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The project proposes the development of an innovative technology for numerical simulation 

and the development of an invaluable numerical tool for the effective safety assessment of 

engineering structures. Whilst most of the available analysis and design techniques are likely 

to suffer from the needs to extensively explore in an evolutive fashion the complete behaviors 

of large-scaled 3D structures, the proposed method overcomes the burden by extending 

scopes of classical plastic analysis to capture directly the maximum load capacity such that 
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structure can safely sustain under limit states criteria. The implementation of an integrated 

octree and polyhedron scaled boundary finite element (SBFE) method will offer the automatic 

and accurate model construction of wide-class structures with complex geometries. The 

unified analysis (including SBFE, node-based smoothed finite element and edge-based 

smoothed finite element) frameworks therefore will advantageously provide the cost-effective 

and advanced computing software for the safety assessment (namely the computation of a 

familiar safety factor) of the strategic nation infrastructures under variable load regimes, and 

can be practically applied by engineers to decide whether the structure involved is safe or 

requires necessary maintenances. 

 

ค าหลัก : Structural Safety; Structural Optimization; Plasticity; Scaled Boundary Finite Element; 

Smoothed Finite Element 
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เนื้อหางานวิจัย 

1. วัตถุประสงค ์

Many structures in Thailand have passed or are approaching their design life. Most of them 

have deteriorated to various extents with time. The safe and cost-effective management of 

ageing structures is becoming an increasingly urgent issue, and appears to be critical to the 

Thai economy. The assessment of their safety and serviceability, considering the intrinsic and 

inevitable nonlinear properties and variable load regimes, is crucial in deciding on the necessity 

and type of rehabilitation, or the retirement of the structure. Moreover, the wide class of 

structures targeted, especially those with complex geometry (such as penetrations, curve 

boundary and cracks), is the commonplace and most popular type of structures in Thailand. 

Their safe and cost-effective design is an essential requirement. 

The safety assessment of many important existing structures and design of the new ones rests 

on limit states criteria. This is typically carried out through a nonlinear elastoplastic analysis 

based on a step-by-step evolutive “marching” approach that follows the whole time history 

of loading. However, in a large number of practical engineering situations the use of “direct” 

or “simplified” methods which avoids a computationally expensive time-stepping analysis, 

represents a useful, competitive and an increasingly appealing alternative. 

One important class of such methods is plastic (limit) analysis [Kamenjarzh (1996)]. The area 

has been vigorously researched. The distinctive feature of a classical limit analysis is the 

determination of the load factor (or more precisely in practice, its upper and/or lower bounds) 

at which a critical event occurs, namely, plastic collapse. Despite of its popularity and maturity, 

limit analysis as a mathematical programming problem has unfortunately not gained much 

interest from practitioners due to their nonfamiliarity with the appropriate model construction 

within an optimization setting. To overcome this limitation, a wide class of modulus variation 

procedures (see e.g. [Jones GL and Dhalla (1981); .Marriott (1988); Seshadri R and Fernando 

(1992)]) has been developed to determine the collapse load limit from iteratively performing 

familiar elastic stiffness analysis computations. One particular and appealing instance is the 
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so-called elastic compensation method (or ECM) coined in [Mackenzie and Boyle (1993); 

Hamilton, et. al. (1996)]. More specifically, the elastic analysis performed at each iteration 

involves systematic adjustment of elastic moduli of some discrete elements, where the 

associated stress resultants computed in the previous step are higher than some predefined 

thresholds. This procedure takes into account stress redistribution during the plasticity process. 

With fast-growing computer technologies, the development of state-of-the-art computing 

software will fruitfully assist engineers by providing the preliminary and key information on 

the maximum load capacity of a particular structure that can safely sustain, prior to any 

extensive detailed investigations are performed as to decide whether the maintenance 

program is required or the structure of which is safe and serviceable. It thus presents the cost-

effective and quick safety assessment procedure as compared to other available methods 

that are often expensive with physical sampling and experiments in a full-facility laboratory. 

Form the aforementioned statements, the primary aims of the present project are:  

i) The development of self-adaptive polygon/polyhedron scaled boundary finite element 

(SBFE) based mesh construction of 2D/3D structures with complex geometries. 

ii) The development of an iterative elastic SBFE based analysis procedure that closely 

approximates the maximum load capacity of perfectly-plastic structures with complex 

geometries at failure. 

iii) The development of three-node node-based smoothed finite element (NS-FE) method 

adopting the simplest low-order (linear) displacement field formulations, where the 

developed framework is not only insensitive to the arbitrarily distorted mesh configuration but 

also locking-free under an incompressibility condition 

iv) The development of the iterative elastic edge-smoothed finite element (ES-FE) method, 

which incorporates the state-of-the-art automatic adaptive (non-uniform) mesh construction 

as well as enables the smoothed C0-continuous recovery stress field using the stress recovery 

technique [Zienkiewicz and Taylor (2000)]. 
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2. วิธีทดลอง 

The computational methods performed for the safety assessment of 2D- and 3D-structures 

are developed within the three main finite element, called scaled boundary finite element 

(SBFE), node-based smoothed finite element (NS-FE) and edge-smoothed finite element (ES-

FE), frameworks. These are illustrated as follows. 

 

2.1 Scaled Boundary Finite Element Framework 

Generic SBFE model and formulations 

The formulations describe the generic SBFE discretization [Wolf and Son (2000); Song and Wolf 

(2000)] of structures in 2D (and 3D) spaces. The relations are based on the assumptions of 

geometric linearity and elastic material properties. Unlike boundary element methods, the 

SBFE approach provides a semi-analytical solution of the subdomain, whilst standard finite 

element technique for plasticity is directly applicable in SBFEs. The SBFE implementation for 

elastoplastic analyses is reported in [Ooi, et. al. (2014)], where the merits of flexibility of 

meshing and efficient treatment of cracks/notches are demonstrated. 

For clarity of the following expressions, a generic polygon-type SBFE subdomain [Song and 

Wolf (1997, 2000); Wolf and Song (2000)] in Fig. 1 is considered, where a scaling center “O” is 

defined to be visible from all boundaries. Each boundary contains line elements (see Fig. 1a) 

for a 2D curvilinear ( , )   coordinate system and doubly-curved surface elements (Fig. 1b) in 

a 3D ( , , )    coordinate system. 
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Figure 1. Generic SBFE subdomain (a) 2D case, (b) 3D case. 

The geometry of the boundary along a circumferential direction is described using standard 

shape functions, namely ( )N   for 1 1    and ( , )N    for 1 1    and 1 1    in 

2D and 3D spaces, respectively. The dimensionless radial coordinate   describes the 

subdomain by scaling the boundary between the scaling centre (where 0  ) and the 

boundary ( 1  ). 

The local Cartesian )( ŷ,x̂  and )( ẑ,ŷ,x̂  coordinates can be expressed in terms of the 

curvilinear )(  ,  and )(  ,, coordinates by [24], viz. 

in a 2D space: 

})]{([)()( xNx,x̂   , (1a) 

})]{([)()( yNy,ŷ   , (1b) 
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and in a 3D space: 

( ) ( ) [ ( )]{ }x̂ , , x , N , x          , (2a) 

( ) ( ) [ ( )]{ }ŷ , , y , N , y          , (2b) 

( ) ( ) [ ( )]{ }ẑ , , z , N , z          , (2c) 

where }{x , }{y  and }{z are the nodal Cartesian coordinates.  

For a generic SBFE subdomain, the displacement field adopts  

in a 2D )(  ,  coordinate system: 

1 2{ ( , )} [ ( )]{ ( )} [ ( )[ ], ( )[ ],...]{ ( )}uu N u N I N I u        , (3) 

and in a 3D )(  ,,  coordinate system: 

1 2{ ( , , )} [ ( , )]{ ( )} [ ( , )[ ], ( , )[ ],...]{ ( )}uu N u N I N I u            , (4) 

where  I  is an identity matrix of appropriate size. 

The displacement functions { ( )}u   given in Eqs. (3) and (4) along the radial direction   can 

be obtained from  

0 2 0 1 1 T 1 T 2

, ,[ ] { ( )} (( 1)[ ] [ ] [ ] ) { ( )} (( 2)[ ] [ ]){ ( )} 0E u s E E E u s E E u             , (5) 

where s = 2 and 3 in 2D and 3D spaces, respectively. The assembly of key matrices ][ iE  for 

i = 0, 1 and 2 follows standard finite element procedures using the information of geometry 

and material properties involved [Song and Wolf (1997)]. 

