Tables

Table 1. The steels investigated. (a) Chemical compositions and typical applications. (b) Heat treatment of SKD11 steel (some of the samples were delibrately not tempered).

(a) chemical composition (%) Steel (JIS) typical applications W Со (AISI) С Si Mn CrMo Ni P S White steel 0.19 0.21 0.51 (local low-C) motor shaft, tool handle, holder or support, magnet SKD11 1.5 0.3 0.4 12.0 1.0 0.4 0.5 (D-2)die, roller, shear blade, plastic mold and gauge, etc. SKS3 0.3 1.0 0.8 0.8 1.0 die, gauge, tap, roll, shear blade, cutter and plastic mold (01)S50C 0.5 0.25 0.75 0.03 0.035 (1050)general assembly parts, crank case and rear axel shaft, etc. SCM415 0.15 0.2 0.75 1.05 0.22 0.25(-) gear and wear resistance part with tough core

(b) .						
Preh	eating	Hard	ening	Quenching	Tempe	ering
temp.(°C)	time(min.)	temp.(°C)	time(min.)	media	temp.(°C)	time(h.)
850 .	5	1050	15	oil or air	150	1+1

Table 2. Ion implantation conditions and Knoop hardness changes of the steels. With \star , the samples are heat-treated, (o): oil-quenched, (a): air(compressed)-quenched. The pulse modes of the implantation beams and the target cooling: 30s/30s (exposure/shutoff) and water-cooling for the samples \star (o) and \star (a1), 30s/30s and no cooling for the sample \star (a2), and 120s/30s and no cooling for the sample \star (a3). Except the samples \star (a2) and \star (a3), all heat-treated samples are tempered.

Steel	Energy (keV)	Dose (×10 ¹⁷ /cm ²)	Current / Density $(mA / \mu A/cm^2)$	Hardness HK(kg/mm²)
	0	0	0	330
White	20	3	2 / 600	360
steel	20	30	2 / 600	500
	20	60	2 / 600	450
	20	150	2 / 600	480
	0	0	0	250
	20	20	1.5 / 300	312
SKD11	20	100	1.5 / 300	433
*(o0)	0	0	0	520
⋆ (o1)	50	100	0.2 / 100	687
*(o2)	50-120-140	33.3+33.3+33.3	0.2-0.6 / 100-300	781
*(o3)	140-120-50	33.3+33.3+33.3	0.2-0.6 / 100-300	611
*(a0)	0	0	0	490
*(a1)	140	100	0.5 / 200	650
*(a2)	140	100	0.5 / 200	620
*(a3)	140	_ 100	0.5 / 200	443
	0	0	0	240
SKS3	20	20	1.5 / 300	681
	20	200	1.5 / 300	417
	0	0	0	187
S50C	20	20	1.5 / 300	252
	20	200	1.5 / 300	315

Table 3. Wear rates of the ion-implanted SKD11 hardened samples (the sample designation refers to Table 2). Pin-on-disk wear testing conditions: WC ball, 4.8 cm/s sliding speed, 500 g load, and 10^4 total rotation cycles ($\sim 320 \text{m}$ sliding distance).

Sample	Ion energy (keV)	Wear rate (10^{-6}mm^2)
*(00)	0	0.25
*(o1)	50	0.146
*(o2)	50-120-140	0.111
*(o3)	140-120-50	0.121
*(a0)	0	0.50
*(a1)	140	0.24
*(a2)	140	0.21
*(a3)	140	0.30

Table 4. Microhardness and tribology testing results from the N-ion-beam processed Ti-Al samples. HK: Knoop hardness number; "annealed": after 48 hours of annealing at 300°C. The numbers (1) and (2) represent the load conditions under 250 g and 50 g respectively. The friction coefficients are the mean values for the total tested sliding distance.

Sample	Hardness	Wear rate	Friction
type	HK(kg/mm ²)	(10^{-6}mm^2)	coefficient
virgin	330	(1) 2.15; (2) 0.80	(1) 0.7; (2) 1.2
as-implanted	806	(1) 0.36; (2) 0.22	(1) 0.7; (2) 0.6
implanted & annealed	1291	(1) 1.39; (2) 0.70	(1) 0.6; (2) 0.9

Table 5. Examples of ion implantation of practical objects.

Object	Energy	Dose (N-atoms/cm ²)
Precision die & punch	20 keV	$5 \times 10^{17} - 1 \times 10^{18}$
	135 keV	5 × 10 ¹⁷
Tap (M3 - M8)	20 keV	$5 \times 10^{17} - 1 \times 10^{18}$
	130 keV	$2-4 \times 10^{17}$
Drill	20 keV	5 × 10 ¹⁷
Dentist tool	130 keV	$2-4 \times 10^{17}$

Figure Captions

Figure 1. The 150-kV, high-current ion implanter. (a) Photograph, and (b) schematic.

Figure 2. The pin-on-disk wear testing result of the SIBAD-treated (with a 80-keV mixed N-ion beam to a dose of $1 \times 10^{18} \text{N-atoms/cm}^2$) and untreated SCM415 steel sample surface after strong HNO₃-corrosion. The measured position 0 mm represents the boundary between the treated and untreated regions, as described by the schematic of the experimental setup of the Al-target and the steel-substrate at the top. The testing conditions are: load-100g, ball-WC, sliding-speed-5cm/s, wear-trace-radius-5mm, total-rotations-5000, environment-dry-air. Notice: the average wear trace width of the only N-ion implanted SCM415 steel surface is about 230 μ m.

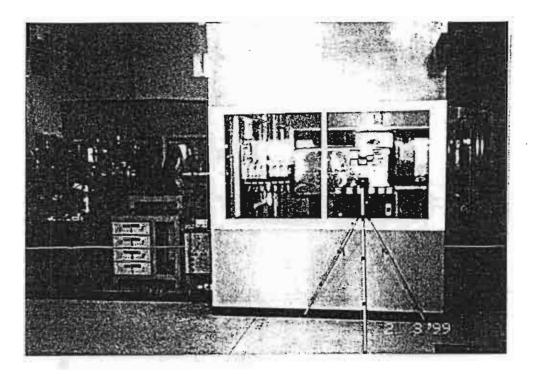

Figure 3. XRD patterns of the ion-implanted SKD11 steel samples.

Figure 4. Imaging microscopic morphology of some SKD11 steel samples implanted by non-analyzed N-ion beams at (a) 50 keV, (b) 50-120-140 keV and (c) 140-120-50 keV.

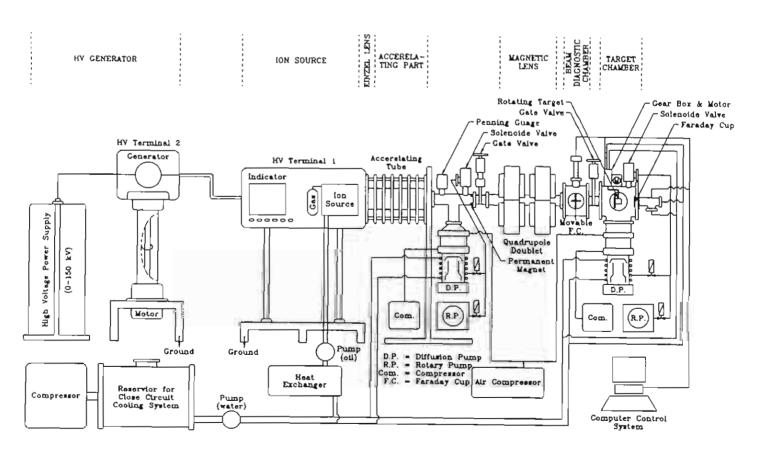
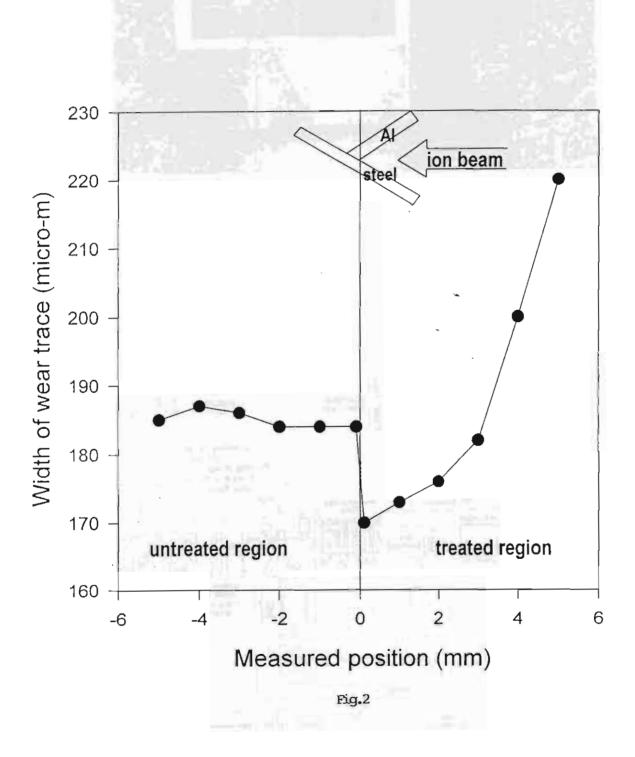
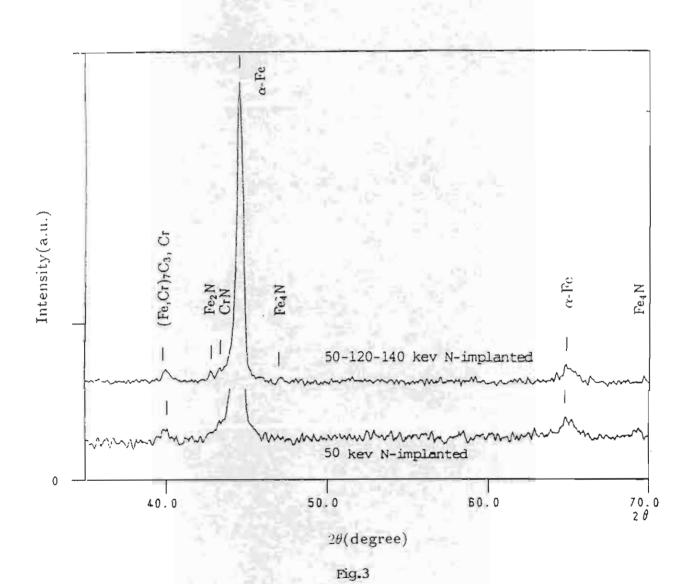
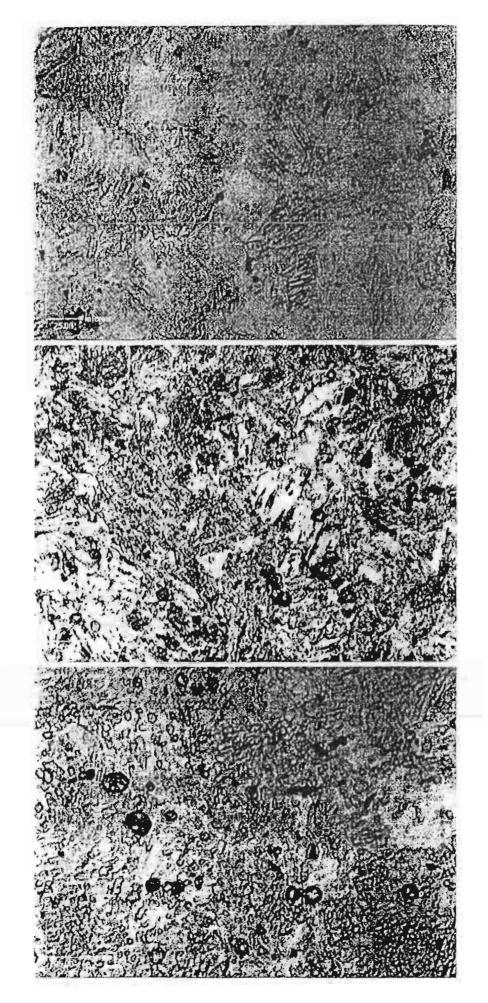

Figure 5. XRD patterns of the N-ion-beam nitrided Ti-Al alloy compared with the virgin.

Figure 6. Examples of the ion-implanted tools: various dies and punches.


Figure 7. Examples of various target holders. (a) A water-cooled, rotatable and translatable holder able to hold large tools, such as a punch and a drill (the objects can also be held at the side of the holder); (b) a water-cooled, rotatable holder holding taps.




а

b

.ig.4

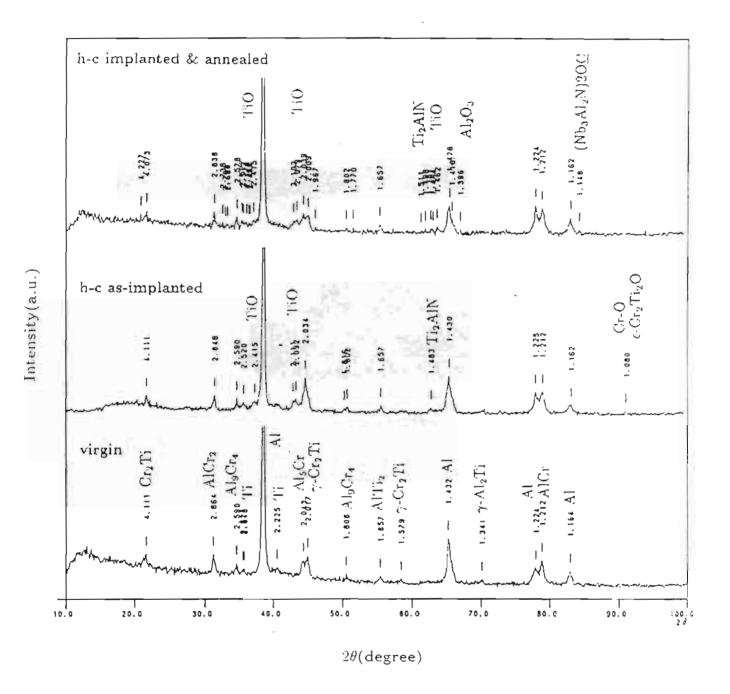
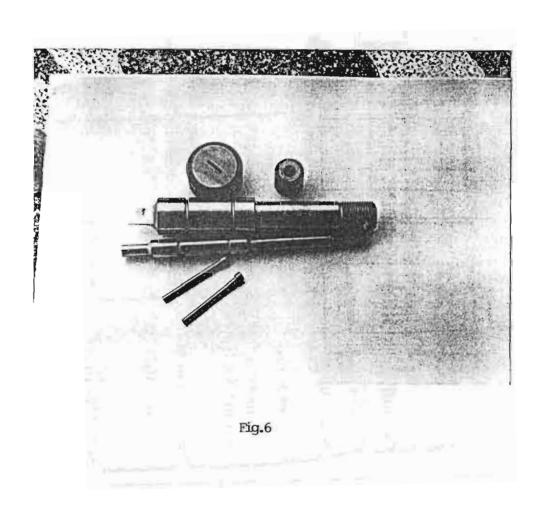
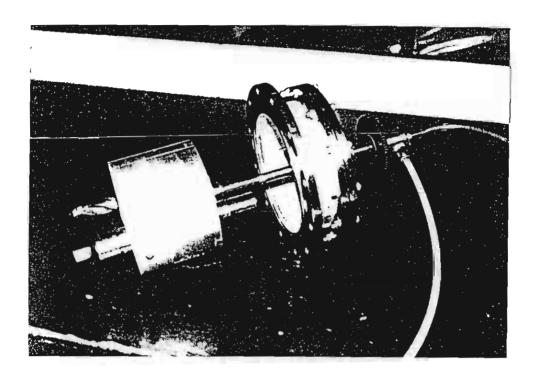
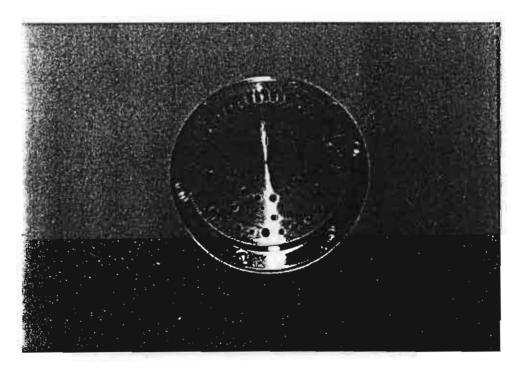





