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Summary of Research Activities

Forum for Theoretical Science (FTS) is a unit established by
Chulalongkorn University with the main purpose of undertaking research
in theoretical sciences and mathematics.

FTS has been receiving financial support from TRF for two
consecutive periods from 1996 to 2002. The fund has enabled FTS to
continbe and stimulate research in various areas of sciences and
mathematics. At the same time FTS has played an important role in
training of many high potential research scientists.

For the last three years, FTS has published research papers in
leading international journals viz. three papers in Phys. Rev: “Path
Integral Derivation of Magnus Force”, Phys. Rev. B60, 9299 (1999),
“Electronic transport properties of Sierpinski lattices”, Phys. Rev. B60,
19, 13444 (1999) and “Effect of Random Well-Width Fluctuations on the
Exciton Optical Absorption Spectrum in Single Quantum Wells”, Phys.
Rev. B62, 5079 (2000); one paper in J. Phys.: “Magnus Force and
Hellmann-Feynman Force, path integral approach, J. Phys. A: Math
Gen.34, 11301 (2001). In addition, there are also 5 scientific papers
presented at international conferences.

FTS has also expanded the areas of research interest to Biology and
Nanotechnology by organizing an international workshop on Biological
Physics in 2000 and co-organizing a meeting on Nanotechnology with
Thai Institute of Physics in 2002.

For training of young research scientists, there are altogether 6
doctorate, 10 masterate and 2 undergraduate students doing research
under the supervision of FTS staff; 3 research assistants and one post-doc.
of these numbers, 9 masterate and 2 undergraduates have since graduated.
Regarding collaboration with other universities and research institutes
both locally and internationally, there have been many joint research
activities and exchanges of visiting professors and scientists. Several
research results were published in international journals e.g. “On the
Fourter Transform of the Diamond Kernel of Marcel Riesz”, Applied
Mathematics and Computation 101, 151 (1999), “On the Convolutions of
the Diamond Kernel of Marcel Riesz”, Applied Mathematics and
Computation 114, 95 (2000), “On the Multiplicative Product on the
Dirac-Delta Distribution on the Hyper-Surface”, Computational
Technologies, Vol.4, No.5 (1999), “On the Product of Ultra-Hyperbolic
Operator Related to the Elastic Waves”, Computational Technologies,
Vol.4, No.5 (1999) etc.



1 EXECUTIVE SUMMARY

This report summarizes research work carried out in the last three years
from 30 May 1999 to 1 June 2002 under the Thailand Research Fund (TRF)
contract RTA/04/2442. The purpose of this project is to strengthen the cx-
isting Forum for Theoretical Science (FTS) as the Center of Excellence (CE)
in Theoretical Sciences by expanding the scope of theoretical science research
to cover theoretical biclogy as well as nanoscience. To achieve this goal it was
suggested that a close collaboration between the research institutes as well as
universities in Thailand was necessary. The proposal also includes the close
collaboration among the ASEAN countries as well as the Universities in the
developed world such as USA, France, Germany and Sweden etc. The topics
of research should lead to the frontiers of research. Based on this objective it
was suggested to carry out 11 topics for research. The outline of the research
work on the above topics are submitted to TREF as follows.

1.1 Exciton in Quantum Wells:

The classical treatment of exciton motion in a disordered interface potential is
unable to explain the inhomogeneous broadening and consequent asymmetry
of exciton lines in two dimensional system. Early attempts to obtain analyt-
ical closed-form of the exciton spectra in the presence of disorder within the
quantum-mechanical theory were restricted to obtaining the spectral density
function in one dimension with a specific type of statistical random potential
distribution such as white noise potential. Most of the present theoretical
studies are based on the solution of Schrodinger equation of the exciton cen-
ter of mass motion. In this research we apply the Feynman path integral
to study the asymmetric shape, line broadening and Jow energy shift of the
optical absorption spectrum for the two dimensional quantum well [1].

1.2 Optical Absorption of Excitons:

The optical density function of a single quantum well for two-dimensional
exciton moving in a random potential in the interfacial plane generated by
fluctuations of the quantum well thickness is calculated using the Feynman
path integral method. The random potential distribution is assumed to be
Gaussion statistics. The calculated optical density function is asymmetri-
cally broadened. The magnitude of the peak is reduced and the maximum
is shifted to lower energy as the disorder increases in agreement with other
theoretical results as well as experimental time-resolved photoluminescence.



These optical density function properties have technological importance be-
cause it has been employed as the active region in the blue-green injector
laser diode. The detailed discussion of the Exciton line width was also given
in [2]. The results of this research work can be extended to include several
quantum wells and then can be applicable to the study of nanotechnology.

1.3 Vortex Dynamics and Magnus Force:

In recent years the interest in vortex motion in superconductivity has re-
vived mainly due to the advent of high temperature superconductivity. As
a consequence of the peculiar material properties such as the sign change in
the Hall effect, the physics of votices in high temperature superconductivity
shows many new aspects not encountered in conventional superconductivity.
This Hall anomaly cannot be understood within the framework of the BCS
theory. The study of various forces such as the Magnus force acting on the
vortex is important for understanding the vortex tunnelling out of the pin-
ning potential. Also the study of vortex dynamics allows us to understand
the Magnus force driven motion of vortex in the presence of dissipation. The
mathematical derivation of the Magnus force is given in [3]. A more rigorous
derivation of Magnus force and the relation of this force to the Hellmann-
Feynman force is given in the paper [4]. This rigorous derivation confirms
the existence of the Magnus force in the super fluid system. The relationship
with the Hellmann-Feynman force may give an insight into other problems
in Atomic and Condensed Matter Physics.

1.4 Effective Mass of Vortex :

Recently there has been experimental evidence to show that the initial mass
of a moving vortex could affect the dynamics of the vortex. This phenomenon
is not fully understood. This is due to the lack of a good understanding of
the Magnus force driven vortex in the presence of dissipation. The motion
of vortex causes a dipolar density distortion and an associated electric field
which is screened. The energy cost of the density distortion as well as the
related screened electric field contribute to the vortex mass which is small
because of efficient screening. In this research we have succeeded to derive
the effective mass of the vortex using the Feynman path integral approach.
The result was presented at the [5]. ‘



1.5 Vortex Tunneling;:

we have studied the influence of pinning, dissipation, and Magnus force on
vortex escaping when the potential, which contains both the contribution
from Magnus force and pinning potential in y direction, is modeled by the
metastable cubic plus quadratic form and the pinning potential in x direction
is approximated by the harmonic potential. The equation for determining
the crossover temperature is derived. This equation leads us to define the
localization criterion of a vortex at finite dissipation and temperature. The
criterion shows that, at any temperature and dissipation, a vortex always
escapes from the well when the pinning potential in x direction is presented
while it is localized in the well for strongly enough Magnus force when the
pinning potential in x direction is absent. Moreover, this criterion also leads
us to define the effective mass of a vortex in the sense that when a damped
vortex decides to escape from the well, it can be effectively viewed as an
undamped vortex of a new bigger mass called effective mass. The effective
mass is equal to the original mass plus the extra mass originated from the
environment and can be viewed as the total mass. This work was presented
as the poster session in the RGJ-Ph.D.Congress III meeting held at Jom-
tian Palm Beach Hotel at Pathaya Cholbury from 25-27 April 2002 and was
recognized as the best poster presentation in the physical sciences section [6].

1.6 Dilute Bose Gas in Harmonic Trap:

The recent remarkable experimental demonstration of the Bose-Einstein con-
densation of dilute ultra cold alkaline atoms in the harmonic trap has stim-
ulated a renewed interest in the ground state energy of the system. Baym
and Pethick had shown how to obtain the ground state property using the
variation principle. In a series of Master degree theses we have applied the
path integral method and show that for the short range interaction with
delta interaction potential we obtain the ground state energy which com-
pares well with the variational approach of Baym and Pethick. We have also
generalized calculation to include the long range interaction. The ground
state energy and the wave function of the condensate are obtained. The
calculations are presented in a series of Master theses [7-9]. The response of
the noninteracting Boson system under switching of the trap frequency and
critical temperature for Boson Pairing in 2D triangular lattice is given in the
Ph.D. technical reports [10-11].



1.7 Path integral Treatment of Entangled Polymers:

The theory pertaining to the excluded volume effect in a single polymer chain
is one of the central problem in the field of polymer solution theory. The ef-
fect of the interaction between the segments which are far apart along a chain
is often called the long-range interaction in contrast to the short range inter-
action representing the interaction among a few neighboring segments. For
several polymer chains the problem of entanglement has to be considered. In
this research work we consider only single polymer chain with excluded vol-
ume. The main result achieved is the calculation of the average mean square
displacement at any length of the polymer. The main contribution is that this
method allows us to discuss and compare with several models. The method
can also be used to discuss the weak interaction and strong interaction in the
single formulation. The full detailed calculations are presented and published
in the proceedings of the first workshop on “Biological Physics 2000” held at
Chulalongkorn University September 18-22, 2000 with the title “Path Inte-
gral Approach to a Single Polymer Chain with Excluded Volume Effect” The
editors of the proceedings are V. Sa-yakanit. L. Matsson and . Frauenfelder
[10].

1.8 Transport Properties of Metallic Hydrogen:

The first confirmed formation of a metallic state of hydrogen was announced
at the March Meeting by scientists at Lawrence Livermore National Labora-
tory. Metallic hydrogen was achieved in a sample of fluid hydrogen, using a
two-stage gas gun to create enormous shock pressure on a target containing
liquid hydrogen cooled to 20K.The research direction will be aimed at learn-
ing more about the dependence of metallization pressure on temperatures
achieved in liquid hydrogen, which is vital for laboratory applications. It was
long thought that the road to metallic hydrogen lay with crystalline hydrogen
rather than with the disordered fluid phase. According to Neil Ashcroft of
Cornell University, dynamic shock techniques to achieve high pressures were
first introduced in 1942. Optical evidence of a new phase of hydrogen has
been previously reported by scientists at the Carnegie Institute of Washing-
ton’s Geophysics Laboratory, using an experimental approach that involves
crushing microscopic-sized samples of crystalline hydrogen between diamond
anvils, achieving pressures up to 2.5 Mbar, but without establishing metallic
character. Metallic character is most directly established by electrical con-
ductivity measurements, which are not yet possible in diamond anvil cells at
such high pressures.

Ziman had developed a simple multiple scattering theory to explain liquid



metals and alloy. In this research we apply the Ziman theory to liquid metallic

Hydrogen. The result of this research work is presented as a master degree
thesis [131.

1.9 Magnetic Filtration Nonlinear Effective Dielectric
Constant of Composite Materials:

The theory of magnetic filtration has been investigated by several authors es-
pecially by Watson. However most of the theories proposed are based on the
simplest single collector model. Watson has developed a theory to explain
the capture of weakly magnetic particles carried by the fluid of potential
flow. The theoretical model used consists of an isolated fine ferromagnetic
cylindrical wire in the background of uniform magnetic field. In this research
we generalize the theory of Watson which is extended by using the effective
medium treatment to predict the magnetic field around the filter matrices
consisting of parallel wire distributed randomly. The effective medium treat-
ment is applied to study the conductivity of composite materials which con-
sist of particles disperse randomly in a host medium. The captured radius
results of this study are reported and compared with the model of Watson
based on single-wire model. Finally the criteria for validity of single-wire
model used to determine the magnetic field around the filter matrices are
discussed [14].

1.10 Mesoscopic and Low Dimensional Physics:

The problem of a heavily doped semiconductor tends to be like a metal at low
bias voltage. If we include the finite-size effect this will bring us to something
called the Mesoscopic system. This includes the quantum dot and quantum
wire and quasicrystals. In the past decade, rapid progress has been made in
Mesoscopic physics. The electronic transport properties of Sierpinski lattices
in one-dimension with tight binding model is studied [15]. Since the discov-
ery of the icosahedral quasicrystals in Al-Mn alloys,the quasicrystals with
noncrystallographic symmetry, such as decagonal, dodecagonal and octago-
nal phases have been extensively studied. In this direction we have derived
the equation of wave propagating in the cubic quasicrystals and determine
the phase velocity of wave propagation which allow us to derive the specific
heat of the cubic quasicrystals. This research work is published in [16].



1.11 Mathematical Activities:

The diamond operator and the ultra-hyperbolic operator has been introduced
by Kanathai. The purpose of his research is to study the properties of these
operators such as the boundness property, Fourier transform and also the
Fourier transform of their convolutions. Given these properties the partial
differential equation and convolution equation are studied in details .1t is
found that the convolution equation is related to ultra-hyperbolic equation
and is found also that the solution of convolution equation is the singular
distribution. At present the main directions of research are Sequence Spaces
and combinatorics. Under the strong leadership of Prof.A.Kanathai from
Chieng Mai University an Analysis Research group has been established and
a series of papers related to the Diamond operator and ultra-hyperbolic op-
erator have been published in several journals [17-20].

1.12 International Materials Research Centers

The National Science Foundation (NSF) of the USA is proposing the support
a few world wide “International Materials Reseach Centers”. This interna-
tional centers would consist of a well established Materials Research Labara-
tory in the USA, which is already one of the NSF national centers, plus some
selected Research Centers outside the USA especially in emerging nations.
The goal is to bring these centers together into a global network and conduct
collaborative research, exchange scientists, hold workshops and train young
scientists. The Laboratory for Research on the Structure of Matter at the
University of Pennsylvania has submitted a proposal to the NSF to create
one of these International Materials Research centers (IMRC). The forum for
Theoretical Science as well as the ICTP in Trieste has been selected to be
two of the participating Research centers of this global IMRC. This IMRC
will focus on biological materials. It will greatly assist F'TS in developing
productive collaborations with leading centers in this field in the world. It
will open opportunities for young Thai scientists to participate in cutting
edge research and to work with the best scientists in the world.
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2 CONTENTS OF THE RESEARCH PRO-
GRAMS

2.1 INTRODUCTION
2.1.1 Feynmnan path integrals

In classical deterministic physics, time evolution of dynamical systems is
governed by the least action principle. The Newton classical equations of
motion or the law of acceleration can be written as

ma' (1) =F (1)

where 2 (1) and £ denote the second derivative and the external force re-
spectively. This equation can be viewed as the Euler-Lagrange equation

d (AL (r),x(7),7) OL(@ (7). z(7),7)\ _
dr ( oz’ (1) 9z (1) ) =0

(2)

where L is the Lagrangian of the system and &’ (7)denoted as the first deriva-
tive of x (7). The action functional Srepresenting the dynamical system,is
defined as the time integral of the Lagrangian function L

t

S@ (0,20),0 = [ L@ (),2(),7) ®
0

Their trajectories solutions representing the classical dynamical system
obtained by minimizing the action functional or the least action principle [1]

§ S (t),z(0),8) = 0. (4)

In quantum physics, one talks about probabilities of different paths quan-
tum (stochastic) dynamical system . According to Feynman, one defines a
measure on the set of all possible paths from the initial state = (0) to the
final state z (t) of the quantum dynamical system,and expectation values of
various quantities dependent upon the paths are given by a path integral
or sum over all possible paths from time 0 to time £. The action functional
assigns a real number to each path and the exponential of minus this number
gives weight of the path in the path integral representation. This formula
constitutes a basis for practical calculations of the path-dependent propaga-
tor.

P (:c (t),a:(O)’t) = o D(z(7))exp (_f_i /Ot drL{z' (v),z (7) ,T)) (5)

9



where /i is the plank constant. Path integrals are a basic tool of modern
quantum physics. They were introduced by Richard Feynman in 1948 [2,3].
This path integral representation of the propagator can also be derived from
the partial differential equation describing Schrodinger equation in quantum

mechanics
i OV (x, 1)

R Bt

where H denotes the Hamiltonian of the system and is related to the La-
grangian as

= H (z,t) ¥ (z, 1) (6)

H{z,t) =p(t)z(t) - L(z,1) (7)

The wave function ¥ (z, ) representing the probability amplitude is re-
lated to the propagator through the spectral resolution

P(( o)t) 3, (2,0) wt)exp(—%fﬁn) (8)

where E,, is the eigen energy of the schrodinger equation. Finally for # —
0 the classical path is dominated and the path integral representation is
reduced to the Fuler-Lagrange equations.

2.1.2 Methods and problems

In this report we apply the Feynman Path Integral method to condensed
matter physics as well as Biological Physics and Econophysics. The method
is based on the Lagrangian approach to principle of least action and demon-
strated that Feynman path integrals constitute both a natural theoretical
concept and a practical computational tool. We first introduce the effective
model action arising from a particle or a system of particles coupled to the
environment or reservoir. This environment is in general comprised of many
degrees of freedom. photons, phonons, plasmons etc. After eliminating the
environmental degree of freedom one obtains the effective model action. In
general these effective model actions are non-local in time and therefore the
path integrals associated with these model actions cannot be evaluated in
closed form.

These problems can be solved by following the method developed by Feyn-
man in handling the polaron problem .The main idea is to introduce the non
local quadratic action to simulated general effective non-local action arising
from the system coupling to reservoir. The method developed by Feynman
for handling the polarons had been extended by Sa-yakanit in handling the
disordered systems and several problems in condensed matter physics.

10



2.2 MODEL SYSTEM
2.2.1 Effective Model Action

Consider a system with one or a few degrees of freedom which is coupled
to huge environment and imagine that the environment is represented by a
heat bath or reservoir. The interaction of the system with cach individual
degree of freedom is proportional to the inverse of the volume of the reservoir.
Hence the coupling to an individual bath mode is weak. Therefore it is
physically reasonable to assume that the system-reservoir coupling is linear.
This property allows us to eliminate the environment exactly. The most
general form of the action for the global system S is

S=8,+5 15, (9)

where 5,, 57 and S, are actions of particle ,interaction and environment or
reservoir respectively. After eliminating the environmental degree of freedom
one ends up with the following effective action S

m

t t t
S (' (t),z(0),t) = f 5 zdr + / f drdeW [z (7) — z ()] (10)
0 o Jo
where W [z (1) — z (¢)] denotes the non local correlation function arising
from eliminating the environmental degree of freedom. Following Feynman
the propagator P (a: (t) = (0) t) associated with the effective action can be
written as

P@m

z{t)
xmu): D(z (1))

1 1 I(O)

exp (—-:; /Ot —Tg:c'?d'r + /: fot drdeW |z (1) — x (a)])
(1)

where the integral notation represents the sum over all pathsz (7) connecting
the initial and final space-time points z (0), and z (¢) respectively. For each
path there is a weighting factor given by exp (—S (' (t),z (0),1)) .

