(m2+...mn)

+ qn−1(qn − q2) . . . (qn − qn−1)
∑′ ∑

mn+1 �=0
e

2πi
p Tr(m2+...mn+mn+1)

+ (qn−1 − 1)(qn − q2) . . . (qn − qn−1)
∑

m1 �=0

∑′ ∑
mn+1∈F

e
2πi

p Tr(m1+m2+...mn+mn+1)

where 
∑′

denotes the sum over m2, . . . , mn ∈ F such that 

⎡⎢⎢⎣
m1
m2
...

mn

⎤⎥⎥⎦ is the first column of 

an invertible matrix. Since 
∑

mn+1∈F

e
2πi

p Tr(mn+1) = 0, the last sum is 0, so we can rewrite 

ρA3 as

ρA3 = qn−1(qn − q2) . . . (qn − qn−1)
∑′ ∑

mn+1∈F

e
2πi

p Tr(m2+...mn+mn+1)

− q(qn − q2) . . . (qn − qn−1)
∑′

e
2πi

p Tr(m2+...mn).

The first sum is again zero because mn+1 varies over F . Now, since m1 = 0, m2, . . . , mn

cannot be all zeros and so∑′
e

2πi
p Tr(m2+...mn) =

∑
{m2,...,mn}�={0}

e
2πi

p Tr(m2+...mn)

=
∑

m2,...,mn∈F

e
2πi

p Tr(m2+...mn) − 1 = −1.

Hence, ρA3 = q(qn − q2) . . . (qn − qn−1).
Let A and B be n ×n matrices over F . Assume that rankA = rankB. Then there exist 

invertible matrices P and Q such that A = PBQ. Consider A = [aij ]n×n, B = [bij ]n×n, 
P = [pij ]n×n and Q = [qij ]n×n. For S = [sij ]n×n ∈ GLn(F ), we have

χA(S) = e
2πi

p Tr
(∑

1≤i,j≤n aijsij

)
.

From ∑
1≤i,j≤n

aijsij =
∑

1≤i,j≤n

( ∑
1≤k,l≤n

pilblkqkj

)
sij

=
∑

1≤i,j≤n

∑
1≤k,l≤n

blk(pilsijqkj)

=
∑

1≤k,l≤n

blk

∑
1≤i,j≤n

(pilsijqkj)
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and 
∑

1≤i,j≤n

pilsijqkj =
(
P tSQt

)
lk
, it follows that χA(S) = χB(P tSQt). Since P and Q

are invertible, GLn(F ) = P t GLn(F )Qt, so∑
S∈GLn(F )

χA(S) =
∑

S∈GLn(F )

χB(S).

Hence, we have shown:

Theorem 2.1. If A and B are n × n matrices over F of the same rank, then ρA = ρB.

Since CMn(F ) is connected and |GLn(F )|-regular, ρA1 induced from the zero matrix 
has multiplicity 1. Observe that ρA2 and ρA3 are induced by matrices of rank 1 and 
2, respectively. Since the set of characters are linearly independent, the multiplicities of 
them are the number of matrices of such rank. Suppose n = 2. The number of matrices of 
rank 1 is (q

2−1)2

q−1 = (q−1)(q+1)2 and the number of matrices of rank 2 is (q2−1)(q2−q). 
We record this result in:

Theorem 2.2. SpecCM2(F ) =
(
(q2 − 1)(q2 − q) −(q2 − q) q

1 (q − 1)(q + 1)2 (q2 − 1)(q2 − q)

)
and E(CM2(F )) = 2q(q2 − 1)2.

If n = 3, then ρA1 = (q3 − 1)(q3 − q)(q3 − q2), ρA2 = −(q3 − q)(q3 − q2) and ρA3 =
q(q3−q2) are eigenvalues of CM3(F ) induced from matrices of rank 0, 1 and 2, respectively. 
Let λ be the eigenvalue induced from matrices of rank 3. Counting the number of matrices 
of each rank gives

(q3 − 1)(q3 − q)(q3 − q2) − (q3 − q)(q3 − q2)
(q3 − 1)2

q − 1

+ q(q3 − q2)
(q3 − 1)2(q3 − q)2

(q2 − 1)(q2 − q)
+ (q3 − 1)(q3 − q)(q3 − q2)λ = 0.

Dividing by (q3−1)(q3−q)(q3−q2) implies λ = −q3. This proves the following theorem.

Theorem 2.3.

SpecCM3(F ) =
(
(q3 − 1)(q3 − q)(q3 − q2) −(q3 − q)(q3 − q2)

1 (q3 − 1)(q2 + q + 1)

q(q3 − q2) −q3

(q3 − 1)(q3 − q)(q2 + q + 1) (q3 − 1)(q3 − q)(q3 − q2)

)
.

Recall from Chapter 10 of [3] that a connected regular non-complete graph is strongly 
regular if and only if it has exactly three distinct eigenvalues. So, we can conclude from 
Theorem 2.2 that CM2(F ) is strongly regular. Next, we assume that n ≥ 3 and CMn(F ) is 



8 J. Rattanakangwanwong, Y. Meemark / Finite Fields Appl. 65 (2020) 101689

strongly regular. Then CMn(F ) has only three eigenvalues. From our computation, they 
must be ρA1 , ρA2 and ρA3 . Suppose the multiplicities of ρA2 and ρA3 are m2 and m3, 
respectively. Since the sum of eigenvalues of CMn(F ) is 0, we have

(qn−1)(qn−q) . . . (qn−qn−1)−(qn−q) . . . (qn−qn−1)m2+q(qn−q2) . . . (qn−qn−1)m3 = 0.

Dividing by (qn − q2) . . . (qn − qn−1) gives

(qn − 1)(qn − q) − (qn − q)m2 + qm3 = 0.

Note that 1 + m2 + m3 = qn2
, so m2 = qn2 − m3 − 1. Putting this m2 in the previous 

equation gives m3 = q(qn−1 − 1)(qn2−n − 1). Recall from Corollary 8.1.3 of [3] that the 
sum of square of eigenvalues of the adjacency matrix A is the trace of A2 which is twice 
of the number of edges of the graph. Since our graph is |GLn(F )|-regular, if En is the 
number of edges, then

2En = qn2
(qn − 1) . . . (qn − qn−1).

This yields another relation on m2 and m3 given by

((qn − 1)(qn − q) . . . (qn − qn−1))2 + ((qn − q) . . . (qn − qn−1))2m2

+ (q(qn − q2) . . . (qn − qn−1))2m3 = qn2
(qn − 1) . . . (qn − qn−1).

Dividing by (qn − q2) . . . (qn − qn−1) and substituting m3 = q(qn−1 − 1)(qn2−n − 1) give

(qn − 1)2(qn − q)2 . . . (qn − qn−1) + (qn − q)2(qn − q2) . . . (qn − qn−1)m2

+ q3(qn − q2) . . . (qn − qn−1)(qn−1 − 1)(qn2−n − 1)

= qn2
(qn − 1)(qn − q).

Since qn2−n −1 =
(
qn−1)n −1, the left hand side is divisible by (qn−1−1)2, so (qn−1−1)2

divides qn2
(qn − 1)(qn − q). It follows that qn−1 − 1 divides qn2+1(qn − 1). Since q and 

qn −1 are relatively prime, we have qn−1−1 divides qn −1 = qn −q+(q −1), so qn−1−1
divides q − 1 which is a contradiction because n ≥ 3. Therefore, we have our desired 
result.

Theorem 2.4. The graph CMn(F ) is strongly regular if and only if n = 2.

From the above theorem, we learn that CMn(F ) is not strongly regular for n ≥ 3. Since 
it is edge regular with λ = en, there are more than one value of the number of common 
neighborhoods of non-adjacent vertices in CMn(F ). If A, B ∈ Mn(F ) and rank(A −B) = r

for some 0 < r ≤ n, then there exist invertible matrices P, Q such that
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P (A − B)Q =
[

Ir 0r×(n−r)
0(n−r)×r 0(n−r)×(n−r)

]
.

For A ∈ Mn(F ), let N(A) be the set of neighbors of A. According to Kiani (in the proof 
of Lemma 2.1 of [7]), we have

|N(A) ∩ N(B)| =
∣∣∣∣([Ir 0

0 0

]
+GLn(F )

)
∩ GLn(F )

∣∣∣∣
for all A, B ∈ Mn(F ) with A �= B. It gives the number of common neighbors of any pair 
of two vertices A and B in Mn(F ). For 1 ≤ r ≤ n, we define

d(n, r) =
∣∣∣∣([Ir 0

0 0

]
+GLn(F )

)
∩ GLn(F )

∣∣∣∣ .
Since two matrices A and B are adjacent if and only if rank(A − B) = n, we have 
d(n, n) = en where en is mentioned in Section 1. Observe that d(n, r) is the number of 

invertible matrices A such that A −
[
Ir 0
0 0

]
is also invertible. Now, let {�e1, �e2, . . . , �en}

be the standard basis of F n. Consider the set X of vectors given by

X = {A = [�a1 �a2 . . . �an ] ∈ GLn(F ) : �a1 ∈ �e1 + Span{�a2, . . . ,�an}} .

Note that if A ∈ X , then A is invertible but A −
[

Ir 0
0 0

]
is not invertible. We proceed 

to compute d(n, 1). Since d(n, 1) = | GLn(F )| − |X |, we shall determine the cardinality 

of X . Let A = [aij ]n×n be in X . Then rankA = n and rank
(

A −
[
1 0
0 0

])
= n − 1. 

It follows that �a1 /∈ Span{�a2, . . . , �an} but �a1 ∈ �e1 + Span{�a2, . . . , �an}. This forces that 
�e1 /∈ Span{�a2, . . . , �an}. Also, {�a2, . . . , �an} must be linearly independent. Thus, there are 
(qn − q) . . . (qn − qn−1) choices for {�a2, . . . , �an}. As for �a1, it suffices to count under 
a condition �a1 ∈ �e1 + Span{�a2, . . . , �an} because if �a1 ∈ Span{�a2, . . . , �an}, then �e1 ∈
Span{�a2, . . . , �an}, which is absurd, so there are qn−1 choices for �a1. Hence,

|X | = qn−1(qn − q) . . . (qn − qn−1).

Then

Theorem 2.5. d(n, 1) = | GLn(F )| − |X | = (qn − qn−1 − 1)(qn − q) . . . (qn − qn−1).

Remark. For r ≥ 2, we can find a lower bound for d(n, r). Consider a matrix of the form 

Y =
[

A 0
B C

]
where A, B and C are r × r, (n − r) × r and (n − r) × (n − r) matri-

ces, respectively. It is easy to see that detY = detA detC, and det
(

X −
[

Ir 0
0 0

])
=
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det(A − Ir) detC. If we choose A to be a derangement matrix and C is an invert-

ible matrix, then Y and Y −
[

Ir 0
0 0

]
are invertible. Since there are er choices for 

A, qr(n−r) choices for B, and (qn−r − 1) . . . (qn−r − qn−r−1) choices for C, we have 
d(n, r) ≥ erqr(n−r)(qn−r − 1) . . . (qn−r − qn−r−1) = er(qn − qr) . . . (qn − qn−1).

3. Hyperenergetic graphs and Ramanujan graphs

Let F be a finite field of q elements. In this section, without explicitly computing the 
spectrum of the graph, we show that the graph CMn(F ) is hyperenergetic for all n ≥ 2
and characterize n and q such that CMn(F ) is Ramanujan.

Since q3 − 1 = (q − 1)(q2 + q + 1) > q2 + q, we get q(q2 − 1) = q3 − q > q2 + 1, so 
E(CM2(F )) = 2q(q2 − 1)2 > 2(q4 − 1). Then CM2(F ) is hyperenergetic. Next, we assume 
that n ≥ 3. Recall that ρA3 = q(qn − q2) . . . (qn − qn−1) is an eigenvalue of CMn(F ) with 

multiplicities at least 
(qn − 1)2(qn − q)2

(q2 − 1)(q2 − q)
. It follows that

E(CMn(F )) > q(qn − q2) . . . (qn − qn−1)
(qn − 1)2(qn − q)2

(q2 − 1)(q2 − q)
.

Thus, to show that CMn(F ) is hyperenergetic, it suffices to prove

q(qn − q2) . . . (qn − qn−1)
(qn − 1)2(qn − q)2

(q2 − 1)(q2 − q)
> 2(qn2 − 1).

Since | GLn(F )| = (qn − 1)(qn − q) . . . (qn − qn−1), the above inequality is equivalent to

|GLn(F )| >
2(q2 − 1)(q2 − q)(qn2 − 1)

q(qn − 1)(qn − q)
.

