The treads of the relationships between the concentration (or particle size) and the three quantitative indices are summarized in Table 2. In conclusion, the areabased creation F_A is a more sensitive and robust measure of dispersibility than the box-punting fractal dimension F_C , whereas the degree of mixedness M is unsatisfa ory. In addition, M is not suitable at all when the particle size is tiny compared to the sample area.

5.2. Non-deal dispersion

The purp se here is to find out what happens to the values of F_{Λ} and F_{C} when the number rtio of B to A particles is varied to yield a non-ideal dispersion. a hybrid mixture (two different ideal dispersions. The N-U or B-A ratios investigated are summerized in Table 1. An N-U ratio of 25 means that, of the total number, 25% of t particles (B) is normally dispersed (N) and the rest (A) is uniformly dispersed U). For simplicity, only the percentage of B particles will be specified henceford. Since it has been ascertained above that the particle size does not affect the value of F_A and F_C , the size is fixed at 0.5 units. The relationships between the total ϵ incentration C and the observed F_A and F_C are depicted in Figs 8 and 9. respective y.

From F_{\parallel}^{*} , 8, it can be seen that except at B = 0% (completely uniform), for every fixed N-1 ratio, FA decreases steeply as the total concentration increases. This is because FA is dominated by the normally dispersed B particles whose absolute number it reases. Thus it may be concluded that F_A is a sensitive index of the

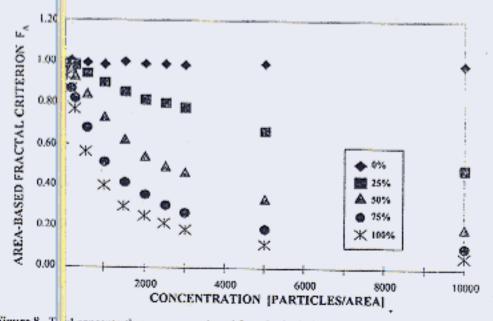
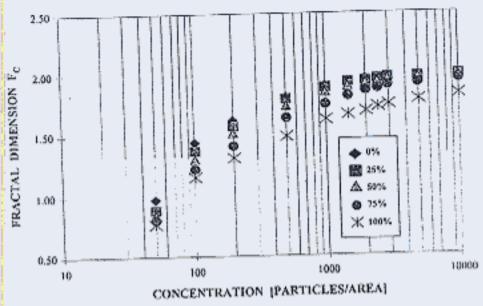



Figure 8. To al concentration versus area-based fractal criterion at each N=U ratio.

is 1-ideality of a dispersion. The higher the total concentration, the more sensitive its area-based fractal criterion. Figure 9 reveals that, for every fixed N-U ratio, F increases, as the total concentration increases, especially at low concentrations. T is is because F_C is dominated by the uniformly dispersed A particles. On the

igure 9. Total concentration versus fractal dimension $F_{\rm C}$ at each N=U rmio.

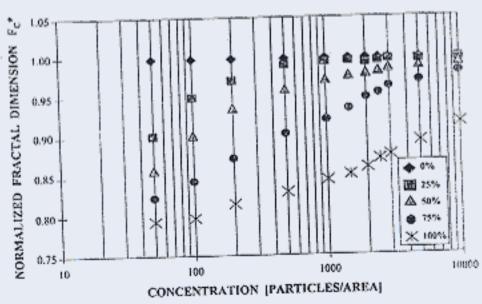


Figure 10. Relationship between the total concentration and normalized fractal dimension at each N=U ratio.

other hand, at a fixed concentration, differences in F_C values among different N=U ratios are less distinct at 0% up to 50%.

Fig res 10 shows the relationships between the total concentration versus F_C^* at each I-U ratio. The figure is handy when one wants to interpret an experimentally obtained dispersion pattern in terms of its observed fractal dimension.

6. AF LICATION TO THE INTERPRETATION OF EXPERIMENTAL RESULTS

Phin thin has found experimentally that the kneading temperature is one important factor that affects the dispersion state of pigments in a polymer, i.e. a higher temperature (from 170 to 210°C) leads to improved dispersibility. Table 3 lists the coperimental values of F_C^* reported by Phingchin [14].

which experimental F_C^* at different temperatures are compared, one sees that black kneaded at 210°C was more nearly uniformly dispersed in polystyrene than at 170°C. So was iron oxide. This is because the viscosity of the polymer melt ecame lower at a higher temperature. When carbon black and iron oxide are compared to the same kneading temperature, one realizes that the former is more uniformly dispersed than the latter because carbon black is organic, non-polar and compatible with polystyrene. In fact, uniform dispersion is achieved if the normalized fractal dimension is essentially 1. At 170°C kneading temperature, the mental F_C^* is 0.964. From Fig. 10, at the same 160 total particle concentration, it is build by interpolation that a mixture of identical A and B particles consisting of 21 & B (N-type dispersion) and 72% A (U-type dispersion) would have the same fract 1 dimension of 0.964. In other words, the achieved dispersion is equivalent to 1 which 28% of the particles are normally dispersed with the remaining 72% bein uniformly dispersed. The equivalent N=U ratios for the other cases are also listed in Table 3.

Significantly, Fig. 8 is a handy tool to interpret the experimental dispersion state from the conserved F_{Δ} value.

Table 3.

Reported experimental values of the normalized box-counting fractal dimension

Pigm	nt .	Kneading temperature (°C)	Speed of screw (r.p.m.)	Feed rate (g/min)	Number of particles counted	Normalized fractal dimension	N=U ratio (normal: uniform) % N
Carb	black	170	81	4.5	160	0.964	28
		210	81	4.5	193	0.996	2
Iron	side	170	81	4.5	88	0.914	40
		210	81	4.5	113	0.935	35

7. CONCLUSIONS

The following conclusions can be drawn;

- The degree of mixedness for both the uniform and normal dispersions tends to decrease as the additive concentration or particle size increases.
- (2) The area-based fractal criterion and box-counting fractal dimension are more suitable indices than the degree of mixedness because they are not affected by the particle size. The former appears to be a more sensitive index for measuring dispersibility than the latter.
- (3) Figures 8 and 10 are handy for evaluating experimentally obtained dispersion pattern. Using the observed value of F_A or F_C*, they tell us how close the observed dispersion is to the normal dispersion (or to the uniform dispersion) by giving an equivalent percentage of normally dispersed B particles (or uniformly dispersed A particles) in the material matrix.

Acknowledgements

Financial support from National Metal and Materials Technology Center for the research project, financial support from Thailand Research Fund for W. T. and T. C., and academic scholarship from National Science and Technology Development Agency for M. S. are acknowledged.

REFERENCES

- P. M. C. Lacey, Developments in the theory of particle mixing. J. Appl. Chem. 4, 257-268 (1954).
- K. Miyanami, in: Powder Technology Handbook, K. linoya, K. Gotoh and K. Higashitani (Eds), pp. 595

 –613. Marcel Dekker, New York (1990).
- B. H. Kay, Specification of raggedness and/or texture of a fine profile by its fractal dimension, Pander Technol. 21, 1–16 (1978).
- J. C. Graf. The importance of resolution limits to the interpretation of fractal descriptions of fine particles. Proceedings. 67, 83–85 (1991).
- N. Yabe, K. Terashita, K. Izumida and K. Miyasami. Dispersion of carbon black in resin by a continuous kneader and its assessment. J. Sov. Maner. Sci., Japan 37, 1344-1348 (1988).
- Y. Mizuno, K. Terashita and K. Miyamami, Application of fractal dimension for evaluation of dispersion of filler in composite material. J. Soc. Mater. Sci., Japan 42, 836

 –842 (1993).
- Y. Mizuno, K. Terashita and K. Miyanami. Evaluation of dispersion state of electrically conductive resin with fractal dimension. *Kagaka Kagaka Ronburshu* 19, 21–29 (1993).
- Y. Mizuno. K. Terashita and K. Miyanami. Operating plan for continuous kneading of electrically conductive resin with analysis of time series, Kugaku Kogaku Ranhunghu 19, 13-20 (1993).
- K. Terashita, T. Tanaka and K. Miyanami, Continuous kneading for electrically conductive composite material and evaluation of filler dispersion state, Bull. Univ. Osaka Prof. 42, 1–17 (1993).
- K. Terashita, T. Teshima, N. Yabe and K. Miyanami, The mixing of toner composition and its evaluation. J. Soc. Proceedings. Japan 30, 556-562 (1993).

W. Tanthapanichakoon, T. Charinpanitkal and P. In-cure, Application of novel concept of fractal to study dispersion of additive in plastic, in: Proc. Ann. Meeting of The Engineering Institute of Thailand, Bangkok, Thailand (1995).

11 W. Tanthapanichakoon, T. Charinpanitkul and P. In-eure, Experiment on compounding polyethylene resin with iron oxide pigment using twin-screw kneaders, in: Proc. 1995 Regional

Symp, on Chemical Engineering, Bangkok, Thailand (1995).

P. In-cure, Effect of kneading conditions on the dispersion of pigments in polyethylene using a continuous kneader, Master's thesis, Chulalongkorn University, Bangkok, Thailand (1994),

N. Phingchin, Pactors influencing the dispersion of pigments in polystyrene upon using a continuous twin-screw kneader, Master's thesis, Chulalongkorn University, Bungkok, Thailand

A. Thongchiew, Factors influencing the dispersion of organic pigments in polyethylene upon using a continuous twin-screw kneader, Master's thesis, Chulalongkom University, Bangkok, Thailand (1997).

M. Suphowita, Development of quantitative indices for evaluating the degree of dispersion of additives in compounded material using computer experiments. Master's thesis, Chulalongkorn University, Bangkok, Thailand (1997).

. W. Tamhapanichakoon, Stochastic analysis of a high-rate activated sludge wastewater treatment plant with random diurnal plant inputs and random process parameters, via Monte-Carlo simulation. Doctoral dissertation, University of Texas at Austin (1978).

T. Yano and Y. Sano, J. Soc. Chem. Eng., Jopan 29, 214 (1965).

 A. Tsuchinari, Y. Hokii, S. Osamu and C. Kanaoka, Effects of Al₂O₃ –TiO₂ contents on structure and permeability of porous magnesia ceramic - fractal of pure characteristics, J. Ceramic Technol., Japan 99, 561 - 566 (1991).

Powder Technology 118 (2001) 97-106

POWDER

www.elsevier.com/locate/powtee

Stochastic sin ulation of the agglomerative deposition process of aerosol particles on an electret fiber

C. Kanaoka *,*, S. Hiragi *, W. Tanthapanichakoon b

* Department of C il Engineering, Faculty of Engineering, Kanazawa University, 2-40-20 Kadattuna, Kanazawa 920-8667, Jupan Faculty of Engineering, Chulalongkorn University, Panumcan, Bangkak 10330, Thailand

ad affects the collection efficiency and pressure drop of the filter under dust-loaded condition. This paper

imensional simulation method for predicting the agglomerative deposition process of fine aerosol particles on

sted results are shown to agree quite well with the experimental observations for both uncharged and charged

ly the gradient force, and for the latter, the coulombic force needs to be considered as long as an oncoming

ed particle at the tip of a dendrite or chain-like agglomerate, it suffices to consider only the high-gradient or

Abstract

To design a high-performance air filter with a longer service life, we need to predict how the morphology of particle accumulates on a constituent fiber changes describes a practical threean electret fiber. The simu particles. For the former, particle has not come in cose proximity to any previously deposited particles. In contrast, once the oncoming particle enters a region of close proximity to a depoil particle string formative fice in the present stochastic model. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Electrot filtration: Pendrites; Agglomerates; Electrostatic effect; Dust load

1. Introduction

dust-holding capacity density, and packing sucture.

An electret fiber il made of permanently polarized dielectric material. Coppared to a similar nonpolarized fiber, the aerosol collection efficiency of the electret fiber can be significantly hig er, even if the aerosol particles are uncharged. Thus, electest fibers have been used to enhance the collection efficient of HEPA and ULPA filters. In some instances, the dilection efficiency of an electret fiber may drop substartially as deposition of the particles progresses. Typically, ir filters are not equipped with any dust-cleaning systems and is discarded when captured particles clog the air pasage. Kanaoka [1] showed how to double the service life by designing a filter with larger the same final pressure drop for the filter composing of incharged fibers (uncharged filter). This is achievable becase filter performance depends not only on filtration confitions and particle properties but also on filter properties, such as fiber diameter, packing

As more and more particles deposit on a fiber inside a filter and/or on previously captured particles, they form complicated accumulates. For uncharged filter, collection efficiency increases as particles deposit. However, for the case of electret filter, it is experimentally known to decrease with particle collection in the initial stage of the collection. The accumulation process of this has not been simulated previously and if it is needed to design a filter with improved service life, we need to predict filter performance under dust load, which requires good understanding of how the morphology of particle accumulates on a fiber affects the collection efficiency and pressure drop of a dust-loaded filter [1].

1.1. Experimental observation of deposition pattern on a single fiber

Figs. 1 and 2 show how the agglomerates of uncharged and charged particles, respectively, change with filtration time and location on an electret fiber. When uncharged particles are collected, they attach all around the fiber and form chain-like agglomerates, which subsequently become irregular and complicated as the electrostatic effect gradually weakens. In the case of charged particles, the shape is

E-muil address: kanaok Ptkanazawa-u.ac.jp (C. Kanaoka).

0032-5910/01/S - see from matter © 2001 Elsevier Science B.V. All rights reserved. Pff: S0032-5910(01)00 99-6

Corresponding author. 1 x: +81-76-234-4645.

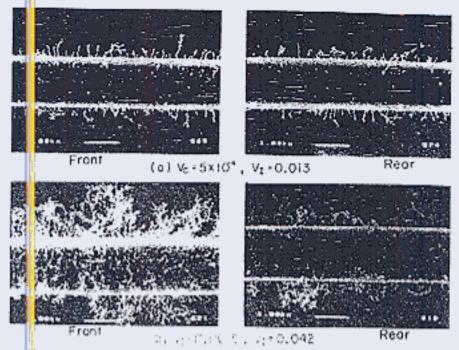
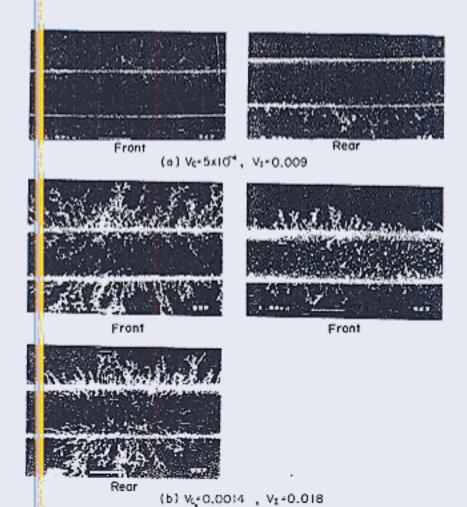



Fig. 1. Experimental deposition of noncharged particles on an electret fiber $(d_f = 30 \text{ µm}, d_g = 0.39 \text{ µm}, u = 15 \text{ cm/s}, \rho_g = 23.0 \text{ kg/m}^3, K_{1q} = 0.004$. $5k = 0.015, P_C = 5 \times 10^4, R = 9.013$).

2. 2. Experimental deposition of charged particles on an electret fiber ($d_f = 30 \, \mu \text{m}$, $d_g = 0.39 \, \mu \text{m}$, $u = 15 \, \text{cm/s}$, $\rho_p = 2330 \, \text{kg}^{-1}$, $K_b = 10^{1050}$, $E_b = 0.015$. $P_b = 5 \times 10^4$, $R_b = 0.39 \, \mu \text{m}$, $R_b = 15 \, \text{cm/s}$.

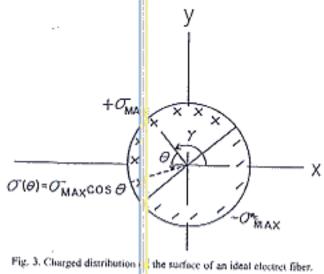


Fig. 3. Charged distribution

similar to the former but agglomerates concentrate in a limited area of opposite plarity to the particles and grows along the electric force lib.

cle. Since the process is proaches to simulate the

1.2. Simulation of deposition process on a fiber

To rigorously simulate the deposition process, we need to calculate the flow field around a dust-loaded fiber that theoretically changes with very deposition of a new partiindom, the repetitive recalculation of flow field around the an evolving irregular fiber is prohibitively time-consuring. There are two main apurticle agglomerates on a fiber. namely, the deterministic model [2-4] and the stochastic model [5-17]. The form is capable of describing the average growth of dend tes but does not express the andom nature. In controls, the latter can handle any andom process but may ke a long time to get meaningul results. Most previous simulations focus on the early tage of collection when he dust load is light and the o-called dendrites are religively small agglomerates.

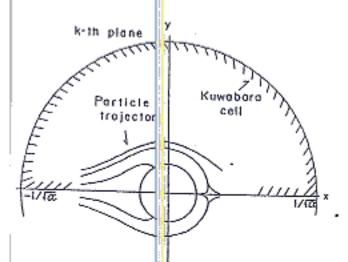
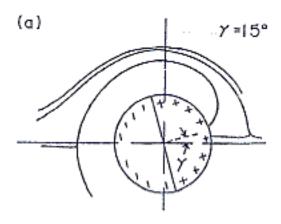
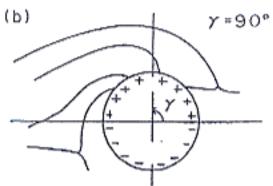




Fig. 4. Schematic of the simulation region ($\beta = 0^{\circ}$).

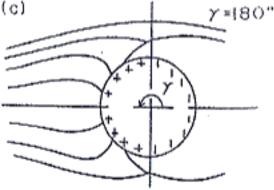


Fig. 5. Variation in the particle trajectories with y.

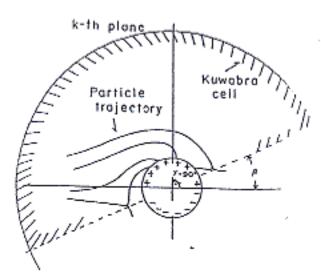


Fig. 6. Schematic of the simulation region ($\beta > 0$)

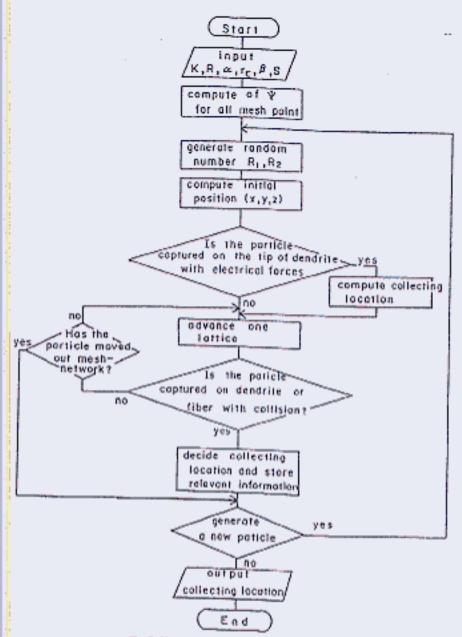


Fig. 7. Simplified flowchart of the simulation.

results, and conclusion.

fiber

sent work

The present paper extends our stochastic model to cover the intermediate state of collection on an electret fiber. What follows is a de cription of the agglomerative deposition model, presenta on and discussion of the simulation

Stochastic model f deposition process on an electret

Referring to an eclier stochastic mechanical collection model of Kanaoka et 1. [7], Baumgartner and Loeffler [18] carried out two-dime sional simulation of particle deposition on an electret firer. Since a three-dimensional model more closely repress its the actual process and reveals additional morphological details, it is adopted in the pre2.1. Electrostatic forces acting on a particle near un electres fiber

Coulombic forces, F_C (between the particle and fiber) and $F_{\rm cp}$ (between the particle and another nearby particle). and image force, F_1 , come into play only when a particle

Table 1

Simulation conditions		
Electrical parameters	$K_{\mathbf{C}}, K_{\mathbf{b}}$ [-]	0.1, 1.0
Interception parameter	R[-]	0.05
Filter poesane Jensity	a [-]	0.06
Fibri diameter	d _e [-]	2.0
Beight of generation in y-direction	H [-]	3.0
Mesh number to a direction	5[-]	50

has electric charge. For both charged and uncharged dielectric particles, the long-range nonuniform electric field around the electret for and the agglomerates lead, respectively, to the long- inge gradient force, $F_{\rm G}$, and particle string formative or ligh-gradient force, F_g . Under typical filtration conditions Hiragi [19] has calculated that F_R

becomes dominant when an oncoming particle comes in close proximity to a deposited particle and that, until this proximity region is reached, only either F_C , in the case of charged particles, or F_G , in the case of uncharged particles, need to be considered. His conclusions agree with Zebel [20] and are adopted here.

