

โลก (global warming potential, GWP) สูงขึ้นด้วย^[1]

๒. ไฮโดรคลอรอฟลูออโรคาร์บอน (hydrochlorofluorocarbon, HCFC) สาร HCFC ประกอบด้วยไฮโดรเจน (H) คลอรีน (Cl) ฟลูออโรรีน (F) และคาร์บอน (C) สารเหล่านี้มีค่า ODP และ GWP ต่ำกว่าสาร CFC มาก สาร HCFC นี้เป็นที่นิยมใช้ในปัจจุบัน อย่างไรก็ตามสาร HCFCs เหล่านี้ก็ถูกจำกัดการผลิตตามพิธีสารอนุหรืออุตสาหกรรม

๓. ไฮโดรฟลูออโรคาร์บอน (hydrofluorocarbon, HFC) สาร HFC ประกอบด้วย ไฮโดรเจน (H) ฟลูออโรรีน (F) และคาร์บอน (C) สารนี้ไม่ใช่ส่วนประกอบของอะตอมคลอรีน ดังนั้น ค่าของ ODP จึงเป็นศูนย์ ขณะนี้สาร HFC จึงได้รับการสนใจที่จะพัฒนาเพื่อมาทดแทนสาร CFC และ HCFC

๔. สารอินทรีย์ (inorganic compounds) สารเหล่านี้ยังคงใช้ในระบบทำความเย็น ค่าของ ODP เป็นศูนย์และมีคุณลักษณะตามความต้องการอยู่ ถึงแม้ว่า สารอินทรีย์บางชนิดจะเป็นพิษและติดไฟง่ายก็ตาม

๕. สารยาลอน (halon, BFC) ประกอบด้วยไนโตรเจน (B) ฟลูออโรรีน (F) และคาร์บอน (C) สารประเภทนี้ถูกยกเลิกการผลิตไปตั้งแต่วันที่ ๑ มกราคม พ.ศ. ๒๕๔๗

พิธีสารมอนทรีออล (Montreal Protocol)

มนุษย์ใช้สารที่รีดตัวทำลายชั้นโคลโอนโดยไม่ต้องทราบจากกระบวนการคุ้มและคันคัววิจัยเพื่อป้องกันการทำลายชั้นโคลโอน ตัวการสำคัญที่ทำให้โคลโอนถูกทำลาย ได้แก่ สาร CFC และสารยาลอน โดยมีการนำไปใช้ในอุตสาหกรรมเครื่องจักรอาชีวภาพ เครื่องทำความเย็น และอื่น ๆ ใน พ.ศ. ๒๕๒๔ (ค.ศ. ๑๙๘๑) นานาประเทศได้มาประชุมที่กรุงเวียนนา ประเทศออสเตรีย เพื่อร่วมกันจัดทำข้อตกลงว่าด้วยการรีดกันชั้นโคลโอนเรียกว่า อนุสัญญาเวียนนา ต่อมาใน พ.ศ. ๒๕๓๐ (ค.ศ. ๑๙๘๗) ได้ประชุมกันอีกที่เบอร์กันท์ฟลู ประเทศแคนาดา ซึ่งจัดโดยโครงสร้างสิ่งแวดล้อมแห่งสหประชาชาติ ที่ประชุมได้จัดทำพิธีสารอนุหรืออุตสาหกรรม หรือพิธีสารว่าด้วยการเลิกใช้สารทำลายชั้นโคลโอน พิธีสารนี้มีผลบังคับใช้ตั้งแต่วันที่ ๑ มกราคม พ.ศ. ๒๕๓๔ (ค.ศ. ๑๙๘๑) โดยประเทศไทยร่วมลงนามในพิธีสารนี้เมื่อวันที่ ๑๕ กันยายน พ.ศ. ๒๕๓๑ (ค.ศ. ๑๙๘๘) และให้สอดคล้องกับวันที่ ๗ กันยายน พ.ศ. ๒๕๓๑ (ค.ศ. ๑๙๘๘)

ใน พ.ศ. ๒๕๓๓ (ค.ศ. ๑๙๘๐) ได้มีการจัดประชุมที่กรุงลอนดอน ประเทศอังกฤษ เพื่อยกเลิกการผลิตและการใช้สาร CFC และสารยาลอนไม่ใช่ประเทศที่พัฒนาแล้วมากไป พ.ศ. ๒๕๓๗ ปีที่ ๒๕ 闰บันทึก

(ค.ศ. ๒๐๐๐) และการประชุมครั้งล่าสุดที่กรุงโคเปนเฮเกน ประเทศเดนมาร์กเมื่อ พ.ศ. ๒๕๓๕ (ค.ศ. ๑๙๙๗) เพื่อยกเลิกการผลิตและการใช้สาร CFC ให้เร็วขึ้นเป็น พ.ศ. ๒๕๓๙ (ค.ศ. ๑๙๙๖) นอกจากนี้ การประชุมยังได้กำหนดการปรับเปลี่ยนการลดการผลิตของสาร HCFC โดยจำกัดการผลิตใน พ.ศ. ๒๕๓๙ (ค.ศ. ๑๙๙๖) กำหนดให้ห้ามการผลิตเท่ากับ พ.ศ. ๒๕๓๙ (ค.ศ. ๑๙๙๗) และจะลดการผลิตลงร้อยละ ๓๕ ใน พ.ศ. ๒๕๔๔ (ค.ศ. ๒๐๐๑) พ.ศ. ๒๕๕๓ (ค.ศ. ๒๐๑๐) จะลดการผลิตลงร้อยละ ๖๕ อีก ๕ ปีต่อมาคือ พ.ศ. ๒๕๕๘ (ค.ศ. ๒๐๑๕) จะลดการผลิตลงร้อยละ ๙๐ หลังจากนั้นใน พ.ศ. ๒๕๖๓ (ค.ศ. ๒๐๒๐) จะลดการผลิตลงร้อยละ ๙๕.๕ และในที่สุดจะยกเลิกการผลิตใน พ.ศ. ๒๕๗๓ (ค.ศ. ๒๐๓๐)^[๑]

สำนักงานประเทคโนโลยีได้ร่วมลงนามเป็นภาคีสมาชิกของพิธีสารมติที่รืออุต แล้วเริ่มปฏิบัติตามเพียงครึ่งปีของพิธีสารมติที่รืออุตตั้งแต่วันที่ ๕ ตุลาคม พ.ศ. ๒๕๓๙ โดยรีบเนื่องจากหลักที่รับผิดชอบคือ กรมโรงงานอุตสาหกรรม กระทรวงอุตสาหกรรม ซึ่งได้ดำเนินการจัดทำแผนแห่งชาติว่าด้วยการลดและการเลิกใช้สารทำลายไอโอดีนในชั้นบรรยากาศ โดยกำหนดเลิกใช้สาร CFC ในสินค้าใหม่ พ.ศ. ๒๕๔๑ และเลิกใช้สาร CFC ในการซ่อมบำรุงใน พ.ศ. ๒๕๕๓^[๒]

แนวทางการเลือกสารทำงาน

การออกแบบเป็นความเรียนเพื่อให้งานที่มีช่วงอุณหภูมิแตกต่างกัน การเลือกสารทำงานให้เหมาะสมสำหรับให้งานแต่ละช่วงของอุณหภูมิจึงมีความจำเป็น อุณหภูมิวิกฤต (critical temperature) ของสารทำงานเป็นตัว旁ิชีดึงข้อจำกัดของอุณหภูมิสูงสุดที่จะทำให้ไอของสารทำงานคงอยู่เพื่อที่จะถ่ายโอนความร้อนไปให้งาน สารทำงานควรรักษาความแห้งที่อุณหภูมิต่ำกว่าอุณหภูมิวิกฤตอย่างเหมาะสม เพื่อที่ให้มีเวิร์กอัพความร้อนแบบสูงเพียงพอและความดันควบคุมไม่สูงเกิน จะก่อให้ความร้อนมีพารามิเตอร์ที่สำคัญสำหรับการออกแบบได้ดังนี้คือ

๑. อัตราส่วนการอัด (compression ratio, CR)
๒. อุณหภูมิความแห้ง (condensing temperature, T_{co})
๓. อุณหภูมิแตกต่างรวม (gross temperature lift, $[T_{co} - T_{cv}]$) เมื่อ T_{cv} คือ อุณหภูมิระเหย
๔. สมรรถนะสิทธิ์สมรรถนะแรงดัน (Rankine coefficient of performance, COP_r)

พารามิเตอร์ทั้ง ๔ ตัวนี้มีความสัมพันธ์กับความสมรรถภาพที่ (๑), (๒) และ (๓) ดัง

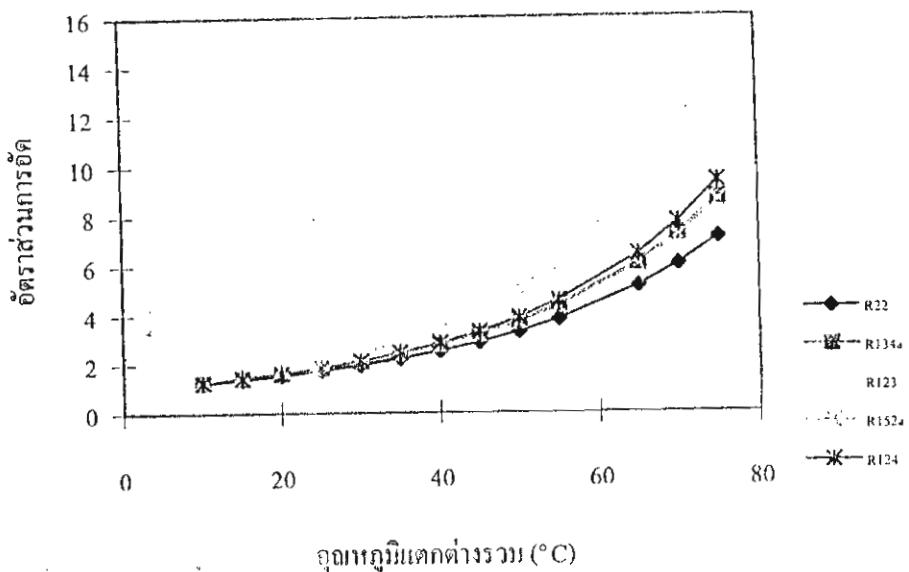
$$\text{อัตราส่วนการอัด} = \frac{P_{CO}}{P_{EV}} \quad (1)$$

$$\text{อุณหภูมิแตกต่างระหว่าง} = T_{CO} - T_{EV} \quad (2)$$

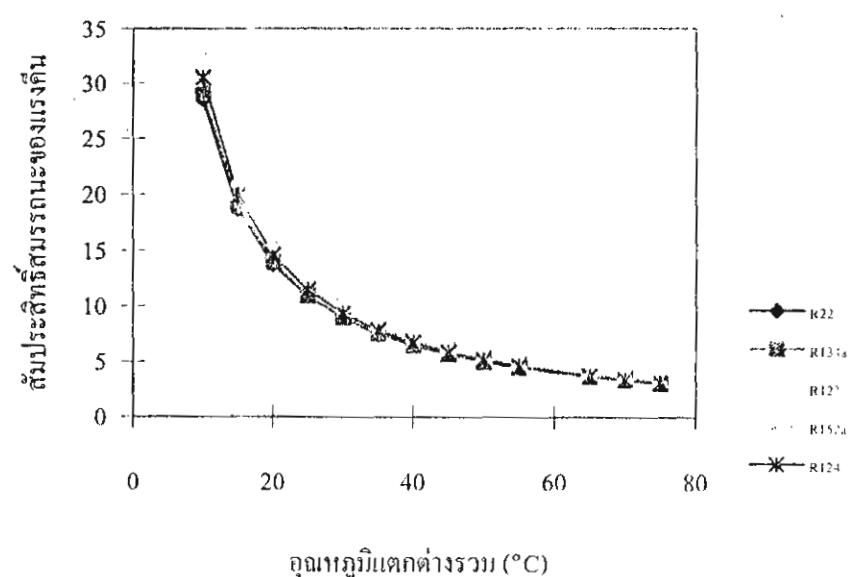
$$\text{สัมประสิทธิ์สมรรถนะแรงดัน} = \frac{Q_{CO}}{W} \quad (3)$$

โดยที่ P_{CO} คือความดันความแห้งซึ่งเป็นฟังก์ชันกับอุณหภูมิความแห้ง (T_{CO}),

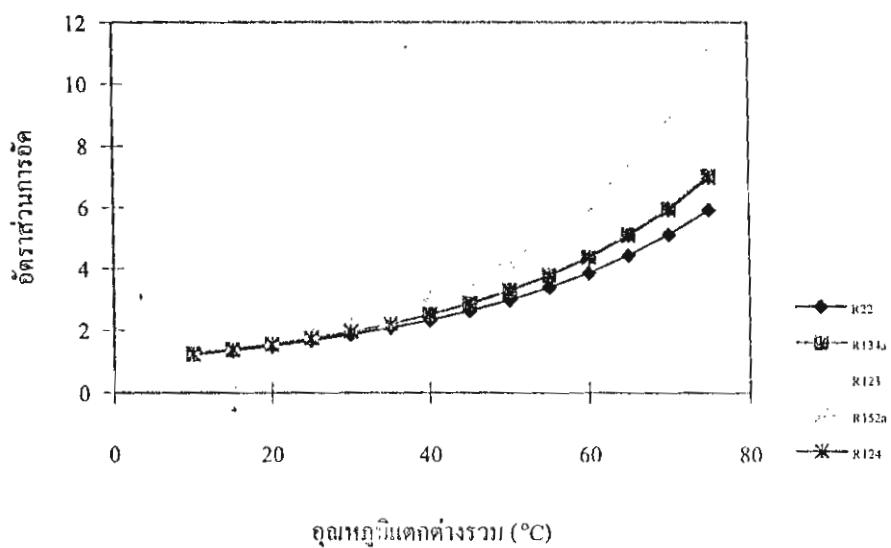
P_{EV} คือ ความดันระเหยซึ่งเป็นฟังก์ชันกับอุณหภูมิระเหย (T_{EV}),

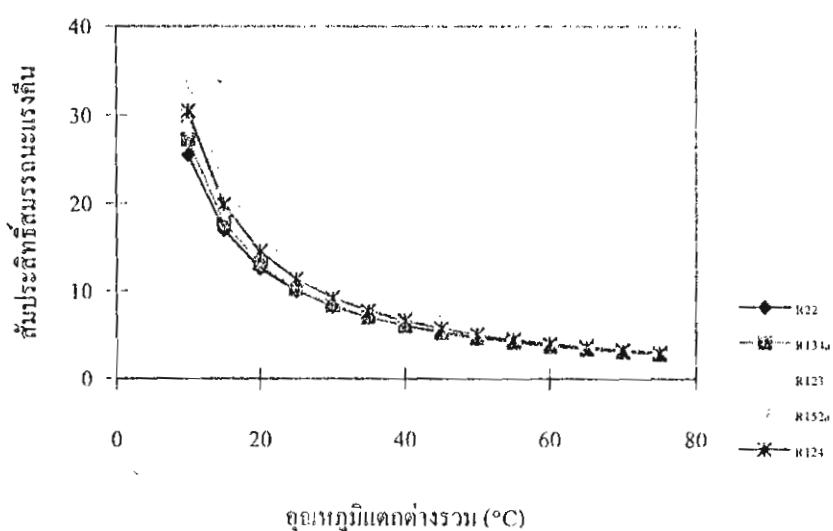

Q_{CO} คือความร้อนที่ได้จากการอัดของความแห้งซึ่งเป็นฟังก์ชันกับอุณหภูมิความแห้ง,

W คืองานซึ่งเป็นฟังก์ชันกับอุณหภูมิความแห้งและอุณหภูมิระเหย


จากสมการทั้ง ๓ ข้างต้นจะเห็นว่า ถ้ากำหนดพารามิเตอร์ ๒ ตัว ก็สามารถคำนวณหาพารามิเตอร์อีก ๑ ตัวที่เหลือได้ โดยการใช้สมการที่ (๑), (๒) และ (๓) ประกอบกับสมบัติของสารทำงานชนิดนั้น ๆ ตัวอย่างเช่น ถ้ากำหนดอัตราส่วนการอัดและอุณหภูมิความแห้ง จะวิเคราะห์ต่อนการคำนวณหาอุณหภูมิแตกต่างระหว่าง และสัมประสิทธิ์สมรรถนะแรงดันดังนี้ นำอุณหภูมิความแห้งไปหาความดันความแห้งจากตารางสมบัติของสารทำงาน ต่อมาใช้สมการที่ (๒) จากนั้นจึงนำไปหาอุณหภูมิระเหยจากตารางสมบัติของสารทำงาน ต่อมาใช้สมการที่ (๓) โดยความร้อนที่ได้จากเทิร์องความแห้งคือ การเปลี่ยนแปลงของเอนทัลปีที่อุณหภูมิความแห้งคงที่ ซึ่งสามารถได้ค่าได้จากตารางสมบัติของสารทำงาน และงานคือการเปลี่ยนแปลงของเอนทัลปีของสารทำงานเมื่อเปลี่ยนจากอุณหภูมิระเหยไปเป็นอุณหภูมิความแห้งโดยมีค่าเท่ากับ R ที่ $R = \frac{T_{EV}}{T_{CO}}$ ที่ T_{EV} คืออุณหภูมิความแห้ง ๙๐ องศาเซลเซียส และ ๘๘ องศาเซลเซียส ได้ผลตามรูปที่ ๑, ๒, ๓, และ ๔

รูปที่ ๑ แสดงความสัมพันธ์ระหว่างอัตราส่วนการอัดกับอุณหภูมิแตกต่างระหว่าง และความสัมพันธ์ระหว่างสัมประสิทธิ์สมรรถนะแรงดันกับอุณหภูมิแตกต่างระหว่างของสารทำงาน R -๒๒๒, R -๑๙๗, R -๑๗๗ และ R -๑๕๘ ที่ T_{CO} คืออุณหภูมิความแห้ง ๙๐ องศาเซลเซียส และ T_{EV} คืออุณหภูมิระเหย


รูปที่ ๒ แสดงความสัมพันธ์ระหว่างอัตราส่วนการอัดกับอุณหภูมิแตกต่างระหว่างของสารทำงานต่าง ๆ ที่ T_{CO} คืออุณหภูมิความแห้ง ๙๐ องศาเซลเซียส พนท. คืออัตราส่วนการอัดสูงที่สุดเมื่ออุณหภูมิแตกต่างระหว่างสูงที่สุด สารทำงาน R -๒๒๒ มีอัตราส่วนการอัดต่ำที่สุด และอัตราส่วนการ


รูปที่ ๑ กราฟระหว่างอัตราส่วนการอัดกับอุณหภูมิแตกต่างระหว่างห้องทำงานต่างๆ ที่อุณหภูมิความแห้งใน ๑๐ องศาเซลเซียส

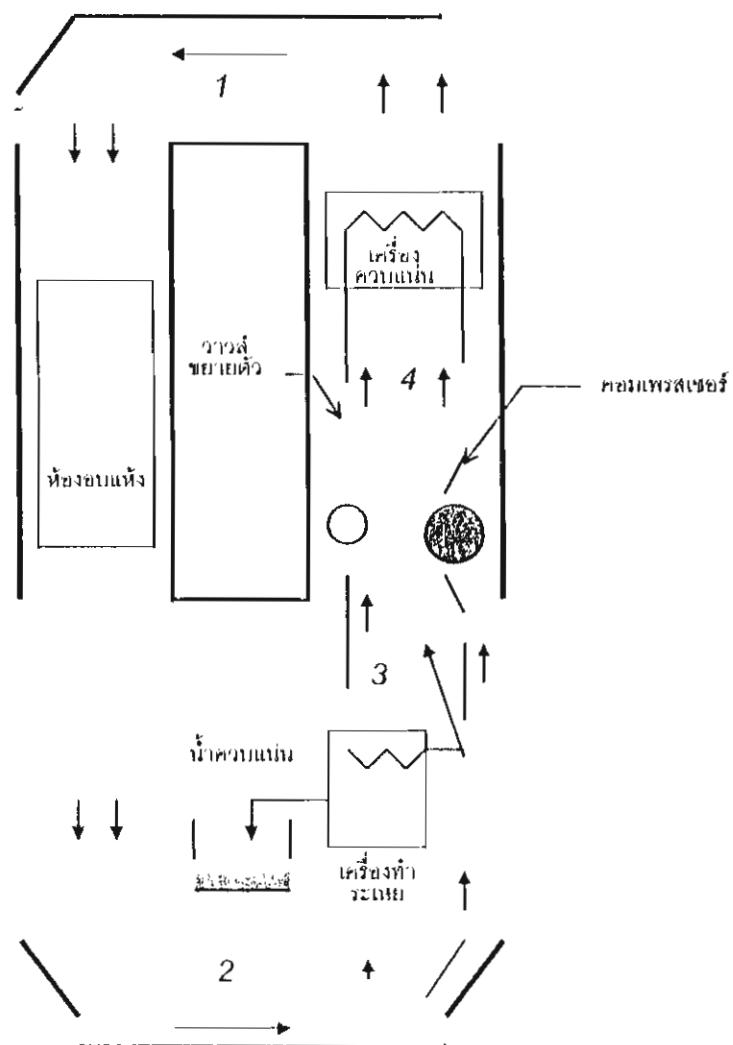
รูปที่ ๒ กราฟระหว่างอัตราส่วนการอัดกับอุณหภูมิแตกต่างระหว่างห้องทำงานต่างๆ ที่อุณหภูมิความแห้งใน ๑๐ องศาเซลเซียส

รูปที่ ๓ กราฟระหว่างอัตราส่วนการอัดกับอุณหภูมิเด็กต่างรวมสำหรับสารทำงานต่างๆ ที่อุณหภูมิความแห้งใน ๘๕ องศาเซลเซียส

รูปที่ ๔ กราฟระหว่างส่วนประดิษฐ์สมรรถนะแรงดันกับอุณหภูมิเด็กต่างรวมสำหรับสารทำงานต่างๆ ที่อุณหภูมิความแห้งใน ๘๕ องศาเซลเซียส

อัดจะต่ำกว่าสารทำงานอื่น ๆ มากขึ้นเมื่อคุณหนูวิแตกต่างรวมสูงขึ้น อย่างไรก็ตามสารทำงาน R-๒๒๒ เป็นสารในกลุ่ม HCFC ซึ่งจะต้องถูกยกเลิกการผลิตในอนาคต สำหรับสารทำงาน R-๑๓๔๒ และ R-๑๕๒๙ มีอัตราส่วนการอัดไกล์เดียงกัน ซึ่งสูงกว่า R-๒๒๒ เล็กน้อย แต่สาร R-๑๕๒๙ เป็นสารที่ติดไฟได้ดีไม่เรียบใช้สำหรับ R-๑๓๔๒ มีอัตราส่วนการอัดสูงที่สุดและจะสูงมากขึ้นเมื่อคุณหนูวิแตกต่างรวมสูงขึ้น

ข้อที่ ๒ แสดงความสัมพันธ์ระหว่างสัมประสิทธิ์สมรรถนะแรงคีนกับคุณหนูวิแตกต่างรวมของสารทำงานต่าง ๆ ที่คุณหนูวิควบคุมแน่น ๙๑ องศาเซลเซียส พนวจ สารทำงาน R-๑๓๔๒ ให้ค่าสัมประสิทธิ์สมรรถนะแรงคีนลดลงเมื่อคุณหนูวิแตกต่างรวมสูงขึ้น สารทำงาน R-๑๓๔๒ ให้ค่าสัมประสิทธิ์สมรรถนะแรงคีนสูงกว่า R-๒๒๒ เล็กน้อยในช่วง ๑๐ - ๑๐ องศาเซลเซียส และจะให้ค่าไกล์เดียงกันในช่วง ๓๐ - ๔๐ องศาเซลเซียส แต่ถ้าคุณหนูวิแตกต่างรวมสูงกว่า ๔๐ องศาเซลเซียส ค่าสัมประสิทธิ์สมรรถนะแรงคีนของสารทำงาน R-๑๓๔๒ จะต่ำกว่า R-๒๒๒ เล็กน้อย

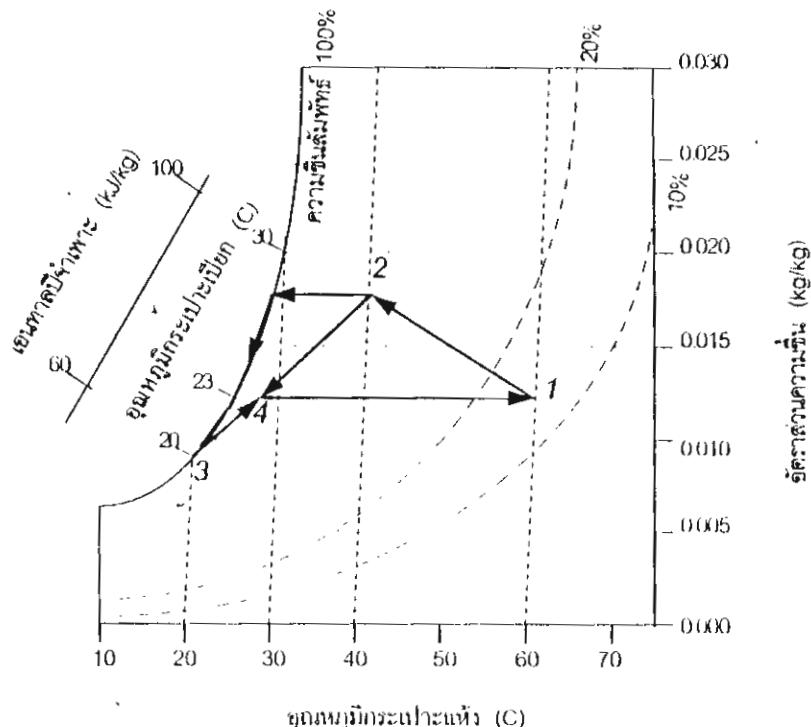

ข้อที่ ๓ แสดงความสัมพันธ์ระหว่างอัตราส่วนการอัดกับคุณหนูวิแตกต่างรวมของสารทำงานต่าง ๆ ที่คุณหนูวิควบคุมแน่น ๙๕ องศาเซลเซียส พนวจให้ผลที่ดีมากกับบันธุ่มที่ ๑ และจากการพิจารณาเปรียบเทียบบันธุ่มที่ ๑ กับบันธุ่มที่ ๓ พนวจว่าอัตราส่วนการอัดลดลงเมื่อคุณหนูวิควบคุมแน่นสูงขึ้น

ข้อที่ ๔ แสดงความสัมพันธ์ระหว่างสัมประสิทธิ์สมรรถนะแรงคีนกับคุณหนูวิแตกต่างรวมของสารทำงานต่าง ๆ ที่คุณหนูวิควบคุมแน่น ๙๕ องศาเซลเซียส พนวจให้ผลที่ดีมากกับบันธุ่มที่ ๒ และจากการพิจารณาเปรียบเทียบบันธุ่มที่ ๒ กับบันธุ่มที่ ๔ พนวจสารทำงาน R-๒๒๒, R-๑๓๔๒ และ R-๑๕๒๙ ให้ค่าสัมประสิทธิ์สมรรถนะแรงคีนลดลงเมื่อคุณหนูวิควบคุมแน่นสูงขึ้น แต่สารทำงาน R-๑๓๔๒ ให้ค่าสัมประสิทธิ์สมรรถนะแรงคีนสูงขึ้นเมื่อคุณหนูวิควบคุมแน่นสูงขึ้น ที่เป็นเช่นนี้เพราะคุณหนูวิแตกต่างของ R-๒๒๒, R-๑๓๔๒ และ R-๑๕๒๙ มีค่าไกล์เดียงกัน (คุณหนูวิวิกฤตของ R-๒๒๒, R-๑๓๔๒ และ R-๑๕๒๙ คือ ๙๒, ๑๐๑, และ ๑๑๓ องศาเซลเซียส ตามลำดับ) ซึ่งเมื่อเพิ่มคุณหนูวิควบคุมแน่นให้สูงขึ้นไกล์เดียงกันคุณหนูวิวิกฤต จะทำให้การเปลี่ยนแปลงของค่าไกล์เดียงกันเพิ่มขึ้น บวกกับผลให้ค่าสัมประสิทธิ์สมรรถนะแรงคีนลดลง แต่สารทำงาน R-๑๓๔๒ มีคุณหนูวิวิกฤตเท่ากับ ๑๙๕ องศาเซลเซียส ซึ่งสูงกว่าคุณหนูวิวิกฤตของสารทำงาน R-๒๒๒, R-๑๓๔๒ และ R-๑๕๒๙ มาก และคุณหนูวิควบคุมแน่นก็จะไปทาง

๙๐ - ๙๒ ของชาเหลเชียต ชื่นห้างจากอุณหภูมิวิกฤตมาก ทำให้การเปลี่ยนแปลงเด่นทั้งปีที่เครื่องควบคุมไม่เพียงเข้ามายืนผลให้ค่าสัมภาระสิทธิ์สมรรถนะแรงดันเพิ่มขึ้นเด่นย

