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Figure 2 Evolulion of temperatures at various locations.
(vibration intensity = 1, feed rate = 1.34 kg/s, average inlet moisture content
28.0% d.b., bed height - 11.5 em, bed velocity 1.4 m/s, average outlet
moisture content = 23.0% d.bh.)
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Figure 3 Evolution of inlct and outlet moisture content of paddy.
(average inlet air temperature = 140°C, vibration intensity = 1,
feed rate = 1.34 kg/s, bed height = 11.5 cm, bed velocity = 1.4 m/s)
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Specific energy consumption

In using vibro-fluidized bed dryer, total electrical power consumption was 9646 W, divided into
electrical power consumption of each component as follows:

1. Blower = 55.0% 2. Vibrator = 10.4%
3. Rotary feeder = 6.4% 4. Rotary discharger = 7.1%
3. Elevator =13.0% 6. Burner = 8.1%

Test result showed that average primary energy consumption was 723 MI/h, of which 88 MJ/h was
primary energy in terms of electrical energy (multiplied by 2.6) and 635 MJ/h was thermal energy. Dryving
rate was 118 kg water/h. Total average specific primary energy consumption was 6.15 MJ/kg-water
evaporated, close to that of paddy drying using fluidization technique without vibration. Electrical power
of blower motor and vibrator motor was 55% as compared to electrical power of blower motor used in
paddy drying using fluidization technique without vibration {Soponronnarit et al., 1998).

Cost analysis

The fabrication cost of vibro-fluidized bed dryer was 450.000 baht including labor cost and installing
cost. (US$ 1 = 40 baht). It was assumed that service life was 10 vears, annual interest rate was 189% and
salvage value was 10% of fixed cost. Other costs were based on the test results as follows: drving
capacity of 4.82 t/h, initial and final moisture contents of paddy of 28 and 23% d.b., respectivels and
drying rate of 190 kg water/h. [t was also assumed that the operating time of dryer is 90 davs/year. The
cost analysis was divided into two cases as follows: 1} In case of operating time of dryer 12 hours/dav and
) In case of operating time of dryer 24 hours/day. The results from cost analysis are as follows:

1) In case of operating time of dryer 12 hours/day, total drying cost was 305,015 baht/vear which was
divided into fabrication cost, 100.131 baht/year; diesel consumption cost, 170.726 baht/vear: elecrrical
energy cost, 16.070 baht/vear; maintenance cost, 20.000 baht/vear and saivage value, 1,913 baht vear.
Theretore. total specific drving cost was 59 baht/ton of paddy (1.50 baht/kg-water evaporated) of which
19 baht/ton of paddy (0.5 baht'’kg-water evaporated) was fabrication cost and 40 baht/ton of paddy (1
baht’kg-water evaporated) was operating cost.

2 In case of operating time of dryer 24 hours/day, total specific drying cost was 49.5 baht/ton of paddy
{1.25 baht/kg-water evaporated) of which 9.50 baht/ton of paddy (0.25 baht'kg-water evaporated) was
fabrication cost and 40 baht/ton of paddy (1 baht/kg-water evaporated) was operating cost.

Optimization

The mathematical model tor the vibro-fluidized bed paddyv drver was validated with the experimental
results and found that the model predicted drving rate and energy consumption fairly weil. For tluidized
bed paddy drving without vibration with capacity of 3 t/h. initial moisture of paddy of 30% d.b.. and
drving air velocity of 2.3 m/s, the optimum operating parameters were: drying air temperature of 130°C.
fraction of air recycled of 0.93 and bed height of 11.9 cm. SPEC and final moisture content were 3.74
MI/kg-water evaporated and 24.9% d.b.. respectively. For vibro-fluidized bed paddv drving with the
same paddy feed rate and initial moisture content and drving air velocity of 1.5 m/s. the opuimum
operating parameters were: drying air temperature. [43°C: rraction of air recyeled. 0.83: bed heignt 9.9
cm: frequency. 3 Hz and vibration intensity, 2.3, SPEC and inal moisture content were 3.36 MJ/kg-water
evaporated and 26.0% d.b.. respectively. Paddy drying with vibro-tluidization technique consuimed
primary energy 7% less as compared to fluidized bed drving without vibration.



CONCLUSION

[n this research, a commercial-scale vibro-fluidized bed paddy dryer was tested. The operating
conditions were as follows: paddy feed rate, 4.82 tons/h; paddy bed height, 11.5 cm; airflow rate, 1.7
m’/s; air velocity, 1.4 m/s: fraction of air recycled, 0.85 and vibration intensity, approximately |
(frequency, 7.3 Hz and amplitude, > mm). In case of using average inlet air temperature of 140°C, it can
be concluded as follows:

1)Vibro-fluidized bed dryver could reduce moisture content of paddy from 28% to 23% d.b with head
rice vield and rice whiteness of 37% and 41.2, respectively while ambient air drying yielded head rice
vield and rice whiteness of 32% and 42.3, respectively.

2) Total average specific primary energy consumption including thermal energy and electrical energy
was 6.15 MJ/kg-water evaporated.

3) Summation of electrical power of blower motor and vibrator motor that used in vibro-fluidized bed
drver was approximately 53% of electrical power of blower motor used in fluidized bed drver without
vibration.

From optimization on vibro-fluidized bed paddy drving with capacity of 3 t/h. initial moisture of paddy
of 30% d.b. and drving air velocity ot 1.5 m/s, the optimum operating parameters were: drying air
temperature, 143°C: fraction of air recycled. 0.83: bed height, 9.9 ¢m; frequency, 5 Hz and vibration
intensity, 2.5. SPEC and final moisture content were 5.36 MJ/kg-water evaporated and 26.0% d.b..
respectively., Paddy drying with vibro-fluidization technique consumed primary energy 7% less as
compared to fluidized bed drving without vibration.

In case of operating time of 1080 h/y, total cost of drying was 39 baht/ton of paddy (1.50 bahvkg-water
evaporated) of which 19 baht/ton of paddv (0.5 bahtkg-water evaporated) was fabrication cost and 40
baht/ton of paddy {1 bahvkg-water evaporated) was operating cost. USS 1 is equal to 40 baht.
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Mathematical Simulation of Longan Fruit Drying
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Abstract

The objectives of this study  were o
develop a mathematical model and to simulate
longan drying for evaluating the optimum
conditions. The specific energy consumption
and drying rate were used for the verification of
the model. It was found that the simulated
results agreed with some of those experiments.
The effects on the specific energy consumption
of drying air temperature, fraction of air
recycled, and specilic air flow rate were
described. It was tound that the specific air
flow rate, drying air temperature and fraction of
air recycled atiect significantlly on  specific
energy consumption.  However, the effect of
specific air flow rate and drying air temperature
on specific energy conswmption is small when
fraction of air recycled is big.

1. Introduction

Longans are an important commercial fruit
in the north part of Thailand. Fresh longans
have high moisture content; thus, they can be
stored for a short period of time. Longan
drying process can extent a period of time tor
presurvation atd can reduce loss arising from
seasonal glut.  Dried  longans are  widely
consumed as a dried fruit, made longan juice,
put in cake, and so on. Basically, conzntional
hot air dryers are the most widely used for the
production of dried Jongans. In the literature,
there are few reports on longan drying.
Vongnichakul and Phanvuch | 1] evaluated the
drying constant and  sorption isotherms ol
lowgans. Sitthipong et al. [2} and Siuhipong ct
al 13 tested and modified existing dryers o

2

(=]

longans by experiments.  ‘the goal of theirs
study was 1o meet the technical and economic
requirements for the drying of longans. The
investigation of optimum drying conditions can
be recovered by experimenls or computer
simulation. Therefore, a mathematical model
for longan drying needs to be developed.

The objectives of the present work are 1o
develop a mathemaltical model and to simulate
longan drying. The effects of drying air
temperature and specific air flow rate on energy
consumption are investigated. Also, the effects
of dryers with and without air recirculation on
energy consumption are described.

