

รายงานวิจัยฉบับสมบูรณ์

โครงการ การคัดกรองสารต้านมะเร็งด้วยวิธีทางคำนวณและหลอดทดลอง เพื่อการรักษา มะเร็งปอดชนิดไม่ใช่เซลล์เล็กของมนุษย์

โดย รองศาสตราจารย์ คร. ชัญญูคา รุ่งโรจน์มงคล

เมษายน 2565

รายงานวิจัยฉบับสมบูรณ์

โครงการ การคัดกรองสารต้านมะเร็งด้วยวิธีทางคำนวณและหลอดทดลอง เพื่อการรักษา มะเร็งปอดชนิดไม่ใช่เซลล์เล็กของมนุษย์

> โดย รองศาสตราจารย์ คร. ธัญญูดา รุ่งโรจน์มงคล สังกัด ภาควิชาชีวเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

สนับสนุน โดยสำนักงานกองทุนสนับสนุนการวิจัย (สกว.)
และจุฬาลงกรณ์มหาวิทยาลัย
(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

รายละเอียค โครงการ

สัญญาเลขที่ <u>RSA6280085</u>
ชื่อโครงการ (ไทย) <u>การคัดกรองสารต้านมะเร็งด้วยวิธีทางคำนวณและหลอดทดลอง เพื่อการรักษามะเร็งปอด</u>
ชนิคไม่ใช่เซลล์เล็กของมนุษย์
ชื่อโครงการ (อังกฤษ) <i>In silico</i> and <i>in vitro</i> screening of anticancer drug candidates for human non-small cell
lung cancer treatment
หัวหน้าโครงการ <u>รองศาสตราจารย์คร. </u>
สังกัด ภาควิชาชีวเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
งบประมาณ 1,500,000 บาท ระยะเวลา 3 ปี

Abstract

Lung cancer is the leading cause of cancer-related mortality worldwide. Approximately 85% of diagnosed cases are classified as non-small cell lung cancer (NSCLC). Cisplatin (CDDP) has been used as the first-line treatment for NSCLC patients carrying wild-type (wt) epidermal growth factor receptor (EGFR). However, the efficacy of cisplatin-based chemotherapy is limited by numerous severe side effects as well as the occurrence of acquired drug resistance. Tyrosine kinase inhibitors (TKIs, i.e., erlotinib and gefitinib) are approved for patients harboring exon 19 deletion and exon 21 L858R substitution in EGFR. Besides, the double point mutation V617F/L983F of janus kinase (JAK) protein leads to ruxolitinib and tofacitinib resistances. Thus, there is an urgent need to search for novel compounds that can potentially target target the proteins involved in the alternative survival signaling pathways in NSCLC and/or by specific recognition at the receptor of cancer cells. In this research, we aim to search for potent anticancer drug candidates with high antiproliferative effects on NSCLC cell lines and low toxicity against normal cells by targeting EGFR tyrosine kinase, JAKs, mitogen-activated protein kinase kinase (MEK), and p38 \Omega mitogen-activated protein kinase. Mechanisms underlying cell death are investigated in order to understand the mode of action. Increasing Emodin's solubility and anti-proliferative effect on human lung cancer and cholangiocarcinoma cells by inclusion with cyclodextrin nanocarrier was also investigated. Based on fundamental mathematics and physics applied on three-dimensional (3D) protein structure, molecular modeling offers the potential of uniquely detailed atomic-level insight into biological processes of molecular recognition between candidate compounds and cancer target protein.