การอบแห้งด้วยปั๊มความร้อน

การเลือกสารทำงานมาใช้ในเครื่องอบแห้งโดยใช้ปั๊มความร้อน นอกจากจะต้องพิจารณาพารามิเตอร์สำหรับการอบแห้ง สมบูรณ์และลักษณะของสารทำงานแล้ว ยังต้องพิจารณาดึงวงจรของลมร้อน อุณหภูมิของลมร้อน ผลิตภัณฑ์ที่ใช้ในการอบแห้ง และอื่น ๆ ด้วยอย่างเช่น ต้องการเลือกสารทำงานเพื่อใช้กับเครื่องอบแห้งปั๊มความร้อน โดยรีวิวจะรวมรับภาระไปในระบบโดยดึงรูปที่ ๕ กำหนดให้อุณหภูมิลมร้อนเท่ากับ ๖๐ ของชาเหลเชียต ดังนี้ อุณหภูมิความแห้งของสารทำงาน


รูปที่ ๕ เครื่องอบแห้งปั๊มความร้อนอุณหภูมิ

ต้องมากกว่า ๖๐ องศาเซลเซียส ถ้าประมวลอุณหภูมิที่เดาต่างระหว่างสารทำงานกับอุณหภูมิลมร้อนที่ผ่านเครื่องความแปร่เท่ากัน ๑๐ องศาเซลเซียส เพาะจะมีต้องกำหนดให้อุณหภูมิความแปร่เท่ากัน ๗๐ องศาเซลเซียส และถ้ากำหนดให้อัตราส่วนการอัดเท่ากัน ๔ กิโลกรัมต่ำอุณหภูมิแตกต่างรวมได้จากรูปที่ ๑ ซึ่งจะได้ค่าอุณหภูมิแตกต่างรวมของสารทำงาน R-๒๒๒, R-๑๗๓, R-๑๒๔, R-๑๓๔ และ R-๑๕๒ คือ ๕๖.๗, ๕๔.๐, ๕๑.๐, ๕๑.๔ และ ๕๒.๖ องศาเซลเซียสตามลำดับ ต่อจากนี้ สามารถหาค่าสัมประสิทธิ์สมรรถนะแรงคีนของสารทำงานต่าง ๆ ได้จากรูปที่ ๒ โดยใช้ค่าอุณหภูมิแตกต่างรวมของสารทำงาน R-๒๒๒, R-๑๗๓, R-๑๒๔ และ R-๑๕๒ ค่าสัมประสิทธิ์สมรรถนะแรงคีนจากรูปที่ ๒ ได้เท่ากัน ๕.๒, ๖.๔, ๕.๖, ๕.๔ และ ๕.๘ ตามลำดับ จากนั้นสามารถหาค่าอุณหภูมิระเบยของสารทำงาน R-๒๒๒, R-๑๗๓, R-๑๒๔, R-๑๕๒ และ R-๑๕๒ เท่ากับ ๑๓.๓, ๒๖.๐, ๑๗.๐, ๑๗.๖ และ ๑๗.๔ องศาเซลเซียสตามลำดับ

รูปที่ ๖ แสดงกระบวนการการทำงาน ๑ นามแหนญ์อากาศชั้นนอกของเครื่องอบแห้งปั๊มความร้อนระบบปิด (ดูรูปที่ ๕ ประกอบ) ตัวແນ່ງ ๑ คือลมร้อนที่เข้าห้องอบแห้ง เมื่อผ่านกระบวนการกรองแห้งจะมีการแลกเปลี่ยนความร้อนและมวลไนโตรเจนตัวແນ່ງ ๒ ซึ่งอุณหภูมิลมร้อนจะต่ำลง แต่ความชื้นสัมพัทธ์จะสูงขึ้น ที่ตัวແນ່ງ ๒ นี้ลมร้อนแยกออกเป็น ๒ ส่วน โดยส่วนแรกลมร้อนในหลอดผ่านเครื่องทำงานเบเย ทำให้ลมร้อนเก็บรากายดึงจุลเนื้อค้างแล้วเกิดกระบวนการแปร่งของไอกำไนส์ในลมร้อนและอุณหภูมิลดต่ำลงจนตึงตัวແນ່ງ ๓ ส่วนที่สองไปในหลอดผ่านเครื่องทำงานเบเย จากนั้นเป็นกระบวนการกรองสมการะแສลมร้อนทั้ง ๒ ส่วนทำให้ได้ลมร้อนตัวແນ່ງ ๔ ซึ่งจะให้ผ่านเครื่องความแปร่และมีการแลกเปลี่ยนความร้อนเท่าให้อุณหภูมิลมร้อนสูงขึ้นเป็นตัวແນ່ງ ๑

ถ้าสมมุติให้อุณหภูมิลมร้อนก่อนเข้าห้องอบแห้ง (ตัวແນ່ງ ๑) มีอุณหภูมิ ๖๐ องศาเซลเซียส และเมื่อออกจากห้องอบแห้ง (ตัวແນ່ງ ๒) มีอุณหภูมิ ๕๐ องศาเซลเซียส จากแผนภูมิอากาศชั้นนอกที่ ๖ พนว่า อุณหภูมิลมร้อนที่ออกจากเครื่องทำงานเบเย (ตัวແນ່ງ ๓) จะต้องต่ำกว่าหรือเท่ากัน ๒๓ องศาเซลเซียส ถ้าประมวลอุณหภูมิที่แตกต่างระหว่างสารทำงานกับอุณหภูมิลมร้อนที่ผ่านเครื่องทำงานเบเยเท่ากัน ๕ องศาเซลเซียส ตัวนี้จะ อุณหภูมิระเบยของสารทำงานจะต้องต่ำกว่า ๑๙ องศาเซลเซียสซึ่งจะเป็นไปได้ หากกำหนดให้ความแปร่เท่ากับ ๗๐ องศาเซลเซียส และอัตราส่วนการอัดเท่ากับ ๔ จากข้อมูลที่ค้างบนได้ร่างต้นนี้สารทำงาน

ที่ให้ค่าอุณหภูมิระหว่างเหยต่างกัน ๑๙ องศาเซลเซียส คือ สารทั่วไป R-๔๙๒, R-๑๓๗๙ และ R-๑๔๕๘ เป็นต้น

รูปที่ ๖ แผนภูมิข้ามเหตุการณ์ของวัสดุเรือที่ใช้ในเครื่องยนต์ที่มีความร้อนและเวลาปฏิท

บทสรุป

จากการศึกษาพบว่า ผักและผลไม้ที่รีดสักกิภาพในการทำแห้งมีอุณหภูมิหายใจ ผักและผลไม้อบแห้งที่มีน้ำสูงค่าส่งออกสูงได้แก่ ลูกไยแห้ง ผ้าใบอบแห้ง ไข่ไก่อบแห้ง ไข่ไก่อบแห้งและผลไม้อบแห้งกันน้ำ ฯ ท่อน กาลัด มะละกอ มะม่วง ข้าวมัน มะพร้าว ฝรั่ง หัวบอ หัวบัว หัวกระเทียม พริก ขิง หัวดี กระหล่ำปลี ซึ่งจานเนี้ยยทั้งภายในประเทศและต่างประเทศ

จากการศึกษาข้อมูลการออกแนวเครื่องอบแห้งที่มีความเร็วเครื่องที่ต้องการที่จำเป็นสำหรับการออกแนวคือ อัตราส่วนการอัด อุณหภูมิแตกต่างรวม และสัมประสิทธิ์สมรรถนะแรงดัน และจากการศึกษาดึงความสัมพันธ์ของพารามิเตอร์เหล่านี้ประกอบกับคุณสมบัติทั่วไป สรุปได้ว่า สารทั่วไป R-๔๙๒, R-๑๓๗๙ และ R-๑๓๗๙ เหมาะสมในการใช้เป็นสารทั่วไป เครื่องอบแห้งที่มีความเร็วเครื่องค่อนข้างต่ำและไม่เกลากาง สำหรับสารทั่วไป R-๑๔๕๘ เหมาะสมที่จะใช้เป็นสารทั่วไปในเครื่องอบแห้งที่มีความเร็วเครื่องที่รีดสักกิภาพสูง ๆ

ข้อเสนอแนะ

ควรทำการพัฒนาการอบแห้งโดยใช้ปั๊มความร้อนเป็นแหล่งพัลวงงานความร้อนและลดความชื้นอากาศที่นำไปใช้อ่อนแห้งเพื่อเพิ่มคุณภาพของตัวและหลีกเลี่ยงแห้ง แล้วควรศึกษาถึงศักยภาพของเครื่องอบแห้งที่มีความร้อนที่รีวิวจากงานร้อนแห้งต่าง ๆ โดยการจำลองแบบและทำการทดลอง

คำขออนุญาต

ผู้เขียนขออภัยด้วยความขออนุญาตที่สำนักงานนักวิชาการที่สถาบันสนับสนุนกลุ่มวิจัยเทคโนโลยีการอบแห้ง มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี.

เอกสารอ้างอิง

- รายงานปริมาณและมูลค่าสิ่งของตัวและ กรมธรรม์กิจการพาณิชย์. งานรวมให้ได้รับวิเคราะห์ซื้อ บุคลสิ่งแวดล้อมการเกษตร, กองแผนงาน, กรมสิ่งแวดล้อมการเกษตร, ๒๕๓๗-๒๕๓๘.
- ข้อความพามารถทางเทคโนโลยีของคุณภาพการรีวิวแห้งที่ยังไม่ได้รับคุณภาพที่สำคัญ รายงานความก้าวหน้าสถาบันวิทยาศาสตร์และคุณภาพของคุณภาพการรีวิวแห้งในประเทศไทย. สำนักพัฒนาอุตสาหกรรมรายสาขา, ผ่านอุตสาหกรรมเกษตร, กรมสิ่งแวดล้อมคุณภาพการรีวิว, กทุนเพื่อ, ๒๕๓๗.
- รายงานปริมาณและมูลค่าสิ่งของผลไม้อ่อนแห้ง. กรมธรรม์กิจการพาณิชย์. งานรวมให้ได้รับวิเคราะห์ซื้อ บุคลสิ่งแวดล้อมการเกษตร, กองแผนงาน, กรมสิ่งแวดล้อมการเกษตร, ๒๕๓๗-๒๕๓๘.
- พนอธโน สิทธิราษฎร์. คู่มือการลงทุนด้วยอ่อนแห้ง. คุณภาพการรีวิว ๒๕๓๗. ๒๕๓๗-๒๕๓๘.
- Wang SK. Handbook of Air Conditioning and Refrigeration. McGraw-Hill, Inc, pp. 4.1-4.10, 1994.
- Fischer SK, Hughes PJ, Fairchild PD, Kusik CL, Dieckmann JF, McMahon EM, and Hobday N. Energy and global warming impacts of CFC alternative technologies. Sponsored by the Alternative Fluorocarbons Environmental Acceptability Study (AFC-EAS), Washington DC., and U.S. Department of Energy, Washington, DC., 1991.
- รายงานสถานการณ์คุณภาพสิ่งแวดล้อม. สถาบันสิ่งแวดล้อมไทย, สำนักนักวิชาการและแผนสิ่งแวดล้อม, กระทรวงวิทยาศาสตร์และสิ่งแวดล้อม, ๒๕๓๗. ผู้เขียน : ๑๒๖-๑๗๓.

การป้องกันและรักษาจากการผลิตไฟฟ้า*

សម្រាតិ នៃកណ្តាលក្នុង**

ໄຊ: ການເຈົ້າທາງການ ***

នាម និធី សុវត្ថិលេវ ***

ພາಠົມຍົດ

*บรรยายในภาษาไทยดูส่วนที่ 1 ของรายงานพิเศษสถานเมืองวันที่ ๓ ปี ๒๕๓๔ พ. ๑๔๗๖

* * ราชบัณฑิป ประเมษฐวิทยาหาสหรั่วไว้ภูมิ ฯ พานา เวิช วิหงกุวงมหาสหรั่ว, ท เสพวิชาฯ นร์ คณบดีผู้ดูแลงานและวัสดุ
มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าฯ นนทบุรี

*** กดติดตามเพื่อเข้าร่วมเป็นผู้ช่วยผู้สอน คณบดี พลังงานทดแทน วิศวฯ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา ท่านครับ

***** ອາຈານນີ້ ດາວໂຫຼນຈາກແລະວົດຖານາວິທຍາລັບທັດໃນໄສຕີ່ພວະຈາກແລ້ວການໃຫ້

ปีต่อเลี่ยมเหลว (LPG) ที่ใช้ใน ค.ศ. ๑๙๙๖ ได้ร้อยละ ๔๗.๗ ในอนาคตพื้นที่ป่าไม้ในประเทศไทยจะลดน้อยลง การปลูกป่าเพื่อลด CO_2 จึงอาจไม่ปฎิหนา อาจจะต้องซื้อเทคโนโลยีในการลด CO_2 จากต่างประเทศ แนวทางที่เหมาะสมในการลด CO_2 คือ การใช้เชื้อเพลิงสะอาดหรือเชื้อเพลิงคุณภาพดี การจัดการด้านผู้ใช้ไฟฟ้า การใช้พลังงานทดแทน หรือพลังงานนิวเคลียร์

ABSTRACT: GREENHOUSE GAS EMISSION FROM ELECTRICITY GENERATING SECTOR*

Somchart Soponronnarit**

*Paper presented at the Royal Institute, Bangkok, March 3, 1999.

**Fellow of the Royal Institute; Professor, School of Energy and Materials, King Mongkut's University of Technology Thonburi, Bangkok.

***Former Graduate Student, School of Energy and Materials.

****Lecturer, School of Energy and Materials.

Electricity generating causes emission of CO_2 which is one of the most important greenhouse gases. Fuels used in electricity generating are fuel oil, diesel oil, natural gas, lignite and imported coal. If it is assumed that combustion of the fuels is complete, the amount of CO_2 emitted from electricity generating sector will be 24.841 and 64.967 million tons or 0.575 and 0.486 kg CO_2/kWh , respectively. CH_4 emission from production of natural gas and lignite is equivalent to CO_2 emission of 1.594 and 3.390 million tons in 1990 and 2010, respectively. Elimination of CO_2 by conservative forestation of *Tectona grandis* costs 0.116 and 0.100 baht/kWh in 1990 and 2000, respectively. If the year 1990 is considered as the base year according to the United Nation Framework convention on climate change, the cost will be 0.047 baht/kWh for the year 2000. For the case of commercial forestation, there is no cost due to positive net benefit. If 80 % of 1.264 million ha of casava cultivation area is planted with *Eucalyptus camaldulensis* which is to be used fuel for generating electricity, it will help reduce 56.6 % of lignite used in 2000 which will avoid CO_2 emission of 8.431 million tons or 11.6 % of natural gas which will avoid CO_2 emission of 3.087 million tons. If 60 % of 0.168 million ha of Rhizophoraceae cultivation area is commercially managed for charcoal production, it will help to reduce the use of LPG

47.7 % in 1996. Forest area would decrease in the future. Therefore, reduction of CO₂ by forestation may not be practical. Technology for reducing CO₂ may have to be imported. Appropriate strategies should focus on : clean and high quality fuel, demand side management, renewable energy and nuclear energy.

บทนำ

องค์การสิ่งแวดล้อมแห่งสหประชาชาติ (The United Nation Environment Program-UNEP) และองค์กรอุตุนิยมวิทยาโลก (World Meteorological Organization) ได้ร่วมกันจัดตั้ง Intergovernmental Panel on Climate Change (IPCC) ขึ้นใน พ.ศ. ๒๕๓๑ โดยมีวัตถุประสงค์ ดังนี้

๑. เพื่อศึกษาวิเคราะห์ข้อมูลทางวิทยาศาสตร์ที่เกี่ยวข้องกับภาวะเดือนกาลเปลี่ยนแปลงภูมิอากาศ

๒. เตรียมมาตรการและกลยุทธ์ที่เป็นไปได้ในการเริ่มการจัดการที่เกี่ยวข้องกับการเปลี่ยนแปลงภูมิอากาศ

ประเทศไทยได้ลงนามให้การรับรองอนุสัญญาสหประชาชาติว่าด้วยการเปลี่ยนสภาพภูมิอากาศ (The United Nation framework convention on climate change) ระหว่างการประชุมสหประชาชาติว่าด้วยสิ่งแวดล้อมและกิจกรรมทางเศรษฐกิจ ณ ริโอเดจาเนโร (Rio de Janeiro) ประเทศไทยตัดสินใจรับรองและได้ให้สัตย์บันญือวันที่ ๒๘ กันยายน พ.ศ. ๒๕๓๑ ทำให้อนุสัญญาดังกล่าวมีผลบังคับใช้ ณ วันที่ ๒๘ กันยายน พ.ศ. ๒๕๓๓ ดังนั้นประเทศไทยจึงมีข้อผูกพันที่จำเป็นต้องปฏิบัติตามเงื่อนไขดังนี้ ๑ ในอนุสัญญาดังกล่าวบังคับการ เท่าน การประชุมการปล่อยก๊าซ การกักเก็บแก๊สเรือนกระจก^[๑] และมีสิทธิในการเข้าร่วมกับประเทศที่ไม่ได้รับอนุสัญญา (Conference of the parties) ผู้มีสิทธิ ๑ ให้ในฐานะประเทศภาคี ซึ่งได้จัดทำแล้วทั้งสิ้น ๓ สมัย สมัยที่ ๑ เมื่อเดือนเมษายน พ.ศ. ๒๕๓๘ ณ นครเบอร์ลิน ประเทศสหพันธ์สาธารณรัฐเยอรมนี ที่ประเทศมีความเห็นร่วมกันว่า พันธกิจของประเทศที่พัฒนาแล้วภายในไม่เพียงพอที่จะแก้ไขปัญหาเรื่อง โลกร้อน และร่วมตัดให้จัดตั้งคณะกรรมการ Ad hoc group on the Berlin mandate เพื่อเจรจากร่วมพัฒนาภารกิจภายใน ๑๐ ปี ณ เมืองมอนทรีออล ประเทศแคนาดา และล่าสุด สมัยที่ ๓ เมื่อวันที่ ๑-๑๐ กันยายน พ.ศ. ๒๕๓๐ ณ

นครเกียวโต ประเทศไทย ที่ประชุมมีมติให้ความเห็นชอบต่อพิธีสารเกียวโต (Kyoto protocol)^[๒] ซึ่งสรุปได้ว่า

- ให้ประเทศไทยพัฒนาแล้วภายใต้อุปถัญญาลดการปล่อยแก๊ส ๒ ชนิดได้แก่ CO_2 , CH_4 , N_2O , HFC_8 , PFC_8 และ SF_6 โดยให้ลดแก๊สทั้ง ๒ ชนิดร่วมกันให้เท่ากันที่ปล่อยในปี ๑๙๙๐ ระยะเวลาดำเนินการในปี ๒๐๐๘ - ๒๐๑๒ ให้ประเทศไทยรับสูตรการปล่อยแก๊สลดลงร้อยละ ๘ ญี่ปุ่นร้อยละ ๖ และกลุ่มประเทศยุโรปร้อยละ ๘
- ให้มี joint implementation with credit เป็นการสร้างโครงการต่าง ๆ ที่จะช่วยลดชั้นแก๊สเรือนกระจกในกลุ่มประเทศไทย เช่น ปลูกป่า
- ให้มี emission trading ในกลุ่มประเทศไทยแล้ว โดยมีเดินยุ่นให้มีการซื้อขายดาวกราฟปล่อยแก๊สเรือนกระจกได้ (ที่ประชุมรับหลักการไว้แต่ยังไม่รีบผลในทางปฏิบัติ)
- จัดตั้ง clean development mechanism โดยการกำหนดค่าไว้รับส่วนรับประเทศไทย ให้อุปถัญญาที่ไม่ได้มาตรฐานตามที่ให้สัดยานั้นไว้เข้าเป็นกองทุนเพื่อช่วยประเทศไทยที่กำลังพัฒนา
- ให้ประเทศไทยกำลังพัฒนาที่ไม่อยู่ภายใต้อุปถัญญาลดการปล่อยแก๊สเรือนกระจกในรูปแบบอาสาสมัคร และกำหนดร้อยละของการลดด้วย (ที่ประชุมยังไม่ได้เข้าสู่) เนื่องจากสัดยานั้นเดิมเริ่มแรกเป็นเรื่องเฉพาะของกลุ่มประเทศพัฒนา
- ประเทศไทยจะต้องลงนามในพิธีสารเกียวโตไว้ก่อนกว่า ๕๕ ประเทศ และประเทศไทยเหล่านี้มีการปล่อยแก๊ส CO_2 รวมกันไม่ใช่ยกเว้นร้อยละ ๕๕ ของทั้งหมด

สถาบันสิ่งแวดล้อมไทยได้จัดทำรายชื่อหัวตัวต่อตัวของการปล่อยออกและการกักเก็บแก๊สเรือนกระจกที่ไม่ได้ถูกควบคุมโดยพิธีสารมอนทรีออล (Inventory of greenhouse gases not controlled by the Montreal protocol) ซึ่งนี้เป็นส่วนหนึ่งของโครงการศึกษาการเปลี่ยนแปลงสภาพภูมิอากาศของประเทศไทย (Thailand country study on climate change) ดังตารางที่ ๑

ตารางที่ ๑ การปล่อยแก๊ส CO_2 จากภาคการผลิตไฟฟ้าคิดเป็นร้อยละ ๑๗ ของทั้งหมด ดังนี้ ในงานวิจัยนี้จึงรีวิวถูกประสงค์เพื่อประเมินวิธีการลดการปล่อยแก๊ส CO_2 จากภาคการผลิตไฟฟ้าโดยละเอียด นอกจากนี้ ยังประเมินวิธีการร่วมกับแก๊สรักษาจากการขาดเจาะแก๊สธรรมชาติและถ่านหิน และค่าใช้จ่ายในการลดแก๊ส CO_2 โดยการปลูกป่า ผลจากการศึกษา

จะเป็นประโยชน์ต่อการกำหนดนโยบายในการเลือกชนิดเชื้อเพลิงเพื่อการผลิตไฟฟ้า และการกำจัดแก๊ส CO_2 ให้เหมาะสม

วิธีการ

งานวิจัยนี้ศึกษาเฉพาะส่วนการผลิตไฟฟ้าโดยใช้เชื้อเพลิงฟอสซิลของการไฟฟ้าฝ่ายผลิตแห่งประเทศไทย (กฟผ.) และการขุดเจาะแก๊สธรรมชาติกับถ่านหิน โดยกำหนดให้ใช้เชื้อเพลิงที่มีส่วนประกอบดังแสดงไว้ในตารางที่ ๒ การใช้ปริมาณเชื้อเพลิงและการผลิตไฟฟ้า ดังแต่ ค.ศ. ๑๙๘๐ - ๒๐๑๐ ดังแสดงไว้ในตารางที่ ๓ ปริมาณการขุดเจาะแก๊สธรรมชาติและถ่านหิน (ลิกไนต์) ดังแสดงในตารางที่ ๔

ในการแก้ไขร่างให้เชื้อเพลิง กำหนดให้เป็นการแก้ไขรัสมานูร์ ซึ่งควรบันทึกที่อยู่ในเชื้อเพลิงเปลี่ยนเป็น CO_2 หมวด และสมมุติให้ถ่านหินนำเข้าจากต่างประเทศเป็นชนิดแอนตราไซด์ สำนวนปริมาณ CO_2 ที่ถูกปล่อยสู่บรรยากาศจากการขุดเจาะแก๊สธรรมชาติ ประเมินจากสมการ fugitive methane emissions^[๔] เกิดจากผลคูณปริมาณแก๊สธรรมชาติที่ขุดเจาะได้ (PJ) กับ emission factor (kg/PJ) โดยแบ่งค่า emission factor ออกเป็น ๓ ค่าดังนี้

๑. production	๔๖,๐๐๐ – ๕๖,๐๐๐	kg/PJ
๒. venting and flaring	๑๗๕,๐๐๐ – ๒๐๕,๐๐๐	kg/PJ
๓. processing and transmission high emission factor	๒๘๘,๐๐๐	kg/PJ

สำนวนปริมาณ CO_2 ที่ถูกปล่อยจากการขุดเจาะถ่านหิน ได้จากการประเมินสมการ coal mining emission^[๕] เกิดจากผลคูณปริมาณถ่านหินที่ขุดเจาะได้ (M tons) กับ emission factor ๐.๓ – ๒.๐ t^3/tons และ conversion factor ๐.๖๗ $\text{Gg}/10^6 \text{m}^3$ ที่ ๒๐ องศาเซลเซียส ๑ atm เมื่อได้ค่า methane emission ทั้งแก๊สธรรมชาติและถ่านหินนำไปคูณกับค่าศักยภาพที่ทำให้โลกร้อน (GWP_s) ซึ่งมีค่าเท่ากับ ๒๑ ($\text{CH}_4 = ๑$ คือค่าเท่ากับ ๑๒ เท่าของ CO_2)

ในการลด CO_2 ด้วยวิธีการจูงป่า ได้แบ่งการจูงป่าเป็น ๒ ประเภท คือ

๑. การจูงป่าอนุรักษ์ เป็นการจูงแบบถาวร คือ เสียค่าใช้จ่ายในการดูแล ๖ ปี แล้วปล่อยให้โดยดามธรรมชาติ

๒. การจูงป่าเศรษฐกิจ เป็นการจูงแบบปี รีการเสียค่าใช้จ่ายในการดูแลลดอุดตัน

กว่าจะตัดไปใช้ประโยชน์ การหาพื้นที่ในการลด CO_2 โดยการปลูกป่าทั้ง ๒ ประเภท จะใช้สมการคำนวณร่วมกับการคูด CO_2 ของไม้^[๔] ได้จากผลคูณพื้นที่ไม้ในป่า (ha) ร้อยละการบอนของไม้ และอัตราการเจริญเติบโตเฉลี่ยของไม้แต่ละชนิด (dm/ha/y)

การคิดค่าใช้จ่ายในการกำจัด CO_2 โดยการปลูกป่าอนุรักษ์ แบ่งเป็นการปลูกป่าบนเนิน
และป่าชายเลน โดยกำหนดให้ป่าบนเนินเป็นไร้สัก (*fectona grandis*) มีอายุเจริญเติบโตได้ที่ ๓๐ ปี และป่าชายเลนเป็นไม้กิงกัง (*Rhizophoraceae*) มีอายุเจริญเติบโตได้ที่ ๒๐ ปี ส่วนการปลูกป่าเศรษฐกิจ (สวนปา) ทำการปลูกไม้ ๓ ชนิด

๑. ไม้สัก (*Tectona grandis*) เป็นไม้ที่ปลูกได้ดีทางภาคเหนือ หรือบริเวณที่สูงไม่มีน้ำท่วมเดือด คิดค่าใช้จ่ายในการดูแลระหว่างปลูก ๓๐ ปี หลังจากนั้นตัด下來นำไปใช้ประโยชน์ทั้งหมด ระยะปลูก ๓ x ๓ เมตร (๒๐๐ ต้น/ไร่)^[๑]

๒. ไม้ยุคอลิปต์สก้ากาลตูเลนเซส (*Eucalyptus camaldulensis*) เป็นไม้ใบเดียว ปลูกได้ดีทุกพื้นที่ในประเทศไทย คิดค่าใช้จ่ายต่ำและห่วงงานไม่สูง และมี หลังจากนับเดือนไปแล้วจะเรียกได้ทันทีว่า ไม้ยุคอลิปต์สก้ากาลตูเลนเซส

๓. ไม้สังคีดาเทียม [Azadirachta excelsa (Jack) Jacobs] เป็นไม้ที่ปลูกได้ดีทางภาค
ใต้ คิดค่าใช้จ่ายในการดูแล ๑๕ ปี หลังจากนั้นต้นไม้ใช้ประโยชน์ทั้งหมด ระยะปลูก ๒ x ๒
เมตร (๔๐๐ ต้น/ไร่)^[๔] ไม้สักและไม้สังคีดาเทียมเหลังจากทำการตัดจะไม่หักง่าใช้เป็นเชื้อเพลิง
ทั้งหมด สวนไม้ยุคก่อนตั้งสมการดูแลเชิง สมมุติให้นำกลั่นมาเป็นเชื้อเพลิง การประนีกค่าใช้
จ่ายในการปลูกไม้แต่ละปีจะเท่ากับ ๑๕ ต่อปี ไม่คิด
ภาระเงินเพื่อ การปลูกไม้ยุวากษ์จะคิดค่าใช้จ่ายในการปลูก ๖ ปี แล้วได้อยได้ด้วย
ธรรมชาติ สวนการปลูกป่าเศรษฐกิจจะดูแลงานกว่าจะถึงรอบตัดฟันของไม้แต่ละชนิด ค่าใช้จ่าย
ปีที่ ๑ ในการปลูกป่าทั้ง ๒ ปีจะเท่าทั้งๆ แล้วจะน้อยลงเรื่อยๆ ในปีที่ ๓ งานกว่าจะ
ลั่นสุดจะลดลง การปลูกไม้แต่ละปีต้อง นำค่าใช้จ่ายในแต่ละปีมาคิดค่าใช้จ่ายรายปี
เมื่อคำนวณค่าใช้จ่ายจำเพาะ ก็จะได้ริมกําณ CO_2 หรือพลังงานไฟฟ้าในแต่ละปีในทางกับค่าใช้
จ่ายรายปี การคิดรายได้จากการปลูกป่าเศรษฐกิจ คิดจากไม้ที่ตัดฟันได้