2. Materials and Methods
2.1 Development of Mathematical Model

A mathematical model of cabinet dryers is
composed of drying model and performance
model.  The assumptions of the model are as
follows: thermal equilibrium exists between
moist air and longans, the walls of the dryer are
adiabatic, the internal encrgy changes of the
dryer and longans are negligible.  The
schematic diagram of a cabinet dryer is shown
in Figure 1. The detalls of the model are as
follows:

2.1.1 Drying Model

The moist air properties at outlet drying
chamber can be calculated by using the
principle of mass and energy conservation 1o
control volume 2 in Figure 1. They can be
wrilten as
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Iigure 1. Schematic diagram of a cabinet dryer.

tma(Wao-Wai) = my(M,-My) (1)
md[Ca'!‘dl'i'wdl(hlg 1y Ty

'Cu'l‘do'w(lta(]”g'l (:v'i‘du)] =0 (2)

The model for calculating longans

- moisture content during drying is based on the
thin layer drying rate equation developed by

Vongnichakul and Phanvuch [1].  They are
' given by equations (3) to (5).
MM HMg-M)AtKexp(-Kt) (3)
K =0.0023(1y,1273)-0.739 (4)
M., = AIRHG/(1-RE)" (5)

Where,

A 2.3015-0.00615(141273)
13 =-1.345310.00507(Ty+273)

2.1.2 Performance Model

The performances of the dryer are defined
as specific energy consumption (SEC) and
diying rate (DR). They can be wrilten as
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SEC = (2.6E+Qy)/[(Miy-Mpm,] (6)

DR =mu /DT Q)

2.2 Simulation Procedure

A computer program for dryers with and
without air recirculation has been developed to
evaluate the effects of drying air temperature,
specific air flow rate and fraction of air
recycled on specific energy consumption. The
inputs are as follows: the initial moisture
content of longans, the specific air flow rate,
the drying air temperature, the fraction of air
recycled, and the other constants. The
humidity ratio of air entering drying chamber
(Wy), the humidity ratio of air leaving drying
chamber (Wgo), and equilibrium moisture
content (M) are the guess values. The steps
of the calculation are as follows: the drying
model is calculated, and then the Wy, Wy, and
M., are checked. If they are not equal to the
guess values, the new pguess values will be
calculated by using Newton-Raphson
technique, and the system model is calculated



gain.  The calculation continues until the
guess valucs are relatively equal to the new
ones.  The next step is 1o check the relative
shumidity of air leaving drying chamber whether
it is feasible. If it is bigher than 1, the moisture
condensation is calculated, and then the
variables are recalculated.  Finally, the
 perfonmance model is calculated. The after
drying moisture content of longans is checked.
I it is higher than the desired value, the before
drying moisture content is replaced by the alter
deying moisture content, and then the time step
is advinced.  The caleulation continues until
' the moisture content of longans is less than or
cqual o the desired value.

3. Results and Discussion
3.1 Verilication of Mathematical Model

'The experimental results of longan drying
conducted by Sitthipong et al. [2] and the
simulated results are shown in Table 1. The
drying conditions are fraction of air recycled of
0.9, specific air flow rate of 33.7 kg-dry air/h-
kg dry longans, and initial moisture content of
316 % d.b. The other conditions are also
shown in Table |. Specific energy
consumption (SEC) and average drying rate
(DR} are used for the verification of the
mathematical model. 1t can be observed that
the simulated results agree with some of those
cxperiments.

Table 1. Experimental and simulated results of longan drying.

3.2 Effect of Specific Air Flow Rate

Figure 2 shows the effect of specific air
flow rate (SAF) on specific energy
consumption (SEC)Y at dilferent fracuon of air

Specific energy consumption, MJ/kg water

: mjl—r Fresh Diried Drying Experiments Stmulation
No. | weight  weight  air temp,
1 (k) (kg)  (°c) [ DT DR SECT [ DTT DR” SECT
I 805 259 65 48 114 3.5 57 9.6 6.3
2 950 301 64 75 8.7 3.9 64 10.1 6.0
3 1080 357 63 73 9.9 4.2 62 11.7 5.5
4 960 310 73 55 118 4.2 36 18.1 4.8
5 900 310 75 49 120 4.4 33 17.9 4.8
0 1000 315 75 59 116 4.1 34 20.1 4.7
7 1000 329 75 63 107 4.2 31 21.6 4.5
8 965 340 74 60 104 4.5 29 216 4.4
9 1000 317 73 61 i1.2 4.2 37 18.5 4.8
10 1000 332 77 58 115 4.5 27 247 4.3
11 930 340 64 55 107 4.4 47 12.6 53
12 810 277 65 53 10.1 4.2 50 10.7 59
13 1050 375 63 73 9.2 4.1 52 13.0 5.2
14 1000 314 68 68 101 4.1 51 13.5 5.4
5| oo 31y 73 60 114 43 | 37 184 48
* Drying time, b
i Drying rate, kg watet/h
¥k -~

recycled. 'The simulated drying conditions are
specific air flow rate varying from 6 to 40 kg-
dry air/h-kg dry longans, fraction of air
recycled of 0 %, 50 % and 95 %, drying air



temperature of 70 °C, initial longan-weight of
1000 kg, ambicnt temperature of 35 °C,
ambient humidity ratio of 0.015 kg-water/kg-
dry air, and initial and {inal moisture content of
316 % and 42 % d.b., respectively. It is found
that SEC depends upon the SAF and fraction of
air recycled, namely, the SEC decreases with
increasing SAF to a minimum point, and then
the SEC increases due to an excessively air

flow rate. Lurthermore, it can be clearly seen
that if fraction of air recycled increases, the
minimum SEC decreases slightly and the
optimum SAF increases while the drying time
is relatively equal. In the current study, the
minimum SEC occurs at SAF of 30 kg-dry
ait/h-kg dry longans, fraction of air recycled of
95 % and drying time of 40 h.
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Figure 2. LEffect of specific air flow rate on specific energy consumption at various fractions of air
recycled. (initial longan-weight of 1000 kg, initial moisture content of 316 % d.b., final
moisture content of 42 % d.b., ambient temperature of 35 °C, ambient humidity ratio of
(015 kg water/kg dry air and drying air temperature of 70 °C. RC = fraction of air
recycled, SEC = specific energy consumption)

3.3 Eifeet of Drying Air Temperature

The effect of drying air temperature on
SEC are also study. Figure 3 shows SEC
versus drying air temperature at various SAFL.
The simulated drying conditions are drying air
temperature varying from 60 to 96 °C, fraction
of air recycled of 0 % and specific air flow rate
of 10 and 20 kg-dry air/h kg-dry longans.
Other conditions are the same values as the
previous conditions. It is found that the drying

air temperature affects markedly on SEC at
both SAF, namely, the SEC decreases with
increasing drying air temperature to a minimum
point, and then the SEC increases. Moreover,
it can be conclided that the optimum drying air
temperature increases with SAF.  The
mininuun value of SEC with the SAF of 10
kg-dry air/h kg- dry longans is nearly the same
as that with the SAF of 20 kg-dry air/h kg- dry
longans.
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Figure 3. Lifect of drying air temperature on specific energy consumption at fractions of air
recyeled of O %, (initial longan-weight of 1000 kg, initial moisture content of 316 %
d.b., final moisture content of 42 % d.b., ambient temperature of 35 °C and ambient
humidity ratio of 0.015 kg water/kg dry air)

3.4 Effect of Fraction of Air Recycled

Figure 4 shows the cffect of fraction of air
recycled on SEC and drying time at various
drying air temperatures. The simulated drying
conditions are fraction of air recycled varying
from 0 to 99 %, specific air flow rate of 33.7
kg-dry air/ly kg-dry longans. and drying air
temperature of 65, 70 and 75 °C.  Other
conditions are the same values as the previous
conditions. It is Tound that the SEC decreases
with increasing fraction of air recycled to a
minimum value, and then the SEC increases
since humidity ratio in the drying air is an over
high value.  Consequently, the drying time
grow up. ‘The optimum SEC occurs at fraction
ol air recycled of 95 %, drying air temperature
0f 75 °C and drying time of 30 h. However, the
drying air temperature should not exceed 75 °C
due 1o the himitation ol product quality,
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4, Conclusions

The mathematical model of longan drying
predicts fairly the drying rate and specific
energy consumption. The specific air flow rate,
drying air temperaturc and [raction of air
recycled affect significantly on specific energy
consumption. lowever, the effects of specific
air flow rate and drying air temperature on
specific energy consumption are small when
fraction of air recycled is big.

