รายงานวิจัยฉบับสมบูรณ์

โครงการ การออกแบบและพัฒนาระบบนิเวศการฝึกอบรมแบบ จำเพาะบุคคลโดยใช้เทคโนโลยีปัญญาประดิษฐ์เพื่อพัฒนาความรู้ใน สอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีสำหรับสิ่งแวดล้อมการเรียนรู้ วิทยาศาสตร์แบบพกพา

ผู้ช่วยศาสตราจารย์ ดร. นิวัฒน์ ศรีสวัสดิ์ มหาวิทยาลัยขอนแก่น

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย และมหาวิทยาลัยขอนแก่น

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. และต้นสังกัด ไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทคัดย่อ

รหัสโครงการ: RSA 6280062

ชื่อโครงการ: การออกแบบและพัฒนาระบบนิเวศการฝึกอบรมแบบจำเพาะบุคคลโดยใช้เทคโนโลยี

้ ปัญญาประดิษฐ์เพื่อพัฒนาความรู้ในสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีสำหรับ

สิ่งแวดล้อมการเรียนรู้วิทยาศาสตร์แบบพกพา

ชื่อนักวิจัย: ผู้ช่วยศาสตราจารย์ ดร. นิวัฒน์ ศรีสวัสดิ์ มหาวิทยาลัยขอนแก่น

E-mail Address: niwsri@kku.ac.th

ระยะเวลาโครงการ: 3 ปี

การพัฒนาคุณภาพของครูเพื่อให้เป็นผู้ที่มีความเชี่ยวชาญและมีศักยภาพสูงในการปฏิบัติงานการสอน ที่เท่าทันและร่วมสมัยที่จะสามารถตอบสนองต่อการเปลี่ยนแปลงของโลกปัจจุบันและแนวโน้มของอนาคตได้ นั้น คงไม่สามารถหลีกเลี่ยงแนวทางการใช้เทคโนโลยีดิจิทัลเพื่อร่วมประสานในกระบวนการเรียนรู้ของผู้เรียน และการให้ผู้เรียนได้มีส่วนร่วมในการใช้เทคโนโลยีดิจิทัลเพื่อส่งเสริมกระบวนการสร้างการเรียนรู้ของตนเองได้ งานวิจัยนี้จึงได้พัฒนานวัตกรรมระบบนิเวศการฝึกอบรมแบบจำเพาะบุคคลโดยใช้เทคโนโลยีปัญญาประดิษฐ์ เพื่อการบ่มเพาะและสร้างเสริมความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของครูผู้สอนวิทยาศาสตร์ จากการดำเนินงานผ่านการออกแบบและพัฒนาโมดูลการฝึกอบรมและแพลตฟอร์มระบบการฝึกอบรมความรู้ ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีแบบจำเพาะบุคคลและทดลองใช้กับนักศึกษาวิชาชีพครู วิทยาศาสตร์และครูวิทยาศาสตร์ประจำการในระยะเวลา 3 วงรอบการดำเนินการนั้น ผลปรากฏว่า ครูผู้สอน วิทยาศาสตร์ถูกสร้างเสริมความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีสำหรับสิ่งแวดล้อมการเรียนรู้ วิทยาศาสตร์แบบพกพาได้ดีมากขึ้นอย่างมีนัยสำคัญทางสถิติ อีกทั้งครูผู้สอนวิทยาศาสตร์มีการรับรู้การ ฝึกอบรมวิชาชีพผ่านระบบนิเวศการฝึกอบรมเกี่ยวกับการสอนแบบจำเพาะบุคคลภายใต้กลไกของระบบ ้ ปัญญาประดิษฐ์และการยอมรับต่อการใช้เทคโนโลยีระบบนิเวศการฝึกอบรมเกี่ยวกับการสอนแบบจำเพาะ บุคคลภายใต้กลไกของระบบปัญญาประดิษฐ์ในเชิงบวก จากข้อค้นพบดังกล่าวจึงทำให้ได้เป็นแนวทางใหม่ของ การจัดการศึกษาอย่างแม่นยำในบริบทการพัฒนาความเป็นมืออาชีพทางวิชาชีพครูวิทยาศาสตร์เพื่อการ ยกระดับและพัฒนาคุณภาพของผลลัพธ์การเรียนรู้ของผู้เรียนในบริบทของประเทศไทยได้

Keywords : การจัดการศึกษาแม่นยำ; การฝึกอบรมวิชาชีพครู; ระบบเรียนรู้แบบจำเพาะบุคคล; เทคโนโลยีดิจิทัลแบบพกพา; ครูผู้สอนวิทยาศาสตร์

Output จากโครงการวิจัย

- 1. ผลงานตีพิมพ์ในวารสารวิชาการระดับนานาชาติ ได้แก่
- (1) Pondee, P., Panjaburee, P., & Srisawasdi, N. (2021). Preservice science teachers' emerging pedagogy of mobile game integration: A tale of two cohorts improvement study. Research and Practice in Technology Enhanced Learning, 16, 16, https://doi.org/10.1186/s41039-021-00152-0 (SCOPUS, Q1)
- (2) Chaipidech, P., Srisawasdi, N., Kajornmanee, T., & Chapah, K. (2021). A personalized learning system-supported professional training model for teachers' TPACK development. *Computers and Education: Artificial Intelligence*, https://doi.org/10.1016/j.caeai.2022.100064 (SCOPUS, Q1)
- (3) Chaipidech, P., & Srisawasdi, N. (2021). Implementation of andragogical teacher professional development training program for boosting TPACK in STEM education: An essential role of personalized ubiquitous learning system. *Educational Technology & Society,* 24(4), 220-239. (SCOPUS, Q1)

2. การนำผลงานวิจัยไปใช้ประโยชน์

ผลกระทบเชิงวิชาการ : นวัตกรรมที่เป็นระบบนิเวศการฝึกอบรมแบบจำเพาะบุคคลโดยใช้ เทคโนโลยีปัญญาประดิษฐ์เพื่อพัฒนาความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีสำหรับสิ่งแวดล้อมการ เรียนรู้วิทยาศาสตร์แบบพกพาปัจจุบันถูกนำมาใช้สำหรับการฝึกอบรมนักศึกษาวิชาชีพครูวิทยาศาสตร์และครู วิทยาศาสตร์ประจำการในการพัฒนาด้วยวิถีการฝึกอบรมและพัฒนาผ่านการเรียนรู้ด้วยการกำกับตนเองใน ปัจจุบัน

สารบัญเรื่อง

		หน้า
บทที	ที่ 1 บทนำ	6
1.1	ความสำคัญและที่มาของปัญหา	6
1.2	วัตถุประสงค์ของโครงการวิจัย	11
1.3	ขอบเขตของโครงการวิจัย	11
1.4	ประโยชน์ที่จะได้รับของโครงการ	12
บทที	วี่ 2 การทบทวนวรรณกรรมที่เกี่ยวข้องและกรอบแนวคิดการวิจัย	15
2.1	การจัดการศึกษาแบบแม่นยำ (Precision education) สิ่งแวดล้อมการเรียนรู้แบบจำเพาะ	15
	บุคคล (Personalized learning environment) และเทคโนโลยีปัญญาประดิษฐ์ (Artificial	
	intelligence technology)	
2.2	กรอบแนวคิดเกี่ยวกับการใช้เทคโนโลยีเป็นเครื่องมือปฏิบัติงานการสอน: จากความรู้ในการสอน	20
	จำเพาะเนื้อหา (Pedagogical Content Knowledge: PCK) มาสู่ความรู้ในการสอนจำเพาะ	
	เนื้อหาโดยใช้เทคโนโลยี (Technological Pedagogical Content Knowledge: TPACK)	
2.3	สิ่งแวดล้อมดิจิทัลกับการปฏิบัติงานการสอนวิทยาศาสตร์ในปัจจุบัน	33
2.4	การปฏิบัติงานสอนวิทยาศาสตร์ผ่านกลยุทธ์การเรียนรู้วิทยาศาสตร์สืบเสาะ (Inquiry-based	38
	Science Learning Strategy)	
2.5	กระบวนการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะผ่านบริบทการใช้ปฏิบัติการทดลองผ่าน	43
	คอมพิวเตอร์	
2.6	กรอบแนวคิดความรู้ในการสอนวิทยาศาสตร์อย่างจำเพาะแนวคิดหลักโดยใช้สิ่งแวดล้อมแบบ	46
	ดิจิทัลสำหรับนักศึกษาวิชาชีพครูวิทยาศาสตร์และครูวิทยาศาสตร์ประจำการสมัยใหม่	
บทที่	¹ ี่ 3 การออกแบบและพัฒนาสิ่งแวดล้อมการเรียนรู้บนอุปกรณ์สื่อสารแบบพกพาที่ตอบสนอง	32
อย่า	งจำเพาะต่อผู้เรียนรายบุคคล	
บทที	ที่ 4 ระเบียบวิธีวิจัย	49
4.1	วงรอบที่ 1: การออกแบบและสร้างโมดูลการฝึกอบรมและศึกษานำร่อง	49
4.2	วงรอบที่ 2: การพัฒนาระบบนิเวศต้นแบบและศึกษานำร่อง	51
4.3	วงรอบที่ 3: การพัฒนาระบบนิเวศสมบูรณ์และศึกษาผลลัพธ์	52
บทที่	วี่ 5 ผลการวิจัยและการอภิปรายผล	55
5.1	ผลลัพธ์ของการออกแบบและพัฒนาโมดูลการฝึกอบรมต้นแบบและทดลองใช้โมดูล TPACK	55
	สำหรับการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะโดยใช้เกมดิจิทัล (T-ILG) ในวงรอบที่ 1	

	หน้า
5.2 ผลลัพธ์ของการออกแบบและการพัฒนาระบบนิเวศต้นแบบและทดลองใช้ระบบนิเวศต้นแบบ	56
ผ่านโมดูล TPACK สำหรับการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะผ่านปฏิบัติการทดลองโดย	
เชื่อมต่อกับสมาร์ตโฟน (T-SIL) ในวงรอบที่ 2	
5.3 ผลลัพธ์ของการออกแบบและการพัฒนาระบบนิเวศสมบูรณ์และทดลองใช้ผ่านโมดูล TPACK	59
สำหรับการจัดการเรียนรู้เพื่อส่งเสริมความสามารถในการสร้างคำอธิบายเชิงวิทยาศาสตร์ด้วยโม	
บายแอปพลิเคชัน (T-SEE) ในวงรอบที่ 3	
บทที่ 6 สรุปผลการวิจัย	66
บรรณานุกรม	70
ภาคผนวก	78

สารบัญภาพ

	หน้า
แผนภาพที่ 2.1 ความรู้องค์ประกอบต่างๆ ที่เกี่ยวข้องกับกรอบแนวคิดเกี่ยวกับความรู้ในการ	23
สอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี	
แผนภาพที่ 2.2 กรอบแนวคิดเกี่ยวกับความรู้ในการสอนฟิสิกส์อย่างจำเพาะเนื้อหาโดยใช้	27
ปฏิบัติการทดลองผ่านคอมพิวเตอร์	
แผนภาพที่ 2.3 กรอบแนวคิดเกี่ยวกับความรู้ในการสอนวิทยาศาสตร์อย่างจำเพาะแนวคิดหลัก	27
โดยใช้ปฏิบัติการทดลองแบบลงมือกระทำจริงผ่านอุปกรณ์แบบพกพา	
แผนภาพที่ 2.4 แสดงแนวคิดการจัดการเรียนรู้แบบ 5Es Inquiry Cycle	41
แผนภาพที่ 2.5 แสดงแนวคิดการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะแบบเปิดผ่านบริบทการใช้	45
ปฏิบัติการทดลองผ่านคอมพิวเตอร์	
แผนภาพที่ 2.6 กรอบแนวคิดความรู้ในการสอนวิทยาศาสตร์สืบเสาะอย่างจำเพาะแนวคิดหลัก	47
โดยใช้สิ่งแวดล้อมดิจิทัลที่จะใช้ในโครงการวิจัยนี้	
แผนภาพที่ 2.7 กรอบแนวคิดของการวิจัยเพื่อพัฒนาความรู้ในการสอนจำเพาะเนื้อหาโดยใช้	48
เทคโนโลยีโครงการวิจัยนี้	
แผนภาพที่ 2.8 กรอบแนวคิดของการวิจัยเพื่อพัฒนาความรู้ในการสอนจำเพาะเนื้อหาโดยใช้	49
เทคโนโลยีโครงการวิจัยนี้	
แผนภาพที่ 2.9 กรอบแนวคิดของการวิจัยเพื่อพัฒนาความรู้ในการสอนจำเพาะเนื้อหาโดยใช้	50
เทคโนโลยีโครงการวิจัยนี้	
แผนภาพที่ 3.1 ตัวอย่างหน้าจอของหน้าหลักของระบบฝึกอบรม P-TPACK	52
แผนภาพที่ 3.2 ตัวอย่างหน้าจอการสร้างและเพิ่มโมดูลการฝึกอบรมของระบบ	55
แผนภาพที่ 3.3 ตัวอย่างหน้าจอการกำหนดโครงสร้างจำเพาะของโมดูล	55
แผนภาพที่ 3.4 ตัวอย่างหน้าจอการกำหนดแบบทดสอบท้ายกิจกรรมของโมดูล	56
แผนภาพที่ 3.5 ตัวอย่างหน้าจอการกำหนดแบบทดสอบท้ายกิจกรรมของโมดูล	57
แผนภาพที่ 3.6 ตัวอย่างหน้าจอการกำหนดความสัมพันธ์ของแบบทดสอบและกิจกรรมของโมดูล	58
แผนภาพที่ 3.7 ตัวอย่างหน้าจอการกำหนดแบบทดสอบของบทเรียนในโมดูล	59
แผนภาพที่ 3.8 ตัวอย่างหน้าจอการกำหนดแบบทดสอบบทเรียนในโมดูล	59
แผนภาพที่ 3.9 ตัวอย่างหน้าจอการกำหนดความสัมพันธ์ของแบบทดสอบบทเรียนในโมดูล	60
แผนภาพที่ 3.10 ตัวอย่างหน้าจอการกำหนดรูปแบบเนื้อหาแต่ละรูปแบบย่อยในระบบ	61
แผนภาพที่ 3.11 ตัวอย่างหน้าจอลักษณะเนื้อหาแบบที่เป็น ViscAp ของระบบ	61

แผนภาพที่ 3.12 ตัวอย่างหน้าจอลักษณะเนื้อหาแบบที่เป็น ViscaR ของระบบ	62
แผนภาพที่ 3.13 ตัวอย่างหน้าจอลักษณะเนื้อหาแบบที่เป็น VercAp ของระบบ	63
แผนภาพที่ 3.14 ตัวอย่างหน้าจอลักษณะเนื้อหาแบบที่เป็น VercaR ของระบบ	63
แผนภาพที่ 3.15 ตัวอย่างหน้าจอการกำหนดเส้นทางเริ่มต้นการเรียนรู้รายบุคคลในโมดูลของ	64
ระบบ	
แผนภาพที่ 3.16 ตัวอย่างหน้าจอการกำหนดเส้นทางเริ่มต้นการเรียนรู้รายบุคคลในโมดูลของ	65
ระบบ	
แผนภาพที่ 3.17 ตัวอย่างหน้าจอแบบทดสอบในการวินิจฉัยพื้นฐานความรู้ของระบบ	65
แผนภาพที่ 3.18 ตัวอย่างหน้าจอรายงานผลการวินิจฉัยรายบุคคลและตัวนำทางสู่เนื้อหาของ	66
ระบบ	
แผนภาพที่ 3.19 ตัวอย่างหน้าจอสื่อเน้นปฏิสัมพันธ์ผ่านการมองเห็นได้ในระบบ	67
แผนภาพที่ 3.20 ตัวอย่างหน้าจอการรายงานผลการประเมินความรู้หลังบทเรียนของระบบ	67
แผนภาพที่ 4.1 TPACK สำหรับการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะผ่านปฏิบัติการทดลองโดย	71
เชื่อมต่อกับสมาร์ตโฟน (T-SIL) ภายใต้กรอบแนวคิดสะเต็มศึกษา	
แผนภาพที่ 5.1 กราฟแสดงผลการวิเคราะห์เปรียบเทียบคะแนนความรู้ในการสอนฯ ของผู้ครู	77
วิทยาศาสตร์ประจำการที่เข้าร่วมอบรม	
แผนภาพที่ 5.2 กราฟแสดงผลการวิเคราะห์เปรียบเทียบคะแนนความรู้ในการสอนฯ ของ	79
นักศึกษาวิชาชีพครูวิทยาศาสตร์ที่เข้าร่วมอบรม	
แผนภาพที่ 5.3 กราฟแสดงผลการวิเคราะห์คะแนนการรับรู้ ของนักศึกษาวิชาชีพครู	82
วิทยาศาสตร์ที่เข้าร่วมอบรม	
แผนภาพที่ 5.4 กราฟแสดงผลการวิเคราะห์คะแนนการรับรู้ ของนักศึกษาวิชาชีพครู	84
วิทยาศาสตร์ที่เข้าร่วมอบรม	

สารบัญตาราง

	หน้า
ตารางที่ 2.1 งานวิจัยที่มุ่งพัฒนาแนวทางการบ่มเพาะและพัฒนาความรู้ในการสอนจำเพาะ	28
เนื้อหาโดยใช้เทคโนโลยีสำหรับครูวิทยาศาสตร์	
ตารางที่ 2.2 แสดงหลักการจัดการเรียนรู้วิทยาศาสตร์เน้นสืบเสาะที่เป็นระดับของการเปิด	42
ตารางที่ 3.1 แสดงโมดูลการฝึกอบรมสำหรับครูวิทยาศาสตร์	53
ตารางที่ 4.1 รายละเอียดโมดูลการฝึกอบรม TPACK สำหรับการจัดการเรียนรู้วิทยาศาสตร์	69
สืบเสาะโดยใช้เกมดิจิทัล (T-ILG)	
ตารางที่ 4.2 รายละเอียดโมดูลการฝึกอบรม โมดูล T-SEE	73
ตารางที่ 5.1 ผลการวิเคราะห์คะแนนก่อนและหลังเรียนด้วยสถิติ	74
ตารางที่ 5.2 ผลการวิเคราะห์คะแนนก่อนและหลังเรียนด้วยสถิติ	76
ตารางที่ 5.3 ผลการวิเคราะห์คะแนนก่อนและหลังเรียนด้วยสถิติ	78
ตารางที่ 5.4 ผลการวิเคราะห์คะแนนการรับรู้ด้วยสถิติ	81
ตารางที่ 5.5 ผลการวิเคราะห์คะแนนการยอมรับต่อการใช้เทคโนโลยีด้วยสถิติ	83

บทที่ 1 บทนำ

ในบทนี้จะกล่าวถึงความสำคัญและที่มาของการวิจัย คำถามวิจัยและวัตถุประสงค์การวิจัยเพื่อใช้เป็น กรอบดำเนินการวิจัย ขอบเขตของโครงการวิจัย รวมทั้งประโยชน์ที่คาดจะได้รับจากของโครงการวิจัยเพื่อการ ออกแบบและพัฒนาระบบนิเวศการฝึกอบรมแบบจำเพาะบุคคลโดยใช้เทคโนโลยีปัญญาประดิษฐ์เพื่อพัฒนาความรู้ ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีสำหรับสิ่งแวดล้อมการเรียนรู้วิทยาศาสตร์แบบพกพา ในครั้งนี้

1.1 ความสำคัญและที่มาของปัญหา

วิวัฒนาการและความก้าวหน้าของเทคโนโลยีดิจิทัลที่เกิดขึ้นในยุคศวรรษที่ 21 นี้ส่งผลกระทบและมี อิทธิพลอย่างมากต่อการปรับเปลี่ยนรูปแบบการอยู่อาศัยและการดำเนินชีวิต การปฏิบัติงานในทุกสาขาวิชาชีพ หรือ แม้กระทั่งการฝึกฝนเพื่อการเรียนรู้และพัฒนาตนเองของผู้คนในสังคมในทุกระดับชั้น และด้วยสภาวะการณ์ปัจจุบัน ของยุคศตวรรษนี้ที่ความก้าวหน้าทางด้านวิทยาศาสตร์และเทคโนโลยี และการพัฒนานวัตกรรมและองค์ความรู้ร่วม สมัยต่าง ๆ ถูกขับเคลื่อนด้วยชุดเครื่องมือเทคโนโลยีดิจิทัลและระบบอัตโนมัติต่าง ๆ เช่น ระบบปัญญาประดิษฐ์ เป็น ต้น สำหรับมิติของวิชาชีพครูศึกษา (Teacher Education) และการพัฒนาความเป็นมืออาชีพ (Professional Development) ในการปฏิบัติงานการสอนของครูผู้สอนนั้นถูกเรียกร้องให้หันกลับมาวิเคราะห์ทบทวนและพิจารณา หาวิถีการเพื่อการปฏิวัติการบ่มเพาะและสร้างครูผู้สอน และการเปลี่ยนรูปวิธีการพัฒนาครูผู้สอนที่มีความเชี่ยวชาญ และมีศักยภาพสูงในการปฏิบัติงานการสอนที่เท่าทันและร่วมสมัยกับสภาวะความเป็นไปและการเปลี่ยนแปลงในยุค ปัจจุบันของศตวรรษนี้ โดยประกอบไปด้วยความรู้พื้นฐานในการปฏิบัติงานการสอนภายใต้สิ่งแวดล้อมการเรียนรู้ แบบใหม่ และชุดความคิดเพื่อพัฒนางานการสอนและทักษะใหม่ ๆ ที่จำเป็นต่อการพัฒนาศักยภาพของผู้เรียนในยุค ดิจิทัลนี้ ซึ่งในยุคที่ผ่านมาของการจัดการศึกษาวิชาชีพครูจนมาถึงปัจจุบันนี้ การฝึกอบรมครูผู้สอน (Teacher training) ได้ถูกนำมาใช้เป็นเครื่องมือโดยมาตรฐานของการยกระดับและพัฒนาวิชาชีพครูของนักวิจัยและวิชาการ ทางด้านวิชาชีพครูศึกษา (Spear & da Costa, 2018) แต่ทว่าในยุคแห่งการที่จะต้องปรับเปลี่ยนกระบวน ยุทธเพื่อการทำงานในเชิงพัฒนาอย่างรวดเร็วนี้ นวัตกรรม (Innovation) ถูกพิจาณาว่าเป็นปัจจัยที่จำเป็นอย่างยิ่ง ต่อการยกระดับและพัฒนาสังคมแห่งภูมิปัญญา (Knowledge-based society) สำหรับผู้ประกอบสัมมาอาชีพใน วิชาชีพต่าง ๆ ซึ่งก็เป็นความท้าทายของการแสวงหานวัตกรรมการฝึกอบรมเพื่อยกระดับและพัฒนาวิชาชีพครูผู้สอน ด้วยเช่นกัน ดังนั้นแล้วกระบวนการของการฝึกอบรมครูผู้สอนที่เป็นครูประจำการ (In-service teachers) และการ

จัดการศึกษาสำหรับนักศึกษาวิชาชีพครู (Pre-service teachers) ของประเทศไทยเองนั้นก็จำเป็นที่จะต้อง ปรับเปลี่ยนและหาแนวทางเลือกใหม่เพื่อนำไปสู่การสร้างนวัตกรรมแห่งการยกระดับคุณภาพการจัดการศึกษาและ การพัฒนาวิชาชีพครูให้สอดคล้องและเหมาะสมตามบริบทของสังคมโลกและสังคมไทยที่ควรจะเป็นไปในอนาคต (Srisawasdi, Pondee, & Bunterm, 2017)

การพัฒนาคุณภาพของครู (Quality of Teacher) เพื่อให้เป็นผู้ที่มีความเชี่ยวชาญและมีศักยภาพสูงใน การปฏิบัติงานการสอนที่เท่าทันและร่วมสมัยที่จะสามารถตอบสนองต่อการเปลี่ยนแปลงของโลกปัจจุบันและ แนวโน้มของอนาคตได้นั้น คงไม่สามารถหลีกเลี่ยงแนวทางการใช้เทคโนโลยีดิจิทัล เพื่อร่วมประสานในกระบวนการ เรียนรู้ของผู้เรียนและการให้ผู้เรียนได้มีส่วนร่วมในการใช้เทคโนโลยีดิจิทัลเพื่อส่งเสริมกระบวนการสร้างการเรียนรู้ ของตนเองได้ ดังนั้นแล้วในยุคแห่งโลกดิจิทัลนี้การจัดเตรียมผู้เรียนให้ได้มีความรู้ในสาระวิชาที่จำเป็นอย่างมี ความหมาย ได้สร้างทักษะกระบวนการที่จำเป็นสำหรับยุคศตวรรษที่ 21 และมีทัศนคติเชิงบวกต่อปฏิบัติงานเพื่อ การเรียนรู้เพื่อนำไปสู่การพัฒนากลไกของการเรียนรู้ตลอดชีวิตนั้น ครูผู้สอนจำเป็นต้องอาศัยการใช้เทคโนโลยีดิจิทัล อย่างรอบรู้เพื่อสร้างสิ่งแวดล้อมทางการเรียนการสอนที่ช่วยสนับสนุนวิธีการจัดการเรียนรู้และช่วยส่งเสริม กระบวนการเรียนรู้และพัฒนาทักษะที่จำเป็นอย่างเข้มข้นและแพร่ขยายกว้างขวางมากขึ้น (State Educational Directors Association et al., 2007) โดย Koehler และ Mishra (2009) ได้กล่าวถึงสิ่งจำเป็นที่ครูผู้สอนใน สาขาวิชาจำเพาะด้านต่างๆ เช่น วิทยาศาสตร์ และวิชาอื่นๆ ต้องทำความเข้าใจและนำไปสู่วิธีการเตรียมความพร้อม และพัฒนาตนเองเพื่อให้สามารถที่จะจัดกระบวนการเรียนการสอนอย่างมีประสิทธิภาพได้นั้นคือ "ความรู้ในการ สอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี" (Technological Pedagogical Content Knowledge, TPCK หรือ TPACK) ซึ่ง TPACK เป็นกรอบแนวคิดเชิงทฤษฎีร่วมสมัยทางการศึกษาที่เกี่ยวกับความรู้องค์ประกอบในการใช้เทคโนโลยีเพื่อ เป็นเครื่องมือช่วยเหลือ สนับสนุน หรือส่งเสริมกระบวนการเรียนรู้ของผู้เรียนเพื่อให้การพัฒนางานปฏิบัติการสอนใน สาระวิชาจำเพาะของครูผู้สอนก้าวทันตามพลวัตรของโลกและวิถีการเรียนรู้ปัจจุบันของผู้คนในยุคศตวรรษที่ 21 นี้ ซึ่งจากการศึกษาวิจัยที่ผ่านมานักวิชาการนานาชาติต่างก็พยายามค้นคว้าเพื่อเสาะหาแนวทางการดำเนินงานใน ลักษณะต่างๆ เพื่อนำไปสู่การพัฒนาคุณภาพของครูตามกรอบแนวคิดความรู้ในการสอนจำเพาะเนื้อหาโดยใช้ เทคโนโลยีดังกล่าวกันอย่างกว้างขวางมากขึ้นเรื่อยๆ พร้อมทั้งได้รายงานผลการศึกษาในแนวทางการพัฒนาคุณภาพ ครูผู้สอนผ่านการบ่มเพาะความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี (ตัวอย่างเช่น Agyei & Voogt, 2012; Alayyar, Fisser, & Voogt, 2012; Niess, 2005; Annetta et al., 2013; Guzey & Roehrig, 2009; Hennessy et al., 2007; Jang & Chen, 2010;) แต่อย่างไรก็ตามในวิถีการนำกรอบแนวคิดดังกล่าวไปใช้เพื่อพัฒนาคุณภาพ

ของครูผู้สอนก็ยังมีความหลากหลายของการดำเนินการที่แตกต่างกันตามบริบทของวิชาชีพครูศึกษาของแต่ละ ประเทศ โดยจากการศึกษาวิจัยที่ผ่านมาจะเป็นการออกแบบรายวิชาที่เน้นทั้งเนื้อหาสาระวิชา กระบวนจัดการ เรียนรู้ และทักษะในการใช้เทคโนโลยีดิจิทัลเพื่องานการสอนและการโปรแกรมการอบรมเชิงปฏิบัติการออนไลน์ ใน กรณีของการบ่มเพาะนักศึกษาวิชาชีพครู (Jang & Chen, 2010; Alayyar, Fisser, & Voogt, 2012) และสำหรับ การพัฒนาครูประจำการ (Guzey & Roehrig, 2009; Jimoyiannis, 2010) ซึ่งจากรายงานการวิจัยที่ผ่านมาดังกล่าว ้นั้นพบว่าแนวทางการพัฒนาความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีสำหรับครูผู้สอนนั้นเน้นการได้เรียนรู้ เครื่องมือเทคโนโลยีทั่วไปและวิธีการสอนโดยที่ไม่เน้นปฏิสัมพันธ์จำเพาะระหว่างคุณลักษณะของเครื่องมือเทคโนโลยี และวิธีการสอน แต่ทว่าการพัฒนาความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีอย่างจำเพาะเจาะจงในบริบท ของวิธีการสอนเฉพาะนั้นยังไม่ได้ถูกเน้นมากนัก จนกระทั่ง Srisawasdi, Pondee, & Bunterm (2017) ได้ทำการ ออกแบบนวัตกรรมโปรแกรมการฝึกอบรมเพื่อพัฒนาความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของนักศึกษา วิชาชีพครูวิทยาศาสตร์โดยที่เน้นและให้ความสำคัญในการพิจารณาถึง "ความสัมพันธ์อย่างจำเพาะเจาะจง" ของ เครื่องมือเทคโนโลยีดิจิทัลและวิธีการสอนจำเพาะในสาระวิชาวิทยาศาสตร์ และพบว่าสามารถยกระดับคุณภาพ ความรู้ในการสอนปฏิบัติการทดลองวิทยาศาสตร์แบบไร้ขอบเขตโดยใช้เทคโนโลยีแบบพกพาของนักศึกษาวิชาชีพครู วิทยาศาสตร์ได้ แต่อย่างไรก็ตามพบว่ายังมีนักศึกษาวิชาชีพครูบางส่วนที่ได้รับการพัฒนาระดับความรู้ในการ ปฏิบัติงานการสอนดังกล่าวได้ไม่สูงมากนักและมีบางข้อความรู้ในการปฏิบัติงานการสอนที่นักศึกษาส่วนใหญ่ยังไม่ สามารถที่จะได้รับการพัฒนาระดับความรู้ให้ได้ขึ้นได้ ซึ่งหากพิจาณาข้อคิดเห็นของ Malm (2009) นั้นจะพบว่ายังมี อีกตำแหน่งหนึ่งที่สำคัญที่การศึกษาทางวิชาชีพครูศึกษาที่ผ่านมายังไม่ได้พิจารณาร่วมในการยกระดับความรู้ในการ ปฏิบัติงานการสอนของครู นั่นคือ ตำแหน่งของความแตกต่างในข้อความรู้ในการปฏิบัติงานการสอนของแต่ละบุคคล (Professonal learning needs) และโดยเฉพาะช่องว่างหรือระยะห่าง (Gap) ระหว่างสถานะปัจจุบันและระดับ ความรู้ที่สมบูรณ์ในข้อความรู้เกี่ยวกับการปฏิบัติงานการสอน ซึ่งเป็นสิ่งที่ผู้ออกแบบโปรแกรมการฝึกอบรมแบบต่าง ๆ สำหรับการบ่มเพาะและพัฒนาครูผู้สอนยังให้ความสำคัญน้อยมาก ซึ่ง Malm (2009) ได้ให้ข้อเสนอแนะไว้ว่า งานวิจัยและปฏิบัติการเพื่อพัฒนาทางวิชาชีพครูศึกษาควรพิจารณาถึงความสำคัญของกระบวนการจำเพาะบุคคล ดังกล่าวให้มากขึ้นเพื่อจะได้นำไปสู่การยกระดับคุณภาพของครูผู้สอนที่มีประสิทธิภาพอย่างจำเพาะเจาะจงตาม ศักยภาพของบุคคลอย่างแท้จริงมากขึ้น

เพื่อนำไปสู่แนวทางการพัฒนาคุณภาพของการปฏิบัติงานในเชิงวิชาชีพรูปแบบใหม่ที่สามารถ ตอบสนองปัจจัยสำคัญดังกล่าวข้างต้น และยังเป็นการเพิ่มโอกาสในการเข้าถึงการฝึกอบรมที่มีความยืดหยุ่นตาม

บริบทการปฏิบัติงานการสอนจริงมากยิ่งขึ้น การฝึกอบรมเพื่อพัฒนาวิชาชีพแบบจำเพาะบุคคล (Personalized training for professional development) เป็นเครื่องมือที่อาศัยหลักการทำงานของระบบปัญญาประดิษฐ์ (Artificial intelligence หรือ AI) เข้ามามีบทบาทสำคัญในการปฏิรูปวิธีการฝึกอบรมเพื่อพัฒนาคุณภาพเชิงวิชาชีพ ในยุคปัจจุบันและมีแนวโน้มที่ได้รับการยอมรับเพื่อนำมาสู่การยกระดับการพัฒนาคุณภาพของครูมากขึ้นเป็นลำดับ โดยในเหล่านักวิชาการวิชาชีพครูศึกษาในหลายประเทศเชื่อว่าเป็นแนวทางที่สามารถตอบสนองความจำเป็นของการ พัฒนาคุณภาพของการปฏิบัติงานในสถานศึกษาและความต้องการที่หลากหลายในการพัฒนาวิชาชีพที่แตกต่างกัน ของครูผู้สอนได้เป็นอย่างดี (Gamrat et al., 2014) ซึ่งวิธีการของการพัฒนาวิชาชีพที่จะประสบความสำเร็จได้นั้น จะต้องเป็นนวัตกรรมการฝึกอบรมที่สามารถตอบสนองความจำเป็นแบบจำเพาะบุคคล เช่น เหมาะสมกับระดับ ความรู้ในการปฏิบัติงานการสอนเดิมที่มีมาก่อนหน้า สอดคล้องกับบริบทจำเพาะทั้งในมิติของโอกาสและข้อจำกัด ของการปฏิบัติงานการสอนของสถานศึกษา และสอดรับปรับเหมาะได้กับกลวิธีการจัดการเรียนรู้ที่หลากหลายของ ครูผู้สอนอย่างยืดหยุ่นได้ (Dede et al., 2009) โดยจากการศึกษาของ Angeli & Veletsianos (2010) และ Angeli et al. (2014) ซึ่งได้ออกแบบและพัฒนาสิ่งแวดล้อมการเรียนรู้แบบปรับเหมาะจำเพาะบุคคลออนไลน์ (Adaptive electronic learning environment) สำหรับเป็นระบบติดตามช่วยเหลือ (Scaffoldings) การพัฒนาความรู้ในการ สอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีไอซีทีของครูผู้สอนอย่างจำเพาะเจาะจงเป็นรายบุคคลหรือที่เรียกว่า e-TPACK บนพื้นฐานแนวคิดการฝึกอบรมเชิงวิชาชีพที่เน้นการกำกับการเรียนรู้ด้วยตนเอง (Self-regulated learning) โดยข้อ ค้นพบเบื้องต้นในระยะแรกของการศึกษานี้สะท้อนให้เห็นว่าการติดตามช่วยเหลือการพัฒนาคุณภาพในการ ปฏิบัติงานการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของครูผู้สอนนั้นจำเป็นที่จะต้องมีความจำเพาะเจาะจงได้อย่าง หลากหลายเพื่อการตอบสนองต่อระดับความรู้และความสามารถพื้นฐานในการปฏิบัติงานการสอนโดยใช้เทคโนโลยี ไอซีทีของครูผู้สอนและในขณะเดียวกันควรต้องให้ครูผู้สอนผู้รับการฝึกอบรมนั้นสามารถติดตามความก้าวหน้าในการ พัฒนาตนเอง (Self-progression mornitoring) ของตนเองได้ด้วย ในขณะเดียวกัน Gamrat et al. (2014) ในการ ใช้ระบบส่งเสริมการพัฒนาความสามารถในการปฏิบัติงานแบบจำเพาะบุคคล (Personalized workplace learning system) สำหรับการฝึกอบรมเพื่อพัฒนาวิชาชีพครูวิทยาศาสตร์แบบออนไลน์ที่เน้นการพิจารณาถึงข้อมูล จำเพาะบุคคลของครูผู้สอน ได้แก่ เป้าหมายในการเข้ารับการฝึกอบรม องค์ความรู้และทักษะพื้นฐานที่อยากจะ พัฒนา เลือกกำหนดหัวข้อการรับการอบรมได้เองตามความสนใจและระดับความเชี่ยวชาญในการปฏิบัติงานการ สอน เป็นต้น ผลการศึกษาแสดงให้เห็นว่า ครูผู้สอนมีการรับรู้ต่อกระบวนการในการพัฒนาคุณภาพงานการสอนใน เชิงบวกต่อการแนวทางการพัฒนาวิชาชีพครูโดยใช้ระบบส่งเสริมการพัฒนาความสามารถในการปฏิบัติงานแบบ

จำเพาะบุคคลดังกล่าวเนื่องจากว่าสามารถที่จะกำหนดการฝึกอบรมเชิงวิชาชีพของตนเองได้เองอย่างยืดหยุ่นและ ตอบสนองต่อข้อจำกัดและความต้องการในการพัฒนาวิชาชีพของตนเองได้ แต่อย่างไรก็ตามผลจากการสำรวจ ผลงานวิจัยก่อนหน้าเกี่ยวกับการออกแบบและพัฒนากลวิธีหรือแนวทางในการฝึกอบรมเชิงวิชาชีพแบบปรับเหมาะ จำเพาะบุคคลภายใต้การชี้แนะของระบบปัญญาประดิษฐ์ที่มุ่งที่จะยกระดับและพัฒนาความรู้ในการสอนจำเพาะ เนื้อหาโดยใช้เทคโนโลยีของครูผู้สอนนั้นยังมีไม่มากนัก โดยอาจจะเป็นสาเหตุเนื่องมาจากปัจจัยสำคัญ 2 ประการ ได้แก่ ปัจจัยที่ 1 คือ ความหลากหลายในการตีความหมายรายละเอียดขององค์ความรู้พื้นฐานแต่ละอันเนื่องมาจาก ขอบเขตรายละเอียดในแต่ละความรู้องค์ประกอบของกรอบแนวคิดความรู้ในการสอนจำเพาะเนื้อหาโดยใช้ เทคโนโลยียังไม่มีความชัดเจนและตายตัวมากนัก จึงทำให้เกิดความหลากหลายและความไม่คงที่ในการตีความหมาย ทั้งในแนวคิดหลักและรายละเอียดประกอบของแต่ละความรู้องค์ประกอบตามกรอบแนวคิดดังกล่าว และปัจจัยที่ 2 คือ ความซับซ้อนในการออกแบบและพัฒนาระบบปัญญาประดิษฐ์เพื่อการฝึกอบรมวิชาชีพครูที่มีความแม่นยำ ยึดหยุ่น และตอบสนองได้อย่างจำเพาะเจาะจงต่อความแตกต่างตามข้อมูลพื้นฐานของครูผู้สอนแต่ละบุคคล ซึ่งมี ทั้งข้อลป้อนเข้า อัลกอลิทึมที่จะประมวลข้อมูล และกฎในการกำหนดเส้นทางนำออกหลายแบบที่จะต้องถูกวิเคราะห์ และเลือกใช้ให้เหมาะสมกับลักษณะจำเพาะของการพัฒนาวิชาชีพที่เป็นการปฏิบัติงานการสอน แต่ทว่าหาก พิจารณาปัจจัยที่เป็นไปได้ดังกล่าวก็อาจจะนับได้ว่าถือเป็นพื้นที่ของโอกาสและความท้าทายในเชิงวิชาการที่จะใช้ พื้นที่ดังกล่าวเป็นแนวในการทำการศึกษาค้นคว้าทั้งในเชิงทฤษฎีผ่านการดำเนินงานวิจัยพื้นฐานจนนำไปสู่การวิจัย ต่อยอดเพื่อพัฒนาแนวปฏิบัติที่มีประสิทธิภาพในการยกระดับและพัฒนาคุณภาพของครูผู้สอนในสาระวิชาต่าง ๆ ของประเทศไทยให้มีคุณภาพสูงในการปฏิบัติงานสอนอย่างเท่าทันกับนานาประเทศที่กำลังค้นหาแนวทางดังกล่าว เช่นเดียวกัน และมีความรู้และความสามารถอย่างเทียบเท่ากับครูผู้สอนของประเทศต่างๆ ได้ในเชิงระดับคุณภาพ ของครูมืออาชีพสำหรับบริบทสังคมที่กำลังเกิดการเปลี่ยนแปลงและปรับเปลี่ยนรูปแบบใหม่ในยุคศตวรรษที่ 21 นี้

ด้วยเหตุผลดังกล่าวข้างต้น โครงการวิจัยนี้มุ่งที่จะออกแบบและพัฒนารูปแบบการฝึกอบรมสำหรับ ครูผู้สอนแบบใหม่ในลักษณะที่เป็นระบบนิเวศการฝึกอบรมแบบจำเพาะบุคคลโดยใช้เทคโนโลยีปัญญาประดิษฐ์เพื่อ พัฒนาความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีสำหรับสิ่งแวดล้อมการเรียนรู้วิทยาศาสตร์แบบพกพาที่จะ สามารถนำไปประยุกต์ใช้ในการพัฒนาคุณภาพการปฏิบัติงานการสอนโดยใช้เทคโนโลยีดิจิทัลสำหรับครูผู้สอน อันจะ นำการเป็นแนวทางใหม่หรือนวัตกรรมของการจัดการศึกษาอย่างแม่นยำ (Precision Education) ในบริบทวิชาชีพ ครูศึกษาเพื่อการบ่มเพาะและพัฒนานักศึกษาวิชาชีพครูและรวมไปถึงการยกระดับคุณภาพการปฏิบัติงานการสอน ในสถานศึกษาของครูประจำการ และยังไปสู่ผลลัพธ์ปลายทางในการสร้างขุมกำลังของครูผู้สอนในประเทศไทยที่มี

ความรู้และความสามารถในการปฏิบัติงานการสอนโดยใช้สิ่งแวดล้อมการเรียนรู้วิทยาศาสตร์แบบพกพาเพื่อยกระดับ และพัฒนาผลการเรียนรู้ของผู้เรียนในระดับการศึกษาขั้นพื้นฐานในบริบทของประเทศไทยได้

1.2 วัตถุประสงค์ของโครงการวิจัย

- 1.2.1) เพื่อออกแบบระบบนิเวศการฝึกอบรมแบบจำเพาะบุคคลโดยใช้เทคโนโลยีปัญญาประดิษฐ์เพื่อ พัฒนาความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีผ่านกระบวนการวิจัยอิงการออกแบบ
- 1.2.2) เพื่อผลของระบบนิเวศการฝึกอบรมแบบจำเพาะบุคคลโดยใช้เทคโนโลยีปัญญาประดิษฐ์ที่มีต่อ ความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีสำหรับสิ่งแวดล้อมการเรียนรู้วิทยาศาสตร์แบบพกพา, การรับรู้, และการยอมรับต่อการใช้เทคโนโลยีในการปฏิบัติงานการสอนของนักศึกษาวิชาชีพครูวิทยาศาสตร์และครู วิทยาศาสตร์ประจำการ

1.3 ขอบเขตของโครงการวิจัย

โครงการวิจัยนี้มุ่งบ่มเพาะและสร้างเสริมความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีสำหรับ สิ่งแวดล้อมการเรียนรู้วิทยาศาสตร์แบบพกพาของนักศึกษาวิชาชีพครูวิทยาศาสตร์ คณะศึกษาศาสตร์ มหาวิทยาลัยขอนแก่น โดยเป็นนักศึกษาวิชาชีพครูที่กำลังศึกษาในหลักสูตรหลักสูตรศึกษาศาสตรบัณฑิต (ศษ.บ.) สาขาวิชาวิทยาศาสตร์ศึกษา มหาวิทยาลัยขอนแก่น จำนวน 59 คน และครูวิทยาศาสตร์ประจำการที่ปฏิบัติงานการ สอนในระดับมัธยมศึกษาในภาคตะวันออกเฉียงเหนือที่อยู่ในโปรแกรมการพัฒนาวิชาชีพของโครงการ KKU Smart Learning Academy ผ่านได้แก่ ระบบนิเวศการฝึกอบรมเกี่ยวกับการสอนแบบจำเพาะบุคคลภายใต้กลไกของระบบ ปัญญาประดิษฐ์ (Artificial Intelligence-oriented Personalized Training Ecosystem)

เพื่อการพัฒนาระบบนิเวศการฝึกอบรมแบบจำเพาะบุคคลโดยใช้เทคโนโลยีปัญญาประดิษฐ์ที่มีต่อ ความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีสำหรับสิ่งแวดล้อมการเรียนรู้วิทยาศาสตร์แบบพกพาดัง วัตถุประสงค์ที่กำหนดไว้ โครงการวิจัยนี้จึงสามารถแบ่งการวิจัยและพัฒนาระบบดังกล่าวออกเป็น 3 วงรอบ ได้แก่ วงรอบที่ 1 เป็นการสร้างโมดูลการฝึกอบรมและศึกษานำร่อง วงรอบที่ 2 เป็นการพัฒนาระบบนิเวศต้นแบบและ ศึกษานำร่อง และ วงรอบที่ 3 เป็นการพัฒนาระบบนิเวศสมบูรณ์และศึกษาผลลัพธ์

1.4 ประโยชน์ที่จะได้รับของโครงการ

- 1.4.1) ได้ระบบนิเวศของการฝึกอบรมเกี่ยวกับการสอนแบบปรับเหมาะจำเพาะบุคคลภายใต้กลไกของ ระบบปัญญาประดิษฐ์เพื่อการพัฒนาคุณภาพความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี (TPACK) ในบริบท การปฏิบัติงานการสอนโดยใช้สิ่งแวดล้อมดิจิทัล (Teaching in digital environment) สำหรับทั้งครูวิทยาศาสตร์ ประจำการและนักศึกษาวิชาชีพครูวิทยาศาสตร์ได้อย่างร่วมสมัยและเท่าทันต่อความจำเป็นในการปฏิบัติงานการ สอนในยุคแห่งโลกดิจิทัลของศตวรรษที่ 21 นี้ และสามารถเป็นระบบต้นแบบสำหรับการยกระดับและพัฒนา คุณภาพในการปฏิบัติงานการสอนของนักศึกษาวิชาชีพครูและครูประจำการที่จะต้องปฏิบัติงานการสอนที่เกี่ยวข้อง กับสาระวิชาทางด้านสะเต็ม (STEM disciplines) ได้อีกด้วยโดยอาศัยภายใต้กลไกของระบบนิเวศของการฝึกอบรม ที่มีความเฉพาะตามลักษณะธรรมชาติขององค์ความรู้ในการปฏิบัติงานการสอนที่มีความใกล้เคียงกันในเชิงของการ เน้นที่การเรียนรู้ในแนวคิดหลักที่จำเป็นของสาระวิชานั้น ๆ
- 1.4.2) ได้โมดูลการฝึกอบรมเพื่อพัฒนาความสามารถในการปฏิบัติงานการสอนโดยใช้สิ่งแวดล้อมดิจิทัลที่ เน้นปฏิสัมพันธ์ระหว่างวิธีการสอนและเทคโนโลยีสำหรับทั้งนักศึกษาวิชาชีพครูและครูประจำการต้นแบบ ซึ่ง ปัจจุบันสถาบันการศึกษาระดับอุดมศึกษาในส่วนฝ่ายผลิตวิชาชีพครูวิทยาศาสตร์และหน่วยงานที่เกี่ยวข้องกับ การศึกษาวิทยาศาสตร์ ได้แก่ คณะครุศาสตร์/ศึกษาศาสตร์ และหน่วยงานที่รับผิดชอบในการพัฒนาคุณภาพวิชาชีพ ของครูประจำการ ได้แก่ สำนักงานคณะกรรมการการศึกษาขั้นพื้นฐาน (สพฐ.) กระทรวงศึกษาธิการ สถาบันส่งเสริม การสอนวิทยาศาสตร์และเทคโนโลยี รวมไปถึงสถาบันคุรุพัฒนาที่มีการจัดการอบรมครูตามโครงการหลักสูตรการ พัฒนาข้าราชการครูของสำนักงานคณะกรรมการการศึกษาขั้นพื้นฐาน (คูปองครู) จะสามารถนำไปใช้เพื่อเป็นการ ส่งเสริมการบ่มเพาะและผลิตนักศึกษาวิชาชีพครูวิทยาศาสตร์ และยกระดับและพัฒนาคุณภาพครูวิทยาศาสตร์ ประจำการ ซึ่งมีความจำเป็นและสำคัญอย่างยิ่งที่จะต้องได้รับการเตรียมความพร้อมและพัฒนาองค์ความรู้ที่จำเป็น ต่อการจัดการเรียนการสอนวิทยาศาสตร์ในยุคศตวรรษที่ 21 นี้อย่างเท่าทันและร่วมสมัย
- 1.4.3) ได้แนวทางการปฏิบัติงานการฝึกอบรมวิชาชีพครูแนวใหม่ที่เป็นการประยุกต์ใช้กลไกของเทคโนโลยี ปัญญาประดิษฐ์ (Artificial intelligence: AI) เพื่อใช้เป็นเครื่องมือในการจัดการศึกษาแบบแม่นยำ (Precision education) สำหรับการยกระดับและพัฒนาคุณภาพของครูผู้สอน และยังสามารถประยุกต์ใช้เป็นเครื่องมือในการ พัฒนาคุณภาพของผู้ปฏิบัติงานการสอนทั้งในระดับอุดมศึกษาและการศึกษาขั้นพื้นฐานเพื่อให้ผู้ปฏิบัติงานการสอน ดังกล่าวได้มีความรู้ในการปฏิบัติงานการสอนโดยใช้สิ่งแวดล้อมแบบดิจิทัลเพื่อนำไปสู่การจัดการศึกษาสำหรับผู้เรียน ได้อย่างเท่าทันและร่วมสมัย

- 1.4.4) ได้แนวทางในการใช้เครื่องมือเทคโนโลยีดิจิทัลเป็นเครื่องมือแนวใหม่ในการสนับสนุนการผลิต นักศึกษาวิชาชีพครูโดยเป็นกระบวนการออกแบบการจัดการเรียนการสอนในรายวิชาปกติอย่างร่วมประสานกันและ มีความสอดคล้องกันในเชิงกรอบแนวคิดพื้นฐานกับการดำเนินงานกิจกรรมพัฒนาคุณลักษณะที่จำเป็นประจำ หลักสูตรสำหรับสถาบันการศึกษาระดับอุดมศึกษาในส่วนฝ่ายผลิตวิชาชีพครูวิทยาศาสตร์และหน่วยงานที่เกี่ยวข้อง กับการศึกษาวิทยาศาสตร์ ได้แก่ คณะครุศาสตร์/ศึกษาศาสตร์ สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี สถาบันวิทยาศาสตร์และคณิตศาสตร์ เพื่อให้เกิดประสิทธิผลอย่างสูงสุดต่อการบ่มเพาะศักยภาพที่จำเป็นต่อการ ปฏิบัติงานสอนของนักศึกษาวิชาชีพครูและการพัฒนาคุณภาพของครูประจำการต่อไปในอนาคต
- 1.4.5) ได้กรอบแนวคิดแบบเฉพาะบริบทเกี่ยวกับความรู้ในการสอนวิทยาศาสตร์จำเพาะแนวคิดหลักโดยใช้ สิ่งแวดล้อมดิจิทัล (Technological Pedagogical and Content Knowledge for Teaching in Digital Environment: TPACK-TIDE) เพื่อนำไปสู่การเป็นกรอบแนวคิดพื้นฐานการพัฒนาคุณภาพครูวิทยาศาสตร์และ ประยุกต์ใช้ในการพัฒนาครูสาระวิชาอื่น ๆ มืออาชีพอย่างร่วมสมัยเพื่อตอบสนองสภาวะการขาดแคลนครูคุณภาพใน ปัจจุบันและอนาคตของประเทศไทย อีกทั้งสามารถเป็นองค์ความรู้ที่ส่งผลกระทบต่อการอภิปรายเชิงวิชาการและ การพัฒนาต่อยอดเพื่อให้องค์ความรู้เกี่ยวกับกรอบแนวคิดความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโล ยี (TPACK) มีความก้าวหน้าและชัดเจนในวิถีการปฏิบัติจริงมากขึ้น รวมทั้งสามารถปรับใช้เป็นแนวทางในการพัฒนา กรอบแนวคิดจำเพาะสำหรับการพัฒนาคุณภาพครูผู้สอนในสาระวิชาอื่น ๆ ได้ด้วย
- 1.4.6) ได้องค์ความรู้พื้นฐาน (Basic knowledge) เกี่ยวกับการรับรู้ต่อความรู้ในการสอนจำเพาะเนื้อหาโดย ใช้เทคโนโลยี การเปลี่ยนรูปความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี การยอมรับในการใช้เทคโนโลยีในการ ปฏิบัติงานการสอน และความสัมพันธ์เกี่ยวเนื่องกันระหว่างองค์ประกอบทั้งสามดังกล่าวข้างต้นที่เกิดขึ้นภายใต้ บริบทรูปแบบใหม่ของการใช้เทคโนโลยีปัญญาประดิษฐ์เพื่อการจัดการศึกษาหรือการฝึกอบรมเชิงวิชาชีพแบบ แม่นยำ ซึ่งเป็นการขยายขอบเขตการศึกษาเกี่ยวกับการพัฒนาความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีให้ เกิดการครอบคลุมกับลักษณะโปรแกรมการศึกษาสำหรับนักศึกษาวิชาชีพครูและครูประจำการที่มีความแตกต่างกัน ได้มากขึ้น และเป็นการศึกษาเพื่อได้มาซึ่งข้อค้นพบที่สามารถตอบสนองทิศทางการพัฒนาคนที่มีคุณภาพและให้มี คุณลักษณ์ที่พึงประสงค์สู่สังคมแห่งความรู้และการพัฒนาที่ยั่งยืน และเพื่อรองรับผลกระทบและความเปลี่ยนแปลงที่ กำลังจะเกิดขึ้นในอนาคต และอาจจะนำไปสู่การส่งผลต่อการเปลี่ยนแปลงวิธีการจัดการเรียนรู้ของครูวิทยาศาสตร์ สำหรับการเรียนการสอนในระดับการศึกษาขั้นพื้นฐาน

1.4.7) สามารถนำไปใช้เพื่อการต่อยอดสำหรับการเป็นธุรกิจบริการ (Service business) เพื่อการยกระดับ และพัฒนาคุณภาพของบุคคลที่ปฏิบัติงานในองค์กรต่างๆ ทั้งภาครัฐและเอกชน เพื่อนำไปสู่การเพิ่มสมรรถนะ พื้นฐานและขั้นสูงในการปฏิบัติงานในแต่ละวิชาชีพได้อย่างแม่นยำ ถูกต้อง และสร้างสรรค์มากขึ้น

บทที่ 2 การทบทวนวรรณกรรมที่เกี่ยวข้องและกรอบแนวคิดการวิจัย

บทนี้จะกล่าวถึงวรรณกรรมในเชิงหลักการ แนวคิด และทฤษฎีทางวิทยาการการจัดการเรียนรู้ และ นำเสนอข้อค้นพบจากผลงานวิจัยก่อนหน้าที่เกี่ยวข้องการออกแบบและพัฒนาระบบนิเวศการฝึกอบรมแบบจำเพาะ บุคคลโดยใช้เทคโนโลยีปัญญาประดิษฐ์ที่มีต่อความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีสำหรับสิ่งแวดล้อม การเรียนรู้วิทยาศาสตร์แบบพกพา รวมถึงนำเสนอกรอบแนวคิดการวิจัยของโครงการวิจัยนี้

2.1 การจัดการศึกษาแบบแม่นยำ (Precision education) สิ่งแวดล้อมการเรียนรู้แบบจำเพาะบุคคล (Personalized learning environment) และเทคโนโลยีปัญญาประดิษฐ์ (Artificial intelligence technology)

ปัจจุบันคำว่า แม่นยำ (Precision) กลายมาเป็นคำที่เหล่านักวิชาการและนักวิจัยทั่วโลกในหลากหลาย ศาสตร์และสาขาวิชาให้ความสนใจกันอย่างแพร่หลายมากขึ้นเรื่อย ๆ ตามลำดับ ซึ่งเป็นคำที่ใช้ร่วมเพื่อการกล่าว อธิบายถึงกลวิธีการประยุกต์ใช้ข้อมูลเพื่อจะนำไปสู่การวิเคราะห์และกำหนดแนวทางการดูแลหรือดำเนินการปฏิบัติ ที่มีความจำเพาะเจาะจงในระดับสูงในปรากฏการณ์มิติต่าง ๆ ตัวอย่างเช่น การแพทย์แบบแม่นยำ (Precision medicine) ซึ่งเป็นการใช้รายละเอียดข้อมูลและสารสนเทศของผู้ป่วย (เช่น สารพันธุกรรม สิ่งแวดล้อมที่อยู่อาศัย และรูปแบบการดำเนินชีวิตประจำวัน เป็นต้น) มาเป็นหน่วยป้อนเข้าในการวิเคราะห์เพื่อนำไปสู่การกำหนดวิธีการ หรือแนวทางการป้องกันและรักษาแบบจำเพาะเจาะจงต่อผู้ป่วยเป็นรายบุคคล หรือการเกษตรแบบแม่นยำ (Precision agriculture) ซึ่งปัจจุบันได้กลายมาเป็นงานวิจัยและพัฒนาในลักษณะที่เน้นการใช้เทคโนโลยีทาง วิศวกรรม ระบบตัวรับสัมผัสหรือเซนเซอร์ ระบบการระบุตำแหน่งหรือพิกัดสถานที่ ระบบการควบคุมและเทคนิค การคำนวณสำหรับการนำไปใช้อย่างจำเพาะเจาะจงกับบริเวณพื้นที่ในการเพาะปลูก โดยทั้งแนวทางของการแพทย์ แบบแม่นยำและการเกษตรแบบแม่นยำจะมีลักษณะสำคัญที่เหมือนกันคือการเก็บรวบรวมและวิเคราะห์ข้อมูลที่ หลากหลายเพื่อนำไปสู่การกำหนดแนวทางการดูแลหรือดำเนินการปฏิบัติที่มีความจำเพาะเจาะจงในระดับสูงต่อการ ปฏิบัติงาน (Williamson, 2018) และในปัจจุบันมีกลุ่มนักวิชาการและนักวิจัยที่เกี่ยวข้องกับการจัดการศึกษาจำนวน มากที่กำลังให้ความสนใจกับนวัตกรรมหรือแนวคิดใหม่เกี่ยวกับ การจัดการศึกษาแบบแม่นยำ (Precision education) ซึ่งเป็นการบูรณาการร่วมข้อมูลพื้นฐานของผู้เรียนเพื่อจุดประสงค์ในการนำไปวิเคราะห์เพื่อกำหนดหรือ ระบุเส้นทางการเรียนรู้ที่จำเพาะบุคคลต่อผู้เรียนเพื่อให้สามารถตอบสนองต่อผู้เรียนเป็นรายบุคคลตามระดับ

ศักยภาพที่แตกต่างกันได้อย่างมีประสิทธิภาพ ซึ่งหากพิจารณาโดยเทียบเคียงกับการแพทย์แบบแม่นยำแล้วนั้น ขั้นตอนกระบวนการของการจัดการศึกษาแบบแม่นยำนั้นอาจจะประกอบด้วยการวินิจฉัยอาการ การคาดคะเน สภาวะปัจจุบัน การกำหนดแนวปฏิบัติเพื่อเสริมสร้าง และการป้องกันรักษาความคงทนในผลการเรียนรู้ (Lu et al., 2018) ส่วน Bickman, Lyon, & Wolpert (2016) ได้อธิบายการจัดการศึกษาแบบแม่นยำไว้ว่าเป็นแนววิธีการใน การส่งเสริมการเรียนรู้ของบุคคลที่พิจารณากำหนดแนวปฏิบัติอย่างแม่นยำบนฐานความจำเป็นและจริตในการ เรียนรู้ของแต่ละบุคคล รวมถึงส่วนที่เป็นการวิเคราะห์จากการวัดและประเมินผลเพื่อการพัฒนา การกำกับติดตาม ผลการเรียนรู้อย่างต่อเนื่อง และการให้ข้อมูลย้อนกลับอย่างจำเพาะเจาะจง ซึ่งวิธีการจัดการศึกษาแบบแม่นยำนี้ สามารถเป็นเครื่องมือที่ดีเยี่ยมสำหรับนักวิจัยและนักวิชาการทางการศึกษาในการทำความเข้าใจที่ดีมากขึ้นในกลไก และความซับซ้อนของกระบวนการเรียนรู้ และยังสามารถเป็นวิธีการที่มีประสิทธิภาพที่ดีมากขึ้นในกระบวนการ ทางการจัดการศึกษา ซึ่งแท้จริงแล้วเป็นแนวทางที่ควรจะได้รับการใส่ใจในการศึกษาค้นคว้าและพัฒนาเทียบเท่ากัน กับการพัฒนาทั้งทางด้านการแพทย์และการเกษตรแบบแม่นยำ (Hart, 2016) นอกจากนั้นแล้วการจัดการศึกษา แบบแม่นยำยังถูกแนะนำไปสู่การใช้แหล่งข้อมูลป้อนเข้าทางด้านวิทยาศาสตร์การแพทย์ที่เป็นสารพันธุกรรม ระบบ ประสาท พฤติกรรม และสภาวะทางจิตวิทยา เพื่อที่จะนำไปสู่การบูรณาการร่วมเพื่อวิเคราะห์อย่างลึกซึ้งที่จะนำไปสู่ การเลือกกระบวนการและสื่อเพื่อส่งเสริมการเรียนรู้ให้เหมาะสมสอดคล้องอย่างจำเพาะเพื่อให้สามารถส่งเสริม ์ ศักยภาพการเรียนรู้ของแต่ละบุคคลได้ (Brookman-Byrne, 2017; 2018) แต่ทว่าในการที่จะสร้างและพัฒนา นวัตกรรมที่จะนำไปสู่แนวทางการจัดการศึกษาแบบแม่นยำได้นั้นจำเป็นที่จะต้องใช้เครื่องมือที่สามารถประมวลและ คำนวณผลได้อย่างแม่นยำที่สามารถทำงานได้แบบบรรลุข้อจำกัดและจัดการได้ในสิ่งที่เป็นไปได้ยากลำบากของการ ปฏิบัติงานตามปกติโดยมนุษย์ หากเป็นไปตามเงื่อนไขนี้แล้วนั้นระบบโปรแกรมคอมพิวเตอร์ที่มีความซับซ้อนหรือ ระบบปัญญาประดิษฐ์ (Artificial intelligence) จึงเป็นเครื่องมือหลักในปัจจุบันถูกยอมรับนำมาใช้เพื่อพัฒนาแนว ทางการจัดการศึกษาแบบแม่นยำ ด้วยความก้าวหน้าของเทคโนโลยีดิจิทัลสำหรับการวิเคราะห์เชิงทำนาย (Predictive analytics) และปัญญาประดิษฐ์ในปัจจุบันแล้วนั้น มีความเป็นไปได้ที่หลากหลายมากขึ้นในการที่จะ กำหนดแผนการเรียนรู้แบบจำเพาะเจาะจงกับบุคคลหรือผู้เรียนได้อย่างแม่นยำในบริบทการจัดการศึกษารูปแบบต่าง ๆ ทั้งแบบเป็นทางการและไม่เป็นทางการ