การวิเคราะห์ค่าใช้จ่ายในการกำจัด CO_2 ณ กรณีคือ

๑. แต่ละปีมีการปล่อย CO_2 ออกมาน่าไร จะทำการกำจัดทั้งหมด

๒. ให้ปี ๑๙๙๐ เป็นปีฐาน คิดผลต่างจากปี ๑๙๙๐ เป็นต้นไป รีกາร่าลีอย CO₂ เท่าไร ก็กำจัดเท่านั้น

๓. ให้ปี ๑๙๙๔ เป็นปีฐาน คิดผลต่างจากปี ๑๙๙๔ เป็นต้นไป แล้วคิดเห็นอีกครั้ง ที่ ๒

ผลและวิจารณ์

ในการผลิตไฟฟ้าโดยใช้สารไฮโดรคาร์บอนเป็นเชื้อเพลิง คือ น้ำมันเชื้อเพลิง น้ำมันดีเซล แก๊สธรรมชาติ ลิกไนต์ และถ่านหินนำเข้าจากต่างประเทศ เมื่อเชื้อเพลิงเกิดการเผาในรัสเซียจะได้ปริมาณ CO₂ ๓.๓๓ ตัน/ตันน้ำมันเชื้อเพลิง ๓.๑๗ ตัน/ตันน้ำมันดีเซล ๒.๓๖ ตัน/ตันแก๊สธรรมชาติ ๑.๙๑ ตัน/ตันลิกไนต์ และ ๓.๑๗๙ ตัน/ตันถ่านหินราไชด์ ถ้าใช้ถ่านหินนำเข้า ดังแสดงในตารางที่ ๒ รีกາร่าลีอย CO₂ รวมไป ค.ศ. ๑๙๙๐ และ ๒๐๑๐ จำนวน ๒๔๔.๘๗๑ และ ๒๔๔.๘๙๗ ล้านตัน คิดเป็น ๐.๕๗๕ และ ๐.๕๙๖ KCO₂/kWh ตามลำดับ ดังแสดงในตารางที่ ๓ ค.ศ. ๑๙๙๐ - ๑๙๙๔ เป็นการใช้รีกາณเชื้อเพลิงจริง สงวนไป ค.ศ. ๒๐๐๐ - ๒๐๑๐ เป็นการพยากรณ์ (forecast) ซึ่งขึ้นอยู่กับการจัดนโยบายอย่างไรในแห่งละปี อาจมีการคลาดเคลื่อนได้

ตารางที่ ๔ แสดงผลการคำนวณรีกາณการรั่วของแก๊สวีเทนจากการหักดูดเฉพาะแก๊สธรรมชาติและถ่านหิน สำหรับรีกາณการรั่วของแก๊สวีเทนจากการหักดูดเฉพาะแก๊สธรรมชาติ ค.ศ. ๑๙๙๐ มีค่าเท่ากับ ๒๖.๕๑๗ จิลลิกรัชช์ของมีเทน (GgCH₄) และจะมีค่าเพิ่มขึ้นเรื่อยๆ ในแต่ละปี ตามหากที่สุดในปี ค.ศ. ๒๐๐๐ เท่ากับ ๓๙๕.๔๗๗ GgCH₄ และจะลดลงเรื่อยๆ จนถึง ค.ศ. ๒๐๑๐ เนื่องจากการหักดูดเฉพาะแก๊สธรรมชาติลดลงดังนี้ ค.ศ. ๒๐๐๐ เป็นต้นไป แต่การนำเข้าแก๊สจากต่างประเทศเริ่มมีมากขึ้นใน ค.ศ. ๒๐๐๐ ประมาณ ๒๐๑,๔๔๕ MMSCF และเพิ่มมากขึ้นเรื่อยๆ จนถึง ค.ศ. ๒๐๑๐ ประมาณ ๔๗๖,๐๑๐ MMSCF^(๑) สงวนรีกາณแก๊สวีเทนที่รั่วจากการหักดูดเฉพาะถ่านหิน จากผลที่ได้เพิ่มเทียบกับของแก๊สธรรมชาติมีค่าที่ถูกกว่าประมาณ ๑๕-๒๐ เท่า ซึ่งรีค่าใช้ymาก

การหาพื้นที่ในการลด CO₂ โดยการปูกรากไม้ที่ได้ทำการปูกรากให้หลุดนิค ดังแสดงในตารางที่ ๕ ผลที่ได้แสดงให้เห็นว่า การปูกรากคัลิปต์สกามาสตูเดนต์ส เมื่อเบริรูมเพียงกันไม้หนาต้นในแต่ละปี จะใช้พื้นที่ในการปูกรากอยู่ที่สุด ประมาณ ๕.๐๕๙ ล้านไร่ และ ๕.๕๔๔ ล้านไร่ ใน ค.ศ. ๑๙๙๐ และ ค.ศ. ๑๙๙๔ ตามลำดับ สำหรับดินกรงค์ที่ใช้พื้นที่มากที่สุด ประมาณ ๑๕.๓๑๓ และ ๒๔.๑๕๖ ล้านไร่ ใน ค.ศ. ๑๙๙๐ และ ค.ศ. ๑๙๙๔ ทางลำดับจากผลที่ได้เป็น ๒๕๘ ล้านไร่

แสดงว่า พื้นที่ในการปลูกจะมากหรือน้อยขึ้นอยู่กับอัตราการเจริญเติบโตเฉลี่ยของไม้แต่ละชนิด ดังแสดงในตารางที่ ๕ โดยอัตราการเจริญเติบโตที่ใช้ในงานวิจัยนี้ได้จากการวิจัยทางวิทยาศาสตร์ ซึ่งอาจมีค่ามากหรือน้อยขึ้นอยู่กับสภาพภูมิประเทศ การดูแลรักษา ระยะห่างในการปลูก ระยะเวลาเจริญเติบโตเดิมที่ และอื่นๆ

ค่าใช้จ่ายในการกำจัด CO_2 แสดงในตารางที่ ๖ การปลูกป่าอนุรักษ์จะคิดค่าใช้จ่ายในการดูแล ๖ ปี สามารถแบ่งออกเป็น ๒ ชนิด คือ

๑. ป่านเนก (กำหนดเป็นไม้ลัก) ค่าใช้จ่ายรายปี ๖๔๔.๓๓ บาท/ไร่ ค่าใช้จ่ายในการกำจัด CO_2 ๐.๑๑๖ บาท/kWh หรือ ๑๘๘.๘๗ บาท/ตัน CO_2 และ ๐.๑๒๑ บาท/kWh หรือ ๑๘๘.๘๗ บาท/ตัน CO_2 ใน ค.ศ. ๑๙๙๐ และ ค.ศ. ๑๙๙๔ ตามลำดับ

๒. ป่าชายเลน (กำหนดให้เป็นป่าปิงปอง) ค่าใช้จ่ายรายปี ๕๓๙.๖๙ บาท/ไร่ ค่าใช้จ่ายในการกำจัด CO_2 ใน ค.ศ. ๑๙๙๐ เท่ากับ ๐.๑๔๒ บาท/kWh หรือ ๒๓๔.๕๘ บาท/ตัน CO_2 ใน ค.ศ. ๑๙๙๔ เท่ากับ ๐.๑๔๗ บาท/kWh หรือ ๒๓๔.๖๙ บาท/ตัน CO_2

ส่วนการปลูกป่าเศรษฐกิจเมื่อหักรายได้จากการขายไม้แล้วจะเป็นกำไรสุทธิ แบ่งการปลูกเป็น ๓ ชนิด

๑. ไม้สัก กำไรสุทธิรายปี ๙,๑๕๕.๕๖ บาท/ไร่ (คิด ๓๐ ปี) กำไรสุทธิในการกำจัด CO_2 ใน ค.ศ. ๑๙๙๐ เท่ากับ ๐.๓๘๙ บาท/kWh หรือ ๖๓๕.๙๐ บาท/ตัน CO_2 ใน ค.ศ. ๑๙๙๔ เท่ากับ ๐.๔๐๗ บาท/kWh หรือ ๖๓๕.๖๔ บาท/ตัน CO_2

๒. ไม้ยูคาลิปตัสสามารถลดค่าใช้จ่ายรายปี ๔๓.๖๔ บาท/ไร่ (คิด ๕ ปี) กำไรสุทธิในการกำจัด CO_2 ใน ค.ศ. ๑๙๙๐ เท่ากับ ๐.๐๑๐ บาท/kWh หรือ ๑๖.๐ บาท/ตัน CO_2 ใน ค.ศ. ๑๙๙๔ เท่ากับ ๐.๐๑๐ บาท/kWh หรือ ๑๖.๐ บาท/ตัน CO_2

๓. ไม้สะเดาเทียม กำไรสุทธิรายปี ๕,๑๕๑.๘๘ บาท/ไร่ (คิด ๑๕ ปี) กำไรสุทธิในการกำจัด CO_2 ใน ค.ศ. ๑๙๙๐ เท่ากับ ๑.๓๐๒ บาท/kWh หรือ ๒๗๔.๕๘ บาท/ตัน CO_2 ใน ค.ศ. ๑๙๙๔ เท่ากับ ๑.๓๖๓ บาท/kWh หรือ ๒๗๔.๓๑ บาท/ตัน CO_2

เมื่อใช้ ค.ศ. ๑๙๙๐ เป็นปีฐานดังแสดงในตารางที่ ๗ ค่าใช้จ่ายในการดูด CO_2 ใน ค.ศ. ๒๐๐๐ โดยการปลูกป่าอนุรักษ์มีดังนี้

๑. ป่านเนก ๐.๐๔๙ บาท/kWh หรือ ๗๐.๒๙ บาท/ตัน CO_2

๒. ป่าชายเลน ๐.๐๕๗ บาท/kWh หรือ ๑๗๐.๔๗ บาท/ตัน CO_2

กำไรสูตรในการลด CO_2 โดยการปลูกป่าเศรษฐกิจ มีดังนี้

๑. ไม้สัก ๐.๑๖๐ บาท/kWh หรือ ๓๐๑.๘๕ บาท/ตัน CO_2

๒. ไม้ยูคาลิปต์สามารถดูดເລືນເຊີສ ๐.๐๐๔ บาท/kWh หรือ ๗.๕๙ บาท/ตัน CO_2

๓. ไม้สะเดาเทียม ๐.๔๑๙ บาท/kWh หรือ ๙๗๘.๓๑ บาท/ตัน CO_2

เมื่อใช้ ค.ศ. ๑๙๙๔ เป็นปีฐานดังแสดงในตารางที่ ๙ ค่าใช้จ่ายในการลด CO_2 ใน ค.ศ.

๒๐๐๐ มีดังนี้

การปลูกป่าอนุรักษ์

๑. ป่าบานบุน ๐.๐๑๑ บาท/kWh หรือ ๒๑.๔๐ บาท/ตัน CO_2

๒. ป่าชายเลน ๐.๐๑๔ บาท/kWh หรือ ๒๖.๓๐ บาท/ตัน CO_2

กำไรสูตรในการลด CO_2 โดยการปลูกป่าเศรษฐกิจ

๑. ไม้สัก ๐.๐๓๘ บาท/kWh หรือ ๗๑.๙๗ บาท/ตัน CO_2

๒. ไม้ยูคาลิปต์สามารถดูดເລືນເຊີສ ๐.๐๐๑ บาท/kWh หรือ ๑.๔๑ บาท/ตัน CO_2

๓. ไม้สะเดาเทียม ๐.๑๗๙ บาท/kWh หรือ ๔๓๐.๔๔ บาท/ตัน CO_2

ถ้าปลูกไม้ยูคาลิปต์สามารถดูดເລືນເຊີສ แทนพื้นปลูกที่รากสำปะหลังทั้งหมดประมาณ

๗.๙ ล้านไร่^[๑๙] เพื่อให้เป็นเชื้อเพลิงในการผลิตไฟฟ้า โดยราคาตันทุนกรະແສไฟฟ้าจากงานวิจัยที่ผ่านมาประมาณ ๒๖.๓๐ บาท/kWh^[๒๐] เมื่อคิดตามอัตราส่วนพื้นที่ที่ปลูกกรองละ ๒๐, ๔๐, ๖๐, ๘๐ และ ๑๐๐ จะผลิตพลังงานไฟฟ้าได้ ๒๐๓๖.๗๘ จิกะวัตต์-ชั่วโมง (GWh), ๔๐๗๓.๕๙ GWh, ๖๑๑๐.๓๕ GWh, ๘๑๔๗.๑๔ GWh และ ๑๐๑๔๓.๗๙ GWh ตามลำดับ ถ้าคิดพื้นที่ใช้ประโยชน์เพียงร้อยละ ๘๐ สามารถลดกรະແສการใช้ถังไนโตรเจนใน ค.ศ. ๒๐๐๐ ได้ร้อยละ ๔๖.๖ ลดกรະແສ CO_2 จากถังไนโตรเจนได้ ๘.๔๓๑ ล้านตัน หรือถ้าใช้แก๊สธรรมชาติสามารถลดกรະແສการใช้ได้ร้อยละ ๑๑.๖ ลดกรະແສ CO_2 จากแก๊สธรรมชาติได้ ๓.๐๘๗ ล้านตัน สำหรับการถังไนโตรเจนถ้าได้ร้อยละ ๘๔ ล้านตัน หรือคิดพื้นที่ป่าชายเลน ๑.๐๙ ล้านไร่^[๒๑] โดยคิดตามอัตราส่วนพื้นที่ที่ปลูกกรองละ ๒๐, ๔๐, ๖๐, ๘๐ และ ๑๐๐ จะได้กรະແສถังไนโตรเจน ๐.๙๗๘, ๐.๔๗๙, ๐.๒๗๙, ๐.๑๗๙ และ ๐.๐๙๙ ล้านตัน เมื่อค่าความร้อนไม่ถังไนโตรเจน ๓๑.๔ กิโลจูล/กรัม (kJ/g)^[๒๒] คิดเป็นความร้อนที่ได้ ๗.๗๖, ๑๙.๗๔, ๔๙.๐๗, ๗๗.๔๔ และ ๑๙.๗๗ X ๑๐^๓ จิกะกรูด (GJ) ตามลำดับ ถ้าใช้ถังไนโตรเจนที่ได้

จากไม่どころการโดยคิดพื้นที่ใช้ประโยชน์เพียงร้อยละ ๖๐ จะสามารถทบทวน LPG ได้ ๑๐๕๕.๗ ล้านลิตร [คิดค่าความร้อนของ LPG เท่ากับ ๒๖.๖๙๔ เมกะจูล (MJ/litre)]^[๒๗] ซึ่งเท่ากับร้อยละ ๔๗.๗ ของ LPG ที่ใช้ในบ้านเรือนและครุภัณฑ์ภาคเล็กใน ค.ท. ๑๘๗๖

గుర్తు

การผลิตไฟฟ้าโดยใช้สารไฮโดรคาร์บอนจำพวกน้ำมันเชื้อเพลิง น้ำมันดีเซล แก๊สธรรมชาติ ลิกไนต์ และถ่านหินนำเข้าจากต่างประเทศเป็นเชื้อเพลิง ทำให้เกิดการปล่อย CO_2 มากถึง ๒๔.๘๔๑ และ ๖๔.๙๖๗ ล้านตัน คิดเป็น ๐.๕๗๕ และ ๐.๔๙๖ $kgCO_2/kWh$ ใน ค.ศ. ๑๙๙๐ และ ๒๐๐๐ ตามลำดับ บริษัทฯ จึงได้ดำเนินการร่วมของแก๊สโซลาร์จากกระบวนการเผาไหม้แก๊สธรรมชาติและถ่านหินในประเทศ ทำให้เกิดการปล่อย CO_2 ๑.๕๗๔ และ ๓.๓๙๐ ล้านตัน ใน ค.ศ. ๑๙๙๐ และ ๒๐๐๐ ในการลดนิรภัย CO_2 โดยวิธีการปลูกป่า จะแบ่งการปลูกป่าเป็น ๒ ประเภท คือ การปลูกป่าอนุรักษ์ และ การปลูกป่าเศรษฐกิจ ป่าอนุรักษ์ไม้สักมีท่าให้จ่าย ๐.๑๑๖ และ ๐.๑๐๐ บาท/kWh ใน ค.ศ. ๑๙๙๐ และ ๒๐๐๐ หมายความว่า ต่าให้จ่าย ๑๙๙๐ เป็นปีฐาน ตามอนุสัญญาระหว่างประเทศในการลดแก๊สเรือนกระจก ค่าใช้จ่ายใน ค.ศ. ๒๐๐๐ เท่ากับ ๐.๐๔๗ บาท/kWh สำนักงานปลูกป่าเศรษฐกิจได้กำหนดให้ในกระบวนการลด CO_2

ถ้ามีการปลูกยุคคลิปต์สามารถลดค่าใช้จ่าย แทนมันสั่งปะหลังเพียงร้อยละ ๘๐ ของพื้นที่ ๗.๙ ล้านไร่ เพื่อให้เป็นเชื้อเพลิงในการผลิตไฟฟ้า จะสามารถลดต้นทุนการใช้พลังงานที่ใช้ใน ค.ศ. ๒๐๐๐ ได้ถึงร้อยละ ๕๖.๖ ลด CO_2 ได้ ๘.๔๓๑ ล้านตัน หรือสามารถลดต้นทุนการใช้แก๊สธรรมชาติได้ร้อยละ ๑๑.๖ ลด CO_2 ได้ ๓.๐๘๗ ล้านตัน ถ้ามีการปลูกไม้ในทางการเพียงร้อยละ ๖๐ ของพื้นที่ ๑.๐๕ ล้านไร่ เพื่อผลิตเชื้อเพลิง สามารถลดต้นทุนการใช้ LPG ที่ใช้ใน ค.ศ. ๑๙๗๖ ได้ร้อยละ ๔๗.๔

ใน ค.ศ. ๑๙๘๕ ประเทศไทยมีพื้นที่ป่าไม้ประมาณ ๗๗,๙๒ ล้านไร่ ^[๑๗] แห่งเป็นภาค
เนื้อร้อยละ ๕๖.๒ ภาคตะวันออกเฉียงเหนือร้อยละ ๗๖.๒ ภาคกลางและภาคตะวันตก
ร้อยละ ๑๒.๙ ภาคใต้ร้อยละ ๗.๔๘ และภาคตะวันออกเฉียงใต้ร้อยละ ๕.๓๙ พื้นที่ป่าชายเลน
๑.๐๕ ล้านไร่ จะเห็นได้ว่าประเทศไทยยังมีพื้นที่ในกรุงป่าเพื่อลด CO_2 ได้ อาจกล่าวได้ว่า
ถ้าต้องการลด CO_2 ที่ปล่อยจากภาคการผลิตไฟฟ้าทั้งหมด อาจมีพื้นที่ป่าไม้เพียงพอ แต่ถ้า
ใช้ ค.ศ. ๑๙๙๐ หรือ ค.ศ. ๑๙๙๕ เป็นปีฐาน จะทำให้ใช้พื้นที่กรุงป่าหักลดลง แต่ในอนาคตพื้นที่
ป่าไม้ในประเทศไทยอาจลดลง การปลูกป่าเพื่อลด CO_2 จึงทำได้ยาก อาจจะต้องมีการซื้อขายในโลก

ในการลด CO_2 จากต่างประเทศ แนวทางแก้ไขที่เหมาะสมในการลด CO_2 คือ การจัดการ

ด้านผู้ใช้ไฟฟ้า เปลี่ยนมาใช้เชื้อเพลิงที่มีคุณภาพดีขึ้นหรือสะอาดมากขึ้น ใช้พลังงานทดแทน หรือใช้พลังงาน碧瓦เคลือร์

คำขอคุณ

ผู้เขียนได้ขอแสดงความขอรับคุณต่อสำนักงานกองทุนสนับสนุนการวิจัยที่สนับสนุนงานวิจัยนี้

ตารางที่ ๑ การปล่อยแก๊สเรือนกระจกจากภาคกิจกรรมต่าง ๆ ของประเทศไทยใน
ค.ศ. ๑๙๙๐^[๑]

Unit : Gg (10^3 Gg = 1 million tonne)

Gas/Source	Emission		GWP ₈	Emission (CO ₂ equivalent)	
	Gg	%		Gg	%
Total CO₂ equivalent				225,176.1	100.0
Net Carbon dioxide (CO₂)	163,995.7	100.0	1.0	163,995.7	72.8
Fuel Combustion					
Transport	27,634.1	16.9		27,634.1	12.3
Energy Transformation	28,243.4	17.2		28,243.4	12.5
Industries	12,844.8	7.8		12,844.8	5.7
Industry	8,089.0	4.9		8,009.0	3.6
Small Combustion	9,806.7	6.0		9,806.7	4.4
Industrial Process					
Land Use Change &	19,897.4	12.1		19,897.4	8.8
Forestry					36.3
Changes in Forest and	81,708.4	49.8		81,708.4	-10.7
Other Woody	-24,148.1	-14.7		-24,148.1	
Biomass Stocks					
Forest and Grassland					
Conversion					
Abandonment of					
Managed Lands					
Methane (CH₄)	2,746.4	100.0	21.0	57,673.8	25.6
Fuel Combustion					
Transport	7.9	0.3		165.0	0.1
Energy Transformation	0.6	0.0		12.9	0.0
Industries	0.5	0.0		11.0	0.0
Industry	0.8	0.0		17.4	0.0
Small Combustion					
Fugitive Emission from Fuels	97.4	3.5		2,044.4	0.9
Oil and Natural Gas	10.4	0.4		218.50	0.1
Solid Fuel	0.3	0.0		6.6	0.0

Industrial Process					
Agriculture					
Rice Cultivation	1,786.1	65.0		37,507.2	16.7
Enteric Fermentation	530.1	19.3		11,132.8	4.9
Manure Management	116.0	4.2		2,435.5	1.1
Field Burning of Agricultural Residues	22.1	0.8		463.1	0.2
Land Use Change & Forestry	28.2				
Forest and Grassland Conversion	121.4	1.0		591.6	0.3
Waste	24.7				
Solid Waste Disposal on Land		4.4		2,549.6	1.1
Waste water		0.9		518.3	0.2
Treatment					
Nitrous Oxide (N₂O)	11.3	100.0	310.0	3,506.6	1.6
Fuel Combustion					
Transport	1.1	9.8		343.6	0.2
Energy Transformation	0.2	1.3		46.8	0.0
Industries	0.2	2.0		69.1	0.0
Small Combustion					
Agriculture	9.2	80.9		2,835.7	1.3
Agricultural Soils	0.5	4.3		151.5	0.1
Field Burning of Agricultural Residues	0.2	1.7		60.0	0.0
Land Use Change & Forestry					
Forest and Grassland Conversion					

ตารางที่ ๒ องค์ประกอบโดยน้ำหนักของเชื้อเพลิงชนิดต่าง ๆ (ร้อยละ)

	ค่าร้อยละ	ไฮโดรเจน	ออกซิเจน	ไนโตรเจน	กำมะถัน	น้ำ	ค่าความร้อน (MJ/kg)	kg CO ₂ /kg fuel
น้ำมันดีเซล [๓]	๘๕.๔	๑๐.๕	๑.๕	๐.๔	๒.๐	๐.๑	๔๙.๗๗	๓.๑๗๑
น้ำมันดีเซล [๔]	๘๖.๔	๑๙.๘	๐.๑	๐.๑	๐.๔	-	๔๕.๒๐	๓.๑๗๒
แก๊สธรรมชาติ [๕]	๖๔.๓	๓๓.๔	-	๖๖.๔	-	-	๔๕.๐๐	๒.๓๕๗
ลิกไนท์ [๖]	๓๑.๑	๒.๖	๗๔.๗	๑.๑	๖.๔	๒๔๙.๐	๗๙.๗๐	๑.๑๔๐
แอกทร้า [๗]	๘๖.๗	๒.๒	๒๔.๗	๐.๔	๐.๕	๖.๗	๔๓.๗๐	๓.๑๗๔

(๓), (๔) ถูกใช้จากเชื้อเพลิงทั้งหมด

* ความชื้นที่รักษาไว้

ตารางที่ ๓ ปริมาณการใช้เชื้อเพลิง พลังงานไฟฟ้า และการปล่อย CO₂

		Actual ^{๑๒}		Forecast ^{๑๓}		
		Unit	๒๕๖๒	๒๕๖๓	๒๕๖๔	๒๕๖๕
แก๊สธรรมชาติ	GWh	๑๘๐๕๖.๘๘๐	๓๐๗๙๗.๓๑	๖๕๔๘๘๖.๐๐	๗๙๔๗๙.๐๐๐	๙๖๙๐๙.๐๐๐
	M tons	๓.๒๖๗	๕.๔๗๘	๗.๔๙๗	๙.๖๕๓	๑๐.๓๙๙
	CO ₂ (M tons)	๔.๖๒๐	๗.๖๘๐	๑๒.๖๙๗	๑๖.๖๙๙	๒๐.๔๙๙
	kgCO ₂ /kWh	๐.๔๒๒	๐.๔๕๐	๐.๕๐๗	๐.๕๕๐	๐.๖๖๖
น้ำมันดีเซล	GWh	๙๐๑๙.๗๗๐	๑๗๕๔๙.๘๗๐	๓๘๗๖.๐๐	๕๕๔๒๑.๐๐๐	๗๙๗๔๕.๐๐๐
	M tons	๒.๑๕๗	๔.๓๙๙	๗.๐๐๖	๑๐.๓๙๗	๑๔.๗๙๙
	CO ₂ (M tons)	๒.๔๕๔	๔.๗๙๙	๗.๗๙๙	๑๐.๔๙๙	๑๔.๗๙๙
	kgCO ₂ /kWh	๐.๔๗๕	๐.๕๑๗	๐.๕๘๙	๐.๖๙๙	๐.๗๑๙
น้ำมันดีเซล	GWh	๕๕๕๗.๗๓๐	๑๖๖๙.๘๗๐	๒๕๕๔.๐๐	๓๖๗๔.๐๐๐	๕๑๓๖.๐๐๐
	M tons	๐.๑๐๔	๐.๔๙๐	๐.๐๗๔	๐.๑๙๓	๐.๓๙๓
	CO ₂ (M tons)	๐.๑๖๐	๐.๕๙๙	๐.๐๗๔	๐.๒๙๙	๐.๓๙๙
	kgCO ₂ /kWh	๐.๔๙๙	๐.๕๗๙	๐.๗๙๙	๐.๑๖๐	๐.๓๙๙
ลิกไนท์	GWh	๑๐๘๒๒.๘๔๐	๒๕๐๙.๖๙๙	๑๙๘๘๗.๐๐	๒๖๕๒๖.๐๐๐	๓๖๙๙๗.๐๐๐
	M tons	๔.๘๙๙	๑.๙๙๙	๒.๗๙๙	๓.๗๙๙	๕.๗๙๙
	CO ₂ (M tons)	๑๐.๑๙๙	๒.๗๙๙	๗.๗๙๙	๑๗.๐๙๙	๒๗.๗๙๙
	kgCO ₂ /kWh	๐.๔๙๙	๐.๗๙๙	๑.๐๙๙	๑.๐๙๙	๑.๐๙๙
เพลนพิรน์สำลัก	GWh	-	-	-	-	๓๖๙๙๙
	M Tons	-	-	-	-	๕.๗๙๙
	CO ₂ (M tons)	-	-	-	-	๑๓.๗๙๙

	kgCO ₂ /kWh	-	-	-	-	0.00%
ພລັງໄໝ	GWh	40.000	30.000	30.000	40.000	35.000
ໜຶນ ^(c)	GWh	6.000	5.000	5.000	6.000	5.500
ກວມ	GWh	40.000	30.000	30.000	40.000	35.000
ກວມ	CO ₂ (M tons)	144.000	108.000	108.000	144.000	126.000

(a) การไฟฟ้าฝ่ายผลิตแห่งประเทศไทย (Actual)

(b) ฝ่ายข้อมูลพลังงาน สำนักงานคณะกรรมการการไฟฟ้าพลังงานแห่งชาติ¹⁴ (Forecast ; PDP ๘๗-๙๖)

(c) ចំណាំដៃខាងមុខនៃការអនុវត្តន៍

ตารางที่ ๕ พื้นที่ในการลด CO_2 สำหรับไม้แต่ละชนิด

卷之二

ໝັດຂອງໄປ (m x m)	ຮະຍະໄປລູກ (໴)	ຮະຍະເກສາ (໴)	ອັດຕາເຈົ້າຢູ່ເຕີມ ໂດເນດີຍ (tdm / ha / y)	ແລ້ວໜ້າ ແລ້ວໜ້າ	ແລ້ວໜ້າ	ແລ້ວໜ້າ	ແລ້ວໜ້າ	ແລ້ວໜ້າ
ເກີນານ CO ₂ ຈາກ EGAT (M tons)				໨.໨.໨.໨.໨.໨.໨.໨.໨.	໨.໨.໨.໨.໨.໨.໨.໨.໨.	໨.໨.໨.໨.໨.໨.໨.໨.໨.	໨.໨.໨.໨.໨.໨.໨.໨.໨.	໨.໨.໨.໨.໨.໨.໨.໨.໨.
ເກີນານ CO ₂ ຈາກການຫຼຸດເຈະແກ້ສແວເນຳນິນ (M tons)				໨.໨.໨.໨.໨.໨.໨.໨.໨.	໨.໨.໨.໨.໨.໨.໨.໨.໨.	໨.໨.໨.໨.໨.໨.໨.໨.໨.	໨.໨.໨.໨.໨.໨.໨.໨.໨.	໨.໨.໨.໨.໨.໨.໨.໨.໨.
ຍລກຮວມເກີນານ CO ₂ ທີ່ ໂ ແລ້ວ (M tons)				໨.໨.໨.໨.໨.໨.໨.໨.໨.	໨.໨.໨.໨.໨.໨.໨.໨.໨.	໨.໨.໨.໨.໨.໨.໨.໨.໨.	໨.໨.໨.໨.໨.໨.໨.໨.໨.	໨.໨.໨.໨.໨.໨.໨.໨.໨.
ໄນ້ສັງເກດ ໜ X ໜ	ໜ X ໜ	ໜ	ໜ.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.
ຢູ່ກາລິປີເຕີມ ໜ X ໜ	ໜ X ໜ	ໜ	ໜ.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.
ສະຫງົບໄປ ໜ X ໜ	ໜ X ໜ	ໜ	ໜ.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.
ໄນ້ເລືຍ ໜ X ໜ	ໜ X ໜ	ໜ	ໜ.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.
ໄກງາງ ໜ X ໜ	ໜ X ໜ	ໜ	ໜ.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.
ກະບົນແຮງຕີ ໜ X ໜ	ໜ X ໜ	ໜ	ໜ.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.
ກະບົນຍັກ ໜ X ໜ	ໜ X ໜ	ໜ	ໜ.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.
ສະເຕາ ໜ X ໜ	ໜ X ໜ	ໜ	ໜ.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.
ປະຕູ ໜ X ໜ	ໜ X ໜ	ໜ	ໜ.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.	ໜ.໨.໨.໨.໨.໨.໨.໨.໨.