The internal nodal forces along the radial direction are expressed as 

2 0 1 T

,{ ( )} ([ ] { ( )} [ ] { ( )})sq E u E u      . (6) 

Further, formulating the two Eqs. (5) and (6) as the first-order ordinary differential system with 

twice the number of unknowns results in  
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0.5( 2) 0.5( 2)

0.5( 2) 0.5( 2)

,

{ ( )} { ( )}
[ ]

{ ( )} { ( )}

s s

s s

u u
Z

q q


   


   

   

   

   
    

    , (7) 

where the Hamiltonian matrix ][Z  is formed as  

  

















])[)2(50][]([][][][][

][][)2(50][][
101T11012

10T110

Is.EEEEEE

EIs.EE
Z

, (8) 

and the eigenvalue decomposition of ][Z  gives  



















][

][

][][

][][
]][[]][[

21

21

p

n

qq

uu

ΦΦ

ΦΦ
λΦΦZ





, (9) 

[ ]n  and ][ p  are eigenvalue matrices, whose real parts are negative and positive, 

respectively; ][ 1uΦ  and ][ 1qΦ  the eigenvectors of ][ n ; and ][ 2uΦ  and ][ 2qΦ the 

eigenvectors of ][ p . 

The bounded domain is considered, where the associated eigenvalues retain only the negative 

real parts, leading to finite displacements at a scaling centre “O”. Hence, substituting Eq. (9) 

into Eq. (7) provides the solutions of displacements and nodal internal forces as follows:  

 }{][)}({
][

1
)2(50 cΦu n

u
s   .

, (10a) 

 }{][)}({
][

1
)2(50 cΦq n

q
s   .

. (10b) 

The integration constants }{c  in Eqs. (10a) and (10b) are determined from the nodal 

displacements )}1({ u  on the boundary ( 1 ) of the subdomain as 

)}1({][}{ 1
1   uΦc u . (11) 

For each SBFE subdomain, the stresses )},({   and )},,({   are computed at an 

element level, and defined by  

))}({)]([)}()]{([(][)},({ 2

,

1   uBuBD  , (12a) 
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))}({)],([)}()]{,([(][)},,({ 21   uBuBD ,  , (12b) 

where  D  is a material constitutive matrix, and )]([ 1 B , )]([ 2 B , ( )],([ 1 B  and 

)],([ 2 B ) the strain and displacement expression terms [24]. Substituting Eq. (10a) into 

Eqs. (12a) and (12b) yields  

}{)()},({
][

c
In ][




  , (13a) 

   1.5
{ ( , , )} ( , ) { }n I

c


      
 

  , (13b) 

where  

])[)]([][][)]([(][)( 1
2

1
1

unu ΦBΦBD   , (14a) 

1 2

1 1( , ) [ ]( [ ( , )][ ][ ] 1.5[ ] [ ( , )][ ])u n uD B Φ I B Φ            , (14b) 

define the stress modes associated with structures in 2D and 3D geometry systems, 

respectively. 

Quadtree model construction of in-plane structural system 

For the structural system that can be defined in a 2D space, the structural discrete model 

adopts the computationally advantageous quadtree mesh generation technique using 

polygon-shape SBFEs [Ooi, et. al. (2014, 2015)]. Such methodology provides the effective 

model construction of in-plane structures with complex geometries. 

The algorithmic implementation of the quadtree SBFE model is summarized in Fig. 2, where 

maxS  is the maximum allowed number of seed points in a cell, with bS  seed points on each 

boundary, and roiS  seed points around each region of interest, and maxl  the maximum 

difference between the division levels of adjacent cells. In this scheme, the geometry 

information of the whole structural system is controlled by the signed distance function. 
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Figure 2. Flowchart for quadtree mesh generation procedures. 

The function of a point 
2RX  within a SBFE subdomain   is graphically described in Fig. 3, 

and its mathematical description is given by  

( ) ( ) min
y Ω

d x s x x y 


 
, (15) 

where Ω  represents the boundary of the subdomain, yx   is the Euclidean norm in 
2R  

with Ωy , and )(xs  the sign function (namely –1 inside the subdomain or 1 otherwise). 

Boolean operations are employed to implement the complex geometry of the structure 

concerned [Talischi, et. al. (2012)]. 
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Figure 3. Signed distance function of a point inside the domain (X1), on the boundary (X2), 
and outside the domain (X3 and X4). 

A series of seed points are predefined to control the local density and quality of the quadtree 

cells adopted in the boundary. The entire domain is initially covered by a single square, called 

root cell. The root cell is divided into four square cells, provided that the number of seed 

points iS  is larger than the maximum allowable limit of the corresponding cell, maxS . This 

process is iteratively performed until the seed points of all cells is less than a pre-defined 

value. 

At each iteration, the cell with high division level between the contiguous cells, namely 

maxll i , is subdivided. The diagram in Fig. 4 illustrates the use of the recursive process used 

to obtain an initial grid in Fig. 4b of a square plate with penetration. In Fig. 4b, the initial 

quadtree mesh does not exactly conform to the boundary. Then, cells that intersect with the 

boundary are trimmed to form polygon shapes. The locations of vertices are defined by the 

direction and magnitude of the signed distance functions; the vertices on the boundary are 

assigned with solid square markers, whilst those inside the boundary with open square 

markers. 

It is noted that weak shaped polygon cells, which contain much shorter edges as compared 

to the others, can be generated around the vertices close to the boundary. A threshold 

distance (e.g. 1/10 of the smallest cell edge attached to the vertex) determines whether those 

points are required to move to the boundary. 

In Fig. 5, the implementation of the quadtree SBFE model over a circular penetrated plate is 

illustrated. In essence, Fig. 5a shows that coarse polygon meshes are first assigned on the 
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circular inner boundary. In Fig. 5b, the quadtree mesh refinement further enhances the SBFE 

discretization around the circular penetration using polygon-shape cells. 

 

Figure 4. Square plate with circular hole (a) geometry, (b) initial quadtree grid mesh. 

 

Figure 5. SBFE meshes around circular hole (a) standard polygon subdomains, (b) quadtree 
refinement. 

Collapse load determination by iterative elastic SBFE analyses 

The proposed approach performs an iterative series of elastic analyses for sufficiently ductile 

structures modelled within the effective polygon-shape SBFE and quadtree model 

construction framework [Ooi, et. al. (2015); Talishi, et. al. (2012)] to determine the maximum 

load capacity at plastic collapse. The method adopts the so-called modified elastic 

compensation algorithm [Yang, et. al. (2005); Chen, et. al. (2008)], and in effect represents an 

application of a lower-bound limit analysis. 
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The generic idea is simple in that a series of elastic SBFE analyses are iteratively processed. At 

the end of each iteration i, the computed statically admissible stress resultants are collected 

to calculate the corresponding load factor i that complies with the plastic capacity of the 

material employed. At the beginning of the next iteration i + 1, the stress resultants are 

collected to systematically adjust the elastic stiffnesses of some critical elements. This 

procedure is repeated until the predefined maximum number of iterations (imax) has been 

reached. The collapse load limit (col) is selected as the maximum load factor computed. 

The structural system is suitably discretised using the quadtree polygon-shape SBFE model 

(namely n subdomains, d degrees of freedom and g numerical integration points) generation 

described in the previous section. The proposed numerical analysis determines the collapse 

load factor col that can be safely sustained by the structure under monotonically applied 

forces {f}  d, where {f}  d is a vector of basic forces. The approach enforces for each 

subdomain r the stress resultants ,

i

r j  at all integration points j = 1 to g to comply with the 

failure conditions imposed by the specific material properties, such as von Mises (M) and 

Tresca (T) yield criteria, in 2D (or 3D) space as follows:  

 2D plane strain: 

2 23
, 4

( ) {( ) 4 }i

r j M x y xy      , (16a) 

2 2

,( ) ( ) 4i

r j T x y xy      , (16b) 

 2D plane stress: 

2 2

,( ) ( ) 3i

r j M x y x y xy         , (17a) 

 , 1 2 1 2( ) max | |, | |, | |i

r j T      , (17b) 

 3D space: 

2 2 2 2 2 2

,( ) 3( )i

r j M x y z x y x z y z xy xz yz                     , (18a) 
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 , 1 2 2 3 3 1( ) max | | , | | , | |i

r j T          , (18b) 

where {x, y, z, xy, xz, yz} and {1, 2, 3} are the standard sets of associated stress 

tensors and principle stresses, respectively. Different material laws can be enforced by simply 

redefining the stress resultants ,

i

r j , such as ones given in Eqs. (16) to (18). 