Keyword: Lung cancer, quinone-containing compounds, EGFR, JAK/STAT, P38 MAPK, MEK, Cyclodextrin

บทคัดย่อ

มะเร็งปอดเป็นสาเหตุสำคัญของการเสียชีวิตจากมะเร็งทั่วโลก ประมาณ 85% ของผู้ป่วยที่ได้รับการวินิจฉัยจัดอยู่ใน ประเภทมะเร็งปอดชนิด non-small cell (NSCLC) ยา Cisplatin (CDDP) ถูกใช้เป็นการรักษาทางเลือกแรกสำหรับผู้ป่วย NSCLC สำหรับโปรตีน epidermal growth factor receptor (EGFR) อย่างไรก็ตาม ประสิทธิภาพของเคมีบำบัคที่ใช้ยา ยา Cisplatin ถูก จำกัดด้วยผลข้างเคียงที่รุนแรงมากมาย รวมทั้งการเกิดการดื้อยาที่ได้มา สารยับยั้งไทโรซีนไกเนส (TKIs เช่น erlotinib และ gefitinib) ได้รับการอนุมัติให้ใช้สำหรับผู้ป่วยที่มีการหายไปของ exon ในตำแหน่งที่ 19 และ 21 และเกิดการเปลี่ยนแปลงกรดอะ มิโนในตำแหน่ง 858 จากลิวซีนเป็นอาร์จินีนใน EGFR นอกจากนี้การกลายพันธ์แบบสองตำแหน่งของโปรตีน janus kinase (JAK) เช่น V617F/L983F ทำให้เกิดการคื้อต่อยา ruxolitinib และ tofacitinib ดังนั้นจึงมีความจำเป็นเร่งค่วนในการค้นหา สารประกอบใหม่ที่สามารถเอาชนะปัญหาดังกล่าวได้ ตามการคื้อยาดังกล่าวที่เกิดจากการกลายพันธุ์ ดังนั้นมีความจำเป็นอย่าง เร่งด่วนในการค้นหาสารประกอบชนิดใหม่ที่สามารถเอาชนะปัญหาดังกล่าวได้โดยการกำหนดเป้าหมายโปรตีนที่เกี่ยวข้องกับ วิถีทางสัญญาณสำหรับมะเร็งปอดชนิด NSCLC หรือการจดจำจำเพาะที่ตัวรับของเซลล์มะเร็ง โดยการมุ่งเป้าที่โปรตีน EGFR ไท โรซีนไคเนส เจนัสไคเนส ไมโทเจน-แอคทิเวเตคโปรตีนไคเนส ไคเนส และ $_{
m p38}lpha$ ไมโทเจน-แอคทิเวเตคโปรตีนไคเนส ใน ข้อเสนอการวิจัยนี้ เราม่งหวังที่จะค้นหายาต้านมะเร็งที่มีศักยภาพที่มีฤทธิ์ต้านมะเร็งปอดชนิด NSCLC และมีความเป็นพิษต่ำต่อ เซลล์ปกติ กลไกการตายของเซลล์จะได้รับการตรวจสอบเพื่อให้เข้าใจถึงอันตรกิริยา รวมไปถึงการศึกษาการเพิ่มประสิทธิภาพ การละลายของ Emodin และการเพิ่มฤทธิ์การยับยั้งการเพิ่มจำนวนเซลล์มะเร็งผ่านตัวนำส่งไซโคลเด็กซ์ตริน ซึ่งจะอาศัย หลักการบนพื้นฐานของคณิตศาสตร์และฟิสิกส์ที่ใช้กับโครงสร้างโปรตีนสามมิติ (3D) โดยแบบจำลองโมเลกลจะนำเสนอ ข้อมูลเชิงลึกระดับอะตอมที่มีรายละเอียคเฉพาะเจาะจงในกระบวนการทางชีววิทยาของการเกิดอันตรกิริยาระดับโมเลกุล ระหว่างสารประกอบที่มีศักยภาพกับโปรตีนมะเร็งเป้าหมาย

