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The project proposes the development of an innovative technology for numerical simulation
and the development of an invaluable numerical tool for the effective safety assessment of
engineering structures. Whilst most of the available analysis and design techniques are likely
to suffer from the needs to extensively explore in an evolutive fashion the complete behaviors
of large-scaled 3D structures, the proposed method overcomes the burden by extending

scopes of classical plastic analysis to capture directly the maximum load capacity such that
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structure can safely sustain under limit states criteria. The implementation of an integrated
octree and polyhedron scaled boundary finite element (SBFE) method will offer the automatic
and accurate model construction of wide-class structures with complex geometries. The
unified analysis (including SBFE, node-based smoothed finite element and edge-based
smoothed finite element) frameworks therefore will advantageously provide the cost-effective
and advanced computing software for the safety assessment (namely the computation of a
familiar safety factor) of the strategic nation infrastructures under variable load regimes, and
can be practically applied by engineers to decide whether the structure involved is safe or

requires necessary maintenances.

ANKAN : Structural Safety; Structural Optimization; Plasticity; Scaled Boundary Finite Element;

Smoothed Finite Element
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1. Inguszasn

Many structures in Thailand have passed or are approaching their design life. Most of them
have deteriorated to various extents with time. The safe and cost-effective management of
ageing structures is becoming an increasingly urgent issue, and appears to be critical to the
Thai economy. The assessment of their safety and serviceability, considering the intrinsic and
inevitable nonlinear properties and variable load regimes, is crucial in deciding on the necessity
and type of rehabilitation, or the retirement of the structure. Moreover, the wide class of
structures targeted, especially those with complex geometry (such as penetrations, curve
boundary and cracks), is the commonplace and most popular type of structures in Thailand.

Their safe and cost-effective design is an essential requirement.

The safety assessment of many important existing structures and design of the new ones rests
on limit states criteria. This is typically carried out through a nonlinear elastoplastic analysis
based on a step-by-step evolutive “marching” approach that follows the whole time history
of loading. However, in a large number of practical engineering situations the use of “direct”
or “simplified” methods which avoids a computationally expensive time-stepping analysis,

represents a useful, competitive and an increasingly appealing alternative.

One important class of such methods is plastic (limit) analysis [Kamenjarzh (1996)]. The area
has been vigorously researched. The distinctive feature of a classical limit analysis is the
determination of the load factor (or more precisely in practice, its upper and/or lower bounds)
at which a critical event occurs, namely, plastic collapse. Despite of its popularity and maturity,
limit analysis as a mathematical programming problem has unfortunately not gained much
interest from practitioners due to their nonfamiliarity with the appropriate model construction
within an optimization setting. To overcome this limitation, a wide class of modulus variation
procedures (see e.g. [Jones GL and Dhalla (1981); .Marriott (1988); Seshadri R and Fernando
(1992)]) has been developed to determine the collapse load limit from iteratively performing

familiar elastic stiffness analysis computations. One particular and appealing instance is the



so-called elastic compensation method (or ECM) coined in [Mackenzie and Boyle (1993);
Hamilton, et. al. (1996)]. More specifically, the elastic analysis performed at each iteration
involves systematic adjustment of elastic moduli of some discrete elements, where the
associated stress resultants computed in the previous step are higher than some predefined

thresholds. This procedure takes into account stress redistribution during the plasticity process.

With fast-growing computer technologies, the development of state-of-the-art computing
software will fruitfully assist engineers by providing the preliminary and key information on
the maximum load capacity of a particular structure that can safely sustain, prior to any
extensive detailed investigations are performed as to decide whether the maintenance
program is required or the structure of which is safe and serviceable. It thus presents the cost-
effective and quick safety assessment procedure as compared to other available methods

that are often expensive with physical sampling and experiments in a full-facility laboratory.
Form the aforementioned statements, the primary aims of the present project are:

i) The development of self-adaptive polygon/polyhedron scaled boundary finite element

(SBFE) based mesh construction of 2D/3D structures with complex geometries.

i) The development of an iterative elastic SBFE based analysis procedure that closely
approximates the maximum load capacity of perfectly-plastic structures with complex

geometries at failure.

i) The development of three-node node-based smoothed finite element (NS-FE) method
adopting the simplest low-order (linear) displacement field formulations, where the
developed framework is not only insensitive to the arbitrarily distorted mesh configuration but

also locking-free under an incompressibility condition

iv) The development of the iterative elastic edge-smoothed finite element (ES-FE) method,
which incorporates the state-of-the-art automatic adaptive (non-uniform) mesh construction
as well as enables the smoothed C%-continuous recovery stress field using the stress recovery

technique [Zienkiewicz and Taylor (2000)].



2. 5nnasg

The computational methods performed for the safety assessment of 2D- and 3D-structures
are developed within the three main finite element, called scaled boundary finite element
(SBFE), node-based smoothed finite element (NS-FE) and edge-smoothed finite element (ES-

FE), frameworks. These are illustrated as follows.

2.1 Scaled Boundary Finite Element Framework

Generic SBFE model and formulations
The formulations describe the generic SBFE discretization [Wolf and Son (2000); Song and Wolf
(2000)] of structures in 2D (and 3D) spaces. The relations are based on the assumptions of
geometric linearity and elastic material properties. Unlike boundary element methods, the
SBFE approach provides a semi-analytical solution of the subdomain, whilst standard finite
element technique for plasticity is directly applicable in SBFEs. The SBFE implementation for
elastoplastic analyses is reported in [Ooi, et. al. (2014)], where the merits of flexibility of

meshing and efficient treatment of cracks/notches are demonstrated.

For clarity of the following expressions, a generic polygon-type SBFE subdomain [Song and
Wolf (1997, 2000); Wolf and Song (2000)] in Fig. 1 is considered, where a scaling center “O” is

defined to be visible from all boundaries. Each boundary contains line elements (see Fig. 1a)
for a 2D curvilinear (.9 coordinate system and doubly-curved surface elements (Fig. 1b) in

a 3D (7.€.¢) coordinate system.



Figure 1. Generic SBFE subdomain (a) 2D case, (b) 3D case.

The geometry of the boundary along a circumferential direction is described using standard
shape functions, namely N(7) for —1sp<l and N(7,¢) for —lsp<l and -1sg<l in
2D and 3D spaces, respectively. The dimensionless radial coordinate 3 describes the
subdomain by scaling the boundary between the scaling centre (where 95:0) and the

boundary (65:1).

The local Cartesian (x.) and (x.y,2) coordinates can be expressed in terms of the
curvilinear (77’5) and (77’4’5) coordinates by [24], viz.
in a 2D space:

X($ym) =& X(n) = SINIMHXG (1a)
y(&.m) =& yin) = sINGHY} (1b)



and in a 3D space:

X(&m.¢)=ex(n,6) =¢IN (7, )G (2a)
y(&.1m.8)=¢y(n,8) =¢IN(n, )y} (2b)
2(gim&)=¢2(n,¢)=cIN(n SNz} (2¢)

where {X}, 1} and {Z}are the nodal Cartesian coordinates.

For a generic SBFE subdomain, the displacement field adopts

ina 2D (n.6) coordinate system:

{u(g, m3=IN" (U} =[N, (D[], N, (D[, Hu()} (3)

and in a 3D (7.6.€) coordinate system:

(S, 7, O3=IN"(7, IRU(E)} =Ny (77, I, N, (77, )N, U} @)

where [I] is an identity matrix of appropriate size.

The displacement functions {u)} given in Egs. (3) and (4) along the radial direction < can

be obtained from

[E°1{U(O} . + (s-DIE°T-[ET+[ET) ()} + (s -IET —[E*D{u(£)}=0 , (5)

i
where s = 2 and 3 in 2D and 3D spaces, respectively. The assembly of key matrices [E] for
i=0,1and 2 follows standard finite element procedures using the information of geometry

and material properties involved [Song and Wolf (1997)].

