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 The Modified Exponentially Weighted Moving Average (Modified EWMA) control chart 

is widely used in a great variety of practical applications such as finance, medicine, engineering, 

psychology and in other areas. There are many situations in which the process is serially 

correlation such as in the manufacturing industry, for example, the dynamics of the process will 

induce correlations in observations that are closely spaced in time. The Average Run Length (ARL) 

is a traditional measurement of the performance of control chart. The main goal of this research 

is to derive analytical solutions for the ARL of Modified EWMA control chart when observations are 

autoregressive and moving average processes with exponential white noise. In this research, we 

establish that the ARL is unique solution to the integral equation under some weak regularity 

conditions. Checking the accuracy of results, we compared the results obtained from explicit 

formulas with numerical integral equation based on Gauss-Legendre rule. In addition, the 

performance of Modified EWMA and the Exponentially Weighted Moving Average (EWMA) control 

charts are studied. The explicit formulas for the ARL of Modified EWMA chart can be applied to 

real data, empirical data, and real-world situations applications for a variety of data processes. 

 

Keywords: Autoregressive process, Moving Average process, Modified Exponentially Moving 

Average control chart, Average Run Length 
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 แผนภูมิควบคุมคาเฉลี่ยเคลื่อนที่ถวงนํ้าหนักแบบเลขชี้กําลังปรับปรุง (Modified EWMA) มีการ

ใชกันอยางแพรหลาย โดยนําไปใชงานจริงในหลายๆดาน เชน การเงิน การแพทย วิศวกรรมศาสตร จิตวิทยา และ

ในดานอ่ืนๆ ในปจจุบันจะพบวามีหลายสถานการณท่ีกระบวนการมีความสัมพันธกัน เชน ในอุตสาหกรรมการผลิต 

ตัวอยางเชน พลวัตของกระบวนการจะทําใหเกิดความสัมพันธในคาสังเกตที่เมื่อเวลาใกลกัน ในงานวิจัยนี้ไดศึกษา

การหาคาความยาวรันเฉลี่ย (ARL) ซ่ึงคือเกณฑท่ีใชในการเปรียบเทียบประสิทธิภาพของแผนภูมิควบคุมโดยวิธีสูตร

สําเร็จของแผนภูมิควบคุม Modified EWMA สําหรับตรวจจับคาเฉลี่ยของกระบวนการเมื่อขอมูลมีกระบวนการ

ถดถอยในตัวและคาเฉลี่ยเคลื่อนท่ี และนําผลลัพธที่ไดจากสูตรสําเร็จเปรียบเทียบกับคา ARL ที่ไดจากวิธีสมการ

ปริพันธเชิงตัวเลขตามกฎ Gauss-Legendre ผลการวิจัยพบวาคาความยาวรันเฉลี่ยที่คํานวณไดจากสูตรสําเร็จมี

ความถูกตองแมนยําเม่ือเปรียบเทียบกับวิธีสมการปริพันธเชิงตัวเลข จากนั้นไดมีการเปรียบเทียบประสิทธิภาพของ

แผนภูมิควบคุม Modified EWMA และแผนภูมิควบคุมคาเฉลี่ยเคลื่อนที่ถวงนํ้าหนักแบบเลขชี้กําลัง (EWMA) 

นอกจากนี้ในงานวิจัยนี้ไดนําสูตรสําเร็จคา ARL ของแผนภูมิ Modified EWMA ไปประยุกตใชกับขอมูลจริงสําหรับ

กระบวนการท่ีหลากหลาย 

 

 

คําหลัก: กระบวนการถดถอยในตัว กระบวนการคาเฉลี่ยเคลื่อนที่ แผนภูมิควบคุมคาเฉลี่ยเคลื่อที่ถวงนํ้าหนักแบบ

เลขชี้กําลังปรับปรุง คาความยาวรันเฉลี่ย 
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Chapter 1 
Introduction 

 
1.1 Background and Importance  
 Statistical Process Control (SPC) plays a vital role in monitoring and detecting changes 
in a process, and uses for measuring, controlling and improving quality in many areas such as 
industrial and manufacturing, finance and economics, computer sciences and 
telecommunications networks, epidemiology, and other areas of applications (see Frisen 
(1992); Knoth (2007); Mazalov and Zhuralav (2002)). Control charts are one of the efficient tools 
of SPC for detecting changes in mean or variations of a process. Examples of SPC charts are the 
Shewhart control chart proposed by Shewhart (1931), Cumulative Sum (CUSUM) control chart 
introduced by Page (1954), and Exponentially Weighted Moving Average (EWMA) control chart 
proposed by Roberts (1959). The Shewhart control chart is used for detecting larger 
disturbances in process parameters, whereas CUSUM and EWMA charts are used for smaller 
and moderate changes. The CUSUM and EWMA control charts are greatly well known for using 
not only in several industry and manufacturing processes but also surveillance problem. The 
literatures concerning to detect a small shift process are recommended such as Yashchin 
(1993), Zhang (1998), Psarakis and Papaleonida (2007), Prajapati (2015) and Mawonike and 
Nkomo (2015) shown that the CUSUM and EWMA control charts are much more effective than 
the Shewhart control chart in monitoring of small changes with autocorrelated process.  

The modified EWMA control chart developed by Patel and Divecha (2011) is a 
simplified EWMA control chart for detecting shifts in the process mean regardless of size. It is 
used in various fields, especially in a chemical industry which the processes are frequently 
autocorrelated. Past observations are considered (similar to the EWMA scheme) along with the 
past changes as well as the latest change in the process mean. Khan, Aslam, and Jun (2016) 
developed a new EWMA control chart based upon a modified EWMA statistic that considers 
the past and current behavior of a process; they compared it with the existing one by Patel 
and Divecha (2011) and found that the proposed control chart gains the ability to detect shifts 
more quickly. 

 A basic assumption of control charts is that observations from a process at different 
times are independent and identically distributed (i.i.d.) random variables. However, in many 
situations, a process does not yield sufficient observations for traditional SPC tools to be used 
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effectively. However, production process observations often show some autocorrelation. 
Continuous product manufacturing operations such as the manufacture of food, chemicals, 
paper, and other wood products often exhibit serial correlation. Moreover, autocorrelation 
data can also be shown in data arising from computer intrusion detection, wind speeds, and 
the daily flow of a river. Several researchers in different fields of study have considered the 
problem of data correlation and how it relates to SPC. 

Nowadays, there are a lot of techniques to analyze and forecast time series data. One 
of the widely used techniques is autoregressive integrated moving average (ARIMA) model. 
This technique uses univariate time series data to analyze its own trend, seasonal, and forecast 
future cycle. The general function model employed by the ARIMA model was discussed by 
Box and Tiao [3]. When an ARIMA model includes other time series as input variables, the 
model is sometimes referred to as an ARIMAX model. Pankratz (1991) refers to the ARIMAX 
model as a dynamic regression. Exponential white noise coordinated with time series has also 
been investigated. Jacob and Lewis (1971) studied autoregressive moving average process 
order (1,1) denoted by ARMA (1,1) when observations were exponentially distributed with 
exponential white noise. The exponential white noise was also used to analyze the 
autoregressive model, proposed by Mohamed and Hocine (2010). 

 The evaluation of the performance of a control chart is performed by Average Run 
Length (ARL). Generally, the ARL is evaluated for a zero shift in the process level by its in-
control ARL, which is denoted by ARL0. The ARL0 is the average number of observations taken 
before the signals. The ARL should be large when the process is in control and has no change. 
And for each level of shift values; on the other hand, it should be detected quickly by its out-
of-control ARL, which is denoted by ARL1, whereas the ARL1 should be small when the process 
is out of control and undergoes a change.  
 Three standard methods that are often used to evaluate Average Run Length for the 
in control process (ARL0) and the Average Run Length for the out of control process (ARL1) are 
the Markov Chain Approach (MCA), the Numerical Integral Equation (NIE), and the Monte Carlo 
simulation (MC) methods. However, these methods have the following characteristics. The NIE 
method is the most advanced method but it requires a lot of programming and computation. 
MCA requires a discretization of the continuity of the process into many steps and a large 
number of calculations of matrix inverse. MC is a simple to program and good for checking 
accuracy but it requires a large number of sample trajectories. Therefore, this method is 



3 

 

usually very time consuming; in addition, it is also difficult and laborious to find the optimal 
designs. All of the previous methods have limitations when computing ARL with the exception 
of the NIE method. This can also be extended to explicit formulas. 
 In this research, we derive explicit formulas for detecting changes in mean of the time 
series processes of Modified EWMA control chart with exponential white noise. The 
performance of the explicit formulas and the numerical integral equation method of ARL are 
compared. In addition, the performance of Modified EWMA and EWMA control charts are 
studied, and also apply the explicit formulas for the ARL of Modified EWMA chart to practical 
and empirical data. 
 
1.2 Objectives 

The objectives of the research project are as follows: 
1.2.1 To derive explicit formulas and approximate the numerical integral equation 

method of average run length on Modified EWMA control chart for moving average process in 
the case of exponential white noise. 
 1.2.2 To derive explicit formulas and approximate the numerical integral equation 
method of average run length on Modified EWMA control chart for autoregressive process with 
exogenous variable (ARX(p,r)) in the case of exponential white noise. 
 1.2.3 To compare the efficiency of the explicit formulas and the numerical integral 
equation method of ARL. 

 1.2.4 To compare the performance of Modified EWMA and EWMA control charts. 
1.2.5 To apply the explicit formulas for the ARL of Modified EWMA chart to real data 

or other control charts for a variety of data processes 
 
1.3 Scope of the Study 
      In this study, we focus on analytical explicit formulas and numerical integral equation 
approximation of ARL  for Modified EWMA and EWMA control charts. These include: 

1.3.1 We define the parameters of the exponential distribution on Modified EWMA and 
EWMA control chart as follows: 

Parameter 
0 1= , where the process is in-control. 

Parameter 
1 0 1(1 ) ,  1   = +  , where the process is out-of-control and  =0.005, 

0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.20, 0.50, 1.00, 2.00, 5.00 
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1.3.2 The recursive equation of the Modified EWMA control chart is as follows: 

1 -1(1 ) ( - )−= − + +t t t t tZ Z Y Y Y  , 1,2,...t =  
where   is a smoothing parameter, 0 1   . The corresponding stopping time shows out-
of-control as equation inf { 0; }tt Z b =   , b u , where b  is a control limit and 

0.05,0.1 =  with initial value 
0 1= =Y u .  

 1.3.3 The autoregressive process with exogenous variable (ARX(p,r)) is defined as 

1 1 2 2

1

...− − −

=

= + − − − − +
r

t t t t p t p i it

i

Y Y Y Y X       

where 
i| | 1  for 1,2,...i =  ,and ( )t Exp  .   

1.3.4 The moving average process with exogenous variable (MAX(q,r)) is defined as: 

1 1 2 2

1

...− − −

=

= + − − − − +
r

t t t t q t q i it

i

Y X          
where 

i| | 1  for  1,2,...i =  and ( )t Exp  .   
  1.3.5 Fredholm Integral Equation of Second Type is used to analyze explicit formulas 
of 

0ARL  and 
1ARL  .   

1.3.6 Gauss-Legendre quadrature rule is used to approximate of 
0ARL  and 

1ARL  in 
the numerical integral equation method. 

1.3.7 Set in-control ARL : 
0 370ARL =  and 500 . 

1.3.8 The ARL  result obtained from the NIE method uses the division point 1,000m =  
nodes.  

1.3.9 The comparisons of numerical result between the explicit formulas and NIE 
method are determined with the absolute percentage relative error (Diff) to verify the accuracy 
of the ARL  results.  
  
1.4 Utilization of the Study 
 1.4.1 The explicit formula of ARL  for (1),MA  ( , )ARX p r processes with exponential 
white noise for modified EWMA control chart could be applied in real applications, for instance 
economics and financial, environment and ecologic, manufacturing process, and etc. 
 1.4.2 The explicit formulas of

0ARL  and 
1ARL  by using Fredholm Integral Equation of 

second type technique can be extended to another process, for example ( , , )ARIMA p d q , 
and etc. and can be applied in a new control chart. 
 
 



Chapter 2 
Literature Review 

 

This chapter comprises four sections. Section 2.1 contains the characteristic of control 
charts and their properties. Section 2.2 is presented the process observations used in this 
study. An evaluation of the ARL is discussed in Section 2.3, while the Gaussian rules are 
described in Section 2.4, and finally, numerical methods for solving the NIE are detailed in 
Section 2.5. 

  
2.1 Characteristics of Control Charts and Their Properties 

2.1.1 Exponentially Weighted Moving Average (EWMA) control chart 
The EWMA control chart was first introduced by Roberts (1959). The EWMA control chart 

can be expressed by the recursive equation below,  
                           1(1 )t t tZ Z X −= − + , 1,2,3,...,t =                               (2.1) 

where   is an exponential smoothing parameter, which is 0 1  .The starting value is 

0 0Z X=  and the target value 0  and tX  are the process with mean   and variance 2 . 

Then, the variance of tZ  is ( )( )22 2 1 1
2i

i

Z


  



 
= − − 

− 
. If i gets large, the term 

( )
2

1
i

− converges to 0. Therefore, the general upper control limit (UCL) and lower control 
limit (LCL) to detect the sequence tZ  is given by, 

                             0
2

UCL L


 


= +
−

,                                (2.2) 

                             0
2

LCL L


 


= −
−

,                                (2.3) 

where 0  is the target mean,   is the process standard deviation, and L  is the 
appropriate control width limit.  
The stopping time of EWMA chart is given by 

                    inf{ 0; },h tt Z h h u =     ,                                         (2.4) 
here 

h is the stopping time and h  is the upper control limit (UCL ). 
 

2.1.2 Modified Exponentially Weighted Moving Average (modified EWMA) control chart 
A modified EWMA control chart statistic that is a correction of the original EWMA control 

statistic and is also free from the inertia problem was developed and presented by Patel 
and Divecha (2011). It is very effective at detecting small and abrupt shifts in the process 
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mean for observations that are independent and normally distributed or autocorrelated. 
Subsequently, the modified EWMA control statistic was redesigned by Khan et al. (2016) to 
be more efficient than either the traditional or modified EWMA control charts. 

The modified EWMA control chart can be defined by the recursive equation below, 
                  1 1(1 ) ( )t t t t tZ Z X c X X − −= − + + − , 1,2,3,...t = ,                                (2.5)  

where c is a constant. 
The mean of the modified EWMA control statistic is 0( )tE Z = . It may be shown that  

                  1 1(1 ) ( )t t t t tZ Z X c X X − −= − + + −  
                             2 1 1 2 1(1 ) (1 ) ( ) ( )t t t t t t tZ X c X X X c X X   − − − − −= − − + + − + + −  

                  
3 2 2

3 2 2 3 1

0

1 2 1

(1 ) (1 ) (1 ) ( ) (1 )

(1 ) ( ) (1 ) ( ).

t t t t t

t t t t t

Z X c X X X

c X X X c X X

     

  

− − − − −

− − −

= − + − + − − + −

+ − − + + − −
 

And continuing like this recursively for ; 1,2,3,...,t jX j t− =  , we obtain 

                  
1 1

0 1

0 0

(1 ) (1 ) (1 ) ( )
t t

j t j

t t j t j t j

j j

Z X Z c X X   
− −

− − − −

= =

= − + − + − −  . 

Hence, 
1

1

0

(1 ) ( )
t

j

t j t j

j

c X X
−

− − −

=

− −  accounts for sum of the past and latest change in the 

process. The unaccounted current fluctuations accumulated to time t  in EWMA statistic. 

Let                    
1

0 1

0

(1 ) (1 ) ( )( )
t

t j

t t j t j

j

Z Z c X cX  
−

− − −

=

 = − + − + −  . 

Take the expectation on both side, we have 

                ( ) ( )
1

0 1

0

(1 ) (1 ) ( )
−

− − −

=

 = − + − + − 
t

t j

t t j t j

j

E Z E Z E c X cX   . 

Since  

                
 0

1 (1 ) 1 (1 )
(1 )

1 (1 )

t t
t

j

j

 


 =

   − − − −   − = =
− −

 . 

Then,  

               ( )  0 0 0

1 (1 )
(1 ) ( )

t

t

tE Z c c


    


 − − = − + + −  

                0 0 0(1 ) (1 )t t    = − − − +  
              ( ) 0tE Z =  

And variance is  ( )2

2
2 2

( )
2

t

c c
V Z

 




 + +
 =

−  

. The derive of the variance of 
tZ is 
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( ) ( )

1
2 2 2

0 1

0

2 1
2 1

1

0

(1 ) (1 ) ( ) ( ) ( )

2( ) (1 ) ( , )

t
t j

t t j t j

j

t
j

t j t j

j

V Z V Z c V X cV X

c c Cov X X

  

 

−

− − −

=

+
+

− − −

=

 = − + − + + 

− + −




 

                 

 

2

2 2 2

2

2

2

2

1 (1 )
0 ( )

1 (1 )

1 (1 )
2( ) (1 ) .

1 (1 )

t

t

c c

c c


 




  



 − −     = + + +   − −

 − −   + − + −  − −

 

For simply, we consider case 0 → , 

                ( )
2

2 2 2 2 2 2 2
1 (1 )

2 2 2 2 2
(2 )

 − −     = + + + − − + +   −

t

tV Z c c c c c c c


     
   

                        
2 2( 2 2 )

(2 )
c c


  

 
= + +

−  

                ( )
2

22 2

2
t

c c
V Z

 




+ +
=

− . 

Therefore, the upper control limit (UCL) and lower control limit (LCL) of the modified 
EWMA control chart are as follows, 

                                       ( )2

0

2 2

2

c c
UCL Q

 
 



+ +
= +

−
,                               (2.6)                      

                                          ( )2

0

2 2

2

c c
UCL Q

 
 



+ +
= −

−
,                             (2.7) 

where 0  is the target mean,   is the process standard deviation, Q  is the appropriate 
control width limit, and tX  is a sequence of observations. 0Z u=  and 0X v=  are the initial 
values and  is an exponential smoothing parameter that is 0 1  .  

The stopping time of the EWMA chart is given by 

                                  inf{ 0; },b tt Z b b u =                                     (2.8)  
where b  is the stopping time and b  is the upper control limit (UCL ). 

 
2.2 Process Observations 

Autocorrelation is a characteristic of data that shows the degree of similarity among 
values of the same variables over successive time intervals where the basic assumption of 
instance independence, which underlies most conventional models, is violated. It frequently 
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exists in datasets in which the data are from the same source, and since it occurs mostly 
due to dependencies within the data, the observations collected periodically need to be 
checked by applying a statistical analysis for time series. Various processes of time series 
modeling have been used in many applications. 

 

2.2.1 Moving Average Process 
Let ( )MA q process be observations of the q-order of moving average process. This can 

be described by the following as a recursion, 
                           1 1 2 2 ...t t t t q t qX        − − −= + − − − − ,                      (2-9) 
where t  is a white noise process assumed with the exponential distribution,   is a 

moving average coefficient and 1; 1,2,3,... =i i q . In other word, the first order moving 
average (1)MA can be written in the form as following 

                          1t t tX    −= + − .                                          (2-10) 
 

2.2.2 The Moving Average Process with explanatory variables 
Let  1 2tZ ,t , ,....,= be a sequence of MAX(q,r) process given as 

                                2
1 2

1

(1 B B ... B ) ,
r

q
t q t i it

i

Z X     
=

= + − − − − +                   (2-11) 

and  1 2t ,t , ,...., = be a sequence of SMAX(Q,r)L process given by the expression 

                               2
2

1

(1 B B ... B ) ,
r

L L QL
t L L QL t i it

i

X      
=

= + − − − − +              (2-12) 

where  t  is a exponential white noise process,  
          is a process mean, 
        2

1 2(1 B B ... B )q
q  − − − −  is the moving average polynomials in B of order q . 

        2
2(1 B B ... B )L L QL

L L QL  − − − − is the seasonal moving average polynomials in B of 
order ;Q L is a natural number, 

         B is the backward shift operator, i.e., q
t t qB ,  −=  

         itX  is exogenous variable and i  is a coefficient of .itX  
 

 2.2.3 The Autoregressive Processes with explanatory variables (ARX(p,r))  
The ARX(p,r) process is defined as 

                     1 1 2 2
1

...       ; 1,2,3,...,
r

t t t p t p j j t
j

Y Y Y Y X t     − − −
=

= + + + + + + =     (2.13)  
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where   is a constant ( 0)  , i  is an autoregressive coefficient for 1,2,...,i p= ( 1 1)i−    ; 

t  is an independent and identically distributed (iid) sequence; ( )t Exp  ; jX  are 

explanatory variables of tY ; and j  are coefficients of jX ; 1,2,...,j r= . The initial value for the 

ARX(p,r) process mean is 1 2, ,..., 1t t t pY Y Y− − − =  and the initial value for the explanatory variables 

1 2, ,..., 1rX X X = . 
 

2.2.4 Exponential Distribution 
The sequential observations 

1 2 2, , ,...Y Y Y  are sequence of independent and identically 
distribution random variables with a probability density function ( , )f y  . The change-point 
time ( ) for exponential distribution can be written as 

                             
ty ~ ( )

( )
0

1

; 1,2,3,4,..., 1

; , 1, 2,... .

Exp t

Exp t

 

   

= −


= + +
   

The probability density function of exponential distribution is 

                     
1

; 0, 0
( ; )

0 ; ,

y

e y
f y

otherwise

 
 

−
 

= 



 

where   is exponential parameter. 
 The mean and variance of the exponential distribution are as following  
                                    ( )E Y =  and 2( )V Y = . 

 

2.2.5 White Noise  
An example of stationary process with constant mean and covariance or no correlation 

between time series in different lag time or constant variance is called white noise. A time 
series 

tX  is a white noise process if for all 1,2,3,...t =  satisfies 
  (1) ( )tE X = , 

  (2) ( ) ( ) ( )
2 2 2

t t t mV X E X E X  −= − = − =   , m N  and 
  (3) ( ) ( )( ), 0t t m t t mCov X X E X X − −= − − =   , m N  . 

 These properties indicated that the white noise is the process with a constant mean 
and variance of independent identically random variables. In this study the error 

t term is 
assumed to be the exponential distribution. It can be written in the form of probability 
density function of  

t in the form as  

                           ( )
1

; 0, 0
t

t tf e



  


−

=   ,                                          (2-14) 
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where   is shift parameter in the quality control or rate parameter of exponential 
distribution with the man and variance as mentioned above.  
  
2.3 Evaluation the Average Run Length 

The evaluation of ARL was proposed by Crowder in 1987. He carried out in the case of 
Gaussian distribution and evaluated the ARL by using Fredholm integral equation of the 
second kind. Afterward, Srivastava and Wu proposed the ARL for a continuous-time model 
and discrete process by using Fredholm integral equation of the second kind method. In this 
section, the main concept of method for evaluation of ARL on the modified EWMA control 
chart will be given. 

Let L(u) be the average run length on the modified EWMA control chart and suppose 
that 

tZ  is the modified EWMA statistics by given in Equation (2-5). Assume that process is in-
control at time t  if the modified EWMA statistics

tZ  is in range
tLCL Z UCL  and the 

process is out-of-control if 
tZ LCL  or 

tZ UCL . To define function ( )L u following 

                                ( ) ( )ARL L u = =E                   (2-15)  
where 

E is the expectation and  is stopping time. 
According to Equation (2-5),  the modified EWMA statistics 

tZ can be written is this 
form 
                               

1 1(1 ) ( )− −= − + + −t t t t tZ Z X c X X  , 
where t = 1,2,3,… , 0 1  . So, 

                                
1 0 1 0(1 ) ( )Z Z c X cX = − + + − . 

If  
1Z  give an in-control process for

1Z , then 
1LCL Z UCL  . So,  

                           0 1 0(1 ) ( )LCL Z c X cX UCL  − + + −  .                   (2-16) 
The observations will be produce before out-of-control signal occurs. The inequality in 
Equation (2-16) can be rewritten as following 

          
1 0 0

1

(1 ) (1 )LCL Z cX UCL Z cX
X

c c

 

 

− − + − − +
 

+ +
.                           (2-17) 

The bounds of Equation (2-17) are satisfied probability 
1X  with the probability distribution 

function 
1( )f x as following  

                            

0 0

0 0

(1 )

(1 )

( )

LCL Z cX

c

UCL Z cX

c

f y dy









− − +

+

− − +

+

 ,                               (2-18) 

where ( )f y is the probability density function. 
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If the initial values in the process mean are set as 
0Z u= , 

0X v= , then following Champ 
and Ridgon’s (1991) method, the formula for ( )L u can be expressed in the form 

( )( )

1

(1 )

(1 )

(1 ) (1 )
( ) 1

1 (1 ) ( ) ( )

UCL u cv

c

LCL u cv

c

LCL u cv UCL u cv
L u P X

c c

L u cv c y f y dy









 

 

 

− − +

+

− − +

+

 − − + − − +  
= −    + +  

+ + − − + +

 

     ( )( )

(1 )

(1 )

1 1 (1 ) ( ) ( )

UCL u cv

c

LCL u cv

c

L u cv c y f y dy









 

− − +

+

− − +

+

= + + − − + + , 

The integration variable is changed, we have 

                     1 (1 )
( ) 1 ( )

UCL

LCL

y u cv
L u L y f dy

c c



 

− − + 
= +  

+ + 
 ,            (2-19) 

where ( )f   is the probability density of 
tX . In this study, the upper control limit is on 

focused for the nonnegative random variable
tX . Therefore, the case of nonnegative 

tX   
due to 0tZ  , we can assume 0LCL =  and UCL b= . The Equation (2-19) can be written in 
the form as  

                    
0

1 (1 )
( ) 1 ( )

b
y u cv

L u L y f dy
c c



 

− − + 
= +  

+ + 
 .            (2-20) 

In the other hand, the 
1ARL  is also evaluate by the Equation (2-20) where ( )f  is probability 

density function with an out-of-control parameter  .  
       

2.4 Numerical Methods for Solving the Integral Equation 
 The quadrature rule is used to approximate the integral equation by a finite sum. Since 
quadrature rule is defined by a set of points  , 1, 2,3,...,ja j n=  on the interval [ , ]LCL UCL  

and set of constant weights  , 1, 2,3,...,jw j n= . The approximation of the integral equation 

is given as following 

                              
1

( ) ( ) ( )

UCL n

j j

jLCL

w y f y dy w f a
=

= ,                            (2-21) 

where ( )w y  and ( )f y  are given function. Therefore, the Equation (2-19) is approximated of 
Equation (2-21). It can be approximated by ( )L u as the system of algebraic linear equations: 

1

(1 )1
( ) 1 ( )

m
j i

i j j

j

a a cv
L a w L a f

c c



 =

− − + 
= +  

+ + 
  ; 1,2,3,...,i n= .                     (2-22) 
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The system of m linear equations is showed as: 

1

1

1

(1 )1
( ) 1 ( )

m
j

j j

j

a a cv
L a w L a f

c c



 =

− − + 
= +  

+ + 
 , 

2

2

1

(1 )1
( ) 1 ( )

m
j

j j

j

a a cv
L a w L a f

c c



 =

− − + 
= +  

+ + 
 , 

3

3

1

(1 )1
( ) 1 ( )

m
j

j j

j

a a cv
L a w L a f

c c



 =

− − + 
= +  

+ + 
  

 
1

(1 )1
( ) 1 ( )

m
j n

n j j

j

a a cv
L a w L a f

c c



 =

− − + 
= +  

+ + 
 . 