Fig.5

а

b

Fig.7

3.4 ไอออนและเทคโนโลยีชีวภาพ

ในช่วงเวลาสองทศวรรษที่ผ่านมางานด้านเทคโนโลยีชีวภาพมีการพัฒนาอย่างต่อเนื่อง โดย เฉพาะอย่างยิ่งการมีพัฒนาวิธีการถ่ายฝากยืน (gene transfer) ขึ้นหลายวิธี ทำให้มีการถ่ายฝากยืน เข้าสู่สิ่งมีชีวิตทั้งในเชลล์พืช เซลล์สัตว์ และในแบคทีเรีย เพื่อให้ได้สิ่งที่มีชีวิตแปลงพันธ์ transgenie organisma, genetically modified organisms) ที่มีคุณสมบัติตามที่ต้องการ การถ่าย ฝากยืนนี้ถูกนำไปใช้ประโยชน์ในงานด้านต่างๆ อย่างมากมาย เช่น ด้านการเกษตร ได้มีการนำไป ใช้ในการพัฒนาหรือปรับปรุงพันธุ์พืชให้มีลักษณะพิเศษ เช่น การถ่ายฝากยืนที่กำหนดการสร้างสาร พิษจากแบคทีเรียชื่อ Bacillus thuringiensis (bt) เข้าสู่ต้นฝ้ายทำให้ได้ฝ้ายที่ด้านทานต่อแมลง การ พัฒนาพืชที่ด้านทานต่อฤทธิ์ยาฆ่าหญ้า หรือการถ่ายฝากยืนที่กำหนดการสร้างโปรตีนห่อหุ้ม (coat protein, CP) ของไวรัสสู่พืช ทำให้พืชมีความด้านทานต่อการบุกรุกของไวรัสชนิดนั้นๆ และชนิด ด้านอุตสาหกรรมการผลิตเทคโนโลยีการถ่ายฝากยืนทำให้มนุษย์สามารถผลิตสาร ใกล้เคียง ประกอบเคมีชีวภาพในระดับอุตสาหกรรม โดยการถ่ายฝากยีนที่ต้องการเข้าสู่แบคทีเรีย เช่น อุตสาหกรรมการหมัก อุตสาหกรรมการผลิตกรดอะมิโน อุตสาหกรรมการผลิตอินซูลินสำหรับผู้ ด้านสิ่งแวดล้อมมีการสร้างแบคทีเรียแปลงพันธุ์เพื่อย่อยสลายหางนมและของ ป่วยโรคเบาหวาน เสียหลายชนิด ที่สำคัญคือ มีการสร้างแบคทีเรียแปลงพันธุ์ที่สามารถย่อยสลายองค์ประกอบที่อยู่ใน ปิโตรเลียม เพื่อนำไปถ่ายฝากยีนดังกล่าวให้กับแบคทีเรียที่อยู่ในทะเลเพื่อให้ย่อยสลายคราบน้ำมัน การถ่ายฝากยืนยังถูกนำมาประยุกต์ใช้ในการศึกษากลไกหรือกระบวนการต่างๆ ที่ เกิดขึ้นในสิ่งมีชีวิตที่เกี่ยวข้องกับยืนที่ถ่ายฝากเข้าไป

ในปัจจุบันการถ่ายฝากยืนมีหลายวิธี ได้แก่

- การถ่ายฝากยีนโดยตรง (direct gene transfer) เป็นการถ่ายฝากยีนผ่านโปรโตพลาส์โดยแยก cell coat ของเซลล์พืชออกไปก่อน แล้วนำโปรโตพลาส์มาบ่มรวมกับสารละลาย DNA
- การถ่ายฝากยืนโดยใช้กระแสไพ่ฟ้า (electroporation) เป็นวิธีที่ทำให้เกิดช่องขึ้นที่เยื้อหุ้มเซลล์ โดยใช้กระแสไฟฟ้า (เซลล์แบคทีเรีย) การประยุกต์ใช้กับเซลล์พืชจำเป็นต้องใช้เซลล์พืชที่อยู่ใน ลักษณะของโปรโดพลาส หรืออาจใช้กับเซลล์ที่อยู่ในสภาพของแคลลัส
- การถ่ายฝากยืนโดยใช้เข็มฉีด (microinjection) ใช้กับเซลล์พืชและเซลล์สัตว์โดยฉีด DNA เข้า ไปโดยตรง
- การถ่ายฝากยีนเข้าสู่พืชโดยใช้แบคทีเรีย (*Agrobacterium*-mediated gene transfer) ซึ่ง สามารถทำได้ 3 วิธี คือ
 - i.) เลี้ยง Agrobacterium ร่วมกับโปรโตพลาส์ (co-cultivation with protoplast)
 - ii.) ถ่ายฝากยีนโดยใช้ใบพืชที่ตัดเป็นชิ้นกลมเล็กๆ (leaf disc method)
 - iii.) ใช้ Agrobacterium บุกรุกเข้าต้นพืชที่มีบาดแผล
- การถ่ายฝากยีนโดยใช้เครื่องยิง (particle gun, microprojectile bombardment or biolistic technique) เป็นวิธีที่ใช้อนุภาคทั้งสเตนหรือทองขนาด 1-4 ไมครอน เคลือบด้วย DNA ที่

ต้องการถ่ายเข้าเซลล์เป็นอนุภาคกระสุน แล้วยิงไปยังเซลล์ด้วยความเร็วประมาณ 1,400 ฟุต/ วินาที

แม้ปัจจุบันจะมีวิธีการถ่ายฝากยีนหลายวิธีดังกล่าวข้างตัน แต่ละวิธีการเหล่านี้ก็ยังมีจุดอ่อน หรือข้อเสียหลายประการ ทำให้การประยุกต์ไม่กว้างขวาง เช่นวิธี direct gene transfer มีประสิทธิ ภาพด่ำทำให้ต้องใช้ความเข้มขันของสารละลาย DNA สูงรวมทั้งต้องใช้จำนวนเซลล์ในการทดลอง เป็นจำนวนมาก วิธี Agrobacterium-mediated gene transfer ใช้ฝากถ่ายยืนสู่พืชได้เพียง 60% เท่านั้น [1] แต่มีรายงานว่ามีเพียงพืช 2-3 ชนิดเท่านั้นที่สามารถพัฒนาเป็นต้นได้ การทดลองกับ เซลล์พืชโดยใช้วิธี microinjection เป็นเรื่องยากเนื่องจากเซลล์พืช vacuole ขนาดใหญ่ ซึ่งเป็นที่ เก็บ enzyme และสารพิษหลายชนิดหากขณะฉีด DNA เข้าเซลล์พืช vacuole แตกเซลล์พืชจะตาย ซึ่งวิธีนี้ใช้ได้กับ embryo ของพืชบางชนิดเท่านั้น นอกจากนี้การ regenerate ของพืชมักจะผิดปกติ [2] วิธี electroporation ซึ่งใช้แพร่หลายกับเซลล์พืชและแบคทีเรียยังพบปัญหาคือ เกิดความเสีย หายของ DNA ดั้งเดิมของเซลล์ ซึ่งเป็นผลมาจากกระแสไฟฟ้าทำให้เกิด mutation ของเซลล์หลัง การทดลอง [3] และการทดลองพบว่าวิธี biolistic technique ไม่ได้มีประสิทธิภาพดังที่คาดหวังไว้

การประยุกต์เทคโนโลยีใอออนบีมที่ระดับพลังงานด่ำ (ion beam implantation) กับงานด้าน เทคโนโลยีชีวภาพในการถ่ายฝากยีนเป็นงานแนวใหม่อาศัยความรู้พื้นฐานร่วมระหว่างนิวเคลียร์ พิสิกส์กับชีววิทยา เทคนิคดังกล่าวทำได้โดยการฝังลำไอออนของก๊าซ เช่น № หรือ Ar บนเซลล์ของ พืชหรือแบคทีเรีย โดยไอออนของก๊าซถูกสร้างขึ้นโดย ion source และเร่งให้มีพลังงานระดับ 15-30 keV โดยสนามไฟฟ้า ไอออนอาจถูกคัดกรอง (mass-analyzed) ให้ผ่านเฉพาะชนิดที่ต้องการ โดยสนามแม่เหล็ก แล้วยิงไปยังเซลล์ซึ่งวางไว้ใน target chamber (ดูรายละเอียดและรูปภาพได้ จากเอกสารประกอบหัวข้อ 3.4.1) ผลที่เกิดจากการฝังด้วยลำไอออนต่อเซลส์จะเกิดจากการทะลุ ทะลวงของไอออน เข้าไปในพื้นผิวของเซลล์ (Cell Coat) โดยตรง ในระดับความลึกระดับนาโน เมตรจนถึงไมโครเมตร (ขึ้นอยู่กับชนิดของไอออน ระดับพลังงานและโดสของไอออน) ผลที่เกิดจาก การถ่ายเทพลังงาน โมเมนตัมและประจุของไอออนต่อเซลล์ที่ถูกฝังทำให้เกิดการเปลี่ยนแปลงสมบัติ เชิงพื้นผิวของ cell coat ทั้งทางด้านกายภาพ (microhole, passages) ทางเคมีโดยอาจเกิดการเพิ่ม permeability ต่อ DNA อันเนื่องมาจากการเกิดองค์ประกอบใหม่ ใน cell coat หรือทำให้เกิด charge unbalance จาก ประจุบวกของก๊าซต่อเซลล์ ทำให้มีการปรับตัวของเซลล์ดึงประจุลบ (DNA)

^[1] De Celeene, M. and De Lay, J. 1976. The host range for crown gall. Bot. Rev. 42:389-466.

^[2] Potrykus, I. 1989. Gene transfer to cereals: an assessment. TIBTECH 7:269-273.

^[3] Trevors, J.T. 1991. Electrotransformation of Bacteria. *Method in Molecular and Cellular Biology*, 2:247-253.

เข้าไปภายในเชลล์ การถ่ายฝากยีนโดย ion beam implantation มีข้อดีคือผลของการอาบด้วยลำ ไอออนพลังงานต่ำ จะเกิดเฉพาะที่ผนังของเซลล์เท่านั้นและอาจไม่ส่งผลต่อ DNA หรือ chromosome ของเชลล์ดั้งเดิม อีกทั้งยังสามารถใช้กับ intact cell (เชลล์ปกติที่มี cell coat) ได้ด้วย

เทคโนโลยีใอออนบีมได้ถูกนำมาประยุกต์ใช้ในงานด้านชีววิทยาและการเกษตร ทางด้าน เทคโนโลยีชีวภาพ ใน 2 ลักษณะ คือ อาศัยผลของการอาบลำไอออนบนเซลล์ที่ระดับพลังงานสูง ก่อ ให้เกิดความเสียหายที่นำไปสู่การกลายพันธุ์ในทางหนึ่ง และอาศัยผลของการอาบลำไอออนบนผนัง เซลล์ที่ระดับพลังงานต่ำ นำไปใช้ประโยชน์ในการถ่ายฝากยืนเข้าสู่เซลล์ [4] เทคโนโลยีไอออนบีม ระดับพลังงานด่ำนี้ได้นำไปใช้ในการถ่ายฝากยืนเข้าสู่เซลล์ข้าว (protoplast) ในประเทศจีน [5] และ ในประเทศญี่ปุ่นได้ใช้วิธีการนี้ในการถ่ายฝากยืน เข้าสู่ pollen [6] คณะผู้วิจัยได้ศึกษาวิจัยลู่ทางการ นำไอออนมวลหนักพลังงานต่ำมาประยุกต์ทางด้าน biotechnology ดังรายละเอียดในหัวข้อ 3.4.1 - 3.4.3

^[4] Yu, Z., Qiu, L. and Huo, Y. 1991. Progress in studies of biological effect and crop breeding induced by ion implantation. J. of Anhui Agri. Coll. 18(4):251.

^[5] Yu, Z., Yang, J., Wu, Y., Cheng, B., He, J. and Huo, Y. 1993. Transferring GUS gene into intact rice cells by low energy ion beam. *Nucl. Instr. and Meth.* B80/81:1328.

^[6] Tanaka, A, et al. 1997. Penetration controlled irradiation with ion beams for biological study. *Nucl. Instr. and Meth.* B129: 42-48.

3.4.1 The Effects of Low-energy Ion Beam on Outer Plant cell Structure for Exogenous Molecule Transferring

Chiara Alisi^a, Boonrak Phanchaisri^a, Liangdeng Yu^a, Somboon Anuntalabhochai^b, Pimchai Apavatjrut^c and Thiraphat Vilaithing^d

alnstitute for Science and Technology Research and Development, Chiang Mai University

Department of Biology, Faculty of Science, Chiang Mai University

^cDepartment of Horticulture, Faculty of Agriculture, Chiang Mai University

Fast Neutron Research Facility, Department of Physics, Faculty of Science, Chiang Mai University

Chiang Mai 50200, Thailand.

Correspondence to: Pimchai Apavatirut (agippyti@chiangmai.ac.th)

Abstract Low-energy N- and Ar-ion beams at 15-30 keV with doses ranging from 2x10¹⁴ to 3x10¹⁶ ions/cm² were applied to different plant tissues and screened for their effects on tissue viability and cell damage. Ar ions implantation at 30 keV to doses ranging from 5x10¹⁴ ions/cm² to 1x10¹⁵ ions/cm² onto plant cells allowed Trypan blue molecules enter the cell wall. At the dose of 2x10¹⁵ ions/cm² the dye could be detected inside the vacuoles The changing of cell wall treated with 30-keV Ar-ion implantation at 2x10¹⁵ ions/cm², postulated as paths for exogenous molecule transferring was detected under Transmission Electron Microscopy.

KEYWORDS: ion implantation, low-energy, plant cell, Trypan blue.

Introduction

lon beam biotechnology is a newly founded interdisciplinary field between applied nuclear physics and biology, where physical ion beams are utilized for biological engineering or processing¹. Ion beam technique is represented by ion implantation, a physical process where energetic (charged) ions are accelerated by an electric field, and continued onto a target where they penetrate inside, introducing physical and chemical changes in the near surface region. The ion implantation technique is able to introduce ions of one or more elemental species into other materials. Applications of ion beam technology include nuclear reactor engineering, electronic device fabrication and materials modification. Direct consequences of ion implantation are the penetration of ions inside the materials at depths ranging from a few nanometers to a few micrometers (depending on the ion species, the energy and the target material), introducing radiation damages to the target surface structure which includes sputtering and emission of secondary electrons and photons². These events finally change the extrinsic properties of the target materials.

The ion beam application has been recently extended to the field of biology and agriculture. The important mechanism of ion beam biotechnology is the use of high energy to produce radiation damage, which acts as a new mutagenic source for genetic modification in organisms in the way of either directly inducing mutation or creating physical injuries for exogenous molecules transferring by energy deposition, momentum

transferring, foreign particle implantation and charge exchange¹. Recently, this technique was employed in order to introduce a plasmid into rice protoplasts³. Motivated by this attempt and being aware that this technique may provide a precious alternative to the traditional DNA transferring methods, we have initiated an experimental investigation to understand more about the effects caused by the exposure of excised plant tissues to the ion beam and the mechanisms of ion implantation leading to a deformation of the outer cell structures.

In this preliminary study we investigated a) the applicability of our ion beam facilities to implant ions in biological materials, b) the effects of ion implantation on tissues viability and c) the effects of the ion beam irradiation on the outer cell structures for exogenous molecule transferring. For these purposes, different tissues from several plant species were irradiated using ion beams from different ion species - nitrogen (N) and argon (Ar)- with low energies and varied doses.

Materials and methods

Ion implantation

The ion implantation was carried out using the 150-keV mass-analyzed heavy ion implantation facility at the Ion Beam Technology Unit, Chiang Mai University^{4,5}. In this machine, argon and nitrogen ions were produced by an RF ion source, extracted and accelerated to the energies ranging from 15 to 30 keV, magnetically mass-analyzed and focused, and finally transported to the target chamber (Fig 1.) where a sample holder was installed.

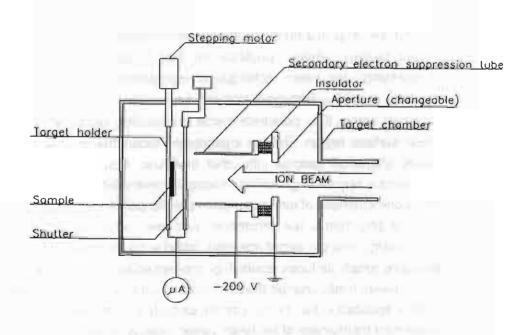


Fig 1. Scheme of the target chamber which includes: a sample holder, a manipulator system and a beam-current measurement system.

The whole beam line, including the sample holder, was constructed from stainless steel. The sample holder was specially designed to hold a standard petri dish where the plant tissues can be accommodated, and exposing four different target locations to the ion beam. Pulsed beam modes were adopted with the beam periodically sweeping across the exposure holes of the sample holder. The ion doses were controlled by measurement of the beam current at the target and the implantation time. In order to measure the beam current correctly, an electron suppression tube mounted in front of the holder was exerted with -200 V to suppress the emitted secondary electrons from the target surface resulting from the ion beam bombardment. The beam current densities were varied from 3 to 10 μ A/cm². The dose of each pulse irradiating the target was about $3 - 5 \times 10^{12}$ ions/cm². During ion implantation, the pressure in the target chamber was kept around 10^{-5} - 10^{-4} Torr by a turbomolecular pump, and the temperature of the target in such an environment was estimated to be about 0 °C. During the implantation experiments, tissue specimens stood in these conditions for about 1.5-2 h. Table 1 summarizes the ion implantation conditions.

Table 1, for implantation conditions.

lon	Energy	Dose (ions/cm²)
species	(keV)	
N	15, 30	5x10 ¹⁴ ,1x10 ¹⁵ , 2x10 ¹⁵ , 4x10 ¹⁵ , 1x10 ¹⁶
Ar	20	5x10 ¹⁴ , 1x10 ¹⁵ , 2x10 ¹⁵ , 4x10 ¹⁵ ,
	30	2x10 ¹⁴ , 5x10 ¹⁴ , 1x10 ¹⁵ , 2x10 ¹⁵ , 4x10 ¹⁵ , 1x10 ¹⁶ , 1.5x10 ¹⁶ , 3x10 ¹⁶

Plant tissues

Table 2 shows the plant species and tissues used in this study. The choice was lead by the availability in our tissue culture laboratory, the tissue employed for each plant species is mostly the one commonly used in tissue culture propagation. For each ion beam treatment, plant tissues were fixed onto a petri dish arranged in two groups, one to be exposed to the beam for implantation and the other, which was not exposed to the beam, as a vacuum-treated control. Fresh tissues were also employed as controls to test the vacuum and low-temperature effects on the samples. Four pieces of the employed tissue of each species were treated in one experiment, with an average of four replicates per dose applied. Each experiment was repeated at least three times.