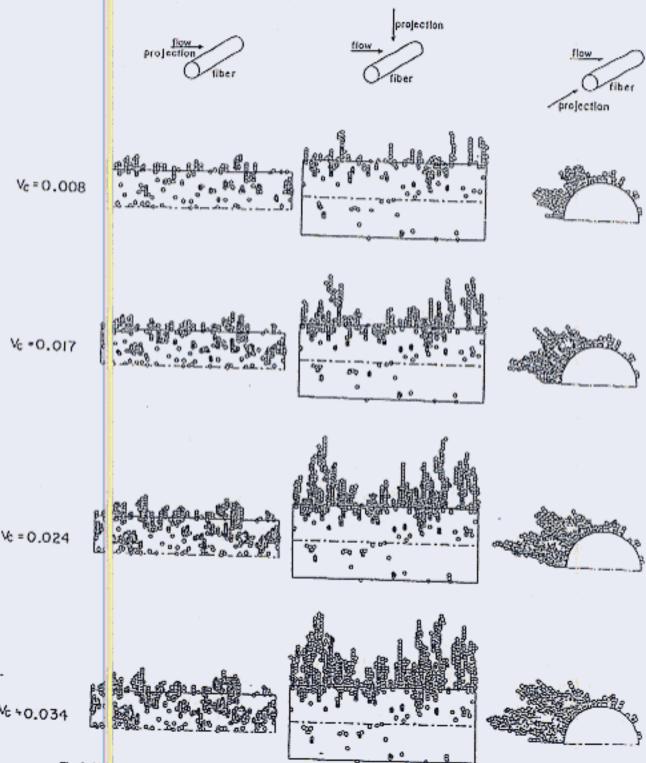


Fig. 8. Sin lated agglomerates of noncharged particles on an electrot fiber ($K_{tr} = 0.1$, R = 0.05, $\alpha = 0.06$, $r_{tr} = 2d_{p}$).

2.2. Region of simulation

2.2.1. Uncharged priicles

uncharged particle

Fig. 3 shows the ideal distribution of charges on the electret fiber surface It is assumed that the surface charges will not decay as paticles deposit on the fiber. The flow of fluid around the fit r is Kuwabara flow [21].

As explained be ore, the trajectory of an oncoming essentially determined by the gradient force, F_G , except in a region of close proximity to a deposited particle. Since F_G depends only on the radial coordinate r and not on the polarization direction γ , the simulation region shown in Fig. 4 is general and convenient to use.

2.2.2. Charged particles

For charged particles, the coulombic force, F_C , essentially determines the trajectory, except in the region of

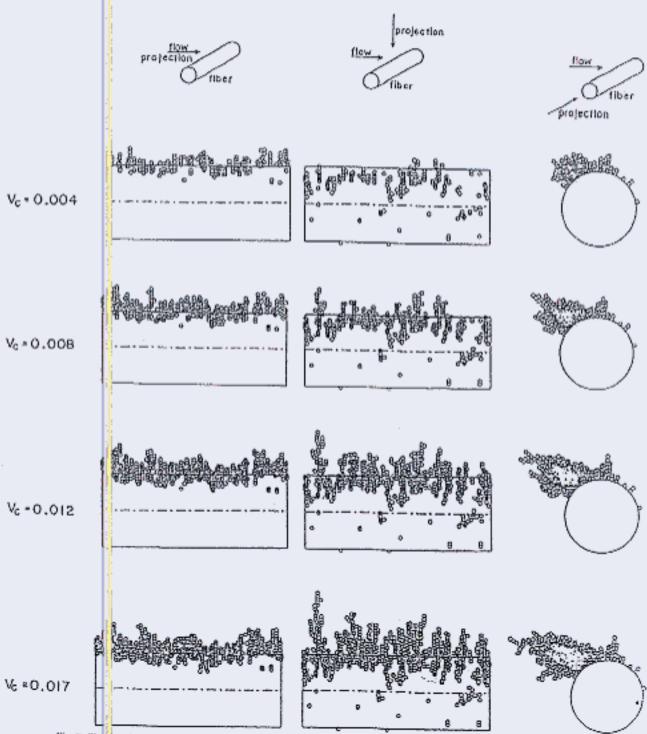


Fig. 9. Sim standard agglomerates of charged particles on an electron fiber ($K_{\rm e}=0.1,~R=0.05,~\alpha=0.06,~\gamma=0^{\circ},~r_{\rm e}=2\,d_{\rm g}$).

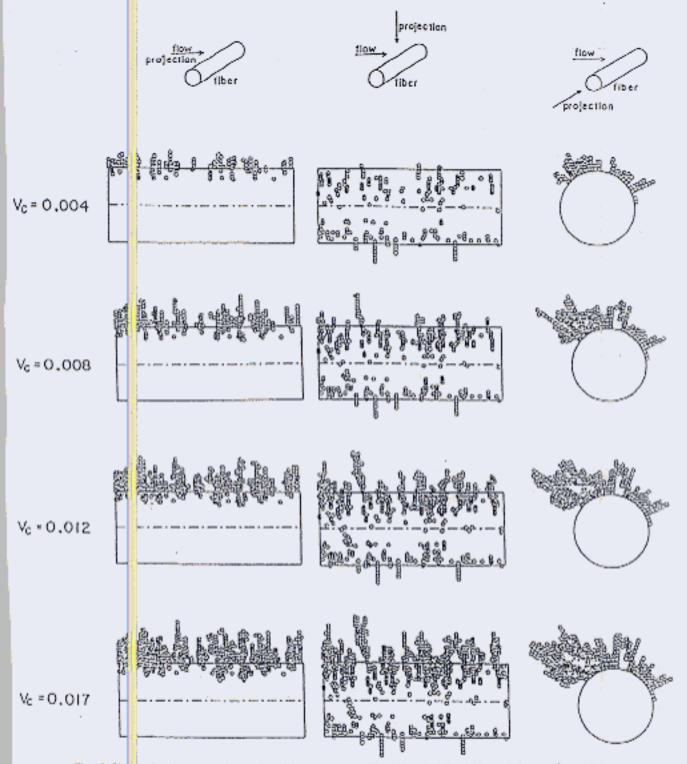


Fig. 10. Sim and agglomerates of charged particles on an electrot fiber ($K_C = 1.0$, R = 0.05, $\alpha = 0.06$, $\gamma = 0^{\circ}$, $r_E = 2 d_p$).

ically with γ. Fig. 🛭

lose proximity to so e deposited particle. Since F_C deends on the polarition direction y as well as the oordinates r and 0. e resulting trajectory changes drasillustrates the effect of y on the rajectories. In this cie, the simulation region is as deicted in Fig. 6, namely, the hatched half of an imaginary ylindrical cell obtain d by a plane passing through the wo critical points on be limiting trajectories.

2.3. Calculation of trajectories and Monte-Carlo simulation of deposition process

The trajectory of an oncoming particle around an electret fiber outside the region of proximity to deposited particles may be expressed by either Eq. (1) or (2).

Uncharged particle:
$$V - U = K_{to}F_{G}$$
 (1)

Charged particles:
$$V = U = K_C F_C$$
 (2)

To reduce the imulation time, an imaginary mesh network is construted around the fiber and the corre-

sponding heights on the particle generation plane for the trajectories passing through all the lattice points are deter-

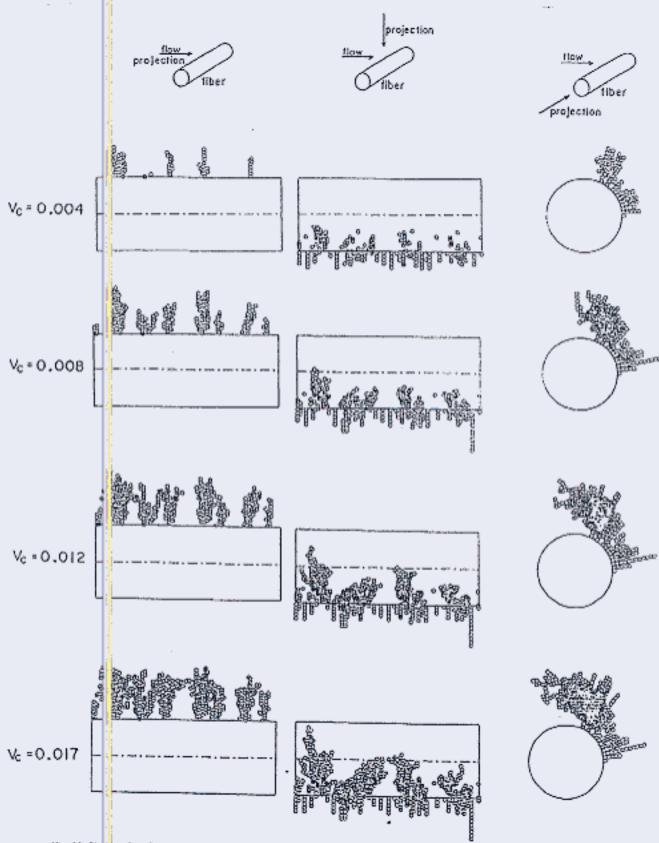


Fig. 11. Similated agglomerates of charged particles on an electric filter ($K_c = 1.0, R = 0.05, \alpha = 0.06, \gamma = -45^\circ, r_E = 2 d_g$).

trajectory of an oncor ing particle [7].

hemisphere [19].

2.4. Flowchart and caldition of simulation

tory passes inside the [Section 2.3. If it doe calculated and kept as is allowed to move inc out at each step to see surface or one of the date and the one furthe If no collision occurs, t

3. Simulation results and discussion

ites are similar to the Figs. I and 2. In all scuristic value has bee liber surface than the

mined at the start of each simulation. These values are handy for subsequent step-by-step determination of the

As an oncoming piticle comes in close proximity to a deposited particle, its povement is controlled by the highgradient force, FR. A cording to the calculation result of Zebel [20], the high- adient electrostatic field is prominent only at the tip of the particle string (dendrite). Thus, only the electrostatic isld around the dendrite tip needs to be considered. Once a oncoming particle enters this projected hemisphere of i fluence of the high-gradient field at the dendrite tip, it is as umed to deposit at the center of the

Fig. 7 presents a si plified flowchart of the simulation algorithm. To account for the effect of the high-gradient force, FR, at the tip of a candidate dendrite, a newly generated particle is fit t checked to see whether its trajecmisphere of influence described in , then the location of capture is candidate. Next, the same particle mentally while checking is carried whether it collides with the fiber eposited particles. If it does, then the location of collisid is compared with the first candifrom the fiber surface is selected. en the first candidate is selected. If there is no candidate, ben the particle is not captured. Table 1 lists the various simulation conditions investigated.

Figs. 8 and 9 show the time dependence of particle agglomerates simulated or the case of uncharged particles $(K_{\rm h}=0.1)$ and charged particles ($K_{\rm C}=0.1$), respectively. Evidently, the chain-lil structures of particle agglomersperimental observation shown in mulations, the radius $r_{\rm g}$ of the nemisphere of influence is taken to be $2d_p$ because this found in a preliminary study to give results most resemiling the experimental observations 19]. Comparison between Figs. 8 and 9 at the same dust oad Ve reveals that chi ged particles tend to form taller dendrites that concentra e on a more limited area on the ase of uncharged particles. This lendency is also observe experimentally. Because of space limitation, only two most simulation results are shown in Fig. 10 ($K_C = 1$; $\gamma = 0^\circ$ and Fig. 11 ($K_C = 1$; $\gamma = -45^\circ$). Comparison between F s. 9 and 10 reveals that, at the same dust load, more particles deposit on the rear surface as the coulombic force F_R , is much stronger than the gradient force, F_G . Of c_G irse, the collection efficiency also increases appreciably. Omparison between Figs. 10 and

11 clearly confirms the strong effect of the polarization direction y on the spatial distribution of particles on the fiber surface. The effect of y on the average shape of dendrites is hard to elucidate because it is necessary to fully understand how the electrical charges on the deposited particles are transferred among themselves and between them and the electret fiber. In addition, the simulation assumes monodisperse particles and identical charges on all particles. Nevertheless, the present three-dimensional simulation method gives more realistic representation of the particle string structures than Baumgartner and Looffler [18].

4. Conclusion

The present paper describes a practical method to carry out three-dimensional simulation of the agglomerative deposition process on an electret fiber. The method yields results that agree quite well with the experimental observations. The next study will determine the value of the efficiency-raising factor for the electret fiber under various operating conditions, which would be handy for the prediction of filter performance under dust loads.

Cunningham's samueles

Nomenclature

S

ŝ

Si

U

и

V

 α

ρ

stream function

· m	Cunningham's correction factor
$D_{\rm BM}$	Brownian diffusion constant
i Fo	fiber or particle diameter
F _C	dimensionless coulombic force
r_{α}	dimensionless gradient force
F _B	dimensionless high-gradient force
۲,	dimensionless electrical parameter $(-C_m n_p e \overline{\sigma} /$
	$0\varepsilon_0(1+\varepsilon_t)\mu d_u u$
C _{In}	dimensionless electrical parameter $(=C,\pi^2)$
	$= (1\sigma^*d_p^*/6\varepsilon_0(\varepsilon_p + 2)(\varepsilon_i + 1)^*\mu d_i u)$
n	mass of particles accumulated particles on a fiber
'e	Peclet number $(-d_{\ell}u_0/D_{nM})$
Œ.	radius of hemisphere of influence of the high-
	gradient field
?	interception parameter $(=d_g/d_f)$
	Mesh number in z-direction
	time
rk:	Stokes number $(=C_m \rho_p d_p^2 u_0/9 \mu d_t)$
/	dimensionless gas velocity $(= u/u_0)$
	gas velocity
,	dimensionless particle velocity $(-v/u_0)$
	particle velocity
	dimensionless volume of accumulated particles on
	a liber $(-m\rho_{\alpha}\alpha)$
	packing density of fiber
	direction of simulation region
	direction of polarization on an electret fiber
	gas viscosity
	air or particle density

Subscript

- f fluid or fiber
- particle p
- 0 initial

Acknowledgements

Fund.

W.T. receives final ial support from Thailand Research

References

- ers, Boca Raton, 1998 pp. 323-334.
- [2] A.C. Payatakes, Filtr. pp. 13 (1976) 602.
- [3] A.C. Payatakes, AICh J. 23 (1977) 192.
- [4] A.C. Payutakes, Grade
- [1] C. Kanaoka, Performa e of an air filter at dust-loaded condition, in: K.R. Spurny (Ed.), A rances in Acrosol Filtration, Lewis Publish-

 - , AIChE J. 26 (1980) 443.
- [5] D.T. Bahrot, C. Tien, S. Wang, AIChE J. 26 (1980) 289.

- [6] C. Kanaoka, H. Emi, T. Myojo, Kagaku Kogaku Ronbunshu 5 (1978) 535.
- [7] C. Kanaoka, H. Emi, T. Myojo, J. Aerosol Sci. 11 (1980) 377.
- [8] C. Kanzoka, H. Emi, W. Tanthspanichskoon, AIChE J. 29 (1983)
- [9] C. Kanzoka, H. Emi, S. Hiragi, Proc. 2nd Int. Aerosol Conf., Berlin. 1 (1986) 674.
- [10] C. Kanaoka, H. Emi, S. Hiragi, T. Myojo, Soc. Powder Technol. Jpn. 24 (1987) 74.
- [11] C. Kanaoka, S. Hiragi, K. Yamada, Kagaku Kogaku Ronbunshu 16
- [12] C. Kanaoka, S. Hiragi, J. Aerosol Sci. 21 (1990) 127.
- [13] C. Kanaoka, S. Hiragi, Proc. 12th Int. Symp. Contam. Control 1 (1994) 59.
- [14] T. Myojo, C. Kansoka, H. Emi, J. Aerosol Sci. 15 (1984) 483.
- [15] W. Tanthspanichakoon, C. Kanzoka, Proc. 6th World Filtr. Cong. 1 (1993) 514,
- [16] S. Wang, M. Beizaie, C. Tien, AIChE J. 23 (1977) 879.
- [17] M. Wongsri, W. Tanthapanichekoon, C. Kanaoka, Adv. Powder Technol. 2 (1991) 11.
- [18] H. Baumgartner, F. Loeffler, J. Aerosol Sci. 17 (1986) 438.
- [19] S. Hiragi, Doctoral dissentation, Kanazawa University, 1995.
- [20] G. Zebel, Staub 23 (5) (1963) 263.
- [21] S. Kuwabara, J. Phys. Soc. Jpn. 14 (4) (1959) 527.

学際研究

日本学際会議学会誌

巻頭言

生涯学習の重要性

ショート

学際化の理論研究の一般システム・アプローチ

地对環境問題

Science Message form Japan

An E fective Method of Mathematics as a Life Long Study Proficiency Test in Practical Mathematics...Suken

国際報文

Development of Odor Control Technology for
Communication C

± № NO.53

日本学際会議

MULTIDISCIPLINARY RESEARCH COUNCIL OF JAPAN

学際研究 Journal of Multidisciplinary Research

Vol.14 No.1 (通卷53号)

自 次

を明ら		
生涯学習0	重要性	3
ショートノー		
学際化の基	論研究の一般システム・アプローチ	4
21 世紀へ迷;	する『宇宙船地球号』(その7)	
一原子力(未来を託せるのか? 炎野 棟一	9
Science Mess	je from Japan	
An Effectiv	Method of Mathematics as a Life Long Study	
Profic	ncy Test in Practical MathematicsSuken T. Takada, S. Hitotumatu	25
国際報文		
Developme	of Odor Control Technology for Crematory Furnace Using	
Coron	Discharge Reaction W. Tanthapanichakoon, H. Tamon, et al.	34
日本学際会話	学術活動報告	42
資料;科学!		40
	,	45
没稿规定 一		40

国際報文

Development of Odor Control Technology for Crema tory Furnace Using Corona Discharge Reaction

Viwut Tanthapanichakoon", Nantamas Dhattavorn", Sahat Chaiyo"

Department of Chemical Engineering, Chuldongkorn University, Thailand

Hajime Tamon' Department of Chemical Engineering, Kyoto University, Japan

Noriaki Sano⁴⁵ Department of Chemical Engineering, Himeji Institute of Technology, Japan

electron attachm extremely low of the experimental SOx, and some influence of coc water vapor in temperature on removal of SOs.

stigates the feasibility of purifying the exhaust gas from cremation using corona discharge reactor with at effect. Firstly, in a survey of the common gas species emitted from the cremation, it was found that centrations of some organic compounds can still cause malodorous smell. Next, the article summarizes esults on removal of sulfur compounds, nitrogen compounds, and organic compounds, including NOx, ther maledorous gases from nitrogen or air using corona discharge reactors. In this summary, the sting oxygen and water vapor in the treated gas is discussed, indicating that the presence of oxygen and e gas contributes to the increase of the removal efficiency in many cases. As for the influence of eating exhaust gas from incineration such as cremation, temperature elevation negatively affects the urthermore, the reactor structure in terms of the shapes of cathode and anode are discussed.