5. Recommendations

Further study is needed to improve the
mathematical model and to clarify the physical
and thermal properties of longan drying.
Diffusion model is also needed to be
devetoped.
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Figure 4. Effect of drying air temperature on speciflic energy consumption at various drying air
temperatures. (initial fongan-weight of 1000 kg, initial moisture content of 316 % d.b,,
final moisture content of 42 % d.b., ambient temperature of 35 °C and ambient humidity
ratio of 0.015 kg water/kg-dry air, specific air flow rate of 33.7 kg-dry air/h- kg dry

longans. SEC = specific energy consumption)

6. Notation

C  specific heat capacity, kl/kg °C

DT drying time, h

U rate of electicity consumption, ki/h
hgg specific evaporated enthalpy, kl/kg
K drying constant, h’*

M moisture content , decimal dry-basis
my,  dry mass of product |, kg

my dry mass air flow rate, kg-dry ait/ h
m,, water evaporated, kg

Oy the rate of heat consumption, kiZh
RiL relutive humidity |, decimal

I diying e h
o emperature, °C

At time iterval, b

W humidity ratio , kg-water,/kg-dry air

Subscripls
A alr
di cotering drying chamber

leaving drying chamber
equilibrium condition
after drying

before drying

initial condition

vapor
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The objectives of this rescarch were 1o test beat pump drying
S50 g!acc' and o study the quality of mango glaoc' afler drying.
1 drying conditions were as follows: close loop with drying air
sgetatare of S0 °C, initial weight 40 kg, by-pass air 63 %, air flow
321-0.428 kg/s, average mango glaoc'dimcnsion 28x65x05
initial and final moisture conlcots were §5 and 18 % db.,

-'vc[y. The results were as follows: drying ratc was 0.428
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Mango Glace’ Dryiug by Heat Pump
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kg-water Fvapomlcdﬂi, moisture extraction rate {MER) from evaporator
was 0.434 kg-water condensed/ly, energy consumption was 10.99
MIfkg-water evaporated or specific moisture extraction rate (SMER)
was 0.328 kg-water evaporated/k Wh at minimum specific air flow rate
of 5345 kgdry aivhkg-dry mango glace’. The cocfficient of
performance of heat pump (COP,) varied from 3.70 to 4.65. The
quality of mango ghmc' afler drying was accepiable according to the
industrial product standard with light reddish-orange colour (Code
34-C from RH.S cofour hart), dry surface, and good and uniform
shape.
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ft] S.K. Chou, M .N.A. Hawlader, ).C. Ho, N.E. Wijeysundera, and
S. Rajasckar, “Perfonmance of 8 heat  pump assisted dryer™,
International Journal of Energy Rescarch, Vol. 18, 1994, pp. 605-
622,

[2] G. Young, S. Birchall and R.L. Mason, “Heat Pump Drying of
Food Products Prediction of Petformance and Energy Efficiency”,
Fourth ASEAN Conference on Energy Technology, 28-29 August,
1995, Bangkok, pp. 240-247,

[3] S. Soponronnarit, 5. Wetchacama, A. Nathakaranakule,

T. Swasdiscvi, and P, Rukprang, *Fruit Drying Using Heat pump™,
Procesdings of the Intemational Drying Sympaosium (IDS"98),
(jlalkidiki, Greeoe, August 19-22, Vol. B, 1998, pp. 1426-1431.

Table | Experimental drying results,

Description Test No.

{Canditions of mango glace'

JAverage moisture before drying, % d.b. B41 | 853 | 353 | 848

A vernge moisturs after drying, % d.b. 180 | 181 | 181 | 181
Initial weight, kg 40 | 40 | 40 | 40
Final weight, kg 256 | 255 | 255 | 256

|Drying alr conditions

A verage drying air temperature, 'C 48.4 | 48.8 | 482 | 482

Specific air flow mie, 7124 | 60.72 | 53.57 [ 5345 |

Drying time, h 52 48 34 36
Performance of heat pump dryer
Drying rate, kg-water evaporsiedh 0.267 | 0.302 | 0.424 | 0.428
MER, kg-water condensed’h 0.275|0.308 | 0.428 | 0.434
SMER, kg-water evaporated’k Wh 0.193 | 0220 0.313 | 0.328

EC.” MWkg-waier evaporated 18.65 | 16.34 | 11.51 [ 10,99

P, 465 | 409 | 3.70 | 3.84

st - Specific encigy consumption
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Abstract
A prototype of industrial-scale spouted

bed dryer, which designed capacity was 2,500
kg/h, was designed, constructed and tested. The
paddy was continuous fed through the dryer.
The protolype performed well on moisture
reduction and milling quality, each of which
was consistent throughout the testing periods.
‘The head rice yield results were satisfactory as
long as the final moisture content was beyond
18 % d.b. regardless of using inlet temperature
up to 144 °C. The whiteness was also well
acceptable. At present, the prototype was not
able to achieve a desirable feed rate and energy
consumption. This could be attributed to the
improper use of fan.

1. Introduction .

The combination of tiwo distinct
hydrodynamic  categories, a  pneumatic
transport in the spout which allows intensive
heating and moisture evaporation and a falling
bed in downcomer which processes tempering
of particles is the main feature of the spouted
bed. It is clear that a major part of the drying
take place in the spout and the moisture
distributed uniformly through the inner part of
grain in downcomer without moisture removal.
The effluence of the continuous movement of
particles between the spout and the downcomer
of {he bed leads to a uniforn1 moisture content
and bed temperature which a substantial short
petiod in the spout allows for high inlet air
temperature without damaging the grains. To
overcome the limitations of conventional
cylindrical-conical spouted bed, Mujumdar [1]

proposed the Two - Dimensional Spouted Bed
which the scale — up can be achieved.

Kalwar ef al. [2], Kalwar and Raghavan
[3-4] studied drying of grains in two -
dimensional spouted bed with draft plates using
soybean, wheat, corn and shelled corn. It was
found that thin layer drying of grains yielded to
Page’s equation was in very well agreement
with observation data and two constant
parameters of equation correlated with bed
geometry and operating parameters. The
circulation of particles strongly depend on the
entrance height, spout width and slant angle
and increased with increase in all of these
parameters. It was also illustrated that the
drying rate was significantly influenced by
grain circulation rate.

f  The effect of bed height on drying rate
was also reported by Tulasidas ef al. [5]. The
results indicated that the MR and the apparent
diffusion coefficient increased with decrease in
bed height. Page’s model of which “two
parameters related to the bed height was found
a good description of the drying kinetics. The
milling of paddy in terms of head rice yield and
drying characteristics were investigated by
Nguyen et al. [6-7]. A triangular spouted bed
was proposed in theirs experiments. The result
of head rice yield was satisfactory as long as -
the moisture content was above 17.6 % d.b.
regardless using high temperature up to 160°C.

Since there is no attempts appear to
have been made to turn potential advantage of
two dimensional spouted bed to industrial
applications. Hence in this research, a
prototype  of industrial-scale coatinuous
spouted bed dryer was designed and
constructed by extension of the pilot scaled
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(which proposed by Muwumdar [F]) in the
direction of bed length and tested 1 a rice mill.