จากแนวทางดังกล่าว Lynth (2018) ได้สรุปแนวทางที่เป็นไปได้ในการนำเทคโนโลยีปัญญาประดิษฐ์มา ประยุกต์ใช้เพื่อส่งเสริมงานการจัดการศึกษาไว้ดังนี้

1) การประมวลผลการเรียนรู้รายบุคคลแบบอัตโนมัติ

- 2) ใช้สนับสนุนการปฏิบัติงานการสอนจำเพาะบุคคลของครูผู้สอน
- 3) ใช้สนับสนุนกระบวนการเรียนรู้จำเพาะบุคคลของผู้เรียน
- 4) ตอบสนองต่อความจำเป็นและความต้องการในการเรียนรู้ที่หลากหลายของแต่ละบุคคล
- 5) ส่งเสริมกระบวนการจัดการเรียนรู้ในแบบที่ครูผู้สอนเป็นผู้สร้างแรงจูงใจต่อการเรียนรู้ (ที่ไม่ใช่การ บอกหรือการให้ข้อความรู้)
 - 6) มีตัวช่วยหรือฐานการช่วยเหลือที่จำเพาะเจาะจงกับระดับการเรียนรู้ของแต่ละบุคคล
 - 7) ช่วยสะท้อนจุดอ่อนที่เกิดขึ้นในบริบทการจัดการเรียนรู้ระหว่างผู้สอนและผู้เรียน

ซึ่งหากพิจารณาแนวทางดังกล่าวข้างต้นจะเห็นได้ว่าการนำเทคโนโลยีปัญญาประดิษฐ์มาใช้เพื่อการจัด การศึกษานั้นไม่ได้เป็นไปในลักษณะที่ระบบปัญญาประดิษฐ์จะถูกนำมาใช้เพื่อ "แทนที่" การปฏิบัติงานของครูผู้สอน หรือกระบวนการเรียนรู้ของผู้เรียน หากแต่ควรจะเป็นไปในลักษณะที่ถูกใช้เพื่อเป็นเครื่องมือ "ร่วมเสริม" หรือ สนับสนุนการดำเนินการเพื่อเปลี่ยนรูปการจัดการเรียนการสอนของทั้งครูผู้สอนและผู้เรียนที่สามารถตอบสนองต่อ ความหลากหลาย (Diversity) ต่อกระบวนการเรียนรู้ของแต่ละบุคคล ดังนั้นหากพิจารณาอย่างจำเพาะเจาะจงกับ มิติของการใช้เทคโนโลยีปัญญาประดิษฐ์กับครูผู้สอนนั้น ซึ่ง Rexford & Kirkland (2018) นักวิชาการชั้นนำของ มหาวิทยาลัยพรินซ์ตันได้นำเสนอแนวคิดดังกล่าวไว้ว่าเทคโนโลยีปัญญาประดิษฐ์ไม่ได้ที่จะถูกนำมาใช้โดยครูผู้สอน เพียงเพื่อเป็นเครื่องมือในการปฏิบัติงานการสอนเพื่อสสนับสนุนกระบวนการเรียนรู้จำเพาะบุคคลของผู้เรียนเพียง เท่านั้น แต่ที่สำคัญคือควรถูกนำไปใช้เพื่อฝึกอบรมให้ครูผู้สอนให้ได้เรียนรู้ว่าควรจะต้องดำเนินการจัดการเรียนรู้ที่ ร่วมสมัยและเท่าทันได้อย่างไรหรือเพื่อการพัฒนาทักษะการปฏิบัติงานการสอน (Teaching skills) ของครูผู้สอนเอง ้ด้วย โดยที่เทคโนโลยีปัญญาประดิษฐ์จะเข้ามาช่วยในการจัดระบบโครงสร้างของเนื้อหาและเส้นทางสำหรับการ เรียนรู้ (Learning pathway) ไม่ให้ถูกนำเสนอในรูปแบบที่เป็นการนำเสนอแบบคงที่หรือตายตัว (Static way) แต่ ทว่าจะสามารถเข้ามาช่วยสนับสนุนการประมวลผลเพื่อการกำหนดขอบเขตและการปรับเหมาะ (Adaptive) ของสิ่ง ที่จะต้องเรียนรู้แบบเป็นพลวัตร (Dynamic way) โดยวิเคราะห์จากพื้นฐานของครูผู้สอนในส่วนที่เป็นเป้าหมายของ การเรียนรู้ ประสบการณ์การการปฏิบัติงานการสอน พื้นฐานความรู้ในการสอนที่มีอยู่เดิม ระดับความยืดหยุ่นตัวใน การพัฒนาความสามารถ และรูปแบบปฏิสัมพันธ์เพื่อการเรียนรู้ที่เหมาะสม (Baylari & Montazer, 2009) ฉะนั้น แล้วการพัฒนาสิ่งแวดล้อมการเรียนรู้แบบจำเพาะบุคคลสำหรับการส่งเสริมความรู้และทักษะการปฏิบัติงานการสอน ของครูผู้สอนจึงเป็นนวัตกรรมที่มีความท้าทายอย่างสอดคล้องอย่างยิ่งต่อการยกระดับคุณภาพของครูผู้สอนและ

ตอบสนองต่อความแตกต่างที่หลากหลายในระดับความรู้ และความสามารถในการปฏิบัติงานการสอนของครูผู้สอน โดยใช้เทคโนโลยีปัญญาประดิษฐ์เป็นเครื่องมือหลักในการขับเคลื่อนการจัดการศึกษาแบบแม่นยำสำหรับครูผู้สอน

สำหรับการสร้างกระบวนการแบบจำเพาะบุคคล (Personalization) ในบริบทการจัดการศึกษานั้นมี ความจำเป็นอย่างยิ่งที่จะต้องมีการสร้างและพัฒนาระบบสนับสนุนโดยการใช้เทคโนโลยีดิจิทัลที่จะสามารถวินิจฉัย และระบุได้ทั้งจุดแข็งและจุดอ่อนของบุคคลอย่างจำเพาะเจาะจงเป็นรายบุคคลของผู้ที่กำลังใช้โปรแกรมบนพื้นฐาน ของการคำนวณเชิงตรรกะ ในช่วงกว่าสองทศวรรษที่ผ่านมางานวิจัยและพัฒนาสิ่งแวดล้อมหรือระบบการเรียนรู้ แบบจำเพาะบุคคล (Personalized learning environment) เพื่อตอบสนองงานการพัฒนาสมรรถนะและศักภาพ ของผู้ปฏิบัติงานทางวิชาชีพต่าง ๆ มีความก้าวหน้าและต่อยอดไปได้กว้างมากขึ้นในหลายสาขาอาชีพ ซึ่งโดยส่วน ใหญ่เป็นการออกแบบ สร้าง และพัฒนากลไกแบบจำเพาะบุคคล (Personalized mechanism) ของนวัตกรรมแบบ นี้นั้นมักจะเป็นในลักษณะของสิ่งแวดล้อมการเรียนรู้ออนไลน์แบบผ่านเว็บ (Web-based online learning environment) หรือเป็นระบบการเรียนรู้ผ่านอุปกรณ์แบบพกพา (Mobile learning system) ที่สามารถตอบสนอง ต่อการเข้าถึงกระบวนการเรียนรู้เพื่อพัฒนาตนเองได้ในลักษณะที่เป็นการจัดการศึกษาเพื่อทุกคนแบบทุกที่ทุกเวลา (Anyone, anwhere, & anytime learning) และการได้รับข้อมูลย้อนกลับแบบทันทีทันใด (Real-time feedback) ในระหว่างที่กำลังดำเนินการเรียนรู้ และที่สำคัญมีความสามารถในการนำเสนอสาระเนื้อหาและกระบวนการเรียนรู้ แบบจำเพาะเจาะจงตามพื้นฐานของบุคคลได้อย่างยืดหยุ่นสูง (Garrido, Morales, & Serina, 2016; Huang, Huang, & Chen, 2007) จากการสำรวจผลงานวิจัยเกี่ยวกับการประยุกต์ใช้เทคโนโลยีปัญญาประดิษฐ์เพื่อพัฒนา สิ่งแวดล้อมการเรียนรู้แบบจำเพาะบุคคลสำหรับการพัฒนาคุณภาพของนักศึกษาวิชาชีพครูและครูประจำการใน ต่างประเทศที่ผ่านมาพบว่างานวิจัยและพัฒนานวัตกรรมในลักษณะดังกล่าวนั้นยังมีไม่มากนัก ซึ่งจากการศึกษาวิจัย ของ Kong & Song (2015) ที่ได้ออกแบบและพัฒนาระบบส่งเสริมการเรียนรู้ออนไลน์แบบจำเพาะบุคคลสำหรับ การฝึกอบรมข้อความรู้เกี่ยวกับกลวิธีการปฏิบัติงานการสอนแบบชั้นเรียนกลับทาง (Flipped classroom) และผล การศึกษาพบว่า นวัตกรรมดังกล่าวสามารถเอื้ออำนวยการเรียนรู้ของ นักศึกษาวิชาชีพครูในลักษณะของการกระตุ้น การพัฒนาความรอบรู้ในการปฏิบัติงานการสอน และความสามารถทางสติปัญญาและทางสังคมในการร่วมกัน ปฏิบัติงานการสอนได้เป็นอย่างดี นอกจากนั้น Kühl & Zander (2017) รายงานผลการศึกษาการเรียนรู้จากสื่อ มัลติมีเดียที่ออกแบบการให้ข้อมูลย้อนกลับแบบจำเพาะบุคคล ว่าวิธีการดังกล่าวส่งผลกระทบต่อการเสริม ความสามารถในถ่ายโอนความรู้ของเนื้อหาสาระที่นักศึกษาวิชาชีพครูได้ลงมือเรียนรู้ได้ ส่วน Gamrat et al. (2014) ได้พัฒนาระบบส่งเสริมการพัฒนาความสามารถในการปฏิบัติงานการสอนผ่านบริบทการใช้เหรียญตราดิจิทัล

(Digital badges) เพื่อนำไปใช้ในโปรแกรมการพัฒนาวิชาชีพแบบจำเพาะบุคคลสำหรับครูผู้สอนวิทยาศาสตร์ โดย รายงานผลการศึกษาแสดงให้เห็นว่าครูผู้สอนมีการรับรู้ต่อกระบวนการในการพัฒนาคุณภาพงานการสอนในเชิงบวก ต่อการแนวทางการพัฒนาวิชาชีพครูโดยใช้ระบบส่งเสริมการพัฒนาความสามารถในการปฏิบัติงานแบบจำเพาะ บุคคลดังกล่าวเนื่องจากว่าสามารถที่จะกำหนดการฝึกอบรมเชิงวิชาชีพของตนเองได้เองอย่างยึดหยุ่นและตอบสนอง ต่อข้อจำกัดและความต้องการในการพัฒนาวิชาชีพของตนเองได้ เพื่อส่งเสริมความสามารถในการปฏิบัติงานการ สอนของครูผู้สอนผ่านบริบทการจัดการเรียนรู้สาระวิชาโดยบูรณาการใช้เทคโนโลยีมาเป็นเครื่องมือในการปฏิบัติงาน ดังกล่าว Angeli et al. (2014) ได้ออกแบบและพัฒนาสิ่งแวดล้อมการเรียนรู้โดยอาศัยเทคโนโลยีที่สามารถวิเคราะห์ และคำนวณการนำเสนอบทเรียนแบบปรับเหมาะจำเพาะอย่างจำเพาะกับบุคคลสำหรับเป็นระบบติดตามช่วยเหลือ การสร้างความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี (Technological Pedagogical and Content Knowledge: TPACK) ของครูผู้สอน โดยข้อค้นพบเบื้องต้นในระยะแรกของการศึกษานี้สะท้อนให้เห็นว่าการติดตาม ช่วยเหลือการพัฒนาคุณภาพในการปฏิบัติงานการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของครูผู้สอนนั้นจำเป็นที่ จะต้องมีความจำเพาะเจาะจงได้อย่างหลากหลายเพื่อการตอบสนองต่อระดับความรู้และความสามารถพื้นฐานในการ ปฏิบัติงานการสอนโดยใช้เทคโนโลยีไอชีทีของครูผู้สอนและในขณะเดียวกันควรต้องให้ครูผู้สอนผู้รับการฝึกอบรมนั้น สามารถติดตามความก้าวหน้าในการพัฒนาตนเองของตนเองได้

จากผลการสำรวจวรรณกรรมและผลงานวิจัยที่ผ่านมาดังข้างต้น จะเห็นได้ถึงโอกาส ความท้าทาย และ ความเป็นไปได้ในเชิงการพัฒนาวิชาชีพที่เกี่ยวกับการปฏิบัติงานการสอนโดยใช้สิ่งแวดล้อมการเรียนรู้แบบจำเพาะ บุคคลโดยอาศัยเทคโนโลยีปัญญาประดิษฐ์เพื่อการฝึกอบรมครูผู้สอนด้วยความมุ่งหมายที่จะบ่มเพาะ พัฒนา และ ยกระดับความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีสำหรับนักศึกษาวิชาชีพครูและครูประจำการเพื่อให้ สามารถนำองค์ความรู้เกี่ยวกับการปฏิบัติงานการสอนที่ร่วมสมัย เท่าทัน และตอบสนองได้ต่อความเปลี่ยนแปลงใน เชิงวิชาชีพอย่างเท่าเทียมกับการพัฒนาวิชาชีพครูในประเทศที่พัฒนาแล้วต่าง ๆ อันจะนำไปสู่การยกระดับคุณภาพ ของผู้เรียนของประเทศไทยได้อย่างเป็นรูปธรรมในอนาคต แต่อย่างไรก็ตามผู้วิจัยวิเคราะห์ผลการศึกษาที่ผ่านและได้ ข้อค้นพบที่เป็นประเด็นควรได้รับการพิจาณาดังต่อไปนี้

☐ ยังไม่เคยปรากฏรายงานการวิจัยที่ออกแบบและพัฒนาระบบสนับสนุนการฝึกอบรมแบบจำเพาะ บุคคล (Personalization) ที่จะกลไกการดำเนินการเพื่อปรับเหมาะ (Adaptivity) เนื้อหาของการฝึกอบรมให้ สอดคล้องกับความก้าวหน้าในการเรียนรู้ (Learning progression) เนื้อหาการปฏิบัติงานการสอนโดยใช้สิ่งแวดล้อม แบบดิจิทัล (Teaching in digital environment: TIDE) ภายใต้การกลไกของระบบปัญญาประดิษฐ์มาก่อน ซึ่งจะ

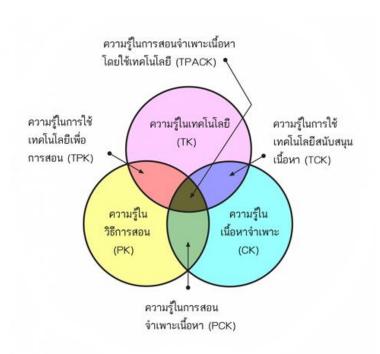
สามารถตอบสนองต่อแนวทางการพัฒนาคุณภาพของครูผู้สอนได้อย่างเต็มตามศักยภาพของครูผู้สอนแต่ละคนได้ อย่างแท้จริง

☐ ยังไม่มีรายงานการวิจัยที่ออกแบบโปรแกรมการฝึกอบรมครูผู้สอนเพื่อพัฒนาความรู้ในการสอน จำเพาะเนื้อหาโดยใช้เทคโนโลยี (TPACK) สำหรับทั้งนักศึกษาวิชาชีพครูและครูประจำการผ่านบริบทการบูรณาการ ร่วมกันแบบปรับเหมาะภายใต้การกลไกของระบบปัญญาประดิษฐ์ระหว่างรูปแบบการฝึกอบรมแบบเผชิญหน้า (Face-to-face training) และรูปแบบการฝึกอบรมด้วยตนเองแบบออนไลน์ (Online-mediated training) มาก่อน ซึ่งจะสามารถตอบสนองต่อความจำเป็นและข้อจำกัดในการปฏิบัติงานการสอนในสถานศึกษาได้อย่างมีประสิทธิภาพ

2.2 กรอบแนวคิดเกี่ยวกับการใช้เทคโนโลยีเป็นเครื่องมือปฏิบัติงานการสอน: จากความรู้ในการสอนจำเพาะ เนื้อหา (Pedagogical Content Knowledge: PCK) มาสู่ความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี (Technological Pedagogical Content Knowledge: TPACK)

ในช่วงหลายทศวรรษที่ผ่านมานี้กรอบแนวคิดเกี่ยวกับ Pedagogical Content Knowledge (PCK) ที่ ถูกนำเสนอไว้โดยนักจิตวิทยาการศึกษาที่มีความเชี่ยวชาญทางด้านวิชาชีพครูศึกษา โดยเฉพาะการพัฒนาวิชาชีพครู วิทยาศาสตร์และคณิตศาสตร์ และแพทยศึกษาที่ชื่อ Lee S. Shulman ตั้งแต่ปี ค.ศ. 1987 ได้รับการยอมรับในเชิง วิชาการอย่างกว้างขวางมากขึ้นในระดับนานาชาติและถูกนำไปใช้ในกระบวนการผลิตและพัฒนาวิชาชีพครูอย่าง ต่อเนื่องจนถึงปัจจุบันในหลายประเทศ แต่ในบริบทหลักสูตรทางวิชาชีพครูศึกษาของประเทศไทยยังไม่เป็นที่ทราบ กันอย่างแพร่หลายและยังไม่ปรากฏอย่างเป็นเอกลักษณ์ที่ชัดเจนมากนัก ซึ่งที่ผ่านมานักวิชาการการศึกษาใน ประเทศไทยที่ให้ความสนใจและดำเนินการศึกษาเกี่ยวกับแนวทางการปฏิบัติเพื่อพัฒนา PCK ในทางวิชาชีพครูศึกษา มีการใช้คำศัพท์ภาษาไทยเฉพาะทางสำหรับ PCK ไว้ได้แก่ ความรู้เนื้อหาผนวกวิธีการสอน ความรู้ในเนื้อหาบูรณา การวิธีสอน ศาสตร์การสอนเนื้อหา ศิลปะการสอน เป็นต้น แต่ทว่าโดยความหมายตามที่ Shulman (1986) ได้ อธิบายขยายความเกี่ยวกับ PCK ไว้นั้น PCK นั้นหมายถึง

the blending of content and pedagogy into an understanding of how particular topics, problems, or issues are organized, represented, and adapted to the diverse interests and abilities of learners, and presented for instruction (Shulman, 1986, p.8)


นอกจากนั้นยังมีนักการศึกษาท่านอื่นที่ได้อธิบายขยายความนัยเชิงความหมายของ PCK ไว้อย่างชัดเจน ดังนี้ knowledge of pedagogy that is applicable to the teaching of specific content. This knowledge includes knowing what teaching approaches fit the content, and likewise, knowing how elements of the content can be arranged for better teaching (Mishra & Koehler, 2006)

ซึ่งหากพิจารณาจากความหมายที่ถูกให้ไว้ดังกล่าวข้างต้น นัยสำคัญเชิงความหมายของ PCK นั้น กล่าวถึงความรู้ (ที่เกิดขึ้นมาจากการบูรณาการร่วมกันอย่างกลมกลืนระหว่างความรู้ในเนื้อหาและความรู้ในวิธีการ สอน) ในการปฏิบัติงานสอนเพื่อจัดการเรียนรู้อย่างจำเพาะเจาะจงต่อเนื้อหา อย่างจำเพาะเจาะจงปัญหา หรืออย่าง จำเพาะเจาะจงต่อประเด็น ที่สามารถเอื้ออำนวยหรือตอบสนองต่อลักษณะหรือกระบวนการเรียนรู้ที่แตกต่างกันของ ผู้เรียนได้ ดังนั้นแล้วสำหรับคำว่า PCK นั้นผู้วิจัยจะใช้คำศัพท์ภาษาไทยเฉพาะทางว่า "ความรู้ในการสอนจำเพาะ เนื้อหา" สำหรับ PCK เพื่อให้เกิดความง่ายต่อการตีความและการสร้างความเข้าใจได้อย่างสอดคล้องตามนัย ความหมายของคำศัพท์ดังกล่าว

นอกเหนือจากกรอบแนวคิดเกี่ยวกับ PCK แล้วนั้นยังมีกรอบแนวคิดร่วมสมัยที่กำลังได้รับความนิยม มากขึ้นเรื่อย ๆ ในกลุ่มนักวิชาการการศึกษาทั่วโลกที่ให้ความสนใจเกี่ยวกับการใช้เทคโนโลยีเพื่อเป็นเครื่องมือ ช่วยเหลือ สนับสนุน หรือส่งเสริมกระบวนการเรียนรู้ของผู้เรียนเพื่อให้การพัฒนางานปฏิบัติการสอนของครูผู้สอน ก้าวทันตามพลวัตรของโลกและวิถีการเรียนรู้ปัจจุบันของผู้คนในยุคศตวรรษที่ 21 นี้ ซึ่งกรอบแนวคิดดังกล่าวนั้นเป็น กรอบแนวคิดเกี่ยวกับ Technological Pedagogical Content Knowledge (TPCK) หรืออีกคำหนึ่งที่นิยมใช้กัน ในภายหลัง ได้แก่ TPACK (อ่านว่า ที-แพ็ก) โดยนัยหนึ่งมีที่มาโดยย่อมาจากคำว่า Technological Pedagogical And Content Knowledge เพื่อให้เกิดความสะดวกมากขึ้นในการกล่าวถึงกรอบแนวคิดดังกล่าว และโดยนัยที่สอง นั้นพิจารณาให้เป็นคำย่อของคำว่า Total PACKage ซึ่งเป็นคำที่สามารถสื่อสารในเชิงความหมายของกรอบแนวคิด ดังกล่าวได้เด่นชัดมากขึ้นด้วย เพราะกรอบแนวคิดดังกล่าวนั้นเน้นการบูรณาการร่วมกันของความรู้องค์ประกอบที่ เกี่ยวข้อง ดังนั้นแล้วผู้วิจัยจะใช้คำว่า "ความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี" เป็นคำจำเพาะสำหรับ TPACK

กรอบแนวคิดเกี่ยวกับความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี (TPACK) นี้เป็นกรอบแนวคิด ร่วมสมัยที่ถูกคิดพัฒนาต่อยอดขึ้นมาจากกรอบแนวคิดเกี่ยวกับความรู้ในการสอนจำเพาะเนื้อหา (PCK) ของ Shulman (1987) โดย Punya Mishra และ Matthew J. Koehler นักวิชาการการศึกษาทางด้านเทคโนโลยีศึกษา ที่มหาวิทยาลัยแห่งรัฐมิชิแกน ประเทศสหรัฐอเมริกา เป็นผู้นำเสนอกรอบแนวคิดดังกล่าวนี้เป็นครั้งแรกโดยการเขียน บทความลงในวารสารวิชาการในปี ค.ศ. 2006 โดยวัตถุประสงค์เพื่อนำเสนอกรอบแนวคิดที่ต่อยอดขึ้นมาใหม่เพื่อใช้

เป็นฐานคิดในการพัฒนาความเป็นมืออาชีพสำหรับครูในการบูรณาการใช้เทคโนโลยีเป็นเครื่องมือสำคัญในการ ปฏิบัติงานสอนในชั้นเรียน โดยการนำเสนอกรอบแนวคิดที่เป็นโครงสร้างของความรู้องค์ประกอบพื้นฐานและความรู้ องค์ประกอบเชิงบูรณาการที่จะนำไปสู่การพัฒนาคุณภาพที่จำเป็นสำหรับความรู้ที่ครูควรจะต้องมีในการบูรณาการ ใช้เครื่องมือเทคโนโลยีเพื่อการปฏิบัติงานสอน อันเป็นผลจากการศึกษาเชิงวิเคราะห์ตลอดระยะเวลา 5 ปีในการ ดำเนินงานวิจัยในโครงการเพื่อพัฒนาความเป็นมืออาชีพสำหรับครู ซึ่ง Mishra & Koehler (2006) ได้นำเสนอว่า การที่ครูผู้สอนจะสามารถพัฒนาตนเองหรือถูกพัฒนาจนกระทั่งมีความเป็นมืออาชีพในการบูรณาการใช้เครื่องมือ เทคโนโลยีเพื่อการสอนได้อย่างมีประสิทธิภาพนั้นจำเป็นที่จะต้องได้รับการพัฒนาองค์ความรู้ที่ซับซ้อนอย่างหนึ่งที่ เรียกว่า ความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี โดยจากกรอบแนวคิดดังกล่าวหากวิเคราะห์เชิง องค์ประกอบที่เกี่ยวข้องกับกรอบแนวคิดดังกล่าวแล้ว อาจจะสามารถจำแนกความรู้องค์ประกอบออกได้เป็น 2 กลุ่มความรู้องค์ประกอบ ได้แก่ ความรู้องค์ประกอบพื้นฐาน (Fundamental Knowledge Object: FKO) และ ความรู้องค์ประกอบเชิงบูรณาการ (Integrated Knowledge Object: IKO) โดยในส่วนของกลุ่มความรู้องค์ประกอบ เชิงบูรณาการสามารถจำแนกย่อยโดยละเอียดได้อีก 2 ชนิดของความรู้องค์ประกอบดังกล่าว ได้แก่ ความรู้ องค์ประกอบเชิงทวิบูรณาการ (Dual-integrated Knowledge Object: DIKO) และ ความรู้องค์ประกอบเชิงพหฺ บูรณาการ (Multiple-integrated Knowledge Object: MIKO) (นิวัฒน์ ศรีสวัสดิ์, 2556) โดยที่แต่ละความรู้ องค์ประกอบดังกล่าวมานั้นมีความเกี่ยวข้องสัมพันธ์กันดังภาพที่ 1 ที่นำเสนอด้านล่าง และผู้เขียนจะนำเสนอ รายละเอียดต่างๆ โดยแบ่งเป็นกลุ่มของความรู้องค์ประกอบดังแผนภาพที่ 2.1 ต่อไปนี้

แผนภาพที่ 2.1 ความรู้องค์ประกอบต่างๆ ที่เกี่ยวข้องกับกรอบแนวคิดเกี่ยวกับความรู้ในการสอนจำเพาะเนื้อหาโดย ใช้เทคโนโลยี (Mishra & Koehler, 2006)

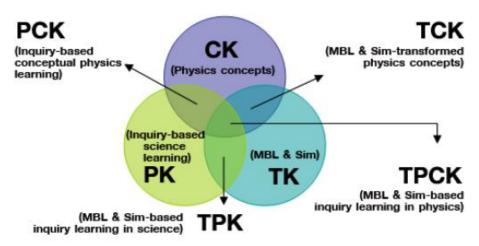
ความรู้ องค์ประกอบพื้นฐาน (Fundamental Knowledge Object: FKO) แบ่งออกเป็น 3 องค์ประกอบ ได้แก่

1) ความรู้ในเนื้อหา (Content Knowledge: CK) เป็นลักษณะของข้อความรู้ดังต่อไปนี้

เพื่องค์ความรู้ในเนื้อหาจำเพาะสาขาวิชาที่จะต้องใช้ในการสอน ได้แก่ องค์ความรู้ที่เป็นข้อเท็จจริง แนวคิดหลัก ทฤษฎี หลักการ ข้อปฏิบัติ วิธีการดำเนินงาน

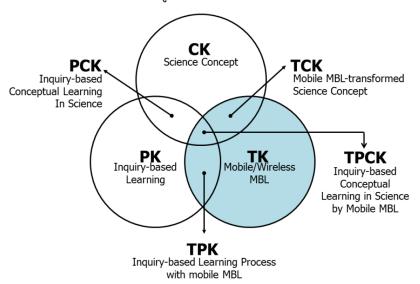
เรื่อรรมชาติขององค์ความรู้และธรรมชาติของการสืบเสาะเพื่อให้ได้มาซึ่งองค์ความรู้ในเนื้อหาจำเพาะ สาขาวิชาที่จะต้องใช้ในการสอนด้วย

- 2) ความรู้ในวิธีการสอน (Pedagogical Knowledge: PK) เป็นลักษณะของข้อความรู้ดังต่อไปนี้
- กระบวนการและแนวปฏิบัติการสอน หรือวิธีการในการปฏิบัติการสอนหรือเพื่อการเรียนรู้
- 🗖 เทคนิคและกลวิธีการสอนที่สามารถใช้ได้ในชั้นเรียน
- การดำเนินงานสอนโดยให้สอดคล้องและบรรลุผลเป็นไปตามวัตถุประสงค์ ค่านิยม และเป้าหมายของการศึกษา


🗖 หลักการโดยทั่วไปที่เกี่ยวกับกระบวนการเรียนรู้ของผู้เรียน การจัดการชั้นเรียน การพัฒนาแผนการ
จัดการเรียนรู้และการนำไปใช้ปฏิบัติงานสอนในชั้นเรียน และการประเมินผลการเรียนรู้ของผู้เรียนด้วย
3) ความรู้ในเทคโนโลยี (Technological Knowledge: TK) ความรู้ประเภทนี้จำเป็นที่จะต้องมีทักษะ
้ ในการปฏิบัติงานได้กับเทคโนโลยีที่จำเพาะเจาะจง ซึ่งเป็นลักษณะของข้อความรู้ดังต่อไปนี้
า การใช้เทคโนโลยีมาตรฐาน (Standard technology) ได้แก่ หนังสือ หรือกระดานเขียน
🗖 การใช้เทคโนโลยีขั้นสูง (Advanced technology) ได้แก่ เทคโนโลยีดิจิตอลต่างๆ ซึ่งในกรณีนี้จะ
รวมไปถึง
๐ ความรู้ในการปฏิบัติงานกับระบบและฮาร์ดแวร์ของคอมพิวเตอร์
ความสามารถที่จะใช้ชุดเครื่องมือของซอฟแวร์มาตรฐานที่มีอยู่
ความรู้ในการติดตั้งและถอดการติดตั้งอุปกรณ์ประกอบเสริม ซอฟแวร์
ความรู้ในการสร้างและแก้ไขเอกสารชนิดต่างๆ
๐ ความสามารถในการเรียนรู้เทคโนโลยีใหม่และปรับเปลี่ยนลักษณะการใช้งานให้เหมาะสม
กับเทคโนโลยีนั้น
ความรู้องค์ประกอบเชิงทวิบูรณาการ (Dual-integrated Knowledge Object: DIKO) แบ่ง
ออกเป็น 3 องค์ประกอบ ได้แก่
4) ความรู้ในการสอนจำเพาะเนื้อหา (Pedagogical Content Knowledge: PCK) กล่าวถึง ความรู้ที่มี
้ ลักษณะการเป็นความสัมพันธ์เชื่อมโยงซึ่งกันและกันระหว่างความรู้ในเนื้อหาและความรู้ในวิธีการสอน ซึ่งเป็น
ลักษณะของข้อความรู้ดังต่อไปนี้
แทคนิคเชิงกลยุทธ์ของการสอนที่สามารถประยุกต์ใช้ได้ในการสอนเนื้อหาจำเพาะหนึ่งใด
aักษณะของสิ่งแสดงแทนแนวคิดหลัก (Conceptual representation) ที่ไม่ทำให้ผู้เรียนเกิดความ
ยุ่งยากในการเรียนรู้และไม่นำไปสู่การเกิดความเข้าใจที่คลาดเคลื่อนต่อแนวคิดหลักจำเพาะหนึ่งใด
้
แนวคิดหลักจำเพาะหนึ่งใด
แหล่งที่มาหรือสาเหตุที่ทำให้เนื้อหาจำเพาะหนึ่งใดสามารถถูกเรียนรู้ได้อย่างง่ายหรือมีความยุ่งยาก
ในการเรียนร้

🗖 ลักษณะความรู้เดิมที่มีมาก่อนของผู้เรียนและลักษณะการเรียนรู้ของผู้เรียนในขอบเขตเนื้อห
จำเพาะหนึ่งใด
🗖 ลักษณะความผิดพลาดที่มักเกิดขึ้นในการใช้ความรู้เดิมที่มีมาก่อนในขอบเขตเนื้อหาจำเพาะหนึ่งใด
ของผู้เรียน
5) ความรู้ในการใช้เทคโนโลยีเพื่อการสอน (Technological Pedagogical Knowledge: TPK
กล่าวถึง ความรู้ที่มีลักษณะการเป็นความสัมพันธ์เชื่อมโยงซึ่งกันและกันระหว่างความรู้ในวิธีการสอนและความรู้ใเ
เทคโนโลยี ซึ่งเป็นลักษณะของข้อความรู้ดังต่อไปนี้
🗖 การใช้วัตถุหรือโปรแกรมประกอบและอุปกรณ์เสริมของเครื่องมือเทคโนโลยีต่างๆ ที่มีอยู่แล้วใน
ปัจจุบันในบริบทของการเรียนการสอน ตัวอย่างเช่น
สามารถเลือกใช้เครื่องมือเทคโนโลยีได้เหมาะสมกับภารกิจการเรียนรู้ของผู้เรียน
 กลยุทธ์การใช้คุณสมบัติเฉพาะของเครื่องมือเทคโนโลยีเพื่อตอบสนองวิธีการสอนที่ใช้
ความสามารถในการประยุกต์วิธีการสอนที่เหมาะสมกับการใช้เครื่องมือเทคโนโลยี
 ผลลัพธ์การเปลี่ยนแปลงที่จะเกิดขึ้นต่อสภาพสิ่งแวดล้อมการเรียนรู้ในชั้นเรียนเนื่องจาก
การใช้เครื่องมือเทคโนโลยีที่จำเพาะเจาะจงอย่างหนึ่งอย่างใด
6) ความรู้ในการใช้เทคโนโลยีสนับสนุนเนื้อหา (Technological Content Knowledge: TCK
กล่าวถึง ความรู้ที่มีลักษณะการเป็นความสัมพันธ์เชื่อมโยงซึ่งกันและกันระหว่างความรู้ในเนื้อหาและความรู้ใเ
เทคโนโลยี ซึ่งเป็นลักษณะของข้อความรู้ดังต่อไปนี้
🗖 การใช้เครื่องมือเทคโนโลยีในการเปลี่ยนรูปสิ่งแสดงแทนความรู้ (Knowledge representation
ให้อยู่ในรูปแบบหรือลักษณะที่เหมาะสมต่อการเรียนรู้ได้ของผู้เรียน
ความรู้องค์ประกอบเชิงพหุบูรณาการ (Multiple-integrated Knowledge Object: MIKO) ซึ่
ได้แก่
7) ความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี (Technological Pedagogical Conten
Knowledge: TPCK หรือ TPACK) กล่าวถึง ความรู้ที่มีลักษณะการเป็นความสัมพันธ์เชื่อมโยงซึ่งกันและกันระหว่า
ความรู้ในเนื้อหา ความรู้ในวิธีการสอน และความรู้ในเทคโนโลยี ซึ่งเป็นลักษณะของข้อความรู้ดังต่อไปนี้
🗖 การใช้เครื่องมือเทคโนโลยีเพื่อสร้างสิ่งแสดงแทนความรู้ที่เอื้ออำนวยต่อการปฏิบัติการสอนเพื่อ
ส่งเสริมให้เกิดความเข้าใจในเนื้อหาจำเพาะหนึ่งใด

	🗖 การใช้เครื่องมือเทคโนโลยีเป็นตัวสร้างเทคนิคเชิงกลยุทธ์ของการปฏิบัติการสอนเนื้อหาจำเพาะ
หนึ่งใด	
	🗖 การใช้เครื่องมือเทคโนโลยีเพื่อช่วยลดความยุ่งยากของงานปฏิบัติการสอนเนื้อหาจำเพาะหนึ่งใด
	🗖 การใช้เครื่องมือเทคโนโลยีเพื่อช่วยเพิ่มความสะดวกในกระบวนการเรียนรู้เนื้อหาจำเพาะหนึ่งใด
ของผู้เรียน	
	🗖 การใช้เครื่องมือเทคโนโลยีเพื่อสร้างแนวปฏิบัติการสอนที่อยู่บนพื้นฐานความรู้ที่มีอยู่เดิมของผู้เรียน
และสอดคล้	องเป็นไปตามทฤษฎีเกี่ยวกับความรู้


ด้วยพัฒนาการของกรอบแนวคิดเกี่ยวกับความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี (TPACK) ดังกล่าว ปัจจุบันมีนักวิจัยและนักวิชาการให้ความสำคัญในการประยุกต์ใช้กรอบแนวคิดนี้ให้มีความจำเพาะเจาะจง กับงานการปฏิบัติการสอนในสาระวิชาจำเพาะและสอดคล้องเป็นไปตามความจำเป็นและประโยชน์ของเครื่องมือ เทคโนโลยีดิจิทัลแต่ละชนิดต่อการนำไปใช้เป็นเครื่องมือในการจัดการเรียนรู้สำหรับผู้เรียนมากขึ้นอย่างต่อเนื่อง ใน บริบทวิชาชีพครูศึกษาของประเทศไทย Srisawasdi (2011; 2013) ได้ประยุกต์ใช้กรอบแนวคิดเกี่ยวกับความรู้ใน การสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีต้นฉบับมาเป็นกรอบแนวคิดเกี่ยวกับความรู้ในการสอนจำเพาะเนื้อหา วิทยาศาสตร์โดยใช้เทคโนโลยีใอซีที (TPACK-ICT) ผ่านบริบทการศึกษาจากรณีตัวอย่าง (Case-based learning) มาเป็นฐานสำหรับการออกแบบรายวิชาในระดับบัณฑิตศึกษาสำหรับนักศึกษาวิชาชีพครูวิทยาศาสตร์ที่จบการศึกษา ระดับปริญญาตรีมาจากคณะวิทยาศาสตร์ ซึ่งเป็นรายวิชาในหมวดกระบวนการเรียนรู้วิชาเอกของการจัดการเรียนรู้ วิทยาศาสตร์

นอกจากนั้นแล้ว Srisawasdi (2014) ได้ประยุกต์ใช้กรอบแนวคิด TPACK ในการออกแบบกลุ่มของ รายวิชาที่เป็นรายวิชาในหมวดกระบวนการเรียนรู้วิชาเอกสำหรับนักศึกษาวิชาชีพครูวิทยาศาสตร์ (วิชาเอกฟิสิกส์) คณะศึกษาศาสตร์ มหาวิทยาลัยขอนแก่นเพื่อบ่มเพาะความรู้พื้นฐานและสร้างทักษะการปฏิบัติในการใช้เครื่องมือ เทคโนโลยีร่วมสมัยที่เกี่ยวข้องกับงานการสอนวิทยาศาสตร์มาเป็นเครื่องมือเชิงกลยุทธ์สำหรับการดำเนินงานการ จัดการเรียนรู้วิทยาศาสตร์สำหรับผู้เรียนในชั้นเรียน ซึ่งในการวางแผนออกแบบกลุ่มของรายวิชาบนพื้นฐานกรอบ แนวคิดเกี่ยวกับความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีประกอบด้วยรายวิชาที่ถูกออกแบบเป็นลำดับ ต่อเนื่องกันในเชิงแนวคิด โดยผู้วิจัยได้กำหนดกรอบแนวคิดเกี่ยวกับความรู้ในการสอนฟิสิกส์อย่างจำเพาะเนื้อหาโดย ใช้ปฏิบัติการทดลองผ่านคอมพิวเตอร์โดยประยุกต์ฐานการคิดของกรอบแนวคิด TPACK และออกแบบการจัดการ เรียนการสอนกลุ่มรายวิชาตามกรอบแนวคิดดังกล่าวดังแสดงไว้ในแผนภาพที่ 2.2

แผนภาพที่ 2.2 กรอบแนวคิดเกี่ยวกับความรู้ในการสอนฟิสิกส์อย่างจำเพาะเนื้อหาโดยใช้ปฏิบัติการทดลองผ่าน
คอมพิวเตอร์ (Srisawasdi, 2014)

นอกจากนั้นแล้ว Srisawasdi, Pondee, & Bunterm (2018) ได้ออกแบบกรอบแนวคิดความรู้ในการ สอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีเชิงประยุกต์สำหรับบริบทการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะโดยใช้ ปฏิบัติการทดลองแบบลงมือกระทำจริงผ่านอุปกรณ์แบบพกพาเพื่อส่งเสริมความเข้าใจในแนวคิดหลักวิทยาศาสตร์ ในการออกแบบรายวิชาสำหรับนักศึกษาวิชาชีพครูวิทยาศาสตร์ดังแสดงไว้ในแผนภาพที่ 2.3

แผนภาพที่ 2.3 กรอบแนวคิดเกี่ยวกับความรู้ในการสอนวิทยาศาสตร์อย่างจำเพาะแนวคิดหลักโดยใช้ปฏิบัติการ ทดลองแบบลงมือกระทำจริงผ่านอุปกรณ์แบบพกพา (Srisawasdi, Pondee, & Bunterm, 2018)

5.3) การพัฒนาคุณภาพของครูผ่านมุมมองกรอบแนวคิดความรู้ในการสอนจำเพาะเนื้อหาโดยใช้ เทคโนโลยี

ปัจจุบันกรอบแนวคิดเกี่ยวกับความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีถูกนำไปใช้เป็นฐานใน การศึกษาวิจัยเพื่อนำไปสู่การผลิต พัฒนาหรือเสริมสมรรถนะในการปฏิบัติงานสอน (Teaching practice) ของ ครูผู้สอนที่สามารถเอื้ออำนวยกระบวนการเรียนรู้ (Learning process) ของผู้เรียนได้อย่างสอดคล้องเหมาะสมกัน อย่างกว้างขวางมากขึ้นทั่วทุกมุมโลก ทั้งในกลุ่มประเทศที่พัฒนาแล้ว ที่กำลังพัฒนา และที่ด้อยพัฒนา และมี แนวโน้มที่เพิ่มมากขึ้นเรื่อยๆ อย่างเป็นลำดับที่นานาประเทศมีการรับเอากรอบแนวคิดดังกล่าวเป็นฐานเชิงกลยุทธ์ เพื่อการพัฒนาคุณภาพวิชาชีพครู ส่วนหนึ่งอาจจะเนื่องจากการที่ยังไม่ได้มีการจัดตั้งมาตรฐานคุณภาพร่วมของ วิชาชีพครูทั้งในระดับสากลและในระดับภายในประเทศที่ชัดเจนและเป็นอันหนึ่งอันเดียวกันในขอบเขตที่จำเป็น สำหรับวิชาชีพครูในยุคศตวรรษนี้ดังที่ผู้เขียนได้วิเคราะห์ประเด็นที่อาจจะเป็นไปได้ไว้แล้วในส่วนก่อนหน้า ดังนั้น นักการศึกษาหรือนักพัฒนาวิชาชีพครูจึงต้องสืบเสาะและพิจารณาหากรอบแนวคิดที่มีความสอดคล้องและเหมาะสม กับบริบทของตนเองเพื่อนำไปใช้เป็นฐานของการพัฒนาต่อยอด ดังนำเสนอในตารางที่ 1.1 ซึ่งแสดงงานวิจัยที่มุ่ง พัฒนาความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีสำหรับนักศึกษาวิชาครูวิทยาศาสตร์และครูวิทยาศาสตร์ ประจำการ

ตารางที่ 2.1 งานวิจัยที่มุ่งพัฒนาแนวทางการบ่มเพาะและพัฒนาความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี สำหรับครูวิทยาศาสตร์

ผู้วิจัย	กลุ่มเป้าหมาย	แนวทาง	เทคโนโลยีที่ใช้
Guzey &	ครูวิทยาศาสตร์	โปรแกรมการอบรมเชิง	เครื่องมือไอซีที (เช่น ตัวรับ
Roehrig (2009)	 ประจำการ	ปฏิบัติการ	สัมผัส, คอมพิวเตอร์ซีมูเลชัน,
			วิดีโอ, ภาพเคลื่อนไหว, เว็บ,
			สปรีดชีท, มัลติมีเดีย)
Jimoyiannis	ครูวิทยาศาสตร์	ออกแบบรายวิชา	เครื่องมือไอซีที
(2010)	 ประจำการ		

Jang & Chen	นักศึกษาวิชาชีพครู	ออกแบบรายวิชา	เครื่องมือไอซีที
(2010)	วิทยาศาสตร์		
Srisawasdi	นักศึกษาวิชาชีพครู	ออกแบบรายวิชา	เครื่องมือไอซีที
(2011)	วิทยาศาสตร์		
Alayyar, Fisser,	นักศึกษาวิชาชีพครู	โปรแกรมการอบรมเชิง	เครื่องมือไอซีที
& Voogt (2012)	วิทยาศาสตร์	ปฏิบัติการออนไลน์	
Annetta et al.	ครูวิทยาศาสตร์	โปรแกรมการอบรมเชิง	วิดีโอเกม
(2013)	ประจำการ	ปฏิบัติการ	
Srisawasdi	นักศึกษาวิชาชีพครู	ออกแบบรายวิชา	เครื่องมือไอซีที
(2013)	วิทยาศาสตร์		
Srisawasdi	นักศึกษาวิชาชีพครู	ออกแบบรายวิชา	การปฏิบัติการทดลอง
(2014)	วิทยาศาสตร์		วิทยาศาสตร์แบบลงมือกระทำ
			จริงและแบบเสมือน
Srisawasdi,	นักศึกษาวิชาชีพครู	ออกแบบรายวิชา	การปฏิบัติการทดลอง
Pondee, &	วิทยาศาสตร์		วิทยาศาสตร์โดยใช้อุปกรณ์
Bunterm			สื่อสารแบบพกพา
(2018)			

ตัวอย่างผลงานการศึกษาวิจัยปัจจุบันส่วนหนึ่งสามารถนำเสนอรายละเอียดได้ดังต่อไปนี้

Jang & Chen (2010) ดำเนินงานการศึกษาเพื่อออกแบบการปฏิบัติงานสอนรายวิชาความรู้ในการ
สอนจำเพาะเนื้อหาทางวิทยาศาสตร์และเทคโนโลยี (Pedagogical Content Knowledge in Science and
Technology) และพัฒนาบทเรียนออนไลน์เพื่อสนับสนุนกระบวนการเรียนรู้เกี่ยวกับความรู้ในการสอนจำเพาะ

เนื้อหาโดยใช้เทคโนโลยีสำหรับนักศึกษาวิชาชีพครูวิทยาศาสตร์ในประเทศไต้หวัน ซึ่งโดยปกติของการปฏิบัติงาน สอนที่เคยผ่านมาเนื้อหาในรายวิชานี้นั้นจะเน้นการเรียนรู้ในทฤษฎีต่างๆ เกี่ยวกับการสอนและวิธีการสอนเพียง เท่านั้น แต่ในการศึกษานี้รายวิชาดังกล่าวถูกออกแบบเพิ่มเติมโดยเน้นให้นักศึกษาต้องออกแบบการจัดการเรียนรู้ใน ้ชั้นเรียนโดยประยุกต์ใช้เทคโนโลยีเป็นเครื่องสำคัญในการปฏิบัติงานสอนและนำไปสู่การนำไปทดลองใช้ปฏิบัติการ สอนจริงในชั้นเรียน พวกเขาออกแบบการปฏิบัติงานสอนเพื่อการเรียนรู้สำหรับนักศึกษาวิชาชีพครูในรายวิชา ดังกล่าวตลอดระยะเวลา 18 สัปดาห์ของภาคการศึกษาซึ่งแบ่งออกเป็น 4 ระยะกิจกรรมการเรียนรู้ โดยออกแบบ กระบวนการเรียนรู้ให้นักศึกษาได้ศึกษาแนวคิดหลักที่เกี่ยวข้องและสื่อเทคโนโลยีต่างๆ ที่สามารถบูรณาการใช้เพื่อ การจัดการเรียนรู้วิทยาศาสตร์ในชั้นเรียนในระยะแรก ต่อจากนั้นให้นักศึกษาปฏิบัติการสังเกตการสอนในบริบทชั้น เรียนจริงของครูที่ใช้สื่อเทคโนโลยีเป็นเครื่องมือในการจัดการเรียนรู้ หลังจากนั้นนักศึกษาจะต้องออกแบบการ ปฏิบัติงานสอนวิทยาศาสตร์ในชั้นเรียนโดยใช้เครื่องมือเทคโนโลยีผ่านการเขียนแผนการสอนเนื้อหาจำเพาะ (Lesson plan) และจะต้องลงมือปฏิบัติการสอนจริงในชั้นเรียนของรายวิชาพร้อมทั้งบันทึกวิดีโอภาพเคลื่อนไหวการ ปฏิบัติงานสอนของตนเองไว้ด้วย สุดท้ายนักศึกษาจะต้องร่วมกันดำเนินการสะท้อนผลการปฏิบัติงานสอนที่ได้ปฏิบัติ ผ่านไปแล้ว ตามลำดับ ข้อค้นพบที่ได้จากการดำเนินการศึกษาดังกล่าวพบว่า นักศึกษาวิชาชีพครูเกิดการตระหนักรู้ เกี่ยวกับว่าไม่ใช่เนื้อหาวิทยาศาสตร์ทุกเนื้อหาที่จะเหมาะสมกับการใช้วิธีการสอนตามปกติ และมีความเข้าใจได้ใน กรอบแนวคิดเกี่ยวกับความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีและแนวทางการใช้เครื่องมือเทคโนโลยีมา สนับสนุนงานปฏิบัติการสอนในชั้นเรียนวิทยาศาสตร์

Agyei & Voogt (2012) ดำเนินงานการศึกษาเพื่อพัฒนาความเข้าใจและความสามารถในการใช้ โปรแกรม spreadsheet เป็นเครื่องมือในการปฏิบัติงานเนื้อหาคณิตศาสตร์ในชั้นเรียนสำหรับนักศึกษาวิชาชีพครู คณิตศาสตร์ในประเทศกาน่า โดยมุ่งหวังจะนำไปสู่การพัฒนาความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของ นักศึกษาวิชาชีพครูคณิตศาสตร์ โดยทั้งสองทำการออกแบบการสัมมนาเชิงปฏิบัติการ (Workshop) เป็นระยะเวลา 2 สัปดาห์ โดยแบ่งกิจกรรมการเรียนรู้ที่เน้นการร่วมมือกันเป็นทีมในการสัมมนาดังกล่าวออกเป็น 3 ส่วน ได้แก่ ส่วน ที่หนึ่ง เป็นบทนำเกี่ยวกับหลักการเรียนรู้โดยการออกแบบ (Learning by design), กรอบแนวคิดเกี่ยวกับความรู้ใน การสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี, ทักษะพื้นฐานในการใช้งานโปรแกรม spreadsheet, และบทเรียนตัวอย่าง ของการใช้โปรแกรม spreadsheet ในกระบวนการเรียนรู้คณิตศาสตร์ ส่วนที่สอง เป็นการออกแบบกิจกรรมการ เรียนรู้คณิตศาสตร์จำเพาะเนื้อหาจักเพาะ และ ส่วนที่สาม เป็นการทดลองปฏิบัติงานสอนในชั้นเรียนของรายวิชา (Micro-teaching) ตามลำดับ ข้อค้นพบที่ได้จาก

การดำเนินการศึกษาดังกล่าวพบว่า นักศึกษาวิชาชีพครูคณิตศาสตร์ที่เข้าร่วมการสัมมนาเชิงปฏิบัติการสามารถใช้ โปรแกรม spreadsheet เพื่อเป็นเครื่องมือสนับสนุนการสอนแนวคิดหลักทางคณิตศาสตร์และเอื้ออำนวย กระบวนการเรียนรู้คณิตศาสตร์ของผู้เรียนอย่างมีปฏิสัมพันธ์จริงได้ ซึ่งส่งผลให้นักศึกษาวิชาชีพครูคณิตศาสตร์ ดังกล่าวรู้จักที่จะปรับเปลี่ยนกลวิธีการสอนโดยอยู่บนพื้นฐานลักษณะการเรียนรู้ของผู้เรียน

นอกจากนั้นแล้ว Srisawasdi (2011) และ Srisawasdi (2013) ได้ประยุกต์ใช้กรอบแนวคิดความรู้ใน การสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีเพื่อการออกแบบเนื้อหารายวิชาเทคโนโลยีสารสนเทศและการสื่อสาร สำหรับงานทางวิทยาศาสตร์ศึกษาสำหรับการจัดการศึกษาให้กับนักศึกษาวิชาชีพครูวิทยาศาสตร์ในระดับ บัณฑิตศึกษา (สำหรับผู้ที่จบการศึกษาระดับปริญญาตรีที่ไม่ใช่สายทางการศึกษา) โดยได้ออกแบบการนำเสนอ เนื้อหาดังกล่าวโดยใช้กลวิธีการจัดการเรียนรู้ผ่านกรณีตัวอย่าง ข้อค้นพบที่ได้จากการดำเนินการศึกษาดังกล่าวพบว่า นักศึกษาวิชาชีพครูวิทยาศาสตร์สามารถพัฒนาระดับองค์ความรู้ในการสอนวิทยาศาสตร์จำเพาะเนื้อหาโดยใช้ เทคโนโลยีสารสนเทศและการสื่อสารได้ดีขึ้น และสามารถออกแบบวิธีการจัดการเรียนรู้วิทยาศาสตร์โดยพิจารณา การใช้เทคโนโลยีสารสนเทศและการสื่อสารเป็นเครื่องมือในการสนับสนุนการเรียนรู้ได้ หลังจากนั้นแล้ว Srisawasdi (2014) ได้ดำเนินการออกแบบเนื้อหารายวิชาแบบต่อเนื่องกันเพื่อนำไปสู่การบ่มเพาะและส่งเสริมความรู้ในการสอน จำเพาะเนื้อหาโดยใช้เทคโนโลยีในบริบทการปฏิบัติงานการสอนโดยใช้การปฏิบัติการทดลองวิทยาศาสตร์แบบลงมือ กระทำจริงและแบบเสมือนสำหรับนักศึกษาวิชาชีพครูวิทยาศาสตร์ตั้งแต่ชั้นปีที่ 2 ต่อเนื่องกันจนถึงชั้นปีที่ 4 ก่อน ออกฝึกปฏิบัติการสอนในสถานศึกษา ข้อมูลเชิงประจักษ์แสดงให้เห็นว่านักศึกษาวิชาชีพครูที่ได้รับการจัดการเรียน การสอนดังกล่าวมีการพัฒนาความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีได้อย่างเป็นรูปธรรมทั้งในบริบทการ ประยุกต์ใช้ปฏิบัติการทดลองวิทยาศาสตร์แบบลงมือกระทำจริงและแบบเสมือนสำหรับการสอนในชั้นเรียน นอกจากนั้นแล้วเมื่อไม่นานมานี้ Srisawasdi, Pondee, & Bunterm (2018) ได้พัฒนากรอบแนวคิดเกี่ยวกับความรู้ ในการสอนวิทยาศาสตร์อย่างจำเพาะแนวคิดหลักโดยใช้ปฏิบัติการทดลองแบบลงมือกระทำจริงผ่านอุปกรณ์แบบ พกพาและได้ออกแบบและพัฒนารายวิชาเพื่อการบ่มเพาะและเอื้ออำนวยการสร้างความรู้ในการสอนจำเพาะเนื้อหา โดยใช้เทคโนโลยีของนักศึกษาวิชาชีพครูวิทยาศาสตร์ โดยออกแบบการนำเสนอเนื้อหาในรายวิชาโดยเริ่มต้นจาก ระดับการสร้างการรับรู้ การสร้างความเข้าใจ และไปสู่การฝึกปฏิบัติเพื่อสร้างความสามารถในการประยุกต์ใช้การ ปฏิบัติการทดลองแบบลงมือกระทำจริงผ่านอุปกรณ์แบบพกพาเพื่องานการสอนวิทยาศาสตร์ในระดับโรงเรียนได้ จากผลการศึกษาดังกล่าวพบว่า นักศึกษาวิชาชีพครูวิทยาศาสตร์ดังกล่าวได้ รับการพัฒนาระดับคุณภาพของความรู้ องค์ประกอบเกี่ยวกับความรู้ในการสอนวิทยาศาสตร์อย่างจำเพาะแนวคิดหลักโดยใช้ปฏิบัติการทดลองแบบลงมือ กระทำจริงผ่านอุปกรณ์แบบพกพาได้ดีมากขึ้นหลังจากที่จบการเรียนการสอนในรายวิชาดังกล่าวแล้ว

จากรายงานการศึกษาวิจัยปัจจุบันส่วนหนึ่งที่นำเสนอดังกล่าว สามารถเห็นได้ถึงตัวอย่างของแนว ทางการดำเนินการ ซึ่งได้แก่ การออกแบบรายวิชาในหลักสูตร และการสัมมนาเชิงปฏิบัติการ โดยเป็นการจัด แบ่งเป็นระยะหรือส่วนต่างๆ ของกิจกรรมการเรียนรู้ที่เชื่อมโยงสัมพันธ์กันจากทฤษฎีมาสู่การปฏิบัติงานในชั้นเรียนที่ จะสามารถนำไปใช้ในการปฏิบัติงานสอนในชั้นเรียนที่มีประสิทธิภาพต่อกระบวนการเรียนรู้ของผู้เรียนได้และที่ สามารถที่จะนำไปสู่การพัฒนาคุณภาพวิชาชีพครูผ่านการบ่มเพาะให้เกิดความรู้ในการสอนจำเพาะเนื้อหาโดยใช้ เทคโนโลยี แต่อย่างไรก็ตามผู้วิจัยวิเคราะห์ผลการศึกษาที่ผ่านและได้ข้อค้นพบที่เป็นประเด็นควรได้รับการพิจาณา ดังต่อไปนี้

☐ ยังไม่เคยปรากฏรายงานการวิจัยที่ออกแบบการจัดการศึกษาเพื่อการพัฒนาคุณภาพการปฏิบัติงาน การสอนวิทยาศาสตร์ในลักษณะที่เป็นโมดูลการเรียนรู้ที่มีการออกแบบโดยเน้นปฏิสัมพันธ์ระหว่างเทคโนโลยีดิจิทัล (Digital technologies) และวิธีการสอนวิทยาศาสตร์สืบเสาะ (Inquiry-based science learning) อย่างต่อเนื่อง สัมพันธ์กันอย่างชัดเจนตามกรอบแนวคิดความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี (TPACK) มาก่อน

☐ ยังไม่มีรายงานการวิจัยที่ออกแบบโปรแกรมการจัดการศึกษาเพื่อการพัฒนาคุณภาพการปฏิบัติงาน การสอนวิทยาศาสตร์ตามกรอบแนวคิดความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีสำหรับผู้ปฏิบัติงานวิชาชีพ ครูผ่านบริบทการบูรณาการร่วมกันระหว่างการออกแบบรายวิชาเรียนอย่างจำเพาะแบบออนไลน์ร่วมกับการสัมมนา เชิงปฏิบัติการเฉพาะทางที่เป็นลักษณะกิจกรรมเสริมหลักสูตรหรือเสริมการปฏิบัติงานในสถานศึกษาแบบเผชิญหน้า มาก่อน

□ มีรายงานการวิจัยที่เกี่ยวกับการพัฒนาความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีในบริบท การใช้เครื่องมือเทคโนโลยีสำหรับการปฏิบัติงานการสอนภายใต้บริบทการใช้สิ่งแวดล้อมดิจิทัลแบบไม่มากนัก แต่ อย่างไรก็ตามยังไม่รายงานการวิจัยเกี่ยวกับการพัฒนาความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีและ ความสามารถในการปฏิบัติงานการสอนโดยใช้สิ่งแวดล้อมดิจิทัล (Teaching in digital environment) โดยควบคู่ กับกระบวนการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะ (Inquiry-based science learning) สำหรับนักศึกษาวิชาชีพครู และครูวิทยาศาสตร์ประจำการมาก่อน

นอกจากนั้นแล้ว การที่จะพัฒนาความรู้ที่จำเป็นที่เกี่ยวกับกระบวนการจัดการเรียนการสอนสำหรับ นักศึกษาวิชาชีพครูได้นั้น ปัจจัยพื้นฐานสำคัญหนึ่งที่เป็นสิ่งกำหนดการเลือกที่จะรับหรือไม่รับนวัตกรรมการจัดการ