In what follows we shall present examples how the eflective actions arise
by eliminating the environmental degree of freedom.

2.3 Polarons

A polaron is an electron moving in a polar crystal together with the self
induced polarization of the lattice. This self induced polarization is a con-
sequence of the electron -phonon interaction. The polaron tends to have a
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lower energy and higher effective mass compared to that of a bare electron.
Since the action being quadratic in the phonon coordinates, the path integral
over this coordinates can be performed exactly. Once the phonon coordinate
being eliminated, the problem is reduced to the path integrals of a nonlocal
effective action [5].

Sz’ (t),:v(O),t):fO %x’zd'rﬁwxfo /.5 d'rdaej;;;ii;(_g(;l (12)

where « and w denote the strength of the interaction and frequency of the
optical phonon respectively. This action was first discussed by Feynman
to obtain the ground state energy and effective mass of the polaron. The
ground state energy and effective mass of the polaron had also been applied
and extended by Sa-yakanit [6,7].

2.4 Fluctuons

The fluctuon concept is close to that of the polaron and in some degree can
be considered as a generalization of the polaron problem. Special electronic
states resemble the polaron-type self-localized state but different from po-
laron are that the fluctuon is formed in the disordered environment with
fluctuation of the concentration such as amorphous materials, heavily doped
semiconductors. One can model this problem as an electron motion in the
random potential. The random potential can be taken as Poisson or Gaus-
sion distribution. Upon eliminating the random potential one obtains the
quasi particle call Fluctuon. For the case of heavily doped semiconductors
effective model action takes the form

Sz (t),z(0),t) = /0 -—Tg—m’zdr —!—/0 /0 dtdségexp(—Q(z(t) - z(s)) (13)

with £g = fluctuation parameter having the dimension of energy squared
and Q denotes the inverse screening correlation length of the system. This
problem had been applied to heavily doped semiconductors[8-12] and Urbach
tails [13] in amorphous materials, semiconductors.

2.5 Plasmarons

The electron-plasmon coupling in solids has been discussed by many authors
using various methods such as the perturbation method and the dielectic
formulation. The interaction of individual electron with plasmon can be
described in terms of the Frolich-type interaction in analogy with the polaron
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problem. Upon eliminating the plasmon degree of freedom one obtains the
effective action. The quasi particle of this problem is called Plasmaron.

ITL

Sz (t),z(0),t) = —m’QdT
ee dk cos (w, (k) £/2 — |7 — o)
/ / deJ/ sin (w, (k) 1/2)
x exp (ik. ( ) ) (14)

where wp (k) is the k-dependent plasmon frequency and is given by
wy (k) = wd + ak® + Bk! (15)

where w§ is the plasma frequency, o and § are two numerical constants
determined by satisfying the sum rules.

The ground state energy and the effective mass of the Plasmaron are
calculated and used to discuss the Wigner crystallizations. The detailed
calculation is discussed and given in [14,15].

2.6 Magnus force

The argument for the existing of a Magnus force was discussed by several
authors[16]. It was found that the existence of the Magnus force is a gen-
eral property of the vortex line arising from the influence of the presence
of disordered environment. Since then there have been several attempts to
derive the Magnus force from different fundamental approaches such as by
Chern-SimomTheory and Feynman-Hellmann Theorem. The problem arises
from the vortex coupled to the heat bath which contains an infinite set of os-
cillators. After eliminating the environmental degree of freedom one obtains
the following non local action effective action

S(z'(t),z(0),t) = /Ot z%dr + // drdo

2

x% fcos (s (¢ — 7)) cos ()] (16)
This effective action had been used to discuss several problems such as the
vortex tunnelling out of the pinning potential containing the Magnus force
and Lorenz force of the high T, superconductivity. The derivation of Magnus
force from the first principle and the relationship to the Feynman-Hellmann
force as well as to the Lorenz force are given in [16,17].
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2.7 Polymers

A polymer consists of essentially a large number of repeated molecular chains
called monomers. These chains can be simple as for example in polyethylene
or can be very complex as in DNA. Edwards [18] was the first to apply the
path integral techniques to study the polymer chain problems and obtained
the configurational probabilities of molecular chains in thermodynamic equi-
librium. The chain model of polymers has been used for simulating config-
uration behavior of polymers with short range and long range interaction
between segiments along the chain of length L. The effective action in this
case can be written as for the case of excluded volume problem

Sz (1), 5(0),8) = /OL—:U'sz / / drdotid (z(r) — 2 (o)) (1)

where W [z (1) — 2 (0)]=£d (x (7) — z (o)) is the correlation function with £
as the amplitude of fluctuation. This action is identical with the white noise
problem in disordered system. The main problem is to calculate the mean
square distance (R*) which can be used to obtain other physical properties
of the polymers. A comparison with the approach developed by Edwards is
given [18].

2.8 Quantum Well

An electron confined to the narrow potential well in the interface of the
GaAs/Al.Ga;_.As heterostructure forms a quasi-two dimensional electron
gas. Quantizations of the electronic motion perpendicular to the interface
leads to a series of quantized energy levels of the potential well. The charged
donors are distributed in the highly doped region with the spacer layer thick-
ness d. The effective action is

Sz’ (t),z(0),t) = f——'zd'r-l—/fdrda / dqn;

Z’I" —2qs 1_ Gd
* (86065 ) 20 (g exp(zq( (1) -z (o))
(18)

where € (q) is the dielectric constant in the Thomas Fermi approximation.
This correlation is used to obtain the density of states of the quantum Well
19,20,21].
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2.9 Quantum Hall

Two dimensional electron system in a perpendicular magnetic field displays
fascinating quantum oscillation. BExamples are two dimensional clectrons
confined to interfaces in GaAs/Al.Ga, , As layered heterostructure. The
correlation in this case is similar to the polymer problem except that in this
problem it is a two-dimensional system. The effective action is

S(m'(t),:c(()),t)m[] %x’2d7+Lt/0thdU gLexp (ww)

(19)
with &, as the amplitude of fluctuation and L as the correlation length.
The density of states as well as the mobility of the Quantum Hall problems
are calculated and are given in [22-27].

2.10 Excitons

The bound electron-hole pair is called Exciton. Exciton can be formed in ev-
ery insulating crystal. All Excitons are unstable with respect to environment
and ultimately decay into the recombination process. Exciton can be formed
both in three or two dimensions. Currently, Exciton in two dimension is be-
ing studied due to its contribution to the understanding of the Quantum well
problem. The classical treatment of Exciton motion in disordered interface
potential is unable to explain the inhomogeneous broadening of the exciton
line in the photo luminescence spectrum due to the sensitivity of the islands.
The main interest is to calculate the line width of the exciton due to the inter-
face roughness of the sample and the statistical well-width fluctuation arising
from local thickness of the quantum well during the crystal-growth process.
The effective action now takes the form of

5@ )20, [ e / t / drdo gexp (——(f” (r) —z(o) )

L
(20)
In this case it can be taken the same as the case of Quantum Hall except
that this is a two-dimensional system. The effect of the random well width
of the exciton and the optical absorption of the exciton are given in [21].

2.11 Biological Physics

In the transport process of a complex system such as molecules in a complex
environment the barrier-crossing reaction rate can be treated as classical

15



chemical kinetics. For example in the case of carbon monoxide recombination
with myoglobin the reaction process needs a higher barrier rate equation
of a highly non exponential property. The simple model of treating this
problem is to assume that the fluctuation relaxes exponentially according to
the stretched exponential law. The survival probability associated with this
reaction process whose environment is described by a generalized Langevin
equation can be reformulated in terms of path integral representation. Then
this problem is equivalent to considering the reaction coordinate coupled to
the environment which in this case is a set of infinite number of oscillators.
By eliminating the environmental degree of freedom we obtain the effective

action
x(t),z(0),t) = / ’2d7+—~f/d7*da]

cos{wt/2 — |7 — al)

sin (wt/?) [‘E ( ) -z (U)]z (21)

where x and w are two variational parameters. J(w) denotes the spectral
function and is given by

= g) > myksw;b (w_w;) (22)

with w;= | /;n’% and the summation is carried to infinity to represent the heat

bath of the system. The detailed calculations of this problem is given in [22].

2.12 Econophysics

The aim of many physicists working in the field of Econophysics is to develop
statistical models that predict the probability that the price of stocks or
shares will go up or down. Properties like the distribution of extreme events,
such as stock market crashes, and scaling behavior have been explored with
very large sets of high frequency data. For instance, there are reported results
on the behavior of about 40 million equity returns from the New York Stock
Exchange. In simple terms, these reports compared how fluctuations in the
prices of stocks and shares compared with a Gaussian distribution. The
results confirm that financial assets are definitely riskier than the Gaussian
random walk behavior would predict. To overcome this problem the path
integral formulation is used to handle this stochastic behavior. The use of
path integral does not need any reference to the Black-Scholes equation. The
most simple example is to apply the path integral to the Vacicek model. The
conventional method to handle the Vacicek model is to study the generalized
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Langevin equation for the short rate r. The Vacicek model then can be
written in terms of path integral. The model can be used to study the
bond price as a specific claim. Using the probability density derived from
the stochastic equation, one can write down the action associated with the
Vacicek model as

= % / ds(z/(s) — a(b — 2(s)))? (23)

where o is the volatility of the short rate and a,b are constants. One can
show that for a zero bond with the short rate environment, this equation
can be reduced to the Vacicek dynamic equation. The path integral can also
be used to conveniently derive other equations such as the Black-Scholes
equation.

The path integral approach to financial modeling is known to a number
of finance practitioners with prior quantum physics background. Applica-
tions of Feynman’s path integrals to financial modeling were pioneered in
the mid-eighties by Jan Dash [23,24], an elementary particle physicist cur-
rently working in financial industry.

3 METHOD OF CALCULATIONS
3.1 Quadratic Model Trial Action

The above few examples give us general ideas how the effective model action
can be derived. These systems in general cannot be solved analytically.
Therefore some methods of approximation have to be used in order to carry
out the calculation. One can use the perturbation expansions or carrying out
the numerical calculation using Monte Carlo method. In this research work
we shall follow the variational method developed by Feynman for handling
the polaron problem. This method has been proved to be very powerful and
allows the calculation to be carrying out analytically. The method is also
developed and extended by Sa-yakanit for the condensed matter physics. In
order to be able to carry out the calculation analytically, the trial model
action has to be introduced,

t t t
So(z' (t),2(0),t: kyw) = /%m"2d7+%f / drdo
0 0 Jo
cos{wt/2 — |7 — o)
sin (wt/2)

where x and w are two variational parameters to be determined. This model
non-local harmonic trial action in principle can be calculated analytically.

[z(r) =z ()] (29)
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The exact solution of this trial action is given in 14]. The physical meaning
of this action is that an electron is coupled to the harmonic force with cou-
pling constant x and fictitious mass m with harmonic frequency w — \/—f )
Once the model trial action is given one can calculate the propagator of the
system. According to Feynman the propagator can be written in terms of
path integrals

P(:c(t.),;v(())lt) = L?::)D(:B(T))

exp (__%fot %x'gd'r + /Ot /;drdch z(r)—z (a)l)

(25)

This propagator in general cannot be performed analytically and there-
fore one must try to solve this propagator by some approximations. One of
the very powerful method developed by Feynman is to use the variational
principle. In this method one can rewrite the propagator average with respect
to the trial action propagator,

P(:c (t),a;((])lt) —~ B (a: (t)’x((}),t)
2(£)

([ Do (—

z(0)

1

HS =50l (20

where Fp is the propagator of the model trial action and is defined as

xz(t)

F (.’E (t) = (0) t) = D(z(t))exp (——%SO (' (t),z(0),1: K, w)) (27)

z(0)
and the symbol (A)q stands for the average of the functional A with respect
to So (' (t),z(0),t: k,w) and is defined as

Ji5) AD (m(r))exp (=150 (& (£),2(0) , £+ &, w))

ff(g)) Dz (r))exp (1S (2 (t),%(0), ¢ : &,w))

{(A)o = (28)

3.2 Variational Calculation

To be able to perform the calculation we expand the propagator in a series
of cumulant expansions and keep only the first cumulant. The approximate
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propagator (a: () = (0), t) now takes the form,

x(t}

P (a:(t),:n(O)’t) = B (;L‘([J)!.‘II(U)!t) /mm D(x (7)) x

exp((—5 (5= 50 ) (29)

The justification of this approximation is based on the Jensen inequal-
ity. To be able to apply the Jensen inequality we must replace time ¢ by
—ih{ in the above propagators. Since the averages are performed with re-
spect to the trial quadratic non-local action, therefore all calculations can be
performed analytically. We may immediately obtain the statistical density
matrix by

P (2(8),5(0),8) = B (8 2(0)6)
[ paepent 5- s o)

(0)
Once the propagator is known, the free energy F' can be obtained by using
the relation

Pl [ (6) PO 2O 5@ O -2 0) (Y

Furthermore, if the propagator depends only on z () —z (0) the above equa-
tion can be simplified to

1
F= —ElnPl (=(8),2(6),5) (32)
The free energy £ of the system can now be obtained by using

F=1F+ %diag(— (§(2'(8),2(0),8) — So(z' (8),2(0),8: k,w)))o (33)

where Fy is the free energy of the system described by the density matrix
associated with Sy and is given as

1
Iy = ~Bln Po(=(8),2(8),5) (34)
The ground state energy of the system F obtained by letting 8 — oo and
we arrive at
E (51 w) - EO (ﬂa w)

+Jm (- (S (8),2(8),8) "%J(iv’ (8),2(8).6: K w))o

(35)
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FEo being the ground state energy associated with the system characterized
by the action functional Sg. Thus we observe that within the first cumulant
approximation the task of obtaining the propagator is reduced to evaluating
the Py (a; (1) = (0) t) and the {((— (S — So)))o.

The results are now containing two variational parameters  and w. Car-
rying out the variational calculation we obtain two sets of coupled equations.

;—EE(N,W) =0 (36)
%E(n,w) =0 (37)

After solving two sets of coupled equations and substituting back to the
approximate propagator we obtain the free energy, the ground stale en-
ergy,the effective mass as well as wave functions of the system. Thus we
have demonstrated that a variety of problems in condensed matter physics
can be handled well by using Feynman path integrals method inciuding, Bi-
ological Physics as well as Econophysics.

3.3 DISCUSSION

In this report we have demonstrated the powerful method of the Path Integral
formulation and have shown that the technique developed by Feynman is
very practical for application to a variety of problems|28-36] especially the
condensed matter physics . The main idea of this approach is to introduce the
non local quadratic action to simulate the general effective non-local action
arising from the system coupling to reservoir. In fact the non-local action
first appears in Quantum Electrodynamics by Feynman. In that case the
reservoir is the photon and upon eliminating the photon degree of freedom
one obtains the effective nonlocal action. Feynman used the same idea to
handle the polaron problem. The second main idea of this method is that
one can modify contribution from each path to be real rather than complex
and then employ the variational principle based on the Jensen inequality to
determine all thermodynamic and physical properties.

Path integrals are now used to describe stochastic phenomena ranging
from Polymer Science [39], Biological Physics [40], modeling of interest rates
and the Pricing of Derivative Securities[39-42]. In finance, the fundamental
concepts are equilibrium and arbitrage-free pricing. They can be interpreted
as finance counterparts of the least action principle. Accordingly, one can
consider a Lagrangian function and an action functional for financial models.
Since financial models are stochastic, expectation values of various quantities
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contingent upon price paths (financial derivatives) are given by Feynman’s
path integrals, where the action functional for the underlying (risk neutral-
ized) price process defines a measure on the set of all paths. The averages
satisfy the Black-Scholes equation [43,44], which is a finance counterpart of
the Schrodinger equation.

Finally, it is interesting to mention two recent developments of financial
models. The first approach is given in Kleinert in his recent book on the
generalization of the option pricing from path integral for non-Gaussion fluc-
tuation [47]. The stochastic calculus and the option price formulas developed
in this book will be useful for estimating financial risks of a variety of in-
vestments. In particular, it will help develop a more realistic theory for fair
option prices. The second development is to employ the Fractional Brownian
Motion as a model in finance. One can define the stock price model as Frac-
tional Brownian semi linear stochastic differential equation. This approach
was considered by Krvavy from Ukraine [48 and Sottnen and Valkeila [49].
These two authors discussed the fractional Black-Scholes equation on how to
define the stochastic integrate, European options in fractional model. It is
suggested that F'T'S should take this opportunity to explore this very exciting
field by using path integral in financial market.
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Abstract

The optical density function is calculated in a single
quantum well (QW) for 2D-excitons moving in a random
potential in the interfacial plane generated by the
fluctuations of the quantum well thickness. Assuming
Gaussian statistics for the random potential distribution,
we have applied the path-integral approach and obtained
in the adiabatic approximation two asymptotic analytical
expressions for the low- and high-energy tails of the
optical absorption spectrum, respectively. In order to
obtain the spectrum across the whole energy range an
analytical interpolation formula is found between the
asymptotic expressions in both cases. The calculated
optical density function is asymmetrically broadened, the
magnitude of the peak is reduced and the maximum fis
low-energy-shifted in both cases considered, as the
disorder increases, in agreement with other theoretical
results. Using the fitting parameters to the time-resolved
photoluminescence data of [R. Zimmermann, II Nuovo
Cimento D 17, 1801 (1995)] we find that the path-
integral method leads to results for the spectral widths
(FWHM) which are closer to those experimentally
observable, as compared with results inferred from the
perturbation theory approach.

1. General Introduction

The effectof the in-plane interface disorder on the
optical properties of the 2D excitons is currently pursued
with renewed interest due to its persistence both in cw
and time-resolved experiments. In narow QWs the
interfacial disorder generates potential fluctuations
resulting in band tails in the exciton density of states
composed from localised states, Due to the static
disorder the optical response of the Wannier excitons in
QW cxhibits significant broadening and distinct
asymmetry of the exciton line manifested by mixed
Lorentz-Gaussian lineshapes [1]. On the other hand, a
modification of the exciton radiative lifetime and
respectively of the photoluminescence spectra is predicted
as a consequence of the presence of interfacial disorder

and exciton localisation [2,3]. Besides the influence on the
lineshape, substantial Stokes shift between the exciton lines
in absorption and photoluminescence spectra is observed at
low temperatures [4] due to interface roughness. These
phenomena can be viewed as effectsof dephasing, or partial
breakdown oftemporal coherence [5].