(៥),(៦១),(៦៣),(៦៥),(៦៦),(៦៧) ឬពីចំណាត់ផែកសារចុះឯកចិត្ត

ตามรายงานการรับรู้ของเงินกู้ในจากการดูแลภาระและตรวจสอบรายการต่างๆ ที่มีอยู่ในงบประมาณประจำปี

Type of Fuel	Unit	Actual			Forecasts:		
		2000	2001	2002	2003	2004	2005
Natural Gas	MMSCF ¹⁶	3,900	4,650,000	3,900	4,650,000	3,900	4,650,000
Production	GgCH ₄	3,050	3,050	3,050	3,050	3,050	3,050
Ventilating and Furnacing	GgCH ₄	450,000	500,000	500,000	500,000	500,000	500,000
Processing	GgCH ₄	100,000	100,000	100,000	100,000	100,000	100,000
Sub Total	GgCH ₄	4,550,000	5,250,000	5,250,000	5,250,000	5,250,000	5,250,000
Lignite	M tons ¹⁷	1,000	1,000	1,000	1,000	1,000	1,000
Coal mined	GgCH ₄	100	100	100	100	100	100
Total	GgCH ₄	4,650,000	5,350,000	5,350,000	5,350,000	5,350,000	5,350,000
GWPS	kg						
Total	GgCO ₂	4,650,000	5,350,000	5,350,000	5,350,000	5,350,000	5,350,000

(a) ผู้อำนวยการห้องส่งตัวนักเรียนเข้ามาในห้องเรียนโดยไม่ได้รับอนุญาต

ตารางที่ ๖ ค่าใช้จ่ายและกำไรสุทธิในการลด CO_2 จากการปลูกป่า

ประเภท ปัจจัย	ชนิดของ ปัจจัย	รายการ	Unit	ผลิต	ผลิต	๑๐๐๐
อนุรักษ์ ป่า	ป่าทั่วไป (ไม่สัก)	ค่าใช้จ่ายรายปี ^(๑)	บาท / ปี	๖๔๘.๓๗๐	๖๔๘.๓๗๐	๖๔๘.๓๗๐
		พันต่อลด CO_2	ล้านปี	๗.๘๗๐	๗๗.๗๙๕	๗๗.๗๙๕
		ค่าใช้จ่ายในการ ลด CO_2	บาท / kWh	๐.๑๑๖	๐.๑๙๖	๐.๑๙๖
		บาท / t CO_2	๗๘๗.๗๙๕	๗๘๗.๗๙๕	๗๘๗.๗๙๕	
	ป่าชายเลน (ไม่โคงกง)	ค่าใช้จ่ายรายปี ^(๑)	บาท / ปี	๙๘๙.๖๗๐	๙๘๙.๖๗๐	๙๘๙.๖๗๐
		พันต่อลด CO_2	ล้านปี	๑.๕๗๔	๑๗.๒๙๔	๑๗.๒๙๔
		ค่าใช้จ่ายในการ ลด CO_2	บาท / kWh	๐.๑๔๙	๐.๒๔๙	๐.๒๔๙
		บาท / t CO_2	๖๘๙.๒๔๙	๖๘๙.๒๔๙	๖๘๙.๒๔๙	
เพิ่มสัก และการลด ภัยได้ร้าย	ไม้สัก	ค่าใช้จ่ายรายปี ^(๑)	บาท / ปี	๔๔๓๘๘.๔๗๐	๔๔๓๘๘.๔๗๐	๔๔๓๘๘.๔๗๐
		พันต่อลด CO_2	ล้านปี	๗.๘๗๐	๗๗.๗๙๕	๗๗.๗๙๕
		กำไรสุทธิในการ ลด CO_2	บาท / kWh	๐.๓๘๘	๐.๕๐๘	๐.๓๘๘
		บาท / t CO_2	๖๓๘๘.๕๐๘	๖๓๘๘.๕๐๘	๖๓๘๘.๕๐๘	
		รายได้ร้าย ^(๑)	บาท / ปี	๔๕๕๗๘.๐๙๐	๔๕๕๗๘.๐๙๐	๔๕๕๗๘.๐๙๐
		กำไรสุทธิร้าย	บาท / ปี	๔๕๕๗๘.๐๙๐	๔๕๕๗๘.๐๙๐	๔๕๕๗๘.๐๙๐
	ยุคalistic และการลด ภัยได้ร้าย	ค่าใช้จ่ายรายปี ^(๑)	บาท / ปี	๓๐๖๘.๐๙๐	๓๐๖๘.๐๙๐	๓๐๖๘.๐๙๐
		พันต่อลด CO_2	ล้านปี	๕.๐๕๙	๕๕.๕๗๙	๕๕.๕๗๙
		กำไรสุทธิในการ ลด CO_2	บาท / kWh	๐.๐๗๐	๐.๐๑๐	๐.๐๐๙
		บาท / t CO_2	๗๖.๐๐๐	๗๖.๐๐๐	๗๖.๐๐๐	
		รายได้ร้าย ^(๑)	บาท / ปี	๓๗๕๕.๗๗๐	๓๗๕๕.๗๗๐	๓๗๕๕.๗๗๐
		กำไรสุทธิร้าย	บาท / ปี	๓๗๕๕.๗๗๐	๓๗๕๕.๗๗๐	๓๗๕๕.๗๗๐
	ลดเวลาที่ยัง คงอยู่	ค่าใช้จ่ายรายปี ^(๑)	บาท / ปี	๔๕๕๗๘.๖๗๐	๔๕๕๗๘.๖๗๐	๔๕๕๗๘.๖๗๐
		พันต่อลด CO_2	ล้านปี	๗๐.๙๗๘	๗๗.๗๙๘	๗๗.๗๙๘
		กำไรสุทธิในการ ลด CO_2	บาท / kWh	๐.๓๘๘	๐.๕๐๘	๐.๓๘๘
		บาท / t CO_2	๔๕๕๗๘.๕๐๘	๔๕๕๗๘.๕๐๘	๔๕๕๗๘.๕๐๘	
		รายได้ร้าย ^(๑)	บาท / ปี	๔๕๕๗๘.๕๐๘	๔๕๕๗๘.๕๐๘	๔๕๕๗๘.๕๐๘
		กำไรสุทธิร้าย	บาท / ปี	๔๕๕๗๘.๕๐๘	๔๕๕๗๘.๕๐๘	๔๕๕๗๘.๕๐๘

(๖) ผ่อนปลูกต่อไปอีกครั้ง จนกว่าปี

(๗),(๘),(๙) คู่ให้ได้ร้ายและลดลงที่สุด

ตารางที่ ๗ ค่าใช้จ่ายและกำไรสุทธิในการลด CO_2 จากการปลูกป่าเมื่อใช้ปี ๑๙๙๐ เป็นปัจจุบัน

ประเภท การปลูกป่า	ชนิดของ ป่าไม้	รายการ	Unit	๑๙๙๐	๑๙๙๔	๒๐๐๐
เงินกາณ CO_2 จากภาคการผลิตไฟฟ้า			M tons	๒๒๖.๗๗๔	๒๔.๖๔๕	๕๐.๓๔๕
เงินกາณ CO_2 ที่เพิ่มจากปี ๑๙๙๐			M tons	-	๗๗.๙๑๐	๒๗๓.๗๑๐
อนุรักษ์	ป่าไม้ปก (ไม้สัก)	พื้นที่ปลด CO_2	ล้านไร่	-	๕.๗๖๐	๗.๐๔๐
		ค่าใช้จ่ายในการ ลด CO_2	บาท / kWh	-	๐.๐๗๙	๐.๐๙๙
		บาท / t CO_2	บาท / t CO_2	-	๘๘.๓๔๐	๙๐.๒๖๐
	ป่าชายเลน (ไม้กาง)	พื้นที่ลด CO_2	ล้านไร่	-	๔.๕๔๐	๕.๔๖๐
		ค่าใช้จ่ายในการ ลด CO_2	บาท / kWh	-	๐.๐๖๗๐	๐.๐๘๙๙
		บาท / t CO_2	บาท / t CO_2	-	๗๗.๔๔๐	๗๗.๔๔๐
เพาะปลูก	ไม้สัก	พื้นที่ลด CO_2	ล้านไร่	-	๕.๗๖๐	๗.๐๔๐
		กำไรสุทธิในการ ลด CO_2	บาท / kWh	-	๐.๑๖๕	๐.๑๖๐
		บาท / t CO_2	บาท / t CO_2	-	๒๕๕.๗๗๐	๓๐๑.๗๔๐
	ยูคาลิปตัส	พื้นที่ลด CO_2	ล้านไร่	-	๓.๔๗๐	๔.๕๔๐
		กำไรสุทธิในการ ลด CO_2	บาท / kWh	-	๐.๐๐๔	๐.๐๐๔
		บาท / t CO_2	บาท / t CO_2	-	๖.๕๔๐	๗.๕๔๐
	สะเดาเทียน	พื้นที่ลด CO_2	ล้านไร่	-	๗.๕๑๐	๘.๕๑๐
		กำไรสุทธิในการ ลด CO_2	บาท / kWh	-	๐.๕๕๖	๐.๕๕๗
		บาท / t CO_2	บาท / t CO_2	-	๖๒๖.๖๔๐	๖๓๔.๓๑๐

ตารางที่ ๘ ค่าใช้จ่ายและกำไรสุทธิในการลด CO_2 จากการปลูกป่าเมื่อใช้ปี ๑๙๙๔ เป็นปัจจุบัน

ประเภทการปลูก ป่า	ชนิดของป่าไม้	รายการ	Unit	๑๙๙๔	๒๐๐๐
เงินกາณ CO_2 จากภาคการผลิตไฟฟ้า			M tons	๒๔.๖๔๕	๕๐.๓๔๕
เงินกາณ CO_2 ที่เพิ่มจากปี ๑๙๙๔			M tons	-	๕.๗๖๐
อนุรักษ์	ป่าไม้ปก (ไม้สัก)	พื้นที่ลด CO_2	ล้านไร่	-	๑.๖๔๐
		ค่าใช้จ่ายในการ ลด CO_2	บาท / kWh	-	๐.๐๗๙
		บาท / t CO_2	บาท / t CO_2	-	๒๕๑.๕๐๐

เศรษฐกิจ	ภาคยานยนต์	พื้นที่ผล CO ₂	ล้านไร่	-	๑.๔๖๐
		พื้นที่ใช้จ่ายในการผล CO ₂	บาท / kWh	-	๐.๐๗๔
		บาท / t CO ₂	-	๔๖.๓๐๐	
	น้ำสัก	พื้นที่ผล CO ₂	ล้านไร่	-	๑.๖๘๐
		กำไรสุทธิในการผล CO ₂	บาท / kWh	-	๐.๐๓๘
		บาท / t CO ₂	-	๔๗.๕๗๐	
	ยุคดิจิทัล	พื้นที่ผล CO ₂	ล้านไร่	-	๑.๐๙๐
		กำไรสุทธิในการผล CO ₂	บาท / kWh	-	๐.๐๐๙
		บาท / t CO ₂	-	๑.๘๑๐	
	สะเดาเพื่อชีว	พื้นที่ผล CO ₂	ล้านไร่	-	๔.๓๔๐
		กำไรสุทธิในการผล CO ₂	บาท / kWh	-	๐.๑๖๗
		บาท / t CO ₂	-	๒๔๐.๔๘๐	

เอกสารอ้างอิง

1. สนับสนุนสิ่งแวดล้อมไทย. บทสรุปสำหรับผู้บริหาร โครงการศึกษาและจัดทำงบัญชีแห่งชาติว่าด้วยการเริ่มต้น ดำเนินการโดยการเรียนรู้กระบวนการที่มีให้ถูกความคุ้มโดยพิธีสรงนารมณ์ที่คด, ๒๕๔๐.
2. สุชาติ ทิชยุทธ. ผลกระทบจากการเพิ่มแก๊สบุหงาเรื่องผลกระทบ. วิทยาศาสตร์และเทคโนโลยี ๒๕๔๑; ๑๓ : ๑๐๘-๑๐๔.
3. วรวิทย์ เกตติโน. ศักยภาพการผลิตไฟฟ้าและห่วงโซ่อุปทานสู่การใช้ไฟฟ้าในประเทศไทย. วิทยาศาสตร์ดุษฎีรัตน์พัฒนา. สถาบันเทคโนโลยีพระจอมเกล้าเจ้าอยู่หัว. กรุงเทพฯ, ๒๕๓๖.
4. Thailand Environment Institute. Greenhouse Gas Inventory Energy Sector. Thailand National Greenhouse Gas Inventory 1990, pp. 9-14. 1997.
5. Thailand Environment Institute. Greenhouse Gas Inventory Forestry Sector. Thailand National Greenhouse Gas Inventory 1990, pp. 6-7. 1997.
6. องค์การอุตสาหกรรมป่าไม้. โครงการป่าสูญและใช้ประโยชน์อย่างยั่งยืนป่าไม้สัก. ๒๕๔๐.
7. องค์การอุตสาหกรรมป่าไม้. โครงการป่าสูญและใช้ประโยชน์อย่างยั่งยืนป่าไม้ป่าไม้สัก. ๒๕๔๐.
8. ทงศิริ นาวาอ่อนเรือง. น้ำสังเดาเพื่อชีว. หน้า ๒๙๖-๒๙๗. กรุงเทพฯ. ๒๕๔๐.
9. ฝ่ายข้อมูลพัฒนา. การพยากรณ์การเริ่มต้นการใช้ส่วนตัวในประเทศไทยในปี ๒๕๔๘ สำนักงานคณะกรรมการพัฒนาสังคมฯ

กรรมการนโยบายพัฒนาแห่งชาติ, ๑๙๗๗.

๑๐. ฝ่ายข้อมูลพัฒนา. การพยายามเริ่มกระบวนการใช้ก้าวธรรมชาติในประเทศไทยในปี ๑๙๘๘. สำนักงานคณะกรรมการนโยบายพัฒนาแห่งชาติ, ๑๙๗๗.

๑๑. ส่วนข้อมูลกลาง. ผลิตภาระป้าไน้ของประเทศไทยปี ๒๕๓๐, หน้า ๑-๔. สำนักสารนิเทศ กรมป้าไน้, ๒๕๓๐.

๑๒. เช้า ภาระ. การเจริญเติบโตของน้ำสักในสภาพส่วนไป, หน้า ๒-๙. ปีบุญพาพิเศษ, ภาควิชาชีววัฒน์วิทยา, มหาวิทยาลัยเกษตรศาสตร์, ๒๕๓๔.

๑๓. ทศพร ภัชรรงค์. ผลผลิตของชาวนาในภูมิภาคได้สลดย ๔ ปีที่ถูกตัวระบะห่างແປดะสะที่จังหวัดที่สะเก่าย, หน้า ๑๑๔-๑๑๕. วิทยานิพนธ์วิบูญพาพิเศษวิทยาศาสตร์ธรรมชาติ, มหาวิทยาลัยเกษตรศาสตร์, ๒๕๓๑.

๑๔. ภาควิชาการจัดการป้าไน้. การประเมินผลผลิตและการลงทุนในกิจกรรมการปลูกสร้างสวนไป, หน้า ๓๒-๔๖. คตตะวันศาสตร์, มหาวิทยาลัยเกษตรศาสตร์, ๒๕๓๐.

๑๕. ไฟคาด อะนั่เพิ่มพูด. ผลผลิตของชาวนาไน้โภกภัลงในแล็ก จังหวัดป่าตึ้ง, หน้า ๓๖-๓๘. วิทยานิพนธ์วิทยาศาสตร์ธรรมชาติ, มหาวิทยาลัยเกษตรศาสตร์, ๒๕๓๒.

๑๖. นรีดี สมใจ. ผลผลิตทางด้านชีวมวลของชาวนาไน้เลี้ยง ยูคลิปต์ส แฟรงก์เรนีย์กอร์ สมเด็จจังหวัดกาฬสินธุ์, หน้า ๒๖-๒๗. ปีบุญพาพิเศษ, ภาควิชาชีววัฒน์วิทยา, มหาวิทยาลัยเกษตรศาสตร์, ๒๕๒๕.

๑๗. ประเสริฐ เทียนนิมิตรา แคลคูเต. เรี้ยบทลิ่งแพะพาราหล่อล้าน. เนื้อทบทวนเพรินต์, นรีรักษ์ ชีลีดยุคเข้าไป จำกัต, ๒๕๓๗.

๑๘. สำนักงานเศรษฐกิจการเกษตร. ข้อมูลด้านการผลิตและการตลาดสินค้าเกษตรที่สำนักฯ. สำนักวิจัยเศรษฐกิจการเกษตร, กระทรวงเกษตรและสหกรณ์, ๒๕๓๔.

๑๙. พัฒน์ หัวหูกดิก. การประเมินศักยภาพโรงไฟฟ้าไน้ในประเทศไทย วิชาการรวมศาสตร์มหาบัณฑิต, สถาบันเทคโนโลยีพระจอมเกล้าอยุธยา, ๒๕๓๐.

๒๐. วินัย ปีบุญพาพิเศษ. เทคโนโลยีการผลิตเน่าเสียหัวใจนา, หน้า ๕. กศุลเพ็พกษาพัฒนาจากไน้, สำนักวิชาการไน้, กรมป้าไน้, ๒๕๓๐.

๒๑. ธรรมพัฒนาและส่งเสริมพัฒนา. รายงานพัฒนาเกษตรกรรมไทย ๒๕๓๐, กระทรวงวิทยาศาสตร์ เทคโนโลยีและสิ่งแวดล้อม, ๒๕๓๐.

๒๒. นรีชา เกียรติกรุงจาย. เทคโนโลยีการแปรรูปผลิตภัณฑ์จากไน้. คตตะวันศาสตร์, มหาวิทยาลัยเกษตรศาสตร์, ๒๕๓๒.

DIFFUSION MODEL OF PAPAYA GLACE' DRYING

Siva Achariyaviriya*, Somchart Soponronnarit** and Apichit Terdyothin**

*Doctoral Student **School of Energy and Materials

King Mongkut's University of Technology Thonburi

Suksawat 48 Road, Thungkru, Bangkok 10140, Thailand

Key words and phrases: diffusion coefficient; drying kinetic equation; modeling

ABSTRACT

The objective of this research was to develop diffusion model of papaya glace' drying using analytical solution of the Fick's equation. Diffusion coefficient of papaya glace' drying using four methods of analysis was studied. The parameters in diffusion models were evaluated by regression analysis from the experimental data. The comparison of four diffusion models was examined. It was found that the predicted values of moisture content using Model 1 and Model 2 were close to experimental values only in the early phase of drying. Using Model 3 and Model 4, the predicted values could be improved in the entire drying period. Conclusively, Model 3, which moisture content was incorporated, was recommended for calculating drying curve of papaya glace'

INTRODUCTION

The mobility of moisture in drying of food materials is complicated mechanism. Generally, moisture transfer mechanism in food material occurs only in falling drying rate period. Therefore, the moisture migration within materials is only governed by diffusion. Literatures on moisture diffusion of food materials have been investigated by several authors. For example, Lopez et al. [1] developed diffusion model for drying of hazelnut. Usually, the dependence of the diffusion coefficient on the drying air temperature is described by an Arrhenius-type equation. The diffusion within food materials has been described by Fick's second law and it has several forms. The form used in this research work is diffusion into a box shape in Cartesian coordinates. It states that the mobility of moisture is proportional to the moisture concentration gradient within materials. It can be written as:

$$\frac{\partial M}{\partial t} = \frac{\partial}{\partial X} (D \frac{\partial M}{\partial X}) + \frac{\partial}{\partial Y} (D \frac{\partial M}{\partial Y}) + \frac{\partial}{\partial Z} (D \frac{\partial M}{\partial Z}) \quad (1)$$

In solving the above equation, the assumptions are made as follows: the shape of materials is not shrinkage, the food materials have uniform moisture distribution at the start, and the moisture content at its surface reaches the

equilibrium when exposes to hot drying air. These assumptions lead to the following initial and boundary conditions:

$$M(x, y, z, 0) = M_{in},$$

$$\text{when } t > 0, \quad M(x, y, 0, t) = M(x, 0, z, t) = M(0, y, z, t) = M_{eq},$$

$$\text{and} \quad M(x, y, l, t) = M(x, l, z, t) = M(l, y, z, t) = M_{eq}$$

In the Equation 1, diffusion coefficient (D) is a variable depending on the moisture content of product. It is usually assumed that D is constant. Consequently, the analytical solution is expressed by the following relationship:

$$MR = \frac{M - M_{eq}}{M_{in} - M_{eq}} = \left[\frac{8}{\pi^2} \sum_{n=0}^{\infty} \left\{ \frac{1}{(2n+1)^2} \exp\left\{-(2n+1)^2 D \frac{\pi^2 t}{l^2}\right\} \right\} \right]^3 \quad (2)$$

Where, M_{eq} is the equilibrium moisture content using the B.E.T. equation [2] whose parameters were evaluated by Achariyaviriya and Soponronnarit [3]. In addition, if D is a linear function of the moisture content of food materials, the approximate analytical solution of Equation 1, Crank [4], under initial and boundary conditions is given by Equation 3.

$$MR = \left[\frac{8}{\pi^2} \sum_{n=0}^{\infty} \left\{ \frac{1}{(2n+1)^2} \exp\left\{-(2n+1)^2 D_0 \frac{\pi^2 t}{l^2}\right\} \right\} - \frac{128\lambda \exp(-D_0 \frac{\pi^2 t}{l^2}) - \exp(-2D_0 \frac{\pi^2 t}{l^2})}{3\pi^2 + 16\lambda - 16\lambda \exp(-D_0 \frac{\pi^2 t}{l^2})} \right]^3 \quad (3)$$

The aim of this study is to develop diffusion model of papaya glace' drying which is used to describe drying in the falling rate period. In this work, four models are developed by fitting experimental data to the Fick's diffusion models. Comparison of the diffusion coefficient in each model is also observed.

MATERIALS AND METHODS

Experimental Procedure

Samples of papaya glace' obtained from the Royal Project Food Processing were cut into cubes with dimension of $15 \times 15 \times 15$ mm³. Drying air temperature varied from 45 °C to 70 °C. A total of 27 duplicate treatments were performed at constant drying air velocity in the thin layer dryer. During each test, product temperature, drying air temperature, and ambient conditions were measured by thermocouples connected to a data logger with an accuracy of ± 1 °C. Size of papaya glace' was also measured by vernier before and after drying. Water losses from product were measured by weighing the sample every hour until the product reached equilibrium moisture content. The moisture content of papaya glace' was determined by hot air oven method.

Evaluation of Diffusion Coefficient

In this study, four different methods of analysis are applied to estimate the diffusion coefficient. The detailed models are as follows:

Model 1

The diffusion coefficient is determined by regression analysis from the experimental data to the drying kinetic equation (Equation 2). The dependence of the diffusion coefficient on the drying air temperature is considered as an Arrhenius type equation. It is written as:

$$D = D' \exp[-Ea/RT_{abs}], \quad (4)$$

where, D' is the Arrhenius factor, Ea is energy of activation, R is universal gas constant, and T_{abs} is absolute drying air temperature.

Model 2

D_0 and λ are the parameters to be estimated by fitting the same experimental data to Equation 3. Moisture ratio dependence of the diffusion coefficient is considered as a linear function. It can be written as:

$$D = D_0 (1 + \lambda MR) \quad (5)$$

Temperature dependence of the diffusion coefficient can be introduced by considering both D_0 and λ as a polynomial function of drying air temperature.

Model 3

This model is similar to Model 1. The value of D is assumed to be constant on short time interval. At each time interval, the value of D is calculated by fitting the experimental data to Equation 2, thus obtaining the diffusion coefficient as a function of moisture content. The dependence of the diffusion coefficient on drying air temperature and product moisture content is described by the following equation:

$$D = (a_1 M^2 + a_2 M + a_3) \exp[-Ea/RT_{abs}] \quad (6)$$

Model 4

The method of analysis using Model 4 is nearly the same as that using Model 3. In addition, the volume shrinkage during drying is incorporated in this model. The size of papaya glace' (l) is assumed to be constant on short time interval. The value of l is calculated by the following equation:

$$l = b_1 M + b_2 \quad (7)$$

where, the initial size of papaya glace' is 0.015 m., M is moisture content (% dry basis), b_1 and b_2 are 0.0012 and 0.013, respectively. They are evaluated by fitting experimental data using least square method. The equation of diffusion coefficient are the same as Equation 6.

RESULTS AND DISCUSSION

Experimental Results

Results of all tests show that there is no constant drying rate period. The evolution of product temperature at drying air temperature of 58 °C is shown in Figure 1. It is found that product temperature approaches drying air temperature after three operating hours which the moisture content of product decreases from 107 % dry basis to 62 % dry basis.

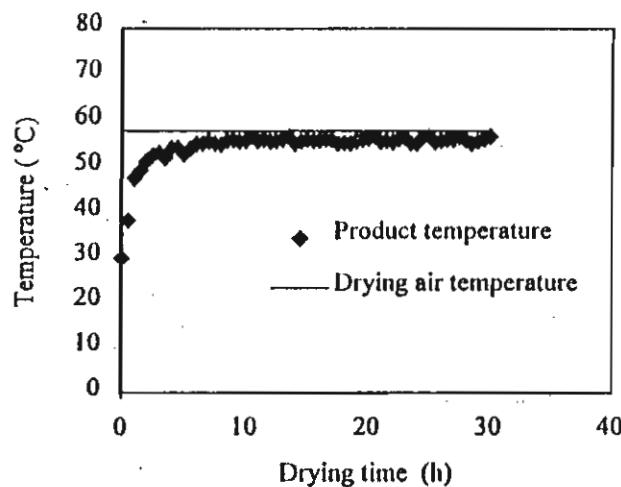


Figure 1. The evolution of product temperature at air temperature of 58 °C.

Development of Diffusion Model

The diffusion coefficient are calculated by various methods by fitting experimental data to Equation 2 and Equation 3. Four alternative diffusion coefficient equations of papaya glace' have been developed by fitting calculated data to Equations 4, 5, and 6. The results of calculated parameters in diffusion models are shown in Table 1.

Table 1 Diffusional Models of Papaya Glace' Drying

Model	Diffusion Coefficient Equation	Drying Kinetic Equation	MRS*
Model 1	$D=0.004135\exp[-24.75/RT_{abs}]$	Equation 2	.0022
Model 2	$D = D_0 (1 + \lambda MR)$ $D_0 = -2.55 \times 10^{-9}T^2 + 3.15 \times 10^{-7}T - 8.79 \times 10^{-6}$ $\lambda = 0.00461T^2 - 0.538T + 14.73$	Equation 3	.0038
Model 3	$D=(-6.86M^2+8.08M-0.36)\exp[-41.23/RT_{abs}]$	Equation 2	.0009
Model 4	$D=(-3.74M^2+4.48M-0.28)\exp[-39.49/RT_{abs}]$	Equation 2	.0009

* MRS = Mean Residual Square = $(MR_{pr} - MR_{ex})^2 / \text{the number of observations}$

Table 1 shows that Model 3 and Model 4 present the minimal mean residual square (MRS). Figure 2 shows the comparison between predicted values and experimental values of moisture ratio. As shown in Figure 2, the predicted values using Model 3 and Model 4 are in good agreement with experimental ones. Also, the drying curve of papaya glace' in Figure 3 clearly indicates that Model 3 and Model 4 are excellent match between predicted and experimental values.

