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Abstract

As a by-product of our attemp to make a theoretical description of the
BOSENOVA in Non-interaction Bose gas, we found that the condensate density
oscillates with time when we change the strength of the confinement potential.
Some physical properties are calculated with discussions.

1.1 Introduction

In our attemps to simulate the phenomenon of implosion and explosion of the
Interacting-Boson gas under switching of the "inteaction strength” or "scatter-
ing length” (BOSENOVAJ}[1] by the method of many-body Path Integrals, we
found that the calculation is very complicate to find the time-evolution of the
system if we want to add interaction terms between particles in the form of
harmonic potential(the Harmonic Model[2]). Moreover, in the recent publica-
tions [3], many people have shown that the "three-body loss term” is needed in
the Time-Dependent-Gross-Pitaevskii equation to describe correctly about this
phenomenon (at least qualitatively}. Hence our project still need some more
works. Anyway, It is better to begin from some relatively simpler thing. Firstly,
we found that the interactions between particles cause some calculation problem
s0 we choose to remove it and retain the statistical correlations of the particles
hoping that we can relagate this interaction to be included in the strength of
the confining potential. Or in the other words, instead of switching the scat-
tering length (as in the experimental results[1]) we switch the value of the trap
frequency. By this way we can learn how the system behaves before embarking
into the reallistic one which may be done by adding some corrections terms to
the calculation.



1.2 The Time-Dependent Density Matrix (TDDM)

We start by looking at the time-evolution of the system of particles confined
in harmonic potential under the changing of the frequency of the trap from
v — w. For simplicity we assume the isotropy of the potential.(w, = w, = w,).
The time-dependent density matrix is

Ps (z, tlx’) = /wa (:L', it]z”) 2, (EH,,B'IH")KW (‘,L,m’ —itla:') de" dz" (1)

where E = {z1,T2,...,TNn}
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we write in one dimension for convenience. The generalization to three
dimension case is obvious. Hence
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then do the second integral we have the final form of the time-dependent
density matrix

1

s (2, ) v’ 2
AV 2w sinhvf (v2 sin® wt + w? cos? wt)

i @2 — w?) sinhvf cos wi sinwt + wv cosh vf] (z')* +
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Xexp | —— £

2 (v? sin® wt + w? cos? wt) sinhvf

1.3 Density of Particles

the fourier transform of the density for distinguishable particles can be found
easily

(¢4 = S og (z, tlx) e'"dz __gcosh 3v6 v?sin® wt + w? cos? wt) '
| pg (x,tlx) dz sinh v fvw?
(3
where

niz,t)= = /aqua‘”‘“c (%)

Then the density of particle for distinguishable particles can be calculate

n(z) vw? sinh $v8 ( 2 vw? sinh %fuﬁ)
= exp | -z .
7 (v2 sin® wt + w? cos® wt) cosh 1vf P v? sin® wt 4 w? cos? wt cosh v
(4)
For the case of identical particies, the permutation sum can be applied in
the same way as [2]. 'This case is even simpler because there is no center of mass

coordinates. We can write in three dimension,

g = N Z 3 aMuk, (q)M,aM “HMW (5)
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where
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the 1-particle TDDM satisfy the semigroup property so we can easily replace
the imaginary time 8 by v3 for the cycly of length +. Then we can evaluate 6

3
¥
1
K:‘Y = fdl‘.y_;_]... fdrlé(r7+1 - I'l) Hp‘@ (I'J'+1,t,ﬁ}rj,0) == (m)

=1

For K, (q), we have to consider

N
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i=1

however, the position of rs is not important in this expectation value. Hence
we can write,
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using semi-group property

Ko@) = frs [dra [ drapg (rait (7= 2 Bira,0) pg (v, 1, Blrs, O T g (52,0, Blrs.0)
= fdrl./drzpﬁ (r1,t, (v — 1) Blrz, 0)[ €7 Jog (r2, t, B|r1,0)
= s [ dripgteat,+ (v = 1) Blrw, (v = 1)8) s (ru, 8, (= 1) Blea,0) (657
= / drapg (rz,t,v8|rz,0)

Finally,

Ky (q) = [ draps (r2,t,7Blr2, 0) &5 |

1

v : / p vw? tanh 3%5 2,
= Texp [— T8+ iga
27 (v? sin® wt + w? cos? wt) sinh yv P (v? sin® wt + w? cos? wt) e

3
( 1 ) [ » (v¥sin® wt + w? cos? wt):|
= |—=7 ] ep|-q

2sinh 7—"2ﬁ 4pw? tanh 3’322




with normalization, from 5
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To remove the constraint 3 yM, = N we have to introduce the generating
v
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is the generating function for the partition function of N identical particles
as found in [2].

the Fourier transform of the density can be found from this generating func-
tion
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we define 4, to be a dimesionless quantity)

and we define b = e~ %



/[ (N 'Y b%’-z w % b
NZ Z/(N) (1—m)? (}?A’) oxp [~wh,r’] (10)

Now we see that the result is resemble the one from the work by FB,JTD and
LFL except the modification of the factor A,. Note that A, is a " Numerically”
finite function of temperature and time. Since the formula 10 is not useful for
numerical calculation, we apply the following techniques (I took from Sven’s
note)

1.3.1 Recursion relation for Partition funtion

N-1 b%(N~m)

Z; (N)Z%ngom))ﬁ% (m) {(11)
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because the factor is very small and impractical for numerical
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the next activity can be proceeded from 13 and 11
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Now we can find the recursion relation for the Density
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n{r) = - 3 (—A,,) exp [—wA,r?] H —
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1 1
I
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This formula 16 can be calculated easily and some result can be shown

Perturbation Theory for the Dis-
tinguishable Particles in switching
harmonic trap

-Our system is particles confined in harmenic potential interact with some
kind of 2 paticles potential for example, contact potential or s-wave scattering
interaction, Morse Potential, etc.

-What we are interested is the evolution of the system after abruptly chang-
ing the confining potential from v to w.

-We have already found the density matrix and particle density for the non-
interacting particles under harmeonic potential, the number density of the system
oscillate with frequency 2w. Note that this is a zero order of the perturbation
theory of our system.

-In real experimental results the condensate is oscillated and damped down
due to the interaction between the condensate and the thermal cloud.



Figure 2: v=1 w=1.1 N=200

10



=200
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-We would like to see how the interaction modified the oscillation of the
system, will the oscillation damped?

-We would like to see how the statistics modified the oscillation of the system,
quantitatively.