In this paper we aim to develop a semi-analytical
quantum-mechanical description of the asymmetric exciton
line shapes, line broadening and low-energy shift of the
optical absorption spectrum for the 2D-excitons in a QW
taklng into account the exciton localisation in the random
potential fluctuations at the interface. The latter is achieved
applying Feynman path-integral method for calculation of the
band-tail and semiclassical exciton density of states. Our
approach will follow mainly [2] where two asymptotic
expressions for the optical density function for high- and low-
energy tail of the absorption spectrum have been obtained.
The high-energy tail of the spectrum calculated in [2], has
been obtained using perturbation theory and the low-energy
tail is found by the optimal fluctuation technique [11,12}
assuming a white-Gaussian-noise correlation function.

In what follows, we shall show that such a semi-
analytical approach tumns out to be more advantageous
compared to the pure numerical computations in 2D [10] and
implies linewidths closer to those experimentally observed.
In distinction to the method of Efros er al. [2], we calculate
the optical density function using the general path-integral
exciton density of states, derived in [13] assuming Gaussian
random potential distribution and a Gaussian binary
correlation function. Finally a full 2D exciton absorption
spectrum calculation is performed.

2. Theoretical Model

Calculations
2.1 Optical density function
We shall consider the motion of the 2D exciton in the

random potential whose wave function according to [14] can
be represented by the following product:

¥(r.n)=P(R)e(p)x.(2.)2:(z4)

and Analytical

m
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where r,‘,,(pe'h,ze'h) are the electron and hole
coordinates, respectively in-plane and perpendicular to
the plane of a quantum well, p=p,—p, is the
coordinate of the relative motion of the two carriers,
R=(m,p,+m,,,,p,,)/M is the exciton's c.om.
coordinate, M =m, +m,, is the total heavy-hole
exciton mass, m,, m,,, being the electron and heavy

hole mass parallel to the interface, ‘¥(R) is the
exciton’s c.o.m. wave function describing its motion in

the quantum well plane, ,‘(,(z!) and xh(z,.) are the

wave functions for electron and hole motion in z-
direction (perpendicular to the interfacial plane) which for
the electrons (or the holes) only is that of a particle in a

one-dimensional quantum well. (p(p) is the exciton

wave function describing the in-plane relative motion of
the electron and the hole. '
Within the adiabatic approximation we shall assume
that the exciton line is slightly broadened. Thereforethe
solution for the exciton wave function could be factorized
out and thus we end up with a Schrisdinger equation for a
particle of a mass M in a random adiabatic potential:
K V?
~Z YR WR)=Ey(R). @

Our model is aiming to find the spectral function of a
single particle (exciton center-of-mass)in the field of ¥
scatterers confined in an area S at the interfaceduring its
motion near the disordered interfaceof the quantum well
obeying the Hamiltonian:

H=H,+V(R) 3)
where ﬁo is the unperturbed Hamiltonian of the ordered
system without randomness and the random in-plane

potential V(R)=ZV(R—R°,-) (Fig. 1) is a

W(R - R') = (V(R)V(R’» = FzDJ‘dROV(R - Ro)"(R' - Ro) = gLe-lM‘%

where ﬁw=% is the surface density of the
scattering centers, L is the correlation length of the

random potential fluctuations and &, is the dispersion

of the random Gaussian potential which has the
dimension of energy squared and in the 2D case is given

by:
— [ =?
&= NzD[T}’; . )]

In the above expression we have introduced the
strength (or amplitude) v, of the individual potential
according to:

superposition  of  individual  scattering  potentials
V(R-R,,) representing the 2D random potential
generated at a point R(x,y) in the heterojunction interfacial
plane by the local well-width fluctuation
Roi(X,1»Y,s) in the plane.

located at

Al Ga, As

AlGay,As iR

oy

T

Fig 1. Plot of the random potential V{R) scen by the exciton
c.om. in the interfacial plane of a single quantum well. Vs(R) is the
smoothed potential over the characteristic size of the exiton com.
envelope wave function: V,(R)= szR"P‘(R')V(R'}‘}’(R'). E, is
the average potential energy, £ is the energy of the excilon com.
localised state. L is the width and ¥} is the quantum well depth.

The statistical properties of the random potential energy
distribution are characterized by its moments. We shall
assume a Gaussian statistical distribution which s
completely described by its first and second moments, i.c.
by the mean potential energy and the binary correlation
function:

E, = (V(R)) = N,, [dR 1R~ R,) )
(5)

-[R-Rqf*
VR-Ry)=ve 4 )

and L=12.
The spectral density function for a 2D Schridinger
particle in a random potential is defined according to {9}, by:

A(K”.E)=%(zlje"‘-'“?.v(n)d’ﬂzﬁ(ﬂE;)) ®
i
where F,(R) is the exciton’s center-of-masswave function

h L : .
of the /" exciton state with a corresponding energy E;, K,

is the 2D-exciton wave vector in the plane parallel to the
interface, 8- is the normalization area, The above averaging is
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performed over alfl possible configurations of the random
potential fluctuations ({...) indicating an average over
the statistical ensemble).

Since we shall be interested in the optical absorption
spectrum, we wish to calculate the optical density
function which represents the inverse Fourier transform of
the spectral density Eq.(8):

A(E)= -IS-<§;| [d*R¥,(R)[ 6(E - E,)) )
Then the absorption coefficient can be written as:
a(w) = ayA(E)
(10)

where @, is a slowly varying function of the excitation
frequency w (see e.g. [15]).

2.2 Path-integral approach for
calculation of the optical density function

problem in path-integral (PI} terms we need to calculate the
average (over all random potential configurations) exciton
one-particlepropagator:
‘ i

— -5

G (R,,R;;1) = [ D[R(7))e? (1
with the boundary conditions: R(0)=R,, R(r)=R,
and § is the action of the random system, given up to the

second-order moment of the random potential distribution
by:

t R ]

s=[dt| MR (z)- E, + L [daW[R(r)-R(c)]|  (12)
0 2 2ho

whose diagonal elements give the density of states.

I = lE_
E)=—— [dte’ G(0,0: 13
pE)=5 - | (0,0:7) (13)

The DOS per unit volume in the first cumulant
approximation for a Gaussian random potential, with a
Gaussian binary correlation function is derived in [13] for the

In order to calculate the optical density function we  general  case of a d-dimensional system:
need to obtain the 2D excitonic DOS. Reformulating the
o
1= M Y e dfty Pt TN (14)
=— |dif—— il VP St ) PSS (.0 E-E
oter=5 ] a5 | e N Fetg D1 shr bl il 0 4 (B E.)
2

where £ is the non-local harmonic osciltator frequency
which is a variational parameter to be determined and

the  function  J(x,Q2) is given by::
Qe - Q-
in 4 sin%sin[ (2 %) sin&sin[—(z—x)] (s
JQ) =1+ . =) 1+8i—L
ML sin—qf— 0 .sin‘—zz£
. 2 of the general DOS expression (14). The 2D exciton DOS
with Eq =AQ and E, = — (16)  deep in the band tail is obtained from that limit, by letting
. . ML E — —oo and minimizing the DOS exponent with respect
is the correlation energy (the kinetic energy of E
localisation over a distance L - the screening length of to the varfational parameter z= = Introducing
the random potentizl fluctuations) representing a measure L
of the exciton confinement, ’ dimensionless normalized energy:
Two analytical asymtotic expressions for the 2D E,—-E
exciton DOS (d=2) can be obtained from the above V= an
general expression in the so called low-energy limit, ie, L

deep in the excitonic band-tail and in the opposite
extreme of high-energy, i.e. near 1o the band edge.

2.2.1 Low-energy limit

We shall be interested in calculating the optical
density function in the low-energy tail i.e. the region of
negative energies below the unperturbed band edge.
Let us consider first the DOS caclulation in the excitonic
band tail. In order to evaluate the ground-state energy
contribution to the DOS we have to take the limit t —eo

we obtain for the 2D DOS deep in the excitonic band-tail:

- 1 1 -
pr(v)= [ﬁ W]G(V)e * (18)
L
with pre-exponential and exponential factors given by:
3
(Vi+av -1)"*(vivav +3)"
a(v)= (19)

29!27:3!2
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I ;
b(v)= (VTFav -1 Visav +3) . o
where we have introduced a dimensionless quantity:
&=t @)

T2
1
In order to calculate the optical density function, we

rewrite (9) in the form of a functional integral over all
possible potential fluctuations:

A(E) = [ DV W(V)S||*RY (R S(E~ E)

(22)
where (¥} is the probability of the random potential
distribution. Since in the low-energy range we shall be
interested only in the ground-state contribution to the
density of states (since we have taken the limit £ — oo
in obtaining it), we can consider that the main
contribution to the above integral comes from the ground
state exciton center-of-masswave function in a harmonic
potential well, i.e.

wR=(2) e

@3
where
_MQ ¢
TR T
(24)
and z is a variational parameter, the same as that
appearing in the band-tail DOS.

Therefore we can take the factor

2
[ dzR\y,,(R)l out
of the functional integral. The remaining functional
integral is, by definition, the band-tail density of states
pr(v). Substituting y and z from Eq. (29) and Eq. (22)
we obtain the followihg expression for the low-energy
tail of the optical density function:
4nl?

A(v) = m (V) (25)

2.2.2 High-energy limit

Let us consider now the calculation of the high-
energy tail of the optical density function. In order to
obtain the high-energy semiclassical Kane limit of the
general Pl expression for the 2D exciton DOS near to the
band edge it is necessary to take the limit ¢ — 0 of Eq.
(14) which corresponds to retaining only high-energy
excitonic states in the DOS. Introducing dimensionless
variables &',V we get: |

1
1 -5 v
- 4
V)= ——————e T D_
px(v) 2 2 1 7&’7
where D, is the parabolic cylinder function of order -1.
In the opposite extreme - at high enough energies the
exciton c.o.m. wave functions F,(R) are close to plane

waves. According to [16] the exciton states close to the
delocalized states can be described quite satisfactorily by
choosing the c.0.m. envelope wave function of the form:
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We shall consider that the main contribution to the
configurational average in Eq. (9) at high energies is given
by states with an equal shape of the envelope wave function.

Therefore, similarly to the first case (deep in the band
tail) we can take the matrix element out of the ensemble
averaging and the remaining average gives the semiclassical
Kane 2D-exciton DOS Eq. (27).

After directly calculating the matrix element we obtain
the following general expression for the optical density
function at high-energies:

(26)

|+ L
i 1 (s’ ‘ﬁ'] v
A(V) = 312 2 € D"l ,' ’
2 ‘\[E }{‘ EL ‘g (23)
from which the following two limiting cases,

corresponding to the semiclassical Kane band tail and the
free-exciton (continuum states) 2D DOS can be considered:

o
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If we take the limit V~> oo of the free-exciton DOS
since for the free excitons the difference between the energy of
the exciton c.o.m. and the mean potential energy E; is
expected to be much larger than the localisation energy £, ,
we obtain a pure Gaussian exciton lineshape:

i i 1!
A(V)=—‘2—8 v (4 } )
1E,
The dimensionless parameter 7.7 = z/2) depends on the

variational parameter z inttoduced in the calculation
procedure of the low-energy tail of the spectral density.

Av)= @9

(30)

2.3 Perturbation theory appreach for high-
energy tail of the optical density function
Let us calculate the high-energy tail of A(E) using the

perturbation theory. In this region the exciton center-of-mass
wave functions are close to plane waves.
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Using the perturbation theory in the high-energy
fimit we have:

[V(R)e“ 4R
AE) = é,gz(l o l4)60‘?-&(.)

(31)
Let us first calculate the average in the above
expression..Substituting  the  correlation  function

(V(R)V(R')) from (5) and performing the integration
by introducing the new variable X = R — R’ (because of

the translational invariance in the plane parallel to the
interface), we obtain:

(J V(R)e'K"Rd2R|2> = éLS:rLze'K' A G1)

After performing the integration over 2D in-plane
wave vector in (33) and introducing dimensionless
parameters, we obtain the following expression:

AW)= th‘:{:Lv2 e

G2

Ee™ 1 18(0,53665.0% +1.35851.v +0.81927)

Comparing Eq. (32) with the path-integral expression
(30) at high energies, we can conclude that the perturbation
theory result for the high-energy shoulder of the spectrum
decays faster than the semiclassical fimit of the path-integral
result, resulting in a broader spectrum.

3. Numerical Computations and Results

In Sec. 2 we have obtained using a path integral method
low-energy (given by Eq. (25), and (18), (19), (20)), and
high-energy Eq. (28) asymptotic expressions for the optical
density function and an altemative high-energy asymptotics
resulting from the perturbation theory Eq. (32). Since we are
interested in the spectrum across the whole energy range, an
interpolation  function between Eq. (25) and Eq. (32),
hereinafter referredto as case 1, and on the other hand -
between Eq. (25) and Eq. (28), referredas case 2, has to be
sought. The interpolation function in both cases has been
found by performing a nonlinear fitting procedure based on
the chi-squared minimization criterion using the proper
normalization:

A(v.8) = , .
0.23810.¢ T8N LV, 4 2.18072)
e 1.68249] v +2.66678

| g

In our calculations we have introduced basically two
disorder parameters, namely the variance (dispersion) of
the random potential o (or equivalently E) and the
correlation energy Er. In order to study the effect of
changing the comelation length of the potential
fluctuations on the optical absorption spectrum we have
fixed the variance at a value of 0=0.5 meV varying the
correlation energy (or equivalently the comrelation
length). The interval -of variation of the correlation
lengths has been chosen in conformity with the value for
the correlation energy E,=0.12 melV of Zimmermann [6],
which gives L=9.61 nm., i.e. L varies from 7 nm to 70
nm. The calculated optical density functions are
presented in Figures 2 (a, b).

o vensars 54485 |
v? +0.28551)7| 4.21614.F + 10.01300.873%3% (£ _ 0 40664 .edi.{o ki ]
( )[ { Yerl| Tz

casel

(33

-2 P
{E-Ep) /Er
100
80 :
= e " 1a50 nm
: A
5o s
T
20 f s
28 -0 0%
(E-2g} /EL

Fig 2. (a) 3D plot of the optical density function comesponding
1o case 2 vs the energy, normalized with respect 1o the exciton cosrelation
energy E,. and the correlation length £ (b) cross-sections of (a): plots of
the optic:ﬁ density function vs normalized energy corresponding to case 2
for =5, 10, 15, 20. 50 om.
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We have introduced the new variable /, according to:

L =12 . 1t can be seen (Figure 2) that increasing the
correlation length (or equivalently /) and approaching the
classical limit (i.e. L—e corresponding to perfect
interface) the optical absorption spectrum tends to the
free-exciton 8-peak. In the opposite limit - decreasing the
correlation length continuous broadening of the exciton
linewidth is observed, with a decrease in the peak
magnitude and low-energy shift of the maximum. [n this
case we approach the quantum case of strong screening of
the random potential fluctuations, which corresponds to
the white Gaussian noise potential, when exciton
localisation takes place resulting in the low-energy shift
of the exciton peak.

4. Conclusions

In this paper we have developed a semi-analytical
quantum-mechanical description of the optical absorption
spectrum for 2D-excitons in a rough QW taking intg
account the exciton localisation in the random potentiai
fluctuations at the interface. The proposed method is
based on the path-integral technique for calculating
densiry of states in disordered systems. In this model the
exciton ¢.o.m. motion near the interface in the field of the
random individual scattering potentials, generated by
local well-thickness fluctuations is considered. Gaussian
statistics for the random distribution of the fluctuation
potential is assumed. Asymptotic expressions for the
low- and high-energy tails of the optical density function
are obtained and alternative high-energy tail asymptotic
using the perturbation theory is also presented. By using
a nonlinear fitting procedure we have found an analytical
interpolation function joining the two limiting
asymptotics (forboth cases under consideration) for any
value of the variance of the random potential.

The calculated spectra exhibit the typical features
observed in other methods of optical absorption
calculations, such as the pronounced asymmetric shape,
broadening of the excitonic line and apparent low-energy
shift of the maximum. Using the fitting parameters to the
time-resolved experiments [8] obtained in [6] =
comparison between the FWHM inferred from fully path-
integral calculations and the calculations using
perturbation theory for the high-energy tail, has been
performed. The comparison shows a much broader
spectrum resulting from the fully path-integral approach
with respect to the perturbation theory spectrum. This is
due to the contribution of the localized exciton states in
the high-energy tail of the spectrum, resulting from the
semiclassical Kane tail in the density of states, which is
absent within the perturbation theory approach since only
the free-exciton states are taken into account there. In
both cases under consideration we have found a
logarithmic dependence of the FWHM on the variance of
the random potential.

Our results for the effect of the variation of the correlation
fength on the optical density function are consistent in both
classical and quantum limits, tending to the free-exciton peak
at large correlation lengths and monctonically broadening in
the quantum limit. The proposed method of calculation is
retatively simple, since it uses analytical expressions for the
optical density function across the whole energy range.
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The optical density function is calculated in a single quantum well for two-dimensional excitons moving in
" a random potential in the interfacial plane generated by fluctuations of the quantum-well thickness. Assuming
Gaussian statistics for the random potential distribution, we have applied the path-integral approach and
obtained in the adiabatic approximation two asymptotic analytical expressions for the low- and high-energy
tails of the optical absorption spectrum. The high-energy tail of the exciton absorption line is also calculated
using the perturbation theory. In order to obtain the spectrum across the whole energy range an analytical
interpolation formula is found between the asymptotic expressions in the two cases, taking into account the
proper aormalization of the spectral function. The calculated optical density function is asymmetrically broad-
ened, the magnitude of the peak is reduced, and the maximum is shifted to lower energy in both cases
considered, as the disorder increases, in agreement with other theoretical results. Using the fitting parameters
“to the time-resolved photoluminescence data of Zimmermann [Nuove Cimento D 17, 1801 (1995)], we find
that the path-integral method leads to results for the spectral widths (full widths at half maximum) that are
closer to those experimentally observable, as compared with results inferred from the perturbation theory
approach, This can be attributed to the additional contribution of the localized exciton states from the Kane
band tail in the former method. The effect of varying the correlation length (at a fixed depth of the random
potential fluctuations) on the optical density function is also studied.