2. Materials and Methods

Drying studies were conducted in a
prototype  of  industrial-scale  continuous
spouted bed dryer, which designed capacity
was 2,500 kg/h, as shown in Figures 1 and 2.
The dryer consists of a vertical rectangular
chamber 0.6 m in width, 1.45 m in height and
2.1 m in length. Front and both side walls of
dryer chamber were made of steel sheet and
some heat-resistant glass to visualize the grain
flow patterns. The slanting base plates were
inclined at 60 °. The air entrance width is 0.04
m. Two vertical plates (0.62 x 2.1 m) are
centrally installed to accommodate a spout
width of 0.06 m. The entrance height was held
constant at 0.10 m for all tests. The air was
heated by combustion chamber with a burner
using diesel oil. Paddy was continuously fed
into the container by elevator before automatic
feeding to the drying chamber. By assisting of
sufficient velocity of air jet and rising angle of
paddy, the paddy traveled upward through draft
channel and further flowed forward before
raining back onto the downcomers. The hot air
leaving the chamber was discharged into a
cyclone and some portion of it was recirculated
to the combustion cliamber. The air
recirculation ratio was in the range of 60-70 %.
Air and paddy temperatures were measured by
K-type thermocouples connected to a data
logger with an accuracy %1 °C and a
thermometer, respectively. The pressure across
the bed and air velocity were determined by a.
U-tube manometer and a hot air anemometer
with and accuracy + 4 %, respectively. The
samples were taken for moisture content, head
rice yield and whiteness at ten minutes
intervals for periods of 90 minutes. Moisture
contents were determined by a hot air oven at
temperature of 103 °C for 72 hours. Head rice
yield was determined according to the method
of the rice research Institute and the whiteness
was measured by Kett meter.

3. Results and Discussion
3.1 Paddy Motion in Spout and Bed Shape
Paddy starting from the base of the bed
first accelerates from rest 1o a peak velocity,
and then decelerates until it again reached zero
velocity at the top of the fountain and fall down
to both of downcomers. Since the proper air
distribution at entrance along the chamber
length alicwed the flow pattern of paddy was
rather uniform occupied whole of 2.1 m length
of chamber. However the spouting was
observed intermittent occurrence by taking
time in order of 1-2 second after sending the
paddy through the draft plate in order to build
up pressure before starting the next pass. This
could be attributed to the improper fan
performance, and resulted in obtaining low bed
pressure drop (1225 Pa) and low inlet air
velocity (10 m/s). Figure 3 presented bed shape
of both downcomer sides that were nearly
symmetrical achieved by positioning the draft
channel to the center of the drying chamber.

3.2 Drying Efficiency and Milling Quality
The seven experiments were carried out
and the results were summarized as in Table 1.
To observe how the dryer performed in term of
nloisture content reduction, milling quality and
energy usage, the feed rate of paddy and the
inlet air temperature had been varied from on
experiment 1o another.
Moisture Content We know that cycle time
strongly effects the moisture distribution
throughout the paddy in the downcomer and
number of turns of paddy flowing through the
draft channel. This allows for consequent
partial tempering in the downcomer and
heating and moisture removal in the draft
chaanel. However it was impratically to record .
cycle time in these experiments. Thus for
studying the drying kinetics it was convenient
to define a mean residence time in dryer () by
the equation

_ hold —up M

feed rate
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Figure 1. Schemalic diagram of two-dimensional spouted bed dryer

Figure 2. Dimensions of iwo-dimensional spouted bed dryer
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In test nwo. 1 oas o Table 1) gt seems
likely  that  moisture  reduction 15 1ol
satisfactory.  Iiven ngh infet teimperatuie of

185 °C was apphiced, the moisture content was
decreased around 3.4 % d.b. (from 31.9 % d.b.
o 28.5 % d.b.). It was also noticed that the air
temperature declined close to grain temperature
at the exit. Thus, it was probably due to nou-
matching between current airflow rate (0.74,
m’s) and high feed rate (3100 kg/h).
Therefore, feed rate of next experiments were
limited to not cxcceding 1000 kg/h and the
results shown that the prototype performed
well  on reduction  of  paddy  moisture.
Furthermore, the final moisture content
appeared to be consistent through an operating
period. In overview, the paddy was dried from
around 24 % d.b. to 19.5 % d.b. Figure 4
indicated that the moisture content at dryer exit
was rather cousistent.

It should be noted that the time spent by

paddy during spouting in the draft channel was
less than in the order of 1 second for each pass
of paddy flowing through spout region.
Coasequently, almost of residence time (9-14
min)} was dominated by paddy in downcomer.
It was clearly shown that the time for heating
and motisture transferring (in the spout) is
substantial less compared to that of fluidized
-bed (1.5-2 min). Therefore, we believed that
the moisture distributed” somewhat uniformly
through the inner part of paddy when entering
the draft channel, which lcad to good
performing of drying kinetics in spoult.

Milling Quality As scen on Table I, it was
clear that drying process did not affect the
quality in terms of the lead rice yield and the
whiteness. There was no significant reduction
in head rice yield even though the paddy were
dried continually until the moisture content
further reduced to around 18 % d.b. regardless
of using high inlet air temperature (144 °C).
This was simply explained that the moisture
was well distributed throughout the paddy
during  partial  tempering process in
downcomer, and resulted in less stress
occurring between inner part and outer surface
when passing through the spout channel. These

iesults conlirmed the conclusion obtained by
Nguyen et al. (1998). A satisfactory whiteness
result could influence by a very short period in
spout region. The head rice yield and whiteness
resulls of some experiments were represented
on Figures 5 and 6, respectivgly.

Energy Consumption Table 1 also lists the
energy consumption of all experiments. The
heat consumption was in the range of 5.6-8.66
MJ/kg water evaporated which seem likely to
be rather high. We believe that this corresponds
to two general causes. First, low moisture
content paddy (20-30 % d.b.) was dried which
consequently relatively difficulty in water
removal. Second, we found that existing fan
efliciency was about 20 %. However, if fan
efficiency achieved to around 45 %, the
average electricity of 037 Mlikg water
evaporated could be saved.

Feed rate Enhancing the paddy feed rate could
be achieved by replacing the existing fan with a
proper one performing at higher air flow rate
and pressure. As a consequence, the grain
circulation on the other hand the rate of paddy
entrained from the downcomer into the spout
region would be improved. However, increase
sof feed rate with unchanging of dryer volume
results in decrease of residence time.
Fortunately, gaining the higher grain
circulation rate could compensate this and
hence increase in the ratio of the spouting
period and the tempering period in downcomer
should lead to enhancing of moisture reduction
ability. )

4. Conclusion

The prototype was shown to be a
desirable f{eature of spouled bed as well as
capability of continuous drying and offering
consistent results throughout the testing
periods. With assisting of tempering process in
downcomer, the drying kinetics in spout
performed well, and resulted in satisfactory
moisture reduction. No significant change in
head rice yield was observed as long as the
final moisture content was beyond 18 % d.b.,
nevertheless, using high inlet temperature up to
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P “CLThe wilnteness was also aceeptable.
Finally, w overcome the problems of low feed
rate (<1000 kg/h) and high energy consumption
the influence of enhancing those of air flow
rate, pressure and fan efficiency should be
studied.
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Tuble 1 Ditfusion model of paddy diying by uidization technigue.

Model Dilfusion cocliicient cquation MRS+
Model | D= 12017552 EXP(-3433 818/ ) 0.001758
Mude) 2 13 (YT YSES21IYET 2IiM 'H.(H.2HM') EXPCIGELO0M/T, ) - 0001438
Model 3 D = 119.7489 EXP(10.81552M-39.1615M") EXP(-3H}5.916/T, ) 0.001396
Modeld £y -= 7551031 EXI'(16.35692M-0.03574M1 ) EXP(-4268.032/1 ) 0.001528

MRS = Mcan Residual Square = (MR -MR“)II N .