The algorithmic procedures iteratively adjust the elastic moduli of SBFE subdomains using the 

stress resultants at integration points computed in the previous analysis iteration. At the 

beginning of each iteration i + 1 stress redistribution of some critical elements is implemented 

by systematically adjusting the stiffness properties (i.e. Young’s modulus 
1i

rE 

) of the discrete 

elements. More explicitly, for the critical elements that contain the average stress resultants 

i

r  (where ,

1

/
g

i i

r r j

j

g 


 ) computed in the current iteration i greater than the nominal value 
i , their corresponding elastic stiffnesses are modified by  

1
if

 if

i
i i i

r ri i

r r

i i i

r r

E
E

E


 



 







   (19) 

where  

 max max min

i i i i        (20) 

where  is a modification factor; and max

i  and min

i  the most maximum and minimum stress 

resultants developed in the whole structure, namely  max ,maxi i

r j   and  min ,mini i

r j   

for all elements r = 1 to n and integration points j = 1 to g, respectively. 

One of the conditions underpinning the lower bound limit analysis theorem is the yield 

conformity over the whole structural system. Numerically, the plastic material properties are 

enforced solely at some predefined critical locations, namely integration points for each of 

the generic SBFEs. The proposed algorithm imposes such conditions by determining the 

associated (positive scalar) load factor of o max
i i/    that adjusts the magnitude of 
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stresses to lie within the maximum allowable yield stress o, where max

i  is the largest 

maximum stress resultant of the whole structure. This ensures that the statically admissible 

stress resultants satisfy the allowable yield limit o. Therefore, for the total number (viz. imax) 

of iterative SBFE analyses the lower bound limit analysis determines the collapse load limit 

col of the structure by maximizing the load factor i, namely 

col = max{i i = 1, , imax}. 

The pseudo code summarizing key steps underlying the proposed iterative elastic SBFE 

analysis procedure is presented in the following:  

Step 0: Initialization 

 At iteration i = 0, initialize: maximum number of iterations imax, elastic Young’s 

modulus 
i

rE , stress resultants , 0i

r j   for all r = 1 to n SBFE subdomains and j = 1 

to g integration points, yield limit o, Poisson’s ratio , o
i  , and ( , ]. 0 0 5 . 

 Construct a quadtree polygon SBFE model, and assemble key vectors and matrices 

associated with the structure. 

Step A: Iterative SBFE analyses 

 For i = 1 to imax 

Update the Young’s modulus 
i

rE  for all n SBFE subdomains using Eqs. (19) and (20). 

Process the elastic SBFE analysis in Eqs. (10), (13) and (14). 

Determine the stress resultants ,

i

r j  using appropriate Eq. (16), (17) or (18), and max

i . 

Calculate the load factor o max
i i/   . 

End. 

Step B: Termination 
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 Determine the collapse load col = max{i  i = 1, , imax}, and plot the associated 

stress distributions at failure. 

 

2.2 Node-Based Finite Element Framework 

Generic three-node NS-FE model and formulations 

Without undue loss of accuracy, the structure considered is modelled using an in-plane three-

node NS-FE framework [Liu, et. al. (2009)]. The generic NS-FEs are depicted in Fig. 6, where the 

structure is discretized into Nn nodes, Nm members, Nd degrees of freedom and Ns smoothing 

domains (viz., a shaded area Ω
s
k  for k  {1,,Ns}). Each discrete member is subdivided 

into three equally quadrilateral-shaped subdomains encompassed by its centroid (an open-

triangle point), three-node vertices and mid-points on the element boundaries. The node-

based smoothing domain Ω
s
k  collects all subdomains enveloping the k-th common node (e.g., 

the smoothing node K involves six subdomains, namely KSRQ, KQPO, KONM, KMLJ, KJIH and 

KHGS lying within the six primal three-node elements KED, KDC, KCB, KBA, KAF and KFE, 

respectively). It is clear that the total number of smoothing domains Ns is identical to the 

number of nodes Nn, and the whole structural domain can be defined by 1Ω ΩsN s
kk  . 

 

Figure 6. Generic three-node NS-FE model with smoothing (shaded) domains. 
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Underpinning the NS-FE, the strains are smoothed over all associated smoothing domains Ω
s
k  

using a weight-averaged strain field. The smoothed strain field kε  of a generic domain Ω
s
k  is 

expressed by  

/ 0

( , ) ( , ) 0 / ( , ) ( , )

/ /
s s
k k

k

x

x y W x y d y x y W x y d

y x 

  
 

     
 
     

 ε ε u

,  (21) 

where ( , )x yε  is a compatible strain field underlying standard three-node (viz., linear 

displacement field) finite element method, W(x, y) ≥ 0 a Heaviside-type weight smoothing 

function:  

1/ ,
( , )

0

    ( , )   

          ,  ( , )     

s s
k k

s
k

x y

x

A
W x y

y

 





 , ( , ) 1
s
k

W x y d



  ,  (22) 

 
s
k

s
kA d


   collects the areas within a node-based smoothing domain Ω

s
k . For instance, in 

Fig. 1 the area of a smoothing-node K reads 
6

1

 ( / 3)s
k m

m

A A


 , where mA  is the area of m-th 

primal element associated with individual subdomain enclosing the node. 

The smoothed strain field is determined by Green’s divergence theorem, and substituting 

Eq. (22) into Eq. (21) yields:  

0
1 1

( , ) ( , ) ( , ) , ( , ) 0      
s s
k k

x

k n n ys s
k k

y x

n

x y d x y x y d x y n
A A

n n 

 
 

     
 
 

 ε ε L u L

,  (23)
 

where Ln (x, y) is a matrix collecting outward normals (nx, ny) to the boundary Γ
s
k  of Ω

s
k  (e.g., 

in Fig. 6 a smoothing domain Ω
s
k  of the node K containing twelve boundaries Γ

s
k  along the 

segments SG, GH, HI, IJ, JL, LM, MN, NO, OP, PQ, QR and RS), and u(x, y) the displacement field 

with reference to global degrees of freedom. The smoothed strain vector εk  explicitly reads  
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1

k
nN

k k k n n

n

 ε B d B d

,  (24) 

where 
k
nN  is the number of all nodes encompassing the smoothing domain Ω

s
k  (e.g., in Fig. 6 

6k
nN   for the vertices A, B, C, D, E and F associated with the smoothing-node K), Bn and dn 

are the smoothed strain-displacement matrix and the n-th nodal displacements. 

The unassembled strain compatibility matrix Bk and displacement vector dk of a generic 

smoothing domain Ω
s
k  collect the submatrices Bn and vectors dn corresponding to the 

enveloping nodes and degrees of freedom, respectively. An area-weighted average 

formulation [Liu, et. al. (2009)] then gives  

1

1 1 1
( , ) ( , )

3

k
m

s
k

N

k n m ms s
mk k

mx y x y d A
A A 

   B BL N

,  (25) 

where mB  is a standard compatible strain-displacement matrix of the m-th primal three-node 

finite element underpinning a smoothing subdomain Ω
s
k , and 

k
mN  the number of three-node 

elements sharing the common node k (see e.g., in Fig. 6 6k
mN   for the smoothing domain 

Ωs
k  consisting of six members KAB, KBC, KCD, KDE, KEF and KFA). 

The smoothing Galerkin weak form [Liu, et. al. (2007)] reads  

T T T

1

0
sN

s
k k k k

k

A d d  
  

     ε D ε u b u p

, (26) 

where b are the body forces, p the tractions applied on the elemental boundary and Dk the 

member elastic stiffness matrix. Therefore, the governing elastic stiffness equations of the 

structure modelled using the NS-FE framework [Liu, et. al. (2007, 2009)] can be familiarly 

written as  

f = Kd, (27) 
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where as for standard finite element procedures the two vectors d and f collect the 

displacements and externally applied forces at all degrees of freedom, and the global stiffness 

matrix K assembles the matrices Kk of all k  {1,,Ns} smoothing domains Ω
s
k . The explicit 

expressions of the stiffness matrix Kk for a generic node-based smoothing domain are  

T  s
k k k k kA tK B D B , (28) 

where t is an element thickness, and the unassembled stiffness matrix Dk is written in terms 

of elastic Young’s modulus Ek associated with the smoothing domain Ω
s
k . 