We shall use induction on n ≥ 3 to show that this inequality holds and conclude that 
CMn(F ) is hyperenergetic. If n = 3, then the right-hand side becomes

2(q2 − 1)(q2 − q)(q9 − 1)
q(q3 − 1)(q3 − q)

=
2(q − 1)

q
(q6 + q3 + 1)

and

|GL3(F )| = (q − 1)3(q6 + 2q5 + 2q4 + q3) > (q − 1)3(q6 + q3 + 1).

Since q ≥ 2, we have q(q − 1)2 ≥ 2. Then (q − 1)3 ≥ 2(q − 1)
q

and the inequality is valid 

for n = 3. Now, let n ≥ 4 and assume that
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|GLn−1(F )| ≥ 2(q2 − 1)(q2 − q)(q(n−1)2 − 1)
q(qn−1 − 1)(qn−1 − q)

=
2q(q2 − 1)(q2 − q)(q(n−1)2 − 1)

q(qn − q)(qn−1 − q)

≥ 2q(q2 − 1)(q2 − q)(q(n−1)2 − 1)
q(qn − q)(qn − 1)

where the last inequality comes from qn − 1 − (qn−1 − q) = (qn−1 + 1)(q − 1) ≥ 0. Since 
| GLn(F )| = (qn − 1)(qn − q) . . . (qn − qn−1) = qn−1(qn − 1)| GLn−1(F )|, it follows from 
the previous inequality that

|GLn(F )| ≥ qn−1(qn − 1)
2q(q2 − 1)(q2 − q)(q(n−1)2 − 1)

q(qn − q)(qn − 1)

and so it remains to show that qn(qn − 1)(q(n−1)2 − 1) ≥ qn2 − 1. Rewrite

qn(qn − 1)(q(n−1)2 − 1) − qn2
+ 1 = qn(qn2−n+1 − qn2−2n+1 − qn + 1) − qn2

+ 1

= qn2+1 − qn2−n+1 − qn2 − q2n + qn + 1

= qn2−n+1 (qn−1(q − 1) − 1
)− q2n + qn + 1.

Since n ≥ 4 and q ≥ 2,

qn2−n+1 (qn−1(q − 1) − 1
)− q2n ≥ qn2−n+1 − q2n = q2n(qn2−3n+1 − 1) ≥ 0.

This completes the proof of the next theorem.

Theorem 3.1. CMn(F ) is hyperenergetic for all n ≥ 2.

Recall that a k-regular graph is Ramanujan if |λ| ≤ 2
√

k − 1 for all eigenvalues λ other 
than ±k. Since eigenvalues of a graph are real numbers, this inequality is equivalent to 
λ2 − 4(k − 1) ≤ 0. We know that CMn(F ) is regular with parameter k = (qn − 1)(qn −
q) . . . (qn − qn−1). If n = 2, then its eigenvalues are (q2 − 1)(q2 − q), −(q2 − q) and q. 
Since q ≥ 2, we have q2 − q ≥ 2, so

q2 + 4 ≤ 4q2 and (q2 − q)2 + 4 ≤ 4(q2 − q).

The first inequality gives q2 + 4 ≤ 4q(q + 1)(q − 1)2 which is equivalent to q2 − 4(q2 −
1)(q2−q) +4 ≤ 0 and the second inequality directly proves (q2−q)2 < 4(q2−1)(q2−q) −4. 
Thus, CM2(F ) is Ramanujan. Now suppose that n ≥ 3 and CMn(F ) is a Ramanujan graph. 
From the computation in the previous section, ρA3 = (qn − q)(qn − q2) . . . (qn − qn−1) is 
an eigenvalue of CMn(F ), so
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0 ≥ ρ2A3 −4(qn−1)(qn−q) . . . (qn−qn−1)+4 = ρ2A3 −4(qn−1)ρA3+4 = (ρA3+2)2−4qnρA3 .

It follows that 4qnρA3 ≥ (ρA3 + 2)2 > ρ2A3
, so 4qn > ρA3 . For n = 3, this must imply 

that q = 2 and for n ≥ 4, we have n + 2 ≤ (n−1)n
2 and so

4qn > ρA3 = q
(n−1)n

2 (qn−1 − 1)(qn−2 − 1) . . . (q − 1) > q
(n−1)n

2

which leads to a contradiction for all q ≥ 2. Finally, if n = 3 and q = 2, by Theorem 2.3, 
we have −(23 − 2)(23 − 22) = −24, 2(23 − 22) = 8 and −23 = −8 are eigenvalues of 
CM3(Z2) and 4((23 − 1)(23 − 2)(23 − 22) − 1) = 668 is greater than 242 and 82. Hence, 
CM3(Z2) is also Ramanujan.

We record this result in the following theorem.

Theorem 3.2. The graph CMn(F ) is Ramanujan if and only if n = 2 or (n = 3 and 
F = Z2).

4. The unitary Cayley graph of product of matrix rings over finite local rings

Let R be a local ring with unique maximal ideal M and residue field k. Recall that 
R/M ∼= k results in Mn(R)/ Mn(M) ∼= Mn(k). Then elements in R can be partitioned 
into cosets of M and can be viewed as lifting from elements of k. Suppose |M | = m and 
|k| = q. We fix A1, . . . , Aqn2 to be coset representatives of Mn(M) in Mn(R).

Lemma 4.1. Let A ∈ Mn(R) and X ∈ Mn(M). Then

det(A + X) = (detA) + m for some m ∈ M.

In particular, A is invertible if and only if A + X is invertible.

Proof. Write A = [aij ]n×n and X = [mij ]n×n. Then

det(A + X) =
∑

σ∈Sn

(sgn σ)(a1σ(1) + m1σ(1)) . . . (anσ(n) + mnσ(n))

=
∑

σ∈Sn

(sgn σ)(a1σ(1) . . . anσ(n)) + m = (detA) + m

for some m ∈ M . �
The above lemma directly implies the following theorem.

Theorem 4.2.

(1) For A, B ∈ Mn(R), A and B are adjacent in CMn(R) if and only if A +Mn(M) and 
B +Mn(M) are adjacent in CMn(k).
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(2) The set Mn(R)/ Mn(M) = {A1 +Mn(M), . . . , Aqn2 +Mn(M)} is a partition of the 
vertex set of CMn(R) such that
(a) for each i ∈ {1, . . . , qn2}, any two distinct vertices in Ai +Mn(M) are nonadja-

cent vertices, and
(b) for i, j ∈ {1, . . . , qn2}, Ai and Aj are adjacent in CMn(R) if and only if Ai +

Mn(M) and Aj +Mn(M) are adjacent in CMn(k).
(3) Let M̊n(M) be the complete graph of | Mn(M)| vertices with a loop on every ver-

tex. Define f : Mn(k) × Mn(M) → Mn(R) by f(Ai + Mn(M), X) = Ai + X for 
all i ∈ {1, . . . , qn2} and X ∈ Mn(M). Then f is an isomorphism from the graph 
CMn(k) ⊗ M̊n(M) onto the graph CMn(R).

Proof. The above discussion implies (1) and (2) For (3), we first show that f is an 
injection. Let i, j ∈ {1, . . . , qn2} and X, Y ∈ Mn(M) such that Ai + X = Aj + Y . Then 
Ai − Aj = Y − X ∈ Mn(M). This forces that Ai +Mn(M) = Aj +Mn(M) in Mn(k), 
so i = j and X = Y . Since | Mn(k) × Mn(M)| = | Mn(R)|, f is a bijection. Finally, for 
i, j ∈ {1, . . . , qn2} and X, Y ∈ Mn(M), we have (Ai +Mn(M), X) and (Aj +Mn(M), Y )
are adjacent in CMn(k) ⊗ M̊n(M) if and only if Ai+Mn(M) and Aj+Mn(M) are adjacent 
if and only if Ai and Aj are adjacent by (2). Hence, f is a graph isomorphism. �

Next, we assume that R is a finite local ring which is not a field with unique maximal 
ideal M and residue field k. Let |M | = m and |k| = q. Since the adjacency matrix of 

M̊n(M) is the all-ones matrix of size mn2
, we have Spec

(
M̊n(M)

)
=
(

mn2
0

1 mn2 − 1

)
and (qn −1)(qn −q) . . . (qn −qn−1), −(qn −q) . . . (qn −qn−1) and q(qn −q2) . . . (qn −qn−1)
are eigenvalues of CMn(k). Since the eigenvalues of G ⊗ H are λiμj where λi’s and μj ’s 
are eigenvalues of G and H, respectively, we can conclude from the isomorphism in 
Theorem 4.2 (3) that 0, mn2

(qn − 1)(qn − q) . . . (qn − qn−1), −mn2
(qn − q) . . . (qn − qn−1)

and mn2
q(qn −q2) . . . (qn −qn−1) are distinct eigenvalues of CMn(R). Then we have shown 

the following theorem.

Theorem 4.3. If R is a local ring which is not a field and n ≥ 2, then CMn(R) is not 
strongly regular.

However, it turns out that the graph CMn(R) is hyperenergetic.

Theorem 4.4. If R is a local ring, then CMn(R) is hyperenergetic for all n ≥ 2.

Proof. Let k be the residue field of R and assume that |k| = q. Recall that CMn(k) is 
hyperenergetic and CMn(R) has −mn2

q(qn − q2) . . . (qn − qn−1) as an eigenvalue with 

multiplicities at least 
(qn − 1)2(qn − q)2

(q2 − 1)(q2 − q)
. The proof of Theorem 3.1 tells us that
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q(qn − q2) . . . (qn − qn−1)
(qn − 1)2(qn − q)2

(q2 − 1)(q2 − q)
> 2(qn2 − 1).

Note that the left-hand side is a multiple of q. It follows that

q(qn − q2) . . . (qn − qn−1)
(qn − 1)2(qn − q)2

(q2 − 1)(q2 − q)
≥ 2qn2

.

Multiplying by mn2
both sides gives

mn2
q(qn − q2) . . . (qn − qn−1)

(qn − 1)2(qn − q)2

(q2 − 1)(q2 − q)
≥ 2(mq)n

2
> 2((mq)n

2 − 1)

which completes the proof. �
Theorem 4.5. If R is a local ring which is not a field, then CMn(R) is not Ramanujan for 
all n ≥ 2.

Proof. For simplicity, let r = | GLn(k)|. We first handle case n ≥ 3 and q ≥ 3. Then 
CMn(k) is not Ramanujan by Theorem 3.2. From the proof of Theorem 3.2, we have 
(qn − q) . . . (qn − qn−1) ≥ 2

√
r − 1. Thus,

mn2
(qn − q) . . . (qn − qn−1) ≥ 2mn2√

r − 1,

so we must show that mn2√
r − 1 >

√
mn2r − 1. Rewrite

m2n2
(r − 1) − (mn2

r − 1) = (mn2 − 1)(mn2
r − mn2 − 1).

Since R is not a field, we have m ≥ 2, so (mn2 − 1)(mn2
r − mn2 − 1) > 0 and the desired 

inequality follows. Next, we assume that n = 3 and q = 2. Then −m9(23 − 2)(23 −
22) = −24m9 is an eigenvalue of CM3(R). Moreover, r = m9(23 − 1)(23 − 2)(23 − 22) =
168m9. We have 576m18 − 4(168m9 − 1) = m9(576m9 − 672) + 4. Since m ≥ 2, we get 
24m9 > 2

√
168m9 − 1. Finally, if n = 2, then −m4(q2 − q) is an eigenvalue of CM2(R)

and r = m4(q2 − 1)(q2 − q), so

m8(q2 − q)2 − 4(m4(q2 − 1)(q2 − q) − 1) = m8(q2 − q)2 − 4m4(q2 − 1)(q2 − q) + 4

≥ m8(q2 − q)2 − 4m4(q2 − q)2 + 4

= (m8 − 4m4)(q2 − q)2 + 4 > 0

because m ≥ 2. Hence, CM2(R) is not Ramanujan. �
Let R1, . . . , Rs be finite local rings with maximal ideals M1, . . . , Ms and residue fields 

k1, . . . , ks, respectively. Let R = Mn1(R1) × · · · × Mns
(Rs) where n1, . . . ns ∈ N. By 

Theorem 3.8 of [6], we have
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χ(CR) = ω(CR) = ω(CMn1 (k1)×···×Mnk
(kk)) = min

1≤i≤s
{|ki|ni}.

Finally, we compute α(CR). Theorem 4.2 (3) gives

CR ∼= (
CMn1 (k1) ⊗ · · · ⊗ CMns (ks)

)⊗ (
M̊n1(M1) ⊗ · · · ⊗ M̊ns

(Ms)
)
.