The n

 
equations as mentioned above can be rewritten in a matrix form as following 

1 1 11m m m m mL R L   = + ( ) 1 11m m m m mor I R L  − = ( )
1

1 11m m m m mor L I R
−

  = −   (2-30) 

where 

1

2

1

( )

( )

( )

m

m

L a

L a
L

L a



 
 
 =
 
 
 

  , (1,1,...,1)mI diag=     ,    1

1

1
1

1

m

 
 
 =
 
 
 

.  

and  

11 1
1

21 2
1

1
1

(1 )(1 )1 1

(1 )(1 )1 1

(1 ) (1 )1 1

n
n

n
n

n n

n n n
n

a a cva a cv
w f w f

c c c c

a a cva a cv
w f w f

R c c c c

a a cv a a cv
w f w f

c c c c



   



   

 

   



 − − + − − +   
    

+ + + +    
 − − +− − +   
    

= + + + +   



− − + − − +   
    + + + +    







 

Therefore, an approximation the NIE method for function ( )L u  is  

                      1

(1 )1
( ) 1 ( ) .

n
j

j j

j

a u cv
L u w L a f

c c



 =

− − + 
= +  

+ + 


             

          (2-23) 



Chapter 3 
Methodology 

 
In this research, the explicit formulas and NIE for the evaluation of the ARL on a 

modified EWMA control chart are proposed when the observations follow (1),MA  and 
( , )ARX p r processes with exponential white noise. In addition, the explicit formulas for the 

ARL of Modified EWMA chart can be applied to real data or other control charts. The 
solution for the integral equation is implemented to derive explicit formulas based on the 
Fredholm integral equation of the second kind. The NIE method produces an approximated 
ARL by applying the Gauss-Legendre quadrature rule. Moreover, the performances of the 
modified EWMA and EWMA control charts are compared by applying the ARL using explicit 
formulas and NIE. 
 

3.1 Planning of the Study 
In this research, the evaluation ARL on modified EWMA control chart for autocorrelated 

observation is planned as following 
  3.1.1 To derived explicit formulas and approximation of numerical integral equation for 

ARL on modified EWMA control chart for the first-order moving average (MA(1)) process with 
exponential white noise. 

  3.1.2 To derived explicit formulas and approximation of numerical integral equation for 
ARL on modified EWMA control chart for ARX(p,r) process with exponential white noise. 

  3.1.3 To derived explicit formulas and approximation of numerical integral equation for 
ARL on CUSUM control chart for with MAX(q,r) and SMAX(Q,r)L processes 

 

3.2 Step of the Study 
In this research, the steps of the study of evaluation ARL on modified EWMA control 

chart are proceeded as following  
  3.2.1 The ARL of MA(1) process with exponential white noise for modified EWMA 

control chart.   
 3.2.1.1 Derive the explicit formulas for MA(1) process with exponential distribution 

white noise by using the Fredholm integral equation of second type technique on modified 
EWMA control chart. 

 3.2.1.2 Compute the ARL0 by setting in-control 0 370ARL =  and 500 . 
 3.2.1.3 Compute the ARL1 of the out-of-control process  
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 3.2.1.4 Approximate the ARL on modified EWMA control chart by using NIE 
method. 

3.2.1.5 Compare the ARL results between explicit formulas and NIE method. 
3.2.1.6 Compare the performance of ARL result between modified EWMA and 

EWMA control charts.  
  3.2.2 The explicit formulas and approximation of numerical integral equation for ARL 

on modified EWMA control chart for ARX(p,r) process with exponential white noise. 
3.2.2.1 Derive the explicit formulas for ARX(p,r) process with Exponential white 

noise by using the Fredholm integral equation of second type technique on modified 
EWMA control chart. 

 3.2.2.2 Compute the ARL0 by setting in-control 
0 370ARL =  and 500 . 

3.2.2.3 Compute the ARL1 of the out-of-control process  
3.2.2.4 Approximate the ARL on modified EWMA control chart by using NIE 

method. 
3.2.2.5 Compare the ARL results between explicit formulas and NIE method. 
3.2.2.6 Compare the performance of ARL result between modified EWMA and EWMA 

control charts.  
  3.2.3 The explicit formulas and approximation of numerical integral equation for ARL 

on CUSUM control chart for MAX(q,r) and SMAX(Q,r)L processes 
    3. 2. 3. 1 Derive the explicit formulas for MAX(q,r) and SMAX(Q,r)L processes with 

exponential distribution white noise by using the Fredholm integral equation of second type 
technique on CUSUM control chart. 

 3.2.3.2 Compute the ARL0 by setting in-control 0 370ARL =  and 500 . 
3.2.3.3 Compute the ARL1 of the out-of-control process. 
3.2.3.4 Approximate the ARL on CUSUM control chart by using NIE method. 
3.2.3.5 Compare the ARL results between explicit formulas and NIE method. 
3.2.3.6 Compare the performance of ARL result between CUSUM and EWMA control 

charts.  



Chapter 4 
Experimental Results 

 
  The evaluation of the ARL by using explicit formulas and NIE are presented. The 

performances of the EWMA and modified EWMA control charts were revealed by applying 
the ARL by using explicit formulas and NIE method. The results of the study are organized 
into three sections: the first three contains evaluations of the ARL for MA(1) process on 
modified EWMA and EWMA control charts.  Next, the explicit Formulas for the ARL of the 
Modified EWMA control chart for an ARX(p,r) process with exponential white noise are 
presented while the third section the explicit formula of ARL for modified EWMA is 
applied to other control chart.   

 
4.1 Evaluation the ARL for MA(1) Process 
 4.1.1 Explicit formulas of ARL for MA(1) process  
 The first order moving average process denoted by MA(1)  is described by the follow as 
recursion 
                                                

1−= + −t t tX    ,                 (4-1) 
where

t  is a white noise process assumed with exponential distribution,   is a moving 
average coefficient which | | 1  or 1 1−   and given the initial value of

0 s = . 
Therefore, the modified EWMA statistics

tZ can be written is this form 

        
1 1(1 ) ( )− −= − + + −t t t t tZ Z X c X X   

 ( ) ( )1 1 1 1(1 ) − − − −= − + + − + + − −t t t t t tZ c X         

 ( ) ( ) ( )1 1 1(1 ) − − −= − − + + − + + +t t t tZ cX c c c         
where t = 1,2,3,… , 0 1   and the initial value in the process mean 

0Z u= , 
0X v= , 

0 s = , 0LCL = and UCL b= . So, 

( ) ( ) ( )1 0 0 1(1 )= − − + + + + − +Z Z cX c c c s        
       ( ) ( ) ( )1(1 )= − − + + + + − +u cv c c c s       . 

The stopping time of modified EWMA chart is given by 

                                      inf{ 0; },b tt Z b b u =          (4-2) 
where 

b is the stopping time, b  is the upper control limit (UCL). Assume that process is in-
control at time t  if the modified EWMA statistics 

tZ  is in range 0 tZ b   and the process is 
out-of-control if 

tZ b . Let ( )L u  denote the ARL for (1)MA  process. To define function 
( )L u following 
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                                   ( ) ( )bARL L u = =E                 (4-3) 
where 

E is the expectation. 
 

If  
1  give an in-control process for

1Z , then 
10 Z b  . So,  

( ) ( ) ( )10 (1 )u cv c c s c b       − − + + − + + +                 (4-4)          
The inequality in Equation (10) can be rewritten as following 

( ) ( ) ( ) ( )
1

(1 ) (1 )u cv c s c b u cv c s c

c c

         


 

− − + + + − + − − + + + − +
 

+ +

 According to method similar to Crowder (1987) and VanBrackle and Reynold (1997), 
we can write the formula for ( )L u by the integral equation  

( ) ( ) ( )
( ) ( )

( ) ( )(1 )

1

(1 )

1

( ) 1 (1 ) ( )

b u cv c s c

u cv c s c

L u L u cv c y c s c f y dy

    



    



     

− − + + + − +

+

− − + + + − +

+

= + − − + + − + + +   Ch

ange the variable, we obtain  
( )

0

(1 )1
( ) 1 ( )

b
k u cv c s

L u L k f dk
c c

  


 

− − + + + 
= + − 

+ + 
 .                 (4-5)          

The ( )L u  is a Fredholm integral equation of the second kind. If  Y ~ ( )Exp  , then we have 
/1

( ) yf y e 



−=  ; 0y  . So,  

     ( ) ( ) ( )

( )

( )
(1 )

0

1 1
( ) 1 ( )

c sk u cvb

c c c c
L u L k e e e e e dk

c

  

        

 

+−
− − −

+ + + +
= +      

+               (4-6)     

Suppose that 

      ( ) ( )

( )

( )
(1 )

( )

c su cv

c c c
C u e e e e

  

      

+−
− −

+ + +
=     ; 0 u b   

and 

         ( )

0

( )
−

+
= 

kb

c
D L k e dk

    , where D is a constant.  

So, we have 

      
( )

( )
( ) 1= +

+

C u
L u D

c 
                      (4-7)     

Consider  

          ( )

0

( )
−

+
= 

kb

c
D L k e dk

   

     ( )
( )

0

( )
1

−
+

 
= +  

+ 


kb

cC k
D e dk

c

 

 
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    ( )
( ) ( )

( )

( )

( )
( )

(1 )

0 0

c sk cv
k kb b c c c

c ce e e e
e dk e Ddk

c

  

      
   

 

+−
− −

+ + +− −
+ +  

= + 
+   

    ( ) ( )

( )
( )

( )

( ) ( )

0
0

b c sk cv kb

c c c cD
c e e e e e dk

c

  

        
 

+
− − − −

+ + + +

 
 = − + +  
  +
 

  

    ( ) ( ) ( )

( )

( ) ( )
1 1

c sb cv b

c c c cD
c e e e e e

  

        


+
− − − −

+ + + +
   

= − + − −   −   
      

 

        
( ) ( )

( )

( )

( ) ( )

1

1
1 1

b

c

c scv b

c c c

c e

D

e e e e

 

  

     

 



−
+

+
− − −

+ + +

 
− + − 

  =
 

+   − 
  

               (4-8)     

 Finally, the equation (4-7) is substituted by equation (4-8). The solution for the integral 
equation in equation (4-5) as following  

( )
( )

( ) 1= +
+

C u
L u D

c 

( ) ( )

( )

( )

( )

( ) ( )

( )

( )

( ) ( )

(1 ) 1

1
1

1 1

b

cc su cv

c c c

c scv b

c c c

c e
e e e e

c
e e e e

   

      

  

     

 

 



−
++−

− −
+ + +

+
− − −

+ + +

  
 − + −  
       = +    

+    
+   −    

                

 

( ) ( )

( )

( )

( )

( )

( )

( ) ( )

(1 )
1

1

1

b

c

c su cv

c c c

c scv b

c c c

e

e e e e

e e e e

 

  

      

  

     





−
+

+−
− −

+ + +

+
− − −

+ + +

  
 − 

        = −    
        +   −  
      

 

( ) ( )

( )

( ) ( )

( )

( )

( )

( ) ( ) ( )

(1 )

1

1

1

c su cv b

c c c c

s c s cv b

c c c c

e e e e

e e e e e

 

       

    

       





+−
− − −

+ + + +

+ +−
− − −

+ + + +

 
  − 

  = −
  
  + − 
    

 

( ) ( )

( )

( )

( ) ( )

0 0

0 0 00

(1 )

1

( ) 1

1

u b

c c

c scv b

c c c

e e

L u

e e e e



   

  

     





−
−

+ +

+−
−

+ + +

 
− 

  = −

  + −

               (4-9)  

The expectation of stopping time in equation (4-9) corresponds to the 
0( )L u ARL=  

when
0 1 = . An out-of-control process when

0 1   we obtain 
1( )L u ARL= .  
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 4.1.2 Numerical Integral Equation of ARL for MA (1) process 
From the integral equation in equation (4-5) follow as 

                 ( )

0

(1 )1
( ) 1 ( )

b
k u cv c s

L u L k f dk
c c

  


 

− − + + + 
= + − 

+ + 
 . 

The numerical method for solving the integral equation by quadrature rule approach is 
approximated the integral by finite sum of areas of rectangles with base /b m  with heights 
chosen as the values of f at midpoints of the one-sided interval which divide[0, ]b  into a 
partition 

1 20 ... ma a a b      and a set of constant weights / 0jw b m=  . The 
approximate for an integral can be expression by 

                  10

(k)f(k)dk ( )

b m

j j

j

L w f a
=

  ,                                          (4-10)  

where 1

2
j

b
a j

m

 
= − 

 
  and j

b
w

m
= ; 1,2,3,...,j m= .  

The integral equation (4-5) can be approximated by using the Gauss-Legendre 
quadrature rule as follows 

    

( )

1

(1 )1
( ) 1 ( )

m
j i

i j j

j

a a cv c s
L a w L a f

c c

  


 =

− − + + + 
= + − 

+ + 
 ,          (4-11)

 
where ; 1,2,3,...,i m= , 1

2
j

b
a j

m

 
= − 

 
  and  j

b
w

m
=  ; 1,2,3,...,j m= .

 

 

The system of m linear equations is showed as: 

( )1

1

1

(1 )1
( ) 1 ( )

m
j

j j

j

a a cv c s
L a w L a f

c c

  


 =

− − + + + 
 + − 

+ + 
  

( )2

2

1

(1 )1
( ) 1 ( )

m
j

j j

j

a a cv c s
L a w L a f

c c

  


 =

− − + + + 
 + − 

+ + 
  

( )3

3

1

(1 )1
( ) 1 ( )

m
j

j j

j

a a cv c s
L a w L a f

c c

  


 =

− − + + + 
 + − 

+ + 
  

     
( )

1

(1 )1
( ) 1 ( )

m
j m

m j j

j

a a cv c s
L a w L a f

c c

  


 =

− − + + + 
 + − 

+ + 
  

It can be written by matrix form as 

 1 1 11m m m m mL R L   = +   ( ) 1 11m m m m mor I R L  − =   ( )
1

1 11m m m m mor L I R
−

  = −                (4-12) 
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where 

1

2

1

( )

( )

( )

m

m

L a

L a
L

L a



 
 
 =
 
 
 

  , (1,1,...,1)mI diag=     ,    1

1

1
1

1

m

 
 
 =
 
 
 

.  

and  
( ) ( )

( ) ( )

( )

1 1 1

1

1 2 2

1

1

1

(1 ) (1 )1 1

(1 ) (1 )1 1

(1 )1 1

m

m

m

m

m m

m

a a cv c s a a cv c s
w f w f

c c c c

a a cv c s a a cv c s
w f w f

R c c c c

a a cv c s
w f

c c

     
 

   

     
 

   

  


 



− − + + + − − + + +   
− −   

+ + + +   

− − + + + − − + + +   
− −   

= + + + +   

− − + + + 
− 

+ + 

( )(1 )m m

m

a a cv c s
w f

c c

  


 

 
 
 
 
 
 
 
 
 

− − + + +  −  + +  

An approximation the NIE method for function ( )L u  is  

( )

1

(1 )1
( ) 1 ( )

m
j

j j

j

a u cv c s
L u w L a f

c c

  


 =

− − + + + 
= + − 

+ + 
 ,                      (4-13) 

where 1

2
j

b
a j

m

 
= − 

 
  and  j

b
w

m
=  ; 1,2,3,...,j m= .
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Table 4-1  Comparison of ARL for (1)MA on modified EWMA control chart by using 
explicit formulas for 0 370ARL = , 0.1= , 2 = and 0.1 =  with  

5 ,=c   10 , 15 ,20  . 
Shift 
size 

( )  

5=c   
( )0.49058401=b

 

10=c   
( )0.413935708b =

 

15=c   
( )0.45153011=b

 

20=c   
( )0.5099272685=b  

0.00 370.0000691020 370.0000309970 370.0001954173 370.0000435986 
0.005 217.2408039291 127.6995634708 100.3531155158 87.8016095772 
0.01 153.4066744579 77.2119607183 58.2153981235 50.0311299754 
0.02 96.2192991774 43.1673895860 31.7935230083 27.0856419508 
0.03 69.8186997007 29.9952343685 21.9659955933 18.6908127359 
0.04 54.6283560236 23.0075901833 16.8377631296 14.3395005117 
0.05 44.7661512893 18.6791852178 13.6898843745 11.6782708920 
0.06 37.8522379425 15.7361573040 11.5617663552 9.8832524829 
0.07 32.7401757436 13.6061885354 10.0275786767 8.5911905151 
0.08 28.8095491949 11.9940081173 8.8695901874 7.6170170786 
0.09 25.6953252186 10.7318510554 7.9648895720 6.8565294360 
0.10 23.1687163301 9.7173402740 7.2388375370 6.2465726992 
0.20 11.4755918453 5.1205235779 3.9593181049 3.4943690487 
0.50 4.5099214488 2.4242569533 2.0352387883 1.8782006479 
1.00 2.4518399866 1.6105506917 1.4487568794 1.3828124251 
2.00 1.5992992378 1.2606655170 1.1933351586 1.1656302034 
5.00 1.1979163923 1.0887275633 1.0662536122 1.0569228987 

 

Table 4-1 reports the ARL  by using explicit formulas versus NIE for the (1)MA  
process on modified EWMA control chart for 2 = , 0.1 =  and = 0.1. For 

0 370=ARL  
with  5 ,=c   10 , 15 ,  and 20 , the results indicated that when c was increased, the ARL 
gradually decreased by small amounts. Subsequently, 1=c  was employed to evaluate the 
ARL in the rest of the experiments. 

Next, the evaluation of the ARL obtained by applying the explicit formulas and the NIE 
method with 1,000 nodes on the modified EWMA control chart for the MA(1) process with 
exponential white noise is presented. 
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Table 4-2  Comparison of ARL for (1)MA on modified EWMA control chart by using 
explicit formulas versus numerical integral equation for 0 370ARL = , 

2 = and 0.1 =  with  0.05 = ,0.1. 
Shift size 

( )  
0.05 = ( )0.408730497b =  0.1 =  ( )0.413935708b =  

Explicit NIE Diff Explicit NIE Diff 
0.00 370.000048935 

(0.000) 
370.000045565 

(19.188) 
9.107 x10-7 

370.000030997 
(0.000) 

370.000024645 
(19.438) 

1.717 x10-7 

0.005 135.115656100 
(0.000) 

135.115655125 
(19.188) 

7.215 x10-7 
127.699563470 

(0.000) 
127.699562241 

(19.344) 
9.624 x10-7 

0.01 82.6505751194  
 (0.000) 

82.6505745638 
(19.157) 

6.722 x10-7 
77.2119607183 

(0.000) 
77.2119601018 

(19.360) 
7.985 x10-7 

0.02 46.5318371778 
  (0.000) 

46.5318368860 
(19.250) 

6.271 x10-7 
43.1673895860 

(0.000) 
43.1673892938 

(19.329) 
6.769 x10-7 

0.03 32.3937161010 
  (0.000) 

32.3937159070 
(19.157) 

5.989 x10-7 
29.9952343685 

(0.000) 
29.9952341825 

(19.266) 
6.201 x10-7 

0.04 24.8564642024 
  (0.000) 

24.8564640590 
(19.313) 

5.769 x10-7 
23.0075901833 

(0.000) 
23.0075900491 

(19.484) 
5.833 x10-7 

0.05 20.1748191795 
  (0.000) 

20.1748190671 
(19.984) 

5.571 x10-7 
18.6791852178 

(0.000) 
18.6791851142 

(19.594) 
5.546 x10-7 

0.06 16.9861431966 
  (0.000) 

16.9861431049 
(19.142) 

5.399 x10-7 
15.7361573040 

(0.000) 
15.7361572205 

(19.437) 
5.306 x10-7 

0.07 14.6757215370 
  (0.000) 

14.6757214603 
(19.391) 

5.226 x10-7 
13.6061885354 

(0.000) 
13.6061884660 

(19.344) 
5.101 x10-7 

0.08 12.9255345606 
  (0.000) 

12.9255344951 
(19.126) 

5.067 x10-7 
11.9940081173 

(0.000) 
11.9940080584 

(19.391) 
4.911 x10-7 

0.09 11.5545317625 
(0.000) 

11.5545317057 
(19.250) 

4.916 x10-7 
10.7318510554 

(0.000) 
10.7318510044 

(19.344) 
4.752 x10-7 

0.10 10.4520618174 
  (0.000) 

10.4520617675 
(19.251) 

4.774 x10-7 
9.7173402740 

(0.000) 
9.7173402295 

(19.281) 
4.579 x10-7 

0.20 5.4533669974 
  (0.000) 

5.4533669778 
(19.390) 

3.594 x10-7 
5.1205235779 

(0.000) 
5.1205235607 

(19.391) 
3.359 x10-7 

0.50 2.5258096911 
  (0.000) 

2.5258096868 
(19.142) 

1.702 x10-7 
2.4242569533 

(0.000) 
2.4242569495 

(19.609) 
1.567 x10-7 

1.00 1.6482054592 
  (0.000) 

1.6482054582 
(20.062) 

6.067 x10-8 
1.6105506917 

(0.000) 
1.6105506908 

(19.515) 
5.588 x10-8 

2.00 1.2742928186  
 (0.000) 

1.2742928184 
(20.608) 

1.569 x10-8 
1.2606655170 

(0.000) 
1.2606655169 

(20.108) 
7.932 x10-9 

5.00 1.0925601855   
(0.000) 

1.0925601855 
(19.968) 

0.000 x10-7 
1.0887275633 

(0.000) 
1.0887275633 

(19.999) 
0.000 x10-7 
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Table 4-3  Comparison of ARL  for (1)MA  on modified EWMA control chart by using 
explicit formulas versus numerical integral equation for 0 370ARL = , 

2 = and 0.1 = −  with  0.05 = ,0.1. 
Shift size  

( )  
0.05 = ( )0.333987011b =  0.1 =  ( )0.337683969b =  

Explicit NIE Diff Explicit NIE Diff 
0.00 370.000088128 

(0.000) 
370.000085899 

(19.203) 
6.023 x10-7 

370.000045250 
(0.000) 

370.000041103 
(19.234) 

1.121 x10-6 

0.005 129.368446676 
(0.000) 

129.368446059 
(19.329) 

4.767 x10-7 
121.977760605 

(0.000) 
121.977759847 

(19.828) 
6.218 x10-7 

0.01 78.3785837061 
(0.000) 

78.3785833571 
(19.281) 

4.453 x10-7 
73.0616312145 

(0.000) 
73.0616308355 

(19.157) 
5.187 x10-7 

0.02 43.8283778836 
(0.000) 

43.8283777012 
(19.640) 

4.162 x10-7 
40.5837742809 

(0.000) 
40.5837741013 

(19.001) 
4.425 x10-7 

0.03 30.4255790759 
(0.000) 

30.4255789548 
(19.439) 

3.980 x10-7 
28.1261295453 

(0.000) 
28.1261294309 

(19.142) 
4.067 x10-7 

0.04 23.3084775806 
(0.000) 

23.3084774913 
(19.532) 

3.831 x10-7 
21.5422828411 

(0.000) 
21.5422827586 

(19.219) 
3.830 x10-7 

0.05 18.8979332134 
(0.000) 

18.8979331435 
(19.454) 

3.699 x10-7 
17.4728622911 

(0.000) 
17.4728622274 

(19.235) 
3.646 x10-7 

0.06 15.8985529165 
(0.000) 

15.8985528596 
(19.421) 

3.579 x10-7 
14.7099776779 

(0.000) 
14.7099776266 

(19.750) 
3.487 x10-7 

0.07 13.7277906602 
(0.000) 

13.7277906126 
(19.266) 

3.467 x10-7 
12.7125612735 

(0.000) 
12.7125612309 

(19.281) 
3.351 x10-7 

0.08 12.0849068085 
(0.000) 

12.0849067679 
(19.500) 

3.360 x10-7 
11.2020224738 

(0.000) 
11.2020224376 

(19.313) 
3.232 x10-7 

0.09 10.7989508728 
(0.000) 

10.7989508376 
(19.797) 

3.260 x10-7 
10.0203022006 

(0.000) 
10.0203021694 

(19.250) 
3.114 x10-7 

0.10 9.7655660837 
(0.000) 

9.7655660529 
(19.437) 

3.154 x10-7 
9.0710522097 

(0.000) 
9.0710521824 

(19.172) 
3.010 x10-7 

0.20 5.0909701574 
(0.000) 

5.0909701454 
(19.329) 

2.357 x10-7 
4.7794459115 

(0.000) 
4.7794459010 

(19.313) 
2.197 x10-7 

0.50 2.3731513934 
(0.000) 

2.3731513908 
(19.329) 

1.096 x10-7 
2.2799397980 

(0.000) 
2.2799397957 

(19.204) 
1.009 x10-7 

1.00 1.5707976721 
(0.000) 

1.5707976714 
(19.703) 

4.456 x10-8 
1.5368909759 

(0.000) 
1.5368909753 

(19.547) 
3.904 x10-8 

2.00 1.2359759882 
(0.000) 

1.2359759881 
(20.187) 

8.091 x10-9 
1.2239327502 

(0.000) 
1.2239327501 

(19.891) 
8.170 x10-9 

5.00 1.0776705703 
(0.000) 

1.0776705703 
(20.109) 

0.000 x10-7 
1.0743419594 

(0.000) 
1.0743419594 

(19.797) 
0.000 x10-7 

The values in parentheses are CPU times in the explicit formulas and NIE method (seconds) 
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Table 4-4 Comparison of ARL for (1)MA  on modified EWMA control chart by using 
explicit formulas versus numerical integral equation for 0 370ARL = , 

2 = and 0.3 =  with  0.05 = ,0.1. 
Shift size  

( )  

0.05 = ( )0.500416482b =  0.1 =  ( )0.5078210852b =  

Explicit NIE Diff Explicit NIE Diff 

0.00 370.000037555 
(0.000) 

370.000032443 
(19.188) 

1.382 x10-6 
370.000021198 

(0.000) 
370.000011412 

(17.534) 
2.645 x10-6 

0.005 141.365833037 
(0.000) 

141.365831489 
(19.609) 

1.095 x10-6 
133.968118708 

(0.000) 
133.968116699 

(19.189) 
1.499 x10-6 

0.01 87.3893405734 
(0.000) 

87.3893396843 
(19.172) 

1.017 x10-6 
81.8485965093 

(0.000) 
81.8485954972 

(19.640) 
1.237 x10-6 

0.02 45.5721131988 
(0.000) 

45.5721127297 
(19.859) 

1.029 x10-6 
46.0922055086 

(0.000) 
46.0922050291 

(19.438) 
1.040 x10-6 

0.03 34.6191639509 
(0.000) 

34.6191636381 
(19.313) 

9.035 x10-7 
32.1221812787 

(0.000) 
32.1221809738 

(19.562) 
9.492 x10-7 

0.04 26.6120557010 
(0.000) 

26.6120554695 
(19.266) 

8.699 x10-7 
24.6797238073 

(0.000) 
24.6797235875 

(19.422) 
8.906 x10-7 

0.05 21.6257283472 
(0.000) 

21.6257281654 
(19.921) 

8.407 x10-7 
20.0582469267 

(0.000) 
20.0582467570 

(19.251) 
8.460 x10-7 

0.06 18.2236441802 
(0.000) 

18.2236440319 
(19.173) 

8.138 x10-7 
16.9107669375 

(0.000) 
16.9107668006 

(19.235) 
8.095 x10-7 

0.07 15.7554375488 
(0.000) 

15.7554374244 
(19.219) 

7.896 x10-7 
14.6300579943 

(0.000) 
14.6300578805 

(19.266) 
7.779 x10-7 

0.08 13.8838344586 
(0.000) 

13.8838343523 
(19.220) 

7.656 x10-7 
12.9021228096 

(0.000) 
12.9021227129 

(19.172) 
7.495 x10-7 

0.09 12.4164876510 
(0.000) 

12.4164875587 
(19.250) 

7.434 x10-7 
11.5482611883 

(0.000) 
11.5482611047 

(19.360) 
7.239 x10-7 

0.10 11.2356855651 
(0.000) 

11.2356854839 
(19.345) 

7.227 x10-7 
10.4592857838 

(0.000) 
10.4592857107 

(19.329) 
6.989 x10-7 

0.20 5.8687516934 
(0.000) 

5.8687516612 
(19.142) 

5.487 x10-7 
5.5135573322 

(0.000) 
5.5135573037 

(19.329) 
5.169 x10-7 

0.50 2.7023142781 
(0.000) 

2.7023142709 
(19.157) 

2.664 x10-7 
2.5919056831 

(0.000) 
2.5919056768 

(19.297) 
2.431 x10-7 

1.00 1.7386942496 
(0.000) 

1.7386942479 
(19.422) 

9.777 x10-8 
1.6970258272 

(0.000) 
1.6970258257 

(19.500) 
8.839 x10-7 

2.00 1.3196959577 
(0.000) 

1.3196959573 
(19.797) 

3.031 x10-8 
1.3043639109 

(0.000) 
1.3043639106 

(19.999) 
2.300x10-8 

5.00 1.1104892940 
(0.000) 

