correct for wavelength non-linearity. The coefficients are obtained by calibration of the spectrometer with a HgAr calibration light source. The wavelength accuracy in our system after calibration is \pm 0.3nm.

B. Analysis

Figure 6 shows a screen snapshot of the 2D-analysis control panel. All plots shown are from a TLD300 sample irradiated by ⁶⁰Co with a dosage of 60Gy. Two corrections are applied to the raw data. First, the black body radiation is subtracted from the TLD spectral data. Second, due to the optics wavelength non-linearity, a correction is applied to the intensity based on a HgAr intensity calibration using a seventh order polynomial fit. As shown in figure 5, the results are excellent and correspond with previous published data in that the infrared peak is now clearly very high. Also the peak definitions are now very sharp due to the higher wavelength resolution.

The 2D-analysis can plot intensity vs. wavelength at any given temperature, intensity vs. temperature at any given wavelength or plot a standard glow curve (intensity integrated over wavelength) simulating a PMT response.

The glow curves can be plotted using different spectral ranges (figure 4 and figure 7). Results show that the maximum intensities of the glow curve are generally in the blue region of the spectrum (440-490nm). This corresponds closely with a conventional PMT glow curve response.

Any plot displayed can then be exported to a file as either an image file (.wmf) or as a comma delimited file which then can be imported into a program such as Microsoft Excel or Sigma Plot for further analysis. Figure 8 show a screen snap shot of the 3D-analysis control panel. The user has the choice of what spectral range he would like to display and can change the viewpoint of the plot.

As in the 2D plotting the user can export the 3D plot as a .wmf image for import into programs such as Microsoft Word and export the data as a comma delimited file for import into other analysis programs (see figure 9).

IV. CONCLUSION

The first measured spectra demonstrate that high-resolution TL spectra can be measured using low cost CCD arrays. No expensive light amplification is necessary to obtain spectra with a resolution of 1.3 nm or better at moderate dose levels around 10-60 Gy, where dose dependent effects are not yet relevant (7.8). The high resolution makes it

possible to identify lines of different width, which allows separation of the TL light produced at different TL centers.

ACKNOWLEDGMENT

We would like to thank S. Aumkaew for his assistance in the electronics. This work is supported in part by the Thailand Research Fund.

REFERENCES

- 1. S. W.S. McKeever, M. Moscovitch, and P. D. Townsend, *Thermoluminescence Dosimetry Materials: Properties And Uses*, (Nuclear Technology Publishing, Ashford, Kent England, 1995).
- 2. S. W.S. McKeever, *Thermoluminescence of solids*, (Cambridge University Press, Cambridge GB, 1988)
- 3. R. Chen, S.W.S. McKeever, *Theory of Thermoluminescence and Related Phenomena* World Scientific Publishing Co., Singapore 1997
- 4. R.G. Fairchild, P.L. Pattern, K. Len Weiler, P.W. Levy, *Thermoluminescence of TLD 100:* Emission Spectra Measurements, J. Appl. Phys. 49(8), 4512-4518, (1978)
- 5. A.S. Pradhan and R.C. Bhatt, *TL Emission Spectra and Glow Peaks of CaF*₂:*Tm*, Radiat. Prot. Dosim. 20, 237-241, (1987)
- 6. T.M. Pitters, W.H. Meulemanns, A.J. Boos, *An Automated Research Facility for Measuring Thermoluminescence Emission Spectra using an Optical Multichannel Analyzer*, Rev. Sci. Instr. 64(1), 109-116, (1993)
- 7. S. Wanwilairat, T. Vilaithong, M. Rhodes and W. Hoffman, *High Resolution Emission Spectra of CaF₂:Tm* submitted to Radiat. Prot. Dosim.
- 8. R.J. Matthews and T.G. Stoebe, *Thermoluminescent Spectra and Optical Absorption in CaSO4:Dy*, J. Phys. C., Solid State Phys., 15, 6271-6280, (1982)
- 9. Trademark of Ocean Optics, Inc., Dunedin, FL 34698.
- 10. Trademark of Microsoft□, Microsoft Corporation Redmond WA 98052
- 11. Trade mark of Bits Per Second Ltd. Seattle, WA 98104

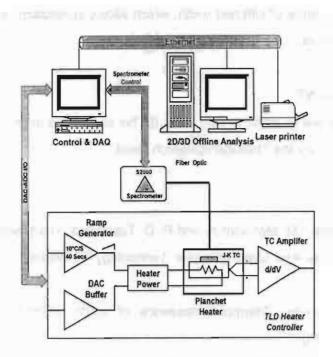


FIG.1. System diagram of the TL spectrometer

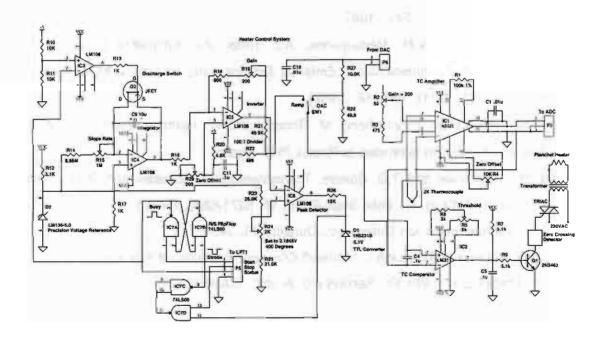


FIG. 2. Schematic diagram of the heater control and temperature monitoring electronics.

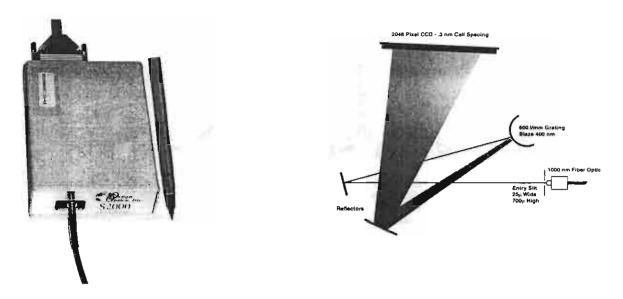


FIG. 3. Ocean Optics S2000 Spectrometer and diagram of the internal optics.

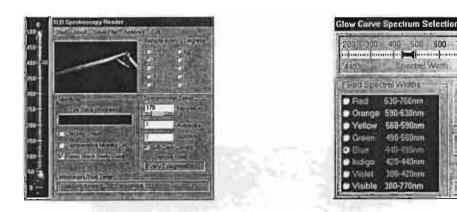


FIG. 4a and 4b. Screen shots of the TLD reader data acquisition control panel and the 2D-analysis glow curve panel.

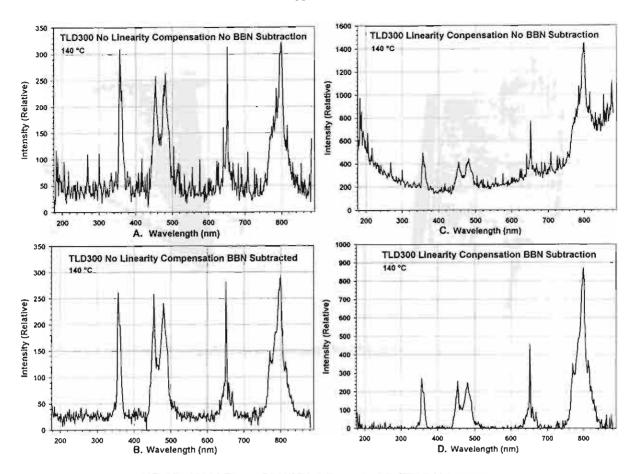


FIG. 5. Plots showing the effects of applying corrections to the data.

- A. Raw data with no correction.
- B. Data after black body radiation noise subtraction but not compensated for optics non-linearity.
- C. Data with optics non-linearity coefficients applied but no black body noise subtraction.
- D. Data with both black body noise subtracted and optics non-linearity coefficients applied.

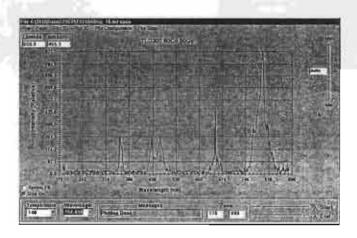


FIG. 6. 2D-analysis control panel showing a TLD300 exposed to 60 Co at 60Gy. Spectrum is shown at 140 $^{\circ}$ C where the peak intensity is.

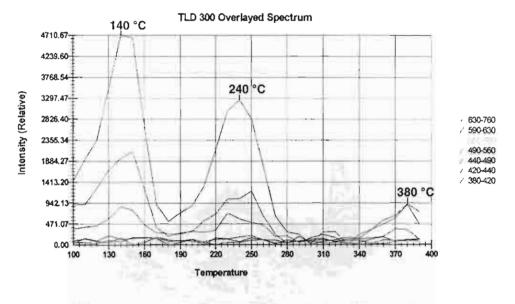


FIG. 7. Glow curve covering 7 spectral ranges with associated peak temperatures generated by the 2D-analysis software.

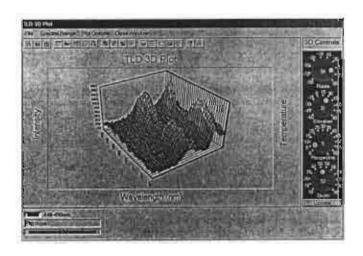


FIG. 8. Screen shot of the 3D-analysis control panel. This plot is of a TLD300 from 440-490nm.

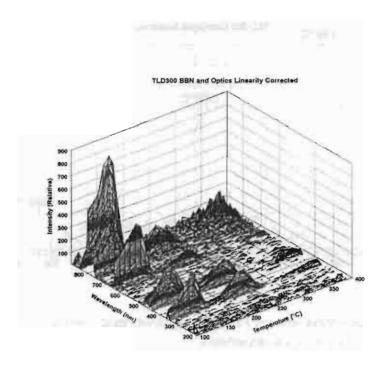


FIG. 9. Output from the 3D-analysis software and imported into Sigma Plot displaying a mesh plot of a TLD300 sample.

2.3.4 High Resolution Emission Spectra of CaF₂:Tm

S. Wanwilairat(1,2), T. Vilaithong(1), M. Rhodes(3), and W. Hoffmann(4)

- Fast Neutron Research Facility, Department of Physics, Faculty of Science,
 Chiang Mai University, Chiang Mai 50200, Thailand
- (2) Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- (3) Institute for Science and Technology, Research and Development, Chiang Mai University, Chiang Mai 50200, Thailand
- (4) Physics Department, University of Wuppertal, 42097 Wuppertal, Germany

Abstract

The CaF₂:Tm (TLD 300) emission spectra were measured using a low cost, high resolution fiber optic spectrometer containing a 2048 pixels CCD array. The wavelength resolution was 1 nm and the spectra were taken from TLD 300 chips at gamma doses between 10 and 60 Gy. This allowed for line width discrimination of the spectral peaks. It was found, that the TLD 300 spectrum exhibits lines with very different widths, which cannot be explained by the standard Tm3⁺ transition model. It is suggested, that other TL centers or non-radiative transitions compete with the Tm3⁺ transitions during recombination.

I. Introduction

Thermoluminescence is normally described as a two step process: a) ionization and electron trapping, b) electron hole re-combination with photon emission. Some information about the first step, for example number and energetic depth of traps and frequency factors can be derived from the structure of the glow curve, but for a general understanding of the second step it is necessary to measure the spetral distribution of the emitted light. It has been long known, that the light emission is due to recombination processes at impurities, but there may be competing processes such as phonon coupling or recombination at different TL centers within the crystal. Those should show up by a changing spectral distribution with increasing readout temperature.

TL spectra measurements have been reported by many authors(1-7). They used optical spectrometers with dispersive gratings and intensified diode arrays or photomultiplier tubes. The spectra extended from 200 to 800 nm and the spectral resolutions reported so far are typically between 5 and 30 nm. The spectra were measured at temperature intervals from 0.5 to 5 oc. The advantage of such systems is high sensitivity allowing spectra to be taken at dose levels below 1 Gy, but they require challenging and expensive instrumentation.

Through recent development of high sensitive charge couple devices (CCD), optical spectrometers have become available which allow, without using any expensive image intensifiers, to take spectra from TL chips (3 mm x 3 mm x 0.9 mm) irradiated at moderate dose levels around 10 Gy with a wavelength resolution of 1 nm. The sampling time can be as low as 0.1 sec allowing temperature steps of 1 °C even at high heating rates of 10 °C/sec. Thus, very high resolution spectra can be taken at relatively low costs.

Most of the spectral analysis so far concentrated on the most widely used material in dosimetry LiF:Mg,Ti (TLD 100). For this study CaF₂:Tm (TLD 300) was selected, since a detailed theory of the TL mechanism for this material is far from certain and the experimentally found unique behavior in High-LET fields(8) requires better understanding. Also CaF₂ is known to be a low phonon lattice(9); any excitation besides that of the Tm3⁺ centers should show up better than in more complex crystals like CaSO4:Tm. Spectral measurements on CaF₂:Tm were performed by Padhran and Bhatt(4) at wavelengths between 300 and 500 nm. They found peaks at 345, 445 and 470 nm and observed a shifting ratio of the 445 to 470 nm peaks with temperature. Later Jakob et al.(6) found a strong infrared emission near 800 nm, which was 14 times higher than the visible light for the 140 °C peak and 6 times higher for the 240 °C peak. They proposed to use this emission for the recording of glow curves with IR diodes(10). McKeever(7) published CaF₂:Tm spectra showing broad IR peaks at 650 and 795 nm but did not show details of the line shape due to insufficient wavelength resolution.

II. Experimental Methods and Procedures

The CaF₂:Tm (TLD 300) material was used as chips of size 3 mm x 3 mm x 0.9 mm. The annealing was done at 400 °C for 1 hour. All chips were irradiated with a teletherapy cobalt unit at a dose rate of 0.8 Gy/min. The spectra were taken using a newly designed, computer controlled heating device similar to the one used in commercial TL readers. The TL light is transported by an optical fiber cable, positioned above the TLD sample, to an optical

spectrometer. The light then gets dispersed by a 600 lines/mm grating onto a 2048 pixel CCD linear array. The entry slit is 25 micrometer wide.

The spectra were taken from 177 to 890 nm with a wavelength resolution of 1.2 nm and a sampling rate of 1 sec. This corresponded to a temperature resolution of 10 °C, since the heating rate was set at 10 °C/sec.

The frequency calibration was performed using a mercury-argon light source. The systematic wavelength error thereby is reduced to less than 0.5 nm. The wavelength dependence of the CCD response, the fiber optics attenuation and the grating characteristic was carefully corrected for. The details of the spectrometer setup are reported elsewhere(11). The computerized readout allows displaying 3-dimensional plots of TL intensity against wavelength and temperature as well as spectra at selected temperatures or glow curves for a selected wavelength range. The sensitivity of the spectrometer can be characterized by a signal to noise ratio of 30:1 at 50 Gy irradiation. The signal to noise ratio can further be enhanced by subtracting the black body radiation, by taking a second reading, from the initial reading. This also reinforces that the infrared peak is a TL emission and not thermal induced IR noise. The sensitivity can be increased by integrating over larger temperature and/or wavelength steps. For comparison glow curves were also taken with a Harshaw 2080 TL reader and 2000A picoprocessor interfaced to a standard PC.

III. Results and Discussion

A high resolution three dimensional spectrum of CaF₂:Tm TL intensity against wavelength and temperature is shown in Fig. 1.a,b It was taken after irradiation of a TLD 300 chip with 50 Gy of ⁶⁰Co gamma radiation. It is clearly seen that the ratio of the infrared lines to the visible lines is shifting with increasing temperature. Figures 2 and 3 show spectra taken at the peak of the first dosimetric peak (here seen at 140 °C) and at the peak of the high temperature peak (240 °C). At both temperatures peaks show up at 356 nm, 455 nm, 482 nm, 650 nm and 795 nm. The relative intensities vary, however: The 482 nm emission decreases relative to the 455 nm emission by 32 % and the IR lines at 655 nm and 795 nm decrease 60 % and 76 %, respectively. To exclude, that the line seen at 795 nm is only an artifact from IR emission of the apparatus, a second readout was done with the same TLD showing no signal up to 850 nm (Fig. 4).

The high wavelength resolution makes it possible to distinguish the different line widths of the spectral lines. The FWHM widths are given in table 1 together with the exact peak wavelengths. For comparison the wavelengths given by McKeever(7) are shown. Many authors (4,12,13,16) suggest that the lines can be attributed to the characteristic emission wavelengths of Tm3⁺. These transitions are also given in the notation of Dieke and Crosswhite(12).

Table 1

measured line wavelength [nm]		line width FWHM [nm]		wavelength McKeever(7)	suggested Tm3 transitions
	-,-			is an added to a	
356		8.0		360	1D2 -> 3H6
455		9.5		450	1D2 -> 3F4
482		17.0		465	1G4 -> 3H6
650		2.5		650	1G4 -> 3F4
799		17.8		795	3H4 -> 3H6

There seem to be three types of transitions, those with 9 +/- 1 nm width lines, with 17 +/-1 nm transitions and the extremely small line at 650 nm with measured 2.5 nm width. The last line width is even 0.3 nm smaller, since the spectral resolution is 1.2 nm and the measured width reflects the line width folded with the resolution width.

To ensure that the shape and wavelength of the observed transitions does not depend on radiation dose, the spectra were taken at different dose levels between 10 and 60 Gy. No change in the spectra was observed. This is the same finding as with CaSO₄:Dy (9), where no change in the spectra was found up to 100 Gy. Since the glow curves taken with the spectrometer and with a conventional Harshaw reader (Fig. 5) do not show any significant deviation from the shape derived at low doses, there is no reason to believe that the observed discrepancies in wavelengths are due to different doses. Except for the 482 nm

for the 482 nm line, the discrepancies are all less than 5 nm, which can be attributed to the limited resolution of earlier measurement.