L. NTRODUCTION

The effect of in-plane interface disorder on the optical
propeities of two-dimensional (2D) excitons is currently be-
ing studied with renewed interest due to its persistence in
both cw and time-resolved experiments. In narrow quantum
wells (QW's) the interfacial disorder generates potential
fluctuations resulting in band tails in the exciton density of
states composed from localized states. Due to the static dis-
order the optical response of the Wannier excitons in QW’s
exhibits significant broadening and distinct asymmetry of the
exciton line manifested by mixed Lorentz-Gaussian line
shapes.! Modification of the exciton radiative lifetime and of
the corresponding photoluminescence spectra is also pre-
dicted as a consequence of the presence of interfacial disor-
der and exciton localization.™ In addition to the influence on
the line shape, a substantial Stokes shift between the exciton
lines in absorption and photoluminescence spectra is ob-
served at low temperatures® due to interface roughness.
These phenomena can be viewed as effects of dephasing, or
partial breakdown of temporal coherence. As has been
pointed out in Ref. 5, the static disorder by itself induces no
dephasing since all scatiering processes are elastic. On the
other hand, since the disorder produces partial exciton local-
ization (due to the band-tailing phenomenon) this in turn
results in inhomogencous distribution of the exciton ener-
gies. The incident pulse excites all oscillators in phase, but

0163-1829/2000/62(8)/5079(13)/$15.00 PRB 62

the excitons with different energies have different phases and
they interfere with each other; this can be termed disorder-
induced dephasing,

Disorder can also be considered as the origin of momen-
tum broadening and resonant Rayleigh scattering. % The ef-
fects of the disorder and the exciton inhomogeneous broad-
ening on time-resolved optical spectra are currently being
extensively investigated (see, e.g., Ref. 5). Disorder is re-
sponsible for the finite rise time in the time-resolved behav-
ior of secondary radiation (Rayleigh scattering and
luminescence).¥!! These phenomena imply scattering and
partial breakdown of spatial coherence.

The microscopic origin of the interface disorder is related
to interface roughness (steps or islands) and atomic interdif-
fusion, e.g., the cationic exchange in GaAs/Al,Ga,_,As,
which occurs for thermodynamical reasons and results in
compositional fluctuations. We shall focus our attention on
the statistical well-width fluctuations arising from local
thickness fluctuations during crystal-growth processes. The
Fourier spectrum of the interfacial roughness contains short-
and long-wavelength components, the latter related to the
atomically smooth growth islands {with lateral dimensions
exceeding the exciton Bohr radius) separated by one-
monolayer steps that have been experimentally observed in
GaAs/Al Ga, _,As quantum wells by the cathodolumines-
cence technique.'? The photoluminescence spectrum is very
sensitive to the size of the islands. For large enough islands

5079 ©2000 The American Physical Society
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splitting of the exciton linewidth is observed (see Ref. 13 and
references therein). However, in this paper we shall be inter-
ested in the small-island-size regime resulting in rapid inter-
facial fluctuations.

The classical treatment of exciton motion in a disorder
interface potential is unable to explain the inhomogeneous
broadening and consequent asymmetry of the exciton lines in
2D.1%1% Early attempts at obtaining analytical closed-form
descriptions of the exciton spectra in the presence of disorder
within the quantum-mechanical theory were restricted to ob-
taining the spectral density function in one dimension with a
specificd type of statistical random potential distibution'é
{e.g., 2 white-Gaussian-noise potential). Most of the present
theoretical studies are based on the solution of Schrodinger’s
equation for the exciton center-of-mass {c.m.) moton.2%1713
Within this approximation the assumption that the disorder
does not affect the exciton internal degrees of freedom™ has
been made, which is fulfilled provided that the band-edge
fluctuadon amplitude along the QW plane is smaller than the
exciton confinement energy. The latter represents a reason-
able assumption, from the experimental point of view, since
it is valid for high-quality samples. Zimmermann? solved the
Schrodinger equation for the exciton ¢.m. motion in a ran-
dom potential by considering an expansion of the potential
fluctuations due to the variation of the well width up to low-
est order using the transfer matrix method. The exciton op-
tical density function in a one-dimensional Gaussian random
potential (an exciton in a rough quantum wire) has been
calculated using Dyson’s integral equations for the probabil-
ity densities.’ The calculated spectra exhibit a distinet asym-
metry and broadening, with the maximum shifted slightly to
lower energies, which gives rise to dephasing. Generally,
there are fundamental difficulties in solving the problem in
2D and the results in 1D are usually taken as a model for the
asymmetric line shape of 2D QW excitons. However, it is
likely that such a simplified approach is not be applicable'®
in modeling real 2D exciton spectra.

A guantum-mechanical theory of the influence of disorder
on free-particle motion was developed in Ref. 17 using a
Green’s function expansion with respect to the Fouder trans-
form of the binary conrelation function of the random poten-
tial fluctuations. An analytical formula was derived for the
asymmetrically broadened and shifted spectral function, and
numerical calculations were performed for Gaussian fluctua-
tions in 1D and 2D using the linear optical susceptibility.
Another numerical method for optical absorption in quantum
structures was proposed in Ref. 18. It is based on real-space
representation of the Hamiltonian and time-dependent solu-
tion of the Schrodinger equation and calculation of the opti-
cal susceptibility as an injtial-value problem. The method has
been applied to excitons on rough interfaces and the caleu-
lated spectra show that the 1D model gives only a very rough
approximation to the line shape in 2D.

The effect of inhomogeneous broadening on the exciton
absorption line was studied with a semiclassical model in
Rel. 5, where the exciton resonance frequency was assumed
1o have a Gausstan distribution. The absorption line shape of

a single QW, within the framework of the linear nonlocal
response theory was caleulated for both homogeneous and
inhomogeneous broadening in 1D, resulting in Gaussizn tails
of the inhomogeneous broadened spectrum. Since this repre-
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sents a semiclassical treatment, only symmetric line shapes
are produced.

The problem of the coupling of the relative and ¢.m. mo-
tions of the electron-hole pair by the disorder potential has
been tackled by means of a Green's function theory approach
to the optical response of disordered semiconductors pro-
posed in Ref. 20. As an application calculation of the linear
optical properties of a semiconductor QW with interface
roughness was performed. Due to the anisotropy of the QW
structure, the absorption spectum depends on the angle of
the incident light with respect to the QW plane. In order to
account for the simultaneous influence of the propagation
and disorder, Maxwell's equations were included in the
analysis. The linear susceptibility was obtained from the
configuration-averaged-polarization Green's function. The
optical absorption spectra both parallel and perpendicular to
the QW were calculated. An asymmetric shape and a slight
redshift were found for the in-plane 15 excitonic resonance.

In this paper we aim to develop a semianalytical
quantum-mechanical description of asymmetric exciton line
shapes, line broadening, and low-energy shift of the optical
absorption spectrum for 2D excitons in a QW, taking into
account the exciton localization in the random potential fluc-
tuations at the interface. The latter is achieved by applying
the Feynman path-integral method for calculation of the
band tail and semiclassical exciton density of states. Qur
approach will mainly follow Ref. 2, where two asymptotic
expressions for the optical density function for the high- and
low-energy tails of the absorption spectrum were obtained.
The high-energy tail of the spectrum calculated in Ref. 2 was
obtained using perturbation theory and the low-energy tail by
the optimal fluctuation technique,’'** assuming a white-
Gaussian-noise correlation function. Analytical interpolation
formulas joining the two asymptotic expressions have been
found for the optical absorption spectrum in the whole en-
ergy range.

In what follows, we shall show that such a semianalytical
approach tumns out to be more advantageous compared to the
pure numerical computations in 2D,'® and implies linewidths
closer to those experimentally observed. In distinction from
the method of Efros and Wetzel* we caleulate the optical
density function using the general path-integral 2D exciton
density of states, assuming a Gaussian random potential dis-
tribution and a Gaussian binary correlation function. Qur cal-
culations are based on the expression for the 3D electron
density of states that was derived by one of us® (V.S.) using
the Feynman path-integral method and was further general-
ized for the d-dimensional case in Ref. 24, As limiting cases
of the general path-integral expression for the exciton den-
sity of states in 2D, we have obtained the Iow- and high-
energy tails of the optical absorpiion spectrum. Thus, in the
high-energy Limit, in contrast with Ref. 2, we account for the
localized exciton states in the semiclassical Kane band
tail, 2% which in tum contribute to the high-energy density
of states and high-energy tail of the absorption spectrum.
Interpolation between the two asymptotics has been per-
formed for an optical density function depending on twp
variables (energy and the variance of the random potentiaf),
thus obtaining the full 3D profiles of the optical absorpticn
as a function of the disorder (represented by the variance of
the random potential fluctuations). Finally, a full 2D excitan
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absorption spectrum calculation is performed. It should be
noted that our path-integral approach differs from all other
approaches by allowing us to treat on an adequate basis both
the short- and long-range correlations in order to account for
the whole spectrum of the fluctuating potential.

The outline of the paper is as follows. In Sec. II we de-
scribe the theoretical model and the analytical calculations,
respectively, for the path-integral approach and the high-
energy spectrum tail calculation using the alterative pertur-
bation theory approach. In Sec. III numerical results for the
caleulated optical absorption spectra are presented, and the
influence on the spectra of independently varying the two
disorder parameters is studied. Comparison with time-
resolved photoluminescence data is also made. Section IV
contains concluding remarks.

1. THEORETICAL MODEL AND ANALYTICAL
CALCULATIONS '

A. Optical density function

We shall consider the motion of a 2D exciton in a random
potential whose wave function according to Ref. 27 can be
represented by the product

W(r,.r)=T(R)e(p) x(z) xn(zs)s (1)

where £, 3(p, nT..4) are the electron and hole coordinates,
respectively in plane and perpendicular to the plane of a
quantum well, p=p,~p, is the ccordinate of the relative
motion of the two carriers, R=(m,p,+m,pp )/ M is the ex-
citon's c.m. ¢oordinate, and M =m_ +myy is the total heavy-
hole exciton mass, m,,my, being the electron and heavy-
hole masses parallel to the interface. W(R) is the exciton’s
c.m. wave function describing its motion in the quantum-
well plane and x.(z,) and x4(z,) are the wave functions for
electron and hole motion in the z direction (perpendicular to
the interfacial plane), which for the electrons {or holes) only
is that of a particle in a one-dimensional guantum well. ¢(p)
is the exciton wave function describing the in-plane relative
metion of the electron and hole, which in the pure 2D case is
given by

—oia¥
e~ 2Pag,

o{p) a ; \/ﬁ
where af=e k% ue’, €, is the semiconductor dielectric
constant (assumed equal for both materials of the QW), and
p=m,my/M is the reduced effective mass.

Within the adiabatic approximation we shall assume that
the exciton line is slightly broadened, ie., the linewidth is
smaller than for the 2D exciton binding energy and the en-
ergics of the electron and hole quantization along the z axis
within the well. Therefore the solution for the exciton wave
function can be factorized out and thus we end up with a
Schrodinger equation for a particle of mass M in a random
adiabatic potential:

ig2
[— 54 +V(R)]¢(R)=Ew(m. @

Our model is aiming to find the spectral function of a
single particle (the exciton center of mass) in a field of N
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AlGa,_As v

z

FIG. 1. Plot of the random potential V(R) experienced by the
exciton c.m. in the interfacial plane of a single quantum well (R is
the 2D in-plane c.m. coordinate) varying about the average poten-
tial of the random system E,. Along the 2 axis perpendicular to the
interfacial plane the alternating layers of Al,Ga, . As and GaAs are
represented, showing the potential profile of the quantum well (L
being the width and V), the quantum-well depth). The smoothed
potential over the characteristic size of the exciton c.m. envelope
wave function (Ref. 29} V(R) is also represented; E ; is a local
low-energy level of the excitor c.m., localized in the minimum of
the smoothed potential.

scatterers confined in an area § at the interface during its
motion near the disordered interface of the quantum well
obeying the Hamiltonian

A=A+ V(R), (3)

where Ay is the unperturbed Hamiltonian of the ordered sys-
tem without randomness and the random in-plane potential
V(R)=Zv(R—Ry;) (Fig. 1) is a superposition of individual
scattering potentials v{R— Rp) representing the 2D random
potential generated at a point R(x,y} in the heterojunction
interfacial plane by the local well-width fluctuation located
at Ry;(xg;.¥g:) in the plane. The statistical properties of the
random potential energy distribution are characterized by its
moments. We shall assume a Gaussian statistical distribu-
tion, which is completely described by its first and second
moments, i.e., by the mean potential energy and the binary
correlation function:

W(R—R')=(V(R)V(R"))

=Mz j dRou(R—Ro)u(R’ = Ryg)

=g oTIR-RIL, )
where N3p=N/S is the surface density of the scattering cen-
ters, L is the correlation length of the random poteatial fluc-
tuations, and §; is the variance of the random Gaussian po-
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tential. The quantity £y, having the dimension of energy
squared, was first introduced by Halperin and Lax™ and rep-
resents a measure for the depth of the typical potential well,
In the 2D case §£; is given by

_ {wL? N
§1=Np| ——|vp- {6

In this expression we have introduced the strength (or ampli-
tude) vg of the individual scattering potentials according to

(R~ Rg)=vge IR~ Ralt* Q)

and L=1vi. )
The spectral density function for a 2D Schrodinger par-
ticle in a random potential is defired according to Ref. 16 by

A(K,,E)= é(E f e ® Ry (R)AR -5(5—15‘)) .

(8)

where ¥, (R) is the center-of-mass wave function of the ith
exciton state with a corresponding energy E;, K is the 2D
exciton wave vector in the plane parallel to the interface, and
§ is the normalization area. The above averaging is per-
formed over all possible configurations of the random poten-
tial fluctuations {{: - -} indicating an average over the statisti-
cal ensemble).

Since we shall be interested in the optical absorption
spectrum, we wish to calculate the optical density function
that represents the K;=0 value of the spectral density Eq.
(8):

2
A(E)=§,—<Z ‘ f dR¥ (R) 5(5—5,-)). ©)

Then the absorption coefficient can be written as

a(w)=aeA(E), (10

where ey is a slowly varying function of the excitation fre-
quency w (see, e.g., Ref. 28).

B. Path-integral approach for calculation of the optical
density function

In order to calculate the optical density function we need
to obtain the 2D excitonic density of states (DOS). Reformu-
lating the problem in path-integral (PI) terms, we need to
calculate the average (over all random potential configura-
tions) exciton one-particle propagator

G(R; Ry30= [ DIRGITE™ ()
satisfying the boundary conditions R(0)=R,;, R(f)=R,,
where § is the action of the random system, resulting from
the averaging over all impurity configurations. § is given
up to the second-order moment of the random potential dis-
tribution by

' M. ” ] ¢
S=j°dr(-5R'(r)—Eu+ -2iﬁ-J-Od0'W[R(T)—R(0')] .
(12)
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The density of states per unit area is given by the Fourier
transform of the diagonal part of the configurationally aver-
aged one-particle propagator:

L e
PEY=5— | dre®™G(0,0:0). (13)

Therefore the problem of a density of states calculation
within the framework of the path-integral approach consists
in evaluating the exact propagator by integrating over all
possible paths using 5. As was initially pointed out in Ref.
23, this step can be approximated by introducing a trial ac-
tion Sy based on the harmonic oscillator potential to average
the relevant variables over paths. The perurbation §— 5 is
then calculated using these approximate averages. This pro-
cedure is analogous to the use of a ‘‘universal wave func-
tion’’ by Halperin and Lax.*® The harmonic oscitlator poten-
tial is equivalent to modeling the real wave function by a
quadratic function (Gaussian). The use of a harmonic tral
action is equivalent to assuming that all the fluctuating po-
tentials have the same quadratic shape. Thus the problem of
the density of states calculation becomes exactly solvable if
the full action is approximated by a nonlocal harmonic os-
cillator *‘irial™ action of the following form:

r M. ﬂz ! 5
So= Ldr[?Rz(f)-—E—J‘odam(f)"R(O‘)" .
(i4)

The nonlocality of the trial action means that the harmonic
oscillator can be anywhere in space. The nonlocal harmonic
oscillator frequency {2 is used as a variational parameter to
be adjusted as a function of energy subject to a variational
principle.

The average propagator can be rewritten in terms of the
trial action, using the path-integral normalization, the trial
action introduced above corresponding to a zero-order ap-
proximation &g to G, By keeping only the first-order term in
the cumulant expansion, a first-cumulant approximation G,
to & is obtained (see Refs. 30 and 31 for details), whose
diagonal elements give the density of states (within the first-
cumulant approximation).

The DPOS per unit volume in the first-curnulant approxi-
mation for a2 Gaussian random potential with a Gaussian bi-
nary correlation function was derived in Ref. 23 and gener-
alized in Ref. 24 for the case of a d-dimensional system:

£y rd M \P Qe )
PEY=5% | amm) \Tsmam
difr Qe
Xex E -E—Col-'z— 1

1 ! ; —dn i
_z—ﬁIEerodxj(x:ﬂ) -+'E(E_Eo)f

(15)

where {} is a variational parameter to be determined and the
function j(x,f2) is given by
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. L+ i 4 sinQx/2sin{Q2(r—x)]/2
J=\1t e S QI72
CEp sin Qx/2sin[Q{r—x)}2
—(H.SIE';; sin{2/2 (16)
where
Eq=#iQ and E =A*2ML? (17

is the correlation energy (the kinetic energy of localization
over a distance L, the correlation length of the random po-
tential fluctuations), representing a measure of the exciton
confinement. It has been previously shown?®? that in a small-
time approximation the expression for the propagator
[equivalent to retaining only high-exciton-energy states in
pi{E) and physically understood by considering the
“pseudo’” Heisenberg uncertainty relation Er==£] leads to
Thomas-Fermi semiclassical results while a large-r approxi-
mation reproduces the results of Halperin and Lax® deep in
the band tail.

Two limiting cases of energies in the band tail can be
considered. At large negative energies deep in the band tail
(E— Eg— — ), the so-called *‘quantum case’” is valid, for
which the following condition is satisfied: A®L, where A
=hiI(2MJE[)Y? is the Broglie wavelength of the free exci-
ton and L is the correlation length, i.e., there are no exciton
states in a region with the size of the characteristic potential
well. The other limiting case (|E — E¢| =) corresponds to a
“‘classical well’* containing many exciton states (i.e., A<€L).
Therefore two analytical asymptotic expressions for the 2D
exciton DOS (d=2) can be obtaired from the above general
expression in the so-called low-energy Limit, i.e., deep in the
excitonic band tail, and in the opposite extreme of high en-
ergy, i.e., near the band edge.

1. Low-energy limit

We shall be interested in calculating the optical density
function for Ky=0 in the low-energy tail, i.c., the region of
large negative energies below the unperturbed band edge. In
what follows we shall apply the path-integral approach for
2D DOS calculations in the presence of a disorder potential™
in determining the low-energy tail of the spectral function.