1.1104892940 
(19.718) 

0.000 x10-7 
1.1061152594 

(0.000) 
1.1061152594 

(20.031) 
0.000 x10-7 

 
 

 
 



24 
 

Table 4-5 Comparison of ARL  for (1)MA  on modified EWMA control chart by using 
explicit formulas versus numerical integral equation for 0 370ARL = , 

2 = and 0.3 = −  with  0.05,0.1 = . 
Shift size  

( )  
0.05 = ( )0.2730080154b =  0.1 =  ( )0.275661646b =  

Explicit NIE Diff Explicit NIE Diff 
0.00 370.000059817 

(0.000) 
370.000058340 

(18.985) 
3.993 x10-7 

370.000096869 
(0.000) 

370.000094148 
(18.876) 

7.353 x10-7 

0.005 124.031896772 
(0.000) 

124.031896380 
(19.079) 

3.156 x10-7 
116.701897449 

(0.000) 
116.701896978 

(19.110) 
4.038 x10-7 

0.01 74.4835209978  
(0.000) 

74.4835207777 
(19.298) 

2.955 x10-7 
69.3024972666 

(0.000) 
69.3024970321 

(19.189) 
3.384 x10-7 

0.02 41.3942561115  
(0.000) 

41.3942559970 
(19.328) 

2.766 x10-7 
38.2716959977 

(0.000) 
38.2716958865 

(19.204) 
2.906 x10-7 

0.03 28.6625016773 
(0.000) 

28.6625016014 
(19.297) 

2.648 x10-7 
26.4614633783 

(0.000) 
26.4614633074 

(19.126) 
2.679 x10-7 

0.04 21.9257283323 
(0.000) 

21.9257282764 
(19.376) 

2.550 x10-7 
20.2407247026 

(0.000) 
20.2407246515 

(19.360) 
2.525 x10-7 

0.05 17.7595096535 
(0.000) 

17.7595096099 
(19.547) 

2.455 x10-7 
16.4032325840 

(0.000) 
16.4032325445 

(19.204) 
2.408 x10-7 

0.06 14.9302560132 
(0.000) 

14.9302559777 
(19.407) 

2.378 x10-7 
13.8012538432 

(0.000) 
13.8012538114 

(19.141) 
2.304 x10-7 

0.07 12.8847709963 
(0.000) 

12.8847709667 
(19.188) 

2.297 x10-7 
11.9220242644 

(0.000) 
11.9220242380 

(19.219) 
2.214 x10-7 

0.08 11.3380063142 
(0.000)  

11.3380062889 
(19.484) 

2.231 x10-7 
10.5019946579 

(0.000) 
10.5019946355 

(19.094) 
2.133 x10-7 

0.09 10.1281525340 
(0.000) 

10.1281525122 
(19.360) 

2.152 x10-7 
9.3918313761 

(0.000) 
9.3918313568 

(19.032) 
2.055 x10-7 

0.10 9.1565357524 
(0.000) 

9.1565357332 
(19.329) 

2.097 x10-7 
8.5005935705 

(0.000) 
8.5005935536 

(19.126) 
1.988 x10-7 

0.20 4.7711256680 
(0.000) 

4.7711256606 
(19.313) 

1.551 x10-7 
4.4798048938 

(0.000) 
4.4798048873 

(19.125) 
1.451 x10-7 

0.50 2.2398739905  
(0.000) 

2.2398739889 
(19.220) 

7.143 x10-8 
2.1544387573 

(0.000) 
2.1544387560 

(18.923) 
6.034 x10-8 

1.00 1.5040903607 
(0.000) 

1.5040903604 
(19.282) 

1.995 x10-8 
1.4736329236 

(0.000) 
1.4736329233 

(19.312) 
2.036 x10-8 

2.00 1.2034664108 
(0.000) 

1.2034664107 
(19.890) 

8.309 x10-9 
1.1928656596 

(0.000) 
1.1928656595 

(19.765) 
8.383 x10-9 

5.00 1.0652660139 
(0.000) 

1.0652660139 
(19.921) 

0.000 x10-7 
1.0623934678 

(0.000) 
1.0623934678 

(19.719) 
0.000 x10-7 

The values in parentheses are CPU times in the explicit formulas and NIE method (seconds) 
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 Tables 4-2 to 4-5 show the ARL  by using explicit formulas versus NIE for the (1)MA  
process on modified EWMA control chart for 2 = , 0.1, 0.1 = − ,0.3, 0.3−  with  0.05,0.1. =  
For 

0 370,500ARL =  the results from both methods are excellent agreement. However, the 
CPU time when using explicit formulas was 0 second whereas it was around 20 seconds for 
NIE.  

 
Table 4-6 Comparison ARL  for (1)MA  on EWMA and Modified EWMA control 

charts using by Explicit formulas for 0 370ARL = , 2 = and 0.1 =  with 
0.05,0.1 = . 

 Shift size 

( )  

0.05 =  0.10 =  
EWMA 

(h=0.000000691135) 
Modified  

(b=0.408730497) 
EWMA 

(h=0.034133896) 
Modified  

(b=0.413935708) 

0.00 370.0000 370.0000 370.0000 370.0000 
0.005 338.2197 135.1157 355.7906 127.6996 
0.01 309.4438 82.6506 342.2527 77.2120 
0.02 259.7080 46.5318 317.0453 43.1674 
0.03 218.7135 32.3937 294.1084 29.9952 
0.04 184.8066 24.8565 273.2048 23.0076 
0.05 156.6673 20.1748 254.1253 18.6792 
0.06 133.2381 16.9861 236.6847 15.7362 
0.07 113.6682 14.6757 220.7193 13.6062 
0.08 97.2712 12.9255 206.0837 11.9940 
0.09 83.4913 11.5545 192.6487 10.7319 
0.10 71.8767 10.4521 180.2995 9.7173 
0.20 18.7872 5.4534 98.5052 5.1205 
0.50 1.8231 2.5258 25.7014 2.4243 
1.00 1.0357 1.6482 6.8447 1.6106 
2.00 1.0014 1.2743 2.2199 1.2607 
5.00 1.0000 1.0926 1.1884 1.0887 
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Table 4-7 Comparison ARL  for (1)MA  on EWMA and Modified EWMA control 
charts using by Explicit formulas for 0 500ARL = , 2 = and 0.3 = −  
with 0.05 = ,0.1. 

Shift size 

( )  

0.05 =  0.10 =  
EWMA 

(h=1.3943043x10-6) 
Modified  

(b=0.2734313281) 
EWMA 

(h=0.08324898) 
Modified  

(b=0.2760602695) 

0.00 500.0000 500.0000 500.0000 500.0000 
0.005 457.9318 135.9195 482.3789 127.1542 
0.01 419.7648 78.6269 465.5354 72.8675 
0.02 353.6066 42.6511 434.0220 39.3388 
0.03 298.8649 29.2629 405.1639 26.9690 
0.04 253.4160 22.2771 378.6987 20.5372 
0.05 215.5577 17.9904 354.3935 16.5979 
0.06 183.9212 15.0937 332.0411 13.9390 
0.07 157.4013 13.0068 311.4571 12.0248 
0.08 135.1032 11.4326 292.4766 10.5818 
0.09 116.2992 10.2038 274.9525 9.4556 
0.10 100.3964 9.2184 258.7528 8.5528 
0.20 26.7119 4.7878 148.6098 4.4940 
0.50 2.2719 2.2430 42.9740 2.1572 
1.00 1.0590 1.5051 12.1432 1.4745 
2.00 1.0024 1.2038 3.5904 1.1932 
5.00 1.0001 1.0654 1.4368 1.0625 

 

Tables 4-6 and 4-7 summarize the ARLs using the explicit formulas on both standard 
and modified EWMA control charts for the MA(1) process given ARL0 = 370, 500; 2, =  

0.05 =  and 0.1; and 0.1, 0.3 = − . The results indicated that the modified EWMA control 
chart immediately reduced 1ARL  by more than the standard one when detecting a small 
shift in the process mean, except for shift sizes of 0.5, 1, 2, or 5 for  = 0.1 and shift sizes of 
1, 2, or 5 for  = -0.3 in the case of   = 0.05. 
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4.2 Evaluation the ARL for ARX(p,r) Process  
 4.2.1 The Explicit formulas of ARL for ARX(p,r) process  

Explicit formulas for the ARL of the modified EWMA control chart for an 
ARX(p,r) process are derived as follows:  

The modified EWMA control chart proposed by Khan et al. (2016) is defined as 
( ) ( )1 11            ; 1,2,3,...t t t t tM M Y k Y Y t − −= − + + − = ,     

where tM  is the modified EWMA statistic, tY  is the sequence of the ARX(p,r) process with 
exponential white noise,   is an exponential smoothing parameter (0 1)  , and k  is a 
constant ( 0)k  . 
Substituting tY  into tM , then 

( ) ( ) ( ) ( )

( ) ( )

1 1 1

1
1

1 ...

       .

t t t p t p

r

j j t t
j

M M k k Y k Y

k X k kY

      

   

− − −

−
=

= − + + + + + + +

+ + + + −
 

If 1Y  gives the out-of-control state for 1M , 0M u=  and 0Y v= , then 

( ) ( ) ( ) ( ) ( ) ( )1 1 1
1

1 ...
r

p j j
j

M u k k v k v k X k kv          
=

= − + + + + + + + + + + + − If 1  is 

the in-control limit for 1M , then 10 M h  . 
The function ( )G u can be derived by the Fredholm integral equation of the second 

type (Mititelu et al., 2010), and thus ( )G u can be written as 

1 1 1( ) 1 ( ) ( ) ( )G u G M f d = +  ,                 (4-14) 
by substituting 1  with y . Therefore, the function ( )G u  is obtained as  

( )

( ) ( ) ( ) ( )

( ) ( )
( )

1

0
1

1 ...

1

ph

r

j j
j

u k k v k v

G u L f y dy
k X kv k y

      

  
=

 − + + + + + + + 
 

= +  
+ + − + + 
 




. 

Let ( ) ( ) ( ) ( ) ( ) ( )1
1

1 ... .
r

p j j
j

w u k k v k v k X kv k y         
=

= − + + + + + + + + + − + +  

By changing the integral variable, we obtain the integral equation as follows: 

( ) ( )
( )

( ) ( ) 1 10

11
1

h p r

i j j
i j

w u kv
G u G w f v X dw

k k k


  

   = =

 − − 
= + + − − − 

+ + +  
  .           (4-15) 

If ( )tY Exp   the ( )
1

y

f y e 



−

= ; 0y  , so 

( ) ( )

( )

( ) ( ) 1 1

11

0

1 1
1

p r

i j j
i j

w u kv
v Xh

k k
G u G w e dw

k


  

  

 

= =

 − − 
− + − − − 

+ +  

 

= +
+

 . 
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Let the function ( )

( )

( ) ( )
111

rp

j ji
ji

Xv
u kv

k k
D u e


 

      

==−
− + + +

+ +



=   , then we have 

( )
( )

( )
( ) ( )

0

1               ; 0

w
h

kD u
G u L w e dw u h

k

 

 

−

+
= +  

+
 . 

Let   ( ) ( )

0

w
h

k
g G w e dw

 

−

+
=  , then ( )

( )

( )
1

D u
G u g

k 
= + 

+
. Consequently, we obtain   

    
( )

( )

( ) ( )
111

1
( ) 1

rp

j ji
ji

Xv
u kv

k k
G u e g

k


 

      

 

==−
− + + +

+ +



= + 
+

.                

(4-16) 
Solving a constant g   

( ) ( )

0

w
h

k
g G w e dw

 

−

+
=          

( )

( )
( ) ( )

0 0

w w
h h

k kg
e dw D w e dw

k

   

 

− −

+ +
= + 

+
 

( ) ( )
( )

( )
( )

11

0

1

rp

j ji
ji

Xv
kv

h w
k h

k kge
k e e dw

k





    

   
 

 

==−
+ + +− −

+
+ +



 
 = − + − +
  + 
 



( ) ( )
( )

( )

11

1 1

rp

j ji
ji

Xv
kv

h h
k

k kde
k e e





    

   
 



==−
+ + +− −

+
+ +



   
   = − + − − −
      
   

( ) ( )

( )
( )

11

1

1 1

rp

j ji
ji

h

k

Xv
kv

h
k

k

k e

g

e
e

 





    

 

 



==

−

+

−
+ + + −

+
+



 
 − + −
  
 =

 
 + −
  
 

.                                        (4-17) 

 
Substituting g from Equation (4-17) into Equation (4-16), then 
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( )

( ) ( )

( ) ( )
11

1

1

( ) 1

1

rp

j ji
ji

u h

k k

Xv
kv h

k k

e e

G u

e e



   


 

      





==

− −

+ +

−
− − −

+ +



 
 −
 
  = −

 
 + −
 
  

.                    (4-18) 

When the process is in the in-control state with exponential parameter 0 = , we 
obtain the explicit solution for 0ARL  as follows: 

( )

( ) ( )

( ) ( )

0 0

11

0 0 0 0 0

1

0

1

1  

1

rp

j ji
ji

u h

k k

Xv
kv h

k k

e e

ARL

e e



   


 

      





==

− −

+ +

−
− − −

+ +



 
 −
 
  = −

 
 + −
 
  

.           (4-19) 

Similarly, when the process is in the out-of-control state with exponential 
parameter 1 = , the explicit solution for 1ARL  can be written as 

( )

( ) ( )

( ) ( )

1 1

11

1 1 1 1 1

1

1

1

1  

1

rp

j ji
ji

u h

k k

Xv
kv h

k k

e e

ARL

e e



   


 

      





==

− −

+ +

−
− − −

+ +



 
 −
 
  = −

 
 + −
 
  

.         (4-20) 

 
4.2.2 Numerical Integral Equation of ARL for ARX(p,r) process 

An integral equation of the second type for the ARL on the modified EWMA control 
chart for the ARX(p,r) process can be approximated by using the quadrature formula. In this 
study, the Gauss-Legendre quadrature rule is applied as follows: 

 Given ( )
( )

( ) ( ) 1 1

1 p r
j i

j i j j
i j

a a kv
f a f v X

k k


  

  = =

 − − 
= + − − − 

+ +  
                     (4-21) 

The approximation for the integral is in the form 

( ) ( ) ( )
10

h m

j j
j

G w f w dw w f a
=

  , 

where 1

2
j

h
a j

m

 
= − 

 
 and ; 1,2,...,j

h
w j m

m
= = . 
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Using the quadrature formula, the numerical approximation ( )G u  for the integral 
equation can be found as a solution of the linear equations as follows: 

( ) ( )
( )

( ) ( )1 1 1

11
1  ; 1,2,..., .

pm r
j i

i j j i j j
j i j

a a kv
G a w G a f v X i m

k k k= = =

 − − 
= + + − − − = 

+ + +  
  


  

  

Thus, 

( ) ( )
( )

( ) ( )
1

1
1 1 1

11
1

pm r
j

j j i j j
j i j

a a kv
G a w G a f v X

k k k= = =

 − − 
= + + − − − 

+ + +  
  


  

  
, 

( ) ( )
( )

( ) ( )
2

2
1 1 1

11
1

pm r
j

j j i j j
j i j

a a kv
G a w G a f v X

k k k= = =

 − − 
= + + − − − 

+ + +  
  


  

  
, 

( ) ( )
( )

( ) ( )
3

3
1 1 1

11
1

pm r
j

j j i j j
j i j

a a kv
G a w G a f v X

k k k


  

  = = =

 − − 
= + + − − − 

+ + +  
   , 

  

( ) ( )
( )

( ) ( )1 1 1

11
1

pm r
j m

m j j i j j
j i j

a a kv
G a w G a f v X

k k k


  

  = = =

 − − 
= + + − − − 

+ + +  
   . 

 
The set of m  equations with m  unknowns can be rewritten in matrix form. The 

column vector of ( )iG a  is 1 1 2( ( ), ( ),..., ( ))m mG a G a G a
=G . Since 1 (1,1,...,1)m

=1 is a 

column vector of ones and m mR  is a matrix, we can define  to thm m  as elements of matrix 
R  as follows: 

( )

( ) ( ) 1 1

11
,

p r
j i

ij j i j j
i j

a a kv
R w f v X

k k k


  

   = =

 − − 
   + − − −   + + +  

   

and ( )1,1,...,1m diag=I is a unit matrix of order m . If ( )
1−

−I R  exists, the numerical 
approximation for the integral equation in terms of the matrix can be written as 

( )
1

1 1m m m m m
−

  = −G I R 1 . 

Finally, by substituting ia  by u  in ( )iG a , the numerical integration equation for 

function ( )G u  can be derived as 

    ( ) ( )
( )

( ) ( )1 1 1

11
1

pm r
j

j j i j j
j i j

a u kv
G u w G a f v X

k k k


  

  = = =

 − − 
= + + − − − 

+ + +  
         (4.22) 

 
A comparison of the efficacies of the NIE method ( ( )G u ) and the explicit formulas 

( ( )G u ) for the ARL of an ARX(p,r) process on the modified EWMA control chart is presented. 
The parameter values were set as 0 370ARL =  and 500;  = 0.01, 0.05, 0.1, and 0.2; the in-
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control parameter 0 1 = ; and the shift size was varied as 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.3, 
and 0.5. In general, the popular setting the initial value is equal to the expected value of the 
distribution. For setting the in-control parameter, 0 1 =  which is the initial value as 1. The 
coefficient has a value from -1 to 1, which can be specified as any value. The configuration 
does not affect the accuracy of the explicit formulas and the NIE methods.  The absolute 
percentage difference to measure the accuracy of the ARL is defined as 

 

( ) ( )
(%) 100

( )

G u G u
Diff

G u

−
=  . 
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Table 4-8 Comparison of the ARL on a modified EWMA control chart using explicit formulas 
with the NIE method for ARX(1,1) with 1,u =  1,v =  1,k =  1 0.2, =  and 

0 370ARL = . 
    1  h  shift Explicit NIE Timea Diff% 
    0.00 370.514622 370.51416 13.468 0.000123 
    0.01 185.632808 185.63263 13.555 0.000093 
    0.02 123.215119 123.21501 13.494 0.000082 
    0.03 91.885107 91.885037 13.428 0.000076 
  0.1 2.11284 0.04 73.065410 73.065357 13.551 0.000072 
    0.05 60.520993 60.520951 13.552 0.000068 
    0.10 32.116753 32.116734 13.504 0.000058 
    0.30 10.731776 10.731772 13.546 0.000037 

0.05 0 
  0.50 6.457709 6.457707 13.440 0.000026 
  0.00 370.424900 370.42415 13.511 0.000201 

    0.01 274.686377 274.68590 13.563 0.000172 
    0.02 214.349128 214.34880 13.478 0.000153 
    0.03 173.294237 173.29399 13.511 0.000140 
  -0.1 2.61195 0.04 143.823485 143.82329 13.446 0.000130 
    0.05 121.811602 121.81145 13.445 0.000122 
    0.10 64.531777 64.531713 13.421 0.000098 
    0.30 17.824627 17.824616 13.541 0.000060 
    0.50 9.519466 9.519462 13.452 0.000042 
    0.00 370.555941 370.55586 13.502 0.000021 
    0.01 90.098635 90.098626 13.498 0.000010 
    0.02 51.385975 51.385971 13.460 0.000008 
    0.03 35.997312 35.997309 13.434 0.000007 
  0.2 0.69141 0.04 27.736604 27.736602 13.467 0.000007 
    0.05 22.584474 22.584472 13.485 0.000006 
    0.10 11.823565 11.823565 13.518 0.000005 
    0.30 4.369675 4.369675 13.506 0.000003 

0.10 1 
  0.50 2.902154 2.902154 13.467 0.000002 
  0.00 370.273926 370.27373 13.537 0.000052 

    0.01 105.208634 105.20860 13.519 0.000025 
    0.02 61.437849 61.437836 13.532 0.000020 
    0.03 43.452288 43.452281 13.542 0.000018 
  -0.2 1.04870 0.04 33.653645 33.653639 13.449 0.000017 
    0.05 27.489870 27.489866 13.471 0.000016 
    0.10 14.478770 14.478768 13.508 0.000013 
    0.30 5.327500 5.327500 13.488 0.000008 
    0.50 3.494115 3.494115 13.434 0.000005 
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Table 4-9 Comparison of the ARL on a modified EWMA control chart using explicit formulas 
with the NIE method for ARX(2,1) with 1,u =  1,v =  0, =  1,k =  1 0.2 = and 

0 370ARL = .  

  1  2  h  shift Explicit NIE Time Diff% 
    0.00 370.104536 370.104178 13.492 0.000097 
    0.01 164.156587 164.156470 13.512 0.000072 
    0.02 105.192627 105.192560 13.467 0.000063 
    0.03 77.258066 77.258020 13.551 0.000059 
  0.1 1.90196 0.04 60.970239 60.970204 13.466 0.000056 
    0.05 50.307351 50.307324 13.532 0.000054 
    0.10 26.685128 26.685116 13.545 0.000046 
    0.30 9.216663 9.216660 13.436 0.000029 

0.05 0.1   0.50 5.688211 5.688210 13.529 0.000020 
  0.00 370.111274 370.110694 13.520 0.000157 

    0.01 218.233870 218.233600 13.487 0.000124 
    0.02 153.301535 153.301368 13.495 0.000109 
    0.03 117.350069 117.349952 13.416 0.000100 
  -0.1 2.34842 0.04 94.565641 94.565553 13.479 0.000094 
    0.05 78.865508 78.865438 13.492 0.000089 
    0.10 41.847694 41.847663 13.492 0.000074 
    0.30 13.172037 13.172030 13.492 0.000047 
    0.50 7.603031 7.603028 13.517 0.000033 
    0.00 370.299172 370.298515 13.519 0.000178 
    0.01 144.464904 144.464768 13.518 0.000094 
    0.02 89.685034 89.684969 13.459 0.000073 
    0.03 65.007924 65.007883 13.455 0.000063 
  0.2 1.78838 0.04 50.973254 50.973225 13.535 0.000057 
    0.05 41.920612 41.920590 13.490 0.000052 
    0.10 22.222112 22.222103 13.425 0.000041 
    0.30 7.893825 7.893823 13.482 0.000024 

0.10 0.1   0.50 4.987173 4.987172 13.499 0.000016 
  0.00 370.115966 370.114002 13.501 0.000531 

    0.01 286.090889 286.089671 13.542 0.000426 
    0.02 228.394081 228.393273 13.492 0.000354 
    0.03 187.010941 187.010376 13.531 0.000302 
  -0.2 2.78993 0.04 156.285272 156.284860 13.569 0.000264 
    0.05 132.822686 132.822375 13.438 0.000234 
    0.10 70.157635 70.157527 13.440 0.000153 
    0.30 18.713286 18.713273 13.557 0.000072 
    0.50 9.832924 9.832919 13.520 0.000047 
    0.00 370.295141 370.292831 13.437 0.000624 
    0.01 137.992552 137.992202 13.490 0.000253 
    0.02 84.820251 84.820109 13.462 0.000168 
    0.03 61.246548 61.246469 13.427 0.000130 
  0.1 1.95666 0.04 47.941844 47.941792 13.486 0.000108 
    0.05 39.398626 39.398589 13.534 0.000093 
    0.10 20.908407 20.908394 13.466 0.000060 
    0.30 7.523560 7.523557 13.512 0.000028 

0.20 0.2   0.50 4.802271 4.802270 13.539 0.000018 
  0.00 370.002909 369.998734 13.478 0.001128 

    0.01 183.558057 183.556989 13.456 0.000582 
    0.02 121.435201 121.434716 13.457 0.000399 
    0.03 90.409051 90.408773 13.539 0.000307 
  -0.1 2.49307 0.04 71.822583 71.822402 13.520 0.000252 
    0.05 59.455236 59.455108 13.515 0.000215 
    0.10 31.519801 31.519760 13.498 0.000129 
    0.30 10.562568 10.562562 13.519 0.000054 
    0.50 6.382784 6.382781 13.433 0.000033 
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The results in Tables 4-7 and 4-8 report the numerical values of the ARL derived 
from the explicit formulas and NIE method, and the absolute percentage difference 
between them. From the results, we can see that the ARL values derived from the explicit 
formulas give the same results as the NIE method. The numerical approximations had an 
absolute percentage difference of less than 0.003%. However, the computational time of 
the NIE method was 13.42–13.58 s whereas that of the explicit formulas was < 1 s. 

We use the relative mean index (RMI) to compare the performance of the ARL of 
an ARX(p,r) process on the EWMA and modified  EWMA control charts. The RMI is defined as 

 

, ,

1 ,

1 n
shift i shift i

i shift i

ARL Min ARL
RMI

n Min ARL=

  −   =
  

  

 . 

 

where ,shift iARL  is the ARL of the control chart when the position process shift, ,Shift i  is 

the shift size for 1,2,...,i n= , ,shift iMin ARL 
   denotes the smallest ARL of two control 

charts in comparison when the position process shift. The control chart with a smallest RMI 
performs the best in detecting mean changes on the whole. 

For the comparison of the ARLs on the EWMA and modified EWMA control charts 
for an ARX(1,1) process, the parameter values were set as 0 370ARL = ;  =  0.05, 0.1, and 
0.2; the in-control parameter 0 1 = ; the shift size was varied as 0.001, 0.003, 0.005, 0.007, 
0.009, 0.01, 0.03, 0.05, 0.07 and 0.09. The results are reported in Table 4-9. 
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Table 4-1 0  Comparison of the ARL of EWMA and modified EWMA control charts using explicit 
formulas for an ARX(1,1) with 1,u =  1,v =  1, =  40 ,k =  1 0.2 =  and 

0 370ARL = .      

shift 
10.05,  0.2 = =   0.1,  0.21 = =   0.2,  0.21 = =  

EWMA 
82.5496 10b −= 

 

Modified EWMA 

1.3590441h =  
 

EWMA 

0.00107964b =  

Modified EWMA 

2.7665764h =  
 

EWMA 

0.04441b =  

Modified EWMA 

5.734902h =  
0.00

0 
370.071291 370.076891

9 
  370.004307 370.003373   370.722568 370.715572 

0.00
1 

362.264617 257.030787
* 

  365.787507 239.166659
* 

  362.075941 233.363671
* 0.00

3 
347.186399 159.726241

* 
  357.521610 140.347811

* 
  345.767724 134.327916

* 0.00
5 

332.792484 115.984299
* 

  349.473732 99.484050*   330.655613 94.494822* 
0.00

7 
319.049437 91.124031*   341.637371 77.151829*   316.615806 72.994088* 

0.00
9 

305.925567 75.090081*   334.006238 63.075235*   303.540954 59.537517* 
0.01

0 
299.586374 69.033841*   330.265724 57.823254*   297.335678 54.535706* 

0.03
0 

198.799944 26.743266*   264.852791 22.105174*   206.492192 20.787108* 
0.05

0 
134.056104 16.821242*   214.163689 13.957965*   153.166554 13.153305* 

0.07
0 

91.808369 12.393346*   174.541323 10.348427*   118.601180 9.778282* 
0.09

0 
63.828457 9.886695*   143.313881 8.311410*   94.690406 7.875239* 

RMI 3.763440 0  7.445925 0  5.824404 0 

shift 
0.05,  0.21 = = −   0.1,  0.21 = = −   0.2,  0.21 = = −  

EWMA 
83.8036 10b −= 

 

Modified EWMA 

2.0452044h =  
 

EWMA 

0.0016149b =  

Modified EWMA 

4.200333h =  
 

EWMA 

0.067334b =  

Modified EWMA 

8.88252h =  
0.00

0 
370.075490 370.074437  370.035318 370.040056  370.017072 370.021854 

0.00
1 

362.413120 272.589846
* 

  365.971526 257.425111
* 

  362.407567 254.808465
* 0.00

3 
347.604772 178.698291

* 
  358.000435 160.267524

* 
  347.947355 157.288491

* 0.00
5 

333.457209 133.038467
* 

  350.232942 116.523643
* 

  334.419802 113.936839
* 0.00

7 
319.938646 106.040681

* 
  342.663148 91.643263*   321.740040 89.431083* 

0.00
9 

307.018935 88.205073*   335.285344 75.588906*   309.833149 73.676321* 
0.01

0 
300.774653 81.379575*   331.666704 69.523408*   304.148484 67.735772* 

0.03
0 

201.120167 32.306069*   268.119397 27.141638*   218.327779 26.405507* 
0.05

0 
136.616346 20.420367*   218.476210 17.187944*   165.516539 16.743211* 

0.07
0 

94.217093 15.067503*   179.369496 12.742094*   130.215179 12.432517* 
0.09

0 
65.938916 12.022993*   148.318390 10.222777*   105.253345 9.990907* 

RMI 3.062808 0  6.078151 0  4.802528 0 

*The smallest ARL on each shift size according to the case. 
 