เรียนรู้ต่างๆ ไปใช้จริงในชั้นเรียนนั้นคือ การรับรู้ (Perception) ซึ่งข้อความรู้อันที่ทราบกันเป็นอย่างดีนั้นพบว่า นักศึกษาวิชาชีพครูนั้นมักจะมีความเชื่อเดิมเกี่ยวกับแนวทางและวิธีการการจัดการเรียนรู้อยู่แล้วก่อนหน้าที่เข้าสู่ หลักสูตรการผลิตครูในสถาบันการศึกษา ซึ่งส่งผลกระทบต่อการรับรู้ที่จะพัฒนาความรู้เชิงหลักการและเชิงปฏิบัติใน การจัดการเรียนรู้ร่วมสมัยของนักศึกษาวิชาชีพครูเป็นอย่างมาก (Faget et al., 2005) ถึงแม้ว่าในปัจจุบัน ความก้าวหน้าของเครื่องมือเทคโนโลยี, วิทยาการการจัดการเรียนรู้โดยใช้เทคโนโลยี, และองค์ความรู้ที่ได้จากการ งานวิจัยในการใช้เทคโนโลยีเป็นเครื่องมือเพื่อการเรียนรู้ของผู้เรียนจะก้าวไกลไปมากเพียงใด แต่จากรายงานวิจัย ต่างๆ ที่ผ่านมาก็ยังพบว่าทั้งนักศึกษาวิชาชีพครู, ครูประจำการ, และอาจารย์ระดับอุดมศึกษายังเลือกที่จะปฏิบัติงาน สอนในชั้นเรียนโดยอาศัยการบรรยายโดยผู้สอนเป็นหลัก และใช้วิธีการถ่ายทอดข้อความรู้จากครูผู้สอนไปสู่ผู้เรียน โดยตรงเช่นเดิม ซึ่งเป็นผลมาจากความเชื่อและการรับรู้ที่มีอยู่เดิมของครูผู้สอนนั่นเอง (Ajayi, 2009; Alghazo, 2006; Bryant, 2006). โดยการรับรู้ของนักศึกษาวิชาชีพครูนั้นมีปัจจัยต่างๆ เกี่ยวข้องอยู่มาก ได้แก่ เพศ, ช่วงอายุ, ระดับความมั่นใจ, ระดับการประเมินประสิทธิภาพในการปฏิบัติงานของตนเอง, ประสบการณ์เดิม, เจตคติส่วนบุคคล , และอื่นๆ ดังนั้นแล้วหากต้องการที่จะพัฒนาองค์ความรู้ร่วมสมัยหนึ่งใดสำหรับนักศึกษาวิชาชีพครูนั้น เช่น องค์ ความรู้เกี่ยวกับความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี การได้มาซึ่งข้อมูลที่เป็นการรับรู้ที่มีต่อความรู้ใน การสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของนักศึกษาวิชาชีพครูนั้นเป็นข้อมูลที่มีคุณค่าอย่างยิ่งต่อการใช้เป็นพื้นฐาน สำหรับการพัฒนาโปรแกรมการเรียนรู้หรือหลักสูตรการจัดการศึกษาของนักศึกษาวิชาชีพครูเพื่อนำไปสู่การเป็นครู มืออาชีพที่สามารถใช้เครื่องมือเทคโนโลยีเป็นเสมือนอาวุธสำหรับการปฏิบัติงานร่วมกันหลักการและทฤษฎีพื้นฐาน สำหรับการจัดการเรียนรู้ได้อย่างแท้จริง

2.3 สิ่งแวดล้อมดิจิทัลกับการปฏิบัติงานการสอนวิทยาศาสตร์ในปัจจุบัน

เทคโนโลยีคอมพิวเตอร์ถูกนำมาใช้ในงานทางวิทยาศาสตร์ศึกษาเพื่อเป็นเครื่องมือทางปัญญาที่ส่งผล กระทบให้เกิดการเปลี่ยนรูปในกระบวนการจัดการเรียนการสอนเพื่อให้รู้ในวิทยาศาสตร์ในหลากหลายมิติ เช่น เพื่อ โมเดลองค์ความรู้วิทยาศาสตร์ให้อยู่ในรูปอย่างง่ายที่สามารถเข้าใจได้, เพื่อพัฒนาการสร้างความเข้าใจอย่างถ่องแท้ ในมโนมติวิทยาศาสตร์และความเข้าใจเชิงบูรณาการในมโนมติวิทยาศาสตร์และกระบวนการได้มาซึ่งองค์ความรู้ทาง วิทยาศาสตร์, เพื่อส่งเสริมการพัฒนาความเข้าใจมโนมติวิทยาศาสตร์และทักษะกระบวนการทางวิทยาศาสตร์, เพื่อ สนับสนุนการปฏิบัติงานทางวิทยาศาสตร์โดยร่วมมือกันและแบ่งปันข้อมูลเชิงวิทยาศาสตร์เพื่อนำไปสู่การร่วมมือกัน สืบเสาะในองค์ความรู้วิทยาศาสตร์ร่วมสมัยในชุมชนนักวิทยาศาสตร์, เพื่อกระตุ้นให้เกิดการเรียนรู้ในสิ่งใหม่ทาง

วิทยาศาสตร์, เพื่อสนับสนุนการเข้าถึงแหล่งข้อมูลและข้อมูลที่ได้มาอย่างเป็นระบบทางวิทยาศาสตร์, เพื่อเอื้ออำนวย การเก็บรวบรวมข้อมูลปรากฏการณ์ที่เกี่ยวข้องกับงานทางวิทยาศาสตร์, เพื่อตรวจสอบความเป็นจริงในทฤษฎีทาง วิทยาศาสตร์ที่ถูกเสนอขึ้นมา, และเพื่อตอบสนองต่อธรรมชาติของกระบวนการสืบเสาะแบบวิทยาศาสตร์เฉก เช่นเดียวกันกับที่วิถีปฏิบัติร่วมสมัยของเหล่านักวิทยาศาสตร์ (Srisawasdi, Kerdjaroen, & Suits, 2008; Srisawasdi, 2012c). จากการศึกษาค้นคว้างานทางวิทยาศาสตร์ศึกษาที่ถูกสนับสนุนโดยการใช้เครื่องมือเทคโนโลยี เพื่อให้ได้มาซึ่งองค์ความรู้ร่วมสมัยนั้นข้อค้นพบเชิงประจักษ์พบว่าเทคโนโลยีคอมพิวเตอร์ช่วยในการปรับปรุง กระบวนการเรียนรู้วิทยาศาสตร์ได้อย่างมีประสิทธิภาพ โดยแนวโน้มและทิศทางร่วมสมัยในการใช้เครื่องมือ เทคโนโลยีในงานปฏิบัติการสอนวิทยาศาสตร์นั้นสามารถพิจารณาแบ่งออกได้ใน 2 ลักษณะ ได้แก่ ปฏิบัติการทดลอง แบบลงมือกระทำจริงผ่านคอมพิวเตอร์ (Hands-on Computer-based Science Laboratory) และสถานการณ์ จำลองทางวิทยาศาสตร์บนคอมพิวเตอร์ (Science Computer Simulation)

- 2.3.1) ปฏิบัติการทดลองแบบลงมือกระทำจริงผ่านคอมพิวเตอร์ (Hands-on Computer-based Laboratory)
- 2.3.1.1) แนวคิดพื้นฐาน: นิวัฒน์ ศรีสวัสดิ์ (2552n, 2552ข) ได้กล่าวถึงปฏิบัติการทดลองแบบลง มือกระทำจริงผ่านคอมพิวเตอร์ไว้ว่า คือ การปฏิบัติการทดลองวิทยาศาสตร์โดยการใช้คอมพิวเตอร์ในการเก็บ รวบรวมข้อมูลในเชิงกายภาพ (เช่น อุณหภูมิ ความร้อน ความหนืด ความเป็นกรด-เบส เป็นต้น) ที่ได้รับตัวรับสัมผัส แบบอิเล็กทรอนิกส์ (Electronic Sensor) ต่างๆ ที่เชื่อมต่อประสาน (Interface) อยู่กับคอมพิวเตอร์ โดยอาศัยการ แปลงความเป็นสัญญาณแบบอนาล็อก (Analog) มาเป็นข้อมูลแบบดิจิตอล (Digital) พร้อมทั้งจัดกระทำข้อมูลและ การนำเสนอข้อมูลแบบดิจิตอลนั้นผ่านระบบการสร้างเป็นกราฟ (Graphical system) การประมวลคำ (Word processing) ฟังก์ชันเชิงสถิติ หรือเอกสาร spreadsheet เพื่อนำไปใช้ในการวิเคราะห์ผลในภายหลัง โดย ปฏิบัติการทดลองแบบลงมือกระทำจริงผ่านคอมพิวเตอร์ประกอบไปด้วยฮารด์แวร์ (ได้แก่ คอมพิวเตอร์ ตัวรับสัมผัส ตัวเชื่อมประสานระหว่างคอมพิวเตอร์กับตัวรับสัมผัส และชอฟแวร์ที่ใช้ในการเก็บรวบรวมข้อมูลที่ถูกแปลงสัญญาณ แบบอนาล็อกมาเป็นเป็นสัญญาณแบบดิจิตอลจากตัวรับสัมผัส กระบวนการต่างๆ ที่เกิดขึ้นภายในปฏิบัติการทดลอง แบบลงมือกระทำจริงผ่านคอมพิวเตอร์เริ่มตั้งแต่เก็บรวบรวมข้อมูลจนกระทั่งนำไปสู่การนำเสนอข้อมูลแบบต่างๆ เรียกว่า "Data longing" (Lavonen, Juuti & Meisalo, 2003)
- 2.3.1.2) คุณสมบัติจำเพาะ: Russell, Lucas & McRobbie (2003) ได้กล่าวถึงคุณสมบัติของ ปฏิบัติการทดลองแบบลงมือกระทำจริงผ่านคอมพิวเตอร์ที่มีต่อการจัดการเรียนรู้วิทยาศาสตร์ไว้ดังต่อไปนี้

- 1) ส่งเสริมการเรียนรู้ของผู้เรียนผ่านการลงมือกระทำจริงเพื่อการค้นพบด้วยตนเอง
- 2) ใช้งานได้ง่าย เหมาะสำหรับทั้งผู้เรียนที่มีทักษะคอมพิวเตอร์ในระดับเบื้องต้นหรือผู้เรียนที่ มีความเชี่ยวชาญอยู่แล้ว
- 3) สนับสนุนต่อการพัฒนาทักษะการคิดของผู้เรียน โดยช่วยลดความน่าเบื่อของการเก็บ รวบรวมและจัดกระทำข้อมูลในการปฏิบัติการทดลองวิทยาศาสตร์
 - 4) กระตุ้นให้เกิดการแรกเปลี่ยนเรียนรู้ระหว่างกันเองของผู้เรียน
 - 5) มีประสิทธิภาพในการสอนเกี่ยวกับการพล๊อตและวิเคราะห์ข้อมูลจากกราฟ
- 6) ช่วยปรับเปลี่ยนข้อมูลที่มีความเป็นนามธรรมสูงให้อยู่ในรูปของผลลัพธ์ที่สามารถแสดง ผลได้โดยทันที
 - 7) ช่วยลดความวิตกกังวลของผู้เรียนเกี่ยวกับความยุ่งยากในการเรียนรู้วิทยาศาสตร์
- 8) เป็นเครื่องมือที่ส่งผลประสิทธิภาพสูงสุดในการเรียนรู้ได้แม้กระทั่งสำหรับผู้เรียนที่ได้รับ การฝึกฝนมาน้อย

จากการข้อความเบื้องต้นเกี่ยวกับปฏิบัติการทดลองแบบลงมือกระทำจริงผ่านคอมพิวเตอร์ คือ ปฏิบัติการทดลองจริงผ่านคอมพิวเตอร์ ที่ใช้คอมพิวเตอร์ในการเก็บรวบรวมข้อมูลเชิงกายภาพ การใช้ปฏิบัติการ ทดลองจริงผ่านคอมพิวเตอร์ในการจัดการเรียนการสอนนั้นจะต้องคำนึงถึงความสอดคล้องกันระหว่าง เนื้อหา เทคโนโลยีที่เชื่อมต่อกับคอมพิวเตอร์และความรู้ที่ต้องการจะให้นักเรียนได้รับ

- 2.3.1.3) คุณลักษณะพิเศษ: ด้วยคุณสมบัติจำเพาะของของปฏิบัติการทดลองวิทยาศาสตร์ผ่าน คอมพิวเตอร์แล้วนั้น Russell, Lucas & McRobbie (2003) ได้กล่าวถึงคุณลักษณะพิเศษของปฏิบัติการทดลอง วิทยาศาสตร์ผ่านคอมพิวเตอร์ไว้ดังต่อไปนี้
 - 1) กระตุ้นให้ผู้เรียนเกิดความกระตือรือร้นในการสร้างความเข้าใจต่อมโนมติวิทยาศาสตร์
 - 2) ส่งเสริมและสนับสนุนต่อการจัดการเรียนรู้วิทยาศาสตร์ที่มีประสิทธิภาพดีขึ้นของผู้เรียน
- 3) สามารถสร้างกราฟเพื่อแสดงผลลัพธ์ได้โดยทันที (Real time) ซึ่งเอื้ออำนวยต่อวิธีการ ในการสำรวจตรวจสอบ ในการเรียนรู้วิทยาศาสตร์ในชั้นเรียนที่พิเศษมากขึ้นของผู้เรียน
- 4) เอื้ออำนวยความสะดวกในกระบวนการทางวิทยาศาสตร์ในการเก็บรวบรวมข้อมูล การ วาดกราฟ การตีความ และการวิเคราะห์ข้อมูล

- 5) เอื้ออำนวยให้ผู้เรียนได้ใช้ความพยายามในการเรียนรู้และได้ใช้เทคนิคตรวจสอบข้อมูลเพื่อ พิสูจน์ว่าเป็นจริงมากขึ้น ซึ่งเป็นกระบวนการที่สะท้อนสิ่งที่เกิดขึ้นในการวิจัยและการดำเนินการภายใน ห้องปฏิบัติการวิทยาศาสตร์อย่างแท้จริง
- 6) จัดเตรียมโอกาสให้ผู้เรียนได้เกิดการทำนายคาดคะเน การตั้งคำถาม และการประยุกต์ใช้ มโนมติทางวิทยาศาสตร์เพื่ออธิบายปรากฏการณ์ที่เกิดขึ้น
- 7) ส่งเสริมการเรียนรู้อย่างมีปฏิสัมพันธ์ผ่านกระบวนการลงมือปฏิบัติจริงทางวิทยาศาสตร์

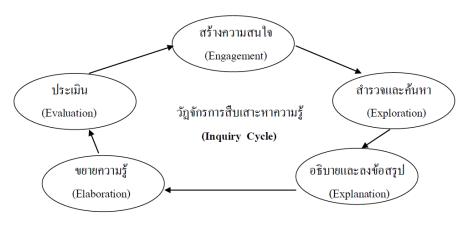
 8) ก่อให้เกิดประสิทธิภาพที่มากขึ้นในช่วงระยะเวลาที่ใช้ในการดำเนินกิจกรรมการเรียน
 การสอนในชั้นเรียนปกติ
- 2.3.1.4) ข้อค้นพบต่อการเรียนรู้: จากผลงานวิจัยทางวิทยาศาสตร์ศึกษาพบว่าปฏิบัติการทดลอง วิทยาศาสตร์แบบลงมือกระทำจริงผ่านคอมพิวเตอร์นั้นเปิดโอกาสให้ผู้เรียนได้ปฏิบัติงานตามกระบวนการทาง วิทยาศาสตร์ได้สมบูรณ์มากขึ้นเพื่อให้ได้มาซึ่งการนำไปสู่การตรวจสอบสมมุติฐานและสำรวจตรวจสอบความสัมพันธ์ ของปัจจัยการทดลองต่างๆ ได้ในขั้นเรียนวิทยาศาสตร์ของโรงเรียน (Kelly & Crawford, 1996; Rogers, 1995; Thornton, 1987) และยังเพิ่มโอกาสในการมีปฏิสัมพันธ์ในระหว่างการปฏิบัติงานการทดลองวิทยาศาสตร์ร่วมกัน ของผู้เรียน ส่งผลให้เอื้ออำนวยต่อการกลไกการแลกเปลี่ยนแนวคิด เรียนรู้ระหว่างกัน และอภิปรายเพื่อหาข้อสรุปใน เชิงแนวคิดวิทยาศาสตร์ตามธรรมชาติของงานวิทยาศาสตร์ได้เป็นอย่างดี (Russell, Lucas & McRobbie, 2003) อีกทั้งมีอิทธิพลส่งเสริมการพัฒนาความเข้าใจมโนมติหรือแนวคิดวิทยาศาสตร์ของผู้เรียน (McRobbie & Thomas, 2000; Nakhleh & Krajcik, 1994; Russell, Lucas & McRobbie, 2003) อีกทั้งส่งผลให้ผู้เรียนเกิดความมั่นใจ สนใจ และพัฒนาทักษะในการปฏิบัติงานวิทยาศาสตร์มากขึ้น (Friedler, Nachmias, & Songer, 1989; Friedler, Nachmias, & Linn, 1990)
- 2.3.2) สถานการณ์จำลองทางวิทยาศาสตร์บนคอมพิวเตอร์แบบมีปฏิสัมพันธ์ (Interactive Science Computer Simulation)
- 2.3.2.1) แนวคิดพื้นฐาน: ปัจจุบันสถานการณ์จำลองบนคอมพิวเตอร์มีบทบาทสำคัญในการเป็น เครื่องมือที่ส่งผลให้เกิดการเปลี่ยนรูปในกระบวนการจัดการเรียนการสอนในชั้นเรียนวิทยาศาสตร์เป็นอย่างมาก นิวัฒน์ ศรีสวัสดิ์ (2552ก, 2552ข) ได้กล่าวถึงสถานการณ์จำลองบนคอมพิวเตอร์ไว้ว่าเป็นการปฏิบัติการทดลอง วิทยาศาสตร์โดยการใช้คอมพิวเตอร์ในการจำลองความเป็นพลวัตรและกลไกของปรากฏการณ์หรือการทดลองทาง วิทยาศาสตร์ ซึ่งสถานการณ์ที่ถูกจำลองนั้นแสดงให้เห็นถึงข้อมูลเชิงทฤษฎีทางวิทยาศาสตร์ของปรากฏการณ์

ธรรมชาติที่เกิดขึ้นจริง โดยส่วนใหญ่สถานการณ์จำลองบนคอมพิวเตอร์นั้นจะประกอบด้วยแอนิเมชัน, การสร้างภาพ วัตถุเสมือนจริงในปรากฏการณ์ที่ไม่สามารถมองเห็นได้ด้วยตาเปล่า, และส่วนที่สามารถสร้างปฏิสัมพันธ์ในการให้ ประสบการณ์ปฏิบัติการทดลองบนคอมพิวเตอร์เสมือนลงมือปฏิบัติจริงได้ (Akpan & Andre, 2000; de Jong, 1991)

- 2.3.2.2) คุณสมบัติจำเพาะและคุณลักษณะพิเศษ: คุณสมบัติของสถานการณ์จำลองบน คอมพิวเตอร์ที่เอื้ออำนวยต่อการส่งเสริมงานการจัดการเรียนรู้วิทยาศาสตร์นั้นสามารถสรุปได้ว่า สถานการณ์จำลอง บนคอมพิวเตอร์นั้นช่วยสร้างโอกาสที่มากขึ้นในการสำรวจตรวจสอบแนวคิดทางวิทยาศาสตร์ได้มากกว่าการ ปฏิบัติการทดลองแบบลงมือกระทำจริงแบบคั้งเดิม ซึ่งปฏิบัติการทดลองแบบลงมือกระทำจริงไม่สามารถตอบสนอง หรือเอื้ออานวยได้อันเนื่องมาจากข้อจำกัด เช่น วัสดุอุปกรณ์หรือเครื่องมือต่างๆ หาได้ยากและมีราคาสูง, ขั้นตอน ปฏิบัติการหรือสารที่ต้องสัมผัสก่อให้เกิดอันตรายได้, ปฏิบัติการทดลองที่จำเป็นต้องอาศัยทักษะระดับสูงในการ ปฏิบัติงาน, การทดลองที่ไม่สามารถแสดงผลที่เกิดขึ้นให้เห็นได้โดยทันที แต่ต้องใช้ระยะเวลายาวนานในการสังเกต ผลที่เกิดขึ้น, แสดงให้เห็นได้ถึงพลวัตรการเปลี่ยนแปลงในระดับโมเลกุลซึ่งไม่สามารถมองเห็นได้ด้วยการสังเกตด้วย ตาแบบปกติ, เปิดโอกาสให้ได้ทดลองเปลี่ยนค่าพารามิเตอร์ต่างๆ ที่เกี่ยวข้องกับกลไกการเกิดขึ้นของปรากฏการณ์ วิทยาศาสตร์, เอื้ออำนวยให้ได้ลงมือปฏิบัติการทดลองเสมือนจริงโดยไม่ใช้เวลามากเพื่อที่จะศึกษาเงื่อนไขของการ ทดลองทางวิทยาศาสตร์ที่โดยปกติไม่สามารถแสดงให้เห็นผลลัพธ์ได้ในช่วงระยะเวลาสั้น (Morgan & Morrison, 1999; Strauss & Kinzie, 1994; Sahin, 2006)
- 2.3.2.3) ข้อค้นพบต่อการเรียนรู้: จากผลงานวิจัยทางวิทยาศาสตร์ศึกษาพบว่าการใช้สถานการณ์ จำลองบนคอมพิวเตอร์ในงานการจัดการเรียนรู้วิทยาศาสตร์ในชั้นเรียนนั้นส่งผลให้ผู้เรียนเกิดการปรับเปลี่ยนความ เข้าใจมโนมติที่คลาดเคลื่อนจากเดิมที่เคยมีอยู่กลายมาเป็นความเข้าใจมโนมติวิทยาศาสตร์ได้ (Zietsman & Hewson, 1986; Bell & Trundle, 2008; Zacharia & Anderson, 2003; Windschitl & Andre, 1998; Muller, Sharma, & Reimann, 2008) และพบว่าองค์ความรู้วิทยาศาสตร์ที่ผู้เรียนได้รับหลังมีปฏิสัมพันธ์กับสถานการณ์ จำลองบนคอมพิวเตอร์นั้นมีความลึกซึ้งและขยายขอบเขตในเชิงแนวคิดได้เป็นอย่างดี (de Jong et al., 1999; Veemans, van Joolingen and de Jong, 2006; Winberg and Berg, 2007) นอกจากนั้นแล้วการลงมือเรียนรู้ กับสถานการ์จำลองบนคอมพิวเตอร์ส่งผลต่อเจตคติในการเรียนรู้วิทยาศาสตร์ของผู้เรียนในเชิงบวกมากขึ้น (Geban, Askar, & Ozkan, 1992; Swaak & de Jong, 1996)

2.4) การปฏิบัติงานสอนวิทยาศาสตร์ผ่านกลยุทธ์การเรียนรู้วิทยาศาสตร์สืบเสาะ (Inquiry-based Science Learning Strategy)

ยุทธศาสตร์การจัดการเรียนรู้วิทยาศาสตร์ตั้งแต่ศตวรรษที่ 19 จนถึงปัจจุบัน การกระตุ้นหรือนำ ทางผู้เรียนให้เข้าสู่บริบทของการสืบเสาะแบบวิทยาศาสตร์เพื่อส่งเสริมให้เกิดความเข้าใจในมโนทัศน์และ กระบวนการทางวิทยาศาสตร์ และให้มีเจตคติวิทยาศาสตร์นั้นเป็นหัวใจหลักทางด้านวิทยาศาสตร์ศึกษา (Srisawasdi, 2009) การเรียนรู้วิทยาศาสตร์ที่เน้นสืบเสาะ (Inquiry-based Science Learning) เป็นวิธีการจัดการ เรียนรู้หนึ่งที่มีหลักการอยู่บนพื้นฐานการจัดการเรียนการสอนตามแนวทฤษฎีคอนสตรัคติวิสซึมที่หน่วยงานด้าน วิทยาศาสตร์และเทคโนโลยีศึกษาระดับนานาชาติหลายหน่วยงานได้กำหนดไว้ให้เป็นแนวทางการจัดการเรียนรู้หลัก อย่างจำเพาะที่ตอบสนองต่อลักษณะธรรมชาติของการได้มาซึ่งองค์ความรู้วิทยาศาสตร์ได้อย่างมีประสิทธิภาพและ สอดคล้องเป็นอย่างดี สำหรับบริบทการจัดการศึกษาวิทยาศาสตร์ในระดับการศึกษาขั้นพื้นฐานนั้นสถาบันส่งเสริม การสอนวิทยาศาสตร์และเทคโนโลยี (สสวท.) ได้ส่งเสริมให้ครูใช้ในการจัดการเรียนการสอนสาระการเรียนรู้ วิทยาศาสตร์มาตั้งแต่ปีพุทธศักราช 2515 โดยเน้นให้กระบวนการเรียนรู้วิทยาศาสตร์ของนักเรียนได้ดำเนินการผ่าน กิจกรรมสำรวจตรวจสอบและการปฏิบัติการทดลอง เพื่อให้นักเรียนได้เกิดความเข้าใจในมโนมติวิทยาศาสตร์ (Scientific concept) และได้รับการพัฒนาทักษะกระบวนการทางวิทยาศาสตร์ (Science process skills) รวมทั้ง ส่งเสริมให้เกิดเจตคติทางวิทยาศาสตร์ (Scientific attitude) จนนำมาสู่การพัฒนาทักษะการคิดอย่างมีระบบโดย คำนึงถึงความสัมพันธ์ระหว่างเหตุและผลบนพื้นฐานของการสนับสนุนข้อสรุปด้วยประจักพยานที่สามารถตรวจสอบ ได้ วิธีนี้เป็นวิธีที่นักเรียนได้มีโอกาสพิจารณาเหตุผล สามารถใช้คำถามที่สามารถตรวจสอบได้ได้อย่างถูกต้อง สามารถสร้างและทดสอบสมมติฐานด้วยปฏิบัติการทดลอง และตีความจากการทดลองด้วยตนเอง โดยไม่ต้องขึ้นอยู่ กับคำอธิบายของครูเพียงอย่างเดียว ซึ่งจะนำมาสู่การช่วยให้นักเรียนมีระบบวิธีการแก้ปัญหาในทางวิทยาศาสตร์ด้วย ตนเองได้ (สุดารัตน์ ดวงเงินและนิวัฒน์ ศรีสวัสดิ์, 2555; จุฑามาศ นุชิตและนิวัฒน์ ศรีสวัสดิ์, 2555) ซึ่งหาก พิจารณาหลักการเชิงแนวคิดและปฏิบัติในการใช้วิธีการจัดการเรียนรู้โดยการเรียนรู้วิทยาศาสตร์ที่เน้นสืบเสาะแล้ว นั้น สามารถแบ่งออกได้เป็น 2 ลักษณะ ได้แก่ วิทยาศาสตร์สืบเสาะแบบที่เป็นวัฏจักรการเรียนรู้ (Learning Cyclebased Science Inquiry) ตัวอย่างเช่น วัฏจักร 4E, 5E, 7E, และ 4Ex2 และ วิทยาศาสตร์สืบเสาะแบบที่เป็นระดับ ของการเปิด (Openness-based Science Inquiry) ตัวอย่างเช่น Confirmatory, Structured Inquiry, Guided Inquiry, Open Inquiry, และ Authentic Inquiry โดยมีรายละเอียดดังต่อไปนี้


2.4.1) ตัวอย่างแนวทางการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะแบบที่เป็นวัฏจักรการเรียนรู้: กรณีวัฏ จักรการเรียนรู้แบบ 5E (5E learning cycle)

นักการศึกษาจากกลุ่ม BSCS : Biological Science Curriculum Society (1997) ประเทศ สหรัฐอเมริกา ได้เสนอกระบวนการสืบเสาะหาความรู้เพื่อให้ผู้เรียนสร้างองค์ความรู้ใหม่ โดยเชื่อมโยงสิ่งที่เรียนรู้เข้า กับประสบการณ์หรือความรู้เดิม เป็นความรู้หรือแนวคิดของผู้เรียนเอง เรียกรูปแบบการสอนนี้ว่า รูปแบบการสอน แบบวัฏจักรการสืบเสาะหาความรู้ (Inquiry Cycle) หรือ 5Es ซึ่งทางสถาบันส่งเสริมการสอนวิทยาศาสตร์และ เทคโนโลยีได้นำรูปแบบการสอนนี้ไปดำเนินการวิจัยทดลองใช้มาอย่างต่อเนื่องในช่วงระหว่าง ปี พ.ศ.2544-2547 และดำเนินการเผยแพร่ขยายผลเพื่อนำไปสู่การใช้จนถึงปัจจุบันนี้ รูปแบบการสอนแบบวัฏจักรการสืบเสาะหาความรู้ แบบ 5Es (5Es Inquiry Cycle) ดังกล่าว แบ่งเป็น 5 ขั้นตอน ดังนี้

- 1) การสร้างความสนใจ (Engagement) เป็นขั้นตอนแรกของกระบวนการเรียนรู้ที่จะนำเข้าสู่บทเรียน จุดประสงค์ที่สำคัญของขั้นตอนนี้ คือ ทำให้ผู้เรียนสนใจ ใคร่รู้ในกิจกรรมที่จะนาเข้าสู่บทเรียนควรจะเชื่อมโยง ประสบการณ์การเรียนรู้เดิมกับปัจจุบัน และควรเป็นกิจกรรมที่คาดว่ากำลังจะเกิดขึ้น ซึ่งทำให้ผู้เรียนสนใจจดจ่อที่ จะศึกษาความคิดรวบยอด กระบวนการ หรือทักษะ และเริ่มคิดเชื่อมโยงความคิดรวบยอด กระบวนการ หรือทักษะ กับประสบการณ์เดิม ผลสำเร็จของการจัดกิจกรรมสร้างความสนใจคือทาให้ผู้เรียนสงสัย อยากรู้อยากเห็น และ ต้องการศึกษาความรู้อย่างลึกซึ้ง
- 2) การสำรวจและค้นหา (Exploration) เป็นขั้นตอนที่ทำให้ผู้เรียนมีประสบการณ์ร่วมกัน ในการสร้างและพัฒนาความคิดรวบยอด กระบวนการและทักษะ โดยการให้เวลาและโอกาสแก่ผู้เรียนในการทำ กิจกรรมการสำรวจและค้นหาสิ่งที่ผู้เรียนต้องการเรียนรู้ตามความคิดเห็นผู้เรียน แต่ละคน หลังจากนั้นผู้เรียนแต่ละ คนได้อภิปรายแลกเปลี่ยนความคิดเห็นเกี่ยวกับการคิดรวบยอด กระบวนการ และทักษะ ในระหว่างที่ผู้เรียนทำ กิจกรรมสำรวจและค้นหา เป็นโอกาสที่ผู้เรียนจะได้ตรวจสอบหรือเก็บรวบรวมข้อมูลเกี่ยวกับความคิดรวบยอดของ ผู้เรียนที่ยังไม่ถูกต้องและยังไม่สมบูรณ์ โดยการให้ผู้เรียนอธิบายและยกตัวอย่างเกี่ยวกับความคิดเห็นของผู้เรียน ครู ควรระลึกอยู่เสมอเกี่ยวกับความสามารถของผู้เรียนตามประเด็นปัญหา ผลจากการที่ผู้เรียนมีใจจดจ่อในการทำ กิจกรรม ผู้เรียนควรจะสามารถเชื่อมโยงการสังเกต การจำแนกตัวแปร และคำถามเกี่ยวกับเหตุการณ์นั้นได้
- 3) การอธิบาย (Explanation) เป็นขั้นตอนที่ให้ผู้เรียนได้พัฒนาความสามารถในการอธิบายความคิด รวบยอดที่ได้จากการสำรวจและค้นหา ครูควรให้โอกาสแก่ผู้เรียนได้อภิปรายแลกเปลี่ยนความคิดเห็นกันเกี่ยวกับ ทักษะหรือพฤติกรรมการเรียนรู้ การอธิบายนั้นต้องการให้ผู้เรียนได้ใช้ข้อสรุปร่วมกันในการเชื่อมโยงสิ่งที่เรียนรู้

ในช่วงเวลาที่เหมาะสมนี้ครูควรชี้แนะผู้เรียนเกี่ยวกับการสรุปและการอธิบายรายละเอียด แต่อย่างไรก็ตามครูควร ระลึกอยู่เสมอว่ากิจกรรมเหล่านี้ยังคงเน้นผู้เรียนเป็นศูนย์กลาง นั่นคือ ผู้เรียนได้พัฒนาความสามารถในการอธิบาย ด้วยตัวผู้เรียนเอง บทบาทของครูเพียงแต่ชี้แนะผ่านทางกิจกรรม เพื่อให้ผู้เรียนมีโอกาสอย่างเต็มที่ในการพัฒนา ความรู้ความเข้าใจในความคิดรวบยอดให้ชัดเจน ในที่สุดผู้เรียนควรจะสามารถอธิบายความคิดรวบยอดได้อย่าง เข้าใจ โดยเชื่อมโยงประสบการณ์ ความรู้เดิมและสิ่งที่เรียนรู้เข้าด้วยกัน

- 4) การขยายความรู้ (Elaboration) เป็นขั้นตอนที่ให้ผู้เรียนได้ยืนยันและขยายหรือเพิ่มเติมความรู้ความ เข้าใจในความคิดรวบยอดให้กว้างขวางและลึกซึ้งยิ่งขึ้น และยังเปิดโอกาสให้ผู้เรียนได้ฝึกทักษะและปฏิบัติตามที่ ผู้เรียนต้องการ ในกรณีที่ผู้เรียนไม่เข้าใจหรือยังสับสนอยู่หรืออาจจะเข้าใจเฉพาะข้อสรุปที่ได้จากการปฏิบัติการ สำรวจและค้นหาเท่านั้น ควรให้ประสบการณ์ใหม่ผู้เรียนจะได้พัฒนาความรู้ความเข้าใจในความคิดรวบยอดให้ กว้างขวางและลึกซึ้งยิ่งขึ้น เป้าหมายที่สำคัญของขั้นนี้ คือ ครูควรชี้แนะให้ผู้เรียนได้นำไปประยุกต์ใช้ในชีวิตประจา วัน จะทำให้ผู้เรียนเกิดความคิดรวบยอด กระบวนการ และทักษะเพิ่มขึ้น
- 5) การประเมินผล (Evaluation) ขั้นตอนนี้ผู้เรียนจะได้รับข้อมูลย้อนกลับเกี่ยวกับการอธิบายความรู้ ความเข้าใจของตนเอง ระหว่างการเรียนการสอนในขั้นนี้ของรูปแบบการสอน ครูต้องกระตุ้นหรือส่งเสริมให้ผู้เรียน ประเมินความรู้ความเข้าใจและความสามารถของตนเอง และยังเปิดโอกาสให้ครูได้ประเมินความรู้ความเข้าใจและ พัฒนาทักษะของผู้เรียนด้วย การนำความรู้หรือแบบจาลองไปใช้อธิบายหรือประยุกต์ใช้กับเหตุการณ์หรือเรื่องอื่น ๆ จะนาไปสู่ข้อโต้แย้งหรือข้อจากัดซึ่งจะก่อให้เป็นประเด็นหรือคาถาม หรือปัญหาที่จะต้องสำรวจตรวจสอบต่อไป ทา ให้เกิดเป็นกระบวนการที่ต่อเนื่องกันไปเรื่อย ๆ จึงเรียกว่า Inquiry Cycle กระบวนการสืบเสาะหาความรู้จึงช่วยให้ นักเรียนเกิดการเรียนรู้ทั้งเนื้อหาหลักและหลักการ ทฤษฎีตลอดจนการลงมือปฏิบัติ เพื่อให้ได้ความรู้ซึ่งจะเป็น พื้นฐานในการเรียนรู้ต่อไป ดังแสดงไว้ในแผนภาพที่ 1.4

แผนภาพ แสดงวัฏจักรการสืบเสาะหาความรู้

แผนภาพที่ 2.4 แสดงแนวคิดการจัดการเรียนรู้แบบ 5Es Inquiry Cycle

2.4.2) ตัวอย่างแนวทางการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะแบบที่เป็นระดับของการเปิด

Buck , Bretz, & Towns (2008) ได้อธิบายถึงลักษณะการจัดการเรียนรู้วิทยาศาสตร์เน้นสืบเสาะ ไว้เป็น 5 ลักษณะที่แตกต่างกัน ได้แก่ การตรวจสอบข้อเท็จจริง (Confirmation), การสืบเสาะแบบกำหนด โครงสร้าง (Structured inquiry), การสืบเสาะแบบมีการชื้แนะแนวทาง (Guided inquiry) , การสืบเสาะแบบเปิด (Open inquiry), และการสืบเสาะแบบวิทยาศาสตร์ (Authentic inquiry) โดยเกณฑ์เชิงปริมาณเพื่อจัดระดับ วิทยาศาสตร์ที่เน้นกระบวนการสืบเสาะภายในสิ่งแวดล้อมการเรียนรู้ที่เป็นปฏิบัติการทดลองวิทยาศาสตร์ โดยที่การ นำลักษณะการสอนแบบสืบเสาะดังกล่าวไปใช้ในการสร้างกระบวนการเรียนรู้วิทยาศาสตร์ของผู้เรียนนั้นก็ขึ้นอยู่กับ วัตถุประสงค์เฉพาะทางในการสอนเนื้อหาจำเพาะของผู้สอน และคุณลักษณะอันพึงประสงค์ทางวิทยาศาสตร์ที่ ต้องการให้เกิดขึ้นกับผู้เรียน โดยหลักการจัดการเรียนรู้โดยใช้เกณฑ์เชิงปริมาณดังกล่าวนำเสนอได้ดังตารางที่ 1.2

ตารางที่ 2.2 แสดงหลักการจัดการเรียนรู้วิทยาศาสตร์เน้นสืบเสาะที่เป็นระดับของการเปิด

องค์ประกอบ	ระดับ 0:	ระดับ ½:	ระดับ 1:	ระดับ 2:	ระดับ 3:
พื้นฐาน	Confirmation	Structured inquiry	Guided inquiry	Open inquiry	Authentic inquiry
ปัญหา หรือคำถาม	จัดเตรียมให้	จัดเตรียมให้	จัดเตรียมให้	จัดเตรียมให้	ไม่ได้จัดเตรียมให้
ทฤษฎี หรือข้อมูล เบื้องต้น	จัดเตรียมให้	จัดเตรียมให้	จัดเตรียมให้	จัดเตรียมให้	ไม่ได้จัดเตรียมให้
วิธีการ หรือการ ออกแบบวิธีการ แก้ปัญหา	จัดเตรียมให้	จัดเตรียมให้	จัดเตรียมให้	ไม่ได้จัดเตรียม ให้	ไม่ได้จัดเตรียมให้
การวิเคราะห์ข้อมูล	จัดเตรียมให้	จัดเตรียมให้	ไม่ได้ จัดเตรียมให้	ไม่ได้จัดเตรียม ให้	ไม่ได้จัดเตรียมให้
การนำเสนอข้อมูล	จัดเตรียมให้	ไม่ได้จัดเตรียม ให้	ไม่ได้ จัดเตรียมให้	ไม่ได้จัดเตรียม ให้	ไม่ได้จัดเตรียมให้
การสรุปผล	จัดเตรียมให้	ไม่ได้จัดเตรียม ให้	ไม่ได้ จัดเตรียมให้	ไม่ได้จัดเตรียม ให้	ไม่ได้จัดเตรียมให้

โดยรายละเอียดขององค์ประกอบพื้นฐานมีดังต่อไปนี้

1. Problem/Question "ปัญหา หรือคำถาม" จะต้องเป็นส่วนที่เกี่ยวเนื่องกับหัวข้อของการ ค้นคว้าโดยเกณฑ์นี้จะไม่ได้แสดงถึงความซับซ้อนของคำถาม คำถามจะบ่งบอกถึงหัวข้อการค้นคว้า เช่น อากาศ ประกอบด้วยในโตรเจนใช่หรือไม่ หรือ อัตราการเกิดปฏิกิริยาของสารละลายเป็นอย่างไร ซึ่งจุดเน้นขึ้นอยู่กับ นักเรียน หลักเกณฑ์ในการพิจารณา คือ นักเรียนสร้างคำถามภายใต้การค้นคว้า หรือได้มาจากคู่มือการปฏิบัติการ

- 2. Theory/Background "ทฤษฎี หรือข้อมูลเบื้องต้น" เป็นข้อมูลความรู้พื้นฐาน ที่จำเป็นสำหรับ การค้นคว้า
- 3. Procedures/Design "วิธีการ หรือการออกแบบ" จากเกณฑ์นี้ คือสิ่งที่นักเรียนต้องทำให้ สำเร็จในการปฏิบัติการ
 - 4. Results analysis "การวิเคราะห์ข้อมูล" คือการตีความและวิเคราะห์ข้อมูลที่ค้นพบ
- 5. Results Communication "การนำเสนอข้อมูล" เป็นการนำเสนอผลการวิเคราะห์ข้อมูลที่ได้ จากการทดลอง โดยนักเรียนสามารถออกแบบการนำเสนอเอง หรือตามที่กำหนดไว้ในคู่มือปฏิบัติการทดลอง
- 6. Conclusion "การสรุปผล" เป็นการสรุปตามที่คู่มือกำหนดไว้หรือรายการผลการสังเกตและ ข้อมูลที่ได้จากการปฏิบัติการทดลอง

จากองค์ความรู้เชิงวิธีการในการจัดกระบวนการเรียนรู้วิทยาศาสตร์สืบเสาะดังกล่าวข้างต้น ผู้วิจัยได้ ออกแบบโมดูลย่อยเพื่อบ่มเพาะความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีโดยใช้วิธีการจัดการเรียนรู้ วิทยาศาสตร์สืบเสาะทั้งในแบบที่เป็นวัฏจักรการเรียนรู้ (Learning cycle) ได้แก่ 4E, 5E, 7E, และ 4Ex2 และแบบที่ เป็นระดับการเปิด (Openness level) ได้แก่ Confirmatory, Structured Inquiry, Guided Inquiry, Open Inquiry, และ Authentic Inquiry เพื่อนำไปสู่การพัฒนาความรอบรู้ในการเลือกใช้วิธีการสอน (Pedagogy) ที่ สอดคล้องและเหมาะสมอย่างจำเพาะเจาะจงกับธรรมชาติของข้อความรู้วิทยาศาสตร์ที่ถูกกำหนดไว้ในเนื้อหาของ หลักสูตรการศึกษาขั้นพื้นฐานของประเทศไทย

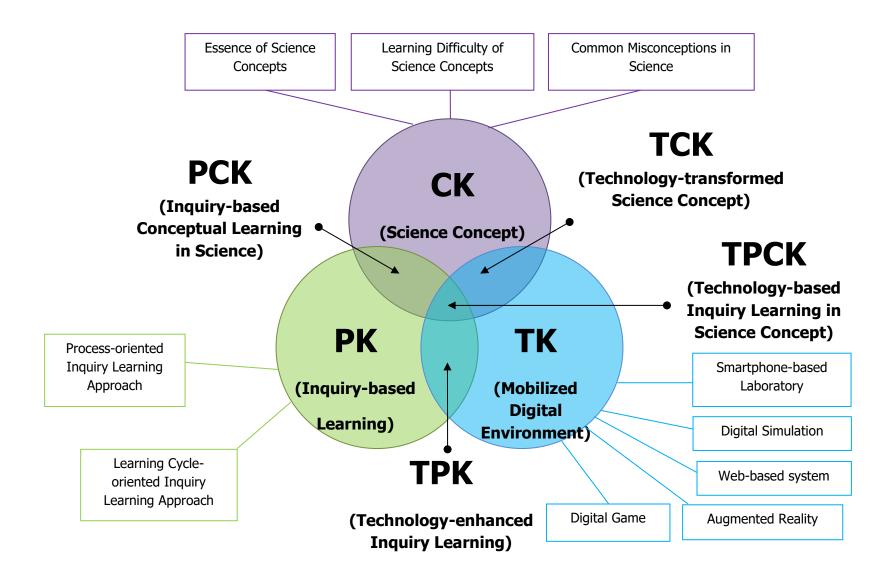
2.5) กระบวนการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะผ่านบริบทการใช้ปฏิบัติการทดลองผ่านคอมพิวเตอร์

การสืบเสาะทางวิทยาศาสตร์นั้นประกอบด้วยกลวิธีที่หลากหลายที่เหล่านักวิทยาศาสตร์ใช้ในการศึกษาค้นคว้า เพื่อให้เข้าใจในปรากฏการณ์ธรรมชาติของโลกและใช้เพื่อนำไปสู่การอธิบายสิ่งที่เกิดขึ้นเหล่านั้นบนพื้นฐานของ หลักฐานเชิงประจักษ์ที่ได้มาจากการปฏิบัติ (National Research Council, 2000) นำมาซึ่งลักษณะของ กระบวนการในการสืบเสาะแบบวิทยาศาสตร์สำหรับผู้เรียนโดยจะต้องเป็นกิจกรรมต่างๆ ที่นำผู้เรียนมาสู่การพัฒนา

เพื่อรู้วิทยาศาสตร์เฉกเช่นเดียวกันกับที่กิจกรรมที่นักวิทยาศาสตร์ได้ปฏิบัติการ (American Association for the Advancement of Science, 1993; National Research Council, 2000) และหลักการเชิงแนวคิดและปฏิบัติใน การใช้วิธีการจัดการเรียนรู้โดยการเรียนรู้วิทยาศาสตร์ที่เน้นสืบเสาะนั้นก็มีแนวทางในการออกแบบและปฏิบัติได้ใน สองลักษณะดังที่ได้กล่าวมาแล้วข้างต้น

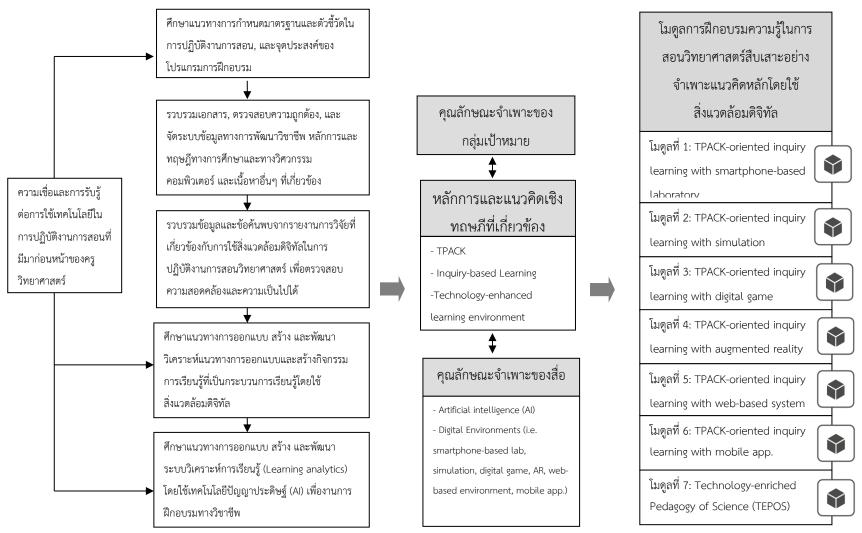
แต่ปัญหาหนึ่งที่สำคัญและเหล่านักวิทยาศาสตร์ศึกษาต่างรู้กันดีนั้นคือ กิจกรรมการสืบเสาะทางวิทยาศาสตร์ที่ เกิดขึ้นในชั้นเรียนจริงนั้น ส่วนใหญ่มักเป็นการสาธิตอย่างง่ายเพื่อให้เห็นได้ถึงข้อความรู้วิทยาศาสตร์ที่ถูกนำเสนอ หรือเป็นการสังเกตหรือการทดลองอย่างง่ายที่ประกอบไปด้วยกระบวนการสำรวจทางวิทยาศาสตร์ที่ไม่ได้สะท้อนถึง การปฏิบัติการวิทยาศาสตร์ร่วมสมัยที่เกิดขึ้นจริงของสังคมวิทยาศาสตร์ (Srisawasdi, Suits & Kerdcharoen, 2008) หัวใจสำคัญหนึ่งในกระบวนการสืบเสาะทางวิทยาศาสตร์นั้นคือ การออกแบบการทดลองเพื่อการลงมือสำรวจ ทางวิทยาศาสตร์ โดยในขั้นตอนนี้ผู้เรียนจะต้องใช้ทักษะในการออกแบบการทดลองเชิงสำรวจอย่างเป็นระบบ พร้อม ทั้งระบุและควบคุมตัวแปรที่ต้องการจะศึกษาได้อย่างถูกต้อง และสามารถดำเนินการวัดตัวแปรที่ต้องการจะศึกษา ีนั้นอย่างแม่นยำ (National Research Council, 2000) ความมีตรรกะในการออกแบบเพื่อควบคุมการทดลองเช่นนี้ ถูกพิจารณาใช้เป็นกลยุทธ์หนึ่งในการจัดการเรียนรู้ที่เอื้ออำนวยต่อการพัฒนาความสามารถในการคิดเชิง วิทยาศาสตร์ผ่านขั้นตอนเชิงกระบวนการในการควบคุมตัวแปร และการใช้ตรรกะในการลงข้อสรุปอ้างอิงทาง วิทยาศาสตร์จากข้อมูลที่ปรากฏ (Russ et. al., 2008) หรืออีกนัยหนึ่งส่งเสริมให้เกิดทักษะกระบวนการเชิงสำรวจ (Investigative skill) และ ทักษะกระบวนการเชิงอ้างอิง (Inferential skill) ซึ่งเป็นทักษะจำเป็นในความสามารถ ของกระบวนการคิดเชิงวิทยาศาสตร์ (Kuhn & Pearsall, 2000) ผลการศึกษาวิจัยเกี่ยวกับการรู้วิทยาศาสตร์ของ ผู้เรียนที่ได้รับการจัดการเรียนรู้ผ่านการสืบเสาะแบบวิทยาศาสตร์โดยส่วนใหญ่พบว่าสามารถที่จะส่งเสริมให้ผู้เรียน เกิดความเข้าใจในแนวคิดและหลักการพื้นฐานทางวิทยาศาสตร์ ผู้เรียนเกิดทักษะกระบวนการทางวิทยาศาสตร์ และมีการพัฒนาเจตคติต่อการเรียนรู้วิทยาศาสตร์ (National Research Council, 2000) โดยเฉพาะการจัดการ เรียนรู้วิทยาศาสตร์ตามแนวทางการสืบเสาะแบบเปิด (Zion et. al., 2004; Zion, 2008) ที่เป็นลักษณะการจัดการ เรียนรู้ที่เน้นให้ภารกิจการเรียนรู้มโนมติวิทยาศาสตร์สำหรับผู้เรียนผ่านบริบทปฏิบัติการทดลองวิทยาศาสตร์แบบลง มือกระทำจริง (Hands-on experiment) โดยเริ่มต้นวิธีการสอนจากการกำหนดสถานการณ์ปัญหาหรือประเด็น คำถามให้กับผู้เรียน และบอกเกี่ยวกับทฤษฎีหรือความรู้พื้นฐานก่อนที่จะให้ผู้เรียนได้คิดออกแบบการทดลองตาม วิถีทางของตนเอง และได้คิดออกแบบตารางบันทึกผลการทดลองเอง ปฏิบัติการสำรวจตรวจสอบด้วยตนเอง นำผล การทดลองมาวิเคราะห์ แล้วนำมาอภิปรายเพื่อสื่อสารความหมาย และสุดท้ายสรุปผลเป็นความรู้วิทยาศาสตร์ที่

สร้างขึ้นเอง ซึ่งถือว่าเป็นการจัดการเรียนรู้ที่ให้ความอิสระในทางการคิดแก่ผู้เรียน โดยมีครูเป็นผู้จัดเตรียมเครื่องมือ วัสดุ และอุปกรณ์ให้สำหรับปฏิบัติการทดลอง และคอยเป็นผู้อำนวยความสะดวกในกระบวนการเรียนรู้ตามที่จำเป็น ต่อผู้เรียน (นิวัฒน์ ศรีสวัสดิ์, 2552ก)

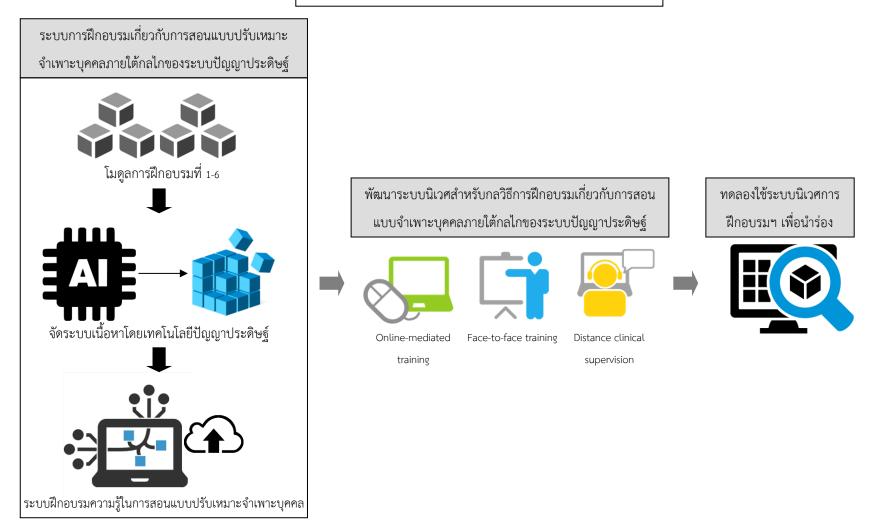

เพื่อให้เป็นกรอบแนวคิดที่สามารถใช้เป็นแนวทางในการปฏิบัติงานการจัดกระบวนการจัดการเรียนรู้ วิทยาศาสตร์สืบเสาะผ่านบริบทการใช้ปฏิบัติการทดลองผ่านคอมพิวเตอร์ Srisawasdi (2012d) ได้ประยุกต์หลักการ จัดการเรียนรู้วิทยาศาสตร์เน้นสืบเสาะโดยใช้เกณฑ์เชิงปริมาณนำเสนอโดย Buck, Bretz, & Towns (2008) มา เป็นฐานการออกแบบการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะแบบเปิดผ่านบริบทการใช้ปฏิบัติการทดลองผ่าน คอมพิวเตอร์ (Computerized Open-inquiry Science Learning) อย่างจำเพาะดังรายแสดงในแผนภาพที่ 2.5

		Computer-based inquiry activities				
		Pre-lab	Laboratory	Post-lab		
Open-inquiry components	Teacher	Open-ended Problem/Question Basic Background/Theory				
	Student		Procedure/Design Result analysis	Result communication Conclusion		

แผนภาพที่ 2.5 แสดงแนวคิดการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะแบบเปิดผ่านบริบทการใช้ปฏิบัติการทดลอง ผ่านคอมพิวเตอร์ (Srisawasdi, 2012d)


2.6) กรอบแนวคิดความรู้ในการสอนวิทยาศาสตร์อย่างจำเพาะแนวคิดหลักโดยใช้สิ่งแวดล้อมแบบดิจิทัล สำหรับนักศึกษาวิชาชีพครูวิทยาศาสตร์และครูวิทยาศาสตร์ประจำการสมัยใหม่

จากการสำรวจและทบทวนวรรณกรรมและผลงานวิจัยที่เกี่ยวข้องทั้งในประเทศและต่างประเทศ รวมไปถึง ข้อค้นพบที่ได้จากผลงานการวิจัยก่อนหน้าเกี่ยวกับการออกแบบการประยุกต์ใช้กรอบแนวคิดความรู้ในการสอน จำเพาะเนื้อหาโดยใช้เทคโนโลยีและการใช้เครื่องมือเทคโนโลยีดิจิทัลเพื่อส่งเสริมกระบวนการเรียนรู้วิทยาศาสตร์ ของผู้เรียนของผู้วิจัยเอง ในการศึกษาวิจัยในโครงการนี้ผู้วิจัยจึงได้ออกแบบและพัฒนากรอบแนวคิดความรู้ในการ สอนวิทยาศาสตร์อย่างจำเพาะแนวคิดหลักโดยใช้สิ่งแวดล้อมแบบดิจิทัลสำหรับนักศึกษาวิชาชีพครูวิทยาศาสตร์และ ครูวิทยาศาสตร์ประจำการสมัยใหม่ เพื่อนำไปใช้เป็นฐานการคิดในการออกแบบและพัฒนากลวิธีการฝึกอบรม เกี่ยวกับการสอนแบบจำเพาะบุคคลภายใต้กลไกของระบบปัญญาประดิษฐ์เพื่อการบ่มเพาะความรู้พื้นฐานและสร้าง ทักษะการปฏิบัติงานการสอนโดยใช้เครื่องมือเทคโนโลยีดิจิทัลที่เกี่ยวข้องกับงานการสอนวิทยาศาสตร์มาเป็น ้เครื่องมือเชิงกลยุทธ์สำหรับการดำเนินงานการจัดการเรียนรู้วิทยาศาสตร์สำหรับผู้เรียนในชั้นเรียน ซึ่งในการวางแผน ออกแบบเนื้อหาการฝึกอบรมสำหรับครูวิทยาศาสตร์นั้น ผู้วิจัยได้กำหนดกรอบแนวคิดความรู้ในการสอน วิทยาศาสตร์อย่างจำเพาะแนวคิดหลักโดยใช้สิ่งแวดล้อมแบบดิจิทัลในเชิงประยุกต์จากฐานการคิดของกรอบแนวคิด ความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี (TPACK) ที่จะใช้ในโครงการวิจัยที่เสนอนี้ได้ดังแสดงไว้ใน แผนภาพที่ 6 และสามารถนำเสนอกรอบแนวคิดในการวิจัยสำหรับโครงการวิจัยเพื่อการสร้างขุมกำลังของครูผู้สอน ในประเทศไทยที่สามารถปฏิบัติงานการสอนโดยใช้สิ่งแวดล้อมแบบดิจิทัลผ่านรูปแบบการฝึกอบรมครูแบบใหม่แบบ ที่เป็นกลวิธีการฝึกอบรมเกี่ยวกับการสอนแบบจำเพาะบุคคลภายใต้กลไกของระบบปัญญาประดิษฐ์ได้ดังได้ภาพที่ 2.6 - 2.9


แผนภาพที่ 2.6 กรอบแนวคิดความรู้ในการสอนวิทยาศาสตร์สืบเสาะอย่างจำเพาะแนวคิดหลักโดยใช้สิ่งแวดล้อมดิจิทัลที่จะใช้ในโครงการวิจัยนี้

1. ขั้นออกแบบและลงมือสร้างโมดูลการฝึกอบรมฯ

แผนภาพที่ 2.7 กรอบแนวคิดของการวิจัยเพื่อพัฒนาความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีโครงการวิจัยนี้ (ปีที่ 1 ส่วนการสร้างโมดูลฯ)

2. ขั้นพัฒนาระบบฯ และศึกษานำร่อง

แผนภาพที่ 2.8 กรอบแนวคิดของการวิจัยเพื่อพัฒนาความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีโครงการวิจัยนี้ (ปีที่ 2 ส่วนพัฒนาระบบฯและศึกษานำร่อง)

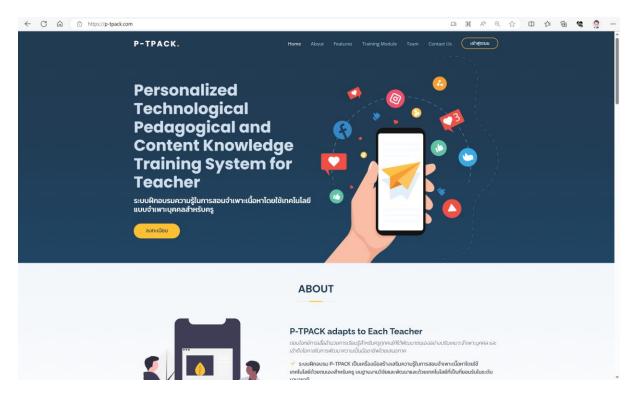
3. ขั้นนำไปใช้และศึกษาผลลัพธ์ของโปรแกรมการฝึกอบรมฯ Pre-service Science Teachers In-service Science Teachers In-service Science Teachers Technology Acceptance กายใต้กลใกของระบบปัญญาประดิษฐ์เพื่อส่งเสริม ความสามารถในการปฏิบัติงานการสอนโดยใช้สิ่งแวดล้อมดิจิหัล

แผนภาพที่ 2.9 กรอบแนวคิดของการวิจัยเพื่อพัฒนาความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีโครงการวิจัยนี้ (ปีที่ 3 ส่วนการศึกษาผลลัพธ์ของระบบนิเวศ)

บทที่ 3 การออกแบบและพัฒนาสิ่งแวดล้อมการเรียนรู้บนอุปกรณ์สื่อสารแบบพกพาที่ตอบสนองอย่าง จำเพาะต่อผู้เรียนรายบุคคล

บทนี้เป็นการอธิบายการออกแบบและพัฒนาระบบฝึกอบรมความรู้ในการสอนจำเพาะเนื้อหาโดย ใช้เทคโนโลยีแบบจำเพาะบุคคลสำหรับครู (Personalized Technological Pedagogical and Content Knowledge Training System for Teacher หรือ P-TPACK) ที่ผู้วิจัยได้พัฒนาขึ้นมาเพื่อส่งเสริมการพัฒนา ความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของนักศึกษาวิชาชีพครูวิทยาศาสตร์และครูวิทยาศาสตร์ ประจำการ โดยระบบดังกล่าวมีคุณลักษณะเชิงเทคโนโลยีพื้นฐานที่สามารถเอื้ออำนวยต่อการบ่มเพาะและ สร้างเสริมความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี จำนวน 7 ประการ ดังต่อไปนี้

- (1) สามารถปรับเหมาะอย่างจำเพาะต่อความแตกต่างในพื้นฐานของครู (Adapts to Each Teacher)
 - (2) เอื้ออำนวยต่อการเรียนรู้บนความสะดวกใจของตนเองได้ (Allows Self-pace Learning)
 - (3) ช่วยวิเคราะห์ถึงสิ่งที่รู้อยู่แล้วให้ได้ (Figures out the already know)
- (4) จัดเตรียมเส้นทางการเรียนรู้จำเพาะบุคคลให้ (Provides personalized learning pathway)
 - (5) ติดตามเป้าประสงค์การเรียนรู้จำเพาะบุคคลได้ (Follows personal learning preference)
- (6) ช่วยให้แต่ละบุคคลเรียนรู้ได้และเพิ่มมากขึ้นเป็นลำดับ (Helps individual learning and retain more)
- (7) สนับสนุนรูปแบบการเรียนรู้เพื่อความเป็นมืออาชีพหลากหลายบริบท (Supports any kinds of professional learning)