The shift in the intensity ratio of the different emission bands was found by Goerlich (13), Padhran(4) and Jakob(6). They suggested, that it might be due to temperature dependent transition ratios. Two other explanations are possible: The fact, that the relative amount of change gets larger with increasing wavelength suggests—that there is competing phonon coupling—that gets stronger, the higher the temperature of the crystal. This idea is supported by the fact that in CaSO₄:Tm there is no peak showing up above 500 nm at all, because in the IR region the non radiative transitions dominate(14,15).

The other possible explanation would be that the lines at 650 nm and 790 nm are not due to Tm3⁺ emission but rather due to recombination at other crystal defects. Taking into account the different line width, it then would even be likely that the 482 nm peak comes from the same defect as the 790 nm peak. Then, there would be three different TL centers competing with each other during recombination(16), thereby causing the shift in relative intensity with increasing temperature.

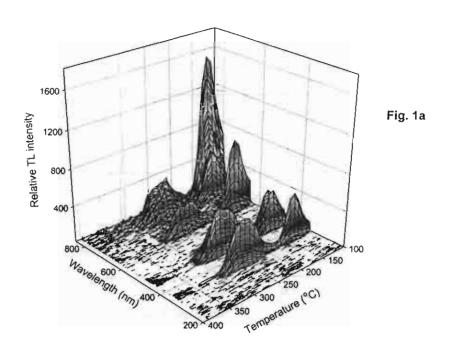
IV. Conclusion

One nanometer resolution TL-spectroscopy gives more detailed insight into the TL process particularly into materials that exhibit a large number of emission lines like CaF₂:Tm. In this material the action of competing TL emissions has to be reconsidered, because the different line widths can be resolved now and need to be introduced into theoretical models.

V. Acknowledgements

This work is supported in part by funds provided by the Thailand Research Fund.

VI. References


- (1) R.G. Fairchild, P.L. Mattern, K. Lengweiler, P.W.Levy: Thermoluminescence of LiF TLD 100: Emission Spectra Measurements, J. Appl. Phys. 49(8), 4512-4518, 1978
- (2) T.M. Piters, W. H. Meulemans, A. J. J. Bos: An automated research facility for measuring thermoluminescence emission spectra using an optical multichannel analyzer Rev. Sci. Instr. 64(1), 109-116, 1993
- (3) B.J. Luff, P.D. Townsend: High sensitivity thermoluminescence spectrometer

- Mess. Sci. Technol. 3, 65-71, 1992
- (4) A.S. Pradhan and R.C. Bhatt: TL Emission Spectra and Glow Peaks of CaF₂:Tm Radiat. Prot. Dosim. 20, 237-241. 1987
- (5) T. Karali, A.P. Rowlands, P.D. Townsend, M. Prokic, J. Olivares: Spectral comparison of Dy, Tm and Dy/Tm in CaSO4 thermoluminescent dosimeter J. Phys. D: Appl. Phys. 31, 754-765, 1998
- (6) M. Jakob, P. Meissner and J. Rassow: Infrared Thermoluminescence Signals of TLD 300 Detectors, Radiat Prot. Dosim. 33, 291-294, 1990
- (7) S.W.S. Mc Keever, M. Moscowitch, P.D. Townsend: Thermoluminescence dosimetry Materials: Properties and Uses Nuclear Technology Publishing, Ashford, Kent, England 1995
- (8) W. Hoffmann: TL Dosimetry in High LET Radiotherapeutic Fields Radiat. Prot. Dosim. 66, 243-248, (1996)
- (9) R.J. Matthews and T.G. Stoebe: Thermoluminescent Spectra and Optical Absorption in CaSO4:Dy, J. Phys. C: Solid State Phys., 15, 6271-6280, (1982)
- (10) M. Jakob, R. Spallek, J. Rassow and W. Hoffmann: Infrared Thermoluminescence Glow Curves of Rare Earth Doped Calcium Fluoride, Radiat Prot. Dosim. 48, 265-272, 1993
- (11) M. Rhodes, S. Wanwilairat, T. Vilaithong and W. Hoffmann: Low Cost High Resolution

 Thermoluminescence Spectrometer in preparation
- (12) G.H. Dieke and H.M. Crosswhite: The Spectra of the Double and Triple Ionized Rare Earths, Appl. Opt. 2, 675-686, (1963)
- (13) P. Goerlich, H. Karras, H. Koetitz and P. Ullmann: Thermoluminescence Investigations on Doped Alkaline Earth Fluorides, Phys. Status Solidi 23, 313, (1967)
- (14) J.L. Merz and P.S. Pershan: Charge Conversion of Irradiated Rare-Earth Ions in CaF₂OII.

 Thermoluminescent Spectra, Phys. Rev. 162, 235-247, 1967
- (15) U. Madhusoodanan, M.T. Jose, A. Tomita, W. Hoffmann, A.R. Lakshmanan : A new Thermostimulated Luminescence Phosphor based on CaSO₄:Ag,Tm for Application in Radiation Dosimetry, Journal of Luminescence 1999 in press
- (16) R. Chen, S.W.S. McKeever: Theory of Thermoluminescence and Related Phenomena World Scientific Publishing Co., Singapore 1997

TLD300 emission spectrum

TLD300 emission spectrum

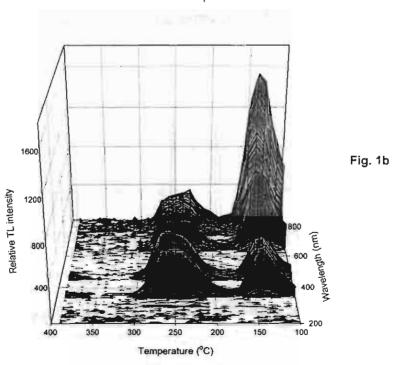


Fig. 1a , b Three-dimensional thermoluminescence emission spectrum of CaF₂:Tm (TLD 300)

TLD300 emission spectrum at 140 °C

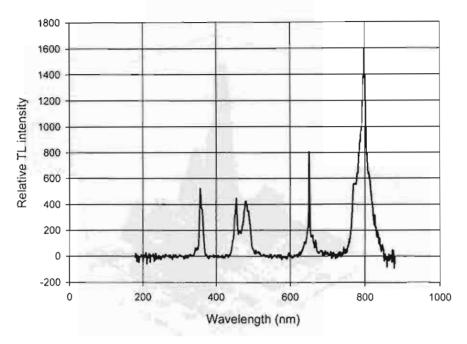


Fig. 2 TL spectrum taken at the peak temperature of the low temperature dosimetric peak (140 °C)

TLD300 emission spectrum at 240 °C

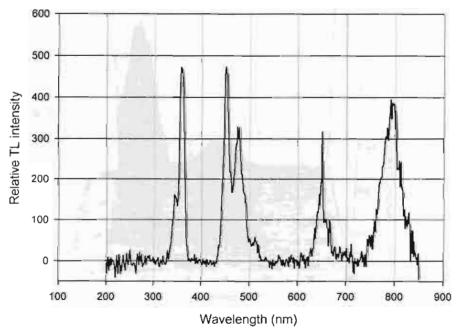


Fig. 3 TL spectrum taken at the peak temperature of the high temperature dosimetric peak (240 °C)

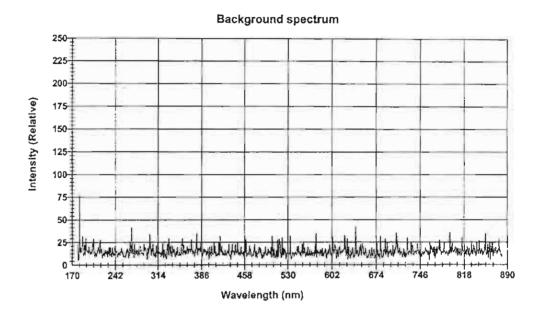


Fig. 4 Background spectrum taken during second readout of a TL chip (240 °C)

TLD300 Glow curve (30Gy Cobalt)

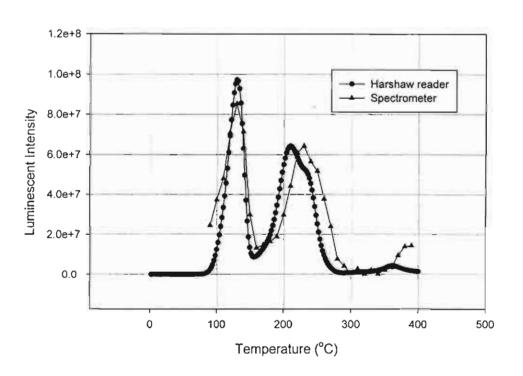


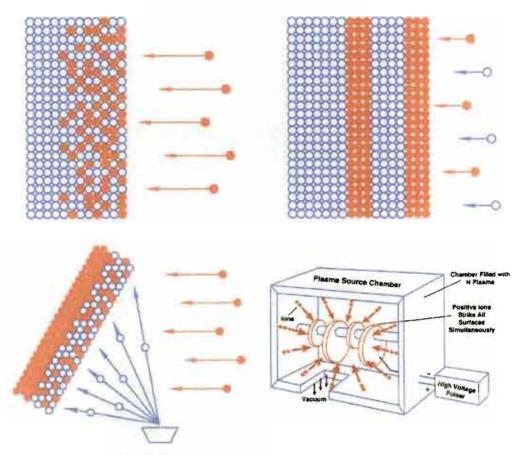
Fig. 5 Glow curves taken with conventional TL reader (---) and derived from the spectrometer (____) after spectral correction for photomultiplier response (30 Gy)

3. ไอออน-พลาสมา

งานวิจัยและพัฒนาทางด้านไอออน-พลาสมา แบ่งออกได้เป็นสองส่วนคือ งานพัฒนา เทคโนโลยีการผลิตไอออนและพลาสมา (technology development) และงานวิจัยในส่วนที่เกี่ยวข้อง กับอันตรกิริยาระหว่างไอออน-พลาสมากับวัสดุ (process development) ซึ่งนำไปสู่การปรับเปลี่ยน สมบัติเชิงพื้นผิวของวัสดุทั้งทางด้านกายภาพและชีวภาพ เทคนิคใหม่ที่ได้มีการพัฒนาใช้กันมีอยู่ 4 แบบ หลักๆ คือ

- (i) ion implantation (IM)
- (ii) ion beam mixing (IBM)
- (iii) ion beam assisted deposition (IBAD)
- (iv) plasma source ion implantation (PSII)

สำหรับแบบที่ (iv) นั้น บางกลุ่มวิจัยเรียกเทคนิคแบบนี้ว่า plasma immersion ion implantation (PIII) รูปที่ 3.1 แสดงให้เห็นหลักการพื้นฐานของเทคนิคทั้งสี่แบบ


สำหรับประเทศไทย การพัฒนาเทคโนโลยีการผลิตใอออนและเทคโนโลยีกระบวนการ จำ เป็นต้องดำเนินควบคู่กันไป ตลอดระยะเวลาที่ผ่านมา การละเลยทางด้านเทคโนโลยีเครื่องมือ โดย เฉพาะอย่างยิ่งเครื่องมือระดับสูง ทำให้ประเทศไทยไม่สามารถผลิตผลงานวิจัยเชิงพัฒนา (experimental development) ทางด้านวิทยาศาสตร์กายภาพได้อย่างสม่ำเสมอ ภาระกิจหลักส่วนหนึ่งของ โครงการนี้ คือ การพัฒนาเทคโนโลยีการผลิตไอออนและพลาสมาแบบต่างๆ เพื่อเป็นการประกันว่า ประเทศไทยจักได้มีอุปกรณ์การวิจัยที่สามารถนำไปใช้งานและผลิตผลงานวิจัยในระดับแนวหน้าได้

อุปกรณ์วิจัยหลักที่มีอยู่เมื่อเริ่มโครงการ ได้ติดตั้งภายในอาคารเทคโนโลยีไอออนบีม ซึ่ง เป็นอาคารใหม่ข้างเคียงอาคารวิจัยนิวตรอนพลังงานสูง ซึ่งใช้ติดตั้งเครื่องกำเนิดนิวตรอนความถี่สูง รูปที่ 3.2 แสดงโถงปฏิบัติการภายในอาคาร ซึ่งเป็นที่ติดตั้งเครื่องฝังไอออนทั้ง 3 ชนิด เครื่องยิง ไอออนมวลหนักเครื่องแรก (ION-CMU1) เป็นเครื่องเร่งไอออนก๊าซขนาดศักย์ไฟฟ้าเร่ง 150 kV. ใช้ แหล่งกำเนิดไอออนแบบ RF [1] สามารถผลิตไอออน H⁺, He⁺, N⁺, O⁺, Ar⁺, C⁺, B⁺ จากก๊าซซนิด ต่างๆ ได้ ระบบลำเลียงไอออน (beam transport system) ประกอบด้วย เลนซ์แม่เหล็กแบบ quadrupole triplet แม่เหล็กกรองมวลไอออน (analysing magnet) และระบบกวาดบีม ตั้งแสดงใน รูปที่ 3.3 [2,3] เครื่อง ION-CMU1 เป็นเครื่องสำหรับงานวิจัยพื้นฐานโดยเฉพาะ สำหรับเครื่องยิง ไอออนไนโดรเจน (ION-CMU2) สำหรับใช้ในโครงการนำร่องการยืดอายุซิ้นส่วนเครื่องมือกลความ

^{1.} Handbook of Ion Sources, B. Wolf (Ed.) CRC Press, 1995.

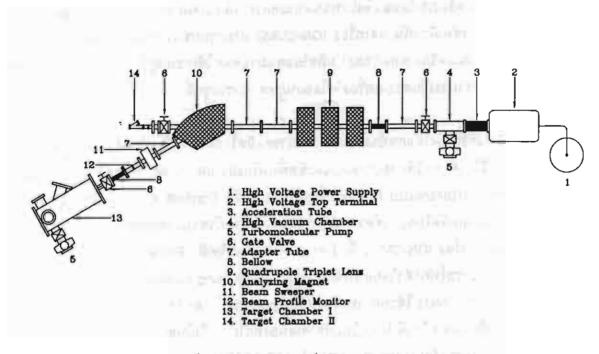
^{2.} D. Suwannakachorn et al., Nucl. Instr. and Meth. B39 (1994) 354.

^{3.} T. Vilaithong et al., ASEAN J. SCI. Technology Development 14 (1997) 87.

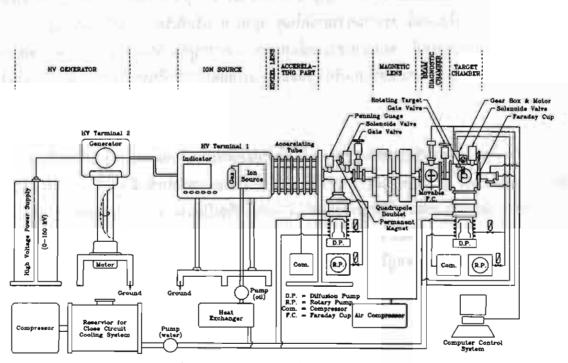
รูปที่ 3.1 เทคนิคหลักที่ใช้ไอออน-พลาสมาในการปรับเปลี่ยนสมบัติพื้นผิวของวัสดุ

รูปที่ 3.2 โถงปฏิบัติการในอาคารเทคโนโลยีใอออนบึม

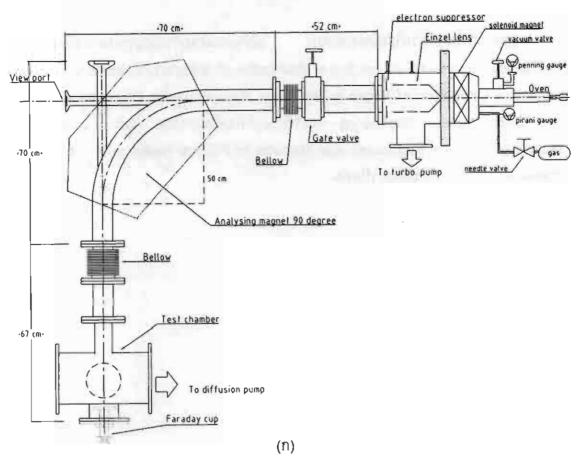
ละเอียดสูงนั้น เป็นเครื่องเร่งไอออนในโตรเจนจากแหล่งกำเนิดไอออนแบบ duoplasmatron [1] มี กำลังเร่ง 150 kV. เช่นเดียวกัน แต่เครื่อง ION-CUM2 สามารถผลิตไอออนได้กระแสไอออนอยู่ใน เรือน 1-2 mA ในขณะเครื่อง ION-CMU1 ผลิตไอออนมวลหนักได้กระแสสูงสุดประมาณไม่เกิน 200 μΑ รูปที่ 3.4 แสดงรายละเอียดของเครื่องยิงไอออนอุตสาหกรรมรุ่นนี้

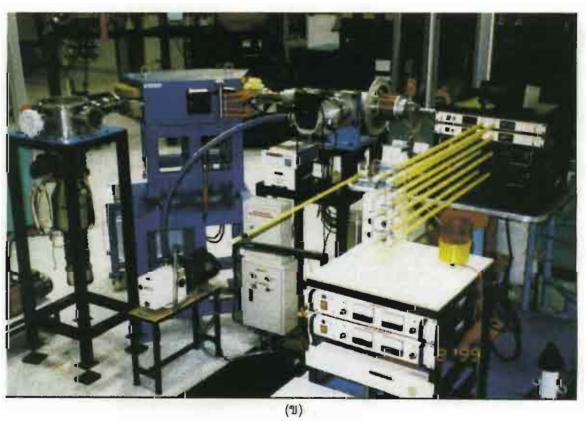

เนื่องจากเครื่องยิงไอออนทั้งสองเครื่องสามารถผลิตไอออนจากก๊าซได้เท่านั้น งานส่วนหนึ่ง ของโครงการฯ นี้จึงได้อุทิศให้การออกแบบและติดตั้งเครื่องยิงไอออนเอนกประสงค์ ขนาดกำลังเร่ง 30 kV โดยใช้หัวจ่ายไอออนแบบ Nielson ซึ่งผลิตโดยบริษัท Danfysik ประเทศเดนมาร์ค หัวจ่าย ไอออนชนิดนี้สามารถผลิตไอออนได้หลากหลายชนิด ทั้งจากก๊าซของแข็งและของเหลว ระบบลำเลียงลำไอออนของเครื่อง ION-CMU3 นี้ ประกอบด้วย เลนซ์ไฟฟ้า Einzen และแม่เหล็กกรองมวล มุมเบน 90° ซึ่งสามารถโฟกัสลำไอออนได้ด้วย (double focussing analysing magnet) ดังแสดงใน รูปที่ 3.5 เครื่อง ION-CMU3 ได้รับการทดสอบผลิตไอออน Fe[†] และ Mg[†] ได้ผลเป็นที่น่าพอใจ การ ปรับปรุงเครื่องยิงไอออนเครื่องนี้ยังดำเนินอย่างต่อเนื่องต่อไป เพื่อให้สามารถใช้งานได้หลากหลาย ขึ้น ก่อนที่จะนำมาติดตั้งเป็น preinjector ของเครื่อง ION-CMU1

ในการใช้งานบางครั้ง จำเป็นต้องใช้ไอออนก๊าชและไอออนโลหะที่มีความเข้มสูง เพื่อให้ สามารถฝังไอออนปริมาณสูง (>10¹⁸ ไอออน/ชม²) หรือเพื่อให้สามารถฝังไอออนได้ขนาดพื้นที่มาก การพัฒนาหัวจ่ายไอออนแบบ RF multicusp ซึ่งใช้สนามแม่เหล็กรูปกลีบมะเฟือง [4] เพื่อกัดบริเวณ พลาสมาและหัวจ่ายไอออนโลหะแบบการอาร์คในสูญญากาศ หรือที่เรียกว่า MEVVA [5] จึงได้เริ่ม ขึ้นที่มหาวิทยาลัยเชียงใหม่ โดยความช่วยเหลือทางเทคนิคจากบุคลากรของ Lawrence Berkeley National Laboratory ประเทศสหรัฐอเมริกา โดยมีรายละเอียดกล่าวไว้ในหัวข้อ 3.1 และ 3.2 และใน ภาคผนวก ก.