The internal nodal forces along the radial direction are expressed as

{a()} =& ([E"1{u(D} . +[ETH{uED ©)

Further, formulating the two Egs. (5) and (6) as the first-order ordinary differential system with

twice the number of unknowns results in



+0.5(s-2) +0.5(s-2)
: {5 {U(é)}} _ 121 {f {U(i)}}
&

-0.5(s-2) -0.5(s-2)
&5} 2@y 0
where the Hamiltonian matrix 1] is formed as
z]- [E°T[E']T -0.5(s-2)[1] -[E°T7
-[E°]+[E'IE°TM[E' T —([E'I[E°T" -05(s-2)[1]) ()
and the eigenvalue decomposition of 2] gives
_ _ [Qul] [¢u2] [An]

(4]

and [ZP] are eigenvalue matrices, whose real parts are negative and positive,
respectively; [Py] and [(pql] the eigenvectors of [/1”]; and [2,.] and [(DQZ] the
eigenvectors of [/19].

The bounded domain is considered, where the associated eigenvalues retain only the negative

real parts, leading to finite displacements at a scaling centre “O”. Hence, substituting Eqg. (9)

into Eq. (7) provides the solutions of displacements and nodal internal forces as follows:

@)} = &2 ([0, 16 YY) (10a)

)

()} = 052 ([o, 16 ey (10b)

The integration constants {c} in Egs. (10a) and (10b) are determined from the nodal

displacements {u(s =13 on the boundary (5 :1) of the subdomain as
{c}= [¢u1]_1{u (&=D} _ (11)

For each SBFE subdomain, the stresses {o(S,m)} and 1o(&n.6)} are computed at an

element level, and defined by

{o(&,m}=[DI([B" (mHu(&)} . +[B* nHu(£)}/¢) ’ (12a)



{o(&,m,.$)}=[DIIB* (7, O )HU(&)} +[B*(n, RV ) (12b)

1 2 1
where [D] is a material constitutive matrix, and [B (77)], B (77)], ([B (7.€] and

[B(1,{)] . . . - .
) the strain and displacement expression terms [24]. Substituting Eq. (10a) into

Egs. (12a) and (12b) yields

{o(&m}=", &N} (13a)
{o(&n.Oy=",(n.O)e ey (13b)
where

¥, ()= [D](-[B* (NP1 ][4 ]+ [B* (D[ Py ]) (142)
¥, (1.0)=[DI(~[B* (. O, 14,1 L5+ [B* (7. NP (14b)

define the stress modes associated with structures in 2D and 3D geometry systems,

respectively.

Quadtree model construction of in-plane structural system
For the structural system that can be defined in a 2D space, the structural discrete model
adopts the computationally advantageous quadtree mesh generation technique using
polygon-shape SBFEs [Ooi, et. al. (2014, 2015)]. Such methodology provides the effective

model construction of in-plane structures with complex geometries.

The algorithmic implementation of the quadtree SBFE model is summarized in Fig. 2, where
Smax is the maximum allowed number of seed points in a cell, with S seed points on each

boundary, and St seed points around each region of interest, and linax the maximum
difference between the division levels of adjacent cells. In this scheme, the geometry

information of the whole structural system is controlled by the signed distance function.



Define geometry with
mesh control parameters
Smax » Sp o Sroi » ‘rmux

Cover geometry
with root cell

J

Identify cells with

Si 2 Smax

Trim quadtree cells to |
conform boundary | )

Divide each

—>| identified cell into 4

equal-sized cells

Assign curve information Identify cells with
to cells attaching curves ;> lmax
for node distribution

For all the cells,

End

For all the cells,
Si = Sma.x?

Initialise quadtree grid Yes

Figure 2. Flowchart for quadtree mesh generation procedures.

2
The function of a point XeR within a SBFE subdomain Q is graphically described in Fig. 3,

and its mathematical description is given by

d,(x)=s,(x) min|x—
095,00 min x| -

2
where oQ represents the boundary of the subdomain, ”X_ y” is the Euclidean norm in

y € 0Q)

with , and Sa(X) the sign function (namely -1 inside the subdomain or 1 otherwise).

Boolean operations are employed to implement the complex geometry of the structure

concerned [Talischi, et. al. (2012)].



Figure 3. Signed distance function of a point inside the domain (X;), on the boundary (X5),

and outside the domain (X5 and X,).

A series of seed points are predefined to control the local density and quality of the quadtree
cells adopted in the boundary. The entire domain is initially covered by a single square, called

root cell. The root cell is divided into four square cells, provided that the number of seed

points S is larger than the maximum allowable limit of the corresponding cell, Smax. This
process is iteratively performed until the seed points of all cells is less than a pre-defined

value.

At each iteration, the cell with high division level between the contiguous cells, namely

> Imax, is subdivided. The diagram in Fig. 4 illustrates the use of the recursive process used

to obtain an initial grid in Fig. 4b of a square plate with penetration. In Fig. 4b, the initial
guadtree mesh does not exactly conform to the boundary. Then, cells that intersect with the
boundary are trimmed to form polygon shapes. The locations of vertices are defined by the
direction and magnitude of the signed distance functions; the vertices on the boundary are
assigned with solid square markers, whilst those inside the boundary with open square

markers.

It is noted that weak shaped polygon cells, which contain much shorter edges as compared
to the others, can be generated around the vertices close to the boundary. A threshold
distance (e.g. 1/10 of the smallest cell edge attached to the vertex) determines whether those

points are required to move to the boundary.

In Fig. 5, the implementation of the quadtree SBFE model over a circular penetrated plate is

illustrated. In essence, Fig. 5a shows that coarse polygon meshes are first assigned on the
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circular inner boundary. In Fig. 5b, the quadtree mesh refinement further enhances the SBFE

discretization around the circular penetration using polygon-shape cells.

o .
i
7 T
. TE—
ul In
BN
.

(a) (b)

(a)

Figure 5. SBFE meshes around circular hole (a) standard polygon subdomains, (b) quadtree

refinement.

Collapse load determination by iterative elastic SBFE analyses
The proposed approach performs an iterative series of elastic analyses for sufficiently ductile
structures modelled within the effective polygon-shape SBFE and quadtree model
construction framework [Ooi, et. al. (2015); Talishi, et. al. (2012)] to determine the maximum
load capacity at plastic collapse. The method adopts the so-called modified elastic
compensation algorithm [Yang, et. al. (2005); Chen, et. al. (2008)], and in effect represents an

application of a lower-bound limit analysis.
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The generic idea is simple in that a series of elastic SBFE analyses are iteratively processed. At
the end of each iteration i, the computed statically admissible stress resultants are collected
to calculate the corresponding load factor & that complies with the plastic capacity of the
material employed. At the beginning of the next iteration i + 1, the stress resultants are
collected to systematically adjust the elastic stiffnesses of some critical elements. This
procedure is repeated until the predefined maximum number of iterations (imax) has been

reached. The collapse load limit (¢®) is selected as the maximum load factor computed.

The structural system is suitably discretised using the quadtree polygon-shape SBFE model
(namely n subdomains, d degrees of freedom and ¢ numerical integration points) generation

described in the previous section. The proposed numerical analysis determines the collapse
load factor O that can be safely sustained by the structure under monotonically applied
forces aify € R where {f} € $R%is a vector of basic forces. The approach enforces for each
subdomain r the stress resultants O-:'J' at all integration points j = 1 to ¢ to comply with the

failure conditions imposed by the specific material properties, such as von Mises (M) and

Tresca (T) yield criteria, in 2D (or 3D) space as follows:

® 2D plane strain:

(01 D =+3H(o, —0,) +4z2}

(16a)
(01 ) =4(0,—0,)* +4z, , (16b)
® 2D plane stress:
(o1 )u =\/(0x -0,)* +0,0,+3r; , (17a)
(1) =max(loil,| ool loy o) (17b)

® 3D space:

i _ 2 2 2 2 2 2
(O'ryj)M = \/O'X +o0,"+0,”—0,0,-0,0,-0,0, +3(TXy +7, +7, (182)
)
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(Gi,j)T:maX(|O-1_O-2|||02_O-3|a|03_0-1|) (18b)

where {0, O, O,, T,,, T, T, and {0y, O,, O3} are the standard sets of associated stress
tensors and principle stresses, respectively. Different material laws can be enforced by simply

i
redefining the stress resultants ©r.i, such as ones given in Eqgs. (16) to (18).