Since the second product is a complete graph with a loop on each vertex, we can see 
that

α(CR) = α(CMn1 (k1) ⊗ · · · ⊗ CMns (ks))
s∏

i=1

|Mni
(Mi)|

=

s∏
i=1

|Mni
(ki)|

min
1≤i≤s

{|ki|ni}
s∏

i=1

|Mni
(Mi)| = |R|

min
1≤i≤s

{|ki|ni} .

Thus, we prove:

Theorem 4.6. ω(CR) = χ(CR) = min
1≤i≤s

{|ki|ni} and α(CR) =
|R|

min
1≤i≤s

{|ki|ni} .

For each 1 ≤ i ≤ s, let |Mi| = mi and |ki| = qi. Recall that ρi = −mi
ni

2
qi(qi

n −
qi
2) . . . (qi

n −qi
n−1) is an eigenvalue of CMni

(Ri) with multiplicities at least ti where ti =
(qi

n − 1)2(qi
n − qi)2

(qi
2 − 1)(qi

2 − qi)
for all i. Hence, 

∏s
i=1 ρi is an eigenvalue of CR with multiplicities 

at least 
∏s

i=1 ti. By Theorem 4.3, we have ρiti > 2(| Mni
(Ri)| − 1) for all 1 ≤ i ≤ s. 

Note that the left-hand side is a multiple of qi. We can conclude that ρiti ≥ 2|Ri|ni
2
. It 

follows that

s∏
i=1

ρi

s∏
i=1

ti =
s∏

i=1

ρiti ≥
s∏

i=1

2|Mni
(Ri)| = 2s

s∏
i=1

|Mni
(Ri)| > 2

(
s∏

i=1

|Mni
(Ri)| − 1

)
.

This proves

Theorem 4.7. The graph CR is hyperenergetic. In particular, if R is a finite commutative 
ring, then CMn(R) is hyperenergetic for all n ≥ 2.

Remark. The later statement comes from the fact that every finite commutative ring 
is isomorphic to a direct product of finite local rings. Indeed, we can use this fact and 
Theorem 4.6 to compute the clique number, chromatic number and independence number 
for the unitary Cayley graph of a matrix ring over a finite commutative ring.
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undirected graph Cay(G, S) whose vertex set is G and for each g, h ∈ G, g is adjacent 
to h if and only if g = hs for some s ∈ S. We say that a Cayley graph is normal if S is 
a union of conjugacy classes of G.

For a finite ring R with identity 1 �= 0, we know that (R, +) is an abelian group and 
we denote its group of units by R×. The unitary Cayley graph of R, CR, is the graph 
Cay(R, R×), that is, its vertex set is R and for each x, y ∈ R, x is adjacent to y if and 
only if x − y ∈ R×. Many properties of the unitary Cayley graphs have been extensively 
studied by many authors such as [1,5,9,11,14]. Since a finite commutative ring R can 
be decomposed as a direct product of finite local rings R1, . . . , Rs, the graph CR is the 
tensor product of the graphs CR1 , . . . , CRs

. Here, for graphs G and H with vertex sets 
V (G) and V (H), the tensor product G and H, G ⊗ H, is the graph with vertex set 
V (G) × V (H) such that (a, b) is adjacent to (c, d) if and only if a is adjacent to c in G
and b is adjacent to d in H for all a, c ∈ V (G) and b, d ∈ V (H). In addition, if R is a 
finite local ring with maximal ideal M , it follows from Proposition 2.2 of [1] that CR is a 
complete multi-partite graph whose partite sets are the cosets of M . Thus, the unitary 
Cayley graphs of finite commutative rings are well studied. Their spectral properties 
including energies are completely determined in [11].

Let G be a graph and V (G) the vertex set of G. We give some terminologies from 
graph theory as follows. A clique is a subgraph that is a complete graph and clique 
number of G is the size of largest clique in G, denoted by ω(G). A set I of vertices of G
is called an independent set if no distinct vertices of I are adjacent. The independence 
number of G is the size of a maximal independent set, denoted by α(G). The chromatic 
number of G is the least number of colors needed to color the vertices of G so that no 
two adjacent vertices share the same color. We write χ(G) for the chromatic number of 
G. If every vertex of G is adjacent to k vertices, then G is a k-regular graph. Clearly, 
the above Cayley graph associated to a set S is a |S|-regular graph. Finally, we say 
that a k-regular graph G is edge regular if there exists a parameter λ such that for any 
two adjacent vertices, there are exactly λ vertices adjacent to both of them. If an edge 
regular graph with parameters k, λ also satisfies an additional property that for any two 
non-adjacent vertices, there are exactly μ vertices adjacent to both of them, then it is 
called a strongly regular graph with parameters k, λ, μ.

An eigenvalue of a graph G is an eigenvalue of the adjacency matrix of a graph G. 
The energy of a graph G, E(G), is the sum of absolute value of its eigenvalues. The 
spectrum of a graph G is the list of its eigenvalues together with their multiplicities. 
If λ1, . . . , λr are eigenvalues of a graph G with multiplicities m1, . . . , mr, respectively, 

we write SpecG =
(

λ1 . . . λr

m1 . . . mr

)
to describe the spectrum of G and so E(G) =

m1|λ1| + · · · + mr|λr|. A graph G on n vertices is hyperenergetic if its energy exceeds 
the energy of the complete graph Kn, that is, E(G) > 2(n − 1). A k-regular connected 
graph G is a Ramanujan graph if |λ| ≤ 2

√
k − 1 for all eigenvalues λ of G other than 
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±k. Spectral gap of Ramanujan graph is almost as large as possible, so it is a great 
spectral expander. Its name comes from Lubotzky, Phillips and Sarnak [15] who used 
the Ramanujan conjecture to construct an infinite family of such graphs.

For a ring R with identity 1 �= 0 and n ∈ N, Mn(R) is the ring of n × n matrices over 
R and the group of all invertible matrices over R is denoted by GLn(R). Throughout 
this work, In is the n × n identity matrix and 0m×n is the m × n zero matrix for all 
m, n ∈ N.

Kiani et al. [12] worked on the unitary Cayley graph of the ring Mn1(F1) × · · · ×
Mnk

(Fk) where n1, . . . , nk ∈ N and F1, . . . , Fk are finite fields. They computed the 
clique number, the chromatic number and the independence number of the graph. Later 
in [13], they proved that CMn(F ) is an edge regular graph with k = | GLn(F )| and 
λ = |(In +GLn(F )) ∩ GLn(F )| = en where F is a finite field and en is the number of 
derangement matrices. (A derangement matrix in Mn(F ) is an invertible matrix that does 
not fix any nonzero vectors in F n.) We know from [16] that if |F | = q, then en satisfies 
the recursion en = en−1(qn − 1)qn−1 + (−1)nqn(n−1)/2 and e0 = 1. Kiani proved further 

that CM2(F ) is strongly regular with μ =
∣∣∣∣([1 0

0 0

]
+GL2(F )

)
∩ GL2(F )

∣∣∣∣ but CM3(F )

is not strongly regular where F is a finite field. Recently, the authors [17] used additive 
characters of Mn(F ) where F is a finite field and n ∈ N to determine three distinct 
eigenvalues of CMn(F ) and use them to conclude that the graph CMn(F ) is strongly 
regular if and only if n = 2. We also showed that CMn(F ) is always hyperenergetic and 
gave a criterion for being a Ramanujan graph. Chen et al. [3] obtained all eigenvalues of 
CMn(F ) using Bruhat’s decomposition.

Let G be a graph and x a vertex of G. The first subconstituent of G at x is the subgraph 
of G induced by the set of neighborhoods of x and the second subconstituent of G at x
is the subgraph of G induced by the set of vertices which is non-adjacent to x except x
itself. Subconstituents of strongly regular graphs are studied in many graphs and have 
many interesting properties. The second subconstituent of the Hoffman-Singleton graph 
is determined by its spectrum in [6]. Moreover, the discovery of which graph has strongly 
regular subconstituents interests mathematicians. For example, Cameron et al. [4] used 
the Bose-Mesner algebra of a strongly regular graph to classify strongly regular graphs 
whose subconstituents are strongly regular, and Kasikova [10] used the same tools to 
classify distance-regular graph which has strongly regular subconstituents. In addition, 
we can use eigenvalues of subconstituents to prove the uniqueness of strongly regular of 
some parameter, e.g., Clebsch graph is a unique strongly regular graph with parameters 
(16, 5, 0, 2) (see [8] p.230).

Now, we turn to the subconstituents of the unitary Cayley graph. Let R be a finite 
ring with identity 1 �= 0. The set of neighborhood of a vertex x of the graph CR is 
denoted by N(x). For x ∈ R, the maps f : N(0) → N(x) and g : R � (N(0) ∪ {0})
→ R � (N(x) ∪ {x}) which both send y to x − y are graph isomorphisms. Hence, we 
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may only study the subconstituents at x = 0 and we write C(1)R and C(2)R for the first 
subconstituent and the second subconstituent of CR at x = 0 ∈ R, respectively. Let 
F be a finite field and n ∈ N. In this work, we study C(1)Mn(F ) and C(2)Mn(F ). The graph 

C(1)Mn(F ) is defined on the group GLn(F ) and the graph C(2)Mn(F ) is defined on the set of 

nonzero non-invertible matrices over F . We have the structure of C(1)Mn(F ) and C(2)M2(F ). 

We can determine the spectra of C(1)M2(F ) and C(2)M2(F ) and conclude hyperenergeticity and 
Ramanujan property for both graphs. In addition, we compute the clique number, the 
chromatic number and the independence number of C(1)Mn(F ) and C(2)M2(F ).

Next, we recall some results from representation theory used in this work. We refer 
the reader to [7] for more detail. Let G be a finite group and V a finite-dimensional 
complex vector space. A representation of G on V is a homomorphism ρ : G → GL(V )
where GL(V ) denotes the group of automorphisms on V . For a representation ρ of G on 
V , a subspace W of V is ρ-invariant under G if ρ(g)(W ) ⊆ W for all g ∈ G. If ρ has 
no proper invariant subspace of V , then we say that ρ is an irreducible representation. 
Next, we define a character of a representation. Let ρ be a representation of G on V . 
Then for each g ∈ G, ρ(g) is a linear transformation on V . A character χ corresponding 
to ρ is the complex-valued function on G defined by χ(g) = tr(ρ(g)) for all g ∈ G where 
tr(ρ(g)) is the trace of the matrix representation of ρ(g) on V . A character is said to be 
irreducible if they are induced from an irreducible representation. The dimension of a 
character is the dimension of vector space V . It is easy to see that χ(1) = dimV where 
1 is the identity of the group G, and χ(ghg−1) = χ(h) for all g, h ∈ G. Thus, a character 
is a constant on a conjugacy class of G. Moreover, we have known from [18] that if S
is a union of conjugacy classes of G and χ1, . . . , χr are irreducible characters of G, then 
the eigenvalues of Cay(G, S) are

λj =
1

χj(1)
∑
s∈S

χj(s)

with multiplicity mj =
r∑

k=1
λk=λj

χk(1)2 for all j ∈ {1, . . . , r}.

Let F be the finite field of q elements. Recall that the multiplicative group of nonzero 
elements of F is cyclic. Write F × = 〈a〉 for some a ∈ F ×. The irreducible characters of 
the group (F ×, ·) are χk(x) = e

2πimk
q−1 , where x = am ∈ F × and k ∈ {0, 1, 2, . . . , q − 2}. 

In addition, we have

Theorem 1.1. For k ∈ {0, 1, . . . , q − 2}, 
∑

x∈F ×
χk(x) =

{
q − 1 if k = 0,
0 otherwise.