การศึกษาอันตรกิริยาระหว่างไอออนมวลหนักกับโลหะและโลหะผสม เพื่อปรับเปลี่ยนสมบัติ เชิงกล (hardness, wear, friction, corrosion) มีรายละเอียดแสดงในหัวข้อ 3.3 การศึกษาอันตร กิริยาระหว่างไอออนมวลหนักกับผนังเชลล์และเมมเบรน เพื่อเป็นแนวทางในการถ่ายโอน DNA และ การซักนำให้เกิดการกลายพันธ์ (induced mutation) เป็นงานวิจัยเปิดแดนภายใต้การสนับสนุนของ โครงการนี้ โดยมีรายละเอียดอยู่ในหัวข้อ 3.4

^{4.} K. N. Leung et al., Nucl. Instr. and Meth. B74 (1993) 291.


^{5.} I. G. Brown et al., Rev. Sci. Instrum. 57 (1987) 1069.



รูปที่ 3.3 รายละเอียดเครื่องใอออน ION-CMU1

รูปที่ 3.4 รายละเอียดเครื่องไอออน ION-CMU2

รูปที่ 3.5 เครื่องยิงไอออนเอนกประสงค์ ION-CMU3 (ก) รายละเอียด (ข) รูปภาพ

3.1 A 13.56 MHz Multicusp Ion Source for High Intensity Ar Beam

D. Boonyawan, N. Chirapatpimol, N. Sanguansak and T. Vilaithong
Fast Neutron Research Facility, Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai
50200, Thailand

A 13.56 MHz radio frequency (rf) inductively coupled multicusp ion source has been developed for producing an intense argon beam with current density in excess of 30 mAcm⁻². The source chamber is a 10 cm diameter aluminum cylinder surrounded by 20 rows of 3.5 kG Sm-Co₅ magnets which form a longitudinal line-cusp field configuration. The rf antenna coil, placed inside the source chamber, is made of a braided wire threaded through a 2 turns pyrex tube 6 cm in diameter to prevent electrical leakage and ion sputtering. A 10:1 turns-ratio matching transformer is used to match the 50 Ω output impedance of the rf generator to the impedance of the plasma load. Preliminary measurements were carried out with single and 4-hole apertures extracting system using argon gas. For single hole extraction with pressure at 5 mTorr and rf power at 500 W, the ion current density was 27 mAcm⁻². With the same operating condition, a 4-hole extracting system could achieve almost the same amount of current density of 25 mAcm⁻².

I. INTRODUCTION

A radio-frequency (rf) driven multicusp ion source has been developed for applications which need a large volume of uniform, high density and quiescent plasmas 1,2,3,4,5. The cusp field attains a uniform plasma density distribution in the source because primary electrons always diffuse back into the center. Furthermore, the plasma is free from high-energy electrons because of electron-neutral particle collisions arising from the drift motion in the cusp field. The rf discharge plasma has several advantages over the dcfilament discharge because of its simpler structure, longer lifetime operation and none of filament contamination on the target even in the high power continuous wave (cw) mode^{1,5,6}. Rf inductively coupled technique has been shown to give ion beam with much less energy spread than that of capacitively coupled one^{5,7}. Also, it has a higher discharge efficiency, especially, when operated in cooperation with multicusp magnetic field^{1,8}. The earlier version of the rf discharge plasma source with multicusp permanent magnet confinement developed at Chiang Mai University has been successful in the production of ion beam from reactive gas such as oxygen9.

This paper describes a modified version of our 13.56 MHz multicusp ion source for the production of intense argon beam using a multi-hole ring beam extracting system.

II. EXPERIMENT

A. Ion source

The ion source which is an improved version of the CMU 13.56 MHz multicusp ion source

described previously⁹ is shown schematically in Fig. 1. The source chamber is made of an anodized aluminum cylinder with 10 cm in diameter and 9 cm long. The inner wall is surrounded by 20 columns of Sm-Co₅ magnets to form a longtitudinal line-cusp field configuration. The plasma is produced by an inductively coupled rf discharge, in which rf power is transferred by ohmic dissipation of induced rf currents which are caused to flow in the plasma by high frequency transformer action. The rf power is fed to an antenna coil placed in the ion source chamber via a tunable matching box.

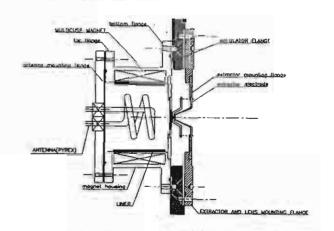


Fig. 1 Schematic diagram of the CMU 13.56 MHz multicusp ion source

The new rf antenna coil is made of a braided wire threaded through a 2 turns pyrex tube bent in a circular shape 6 cm in diameter. This version of the rf antenna coil has been adopted to avoid cracks in the porcelain coating due to the thermal stress founded in

^{*}submitted to Review of Scientific Instruments, 1999 and accepted for publication.

the last coil version. The advantage of using a braided wire in place of a single tube is that it increases the surface of conducting rf current in addition to the easing of the threading process.

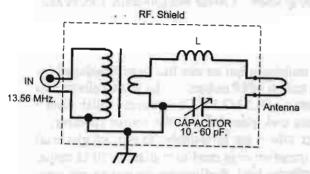


Fig. 2 Matching circuit for maximum rf power transfer to the antenna coil

The matching box as shown in Fig. 2 is installed with rf shielding and electrically connected to the end flange of the ion source to reduce rf coupling to the extraction voltage. A 10:1 turns-ratio matching transformer steps up the load current while the capacitor C and inductor L keep the matching resonance at 13.56 MHz. Rf filters are used at all input and output connectors to suppress all possible rf interferences which may affect the measured signal.

B. Beam extraction

Normally, the process of extracting and transporting positive ion beam with high current density relies on electrical neutralization of the beam by low energy electrons to keep it from expanding under the influence of its own space charge. Recently, other techniques such as the aperture displacement technique¹⁰ and dished grid extraction¹¹ have been tried for an intense ion beam. We have choosen the multihole aperture with quasi-Pierce type electrode approach. Two types of extraction systems have been used for the experiments. One is a single-hole 3electrodes extraction system, which includes 3 stainless-steel electrodes with a 2 mm diameter hole. The electrodes spacing are 3 mm and 1 mm, respectively. The other is a multi-hole extraction system, which is made of 3 stainless steel dishes with 4 of 2 mm extraction holes situating on the 2.4 cm diameter circle to produce a (discrete) ring beam. With this configuration, the second electrode for both types of extractions operates as a suppressor to prevent backstreaming electrons from accelerating back to the ion source. Experiments have been carried out on a Tshaped vacuum chamber test bench with a 520 ls⁻¹ turbomolecular pump. The ion source is powered by a 1,250 watts transistorized 13.56 MHz rf generator (ENI-OEM-12A) via a matching box. Extraction and suppression voltage supplies cover the range of 0 to 30 kV and 0 to -5 kV (Glassman HV Inc.), respectively. The gas supply is controlled by a precision needle valve. Closed-circuit cooling water with adequate flow rate is supplied to all devices.

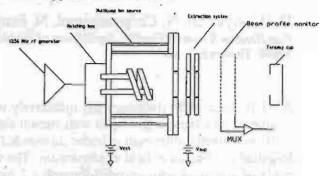


Fig. 3 Schematic of the experimental setup

The experimental arrangement including the ion source, the extraction system, and a Faraday cup is shown in Fig. 3. Typically, the first extraction or plasma electrode is electrically biased at 5 kV, and the second electrode at -1 kV with respect to ground, while the third one is connected to ground. The operating pressure of argon gas is 5 mTorr unless specified. The Faraday cup is made from stainless steel and biased with -120 V to suppress the secondary electron emission. The rf power supply is installed on an isolation stand to operate at the same potential as the ion source. This rf arrangement has been founded³ to reduce the ion beam energy spread due to rf interference. The current density is obtained by dividing the extracted beam current by the total beam extraction area.

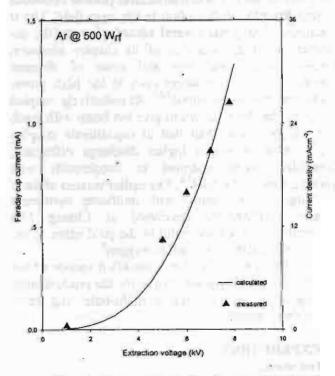


Fig. 4 Argon current density versus extraction voltage at 500 watts rf power from single hole extraction. Solid line is calculated from the Child-Langmuir equation

III. RESULTS

Figure 4 shows the dependence of the argon current density against extraction voltage at 500 watts rf power from the single-hole extraction system. The saturation current density of 27 mAcm⁻² is realized at about 8 kV extraction voltage. The extracted beam current almost follows the Child-Langmuir equation. For this extraction geometry, the angle of beam divergence measured by 2 sets of the multiwire beam profile monitor is found to be about 49 mrad. The experiment indicates that the argon current increases with the decrease in source pressure and increases linearly with increasing of rf power.

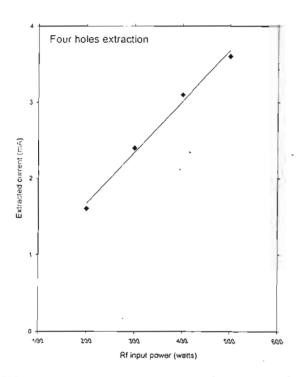


FIG. 5 Extracted argon current versus rf input power from 4-hole extraction

FIG. 6 Image of the four argon beam spots as seen on the beam profile monitor

Fig. 5 shows the extractable argon current as a function of rf power from 4-hole extraction system. The argon current measured by the modified Faraday cup for this large beam is about 3.4 mA. Fig. 6 shows four argon beam spots on the beam profile monitor with average current density of about 25 mAcm⁻².

IV. CONCLUSIONS

We have constructed a high intensity argon ion source producing ring beam with 4-hole, 3-electrode extraction system. Our experimental results obtained thus far indicate that for this kind of ion source, the current-power relation at this discharge frequency and maximum argon current density obtained are in agreement with other experiments obtained are in agreement with other experiments 40 mA cm⁻² kW⁻¹. We plan to increase beam brightness by increasing number of the extracting holes and optimizing the extraction system geometry.

ACKNOWLEDGEMENTS

We would like to thank W. Tantraporn for his technical advice and encouragement and to K.N. Leung for his advice on the design of the first version of this ion source. We also thank R. Chareonnukul, S. Amkaew and N. Pasaja for their technical assistances. This work is supported in part by the Thai Research Fund.

[1] K.N. Leung, D.A. Bachman, P.R. Herz, and D.S. McDonald, Nucl. Instrum. Methods Phys. Res. B 74, 291 (1993).

[2] P. Spadtke, J. Bossler, H. Emig, K.D. Leible, C. Muhle, H. Reich, H. Schulte, and K. Tinschert, Rev. Sci. Instrum. 69, 1079 (1998)

[3] W.A. Barletta, W.T. Chu, and K.N. Leung, Rev. Sci. Instrum. 69, 1085 (1998).

[4] Y. Lee, R.A. Gough, W.B. Kunkel, K.N. Leung, J. Vujic, M.D. Williams, D. Wutte, and N. Zahir, Rev. Sci. Instrum. 69, 877 (1998).

[5] D. Wutte, S. Freedman, R. Gough, Y. Lee, M. Leitner, K.N. Leung, C. Lyneis, D.S. Pickard, M.D. Williams and Z.Q. Xie, Nucl. Instrum. Methods Phys. Res. **B 142**, 409 (1998).

[6] S.T. Melnychuk, T.W. Deblak, and J.J. Sredniawski, Rev. Sci. Instrum. 67, 1662 (1996).

[7] Y. Lee, R.A. Gough, W.B. Kunkle, K.N. Leung, L.T. Perkins, D.S. Pickard, L. Sun, J. Vujic, M.D. Wiliams, and D. Wutte, Rev. Sci. Instrum. 68, 1398 (1997).

[8] T. Shirakawa, H. Toyoda, and H. Sugai, Jpn. J. Appl. Phys. 29, 1015 (1990).

[9] D. Boonyawan, P. Suanpoot, and T. Vilaithong, Surface and Coatings Tech. 112, 314 (1999).

[10] H. Oguri, Y. Okumura, N. Miyamoto, J. Kusano, and M. Mizumoto, Rev. Sci. Instrum. 67, 1051 (1996).

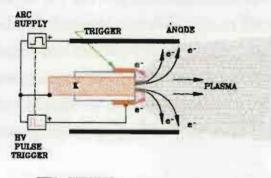
[11] J. Freisinger, J. Krempel-Hesse, J. Krumeich, H. Lob, W.D. Munz, and A. Scharmann, Rev. Sci. Instrum. 63, 2441 (1992).

[12] K.N. Leung, in "Ion Source for High Purity Ions", Proc. Of Application of Accelerators in Research and Industry, J.L. Duggan and I.L. Morgan (Eds.), AIP Press, New York, 1997, pp 1203-1205.