From the results in Tables 4-9, it is evident that the ARL values derived from the 
explicit formulas for the modified EWMA control chart are less than those for the EWMA 
control chart for every value of  .  For example, when 1 0.2 = , 0.05 =  and shift = 0.05, 
the ARL is 332.792484 from the EWMA control chart while the ARL is 115.984299 from the 
modified EWMA control chart, which corresponds to the RMI values for the modified EWMA 
control chart being less than those for the EWMA control chart.  

We applied the explicit formulas for the ARLs on the EWMA and modified EWMA 
control charts for an ARX(1,1) process using 55 real-world data observations on the value of 
exports and imports of agricultural products to and from Thailand (Unit: Ten billion baht) 
from January 2016 to July 2019, where the value of the imports is the explanatory variable 
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(data from the Office of Agricultural Economics of Thailand). The parameters were set as 
 = 0.05, 0.1, and 0.2; 0 0.589259u = = ; shift size values of 0.001, 0.003, 0.005, 0.007, 
0.009, 0.01, 0.03, 0.05, 0.07, and 0.09; and autoregressive coefficients 1 0.326152, =  

,6.652233 =  ,10.4918v =  1 0.933313 = , and 1 4.1439X = . The results are given in Table 
4-10. 

 
Table 4-11 Comparison of the ARL of ARX(1,1) of EWMA and modified EWMA control charts 

for the value of exports and imports of agricultural products for 0 370ARL = .  

shift 
0.05 = a( 100 )k =   0.1 = ( 40 )k =   0.2 = ( 60 )k =  

EWMA 
183.27104 10b −= 

 

Modified EWMA 

0.007128814h =  
 

EWMA 
131.3617 10b −=   

Modified EWMA 

0.0044711692h =  
 

EWMA 
125.446519 10b −=   

Modified EWMA 

0.0153495067h =  
0.00
0 

374.505189 374.51027
1 

 370.015353 370.013368  370.026479 370.02620
4 0.00

1 
348.463281 80.027591

* 
 348.920418 79.529679*  276.359424 71.606027* 

0.00
3 

301.920274 31.405097
* 

 310.520857 31.227647*  178.925791 27.747820* 
0.00
5 

261.864143 19.690008
* 

 276.644980 19.575453*  128.916300 17.383968* 
0.00
7 

227.356776 14.422145
* 

 246.734101 14.334171*  98.643720 12.748838* 
0.00
9 

197.600498 11.428518
* 

 220.280627 11.355250*  78.453653 10.121645* 
0.01
0 

184.287726 10.369330
* 

 208.221352 10.301213*  70.713067 9.193284* 
0.03
0 

48.289170 3.899445*  70.946841 3.863411*  17.089659 3.535219* 
0.05
0 

14.280238 2.596183*  26.449591 2.568076*  6.766353 2.397466* 
0.07
0 

5.028239 2.046506*  10.869219 2.022750*  3.406272 1.917426* 
0.09
0 

2.310792 1.748461*  5.049280 1.727746*  2.092499 1.656939* 
RMI 8.975697    0  11.224773      0  4.159967    0 

k  for the modified EWMA control chart. aa constant value. *The smallest ARL on each shift 
size according to the case. 
 

From the results in Tables 4-10, it is evident that the ARL values derived from the 
explicit formulas for the modified EWMA control chart are less than those for the EWMA 
control chart for every value of  . For example, when  = 0.05 and shift = 0.009, the ARL is 
197.600498 from the EWMA control chart while the ARL is 11.428518 from the modified 
EWMA control chart. This corresponds to an RMI value of 0 for the modified EWMA control 
chart, which is less than that for the EWMA control chart. The results from Tables 4-10 is 
plotted on the charts in Figure 4-1. 
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Figure 4-1 Comparison of the ARL for an ARX(1,1) on EWMA and modified EWMA control 
charts for real data in table 6, where 0.10 = . 

From Figure 4-1, it can be seen that the ARL values derived from the explicit 
formulas for the modified EWMA control chart are less than those for the EWMA control 
chart for every case. For example, when shift = 0.009, the ARL from the modified EWMA 
control chart is less than that of the EWMA control chart.   

 

4.3 Evaluation the ARL for MAX(q,r) and SMAX(Q,r)L Processes 
4.3.1 Explicit formulas of ARL for MAX(q,r) and SMAX(Q,r)L processes 

 The derivations of the explicit fomulas for the ARL of CUSUM chart, when 
observations are MAX(q,r) and SMAX(Q,r)L processes with exponential white noise are 
presented as follows:  

1.The explicit formula ( )C s for the ARL of MAX(q,r) process with an exponential white 
noise is  

 ( )
1 1 2 2

1

.(
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.. )
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r

t t q t q i it
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s a
y

h X

C s C e e yy d
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t t q t q i it
i

Xa s
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 
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
+ + + + −




 
 

+ − 
 
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  ; [0, )s a                           (4.23)                                                           

Let g be constant as ( )
0

.
h

yg C y e dy−=    

( )C s  can be written as        
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For 0s = , then   
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1 1
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−= ++                                                   (4-24)                                                            
Now, constant g can be found as the following 

 ( )
0

h
yg C y e dy−=   

   1 1 2 2
1

...

0

(1 )

r

t t q t q i it
i

a
yy

h X

g ye e de
       

 
− − −

=

+ +
 
− + 

 
+ −

−


= ++ −  

            1 1 2 2
1

...

0 0

(1

r

t t q t q i it
i

h hX
y y

a
yg e dy e dye

       
  




− − −

=

 
− 

 
+ + + + −

− −


 
 

= + − 
 


+



   

            ( )
1 1 2 2

1

...

1 1

r

t t q t q i it
i

a Xh
h he

e hee
       








− − −
=

 
− 

 
+ + + + −

−


 
 

= − + − 
 
 

. 

Substituting the constant g into Equation (7), then  
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 As previously mentioned, the value of exponential parameter 0 , =  ; this implies 
that the process is an in-control state. Hereby, the explicit analytical solution for ARL0 can 
be written as 

( )1 1 2 2
10 0

0 ...

0 0 1 , 0.

r

t t q t q i it
i

X
h s

a
ARL e h e se
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             (4-25) 
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 On the contrary, if the process is in an out-of-control state, the value of exponential 
parameter 1 0 = (1 )  + , where 1 0 > ,   and   is the shift size. The explicit analytical 
solution for ARL1 can be written as 
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               (4-26) 

2. The explicit formula ( )D s for the ARL of SMAX(Q,r)L process is  
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Let k  be constant as ( )
0

.
h

yk D y e dy−=    

( )D s  can be written as        
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Now, constant k can be found as the following 

         ( )
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Substituting the constant k  into Equation 4-28, then  
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 As previously mentioned, the value of exponential parameter 0 , = ; this implies 
that the process is an in-control state. Hereby, the explicit analytical solution for ARL0 can 
be written as 
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 On the contrary, if the process is in an out-of-control state, the value of exponential 
parameter 1 0 = (1 )  + , where 1 0 > ,   and   is the shift size. The explicit analytical 
solution for ARL1 can be written as 
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4.3.2. Numerical Integral Equation of ARL for MAX(q,r) and SMAX(Q,r)L processes 
 The numerical integral equation method can evaluate the solution by the Gauss-
Legendre quadrature rule as 
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 Therefore, the approximation of average run length is evaluated by the numerical 
integral equation method for ( )ARL u  is  
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An absolute percentage relative error (APRE) criterion is used as a performance criterion, 
and the APRE can be expressed as 

 

             exp

exp

( ) - ( )
(%) | | 100%

( )

appARL s ARL s
APRE

ARL s
=    

                         
where 

exp( )ARL s is the ARL results from the explicit formula and ( )appARL s is an 
approximation of ARL from NIE method. 
The numerical procedure for obtaining optimal parameters for MAX designs 

1. Select an acceptable in-control value of 
0ARL  and decide on the change parameter 

value (
1 ) for an out-of-control state.;  

2. For the given values 
0 and T, find the optimal values of a  and h  to minimize the 

1ARL  values given by Equation 4-26, subject to the constraint that 
0ARL  = T in Equation 4-25, 

i.e., a  and h  are solutions of the optimality problem. 
In addition, the numerical procedure for obtaining optimal parameters for SMAX 

designs is the same as the MAX procedure, by using Equations 4-29 and 4-30 for 
0ARL  and 

1ARL , respectively. The optimal ( ,a h ) values for T = 370 and magnitudes of change are 
shown in Table 4-15.  
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Table 4-12  ARL values for in control process for MAX (2,1) using explicit formula against  NIE  
                 given 1 0.5 = for 0 370ARL =  

a  1  2  h  Explicit NIE APRE (%) 

1.5 
0.1 0.2 4.889 370.485 369.123 (12.821) 0.365197 
0.1 -0.2 5.442 370.211 368.657 (12.885) 0.317387 

2.5 
0.1 0.2 3.971 370.432 369.123 (12.897) 0.353371 
0.1 -0.2 4.887 370.008 368.657 (12.777) 0.365127 

3 
0.1 0.2 3.265 370.225 369.087 (12.818) 0.307381 
0.1 -0.2 3.811 370.154 368.879 (12.843) 0.344451 

 

Table 4-13  ARL values for in control process for SMAX (3,1)12 using explicit formula against  
                 NIE given 1 0.5 =  for 0 370ARL =  

a  1  2  3  h  Explicit NIE APRE (%) 

1.5 
0.1 0.2 0.3 3.525 370.411 369.202 (13.159) 0.326394 

0.1 -0.2 0.3 4.145 370.071 369.652 (13.258) 0.396805 

2.5 
0.1 0.2 0.3 3.525 370.411 369.202 (13.810) 0.326394 

0.1 -0.2 0.3 4.145 370.132 368.797 (13.574) 0.360682 

3 
0.1 0.2 0.3 2.906 370.008 368.979 (13.763) 0.278102 
0.1 -0.2 0.3 3.392 370.202 369.029 (13.564) 0.316854 

 

Table 4-14 Comparison of ARL values for MAX (2,1) process using explicit formula against    
               NIE given 3a = , 1 20.1, 0.2, = = 1 0.5 = , 3.265h =  for 0 370ARL = and             
              3.588h =  for 0 500ARL =  

 
(shift size) 

0 370ARL =  APRE (%) 0 500ARL =  APRE (%) 
Explicit NIE Explicit NIE 

0.00 370.225 369.087 (12.235) 0.307381 500.080 498.380 (11.088) 0.339946 
0.01 347.839 346.783 12.684) 0.303589 468.139 466.570 (11.137) 0.335157 
0.03 308.154 307.243 (12.486) 0.295631 411.811 410.466 (11.199) 0.326606 
0.05 274.253 273.462 (12.264) 0.28842 364.017 362.859 (10.497) 0.318117 
0.07 245.143 244.453 (12.994) 0.281468 323.248 322.245 (10.706) 0.310288 
0.1 208.758 208.191 (11.092) 0.271606 272.684 271.869 (11.218) 0.298881 
0.3 86.578 86.391 (11.165) 0.21599 107.354 107.100 (11.242) 0.23660 
0.5 45.641 45.561 (11.441) 0.175281 54.493 54.389 (11.282) 0.19085 
1.0 16.512 16.494 (11.559) 0.109012 18.611 18.588 (11.670) 0.123583 
1.5 9.183 9.176 (11.412) 0.076228 10.045 10.037 (11.363) 0.079642 
2.0 6.288 6.256 (11.012) 0.38610 6.761 6.758 (11.360) 0.044372 
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Table 4-15  Comparison of ARL values using explicit formula against NIE for SMAX(3,1)12   

                  given 3a = , 1 2 30.1, 0.2, 0.3, =  =  =  1 0.5, = 2.906h =  for 0 370ARL =  and  
                  3.223h =  for 0 500ARL =   
 
(shift 
size) 

0 370ARL =  
APRE (%) 

0 500ARL =  
APRE (%) 

Explicit NIE Explicit NIE 

0.00 370.008 368.979 (13.753) 0.278102 500.438 498.887 (13.859) 0.309929 
0.01 348.077 347.120 (13.961) 0.274939 469.150 467.714 (14.024) 0.306085 
0.03 309.124 308.294 (13.439) 0.268501 413.854 412.618 (14.150) 0.298656 
0.05 275.763 275.040 (11.606) 0.262182 366.803 365.733 (14.016) 0.29171 
0.07 247.047 246.414 (11.660) 0.256227 326.556 325.625 (14.204) 0.285097 
0.1 211.048 210.525 (13.293) 0.247811 276.476 275.714 (13.411) 0.275612 
0.3 88.943 88.764 (13.893) 0.201252 110.871 110.625 (11.886) 0.221879 
0.5 47.311 47.233 (13.971) 0.164867 56.868 56.764 (11.878) 0.18288 
1.0 17.208 17.190 (14.135) 0.104603 19.542 19.518 (12.244) 0.122812 
1.5 9.530 9.523 (13.920) 0.073452 10.493 10.484 (11.859) 0.085771 
2.0 6.486 6.482 (14.323) 0.061671 7.011 7.006 (12.324) 0.071317 

   

Table 4-16  Optimal design parameters and *
1ARL  of MAX (1,2) and SMAX (2,2)12 processes  

                  for 0 370ARL =   
 
(shift 
size) 

MAX (1,2) 
*
1ARL  

SMAX (2,2)12 
*
1ARL  

a  h  a  h  

0.01 1.66999118602 5.973714487571 315.357 2.354154802 5.4156807185 165.571 
005 1.66999118587 5.973714491718 207.994 2.360429504 5.2839458794 126.065 
0.1 1.66999118585 5.973714492065 128.53 2.361119789 5.2874245951 87.092 
0.3 1.66999118582 5.973714493059 29.355 2.361410035 5.2778673182 29.659 
0.5 1.66999118582 5.973714493059 13.552 2.361410035 5.2778673147 16.122 
1.0 1.66999118585 5.973714492065 7.619 2.361410035 5.2778673174 8.158 
2.0 1.66999118611 5.973714485385 4.936 2.354154797 5.415680824 4.641 

  

 The numerical results were obtained from the simulation. The chart was set up with 
reference value ( )a  that is greater than s , where s is an initial value ( s =0). The parameter 
a could be any number but it combines with the control limit ( s ) that corresponds to the 
in-control 0 370ARL =  and 500.  In this paper, the parameter a  is varied between 1.5 to 3.0. 
A comparison of the solution of the explicit formula (Explicit) with the NIE method for the 
CUSUM chart, when 0 1 0.51, ==  for MAX(2,1) and SMAX (3,1)12 are reported in Tables 4-11 
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and 4-12 for 0 370,500ARL =  with which they are in good agreement. Notice that the 
absolute percentage relative error is small. In Tables 4-13 and 4-14, we use Equations 4-25 
and 4-26 to show 0ARL  and 1ARL  for the MAX(2,1) process with parameter 3a =  and the 
coefficient parameters of the process 1 20.1, 0.2, = =  and 1 0.5. =  For Equations 4-29 and 4-
30, the parameters 13, 0.1,a =  =  2 0.2, = 3 0.3 = , and 1 0.5. =  were used for the SMAX 
(3,1)12 process. The parameter value 0 1 =  was applied to the in-control process. 
Meanwhile, for the out-of-control process ( 1 0  ), parameter values 1 0(1 )  = +  were 
used, with shift sizes of 0.01, 0.03, 0.05, 0.10, 0.30, 0.50, 1.0, 1.5, and 2.0. The first row in 
both tables shows that the results of ARL0 with the explicit formula were close to the NIE 
method, when ARL0 approached 370 and 500. The values in parentheses are the CPU times 
of the ARL from both methods. The ARL values of the explicit formula and the NIE method 
were similar and tended to decrease when the level of the shift size increased. Note that 
the absolute percentage relative error was very small and the CPU time with the explicit 
formula was just a fraction of a second, while the NIE method took around 11–13 minutes. 
 In Table 4-15, the results in terms of the optimal reference value ( a ) and optimal width 
of the control limit ( )h  and the minimum 

1ARL  *

1( )ARL  of MAX (1,2) and SMAX (2,2)12 
processes for 0 370ARL = are shown. For example, if we want to detect a parameter change 
from 0 1 =  to 1 0   and the 0ARL  is 370, then the optimality procedure given above will 
give the optimal parameter values a =1.66999118582 and h  = 5.9737144930593 and 

*

1ARL value = 13.552. The suggested explicit formulas are useful to practitioners, especially 
when finding the optimal parameters of the MAX and SMAX processes for the CUSUM chart. 
 Application to real-world data was conducted to evaluate the ARL by the explicit 
formula and NIE method, as reported in Table 4-17. The AEONTS share prices in the SET with 
two exogenous variables, the US/THB exchange rate and the interest rate, were collected 
monthly from January 2012 to December 2016 as the dataset of real observations. The first-
order MA model is suitable for fitting the AEONTS share price with two exogenous variables, 
because the error of estimation is smallest compared to other models.  Therefore, the first-
order MA model was constructed with the process coefficient 

650.0555, = 1 0.746083, = 1 11.773, = − 2 61.94972, = −  and the error as exponential 
white noise with 

0 6.9094. =  For the ARL performance comparison, the boundary values 
22.48,  24.71h =  for the CUSUM control chart and 0.5333,  0.8791 =  for the EWMA 

control chart were used with conditions of 0 370ARL =  and 0 500ARL = , respectively. The 
smoothing parameter of the EWMA control chart was set to 0.1. The results in Table 4-16 are 
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similar to the results in Tables 4-13–4-14, in that the NIE results approached the explicit 
formula results. In Table 4-17, the performance of CUSUM control chart with the explicit 
formula is compared with EWMA control chart by using the NIE method. The results of 
performance comparison show that the CUSUM control chart provided a smaller ARL1 than 
the EWMA control chart when the shift size was small, but when the shift size was 0.015  , 
the EWMA control chart performed better than the CUSUM control chart.  
 

Table 4-17   Comparison of ARL using explicit formula against NIE for MAX (1,2) when given  
                   a = 550, 1 0.746083 = ,

1 11.773, = − 2 61.94972 = − , 22.48h =  for 0 370ARL =    
                  and 24.71h =  for 0 500ARL =  0 6.9094 =  

 
(shift size) 

0 370ARL =  APRE 
(%) 

0 500ARL =  APRE (%) 
Explicit NIE Explicit NIE 

0.00 370.437 369.302 (10.642) 0.306394 500.389 498.693 (10.630) 0.338936 
0.01 367.082 365.959 (11.017) 0.305926 495.596 493.919 (11.0590 0.33838 
0.05 354.056 352.981 (11.106) 0.303624 477.007 475.406 (11.122) 0.335634 
0.1 338.617 337.598 (11.103) 0.300929 455.083 453.511 (11.586) 0.345431 
0.3 285.049 284.222 (10.352) 0.290125 379.214 378.000 (11.111) 0.320136 
0.5 242.186 241.508 (10.965) 0.279950 319.135 318.150 (10.628) 0.308647 
0.7 207.537 206.976 (11.193) 0.270313 271.011 270.204 (10.755) 0.297774 
1.0 167.067 166.638 (11.902) 0.256783 215.395 214.787 (11.016) 0.282272 
2.0 90.192 89.995 (11.758) 0.218422 112.120 111.851 (11.116) 0.239922 
3.0 55.293 55.189 (11.212) 0.188088 66.776 66.639 (11.467) 0.205164 

 

Table 4-18 Performance comparison of CUSUM and EWMA control charts using explicit   
                formula for MAX (1,2) when 0 6.9094 = for 0 370ARL =  and 0 500ARL =  

 
(shift 
size) 

0 370ARL =  0 500ARL =  
CUSUM EWMA 

0.5333h =  

CUSUM EWMA 

0.8791h =  
0.000 370.437 370.423 (16.215) 500.389 500.433 (16.036) 
0.005 368.755 369.083 (16.202) 497.985 498.303 (16.265) 
0.010 367.082 368.191 (16.112) 495.596 495.817 (16.085) 
0.015 365.420 365.311 (15.489) 493.221 490.892 (16.878) 
0.050 354.056 348.928 (16.156) 477.007 471.804 (16.966) 
0.1 338.617 335.141 (15.005) 455.083 453.656 (16.255) 
0.3 285.049 275.716 (16.485) 379.214 375.205 (16.255) 
0.5 242.186 229.117 (15.152) 319.135 313.385 (16.008) 
1.0 167.067 149.136 (15.156) 215.395 207.585 (16.026) 

 



CHAPTER 5  

CONCLUSIONS  

 

The focus of this study was on the derivation of explicit formulas for the ARL on a 
modified EWMA control chart when the observations are autocorrelated with exponential 
white noise. In this chapter, the findings from the study are summarized. Then, suggestions 
for further study are presented at the end. 
 

5.1 Conclusions  

Explicit formulas for the ARL on a modified EWMA control chart for MA(1) and ARX(p,r) 
processes with exponential white noise are proposed. In addition, the explicit formulas for 
the ARL of modified EWMA chart can be applied to real data or other control charts. 
Furthermore, an NIE method for approximating the ARL on the modified EWMA and CUSUM 
control charts was obtained by using the Gauss-Legendre quadrature rule. The accuracy of 
the explicit formulas for the ARL was compared with the NIE method using the relative of 
absolute percentage error. In addition, the performance of the ARL by using explicit formulas 
was determined by a comparison on the modified and EWMA control charts. 

The results indicate that the ARL by using the explicit formulas and NIE method were in 
excellent agreement in that the values obtained with the NIE method were smaller than 
those with the explicit formulas by an absolute percentage difference of less than 0.001%. 
Therefore, the explicit formulas are highly appropriate for evaluating the exact ARL. In 
addition, the CPU time for the ARL obtained by the NIE method were around 19–23 seconds 
while explicit formulas were 0 second. Thus, the explicit formulas for the ARL on the 
modified EWMA control were easy to derive and they substantially saved on the 
computation time. 

The findings reveal that the modified EWMA control chart performed excellently in 
monitoring and detecting the small shift size in the process mean. The experimental results 
indicated that the performance of the modified EWMA control chart was apparently worse 
than the standard chart for detecting a large shift in the process mean when the smoothing 
parameter was 0.05. Subsequently, a smoothing parameter value of 0.10 is considered to be 
appropriate for efficiently applying the modified EWMA control chart. In the application of 
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the proposed method to real observations, the modified EWMA control chart performed 
more efficient than the standard one for all smoothing parameter values. 

 
5.2 Further Study 

The derivation of the explicit formulas of the ARL on a modified EWMA control chart for 

MA(1) and ARX(p,r) processes with exponentially distributed white noise were proposed. This 

approach could be extended to areas involving serially correlated observations in control 

schemes for detecting shifts in the process mean as follows. 

5.2.1 The explicit formulas approach could be extended to obtain the two-sided of 

ARL on the modified EWMA control chart when the observations are MA or ARMA processes 

with exponential white noise. 

5.2.2 Other types of autocorrelated observations in processes such as ARIMA(p,d,q) and 

ARFIMA(p,d,q) processes could be considered when developing the ARL using explicit 

formulas on the modified EWMA control scheme. 

 5.2.3  The explicit formulas of
0ARL  and 

1ARL  by using Fredholm Integral Equation of 
second type technique can be can be applied in a new control chart. 
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Abstract: The aim of this study was to derive explicit formulas of the average run length (ARL) of a
cumulative sum (CUSUM) control chart for seasonal and non-seasonal moving average processes
with exogenous variables, and then evaluate it against the numerical integral equation (NIE) method.
Both methods had similarly excellent agreement, with an absolute percentage error of less than
0.50%. When compared to other methods, the explicit formula method is extremely useful for finding
optimal parameters when other methods cannot. In this work, the procedure for obtaining optimal
parameters—which are the reference value (a) and control limit (h)—for designing a CUSUM chart
with a minimum out-of-control ARL is presented. In addition, the explicit formulas for the CUSUM
control chart were applied with the practical data of a stock price from the stock exchange of Thailand,
and the resulting performance efficiency is compared with an exponentially weighted moving average
(EWMA) control chart. This comparison showed that the CUSUM control chart efficiently detected a
small shift size in the process, whereas the EWMA control chart was more efficient for moderate to
large shift sizes.

Keywords: CUSUM control chart; moving average process with exogenous variable; average run
length; explicit formula; numerical integral equation

1. Introduction

Statistical process control (SPC) has been widely used to monitor processes and services, so as
to avoid any instabilities and inconsistencies. The control chart is the main tool for SPC. Page
first introduced the cumulative sum (CUSUM) control chart [1] and Roberts initially devised the
exponentially weighted moving average (EWMA) control chart [2]. The CUSUM and EWMA control
charts were developed from the Shewhart control chart [3], which is suitable for processes with a
large shift size in the parameters of interest (the mean or variance) when the observations follow
a normal distribution. Meanwhile, the CUSUM and EWMA control chart can detect small shift
sizes in the parameters of interest and they are suitable for observations following more complex
patterns, such as auto-correlated observations, trending and seasonal observations, and changing point
observations [4–6].

SPC has been adopted for monitoring production and service processes in several fields, such
as medical sciences, industrial manufacturing, network analysis, mechanical trading on securities,
and healthcare. A systematic review of the researches on the limitations and benefits of SPC for the
quality improvement of healthcare systems can be found in [7,8], and a comparison of SPC to several
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control charts that were implemented in the manufacturing industry was given by Saravanan and
Nagaragan [9]. Moreover, range and X-bar control charts to monitor production at Swat Pharmaceutical
Company were researched by Muhammad [10], while SPC in a computer-integrated manufacturing
environment was investigated by Montgomery and Friedman [11] and traffic observations for IP
networks that were monitored by CUSUM, Shewhart and EWMA control charts were studied and
analyzed by Matias et al. [12].

An advantage of the CUSUM control chart is that it is suitable for detecting unstable processes
for a subgroup of data and single observations. The following researches focus on the application of
the CUSUM control chart for real observations. Sunthornwat et al. [4] designed optimal differencing
and smoothing parameters for EWMA and CUSUM control charts to evaluate average run length
(ARL) with an autoregressive fractionally integrated moving average (ARFIMA) model. The practical
observations were obtained from the time intervals in days between explosions in mines in Great
Britain from 1875 to 1951 [13]. Meanwhile, Sheng-Shu and Fong-Jung [14] reported that the CUSUM
control chart performed better than the EWMA control chart in monitoring the failure mechanism
of wafer production quality control. Benoit and Pierre detected the persistent changes in the mean
and variance in the state of marine ecosystems, while using indicators of North Sea cod from the
International Bottom Trawl Survey [15]. Their results showed that the CUSUM control chart is suitable
for detecting small, persistent changes.

The observations or data in practical situations are often collected from stochastic processes
that are dependent on time-space or time series. In other words, the models established under the
econometric models are sometimes specified in time-series models. The observations in econometrics
as a time-series model comprise of autoregressive (AR) and moving average (MA) elements. Moreover,
it is very simple to identify the movement patterns of time-series observations in MA models and, often,
the seasonal factor can be embedded in the observations, being modeled as a seasonal moving average
(SMA) model. Moreover, the error, which is the difference between the exact value and approximated
value, should be considered in the modeling. A smaller error signifies better accuracy. The error of a
time-series model, which is called white noise, usually follows a normal distribution, but another form
of time-series model with auto-correlated observations is exponential white noise [16–20].