Automatic adaptive NS-FE seheme 

This section proposes the computationally advantageous non-uniform adaptive mesh scheme 

within the sequential elastic NS-FE analysis framework. The adaptive NS-FE approach adopts 

the newest bisection procedure [Funken, et. al. (2011); Dörfler (1996)] that automatically 

refines the master element with plastic stress responses into two children elements. At the 

same time, the two children members with elastic stress responses are combined to reform 

one master member. This advantageously enables the optimal mesh construction over a 

series of iterative NS-FE analyses. 

The Dörfler criterion [Dörfler (1996)] defines the set M  of refining elements as well as the 

remaining set N  for possible coarsening members (i.e., as is clear Ω Ω {1,   , }M N mN   

and   Ω ΩM N  ). More explicitly, the members lying within the refining set (namely 

Mm ) satisfy  

M

m

m

 



, (29) 

1

mN

m

m

 



, (30) 

where m  is a member error parameter,  global indicator and   (0,1) mesh refinement 

threshold coefficient. It is clear that the parameter  plays a vital role in controlling the total 
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number of critical refining elements (the members within M ), where the low value of  

yields the small number of members in M  and vice versa for the high value.  

The newest bisection scheme [Rivara (1984)] subdivides a triangle-shaped element of the set 

M  into two children counterparts by the line connecting a new midpoint on the longest 

edge and its opposite peak vertex (see Fig. 7). The midpoint is then set as a new peak node 

for the subsequent refinement.  

 

Figure 7. Newest bisection adaptive (refining and coarsening) mesh scheme. 

The coarsening mesh construction [Chen and Zhang (2010)] presents a backward process to 

the newest bisection refinement. More explicitly, a pair of children elements in the set N  

previously refined are nested to form their master member. The bisection line connecting the 

peak vertex node and a midpoint is eliminated, and the midpoint is then removed from the 

longest edge. The two elements as consequence are fully merged. In the case of no midpoints 

presented for the elements in N  only the refinement process is performed for those 

members in M .  

The error function m  in Eqs. (29) and (30) classifies whether the members are within the 

refining M  or coarsening N  set. The present work proposes the new error indicator based 

on the rate of modulus variations that characterize the equilibrium stress field at plastic 

failures, namely  

0i i icol
m m mE E     for {1, , }mm N   ,  (31) 
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where 
i icol
mE 

 is a modified m-th member modulus 
i
mE  at the i-th analysis iteration when 

i
col  . 

The implementation of modulus variation-based error function in Eq. (31) explicitly determines 

the domains with inelastic localized stresses, which specially requires fine (non-uniform) mesh 

construction to capture plastic mechanisms. Those with acceptably low values of modulus 

variations are coarsened to reform their master elements. The resulting NS-FE model 

converges and depicts the yield line pattern of structures at failures. 

Collapse load determination by iterative elastic NS-FE analyses  

The proposed numerical method determines the maximum load capacity of an in-plane 

inelastic structure at plastic failures. Sufficient ductile materials and small deformations are 

assumed. The proposed scheme encoded within the NS-FE framework satisfies the statically 

admissible stress and yield conformity conditions underpinning the lower-bound limit analysis 

theorem. Whilst it preserves the simplicity in performing solely elastic analyses, the iterative 

NS-FE method (NS-FEM) can overcome the challenges in the presence of stress singularity and 

volumetric locking in an incompressibility. 

The iterative elastic NS-FE analyses are based on the two-fold implementations. Firstly, the 

lower-bound limit analysis is performed by a modified version of elastic compensation method 

[Yang, et. al. (2005); Chen, et. al. (2008)] that generates the equilibrium stress fields through 

the process of modulus reductions in stress intensity areas. A number of successive elastic 

analyses within the reduced modulus procedure enable the stress redistribution from highly 

loaded elements to those with initially low stresses giving a series of different statically 

admissible stress fields. These equilibrium stress fields are enforced to conform with the yield 

limits by proportionally factoring the applied forces (viz., complying with the permissible 

maximum stresses throughout the whole structural domain), and establish the lower-bound 

theorem underpinning limit analysis. The accuracy and convergence of the lower-bound limit 

load solution depend on the robustness of discrete structural models at increasing mesh 

density. Secondly, the NS-FE method, as will be illustrated in the numerical algorithm, ensures 
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the volumetric locking-free behaviors in the presence of incompressibility conditions. Whilst 

the approach employs the low-order displacement formulations, it can efficiently provide the 

accurate elastic stress responses of structures and, as when incorporated within the modified 

elastic compensation method, the lower-bound collapse limit load results. 

A modified version of elastic compensation method [Yang, et. al. (2005); Chen, et. al. (2008)], 

belonging to a wide class of modulus variation procedures [Mackenzie, et. al. (2000)], performs 

a series of successive elastic analysis solves with systematic adjustments of some elastic 

moduli associated with the critical elements developing intensive stresses. At each analysis 

iteration i, the algorithm explicitly determines the modified values of elastic moduli 
i
mE  of 

the m-th primal elements with the stress resultants 
1

,
i
v m 

 established in the previous 

iteration i  1 exceeding the predefined nominal limit 
1i

o


. In essence, the modified modulus 
i
mE  of a generic m-th primal member reads:  

1
1 1 1

,1
,

1 1 1
,

       for     

               for   

i
i i io
m v m oii

v mm

i i i
m v m o

E
E

E


 



 


  



  




 


  (32) 

 1 1 1 1
,max ,max ,min

i i i i
o v v v           (33) 

1 1
,max ,

1 1
,min ,

max( | {1, , })

min( | {1, , })

i i
v v m m

i i
v v m m

m N

m N

 

 

 

 

   


     (34) 

where the nominal stress 
1i

o


 is defined as a function of the maximum 
1

,max
i
v


 and minimum 
1

,min
i
v


 stress resultants for all the elements m  {1,,Nm}, and (0,0.5]  a modification 

factor. The critical elements requiring modulus 
i
mE  variations are classified in Eq. (32) by their 

corresponding stress resultants 
1

,
i
v m 

 being higher than the threshold 
1i

o


, whereas those 

with smaller stress values remain unaltered. 
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The necessary plastic conformity conditions express the intrinsic material properties 

underpinning the structure through the following (nonpositive-sign constrained) yield functions 

, ,( , )i
v m c m    for all Nm primal elements:  

, , , ,( , ) 0  for  {1, , }i i
v m c m v m c m mm N         ,  (35) 

where ,c m  is a positive scalar defining material capacity of the m-th member. Such conditions 

permit direct scaling of the stress resultant response ,
i
v m  by a maximum (positive-sign) load 

multiplier 
i  that does not violate the plastic material constraints in Eq. (35):  

c,

,m

min | {1, , }
mi

mi
v

m N





 
   

 
  . (36) 

The lower-bound (static theorem) limit analysis then determines the collapse limit col  of 

structure by maximizing the load multipliers 
i  collected from all successive analysis 

iterations i  {1,, imax} of statically admissible stress field: 

 max | {1, , }i
col i imax    ,  (37) 

where imax is the targeted maximum number of iterations. 

The proposed sequential elastic NS-FE analyses require solutions of the governing Eq. (27), 

which in effect involve a series of stiffness matrix Kk constructions during the modulus variation 

procedures updated at an elementwise. The matrix Kk is defined in Eq. (28) as a function of 

constitutive matrix Dk and hence elastic Young’s modulus 
i
kE  associated with the individual 

smoothing domain Ωs
k . Each domain Ω

s
k  (see e.g., Fig. 6) assembles all quadrilateral 

subdomains enveloping the k-th common node, and its modulus parameter 
i
kE  reads the 

smoothing product of those 
i
mE  determined in Eq. (32) for each of the relevant principal 

members. Therefore, the mathematical expressions of the modulus 
i
kE  collect and smooth 
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all modified elemental moduli 
i
mE  (for {1, , }k

mm N  ) associated with the k-th smoothing 

node using the smoothing function W(x, y) in Eq. (22) by  

Ω Ω

1
( , ) ( , ) Ω ( , ) Ω

s s
k k

i i i
k m ms

k

E E x y W x y d E x y d
A

  
. (38) 

Adopting an area-weighted average function as for a smoothed strain field in Eq. (25) gives:  

1

1 1

3

k
m

i i
k m

N

ms
mk

A
A

E E


 
. (39) 

The determination of 
i
kE  in Eq. (39) enables at each analysis iteration i the fast construction 

of the governing stiffness matrices 
i

kK  for {1, , }k
sk N   using some direct scaling factors, 

namely 
1

0 0
1

s

s

ii
k Nk

i i
k k N

EE
, ,

E E



 
 

, and hence the assembly of the global matrix K in Eq. (27).  