1.3.2 First Order Approximation

The Time-Dependent Density Matrix

p(t,B8) = [Texp [-—ifotdt’ (Hw+V)H [Texp [—LBdT(H,, +V)H
<[ o [ v o

To first order perturbation,
T exp [—i Jo dt' (H., + V)H e o He g [T (Ve—"fcf fﬂ"Hw)
T exp ["iff dT(Hu+V)] e fodrHy _ (B gry (ve- I dr'Hy

Substitute into 17 and keep only first order in V, because none of the Her-
miltonian or the potential are time dependent,

(=i f& dt'H., ~ij;;a‘t”f (Ve—ifn‘ de”Hw) + ] [e— & arH, _ ff drT (Ve‘ fdr’H,,) +}

x [erfd 8 He i [T (VeidddeHa) 4

~ |g=itHu _i‘lgdt;e—i(t—t’)ﬂwve—it'ﬂw] [e—,BH., _ JBB dre~B-NHuye—TH, 4 ]

itHy +if0t dtrei(t—t')HwVeic‘Hw]

= e itHu g~ PHy ity _g=itHu [# qro=(B-VHuy g=HugitHu_j [* gite=i{(t= ) Huy ¢ it HugmBH, gitH.
e tHug=BHu; [t gptei(t-t) Hoypit'Hu

X

Remark 1 the normalized one must be divided by Partition function Z ()
consider the spatial representation
p(z", ¢, B|z") _
— (:F:”[e‘“”‘"e“ﬁﬁ"e"‘ﬂ‘" |_,El)_j'68 d‘rf d:!':(f”|e“"”'”e‘('3"”')ﬂ"li:')V (3—:) (:E|e""’H“ gitHuy |3—:r)
i fy dt’ [ dz(3"|e” (=)o 2)V () (F|em ¢ Hu g PH Y itHu|31)
+i [y dt! [ dE(E"|e=itHue=BH- (=) Huig) (3) (z]et Helz) + .
= p, ("6, BIF') — [) dr [dzKy (2",,1(8 ~ 1) |8) V (@) K (&', ¢, i7}Z)
2
1 f(: dt' [dEK, (Z",(t — ) |5) V (T) p, (Z,¢, BIT )+ fo‘ dt’ [dzp, (2", (t - t'}, Blz) V (%) K, (Z',¢

because we are confused with the argument of the DM above so we leave it
open for a while.
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p (@1, BIZ') = p, (2", 1, Blz') + £ + pb + pt*

I think the correct argument can be determined after we have done the
explicit calculations.
the terms we need to re-calculate

(Z|ett Hw|z", (;E”|e"i(t_")ﬂ‘”|§:) these are simple harmonic Propagators

(z"|e it we= B-7)u|z) (F|e~THveitHw |E) these are something like interme-
diat propagators. or half density matrix

(Z|e= ¥ Hw g=BHo gitHuw |77y (F/1| g~ tHwg=BH, ei(t=¥)Ho |z we already has this
one but the argument must be modified a little.

for the terms

(@lem ' o e=AlveitHu |31 = [ dy [ dz(zle™ " Hely)(gle H1v |2){z]et «|z")

= [dy [ dzK.w (Z,¢'|9) p, (7, Bl2) K3, (2, £]2)

(@[ e Pl )12y = [y [ dz(@” e Gy (glePH [2) (2] M)

= [ dg [ dzK., (z",1'19) p, (7, B|Z) K, (2, (t — t') |2)

because the variables of time are not the same everwhere like in the previous
case. To be sure we have to do the calculation again.

1.3.3 First perturbation term for distinguishable particles

we are trying to see the behaviour of the perturbation terms, so we start from
the easiest term.

t

,5(1) (i, ﬁa“f:) :/ dt’fdi(i’qe*"(t’t')m" |:E)V (:f) (:J_:le_“ Hwe‘ﬁﬁve‘tﬂw|j')
0

(18)

We are interested in 2-particles interaction
B N N
Viz) = ;V(mi -z} = [dyV (y) § 6 (y — (zi — x;))
i 1F]

N _
=fdyViy) Y [ %3"?3‘3'?(3-'—55)
i
then the lst correction term of density matrix is
N , o NP " )
PO B,UZ) = 3 fo e [ 42 [ dyV () e [ dm'(ae ()M et ea) (gl gl
i

The Fourier transform of the density (non-normalized)
1 & ;
w)= 5 Y [ da 50 (@,6,12) e (19)
a=1

N N ; f ol b T - .
=k LY fydt [ [yV (y)e v [ dz [ da'(ale () yee ) (o i g BHy g
>

a=1i#j
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consider the term

N N ’ . r ' ) . .
Cy (q’ klt t) = '117 § fd:ffdf[(fle“(t«t )Hwlir)etk(:i—-zj)<£fle—zc Hwe-ﬁHvethmlj)etqz@
i

fd:z:j'd:c’K (F, (t —t)|7') =50 o8 (&, 17 — t]&) ei9a

%rﬂz ﬁbﬂz

n N
558
where
K, (z,(t — t'} |2’} is a simple harmonic oscillator propagator in real time
pﬁf{, (z',t' — tix) is a unequal-time density matrix of harmonic oscillator

(8) ('t~ tlz) = {4 2 1
Pw,v t A Z2n (w? cos wit' cos wi+v? sin wt' sin wt)sinh vB—~vwicosh v B sin w{t—t')

w isinhvﬂ! 1* cos wtsin wi'+v° cos wt’ sin wt)-—vw cosh v cos w(t' ~1) 2
X exp | ¥ S ; - ' h
2 | [{w¥ cos wt’ cos wt+u? sin wi’ sin wi) sinh v -vwicosh v Fsin wlt-—-t')]

w | isinh u,ﬁ(u cos wEsin wt'+w? sin wt cos wt "V+wv coshvFcos w(t' —¢ ne
Xexp |~3 (w? cos wt” cos wt+v? sin wi sin wt) sinh uﬂ»uwicoshv sin wit—t") (w )

X exp |— —~2wyzz’
. 2 [(w? cos wt’ cos wt+u? sin wt’ sin wt) sinh vB-vwi cosh vF sin w(t—1')]

1
2

note that this p%) {(z',t' — t|z) is a more general case of the previous result
(the zeroth order). One can see easily by setting ¢’ = t this expression will
reduce to the zeroth order DM.

And we can see by this general expression for different time that the system
which is Time-translation invariant was hroken the symmetry when the diffent
value of trap frequency is switched on.110

1.3.4 Three-point Correlation function for distinguishable particles

Ca (g, Klt,¥)) = ZZ [ ez [azrn @) 1@) DGR @ — e o

a-*l iFEy
(20
there are 3 possiblities of the friple sum Z
Q,l‘

1. a=1; ’

N . + ¥ ;
LY [ds [dB K, (& (¢ —t') &) e =21 08) (@t ~ t)z) elr™

iEj

=¥ g:%,fdffdi"ffw (2, (¢ - ) |') M=) o0 (&, 1/ — tfz) o'

]

-—-1—N2_fd:1:e“f’" J A’ K, (%, (t -t} |2) p(m ('t~ t|E)
=% E'Ef dze ™ [ dF'K, (3, (t - ) &) =2 o) (2, ¢ — t]3)

z

‘“Nfdl'Po (z,t,8\%) B'qz‘be Dirac notation,is this last term simply ng o {)7so is it going to dive
consider the term

[dzeie= [dE'K, (&, (t - ') |#') e*(=%5) o8 (3 ¢ ~ tl3)

= [ dielt N [T [dzKy (z, (t — ) |z) oL (2.t — t|z,)
I=1di ! s 1) Pw g i
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x [‘[ dzl Koy (24, (t — ) |21} %22 o), (2], 8! — t|a:=-)} [f day Koy (5, (6~ ) ) ¢ % pll ()0 4]
We doubt that the last 2 terms in square brackets have the same results but
different. only the indices, anyway we are going to evaluate it explicitly.

2 Of—j,
zfdxfda: Ko (z, (t —t') |2 e*=20) o) (30 ¢ — tjz) eloes

3. “% L # 5

vy Zfdxfd‘”’f( z,(t — ) &) e* =) ol (@t - 1)z) el
a=1 1#£j

Before we proceed further, the perturbation expansion has to be justified.