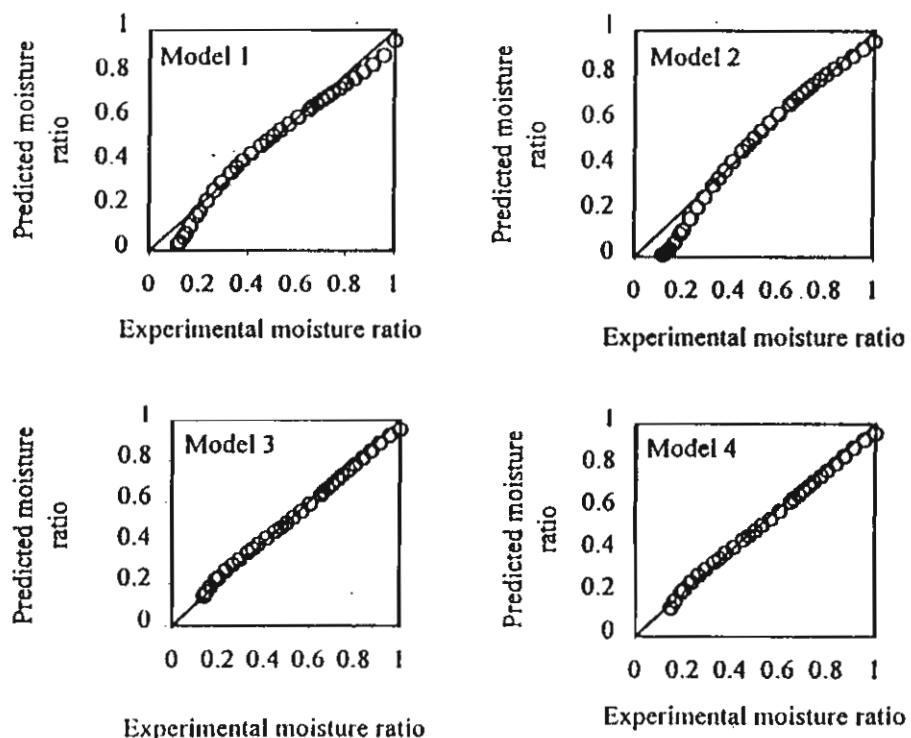


Figure 2. Comparison between predicted values and experimental values of moisture ratio using various models.

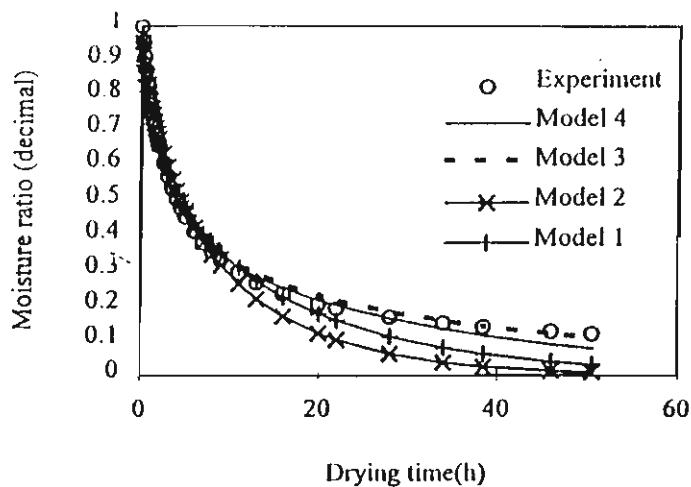


Figure 3. The evolution of moisture ratio using various models with experimental data at drying air temperature of 52 °C and size of papaya glace' of 15x15x15 mm³

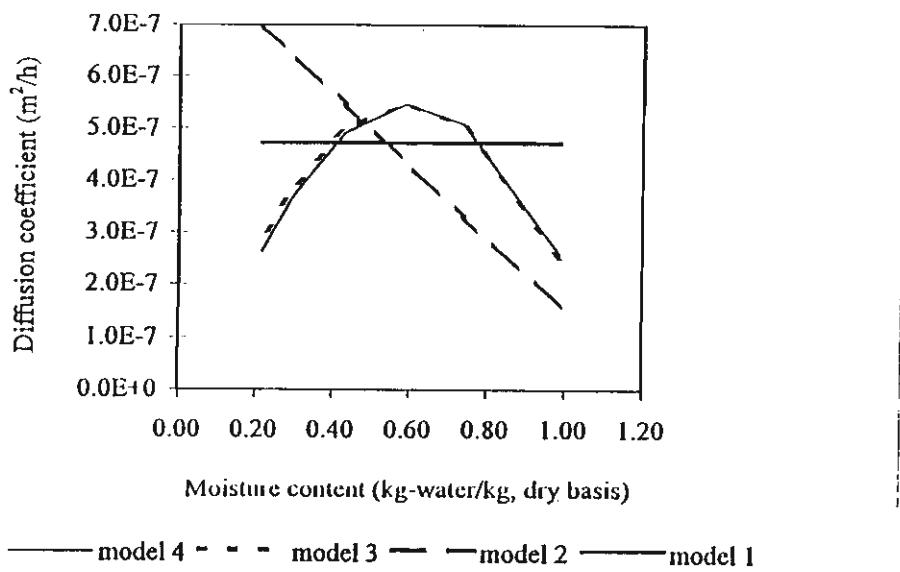


Figure 4. The diffusion coefficient calculated by various models at drying air temperature of 55 °C

Figure 4 shows diffusion coefficient in a function of moisture content in each model. The diffusion coefficient using Model 2 increases when the moisture content decreases. Using Model 3, the diffusion coefficient increases when the moisture content decreases until the moisture content reduces to 60 % dry basis, and then it decreases with the moisture content. At the beginning of the drying process, the values of D increase due to the increase of product temperature (see Figure 1). The

subsequent decrease of D is due to the decrease of moisture content. This behavior has been reported by several authors ([5], [6], [7]). The values of D using Model 4 are nearly the same as that from the values using Model 3 since the size of papaya glace' shrinks less than 10 % during drying.

CONCLUSIONS

Four alternative diffusion models of papaya glace' drying have been developed by using analytical solutions of the Fick's equation. The predicted values of moisture ratio using Model 1 and Model 2 are close to experimental values only in the early phases of drying. Using Model 3 and Model 4, the predicted values can be improved in the entire drying period. Occasionally, it cannot be concluded that the effect of shrinkage embracing in the model can improve the predicted values because papaya glace' shrinks a little bit during drying.

NOTATION

D	diffusion coefficient	(m ² /h)
Ea	energy of activation	(kJ/mol)
l	size of papaya glace'	(m)
M	moisture content	(% or decimal, dry basis)
MR	moisture ratio	(decimal)
MRS	mean residual square	(decimal)
R	universal gas constant	(kJ/mol-K)
T	temperature	(°C or K)

Subscripts

abs	absolute
eq	equilibrium
ex	experimental value
in	initial
pr	predicted value

ACKNOWLEDGMENTS

The authors would like to express their sincere thanks to the Thailand Research Fund for financial support.

REFERENCES

1. Lopez, A., Pique, M.T., Boatella, J., Ferran, A., Garcia, J. and Romero, A., 1998, Drying characteristic of the hazelnut, Drying Tech., Vol. 16, p. 627-649.

2. Brunauer, S., Emmette, P.H. and Teller, E., 1938, Adsorption of gases in multimolecular layers, *J. Am. Chem. Soc.* 60, p. 309-319.
3. Achariyaviriya, S. and Soponronnarit, S., 1990, The study of parameters for analysis of papaya glace' drying, *Kasetsart Journal (Sci.)*, vol. 24, p.196-207.
4. Crank, J.,1975, *The mathematics of diffusion*, Oxford University Press, U.K.
5. Raghavan, G.S.V., Tulasidas, T.N., Sablani, S.S. and Ramaswamy, H.S., 1995, A method of determination of concentration dependent effective moisture diffusivity, *Drying Tech.*, Vol. 13, p. 1477-1488.
6. Zogzas, N.P. and Maroulis, Z.B., 1996, Effective moisture diffusivity estimation from drying data, *Drying Tech.*, Vol. 14, p. 1543-1573.
7. Azzouz, S., Jomaa, W. and Belghith, A.,1998, Drying kinetic equation of single layer of grapes, *Drying '98*, vol. B, p. 988-997.

DRYING OF HIGH MOISTURE PADDY BY TWO-DIMENSIONAL SPOUTED BED TECHNIQUE

Somboon Wetchacama, Somechart Soponronnarit, Thanit Swasdisevi, Jinda Panich-ing-orn and Suchart Suthicharoenpanich

School of Energy and Materials

King Mongkut's University of Technology Thonburi
Suksawat 48 Road, Tungkaru, Bangkok 10140, Thailand

Keywords: Dehydration, grain, spouting

ABSTRACT

The objectives of this research were to design and construct a two-dimensional spouted bed dryer; to study paddy drying with variable parameters which affected drying rate, quality of paddy after drying and specific energy consumption; and to develop an empirical equation describing drying kinetics. Experimental drying conditions were as follows: initial paddy moisture content of 30-45 % dry-basis, drying air temperatures of 130, 140 and 150 °C, hold-up of 20, 25 and 30 kg. Experimental results showed that minimum spouting velocity of drying air at the inlet of drying chamber was 15.4-16.4 m/s. The cross section area of the draft plate channel was twice of that of the drying chamber inlet. The parameters affecting drying rate and specific energy consumption were drying air temperature and specific air flow rate or hold-up, and those affecting head rice yield were initial and final moisture contents of paddy and drying air temperature. Entrance height directly affected energy consumption of fan. The suitable entrance height was 10 cm as it resulted in minimum energy consumption. The first order polynomial equation was accurate and appropriate for predicting drying rate.

INTRODUCTION

Rice is one of agricultural products which is heat sensitive especially during drying. Spouted bed drying is one among techniques which may overcome this problem. Viswanathan *et al.* [1] studied drying of paddy, wheat, corn and peas by batch and continuous spouted bed techniques. Various variables affecting drying rate, *i.e.* feed moisture content, drying air temperature, bed mass hold-up, superficial drying air velocity and bed diameter were taken into consideration. The linear empirical equation was presented for predicting average drying rate. Kalwar *et al.* [2] studied drying of soybean, corn and wheat by using a two-dimensional spouted bed with draft plates dryer. The experimental conditions were as follows: the slant angle of base plate was 60°, drying air temperatures were varied at 50, 70 and 90 °C, inlet drying air velocities for drying wheat, corn and soybean were 10.7-16.7 m/s,

19.1-21.5 m/s and 19.1 m/s, respectively. It was found that drying rate related with the grain circulation rate. Drying air temperature at the draft outlet varied when slant angle was changed. In case of low slant angle, e.g. 30°, it would have the dead zone of material at the bottom of bed. Kalwar [3] studied grain drying, scale-up and potential evaluation of two-dimensional spouted bed dryer (TDSB). The experiment was carried out with a pilot scale unit. The width, length and height were 0.50 m, 0.04 m and 1.50 m, respectively. Slant angle and slot width could be varied. The experimental conditions in this study were as follows: the ratios of bed width per slot width were 5, 10 and 15, slant angles 0°, 30° and 60° and bed heights 0.4, 0.8, 1.2 and 1.6 m. The tested materials were corn, wheat and soybean. It was found that: 1) Slot width, slant angle, grain type and bed height had great influence on static vertical pressure; 2) Pressure drop and minimum velocity for spouting and average cycle time of material depended on draft plate channel, slant angle, bed length, drying air and material properties and physical characteristic of spouted bed; 3) The parameters affected drying rate were drying air temperature, initial temperature of material, bed hold-up, initial moisture content of material, average cycle time of material, relative moisture content at equilibrium and shape of spouted bed; and 4) The drying rate could be described by applying the equation of Page [4].

From the literature, there was not much research work on paddy drying with spouted bed technique. Therefore, it is the objective of this paper to investigate experimentally the appropriateness of the spouted bed drying of paddy. Drying kinetics, energy consumption and paddy quality were studied.

MATERIALS AND METHODS

In this experiment, a two-dimensional spouted bed dryer with controlled air temperature and flow rate as shown in Figure 1 was used. The inlet cross sectional area, width of spout and entrance height are $0.04 \times 0.15 \text{ cm}^2$, 8 cm and 10 cm, respectively. Drying air and paddy temperatures were measured by k-type thermocouples connected to a data logger with an accuracy of $\pm 1^\circ\text{C}$. The pressure across the bed and air velocity were measured by a U-tube manometer and a hot wire anemometer with an accuracy $\pm 4\%$, respectively. To find moisture content, paddy sample were taken at five minutes intervals for periods of 5-20 minutes during the experiment and dried in an air oven at temperature of 103°C for 72 hours.

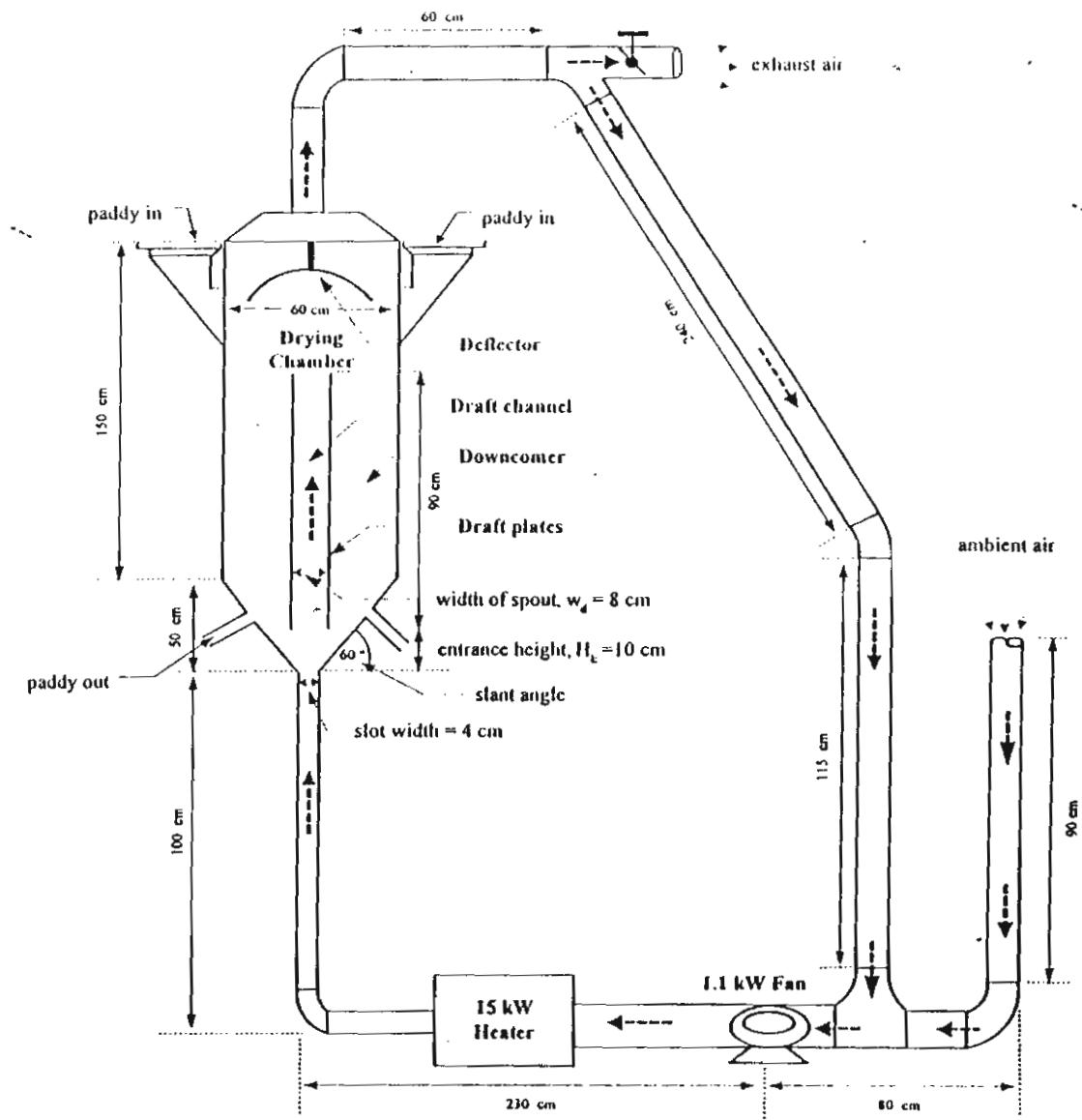


Figure 1. Diagram of the experimental two-dimensional spouted bed dryer

Moist paddy was prepared by spraying water on paddy, mixed thoroughly, kept in closed lid bin and stored in a cold room at temperature approximately 8-10 °C for 5-7 days to obtain uniform moisture distribution within the paddy kernel. Experimental drying conditions were as follows: initial moisture content of paddy of 31-45 % dry-basis, bed hold-up of 20, 25 and 30 kg, drying air temperature at drying chamber inlet of 130, 140 and 150 °C. Paddy dried by spouted bed technique was further dried with ambient air until the moisture reduced to 16 % dry-basis. Finally, head rice yield was determined according to the method of the Rice Research Institute and rice whiteness was measured by Kett meter. Both head rice yield and rice whiteness were reported in terms of relative values as follows:

$$\text{Percentage of relative head rice yield} = \frac{\text{head rice yield of paddy dried by spouted bed dryer}}{\text{head rice yield of paddy dried by ambient air}} \times 100$$

$$\text{Percentage of relative rice whiteness} = \frac{\text{rice whiteness of paddy dried by spouted bed dryer}}{\text{rice whiteness of paddy dried by ambient air}} \times 100$$

RESULTS AND DISCUSSION

Pressure Drop and Minimum Spouting Velocity

Before conducting the experiment, suitable width of spout was investigated. It was found that the suitable width was 8 cm. If it was less than 8 cm, the paddy would not flow well in the draft plate channel. Suitable entrance height was also studied. The suitable height was 10 cm as it resulted in minimum energy consumption of fan as well as more uniform spouting comparing with the height more than 10 cm. Figure 2 shows the relation between pressure drop and air velocity at the dryer inlet with the width of 4 cm. It was found that when drying air velocity increased, pressure across the bed also increased until it reached a maximum value. At this value, paddy started moving and separated from each other. When drying air velocity was further increased, pressure drop would decrease down to a value and remain constant. At the point which pressure became constant, the velocity of drying air at this point was called minimum spouting velocity. The pressure drop across the bed would increase with hold-up. The minimum spouting velocities in different hold-ups and moisture contents were approximately 15.4–16.4 m/s.

The Influences of Variables on Drying Rate

The variables affected drying rate were specific air flow rate (or in terms of hold-up with fixed air flow rate) and drying air temperature. Drying rate increased as drying air temperature and specific air flow rate increased.

A linear equation was employed to describe the drying rate. It is written as follows:

$$MR = a + bt \quad (1)$$

where MR is moisture ratio, t is drying time (minute), H is hold-up (kg), and a, b are parameters obtained from curve fitting.

$$a = 1.51167 - 0.01833H - 0.003961T + 0.000143H \cdot T \quad (2)$$

$$b = 0.077656 - 0.002367H - 0.000889T - 0.000023H \cdot T \quad (3)$$

where T is drying temperature (°C). The value of average squared predicting error (ASPE) between the results from experiment and calculation was 0.00129 as shown in detail in Figure 3.

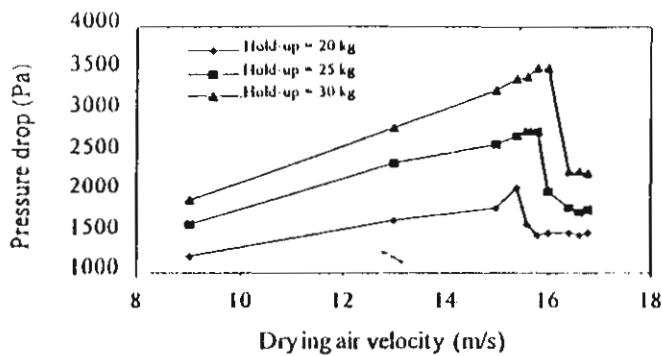


Figure 2 Relationship between pressure drop and air velocity (at the dryer inlet) at different hold-ups (initial moisture content of paddy = 31.1 % d.b.)

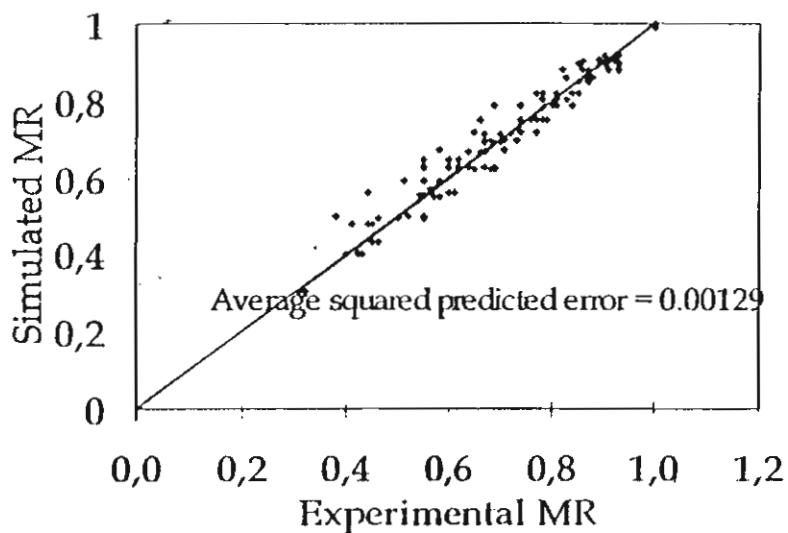


Figure 3 Comparison between simulated and experimental moisture ratios (MR) of paddy

Paddy Quality

Figure 4 shows the relationship between percentage of relative head rice yield and final moisture content of paddy at initial moisture content 30-45 % dry-basis. It was found that head rice yield increased with initial moisture content. This might be resulted from the gelatinization in paddy kernel. Figure 5 shows the effect of drying air temperature on relative head rice yield. The drying air temperatures considered were 130, 140 and 150 °C. It was found that when drying air temperature at the drying inlet increased, percentage of relative head rice yield decreased. This was because high drying temperature caused humidity of paddy reduce rapidly that resulted in cracking and breakage in paddy kernel.

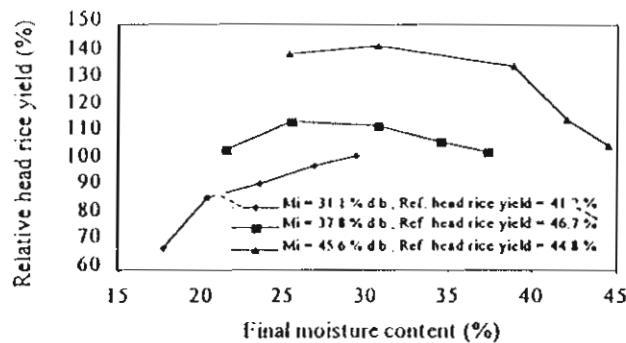


Figure 4 Relative head rice yield at different initial moisture content (Mi) (drying air temperature at the dryer inlet

150 °C, hold-up 30 kg)

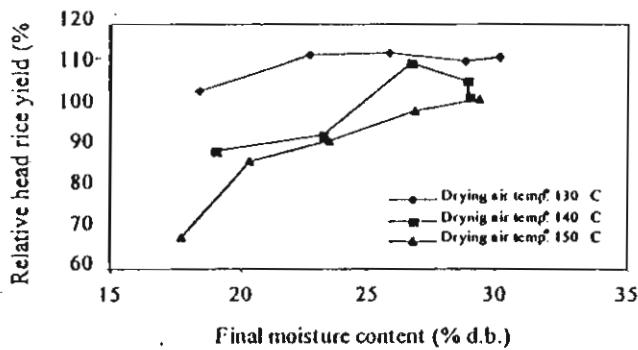


Figure 5 Relative head rice yield at different drying air temperatures at the dryer inlet (initial moisture content of paddy 31.1 %d.b., hold-up 30 kg)

Figure 6 shows the relationship between percentage of relative rice whiteness and final moisture content of paddy at initial moisture content 30-40 % dry-basis. It was found that when initial moisture content increased, percentage of relative rice whiteness decreased. Rice colour of paddy changed from white to yellow because of the reaction of rice browning, without enzyme involving. The yellowness would increase as final moisture content decreased. Figure 7 shows the change of relative rice whiteness resulted from the variation of drying air temperatures at the dryer inlet. It was found that drying air temperatures at 130, 140 and 150 °C slightly affect the percentage of relative whiteness and the values of whiteness obtained were nearly the same.

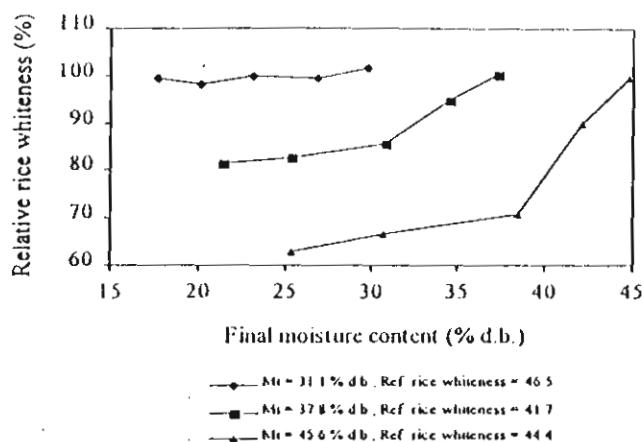


Figure 6 Relative rice whiteness at different initial moisture content (Mi) (drying air temperature at the dryer inlet 150 °C, hold-up 30 kg)

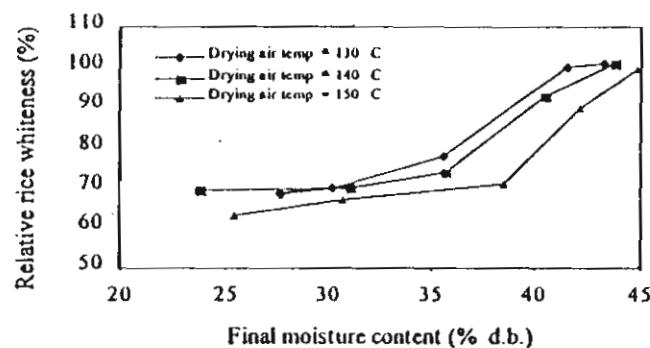


Figure 7 Relative rice whiteness at different drying air temperatures at the dryer inlet (initial moisture content of paddy 45.6 %d.b., hold-up 30 kg)

Comparing with the results of fluidized bed paddy drying [5], it was found that the qualities of paddy from both spouted bed and fluidized bed drying were nearly the same. Higher percentages of head rice yield after drying was obtained.

Energy Consumption

The main variables influenced on specific energy consumption of fan and heater were drying air temperature at the dryer inlet and specific air flow rate. It was found that when drying air temperature increased, specific heat consumption slightly increased (from 4.35 to 5.19 MJ/kg-water evap.). When specific air flow rate increased specific heat consumption also slightly increased (from 4.64 to 5.85 MJ/kg-water evap.). The proportion of electricity for driving fan was relatively small.

CONCLUSION

The experimental study of paddy drying with two-dimensional spouted bed technique with draft plates could be concluded as follows:

1. The minimum spouting velocity at 4 cm-wide dryer-inlet with width of spout 8 cm and entrance height 10 cm was in range of 15.4 - 16.4 m/s. The maximum pressure drop at the start of spouting state was in range of 2000 - 3600 Pa and spouting pressure drop was in range of 1400 - 2300 Pa.
2. Drying air temperature and specific air flow rate affected paddy drying rate, *i.e.* as the specific air flow rate or drying air temperature increased, drying rate increased. First order polynomial equation was appropriate for predicting paddy drying rate.
3. Percentage of head rice yield increased when initial moisture content increased. As drying air temperature increased, percentage of head rice yield decreased. Rice whiteness decreased when initial moisture content increased, while drying air temperature slightly affected to rice whiteness.
4. Specific energy consumption slightly increased when temperature and specific air flow rate increased.

ACKNOWLEDGMENTS

The authors would like to thank the Thailand Research Fund and Australian Centre for International Agricultural Research for their support, and Pathum Thani Rice Research Institute for helping in testing of rice quality.

REFERENCES

1. Viswanathan, K., Lyall, M.S. and Raychaudhuri, B.C. 1986, Agricultural grains spouted bed drying. Canadian Journal Chemical Engineering 64. 223-232.
2. Kalwar, M.I., Kudra, T., Raghavan, G.S.V. and Mujumdar, A.S. 1991, Drying of grains in a drafted two-dimensional spouted bed, Journal of Food Processing Engineering 13. 321-332.
3. Kalwar, M.I. 1992, Aerodynamics and drying characteristics of grains in two - dimensional spouted beds, Drying Technology 10. 535-538.
4. Page, G.E. 1949, Factors influencing the maximum rate of drying shell corn in layers, Unpublished Thesis for the Degree of Master of Science. Purdue University, West Lafayette, Indiana, USA.
5. Taweerattanapanish, A., Soponronnarit, S., Wetchacama, S., Kongseri, N., and Wongpiyachon, S. 1999, Effect of drying on head rice yield using fluidization technique, Drying Technology 17(1&2). 345-354.