Plant tissues post-treatment

After ion implantation, the tissues were shortly rehydrated for 30 min in sterile distilled water. Trypan blue (TB) was used to rapidly determine the optimal irradiation conditions that can produce structural modifications of the cell wall and plasma membrane while maintaining the cell viability. This vital dye is a molecule of about 1000 Da so it can penetrate and stain only those cells that are dead or damaged; uninjured, viable cells with intact cell wall and functional membrane prevent the dye from entering and remain unstained⁶. The rehydrated tissues were placed on a glass slide, stained with trypan blue

solution (1mg/ml in phosphate buffer 50 mM pH 7.5) and observed under a bright field microscope.

Table 2. List of the plant species and tissues.

Plant species	Tissue
Dendranthema x hybrida, Zea mays	leaf
Eurycles amboinensis	pollen
Hippeastrum x hybrida,Eurycles amboinensis,Gladiolus x hybrida	leaf base
Zea mays,Cucurbita moschata ,Curcuma sp.,Zingiber sp.	embryo
Cymbidium tracyanum, Dendrobium cruentum, D.albosanguineum, Ascocentrum curviflorium, Paphiopedilum sp.	protocorm
Gnetum gnemon,Fragaria vesca, Tacca sp., Globba sp.	lateral bud
Broussonetia papyrifera, Maesa ramentacea	stem

Transmission electron microscopy (TEM)

Implanted and fresh tissues were fixed in 2.5 % glutaraldehyde in 0.1 M PBS, pH 7.3 at 4 °C for 1 h. They were then rinsed several times with the same buffer and postfixed with 1 % OsO₄ in 0.1 M PBS for 1 h. The fixed specimens were washed with the same buffer and dehydrated in increasing concentrations of acetone. At room temperature, the specimens were then infiltrated with increasing concentrations of Spurr's 1969 resin in acetone. Thin sections were stained sequentially with uranyl acetate and lead citrate and examined under a JEOL 1200 EX II transmission electron microscope at 25 kV.

Results and Discussion

Vacuum effects

For the ion beam treatment was operated in high vacuum condition which also causes water loss and low-temperature environment for the tissues, any effect due to these harsh conditions on the tissues was therefore first tested separately from the ion implantation effects. Before ion implantation, the effects of the pressure ranging from 10⁻⁴ to 10⁻⁵ Torr (which leads to ambient temperature of about 0 °C or even lower) on the tissues were tested. As shown in Fig 2, the cell turgor produced by the vacuum exposure was restored after an incubation of 30 min in distilled water.

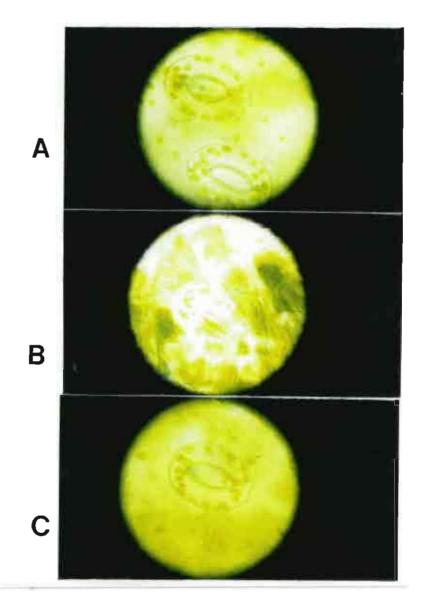


Fig 2. An example of the effects of vacuum on guard cells from *Dendrathema* leaf. A: fresh control, B: vacuum-treated control (at 10⁻⁵ torr for 2 h), C: the same sample after 30 min of rehydration in water.

Ion implantation effects

The tissues capability to survive and differentiate was tested on various species. The energy and dose employed were those that produced significant modification from the studies on dye penetration and the TEM photographs. In Table 3 the results of Ar-ions implantation are shown: many of the species and tissues could grow after the implantation, or survived in a steady state, except for *Gladiolus* that probably could not stand the dehydration under vacuum condition

Table 3. Effects of ion implantation (Ar, 30 keV, 2x10¹⁵ ion/cm²) on the survival and growth of different plant species and tissues.

Grown /Developed	Steady state	Dead
Dendranthema x hybrida		Gladiolus
Eurycles amboniensis (basal plate and pollen)	Hippeastrum x hybrida	
Zea mays	Cucurbita moschata, Curcuma sp., Zingiber sp.	
Cymbidium tracyanum, Dendrobium albosanguineum, Ascocentrum curviflorium, Paphiopedilum sp.	Dendrobium cruentum	
Fragaria vesca, Globba sp.	Tacca sp.	
Broussonetia papyrifera	Maesa ramentacea	

N-ion implantation at 30 keV has been observed to produce extensive effects on plant cells (data not shown), while the 15-keV N-ion implantation did not affect the tissues except when the dose of 1x10¹⁶ ions/cm² was used. As an example shown in Fig 3A, the naked corn embryos in tissue culture can still germinate after implantation at 5x10¹⁴, 1x10¹⁵ and 2x10¹⁵ ions/cm² even if the growth is retarded of about 50%. Severe injury are observed to be limited to doses higher than 1x10¹⁶ ions/cm² and to energy higher than 30 keV (data not shown). Implantation of the heavier Ar ions (Fig 3B) was found to produce similar results.

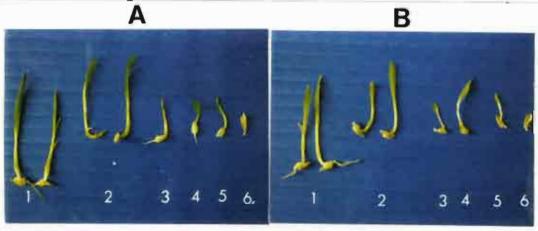


Fig 3. Naked corn embryos grown in tissue culture after ion implantation, A: N, 15 keV; B: Ar, 30keV. 1: fresh control; 2: vacuum treated control; 3: 5x10¹⁴ ions/cm²; 4: 1x10¹⁵ ions/cm²; 5: 2x10¹⁵ ions/cm²; 6: 1x10¹⁶ ions/cm².

Figure 4 shows the extent and the effects of the Ar-ion implantation on embryo cells. While trypan blue could not enter the cells of the unimplanted embryo (fresh and vacuum-exposed control, Fig 4A and B, respectively), it could enter the cell wall and was accumulated in the apoplast of the cells irradiated with 20 keV Ar-ions at dose level of 1x10¹⁵ ions/cm² (Fig 4C) and with 30 keV Ar-ions at 1x10¹⁵ ions/cm² (Fig 4D). When the cells were irradiated with the 2x10¹⁵ ions/cm² Ar-ions at 30 keV, the dye could enter inside the cells where it was concentrated into small vacuoles (Fig 4E) implying that the cells were functional and alive. At higher doses (4x10¹⁵ ions/cm², Fig. 4F) the cells surface is damaged and the dye seems to accumulate in the nuclear area but not into vacuoles.

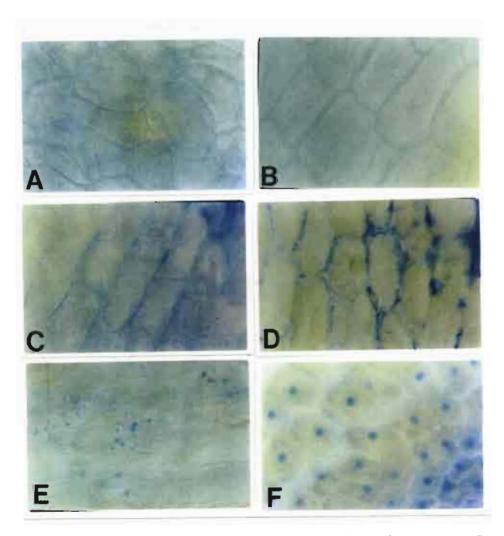


Fig 4. Trypan blue staining of Ar-ion implanted embryo cells. A: fresh control. B: vacuum-treated control. C: 20 keV, 1×10^{15} ions/cm². D: 30 keV, 1×10^{15} ions/cm². E: 30 keV, 2×10^{15} ions/cm². F: 30 keV, 4×10^{15} ions/cm². The dye does not enter the cells in the both controls, (A and B) while at low energy and low doses the dye enters the cell wall but not the plasmalemma (C and D). At higher doses the dye enters inside the cells and is compartmented into vacuoles (E) or accumulated in the nuclear area (F).

N-ion implantation was found to be ineffective for Trypan blue penetration at low energy (15 keV) as shown in Fig 5A. At 30 keV, the effect of nitrogen implantation was too severe and the cells surface was seriously damaged (Fig 5B).

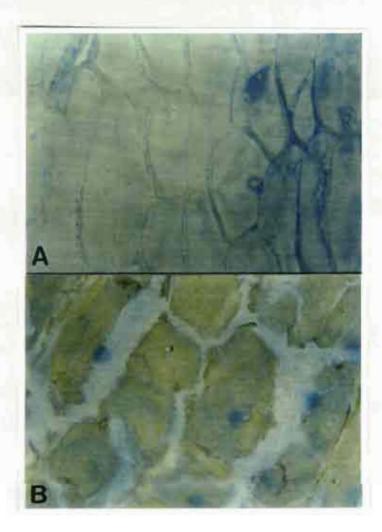


Fig 5. Trypan blue staining of N-ion implanted embryo cells. A: 15 keV, 1x10¹⁵ ions/cm²; B: 30 keV, 1x10¹⁵ ions/cm².

These evidences indicate that Ar ions are more suitable than N to introduce exogenous molecules without serious affecting cell viability. The reason for the different result achieved with N and Ar ions could be explained on the supposition that for N ions the energy of 15 keV is not high enough to penetrate the cell wall, or the damage created by those lighter and smaller ions is quickly repaired.

TEM micrographs in Fig 6 show the injury produced by the Ar-ion implantation. The external surface of cell wall in the control (vacuum treated, Fig 6A) is smooth, but after ion

implantation it becomes corrugated (Fig 6B). At higher magnification a kind of outer cell structure changing postulated as "path" through the cell wall can be observed (Fig 6C, arrows).

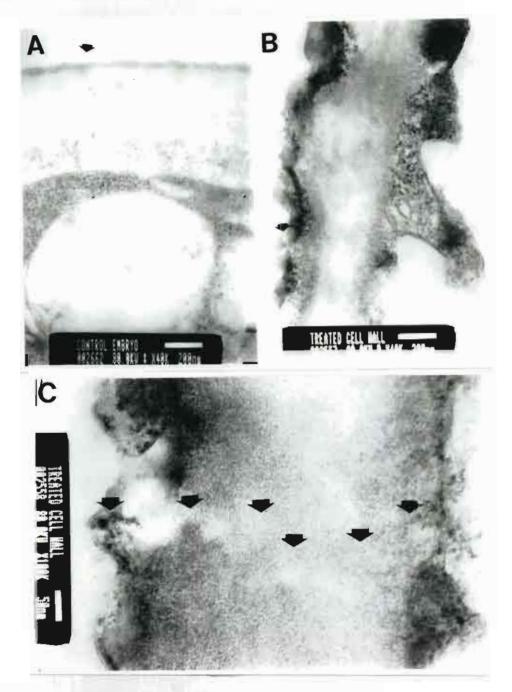


Fig 6. TEM micrographs of the effects of ion beam implantation on embryo outer cell structure.

A: vacuum-treated control. Bar 200 nm. The arrow indicates the external surface of the cell wall.

B: Ar-ion implanted, 30 keV, 2x10¹⁵ ions/cm². Bar 200nm. The external surface of the cell wall is damaged and partially etched.

C: Higher magnification of the same sample shows the etching on the surface produced by ion implantation (left arrow) and the resulting the changing, postulated as path through the whole cell wall.

The penetration depth of Ar ions into the cells was theoretically estimated by using TRIM-90 simulation software⁷. The program calculated the maximum depth in biological tissues to be about 100 nm at an incident energy of 30 keV as shown in Fig 7. However, TEM photographs show the thickness of the cell wall to be about 400 nm; in Fig 6C the path goes through the whole cell wall, and in Fig 4 the dye can enter the cell wall (C,D) and the plasmalemma (E,F). This incongruence between the estimated thickness and the real one could be explained by the fact that the TRIM program assumes the material as a continuous medium, without gaps between the atoms; but biological structures such as the cell wall are not compact, so it can be inferred that about 75% of the cell wall is full of cavities and 25% occupied by atoms.

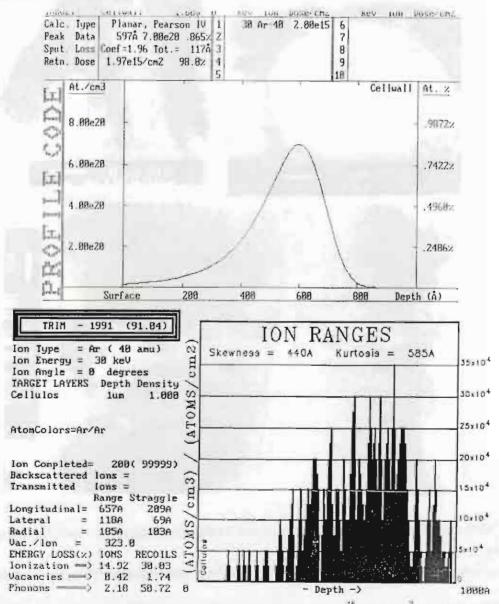


Fig 7. Simulation results of 30-keV Ar-ions at a dose of 2x10¹⁵ ions/cm² implanted onto the cell wall.

Above: Simulated by the PROFILE mode. Below: Simulated by the TRIM-91 program.

On the basis of these results and the theoretical calculation, we expect that ion implantation, producing the effects of surface sputtering and inner atomic collision cascades for solids (Fig 8), could affect the porous biological tissues in a similar way.

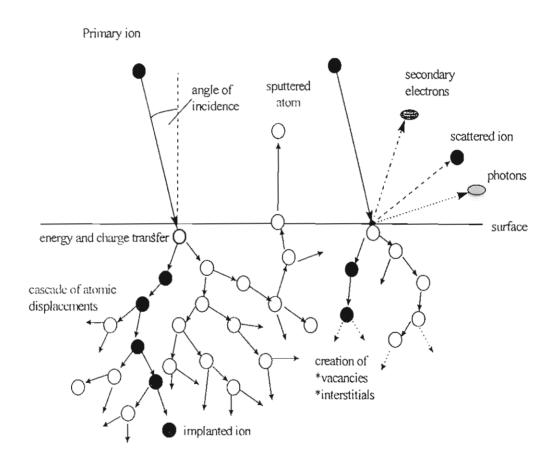


Fig 8. Scheme of the basic interactions between the implanted ions and a solid target material: (left) the energetic ion (dark circle) hits the surface and transfers energy to the target atoms (open circle), initiating a collisions cascade and penetrating deeper into the target, incidentally provoking the sputtering of ions from the target surface; (right) the energetic ion hits the surface dissipating its energy in other ways such as the emission of secondary electrons or photons, or bouncing from the surface.

The cellulose-pectin skeleton that constitutes the cell wall can be weaken by the extensive damage owing to the atomic collision cascade, producing paths for exogenous substances transferring, and/or the severe loss of water and low temperature environment due to high vacuum condition could render the cell wall (and the plasmalemma) rigid and susceptible to crack under the ion bombardment. These micro-cracks would allow the passage of big molecules.

A number of DNA transferring techniques such as direct gene transfer⁸, microinjection⁹, electroporation^{10,11}, protoplast fusion¹², biolistic bombardment¹³ and the use of *Agrobacteria*-mediated gene transfer¹⁴ have been developed but all of them present some limits in their application. The low-energy ion-implantation could be an alternative method for gene delivery; successful of DNA transferring and expression in bacteria using low-energy ion implantation technique has already been obtained in our laboratory (manuscript in preparation). The introduction of expression vectors into plant tissues is in progress.

Conclusion

This study demonstrates that at certain energy and dose ranges of particular ion species, ion implantation can create structural modification on the plant cell walls and membranes from excised tissue to transfer exogenous substances. The results indicate new prospect in transferring macromolecules into biological cells.

Acknowledgements

We thank R. Charoennugul for preparing the sample holder; P. Vichaisirimongkul for his technical assistance in the ion implantation; R. Chandej for biological assistance and P. Chitanan for the preparation of plant tissue. L.D. Yu wishes to thank the National Metal and Materials Technology Center for the research fellowship. This work was supported by the Thailand Research Fund.