คำสำคัญ: มะเร็งปอด, สารประกอบควิโนน, EGFR, JAK/STAT, P38 MAPK, MEK, Cyclodextrin

บทสรุปผู้บริหาร

โรคมะเร็งได้ส่งผลกระทบต่อระบบสาธารณสงและเศรษฐกิจไปทั่วโลกรวมถึงประเทศไทย นักวิจัยทั่วโลกจึงม่ง ค้นหาและพัฒนายาต้านต้านมะเร็ง ซึ่งมะเร็งปอดเป็นสาเหตสำคัญของการเสียชีวิตจากมะเร็งทั่ว โลก ซึ่งยา Cisplatin (CDDP) ถูกใช้เป็นการรักษาทางเลือกแรกสำหรับผู้ป่วยมะเร็งปอดชนิด non-small cell (NSCLC) สำหรับโปรตีน epidermal growth factor receptor (EGFR) อย่างไรก็ตามประสิทธิภาพของยา Cisplatin ถูกจำกัดด้วยผลข้างเคียงที่รุนแรงมากมาย รวมทั้งการเกิด การคื้อยาที่ได้มา สารยับยั้งไทโรซีนไคเนส (TKIs เช่น erlotinib และ gefitinib) ได้รับการอนุมัติให้ใช้สำหรับผู้ป่วยที่มีการ หายไปของ exon ในตำแหน่งที่ 19 และ 21 และเกิดการเปลี่ยนแปลงกรคอะมิโนในตำแหน่ง 858 จากลิวซีนเป็นอาร์จินีนใน EGFR นอกจากนี้การกลายพันฐ์แบบสองตำแหน่งของโปรตีน Janus kinase (JAK) เช่น V617F/L983F ทำให้เกิดการคื้อต่อยา ruxolitinib และ tofacitinib ดังนั้นจึงมีความจำเป็นเร่งค่วนในการค้นหาสารประกอบใหม่ที่สามารถเอาชนะปัณหาดังกล่าวได้ ตามการคื้อยาดังกล่าวที่เกิดจากการกลายพันธุ์ ดังนั้นมีความจำเป็นอย่างเร่งค่วนในการค้นหาสารประกอบชนิดใหม่ที่สามารถ เอาชนะปัญหาดังกล่าวได้โดยการกำหนดเป้าหมายโปรตีนที่เกี่ยวข้องกับวิถีทางสัญญาณสำหรับมะเร็งปอดชนิด NSCLC หรือ การจดจำจำเพาะที่ตัวรับของเซลล์มะเร็ง โครงการวิจัยนี้จึงมีวัตถุประสงค์เพื่อ (1) คัดกรองสารที่มีฤทธิ์ยับยั้งการทำงานของ เอนไซม์ EGFR/JAKs/MEK/P38 MAPK (2) ทคสอบการยับยั้งเอนไซม์ EGFR/JAK ในระดับเซลล์และเอนไซม์ รวมถึงทคสอบ ความเป็นพิษต่อเซลล์ และ (3) ศึกษากลไกการยับยั้งเอนไซม์ EGFR/JAK ของตัวยับยั้งค้วยการจำลองพลวัตเชิงโมเลกุล เพื่อ นำไปสู่การพัฒนาสารที่มีศักยภาพที่มีฤทธิ์ยับยั้ง EGFR/JAKs/MEK/P38 MAPK รวมไปถึงการศึกษาการเพิ่มประสิทธิภาพการ ละลายของ Emodin และการเพิ่มลทธิ์การยับยั้งการเพิ่มจำนวนเซลล์มะเร็งผ่านตัวนำส่งไซโคลเด็กซ์ตริน โดยโครงการวิจัยนี้มี การผลิตผลงานวิจัยที่นำไปสู่การนำไปใช้ประโยชน์ดังกล่าว อันประกอบด้วยบทความที่เผยแพร่ในวารสารวิชาการนานาชาติที่มี คุณภาพสูง T1 2 เรื่อง, Q1 2 เรื่อง, Q2 1 เรื่อง และ Q3 1 เรื่อง รวมทั้งสิ้น 6 เรื่อง อีกทั้งจะทำให้เกิดเครือข่ายความร่วมมือระหว่าง นักวิจัยและผู้เชี่ยวชาญด้านการคิดค้นพัฒนายาทั้งในและต่างประเทศ ซึ่งจะสามารถสร้างทรัพยากรบุคคล องค์ความรู้และ เทคโนโลยีที่จะเป็นรากฐานต่อการพัฒนาและสร้างขีดความสามารถในการแข่งขัน เพื่อขับเคลื่อนเศรษฐกิจของประเทศอย่าง ยั่งยืนต่อไป