โดยสามารถนำเสนอส่วนเชื่อมต่อประสานกับผู้ใช้งาน (User interface) และประสบการณ์ที่ ผู้ใช้งานได้รับ (User experience) ซึ่งแบ่งออกเป็น 2 ส่วน ดังนี้

- (1) หน้าหลักสำหรับผู้ใช้งานทุกประเภท
- (2) ส่วนจัดการเนื้อหาของวิทยากรผู้จัดการอบรม
- (3) ส่วนเข้าถึงการฝึกอบรมสำหรับครูผู้เข้ารับการอบรม

โดยสามารถนำเสนอรายละเอียดของทั้ง 3 ส่วนของระบบได้ดังต่อไปนี้

3.1 หน้าหลักสำหรับผู้ใช้งานทุกประเภท

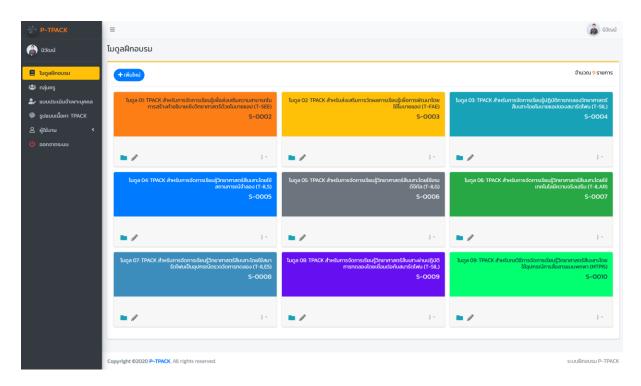
3.1.1) *หน้าหลักของระบบ P-TPACK* วิทยากรผู้จัดการอบรมและครูผู้เข้ารับการอบรมสามารถที่จะ เข้าสู่การใช้งานระบบได้ที่ https://p-tpack.com/ ดังภาพที่ 3.1

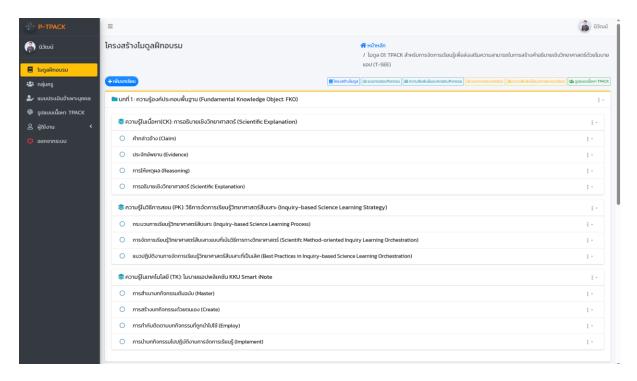
แผนภาพที่ 3.1 ตัวอย่างหน้าจอของหน้าหลักของระบบฝึกอบรม P-TPACK

โดยในโครงการวิจัยครั้งนี้ ผู้วิจัยได้ออกแบบและพัฒนาโมดูลการฝึกอบรมสำหรับการบ่ม เพาะและสร้างเสริมความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของครูวิทยาศาสตร์ไว้ทั้งสิ้น 9 โมดูล (ตารางที่ 3.1) ดังนี้

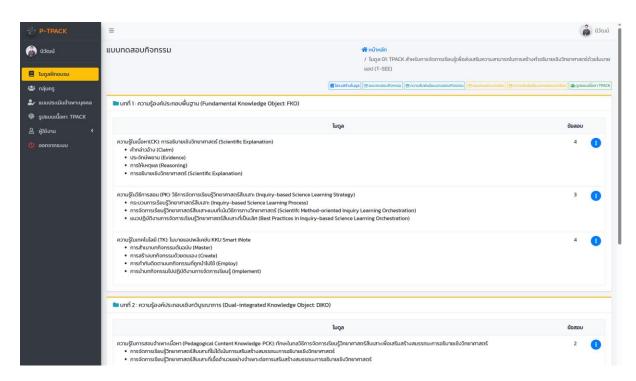
- (1) โมดูล 01: TPACK สำหรับการจัดการเรียนรู้เพื่อส่งเสริมความสามารถในการสร้างคำอธิบายเชิง วิทยาศาสตร์ด้วยโมบายแอป (T-SEE)
 - (2) โมดูล 02: TPACK สำหรับส่งเสริมการวัดผลการเรียนรู้เพื่อการพัฒนาโดยใช้โมบายแอป (T-FAE)
- (3) โมดูล 03: TPACK สำหรับการจัดการเรียนรู้ปฏิบัติการทดลองวิทยาศาสตร์สืบเสาะโดยโมบายแอ ปของสมาร์ตโฟน (T-SIL)
- (4) โมดูล 04: TPACK สำหรับการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะโดยใช้สถานการณ์จำลอง (T-ILS)
 - (5) โมดูล 05: TPACK สำหรับการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะโดยใช้เกมดิจิทัล (T-ILG)

- (6) โมดูล 06: TPACK สำหรับการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะโดยใช้เทคโนโลยีความจริงเสริม (T-ILAR)
- (7) โมดูล 07: TPACK สำหรับการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะโดยใช้สมาร์ตโฟนเป็นอุปกรณ์ ตรวจวัดการทดลอง (T-ILES)
- (8) โมดูล 08: TPACK สำหรับการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะผ่านปฏิบัติการทดลองโดย เชื่อมต่อกับสมาร์ตโฟน (T-SIL)
- (9) โมดูล 09: TPACK สำหรับกลวิธีการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะโดยใช้อุปกรณ์การสื่อสาร แบบพกพา (MTPIS)

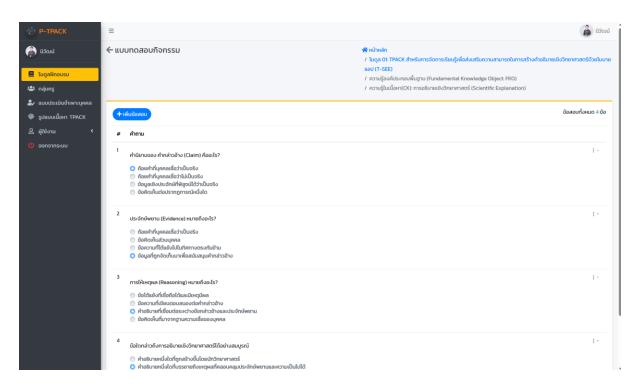

ตารางที่ 3.1 แสดงโมดูลการฝึกอบรมสำหรับครูวิทยาศาสตร์


3.2 ส่วนจัดการเนื้อหาของผู้จัดการอบรม ประกอบด้วยองค์ประกอบดังต่อไปนี้

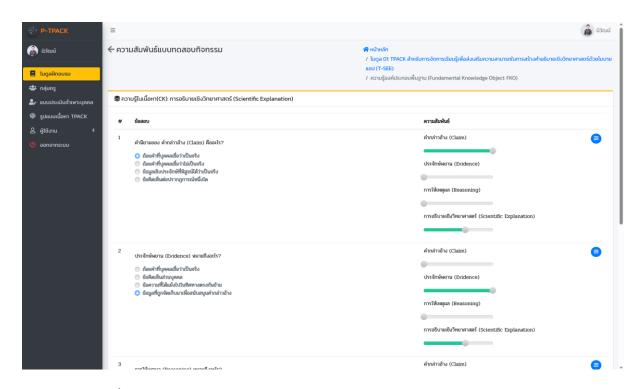
- 3.2.1 โมดูลการฝึกอบรม (Training module) ซึ่งเป็นส่วนที่วิทยากรผู้จัดการอบรมสามารถที่สร้างเพื่อเพิ่ม โมดูลการฝึกอบรมเข้าไปในระบบสำหรับครูผู้เข้ารับการอบรมด้วยตนเองได้
- 3.2.1.1) *พื้นที่หลักสำหรับการสร้างโมดูล* วิทยากรผู้จัดการอบรมสามารถเข้าไปสร้างและเพิ่มโมดูล การฝึกอบรมเองได้โดยใช้สารสนเทศการเข้าสู่ระบบที่ได้รับจากผู้จัดการระบบ ดังภาพที่ 3.2


แผนภาพที่ 3.2 ตัวอย่างหน้าจอการสร้างและเพิ่มโมดูลการฝึกอบรมของระบบ

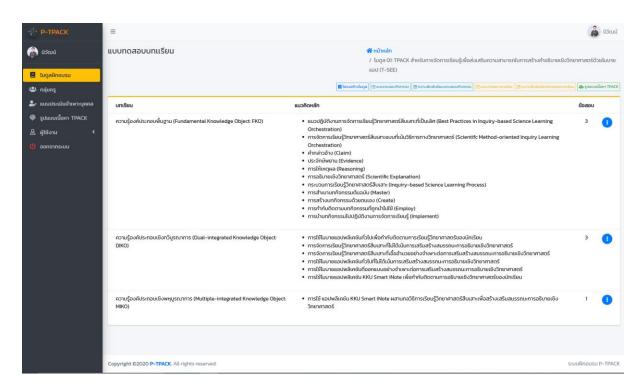
3.2.1.2 *กำหนดโครงสร้างจำเพาะของโมคูล* วิทยากรผู้จัดการอบรมจำเป็นต้องกำหนดโครงสร้างของ โมคูลฝึกอบรมที่จำเพาะเจาะจงกับขอบเขตเนื้อหาของความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีที่ ประสงค์จะใช้สำหรับการฝึกอบรมให้กับครู ดังภาพที่ 3.3


แผนภาพที่ 3.3 ตัวอย่างหน้าจอการกำหนดโครงสร้างจำเพาะของโมดูล

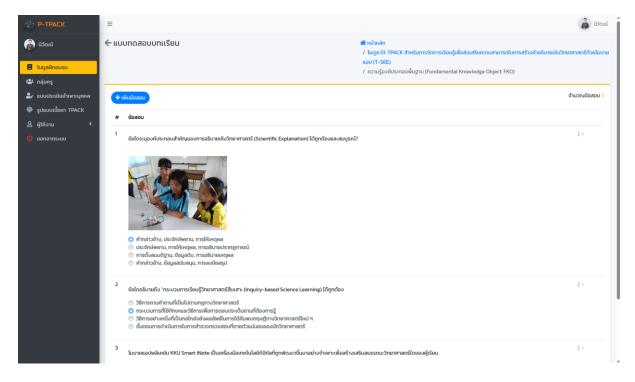
3.2.1.3) กำหนดแบบทดสอบท้ายกิจกรรมของโมดูล วิทยากรผู้จัดการอบรมจะต้องสร้างแบบทดสอบ หลังการฝึกอบรมด้วยตนเองของครู ซึ่งประกอบชุดข้อคำถามและตัวเลือกคำตอบแบบหลายตัวเลือกในแต่ละ องค์ประกอบของกรอบความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี โดยแต่ละองค์ประกอบนั้นสามารถ สร้างข้อคำถามแบบหลายตัวเลือกได้หลายข้อและไม่จำเป็นต้องมีจำนวนข้อที่เท่ากันสำหรับแต่ละองค์ประกอบ ดังภาพที่ 3.4


แผนภาพที่ 3.4 ตัวอย่างหน้าจอการกำหนดแบบทดสอบท้ายกิจกรรมของโมดูล

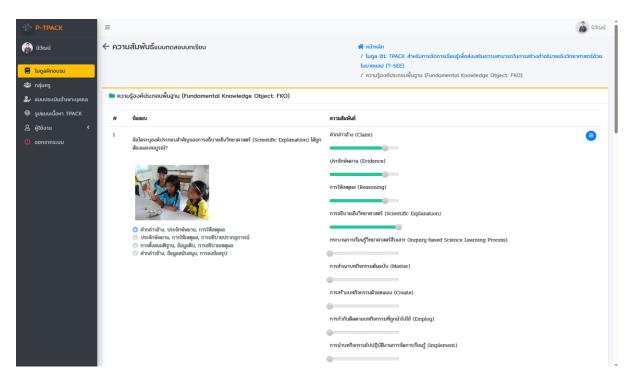
หลังจากนั้น จะต้องดำเนินการเพิ่มประเด็นคำถามและตัวเลือกสำหรับคำตอบของแต่ละข้อคำถามโดย ต่อเนื่องกัน พร้อมทั้งต้องกำหนดตัวเลือกคำตอบที่ถูกต้องสำหรับแต่ละข้อคำถามเพื่อใช้ในการประเมินคะแนน ความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของครูผู้เข้ารับการฝึกอบรมแต่ละคน ดังภาพที่ 3.5


แผนภาพที่ 3.5 ตัวอย่างหน้าจอการกำหนดแบบทดสอบท้ายกิจกรรมของโมดูล

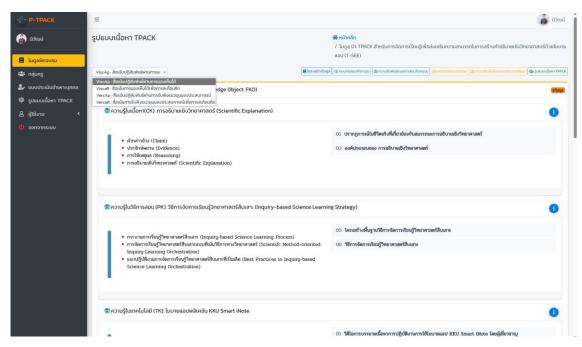
3.2.1.4) กำหนดความสัมพันธ์ของแบบทดสอบและกิจกรรมของโมดูล วิทยากรผู้จัดการอบรมที่เป็น ผู้สร้างเนื้อหาจะต้องกำหนดระดับความสัมพันธ์ระหว่างแต่ละข้อคำถามกับแต่ละแนวคิดหลักของเนื้อหาตาม องค์ประกอบของความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีที่กำหนดเป็นเนื้อหาของโมดูลนั้น ๆ ซึ่ง วิทยากรสามารถพิจารณาประเมินระดับความสัมพันธ์ดังกล่าวได้ตั้งแต่ระดับ 0 (ไม่มีความสัมพันธ์) ถึงระดับ 5 (มีความสัมพันธ์อย่างมากที่สุด) ผ่านการเลื่อนแถบระดับที่กำหนดไว้ให้ ดังภาพที่ 3.6


แผนภาพที่ 3.6 ตัวอย่างหน้าจอการกำหนดความสัมพันธ์ของแบบทดสอบและกิจกรรมของโมดูล

3.2.1.5) กำหนดแบบทดสอบของบทเรียนในโมดูล วิทยากรผู้จัดการอบรมจะต้องสร้างแบบทดสอบ ท้ายบทเรียนในการฝึกอบรมด้วยตนเองของครู ซึ่งประกอบชุดข้อคำถามและตัวเลือกคำตอบแบบหลาย ตัวเลือกในแต่ละองค์ประกอบหลักของกรอบความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี ได้แก่ ความรู้ องค์ประกอบพื้นฐาน ความรู้องค์ประกอบทวิบูรณาการ และความรู้องค์ประกอบเชิงพหุบูรณาการ โดยแต่ละ องค์ประกอบนั้นสามารถสร้างข้อคำถามแบบหลายตัวเลือกได้หลายข้อและไม่จำเป็นต้องมีจำนวนข้อที่เท่ากัน สำหรับแต่ละองค์ประกอบ ดังภาพที่ 3.7


แผนภาพที่ 3.7 ตัวอย่างหน้าจอการกำหนดแบบทดสอบของบทเรียนในโมดูล

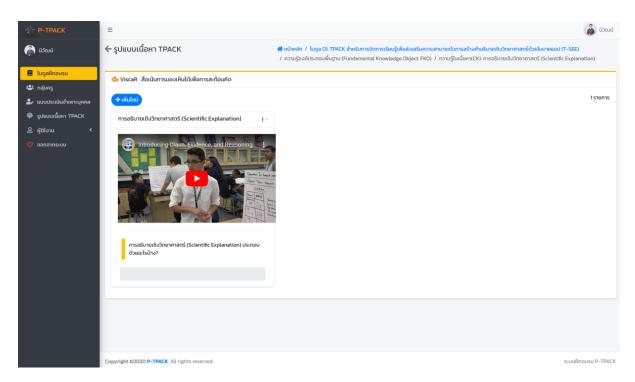
หลังจากนั้น จะต้องดำเนินการเพิ่มประเด็นคำถามและตัวเลือกสำหรับคำตอบของแต่ละข้อคำถามโดย ต่อเนื่องกัน พร้อมทั้งต้องกำหนดตัวเลือกคำตอบที่ถูกต้องสำหรับแต่ละข้อคำถามเพื่อใช้ในการประเมินคะแนน ความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของครูผู้เข้ารับการฝึกอบรมแต่ละคน ดังภาพที่ 3.8


แผนภาพที่ 3.8 ตัวอย่างหน้าจอการกำหนดแบบทดสอบบทเรียนในโมดูล

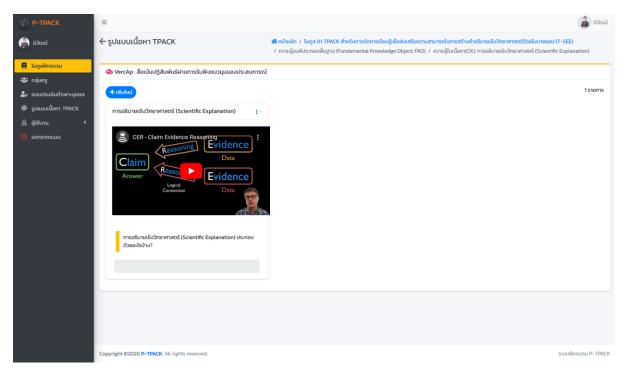
3.2.1.6) กำหนดความสัมพันธ์ของแบบทดสอบบทเรียนในโมดูล วิทยากรผู้จัดการอบรมที่เป็นผู้สร้าง เนื้อหาจะต้องกำหนดระดับความสัมพันธ์ระหว่างแต่ละข้อคำถามในแบบทดสอบบทเรียนกับแต่ละแนวคิดหลัก ของเนื้อหาตามองค์ประกอบของความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีที่กำหนดเป็นเนื้อหาของ โมดูลนั้น ๆ ซึ่งวิทยากรสามารถพิจารณาประเมินระดับความสัมพันธ์ดังกล่าวได้ตั้งแต่ระดับ 0 (ไม่มี ความสัมพันธ์) ถึงระดับ 5 (มีความสัมพันธ์อย่างมากที่สุด) ผ่านการเลื่อนแถบระดับที่กำหนดไว้ให้ ดังภาพที่ 3.9


แผนภาพที่ 3.9 ตัวอย่างหน้าจอการกำหนดความสัมพันธ์ของแบบทดสอบบทเรียนในโมดูล

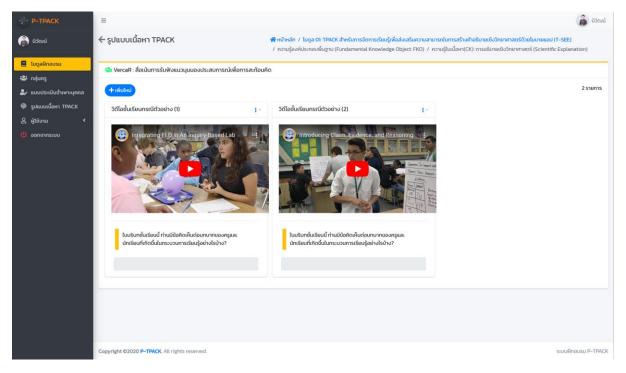
3.2.1.7) กำหนดรูปแบบการนำเสนอเนื้อหาของโมดูล วิทยากรผู้จัดการอบรมที่เป็นผู้สร้างเนื้อหา จะต้องสร้างแหล่งการเรียนรู้ตามขอบเขตเนื้อหาเกี่ยวกับความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีทั้ง 7 องค์ประกอบที่กำหนด และตามรูปแบบการเรียนรู้ที่กำหนดไว้ในระบบทั้ง 4 รูปแบบ ได้แก่ (1) ViscAp – สื่อเน้นปฏิสัมพันธ์ผ่านการมองเห็นได้ (2) ViscaR – สื่อเน้นการมองเห็นได้เพื่อการสะท้อนคิด (3) VercAp – สื่อเน้นปฏิสัมพันธ์ผ่านการรับฟังแนวมุมมองประสบการณ์ (4) VercaR – สื่อเน้นการรับฟังแนวมุมมอง ประสบการณ์เพื่อการสะท้อนคิด ดังภาพที่ 3.10


แผนภาพที่ 3.10 ตัวอย่างหน้าจอการกำหนดรูปแบบเนื้อหาแต่ละรูปแบบย่อยในระบบ

โดยวิทยากรผู้ฝึกอบรมสามารถสร้างเนื้อหาสำหรับการเรียนรู้ของครูผู้เข้ารับการฝึกอบรมได้ใน 4 ลักษณะดังกล่าวมาแล้ว โดยถ้าเป็นลักษณะเนื้อหาของรูปแบบที่ 1 คือ แบบที่เป็น ViscAp ซึ่งก็คือ สื่อการ เรียนรู้ที่เน้นปฏิสัมพันธ์ผ่านการมองเห็นได้ ซึ่งเป็นลักษณะเนื้อหาสำหรับครูผู้เข้ารับการฝึกอบรมที่ลักษณะ จำเพาะแบบที่เป็น Active-verbal โดยระบบจะจัดสรรให้ได้รับลักษณะของเนื้อหาสำหรับการฝึกอบรมใน ลักษณะที่เป็น ViscAp จากที่วิทยากรผู้ฝึกอบรมได้สร้างและกำหนดไว้ ดังภาพที่ 3.11

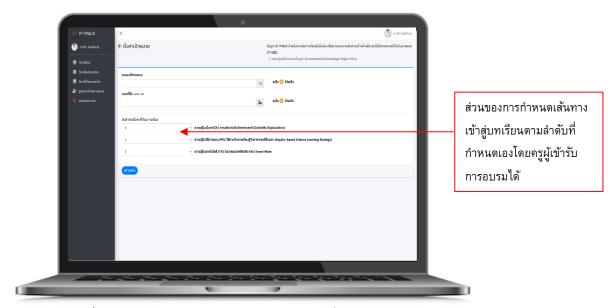

แผนภาพที่ 3.11 ตัวอย่างหน้าจอลักษณะเนื้อหาแบบที่เป็น ViscAp ของระบบ

ถ้าเป็นลักษณะเนื้อหาของรูปแบบที่ 2 คือ แบบที่เป็น ViscaR ซึ่งก็คือ สื่อเน้นการมองเห็นได้เพื่อการ สะท้อนคิด ซึ่งเป็นลักษณะเนื้อหาสำหรับครูผู้เข้ารับการฝึกอบรมที่ลักษณะจำเพาะแบบที่เป็น Reflective-verbal โดยระบบจะจัดสรรให้ได้รับลักษณะของเนื้อหาสำหรับการฝึกอบรมในลักษณะที่เป็น ViscaR จากที่ วิทยากรผู้ฝึกอบรมได้สร้างและกำหนดไว้ ดังภาพที่ 3.12

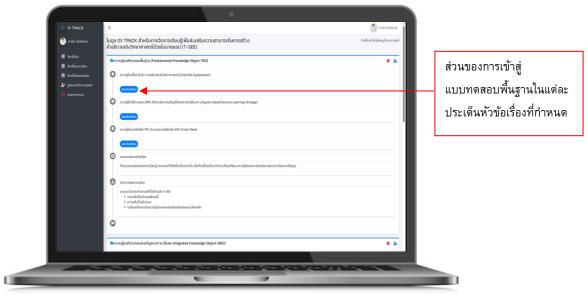

แผนภาพที่ 3.12 ตัวอย่างหน้าจอลักษณะเนื้อหาแบบที่เป็น ViscaR ของระบบ

ถ้าเป็นลักษณะเนื้อหาของรูปแบบที่ 3 คือ แบบที่เป็น VercAp ซึ่งก็คือ สื่อเน้นปฏิสัมพันธ์ผ่านการรับ ฟังแนวมุมมองประสบการณ์ ซึ่งเป็นลักษณะเนื้อหาสำหรับครูผู้เข้ารับการฝึกอบรมที่ลักษณะจำเพาะแบบที่ เป็น Active-visual โดยระบบจะจัดสรรให้ได้รับลักษณะของเนื้อหาสำหรับการฝึกอบรมในลักษณะที่เป็น ViscaR จากที่วิทยากรผู้ฝึกอบรมได้สร้างและกำหนดไว้ ดังภาพที่ 3.13

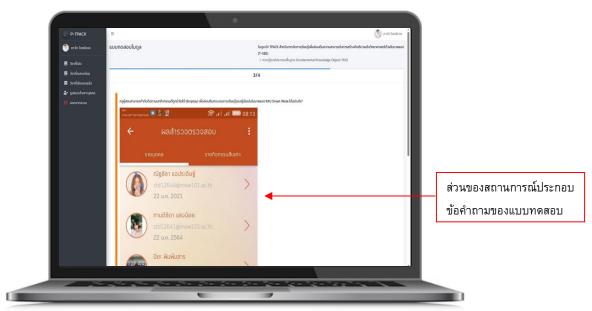
แผนภาพที่ 3.13 ตัวอย่างหน้าจอลักษณะเนื้อหาแบบที่เป็น VercAp ของระบบ


ถ้าเป็นลักษณะเนื้อหาของรูปแบบที่ 4 คือ แบบที่เป็น VercaR ซึ่งก็คือ สื่อเน้นการรับฟังแนวมุมมอง ประสบการณ์เพื่อการสะท้อนคิด ซึ่งเป็นลักษณะเนื้อหาสำหรับครูผู้เข้ารับการฝึกอบรมที่ลักษณะจำเพาะแบบ ที่เป็น Reflective-visual โดยระบบจะจัดสรรให้ได้รับลักษณะของเนื้อหาสำหรับการฝึกอบรมในลักษณะที่ เป็น VercaR จากที่วิทยากรผู้ฝึกอบรมได้สร้างและกำหนดไว้ ดังภาพที่ 3.14

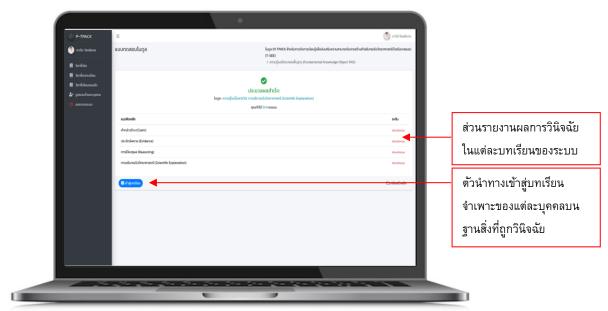
แผนภาพที่ 3.14 ตัวอย่างหน้าจอลักษณะเนื้อหาแบบที่เป็น VercaR ของระบบ


3.3 ส่วนเข้าถึงการฝึกอบรมสำหรับครูผู้เข้ารับการอบรม ประกอบด้วยองค์ประกอบดังต่อไปนี้

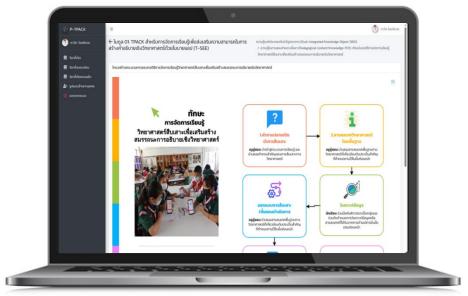
3.3.1) การกำหนดเส้นทางเริ่มต้นการเรียนรู้รายบุคคลในโมดูล ครูผู้เข้ารับการอบรมสามารถเลือก กำหนดองค์ประกอบสำคัญตามกรอบแนวคิดความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี ได้แก่ ความรู้ ในเนื้อหา ความรู้ในวีการสอน ความรู้ในเทคโนโลยี เพื่อกำหนดความจำเพาะในเส้นทางการเรียนรู้ผ่านการ ฝึกอบรมของแต่ละบุคคลเองได้ว่าจะเริ่มต้นในการฝึกอบรมตนเองโดยเริ่มจากองค์ประกอบความรู้ฐานใด ตามลำดับ ดังภาพที่ 3.15


แผนภาพที่ 3.15 ตัวอย่างหน้าจอการกำหนดเส้นทางเริ่มต้นการเรียนรู้รายบุคคลในโมดูลของระบบ

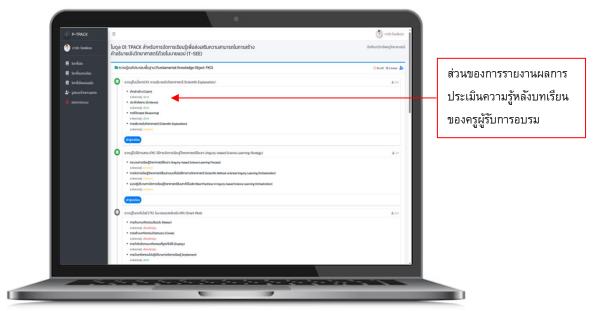
3.3.2) การทดสอบก่อนเรียนเพื่อวินิจฉัยความจำเพาะบุคคล เมื่อครูผู้เข้ารับการอบรมเข้าสู่บทเรียน สำหรับการฝึกอบรมแล้ว จะต้องดำเนินการทำแบบทดสอบเพื่อการวินิจฉัยฐานความรู้เกี่ยวกับความรู้ในการ สอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของแต่ละบุคคล ดังภาพที่ 3.16


แผนภาพที่ 3.16 ตัวอย่างหน้าจอการกำหนดเส้นทางเริ่มต้นการเรียนรู้รายบุคคลในโมดูลของระบบ

แบบทดสอบในการวินิจฉัยพื้นฐานความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของครูผู้เข้ารับ การฝึกอบรมในแต่ละบทเรียนนั้นเป็นแบบทดสอบแบบหลายตัวเลือก โดยกำหนดประเด็นคำถามจากที่เป็น ภาพสถานการณ์หรือเทคโนโลยีที่เกี่ยวข้องได้ และกำหนดตัวเลือกของคำตอบแบบที่เป็นลักษณะข้อความหรือ เป็นภาพที่เกี่ยวข้องได้ทั้งสองลักษณะ ดังภาพที่ 3.17


แผนภาพที่ 3.17 ตัวอย่างหน้าจอแบบทดสอบในการวินิจฉัยพื้นฐานความรู้ของระบบ

หากครูผู้เข้ารับการอบรมตอบข้อคำถามของแบบทดสอบในการวินิจฉัยพื้นฐานความรู้ในการสอน จำเพาะเนื้อหาโดยใช้เทคโนโลยีเสร็จถ้วนแล้ว ระบบก็จะมีการรายงานผลการวินิจฉัยให้ครูได้ทราบถึง ระดับพื้นฐานของครูแต่ละบุคคล และนำทางเข้าสู่การเรียนรู้ต่อในบทเรียนที่จำเพะ ดังภาพที่ 3.18


แผนภาพที่ 3.18 ตัวอย่างหน้าจอรายงานผลการวินิจฉัยรายบุคคลและตัวนำทางสู่เนื้อหาของระบบ

3.3.3) การเรียนรู้เนื้อหาแบบจำเพาะบุคคลเกี่ยวกับความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี ครูผู้เข้ารับการอบรมสามารถเข้าสู่บทเรียนสำหรับการฝึกอบรมของแต่ละบุคคลอย่างจำเพาะเจาะจงตามผล การวินิจฉัยฐานความรู้ในการสอนเนื้อหาโดยใช้เทคโนโลยี ซึ่งเนื้อหาก็สามารถถูกนำเสนอได้ให้เหมาะสมกับ ความจำเพาะบุคคลได้ในรูปแบบทั้งสิ้น 4 รูปแบบตามที่กล่าวมาก่อนหน้านี้แล้วในส่วนของระบบสำหรับ วิทยากรผู้ฝึกอบรม ได้แก่ (1) ViscAp – สื่อเน้นปฏิสัมพันธ์ผ่านการมองเห็นได้ (2) ViscaR – สื่อเน้นการ มองเห็นได้เพื่อการสะท้อนคิด (3) VercAp – สื่อเน้นปฏิสัมพันธ์ผ่านการรับฟังแนวมุมมองประสบการณ์ (4) VercaR – สื่อเน้นการรับฟังแนวมุมมองประสบการณ์เพื่อการสะท้อนคิด สามารถนำเสนอตัวอย่างได้ดังภาพที่ 3.19

แผนภาพที่ 3.19 ตัวอย่างหน้าจอสื่อเน้นปฏิสัมพันธ์ผ่านการมองเห็นได้ในระบบ

3.3.4) แบบทดสอบหลังบทเรียนและการรายงานผลความก้าวหน้าในการฝึกอบรม เมื่อครูผู้เข้ารับการ อบรมเรียนรู้ ตามบทเรียนสำหรับการฝึกอบรมของแต่ละบุคคลอย่างจำเพาะเจาะจงตามผลการวินิจฉัย ฐานความรู้ในการสอนเนื้อหาโดยใช้เทคโนโลยีจนครับตามข้อกำหนดของระบบเรียบร้อยแล้ว ครูจะต้องได้ทำ แบบทดสอบหลังบทเรียนเพื่อเป็นการประเมินความก้าวหน้าในความรู้ ในการสอนจำเพาะเนื้อหาโดยใช้ เทคโนโลยีของตนเอง และระบบจะมีการรายงานผลความก้าวหน้าดังกล่าวเพื่อให้ครูผู้เข้ารับการฝึกอบรมแต่ ละท่านได้ทราบ ดังภาพที่ 3.20

แผนภาพที่ 3.20 ตัวอย่างหน้าจอการรายงานผลการประเมินความรู้หลังบทเรียนของระบบ

บทที่ 4 ระเบียบวิธีวิจัย

บทนี้บรรยายความเกี่ยวกับระเบียบวิธีวิจัยที่ใช้ในการทำวิจัยในครั้งนี้ ซึ่งประกอบด้วยผู้เข้าร่วม วิจัย เครื่องมือวิจัยที่ถูกออกแบบขึ้นเพื่อใช้ตอบคำถามวิจัย วิธีการดำเนินการวิจัย การเก็บข้อมูลวิจัย และ วิธีการวิเคราะห์ข้อมูลของการทำวิจัยเพื่อการพัฒนาระบบนิเวศการฝึกอบรมแบบจำเพาะบุคคลโดยใช้ เทคโนโลยีปัญญาประดิษฐ์ที่มีต่อความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีสำหรับสิ่งแวดล้อมการ เรียนรู้วิทยาศาสตร์แบบพกพาดังวัตถุประสงค์ที่กำหนดไว้ ซึ่งสามารถแบ่งการวิจัยและพัฒนาระบบดังกล่าว ออกได้เป็น 3 วงรอบ ดังนี้

วงรอบที่ 1 เป็นการสร้างโมดูลการฝึกอบรมต้นแบบและศึกษานำร่อง
 วงรอบที่ 2 เป็นการพัฒนาระบบนิเวศต้นแบบและศึกษานำร่อง

🗖 วงรอบที่ 3 เป็นการพัฒนาระบบนิเวศสมบูรณ์และศึกษาผลลัพธ์

4.1 วงรอบที่ 1: การออกแบบและสร้างโมดูลการฝึกอบรมและศึกษานำร่อง

การดำเนินการวิจัยในวงรอบนี้ ผู้วิจัยได้ลงมือออกแบบและพัฒนาโมดูลการฝึกอบรมต้นแบบ และ มีการทดลองใช้โมดูล TPACK สำหรับการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะโดยใช้เกมดิจิทัล (T-ILG) เพื่อ การศึกษานำร่องเชิงออกแบบกับกลุ่มผู้เข้าร่วมการวิจัย โดยมีรายละเอียดดังต่อไปนี้

4.1.1 ผู้เข้าร่วมวิจัย (Participants)

ผู้วิจัยใช้การเลือกกลุ่มตัวอย่างแบบเจาะจง (Purposive sample) โดยเลือกกลุ่มนักศึกษา วิชาชีพชีพครูวิทยาศาสตร์ จำนวนทั้งสิ้น 94 คน แบ่งเป็นเพศหญิง จำนวน 75 คน (คิดเป็น 79.8%) และเพศ ชาย จำนวน 19 คน (คิดเป็น 20.2%) โดยเป็นกลุ่มนักศึกษาวิชาชีพครูที่ศึกษาในหลักสูตรศึกษาศาสตร์บัณฑิต หลักสูตร 4 ปี ของมหาวิทยาลัยรัฐแห่งหนึ่ง

4.1.2 การเก็บรวบรวมข้อมูลและเครื่องมือวิจัย

เพื่อตรวจสอบการเปลี่ยนแปลงในความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของ ผู้เข้าร่วมวิจัย แบบวัดความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีเกมดิจิทัล (TPACK-Game หรือ TPACK-G) แบบหลายตัวเลือก จำนวน 10 ข้อ โดยแบบทดสอบชุดดังกล่าวมีค่าความเชื่อมั่น KR-20 เท่ากับ 0.83 ถูกใช้เป็นเครื่องมือตรวจสอบการเปลี่ยนแปลงในความรู้ดังกล่าวทั้งก่อนและหลังการได้รับโมดูลการ ฝึกอบรมต้นแบบ โดยที่ผู้เข้าร่วมวิจัยได้รับมอบหมายให้ได้มีปฏิสัมพันธ์เรียนรู้กับโมดูล TPACK สำหรับการ จัดการเรียนรู้วิทยาศาสตร์สืบเสาะโดยใช้เกมดิจิทัล (T-ILG) เป็นระยะเวลา 6 ชั่วโมง โดยมีรายละเอียดขั้นตอน และระยะเวลาที่นำเสนอได้ในตารางที่ 4.1 ดังนี้

ตารางที่ 4.1 รายละเอียดโมดูลการฝึกอบรม TPACK สำหรับการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะโดยใช้เกม ดิจิทัล (T-ILG)

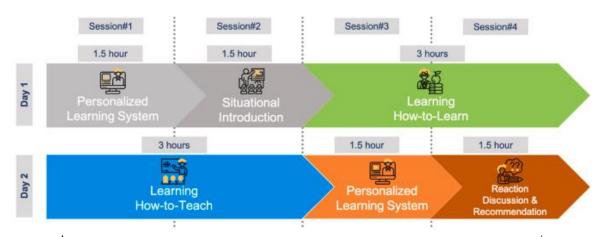
ขั้นตอนการ	ช่วงและ	หัวข้อ	กลวิธีการเรียนรู้	ขอบเขตความรู้
ฝึกอบรม	ระยะเวลา			ที่ได้รับ
นำเสนอ	สัปดาห์แรก	 วิเคราะห์กรณีศึกษา 	การสาธิต	T-infused
กรณีศึกษา	(2 ชั่วโมง)	สาธิตกระบวนการเรียนรู้	ประกอบคำ	TPACK
(Showing the		วิทยาศาสตร์สืบเสาะโดย	บรรยายอย่างมี	
case: S)		ใช้เกมดิจิทัล	ปฏิสัมพันธ์	
		 กำหนดเส้นทางการการ 		
		เรียนรู้		
ปฏิบัติการเรียนรู้	สัปดาห์แรก	 ปฏิบัติการเรียนรู้ด้วย 	การลงมือ	T-infused
ตามกรณีศึกษา	(2 ชั่วโมง)	ตนเองร่วมกันในทีม	ปฏิบัติงานโดย	TPACK
(Practice with		จำแนกแยกแยะความรู้ใน	ร่วมมือกันเป็น	
the case: P)		การสอนจำเพาะเนื้อหา	ทีม	
		โดยใช้เทคโนโลยีเกม		
		ดิจิทัลตามกรณีศึกษา		
ออกแบบโดย	1 สัปดาห์	ออกแบบและนำเสนอ	การลงมือ	T-infused
ประยุกต์ใช้วิธี	(2 ชั่วโมง)	แนวคิดต้นร่าง	ปฏิบัติงานโดย	TPACK
ตามกรณีศึกษา		กระบวนการเรียนรู้	ร่วมมือกันเป็น	
(Application		วิทยาศาสตร์สืบเสาะโดย	ทีม	
of the case: A)		ใช้เกมดิจิทัลในบริบท		
		โรงเรียน		

4.1.3 การวิเคราะห์ข้อมูล

คะแนนความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีเกมดิจิทัล (TPACK-G) ของ ผู้เข้าร่วมวิจัยทั้งก่อนเรียนและหลังเรียนถูกนำมาวิเคราะห์เพื่อตรวจสอบการแจกแจงข้อมูลแบบปกติ (Normal distribution) โดยใช้การวิเคราะห์ทดสอบ Shapiro-Wilk ซึ่งผลการวิเคราะห์พบว่าทั้งคะแนนก่อนเรียน (W = 0.926; p < 0.000) และคะแนนหลังเรียน (W = 0.925; p < 0.000) มีการแจกแจงข้อมูลแบบไม่เป็นโค้งปกติ ดังนั้นผู้วิจัยจึงกำหนดใช้การวิเคราะห์สถิติเชิงอ้างอิงแบบที่ไม่ใช้พารามิเตอร์ (Non-parametric inferential

statistics) แบบที่เป็นการวิเคราะห์ทดสอบ Wilcoxon signed-rank test เพื่อการเปรียบเทียบความแตกต่าง โดยใช้โปรแกรมวิเคราะห์สถิติ IBM SPSS 26.00 ที่ระดับความเชื่อมั่น 0.05 และวิเคราะห์ตรวจสอบขนาดของ ผลกระทบ (Size effect) โดยใช้สมการ Z/√N ตามกรอบคิดของ Cohen สำหรับการวิเคราะห์ความแตกต่าง ดังกล่าวตามแนวคิดของ Rosenthal (r) (1994) และทำการแปรผลของขนาดอิทธิพล 3 ระดับ ได้แก่ ถ้าค่า r หรือ Effect size (ES) มีค่ามากกว่าหรือเท่ากับ 0.2 แปลว่ามีอิทธิพลของผลกระทบขนาดถ้าค่า r หรือ ES มีค่ามากกว่าหรือเท่ากับ 0.5 แปลว่ามีอิทธิพลของผลกระทบขนาดกลาง และ ถ้าค่า r หรือ ES มีค่ามากกว่าหรือ เท่ากับ 0.8 แปลว่ามีอิทธิพลของผลกระทบขนาดใหญ่

4.2 วงรอบที่ 2: การพัฒนาระบบนิเวศต้นแบบและศึกษานำร่อง


การดำเนินการวิจัยในวงรอบนี้ ผู้วิจัยได้ลงมือออกแบบและพัฒนาระบบนิเวศต้นแบบ และมีการ ทดลองใช้โมดูล TPACK สำหรับการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะผ่านปฏิบัติการทดลองโดยเชื่อมต่อกับ สมาร์ตโฟน (T-SIL) ภายใต้กรอบแนวคิดสะเต็มศึกษา เพื่อการศึกษานำร่องเชิงออกแบบกับกลุ่มผู้เข้าร่วมการ วิจัย โดยมีรายละเอียดดังต่อไปนี้

4.2.1) ผู้เข้าร่วมวิจัย (Participants)

ผู้เข้าร่วมการวิจัยเป็นครูวิทยาศาสตร์ประจำการในสถานศึกษา จำนวนทั้งสิ้น 161 คน แบ่งเป็นเพศหญิง จำนวน 84 คน (คิดเป็น 52.2%) และเพศชาย จำนวน 77 คน (คิดเป็น 47.8%) โดยเป็น กลุ่มครูวิทยาศาสตร์ประจำการของโรงเรียนในสังกัดสำนักงานคณะกรรมการการศึกษาขั้นพื้นฐาน กระทรวงศึกษาธิการ ในขอบเขต 20 จังหวัดที่ตั้งอยู่ในภาคตะวันออกเฉียงเหนือ

4.2.2) การเก็บรวบรวมข้อมูลและเครื่องมือวิจัย

เพื่อตรวจสอบการเปลี่ยนแปลงในความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของ ผู้เข้าร่วมวิจัย แบบวัดความรู้ในการสอนสะเต็มศึกษาจำเพาะเนื้อหาโดยใช้เทคโนโลยีปฏิบัติการทดลองโดย เชื่อมต่อกับสมาร์ตโฟน (T-SIL) แบบหลายตัวเลือก จำนวน 13 ข้อ โดยแบบทดสอบชุดดังกล่าวมีค่าความ เชื่อมั่น KR-20 เท่ากับ 0.75 ถูกใช้เป็นเครื่องมือตรวจสอบการเปลี่ยนแปลงในความรู้ดังกล่าวทั้งก่อนและหลัง การได้รับโมดูลการฝึกอบรมต้นแบบ โดยที่ผู้เข้าร่วมวิจัยได้รับมอบหมายให้ได้มีปฏิสัมพันธ์เรียนรู้กับโมดูล TPACK สำหรับการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะผ่านปฏิบัติการทดลองโดยเชื่อมต่อกับสมาร์ตโฟน เป็น ระยะเวลา 12 ชั่วโมง โดยมีรายละเอียดขั้นตอนและระยะเวลานำเสนอได้ดังแผนภาพที่ 4.1 ดังนี้

แผนภาพที่ 4.1 TPACK สำหรับการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะผ่านปฏิบัติการทดลองโดยเชื่อมต่อกับ สมาร์ตโฟน (T-SIL) ภายใต้กรอบแนวคิดสะเต็มศึกษา

4.2.3) การวิเคราะห์ข้อมูล

คะแนนความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีเกมดิจิทัล (TPACK-G) ของ ผู้เข้าร่วมวิจัยทั้งก่อนเรียนและหลังเรียนถูกนำมาวิเคราะห์เพื่อตรวจสอบการแจกแจงข้อมูลแบบปกติ (Normal distribution) โดยใช้การวิเคราะห์ทดสอบ Shapiro-Wilk ซึ่งผลการวิเคราะห์พบว่าทั้งคะแนนก่อนเรียนและ คะแนนหลังเรียนมีการแจกแจงข้อมูลแบบโค้งปกติ ดังนั้นผู้วิจัยจึงกำหนดใช้การวิเคราะห์สถิติเชิงอ้างอิงแบบที่ ใช้พารามิเตอร์ (Parametric inferential statistics) แบบที่เป็นการวิเคราะห์ทดสอบ Paired t-test เพื่อการ เปรียบเทียบความแตกต่างโดยใช้โปรแกรมวิเคราะห์สถิติ IBM SPSS 21.00 ที่ระดับความเชื่อมั่น 0.05 และ วิเคราะห์ตรวจสอบขนาดของผลกระทบ (Size effect) โดยใช้สมการ Z/\sqrt{N} สำหรับการวิเคราะห์ความ แตกต่างดังกล่าวตามแนวคิดของ Rosenthal (r) (1994) และทำการแปรผลของขนาดอิทธิพล 3 ระดับ ได้แก่ ถ้าค่า r หรือ Effect size (ES) มีค่ามากกว่าหรือเท่ากับ 0.2 แปลว่ามีอิทธิพลของผลกระทบขนาดกลาง และ ถ้าค่า r หรือ ES มีค่า มากกว่าหรือเท่ากับ 0.5 แปลว่ามีอิทธิพลของผลกระทบขนาดกลาง และ ถ้าค่า r หรือ ES มีค่า มากกว่าหรือเท่ากับ 0.8 แปลว่ามีอิทธิพลของผลกระทบขนาดใหญ่

4.3 วงรอบที่ 3: การพัฒนาระบบนิเวศสมบูรณ์และศึกษาผลลัพธ์

การดำเนินการวิจัยในวงรอบนี้ ผู้วิจัยได้ลงมือออกแบบและพัฒนาโมดูลการฝึกอบรมต้นแบบ และ มีการทดลองใช้โมดูล TPACK สำหรับการจัดการเรียนรู้เพื่อส่งเสริมความสามารถในการสร้างคำอธิบายเชิง วิทยาศาสตร์ด้วยโมบายแอปพลิเคชัน (T-SEE) เพื่อการศึกษาผลลัพธ์กับกลุ่มผู้เข้าร่วมการวิจัย โดยมี รายละเอียดดังต่อไปนี้

4.3.1) ผู้เข้าร่วมวิจัย (Participants)

ผู้ร่วมวิจัยในการศึกษานี้เป็นนักศึกษาวิชาชีพครูวิทยาศาสตร์ที่ศึกษาในหลักสูตรศึกษาศาสตร์ บัณฑิต หลักสูตร 4 ปี ประจำการ จำนวนทั้งสิ้น 59 คน แบ่งเป็นเพศหญิง จำนวน 36 คน (คิดเป็น 61.0%) และเพศชาย จำนวน 23 คน (คิดเป็น 39.0%) โดยเป็นกลุ่มนักศึกษาวิชาชีพครูวิทยาศาสตร์ของมหาวิทยาลัย รัฐแห่งหนึ่ง

4.3.2) การเก็บรวบรวมข้อมูลและเครื่องมือวิจัย

เพื่อตรวจสอบการเปลี่ยนแปลงในความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของ ผู้เข้าร่วมวิจัย แบบวัดความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีโมบายแอปพลิเคชันส่งเสริม ความสามารถในการสร้างคำอธิบายเชิงวิทยาศาสตร์ (T-SEE) แบบหลายตัวเลือก จำนวน 18 ข้อ โดย แบบทดสอบชุดดังกล่าวมีค่าความเชื่อมั่น KR-20 เท่ากับ 0.74 ถูกใช้ทั้งก่อนและหลังการฝึกอบรม นอกจากนั้น ผู้วิจัยเก็บข้อมูลที่เป็นการรับรู้ที่มีต่อการฝึกอบรมวิชาชีพผ่านระบบนิเวศการฝึกอบรมเกี่ยวกับการสอนแบบ จำเพาะบุคคลภายใต้กลไกของระบบปัญญาประดิษฐ์ และการยอมรับต่อการใช้เทคโนโลยีระบบนิเวศการ ฝึกอบรมเกี่ยวกับการสอนแบบจำเพาะบุคคลภายใต้กลไกของระบบปัญญาประดิษฐ์หลังการฝึกอบรมด้วย โดย ใช้แบบสอบถาม จำนวน 2 ชุด ได้แก่ (1) แบบสอบถามการรับรู้ที่มีต่อการฝึกอบรมวิชาชีพผ่านระบบนิเวศการ ฝึกอบรมเกี่ยวกับการสอนแบบจำเพาะบุคคลภายใต้กลไกของระบบปัญญาประดิษฐ์แบบมาตรส่วน 5 ระดับ จำนวน 23 ข้อ ที่แบ่งออกเป็น 6 ด้านย่อย ได้แก่ การกำหนดเป้าหมาย (Goal setting: GS) โครงสร้างของ ระบบ (Environmental structuring: ES), กุศโลบายของภารกิจ (Task strategies: TS), การจัดการเวลา (Time management: TM), การแสวงหาตัวช่วย (Help-seeking: HS), การประเมินตนเอง (Self-evalution: SE) ที่มีค่าความเชื่อมั่น Cronbach's **α** เท่ากับ 0.951, 0.900, 0.738, 0.635, 0.930, 0.581 ตามลำดับ (2) แบบสอบถามการยอมรับต่อการใช้เทคโนโลยีระบบนิเวศการฝึกอบรมเกี่ยวกับการสอนแบบจำเพาะบุคคล ภายใต้กลไกของระบบปัญญาประดิษฐ์แบบมาตรส่วน 5 ระดับ จำนวน 16 ข้อ ที่แบ่งออกเป็น 5 ด้านย่อย ได้แก่ การรู้ได้ถึงผลกระทบการเรียนรู้ (Perceived impacts of learning: PIL) การรู้ได้ถึงประโยชน์ (Perceived Usefulness of Learning Suggestion: PULS), การรู้ได้ถึงความง่าย (Perceived Ease of Use: PEU), เจตคติ (Attitude: ATD), ประสงค์ต่อการใช้งาน (Intention to Use: ITU) ที่มีค่าความเชื่อมั่น Cronbach's α เท่ากับ 0.398, 0.902, 0.769, 0.848 และ 0.807 ตามลำดับ โดยที่ผู้เข้าร่วมวิจัยได้รับ มอบหมายให้ได้มีปฏิสัมพันธ์เรียนรู้กับโมดูล T-SEE เป็นระยะเวลา 12 ชั่วโมง โดยมีรายละเอียดขั้นตอนและ ระยะเวลานำเสนอดังตารางที่ 4.2 ดังนี้

ตารางที่ 4.2 รายละเอียดโมดูลการฝึกอบรม โมดูล T-SEE

โมดูล	กลุ่มและ	ประเด็นหัวข้อ	กลวิธีการเรียนรู้	ดิจิทัลเทคโนโลยีที่เน้น
	ระยะเวลา	ทางสะเต็มศึกษา		
T-SEE	ครูวิทยาศาสตร์	การสังเคราะห์	สะเต็มศึกษาบูรณา	โมบายแอปพลิเคชันส่งเสริม
	ประจำการ	ด้วยแสงของพืช	การ	ความสามารถในการสร้าง
	(12 ชั่วโมง)			คำอธิบายเชิงวิทยาศาสตร์

4.3.3) การวิเคราะห์ข้อมูล

คะแนนความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของโมดูล T-SEE ของผู้เข้าร่วม วิจัยทั้งก่อนเรียนและหลังเรียนถูกนำมาวิเคราะห์เพื่อตรวจสอบการแจกแจงข้อมูลแบบปกติ (Normal distribution) โดยใช้การวิเคราะห์ทดสอบ Shapiro-Wilk ซึ่งผลการวิเคราะห์พบว่าทั้งคะแนนก่อนเรียนและ คะแนนหลังเรียนมีการแจกแจงข้อมูลแบบโค้งปกติ ดังนั้นผู้วิจัยจึงกำหนดใช้การวิเคราะห์สถิติเชิงอ้างอิงแบบที่ ใช้พารามิเตอร์ (Parametric inferential statistics) แบบที่เป็นการวิเคราะห์ทดสอบ Paired t-test เพื่อการ เปรียบเทียบความแตกต่างโดยใช้โปรแกรมวิเคราะห์สถิติ IBM SPSS 26.00 ที่ระดับความเชื่อมั่น 0.05 และ วิเคราะห์ตรวจสอบขนาดของผลกระทบ (Size effect) โดยใช้สมการ Z/\sqrt{N} สำหรับการวิเคราะห์ความ แตกต่างดังกล่าวตามแนวคิดของ Rosenthal (r) (1994) และทำการแปรผลของขนาดอิทธิพล 3 ระดับ ได้แก่ ถ้าค่า r หรือ Effect size (ES) มีค่ามากกว่าหรือเท่ากับ 0.2 แปลว่ามีอิทธิพลของผลกระทบขนาดกลาง และ ถ้าค่า r หรือ ES มีค่า มากกว่าหรือเท่ากับ 0.5 แปลว่ามีอิทธิพลของผลกระทบขนาดกลาง และ ถ้าค่า r หรือ ES มีค่า มากกว่าหรือเท่ากับ 0.8 แปลว่ามีอิทธิพลของผลกระทบขนาดใหญ่

ส่วนการรับรู้ที่มีต่อการฝึกอบรมวิชาชีพผ่านระบบนิเวศการฝึกอบรมเกี่ยวกับการสอน แบบจำเพาะบุคคลภายใต้กลไกของระบบปัญญาประดิษฐ์ และการยอมรับต่อการใช้เทคโนโลยีระบบนิเวศการ ฝึกอบรมเกี่ยวกับการสอนแบบจำเพาะบุคคลภายใต้กลไกของระบบปัญญาประดิษฐ์นั้นถูกวิเคราะห์ข้อมูลโดย ใช้สถิติเชิงบรรยาย ได้แก่ ความถี่และร้อยละ เพื่อบรรยายความปรากฏการณ์ที่เกิดขึ้นตามกรอบแนวคิดที่ กำหนดไว้

บทที่ 5 ผลการวิจัยและการอภิปรายผล

การวิจัยเพื่อการพัฒนาระบบนิเวศการฝึกอบรมแบบจำเพาะบุคคลโดยใช้เทคโนโลยี ปัญญาประดิษฐ์ที่มีต่อความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีสำหรับสิ่งแวดล้อมการเรียนรู้ วิทยาศาสตร์แบบพกพาดังวัตถุประสงค์ที่กำหนดไว้ของโครงการนี้ แบ่งระยะการการวิจัยและพัฒนาระบบ ดังกล่าวออกได้เป็น 3 วงรอบ ได้แก่ วงรอบที่ 1 เป็นการสร้างโมดูลการฝึกอบรมต้นแบบและศึกษานำร่อง วงรอบที่ 2 เป็นการพัฒนาระบบนิเวศต้นแบบและศึกษานำร่อง และวงรอบที่ 3 เป็นการพัฒนาระบบนิเวศ สมบูรณ์และศึกษาผลลัพธ์ จึงสามารถรายงานผลการวิจัยโดยแบ่งออกเป็น จำนวน 3 ตอนตามวงรอบด้วย เช่นกันดังต่อไปนี้

5.1 ผลลัพธ์ของการออกแบบและพัฒนาโมดูลการฝึกอบรมต้นแบบและทดลองใช้โมดูล TPACK สำหรับ การจัดการเรียนรู้วิทยาศาสตร์สืบเสาะโดยใช้เกมดิจิทัล (T-ILG) ในวงรอบที่ 1

ผู้วิจัยนี้ได้ทำการตรวจสอบการเปลี่ยนแปลงของความรู้ในสอนจำเพาะเนื้อหาโดยใช้ เทคโนโลยีเกมดิจิทัลของนักศึกษาวิชาชีพครูวิทยาศาสตร์ โดยใช้การวิเคราะห์สถิติเชิงอ้างอิงแบบไม่ใช้พา มิเตอร์แบบวิธีการ Wilconxon signed-rank test และทำการแปรผลของขนาดอิทธิพล 3 ระดับตามกรอบ แนวคิดของ Rosenthal (r) (1994)

ผลลัพธ์จากวิเคราะห์คะแนนความรู้ในสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีเกมดิจิทัลพบว่า คะแนนหลังเรียน (M= 3.78, SD = 1.20) มีค่าคะแนนมากกว่าคะแนนก่อนเรียน (M= 1.93, SD = 1.34) ใน ระบบคะแนนเต็มเท่ากับ 6 คะแนน ซึ่งมีผลลัพธ์ของการวิเคราะห์เชิงสถิติ ดังตารางที่ 5.1

ตารางที่ 5.1 ผลการวิเคราะห์คะแนนก่อนและหลังเรียนด้วยสถิติ

Pre- and post-test measurements	n	Mean rank	Rank sum	Z	p	r
Negative rank	4	14.00	56.00	-7.571	.000*	78
Positive rank	76	41.89	3184.00			
Tie	14					
Total	94					

^{*}p ≥ .001 หมายถึง ระดับความแตกต่างอย่างมีนัยสำคัญของคะแนนก่อนเรียนและหลังเรียน

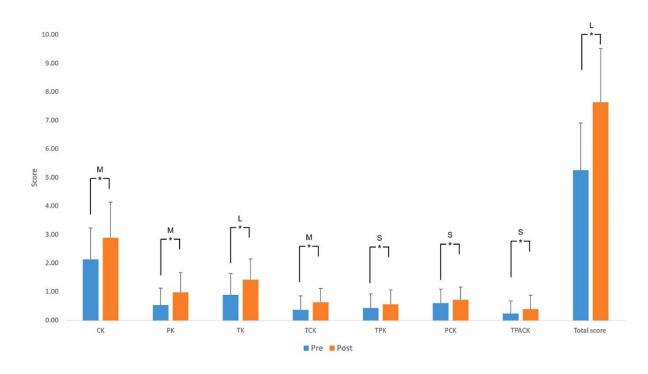
จากตารางที่ 5.1 พบว่านักศึกษาวิชาชีพครูวิทยาศาสตร์มีผลสัมฤทธิ์การเรียนรู้ที่เป็นคะแนน ความรู้ในสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีเกมดิจิทัลโดยเปรียบเทียบกับคะแนนก่อนที่จะได้รับการเข้า ฝึกอบรมผ่านโมดูล TPACK สำหรับการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะโดยใช้เกมดิจิทัล (T-ILG) (Z₍₉₄₎ = - 7.571, p < .001) อย่างมีนัยสำคัญทางสถิติที่ระดับความเชื่อมั่น 99% และมีค่าขนาดของผลกระทบ Rosenthal (r) ขนาดใหญ่ (r = -.78)

ผลลัพธ์การวิเคราะห์ดังกล่าวมานั้นแสดงให้เห็นถึงผลลัพธ์ของ โมดูล TPACK สำหรับการจัดการ เรียนรู้วิทยาศาสตร์สืบเสาะโดยใช้เกมดิจิทัล (T-ILG) ที่มีต่อความรู้ในสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีเกม ดิจิทัลของนักศึกษาวิชาชีพครูวิทยาศาสตร์ได้เป็นอย่างดี โดยที่ผู้วิจัยคิดเห็นว่ากลวิธีการจัดการเรียนรู้แบบการ ฝึกอบรมผ่านการใช้กรณีศึกษาจริงที่มีการปฏิบัติการวิจัยและพัฒนาจริงและมีผลลัพธ์ว่าส่งเสริมการเรียนรู้ของ ผู้เรียนในเนื้อหาจำเพาะใดหนึ่งจริงนั้น จะช่วยเหนี่ยวนำการเรียนรู้เพื่อสร้างความรู้ในการจำเพาะเนื้อหาโดยใช้ เทคโนโลยีใด้เป็นอย่างประสิทธิผล เนื่องจากได้เรียนรู้กับกรณีการปฏิบัติจริง และเป็นการปฏิบัติเชิงประจักษ์ ตามกรณีศึกษาจริงด้วย อีกทั้งยังได้คิดออกแบบการประยุกต์ใช้แนวปฏิบัติตามกรณีศึกษาดังกล่าวร่วมกันกับ นักศึกษาวิชาชีพครูคนอื่นด้วย ซึ่งผลลัพธ์ดังกล่าวนั้นสอดคล้องกับผลงานวิจัยก่อนหน้าของ Jimoyiannis (2010), Jang & Chen (2010), Srisawasdi (2012), Srisawasdi (2014), Srisawasdi & Panjaburee (2014), และ Srisawasdi, Bunterm, & Pondee (2018) ซึ่งได้ออกแบบโมดูลการฝึกอบรมและทดลองใช้ในการจัดการเรียนการสอนในรายวิชาของหลักสูตรศึกษาศาสตร์บัณฑิต สำหรับนักศึกษาวิชาชีพครู และบูรณาการ กลวิธีการเรียนรู้จากกรณีศึกษา (Case-based learning) และพบว่ากลวิธีการในโมดูลดังกล่าวสามารถสร้าง เสริมความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของนักศึกษาวิชาชีพครูวิทยาศาสตร์ให้เพิ่มขึ้นได้

5.2 ผลลัพธ์ของการออกแบบและการพัฒนาระบบนิเวศต้นแบบและทดลองใช้ระบบนิเวศต้นแบบผ่าน โมดูล TPACK สำหรับการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะผ่านปฏิบัติการทดลองโดยเชื่อมต่อกับสมาร์ต โฟน (T-SIL) ในวงรอบที่ 2

ผู้วิจัยนี้ได้ทำการตรวจสอบการเปลี่ยนแปลงของความรู้ในการสอนสะเต็มศึกษาจำเพาะ เนื้อหาโดยใช้เทคโนโลยีปฏิบัติการทดลองโดยเชื่อมต่อกับสมาร์ตโฟน (T-SIL) ของครูวิทยาศาสตร์ประจำการ โดยใช้การวิเคราะห์สถิติเชิงอ้างอิงแบบใช้พามิเตอร์แบบวิธีการ Paired t-test และทำการแปรผลของขนาด อิทธิพล 3 ระดับตามกรอบแนวคิดของ Rosenthal (r) (1994)

ผลลัพธ์จากวิเคราะห์คะแนนความรู้ในสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีปฏิบัติการทดลอง โดยเชื่อมต่อกับสมาร์ตโฟน พบว่า คะแนนหลังเรียนและคะแนนก่อนเรียนมีผลลัพธ์ของการวิเคราะห์เชิงสถิติ ดังตารางที่ 5.2


ตารางที่ 5.2 ผลการวิเคราะห์คะแนนก่อนและหลังเรียนด้วยสถิติ

Domain	Test					
		Mean	SD	t	р	ES
CK	Pre	2.14	1.100	-6.209	.000*	0.489
	Post	2.89	1.255			
PK	Pre	0.54	0.592	-6.193	.000*	0.488
	Post	0.99	0.689			
TK	Pre	0.90	0.743	-6.659	.000*	0.525
	Post	1.43	0.722			
TCK	Pre	0.38	0.487	-4.696	.000*	0.370
	Post	0.64	0.482			
TPK	Pre	0.44	0.498	-2.540	.011*	0.200
	Post	0.57	0.497			
PCK	Pre	0.61	0.488	-2.394	.017*	0.189
	Post	0.73	0.444			
TPCK	Pre	0.25	0.437	-2.898	.004*	0.228
	Post	0.40	0.491			
Total	Pre	5.26	1.653	-10.177	.000*	0.802
TPACK						
	Post	7.64	1.879			

 $[\]bar{p}$ < .05, (N = 161)

จากตารางที่ 5.2 พบว่าครูวิทยาศาสตร์ประจำการมีผลสัมฤทธิ์การเรียนรู้ที่เป็นคะแนนความรู้ใน การสอนสะเต็มศึกษาจำเพาะเนื้อหาโดยใช้เทคโนโลยีปฏิบัติการทดลองโดยเชื่อมต่อกับสมาร์ตโฟน (T-SIL) สูง มากขึ้นโดยเปรียบเทียบกับคะแนนก่อนที่จะได้รับการเข้าฝึกอบรมผ่านระบบนิเวศต้นแบบผ่านโมดูล TPACK สำหรับการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะผ่านปฏิบัติการทดลองโดยเชื่อมต่อกับสมาร์ตโฟน (T-SIL) อย่าง มีนัยสำคัญทางสถิติที่ระดับความเชื่อมั่น 95% ในทุกองค์ประกอบของความรู้ฐาน และมีค่าขนาดของ ผลกระทบ Rosenthal (r) ในแต่ละองค์ประกอบของความรู้ฐานทั้งใน 3 ระดับ ได้แก่ ขนาดเล็ก (S) ขนาด กลาง (M) และ ขนาดใหญ่ (L) ดังที่นำเสนอได้ในภาพที่ 5.1

^a(Effect size = Z/N, Rosenthal (1994)).