Drying air lemperalure
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Figure 1 Evolution of paddy moisture content and grain temperature at

different drying temperatures. (Initial moisture content 24.6 % d.b.)
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Figure 3 Evolution of moisture ratio using various models with experimental data

at drying air temperature 150 °C and initial moisture content 24.6 % d.b.
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Abstract
The objective of this research was to develop a mallhematical
madel that be uble o determine cconoimical optimum  insulation

thickness and optimum operaling parameters for vibro-fluidized bed

puddy drying. Comparison between the experimental result and that of
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the model showed that the model could predict the result fairly well.
Insutation with 25 mm thickness could reduce heat loss about 99-91 %, .
‘The ccqr.nonu'cal oplimury insulation Whickness for cach control volume
was less than 30 aun and the payback period was less than 10 days, For
Nuidized bed paddy drying wilth capacity of 5 tons/h, initial molsture of
paddy of 30 % d.b. and drying air velocity of 2.3 m/s, the optimum
opcraling parameters were: drying air temperature 150 °C, fraction of
air recycled 0.93 and bed height 11.9 cm, Specific Primary Energy
Consumption (SPEC) and final moeisture content were 5.77 MI/kg-water
cvaporaied and 24.9 % d.b., respectively, For vibro-fluidized bed paddy
drying with the same capacity and iniliaj molsture content and drying
air velocity of 1.5 mys, the oplimum operating paramelers were: diying
air temperature 143 °C, fraction of air recycled 0.84 and bed helpht 9.9
cu. Specific Pamary Energy Consumption and final molsture were 537
M)kg-waier cvaporated and 26.0 % d.b., respectively.
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Comparative Experiment between Paddy Dried by Fluidization Technique Using Thermal Energy

from Rice Husk Furnace and Diesel Burner
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: Abstract
¥ The objectives of this rescarch were to study the effect of the
5 sir recycled ratio in a fluidized bed dryer on specific energy
consumplion and drying cost, and to comparc the results of paddy
 drying by fluidization technique between u_sing thermal energy from
diesel burner and rice husk fumace. Its was found that in case of using
thermal encrgy from diesel bumer the suitable air recycled ratio was 45-
60 %, the specific cnergy consumption and drying cost were §-5.7
Mlkg-waler cvaporated and 1.45-2.55 Bahtkg-water cvaporaled,

frespectively.  In casc of wsing thermal encrgy fiom rice husk fumace

(thermat efficiency = 54 %), it was found that the average specific
energy consumption in terms of primary energy and drying cost were
9.4 Mikg-water cvaporaled and 0.95 baht/kg-water evaporated,
respectively. From testing of paddy qualities afier drying, in cases of
using diesel burmer and rice husk furnace, the percentage of head rice

yicld and rice whiteness from both cases were nearly the same and

scceptable.
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Industrial-Scale Prototype of Continuous

Two-Dimensional Spouted Bed Paddy Dryer

Thanid Madhiyanon', Somchart Soponronnarilz and Waruneé Tia®
"Ph.D.student
“School of Energy and Materials, King Mongkut's University of Technology Thonburi
Suksawat 48 Road, Bangkok 10104, Thailand '

Abstract

An industrial -scale prototype of spouted bed paddy dryer with a capacity of around 3500 kg/h
was constructed and tesled. The protolype was shown to be a desirable feature of spouted bed as well as
capability of continuous drying and offering consistent results through the testing period. At early phase of
experiiments, feed rate and energy consumption were undesirable. To overcome these problems, a high
pressure blower was used. Expérimental results showed that the prototype performed well on moisture
reduction and milling quality. However, in the experiments, difficulties were experlenced in achieving high
moisture reduction while high feed rales were maintained. This is due to the insufficient residence time
that increased with the increase in drying chamber length. The high temperatures up to 130-160°C were
applied lo dry paddy from varicus inilial moisture contents to the range of 14-25% dry basls without
significant qualily changing. Thermal energy consumption, which in range of 3.1-3.8 MJ/kg water, Is
comparable with commercial dryers. The effect on milling quality while paddy moisture is further reduced
to 16-18% dry basis should be studied.

Key words: drying, grain, spouting

Introduction

The combinalion of lwo distinct hydrodynamic calegories, a pneumaltic transport in the spout
which allows intensive healing and moislure evaporation and a falling bed in the downcomer which
processes tempering of particles, is the main feature of the spouted bed. It is clear that a major part of the
drying takes place in the spout and the moisture redistribution in the grain kemel takes place in the
downcomer without significant moisture removal. The Influence of the continuous movement of particles
belween (he spout and the downcomer leads o a uniform moisture content and bed temperature. The
substantial shorl periocd of the movement in the spout allows for high inlet air temperature without
damaging the grains. To overcome the limiiations of conventional cylindricai-conical spouted bed,

Mujumdar (1984) proposed the two-dirmensicnal speuted bed which the scaling — up can be achleved.
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Kalwar ef af (1991), Kalwar and Raghavan (1993 a and b) sltudied drying of grains in
two— dimensional spouted bed with draft plates using soybean, wheal, corn and shelled corm. it was found
that thin Tayer drying of grains yielded to Page's equalion was in very well agreement with observation
data, and two constant parameters of equation correlated with bed geometry and operaling parameters.
The circulation of parlicles strongly depended on the entrance height, spoul width and slant angle. It
increased wilh the increase in all of lhese parameters. It was also iliustrated that the drying rate was
significantly influenced by grain circulation rate.

The effect of bed height on drying rate was also reported by Tulasidas ef al. {1993}. The results
indicated lhat the MR and the apparent diffusion coefficient increased with the decrease in bed height.
Page's model of which two parameters related fo the bed height was found a good description of the
drying kinetics. However, a linear equalion was also found o be suitable fo describe the drying kinetic of
paddy and lwo parameters of this equation were related to hold-up and drying temperature as reported by
Welchacama et a/ (1999). The miiling of paddy in terms of head rice yield and drying characteristics were
investigaled by Nguyen ef a/. (1998 a and b). A triangular spouted bed was proposed in their experiments.
The resuit of head rice yield was satisfactory as long as the moisture content was above 17.6% dry hasis
regardless of using high temperature up to 160°C. Thermal energy consurnption in a rice mill which used
diesel oil as fuel 1o heat drying air was reported by Meeso ef al (1993) and was found {o be 2.56 and
5.82 MJ/kg water evaporaled for lirst and second slages of drying, respeclively.

Although extensive research has already been done on the spouled bed {schnique, the past effort
has focussed on laboralory scale spouted bed dryer with particular emphasis on balch drying of
agricultural food product. However, none of these works Is introduced to the grain drying industry. In order
lo serve the comimercial rice mill which continuous paddy drying is favorable, there is a need to enhance
ihe capacily of spouted bed dryer.

The objectives of this research are lherefore to design and construct an industrial-scale

prototype of continuous spouled bed paddy dryer, and then tesl in a rice mill.

Materials and Methods

{rying sludies were conducled i an industrial-scale prototype of spouted bed paddy dryer with a
capacity of 3500 kg/li as shown in Figs. 1 and 2. The dryer consisls of a vertical rectangular chamber 0.6
m in width, 1.45 m in height and 2.1 m in length. Front and both side walls of the drying chamber were
made of glass to visualize the grain flow paiterns. The slanting base plates were inclined at 60 degrees.
The air enlrance widih is 0.04 m. The draft plates with 0.62 m in height are centrally installed to
accommodale a spoul width of 0.06 m at early phase of experiments and 0.82 i in height for final phase
of experiments. The entrance height was held at 0.10 m, 0.125 m and 0.15 m, respectively. The air was

healed by a diesel oil burner. Paddy was continuously fed into the hopper by an elevalor before being
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autoimatically fed to the drying chaimnber. Wilh sufficient air velocily, the paddy traveled upward and
forward through the draft channel belore raining back onlo the downcomers. The hot air leaving the
chamber was discharged into a cyclone and some portion of it was recirculated to the combustion
chamber. The air recirculation ratio was in the range of 60-70%. Air and paddy femperatures were
measured by K-ype thermocouples connected to a data logger with an accuracy +1°C and a

thermoineler, respeclively. The pressure across the bed and air velocity were determined by a U-tube

manometer and a hot air anemometer with and an accuracy 14%, respeclively. The samples were taken
for measuring moisture content, head rice yield and whileness al ten minute intewal§ for periods of 90
minutes. Moisture contents were detlermined by a hot air oven at temperature of 103°C for 72 hours. Head
rice yield was delermined according to the method of the Rice Research Institute and the whiteness was

measured by Ketl imeter.