The algorithmic procedures iteratively adjust the elastic moduli of SBFE subdomains using the

stress resultants at integration points computed in the previous analysis iteration. At the

beginning of each iteration / + 1 stress redistribution of some critical elements is implemented
Ei+1

by systematically adjusting the stiffness properties (i.e. Young’s modulus —* ) of the discrete

elements. More explicitly, for the critical elements that contain the average stress resultants

. . 9.
=i —i _ i
%r (where Or = jZ:l:ar:J l9 ) computed in the current iteration i greater than the nominal value

7 their corresponding elastic stiffnesses are modified by

. |EE= ifa >5
E& = o,
E if 5 <& (19)
where
o = O max _ﬁ’(amax _Gmin) (20)

i i
where 4 is a modification factor; and Omax and Pmin the most maximum and minimum stress

i = max i

i e i
resultants developed in the whole structure, namely O max (0'”-) and Fmin = mln(am.)

for all elements r = 1 to n and integration points j = 1 to g, respectively.

One of the conditions underpinning the lower bound limit analysis theorem is the yield
conformity over the whole structural system. Numerically, the plastic material properties are
enforced solely at some predefined critical locations, namely integration points for each of

the generic SBFEs. The proposed algorithm imposes such conditions by determining the

o/ Tmax that adjusts the magnitude of

i_
associated (positive scalar) load factor of ¢ =
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stresses to lie within the maximum allowable yield stress O, where Omax is the largest

maximum stress resultant of the whole structure. This ensures that the statically admissible

stress resultants satisfy the allowable yield limit 0. Therefore, for the total number (viz. imax)

of iterative SBFE analyses the lower bound limit analysis determines the collapse load limit
' of the structure by maximizing the load factor &, namely

o' =max{ | i=1, ..., imax}

The pseudo code summarizing key steps underlying the proposed iterative elastic SBFE

analysis procedure is presented in the following:
Step 0: Initialization

® At ijteration i = 0, initialize: maximum number of iterations imax, elastic Young’s

modulus Ef, stress resultants ©r.i =0 for all r = 1 to n SBFE subdomains and j = 1

—i
to g integration points, yield limit Oy, Poisson’s ratio V, o = O-O, and A (0, 0'5].

® Construct a quadtree polygon SBFE model, and assemble key vectors and matrices

associated with the structure.

Step A: Iterative SBFE analyses

® Fori=1toimax

Update the Young’s modulus E for all n SBFE subdomains using Egs. (19) and (20).

Process the elastic SBFE analysis in Egs. (10), (13) and (14).

Determine the stress resultants ©r.i using appropriate Eq. (16), (17) or (18), and Omax

i i
Calculate the load factor ¢ = %o I Ormax .

End.

Step B: Termination
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® Determine the collapse load o =max{ | i=1,...,imax}, and plot the associated

stress distributions at failure.

2.2 Node-Based Finite Element Framework

Generic three-node NS-FE model and formulations
Without undue loss of accuracy, the structure considered is modelled using an in-plane three-
node NS-FE framework [Liu, et. al. (2009)]. The generic NS-FEs are depicted in Fig. 6, where the

structure is discretized into N,, nodes, N,, members, Ny degrees of freedom and Ns smoothing

S
domains (viz., a shaded area o for Vk € {1,...,NJ}). Each discrete member is subdivided
into three equally quadrilateral-shaped subdomains encompassed by its centroid (an open-

triangle point), three-node vertices and mid-points on the element boundaries. The node-

S
based smoothing domain 2 collects all subdomains enveloping the k-th common node (e.g.,

the smoothing node K involves six subdomains, namely KSRQ, KQPO, KONM, KMLJ, KJIH and
KHGS lying within the six primal three-node elements KED, KDC, KCB, KBA, KAF and KFE,
respectively). It is clear that the total number of smoothing domains N; is identical to the

i i Q=050
number of nodes N, and the whole structural domain can be defined by .

Triangle
vertices
F
Center Mid-edge
of triangle point
A

Figure 6. Generic three-node NS-FE model with smoothing (shaded) domains.
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S
Underpinning the NS-FE, the strains are smoothed over all associated smoothing domains £

S
using a weight-averaged strain field. The smoothed strain field %k of a generic domain & s

expressed by

olox 0
g, = j (X, Y)W (X, y)dQ = j 0 a/ay lu(x YW (x,y)dQ
o %|aley olox

; (21)

where &(x.y) is a compatible strain field underlying standard three-node (viz., linear
displacement field) finite element method, Wx, y) > 0 a Heaviside-type weight smoothing
function:

A, (xy)e
0, (x,y) e Q IW(x,y)szl

o

W(x,y) ={
(22)

A —j dQ L . o . ,
o collects the areas within a node-based smoothing domain ““k. For instance, in

6
S _
Fig. 1 the area of a smoothing-node K reads Ac= Z(A“ /3), where An is the area of m-th

m=1

primal element associated with individual subdomain enclosing the node.

The smoothed strain field is determined by Green’s divergence theorem, and substituting

Eq. (22) into Eq. (21) yields:

n, 0
1 ;. R d
£ :E '[ &(x,y) Q:E I L, (% y)u(x,y)dI', L, (x,y)=| 0 n,
o Ti Ny Ny (23)

S S
where L, (x, y) is a matrix collecting outward normals (n,, n,) to the boundary T of (e.g,

S S
in Fig. 6 a smoothing domain £ of the node K containing twelve boundaries T along the

segments SG, GH, HI, 1J, JL, LM, MN, NO, OP, PQ, QR and RS), and u(x, y) the displacement field

with reference to global degrees of freedom. The smoothed strain vector Ex explicitly reads



16

NA
g =Byd, = ZBndn
n=1 , (24)

k s
where Ny is the number of all nodes encompassing the smoothing domain £ (e.g., in Fig. 6

k _
Ny, =6 for the vertices A, B, C, D, E and F associated with the smoothing-node K), B, and d,

are the smoothed strain-displacement matrix and the n-th nodal displacements.
The unassembled strain compatibility matrix B, and displacement vector d, of a generic

S
smoothing domain % collect the submatrices B, and vectors d, corresponding to the
enveloping nodes and degrees of freedom, respectively. An area-weighted average

formulation [Liu, et. al. (2009)] then gives

k
m

| =
=

=+
3
Wl

1 .
By === [ Ly YN, (x y)dT == > =B, A,
At N , (25)

where Bm is a standard compatible strain-displacement matrix of the m-th primal three-node

s k
finite element underpinning a smoothing subdomain ““, and Ny the number of three-node

NE =

elements sharing the common node k (see e.g., in Fig. 6 6 for the smoothing domain

S
Q consisting of six members KAB, KBC, KCD, KDE, KEF and KFA).

The smoothing Galerkin weak form [Liu, et. al. (2007)] reads

NS

> A5 Dy — [ SubdQ— [5u'pdT =0
k=1 ) r ’ (26)
where b are the body forces, p the tractions applied on the elemental boundary and Dy the
member elastic stiffness matrix. Therefore, the governing elastic stiffness equations of the
structure modelled using the NS-FE framework [Liu, et. al. (2007, 2009)] can be familiarly

written as

f = Kd, 27)
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where as for standard finite element procedures the two vectors d and f collect the

displacements and externally applied forces at all degrees of freedom, and the global stiffness

S
matrix K assembles the matrices K, of all k € {1,...,N} smoothing domains Qk. The explicit

expressions of the stiffness matrix K, for a generic node-based smoothing domain are

K= AtB, DB, ’ (28)

where t is an element thickness, and the unassembled stiffness matrix Dy is written in terms

S
of elastic Young’s modulus £, associated with the smoothing domain &

Automatic adaptive NS-FE seheme
This section proposes the computationally advantageous non-uniform adaptive mesh scheme
within the sequential elastic NS-FE analysis framework. The adaptive NS-FE approach adopts
the newest bisection procedure [Funken, et. al. (2011); Dorfler (1996)] that automatically
refines the master element with plastic stress responses into two children elements. At the
same time, the two children members with elastic stress responses are combined to reform
one master member. This advantageously enables the optimal mesh construction over a

series of iterative NS-FE analyses.