Introduction

approximately 3

University, Thails

One of the nat nal air pollution problems in Thailand is lists the commely reported components in crematory

emission gas froit the crematoria during cremation rites. There are nearly 23,000 temples nationwide, including O temples with crematory furnaces in Bangkok Metro blitan Area, Various malodorous gases re emitted during cremation, causing frequent complets from vicinal communities. Table 1

*1, Dr. Wiwat Tan hpanichikoen (born in 1949).

Professor, Department of Chemical Engineering and Thai Powder Technology Ce er, Faculty of Engineering, Chulatongkorn 3. Ph. D. in University of Texas at Austin.

*2. Nantamas Dhai vom (bom in 1975)

Master Student, Epartment of Chemical Engineering, Faculty of Engineering, Challongkom University.

*3. Salut Chaiyo ([m in 1978)

Master Student, Expartment of Chemical Engineering, Faculty of Engineering, Chu ongkom University.

*4. Dr. Hajime Tar n (born in 1952)

Professor, Depart ent of Chemical Engineering, Kyoto University, Japan. Ph. D. in N 310 Universitiv.

*5. Dr. Noriaki Sar (born in 1967)

Reseach Assosia, Department of Chemical Engineering, Himeji Institute of Techn pgy, Japan. Ph. D. in Kyoto University.

emission. Typically crematory gases are emitted from a stack to the atmosphere without adequate treatment. A few rich temples have installed furnaces with after-burning systems but an overwhelming majority of Bangkok temples have inadequate systems, not to mention those in the country side.

Table 2 compares the generic technologies with corona discharge technology for odor control. Under suitable conditions, corona discharge is a novel efficient method that can simultaneously remove several gases. As an important character of the corona discharge, a sufficient number of low energy electrons are produced in gas stream easily. When discharged electrons collide with malodorous gas molecules, some electrons are captured by the gas molecules to form negative ions, which can be separated from the main gas stream in an electric field as solid deposit on the anode surface. First proposed for gas purification by Tamon et al.4, this phenomenon of "electron attachment" depends on the electron energy, the

Table

Types and concentrations of gaseous emission from a crematorium after 100-fold dilution*****

		Components	Conce	ntration
	Air	N ₂	78	%
	1	0,	20~21	%
	Low Concentration	CO,	0.01-0.02	%
	~ •	но	0.22	%
		NO.	80	ppm (mex)
		so.	5.8	ppm (max)
		Acetic sold (CH ₂ COOH)	24 ppm	
		Hydrocarbons	230	ppm (as
				propane)
ery (ute concentration (malodorous)	Acetaldehyde .	0.04	ppm
		Styrene	0.01	ppm
		Hydrogen suttide	0.01	ppm
		Methyl mercaptan	0.01	ppm
		Dintethyl sutlide	0.001	ppm .
		Ammonia	0.0005	ppm
		Trimethyf amine	0.023	ppm

molecules.

Principle of gas purification

structure of the g molecules and its electron affinity . MARKET It can lead very high selectivity in the formation of negative ions ft in electronegative impurities even at low concentrations. Under suitable conditions clusters of ions with gas me ecules are formed, which greatly enhance the removal efficiency. In the presence of Oz, oxygen radicals an ozone are formed and contribute to decomposition an oxidation of the malodorous gas

Figure 1 illustrate the principle of gas purification. An impurity AB is to be removed from an inert gas in a cylindrical corona charge reactor. Its cathode is a wire tightened at the center of the reactor and the stainless steel cylinder is the ano . High DC voltage (-5--15 kV) is applied to the cathe e to induce corona discharge in the reactor. During thei drift to the anode, electrons emitted

by the discharge collide with some of the gas molecules and the resulting negative ions drift to and deposit on the anode. The present paper describes the joint development of the corona discharge reactor by Tamon et al., Sano et al. and Tanthapanichakoon et al. to control malodorous crematory emission.

Experimental Setup

As illustrated in Figure 2, the experimental set-up and experimental procedure have been reported elsewhere (A21) and are omitted here. Infrared lamps are used to raise and control the reactor temperature up to 400°C. Since most emission gases are exhausted at relatively high temperatures, it is indispensable to investigate the effect of temperature on the removal efficiency,

Result and Discussion

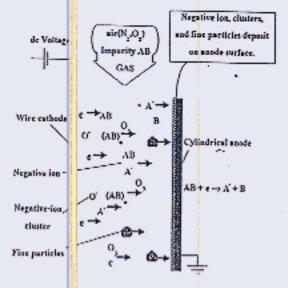

In addition to the malodorous gas found in crematory

Table 2 Odor control methods

Metho		Suitable condition	Advantage	Destau
After-L (there cont).	tion)	- Uniform furnace temperature (800-900 °C) - Residence time about - 0.5~2 sec - Steady state operation	- Simple and widely ลงอใสซุ้เล	Disadvantage - Unsultable for unsteady state operation - Require sizable furnace
Cataly (cataly comb.		Known fixed gas species Steady state operation	Can be operated at relatively low temperature High selectivity	One catalyst can not simultaneously be effective for many species Combustion is not good when the gas species change.
Adsort	(in	Retainely low temperature and space velocity Sleady and unsteady operation	No problem with unsteady operation	- Regeneration is necessary - Relatively high pressure drop - Batch operation with
Gas at		Low to very high temperature Steady and unsteady operation	- Can simutaneously remove particulate . and odor	- Difficult to find the appropriate liquid absorbent - Complicated operation
	ischarge, alectron	Low space velocity Steady and unsleady Operation	- Rapidly reach the steady state - Multiple removal mechanisms	Relatively big reactor High voltage

emission, the authors have investigated a wide variety of gas species. Table 3 summarized the types of gas species and the effect of virious factors on their observed removal efficiencies. As a example, Table 3 reveals that the inlet concentration of (11/1):S to the reactor was investigated in

the range 4-89 ppm; the concentration of coexisting O: from 0(nil) to 22 vol% and H:O vapor from 600- 9,100 ppm. The identified reaction byproducts were SO: in the cases of coexisting O₂ alone and O₂ plus H₂O vapor. The removal efficiency of (CH₃)₂S decreased as its inlet

1 Principle of gas purification

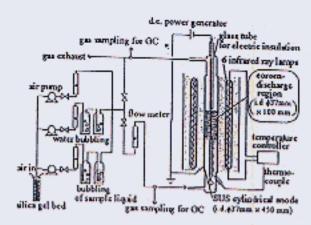


Figure 2. Experimental set-up for gas purification at high temperature

and so on.

concentration increased. In contrast, when the concentration of coexisting Os, H:O vapor or both increased, the ret oval efficiency of (CH.). Stended to rise. Moreover, the discreed maximum removal efficiency of (CH_b)_sS was higher than 80% at 4 ppm (symbol A) in the case of pure No coxisting O2 or O1 plus H:O vapor. One can notice that i e removals of most gases investigated here also show very high removal efficiency in the presence of oxygen. Obviously, the corona discharge reactor is applied ble to such malodorous crematory gas species as (CH.) , H.S., CH.CHO, CH.SH.(CH.).S., SO:

Table 4 summi rizes the role of coexisting On A wide range of removal pechanisms can take place in the corona discharge reactor and in several of them Or often enhances the removal of ciency. To obtain good results the deposition on the mode surface should be stable. Table 5 lists the main characteristics of the solid deposits. These tables contribute a better understanding of the dominant removal mechani in for each species.

Figure 3 shows an example of the effect of temperature on the removal c SO₁ at dry and humidified conditions. This figure shows that the removal efficiency of SO2 decreases as the temperature increases and that HsO vapor enhances the removal efficiency especially at low temperature condition.

Tanthapanichakoon et al. "" have investigated the effect of reactor structure and come up with the following design guideline:

- a. Whenever applicable, a thicker cathode wire should be used because it generally leads to higher removal efficiency.
- b. For the same space velocity and reactor volume, a slender reactor has a higher removal efficiency than a stocky reactor.
- Only a single cathode wire should be used in the reactor, The use of multiple cathodes has been shown to lead to a deterioration in the removal efficiency.

The authors have also investigated the simultaneous removal of a few pairs of gas species. However, they are omitted because of space limitation.

Conclusion

The corona discharge reactor has shown a good promise for the treatment of crematory emission. More development work, however, is necessary before its actual

Table 3. I fect of coexisting oxygen and water vapor in nitrogen on the reaction byproducts and removal efficiency

	T					-								
The containing							Remov	ral efficiency	,					
Sample Gas	-	ol C _{G3}	Creo	sv	Rescion Syproduct	effic	ichcy w	fremov han the icreases	985	M		efficiency		Ref
	(ppm)	[%]	(ppm)	(hr')	•	C, (in N, Only)	0,	но	0,+ H,O	C, (in N, Only)	0,	11,0	0,1 11,0	No.
SF.	0.17 29	N	NI	18.9	NI ~	+	NI	M	NI	A	NI	NI	141	2,6
н,ѕ	60	NI	400- 1,100	37.6	None	¥	NI	†	М	^	NI	A. (60ppm)	ΝÌ	1,2,6
so,	32.7 36	0-16	13,000	18.9- 37.8	None	÷	†	†	†	C (33ppm)		0 (122ppm)	Ä	1,2,6, 12
cs,	30- 6:	0.49	300- 11,000	18.9- 37.8	SD, . COS	¥	↑ "	†		A (30ppm)	٨	8 (48ppm)	٨	3.5.1
cos	20- 53	0-50	10,000	18.9- 37.8	SO,	+	∱"	†	NI		٨	8 (53ppm)	NI	1.2,8
CHISH	65	0-20	10,000	18.9- 37.8	cos cos	+	†	†	М	0	٨	8 (40ppm)	NI	1,2,6
сния	58.C	0-22	9,100	18.9- 52.9	so, ".so,"	÷	†	1	†	A (fppm)	٨	(30opm)	Α.	1,2,6
ски	75- 81	5.6- 8.0	5.600- 17,600	47.3- 50.0	l _p (in N _p)	+	†	^	+	С	٨	۸	*	2,3,4
١,	40.4 67	0.7	0,500	44- 77.9	NI	N	†	+	M	9,	۸,	A (201-0)	NÍ	4,5
C,CI,F,	50)- 40	0.25	NI	15.9	HCI or ISE	+	+	M	MI	٨	٨	NI NI	MI	2,10.
сн,сно	9.9. 35	0.20	0-103	80.9	NI	+	†	†	Nē	в	A	٨	М	2,7,9,
C,H,N (skolok)	2,4	0.20	10,000	43,5- 189	NI	NI		NI	*	۸	A	М	٨	7
(bencene)	205	29-34	7.600	18.7- 28.4	Ni	NI	+	NI	†	D	A	NI	A	8
p-C ₄ H ₄ Ct ₄ (p-dichloro benzene)	19- 57	19-20	NI	20.6- 45.8	M	+	<u></u>	М	ы	0	٨	ы	MI	4
NH,	49-	0.20	3,268- 6,416	75.6- 189	M	NI	1	NI	†	D	Α.	NI	۸	9,17
(CH,I,N	58.6 69.	0-20	NI	58.6- 69.4	CH,CHO, C,H,OH, {CH,I,CO & CH,NO,	MI	†	NI	NI	D	A	М	MI	2.9. 17
NO,	674 74	0.20	NI	75.6	M	NI	81	M	NI	c	M	М	N	9
0,"	1,1- 6.	MI	NI	315- 846.3	Nt	NI	N	M	M	Da	Nt.	NI	541	6

hyproduct observed with coexisting oxygen

3) Res rived by welled - wall reactor.

NI k investigated

byproduct observed with coexisting water vapor

byproduct observed with both spexisting oxygen and water vapor

Unless stated otherwise , the same byproducts are observed for the same sample gas.

¹⁾ Cur m . 1 = 0.05 - 2.0 mA ; Voltage , V = 5.0 - 20.0 kV

⁴⁾ Removed by sweep-out-type type reactor

²⁾ Ro ival efficiency ; A > 60% . 8 60-60% , C 40-60% ,D< 40 %

⁵⁾ Complete removal at O₂ > 2%

Table 4. Dominant removal mechanism in the presence of $\ensuremath{O_{\text{C}}}$

	tvel mechanism	Influence of O ₂ on removal efficiency	Deposition at anode	Example	Removal efficiency
Reaction	rith O ₃	Increase	Stable	I, CH, I C, H, N . CH, CHO	High
Formation induced	of ion clusters • O'	increase	Stable	SO, CS, COS CH,SH . (CH,),S . CH,CHO . CH,I .	High
Polycond with O	sation by reaction	Increase	Stable	C _A H ₆	High
Polycond dissociati	isation by refection attachment	None	Stable	p-C _o H _d Ci _j	High
Dissociati attachmer	t electron	Decrease	Stable	C ₂ F ₃ Cl ₃	Low
Dissociați atlachuser	electron	None	. Unstable	$\mathcal{F}_{\gamma},\mathrm{Cl}_{\mathbf{j}}$	Low

Table 5 Deposition anode surface in the presence of Or

Sa	ple gas	
Sur	reompounds	Feature of deposit
I,	Compounds	Solid containing S compound
CH		Yellow powder (1,0,)
	I.,	Black particles (not identified)
- 1	II,	Black particles containing F . Ct
C,r	P.C.H.CI,	Polycyclic aromatic compounds of high boiling point
- 1	но	Hard brown coating containing CH,CHO
(CH	N .	Carbon compounds at high boiling point

crematory emissic

application. Sin ; most of the previous studies were carried out at r om temperature, the effect of high temperature on the removal efficiency should be investigated furth . So should the simultaneous removal of several malod rous gas species commonly found in

Acknowledgement

W. T., N. D. and S. C. receive partial financial support from Thailand Research Fund, H. T. and N. S. visited with them under the OECP-TITTP scheme.

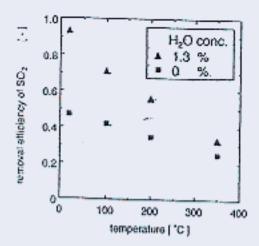


Figure 3. Removal efficiency of SO₂ from N₂-O₂ (-H₂O) mixture at various temperatures; $[SO_2]_{cor} = 4,000 \text{ ppm}, [O_2] = 20\%$

Reference

- 1996, 42.p 1481-1486.

- Tamon, H., Jano, N. and Okazaki, M. "Influence of Oxygen ar Water Vapor on Removal of Sulfur Compound by Electron Attachment," AJChE J.,
- Tanthapani jakoon, W., Larpsuriyakul, K., Khongpras rokal, P., Charinpanitkul, T., Tamon, H., and Okaza , M." Basic Study on the Application of Electron A acliment Reaction to the Treatment of Crematory mission Gas, " J. National Res. Council of Thailand, 1 96, vol 28,pp.282-313,
- 3. Sano, N., N. gamoto, T., Tarnon, H., Suzuki, T. and Okazaki, M 'Removal of Methyl Iodide in Gas by Corona-Dis harge Reactor," J. Chem. Eng. Japan, 1997 ol 30, pp.944-946.
- Sano, N., N. samoto, T., Tamon, H. and Okazaki, M." Removal of odine and Methyl Iodide in Gas by Wetted-Wa Reactor Based on Selective Electron Attachment J. Chem. Eng. Japan, 1996, 29, pp.59-64.
- Sano, N., T. non, H. and Okazaki, M." Removal of Iodine in G. by Corona-Discharge Reactor," J. Chem. Eng. apan, 1996, 29,pp.59-64.

- Tarnon H., Mizeta, H., Sano, N., Schulze, S. and Okazaki, M." New Concept of Gas Purification by Electron Attachment," AIChE J., 1995, 41, pp.1701-
- 7. Sano, N., Nagamoto, T., Tamon, H., Suzuki, T. and Okazaki, M." Removal of Acetaldehyde and Skatole in Gas by Corona-Discharge," Ind. Eng. Chem. Res., 1997b, 36, pp.3783-3791.
- 8. Tamon, H., Imanaka, H., Sano, N., Okazaki, M. and Tanthapanichakoon, W." Removal of Aromatic Compounds in Gas by Electron Attachment," Ind. Eng. Chem. Res., 1998, 37,pp.2770-2774,
- P. Khongphasamkam," Removal of Trimethylamine Acetaldchyde and Ammonia Gases using Electron Attachment Reaction," Master's thesis, Chulalongkom University, Bangkok, Thailand (1998), ISBN 974-639-484-3.
- Tanthapanichakoon, W., Larpsuriyakul, K., Charinpanitkul, T., Sano, N., Tamon, H. and Okazaki, M. "Effect of structure of corona-discharge reactor on removal of dilute gaseous pollutants using selective electron attachment," J. Chem. Eng. Japan, 1998,vol 31

.pp.7-13

 Sano ,N. "amon ,H and Okazaki , M. "Removal of Chloroffi rocarbon ,1,1,2-Trichloro-1,2,2-Trifluord Bane, in Gas by a Corona-Discharge Reactor, Ind. Eng. Chem. Res., 1998, 37, pp. 1428-14

12, Tanthapi ichakoon, W., Tamon, H., Khongpl samkaln, P., Sano, N., Charinpenitkul, T., and Oka: ki, M. "Removal of Trimethylamine and Ammoni Using Electron Attachment Reaction," Journal of the Science Society of Thailand (Science Asia), 19 9, 1, pp. 57-63.

13. Caledon , G. E. A Survey of the Gas-Phase Negative Ion Kine s of Inorganic Molecules. Electron Attachmi it Reactions. Chem. Rev., 1975, 75, 333-351.

 Massey, J. H. Negative Ions. Cambridge Univ. Press, Ca abridge, England, 1976.

Massey, H. Atomic and Molecular Collisions. Taylor & Francis, London, 1979.

 Nishida C. and Matsuda Y. Malodor of exhaust gas from cree story. J. Odor Control, 1981, 1-11 (in Japanese

 Nishida, ... Malodor at Cremation Facility (Part I). PPM, 19 3, 3, 49-58 (in Japanese).

 Nishida, ... Malodor at Cremation Facility (Part II). PPM, 19 3, 4, 51-59 (in Japanese).

 Tamon, I., Yano, H. and Okazaki, M. A New Method Gas Mixture Separation Based on Selective Electron taschment. Kagaku Kogaku Ronbunshu, 1989, 15, 63-668.

 Tanthapa Ichakoon, W., Larpsuriyakul, K., Sano, N., . Tamon, 1 and Okazaki, M. Effect of reactor structure on remov 1 of methyl iodide and chlorofluorocarbon in gas using elective electron attachment. Proc. Regional ym. Chem. Eng. 1996, Jakarta, Indonesia, October | 96, 3.2.1-3.2.14.

21. Sano, N., Fukuoka, M., Kanki, T., Tamon, H., Tanthapa chakoon, W. and Charinpanitkul, T. Influence of Temperature on Removal of Sulfur Dioxide and Benzene from Air by Corona Discharge Reactor, Proc. of Asia Pacific Conference on Sustainable Energy and Environmental Technologies, Hong Kong, Dec. 2000, 99-103. [2000.5.19受稱, 2000.9.18採錄]

Journal of Multidisciplinary Research

Vol.14, No.1 (Serial No.53) Spring 2001

CONTENTS

Introduct	y Remarks	
Im	ortance of Life Long Learning	3
Note		
A	meral Systematic Approach to Inter-disciplinary Research Hiroshi Mieno	4
Wandering	Spaceship Earth" toward the 21st Century (7)	
Wi	It be Possible to Entrust Our Future to the Nuclear Energy? Toichi Ebisuno	9
Science M	saage from Japan	-
An	:ffective Method of Mathematics as a Life Long Study	
ĭ	oficiency Test in Practical MathematicsSuken T. Takada, S. Hitotumatu	25
Internatio	al Report	
De	lopment of Odor Control Technology for Crematory Furnace	
Ţ	ing Corona Discharge Reaction W. Tanthapanichakoon, et al.	34
A Report on	Activities of the Multidisciplinary Research Council of Japan	42
Date		45
Format of th	contributed article	48

Published by : Multidisciplinary Research Council of Japan 2-14-3, Iwamoto-cho, Chiyada-ku, Tokyo 101-0032, Japan

Influence of Temperature on SO₂ Removal Enhanced by Water Vapor Using a Corona-Discharge Reactor

By Noriaki Sano*, Seita Vishimura, Tatsuo Kanki, Hajime Tamon, Wiwut Tanthapanichakoon, and Tawatchai Charinpanitkul

A reactor using d.e. cord a discharge of negative polarity was applied to remove sulfur dioxide from an oxygen-nitrogen mixture in the presence or absecte of water vapor for temperatures ranging from room temperature to 350 °C. It was observed that increasing the reactor to apprature caused a decrease in the removal efficiency. Mixing water vapor with the process gas resulted in an increase of the re loval efficiency. The effect of the presence of water vapor on improving the removal efficiency was significant under low te perature conditions, while it was relatively moderate under high temperature conditions. In addition, the solid deposit forme inside the reactor at two temperatures, room temperature and 200 °C, was analyzed with both a differential scattering cal primeter and an X ray diffractometer. The analysis indicated that SO2 was ultimately converted to solid sulfur in both the preser is and absence of water vapor in the gas flow.