References

- 1. Yu Z, Qiu L and Huo Y (1991) Progress in studies of biological effect and crop breeding induced by ion implantation. Journal of Anhui Agricultural College 18, 251-257.
- 2. Nelson RS (1973) The physical state of ion implanted solids. In: Dearnaley G, Freeman JH, Nelson RS, Stephen J (eds.) Ion implantation. North-Holland Publishing Company. pp 154-254.
- 3. Yu Z, Yang J, Wu Y, Cheng B, He J and Huo Y (1993) Transferring Gus gene into intact rice cells by low energy ion beam. Nucl Instr and Meth B80/81, 1328-1331.
- 4. Yu LD, Suwannakachorn D, Intarasiri S, Thongtem S, Boonyawan D, Vichaisirimongkol P and Vilaithong T (1995) Ion beam modification of materials program at Chiang Mai University. Proceedings of the 9th International Conference on Ion Beam Modification of Materials (IBMM'95), Canberra, Australia. Williams JS, Elliman RG and Ridgway MC (eds), Elsevier Science BV, Amsterdam, pp 982-985.
- Vilaithong T, Suwannakachorn D, Yotsombat B, Boonyawan D, Yu LD, Davydov S, Rhodes MW, Intarasiri S, Suanpoot P, Charoennugul R, Vichaisirimongkol P, Aumkaew S and A-no V (1997) Ion implantation in Thailand (1)- Development of ion implantation facilities. ASEAN Journal on Science and Technology for Development 14, 87-102.
- 6. Saunders JA and Matthews BF (1995) Pollen electrotransformation in tobacco. In: Nickoloff J.A. (ed.) Plant cell electroporation and electrofusion protocols. Humana Press, New Jersey, pp. 81-87.
- 7. Ziegler JJ and Biersak JM (1990) TRIM-90 (Software). N.Y.
- 8. Shillito RD, Saul MW, Paszkowski J and Potrykus I (1985) High efficiency direct gene transfer to plants. Bio/Technology 3,1099-1103.
- 9. Bilang R, Zhang S, Leduc N, Iglesias VA, Gisel A, Simmons J, Potrykus I and Sautter C (1993) Transient gene expression in vegetative shoot apical meristems of wheat after ballistic microtargeting. Plant J 4, 735-744.
- 10. Fromm ME, Taylor LP and Walbot V (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319, 791-793.
- 11. Chassy BM, Mercenier A and Flickinger J (1988) Transformation of bacteria by electroporation. TIBTECH 6, 303-309.
- 12. Jones M (1988) Fusion plant protoplast. TIBTECH 6,153-158.
- 13. Klein TM, Wolf ED, Wu R and Sanford JC (1987) High velocity microprojectiles for delivering nucleic acids into living cells. Nature 327, 70-73.
- 14. DeBlock M, Herrera-Estrella L, van Montagu M, Schell J and Zambrysky P (1984) Expression of foreign genes in regenerated plants and their progeny. EMBO J 3, 1681.

3.4.2 Ion Beam Induced Direct DNA Transfer into E. coli

Somboon Anuntalabhochai*, Chiara Alisi*, Boonrak Phanchaisri[†], Liangdeng Yu[†], Pimchai Apavatirut** & Thiraphat Vilaithong[#]

*Department of Biology, + Institute for Science and Technology Research and Development, ** Department of Horticulture, # Department of Physics, Chiang Mai University, Chiang Mai 50200, Thailand

.....

lon bioengineering is represented by ion implantation, whereby, energetic ions are accelerated under an electric field and transported onto a target such as living cells where they penetrate inside, introducing physical and chemical changes. Direct consequences of ion implantation are penetration of ions inside the materials at depths ranging from a few nanometers to a few micrometers, creation of radiation damages to the near target surface structure and introduction of charges to the target. These events finally change the surface properties of the target materials. Several evidences have shown that low energy heavy ions have specific features on biological studies. These ions are applied as a new mutagenetic source to induce mutation on genetic material in living organism. These ions are applied as a new mutagenetic source to induce mutation on genetic material in living organism. For several purposes such as for bacterial enzyme analysis. The germination and survival investigation in wheat seeds. Recently, gus gene transfer into rice cell suspension. and tobacco pollen induced by low energy heavy ion beams have been described. Here we report the first evidence of direct gene transfer in bacterial cells using low energy ion beams. A pGEM2 plasmid carrying amp+ was selected to be introduced into the competent bacteria, Escherichia coli strain DH5C4, under an influence of low energy Ar*ion implantation. To confirm an evidence of exogenous molecule transfer by the low energy ion beam, Trypan blue (TB) was chosen to be delivered through plant cell coat. We observe an accumulation of the Trypan blue in the nuclear area of the cell.

The ion implantation was carried out using the 150 kV mass-analyzed heavy ion implantation facility at the Ion Beam Technology Unit, Chiang Mai University. In this machine, argon and nitrogen ions were produced by an RF ion source, extracted and accelerated to energies ranging from 15 to 30 keV. The target chamber and the sample holder used in our experiment are shown in Fig 1.

To irradiate bacterial and plant cells, Ar* and atomic N* ions were chosen for our purpose. The dose of each irradiation was varied between 2x10¹¹-3x10¹⁶ ions/cm² with energy in the range 15-30 keV as summarized in Table 1. During ion implantation, the chamber was operated under a high vacuum condition. The pressure in the chamber was stable around 10⁻⁵ Torr and the temperature of the target in such an environment was estimated to be about 0 °C. The samples were kept in these conditions about 1.5-2 h during the whole experiment.

The chosen bacteria and plasmid used in this study were *Escherichia coli* and pGEM2, respectively. After being irradiated the competent bacteria with 25 keV Ar and N ion beams at four different doses, 5x10¹⁴,

 1×10^{15} , 2×10^{15} and 4×10^{15} ions/cm², aliquots of the competent bacterial cells were incubated with 10 μ g pGEM2 for 30 min in an icebox and the mixtures were then incubated with 3 ml Luria-Bertani (LB) medium for 2 hours at 37 °C. After the 2-hour incubation ampicillin solution was added into the mixtures at the final concentration of 100 μ g/ml and finally, incubated at 37 °C with vigorous shaking overnight. The control was the vacuum-treated bacteria in LB without ampicillin supplemented (LB).

Since the plasmid PGEM2 carries gene coding for being resistant to ampicillin, therefore, the competent cells containing the transferred plasmid were able to grow in the LB medium supplemented with ampicillin (LB⁺) media. At dose levels of 1x10¹⁵ and 2x10¹⁵ ions/cm² of Ar⁺ treatment the bacterial cells incubated with the transferred plasmid were able to grow in LB⁺ media. Whereas survival growth of the bacterial cells irradiated with Ar⁺ ion at 5x10¹⁴,and 4x10¹⁵ ions/cm² was not observed (Fig. 2). Moreover none of the bacterial cells irradiated with any doses of N⁺ ion was able to grow in the LB⁺, neither that of the unirradiated one.

Because the ion beam treatment was operated under low temperature and low pressure, therefore, the cell viability was first tested. The vacuum treated bacteria could only grow in LB but not survive in LB. This result indicated that such a harsh condition could not suppress the cell viability.

The pGEM2 plasmid from the transformants was prepared by the conventional method ⁷ and purified through an OIAGEN column as prescribed by the manufacturer. Consequently, three restriction enzymes including *Pst I, Hind III* and *Xba I* were performed to digest the transferred pGEM2 in their cloning sites. The digested plasmid was subjected on agarose electrophoresis to compare with the original plasmid's molecular weight. The molecular size of the digested pGEM2 was revealed at 2.7 kb which was equivalent to the original pGEM2's sizes as shown in Fig. 3.

The result shows that the low energy Ar⁺ beam induces plasmid DNA transfer into the bacterial host. Moreover, in order to observe similar effect with plant tissues we performed another experiment with exogenous dye molecules, Trypan blue.

The plant tissue capability to survive and grow was tested on various species. Four species including *Cucubita moschata*, *Zea mays*, *Zingiber sp.*, and *Curcuma sp.* were implanted with Ar⁺ and N⁺ ions at different energies and doses (see Table1). With respect to the vacuum effects, plant tissues were tested for their viability. The cell turgor of tissues exposed in high vacuum was restored after an incubation of 30 min in distilled water (data not shown).

As shown in Figure 4, the Ar-ion implantation effect is to allow TB to enter into and stain the cells which become nonviable. The implanted cells which are still viable show no such effect. For 20-keV implantation TB was detected inside the cell wall surrounding the plasma membrane (Fig. 4c). The 30-keV implantation produced similar effect compared to the 20-keV implantation using a dose of 1x10¹⁵ ions/cm² (Fig. 4d). At higher dose (4x10¹⁵ ions/cm²) level the implanted cells allowed the dye to enter into the nucleus of the cells (Fig. 4e).

However, growth retard of the plant under the influence of low energy ion beam irradiation was also observed. In Fig. 5a, the naked corn embryos in tissue culture can still germinate after implantation at 5×10^{14} , 1×10^{15} and 2×10^{15} ions/cm² even if the growth is retarded by about 50% (Fig. 5).

Our results show that low energy Ar beam could induce direct plasmid DNA transfer into *E. coli.* A preliminary analysis on the mechanism of low-energy ion beam effects on exogenous molecule transferring into plant cells has been presented at a recent meeting ⁸. The mechanism is related to the implanted ion and radiation damage ranges. Only the ions with suitable energies and doses having the ranges in the region comparable to the effective thickness of the cell will without causing significant damage to the cell membrane could possibly induce and assist exogenous macromolecule transferring into the cell and still keep the cell alive. The ranges of the low-energy N ions are about twice those of Ar ions of the same energy in the cell material. Our experiments indicate that the applied energy and dose of the Ar-ion beams are just suitable to have the right ranges so that the successful DNA transfer can be realized, whereas the applied N-ion beams that lead to larger ranges simply kill the cells by severe damaging the cell membrane and even the substance inside the cell. It is our belief that details of the mechanisms in terms of creating whatever passages, sputtering surface, enhancing permeability and exchanging charges through the outer cell structure.

References:

- Zengguan, W., Hongmei, X., Guanguu, H., and Wenjian 1995) Physical Mechanisms of Mutation.
 Induced By Low Energy Ion Implantation. Nucl. Instr. and Metr. B 95: 371-376.
- 2. Tanaka, A., Watanabe, H., Shimizu, T., Inoue, M., Kikuchi, M., Kobayashi, Y., and Tano, S. (1997)

 Penetration Controlled Irradiation With Ion Beam For Biologica Study. Nucl. Instr. and Meth. B129: 42-48.
- 3. Li, W., Wei, Z., Xie, H., Li, Q., Han, G., Dang, B., Zhou, G., Yang, H., Wang, L., and Gao, Q. (1995) J. Radiat. Res. and Radiat. Proc. 13(3): 167.
- Xie, H., Wei, Z., Li, W., Li, Q., Dang, B., Han, G., Zhang, J., Hu, Y. (1996) J. Radiat. Res. and Radiat. Proc. 14 (1): 50.
- 5. Yu, Z., Yang, J., Wu, Y.; Cheng, B.,He, J., and Huo, Y. (1993) Transferring Gus gene into intact rice cells by low energy ion beam. Nucl. Instr. and Meth. B80/81 1328-1331.
- 6. Hase, Y., Tanaka, A., Narumi, I., Watanabe, H., and Inoue, M. (1998) Development of Pollen-Mediated Gene Transfer Technique Using Penetration Controlled Irradiation With Ion Beams. JAERI Rev. 98-016: 23-25.
- 7. Maniatis, T., Fritsh, E.F., Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, New York. pp 545.
- 8. Vilaithong, T., Yu, L.D., C. Alisi., Phanchaisri, B., Anuntalabhochai, S., Apavatin., P., and Wanichapichart, P.(1999). A Study of the Mechanism of Low Energy-Ion-Beam Effects on Outer Cell

Structure for Exogenous Macromolecule Transferring. Presented at the 11th International Conference on Surface Modification of Metals by Ion Beams, September 19-24, 1999, Beijing, China.

Acknowledgements

We thank I. Brown for discussions and critical reading the manuscript; P. Vichaisirimongkul for technical assistance and R. Chandej for biological assistance. L.D. Yu was supported by the National Metal and Materials Technology Center research fellowship. This work was supported by the Thailand Research Fund.

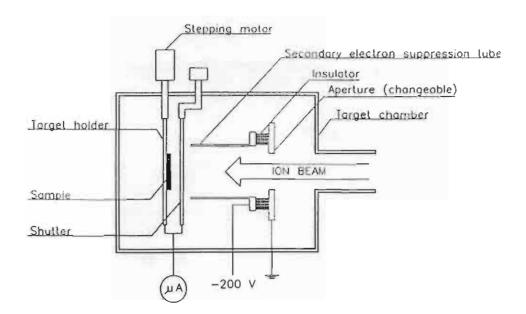


Fig 1. Schematic diagram of the target chamber at the ion implantation facility including a sample holder, a manipulator system and a beam-current measurement system.

Fig 2. Analysis of the transferred plasmid pGEM2 in pacture strain DH5 α irradiated by the low energy ion beam.

Fig. 3. An analysis of transferred pGEM2 plasmid. The transferred pGEM2 was digested with Pst.I. (lane 3) and Xba.I. (lane 4) and compared with the molecular weight of the original pGEM2 digested with Pst.I. (C) (lane 1). Lane 5 is a molecular weight marker $\lambda.I.Pst.I.$ (M).

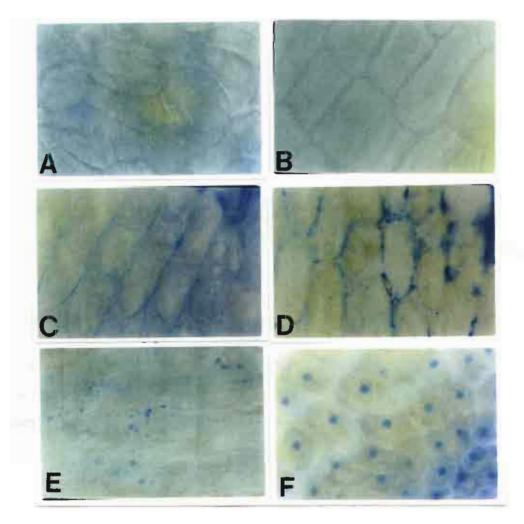


Fig 4. Trypan blue staining of Ar-ion implanted embryo cells. A: fresh control. B: vacuum-treated control. C: 20 keV, 1x10¹⁵ ions/cm². D: 30 keV, 1x10¹⁵ ions/cm². E: 30 keV, 2x10¹⁵ ions/cm². F: 30 keV, 4x10¹⁵ ions/cm². The dye does not enter the cells in the controls, (A and B) while at the low energies and low doses the dye enters the cell wall but not the plasmalemma (C and D). At the highest dose (4x10¹⁵ ions/cm²) the dye enters inside the cells and is accumulated in the nuclear area (F).

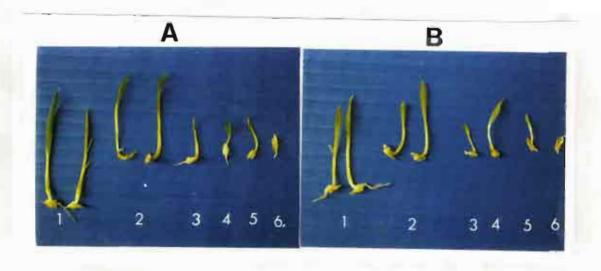


Fig 5. Naked corn embryos grown in tissue culture after ion implantation, A: N, 15 keV; B: Ar, 30 keV. 1: fresh control; 2: vacuum treated control; 3: 5x10¹⁴ ions/cm²; 4: 1x10¹⁵ ions/cm²; 5: 2x10¹⁵ ions/cm²; 6: 1x10¹⁶ ions/cm².

Table 1. Ion implantation conditions.

Ion species	Energy (keV)	Dose (ions/cm²)
N	15,30	5×10 ¹⁴ , 1×10 ¹⁵ ,2×10 ¹⁵ ,4×10 ¹⁵ ,3×10 ¹⁰
Ar	20,25,30	5x10 ¹⁴ , 1x10 ¹⁵ ,2x10 ¹⁶ ,4x10 ¹⁵ 2x10 ¹⁴ ,5x10 ¹⁴ ,1x10 ¹⁵ ,2x10 ¹⁶ ,4x10 ¹⁵ ,1x10 ¹⁶ ,1.5x10 ¹⁶ ,3x10 ¹⁶

- 3.4.3 A Study of the Mechanism of Low-Energy-Ion-Beam Effects on Outer Cell Structure for Exogenous Macromolecule Transferring*
- T. Vilaithong. Fast Neutron Research Facility, Department of Physics, Faculty of Science; L.D. Yu. C. Alisi, B. Phanchaisri, Institute for Science and Technology Research and Development; S. Anuntalabhochai, Department of Biology, Faculty of Science; P. Apavatjrut, Department of Horticulture, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand

and P. Wanichapichart, Department of Physics, Prince of Songkla University, Haadyai, Songkla 90110. Thailand

Abstract

This study aims at providing some fundamental and quantitative answers to the questions why and how the widely used low-energy heavy ions such as Ar ions at 20-30 keV, which have the ranges in the order of 10 nm in water, can penetrate a cell wall having a thickness in the order of 102 nm and introduce large exogenous molecules into the cells. The experiment focused on 20 - 30-keV Ar-ion implantation in various plant tissues and bacteria E.coli strain DH5α to the doses ranging from $10^{14} - 10^{16}$ ions/cm². Auxiliary 15 - 30-keV N-ion implantation in the plant tissues was also carried out. The effects of ion beam irradiation on tissue outer cell structure and the ability of transferring large exogenous molecules of Trypan blue (TB) and plasmid DNA, pGEM2, were investigated. Analysis of the simulations of the ion implantation processes indicates that the cell wall made of cellulose microfibrils as a porous structure is a semirigid material so that Ar ions at certain low energies can increase permeability of the cell wall resulting in exogenous macromolecule transferring. This has been supported by an experimental evidence that the 20-keV Ar-ion implantation only results in retaining of the TB dye in the cell wall whereas the 30-keV Ar-ion implantation can allow the dve to enter the cell and the 25-keV Ar-ion beam can result in introducing and expressing of pGEM2 in E.coli.