Results and Discussion

Paddy Motion in Spout and Bed Shape

Paddy starting from the base of the bed first accelerated from rest to a peak velocity, and then
decelerated unlil it again reached zero velocity at the top of the fountain and feit down to both of
downcomers. The proper air distribution at the entrance allowed wniform flow of paddy through 2.1 m
lenglth of the drying chamber. At early phase of experiments, the spouting was observed intermiftent
occurrence. W took 1-2 seconds after sending the paddy hrough the draft plate in order to build up
pressure before starting the next pass. This could be attributed to the improper fan perfermance, and
resulled in low bed pressure drop (1225 Pa) and low inlet air velocily (10 m/s). To overcome this
drawback, an exisling blower was replaced with a high pressure blower at final phase of experiments.
Fig. 3 presents bed shape of both downcomer sides that are nearly symmetrical achieved by positioning

the draft channel to the center of the drying chamber.

Drying Efficiency and Milling Quality

The fifteen experimaents were carried oul. The resulls of early and final phases were summarized
as o Tablos 1 and 2, respoctively. To ubsarve how the dryer performed in terms of moisture content
reduction, milling qualily and energy usage, feed rate of paddy and the inlet air temperature had been
varied from ong experiment to another.
Moisture Content

Cycle time strongly effects the moisture distribution throughout the paddy in the downcomer and
number of turns of paddy flowing through the draft channel. This allows for consequent partial tempering

in the downcomer and heating and moisture removal in the draft channel. However, it was impractical to
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record cycle time in these experiments. Thus for studying the drying kinelics, it was convenient to defina

the mean residence time in the dryer (t,,) by the equation:

_ hold—up
" feed rale

In test no. t as in Table 1, it seems likely that moisture reduction is not satisfactory. It was
probably due to non-matching between airflow rate {0.74 mals) and high feed rate (3100 kg/h). Therefore,
feed rate of nexl experiments were limiled to nol exceeding 1000 kg/h. The results showed that the
prototype performed well on the reduction of paddy moislure. Tﬁe paddy was dried from the range of 20.0-
30.3% dry basis 1o 14.4-21.5% dry basis, and (he mean residence lime lied between 9-17 minutes as
shown in Table 1. Al the [inal phase of experiment, the prololype achieved fo handle maximum capacity of
around 3500 kg/h after replacing an existing blower. However, the results as shown in Table 2 illustrated
that the main difficully arised was abtaining high moisture reduction while feed rate over 3000 kg/h was
reguired, Since the mean residence time was relatively shorf, l.e. In range of 5-6 minutes, whlle beds were
deeper, grains were less frequently drawn lhrough the drafl channel. The paddy was dried from the range
of 21.7-29.4% dry basis 1o 17.1-25.0% dry basis during final phase. The final moisture content appeared
lo be consistent through an operaling pericd as shown on Fig. 4. It should be noted during spouting,
paddy was in Ihe drail channel for less than 1 second for each pass of paddy flowing through the spout
region. Consequenlly, alinost all of residence time was dominated In the downcomer. it clearly showed
lhat the time for healing and moisture transferring (in the spout) was substantial less compared to that of
fluidized bed {1.5-2.0 minules). Therefore, it may be due fo having sufficient time to transfer moisture
throughout the grain kernel in dewncomer, which led to good performing of drying kinetles in the spout.

The question of how to reach high moislure reduclion, i.e. 30% dry basis down 1o the range of
16-18% dry basis, is lherelore of considerable practical inlerest. To achleve a desirable moisture
reduction, drying chamber should be extended somewhal that éllows sufficlent residence time. If cycle
lime is long enough lo redislribute moisture in the grain, the drying kinetics could account the molsture
relaxation during tempering In downcomer. This effect was in according with what was studled in lab-scale
two dimensional spouled bed dryer reported by Welchacama et &/ (1999). This allowed for consequent
linear decrease in moeisture content versus drying time. Therefore, under similar bed configurations and
operaling condiliens of temperature and airllow of lab-scale spouted bed dryer agalnst the prototype, it Is
reasonable lo estimate the drying chamber length corresponding to a desirable molsture reduction by
axlrapolation the rosall ol axperlments. TFor examplo |;1 lest no. 13, the mean resldence time as well as
drying chamber should be increased about 3 times lo dry 3160 kg/h of paddy from 29.4% dry basls to the

range of 16-18% dry basis.
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Mitling Qualily

As scen in Tabies 1 and 2, it was clear that the drying process did not affect the quality In terms
of head rice yield and whiteness. There was no significant reduction in head rice yield while the paddy
was dried continually lrom various initial moisture contents until the moisture content reduced to around
14-25% dry basis regardless of using high inlet air temperature up lo 130-160°C. This was simply
explained that the moisture was somewhal redistribuled throughout the grain kernel during partial
tempering process in the downcomer, and resulled in less stress occurring between the inner part and
ouler surface when passing through the spout channel. A satisfactory whiteness resuft could be influenced
by a very short period in the spout region. Result of test no. 5 indicaled that it is able to dry paddy from
around 30% dry basis to around 21% dry basis without quality changing. A similar trend could be
expecled for high feed rale, i.e. more than 3000 kg/h, if the cycle lime is slightly deviated and residence
time is sufficient. The head rice yield and whiteness resuits of some experiments are presented in Figs. 5
and 6, respeclively.
Energy Consumption

Table 1 also lists the energy consumption. Thermal energy consumption was relatively high, lLe.
in range of 5.6-7.7 Ml/kg waler, thus arised from poor paddy circulation. However, after using a high
pressure blower, the thermal energy efliciency was much improved. It reached to 3.1-3.8 MJ/kg water
while paddy was fed in range of 3100-3500 kg/h. It is probably due to shorter cycle time thus the
contribution of the residence time belween drall plates where intense heat and mass transfer occur in the
total circulalion titne is relatively higher. Energy consumption of the protolype was comparable with
commercial dryers operated in rice mills as reported by Meeso ef &/ (1999).
Feed rate

Enhancing the paddy feed rate could be achieved by repiacing the existing fan with a proper cne
performing at higher air flow rale and pressure. However, increase of feed rate with unchanging of dryer
volume resulted in the decrease of the mean residence time. Forlunately, gaining the higher grain
circulalion rate could compensale this and hence the increase in the ratio of the spouting period to the

tempering perivd in the downcomer should fead to enhancing of moisture reduction ability.

Conclusion
The prolotype achieves to complete the main feature of spouted bed. it is able to conlinuously dry
of around 3500 kg/h, and the results of moisture reduction and milling quality appear to be consistent
throughout the testing periods. With assisting of tempering process in downcomer, the drying kinetfcs in
the spout performed well, and resulted in satisfactory moisture reduction. However, with limitation of an
exiting drying chamber length, high percentage of moisture reduction with high paddy feed rate could not

achiovo unless oxtonding the drying chaunber. No significant changos in hoad rice yleld and whiteness
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were observed during the experiments. The energy consumption is efficient compared to those of

cammercial dryers.

Recomimendation
The experiment should be further conducted to study paddy quality when paddy of high moisture
content, i.e. 30% dry basis, is continually dried to 16-18% dry basis by extending 1he length of drying
chamber.
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Table 1. Sununary of Ihe early phase experimental resuits.

Description Testno.
1 2 3 4 5 6 - 7
Feed rate (kyth) 3140 | 1000 | 900 844 664 939 816
Hold-up (kg) 180 210 135 125 190 190 190
Residence time (minutes) 4.0 12.6 9.0 8.9 17.2 121 | 14.0
Average inlet air temp, (OC) 185 144 144 146 146 133 126
Exit grain iemp. (DC) 67 71 69 67 72 72 71

Average moisture content
BFD (% diy basis) 319 200 23.2 250 303 26.2 26.6
AFD (% dry basis) 285 14.4 178 | 204 213 215 19.9

Head rice yield

BFD (%) | 629 | 342 | 4566 | 371 482 | 395 | 435

AFD (%) 648 | 334 | 427 | 392 | 480 | 368 | 455
Whileness

BFD 419 | 476 | 502 | 51.0 | 459 | 496 | 446

AFD 392 | 475 | 511 511 46.7 503 | 450
Drying rate {(kg/h) 83 49 a1 33 49 39 46

Energy consumption
{MJ/kg water evaporated)

Heat 7.1 6.7 7.0 7.7 5.6 7.7 NIA

Electricily 050 | 0.76 0.91 112 0.74 1.00 | 0.80

AFD = alter drying

BFD = belore diying
N/A = not available
Temp. = lemperatire

Entrance height = 10 om (for all experiments)
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Table 2. Summary of lhe final phase experimental results.