1 Introduction

Recently, a variety of gas purification technologies using electric discharge have been widely researched, for example methods utilizing puls 1-corona discharge [1-3], a ferroelectric packed bed reac or [4], the electron beam process [5], and so forth. Some of the se have been successfully developed up to an industrial or co imercial scale. One common feature in the above methods is the utilization of high-energy plasma to produce reactive radicals for nonselective decomposition of gaseous impurities. Her le, a variety of reaction byproducts are formed in such a s purification processes, especially when organic compound are present in the treated gases. In contrast to these high nergy discharge processes, a lowenergy discharge is ofter effective for gas purification [6]. The selective electron attach hent reaction and ion cluster formation have been shown to be important in the gas purification mechanism using low-e ergy d.c. discharge. One important benefit of high selectivily is the smaller amount of reaction byproducts that are fe med by the low-energy discharge processes compared to the high-energy ones.

Concerning the low energy discharge process for gas purification, several types of d.c. corona-discharge reactors have been researched to remove sulfur compounds, organic compounds, nitrogen co: pounds and indide compounds from air at room temperature [6-15]. In these previous articles, it has been found that add xing of water vapor was effective in enhancing the removal efficiency of some gascous species from the air. It was posti ated that the ion-induced formation of clusters in the discha ge region would play an important role in the enhancement of the removal efficiency with the admixed oxygen and wa :r vapor. In spite of the accumulated reports concerning the is purification by corona discharge, however, the information on the influence of temperature on this enhancement effect has not been made available.

In this study, the d.c. corona-discharge was used to remove one of the common elements contained in the incineration exhaust gases, sulfur dioxide (SO2), from a N2-O2 mixture in the presence or absence of water vapor at room temperature up to 350 °C. Additionally, the deposit formed inside the reactor was characterized to allow discussion of the removal mechanism.

2 Experimental

2.1 Temperature Effect on Removal of SO₂ from N₂·O₂ (-H₂O) Mixfure

Fig. 1 shows the experimental set up employed to observe the temperature effect on the removal of SO2 from a N2-O2-H₂O mixture.

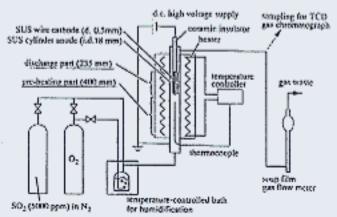


Figure 1. Apparatus to investigate the temperature effect on the removal of SO_2 from a N2 -O2 mixture.

Standard gas containing 5000 ppm of SO₂ balanced with N₂ was used to supply SO₂. O₂ was mixed with the standard gas flow at 20 % to make a synthetic gas for the removal of SO2, whose concentration at the inlet of the reactor was 4000 ppm. The O_2

[*] Dr. N. Sano (correspon nee author, e-mail: sano@mech.eng.himeji-tech.ac.jp), Dipl. S. Nishi ura, Prof. T. Kanki, Department of Chemical Engineering, Himeji In itute of Technology, 2167 Shosha, Himeji 671-2201, Japan; Prof. H Smon, Dpartment of Chemical Engineering, Kyoto University, Kyoto 6-8501, Japan; Prof. W. Tanthapanichakoon, Dr. T. Charinpanitkul, De arment of Chemical Engineering, Chulelongkorn University, Patomw 1, Bangkok 10330, Thailand.

which consisted of Shimalite (GL Sciences nc.).

gas was humidified by ubbling through distilled water set in a temperature controller bath when the influence of coexisting water vapor was to be bserved. A corona-discharge reactor, grounded cylindrical SUS anode (i.d.=18 mm) and a w e cathode (d.= 0.5 mm), was used to remove SO2 from the is flow of 2.0 × 10 6 m3 s 1. A d.c. high voltage of negative pol rity was applied to the wire cathode to generate the corona di charge. The reactor was heated by an electrical furnace wrap ed around the anode, and the temperature of the reactor will controlled up to 350 °C using a PID controller. The reactor was separated into two parts; the first part (400 mm) without dirona discharge was for pre-heating the gas flow and the secon part (235 mm) was for the removal of SO2 by the corona discharge. The temperature profile inside the second part was met ured and it was ensured that the temperature gradient is the axial direction was negligible. The concentration of SO2 at the outlet of the reactor was measured by a gas chromatograp with a thermal conductivity detector (TCD) (Shimadzu, GC BT). The adsorbent used for the GC column was 1.2.3 Tris 2-(Cyanoethoxy)] Propane 25% on

2.2 Analysis of Deposit Formed in the Reactor

In order to discuss the removal mechanism, it is necessary to characterize the solid oposit formed inside the reactor. For this purpose, a corona lischarge reactor with a detachable plate anode was built, a littustrated in Fig. 2.

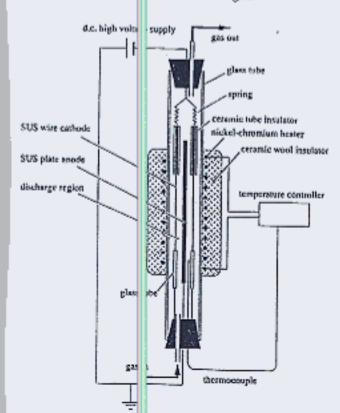


Figure 2. Reactor with plate-sh be anodes to collect the deposit formed inside the reactor during the removal $[SO_2]$ at various temperatures.

The reactor vessel was a glass tube inserted in an electronic furnace. Two wire cathodes were set apart on opposite sides of a plate anode, and the corona discharge region was limited inside the furnace. The deposit formed inside the reactor was characterized by a differential scanning calorimeter (DSC) (DSC-22, Seiko Instruments Inc.) and an X-ray diffractometer (RIGAKU DENKI Co. Ltd., RINT1500).

3 Results and Discussion

3.1 Removal Efficiency of SO2 in the Presence or Absence of Water Vapor

It is known that the voltage required to generate the corona discharge decreases with the temperature elevation. Under our experimental condition, 5.5 kV was required to obtain 0.4 mA at room temperature, and it decreased gradually down to 4.0 kV at 350 °C. Fig. 3 shows the influence of the reactor temperature on the removal efficiency of the SO_2 from N_2 - O_2 and N_2 - O_2 - H_2O mixtures.

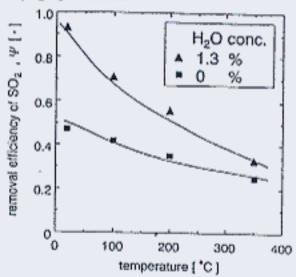


Figure 3. Removal efficiency of SO₂ from N₂·O₂ (-H₂O) mixture at various temperatures: $\{SO_2\}_{min} = 4000 \text{ ppm}$, $\{O_2\} = 20 \%$, gas flow rate = 2.0 $\cdot 10^{16} \text{ m}^3 \text{ s}^{-1}$. current = 0.4 mA.

The removal efficiency IF is defined as the ratio of the concentration decrease of SO2 to the inlet concentration of SO₂ as in Eq. (1)13,

$$\Psi = (C_{in} - C_{out})/C_{in}$$
(1)

There was no reaction byproduct detected by the TCD gas chromatograph. If a detectable concentration of some unknown sulfur compound had been produced as a reaction byproduct, a TCD peak should have appeared with the GC column used in this study [6,7]. Then Ψ defined here represents the removal efficiency of the total sulfur. As a result, it was found that the removal efficiency of SO2

¹⁾ List of symbols at the end of the paper.

ure in both the N_2 - O_2 a d N_2 - O_2 - H_2 O mixtures.

decreased as the reactor emperature rose,

harges emitted in the d charge current.

$$_{1} = (QC_{in}\Psi)/(I/F)$$

to 1.3 at 350 °C.

Mechanism

$$+ O_2 \rightarrow O^- + O$$

significantly decreased ith increasing the reactor tempera-

One can see in Fig. 1 that the removal efficiency shows significant enhancement in the presence of water vapor. This esult is consistent with previous article [7]. It is interesting hat the enhancement elliet by water vapor on SO2 removal

The electron efficient | n , the mean number of removed O2 molecules per one ectron, is defined in Eq. (2) as the atio of removed SO2 me scules to the number of the electron

where Q, C_{in} , Ψ , F, and I is respectively gas flow rate [mol/s], nlet concentration of D2 [mol fraction, -], the removal sfficiency [-], Faraday co stant [coulomb/mol], and discharge current [A]. When SO2 is removed at room temperature, i was estimated as 30 and 58 at 0 % and 1.3 % of the HzO concentration respective). When the temperature was raised to 350 °C, η was estimate | as 16 and 21 respectively at 0 % and 1.3 % of the H₂O concen stion. These results suggest that the cahancement effect of the presence of H2O on the removal efficiency decreases from a factor of 1.9 at room temperature

3.2 Influence of the Read or Temperature on the Removal

Under the conditions of the corona discharge inside the reactor, the dissociative ectron attachment shown in Eq. (3) appeared dominant am ng the several types of electron attachment reactions, will n the estimated magnitude of the dectron energy (>0.3 e1) was considered. In addition, the stimated rate of the dist ciative electron attachment of SO2 s negligible compared w that of O2 because the concentraon of O_2 is much higher than that of SO_2 [6]. The electron ttachment to produce)2 as shown in Eq. (4) may be significant because the electron energy level may be xcessive for this reac on [16,17]. Hence, the electron ttachment to O2 for pre lucing O" can be considered as an nportant scheme for the 'emoval mechanism here.

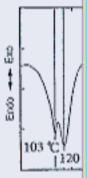
(3)

Following the production of O° and O, the reactions of SO2 vith O and O would to considered to contribute to the emoval of SO2. Concert 1g the influence of temperature on he dissociative electron a achment to O2, it was reported that he dissociative electron: tachment rate increased when the emperature was increase [17]. However, the result in this tudy showed that the re loval efficiency of SO2 decreased

despite the increased production rates of O and O at the elevated temperature. In order to understand why the removal of SO2 decreases with the temperature elevation, the temperature dependency of the reaction rates of SO2 with O and O requires further investigation.

When negative ions are produced in the O2-SO2 mixture, the coulomb force between the ions and other susceptible molecules may induce ion-nucleated clusters. Moruzzi et al., detected the negative ion O- and its clustering of SO2, $O^{*}[SO_{2}]_{n}$ (n = 1 to 3), when they measured the electron attachment reaction rate of an O2-SO2 mixture by the drift tube method [18]. Tamon et al. reasoned that these ion clusters played an important role in the high removal efficiency of SO2 from the air, in which single-charged ion clusters containing multiple SO2 molecules would react with the anode surface to form a solid deposit, thus resulting in the simultaneous removal of several SO2 molecules by one electron [7]. We consider that this positive effect of the cluster formation is retarded by temperature elevation because these ion clusters are expected to be less stable, since individual molecules become more energetic at high temperature.

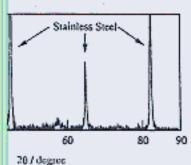
Concerning the effect of coexisting water vapor, Moruzzi et al. reported their experimental observation that the negative ion O' and its clustering with H_2O , O' $[H_2O]_n$ (n = 1 to 5), were produced when electrons were introduced to H2O-O2 mixture [16]. Therefore it is logical to postulate the formation of O"-nucleated ion clusters with both H2O and SO2 molecules, O'[H2O],[SO2]m, in the discharge region during the removal of SO₂ from a gas containing H₂O and O₂. Tamon et al. reported that when these clusters drifted to the anode surface, they were converted to solid deposit there. In conclusion, the mechanism of cluster formation can be deduced to be one of the reasons for the enhancement effect on the removal of SO2 by admixing H2O [7]. Furthermore, the negative ion clusters would probably grow to become aerosol particles with additional absorption of SO2, thus resulting in the enhanced transfer o SO2 to the anode surface.


On the other hand, Morruzi et al. also mentioned that the concentration of the clusters produced in their experiments decreased when the temperature increased [16]. This indicates that the instability of the ion cluster at high temperature is one of the reasons for the reduced enhancement of SO₂ removal by water vapor. The enhancement of the removal by the acrosol particles should also decrease with the temperature elevation.

3.3 Analysis of the Deposit on the Anode Surface

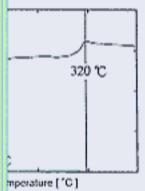
An SO_2 - O_2 - H_2O mixture ([SO_2] = 2500 ppm, [O_2] = 50 %, [H₂O] = 0.3 %]) was introduced to the plate-anode reactor described in Fig. 2 with a discharge current 1.0 mA (1.5 kV) at room temperature, and a deposit was formed on the anode surface. The deposit was initially a wet film, and it turned into yellow powder upon drying. The spectrum of the dried powder obtained with the X-ray diffractometer is shown in Fig. 4.

posit formation condition.


nown in Fig. 5.

metion condition.

composed to sulfur so d in the discharge region.


ss than 253 Pa because e inlet concentration of SO2 in Fig. 2

ture 4. X-ray diffraction patter of the deposit formed on the anode surface: $D_2|_{\text{obs}} = 2500 \text{ ppm}, [O_2] = 50 \rightarrow \{11_2O\} = 0.3 \%$, room temperature for the

This spectrum pattern idicates that the powder contains affur solid. Interesting y when the d.c. discharge was enerated in the reactd at the elevated temperature of 00 °C, the deposit would of accumulate on the heated part of he reactor. Instead the letlow powder was formed on the alls outside the heated part. Nevertheless the same X-ray iffraction spectrum was Iso obtained from this powder.

When this powder was halyzed with a differential scanning atorimeter (DSC), two endothermic peaks at 103 °C and 20 °C and an exotherm; peak at 320 °C were detected as

zure 5, DSC spectrum of deg $\stackrel{\circ}{\approx}$ is formed on the anothe surface; $[SO_2]_{abs} = 10$ ppm. $[O_2] = 50$ %. $[H_2O] = 0.3$ %, room temperature for the deposit

The endothermic peak | t 103 °C is thought to come from the aporation of residual later contained in the sample. The dothermic peak at 12 °C should be the melting point of onoclinic (β-) sulfur so d. The phenomenon related to the othermic peak at 320 🕼 has not been identified yet. From ese results, one can confirm that SO2 is ultimately

The reason why the sull pr particles were formed on the cold ody inside the reactor duld be explained as follows. Initially ne elemental sulfur she ld have been produced on the hot node at 200 °C as in the case of room temperature. The naximum possible part I pressure of sulfur gas assuming omplete conversion from SO2 in the discharge region would, be

was 2500 ppm at room temperature, which is equivalent to 253 Pa of SO2. However, the vapor pressure of the liquid sulfur at 200 °C is 280 Pa. In this condition, any sulfur deposit formed on the heated anode cannot remain condensed. When the sulfur vapor diffuses to the cold region along with the convection of the gas flow, the sulfur can readily condense on the walls because the vapor pressure of the solid sulfur at 50 °C is 0.027 Pa.

4 Conclusion

A d.c. corona-discharge reactor was applied to remove SO₂ from O2-N2 and O2-N2-H2O mixtures. In order to investigate the temperature effect on the removal efficiency of SO2, the temperature of the reactor was controlled to various constant temperatures, from room temperature to 350 °C. We have confirmed that the elevation of the reactor temperature caused a decrease of the removal efficiency in both the removal of SO₂ from O₂-N₂ and O₂-N₂-H₂O mixtures, and the removal efficiency was improved by admixing water vapor. The results revealed that this enhancement of SO2 removal by water vapor significantly decreased when the temperature was increased.

Additionally, the deposit which formed inside the reactor during the removal of SO2 at room temperature and 200 °C. was characterized using an X ray diffractometer and a differential scanning calorimeter. It is found that the deposit contained solid sulfur. When the removal of SO2 was carried out at room temperature, the deposit of sulfur was formed on the anode surface. In contrast, when the reactor temperature was 200 °C, the sulfur deposit would not remain on the heated anode but it vaporized and condensed on the low-temperature section.

Acknowledgement

Financial supports by the grants from the Himeji Kogyo Daigaku Koen Zaidan foundation (1998-1999) to N. S., from Thailand Research Fund to W. T. and T. C. and from OECF Thailand-Japan Technology Transfer Project (TJTTP-OECF) at Chulalongkorn University (1999-2000) are greatly acknowledged.

Received: February 12, 2001 [CET 1369].

Symbols used

Cin	[]	inlet concentration of SO ₂
Cout	(-)	outlet concentration of SO ₂
F	[coulomb/mol]	Faraday constant
1	[A]	discharge current
Q	[mol/s]	gas flow rate
Ψ	[-]	removal efficiency defined by Eq. (1)

References

- pp. 1173-1182.
- tions. 31 (1995) No 6, pp 1463-1467.
- Yang, C. L., Env. Prog.
- Yamamoto, T.; Chang,
- (1995) No 7, pp. 1701-1
- pp. 1481-1486.
- 29 (1996) No 1, pp. 59-6
- Eng. Japan 30 (1997) No. 1, pp. 902-909.

- Masuda, S.: Nakano, H., valued of NOx by Positive and Negative Pulsed Corona Discharges, II EE-IAS Annual Meeting, Denver 1986.
 - Mizono, A.; Shimizu, K. Matsuoka, T.; Feruta, S., IEEE-IAS Transac-
 - (1999) No 2, pp. 80-86.
 - Yamamoto, T.; Chang, S.; Berezin, A. A.; Kotno, H.; Honda, S.; Shibuya, A. J. Adv. Oxt. Technol. J. (1996) No 1, pp. 67-78. Kawamusa, K., Kapakw. ogeku, 53 (1989) p. 820.
 - Tamon, H.; Mizota, H.; S. no. N.; Schulze, S.; Okazaki, M., AIChE J. 41
 - Tamon, H.; Sano, N.; Maraki, M., AICHE J. 42 (1996) No 5,
 - Sano, N.; Nagamoto, T.: imon, H.; Okazaki, M., J. Chem. Eng. Japan,
 - Sano, N.; Nagamoto, T.; Jimon, H.; Suzuki, T.; Okazaki, M., J. Chem.

- [10] Sano, N.; Tamon, H.; Okszaki, M., J. Chem. Eng. Jopan 30 (1997) No 5,
- [10] Sano, N.; Nagamoto, T.; Tamon, H.; Suzuki, T.; Okazaki M., Ind. Eng. Chem. Res. 36 (1997) No 9, pp. 3783–3791.
- [12] Tanthapanichakoon, W.; Laupsuriyakul, K.; Chasimpanitkul, T.; Sano, N.;
- Tamon, H.; Okazaki, M., J. Chem. Eng. Japan 31 (1998) No 1, pp. 7-13.
 [13] Sano, N.; Tamon, H.; Okazaki, M., Ind. Eng. Chem. Res. 37 (1998) No 4.
- pp. 1428-1434. [14] Tamon, H.; Imanaka, H.; Sano, N.; Okazaki, M.; Tanthapanichakoon, W., Ind. Eng. Chem. Res. 37 (1998) No 7, pp. 2770-2774.
- [15] Tanthapanichakoon, W.; Khongprasamkaln, P.; Charinpanitkul, T.; Tumon, H.; Sano. N.; Okazaki, M., Science Asia 25 (1999) No 1. pp. 57-63.
- [16] Maruzzi, J. L.; Phelps, A. V., J. Chem. Phys. 45 (1966) 4617-4627.
- [17] Massey S. H., Negarive Iour, Cambridge Univ. Press, Cambridge, U.K.,
- [18] Lakdawala, V. K.; Moruzzi, J. L., J. Phys. D: Appl. Phys. 14 (1981). pp. 2015-2026.