The conjugacy classes of GL2(F ) are given in the following table.
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Representatives Number of elements Number of classes

ax =
(

x 0
0 x

)
, x �= 0 1 q − 1

bx =
(

x 1
0 x

)
, x �= 0 q2 − 1 q − 1

cx,y =
(

x 0
0 y

)
, x �= y and x, y �= 0 q2 + q

(q − 1)(q − 2)
2

dx,y =
(

x εy
y x

)
, y �= 0 (q is odd)

dz =
(
0 zq+1

1 z + zq

)
, z ∈ E � F (q is even)

q2 − q
q(q − 1)

2

where ε ∈ F � F 2. Here, cx,y and cy,x are conjugate, dx,y and dx,−y are conjugate, and 
dz and dzq are conjugate. Moreover, let E = F [

√
ε] an extension of F of degree two. We 

can identify the matrices dx,y as ζ = x +y
√

ε and the matrices dz as z in E�F . Now, let 
α, β be distinct irreducible character of F × and ϕ an irreducible characters of E× such 
that ϕq �= ϕ and ϕ is not an irreducible character of F ×. The next table presents all 
irreducible characters of GL2(F ). As mentioned earlier, it suffices to specify their values 
on each conjugacy class of GL2(F ).

ax =
(

x 0
0 x

)
bx =

(
x 1
0 x

)
cx,y =

(
x 0
0 y

) q is odd

dx,y =
(

x εy
y x

)
= ζ

q is even

dz =
(
0 zq+1

1 z + zq

)
= z

Uα α(x2) α(x2) α(xy) α(ζq) α(zq)

Vα qα(x2) 0 α(xy) −α(ζq) −α(zq)

Wα,β (q + 1)α(x)β(x) α(x)β(x) α(x)β(y) + α(y)β(x) 0 0

Xϕ (q − 1)ϕ(x) −ϕ(x) 0 − (ϕ(ζ) + ϕ(ζq)) − (ϕ(z) + ϕ(zq))

Moreover, Uα, Vα, Wα,β and Xϕ are of dimension 1, q, q + 1 and q − 1, respectively.
The paper is organized as follows. In the next section, we prove that the graph C(1)Mn(F )

is a normal Cayley graph and we determine all eigenvalues of the graph C(1)M2(F ) by 
using the two tables above. We show further that it is hyperenergetic and Ramanujan 
if q ≥ 3. In Section 3, we show that the graph C(1)M2(F ) is the tensor product between a 
complete graph and a complete multi-partite graph, and obtain its spectrum. We apply 
this result to conclude that C(2)M2(F ) is hyperenergetic but it is not Ramanujan if q ≥ 5. 
We compute the clique number, chromatic number and the independence number of the 
subconstituents of the graph CM2(F ) in the final section.

2. Spectral properties of C(1)
M2(F )

In this section, we study spectral properties of C(1)M2(F ). We start by showing that 

C(1)Mn(F ) is Cay (GLn(F ), (In +GLn(F )) ∩ GLn(F )). To see this, let A, B ∈ GLn(F ). 
Then AB−1 ∈ GLn(F ) and

A − B ∈ GLn(F ) ⇐⇒ (AB−1 − In)B−1 ∈ GLn(F )

⇐⇒ (AB−1 − In) ∈ GLn(F )
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⇐⇒ AB−1 ∈ (In +GLn(F )) ∩ GLn(F ).

It also follows that the graph C(1)Mn(F ) is regular of degree |(In +GLn(F )) ∩ GLn(F )| =
en, defined in the previous section. Moreover, for A, B ∈ GLn(F ), we have

ABA−1 ∈ (In +GLn(F )) ∩ GLn(F ) ⇐⇒ ABA−1 − In ∈ GLn(F )

⇐⇒ A(B − In)A−1 ∈ GLn(F )

⇐⇒ (B − In) ∈ GLn(F )

⇐⇒ B ∈ (In +GLn(F )) ∩ GLn(F ).

Thus, (In +GLn(F )) ∩ GLn(F ) is a union of conjugacy classes, so C(1)Mn(F ) is a normal 
Cayley graph. We record this result in

Theorem 2.1. The graph C(1)Mn(F ) is the normal Cayley graph of GLn(F ) associated with 
(In +GLn(F )) ∩ GLn(F ) and it is regular of degree en.

Next, we determine all eigenvalues of C(1)M2(F ). Let k ∈ {0, 1, . . . , q − 2} and consider 
χk an irreducible character of F ×. We first handle the case q is odd by showing some 
lemmas on sums of characters of F ×.

Lemma 2.2. If q is odd, then for k ∈ {0, 1, . . . , q − 2},

∑
x∈F ×

χk(x2) =

⎧⎪⎨⎪⎩q − 1 if k ∈
{
0,

q − 1
2

}
,

0 otherwise.

Proof. We know that

∑
x∈F ×

χk(x2) =
q−2∑
m=0

χk(a2m) =
q−2∑
m=0

e
4πimk

q−1 =
q−2∑
m=0

(
e

4πik
q−1

)m

.

Note that e
4πik
q−1 = 1 if and only if k = 0 or k =

q − 1
2

. If k ∈
{
0,

q − 1
2

}
, then ∑

x∈F ×
χk(x2) = q − 1. Finally, if k /∈

{
0,

q − 1
2

}
, then

∑
x∈F ×

χk(x2) =
1 −

(
e

4πik
q−1

)q−1

1 −
(

e
4πik
q−1

) = 0,

and the proof completes. �
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Lemma 2.3. If q is odd, then for k ∈ {0, 1, . . . , q − 2} and ε ∈ F � F 2, we have

(a)
∑

x,y∈F ×
�{1}

and x �=y

χk(xy) =

⎧⎪⎪⎨⎪⎪⎩
q2 − 5q + 6 if k = 0,

−q + 3 if k =
q − 1
2

,

2 otherwise,

and

(b)
∑

(x,y)∈F ×F ×
χk(x2 − εy2) =

⎧⎪⎪⎨⎪⎪⎩
q2 − q if k = 0,

−q + 1 if k =
q − 1
2

,

0 otherwise.

Proof. We note that

∑
x,y∈F ×

�{1}
and x�=y

χk(xy) =

( ∑
x∈F ×

χk(x)

)⎛⎝ ∑
y∈F ×

χk(y)

⎞⎠−
∑

x∈F ×
χk(x2)

−
∑

x∈F ×�{1}
χk(x) −

∑
y∈F ×�{1}

χk(y)

=

( ∑
x∈F ×

χk(x)

)2

−
( ∑

x∈F ×
χk(x2)

)
− 2

( ∑
x∈F ×

χk(x)

)
+ 2.

If k = 0, then applying Lemma 2.2 gives the right-hand side equals q2 − 5q + 6. If 
k =

q − 1
2

, then the right-hand side is −q + 3. Finally, if k /∈ {0, 
q − 1
2

}, then the 
summands on the right-hand side are all gone and we get 2 left. This proves (a).

For (b), since ε ∈ F � F 2, E = F [
√

ε] an extension of degree two of F . Thus, 
E = {x + y

√
ε : x, y ∈ F}. Moreover, let NE/F be the norm map. Recall that for 

x, y ∈ F , NE/F (x + y
√

ε) = x2 − εy2 and by Hilbert’s Theorem 90, NE/F is surjective 
with kernel of size q + 1. Consider the sum

∑
(x,y)∈F ×F ×

χk(x2 − εy2) =
∑

(x,y)∈F ×F \{(0,0)}
χk(x2 − εy2) −

∑
x∈F ×

χk(x2)

=
∑

(x,y)∈F ×F \{(0,0)}
χk(NE/F (x + y

√
ε)) −

∑
x∈F ×

χk(x2)

=
∣∣kerNE/F

∣∣ ∑
x∈F ×

χk(x) −
∑

x∈F ×
χk(x2)

= (q + 1)
∑

x∈F ×
χk(x) −

∑
x∈F ×

χk(x2).
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If k = 0, then the right-hand side becomes q2 − q, and if k =
q − 1
2

, then the right-hand 

side is −(q − 1) by Lemma 2.2. Finally, for k /∈
{
0,

q − 1
2

}
, it also follows that each 

summand on the right-hand side is 0. �
Lemma 2.4. For k, l ∈ {0, 1, . . . , q − 2} such that k �= l, we have

∑
x,y∈F ×

�{1}
and x�=y

[χk(x)χl(y) + χk(y)χl(x)] =

{
4 if 0 < k + l < q − 1, k, l �= 0,

2(3 − q) otherwise.

Proof. We consider the sum∑
x,y∈F ×

�{1}
and x�=y

[χk(x)χl(y) + χk(y)χl(x)] = 2
∑

x,y∈F ×
�{1}

and x�=y

χk(x)χl(y)

= 2

[( ∑
x∈F ×

χk(x)

)⎛⎝ ∑
y∈F ×

χl(y)

⎞⎠−
∑

x∈F ×
χk(x)χl(x)

−
∑

x∈F ×�{1}
χk(x) −

∑
y∈F ×�{1}

χl(y)

]
.

Recall that

∑
x∈F ×

χk(x)χl(x) =

{
q − 1 if k + l = q − 1,

0 otherwise.

Since k �= l, k + l �= 0. If k + l = q − 1, then k, l �= 0 because 0 ≤ k, l ≤ q − 2. It follows 
that ∑

x,y∈F ×
�{1}

and x�=y

[χk(x)χl(y) + χk(y)χl(x)] = 2 (−(q − 1) + 2) = 2(3 − q).

Assume that k + l �= q − 1. We distinguish two cases.
Case 1. k = 0 or l = 0, say k = 0. Then l �= 0 and so∑

x,y∈F ×
�{1}

and x�=y

[χk(x)χl(y) + χk(y)χl(x)] = 2 (−(q − 1) + 2) = 2(3 − q).

Case 2. k, l �= 0. Then we conclude that∑
x,y∈F ×

�{1}
and x�=y

[χk(x)χl(y) + χk(y)χl(x)] = 2.
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This completes the proof. �
Remark. Assume that q is odd. Before computing the eigenvalues of C(1)M2(F ), we note 
that for each x, y ∈ F ,

(a) ax ∈ GL2(F ) ∩ (I2 +GL2(F )) if and only if x �= 1
(b) bx ∈ GL2(F ) ∩ (I2 +GL2(F )) if and only if x �= 1
(c) cx,y ∈ GL2(F ) ∩ (I2 +GL2(F )) if and only if x, y �= 1
(d) dx,y ∈ GL2(F ) ∩ (I2 +GL2(F )) for all x ∈ F and y �= 0.

To verify (d), we suppose that there exist x ∈ F and y ∈ F × such that det
(

x − 1 εy
y x − 1

)
= 0, so (x − 1)2 − εy2 = 0 in F . Thus, x + y

√
ε = 1 in E. Since {1, 

√
ε} is an F -basis of 

E, we have y = 0 which is absurd.

From the character table of GL2(F ) mentioned at the introduction, let λχ denote 
an eigenvalue induced from an irreducible character χ. Since the character Uχk

has 
dimension one, the above remark gives

λUχk
=

∑
x∈F ×�{1}

χk(x2) + (q2 − 1)
∑

x∈F ×�{1}
χk(x2)

+
q2 + q

2
∑

x,y∈F ×
�{1}

and x�=y

χk(xy) +
q2 − q

2
∑

(x,y)∈F ×F ×
χk(x2 − εy2).

According to Lemmas 2.2 and 2.3, we have λUχ0
= q4 − 2q3 − q2 + 3q, λUχ q−1

2

= q and

λUχk
= (−1) + (q2 − 1)(−1) + q2 + q

2
(1 + 1) = q

if k /∈
{
0,

q − 1
2

}
. It follows that the eigenvalues of C(1)M2(F ) obtained from Uχk

are 

q4 − 2q3 − q2 + 3q and q with multiplicities 1 and q − 2, respectively.
Now, we work on Vχk

. Since Vχk
has dimension q, we have

λVχk
=

1
q

(
q

∑
x∈F ×�{1}

χk(x2) +
q2 + q

2
∑

x,y∈F ×
�{1}

and x�=y

χk(xy)

− q2 − q

2
∑

(x,y)∈F ×F ×
χk(x2 − εy2)

)
.

Again, applying Lemmas 2.2 and 2.3 gives λVχ0
= −q2 + q + 1, λVχ q−1

2

= q and
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λVχk
=

1
q

(
q(−1) + q2 + q

2
(1 + 1)

)
= q

if k /∈ {0, 
q − 1
2

}. Thus, the eigenvalues of C(1)M2(F ) obtained from Vχk
are −q2+ q+1 and 

q with multiplicities q2 and q2 + q2(q − 3) = q3 − 2q2, respectively.
Next, we consider the eigenvalues induced from the character Wχk,χl

with k �= l. Since 
Wχk,χl

has dimension q + 1, we have

λWχk,χl
=

1
q + 1

⎛⎝(q + 1)
∑

x∈F ×�{1}
χk(x)χl(x) + (q2 − 1)

∑
x∈F ×�{1}

χk(x)χl(x)

+
q2 + q

2
∑

x,y∈F ×
�{1}

and x�=y

(χk(x)χl(y) + χk(y)χl(x))

⎞⎟⎟⎠ .