The Dorfler criterion [Dorfler (1996)] defines the set 2y of refining elements as well as the

remaining set Qy for possible coarsening members (i.e., as is clear Qy o Qy={L....Np}

and y N Qy :g). More explicitly, the members lying within the refining set (namely
meQy ) satisfy
2 >0
meQy, , (29)
NITI
=21
m=1 , (30)

where "M is a member error parameter, 7] global indicator and 0 e (0,1) mesh refinement

threshold coefficient. It is clear that the parameter Qplays a vital role in controlling the total
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number of critical refining elements (the members within 2y ), where the low value of @
yields the small number of members in Qy and vice versa for the high value.
The newest bisection scheme [Rivara (1984)] subdivides a triangle-shaped element of the set

Qy into two children counterparts by the line connecting a new midpoint on the longest
edge and its opposite peak vertex (see Fig. 7). The midpoint is then set as a new peak node
for the subsequent refinement.

peak

13 children
element

marked

triangle 2" children

refinement element

coarsening

reference edge midpoint new peak

Figure 7. Newest bisection adaptive (refining and coarsening) mesh scheme.

The coarsening mesh construction [Chen and Zhang (2010)] presents a backward process to

the newest bisection refinement. More explicitly, a pair of children elements in the set Qn
previously refined are nested to form their master member. The bisection line connecting the
peak vertex node and a midpoint is eliminated, and the midpoint is then removed from the

longest edge. The two elements as consequence are fully merged. In the case of no midpoints
presented for the elements in Qn only the refinement process is performed for those

. Q
members in ="M |

The error function "™ in Egs. (29) and (30) classifies whether the members are within the

refining 2 or coarsening £y set. The present work proposes the new error indicator based
on the rate of modulus variations that characterize the equilibrium stress field at plastic

failures, namely

77m — Erln=0 _ Erin=iC0| f

- vmed{l...,N.}

, (31)
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i=icol i
where ™™ is a modified m-th member modulus Em at the i-th analysis iteration when

i_
124 _acol.

The implementation of modulus variation-based error function in Eq. (31) explicitly determines
the domains with inelastic localized stresses, which specially requires fine (non-uniform) mesh
construction to capture plastic mechanisms. Those with acceptably low values of modulus
variations are coarsened to reform their master elements. The resulting NS-FE model

converges and depicts the yield line pattern of structures at failures.

Collapse load determination by iterative elastic NS-FE analyses
The proposed numerical method determines the maximum load capacity of an in-plane
inelastic structure at plastic failures. Sufficient ductile materials and small deformations are
assumed. The proposed scheme encoded within the NS-FE framework satisfies the statically
admissible stress and yield conformity conditions underpinning the lower-bound limit analysis
theorem. Whilst it preserves the simplicity in performing solely elastic analyses, the iterative
NS-FE method (NS-FEM) can overcome the challenges in the presence of stress singularity and

volumetric locking in an incompressibility.

The iterative elastic NS-FE analyses are based on the two-fold implementations. Firstly, the
lower-bound limit analysis is performed by a modified version of elastic compensation method
[Yang, et. al. (2005); Chen, et. al. (2008)] that generates the equilibrium stress fields through
the process of modulus reductions in stress intensity areas. A number of successive elastic
analyses within the reduced modulus procedure enable the stress redistribution from highly
loaded elements to those with initially low stresses giving a series of different statically
admissible stress fields. These equilibrium stress fields are enforced to conform with the yield
limits by proportionally factoring the applied forces (viz., complying with the permissible
maximum stresses throughout the whole structural domain), and establish the lower-bound
theorem underpinning limit analysis. The accuracy and convergence of the lower-bound limit
load solution depend on the robustness of discrete structural models at increasing mesh

density. Secondly, the NS-FE method, as will be illustrated in the numerical algorithm, ensures
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the volumetric locking-free behaviors in the presence of incompressibility conditions. Whilst
the approach employs the low-order displacement formulations, it can efficiently provide the
accurate elastic stress responses of structures and, as when incorporated within the modified

elastic compensation method, the lower-bound collapse limit load results.

A modified version of elastic compensation method [Yang, et. al. (2005); Chen, et. al. (2008)],
belonging to a wide class of modulus variation procedures [Mackenzie, et. al. (2000)], performs
a series of successive elastic analysis solves with systematic adjustments of some elastic

moduli associated with the critical elements developing intensive stresses. At each analysis
i
iteration /, the algorithm explicitly determines the modified values of elastic moduli —™m of
i1
the m-th primal elements with the stress resultants ©v.m established in the previous

i-1
iteration / — 1 exceeding the predefined nominal limit ° . In essence, the modified modulus

i
Em of 3 generic m-th primal member reads:

ol - -~
i En'—r for oy >00"
En = Oym
- for cinses (32)
05" = 0\ rax = (O — Tt ) n
Oy max = Max(oy 4 | VmefL,...,N, })
Oy min =Min(oy | YmefL...,N.}) -

i-1 i-1
where the nominal stress ©° is defined as a function of the maximum Zv.max and minimum

ol 4 4€(0,05]

v.min stress resultants for all the elements m € {1,...,N,,}, an a modification

1
factor. The critical elements requiring modulus = variations are classified in Eq. (32) by their

i-1 i-1
corresponding stress resultants ©v.m being higher than the threshold %0 whereas those

with smaller stress values remain unaltered.
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The necessary plastic conformity conditions express the intrinsic material properties

underpinning the structure through the following (nonpositive-sign constrained) yield functions

é(o,

,m’O'c,m) for all N, primal elements:

¢(U\i/,m10c,m) = O'\i,’m 0., <0 for Vvme{l,...,N_} (35)

where Zem s a positive scalar defining material capacity of the m-th member. Such conditions
O_i

permit direct scaling of the stress resultant response “v:m by a maximum (positive-sign) load

i
multiplier ¢ that does not violate the plastic material constraints in Eq. (35):

|0
a':mln( o |Vme{1,...,Nm}]

v,m

(36)

The lower-bound (static theorem) limit analysis then determines the collapse limit Peol of

structure by maximizing the load multipliers ¢ collected from all successive analysis

iterations i € {1,..., imax} of statically admissible stress field:

ooy = Max(a' | Vi e{l,...,imax})’ (37)

where imax is the targeted maximum number of iterations.

The proposed sequential elastic NS-FE analyses require solutions of the governing Eq. (27),
which in effect involve a series of stiffness matrix K, constructions during the modulus variation

procedures updated at an elementwise. The matrix K, is defined in Eq. (28) as a function of
[
constitutive matrix Dy and hence elastic Young’s modulus Ex associated with the individual
Q Q
smoothing domain ““k . Each domain "7 (see e.g, Fig. 6) assembles all quadrilateral
i
subdomains enveloping the k-th common node, and its modulus parameter B reads the
i
smoothing product of those En determined in Eqg. (32) for each of the relevant principal

i
members. Therefore, the mathematical expressions of the modulus Ex collect and smooth
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‘v’me{l,...,Nk

all modified elemental moduli —™ (for m}) associated with the k-th smoothing

node using the smoothing function WAx, y) in Eq. (22) by

El = j El (X, Y)W (X, y)dQ=iS j Ep (X, y)dQ
o Ao _ (38)

Adopting an area-weighted average function as for a smoothed strain field in Eqg. (25) gives:

) 1 Nk
EII< mAm
Ak ma 3 (39)

i
The determination of = in Eq. (39) enables at each analysis iteration i the fast construction

vk e{l,...

i k
of the governing stiffness matrices K for Ng} using some direct scaling factors,

Eli<=l Eli(:Ns
namely Eli<:—(1) e Eli:—?\l , and hence the assembly of the global matrix K in Eq. (27).

The bi-level procedures, namely an inner-loop sequential modified modulus variation and an

outer-loop automatic adaptive NS-FEM, determine the maximum load capacity Peol of
structure and its corresponding plastic mechanisms. The pseudo-code summarizing the

automatic adaptive iterative elastic NS-FE analysis method proposed is described as follows.