Removal of rimethylamine in Gas by Corona-Discharge Reactor

HAJIME TAMON¹, YOSHIHITO SUEOKA¹, NORIAKI SANO², WIWUT TANTHAPANICHAKOON³, PAISARN KHONGPRASARNKALN³ AND TAWATCHAI CHARINPANITKUL³

Department of Chemical Engineering, Kyata University, Kyata 606-8501, Japan

Department of Chemical Engineering.

Himeji Institute of Technology, Himeji 671-2201, Jupan

Department of Chemical Engineering, Chalalongkorn University,

Patamwan, Bungkok 10330, Thailand

Reprinted from JOURNAL OF CHEMICAL ENGINEERING OF JAPAN Vol. 34, No. 8 (2001) Pages 1006-1011 Literature Cited

- 1120 (1996)
- (1999)

- Hanai, T., A. Kakami H. Honda, T. Furuhashi, Y. Uchikawa and T. Kohayashi; "M Jeling of Total Evaluation Process of Ginjo Sake Using a Fux: Neural Network," Trans. SICE., 32, 1113-
- Hanai, T., S. Hibino E. Nagata, M. Matsubara, K. Fukagawa, T. Shirataki, H. H. nda and T. Kobayashi; "Assessment of Scnile Dementia of . | 2heimer Type Using Artificial Neural Networks," Japan. J. Medical Electron. Biol. Eng., 37, 178-183
- Honda, H. and T. K. syashi; "Fuzzy Control of Bioprocess," J. Biosci. Bioeng. 39, 401-408 (2000)
- Honda, H., T. Hanai, / Katayama, H. Tohyama and T. Kobayashi; "Temperature Co trol of Ginjo Sake Mashing Process by Automatic Fuzzy Indeling Using Fuzzy Neural Networks," J. Fermens. Block , 85, 107-112 (1998)
- Horikawa, S., T. Foro Ishi and Y. Uchikawa; "A Study on Fuzzy Modeling Using E zzy Neural Networks," Proc. of IFES'91, pp. 562-573, Yok sama, Japan (1991)
- Matsuyama, Y.; "Har: ful Effect of Dinoflagellate Heterocupsa circularisquama e Shellfish Aquaculture in Japan," JARQ-Japan Agriculture Research Quarterly, 33, 283-293 (1999) Nakanishi, K., T. Ma ada, N. Hata, T. Morita, K. Takayanagi,

- K. Abo and T. Uchida; Akashio Taisaku Gijutu Kaihatsu Shiken Houkoku, p. 1, Mie-ken Suisan Gijutu Center, Mie, Japan (1998) (in Japanese)
- Noguchi, H., T. Hanai, W. Takahashi, T. Ichii, T. Tanikawa, M. Masuoka, H. Honda and T. Kobayashi; "Model Construction for Quality of Beer and Brewing Process Using FNN." Kagaku Koguku Ronbunshu, 25, 695-701 (1999) (in Japanese).
- Okaichi, T., ed.; Akashio no Kagaku, 2nd ed., Kouseisha Kouselkaku, Tokyo, Japan (1997) (in Japanese)
- Ouchi, A.; "Simulation of Red Tide by Means of Multiple Regression and Fourier Analysis," Bull. Jupan. Soc. Sci. Fish., 52, 203-207 (1985)
- Rumelhart, D. E., G. E. Hinton and R. J. William; "Learning Representations by Back-Propagating Errors," Nature, 323, 533-536 (1986)
- Shioya, S., K. Shimizu and T. Yoshida; "Knowledge-Based Design and Operation of Bioprocess Systems," J. Biosci. Bioeng., 87, 251~266 (1999)
- Suga, T.; Tahenryou Kaisoki no Jissen, Gendai-Sugakusha, Kyoto, Japan (1993) (in Japanese)
- Tomida, S., T. Hanai, N. Ueda, H. Hunda and T. Kobayashi; "Construction of COD Simulation Model for Activated Sludge Process by Fuzzy Neural Network," J. Biosci. Bioeng., 88, 215-220 (1999)

Removal c Trimethylamine in Gas by Corona-Discharge Reactor

HAJIME TAMON', YOSHIRITO SUEOKA', NORIAKI SANO², WIWUT TANTHAPANICHAKOON³. PAISARN KHONGPRASARNKALN³ AND TAWATCHAI CHARINPANITKUL3

Department of Chemical Engineering, Kyoto University, Kyata 606-8501, Japan

Department of Chemical Engineering.

Himeji Institute of Technology, Himeji 671-2201. Jupan

Department of Chemical Engineering, Chulalongkorn University, Patunucan, Bangkok 10330, Thatland

Deposition

Kepwords: Gas Puri cation, Corona-Discharge Reactor, Electron Attachment, Removal of Trimethylaming,

point.

Trimethylamine, the component of mulodorous gases from crematory emission, was removed by a corona-discharge regitor to apply the reactor to purification of crematory emission gas. The effects of discharge current a 1 coexisting oxygen or water vapor on the removal efficiency of trimethylamine were investigated. A hough trimethylamine was not effectively removed from nitrogen by corona discharge, the removal fliciency was improved greatly by mixing oxygen or water vapor. The amounts of reaction by-product generated were extremely large at high discharge current in the removal from a nitrogen-oxygen mis are. On the other hand, the by-products were greatly suppressed by mixing water vapor. The deposit of the anode of the reactor was analyzed by a thermogravimetry. As a result, trimethylamine was found 📑 the anode surface as the deposit of curbon compounds which have high boiling

Introduction

(Tanthapanichake n et al., 1999).

Removal of Utte malodorous gases has environmental and indust al significance. Most countries have been facing many environmental problems associated with the unceasing growth of human activities. For instance, a latent source of public nuisance emitted from the cremate y furnace of a temple has become prominent in Th iland (Tanthapanichakoon et al., 1999). Besides particulate, malodorous gaseous components are emitted during cremation, causing frequent complaints from jurrounding communities. This is because the exhal it gas is directly released to the atmosphere from til stack without any treatment. Out of more than 30,0 0 temples all over Thailand, only a few big ones in Ingkok employ some sort of emission control devists, mainly, an after-burning chamber. A good crem tory furnace system is usually imported and costs (). 150,000 dollars nowadays. From on-site surveys a a number of temples in Bangkok, the locally made | fter-burning systems are too small, resulting in inade pate residence time, and their operating temperatire is too low at 550-650°C

Received on Nov heer 29, 2000. Correspondence concerning this arricle should be addressed to H. Tamon (E-mail address, tamon@cheme.ky to-u.ac.jp).

Although the problem is much less severe, similar complaints about crematory emission are heard in Japan. To meet the emission control standards, a typical modern Japanese crematorium generally installs an after-burner furnace to decompose the malodorous organic gaseous components at high temperature. Next fresh air is drawn to cool down and further dilute the residual gaseous components by one or two orders of magnitude before sending the cooled-down gas through a dust collector (Nishida and Matsuda, 1981; Nishida, 1988a, 1988b).

it has been reported that malodorous and even noxious gases, such as trimethylamine ((CH,),N), ammonia (NH,), acetaldehyde (CH,CHO) and styrene (C,H,CH,CH,), etc., are produced during cremation (Nishida, 1988a, 1988b). Often their concentrations are diluted with fresh air down to several tens or hundreds of ppm before leaving the stack. Because of greater public awareness and concern on air quality, the removal of malodorous gases from crematory emission has become a national issue. This has motivated the authors to jointly carry out a basic study on the application of a corona-discharge reactor to the treatment of crematory emission gas.

The authors have used two types of corona-discharge reactors to remove sulfur compounds, iodine and oxygen from nitrogen (Tamon et al., 1995). They also discussed the removal mechanism and presented et al., 1999).

formation in the emoval of (CH,),N.

Experimen 1

1.1 Removal emeriment

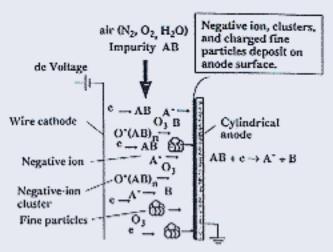

simulation modes for predicting the removal efficiency. Subseque tly, the authors investigated the influence of coexi ing oxygen and/or water vapor on the removal of a veral sulfur compounds (Tamon *et* al., 1996). Then the authors applied a corona-discharge reactor to remov; of iodine compounds, chlorofluorocarbon (CFC), v latile organic compounds (VOCs), aromatic composids, etc. (Sano et al., 1996, 1997a, 1997b, 1997c; Ta hon et al., 1998; Tanthapanichakoon

Figure 1 illi strates the principle of gas purification. High de vollage is applied to a cylindrical reactor. The cathode i a stainless steel (SUS) wire stretched at the center of the reactor and the anode is the outer cylinder. Electro is are produced by corona discharge and drift to the a ode in the electric field. During their drift, a part of them collides with electronegative impurities and negative ions are produced. This phenomenon is called eld tron attachment (Massey, 1976). The impurities are col verted to negative ions, negative-ion clusters, or fine articles by electron attachment and removed by depoliting at the anode.

Some impulities are, however, decomposed by corona discharge and reaction by-products are generated. The by-pro ucts seriously influence the applicability of corona-ischarge reactor to gas purification. The deposition muchanism is also not fully understood. The analysis of the deposit on the anode surface is indispensable to el cidate the mechanism. Since the removal mechanis by corona-discharge depends on the properties of the impurities, it is necessary to obtain fundamental dati such as the removal efficiency, the formation of rection by-product, the deposition mechanism, etc. o successfully apply the reactor to the removal of mandorous gases from crematory emission. Hence, the burpose of this work is to elucidate the formation of Paction by-products and suppress the

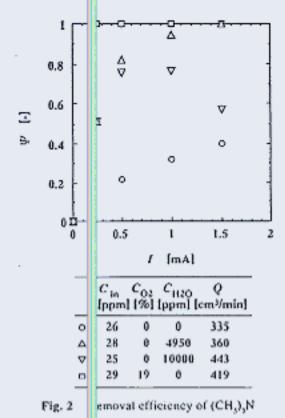
In this article, a corona-discharge reactor is applied to the reme al of dilute (CH,),N. The formation of reaction by-pi ducts in the reactor is discussed for the removal from N., N,-O., N,-H,O. and N,-O,-H,O. Then the deposit the anode of the reactor is analyzed.

The experimental set-up was reported in the previous articles (T) non et al., 1995; Sano et al., 1996). A brass pipe was used as the anode whose inner diameter and length were respectively 38 mm and 280 mm. The cathode was SUS wire whose diameter was 0.3 mm. Except the exctrodes the vessel of the reactor was acrylic resin and the cathode was sustained by a ceramic insulator di the top and by Teflon threads on the bottom. A dc vo lage of -3 to -25 kV was applied to the cathode to go serate corona discharge.

Gas purification principle

The concentration of (CH,),N was adjusted by mixing a commercial standard gas with a balance gas, N. The concentration of H,O was controlled by bubbling N, through distilled water in a temperature-controlled bath.

The concentrations of (CH,), N at the inlet and the outlet of the reactor were measured by a gas chromatograph (GC-14B, Shimadzu Corporation) with a flame ionization detector (FID). When unknown reaction byproducts were detected on a gas chromatogram, a gas chromatograph mass spectrometer (GCMS) (MS-QP1000S, Shimadzu Corporation) was used to identify the reaction by-products. The peak areas of reaction by-products generated in the reactor were measured by FID. Although the calibration of peak areas was needed to determine the concentrations of by-products strictly, the concentrations were approximately calculated by comparing those peak areas with that of (CH,),N based on the assumption that the peak sensitivity for all compounds is the same. The concentration of H,O was measured by a dew point hygrometer (MODEL 2586, Yokogawa Electric Corporation).


1.2 TG analysis of anode surface

In the present corona-discharge reactor, a deposit is formed on the anode surface during a removal experiment. An analysis of the deposit should be useful to understand the removal mechanism. To analyze the deposit at the anode, the authors constructed a reactor that had two detachable plate anodes (Sano et al., 1997c). The reactor had two 50 x 200 mm plate anodes paralleled with 50 mm gap and a wire cathode of 0.3 mm diameter was stretched in the center of those anodes. The deposit was analyzed by a thermogravimetric (TG) analyzer (TG-8120, Rigaku Co. Ltd.).

Results and Discussion

Removal of (CH₁),N from N.

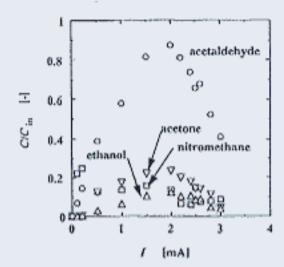
To evaluate the removal of (CH,),N by the coronadischarge reactor, the definition of removal efficiency,

T, used in this work is as follows.

$$\Psi' = 1 - C_{-}/C_{-}$$
 (1)

Figure 2 sh vs the removal efficiency of (CH,),N present stage of hvestigation.

(CH₁),N can be


from N, (circula dots). If obviously increases as the discharge current /, increases. This is because the concentration of electrons drifting in the reactor increases with increasing {[In the removal, however, Ψ is quite low. Methane (C) generated in the reactor was identified as a reaction by-product by GCMS. CH, constituted about 7% if the inlet concentration of (CH,),N at 1.5 mA dischi ge current. Hence, the authors consider that (CH₂), is decomposed by corona discharge and a polycondel sation reaction occurs. However, the authors cannot c plain the reaction mechanism in the

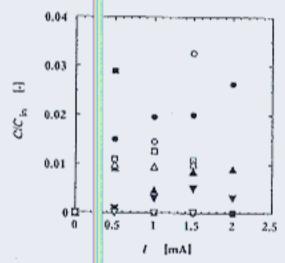
2.2 Removal of [CH,), N from N,-O,

Since the allual removal process often contains O, and H,O, it ill imperative to investigate the influence of O, and H O on the removal of gas impurities. Figure 2 also stows the experimental results on the removal of (CH, N with 19% O, (square dots). When the discharge cut ont was as little as $0.25 \,\mathrm{mA}$, $(\mathrm{CH_s})_s \mathrm{N}$ disappeared in t FID detection. Thus the presence of O, greatly enhar led Ψ. To explain such high removal efficiency, the a thors have studied the role of ozone (O_s) (Tanthapan shakoon et al., 1999). This research proves conclust ely that the enhanced removal of tributed to the O, reaction.

List of reaction by-products generated in removal of (CH₂),N from N₂-O₂ mixture

Retention time [min]	M/Z	M/Z of fragment	By-product
1.7	44	43, 42, 29, 28, 27	CH ₂ CHO
3.3	46	45, 44, 30, 31, 29	C,H,OH
4.9	58	57, 42, 29, 28, 27	(CH ₂) ₂ CO
6.9	61	60, 46, 45, 30, 29	CH ₃ NO ₂

Reaction by-product in removal of (CH1),N from $N_{\gamma}O_{\gamma}(C_{\gamma} = 29 \text{ ppm}, C_{O_{\gamma}} \approx 19\%, Q = 419 \text{ cm}^{3}$ min)


Reaction by-products were identified by GCMS as listed in Table 1. Acetaldehyde (CH,CHO), ethanol (C,H,OH), acctone ((CH,),CO), and nitromethane (CH,NO,) were observed as the by-products. Although it seems that organic acids are generated during an oxidation process of (CH,),N, the acids have not been detected by GCMS. Since the removal efficiency of (CH,),N is greatly improved by the O, reaction, the by-products are considered to be generated by the O, reaction with (CH,), N. Figure 3 shows the amounts of the by-products generated in the corona-discharge reactor. The ordinate indicates the mole ratio of the byproducts generated in the reactor to the inlet concentration of (CH3), N, C/Cin, and the abscissa the discharge current, I. C/C to for CH3CHO is ca. 0.9 at 2.0 mA discharge current. In this case (CH,),N changes to CH,CHO by corona discharge and the reactor cannot be applied to the removal of (CH,),N. Since (CH,),N is decomposed by reaction with O3, the total molar concentration of reaction by-products is sometimes more than the inlet concentration of $(CH_i)_3N$, C_{ie} . The amount of the by-products increases with the discharge current, but the by-products can also be removed at the large discharge current. Hence, C/C, has a maxi-; mum value at ca. 2 mA discharge current as shown in

Material balance in removal of (CH₂)₃N from N₂-O₃-H₃O

,	Inlet				Oullet		Removal*
	H),N	(CH ₁) ₁ N	CH/CHO	C,H,OH	(CH ₂) ₂ CO	CH,NO;	
0.1 mA	0 ppm	ND	0.8 ppm	ND	ND	ND	
(carbon balanc		(inlet gas)			1.0	no.	
2.54	10 ⁻¹ mol-C	ND	$0.07 \times 10^{12} \text{ mol-C}$	ND	ND	ND	3.42 102
(mitrogen balar	t, basis: 1 m	of inlet gas)					2.47 × 10° mol-C
0.85	10 ⁻³ mal-N	ND	0	0	0	ND	0.85 × 10" mol-N
0.15 mA	0 ppm	ND	4.1 ppm	1.3 ppm	0.9 ррш	ND	A 25 × 10 1101-14
(carbon balanc	basis: t m' of	inlet gas)		117	ary 14mi	NO	
2.54	10 ⁻¹ mol-C	ND	0.36 × 10° mol-C	0.11×10^{-3} mol-C	0.11 x 102 mal-C	ND	t de contact of a
(nitrogen balar		of inlet gas)		411111111111111111111111111111111111111	V-11-5-10 IIIII-C	110	1.96 × 10° mot-C
0.85	10 ⁻³ mat-N	ND	0	0	0 .	NO	0.85 × 10° mot-N
0.2 mA	0 ppm	ND	2,4 ррть	0.6	100		0.42 × 10 . mot-ba
(explon balanc			e'a bhus	0.6 ppm	ND	ND	
2.54	10 ⁻³ mol-C	ND	0.22×10^{-5} mol-C	0.06 × 100	ND		
(nitrogen balar		of infer eas)		AND A 18 HIGHC	1417	ND	2.26 × 10" mot-C
0.85	10° mot-N	NE)	0	0	n	MS	
tananat ramana	and an artist of				· · · · · · · · · · · · · · · · · · ·	ND.	0.85 × 10 ⁻⁵ read-N

ND: not detected

*amount removed by deposition or particle formation

			C _{in} (ppm	С _{H2O} [ppm]	Q [cm³/min]
0	acetald	tyde	25	10000	443
Δ	ethano!		25	10000	443
V	acctone		25	10000	443
0	nitrom	hane	25	10000	443
	acctald	tyde	28	4950	360
	ethano		28	4950	360
7	acctone		28	4950	360
=	nitrom	hane	28	4950	360

Fig. 4 N,-11,0

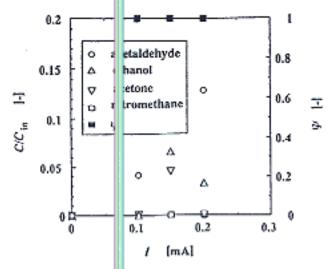
Reaction t -product in removal of (CH₂),N from

charge current.