First, we assume that k + l = q − 1. Thus, k, l �= 0. Note that there are 
q − 3
2

choices of 
such k, l. It follows from Lemma 2.4 that

λWχk,χl
=

1
q + 1

(
(q + 1)(q − 2) + (q2 − 1)(q − 2) + 2

(
q2 + q

2

)
(3 − q)

)
= q.

If 0 < k+ l < q − 1, then we have two cases to consider. If k = 0 or l = 0, then there are 
q − 2 choices of k and l, and

λWχk,χl
=

1
q + 1

(
(q + 1)(−1) + (q2 − 1)(−1) + 2

(
q2 + q

2

)
(3 − q)

)
= −q(q − 2).

If k, l �= 0, then there are 
(q − 3)2

2
choices of k and l, and

λWχk,χl
=

1
q + 1

(
(q + 1)(−1) + (q2 − 1)(−1) +

(
q2 + q

2

)
(4)
)
= q.

Thus, the eigenvalues of C(1)M2(F ) obtained from Wχk,χk
are −q(q − 2) and q with multi-

plicities (q + 1)2(q − 2) and 
(q + 1)2(q − 2)(q − 3)

2
, respectively.

Finally, let ϕ be an irreducible character of E× such that ϕq �= ϕ. Hence, ϕ is a 

non-trivial character and there are 
q2 − q

2
choices of ϕ. Since Xϕ has dimension q − 1, 

we have
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λXϕ
=

1
q − 1

⎛⎝(q − 1)
∑

x∈F ×�{1}
ϕ(x) − (q2 − 1)

∑
x∈F ×�{1}

ϕ(x)

− q2 − q

2
∑

(x,y)∈F ×F ×

(
ϕ(x + y

√
ε) + ϕ(x − y

√
ε)
)⎞⎠

=
1

q − 1

⎛⎝−(q2 − q)
∑

x∈F ×
ϕ(x) + (q2 − q) − (q2 − q)

∑
(x,y)∈F ×F ×

ϕ(x + y
√

ε)

⎞⎠
=

1
q − 1

(
−(q2 − q)

∑
x∈E×

ϕ(x) + (q2 − q)

)
= q.

Hence, the eigenvalue from this case is q with multiplicity 
(q − 1)2(q2 − q)

2
.

Summing all multiplicities of the eigenvalue q from each character gives its total 
multiplicity q4 − 2q3 − 2q2 + 4q + 1. Therefore, we obtain the spectrum of C(1)M2(F ) in 
the case that q is odd. For q even and q ≥ 4, we can find all eigenvalues corresponding 

to each Uχ, Vχ and Xϕ in the similar manner without the case k =
q − 1
2

. Note that 

the eigenvalue obtained from the case k =
q − 1
2

when q is odd is always q. Hence, the 
eigenvalues corresponding to those characters of the case q is even and q ≥ 4 are equal 
to the eigenvalues in the case q is odd. As for eigenvalues corresponding to Wχk,χl

, we 

have multiplicities of q become 
(q + 1)2(q − 2)

2
and 

(q + 1)2(q − 4)(q − 2)
2

whose sum is 

again 
(q + 1)2(q − 2)(q − 3)

2
, so the multiplicities of q when q is even stays the same.

Finally, if q = 2, then the graph C(1)M2(F ) has (2
2 − 1)(22 − 2) = 6 vertices and is two 

copies of K3, so its spectra are 2 of multiplicity 2 and −1 of multiplicity 4. Thus, we 
completely determine the spectrum for the graph C(1)M2(F ).

Theorem 2.5.

(a) If q = 2, then SpecC(1)M2(F ) =
(
2 −1
2 4

)
.

(b) If q ≥ 3, then

SpecC(1)M2(F ) =(
q4 − 2q3 − q2 + 3q q −q2 + q + 1 −q2 + 2q

1 q4 − 2q3 − 2q2 + 4q + 1 q2 (q + 1)2(q − 2)

)
.

Moreover, E(C(1)M2(F )) = 2q5 − 2q4 − 8q3 + 6q2 + 8q for all q ≥ 2.
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Furthermore, for all q ≥ 3, we have

E(C(1)M2(F )) = 2q5 − 2q4 − 8q3 + 6q2 + 8q − 2
(
(q2 − 1)(q2 − q) − 1

)
= 2q5 − 4q4 − 6q3 + 8q2 + 6q + 2 > 2q5 − 4q4 − 6q3 = 2q3(q − 3)(q + 1) ≥ 0.

This proves hyperenergeticity of the graph C(1)M2(F ) when q ≥ 3, while C(1)M2(Z2) is not 
hyperenergetic because its energy is 8 < 2(6 − 1).

Since C(1)M2(Z2) is disconnected, it is not Ramanujan. To show that the graph C(1)M2(F )
is Ramanujan for q ≥ 3. Since | − q2 + q + 1| > | − q(q − 2)| > q, it suffices to show that 
2
√
(q4 − 2q3 − q2 + 3q − 1 ≥ q2 − q −1 which is equivalent to 4(q4 −2q3 − q2+3q −1) ≥

(q2 − q − 1)2, and we have

4(q4 − 2q3 − q2 + 3q − 1) − (q2 − q − 1)2 = 3q4 − 6q3 − 3q2 + 10q − 5

≥ 3q4 − 6q3 − 3q2 = 3q2((q − 1)2 − 2) ≥ 0.

We record this work in

Theorem 2.6. The graph C(1)M2(F ) is hyperenergetic and Ramanujan when q ≥ 3. Moreover, 
C(1)M2(Z2) is neither hyperenergetic nor Ramanujan.

3. Spectral properties of C(2)
M2(F )

We study the second subconstituent of CM2(F ) in this section. We first show that the 
graph is a tensor product of a complete graph and a complete multi-partite graph and 
so we can calculate its eigenvalues. Let F 2×1 denote the set of column vectors of size 
2 × 1 over F . Since a 2 × 2 matrix is non-invertible if and only if its column vectors are 
parallel, we can conclude that

M2(F )� (GL2(F ) ∪ {02×2}}) =⎛⎝ ⋃̇
�v∈F 2×1�{�0}

{(a�v �v ) : a ∈ F}
⎞⎠ ∪ {(�v �0

)
: �v ∈ F 2×1 � {�0}}

where �0 denotes the zero vector of F 2×1. Before giving a structure of the graph C(2)M2(F ), 
we need the next lemma.

Lemma 3.1. Let A, B be non-invertible matrices in M2(F ), a, b ∈ F and �v, �w ∈ F 2×1 �
{�0}.

(a) If A = (a�v �v ) and B = (b�w �w ), then A − B is non-invertible if and only if a = b

or �v, �w are linearly dependent, or equivalently, A −B is invertible if and only if a �= b

and �v, �w are linearly independent.
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(b) If A = (a�v �v ) and B =
(

�w �0
)
, then A − B is non-invertible if and only if �v and 

�w are linearly dependent.

Proof. Observe that

A − B is non-invertible ⇐⇒ (a�v − b�w) = c(�v − �w) for some c ∈ F.

Assume that A − B is non-invertible and �v, �w are linearly independent. Then a = c and 
b = c, so a = b. Conversely, the case a = b is clear. If �w = c�v for some c ∈ F , then 
A − B = ((a − bc)�v (1 − c)�v ) is non-invertible. This proves (a). For (b), we have

A − B is non-invertible ⇐⇒ a�v − �w = c�v for some c ∈ F

⇐⇒ (a − c)�v = �w for some c ∈ F,

which is equivalent to �v and �w are linearly dependent. �
In the next step, we define two graphs G and H as follows: G is the complete graph on 

q+1 vertices parametrized by the set of projective lines P 1(F ) = {[a, 1] : a ∈ F} ∪{[1, 0]}
and the vertex set of H is F 2×1�{�0} and for any �v, �w ∈ F 2×1�{�0}, �v and �w are adjacent 
if and only if �v and �w are not parallel. Note that H is the complete (q+1)-partite graph 
such that each partite has q − 1 vertices.

Let f : C(2)M2(F ) → G ⊗ H defined by (a�v �v ) 	→ ([a, 1], �v) and 
(
�v �0

) 	→ ([1, 0], �v)
for any a ∈ F and �v ∈ F 2×1 \ {�0}. Thus, f is bijective. Now, let A, B be nonzero non-
invertible matrices in M2(F ), a, b ∈ F and �v, �w ∈ F 2×1, A = (a�v �v ) and B = (b�w �w ). 
Lemma 3.1 (a) implies

A − B ∈ GL2(F ) ⇐⇒ a �= b and �v, �w are linearly independent

⇐⇒ ([a, 1], �v) is adjacent to ([b, 1], �w) .

Next, we assume that A = (a�v �v ) and B =
(

�w �0
)
. From Lemma 3.1 (b), we have

A − B ∈ GL2(F ) ⇐⇒ �v and �w are linearly independent

⇐⇒ ([a, 1], �v) is adjacent to ([1, 0], �w) .

Hence, f is a graph isomorphism, so we have the structure of the graph C(2)M2(F ).

Theorem 3.2. The graph C(2)M2(F ) is the tensor product of the complete graph on q + 1
vertices and the complete (q + 1)-partite graph such that each partite has q − 1 vertices, 
and it is a (q3 − q2)-regular graph.

Recall from [8] that if λ1, . . . , λk are eigenvalues of a graph G1 and μ1, . . . , μl are 
eigenvalues of a graph G2, then the eigenvalues of the tensor product G1 ⊗ G2 are λiμj
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where i ∈ {1, . . . , k} and j ∈ {1, . . . , l}. Since the eigenvalues of G are q of multiplicity 1
and −1 of multiplicity q and the eigenvalues of H are q2−q, −q+1 and 0 of multiplicities 
1, q and q2−q −2, respectively, we obtain the spectrum and energy of the graph C(2)M2(F ).

Theorem 3.3. We have

SpecC(2)M2(F ) =
(

q3 − q2 −q2 + q q − 1 0
1 2q q2 q3 − 3q − 2

)
.

Moreover, E(C(2)M2(F )) = 4q3 − 4q2.

Since the number of vertices of C(2)M2(F ) is | M2(F ) � (GL2(F ) ∪ {0}) | = q3+ q2 − q −1
and

4q3 − 4q2 − 2(q3 + q2 − q − 2) = 2q3 − 6q2 + 2q + 4 = 2(q − 2)(q2 − q − 1) ≥ 0.

Thus, C(2)M2(F ) is hyperenergetic unless q = 2. Finally, we show that the graph C(2)M2(F )

is not Ramanujan if q ≥ 5. Since q2 − q is an eigenvalue of C(2)M2(F ), we claim that 
(q2 − q)2 > 4(q3 − q2 − 1), which is equivalent to the inequality q4 − 6q3 + 5q2 + 4 > 0. 
This holds for q ≥ 5 because q4 − 6q3 + 5q2 + 4 = q2(q − 1)(q − 5) + 4 > 0. For q = 2, 3
or 4, it is easily seen that C(2)M2(F ) is Ramanujan. We record both results in

Theorem 3.4. The graph C(2)M2(F ) is hyperenergetic if and only if q ≥ 3, and it is Ramanu-
jan if and only if q ≤ 4.

4. Clique number, chromatic number and independence number

In this section, we compute the clique number, the chromatic number and the inde-
pendence number of subconstituents of CM2(F ). Recall from the proof of Theorem 3.4 
of [12] that the ring Mn(F ) contains a subfield K of order qn. We start with the first 
subconstituent. Note that 0n×n ∈ K and so K � {0n×n} forms a complete subgraph in 
C(1)Mn(F ). Hence, ω(C

(1)
Mn(F )) ≥ qn − 1. On the other hand, let J be the set of matrices 

in Mn(F ) whose all entries in the first row are zero. We can see that J is an ideal of 

Mn(F ) of qn2−n elements. Write Mn(F ) =
qn⋃

i=1

(Bi + J) as a union of cosets of J where 

the coset B1 + J = J . Note that each coset forms an independent set and 0n×n ∈ J . 

It follows that GLn(F ) is a subset of 
qn⋃

i=2

(Bi + J) and hence χ(C(1)Mn(F )) ≤ qn − 1. Since 

ω(C(1)Mn(F )) ≤ χ(C(1)Mn(F )), we have the following theorem.

Theorem 4.1. ω(C(1)Mn(F )) = χ(C(1)Mn(F )) = qn − 1.
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Recall from [2] p.147 that if G is a graph, then α(G) ≥ |V (G)|
χ(G)

. Theorem 4.1 gives

α(C(1)Mn(F )) ≥ |GLn(F )|
χ(C(1)Mn(F ))

= (qn − q) . . . (qn − qn−1).