Conclusion 2 In this work we have calculated the quasi-static excitation (beat-
hing mode) of the Bose Eistein Condensation of Boson gas in a spherical mag-
netic trap by the method of many-boedy peth integrals. We found that the non-
interacting model gives the perpetual oscillation of the condensate while in the
experiment the damping of the oscillation was found. It is generally accepted
that the damping is due to the interaction between bosons. However, when we
attemps to tnclude the intraction into the calculation together with stalistics, we
found that the three-points correlation function is needed and it is too tedious to
calculate this quantity.
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2. INTRODUCTION

The 2-fermions condensation of Cooper pairing is well known in Superconductiv-
ity but in the boson case there occur only 1-boson condensation (BEC). Historically,
some pioneer works had been done unsuccesfully for the possibility of boson pair-
ing. However, the important developtment was done by M.J.Rice and Y.R.Wang
[3]. They shown that the 2-particles boson pairing is possible in 2 dimensional
system. They also claimed that their results have a possible implication of the
interpretation of the superconductivity in perovskite oxides and of the order para-
meter in 2D liquid He? layers. Recently, in the work by M.Yu. Kagan and D.V.
Efremov[2], have shown the possible symmetries of boson pairing in 2D square lat-
tice based on t-J model. However, they found that the Phase seperation occurs
earlier than the bosons pairing in the case of one band and one type of bosons.

The motivation of this work is to investigate the possibility of Bosons pairing in
two dimensional triangular lattice. The model used for the system is 2D t-J model.
The aim of this work is to find the phase diagram between particle density n versus
the interaction strength % From this diagram we can see the region where the
pairing with different kinds of symmetry occur until the Phase Seperation happen.
We proceed this work by following the method by M.Yu Kagan and T.M. Rice[1]
and some results from the work of Ivanov et.al.[4]. We will proceed the work by
calculate the critical temperature for pairing to see which kind of symmetries are
possible. Then the threshold for pairing can be found in order to construct the
n— %phase diagram. {(Howeve, we still do not know how to find the boundary of

phase seperation or threshold value of % that cause the phase seperation occurs.)
1
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3. THEORETICAL MODEL

We follow the work by M.Yu. Kagan and D.V. Efremov, the systen is described
by the Hamiltonian,

(3.1) H=—t 360+ 2 3 nt =V Y nin,
i i i

Making Fourier Transform we obtain,

- 1 P! t .
(3.2) H—Ze—b_b +5 Zb bLbe _bp.s QZV@b bbb
ERq

where in the case of Triangular lattice

§F=§F—9" (2D vector)

g = —2t (cosP +2cos£"—cosi%f)‘~)
Vigy=V (cos gy + 2 cos & cos i’a;q_

{For the geometry of the lattlce, see [4])

7

4. POSSIBLE SYMMETRIES CONSIDERATION

Now we can consider the possible symmetries of pairing from the gap equation
in momentum representation.

—~ —y _ 32 2(p
(4.1) A = Z V(g ~P)A(D) eoth \/(510 uY +A%(7)
2\/(ep — )* + 82 () =

where

A (P) is an order parameter or energy gap

4 is a chemical potential

To find the critical temperature T, we can neglect the 2™ order term of A (p)
because as T — T, the oreder parameter A — 0.The order parameter andd
the potential can be expanded in basis set of functions {n; (7)},7 = 1,2,..,6 for
Triangular lattice. Then we can write

6
(4.2) Ap) = Z Am; (P)
i=1
6
(4.3) V(p—p)=2V Z’?i (@) ()

where(4]
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1 P, V3P
4.4 = —_ ¥ z
( ) 1. (P) 73 (CosPy+2cos 3 cos 5 )
2 P, V3P
Ny (F) = %(cospy—Qcos?cos 3 )
P
n3{p) = Vasin 23 - sin \/_
_ 1 f P, 3P
m@ = 73 (smPy+2cos 5 €05 )
2 (. B, 3P,
75 (F) = % (sm Py — cos 5 €O,
ne (7)) = V2cos —P;E sin @

The basis functions describe different symmetry. For singlet 7, (7) is for s-pairing,
no (P) is for dz2_ 2 pairing, i3 (§) is for dzy pairing, and 7, 5 ¢ (P) are linear combi-
nation of basis function for the triplet-pairing. )

Substitute these 2 equations into the gap equation

6 6
S8 () =2V Y s oot |2 ] ZAm, ® ) |2v 3o n; @0 7
o - 2(ep - 1) i=1

Multiply both sides by 1, (9} and integrate over momentum. By using the fact
dP-dP,
that [ [ ™ (P)n; (§) = d;; we have

(4.5) Ap = sz 2\/_11:@ (') n; (') coth [T}

proi=l

Solving for T, ,we have the secular equation

coth {E2=£)
°T,
(4.6) det |6, —2V' S :2(—)

One can show easily that many terms in the above matrix vanish because when

we change 3, — [ f %‘—)# most of the matrix elements vanish beacause of the

7 (P)n; (P =0

odd functlons of the integrands. Only the terms involving n, () 1, (2) 71 (P) 02 (D),
Ny (0) ny (P) ;and 0, (B)n, (P) are survived. Which coresponding to the s* + dy2_.2
aund d;, pairing symmetry. (Actually other diagonal element such as 113 () 73 (D) ,...
are non vanishing too but they are too small so we will not cousider here}.

5. CRITICAL TEMPERATURE FOR PAIRING

To find the critical temperature of the occurence of bosons pairing we start from
gap equation for bosons at T' < T,.. Expanding the Gap function or order parameter
in the basis of symmetry group Cs gives a secular equation4.6
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n; (P, (BY| =

coth -(55—2
(51) det MI'J' — 2V Z 2—(“—#)
7

Due to the complexity of the exact expressions, let consider first in the small
momentum regimepy — 0

m@) 2y (5- 22} P2 Pl P2
Ny (P) = —% (1 +§ﬁ2 code))

73 (P) ~ ‘\/§P251H2¢

¢ = arctan T)': (note that this is uncommon definition because we follow the
orientation of the lattice defined in [4]).

for the kinetic_ energy
gp =2 —10f + 2m; m= Q ==boson mass for the Triangular lattice case.then

(cp—p) =L — s 0/ = 10t + e
The value of the Chemical potential y/, is always negative and can be determined
from the particles number conservation constraint.

(5.2) ng =ff (;11232 l:exp (@) B 1}'

solving this equation gives

(5.3) u'=—Texp (—T

From the above secular equation, change sum to integral over momentum and
firsly consider the case of d;, which the secular equation is not a matrix.

()
(27r) -/—W[T (h + 'i) N3 (F) 13 (P)

because of the unsymmetry of the limit of integration of P and F, So I propose
to simplify by approximation

T 7“- 27 -3’-‘-
f / : szdPy—>/ d,qbf ° pap
- —T;'p; 0 1]

(this point need more discussions since 1 don’t know if it could make any effects
to symmetry). Hence

2

_ 3\/§m3VT3f12mT= coth (IB"‘ 2T, $2d$
0

and because we are interested to find T, so by using the relation
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i 2mn

substitute in to the secular equation gives

(5.4) 1

3\/§m2VT2 /372'1,“—7‘: coth (.’L‘ + CXp (_TL‘: ‘2?;;1.3)) 2d
T xT
2w ¢ o (:‘ﬂ =+ J2' exp (_TL 21;:, ))

which can be solve self consistently numerically whenever we know values of all
parameters.