Econometric models are related to the economic indicators or variables that affect economic
forecasting. An exogenous variable is a variable that is not affected by other variables in the system.
For example, the exogenous variable may depend on the government’s investment policies. Exogenous
variables that are popularly used in econometric models are the exchange rate, interest rate, and inflation
rate, among others. These variables affect the econometric model when forecasting economic situations
in the future. When forecasting in economics and other fields, if the forecasting model includes an
exogenous variable, the model is usually more accurate than one without it. X denotes the exogenous
variable in economic models, and models that are based on an MA or SMA time series with an
exogenous variable are denoted as MAX and SMAX, respectively. For the quality control of processes
and services, the efficiency of a control chart can be measured in terms of the proposed ARL [5,21].
The ARLs for the in-control state (ARL0) and the out-of-control state (ARL1) are evaluated as the
efficiency criteria; a large ARL0 means that the control chart can be applied to efficiently control
the process, whereas a small ARL1 demonstrates that the control chart can detect a change in the
process quickly. The Numerical Integral Equation (NIE) method is widely used for the continuous
distribution of observations in real-world applications. Furthermore, Banach’s fixed-point theory
has been adopted to prove the existence and uniqueness of the ARL in the following researches.
Sunthornwat et al. investigated an explicit formula for the ARL on an EWMA control chart for the
Autoregressive Fractionally Integrated Moving Average (ARFIMA) model with exponential white
noise [4], while Mititelu et al. [22] solved one representing the ARL on a CUSUM control chart based
on observations in a hyper-exponential distribution. Their findings show that the explicit formula
ARL was more quickly evaluated than the NIE ARL. Petcharat et al. derived an explicit formula
ARL, while using an integral equation method on a CUSUM control chart for an MA model with
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exponential white noise [23], with its existence and uniqueness being proved via Banach’s fixed-point
theory. However, the optimal parameters could not be obtained in an MA model.

As mentioned in this literature review, the ARL, for measuring the efficiency of a CUSUM control
chart, is very important for comparing control chart performance. Moreover, the application of control
charts to detect shifts in the processes from autocorrelated data, which needs a high accuracy model
with the study of exogenous variables, is very interesting. For example, the MAX and SMAX models
are widely used in the field of economics. In addition, finding the optimal values for the parameters
in a CUSUM chart is important for these models to detect changes in a process as fast as possible.
Therefore, the aim of this research was to evaluate the ARL on a CUSUM control chart of MAX and
SMAX processes, and to apply Banach’s fixed-point theory to prove the existence and uniqueness of
the ARL. The stock price for Aeon Thana Sinsap (Thailand) PCL (AEONTS) with exogenous variables,
which are the USD/THB exchange rate and the interest rate, were applied to analyze the ARL of a
CUSUM control chart. The rest of this paper is organized, as follows. In the next section, preliminaries
regarding the definitions and theory used in the study are given. Section 3 illustrates the explicit
formula. Section 4 presents the existence and uniqueness of the explicit formula, the NIE method
and the numerical procedure for obtaining optimal parameters for ARL. The computational results,
a comparison, and an application to real data are reported in Section 5. Section 6 consists of the
conclusion and a discussion of this research.

2. Preliminaries

In this section, the definitions and theories related to the fixed point theorem, MAX and SMAX
processes, CUSUM control chart, and characteristic are proposed, as follows:

2.1. The MAX(q,r) and SMAX(Q,r)L Processes

Definition 1. Let {Zt, t = 1, 2, . . . ,} be a sequence of MAX(q,r) process given as

Zt = µ+ (1− θ1B− θ2B2
− . . .− θqBq)εt +

r∑
i=1

βiXit, (1)

and {ζt, t = 1, 2, . . . ,} be a sequence of SMAX(Q,r)L process given by the expression

ζt = µ+ (1− θLBL
− θ2LB2L

− . . .− θQLBQL)εt +
r∑

i=1

βiXit, (2)

where

εt is a exponential white noise process,
µ is a process mean,
(1− θ1B− θ2B2

− . . .− θqBq) is the moving average polynomials in B of order q.

(1 − θLBL
− θ2LB2L

− . . . − θQLBQL) is the seasonal moving average polynomials in B of order Q; L is a
natural number,
B is the backward shift operator, i.e., Bqεt = εt−q, and
Xit is exogenous variable and βi is a coefficient of Xit.

2.2. Fixed Point and Metric Space

Definition 2. The point s∗ is called a fixed point in the domain of the function ARL(s) if ARL(s∗) = s∗.
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Definition 3. Let M be a nonempty set and R denote the set of real numbers. A distance function from x to y,
ρ : M×M→ R is said to be a metric on M denoted by (M,ρ) if it satisfies the following conditions. For all,
x, y, z ∈M,

(1) ρ(x, y) ≥ 0 i.e., ρ is finite and non-negative real valued function.
(2) ρ(x, y) = 0 if, and only if, x = y.
(3) ρ(x, y) = ρ(y, x), (Symmetric property)
(4) ρ(x, z) ≤ ρ(x, y) + ρ(y, z), (Triangular inequality).

Definition 4. A sequence (xn) of points of (M,ρ) is a Cauchy’s sequence if ρ(xm, xn)→ 0 for m, n→∞.

Definition 5. A metric space is a complete metric space if every Cauchy’s sequence converges to x ∈M. That is
to say, if ρ(xm, xn)→ 0 as m, n→∞ , then there exists x ∈M, such that ρ(xm, x)→ 0 as m→∞.

Definition 6. An operator C∗ : M→M is a contraction mapping, or contraction, if there exists ω ∈ [0, 1)
such that ρ(C∗x, C∗y) ≤ ωρ(x, y), for all x, y ∈M.

Definition 7. An element x ∈M is a fixed point of an operator C∗, if C∗ x = x.

Definition 8. A supremum norm ‖.‖∞ in the domain of continuous function ARL(s) : Dom(ARL(s))→ R
is defined as ‖.‖∞ = sup

0≤s≤h
|ARL(s)| = sup{|ARL(s)| : s ∈ Dom(ARL(s))}.

Definition 9. ARL : [0, h]→ R is a twice differentiable function, being denoted by ARL ∈ C2[0, h].

Theorem 1. (Banach’s Fixed Point Theorem (see Richard [24]))
If C∗ : M→M is a contraction mapping on a complete metric space (M,ρ), then there exists an unique

solution s ∈M of C∗s = s.

2.3. CUSUM and EWMA Control Charts for the MAX(q,r) and SMAX(Q,r)L Processes

The CUSUM statistic under the assumption {Yt; t = 1, 2, 3, . . .}, as a sequence of i.i.d continuous
random variables with common probability density function, is considered. The CUSUM statistic (Yt)

is referred to as an upper CUSUM statistic, being based on MAX(q,r) and SMAX(Q,r)L processes. Yt

can be expressed by the recursive formula, as

Yt = max{0, Yt−1 + Zt − a}, for t = 1, 2, . . . , (3)

where Zt is a sequence of the MAX(q,r) and SMAX(Q,r)L processes with exponential white noise, the
starting value Y0 = s is an initial value; s ∈ [0, h], where h is a control limit and a is usually called the
reference value of CUSUM chart. The CUSUM stopping time (τh) with predetermined threshold h is
defined as

τh = inf{t > 0; Yt ≥ h}, for h > u (4)

Meanwhile, the EWMA statistic for constructing EWMA control chart with smoothing parameter
η ∈ (0, 1], mean µ, variance σ2, initial value of the process mean: M0 = µ is defined as

Mt = (1− η)Mt−1 + ηZt ; t = 1, 2, 3, . . . , n (5)

where Zt is generated from the MAX(q,r) and SMAX(Q,r)L processes with exponential white noise.
The control limits of EWMA control chart consist of

Upper control limit: UCLt = µ+ κσ
√

η
(2−η)

[
1− (1− η)2t

]
Center Line: CL = µ
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Lower control limit: LCLt = µ− κσ
√

η
(2−η)

[
1− (1− η)2t

]
where κ is the width of the control limits.

2.4. Characteristics of Average Run Length

Let {εt, t = 1, 2, 3, . . .} be a sequence of independent and identically distributed random variables
with a probability density function f (x) with the parameter λ = λ0, which is before a change-point
time θ ≤ ∞; the parameters λ1 > λ0 are after the change-point time. Generally, the change-point
times are considered. The expectation Eθ(.) for fixed θ under probability density function f (x) with
parameter λ1 is that the change-point occurs at point θ. The appropriate chart provides a large ARL
for θ = ∞. There is the behavior of in-control state of ARL, being denoted by ARL0, or the state of no
change (λ = λ0). The expectation of the run length τh in the -control state can be defined as

ARL0 = Eθ(τh)

Meanwhile, if θ = 1, in the case of the change-point time from λ0 to λ1, then the ARL is evaluated
as the out-of -control state of ARL, being denoted by ARL1, which can be defined as

ARL1 = Eθ(τh
∣∣∣τh ≥ 1)

3. The Explicit Formulas for Average Run Lengths with MAX(q,r) and SMAX(Q,r)L Processes

In this section, the derivations of the explicit formulas for the ARL of CUSUM chart, when
observations are MAX(q,r) and SMAX(Q,r)L processes with exponential white noise from the integral
equations, after checking the existence and uniqueness of the solutions for the ARL, are presented,
as follows:

Theorem 2. The explicit formula C(s) for the ARL of MAX(q,r) process with an exponential white noise is

C(s) = eλh(1 + e
λ(a−µ+θ1εt−1+θ2εt−2+...+θqεt−q−

r∑
i=1

βiXit)
− λh) − eλs; s ≥ 0

Proof. Let C(s) be the explicit ARL of MAX(q,r) process with an exponential white noise.

C(s) = 1 +

h∫
0

C(y)λe
λ(s−a+µ−θ1εt−1−θ2εt−2−...−θqεt−q+

r∑
i=1

βiXit)
e−λydy

+

1− e
−λ(a−s−µ+θ1εt−1+θ2εt−2+...+θqεt−q−

r∑
i=1

βiXit)
C(0); s ∈ [0, a) (6)

Let g be constant as

g =

h∫
0

C(y)e−λydy.

C(s) can be written as

C(s) = 1 + λge
λ(s−a+µ−θ1εt−1−θ2εt−2−...−θqεt−q+

r∑
i=1

βiXit)
+

1− e
−λ(a−s−µ+θ1εt−1+θ2εt−2+...+θqεt−q−

r∑
i=1

βiXit)
C(0)
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For s = 0, then

C(0) = 1 + λge
λ(−a+µ−θ1εt−1−θ2εt−2−...−θqεt−q+

r∑
i=1

βiXit)
+

1− e
−λ(a−µ+θ1εt−1+θ2εt−2+...+θqεt−q−

r∑
i=1

βiXit)
C(0)

= e
λ(a−µ+θ1εt−1+θ2εt−2+...+θqεt−q−

r∑
i=1

βiXit)
+ λg

Subsequently,

C(s) = 1 + λge
λ(s−a+µ−θ1εt−1−θ2εt−2−...−θqεt−q+

r∑
i=1

βiXit)

+

1− e
−λ(a−s−µ+θ1εt−1+θ2εt−2+...+θqεt−q−

r∑
i=1

βiXit)
e
λ(a−µ+θ1εt−1+θ2εt−2+...+θqεt−q−

r∑
i=1

βiXit)
+ λg

= 1 + e
λ(a−µ+θ1εt−1+θ2εt−2+...+θqεt−q−

r∑
i=1

βiXit)
+ λg− eλs

= 1 + e
λ(a−µ+θ1εt−1+θ2εt−2+...+θqεt−q−

r∑
i=1

βiXit)
+ λg− eλs

= 1 + λg + e
λ(a−µ+θ1εt−1+θ2εt−2+...+θqεt−q−

r∑
i=1

βiXit)
− eλs. (7)

Now, constant g can be found as the following

g =

h∫
0

C(y)e−λydy

=

h∫
0

(1 + λg + e
λ(a−µ+θ1εt−1+θ2εt−2+...+θqεt−q−

r∑
i=1

βiXit)
− eλy)e−λydy

=

(1 + λg + e
λ(a−µ+θ1εt−1+θ2εt−2+...+θqεt−q−

r∑
i=1

βiXit)


h∫
0

e−λydy−

h∫
0

eλy−λydy

=
eλh

λ

(
1− e−λh

)1 + e
λ(a−µ+θ1εt−1+θ2εt−2+...+θqεt−q−

r∑
i=1

βiXit)
− heλh

Substituting the constant g into Equation (7), then

C(s) = eλh

1 + e
λ(a−µ+θ1εt−1+θ2εt−2+...+θqεt−q−

r∑
i=1

βiXit)
− λh

− eλs, s ≥ 0.

�

As previously mentioned, the value of exponential parameter λ = λ0,; this implies that the process
is an in-control state. Hereby, the explicit analytical solution for ARL0 can be written as

ARL0 = eλ0h

1 + e
λ0(a−µ+θ1εt−1+θ2εt−2+...+θqεt−q−

r∑
i=1

βiXit)
− λ0h

− eλ0s, s ≥ 0. (8)
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On the contrary, if the process is in an out-of-control state, the value of exponential parameter
λ1 = λ0(1 + δ), where λ1 > λ0, and δ is the shift size. The explicit analytical solution for ARL1 can be
written as

ARL1 = eλ1h

1 + e
λ1(a−µ+θ1εt−1+θ2εt−2+...+θqεt−q−

r∑
i=1

βiXit)
− λ1h

− eλ1s, s ≥ 0. (9)

Theorem 3. The explicit formula D(s) for the ARL of SMAX(Q,r)L process is

D(s) = eλh(1 + e
λ(a−µ+θLεt−L+θ2Lεt−2L+...+θQLεt−QL−

r∑
i=1

βiXit)
− λh) − eλs; s ≥ 0

Proof. Let D(s) be the explicit ARL of SMAX(q,r) process with an exponential white noise.

D(s) = 1 +

h∫
0

D(y)λe
λ(s−a+µ−θLεt−L−θ2Lεt−2L−...−θQLεt−QL+

r∑
i=1

βiXit)
e−λydy

+

1− e
−λ(a−s−µ+θLεt−L+θ2Lεt−2L+...+θQLεt−QL−

r∑
i=1

βiXit)
D(0); s ∈ [0, a) (10)

Let k be constant as

k =

h∫
0

D(y)e−λydy.

D(s) can be written as

D(s) = 1 + λke
λ(s−a+µ−θLεt−L−θ2Lεt−2L−...−θQLεt−QL+

r∑
i=1

βiXit)

+

1− e
−λ(a−s−µ+θLεt−L+θ2Lεt−2L+...+θQLεt−QL−

r∑
i=1

βiXit)
D(0).

For s = 0, then

D(0) = 1 + λke
λ(−a+µ−θLεt−L−θ2Lεt−2L−...−θQLεt−QL+

r∑
i=1

βiXit)
+

1− e
−λ(a−µ+θLεt−L+θ2Lεt−2L+...+θQLεt−QL−

r∑
i=1

βiXit)
D(0)

= e
λ(a−µ+θLεt−L+θ2Lεt−2L+...+θQLεt−QL−

r∑
i=1

βiXit)
+ λk

Afterwards,

D(s) = 1 + λke
λ(s−a+µ−θLεt−L−θ2Lεt−2L−...−θQLεt−QL+

r∑
i=1

βiXit)

+

1− e
−λ(a−s−µ+θLεt−L+θ2Lεt−2L+...+θQLεt−QL−

r∑
i=1

βiXit)
e
λ(a−µ+θLεt−L+θ2Lεt−2L+...+θQLεt−QL−

r∑
i=1

βiXit)
+ λk

= 1 + λk + e
λ(a−µ+θLεt−L+θ2Lεt−2L+...+θQLεt−QL−

r∑
i=1

βiXit)
− eλs (11)
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Now, constant k can be found as the following

k =

h∫
0

D(y)e−λydy

=

h∫
0

(1 + λk + e
λ(a−µ+θLεt−L+θ2Lεt−2L+...+θQLεt−QL−

r∑
i=1

βiXit)
− eλy)e−λydy

=

(1 + λk + e
λ(a−µ+θLεt−L+θ2Lεt−2L+...+θQLεt−QL−

r∑
i=1

βiXit)


h∫
0

e−λydy−

h∫
0

eλy−λydy

=
eλh

λ

(
1− e−λh

)1 + e
λ(a−µ+θLεt−L+θ2Lεt−2L+...+θQLεt−QL−

r∑
i=1

βiXit)
− heλh

Substituting the constant k into Equation (11), then

D(s) = eλh

1 + e
λ(a−µ+θLεt−L+θ2Lεt−2L+...+θQLεt−QL−

r∑
i=1

βiXit)
− λh

− eλs, s ≥ 0.

�

As previously mentioned, the value of exponential parameter λ = λ0,; this implies that the process
is an in-control state. Hereby, the explicit analytical solution for ARL0 can be written as

ARL0 = eλ0h

1 + e
λ0(a−µ+θLεt−L+θ2Lεt−2L+...+θQLεt−QL−

r∑
i=1

βiXit)
− λ0h

− eλ0s, s ≥ 0. (12)

On the contrary, if the process is in an out-of-control state, the value of exponential parameter
λ1 = λ0(1 + δ), where λ1 > λ0, and δ is the shift size. The explicit analytical solution for ARL1 can be
written as

ARL1 = eλ1h

1 + e
λ1(a−µ+θLεt−L+θ2Lεt−2L+...+θQLεt−QL−

r∑
i=1

βiXit)
− λ1h

− eλ1s, s ≥ 0. (13)

4. Explicit Formulas and Numerical Integral Equation Method for Average Run Length

In this section, the existence and uniqueness of the explicit formulas for the analytical ARLs and
numerical integral equation method for numerical ARLs are shown as the following.

4.1. Existence and Uniqueness of the Explicit Formulas for Average Run Lengths

Theorem 4. Explicit formulas for ARL(s)—C(s) and D(s)—derived from the integral equations on the
CUSUM control chart of MAX and SMAX processes with exponential white noise, respectively, have existence
and uniqueness.

Proof (Existence). Let Con [0, h] be a set of all continuous functions of ARL on [0, h]. Let ARL0 ∈

Con([0, h] and (ARLn)n≥0 be a Cauchy’s sequence of explicit formula ARL that satisfies ARLn+1 =

C∗ARLn.
ρ(ARLn+1, ARLn) = ρ(C∗ARLn, C∗ARLn−1)

≤ ωρ(C∗ARLn, C∗ARLn−1); ω ∈ [0, 1).
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Repeatedly, ρ(ARLn+1, ARLn) ≤ ωn ρ(ARL1, ARL0), for n ≥ 0.
Thus, for n ≥ m

ρ(ARLn, ARLm) ≤ ρ(ARLn, ARLn−1) + . . .+ ρ(ARLm+1, ARLm)

≤ (ωn−1 + . . .+ωm) ρ(ARL1, ARL0)

≤
ωm

1−ω
ρ(ARL1, ARL0)

(ARLn)n≥0 is a Cauchy’s sequence and lim
n→∞

C∗nARLn → ARL . That is, C∗ARL = ARL. �

Proof (Uniqueness). Let

k(s, y) = λe
λ(s−a+µ−θ1εt−1−θ2εt−2−...−θqεt−q+

r∑
i=1

βiXit)
e−λy

k(s, y) = λe
λ(s−a+µ−θLεt−L−θ2Lεt−2L−...−θQLεt−QL+

r∑
i=1

βiXit)
e−λy

be a kernel function of integral equation for C(s) and be a kernel function of integral equation for
D(s) representing ARLs, where k : [0, h] × [0, h]→ R and Zt is MAX or SMAX process. The inequality

sup
0≤y≤h

 h∫
0

∣∣∣k(s, y)
∣∣∣dy

 < 1 will be shown to prove that C∗ is a contraction mapping on the complete metric

space (Con([0, h]), ‖.‖∞).
For any ARLi, ARL j ∈ Con([0, h]),

‖C∗ARLi −C∗ARL j ‖∞ = sup
0≤y≤h

∣∣∣∣∣∣∣∣∣
h∫

0

k(s, y)[ARLi(y) −ARL j(y)]dy

∣∣∣∣∣∣∣∣∣
≤ sup

0≤y≤h

h∫
0

∣∣∣k(s, y)
∣∣∣ ∣∣∣[ARLi(y) −ARL j(y)]

∣∣∣dy

≤ ω‖ARLi −ARL j‖∞, where ω = sup
0≤y≤h

 h∫
0

∣∣∣k(s, y)
∣∣∣ dy

 < 1. �

Therefore, the explicit formulas ARL on the CUSUM control chart of MAX or SMAX processes
with exponential white noise have existence and uniqueness.

4.2. The Numerical Integral Equation Method

According to the integral equation in Equations (6) and (10), the numerical integral equation
method can evaluate the solution by the Gauss–Legendre quadrature rule as

ARL(ai) = 1 +
1

λ+ 1

m∑
j=1

w jARL(a j) f
(a j − (1− λ)ai + v + (λθ+ θ)s

λ+ 1
− µ

)

where
i = 1, 2, 3, . . . , m, a j =

h
m

(
j−

1
2

)
and w j =

h
m

; j = 1, 2, 3, . . . , m

It can be rewritten in matrix form as

ARLm×1 = 1m×1 + Rm×mARLm×1 or ARLm×1 = (Im −Rm×m)
−11m×1
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where

ARLm×1 =


ARL(a1)

ARL(a2)
...

ARL(am)

, Im = diag(1, 1, . . . , 1), 1m×1 =


1
1
...
1


and

Rm×m =



1
λ+1 w1 f

(
a1−(1−λ)a1+v+(λθ+θ)s

λ+1 − µ
)
· · ·

1
λ+1 wm f

(
am−(1−λ)a1+v+(λθ+θ)s

λ+1 − µ
)

1
λ+1 w1 f

(
a1−(1−λ)a2+v+(λθ+θ)s

λ+1 − µ
)
· · ·

1
λ+1 wm f

(
am−(1−λ)a2+v+(λθ+θ)s

λ+1 − µ
)

...
1

λ+1 w1 f
(

a1−(1−λ)am+v+(λθ+θ)s
λ+1 − µ

)
· · ·

1
λ+1 wm f

(
am−(1−λ)am+v+(λθ+θ)s

λ+1 − µ
)


Therefore, the approximation of average run length is evaluated by the numerical integral equation

method for ARL(u) is

ARL(u) = 1 +
1

λ+ 1

m∑
j=1

w jARL(a j) f
(a j − (1− λ)u + v + (λθ+ θ)s

λ+ 1
− µ

)

where a j =
h
m

(
j− 1

2

)
and w j =

h
m , j = 1, 2, 3, . . . , m.

An absolute percentage relative error (APRE) criterion is used as a performance criterion and the
APRE can be expressed as

APRE(%) =

∣∣∣∣∣∣∣ARL(s)exp −ARL(s)app

ARL(s)exp

∣∣∣∣∣∣∣×100% (14)

where ARL(s)exp is the ARL results from the explicit formula and ARL(s)app is an approximation of
ARL from the NIE method.

4.3. The Numerical Procedure for Obtaining Optimal Parameters for MAX Designs

Step 1. Select an acceptable in-control value of ARL0 and decide on the change parameter value
(λ1) for an out-of-control state;

Step 2. For the given values λ0 and T, find the optimal values of a and h to minimize the ARL1

values that are given by Equation (9), subject to the constraint that ARL0 = T in Equation (8), i.e., a and
h are solutions of the optimality problem.

In addition, the numerical procedure for obtaining optimal parameters for SMAX designs is the
same as the MAX procedure, by using Equations (12) and (13) for ARL0 and ARL1, respectively. Table
shows the optimal (a, h) values for T = 370 and magnitudes of change.

5. Computational Results and Real Application

In this section, the results of the ARL with the explicit formula and the NIE method are provided
and compared.

The ARL results of the proposed explicit formula (explicit) were compared with the NIE method
while using the Gauss–Legendre quadrature rule with 1000 nodes for the CUSUM chart, based on
the APRE criterion in Equation (14). The numbers in parentheses are CPU time (minutes) with the
NIE method.
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5.1. Numeric Results

The numerical results were obtained from the simulation. The chart was set up with reference
value (a) that is greater than s, where s is an initial value (s = 0). The parameter a could be any
number, but it combines with the control limit (s) that corresponds to the in-control ARL0 = 370 and
500. In this paper, the parameter a is varied between 1.5 to 3.0. A comparison of the solution of the
explicit formula (Explicit) with the NIE method for the CUSUM chart, when λ0 = 1, β1 = 0.5 for MAX
(2,1) and SMAX (3,1)12, are reported in Tables 1 and 2 for ARL0 = 370, 500, with which they are in
good agreement. Notice that the absolute percentage relative error is small. In Tables 3 and 4, we use
Equations (8) and (9) to show ARL0 and ARL1 for the MAX (2,1) process with parameter a = 3 and the
coefficient parameters of the process θ1 = 0.1,θ2 = 0.2, and β1 = 0.5. For Equations (12) and (13), the
parameters a = 3, Θ1 = 0.1, Θ2 = 0.2, Θ3 = 0.3, and β1 = 0.5. were used for the SMAX (3,1)12 process.
The parameter value λ0 = 1 was applied to the in-control process. Meanwhile, for the out-of-control
process (λ1 > λ0), parameter values λ1 = λ0(1 + δ) were used, with shift sizes of 0.01, 0.03, 0.05, 0.10,
0.30, 0.50, 1.0, 1.5, and 2.0. The first row in both tables shows that the results of ARL0 with the explicit
formula were close to the NIE method, when ARL0 approached 370 and 500. The values in parentheses
are the CPU times of the ARL from both of the methods. The ARL values of the explicit formula and
the NIE method were similar and tended to decrease when the level of the shift size increased. Note
that the absolute percentage relative error was very small and the CPU time with the explicit formula
was just a fraction of a second, while the NIE method took around 11–13 min.

Table 1. ARL values for in control process for MAX (2,1) using explicit formula against numerical
integral equation given β1 = 0.5 for ARL0 = 370.

a θ1 θ2 h Explicit NIE APRE (%)

1.5
0.1 0.2 4.889 370.485 369.123 (12.821) 0.365197
0.1 −0.2 5.442 370.211 368.657 (12.885) 0.317387

2.5
0.1 0.2 3.971 370.432 369.123 (12.897) 0.353371
0.1 −0.2 4.887 370.008 368.657 (12.777) 0.365127

3
0.1 0.2 3.265 370.225 369.087 (12.818) 0.307381
0.1 −0.2 3.811 370.154 368.879 (12.843) 0.344451

Table 2. ARL values for in control process for SMAX (3,1)12 using explicit formula against numerical
integral equation given β1 = 0.5 for ARL0 = 370.

a Θ1 Θ2 Θ3 h Explicit NIE APRE (%)

1.5
0.1 0.2 0.3 3.525 370.411 369.202 (13.159) 0.326394
0.1 −0.2 0.3 4.145 370.071 369.652 (13.258) 0.396805

2.5
0.1 0.2 0.3 3.525 370.411 369.202 (13.810) 0.326394
0.1 −0.2 0.3 4.145 370.132 368.797 (13.574) 0.360682

3
0.1 0.2 0.3 2.906 370.008 368.979 (13.763) 0.278102
0.1 −0.2 0.3 3.392 370.202 369.029 (13.564) 0.316854
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Table 3. ARL values for MAX (2,1) process using explicit formula against numerical integral equation
given a = 3, θ1 = 0.1,θ2 = 0.2, β1 = 0.5, h = 3.265 for ARL0 = 370 and h = 3.588 for ARL0 = 500.

δ ARL0=370
APRE (%)

ARL0=500
APRE (%)

(Shift Size) Explicit NIE Explicit NIE

0.00 370.225 369.087 (12.235) 0.307381 500.080 498.380 (11.088) 0.339946
0.01 347.839 346.783 12.684) 0.303589 468.139 466.570 (11.137) 0.335157
0.03 308.154 307.243 (12.486) 0.295631 411.811 410.466 (11.199) 0.326606
0.05 274.253 273.462 (12.264) 0.28842 364.017 362.859 (10.497) 0.318117
0.07 245.143 244.453 (12.994) 0.281468 323.248 322.245 (10.706) 0.310288
0.1 208.758 208.191 (11.092) 0.271606 272.684 271.869 (11.218) 0.298881
0.3 86.578 86.391 (11.165) 0.21599 107.354 107.100 (11.242) 0.23660
0.5 45.641 45.561 (11.441) 0.175281 54.493 54.389 (11.282) 0.19085
1.0 16.512 16.494 (11.559) 0.109012 18.611 18.588 (11.670) 0.123583
1.5 9.183 9.176 (11.412) 0.076228 10.045 10.037 (11.363) 0.079642
2.0 6.288 6.256 (11.012) 0.38610 6.761 6.758 (11.360) 0.044372

Table 4. ARL values using explicit formula against numerical integral equation for SMAX (3,1)12 given
a = 3, Θ1 = 0.1, Θ2 = 0.2, Θ3 = 0.3, β1 = 0.5, h = 2.906 for ARL0 = 370 and h = 3.223 for ARL0 = 500.