Step I: Initialization

i=0
® Parametric initialization: material properties (i.e., Young’s moduli E , yield

stresses “em and Poisson’s ratio v) and algorithmic parameters (modification

A€(0.05] " esh refinement threshold ¢ €D | maximum number of

factor
iterative NS-FE analyses imax, and maximum number of adaptive mesh
constructions rmax).

® At the mesh construction r = 1, generate an initial structural three-node NS-FE model.

® (o to Step ll.

Step II: Iterative elastic NS-FE analyses
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i=1 _ i=0
® At the analysis iteration /i = 1, update the elastic moduli Enm =Em

med{l,...

for all
! Nm} elements.

® Fori=1toimax

S
— Construct the unassembled stiffness matrices K, of the smoothing domains &

rVke{l,...

fo N} in Eq. (28), and the governing elastic NS-FE analysis Eq. (27).

i
— Determine the smoothed strains ®k in Eq. (24) and hence stress
i
o
resultants V'™ associated with the primal members me{l,..., Ny} by

processing Eq. (27).

— Calculate the maximum statically admissible load multiplier a in Eq. (36).

i+1
— Update for the next analysis iteration i + 1 the modified moduli ™ for all

Metl....No} embers in Eq. (32).

End

.
® Determine the collapse load limit “col in Eq. (37).

® (o to Step .

Step Ill: Automatic adaptive NS-FE model

® [f r = rmax, terminate; else, update r = r + 1 and perform the adaptive NS-FE scheme.

® Compute the modulus variation-based error indicators T for M el Ny}
members in Eq. (31) and a global indicator 77 in Eq. (30).

® (lassify the individual members lying either in the refining Qy or coarsening Qn set
using Eq. (29).

® Reconstruct the NS-FE model by performing the newest bisection mesh refinement for

the members in Qy and the coarsening process for a pair of children members in

Qy
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® Repeat Step /.

2.3 Edge-Smoothed Finite Element Framework

Generic ES-FEM model and formulations
Using the lowest-order element in standard FEM, the structure is discretized into N, degrees
of freedom, and N,, three-node elements consisting of N, nodes and N, edges. The ES-FEM

[Liu, et al. (2009)] introduces at each element a center node that equally divides the triangle-

S
shaped member into three parts. Thereafter, the smoothing domain £ associated with the
edge k € {1,...,N;} is constructed by combining the domains having the same edge. It

connects two endpoints of the edge and the centroids of the adjacent elements as shown in

S
Fig. 8. As a result, the number of smoothing domains Q for k € {1,...,N is equal to the

number of edges N..

E

Interior

'l —edge (DF)
G Qe

c
Boundary

edge (AC) —_
Qe

Ad

Triangle Centroid
vertices of triangles

Figure 8. Generic three-node ES-FE model with smoothing (shaded) domains.

S
A smoothed strain & within the smoothing domains i is given by

g € R = [ E(x, YW (x, y)dQ
% , (40)

where &(x.y) is the compatible strain of a primal (three-node) element in FEM discretization
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olox 0 !
gcR®=| 0 aloy { }:ﬁmdm

oloy 010X ’ @1)
W, y) = 0 is a Heaviside-type weight smoothing function satisfying the unity property

1A, (xy)e
W y)z{o Ao e
o
s _ S - 3%x6

Ac= o dQ s the total area of an individual smoothing domain i , Bn €177 5nd
d, eR°

are respectively the standard strain-displacement matrix and nodal displacement

S
vector associated with the primal element m encompassing the smoothing domain Q.

By adopting the lowest-order element, the linear shape function gives a constant strain matrix

B over an element. Therefore, the smoothed strain in Eq. (40) can be rewritten as

S (% Bmdmj involving one element m for a boundary edge k

e

2
S Zl% B, d, involving two elements m for an interior edge k
m=

=

(43)

Green’s divergence theorem is applied in Eq. (40), and the smoothed strain field then becomes

n, O
1 ¢ 1 .
g =— j &(x, y)dQ:—stn(x, Vu(x,y)dl, L (x,y)e®**=0 n, |,
Acay Acr n, n
v (44)

S
where Ly (x.Y) is @ matrix collecting outward normal (n,, n,) acting on the boundary D of

QS

¢ and u(x, y) e R?

the displacement field. The smoothed strain vector & developed for

the three-node ES-FE model then reads
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3
> B,d, for Q; ata boundary edge k
n=1

4

ZBndn for Q; at an interior edge k

n=1 (45)

g =Byd, =

where the smoothed strain compatibility matrix B, and displacement vector d, collect the

B, € R¥? d, e R?

sub-matrices and vectors of all vertex nodes n associated with the primal

S S
elements containing the domain Qk, respectively. As is clear, the domain 2 of a boundary

B, eR¥__ d, eR®

edge k involves one primal member with three nodes at vertices (viz., and

), whilst that of an interior edge k consists of two primal elements with four vertex nodes (

3x8 8
B €17 and d R ). An area-weighted average formulation [Liu and Trung (2016)] thus

defines

. (% Bm] for ; at a boundary edge k

2

B, =$ [ Lo (% YN, (x )T =

T

=

2 An B
Z—Bm for O} at an interior edge k
m=1 3

S

=

) (46)

where Bi s a compatible strain-displacement matrix extracted from the standard FEM.

NdXNd
The global elastic stiffness matrix KeR is assembled from the local matrices Ky

Kk ESRGX(S Kk EERBXB

(Where for a boundary edge k, and for an interior edge k) of all

S
k € {1,...,N;} smoothing domains Q that can be expressed by

Ky = A&ftBkTDkBk ) a7)

Dk = ER3X3

where is a standard constitutive matrix written in terms of elastic Young’s modulus

S
E, associated with a smoothing domain Qi The elastic moduli £, for all smoothing domains

are calculated by the modulus smoothing approximation.
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Recovery stress field
Within the strain-based ES-FEM framework, the smoothed C’-continuous stress field is

estimated by the stress recovery technique [Zienkiewicz and Taylor (2000)]. In essense, the

S
stress resultants vk of all the relevant Nsn smoothing domains 2 are area-weight

averaged around the node n, called first-order recovery nodal stress Cv.n [Neuyen-Xuan et al.

(2013)]
l Ns,n
Oyn =" Gv,kAtf’
A1 k=1 (48)
N 3

s _ o s
where A= kz_; A is the total area of Nsn smoothing domains sharing the same node. The

recovery stress field oy (%) is approximated from the nodal stresses %vn of a generic

three-node element m by

3
o, (X, y) = Z Nn (X’ y)cv,n
2, | (49)

where Ny (X, Y) is a standard linear shape function.

The critical stress %vm of a generic three-node member m € {1,...,N,,} reads the maximum
oy (1Y) of all three vertex nodes (x.y) . For example, in Fig. 8 for a triangle element DEF

consisting  of three wvertices (xpyp) at D, gy at E and (x5yp) at F,

Sy m-per = MX{6,,r (Xp, ¥p). Our (Xe, Ye) 00 (Xe VeI 150 implementation of the recovery

stress field oy (XY advantageously ensures that the yield conformity is satisfied within an
elementwise by enforcing the stress conditions solely at vertices C) under the weak form
of equilibrium conditions [Soh, et. al. (2001)].

Automatic adaptive ES-FE approach

The adaptive mesh scheme automatically determines the set Y of elements developing

discontinuous distribution of inelastic stresses and required to refine the sizes. To keep a
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number of elements as low as possible, the algorithm also defines the set 2 of members

that contain relatively elastic stresses to be combined without undue loss of accuracy. It is

QyNQy ed and $m Yy e{l,...,Nm}'

clear that d

peak

1* children
element

marked

d N
triangle 2" children

refinement element

coarsening

reference edge midpoint new peak

Figure 9. Adaptive mesh (refining and coarsening) construction.

The adaptive mesh refinement adopts the newest node bisection underpinning the longest-

side bisection algorithm of triangles [Rivara (1984)]. As displayed in Fig. 9, a three-node

element m € Qy is divided into the new children triangles (i.e., connecting the peak to a
midpoint of its longest edge). The midpoint is then set in a subsequent refinement as the peak
Qy

point. Vice versa, the coarseness scheme combines the two adjacent sub-elements m €

into a single element having now a larger size.