The bi-level procedures, namely an inner-loop sequential modified modulus variation and an 

outer-loop automatic adaptive NS-FEM, determine the maximum load capacity col  of 

structure and its corresponding plastic mechanisms. The pseudo-code summarizing the 

automatic adaptive iterative elastic NS-FE analysis method proposed is described as follows.  

Step I: Initialization 

 Parametric initialization: material properties (i.e., Young’s moduli 
0i

mE 

, yield 

stresses c,m  and Poisson’s ratio v) and algorithmic parameters (modification 

factor 0,( 0.5] , mesh refinement threshold 1)(0,  , maximum number of 

iterative NS-FE analyses imax, and maximum number of adaptive mesh 

constructions rmax).  

 At the mesh construction r = 1, generate an initial structural three-node NS-FE model.  

 Go to Step II.  

Step II: Iterative elastic NS-FE analyses 
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 At the analysis iteration i = 1, update the elastic moduli 
1 0i i

m mE E   for all 

{1, , }mm N   elements.  

 For i = 1 to imax 

 Construct the unassembled stiffness matrices Kk of the smoothing domains Ω
s
k  

for {1, , }sk N    in Eq. (28), and the governing elastic NS-FE analysis Eq. (27).  

 Determine the smoothed strains 
i
kε  in Eq. (24) and hence stress 

resultants ,
i
v m  associated with the primal members {1, , }mm N   by 

processing Eq. (27).  

 Calculate the maximum statically admissible load multiplier 
i  in Eq. (36).  

 Update for the next analysis iteration i + 1 the modified moduli 
1i

mE 

 for all 

{1, , }mm N   members in Eq. (32).  

End 

 Determine the collapse load limit 
r
col  in Eq. (37).  

 Go to Step III.  

Step III: Automatic adaptive NS-FE model 

 If r = rmax, terminate; else, update r = r + 1 and perform the adaptive NS-FE scheme.  

 Compute the modulus variation-based error indicators m  for {1, , }mm N   

members in Eq. (31) and a global indicator  in Eq. (30).  

 Classify the individual members lying either in the refining M  or coarsening N  set 

using Eq. (29).  

 Reconstruct the NS-FE model by performing the newest bisection mesh refinement for 

the members in M  and the coarsening process for a pair of children members in 

N . 
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 Repeat Step II.  

 

2.3 Edge-Smoothed Finite Element Framework 

Generic ES-FEM model and formulations 

Using the lowest-order element in standard FEM, the structure is discretized into Nd degrees 

of freedom, and Nm three-node elements consisting of Nn nodes and Ns edges. The ES-FEM 

[Liu, et al. (2009)] introduces at each element a center node that equally divides the triangle-

shaped member into three parts. Thereafter, the smoothing domain Ω
s
k  associated with the 

edge k  {1,,Ns} is constructed by combining the domains having the same edge. It 

connects two endpoints of the edge and the centroids of the adjacent elements as shown in 

Fig. 8. As a result, the number of smoothing domains 
s
k  for k  {1,,Ns} is equal to the 

number of edges Ns. 

 

Figure 8. Generic three-node ES-FE model with smoothing (shaded) domains. 

A smoothed strain kε  within the smoothing domains 
s
k  is given by  

3 ( , ) ( , )
s
k

k x y W x y d



  ε ε

,  (40) 

where ( , )x yε  is the compatible strain of a primal (three-node) element in FEM discretization  
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,  (41) 

W(x, y) ≥ 0 is a Heaviside-type weight smoothing function satisfying the unity property  

1/ ,
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0

    ( , )   
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

  and ( , ) 1
s
k

W x y d



  ,  (42) 

s
k

s
kA d


   is the total area of an individual smoothing domain 

s
k , 

3 6
m

B  and 
6

dm   are respectively the standard strain-displacement matrix and nodal displacement 

vector associated with the primal element m encompassing the smoothing domain Ω
s
k . 

By adopting the lowest-order element, the linear shape function gives a constant strain matrix 

mB  over an element. Therefore, the smoothed strain in Eq. (40) can be rewritten as  

2

1

1
   involving one element  for a boundary edge 

3

1
  involving two elements  for an interior edge 
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  (43) 

Green’s divergence theorem is applied in Eq. (40), and the smoothed strain field then becomes 

3 2

0
1 1

( , ) ( , ) ( , ) , ( , ) 0   ,     
s s
k k

x

k n n ys s
k k

y x

n

x y d x y x y d x y n
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n n



 

 
 

      
 
 

 ε ε L u L

 (44)
 

where ( , )n x yL  is a matrix collecting outward normal (nx, ny) acting on the boundary Γ
s
k  of 

Ωs
k , and 

2( , )x y u  the displacement field. The smoothed strain vector kε  developed for 

the three-node ES-FE model then reads  
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 (45) 

where the smoothed strain compatibility matrix Bk and displacement vector dk collect the 

sub-matrices 
3 2

n
B  and vectors 

2
n d  of all vertex nodes n associated with the primal 

elements containing the domain Ω
s
k , respectively. As is clear, the domain Ω

s
k  of a boundary 

edge k involves one primal member with three nodes at vertices (viz., 
3 6

k
B and 

6
k d

), whilst that of an interior edge k consists of two primal elements with four vertex nodes (
3 8

k
B  and 

8
k d ). An area-weighted average formulation [Liu and Trung (2016)] thus 

defines 

2

1

1
    for  at a boundary edge 

31
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, (46) 

where jB  is a compatible strain-displacement matrix extracted from the standard FEM. 

The global elastic stiffness matrix 
d dN N

K  is assembled from the local matrices kK  

(where 
6 6

k
K  for a boundary edge k, and 

8 8
k

K  for an interior edge k) of all 

k  {1,,Ns} smoothing domains Ω
s
k  that can be expressed by  

T  s
k k k k kA tK B D B ,  (47) 

where 
3 3

k
D  is a standard constitutive matrix written in terms of elastic Young’s modulus 

Ek associated with a smoothing domain Ω
s
k . The elastic moduli Ek for all smoothing domains 

are calculated by the modulus smoothing approximation. 
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Recovery stress field 

Within the strain-based ES-FEM framework, the smoothed C0-continuous stress field is 

estimated by the stress recovery technique [Zienkiewicz and Taylor (2000)]. In essense, the 

stress resultants ,v kσ  of all the relevant ,s nN  smoothing domains Ω
s
k  are area-weight 

averaged around the node n, called first-order recovery nodal stress ,v nσ  [Nguyen-Xuan et al. 

(2013)]  

,

,

1

,

1
,

s n

v n v k

N
s
ks

kn

A
A 

 σ σ

 (48) 

where 
,

1

s nN
s s
n k

k

A A


  is the total area of ,s nN  smoothing domains sharing the same node. The 

recovery stress field , ( , )v r x yσ  is approximated from the nodal stresses ,v nσ  of a generic 

three-node element m by  

3

, ,

1

( , ) ( , )nv r n

n

vxy yx


 σNσ

, (49) 

where ( , )n x yN  is a standard linear shape function. 

The critical stress ,v mσ  of a generic three-node member m  {1,,Nm} reads the maximum 

, ( ', ')v r x yσ  of all three vertex nodes ( ', ')x y . For example, in Fig. 8 for a triangle element DEF 

consisting of three vertices (xD,yD) at D, (xE,yE) at E and (xF,yF) at F, 

, , , ,max{ ( , ), ( , ), ( , )}v m DEF v r D D v r E E v r F Fx y x y x y σ σ σ σ . The implementation of the recovery 

stress field , ( ', ')v r x yσ  advantageously ensures that the yield conformity is satisfied within an 

elementwise by enforcing the stress conditions solely at vertices ( ', ')x y  under the weak form 

of equilibrium conditions [Soh, et. al. (2001)]. 