*p =< .05; Total N = 161 **แผนภาพที่ 5.1** กราฟแสดงผลการวิเคราะห์เปรียบเทียบคะแนนความรู้ในการสอนฯ ของผู้ครูวิทยาศาสตร์

ประจำการที่เข้าร่วมอบรม

หากพิจารณาผลลัพธ์การวิเคราะห์ดังกล่าวมานั้นแสดงให้เห็นถึงผลลัพธ์ของระบบนิเวศต้นแบบ ผ่านโมดูล TPACK สำหรับการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะผ่านปฏิบัติการทดลองโดยเชื่อมต่อกับสมาร์ต โฟน (T-SIL) ที่มีต่อความรู้ในสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีปฏิบัติการทดลองโดยเชื่อมต่อกับสมาร์ตโฟน ของครูวิทยาศาสตร์ประจำการได้เป็นอย่างดี

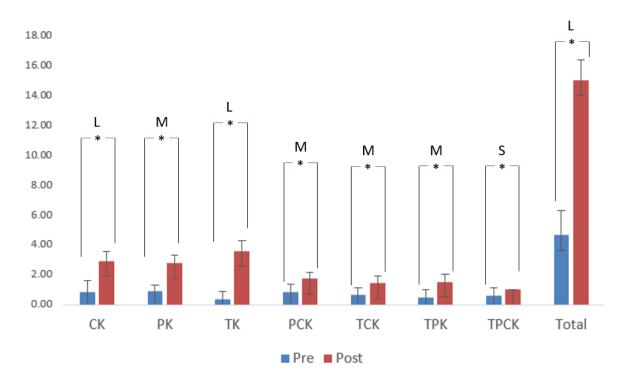
ผู้วิจัยคิดเห็นว่าระบบนิเวศต้นแบบผ่านโมดูล TPACK สำหรับการจัดการเรียนรู้วิทยาศาสตร์ สืบเสาะผ่านปฏิบัติการทดลองโดยเชื่อมต่อกับสมาร์ตโฟน (T-SIL) นั้นมีการประยุกต์ใช้เทคโนโลยี ปัญญาประดิษฐ์ (AI) เพื่อสร้างกลไกการเรียนรู้แบบจำเพาะบุคคล (Personalized learning mechanism) จะช่วยเหนี่ยวนำการเรียนรู้เพื่อสร้างความรู้ในการจำเพาะเนื้อหาโดยใช้เทคโนโลยีได้อย่างมีประสิทธิผลและ แม่นยำจำเพาะกับระดับความรู้ฐานของความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของแต่ละบุคคล ซึ่ง สอดคล้องกับแนวคิดที่ว่าการได้เรียนรู้กับระบบนิเวศต้นแบบที่เป็นระบบส่งเสริมการเรียนรู้แบบจำเพาะบุคคล (Personalized learning system) นั้น สามารถที่จะยกระดับสมรรถนะในการจัดการเรียนการสอนของ ครูผู้สอนได้ (Harris, 2016) นอกจากนั้นแล้ว การประยุกต์ใช้ระบบเทคโนโลยีที่เป็นฐานโดยปัญญาประดิษฐ์ เอื้ออำนวยต่อการพัฒนาความสามารถในการปฏิบัติงานอย่างมืออาชีพและช่วยสนับสนุนให้ครูผู้สอนสามารถที่จะสร้างความก้าวหน้าต่อสมรรถนะการปฏิบัติงานการสอนได้เป็นอย่างดี (Hwang et al., 2020) นอกจากนั้น

แล้ว ผลลัพธ์ดังกล่าวนั้นสอดคล้องกับผลงานวิจัยก่อนหน้าของ Angeli et al. (2014), Timotheou, Christodoulou, & Angeli (2017), Gynther (2016), Ma et al. (2018) และ Kajonmanee et al. (2020) ซึ่งได้รายงานผลลัพธ์การใช้สิ่งแวดล้อมการเรียนรู้แบบจำเพาะบุคคลสามารถสร้างเสริมความรู้ในการ ปฏิบัติงานการสอนของครูประจำการให้เพิ่มขึ้นได้

5.3 ผลลัพธ์ของการออกแบบและการพัฒนาระบบนิเวศสมบูรณ์และทดลองใช้ผ่านโมดูล TPACK สำหรับ การจัดการเรียนรู้เพื่อส่งเสริมความสามารถในการสร้างคำอธิบายเชิงวิทยาศาสตร์ด้วยโมบายแอปพลิเค ชัน (T-SEF) ในวงรอบที่ 3

5.3.1) การเปลี่ยนรูปความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยี (TPACK transformation) ผู้วิจัยนี้ได้ทำการตรวจสอบการเปลี่ยนแปลงของความรู้ในการสอนสะเต็มศึกษาจำเพาะ เนื้อหาโดยใช้เทคโนโลยีโมบายแอปพลิเคชันเพื่อสร้างเสริมความสามารถในการสร้างคำอธิบายเชิงวิทยาศาสตร์ (T-SEE) ของนักศึกษาวิชาชีพครูวิทยาศาสตร์ โดยใช้การวิเคราะห์สถิติเชิงอ้างอิงแบบใช้พามิเตอร์แบบวิธีการ Paired t-test และทำการแปรผลของขนาดอิทธิพล 3 ระดับตามกรอบแนวคิดของ Cohen's d

ผลลัพธ์จากวิเคราะห์คะแนนความรู้ในสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีโมบายแอปพลิเค ชันเพื่อสร้างเสริมความสามารถในการสร้างคำอธิบายเชิงวิทยาศาสตร์ พบว่า คะแนนหลังเรียนและคะแนน ก่อนเรียนมีผลลัพธ์ของการวิเคราะห์เชิงสถิติ ดังตารางที่ 5.3


ตารางที่ 5.3 ผลการวิเคราะห์คะแนนก่อนและหลังเรียนด้วยสถิติ

Domain	Test	TPACK score (N=59)				
		Mean	SD	t	р	d
CK	Pre	0.83	0.79	-18.25	.000*	0.89
	Post	2.93	0.64			
PK	Pre	0.88	0.42	-24.51	.000*	0.60
	Post	2.76	0.54			
TK	Pre	0.34	0.58	-27.14	.000*	0.92
	Post	3.59	0.70			
PCK	Pre	0.85	0.52	-12.10	.000*	0.56
	Post	1.73	0.45			
TCK	Pre	0.64	0.48	-8.60	.000*	0.70
	Post	1.42	0.50			
TPK	Pre	0.47	0.50	-12.32	.000*	0.67

	Post	1.54	0.50			
TPCK	Pre	0.63	0.49	-5.88	.000*	0.49
	Post	1.00	0.00			
Total	Pre	4.64	1.59	-38.47	.000*	2.07
TPACK	Post	14.98	1.49			

 $p^* < .01, (N = 59)$

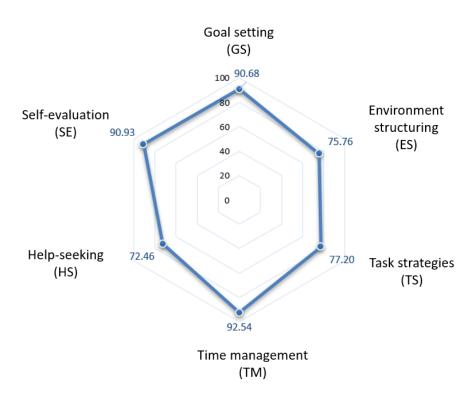
จากตารางที่ 5.2 พบว่าครูวิทยาศาสตร์ประจำการมีผลสัมฤทธิ์การเรียนรู้ที่เป็นคะแนนความรู้ใน การสอนสะเต็มศึกษาจำเพาะเนื้อหาโดยใช้เทคโนโลยีปฏิบัติการทดลองโดยเชื่อมต่อกับสมาร์ตโฟน (T-SIL) สูง มากขึ้นโดยเปรียบเทียบกับคะแนนก่อนที่จะได้รับการเข้าฝึกอบรมผ่านระบบนิเวศต้นแบบผ่านโมดูล TPACK สำหรับการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะผ่านปฏิบัติการทดลองโดยเชื่อมต่อกับสมาร์ตโฟน (T-SIL) อย่าง มีนัยสำคัญทางสถิติที่ระดับความเชื่อมั่น 95% ในทุกองค์ประกอบของความรู้ฐาน และมีค่าขนาดของ ผลกระทบ Cohen's d ในแต่ละองค์ประกอบของความรู้ฐานทั้งใน 3 ระดับ ได้แก่ ขนาดเล็ก (S) ขนาดกลาง (M) และ ขนาดใหญ่ (L) ดังที่นำเสนอได้ในภาพที่ 5.2

แผนภาพที่ 5.2 กราฟแสดงผลการวิเคราะห์เปรียบเทียบคะแนนความรู้ในการสอนๆ ของนักศึกษาวิชาชีพครู

หากพิจารณาผลลัพธ์การวิเคราะห์ดังกล่าวมานั้นแสดงให้เห็นถึงผลลัพธ์ของ ระบบนิเวศสมบูรณ์ ผ่านโมดูล TPACK สำหรับการจัดการเรียนรู้เพื่อส่งเสริมความสามารถในการสร้างคำอธิบายเชิงวิทยาศาสตร์ ด้วยโมบายแอปพลิเคชัน (T-SEE) ที่มีต่อความรู้ในสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีโมบายแอปพลิเคชัน ส่งเสริมความสามารถในการสร้างคำอธิบายเชิงวิทยาศาสตร์ของนักศึกษาวิชาชีพครูวิทยาศาสตร์ได้เป็นอย่างดี

จากผลลัพธ์ดังกล่าว ผู้วิจัยคิดเห็นว่าระบบนิเวศสมบูรณ์ผ่านโมดูล ผ่านโมดูล TPACK สำหรับการ จัดการเรียนรู้เพื่อส่งเสริมความสามารถในการสร้างคำอธิบายเชิงวิทยาศาสตร์ด้วยโมบายแอปพลิเคชัน (T-SEE) นั้นมีการประยุกต์ใช้เทคโนโลยีปัญญาประดิษฐ์ (AI) เพื่อสร้างกลไกการเรียนรู้แบบจำเพาะบุคคล (Personalized learning mechanism) จะช่วยเหนี่ยวนำการเรียนรู้เพื่อสร้างความรู้ในการจำเพาะเนื้อหาโดย ใช้เทคโนโลยีได้อย่างมีประสิทธิผลและแม่นยำจำเพาะกับระดับความรู้ฐานของความรู้ในการสอนจำเพาะ เนื้อหาโดยใช้เทคโนโลยีของแต่ละบุคคล ซึ่งสอดคล้องกับแนวคิดที่ว่าการได้เรียนรู้กับระบบนิเวศต้นแบบที่เป็น ระบบส่งเสริมการเรียนรู้แบบจำเพาะบุคคล (Personalized learning system) นั้น สามารถที่จะยกระดับ สมรรถนะในการจัดการเรียนการสอนของครูผู้สอนได้ (Harris, 2016) นอกจากนั้นแล้ว การประยุกต์ใช้ระบบ เทคโนโลยีที่เป็นฐานโดยปัญญาประดิษฐ์เอื้ออำนวยต่อการพัฒนาความสามารถในการปฏิบัติงานอย่างมือ อาชีพและช่วยสนับสนุนให้ครูผู้สอนสามารถที่จะสร้างความก้าวหน้าต่อสมรรถนะการปฏิบัติงานการสอนได้ เป็นอย่างดี (Hwang et al., 2020) นอกจากนั้นแล้ว ผลลัพธ์ดังกล่าวนั้นสอดคล้องกับผลงานวิจัยก่อนหน้าของ Angeli et al. (2014), Timotheou, Christodoulou, & Angeli (2017), Gynther (2016), Ma et al. (2018) และ Kajonmanee et al. (2020) ซึ่งได้รายงานผลลัพธ์การใช้สิ่งแวดล้อมการเรียนรู้แบบจำเพาะบุคคล สามารถสร้างเสริมความรู้ในการปฏิบัติงานการสอนของครูประจำการให้เพิ่มขึ้นได้

5.3.2) การรับรู้ที่มีต่อการฝึกอบรมวิชาชีพผ่านระบบนิเวศการฝึกอบรมเกี่ยวกับการสอนแบบจำเพาะ บุคคลภายใต้กลไกของระบบปัญญาประดิษฐ์


ผู้วิจัยนี้ได้ทำการตรวจสอบการรับรู้ที่มีต่อการฝึกอบรมวิชาชีพผ่านระบบนิเวศการฝึกอบรม เกี่ยวกับการสอนแบบจำเพาะบุคคลภายใต้กลไกของระบบปัญญาประดิษฐ์ของนักศึกษาวิชาชีพครูวิทยาศาสตร์ หลังจากที่ได้รับประสบการณ์การมีปฏิสัมพันธ์ โดยแบ่งออกเป็น 6 ด้านย่อย ได้แก่ การกำหนดเป้าหมาย (Goal setting: GS) โครงสร้างของระบบ (Environmental structuring: ES), กุศโลบายของภารกิจ (Task strategies: TS), การจัดการเวลา (Time management: TM), การแสวงหาตัวช่วย (Help-seeking: HS), และ การประเมินตนเอง (Self-evalution: SE) โดยใช้การวิเคราะห์สถิติเชิงบรรยาย ได้แก่ ความถี่ ค่าเฉลี่ย ส่วนเบี่ยงเบนมาตรฐาน และร้อยละ เพื่อบรรยายความปรากฏการณ์ที่เกิดขึ้นตามกรอบแนวคิดที่กำหนดไว้

ผลลัพธ์จากวิเคราะห์การรับรู้ที่มีต่อการฝึกอบรมวิชาชีพผ่านระบบนิเวศการฝึกอบรมเกี่ยวกับ การสอนแบบจำเพาะบุคคลภายใต้กลไกของระบบปัญญาประดิษฐ์ สามารถนำเสนอได้ดังตารางที่ 5.4

ตารางที่ 5.4 ผลการวิเคราะห์คะแนนการรับรู้ด้วยสถิติ

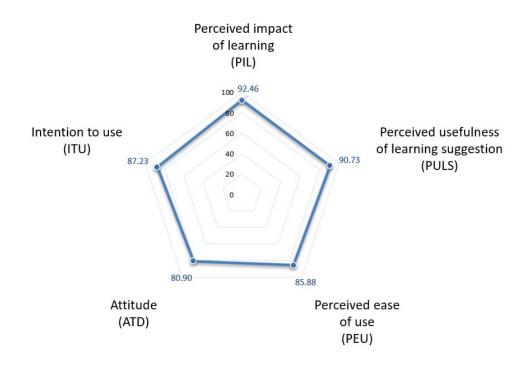
Domain	Test	Descriptive statistics				
		Mean	SD	Percentage		
Goal setting (GS)	Post-test	18.14	1.34	90.68		
Environmental	Post-test	15.15	1.86	75.76		
structuring (ES)						
Task strategies	Post-test	15.44	1.21	77.20		
(TS)						
Time	Post-test	13.88	0.83	92.54		
management						
(TM)						
Help-seeking	Post-test	14.49	1.47	72.46		
(HS)						
Self-evalution	Post-test	18.19	0.78	90.93		
(SE)						
Total	Post-test	95.29	3.61	82.86		

จากตารางที่ 5.3 พบว่านักศึกษาวิชาชีพครูวิทยาศาสตร์มีคะแนนการรับรู้สูงสุดในด้านการจัดการเวลา (TM) คิดเป็นร้อยละ 92.54, การประเมินตนเอง (SE) คิดเป็นร้อยละ 90.93, การกำหนดเป้าหมาย (GS) คิด เป็นร้อยละ 90.68, กุศโลบายของภารกิจ (TS) คิดเป็นร้อยละ 77.20, โครงสร้างของระบบ (ES) คิดเป็นร้อยละ 75.76, และการแสวงหาตัวช่วย (HS) คิดเป็นร้อยละ 72.46 ตามลำดับ ซึ่งสามารถนำเสนอได้ในภาพที่ 5.3

แผนภาพที่ 5.3 กราฟแสดงผลการวิเคราะห์คะแนนการรับรู้ๆ ของนักศึกษาวิชาชีพครูวิทยาศาสตร์ที่เข้าร่วม อบรม

ด้วยการประยุกต์ใช้เทคโนโลยีปัญญาประดิษฐ์ที่มีคุณลักษณะจำเพาะและฟังก์ชันการทำงานที่ เอื้ออำนวยต่อการฝึกอบรมด้วยตนเองโดยสมบูรณ์แบบเป็นเทคโนโลยีดิจิทัลนั้น จึงเอื้ออำนวยให้ทิศทางการ รับรู้เชิงบวกเกิดขึ้นต่อผู้ใช้งานระบบ ดังที่ Van Schoors et al. (2023) และ Pfeiffer et al. (2021) กล่าวไว้ ว่า การเรียนรู้แบบจำเพาะบุคคลผ่านระบบดิจิทัลเอื้อประโยชน์ต่อการเรียนรู้ต่อผู้ใช้งานทั้งที่เป็นครูผู้สอนหรือ นักเรียน และด้วยคุณลักษณะและฟังก์ชันจำเพาะของเทคโนโลยีปัญญาประดิษฐ์ดังกล่าวนั้น การสามารถ นำเสนอปฏิสัมพันธ์แบบจำเพาะบุคคล (personalization) ให้ต่อผู้ใช้งานระบบได้นั้นส่งผลต่อคุณค่าทางบวก ของประสบการณ์การใช้งานในภาพรวมของผู้ใช้งานได้ (Ram, Harris, & Roll, 2023).

5.3.3) การยอมรับต่อการใช้เทคโนโลยีระบบนิเวศการฝึกอบรมเกี่ยวกับการสอนแบบจำเพาะบุคคล ภายใต้กลไกของระบบปัญญาประดิษฐ์


ผู้วิจัยนี้ได้ทำการตรวจสอบการรับรู้ที่มีต่อการฝึกอบรมวิชาชีพผ่านระบบนิเวศการฝึกอบรมเกี่ยวกับ การสอนแบบจำเพาะบุคคลภายใต้กลไกของระบบปัญญาประดิษฐ์ของนักศึกษาวิชาชีพครูวิทยาศาสตร์ หลังจากที่ได้รับประสบการณ์การมีปฏิสัมพันธ์ โดยแบ่งออกเป็น 5 ด้านย่อย ได้แก่ การรู้ได้ถึงผลกระทบการ เรียนรู้ (Perceived impacts of learning: PIL) การรู้ได้ถึงประโยชน์ของเส้นทางการเรียนรู้จำเพาะ (Perceived usefulness of learning suggestion: PULS), การรู้ได้ถึงความง่าย (Perceived ease of use: PEU), เจตคติ (Attitude: ATD), ประสงค์ต่อการใช้งาน (Intention to use: ITU) โดยใช้การวิเคราะห์สถิติ เชิงบรรยาย ได้แก่ ความถี่ ค่าเฉลี่ย ส่วนเบี่ยงเบนมาตรฐาน และร้อยละ เพื่อบรรยายความปรากฏการณ์ที่ เกิดขึ้นตามกรอบแนวคิดที่กำหนดไว้

ผลลัพธ์จากวิเคราะห์การรับรู้ที่มีต่อการฝึกอบรมวิชาชีพผ่านระบบนิเวศการฝึกอบรมเกี่ยวกับ การสอนแบบจำเพาะบุคคลภายใต้กลไกของระบบปัญญาประดิษฐ์ สามารถนำเสนอได้ดังตารางที่ 5.5

ตารางที่ 5.5 ผลการวิเคราะห์คะแนนการยอมรับต่อการใช้เทคโนโลยีด้วยสถิติ

Domain	Test	Descriptive statistics		
		Mean	SD	Percentage
Perceived impacts of	Post-test	18.49	1.18	92.46
learning (PIL)				
Perceived usefulness	Post-test	13.61	1.19	90.73
of learning				
suggestion (PULS)				
Perceived ease of	Post-test	12.88	1.42	85.88
use (PEU)				
Attitude (ATD)	Post-test	12.14	1.70	80.90
Intention to use	Post-test	13.08	1.60	87.23
(ITU)				
Total	Post-test	70.20	2.93	87.75

จากตารางที่ 5.3 พบว่านักศึกษาวิชาชีพครูวิทยาศาสตร์มีคะแนนการรับรู้สูงสุดในการรู้ได้ถึง ผลกระทบการเรียนรู้ (PIL) คิดเป็นร้อยละ 92.46, การรู้ได้ถึงประโยชน์ของเส้นทางการเรียนรู้จำเพาะ (PULS) คิดเป็นร้อยละ 90.73, ประสงค์ต่อการใช้งาน (ITU) คิดเป็นร้อยละ 87.23, การรู้ได้ถึงความง่าย (PEU) คิด เป็นร้อยละ 85.88, และเจตคติ (ATD) คิดเป็นร้อยละ 80.90 ตามลำดับ ซึ่งสามารถนำเสนอได้ในภาพที่ 5.4

แผนภาพที่ 5.4 กราฟแสดงผลการวิเคราะห์คะแนนการรับรู้ฯ ของนักศึกษาวิชาชีพครูวิทยาศาสตร์ที่เข้าร่วม อบรม

ด้วยการประยุกต์ใช้เทคโนโลยีปัญญาประดิษฐ์ที่มีคุณลักษณะจำเพาะและฟังก์ชันการทำงานที่ เอื้ออำนวยต่อการฝึกอบรมด้วยตนเองโดยสมบูรณ์แบบเป็นเทคโนโลยีดิจิทัลนั้น จึงเป็นส่วนสำคัญที่ทำให้ ผู้ใช้งานระบบเพื่อการเรียนรู้และพัฒนาตนเองให้การยอมรับต่อแนวทางการเรียนรู้ด้วยตนเองกับระบบที่มี กลไกของเทคโนโลยีดังกล่าว ซึ่งสอดคล้องกับข้อค้นพบจากการวิจัยของ Panjaburee, Komalawardhana, & Ingkavara (2022) ที่รายงานไว้ว่า คุณลักษณะของการเรียนรู้ตามเส้นทางการเรียนรู้ที่ถูกแนะนำจาก สารสนเทศการเรียนรู้ของแต่ละคนอย่างจำเพาะเจาะจงนั้นส่งผลต่อการได้รับการยอมรับในประโยชน์ที่เกิดขึ้น ต่อการเรียนรู้ของผู้ใช้งาน

บทที่ 6 สรุปผลการวิจัย

โครงการวิจัยนี้มุ่งที่จะออกแบบและพัฒนารูปแบบการฝึกอบรมสำหรับครูผู้สอนแบบใหม่ในลักษณะที่ เป็นระบบนิเวศการฝึกอบรมแบบจำเพาะบุคคลโดยใช้เทคโนโลยีปัญญาประดิษฐ์เพื่อพัฒนาความรู้ในการสอน จำเพาะเนื้อหาโดยใช้เทคโนโลยีสำหรับสิ่งแวดล้อมการเรียนรู้วิทยาศาสตร์แบบพกพาที่จะสามารถนำไป ประยุกต์ใช้ในการพัฒนาคุณภาพการปฏิบัติงานการสอนโดยใช้เทคโนโลยีดิจิทัลสำหรับครูผู้สอน อันจะนำการ เป็นแนวทางใหม่หรือนวัตกรรมของการจัดการศึกษาอย่างแม่นยำ (Precision Education) ในบริบทวิชาชีพครู ศึกษาเพื่อการบ่มเพาะและพัฒนานักศึกษาวิชาชีพครูและรวมไปถึงการยกระดับคุณภาพการปฏิบัติงานการ สอนในสถานศึกษาของครูประจำการ

การดำเนินการวิจัยวงรอบที่ 1 มีวัตุประสงค์หลักเพื่อออกแบบและสร้างโมดูลการฝึกอบรมความรู้ใน การปฏิบัติงานการสอนวิทยาศาสตร์สำหรับครูวิทยาศาสตร์ตามกรอบแนวคิดความรู้ในการสอนวิทยาศาสตร์ สืบเสาะอย่างจำเพาะแนวคิดหลักโดยใช้สิ่งแวดล้อมดิจิทัลที่ได้ออกแบบไว้สำหรับโครงการวิจัยนี้ และศึกษานำ ร่องถึงผลลัพธ์ของโมดูลการฝึกอบรมต้นแบบที่มีต่อความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของครู วิทยาศาสตร์ จากผลการทดลองใช้โมดูล TPACK สำหรับการจัดการเรียนรู้วิทยาศาสตร์สืบเสาะโดยใช้เกม ดิจิทัล (T-ILG) เพื่อการศึกษานำร่องนั้นพบว่าส่งเสริมต่อการพัฒนาความรู้ในการสอนจำเพาะเนื้อหาโดยใช้ เทคโนโลยีของครูวิทยาศาสตร์ให้ดีขึ้นได้

การดำเนินการวิจัยวงรอบที่ 2 มีวัตุประสงค์หลักเพื่อออกแบบและพัฒนาระบบนิเวศต้นแบบสำหรับ กลวิธีการฝึกอบรมเกี่ยวกับการสอนแบบจำเพาะบุคคลภายใต้กลไกของระบบปัญญาประดิษฐ์เพื่อสร้างเสริม ความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของครูผู้สอน โดยการเป็นการดำเนินการต่อเนื่องจากการนำ เนื้อหาบทเรียนของโมดูลการฝึกอบรมความรู้ในการสอนวิทยาศาสตร์สืบเสาะอย่างจำเพาะแนวคิดหลักโดยใช้ สิ่งแวดล้อมดิจิทัลที่ได้ดำเนินการมาแล้วในช่วงระยะการดำเนินการวิจัยของวงรอบที่ 1 เพื่อศึกษาผลลัพธ์ที่มี ต่อความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีสำหรับสิ่งแวดล้อมการเรียนรู้วิทยาศาสตร์แบบพกพาของ ครูวิทยาศาสตร์ประจำการ โดยได้ทดลองใช้โมดูล TPACK สำหรับการจัดการเรียนรู้เพื่อส่งเสริมความสามารถ ในการสร้างคำอธิบายเชิงวิทยาศาสตร์ด้วยโมบายแอปพลิเคชัน (T-SEE) เพื่อตรวจสอบการเปลี่ยนแปลงของ ความรู้ในการสอนสะเต็มศึกษาจำเพาะเนื้อหาโดยใช้เทคโนโลยีปฏิบัติการทดลองโดยเชื่อมต่อกับสมาร์ตโฟน (T-SIL) ของครูวิทยาศาสตร์ประจำการ จากผลการศึกษาพบว่าแพลตฟอร์มระบบนิเวศการฝึกอบรมครูที่เป็น ต้นแบบที่พัฒนาขึ้นสามารถสร้างเสริมความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของครูวิทยาศาสตร์ให้ ดีมากขึ้นได้

การดำเนินการวิจัยวงรอบที่ 3 มีวัตุประสงค์หลักเพื่อออกแบบและพัฒนาระบบนิเวศสมบูรณ์สำหรับ กลวิธีการฝึกอบรมเกี่ยวกับการสอนแบบจำเพาะบุคคลภายใต้กลไกของระบบปัญญาประดิษฐ์เพื่อสร้างเสริม ความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของครูผู้สอน เพื่อศึกษาผลลัพธ์ที่มีต่อความรู้ในการสอน จำเพาะเนื้อหาโดยใช้เทคโนโลยีสำหรับสิ่งแวดล้อมการเรียนรู้วิทยาศาสตร์แบบพกพาของนักศึกษาวิชาชีพครู วิทยาศาสตร์ โดยได้ทดลองใช้โมดูล TPACK สำหรับการจัดการเรียนรู้เพื่อส่งเสริมความสามารถในการสร้าง คำอธิบายเชิงวิทยาศาสตร์ด้วยโมบายแอปพลิเคชัน (T-SEE) เพื่อการศึกษาผลลัพธ์กับกลุ่มผู้เข้าร่วมการวิจัย จากผลการศึกษาพบว่าแพลตฟอร์มระบบนิเวศการฝึกอบรมครูที่พัฒนาขึ้นสามารถสร้างเสริมความรู้ในการ สอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีของครูวิทยาศาสตร์ได้ดีมากขึ้น และส่งผลต่อการรับรู้และการยอมรับเชิง บวกของครูวิทยาศาสตร์ผู้ใช้งานเพื่อการฝึกอบรมตนเอง

จากการดำเนินงานตามแผนงานวิจัยของโครงการวิจัยนี้นั้น ทำให้การดำเนินงานสำเร็จลุล่วงไปได้ ด้วยดี และบรรลุเป้าหมายของผลผลิตที่เป็นบทความวิจัยที่ตีพิมพ์ในที่วารสารระดับนานาชาติ จำนวน 3 เรื่อง ดังต่อไปนี้

(1) Pondee, P., Panjaburee, P., & Srisawasdi, N. (2021). Preservice science teachers' emerging pedagogy of mobile game integration: A tale of two cohorts improvement study. Research and Practice in Technology Enhanced Learning, 16, 16, https://doi.org/10.1186/s41039-021-00152-0 (SCOPUS, Q1)

ข้อมูลการอ้างอิงแหล่งทุน:

Funding

This work was financially supported by the Thailand Research Fund (TRF), the Commission on Higher Education (CHED) and Khon Kaen University (KKU) (Grant no. RSA6280062). Any opinions, findings, and conclusions or recommendations expressed in this material are of the authors and do not necessarily reflect the view of the TRF, CHED, and KKU.

แหล่งอ้างอิง: https://telrp.springeropen.com/articles/10.1186/s41039-021-00152-0

(2) Chaipidech, P., Srisawasdi, N., Kajornmanee, T., & Chapah, K. (2021). A personalized learning system-supported professional training model for teachers' TPACK development. *Computers and Education: Artificial Intelligence*, https://doi.org/10.1016/j.caeai.2022.100064 (SCOPUS, Q1)

ข้อมูลการอ้างอิงแหล่งทุน:

Acknowledgments

This work was financially supported by Royal Golden Jubilee (RGJ) Ph.D. Program Scholarship, Thailand Research Fund (TRF), TRF Research Career Development Grant (Grant no. RSA6280062), and Khon Kaen University (KKU) Smart Learning Academy. Any opinions, findings, conclusions, or recommendations expressed in this material are of the authors and do not necessarily reflect the TRF and KKU.

แหล่งอ้างอิง: https://www.sciencedirect.com/science/article/pii/S2666920X22000194

(3) Chaipidech, P., & Srisawasdi, N. (2021). Implementation of andragogical teacher professional development training program for boosting TPACK in STEM education: An essential role of personalized ubiquitous learning system. *Educational Technology & Society*, 24(4), 220-239. (SCOPUS, Q1)

ข้อมูลการอ้างอิงแหล่งทุน

Acknowledgements

This work was financially supported by Royal Golden Jubilee (RGJ) Ph.D. Program Scholarship (PHD/0159/2559), Thailand Research Fund (TRF), TRF Research Career Development Grant (Grant no. RSA6280062), Khon Kaen University (KKU), and Smart Learning Innovation Research Center (SLIRC). The authors' opinions, findings, conclusions, or recommendations are expressed in this material and do not necessarily reflect the TRF, KKU, and SLIRC.

แหล่งอ้างอิง: https://www.j-ets.net/collection/forthcoming-articles/24_4

ดังนั้นแล้วผู้วิจัยเชื่อว่าจากผลสำเร็จในการดำเนินงานวิจัยภายใต้โครงการนี้นั้น ทำให้ได้มาซึ่งผลงานที่ เป็นระบบนิเวศของการฝึกอบรมเกี่ยวกับการสอนแบบปรับเหมาะจำเพาะบุคคลภายใต้กลไกของระบบ ปัญญาประดิษฐ์เพื่อการพัฒนาคุณภาพความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีในบริบทการ ปฏิบัติงานการสอนโดยใช้สิ่งแวดล้อมดิจิทัลสำหรับทั้งครูวิทยาศาสตร์ ที่บริบูรณ์ด้วยโมดูลการฝึกอบรมเพื่อ พัฒนาความสามารถในการปฏิบัติงานการสอนโดยใช้สิ่งแวดล้อมดิจิทัลที่เน้นปฏิสัมพันธ์ระหว่างวิธีการสอน และเทคโนโลยีสำหรับทั้งนักศึกษาวิชาชีพครูและครูประจำการ และแนวทางการปฏิบัติงานการฝึกอบรม วิชาชีพครูแนวใหม่ที่เป็นการประยุกต์ใช้กลไกของเทคโนโลยีปัญญาประดิษฐ์ (Artificial intelligence: Al) เพื่อ ใช้เป็นเครื่องมือในการจัดการศึกษาแบบแม่นยำสำหรับการยกระดับและพัฒนาคุณภาพของครูผู้สอน นอกจากนั้นแล้วยังได้องค์ความรู้พื้นฐาน (Basic knowledge) เกี่ยวกับกลวิธีการบ่มเพาะ สร้างเสริม และ

พัฒนาความรู้ในการสอนจำเพาะเนื้อหาโดยใช้เทคโนโลยีสำหรับครูผู้สอนในบริบทประเทศไทยที่สามารถนำไป ใช้ประโยชน์และสร้างผลกระทบทั้งในเชิงวิชาการและเชิงสังคมต่อสังคมไทย และยังสามารถนำไปพัฒนาสู่การ ต่อยอดสำหรับการเป็นธุรกิจบริการ (Service business) เพื่อการยกระดับและพัฒนาคุณภาพของบุคคลากรที่ ปฏิบัติงานในองค์กรต่างๆ ทั้งภาครัฐและเอกชน เพื่อนำไปสู่การเพิ่มสมรรถนะพื้นฐานและขั้นสูงในการ ปฏิบัติงานในแต่ละวิชาชีพได้อย่างแม่นยำ ถูกต้อง และสร้างสรรค์มากขึ้นสำหรับสังคมไทยในทุกภาคส่วนได้ใน ภายภาคหน้า

บรรณานุกรม

- จุฑามาศ นุชิต, นิวัฒน์ ศรีสวัสดิ์ (2554). ผลของปฏิบัติการทดลองวิทยาศาสตร์สืบเสาะแบบเปิดที่มีต่อ ความสามารถในการให้เหตุผลเชิงวิทยาศาสตร์และผลสัมฤทธิ์ทางการเรียน เรื่อง การสะท้อนของแสงและ การเกิดภาพในกระจกเงาระนาบ สำหรับนักเรียนระดับชั้นมัธยมศึกษาตอนต้นปีที่ 2. วารสาร ศึกษาศาสตร์ มหาวิทยาลัยขอนแก่น, 34(2), 124-137.
- นิวัฒน์ ศรีสวัสดิ์. (2552ก). แนวทางการพัฒนากระบวนการคิดเชิงวิทยาศาสตร์ผ่านการจัดการเรียนรู้ วิทยาศาสตร์แบบสืบเสาะ เอกสารประกอบการสอนรายวิชา 232 429 ปฏิบัติการทดลองวิทยาศาสตร์ ผ่านคอมพิวเตอร์ในการสอนวิทยาศาสตร์ สาขาวิชาวิทยาศาสตร์ศึกษา คณะศึกษาศาสตร์ มหาวิทยาลัยขอนแก่น. ขอนแก่น: คณะศึกษาศาสตร์.
- นิวัฒน์ ศรีสวัสดิ์. (2552ข). จากวิทยาศาสตร์การสืบเสาะมาสู่การเรียนรู้วิทยาศาสตร์ร่วมสมัย เอกสาร ประกอบการสอนรายวิชา 232 422 การจัดการเรียนรู้วิทยาศาสตร์สำหรับการศึกษาขั้นพื้นฐานช่วงชั้นที่ 4 สาขาวิชาวิทยาศาสตร์ศึกษา คณะศึกษาศาสตร์ มหาวิทยาลัยขอนแก่น. ขอนแก่น: คณะศึกษาศาสตร์ มหาวิทยาลัยขอนแก่น.
- สุดารัตน์ ดวงเงิน, นิวัฒน์ ศรีสวัสดิ์ (2554). ผลของปฏิบัติการทดลองวิทยาศาสตร์สืบเสาะแบบเปิดที่มีต่อ ความสามารถในการให้เหตุผลเชิงวิทยาศาสตร์และผลสัมฤทธิ์ทางการเรียน เรื่อง สมบัติและปฏิกิริยาของ สารละลายกรดเบส สำหรับนักเรียนระดับชั้นมัธยมศึกษาตอนต้นปีที่ 1. วารสารศึกษาศาสตร์ มหาวิทยาลัยขอนแก่น, 34(1), 87-97.
- Akpan, J. P., & Andre, T., (2000). Using a computer simulation before dissection to help student learn anatomy. Journal of Computers in Mathematics and Science Teaching, 19(3), 297-313.
- American Association for the Advancement of Science (1993). Science for all Americans: project 2061. New York: Oxford University Press.
- Alayyar, G. M., Fisser, P., & Voogt, J. (2012). Developing technological pedagogical content knowledge in pre-service science teachers: Support from blended learning. Australasian Journal of Educational Technology, 28(8), 1298-1316.
- Alghazo, I. (2006). Student attitudes toward web-enhanced instruction in an educational technology course. College Student Journal, 40(3), 620-630.
- Annetta, L., Frazier, W., Folta, E., Holmes, S., Lamb, R., & Cheng, M-T. (2013). Science teacher efficacy and extrinsic factors toward professional development using video games in a

- design-based research model: The next generation of STEM learning. Journal of Science Education & Technology, 22(1), 47-61.
- Ajayi, L. (2009). An Exploration of Pre-Service Teachers' Perceptions of Learning to Teach while Using Asynchronous Discussion Board. Educational Technology & Society, 12 (2), 86-100.
- Baylari, A., & Montazer, G. A. (2009). Design a personalized e-learning system based on item response theory and artificial neural network approach. Expert Systems with Applications, 36(4), 8013-8021.
- Bell, R. L. & Trundle, K. C. (2008). The use of a computer simulation to promote scientific conceptions of moon phases. Journal of Research in Science Teaching, 45 (3), 346-372.
- Brookman-Byrne, A. (2017). Bringing scientific evidence to the classroom: The rise of educational neuroscience. access: July 1, 2018 at https://bold.expert/bringing-scientific-evidence-to-the-classroom/
- Brookman-Byrne, A. (2018). Precision education: What could the future of teaching and learning look like?. access: July 1, 2018 at https://bold.expert/precision-education/
- Bryant G. (2006). The adopter chasm: An investigation of characteristics of faculty adopters of instructional technology and the impact upon faculty use. Retrieved January 25, 2012 from http://gradworks.umi.com/32/18/3218077.html.
- Buck, L. B., Bretz, S. L., & Towns, M. H. (2008) Characterizing the level of inquiry in the undergraduate laboratory. Journal of College Science Teaching, 38(1), 52-58.
- Chai, C. S., Koh, J. H. L., Tsai, C.-C. & Tan, L. L. W. (2011). Modeling primary school pre-service teachers' technological pedagogical content knowledge (TPACK) for meaningful learning with information and communication technology (ICT). Computers & Education, 57(1), 1184-1193.
- Creswell, J. W., & Plano Clark, V. L. (2011). Designing and conducting mixed methods research (2nd eds.). Thousand Oaks, CA: Sage.
- Dede, C., Ketelhut, D. J., Whitehouse, P., Breit, L. & McCloskey, E. M. (2009). A research agenda for online teacher professional development. Journal of Teacher Education, 60, 1, 8–19.
- de Jong, T. (1991). Learning and instruction with computer simulation. Education & Computing, 6(3&4), 217-229.

- de Jong, T., Martin, E., Zamarrow, J., Esquembre, F., Swaak, J., & van Joolingen, W. R. (1999). The integration of computer simulation and learning support: An example from the physics domain of collisions. Journal of Research in Science Teaching, 36(5), 597-615.
- Fajet, W., Bello, M., Leftwich, S.A., Mesler, J.L., & Shaver, A.N. (2005). Pre-service teachers' perceptions in beginning education classes. Teaching and Teacher Education, 21, 717-727.
- Friedler, Y., Nachmias, R., & Linn, M. C. (1990). Learning scientific reasoning skills in microcomputer based laboratories. Journal of Research in Science Teaching, 27(2), 173-192.
- Friedler, Y., Nachmias, R., & Songer, N. (1989). Teaching scientific reasoning skills: a case study of a microcomputer-based curriculum. School Science and Mathematics, 89(1), 272-84.
- Geban, O., Askar, P., & Ozkan, I. (1992). Effects of computer simulations and problem-solving approaches on high school students. Journal of Educational Research, 86(1), 5-10.
- Garrido, A., Morales, L., & Serina, I. (2016). On the use of case-based planning for e-learning Personalization. Expert Systems with Applications, 60, 1-15.
- Guzey, S. S., & Roehrig, G. H. (2012). Integrating educational technology into the secondary science teaching. Contemporary Issues in Technology and Teacher Education, 12(2), 162-183.
- Gamrat, C., Toomey, H., Zimmerman, H. T., Dudek, J. & Peck, K. (2014). Personalized workplace learning: An exploratory study on digital badging within a teacher professional development program. British Journal of Educational Technology, 45(6), 1136-1148.
- Hennessy, S., Deaney, R., Ruthven, K. & Winterbottom, M. (2007). Pedagogical strategies for using the interactive whiteboard to foster learner participation in school science. Learning, Media and Technology, 32(3), 283-301.
- Huang, M.J., Huang, H. S., & Chen, M.Y. (2007). Constructing a personalized e-learning system based on genetic algorithm and case-based reasoning approach. Expert Systems with Applications, 33, 551-564.
- Ivankova, N. V., Creswell, J. W., & Stick, S. (2006). Using mixed methods sequential explanatory design: From theory to practice. Field Methods, 18(1), 3-20.
- Jang, S. J. & Chen, K.-C. (2010). From PCK to TPACK: Developing a transformative model for

- pre-service science teachers. Journal of Science Education and Technology, 19(6), 553-564.
- Jimoyiannis, A. (2010). Designing and implementing an integrated technological pedagogical science knowledge framework for science teachers professional development. Computers & Education, 55(3), 1259–1269.
- Johnson, R. B. & Onwuegbuzie, A. J. (2004). Mixed methods research: A research paradigm whose time has come. Educational Researcher, 33(7), 14-26.
- Kelly, G. J., & Crawford, T. (1996). Students' interaction with computer representations: analysis of discourse in laboratory groups. Journal of Research in Science Teaching, 33(7), 693-707.
- Koehler, M. J., & Mishra, P. (2009). What is technological pedagogical content knowledge? Contemporary Issues in Technology and Teacher Education, 9(1), 60-70.
- Kong, S. C., & Song, Y. (2015). An experience of personalized learning hub initiative embedding BYOD for reflective engagement in higher education. Computers & Education, 88, 227-240.
- Kühl T., Zander S. (2017). An inverted personalization effect when learning with multimedia: the case of aversive content. Computers and Education, 108, 71–84.
- Kuhn, D. & Pearsall, S. (2000). Developmental origins of scientific thinking. Journal of Cognition and Development, 1(1), 113-129.
- Lavonen, J., Juuti, K., & Meisalo, V. (2003). Designing MBL package for school science. In the V. Uskov (Eds.), Proceedings of the IASTED International Conference Computer and Advanced Technology in Education (pp. 664-669), June 30 July 2, 2003, Rhodes, Greece. Anaheim: ACTA Press.
- Lu, O. H. T., Huang, A. Y. Q., Lin, A. J. Q., Ogata, H., & Yang, S. J. H. (2018). Applying Learning Analytics for the Early Prediction of Students' Academic Performance in Blended Learning. Educational Technology & Society, 21 (2), 220–232.
- Lynth, M. (2018). 7 roles for artificial intelligence in education. access: July 1, 2018 at https://www.thetechedvocate.org/7-roles-for-artificial-intelligence-in-education/
- Malm, B. (2009) Towards a new professionalism: Enhancing personal and professional development in teacher education, Journal of Education for Teaching, 35(1), 77-91.
- McRobbie, C. M. & Thomas, G. P. (2000). Epistemological and contextual issues in the use of

- microcomputer-based laboratories in a Year 11 Chemistry classroom. Journal of Computers in Mathematics and Science Teaching, 19(2), 137-160.
- Mishra, P., & Koehler, M.J. (2006). Technological pedagogical content knowledge: A framework for integrating technology in teacher knowledge. Teachers College Record, 108(6), 1017-1054.
- Morgan, M. & Morrison, M. (1999), Models as Mediators. Perspectives on Natural and Social Science. Cambridge: Cambridge University Press.
- Muller, D. A., Sharma, M. D., & Reimann, P. (2008). Raising cognitive load with linear multimedia to promote conceptual change. Science Education, 92(2), 278-296.
- Nakhleh, M. B., Krajcik, J. S. (1994). The effect of level of information as presented by different technologies on students' understanding of acid, base and pH concepts. Journal of Research in Science Teaching, 31(10), 1077-1096.
- National Research Council (2000). National Science Education Standards. Washington, DC: National Academy Press.
- Niess, M. L. (2005). Preparing teachers to teach science and mathematics with technology:

 Developing a technology pedagogical content knowledge. Teaching and Teacher

 Education, 21, 509-523.
- Partnership for 21st Century Skills. (2008). 21st Century Skills, Education & Competitiveness: A resource and policy guide, Retrieved April 9, 2011 from http://www.p21.org/documents/21st_century_skills_education_and_competitiveness_guide.pdf
- Pfeiffer, A., Bezzina, S., Dingli, A., Wernbacher, T., Denk, N., & Fleischhacker, M. (2021). Adaptive Learning and Assessment: From The Teachers' Perspective, 375–379. https://doi.org/10.21125/inted.2021.0103
- Ram, I., Harris, S. & Roll, I. (2023). Choice-based Personalization in MOOCs: Impact on Activity and Perceived Value. International Journal of Artificial Intelligence in Education. https://doi.org/10.1007/s40593-023-00334-5
- Rexford, J., & Kirkland, R. (2018). The role of education in AI (and vice versa). access: July 1, 2018 at https://www.mckinsey.com/featured-insights/artificial-intelligence/the-role-of-

- education-in-ai-and-vice-versa
- Rogers, L. T. (1995). The computer as an aid for exploring graphs. School Science Review, 76(276), 31-39.
- Russell, D. W., Lucas, K. B., & McRobbie, C. J. (2003). The role of the microcomputer-based laboratory display in supporting the construction of new understandings in kinematics. Research in Science Education, 33(2), 217-243.
- Russ, R.S., Scherr, R.E., Hammer, D., & Mikeksa, J. (2008). Recognizing mechanistic reasoning in student scientific inquiry: a framework for discourse analysis developed from philosophy of science. Science Education. 92(3), 499-525.
- Sahin, S. (2006). Computer simulations in science education: implications for Distance Education. Turkish Online Journal of Distance Education, 7(4), 132-146.
- Shulman, L. S. (1986). Those Who Understand: Knowledge Growth in Teaching. Educational Researcher, 15(2), 4–14.
- Spear, A.M. and R.B. da Costa (2018). Potential for transformation? Two teacher training programs examined through a critical pedagogy framework. Teaching and Teacher Education, 69, 202-209.
- Srisawasdi, N. (2012a). Fostering Pre-service STEM Teachers' Technological Pedagogical Content Knowledge: A Lesson Learned from Case-based Learning Approach. Journal of Korea Association for Science Education, 32(8), 1356-1366.
- Srisawasdi, N. (2012b). The Role of TPACK in Physics Classroom: Case Studies of Pre-service Physics Teachers. Procedia Social and Behavioral Sciences, 46, 3235-3243.
- Srisawasdi, N. (2012c). Introducing Students to Authentic Inquiry Investigation by Using an Artificial Olfactory System. In K. C. D. Tan, M. Kim, & S. W. Hwang (Eds.) Issues and challenges in science education research: Moving forward (pp. 93-106). Dordrecht, The Netherlands: Springer.
- Srisawasdi, N. (2012d). Student teachers' perceptions of computerized laboratory practice for science teaching: a comparative analysis. Procedia Social and Behavioral Sciences, 46, 4031-4038.

- Srisawasdi, N., Kerdcharoen, T., & Suits, J. P. (2008). Turning scientific laboratory research into innovative instructional material for science education: Case studies from practical experience. International Journal of Learning, 15(5), 201-210.
- Srisawasdi, N., Panijpan, B, Ruenwongsa, P. & Kerdcharoen, T. (2009, November). Introducing students to authentic inquiry investigation through odor classification experiment with an artificial olfactory system, Nose Simulator. Paper presented at The 2nd International Science Education Conference (ISEC), National Institute of Education, Singapore.
- State Educational Directors Association et al. (2007). Maximizing the Impact: The pivotal role of technology in a 21st century education system, Retrieved April 9, 2011 from http://www.p21.org/documents/p21setdaistepaper.pdf
- Strauss, R., & Kinzie, M. B. (1994). Student Achievement and Attitudes in a Pilot Study Comparing an Interactive Videodisc Simulation to Conventional Dissection. American Biology Teacher, 56(7), 398-402.
- Sun, H., & Zhang, P. (2006). Causal Relationships between Perceived Enjoyment and Perceived Ease of Use: An Alternative Approach. Journal of the Association for Information Systems, 7(9), 618-645.
- Swaak, J., & de Jong, T. (1996). Measuring intuitive knowledge in science: the development of the what-if test. Studies in Educational Evaluation, 22(4), 341-362.
- Teo, T., Lee, C. B., Chai, C. S. & Wong, S. L. (2009). Assessing the intention to use technology among pre-service teachers in Singapore and Malaysia: A multigroup invariance analysis of the technology acceptance model (TAM). Computers & Education, 53(3), 1000-1009
- Thornton, R. K. (1987). Tools for scientific thinking microcomputer-based laboratories for physics teaching. Physics Education, 22(4), 230-238.
- Van Schoors, R., Elen, J., Raes, A. et al. The Charm or Chasm of Digital Personalized Learning in Education: Teachers' Reported Use, Perceptions and Expectations. TechTrends 67, 315–330 (2023). https://doi.org/10.1007/s11528-022-00802-0
- Veemans, K., van Joolingen, W., & de Jong, T. (2006). Use of heuristics to facilitate scientific discovery learning in a simulation learning environment in a physics domain. International Journal of Science Education, 28(4), 341-361.

- Williamson, B. (2018). Personalized precision education and intimate data analytics access: July 1, 2018 at https://codeactsineducation.wordpress.com/2018/04/16/personalized-precision-education/
- Winberg, T. M., & R. Berg, C. A. (2007). Students' cognitive focus during a chemistry laboratory exercise: Effects of a computer-simulated prelab. Journal of Research in Science Teaching, 44(8), 1108-1113.
- Windschitl, M., & Andre, T. (1998). Using computer simulations to enhance conceptual change:

 The roles of constructivist instruction and student epistemological beliefs. Journal of
 Research in Science Teaching, 35, 145–160.
- Yin, R. K. (2006). Mixed Methods Research: Are the Methods Genuinely Integrated or Merely Parallel?. Research in the Schools, 13(1), 41-47.
- Zacharia, Z. & Anderson, O. R. (2003). The effects of an interactive computer-based simulation prior to performing a laboratory inquiry-based experiment on students' conceptual understanding of physics. American Journal of Physics, 71(6), 618-629.
- Zietsman, A. I., & Hewson, P. W. (1986). Effects of instruction using microcomputer simulations and conceptual change strategies on science learning. Journal of Research in Science Teaching, 23(1), 27-39.
- Zion, M. (2008). On line forums as a "rescue net" in an open inquiry. International Journal of Science and Mathematics Education, 6, 351-375.
- Zion, M., Slezak, M., Shapira, D., Link, E., Bashan, N., Brumer, M., Orian, T., Nussinowitz, R., Court, D., Agrest, B. & Mendelovici, R. (2004). Dynamic, open inquiry in biology learning. Science Education, 88, 728-753.

ภาคผนวก

ภาคผนวกที่ 1

บทความวิชาการที่ได้รับการตอบรับให้ตีพิมพ์ในวารสารวิชาการระดับนานาชาติ

RESEARCH Open Access

Preservice science teachers' emerging pedagogy of mobile game integration: a tale of two cohorts improvement study

Phattaraporn Pondee¹, Patcharin Panjaburee² and Niwat Srisawasdi¹*

Abstract

In the context of the current teacher education program in Thailand, Technology Pedagogical and Content Knowledge (TPACK) framework is formally recognized as essential qualities of knowledge for a highly qualified preservice teacher in today's education. TPACK has been attracted to educational researchers for preparing preservice science teachers nationwide. In this study, TPACK was employed for restructuring a preservice science teacher education course with mobile game technology, which was offered in two consecutive semesters with a total enrollment of 115 student teachers in the first cohort and 94 student teachers in the second cohort. A pedagogic module of Mobile Game-based Inquiry Learning in Science (MGILS) has been designed and created in two settings, a usual separated and integrated case-based TPACK support module, and then implemented with the first and second cohort respectively in general science teacher education program at a Rajabhat University of Thailand. They were measured TPACK in terms of four constructs, namely, (a) technological knowledge (TK), (b) technological content knowledge (TCK), (c) technological pedagogical knowledge (TPK), and (d) technological pedagogical content knowledge (TPCK). Considering both qualitative and quantitative data analysis from two cohorts, the results showed preservice science teachers' incremental TPACK improvement from the implementation of the usual separated and integrated case-based TPACK support module of MGILS. Based on the results of MGILS intervention, it seems to indicate the alleged superiority of the integrated case-based TPACK support over the usual separated TPACK support. The deficits in the use of MGILS module are identified, and possible improvements to enhance TPACK in the mobile game are proposed.

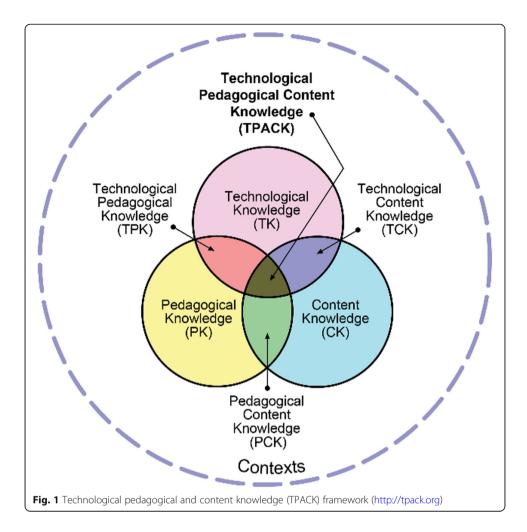
Keywords: TPACK, Mobile learning, Digital game, Ubiquitous technology, Preservice teacher

^{*} Correspondence: niwsri@kku.ac.th ¹Faculty of Education, Khon Kaen University, Khon Kaen, Thailand Full list of author information is available at the end of the article

Introduction

Currently, mobile technologies, such as smartphones and tablet computers, have been increasingly recognized to apply to educational settings for improving the quality of the learning process mediated by portable devices and wireless networked technologies. Besides, applications of mobile technologies have been recognized as mobile learning or m-learning. Scholars have mentioned that mobile learning or m-learning is an enhanced instruction with "anytime, anywhere" situation perspectives and have grown rapidly in educational activities in many subject areas (McQuiggan et al., 2015; Newhouse et al., 2006; Srisawasdi, Burnterm, Pondee, 2018). To take the benefits of the manifold opportunities of mobile technology into account, the learning environment with mobile games is a frequency format used (Schmitz et al., 2015). That is to say, the incorporation of mobile learning into gaming has been an increase in the adaptation to the educational context as part of improving learning enjoyment and motivation (Hakak et al., 2019). Nowadays, mobile game-based learning in school education has become a popular research topic since it allows students to not only boost their learning in an enjoyable way (Chen, Liu, & Huang, 2019; Huizenga, Admiraal, ten Dam, & Voogt, 2019) but also enhances their motivation (Daungcharone, Panjaburee, & Thongkoo, 2019; Gamlo, 2019) and content understanding and process skills (Hussein et al., 2019). However, it seems, in the context of Thailand, that mobile games are perceived only as a means for recreation and entertainment. Vate-U-Lan (2015) mentioned a study report in Thailand that the word "games and entertainment" was the most searched keyword of any search engine. Moreover, Momypedia (2013) reported that Thai children spent approximately 80 percent of their time using computers to play digital games, and game-playing seems to be the most favored activity of Thai youths reported by the Ministry of Information and Communication Technology of Thailand (Vate-U-Lan, 2015). According to the evidence, playing computer games has become a normal recreation and entertainment part of Thai children and adolescents' routines. This could also bring today teachers' perceptions toward digital or mobile games falling into only as a means for recreation and entertainment and not for learning. Consequently, many schools and many teachers oppose the use of smartphones at school because mobile games are distractive and therefore reduce students' attention and concentration in class (Baker et al., 2012; Thomas, O'bannon & Britt, 2014). This situation might cause them to lose their ability to control the class (Sad & Goktas, 2014). In other words, the teachers have less ability in examining how to use mobile games to support their teaching and learning pedagogies and to transfer the content for establishing the informed teaching decisions. Thus, preservice teachers require a specific kind of knowledge to appropriately design meaningful learning experiences with mobile games and pedagogically implement mobile games in their teaching, which is, specifically, technological pedagogical and content knowledge (TPACK).