Consider the group K× as a multiplicative subgroup of GLn(F ). Let X = AM and Y =
AN where M, N ∈ K× such that M �= N and A ∈ GLn(F ). Then X −Y = A(M −N) is 
invertible because M, N ∈ K×. It follows that each coset forms a complete graph. This 
implies that α(C(1)Mn(F )) ≤ (qn − q) . . . (qn − qn−1). Hence, we have shown

Theorem 4.2. α(C(1)Mn(F )) = (qn − q) . . . (qn − qn−1).

By Theorem 3.2, we have the second subconstituent of CM2(F ) is the tensor product 
of the complete graph on q + 1 vertices G and the complete q + 1-partite graph H such 
that each partite has q − 1 vertices. Since χ(G) = χ(H) = q + 1, we can conclude that 
χ(C(2)M2(F )) ≤ q+1. Moreover, let V (G) = {a1, . . . , aq+1} and V1, . . . , Vq+1 be the partites 
of H. Choose vi ∈ Vi for all i ∈ {1, . . . , q + 1}. We can see that the subgraph of G ⊗ H

induced by {(a1, v1), . . . , (aq+1, vq+1)} is a complete graph, so ω(G ⊗ H) ≥ q + 1. Thus, 
we obtain the clique number and the chromatic number of the graph C(2)M2(F ).

Theorem 4.3. ω(C(2)M2(F )) = χ(C(2)M2(F )) = q + 1.

Our final theorem gives the independence number of C(2)M2(F ).

Theorem 4.4. α(C(2)M2(F )) = q2 − 1.

Proof. Similar to the proof of Theorem 4.2, we know from Theorem 4.3 that

α(C(2)M2(F )) ≥ |M2(F )� (GL2(F ) ∪ {0n×n}) |
χ(C(2)Mn(F ))

=
q3 + q2 − q − 1

q + 1
= q2 − 1.

Write M2(F ) =
q2⋃

i=1

(Ai + K) as a union of cosets of K. Then an independent set of 

C(2)M2(F ) is contained in 
q2⋃

i=2

(Ai + K). Since each coset forms a complete subgraph, we 

have α(C(2)M2(F )) ≤ q2 − 1 and the result follows. �
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Let (G, ·) be a finite group with the identity e and S a subset of G�{e} such that S = S−1.

For t ∈ N and 2 ≤ t ≤ max{o(x) : x ∈ S}, the t-Cayley hypergraph of G over S is the

hypergraph whose vertex set is G and edge set is {{yxi : 0 ≤ i ≤ t−1} : x ∈ S and y ∈ G}.
In this work, we study spectral properties of this hypergraph. We characterize integral

2-Cayley hypergraphs of G when G is abelian. In addition, we obtain the algebraic degree

of t-Cayley hypergraphs of Zn.
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1. Introduction

This section contains some terminologies from algebraic graph and hypergraph theory. We also discuss many earlier
results on this topic. Our objective is to provide some algebraic properties of eigenvalues of t-Cayley hypergraphs.

1.1. Hypergraphs

A hypergraph H is a pair (V (H), E(H)) where V (H) is a finite set, called the vertex set of H, and E(H) is a family of subsets
of V (H), called the edge set of H. The elements in V (H) are called vertices and the elements in E(H) are called hyperedges. In
particular, if E(H) consists only of 2-subsets of V (H), then H is a simple graph. For v ∈ V (H), we write D(v) for the set of all
hyperedges containing the vertex v and the number of elements in D(v) is the degree of the vertex v, denoted by deg v. A
hypergraph in which all vertices have the same degree k ≥ 0 is called k-regular and it is said to be regular if it is k-regular
for some k ≥ 0. A hypergraph in which all hyperedges have the same cardinality l ≥ 0 is an l-uniform hypergraph. A path
of length s in H is an alternating sequence v1E1v2E2v3 . . . vsEsvs+1 of distinct vertices v1, v2, . . . , vs+1 ∈ V (H) and distinct
hyperedges E1, E2, . . . , Es ∈ E(H) satisfying vi, vi+1 ∈ Ei for any i ∈ {1, 2, . . . , s}. The distance between two vertices v and
w, denoted by d(v, w), is the smallest length of a path from v to w. If there is no path from v to w, we define d(v, w) = ∞.
The diameter of H is diam(H) = max{d(v, w) : v, w ∈ V (H)}. A hypergraph H is connected if diam(H) < ∞.

For a hypergraph H with vertex set {v1, . . . , vn}, the adjacency matrix of H, denoted by A(H), is the n×n matrix whose
entry aij, i �= j, is the number of hyperedges that contain both of vi and vj and aii = 0 for all 1 ≤ i, j ≤ n. This concept was
investigated by Bretto [1]. Evidently, it is a generalization of the adjacency matrix of a graph. An equivalent definition of
the adjacency matrix is given in [6] by using the bipartite graph associated to H which is the graph whose vertex set is
the union of two independent sets V (H) and E(H) and for any v ∈ V (H) and E ∈ E(H), they are adjacent whenever v ∈ E.
In particular, if H is an l-uniform hypergraph, there is another way to define an adjacency matrix by using hypermatrix,
see [4,8]. In this work, our hypergraphs may not be l-uniform, so we follow Bretto’s. The Laplacian matrix of H, denoted
by L(H), is the n × n matrix defined by L(H) = D(H) − A(H) where D(H) is the diagonal matrix

[
deg vi

]
1≤i≤n

. This version
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of Laplacian matrix was introduced by Rodríguez [16]. The distance matrix of a connected hypergraph H, denoted by D(H),
is the n × n matrix in which entry dij = d(vi, vj) for all 1 ≤ i, j ≤ n.

The spectrum of H, denoted by Spec(H), is the multi-set of all eigenvalues of A(H) including multiplicity. Observe
that A(H) is a real symmetric matrix, so Spec(H) contains only real eigenvalues. Since the characteristic polynomial of
A(H) is monic with integral coefficients, its rational roots are integers. A hypergraph is integral if all eigenvalues of this
hypergraph are integers. Similarly, we can define Lspec(H) and Dspec(H) as the sets of all eigenvalues of L(H) and D(H),
respectively. Also, an L-integral hypergraph is a hypergraph with integral Laplacian eigenvalues and a D-integral hypergraph
is a hypergraph with integral distance eigenvalues.

For hypergraphs H1 and H2, the Cartesian product of H1 and H2, denoted by H1�H2, is the hypergraph with V (H1�H2) =
V (H1) × V (H2) and E(H1�H2) = {{x} × E ′ : x ∈ V (H1), E

′ ∈ E(H2)} ∪ {E × {y} : E ∈ E(H1) and y ∈ V (H2)}. Observe that
A(H1�H2) = (A(H1)⊗ I|V (H2)|)+ (I|V (H1)| ⊗A(H2)) where A⊗B denotes the Kronecker product of matrices A and B. Therefore,

Spec(H1�H2) = {λ + β : λ ∈ Spec(H1) and β ∈ Spec(H2)}. (A)

Let H1 and H2 be t-uniform hypergraphs. Following Pearson [15], the tensor product of H1 and H2, denoted by H1 ⊗H2,
is the t-uniform hypergraph with V (H1 ⊗H2) = V (H1)×V (H2) and E(H1 ⊗H2) = {{(xi1 , yj1 ), . . . , (xit , yjt )} : {xi1 , . . . , xit } ∈
E(H1), {yj1 , . . . , yjt } ∈ E(H2)}. It follows that the number of hyperedges containing both of two vertices (xi, yl) and (xj, ym)
in H1 ⊗ H2 is (t − 2)!aijblm. Hence, A(H1 ⊗ H2) = (t − 2)!A(H1) ⊗ A(H2). Consequently,

Spec(H1 ⊗ H2) = {(t − 2)!λβ : λ ∈ Spec(H1) and β ∈ Spec(H2)}. (B)

Several properties of hypergraphs have been studied such as diameter, connectivity and chromatic number. Spectral
and combinatorial properties of hypergraphs are widely related (see for example [5,6,12,16]). Feng and Li [6] showed
the relation between the diameter of H and its eigenvalues. They proved that if {Hn}n∈N is a collection of k-regular and
l-uniform hypergraphs with limn→∞ |V (Hn)| = ∞, then limn→∞ diam(Hn) = ∞ by using the second largest eigenvalue of
Hn. Later, Rodríguez [16] showed that if b+ 1 is the number of distinct Laplacian eigenvalues of a connected hypergraph
H, then diam(H) ≤ b.

1.2. t-Cayley Hypergraphs

Throughout this section, we let (G, ·) be a finite group with the identity e and S a subset of G� {e} such that S = S−1.
For t ∈ N and 2 ≤ t ≤ max{o(x) : x ∈ S}, the t-Cayley hypergraph H = t-Cay(G, S) of G over S is a hypergraph with vertex
set V (H) = G and E(H) = {{yxi : 0 ≤ i ≤ t − 1} : x ∈ S and y ∈ G}. Here, o(x) denotes the order of x in G.

Example 1.1. For m = (m1, . . . ,mr ) and n = (n1, . . . , nr ) in Zr , we define the greatest common divisor of m and n to
be the vector d = (d1, . . . , dr ) where di = gcd(mi, ni) for all i ∈ {1, . . . , r}. Now, let n = (n1, . . . , nr ) ∈ Zr and a divisor
tuple d = (d1, . . . , dr ) of n, i.e., di | ni for all i ∈ {1, . . . , r}. Define

Gn(d) = {x = (x1, . . . , xr ) ∈ Zn1 × · · · × Znr : gcd(x,n) = d}.
Let D be a set of divisor tuples of n not containing the zero vector of Zn1 × · · · × Znr and S = ⋃

d∈D Gn(d). For t ∈ N and
2 ≤ t ≤ max{o(x) : x ∈ S}, the t-Cayley hypergraph of Zn1 × · · · × Znr over S is called a gcd-hypergraph.

Some properties of t-Cayley hypergraphs quoted from [2] are as follows.

Proposition 1.2. Let H = t-Cay(G, S).

(1) H is connected if and only if 〈S〉 = G.

(2) For any x ∈ S, y ∈ G,
∣∣{yxi : 0 ≤ i ≤ t − 1}∣∣ =

{
t if t ≤ o(x),

o(x) if t > o(x).

(3) H is t-uniform if and only if t ≤ o(x) for any x ∈ S.

Clearly, a Cayley graph 2-Cay(G, S) is |S|-regular. We study a Cayley hypergraph t-Cay(G, S). For any y ∈ G, we have
that all hyperedges (may not be distinct) containing y are

{yx−(t−1), yx−(t−2), . . . , yx−1, y}, {yx−(t−2), yx−(t−3), . . . , y, yx}, . . . , {y, yx, . . . , yxt−2, yxt−1}
where x ∈ S. This implies

deg y = ∣∣{{yxi−j : 0 ≤ i ≤ t − 1} : 0 ≤ j ≤ t − 1, x ∈ S}∣∣
= ∣∣{{xi−j : 0 ≤ i ≤ t − 1} : 0 ≤ j ≤ t − 1, x ∈ S}∣∣ .

for all y ∈ G. Hence, we have shown

Proposition 1.3. A t-Cayley hypergraph of G over S is regular of degree equal to the number of distinct subsets {xi−j : 0 ≤
i ≤ t − 1} where 0 ≤ j ≤ t − 1 and x ∈ S.
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Cayley graphs, as known as Cayley color graphs or Cayley color diagrams were first introduced by Cayley [3] in 1878.

They are regularly studied and have many applications. Harary and Schwenk [7] asked ‘‘Which graphs have integral

spectra?’’. From this question, the integral Cayley graphs are widely studied, e.g., [9–12,17]. A well-studied Cayley graph

is the 2-unitary Cayley graph of a finite ring. Klotz and Sander [12] studied combinatorial properties of the unitary Cayley

graph 2-Cay(Zn,Z
×
n ). They explored the chromatic number, the clique number, the independence number, the diameter

and the vertex connectivity of this graph. In addition, they showed that the gcd-graphs are integral. A few year later, Ilić [9]

determined the energy of unitary Cayley graph 2-Cay(Zn,Z
×
n ). Kiani et al. [11] worked on the eigenvalues of the unitary

Cayley graph of finite local rings and extended the result to finite commutative rings. So [17] completely characterized

integral Cayley graphs of (Zn, +) as follows.

Theorem 1.4. The Cayley graph 2-Cay(Zn, S) is integral if and only if S is a union of some Gn(d)’s, where d | n and

Gn(d) = {k ∈ {1, 2, . . . , n − 1} : gcd(k, n) = d}.
To characterize integral Cayley graphs of finite abelian groups, we first discuss the Cayley graph of the group

(Zn1 ×Zn2 , +). Let S = S1 × S2 be a subset of Zn1 ×Zn2 � {(0, 0)} such that S = −S. The Cayley graph 2-Cay(Zn1 ×Zn2 , S)

can be distinguished into three cases.