For another kind of symmetry s* 4+ dg2_,2 we have to solve the secular equation

-"3—‘2~-+h-5 | 'E“'HH |
coth

Wftfz co;hL+| —~—"11 {P) m (D) (QT)IIC{)P?_F_—H’TD* (@) 02 (B
%+”' {f’—ﬂu’r =0

2V P coth T, 2 coth
3(217)2 fd P (L'H#'l) m (P) n2 (D) fW d“p ( e ,,) P ﬁ)'f}z(f’)

From analysis of the work by M.Yu. Kagan and D.V.Efremov[2], they claimed
that the integral of the type

we can see easily by changing varlable p? = ¢ — 0 then the integral reads
~ [deothie? o [debie? = — 0
and another type is
coth th i _
Jpdp==7%p? ~ [de®ete ~ [del =Ine

Hence we conclude that there is no critical temperature for the pairing of these
types. Consider in the case of s* + dg3_y2,

m @)m @) = % (25_‘_91_%“ _ 15;'-’)
13 (7)1 () =~ (5~ 27 + § PP eos 26 — P oo 26)
Ny (PY 1y () = % (1 + %F’zcos2¢+6%ﬁ4cosg 2¢)

if we neclect all the terms involving P2 and P* then

1-91+—4§12 0

b=y 2n
_ 2V <:(:v1;h£—l _ \/—V 3m7- coth :l:+1 exp(——l--—ﬁ-))
where I = oz [ E Py = = el ey e

Substitute this expression into the secular equation above then we can ﬁnd the
T, of the boson pairing with s* + d;2_,2 symmetry.

By the way, if 12-‘-‘,1..% < 1, we can do the integral analytically, i.e.
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% coth (:r+%exl:\ (—%:27%‘1)) TmTa 1
/ d / - 5 dT
N i) o (o fown (-1 2me))
Ar2eta™ ']

wmzef™ w4 3m1, 21

then the secular equation above is

1-9
o 2 0 21 | om 2

Solution are :

2mng
Tci = - 1
37V2m? 296+/3w
(m Vi (11\/(1—4729&1/1%)) )
T

-1
(h‘ Tt (1 + (1 T %) )

The higher value of T, is considered as a physical one. and T, is the degenracy
temperature T, = 2%:5-

6. THRESHOLD FOR BOSON PAIRING

To construct the phase diagram, we need to know the critical value of -{- that
cause the 2-particles bound state. We can determine the bound state by looking at
the value of the T-matrix for two particles in vacuum with zero momentumf(i.e. the
two bosons have momentum g and —p). From the last section we know already that
the only possible pairing is 8* + dz3_,2 so we shall concentrate on this symmetry.
The T-matrix can be found by firstly solving the Bethe-Salpeter equation and
consider it in the case of low momentum (T,,-.;_dz, _p (B) =limppr o T (E) ). In
the case of t-J model, U is a strong hard core repulsive which we will take limit to
infinity later. The basis function of the s* + dy2_,2 symmetry is

(6.1) w(@=n P +n:(p) = (1—4-\/-_3@) cos B, + (2 ?/g\/i) COS% cos \/gsz

And the Lippmann-Schwinger equation for T-matrix reads,

" o St! Lttt
(6.2) Tsp (F)= Vi +/f dpmd:t;‘“ Ve Tpi (Ei)
2m)" E+4¢ (cos Py + 2cos 3 cos J%‘El)

we can expand the function (see also [5])

63) Ty (B} = Ti (E) + T2 (B} (@ (D) + v (') + T3 (E) 0 (F) ¢ (7')
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and

Vg =U =2V (P) ¢ (¥")

Substitute these into ?? and comparing the coefficient of the basis functions we
arrive at the algebraic euations of Ty 2 3 (E)

(6.4) T = U+UNIL+ULI
T2 = _‘J(T:llz‘}‘T?Izz)
T = —J(l-{'-TgI:: +T2[I)
where

Lo [ [ !
277) E+4t(cosP +2cos co. —@-2&)

I = //d'pzdpy :(H-g Yeos P, + (242 ) os & cos L2 |

E4 4t (cosP +2cos cos-ﬁzf‘)

/f dpdp, (1—‘%@) cos Py + (%?) cos %ﬂ cos 3/%3‘] ’

(2'”)2 B 44t (cos B, +2cos %‘L cos 3@‘)

Iz::r:

6.0.1. Low momentum approzimation. The energy reads
E+ 4 (cosPy+2cos%Ecosﬂi,& ~

E+at((1-1P)+2(1-3P2) (1 - 3P2)) =12t + B — 3tP2 —3tP2 +
neglect the term of 4th order.
The fisrt integral I,.

;= / dpzdp, 1
? (27)? 12t + E —3tP? - 3tP;

5 1
T et _/_% dp= /_ PV T E—mPE - 3tP2

1 7"56! " 1
B 2«)‘*’ -3 xf_ y12t+E—3t(x2+y2)

wr e s
(21)° Y12t + E- 3t (z2 4+ y?)

dr

6_7’”5]0 4+%—'r2
_ 1, E 4+ 12t
= 6wt \E+ 19t 3n%

Note the we make approximation of the limit of integration% — 77 to make the
polar integration possible,
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second Integral I,. ¢ (p) = (lﬁ\/_é@) cos B, + (QJ\/E‘Q) cos%‘cos%ﬁi
~ (5) (1 522 + (20) (- 4P (1 - §P)

V(1= 3P+ §PiV2— §FjV2 - 1 F))

V3(1-4(1-4n)pi- ;(1+A§)P§)

/ // dpxdpy )cosP + (%) cos—'t;‘icos—“%1

277) E+4t(cosP +2cos——”—cos 3P

)
_ f//dpzdf’y (=30~ )1 (2 6) )

gﬂ-) 12t + E - 3tP? - 3tP?
1 V2 1 V2
= A [ = I S ~Zhr
where
Lo [ dp.dpy By
! (2r)? 120+ E — 3tP? — 312

I, — / dp-dpy P2
2 (2r)? 12t+ E — 3tPZ — 3tP2

consider each integral seperately.

L = ff dpmdpy PE
(2m)% 12t+ E — 3tP2 — 6P2
] " P2
= d =
(277)2 /_:% & [_ 4Py 12t 4+ E — 3tP2 — 3tP2
1 i ™ yz
~ — dx
(2m) [w /-wdy12t+E—-3t (x2 +y2)

1 kg ’1"3 29
= 3 f 5 dr f sin? 8d8
3t(2m)’Jo 4+ 5 -2 Jo

1 r3 r
To1mt Jy 4+ E 2

R . (B + 12t) B
= 72ﬂ_t2(—311't+(E+12t)1n(E+12t_3ﬂ_2t) =1

Let define in the same fashion of (1]

(6.5) E = E+12t
(E+12t) E
(E + 12 — 3%ty "F 3kt

In

then
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(6.8) I, = —Q
Il = Iz:—

So now we can evaluate [

L, = ﬁ(fa—i(1—§)fl—i(1+—‘é_g) Il)
1
2

= \/5(10 - I,)
(6.7) = 3 (%Q - 14417112 (_3ﬁ2t + E’Q))

For the integral I,., the factor of (@2 can be approximate to

0= (2o, () o )

~3(1—§(1—32@1)P3—§(1+A§)P3)2

=3(1+3 (F-1) -3 (1+ ) P2)

then

I / fdpzdpy 1602 cos B, + (242 cos T cos @3‘]2

(27r E+4t(cosPy+ZCos%”-cos-£32—P=)

2 2 2

- / dpzdpy (325_1)&2“%(“”%)%)
- (2m)? 12t + E — 3tPZ ~ 3tP?