Automatic adaptive ES-FE approach 

The adaptive mesh scheme automatically determines the set M  of elements developing 

discontinuous distribution of inelastic stresses and required to refine the sizes. To keep a 
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number of elements as low as possible, the algorithm also defines the set N  of members 

that contain relatively elastic stresses to be combined without undue loss of accuracy. It is 

clear that Ω Ω  M N   and {1,  , }M N mN    . 

 

Figure 9. Adaptive mesh (refining and coarsening) construction. 

The adaptive mesh refinement adopts the newest node bisection underpinning the longest-

side bisection algorithm of triangles [Rivara (1984)]. As displayed in Fig. 9, a three-node 

element m  M  is divided into the new children triangles (i.e., connecting the peak to a 

midpoint of its longest edge). The midpoint is then set in a subsequent refinement as the peak 

point. Vice versa, the coarseness scheme combines the two adjacent sub-elements m  N  

into a single element having now a larger size. 

The set of elements m  M  complies with the well-known Dörfler condition [Dörfler 

(1996)] written in terms of the member error parameter m  and global error indicator :  

M

m

m

 



,  (50) 

1

mN

m

m

 



,  (51) 

where (0, 1)     is a mesh refinement (threshold) coefficient. The specific error function is 

derived from the variations of member elastic moduli, where the specific member m enters 

plasticity with the reduction of stiffness modulus 
i
mE . The error indicator m  observes the 

difference between the elastic moduli 
0i

mE 

 of the primal members m  {1,,Nm} obtained 
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at the initial iteration i = 0 and those 
icol
mE  associated with 

i
col  , and can be 

mathematically expressed by  

 0   for  all {1,..., }icol
m m m mE E m N   

. (52) 

Collapse load determination by iterative elastic ES-FE analyses  

A pseudo code describing the automatic adaptive iterative elastic ES-FE analysis procedures is 

summarized as follows.  

Step I: Initialization 

Initialize ES-FE model and parameters at i = 0: material properties (i.e., elastic Young’s moduli 
0i

mE 

, yield stresses ,c m  and Poisson’s ratio v), threshold adaptive 1)(0,  , maximum 

number of iterative ES-FE analyses (inner-loop) imax and maximum number of adaptive mesh 

schemes (outer-loop) rmax. 

Update: i = i + 1 and 
1 0i i

m mE E   for all m three-node elements. Go to Step II. 

Step II: Automatic adaptive iterative elastic ES-FE analyses 

For r = 1 to rmax  

For i = 1 to imax 

 Perform the elastic ES-FE analysis by assembling the stiffness equations in Eq. (8). 

 Construct the recovery stress field ,
i
v rσ  in Eq. (49), and then determine the stress 

resultants ,
i
v m  for all m  {1,,Nm} elements. 

 Calculate the maximum load multiplier 
i  in Eq. (37). 

 Adjust the elastic Young’s moduli 
i
mE  of the critical elements m in Eq. (32). 

 Determine the elastic moduli 
i
kE  associated with all smoothing domains Ω

s
k  using an 

area-weighted average Eq. (39) employed for the construction of ES-FE analysis 

equations run in the subsequent iteration i + 1. 
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End. 

 Determine the collapse load limit 
r
col  in Eq. (36) and associated mechanisms. 

 Compute the modulus compensation error indicators m  and global indicator   in 

Eqs. (31) and (30), respectively. 

 Determine the set M  in Eq. (29) for refining (and the remaining set N  for 

coarsening) the domains using the newest vertex bisection implementation. 

End. 

It is worth mentioning that the yield functions describing the intrinsic material behaviors are 

generally written as functions of stress resultants ,
i
v k  (computed in the form of stress tensors 

 3 , ,σ
i
k x y xy     associated with the smoothing domain Ω

s
k ) and yield limit ,c m . 

 

3. ผลการทดลอง 

The applications of the developed computational methods in assessing the collapse load 

capacity of structures were presented. Their accuracy and efficiency in determining the 

maximum load carrying capacity of solid structures were validated and illustrated through the 

good comparisons with the results reported in literatures [Christiansen and Andersen (1999); 

Tin-Loi and Ngo (2003); Ciria et al. (2008); Nguyen-Xuan et al. (2016, 2017); Le (2016)]. One 

from a number of those, namely the collapse load determination of a double-edge notch 

specimen, was illustrated as follows. 

3.1 Double-Edge Notch Specimen 

A double-edge notch specimen in Fig. 10 under the total uniformly applied tensile force of 

0.288α was considered. The von Mises material with an elastic modulus of E = 70 was 

employed. The reference value is (αcol/o)ref = 4.6749 , where o = 0.243 [Tin-Loi and Ngo 

(2003)]. 
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Figure 10. Double-edge notch specimen 

3.2 Collapse load determination by iterative elastic SBFE analyses 

Due to the symmetry of both geometric and applied loading configurations, a quarter of the 

tensile specimen was modelled using four-node bilinear SBFEs (containing 256 subdomains, 

289 nodes, 578 degrees of freedom and 1024 Gauss’s points) as shown in Fig. 11.  

 

Figure 11. Schematic SBFE model. 

A series of iterative elastic SBFE analyses were successfully performed. The values of load 

multiplier i associated with each analysis iteration i are displayed in Fig. 12, which illustrates 

that the collapse load result of col/o = 5.0484 is approached at i = 300. This represents 

some 7% higher value than the benchmark value. The corresponding stress distribution 

describing the collapse mechanism is depicted in Fig. 12b. 

The tensile notch specimen was also employed to study the influences of plastic conformity 

locations as well as various algorithmic parameters  on the accuracy of the computed 
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collapse load solution. More explicitly, when the locations of plastic conformity were defined 

at all nodes ( = 1 and  = ±1) in addition to standard integration points ( = 1 and  = 0) 

the value of αcol/o = 5.0421 was computed by the proposed analysis approach. The same 

remark as in the previous example can be made. Plastic conformity located solely at the 

integration points is sufficient for the analysis to converge to the accurate collapse load 

solution. 

 

Figure 12. Iterative elastic SBFE analysis solutions (a) i/o – i responses, (b) von Mises stress 

distribution at αcol/o. 

The responses between load multipliers i and the associated number of iterations i are 

plotted in Fig. 13 for different values of  lying within a range from 0.05 to 0.5. In essence, 

the analyses with the high value of  (viz. a small value of 
i ) admitted a large number of 
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critical SBFE subdomains r to adjust their elastic moduli 
i

rE  given in Eq. (19). The computation 

during the initial analysis iterations i attained the fast increment of an admissible load 

multiplier αi, whilst the numerical instabilities (namely oscillation or even divergence of the 

αi responses) were experienced in some cases after the certain analysis runs (e.g. i ≥ 9 for 

 = 0.5, and so on). On the other hand, the analysis with a small  value provided a better 

chance to obtain good (numerically stable) convergence of the solutions giving a monotonic 

response of i. The diagram in Fig. 13 depicted with  = 0.05 the progressive convergence of 

αi to the actual collapse load solution col, but required a larger number of numerical 

iterations for the load limit to converge (i.e. as a less number of critical SBFE subdomains 

involved in the elastic modulus variation processes). In this study, the value of  = 0.05 was 

found to yield good solution convergence for the numerical examples tested. 

 

Figure 13. Iterative i/o – i responses for various values of . 

In addition, the iterative elastic SBFE analyses were performed for a series of SBFE models. 

Each involved a uniform structural discretization into four subdomains giving the numbers of 

SBFEs summarized in Table 1, where the computed collapse load solutions αcol/o associated 

with each SBFE model are also collected. It is clearly evidenced that for sufficient numbers of 

SBFEs the collapse load limit converged to the lower-bound limit value. The analyses were 

also performed for standard finite elements with selective integration procedures [Hughes 
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(1980)]. The collapse load results obtained are reported in Table 1. This illustrates that the 

two SBFE and selective integration finite element analysis schemes computed accurate limit 

load solutions at a similar rate of mesh convergence. 

Table  1. Double-edge notch specimen model and αcol/o solutions for different structural 
discretization. 