[&]quot;Submitted to Surface and Coatings Technology, 1999

1 Introduction

Recently developed ion beam biotechnology has resulted in fruitful achievements [1,2]. The technology refers to utilizing energetic ion beams to irradiate biological materials to produce proper physical changes which act as a new mutagenic source for genetic modification [1,3]. Besides the significant applications accomplished by the technology, fundamental understanding of the interaction between ions and biological objects has also been developed [3]. However, some basic questions still remain. One of these is why low-energy Ar or N ion beams at 20 – 30 keV are so widely and effectively employed in the technique to treat cells for genetic transfer [4,5]. Up to now the reason is empirical or only qualitatively discussed [1,6]. The basic contributions have been attributed to the ion beam etching induced thinning of the cell wall and the ion irradiation created passages that link the primary porosities through the cell wall. Our study attempts to provide fundamental and quantitative answer to the question why and how 20 – 30-keV Ar ions, which have the ranges only in the order of 10 nm in water, are able to produce the effect on plant cells in transferring large exogenous molecules through the cell wall that has thickness in the order of 10² nm.

2 Experiments

2.1 Experimental procedure

Details of the experimental design and irradiations of plant materials and gram negative bacteria will be presented elsewhere [7,8]. They are briefly described here. The chosen organisms used in this mechanism study are Zea mays, Cucurbita moschata. Curcuma sp. and Zingiber sp. for plant materials and the *E.coli* strain DH5 α for bacteria. The exogenous molecules are Trypan blue (TB) and plasmid DNA, pGEM2, which were used in transferring into the plant and bacteria cells, respectively.

Ion implantation was carried out using the heavy ion implantation facility at Chiang Mai University [9]. Ar ions at 20 - 30 keV and N ions at 15 - 30 keV were implanted with doses in the range between $0.2 - 30 \times 10^{15} ions/cm^2$. For each ion beam treatment, the specimens were fixed onto a petri dish arranged in two groups, one to be exposed to the beam and another as a vacuum-treated control. Pulsed beam modes were adopted using periodical

beam sweeping across the exposure holes of the sample holder with each pulse irradiating the target to a dose of about $3-5\times 10^{12} \mathrm{ions/cm^2}$. The operating pressure in the target chamber was kept around 10^{-3} Pa which caused the ambient temperature to be about 0°C or lower. During implantation the tissue specimens were normally exposed to this environment for about 1.5-2 hrs. Four replicates (explants) were used for individual species in each experiment. The experiment on each species was repeated at least three times.

After ion implantation the tissues were shortly rehydrated for 30 min in sterile distilled water. Trypan blue (TB) was used to rapidly determine the irradiation effect on the cell. The vital dye. TB. can enter and stain only the dead cells or the damaged parts whereas uninjured or viable cells with intact cell walls and functional membranes prevent the dye from entering and remain unstained [10]. The rehydrated tissues were placed on a glass slide, stained with TB solution (1 mg/ml in phosphate buffer, 50 mM, pH 7.5) and observed under a bright field microscope.

The bacteria was resuspended in LB medium for 5 min. Aliquot of the suspension was then incubated with 10 μ g of pGEM2 at the room temperature for 30 min. Then, the mixture was transferred into 3 ml of LB (Luria-Bertani) and vigorously shaked for 2 h at 37°C. Subsequently, 100 μ g/ml of carbenicillin antibiotic were added and incubated overnight at 37°C. After that the transferred pGEM2 was purified and analyzed on 1% agarose gel electrophoresis. The control group underwent the similar treatment except for carbenicillin treatment in the culture.

Some of the plant tissues were examined under a JEOL 1200 EX II transmission electron microscope at 25 kV using standard protocol for sample preparation.

3 Results

3.1 Effect of ion implantation on plant tissues

As shown in Figure 1, the Ar-ion implantation effect is to allow TB to enter into and stain the inviable cells. The implanted cell which is still viable does not show such effect. At 20-keV implantation TB was detected inside the cell wall surrounding the plasmid membrane (Fig. 1a). The 30-keV implantation produced similar effect compared to the 20-keV implantation at the dose of $10^{15} ions/cm^2$ (Fig. 1b) whereas at the dose level of $2 \times 10^{15} ions/cm^2$ the dye

entered inside the cell but did not stain the nucleus (Fig. 1c) implying that the cell was still functional. At the higher dose (4 × 10¹⁵ions/cm²) level the implantation could allow the dye to enter into the nucleus of the cell (Fig. 1d). In the case of N-ion implantation, the 15-keV implantation was ineffective to TB penetration, while the 30-keV one caused severe damage to the cell wall and allowed TB to enter the cell.

3.2 DNA transferring

Figure 2 shows the success of the plasmid uptake and expression of its antibiotic resistant property in the bacterial cells. It can be seen that the irradiated *E.coli* strain DH5α without pGEM2 incubation could not survive in medium containing carbenicillin antibiotic. Whereas the bacteria treated under proper doses of Ar ions could grow. Figure 3 demonstrates an analysis of the transferred plasmid, pGEM2. The plasmid from the irradiated bacteria was prepared and digested with appropriate restriction enzymes. *Pst I. Bam III. Hind III* which exist in its sequence. Consequently, the linearised pGEM2 was compared its size to the original pGEM2 plasmid on 1% agarose gel eletrophoresis. The result showed that the size of the transferred pGEM2 was identical with the control pGEM2. This indicated that the pGEM2 plasmid was truly transferred into the competent bacteria strain DH5α.

4 Discussion

The results apparently show that exogenous macromolecules of either the TB dye or the DNA can enter the plant or bacteria cells without killing the cells after proper ion implantation. The role played by the ion implantation for the transferring was supposed to be creation of damage-formed holes in the cell wall by the incident ions' passing through (Figure 4). Both previous literatures [1,3] and our experiments have demonstrated that the energy of the ion beams able to play such a positive function should be suitably low. The low-energy ions naturally have short ranges. For example the ranges of 20-keV and 30-keV Ar ions in water are calculated to be 45 and 63 nm, respectively [11]. However, the thickness of common cell walls varies from 0.1 μ m to many micrometers [12]. The question then is how the penetration of the low-energy ions through the cell wall can happen.

4.1 Cell wall structure

The fact that the plant cell wall has a type of the discontinuous semirigid structure can shed some light on this question. The plant cell wall consists of cellulose microfibrils, as shown in Figure 5 [13.12]. A cellulose microfibril is about 3.5 nm in diameter in most higher plants and the microfibrils are cross-linked in a net style with about a 5-nm space in between [12]. Thus it is estimated that the actual material only occupies about 7/17 of the thickness of the porous cell wall. If the space between the molecule chains in the microfibrils (Figure 5) is also taken into account the core materials may only be about one third of the total. From the electron microphotograph the thickness of the cell wall of the experimented tissues was estimated to be about 400 nm (Figure 4). Hence, only about 130-140 nm of the total cell-wall thickness are full of the real structural material. When the cell is in the vacuum chamber the non-structural materials among the microfibrils in the cell wall are pumped out, and the cell wall shrinks. Therefore, during ion implantation the ions only interact with the atoms of the core structural materials. The primary structure of cellulose is shown in Figure 5 [12], and the chemical formula is $C_6H_{12}O_6$.

4.2 Simulation and explanation

Based on the data provided above, simulations using TRIM [14] and PROFILE [11] programs were performed for 20-keV and 30-keV Ar-ion and also 15-keV and 30-keV N-ion implantation in cellulose. The results, as shown in Figure 6, seem to accord reasonably well with the results of the experiment.

The damage created by 20-keV Ar-ions is only limited to the region less than about 50 nm which is much less than the thickness of the core cell wall material indicating that no channel passing through the cell wall exists, therefore, the dye only stays in the wall. The damage distribution due to 30-keV Ar-ion implantation at the dose of $1 \times 10^{15}/\text{cm}^2$ is basically in the cell wall region mostly in the top half of the cell wall, manifested as in Figure 1, which brings about similar result as that of 20-keV Ar-ion implantation. But when the dose increases, surface sputtering must be taken into account. The sputtering yield is proportional to $1/E_b$ where E_b is the binding energy [15]. Due to the special 1-d chain-structure of the microfibrils, it is supposed that the surface binding energy of the atom on the microfibril is

2/5 of that of an atom in solid (because an atom in the 1-d structure has two bindings to others while one in the 3-d at the surface has five). Thus, the sputtering yield of the cell wall is 2.5 times of that calculated by simulation (which assumes a solid target). The sputtering loss of the cell wall implanted with 30-keV Ar ions at a dose of $1 \times 10^{15}/\text{cm}^2$ is calculated to be about 6 nm (Fig. 6b). Therefore, the more realistic sputtering loss should then be 15 nm. At a dose level of $2 \times 10^{15}/\text{cm}^2$ Ar-ion implanted cell wall, the real sputtering loss would be 30 nm. If this thickness loss is added the damage range of the 30-keV Ar-ion implantation at the dose of $2 \times 10^{15}/\text{cm}^2$ may extend to as much as 140 nm (as shown in Fig. 6b. the maximum simulated damage range is about 10-11 nm) implying that the damage may form channels in the whole cell wall but not yet cause serious damage to the cell membrane. This explains why at this energy and dose level the TB could enter inside the cell but the cell is still functional. However, when the dose increases to $4 \times 10^{15}/\text{cm}^2$ the sputtering loss would be 60 nm which (after added the calculated thickness loss) is too deep for the ions penetrating the cell wall and the plasma membrane.

For 15-keV N-ion implantation, the damage is basically limited within the core cell wall thickness and concentrated in a narrow region of the cell wall (~ 25 - 75 nm) so the implantation was found to be ineffective to the dye penetration. In the case of 30-keV N-ion implantation, the damage extended beyond the top surface of the cell wall to the region deep inside the cell (~ 250 nm). The maximum ion range is up to 200 nm, and it immediately refers to killing some vital substance inside the cell, therefore, the ion interaction within the cell could possibly result in the severe damage of the cell which becomes inviable eventually.

As for DNA transferring in *E.coli*, bacteria has similar cell outer structures to plant cells. The gram-negative *E.coli* has a thinner cell wall but a thick complex outer membrane [13]. Therefore, the low-energy Ar-ion beam could have similar effect on the outer cell structure of *E.coli* to that on the plant cell wall. The effect successfully leads to DNA transferring into the bacteria cells.

Our experiment and analysis indicate that only the ion beams at suitable energies and doses having the ranges of implanting ions and radiation damage regions corresponding to the thickness of the effective cell wall materials (which means no significant damage on the cell membrane) could possibly introduce exogenous macromolecule transferring into the cells and still not disturb the biological function of the cell.

4.3 A unified mechanism model

An intact cell wall itself has normally performed a function of transferring small molecules (the size that is accounted as molecule mass is approximately less than 500 daltons [12]) such as those of water, oxygen and other gases, and signaling molecules between inside and outside the cell via special mechanisms or paths [16]. But the paths are unable (or able but extremely slow) to transport large molecules [12] such as those of the TB (~ 10³ daltons) and, furthermore, the DNA (~ 10⁴ – 10⁹ daltons [13]). However, after low-energy ion beam irradiation the cell wall becomes "transparent" to transferring large exogenous molecules of dye and even DNA [4.19]. Some mechanisms have been proposed on the transferring [4.17]. They may be divided into two categories, direct and indirect effects from ion implantation, the former referring to physical reformation of the cell wall such as thinning and damaging, and the latter including electrical field changing and X-ray exciting. But they are thought to be too physical and less coordinative. Living cells are substantially different from (dead) solids. The solid target is generally passive to ion implantation, while the living cells are not only passive but also active to react. Thus, a unified model is proposed here to interpret the mechanism.

Low-energy ion implantation onto plant cells causes radiation damage in cell outer structure due to ion-energy deposition and etching on the cell wall surface through sputtering. The consequences may include formation of holes, pores, cracks, and surface erosion. The first three may form passages through the cell outer structure, while the last one has a thinning effect on the cell wall. This facilitates the exogenous macromolecules to approach and contact the cell membrane. At the same time ion implantation introduces positive-charged ions into the cell to cause changes in the potential of the substance inside the cell. The changes indicate some imbalance occurring inside the cell. In order to return to the balance, which is the nature of a cell, the channels that originally exist in the cell membrane for transportation of the necessary substance between cells for cell living open to realize the exchange of charges. The opening of channels may be large enough, because of the high potential created, for exogenous macromolecules to enter. At that moment, owing to the damage on the cell wall, the macromolecules outside the cell can easily migrate through the passages to access the opened channels and then enter inside the cell by the mechanism discussed in ref.[20].

In this proposed model, the possibility of the transferred exogenous macromolecules completely passing the damage-formed channels through both cell wall and cell membrane [6] is eliminated. Because light damage of cell membrane can be quickly repaired by the membrane itself (indicating that any post-transferring cannot be done with the lightly ion-beam-damaged membrane), while heavy damage makes the membrane lose its vital function and kills the cell itself.

5 Conclusion

Various tissues and bacteria *E.coli* strain DH5 α have been implanted with 15–30-keV Ar and N ions to the dose ranging from $10^{14} - 10^{16} ions/cm^2$. Only the ion beams at suitable energies and doses able to cause radiation damage in the region comparable to the effective thickness of the cell wall without significant damaging the cell membrane can possibly introduce exogenous macromolecule transferring into the cells and still keep the cell alive. Although the thickness of the cell wall is much beyond the ion range, the porous structure of the cell wall results in the effective wall material, cellulose, being only about one third of the wall thickness. Therefore, the low-energy ions can possibly permeate the wall and introduce radiation damage in the wall building the passages for exogenous macromolecules to pass through the cell wall and contact the cell membrane for transferring.

Acknowledgements

We wish to thank P. Vichaisirimongkol. P. Chitanan and R. Chande for their technical assistance in the experiments. We are so grateful to Prof. Yu Zengliang for his kind contribution of references and many beneficial enlightenments and suggestions. We thank the King's Initiative Center for Flower and Fruit Propagation for kindly providing its plant tissues. The work has been supported in part by the Thailand Research Fund.

References

- Z. Yu. L. Qiu, and Y. Huo. Journal of Anhui Agricultural College, 18(4)(1991)251(in Chinese).
- [2] L.D. Yu and T. Vilaithong, Annual Report of the Thai Society of Biotechnology, 1997.
- [3] Z. Yu. and Y. Huo. Journal of Anhui Agricultural University. 21(3)(1994)221(in Chinese).
- [4] Z. Yu. J. Yang, Y. Wu, B. Cheng, J. He. and Y. Huo, Nucl. Instr. and Meth. B80/81(1993)1328.
- [5] J. Yang, L. Wu, J. Wu, W. Wu, Z. Yu, Z. Xu, Chinese Science Bulletin, Vol.39.16(1994)4.(4)-1.
- [6] Z. Yu. C. Shao and J. Yang. Journal of Anhui Agricultural University. 21(3)(1994)260(in Chinese).
- [7] C. Alisi, et al., to be published.
- [8] S. Anuntalabhochai, et al., to be published.
- [9] L.D. Yu, D. Suwannakachorn, S. Intarasiri, S. Thongtem, D. Boonyawan, P. Vichaisiri-mongkol and T. Vilaithong, Proceedings of the 9th International Conference on Ion Beam Modification of Materials (IBMM'95), Canberra, Australia, February 2-6, eds.: Williams J.S., Elliman R.G. and Ridgway M.C., Elsevier Science B.V. (Amsterdam 1996)p.982.
- [10] J.A. Saunders and B.F. Matthews. Plant Cell Electroporation and Electrofusion Protocoles. ed.: J.A. Nickoloff, Human Press, New Jersey, p.81-87.
- [11] PROFILE Code Software, Version 3.20 (1995), Implant Science, MA. USA.
- 12 B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J.D. Watson, Molecular Biology of the Cell, 2nd edition, Garland Publishing, Inc., New York & London (1992)p.1137.
- [13] D. Voet and J.G. Voet, Biochemistry, John Wiley & Sons, New York (1990)p.254.
- [14] J.J. Ziegler and J.M. Biersak, TRIM-91, New York (1991).

- [15] R.S. Nelson, the Physical State of Ion Implanted Solids, Ion Implantation, eds.: G. Dearnaley, J.H. Freeman, R.S. Nelson and J. Stephen (North-Holland Publishing Company, The Netherlands, 1973)p.154.
- [16] K.R. Miller and J. Levine. Biology. Prentice Hall. New York (1991)p.91.
- [17] Wei Zengquan, Xie Hongmei, Han Guangwu, Li Wenjian, Nucl. Instr. and Meth. B95(1995)371.
- [18] Y. Chen, B. Jiang, X. Ding, X. Liu, C. Chen, X. Guo and G. Yin, Radiation and Environmental Biophysics, 37(2)(1998)101.
- [19] J. Yang, Y. Wu, L. Wu, and J. Wu, Journal of Anhui Agricultural University, 21(3)(1994)330(in Chinese).
- [20] Wokyung Sung, AAPPS Bulletin, Vol.8, No.2, Dec. 1998, p.14.

Figure 1 Trypan blue staining of Ar-ion implanted embryo cells. (A): 20 keV. 1×10^{15} ions/cm²; (B): 30 keV. 1×10^{15} ions/cm²: (C): 30 keV. 2×10^{15} ions/cm²: (D): 30 keV. 4×10^{15} ions/cm². The width of the picture is 60 μ m.