3(Io+%(—‘§2—1)1,—1(1+£) 11)

= 3(L _I‘)‘?’(a o S (—37r2t+E‘Q))

o 72mt?
Summary 1.
I, = wn
1 90, =
I, = f(ﬁﬂn T (—37rt+EQ))
1 1 .
6.8 I.. = 3{—0O- —3n? Q
(6.8) (67rt i (T B ))

The Solutions of 6.4 are [1]
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UL+ Tlgz)
(1= UL) (14 Jlpp) + UJSI2
—UJI,
(L= i) (1 4+ Jies) + U T2
T - UL)
(V= UL) (L4 J o) + UJTZ

(6.9) o=
For £/ — co then

(L+ Jizz)
(~Lo) (14 Jlpe) + JI2
—JI,
(~I) (1 k- Jleg) + J 12
JIo
(—T) (L Jileg) + J 12
Now we can solve the T-matrix problem for s* + d,:_ 2 pairing, consider Lhe
verlex function at small momentum limit

(6.10) Ty =

fowas o () = lim T (E)
= pmo{tﬂ(E)+T2(E)(cp(ﬁ)+<p(ﬁ’))+7'h(ﬁ'}ﬂp(ﬁ}ao(ﬁ')J
(6.11) = Ty {E)+2V3Ty (E) + 314 ()

Then using the equations 6.10, we have

. (E) = 1+3J1, —2V3J1, + Ji..
SHda2 T T UYL A T eg) + T2
Then we can Al in by 6.3

1
l, = —0
6t

\/§( Lo ! (—37r2.5+ EQ))

6mt l4dwe?
f _ L L 2, | 7
(6.12) L. = 3 (WQ— —— (—or L+EQ))

L+ 37550 — 67 (550 =t (-37% + BQ) ) 30 (g2 — bz (3771 + EQY) )
—55 ) (1473 (o590 - mlo (-37%+ £Q))) +37 (59 - gl (3524 500))
: — »
—shi+ # (g™ — 1 20 (1+ 2 £0))
We consider in the case of small binding energy E=FE+12t ~ O which means

the begining of pairing. This means that the terms dependent on I~ can be negiect.
Hence the T-matrix becomes,

I
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1
(6.14) T"*“‘:?-.ﬂ (E)= ?‘é‘gﬂzfif — e'l—mQ
6.1. Bound state consideration. From the T-matrix 6.14 we can see that,
for 4 < 130 = 128, E_§"2t , the T-matrix is negative which means the two
particles bound state occurs and we can evealuate for the bound state energy

_ TW

4(1—exp (—757))
where W = 12t the bandwidth of the triangular lattice.
We can consider the relationship

(6.15) |E|

|E| 3m?
=l 5
t o l-exp(—{m7)
which can be shown in the picture

|

250000

200000

130000

100000

50000

where the vertical axe is J—Ifl and the horizon one is %- However, this result must
be justified more.

6.2. The Critical Temperature of Pairing from Bethe-Salpeter equation.
We have already calculated the critical temperature of 8* -+ d;2_,2 pairing by con-
sidering from the order parameter or gap equation. Here, by knowing the expression
for the T-matrix6.14 we can calculate the critical temperature by another way. By
this method we can know the anlytical expression of the temperature which depends
on the binding energy. Consider the Bethe-salpeter equation,

TS"-Hi:z — 42 (E)
oth <2 ¢

s dp.dpy ©
14 T3-+d,,2 —p3 (E) ff (21[‘); 215;’._“)
gr=-2((1-3P)+2(1-3P2)(1—-3P%)) =6t + 3tPZ+ 2tPZ + ...
sﬁ%—ﬁt—l—%, and m = 2.
and we absorb —6¢ to i by redefine the chemical potential i = p + 6£. The T-
matrix which enter in Bethe-Salperter equation have to be evaluated at the binding

(6'16) FS'+d=2_y2 =
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energy £ = 2ji. and ji can be determined from the equation for couservation of the
number of particles,

(6.17) n= f / dp*dgy P_zl _
(2r) exp (2'15,-1.7—&) -1

which can be solved easily and we use the same crude approximation as in the
previous section, we arrive at the solution

- 12mng
= —Texp (—5; oy )

And the Tem;;erature can be found from the pole of 6.16

: dp.dp coth 222
G0 T () [ [
P

which we can use the same calculation procedure as done in the previous section.
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PATH INTEGRAL APPROACH TO A SINGLE POLYMER CHAIN
WITH EXCLUDED VOLUME EFFECT

V. SA-YAKANIT', C. KUNSOMBAT AND O. NIAMPLOY
Forum for Theoretical Science, Department of Physics, Faculty of Science,
Chulalongkorn University, Bangkok 10330, Thailand.

'E-mail: Virulh.s@chula.ac.th

The effect of a polymer chain with excluded volume representing the long-range interaction
between segments along the chain is studied using the Feynman path integral method. The

main problem is to calculats the mean square distance, < R* > thatis
. < R? >= AN”

where N is the degree of polymerization, v is a scaling exponent varying from 1-2 for free
chain and stiff chain, respectively; and A is a coefficient that depends on the detzils of the
polymer. In the case that the excluded volume interactions are present, v = 6/5. .
The model proposed by Edwards and Singh {1] and Muthukumar and Nickel {2] are
employed. Instead of using the idea of an effective step-length technique and the perturbation
technique, the idea of Feynman [3} in relation to the polaron problem is used and developed
by handling a disordered sysiem. The idea is to model the polymer action as a model of
quardatic trial action znd consider the differences between the polymer action and the trial
action as the first cumulant approximation in onc parameter. The variational principle is
.used to find the optimal values of the variational parameters and the mean square distance is

obtained. A comparison between these approaches and effective step-lengih and perturbation
zpproach will be discussed. .

1  Introduction

The theory of the excluded volume effect in a polymer chain is one of the central
problems in the field of polymer solution theory representing the effect of the
interaction between segments which are far apart along the chain. This interaction is
often called the long-range interaction in contrast to the short-range interaction
representing the interaction among a few neighbouring segments.

The polymer excluded volume problem is of the same form and difficulty as the
general many body problem, first discussed by Kuhn [4]. The modern development

was initiated by Flory [5]. Tt is recognized that the long-range interaction changes .
the statistical property of the chain entirely.

The main problem is to calculate the mean square end-to-end distance (R’),
that is .
. < R 5= AN (L.1)
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where the exponent 1<v <2, is to be determined and appears to be solely a funcuon
of the dimensionality of space. -

Over past decades many attempts have endeavoured to understand the excluded
volume effect. One of the theories of the polymer excluded volume problem is the
Edwards and Singh’s method. A sunple method capable of adoption in more
complicated problems is developed using the idea of an effective step-length. The

y P2 . . . .
mean square value of R” is developed as a series which for large L is
282

Sysys

R*=030515(1.12+1.05+1.03+...) (1.2)

where length L=N! and o is the self repulsion.
Another theory is the perturbation which represents a simple derivation of the -
mean square end-to-end distance (Rz) of a linear-flexible chain as a perturbation

series in the dimensionless excluded volume parameter Z,.In an essential way the

method used Laplacc'transforms with respect to the contour length L. The results,
to orders six and four in space dimension d =3 and 2, respectively, are

(R*)=LIN +-§—z, ~2.075385396 72 +6.296879676 7} ~25.05725072 7
+116.134785 25 —594.716632° +..], d =3,

(R*) =111 +—1§z, ~0.12154525 72 +0.02663136 7} —0.13223603 7 +..],
d=2."