- D(;_s-;{i;)li(;r{ “ Test no.
e Lo e | | | e |
- - 247 -244 199 | 237 | 240 | 316 | 328 | 355
Fecd rate (kg/h)
0] 0 0 G o 0 0 0
Hold-up (ky) 60 | 360 | 340 | 240 | 210 | 335 | 290 | 310
Residence lime (minutes) 1.5 8.9 102 | 6.0 53 6.4 5.5 5.2
Average inlel air temp. [GC) 154 149 | 141 152 159 | 154 156 | 160
Exit grain lemp.(OC) 68 71 66 71 68 87 67 68
Average moisture content
BFD (% dry basis) 261 | 217 | 285 | 221 | 250 | 294 | 282 | 228
AFD (% dry basis) 227 (175 | 236 | 171 | 197 | 250 ) 233 | 190
Head rice yield
BFD (%) 561 | 459 | 533 | 490 | 496 | 50.1 | 543 | 41.2
AFD (%) 589 ! 457 | 542 | 474 | 484 | 524 | 550 | 40.8
Whiteness
BFD 419 | 457 | 442 | 4706 | 476 | 478 | 464 | 46.7
AFD 416 | 454 | 450 | 468 | 46.7 | 47.5 | 463 | 459
Drying rale (kg/h) 68 87 79 101 106 | 111 130 | 101
Enorgy consumglion
{MJ/kg waler evaporaled)
Heat 6.5 70 | NMA | 44 52 a5 38 3.1
Electricity 0.60 | 0.60 | 0.60 | 050 | 0.50 | 046 | 0.40 | 0.46
AFD = after diying a) dialt channel blade angle 85" entrance height 10 cm
BFD = belfore drying b} draflt channed blade angle 89° enfrance height 10 cm
NiA = nol available c} drait channel blade angle 89" enlrance height 12.5 sm
Temp. = lemperalure d) draft channel biade angle 89° entrance height 15  em
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Figure 1 Diagram of experimental fluidized bed dryer.
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Figure 2 Effect of moisture content and grain temperature after fluidized
bed drying on relative head rice yield (Without tempering).
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Figure 3 Effect of moisture content after fluidized bed drying and tempering
temperature on relative head rice yield at tempering time of 15 minutes.
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Figure 4 Effect of moisture content after fluidized bed drying and tempering
temperature on relative head rice yield at tempering time of 30 minutes.
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Figure 5 Effect of moisture content after fluidized bed drying and tempering
temperature on relative head rice yield at tempering time of 45 minutes.
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Figure 6 Comparison between predicted values and experimental

values of relative head rice yield.
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Development of Theoretical Model for Fruit Dryer Using Heat Pump
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ABSTRACT

The objective of this research Is to develop a mathematical model of heat pump fruit dryer.
The mathematical model of heal pump fruit dryer consists of two parts: the drying chamber model
and the heal pump model. The mathematical model of the drying chamber, which Is a near
equilibrium model, consists of the theoretical drying kinetic equation, heat and mass balance
l equations, and properties of product and moist air equations. In the heat pump model, there are
three major models: evaporator model, internal and external condenser model, and compressor

model. The evaporator and condenser models are developed from heat and mass transfer within
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the control volume of each compenent. The compressor is described by the Isentropic compression

equation. The systems of equations are solved numerically by using Newton-Raphson technique.

INTRODUCTION

Conventional hot air dryers are commonly used for drying of fruils. The main disadvantage is
that the conventional hol air dryer results in low product quality due to high drying air temperature.
A heat pump dryer offers the advantages of product quality (Hawlader et al., 1996) and energy
saving, namely, a heat pump dryer can use lower drying air tgmperature since moist air leaving the
drying chamber can be dehumidified and recirculated. Conseduently. the moist air is recovered the
sensible and latent heat, and also the humidity ratio of drying air entering drying chamber is Iower\.
Drying of fruits is an energy intensive process. One of the feasible methods for energy saving is to
discover the optimum drying condition. Therefore, the mathematical model of a heat pump fruit
dryer is needed to be developed for investigating the effects of various operating conditions on

energy consumption.

-

in the literature, there are several reports on development of a heat purnp dryer. For example,
Jolly et al. {1990) developed a mathematical model of a heat pump assisted continuous dryer.
Special attention was given for developing a delailed evaporator model. Prasertsan of al. (1996}
developed a heat pump dryer model. This model consists of a simple drying model and a detalled
heat pump mode! esspecially the evaporator model. These studies are based on deyers which are
in a steady state condition. Usually, the drying rate of fruits are in the falling rate pericd (McMinn et
al., 1996). Therefore, these models are not suitable for drying of fruits. Achariyaviriya and
Soponronnarit (1998) reported a mathematical modet of a heat pump fruit dryer. The dryer was in a
non steady state condition. However, the heat pump model was considered as an empirical model
so that this model cannot be applied to other dryers.

The goal of this work is to develop a mathematical model of a heal pump fruit dryer. The
model consists of a heat pump model and a drying chamber model. Particular attention is given for
developing a theoretical model of a heat pump dryer which is in a non steady state condition. in
this work, papaya glace’ Is used as a product to be dried in a cabinet drying model, and also R-22

is used as a refrigerant in a heat pump model.

DEVEL.OPMENT OF MATHEMATICAL MODEL
The mathematical model of a heat pump fruit dryer consists of two parts: the drying chamber

model and the heat pump model. Figure 1 shows the schematic diagram of a heat pump fruit

dryer. The details are as follows:
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Drying Chamber Model

The drying characteristic depends upon the types of dryers and products. In this study, the

drying chamber model for cabinet drying of papaya glace' is developed. However, it can be
modified for other products and also for other types of dryers. The details of the drying chamber

model of a cabinet dryer are as foliows:
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Figure 1 Schematic diagram of a heat pump fruit dryer (CV= control volume).

The drying kinelic equation developed by Achariyaviriya et al. (1999) is applied for calculating

moisture content of papaya glace' during drying. it is wrilten as follows:
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Where MR is moisture ratio that is defined as MR = (M-M}/(M,;-M,;). M, is the equilibrium

moisture content of papaya glaca' drying using the equation of Bruauer et al. (1938) where

parameters were evaluated by Achariyaviriya and Soponronarit {1990),

The mean moisture content of papaya glace’ during drying can be calculated by differentiating

Equation (1) with respect to the time and then using finite differeance method to solve the differentiat

equation over a short time interval (At).
The moist air properties at outiet drying chamber can be calculated by using the principle of
mass and energy conservation to conirol volume 1 in Figure 1. The assumptions are as foliows:

thermal equitibrium exists between moist air and papaya glace', the walls of the cabinet dryer are

adiabatic, the internal energy changes of the cabinet dryer and papaya glace' are negllgibla. They

can be written as follows:
At My (Wio-Wy) = my(M-M)) 3)

MC, Tt Wilhy+C, Tu)-CoT oo Wao(Nigt G Tao)] = 0 (4)

Heat Pump Mode!

The pressure-enthalpy dlagram shown in Figure 2 is applied in this study to develop a heat
pump model. There are two circuits in the syslem: the drying air circuit and the refrigerant clrcult.
The hoat pump modoel has throe majur modals: ovaporator modul, Internal and oxternal condenser

model, and compressor model. The delalls of each component model are as follows;

Pressure (bar) &

3 2sal, 2

(.

4 / 1
L4

Enthalpy (kJ/kg)

Figure 2 Pressure-enthalpy diagram.
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Evaporator mode!