รายละเอียดผลการคำเนินงานของโครงการ

วัตถุประสงค์ของโครงการ

- To design and screen the potent cancer drug candidates against NSCLC cell lines expressing wild-type and mutated EGFRs/JAKs/MEK/P38 MAPK
- 2 To theoretically and experimentally elucidate the anticancer activity and its underlying mechanism(s) of such potent compounds

การคำเนินงานวิจัยเป็นไปตามวัตถุประสงค์โดย

- 1. ทำการคัดกรองสารอนุพันธ์ของควิโนน/ควินอกซาลิโนนที่มีประสิทธิภาพในการยับยั้งโปรตีนเป้าหมาย เป้าหมาย EGFRs JAKs DNA topoisomerase MEK และ P38 MAPK ด้วยเทคนิคทางเคมีคอมพิวเตอร์ เช่น การศึกษาการยึดจับระหว่าง สารอนุพันธ์และโปรตีนด้วยเทคนิคโมเลกุลาร์ด้อกกิ้ง (molecular docking) รวมถึงเทคนิคการตรวจคัดกรองแบบเสมือนจริง (Pharmacophore-based virtual screening)
- 2. ได้ทำการทดสอบฤทธิ์ของอนุพันธ์ของควิโนน/ควินอกซาลิโนนและไพราโซโลนที่คัดกรองได้จาก (1) ในระดับ เอนไซม์และเซลล์
- 3. ศึกษาการทำงานของสารที่มีฤทธิ์ทางชีวภาพต่อการยับยั้งการทำงานของโปรตีนเป้าหมายด้วยการจำลองเชิงพลวัต โมเลกุล (Molecular dynamics simulations)

ผลงานวิจัยที่ได้รับ

ใค้สารอนุพันธ์ควิโนนที่มีประสิทธิภาพในการยับยั้งการทำงานของโปรตีน EGFR/JAK และพบว่ายาเคิม lomotapide (a lipid-lowering agent) and nilotinib (a Bcr-Abl fusion protein inhibitor) มีศักยภาพในการจับเกาะกับโปรตีน P38 MAPK อีกทั้งขาเดิม DB12661 และ DB07642 สามารถนำมา repurpose เพื่อยับยั้งโปรตีน MEK ได้ นอกจากนี้ได้ทราบถึงลักษณะ รูปแบบการเข้าจับและลักษณะอันตรกริยาที่เกิดขึ้นระหว่างสารอนุพันธ์กับโปรตีนเป้าหมายที่สนใจในระดับเอนไซม์และ ในระดับเซลล์ ซึ่งเป็นข้อมูลเชิงพื้นฐานเชิงโมเลกุลที่สำคัญต่อโปรตีนที่เป็นเป้าหมายในการหายาต้านมะเร็งด้วยวิธี targeted therapy และสารออกฤทธิ์ทางชีวภาพต่างๆ และได้ทราบถึงอันตรกิริยาของการยึดจับทางโมเลกุลระหว่างโปรตีนเป้าหมาย

ของมนุษย์กับยาในระดับอะตอมจากการจำลองพลวัตเชิง โมเลกุล (Molecular dynamics simulations) ทำให้ทราบถึงกรดอะ มิโนที่สำคัญต่อการเกิดอันตรกิริยาในโปรตีนเป้าหมายได้ และพบว่าการสร้าง inclusion complex กับ DMβ-cyclodextrin เพิ่มประสิทธิภาพการละลายของ Emodin ได้สูงสุดและเพิ่มฤทธิ์การยับยั้งการเพิ่มจำนวนเซลล์มะเร็งปอดและมะเร็งถุงน้ำดี

สรุปย่อ (summary)