δ ARL0=370
APRE (%)

ARL0=500
APRE (%)

(Shift Size) Explicit NIE Explicit NIE

0.00 370.008 368.979 (13.753) 0.278102 500.438 498.887 (13.859) 0.309929
0.01 348.077 347.120 (13.961) 0.274939 469.150 467.714 (14.024) 0.306085
0.03 309.124 308.294 (13.439) 0.268501 413.854 412.618 (14.150) 0.298656
0.05 275.763 275.040 (11.606) 0.262182 366.803 365.733 (14.016) 0.29171
0.07 247.047 246.414 (11.660) 0.256227 326.556 325.625 (14.204) 0.285097
0.1 211.048 210.525 (13.293) 0.247811 276.476 275.714 (13.411) 0.275612
0.3 88.943 88.764 (13.893) 0.201252 110.871 110.625 (11.886) 0.221879
0.5 47.311 47.233 (13.971) 0.164867 56.868 56.764 (11.878) 0.18288
1.0 17.208 17.190 (14.135) 0.104603 19.542 19.518 (12.244) 0.122812
1.5 9.530 9.523 (13.920) 0.073452 10.493 10.484 (11.859) 0.085771
2.0 6.486 6.482 (14.323) 0.061671 7.011 7.006 (12.324) 0.071317

In Table 5, the results in terms of the optimal reference value (a) and optimal width of the control
limit (h) and the minimum ARL1 (ARL∗1) of MAX (1,2) and SMAX (2,2)12 processes for ARL0 = 370
are shown. For example, if we want to detect a parameter change from λ0 = 1 to λ1 > λ0 and
the ARL0 is 370, then the optimality procedure given above will give the optimal parameter values
a = 1.66999118582 and h = 5.9737144930593 and ARL1

∗ value = 13.552. The suggested explicit formulas
are useful to practitioners, especially when finding the optimal parameters of the MAX and SMAX
processes for the CUSUM chart.

Table 5. Optimal design parameters and ARL∗1 of MAX (1,2) and SMAX (2,2)12 processes for ARL0 = 370.

δ MAX (1,2)
ARL*

1

SMAX (2,2)12
ARL*

1(Shift Size) a h a h

0.01 1.66999118602 5.9737144875716 315.357 2.354154802 5.4156807185 165.571
005 1.66999118587 5.973714491718 207.994 2.360429504 5.28394587940 126.065
0.1 1.66999118585 5.9737144920653 128.53 2.361119789 5.28742459511 87.092
0.3 1.66999118582 5.9737144930593 29.355 2.361410035 5.2778673182 29.659
0.5 1.66999118582 5.9737144930593 13.552 2.361410035 5.2778673147 16.122
1.0 1.66999118585 5.9737144920654 7.619 2.361410035 5.2778673174 8.158
2.0 1.66999118611 5.973714485385 4.936 2.354154797 5.415680824 4.641
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5.2. Real-World Application

Application to real-world data was conducted to evaluate the ARL by the explicit formula and NIE
method, as reported in Table 6. The AEONTS share prices in the SET with two exogenous variables, the
US/THB exchange rate, and the interest rate, were collected monthly from January 2012 to December
2016 as the dataset of real observations. The first-order MA model is suitable for fitting the AEONTS
share price with two exogenous variables, because the error of estimation is the smallest as compared
to other models. Therefore, the first-order MA model was constructed with the process coefficients
µ = 650.0555, θ1 = 0.746083, β1 = −11.773, β2 = −61.94972, and the error as exponential white noise
with λ0 = 6.9094. For the ARL performance comparison, the boundary values h = 22.48, 24.71 for the
CUSUM control chart and κ = 0.5333, 0.8791 for the EWMA control chart were used with conditions
of ARL0 = 370 and ARL0 = 500, respectively. The smoothing parameter of the EWMA control chart
was set to 0.1. The results in Table 6 are similar to the results in Tables 3 and 4, in that the NIE results
approached the explicit formula results. In Table 7, the performance of CUSUM control chart with
the explicit formula is compared with EWMA control chart by using the NIE method. The results of
the performance comparison show that the CUSUM control chart provided a smaller ARL1 than the
EWMA control chart when the shift size was small, but the EWMA control chart performed better than
the CUSUM control chart when the shift size was δ ≥ 0.015.

Table 6. Comparison of ARL values using explicit formula against numerical integral equation for
MAX (1,2) when given a = 550, θ1 = 0.746083, β1 = −11.773, β2 = −61.94972, h = 22.48 for ARL0 = 370
and h = 24.71 for ARL0 = 500 λ0 = 6.9094.

δ ARL0=370
APRE (%)

ARL0=500
APRE (%)

(Shift Size) Explicit NIE Explicit NIE

0.00 370.437 369.302 (10.642) 0.306394 500.389 498.693 (10.630) 0.338936
0.01 367.082 365.959 (11.017) 0.305926 495.596 493.919 (11.0590 0.33838
0.05 354.056 352.981 (11.106) 0.303624 477.007 475.406 (11.122) 0.335634
0.1 338.617 337.598 (11.103) 0.300929 455.083 453.511 (11.586) 0.345431
0.3 285.049 284.222 (10.352) 0.290125 379.214 378.000 (11.111) 0.320136
0.5 242.186 241.508 (10.965) 0.279950 319.135 318.150 (10.628) 0.308647
0.7 207.537 206.976 (11.193) 0.270313 271.011 270.204 (10.755) 0.297774
1.0 167.067 166.638 (11.902) 0.256783 215.395 214.787 (11.016) 0.282272
2.0 90.192 89.995 (11.758) 0.218422 112.120 111.851 (11.116) 0.239922
3.0 55.293 55.189 (11.212) 0.188088 66.776 66.639 (11.467) 0.205164

Table 7. Performance comparison of cumulative sum (CUSUM) and exponentially weighted moving
average (EWMA) control charts using explicit formula (Explicit) for MAX (1,2) when λ0 = 6.9094 for
ARL0 = 370 and ARL0 = 500.

δ ARL0=370 ARL0=500

(Shift Size) CUSUM
EWMA

CUSUM
EWMA

h=0.5333 h=0.8791

0.000 370.437 370.423 (16.215) 500.389 500.433 (16.036)
0.005 368.755 369.083 (16.202) 497.985 498.303 (16.265)
0.010 367.082 368.191 (16.112) 495.596 495.817 (16.085)
0.015 365.420 365.311 (15.489) 493.221 490.892 (16.878)
0.050 354.056 348.928 (16.156) 477.007 471.804 (16.966)

0.1 338.617 335.141 (15.005) 455.083 453.656 (16.255)
0.3 285.049 275.716 (16.485) 379.214 375.205 (16.255)
0.5 242.186 229.117 (15.152) 319.135 313.385 (16.008)
1.0 167.067 149.136 (15.156) 215.395 207.585 (16.026)
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6. Conclusions and Discussion

In the theoretical computation, the ARL that was calculated from the explicit formula was in
excellent agreement with the ARL obtained from the NIE method with the percentage error at less
than 0.50%. However, the CPU time of the NIE method took between 10 and 16 min., whereas that
of the explicit formula was less than one second. Moreover, the explicit formula for evaluating the
ARL of the CUSUM control chart could not only significantly reduce the computational time, but also
obtain the optimal parameters. In addition, the results from the experiment using a real-world dataset
were similar to those of the theoretical computation. This shows that the CUSUM control chart is good
for detecting processes with a small shift size, while the EWMA control chart can efficiently detect
processes with a moderate to large shift size. Thus, it is suggested that the explicit formulas for the ARL
of the CUSUM chart have real-world applications for a variety of data processes, including finance,
agriculture, hydrology, and environmental. These issues should be addressed in future research. Future
research could compare the results of the ARL for the CUSUM control chart with nonparametric control
charts, such as the Tukey control chart. Moreover, a variety of data processes could be extended to
other models or the explicit formula of ARL could be developed for other observations that correspond
to the exponential family.
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ABSTRACT: Statistical process control methods are widely used in several fields for monitoring and detecting process
problems. One of them is the control chart which is powerful and effective for monitoring many types of processes, and
its capability is usually measured using the average run length (ARL). In this article, we investigate explicit formulas
for both the one- and the two-sided ARL on a modified exponentially weighted moving-average (EWMA) control chart
for a first-order moving-average process with exponential white noise. The accuracy of the solution obtained with the
modified EWMA control chart was compared to the numerical integral equation method and extended to a comparative
performance with the standard EWMA control chart. The results show that the ARL obtained by the explicit formulas
and the numerical integral equation method are in close agreement. The performance comparison shows that the
modified EWMA control chart is dramatically more sensitive than the standard EWMA control chart for almost all of
the studied exponential smoothing parameters and magnitudes of shift size. To demonstrate its capability, the proposed
approach was applied to Thailand/US monthly foreign exchange rates data, yielding in good performance.

KEYWORDS: autocorrelated data, explicit formulas, monitoring process, statistical process control
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INTRODUCTION

Currently, the quality control of products or ser-
vices, which plays an important role in business,
industry, and manufacturing, can help in determin-
ing the characteristics of a product corresponding
to customer demand. Moreover, products or ser-
vices should have consistently maintained quality
and standards. One of the most powerful sets of
problem-solving tools for achieving process stability
and improving capability through the reduction of
variability is collectively called statistical process
control (SPC) [1]. There are quite a few tools
available for monitoring processes and detecting
process deviation, and a most popular one is the
control chart.

The first control chart widely used for moni-
toring processes and detecting out-of-control occur-
rences is the Shewhart control chart. It is effective
for detecting large changes in the process mean and
variance, but its performance will be degraded when
small changes are detected, or the distribution of
the assumption is not freeform. Many researchers

have later proposed various control charts that are
effective in detecting small changes, such as the
cumulative sum (CUSUM) [2] and the exponen-
tially weighted moving-average (EWMA) [3]. These
control charts are well known for detecting SPC
problems. More detection methods for small pro-
cess shifts have been suggested by Yashchin [4],
Zhang [5], Psarakis and Papaleonida [6], Prajap-
ati [7], and Mawonike and Nkomo [8]. They have
shown that the CUSUM and EWMA control charts
are more effective than the Shewhart control chart
for monitoring small changes and for autocorrelated
processes. Recently, Patel and Divecha [9] proposed
the modified EWMA control chart, developed from
the original one, which is effective in detecting small
and abrupt shifts in the mean of the monitored pro-
cess. One of the benefits of using this control chart
is that it performs well with observations that are
serially correlated. Afterwards, Khan et al [10] pro-
posed a new generalized structure for the modified
EWMA statistic. The performance of the proposed
control chart was compared with the original EWMA
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and modified EWMA control charts, as determined
by their ARLs. The results indicate that the proposed
control chart performed better than the two existing
ones with each exponential smoothing parameter
value.

One of the comparative performance methods
for control charts is the average run length (ARL),
which can be classified into two categories: ARL0
and ARL1, indicating the average number of points
or observations plotted within the control limit until
there exists a point or observation falsely identified
as outside of the control limit. ARL0 is accepted
if it is large enough to maintain false alarms at
an acceptable level and thus it should be large.
Meanwhile, ARL1 is the average number of points
or observations plotted within the control limit from
the change point time until there is a point or
observation falsely identified outside of the control
limit. ARL0 should be large whereas ARL1 should be
as small as possible.

Many methods have been used to solve the
exact solution of the ARL of a control chart, such
as explicit formulas, along with several approaches
to estimate the ARL, such as the Markov chain,
Monte Carlo simulation, Martingale, and numerical
integral equation (NIE).

Previous literature has focused on approxima-
tion of the ARL to represent an efficient control
chart using many methods. Mastrangelo and Mont-
gomery [11] evaluated the ARL of the traditional
EWMA chart for serially correlated processes by
using the Monte Carlo simulation method. Van-
brackle and Reynold [12] investigated EWMA and
CUSUM control charts using the NIE and Markov
chain approaches to find the ARL for a first-order
autoregressive (AR(1)) process with additional ran-
dom error. Fu et al [13] determined the run length
and the ARL on CUSUM, EWMA and Shewhart
control charts based on the Markov chain approach.
Zhang et al [14] studied the efficiency of the EWMA
control chart to further enhance the monitoring of
the coefficient of variation when the process mean
and standard deviation were not constant to deter-
mine the ARL, which was evaluated using Monte
Carlo simulation approach.

In addition, there have been several researchers
who computed the ARL by deriving explicit formulas
and then comparing the ARL results with other
methods to check the accuracy. Sukparungsee and
Areepong [15] implemented an explicit formula for
the ARL on a EWMA control chart, and compared
the accuracy of the numerical results via Monte
Carlo simulations. Busaba et al [16] analyzed

explicit formulas for ARL on a CUSUM control
chart for the case of a stationary AR(1) process
and compared them with the NIE method. Mean-
while, Suriyakat et al [17] used the NIE method
to solve the ARL and derived an explicit expression
for AR(1) procedure on the EWMA control chart
process. Areepong [18] proposed the explicit for-
mulas on the moving-average (MA) control chart
when observations are binomially distributed. Ad-
ditionally, the new formulas were compared with
the numerical simulation results of the Shewhart
and EWMA charts. After that, Petcharat et al [19]
derived explicit formulas for the ARL on an EWMA
control chart for an MA process. Petcharat et al [20]
analyzed explicit formulas and used the NIE method
for the ARL on a CUSUM control chart when the
observations comprised an MA of order q (MA(q)).
Phantu et al [21] proposed explicit formulas to eval-
uate the ARL of an MA control chart for an AR(1) se-
rially dependent Poisson process. Peerajit et al [22]
compared the efficiency of explicit solutions to the
NIE method of ARL on a CUSUM control chart for a
long memory process with a seasonally adjusted au-
toregressive fractionally integrated moving-average
(ARFIMA) model. Later, Suntornwat et al [23] pro-
posed an analytical solution for the ARL on EWMA
control chart for an ARFIMA process by comparing it
with the integral equation technique. Their findings
show that the proposed methods of evaluation were
in good agreement, but the explicit formulas had a
faster computational time than the numerical ARL.

The performance of the EWMA and CUSUM
control charts has been compared by a number
of researchers. Vargas et al [24] , Areepong[25],
Suriyakat et al [26] and Phanyaem et al [27] which
were determined by the ARL of the control charts.
The results of these studies indicate that the EWMA
control chart is more powerful than the others,
and as previously mentioned, the modified EWMA
control chart is more effective than the standard
one for detecting the small shifts in the process and
for autocorrelated data. The findings also indicate
that the ARL is useful for comparing the efficiency
of the control charts and that explicit formulas take
much less computational time to evaluate the ARL
than the other methods. Therefore, the derivation
of explicit formulas on a modified EWMA chart is
of interest in this study. The focus of this paper is
on a comparison of explicit formulas with the NIE
method by comparing their efficiencies on a mod-
ified EWMA control chart for a first-order moving-
average (MA(1)) process with exponential white
noise.
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MODIFIED EWMA CONTROL CHART

The EWMA control chart continually monitors and
detects small changes in the process mean. This was
first proposed by Robert [3] in 1959. The EWMA
control chart can be expressed by the recursive
equation below.

Zt = (1−λ)Zt−1+λX t , t = 1,2, 3, . . . , (1)

where 0 < λ < 1 is an exponential smoothing pa-
rameter. The starting value is Z0 = X0, the target
value µ0, and X t is a processes with mean µ and
variance σ2. Then, the variance of Zt is σ2

Zt
=

σ2( λ2−λ )(1− (1−λ)
2i). When i gets large, the term

(1 − λ)2i) converges to 0. Therefore, the general
upper control limit (UCL) and lower control limit
(LCL) to detect the sequence is given by,

UCL= µ0+ Lσ
Ç

λ
2−λ , (2)

LCL= µ0− Lσ
Ç

λ
2−λ , (3)

where µ0 is the target mean, σ is the process
standard deviation, and L is an appropriate control
width limit.

A modified EWMA was developed and pre-
sented by Patel and Divecha [3] in 2011. It is a
correction of the EWMA control statistic, and it is
also free from the inertia problem. This is effective
in detecting small and abrupt shifts when monitor-
ing the process mean for observations that are inde-
pendent and normally distributed or autocorrelated.
Subsequently, the modified EWMA control statistic
was redesigned by Khan et al [3] in 2017. They
proposed the structure of control statistic which was
developed of this chart to the more efficient with the
traditional of EWMA and modified EWMA control
charts.

The newly modified EWMA chart can be defined
by the recursive equation below.

Zt = (1−λ)Zt−1+λX t + c(X t − X t−1), (4)

where c is a constant. The expected value and
the variance of the modified EWMA control statistic
are E(Z0) = µ0 and V (Zt) = [

(λ+2λc+2c2)
2−λ ]σ2, respec-

tively. Therefore, the upper control limit (UCL) and
lower control limit (LCL) of the modified EWMA
control chart are as follows,

UCL= µ0+Qσ
Ç

λ+2λc+2c2

2−λ , (5)

LCL= µ0−Qσ
Ç

λ+2λc+2c2

2−λ , (6)

where µ0 is the target mean, σ is the process stan-
dard deviation, Q is an appropriate control width
limit, and X t is a sequence of observations. Z0 = u
and X0 = v are the initial values and 0< λ¶ 1 is an
exponential smoothing parameter.

The stopping time of the EWMA chart is given
by

τh = inf{t > 0 : Zt < l or Zt > h}, (7)

where τk is the stopping time, h is the upper control
limit (UCL) and l is the lower control limit (LCL).

ARL FOR MODIFIED EWMA CHART OF MA(1)

Let MA(1) be observations of the first-order moving-
average process. This can be described by the
following recursion.

X t = µ+ εt −θεt−1, (8)

where εt is a white noise process assumed with the
exponential distribution and θ is a moving-average
coefficient with an initial value of ε0 = s.

Therefore, the modified EWMA statistics Zt can
be written as,

Zt = (1−λ)Zt−1− X t−1+(λ+ c)εt

− (λθ +θ c)εt−1+(λ+ c)µ,

where 0< λ¶ 1 and the initial values Z0 = u, X0 =
v, ε0 = s, LCL = a, and UCL = b. Thus,

Z1 = (1−λ)u−v+(λ+c)ε1−(λθ+θ c)s+(λ+ c)µ.

The stopping time of the modified EWMA chart is
given by

τb = inf{t > 0 : Zt < a or Zt > b}, (9)

where τb is the stopping time, b is the upper control
limit (UCL), and a is the lower control limit (LCL).

Let L(u) denote the average run length on the
modified EWMA control chart. The integral equa-
tion can be written in the form

L(u) = 1+

∫
b−w
λ+c

a−w
λ+c

L ((λ+ c)y +w) f (y)dy,

where w := (1−λ)u−v−(λθ+θ c)s+(λ+c)µ. Chang-
ing the variable, the integral equation becomes

L(u) = 1+
1
λ+ c

∫ b

a

L(k) f
�

k−w
λ+ c

�

dk. (10)
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Therefore,

L(u) = 1+
1
λ+c

∫ b

a

L(k)
1
β

e
−k+(1−λ)u−v−(λθ+θ c)s

β(λ+c) + µβ dk

= 1+
C(u)
β(λ+ c)

D, (11)

where C(u) = e
(1−λ)u−v−(λθ+θ c)s

β(λ+c) + µβ and

D =

∫ b

a

L(k)e−
k

β(λ+c) dk

=

∫ b

a

�

1+
C(k)
β(λ+ c)

D
�

e−
k

β(λ+c) dk

=

∫ b

a

e−
k

β(λ+c) dk+

∫ b

a

e
(1−λ)k−v−(λθ+θ c)s

β(λ+c) + µβ

β(λ+ c)
e−

k
β(λ+c) D dk

=
−β(λ+ c)

�

e−
b

β(λ+c) − e−
a

β(λ+c)

�

1+ 1
λ e−

v
β(λ+c)−

(λθ+θ c)s
β(λ+c) +

µ
β

�

e−
λb

β(λ+c) − e−
λa

β(λ+c)

�
.

Therefore,

L(u) = 1+
e
(1−λ)u−v−(λθ+θ c)s

β(λ+c) + µβ

β(λ+ c)

×
−β(λ+ c)

�

e−
b

β(λ+c) − e−
a

β(λ+c)

�

1+ 1
λ e−

v−(λθ+θ c)s
β(λ+c) +

µ
β

�

e−
λb

β(λ+c) − e−
λa

β(λ+c)

�
.

Hence, the explicit two-sided formula of average run
length for the first-order moving-average process on
the modified EWMA control chart can be defined
using the Fredholm integral equation of the second
kind as follows,

ARL2−sided = 1−
λe

(1−λ)u
β(λ+c)

�

e−
b

β(λ+c) − e−
a

β(λ+c)

�

λe
−µ
β +

v+(λθ+θ c)s
β(λ+c) + e−

λb
β(λ+c) − e−

λa
β(λ+c)

.

(12)

When a = 0 , the explicit one-sided formulas of
average run length on the modified EWMA control
chart can be defined as follows,

ARL1−sided = 1−
λe

(1−λ)u
β(λ+c)

�

e−
b

β(λ+c) −1
�

λe
−µ
β +

v+(λθ+θ c)s
β(λ+c) + e−

λb
β(λ+c) −1

, (13)

with in-control process parameter β = β0 = 1 and
out of control process parameter β = β1 > 1.

EXISTENCE AND UNIQUENESS OF ARL

The solution of average run length shows that there
uniquely exists the integral equation for explicit

formulas by the Banach’s Fixed-point Theorem. In
this study, let T be an operation in the class of all
continuous functions defined by

T (L(u)) = 1+
1

(λ+c)

∫ b

a

L(k)
1
β

e
−k+(1−λ)u−v−(λθ+θ c)s

β(λ+c) +µβ dk.

(14)

According to Banach’s Fixed-point Theorem, if an
operator T is a contraction, then the fixed-point
equation T (L(u)) = L(u) has a unique solution. To
show that (14) exists and has a unique solution, the
following theorem can be used.

Theorem 1 (Banach Fixed-point) Let (X , d) be a
complete metric space and T : X → X be a contraction
mapping with contraction constant 0 ¶ r < 1 such
that ‖T (L1)− T (L2)‖ ¶ r‖L1 − L2‖ for all L1, L2 ∈
X . Then there exists a unique L(·) ∈ X such that
T (L(u)) = L(u), i.e., a unique fixed-point in X [28].

Proof : To show that T defined in (14) is a con-
traction mapping for L1, L2 ∈ C[a, b], we will show
that ‖T (L1)− T (L2)‖ ¶ r‖L1 − L2‖ for all L1, L2 ∈
C[a, b] with 0 ¶ r < 1 under the norm ‖L‖∞ =
supu∈(a,b)|L(u)|. From (11) and (14),

‖T (L1)− T (L2)‖∞

= sup
u∈(a,b)

�

�

�

�

C(u)
β(λ+c)

∫ b

a

(L1(k)−L2(k))e
− k
β(λ+c) dk

�

�

�

�

¶ sup
u∈(a,b)

�

�

�‖L1− L2‖∞C(u)
�

e
−a

β(λ+c) − e
−b

β(λ+c)

�

�

�

�

= ‖L1− L2‖∞ sup
u∈(a,b)

|C(u)|
�

�

�e
−a

β(λ+c) − e
−b

β(λ+c)

�

�

�

¶ r‖L1− L2‖∞,

where r := supu∈(a,b)|C(u)|
�

�

�e
−a

β(λ+c) − e
−b

β(λ+c)

�

�

� and

C(u)=e
(1−λ)u−v−(λθ+θ c)s

β(λ+c) +µβ =e
(1−λ)u
β(λ+c)−

v
β(λ+c)−

θ s
β +

µ
β ; 0¶ r < 1.

Therefore, the existence and the uniqueness of
the solution are guaranteed by the Banach’s Fixed-
point Theorem. 2

NUMERICAL INTEGRAL EQUATION METHOD

According to the integral equation in (10), the nu-
merical integral equation (NIE) method can be used
to evaluate the solution using the Gauss-Legendre
quadrature rule as follows.

L(ai) = 1+
1
λ+c

m
∑

j=1

w j L(a j) f
� a j−(1−λ)ai+v

λ+c +θ s−µ
�

,

(15)
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where i = 1,2, 3, . . . , m, a j =
b−a
m ( j−

1
2 )+a, and w j =

b−a
m , j = 1, 2,3, . . . , m.

This can be rewritten in a matrix form as

Lm×1 = 1m×1+Rm×m Lm×1

or Lm×1 = (Im−Rm×m)
−1 1m×1, (16)

where Lm×1 =





L(a1)
...

L(am)



, 1m×1 =





1
...
1



, Im is the

identity, and Rm×m =
1
λ+c









w1 f11 · · · wm f1m
w1 f21 · · · wm f2m

...
...

w1 fm1 · · · wm fmm









,

when fi j := f (
a j−(1−λ)ai+v

λ+c +θ s−µ).
Therefore, the approximation of average run

length is evaluated by NIE method for L(u) is

L̃(u) = 1+
1
λ+c

m
∑

j=1

w j L(a j) f
� a j−(1−λ)u+v

λ+c +θ s−µ
�

.

(17)

NUMERICAL RESULTS

In this section, the ARL was approximated by NIE
method using the Gauss-Legendre quadrature rule
on a modified EWMA control chart with 1000 nodes.
The accuracy of ARL was used to measure the abso-
lute percentage relative error (APRE),

APRE (%) =
|L(u)− L̃(u)|

L(u)
×100, (18)

where L̃(u) is an approximation of ARL using NIE
method. The numerical results are computed by
MATHEMATICA. The evaluation of numerical results
using (12) and (13) are shown in Table 1 and
Table 2, respectively. The explicit one-sided formula
of ARL and NIE method on modified EWMA control
chart for the first-order moving-average when given
ARL0 = 370, c = 50λ, λ = 0.05,0.1, and θ =
−0.1, 0.1,−0.5,0.5 were in dramatic agreement.
But, the computational time of the explicit formulas
is not much, while the numerical integral equation
method took around 22 s for the one-sided of ARL
and 28–30 s for the two-sided of ARL.

COMPARISON OF PERFORMANCE FOR EWMA
AND MODIFIED EWMA CHARTS

In this section, the numerical comparative results
of ARL on the modified EWMA and EWMA control
charts are investigated. The proposed expression of

Fig. 1 The ARL of the EWMA and modified EWMA control
charts with real data: (a) λ= 0.05 and (b) λ= 0.10.

modified EWMA chart was computed by (12) and
(13). The explicit formulas of average run length
in EWMA control chart for moving average order q
process with exponential white noise was applied to
the first-order moving-average process, as proposed
by Petcharat et al.

Table 4 and Table 5 present the ARL of explicit
formulas on EWMA and modified EWMA control
charts for the first-order moving average process
when ARL0 = 370,500, µ = 2, λ = 0.05,0.1, θ =
−0.2, 0.2,−0.4, 0.4, which are obtained by the up-
per control limit and lower control limit (Table 3).
The results indicated that modified EWMA immedi-
ately reduced the ARL1 more than the EWMA con-
trol chart when detecting the mean shift process. It
can be said that the performance of modified EWMA
control chart is more powerful than the performance
of EWMA control chart for most scales of shift size.

APPLICATION

In this section, real data was applied to determine
the average run length by the explicit formulas on
modified EWMA and EWMA control charts for the
Thailand/US foreign exchange rates observed from
April 2014 to March 2019. This data is a station-
ary time series. By looking at the autocorrelation
function (ACF) and partial autocorrelation (PACF).
The data was analyzed and fitted with the first-
order of moving-average process with the signifi-
cant of mean and coefficient 33.567 and −0.869,
respectively, and the white noise was significantly
exponentially distributed with mean 0.8207. The
average run lengths on modified EWMA and EWMA
control charts with the results of real data are shown
in Table 6 and Fig. 1.

Table 6 shows that the results are in similar
agreement to Table 4 and Table 5. The modified
EWMA control chart offers an ARL1 that is more
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Table 1 The one-sided of ARL for MA(1) on the modified EWMA chart using explicit formula and NIE when ARL0 = 370,
µ= 2, and c = 50λ.