Let us consider first the DOS calculation in the excitonic
band tail. As has been discussed in the previous section, in
order to evaluate the ground-state energy contribution to the
DQOS, the limit r—o of the integrand in the general DOS
expression™~* (15) is taken. The 2D exciton DOS deep in
the band tail is obtained from that limit, by letting E—
—=, Introducing the dimensionless variational parameter z
=Eq/E; and energy normalizing with respect to the cormre-
lation energy according to

(18)
the following expression in 2D is obtained:

E 2
pr(v)=[(f) /fi“

a(u,z)e_‘E:(v":)ﬂE‘w (19)
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where the preexponential factor and the factor in the expo-
nent are obtained analogously to the 3D derivation® and are
given by

i
ﬂ(V,Z)=WZm(z+4)m(%+V), (20)

2
b(u,z)=(~;-+u) (1+%]. 1)

In order to obtain the variational parameter z we need to
minimize the DOS exponent according to Ref. 29, which in
turn leads to the following quadratic equation in the 2D case
considered:

22427—4v=0. 22)
Keeping only the positive root

z=yl+4pv—1, (23)
which has physical meaning, and substituting it into Eqgs.
(20} and (21), we obtain

(VI+30=1P2(1+4v+3)%?

a(v)= 2T, , (24)

]
b(v)=?(\/l+4v~1)(\fl+4v+3)3. (25)
Introducing the dimenensionless quantity

g7
EL !
we obtain for the 2D DOS deep in the excitonic band tail

g (26)

. 1 1 "
Pr(v)=('EEz 7 )ﬂ(v}e—”(")’r"'é . 27

In order to calculate the optical density function, we re-
write Eq. () in the form of a functional integral over all
possible potential fluctuations:

1
A(E)= 3 f bDv W(V)E |f dR¥V(R)|*8(E—-E}),
I

(28)
where W(V) is the probability of the random potential dis-
tribution. The excitonic states deep in the low-energy tail are
produced by deep and narrow random potential fluctuations
and therefore the energy distance between the ground state
and the excited states of the well is greater. Therefore the
contribution of the excited states can be neglected deep in
the band tail. In the low-energy range ((E--EgWE;— —,
or, equivalently, v#1) we shall be interested only in the
ground-state contribution to the density of states (since we
have taken the limit r—% jn obtaining it), and we can con-
sider that the main contribution to the above integral comes
from the ground-state exciton center-of-mass wave function
in a harmonic potential well, i.e.,

Ird
Wo(R)= (2;’) e ", (29)
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where
Mz
LR T2 (0

and 7 is a variational parameter, the same as that appearing in
the band-tail DOS, and is given by Eq. (23). Therefore we
can take the factor | fdRW¥o(R)]? out of the functional inte-
gral. The remaining functional integral is, by definition, the
band-tail density of states py{»). Therefore

z 2
PI(E)=(T)PI(E)- (31

Substituting y and z from Egs. (30} and Eq. (23) we obtain
the following expression for the low-energy tail of the opti-
cal density function:

A(E)=' j dR¥(R)

A )-_.__LLZ_ '(32)
(V "-(W_I)Pr(l’)

2. High-energy limit

Let us consider now the calculation of the high-energy tail
of the optical density function. In order to obtain the high-
energy semiclassical Kane limit of the general PI expression
for the 2D exciton DOS near the band edge, it is necessary to
take the limit —0 of the integrand of Eq. (15), which cor-
responds to retaining only high-energy excitonic states in the
DOS. Taking into account that lim,_ g j(x,w)=1, after inte-
gration over f this gives

l — 2 Eo“E
pK(E)=We(EO E) f4€LD_1( \/g_ ) (33)
L

where D, is the parabolic cylinder function of order —1.
Finally, introdacing dimensionless variables ¢’ and v we get

G

1 v

P = s3rmp e \/.g_) (%)

In the opposite extreme, at high enough energies, the
problem of finding the proper variational exciton wave func-
tion is not a straightforward one, since the high-energy states
are descnbed by noncompact fractal-shaped wave
functions®® and the corresponding optical absorption spec-
trum results from many small contributions due to those
states. However, it is clear that the exciton c.m. wave func-
tions ¥(R) have to be close to plane waves, According to
Ref. 34, the exciton states close to the delocalized states can
be described quite satisfactorily by choosing a ¢.m. envelope
wave function of the form

. 2\
W(R)=Ape'R-7R, Ao=(—:-) i (35)

We shall consider that the main contribution to the con-
figurational average in Eq. (9) at high energies is given by
states with an equal shape of the envelope wave function,
namely, Eq. (35). In what follows, we shall show that this
particular choice of the envelope wave function results in
realistic optical absorption spectra.
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As in the first case (deep in the band tail) we can take the
matrix element out of the ensemble averaging and the re-
maining average gives the semiclassical Kane 2D exciton
DOS, Eq. (33).

The matrix element can be directly calculated, yielding

l j dR‘If(R)’ ( ) ~Knev (36)

Therefore

A(E)= [ 7) “Kn6Y (). 37

Substituting Kj=2M(Ey,—Eq)/A* and introducing the di-
mensionless energy according to Eq. {18), we obtain

A(u)=(?§)e-””‘6ﬂ‘px( v, (38)

where the semiclassical 2D exciton DOS is given by Eq
29).

Finally, we obtain the following general expression for
the optical density function at high energies:

i

1
Alvy= ——
() 232 yL°E

1
2
chp[ v (_—2-(474 )+

el {55

In order to obtain the semiclassical Kane band tail we take
the limit |E—Eg|—, ie., (E=Eg)/VE,<€—~1 or v/E
21, and taking into account the asymptotic behavior of the
parabolic cylinder function for large argument values,

namely, lim,_,, D (z)~e~* 4,2 we obtain

(39)

1 \/-' 1 1 1
R —
A o LT VEL "[ g ((m’)’*ze')]‘
(40)
The opposite extreme, E—Ey>0, E—Ey—, ie., (£

—~Eg)IE 31, vIJE <1, yields the free-exciton (continuum
exciton states} 2D DOS (see, e.g., Ref. 35)

p“(v)=-i2- 1+e —I:-‘ . 41)

Therefore, the optical density function acquires the form

Alv)= ——,—[ n{ \/_. } =N (49)
i

Finally, we obtain the following two limiting cases:
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1 VE 1

i 1
— 77 Te&xp — 2(—1—7-{-—,)
227 YLEL v P{ layrhT 2

(v)=
1
Z‘YL E;_

If we take the limit v—ce of the free-exciton DOS [sec-
ond line of Eq. (43}}, since for the free excitons the differ-
ence between the energy of the exciton c.m. and the mean
potential energy Eq is expected to be much larger than the
localization energy £y, we obtain a pure Gaussian exciton
line shape:

1 2 2
—_ -4 yl)
A(v)—-m—r—[_ELe . 44)

The dimensionless parameter ¥L2=2z/2 in Eq. (43) depends
on the variational parameter z introduced in the calculation
procedure for the low-energy tail of the spectral density and
is given by Eq. (23).

Al

(i §
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LW RNG R
A T

.54'3 5
{E-EqVEL
(a) &
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- 3 080;_\ L'=0.005
< 4 +
s 4 R |
o =t N NN [l| oa0s
\ /
L] y,_ o —_— A
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(o) (E-Eg)/E,

FIG. 2. Plot of the normalized optical density function vs di-
mensionless energy {E—E,)/E; and dimensionless disorder param-
eter £ calculated on the basis of the perturbation theory high- and
low-energy tails, inferred from the path-integral approach (referred
to as case 1 in the text). (a) 3D trace plot; (b} cross sections of (a)
at ¢ =0.005,0.405,0.605,0.805,1.005,2,3,4,5. The corelation en-
ergy has been kept constant at £;=0.12 meV.
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43)
H—cr[' —_— He‘”z’(“ﬂ:’:. <1,
Jg_' Jg_‘

C. Perturbation theory approach for high-energy tail of the
optical density function

One might expect that the high-energy behavior of the
optical absorption spectrum at very weak disorder would be
limited by the perturbation theory results accounting for de-
localized states in the spectrum. In order to check this, let us
calculate the high-energy tail of A(E) using perturbation
theory. In this region the exciton center-of-mass envelope
wave functions are nearly plane waves.

Using the perturbation theory in the high-energy limit, we
have
1 [ d*Ky {{JV(R)e™ RdR]?)

A5 emr T EL

Let us first calculate the average:
z
(U V(R)e' S R4R )=f de dR’ %y (R-RY)

X(V(RYV(R")). (46)

Substituting the comrelation function {V(R)V(R')) from Eq.
(5) and performing the integration by introducing the new
variable x=R—~R' (because of the translational invardance in
the plane parallel to the interface), we obtain

(

After performing the integration over the 2D in-plane wave
vector in Eq. (45), finally we obtain the following expres-
sion:

KE-Ex). (45)

J V(R)e™R4R -)=§stL2e“K3L’“. @7

&M 12 e~(2ML2m1)E

Introducing the dimensionless energy according to Eq. (18)
and the dimensionless parameter £’ according to Eq. (26) we
can rewrite it as

?

A(v)= 4—;§Lv e, 49)

Comparing Eq. (49) with the path-integral expression (44)
at high energies, we can conclude that (for strong enough
disorder) the perturbation theory result for the high-energy
shoulder of the spectrum decays faster than the semiclassical
limit of the path-integral result, resulting in a broader spec-
trum. As will be shown in Sec. III, for weak disorder the
high-energy side of the spectrum tends to the perwurbation
theory results, while on increasing the disorder the departure
of the path-integral result from that of the perturbation theory
becomes increasingly pronounced.
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FIG. 3. Plot of the normalized optical density function vs di-
mensionless energy (E — Eg)/E; and dimensionless disorder param-
eter £ calculated using the path-integral method for both the high-
and low-energy tails of the spectrum (referred to as case 2 in the
text). (a) 3D trace plot; (b) cross sections of {a) at ¢
=10),005,0.405,0.605,0.805,1.005,2,3,4,5. The correlation energy
has been kept constant at £,=0.12 meV,

1. NUMERICAL COMPUTATIONS AND RESULTS

In Sec. II we have obtained using a path-integral method
low-energy [given by Egs. (32), (27), (24), and (25)], and
high-energy [Eq. (39)] asymptotic expressions for the optical
density function and an altermative high-energy asymptotics
resulting from the perturbation theory [Eq. (49)]. Since we
are interested in the spectrum across the whole energy range,
an interpolation function between Egs. (32) and (49), here-
inafter referred to as case 1, and also between Eqgs. (32) and
Eq. (39), referred to as case 2, has to be sought. The inter-
polation function in both cases has been found by performing
a nonlinear fitting procedure based on the ¥* minimization
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FIG. 4. (a} Plot of the optical density function corresponding to
case 1 vs energy, normalized with respect to the standard deviation
of the random potential JE: a measure for the magnimde of the
potential flucruations for different values of the standard deviation

£, =0.05,0.07,0.2.041,0.71,1,2.24 meV; the low-enrergy shift of
the maximum is clearly seen. The plots are calculated assuming a
constant correlation energy E;=0.12meV. (b} Plot of the opticat
density function corresponding to case 2 vs energy, novmalized with
respect to the standard deviation of the random potential VE; for
different  values of the standard  deviation V£,
=0.05,0.07,0.2,041,0.71,1,224 meV (all the plots are at E,
=0.12 meV).

criterion. Using the proper normalization condition for the
optical density function fulfilled for any value of the disorder
parameter £,

f A(v, £)dv=1, (50)

we obtain the following normalized interpolation functions:

( £ e~ WO TVIE (0,536 6502+ 1.358 51+ 0.81927)

A(v,€") =4

(v*+0.285 51)2[4.216 14E +10.013 00e"2%6 863" (£ — 0,406 64)crfc[

=, casel
0.544 35)]

g

, ., . (51
0.238 10~ 28307647 = 106505°/8" (1, 1 9 180 72)

. ( 1.682 49)
etric| ——
| VE

ve+2.66678

, case2
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FIG. 5. Plot of the optical density functions corresponding to case 1 (Al, solid line} and case 2 (A2, dashed line) as a function of the
normalized energy with respect to the standard deviation of the random potential fluctuations at different values of the variance: §;
=0,0025,0.0049,0.04,0.1681,1,25 meV? (all the plots are at E;=0.12meV).

In Figs. 2(a), 2(b), and 3(a) and 3(b} the 3D trace piots of
the normalized optical density from Eq. (50) as a function of
the dimensionless energy with varying disorder parameter
are shown for the first and the second cases, respectively.
The spectra have been multiplied by the correlation energy in
order to render them dimensionless. The exciton absorption
line influenced by the random potential in both cases exhibits
(i) a distinct asymmetry of the high- and low-energy shoul-
ders of the spectrum with respect to the peak value, (i)
monotonic broadening and decrease of the magnitude of the

exciton peak with increasing disorder, and (iii) shift of the
maximum to lower energies. The redshift is clearly seen in
Figs. 4(z) and 4(b) (for the first and second cases, respec-
tively) where the optical density function is plotted against
the energy in meV normalized with respect to the mms value
of the amplitude of the random potential fluctuations N/
while the disorder parameter £; is varied. On increasing the
standard deviation of the random potential fluctuations about
the mean, the exciton absorption line broadens, the intensity
of the spectrum decreases, and the peak shifts 1o lower ener-
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gies. The observed low-energy shift of the exciton peak with
the disorder parameter (representing a measure of the depth
of the random potential fluctuations) results from the fact
that an increasingly greater part of the excitons becomes lo-
calized in the minima of the potential relief with an energy
below the unperturbed band edge. The maximum of the ex-
citonic energy distribution is centered at an energy corre-
sponding to the exciton absorption peak. These results are
consistent with previously calculated absorption spectra, e.g.,
the numerical calculation using the Green’s function expan-
sion applied in the one-dimensional case,"” and with results
of Zimmermann® and linear response theory results.”™® From
the figures it can be clearly seen that on reducing the disorder
parameter the shape of the spectral line approaches 2 &-like
free-exciton peak (in agreement with the expected &-shaped
free-exciton spectrum). This confirms the ability of the
method to correctly obtain the free-exciton limit at zero dis-
order. Another feature of the calculated optical density spec-
trum is the sharp decrease of its intensity below £ ~1:see
Figs. 2(a) and 3(a)], i.e., for standard deviations of the ran-
dom potential energy about its mean value of the order of the
correlation energy £; . Above the correlation energy the de-
crease of the magnitude of the exciton’s peak is negligible
and it remains almost constant up to very high values of £’.
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FIG. 6. (a} Optical density function calculated with the pertur-
bation theory result for the high-energy tail and path-integral result
for the low-energy tail of the spectrum {cotresponding to case 1) vs
energy at V& =0.41 meV. The FWHM is denoted by w (E, is kept
constant at (.12 meV). {b) Optical density function calculated with
the path-integral result for both high- and low-energy tails of the
spectrum (corresponding to case 2} vs energy at £, =0.41meV,
The FWHM is denoted by w (£, is kept constant at 0.12 meV).
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This behavior can be explained by smoothing of the potential
fluctuations with a characteristic length greater than the cor-
relation length L.

In order to confirm the limiting behavior of the optical
absorption spectrum with the perturbation theory results for
weak disorder, we have plotted both high-energy spectra
with the same path-integral low-energy side in Fig. 5 at dif-
ferent values of the disorder parameter (variance of the ran-
dom potential fluctuations) £; . As can be seen there exists a
range of disorder up to ~ 0.05 meV? where both approaches
tend to the same high-energy tail; thus we can establish the
limit of applicability of perturbation theory. Above this value
the perturbations cannot be considered as small and the per-
turbation theory ceases to be valid.

In order to evaluate typical values of the full width at half
maximum (FWHM) inferred from the calculated spectra we
have taken the heavy-hole standard deviation and correlation
energy values, namely, v&;=0.41 and E;=0.12meV, ob-
tained in Ref. 7 by ﬁtting the time-resolved photolumines-
cence data of Wang et al.’® The calculated optical absorption
spectra are shown for two values of the variance, JEZ
=0.41 and 1 meV in Figs. 6(a} and 6{(b) and 7{(a) and 7(b)
(corresponding to the first and second cases considered, re-
spectively). The problem of determining the energy zero of

Vg, = 1 meV
i2
o /[\
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2 ]
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0
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FIG. 7. (a) Optical density function calculated with the pertur-
bation theory result for the high- energy tail and path-integral result
for the low-energy 1ail of the spectrum (corresponding to case 1) vs
energy at /&, =1meV (at & constant correlation energy £,
=0.12 meV). (b) Optical density function calculated with the path-
integral result for both high- and low-energy tails of the spectrum
(corresponding to case 2) vs energy at £,=1meV (at a constant
correlation energy E;,=0.12 meV).
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FIG. 8. Exciton absorption line width (FWHM) in meV vs vari-
ance of the random potential £ for the first (a} and second cases (b)
described in the text. The solid line represents a fit performed with
the function derived by forcing the spectral density Eq. (32) to a
Gaussian, taking the FWHM as the standard deviation (the exact
values of the coefficients are shown at the top of the graph; x=§;).

the spectrum is not a trivial one, as has been pointed out by
Efros Wetzel,2 but it has been shown to have an acceptable
solution by Thouless and Elzain.>® In order to determine the
energy zero, we have calculated the energy-zero shift due to
the disorder according to the expression [Eq. (9)] derived in
the latter, which is

. w* 1287 V?
Eo =E0_ pyy 1+In W2 » (52)

where in the 2D case it has been shown®-7 that the energy
zero of the path-integral DOS occurs at Eq=—4 V. In cal-
culating the energy-zero shift, we have taken into account
the previously established relation between the disorder pa-
rameters introduced within the tight-binding model and the
corresponding parameters in the path-integral approach, 3’
namely, the tight-binding matrix element, representing the
bandwidth V=E;, and the variance w?=§£;, The low-
energy shift of the peak can be clearly seen, as well as the
shift of the maximum to the left with increasing standard
deviation {from \/E,:=0.41 to 1 meV) of the random poten-
tial fluctuations,
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FIG. 9. {a) 3D plot of the optical density function cotresponding
to case 1 vs the energy, normalized with respect to the exciton
correlation energy £, and the correlation length { of the individual
potentials. (b) Cross sections of (a): plots of the optical density
function vs normalized energy comresponding to case 1 for |
=5,10,15,20,50 nm.