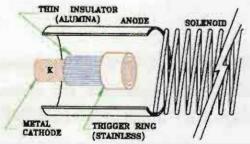
3.2 Metal-Vapour Vacuum Arc Ion Source (MEVVA)

หัวจ่ายไอออนโลหะแบบอาร์คในสูญญากาศ (Metal Vapor Vacuum Arc, MEVVA) ใช้หลัก กำเนิดไอออน โดยการผลิตพลาสมาของไอโลหะที่ให้ความหนาแน่นสูง ภายใต้กระบวนการไอโช-คอริค ซึ่งเกิดขึ้นโดยการทำให้โลหะกลายเป็นไออย่างรวดเร็ว และแตกตัวเป็นไอออนอย่างรุนแรง และจำนวนมาก มีคุณสมบัติเด่นที่น่าสนใจหลายประการ เช่น สามารถผลิตไอออนโลหะได้เกือบทุก ชนิดในตารางชาตุ มีประสิทธิภาพในการผลิตไอออนได้สูงมากที่สุดชนิดหนึ่ง ผลิตไอออนโลหะได้ กระแสปริมาณมาก (หลายๆ แอมแปร์) และมีลักษณะโครงสร้างที่ง่ายต่อการออกแบบและสร้าง ข้อ ด้อยของหัวจ่ายไอออนชนิดนี้คือ มีอนุภาคขนาดใหญ่ (macro particle) ขนาดอยู่ในเรือน 0.1 µm ของโลหะปะปนออกมากับไอออน หากใช้โลหะที่มีจุดหลอมเหลวต่ำ จำเป็นต้องมีระบบแยกไอออน และอนุภาคขนาดใหญ่ออกจากกัน ผลงานบุกเบิกของเครื่องกำเนิดไอออนชนิดนี้ เริ่มต้นขึ้นเมื่อ ปลายทศวรรษที่แล้ว ที่ Lawrence Berkeley National Laboratory โดย Brown และคณะ [1] และที่ Australian Nuclear Science and Technology Organization ก่อนที่จะเริ่มโครงการพัฒนาหัวจ่าย ใอออนโลหะชนิดนี้ คณะผู้วิจัยได้ติดต่อ Dr. Ian Brown เพื่อขอคำแนะนำทางเทคนิค และข้อมูลที่ เป็นประโยชน์ต่อการออกแบบสร้างหัวจ่าย ซึ่งได้รับความร่วมมือเป็นอย่างดี

ขณะนี้หัวจ่ายไอออนโลหะแบบ MEVVA ดังกล่าว ได้รับการพัฒนาขึ้นเพื่อใช้เป็นตัวจ่าย ไอออนโลหะกระแสสูง สำหรับการวิจัยการปรับเปลี่ยนสมบัติเชิงกลและเชิงแสงของพื้นผิววัสดุ งาน ส่วนใหญ่ในระยะแรกนี้ เป็นงานออกแบบ สร้าง และทดสอบ สมบัติทางไฟฟ้าของหัวจ่ายไอออน โลหะที่ใช้ผลิตไอออนขณะนี้ ยังคงใช้ทองแดงในการทดสอบ เพราะเป็นวัสดุที่มีอยู่แล้วในห้องปฏิบัติ การ คณะผู้วิจัยได้ทำการทดลองทำฟิล์มโลหะโดยวิธี plasma deposition กับวัสดุเป้าชนิดต่างๆ ที่ เป็นโลหะและฉนวน สำหรับไอออนโลหะชนิดอื่น ๆ ที่มีศักยภาพในทางประยุกต์ เช่น Fe, Ni, Cr ฯลฯ ได้บรรจุแผนดำเนินงานไว้ในเฟสต่อไป นอกจากนี้ คณะผู้วิจัยได้ริเริ่มนำวิธีทางสเป็คโตรสโค ปีเชิงแสง มาวิเคราะห์องค์ประกอบของพลาสมาไอโลหะ สเป็คโตรมิเตอร์ที่นำมาใช้เป็นผลิตภัณฑ์ ของ Ocean Optic, Inc รุ่น S2000 สามารถวัดสเปคตรัมของแสงในช่วงความยาวคลื่น 200-850 nm โดยใช้ CCD 2048 channel และมี resolution 1.3 nm. การทดลองวิเคราะห์พลาสมาเบื้องตัน จาก หัวจ่ายไอออน MEVVA บอกให้ทราบชนิดของไอออนในพลาสมา ได้ทั้งอยู่ในรูปของไอออนและ อะตอมที่เป็นกลาง

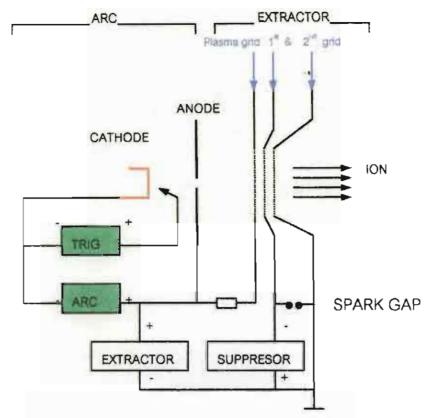

3.2.1 หลักการเบื้องต้นและระบบหัวจ่าย

คณะผู้วิจัยได้ออกแบบทั้งหัวจ่ายไอออน หรือ ที่เรียกโดยทั่วไปว่า หัวจ่ายพลาสมา (plasma gun) และระบบขั้วดึง (extraction) ให้สามารถใช้งานทั้งในแบบ ion implantation และ plasma immersion โดยมีโครงสร้างของหัวจ่ายพลาสมาดังแสดงในรูป 3.2.1 แคโถด (ใช้โลหะอะไรก็ได้ที่


^{1.} I. G. Brown et al., Rev. Sci. Instrum. 57 (1987) 1069.

ต้องการใช้ผลิตไอออน) ทำจากทองแดง มีแก้วไพเร็กซ์เป็นฉนวน คั่นระหว่างแคโถดกับวงแหวน โลหะของขั้วทริกเกอร์ และใช้อลูมิเนียมกลึงขึ้นรูปทรงกระบอกทำขั้วแอโนด

การจุดอาร์คเริ่มต้นด้วยการทริกด้วยสนามไฟฟ้าแรงสูงจากวงแหวนทริกเกอร์ผ่านชั้นฉนวน ไพเร็กซ์ด้วยกลไก surface ionization ไปยังผิวแคโกดโลหะ (เส้นสีม่วงในไดอะแกรมภาพ ก.) เกิด ความร้อนที่ผิวแคโถด และขยายตัวเป็นใออย่างรุนแรง เป็นจุดเริ่มต้นของการก่อตัวพลาสมา ใน ช่วงเวลาถัดมา (เรือน Usec) จะเกิดการอาร์คขึ้นระหว่างแอโนดกับแคโถด โดยอาศัยกำลังจากภาค จ่ายไฟอาร์ค ที่สามารถจ่ายกระแสอาร์คขนาดหลายร้อยแอมแปร์ จนถึงมากกว่าพันแอมแปร์ ใน แบบพัลส์ที่มีความกว้างน้อยกว่า µsec ต่อการทริกหนึ่งครั้ง (เส้นโค้งสีดำในภาพ 3.2.1 (ก)) พลาสมาจะพุ่งออกด้วยแรงระเบิดในทิศตั้งฉากกับผิวแคโถด ผ่านช่องแอโนดออกไปในทิศทางเข้า หาเป้า (เส้นตรงสีดำในภาพ 3.2.1 (ก)) อัตราเร็วในการทริก ขึ้นกับกำลังของภาคจ่ายไฟอาร์ค ซึ่ง ขณะนี้อัตราเร็วในการทริกสูงสุด 5 ครั้งต่อวินาที (pps) ในอนาคตมีแผนที่จะเป็น 25 pps หรืออาจ เพิ่มความกว้างของพัลส์เป็นหลาย ๆ µsec โซลินอยด์ที่เห็นในภาพ 3.2.1 (ข) ใช้สร้างสนามแม่ เหล็กในแนวแกน เพื่อเพิ่มประสิทธิภาพในการลำเลียงพลาสมา รูปที่ 3.2.2 แสดงไดอะแกรมหัวจ่าย พลาสมา ขั้วไฟฟ้าดึง และภาคจ่ายไฟต่างๆ ได้แก่ ภาคจ่ายไฟทริกเกอร์พัลส์แคบ ภาคจ่ายไฟอาร์ค ชนิด LC pulse line ที่มีอิมพีแดนซ์ต่ำ ภาคจ่ายไฟขั้วไฟฟ้าดึง และภาคจ่ายไฟซัพเพรสเซอร์ สำหรับระบายอิเลกตรอนลงกราวน์ เพื่อไม่ให้อิเล็กตรอนไหลย้อนกลับไปยังหัวจ่ายพลาสมา จุดนี้มี โอกาสสปาร์คจาก space change สูงมาก จึงต้องมี spark gap เพื่อป้องกันการเสียหายต่อวงจรซัพ เพรสเซอร์ด้วย สำหรับภาพเขียนแบบสมบูรณ์ของเครื่องกำเนินไอออนโลหะ MEVVA ที่สร้างขึ้น แสดงไว้ในรูปที่ 3.2.3



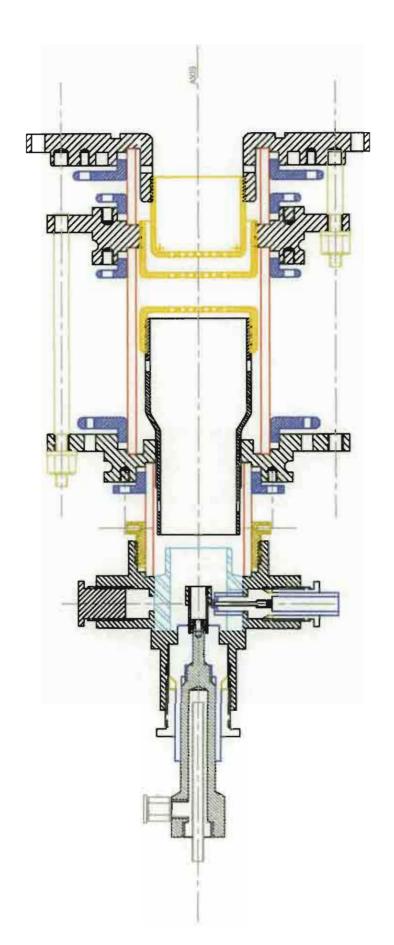
ก. แสดงหลักการพื้นฐานที่ใช้กำเนิดพลาสมาความหนาแน่นสูง

 แสดงโครงสร้างภายในหัวจ่ายวิธี อาร์คในสูญญากาศ

รูปที่ 3.2.1 แสดงโครงสร้างอย่างง่ายของหัวจ่ายพลาสมาไอออนโลหะ MEVVA

รูปที่ 3.2.2 แสดงไดอะแกรมภาคจ่ายไฟต่างๆ สำหรับเครื่องกำเนิดไอออน MEVVA

สำหรับภาคจ่ายไฟอาร์คและทริกเกอร์ที่สร้างขึ้นมีคุณลักษณะดังนี้

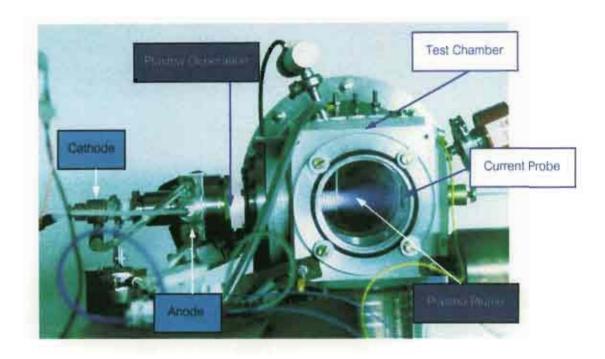

ภาคจ่ายไฟอาร์ค

Туре	LC	pulse line	จำนวนทั้งหมด 8 section
L/C ratio	45	$\mu H/22 \mu F$	
Pulsewidth	60	μs/section	(total $\cong 500 \mu s$)
Current	700	Amax	
Charge voltage	1000	Vmax	
Repetition	1	pps	

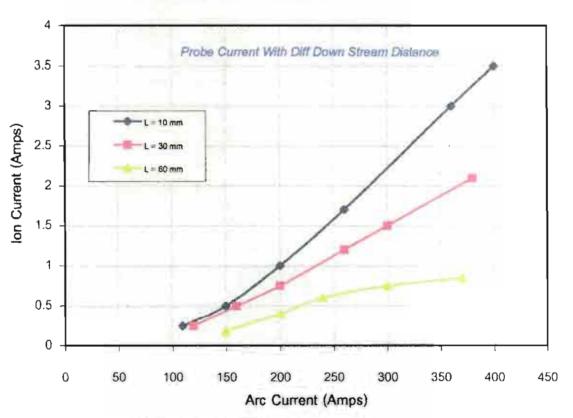
II.) ภาคจ่ายไฟทริกเกอร์ สร้างขึ้นใช้งานสองแบบด้วยกัน

ภาคจ่ายไฟทริกเกอร์กำลังสูง

Туре	high vo	ltage capacitor discharge through spark gap
Charge voltage	5-30	kV
Current	≥ 5	kA
Pulsewidth	1	μs
Impedance	≅ 2.5	Ω
Repetition rate	1	pps

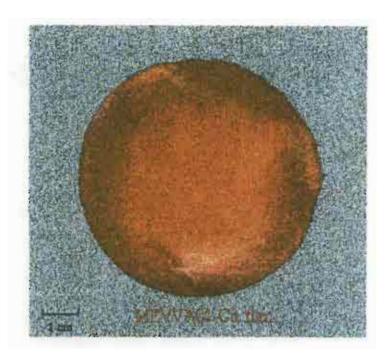

รูปที่ 3.2.3 แสดงภาพเขียนแบบของเครื่องกำเนิดไอออนโลหะ MEVVA ที่หน่วยวิจัยไอออนบีม มหาวิทยาลัยเชียงใหม่

ภาคจ่ายไฟทริกเกอร์พัลส์กว้าง สำหรับแคโถดที่มีจุดหลอมเหลวต่ำ

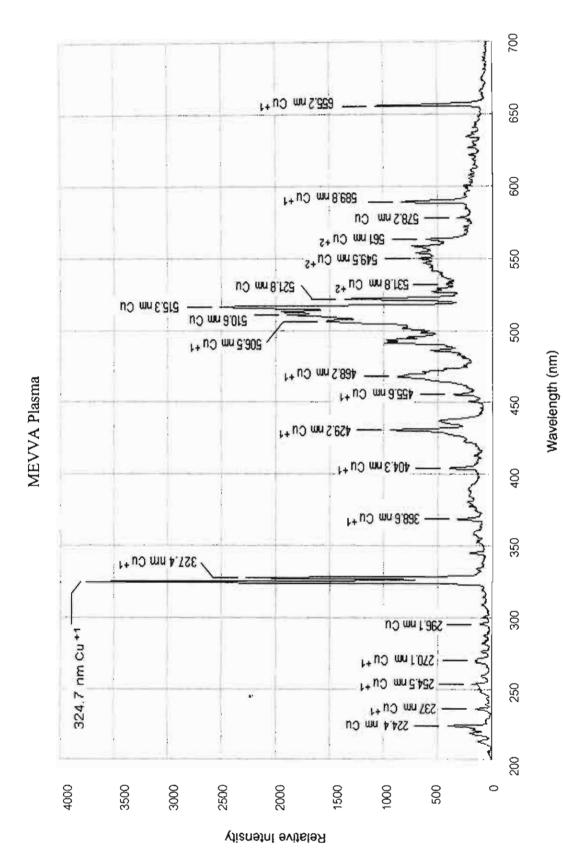

Туре	step up transformer		mer (ดัดแปลงจากคอยล์จุดระเบิดรถยนต์)
Output voltage	≅ 10	kV	
Pulsewidth	2	ms	
Energy/pulse	1-2	joule	
Repetition rate	0.3-10	pps	สามารถทำงานในแบบ single pulse ด้วย

3.2.2 ผลการทดสอบและใช้งาน

รายละเอียดต่างๆ เกี่ยวกับเครื่องมือ และผลการทดลอง ได้แสดงไว้ในหัวข้อ 3.2.3 ซึ่งเป็น สำเนาต้นฉบับที่ได้นำเสนอในงาน "The 2nd Asian-European International Conference on Plasma Surface Engineering" วันที่ 15-19 กันยายน พ.ศ.2542 ณ กรุงปักกิ่ง ประเทศจีน ในหัว ข้อเรื่อง "Development of metal vapor vacuum arc (MEVVA) ion source in Thailand" และได้ ส่งเอกสารเต็มรูปไปยังวารสาร Surface and Coatings Technology สำหรับผลการทดสอบที่จะ เสนอในที่นี้ จะเป็นผลโดยสังเขปและการทดลองนำร่อง การทดสอบเบื้องต้นได้จากการติดตั้งหัวจ่าย พลาสมา เข้ากับแชมเบอร์ทดสอบขนาดเล็ก ที่มีหน้าต่างเป็นพลาสติกใส เส้นผ่าศูนย์กลางประมาณ 10 ชม. ซึ่งสามารถสังเกตุเห็นลำพลาสมาขณะที่เกิดอาร์คได้ ดังแสดงในรูปที่ 3.2.4 (ก) ในภาพ แสดงให้เห็นส่วนสำคัญของหัวจ่ายพลาสมา ซึ่งติดตั้งอยู่ด้านช้ายของแชมเบอร์ทดสอบ ที่ตำแหน่ง ประมาณขอบด้านช้ายของแชมเบอร์ จะเห็นโชลินอยด์ที่ให้กำเนิดสนามแม่เหล็กในแนวแกน เพื่อ เพิ่มประสิทธิภาพของการลำเลียงพลาสมา สำหรับกราฟในรูป 3.2.4 (ข) แสดงกระแสไอออนที่วัดได้ โดยอาศัยโพรบวัดกระแส (current probe) ที่ระยะห่างต่างๆ กัน สังเกตุโพรบวัดกระแสได้ที่บริเวณ ภายในด้านขวาของแชมเบอร์ การวัดประสิทธิภาพของการลำเลียงไอออนโดยใช้โซลินอยด์โค้ง (เพื่อ กำจัดอะตอมเป็นกลาง) ได้ใช้โพรบชนิดเดียวกัน นอกจากนี้คณะผู้วิจัยยังได้ทดลองเคลือบ (ทำ) ฟิล์มโลหะทองแดงลงบนแผ่นฉนวนชนิดต่างๆ เช่น เชรามิค พลาสติก และแก้ว เพื่อศึกษาการนำไฟ ฟ้า และเพื่อประยุกต์ด้านอื่น ให้ผลการเคลือบฟิล์มโลหะบนแผ่นกระจำเป็นที่น่าพอใจ ดังแสดงในรูป ที่ 3.2.5 การทดลองสุดท้าย คือ การวัด emission spectrum ระหว่างการทำงานของหัวจ่ายไอออน ชึ่งผลการวิเคราะห์เบื้องต้นสามารถแยกแยะ emission ที่เกิดจากอะตอมเป็นกลาง Cu และไอออน ประจุต่างๆ $Cบ^{-1}$, CU^{-2} และ CU^{-3} ดังแสดงในกราฟรูปที่ 3.2.6



(ก) ภาพแสดงให้เห็นส่วนสำคัญของหัวจ่ายไอออนและแสดงลำพลาสม่าขณะทำงาน



(ข) กราฟแสดง plasma ion current เทียบกับ arc current วัดห่างจากแคโถด เป็นระยะทางต่างๆ กัน

รูปที่ 3.2.4 แสดงภาพหัวจ่ายพลาสมา MEVVA ที่สร้างขึ้นและผลลัพธ์ที่ได้

รูปที่ 3.2.5 แสดงตัวอย่างการทำฟิล์มโลหะทองแดงบนกระจก โดยวิธี plasma immersion deposition

รูปที่ 3.2.6 กราฟแสดงสเปคตรัมของอนุภาคเป็นกลาง และไอออนประจุต่างๆ จากพลาสมาของ MEVVA

3.2.3 Development of metal vapour vacuum arc (MEVVA) ion source in Thailand.*

S. Davydov^a, B. Yotsombat^b, T. Vilaithong^b, V. Ano^b, P. Pramukkul^b, R. Rungroenkul^a, S. Sansonsiri^b

^eInstitute for Science and Technology Research and Development, Chiang Mai University, Chiang Mai 50200, Thailand.