The purpose of this paper is to calculate the mean square end-to-end distance,
employing the model proposed by Edwards {6] and using the idea of Feynman in the
polaron problem and one developed by us for handling disordered systems [7]. The
idea is to model the system with a trial action containing adjustable, to be
determined, parameters. Once the trial action is introduced, the average distribution
G can be calculated by expanding in first cumulant approximation about the
corresponding trial average distribution Go. G, approximated by the ﬁrst cumulant,
G, can be obtained.

As mentioned above, the parameters should be determined by minimizing the
exponent of G;. However, this procedure leads to a complication because the
parameters will depend parametrically on the initial and final position of the
polymer chain. To avoid such a complication, a simpler approximation in which
only the diagonal contribution of the exponent of G, is used in the minimization.
This approximation is equivalent to minimizing the free energy. Once the
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~ paramelers are obtamed they will be used to- calcu]atc the mean square end to-end
distance.

The outline of the paper is as follows: section 2 is a brlef review of an effective

- .- step-length technique and the perturbation technique. In section 3, Edwards' model

is reviewed. The path integral approach with one parameter model is introduced in,
section 4. In section 5, the results are discusséd and compared with other -
presentations. Finally, in order to be able to carry out the calculations arising in

section 4, an appendix gwes a detailed derivation of a characteristic functional
corresponding to the trial action S (@) .

2 The Mean Square Distance
" 2.1 The Effective Step Length. Technique

The excluded volume problem is a central part of polymer solution theory, the
mean-square end-to-end distance agreed on (R’) o L' where o =6/5 is shown to
within one to two percent. Analytic theories based on self consistent fields give «

to be exactly 6/5. The chain is considered a locus in space r(s), s the arc length, and
the random walk constraint is represented by the Wiener measure

exp[—% jl.'z('s)ds] | ' @2.1.1)

and the interaction

exp {-—colj:'j‘ﬁ[r(s) —r(s")Hsds"). - (2.1.2)

This allows the consideration of @ >0. The step-length is /, and @ “has the
dimensions of volume. If the'symbol (D(r)) denotes integration over all paths, then

rL)=R

| D@r(L)-1(0))* exp(A)

R?) =122 o , (2.1.3)
Jd’R Jexp(A)D(r)

{0}=0

._:_‘..‘Instcad it can argued that an effective step-length I; be introduced, so that, by
. definition
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,;<R2)='Llll'."r‘ (. N (214)

Thcréfdfchnc'car'l write
%’j} ds #of[D{F(s) —r(sNdsds”

. 3'.2 - 31 .1-_.2 _ - "7 ’. -
=——|[r ds +{—2-(-E——[—-)jr-ds +offDlr(s)~r(s))dsds’} (2.1.5)

21,
3 -7 ‘
=—2—l—j'r ds + B , say (2.1.6)
1 . ' ) ' R
=C +B. 2.1.7)

‘Then _ : _
(R*) =L, +OB)+O B +0(B) +.. . (2.1.8)

At this point, choose {; so that-

so that to first order in B, it gives the equation

1 1 6 I’
LN ~——) =2, 0. - (2.1.9)
{ 11 b 13

The solution to this equation clearly subsumes perturbation theory, for if @ is
small, I =1,

| | - L |
(R)=Ll+2 —6;4:01}12. S (2.1.10)
T
1

But for I} > @ there is a Flory type equation with solution

(2.1.11)

t-‘:lu\'

L=@2Y () ol

2. 1. 12
s 6'5"5'5'
. '7:3-

so that

228
$1373

Ry Sy, T i
| — @
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To establish the stability of the index « against higher approximations, (R’)
can be written as follows |

: 3 s ;
Y 171 3ry
(R‘) iy +7Aw'1.} +BGIJ;L +COJTL , (2.1.13)

. 12 l!

where 4, B, and C are numbers, Now effective step length [ can be introduced to
give

ooy e | (2.1.14)
L=4{i- G Il)+z,(l 2]

~ Using equation (2.1.14) in (2.1.13) it get to the third in @

3

2 P

1 l 7 2
172 3 _5_
+BC)L 28w (_____) CCUTL (2.1.15)
l_'."
Thus the first order approximation gives
119
o =1.0590 [0 (2.1.16)
26 2
(R~ oLl =1.120° 1%,
Now to the second order contained 1s
l -J
o=1. 025(0’L‘°l‘° ) : (2.1.17)
LA I )
(R’) still retains the-form ~ @°L°! ™ . Now to the third order where

LI ]

a=1.015w1°°

I~ -

]

s, - . (2.1.18)

w
ulu

(R’) o =1.03w
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Finally this can be expressed in a series for (R2> , the additions coming frormr
the order of expansion
208
(&) =@’

L*l

[T RN

(1.12 +1.05 +1.03 +...). (2.1.19°

2.2 The Perturbation Technique

The net effect of the excluded volume interaction between segments of the polymer
chain is usually repulsive and leads to an expansion of the chain size. When the
excluded volume interaction is very weak, a perturbation theory for the ratio of the

mean square end-to-end distance is (Rl) of the chain. Its unperturbed value <R1>0

can be developed and reduced to a varies in a single dimensionless interaction
parameter z4 [8] as
(R’)

@) =14+Cz, +Cyzl+Cyzl +.. . (2.2.1)
0

In describing the approach to equation (2.2.1) the equation starts directly with the
continuum model and works entirely with the Laplace transform functions

G(E) = IG (LYe *dL , where G(L) are probability functions for a chain’s contour
0

length L.

For the standard discrete Gaussian chain model of N+1 segments, the
probability distribution function G,(R,n) can be evaluated and a term of the
contour length L = N ! is given by

2
G,(R,L) =(_%_)m exp( R

. 2.2.2
2Ll 2LI ) ( :

The mean square end-to-end distance of the Gaussian chain is

(R?), =jd‘RR’G°(R,Iy
0 [d“RG,(R,L)

=11, (2.2.3)

When interactions are introduced, the bare distribution will be modified to a non-

Gaussian G (R,L) with corresponding characteristic function G (k,L) and

propagator G (k ,E,). The mean square end-to-end chain distance is given by
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(R*) = ]'d"RR’G(R,ly
{d“RG(R,L)

dE, 2d 3 ~
[te S~ ——=G (K E)],
dE T
[=72e ELG (0,E,)
2m

This can define a new variable, The so-call “renormalized” energy E by
E=E, +3(0,E,) . (2.2.5)

This definition can be reveried order- by order in perturbation theory to yield
E,(E) .If 'this is defined as

S(k,E) =Yk, E,E)] , (2.2.6)

then the exact propagator becomes

Gk ,E,(E)] = 1

2.2.77
k 2{ ( )

E + o +3(k,E)~3(0,E)

These results can be etpressed as functions of E and the equatlon (2.2.4)
rewritten as

dE

j__"e ELFJ.
(RY)=1"2m i , (2.2.8)
j ELF (E)
2m
where
F, = FE ' J éx] E,-E)L], :
(E) expl( E)L] (2.2.9)
FAE)= "KF (E)HL],
where
7= dE,
(dE y a (2.2.10)
K “1+Tak22(k EYl,o-

Solving these simultaneous equations in (2.2.9) for F, and F,, d =3 is obtained and
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(R‘) =LI[1+3C.z"], (2.2.11)
) m =1
where the coefficients thfougﬁ' order m= 0 are

ti2
3 sn o

287 16
=({— = = —"'—,C 26.296 y
2, = ()" 5, €= 43,0, =T = . C 879676

C, =-25.05725072 ,C, =116.134785 ,C, = —594.71663 .