θ
Shift size λ= 0.05* λ= 0.1**

(δ) Explicit NIE APRE Explicit NIE APRE

−0.1 0.00 370.0000867370 370.0000858815 2.312×10−7 370.0000606318 370.0000591485 4.009×10−7

(21.918) (21.809)
0.01 44.0439249625 44.0439249000 1.419×10−7 35.5693493235 35.5693492821 1.164×10−7

(21.980) (22.059)
0.03 16.3214268274 16.3214268070 1.250×10−7 13.1229621168 13.1229621050 8.992×10−8

(21.949) (21.995)
0.05 10.2080506715 10.2080506598 1.146×10−7 8.2715123064 8.2715122999 7.858×10−8

(22.012) (22.028)
0.07 7.5274541620 7.5274541541 1.049×10−7 6.1546487285 6.1546487241 7.149×10−8

(22.012) (22.105)
0.10 5.4963051443 5.4963051391 9.461×10−8 4.5543136310 4.5543136282 6.148×10−8

(22.106) (22.090)
0.30 2.3371054262 2.3371054251 4.707×10−8 2.0669730690 2.0669730685 2.419×10−8

(22.152) (21.996)
0.50 1.7313103221 1.7313103217 4.707×10−8 1.5875989978 1.5875989976 1.260×10−8

(22.183) (22.074)
0.1 0.00 370.0000191101 370.0000178192 3.489×10−7 370.0000939896 370.0000917457 6.065×10−7

(21.886) (21.784)
0.01 46.3721160788 46.3721159797 2.137×10−7 37.4509233915 37.4509233251 1.773×10−7

(21.924) (21.895)
0.03 17.2560948857 17.2560948533 1.878×10−7 13.8543677226 13.8543677037 1.364×10−7

(22.013) (21.893)
0.05 10.7988295175 10.7988294989 1.722×10−7 8.7312602017 8.7312601912 1.203×10−7

(22.028) (21.784)
0.07 7.9626558548 7.9626558422 1.582×10−7 6.4928549093 6.4928549023 1.078×10−7

(22.086) (22.014)
0.10 5.8110939946 7.9626558422 1.411×10−7 4.7989996955 4.7989996909 9.585×10−8

(22.098) (21.998)
0.30 2.4548556274 2.4548556256 7.332×10−8 2.1594952549 2.1594952585 1.667×10−7

(22.174) (22.087)
0.50 1.8060957035 1.8060957028 3.876×10−8 1.6469191130 1.6469191126 2.429×10−7

(22.192) (22.124)

* b = 0.4626313926 for θ = −0.1 and b = 0.565666747 for θ = 0.1.
**b = 0.763204934 for θ = −0.1 and b = 0.933777249 for θ = 0.1.

promptly deducted and very small for all shift sizes
and exponential smoothing parameter values. This
means that the performance of the modified EWMA
chart was more powerful than the EWMA chart for
all cases when monitoring and detecting the change
of mean.

The exchange rate is an indicator that is mea-
sured in terms of national currency per US dollar. It
is defined as the price of national currency in rela-
tion to the US dollar, and is expressed as the average
rate for a period of time. In this case, there were
60 observations of monthly Thailand exchange rates
of Thailand/US Dollar from April 2014 to March
2019 analyzed. The mean and standard deviation
of the time series data were 33.5904 and 1.45699,
respectively. The upper and lower control limits
were established by (2) and (3) for the modified
EWMA control chart and (5) and (6) for the EWMA
control chart. The detection of the process with
real data is presented in Fig. 2. These show that
the modified EWMA control chart is superior to the

EWMA control chart at the 5th observation when
detecting changes, while the EWMA control chart
can detect at the 25th observation for the out-of-
control process.

Fig. 2 indicates that the modified EWMA chart
was able to detect the exchange rate at the 17th–
24th, the 26th, 27th, and 32th–34th observations.
These observations were plotted above the upper
control limit. One could suspect that the depreci-
ation has occurred at or before that time. Thus,
the depreciation of the currency is an important
indicator in price determination. This situation
directly affects the direct import business. On the
other hand, if the observations are plotted below the
lower control limit, it means appreciation will occur
and will also impact the export business. Therefore,
tracking changes in exchange rates is the key for
high performance in both economic and financial
areas.
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Table 2 The two-sided of ARL for MA(1) on the modified EWMA chart using explicit formula and NIE for ARL0 = 370,
µ= 2, and c = 50λ.

θ
Shift size λ= 0.05* λ= 0.1**

(δ) Explicit NIE APRE Explicit NIE APRE

−0.5 0.00 370.0000694633 370.0000687600 1.901×10−7 370.0000980167 370.0000965317 4.014×10−7

(30.139) (28.533)
0.01 41.5661928805 41.5661928328 1.148×10−7 34.9758342828 34.9758342426 1.149×10−7

(28.735)
0.03 15.3646262066 15.3646261911 1.009×10−7 12.9043398195 12.9043398080 8.912×10−8

(28.470) (30.311)
0.05 9.6209444263 9.6209444175 9.147×10−8 8.1405113753 8.1405113690 7.739×10−8

(28.548) (28.298)
0.07 7.1063784712 7.1063784652 8.443×10−8 6.0625383282 6.0625383240 6.928×10−8

(28.564) (29.032)
0.10 5.2026737276 5.2026737237 7.496×10−8 4.4917979139 4.4917979111 6.148×10−8

(28.985) (28.611)
0.30 2.2450744171 2.2450744162 4.009×10−8 2.0501611023 2.0501611018 2.439×10−8

(27.753)
0.50 1.6789252310 1.6789252307 1.787×10−8 1.5791522674 1.5791522672 1.267×10−8

(29.469) (27.738)
0.5 0.00 370.0000411179 370.0000394821 4.421×10−7 370.0000889780 370.0000866536 6.065×10−7

(28.954) (29.078)
0.01 46.2382379117 46.2382377884 2.667×10−7 36.9785201623 36.9785200953 1.812×10−7

(30.108) (28.705)
0.03 17.2318873875 17.2318873473 1.878×10−7 13.6814661485 13.6814661295 1.389×10−7

(29.515) (28.891)
0.05 10.8006895819 10.8006895588 2.139×10−7 8.6289415891 8.6289415785 1.228×10−7

(28.345) (29.235)
0.07 7.9756157868 7.9756157711 1.968×10−7 6.4218897912 6.4218897842 1.090×10−7

(29.731) (28.376)
0.10 5.8317979184 5.8317979081 1.766×10−7 4.7518643793 4.7518643748 9.470×10−8

(28.096) (30.701)
0.30 2.4815717824 2.4815717801 9.268×10−8 2.1487289737 2.1487289727 4.654×10−8

(28.283) (29.032)
0.50 1.8297312330 1.8297312320 5.465×10−8 1.6424658227 1.6424658223 2.435×10−8

(28.673) (29.297)

* a = 0.1, b = 0.5168237377 for θ = −0.5 and a = 0.1, b = 0.7305875693 for θ = 0.5.
**a = 0.1, b = 0.858734671 for θ = −0.5 and a = 0.1, b = 1.043114241 for θ = 0.5.

Table 3 Upper control limit and lower control limit of EWMA and modified EWMA charts using explicit formulas.

ARL0 θ

λ= 0.05 λ= 0.1

EWMA Mofified EWMA Modified

l h a b l h a b

370 −0.4 0.1 0.1000084203 0.1 0.534425014 0.1 0.5148186 0.1 0.875406997
0.4 0.1 0.100003783309 0.1 0.7049886465 0.1 0.17579211 0.1 1.0228024732

500 −0.4 0.1 0.100011387083 0.1 0.5348217905 0.1 0.9169484 0.1 0.8760101704
0.4 0.1 0.1000051162256 0.1 0.7055255095 0.1 0.210902 0.1 1.2035123745

CONCLUSION

Explicit formulas for the ARL on a modified EWMA
control chart monitoring an MA(1) process with
exponential white noise which provides its own
expression that is easy to derive and saves on
computation time was investigated in this research.
The accuracy of the explicit formulas was checked
by comparing its absolute percentage relative error
with that of the NIE method. The results show
that both methods were in dramatic agreement with

absolute percentage errors of less than 9.212 ×
10−7. The exponential smoothing parameter in the
range of 0.05–0.25 is usually recommended. A
comparison of the ARL performance of the modified
and standard EWMA control charts shows that the
former was more sensitive when shift sizes were
small and performed better when the exponential
smoothing parameter value was 0.1. The exponen-
tial smoothing parameter 0.05 is unsuitable to the
most effective of the modified EWMA chart employ-
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Table 4 Comparison of one-sided of ARL for MA(1) on EWMA and modified EWMA charts using explicit formulas when
µ= 2 and c = 50λ.

λ θ
Shift size ARL0 = 370 ARL0 = 500

(δ) EWMA Modified EWMA Modified

0.05 −0.2 0.00 370.0000756855 370.0000433201 500.0000550446 500.0000517554
0.01 310.3613470534 42.9524104373 419.3504170920 44.2714306321
0.03 220.6242217364 15.8864511633 297.9986166729 16.0587690464
0.05 158.9071572943 9.9337191786 214.5384272538 9.9990002172
0.07 115.9013063561 7.3256434174 156.3814690365 7.3601034492
0.10 73.8363408663 5.3505613736 99.4968683696 5.3681504949
0.30 6.8797381907 2.2829992334 8.9511975571 2.2853882186
0.50 1.9096782195 1.6971565736 2.2301626398 1.6981625206

0.2 0.00 370.0000465698 370.0000749812 500.0000461456 500.0000637535
0.01 309.1385402792 47.6155843164 417.6968310349 49.2416289066
0.03 218.0802984841 17.7591290169 294.5584663025 17.9747029006
0.05 155.9278248873 11.1174992983 210.5094640643 11.1993602969
0.07 112.9335052931 8.1977303757 152.3680959291 8.2409666592
0.10 71.2352935291 5.9813923738 95.9794555925 6.0034609210
0.30 6.3612841228 2.5190268777 8.2500877220 2.5220254650
0.50 1.7961249424 1.8470923312 2.0766034871 1.8383611231

0.10 −0.2 0.00 370.0000618877 370.0000321922 500.0000893066 500.0000737559
0.01 343.5592416319 34.6891029378 464.817836050466 35.5348763989
0.03 297.4261061703 12.7828116715 403.3251666153 12.8906618547
0.05 258.8319280712 8.0580837849 351.7620972277 8.0988617372
0.07 226.3579081554 5.9978247468 308.2779840985 6.0193780131
0.10 186.7358687239 4.4410088793 255.0797494461 4.4520489607
0.30 64.3155063451 2.0244287200 89.2020341712 2.0259651623
0.50 1.5604846313 2.0244287200 40.7569375637 1.5611422914

0.2 0.00 370.0000576120 370.0000477061 500.0000655915 500.0000331334
0.01 341.8375030358 38.4578607779 462.2452526816 39.5013005888
0.03 293.0596802356 14.2482021597 396.7846634952 14.3827974754
0.05 252.6450009210 8.9792734190 342.4723183628 9.0302521363
0.07 218.9544992262 6.6755150638 297.1358039796 6.7024702255
0.10 178.2991377127 4.9313310869 242.3400934144 4.9451380394
0.30 57.2166373165 2.2098772863 78.2865567375 2.2118022389
0.50 24.6972750753 1.6794079501 33.8062753712 1.6802371690

Fig. 2 The detection of the process with real data: (a) the
modified EWMA and (b) the EWMA.

ing. The exponential smoothing parameter 0.1 is
recommended. In addition, the performances of the

modified and standard EWMA control charts were
compared using real-world exchange rates data, the
result indicating that the modified EWMA control
chart was more efficient than the standard one.
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Abstract 
 

Statistical process control (SPC) plays a necessary role in manufacturing industry processes. An essential tool for SPC 

used for monitoring, measuring, controlling, and improving quality in various fields is the control chart. The modified 

exponentially weighted moving average (modified EWMA) control chart is widely used in various fields, and a measure 

commonly used to elucidate its efficiency is average run length (ARL). The main purpose of this study is to derive explicit 

formulas for the ARL to detect changes in the process mean of modified EWMA control chart for an autoregressive processes 

with explanatory variables (ARX(p,r)) with exponential white noise. In addition, the performances of the modified EWMA are 

compared with EWMA control charts based on the relative mean index (RMI). It was found that the explicit formulas for the 

ARL of the modified EWMA control chart performed better than on the EWMA control chart for monitoring process mean. 

 

Keywords: average run length, modified EWMA control chart, ARX process, explanatory variables, Integral equation 

 
 

1. Introduction 
 

Statistical process control (SPC) plays a 

necessary role in manufacturing industry processes and is used 

for monitoring, measuring, controlling and improving quality 

in various fields (science, economics, engineering, finance, 

medicine, etc.). An important SPC tool is the control chart 

which is used for detecting changes in process means. The 

first control chart, introduced by Shewhart (1931), was used 

for detecting large shifts in process means ( 1.5 ) 

(Montgomery, 2012). The cumulative sum (CUSUM) control 

chart proposed by Page (1954) is a good alternative to the 

Shewhart control chart for detecting small shifts in process 

means ( 1.5 ) (Montgomery, 2012), as has been indicated 

by comparative studies on the two (Hawkins & Olwell, 1998; 

Lucas & Saccucci, 1990). In addition, another option for 

detecting small shifts is the exponentially weighted moving 

 

average (EWMA) control chart first presented by Roberts 

(1959), which has been used in various industries, However, 

these charts cannot be used directly for chemical and 

pharmaceutical processes due to the observations being 

frequently autocorrelated (Patel & Divecha, 2011). The 

EWMA technique is used in SPC to monitor the results of 

manufacturing processes by tracking the moving average of 

the efficiency throughout the lifetime of the process. 

The modified EWMA control chart developed by 

Patel and Divecha (2011) is a simplified EWMA control chart 

for detecting shifts in the process mean regardless of size. It is 

used in various fields, especially in the chemical industry, in 

which the processes are frequently autocorrelated. Past 

observations are considered (similar to the EWMA scheme) 

along with past changes as well as the latest change in the 

process mean. Khan, Aslam and Jun (2016) developed a new 

EWMA control chart based upon a modified EWMA statistic 

that considers the past and current behavior of the process; 

they compared it with the existing one by Patel and Divecha 

(2011) and found that the proposed control chart had the 

ability to detect shifts more quickly. 
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A commonly used measure for the efficiency of 

control charts is the average run length (ARL). Ryu, Wan and 

Kim (2010) applied in-control ARL (ARL0), which refers to the 

average number of observations on the in-control process 

before a false out-of-control alarm is raised, as a measure of 

the false-alarm rate. The out-of-control ARL (ARL1), is the 

average number of observations required to detect a specific 

process mean shift and represents the ability to detect shifts in 

the process mean. 

Various methods that can be used to find the ARL 

of control charts have been proposed, such as Monte Carlo 

simulation, Markov chains, Martingales, numerical integration 

equations (NIEs), and explicit formulas. A NIE is a method 

for evaluating the ARL that has many rules, namely the 

midpoint rule, trapezoidal rule, Simson’s rule, and the 

Gauss‐Legendre rule. In this study, we used the 

Gauss‐Legendre rule. An explicit formula is a method for 

evaluating the ARL that requires an integral equation for its 

derivation. In this study, we used the Fredholm integral 

equation of the second type (Mititelu, Areepong, 

Sukparungsee, & Novikov, 2010). In 1959, Robert (1959) 

proposed an EWMA control chart by using Monte Carlo 

simulations to estimate the ARL. Crowder (1987) used an NIE 

approach to find the ARL for a Gaussian distribution. Harris 

and Ross (1991) studied CUSUM with serially correlated 

observations via Monte Carlo simulations. Mititelu et al., 

(2010) used a linear Fredholm-type integral equation approach 

to derive explicit formulas for the ARL in certain special 

cases. The ARL for a CUSUM control chart has been found 

when the random observations follow a hyperexponential 

distribution and the ARL for an EWMA control chart with 

observations following a Laplace distribution. Suriyakat, 

Areepong, Sukparungsee and Mititelu (2012) derived explicit 

formulas for the ARL of the EWMA statistic for first-order 

autoregressive (AR(1)) observations with errors following an 

exponential white noise process. Paichit (2016) used an NIE 

to find the exact expression for the ARL of an EWMA control 

chart for an AR process with exogenous input (ARX(p)). 

Paichit (2017) presented an exact expression for the ARL of 

the control chart for an ARX(p) procedure. Explicit formulas 

for the ARL of a modified EWMA control chart for an 

exponential AR(1) process were presented by Phanthuna, 

Areepong and Sukparungsee (2018).  

The main purpose of this study is to derive explicit 

formulas for the ARL for detecting changes in the process 

mean of modified EWMA control chart based on Khan et al. 

(2016) for an autoregressive processes with explanatory 

variables (ARX(p,r)) with exponential white noise. In the 

present study, Fredholm-type integral equations are used to 

derive explicit formulas of ARL0 and ARL1. This paper is 

organized as follows. An introduction to the properties of 

control charts and the model for an ARX(p,r) process with 

exponential white noise is given in Section 2. The solutions 

for the ARLs of the EWMA and modified EWMA control 

charts for an ARX(p,r) process with exponential white noise 

are presented in Section 3. Next, the NIEs for the ARLs of the 

modified EWMA control charts are introduced in Section 4. 

Furthermore, numerical results for a comparison of the ARLs 

on the modified EWMA control charts for ARX(p,r) process 

with exponential white noise are offered in Section 5 and 

Section 6. The proposed explicit formulas are applied in 

Section 7. Finally, conclusions are given in Section 8. 

2. The Properties of the Control Charts and   

    ARX(p,r) Process with Exponential White Noise 
 

2.1 The EWMA control chart 

 

Roberts (1959) introduced the EWMA control chart 

for detecting small shifts in the process mean that is defined as 

 

  11            ; 1,2,3,...t t tZ Z Y t      ,             (2.1) 

 

where 
tZ  is the EWMA statistic, 

tY  is the sequence of the 

ARX(p,r) process with exponential white noise and   is an 

exponential smoothing parameter (0 1)  . 

The stopping time will occur when an out-of-

control observation is firstly detected, which is sufficient to 

decide that the process is out-of-control. The stopping time b  

for the EWMA control chart can be written as 

 

 inf 0;  b tt Z b    ,                               (2.2) 

where b  is a constant parameter known as the upper control 

limit ( 0)b  . The upper side of the ARL for the ARX(p,r) 

process on the EWMA control chart with an initial value 

0( )Z u  can be found. Now, the function ( )L u is defined as 

 

0( ) ( ) ,  bL u ARL E T Z u    .                 (2.3) 

 

The mean and the variance of the EWMA control 

chart can be written as 

 

( )tE Z  ,                 (2.4) 

 

2( )
2

tVar Z





 
  

 

,               (2.5)  

 
and the upper control limit (UCL) and the lower control limit 

(LCL) of the EWMA control chart is defined as follows: 

 

0
(2 )

LCL L


 


 


,                          (2.6a) 

 

0CL  ,                          (2.6b) 

 

0
(2 )

UCL L


 


 


,                         (2.6c) 

 

where 
0  is the target mean,   is the process standard 

deviation and L  is an appropriate control width limit 

( 0)L  .  

 

2.2 The modified EWMA control chart 
 

Khan et al. (2016) developed a new EWMA 

control chart based upon the modified EWMA statistic that 
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considers the past and current behavior of the process. They compared the proposed chart with the existing modified EWMA 

control chart developed by Patel and Divecha (2011) that is a simplified EWMA control chart for detecting shifts of all sizes in 

the process mean under the assumption that the observations follow a normal distribution. The modified EWMA control chart 

proposed by Khan et al. (2016) is defined as 

 

   1 11            ; 1,2,3,...t t t t tM M Y k Y Y t        ,          (2.7)  

 

where 
tM  is the modified EWMA statistic, 

tY  is the sequence of the ARX(p,r) process with exponential white noise,   is an 

exponential smoothing parameter (0 1)  , and k  is a constant ( 0)k  . 

The modified EWMA control chart is based on two constants,   and k , and comprises an extension to the existing 

EWMA control chart. The modified EWMA control chart by Khan et al. (2016) is reduced to the original EWMA control chart 

by Roberts (1959) if 0k   and is reduced to the control chart based on the modified EWMA control chart by Patel and Divecha 

(2011) if 1k  . 

The stopping time h  for the modified EWMA control chart can be written as 

 

 inf 0;  h tt M h    ,                      (2.8) 

 

where h  is a constant parameter known as the upper control limit ( 0)h  . The upper side of the ARL for the ARX(p,r) process on 

the modified EWMA control chart with an initial value ( 0M u ) can be found. Now, we define the function ( )G u as 

 

0( ) ( ) ,  hARL G u E T M u    ,                       (2.9)  

 

where T is a fixed number (should be large) and (.)E  is the expectation under the assumption that observations t  have the 

distribution ( , )tF y  . 

The value of the mean and the variance of the modified EWMA control chart is defined as 

 

( )tE M  ,                      (2.10) 

 
2 2( 2 2 )

( )
(2 )

t

k k
Var M

  



 



,                   (2.11) 

 

and the UCL and the LCL of the modified EWMA control chart can be written as 

 

2

0

( 2 2 )

(2 )

k k
LCL L

 
 



 
 



,                                (2.12a) 

 

0CL  ,                                                 (2.12b) 

 

2

0

( 2 2 )

(2 )

k k
UCL L

 
 



 
 



,                                 (2.12c) 

where 0  is the target mean, 
2  is the process variance and L is an appropriate control width limit ( 0)L  .  

 

2.3 The ARX(p,r) process with exponential white noise 
 

The ARX(p,r) process is defined as 
 

1 1 2 2
1

...       ; 1,2,3,...,
r

t t t p t p j j t
j

Y Y Y Y X t       


                        (2.13)  

where   is a constant ( 0)  , 
i  is an autoregressive coefficient for 1,2,...,i p ( 1 1)i    ; 

t  is an independent and 

identically distributed (iid) sequence; ( )t Exp  ; 
jX  are explanatory variables of tY ; and 

j
 are coefficients of 
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jX ; 1,2,...,j r . The initial value for the ARX(p,r) process mean is 
1 2, ,..., 1t t t pY Y Y     and the initial value for the 

explanatory variables 
1 2, ,..., 1rX X X  . 

 

3. Explicit Formulas for the ARLs of the Modified EWMA Control Chart for an ARX(p,r) Process with  

    Exponential White Noise 
 

Explicit formulas for the ARL of the modified EWMA control chart for an ARX(p,r) process are derived as 

follows:  

 

Substituting 
tY  from Equation (2.13) into Equation (2.7), then 

 

       

   

1 1 1

1
1

1 ...

       .

t t t p t p

r

j j t t
j

M M k k Y k Y

k X k kY

      

   

  




        

    
 

If 
1Y  gives the out-of-control state for 

1M , 
0M u  and 0Y v , then 

           1 1 1
1

1 ...
r

p j j
j

M u k k v k v k X k kv          


                

 

If 1  is the in-control limit for 
1M , then 

10 M h  . 

The function ( )G u can be derived by the Fredholm integral equation of the second type (Mititelu et al., 2010), and 

thus ( )G u can be written as 

 

1 1 1( ) 1 ( ) ( ) ( )G u G M f d    ,                                    (3.1) 

 

by substituting 1  with y . Therefore, the function ( )G u  is obtained as  

 

 

       

   
 

1

0
1

1 ...

1

ph

r

j j
j

u k k v k v

G u L f y dy
k X kv k y

      

  


         
 

   
     
 




. 

 

Let            1
1

1 ... .
r

p j j
j

w u k k v k v k X kv k y         


               

 

By changing the integral variable, we obtain the integral equation as follows: 

 

   
 

    1 10

11
1

h p r

i j j
i j

w u kv
G u G w f v X dw

k k k


  

    

   
      

    
  .     (3.2) 

If  tY Exp   the  
1

y

f y e 





 ; 0y  , so 

 

   

 

    1 1

11

0

1 1
1

p r

i j j
i j

w u kv
v Xh

k k
G u G w e dw

k


  

  

 

 

   
     

   

 

 


 . 

Let the function  

 

   
111

rp

j ji
ji

Xv
u kv

k k
D u e


 

      


   

 



   , then we have 
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 
 

 
   

0

1               ; 0

w
h

kD u
G u L w e dw u h

k

 

 




   


 . 

Let      

0

w
h

k
g G w e dw

 




  , then  

 

 
1

D u
G u g

k 
  


. Consequently, we obtain   

 

 

 

   
111

1
( ) 1

rp

j ji
ji

Xv
u kv

k k
G u e g

k


 

      

 


   

 



  


.      (3.3) 

 

Solving a constant g   

   

0

w
h

k
g G w e dw

 




 

  

 
   

0

1

w
h

kg
D w e dw

k

 

 



 
  

  
  

     

 
   

0 0

w w
h h

k kg
e dw D w e dw

k

   

 

 

 
  


   

       
 

 
 

11

0

1

rp

j ji
ji

Xv
kv

h w
k h

k kge
k e e dw

k





    

   
 

 


   


 



 
     
   
 


 

       
 

 

11

1 1

rp

j ji
ji

Xv
kv

h h
k

k kde
k e e





    

   
 




   


 



   
        
      
   

 

   

 
 

11

1

1 1

rp

j ji
ji

h

k

Xv
kv

h
k

k

k e

g

e
e

 





    

 

 










   






 
   
  
 

 
  
  
 

.                                         (3.4) 

 

Substituting g from Equation (3.4) into Equation (3.3), then 

 

 

   

   
11

1

1

( ) 1

1

rp

j ji
ji

u h
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Xv
kv h

k k

e e

G u

e e



   


 

      







 

 


  

 



 
 
 
   

 
  
 
  

.      (3.5) 
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When the process is in the in-control state with exponential parameter 0  , we obtain the explicit solution for 

0ARL  as follows: 

 

   

   

0 0

11

0 0 0 0 0

1

0

1

1  

1

rp

j ji
ji

u h

k k

Xv
kv h

k k

e e

ARL

e e



   


 

      







 

 


  

 



 
 
 
   

 
  
 
  

.       (3.6) 

Similarly, when the process is in the out-of-control state with exponential parameter 1  , the explicit solution 

for 1ARL  can be written as 

 

 

   

   

1 1

11

1 1 1 1 1

1

1

1

1  

1

rp

j ji
ji

u h

k k

Xv
kv h

k k

e e

ARL

e e



   


 

      







 

 


  

 



 
 
 
   

 
  
 
  

.      (3.7) 

 

4. The NIE for the ARL on the Modified EWMA Control Chart 
 

An integral equation of the second type for the ARL on the modified EWMA control chart for the ARX(p,r) process 

in Equation (3.5) can be approximated by using the quadrature formula. In this study, the Gauss-Legendre quadrature rule is 

applied as follows: 

 

Given  
 

    1 1

1 p r
j i

j i j j
i j

a a kv
f a f v X

k k


  

   

   
     

   
  .       (4.1) 

 

The approximation for the integral is in the form 

 

     
10

h m

j j
j

G w f w dw w f a


  , where 
1

2
j

h
a j

m

 
  

 
 and ; 1,2,...,j

h
w j m

m
  . 

Using the quadrature formula, the numerical approximation ( )G u  for the integral equation can be found as a 

solution of the linear equations as follows: 

   
 

   1 1 1

11
1  ; 1,2,..., .

pm r
j i

i j j i j j
j i j

a a kv
G a w G a f v X i m

k k k  

   
       

    
  


  

  
 

Thus, 

   
 

   
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1
1 1 1

11
1

pm r
j

j j i j j
j i j
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G a w G a f v X
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      

    
  


  

  
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   
 

   
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2
1 1 1

11
1

pm r
j

j j i j j
j i j

a a kv
G a w G a f v X

k k k  

   
      

    
  


  

  
, 
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   
 

   
3

3
1 1 1

11
1

pm r
j

j j i j j
j i j

a a kv
G a w G a f v X

k k k


  

    

   
      

    
   , 

  

   
 

   1 1 1

11
1

pm r
j m

m j j i j j
j i j

a a kv
G a w G a f v X

k k k


  

    

   
      

    
   . 