The set of elements m € Qw complies with the well-known Dérfler condition [Dorfler

(1996)] written in terms of the member error parameter Im and global error indicator 7}:

D 2060
meQy, , (50)
Nm
n= TIm
m=l (51)
00,1 . , - - o
where is a mesh refinement (threshold) coefficient. The specific error function is

derived from the variations of member elastic moduli, where the specific member m enters

i
plasticity with the reduction of stiffness modulus Em. The error indicator '™ observes the

i=0
difference between the elastic moduli E of the primal members m € {1,...,N,,} obtained
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icol i

at the initial iteration /i = 0 and those "M associated with & :aco', and can be

mathematically expressed by

e :(E,?] _Erilfo') for allme{l,..,N,} (52)

Collapse load determination by iterative elastic ES-FE analyses
A pseudo code describing the automatic adaptive iterative elastic ES-FE analysis procedures is

summarized as follows.
Step I: Initialization

Initialize ES-FE model and parameters at j = 0: material properties (i.e., elastic Young’s moduli

=0 0 <(0,1)

, yield stresses %em and Poisson’s ratio v), threshold adaptive , maximum

number of iterative ES-FE analyses (inner-loop) ijmee and maximum number of adaptive mesh

schemes (outer-loop) rax-

Erin:1 — Erin:O

Update: i =i+ 1 and for all m three-node elements. Go to Step /.

Step II: Automatic adaptive iterative elastic ES-FE analyses
Forr =110 rya

Fori =110 imax

— Perform the elastic ES-FE analysis by assembling the stiffness equations in Eq. (8).
i
— Construct the recovery stress field Ovr in Eqg. (49), and then determine the stress
i
resultants Ovm forallm € {1,... N} elements.

[
— Calculate the maximum load multiplier i Eq. (37).

[
— Adjust the elastic Young’s moduli En of the critical elements m in Eq. (32).

| S
— Determine the elastic moduli Ex associated with all smoothing domains & using an

area-weighted average Eq. (39) employed for the construction of ES-FE analysis

equations run in the subsequent iteration i + 1.
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End.
al’
— Determine the collapse load limit “cl in Eq. (36) and associated mechanisms.
— Compute the modulus compensation error indicators Tm and global indicator 7 in
Egs. (31) and (30), respectively.
, Qy - - - Qy
— Determine the set in Eqg. (29) for refining (and the remaining set for
coarsening) the domains using the newest vertex bisection implementation.
End.

It is worth mentioning that the yield functions describing the intrinsic material behaviors are
i
generally written as functions of stress resultants Tvk (computed in the form of stress tensors

S

[ 3_
o R = {O_X’GV’TXV} associated with the smoothing domain Qk) and yield limit Oem.

3. NAN1INNADY

The applications of the developed computational methods in assessing the collapse load
capacity of structures were presented. Their accuracy and efficiency in determining the
maximum load carrying capacity of solid structures were validated and illustrated through the
good comparisons with the results reported in literatures [Christiansen and Andersen (1999);
Tin-Loi and Ngo (2003); Ciria et al. (2008); Nguyen-Xuan et al. (2016, 2017); Le (2016)]. One
from a number of those, namely the collapse load determination of a double-edge notch

specimen, was illustrated as follows.
3.1 Double-Edge Notch Specimen

A double-edge notch specimen in Fig. 10 under the total uniformly applied tensile force of
0.288Q was considered. The von Mises material with an elastic modulus of £ = 70 was
employed. The reference value is (@“/0,)¥ = 4.6749, where O, = 0.243 [Tin-Loi and Ngo

(2003)].
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0.288a 0.288a

R

i

Figure 10. Double-edge notch specimen
3.2 Collapse load determination by iterative elastic SBFE analyses

Due to the symmetry of both geometric and applied loading configurations, a quarter of the
tensile specimen was modelled using four-node bilinear SBFEs (containing 256 subdomains,

289 nodes, 578 degrees of freedom and 1024 Gauss’s points) as shown in Fig. 11.

|
i 1 |

Figure 11. Schematic SBFE model.

A series of iterative elastic SBFE analyses were successfully performed. The values of load
multiplier & associated with each analysis iteration i are displayed in Fig. 12, which illustrates

that the collapse load result of OF°/ 0, = 5.0484 is approached at i = 300. This represents
some 7% higher value than the benchmark value. The corresponding stress distribution

describing the collapse mechanism is depicted in Fig. 12b.

The tensile notch specimen was also employed to study the influences of plastic conformity

locations as well as various algorithmic parameters A on the accuracy of the computed
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collapse load solution. More explicitly, when the locations of plastic conformity were defined
at all nodes (& = 1 and 77 = +1) in addition to standard integration points (& = 1 and 77 = 0)
the value of &°/ 0, = 5.0421 was computed by the proposed analysis approach. The same

remark as in the previous example can be made. Plastic conformity located solely at the

integration points is sufficient for the analysis to converge to the accurate collapse load

solution.
557
°| /
45+
S)
N
D 47
3
357
3 Proposed scheme
Reported solution = 4.6749
2.5 : ‘ '
0 100 200 300
Iterative steps, i
(a)

0.05 0.1 0.15

(b)
Figure 12. lterative elastic SBFE analysis solutions (a) OL/G, — i responses, (b) von Mises stress

distribution at A“°/C..

The responses between load multipliers & and the associated number of iterations i are

plotted in Fig. 13 for different values of A lying within a range from 0.05 to 0.5. In essence,

—i
the analyses with the high value of A (viz. a small value of ?") admitted a large number of
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critical SBFE subdomains r to adjust their elastic moduli Efi given in Eq. (19). The computation
during the initial analysis iterations /i attained the fast increment of an admissible load
multiplier &, whilst the numerical instabilities (namely oscillation or even divergence of the
Q' responses) were experienced in some cases after the certain analysis runs (e.g. i > 9 for
A= 0.5, and so on). On the other hand, the analysis with a small A value provided a better
chance to obtain good (numerically stable) convergence of the solutions giving a monotonic
response of €. The diagram in Fig. 13 depicted with A =0.05 the progressive convergence of
A to the actual collapse load solution &, but required a larger number of numerical
iterations for the load limit to converge (i.e. as a less number of critical SBFE subdomains
involved in the elastic modulus variation processes). In this study, the value of A = 0.05 was

found to yield good solution convergence for the numerical examples tested.

—+— A=0.1
A=02
A=03

2F —v— =04

—— 1=05

0 50 100 150 200 250 300
lterative steps

Figure 13. Iterative OU/G, — i responses for various values of A.

In addition, the iterative elastic SBFE analyses were performed for a series of SBFE models.
Each involved a uniform structural discretization into four subdomains giving the numbers of
SBFEs summarized in Table 1, where the computed collapse load solutions X°Y/ G, associated
with each SBFE model are also collected. It is clearly evidenced that for sufficient numbers of
SBFEs the collapse load limit converged to the lower-bound limit value. The analyses were

also performed for standard finite elements with selective integration procedures [Hughes
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(1980)1. The collapse load results obtained are reported in Table 1. This illustrates that the
two SBFE and selective integration finite element analysis schemes computed accurate limit

load solutions at a similar rate of mesh convergence.

Table 1. Double-edge notch specimen model and O°°Y/G, solutions for different structural

discretization.

Selective
Structural discretization SBFEs
integration FEs
No. of
No. of No. of No. of
Gauss’s Y0, %err acy/ o, %err
subdomains nodes DOFs
points
16 25 50 64 6.1365 31.26 5.8807 25.79
64 81 162 256 5.4559 16.71 5.3004 13.38
256 289 578 1024 5.0484 7.99 4.9424 572
1024 1089 2178 4096 4.8055 2.79 4.7654 1.94
4096 4225 8450 16384 4.6733 —0.03 4.6543 —0.44
16384 16641 33282 65536 4.6020 —1.56 4.5885 —1.85

3.3 Collapse load determination by iterative elastic NS-FE analyses

An upper-right quarter of the structure in view of its symmetric geometry and loading was
modelled using three different (namely in Fig. 14 Case a crisscross-, Case b slash- and Case ¢
distorted-) NS-FE models with initial 16, 32 and 32 basic elements, respectively. These three
model cases were applied to illustrate the distinctive features of the iterative elastic NS-FEM

in overcoming initial mesh dependency even for the distorted-type model construction.
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In Case a, the crisscross-type model was processed to capture the collapse load A by three
different modelling approaches, including FEM, ES-FEM and the present NS-FEM. The Q'
solutions successfully computed from various uniformly refined NS-FE models (degrees of
freedom, N,) are plotted in Fig. 15 giving a direct comparison to those of FEM and ES-FEM. All
' responses converged to the lower-bound limit at sufficient fine structural discretization,

whilst the NS-FEM performed slightly more superior than all others.