^bDepartment of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.

*submitted to Surface and Coatings Techbology, 1999.

Abstract

MEVVA ion source has been constructed and installed at Chiang Mai University. The design and features of the source operation with copper cathode are described. The cathode-insulator-trigger electrode system (the insulator was a thin wall pyrex tube) and the cooling efficiency were found to be reliable during the source operation (without the cathode-insulator replacement) with total number of pulses of about 3 x 10⁵ and with the repetition rate of up to 5.5 pps at 200 A arc current and 1 pps at 360 A current. The main arc and plasma ion current-voltage characteristics have been measured for different materials and configurations of the anode. Also, to increase the ion current density at long distances from the cathode surface, an efficiency of employing a straight and 25° curved solenoids, which are connected electrically to the anode in series, has been examined. It was observed that the decreasing of the ion current along the distance of plasma propagation did not depend on the geometrical parameters of the anode. The maximum plasma ion saturation current obtained at 3 cm distance from the cathode was about 6 A and the coefficient of transformation of the arc current to the ion current was found to approach 3%. By using the straight solenoid the ion current density at 15 cm distance from the cathode was increased by more than one order of magnitude to 0.8 A-cm⁻². The transport efficiency of the straight solenoid was more than two times higher than that for the 25° curved solenoid and was found to be effected by the magnitude of the arc current. Preliminary experiments with copper film deposition on some dielectric substrates are discussed.

Keywords: Vacuum arc; Metal plasma; Ion deposition

1. Introduction

In recent years, different versions of metal vapour vacuum arc (MEVVA) ion sources, based on the pioneering work of Brown et. Al. [1,2], have been developed in many research centers and successfully utilized for direct ion implantation and plasma immersion ion implantation and deposition techniques (see, for example, [3-5]). For the

second technique, the experimental setup usually includes the following main parts: vacuum chamber, plasma source, covered magnetic duct as macroparticle filter, ion current measurement system and a sample holder which can be bias with negative voltage. When a high current vacuum arc discharge serves as the plasma source, a large variety of high charge states metal ion species can be produced. In this case, a range of application of such technique for surface modification of materials were widely adopted [6].

At Chiang Mai University in Thailand, where several years ago 150 kV low current analyzed and high current non-analyzed gaseous ion implanters had been self-developed [7,8], program of developing metal ion implantation and deposition technology has been recently launched and the first prototype of MEVVA ion source has been constructed. In this paper, the structure and characteristics of the plasma source operation with copper cathode are described including a preliminary results of thin film deposition experiments. The examination of the ion source operation when it is connected to a three multihole grids extraction system at voltage of up to 30 kV is now in progress.

2. Experimental equipment

2.1 Construction of the source

The basic structure of the plasma source including the curved magnetic duct, vacuum chamber and the sample holder, which was used also as a probe for plasma current measurements, is given in Fig 1(a). The discharge chamber housing(1) made from stainless steel is connected to the vacuum chamber with the help of a 48 mm inner diameter epoxy resin tube (2). Apart from the epoxy resin, other insulation materials such as pyrex and nylon have been tested and no difference of the source performance was observed when a straight or a curved magnetic ducts were inside of the insulation tube. The housing(1) has three feedthroughs: for the cathode holder(3) which was made from brass, for triggering of arc discharge (4) and for gas injection into the cathode-anode area(5). Teflon was used as high-voltage insulation and sealing material for these feedthroughs. Housing(1) has a cylindrical

shape inside (46 mm inner diameter) and could serve directly as the anode. Besides, by using additional insertions, it is possible to change and examine different geometry and materials of the anode. During the source operation, the pressure inside of the vacuum chamber was kept at about 8×10^{-6} torr.

To trig the main vacuum arc discharge we used the method applying a high-voltage surface discharge across an insulator. The cathode (6) was made from 8 mm diameter pure copper rod. This is surrounded by a thin (1 mm wall thickness) pyrex tube as insulator (7) which in turn was surrounded by a ring shaped trigger electrode (8) made from stainless steel (see Fig.1(b)). The special attention has been given to ensure a good contact between surfaces of these three components. The cathode-insulator-trigger electrode configuration and the combination of materials were found to be reliable enough during the source operation with the total number of pulses not less than 3×10^5 and no misfiring was observed. The stability of the arc discharge was effected only when the cathode surface, especially in periphery area (closed to the pyrex tube walls), was significantly eroded. Also, it should be noted that the cooling efficiency of the cathode and anode was high enough to ensure the source operation with the repetition rate of 1 pps at 360 A arc discharge current and up to 5.5 pps at 200 A current. The limitation was caused only by the capacity of arc power supply.

2.2 Arc and trigger power supplies and the current-voltage measurement system

Fig. 1(b) shows the schematic diagram of the electrical circuits for the source operation including arc discharge and the plasma saturation ion current-voltage measurements technique. A straight solenoid was connected to the anode in series. It is known that the magnitude of the arc current and pulse duration of the arc discharge depend on the capacity of arc power supply. We used a simple pulse LC line with impedance of approximately 2.8 Ω which could be charged to a voltage of up to 800 V. The LC line consisted of 8 sections of 22 μ F capacitors and 45 μ H inductive coils. With this arrangement,

the maximum arc current of up to 400 A and the length of pulse duration approximately 0.55 ms was obtained.

Two kinds of trigger supplies have been tested. The first one was a very high power trigger based on low-inductive capacitor discharge through a narrow spark gap filled by nitrogen at 2 atm pressure. It produced 1 µs pulse duration with 18 kV and more than 500 A in amplitude. The second one was a relatively low power with approximately 10 A in amplitude and about 2 ms width. It was made on the basis of high step-up ratio 1:80 transformer (ignition car coil). Both trigger units ensured reliable triggering of vacuum arc discharge, but the second trigger supply was simple to be handle and was preferable for our experiments.

As can be seen in Fig. 1(b), arc current pulse is measured with the help of a 5 m Ω low-ohmic shunt resistor (R₁) which consisted of 50 low-inductive resistors connected in parallel. The voltage drop across the cathode-anode during discharge was measured through a 50:1 (R₃:R₄) attenuator of 50 Ω output impedance. For the measurement of the plasma ion saturation current at different distances from the cathode, a moveable 2.5 cm diameter stainless steel flat probe was used. This probe could be biased negative or positive up to 35 V. Also, 1 Ω shunt resistor (R₂) has been used. Two channels storage oscilloscope was used to collect pulse signals.

3. Experimental Results and Discussion

An example of the behavior of the arc current, plasma ion saturation current and the voltage drop across the cathode-anode during the arc discharge is shown in Fig. 2. The straight solenoid with the length of 13 cm, and the inner diameter of 3 cm made from conventional 2.5 mm diameter aluminium wire was connected to the anode and driven by the arc current itself. It can be seen in Fig.2(a) that the duration of the arc current and ion current are equal and pulse profiles are almost identical except that the ion current pulse is high-frequency modulated. By comparing the behavior of the plasma ion current with and without the solenoid at different magnitudes of the arc current, the following has been observed: 1.

At the same magnitude of the arc current the level of high-frequency noise increases significantly when the solenoid is used. 2. The signal to noise ratio gets lower (with or without the solenoid) when the arc current is increased. The first feature may be attributed to the additional plasma instabilities which are caused by magnetic field of the solenoid. The nature of the second feature, which was noticed by many authors, was not fully understood. The oscillogram in Fig. 2(b) shows that at the beginning of the arc discharge the voltage across the cathode-anode gap sharply drops to a value of approximately 20 V and stays nearly constant during the discharge. Also, it was found that the cathode-anode potential during the arc discharge does not depend on the value of arc current over the range from 50 to 360 A. When the arc discharge was ignited at arc current of 50 A or less, the discharge was not stable enough and misfires were observed. Reliable stability of the discharge is achieved at arc currents higher than 80 A.

Usually, the plasma ion current measurements were carried out with bias voltage at the probe at about -30 V. Also, the current-voltage characteristics of the plasma current as kind of Langmuir curves have been measured. In Fig. 3, the values of the plasma current collected by the probe at different distances from the solenoid exit are plotted as function of the bias voltage. It can be seen that the ion current becomes almost saturated at negative voltages of more than -15 V. When a high positive bias voltage is applied (the probe collects mostly the electron flux) the polarity of the signal recorded by oscilloscope is altered. The probe current is equal to zero at the voltages of 19 ± 1 V which is very close to the value of the cathode-anode potential during the discharge. Using the data in Fig. 3, it is possible to assume that the mean energy of the ion stream coming out from the solenoid is approximately 19 eV which corresponds to the mean velocity of copper ions of about 8 x 10^5 cm-s⁻¹.

In Fig. 4, the value of plasma ion current is plotted as a function of the arc current for the following three configurations: without solenoid(♠), with a straight solenoid(■) and with approximately 25° curved solenoid(♠) (the curved solenoid was 5 cm longer than the straight

one and made from copper wire). It is seen that the ion current is almost proportional to the arc current.

In Fig. 5 the data are collected which have been obtained by measuring the plasma ion current at different distances from the cathode surface with and without the straight solenoid. This shows that the ion current sharply decreases along the distance from the cathode (without the solenoid) and also from the solenoid exit. At 15 cm distance (without the solenoid) the value of the ion current density did not exceed 0.05 A-cm⁻². At the same distance when using the solenoid, the ion current density is increased by more than one order of magnitude to 0.8 A.cm⁻². Using the data in Fig. 4 and 5, it is possible to estimate the coefficient of transformation of the arc current I_{arc} to the plasma ion current I_{ion} as $\varepsilon = \frac{I_{uon}}{I}$, which shows the efficiency of the plasma source. Another important parameter is the plasma transport efficiency of the solenoid K as a ratio of the Iion leaving the solenoid to the Iion entering it. For our plasma source, the maximum transformation coefficient measured at about 3 cm distance from the cathode surface was found to approach 3 %. This value of E is in a good agreement with the data [9] when the cathode-anode area is not surrounded by an additional magnetic coil. The plasma transport efficiency of the solenoid was observed to be depended on the magnitude of the arc current, for low currents ($I_{arc} \le 200$ A), the value of K is of about 20 % or less. When $I_{arc} \ge 300$ A the transport efficiency increases. Also, the transportation efficiency of the straight solenoid is more than two times higher than the curve solenoid.

The above mentioned results were obtained by using a cylindrical aluminium anode with inner diameter of 3 cm. Also, other anode materials (copper and stainless steel) and configurations (cylindrical and conical with different inner diameters and length) have been tested. Some of these configurations including the value of ion current as a function of a downstream distance from the cathode are given in Fig.6 (the configurations with longer distances between the cathode surface and the anode edge are not shown). It is seen that the magnitudes of the ion current along the distance of plasma plume propagation are not effected by different shapes of the anode. The only point observed was that for the stainless

steel cylindrical anode with 4.6 cm diameter, a shot-to shot reproducibility and a triggering reliability were slightly lower than for another anode configurations.

4. Application

The MEVVA source has been tentatively employed for plasma deposition of thin Cu films onto various non-metal substrate materials, such as glass, plastics, polyester transparency and ceramics, owing to the interests in applications on decoration, optical metal films, conductive nano-films and etc.[10]. Specimens of glass, transparent films and ceramic were prepared in a size of about 8 x 8 cm² for the deposition. Three doses; 3;6 and 10 x 10¹⁷ atoms/cm², were selected for the deposition. After the deposition, the specimen surfaces were observed using an image microscope, the chemical compositions were analyzed using the XRF technique, and the electrical resistance were measured either directly or using the I-V method.

It was found that the thin film surface morphology depends on the substrate, for example, that on glass in apparently smoother than those on other substrate materials. The impurities, mainly including some metals that supposedly come from the inner parts of the ion source when plasma forms, in the film are basically less than 10% and decreasing with the film thickness increasing.

The measured sheet resistances of the films on glass and soft plastics are shown in Fig. 7. It is seen that the resistance almost logarithmically decreases with the deposition dose increasing, i.e. with the film thickness increasing (the corresponding thicknesses for the three doses are estimated to be about 30, 60 and 100 nm, respectively). This indicates that the microstructure of the film is significantly improved as the dose increases from a higher porosity to a higher density. The density dependence of the resistivity is manifested by the fact that the measured resistance data do not follow reciprocal relationships with the dose or the film thickness, as shown in Fig. 7, while a constant resistivity should do. Instead, the measured data show steeper slope than the reciprocal relationship, implying that when the film increases its thickness and resistivity decreases rather than keeps constant. From the

resistance data, which show lower values for the glass-based film than the plastics-based film, it also proves that the quality of the film on glass is better than that on plastics, and the thinner the film, the more the difference. Although the thicker film gains the lower resistance, the thinner film maintains much better transmittance, while the former exhibits a good reflectivity. This is only a testing work on using pure metal for forming transparent and conducting films, which cannot be competitive with some recently developed special compound films for the purpose [11], yet it provides hints to the work in this direction.

5. Conclusions

Metal vapour vacuum arc discharge plasma ion source has been developed and tested with copper cathode at Chiang Mai University in Thailand. The cathode-insulator-trigger electrode system and cooling efficiency were found to be reliable during the source operation with total member of pulses of about 3 x 10⁵ (without the cathode-insulator replacement) and with the repetition rate of up to 5.5 pps at 200A arc current. The main arc and plasma ion current-voltage characteristics have been measured and the efficiency of employing a straight and 25° curved solenoids has been examined. The maximum plasma ion saturation current obtained at 3 cm distance from the cathode surface was about 6 A and the ion current density at 15 cm distance from the cathode approached 0.8 A-cm⁻² when a straight solenoid was used. The coefficient of transformation of the arc current to the ion current was close to 3%. The transport efficiency of the straight and the curved solenoids, which were electrically connected to the anode in series, was found to be increased at higher arc currents. Resistivity of copper films deposited on some dielectric substrates at different does have been examined.

Acknowledgment

The supports from Thailand Toray Science Foundation and the National Institute of Metal and Materials Technology and the Thailand Research Fund are gratefully acknowledged. The authors would like to thank Ian G. Brown from Lawrence Berkeley

National Laboratory for his useful advice and Yu Liangdeng for his discussion on film deposition.

References

- Ian G. Brown, James E. Galvin and Robert A. MacGill, Appl. Phys. Lett. 47, 4 (1985) 358-360
- 2. Ian G.Brown, Rev. Sci. Instrum. 65,10 (1994) 3061-3081.
- 3. P.J. Evans, G.C. Watt and J.T. Noorman, Rev. Sci. Instrum. 65,10 (1994) 3082-3087.
- Zhang Huixing, Zhou Fengsheng, Li Qiang, Zhang Xiaoji and Ji Chengzhou, Surface and Coatints Technology, 66 (1994) 345-349.
- 5. B. Wei, K.Komvopoulos and I.G. Brown, J. Mater. Res. 14,5 (1999) 2181-2190.
- 6. Andre Anders, Surface and Coating Technology 93(1997) 158-167.
- T. Vilaithong, L.D. Yu, D. Suwannakachorn, S. Davydov, S. Thongtem, B. Yotsombat and S. In tarasiri, Surface and Coating Technology 83(1996)322-328.
- T. Vilaithong, D. Suwannakachorn, B. Yotsombat, D. Boonyawan, L.D. Yu, S. Davydov, M. W. Rhodes, S. Intarasiri, P. Suanpoot, R. Charoennugul, P. Vichaisirimongkol, S. Aumkaew and V. A-no, ASEAN J. Science and Technology for Development 14(2) (1997) 87-102.
- Andre Anders, Simone Anders and Ian G Brown, Plasma Sources Sci. Technol. 4 (1995) 1-12
- 10. B.S. Xu, S.N. Ma and J.J. Liu, Proceedings of the International Conference on Surface Engineering, Shanghai, November 1997, eds.: B.S. Xu, S.N. Ma, J.J. Liu and Y.L. Zhu, China Machine press (Beijing, 1997)p.273.
- M. Nastasi, J.W. Mayer and J.K. Hirvonen, Ion-Solid Interactions: Fundamentals and Applications, Cambridge University Press (N.Y. 1996).

Figure Captions

- Fig. 1 Schematics of the experimental facility (a) and the electrical circuitry (b).
- Fig. 2 (a) Typical pulses of arc current (upper trace) and plasma ion current (lower trace). Sweep speed is 100 μs/div; (b) the behavior of the cathode-anode voltage. The lower straight line is zero level and the upper straight line is the charge voltage of the LC circuit. Sweep speed is 100 μs/div.
- Fig. 3 Collected probe plasma current as a function of bias voltage at the distances of 10, 40 and 70 mm from the exit of the straight solenoid. Arc current is 200 A.
- Fig. 4 Ion current versus arc current without solenoid, with straight solenoid and with 25° curved solenoid.
- Fig. 5 The values of ion current at different distances from the cathode surface with (blank) and without (solid) the straight solenoid.
- Fig. 6 Ion current as a function of a downstream distance from the cathode (without solenoid) for cylindrical aluminium (▲) and stainless steel (■) anode and conical copper anode (♦) at 200 A arc current.
- Fig. 7 The Cu-dose dependence of the sheet resistance of the deposited films. The curves are the best fitted reciprocal functions (the dash line for the data on plastics, and the dot line for the data on glass). The figure on the top-right uses the common logarithm scale for the sheet resistance.