(2.2.12)
For d = 2, the calculation of (R 1) runs in an exactly analogous manner to the above
derivationind = 3. Then

(R*) =Ll + £C,z] ) (2.2.13)
m=t

where

wlL
=" C =1/2,C, =-0.1215452,
L= : (2.2.14)

C, =0.0266313 ,C, =-0.13223603 .

3 Edwards' Model

In an ideal polymer, there is only a short-range interaction and the action can be
wrilten as

S=

;2 Id*cf{ (1) (3.1)

where [ is the effective bond length representing the short-range interaction, and
R (1) is the position of segment T of the polymer.

Since there are many effects in real polymers, the long-range interaction is quite
complicated: steric effects, Van der Waals attraction, and solvent molecules effect.
However, for the large-length scale concerned, the details of the interaction can be
omitted. Thus the interaction between the polymer segments Tando can be

expressed as
kTV(R_-R_) .

This can be approximated even fufthet by a delta function

vk, T8 (R —R),
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where v is the excluded volume which represents the long- rangc interaction, and
has the dimension of volume.

The total interaction energy is thus written as
NN ’
U, =%kBT [ [ddo8(R (1)~ R(G)) (3.2)
00
using the local concentration of the segments
b
c(r) = [dtd(r - R(T)) . (3.3)
Q
Thus, equation (3.2) may be rewritten
1 2
U, = fdr—z—kaTc(r) : (3.4)

This statement indicates that equation (3.2) is the f{irst term in the vinal
expansion of the free energy with respect to the local concentrasion ¢ (r) . Now if

the interaction equation (3.2) is taken into account, the action becomes

3 N - 2
SZ—-—-;J’d'CR (0 +

. i [d1do8(R (1) ~ R(3)) (3.5)

D[ <

The second term accounts for excluded volume interactions between segments of the
polymer. The probability distribution of the end-to-end distance is given by

G(R,.R,;N) = RfD[R(r)}a‘s . (3.6)

4 Path Integral Approach

In this section, we apply the idea of Feynman, developed for the polaron problem,
and Sa-yakanit[9), applied to disorder system, to polymer problem . This idea is to
model the system with a model trial action which can be solved exactly for one
parameter model.

The Edwards action is cxactly so!vablc only in the limit, v = 0, where no
excluded volume interactions are presented. In this case, the polymer exhibits
Gaussian statistics. If v is not zero, the model is no longer exactly solvable;
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i

swever, this problem is similar to a polaron problem, which can be solved by path
woral and variation method, by introducing the trial action Sg (w),

mm*’

dtf{ )+
(*) 4N

80(0))2 %fl_'l_

o

TTdrdG(R(T) - R(G))z (4.1)

e m = 3% and ®is a parameter.

Once the trial action Sy (w) has been introduced, it 1s possible to find the
serage distribution which, from equation (3.6) can be rewritten as

G(R,,R,;;N) =G (R, R,; N, @) < explS, (@) -5]>, ., » (4.2)
there the trial distribution Gy (R, Ry;N, w) is defined by

G.(R, R; N) = RI’D[R(T)}:'S"“” ’ (4.3)

R,
md the average <x >, ., isdefined as
N
JDIR()Ke ¢

<X >, =2 . (4.4)
[DRE) ¢

Approximaling equation (4.2) by the first cumulant, we get

G,(R,.R,;;N) =G,(R,,R,;N,w) < explS, (©)-S]>; ., - (4.5)

To obtainG (R ,, R ;N )}, find G ,{(R,,R ;N ) and the average. Firstly,
tonsider the average <S°(oo)—S > - Since the first term in S and So(cu)

always cancel each other, this denotes <§ > and <S°(oo)> for

Sl 5 lo
tonvenience as the averages of the second term respectively. The average of
<§ >, ,,can be evaluated by making a Fourier decomposition of 5(R ('r)— R(G)).

Thus,

(S)S‘(e)zgzzd'tdc{%] j’dk(exp[ik.(]%(f)__R(g))]:)s‘(m) . (4.6)
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The average on the right-hand side of equation (4.6) can be expanded in
cumulants, and because S (a)) is quadratic, only the first two cumulants are non-
zero [10]. Equation (4.6) becomes

. ywn Ly | . |
(S)en = = 1ldt C{ n]fdke‘\p(xkﬂz) : (4.7)

where

=ik {R(%) —R(cs))w , (4.8)
and

—-k*1 C
K= [g((R(t)—R(G)) )S.(m)—(R(ﬂc)—R(c))s‘(m)] _ (4.9)

»

Note that the second term inside the square brackets of equation (4.9) represents
only one component of the coordinates. Performing the k-integration results in

() =—;-]:Idrdo( n] A'”Iexp[ f{:} (4.10)
where
A=t [1 ((R(f) ~R(0) ) ~(R(r) R(0)) } 4.11)
213 s ( }
and
=i(R(1)~R(0)), (,, - (4.12)

Next we consider the average of < S () > Which is easily written as

(S, @), , =_“;%z Id’tdo((R('t) ~R@))) (4.13)

5.(&)) )

4.1  The Characteristic Functional

From equations (4.10) and (4.13) it can be seen that the average <S,(0)-S >, .,
can be expressed solely in terms of the following averages: <R(t)>;,, and

< R{t)R(5) >, - SUCh averages can be obtained from a characteristic functional of
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N | . ‘ o ‘ :
<exp([d'cf('t).R(T)) > (- From Feynman and Hibbs, the characteristic functional

can be expressed as

< exp(? de(T)R(T)) >s,{u): exp(— [Sou (Rz - R.l‘;N,.(Q)—T SO.:! (Rz - R1 ; N’ m):D 3
(4.1.1)

where S'O_L_,(R2 ~R,;N,®) and SM(R: »—R,;N,;o) are two classical actions which

we have derived from the calculation in the Appendix. Once the classical action
Soa (R, —RI;N,CD) is obtained, we can differentiate expression (4.1.1) with respect
to f(t) to obtain

I 68.0.:[ (RZ —R ;N‘(D)
(R(T)>S,(w) = Bf(‘t)‘ : t1)=0

2R _
SRS 2 sinh ot + 2sinh N sink (N T)sinhE’i
2sinh oN | me | 2 2

2R -
£ 220 Ginh (N - 1)+ 2sinh L sink G JIC | PP
mo 2 2 2

where the symbol |,,,, implies that after the differentiation, f(1)=0 must be set.
Continuing the differentiation, '

& S'o.:;\(Rz "R, ;N,OJ)
(RER(©), ., =[- S F)
88,.(R, -R,;N,w) 8S,,(R, ~R,:N,0) |
5 (z) ' 5 (o) Peepo -
(4.1.3)

Set ¢ = 7 in equation(4.1.3) to obtain
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., @ SR C)
, 3 sinhw(N-1)sinhar 4sinh E(N_T)smh 5"
(R*()), ., = A e 2 }
e me sinh @N sinh N

2sinh CD2N sinh m(N — T)sinh @t

sinh @t
2 (= + 5 )
sinh N sinh wiN
sinh (o(N B T) 2sinh c02N sinh m(N — T)sinh ot
+ R (— + - n? .
sinh N sinh N
(4.1.4)

Equation (4.1.4) is the mean square end-to-end distance of the polymer. This
method is more general than another methods because the mean square can be found
at any point along the polymer chain.