(a) 16 elements (b) 32 elements (c) 32 elements

Figure 14. Various schematic NS-FE models of a quarter of double-edge notched specimen

(a) crisscross-, (b) slash- and (c) distorted mesh pattern (8 = 0.5).

1.5
1.4 — — — Nagtegaal et al. [22]
—=—FEM
13 ES-FEM
EE —+— NS-FEM

Nq
Figure 15.

Figure 15. Olcol solutions for various crisscross-mesh models.
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Figure 16. Olcol solutions for various slash-mesh models.

For the slash-mesh Case b model, both the FEM and ES-FEM failed to converge the lower-

bound collapse load limit A" even for the large number of element refinements. The NS-

col
FEM, on the other hand, captured the a™ =Ny responses in Fig. 16 that converged quickly

to the lower-bound limit. This, as illustrated previously by the high value of the ratio r,
presents the good numerical performance of NS-FEM, which can overcome the volumetric
locking phenomena in incompressible conditions underpinning the plane-strain structures [Liu,
et. al. (2009); Mohapatra and Kumar (2019)]. The corresponding collapse mechanisms to the

three NS-FE analysis results in Fig. 17 are mapped out.

(a) 32 elements (b) 512 elements (c) 8192 elements

Figure 17. Deformations at plastic collapse for various uniform slash-mesh models.

The analyses of the distorted mesh Case c were performed. The coordinates (x,y) of the

distorted model are varied by:

(X, ¥") = (X+ro.Ax, y+r5.Ay)’ (25)
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re[-11] 0 €[0,0.5] Ay

where is a random number, an irregularity factor, AX and the

initial edge lengths of a generic element along x- and y-directions, respectively. The Q'

responses computed by the proposed NS-FEM, having a highly-distorted shape with 0= 0.5,
were slightly above the solutions given by the uniformly refined slash counterpart (see Fig. 18).
This evidenced the good performance of the sequential elastic NS-FEM that was not affected
by the initial setup of mesh geometry even in the presence of strong mesh distortion in

mapping the failure mechanisms [Ciria, et. al. (2008)].

1.35

1.30

125 —+— NS-FEM (uniform mesh)
3 —=— NS-FEM (distorted mesh)
S

0 2000 4000 6000 8000
Ng

Figure 18. Olcol solutions for various distorted and slash-shaped NS-FE models.

The automatic adaptive mesh (newest bisection with a refining parameter of U = 0.6) scheme
was implemented directly to the slash-mesh model Case b. The @ solutions computed by
the uniform and automatic (non-uniform) mesh refinements are reported in Table 2 that
provides the direct comparisons between them. The analyses of both mesh refining schemes

converged to the lower-bound limits. Moreover, the automatic adaptive (non-uniform) mesh

models attended @ = 1.111 at much less computing resources (namely only Np, =1370

Ny =1420 ), as compared to the uniform meshing technique (i.e., A" = 1.1117 when

Ny =8450,

and

N, =8192 _ |
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Table 2. A solutions of von Mises notched specimen (0" = 1.1316) by uniform and

automatic adaptive NS-FEMs.

Uniform NS-FEM Adaptive NS-FEM

N Ny aCOl % error N Ng acoL % error

32 50 1.2892 +13.92 32 50 1.2892 +13.92

128 162 12136 +7.24 95 118 12112 +7.04

512 578 1.1521 +1.81 240 270 1.1472 +1.38

2048 2178 1.1245 -0.63 557 596 1.1198 -1.04

8192 8450 1.1117 -1.76 1370 1420 1.1110 -1.82

It is worthwhile noting that the iterative elastic NS-FE analysis approach established the lower-
bound limit analysis theorems. Both the uniform and non-uniform adaptive NS-FE schemes
complied with the statically admissible stress and yield conformity conditions, simultaneously.
Whilst the exact collapse load solutions were not guaranteed, the proposed method, as listed
in Table 2, ensured the close approximation and fast convergence (in the case of automatic
mesh refinements) to the lower-bound limits of the structure. Moreover, as highlighted in the
same Table 2, the values of A in the early stage whilst lying on an upper bound side
decreased quickly with the refinement of NS-FE models, depending on the appropriate mesh
density over the failure zones. The variation of a on the other hand, was insensitive to
some further mesh refining schemes even in the critical areas, as when the collapse load was

approaching some certain level toward the lower-bound limit.

ie{l,...,imax}

A series of iterative NS-FE analysis iterations with A = 0.05 were performed for

i
the non-uniform mesh model with 1370 elements, and the corresponding load multipliers @
plotted in Fig. 19 evidenced the computational stability with monotonically increasing

responses. Whilst the monotonic increases of the load multipliers @' obtained by the

proposed method enhanced the fast computation of the collapse load solution @ in
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general, it did not theoretically guarantee the numerical stability (slow solution convergence
in some cases) over the modulus variation procedures. The sufficient number of elastic
analysis iterations was necessary for the success of the analysis algorithm. From a number of
examples tested, the preset maximum number of iterations, namely imax = 300, ensured the
searches for the accurate & results.

1.3

0.7

0.5

0 50 100 150
i

Figure 19. Monotonically incremental QU i responses of a non-uniform NS-FE model with

Nm = 1370.

32 elements 240 elements 1370
€))

70 35 0
[ —— ]
(b)

Figure 20. Collapse mechanisms for various non-uniform NS-FE models (a) deformations, (b)

modified modulus distributions.
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The resulting mesh layouts at some adaptive steps redl.....rmax} (

consisting of 32, 240 and
1370 elements) are depicted in Fig. 20a with the associated modified modulus distributions in
Fig. 20b, where the more density of elements was allocated to the areas having high modulus

variation rates. They agree well with the yield line patterns and hence plastic mechanisms of

the notched specimen under the ultimate forces [Nagtegaal, et. al. (1974); Fussl, et. al. (2008)].

Table 3. A solutions of von Mises notched specimen (O = 1.1316) by various analysis

methods.

Approaches a© % error

Reference [Nagtegaal, et. al. (1974); Fuss|, et. al. (2008)] 1.1316 n/a

Adaptive NS-FEM 1.1110 -1.82

Ciria et al. (2008) 1.1390 +0.65
Nguyen-Xuan et al. (2016) 1.1360 +0.39
Nguyen-Xuan et al. (2017) 1.1390  +0.65
Christiansen and Andersen (1999) 1.1358  +0.37
Le (2016) 1.1406  +0.21

The accuracy of the @ solutions performed by the present approach was validated by
comparing with some available numerical methods summarized in Table 3, namely the
second-order cone programming (e.g., kinematic [Nguyen-Xuan et al. (2016); Ciria et al. (2008);
Nguyen-Xuan et al. (2017)] and static [Ciria et al. (2008); Le (2016)] limit analysis) approaches
and mixed kinematic and static limit analysis [Christiansen and Andersen (1999)]. The
percentage error (% error) draws the difference between the & values of the analysis

method and the ()" reference in [Nagtegaal, et. al. (1974); Fuss|, et. al. (2008)].
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3.4 Collapse load determination by iterative elastic ES-FE analyses

A quarter (upper-right) of the specimen in Fig. 21 was modelled using 16 basic triangle
elements and 26 degrees of freedom (N,, = 16; Ny = 26). The initial meshes were uniformly

refined up to 8192 elements (N,, = 8192; N, = 8450).

0288 0.288a 0.144a
.
S R
. _% L )
fe— h =
|
L2 R B

(a) {o)

Figure 21. Double-edge notched specimen (a) geometry and loading, (b) schematic discrete

model (Nm = 16), where solid lines indicate restrained boundary conditions.