Fig. 3. One can s b that the by-products can be suppressed at lower sischarge current than 0.2 mA dis-

2.3 Removal of CH3),N from N2-H2O

Figure 2 sho is the influence of H₁O on the removal of (CH₃), One can see that 4950 ppm H₂O


contributes to raising the removal efficiency of (CH,),N. The removal efficiency of (CH,),N with 10,000 ppm H₂O is smaller than that with 4950 ppm H₂O because more by-products are generated as described below.

The same reaction by-products are generated in the removal of (CH,),N from N,-H,O as from N,-O,. Figure 4 shows the by-products with 4,950 ppm and 10,000 ppm H,O. Compared with Fig. 3, the by-products in the removal from N.-H.O are much less than from N,-O,. This figure suggests that 10000 ppm H,O generates more by-products than 4,950 ppm H₂O in the range of / ≥ 1 mA and that Ψ of (CH,),N with 10000 ppm H₂O is smaller than that with 4,950 ppm H₂O for 1 ≥ 1 mA as shown in Fig. 2.

2.4 Removal of (CH,),N from N,-O,-H,O

Furthermore, the influence of O, and H,O on the removal efficiency of (CH,), N has been examined. The results are shown in Fig. 5. This figure shows the removal efficiency of (CH,),N with 16% O, and 17,600 ppm H,O. This result shows very high removal efficiency even in the low discharge current range in the presence of O, and H,O.

Reaction by-products, CH,CHO, C,H,OH, and (CH₁)2CO, were observed. CH2NO, however, was not detected. The material balance in the removal is important. Table 2 shows the carbon or nitrogen balance per 1 m3 of inlet gas of the reactor in the removal of (CH₃)₃N from N₂-O₃-H₃O. It can be seen that N atom of (CH,),N is completely removed by deposition at the anode or particle formation. On the other hand, a part of C atom of (CH,),N comes out from the reactor as reaction by-products. The amount of CH,CHO generated is larger than other compounds in the corona-discharge reactor. Since CH,CHO is also a component of malodorous gases from crematory emission, it is im-

Reaction []-product in removal of (CH,),N from Fig. 5 N₂-O₂-H₃C ($C_{in} = 19 \text{ ppm}, C_{O_{in}} = 16\%, C_{H_1O} = 17,600 \text{ pp}, Q = 410 \text{ cm}^3/\text{min}$)

from air.

2.5 TG analysis of deposit

min from 20 to 1 00°C.

deposit formed ized by pyrolysi.

portant to decreate the amount generated. Compared with Figs. 3 and ..., one can see that the by-products can be suppressed by mixing H,O even in the presence of O3. Hence, which the discharge current is kept low in the presence of H,O, it is interesting that the production of CH,C||O can be decreased.

Conclusively under the present experimental conditions, O, or H, enhances the removal efficiency of (CH,),N. These sults suggest that the corona-discharge reactor is inplicable for the removal of (CH,),N

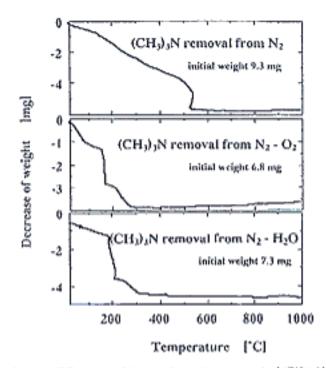

The authors conducted removal experiments of (CH.).N for 5 days using the corona-discharge reactor with parallel plass as described above. The experimental condition are shown in Table 3. Then the deposit on the and e surface was analyzed using the thermogravimetr TG curves were measured at 20°C/

Figure 6 stows the TG curves of the deposit formed in the ren byal of (CH,),N from N2, N2-O2, and N,-H,O. The ord nate is the decrease of weight and the abscissa is telliperature. From the TG curve of the the removal from N₂, the weight gradually decreases till 550°C and then a large weight loss suddenly ocurs at ca. 550°C. The TG curves obtained for the ren byal from N,-O, and N,-H,O suggest that the large walght loss is observed at ca. 200 or 250°C. One can ee that some deposit remains even after pyrolysis all 1000°C. Hence, it can be concluded that the deposit consists of carbon compounds of high boiling point and that a part of the deposit is carbon-

The TG curle in the removal from N,-O, is different from that If the deposit formed in the removal from N., Hence, he O, reaction with (CH,),N induces

Experimental conditions for analysis of deposit Table 3 on anode

Gas	C (ppm)	Q [cm³/min]	C ₀ , [%]	C _{h,o} (ppm)	<i>]</i> [mA]
(CH,),N·N ₁	102	251	0	0	1.0
(CH ₂) ₂ N-N ₂ -O ₂	18	411	19	0	0.1
(CH ₂) ₂ N-N ₂ -H ₂ O	19	385	0	17000	0.1

TG curves of deposit formed in removal of (CH,),N

a cyclic polycondensation producing a carbon compound. The TG analysis of the deposit formed during the removal of (CH₂),N in N,-H,O suggests that the deposit is a carbon compound similar to that formed in the removal from N,-O,. The authors have measured O, concentration produced by corona discharge in N,-H,O mixture under the conditions of $Q = 389 \text{ cm}^3/\text{min}$, $C_{H,O} = 5600$ ppm, and I = 0.1 mA. As a result, O, has not been generated at all. It is well known that electrons produced by corona discharge attach to H,O, and that H-, OH-, O- are produced (Massey, 1976). Hence, these ions seem to decompose (CH,), N and touch off a chain polycondensation reaction. Although the reaction mechanism in N,-O, is different from that in N2-H,O, both deposits on the anode surface are similar.

The authors have found several interesting results on the formation of reaction by-products and the TG curves. The removal mechanism of (CH,),N cannot be explained in the present stage of investigation. Further studies should be done to elucidate the removal mechanism.

Conclusion

conclusions have then obtained.

- trogen-oxygen mi: ure.
- presence of oxyge
- corona discharge.

Acknowledgment

the visit to Kyoto Un ersity (1999).

Trimethylamit: was removed using the coronadischarge reactor. he formation of reaction by-products in the remova was discussed and the deposit at the anode of the reactor was analyzed. The following

(1) Although he removal efficiency of trimethylamine is low in a trogen, the efficiency is improved greatly in the pres ace of oxygen or water vapor,

(2) The large imounts of reaction by-products are generated in the re soval of trimethylamine from a ni-

(3) Water va or plays a role for decreasing reaction by-products prmed by corona-discharge in the

(4) Trimeth lamine deposits as carbon compounds of high be ling point on the anode surface by

This research w I partially supported by Thailand Research Fund (1996-1999). F. ther, W. T. is grazeful to the Japan Society for the Promotion of cience (ISPS) for the financial support for

Nomenclature

C I	=		aration rpc current	[mA]
Q	m	gas	ow rate	(cer9min)
w		PC 104	at efficiency	1

«Subscript»

н,о	-	wate	vapor
in	==	gas	let

oxygen gas outlet out

Literature Cited

- Massey, S. H.; Negative Ions, Cambridge Univ. Press, London, UK (1976)
- Nishida, K.; "Malodor at Cremation Facility (Part I)." PPM, 3, 49-58 (1988a)
- Nishida, K.; "Malodor at Cremation Facility (Part II)," PPM, 4. 51-59 (1988b)
- Nishida, K. and Y. Matsuda; "Malodor of Exhaust Gas from a Crematery," J. Odor Control, 10, 1-11 (1981)
- Sano, N., T. Nagamoto. H. Tamon and M. Okazaki; "Removal of todine and Methyl Iodide in Gas by Wested-Wall Reactor Based on Selective Electron Attachment," J. Chem. Eng. Japan, 29, 59-64 (1996)
- Sano, N., T. Nagamoto, H. Tamon, T. Suzuki and M. Okazaki; "Removal of Methyl Iodide in Gas by Corona-Discharge Reactor," J. Chem. Eng. Japan, 30, 902–909 (1997a)
- Sano, N., H. Tamon and M. Okazaki; "Removal of Iedine in Gas by Corona-Discharge Reactor," J. Chem. Eng. Japan, 30, 944-946
- Sano, N., T. Nagamoto, H. Tamon, T. Suzuki and M. Okazaki; "Removal of Acetaldehyde and Skatole in Gas by Corona-Discharge," Ind. Eng. Chem. Res., 36, 3783-3791 (1997c)
- Tamon, H., H. Mizota, N. Sano, S. Schulze and M. Okazaki; "New Concept of Gas Purification by Electron Attachment," AICAE J., 41, 1701-1711 (1995)
- Tamon, H., N. Sano and M. Okazaki; "Influence of Oxygen and Water Vapor on Removal of Sulfur Compounds by Selective Electron Attachment," AIChE J., 42, 1481-1486 (1996)
- Tumon, H., H. Imanaka, N. Sano, M. Okuzaki and W. Tanthapanichakoun; "Removal of Atomosic Compounds in Gos by Electron Attachment," Ind. Eng. Chem. Res., 37, 2770-2774 (1998)
- Tanthapanichakoon, W., P. Khoogprasarukulu, T. Chorinpaniskol, H. Tamon, N. Sano and M. Okazaki; "Removal of Trimethylamine and Ammonia Using Election Attachment Reaction," Science Asia, 25, 57-63 (1999)

Reduction of NO by CO in a Pulsed Corona Reactor Incorporated with CuO Catalyst

LIWEI HUANG, TAKAAKI HARI, KATSUHIKO NAKAJYO, SHOJI OZAWA AND HITOKI MATSUDA

Research Center for Advanced Waste and Emission Management, Nagoya University, Nagoya 464-8603, Japan

Keywords: NO Reduction, CO, Nonthermal Plasma, Catalyst, CuO

corona discharge, and

Reduction of NO by () in N, was experimentally investigated in a wire-in-tube pulsed corona reactor combined with CuO cat yst. The pulsed corona was produced by applying a positive pulsed high voltage (peak voltage 16-22 kV julse frequency 50 pps) to the wire elettrode and the catalyst was conted on the surface of the aluminus film, the grounding electrode attached to the inner surface of the tube. It was demonstrated that NO is uld be effectively reduced to N, under nonthermal plasma produced by pulsed e NO, yield was significantly suppressed with the existence of CO in the gas stream. For the pulsed prona reactor combined with CuO catalyst, the reduction of NO was 10-20% higher and NO, product on was 50% lower than that of without catalyst in the reactor at room temperature, showing that Cu(catalyst works effectively for the reduction of NO under pulsed corona discharge. A complete redition of 500 ppm NO in a gas stream containing 1% CO was achieved at about 473 K with a pulse voltine of 18 kV in the reactor combined with CuO catalyst.

Introduction

Yamamoto, 2000).

The control of D emitted from fuel combustion processes of such as liesel-fueled vehicles has become an important issue | ccause of stringent regulations imposed on the allogable levels of NO, emissions especially in cities. However, traditional technologies may have some process to meet these stringent requirements. For example, the three-way catalyst for gasoline engine are insuitable for diesel engine, because the exhaust gat from diesel engine contains high concentrations of O, much particulate matter and SO, (Farrauto and Heck, 999). Therefore, new techniques based on nonthermal blasma for the abatement of NO. emissions from fuel ombustion processes have been received much atter ion in recent years, because of nonthermal plasma 📗 s unique characteristics in molecule dissociation a d chemical reaction-promoting (Penetrante et al., 1995; Urashima et al., 1998;

Generally, nitro en oxide accounts for most of NO discharged fre n combustion processes. The mechanism for NO r moval under nonthermal plasma is regarded to proce d both reduction and oxidation processes (Gentile at 3 Kushner, 1995; Sathiamoorthy

et al., 1999). It has been ascertained that NO reduction proceeds mainly via a fast reaction (1) (Behbahani et al., 1982; Harano et al., 1998).

$$N + NO \rightarrow N_2 + O$$
 $K = 3.1 \times 10^{-11} [cm^3 s^{-1}]$ (1)

The N atom in this reaction is produced mainly from dissociation of N, molecule by energetic electron impact. The oxidation of NO to NO, is attributed to the reactions (2) and (3).

O + NO + M
$$\rightarrow$$
 NO₂ + M
 $K = 9.1 \times 10^{-2} T^{-1/6} [cm^6 \cdot s^{-1}]$ (2)

$$O_3 + NO \rightarrow NO_2 + O_3$$

 $K = 2.0 \times 10^{-12} \exp(-1400/T) [\text{cm}^6 \cdot \text{s}^{-1}]$ (3)

It is thought that the reduction of NO to N, is more difficult than the oxidation of NO to NO, because much higher electron energy is required to promote the reduction reaction efficiently. Therefore, the oxidative removal of NO by means of nonthermal plasmas attracted most previous researches. However, in such a practical application as automobile exhaust gas treatment, reducing NO to N, is more attracting than oxidizing NO to NO,, because no additional processes like scrubbing systems are needed for further NO, treat-

In this study, the reduction of NO to N, by CO which is also a pollutant gas contained in exhaust gases.

hlw@resewe.nagoya- .nc.jp). of Chemical Enginee , Japan,

Received on Decemb + 21, 2000, Correspondence concerning this article should be didressed to L. Huang (E-mail address;

Partly presented at T : 33rd Autumn Meeting of The Society

News bulletin

H w does APT2000 impact particle technology in Thailand let me count the ways

W. VUT TANTHAPANICHAKOON

The Powder Technology Center, Faculty of Engineering, Chalalongkorn University, Bar 3ok 10330, Thailand

Rev (ved 15 January 2001; accepted 31 January 2001

Be ore starting to count the ways, I wish to give a brief introduction to the roles of the lesser-known players and some historical background.

1. WHAT IS APT2000?

the First Asian Particle Technology Symposium co-organized during 13–15
De ember 2000 in Bangkok by the Thai Powder Technology Center (TPTC) of Chulal ngkorn University (CU) and The Society of Powder Technology, Japan (SPTJ) is strong support from the Association of Powder Process Industry and Engineering (APPIE). Japan, and cooperation from numerous societies and associations in As 1 and Oceania. Please refer to the web site [http://www.apt2000.org] for more dealis.

2. PHY BANGKOK? WHY NOT TOKYO OR ELSEWHERE?

Lo ated near the geographical center of Asia, Bangkok is conveniently and econically accessible by air. The 'City of Angels' or 'Krungthep' — the official in name of Bangkok — offers diverse cultural settings, renowned Thai-style hospit lity, niche and popular restaurants offering Thai and cosmopolitan cuisines, vast sping malls and complexes, as well as numerous tourist landmarks, such as magnificant temples, majestic palaces — all at very reasonable prices in comparison in Japan. If these reasons are not good enough, how about adding fascinating entirement venues and night life for the more venturous souls? To TPTC and SPTJ, however, one of the important reasons is that the year 2000 coincides not only with

the dawn of a new millennium — an auspicious moment to start a new venture — but also the 10th anniversary of TPTC.

Compared to SPTJ and APPIE, TPTC is like a primary school graduate, although it is more firmly established than similar organizations in other Asian countries with the exception of China, South Korea, Russia and Taiwan. As described in the Millennial Edition on Particle Technology, published by TPTC in December 2000, TPTC owes its inception and subsequent success to the strong support rendered by APPIE, SPTJ, CU as well as numerous individuals in both countries.

3. WHAT HAS TPTC CONTRIBUTED TO PARTICLE TECHNOLOGY (PT) IN THAILAND DURING ITS FIRST DECADE?

Definitely a lot. If interested, please contact the author for a copy of TPTC Millennial Issue, which is bilingual in Thai and English.

4. BACKGROUND OF APT2000

First conceived in 1997 — a year before the World Congresss on Particle Technology in Brighton in 1998 — the formal kick-off for APT2000 was symbolized by the establishment of its International Organizing Committee (IOC) during 13–15 December 1998 at the Mandarin Hotel, Bangkok — exactly the same month, days and venue as the real APT2000.

5. HOW DOES APT2000 IMPACT PT IN THAILAND?

Now let me count the ways APT2000 has impacted on particle technology in Thailand (and more or less in the whole of Asia).

- First-ever APT, the birth of a regular series of symposia to be held biannually in Asia.
- First exhibition (panels/catalogs) aimed solely at PT in Thailand.
- The largest gathering (297 persons) of particle technologists and scientists (PTS) at any symposium/conference in Thailand.
- The largest number (251 persons) of non-resident PTS's at a single gathering in Thailand.
- The largest number of participating countries (20 countries) in a PT event in Thailand: 14 from Asia-Oceania (Australia, China, Indonesia, India, Japan, Malaysia, Mongolia, Philippines, Russia, Singapore, South Korea, Taiwan, Thailand, Vietnam) as well as France, Mexico, Netherlands, Sweden, UK and USA.
- The highest number of PT research papers submitted (231) and presented any symposium/conference in Thailand.

- The lighest number of plenary, invited lectures and technical seminars on PT in any /mposium/conference in Thailand.
- A st cial Asian Complex event designed to provide the latest live information on p wder-related business and technology presented by the Chairman of Thai Federation of Industries (Mr Tawee Butsuntom) and the representatives of IOC cour ries.
- The lighest print run on PT published by TPTC (3,000 copies of TPTC Millennial dition).
- The argest number of foreign visitors to the TPTC Lab in CU in a single day (abo t 70 persons).
- Nun rous contacts with TPTC from industrial companies after the conclusion of APT 000 (for technical consultation and testing services).
- Nur rous inquiries from industrial companies and manufacturers about similar futur events in Thailand.
- The ounding Director of TPTC becoming the current President of CU, who presi ed over the Opening Ceremony of APT2000.
- The almination of APPIE's and SPTI's decade-long support to TPTC which has becone a key player in the promotion and development of PT in Thailand.

been decided that the Second APT will be held in Malaysia in 2003 instead of 2002 in order to avoid unfavorable impact on the World Congress on Particle Technology 2002 in Sydney. In addition, as an important by-product of remarkable success, APPIE has decided to assist the establishment of a second Undout the technology Center in a suitable Asian country in the near future. Undout the technology Center in a suitable Asian country in the near future. The technology Center in a suitable Asian country in the near future. The technology Center in a suitable Asian country in the near future. The technology Center in a suitable Asian country in the near future. The technology Center in a suitable Asian country in the near future. The technology Center in a suitable Asian country in the near future. The technology Center in a suitable Asian country in the near future. The technology Center in a suitable Asian country in the near future. The technology Center in a suitable Asian country in the near future. The technology Center in a suitable Asian country in the near future. The technology Center in a suitable Asian country in the near future. The technology Center in a suitable Asian country in the near future. The technology Center in a suitable Asian country in the near future. The technology Center in a suitable Asian country in the near future. The technology Center in a suitable Asian country in the near future. The technology Center in a suitable Asian country in the near future. The technology Center in a suitable Asian country in the near future. The technology Center in a suitable Asian country in the near future. The technology Center in a suitable Asian country in the near future. The technology Center in a suitable Asian country in the near future. The technology Center in a suitable Asian country in the near future.

6. MY I ERSONAL INVOLVEMENT WITH PT

ithout saying that particle science and technology has long had, and will to have, a significant impact on the development of Thai industries and as well as my own academic and research career. Though I am said to rest Thai Chemical Engineering graduate who received his BEng in Japan Iniversity), I did not do any research in PT while in Kyoto as a Monbusho hip student nor during my graduate study in the University of Texas at In-fact, I-studied in Dr Ryozo-Toei's Lab and my senior thesis advisor forio Okazaki, though I did study *Process Control* with Dr Koichi Iinoya. Wonly a little about PT when I met Dr Kanji Matsumoto at the First —Japan Joint Seminar on Powder Technology in Bangkok more than 10 pagers a

in he establishment and running of TPTC and the Thai Assosciation for Particle itute is that he believed I could do it and not for personal gains. Thanks in part ny Japanese language fluency and educational background, I am 'fortunate' to be received many helping hands from a huge number of individuals, including Osamu Doi, Mr Tsunemi Hayashi, Dr K. Matsumoto and Dr Chikao Kanaoka, to mention a very few, as well as the member companies of APPIE's TPTC operation Committee (TPTCCC) and subsequently Thai Subcommittee. On Thai side, many PT colleagues and TPTC members, including Dr Sirikalaya achittanon, Dr Tawatchai Charinpanitkul, Dr Hathaichanok, Duriyabunleng, Mattaporn Tonanon and Mr Preecha Sangtherapitikul, have contributed to the sees of TPTC and APT2000.