Structural discretization SBFEs 
Selective 

integration FEs 

No. of 

subdomains 

No. of 

nodes 

No. of 

DOFs 

No. of 

Gauss’s 

points 

col/o %err col/o %err 

16 25 50 64 6.1365 31.26 5.8807 25.79 

64 81 162 256 5.4559 16.71 5.3004 13.38 

256 289 578 1024 5.0484 7.99 4.9424 5.72 

1024 1089 2178 4096 4.8055 2.79 4.7654 1.94 

4096 4225 8450 16384 4.6733 0.03 4.6543 0.44 

16384 16641 33282 65536 4.6020 1.56 4.5885 1.85 

 

3.3 Collapse load determination by iterative elastic NS-FE analyses 

An upper-right quarter of the structure in view of its symmetric geometry and loading was 

modelled using three different (namely in Fig. 14 Case a crisscross-, Case b slash- and Case c 

distorted-) NS-FE models with initial 16, 32 and 32 basic elements, respectively. These three 

model cases were applied to illustrate the distinctive features of the iterative elastic NS-FEM 

in overcoming initial mesh dependency even for the distorted-type model construction.  
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In Case a, the crisscross-type model was processed to capture the collapse load αcol by three 

different modelling approaches, including FEM, ES-FEM and the present NS-FEM. The αcol 

solutions successfully computed from various uniformly refined NS-FE models (degrees of 

freedom, Nd) are plotted in Fig. 15 giving a direct comparison to those of FEM and ES-FEM. All 

αcol responses converged to the lower-bound limit at sufficient fine structural discretization, 

whilst the NS-FEM performed slightly more superior than all others. 

 

Figure 14. Various schematic NS-FE models of a quarter of double-edge notched specimen 

(a) crisscross-, (b) slash- and (c) distorted mesh pattern (δ = 0.5). 

 

Figure 15.  

Figure 15. αcol solutions for various crisscross-mesh models. 
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Figure 16. αcol solutions for various slash-mesh models. 

For the slash-mesh Case b model, both the FEM and ES-FEM failed to converge the lower-

bound collapse load limit αcol even for the large number of element refinements. The NS-

FEM, on the other hand, captured the 
col

dN   responses in Fig. 16 that converged quickly 

to the lower-bound limit. This, as illustrated previously by the high value of the ratio rc, 

presents the good numerical performance of NS-FEM, which can overcome the volumetric 

locking phenomena in incompressible conditions underpinning the plane-strain structures [Liu, 

et. al. (2009); Mohapatra and Kumar (2019)]. The corresponding collapse mechanisms to the 

three NS-FE analysis results in Fig. 17 are mapped out. 

 

Figure 17. Deformations at plastic collapse for various uniform slash-mesh models. 

The analyses of the distorted mesh Case c were performed. The coordinates ( , )x y   of the 

distorted model are varied by: 

( , ) ( . , . )x y x r x y r y        , (25) 
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where [ 1,1]r   is a random number, [0,0.5]   an irregularity factor, x  and y  the 

initial edge lengths of a generic element along x- and y-directions, respectively. The αcol 

responses computed by the proposed NS-FEM, having a highly-distorted shape with  = 0.5, 

were slightly above the solutions given by the uniformly refined slash counterpart (see Fig. 18). 

This evidenced the good performance of the sequential elastic NS-FEM that was not affected 

by the initial setup of mesh geometry even in the presence of strong mesh distortion in 

mapping the failure mechanisms [Ciria, et. al. (2008)]. 

 

Figure 18. αcol solutions for various distorted and slash-shaped NS-FE models. 

The automatic adaptive mesh (newest bisection with a refining parameter of θ = 0.6) scheme 

was implemented directly to the slash-mesh model Case b. The αcol solutions computed by 

the uniform and automatic (non-uniform) mesh refinements are reported in Table 2 that 

provides the direct comparisons between them. The analyses of both mesh refining schemes 

converged to the lower-bound limits. Moreover, the automatic adaptive (non-uniform) mesh 

models attended αcol = 1.111 at much less computing resources (namely only 1370mN   

and 1420dN  ), as compared to the uniform meshing technique (i.e., αcol = 1.1117 when 

8192mN   and 8450dN  ). 
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Table  2. αcol solutions of von Mises notched specimen (αco,refl = 1.1316) by uniform and 
automatic adaptive NS-FEMs. 

Uniform NS-FEM  Adaptive NS-FEM 

Nm Nd αcol % error  Nm Nd αcol % error 

32 50 1.2892 +13.92  32 50 1.2892 +13.92 

128 162 1.2136 +7.24  95 118 1.2112 +7.04 

512 578 1.1521 +1.81  240 270 1.1472 +1.38 

2048 2178 1.1245 –0.63  557 596 1.1198 –1.04 

8192 8450 1.1117 –1.76  1370 1420 1.1110 –1.82 

 

It is worthwhile noting that the iterative elastic NS-FE analysis approach established the lower-

bound limit analysis theorems. Both the uniform and non-uniform adaptive NS-FE schemes 

complied with the statically admissible stress and yield conformity conditions, simultaneously. 

Whilst the exact collapse load solutions were not guaranteed, the proposed method, as listed 

in Table 2, ensured the close approximation and fast convergence (in the case of automatic 

mesh refinements) to the lower-bound limits of the structure. Moreover, as highlighted in the 

same Table 2, the values of αcol in the early stage whilst lying on an upper bound side 

decreased quickly with the refinement of NS-FE models, depending on the appropriate mesh 

density over the failure zones. The variation of αcol, on the other hand, was insensitive to 

some further mesh refining schemes even in the critical areas, as when the collapse load was 

approaching some certain level toward the lower-bound limit. 

A series of iterative NS-FE analysis iterations {1, , }i imax   with λ = 0.05 were performed for 

the non-uniform mesh model with 1370 elements, and the corresponding load multipliers 
i  

plotted in Fig. 19 evidenced the computational stability with monotonically increasing 

responses. Whilst the monotonic increases of the load multipliers αi obtained by the 

proposed method enhanced the fast computation of the collapse load solution αcol in 
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general, it did not theoretically guarantee the numerical stability (slow solution convergence 

in some cases) over the modulus variation procedures. The sufficient number of elastic 

analysis iterations was necessary for the success of the analysis algorithm. From a number of 

examples tested, the preset maximum number of iterations, namely imax = 300, ensured the 

searches for the accurate αcol results. 

 

Figure 19. Monotonically incremental  i responses of a non-uniform NS-FE model with 
Nm = 1370. 

 

Figure 20. Collapse mechanisms for various non-uniform NS-FE models (a) deformations, (b) 
modified modulus distributions. 

32 elements 240 elements 1370 
(a) 

(b) 
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The resulting mesh layouts at some adaptive steps {1, , }r rmax   (consisting of 32, 240 and 

1370 elements) are depicted in Fig. 20a with the associated modified modulus distributions in 

Fig. 20b, where the more density of elements was allocated to the areas having high modulus 

variation rates. They agree well with the yield line patterns and hence plastic mechanisms of 

the notched specimen under the ultimate forces [Nagtegaal, et. al. (1974); Füssl, et. al. (2008)]. 

Table  3. αcol solutions of von Mises notched specimen (αcol,ref = 1.1316) by various analysis 
methods. 

Approaches αcol % error 

Reference [Nagtegaal, et. al. (1974); Füssl, et. al. (2008)] 1.1316 n/a 

Adaptive NS-FEM 1.1110 –1.82 

Ciria et al. (2008) 1.1390 +0.65 

Nguyen-Xuan et al. (2016) 1.1360 +0.39 

Nguyen-Xuan et al. (2017) 1.1390 +0.65 

Christiansen and Andersen (1999) 1.1358 +0.37 

Le (2016) 1.1406 +0.21 

 

The accuracy of the αcol solutions performed by the present approach was validated by 

comparing with some available numerical methods summarized in Table 3, namely the 

second-order cone programming (e.g., kinematic [Nguyen-Xuan et al. (2016); Ciria et al. (2008); 

Nguyen-Xuan et al. (2017)] and static [Ciria et al. (2008); Le (2016)] limit analysis) approaches 

and mixed kinematic and static limit analysis [Christiansen and Andersen (1999)]. The 

percentage error (% error) draws the difference between the αcol values of the analysis 

method and the (αcol)ref reference in [Nagtegaal, et. al. (1974); Füssl, et. al. (2008)]. 
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3.4 Collapse load determination by iterative elastic ES-FE analyses 

A quarter (upper-right) of the specimen in Fig. 21 was modelled using 16 basic triangle 

elements and 26 degrees of freedom (Nm = 16; Nd = 26). The initial meshes were uniformly 

refined up to 8192 elements (Nm = 8192; Nd = 8450). 