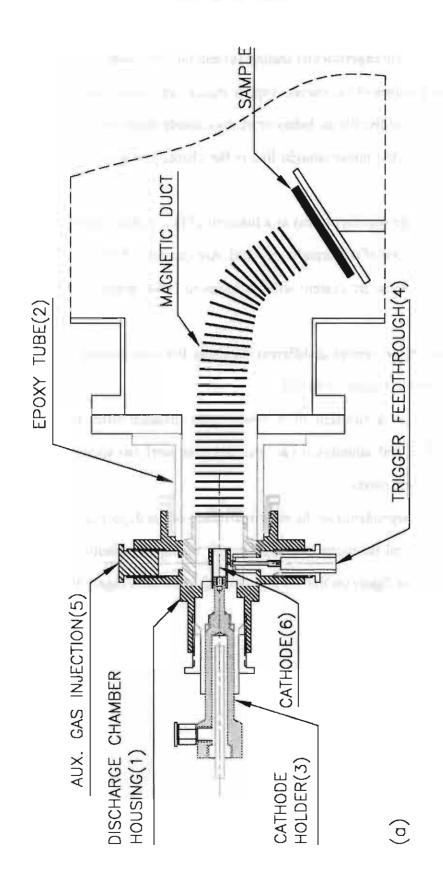


Fig.1(a)

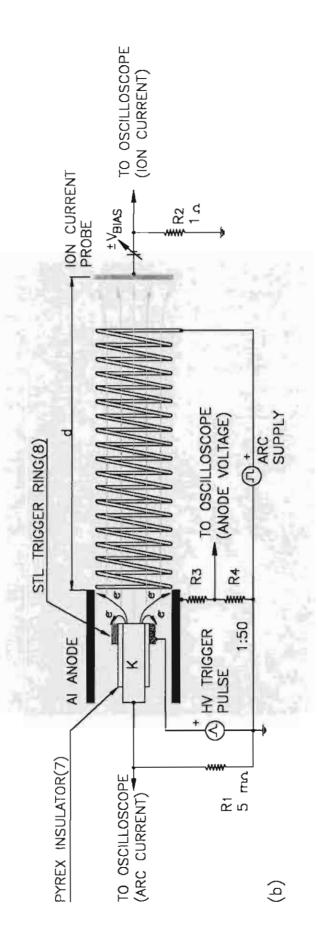


Fig.1(b)

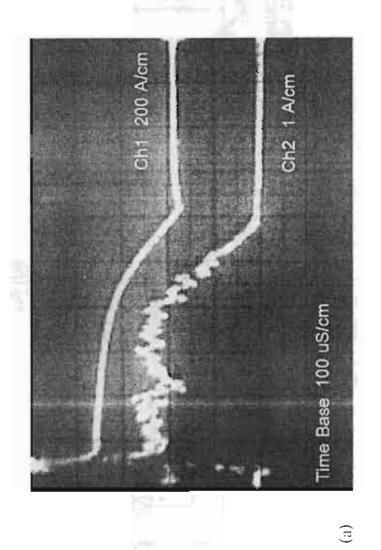
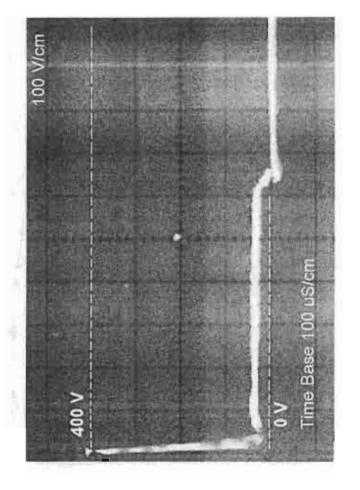
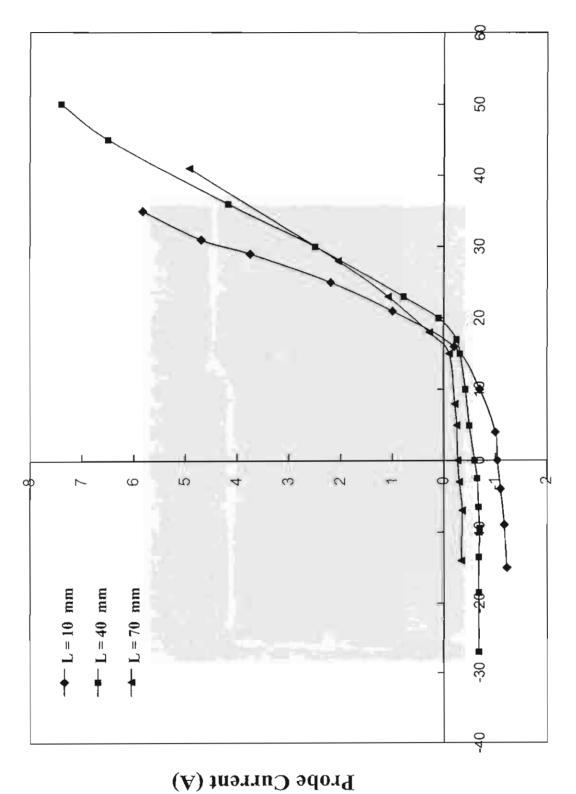
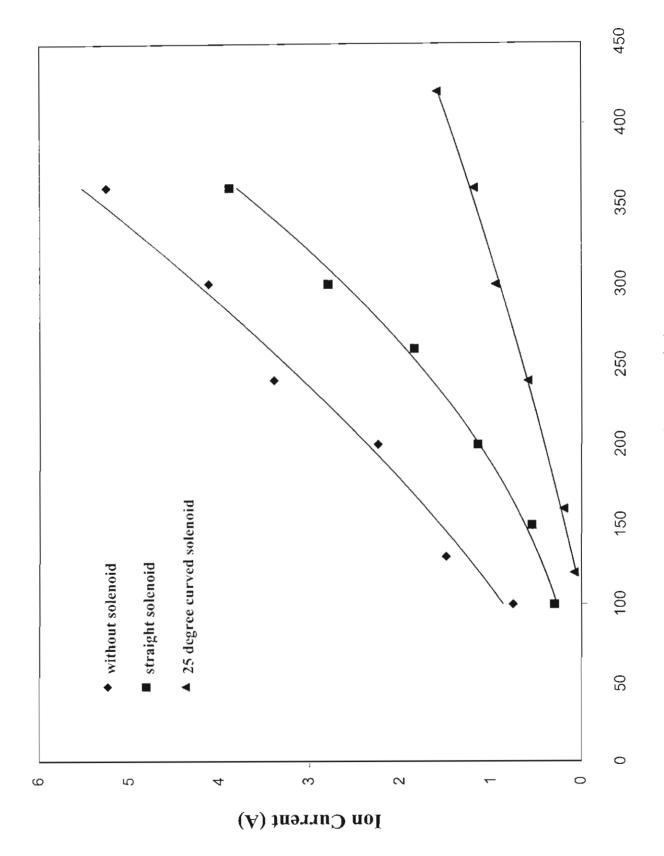
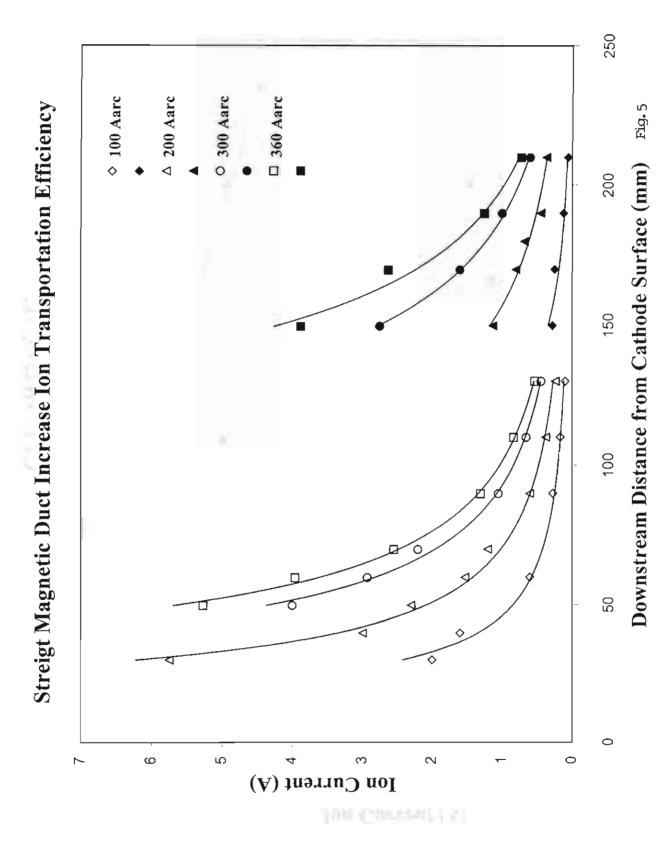
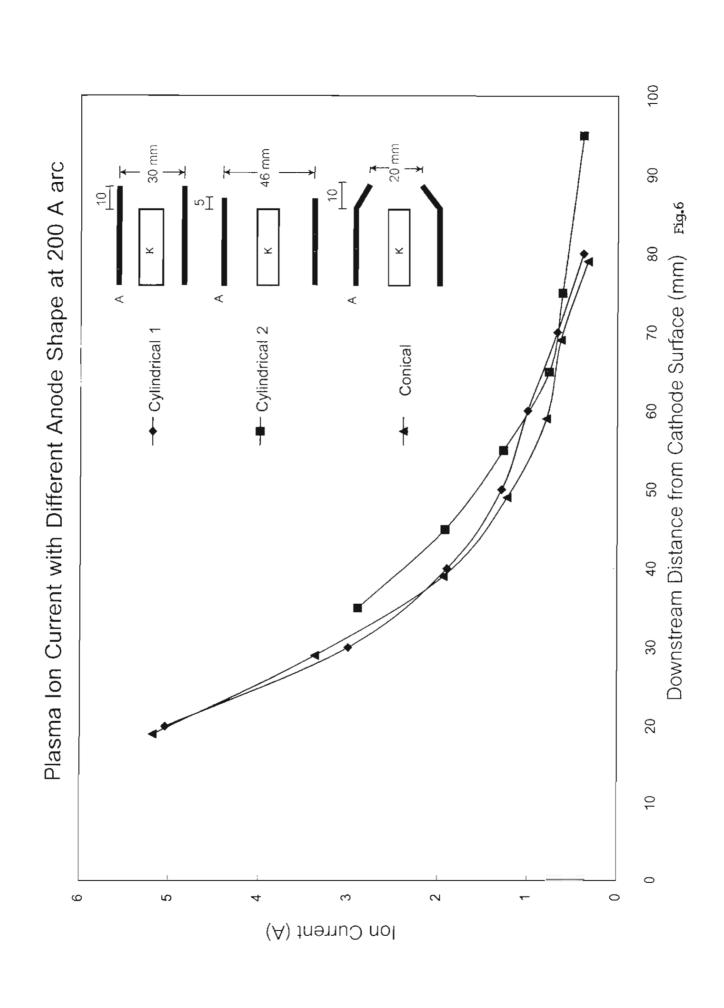
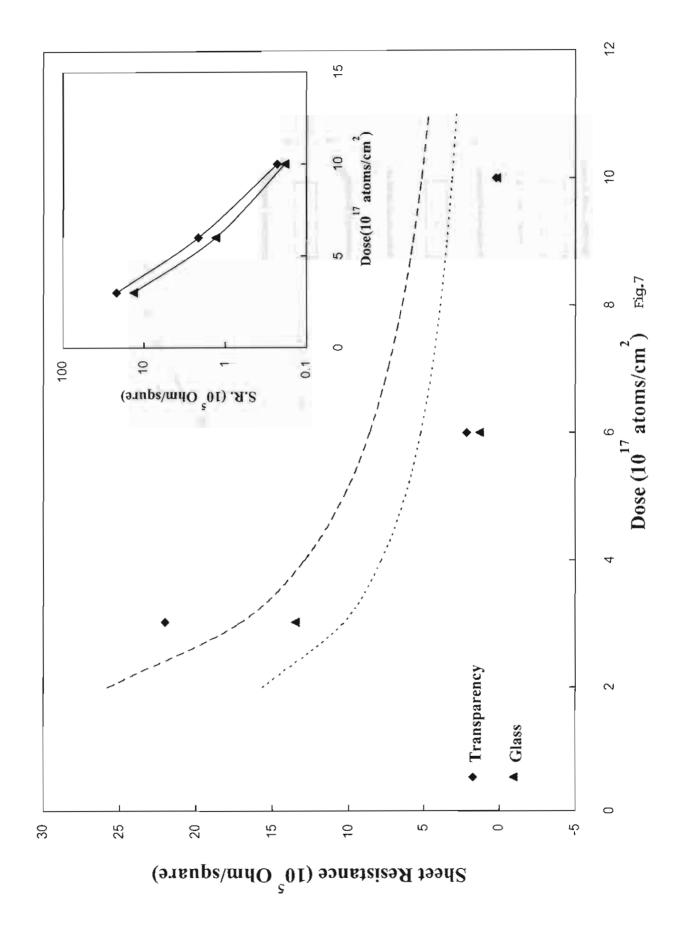


Fig.2(a)


Fig.2(b)




Bias Voltage (V) Fig. 3

Arc Current (A) Fig. 4

3.3 การปรับปรุงสมบัติเชิงผิวของโลหะโดยใช้ไอออนบืม

3.3.1 กระบวนการทางฟิสิกส์เมื่อไอออนพุ่งเข้าชนเป้าโลหะ (Ion-solid interaction)

เมื่อไอออน เคลื่อนเข้าชนผิวโลหะ และแทรกตัวเข้าไปในเนื้อโลหะ จะเกิดปรากฏการณ์ทาง กายภาพหลายแบบ ดังแสดงในรูปที่ 3.3.1 ที่พื้นผิวโลหะ การชนกันระหว่างไอออนและอะตอมของ โลหะ ทำให้อิเล็กตรอนบางส่วนในอะตอมเป้าหลุดออกมาจากผิว เรียกว่าอิเล็กตรอนทุติยภูมิ ใน กรณีที่มีการชนกันแบบยึดหยุ่น ระหว่างไอออนและอะตอมของเป้า ไอออนสามารถสะท้อนกลับได้ (back-scattered) โดยทั่วไปเมื่อไอออนเข้าทำปฏิกิริยากับอะตอมของเป้า อิเล็กตรอนของอะตอม เป้าจะถูก excite และ deexcite ลงสู่สถานะปกติ พร้อมกับปล่อยแสงหรือรังสีเอกซ์ออกมา ใน ระหว่างที่ไอออนแทรกตัวเข้าไปในเป้าโลหะ จะถ่ายเทพลังงาน โมเมนตัม และประจุให้กับอะตอม ของเป้า ถ้าพลังงานจากการชน มากกว่าพลังงานวิกฤตของการเคลื่อนย้ายอะตอมของเป้า อะตอม ดังกล่าวจะถูกแทนที่ เนื่องจากอะตอมที่ถูกแทนที่ ยังมีพลังงานหลงเหลืออยู่ จึงอาจชนและแทนที่ อะตอมอื่นในวัสดุเป้าได้ ดังนั้น การชนและการแทนที่จะเกิดขึ้นอย่างต่อเนื่องในโลหะ ขบวนการดัง กล่าวนี้เรียกว่า "cascade of atomic displacement" ซึ่งทำให้เกิด vacancies, interstitial, Frenkel pair ฯลฯ บนพื้นที่ที่เกิดตำหนิ (defect) ทั้งหมด ที่บริเวณใกล้ผิวของเป้า หากพลังงานที่อะตอมของ เป้าได้รับจากการชน มากกว่าค่าพลังงานยึดเหนี่ยวระหว่างอะตอม (binding energy) อะตอมที่ บริเวณผิวจะหลุดออกจากเป้า เรียกว่า ถูกสปัตเตอร์ออกมา ขณะที่การชนกันระหว่างไอออนและ อะตอมของเป้า ยังคงดำเนินต่อไป พลังงานของไอออนจะลดลงอย่างต่อเนื่อง จนในที่สุดไอออนจะมี พลังงานต่ำจนไม่สามารถแทนที่อะตอมเป้าได้ และจะหยุดนิ่งในที่สุด ระยะระหว่างผิวหน้าชั้นบนของ เป้าโลหะ จนถึงความลึกที่ไอออนหยุดนิ่งภายใน เรียกว่า ระยะ "project range" รายละเอียดในหัว ข้อ 3.3.1 สามารถดูได้จากหนังสือของ Chu และคณะ [1], Ziegler และคณะ [2], Andersen และ คณะ [3], Ziegler และคณะ [4], และ Liangdeng [5]

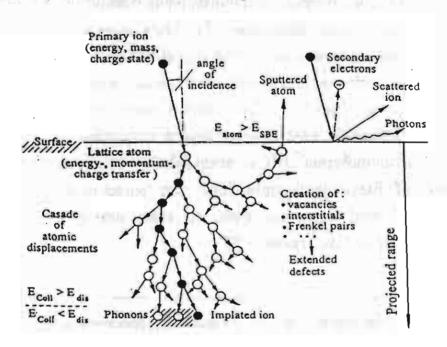
W-K. Chu, J. W. Mayer and M-A. Nicolet, Backscattering Spectrometry (Academic Press, N. Y., 1978).

J. F. Ziegler, Helium Stopping Powers and Ranges in All Elements (Pergamon Press, N. Y., 1977).

^{3.} H. H. Andersen and J. F. Ziegler, *Hydrogen Stopping Powers and Ranges in All Elements* (Pergamon Press, N. Y., 1980).

^{4.} J. F. Ziegler, Handbook of Stopping Cross- Sections for Energetic Ions in All Elements (Pergamon Press, N. Y., 1980).

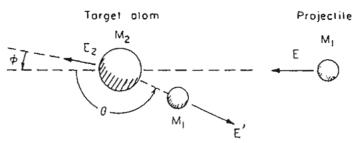
Yu Liangdeng, *Diffusion of Ions Implanted in Solids*, Ph.D. Series 1992-02, ISSN 0906-0286, University of Copenhagen.