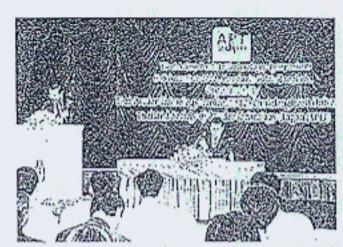
7. ONCLUSION

At lording to the feedback and comments I have received from many participants, I have received from many participants, I many to take this opportunity to sincerely thank all persons and organizations menticed above, as well as the IOC (headed by Dr M. Senna), the International Advisor Board, the Scientific and Technical Committee (headed by Dr Y. Fukumori), Local Organizing Committee, and the numerous individuals, staff and students will worked behind the scene for the great success of APT2000. Last, but not L. I want to thank all the participants, especially non-residents, who really made AI recommendation and other Asian countries will have long-lasting effects and only short-term ones.

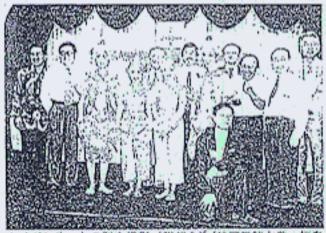
et us meet at the next APT2003 in Malaysia.

The First Asian Particle Technology Symposium 2000 (APT2000)

Wiwut TANTHAPANICHAKOON* and Tawatchai CHARINPANITKUL*


とって、大きな光』でした。

2000年12月13~15日まで、タイ・バンコクの Mandarin Hotel C he First Asian Particle Technology Symposium, APT20 0 が開催されました。このシンボ ジウムは、20 世紀 | 別れを告げ新しい 21 世紀の到来 を祝うと同時に、事ジア諸国。そしてヨーロッパ、ア メリカ、オースト 11リアの粉体工学研究者を一堂に集 める場として企画。れました。このようにたいへん意 **義のあるシンポジ** ムの第 1 回を主催できたことは、 われわれ Thai Pow er Technology Center (TPTC) に


APT2000 の参加 数は合計 297 名で、その内 249 名 (約84年)がタイ国界の国からの参加者でした。大学 からの参加者は21 名。企業からの参加者は79名で、 大学からの参加者 🗅内 46 名は学生でした。圓別で参 มa 音をみると、オーストラリア(9)、中国(7)、フラン ス (2)、インド (1)、インドネシア (2)、日本 (132)、 マレーシア (4)、インゴル (2)、オラング (1)、フィリ ピン (2), シンガ:||トル (1), 韓国 (48), スウェーデン (1), 台湾 (8), 英国 (3), アメリカ合衆国 (2), ベトナ ム (7)でした。32 のセッションで発表された論文は 156 件あり、全体温高は 13 件ありました。シンポジウ ムの会場はやや小∥かったかもしれませんが、各セッ ションで活発な議論が行われました。

発表された研究||容は、基礎(たとえば粒子のキャ ラククリゼーショ』, 粒子生成など)から応用(薬剤, 環境、生体影響な「)まで非常に広い分野を網羅して いました。発表された研究成果は、タイ国だけでなく アジア諸国また世界にとって役に立つと信じておりま す。とにかく、大具な可能性を持つ粉体工学・エアロ ブル工学の今後の『歴は、タイの研究者や学生などに 大きい影響を与え、のは間違いありません。

今回の APT200 は研究発表のセッションだけでな く,さまざまな劉明者の要求に応えるために,セミ ナーと展示会、鬼事会等の催しが加えられました。そ の中の一つにアミア特別複合プログラム(Asian

セレモニー (待戸学院大学・福森先生轉提係)

イダンサーとの記念撮影 (懇親会) (神戸学院大学・福寿 先生的提供)

Special Complex) がありました。このプログラムでは、 各国の粉体工学研究の現状、学会と産業界との協力体 初等について報告がありました。

多くの方々のご支援により APT2000 は成功退に閉 会し、その成果は思った以上のものがありました。次 のシンポジウム APT2003 は Malaysia で聞かれことが、 本シンボジウムの期間中に決定されました。第2回 APTにおいても、粉体工学、エアロブル工学に関わっ ている方々により、新しい研究成果の発表や活発な識 **論が積極的に行われ、すばらしいシンボジウムができ** るよう期待したいと思います。

Chulalongkorn University

Department of Chem at Engineering, Faculty of Engineering,

Phyathai Rd., Patem in, Bangkok 10330, Thailand

Chemical Engineering Journal 86 (2002) 11-15

New s mple mathematical model of a honeycomb rotary absorption-type dehumidifier

Wiwut Tanthapanichakoon*, Anawut Prawarnpit

Faculty of Engine ing, Department of Chemical Engineering, Chulalongkorn University, Patumwan, Bangkok 10330, Thoiland

bstract

D 2002 Elsevier Science B. | All rights reserved.

A simplified mathematical model consisting of ordinary differential equations has been proposed and found to accurately predict the synamic performance of a his eyeomb rotary absorption-type dehumidifier in a beverage factory. The model was validated experimentally ising the transient measure, ent data on the air properties at the outlets of both the dehumidification and regeneration sections. Good agreement between the predicted and recorded data at each time has been observed. The model is numerically stable and easy to simulate.

Keywords: Rotary dehumidifier: oneycomb; Lithium chloride salt; Solid absorbent; Dynamic model

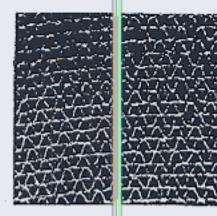
t. Introduction

sorbent.

For hygienic reasons the equipment as well as the floor pace in the concentrate pi paration room of a modern bevrage factory are daily cleated, scrubbed, mopped and left to lry-out overnight. To deht midify the circulating humid air nd ensure the dry-out of the wet floor in the closed room, the resent factory employs tv) identical continuous rotary deumidifiers. In contrast to a sorption-type dehumidifiers that se silica gel, molecular se ve, etc. as adsorbent, the tested sorption-type dehumidif r uses a lithium chloride-coated neycomb. As the rotor lowly turns, humid room air is reulated through and del imidified in the absorption secn of the honeycomb. I cantime ambient air is heated about 350 K and simi taneously sent counter-current ough the regeneration ection to dry the moist solid

In the past all invest ations have focussed on the sorption-type rotary deh midifier and there are no publittions on the rotary abso ttion type. Kodama et al. [1-3] sperimentally investigate the temperature effect and opmal operation of a therm; -swing honeycomb rotor adsorer. To predict simultanes is heat and mass performance f the regenerator of a roti y dehumidifier, Maclaine-cross nd Banks [4] and Banks [6] utilized linear and nonlinear nalogy method, whereas Mathiprakasam and Lavan [7] redicted the performance of adiabatic desiccant dehumidiers using linear solutions. These earlier methods are handy

but not so rigorous and did not provide detailed or transient information.


To numerically solve the governing partial differential equations of a rotary adsorption-type dehumidifier, Holmberg [8], Jurinak and Mitcheil [9] and Schultz and Mitchell [10] developed and applied an explicit-finite difference technique. To ensure unconditional numerical stability and reduce computational time, Zh ng and Worck [11] proposed and applied an implicit-finit difference technique for the numerical simulation.

In contrast the authors have developed a new, simple dynamic model for the honeycomb rotary dehumidifier consisting of a set of nonlinear ordinary differential equations. The validity of the present model was substantiated by comparing the simulated results with the transient experimental values. The model accuracy with respect to the key variables (outlet and inlet air temperatures and humidities) is better than ±2%.

2. Mathematical model of rotary dehumidifier

A typical honeycomb rotor consists of thousands of almost identical narrow straight slots uniformly distributed over its rotor cross-section as shown in Fig. 1. Because of geometric similarity, the multiple annular layers of straight slots in the dehumidification and the regeneration sections can be represented by a "representative annulus" of thickness Δr equaling one slot height. In this way, the three cylindrical coordinates (r, θ, z) , say radial, angular and axial directions,

^{*}Corresponding author. Fax: + 5-2-218-6894. -mail address: twiwut@chula.a h (W. Tanthapanichakoon).

oncycomb structure.

each of the M slots as the rotor slowly turns.

spectively, in the mallel can rationally be reduced to sale two coordinates (6 z). By taking into account each constituent slot within he total M identical slots in the θ-direction spanning the entire cross-section of the representative annulus, the imaining space variable is z. For example, M = 400 with the first 100 slots being the regeneration section. Of cour s, a second independent variable in the model is the time t. a other words, the dynamic behavior of the honeycomb a tor can be simulated by following the transient changes curring in the z-direction within

The following simpli ring assumptions are made:

 Air flow is uniform distributed across the dehumidification and the regen ration cross-sections.

The air stream flowin; through each slot is assumed to be plug or piston flow. If the plug flow model, variation does not exist in the radial direction but exists only in the axial or z-direction. Theo tically and conceptually, the plug flow model has been hown to be equivalent to the model of a series of equal-v lume CSTRs in which an infinitely large number of comiletely mixed cells, each of infinitely small thickness, are innected in series. For practical reasons, the plug flow lodel of each slot will be approximated by an equivale t CSTR model consisting of N cells in series as shown in Fig. 2, N being 10, 20 or more [12].

- 3. Gas-phase heat conduction and mass diffusion in the axial direction are negligibly small compared to the convective effects in the same slot.
- 4. Each slot is adiabatic and heat conduction along the slot wall may be neglected.
- 5. Interphase moisture transfer between the gas and solid absorbent phases in the slot is controlled by gas-phase film resistance since the absorbent layer is essentially non-porous.
- Heat of absorption of the moisture can be approximated . by the latent heat of vaporization of water.

For slot no. j of the regeneration section (j = 1, $2, \ldots, M_t$), the unsteady mass and energy balances for cell no. i (i = 1, 2, ..., N) are as follows:

Gas-phase moisture balance:

$$\frac{d(H_i)}{dt} = \frac{NG_{Fii}V_{Hi}}{L}(H_{i-1} - H_i) - \frac{kA_hNV_{Hi}}{\varepsilon LA_c}(H_i - H_{Si}) + \left(\frac{H_i}{V_{Hi}}\right)\frac{d(V_{Hi})}{dt}$$
(1)

where H_l and H_{Sl} are the humidity and saturated humidity of hot air in cell no. i, respectively (kgwater vapor kgdry air 1), V_{10} the specific volume of humid air (m³ kg_{dry sir}⁻¹), G_{F_2} the mass flow rate of humid air (kgdryair m-2 s-1), t the time (s), L the length of each rotor slot, N represents the number of cells in each slot, k the mass transfer coefficient between maist material and hot air (kg m⁻² s⁻¹), ε the honeycomb porosity (-), Ah the internal surface area of each cell (m²), A_c the total cross-sectional area of each cell (m²). The Ranz-Marshall correlation is used to estimate the value of k [13].

Solid-phase moisture balance:

$$\frac{d(W_i)}{dt} = k(H_i - H_{Si}) \frac{NA_h}{LA_c \rho_{SB}}$$
(2)

where W_i is the moisture in the absorbent material in cell i (kg_{water} kg_{drymaterial}-1), ρ_{SB} the apparent density of dry absorbent material in the rotor $(kg m^{-3})$.

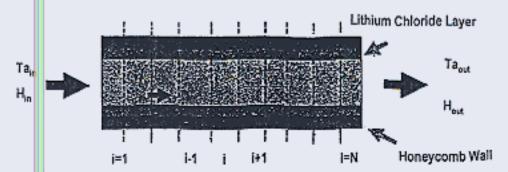


Fig. 2. Representation of a typical honeycomb slot as a series of completely mixed cells.

Gas-phase energy by ance:

$$\left(\frac{C_{pA} + C_{pv}H_{i}}{V_{Hi}}\right) \frac{d(T_{i})}{d}$$

$$= \frac{NG_{FA}}{L}(C_{pA} + C_{p} H_{i-1})(T_{A(i-1)} - T_{Ai})$$

$$- \frac{h_{c}NA_{h}}{\varepsilon A_{c}L}(T_{Ai} - T_{i}) + \left(\frac{kA_{h}N}{\varepsilon LA_{c}}\right)(H_{i} - H_{Si})$$

$$\times (C_{pw}T_{Si} + C_{pv} T_{Ai} - T_{Si})) + \left(\frac{C_{pA}T_{Ai}}{V_{Hi}^{2}}\right) \frac{d(V_{Hi})}{dt}$$
(3)

where C_{pA} , C_{pv} , C_{pw} re the specific heat of dry air, water vapor and liquid water, respectively (kJ kg-1 K-1), TAI and TSI are the temperature of humid air and solid absorbent in cell no. i, respectively K), he the heat transfer coefficient between the gas- and s lid-phase (kJ m-2 s-1).

Solid-phase energy lalance:

$$(\rho_{FB}C_{pFB} + \rho_{SB}C_{pSB}) + \rho_{SB}C_{pw}W_i)\frac{d(T_{Si})}{dt}$$

$$= \left(\frac{kA_hN}{LA_c}\right)(H_i - I_{Si})(\lambda_{Si} - C_{pw}T_{Si})$$

$$+ \frac{h_cA_hN}{LA_c}(T_{Ai} - I_{Si})$$
(4)

where λ_{Si} is the latent leat of vaporization at temperature T_{Si} in cell no. i (kJ kg. ρ_{FB}), ρ_{FB} the apparent density of honeycomb wall (kg m).

It should be noted that a similar set of equations is applicable to the slots in the dehumidification section (j =101, 102, ..., 400), except that the air flow direction is reversed.

Air circulation during the night inside the closed room can be approximated at a series of R imaginary completely mixed compartments (1 = 2-4). Here R is the number of compartments in the ream. As dehumidified air circulates through the room, it pic s up moisture from the wet concrete hoor thus gradually dr ing out the floor. Because of space limitation the model equitions for the room are omitted here. The fourth order Rung -Kutta method is used to integrate the set of four (MN 4 R) ordinary differential equations simultaneously. By chibsing the time step of integration appropriately, at the er l of each time step, slot no. j will rotate to replace the ne t slot j + 1 successively in circle. Similarly, slot no. M w 1 replace slot no. 1 after each time step.

3. Experimental

The tested honeycon > rotor [14] has a 52.5 cm diameter and 10 cm width. F . 3 shows a schematic diagram of the honeycomb rotor (humidifier, The area ratio of the dehumidification to the regeneration section is 3:1. The

Dehumidified Air Room Air Exhaust Air Regen, Air

Fig. 3. Schematic diagram of honeycomb rotor dehumidifier.

rotary dehumidifier is operated overnight in a closed room with 45 m² floor area. Temperature of the heat ambient air entering the regeneration section is set constant at 350 K. Wet- and dry-bulb temperatures of the ambient air (before the air heater) of room and dehumidified air at the outlet of the absorption section were recorded continuously. The air

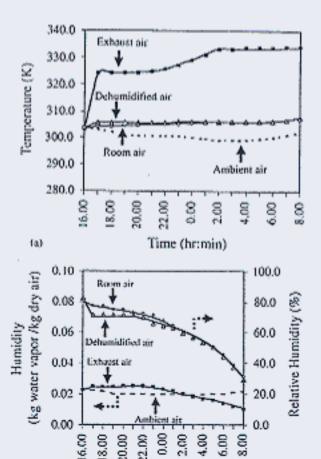
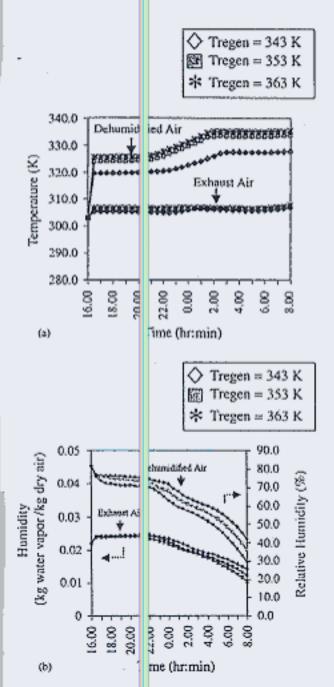


Fig. 4. (a) Comparison of the predicted air temperatures with the experimental results ($T_{regen} = 353 \,\mathrm{K}_{\circ} \, v_{abs.in} = 1.37 \,\mathrm{m/s}, \, v_{regen,in} = 1.01 \,\mathrm{m/s},$ rotational speed = 10 rph); (b) comparison of the predicted air and relative humidities with the experimental results ($T_{regen} = 353 \,\mathrm{K}$, $v_{\text{obs,in}} = 1.37 \,\text{m/s}, v_{\text{regen,in}} = 1.01 \,\text{m/s}, \text{ rotational speed} = 10 \,\text{rph}).$

Time (hr:min)

(b)


are 22 and 5.4 m³/s, respectively.

flow rates across the ab rption and regeneration sections

4. Results and discussion

The observed ambien air conditions are used as timedependent inputs to the leater of the regeneration section. Since the room is completely closed off at night, only the nitial conditions in the r bm at the start of operation of the

rotary dehumidifier are needed to run the simulation. Fig. 4 shows a typical example of the ambient air (broken line) and the simulated (solid line) vs. experimental values (dots) of the various air temperatures and humidities. Evidently the predicted and observed values of the dehumidified (absorption outlet), room and exhaust air (regeneration outlet) are in very good agreement. Though not shown here, additional tests carried out on several other days

 $v_{regen,in} = 1.01 \text{ m/s}, \text{ rotational peed} = 10 \text{ rph}).$

Fig. 5. (a) Comparison of the predicted air temperatures at various regenerated temperatures (v_{aba}) = 1.37 m/s, $v_{regen,in}$ = 1.01 m/s, rocational speed == 10 rph); (b) (imparison of the predicted air and relafive homidities at various reg perated temperatures ($v_{abs,iq} = 1.37 \text{ m/s}$,

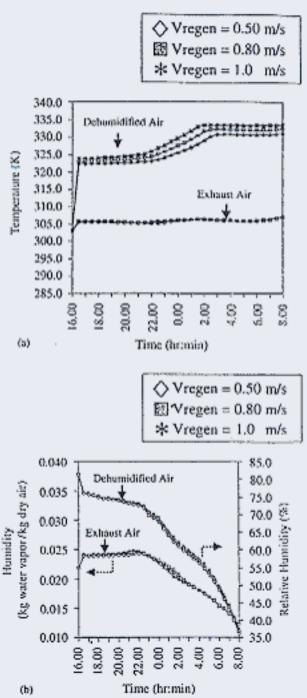


Fig. 6. (a) Comparison of the predicted air temperatures at various regenerated velocities ($T_{mgan} = 353 \, \text{K}$, $v_{abs,in} = 1.37 \, \text{m/s}$, rotational speed = 10 rph); (b) comparison of the predicted air and relative humidities at various regenerated velocities ($T_{regen} = 353 \text{ K}$, $v_{abs,in} = 1.37 \text{ m/s}$. rotational speed == 10 rph).

validated.

efficiency.