(1) Kn1� 2-Cay(Zn2 , S2) if S1 = {0} and S2 �= {0}, where Kn denotes the empty graph on n vertices.

(2) 2-Cay(Zn1 , S)� Kn2 if S1 �= {0} and S2 = {0}.
(3) 2-Cay(Zn1 , S1) ⊗ 2-Cay(Zn2 , S2) if S1 �= {0} and S2 �= {0}.

It is clear that the eigenvalues of an empty graph are zero. By Eqs. (A), (B) and a Cayley graph always has an integral

eigenvalue, the Cayley graph 2-Cay(Zn1 × Zn2 , S) is integral if and only if for any i ∈ {1, 2} such that Si �= {0}, the
2-Cay(Zni , Si) is integral. By the fundamental theorem of finite abelian groups, a finite abelian group is a direct product

of finite cyclic groups. We can obtain a characterization of the integral Cayley graphs of finite abelian groups similar to

the above discussion.

Theorem 1.5. Let G be a finite abelian group and S a subset of G � {e} such that S = S−1. Suppose G = Zn1 × · · · × Znr

and S = S1 × · · · × Sr . The Cayley graph 2-Cay(G, S) is integral if and only if for any i ∈ {1, . . . , r} such that Si �= {0}, the
2-Cay(Zni , Si) is integral.

For non-integral graphs, Mönius et al. [14] defined the algebraic degree of a graph G to be the degree of extension of

the splitting field of the characteristic polynomial of A(G) over Q. Recently, Mönius [13] determined the algebraic degree

of Cayley graphs of Zp where p is a prime number.

Our purposes are to characterize integral t-Cayley hypergraphs of Zn and compute the algebraic degree of t-Cayley

hypergraphs of Zn. The paper is organized as follows. In Section 2, we study the spectrum of t-Cayley hypergraphs of Zn.

We obtain the characterization of integral t-Cayley hypergraphs of Zn similar to So [17]. We use this result to show that

a gcd-hypergraph of Zn is integral, L-integral and D-integral. In addition, we can determine the first row of the circulant

adjacency matrix of a gcd-hypergraph of Zn (Theorem 2.3). We study non-integral hypergraphs in Section 3. We compute

the algebraic degree of t-Cayley hypergraphs of Zn for all n ≥ 3 which generalizes Mönius’ results and provides an answer

to his outlook. Our combinatorial approach is different from him and presented in Lemma 3.1.

2. Integral t-Cayley hypergraphs of Zn

A circulant matrix is a square matrix in which each row is obtained by a right cyclic shift of the preceding row.

From now on, we let n ≥ 2 and H = t-Cay(Zn, S). By the natural labeling {0, 1, . . . , n − 1} of Zn, it is easy to see that

A(H) = [aij]0≤i,j≤n−1 is circulant. To work on the adjacency matrix A(H), it suffices to compute the first row of A(H). Let C

be the set of vertices adjacent to the vertex 0. Since all hyperedges containing 0 are of the form {(i − j)x : 0 ≤ i ≤ t − 1}
where x ∈ S and 0 ≤ j ≤ t − 1, and S = −S, we have the union of all hyperedges containing 0 is⋃

0≤i,j≤t−1

(i − j)S =
⋃

−(t−1)≤k≤t−1

kS = S ∪ 2S ∪ · · · ∪ (t − 1)S.

It follows that C = S ∪ 2S ∪ · · · ∪ (t − 1)S � {0}. Since A(H) is circulant, the eigenvalues of H are

λj =
∑
k∈C

a0,k(e
2π ji/n)k

where 0 ≤ j ≤ n − 1. We recall some useful properties taken from [17].

Proposition 2.1.

(1) If d is a proper divisor of n and x is an nth root of unity, then
∑

k∈Gn(d) x
k is an integer.
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(2) Let ω = e2π i/n and

F =

⎡
⎢⎢⎢⎣

ω1·1 ω1·2 · · · ω1·(n−1)

ω2·1 ω2·2 · · · ω2·(n−1)

...
...

. . .
...

ω(n−1)·1 ω(n−1)·2 · · · ω(n−1)·(n−1)

⎤
⎥⎥⎥⎦ .

If A = {v ∈ Qn−1 : Fv ∈ Qn−1}, then A is a vector space over Q. Moreover, A = Span{vd : d | n and d < n} where vd

is the (n − 1)-vector with 1 at the kth entry for all k ∈ Gn(d) and 0 elsewhere.

Now, we prove a criterion for integral t-Cayley hypergraphs.

Theorem 2.2. Let H = t-Cay(Zn, S). Then H is integral if and only if C is a union of some Gn(d)’s where for each d, there is

cd ∈ {
1, 2, . . . ,

(
n

t−2

)}
such that a0,k = cd for all k ∈ Gn(d).

Proof. Let d1, . . . , ds be all proper divisors of n. Without loss of generality, we assume that C = Gn(d1) ∪ · · · ∪ Gn(dl) for

some l ∈ {1, . . . , s}. Clearly, λ0 = ∑
k∈C a0,k ∈ Z. For any 1 ≤ j ≤ n − 1, by the assumption and Proposition 2.1 (1),

λj =
∑
k∈C

a0,k(e
2π ji/n)k

=
∑

k∈Gn(d1)
a0,k(e

2π ji/n)k + · · · +
∑

k∈Gn(dl)
a0,k(e

2π ji/n)k

= cd1

∑
k∈Gn(d1)

(e2π ji/n)k + · · · + cdl

∑
k∈Gn(dl)

(e2π ji/n)k ∈ Z.

Conversely, suppose that H is integral. Then λj ∈ Z for any 0 ≤ j ≤ n − 1. We consider the vector v ∈ Qn−1 with a0,k for

the kth entry for any k ∈ C and 0 elsewhere. Then

Fv =

⎡
⎢⎣

ω1·1 ω1·2 · · · ω1·(n−1)

...
...

. . .
...

ω(n−1)·1 ω(n−1)·2 · · · ω(n−1)·(n−1)

⎤
⎥⎦

⎡
⎢⎢⎣

a0,1
a0,2
...

a0,n−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

∑
k∈C a0,kω

1·k∑
k∈C a0,kω

2·k
...∑

k∈C a0,kω
(n−1)·k

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

λ1

λ2

...

λn−1

⎤
⎥⎥⎦ ∈ Zn−1.

It follows that v ∈ A in Proposition 2.1 (2), and hence v = ∑
d|n,d<n cdvd for some rational coefficients cd’s. The definition

of v implies that the coefficient cd ∈ {
0, 1, . . . ,

(
n

t−2

)}
. Therefore, C is a union of some Gn(d)’s where for each such d, we

have a0,k = cd for all k ∈ Gn(d). �

Remark. In particular, for t = 2, we have S = C . Theorem 2.2 implies that H = 2-Cay(Zn, S) is integral if and only if S is

a union of some Gn(d)’s and for which d, a0,k = 1 for all k ∈ Gn(d). This coincides So’s result recalled in Theorem 1.4.

Let H = t-Cay(Zn, S) be a gcd-hypergraph. We shall use Theorem 2.2 to show that H is integral. By Example 1.1,

S = ⋃
e∈D Gn(e) for some set D of proper divisors of n. Since lGn(e) = Gn(gcd(l, n)e) for any l ∈ {1, 2, . . . , n − 1}, we have

C = S ∪ 2S ∪ · · · ∪ (t − 1)S � {0} equals
⋃

d∈D′ Gn(d) for some set D′ of proper divisors of n and D ⊆ D′. Let d ∈ D′ and
k ∈ Gn(d). We aim to show that a0,k’s are identical for all k ∈ Gn(d). Let d ∈ D′ and k, k′ ∈ Gn(d). There is u ∈ Gn(1) such

that k′ = uk. Since hyperedges containing 0 are {(i − j)x : 0 ≤ i ≤ t − 1} where x ∈ S and 0 ≤ j ≤ t − 1, we count

such hyperedges containing k. For each e ∈ D, let Nd,k(e) be the number of hyperedges containing 0 and k of the form

{(i − j)x : 0 ≤ i ≤ t − 1} with x ∈ Gn(e). For any e, f ∈ D with e �= f , such hyperedges with x ∈ Gn(e) and x ∈ Gn(f ) are

distinct, so

a0,k =
∑
e∈D

Nd,k(e).

Let Sk = {l : 1 ≤ l ≤ t − 1 and k ∈ lGn(e)}. Since Gn(d) = lGn(e) for all l ∈ Sk and k′ = uk, it follows that Nd,k(e) = Nd,k′ (e).
Hence,

a0,k =
∑
e∈D

Nd,k(e) =
∑
e∈D

Nd,k′ (e) = a0,k′ .

Therefore, we can conclude that H is integral by Theorem 2.2. We record this result in the following theorem.

Theorem 2.3. Let H = t-Cay(Zn, S) be a gcd-hypergraph of Zn where S = ⋃
e∈D Gn(e) for some set D of proper divisors of

n and C = S ∪ 2S ∪ · · · ∪ (t − 1)S � {0} = ⋃
d∈D′ Gn(d) for some set D′ of proper divisors of n and D ⊆ D′. Let d ∈ D′ and
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k ∈ Gn(d). For each e ∈ D, let Nd,k(e) be the number of hyperedges containing 0 and k of the form {(i − j)x : 0 ≤ i ≤ t − 1}
with x ∈ Gn(e). Then

a0,k =
∑
e∈D

Nd,k(e).

Moreover, a0,k’s are identical for all k ∈ Gn(d) and H is an integral hypergraph.

Remark. Let d ∈ D′, k ∈ Gn(d) and e ∈ D. If k �∈ lGn(e) for all l ∈ {1, 2, . . . , t − 1}, then hyperedges containing 0

of the form {(i − j)x : 0 ≤ i ≤ t − 1} where x ∈ Gn(e) and 0 ≤ j ≤ t − 1 do not contain k, so Nd,k(e) = 0. Next,

assume that Sk = {l : 1 ≤ l ≤ t − 1 and k ∈ lGn(e)} �= ∅. Note that o(x) = n
e
for all x ∈ Gn(e). If

n
e

≤ t , then

{(i− j)x : 0 ≤ i ≤ t − 1} = 〈x〉 = eZn for all x ∈ Gn(e) and 0 ≤ j ≤ t − 1, so we have only one hyperedge containing 0 and

k and Nd,k(e) = 1. Suppose that n
e

> t . Let l ∈ Sk. Since k ∈ lGn(e), there is x ∈ Gn(e) such that k = lx. We wish to find the

number of elements y in Gn(e) such that k = ly. Since k ∈ lGn(e), we have d = gcd(l, n)e, so

Gn(d) = Gn(gcd(l, n)e) = lGn(e) = leG n
e
(1).

Suppose that k = lx = leu for some u ∈ Gn
e
(1). To find the number of such y’s in Gn(e), it is equivalent to find the number

of elements v in Gn
e
(1) such that k = lev. Now, we count such v’s. For any v ∈ Gn

e
(1) with k = lev, we have lev ≡ leu

mod n, so l(v −u) ≡ 0 mod n
e
. If v −u ≡ 0 mod n

e
, then l ·0 ≡ 0 mod n

e
, and if v −u �≡ 0 mod n

e
, then there are q ∈ Z

and r ∈ {1, 2, . . . , n
e
− 1} such that v = u+ n

e
q+ r . Consequently, l(v − u) ≡ 0 mod n

e
if and only if lr ≡ 0 mod n

e
. Thus,

the number of v in Gn
e
(1) such that k ≡ lev mod n equals the number of r in {0, 1, . . . , n

e
− 1} such that lr ≡ 0 mod n

e
.

Note that |Gn(e)| = φ
(
n
e

)
if e is a divisor of n. Since this number is independent of k, there are exactly

φ(n/e)

φ(n/d)
elements,

say v1, v2, . . . , v φ(n/e)
φ(n/d)

, in Gn
e
(1) such that k = levi for all i ∈

{
1, 2, . . . ,

φ(n/e)

φ(n/d)

}
. Let yi = evi for all i ∈

{
1, 2, . . . ,

φ(n/e)

φ(n/d)

}
.