Figure 2 Survival of the Ar-ion-beam treated E.coli incubated with pGEM2 in antibiotic medium. Tube 1 and 2 present an unirradiated and vacuum-treated E.coli, respectively, whereas tube 3 and 4 exhibit E.coli irradiated with $1 \times 10^{15} ions/cm^2$ and incubated with pGEM2. All the samples were cultured in antibiotic medium. The turbidity is indicating of bacterial growth.

Figure 3—An analysis of the transferred pGEM2 on agarose gel electrophoresis. The linear plasmid of the original pGEM2 digested with a restriction enzyme. Pst I. (lane 1) and the transferred pGLM2 digested with restriction enzymes Pst I. Bam HI and Hind III. respectively (lane 2-4). Molecular weight marker of 1 Kb ladder is in lane 5. All pGEM2 plasmids show an identical size at 2.9 Kb molecular weight (arrow).

Figure 4 TEM micrographs of a portion of embryo cell wall. (A): Vacuum treated control. Bar: 200 nm. The arrow indicates the external surface of the cell wall. (B) Ar-ion implanted (30 keV, $1 \times 10^{15} \mathrm{ions/cm^2}$). Bar: 200 nm. The external surface of the cell wall is damaged and partially etched as the arrow pointed.

Figure 5 The cell wall structure. On the left is the electron micrograph of the cellulose fibers in the cell wall of the alga Chaetomorpha [13]; on the right is the structure of cellulose [12]. (A): a small portion of two cellulose molecules. (B): a cellulose microfibril in which many parallel cellulose molecules are H-bonded together.

Figure 6 PROFILE (left) and TRIM (right) simulation results for (A) 20-keV Ar-ion. (B) 30-keV Ar-ion. (C) 15-keV N-ion and (D) 30-keV N-ion implantation in cellulose.

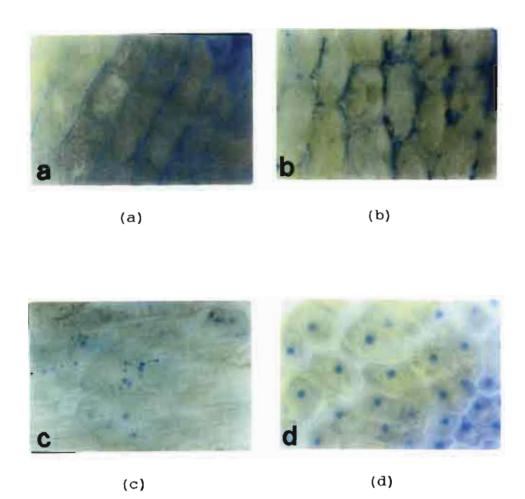


Fig. 1

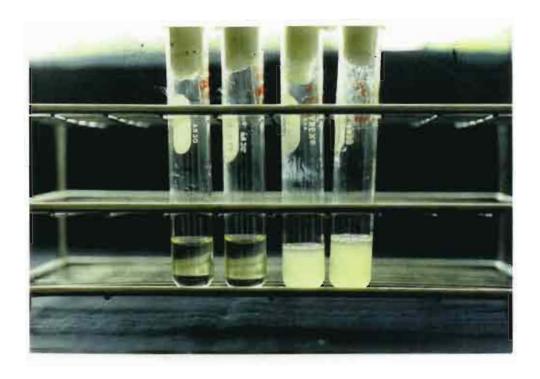


Fig. 2

Fig. 3

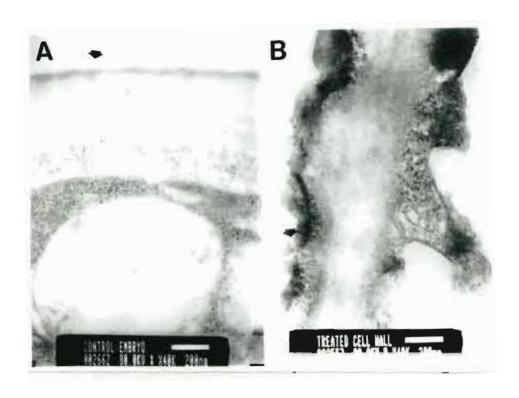


Fig. 4

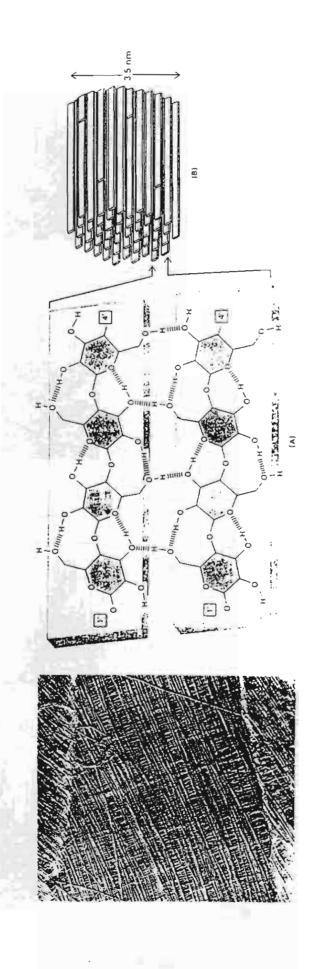


Fig. 5

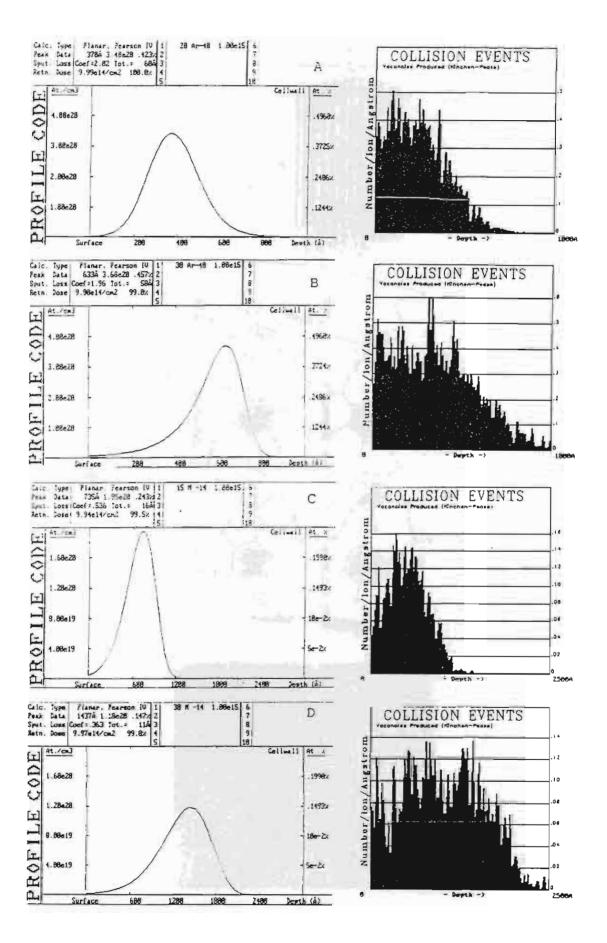


Fig. 6

4. เทคโนโลยือนาคตที่สำคัญ

4.1 Coherent Far Infrared Radiation from Relativistic Electron Beams.

อนุภาคกกระสุนที่สำคัญอีกตัวหนึ่ง คือ โฟตอน หรือคลื่นแม่เหล็กไฟฟ้าในย่านความถี่ต่างๆ ซึ่งผลิตโดยแหล่งกำเนิดหลายชนิดที่สำคัญ ได้แก่ หลอด microwave เลเซอร์ และซินโครตรอน ซึ่ง สามารถผลิตคลื่นแม่เหล็กไฟฟ้าความยาวคลื่นตั้งแต่ 10 mm – 0.1 A° ดังแสดงในรูปที่ 4.1 [1] ใน ย่านความยาวคลื่น 10 µm–1 mm ยังไม่ปรากฏมีแหล่งกำเนิดแสงที่ปรากฏใช้อย่างแพร่หลาย ยก เว้นแหล่งกำเนิด black-body radiator ที่ให้แสงแบบ incoherent และไม่สามารถปรับเปลี่ยน ความยาวคลื่นได้ตามใจชอบ (รูปที่ 4.2) แหล่งกำเนิดแสงในย่าน far infrared (FIR) ที่มีความเข้มสูง และเป็นแบบ coherent เช่น free electron laser ได้รับความสนใจมากเป็นพิเศษ [1] สำหรับนำมาใช้ศึกษาปัญหาต่างๆ ดังนี้คือ

- Vibration of DNA: lattice dynamics
 molecular dynamics
 nonlinear dynamics (40-600 μm)
- Solid state spectroscopy (100–1000 μm)
- Molecular rotation spectroscopy in gases (50-500 μm)
- Relaxation of hot electrons in semiconductors (200-500 μm)
- Phonon decay phenomena (200 μm)
- Selective bond breaking of large molecules
- Nonlinear optics and spectroscopy เป็นตัน

ข้อดีอีกประการหนึ่งของแหล่งกำเนิดแสงในย่านนี้ คือ ใช้เงินในการลงทุนพัฒนาไม่มาก (US\$ 1 M) มีขนาดกะทัดรัด สามารถใช้งานประจำได้ในห้องปฏิบัติการวิจัยโดยทั่วไป

หลักการพื้นฐานที่ใช้ในการผลิตแสง FIR คือ transistion radiation และ laser โดยใช้ลำ อิเล็กตรอนเป็นอนุภาคปฐมภูมิ การสร้าง coherent FIR จากพัลส์อิเล็กตรอนที่แคบๆ (picosecond electron bunch) ได้พยากรณ์ไว้ตั้งแต่ปี ค.ศ.1951 [2] และตรวจวัดได้เป็นครั้งแรกเมื่อ ปี ค.ศ. 1989 [3] นี้เอง ในปี ค.ศ.1992 Prof. H. Wiedemann แห่งมหาวิทยาลัย Stanford ที่ปรึกษาโครง การ ได้พัฒนาแหล่งกำเนิดแลงดังกล่าวนี้ขึ้น [4] ภายใต้โครงการ SUNSHINE และได้ร่วมในการให้

^{1 &}quot;Free Electron Lasers and Other Advanced Sources of Light" Report, National Research Council, National Academy Press, Washington, D.C. 1994.

^{2.} H. Motz, J. App. Phys. 22(1951) 527.

^{3.} T. Nakazato et. al., Phys. Rev. Lett. 66(1989)1245.

^{4.} H. Wiedemann, P. Kung, H. C. Lihn, Nucl. Instr. and Meth. A319(1992)1.

คำปรึกษาแนวทางการพัฒนาแหล่งกำเนิด FIR ที่มหาวิทยาลัยเชียงใหม่ตั้งแต่ปี ค.ศ.1997 เป็นต้น มา โครงการฯ ได้จัดทำการศึกษาออกแบบเบื้องต้น (conceptual design study) เสร็จแล้วในเฟสนี้ ของโครงการ

รูปแบบของเครื่องกำเนิด FIR มีดังแสดงในรูปที่ 4.3

ระบบกำเนิดแสงประกอบด้วย ปืนอิเล็กตรอน (gun) แบบ rf ซึ่งให้พัลส์อิเล็กตรอนพลังงาน 3 MeV จากการขับเร่งด้วย klystron (K1, Mod1) พัลส์อิเล็กตรอนจะถูกบีบให้แคบลงต่ำกว่า 1 picosecond โดยใช้ α - magnet กวาดลำอิเล็กตรอนเข้าชิดกันแบบลู่วิ่ง หลังจากนั้นอิเล็กตรอนจะถูกเร่งให้มีพลังงานเพิ่มขึ้นโดยเครื่องเร่งอิเล็กตรอนขนาด 20 MV แล้วยิงผ่านแผ่นอลูมิเนียมเพื่อ สร้าง transistion radiation ที่ต้องการ

ในเฟสต่อไปจะเป็นการออกแบบสร้างอุปกรณ์แต่ละส่วนตามแผนงานดังนี้

ป็นอิเล็กตรอน

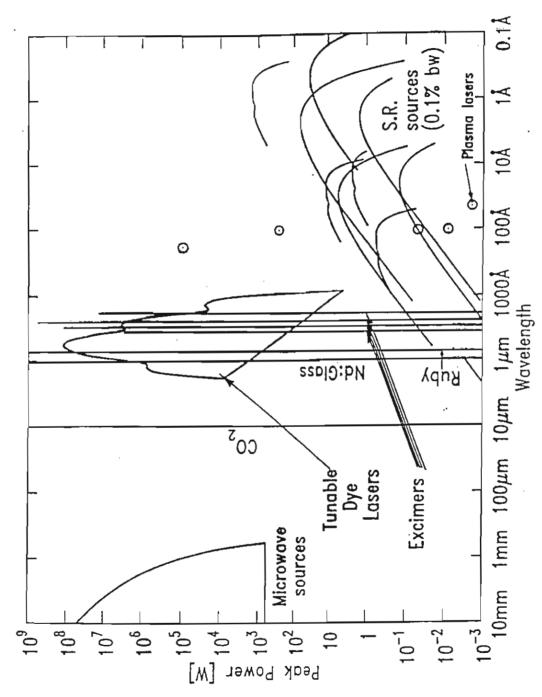
มหาวิทยาลัย Stanford

ระบบบีบพัลส์อิเล็กตรอน :

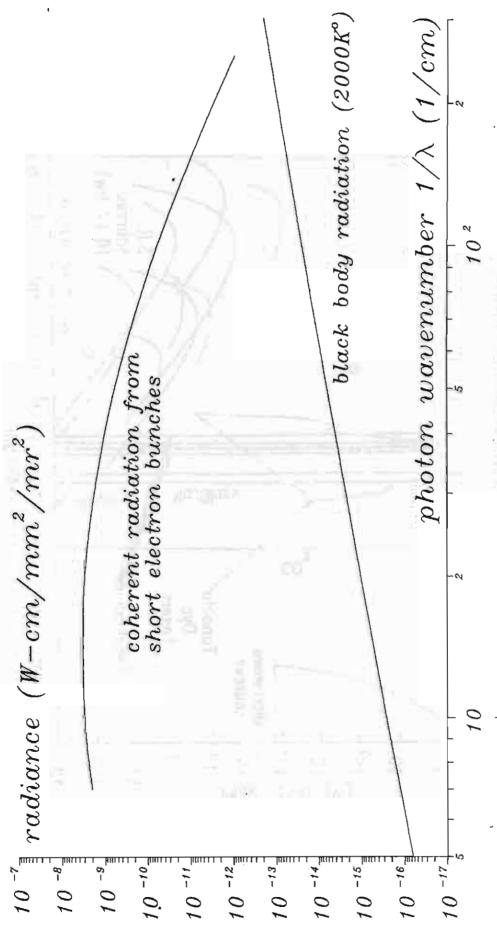
มหาวิทยาลัยเชียงใหม่

เครื่องเร่งอิเล็กตรอน

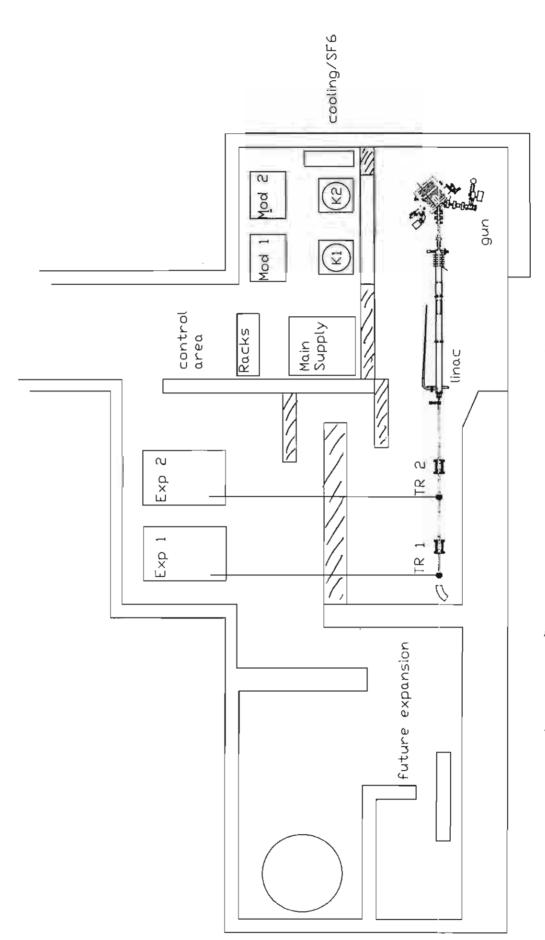
กำลังอยู่ในระหว่างการขอรับบริจาค


เลนซ์แม่เหล็ก

มหาวิทยาลัยเชียงใหม่


ระบบลำเลียงอิเล็กตรอน

มหาวิทยาลัยเชียงใหม่


เป็นที่คาดว่าเครื่องกำเนิดแสง FIR ความเข้มสูงแบบ coherent จะออกแบบสร้างเสร็จ ประมาณต้นปี ค.ศ.2001

รูปที่ 4.1 สเปกตรัมของแสงที่ความยาวคลื่นต่าง ๆ และแหล่งกำเนิด

รูปที่ 4.2 สเปกตรัมของแสงจากแหล่งกำเนิด black body และแหล่งกำเนิดอิเล็คตรอนพัลส์แคบ

รูปที่ 4.3 ผังการติดตั้งแหล่งกำเนิดแสง Far-Infared แบบ coherent ที่มหาวิทยาลัยเชียงใหม่

4.2 เซลล์เชื้อเพลิง (Fuel Cell)

4.2.1 ระบบตรวจสอบคุณสมบัติของเชลล์เชื้อเพลิงเดี่ยว (Single Cell Test Station)