5... Conclusion

overnight.

also gave the same go d agreement. Thus it may be concluded that a simple ynamic model for the honeycomb rotary dehumidifier his successfully been developed and

Next the effects of he regenerator's inlet air temperature and velocity on til; efficiency of dehumidification are investigated. As shown in Fig. 5, the temperature and humidity of both the dehumi lifted and exhaust air depend significantly on the regenera r's inlet air temperature. Obviously, the humidity of room ir can be reduced faster at a higher regenerator's tempera ire. The effect of the regenerator's air velocity is shown |) Fig. 6. It can be seen that the air velocity has insignific at influence on the dehumidification

The new simple (namic model has been shown to simulate the dynamic performance of a honeycomb rotary Schumidifier that ag es well with experimental results. Though the model i as developed and validated for an absorption-type dehu idifier, the approach should also be applicable to the adsoration-type dehumidifier. Coupled with a simple model for the humid air in a closed room with wet floor, the present mo it has also proved successful in predicting the property c lange in the room air and the decreasing amount of water a maining on the wet concrete floor. In the next investigation the coupled models will be used to obtain an optimal set | f operating conditions that minimizes the energy and/or tile required to dry-out the wet floor

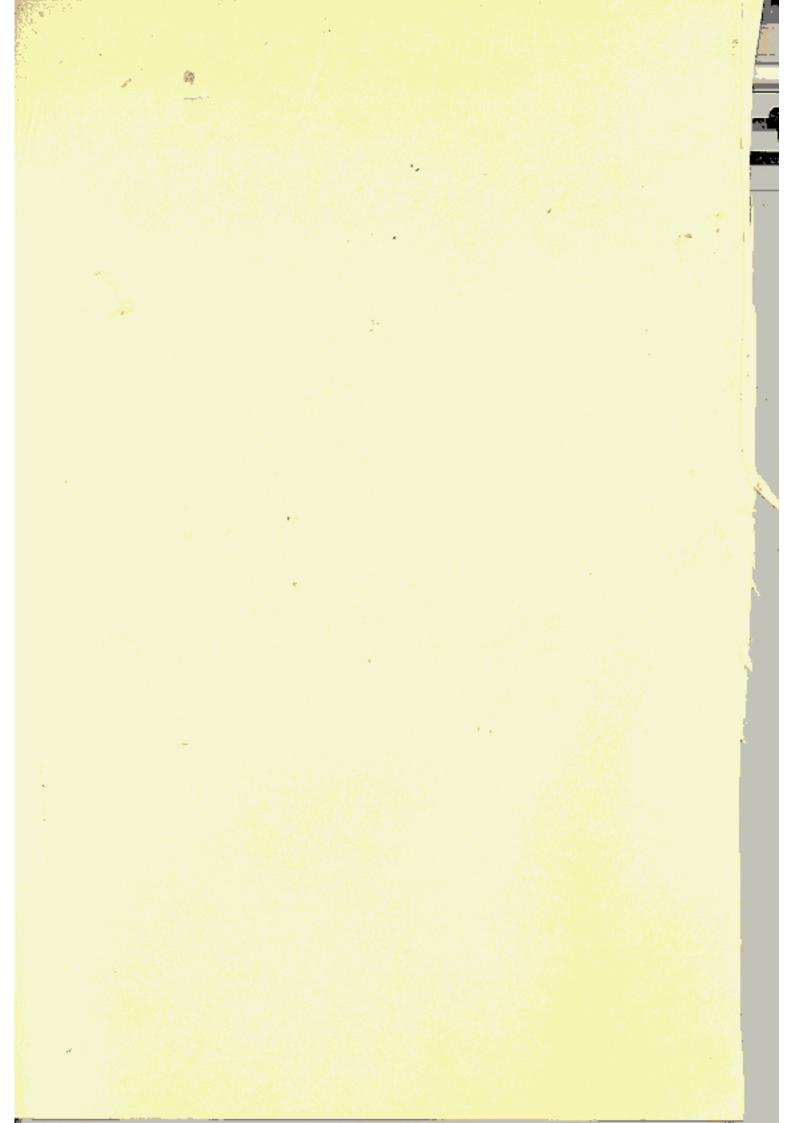
Acknowledgements

Financial support from Thailand Research Fund (Senior Research Scholar Program) for WT is gratefully acknowledged. Preparation of the manuscript is aided by Ornjira Rungarunsangchai who also received partial financial support from the same TRF Program.

References

- [1] A. Kodama, M. Goto, T. Hirose, T. Kuma, J. Chem. Eng. Jpn. 26 (1993) 530-535.
- [2] A. Kodama, M. Goto, T. Hirose, T. Kuma, J. Chem. Eng. Jpn. 27 (1994) 644-649.
- [3] A. Kodama, M. Goto, T. Hirose, T. Kuma, J. Chem. Eng. Jpn. 28 (1995) 19-24.
- [4] I.L. Maclaine-cross, P.J. Banks. Int. J. Heat Mass Transfer 15 (6) (1972) 1225-1242.
- [5] P.J. Banks, ASME J. Heat Transfer 107 (1985) 222-229.
- [6] P.J. Banks, ASME J. Heat Transfer 107 (1985) 230-238.
- [7] B. Mathiprakasam, Z. Lavan, ASME J. Solar Energy Eng. 102 (1980)
- [8] R.B. Holmborg, ASME J. Heat Transfer 101 (1979) 205-210.
- [9] J.J. Jurinak, J.W. Mitchell, J. Heat Transfer Trans. ASME 106 (1984)
- [10] K.J. Schultz, J.W. Mitchell, ASME J. Solar Energy Eng. 111 (1989) 286-291.
- [11] W. Zheng, W.M. Worek, Numer. Heat Transfer A 23 (1993) 211-232.
- [12] D.M. Himmelbleu, K.B. Bischoff, Process Analysis and Simulation, Wiley, New York, 1970.
- [13] J.H. Perry, Chemical Engineers' Handbook, 3rd Edition. McGraw-Hill, New York, 1958.
- [14] A. Prawampit, Simulation of rotary adsorption dehumidifier system, M.S. Thesis, Department of Chemical Engineering, Chulalongkorn University, Bangkok, Thailand, 1999.

รายชื่อผู้ท่างานในโครงการ


รือ - นามสถุล	ราดเชรินหมาร	วิชาการ	ด้นสังกิด	ตำแหน่งในโครงการ	สถานภาพปัจจุบัน
	เมื่อเข้าร่วมโครงการ	ปัจจุบัน			
ninani wasana mare reara (il	DEIMTERNIN	DELATERINIT	PETERINGENERAL	STHERE SHANE	031414141111
2) รศ.ศร. ศิริกัสยาสุวจิตตานนท์	รองศาสคราขารย์	รองศาสตราขารย์	มหาวิทยาลัยเกษครศาสคร์	นักวิจัย	รองศาสตราจารย์
3) รศ.คร. ธวัชชัย ชรินหาณิชกุล	ผู้ชวยสาสตราจารย์	รองศาสตราจารย์	จุฬาลงกรณ์มหาวิทยาลัย	นักวิจัย	รองศาสตราจารข้
4) อ.คร. เงิลทักลี ใชยกุนา	ชาชารษ์	อาจารย์	จุหาลงกรณ์มหาวิทยาลัย	นักวิจัย	อาชารย์
5) อ.คร. เคชา นัครศิริเวช	อาจารซ์	ผู้ช่วยศาสตราจารย์	จุหาลงกรณ์มหาวิทยาลัย	นักวิจัย	ผู้ช่วยศาสตราจารย์
6) อ.คร. สมประสงค์ ศรีชัย	อาหารย์	ผู้ช่วยศาสตราจารย์	จุหาลงกรณ์มหาวิทยาลัย	นักวิจัย	ท้างานเอกชน
7) ผพ.ตร.หทัยชนก ภุริยะบรรเลง	ผู้ช่วยศาสตราจารย์	รองศาสตราจารย์	จุฬาลงครณ์มหาวิทยาลัย	นักวิจัย	รองศาสตราจารย์
8) อ.คร.ศราวุธ วิมคุศิค	อาชารย์	ยาจารซ์	ขุหาถงกรณ์มหาวิทยาลัย	นักวิจัย	อาจารย์
9) อ.ณัฐพร โทฌานาท์	อาจารซ์	ยาจารข์	จูหาลงกรณ์มหาวิทยาลัย	นักวิจัย	อาจารย์
10) นายชิระทักคี้ แสงพุ่น	นักศึกมา	ขนการศึกมา	จุฬาลงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาเอก	จบการศึกษา
11) ນາຍຄິກສີສັກສ໌ ສາມຊົรິຍກູສ	นักศึกมา	จบการศึกษา	จุฬาลงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาไท	หมการศึกษา
12), นายเศรษฐา ตันคิโรจนาเมธ	นักศึกษา	จบการศึกษา	จุหาลงกรณ์มหาวิทยาลัย	นักศึกษาบริญญาให	ขบการศึกษา
13). ນາຍອຸຄຸມເຄຮ ອາຕີຈສນາພັພກ໌	นักศึกษา	ขบการศึกษา	มหาวิทยาลัยภษครศาสคร์	นักศึกษาบริญญาใท	านกริสักษา
14) นายชิตคิวุติ เพชรมุนี	นักศึกษา	ขบการที่กมา	จุฬาลงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาให	านการศึกษา
15) นายจักรกฤษณ์ แย้มเกตุ	นักศึกษา	านการศึกษา	จูฬาถงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาโท	รมการศึกษา
16) นายพิเชฐ ชินทร์เชื้อ	นักศึกษา	งบถารศึกษา	จุหาถงกรณ์มหาวิทยาถัย	นักศึกษาปริญญาไท	งบการศึกษา

อนอนเท - อน	ราการรับภาพทาก	วิชาการ	ดันฮังกิด	ตำแหน่งในโครงการ สถานภาพปัจจุบัน	สถานภาพปัจจุบัน	
	เมื่อเข้าร่วมโครงการ	ปัจจุบัน				
(17) นายกิตศิพรษ์ พัฒนทอง	นักศึกษา	าบการศึกมา	จูหาลงกรณ์มหาวิทยาถัย	นักศึกษาบริญญาโท	ะบการศึกษา	
เ8) น.ศ.อรัญญา ทองเซี่ยว	นักศึกษา	หมการศึกษา	จูหากงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาไท	จบการศึกษา	
10) บาทเมนิ สุดาวิตา	רואסמטיו	CALONESTOWN	Manuschinister mine	and and the same of the same o	and and	
20) นายวุฒิพงศ์ พงศ์ชตุรวิทย์	นักศึกษา	จบการศึกมา	จุหาถงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาโท	จบการศึกษา	
21) นายวิฤทธิ์ วชิรบัญชร	นักศึกษา	ขบการศึกษา	ทุศาลงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาโท	จบการศึกษา	
22) นายอนวัช ประธาลพิทย์	นักศึกษา	ายการศึกษา	จุหาลงกรณ์มหาวิทยาถัย	นักศึกษาปริญญาไท	งขการศึกษา	
23) นายประธาน วงศ์ศริเวช	นักศึกษา	านการศึกษา	จุฬาลงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาไท	จบการศึกษา	
24) น.ส.รัตนณี หาญาณิชศักดิ์	นักศึกษา	ชนการศึกษา	จุฬาลงกรณ์มหาวิทยาถ้อ	นักศึกษาปริญญาโท	ะบการศึกษา	
25) น.ส.นงสักษณ์ ซินทุมากร	นักสีกษา	ายการศึกษา	จุฬาลงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาโท	งบการศึกษา	
26) น.ส.ชนัญชิคา บุญกระหือ	นักศึกษา	ขบการศึกษา	จุหากงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาไท	จบการศึกษา	
27) น.ศ.รัชญา รัตนมุง	นักศึกษา	อนการศึกษา	จุฬากงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาไท	ายเการศึกษา	
28) น.ศ. ตุกูล คุรุเศทียร	นักศึกษา	จนการศึกษา	พุศาถงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาไท	จบการศึกษา	
29) นายนิธิ นิกรณ์ปกรณ์	นักศึกษา	จบการศึกษา	จุฬาสงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาโท	จบการศึกษา	
30) นายสันคิ วัฒนาบุชรณ์	นักศึกษา	านการศึกษา	จุหาลงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาไท	ขบการศึกษา	
31) นายไพศาล คณประสานกาล	นักศึกษา	านการศึกษา	จุฬากงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาให	านการศึกษา	
32) นายนพคล อนุจาร็อากา	นักศึกษา	ขบการศึกษา	จุหาดงกรณ์มหาวิทยาสัย	นักสึกษาปริญญาไท	งบการศึกษา	
33) น.ศ. สิริหร คงพันธุ์ศูนทร	นักศึกษา	ขบการสีกมา	จุฬาลงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาไท	งบการศึกษา	
34) นายอนุรักษ์ หวานเสนาะ	นักศึกษา	ขบการศึกษา	จูหาลงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาโท	านกรศึกษา	

ชื่อ - นามสถุล	ตำแหน่งวิชาการ	วิชาการ	ด้นถังกัด	ตำแหน่งในโครงการ	สถานภาพปัจจุบัน
	เมื่อเข้าร่วมโครงการ	ปัจจุบัน			
35) นายพิชาญ สันติรัยปกรณ์	นักศึกษา	จบการศึกษา	จุหากงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาใท	งมการศึกษา
นาวเมาเกิดติดีกลี สาเทราแร้กน์	บักลักนา	คราการศึกรภ	เขเกลงกรณ์แหาวิทยาลัย	น้าศึกษาไร้ถถาให	จนการศึกษา
37) น.ศ. รวิรัคน์ อิสระธรรมนูญ	นักศึกษา	ขบการศึกษา	ขุราลงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาไท	งมการศึกษา
38) น.ส. บงกซ งามสม	นักศึกษา	านการศึกษา	จุฬาลงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาโท	จบการศึกษา
39) น.ส. ทัศนีย์ วัฒนหาวน์พิสุทธิ์	นักศึกษา	านการศึกษา	จุหาลงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาใท	งขการศึกษา
40) น.ศ. นันทบาศ ทัศละวร	นักศึกษา	จบการศึกษา	จุหาลงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาใท	งขการศึกษา
41) น.ส. พุธพรรณ จรูญรัคน์	นักศึกษา	จบการศึกมา	จูหาลงกรณ์มหาวิทยาถัย	นักศึกษาปริญญาใท	งบการศึกษา
42) น.ส. ดารณี สีนา	นักศึกษา	จบการศึกษา	จุหาลงกรณ์มหาวิทยาลัย	นักศึกมาปริญญาใท	งบการศึกษา
43) น.ส.นริศรา สุขสมัย	นักศึกมา	านการศึกษา	จุหาถงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาให	จบการศึกษา
44) นายกษม ชัดยาวุฒิพงศ์	นักศึกมา	านการศึกษา	จุหาถงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาโท	จบการศึกษา
45) น.ศ. สาวิตรี แสจแก้ว	นักศึกมา	านการศึกษา	จุหาถงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาโท	งบการศึกษา
46) นายเกรียงไคร มณิชินทร์	นักศึกษา	ขมการศึกษา	จุหาลงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาโท	ขบการศึกษา
47) น.ส. กนิษฐา ผจญอริพ่าย	นักศึกมา	ขมการศึกษา	จุฬาตงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาโท	จบการศึกษา
48) น.ศ. อรจิรา รุงอรุฒแสงทัย	นักศึกษา	ารศึกษา	จุหาตงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาโท	จบการศึกษา
49) น.ส. สมชิตร วงศ์กำชัย	นักที่กรา	เบการศึกษา	จุฬาถงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาโท	จบการศึกษา
50) นายพรเพท สิทธิศักดิ์	นักศึกษา	จบการศึกษา	จุฬาถงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาโท	ขบการศึกษา
51) นายรีรพงศ์ เชยภูปิยะวงศ์	นักศึกษา	จบการศึกษา	จุหาลงกรณ์มหาวิทยาถัย	นักศึกษาปริญญาโท	งบการศึกษา
52) นายปริญญา พนาพิศาล	นักศึกษา	ขบการศึกษา	จุฬาลงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาไท	จบการศึกษา

	. 7		200	ดำเหน่งในโครงการ	สถานภาพปัจจุบัน	
รัก - นามสิทธิ	สายเหน่าวิชาการ	\$101\$	MUTAN			
	A. 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	ปัจจุบัน				
	13/01/4 3 14/11/4 14/11/4	4	Manual Control of the	นักศึกษาปริยุยาโท	จบการศึกษา	
53) นายกิตสิศักดิ์ ปังสมบูรณ์ยัง	นักศึกษา	รบการศักษา	WHINNIAM CONTRACTOR	น้าเลยการใหน่	จนการศึกษา	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	นกศักษา	TOTALISM		4	100	L.
(40) H.D. (10) H.D. (40)	้าอลีกนา	านารศึกษา	อุหาลงกรณ์มหาวิทยาถ้ย	นักศึกษาปริญญาเท	EMPSTRUM.	
55) นายเมชิ ขตไมตรั	7	เหตุกรที่สุดเกล	จหาลงกรณ์มหาวิทยาถัย	นักศึกษาปริญญาใท	งบการศึกษา	
56) นายณัฐ งามเจคนรมยั	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ะมคารศึกษา	เขพาลงกรณ์มหาวิทยาทัย	นักศึกษาปริญญาโท	งบการศึกษา	
รา) นายสหัส ไทยโย	Rubun	46		นักศึกษาปริญญาศรี	านการศึกษา	
58) น.ส.วิไลลักษณ์ ศิรางศ์รังสรรค์	นักศึกษา	THE STATE OF THE S	*************************************	นักศึกษาปริญญาครี	ชมการศึกษา	
59) น.ศ. ปกาวัลย์ สุทธิประสิทธิ์	นถศึกมา	WINTERNIE I	ระบาตรกรณ์มหาวิทยาดัย	นักศึกษาปริญญาตรี	จบการศึกษา	
60) น.ศ. สิติภา พงศ์แพรวพรรณ	นักศึกษา	White later is	นาก เจรณ์ทราวิทยาซัก	นักศึกษาปริญญาศรี	ายบการศึกษา	
61) น.ศ. บุษรี เมืองถ้ำ	นักศึกษา	WINTSMIB!	The Change of th	รัฐกราเริยยาครี	ายการศึกษา	
เรา บายสทัศน์ ไหต่อุคมสิน	นักฟึกษา	านาคระเทรา	gwrmansuman range	9 41		
200 July 20 B	นักศึกษา	หมการศึกษา	งุหากงกรณ์มหาวิทยาลีย	ะพานิย์อรินารการกระเรา		
63) นายธรศกต (สวรกษ	100	านการศึกษา	พุทองกรณ์มหาวิทยาลัย	นักศึกษาปริญญาตรี		
64) นายสานิต ศิริกลการ	e diministra	จาเการศึกษา	จุพาลงกรณ์มหาวิทยาถัย	นักศึกษาปริญญาศรี	รู้ ขบการทึกษา	_
65) น.ส. ธัญญรศ ภูริปรัชญา	ummis i	จะเอาร์ฟี้กัน	จหากงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาศรี	รู้ ขนการศึกษา	
66) น.ส. เชื้อพร นพมงคล	unomne.	ดาเจาร์ศีกษา	• จหาถงกรณ์มหาวิทยาถับ	นักศึกษาปริญญาตรี	รู้ ขมการศึกษา	
67) นายชนินทร์ วงย์ดนตรี	I RUMUM	เพาะที่ยนา	จุหาองกรณ์มหาวิทยาลัย	นักศึกษาปริญญาตรี	รู้ จบการศึกษา	
68) นายประวิทย์ สุรณาภรณ์ชัย	TUNNIBI	องเอารสิกนา	อหาลงกรณ์มหาวิทยาลัย	นักศึกษาบริญญาครี	รู จบการศึกษา	
69) นายชลันวุฒิ นุคยกุก	นกสถษา					

รื่อ - มามสกล	ชั่วเหมเล	ລີ່ສາຄາລ	ด้นตั้งก็ด	ตำแหน่งในโดรงการ สถานคาพร์โดกกัน	กลานภาพร์โลกนั้น
	เมื่อเข้าร่วมโครงการ	ปัจจุบัน			
70) นายท์ศิ ศรีวสุทธา	นักศึกษา	านการศึกษา	จุหาดงดรณ์มหาวิทยาลัย	นักศึกษาปริญญาตริ	ขบการศึกษา
71) นายวิรวิทย์ คลังบุญเสริม	นักศึกษา	ายการศึกษา	อนายจะเก็บหน้อยจะสพดุ	นักศึกษาปริญญาตรี	ขนการศึกษา
(72) นายธนโรงน์ ทิมอุคม	นักศึกษา	านการศึกษา	จุฬาถงกรณ์มหาวิทยาลัย	นักศึกษาปริญญาตริ	านกระการ