3.3.1.1 Stopping cross section

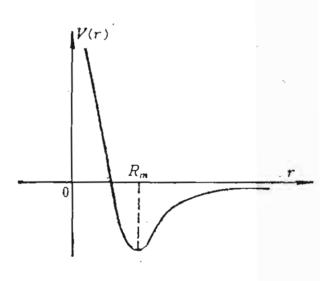
เนื่องจากการชนกันระหว่างไอออนกับอะตอมของวัสดุเป้า ทำให้ไอออนสูญเสียพลังงานจน หยุดนิ่งกับที่ พลังงานที่สูญเสียระหว่างการเคลื่อนที่ของไอออนนี้ เรียกว่า stopping cross section ซึ่งหาได้จาก

$$S(E) = -\frac{1}{N} \frac{dE}{dx}$$

โดย E คือ ค่าพลังงานของไอออนที่เคลื่อนที่ ณ ตำแหน่ง x ใด ๆ, N คือ ค่า number density ของ วัสดุเป้า และ –dE คือ ค่าพลังงานที่สูญเสียในการเคลื่อนที่ในระยะ dx ฉะนั้น S จึงหมายถึงพลังงาน ของไอออนที่สูญเสียในการเคลื่อนที่ในระยะทางหนึ่งหน่วยซึ่งถูกส่งผ่านไปยัง 1 อะตอมของวัสดุเป้า


เราสามารถแบ่งชนิดของพลังงานที่สูญเสียของไอออนได้ 2 แบบ คือ nuclear stopping เป็น พลังงานที่สูญเสียไปกับอันตรกิริยาระหว่างไอออนกับอะตอมของวัสดุเป้า ซึ่งเกิดเมื่อพลังงานของ ไอออนมีค่าต่ำ และ electronic stopping เป็นพลังงานที่สูญเสียไปกับอันตรกิริยาระหว่างไอออนกับ อิเล็คตรอนของวัสดุเป้า ซึ่งเกิดเมื่อไอออนมีพลังงานสูง

รูปที่ 3.3.1 ภาพแสดง ion-solid interaction เมื่อไอออนแทรกตัวเข้าไปในเป้าโลหะ


(i) Nuclear stopping

เมื่อพลังงานของไอออนที่ตกกระทบมีค่าด่ำกว่า 20 keV จะทำให้เกิดการชนแบบยืดหยุ่น (elastic collision) ขึ้นระหว่างนิวคลีไอ ด้วยแรงแบบคูลอมบ์ (Coulomb force) ดังรูปที่ 3.3.2

รูปที่ 3.3.2 ภาพแสดงการชนกันแบบ elastic collision ระหว่างใอออนและอะตอมของวัสดุเป้า

โดยพลังงานที่สูญเสียไปนี้มีค่าเป็นสัดส่วนกับความเร็วของไอออน หรือเป็นสัดส่วนกับ $E^{1/2}$ จากการศึกษา two-body interaction potential ดังรูปที่ 3.3.3 เมื่อสองอะตอมอยู่ห่างกันที่ระยะ $r>>R_m$ อันตรกิริยานี้ จะเป็นแบบ coulomb attraction เมื่อ $r< R_m$ เกิดการซ้อนทับกันของ electron cloud ของอะตอมทั้งสอง ทำให้เกิดการผลักกันระหว่างอะตอม ซึ่งเป็น coulomb repulsive

รูปที่ 3.3.3 ภาพแสดง interaction potential ระหว่างสองอะตอม

ดังนั้น พลังงานที่สูญเสียเนื่องจาก nuclear stopping จึงต้องคำนึงถึงอันตรกิริยาระหว่าง สองอะตอม ซึ่งฟังก์ชั่นของพลังงานศักย์นี้ เราสามารถพิจารณาได้หลายรูปแบบ ได้แก่

(n) Hard-sphere potential

 $V(r) = \alpha \qquad ; r << 2r_0$ $0 \qquad ; r > 2r_0$

โดย ro เป็นรัศมีอะตอม ซึ่งการพิจารณาฟังก์ชั่นในรูปแบบนี้จัดว่าง่ายที่สุด

(ป) Bond-Major potential

 $V(r) = Ae^{-Br}$; A = $52(Z_1Z_2)^{3/4} {\rm eV}$ และ B = 0.219 $^{\circ}$ A ซึ่งการพิจารณาด้วยฟังก์นี้จะใช้เมื่อระยะห่างระหว่างอะตอมมีค่ามาก

(ค) Bohr potential

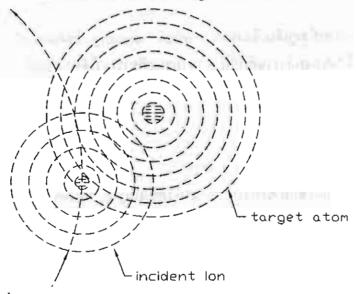
$$V(r) = \frac{Z_1 Z_2 e^2}{r} r^{\frac{-r}{a}}$$
 ; $a = a_0 (Z_1^{2/3} + Z_2^{2/3})^{-1/2}$

โดย a คือ ค่า screening radius หรือ screening length และ a_o คือ Bohr radius ฟังก์ชั่น ในรูปแบบนี้ มักใช้เมื่อเป็น high energy

(3) Thomas-Fermi potential

$$V(r) = \frac{Z_1 Z_2 e^2}{r} \phi \left(\frac{r}{a}\right)$$

โดยที่ $\phi\left(\frac{r}{a}\right)$ เป็นค่า screening function และ a คือ ค่า screening length ซึ่งมีค่า $a=0.8853a_{o}(Z_{1}^{2/3}+Z_{2}^{2/3})^{-1/2}$


(3) Lindhard's standard potential

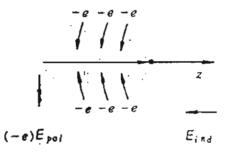
$$V(r) = \frac{Z_1 Z_2 e^2}{r} \left(1 - \frac{1}{\left[1 + \frac{3a^2}{r^r} \right]^{\frac{1}{2}}} \right)$$

ฟังก์ชั่นนี้เป็น special form ได้จาก Thomas-Fermi potential

(ii) Electronic stopping

เกิดจากอันตรกิริยาระหว่างไอออนกับอะตอมของวัสดุเป้า ซึ่งเป็นแบบ non-elastic collision ดังรูปที่ 3.3.4 ซึ่งจะเกิดขึ้นเมื่อพลังงานมีค่าสูงกว่า 10-20 keV

รูปที่ 3.3.4 ภาพแสดงอันตรกิริยาระหว่างไอออนและอะตอมของเป้า

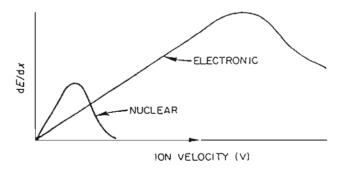

หากพิจารณาระบบที่มีอิเล็กตรอนหลายตัว โดยใช้ potential model จากสมการ Poisson โดยให้ n(r) เป็นค่า electron density distribution และ V(r) เป็นค่า potential distribution

 $\Delta V(r) = -4\pi (-e) n(r) - 4\pi Ze \delta(r)$ ซึ่ง Ze เป็นค่า nuclear charge เขียนในรูปแบบ สมบูรณ์จะได้ว่า

$$\Delta[V(r) - \xi] = \frac{-4}{3\pi} \frac{e(2me)^{\frac{3}{2}}}{h^3} [V(r) - \xi]^{\frac{3}{2}} - 4\pi e \delta(r)$$

โดยค่า ๕คือ ค่า constant distribution of potential ที่ boundary r=r_o

นอกจากนี้ ได้มีการเสนอ electron-gas model โดยพิจารณาให้อิเล็กตรอนเคลื่อนที่อย่าง อิสระ เมื่อมีประจุบวกเคลื่อนผ่านกลุ่มอิเล็กตรอน ทำให้บริเวณใกล้ ๆ ที่มีประจุบวกผ่านเกิดสนาม ไฟฟ้า E_{pol} ขึ้น ในทิศทางตรงกันข้ามกับการเคลื่อนที่ของประจุ และเกิด E_{ind} ขึ้น เนื่องจากการ เคลื่อนที่ช้าลงของประจุบวกในทิศทางตรงกันข้ามกับการเคลื่อนที่ ดังรูป 3.3.5



รูปที่ 3.3.5 ภาพแสดงการเคลื่อนที่ของอนุภาคมีประจุเข้าไปใน electron gas

(iii) Total stopping cross section (S)

S หาได้จากผลรวมของ nuclear stopping (S_n) กับ electronic stopping (S_e) ดังสมการ $S = S_n + S_n$

โดยค่า stopping cross section นี้ ขึ้นอยู่กับชนิดของไอออนและวัสดุเป้า รวมถึงพลังงาน ของไอออนด้วย เราสามารถเปรียบเทียบค่า stopping ทั้งสองได้จากกราฟรูปที่ 3.3.6

รูปที่ 3.3.6 กราฟแสดงการเปรียบเทียบระหว่าง nuclear stopping และ electronic stopping ซึ่ง เป็นฟังก์ชั่นของ E^{1/2}

เนื่องจากการสูญเสียพลังงานของไอออนยังขึ้นกับมุมกระเจิง (scattering angle) ตามรูปที่ 3.3.3 จึงต้องพิจารณาค่า scattering cross section หรือ differential cross section ระหว่างอะตอม ทั้งสอง ซึ่งในกรณีของ coulomb replusive เราสามารถใช้ Rutherford's formula มาคิด ดังนี้

$$\frac{d\sigma}{d\Omega} = \Gamma \left(\frac{Z_1 Z_2 e^2}{2E}\right) \frac{\left\{\cos\theta = \left[1 - \left(\frac{M_1}{M_2} \sin\theta\right)^2\right]\right\}^2}{\sin^4\theta \left[1 - \left(\frac{M_1}{M_2} \sin\theta\right)^2\right]^{\frac{1}{2}}}$$

โดย Z_1 และ Z_2 คือ ค่า atomic number ของไอออนที่ตกกระทบและอะตอมของวัสดุเป้าตามลำดับ, E คือ ค่าพลังงานของไอออนก่อนการกระเจิง, θ คือ มุมการกระเจิงตามรูปที่ 3 และ Γ คือ ค่า dimensional constant โดยในระบบ SI จะให้ $\Gamma=\left(\frac{1}{4\pi\varepsilon_0}\right)^2$

ถ้าให้ Ω เป็น solid angle ของไอออนที่ตกกระทบ เราสามารถหาค่าเฉลี่ยของ scattering cross section ได้จาก

$$\sigma = \frac{1}{\Omega} \int \frac{d\sigma}{d\Omega} d\Omega$$

และจากค่า scattering cross section สามารถหาพลังงานที่สูญเสียของไอออนที่ตกกระทบได้จาก

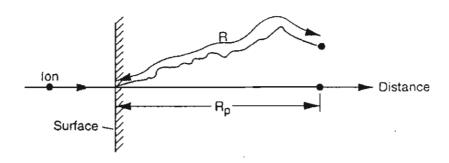
$$-dE = \int N(d\sigma dx)T$$

โดย N คือ ค่า number density of target และ T คือ ค่าพลังงานซึ่งถูกส่งผ่านจากไอออนไปยังวัสดุ เป้าในระยะทาง dx ดังนั้น เราจึงได้ค่า stopping cross section ดังนี้

$$S = \frac{-1}{N} \left(\frac{dE}{dx} \right) = \int T d\sigma$$

จากการพิจารณา electron-gas model ภายใต้สนามไฟฟ้า E_{ind} จะได้ว่าแรงของไอออนที่ตกกระทบ มีค่าเท่ากับ Z,eE_{ind} ซึ่งพลังงานที่สูญเสียในการเคลื่อนที่เข้าไปในวัสดุเป้า สามารถเขียนได้เป็น

$$\frac{-dE}{dx} = -Z_1 e E_{ind} \cdot \frac{V}{V}$$


โดย v เป็นความเร็วของไอออนที่ตกกระทบ และ E_{ing} ขึ้นกับสมบัติทาง dielectic ของวัสดุเป้า

3.3.1.2 Projected range

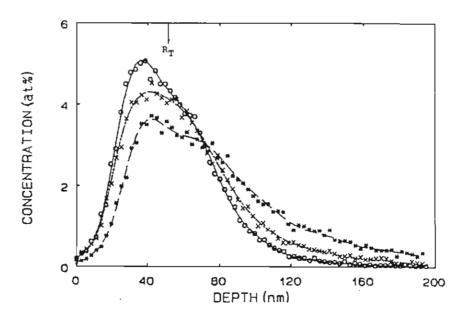
โดยอาศัยหลักการพื้นฐานในเรื่อง stopping cross section ของ ion-solid interaction ดังที่ ได้กล่าวมาแล้ว เราคำนวณหา projected range ของไอออนที่ชนวัสดุเป้าได้ โดยจะเริ่มจากการ พิจารณาหาระยะทางทั้งหมดที่ไอออนสามารถเคลื่อนที่เข้าไปได้ในวัสดุเป้า (ระยะ R) ตามรูปที่ 3.3.7 ได้จากสมการ

$$R = \int_{0}^{E_0} \frac{1}{N} \frac{dE}{S(E)}$$

โดย E_o คือ ค่าพลังงานของไอออนก่อนที่จะตกกระทบลงสู่วัสดุเป้า

รูปที่ 3.3.7 ภาพแสดงระยะที่ไอออนสามารถเคลื่อนเข้าไป (R) และ projected range (R_p)

แต่ในขบวนการไอออนอิมพลานเตชั่น ระยะที่เราสนใจจริง ๆ คือ ระยะความลึกของไอออน ที่ถูกฝังลงในวัสดุเป้า วัดจากผิวหน้าของวัสดุเป้าถึงตำแหน่งที่ไอออนหยุดอยู่กับที่ นั่นคือ projected range (ระยะ R) ซึ่งเราสามารถคำนวณหาได้จาก


$$R_p = R \cos \phi$$

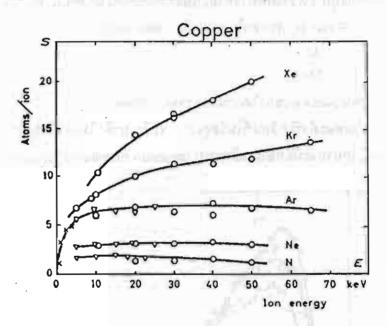
โดย ϕ เป็นค่าเฉลี่ยของมุมระหว่างทิศทางที่ใอออนตกกระทบตั้งฉากกับผิวหน้าของวัสดุเป้า ซึ่งเมื่อ หาอัตราส่วนเฉลี่ยของ R และ $R_{
ho}$ สำหรับไอออนพลังงานด่ำ จะได้

$$\frac{R}{R_p} \cong 1 + \frac{M_2}{3M_1}$$

โดยที่ M_r และ M_2 เป็นมวลอะตอมของไอออนและวัสดุเป้าตามลำดับ

สำหรับไอออนแด่ละดัวที่เคลื่อนที่ในวัสดุเป้า จะมีระยะลึกไม่เท่ากันทุกตัว การกระจายตัว ของพิสัยของไอออนโดยมากจะมีลักษณะเป็นแบบ gaussian distribution ดังแสดงในรูปที่ 3.3.8

รูปที่ 3.3.8 ภาพแสดง concentration profiles ของ Pb ๋ ลงไปยัง Al crystals ด้วยค่าพลังงาน 150 keV, dose = 2x10¹⁶ Pb ๋/cm² โดย * แทน <110>single crystal; o แทน <111> single crystal; x แทน polycrystal และ RT เป็นค่าที่ได้จากการคำนวณโดยใช้โปรแกรม TRIM


3.3.1.3 Surface Sputtering

ดังที่ได้กล่าวมาแล้วว่า ขบวนการไอออนอิมพลานเตชัน มีผลทำให้เกิด defect บนบริเวณ ผิวหน้าของเป้า เนื่องจากการเกิด sputter หรือการหลุดออกมาของอะตอมของวัสดุเป้า ขบวนการ ดังกล่าวนิยามได้ด้วยค่า sputtering yield ซึ่งหาได้จากอัตราส่วนระหว่างจำนวนอะตอมที่หลุดออก มากับจำนวนไอออนที่ตกกระทบเป้า ค่า sputtering yield นี้ ขึ้นกับชนิดของวัสดุเป้า และไอออนที่ ตกกระทบ จำนวนไอออน (ion dose) มุมที่ตกกระทบ และการเรียงตัวของวัสดุเป้า (crystal orientation) รูปที่ 3.3.9 แสดงความสัมพันธ์ระหว่าง sputtering yield และพลังงานไอออนที่ตกกระทบของไอออนหลายชนิด

สิ่งที่ต้องพิจารณาอีกประการคือ ความหนาของผิวหน้าวัสดุที่ sputtered ออกไป (sputtered thickness) ในที่นี้แทนด้วย Z ซึ่งหาได้จาก

$$Z = \frac{Yf}{N}$$

โดยที่ f คือ ion dose, N คือ ความหนาแน่นของอะตอมในวัสดุเป้า และ Y คือ sputtering yield

รูปที่ 3.3.9 ภาพแสดง sputtering ratio ของ polycrystalline Cu ซึ่งเป็นฟังก์ชั่น ของพลังงานของไอออนชนิดต่าง ๆ

3.3.2 ผลงานวิจัยเกี่ยวกับการปรับปรุงสมบัติเชิงผิวของโลหะโดยใช้ไอออนบีม

คณะผู้วิจัยได้ประสบความสำเร็จในการประกอบและติดตั้ง เครื่องไอออนอิมพลานเตอร์ สำหรับงานวิจัยด้านต่าง ๆ 3 เครื่อง ได้แก่ เครื่องไอออนอิมพลานเตอร์แบบกรองไอออน พลังงาน 150 keV (ION-CMU1 [1,2]) และเครื่องไอออนอิมพลานเตอร์แบบไม่กรองไอออน พลังงาน 150 keV (ION-CMU2 [3]) ทั้งสองเครื่องนี้ ใช้สำหรับสร้างไอออนจากก๊าซ และเครื่องไอออนอิมพลาน เตอร์อเนกประสงค์ พลังงาน 30 keV (ION-CMU3 [4]) สามารถสร้างไอออนโลหะได้ โดยวิธีทำให้ โลหะระเหิดเป็นไอก่อน แล้วจึงทำให้แตกตัวเป็นไอออน [5] นอกจากนี้ คณะผู้วิจัยได้ติดตั้งเครื่องมือ ทดสอบสมบัติเชิงผิวของโลหะ คือ เครื่องทดสอบความแข็งระดับไมครอน (MXT-α Micro-hardness Tester, Matzuzawa) และเครื่องไตรโบโลยี ซึ่งใช้สำหรับทดสอบความทนทานต่อการสึกหรอและ ความฝืด (ISC-200 Tribometer, Implant Science) เพิ่มเติมในภายหลัง คณะผู้วิจัยจึงได้เริ่มงาน ทดลองศึกษาการปรับปรุงสมบัติเซิงผิวของโลหะโดยใช้ไอออนบีม โดยมุ่งเน้นไปที่การทดสอบกับ โลหะที่มีใช้ในอุตสาหกรรมของประเทศ เช่น เหล็กกล้าชนิดต่าง ๆ และอัลลอยส์กึ่งโลหะ เพื่อเป็นลู่ ทางในการนำผลไปประยุกต์กับอุตสาหกรรมด้านต่าง ๆ ของประเทศ เช่น อุตสาหกรรมชิ้นส่วน เครื่องมือกลแบบละเอียด อุตสาหกรรมชิ้นส่วนเครื่องมือทางการแพทย์ อุตสาหกรรมชิ้นส่วนอิเล็ค ทรอนิคส์ เป็นตัน

สำหรับงานวิจัยทางด้านการนำไอออนบีมไปใช้ปรับปรุงสมบัติเชิงผิวของโลหะ ที่ได้ดำเนิน การไปแล้ว มีกล่าวไว้ในหัวข้อที่ 3.3.3 และภาคผนวก ก8-ก11

^{1.} D. Suwannakachorn et al., Nucl. Instr. and Meth. B 39 (1994) 354.