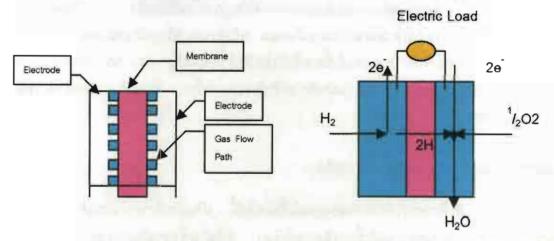
ปัจจุบันหลายๆ ประเทศกำลังมีการพัฒนา เทคโนโลยีเซลล์เชื้อเพลิงกันอย่างเข้มขัน เพื่อทด แทนแหล่งกำเนิดพลังงานที่ใช้กันอยู่ ข้อดีของเซลล์เชื้อเพลิงนั้นมีมากมาย ทั้งด้านประสิทธิภาพ ด้านเศรษฐศาสตร์ และผลกระทบที่ดีต่อสภาพแวดล้อม

เซลล์เชื้อเพลิงคือ อุปกรณ์ที่เปลี่ยนพลังงานที่เกิดจากปฏิกิริยาเคมีเป็นพลังงานไฟฟ้า เซลล์ เชื้อเพลิงที่เคยถูกสร้างมานั้นมีอยู่ 5 ชนิด ซึ่งแบ่งตามชนิดของอิเล็กโทรไลต์ได้แก่ Proton Exchange Membrane (PEMFC), Phosphoric Acid (PAFC), Alkaline (AFC), Molten Carbonate (MCFC) และ Solid Oxide (SOFC) เทคโนโลยีของเซลล์เชื้อเพลิงแต่ละชนิด มีองค์ ประกอบการทำงานต่างกัน [1]

เชลส์เชื้อเพลิงชนิด Phosphoric Acid เป็นชนิดที่กำลังถูกพัฒนาในเชิงพาณิชย์และอุตสาห กรรมอย่างแพร่หลายเพราะสามารถนำไปใช้ได้กับโรงพยาบาล โรงแรม สำนักงาน โรงไฟฟ้าขนาด ย่อมและเหมาะที่จะนำมาใช้ให้พลังงานกับเครื่องมือหรืออุปกรณ์ขนาดเล็ก แต่เนื่องจากวัสดุประกอบ มีราคาแพง อีกทั้งองค์ประกอบที่เป็นกรดของเหลวนั้นมีความเสี่ยงอันตรายทำให้ต้องทำการดูแล รักษาเป็นอย่างมาก

เชลล์เชื้อเพลิงชนิด Alkaline นิยมใช้ในยานอวกาศและงานเกี่ยวกับอวกาศ เนื่องจากมัน ไม่คงทนต่อคาร์บอนไดออกไซด์ที่มีมากบนพื้นโลก

เชลล์เชื้อเพลิงชนิด Molten Carbonate และ Solid Oxide เป็นเชลล์เชื้อเพลิงที่สามารถ ผลิตกำลังได้มาก คือตั้งแต่ 100 เมกกะวัตต์ขึ้นไป ขณะเดียวกันก็จะมีอุณหภูมิขณะทำงานสูงด้วย คือประมาณ 600-700 องศาเชลเซียส และอาจสูงถึง 1000 องศาเชลเซียส สำหรับชนิด Solid Oxide เชลล์เชื้อเพลิงทั้ง 2 แบบนี้ถูกนำไปใช้กับระบบงานที่ต้องการกำลังสูงๆ เช่น ในอุตสาห กรรม และโรงไฟฟ้า


เซลล์เชื้อเพลิงชนิด Proton Exchange Membrane (PEM) เป็นเซลล์เชื้อเพลิงที่ให้กำลังไฟ ฟ้าสูง และสามารถปรับค่ากำลังไฟฟ้าได้รวดเร็ว ปัจจุบันได้มีการนำไปประยุกต์ในหลายด้านเช่น รถยนต์ ซึ่งต้องการช่วงเวลาการเดินเครื่อง (start up) อย่างรวดเร็วและมีน้ำหนักเบา หรือใช้เป็น แหล่งจ่ายไฟฟ้าสำหรับอาคารสำนักงาน หรือสามารถใช้แทนแบตเตอรี่ ในอุปกรณ์ต่างๆ นอกจาก นี้เซลล์เชื้อเพลิงชนิด PEM นี้ยังมีอุณหภูมิขณะทำงานต่ำมากประมาณ 50-80 องศาเซลเซียส แต่

^{1.} K. Kordesch and G. Simandee "Fuel cell and Their Applications", VCH, Weinheim, 1996.

สามารถให้กำลังตั้งแต่ 60 วัตต์ จนถึง 10 เมกกะวัตต์ จากคุณสมบัติและลักษณะเด่นในหลายๆ ด้าน จึงทำให้เซลล์เชื้อเพลิงชนิดนี้มีการนำไปใช้งานในหลายรูปแบบ โดยเฉพาะการนำไปพัฒนา เป็นอุปกรณ์ให้พลังงานกับเครื่องมือหรืออุปกรณ์ขนาดเล็ก

โครงสร้างและกลไกการทำงานของเซลล์เชื้อเพลิง PEM [1]

เซลล์เชื้อเพลิง PEM ประกอบด้วยอิเล็กโทรดเชื้อเพลิง (แอโนด) และอิเล็กโทรดออกซิแดนช์ (แคโทด) ทำมาจากกราไฟด์ (graphite) ซึ่งฉาบผิวด้วยตัวเร่งปฏิกิริยา (catalyst) แพลตตินัม (platinum) ขั้วทั้งสองถูกแยกออกจากกันด้วยชั้นของอิเล็กโทรไลด์ที่เป็นพอลิเมอร์ เรียกว่าเมมเบรน (membrane) ซึ่งมีคุณสมบัติในการแลกเปลี่ยนโปรตอนระหว่างขั้วแอโนดกับขั้วแคโทด อิเล็กโทร ไลต์มีสมบัติเป็นตัวนำโปรตอนที่ดีมากแต่เป็นฉนวนสำหรับอิเล็กตรอน และเป็นตัวกั้นการแทรกซึม ของก๊าซ การใช้งานจะต่อวงจรจากอิเล็กโทดไปยังวงจรภายนอก ดังรูปที่ 4.4 สำหรับการสร้าง เซลล์เชื้อเพลิงหลาย ๆ เซลล์จะเป็นการนำเอาเซลล์เชื้อเพลิงมาเรียงต่อกันเป็นชั้น ๆ เรียกว่า Stack Cell เพื่อเพิ่มแรงดันไฟฟ้า

รูปที่ 4.4 แสดงส่วนประกอบของเซลล์เชื้อเพลิงเดี๋ยว

รูปที่ 4.5แบบจำลองปฏิกิริยาเคมีในเซลล์เชื้อเพลิง

สำหรับการทำงานของเซลล์เชื้อเพลิง PEM นั้นเริ่มต้นจากขั้วแอโนด และแคโทดได้รับก๊าซ ไฮโดรเจน และออกซิเจน ตามลำดับ ตามร่องทางเดินก๊าซของขั้วไฟฟ้า เมื่อโมเลกุลก๊าซไฮโดรเจน เข้าชนอะตอมของแพลตตินัมบนผิวหน้าของขั้วไฟฟ้า จะเกิดปฏิกิริยาแตกตัวที่เรียกว่า hydrogen oxidation ตามสมการ

$$H_2 = >2H^+ + 2e^-$$

ไฮโดรเจนไอออนจะถูกบังคับให้แพร่ผ่านเมมเบรน ส่วนอิเล็กตรอนจะไหลผ่านออกไปยังวงจรภาย นอก (เครื่องใช้ไฟฟ้า) แล้วมาเจอกับออกซิเจนทางด้านขั้ว แคโทดซึ่งที่นี่จะเกิดปฏิกิริยา oxygen reduction ตามสมการ

$$^{1}/_{2}O_{2} + 2H^{+} + 2e^{-} => H_{2}O$$

ปฏิกิริยาที่เกิดขึ้นให้ผลผลิตเป็นน้ำ โดยสถานะของน้ำที่ออกมาสู่บรรยากาศขึ้นอยู่กับอุณหภูมิขณะ ทำงานของเซลล์โดยตรง

ประโยชน์ที่จะได้รับจากการใช้เซลล์เชื้อเพลิง

- (i) ความมั่นคงทางพลังงาน ในขณะที่ความต้องการใช้พลังงานจากน้ำมันเชื้อเพลิง เพิ่มขึ้นทั่วโลก เซลล์เชื้อเพลิงเป็นทางเลือกใหม่ที่สามารถช่วยลดการสิ้นเปลืองน้ำ มันเนื่องจากเซลล์เชื้อเพลิงใช้ไฮโดรเจนเป็นเชื้อเพลิง โดยที่ไฮโดรเจนมาจากหลาย แหล่งกำเนิด เช่น เมทานอล มีเทน เป็นตัน
- (ii) ลดมลภาวะทางอากาศ การลดการใช้น้ำมันเชื้อเพลิงและการที่ไม่มีการเผาไหม้ภาย ใน ไม่ปล่อยควันพิษหรือปล่อยคาร์บอนไดออกไซด์อย่างเครื่องยนต์ที่มีการเผาไหม้ ภายใน ก็จะทำให้สภาพแวดล้อมและอากาศสะอาดขึ้น รวมถึงการลดปฏิกิริยา เรือนกระจกด้วย
- (iii) การใช้พลังงานอย่างมีประสิทธิภาพ ปกติเครื่องยนต์ที่ให้กำเนิดพลังงานโดยทั่วไป จะมีประสิทธิภาพในการเปลี่ยนพลังงานที่มีอยู่ภายในเชื้อเพลิง ให้เป็นพลังงานที่ มนุษย์สามารถนำมาใช้ประโยชน์ได้เช่น พลังงานกลหรือพลังงานไฟฟ้าเพียง 20 40 เปอร์เซ็นต์ ส่วนเซลล์เชื้อเพลิงมีประสิทธิภาพสูงถึง 40 60 เปอร์เซ็นต์ ทำ ให้สามารถใช้พลังงานได้อย่างมีประสิทธิภาพมากขึ้น ซึ่งจะส่งผลดีในด้านเศรษฐ-ศาสตร์

ระบบการทดลองเพื่อพัฒนาเซลส์เชื้อเพลิง

การทดลองเพื่อศึกษาการทำงานของเซลล์เชื้อเพลิงนี้ เป็นการศึกษาตัวแปรที่เกี่ยวข้องกับ ประสิทธิภาพ การทำงานของเซลล์เชื้อเพลิงเซลล์เดี่ยว เพื่อเป็นพื้นฐานในการพัฒนาระบบเชลล์ เชื้อเพลิงที่ใหญ่ขึ้นในอนาคตด้วยเทคโนโลยีใอออน-พลาสมา

การที่เซลล์จะทำงานได้นั้นจะต้องมีอุปกรณ์ต่าง ๆ เข้ามารองรับด้วย ทั้งนี้เพื่อที่จะสามารถ ควบคุมตัวแปรดำงๆ ให้เหมาะสมกับการทดลองในแต่ละครั้งได้ โดยแผนภาพของระบบทดลอง เซลล์เชื้อเพลิงแสดงดังรูปที่ 4.6 เซลล์เชื้อเพลิงชนิดนี้ต้องการไฮโดรเจนและออกซิเจนชื้น ซึ่งได้มา โดยการผ่านก๊าซจากถังก๊าซ (gas tank) เข้าสู่เครื่องเพิ่มความชื้น (humidifier) แล้วจึงปล่อยให้กับ เชลล์ เมื่อก๊าชผ่านเซลล์ออกไปแล้วก็จะมีวาล์วควบคุมความดันกลับ (back pressure valve) ควบ คุมอัตราการไหลออกและควบคุมความดันภายในเซลล์ ให้ด่างจากความดันก๊าชที่ออกจากถังน้อยที่ สุด ในเฟสนี้ของโครงการ คือการพัฒนาระบบเชิงคอมพิวเตอร์ที่ใช้ในการทดสอบการทำงานของ เซลล์เดี่ยว

การควบคุมระบบเซลล์เชื้อเพลิงด้วยคอมพิวเตอร์

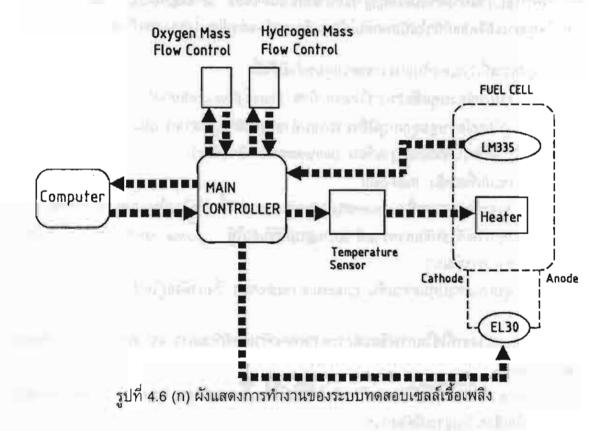
การควบคุมระบบเซลล์เชื้อเพลิงด้วยคอมพิวเตอร์ต้องใช้อุปกรณ์ต่าง ๆในการทำงานดังต่อไป นี้

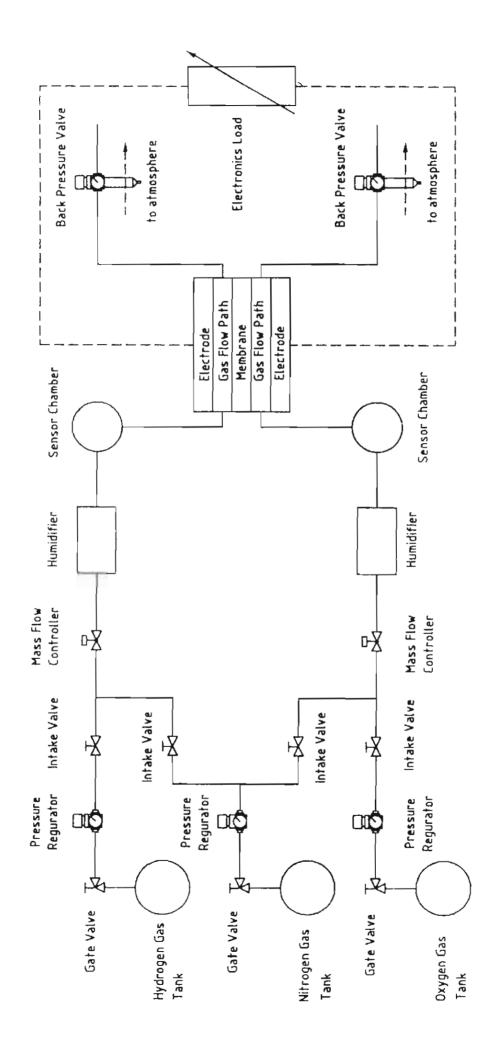
(i) แผงวงจรควบคุมหลัก (Main Controller)

ทำหน้าที่ในการรับค่าจากคอมพิวเตอร์เพื่อใช้ในการควบคุมอุปกรณ์ต่างๆ ในระบบและนำ ค่าที่วัดได้จากระบบไปแสดงผลที่หน้าจอคอมพิวเตอร์ การรับค่าจากคอมพิวเตอร์นั้นทำได้โดยผ่าน ทางตัวแปลงสัญญาณดิจิตอลเป็นอนาล็อก (digital-to-analog converter, DAC) จากนั้นนำ สัญญาณอนาล็อกที่ได้ไปป้อนให้กับอุปกรณ์ต่าง ๆ ส่วนการรับค่าจากอุปกรณ์ต่างๆ ในระบบ สามารถทำโดยผ่านทางตัวแปลงสัญญาณอนาล็อกเป็นดิจิตอล (analog-to-digital converter, ADC) เมื่อได้สัญญาณดิจิตอลก็นำไปป้อนกลับให้คอมพิวเตอร์ แล้วเขียนโปรแกรมเพื่ออ่านค่าที่ได้ออกมา

อุปกรณ์ที่เชื่อมต่อกับแผงวงจรควบคุมหลักมีดังนี้

- อุปกรณ์ควบคุมอัตราการใหลของก๊าซ (mass flow controller)
- อุปกรณ์ควบคุมอุณหภูมิซึ่งประกอบด้วยวงจรสำหรับอ่านค่าอุณหภูมิและวงจรที่ทำการ เปิดปิดอุปกรณ์ทำความร้อน (temperature controller)
- เซลล์เชื้อเพลิง (fuel cell)
- วงจรวัดค่าความชื้น (humidity sensor circuit) ซึ่งกำลังอยู่ในช่วงของการพัฒนา
- อุปกรณ์ที่ใช้ผลิตค่าความต้านทานแบบปรับค่าได้ (power load) ซึ่งกำลังอยู่ในช่วง ของการพัฒนา
- อุปกรณ์ควบคุมความดัน (pressure controller) ซึ่งกำลังอยู่ในช่วงของการพัฒนา
- (ii) แผงวงจรที่ใช้ในการเชื่อมต่อระหว่างคอมพิวเตอร์กับแผงวงจรควบคุมหลัก (buffer and decoder card)


ทำหน้าที่เป็นตัวเชื่อมต่อระหว่างคอมพิวเตอร์และแผงวงจรควบคุมหลัก นอกจากนี้ยังใช้ กอดรหัสเพื่อเลือกสัญญาณที่ต้องการ