The exciton linewidths calculated from these figures are
w=0.46 and (.62 meV for the first case and w=0.63 and
1.37 meV for the second case. In order to evaluate the asym-
metry of the calculated spectra, it is convenient to define
high- and low-energy linewidths wye and wyg. The high-
energy linewidths from Figs. 6(a) and 7(a) are 0.235 and
0.32 meV, while the low-energy linewidths are correspond-
ingly 0.225 and 0.3 meV. Similarly, the high-energy line-
widths inferred from Figs. 6(b} and 7(b) are 0.33 and 0.7
meV and the low-energy linewidths 0.3 and 0.67 meV. For
both cases considered the high-energy linewidth is greater
than the low-energy one, reflecting the steeper decay of the
low-energy tail of the spectrum.

The exciton linewidths corresponding to the full path-
integral derivation {case 2) seem to be in better agreement
with the reported experimental widths than the ones with a
high-energy tail calculated using the perturbation theory
{case 1). We have compared the FWHM obtained at VE,
=0.41 meV (Fig. 6) with the exciton absorption linewidth of
a single quantum well at v£; =0.4 meV calculated in Ref. 5
(see Fig. 2). It should be noted that the second-case width of
0.63 meV is closer to the value w=0.75meV obtained from
Fig. 2 of Ref, 5. The observed agreement of the path-
integral-inferred optical density spectra with the experimen-
1al data and up-to-date theoretical models can be auributed to
the additional contribution of the localized exciton states
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FIG. 10. {a) 3D plot of the optical density function correspond-
ing to case 2 vs the energy, normalized with respect to the exciton
comrelation energy E; and the correlation length L. (b) Cross sec-
tions of {a): plots of the optical density function vs normalized
energy corresponding to case 2 for {=5,10,15,20,50 nm.

from the Kane band tail, while in the perturbation theory
method only the contribution of the completely delocalized
states is considered.

In Figs. 8(a) and 8(b} we have plotted the exciton absorp-
tion linewidth (FWHM) as a function of the variance of the
random potential £; , varying within the interval (0,1} for the
first and second cases (the solid lines represent a fit to the
data points). Both linewidths monotonically increase with
increasing disorder and the relative broadening correspond-
ing to the second case is greater than that for the first case.
The best fit 10 the data is achieved using a function derived
by forcing the spectral function from Eq. (32) to be Gaussian
with standard deviation given by the FWHM. The FWHM in
both cases depends to first order on the standard deviation
J—E of the random potential, with higher-order terms giving
rise to the asymmetric linewidth. Therefore instead of a nor-
mal (Gaussizn) distribution of the spectral widths, character-
ized by a FWHM of \2£;, we have obtained additional
terms responsible for the asymmetric shape of the spectral
function.

In our calculations (Sec. II} we introduced essentially two
disorder parameters, namely, the variance of the random po-
tential £, and the comelation energy Ey. In order 1o study
the effect of changing the correlation length of the potential
fluctuations on the optical absorption spectrum we have fixed
the variance at a value of \/f_,_=0.5 meV, varying only the
comelation energy {or equivalently the correlation length).
The interval of variation of the correlation lengths has been
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chosen in conformity with the value for the correlation en-
ergy £,=0.12meV of Zimmermann,’ which gives L
=9.61 nm, ie., L vares from 7 to 70 nm. The calculated
optical density functions are presented in Figs. 9{a) and 9(b}
and 10(a) and 10(b). In each figure represents a 3D plot (a)
and (b) the corresponding 2D sections at different values of
the correlation length; Figs. 9 and 10 are for the first and
second cases under consideration, respectively. We have in-
troduced the new variable /, according to L=[vZ, where L is
given in nanometers, It can be seen (Figs. 9 and 10) that
increasing the correlation length (or equivalently {) and ap-
ptoaching the classical limit (ie., L—® comesponding to
perfect interface), the optical absorption spectrum tends to
the free-exciton & peak. In the opposite limit {(decreasing the
correlation length) continuous broadening of the exciton
linewidth is observed, with a decrease in the peak magnitude
and a low-energy shift of the maximum. In this case we
approach the quantum case, which corresponds to the white-
Gaussian-noise potential, when exciton localization takes
place, resulting in the low-energy shift of the exciton peak. It
should be noted, however, that these resuits are in contrast
with the 2D optical absorption spectra calculated using linear
optical susceptibility theory, shown in Fig. 6 of Ref. 18.
where reduction of the correlation length reduces the FWHM
and increases the magnitude of the peak.

Te summarize, we believe that the classical limit of the
optical density function can be reached in two equivalent
ways, namely, either when the correlation Iength of the ran-
dom potential fluctuations tends to infinity at a fixed depth of
the potential fluctuations (as shown in Figs. 9 and 10} or by
decreasing the magnitude {depth) of the potential fluctuations
via §; while keeping the correlation energy (or equivalently
L) constant {as, e.g., in Fig. 5). In both cases we obtain as a
limiting behavior at zero disorder the free-exciton & peak of
the optical absorption, since when the perturbation potential
is switched off the exciton should move freely. Therefore we
expect that on approaching the classical limit the exciton line
shape will become more and more symmetric Lorentzian,
which at zero disorder should repreduce the & peak of free-
exciton absorption. The opposite quanturn limit is reached
either when L—0, at a fixed depth £ of the random poten-
tial fluctuations, or equivalently for energies deep in the ex-
citonic band tail at a fixed correlation length L. In the first
case the width of the typical potential well becomes increas-
ingly smaller, while in the second case the potential well
becomes deeper and steeper. Therefore increasing the disor-
der causes exciton localization to become more and more
significant deep in the excitonic band tail, thus giving rise to
Gaussian-Lorentzian-type asymmetric low-energy tails in the
optical density.

IV. SUMMARY

In this paper we have developed a semianalytical
quantum-mechanical description of the optical absorption
spectrum for 2D excitons in a rough QW, taking into account
exciton localization in the random potential fluctuations at
the interface. The proposed method is based on the path-
integral technique for calculating density of states in disor-
dered systems. In this model the exciton ¢.m. motion near the
interface in the ficld of the random individual scattering po-



PRB 62

tentials generated by local well-thickness fluctuations is con-
sidered. Gaussian statistics for the random distribution of the
fluctuation potential is assumed. Asympiotic expressions for
the low-and high-energy tails of the optical density function
are obtained, and an alternative high-energy-tail asymptotic
using the perturbation theory, limiting the absorption spec-
trum behavior at high energies and weak disorder, is also
presented. Within the path-integral formalism two disorder
parameters (characteristic energies) have been introduced,
namely, the variance of the random potential fluctuations,
representing a measure of the depth of the fluctuations, and
the correlation energy, representing a measure of the exciton
confinement. By using a nonlinear fitting procedure we have
found an analytical interpolation function joining the two
limiting asymptotics (for both cases under consideration) for
any value of the variance of the random potential.

The calculated spectra exhibit the typical features ob-
served in other methods of optical absorption calculatiqns,
such as the pronounced asymmetric shape, broadening of the
excitonic line, and apparent low-energy shift of the maxi-
mum, Using the fitting parameters to the time-resolved ex-
periments obtained in Ref. 7, a comparison has been made
between the FWHM inferred from fully path-integral calcu-
lations and the calculations using perturbation theory for the
high-energy tail. The comparison shows a much broader
spectrum at strong enough disorder resulting from the fully
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path-integral approach than from the perurbation theory
spectrum. This might be interpreted as due to the contribu-
tion of the localized exciton states in the high-energy tail of
the spectrum, resulting from the semiclassical Kane tail in
the density of states, which is absent within the perturbation
theory approach, since only the free-exciton states are taken
into account there. In both cases under consideration, we
have found the leading term in the FWHM dependence on £,
to be proportional to the standard deviation of the random
potential plus correction terms responsible for the asymmet-
ric line shape.

We have also studied the effect of varying the correlation
length of the random potential fluctuations on the optical
density function. Qur results are consistent in both classical
and guantum limits, tending to the free-exciton peak at large
correlation lengths and menotonically broadening in the
quantum limit. The proposed method of calculation is rela-
tively simple, since it uses analytical expressions for the op-
tical density function across the whole energy range.
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In this paper we derive the Magnus force from a model proposed by Ao and Thouless for treating the vortex
tunneling in a superconductor with pinning potential and dissipation. We formulate this problem using the real
time path integral and calculate the propagator exactly by first eliminating the x degree of freedom. The result
is an effective action which renormalized the pinning potential as well as biasing the poteatial with the time
dependence force which we identified as being the Magnus force, The fluctuation of the pinning potential is

also discussed. [S0163-1829(99)04037-0]

In the past decade there has been an advance in material
science which makes it possible to perform quantitative stud-
ies of the dynarruc effect such as vortex dynamics, e.g.,
quantum creep’ and anamolies in the Hall effect? This effect
plays an important role in the understanding of the mecha-
nism of the existence of the Magnus force. The argument for
the existence of 2 Magnus force was first proposed by Frie-
del, de Gennes, and Matncon3 and later devclopcd and ex-
tended by Nozieres and Vinen* by including pinning and
friction. Although the Magnus force is beheved to be a gen-

eral property of the vortex line, the phenomenonolomcal_

theory developed so far is still unsatisfactory.

The first microscopic theory that mes to explain the Mag-
fius force is due to Ao and Thouless.® They derived the Mag-
nus force by calculating the Berry phase for an adiabatic
motion of the vortex. They also found that the existence of a
Magnus force is a general property of the vortex line and is
not influenced by the presence of the disorder and magnetic
field. Since then there have been several attempts to derive
the Magnus force from different fundamental approaches
such as by the Chern-Simons Theory,® Feynman-Hellmann
theorem,” ete.

The application of the Magnus force to tunneling m a
quantized vortex again was given by Ao and Thouless.® In
this work they considered the effect of the pinning potential
in the two-dimensional xy plane and the dissipation of the
vortex tunneling in a superconductor. They study this prob-
lem by using the imaginary time partition function path in-
tegral formalism. The Hamiltonian considered is

H= —[p 2, A1)+ V(1)

‘ 2
1 i Cj
+2 [Zm p,+2m, (qf —“-Z'r) ]‘ O

where M is the voriex mass, A= hpd(y,0,0)/2 is the vector
polential, d= the thickness of the film, A= the Planck con-
stant, p,= the superfluid electron number density, and the
factor 1/2 comes from the Cooper pair, 4,=+ 1{— i) stand-

ing for the parailelism (antiparallelism) in the £ direction,
The vortex pinning potential consists of two parts. The pin-
ning polential in the x direction is approximated by a har-
monic potential (M/2)Q2x? and V.(y) is the pinning poten-
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tial in the y direction which has a metastable state at y=0.
The last term is the dissipative environment of the vortex
consisting of a set of harmonic oscillators as formulated by
Caldeira and Leggett.” The effect of the dissipative environ-
ment i§ specifed by the spectral function

(2]
e

Ho)y=m2, 5 Hw—w)). (2)
4

i

In this paper we derive the Magnus force from the real
time propagator from the Feynman path integral instead of
the imaginary time partition function path integral as dis-
cussed by Ao and Thouless. We believe that real time propa-
gator gives direct information in interpreting the result,

Since we are interested in the derivation of the Magnus
force, therefore we can neglect the dissipative environment.
Their effect will be important for the tunneling problem and
can be included if it is necessary. Then the model action
becomes

ro(M :
§= J’Odr"?{r( )+ ex(n)y(n)}

, v
—[ Vy(y(f))+?ﬂ;x2('r)H, (3)

where w=fip,d. Hence the propagator can be written as

K(yz.y1ix3,%138)= J‘ Dy(n)ID[x(7)]e"™M5.  (4)

To decouple this path integral, it is convenient to carry out
partial integration in the second term of Eg. (3)

j dr.i(r)y(r)-—-.rzy;—x,yi—jdrx(r))"(r). (5)

Then we can consider y as a generating functional or force
asciflator of the propagator K(x5.x):t,y). The end points
are not important and can be taken out from path integral.
These end points are equivalent to the gauge transformation
in the case of particle in the magnetic field. We thus get that

9299 ©1999 The American Physical Society
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Pfr M.
Kz = | Doy [[drg 5o

“VIy(ONKLxax50y), (6)

where
. it
Kx(-‘z,-flif,y)=JD[_t(r)]exp-f:l-Jlodr

X

M ., 2.2
F (M= QLA+ A1),
0
with f(7)=M wy(7r)}/2. Carrying out the path integral in the
x integration we obtain
. i
Ki(xy.x:0,5) = Kolxy.xy ;f)CXP‘f;

X I’d ~F (=M
7 = F(Dy(7)= ()

+ﬂf;drdcry(r)yw)g(r.o)}, ®

where
X oMo, AP i MO,
b R Ton B A PrRYom
X[cosQ,(r)(x§+xf)-—2x1'xz] . ()]
Here
P 1 Mo, Q Q
(T)__:’Z-sinﬂxr[xzcos T—xcos L {r—7)] (10
and

_szﬂx Q 0
g(r,a)—-m[cos At—7)cos N oH(T—@a)

+eos Q(r—o)cos QA vH(o— 1)], (1)

where H{1—0) is the Heaviside step function. In obtaining
the above results we use the following identity:

f’j'dm’a’f( f(a)G(r.0)
oo

M2w? (e (i d d
=—3 LLdrd(ry(r))(a)EEG(r,o). (12}

where

1
G(r,0) =-2-[sin Q. (t—7)sinoH(r—0)

+sin Q (t—a)sin QA vH{o— 7}]. (13)

Differentiating G(r.0) twice we obtain
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d G 40 sin Yt
2o 270 m =T 8(50)

+0,sin Q87— o). (14)

The second term of Eq. (14) gives the renormalized pin-
ning potential in Eq. (8). Then the full propagator becomes

KOy =Koz, n50 [ DLy 5,
as)

where

S =j'd -Ai'z(r)—IV( )+ﬂ )| +F(n)y(n)
eff 0 2}' [ ¥ ¥ 4 o’y 7))
+J:j(:d1'd0'g(f.0')y(r)y(a‘). {16)

Let us now discuss the physical meaning of each term in
the S.q. The third term is a renormalization of the pinning
potential in the y direction. The fourth term can be inter-
preted as the time dependent Magnus force and the last term
represents the fluctuation due to the presence of the pinning
potential in the x directon. To prove that F( 1) is the Magnus
force, let us suppose that the weak pinning potential (2
~ (). Then F(7) reduces to

xy—=x; 1
‘ 2

1
F(T)=§-Mw

which is the Magnus force. This result is analogous to the
Lorentz force and is also related to random systems as was
pointed out by us in a previous paper.Io

In conclusion we have demonstrated that by using the
vortex model with pinning and dissipation, we can obtain the
Magnus force by integrating out the x-degree of freedom.
The resulting effective action is one-dimensional which con-
tains several interesting resulls. First, the effective action
renormalized the pinning potential V,(y} by M wlyl(1)2
and secondly, it generated a linear driving force F{7) which
can be identified as the Magnus force. In order to proceed
calculating further, it is necessary to know the pinning po-
tential V,(y¥}. Ao and Thouless® have proposed that the po-
tential should be V (y)=hp,df2[— Voy +hlny/2m ). This
proposed potential consists of the pinning potential plus the
image potential from the edge. Such a potential cannot be
calculated analytically, therefore they did not discuss further
their proposed potential. We note that, if one employs the
saddle point potential i.e.. Vi (y)=—M nyzlz. then the cal-
culation can be done analytically. This problem is already
discussed in our work concerning with the Landau level levi-
tation in quantum Hall problems.!! We further note that a
recent paper by Kim and Shin'? has considered the Vi(y) as
a cubic V (y)= y2—ay®. In this case the analytical result
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may be calculated exactly. Finally we mention the fluctua-
tion contribution in Eq. (16) which arises from the fluctua-
tion of the 0}, effect on the y coordinate. If we add the
dissipation coatribution from the environment, then this fluc-
tuation combines with the environmental contribution to give

BRIEF REPORTS 9301

the so call anomalous damping kerne!l in the Ao and Thou-
less works.®
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Abstract

This paper considers the derivation of the Magnus force from a model system
consisting of a single vortex imbedded in a uniform positive background
coupled with a mutual interaction charged boson. By eliminating the charged
boson degree of freedom, the effective action of a single vortex is obtained and
can be used to derive the Hellmann-Feynman force. From the ground state
contribution a Magnus force is obtained.

PACS numbers: 03.50.De, 03.65.Vf

The Magnus force or lift force of classical hydrodynamics arises as a consequence of its motion
through the fluid. The argument for the existence of a Magnus force on a vortex ling in the
type Il superconductor was first proposed by Friedel et al [1] and later developed and extended
by Nozieres and Vinen [2] by including pinning and friction. It was believed that the existence
of a voriex is a general property of the system. In this paper we show that the existence of
the Magnus force is a general property of a vortex, We propose a microscopic derivation
of the Muagnus force from a model system consisting of a single vortex coupled to mutual-
interacting charged bosons and imbedded in a uniform positive background. By eliminating
the charged boson degree of freedom an effective Lagrangian is obtained containing the
generalized Hellmann-Feynman force which can be used to derive the Magnus force. This
force can be obtained by considering that the ground state contribution leads to the Magnus
force.