Mansonone G (MG), a plant-derived compound isolated from the heartwood of Mansonia gagei, possesses a potent antitumor effect on several kinds of malignancy. However, its poor solubility limits the use for practical applications. Beta-cyclodextrin (β CD), a cyclic oligosaccharide composed of seven (1!4)-linked α -D-glucopyranose units, is capable of encapsulating a variety of poorly soluble compounds into its hydrophobic interior. In this work, we aimed to enhance the water solubility and the anticancer activity of MG by complexation with β CD and its derivatives (2,6-di-O-methyl- β CD (DM β CD) and hydroxypropyl- β CD). The 90-ns molecular dynamics simulations and MM/GBSA-based binding free energy results suggested that DM β CD was the most preferential host molecule for MG inclusion complexation. The inclusion complex formation between MG and β CD(s) was confirmed by DSC and SEM techniques. Notably, the MG/ β CDs inclusion complexes exerted significantly higher cytotoxic effect (~2–7 fold) on A549 lung cancer cells than the uncomplexed MG.

Janus kinases (JAKs) are enzymes involved in signaling pathways that affect hematopoiesis and immune cell functions. JAK1, JAK2, and JAK3 play different roles in numerous diseases of the immune system and have also been considered potential targets for cancer therapy. In the present study, the susceptibility of the oral JAK inhibitor tofacitinib against these three JAKs was elucidated using the 500-ns molecular dynamics (MD) simulations and free energy calculations based on MM-PB(GB)SA, QM/MM-GBSA (PM3 and SCC-DFTB), and SIE methods. The obtained results revealed that tofacitinib could interact with all JAKs at the ATP-binding site via electrostatic attraction, hydrogen bond formation, and in particular van der Waals interaction. The conserved glutamate and leucine residues (E957 and L959 of JAK1, E930 and L932 of JAK2, and E903 and L905 of JAK3) located in the hinge region stabilized tofacitinib binding through strongly formed hydrogen bonds. Complexation with the incoming tofacitinib led to a closed conformation of the ATP-binding site and a decreased protein fluctuation at the glycine loop of the JAK protein. The binding affinities of tofacitinib/JAKs were ranked in the order of JAK3 > JAK2 ~ JAK1, which are in line with the reported experimental data.

Human topoisomerase II alpha (TopoII α) is a crucial enzyme involved in maintaining genomic integrity during the process of DNA replication and mitotic division. It is a vital therapeutic target for designing novel anticancer agents in targeted cancer therapy. Sulfones, members of organosulfur compounds, have been reported to possess various biological

activities such as antimicrobial, anti-inflammatory, anti-HIV, anticancer, and antimalarial properties. In the present study, a series of sulfones was selected to evaluate their inhibitory activity against TopoIIα using computational approaches. Molecular docking results revealed that several sulfone analogs bind efficiently to the ATPase domain of TopoIIα. Among them, sulfones 18a, 60a, *4b, *8b, *3c, and 8c exhibit higher binding affinity than the known TopoII inhibitor, salvicine. Molecular dynamics simulations and free energy calculations based on MM/PB(GB)SA method demonstrated that sulfone *8b strongly interacts with amino acid residues in the ATP-binding pocket (E87, N91, D94, I125, I141, F142, S149, G161, and A167), driven mainly by an electrostatic attraction and a strong H-bond formation at G161 residue. Altogether, the obtained results predicted that sulfones could have a high potential to be a lead molecule for targeting TopoIIα.

The RAS-RAF-MEK-ERK pathway plays a key role in malevolent cell progression in many tumors. The high structural complexity in the upstream kinases limits the treatment progress. Thus, MEK inhibition is a promising strategy since it is easy to inhibit and is a gatekeeper for the many malignant effects of its downstream effector. Hence, we accomplished a high-throughput virtual screening to overcome this bottleneck by the discovery of dual-targeting therapy in cancer treatment. Here, a total of 11,808 DrugBank molecules were assessed through high-throughput virtual screening for their activity against MEK. Further, the Glide docking, MLSF and prime-MM/GBSA methods were implemented to extract the potential lead compounds from the database. Two compounds, DB012661 and DB07642, were outperformed in all the screening analyses. Further, the study results reveal that the lead compounds also have a significant binding capability with the co-target PIM1. Finally, the SIE-based free energy calculation reveals that the binding of compounds was majorly affected by the van der Waals interactions with MEK receptor. Overall, the in silico binding efficacy of these lead compounds against both MEK and PIM1 could be of significant therapeutic interest to overcome drug resistance in the near future.