(iii) แหล่งจ่ายไฟของแผงวงจรหลัก (the power supply of main controller)
 ทำหน้าที่จ่ายไฟให้แผงวงจรควบคุมหลัก โดยมีการออกแบบให้ใช้ค่าความต่างศักย์ +12,
 -12 โวลท์ กระแส 3 แอมแปร์ และความต่างศักย์ +5 โวลท์ กระแส 5 แอมแปร์

ระบบควบคุมการทำงานของเชลล์เชื้อเพลิง มีแผงวงจรควบคุมหลัก (main controller) ทำ หน้าที่ในการรับและส่งสัญญาณกับคอมพิวเตอร์ โดยแผงวงจรควบคุมหลักจะรับสัญญาณจาก อุปกรณ์ที่เชื่อมต่อกับระบบ เช่น ตัวตรวจวัดอุณหภูมิ (heater sensor) ตัวควบคุมอัตราการไหลของ ก๊าซ (mass flow controller) เข้ามาประมวลผลตามโปรแกรมที่เขียนเอาไว้ แล้วแสดงผลดังกล่าว ออกทางหน้าจอ นอกจากนี้ คอมพิวเตอร์ยังทำหน้าที่ส่งสัญญาณไปยังแผงวงจรควบคุมหลัก เพื่อส่ง

สัญญาณไปควบคุมอุปกรณ์ต่าง ๆ เช่น อุปกรณ์ควบคุมอุณหภูมิ (heater controller) ตัวควบคุม อัตราการไหลของก๊าซ และ electronic load ซึ่งอุปกรณ์นี้จะใช้ในการปรับเปลี่ยนค่ากระแสและความ ต่างศักย์ของเซลล์เพื่อใช้เขียนกราฟความสัมพันธ์ระหว่างกระแสและความต่างศักย์ของเซลล์ (I-V curve) ซึ่งจะบอกถึงประสิทธิภาพของเซลล์

ระบบทดสอบการทำงานของเซลล์เชื้อเพลิง ได้พัฒนาเสร็จแล้วตามแผนดำเนินการในโครง การเฟสนี้ และพร้อมที่จะใช้ในการทดสอบการทำงานของ membrane หรืออิเล็กโทรดที่จะมีการ พัฒนาขึ้น หรือปรับปรุงคุณภาพให้ดีขึ้น โดยใช้เทคโนโลยีไอออนพลาสมาในเฟสต่อไปของโครงการ

รูปที่ 4.6 (ข) รายละเบียตของการจัดอุปกาณของระบบทลสอบการท้างานของเขลล์เชื้อเพลิง

Research Output

1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ

ปี 2541

- L. D. Yu, T. Vilaithong, B. Yotsombat, S. Thongtem, G. J. Han, J. S. Lee "Surface modification of tool steels by combined Cr – and N – ion implantation," Surface and Coatings Technology 1998, 103-104, 328-333.
- P. Suanpoot, T. Vilaithong, M. W. Rhodes, D. Boonyawan "Plasma Parameter Characterization of a DC Multicusp Plasma Chamber operating in He, Ar and Xe Gas," J. Plasma Fusion. SERIES 1998, 1, 526-530.
- S. Intarasiri, L. D. Yu, T. Chudoba, H. Reuther, U. Rammelt, E. Richter "Hardness, tribological behaviour and corrosion performance at the very near surface of nitrogen ion-implanted X5CrNil8.10 steel" Surface and Coatings Technology 1998, 99, 305-310.

- T. Vilaithong, L. D. Yu, P. Vichaisirimongkol, G. Rujijanagul, T. Sonkaew "N-ion implantation assisted by preparative and closing implantation for surface modification of tool steel," Nuclear Instruments and Methods in Physics Research 1999, B148, 830-835.
- D. Boonyawan, P. Suanpoot, T. Vilaithong "A 13.56 MHz multicusp ion source for gaseous ion-beam production," Surface and Coatings Technology 1999, <u>112</u>, 314-317.
- T. Vilaithong, U. Tippawan, S. Singkarat and S. Wiboolsake "Double-Differential Neutron Emission Cross Sections on ²⁰⁹Bi at 14.1 MeV Incident Energy," Science Asia 1999, 25, 43-50.
- R. Schmidt, RL. Maughau, M. Yudeley, C. Kota and S. Wanwilairat "Experimental determination of the thermal flux around two different type of hight intensity ²⁵²Cf source," Medical Physics 1999, <u>26</u>, 83-86.
- P. J. Evans, T. Vilaithong, L. D. Yu, O. R. Monteiro, K. M. Yu and I. G. Brown "Tribological effects of oxygen ion implantation into stainless steel," accepted for publication in Nuclear Instruments and Methods in Physics Research <u>B</u>, 1999.
- L. D. Yu, S. Thongtem, T. Vilaithong, G. Rujijanagul, T. Sonkaew, M. J. McNallan "Modification of Tribology and High-Temperature Behavior of Ti-47Al Intermetallic

- Alloy Nitrided by N-lon Implantation," accepted for publication in Surface and Coatings Technology, 1999.
- D. Boonyawan, N. Chirapatpimol, N. Sanguansak and T. Vilaithong "A 13.56 MHz Multicusp Ion Source for High Intensity Ar Beam," accepted for publication in Review of Scientific Instrument, 1999.
- 11. T. Vilaithong, L. D. Yu, C. Alisi, B. Phanchaisri, S. Anuntalabhochai, R. Chandej, P. Apavatjrut "A Study of the Mechanism of Low-Energy-Ion-Beam Effects on Outer Cell Structure for Exogenous Macromolecule Transferring," submitted to Surface and Coatings Technology, 1999.
 - 12. S. Davydov, L. D. Yu, M. W. Rhodes, S. Intarasiri, V. A-no "Applied High Current N-ion-beam Surface Engineering of Metals and Industrial Tools at Chiang Mai University," submitted to Surface and Coatings Technology, 1999.
 - 13. S. Davydov, B. Yotsombat, T. Vilaithong, V. A-no, P. Pramukkul, R. Rungroenkul, S. Sansosiri "Development of metal Vapor vacuum arc (MEVVA) ion source in Thailand, submitted to Surface and Coatings Technology 1999.
 - 14. M. W. Rhodes, S. Wanwilairat, W. Hoffmann, T. Vilaithong "Low Cost High Resolution Thermoluminescence Spectrometer," submitted to Review of Scientific Instrument, 1999.
 - 15. S. Wanwilairat, T. Vilaithong, R. Schmidt, V. Lorvidhaya, W. Hoffmann "Experimental determination and calculation program of fast neutron, gamma and thermal neutron dose around a high intense ²⁵²Cf source," to be submitted to Journal of Medical Physics, 1999.
 - 16. S. Wanwilairat, T. Vilaithong, M. Rhodes, W. Hoffmann "High Resolution Emission Spectra of CaF₂:T_m," to be submitted to Radiation Protection & Dosimetry, 1999.
 - 17. C. Alisi, B. Phanchaisri, L.D. Yu, S. Anuntalabhochai, P. Apavatjrut, T. Vilaithong "The Effects of Low-energy Ion Beam on Outer Plant Cell Structures for Exogeneous Molecule Transferring," in preparation.
 - 18. S. Anuntalabhochai, C. Alrisi, B. Phanchaisri, L.D. Yu, P. Apavatjrut, T. Vilaithong "Ion beam induced direct DNA transfer into E. coli," in preparation.

2. ผลงานตีพิมพ์ในวารสารวิชาการในประเทศไทย

 S. Wanawilairat, T. Vilaithong, V. Lorvidhaya, W. Hoffmann, A. Muangbud "Measurement of ²⁵²Cf thermal neutron dose using TLD600/700," Journal of Radiation Oncology (Thailand) 1999 (in press).

- S. Singkarat, U. Tippawan, G. G. Hoyes, N. Chirapatpimol, T. Vilaithong "Effect of Neutron Pulse Width on Background Reduction in Prompt Gamma-Ray Analysis," submitted to Journal of Thai Nuclear Society, 1999.
- S. Wanwilairat, V. Lorvidhaya, T. Vilaithong, R. Schmidt, H. Lawrence "Brachytherapy treatment planning program for ²⁵²Cf source," to be submitted to Journal of Radiation Oncology (Thailand) 1999.

3. หนังสือ

ถิรพัฒน์ วิลัยทอง, ฟิสิกส์ขั้นพื้นฐานของเครื่องเร่งอนุภาค. เชียงใหม่ : โรงพิมพ์มิ่ง เมือง, 2540, 200 หน้า

4. การจดทะเบียนสิทธิบัตร (โปรดระบุทั้งสิทธิบัตรที่จดทะเบียนแล้วและกำลังดำเนินการจด ทะเบียน)

กำลังจะดำเนินการจดทะเบียน เครื่อง Compact Multiparameter
Thermoluminescence Spectrometer.

5. การเสนอผลงานในที่ประชุมวิชาการนานาชาติ

ปี 2539

 Vilaithong T., Chirapatpimol N., Singkarat S., Suwannakachorn D., Boonyawan D., Yotsombat B., Tippawan U., Davydov S., Rhodes M., Yu L. D. "The Chiang Mai University Accelerator R & D Program and the Thai Light Source Facility," presented in oral session at the 14th International Conference on the Application of Accelerator in Research and Industry, Denton, Texas, U.S.A. November 1996.

- Vilaithong T., Tippawan U., Singkarat S. "A High Resolution Measurement of Double Differential Neutron Emission Cross Sections of ²⁰⁹Bi at 14.1 MeV incident Energy," International Conference on Nuclear Data for Science and Technology, Trieste, Italy, May 19-24, 1997.
- Evans P. J., Vilaithong T., Yu L. D., Monterio R., Yu K. M., Brown I. G. "Tribological Effects on Oxygen Ion Implantation into Stainless Steel," 10th International Conference on Surface Modification of Metals by Ion Beam, Gatlinburg, Tennessee, September 21-26, 1997.
- 3. Yu. L. D., Intrasiri S., Vilaithong T., Yotsombat B., Thongtem S., Han J. G. "Surface Modification of Tool Stools by Combined Cr and N-ion Implantation," 10th

International Conference on Surface Modification of Metals by Ion Beam, Gatlinburg, Tennessee, September 21-26, 1997.

 Boonyawan D., Suanpoot P., Vilaithong T. "A 13.56 MHz Multicusp Ion Source for Gaseous Ion Beam Production," Asian – European International Conference on Plasma Surface Engineering, Seoul, Korea, October 5-9, 1997.

ปี 2541

- Wanwilairat S., Vilaithong T., Lorvidhaya V., Schmidt R., Hoffmann W.
 "Measurements of the dose components of fast and thermal neutrons and photons around a high intense ²⁵²Cf-source," 8th International Symposium on Neutron Capture Therapy for Cancer, La Jolla, California, USA. September 1998:10p.
- Singkarat S., Tippawan U., Hoyes G. G., Chirapatpimol N., Vilaithong T.
 "Utilization of a 2 ns pulsed neutron generator for bulk elemental analysis,"
 presented at the 1998 Symposium on Radiation Measurements and Applications,
 Ann-Arbor, Michigan, USA. May 1998.
- Vilaithong T., Yu L. D., Vichaisirimongkol P., Rujijanagul G., Sonkaew T. "N-ion implantation assisted by preparative and closing implantation for surface modification of tool steels," 11th International Conference on Ion Beam Modification of Materials, Amsterdam, The Netherlands, August 31 September 4, 1998.
- Vilaithong T., Singkarat S., Tippawan U. "Utilization of a Pulsed D-T Neutron Generator," Advisory Group Meeting on the Optimal Use of Accelerator Based Neutron Generator, IAEA, Vienna, Austria, 13 – 16 October 1998, 12 pages.

- Davydov S., Yu L. D., Rhodes M. W., Intarasiri S., Thongleurm C., A-no V., Vilaithong T., Yotsombat B. Applied high-current N-ion-beam surface engineering of metals and industrial tools at Chiang Mai University, presented (oral) at the Asian-European International Conference on Plasma Surface Engineering, Beijing, 14-18 September 1999.
- Davydov S., Yotsombat B., Vilaithong T., Pramukkul P., Rungroenkul R., Sansonsiri S. Development of metal vapour vacuum arc (MEVVA) ion source in Thailand, presented (oral) at the Asian-European International Conference on Plasma Surface Engineering, Beijing, 14-18 September 1999.

- Vilaithong T., Yu L. D., Alisi C., Phanchaisri B., Anuntalabhochai S., Apavatjrut P., Wanichapichart P. A study of the mechanism of low-energy-ion-beam effects on outer cell structure for exogenous macromolecule transferring, presented (oral) at the Int. Conf. on Surface Modification of Metals by Ion Beam, Beijing, 20-24 September 1999.
- 4 Yu. L. D., Thongtem S., Vilaithong T., Mc Nallan M. J. Modification of tribology and high-temperature behavior of Ti-47Al intermetallic alloy nitrided by N-ion implantation, presented (poster) at the Int. Conf. on Surface Modification of Metals by Ion Beam, Beijing, 20-24 September 1999.
- Singkarat S., Tippawan U., Vilaithong T., C, N, O, investigation based on a pulsed 14-MeV Neutron generator, presented at the IAEA Technical Commttee Meeting on Application of Accelerator Based Neutron Sources, Drebrecen, Hungary, 5-8 October 1999.

6. การเสนอผลงานในที่ประชุมวิชาการในประเทศไทย

ปี 2540

- L. D. Yu and T. Vilaithong "Ion Beam Biotechnology," 2nd Seminar on The Large Scale Cooperative Research Program in the Field of Biotechnology, Suranaree University of Technology, Nakhonratchasima, 19 –21 November 1997.
- D. Boonyawan and T. Vilaithong "A 13.56 MHz Multicusp Oxygen Ion Source," 23rd
 Congress on Science and Technology of Thailand, Chiang Mai, 20 22 October
 1997.
- T. Vilaithong, B. Panijpan, H. Wiedermann "High Intensity Coherent Far Infrared Radiation From Electron Beams," 23rd Congress on Science and Technology of Thailand, Chiang Mai, 20 – 22 October 1997.

- S. Intarasiri, L. D. Yu, T. Vilaithong, V. Thongchuchuay "Effect of Double ton Implantation on Surface Hardness of SKD11 Tool Steel," 24th Congress on Science and Technology of Thailand, Bangkok, 19 – 21 October 1998.
- S. Intarasiri, L. D. Yu, T. Sonkaew, S. Sangyunyongpipat, G. Rujijanugul, V. Thongchuchuay, T. Vilaithong "Effect of Nitrogen Ion Implantation on Hardness and Tribology of SKD11 Tool Steel Surface," Proceeding 7th Nuclear Science and Technology Conference, Bangkok, 1 2 December 1999, pp.431-445.

- U. Tippawan, S. Singkarat, S. Ratanarin, T. Vilaithong "A Study on Multiple Scattering and Flux Attenuation of Fast Neutron inside a Cylindrical Sample by Using Monte Carlo Simulation Technique," Proceeding 7th Nuclear Science and Technology Conference, Bangkok, 1 – 2 December 1999, pp.628-641.
- T. Vilaithong, L. D. Yu, S. Davydov, B. Yotsombat, S. Intarasiri, S. Thongtem, M. Rhodes, P. Vichaisirimongkol, C. Thongleurm, S. Aumkaew, V. A-no "Surface Modification of Materials by Ion Implantation: Present Development and Future Potential," Materials Processing and Manufacturing Conference, Bangkok, 6 7 November 1998, 19 pages.

7. ผลงานอื่น ๆ

7.1 1 2540

- จัดการสัมมนา เรื่อง นิวตรอนในทศวรรษหน้า ระหว่างวันที่ 12 13 กรกฎาคม
 2540 ณ โรงแรมเบลล์วิลล่ารีสอร์ท อ.หางดง จ.เชียงใหม่
- จัดการฝึกอบรมนานาชาติ เรื่อง Interregional Training Course on Radiation Measurements for Applications ระหว่างวันที่ 13 ตุลาคม – 5 ธันวาคม 2540 ณ มหาวิทยาลัยเชียงใหม่ โดยมีผู้เข้าร่วมฝึกอบรมจาก 20 ประเทศทั่วโลก
- หัวหน้าโครงการทำหน้าที่เป็น member ของ International Organizing Committee ในการประชุมนานาชาติ Asian-European International Conference on Plasma Surface Engineering, Seoul, Korea, 5-9 October 1997.

7.2 1 2541

- 1. ได้จัดการฝึกอบรมระดับชาติ เรื่อง "การปรับปรุงคุณสมบัติเชิงผิวโลหะโดยใช้ ไอออนอิมพลานเดชั่น" เมื่อวันที่ 27 –28 สิงหาคม 2541 ณ อาคารวิจัยนิวตรอน พลังงานสูง ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ จ. เชียงใหม่
- 2. จัดการสัมมนาเชิงปฏิบัติการ เรื่อง อันตรกิริยาระหว่างนิวตรอนและไอออน-พลาสมากับสสาร: การพัฒนาเทคโนโลยีและกระบวนการ ระหว่างวันที่ 20 – 22 เมษายน 2542 ณ อาคารวิจัยนิวตรอนพลังงานสูง ภาควิชาฟิสิกส์ คณะวิทยา ศาสตร์ และไร่บุญรอด 3 จ.เชียงราย
- หัวหน้าโครงการทำหน้าที่เป็น chairman และ member ของ International Atomic Energy Agency Advisory Committee on the Optimal Use of Accelerator Based Neutron Generator ซึ่งประชุมที่กรุงเวียนนา ประเทศออสเตรีย เมื่อวันที่ 13 – 16 ตุลาคม 2541