The proposed iterative analyses adopted the self-adjusted modification factor A taking into
account of stress concentration developed close to the crack tip of the specimen. In the first
instance, the ES-FEM with recovery stress field (RES-FEM) was performed to successfully
compute the collapse load A solution of the notched specimen with 8192 elements. The
proportional load increment of Q' responses associated with the number of analysis iterations i
was observed in Fig. 22, where the implementation of the dynamic modulus variation factor A
enhanced the fast computation of the collapse load solution, i.e., Q" = 1.1244 being less
than 1% difference to the reference value. The diagram showed the slowly converging yet
oscillating (numerical instability) pattern of the resulting @' variations, especially at the early
analysis iterations i, for both the standard FEM and ES-FEM analysis frameworks. Their
computed Q™ results required the more computing times to converge, as compared to that

of the RES-FEM.
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Figure 22. Double-edge notched specimen: load multiplier responses QL i by RES-FEM, ES-
FEM and FEM (Nm = 8192).

The second instance performed the automatic adaptive mesh algorithm within the RES-FEM.

The results in Fig. 23 provided the direct comparison of the lower-bound limit convergence

computed between the proposed adaptive mesh schemes and simple uniform mesh

refinements. The & values for various structural discretization were reported in Table 4.

More specifically, the adaptive mesh algorithm achieved the lower-bound collapse load of

o' = 1.1254 (viz., 0.55% less than the reference value) with N, = 2952. The uniform mesh

refinement computed &' = 1.1244 at the more computing resources, namely N, = 8192.

Table 4. Double-edge notched specimen: collapse load solutions O° by various RES-FEM

solves.
Uniform RES-FEM Adaptive RES-FEM
N Ng at  %error* | N, Ng ot %error* v
16 26 14676 +29.70 | 16 26 14676 +29.70 1
128 162 13162 +16.32 | 138 160 1.2686 +12.11 5
512 578 1.2123 +47.13 | 363 392 1.1863 +4.83 7
2048 2178 1.1470 +1.36 852 890 1.1460 +1.27 9
8192 8450 1.1244 -0.64 | 2952 3012 1.1254 -0.55 12

* 9%error indicates the percentage error of @ as compared to A“"* = 1.1316.
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Table 5. Double-edge notched specimen: collapse load solutions Olcol by various analysis

methods.

Approach Nen o %error

Reference [Nagtegaal et al. (1974)] n/a 11316 n/a
Present (adaptive RES-FEM) 2952 1.1254 -0.55
Present (RES-FEM) 8192 1.1244 -0.64
Ciria et al. (2008) 5913  1.1390 +0.65
Christiansen and Andersen (1999) n/a 11358 +0.37
Ciria et al. (2008) 5913 1.1320 +0.04
Nguyen-Xuan and Liu (2015) 3992  1.1360 +0.39
Le (2016) 2668 1.1406 +0.21

—— Adaptive RES-FEM
—a— RES-FEM

= = = Nagtegaal et al. [1974]

0 1000 2000 3000 4000 5000
Ny

Figure 23. Double-edge notched specimen: collapse load solutions Olcol for various degrees

of freedom Nd.
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(a) Nm = 16 elements (b) Nm = 363 elements

KT

(c) Nm = 852 elements (d) Nm = 2952 elements

Figure 24. Double-edge notched specimen: progressive adaptive meshes of RES-FEM at Olcol.
The progressive adaptive meshes of the RES-FEM are displayed in Fig. 24 describing the failure
lines of the double-notched specimen under applied forces. The more number of fine

elements was defined over the area undergoing strong localized modulus variations and hence

plasticity. This agrees very well with the collapse mechanisms reported in [Nguyen-Xuan et al.

(2016)1.

(a)i=20

Figure 25. Double-edge notched specimen: modified modulus distributions by adaptive RES-
FEM (Nm = 2952) at various iterations i.

In Table 5, the proposed analysis approach obtained the accurate collapse load solution as
compared to some available literatures, including discrete duality method [Christiansen and

Andersen (1999)], mesh adaptive schemes in lower and upper bound limit analyses [Ciria et
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al. (2008)], ES-FEM with adaptive scaled-bubble functions [Nguyen-Xuan and Liu (2015)] and
h-adaptive FEM with yield stress-based error indicators [Le (2016)]. The variations of modified
moduli progressing over the localized failure area within the structure are plotted in Fig. 25

for some RES-FEM analysis iterations.

4. ajduaziansalnan1maass

The project has developed the three robust numerical based frameworks that can be
performed to assess the ultimate load carrying capacity of structures. First, the novel iterative
elastic SBFE method has been proposed with the development of an effective structural
discretization within a polygon-shape SBFE framework, in which a quadtree algorithm enables
automated mesh construction of the structural system in a 2D space. The modified ECM
processes a series of elastic stiffness analyses with a systematic modification of some elastic

moduli to provide convergence to the collapse load limit solution.

Second, the iterative elastic NS-FE analyses incorporate an automatic adaptive mesh scheme
to determine the collapse load limit of the plane-strain structures. The approach develops a
modified version of an ECM run within the self-adaptive NS-FE framework. The newest
bisection algorithm adopts a modulus variation-based error function such that the critical NS-
FEs with localized inelastic stress responses are refined into the finer children elements and

vice versa for the elastic stress elements being coarsened into the master counterparts.

Third, the iterative automatic adaptive ES-FE method performs a series of elastic recovery
stress ES-FE analyses with the successive adjustment of elastic moduli to determine the
maximum load capacity of inelastic structures. The new self-adjustable modification factor
considers the influences of possible stress singularity developed leading to the monotonic
increment of load multipliers during the modulus variation processes. The proposed approach
importantly incorporates the first-order smoothed CO-continuous stress field, which enhances
the sufficient and necessary static admissible stress and plastic material conditions conformed

solely at the vertex nodes, and hence complies with the lower-bound limit analysis theorems.



46

Moreover, the automatic adaptive (non-uniform) mesh construction encoding the efficient
newest bisection algorithm converges the lower-bound collapse load limit at modest
computing resources. Underpinning the algorithm is the novel modulus compensation error
function that effectively classifies the specific set of critical members requiring mesh
refinements, and vice versa the elements lying outside this set are coarsened to maintain the

total size of discrete model as minimum as possible.

A number of numerical examples (considering in-plane benchmarks, structures of complex
geometry and 3D structures) have been successfully solved and hence illustrate the efficiency
and robustness of the three developed numerical approaches. These include the inelastic
structures with complex curve and/or vertex geometry subjected to the challenges involving
stress singularity and volumetric locking in an incompressibility condition. Numerical stability
can be achieved during the whole computing process, and the proposed schemes overcome
the challenges related to stress singularity and volumetric locking phenomena under
incompressibility conditions. The numerical experiments have shown there is no difficulty in
obtaining accurate solutions as compared to available benchmarks. For all the numerical
analysis frameworks developed, the solution converges to the lower-bound collapse load
limit for the sufficiently fine model that is independent from the initial mesh (including the
distorted pattern) setup. The final computed model advantageously depicts the yield line
pattern (namely one containing dense meshes over the areas developing high stress intensity)

associated with the collapse mechanisms of the structure considered.

A direct extension of the proposed analysis frameworks is the safety assessment of structures
employing sustainable green constructional materials. This requires the investigation of basic
properties of the materials specially mixed with some industry by-product wastes. For
example, the project has further addressed the influences of recycled granite aggregate on
the concrete properties. The use of granite industry waste as a mixing material of concrete

reduces not only the natural aggregate consumption, but also the solid waste disposal
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problems. Both the low- (20 MPa) and high- (50 MPa) strength concretes have been studied

for various sand replacing proportions with granite particles (namely up to 50% by weight).

The future work therefore focuses on the development of the presented iterative elastic SBFE
method that can directly assess the maximum load capacity of structures adopting the green
concrete materials. This involves the solutions of difficult (ill-conditioning) mathematical
programming problems involving strength-degrading (instability) constitutive models. The load
carrying capacities of structures can also be assessed by performing the machine learning-
based algorithms. The latter approach requires the sufficient (input and output) database

modelled using the developed finite element frameworks.
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