INDUSTRIAL SCALE HEAT PUMP FRUIT DRYING

Thanid Madhiyanon, Somchart Soponronnarit and Thanit Swasdisevi

School of Energy and Materials

King Mongkut's University of Technology Thonburi

Suksawat 48 Road, Bangkok 10140, Thailand

Keywords: Dryer, Heat pump, Papaya glace'

ABSTRACT

An industrial-scale prototype of heat pump dryer (HPD) was designed, constructed and tested. The drying chamber contains four trolleys with product capacity of 600-700 kg. In the experiments, papaya glace' was dried in close system at an average temperature of 55°C, specific air flow rates of 25-32 kg dry air/h-kg dry papaya glace' and the evaporator by-pass air of 81%. The papaya glace' with initial moisture content of 83-86% dry basis was dried in three stages to final moisture content of 12-14% dry basis within approximately 32 hours. No significant final moisture gradient along the vertical and horizontal directions of the dryer was observed due to uniform air distribution within the drying chamber and high enough air flow rate respectively. The experimental results indicate that drying rate decreases rapidly with time, while total power consumption remains nearly constant. At high initial moisture content, the moisture removal is higher than that at low initial moisture content. The maximum average drying rate (DR) and specific moisture extraction rate (SMER) are 9.34 kg water evap./h and 0.732 kg water evap./kWh respectively. The maximum average moisture extraction rate (MER) is 8.59 kg water cond./h and the relative lowest average specific energy consumption (SEC) is about 4.92 MJ/kg water evap. The coefficient of performance of heat pump (COP_{hp}) system varies from about 4.1 to 4.7 which is higher than (COP_{hp}) used obtained by the internal condenser load which varies from 3.0 to 3.8. This attributes to the excess heat rejected to atmosphere through the external condenser. Operating system on partially open mode does not offer more benefits than close system. The quality of dried papaya glace' in terms of color is acceptable due to low drying temperature. Cost evaluation showed that cost of papaya glace' drying was 6.43 Baht/kg water evaporation of which 2.73 was energy cost, 0.55 was maintenance cost and 3.15 was fixed cost (US\$ 1 = 40 Baht). In conclusion, HPD achieves high energy efficiency, and it is feasible to be commercialized, particularly in food drying industry. Latest information shows that the HPD prototype has been sold.

INTRODUCTION

Using low drying air temperature of HPD enhances product quality by retaining texture, and reduces the incidence of color degradation. Some of the literature concerning heat pump drying was reported by Soponronnarit et al. [1] which can be summarized as follows: HPD could be operated on close or open

systems, drying temperature depended on refrigerant and it could be increased by adding electrical heat into HPD but caused COP to reduce, HPD performance could be increased by selecting suitable ratios of evaporator by-pass air, and using recuperator (Economics of using recuperator is a concern.). Prasertsan et al.[2] conducted computer simulation to study effects of drying rate and ambient condition on the operating modes of HPD in batch drying. The result was in agreement with the previous study as reported by Clements et al. [3] that SMER and MER strongly depended on the relative humidity of outlet air from the drying chamber. It was recommended to run HPD on open system during the stage of high drying rate (early stage of drying) and partially closed system during the stage of low drying rate (final stage of drying). Prasertsan and San-saby [4] studied heat pump drying of agricultural materials. From the economic analysis of HPD and conventional dryers (i.e., an electrically-heated hot air dryer, a direct-fired dryer), it was found that HPD had the lowest operating cost. HPD was operated on both partially closed and open systems. In batch wood drying, the maximum average MER and SMER were 2.854 kg/h and 0.572 kg/kWh respectively. Batch banana drying yielded the highest average MER of 2.710 kg/h and SMER of 0.540 kg/kWh.

In this study, A prototype of industrial-scale HPD was designed, constructed and tested in a food processing factory. Papaya glace' was chosen as test material.

MATERIALS AND METHODS

A prototype of industrial-scale HPD which could be operated as a close system or a partially open system was constructed, as shown in Figures 1. In this paper, experiments were carried out on the close system according to test nos. 1, 2 and 3 only by closing dampers A and B and partially open system as test nos. 4, 5 and 6 respectively. The HPD consists of a drying chamber and a heat pump. The drying chamber is 1.0 m wide x 4.0 m long x 1.5 m high, and contains four trolleys. One trolley has 17 trays of 90 cm x 70cm. The main components of the heat pump are a 6.7 kW hermetic reciprocating compressor using R-22 as refrigerant, a 25 kW internal condenser (4 rows x 25 columns, 512 fins per meter), a 10.5 kW external condenser (2 rows x 18 columns, 512 fins per meter), a 25 kW evaporator (551 fins per meter), a thermostatic expansion valve, a forward-curved-blade centrifugal fan equipped with a motor of 5.5 kW corresponding to air volume flow rate of 2.8 m³/s at 750 kPa and two axial fans equipped with a motor of 200 W each (for the external condenser).

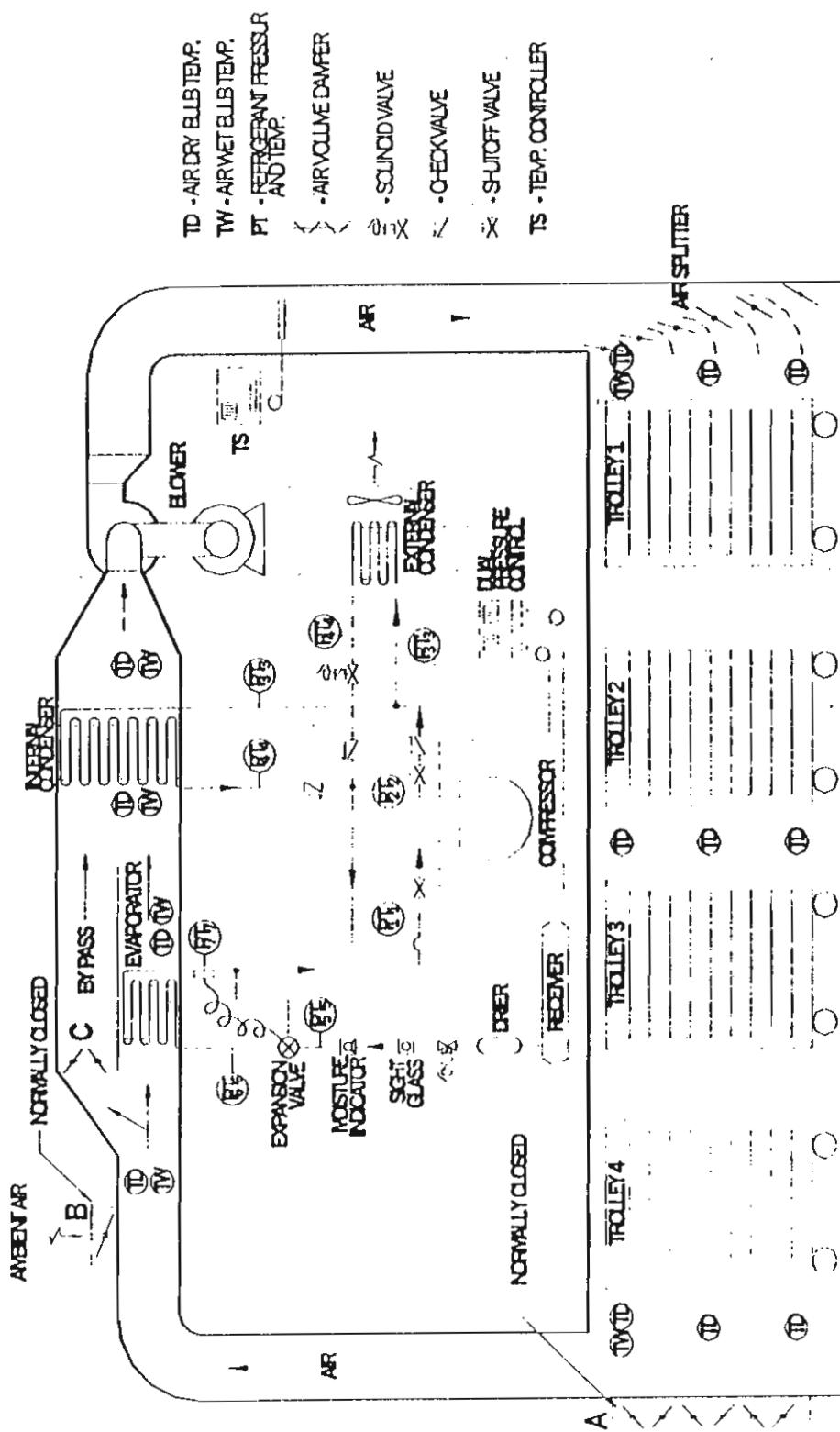


Figure 1. Schematic diagram of a heat pump dryer and locations of temperature and pressure sensors

This study was experimentally performed at the fourth Royal Project - Royal Recommended Project Food Processing Section in Buriram province. Papaya glace' was chosen as the test material to be dried. Its initial mass varied between 600-700 kg. The locations of measuring temperature and pressure for both of the air and refrigerant circuits were shown in Figure 1. For air circuit, the dry bulb and wet bulb temperatures were measured by type k thermocouples. For the refrigerant circuit, temperatures were indirectly measured by inserting type k thermocouples through small copper tubes with their close ends inserted and brazed in to the wall of refrigerant piping. The outputs of temperature sensors were recorded by a data logger with an accuracy of $\pm 1^\circ\text{C}$. The refrigerant pressures were measured by Bourdon-tube-type pressure gauge. The measurement points were located as shown in Figure 1. Air flow rate in the return and by-pass air ducts were measured by a hot wire anemometer. The refrigerant mass flow rate was not directly measured, but determined from the compressor input work by assuming compressor and motor efficiencies. The power consumption was measured by a kilowatt-hour meter and a clip-on-meter. The initial and final mass of papaya glace' and condensed water were determined by weighing.

Six drying experiments were carried out in batch. The drying process was divided into three stages. At the first stage, papaya glace' of about $11.5 \times 6.5 \times 1.7 \text{ cm}^3$ with initial moisture content varied from 83 to 86% dry basis was dried, and drying time was about 19 h. At the second stage, the dried papaya glace' of the first stage was prepared into dimension of about $1.0 \times 1.0 \times 1.0 \text{ cm}^3$. In order to make papaya glace' be cut easily, a small amount of water should be sprayed on it during preparation process. The papaya glace' was dried to moisture content of 17-22% dry basis with approximately 9 h. In the third stage, dried papaya glace' was mixed with icing (sugar) before being dried to final moisture content between 12 and 14% dry basis with approximately 4 h. The total drying time was approximately 32 h. The temperature, pressure, mass of condensed water and power consumption were recorded every 1 h for the 1st stage and $\frac{1}{2}$ h for the 2nd and 3rd stages. To determine the moisture content, the samples were cut into small pieces and weighed by digital balance (accuracy of 0.01g). The samples were dried in an hot air oven at temperature of 103°C for 72 h. All samples were taken from the middle of trays nos.1, 5, 9, 13 and 17 of each trolley. Drying tests were carried out at temperature of 53-55 °C, 45-50 °C for close and partially open system respectively and air flow rate of $2.8 \text{ m}^3/\text{s}$. The evaporator by-pass air was set between 70-85%.

The COP_{hp} was analyzed and obtained from measurements made on both the air and refrigerant circuits. In this study, COP_{hp} was classified into 1) COP_{hp, sys} obtained from the calculation regarding both internal and external condenser heat

loads, and 2) $COP_{hp, \text{ used}}$ obtained from the calculation regarding only internal condenser heat load.

RESULTS AND DISCUSSIONS

Close System

Variations of air temperature and moisture content of papaya glace'

The experimental results of batch papaya glace' drying are presented in Table 1. Temperature gradient along the horizontal direction of the drying chamber decreased with drying time. At the end of each drying stage, air temperature at the entrance and exit of the drying chamber was only slightly different with about 1°C. As a result, the average moisture gradient along the horizontal direction of the drying chamber was relatively small, approximately 5% dry basis during the 1st and 2nd stages and was minimum (1.4% dry basis) at the end of the 3rd stage. Average air temperature along the vertical direction of the drying chamber was not varied as indicated by tray nos. 1, 9 and 17. This was due to the proper function of the air splitter at the right corner as shown in Figure 1. As a consequence, the average moisture gradient along the vertical direction of the drying chamber was quite small, 1.2% dry basis at the end of drying.

HPD performance

The experimental results indicated that the moisture content and MER decreased rapidly with time; that meant the DR was also in the same behavior. However, it was observed that reduction of moisture content or MER was improved during the early period of the 2nd stage as compared to the final period of the 1st stage. This was according to the size reduction of papaya glace' after the 1st stage.

By comparing the results of the 2nd and 3rd stages of all experiments (Table 1), it was found that an increase in moisture from about 20% to 40% dry basis gave approximate 4 times increase in the water removal of the 2nd stage. Nevertheless, the initial mass of 2nd stage was not substantially higher than that of 3rd stage. This was simply explained that when the papaya glace' had high moisture content, the surface was nearly saturated with water which consequently increased the moisture diffusion rate. But when the moisture content reduced to relatively low, the moisture diffusion from the inner part to the outer surface became more difficult, and resulted in ineffective drying and low SMER, while SEC increased.

Table 1. Experimental results of papaya glace' drying (Close system: Test nos. 1,2,3 ; Partial open system : Test nos. 4,5,6)

Description	Test No. 1			Test No. 2			Test No. 3			Test No. 4			Test No. 5			Test No. 6	
	stage 1	stage 2	stage 3	stage 1	stage 2	stage 3	stage 1	stage 2	stage 3	stage 1	stage 2	stage 3	stage 1	stage 2	stage 3	stage 1	stage 2
Ambient conditions																	
Average temperature (°C)	28.4	28.5	28.2	28.6	28	28.3	29.7	27.5	34.7	30.9	25.8	25.5	31.1	27.4	25.0		
Average relative humidity (%)	72.0	72.0	73.0	76.0	74.0	75.0	67.0	77.0	46.0	61.0	78.0	82.0	65.0	77.0	77.0	82.0	
Condition of papaya glace'																	
Average moisture before drying (% d.b.)	83.5	44.1	22.2	86.3	42.4	19.5	87	40.9	16.9	94.4	79.4	56.5	26.4	82.4	53.0		
Average moisture after drying (% d.b.)	37.4	22.3	14.2	31.6	19.5	14.7	33.6	16.9	12.0	33.8	43.2	26.4	21.0	35.9	23.8		
Initial weight (kg)	711.5	515.2	439.7	602.5	587.9	495.3	670.2	505.7	420.7	643.9	629.4	634.7	512	678.6	684.8		
Final weight (kg)	532.5	437.2	410.7	425.6	493.3	475.5	479.6	419.7	403.0	443.1	502.2	512.6	440.8	505.7	554.3		
Moisture removed (kg)	179.0	78.0	29.0	176.9	94.6	19.8	190.6	86.0	17.7	200.8	127.2	122.1	21.8	172.9	130.1		
Drying air conditions																	
Average temperature (°C)	51.5	50.6	53.0	51.7	50.1	53.0	52.0	55.0	51.2	43.8	45.3	50.7	47.6				
Specific air flow rate (kg dry air / h - kg dry papaya glace')	27.0	31.6	30.7	32.3	25.3	25.2	29.1	29.1	32.2	31.5	26.0	27.5	30.2	25.1			
Evaporator by - pass air (%)																	
Fraction of recycled air (%)	81.0	82.0	85.9	81.7	81.7	81.7	81.7	81.7	81.7	84.6	87.5	80.7	70.2				
Drying time (h)	100	100	100	100	100	100	100	100	100	89.0	82.0	92.1	88.6	86.5			
Performance of heat pump																	
Drying rate _{av} (kg water evap. / h)	19.5	8.5	9.5	19.0	12.0	3.0	19.0	8.0	4.5	19.0	19.0	11.0	5.0	18	11.0		
MER _{av} (kg water cond. / h)	9.2	9.2	3.1	9.3	7.9	6.6	10.0	10.8	3.9	10.6	6.7	11.1	4.36	9.6	11.8		
SMER _{av} (kg water evap. / kWh)	0.734	0.737	0.226	0.728	0.6180	0.495	0.781	0.860	0.305	0.823	0.548	0.872	0.752	0.765	0.943		
SEC _{av} (MJ / kg water evap.)	4.7	9	2	5	0	0	0	0	0	0	0	0	0	0	0		
(COP _{hp}) _{av}	4.5	4.4	3.3	4.2	4.1	4.1	4.6	4.4	4.7	4.7	3.7	3.7	4.4	4.7	3.8		
(COP _{hp}) _{med}	3.2	3.9	1.9	3.1	3.1	3.1	2.8	3.1	3.4	3.4	4.2	2.4	2.5	2.4	4.8		

^aPapaya glace' of the 2nd and 3rd stages were not the same batch of that 1st stage

^bIncluding approx. 130 kg of papayas glace' dried with an existing conventional hot air dryer

Moreover, it should be noted that SMER defining as the ratio of water evaporated and power consumption were directly proportional to the water removal rate because the power consumption remained nearly constant. By averaging numerical results of all experiments, the HPD achieved a maximum average DR and SMER of 9.34 kg water evap./h and 0.732 kg water evap./kWh, respectively. The average maximum MER was 8.59 kg water cond./h. MER and DR were slightly different due to air leakage through the system. In these experiments, the initial moisture content, initial mass and dimension of papaya glace' were not much different and hence resulted in less difference of SEC and drying time compared to the same stage of each test. SEC of test no.3 was 4.92 MJ/kg water evap. and was considerably lowest compared to others.

Analyzing data from the air circuit showed that $(COP_{hp})_{sys}$ was in the range of 4.1 to 4.7 and $(COP_{hp})_{used}$ obtained by internal condenser varied from 3.0 to 3.8. It was obvious that $(COP_{hp})_{sys}$ was higher than $(COP)_{used}$. This was because in order to control temperature inside the drying chamber within a certain limit, substantial amount of heat corresponding to compressor and fan work inputs had to be rejected across the external condenser. By using low air temperature, the quality of papaya glace' in terms of color was found to be well acceptable. The color was light reddish-orange (code 34-C from R.I.I.S. color chart).

Partially Open System

The experimental results are summarized in Table 1. During test nos. 5 and 6, it rained whole day, thus ambient air was cool and humid. It is obvious that ambient air conditions played an important role on HPD performance even small amount of ambient air was induced to the system such as the 1st stage of test no. 5 which drying temperature could not be raised higher than 45°C. This resulted in less drying potential and SMER as compared to the 1st stage of test nos. 4 and 6. The best results in terms of drying capacity and energy effectiveness done by partially open system were close to that of close system (as compared test nos. 4 and 6 to test nos. 1, 2 and 3). Therefore, to achieve a satisfactory performance, the system can not operate by sustaining a certain amount of ambient air at all time but it has to be varied according to variable ambient air conditions.

Cost Evaluation

Conditions for cost evaluation of HPD are as follows: holding capacity is 670 kg/batch, drying capacity is 96 batches/year, dried papaya glace' capacity is 34,540 kg/year, average drying time is 31.5 h/batch, cost of HPD construction and cost of stainless steel trolleys and trays are 216,340 and 95,400 Baht respectively (US\$ 1=40 Baht), life time was 5 years, salvage value is 24.5 % of system first cost

(assuming that trolleys and trays can be further used), maintenance cost per year is 5% of system first cost, evaporation water ability is 267 kg water evap./batch, electricity cost is 2.0 Baht/kWh, electricity use rate is 12.76 kWh/h and interested rate was 18%/year. Other operating costs are neglected in this study. The results of evaluation are as follows.

Total annual cost 181,785 Baht/year or 6.43 Baht/kg water evap. of which 2.73 is energy cost, 0.55 is maintenance cost and 3.15 is fixed cost.

CONCLUSION

1. Moisture gradient parallel and perpendicular to the direction of air flow approached to 1.4% and 1.2% dry basis at the final stage respectively. Water removal was very fast at early stage and reduced thereafter when the moisture content were relatively low, similarly to that of MER behavior. Size reduction of papaya glace' after the 1st stage enhanced DR or MER during the 2nd stage of drying. Power consumption remained nearly constant, whereas the drying process was transient. This attributed to an effort to sustain constant drying air temperature by releasing the excess heat corresponding to compressor and fan work inputs across the external condenser. Consequently, $(COP_{hp})_{used}$ was less than $(COP_{hp})_{sys}$.

2. Water removal from papaya glace' with relatively low moisture content was extremely difficult compared to that with high moisture content at the same level of initial mass. This resulted in relatively low DR and SMER. The water removal rate was directly related to SMER and SEC. The HPD achieved a maximum average DR and SMER of 9.34 kg water evap./h and 0.732 kg water evap./kWh, respectively. The maximum average MER is 8.59 kg water cond./h, and the relative lowest SEC was about 4.92 MJ/kg water evap. The $(COP_{hp})_{sys}$ varied from about 4.1 to 4.7 and $(COP_{hp})_{used}$ were in range of 3.0 to 3.8. By using low air temperature, it was observed that the quality of papaya glace' was well acceptable.

3. To run system on partially open mode did not offer more benefits in comparison to close system mode. The ambient conditions had a strong influence on HPD performance. To obtain the best performance, fraction of air recycled has to be varied according to uncertain ambient air conditions. Therefore, it seems that the system is complex and not convenience to user to operate.

4. Cost evaluation showed that total cost was 6.43 Baht/kg water evaporation of which 2.73 was energy cost, 0.55 was maintenance cost and 3.15 was fixed cost. Total cost was less than two times of which previous study reported by Soponronnarit et al. [1] according to the size reduction process which yielded lower drying time and energy consumption.

ACKNOWLEDGMENT

The authors would like to thank the Thailand Research Fund for financial support and Rice Engineering Supply Co. Ltd. for supplying facilities for construction of HPD. The fourth Royal Project-Royal Recommended Project Food Processing Section was also thanked for cooperation during the experiment.

REFERENCES

1. Soponronnarit, S.; Nathakaranakule, A.; Wetchacama, S.; Swasdisevi, T.; and Rukprang, P. 1997. Fruit drying using heat pump. *RERIC International Energy Journal* 20: 39-53.
2. Prasertsan, S.; Saen-saby, P.; Ngamsritrakul, P.; and Prateepchaikul, G. 1996. Heat pump dryer part 1: simulation of the models. *International Journal of Energy Research* 20: 1067-1079.
3. Clements, S.; Jia, X.; and Jolly, P. 1993. Experimental verification of a heat pump assisted continuous dryer simulation model. *International Journal of Energy Research* 17: 19-28.
4. Prasertsan, S. ; and Saen-saby, P. 1998. Heat pump drying of agricultural materials. *Drying Technology - An International Journal* 16: 235-250.

PROTOTYPE OF CYCLONIC RICE HUSK FURNACE

Thanit Swasdisevi¹, Somchart Soponronnarit¹

Viboon Thepent², Adisak Shujinda³ and Boonrueng Srisawat³

ABSTRACT

The objectives of this research were to design, construct and test a rice husk furnace for a commercial fluidized bed paddy dryer with capacity of 10 tons/h. The furnace was cylindrical in shape with inner diameter of 1.37 m and height of 2.75 m. Rice husk was fed into the furnace with a feed rate of 110 - 136 kg/h. Air and rice husk entered to the combustion chamber in tangential direction with vortex rotation. The experimental results showed that at heights of ash on grate 30, 45, 50 and 60 cm, rice husk feed rates 110 - 136 kg/h, excess air 265 - 350 %, combustion gas temperature was approximately 523 - 710 °C. Thermal efficiency of the furnace system increasing with excess air was approximately 57 - 73 % while carbon conversion efficiency was approximately 89 - 97 %. The height of ash on grate had no effect on the system performance. The furnace has been commercialized for more than 20 units since the beginning of the year 1999.

Key words and phrases : Biomass, burner, rice hull

¹ School of Energy and Materials, King Mongkut's University of Technology Thonburi, Suksawat 48 Rd., Bangkok 10140, Thailand.

² Storage and Processing Section, Ministry of Agricultural and Co-operatives, Bangkok 10900.

³ Former graduate student, School of Energy and Materials.

INTRODUCTION

Singh *et al.* (1980) designed and tested a cyclonic rice husk furnace for drying one ton of paddy from moisture content of 35 % down to 14 % d.b. Efficiencies of the furnace were different at various rice husk feed rates and air flow rates. The highest efficiency was 80 % with rice husk feed rate of 20 kg/h and air flow rate of 168 m³/h. Tumambing (1984) investigated the cyclonic rice husk furnace of Padicor for paddy drying and found that combustion efficiency was 98 %. Xuan *et al.* (1995) investigated two types of husk furnace. The first one was a furnace with inclined grate and cylindrical combustion chamber. The upper part of the furnace was a heat exchanger. Inlet air entered at the lower part of inclined grate on which rice husk with a feed rate of 20-25 kg/h was burnt. The efficiency of the furnace was 70 %. The second one was a pneumatic-fed cyclonic furnace. It consisted of combustion chamber and rice husk feed system. Rice husk was fed into the combustion chamber with primary air and was burnt. Then it fell down to the lower part of the chamber. The secondary air entered at the upper part of the combustion chamber in tangent direction in order to eliminate dust from flue gas. Rice husk consumption and furnace efficiency were 10 - 12 kg/h and 75 %, respectively.

The past research showed that there were several designs of rice husk furnace, i.e. vortex or inclined grate types or direct use of flue gas or indirect use of thermal energy from combustion via heat exchanger. Acceptance of the furnace was still limited in the experimental sites. Therefore, the objectives of this research were to design, construct and test a commercial-scale prototype of cyclonic rice husk furnace for a commercial

fluidized bed paddy dryer with a capacity of 10 tons/h. The dryer has been sold in several countries for more than 3 years (Soponronnarit *et al.*, 1996).

MATERIALS AND METHODS

Detail design of the rice husk furnace prototype is available in Shujinda (1997). It consisted of combustion chamber, rice husk feeding system, air feeding system, controller system and air suction blower. The combustion chamber was made of steel in cylindrical shape with inner and outer diameters of 1.37 and 1.76 m, respectively and height of 2.75 m. Materials inside the combustion chamber at the lower part from inner layer to outer layer were the following: fire brick, steel, glass fiber and covering steel. The combustion chamber was installed on I-Beam steel. There were grate with diameter of 1.37 m, thickness of 9.5 mm (583 holes/ m², hole diameter 0.0127 m) and ash paddle with size of 50 x 50 mm, length of 1.1 m at the lower part of combustion chamber. The primary air duct was connected to the upper part of the combustion chamber in tangential direction. On the upper part of the combustion chamber, a steel cylinder with inner diameter of 0.8 m and height of 1.6 m. was installed. It was insulated with 0.06 m thick cement. The secondary air duct was connected to the cylinder in tangential direction in order to clean up flue gas. Rice husk ash was removed from the combustion chamber by the ash paddle followed by a screw conveyor installed under the combustion chamber. The tertiary air duct was connected to the bottom part of the combustion chamber in order to support complete combustion. Rice husk feeding system consisted of a rectangular in shape rice husk hopper with a screw installed at the

bottom and driven by a 0.37 kW motor, 0.152 m primary air duct for pneumatic feed of rice husk and conveying fan. The secondary air duct was 0.102 m in diameter. The tertiary air duct with diameter of 0.076 m separated from the secondary air duct and then was divided into 4 ducts with distributor at the bottom of the combustion chamber under the grate. Air suction system consisted of a 15 kW blower, duct with diameter of 0.254 m and a valve for regulating inlet fresh air into the combustion chamber.

The measuring instruments used in this experiment were as follows: data logger connected to type K thermocouple (accuracy $\pm 1^{\circ}\text{C}$), clamp-on meter, manometer of 0 - 200 mmH₂O (accuracy ± 0.1 mmH₂O), Hygrometer of 0 - 100 % (accuracy of $\pm 1\%$), balance machine of 0 - 50 kg (accuracy ± 200 g), gas combustion analyzer of O₂, CO, NO₂ and SO₂ with range of 0 - 600 $^{\circ}\text{C}$ (accuracy $\pm 3^{\circ}\text{C}$ for temperature, ± 20 ppm for CO, $\pm 0.3\%$ for O₂).

To start the experiment, air flow rates in primary, secondary and tertiary air ducts were set. Sample of rice husk was taken for component analysis. Rice husk was weighted and fed into the furnace until it reached the height required. Then it was ignited by burning oil and paper. The fans number 4 and 10 were switched on for supporting the combustion. After 10 - 15 minutes, the fan number 3 and controller system of rice husk feeding and ash paddle were switched on. Control temperature was set at 325 $^{\circ}\text{C}$. Temperature was measured every 3 minutes and flue gas was analyzed every 10 minutes. Relative humidity was measured by hygrometer. Dry bulb and wet bulb temperatures of ambient air were also measured. When the experiment finished, rice husk feeding system and the fans number 3 and 4 were switched off while the fan number 10 was still switched on in order to suck hot air from the furnace. Finally, the

fan number 10 was switched off and samples of ash were taken for component analysis.

Figure 1 shows the schematic diagram of the cyclone rice husk furnace.