The full Hamiltonian for a quantized vortex coupled to an interacting charged boson
imbedded in a positive uniform background is given as

ﬁ=ﬁ1.+ffk-+f‘l. ()

Here, H.(P. R) is the Hamitonian for a quantized vortex in which R denotes the position of
the vortex and P its conjugate momentum. The second term

B @ PriiE 2yl
he= Imile Z PuT (X0 — Xu )P"' (2)

nEn
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with T7(¥) = (3"%]7" + x' x/)3{73)/2¢, the current—current interaction. and m is the boson
mass. The Hamiltonian . represents the lowest-order relativistic effects, an interaction first
obtained by Darwin in 1920 [3]. The last term

. ;;n - 3(-;!1 - R) Py P -
h = Z ( " ) % Z U(—;u - )-(:”’) + hh (3)

"

niEn
is the Hamiltonian repre%enuno N bosons with negative charge —e, interacting with the vector
polemml a{\,, — R) and satisfying the equation Jlga(x,, — R) Al = ¢ = hef2e. The

U(.r,, - ).,,') term represents the mutual Coulomb interaction. Finally fn, is the uniform
positive background and

f]h = - Z_/.ds-;’ezﬁ(fr)l:‘:n - ;flal (4)

where 71(x7) is the charge distribution of the lattice and accounts for the interaction with the
uniform positive backeround charge eii. '

Next. the full Hamiltonian A can be separated into two parts—ihe internal and the
collective. The internal part, ft; = h + fi,., is dependent on the centre point of the vortex, R.
and not explicitly on the conjugate momentum of the vortex, P The coilective Hamiltonian,
H., is the Hamiltonian for a quantized vortex. :

In considering the probability amplitude for a quantum process starting from the initial
position, X4, . . ., Xan R4 at t,, and returning to the final position X4, ..., ¥pn, Bp at fp, the
propagator can be written as

K(f;b ..... :l:,vb. R},. Ihe .‘f:‘,, . -:\:Nav Ru. I‘,) = Z zwm(:\;lh- P .-I.Nf,: Ry)

m n

x (m; R,,1<Rf,|exp[——H(r;,—r)]|Ru>1n DU Grar B R (5)

By inserting complete sets of coordinate states and a complete set of momentum states af
t = 1. with & = "7 it is possible to consider the following relationship as & — 0

(ﬁu exp [m%ﬁs] IE;H) e ()_i.‘klexp [—%f}u(P. R)s] 1§k-|)exp [ﬁfr,(i’, ,71 J‘—?J,—)F}

- i - Ihékm-f_ék,| - = =2 IPPP
= dPexp| e | Py | —— H.(P.R) exp[—h,(.\x NN RA)F].
Tr £ N
(&)

Then equation (3) can be expressed as
K (Eip oo Xnhe R 153 Fran o s Exar R 1)

= 3 Wi, Fwpi RV (Ras o Ev Ra)

" n
- - - -

x [ DIPDIRIT, exp[ = SIRO). (0] ™
where S[ﬁ(r). 13(1)} = fr:"[f’ . fé - H,,(f’, fé)]dr is the action of the collective motion
along the path between a and h. Here, ¥, (}.u, ey XN E‘,)(W,,_,‘(Elt,...jm,: Rp)) are
the wavefuncuon‘; of the internal part, h, = h + h at R = R,(Rp) with eigenvalue

E,,(R )(Em(Rh)) and the external variable R = Ru(R;,) Ton 1s just the transition amplitude
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between the quantum states from W, (X4, ..., Xyn! F?,,) oW, (g ..y X i—é‘,) and is given
by

. ~ i. - N -

T = on: Rolexp [~ (R@De |- -exp [ b Rude] s R )

By inserting the completeness relationship holding for the internal state h; at euch point of the
external variable Ry, Z lic: Rey (s Ry) = 1, equation (8) can be written us

Tan =3 - tm: Rylexp [—Eﬁi(k(rb))s] lje: Re) -
i1 i
- i.o- .
< (it Rilexp | = 2h, (Rat e s Ru). )
In the adiubatic approximation, an example is Berry's 1983 phase {41, the quantum transitien

between states with the same guantum number n only is picked up and is described by the
matrix element {rr; Ry |e”5%® 15 Ry Thus by using the approximate relation

- 1. = - I - o i .
o Rk+1|exp[r—1I1,(Rk)a] b Re) ~ [1 = (n; R|Vgln: B) - Relexp [—TiEE,,(Rk)]
1

- exp[ e(—E (R +inA ,,n-f?')] (10)
equation {8) becomes
Ton = Sy €XP [—% frrh(E,,(E) i A, E)d;] (an
where "
A = (02 R|Vgln; R). (12)

The vector potenial A, , implies the property of the internal part of the Hamiltorian /; in the
form of ket vector n; R). We arrive at the effective path integral associated with the adiabatic
approximation of the dynamical variable R,

K(}Ib ------ X Nhb- ﬁh- Ii) -;lu ------ .1; Na- _u ’u)
= qu"m(;lb ~~~~~~ ’-'N,‘; Rh)q" (\lu ---tENu: Rl-r)Kmu (‘3)
nr "

K, gives the usual dynamical evolution of the wavefunction of the internal part with an
additional effect from the motion of the external variable over all possible paths. Therefore,
the evalution kernel K,,,, can be expressed as,

i 2 - 5
Knn = uv. f D[P]D[R) exp[g [ [ dt ([P - R — H)) = En(R) +1hAy 0 R)ﬂ (14)
’a

where, L = [P R — H,]— E,(R)+ifi A, R is the effective Lagrangian corresponding with
Schridinger's equation for molecular physics given by the Bom~Oppenheimer approximation
[5], a matrix-valued Schrédinger operator for the nuclear wavefunction. If the external variable
R(1) is 1o describe un adiabatic motion refurning via a closed path C then the third term in the
exponent of equation (14) is immediately recognized as Berry's 1985 phase [4]:

r, = ih 55 (n; R|Vg|n; R)-dR. (15)
C

To obtain the Hellmann-Feynman force, we define the force on the vortex from the Lagrange
equation
&y d 3 .

— Ly - =L} =0 . ‘ (16)
JdR dr 3R
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Then the new force, which is in addition to the original force, can be written as

e F d\pm a\pm d Wy ')\‘pm
F‘:? :me ! - ;1;— Em{R (17)
dY " 8X axX iy T aX
—y oY lj q"u; E)‘U,,, lj \il,,, fj lp,,, () - -
F, =R el Rl Bl Wl Rl f Bl A 9.9 B (%)
Y dX JxX oY JdY

The ubove resubt can be eusily recognized as the Hellmann-Feynmen theorem [6]. Next
the Magnus force can be derived by using the many-body wavefunction proposed by Ao and
Thouless [7]. This wavefunction contains both amplitude and phase varying in spuce and time

. N
WG, Ewi B = B Fwi Bee | = D 0G - ) (19)
=1

where ¥y, in the absence of the external magnetic field, is the many-body wavefunction of
a superconductor. The ground state wavefunction depends on the positions of the N bosons
in the system. Since the wavefunction can be detennined in such a way that the dependence
on ¥ is entirely through ¥ — R, the partial dérivatives with respect to R can be replaced by a
sum over partial derivatives with respect to the particle coordinate X,. The probability of any
particular configuration is proportional to {Wg|?, with the normalization,

/--‘f]\ilglzdzfl---dzi“n =N (20)
] jlq’ul d*F - Inor = plX. R) (20

where p(%, R) is the probability density. The probability density of(x, R) must salisfy the
boundary conditions; that is, the density o (X, R) must vanish continuously at x = = R us well
as approach the background density pp as [¥ ~ R| = oo. Therefore, the Magnus force from
the first term in equations {17} and (18) can be defined as,

and

‘EMugnus = E x 17‘16)2 x {Wp; ]-é'{.?R[“p{]; ﬁ) (22}

By virtug of the property of the many—body wavefunction and the ground state condition. the
Magnus force becomes

ﬁ.\d;-.ﬂnm =R x Vi x [dszP(f- R)VR®(¥ - R). (23)
Using Stokes theorem and the relation
. ExG-R
F,0G - Ry = XU R (24)
|x — R|?
the following equution is finally obtained:
F-M:lgnu\ = :’-”P\hi\: X }-é (25)

where p, = Npg is the number density.

Thus. a force is exerted on the vortex when it moves relative to the fluid density. This
Magnus force is proportional to and perpendicular to the vortex velocity, and proportional to
the fluid density. The Magnus force makes the vortex dynamics similar to that of charged
particles in a magnetic field, with the role of the magnetic field played by the fiuid density.
This problem is discussed in our previous papers [8, 9]. However, it is interesting 1o point out
that in this formulation, the mass of the vortex in the canonical momentum P was deliberately
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hidden. The mass of the vortex is still controversial; this is addressed in another paper [ 10].
[n conclusion we have demonstrated that the origin of the Magnus force is an etfect of the
transition amplitude of the supercurrent and is independent of the mutual interuction of the
boson. The quantum fransition between states is a result of interuction between the vector
potenial of a vortex und a supercurrent or charged boson. The existence of the Magnus torce
in a neutral fluid is an effect of pressure. This is the difference between the Magnus force ina
superconductor and thar in a neutral fluid. These findings support the belief that the Magnus
force is a general property of the system.
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Path Integral Dervivation of the Iffective Masg
of Vortex -

V. Sa-yakanit and K. Tayanasanti
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Chulalongkorn University, Bangkok 10330, Thailand

Abstract

In this paper we derive the mass of the vortex from the effective La-
grangian proposed by Ao and Thouless{1] which contain the magnus force
and dissipation terms. By using the Feynman-Jensen variational principle
we obtain the dynamic and cyclotron mass of the vertex. We also discussed
the finiteness of the dynamic mass.

Introduction

Vortex plays an important role in understanding of both the dynamic and
static properties of superfluidity. The theoretical understanding of the vortex is
tased on the phenomenological approach. The idea is to write down the equation
of vortex involving the effective mass, the magnus force and the friction. Since
lhe vortex mass play an important role in the tunnelling process, therefore it is

sensible to consider the effective mass derived from the microscopic theory. There

fave been several attemps to derive the effective mass of vortex from the classical

theory. The earlier attempts to estiinate the effective mass was given by Duan|l]

via using the classical.equations. Similar approach was also considered by Sin{2).

He showed that the significant contribution to the inertial mass of the vertex in

2 superconductor may come from lattice deformation of the vortex core.

Duan also considered the effective mass by using the concept of infinite com-
pressibility of the fluids to consider the problem of inertial mass of the vorlex
line in both neutral and charged superfluids near zero temperature. By using™
the time-dependent Ginzburg-Landau theory he showed that the inertial masscs
diverge logarithmically with the sample for the neutral superfluids.

The first microscopic description of the effective mass was due to Ao{3) by
using the Feynman many-body wave function for superfluid filim containing vortex
they shown that the vortex effective mass cannot be infinite. They also showed -
that in the case of super Ohmic damping, the spectral function J(w) varies as W
it low frequencies, the effective mass becomes logarithmically divergent. Sincc .
the problem of the vortex inertial mass in superfluids is a complicated jssue, there
ire no clear calculations of the effective mass. The theoretical estimation of the
effective mass of the vortex range from zero [2) to finite {3) and to infinite [4).

It is interesting to mention the recent work on calculation of the eﬂccti\'e_‘
mass of the vortex [5] using the effective action within non-local in time term.
They derive the mass formula and compute the integral of the spectral function

382
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J—i—:,"l over various frequencies. The results confirm their previous work using the
Feynman wave function approach.

In this paper we derive the effective mass from the microscopic model given
by Ao and Thouless[l] and demonstrate that by using the density matrix in the
path integral formula developed by us in the previous paper for handling the
polaron effective mass (Sa-yakanit[6]). We will show in this paper that for zero
temperature limit and short distance, the density matrix reads as

plzy — 23, 8) = e~ Eof= 2 A=A 14 Pi2 ) (1)

where £, is the ground state energy of the system and B denotes the imaginary
time. One can see from this expression that there appear two types of mass i.e.
the dynamnic type and the cyclotron type. It was also pointed out by Unk[7]
that in this case, the dynamic mass goes to infinity. Hence the definition of
the cyclotron effective mass is more appropriate. We can show the logarithmic
divergence of the mass is a consequence of the super Ohmic assumption, J(w) ~
«?. For analytical calculations we assume that the spectral js J{w) = w'e™
where s 1s a real number and w, is the cutoff frequency.

Our starting point is the model Lagrangian given by

L]

2 miw

1 1 1
H= %‘[P — g A(D)]" + V(r) + Zj:[ﬁpf + Smjwi(ay —

where A = 1hp,d(7,0,0) and V x A = hp,diy
Integrating out the degree of freedom {q;} we have the effective action

1
Seff = /df[—?r + 511gup.dEy)

/dt/ ds K (& — s)[r(t) = r(s) . 3)

COs E &
where K(t —s) = L [ duwJ(w) <2 ((% Wand J(w) = 7 5, 5i-8(w — wj)

In this paper we model the model system by a quadratic trial action

so= [ C [ [Casii - eyp RGN g

sinh(Z2)

where C and w are two parameters to be determined. Physically, we model the
whole system by the system of a vortex attached to a fictitious particle of mass
M with spring constant s 6] The justification of modelling both the magnus
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force and the dissipation is that the magnus force can be rewritten in terms of
non-local action as discussed in our previous paper [7].

In order to obtain the effective mass of the vortex we consider the imaginary
time density matrix of the system as

Tz
Pl dind) = [ DlgleS 5)
1
With the first cumulant expansion we have

o2, 81, 3) m poe s =505 (6)

where (O)s, = DlzlOe™

» 7 D

Following the scheme of the Feynman polaron [8] and our pervious work [§],
the density matrix becomes

p = poexp- {/ / dtds[/ dw J(“" COS]“;(]};(—“)_S”

C cosh Q(;—- It —s)) 1pqd/
—— di[z,® + 2, ¥
2 sinh(Z) Pt 5= [ dea® ol

dd ay .
X[yz—tﬁ-"l-yr&?]} (7)
where
m si.nh(%) 5 Sy v 3 7 2 .
Po = (271,/3 asmh(%)) EIP"—[TCOth(?)_i— ?,Plfﬁ](rz_rl) (b)
with
_ Q,u(‘? sinh 22(t — s)sinh £(8 — |t — s) + (8—1t—s\(t— s))
X5 mu sinh(42) Mp
sinh 22(t — s)cosh 4(& — (£ +s))  (t —s)? )
+ —
I8 ( mcmh( .(3) + J‘Iﬁ )[I‘g [‘;]
o — f_[ inh(vt)  sinh%(8 —t}sinh % )4
m sinh(v3) cosh(".f_) ﬂ{ﬁ
@ mhu(ﬂ —1)  sinh%(f —t)sinh % 3 —t)
vo= "_[ + B ]
m~  sinh{vj) cosh(%7) Mfﬁ
and the parameters are defined by
MQ3 ]
C:-__Ez__ 2=i,u2=x,# mh I‘-‘—"—(I,y). (9)

40 M F T m A
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Among these four parameters we can choose any two independent variational
parameters. In order to obtain the effective mass, we take the limit as

B —» oo and (3 — £1) — 0. Then up to the first order correction term, we
have

md MW
|332 - I1|

p{zy — 71,0 — o) mexp(—E.f8 — (zay1 — T1v2))  (10)
\We can derive the ground state energy £, from the diagonal part of the density
matrix by direct integration of the exponent together with the contribution from
p, and then obtain

(v—M?*  2u [ wf 1 1

Ee v + T J, dwJ (w)|eoth( 2 )(m(w2 — v?) + x’%uﬂ)
v v 7
- 5 coth(—Z—)] (11}

mwlw? — v?)

When # — co and by using the relations in equation{9) we can approximate
the ground state energy as

v [ M 2 1 2p 1 1 p
Eo = ‘2(l 1+ /'VI / dw e w(w + v) * wz]‘/f) (12

where the bare mass m was set to unity for simplicity. To derive the dynamics
mass which concerns translational invariant terms in the exponent of the den-
'sity matrix, we follow the scheme in the reference[6] which the coordinates were
transformed to the center of mass system (2 — 71y) — (1':#)(}_2'2 — Ry). Then
the effective dynamic mass of the vortex is '

md=71’L—}—ijc—/mdc,uM | (13)

T (3

Note that this effective masss is independent of the variational parameters. Now
we consider the part arising from the magnus force. We interpret the mass emerge
in front of the terms {(z2y; — z1y2) as the effective cyclotron mass since it make
the vortex move in the manner analogous to a charged particle in a magnetic
field. Hence the terms in the exponent are :

pqd ., 1t ., A i 2in oty L 2m 2mt
me = P51y /0 dfvet S+ + 57— ) (W
We now can discuss our results. As we can see from equations (13) and (14), the
effective mass arises from both the magnus force term and the dissipation of the:
system as the integral of the spectral function T;T Thls expression suggests that
for finite mass, the spectral function must proper to w* which is the super Ohmie
case. For J(w) ~ w? , the result becomes the logarithmic diverge as discussed
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earlier by Duan[4 ] and Ao[l ]. It is worth mentioning that the term J—LE‘;I has
also been obtained recently by Han, Ao and Zhu[5 | having the effective action
without the magnus force. In case of the effective mass diverge, it is more ap.
propriate to discuss the cyclotron mass. Physically, the diverge dynamic effective
mass corresponds to the vortex cannot move therefore the cycloton mass is more
appropriate. In order to get into more detailed calculation we determine the two
variational parameters C and 2 by minimizing the ground state energy with re-
spect to these parameters and we obtain the upper bound of the ground state
energy according to the Feynman-Jensen Inequality. As pointed out by Feyn.
man, since there is no variational principle for the excited states the parameters
obtained from minimizing the ground state are used to determine the effective

mass. This was demonstrated in the polaron problem[12). We also employ this
method to obtain the two parameters.
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Abstract

In the problem of a vortex escaping from a metastable potential, we
derive the localization criterion of a vortex at finite dissipation and temper-
ature by analyzing both the crossover temperature formula and the escape
rate formula. In the absence of a pinning potential in the stable direc-
tion, this criterion shows that a vortex will be localized in a metastable
potential when the Magnus force is strong enough. Using the concept of
this localization criterion, the effective mass of a vortex can be defined and -
interpreted. Moreover, the role of pinning and dissipation in the process
of vortex escape can also be discussed. '

In this paper, we present an analytical study on vortex escaping in the pres-
ence of the Magnus force, pinning, and dissipation. This study leads to many
condusions concerning the roles of pinning and dissipation and especially the
localization and the effective mass of a vortex.

We start with the Hamiltonian for a vortex moving in a two dimensional z-y
plane, which can be regarded as a point particle, in the form[1]

1 = - 1l = 1 c;
H=_—|P-gqg AR — P |* + =ma?|§ — — 77, 1
2M| 9, A(F)] +;[2mjiPJI + 2"”}‘*’;'@: mjw?ﬂ ] (1)

with the vector potential A determined by Vx A4 = (M/q,)5. Here g, = +1(—1)
stands for the vorticity paralleling (antiparalleling) to the unit vector 2 in the z
direction, M is the vortex mass, and ) is the frequency dimensional parameter
which is equal to ¢, hp,d/2M for a vortex in superconductor (where psis the
superfluid electron number density) or g, hp,d/M for a vortex in superfluid (where
ps is the superfluid atom number density}. Here h and d are the Planck constant
and the thickness of the sample {eg. the thickness of the superconductor film)
respectively. Note that since a vortex motion under the Magnus force is similar
to the motion of an electron in the presence of the magnetic field, the resulis
obtained in this paper can than be directly used in the problem of an electron
escaping provided that ! = eB/M and g,must be replaced by an electron charge
e.