 

Figure 21. Double-edge notched specimen (a) geometry and loading, (b) schematic discrete 
model (Nm = 16), where solid lines indicate restrained boundary conditions. 

The proposed iterative analyses adopted the self-adjusted modification factor λ taking into 

account of stress concentration developed close to the crack tip of the specimen. In the first 

instance, the ES-FEM with recovery stress field (RES-FEM) was performed to successfully 

compute the collapse load αcol solution of the notched specimen with 8192 elements. The 

proportional load increment of αi responses associated with the number of analysis iterations i 

was observed in Fig. 22, where the implementation of the dynamic modulus variation factor λ 

enhanced the fast computation of the collapse load solution, i.e., αcol = 1.1244 being less 

than 1% difference to the reference value. The diagram showed the slowly converging yet 

oscillating (numerical instability) pattern of the resulting αi variations, especially at the early 

analysis iterations i, for both the standard FEM and ES-FEM analysis frameworks. Their 

computed αcol results required the more computing times to converge, as compared to that 

of the RES-FEM. 
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Figure 22. Double-edge notched specimen: load multiplier responses  i by RES-FEM, ES-
FEM and FEM (Nm = 8192). 

The second instance performed the automatic adaptive mesh algorithm within the RES-FEM. 

The results in Fig. 23 provided the direct comparison of the lower-bound limit convergence 

computed between the proposed adaptive mesh schemes and simple uniform mesh 

refinements. The αcol values for various structural discretization were reported in Table 4. 

More specifically, the adaptive mesh algorithm achieved the lower-bound collapse load of 

αcol = 1.1254 (viz., 0.55% less than the reference value) with Nm = 2952. The uniform mesh 

refinement computed αcol = 1.1244 at the more computing resources, namely Nm = 8192. 

Table  4. Double-edge notched specimen: collapse load solutions αcol by various RES-FEM 
solves. 

Uniform RES-FEM Adaptive RES-FEM 

Nm Nd αcol %error* Nm Nd αcol %error* r 

16 26 1.4676 +29.70 16 26 1.4676 +29.70 1 

128 162 1.3162 +16.32 138 160 1.2686 +12.11 5 

512 578 1.2123 +7.13 363 392 1.1863 +4.83 7 

2048 2178 1.1470 +1.36 852 890 1.1460 +1.27 9 

8192 8450 1.1244 –0.64 2952 3012 1.1254 –0.55 12 

* %error indicates the percentage error of αcol as compared to αcol,ref = 1.1316. 
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Table  5. Double-edge notched specimen: collapse load solutions αcol by various analysis 
methods. 

Approach Nm αcol %error 

Reference [Nagtegaal et al. (1974)] n/a 1.1316 n/a 

Present (adaptive RES-FEM) 2952 1.1254 –0.55 

Present (RES-FEM) 8192 1.1244 –0.64 

Ciria et al. (2008) 5913 1.1390 +0.65 

Christiansen and Andersen (1999) n/a 1.1358 +0.37 

Ciria et al. (2008) 5913 1.1320 +0.04 

Nguyen-Xuan and Liu (2015) 3992 1.1360 +0.39 

Le (2016) 2668 1.1406 +0.21 

 

 

Figure 23. Double-edge notched specimen: collapse load solutions αcol for various degrees 
of freedom Nd. 



44 
 

 

Figure 24. Double-edge notched specimen: progressive adaptive meshes of RES-FEM at αcol. 

The progressive adaptive meshes of the RES-FEM are displayed in Fig. 24 describing the failure 

lines of the double-notched specimen under applied forces. The more number of fine 

elements was defined over the area undergoing strong localized modulus variations and hence 

plasticity. This agrees very well with the collapse mechanisms reported in [Nguyen-Xuan et al. 

(2016)]. 

 

Figure 25. Double-edge notched specimen: modified modulus distributions by adaptive RES-
FEM (Nm = 2952) at various iterations i. 

In Table 5, the proposed analysis approach obtained the accurate collapse load solution as 

compared to some available literatures, including discrete duality method [Christiansen and 

Andersen (1999)], mesh adaptive schemes in lower and upper bound limit analyses [Ciria et 
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al. (2008)], ES-FEM with adaptive scaled-bubble functions [Nguyen-Xuan and Liu (2015)] and 

h-adaptive FEM with yield stress-based error indicators [Le (2016)]. The variations of modified 

moduli progressing over the localized failure area within the structure are plotted in Fig. 25 

for some RES-FEM analysis iterations. 

 

4. สรุปและวิจารณ์ผลการทดลอง 

The project has developed the three robust numerical based frameworks that can be 

performed to assess the ultimate load carrying capacity of structures. First, the novel iterative 

elastic SBFE method has been proposed with the development of an effective structural 

discretization within a polygon-shape SBFE framework, in which a quadtree algorithm enables 

automated mesh construction of the structural system in a 2D space. The modified ECM 

processes a series of elastic stiffness analyses with a systematic modification of some elastic 

moduli to provide convergence to the collapse load limit solution. 

Second, the iterative elastic NS-FE analyses incorporate an automatic adaptive mesh scheme 

to determine the collapse load limit of the plane-strain structures. The approach develops a 

modified version of an ECM run within the self-adaptive NS-FE framework. The newest 

bisection algorithm adopts a modulus variation-based error function such that the critical NS-

FEs with localized inelastic stress responses are refined into the finer children elements and 

vice versa for the elastic stress elements being coarsened into the master counterparts. 

Third, the iterative automatic adaptive ES-FE method performs a series of elastic recovery 

stress ES-FE analyses with the successive adjustment of elastic moduli to determine the 

maximum load capacity of inelastic structures. The new self-adjustable modification factor 

considers the influences of possible stress singularity developed leading to the monotonic 

increment of load multipliers during the modulus variation processes. The proposed approach 

importantly incorporates the first-order smoothed C0-continuous stress field, which enhances 

the sufficient and necessary static admissible stress and plastic material conditions conformed 

solely at the vertex nodes, and hence complies with the lower-bound limit analysis theorems. 
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Moreover, the automatic adaptive (non-uniform) mesh construction encoding the efficient 

newest bisection algorithm converges the lower-bound collapse load limit at modest 

computing resources. Underpinning the algorithm is the novel modulus compensation error 

function that effectively classifies the specific set of critical members requiring mesh 

refinements, and vice versa the elements lying outside this set are coarsened to maintain the 

total size of discrete model as minimum as possible. 

A number of numerical examples (considering in-plane benchmarks, structures of complex 

geometry and 3D structures) have been successfully solved and hence illustrate the efficiency 

and robustness of the three developed numerical approaches. These include the inelastic 

structures with complex curve and/or vertex geometry subjected to the challenges involving 

stress singularity and volumetric locking in an incompressibility condition. Numerical stability 

can be achieved during the whole computing process, and the proposed schemes overcome 

the challenges related to stress singularity and volumetric locking phenomena under 

incompressibility conditions. The numerical experiments have shown there is no difficulty in 

obtaining accurate solutions as compared to available benchmarks. For all the numerical 

analysis frameworks developed, the solution converges to the lower-bound collapse load 

limit for the sufficiently fine model that is independent from the initial mesh (including the 

distorted pattern) setup. The final computed model advantageously depicts the yield line 

pattern (namely one containing dense meshes over the areas developing high stress intensity) 

associated with the collapse mechanisms of the structure considered. 

A direct extension of the proposed analysis frameworks is the safety assessment of structures 

employing sustainable green constructional materials. This requires the investigation of basic 

properties of the materials specially mixed with some industry by-product wastes. For 

example, the project has further addressed the influences of recycled granite aggregate on 

the concrete properties. The use of granite industry waste as a mixing material of concrete 

reduces not only the natural aggregate consumption, but also the solid waste disposal 
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problems. Both the low- (20 MPa) and high- (50 MPa) strength concretes have been studied 

for various sand replacing proportions with granite particles (namely up to 50% by weight). 

The future work therefore focuses on the development of the presented iterative elastic SBFE 

method that can directly assess the maximum load capacity of structures adopting the green 

concrete materials. This involves the solutions of difficult (ill-conditioning) mathematical 

programming problems involving strength-degrading (instability) constitutive models. The load 

carrying capacities of structures can also be assessed by performing the machine learning-

based algorithms. The latter approach requires the sufficient (input and output) database 

modelled using the developed finite element frameworks. 
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