Since o(yi) = n
e

> t , the sets

{(l − t + 1)yi, (l − t)yi, . . . , 0, . . . , lyi}, {(l − t)yi,(l − t − 1)yi, . . . , 0, . . . , lyi, (l + 1)yi},
. . . , {0, . . . , lyi, (l + 1)yi, . . . , (t − 1)yi}

are hyperedges of H containing 0 and k for all i ∈
{
1, 2, . . . ,

φ(n/e)

φ(n/d)

}
. Thus,

Nd,k(e) =
∣∣∣⋃
l∈Sk

{
{(i − j)ym : 0 ≤ i ≤ t − 1} : 0 ≤ j ≤ t − 1 − l, 1 ≤ m ≤ φ(n/e)

φ(n/d)

}∣∣∣.
However, these hyperedges may not be distinct, so Nd,k ≤ ∑

l∈Sk (t − l) · φ(n/e)

φ(n/d)
.

Example 2.4. By Theorem 1.4, an integral 2-Cay(Zn, S) is a gcd-graph. However, an integral t-Cay(Zn, S) may not

be a gcd-hypergraph when t ≥ 3. For example, if H = 5-Cay(Z5, {±1}) which is not a gcd-hypergraph of Z5, then

E(H) = {{0, 1, 2, 3, 4}}. Hence, C = Z5 � {0} = G5(1) and a0,k = 1 for any k ∈ C , but H is integral by Theorem 2.2.

Finally, we study L-integral and D-integral t-Cayley hypergraphs. We start with a simple result on L-integral t-Cayley

hypergraphs obtained by Proposition 1.3, Theorems 2.2 and 2.3. Let H = t-Cay(Zn, S). By Proposition 1.3, H is regular, so

there exists d ∈ N such that deg k = d for any 0 ≤ k ≤ n − 1. It follows that

L(H) = D(H) − A(H) = dIn − A(H).

Hence,

Lspec(H) = {d − λ : λ ∈ Spec(H)}.
By Theorems 2.2 and 2.3, we easily get

Corollary 2.5. Let H = t-Cay(Zn, S). Then H is L-integral if and only if H is integral. In particular, a gcd-hypergraph of Zn is

L-integral.

Now, we consider D-integral t-Cayley hypergraphs. For t = 2, Ilić [10] showed that a gcd-graph of Zn is D-integral.

Assume that H = t-Cay(Zn, S) is connected. That is, 〈S〉 = G by Proposition 1.2 (1). By the natural labeling in D(H), it is

clear that D(H) is circulant. Thus, it suffices to consider the first row of D(H). Since H is connected, the set {k : d(0, k) �=
0} = {1, 2, . . . , n − 1}. Hence, we get a characterization of D-integral t-Cayley hypergraphs similar to Theorem 2.2.

Theorem 2.6. Assume that H = t-Cay(Zn, S) is connected. Then H is D-integral if and only if for each d | n, there is

cd ∈ {1, 2, . . . , diam(H)} such that d(0, k) = cd for all k ∈ Gn(d).
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Let H = t-Cay(Zn, S). We observe that d(0, k) is the distance between 0 and k in 2-Cay(Zn, C) where C = S ∪ 2S ∪
· · · ∪ (t − 1)S \ {0}. Hence, the distance matrix D(H) = D(2-Cay(Zn, C)). If H is a gcd-hypergraph, then 2-Cay(Zn, C) is also
a gcd-graph. This implies that 2-Cay(Zn, C) is D-integral [10]. Consequently, H is D-integral and we obtain the following
theorem.

Theorem 2.7. A gcd-hypergraph of Zn is D-integral.

Remark. Let S = S1 × S2 be a subset of Zn1 × Zn2 � {(0, 0)} such that S = −S and H = t-Cay(Zn1 × Zn2 , S). Suppose
that S1 �= {0} and S2 �= {0}. We observe that t-Cay(Zn1 × Zn2 , S1 × S2) is a subgraph of t-Cay(Zn1 , S1) ⊗ t-Cay(Zn2 , S2).
Fix two vertices (x1, y1), (x2, y2) ∈ Zn1 × Zn2 . Let {x + ix′ : 0 ≤ i ≤ t − 1} be a hyperedge in t-Cay(Zn1 , S1) containing
both of x1 and x2 and let {y + iy′ : 0 ≤ i ≤ t − 1} a hyperedge in t-Cay(Zn2 , S2) containing both of y1 and y2. Then
{(x, y)+ i(x′, y′) : 0 ≤ i ≤ t −1} is a hyperedge in t-Cay(Zn1 ×Zn2 , S1 ×S2). But when t ≥ 3, the problem is that it may not
contain (x1, y1) and (x2, y2). This means that A(t-Cay(Zn1 ×Zn2 , S1×S2)) may not equal to A(t-Cay(Zn1 , S1)⊗t-Cay(Zn2 , S2))
when t ≥ 3. Hence, a characterization of integral t-Cayley hypergraphs of finite abelian groups is still an open problem
when t ≥ 3.

3. Algebraic degree of spectra of t-Cayley hypergraphs of Zn

Let H be a hypergraph on m vertices and f (x) = det(xIm−A(H)) the characteristic polynomial of H. Let Ef be the splitting
field of f (x) over Q. The algebraic degree of H is [Ef : Q] and denoted by degH. By Theorem 2.2, we have a characterization
of integral t-Cayley hypergraphs of Zn. They are hypergraphs of Zn of algebraic degree one. We study the algebraic degree
of t-Cayley hypergraphs of Zn in this section.

Let n ≥ 3 and H = t-Cay(Zn, S). Recall from the beginning of Section 2 that the eigenvalues of H are

λj =
∑
k∈C

a0,k(e
2π ji/n)k

where C = {k : a0,k �= 0} = S ∪ 2S ∪ · · · ∪ (t − 1)S � {0} and j ∈ {0, 1, . . . , n − 1}. Let ω = e2π i/n be a primitive nth root
of unity. By the fundamental theorem of Galois theory,

degH = [Q (λ0, λ1, . . . , λn−1) : Q] = φ(n)

|Gal (Q(ω)/Q (λ0, λ1, . . . , λn−1))| , (C)

where Gal (Q(ω)/Q (λ0, λ1, . . . , λn−1)) = {σ ∈ Aut(Q(ω)) : σ is a Q-automorphism and σ (λj) = λj for all j ∈
{0, 1, . . . , n − 1}}. We shall determine the size of this group and obtain the algebraic degree of H.

Lemma 3.1. Let y ∈ {0, 1, . . . , n − 1} be such that gcd(y, n) = 1 and σy ∈ Aut(Q(ω)) be the Q-automorphism defined by
ω �→ ωy. Then σy(λj) = λj for all j ∈ {0, 1, . . . , n− 1} if and only if there is ny ∈ N with C = C1 ∪ · · · ∪ Cny , yCl ≡ Cl mod n
and a0,k = a0,yk for all k ∈ Cl and l ∈ {1, 2, . . . , ny}.

Proof. If there is an ny ∈ N with C = C1 ∪ · · · ∪ Cny , yCl ≡ Cl mod n and a0,k = a0,yk for all k ∈ Cl and l ∈ {1, 2, . . . , ny},
then

σy(λj) = σy

(∑
k∈C

a0,kω
jk

)
=

ny∑
l=1

∑
k∈Cl

a0,kσy

(
ωjk

) =
ny∑
l=1

∑
k∈Cl

a0,kω
jky

=
ny∑
l=1

∑
k∈Cl

a0,ykω
jky =

∑
k∈C

a0,ykω
jyk =

∑
yk∈C

a0,ykω
jyk = λj

for all j ∈ {0, 1, . . . , n−1}. On the other hand, suppose that σy(λj) = λj for all j ∈ {0, 1, . . . , n−1}. Then ∑
k∈C a0,k

(
ωj

)yk =∑
k∈C a0,k

(
ωj

)k
for all j ∈ {0, 1, . . . , n − 1}. Let p(x) = ∑

k∈C a0,kx
yk − ∑

k∈C a0,kx
k. It is a polynomial of degree at most

n − 1. Since 1, ω, . . . , ωn−1 are distinct roots of p(x), we have p(x) = 0. Define an equivalence relation on C by k ∼ k′
whenever a0,k = a0,k′ . Let C1, . . . , Cny be all equivalence classes of ∼. Then C = C1 ∪ · · · ∪ Cny . Since p(x) = 0, we have
yCl ≡ Cl mod n and so a0,k = a0,yk for all k ∈ Cl and l ∈ {1, 2, . . . , ny}. �

Theorem 3.2. Let H = t-Cay(Zn, S) and C = S ∪ 2S ∪ · · · ∪ (t − 1)S � {0}. Let m be the number of y in {0, 1, . . . , n − 1}
such that gcd(y, n) = 1 and there is an ny ∈ N with C = C1 ∪ · · · ∪ Cny , yCl ≡ Cl mod n and a0,k = a0,yk for all k ∈ Cl and
l ∈ {1, 2, . . . , ny}. Then

degH = φ(n)

m
.

Moreover, degH ≤ φ(n)

2
.
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Proof. By Lemma 3.1, m is the size of Gal (Q(ω)/Q (λ0, λ1, . . . , λn−1)). It follows from Eq. (C) that degH = φ(n)

m
. From

S ≡ −S mod n, we have C = −C mod n. Since {±k} = −{±k} and a0,k = a0,−k for any k ∈ C , 1 and −1 are such y.

Hence, m ≥ 2, so
φ(n)

m
≤ φ(n)

2
. �

Consider H = 2-Cay(Zn, S). Then C = S and a0,k = 1 for any k ∈ S and a0,k = 0 otherwise. The assumption of

Theorem 3.2 can be reduced to yS ≡ S mod n. In addition, if n = p is a prime number, Mönius showed in the proof

of Theorem 2.5 of [13] that m in Theorem 3.2 is the maximum number of M ∈ {1, 2, . . . , |S|} such that M divides

gcd(|S| , p − 1) and

S =
|S|/M⋃
l=1

Sl

where |Sl| = M and for each l ∈ {1, 2, . . . , |S| /M , kM = (k′)M mod p} for all k, k′ ∈ Sl. The next corollary gives the

algebraic degree of Cayley graph of Zn over S which generalizes Theorem 2.5 of [13].

Corollary 3.3. Let H = 2-Cay(Zn, S). If m is the number of y in {0, 1, . . . , n − 1} such that yS ≡ S mod n, then

degH = φ(n)

m
.

Example 3.4. Consider H = 2-Cay(Z31, S) where S = {±2, ±3, ±10, ±12, ±13, ±15} = C . Since ±1, ±5, ±6 are all
elements of y such that gcd(y, 31) = 1 and yC ≡ C mod 31, by Corollary 3.3, degH = φ(31)

6
= 5. This coincides Example

2.10 of [13].

In the proof of Theorem 3.2, we have known that 1 and −1 are always such y satisfying yC ≡ C mod n. If only they

satisfy this congruence, we have a special case of Theorem 3.2 as follows.

Corollary 3.5. Let H = t-Cay(Zn, S) and C = S ∪ 2S ∪ · · · ∪ (t − 1)S � {0}. If y = 1 and y = −1 are the only elements in

Zn such that gcd(y, n) = 1 and yC ≡ C mod n, then

degH = φ(n)

2
.

We provide some numerical examples using Theorem 3.2 and Corollary 3.5 as follows.

Example 3.6. Consider H = 3-Cay(Z12, {±1}). We have C = {±1, ±2}. In addition, a0,±1 = 2 and a0,±2 = 1. The

characteristic polynomial of A(H) is

(x − 1)2(x + 2)3(x + 3)2(x − 6)(x2 − 2x − 11)2

and hence degH = 2. Since 1 and −1 are the only elements y in Z12 such that gcd(y, 12) = 1 and yC ≡ C mod 12, by
Corollary 3.5, degH = φ(12)

2
= 2.

Example 3.7. Let S = {±1} be a subset of (Z9, +). Them max{o(x) : x ∈ S} = 9, so 2 ≤ t ≤ 9. The algebraic degree of

t-Cayley hypergraph of Z9 over S for all t are presented in the following table. The cases t ∈ {2, 3, 4} are computed by

Corollary 3.5 and the others are obtained from Theorem 3.2.

t a0,±1 a0,±2 a0,±3 a0,±4 y with yC ≡ C mod 9 deg t-Cay(Z9, S)

2 1 ±1 3
3 2 1 ±1 3
4 3 2 1 ±1 3
5 4 3 2 1 ±1, ±2, ±4 3
6 5 4 3 3 ±1, ±2, ±4 3
7 6 5 5 5 ±1, ±2, ±4 3
8 7 7 7 7 ±1, ±2, ±4 1
9 1 1 1 1 ±1, ±2, ±4 1
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