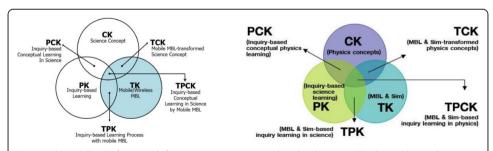
The TPACK framework builds on Shulman's (1986) construct of pedagogical content knowledge (PCK) to include technological knowledge as another essential part of the professional teaching knowledge, and it was first proposed by Mishra and Koehler (2006). Current educational studies revolved around the employment of TPACK framework to design technology-integration courses in the context of teacher education (Janssen, Knoef, & Lazonder, 2019). In the community of science teacher education development, the current reform expects preservice and in-service science teachers to


effectively integrate digital technology, such as a mobile game, and inquiry-based teaching into their instruction (Srisawasdi, 2014). In an effort with the reform, Hsu, Liang, Chai, & Tsai, (2013) proposed an adapted TPACK framework called technological pedagogical and content knowledge-games (TPACK-G) as a guideline to improve inservice preschool teachers' professional development for teaching with game technology. The results indicated that game pedagogical knowledge (GPK) and game pedagogical content knowledge (GPCK) are more specific knowledge building on the fundamental knowledge, game knowledge (GK). To enhance the development of GPK and GPCK, learners, first of all, are required to possess sufficient GK. In the study, they found that the teachers rarely require such knowledge that uses games to represent subject matter knowledge while excluding the element of pedagogy. Moreover, Hsu, Liang, and Su (2015) revised the implementation of TPACK-G for 49 in-service preschool teachers. It was found that instruction with game knowledge tended to promote higher competencies in-game knowledge and game pedagogical content knowledge to teachers more than that with game pedagogical knowledge first. In the context of preservice science teacher development, preparing preservice science teachers for mobile game integration is a complex and challenging job for teacher educators. To overcome this obstacle, Smarkola (2008) has suggested training preservice teachers in educational technology, in a particular implementation of the mobile game, when they were in the beginning stage of teacher education. Moreover, it is suggested that the teachers, who can know using the mobile game technologies to create science teaching and learning activities, could gain highquality science teaching competencies (Becker, 2007; Srisawasdi, Bunterm, & Pondee, 2018). However, preservice science teacher's supports and training for TPACK of the mobile game in science learning have been the least explored topics in preservice science teacher education research. As such, the purpose of this study was to evaluate the effects of a pedagogic module of mobile game-based inquiry learning in science (MGILS) designing based on TPACK framework and assess preservice science teachers' TPACK in the pedagogical application of mobile game-based science inquiry learning.

Literature review

A basis for science teacher education movement and preservice science teacher support, technological pedagogical and content knowledge (TPACK)

In recent years, a well-respected professional teaching knowledge model that depicts what professional teachers should possess is the technological, pedagogical and content knowledge (TPACK) framework. This framework builds on Shulman's (1986) construct of pedagogical content knowledge (PCK) to include technological knowledge as another essential part of the professional teaching knowledge, and it was first proposed by Mishra and Koehler (2006). This framework acknowledges the interrelations among the three kinds of knowledge addressed: technology, pedagogy, and content (Thompson & Mishra, 2007), and it was introduced to the educational research community as a theoretical model for understanding teacher essential knowledge required for effective technology integration in teaching (Koehler & Mishra, 2005, 2008; Mishra & Koehler, 2006). The TPACK framework is visualized in Fig. 1.


Figure 1 shows the integration among three core categories of knowledge, such as pedagogical knowledge (PK), content knowledge (CK), and technological knowledge

(TK) to forming four intersections of knowledge, such as pedagogical content knowledge (PCK), technological pedagogical knowledge (TPK), technological content knowledge (TCK), and technological pedagogical content knowledge (TPCK). Therefore, there are seven essential components of knowledge providing for teachers who prefer to use or apply technology in their classrooms. PK refers to knowledge about teaching and learning practices, strategies, and learning tasks used to deliver subject content to students. CK refers to knowledge or understanding about the particular subject matter or learning content learned and taught in the classrooms. TK refers to knowledge of the features of the technologies and particular skills to use such technologies. PCK, which is knowledge integration between PK and CK, explains about knowledge of particular teaching methods concerning subject matter content. TPK, which is knowledge integration between TK and PK, explains knowledge about using technologies to plan and monitor the teaching and learning process, to construct or transform the different forms of subject matter representations, and to facilitate the teaching and learning process. TCK, which is knowledge integration between TK and CK, explains knowledge for selecting appropriate technology to present the subject matter taught in the learning activities. TPACK, which is knowledge integration among TK, PK, and CK, explains knowledge for selecting appropriate technology to implement teaching and learning methods or strategies for the different representations of subject matter content. In other words, TPACK has been recognized as a framework to professional development or teacher education in which a teacher is trained to have knowledge or ability to designing learning activities to present subject matter content with an appropriate technological tool (Koehler & Mishra, 2008; Mishra & Koehler, 2006, Niess, 2005; Niess et al., 2006, 2009).

Current educational studies that employed the TPACK framework were mainly conducted in the context of teacher education (Janssen, Knoef, & Lazonder, 2019). Most of these studies intended to design and develop technology-integration courses that aimed to foster preservice teachers' development of TPACK (Voogt et al., 2013). In the light of science teacher education development, the efforts of current science education reforms expect science teachers to integrate digital technology and inquiry-based teaching into their instruction (Srisawasdi, 2014). Current science teacher education reforms are recognizing the importance of TPACK for preservice science teachers and the preservice science teachers are targeted to improve their teaching proficiency based on the implementation of TPACK as an integrative framework of instructional interventions (Srisawasdi & Panjaburee, 2014). However, there was still a limited number of study targeted the development of teaching intervention to foster preservice science teachers' TPACK. To give examples, Cetin-Dindar et al. (2018) designed a pedagogic course focusing the learning how to integrate simulations, animations, instructional games, datalogging, virtual labs, and virtual field trips into chemistry instruction, and then implemented it with 17 preservice chemistry teachers. They interacted with the course for one semester and the result revealed that the preservice chemistry teachers' TPACK improved partially on some components. Similarly, Srisawasdi, Pondee, and Bunterm (2018) designed TPACK-oriented coursework, as shown in Fig. 2 (left), and implemented a technology-integrated pedagogy module of mobile laboratory learning in science (MLLS) for improving 119 pre-service science teachers' TPACK. They participated in the MLLS module in 4 weeks. It was found that the MLLS module could foster pre-service science teachers to gain better levels of TK, TCK, TPK, and TPACK.

To promote preservice science teachers' TPACK regarding computerized laboratory environment in physics teaching, Srisawasdi (2014) adapted the TPACK framework to address physics teaching competencies, as shown in Fig. 2 (right), and designed an alignment of pedagogic courses for the preservice science teachers' TPACK development. A series of pedagogic courses have been implemented within 3 years and the results revealed that the preservice physics teachers had relative teaching performance in which technology and pedagogy were combined to facilitate the learning of specific

Fig. 2 Adapted TPACK framework for preservice science teacher development: TPACK emphasized inquiry-based conceptual learning in science by mobile-assisted science laboratory (left) and TPACK emphasized microcomputer-based laboratory and computer simulation-based inquiry learning in physics (right)

physics concepts. Moreover, Chittleborough (2014) reported a result of 28 preservice chemistry teachers' TPACK development after they undertook a chemistry curriculum studies unit that adopted a technological focus. It revealed that the teachers were able to explain the features of technology in teaching and learning and to increase skills for performing a variety of technologies. Moreover, some of their students had doubts when schools did not provide technological resources to support learning activities. Janssen & Lazonder (2016) also reported an experimental study of using pedagogical and content support to foster preservice biology teachers' TPACK in designing an effective lesson plan. In this study, 54 pre-service biology teachers were divided into two groups and each group was asked to participate in the different instructional interventions. The experimental results showed that the preservice teachers who followed the integrated support had more integrated pedagogical and content-related justifications and higher quality lesson plans than those who received separate support.

As seen in those previous studies, it is clear that the TPACK framework plays a crucial role in proposing the development of a science teacher education program. It is also recognized as essential knowledge to fostering the preservice science teachers to gain more teaching competencies in terms of pedagogically presenting science content with appropriate technologies. Besides, Hsu et al. (2013) mentioned that the current TPACK studies are inclined to treat technology in a general manner because the general approach to technology may not be able to provide adequate guidelines to improve teacher preparation for teaching with emerging and unique technology, such as games. To date, digital and mobile game-based learning has been receiving great attention from and applying by educators, researchers, and practitioners, and its positive impacts on students' academic learning outcomes have been reported (Hsu, Liang, Chuang, Chai, & Tsai 2020). In terms of the complexity of digital and mobile game technology integration, science teachers require an understanding of the deep connections of the three primary components (i.e., technological knowledge of the mobile game, pedagogical knowledge, and science content knowledge). As such, there is a clear need to promote preservice science teachers' knowledge about the teaching science with games or TPACK in mobile game-based science learning.

Digital and mobile game-based learning in school science education

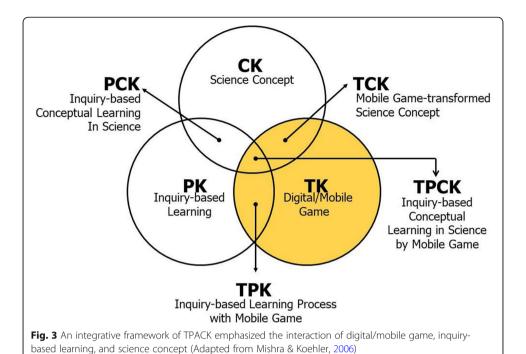
Digital games have been gaining tremendous interest in teaching and learning in the twenty-first-century education. In recent years, implementing digital game technology in school education is recognizing increasingly as a pedagogical tool to induce students' learning interest and also enhance their learning effectiveness in science. Digital game-based learning (DGBL) refers to the learning approach that incorporates educational content for learning into digital games, and this approach has been recognized as an effective way to situate students into authentic learning contexts (Chang & Hwang, 2019). In this regard, the implementation of these kinds of pedagogical tools can motivate science teachers because they need to transform the teaching-learning process to being almost a recreational activity (Antunes, Pacheco, & Giovanela, 2012).

In the particular context of school science education, DGBL has been perceived as an engaging teaching approach to foster elementary school students' learning, and it showed promising potential in the area of science content understanding and process

skills, and role-playing game (RPG) was the most popular game genre for learning (Hussein et al., 2019). For instance, Hsu & Tsai (2013) examined the effects of an educational computer game with and without self-explanation prompts on science learning of light and shadow concepts. In this study, a total of 58 third graders recruited from a primary school in northern Taiwan involved to interact with the intervention, and the results showed that students who played the game with self-explanation features did not outperform those who played the game without any prompts. Besides, Sung & Hwang (2017) created the repertory grid-based educational game (REG) to facilitate students' knowledge sharing and organizing during the DGBL process. In this study, the results showed that they expressed significantly more aggressive learning behavioral patterns during the DGBL process.

With the pedagogical potential of DGBL, this approach has also been examined its effectiveness relating to instructional methods (gameplay design) and science game variants enriched with mechanisms (game's mechanism design) by Tsai & Tsai (2020). The results of this study showed that students significantly benefit from the DGBL in science in terms of scientific knowledge, and its learning and gaming mechanisms play key roles in the significant learning gains. To give an example, Hwang et al. (2012) developed a personalized RPG based on students' learning styles and then implemented it with 46 fifth graders of an elementary school in Taiwan. The results showed that the personalized RPG learning approach not only promotes learning motivation but also improves the learning achievements of the students. Moreover, Sung et al. (2018) developed a 3D experiential game facilitating students' deep-strategy learning behaviors and positive inquiry learning performances in science, and the game has been implemented with 53 sixth graders from an elementary school in Taiwan. They interacted with the 3D experiential gaming system in a geoscience course, and the results showed that they gained better learning achievements, problem-solving tendency, deep learning strategies, and deep learning motive than those who learned with the conventional technology-enhanced learning approach.

Over the past decade, researchers have attempted to understand the application of DGBL in the context of the mobile technology-supported learning environment. The incorporation of mobile learning and digital gaming has been gradually increasing in the context of educational improvement (Hakak et al., 2019). Currently, the development of mobile learning games is known by the term "mobile game-based learning" (MGBL), which refers to the use of mobile games incorporating educational value for learning or gaming software applications designed for learning purposes through mobile devices (Troussasa, Krouskaa, & Sgouropoulou, 2020), constitutes a popular issue in the scientific literature of technology-enhanced learning. For example, Hwang et al. (2015) explored the effectiveness of augmented reality-based learning games on students' learning achievements and attitudes in an instructional context real-world investigation. In this study, 57 fifth-graders received the 90-min intervention during studying in an elementary school ecology course. The results showed that the augmented reality-based gaming approach can improve their learning performance on the field trip.


However, the MGBL was rarely studied in school science education in the context of Thailand (e.g., Komalawardhana & Panjaburee, 2018; Komalawardhana, Panjaburee, & Srisawasdi, 2021; Meekaew & Ketpichainarong, 2018; Srisawasdi & Panjaburee, 2019).

As such it is plenty of room to develop effective MGBL and also investigate its learning effectiveness for students at all education levels. Moreover, successful integration of MGBL into school science requires one to focus on the integrative interplay of mobile game knowledge, pedagogical knowledge, and science content knowledge, and the TPACK framework would be able to serve as a pedagogical platform for a professional science teacher. In science class, the technology of mobile games can be potential means of not only promoting learning engagement but also enlarging learning opportunities (Hsu et al., 2013). Besides, the inadequacy of teacher preparation programs treating MGBL in science and TPACK in isolation is a growing concern among educators, researchers, and practitioners. Moreover, a particular context of teaching with games might not be able to use general guidelines for teaching with general technology to gain effective teaching (Hsu et al., 2020). The lack of specificity could reduce the usefulness of the TPACK framework in terms of promoting TPACK comprehension and evaluating TPACK in a specific context (Willermark, 2017). Therefore, effective interventions to improve preservice science teachers' professional knowledge to leverage their TPACK in mobile gaming environments, and specific guidelines for MGBL in science in their teaching should be studied.

Context of the study

With the advancement of educational technology and a wide range of digital tools in education over the last two decades, educational researchers have made significant advancements in theorizing, designing, and repurposing digital games for learning in school education (Foster & Shah, 2020; Kafai & Burke, 2015). As digital game technology is an integral part of modern teaching and learning processes, teacher-candidates in teacher preparation programs need to fully achieve a new set of technology-pedagogy competencies through ongoing and timely supports provided by teacher education institutions. In this regard, the need to promote adequate digital game-based pedagogy training of future teachers has led the researchers to design and develop a pedagogic course associated with digital game technology integration in teacher education programs. As such, this study emerges from an understanding of educational technology, teacher education, and science education where the digital games should be situated in a flexible framework of knowledge of content, pedagogy, and technology for science teacher preparation and professional development. By following a TPACK model as an intervention approach in this study, the researchers applied those mentioned understanding to create a strategic technologypedagogy interaction learning module emphasizing the pedagogical application of digital or mobile game-based inquiry learning approach for science content. Figure 3 presents an integrative framework of essential knowledge for using the digital or mobile games in inquiry-based science learning for promoting the learning of science-oriented concepts.

With applications of TPACK framework, this paper focuses only on the four categories associated with technology. That is to say, TK, TCK, TPK, and TPACK are particularly considered, as shown in Fig. 3. Those categories are strongly interrelated regarding their common denominator. In the integrative framework, TK refers to technical understanding and skills required to interact and manipulate the digital or mobile games to achieve its goal. TCK refers to technological competencies or knowledge of digital or mobile games to present particular content of science. TPK focuses on instructional competencies in which

the teachers can enhance science teaching and learning strategies with the incorporation of the digital or mobile games in the enactment of the curriculum. Finally, TPCK or TPACK represents the set of instructional competencies regarding the use of digital or mobile game to support content-specific pedagogical strategies (e.g., the use of the digital or mobile games to facilitate inquiry-based learning in science). To do this, the researchers developed an educational mobile game as a pedagogical tool and embedded the game into a pedagogical basis of an open-inquiry learning approach. Then, a pedagogic training module of mobile game-based inquiry learning in science (MGILS) has been designed regarding the proposed TPACK framework.

This study has been conducted with two cohorts of preservice science teachers aimed at improving their TPACK regarding technological integration ability and also reflecting the pedagogical design of a teacher preparation course. The ultimate purpose was to promote a well-design teaching practice focusing on the use of the mobile games in school science classes for preparing high-qualified preservice science teachers in today's teacher education. The results of this study will provide baseline practice in teacher preparation for the design of or renovating new pedagogic course emphasizing how to use the mobile game for enhancing science learning with inquiry and explain how TPACK for mobile game-based inquiry learning in science may be reflected in future teacher education curriculum or preservice teacher's instruction. The primary research question in this study is as follows:

What are preservice science teachers' TPACK of inquiry-based conceptual learning in science by the mobile game before and after an implementation of the usual technology-oriented pedagogic module of mobile game-based inquiry learning in science (MGILS)? 2) Is there a significant difference between preservice science teachers' TPACK before and after implementation of the revised, case-based approach, MGILS?

Most of the studies in the literature have shown preservice science teachers' TPACK levels descriptively or have presented information about their development of TPACK only on survey findings. However, there have been very few research studies that have analyzed preservice science teachers' development of TPACK that have included both quantitative and qualitative data and indicated both descriptive and inferential information in statistics.

Methods

Study participants

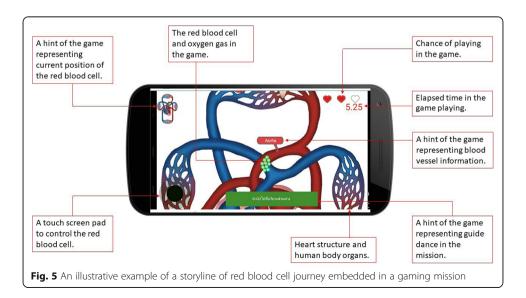
This study employed a pre-experimental research design that involved two phases of data collection—pre-and post-intervention. The participants in this study are defined as two science pre-service teacher cohort groups from 2018-2019. The study participants consisted of 209 pre-service science teachers, the fourth-year students in a five-year undergraduate teacher education program in a public teacher former university located in the northeastern region of Thailand. They were 166 (79.4%) females and 43 males (20.6%) divided into two cohorts, named cohort 1 and cohort 2, and the age between 21 and 22 years old. Cohort 1 consisted of 91 (79.0%) females and 24 males (21.0%) who went through the course in the school year 2018, and cohort 2 consisted of 75 (79.8%) females and 19 males (20.2%) who participated in the course in the school year 2019. In the last decade, an extended 5-year teacher education program (4-years coursework and 1-year school internship) was widely implemented as a standard platform for new-coming teachers in Thailand at all levels of education. Later in 2019, there is a calling back for a new version of the traditional 4-year program to respond to the new Thailand Qualification Framework (TQF) and educational policy. Concerning the current transformation of the extended 5-year teacher education program in Thailand, the university is preparing to revise the teacher education program to be 4year program to meet the new framework, policy, and requirements, such as TPACK and STEM (Science, Technology, Engineering, Mathematics) education, and to improve the quality of teacher preparation. In this study, instruction is defined as coursework that encompasses a variety of technology-pedagogy interaction learning modules and learner-centered activities. The study was part of a course called classroom management and learning environment for science learning.

Both cohorts enrolled in the pedagogic course instructed by the first author. The course content was aligned with national undergraduate teacher education standards regarding Thailand qualification framework and emphasized on how to design, implement, and manage emerging technologies and science learning environments that promote meaningful learning in both elementary and secondary school science. One of the learning goals of the course was to apply theoretical knowledge of the learning sciences, such as digital game-based learning, inquiry-based learning, and information and communications technology in teaching and learning, as the method of teaching with technology to promote active inquiry learning in science, thus helping students to align learning theories with learning design practice for effective science learning. In

cohort 1, they received an intervention of four-week mobile game-based inquiry learning taught by the first author. In planning for cohort 2, they received the same intervention with a reduced number of weeks in the course, because of the change of the teacher education program, and a difference in instructional design for the content. For both cohort 1 and 2, all were working toward licensure at the elementary or secondary levels. In terms of technological experience, all of them did have satisfactory basic information and communication technology skills but they had no any experience with using mobile game technology in science instruction before. In terms of learning experience, the participants had never taken an instructional design course but had some experience with group learning.

A mobile game on blood circulatory system of human body

An instructional game named "Red Blood Cell Simulator" has been created as an entertainment game with educational value, and it was used for the current study. In a previous study by Lokayut and Srisawasdi (2014), the computer game, in biological science topic of blood circulatory system of the human body, has been developed for assisting secondary school students' conceptual learning and their motivation to learn science. The game was built to align with two major learning indicators contained with the national curriculum standards: (1) to describe heart structure and its functions regarding blood and blood vessel and (2) to explain blood circulatory system. For this study, a new version in the context of the mobile game has been further designed and developed as a pedagogical tool for utilizing in pre-service teacher training. Before the game, an introduction of how to interact with the game was provided to guide players who may or may not be familiar to play a mobile game and assist them to realize what is the mission of the game and how to control a blood cell in the game, as shown in Fig. 4. Literature suggested that providing some instructional scaffolds or prompts before the game enhanced students' learning (e.g., Barzilai & Blau, 2014, Tsai, Chai, Wong, Hong, & Tan, 2013).


The Red Blood Cell Simulator mobile game has been designed as a serious educational game (SEG)—the content of the game is structured on a proposed curriculum with the intended learning outcomes (Annette, 2010). The game is in charge of executing the role-playing game based on the biological science concepts. The role-playing game (RPG) is concerned with a storyline of the journey of a red blood cell, in which its purpose is to carry oxygen from the lungs to tissues throughout the body, as well as carrying carbon dioxide to the lungs so it can be exhaled. In this mobile game, the red blood cell goes through a complex journey through the body, going from a deoxygenated blood cell to an

oxygenated blood cell, and entering the heart twice. Figure 5 displays details of the mobile screen in the game.

During the learning process, the players play the role of the red blood cell to travel to the heart and organs via a blood vessel in circulation. To complete missions in the game, the students have to move the red blood cell to the right way and manage time. Besides, hints focusing on current position and mission guidelines are displayed during gameplay. After playing the game, students are shown feedback information to persuade them to rethink instances in which they failed the mission or to provide information about how to complete the mission. Following the storyline of the game, the players can collect the information needed to develop their scientific understanding of heart structure and its functions regarding blood and blood vessel and blood circulatory system.

In this study, the mobile-based "Red Blood Cell Simulator" game app is a gaming software application designed for science learning purposes through mobile devices. To create the pedagogical structure of the mobile game app, four principles from the science of learning have been emphasized, including (i) active involvement, (ii) learning engagement, (iii) meaningful experiences, and (iv) social interaction (Hirsh-Pasek, Zosh, Golinkoff, Gray, Robb, & Kaufman, 2015). Besides, the game was carefully selected and recommended, as a cognitive tool, to the participating preservice science teachers as it had been shown to have a positive impact on science learning outcomes in previous empirical studies and employed game mechanics that mapped directly to learning standards, indicators, and objectives in Thailand national science curriculum (Lokayut & Srisawasdi, 2014). In terms of the TPACK framework, these could refer to technological knowledge (TK) of playing the mobile games for preservice science teachers' professional learning. For promoting TCK, preservice science teachers should understand that the content of the blood circulatory system was transformed into simple knowledge representation to enhance the understanding of the complex biological processes of the human body system, and enjoyable scenarios to flow students' learning interactions and motivation. Concerning the pedagogy of science learning, the genre of the mobile RPG game can act as an implicit pedagogical approach to the particularly facilitate inquiry-

based learning in the game. This component targeted to professional learning of TPK for preservice science teachers. Finally, the TPCK in this study denotes knowing how the mobile game and the pedagogy of inquiry-based learning can be appropriately integrated with the content of the blood circulatory system in the human body to form sound lessons for the teaching of science. Those technology-infused components of the TPACK framework were used to facilitate the focus on content, pedagogy, and the game in this study.

The setting of the training intervention

The cohort 1 participants were introduced to a TPACK-based pedagogic module of mobile game-based inquiry learning in science (MGILS) for pre-service teachers. The MGILS module consisted of four 4-h weekly lecture and practical works, and divided into three phases: learning with technology (P1); enacting with technology through pedagogy (P2); transferring the technology-pedagogy interaction (P3) (Srisawasdi, Pondee, & Bunterm, 2018), as shown in Table 1.

For cohort 2 in the next school year, participants interacted with a revised MGILS pedagogic training module for pre-service teachers. Research conducted by Lokayut and Srisawasdi (2014) and its digital game material has been employed as an instructional case study in the module. The case selected was not presented to increase factual information but rather to improve the participants' solid understanding of applying mobile games in inquiry-based learning in science content. This module covered 2 weeks and it was divided into three steps of instruction regarding case-based learning (CBL). CBL is a constructivist pedagogy which targets to real world situations by presenting richly detailed, contextualized, narrative accounts, and has the potential to prepare readiness for career challenges, promote critical thinking, contribute to cognitive growth, and affect value orientations for learners (Beck, 2007; Hemphill, R Richards, Gaudreault, & Templin, 2015; Levin, 1995). Further, Rovegno and Dolly (2006) pointed out that the CBL approach does not only presents concepts within a context to learners but actions are also illustrated to emphasize well-connected knowledge that learners can flexibly apply to learn about how to. In the context of implementing CBL to foster TPACK, Srisawasdi (2012) designed a pedagogic course with a CBL approach and then implement the course with 43 participants of preservice physics, chemistry, biology, mathematics, and computer teachers in a course of information and communication technology (ICT) in education. The result of this study showed a change in their teaching beliefs and the transformation of their TPACK

Table 1 Details of the MGILS module for cohort 1 pre-service science teacher

Phase	Week	Topic	Learning strategy	Knowledge domain
P1	1 (4 h)	Introduction to digital and mobile games in science learning	Interactive lecture and demonstration	TK
P2	2 (4 h)	Pedagogical application of MGILS	Interactive lecture and demonstration	TCK
	3 (4 h)	Hands-on practical work with MGILS	Collaborative hands-on practical work	TPK
P3	4 (4 h)	Independent designing of MGILS for school experience	Collaborative hands-on practical work	TPCK

competency in STEM teaching. Besides, Salton (2017) implemented online CBL to facilitate preservice teachers' TPACK and their self-confidence, and the result indicated that the online CBL method significantly improved their TCK and TK, but their TPAC K's confidence did not improve significantly. As such, CBL seems to be an effective pedagogic method to foster preservice teachers' TPACK. The CBL approach used in this study was adapted from William (2005), and the adapted approach consists of showing the case (S), practice in the team (P), and application of the case (A), shortly named SPA, as shown in Table 2.

For the S phase, the main aim was to introduce the selected case and to present information about instructional practice regarding mobile game-based inquiry learning in science. The pedagogy of inquiry-based learning in science emphasizing both instructional strategies, i.e., learning cycle-oriented and openness-oriented approach (Srisawasdi, 2016), and its application with the mobile game has been presented and analyzed to create a bridge between theory, research, and practice through interactive lecture and demonstration by the instructor (the first author). Moreover, the instructor also described and demonstrated how to play the game in the process of inquiry learning in science. In the P phase, the instructor organized a hands-on practical work experience as a mini-lesson on how to use the mobile game in a practical way of openinquiry science (Srisawasdi, 2012). Figure 6 shows learning activity in the S and P phases.

In the A phase of this module, all small groups of the participants have been assigned to collaboratively design mobile game-based inquiry learning experiences by their team. They were assigned to discuss in the team how to apply the Red Blood Cell Simulator mobile game for enhancing biological science learning of the blood circulatory system of the human body regarding the national science curriculum standards and indicators. After, they brainstormed and independently design a science lesson plan and presented their teaching ideas in class. Figure 7 illustrates the pre-service science teachers' collaborative designing the mobile game-based inquiry learning experience and presenting teaching ideas to the class groups.

Data collection and analysis

This study investigated the effects of using the training intervention as a tool for facilitating preservice science teachers' TPACK associating technology integration in

Table 2 Details of the MGILS module for cohort 2 pre-service science teacher

Phase	Week	Topic	Learning strategy	Knowledge domain
S	1 (2 h)	 Establishing and analyzing the case Demonstrating the research-based MGILS Formulating a study pathway 	Interactive lecture and demonstration	T-infused TPACK
Р	1 (2 h)	 Self-discovery of evidence through practical work with MGILS Digesting essential knowledge of TPACK of the case 	Collaborative hands-on practical work	T-infused TPACK
A	2 (2 h)	Designing and proposing a MGILS for school experience	Collaborative hands-on practical work	T-infused TPACK

Note: T-infused TPACK refers to TK, TCK, TPK, and TPCK

Fig. 6 An illustration of the showing the case (S) (left) and practice in team (P) (right) phases in preservice science teachers' class (Note: all photographs were permitted to be exhibited in this paper from people who was involved in this study)

two cohorts of preservice science teachers in Thailand. For cohort 1, the participants were asked to complete a seven-item open-ended question regarding TPACK in the context of MGILS for 40 min as pretest and posttest. In this study, the researchers focused on only four constructs related to technology regarding the TPACK framework (i.e., TK, TPK, TCK, and TPACK). The questionnaire and its scoring scheme were adapted from Srisawasdi, Pondee, & Bunterm (2018), and the participants' responses to each test item were coded independently by two raters. For the coding, inter-rater reliability was computed using Cohen's kappa, and its reliability was 0.93 between the two raters. After calculating the inter-rater reliability, coding discrepancies among the raters were discussed and resolved through further personal discussion. Following this, if responses were unclear or problematic with the coding, the raters were discussed by the researchers (the second author) to reach a complete consensus agreement across the four targeted constructs. Thus, test construction can be considered successful in terms of objectivity and reliability. To analyze their TK, TPK, TCK, and TPACK for MGILS context, their responses were categorized in four levels, ranging from unclear, naïve, mixed, to informed, respectively, following Bartos and Lederman (2014)'s teaching conception analysis framework. In the analysis, their responses to individual questions were classified according to the examples and explanations presented in Lederman, Antink,

Fig. 7 An illustration of the application of the case (A) phase: collaborative designing a mobile game-based inquiry learning experience (left) and communicating teaching idea in class (right) (Note: all photographs were permitted to be exhibited in this paper from people who was involved in this study)

and Bartos, (2014). For this study, the "Informed" level denotes views of a particular TPACK construct wholly match the target TPACK aspects, while the "Naïve" level does not. "Mixed" level denotes reflecting partially consistent views of the target TPACK aspects. "Unclear" level denotes lacking in addressing the particular aspect (Lederman et al., 2014). Concerning the open-ended format of knowledge integration among CK, PK, and TK, any essay-type questions is required additional effort by the researchers to discern the different levels of TPACK of the preservice science teachers. That is, this type of open-ended instrument was constructed with the four-tiered assessment scales to exploring general trends in the preservice science teachers' TPACK at the module. The format also best serves the overarching intent of the instrument, which is to create a profile of preservice science teachers' TPACK.

To examine a significant effect of the revised MGILS module in cohort 2, the researchers assessed TPACK improvement by comparing its scores before and after receiving the intervention. A ten-item close-ended questionnaire measuring TPACK in mobile game-based inquiry learning in science was developed by the researchers regarding the previous seven-items open-ended question items. The answers in the questionnaire are based on common pre-service science teachers' replies to the openended questions which common errors were used to create distracters. As abovementioned, this study focused on only TK, TPK, TCK, and TPACK, the responses obtained from six closed-ended question items were the unit of TPACK score analysis and the total score was six points. The item discrimination index of the multiple-choice test was > 0.03 for all items (average 0.54) and Kuder-Richardson Formula 20 (KR-20) reliability coefficient was 0.83. To confirm the normal distribution of our data, the researchers performed the Shapiro-Wilk test and the normality of distribution of data was denied for both pretest (W = 0.926; p < 0.000) and posttest (W = 0.925; p < 0.000). Because the preservice science teachers' scores on the scales of TPACK did not fit the assumptions of the normal distribution, the researchers implemented Wilcoxon signedrank test to examine whether the preservice science teachers' TPACK changed after being involved in the intervention. In further statistical analysis, the quantitative data of TPACK scores obtained from pretest and posttest were analyzed with the means, standard deviations, and Wilcoxon signed-rank test, to compare a significant difference. All of the statistical tests were analyzed using the IBM SPSS program, version 26.00, with a significance level of .05. Moreover, the effect size (r) for the Wilcoxon signedrank test was also calculated by using the formula: Z/\sqrt{N} (N is the number of the pairs).

Results

In our study, we recognized the importance of a pipeline of evidence that begins with a qualitative study, as primary evidence for initial investigating the effects of proposed instructional intervention and also assisting us to maximize the instructional intervention to targeted study participants and then ends with a quantitative study. Moreover, we conducted firstly with the qualitative study which could assist us to design the better and possible research process in the later quantitative study. As we stated, this study aimed to discover whether the benefits of well-design teaching practice focusing on the integrative use of the mobile game in school science class for promoting preservice science teachers' TPACK can contribute to the accumulation of empirical evidence and development of theoretical models for the preparation of today's teacher education. We

have conducted two distinct studies in which we have used the TPACK framework as a preservice teacher preparation platform to enhance preservice science teachers' emerging pedagogy of mobile game integration.

To promote preservice science teachers' emerging pedagogy of mobile game technology integration in this study, a pedagogic module of mobile game-based inquiry learning in science (MGILS) has been designed which represents our attempt to maximize their TPACK in term of four constructs: (i) technological knowledge (TK), (ii) technological content knowledge (TCK), (iii) technological pedagogical knowledge (TPK), and (iv) technological pedagogical content knowledge (TPCK). In this teaching improvement study, two cohorts had been implemented with the two different pedagogical settings of the MGILS: (i) usual separated TPACK and (ii) integrated case-based TPACK support module. In the first study, cohort 1 received the MGILS in the version of separating TK, TCK, TPK, and TPCK, and the first study had been conducted with a qualitative study to provide phenomenological evidence of the intervention on how it works in fostering preservice science teachers' TK, TCK, TPK, and TPCK. In the second study, cohort 2 received the integrated and synthetic version of MGILS integrating all the four TPACK constructs into the teaching case, and we explored the effect of the revised intervention with a quantitative study to indicate a significant impact of revised MGILS on preservice science teachers' TPACK of mobile game integration. Besides, the results of cohort 1 implementation represent our first attempt to answer the first research question, and cohort 2 represents our pursuit to improvise the MGILS module with some critical change in teacher education program, and argue to an impact of the specific type of TPACK implementation. We believed this approach would be helpful by locating our study in a more thorough design and hopefully getting a more robust finding in developing preservice science teachers' TPACK of mobile game integration.

What are preservice science teachers' TPACK of inquiry-based conceptual learning in science by mobile game before and after an implementation of usual TPACK-based pedagogic module of MGILS?

Regarding the first research question, this study utilized quantitative content analysis to reveal the preservice science teachers' TPACK both before and after receiving the usual MGILS module as a training intervention. According to explore the effect of usual MGILS module on cohort 1 pre-service science teachers' TPACK, focusing TK, TPK, TCK, and TPACK, the results are shown in Table 3.

Individual profiles were developed based on a holistic analysis of TPACK responses. Results indicated that most of preservice science teachers' TK (a) were *mixed* level in both prior and finish to the intervention, and (b) increase their understanding from *unclear* and *naïve* to *mixed* level. For TPK and TCK, the results indicated that their knowledge (a) was distributed from *unclear* to *informed* before the intervention, and (b) both increase and decrease their knowledge to *mixed* level. Finally, the results also indicated that most of their TPACK (a) were *unclear* level in both prior and finish to instruction, and (b) increase their understanding from *unclear* and *naïve* to *mixed* and *informed* levels. More details regarding the preservice science teachers' TK, TPK, TCK, and TPACK levels are illustrated in Table 4.

Table 3 Percentage of the pre-service science teachers' TK, TPK, TCK, and TPACK categorized as holding unclear, naïve, mixed, and informed views of TPACK

N=115	Unclear		Naïve		Mixed		Informed	
% of pre-service science teachers	Pre	Post	Pre	Post	Pre	Post	Pre	Post
Technological knowledge (TK)	28.70	18.26	27.83	0.00	42.61	80.87	0.87	0.87
Technological pedagogical knowledge (TPK)	31.30	29.57	46.96	43.48	20.00	26.96	1.74	0.00
Technological content knowledge (TCK)	37.39	55.65	37.39	0.00	24.35	44.35	0.87	0.00
Technological pedagogical and content knowledge (TPACK)	46.96	38.26	26.09	22.61	26.96	38.26	0.00	0.87

Table 4 provides example responses to each of the open-ended items regarding TK, TPK, TCK, and TPACK. These are verbatim quotes selected from the responses of preservice science teachers who completed the open-ended items at pre- and post-MGILS module. The naïve view respondent examples are taken from pretests and the more informed examples are taken from the posttests. These views are presented along a continuum from naïve to more informed TK, TPK, TCK,

Table 4 Exemplary responses in all level across four categories (i.e., TK, TPK, TCK, TPACK)

Knowledge category	Unclear view	Naïve view	Mixed view	Informed view
Technological knowledge (TK)	"Digital technology." (PST022)	"Digital game provides enjoyment." (PST043)	"Digital game offers challenge to pass missions." (PST111)	"Digital game allows students to accomplish missions and interact with its challenge to receive points and rewards." (PST111)
Technological pedagogical knowledge (TPK)	"This technology offers students to have fun. Pedagogy can support to simplify understanding." (PST009)	"Digital game is used to support pedagogy for science content learning. So, students were getting more interest in the learning." (PST095)	"Digital game can support teacher to assist students to learn science by no explaining science content, but the teacher can facilitate students how to play the game." (PST037)	"Student can inquire science information by playing the game and also learn how to investigate scientific phenomena with inquiry in the game." (PST 083)
Technological content knowledge (TCK)	"Digital technology proposes challenge accomplishing missions and fun." (PST005)	"Digital game is fun and we can play much time. It can be applied in biological science content." (PST103)	"Digital game transformed boring science content to be more interesting and challenge with its mission, rewards, and the way how to win the game." (PST073)	"Digital game can convert the content difficult to be easier to understanding, enjoyment, and doing practical work with playing" (PST016)
Technological pedagogical and content knowledge (TPACK)	"All components are important for teaching. Students are also an effective factor." (PST033)	"It (digital game) can help students to gain more understanding." (PST007)	"Teacher assigned task that provides students to interact with the digital game to learn about the science content." (PST019)	"Content, pedagogy, and technology are associated with each other for enhancing students learning in science. Playing and learning with fun is in the inquiry learning process, where content has been changed in-game style." (PST023)

and TPACK. Despite receiving overall positive results as abovementioned, the researchers also found some apathy toward the implementation of usual MGILS. The results indicate that the number of *unclear* levels on TCK was increased and the *informed* level of TPK and TCK were disappeared after receiving the usual teaching intervention, as seen in Table 3.

In summary, the results of this preliminary study provided evidence that preservice science teachers' TK, TPK, TCK, and TPACK have been fostered during their interaction with the usual MGILS pedagogic module, and this teaching intervention still had various effects on preservice science teachers' TPACK.

Is there a significant difference between preservice science teachers' TPACK before and after implementation of the revised, case-based approach, MGILS?

The second research question focused on examining whether the pedagogic module of MGILS improved cohort 2 preservice science teachers' TPACK associated technology scores, descriptive statistics were calculated, and nonparametric tests were conducted. The descriptive statistics of the preservice science teachers' pre- and post-test TPACK scores are presented in Table 5. The result shows that there was a statistically significant difference between the pretest (M = 1.93, SD = 1.34) and post-test (M = 3.78, SD = 1.20) scores, the total score is six points.

As shown in Table 5, Wilcoxon's signed-rank test was used to test the significance of the difference between pretest and post-test TPACK mean scores. Table 5 shows that the preservice science teachers' TPACK scores after the intervention ($Z_{(94)} = -7.571$, p < .001) were significantly higher than the preservice science teachers' TPACK scores before the intervention. Table 5 is also shown that the differences between the preservice science teachers' TPACK in the pre- and post-tests reached a large effect size (r = -0.78). Overall, the pre-service science teachers' TK, TCK, TPK, and TPACK significantly improved after participating with the case-based MGILS module (p < 0.001) as measured by the increase in TPACK scoring.

Discussions and conclusions

The present study facilitated a series of course transformations as a means of developing preservice science teachers' teaching comprehension with the digital or mobile games and also investigated the effects of the technology-oriented

Table 5 Wilcoxon signed-rank test results of the difference between the pre- and post-test TPACK scores

Pre- and post-test measurements	n	Mean rank	Rank sum	Z	p	r
Negative rank	4	14.00	56.00	-7.571	0.000*	-0.78
Positive rank	76	41.89	3184.00			
Tie	14					
Total	94					

^{*} $p \le .001$, indicates a significant change from pretest to post-test

pedagogic module of Mobile Game-based Inquiry Learning in Science (MGILS) on preservice science teachers' TPACK. The results indicate that a significant difference between their TPACK scores at the pre- and post-tests, and this revealed that the revised, case-based approach, MGILS improved their technology-oriented TPACK, in term of TK, TPK, TCK, and TPACK for the pedagogical integration of mobile game into school science class. This result is consistent with Jimoyiannis (2010), Jang and Chen (2010), Srisawasdi (2012), Srisawasdi (2014), Srisawasdi and Panjaburee (2014), and Srisawasdi, Bunterm, and Pondee (2018) that implementation of well-designed coursework could foster preservice or in-service science teachers' essential knowledge of TPACK. In the present study, the finding suggests that when integrating a case-based approach to delivering the content of how to teach science through the inquiry learning process by using mobile game into the school science context tended to raise the preservice science teachers' competencies in TK, TPK, TCK, and TPACK. It was likely that inducing them into the establishing and analyzing of research-based case study first, in the showing the case (S) phase, allowed the preservice science teacher to perceive relative advantage of mobile game technology in school science improvement as well as to get an idea of how mobile game worked to enhance inquiry-based inquiry science learning and to transform knowledge representations of science content. This may help them articulate their tacit knowledge about instruction (e.g., TK, TPK, TCK) and then foster their TPACK (Scott et al., 2008; Sahin, 2012). Moreover, preservice science teachers can realize theoretical aspects of instructional models for using technology in education, and also learn about the effects of using technology and specific learning model or method for promoting better learning through the presented case (Han, Eom, & Shin, 2013). In the collaborative hands-on practical work to discover how to pedagogically integrate the mobile game into a science content-specific domain, in the practice in team (P) phase, this process allows richer contexts to preservice science teachers to build integrative knowledge about how to embed technology into particular learning model and when to apply the models or theories in different instructional situations (Kurz & Batarelo, 2010; Sahin, 2012; Sutton, 2011; Zhang et al., 2011). Besides, the principle of setting an anchor by case study and of segmenting the case (e.g., breaking a whole presentation into coherent parts that can be digested sequentially) is an effective pedagogical support to improve learning and memory (McLarty et al., 1990; Mayer, 2009). As such, digesting essential knowledge of TPACK of the case after the hands-on experience could be a supportive factor to indicate focal points that provide a link for preservice science teachers' perception and comprehension. Furthermore, preservice science teachers worked in collaborative teams, in the application of the case (A) phase, to design a school science learning experience. The team was anchored by the case-based MGILS and then ultimately creates an artifact of mobile game-integrated science lesson regarding the case. Alayyar (2011), Koehler and Mishra (2005), and Shin, et al. (2009) stated that the collaboration and design of artifacts to solve real-world instructional problems enhanced preservice teachers develop a better understanding of how to use technology in instruction to enhance learning and

potentially increasing their abilities to integrate technology fitting pedagogy in the classroom and curriculum content. These features link to the aforementioned finding that preservice science teachers' TK, TPK, TCK, and TPACK have been improved significantly after receiving the case-based MGILS (see Table 5). As such, it is reasonable to say that the case-based MGILS seems to benefit preservice science teachers' TPACK development more as it allows them to accumulate professional learning experiences with particular research-based case studies following S-P-A phases. Thus, this implies the possibility of improving preservice science teachers' TPACK of mobile game-based inquiry learning in science and it could be an effective way to develop their essential knowledge of mobile technology-enhanced learning in science to address the twenty-first-century education requirement.

The results of this study have practical implications for teacher educators since the findings increase our understanding of how to design effective technology-integrated pedagogical learning modules that promote the improvement of TK, TPK, TCK, and TPACK in the context of mobile game-based inquiry learning in science for preservice teachers. Also, teacher educators can gain a more insightful view on how the adapted TPACK emphasizing mobile game-based inquiry learning in science can be implemented pedagogically in preservice science teachers' professional preparation in the teacher education programs.

However, more teacher education research needs to be conducted to maximize the improvement of preservice science teachers' TPACK by redesigning the pedagogic module of mobile game-based inquiry learning in science, and this study still has several limitations. Although the findings were framed in the literature on technology-integrated pedagogical approaches in teacher education, this study was, firstly, based on the implementation and evaluation of only one pedagogical module of mobile game-based inquiry learning in science of one science teacher education program. Therefore, the researchers should make it clear that the findings of this study should not be generalized to the pedagogical module of mobile game-based inquiry learning in science in different teacher education contexts. Secondly, another limitation of this study was the sample population utilized. The research study only recruited preservice science teachers from a specific science teacher education program at a small university that only offers one major of science education program that is general science. Other majors of science teacher education programs, such as physics education, chemistry education, biology education, should also be studied. Thirdly, both cohorts of preservice science teachers were investigated their TPACK in different measurement methods. Both quantitative and qualitative methods should be emphasized in a balance and utilized to examine the effects of the usual and revised pedagogic module of mobile game-based inquiry learning in science on preservice science teachers' TPACK, and gainfully understand the transformation of knowledge related TPACK. Fourthly, to gain more deepen insight on how to completely foster preservice science teachers' TPACK, all seven TPACK constructs should be investigated to indicate an impact of the teaching intervention.

Appendix

An example of open-ended question item in measuring preservice science teachers' TPACK

Situation no.1:

Teacher A taught a chemical concept of ionization energy to particularly promote students' conceptual understanding of the trends in ionization energy across the periodic table. In the chemistry class, teacher created an investigative learning experience with the support of digital technology, which can create personal challenge through missions and/or tasks in multi-levels. In addition, the teacher provided an essential question to all students and then students could interact personally in groups with the technology by playing and receiving rewards regarding their missions/or tasks accomplishment. In the end, students had been assigned to present their group answers to the prescriptive question.

Questions related to TPACK	Purpose of the question.	The answer	
1) Please describe the scientific concept of ionization energy (SC)	This question allows you to express your scientific conceptual understanding of a specific content area.	The general trend is for ionization energy to increase moving from left to right across an element period. Moving left to right across a period, the atomic radius decreases so electrons are more attracted to the (closer) nucleus. In addition, the general trend is for ionization energy to decrease moving from top to bottom down a periodic table group. Moving down a group a valence shell is added. The outermost electrons are further from the positive-charged nucleus, so they are easier to remove.	
2) According to the abovementioned situation, what is the teaching strategy used (TS) by the teacher, please describe?	This question allows you to describe the pedagogy or learning approach conducted by the teacher based on your interpretation.	Inquiry-based learning has been characterized as an approach in which teachers will provide challenge problem/essential question and set up the background and context, while students must determine the procedure/design, perform the investigation based on the specified design, and then make the scientific communication and draw their answers as conclusions.	
3) According to the abovementioned situation, what is the technological tool used (TT) by the teacher, please describe?	This question allows you to describe a specific kind of digital learning technology implemented by the teacher based on your interpretation.	[Here is your answer.]	
4) In this situation, is the TS used influences to facilitate the SC learning, please describe?	This question allows you to explain how the selected pedagogy or learning approach could positively facilitate the learning of specific scientific content, based on your interpretation.	To promote an effective investigative learning experience, an inquiry-based learning approach is a recommended teaching strategy to address the learning of science by its nature. To enhance students' conceptual learning of ionization energy trends, the inquiry	

learning process can facilitate their direct experience of exploration to collect data and/or evidence, and then draw a particular conclusion regarding the posed question in

learning activities.

An example of open-ended question item in measuring preservice science teachers' TPACK (Continued)

Questions related to TPACK	Purpose of the question.	The answer
5) In this situation, is the TT used that can support TS, please describe?	This question allows you to explain how the selected digital learning technology could positively support the selected pedagogy or learning approach, based on your interpretation.	[Here is your answer.]
6) In this situation, is the TT used that can transform the SC presentation for students learning, please describe?	This question allows you to explain how the selected digital learning technology could positively transform the specific scientific content, based on your interpretation.	[Here is your answer.]
7) According to those three components, i.e., SC, TS, and TT, please describe the relationship in terms of chemistry instruction?	This question allows you to express your integrative understanding to evaluate the appropriateness of using the selected digital learning technology to enhance the selected pedagogy or learning approach on the specific scientific content.	[Here is your answer.]

(Note: This is a translation of original version in Thai language)

Examples of a close-ended question item in measuring preservice science teachers' TPACK

- Which technological tool is able to use to characterize content of learning as
 narrative story or scenario, and student can interact with the tool through playing in
 missions, having challenge and fun with different unique situations, receiving rewards
 and upgrade to higher level by mission accomplishment? (Note: TK measurement)
 - A. Simulation
 - B. Animation
 - C. Augmented Reality (AR)
 - D. Digital Game
- According to the content-specific domain of blood circulatory system, which
 technological tool can change the representation of the content into the most challenging mission and maximizing learning enjoyment during playing with mission?
 (Note: TCK measurement)
 - A. Animation
 - B. Digital Game
 - C. Simulation
 - D. Augmented Reality (AR)

(Note: This is a translation of original version in Thai language)

- 3. According to the use of mobile game to facilitate inquiry-based learning, which technological tool can change the representation of the content into the most challenging mission and maximizing learning enjoyment during playing with mission? (Note: TPK measurement)
 - A. It can support students' inquiry to measure scientific signals and then automatically display the obtained raw data from the measurement.

- B. Students can immediately check the correction of their investigation, and then personally receive feedback from their interaction.
- C. It creates particular challenge to students to investigate target learning phenomena by receiving rewards and scores from playing.
- D. Students can inquire into the relationship among variables and visualize the learning phenomena in invisible level.

(Note: This is a translation of original version in Thai language)

Abbreviations

MGILS: Mobile game-based inquiry learning in science; PST: Preservice science teacher; CBL: Case-based learning; SEG: Serious educational game; DGBL: Digital game-based learning; MGBL: Mobile game-based learning; RPG: Role-playing game; REG: Repertory grid-based educational game; TPACK-G: Technological pedagogical and content knowledge-games; GPK: Game pedagogical knowledge; GPCK: Game Pedagogical Content Knowledge; TPACK: Technological pedagogical and content knowledge; TPK: Technological pedagogical knowledge; TCK: Technological content knowledge; PCK: Pedagogical content knowledge; TK: Technological knowledge; PCK: Pedagogical knowledge; TPK: Pedagogical knowledge; CK: Content knowledge; SPSS: Statistical Package for the Social Sciences

Acknowledgements

The authors would like to express their gratitude to the Faculty of Education at Roi Et Rajabhat University for providing administrative support. Also, the authors thank all preservice science teachers at the Faculty of Education who participated in this work. In addition, the authors would like to thank Mr. Jatuput Lokayuth, biology teacher at Udonpittayanukoon School, Udon Thani, Thailand, for his assistance in designing and preparing the digital game of blood circulatory system.

Authors' contributions

Phattaraporn Pondee reviewed the previous studies, developed and implemented the experimental treatments, performed the data collection and analyzed, concluded the study, and wrote a draft of the paper. Niwat Srisawasdi conceptualized the study, assisted in designing the study and interpretation of data, supervised the work progress, discussed the results, and reviewed and edited the manuscript. Patcharin Panjaburee assisted in validating the study and edited the manuscript. All authors read and approved the final manuscript.

Authors' information

Phattaraporn Pondee is currently a lecturer at general science education program, Faculty of Education, Roi-et Rajabhat University, Thailand. She earned her master degree in science education and she is currently also a Ph.D. candidate Science Education program at Faculty of Education, Khon Kaen University, Thailand. Her research interests include technology-based inquiry learning in biological science and technological pedagogical content knowledge in physical and biological science.

Patcharin Panjaburee is currently an associate professor of Institute for Innovative Learning, Mahidol University, Thailand. She is interested in computer-assisted testing, adaptive learning, expert systems, and digital material supported learning, inquiry-based mobile learning, and web-based inquiry learning environment. Niwat Srisawasdi is currently an assistant professor at Division of Science, Mathematics, and Technology Education, Faculty of Education, Khon Kaen University, Thailand. He is also a deputy dean of Research and Creative Educational Innovation at the faculty. His research interests include technology-enhanced learning in science, digital learning, nanoscience and nanotechnology education, and technological pedagogical and content knowledge in STEM fields.

Funding

This work was financially supported by the Thailand Research Fund (TRF), the Commission on Higher Education (CHED) and Khon Kaen University (KKU) (Grant no. RSA6280062). Any opinions, findings, and conclusions or recommendations expressed in this material are of the authors and do not necessarily reflect the view of the TRF, CHED, and KKU.

Availability of data and materials

The datasets generated and/or analyzed during the current study are not publicly available due to the maintaining privacy and confidential of the data, and reasonable use for scientific research purposes only, but are available from the corresponding author on reasonable request.

Declarations

Competing interests

The authors declare that they have no competing interests.

Author details

¹Faculty of Education, Khon Kaen University, Khon Kaen, Thailand. ²Institute for Innovative Learning, Mahidol University, Salaya, Thailand.

Received: 7 September 2020 Accepted: 10 March 2021

Published online: 25 June 2021

References

- Alayyar, G. (2011). Developing pre-service teacher competencies for ICT integration through design teams (Doctoral dissertation). Enschede, the Netherlands: University of Twente. Retrieved from http://doc.utwente.nl/77918/
- Annetta, L. A. (2010). The "I's" have it: a framework for educational game design. *Review of General Psychology*, 14(2), 105–112. https://doi.org/10.1037/a0018985.
- Antunes, M., Pacheco, M. A. R., & Giolanela, M. (2012). Design and implementation of an educational game for teaching chemistry in higher education. Journal of Chemical Education, 89(4), 517-521.
- Bartos, S. A., & Lederman, N. G. (2014). Teachers' knowledge structures for nature of science and scientific inquiry: conceptions and classroom practice. *Journal of Research in Science Teaching*, *51*(9), 1150–1184. https://doi.org/10.1002/tea.21168.
- Barzilai, S., & Blau, I. (2014). Scaffolding game-based learning: impact on learning achievements, perceived learning, and game experiences. *Computers & Education*, 70, 65–79. https://doi.org/10.1016/j.compedu.2013.08.003.
- Baker, W. M., Lusk, E. J., & Neuhauser, K. L. (2012). On the use of smartphones and other devices in the classroom: Evidence from a survey of faculty and students. Journal of Education for Business, 87(2), 275-289.
- Beck, J. (2007). An exploration of the relationship between case study methodology and learning style preference. *Journal of Science Teacher Education*, 18(3), 423–430. https://doi.org/10.1007/s10972-007-9056-5.
- Becker, K. (2007). Digital game-based learning once removed: teaching teachers. British Journal of Educational Technology, 38(3), 478–488. https://doi.org/10.1111/j.1467-8535.2007.00711.x.
- Cetin-Dindar, A., Boz, Y., Sonmez, D. Y., & Celep, N. D. (2018). Development of pre-service chemistry teachers' technological pedagogical content knowledge. Chemistry Education Research and Practice, 19(1), 167-183.
- Chang, C.-Y. & Hwang, G.-J. (2019). Trends in digital game-based learning in the mobile era: A systematic review of journal publications from 2007 to 2016. International Journal of Mobile Learning and Organisation, 13(1), 68-90.
- Chen, C., Liu, H., & Huang, H. (2019). Effects of a mobile game-based English vocabulary learning app on learners' perceptions and learning performance: A case study of Taiwanese EFL learners. ReCALL, 31(2), 170-188.
- Chittleborough, G. (2018). Pre-service teachers' experiences with integrating technology into their learning and teaching. Journal of Science Teacher Education, 25(4), 373-393.
- Daungcharone, K., Panjaburee, P., & Thongkoo, K. (2019). A mobile game-based C programming language learning: Results of university students' achievement and motivations. International Journal of Mobile Learning and Organisation, 13(2), 171-192.
- Foster, A., & Shah, M. (2020). Principles for advancing game-based learning in teacher education. *Journal of Digital Learning in Teacher Education*, 36(2), 84–95. https://doi.org/10.1080/21532974.2019.1695553.
- Gamlo, N. (2019). The impact of mobile game-based language learning apps on EFL learners' motivation. English Language Teaching, 12(4), 49-56.
- Hakak, S., Noor, N. F. M., Ayub, M. N., Affal, H., Hussin, N., & Imran, M. (2019). Cloud-assisted gamification for education and learning Recent advances and challenges. Computers & Electrical Engineering, 74, 22-34.
- Han, I., Eom, M., & Shin, W. S. (2013). Multimedia case-based learning to enhance pre-service teachers' knowledge integration for teaching with technologies. Teaching and Teacher Education, 34, 122-129.
- Hemphill, M. A., R Richards, K. A., Gaudreault, K. L., & Templin, T. J. (2015). Pre-service teacher perspectives of case-based learning in physical education teacher education. *European Physical Education Review*, 21(4), 432–450. https://doi.org/1 0.1177/1356336X15579402.
- Hirsh-Pasek, K., Zosh, J. M., Golinkoff, R. M., Gray, J. H., Robb, M. B., & Kaufman, J. (2015). Putting education in "educational" apps: lessons form the science of learning. *Psychological Science in the Public Interest*, *16*(1), 3–34. https://doi.org/10.1177/1529100615569721.
- Hsu, C. Y., Liang, J. C., Chai, C. S., & Tsai, C. C. (2013). Exploring preschool teachers' technological pedagogical content knowledge of educational games. *Journal of Educational Computing Research*, 49(4), 461–479. https://doi.org/10.21 90/EC.49.4.c.
- Hsu, C. Y., Liang, J. C., Chuang, T. Y., Chai, C. S., & Tsai, C. C. (2020). Probing in-service elementary school teachers' perceptions of TPACK for games, attitudes towards games, and actual teaching usage: a study of their structural models and teaching experiences. *Educational Studies*, 1–17. https://doi.org/10.1080/03055698.2020.1729099.
- Hsu, C. Y., Liang, J. C., & Su, Y. C. (2015). The role of the TPACK in game-based teaching: does instructional sequence matter? The Asia-Pacific Education Researcher, 24(3), 463–470. https://doi.org/10.1007/s40299-014-0221-2.
- Hsu, C. Y., & Tsai, C. C. (2013). Examining the effects of combining self-explanation principles with an educational game on learning science concepts. Interactive Learning Environments, 21(2), 104-115.
- Huizenga, J., Admiraal, W., Dam, G. T., & Voogt, J. (2019). Mobile game-based in secondary education: Students' immersion, game activities, team performance and learning outcomes. Computer in Human Behavior, 99, 137-143.
- Hussein, M. H., Ow, S. H., Cheong, L. S., & Thong, M. (2019). A digital game-based learning method to improve students' critical thinking skills in elementary science. IEEE Access, 7, 96309-96318.
- Hwang, G.-J., Lai, C.-L., & Wang, S.-Y. (2015). Seamless flipped learning: A mobile technology-enhanced flipped classroom with effective learning strategies. Journal of Computers in Education, 2, 449-473.
- Hwang, G.-J., Sung, H.-Y., Hung, C.-M., Huang, I., & Tsai, C.-C. (2012). Development of a personalized educational computer game based on students' learning styles. Educational Technology Research and Development, 60(4), 623-638.
- Jang, S. J., & Chen, K.-C. (2010). From PCK to TPACK: Developing a transformative model for pre-service science teachers. Journal of Science Education and Technology, 19(6), 553–564. https://doi.org/10.1007/s10956-010-9222-y.
- Janssen, N., Knoef, M., & Lazonder, A. W. (2019). Technological and pedagogical support for pre-service teachers' lesson planning. Technology, Pedagogy and Education, 28(1), 115–128. https://doi.org/10.1080/1475939X.2019.1569554.
- Janssen, N., & Lazonder, A. W. (2016). Supporting pre-service teachers in designing technology-infused lesson plan. Journal of Computer Assisted Learning, 32(5), 456-467.