The evaporator model can be developed from the equation of heal transfer in both drying alr
and refrigerant circuits by using the first law of thermodynamics to the contro! volume 2 in Figure 1.
In drying air circuit, the net change in the energy of drying air is equal to the hégat transfer to

refrigerant during the process from state 4 to state 1 {see Figure 2). it is written as:
Qaa = (1'BP)ma[Ca(Tw'Tmlx)+(weo' mix)hfg"'wmlxcv(Teo'Tmtxn (5)

In refrigerant circuit, the net change in the energy of refrigerant is equal to the heat transfer

from the drying air. It Is written as
Q. = mi(hy-hy) ’ (6)

From mass conservation, it is writlen as

( 1 'Bp)ma(wmlx'wao) = KDA(Wme'Wcan) (7)

KD = ha‘r(Ca +Wmlx Cv) . (8)

Where K; is a parameter oblained from ASHRAE (1981). The force convection heat transfer

coefficient {h,)} was given by Rich (1973}

h, = 0.195G,C,Pr, ’Re, " (9)
Where, Pr, = LC/K, {10}
and Re, = Gt /| (1)

In addition, properties of the refrigerant (R-22) are deduced from data. The regression
equations are as follows:

For the saturated liquid conditions,
h = 199.8+1.136T,,+0.002686T,, (12)
For the superheat conditions,

h = 438.9-6.986InP+(-0.6760+0.5342InP)}{T-T,,} 1 18<P<40 bar (1311)

h = 386.4+11.154InP+(0.6379+0.03515nP)YT-T,,)  : 2<P<8 bar (13/2)
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v = 41.77-10.04InP+(0.1871-0.03652inP(T-T,..)) : 18<P<40 bar (1411

v = 153.16-65.249InP+(0.80308-0.38128IP(T-T,,))  : 2<P<8 bar (14/2)

Compressor model

The medel of a reciprocating compressor using In this study Is described by Threlkeld (1972).

The power requirement is given by Equation (15)

P.... =Pv,m"“p e ) | (15)
Where, m, = (PD)NT] /v, (16)
and T, = [1+c-c(P,/P,) Iahvy- (a7

The outlet temperature of refrigerant for isentropic compression is given by Equation (18).

(&-1¥k
T, =T\(P/Py) (18)

Condenser model

The condenser model can be developed from the equation of heat transfer in both drying alr

and refrigerant circuits. They are given by the equations as follows:
Quo =M, [CalToo T W ColTooTea)) (19)
Q. = m(hy-h,} (20)
Heat transfer rate at intemal condenser is given by Equation (21).
Quy = VAT To)-(Too- TalWIN[{T o T T To)l (21}

From energy conservation, heal transfer rate at internal plus external condenser Is equal to

heat transfer rate at evaporator plus power consumption in the compressor, It is written as



QacI+Qacu = Qaa+ Pcom (22)

There are some equations which can be deduced from physical properies of moist air.
Furthermore, there are a few equations developed from heat balance across the blower and from

mass and energy balance to the contrel volume 3 and 4.

APPLICATION AND SIMULATION PROCEDURE

The mathematical model of a heat pump dryer is applied to predict the performance of a single
stage reciprocating compressor using R-22 as a refrigerant.l There is no subcooling at condenser
outlet but there is superheating at the evaporator outlet. The performance of a heat pump dryer is
specific moisture extraction rate {SMER), average drying rate (DR} and the useful coefficient of

performance {COP...,). They can be defined as:
SMER = (water evaporate fiom product)/{energy input)
DR = {water evaporate from product)/{drying time)
COP,..= (heat transfer rate at internal condenser)/(total power input)

A computer program for a heat pump dryer has been developed. The inputs are as follows:

the internal moisture content of papaya giace', the specific air flow rate, the drying air temperature,
the fraction of evaporator bypass air, the fraction of air recycled and other constants. The humidity
ratio of alr entering drying chamber {(W,} and specific volume of refrigerant saturated vapor after
leaving compressor (v,,,} are the guess values. The steps of the calculation are as follows: the
diying  chambor modal and haal pump modol aro calendatod, and then the W, and v,,,, are
checked. If they are not equal to guess values, the new guess values will be calculated by using
Newton-Raphson technique, and the models are calculated again. The calculation continues until
the guess values are relatively equal to the new ones. The next step is to check the relative
humidity of air leaving drying chamber whether it is feasible. |If it is higher than 1, the molsture

condensation is calculated, ._'.-md then the variables are recalculated, Finally, SMER, DR and

COP,, are calculated. The after drying moisture content of papaya glace' is checked. If it is
higher than the desired value, the before drying moisture content is replaced by the after drying

moisture content, and then the time step is advanced. The cafculation continues until the moisture

content of papaya glace' is less than or equat to the desired value.
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CONCLUSIONS

The mathematical mode! of a heat pump fruit dryer developed here is useful for studying the
effects of various factors on the performance of dryers and also for investigating an optimum drying

condition.
RECOMMENDATIONS

Further study is that the simulated results should be verified by experimental results. Specific
molsture extraction rate, average drying rate and the useful coefficient of performance are used for

the verification of the mathematical model.

- NOMENCLATURE
A heat transfer area (mz)
¢ clearance volume of compressor (decimal)
c specific heat {kJ/kg-K)
D effective diffusion coefficient (mzlh)
G mass flux velfocity (kg/ mz-s)
h enthalpy (kJ/kg)
h, heat transfer coefficient (kW/mz-K)
by latent heat {kJ/kg)
compression index
k, thermal conductivity of air (kW/ mz-K)
| size of papaya glace' {m)
m mass rate {ka/h)
m, mass of papaya glace' (kg)
M moisture content (% dry-basis)
MR moisture ratio {decimal)
speed of compressor (rev. per sec)
Poom COMpressor power {kW)
PD piston displacement - (mafrev.)
Pr Prandti number
Q. heat transfer raie at condenser air side (kJ/h}

Qo heat transfer rate at external condenser air side (kJ/h})

Quq heat transfer rate at internal condenser air side {kd/h})
Qe heat transfer rate at evaporator air side {kd/h)
Q. heat transfer rate at condenser refrigerant side {kJ/h)



Q. heat transfer rate at evaporator refrigerant side {kd/h)

R universal gas constant (kJimol-K)

Re Reynold number

RH relative humidity (decimalj

T temperature (°C or K}

{ drying time {h)

ts tube row spacing {m}

u over all heat transfer coefficient (lemz-K)
humidity ratio {kg-water vapor/kg- dry ajr)

N, volumetric efficiency ‘

K viscosity (Pa-s)

Subscripts

12,34 stage

a drying air

abs absolute -

¢ condenser

ci enlering condenser

co leaving condenser

con saturated condition

di entering drying chamber

do leaving drying chamber

e evaporator

eo leaving evaporalor

eq equilibrium

f after drying

i before drying

in initial

mix after mixing

p papaya glace’

r refrigerant

v vapor

xy,z direction in Cartesian coordinates
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Table 1 Equilibrium Moisture Content Models of Longan Tissuses.

Name of Modet Type R
10866

Henderson {1952) 1-RH = exp [-0.0093T,,M,) 0.91

Brunaur et. al. (1938) R _ 1 Dy 0.91

(I-RIDM,,  ¢M,, oM,
where  M,=18.618-0.00190T
¢ = 0.796exp(0.00111T)

. .0.00104
Oswin (1946) M., = (0.2208+0.705T)[RH/(1-RH)] 0.97

Table 2 Diffusion Modets of Longan Tissues Drying.

Model Diffusion Model ‘R *MRS
Model 1 D=(—1.176M2+7.030M-1.428)‘1Oiexp{28.TGIRTﬂb,] 0.87 | 0.0019

Model 2 | D=5.562*10" exp(-0.4899M"+2.634M+0.08618)exp [30.48/RT,, ] | 0.92 | 0.0009
Model 3 | D=(-0.4639M"+3.180M-0.647)*10" exp[(0. 1237M+20.01)/RT,,,] 0.85 | 0.0013

2

R = ) (MRY-MRL)LT 1D [(MR)-(MR ), I
i=l i=l

]
MRS = Z [(MR,)-(MR,,) |]zlthe number of observations(n)
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Figure 1 Scheme for a solid hollow sphere, with integer j and for spherical membrane for radius

rl,,+jAr.
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Figure 2 Equilibrium moisture content isotherms of longan tissues ( temperature 60°C).
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Figure 3 The evolution of predicled and experimental moisture ratios of longan tissues during

drying {drying air temperature 58°C)
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Figure 4 Effective diffusion coefficient of longan tissues calculated by various models (drying air

temperature 58°C)
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