 

The set of m equations with m unknowns can be rewritten in matrix form. The column vector of  iG a  is 

1 1 2( ( ), ( ),..., ( ))m mG a G a G a
G . Since 1 (1,1,...,1)m

1 is a column vector of ones and m mR  is a matrix, we can 

define  to thm m  as elements of matrix R  as follows: 

 

 

    1 1

11
,

p r
j i

ij j i j j
i j

a a kv
R w f v X

k k k


  

    

   
             

   

and  1,1,...,1m diagI is a unit matrix of order m . If  
1

I R  exists, the numerical approximation for the integral equation 

in terms of the matrix can be written as 

 

 
1

1 1m m m m m


   G I R 1 . 

Finally, by substituting ia  by u  in  iG a , the numerical integration equation for function  G u  can be derived as 

 

   
 

   1 1 1

11
1

pm r
j

j j i j j
j i j

a u kv
G u w G a f v X

k k k


  

    

   
      

    
   .     (4.2) 

 

5. Comparison of the NIE Method and the Explicit Formulas 
 

Here, a comparison of the efficacies of the NIE method ( ( )G u ) and the explicit formulas ( ( )G u ) for the ARL of an 

ARX(p,r) process on the modified EWMA control chart is presented. The parameter values were set as
0 370ARL   and 500; 

  0.01, 0.05, 0.1, and 0.2; the in-control parameter 
0 1  ; and the shift size was varied as 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 

0.3, and 0.5. In general, the popular setting of the initial value is equal to the expected value of the distribution. For setting the in-

control parameter, 
0 1  , which is the initial value as 1. The coefficient has a value from -1 to 1, which can be specified as any 

value. The configuration does not affect the accuracy of the explicit formulas and the NIE methods.  The absolute percentage 

difference to measure the accuracy of the ARL is defined as 

 

( ) ( )
(%) 100

( )

G u G u
Diff

G u


  .            (5.1) 

 

Equations (3.5) and (4.2) are used to evaluate the ARL on the modified EWMA control chart for an ARX(p,r) 

process with exponential white noise. The number of nodes equal to 500 iterations was used to obtain the ARL results from the 

NIE method. The computations for the NIE method were carried out on a Windows 7 Professional 32-bit PC System with RAM 

of 2 GB and an AMD E1-1200 CPU.  

The results in Tables 1–3 report the numerical values of the ARL derived from the explicit formulas and NIE method, 

and the absolute percentage difference between them. From the results, we can see that the ARL values derived from the explicit 

formulas give the same results as the NIE method. The numerical approximations had an absolute percentage difference of less 

than 0.003%. However, the computational time of the NIE method was 13.42–13.58 s whereas that of the explicit formulas was < 

1 s. 
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Table 1. Comparison of the ARL on a modified EWMA control chart using explicit formulas with the NIE method for ARX(1,1) with 1,u    

1,v   1,k   
1 0.2,   and 

0 370ARL  . 

 

    1  h  shift Explicit NIE Timea Diff% 
         

    0.00 370.514622 370.514167 13.468 0.000123 

    0.01 185.632808 185.632635 13.555 0.000093 

    0.02 123.215119 123.215018 13.494 0.000082 
    0.03 91.885107 91.885037 13.428 0.000076 

  0.1 2.11284 0.04 73.065410 73.065357 13.551 0.000072 

    0.05 60.520993 60.520951 13.552 0.000068 
    0.10 32.116753 32.116734 13.504 0.000058 

    0.30 10.731776 10.731772 13.546 0.000037 

0.05 0 
  0.50 6.457709 6.457707 13.440 0.000026 

  0.00 370.424900 370.424156 13.511 0.000201 
    0.01 274.686377 274.685905 13.563 0.000172 

    0.02 214.349128 214.348800 13.478 0.000153 

    0.03 173.294237 173.293995 13.511 0.000140 
  -0.1 2.61195 0.04 143.823485 143.823298 13.446 0.000130 

    0.05 121.811602 121.811453 13.445 0.000122 

    0.10 64.531777 64.531713 13.421 0.000098 
    0.30 17.824627 17.824616 13.541 0.000060 

    0.50 9.519466 9.519462 13.452 0.000042 

    0.00 370.555941 370.555865 13.502 0.000021 
    0.01 90.098635 90.098626 13.498 0.000010 

    0.02 51.385975 51.385971 13.460 0.000008 

    0.03 35.997312 35.997309 13.434 0.000007 
  0.2 0.69141 0.04 27.736604 27.736602 13.467 0.000007 

    0.05 22.584474 22.584472 13.485 0.000006 

    0.10 11.823565 11.823565 13.518 0.000005 
    0.30 4.369675 4.369675 13.506 0.000003 

0.10 1 
  0.50 2.902154 2.902154 13.467 0.000002 

  0.00 370.273926 370.273736 13.537 0.000052 
    0.01 105.208634 105.208608 13.519 0.000025 

    0.02 61.437849 61.437836 13.532 0.000020 

    0.03 43.452288 43.452281 13.542 0.000018 

  -0.2 1.04870 0.04 33.653645 33.653639 13.449 0.000017 

    0.05 27.489870 27.489866 13.471 0.000016 

    0.10 14.478770 14.478768 13.508 0.000013 
    0.30 5.327500 5.327500 13.488 0.000008 

    0.50 3.494115 3.494115 13.434 0.000005 
         

 

aThe computational times for the NIE methods in seconds (PC System: Windows 7 Professional 32-bit, RAM: 2 GB and CPU: AMD E1-1200) 

 

Table 2. Comparison of the ARL on a modified EWMA control chart using explicit formulas with the NIE method for ARX(2,1) with 

1,u  1,v  0,  1,k   
1 0.2,   and 0 370ARL  . 

 

  1  2  h  shift Explicit NIE Time Diff% 
         

    0.00 370.104536 370.104178 13.492 0.000097 
    0.01 164.156587 164.156470 13.512 0.000072 
    0.02 105.192627 105.192560 13.467 0.000063 

    0.03 77.258066 77.258020 13.551 0.000059 

  0.1 1.90196 0.04 60.970239 60.970204 13.466 0.000056 

    0.05 50.307351 50.307324 13.532 0.000054 

    0.10 26.685128 26.685116 13.545 0.000046 

    0.30 9.216663 9.216660 13.436 0.000029 

0.05 0.1 
  0.50 5.688211 5.688210 13.529 0.000020 

  0.00 370.111274 370.110694 13.520 0.000157 

    0.01 218.233870 218.233600 13.487 0.000124 

    0.02 153.301535 153.301368 13.495 0.000109 

    0.03 117.350069 117.349952 13.416 0.000100 

  -0.1 2.34842 0.04 94.565641 94.565553 13.479 0.000094 

    0.05 78.865508 78.865438 13.492 0.000089 

    0.10 41.847694 41.847663 13.492 0.000074 
    0.30 13.172037 13.172030 13.492 0.000047 

    0.50 7.603031 7.603028 13.517 0.000033 
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Table 2. Continued. 
 

  1  2  h  shift Explicit NIE Time Diff% 
 

    0.00 370.299172 370.298515 13.519 0.000178 

    0.01 144.464904 144.464768 13.518 0.000094 

    0.02 89.685034 89.684969 13.459 0.000073 

    0.03 65.007924 65.007883 13.455 0.000063 

  0.2 1.78838 0.04 50.973254 50.973225 13.535 0.000057 

    0.05 41.920612 41.920590 13.490 0.000052 

    0.10 22.222112 22.222103 13.425 0.000041 

    0.30 7.893825 7.893823 13.482 0.000024 

0.10 0.1 
  0.50 4.987173 4.987172 13.499 0.000016 

  0.00 370.115966 370.114002 13.501 0.000531 

    0.01 286.090889 286.089671 13.542 0.000426 

    0.02 228.394081 228.393273 13.492 0.000354 

    0.03 187.010941 187.010376 13.531 0.000302 

  -0.2 2.78993 0.04 156.285272 156.284860 13.569 0.000264 

    0.05 132.822686 132.822375 13.438 0.000234 

    0.10 70.157635 70.157527 13.440 0.000153 

    0.30 18.713286 18.713273 13.557 0.000072 

    0.50 9.832924 9.832919 13.520 0.000047 

    0.00 370.295141 370.292831 13.437 0.000624 

    0.01 137.992552 137.992202 13.490 0.000253 

    0.02 84.820251 84.820109 13.462 0.000168 

    0.03 61.246548 61.246469 13.427 0.000130 

  0.1 1.95666 0.04 47.941844 47.941792 13.486 0.000108 

    0.05 39.398626 39.398589 13.534 0.000093 

    0.10 20.908407 20.908394 13.466 0.000060 

    0.30 7.523560 7.523557 13.512 0.000028 

0.20 0.2 
  0.50 4.802271 4.802270 13.539 0.000018 

  0.00 370.002909 369.998734 13.478 0.001128 

    0.01 183.558057 183.556989 13.456 0.000582 

    0.02 121.435201 121.434716 13.457 0.000399 

    0.03 90.409051 90.408773 13.539 0.000307 

  -0.1 2.49307 0.04 71.822583 71.822402 13.520 0.000252 

    0.05 59.455236 59.455108 13.515 0.000215 

    0.10 31.519801 31.519760 13.498 0.000129 

    0.30 10.562568 10.562562 13.519 0.000054 

    0.50 6.382784 6.382781 13.433 0.000033 
         

 

Table 3. Comparison of the ARL on a modified EWMA control chart using explicit formulas with the NIE method for ARX(2,1) with 

1,u  1,v  0,  1,k   
1 0.1,   

2 0.2,    
1 0.2,   and 

0 500ARL  . 

 

shift 0.01,  2.48512h    
 

0.05,  2.61385h    

 Explicit NIE Time Diff%  Explicit NIE Time Diff% 
          

0.00 500.488509 500.487979 13.458 0.000106  500.640854 500.639672 13.476 0.000236 

0.01 331.637724 331.637386 13.484 0.000102  340.395524 340.394878 13.463 0.000190 

0.02 243.153820 243.153579 13.448 0.000099  252.391615 252.391203 13.531 0.000163 
0.03 189.153991 189.153809 13.490 0.000096  197.352918 197.352629 13.536 0.000146 

0.04 153.035120 153.034976 13.469 0.000094  160.016146 160.015932 13.469 0.000134 

0.05 127.342375 127.342258 13.468 0.000092  133.230089 133.229922 13.533 0.000125 
0.10 64.915512 64.915458 13.506 0.000083  67.592092 67.592025 13.497 0.000099 

0.30 17.675818 17.675808 13.491 0.000056  18.040792 18.040781 13.502 0.000060 

0.50 9.459167 9.459163 13.546 0.000040  9.576707 9.576703 13.510 0.000042 

shift 0.1,  2.79202h    
 

0.2,  3.22379h    

 Explicit NIE Time Diff%  Explicit NIE Time Diff% 
          

0.00 500.386457 500.383045 13.496 0.000682  500.609662 500.595309 13.455 0.002867 
0.01 358.298531 358.296709 13.537 0.000508  434.146693 434.136038 13.552 0.002454 

0.02 272.247864 272.246767 13.458 0.000403  368.724286 368.716686 13.482 0.002061 
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Table 3. Continued. 
 

shift 0.1,  2.79202h    
 

0.2,  3.22379h    

 Explicit NIE Time Diff%  Explicit NIE Time Diff% 
          

0.03 215.455768 215.455048 13.496 0.000334  310.585722 310.580379 13.495 0.001720 

0.04 175.682830 175.682330 13.486 0.000285  261.603168 261.599405 13.447 0.001438 

0.05 146.584892 146.584527 13.469 0.000249  221.388663 221.385984 13.530 0.001210 
0.10 73.817022 73.816906 13.579 0.000157  108.236492 108.235857 13.506 0.000586 

0.30 18.955138 18.955124 13.516 0.000072  23.381342 23.381309 13.507 0.000139 

0.50 9.895165 9.895160 13.461 0.000047  11.381464 11.381456 13.513 0.000072 
          

          

 

6. Comparison of the ARLs on the EWMA with modified EWMA control charts 
 

After verifying the accuracy of the explicit formulas in the previous section, we used simulated data and the relative 

mean index (RMI) to compare the performances of the ARL of an ARX(p,r) process on EWMA and modified  EWMA control 

charts. The RMI is defined as 

 

, ,

1 ,

1 n
shift i shift i

i shift i

ARL Min ARL
RMI

n Min ARL

     
  

  

 .           (6.1) 

 

where 
,shift iARL  is the ARL of the control chart when the position process shift, ,shift i  is the shift size for 1,2,...,i n , 

,shift iMin ARL 
 

 denotes the smallest ARL of two control charts in comparison when the position process shift. The control 

chart with the smallest RMI performs the best in detecting mean changes on the whole. 

For the comparison of the ARLs on the EWMA and modified EWMA control charts for an ARX(1,1) process, the 

parameter values were set as
0 370ARL  ;    0.05, 0.1, and 0.2; the in-control parameter 0 1  ; the shift size was varied as 

0.001, 0.003, 0.005, 0.007, 0.009, 0.01, 0.03, 0.05, 0.07 and 0.09. The results are reported in Table 4. 

 
Table 4. Comparison of the ARL of EWMA and modified EWMA control charts using explicit formulas for an ARX(1,1) with 

1,u  1,v  0,   40 ,k   
1 0.2,   and 0 370ARL  .       

   

shift 

10.05,  0.2     0.1,  0.21    
 

0.2,  0.21    

EWMA 
82.5496 10b  

 

Modified EWMA 

1.3590441h   
 

EWMA 

0.00107964b   

Modified EWMA 

2.7665764h   
 

EWMA 

0.04441b   

Modified EWMA 

5.734902h   

0.000 370.071291 370.0768919  370.004307 370.003373  370.722568 370.715572 

0.001 362.264617 257.030787*  365.787507 239.166659*  362.075941 233.363671* 

0.003 347.186399 159.726241*  357.521610 140.347811*  345.767724 134.327916* 

0.005 332.792484 115.984299*  349.473732 99.484050*  330.655613 94.494822* 

0.007 319.049437 91.124031*  341.637371 77.151829*  316.615806 72.994088* 

0.009 305.925567 75.090081*  334.006238 63.075235*  303.540954 59.537517* 

0.010 299.586374 69.033841*  330.265724 57.823254*  297.335678 54.535706* 

0.030 198.799944 26.743266*  264.852791 22.105174*  206.492192 20.787108* 

0.050 134.056104 16.821242*  214.163689 13.957965*  153.166554 13.153305* 

0.070 91.808369 12.393346*  174.541323 10.348427*  118.601180 9.778282* 

0.090 63.828457 9.886695*  143.313881 8.311410*  94.690406 7.875239* 

RMI 3.763440 0  7.445925 0  5.824404 0 

shift 

0.05,  0.21      0.1,  0.21     
 

0.2,  0.21     

EWMA 
83.8036 10b  

 

Modified EWMA 

2.0452044h   
 

EWMA 

0.0016149b   

Modified EWMA 

4.200333h   
 

EWMA 

0.067334b   

Modified EWMA 

8.88252h   

0.000 370.075490 370.074437  370.035318 370.040056  370.017072 370.021854 

0.001 362.413120 272.589846*  365.971526 257.425111*  362.407567 254.808465* 

0.003 347.604772 178.698291*  358.000435 160.267524*  347.947355 157.288491* 

0.005 333.457209 133.038467*  350.232942 116.523643*  334.419802 113.936839* 
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Table 4. Continued. 

       

shift 

0.05,  0.21      0.1,  0.21     
 

0.2,  0.21     

EWMA 
83.8036 10b  

 

Modified EWMA 

2.0452044h   
 

EWMA 

0.0016149b   

Modified EWMA 

4.200333h   
 

EWMA 

0.067334b   

Modified EWMA 

8.88252h   

0.007 319.938646 106.040681*  342.663148 91.643263*  321.740040 89.431083* 

0.009 307.018935 88.205073*  335.285344 75.588906*  309.833149 73.676321* 

0.010 300.774653 81.379575*  331.666704 69.523408*  304.148484 67.735772* 

0.030 201.120167 32.306069*  268.119397 27.141638*  218.327779 26.405507* 

0.050 136.616346 20.420367*  218.476210 17.187944*  165.516539 16.743211* 

0.070 94.217093 15.067503*  179.369496 12.742094*  130.215179 12.432517* 

0.090 65.938916 12.022993*  148.318390 10.222777*  105.253345 9.990907* 

RMI 3.062808 0  6.078151 0  4.802528 0 
         

 

*The smallest ARL on each shift size according to the case. 

 

For the ARL comparison for an ARX(2,1) process on the EWMA and modified EWMA control charts, the parameter 

values were set as 0 500ARL  ;    0.05, 0.1, and 0.2; the in-control parameter 0 1  ; shift sizes of 0.001, 0.003, 0.005, 

0.007, 0.009, 0.01, 0.03, 0.05, 0.07 and 0.09. The results are reported in Table 5. 
                                                                                      

Table 5. Comparison of the ARL of EWMA and modified EWMA control charts using explicit formulas for an ARX(2,1) with 1,u  1,v   

2,   50 ,k   
1 0.3   and 

0 500ARL  . 

 

shift 

1 10.05,  0.1,  0.2        1 10.1,  0.1,  0.1        1 10.2,  0.1,  0.1      

EWMA 
81.5491 10b  

 

Modified EWMA 

0.7568155h   
 

EWMA 

0.00058356b   

Modified EWMA 

1.378502h   
 

EWMA 

0.014952b   

Modified EWMA 

2.277413h   

0.000 500.060978 500.076069  500.324113 500.360304  500.029224 500.022472 

0.001 489.114475 267.090908*  494.127012 239.961773*  480.592452 221.762202 

0.003 467.997069 138.496237*  481.998019 117.893325*  445.500726 105.295630 

0.005 447.870153 93.629467*  470.213191 78.325628*  414.691287 69.234304 

0.007 428.683824 70.801160*  458.761545 58.745762*  387.433378 51.680381 

0.009 410.390862 56.975292*  447.632483 47.062407*  363.153404 41.295851 

0.010 401.565333 51.923525*  442.185713 42.825869*  351.983744 37.546730 

0.030 262.306360 19.020934*  347.882344 15.647366*  210.659066 13.700820 

0.050 174.194272 11.857221*  276.201620 9.822354*  143.484292 8.635854 

0.070 117.530522 8.724851*  221.192183 7.284761*  104.938276 6.434339 

0.090 80.526574 6.969808*  178.593387 5.865033*  80.339327 5.203939 

RMI 7.449113 0  14.096343 0  9.179088 0 

shift 

1 10.05,  0.2,  0.1        1 10.1,  0.2,  0.1       1 10.2,  0.2,  0.2      

EWMA 
81.2685 10b  

 

Modified EWMA 

0.6187533h   
 

EWMA 

0.00043188b   

Modified EWMA 

1.0175587h   
 

EWMA 

0.0122187b   

Modified EWMA 

1.85691h   

0.000 500.141339 500.150484  500.174945 500.189478  500.055307 500.024614 

0.001 489.095541 259.298533*  493.822612 228.318970*  479.729360 214.054265* 

0.003 467.792945 132.316088*  481.395919 109.704783*  443.211639 100.188030* 

0.005 447.497611 88.958619*  469.329752 72.374872*  411.339382 65.592229* 

0.007 428.158412 67.081769*  457.612366 54.098310*  383.287724 48.862371* 

0.009 409.726985 53.891761*  446.232438 43.253693*  358.416006 38.999212* 

0.010 400.837290 49.083498*  440.665594 39.332505*  347.010479 35.444488* 

0.030 260.830440 17.912907*  344.589520 14.318623*  204.669047 12.911676* 

0.050 172.580252 11.160506*  272.008910 8.990081*  138.296605 8.143100* 

0.070 116.034271 8.212396*  216.634577 6.672959*  100.601078 6.072667* 

0.090 79.236668 6.562091*  173.992869 5.378034*  76.705241 4.916320* 

RMI 7.883248 0  15.215424 0  9.476407 0 
 

*The smallest ARL on each shift size according to the case. 
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From the results in Tables 4 and 5, it is evident that the ARL values derived from the explicit formulas for the modified 

EWMA control chart are less than those for the EWMA control chart for every value of  .  For example, in Table 4, when 

1 0.2  , 0.05   and shift = 0.05, the ARL is 332.792484 from the EWMA control chart while the ARL is 115.984299 from 

the modified EWMA control chart, which corresponds to the RMI values for the modified EWMA control chart being less than 

those for the EWMA control chart.  

 

7. Application 
 

In Section 6, we compared the performance of the ARL of an ARX(p,r) process on EWMA and modified EWMA 

control charts by using simulation data. The results show that the ARL values derived from the explicit formulas for the modified 

EWMA control chart were shorter than those for the EWMA control chart in every case. Hence, we applied the explicit formulas 

for the ARLs on the EWMA and modified EWMA control charts for an ARX(1,1) process using 55 real-world data observations 

on the value of exports and imports of agricultural products to and from Thailand (Unit: Ten billion baht) from January 2016 to 

July 2019, where the value of the imports is the explanatory variable (data from the Office of Agricultural Economics of Thailand 

(2019)) to confirm the above results. The parameters were set as   0.05, 0.1, and 0.2; 
0 0.589259u   ; shift size values of 

0.001, 0.003, 0.005, 0.007, 0.009, 0.01, 0.03, 0.05, 0.07, and 0.09; and autoregressive coefficients 
1 0.326152,   ,6.652233   

,10.4918v   
1 0.933313  , and 

1 4.1439X  . The results are given in Table 6. 

Another ARL comparison for an ARX(2,1) process on the modified EWMA control charts was conducted using real-

world data on the price of cassava (unit: Baht per kilogram, data from the Office of Agricultural Economics of Thailand (2019)) 

and diesel oil (unit: Baht per liter, data from Petroleum Authority of Thailand (2019)), with the latter being the explanatory 

variable. The parameters used were   0.1, 0.15 and 0.2; 
0 0.136281u   ; shift size values of 0.0001, 0.0003, 0.0005, 

0.0007, 0.0009, 0.001, 0.003, 0.005, 0.007, and 0.009; and autoregressive coefficients 
1 0.623567   and  

2 0.292098,   

0,   1.88,v   
1 0.064905  , and 

1 6225.X  . The results are summarized in Table 7. 

 
Table 6. Comparison of the ARL of ARX(1,1) of EWMA and modified EWMA control charts for the value of exports and imports of 

agricultural products for 
0 370ARL  .  

 

shift 

0.05 
a( 100 )k    0.1  ( 40 )k   

 
0.2  ( 60 )k   

EWMA 
183.27104 10b  

 

Modified EWMA 

0.007128814h   
 

EWMA 
131.3617 10b    

Modified EWMA 

0.0044711692h   
 

EWMA 
125.446519 10b    

Modified EWMA 

0.0153495067h   

0.000 374.505189 374.510271  370.015353 370.013368 
 

370.026479 370.026204 

0.001 348.463281 80.027591*  348.920418 79.529679* 
 

276.359424 71.606027* 
0.003 301.920274 31.405097*  310.520857 31.227647* 

 
178.925791 27.747820* 

0.005 261.864143 19.690008*  276.644980 19.575453* 
 

128.916300 17.383968* 
0.007 227.356776 14.422145*  246.734101 14.334171* 

 
98.643720 12.748838* 

0.009 197.600498 11.428518*  220.280627 11.355250* 
 

78.453653 10.121645* 
0.010 184.287726 10.369330*  208.221352 10.301213* 

 
70.713067 9.193284* 

0.030 48.289170 3.899445*  70.946841 3.863411* 
 

17.089659 3.535219* 
0.050 14.280238 2.596183*  26.449591 2.568076* 

 
6.766353 2.397466* 

0.070 5.028239 2.046506*  10.869219 2.022750* 
 

3.406272 1.917426* 
0.090 2.310792 1.748461*  5.049280 1.727746* 

 
2.092499 1.656939* 

RMI 8.975697 0  11.224773 0  4.159967 0 
 

k  for the modified EWMA control chart. aa constant value. *The smallest ARL on each shift size according to the case. 
 

Table 7. Comparison of the ARL of ARX(2,1) of EWMA and modified EWMA control charts for the price of cassava and diesel oil for 

40k   and  0 500ARL  .  

 

shift 

0.1    0.15    0.2   

EWMA 
141.2971 10b    

Modified EWMA 
66.399136 10b    

 
EWMA 

132.1239 10b    

Modified EWMA 
69.600579 10b    

 
EWMA 

134.0308 10b  
 

Modified EWMA 
51.2801949 10b    

0.0000 500.039396 500.039009  500.179242 500.174921  500.226696 500.227872 

0.0001 486.931023 108.038894*  473.487004 101.389201*  417.839400 98.180795* 
0.0003 461.702687 42.328712*  426.334701 39.364297*  311.758448 37.955938* 
0.0005 437.968562 26.452894*  385.987063 24.571033*  246.391305 23.680218* 
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Table 7. Continued.  

 

shift 

0.1    0.15    0.2   

EWMA 
141.2971 10b    

Modified EWMA 
66.399136 10b    

 
EWMA 

132.1239 10b    

Modified EWMA 
69.600579 10b    

 
EWMA 

134.0308 10b    

Modified EWMA 
51.2801949 10b    

0.0007 415.503914 19.307837*  351.191004 17.937223*  202.151348 17.289440* 
0.0009 394.328865 15.245271*  320.856371 14.171951*  170.215918 13.665109* 
0.0010 384.125979 13.807393*  307.136133 12.840435*  157.387407 12.383952* 
0.0030 230.568928 5.011479*  146.767998 4.707794*  54.533946 4.564598* 
0.0050 141.203211 3.229155*  81.398115 3.062145*  27.781114 2.983359* 
0.0070 88.045417 2.471605*  48.796600 2.362680*  16.357609 2.311262* 
0.0090 55.861517 2.057219*  30.752391 1.979945*  10.453770 1.943442* 

RMI 24.968946 0  18.129071 0  8.344739 0 
 

*The smallest ARL on each shift size according to the case. 
 

From the results in Tables 6 and 7, it is evident 

that the ARL values derived from the explicit formulas for the 

modified EWMA control chart are less than those for the 

EWMA control chart for every value of  . For example, in 

Table 6 when   0.05 and shift = 0.009, the ARL is 

197.600498 from the EWMA control chart while the ARL is 

11.428518 from the modified EWMA control chart. This 

corresponds to an RMI value of 0 for the modified EWMA 

control chart, which is less than that for the EWMA control 

chart. The results from Tables 6 and 7 are plotted on the charts 

in Figures. 1 and 2, respectively. 

 

 
Figure 1. Comparison of the ARL for an ARX(1,1) on EWMA and 

modified EWMA control charts for real data in table 6, 

where 0.10  . 

 
Figure 2. Comparison of the ARL for an ARX(2,1) on EWMA and 

modified EWMA control charts for real data in table 7, 

where 0.15  . 

From Figures 1 and 2, it can be seen that the ARL 

values derived from the explicit formulas for the modified 

EWMA control chart are less than those for the EWMA 

control chart for every case. For example, in Figure 1, when 

shift = 0.009, the ARL from the modified EWMA control chart 

(ARL = 11.355250) is less than that of the EWMA control 

chart (ARL = 220.280627). 

From Tables 6 and 7 and Figures 1 and 2, it is 

evident that the ARL for the modified EWMA control chart is 

smaller than that of the EWMA control chart for every case. 

Such that the ARL values derived from the explicit formulas 

for the modified EWMA control chart outperformed that for 

the EWMA control chart. 

 

8. Conclusions 
 

In this study, we derived explicit formulas for the 

ARLs on the EWMA and modified EWMA control charts for 

an ARX(p,r) process with exponential white noise using real-

world data observations and compared the performance of the 

ARL of an ARX(p,r) process on both control charts using the 

RMI. The suggested formulas are easy to calculate and 

program. The explicit formulas clearly take much less 

computational time than the numerical Integral Equation 

method (NIE). Our results show that they performed better for 

an ARX(p,r) process on the modified EWMA control chart 

compared to the EWMA control chart for the case of a one-

sided shift with constant k. However, the conclusions drawn in 

this study are only applicable to an ARX(p,r) process and may 

not be relevant for other processes. In future work, it would be 

of interest to derive explicit formulas for the ARL of other 

control charts and processes using the Fredholm integral 

equation of the second type technique. Based on the findings, 

the ARL explicit formula for an ARX(p,r) process on the 

modified EWMA control chart outperformed the EWMA 

control chart. Thus, the modified EWMA control chart could 

be applied to other processes. 
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