- Jimoyiannis, A. (2010). Designing and implementing an integrated technological pedagogical science knowledge framework for science teachers professional development. Computers & Education, 55(3), 1259–1269. https://doi.org/10.1016/j. compedu.2010.05.022.
- Kafai, Y. B., & Burke, Q. (2015). Constructionist gaming: understanding the benefits of making games for learning. *Educational Psychologist*, 50(4), 313–334. https://doi.org/10.1080/00461520.2015.1124022.
- Koehler, M. J., & Mishra, P. (2005). What happens when teachers design educational technology? The development of technological pedagogical content knowledge. *Journal of Educational Computing Research*, 32(2), 131–152. https://doi. org/10.2190/0EW7-01WB-BKHL-ODYV.
- Koehler, M. J., & Mishra, P. (2008). Introducing TPACK. In AACTE Committee on Innovation & Technology (Ed.), *Handbook of technological pedagogical content knowledge for educators*, (pp. 3–29). New York, NY: Routledge.
- Komalawardhana, N., & Panjaburee, P. (2018). Proposal of personalised mobile game from inquiry-based learning activities perspective: relationships among genders, learning styles, perceptions, and learning interest. *International Journal of Mobile Learning and Organisation*, 12(1), 55–76. https://doi.org/10.1504/JJMLO.2018.089237.
- Komalawardhana, N., Panjaburee, P., & Srisawasdi, N. (2021). A mobile game-based learning system with personalised conceptual level and mastery learning approach to promoting students' learning perceptions and achievements. International Journal of Mobile Learning and Organisation, 15(1), 29–49. https://doi.org/10.1504/IJMLO.2021.111596.
- Kurz, T. L., & Batarelo, I. (2010). Constructive features of video cases to be used in teacher education. TechTrends, 54(5), 46-53. Lederman, N. G., Antink, A., & Bartos, S. (2014). Nature of science, scientific inquiry, and socio-scientific issues arising from genetics: a pathway to developing a scientifically literate citizenry. Science & Education, 23(2), 285–302. https://doi.org/10.1007/s11191-012-9503-3.
- Levin, B. B. (1995). Using the case method in teacher education: the role of discussion and experience in teachers' thinking about cases. *Teaching and Teacher Education*, 11(1), 63–79. https://doi.org/10.1016/0742-051X(94)00013-V.
- Lokayut, J., & Srisawasdi, N. (2014). Designing educational computer game for human circulatory system: A pilot study. In Liu, C.-C. et al. (Eds.), Proceedings of the 22 International Conference on Computers in Education (pp. 571-578). Japan: Asia-Pacific Society for Computers in Education.
- Mayer, R. E. (2009). Constructivism as a theory of learning versus constructivism as a prescription for instruction. In S. Tobias & T. M. Duffy (Eds.), Constructivist instruction: Success or failure? (pp. 184-200). Routledge: Taylor & Francis Group.
- McLarty, K., Goodman, J., Risko, V., Kinzer, C. K., Vye, N., Rowe, D., & Carson, J. (1990). Implementing anchored instruction: Guiding principles for curriculum development. In J. Zutell & S. McCormick (Eds.), Literacy theory and research: Analyses from multiple paradigms (pp. 109-120). Chicago, IL: National Reading Conference.
- McQuiggan, S., Kosturko, L., McQuiggan, J., & Sabourin, J. (2015). *Mobile learning: a handbook for developers, educators, and learners*. Hoboken, NJ: Wiley.
- Meekaew, N., & Ketpichainarong, W. (2018). An augmented reality to support mobile game-based learning in science museum on biodiversity. In Proceedings of 7th International Congress on Advanced Applied Informatics (IIAI-AAI), (pp. 250–255). Japan: International Institute of Applied Informatics. https://doi.org/10.1109/IIAI-AAI.2018.00055.
- Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: a framework for teacher knowledge. Teachers College Record, 108(6), 1017–1054. https://doi.org/10.1111/j.1467-9620.2006.00684.x.
- Momypedia, M. (2013). The computer game affliction, game addition: crisis situation of Thai children. Momypedia, 2556(June). Newhouse, C. P., William, P. J., & Pearson, J. (2006). Supporting mobile education for pre-service teachers. *Australasian Journal of Educational Technology*, 22(3), 289–311.
- Niess, M. L. (2005). Preparing teachers to teach science and mathematics with technology: developing a technology pedagogical content knowledge. *Teaching and Teacher Education*, 21(5), 509–523. https://doi.org/1 0.1016/j.tate.2005.03.006.
- Niess, M. L., Ronau, R. N., Shafer, K. G., Driskell, S. O., Harper, S. R., Johnston, C., & Kersaint, G. (2009). Mathematics teacher TPACK standards and development model. *Contemporary Issues in Technology and Teacher Education*, 9(1), 4–24.
- Niess, M. L., Lee, K., Sadri, P., & Suharwoto, G. (2006). Guiding inservice mathematics teachers in developing a technology pedagogical knowledge (TPCK). A paper presented at the American Education Research Association Annual Conference (pp. 1-22). San Francisco, CA: AERA. Retrieved from http://eusesconsortium.org/docs/AERA_paper.pdf.
- Rovegno, I., & Dolly, J. (2006). Constructivist perspectives on learning. In D. Kirk, D. Macdonald, & M. O'Sullivan (Eds.), *The handbook of physical education*, (pp. 242–261). Thousand Oaks, CA: Sage. https://doi.org/10.4135/9781848608009.n14.
- Şad, S. N., & Goktaş, O. (2014). Preservice teachers' perceptions about using mobile phones and laptops in education as mobile learning tools. *British Journal of Educational Technology*, 45(4), 606–618. https://doi.org/10.1111/bjet.12064.
- Sahin, S. (2012). Pre-service teachers' perspectives of the diffusion of information and communications technologies (ICTs) and the effect of casebased discussions (CBDs). Computers & Education, 59, 1089-1098.
- Saltan, F. (2017). Online case-based learning design for facilitating classroom teachers' development of technological, pedagogical, and content knowledge. European Journal of Contemporary Education, 6(2), 308–316.
- Schmitz, B., Klemke, R., Walhout, J., & Specht, M. (2015). Attuning a mobile simulation game for school children using a design-based research approach. Computer & Education, 81, 35-48.
- Scott, A., Downton, A., Gronn, D., & Staples, A. (2008). Engagement versus deep mathematical understanding: An early career teacher's use of ICT in a lesson. In M. Goos, R. Brown, & K. Maka (Eds), Navigating currents and charting directions: Proceedings of the 31st annual conference of the Mathematics Education Research Group of Australasia (pp. 43-49). Brisbane, QLD: MERGA.
- Shin, T. S., Koehler, M. J., Mishra, P., Schmidt, D. A. Baran, E., & Thompson, A. D. (2009). Changing Technological Pedagogical Content Knowledge (TPACK) through course experiences. In I. Gibson, R. Weber, K. McFerrin, R. Carlsen, & D. A. Willis (Eds.), Society for Information Technology and Teacher Education International Conference book (pp. 4152-4156). Chesaoeake, VA: Association for the Advancement in Education (AACE).
- Shulman, L. S. (1986). Those who understand: knowledge growth in teaching. *Educational Researcher*, 15(2), 4–14. https://doi.org/10.3102/0013189X015002004.
- Smarkola, C. (2008). Efficacy of a planned behavior model: Beliefs that contribute to computer usage intentions of student teachers and experienced teachers. *Computers in Human Behavior*, 24(3), 1196–1215. https://doi.org/10.1016/j.chb.2007.04.005.

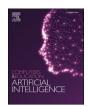
- Srisawasdi, N. (2012). Student teachers' perceptions of computerized laboratory practice for science teaching: a comparative analysis. *Procedia Social and Behavioral Sciences*, 46, 4031–4038. https://doi.org/10.1016/j.sbspro.2012.06.192.
- Srisawasdi, N. (2014). Developing technological pedagogical content knowledge in using computerized science laboratory environment: An arrangement for science teacher education program. *Research and Practice in Technology Enhanced Learning*, *9*(1), 123–143.
- Srisawasdi, N., Kongpet, K., Muensechai, K., Feungchan, W., & Panjaburee, P. (2016). The study on integrating visualized simulation into context-aware ubiquitous learning activities for elementary science education. *International Journal of Mobile Learning and Organization*, 10(4), 263–291. https://doi.org/10.1504/JJMLO.2016.079502.
- Srisawasdi, N., & Panjaburee, P. (2014). Technology-enhanced learning in science, technology, and mathematics education: results on supporting student learning. *Procedia - Social and Behavioral Sciences*, 116, 946–950. https://doi.org/10.1016/j.sbspro.2014.01.325.
- Srisawasdi, N., & Panjaburee, P. (2019). Implementation of game-transformed inquiry-based learning to promote the understanding of and motivation to learn chemistry. *Journal of Science Education and Technology*, 28(2), 152–164. https://doi.org/10.1007/s10956-018-9754-0.
- Srisawasdi, N., Pondee, P., & Bunterm, T. (2018). Preparing pre-service teachers to integrate mobile technology into science laboratory learning: an evaluation of technology-integrated pedagogy module. *International Journal of Mobile Learning and Organization*, 12(1), 1–17. https://doi.org/10.1504/JJMLO.2018.089239.
- Sung, H.-Y., & Hwang, G.-J. (2017). Facilitating effective digital game-based learning behaviors and learning performances of students based on a collaborative knowledge construction strategy. Interactive Learning Environments, 26(1), 1-17.
- Sung, H.-Y., Hwang, G.-J., Wu, P.-H., & Lin, D.-Q. (2018). Facilitating deep-strategy behaviors and positive learning performances in science inquiry activities with a 3D experimential gaming approach. Interactive Learning Environments, 26(8), 1053-1073.
- Sutton, S. R. (2011). The preservice technology training experiences of novice teachers. Journal of Digital Learning in Teacher Education, 28(1),39-47.
- Thomas, K. M., O'Bannon, B. W., & Britt, V. G. (2014). Standing in the schoolhouse door: teacher perceptions of mobile phones in the classroom. *Journal of Research on Technology in Education*, 46(4), 373–395. https://doi.org/10.1080/15391523.2014.
- Thompson, A., & Mishra, P. (2007). Breaking news: TPCK becomes TPACK. *Journal of Computing in Teacher Education*, 24(2), 38–64.
- Troussas, C., Krouska, A., & Sgouropoulou, C. (2020). Collaboration and fuzzy-modeled personalization for mobile game-based learning in higher education. Computers & Education, 144, 1-18.
- Tsai, C.-C., Chai, C. S., Wong, B., Hong, H.-Y., & Tan, S. C. (2013). Positioning design epistemology and its applications in education technology. *Educational Technology & Society*, 16(2), 81–90.
- Tsai, Y.-L., & Tsai, C.-C. (2020). A meta-analysis of research on digital game-based science learning. Journal of Computer Assisted Learning, 36(3), 280-294.
- Vate-U-Lan, P. (2015). Transforming classrooms through game-based learning: a feasibility study in a developing country. International Journal of Game-Based Learning, 5(1), 46–57. https://doi.org/10.4018/jjgbl.2015010104.
- Voogt, J., Erstad, O., Dede, C., & Mishra, P. (2013). Challenges to learning and schooling in the digital networked world of the 21st century. Journal of Computer Assisted Learning, 29(5), 403-413.
- Willermark, S. (2017). Technological pedagogical and content knowledge: a review of empirical studies published from 2011 to 2016. *Journal of Educational Computing Research*, 56(3), 315–343.
- William, B. (2005). Case based learning a review of the literature: Is there scope for this educational paradigm in prehospital education?. Emergency Medicine Journal, 22(8), 577-581.
- Zhang, J., Hong, H.-Y., Scardamalia, M., Teo, C. L., & Morley, E. A. (2011). Sustaining knowledge building as a principle-based innovation at an elementary school. Journal of the Learning Sciences, 20(2), 262-307.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article


Submit your next manuscript at ▶ springeropen.com

FISEVIER

Contents lists available at ScienceDirect

Computers and Education: Artificial Intelligence

journal homepage: www.sciencedirect.com/journal/computers-and-education-artificial-intelligence

A personalized learning system-supported professional training model for teachers' TPACK development

Pawat Chaipidech ^a, Niwat Srisawasdi ^{a,*}, Tanachai Kajornmanee ^b, Kornchawal Chaipah ^b

- ^a Faculty of Education, Khon Kaen University, 123, Mitthaphap Road, Nai-muang, Muang, Khon Kaen, 40002, Thailand
- ^b Faculty of Engineering, Khon Kaen University, 123, Mitthaphap Road, Nai-muang, Muang, Khon Kaen, 40002, Thailand

ARTICLE INFO

Keywords: Andragogy TPACK Personalized learning In-service teacher Teacher development

ABSTRACT

In contrast to traditional teacher professional development (TPD), the importance of individualized professional learning and expert content delivery is increasingly focused on as a challenge to transform the TPD. This study investigated the effects of an andragogical design of TPD with an embedded personalized learning system on technological pedagogical and content knowledge (TPACK) of in-service teachers. One hundred sixty-one inservice science teachers from 92 secondary schools located Northeastern region of Thailand voluntarily participated in the proposed TPD program. Results indicated that the in-service teachers significantly improved their TPACK. These findings add to the limited body of research on TPD that facilitates adult teachers' professional learning with the support of a personalized learning system to be equipped with the know-how to pedagogically apply digital technology into students' learning experience in science.

1. Introduction

Applications of artificial intelligence (AI) and its contributions to education are on the rise. They have received much attention from educational researchers, developers, and practitioners in the last decade. In the context of educational progress, AI has been indicated significant commitments and potentials to facilitate both the teachers and the students in their teaching and learning improvement, respectively. With the implementation of AI in Education (AIED) for research and development over 30 years, AI has grown the additional attention of researchers from the fields of both computer science and education (Hwang, Xie, Wah, & Gasevic, 2020), and it has been applied to various domains related to teaching and learning development. However, AIED is still unclear for educational researchers, developers, and practitioners how to make pedagogical advantage of it on a broader scale and how it can impact meaningfully on teaching and learning (Zawacki-Richter, Marín, Bond, & Gouverneur, 2019).

Recently, AIED refers to the use of AI technologies or application programs in educational service to facilitate learning by providing personalized guidance, supports, feedback, and teaching, by assisting teachers or policymakers in making decisions in educational settings (Hwang et al., 2020). One of the crucial objectives of AIED is the provision of personalized learning applications which maximize the learning with individual guidance or supports based on learning status, preferences, or personal characteristics (Hwang, 2014). In the context of professional learning and development settings for teachers, taking advantage of these features would call for a new form and broadening of approaches used in teacher professional development (TPD). In addition, the increasingly wide application of AI to serve the broader educational practice of personalized learning offers challenges for most educators, researchers, and practitioners from the fields of TPD to implement relevant professional learning activities with AI. Moreover, the advancement of AI offers the chance to create a possible and somewhat logical appearance of personalized innovations in education, such as teacher training, based on the highly technology-dependent and cross-disciplinary field. Unfortunately, Southgate et al. (2018) reported few TPD resources and opportunities related to AI, and there will be important that quality TPD programs with AI be developed in the

Abbreviations: AI, Artificial intelligence; AIED, Artificial intelligence in education; CK, Content knowledge; PK, Pedagogical knowledge; TK, Technological knowledge; PCK, Pedagogical content knowledge; TCK, Technological content knowledge; TPK, Technological pedagogical pedagogical knowledge; TPD, Teacher professional development; KKU, Khon Kaen University; KKU-SLA, Khon Kaen University Smart Learning Academy; KKU Smart TPACK, Khon Kaen University Smart TPACK; MOU, Memorandum of understanding; STEM, Science, Technology, Engineering, Mathematics.

E-mail addresses: pawach@kku.ac.th (P. Chaipidech), niwsri@kku.ac.th (N. Srisawasdi), tanachai.kajonmanee@kkumail.com (T. Kajornmanee), kornchawal@kku.ac.th (K. Chaipah).

https://doi.org/10.1016/j.caeai.2022.100064

Received 18 June 2021; Received in revised form 7 February 2022; Accepted 16 March 2022 Available online 23 March 2022

2666-920X/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

^{*} Corresponding author.

current educational improvement area.

To date, the improvement of TPD has been documented and has taken in various modes and actions. TPD programs need to be reconsidered to meet new expectations in the new digital era. AI technologies can offer innovative learning modes for more personalized and customized professional development of teachers (Alawani, 2019). Moreover, scholars have also pointed out a personalized learning system as helping teachers to improve their teaching competencies (Ganser, 2000; Ma, Xin, & Du, 2018). With the use of an AI-powered personalized learning system in TPD, there are enormous opportunities to design precision learning activities and develop better technology-enhanced learning applications or environments for promoting teacher's professional knowledge. As a professional teacher in the digital era, they need to incorporate different kinds of knowledge, i.e., content knowledge, pedagogical knowledge, and technological knowledge, as widely mentioned in the technological pedagogical and content knowledge (TPACK) integrative framework. Moreover, the professional teachers also were required to use that knowledge in various flexibility and fluently combinations. Applying AI as an integral part of TPD to foster teacher's TPACK, a new body of knowledge that teachers need to possess to teach with technology effectively, is essential and exciting for educators, researchers, and practitioners to consider how this can happen in

To achieve the point, this could be an essential educational application of AI in TPD to offer an opportunity to develop a personalized learning system as an intelligent tutor for mastering teachers' TPACK. Hwang et al. (2020) mentioned that AI technology, i.e., adaptive or personalized learning system, has provided new appearances and opportunities to fulfill the needs of educational purposes or learning design, i.e., teacher professional learning and development. However, till now, there has been minimal scholarship (i.e., Angeli et al., 2014) regarding whether AI-based learning technology, such as a personalized learning system, could be implemented in a regular TPD training program for TPACK development. Therefore, in this study, the researchers not only develop a particular AI-based personalized learning system and also proposing its implementation framework in the context of TPD for TPACK development (TPD-TPACK), but also investigate an initial efficacy of the TPD-TPACK approach with an embedded personalized learning system for both experienced and non-experienced teachers in digital learning pedagogy. To evaluate the effectiveness of the proposed approach, the researchers intent to answer the following research question: Does an AI-based personalized learning system support TPD-TPACK approach, affect in-service science teachers' TPACK improvement?

2. Technology-supported teacher professional development

Several studies, i.e., Timperley (2008), Cordingley et al. (2015), Darling-Hammond, Hyler, & Gardner (2017), have been reported the synthesis of characteristics of effective professional development to indicate how teachers learn to be professional. Based on the reports, a research-informed consensus indicated that the use of technology for teacher professional development needs to be considered into the broader context of thinking about effective professional development. As we have known, technology has powerful potential to innovate teacher practice and student learning in various contexts and situations. Unfortunately, teachers are bombarded with information about technological innovation for their students. They may, however, lack experience with the integration of technology into teaching (Hughes, 2005; Rawlins & Kehrwald, 2014; Schrum, 1999) and receive far less guidance on the pedagogical use of technologies that can support their work (McKenney & Visscher, 2019). In recent years, teacher educators and researchers mentioned that professional teachers should possess the Technological, Pedagogical, and Content Knowledge (TPACK) framework (Mishra & Koehler, 2006). However, current educational studies that employed the TPACK framework were mainly conducted in teacher

professional development (TPD) (Janssen, Knoef, & Lazonder, 2019). In addition, most of these studies intended to create technology-integration learning interventions that aimed to promote teachers' professional development of TPACK (Voogt & McKenney, 2017). However, there is a prevalence of research on TPD program management rather than technological innovation to facilitate teacher's professional development of TPACK and their teaching performance.

Moreover, within this limited literature on technological innovation to support teacher's TPACK development, the theoretical and empirical basis is also extremely limited. To date, various tools for professional teacher learning are in development. However, a structured examination of such resources is severely lacking as well as Xie, Chu, Hwang, and Wang (2019) reported that there are no studies of applying a personalized learning for leaners (working adults) and there are rarely employed a personalized learning guidance of profession to facilitate their learning process. A response question on this issue is how TPD can be supported by technological innovation, such as artificial intelligence and related technological tools?

From the perspective of precision education, Hwang et al. (2020) mentioned that adaptive or personalized learning systems are the most extensive artificial intelligence in education (AIED). From now till the future, artificial intelligence (AI) could play various roles in TPD settings and provide new technological appearances and opportunities for the professional technology development of teachers. To advance teachers' professional knowledge of technology integration, incorporating new technology such as AI-powered personalized learning systems into teacher learning settings will open up new concepts of TPD. Interestingly, it could also be a promising approach to reconsider and revise existing TPD research practices. In the context of TPACK research, the newest approach to TPACK development is a software-based adaptive or personalized learning system (Harris, 2016). To promote teachers' TPACK development, Angeli, Valanides, Mavroudi, Christodoulou, and Georgiou (2014) created a self-paced adaptive learning system called e-TPACK as technological innovation to scaffold teachers' professional learning. In this study, an early exploration of personalized TPACK development shows considerable promise for the role of data analytics in the e-TPACK system for future TPACK-based professional learning. Regarding TPD for TPACK development, Kajonmanee, Chaipidech, Srisawasdi, and Chaipah (2020) developed a personalized ubiquitous learning system for teachers to personally foster their essential knowledge of teaching particular content with the support of digital technology. The system corresponds to three simple main phases: diagnostic, customization, and monitoring, and it would be described in the next section. The study results have shown promising effects of the TPD embedded personalized learning system intervention on improving in-service teachers' TPACK in Science, Technology, Engineering, Mathematics (STEM) teaching practice.

3. Personalized learning for adult education

Over the past 30 years, a research trend on smart learning environment has been growth rapidly (Hwang & Fu, 2020). This trend illustrated the effort to apply numerous technologies for learning and teaching. One of those implementations is offering learners' individual learning experiences efficiently based on their profile and learning style called "Personalized learning" (Hwang, 2014). Recent research on personalized learning has revealed benefits to using technology to adapt the learning experience to learners' preferences. For instant (Wongwatkit et al., 2017), developed an integrated learning diagnosis and formative assessment-based personalized web learning system to promote elementary students' learning performance. The result revealed that their learning achievement significantly better than those learning with the conventional learning as well as their perceptions. While there are some evidences that showed learners are satisfied with their learning experience with several personalized learning approaches and systems, researchers noted that there is limited study on whether and how the

learner are improved their learning through the approaches and systems or the learning process (Murray & Pérez, 2015). In addition, Chen, Xie, Zou, and Hwang (2020) mentioned that although artificial intelligence technology has been utilized in education since 1996, there was still lack of studies that implement both artificial intelligence technology integration with educational theories.

Recently, researchers conducted a systematic review then pointed out that the distribution of personalized/adaptive learning were rarely found in the field of working adults (Xie et al., 2019). According to the literature, it is worth to pay attention to adult learning which supported by personalized/adaptive learning. Focusing on teachers who are working adults at school setting, researchers have indicated that teacher professional development (TPD) programs providing specialized training to adult teachers generally have more significant and positive influences on learners' outcomes (Connors-Tadros & Hororwitz, 2014; Zaslow, 2014). To be effective, TPD needs to address the principles and methods of adult learning and training for teachers. The focus must shift to a rigorous capacity-building process for adults so that handling their educational needs is viewed differently from that of children. According to this point, andragogy is defined as the art and science of helping adults learn, in contrast to pedagogy, the art and science of teaching children (Knowles, 1980). Thus, andragogy is an educational approach that explicitly considers adult learning needs, andragogical principles, and highly suitable methods for any form of adult education (Loeng, 2018). The andragogical approach, developed extensively by Malcolm Knowles, is a well-lauded response to the TPD approach that considers adult learning needs. According to Knowles' (1980) perspective on andragogy, Chan (2010) summarized the six following main assumptions based on andragogy:

- Self-concept: Adult learners are self-paced, autonomous, and independent.
- Role of experience: The repository of an adult's experience is a rich resource for learning. Adults tend to learn by drawing on their previous experiences.
- Readiness to learn: Adults tend to be ready to learn what they believe they need to know.
- Orientation to learning: Adults learn for immediate applications rather than for future uses. Their learning orientation is problemcentered, task-oriented, and life-focused.
- Internal motivation: Adults are more internally than externally motivated.
- Need to know: Adults need to know the value of learning and why they need to learn.

According to the premises of the andragogy theory, Carpenter and Linton (2016) reported that the learners' opportunity to engage in direct learning, collaborate with others, and contribute to the learning of others motivated high levels of enthusiasm for their TPD experiences. Furthermore, active learning, autonomy, and collaboration are vital features to indicate effective TPD for adult teachers. In addition, Tsuda, Sato, Wyant, and Hasegawa (2019) applied the framework of andragogy theory to create a series of intensive workshops supporting elementary school teachers' development of unique teaching perceptions of the societal shift toward depopulation. The findings indicated the importance of providing context-specific TPD, where a problem-centered approach and self-directed processes are critical for effective TPD. In the 21st century, these principles have been used to design online learning environments for adult learners. Several studies (Blondy, 2007; Cercone, 2008) suggested that learning designers need to pay attention on prior experience, self-directed learning, independence, respect as an expert, mature individuals with external responsibilities, and limited time and resources of adult learners. Consequently, not only training or banking of knowledge was provided to adult learners, but also facilitate individualization, interaction, and collaboration in the learning environment.

4. TPACK-based personalized learning system for teacher professional development

In this section, the personalized learning system facilitated TPACK development which can support individual teacher learning of professional knowledge is demonstrated.

According to a mobile-assisted personalized ubiquitous learning system, named Khon Kaen University Smart TPACK (KKU Smart TPACK), for teacher's TPACK development was created as a professional learning environment for both pre-service and in-service teachers regarding their prior knowledge of teaching and learning style and differences in equipment and network qualities (Kajonmanee et al., 2020). Fig. 1 displays the personalized learning system for in-service teachers' TPACK development used in this study.

The system is a machine-centered adaptivity technology created with a set of predefined rules. At the same time, the adaptable personalized learning mechanisms are those functions in which teacher trainees can intervene and personalize the TPACK-based learning lessons for themselves. Facilitating teachers' professional learning regarding essential knowledge of TPACK, this system contained three main modules, namely personalized diagnosis, personalized recommendation, and personalized evaluation, respectively, as displayed in Fig. 1. This system process typically begins with the personalized diagnosis module, where the users (teacher trainees) have had their personal context analyzed by the system algorithm; that is, the personal learning style and all essential knowledge are clarified following the TPACK framework to apply the desired TPACK knowledge objects, define the learning pathways, and identifying particular kinds of learning materials for which the user needs to improve. The online learning material file types used in this study include video, pdf, ppt, and HTML. Fig. 2 shows screenshots of two diagnostic templates available in the proposed system after the trainees completed a multiple-choice TPACK measurement test validated by educational experts.

Based on the diagnosis module, individual TPACK problems are identified for each trainee. Then, personalized TPACK learning contents and the appropriate file type of content are recommended for each trainee by the second module, the personalized recommendation. In this module, the trainees can learn individually interact with their personalized learning contents and activities via the KKU Smart TPACK mobile application. This module operates the process of selecting and sorting different kinds of learning material based on the trainee's learning style and their device's capabilities, including the flow of learning contents and associated resources that users are expected to follow. In addition, this phase seeks to ensure personalized and uninterrupted mobile learning for trainees. Fig. 3 shows screenshots of the two personalized recommendation templates available in the system.

The last module is about the personalized evaluation and feedback stage for the trainees. They could evaluate their TPACK and monitor their TPACK score compared to others in the same cluster and the community at this module after learning with specific TPACK learning materials due to the personalized recommendation module. Moreover, the user can compare previous performance with the final performance to reflect and visualize the current status of the TPACK. Fig. 4 shows screenshots of the personalized evaluation templates available in the proposed system.

In order to develop the system, many AI applications in education are aimed at automating didactic activities, and the researchers explore the potential impact of educational AI applications in personalized learning autonomous. To automate some teaching tasks by AI application in learning system, the selection of suitable learning materials for an individual teacher trainee according to their learning style, TPACK problems and device capabilities has been centralized in the system development. In the learning material selection and sorting algorithms, each learning material file with different values of relevance to learning styles value (C_{LS}) ranging from 0 (not relevant) to 1 (most relevant), indicating how well each type of learner can learn from a given type of

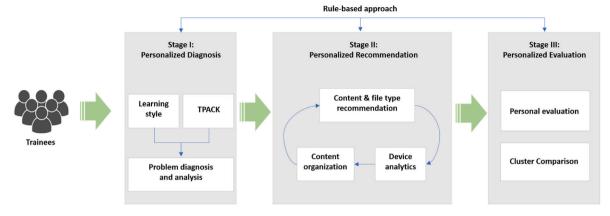


Fig. 1. Personalized ubiquitous learning system for in-service teacher's TPACK development.

Fig. 2. Screenshots of the results obtained from the personalized diagnosis module of TPACK-oriented personalized ubiquitous learning system: A diagnosis results on individual TPACK component compared with the average cluster scores (left) and a result screen displayed individual trainee's TPACK score (right).

media, has been assigned. For example, a text-and-picture media has the CLS of 0.5 for a visual learner and 1 for a verbal learner. On the other hand, an animation media could have the CLS of 1 for a visual learner and 0.5 for a verbal learner. The learning media file types used in this work include video (streaming), video (downloaded), pdf, ppt and html. In addition, learning material types have different computing resource consumption (CFT). The CFT value ranges from 5 (requiring heavy resource such as video streaming) to 1 (requiring low resource such as an html file). In addition, the researchers proposed also an algorithm for particularly selecting precise media of learning material to individual teacher trainee. The algorithm identifies the TPACK knowledge problems of a teacher trainee and searches for corresponding learning material as follows: (i) If there is only one media item for the given topic, pick that item (ii) The media file size must be less than that of the available storage size on a learner's device (iii) If the learning media is a streaming video, the learner's mobile network quality must support the minimum effective access (iv) The learning media must be corresponding to the learner's the learning style. In order to personalize the learning, all of collected personal data and learning material information, i.e. individual learning style, media file resource consumption and file size, wireless signal strength, mobile device's storage space and download speed utilized into the proposed system algorithm. As such,

the cost of learning material format (content cost) is calculated as shown in Eq. (1), as follows

$$Cost_{content} = (1 - C_{LS}) + C_{FT}/D_{NSS} * (C_{FS}/D_{FSS} + 8*C_{FS}/D_{DS})$$
 (1)

where C_{LS} as the relevancy of the media to the learning style, C_{FT} as the resource consumption of the media file, D_{NSS} as the internet signal strength level, C_{FS} as the media file size, D_{FSS} as the device's available storage, and D_{DS} as the download speed.

From Eq. (1), each media file is calculated as content cost by the following concept. The content cost will be small if: (i) The relevancy to the learner's style (C_{LS}) is high (ii) The ratio of resource consumption used and network signal strength is low. That is if the media file requires high resource consumption (C_{FT}), the network signal strength (D_{NSS}) must be high enough to fully support the file transfer. On the other hand, if the media file requires low resource consumption, the network signal strength can be relaxed a little bit (iii) There is a plenty of available storage (D_{FSS}) compared to the file size (C_{FS}) (iv) The download time is small. That is the ratio between the file size (C_{FS}) and the download speed (D_{DS}) is small. If the file size is large, the download speed must be very fast to lower down the ratio. In contrast, if the file size is small, the download speed can be relaxed a little bit.

Fig. 3. Screenshots of the results obtained from the personalized recommendation module of TPACK-oriented personalized ubiquitous learning system: A customization results on required learning materials regarding the TPACK diagnostics results (left) and an example of the TPACK learning content (right).

Fig. 4. Screenshots of the results obtained from the personalized evaluation module of TPACK-oriented personalized ubiquitous learning system: A diagnosis results on individual TPACK component compared with the average cluster scores, after their personalized learning experience (left) and an accumulation of individual results based on TPACK measurement (right).

5. Study context

5.1. Teacher professional development in Khon Kaen University Smart Learning Academy (KKU-SLA) project

The quality of teacher professional development (TPD) in Thailand is critically vital for the educational outcomes for young Thais. Khon Kaen University Smart Learning Academy, shortly called KKU-SLA, was initiated by Khon Kaen University (KKU) in 2016. After, the KKU-SLA is a unique large-scale educational project funded by the Thai Government and launched formally in 2017. This funded 3-years project has ambitiously attempted to improve middle school students' learning

achievements in English language, mathematics, and science regarding the Programme for International Student Assessment (PISA) framework, and also build teacher digital competence of Thai science, mathematics, and English teachers through its focus on TPD programs. The project's primary aim is capacity building and the systematic embedding of Technological Pedagogical and Content Knowledge (TPACK) in inservice science, mathematics, and English language TPD. The TPD in the KKU-SLA project focused on systematic change in TPACK of approximately 1700 science, mathematics, and English language teachers in the northeastern region of Thailand by building effective content-specific training programs and developing resources providing rich professional learning and digital exemplar packages. The TPACK

framework was explicitly selected to underpin the KKU-SLA project because it represents the professional knowledge of teaching required of Thai teachers to achieve the intent of the national curriculum areas of Science, Mathematics, and English language. Moreover, the design of TPD intervention across the KKU-SLA was guided by the TPACK framework and aimed to enhance the TPACK capabilities of participant in-service teachers. In addition, the KKU-SLA project represents the first attempt of an interdisciplinary educational project, which experts and researchers in several fields, i.e., Faculty of Education, Faculty of Engineering, Faculty of Human and Social Sciences, and Faculty of Science, at Khon Kaen University, work collaboratively on building the TPACK capacity of in-service teachers (Panjaburee & Srisawasdi, 2018).

For practical learning support, TPD intervention in KKU-SLA is mainly designed to address the principles and methods of adult learning and training for teachers, and andragogical principals and methods find themself very suitable to any form of adult education (Loeng, 2018). As we have known, teachers had to improve their competencies to harmonize with their anthroposphere particularly, and the andragogical approach, developed extensively by Malcolm Knowles (1980), is a well-lauded response to the TPD approach considers adult learning needs.

5.2. A proposed andragogical model of intervention for adult teacher's professional development in KKU-SLA

Andragogy provides a professional framework for how adults learn, and contemporary educational researchers have explored its validity and usefulness in varied contexts of TPD. By understanding how to implement this framework in TPD practice, practitioners and researchers can further inform the impact and relevancy of the model

across professional learning environments. To improve teachers' knowledge, skills, and integration of technologies into instruction, researchers recommended professional development focused on using technology within up-to-date models of teaching and learning. In crafting an innovative teacher professional learning environment, an andragogical TPD model has been proposed in this study to enhance inservice teachers' TPACK regarding their particular needs and learning goals (see Fig. 5).

According to Knowles (1980)'s perspective on andragogy, Chan (2010) summarized six main assumptions based on the andragogy: (i) Self-concept, (ii) Role of experience, (iii) Readiness to learn, (iv) Orientation to learning, (v) Internal motivation, and (vi) Need to know. As andragogy is identified as an as-yet-unstudied setting, we propose an andragogical model of TPD intervention for the KKU-SLA project (see Fig. 5). The model is divided into four main phases as follows:

- 1) The Motivation phase consists of three main andragogical assumptions: Internal motivation, Readiness to learn, and Self-concept. Self-directed learning with KKU Smart TPACK, a personalized ubiquitous learning system, has been introduced to teacher trainees in this phase. The system could trigger their intrinsic motivation to learn by revealing the current status of their TPACK and induce them to complete what they need to know regarding TPACK by themselves.
- 2) The Conceptualization phase consists of Orientation to learning assumption. In this session, a role play as a student is used to provide a point of view of learning science to teacher trainees, an experiential session of learning how-to-learn.
- 3) The Consolidation phase consists of the Role of experience assumption. In this session, teacher trainees are guided in an experiential session of learning how-to-teach to simulate how to use digital

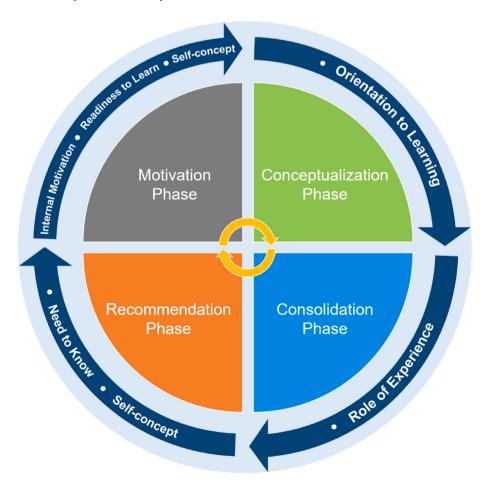


Fig. 5. The design of the andragogical TPD model for intervening in-service teachers' TPACK.

- learning tools from the previous phase then apply them into their teaching context.
- 4) The Recommendation phase consists of a couple of assumptions of Need to know and Self-concept. Repeated self-directed learning with the KKU Smart TPACK system is encouraged to assess teacher trainees' TPACK progression for this phase. A discussion on the TPACK results would be used to address the assumptions.

6. Methods

6.1. Research design

In our effort to investigate the effect of the TPD training program, quantitative data in this study were collected on two different occasions, at the beginning and the end of the TPD intervention program. Considering the purpose of this study, the hypothesis was that there was a statistically significant difference between in-service science teachers' TPACK (pre- and post-intervention scores). To provide more details, a two-day intensive training workshop has been designed following the TPACK framework, equipped with the personalized ubiquitous learning system to cultivate the in-service science teachers' TPACK. In this study, all in-service science teachers voluntarily attended the training workshop in February 2019. In the TPD workshop, they were trained to teaching a particular science lesson of state of matter with heat transfer related to the 7th-grade national science curriculum standard.

At the beginning of the intensive TPD workshop, the participants attended the face-to-face session (1.5 h). The personalized ubiquitous learning system allowed the in-service science teachers to interact with the entire self-directed professional learning system. After finishing the learning and assessment in the KKU Smart TPACK, situational introduction for instructional pain points and findings from research-based learning innovation are presented. After that, in the following session (1.5 h). After completed the Motivation phase, the following phase is the Conceptualization phase (3 h). In this phase, the in-service science teachers participated in a role-play environment as learners called learning how-to-learn. They were experienced with the mobile-assisted Science, Technology, Engineering, Mathematics (STEM) learning innovation by hands-on practice and fostered to form a concept of the integrated STEM learning process. The second day of the workshop starts with a complete learning how-to-teach (3 h). In this phase, called the Consolidation phase, the participants were promoted to interact with a specific mobile application to support an authentic task in integrated STEM learning. They were then encouraged to consolidate the teaching practice of seamless STEM learning. In the next session, the participants interact with an individual with an entire self-directed professional learning with the personalized ubiquitous learning system (1.5 h). The last session of the training workshop is monitored the participants'

TPACK results from the personalized ubiquitous learning system (1.5 h). The researchers used these results to recommend and open discussion to the participants, specifically on the TPACK outcomes. Fig. 6 depicts the TPD intervention structure for non-digital experience participants.

6.2. Study participants

This research was implemented through a series of Teacher Professional Development training. The training was following the instructional model (see Fig. 6). The authors of this research conducted the TPD training program. This study involved 161 in-service science teachers (84 females and 77 males) from 92 secondary schools in the Northeastern region of Thailand teaching in a 7th-grade class. They were selected purposefully to attend the training workshop by Educational Service Areas located in the Northeastern part of Thailand, who were MOU with the KKU-SLA project which aimed to develop their essential knowledge of integrating technologies into science learning in classroom. These participants were new attendees for the KKU Smart learning Academy Project, and this implied that they do not have experience in digital learning workshops. Their teaching experience was ranking from 1 to 22 years. They had an average of 12.8 years of teaching experience. Their age range between 24 and 55 years old. Before this study, they all had some experiences of using digital technology in scientific classrooms. Most of them held a bachelors' degree, and some held master's degree in education.

6.3. Measures and data analysis

To measure the effectiveness of the TPD intervention that may affect in-service teachers' cognitive aspect on TPACK of integrated STEM education, the TPACK scores before and after the intervention have proceeded. A closed-ended multiple-choice questionnaire was employed to address their TPACK in integrated STEM education. The researchers developed the questionnaire, and it was validated by the research panel consisting of three experts in science education, educational technology, and teacher education, respectively. To complete the questionnaire, the measuring instrument was embedded into the KKU Smart TPACK mobile application, and the in-services science teachers have to interact with the mobile application individually. There are 13 question items for the face-to-face TPD workshop, and the total scores are also 13 points. The questionnaire consists of Content Knowledge (CK) (5 items), Pedagogical Knowledge (PK) (2 items), Technological Knowledge (TK) (2 items), Technological Content Knowledge (TCK) (1 item), Pedagogical Content Knowledge (PCK) (1 item), Technological Pedagogical Knowledge (TPK) (1 item), and Technological Pedagogical and Content Knowledge (TPACK) (1 item). Its reliability was 0.75. The TPACK questionnaires require 45 min to complete for the study.

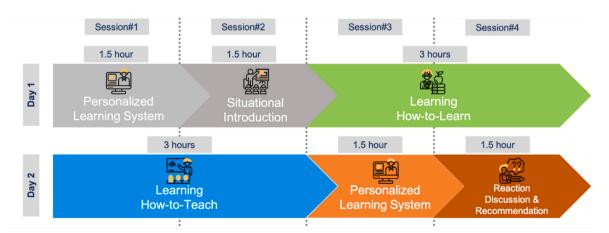


Fig. 6. The structure of a TPD intervention with the support of personalized ubiquitous learning system for non-digital experience participants.

Before analyzing data from the participants in the intervention program, researchers manipulated the data by eliminated incomplete data. For example, some science teachers who did not finish the tests during the workshop session are excluded. This study used IBM SPSS Statistics 21 as the analytic tool. First, to compare the pre- and post-intervention mean score, the Shapiro-Wilk test has been used to test, and the test scores do not violate the assumption of normal distribution. Then, the paired *t*-test was conducted to examine the change. A significance level of alpha that used for testing the hypothesis is 0.05. To quantify the size of the difference between two groups, the effect size indicator was used to computed (Rosenthal, 1994). Effect sizes were interpreted using Cohen's guideline, 0.2 represents a small effect size, 0.5 represents a medium effect size, and 0.8 represents a large effect size.

6.4. Findings

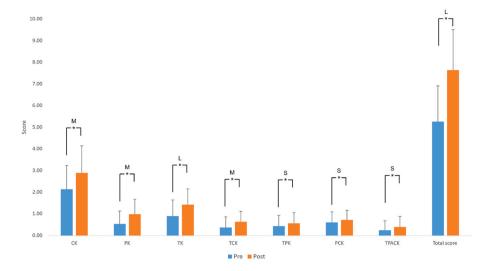
The descriptive findings from this study of in-service teachers' mean score and standard deviations (S.D.) on the seven scales of TPACK are reported in Table 1. The statistic revealed an increase in all TPACK constructs and the total scores.

To examine the influence of TPD intervention on in-service science teachers' TPACK, the paired-sample t-test was used in this study. The basic assumptions were checked before initiate the statistical hypothesis, and no violation was detected. As a result, there was a statistically significant increase in their TPACK-STEM scores from pre-to postintervention in large size for the teacher professional development programs regarding Technological Knowledge (TK), N = 161, Z = 6.659, p < .000, Eta2 = 0.525, and Total TPACK, N = 161, Z = 10.177, p <.000, Eta2 = 0.802. Moreover, there was also a statistically significant increase in their Content Knowledge (CK), N = 161, Z = 6.209, p < .000, Eta2 = 0.489, Pedagogical Knowledge (PK), N = 161, Z = 6.193, p <.000, Eta2 = 0.488, and Technological Content Knowledge (TCK), N = 161, Z = 4.696, p < .000, Eta2 = 0.370, in medium size. In addition, there was a small size effect of the statistically significant increase on Technological Pedagogical Knowledge (TPK), N = 161, Z = 2.540, p = .011, Eta2 = 0.200, Pedagogical Content Knowledge (PCK), N = 161, Z = 2.394, p = .017, Eta2 = 0.189, and Technological Pedagogical and Content Knowledge (TPACK), N = 161, Z = 2.898, p = .004, Eta2 = 0.228. The result reveals that the TPD intervention significantly increased in-service teachers' TPACK in STEM education. Overall, the in-service teachers' TPACK in STEM education significantly improved after participating with the andragogical TPD intervention programs as

 $\begin{tabular}{ll} \textbf{Table 1}\\ \textbf{The descriptive statistic for all components of TPACK for TPD intervention}\\ \textbf{programs.}\\ \end{tabular}$

		TPACK Score (N = 161)					
		Mean	SD	Z	p	ESa	
CK	Pre	2.14	1.100	-6.209	.000*	0.489	
	Post	2.89	1.255				
PK	Pre	0.54	0.592	-6.193	.000*	0.488	
	Post	0.99	0.689				
TK	Pre	0.90	0.743	-6.659	.000*	0.525	
	Post	1.43	0.722				
TCK	Pre	0.38	0.487	-4.696	.000*	0.370	
	Post	0.64	0.482				
TPK	Pre	0.44	0.498	-2.540	.011*	0.200	
	Post	0.57	0.497				
PCK	Pre	0.61	0.488	-2.394	.017*	0.189	
	Post	0.73	0.444				
TPACK	Pre	0.25	0.437	-2.898	.004*	0.228	
	Post	0.40	0.491				
Total	Pre	5.26	1.653	-10.177	.000*	0.802	
	Post	7.64	1.879				

^{*}p < .05, (N = 161).


measured by the increase in total TPACK scoring. Fig. 7 displays the results of statistical analysis for evaluating the effects of TPD interventions on TPACK development.

7. Discussion

For TPD research, training teachers to teach with technology effectively is undoubtedly a complex task, particularly regarding individual differences. It demands applying various bodies of knowledge related to teaching (Angeli et al., 2014). In this study, the results indicated a superior effect of integrating a personalized learning system into an andragogical TPD intervention program that in-service adult teachers significantly improved their TPACK of integrated STEM education for all TPACK sub-components. The result of this study revealed that integrating a TPACK-oriented personalized learning system as a cognitive-facilitated mechanistic tool within the TPD intervention would facilitate teachers' professional learning achievement. This positive finding can be further explained that the personalized learning approach is a considerably process-based method of TPACK development, and personalized learning resources are an effective way to improve teaching competencies with technology for teachers (Harris, 2016). Moreover, the provision of AI-powered personalized guidance or supports to individual learning based on their personal status, preferences, or characteristics has been mentioned as crucial in education (Hwang, 2014). In addition, the utilization of AI-based systems offers much promise to enhance professional learning performance and assist teachers in advancing their teaching competencies (Hwang et al., 2020). The empirical finding regarding teachers' TPACK development in this study is consistent with numerous studies showing that the technology of personalized learning approach seems to be a considerable promise with the usefulness of data analytics in future TPACK-based professional learning (Angeli et al., 2014). Furthermore, the personalized learning technology could prove highly effective with adaptive operation and system in situated professional development (Timotheou, Christodoulou, & Angeli, 2017). Moreover, this is consistent with Gynther (2016) and Ma et al. (2018), who found that personalized learning for teachers positively influences their professional development. In addition, Kajonmanee et al. (2020) reported a positive result for creating a personalized learning environment concerning in-service teachers' different learning styles and TPACK problems that the personalized environment could significantly improve teachers' learning outcomes in almost all knowledge domains in the TPACK framework.

In accordance with Knowles (1980)'s theory of andragogy, Garet, Porter, Desimone, Birman, and Suk Yoon, 2001 (2001) and Loxley, Johnston, Murchan, Fitzgerald, and Quinn (2007) mentioned that andragogical principles and practices—that is, collaborative, classroom-based, and research-informed approaches in TPD—positively influence teaching performances and competencies. In this study, the TPACK-oriented personalized learning system played a vital role in the trainees' self-directed process on what they believe they need to know. It encouraged them to autonomously accept responsibility for their professional learning as being in adult education, addressing "self-concept," "readiness to learn," "internal motivation," and "need to know" aspects. This echoes the argument about the importance of self-directed, autonomous, and independent manners, underlining an assumption based on the andragogy (e.g., Carpenter & Linton, 2016; Chan, 2010; Tsuda et al., 2019). For the aspects of "role of experience" and "orientation to learning", the trainees were impressively immersed in gaining adult active and collaborative learning experiences with the proposed TPD intervention. In the sessions, they had opportunities to learn new essential knowledge and skills by drawing from their previous teaching experiences. Moreover, what they learned was targeted directly as problem-oriented and real-life-focused situations, and then they were assigned training tasks for immediate applications in the TPD intervention rather than for future use. According to the results, our findings are consistent with previous studies that suggest active learning and

^a (Effect size = Z/\sqrt{N} , Rosenthal (1994)).

*p = < .05; Total N = 161

Fig. 7. Results of TPACK in integrated STEM education development based on the andragogical TPD intervention program.

collaboration are critical components of effective TPD for adults' professional learning (e.g., Carpenter & Linton, 2016; Garet et al., 2001; Ronfeldt, Farmer, McOueen, & Grissom, 2015). As such, the researchers think that the use of andragogical principles and practices in crafting teachers' professional learning experiences is critically important to promote a better quality of TPD for TPACK development. The findings and the process of this study could be an alternative way to guide educators to embed artificial intelligence with a personalized learning system for educational application as an intelligence tutor (Hwang et al., 2020) for TPD. Furthermore, in order to maintaining a strong workforce for education in this 21st century, teacher professional development will be an important factor to pursue this goal. Personalized learning will support the needs of adult learners to improve quality for their careers path. This study could be a case study which employed AI technology with educational theory regarding adult learning. Mainly, integrating the AI-powered personalized learning system in this study into TPD intervention could be considered as an emerging innovative platform for precision teacher education and professional development for this century.

8. Conclusion

For developing an effective TPD intervention program for adult teachers based on the andragogy theory, integrating an AI-powered personalized learning system is an important issue, particularly addressing andragogical learning assumptions. The new perspective of integrating the personalized learning system as a value of the andragogical practices is presented in this paper. Remarkably, the system has been applied to induce the "Self-concept", "Readiness to learn", "Internal motivation", and "Need to know" assumptions within the proposed TPD intervention program. Moreover, it has been a critical part of creating a connection for designing adult active and collaborative learning experiences related to "Role of experience" and "Orientation to learning" assumptions with the support of the personalized learning system. The results have shown promising effects of the TPD intervention on improving adult teachers' professional knowledge, called TPACK, to pedagogically integrate digital technologies into their STEM teaching practice in particular integrated STEM-related situations. The finding from this study directly contributes to the growing body of research on AI in teacher education and teacher professional development for improving the methods of specialized professional training to adult teachers to transfer more significant and positive influences on

learner's outcomes.

In addition, the proposed method can overcome the drawbacks of Chaipidech et al. (in press)'s studies, resulting in a more reliable or better quality of the enhancement of teaching professional knowledge regarding TPACK based on the integration of the personalized learning system. As the proposed TPD intervention program showed, integrating the personalized learning system is a practical way to facilitate adult teacher professional learning in a real-world training environment.

However, this study has two significant limitations. First, the participants were purposefully selected from regions and school districts involved in the KKU-SLA project in Thailand, and the number of participants was small. Therefore, the statistically significant results of TPACK improvement in this study may not be contextualized to other countries or generalized to all in-service STEM teachers working in Thai secondary school education. Second, the researchers focused on quantitative inquiries to capture the effect of andragogical TPD intervention programs equipped with TPACK-oriented personalized learning systems; they did not use any qualitative inquiry in the analysis. To better capture, both quantitative and qualitative inquiry methods should be synergized and emphasized in tandem. Furthermore, they should be utilized to examine the effect of the proposed TPD intervention and gainfully understand the transformation of professional knowledge related to TPACK, Based on these limitations, there remains a need for further investigation, and therefore, the researchers suggest some guidelines for future studies. First, future research should be implemented in other subjects to investigate the results that might be affected by these differences and comparative studies between trainees who have received and have not received the application of andragogy and/or the integration of personalized learning systems. Second, to increase meaningfulness, future research is needed to investigate the effect of andragogical TPD intervention and the role of personalized learning systems on TPACK development, using quantitative and qualitative inquiry practices that will advance the development of TPD intervention.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was financially supported by Royal Golden Jubilee (RGJ) Ph.D. Program Scholarship, Thailand Research Fund (TRF), TRF Research Career Development Grant (Grant no. RSA6280062), and Khon Kaen University (KKU) Smart Learning Academy. Any opinions, findings, conclusions, or recommendations expressed in this material are of the authors and do not necessarily reflect the TRF and KKU.

References

- Angeli, C., Valanides, N., Mavroudi, A., Christodoulou, A., & Georgiou, K. (2014). Introducing e-TPCK: An adaptive e-learning technology for the development of teachers' technological pedagogical content knowledge. In C. Angeli, & N. Valanides (Eds.), Technological pedagogical content knowledge (pp. 305–317). New York: Springer.
- Blondy, L. C. (2007). Evaluation and application of andragogical assumptions to the adult online learning environment. *The Journal of Interactive Online Learning*, 6(2), 116–130.
- Carpenter, J. P., & Linton, J. N. (2016). Edcamp unconferences: Educators' perspectives on an untraditional professional learning experience. *Teaching and Teacher Education*, 57, 97–108.
- Cercone, K. (2008). Characteristics of adult learners with implications for online learning design. Association for the Advancement of Computing in Education Journal, 16(2), 137–159.
- Chan, S. (2010). Applications of andragogy in multi-disciplined teaching and learning. Journal of Adult Education, 39(2), 25–35.
- Chen, X., Xie, H., Zou, D., & Hwang, G. J. (2020). Application and theory gaps during the rise of artificial intelligence in education. *Computers and Education: Artificial Intelligence*, 1, Article 100002.
- Darling-Hammond, L., Hyler, M. E., & Gardner, M. (2017). Effective Teacher Professional Development. Palo Alto, CA: Learning Policy Institute [Available online: https://learningpolicyinstitute.org/sites/default/files/productfiles/Effective_Teacher_Professional_Development_REPORT.pdf . (Accessed_January 2021).
- Connors-Tadros, L., & Hororwitz, M. (2014). How are early childhood teachers faring in state teacher evaluation systems? (CEELO policy report). New Brunswick, NJ: Center on Enhancing Early Learning Outcomes. Darling-Hammond.
- Cordingley, P., Higgins, S., Greany, T., Buckler, N., ColesJordan, D., Crisp, B., et al. (2015). Developing great teaching: Lessons from the international reviews into effective professional development. Teacher development trust [Available online: https://tdtrust. org/wp-content/uploads/2015/10/DGT-Summary.pdf -. (Accessed January 2021).
- Ganser, Tom (2000). An ambitious vision of professional development for teachers. NASSP Bulletin, 84. https://doi.org/10.1177/019263650008461802.
- Garet, M. S., Porter, A. C., Desimone, L., Birman, B. F., & Suk Yoon, K. (2001). What makes professional development effective? Results from a national sample of teachers. *American Educational Research Journal*, 38(4), 915–945.
- Gynther, K. (2016). Design framework for an adaptive MOOC enhanced by blended learning: Supplementary training and personalized learning for teacher professional development. Flectronic, Journal of F. Learning, 14(1), 15-30
- development. Electronic Journal of E-Learning, 14(1), 15–30.

 Harris, J. (2016). Inservice teachers' TPACK development: Trends, models, and trajectories. In M. Herring, M. Koehler, & P. Mishra (Eds.), Handbook of technological pedagogical content knowledge for educators (2nd ed., pp. 191–205). New York, NY: Routledge.
- Hughes, J. (2005). The role of teacher knowledge and learning experiences in forming technology-integrated pedagogy. *Journal of Technology and Teacher Education*, 13, 277–302.
- Hwang, G.-J. (2014). Definition, framework, and research issues of smart learning environments – a context-aware ubiquitous learning perspective. Smart Learning Environments, 1(1), 4. https://doi.org/10.1186/s40561-014-0004-5
- Hwang, G. J., & Fu, Q. K. (2020). Advancement and research trends of smart learning environments in the mobile era. *International Journal of Mobile Learning and Organisation*, 14(1), 114–129.
- Hwang, G. J., Xie, H., Wah, B. W., & Gasevic, D. (2020). Vision, challenges, roles and research issues of artificial intelligence in education. *Computers & Education: Artificial Intelligence*, 1, Article 100001.
- Janssen, N., Knoef, M., & Lazonder, A. W. (2019). Technological and pedagogical support for pre-service teachers' lesson planning. *Technology, Pedagogy and Education*, 28(1), 115–128.

- Kajonmanee, T., Chaipidech, P., Srisawasdi, N., & Chaipah, K. (2020). A personalised mobile learning system for promoting STEM discipline teachers' TPACK development. International Journal of Mobile Learning and Organisation, 14(2), 215–235
- Knowles, M. S. (1980). The modern practice of adult education: From pedagogy to andragogy (revised and updated). Englewood Cliffs, NJ: Cambridge Adult Education.
- Loeng, S. (2018). Various ways of understanding the concept of andragogy. Cogent Education, 5(1), Article 1496643. https://doi.org/10.1080/ 2331186X.2018.1496643
- Loxley, A., Johnston, K., Murchan, D., Fitzgerald, H., & Quinn, M. (2007). The role of whole-school contexts in shaping the experience and outcomes associated with professional development. *Journal of In-Service Education*, 33(3), 265–285.
- Ma, N., Xin, S., & Du, J. Y. (2018). A peer coaching-based professional development approach to improving the learning participation and learning design skills of inservice teachers. *Educational Technology & Society*, 21(2), 291–304.
- McKenney, S., & Visscher, A. J. (2019). Technology for teacher learning and performance. *Technology, Pedagogy and Education*, 28(2), 129–132.
- Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108(6), 1017–1054.
- Murray, M. C., & Pérez, J. (2015). Informing and performing: A study comparing adaptive learning to traditional learning. *Informing Science: The International Journal* of an Emerging Transdiscipline, 18, 111–125.
- Panjaburee, P., & Srisawasdi, N. (2018). The opportunities and challenges of mobile and ubiquitous learning for future schools: A context of Thailand. Knowledge Management & E-Learning, 10(4), 485–506.
- Rawlins, P., & Kehrwald, B. (2014). Integrating educational technologies into teacher education: A case study. *Innovations in Education & Teaching International*, 51(2), 207–217
- Ronfeldt, M., Farmer, S. O., McQueen, K., & Grissom, J. A. (2015). Teacher collaboration in instructional teams and student achievement. *American Educational Research Journal*, 52(3), 475–514.
- Rosenthal, R. (1994). Parametric measures of effect size. In H. Cooper, & L. V. Hedges (Eds.), *The handbook of research synthesis* (pp. 231–244). Russell Sage Foundation.
- Schrum, L. (1999). Technology professional development for teachers. Educational Technology Research & Development, 47, 83–90.
- Southgate, E., Blackmore, K., Pieschl, S., Grimes, S., McGuire, J., & Smithers, K. (2018). Artificial Intelligence and Emerging Technologies (Virtual, Augmented and Mixed Reality) in Schools: A Research Report. Commissioned by the Australian Government. Retrieved https://docs.education.gov.au/node/53008.
- Timotheou, M. M., Christodoulou, A., & Angeli, C. (2017). On the use of e-TPCK for situated teacher professional development. In D. G. Sampson, J. M. Spector, D. Ifenthaler, & P. Isaias (Eds.), Proceedings of 14th International Conference on Cognition and Exploratory Learning in Digital Age (pp. 259–262). Algarve, Portugal: International Association for Development of the Information Society (IADIS.
- Timperley, H. (2008). Teacher professional learning and development. Brussels: The International Academy Of Education [Available online: http://www.ibe.unesco.org/fileadmin/user_upload/Publications/Educational_ Practices/EdPractices_18.pdf
 (Accessed January 2021).
- Tsuda, E., Sato, T., Wyant, J. D., & Hasegawa, E. (2019). Japanese elementary teachers' experiences of physical education professional development in depopulated rural school districts. *Curriculum Studies in Health and Physical Education*, 10(3), 262–276.
- Voogt, J., & McKenney, S. (2017). TPACK in teacher education: Are we preparing teachers to use technology for early literacy? *Technology, Pedagogy and Education*, 26 (1), 69–83.
- Wongwatkit, C., Srisawasdi, N., Hwang, G. J., & Panjaburee, P. (2017). Influence of an integrated learning diagnosis and formative assessment-based personalized web learning approach on students learning performances and perceptions. *Interactive Learning Environments*, 25(7), 889–903.
- Xie, H., Chu, H. C., Hwang, G. J., & Wang, C. C. (2019). Trends and development in technology-enhanced adaptive/personalized learning: A systematic review of journal publications from 2007 to 2017. Computers & Education, 140, Article 103599.
- Zaslow, M. (2014). General features of effective professional development: Implications for preparing early educators to teach mathematics. In H. Ginsburg, M. Hyson, & T. Woods (Eds.), Helping early childhood educators teach math (pp. 91–116).
 Baltimore, MD: Paul H. Brookes.
- Zawacki-Richter, Olaf, Marín, Victoria I., Bond, Melissa, & Gouverneur, Franziska (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? *International Journal of Educational Technology* in Higher Education, 16, Article 39, 1–27 https://doi.org/10.1186/s41239-019-0 171-0.

Implementation of an Andragogical Teacher Professional Development Training Program for Boosting TPACK in STEM Education: The Essential Role of a Personalized Learning System

Pawat Chaipidech¹, Tanachai Kajonmanee², Kornchawal Chaipah^{2,4}, Patcharin Panjaburee³ and Niwat Srisawasdi^{1,4*}

¹Faculty of Education, Khon Kaen University, Thailand // ²Faculty of Engineering, Khon Kaen University, Thailand // ³Institute for Innovative Learning, Mahidol University, Thailand // ⁴Smart Learning Innovation Research Center, Khon Kaen University, Thailand // c.pawat@kkumail.com // tanachai.kajonmanee@kkumail.com // kornchawal@kku.ac.th // patcharin.pan@mahidol.edu // niwsri@kku.ac.th *Corresponding author

ABSTRACT: Several previous studies have indicated that teachers require knowledge to enhancing technologyintegrated instructional practices for representing and formulating the content to students. Therefore, the technological pedagogical content knowledge (TPACK) framework is essential for advancing teacher professional development (TPD) programs while using technology-integrated teaching. Moreover, personalized learning systems have been increasingly recommended to improve the quality of professional teacher development. This TPD study was based on andragogy theory and the TPACK framework. This study implemented an andragogical TPD outreach program integrating a TPACK-oriented personalized learning system as a 2-year face-to-face training mode for TPACK-focused science, technology, engineering, and mathematics (STEM) education to in-service STEM teachers from secondary schools in northeastern Thailand. They were employing a pre-post intervention design method, this paper reports on an ongoing longitudinal investigation of the influence of the TPD program, disseminated in four 2-day intensive training workshops, on 153 in-service teachers' TPACK development. The study measured participants' changes of the cognitive outcome on how to teach STEM situation-related photosynthesis, friction, light and vision, and composite materials with digital technology using multiple-choice TPACK tests embedded in the proposed personalized learning system. The results showed in-service STEM teachers' incremental TPACK improvement from the implementation of the TPD intervention. The results indicate the alleged superiority of the integrated personalized learning system as a critical part of promoting TPACK development in STEM education.

Keywords: Personalized learning, Mobile technology, Andragogy, Teacher training, STEM education

1. Introduction

Previous research has indicated that, while students from primary education receive learning activities in the fields of science, technology, engineering, and mathematics (STEM), they tend to have less interest and motivation for STEM learning, especially in Western countries and more prosperous Asian nations (Thomas & Watters, 2015). Importantly, students' STEM interests and motivation are major prerequisites to promoting meaningful STEM learning. They are closely related to their future career choices associated with STEM disciplines (Christensen & Knezek, 2017; Maltese et al., 2014). Concerning this problematic issue, several nations continue to transform the conventional subject learning-related STEM disciplines and grow STEM education improvement to meet the twenty-first century's environmental, social, and economic challenges (English, 2016; Kelley & Knowles, 2016). Regarding the global urgency, the demand for preparing a STEM workforce equipped with STEM skills and competencies has been increasingly acknowledged worldwide, and the need for an educational transformation of science, mathematics, and technology education and development into integrated STEM education and STEM professional development has been pointed out by educational researchers, practitioners, and developers (Cheng et al., 2020; Honey et al., 2014). In addition to the growing global interest and substantial endeavor to promote STEM, not only do all students need a more robust integrated and holistic approach to STEM education, but STEM teachers are also needed to educate and prepare for gaining high-quality STEM teaching competency (Kajonmanee et al., 2020; Srisawasdi, 2012; Srisawasdi, 2015). Educational reforms and efforts should increase STEM teacher supply through well-designed teacher professional development (TPD; Jong, 2019a; Jong, 2019b). Research about TPD shows that it is most effective when the process of professional learning is active, consistent with intrinsic motivation, focused on individual performance, and reflecting actual progression (Harris, 2016). As such, the TPD program movement is widely related to the intervention that can support the diagnostics of individual trainees, provide customized professional learning opportunities, situate active learning within professional learning communities, and then be used to monitor adult teachers' progression (Joyce & Calhoun, 2010). To be effective, it is crucial to consider the conceptual theory of andragogy, which refers to methods and principles used to facilitate adult learning,

particularly creating a professional development class conducted with an adult STEM teacher audience. To generate a true mirror of pedagogical methods teachers employ with their students, the andragogy should be concerned with the enhanced education of the teaching forces to improve the quality of education received at the K-12 level (Marshall, 2019).