P38 α mitogen-activated protein kinase (p38 α MAPK), one of the p38 MAPK isoforms participating in a signaling cascade, has been identified for its pivotal role in the regulation of physiological processes such as cell proliferation, differentiation, survival, and death. Inhibition of the p38 pathway has attracted much attention for the reason that it could be a promising strategy in the management of cancer, neurodegeneration, inflammation, and even the newly emerged pandemic, COVID-19. Herein, by shedding light on the docking- and 100-ns dynamic-based screening from 3210 FDA-approved drugs, we found that lomitapide (a lipid-lowering agent) and nilotinib (a Bcr-Abl fusion protein inhibitor) could alternatively inhibit phosphorylation of p38 α MAPK at the allosteric site. All-atom molecular dynamics simulations and free energy calculations including end-point and QM-based ONIOM methods revealed that the binding affinity of the two screened drugs exhibited a comparable level as the known p38 α MAPK inhibitor (BIRB796), suggesting the high potential of being a novel p38 α

MAPK inhibitor. In addition, noncovalent contacts and the number of hydrogen bonds were found to be corresponding with the great binding recognition. Key influential amino acids were mostly hydrophobic residues, while the two charged residues including E71 and D168 were considered crucial ones due to their ability to form very strong H-bonds with the focused drugs. Interestingly, *in silico* structural modification of a lomitapide's structure by permitting it to interact with E71 revealed the improvement of its binding affinity. Altogether, our contributions obtained here could be theoretical guidance for further conducting experimental-based preclinical studies necessary for developing therapeutic agents targeting p38α MAPK.

Emodin (ED), one prominent variant of naturally occurring anthraquinones, has been traditionally used in Chinese medicine, exhibiting a wide spectrum of pharmacological properties. However, the poor aqueous solubility of ED limits its significant usage in practical applications. In this study, we complexed ED with β -cyclodextrin (β CD) and its derivatives: hydroxypropyl- β -cyclodextrin (HP β CD), sulfobutylether- β -cyclodextrin (SBE β CD) with degree of substitution (DS) of 2 (SBE2 β CD) and DS of 7 (SBE7 β CD), and 2,6-di- α -methyl- β -cyclodextrin (DM β CD) in order to enhance the water solubility and anti-cancer activity of ED. The molecular docking and 500-ns molecular dynamics simulations suggested that ED could form inclusion complex with β CDs in two possible orientations by resorcinol-ring insertion (R-form) and α -cresol-ring insertion (C-form) and the complexation process was mainly driven by van der Waals interaction. The experimental phase solubility study indicated 1:1 stoichiometry between ED and α CDs. ED/DM α CD complex shows the highest equilibrium constant (K α c value of 3800 M α 1) and the highest water solubility (113.86 α 1) at 30°C, followed by ED/SBE7 α CD, ED/HP α CD, ED/SBE2 α CD, and ED/ α CD complexes. Interestingly, the anti-proliferative effect on cholangiocarcinoma cells (KKU-213A, and KKU-213B), and human lung cancer cells (A549, and H1975) of investigated inclusion complexes, especially ED/DM α CD, ED/SBE7 α CD, and ED/HP α CD, was significantly higher than that of ED alone.