Eq.(1) can be explaned as fallows. The vector potential A reflects the existence
of the vortex velocity dependent part(VVDP) of the Magnus force Fon = MOUT,—
7) x % which depends on the relative velocity between the superfluid velocity ¥
(which is assumed without loss of generality to parallel to the x axis) and the



vortex velocity 7. It is clear that the frequency dimensional parameter {2 we
just have defined represents the strength of the Magnus force {or Lorenz force
for the problem of an electron escaping). The superfluid velocity dependent part
(SFVDP) of the Magnus force will contribute to the vortex potential V(7). By
following [1],we shall put the vortex potential V(#), which contains both the
contribution form SFVDP Magnus force and pinning centers, in the form

V() = Valo) + Sk’ 2)

The pinning potential in x direction is approximated by harmonic potential char-
acterized by parameter k. In this paper, the potential Vi (y) consists of the contri-
butions from the SFVDP Magnus force and the pinning potential in y direction is
agsumed to be of the metastable cubic-plus-quadratic form with metastahle point
at y = 0[2]. This metastable potential is characterized by two parameters: (i)
wg, the frequency of the small oscillation about the metastable point y = 0 of the
potential Vi(y), and (ii) wy, the frequency of the small oscillation about y = y
( Vi(ys) is equa) to the potential at the barrier top) of the inverted potential
-~Vi(y). Note that, in the problem of an electron escaping, the potential Vi(y)
consists only the pinning potential in y direction since an electron can fee] the
Lorenz force by its own velocity. The last term in eq.(1) represents the dissipative
environment of a vortex consisting of a set of harmonic oscillators as formulated

in ref.[3]. The eflect of the dissipative environment is specified by the spectral
function

%

2mjjwj5(“’ — wj). (3)

J(w) = WZ

In our problem of escaping, the Euclidean action corresponding to the Hamiltonian(1)
is independent of the choice of gauge since the boundary condition 7(0) = 7(Gh),
where 3 = 1/kgT is the inverse temperature, is required. By this reason,
we can choose any form of vector potential whenever it satisfies the relation

V x A= (MS/q,)3. As in ref.[1], the vector potential will be chosen in the form

A = (M9/q,)(y,0,0). The Euclidean action corresponding to the Hamiltonian(1)
with this form of the vector potential is{1]

B# 1. 1 .
SE = /0 dr(§M|ﬂ2+iMQ:i:y+V1(y)+%kzzz-i-Z[aij‘E'z
i

1 - ¢
+=mw?|g; — _"

: . (4)

2
mjw;

After integrating the environmental and x degrees of freedom of a vortex, the
reduced thermodynamic description in the metastable direction (ie. y direction)
can be known via the reduced partition function

2



Za= $exp(=SE lyl/n), (5)

where

S:}fly] = ./:ﬁ(élw?)z + Vi(y))dr + l/(;ﬁh '[Oﬁﬁ[K(lT — 7} + g(r — ")
x[y(7) — y(v))*d+'dr. (6)

From ref.{l], K(7) and g{r) are called normal and anomalous damping kernel
respectively. They are expressed as

| 17 coshlw(Bh/2 — 7)]
k() = o !dw.](w) sinh[wBA/2] @)
and
M2 & Muw? 4 &, ivar
9 = Sam g(Mug T M2+ g ®)
Here

£, = v, = 2w /AR, Wi = koM. (9)

T w w24l

1 /m de (W) 202
0
In the problem of escaping, one of the important quantities is the escape
rate. According to Afflect[4], the escape rate formula, denoted by K, is di-
vided into two forms saperated by the crossover temperature, denoted by T, as
follows.

K= -—%ImF ;férT < Tq, (10)
and
K=—g—gImF i forT > Ty, (11)
k By

where 3y = 1/kgTy is the inverse crossover temperature, and F is the free energy
which is related with the reduced partition function(5) by Z; = exp(—gF). In
eqs.(10) and (11), the imaginary part of the free energy, ImF = —(1/8}fm(In Z,),
can be calculated by using the analytic continuation method pioneered by Langer[5|.
Besides the free energy, another important quantity is the crossover temperature.
It is the temperature where the change of dominating mechanism of the escape
from thermal activation to quantum tunneling is roughly to occur. In the func-
tional integral point of view{2|, the crossover temperature is the temperature
where the change of the dominant trajectory of the functional integral(3} from

3



the trivial trajectory (y = 0 and y = y;} to the bounce trajectory (the back and
forth trajectory in the inverted potential —Vi(y)) trajectory is to occur. In other
words, if we decrease temperature from T > Ty to T < Ty, then the corresponding
dominant trajectory will be changed from trivial to bounce and the correspond-
ing dominant physical mechnism of the escape process will roughly change from
thermal activation to quantum tunneling.

Now, it is worth to find the equation for determining the crossover temper-
ature Tp. The procedures are as follows. First, by the definition of crossover
temperature, it is clear that slightly below T, the bounce trajectory will be re-
placed by the harmonic oscillator which is the small oscillation about 4, with the
frequency wg = 2m/foh. Second, by using the variational principle 655, = 0
where 63‘5} s has already been defined in eq.(6), the equation of motion is ob-
tained. Third, by substituting the harmonic oscillator solution from the first step
into the equation of motion in the second step, then with the help of eqs.(7) and
(8}, one can linearize the equation of motion and get

wh + wrAar(wr) = wi, (12)
where wg = 2m/Goh = 2wkgTo/h, wi = —V"(y}/M, and

2z
2?2 + w2 + zy(z)’

A (z) = 4(z) + forall z 2 0, (13)

where ¥(z) = (2z/Mm) _TJ (w)/w(w?—x?) is the Laplace transform of the retarded
D

friction|2], when the environment is represented by the Caldeira-Leggett model
[3], which is related to &, by & = M|v,|5(Jv.]). Note that 9,(z), when the
subscript M denotes the abbreviated name of Magnus force, reduces to 4(z)
when the Magnus force is absent (i.e., 45y — % as £} — 0) and then eq.(12}
reduces to wi +wp¥(wg) = wi [2] which is the equation for determining 7p in the
case of one dimensional system. This should not be a surprise since the additional
term (the second term on the right hand side of eq.(13)}), which is absent when
£ — 0, shows the effect on the crossover temperature from both the = degree of
freedom via §2 and the environment via 4(z) while the first term shows only the
effect from the environment.

Now, the interesting question is that how much can we know about the behav-
ior of Tj or equivalently wg. Clearly, to know all of its behaviors, one must find
the roots of eq.(12). Unfortunately, it may be impossible to find them since 4(z)
contains an integral over J(w) which has no specific form in general cases. How-
ever, some of its properties can lead us to investigate some physical situations.
The first property is the uniqueness of Tp. One can guess that if T exists, then
it should be unique since the crossover temperature is the temperature where the
change of domination mechanism of the escape process is roughly to occur and
once this change has occurred, it should not reoccur again. The second property



is the existence of Tj. One may guess at first sight that Ty always exists because
when we decrease the temperature form high to very low, then the dominating
mechanism of escape process should roughly be changed from thermal activation
to quantum tunneling at some temperature. These two properties can be proved
mathematically by looking at eq.(12) carefully as follows. Rewriting eq.(12) as
A (z) = wf — 2% (wg or T is the root of this equation). Here, z is confined
only in the positive range i.e., £ > 0 since Ty is the absolute temperature which
is always greater than or equal to zero. Notice that w? — x? is the continuous
decreasing function on positive range of z and has the maximum value equal
to wi at z = 0. Furthermore, one can prove from eq.(13), by differentiating
zAp{x) that =4, (z) is a continuous increasing function on positive range of x.
By these properties of wg —z2 and 24 (z), it is clear that the root of the equation
zAp(z) = wf — zexists and is unique if and only if

lim za () < wi. (14)

Now, the two properties of Ty mentioned earlier have already been proved.
It can be summerized that the crossover temperature exists and is unique if the
condition 14 is fulfilled. At this point, the following study of a vortex escaping
will be divided into two cases.

First {w, # 0) : In this case, one can prove from eq.(13} that l-lz.r(l) TAp{zT) =

0 < wi which implies by condition(14) that the unique crossover temperature T
always exists. The existence of Tj tells us that (i) there is a temperature where
the dominating mechanism of the escape process will be roughly changed, and (ii)
the tunneling rate (the escape rate when the dominating mechanism is a quantum
tunneling)} is always nonzero because of the existence of bounce trajectory. In
this case, the escape rate K for T > Ty can be derived analytically by using
the same methods in refs.[2] and [6] as follows. Replacing y by its Fourier series
ie, y{r) = § Y€ and substituting it into eq.(6) and developing Vi (y) in

n=—o0

a Taylor series around y = 0 and y = s, the semlclasswa] effective action about
y = 0 (denoted by S, f(f [v]) and y =y, (denoted by S= f Dy]) can be expressed in
the form

ED
ef(f)l ] -

o0
IR \P48 + MBS X0 [12]; X0 = 02 4 + v (), (15)
=1

and

I3 ad _
SEOIY) = Vet OOz L MRS 2D 2] MY = 1w ing (), Ve = Vi)
n=1
(16)



Splitting the reduced partition function(5) into the contributions arising from
the Guassian fluctuations about trivial paths ¥y = 0 and y = y, and write Z4 =
ZCSO) + Zc(,b) where Z;O) and Zéb) are the reduced partition functions which have
the corresponding effective action (15) and (16) respectively. After using the
normalized functional measure in Fourier space[2] and Langer’s thermodynamic
method[5], the negative value of )\g’) = —w! leads to an imaginary part of the
free energy in the form

n

Wo A ~B8V;
ImF = ——— | e7PY, 17
mF =g, (500 07

Substituting eq.(17) into eq.(11), we obtain

wo -
K= %—pcqme Ve (18)

where p = wg/wy and Cyp, = T1o, MO /A®) > 1 is called the quantum correction
factor or quantum-mechanical enhancement factor because it describes the quan-
tum effect (i.e., tunneling and increasing of average energy in the well) which
enhances the escape rate.

Now, noticing from eq.(13) that 4,; increases as the Magnus force strength
(characterized by ) increases. By this reason, one can conclude from eq.(12) that
wg or p decreases when Magnus force strength increases and, by the definition of
Cym itself, Cg, also decreases when Magnus force strength increases. This implies
that the VVDP Magnus force tends to decrease the escape rate. In contrast, the
pinning potential in z direction tends to increase the escape rate since, from
eq.(13), 4as decreases as w, increases. Although these conclusions can be used
when T > Tj (because K in eq.(18) valid for T > Tp only), it may be used
when T < Ty too. This stems from the fact that since the correction factor Cym
describes the quantum effect on the escape process including quantum tunneling,
the effects of Magnus force and pinning potential in z direction on tunneling
rate should be the same as on Cyp. As described above Cgn decreases (increascs)
when Magnus force strength (pinning potential in z direction) increases. These
imply (like in the case of T' > Tp) that the VVDP Magnus force tends to decrease
the tunneling rate while the pinning potential in z direction tends to increase
the tunneling rate. Moreover, both pinning and dissipation tend to suppress
the influence of the VVDP Magnus force on vortex escaping since Q is in the
numerator while w, and 4 (which contains an integral over J{w}) are in the
denominator of the second term of eq.(13).

Second (w, = 0) : In this case, one can prove from eq.{13) that :]BILT{I) TAn(z) =
O/ 1+(2/ M) f5° J(w)/w?dw]. So, from condition(14), it is clear that the crossover
temperature does not exist if



02 ,
- > wi. (19)
1 2 e 9 dy

Condition(19) tells us that the crossover temperature does not exist if the Magnus
force strength is strong enough. This non-existence of crossover temperature
implies that the bounce trajectory does not exist and, hence, the tunneling rate
must vanish. Now, the interested question arises: Although the tunneling rate
vanishes, is it possible that the escape process, when condition(19) is fulfilled,
will be dominated by thermal activation over the entire range of temperature?
The answer is no because of the fact that the value of /\g’) is now equal to —wi +
Q1+ (2/Mr) f5° J(w)/w3dw] (see eq.(16)) which is greater than zero when
condition(19) is fulfilled. This positive value of ,\g’) makes the free energy finite
and real which implies that the escape rate must vanish or, equivalently, a vortex
must be localized in the well. The above discussions can be summerized as
follows. If w, = 0 and the condition(19) is fulfilled, then the vortex must be
localized in the well. Since the derivation of condition(19) is done irrelevance of
temperature and dissipation, we will call condition{19) the localization criterion
at finite temperature and dissipation. By using Mw} = —V"(y,), the criterion(19)
can be written in the form

(MQ)?

YRSy EOR
where, by the definition of 2, M is the mass independent parameter e.g., M)l =
hpsd/2 for a vortex in superconductor. Note that, for a vortex in superconductor,
the localization criterion(20) reduces to the localization criterion in the case of
no pinning at zero temperature given by P.Ao and D.J. Thouless[l] when the
dissipation is absent i.e., J(w) = 0.In the case when the criterion(19) is violated,
the escape rate, both for T > Ty and T < Ty, does not vanish. The escape rate

for T > Ty, denoted by K, in this case can be derived by using the same methods
in the first case as

> [V ()l (20)

- wo

K= %ﬁcqme_ﬂvi’;ﬁ = WopWa/wWoWpat, (21)
where .
Wiy = w2 + /(1 + (2/Mn) /0 J(w)Jwduw,
and

Wiy = 6l — QF[1 + (2/ M) /0 * J(w)/uPdw > 0.

The subscript M on woas and wyps denotes the abbreviated name of Magnus force
due to its effect via the parameter . Note that wgpy — wp and wypy — wy as
Q1 — 0 imply that K — K as € — 0. This should not be a surprise since in the
absence of Magnus force, the z and y degree of freedoms are not coupled with
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each other so the pinning potential in z direction characterized by w, has no effect
on the escaping in the unstable direction i.e., y direction. Hence, the escape rate
of the frist and second cases are identical and the localization criterion is always
violated which implies that a vortex must escape from a mefastable potential
with a specific nonvanishing escape rate at any temperature.

The above two cases show that the pinning potential in z direction is an
important quantity because when w,; # 0, the escape rate is nonzero for any
magnitude of the VVDP Magnus force while the escape rate for w; = 0 is zero
for strongly enough VVDP Magnus force. In other words, for w, = 0, the strongly
enough VVDP Magnus force renormalizes the original metastable potential to the
stable one. In the classical point of view, w, can bend the trajectory of a vortex in
such a way that it helps a vortex to escape from the well while the VVDP Magnus
force tends to trap a vortex in the well by keeping it in a circular motion.

Now, we can define an effective mass of a vortex by using the localization
criterion(20) as follows. Notice that the M() term in the numerator of (20)
is mass independent, so the mass dependent term is only in the denominator.
Hence, the effective mass (denoted by M*) can be defined by

= 2 [ Iy, (22)
wJo  w
and the criterion(20) becomes
(MQ)? "
Vv . 23
T vl (23)

From criterion(23}), the effective mass can be interpreted as follows. Since M* =
M in the absence of dissipation (see eq.(22)), a damped vortex (a vortex in contact
with the environment) behaves as if it is an undamped vortex (a vortex which is
free from the environment) of the new higger mass called an effective mass when
it decides to escape from the pinning potential. This effective mass is equal to
the original mass plus the extra mass originated from the environment since it
depends on the spectral function. Note that this extra mass (the second term in
the right hand side of eq.(22)) is proportional to the effective mass given by J.H.
Han, P.Ao, and X.M.Zhu [7]. To understand more about the effective mass, we
first consider the new masses 41; and new coordinates §; for the environment [§]
given by

YA o
L ek R | 24
=TT = (24)

From eq.(24), the Hamiltonian(1) can be rewritten as

1 - " L .
H = o5 |P = a A + 2 mllG 1 + w1 — 7. (25)
j



We can see that the model Hamiltonian(1), in fact, describes a vortex of mass Af
with many masses y; affected with spring to its coordinates 7. From eq.(3) and
¢q.{24), the sum of p; can be written in the form

2

D= —/m Jt)

) A dew. (26)
Now, from eq.(22) and eq.(26), it is clear that the effective mass M* is equal
to the total mass of the system which is composed of a vortex of mass M with
many masses ji;. At this point, one may think that the coordinates of the ef-
fectively undamped vortex of mass M* may be the center of mass coordinates
which contain the total mass of the system. Although this conclusion may be
possible, we can not exactly do so since our definition of the effective mass does
not come directly from the dynamical approach (it is defined via the localization
criterion). However, some conclusions can be made for the case of sufficiently
weak environmental coupling so that 3, p; << M. In this case, the center of
mass coordinates of the system will approximately coincide with the original co-
ordinates of a damped vortex at all time. By this reason, one can conclude in
this case that the damped vortex of mass M can be effectively viewed as an
undamped vortex of mass M* and the coordinates of this undamped vortex is
identical to the center of mass coordinates of the system which is approximately
identical to the coordinates of an original damped vortex.

To summarize, we have studied the influence of pinning, dissipation, and
Magnus force on vortex escaping when the potential, which contains both the
contribution from SFVDP Magnus force and pinning potential in y direction, is
modeled by the metastable cubic plus quadratic form and the pinning potential
in z direction is approximated by the harmonic potential. The equation for de-
termining the crossover temperature is derived. This equation leads us to define
the localization criterion of a vortex at finite dissipation and temperature. The
criterion shows that, at any temperature and dissipation, a vortex always escape
from the well when the pinning potential in x direction is presented while it is
localized in the well for strongly enough VVDP Magnus force when the pinning
potential in z direction is absence. Moreover, this criterion also leads us to define
the effective mass of a vortex in the sense that when a damped vortex decides to
escape from the well, it can be effectively viewed as an undamped vortex of a new
bigger mass called effective mass. The effective mass is equal to the original mass
plus the extra mass originated from the environment and can be viewed as the
total mass of the system when considering the system in the appropriate coordi-
nates and masses. For sufficiently weak environmental coupling, the whole system
can be effectively viewed as a one undamped vortex of effective mass, which is
equal to the total mass of the system, described by the center of mass coordinates
which approximately coincide with the coordinates of an original damped vortex.
The escape rate formula is derived when the temperature is greater than the



crossover temperature and the pinning potential in x direction is nonzero. This
escape rate formula and the equation for determining the crossover temperature
allow us to make some conclusions about the role of pinning and dissipation on
vortex escaping as follows. At any temperature, the VVDP AMagnus force tends
to decrease the escape rate while the pinning potential in x direction tends to
increase the escape rate. Both pinning and dissipation tend to suppress the in
Auence of the VVDP Magnus force on vortex escaping. The escape rate formula
is also derived when the temperature is greater than the crossover temperature
and the pinning potential in z direction is zero. In this case, the violation of
localization criterion is required.
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