As Chai (2019) and Fore et al. (2015) indicated, TPD has been laying the foundation for reforming education. Thus, professional development is a growth-promoting learning process that empowers STEM teachers to adopt an integrated and holistic approach to teaching STEM and going through it yearly to improve the quality of integrated STEM teaching competencies. However, there is still a lack of TPD studies for integrated STEM education (Al Salami et al., 2017; Cavlazoglu & Stuessy, 2017; Chai, 2019; Chai, Jong, & Yan, 2020). The approach to combine some or all of the four disciplines of science, technology, engineering, and mathematics into one class, unit, or lesson and bound by STEM practices within an authentic context or real-world situation to enhance student learning (Kelly & Knowles, 2016; Moore et al., 2014). In the context of integrated STEM education, the teacher's role is to design and implement STEM instructional practices to facilitate students achieving higher-order thinking competencies, such as problem-solving via active participation and their creative thinking abilities via teamwork, using knowledge and skills (Bell et al., 2018; Condon & Wichowsky, 2018; Hwang et al., 2020; Lee, 2015). Therefore, providing teacher knowledge is key to effective STEM instructional practices, especially technology-enhanced STEM education (Kajonmanee et al., 2020; Hwang et al., 2020; Nikou & Economides, 2019).

Regarding teacher knowledge, Shulman (1986) pointed out that it is necessary to engage teachers in representing and formulating the content/subject that makes it comprehensible to others. In other words, teachers need to use a particular tool to deliver content to students rather than substitute or augment content with available tools. In line with this concern, Mishra and Koehler (2006) suggested teacher knowledge of how to effectively teach with a proper technology; that is the framework of technological pedagogical content knowledge (TPACK), making for effective technology-enhanced teaching. Thus, TPACK can be regarded as an effective technology-integration model for TPD (Chai, Jong, & Yan, 2020; Lee et al., 2019; Pondee et al., 2021). In addition, teachers would think first about what they want students to know and how they will blend technology into STEM content; therefore, Chai (2019) indicated that teachers should activate and expand their TPACK for STEM lesson design. However, training teachers to teach STEM lessons with technology effectively is a complex task, particularly regarding their different instructional profiles and characteristics. To respond to the demand for multiple knowledge applications for teaching with technology in STEM education, the technology of a personalized learning approach seems to hold considerable promise with the usefulness of data analytics in future TPACKbased professional learning (Angeli et al., 2014). Moreover, personalized learning technology could prove highly effective with adaptive operation and systems in situated professional development (PD; e.g., TPACK-STEM; Timotheou et al., 2017). Therefore, the connections between TPACK, STEM, and personalized learning systems could contribute to a composite framework to analyze and promote TPD quality in STEM education. Thus, this study employs the TPACK framework as the theoretical basis for designing STEM teachers' TPD programs and then implementing the programs via the integration of personalized learning systems to cultivate their TPACK regarding integrated STEM education.

Finally, a TPACK framework that explains essential knowledge types has been suggested as a requirement of effective technology integration for teachers. Similarly, for adult teachers to use technology effectively in their STEM instruction, TPACK is essential. This effort may foster connections between TPD and andragogy in the fields. It is necessary to advance teachers' TPACK in STEM education and contribute to a composite framework to analyze the quality of andragogical TPD approaches for STEM teachers. Hence, this study will examine a TPD intervention implemented to develop TPACK in the STEM education of in-service teachers in Thailand. The intention is to provide an answer to the following question: Does an andragogical TPD intervention program emphasizing TPACK in integrated STEM education, with the support of a personalized learning system, affect in-service science teachers' TPACK improvement?

2. Literature review

2.1. Andragogy in Teacher Professional Development (TPD)

In the past decade, scholars have identified factors for successful PD. For example, practicing or training content knowledge alone is not sufficient; teachers must also learn the appropriate pedagogies to foster student learning (Shulman, 1986; Mishra & Koehler, 2006). Improving instructional knowledge and skills among teachers is through PD with sustained learning periods (Garet et al., 2001). To avoid failure of school improvement,

teachers should be active participants rather than passive receptacles of knowledge through PD (Darling-Hammond et al., 2017). In addition, researchers have indicated that teacher professional development (TPD) programs providing specialized training to adult teachers generally have more significant and positive influences on learners' outcomes (Connors-Tadros & Horwitz, 2014; Zaslow, 2014). To be effective, PD needs to address the principles and methods of adult learning and training for teachers, and the focus must shift to a rigorous process of capacity building for adults so that the way of handling their educational needs is viewed differently from that related to children. As indicated by Knowles (1980), andragogy refers to the procedure for supporting the learning of adults, while pedagogy refers to the strategy that teachers use to teach students. Thus, andragogy is an educational approach that explicitly considers adult learning needs, andragogical principles, and highly suitable methods for any form of adult education (Loeng, 2018). It is well known that teachers have to improve their competencies to harmonize with their anthroposphere particularly, and the andragogical approach, developed extensively by Malcolm Knowles, is a well-lauded response to the TPD approach that considers adult learning needs. According to Knowles' (1980) perspective on andragogy, Chan (2010) summarized the six following main assumptions based on andragogy:

- Self-concept: Adult learners are self-paced, autonomous, and independent.
- Role of experience: Adults tend to elicit and apply their previous experience to learn.
- Readiness to learn: Adults tend to be ready to learn what they believe they need to know.
- Orientation to learning: Adults learn for immediate applications rather than for future uses. Their learning orientation is problem-centered, task-oriented, and life-focused.
- Internal motivation: Adults are more internally than externally motivated.
- Need to know: Adults need to know the value of learning and why they need to learn.

According to the premises of andragogy theory, Carpenter and Linton (2016) reported that the learners' opportunity to engage in direct learning, collaborate with others, and contribute to the learning of others motivate high levels of enthusiasm for their TPD experiences, where active learning, autonomy, and collaboration are key features to indicate effective PD for adult teachers. In addition, Tsuda et al. (2019) applied the framework of andragogy theory to create a series of intensive workshops supporting elementary school teachers' development of unique teaching perceptions regarding the societal shift toward depopulation. The findings indicated the importance of providing context-specific PD, where a problem-centered approach and self-directed processes are essential for effective TPD.

2.2. TPACK for teachers in STEM education

Recently, the TPACK framework has offered opportunities for providing teaching knowledge and guidance in professional teacher development programs. According to Mishra and Koehler's (2006) framework, it currently seems to be the single most significant factor in the success or failure of TPD in STEM education. Since STEM education is increasingly drawing attention from different parts of the world, there is currently an emerging call for STEM education to be synthesized with the TPACK framework for TPD, and the integration of STEM education and the TPACK framework is considered as a means to advance the state of affairs (Chai, Jong, & Yan, 2020). Moreover, technology is integral to TPACK and STEM education, and TPACK and STEM aim to develop students' twenty-first-century capacities (Chai, 2019). Scholars have emphasized the importance of providing the TPACK teaching model to let teachers understand and apply it in classrooms based on the knowledge addressed across technology, pedagogy, and content (Koehler & Mishra, 2005; Koehler & Mishra, 2008; Mishra & Koehler, 2006; Thompson & Mishra, 2007). Thus, interest and challenges have grown in incorporating the TPACK framework into teacher education to support the knowledge development of teaching in teachers (Janssen et al., 2019). Most of these studies have intended to design and develop technologyintegration learning interventions to foster teachers' development of TPACK (Voogt et al., 2013). To be effective in promoting TPD in STEM education, these two fields of study-TPACK and STEM-need integration because teachers' competencies in technology integration and facilitating interdisciplinary STEMbased learning are both likely to enhance students' knowledge and skills that are crucial to their career prospects (Chai, Rahmawati, & Jong, 2020; Parker et al., 2015). To establish effective STEM classrooms, teachers must acquire specific knowledge related to TPACK to use educational technologies in particular STEM-specific learning situations (Milner-Bolotin, 2012; Pondee et al., 2021).

2.3. Personalized learning systems for TPACK PD

In the past decade, personalized learning systems have been used across contexts, particularly for supporting students' learning achievement, attitudes, and motivations, such as mathematics (Hwang, 2003; Panjaburee et al.,

2010; Lin et al., 2011; Panjaburee et al., 2013; Wongwatkit et al., 2017), computer science courses (Chookaew et al., 2015; Latham et al., 2014; Wanichsan et al., 2021), and physical education (Huang et al., 2011). Nonetheless, the personalized learning systems concerning PD are mostly few studies. It might be because training teachers to know how to teach effectively with technology is undoubtedly a complex task, and it demands the application of various bodies of knowledge related to teaching (Angeli et al., 2014). Therefore, it is challenging to improve the quality of teaching and promote TPD, the personalized learning approach is a considerably process-based method of TPACK development (Harris, 2016), and scholars are increasingly considering personalized learning resources as an effective way to improve teaching competencies with technology for teachers (Angeli et al., 2014; Kajonmanee et al., 2020). Personalized learning systems, which consider individual differences and tailor specific learning paths and experiences to current situations and learning needs, have become increasingly crucial for TPD. To support professional teaching development in the digital era for teachers, researchers and developers have attempted to develop technological solutions, such as online-mediated personal learning platforms, to support TPACK development. Angeli et al. (2014) proposed an adaptive and interactive electronic learning system for fostering teachers' TPACK, called e-TPACK. The system has been designed and developed specifically to promote teachers' ongoing TPACK development by personalizing the content presented to them in the form of technology-enhanced instructional scenarios. Moreover, this online learning system and approach show a particular role of personalized learning analytics and are also helpful with the logistics of planning TPD to further develop teachers' TPACK.

Regarding the pedagogical application of personalized learning systems for STEM teachers' TPACK development, Kajonmanee et al. (2020) developed a TPACK-oriented personalized learning system to personally foster their essential teaching knowledge with particular content and digital technology. The system corresponds to three simple phases—the diagnostic, customization, and monitoring phases—as described in the next section. The results of the study indicated a promising effect of the TPD-embedded personalized learning system intervention on improving in-service teachers' TPACK in STEM teaching practice.

3. The Andragogical TPD-enhanced TPACK in teaching STEM (TPACK-STEM TPD)

3.1. An Andragogical TPD model for enhancing TPACK in the teaching of integrated STEM education

As is known worldwide, one way to improve instructional knowledge and skills among teachers is through TPD programs. The study presented in this paper focuses on a TPD instructional model emphasizing an andragogical approach for providing specialized training to adult teachers and enhancing positive influences on their TPACK of integrated STEM education. The main goal of the andragogical TPD model is that teachers, who are adults, learn to improve their TPACK in STEM education in relation to their needs, emphasizing how to implement the TPD using a personalized learning system in a supportive role. The proposed TPD model is expected to support all teacher professional learning design activities, and when integrated with a personalized learning system, the model promotes TPACK. Figure 1 shows the main components of the andragogical TPD.

The andragogical TPD model for the TPACK-STEM workshop is divided into four main phases (see Figure 2), with the following structure:

- (1) The first phase (motivation phase) consists of two sessions. To prepare teachers to learn what they need to know, to meet adults' readiness-to-learn and need-to-know assumptions (Knowles et al., 2005), the first session is an introduction to instructional pain points in conventional science classes, findings from research-based learning innovation, and seamless STEM learning and its potential advantages. Then, the second session comprises self-paced learning on TPACK-STEM with a personalized learning system, the Khon Kaen University (KKU)-TPACK. This session will address self-concept and internal motivation assumptions for adult learning (Knowles et al., 2005), supporting learners in believing that they are responsible for their lives. With the KKU Smart TPACK system, the teachers can develop their latent self-paced learning skills and are motivated by intrinsic rewards using a sense of accomplishment to complete their TPACK.
- (2) The second phase (conceptualization phase) comprises a seamless STEM learning authoring tool—a seamless mobile application called KKU-iNote—and a tour of its learning process through interaction in the learning-how-to-learn workshop. This phase emphasizes the adult's role of experience (Knowles et al., 2005), which is a way to encourage the adult to learn by drawing on previous teaching experiences. Participants carry out a complete seamless STEM learning process for a sample lesson using the detailed step-by-step practice for this phase. Participants then experience the student role and are expected to explore and conceptualize the learning process designed for integrated STEM education perspectives.

- (3) The third phase (consolidation phase) comprises a presentation of a learning-how-to-teach workshop that addresses adults' orientation to learning assumptions (Knowles et al., 2005). In this phase, participants apply the same learning process, supported by KKU-iNote, to an integrated STEM learning lesson within the participants' teaching context located in the curriculum guidelines. Moreover, participants are expected to select one or several lessons to design integrated STEM lessons and implement them in the upcoming class after the workshop. This phase can support the assumption that adults learn for immediate applications rather than for future uses. In other words, adults prefer tasks that engage them to deal with authentic problems.
- (4) The fourth phase (recommendation phase) consists of the two following sessions: (i) repeatable self-paced learning on TPACK-STEM with the KKU Smart TPACK system as a reviewing process of their TPACK progression, and (ii) a reaction to discuss the TPACK result and to draw the final main lessons learned from the workshop addressing TPACK of the lesson. Those sessions have prepared them for the readiness-to-learn and need-to-know assumptions, as done in the first phase.

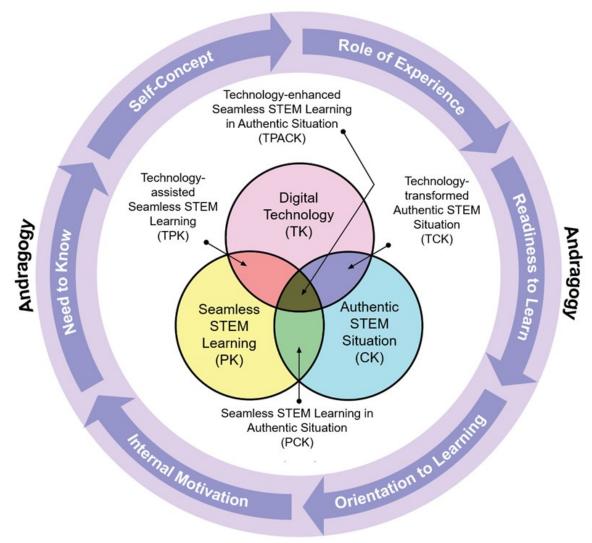


Figure 1. The framework of the andragogical teacher professional development model for enhancing in-service teachers' TPACK

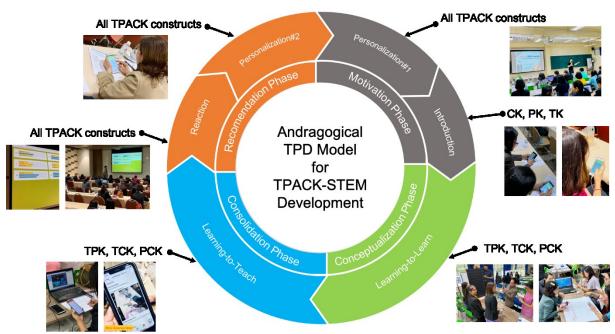


Figure 2. Design of the andragogical teacher professional development model for intervening in-service teachers' TPACK in STEM education

3.2. The TPACK-oriented personalized learning system

A personalized learning system is an adaptive learning environment that fits well with different learners' different learning goals and capabilities and is adapted for learners' specific needs; it is available on the learner's mobile device anywhere and anytime (Kajonmanee et al., 2020). Regarding the TPACK framework, the personalized learning system should have the ability to modify professional learning lessons using different TPACK parameters. In this study, a TPACK-oriented personalized learning system produced by KKU Smart Learning Academy (KKU-SLA), called the KKU Smart TPACK application, is a mobile-assisted professional learning system for teachers to personally cultivate their essential knowledge of teaching any particular content with the support of technology; they can accomplish this by focusing on their learning needs and capabilities in an anywhere and anytime learning manner. In this study, the TPACK-oriented personalized learning system was created as a professional learning environment for STEM teachers regarding their prior knowledge of teaching and learning style and differences in equipment and network qualities (Kajonmanee et al., 2020). However, empirical evidence has not supported an association between applications of learning styles and educational outcomes (Kirschner, 2017). Evidence-based practices have guided educators to create proper learning environments by balancing support and learning opportunities to encourage students' motivation (Brophy, 2013; Toste, Bloom, & Heath, 2014). Thus, this may be done by creating learning material that incorporates students' preferred learning styles and allowing them to choose instruction (Chookaew et al., 2015; Panjaburee & Srisawasdi, 2016; Wongwatkit et al., 2017; Thanyaphongphat, & Panjaburee, 2019). This empirical evidence has suggested that learning styles remain a challenge throughout education courses. Given this challenge, this study applied the Felder-Silverman learning style model (Felder & Silverman, 1988) to classify the participants into visual learners who remember best and prefer to learn from what they have perceived from visual information (e.g., pictures, diagrams, symbols), and verbal learners who get the full benefit out of textual representations. The system is a machine-centered adaptivity technology created with a set of predefined rules. At the same time, the adaptable personalized learning mechanisms are those functions in which teacher trainees can intervene and personalize the TPACK of STEM education learning lessons for themselves. For promoting teachers' ongoing advancement of TPACK in a self-paced and personalized manner, the system has been designed and developed explicitly corresponding to three simple main phases—the diagnostic, customization, and monitoring phases. The system's support to those three phases by a single platform using different combinations of tools and representations is another distinctive feature. This system process typically begins with the diagnostic phase, where the users (teacher trainees) have had their personal context analyzed by the system algorithm; that is, the personal learning style and all essential knowledge are clarified following the TPACK framework to apply the desired TPACK knowledge objects, define the learning pathways, and identifying particular kinds of learning materials for which the user needs to improve. This study's online learning material file types include video, pdf, ppt, and HTML. Figure 3 shows screenshots of two diagnostic templates available in the proposed system after the trainees completed a learning style questionnaire and TPACK test validated by educational experts.

Figure 3. Screenshots of the TPACK-oriented personalized learning system showing the learning style (left) and TPACK (right) diagnostic templates

After diagnosing their learning style and prior teaching knowledge, teachers can start the *customization* phase—the process of selecting and sorting different kinds of learning material based on the user's learning style and the device's capabilities, which include the flow of learning contents and associated resources that users are expected to follow. In addition, this phase seeks to ensure personalized and uninterrupted mobile learning for users. Figure 4 shows screenshots of the two customization templates available in the proposed system.

Figure 4. Screenshots of the customization phase screens showing the learning materials regarding the TPACK diagnostics results (left) and an example of learning content following TPACK constructs (right)

The final step of the system is the *monitoring* phase. In this phase, a user can view the learning styles and the TPACK learning progress for individual topics via the mobile application. Moreover, the user can compare previous performance with the performance of other users in the project to reflect and visualize the current status of the TPACK. Figure 5 shows a screenshot of the monitoring template available in the proposed system.

Figure 5. Screenshots of the monitoring phase screens showing an accumulation of individual TPACK results

4. The Study

The research question addressed by this study is as follows:

RQ: Does an andragogical TPD intervention program emphasizing TPACK in integrated STEM education support a personalized learning system that affects in-service science teachers' TPACK improvement?

A quantitative research setting framed the study. Because this research focuses on the in-service teacher training context, supported by the particular learning system and structured according to a specifically designed TPD training intervention program, which is approached in conditions that are as authentic as possible, mostly relying on statistically significant results or generalizations. The study involved in-service teachers from a large-scale educational improvement project called KKU-SLA, initiated by KKU in 2016 and funded by the university to promote social devotion to local communities. The KKU-SLA project targeted the quality improvement of compulsory education in science, mathematics, and the English language by implementing KKU in-house learning innovations in the three fundamental subjects. The KKU-SLA implemented by Smart Learning Innovation Research Center is an educational improvement project for secondary schools located northeastern region of Thailand. The ultimate aim of the project is to renovate middle school science, mathematics, and English education regarding the national basic education core curriculum of Thailand for gaining expected science literacy, mathematics literacy, and reading literacy in students aged 13-15 years. To achieve better learning outcomes in science, mathematics, and English, the project also focused on promoting the students' global and digital literacy and twenty-first-century skills needed in the specific subject matter. Currently, this project involves 218 secondary education schools from 19 provinces located in northeastern Thailand. In the project, there were approximately 1,617 in-service science, mathematics, and English language teachers and 1,671 middle school students from the participating schools who have joined the KKU-SLA project. In the context of smart science learning innovation for the project, the in-service science teachers voluntarily participated in a TPD intervention-training program focused on developing their TPACK in STEM education. In this study, the results of the first 2-year TPD intervention-training program are described and reported. According to reach a large sample size, it is less likely that outliers in the study can adversely influence the results the research question wants to achieve impartially.

5. Methods

5.1. Participants

The study was carried out in the context of a series of TPD intervention-training sessions following the instructional model presented in Figure 5. The TPD program was instructed by four of the authors of this paper and involved 153 in-service teachers (119 women and 34 men) from 208 secondary education schools located in northeastern Thailand, who were teaching seventh-, eighth-, and ninth-grade science classes. Their teaching

experience was ranked from 2 to 34 years, and they had about 10.5 years of teaching experience on average. Most held a bachelor's degree, and some held a master's degree in education. Moreover, they all had some experience of using digital technology for science classes before this study.

The present study used a pre-experimental research method to examine the effect of the TPD intervention program on teachers' TPACK in integrated STEM education. The research team adopted the methodology that measured changes in individual TPD intervention during the study period. Pre-intervention and post-intervention measures were used to assess the effect of the TPD interventions on cognitive outcomes for in-service teachers' TPACK of integrated STEM education.

5.2. The Andragogical TPD intervention training workshops

To foster the in-service teachers' TPACK in integrated STEM education through the TPD program, four intensive training interventions have been designed following the TPACK framework and with the support of the personalized learning system, KKU Smart TPACK. In the present study, all in-service teachers voluntarily attended four 2-day intensive training workshops from August 2018 to June 2019. Table 1 shows the series of TPACK-oriented TPD meetings for STEM in-service teachers considered in the present study.

Table 1. Description of the TPD intervention program fostering STEM in-service teachers' TPACK

Intervention	Date	The topic of STEM	Digital technology	Illustrative picture
program		learning situation	focused	
TPD #1	August 2018	Composite materials	Hands-on sensor laboratory	
TPD #2	November 2018	Friction	Mobile application (built-in sensor)	
TPD #3	January 2019	Photosynthesis	Computer simulation	
TPD #4	June 2019	Light and vision	Blended laboratory (hands-on sensor laboratory and computer simulation)	

5.3. Research instrument

To examine the significant effects of the TPD intervention program, the researchers assessed TPACK improvement by comparing its scores before and after receiving the individual intervention. To assess in-service teachers' TPACK in integrated STEM education, the researchers developed closed-ended multiple-choice questionnaires measuring the TPACK were developed and the instruments employed in this study (see an example in the appendix), which were then validated by the research panel, consisting of an expert in each field of science education, educational technology, and teacher education. The measurement instruments were embedded into the KKU Smart TPACK mobile application. For all four TPD interventions, there were 14

TPACK question items for TPD #3, and the questionnaire reliability was 0.75; moreover, there were 13 TPACK question items for TPD #1, #2, and #4, and the questionnaire reliabilities were 0.71, 0.74, and 0.71, respectively. The questionnaires consist of measured items of content knowledge CK (five to six items, depending on the number of main concepts), PK (two items), TK (two items), technological content knowledge (TCK; one item), Pedagogical content knowledge (PCK; one item), technological pedagogical knowledge (TPK; one item), and TPACK (1 item). The questionnaires required 45 minutes to complete. Examples of TPACK-measured question items are displayed in the appendix.

5.4. Data collection and analysis

To monitor the development of in-service science teachers' TPACK in integrated STEM education during this study, the teachers completed questionnaires before and after the TPD training interventions (pre-post comparison). To be more precise, there were four 2-day intensive workshops indicated as the TPD intervention program in this study, and there were four phases of training intervention. For Day #1, the face-to-face training started with a full self-paced professional learning session with the personalized learning system. In the session, teachers could learn independently and individually with the system in two steps—self-monitoring as a pre-test (45 minutes) and self-paced learning with TPACK materials (45 minutes). In the following session (90 minutes), the participants interacted with a situational introduction (90 minutes) targeting instructional pain points in authentic classroom contexts and findings and solutions from research-based learning innovation. Both sessions were distinguished as the motivation phase (180 minutes). They participated in an entire session of learning how to learn and roleplay as a learner, using the mobile-assisted STEM learning innovation created by the project session (180 minutes) in the conceptualization phase. They were encouraged to conceptualize the integrated STEM learning process with collaborative, hands-on practices in a learning community. For Day #2, the first session (180 minutes) started with a whole practical work of learning how to teach, with the support of mobileassisted integrated STEM learning with an authentic learning task produced by the project, representing the consolidation phase. Here, the teachers were facilitated to consolidate the teaching practice of seamless STEM learning with mind-on instructional design and hands-on manipulation in both individual and collaborative modes. In the next session (90 minutes), all trainees monitored their TPACK results from the system and were encouraged to engage in a critical discussion about TPACK of the STEM learning lesson (45 minutes); they were then reflected particularly to conclude how to implement the STEM learning experience in school science class (45 minutes). In the final session (90 minutes), the participants repeated interacting individually in whole selfpaced professional learning with the personalized learning system in two steps—self-monitoring as post-test (45 minutes) and self-paced learning with TPACK materials (45 minutes). To this end, trainees were allowed to conduct self-paced professional learning with the personalized learning system as much as they needed to address their TPACK comprehension. Figure 6 displays the structure of TPD intervention with the integration of the personalized learning system.

In addition, Figure 7 presents the data collection procedures along with the timing of TPDs 1, 2, 3, and 4. At the beginning of TPD#1, the participants were administered a questionnaire on TPACK in integrated STEM education. It was regarded as the pre-test data, meaning that the participants were elicited their TPACK in integrated STEM education training without the personalized learning systems before participating in the TPD interventions with the personalized learning system. Around 2 months later, at the end of TPD#2, the participants respond to the questionnaire again, as the 1st mid-test data. Similarly, around one month later, at the end of TPD#3, the participants respond to the questionnaire again, as the 2nd mid-test data. Post-test data were collected using the questionnaire again at the end of TPD#4, around 4 months after the 2nd mid-test. That is to say, the 1st mid-, 2nd mid-, and post-test data reflected the participants' TPACK in integrated STEM education training with the personalized learning system of this study.

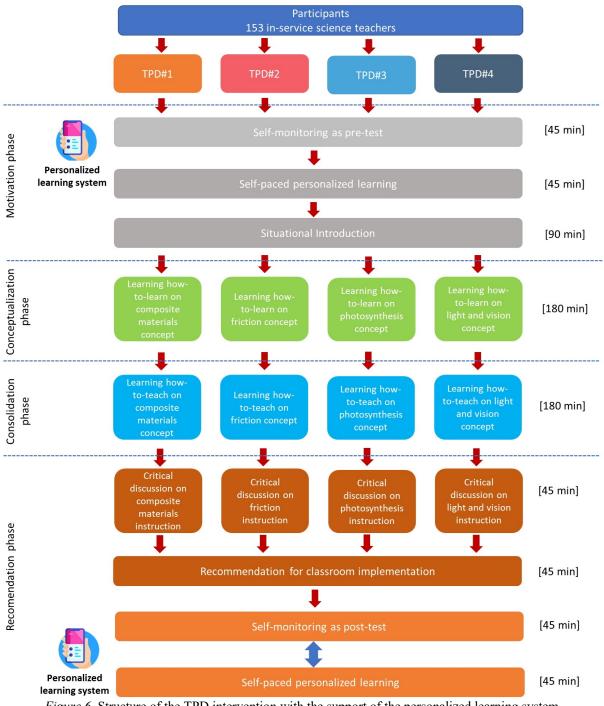


Figure 6. Structure of the TPD intervention with the support of the personalized learning system

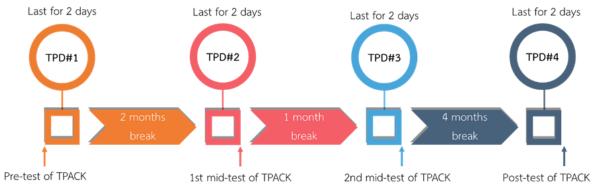


Figure 7. Procedure for data collection in TPDs 1, 2, 3, and 4

6. Results

6.1. TPACK pre- and post-test scores for each TPD program

After eliciting data from the participants during the training workshop, the researchers cleaned the data by eliminating faulty and incomplete data. For instance, some teachers who did not finish the tests during the workshop session were excluded from the data. This study used IBM SPSS Statistics 26 as the analytical tool. To compare the pre- and post-intervention mean scores and ensure that the test scores did not violate the assumption of normal distribution (based on the Shapiro–Wilk test), the paired *t*-test was used to compare the experimental conditions. A *p*-value < .05 was taken as significant. If the difference between the pre- and post-test scores was significant, the effect size and 95% confidence interval were calculated. For a descriptive overview, the researchers reported the mean scores and standard deviations of in-service teachers' scores regarding the TPACK components.

The quantitative data in this study were collected on two different occasions to address the research question—at the beginning and the end of the TPD intervention program. Following the purpose of this study, the hypothesis was that there would be no statistically significant difference between in-service teachers' total TPACK scores in STEM education (TPACK-STEM; pre- and post-intervention scores). The descriptive findings from this study of in-service teachers' mean (*M*) and standard deviation (*SD*) values on the seven scales of TPACK-STEM are reported in Table 2. The descriptive findings in Table 2 reveal an increase in all TPACK constructs and the total scores.

Table 2. Results of descriptive statistics for all components of TPACK for the four TPD intervention programs

TPACK	TPI		TPD #2		TPD #3		TPD #4	
Components		Materials	Friction		Photosynthesis		Light and Vision	
T	Pre	Post	Pre	Post	Pre	Post	Pre	Post
	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean
	(SD)	(SD)	(SD)	(SD)	(SD)	(SD)	(SD)	(SD)
TK	0.47	0.84	0.82	1.28	1.05	1.19	1.28	1.38
	(0.50)	(0.60)	(0.82)	(0.72)	(0.7)	(0.62)	(0.63)	(0.61)
CK	2.36	3.09	2.46	2.79	4.65	4.76	3.38	4.03
	(1.03)	(1.41)	(0.85)	(0.86)	(1.11)	(0.95)	(1.13)	(0.97)
PK	0.60	0.47	0.33	0.59	0.78	0.86	0.97	0.81
	(0.62)	(0.50)	(0.53)	(0.64)	(0.58)	(0.59)	(0.74)	(0.59)
TCK	0.60	0.60	0.69	0.87	0.51	0.62	0.56	0.84
	(0.50)	(0.50)	(0.47)	(0.34)	(0.51)	(0.49)	(0.50)	(0.37)
TPK	0.38	0.47	0.44	0.69	0.46	0.62	0.38	0.69
	(0.49)	(0.50)	(0.50)	(0.47)	(0.51)	(0.49)	(0.49)	(0.47)
PCK	0.49	0.76	0.72	0.90	0.49	0.62	0.31	0.66
	(0.51)	(0.43)	(0.46)	(0.31)	(0.51)	(0.49)	(0.47)	(0.48)
TPACK	0.49	0.58	0.28	0.44	0.46	0.54	0.47	0.59
	(0.51)	(0.50)	(0.46)	(0.50)	(0.51)	(0.51)	(0.51)	(0.50)
Total score	5.38	6.80	5.74	7.56	8.41	9.22	7.34	9.00
	(1.51)	(1.59)	(1.53)	(1.83)	(2.35)	(2.31)	(2.19)	(2.11)

To test the statistical hypothesis, the preliminary assumptions were checked, and no serious violations were detected. Then, a paired-samples t-test was conducted to evaluate the impact of each TPD intervention on inservice teachers' TPACK-STEM pre- and post-test scores. There was a large and statistically significant increase in their TPACK-STEM scores from pre- to post-intervention for each program as follows: TPD #1 Composite Materials Program, t = 5.407, p < .001, $Eta^2 = 0.399$); TPD #2 Friction Program, t = 6.459, p < .001, $Eta^2 = 0.523$; TPD #3 Photosynthesis Program, t = 2.906, p < .01, $Eta^2 = 0.190$; and TPD #4 Light and Vision Program, t = 4.554, p < .001, $Eta^2 = 0.401$, as shown in Table 2. The intervention significantly increased in-service teachers' TPACK in STEM education. Overall, the in-service teachers' TPACK in STEM education significantly improved after participating in the andragogical TPD intervention programs as measured by the increase in total TPACK scoring. Figure 8 displays the statistical analysis results for evaluating the effects of TPD interventions on TPACK development.

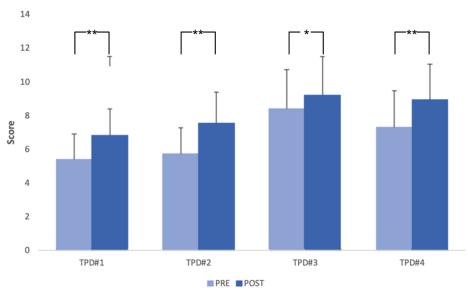


Figure 8. Results of TPACK in integrated STEM education development for each andragogical TPD intervention program (Note. * $p \le .01$; ** $p \le .001$; Total N = 153)

6.2. TPACK scores across the four TPDs

The data collection procedures along with the timing of TPDs 1, 2, 3, and 4 were framed to further data analysis about the in-service teachers' improvement of TPACK in integrated STEM education during the TPD interventions with the support of the personalized intervention learning system. This study performed one-way repeated-measures ANOVA and pairwise comparisons on the TPDs of TPACK across the pre-, 1st mid-, 2nd mid-, and post-test results using IBM SPSS Statistics 26. This data analysis also measured the effect size, as conducted by partial eta squared, for each of the TPACK components. Those effect size values are 0.01, 0.06, and 0.14, representing small, medium, and large differences across the tests (Cohen, Manion, & Morrison, 2018).

The mean scores of the TPACK questionnaire, and their *F*-values and effect sizes, are presented in Table 3. It was found that the participants had significant improvements after training with a personalized learning system (i.e., TPDs 1, 2, 3, and 4) compared to that without a personalized learning system for TK, CK, TPK, PCK, and total score. It is noticed that significant improvement was found on CK after the participants completed TPD#3, and further significant improvements were found after TPD#4 for CK and total score. It is suggested that training with the personalized learning system itself could help the participants improved their CK and total score of the TPACK component. For PK, TCK, and TPACK, although there were trends of further improvements after training with a personalized learning system (i.e., TPDs 1, 2, 3, and 4) compared to that without personalized learning systems, the differences were not statistically significant. Regarding the partial eta squared values, the differences of improvement across the TPDs 1, 2, 3, and 4 with a personalized learning system suggest large effect sizes for all TPACK components compared to training without personalized learning systems.

Table 3. Results of mean score comparisons of TPACK components across pre-, 1st mid-, 2nd mid-, and post-test

TDACV	Dec tost	1st mid tost	2 nd mid-test	Dost tost	Evolue	Effect	Doimerica
TPACK _	Pre-test	1 st mid-test	Z mid-test	Post-test	<i>F</i> -value	Effect	Pairwise
Components	Mean	Mean	Mean	Mean		size	comparison
(Total 100)	(SD)	(SD)	(SD)	(SD)			
TK	18.75	60.94	57.81	68.75	15.525*	.334	Pre < 1 st mid
	(4.35)	(6.63)	(5.55)	(5.38)			$Pre < 2^{nd} mid$
							Pre < Post
CK	43.75	55.00	79.69	80.62	28.895^*	.482	$Pre < 2^{nd} mid$
	(3.86)	(2.98)	(2.87)	(3.42)			Pre < Post
							$1^{st} \text{ mid} < 2^{nd}$
							mid
							1^{st} mid \leq Post
PK	26.56	31.25	39.06	40.62	1.525	.047	
	(5.49)	(5.38)	(4.88)	(5.23)			
TCK	65.62	84.37	68.75	84.37	1.675	.181	
	(8.53)	(6.52)	(8.32)	(6.52)			
	` /	, ,	` /	` /			

TPK	31.25 (8.32)	71.87 (8.07)	65.62 (8.53)	68.75 (8.32)	5.312*	.146	$Pre < 1^{st} mid$ $Pre < 2^{nd} mid$ $Pre < Post$
PCK	53.12	87.50	65.62	65.62	3.235^{*}	.095	$Pre < 1^{st} mid$
	(8.96)	(5.94)	(8.53)	(8.53)			
TPACK	53.12	40.62	56.25	59.37	.852	.027	
	(8.96)	(8.82)	(8.91)	(8.82)			
Total score	39.42	57.21	66.29	69.23	25.114*	.448	$Pre < 1^{st} mid$
	(2.09)	(2.56)	(2.84)	(2.87)			$Pre < 2^{nd} mid$
							Pre < Post
							1^{st} mid \leq Post

Note. $^*p < .05$.

7. Discussion

Researchers have reported that the regular implementation of TPD based on the concept of pedagogy or the pedagogical approach downgrades the impact of TPD to promote adult teachers' professional learning (Kubalíková & Kacian, 2016). In this study, the longitudinal experiment showed that the andragogical TPD intervention program integrating a personalized learning system could improve in-service teachers' TPACK in STEM education. These positive findings are consistent with numerous studies showing that andragogical principles and practices, collaborative, classroom-based, and research-informed approaches in TPD, positively influence teaching performances and competencies (Garet et al., 2001; Loxley et al., 2007). In addition, the findings can be further explained in accordance with Knowles's et al. (2005) theory of andragogy in terms of the aspects of "self-concept," "role of experience," "readiness to learn," "orientation to learning," "internal motivation," and "need to know."

Regarding "self-concept," "readiness to learn," "internal motivation," and "need to know," the TPACK-oriented personalized learning system played a vital role in the trainees' self-directed process on what they believe they need to know and encouraged them to autonomously accept responsibility for their professional learning as being in adult education. This result echoes the argument about the importance of self-directed, autonomous, and independent manners, underlining an assumption based on the andragogy (e.g., Carpenter & Linton, 2018; Chan, 2010; Tsuda et al., 2019). During the motivation phase, personalized learning technology-facilitated their selfpaced learning of and self-monitoring of TPACK in STEM education and prepared them to learn actively and know precisely what they should focus on as active learning participation in the conceptualization and consolidation phases. This supportive training environment using autonomous technology is a perfect learning path for the facilitation of self-paced learning and allows an adult to follow the path that most appropriately reflects the need to learn (Fidishun, 2000). Moreover, the function of learning analytics could customize and personalize adults' learning such that they learn only essential contents that fit well with their professional learning status or problem, and this is consistent with Knowles et al. (2005), who mentioned that adults expect new knowledge to have an immediate impact on their lives and not to be used only in the future. In terms of facilitating STEM teachers' TPACK with the support of a personalized learning system, KKU Smart TPACK, in this study, it seemed that the KKU Smart TPACK plays a dominant role in promoting their TPACK improvement in STEM education. This result is consistent with Gynther (2016) and Ma, Xin, and Du (2018), who found that personalized learning for teachers positively influences their PD. Personalized learning systems represent a recent advancement in technology that has created new opportunities for learners to exercise more control over how and where their learning occurs, making learning a continuous process (Cook & Gregory, 2018). Moreover, Kajonmanee et al. (2020) reported that creating a personalized learning environment concerning in-service teachers' different learning styles and TPACK problems could significantly improve their professional learning outcomes in almost all knowledge domains in the TPACK framework.

As for the "role of experience" and "orientation to learning," the trainees were impressively immersed in the conceptualization and consolidation phases to gain adult active and collaborative learning experiences in the sessions of learning how to learn and learning how to teach related to technology-enhanced STEM education. Through interacting with both interactive hands-on and mind-on sessions, adult trainees had opportunities to learn new essential knowledge and skills for integrated STEM education by drawing from their previous inquiry-based teaching experiences. Moreover, what they learned from the previous motivation phase was targeted directly as problem-oriented and real-life-focused, and they were assigned a series of training tasks for immediate applications in the workshop rather than for future use. According to the results, our findings are consistent with previous studies that suggest active learning and collaboration are key components of effective

TPD for adults' professional learning (e.g., Carpenter & Linton, 2016; Garet et al., 2001; Ronfeldt et al., 2015). For the recommendation phase, the critical discussion and drawing of conclusions about TPACK of STEM learning lessons in school science class assisted in boosting the trainees' "internal motivation" and "self-concept" via the andragogical principle. As such, in terms of implementing an adult learning paradigm or andragogy as a theoretical platform into TPD intervention equipped with the personalized learning system in this study, the researchers think that the use of adult learning theory and practice in planning and providing principal professional learning is critically important to promote a better quality of TPD for TPACK in STEM education development.

8. Limitations and future directions

The results of this study highlighted the importance of incorporating andragogical principles and practices and integrating personalized learning systems into TPD for STEM education. However, this study has two major limitations. First, the participants were purposefully selected from regions and school districts involved in the KKU-SLA project in Thailand, and the number of participants was small. Therefore, the statistically significant results of TPACK improvement in this study may not be contextualized to other countries or generalized to all in-service STEM teachers working in Thai secondary school education. Second, the researchers focused on quantitative inquiries to capture the effect of andragogical TPD intervention programs equipped with TPACKoriented personalized learning systems; they did not use any qualitative inquiry in the analysis. To better capture the effect on teachers' TPACK, both quantitative and qualitative inquiry methods should be synergized and emphasized in tandem. They should be utilized to examine the effect of the proposed TPD intervention and gainfully understand the transformation of professional knowledge related to TPACK. Based on these limitations, there remains a need for further investigation, and therefore, the researchers suggest some guidelines for future studies. First, future research should be implemented in other subjects to investigate the results that might be affected by these differences and comparative studies between trainees who have received and have not received the application of andragogy and/or the integration of personalized learning systems. Second, to increase meaningfulness, future research is needed to investigate the effect of andragogical TPD intervention and the role of personalized learning systems on TPACK development, using quantitative and qualitative inquiry practices that will advance the development of TPD intervention.

9. Conclusion

This study aimed to train in-service teachers, who are adult learners, to be equipped with TPACK of integrated STEM education through andragogy-oriented TPD intervention programs with the support of a personalized learning system. The results showed a promising effect of the TPD intervention on improving adult teachers' professional knowledge of pedagogically integrating digital technologies into their STEM teaching practice in specific STEM-related situations. The findings from this study directly contribute to the growing body of research on PD for adult teachers in several ways, as described below.

Overall, this andragogical TPD intervention program of TPACK-STEM was largely successful at improving inservice teachers' technological integration comprehension of digital technologies in their integrated STEM teaching. The findings of this study hold implications for policy, practice, and future research. Related to policy, the study findings suggest the practical implication that educational systems need to think through what types of PD are most important because the challenge is that adult learning through PD initiatives is better self-paced. Therefore, there could be a perceptual disconnection between the system and the individual teacher's perceived professional needs. To respond to this result, andragogy could be the suitable catalyst for the policy of TPD improvement. For practice, this study sheds light on several ideas. First, andragogy—or adult learning theory should be used to upgrade the instruction of teachers and their learning process into the role of adult learners, not students. Second, integrating personalized learning systems as an essential part of teacher professional learning ecology could maximize the andragogical TPD implementation. Finally, PD in STEM education could be fully aligned to TPACK to improve STEM teachers' professional learning. This study also has many implications for future research related to TPD for STEM teachers' improvement. From the findings of this study, the TPD intervention should include a follow-up phase of professional learning involving STEM teachers from the training workshops engaged in improving their designs. Moreover, more TPACK-oriented TPD research for STEM teachers needs to be conducted regarding andragogy or adult learning theory to maximize their TPACK improvement by redesigning the professional learning activities for individual workshop sessions.

Acknowledgement

This work was financially supported by Royal Golden Jubilee (RGJ) Ph.D. Program Scholarship (PHD/0159/2559), Thailand Research Fund (TRF), TRF Research Career Development Grant (Grant no. RSA6280062), Khon Kaen University (KKU), and Smart Learning Innovation Research Center (SLIRC). The authors' opinions, findings, conclusions, or recommendations are expressed in this material and do not necessarily reflect the TRF, KKU, and SLIRC.

References

Al Salami, M. K., Makela, C. J., & de Miranda, M. A. (2017). Assessing changes in teachers' attitudes toward interdisciplinary STEM teaching. *International Journal of Technology Design and Education*, 27, 63-88.

Angeli, C., Valanides, N., & Mavroudi, A., Christodoulou, A., & Georgiou, K. (2014). Introducing e-TPCK: An adaptive elearning technology for the development of teachers' technological pedagogical content knowledge. In C. Angeli & N. Valanides (Eds.), *Technological Pedagogical Content Knowledge* (pp. 305-317). New York, NY: Springer.

Bell, D., Morrison-Love, D., Wooff, D., & McLain, M. (2018). STEM education in the twenty-first century: Learning at work – An Exploration of design and technology teacher perceptions and practices. *International Journal of Technology and Design Education*, 28(3), 721-737.

Brophy, J. (2013). Motivating students to learn. New York, NY: Routledge

Carpenter, J. P., & Linton, J. N. (2016). Edcamp unconferences: Educators' perspectives on an untraditional professional learning experience. *Teaching and Teacher Education*, 57, 97-108.

Cavlazoglu, B., & Stuessy, C. (2017). Changes in science teachers' conceptions and connections of STEM concepts and earthquake engineering. *The Journal of Educational Research*, 110(3), 239-254.

Chai, C. S. (2019). Teacher professional development for science, technology, engineering and mathematics (STEM) education: A Review from the perspectives of technological pedagogical content (TPACK). *Asia-Pacific Educational Research*, 28, 5-13.

Chai, C. S., Jong, M., & Yan, Z. (2020). Surveying Chinese teachers' technological pedagogical STEM knowledge: A Pilot validation of STEM-TPACK survey. *International Journal of Mobile Learning and Organisation*, 14(2), 203-214.

Chai, C. S., Rahmawati, Y., & Jong, M. S. Y. (2020) Indonesian science, mathematics, and engineering preservice teachers' experiences in STEM-TPACK design-based learning. *Sustainability*, 12(21), 9050.

Chan, S. (2010). Applications of andragogy in multi-disciplined teaching and learning. *Journal of Adult Education*, 39(2), 25-35.

Cheng, L., Antonenko, P. D., Ritzhaupt, A. D., Dawson, K., Miller, D., MacFadden, B. J., Grant, C., Shepparda, T. D., & Ziegler. M. (2020). Exploring the influence of teachers' beliefs and 3D printing integrated STEM instruction on students' STEM motivation. *Computers and Education*, 158. doi:10.1016/j.compedu.2020.103983

Chookaew, S., Wanichsan, D., Hwang, G. J., & Panjaburee, P. (2015). Effects of a personalized ubiquitous learning support system on university students' learning performance and attitudes in computer-programming courses. *International Journal of Mobile Learning and Organisation*, 9(3), 240-257.

Christensen, R., & Knezek, G. (2017). Relationship of middle school student STEM interest to career intent. *Journal of Education in Science, Environment and Health*, 3(1), 1-13.

Cohen, L., Manion, L., & Morrison, K. (2018). Research methods in education (8th ed.). New York, NY: Routledge.

Condon, M., & Wichowsky, A. (2018). Effects of an inquiry-based science curriculum on STEM and civic engagement. *The Elementary School Journal*, 119(2), 196-222.

Connors-Tadros, L., & Hororwitz, M. (2014). How are early childhood teachers faring in state teacher evaluation systems? (CEELO policy report). New Brunswick, NJ: Center on Enhancing Early Learning Outcomes.

Cook, V. S., & Gregory, R. L. (2018). Emerging technologies: It's not what you say - It's what they do. *Online Learning*, 22(3), 121-130.

Darling-Hammond, L., Hyler, M. E., & Gardner, M. (2017). Effective teacher professional development. Palo Alto, CA: Learning Policy Institute.

English, L. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education. 3(3), 1-8.

Felder, R. M. & Silverman, L. K. (1988). Learning styles and teaching styles in engineering education. *Journal of Engineering Education*, 78(7), 674-681.

Fidishun, D. (2000). Andragogy and technology: Integrating adult learning theory as we teach with technology. Retrieved from https://jorluiseptor.github.io/EQUIP1/suplemental_docs/PLC/Fidishdun,%20D.%20(undated).%20Andragony%20and%20Teachnology.pdf

Fore, G. A., Feldhaus, C. R., Sorge, B. H., Agarwal, M., & Varahramyan, K. (2015). Learning at the nano-level: Accounting for complexity in the internalization of secondary STEM teacher professional development. *Teaching and Teacher Education*, 51, 101-112.

Garet, M. S., Porter, A. C., Desimone, L., Birman, B. F., & Suk Yoon, K., (2001). What makes professional development effective? Results from a national sample of teachers. *American Educational Research Journal*, 38(4), 915-945.

Gynther, K. (2016). Design framework for an adaptive MOOC enhanced by blended learning: Supplementary training and personalized learning for teacher professional development. *Electronic Journal of E-Learning*, 14(1), 15-30.

Harris, J. (2016). Inservice teachers' TPACK development: Trends, models, and trajectories. In M. Herring, M. Koehler, & P. Mishra (Eds.), *Handbook of Technological Pedagogical Content Knowledge for Educators* (2nd ed.; pp. 191-205). New York, NY: Routledge.

Kubalíková, A., & Kacian, A. (2016). Twenty-five years of continuing professional development of teachers in the post-communist era in Slovakia: The Story of paths not taken. *Professional Development in Education*, 42(5), 836-853.

Huang, C. H., Chin, S. L., Hsin, L. H., Hung, J. C., & Yu, Y. P. (2011). A Web-based e-learning platform for physical education. *Journal of Networks*, 6(5), 721-727.

Hwang, G. J. (2003). A Conceptual map model for developing intelligent tutoring systems. *Computers & Education*, 40(3), 217-235.

Hwang, G. J., Li, K. C., & Lai, C. L. (2020). Trends and strategies for conducting effective STEM research and applications: A mobile and ubiquitous learning perspective. *International Journal of Mobile Learning and Organisation*, 14(2), 161-183.

Honey, M., Pearson, G., Schweingruber, H. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington, DC: National Academies Press.

Janssen, N., Knoef, M., & Lazonder, A. W. (2019). Technological and pedagogical support for pre-service teachers' lesson planning. *Technology, Pedagogy and Education, 28*(1), 115-128.

Jong, M. S. Y. (2019a). Sustaining the adoption of gamified outdoor social enquiry learning in high schools through addressing teachers' emerging concerns: A Three-year study. *British Journal of Educational Technology*, 50(3), 1275-1293.

Jong, M. S. Y. (2019b). To flip or not to flip: Social science faculty members' concerns about flipping the classroom. *Journal of Computing in Higher Education*, 31(2), 391-407.

Joyce, B., & Calhoun, E. (2010). Models of professional development: A Celebration of educators. Thousand Oaks, CA: Corwin

Kajonmanee, T., Chaipidech, P., Srisawasdi, N., & Chaipah, K. (2020). A Personalised mobile learning system for promoting STEM discipline teachers' TPACK development. *International Journal of Mobile Learning and Organisation*, 14(2), 215-235

Kelley, T. R., & Knowles, J. G. (2016). A Conceptual framework for integrated STEM education. *International Journal of STEM Education*, *3*(11). doi:10.1186/s40594-016-0046-z

Kirschner, P. A. (2017). Stop propagating the learning styles myth. Computers & Education, 106, 166-171.

Koehler, M. J., & Mishra, P. (2005). What happens when teachers design educational technology? The Development of technological pedagogical content knowledge. *Journal of Educational Computing Research*, 32(2), 131-152.

Koehler, M. J., & Mishra, P. (2008). Introducing TPACK. In AACTE Committee on Innovation & Technology (Ed.), *Handbook of Technological Pedagogical Content Knowledge for Educators* (pp. 3-29). New York, NY: Routledge.

Knowles, M. S. (1980). The Modern practice of adult education: From pedagogy to andragogy (revised and updated). Englewood Cliffs, NJ: Cambridge Adult Education.

Knowles, M. S., Holton III, E. F., & Swanson, R. A. (2005). The Adult learner (6th eds.). London, UK: Elsevier.

Latham, A., Crockett, K., & McLean, D. (2014). An adaptation algorithm for an intelligent natural language tutoring system. *Computers & Education*, 71, 97-110.

Lee, A. (2015). Determining the effects of computer science education at the secondary level on STEM major choices in postsecondary institutions in the United States. *Computers & Education*, 88, 241-255.

Lee, M. H., Chai, C. S., & Hong, H. Y. (2019). STEM education in Asia Pacific: Challenges and development. *The Asia-Pacific Education Researcher*, 28, 1-4.

Lin, Y. C., Lin, Y. T., & Huang, Y. M. (2011). Development of a diagnostic system using a testing-based approach for strengthening student prior knowledge. *Computers & Education*, 57(2), 1557-1570.

Loeng, S. (2018). Various ways of understanding the concept of andragogy. Cogent Education, 5(1), 1496643. doi:10.1080/2331186X.2018.1496643

Loxley, A., Johnston K., Murchan D., Fitzgerald H., & Quinn M. (2007). The Role of whole-school contexts in shaping the experience and outcomes associated with professional development. *Journal of In-Service Education*, 33(3), 265-285.

Ma, N., Xin, S., & Du, J. Y. (2018). A Peer coaching-based professional development approach to improving the learning participation and learning design skills of in-service teachers. *Educational Technology & Society*, 21(2), 291-304.

Maltese, A. V., Melki, C. S., & Wiebke, H. L. (2014). The Nature of experiences responsible for the generation and maintenance of interest in STEM. *Science Education*, 98(6), 937-962.

Marshall, E. T. (2019). *Utilizing adult learning theory in online classrooms*. Retrieved from https://digitalcommons.wpi.edu/mqpall/7098

Milner-Bolotin, M. (2012). Increasing interactivity and authenticity of chemistry instruction through data acquisition systems and other technologies. *Journal of Chemical Education*, 89, 477-481.

Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A Framework for teacher knowledge. *Teachers College Record*, 108(6), 1017-1054.

Moore, T., Stohlmann, M., Wang, H., Tank, K., Glancy, A., & Roehrig, G. (2014). Implementation and integration of engineering in K-12 STEM education. In S. Purzer, J. Strobel, & M. Cardella (Eds.), *Engineering in Pre-College Settings: Synthesizing Research*, *Policy, and Practices* (pp. 35-60). West Lafayette: Purdue University Press.

Nikou, S.A., & Economides, A.A. (2019). Factors that influence behavioral intention to use mobile-based assessment: A STEM teachers' perspective. *British Journal of Educational Technology*, 50(2), 587-600.

Panjaburee, P., Hwang, G. J., & Shih, B. Y. (2010). A Multi-expert approach for developing testing and diagnostic systems based on the concept-effect model. *Computers & Education*, 55(2), 527-540.

Panjaburee, P., & Srisawasdi, N. (2016). An Integrated learning styles and scientific investigation-based personalized web approach: A result on conceptual learning achievements and perceptions of high school students. *Journal of Computers in Education*, 3(3), 253-272.

Panjaburee, P., Triampo, W., Hwang, G. J., Chuedoung, M., & Triampo, D. (2013). Development of a diagnostic and remedial learning system based on an enhanced concept effect model. *Innovations in Education and Teaching International*, 50(1), 72-84.

Parker, C. E., Stylinski, C. D., Bonney, C. R., Schillaci, R., & McAulliffe, C. (2015). Examining the quality of technology implementation in STEM classrooms: Demonstration of an evaluative framework. *Journal of Research on Technology in Education*, 47(2), 105-121.

Pondee, P., Panjaburee, P. & Srisawasdi, N. (2021). Preservice science teachers' emerging pedagogy of mobile game integration: A tale of two cohorts improvement study. *Research and Practice in Technology Enhanced Learning*, 16, 16. https://doi.org/10.1186/s41039-021-00152-0

Ronfeldt, M., Farmer, S. O., McQueen, K., & Grissom, J. A. (2015). Teacher collaboration in instructional teams and student achievement. *American Educational Research Journal*, 52(3), 475-514.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4-14.

Srisawasdi, N. (2012). Fostering pre-service STEM teachers' technological pedagogical content knowledge: A Lesson learned from case-based learning approach. *Journal of Korea Association for Science Education*, 32, 1356-1366.

Srisawasdi, N. (2015). Motivating inquiry-based learning through combination of physical and virtual computer-based laboratory experiments in high school science. In M. J. Urban & D. A. Falvo (Eds.), *Improving K-12 STEM Education Outcomes through Technological Integration* (pp. 108-134). Hershey, PA: Information Science Reference.

Thanyaphongphat, J., & Panjaburee, P. (2019). Effects of a personalized ubiquitous learning support system based on learning style-preferred technology type decision model on university students' SQL learning performance. *International Journal of Mobile Learning and Organisation*, 13(3), 233-254.

Thomas, B., & Watters, J. (2015). Perspectives on Australian, Indian and Malaysian approaches to STEM education. *International Journal of Educational Development*, 45, 42-53.

Thompson, A. D., & Mishra, P. (2007). Breaking news: TPCK becomes TPACK! Journal of Computing in Teacher Education, 24, 38-64.

Timotheou, M. M., Christodoulou, A., & Angeli, C. (2017). On the use of e-TPCK for situated teacher professional development. In D. G. Sampson, J. M. Spector, D. Ifenthaler, & P. Isaías. (Eds.), *Proceedings of 14th International*

Conference on Cognition and Exploratory Learning in Digital Age (pp. 259-262). Algarve, Portugal: International Association for Development of the Information Society (IADIS).

Toste, J. R., Bloom, E. L., & Heath, N. L. (2014). The Differential role of classroom working alliance in predicting school-related outcomes for students with and without high-incidence disabilities. *The Journal of Special Education*, 48(2), 135-148.

Tsuda, E., Sato, T., Wyant, J. D., & Hasegawa, E. (2019). Japanese elementary teachers' experiences of physical education professional development in depopulated rural school districts, *Curriculum Studies in Health and Physical Education*, 10(3), 262-276.

Voogt, J., Erstad, O., Dede, C., & Mishra, P. (2013). Challenges to learning and schooling in the digital networked world of the 21st century. *Journal of Computer Assisted Learning*, 29(5), 403-413.

Wanichsan, D., Panjaburee, P., & Chookaew, S. (2021). Enhancing knowledge integration from multiple experts to guiding personalized learning paths for testing and diagnostic systems. *Computers and Education: Artificial Intelligence, 2*, 100013. doi:10.1016/j.caeai.2021.100013

Wongwatkit, C., Srisawasdi, N., Hwang, G.J., & Panjaburee, P. (2017). Influence of an integrated learning diagnosis and formative assessment-based personalized web learning approach on students learning performances and perceptions. *Interactive Learning Environments*, 25(7), 889-903.

Zaslow, M. (2014). General features of effective professional development: Implications for preparing early educators to teach mathematics. In H. Ginsburg, M. Hyson, and T. Woods (Eds.), *Helping Early Childhood Educators Teach Math* (pp. 91-116). Baltimore, MD: Paul H. Brookes.

Appendix

An example of close-ended question items for in-service STEM teachers' TPACK measurement.

- 1. CK: Which item below is not categorized as a fundamental type of materials in materials science? (TPD #4: Composite Materials)
- a) Tin materials
- b) Metal materials
- c) Polymer materials
- d) Ceramic materials
- 2. PK: Which approach below is not the way to manage science instruction that emphasizes a learner's investigating capability and scientific explanation based on evidence? (TPD #1: Photosynthesis)
- a) Cooperative learning
- b) Inquiry-based learning
- c) Problem-based learning
- d) Project-based learning
- 3. TK: Which item below is a technology tool that can support visual learning in science and promote performing multiple variables in science experimentation? (TPD #3: Light and Vision)
- a) Computer simulation
- b) Digital game
- c) Augmented reality (AR)
- d) Video
- 4. TCK: According to a specific characteristic of the photosynthesis concept, which technology could transform the concept into concrete content that is observable and adjustable? (TPD #1: Photosynthesis)
- a) Computer animation
- b) Digital game
- c) Mobile sensor
- d) Computer simulation
- 5. TPK: According to an inquiry learning process, students have to inquire about phenomena, interpret data, and acquire evidence. What is the technological attribute that fits the learning process? (TPD #2: Friction)
- a) Illustrating moving images along with their descriptions
- b) Displaying the results of variables' relationships and including mathematics features
- c) Offering rewards and scores when an investigation is completed appropriately
- d) Providing feedback immediately after completing an investigation

- 6. PCK: Which of the instructional strategy processes below could appropriately promote students' learning process regarding the friction concept in the science classroom? (TPD #2: Friction)
- a) The teacher presents and narrates keywords and theoretical backgrounds of the phenomenon, then allows the students to perform a hands-on experiment using equipment that simulates the real situation of motion.
- b) The teacher begins with a social issue and then lets the students learn through a problem-solving process related to the phenomenon.
- c) The teacher begins with a problem/question that leads to exploration. Then, the students predict the result regarding the problem/question, after which they perform experiments and conduct discussions.
- d) The teacher assigns a task for the students, then lets them design approaches to continue researching issues, topics, or situations of interest related to the phenomenon until appropriate answers are obtained through a methodical process.
- 7. TPACK: To enable students to gain a complete conceptual understanding of scientific phenomena, in terms of whether wavelengths of light affect reflection and refraction and what the reflection and refraction of light at different wavelengths will be like when moving through different mediums, how should the teaching work be performed? (TPD #3: Light and Vision)
- a) Letting students predict what will happen from the red laser beam experiment by observing the real phenomenon using laser light through various mediums and recording the result as an explanation
- b) Designing instruction for the students to develop workpieces or models based on the principle of reflection and refraction of white light through various media under the close guidance of a teacher
- c) Determining the emerging issues related to reflection and refraction situations and letting them design solutions using the available tools and equipment
- d) Assigning students a task to explore the topic through computer simulations that can change the wavelength of light and type of medium to lead to the conclusion about the phenomenon of reflection and refraction