The efficiency of the furnace was determined by using the equation:

$$\eta_i = \frac{m_a \cdot c_p (T_2 - T_1)}{m_f \cdot HHV} \times 100$$

where η_i = efficiency of the furnace, %

m_a = flow rate of mixed air between fresh air and flue gas, kg/h

c_p = specific heat of air, kJ/kg K

T_1 = ambient air temperature , K

T_2 = temperature of mixed air between fresh air and flue gas, K

m_f = rice husk feed rate, kg/h

HHV = high heating value of rice husk, kJ/kg

The carbon conversion efficiency was calculate by the following equation:

$$\eta_c = \frac{c_h - c_a}{c_h} \times 100$$

where η_c = carbon conversion efficiency, %

c_a = percent of carbon in ash \times ash weight, kg

c_h = percent of carbon in rice husk \times husk weight, kg

RESULTS AND DISCUSSION

1. Air distribution in tertiary air duct

Tables 1 and 2 show the efficiencies of the furnace and carbon conversion efficiencies at various heights of ash with 4 air distributors under the grate. The results of experiments 1/97, 2/97, 3/97 and 4/97 with heights of ash 30, 45, 50 and 60 cm were as follows: the carbon conversion efficiencies were 93, 95, 96 and 97 %, respectively, and the efficiencies of the furnace were 57 - 59 %. Tables 4 and 5 show the carbon conversion efficiencies at heights of ash 30, 45, 50 and 60 cm with only 1 air distributor. The results of experiments 1/96, 2/96, 3/96 and 4/96 showed that the carbon conversion efficiencies were 88, 93, 85 and 90 %, respectively while the efficiencies of the furnace were 58 - 63 %. It can be concluded that the method of air distribution in tertiary duct did not significantly affect the carbon conversion efficiency and efficiency of the furnace.

2. Air flow rate in tertiary duct

Combustion was not complete when too high air flow rate was used in tertiary duct. This was because increased air made some part of ash fixing on grate fell down. Consequently, carbon component after combustion was high which resulted in low carbon conversion efficiency, as shown in Tables 1 and 2 (comparison between experiments no. 6/97 and 11/97).

3. Excess air

The results in Table 1 showed that when excess air in combustion was 260 - 280 % (experiments no. 1/97 - 4/97), the efficiencies of the furnace was 58 - 59 % and the carbon conversion efficiencies were 93 - 97 %. When the excess air increased to be 342 - 350 % (experiment no. 5/97 - 7/97), the efficiency of the furnace increased to be 70 - 73 % and the carbon conversion efficiency increased to be 95 - 97 %. The increase of excess air was derived from decreasing of rice husk feed rate. The best condition of several experiments was as follows: height of ash on grate 50 cm, rice husk feed rate 110 kg/h, excess air in combustion 350 %, yielding in average furnace temperature 628 °C. Carbon in ash after combustion was 5.5 %. The carbon conversion efficiency was 96 % and the efficiency of furnace was 73 %. Temperature distribution in the furnace with height of ash 50 cm is shown in Figure 2.

4. Height of ash on grate during combustion

The height of ash on grate during combustion did not affect the efficiency of the furnace, as shown in Table 4.

5. Component analysis of rice husk and ash

Composition of substance in rice husk before combustion were as follows: carbon 39 %, hydrogen 5.4 %, oxygen 40.3 %, nitrogen 0.19 %, sulfur 0.04 %, moisture 8.10 %, ash 15.1 % and calorific value 3,566 cal/g.

Ash of each experiment was analyzed at the Department of Science Service, Ministry of Science, Technology and Environment. Results showed that the quantities

of carbon after combustion of 12 samples were as follows: 9.9, 7.5, 5.9, 4.4, 7.0, 4.9, 5.5, 13.4, 14.8, 28.7, 26.3 and 22.8 %, respectively. Carbon after combustion was high when air flow rate for supporting combustion in tertiary duct increased, as shown in Table 1. The grate hole became larger and combustible rice husk on grate fell down to the bottom of the combustion chamber when air flow rate increased.

6. Power consumption of rice husk furnace

Power consumption of rice husk furnace was as follows: conveying fan of primary air 1.25 kW, conveying fan of secondary air and tertiary air 1.18 kW, suction blower 8.36 kW, motor of ash paddle 1.79 kW, motor of rice husk feeding system 0.66 kW and screw conveyor for ash unloading 0.72 kW. The total power consumption was 13.96 kW.

Electricity consumption in these experiments was compared to thermal energy production of the furnace. The results showed that electricity consumption in terms of primary energy (multiplying factor 2.6) was approximately 7 % of thermal energy production of the rice husk furnace, as shown in Table 3.

7. Financial analysis and commercialization

For financial analysis, the rice husk furnace was compared to a diesel oil burner when it was used in fluidized bed paddy dryer with capacity of 10 tons/h (Soponronnarit *et al.* [1996]). The conditions were as follows: cost of dryer and rice husk furnace 950,000 baht, dryer capacity 10,260 tons/year, initial moisture content 28.1 % dry-basis, final moisture content 22.6 % dry-basis, power consumption 37.9 kW, cost of rice husk

100 baht/ton, service life 5 years, interest rate 15 %, salvage value 10 % of initial cost. The results showed that total cost of the system was 400,274 baht/year. When the dryer was used with diesel oil burner, cost of the dryer and burner was 850,000 baht. Diesel oil consumption was 31.34 litres/h (7.50 baht/litre) and power consumption was 32.3 kW. The other conditions were the same as those of the dryer operating with the rice husk furnace. The total cost of the dryer and burner was 596,618 baht/year, 196,344 baht/year higher as compared the former case.

The cyclonic rice husk furnace has been commercialized for more than 20 units since the beginning of the year 1999. All of them were installed in private rice mills.

CONCLUSION

1. Excess air using in combustion affected efficiency of the furnace. When excess air increased from 260 to 350 %, the efficiency of the furnace increased from 57 to 73 %.
2. Air distribution in tertiary duct did not significantly affect carbon conversion efficiency and efficiency of the furnace.
3. Height of ash on grate had no effect on the efficiency of rice husk furnace.
4. Too high air flow rate in tertiary duct did not support combustion according to quick fall down of combustible rice husk from grate which resulted in incomplete combustion.
5. Total cost of fluidized bed dryer with capacity of 10 tons operating with rice husk furnace was lower than that operating with diesel oil burner.

ACKNOWLEDGMENTS

The authors would like to thank the Thailand Research Fund and Australian Centre for International Agricultural Research for supporting this project. Thanks are also due to Rice Engineering Supply Co., Ltd. for supporting fabrication of prototype of rice husk furnace and the Storage and Processing Section, Department of Agriculture for providing experimental site and technical support.

REFERENCES

Shujinda, A. 1997. Rice husk furnace for fluidized bed paddy drying. Master Thesis, King Mongkut's University of Technology Thonburi, Bangkok.

Singh, R., R.C. Maherhweri, and T.P. Ojha, 1980. Development of husk fired furnace. The British Society for Research in Agricultural Engineering, India, pp. 109-120.

Soponronnarit, S., S. Prachayawarakorn, and W. Wangi, 1996. Commercial fluidized bed paddy dryer. Proc. 10th International Drying Symposium (IDS'96), Krakow, Poland, 30 July - 2 August 1996, Vol.A, pp. 638-644.

Tumambing, J.A, 1984. Testing and evaluation of rice hull-fed furnaces for grain drying. National Post Harvest Institute for Research and Extension, pp. 197-214.

Xuan ,N.V., T. Vinh., P.T. Anh, and P. Hien, 1995. Development of rice husk furnaces for grain drying. Proceedings of the International Conference on Grain Drying in Asia, 17-20 October 1995, Bangkok, Thailand, pp 109-120.

Table1 Efficiency of rice husk furnace(experiment in 1997)

Experiment no.	Height of ash (cm)	Feed rate of rice husk (kg/h)	Air flow rate for combustion (kg/s)	Air flow rate in primary duct ($\phi = 0.152$ m) (kg/s)	Air flow rate in secondary duct ($\phi = 0.102$ m) (kg/s)	Air flow rate in tertiary duct ($\phi = 0.076$ m) (kg/s)	Excess air (%)	Ambient temperature (°C)	Furnace temperature (°C)	Exit temperature (°C)	Efficiency of furnace (%)
1/97	30	135	0.627	0.400	0.178	0.048	265	34	531	304	58
2/97	45	133	0.627	0.400	0.178	0.048	270	34	530	302	58
3/97	50	136	0.625	0.398	0.178	0.048	260	35	523	304	57
4/97	60	130	0.628	0.401	0.179	0.048	280	33	554	301	59
5/97	30	110	0.628	0.401	0.179	0.048	350	33	571	299	70
6/97	45	112	0.628	0.401	0.179	0.048	342	33	568	306	70
7/97	50	110	0.626	0.400	0.178	0.048	350	34	628	310	73
8/97	50	111	0.621	0.400	0.161	0.060 **	342	34	710	311	72
9/97	50	125	0.619	0.400	0.149	0.070 **	294	34	598	301	62
10/97	30	133	0.676	0.398	0.178	0.099 **	299	35	502	297	57
11/97	45	125	0.674	0.397	0.177	0.099 **	323	36	566	297	60
12/97	50	136	0.674	0.397	0.177	0.099 **	289	36	527	295	54

- Mixed air between combustion air and ambient air
- ** Increasing air flow rate in tertiary duct

Table 2 Carbon conversion efficiency of rice husk furnace(experiment in 1997)

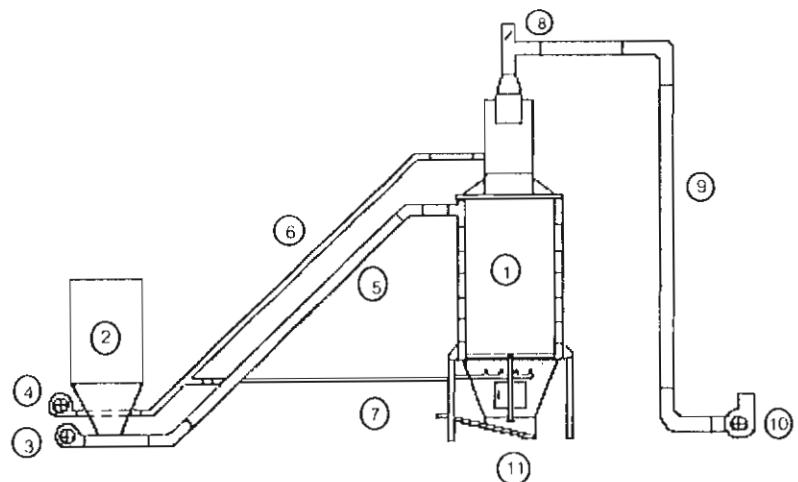
Experiment no.	Carbon in rice husk (%)	Carbon in ash (%)	Rice husk consumption (kg)	Ash (kg)	CO value (ppm)	O ₂ value (%)	Carbon conversion efficiency obtained from carbon balance (%)	Carbon conversion efficiency measured (%)
1/97	39	9.9	318	84	1025-1869	17.4-18.6	93	93
2/97	39	7.5	288	70	1129-1999	17.2-18.7	93	95
3/97	39	5.9	320	75	142-1732	17.4-18.4	94	96
4/97	39	4.4	254	60	1083-1982	17.0-19.1	95	97
5/97	39	7.0	259	62	1253-1946	17.9-18.9	96	95
6/97	39	4.9	253	60	1204-1832	17.4-18.4	98	97
7/97	39	5.5	237	53	200-1803	17.4-18.4	96	96
8/97	39	13.4	250	58	1200-1993	17.4-18.4	90	92
9/97	39	14.8	262	74	1232-1879	17.5-18.6	87	89
10/97	39	28.7	320	83	1230-1896	17.4-18.4	81	81
11/97	39	26.3	289	74	1235-1999	17.4-19.0	83	82
12/97	39	22.8	320	79	1260-1988	17.2-18.7	85	85

- Low values of NO₂ and SO₂ (NO₂ : 1-12 ppm, SO₂ : 1-20 ppm)

Table 3 Electricity consumption(experiment in 1997)

Experiment no.	Feed rate of rice husk (kg/h)	Electricity Consumption rate (kW)	Electricity consumption rate in terms of primary energy * (kW)	Heat production rate of rice husk furnace (kW)
1/97	135	13.96	36.30	559.68
2/97	133	13.96	36.30	551.40
3/97	136	13.96	36.30	563.83
4/97	130	13.96	36.30	538.95
5/97	110	13.96	36.30	456.04
6/97	112	13.96	36.30	464.33
7/97	110	13.96	36.30	456.04
8/97	111	13.96	36.30	460.20
9/97	125	13.96	36.30	518.23
10/97	133	13.96	36.30	551.40
11/97	125	13.96	36.30	518.23
12/97	136	13.96	36.30	563.83

* Multiple by factor 2.6


Table 4 Efficiency of rice husk furnace at various heights of ash (experiment in 1996)

Experiment no.	Height of ash (cm)	Feed rate of rice husk (kg/h)	Air flow rate for combustion (kg/s)	Air flow rate in primary duct (kg/s)	Air flow rate in secondary duct (kg/s)	Air flow rate in tertiary duct (kg/s)	Excess air (kg/s)	Ambient temperature (°C)	Exit temperature (°C)	Efficiency of furnace (%)
1/96	30	127	0.626	0.400	0.178	0.048	287	34	294	62
2/96	45	133	0.626	0.400	0.178	0.048	269	34	296	59
3/96	50	126	0.628	0.401	0.179	0.048	290	33	296	63
4/96	60	143	0.631	0.402	0.180	0.049	245	32	297	58

Table 5 Carbon conversion efficiency of rice husk furnace at various heights of ash (experiment in 1996)

Experiment no.	Height of ash (cm)	Carbon in rice husk (%)	Carbon in ash (%)	Rice husk consumption (kg)	Ash (kg)	CO value (ppm)	O ₂ value (ppm)	Carbon conversion efficiency obtained from carbon balance (%)	Carbon conversion efficiency measured (%)
1/96	30	36.8	19.3	381	101.0	1300-1600	18	87	88
2/96	45	36.8	12.6	399	93.0	1700-1800	18	95	93
3/96	50	36.8	24.8	378	102.5	1600-1900	18	83	85
4/96	60	36.8	14.9	429	108.0	1000-1800	18	94	90

- Low values of NO₂ and SO₂ (NO₂ : 30-60 ppm. SO₂ : 3-20 ppm)

1 combustion chamber
 2 rice husk hopper
 3 conveying fan of rice husk feeding system
 4 conveying fan of air feeding system
 5 primary air duct
 6 secondary air duct
 7 tertiary air duct
 8 butterfly valve
 9 exit air duct
 10 suction blower
 11 screw conveyor

Figure 1 Schematic diagram of rice husk furnace

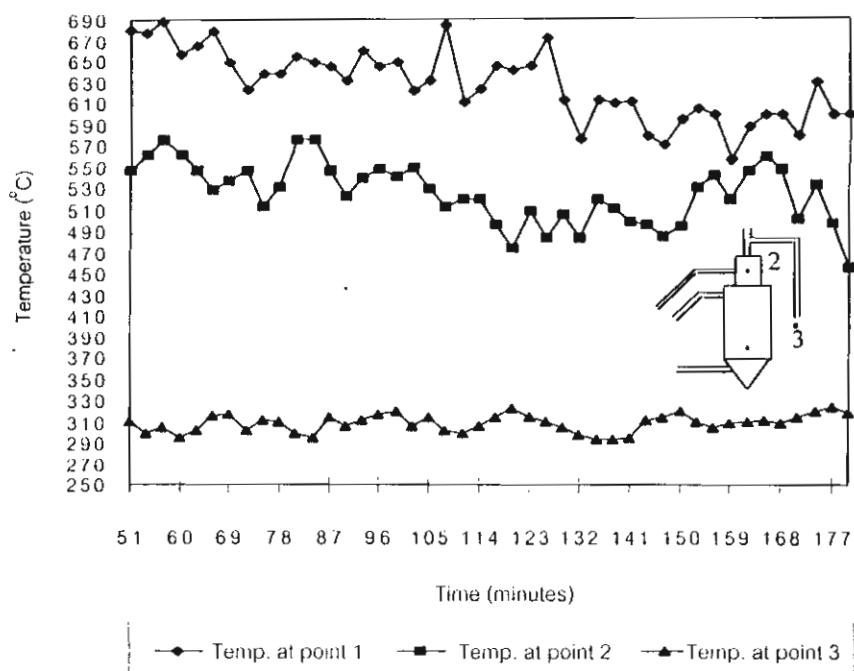


Figure 2 Relationship between temperature and time in rice husk furnace at height of ash on grate 50 cm(experiment no. 7/97).

Evaluation of Drying System Performance in Rice Mills

Naret Meeso¹, Somchart Soponronnarit¹

and Somboon Wetchacama²

ABSTRACT

This work relates to the study on the suitability of paddy drying system in three rice mills with different product capacity and drying system installation. The study included drying technique, paddy quality, energy consumption and problems arose during operation. Finally, the most suitable paddy drying system was concluded. The result will be useful as guideline for improving the efficiency of paddy drying systems and minimizing the cost of drying. Important other results can be summarized as follows:

1. Fluidized bed dryer with tempering during each drying stage could reduce moisture content of paddy from 24 % to 14 % d.b. with acceptable paddy quality.
2. Partial air recirculation could reduce energy consumption in fluidized bed dryer.
3. Energy consumption of each drying system depended on initial and final moisture content of paddy, *i.e.* higher moisture content, lower energy consumption.

Key words : Dehydration, grain, performance, system

INTRODUCTION

At present, mechanical dryers, i.e. LSU dryer, cross flow dryer, recirculation batch dryer and fluidized bed dryer are widely used in Thai rice mills. In-store drying is becoming adopted. Soponronnarit (1995) studied the damage of moist paddy after harvesting, effecting factors and systematic approach for solving the problems. The solution included aeration of ambient air through moist paddy bulk with a low flow rate of $0.35 \text{ m}^3/\text{min}\cdot\text{m}^3$ (paddy) to exhaust the heat liberated from respiration during the waiting period for drying. Two-stage drying was necessary in order to reduce moisture content of paddy rapidly to 23 % d.b. in the first stage by fluidized bed dryer or other types of dryer as for the reasons of quality. Then followed with slow drying in the second stage to reduce moisture content of paddy from 23 to 16 % d.b. in a shed by aeration of ambient air with the air flow rate of $0.5\text{--}1.0 \text{ m}^3/\text{min}\cdot\text{m}^3$ (paddy) during day time. In case of paddy storage for several months, it needs intermittent aeration of ambient air through paddy bulk 1-3 hour/week to exhaust heat liberated from paddy.

Mongkonthad (1994) reported that paddy drying by LSU grain dryer had (maximum 5%) lower head rice yield than ambient air drying and could reduce moisture content of paddy from 27 to 18 % d.b. and gained 30 tons of paddy per day. Using rice husk as fuel costs approximate 20 baht per ton of paddy. Soponronnarit *et al.* (1995) designed and tested a prototype, 0.82 tons/h capacity, fluidized bed paddy dryer for high moisture paddy. Exhausted air was partially recycled. Experimental results showed that it could reduce moisture content of paddy from 45 to 24 % d.b. with drying air temperature of 100-150 °C, fraction of air recycled of 0.66, specific air flow rate of 0.05 kg/s.kg-dry matter, superficial

air velocity of 3.2 m/s, bed depth of 0.1 m, total primary energy consumption was 2.32 MJ/kg-water evap. From the reference data of energy consumption of many rice mills, it showed that primary energy consumption ranged between 3-6 MJ/kg-water evap. based on moisture level of paddy.

Soponronnarit *et al.* (1999) investigated strategy for reducing moisture in paddy by fluidization technique, tempering and ambient air ventilation considered from total operation time and milling quality. Experimental results showed that after three processes, moisture content of paddy was reduced from 33 to 16.5 % d.b. within approximately 53 minutes. During the first process, a fluidized bed dryer was used to reduce the moisture content of paddy down to 19.5 % d.b. within 3 minutes. Then the paddy was tempered at least 30 minutes, but not more than 1 hour. Finally, it was cooled down by ambient air with air velocity of 0.15 m/s for 20 minutes. Quality of paddy in terms of head rice yield and whiteness was acceptable. Taweerattanapanish *et al.* (1999) studied yield of paddy drying by fluidization technique with various initial and final moisture contents of paddy using high inlet air temperature (140 and 150 °C). After tempering, head rice yield increased as compared to ambient air drying. Factors effected the increasing of head rice yield was initial and final moisture contents of paddy which ranged between 30-45 % d.b. and 23-28 % d.b., respectively. Head rice yield of tempered paddy was higher than that of no-tempered one while eating quality scores of tested rice showed no difference between no-tempered paddy drying by fluidization technique and ambient air.

Each rice mill has different drying systems which may cause damage to paddy after drying, *i.e.* low paddy quality, or may cause high cost. This research, therefore, studied on drying system performance at three rice mills. The study included paddy drying method,

paddy quality, energy consumption and problems arose during operation. The results will be useful for improving the efficiency of paddy drying system and minimizing the cost of drying.

MATERIALS AND METHODS

The paddy drying systems were studied in three different rice mills, *i.e.* Nithithanyakit, Kungleechan and Poonsinthai. Each rice mill has different paddy drying methods and systems consisting of some sub-components as follows: fluidized bed dryer, LSU dryer, cross flow dryer, cleaner, cooling bin and tempering bin. The schematic diagrams of the three drying systems are shown in Figures 1 – 4. Moisture content of paddy was reduced from at least 23 to 14 % d.b.

Drying air temperature setting depended on type of dryer and moisture content of paddy as follows: 100-150 °C for 10 tons/h capacity, fluidized bed dryer with bed depth of 15 cm and 80-100 °C for 6-40 tons volume, LSU dryer.

RESULTS AND DISCUSSION

1. Moisture and paddy quality

1.1 Nithithanyakit: two-stage drying system, 20 tons/h capacity (Figures 1 and 2)

1.1.1 *First stage* included two parallel system installation.

Referred to Figure 1, the average moisture content, head rice yield and rice whiteness of paddy in a paddy pit (10.1) were 23.3 % d.b., 39.2 % and 46.8, respectively. After passing through a fluidized bed dryer (2.1) with a feed rate of 9.30 tons/h and the average drying air temperature of 145 °C, the moisture content, paddy temperature, head rice yield and whiteness of paddy were 18.5 % d.b., 62 °C, 44.2 % and 45, respectively. Then the

paddy passed through a tempering and cooling bin (3.1) with 9 tons volume. The average moisture content, paddy temperature, head rice yield and whiteness of paddy were 17.3 %d.b., 34 °C, 47.7 % and 44.7, respectively.

Referred to Figure 1, the average moisture content, head rice yield and whiteness of paddy in a paddy pit (10.2) were 20.6 % d.b., 36.6 % and 47.8, respectively. After passing through a fluidized bed dryer (2.2) with a feed rate of 10.5 tons/h and the average drying air temperature of 149 °C, the moisture content, paddy temperature, head rice yield and whiteness of paddy were 18.4 % d.b., 65 °C, 38.8 % and 47.7, respectively. Then the paddy passed through a tempering and cooling bin (3.2) with 9 tons volume. The average moisture content, paddy temperature and head rice yield of paddy were 17.0 % d.b., 39 °C, and 41.8 %, respectively, but no change in the average rice whiteness.

1.1.2 Second stage (Figure 2): Paddy from the tempering and cooling bins (3.1) and (3.2) was conveyed to a paddy bulk (10.3) which had the average head rice yield of 46.3 % and the average rice whiteness of 45.3 then passed through silos (15.1) and (15.2) to reduce temperature of paddy by ambient air down to 34 °C. The average head rice yield and rice whiteness were 47.4 % and 45.8, respectively. Then the paddy passed through a LSU dryer (4) with 40 tons volume, with the average drying air temperature of 79 °C. The LSU dryer could reduce moisture content of paddy down to 14.0 % d.b., with the average paddy temperature of 46 °C, the average head rice yield of 36.4 % and average whiteness of 46.3. Then the paddy passed through silos (15.3) and (15.4) in order to reduce temperature of paddy by ambient air ventilation. The average head rice yield was 38.7 % with no change in the rice whiteness.

From the experimental results above, the average initial moisture content of paddy was 20.6-23.3 % d.b. After the first stage, the average moisture content of paddy was 17.0-

17.3 % d.b. Head rice yield and whiteness were in a good range as compared to the initial condition. After the second stage, the average moisture content of paddy was 14 % d.b. Head rice yield was not very high while the average rice whiteness was 46.3 which was good based on the initial rice whiteness.

1.2 Kungleechan: two-stage drying system, 6.06 tons/h capacity (Figure 3)

1.2.1 First stage: The average moisture content of paddy in a paddy pit (10) was 24.4 % d.b. After passing through a cleaner, the average moisture content was reduced to 23.9 % d.b., the average head rice yield and whiteness were 46.0 % and 40.9, respectively. Then the paddy passed through a fluidized bed dryer (2.1) with a feed rate of 9.54 tons/h, the average drying air temperature of 142 °C, bed depth of 15 cm and residence time of 1.4 minutes, the dryer could reduce the moisture content of paddy down to 20.5 % d.b. with average paddy temperature of 67 °C, average head rice yield of 45.9 % and average rice whiteness of 41.8. Then passing through a tempering and cooling bin (15.2) with 18 tons volume, it could reduce moisture content of paddy down to 18.4 % d.b. with the average paddy temperature, head rice yield and rice whiteness of 43 °C, 44.4 % and 40.7, respectively.

1.2.2 Second stage: Paddy was further dried by a fluidized bed dryer (2.2) with a feed rate of 9.06 tons/h, the average drying air temperature of 141 °C, bed depth of 12 cm and residence time of 1.2 minutes, the dryer could reduce the moisture content of paddy down to 15.6 % d.b. with the average paddy temperature of 75 °C, average head rice yield of 43.7 % and average rice whiteness of 41.2. Then the paddy passed through a LSU dryer with 17 tons volume, which operated as tempering and cooling bin (4) instead of drying. It could reduce moisture content of paddy down to 14.2 % d.b. with the average paddy temperature of 42 °C, average head rice yield of 44.5 % and average whiteness of 40.2. Then being conveyed to the dust extraction bin where paddy temperature was reduce to 41 °C.

At Kungleechan, the average initial moisture content of paddy was about 24.4 % d.b. After two-stage drying by fluidized bed dryers, the moisture content of paddy was reduced to 14.2 % d.b. Head rice yield and rice whiteness were in a good range.

1.3 Poonsinthai: two-stage drying system (Figure 4), 0.893 tons/h capacity.

1.3.1 First stage: The average moisture content of paddy in a paddy pit (10.1) was 28.6 % d.b. After passing through a cleaner, the moisture content of paddy was reduced to 28.2 % d.b. with the average head rice yield and whiteness of 41.0 % and 44.6, respectively. Then the paddy passed through a fluidized bed dryer (2) with a feed rate of 9.32 tons/h, the average drying air temperature of 103 °C, bed depth of 10 cm and residence time of 0.96 minute, the dryer could reduce moisture content of paddy down to 21.7 % d.b., with the average paddy temperature of 65 °C, average head rice yield of 39.6 % and average rice whiteness of 45.9.

1.3.2 Second stage: After passing through a fluidized bed dryer (2), the paddy was conveyed to a paddy pit (10.2) for 1 hour which could reduce paddy temperature down to 49 °C. Then paddy was ventilated with ambient air in a cross flow dryer (4.3) for 1 hour and a half which could reduce the moisture down to 21.0 % d.b. with the average paddy temperature of 33 °C, average head rice yield of 44.1 % and average rice whiteness of 44.0. Then the paddy passed through a cross flow dryer (4.3) with 7 tons volume, with average drying air temperature of 71 °C. Circulated paddy was in the cross flow dryer for 10 rounds (47 minutes/round), resulting in the reduction of moisture content of paddy down to 17.0 % d.b. with average paddy temperature of 36 °C, average head rice yield of 42.0 and average rice whiteness of 44.8. Then it was conveyed to a dust extraction bin (9.2).

At poonsinthai, the average initial moisture content of paddy was 28.6 % d.b. The paddy was dried to 17 % d.b. with head rice yield and rice whiteness in a good range. It

should be noted that the bottleneck of the drying capacity was due to the limited capacity of the cross flow dryer.

2. Energy consumption

Energy consumption for paddy drying system was thermal energy for air heating and electricity for running motor. Tables 1 and 2 showed that energy consumption increased when moisture content of paddy decreased. Air recirculation could minimized energy, *i.e.* first-stage drying of Nithithanyakit had higher energy consumption than that of Kungleechan due to no air recirculation. Too low drying air temperature caused higher energy consumption, as shown in the second-stage drying of Poonsinthai.

3. Other problems

1. Rotary feeder could not work well due to stopped feed caused by high pressure in the drying chamber, except in the second-stage drying of Kungleechan which installed a large bin in front of a rotary feeder.
2. Burner could not set fixed drying air temperature due to long time using of fuel oil which could close fuel nozzle.
3. Using fuel oil as fuel could cause rust inside drying chamber.
4. Lack of knowledge for operating dryers.