^{2.} T. Vilaithong et al., ASEAN J. Sci. Technology Development 14 (1997) 87.

T. Vilaithong, D. Suwannakachorn, B. Yotsombat, S. Davydov, M. W. Rhodes, S. Intarasiri,
 C. Thongleurm, V. A-no, "Ion Implantation for Surface Coating Industry", Final report submitted to the National Center for Metals and Materials Technology (Thailand), 1996.

N. Pasaja, Study on the Operational Charateristics of a Hot Cathode Nielsen Ion Source,
 MS Thesis, Chiang Mai University, Chiang Mai, 1999.

^{5.} K. O. Nielsen, Nucl. Instr. and Meth. 1 (1957) 289.

3.3.3 Applied High-Current N-Ion-Beam Surface Engineering of Metals and Industrial Tools at Chiang Mai University.

S. Davydov, L. D. Yu, M. W. Rhodes, S. Intarasiri, C. Thongleurm, V. A-no,
Institute for Science and Technology Research and Development,
Chiang Mai University, Chiang Mai 50200, Thailand;
T. Vilaithong and B. Yotsombat,
Department of Physics, Faculty of Science,
Chiang Mai University, Chiang Mai 50200, Thailand;

Submitted to Surface and Coatings Technology, 1999.

Applied High-Current N-Ion-Beam Surface Engineering of Metals and Industrial Tools at Chiang Mai University*

- S. Davydov, L.D. Yu. M.W. Rhodes, S. Intarasiri, C. Thongleurm, V. A-no Institute for Science and Technology Research and Development,
 - P.O.Box 111. Chiang Mai University. Chiang Mai 50200. Thailand:

T. Vilaithong and B. Yotsombat.

Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

For industrial applications on surface engineering, plasma and ion beam technology has been steadily developed at Chiang Mai University, where the ion beam technology center of Thailand has been established. A 150-kV, high-current, non-analyzed ion implanter based on a modified duoplasmatron ion source and a complete computerized control has been developed for industrially applicable ion implantation. High-current (~ mA) and high-dose (~ $10^{18} - 10^{19} \text{N/cm}^2$) N-ion implantation at either low energies or medium energies in steels, including tooling, structural and machinery steels, and alloys, as well as other ion beam techniques such as single-ion-beam assisted deposition, has been explored using the facility for modification of tribological properties. The ion implanter has also been engaged in industrial service to local customers in implanting various practical objects. The ion implantation for both academic and applied purposes has proved to be successful in improving hardness and wear resistance as well as prolonging lifetime of the ion-beam-processed tools.

^{*}Submitted to Surface and Coatings Technology, 1999.

1 Introduction

Ion implantation technology has been effectively developed in Thailand [1,2,3,4,5]. Besides a 150-kV, two-beam-line research-purpose ion implantation facility, a 150-kV, non-analyzed ion implanter has recently been constructed and upgraded at Chiang Mai University. The ion implanter, based on a modified duoplasmatron ion source, is suitable for high-beam-current ion implantation which has become popular worldwide in ion-beam technique applications on practical surface engineering for materials modification. Completion of the ion implanter has made relevant research work and service to local industries virtually possible. The work reported here focuses upon tribological property modification of industrial steels and alloys by high-beam-current N-ion implantation and a new development in ion beam techniques, namely, a single-ion-beam assisted deposition.

2 The High-current, Non-analyzed Ion Implanter

The ion implanter, as shown in Figure 1, consists of a modified RDI Dynamag duoplasmatron ion source, a 150-kV accelerating tube, a quadrupole doublet magnetic focusing lens, and two vacuum chambers. The ion source with extraction and focussing electrodes placed inside the first high voltage terminal is able to provide N-ion beam currents up to 3 mA. A 400-Hz, 1.5-kW generator for the source power supply mounted on the second terminal is coupled by an insulated shaft to an electric motor. The source operations, such as gas feed, filament, arc and solenoid current supplies, and extraction and lens potential adjustment, are performed by computer-controlled step-motor-driven insulated rods. An external oil-filled pumping system cools the ion source. The accelerating tube is a 20-dynode constant gradient type. To suppress backstreaming electron overloading, a permanent magnet is placed closely to the end of the tube and a -2.5-kV potential is applied at the final divider electrode. In the target chambers there are three types of water-cooled movable and rotatable target holders, the biggest one being a 110-cm-diameter disk, for different implantation purposes. The moving modes of the holders are realized by computer programming. The ion beam is diagnosed by two watercooled and movable Faraday cups and a movable pinhole-plate beam profile monitor with computer controlling and recording. Viewports attached to the main chambers allow optical inspection by either eyes or video cameras of ion implantation processes on target samples.

As the implanter is non-analyzed, the ion beam includes both atomic and molecular nitrogen ions, estimated with $\sim 50\%$ N⁺ and $\sim 50\%$ N₂⁺. Due to a biatomically molecular nitrogen ion dissociating into two atomic nitrogen ions when it hits a target surface, the ion implanter could provide two simultaneous energies for implantation, expectantly leading to a broad ion depth profile beneath the top surface of the target and thus a more effective surface modification [6].

3 Researches

3.1 Experiments

3.1.1 Low-energy high-current N-ion implantation of steels

Steels processed by the ion implanter in research experiments are listed in Table 1a. Some SKD11 tool steel samples were heat-treated (Table 1b) to be in martensite with extra-high C-content in near surface regions for those oil-quenched samples or extra-high O-content for the air-quenched ones [7]. N-ion implantations carried out by the implanter are summarized in Table 2. The initial energy of the mixed N-ion beam was 20 keV with the beam current in a range between 1.5-2 mA and the ion dose in the order of 10¹⁷ to 10¹⁹N-ions/cm².

3.1.2 Medium-energy multiple N-ion implantation

Besides the mono-energy ion implantation, multiple energy ion implantation in three implantation modes was operated: (i) 50 keV continuously, (ii) 50 – 120 – 140 keV in sequence and (iii) 140 – 120 – 50 keV in sequence, as shown in Table 2. This multiple implantation was expected to bring about a deep and broad N-ion distribution profile in the target surface region because of a variety of ion energies (25, 50, 60, 70, 120 and 140 keV) present simultaneously in the implantation. In order to prevent the hardened steel from being significantly heated, the ion beam was pulsed and the samples were water-cooled. When investigating the beam tempering effect on the samples, some implantation was operated by varying the frequency of the pulsed modes and without water-cooling. By computer programming, the pulsed implantations were automatically carried out.

3.1.3 N-ion beam nitriding Ti-Al alloy

Samples of HIPed (Hot Isostatic Pressed) Ti-47Al-2Nb-2Cr intermetallic alloy named MJ12 (Howmet, MI, USA), which is considered to be a prospective material for many applications especially on transportation tool industries, were implanted with 140-keV N-ions to doses of 4×10^{17} and 4×10^{18} N/cm². For the nitriding purpose, neither cooling nor beam pulsing were used.

3.1.4 Single-ion-beam assisted deposition

A new technique of single ion beam assisted deposition (SIBAD) has been developed by taking advange of the high current nature of the ion implanter. Compared with the conventional ion beam assisted sputtering-deposition, which relies on two separated ion beams for sputtering deposition and implantation, the SIBAD only utilizes a single ion beam for both sputtering deposition and implantation, as schematically shown in Figure 2. In this experiment, an aluminium sheet (a sputtering target) and a steel sample (a substrate) were mounted intersectingly with the Al-sheet on top of the steel-sample at some angles with the beam line so that the Al target could obtain a higher sputtering yield and the sputtered particles could be sufficiently deposited onto the substrate. Single high-current N-ion beams were employed with varied ion energy (40 to 120 keV) and dose (10¹⁷ to 10¹⁹N-ions/cm²) to find optimal operation conditions which could produce the best results. Different types of steels such as tool steel SKD11 and non-stainless-steel SCM415 were used for the substrates.

3.1.5 Testing of mechanical properties

Surface microhardness and tribology of the ion beam processed samples were tested using a digital microhardness tester and a pin-on-disk tribometer. In the SIBAD-experiment some samples were tested straight after the SIBAD-treatment and some were immersed in strong HNO₃ (70%) for 30 hours before underwent tribological test.

3.2 Results and discussions

3.2.1 On ion implantation of steels

The measured hardness and wear rate changes of implanted samples are shown in Table 2 and Table 3. It can be seen that the ion implantation can positively increase hardness of the steels, regardless of ion energy, dose and current. The increase in hardness, however, is not consistently linearly proportional to the dose, in accordance with an established fact that there generally exists an optimum dose which leads to the most pronounced hardness increase for a certain steel ion-implanted with a certain energy [8]. The ion implantation can also enhance wear resistance of the steels as shown by the result that wear rates decrease by a factor of about two, but the reduction in wear rate depends on ion implantation processes. As seen in Table 3, the multiple energy ion implantation generally benefits more in wear reduction than the single energy implantation. The results from varying the frequency of the beam pulse modes show the ion-beam heating effect on the steels' mechanical properties. The shorter-time-exposure of the target to the ion beam benefits the wear reduction and hardness improvement more than the longer-time-exposure. Proper beam heating plays a significant role in the steel-surface tempering that leads to the least wear loss. A comparison between the oil-quenched and the air-quenched samples shows no noticeable differences in the ion implantation effect on the surface modification of mechanical properties. The latter originally performs worse because of surface oxidation.

For N-ion implantation of steels, the major mechanisms responsible for tribology modification reside in implanted-ions decorating dislocation lines and forming hard compounds [9,10]. X-ray diffraction (XRD) patterns of the ion-implanted SKD11 tool steel shown in Figure 3 confirm that the multiple-energy ion implantation generally produces more remarkable metal nitride, such as Fe-N and Cr-N, than the mono-energy one does. The fact that multiple-energy implantation gains more improvement in the steel's mechanical properties than single-energy implantation indicates that the nitride formed in the former case has a stronger effect on the surface modification than the ion-beam-irradiation-induced surface compressive stress which is the main source of strain hardening for the latter one [11]. Surface morphological analysis shows that high current ion implantation generally sputter the target surface severely. The surface degradation depends on the ion energy, the higher the energy

the greater the degradation, as shown in Figure 4.

3.2.2 On N-ion beam nitriding of Ti-Al alloy

As shown in Table 4, microhardness and tribology of the N-ion implanted alloy are obviously improved in comparison with those unimplanted ones. XRD analysis reveals formation of some nitride and oxide such as Ti₂AlN, Nb₃Al₂N, TiO and Ti₃O₅ after ion implantation, as shown in Figure 5, indicating the alloy surface has been nitrided and thus the mechanical properties have been modified.

3.2.3 On single-ion-beam assisted deposition

The surface microhardness and tribology of the samples after the SIBAD-treatment do not change compared with those of the untreated surface. After treated in the corrosive solution of strong acid HNO₃, it was found that wear loss of the SIBAD-treated surface of the non-stainless-steel (SCM415) sample decreased and remained the same for the stainless-type steel (SKD11). For the samples implanted with N ions only we observed more wear loss than the sample without implantation. These results are shown in Figure 2. The corrosion-resistant Al-nitride formed on the steel surface by the above mentioned process is thought to play the role in protecting the ion-beam-irradiated steel surface from being severely corroded. Otherwise, the degraded steel surface would be vulnerable to acid attack.

4 Service

As a follow up on our practical application similar to those carried out elsewhere [12], practical objects including tools and machinery parts (Table 5 and Figure 6) from local industrial customers and research institutions have been N-ion-implanted by the implanter for improving tribological properties. In order to perform ion implantation of practical objects effectively and efficiently, various special target holders were designed and fabricated for different objects. They are water-cooled, 2-D rotatable and capable of holding multiple samples for simultaneous implantation (Figure 7). For example, 20 taps can be ion-implanted at all sides parallelly within a few ten minutes to reach the required dose. Computer softwares were programmed for different specific automatic operation controls, including controlling compli-

cated movement modes of the target holder. The ion-implanted objects were then returned to our collaborators. Test performed under industrial conditions by the users confirms the extended lifetime of the implanted tools by at least a factor of two.

5 Conclusion

A computer-controlled 150-kV, high-current, non-analyzed ion implanter, based on a modified duoplasmatron ion source has been constructed at Chiang Mai University for applied ion implantation. High-current and high-dose N-ion implantation of steels using conventional as well as single-ion-beam assisted deposition techniques has been investigated and developed for modification of tribological properties. The ion implanter has also been engaged in industrial service for local customers by implanting various practical objects. The ion implantation for both research and application purposes has proved to be successful in improving hardness and wear resistance as well as prolonging lifetime of the ion-beam-processed tools.

Acknowledgements

We wish to thank Dr. M.F. da Silva of ITN. Lisbon. for her help in RBS analysis of the specimens. The technical assistance of S. Thongtem in the corrosion test and G. Rujijanagul with the XRD work is gratefully acknowledged. This work has been supported by the National Metal and Materials Technology Center and the Thailand Research Fund.

References

- D. Suwannakachorn, D. Boonyawan, J.P. Green, S. Aumkaew, C. Thongleurm, P. Vichaisirimongkol and T. Vilaithong, Nucl. Instr. and Meth. B89(1994)354.
- [2] L.D. Yu, D. Suwannakachom, S. Intarasiri, S. Thongtem, D. Boonyawan, P. Vichaisirimongkol and T. Vilaithong, Proceedings of the 9th International Conference on Ion Beam Modification of Materials (IBMM'95), Canberra, Australia, February 1995, eds.: Williams J.S., Elliman R.G. and Ridgway M.C., Elsevier Science B.V. (Amsterdam 1996)p.982.
- [3] T. Vilaithong, L.D. Yu, D. Suwannakachorn, S. Davydov, S. Thongtem, B. Yotsombat and S. Intarasiri, Surface and Coatings Technology 83(1996)322.
- [4] L.D. Yu, T. Vilaithong, D. Suwannakachorn, S. Intarasiri and S. Thongtem, Nucl. Instr. and Meth. B127-128(1997)954.
- [5] T. Vilaithong, D. Suwannakachorn, B. Yotsombat, D. Boonyawan, L.D. Yu, S. Davydov, M.W. Rhodes, S. Intarasiri, P. Suanpoot, R. Charoennugul, P. Vichaisirimongkol, S. Aumkaew and V. A-no, ASEAN Journal on Science and Technology for Development 14(2)(1997)87-102.
- [6] A.Wittkower and J.K.Hirvonen, Nucl. Instr. and Meth. B6(1985)78-87.
- [7] Maria Fernanda da Silva, private communications, 1997.
- [8] G. Dearnaley and N.E.W. Hartley, Thin Solid Films 54(1978)215-232.
- [9] G. Dearnaley, Nucl. Instr. and Meth. B50(1990)358-367.
- [10] Arjen M. Vredenberg, Ion Beam Synthesis of Nitride Layers in Iron, Ph.D. thesis, FOM-Instituut voor Atoom- en Molecuulfysica, Kruislaan 407, 1098 SJ Amsterdam, Netherlands.
- [11] W.D. Shi, X.Y. Wen, J.H. Liu, C.S. Ren, Z.H. Long, G.B. Zhang, Z.X. Gong, Y.N. Wang and T. Zhang, Nucl. Instr. and Meth. B80/81(1993)229.
- [12] C.A. Straede, Nucl. Instr. and Meth. B113(1996)161.