ผลงานวิจัยที่ตีพิมพ์ในวารสารวิชาการระดับนานาชาติ ซึ่งมี acknowledgement สกว. และระบุเลขที่ สัญญา

- Mahalapbutr, P., Wonganan, P., Charoenwongpaiboon, T., Prousoontorn, M., Chavasiri, W., & Rungrotmongkol, T. (2019).
 Enhanced Solubility and Anticancer Potential of Mansonone G By beta-Cyclodextrin-Based Host-Guest
 Complexation: A Computational and Experimental Study. Biomolecules, 9(10).
 https://doi.org/10.3390/biom9100545.
- Oo, A., Kerdpol, K., Mahalapbutr, P., & Rungrotmongkol, T. (2022). Molecular encapsulation of emodin with various β-cyclodextrin derivatives: A computational study. *Journal of Molecular Liquids, 347*.
 https://doi.org/10.1016/j.molliq.2021.118002.
- Sanachai, K., Mahalapbutr, P., Choowongkomon, K., Poo-Arporn, R. P., Wolschann, P., & Rungrotmongkol, T. (2020).
 Insights into the Binding Recognition and Susceptibility of Tofacitinib toward Janus Kinases. ACS Omega, 5(1), 369-377. https://doi.org/10.1021/acsomega.9b02800.
- Thirunavukkarasu, M. K., Suriya, U., Rungrotmongkol, T., & Karuppasamy, R. (2021). In Silico Screening of Available
 Drugs Targeting Non-Small Cell Lung Cancer Targets: A Drug Repurposing Approach. *Pharmaceutics*, 14(1).

 https://doi.org/10.3390/pharmaceutics14010059.
- Verma, K., Mahalapbutr, P., Auepattanapong, A., Khaikate, O., Kuhakarn, C., Takahashi, K., & Rungrotmongkol, T. (2022). Molecular dynamics simulations of sulfone derivatives in complex with DNA topoisomerase IIalpha ATPase domain. *Journal of Biomolecular Structure & Dynamics*, 40(4), 1692-1701. https://doi.org/10.1080/07391102.2020.1831961.
- 6. Suriya, U., Mahalapbutr, P., Rungrotmongkol, T. (2022). Integration of in silico strategies for drug repositioning towards P38α mitogen-activated protein kinase at the allosteric site. *Pharmaceutics*, 14, 1461. https://doi.org/10.3390/pharmaceutics14071461

กิจกรรมอื่นๆที่เกี่ยวข้อง ได้แก่

ผลงานอื่นๆ เช่น การไปเสนอผลงาน

- 1. Sanachai K, Mahalapbutr P, Hengphasatporn K, Seetaha S, Tabtimmai L, Choowongkomon K, Langer T, Wolschann P and Rungrotmongkol T*. *In silico* and *in vitro* screening for Janus kinase inhibitors, July 22-23, 2019, 14th International Symposium of the Protein Society of Thailand, Bangkok, Thailand
- 2. Sanachai K, Mahalapbutr P, Hengphasatporn K, Choowongkomon K, Langer T, Wolschann P and Rungrotmongkol T*. Insights into binding recognition and susceptibility of tofacitinib toward Janus kinases: Molecular dynamics simulations and pharmacophore modeling, September 4-6, 2019, "10th Toyota RIKEN International Workshop" on Science of Life Phenomena Woven by Water and Biomolecules, Japan
- 3. Suriya U, Mahalapbutr P, and <u>Rungrotmongkol T*</u>. Lomitapide, a lipid-lowering agent may have clinical significance towards the cure of P38α MAPK-related diseases, April 28-30, 2021, 24th international annual symposium on computational science and engineering (ANSCSE24), Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
- 4. Suriya U, Mahalapbutr P, Geronikaki A, Choowongkomon K, and <u>Rungrotmongkol T*</u>. Fate of furopyridine compounds towards the inhibition of Janus Kinase 2 (JAK2): from modeling to biological evaluation, June 8-11, 2022, 25th international annual symposium on computational science and engineering (ANSCSE25), Khonkaen University, Khonkaen, Thailand
- 5. Oo A, Kerdpol K, Mahalapbutr P, <u>Rungrotmongkol T*</u>, and Hannongbua S*, β-cyclodextrin inclusion complexes: a combined computational and experimental study, June 8-11, 2022, 25th international annual symposium on computational science and engineering (ANSCSE25), Khonkaen University, Khonkaen, Thailand