CONCLUSIONS

Important results can be summarized as follows:

1. Fluidized bed dryer with tempering during each drying stage could reduce moisture content of paddy from 24 % d.b. to 14 % d.b. with acceptable paddy quality.
2. Partial air recirculation could reduce energy consumption in fluidized bed dryer.

3. Energy consumption of each drying system depended on initial and final moisture contents of paddy, *i.e.* higher moisture content, lower energy consumption.

4. The main problem at each rice mill was due to rotary feed operation of fluidized bed dryer and the lack of knowledge for operating dryer.

5. The best drying system performance from the three rice mills considered from drying management, paddy quality, energy consumption and problems arose was Kungleechan, Nithithayakit and Poonsinthai, respectively.

SUGGESTIONS

Experience from this study can provide guideline for designing a high performance drying system as shown in Figure 5. Paddy with 25 % d.b. moisture content in a paddy pit (8) is conveyed by elevators (5.1) and (5.2) to a cleaner (1), a 5 ton bin (4) and a 10 tons per hour fluidized bed dryer (2.1). Moisture content of paddy is expected to reduce to 20 % d.b. Then paddy is conveyed to a 10 ton capacity tempering and cooling bin (3.1).

In the second-stage drying, paddy flows through a 10 tons per hour fluidized bed dryer (2.2) with an expected moisture content of paddy of 16 % d.b. Then it is conveyed to a 10 ton capacity tempering and cooling bin (3.2), and finally to a paddy bulk.

It is also suggested to use rice husk burner as it gives lower energy cost.

ACKNOWLEDGMENT

The authors would like to thank the Thailand Research Fund and the Australian Centre for International Agricultural Research for financial support, Rice Engineering Supply Co., Ltd. for supplying data and vehicles to the rice mills and finally to Nithithayakit, Kungleechan and Poonsinthai rice mills for their helpful collaboration.

REFERENCES

Mongkonthad, J. 1994, Grain dryer of Agriculture Division at present rice production. Agricultural Engineering Division News. October - December: pp. 2-5 (in Thai).

Soponronnarit, S. 1995. Strategy for managing moist paddy. The Royal Institute Journal 20 (4): 115-125 (in Thai).

Soponronnarit, S., M. Yapha and S. Prachayawarakorn, 1995. Cross flow fluidized bed paddy dryer: prototype and commercialization. Drying Technology 13(8&9): 2207-2216.

Soponronnarit, S., S. Wetchacama, T. Swasdisevi and N. Poomsa-ad, 1999. Managing moist paddy by drying, tempering and ambient air ventilation. Drying Technology 17(1&2): 335-344.

Taweerattanapanich, A., S. Soponronnarit, S. Wetchacama, N. Kongseri and S. Wongpiyachon, 1999. Effects of drying on head rice yield using fluidization technique. Drying Technology 17 (1&2): 345-354.

Table 1 Energy consumption of the first-stage drying at the three rice mills.

Rice mills (Fuel source)	\bar{T} (°C)	\bar{M}_{in} (% d.b.)	\bar{M}_{out} (kg-dry matter/h)	Drying rate (MJ/h)	Heat from electricity (conversion factor = 2.6) (MJ/h)	Primary energy from electricity (conversion factor = 2.6) (kg-water evap./h)	Rate of water Evaporation (kg-water evap./h)	Specific heat consumption (MJ/kg-water evap.)	Electricity consumption in terms of specific primary energy (MJ/kg-water evap.)
Nithithayakit (Rice husk)	145	23.3	17.3	7.928	2.596.29	461.50	476	5.45	0.97
	149	20.6	17.0	8.974	2.596.29	468.89	323	8.03	1.45
Kungleechan (Diesel)	142	24.4	18.4	8.057	1.239.01	402.39	483	2.56	0.83
Poontsinthai (Crude oil)	103	28.6	21.7	7.657	1.053.75	388.44	528	2.00	0.73

Table 2 Energy consumption of the second-stage drying at the three rice mills.

Rice mills (Fuel source)	\bar{T} (°C)	\bar{M}_{in} (% d.b.)	\bar{M}_{out} (kg-dry matter/h)	Drying rate (kg-dry matter/h)	Heat from electricity (conversion factor = 2.6) (MJ/h)	Primary energy from electricity (conversion factor = 2.6) (kg-water evap./h)	Rate of water Evaporation (kg-water evap./h)	Specific heat consumption (MJ/kg-water evap.)	Electricity consumption in terms of specific primary energy (MJ/kg-water evap.)
Nithithayakit (Rice husk)	79	17.2	14.0	17.543	3.671.95	590.25	561	6.54	1.05
Kungleechan (Diesel)	141	18.4	14.3	5.302	1.266.94	495.92	217	5.82	2.28
Poontsinthai (Crude oil)	71	21.8	17.0	7.64	735.64	88.12	37	20.06	2.40

Note - \bar{T} = Average drying air temperature at each drying period.

- \bar{M}_{in} = Average inlet moisture content of paddy.

- \bar{M}_{out} = Average outlet moisture content of paddy.



Figure 1 Drying system at Nithithanyakit rice mill, Kharuworalukburi, Kamphaengphet (First stage).

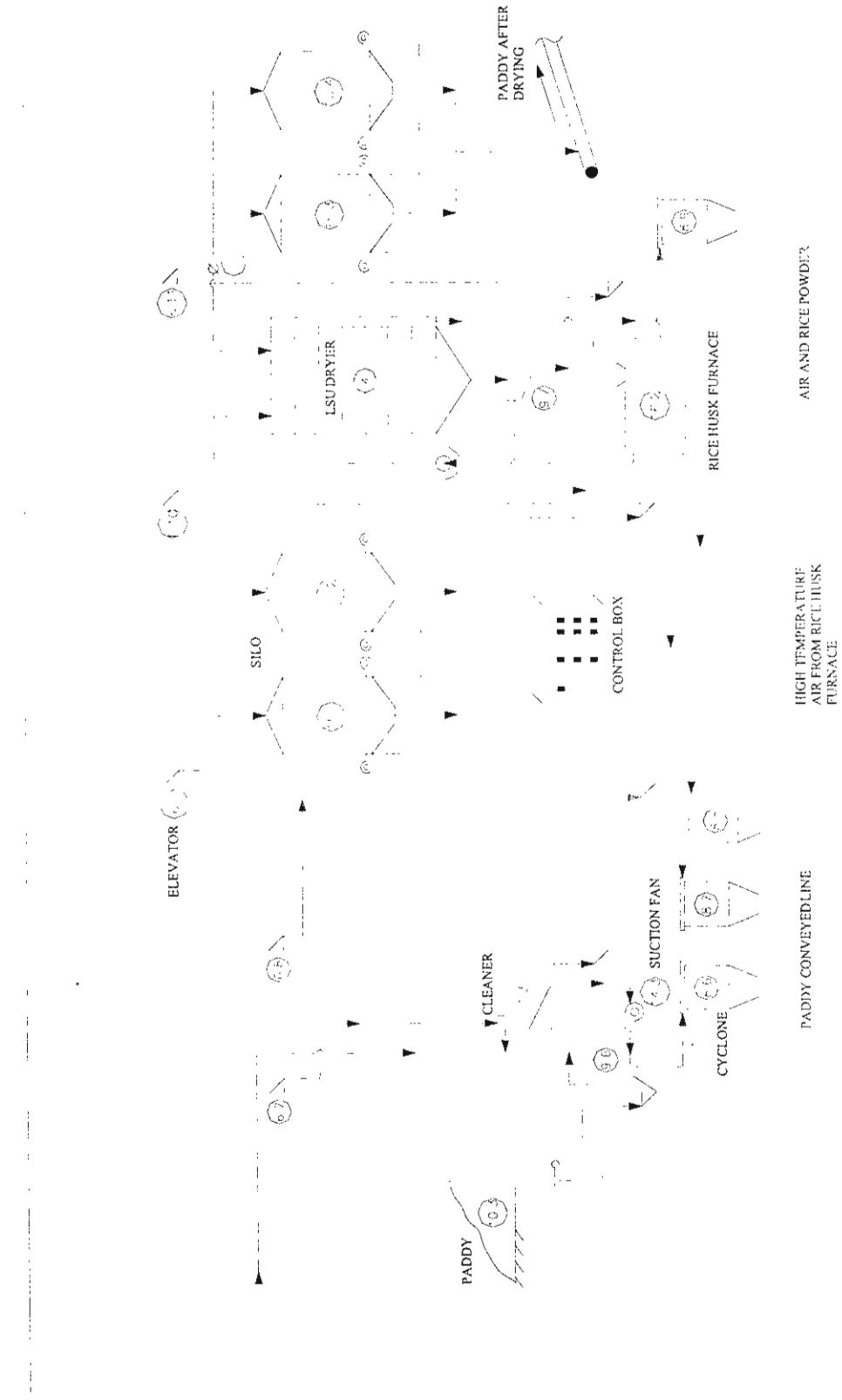


Figure 2 Drying system at Nithithanya rice mill, Khamtuworakukuri, Kampphaengphet (Second stage).

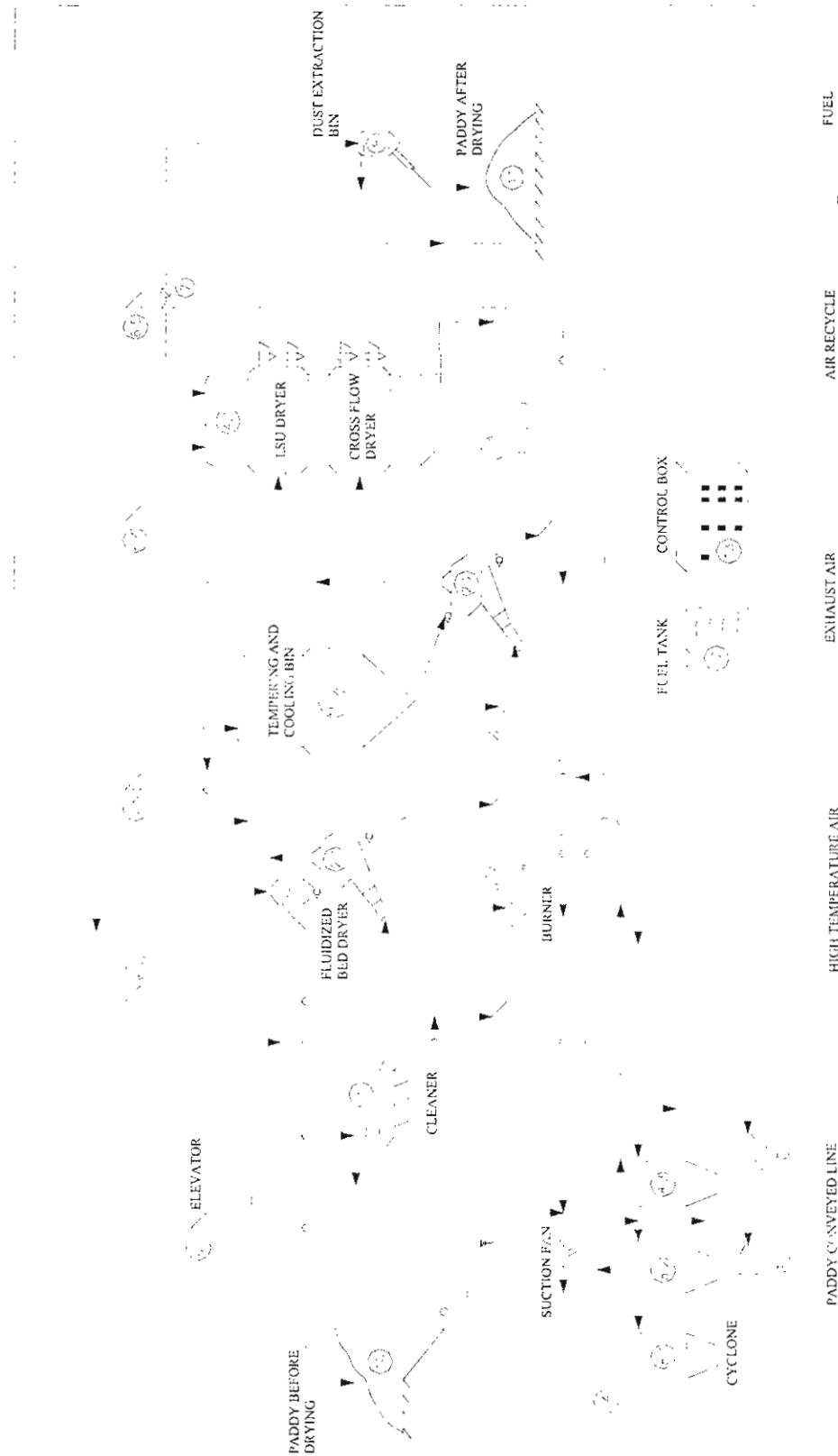


Figure 3 Drying system at Kungleechan, Lardbualuang, Ayudthaya.



Figure 4 Drying system at PoonsinThai, U-Thong, Suphanburi.

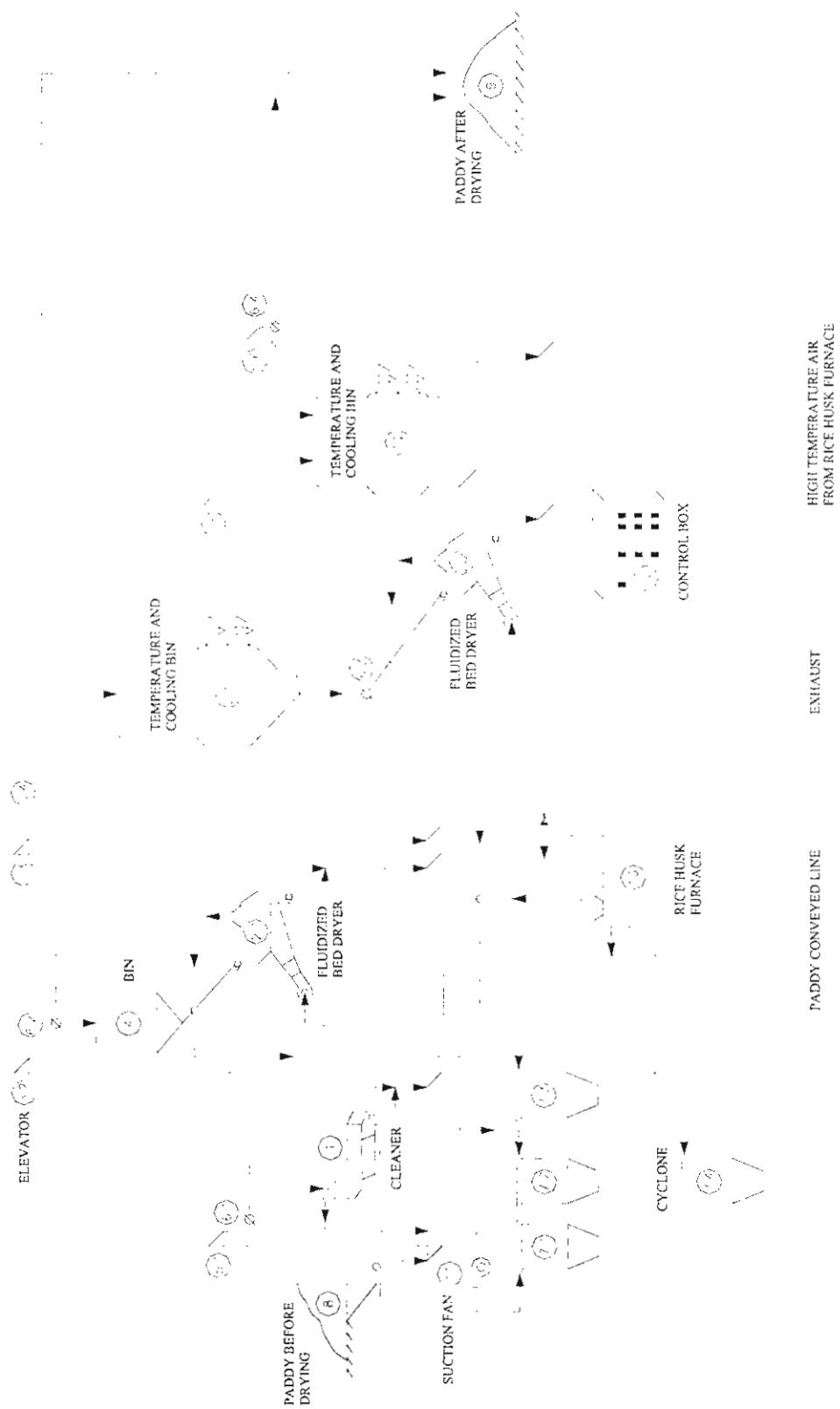


Figure 5 Proposed drying system at a rice mill.

DESIGN, TESTING AND OPTIMIZATION OF VIBRO-FLUIDIZED BED PADDY DRYER

Somchart Soponronnarit¹, Somboon Wetchacama¹, Suwat Trutassanawin² and
Wuttikon Jariyatontivait²

¹ School of Energy and Materials, King Mongkut's University of Technology Thonburi.
Suksawat 48 Rd., Bangkok 10140, Thailand, E-mail: isomarit@cc.kmutt.ac.th

² Graduate students

Keywords: Dehydration, fluidization, grain, vibration

ABSTRACT

The objectives of this research were to design, construct and test a prototype of vibro-fluidized bed paddy dryer with a capacity of 2.5-5.0 t/h and develop a mathematical model that determines optimum operating parameters. Experimental drying conditions were: air flow rate, 1.7 m³/s; bed velocity, 1.4 m/s; average drying air temperature, 125-140°C; residence time of paddy approximately 1 minute; bed height, 11.5 cm; fraction of air recycled, 0.85 and vibration of intensity, 1 (frequency, 7.3 Hz and amplitude, 5 mm). Moisture content of paddy with a feed rate of 4821 kg/h was reduced from 28 to 23% d.b.. Specific primary energy consumption (SPEC) was 6.15 MJ/kg-water evaporated. Electrical power of blower motor and vibrator motor was 55% as compared to electrical power of blower motor used in fluidized bed drying without vibration.

Comparison between the experimental and simulated results showed that the mathematical model could predict fairly well. To find out optimum operating parameters, the grid search method was employed with criteria based on acceptable moisture reduction and quality and minimum energy consumption.

INTRODUCTION

Soponronnarit and Prachayawarakorn (1994) studied drying of high moisture content paddy using fluidization technique. The factors affected on paddy quality after drying and energy consumption were investigated. The experimental conditions were as follows: drying air temperature of 100-150°C, specific air flow rate of 0.13-0.33 kg/s-kg dry matter and initial moisture contents of paddy of 28-40% d.b. The result showed that drying rate increased with specific airflow rate and/or temperature of drying air.

Energy consumption decreased when specific airflow rate increased or fraction of air recycled increased. The suggestions to obtain good paddy quality in terms of head rice yield and rice whiteness were: drying air temperature should be lower than 115°C and moisture content of paddy after drying should not be lower than 24-25% d.b. The study and development of paddy drying using fluidization technique was continued and succeeded in 1996, a prototype of fluidized bed dryer was constructed. The commercial fluidized bed dryers with capacities of 5 and 10 t/h were constructed and had been sold since the beginning of 1996. The conditions of paddy drying were as follows: drying air temperature in range of 120-150°C, drying air velocity approximately 2.0-2.3 m/s and fraction of air recycled approximately 0.8.

Rysin (1992) studied food product drying using vibro-fluidization technique. It was found that vibration intensity ($A\omega^2/g$) should be lower than 3.3. The suitable values of vibration intensity and amplitude (A) were 1.5-2.0 and 5-10 mm, respectively. Ringer and Mujumdar (1982) designed a chart which provided to aid in the selection of the operating parameters of drying by using vibro-fluidization technique (the ratio of drying air velocity to minimum fluidization velocity and vibration intensity not more than 1.1 and 3.3, respectively.). Han et al. (1991) studied the residence time distribution and drying characteristics of a continuous pilot-plant vibro-fluidized bed dryer. Wheat particles and BYN (trade name Biyanning, a medication for rhinitis) were used as testing materials. Operating variables in the study included vibration intensity, mass flow rate of air, feed rate, inlet air temperature, and particle size. The flow of particles in the dryer was considered as plug flow. It was found that vibration intensity was the most significant factor affecting particle mean residence time and drying rate. As vibration intensity increased, mean residence time decreased and drying rate increased.

From the past research, it can be concluded that the appropriate operating conditions of paddy drying using fluidization technique to obtain good paddy quality were as follows: moisture content of paddy after drying not lower than 23% d.b., bed height of 10-15 cm, drying air temperature not higher than 150°C. For drying using vibration fluidization technique, it was recommended that vibration intensity and amplitude should be in range of 1.0-3.3 and 5-10 mm, respectively, and low frequency should be used to avoid the deterioration of vibration system.

According to the success of commercialization of fluidized bed paddy dryers in various countries and requirement to reduce electrical power of blower motor, the objectives of this research are therefore to design, construct, and test a commercial-scale vibro-fluidized bed paddy dryer with capacity of 2.5-5.0 t/h and develop a mathematical model that determines optimum operating parameters.

MATERIALS AND METHODS

Design and experiment of prototype

A vibro-fluidized bed paddy dryer with capacity of 5 t/h was fabricated by Rice Engineering Supply Co., Ltd. and tested at Thanyakanwangtaphet Rice Mill, Suphanburi province, Thailand. The unit comprised of a diesel burner and combustion chamber, a backward-curved-blade centrifugal fan driven by a 7.5 kW motor, $0.6 \times 2.1 \times 1.2$ m drying chamber and 0.6×2.1 m perforated steel sheets with 0.5 mm thickness and 1.1 cm diameter hole. The vibration systems comprised of cams, coil springs, watch springs, 1.5 kW vibrator (frequency of 7.3 Hz, vibration intensity of 1 and vertical amplitude of 5 mm), hopper, rotary feeder, rotary discharger, recycle air duct and cyclone, the details as shown in Figure 1.

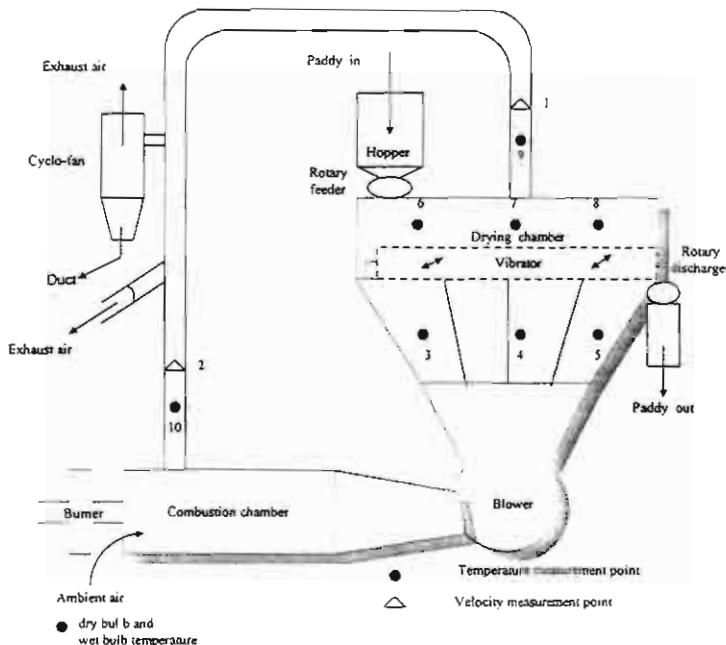


Figure 1 Diagram showing the vibro-fluidized bed paddy dryer.

During drying, paddy samples before and after drying were kept every 20 minutes to investigate moisture and quality. Before testing of paddy quality, paddy samples were blown with ambient air until moisture content decreased to approximately 16% d.b. The locations for temperature and air velocity measurements were shown in Figure 1. Temperatures were measured by type k thermocouple, connected to a data logger with an accuracy of $\pm 1^\circ\text{C}$. Air velocities were measured by a hot wire anemometer with an accuracy of $\pm 4\%$ and electrical power was measured by a clamp-on meter with an accuracy of $\pm 0.5\%$.

Optimization

Soponronnarit et al. (1996) developed a mathematical model for continuous cross-flow fluidized bed paddy drying with important assumptions that thermal equilibrium between grain and air exists and both grain flow and air flow are plug type. The model is consisted of several equations including main equations derived from the principle of energy and mass conservation and drying kinetics equation. The model was validated with the experimental results. With mechanical vibration, one more additional equation for predicting energy for vibration is required. All these mentioned equations served as the basis for the optimization. To optimize the fluidized bed paddy drying, the first step is to minimize the exit moisture content of grain that is the favorite of rice millers. The second step is to minimize the specific energy consumption (SPEC). The grid search method was selected in this study. In the first step, the objective function and constraints are written as follows:

$$\text{Minimize } y_1 = M_f(R, H, T, \Gamma, f) \quad (1)$$

Giving the value of fluidized bed velocity of 2.3 m/s and 1.5 m/s for fluidized bed drying and vibro-fluidized bed drying, respectively and paddy feed rate of 3.4 and 5 t/h, the solutions are feasible for the

outlet moisture content higher than 19% d.b. in order to maintain head rice yield (Soponronnarit et al., 1999) and the moisture reduction in a single drying pass higher than 4%.

$$\text{Subject to} \quad 0 \leq RC \leq 0.97 \quad (2)$$

$$0.05 \leq H \leq 0.20 \text{ m} \quad (3)$$

$$100 \leq T \leq 150^\circ\text{C} \quad (4)$$

$$1.0 \leq \Gamma \leq 2.5 \quad (5)$$

$$5 \leq fr \leq 25 \text{ Hz} \quad (6)$$

where M_f = Exit moisture content of paddy, % d.b.

RC = Fraction of air recycled

H = Bed height, m

T = Drying air temperature, $^\circ\text{C}$

Γ = Vibration intensity

fr = Frequency, Hz

In the second step, the objective function is as follows:

$$\text{Minimize} \quad y_2 = \text{SPEC}(RC, H, T, \Gamma, fr) \quad (7)$$

The solutions are feasible for the outlet moisture content of paddy that is in the range of 0.5% d.b. of the minimum moisture content obtained from the first step. The constraints are the same as those in equations (2)-(6).

RESULTS AND DISCUSSION

Experimental conditions are as follows: paddy feed rate of 4.82 t/h, air flow rate of 1.7 m^3/s (velocity, 1.4 m/s), fraction of air recycled of 0.85, drying air temperature in range of 125-140 $^\circ\text{C}$ and vibration intensity of 1 (frequency, 7.3 Hz and vertical amplitude, 5 mm). Experimental results are presented in Table 1.

Moisture content of paddy and temperature in drying chamber

Figure 2 shows the values of temperature at various locations of dryer. In case of average inlet air temperature of 140 $^\circ\text{C}$, average temperature and relative humidity of ambient air were 35 $^\circ\text{C}$ and 66%, respectively. It was found that average paddy temperature at drying chamber outlet was 64 $^\circ\text{C}$. Figure 3 shows the inlet and outlet moisture contents of paddy, the average of these were 28 and 23% d.b., respectively.

Table 1 Performance of the vibro-fluidized bed paddy dryer (bed height = 11.5 cm, bed velocity = 1.4 m/s, vibration intensity = 1, fraction of air recycled = 0.85 and feed rate = 4821 kg/h).

T (°C)	M _i (%d.b.)	M _o (%d.b.)	T _{po} (°C)	HRY From AAD	HRY From VFBD	RW From AAD	RW From VFBD	SEEC (MJ/kg- water evap.)	STEC (MJ/kg- water evap.)
125	26.8	23.7	62	33.0	32.5	42.4	42.9	0.77	5.47
133	24.1	20.7	63	35.2	37.5	41.5	41.0	0.66	4.69
140	28.0	23.0	64	32.0	37.0	42.5	41.2	0.48	3.80

Remarks: AAD = Ambient air drying
 VFBD = Vibro-fluidized bed drying
 HRY = Head rice yield
 RW = Rice whiteness
 SEEC = Specific electrical energy consumption in terms of primary energy (x2.6)
 STEC = Specific thermal energy consumption
 M_i = Inlet moisture content of paddy
 M_o = Outlet moisture content of paddy
 T = Drying air temperature
 T_{po} = Paddy temperature at drying chamber outlet

Paddy quality

In order to investigate the percentage of head rice yield, paddy samples before and after drying were kept every 20 minutes. It was found that average percentages of head rice yield of paddy samples dried by ambient air and vibro-fluidized bed dryer (in case of average inlet drying air temperature was 140°C) were 32.0 and 37.0, respectively. Head rice yield obtained from ambient air drying was approximately 5% lower, as shown in detail in Figure 4. This resulted from high enough initial moisture content of paddy as well as from using suitable drying air temperature (140°C) within short drying time (approximately 1 minute). Consequently, partial gelatinization occurred in paddy kernel especially at the surface, which was the same as the results from the study of paddy drying using fluidization technique by Taweerattanapanish et al. (1999).

From the test of rice color of paddy samples dried by ambient air and vibro-fluidized bed dryer, it was found that average rice whiteness were 42.5 and 41.2, respectively (according to scale of whiteness measuring instrument type Kett C-300), with approximately 1.3 difference, as shown in detail in Figure 5. The difference is small as per in terms of practice of rice mill in Thailand, rice whiteness over 36 is normally accepted.