Using equations (4.1.2) and (4.1.3) and performing the integration in equation
(4.13) the following is obtained:

3(oN . oN
(0@, 00 = 5[ N comn _2__—1]

m|oN  oN (oN oNY|R,-R,)
+— coth - cosech }
21 2 A 2 2

2 N

(4.1.5)
Collecting the above results, the following is obtained:

3

312
Gl(Rz—Rl;N!w)‘: & > N
2nNI* ., N
?,SIHhT

exp 30 R,-R,) -l—c:othﬁ+ﬂcosach2£IJE
41* 2 2 4 2.

3 3wN ©N
—t coth
2 4

v NN 1 312 _R?
——[[dtdg — A-!!Z , 1.
2£b[ K 6{411:] exp( 4A } (4.1.6)

where we find for 1> 0o
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., ON- @.1.7)
mosinh —
2
and
i.sinh w(Tz— G) cosh CD(N -—é‘c * G))
B= — R,-R)). (4.1.8)

sinh —-—

G,(R, - R,;N,®) is the average distribution in the first curnulant. To
determine <R*(1)>, ® must be found first. Three cases are considered:

Case I (v=0and w=20)

This case is the free polymer chain or the chain without ‘excluded volume effect.
3InG,(R,,R;N,w)

3R,

minimizing the free energy, then Ry = R; was obtained, If one end of the polymer

chain at the crigin (R; = 0) is fixed and taken to the limitw — 0 in equation (4.1.4),
then

=0 was calculated, This approximation is equivalent to

(R*(@)) 3@1\# . (4.1:9)

Equation (4.1.9) represents the mean square distance at any points along the chain

without volume effect—free polymer chain. This result corresponds to the experiment
and another methods, but is more general as can be seen for N—ee:

(R’(r)) =1'r.
Cases Il and I11

In cases II and III, the variational method was used by minimizing the diagonal
contribution of the exponent of G (R, ~ R,;N,®). This approximation is
equivalent to minimizing the free energy:

alnTrG,(];pR:?N'm)zo. (4.1.10)
m |

Thus
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luﬂcothg—l\i
2 2

’ 2 M2 _
+-1- @l thﬂ)N - mNcosecth ='VN L fdxA™"?
2 2 2 2 2 4dml 4r )

sinh (02}( sinh ,CD(N = x) Nsinh? ox

(

cnsinh—(%\l 2sinh? ON
xsinhM

2
- ], 411D
2sinh%

where x = 1 - o and © > o©. Equations (4.1.6) and (4.1.11) repreéent a complete
determinationof G (R, - R|; N, w) ;_however, they can not be solved exactly.

In Case II (wis small and v is not zero):
Equation (4.1.11) was approximated as

1_mN _(mN) e =_1_(£] 'VNmm(Hmel_c-ux)_ (4.1.12)

4 2 41| 2n

By substituting equation (4.1.12) in equation (4.1.4) the following was obtaind:

(Rz) Nt Ly Tvm’*N"*  273m’v’N

4.1.13
4 20)57!:”’ 20007 ( )

In Case III (@ is large and v is not zero):
Equation (4.1.11) can be expressed in asymptotic form as

| ONY, oN _ N L”‘de 1 Y
2 4 d4midw) o |2mw 20
(A
E"
213 143 '
m:(-z—“Ii) N"”[I—EI—\T—] . (4.1.14)
m | v 4 .
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Asymptotically substituting equation (4.1.14) into (4.1.4) to obtain
1}
(R?) = 2AY) N, (4.1.15
2w | 4

5 Discussion and Conclusions

The paper studied the polymer-excluded volume employing the Feynman pat
integral method with the model proposed by Edwards. The calculation that follow
is developed by us for handling the disorder system. The average mean squar
displacement at any length in the polymer is obtained. Therefore the result is mor
general than other methods where only the end-to-end point is calculated. In order t
be able to appreciate the result of these calculations see Table 1.

Table 1.
Model Case Perturbation Edwards Our method
Free chain IVE Ni? (v —T’)’L‘
N
2 1
2 - ~
NIt +f- 3 L NIL-
Weak interaction ;2 N A . a4
ERE Yo% s
Strong interaction | —eeee L120°N°1° (——IV—] NT
2 | 4

Table 1: Present results are compared with the perturbation method and the
method developed by Edwards. From the table for free chain all approaches lead
NI*. Note that since the present results give detailed information along the chain

Therefore N - =, Q;Tﬂf_ — ~ and the present results will coincide with the free

chain, For weak interaction the present results differ from the perturbation by
factor of 1/4 . This is due to our approximation by using harmonic approximation. I
is well known that a harmonic approximation always leads to unphysical results for
weak w. Finally, for strong interaction the present result is N** instead of N¥° as
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obtained by Edwards. It is noticeable that the harmonic approximation is also not
very good for strong interaction. The reason is that a harmonic trial action cannot
model the delta function in this excluded volume problem because the delta function
has a bounded state at minus infinity. If our excluded volume has a finite range then
the harmonic trial action will be able to model the long-range problem. Future
research will consider more of this problem. Although the use of a harmonic trial
action does not correctly produce the weak and strong coupling in the exponent, it
does give the prefactor A correctly which is important for calculating the magnitude
of the mean square displacement. This result can be recognized by noticing that

<R? >= AN .

11

R2
Then the exponent can be obtained by plotting v againt ln{< >}/ln[N] for

large N. The <R*> can be taken from equation (4.1.4) and the result is given in Fig.
I

v ovalue

1.8

1.6
1.4
1.2

. ) ) ) X ln[ < R?
200 400 600 800 1000 12

2.1 /1In (N}

Figure 1.

The advantage of the variational method is that the mean square displacement
of the polymer chain with excluded volume for any coupling strength and fluctuation
along the length of the polymer can be obtained. The intermediate strength is shown
graphically in Fig. 1.

Finally, this method can be generalized to two parameters as in the case of
polaron.
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7 Appendix

In order to evaluate the averages of <R(1') >5,(0) and <R(1:)R(O')>So(m), it is
nescessary to establish a characteristic functional, as

N
., J' D[R (1) ]exp(=Sg () + Jd'rf('r) R(1))
<exp[-l.dff(r)R(f)}>So(m)— 9 (A1)
0

D[R(7)]exp(~Sq (@)

ot—

where f(7) is any arbitray function of time, equation (A1) suggests that if the trial
N
action Sg(w) is quadratic, then the action of S(') (&J)z S, (CL))-— Jde(‘L‘)R(‘L‘).

Using Feynman and Hipps, the path integral of equation (A1) can be carried out
exactly as |

N
< 3XP(Jde(T)R(T)) Z Sy (w)™ EXP(— [SEJ,ci R, - RtiNsw)“So,cz(Rz ~R, ?N,W)D
0
(A2)

where S;J.d (R, —~R,;N,w) and So,cl (R, -R;;N,w) are the corresponding classical
actions of S;)’C,(a)) and .S'Old(a)). When the classical action S(')‘d(Rz ~Ry;N, @) is

obtained, the classical action SO_L_‘,(R2 —R,;N,®) can be obtained form it by setting
f(t)=0

To obtain the classical action Sé,'d (szRl;N,co) a variation is required for

S").c, (w) to obtain the equation
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dz:;;(f)—: “]": lda(Rc(f)-Rc(G)j;:%; f—l(;—) (A3)

This equation may be rewritten in the form

d*R (¢ . w?
d'[cz( )—O)ERC(T):—

(A4)

By iniroducing a Green Function

[i_i_w2}g(r,o*):5(r-—a) (A5)

where

(r.0)= {sinh (N —1)sinh woH (z — o )+sinh @{N — o )sinh wtH (o — 1)
s w sinh wN

(A6)

~ with H denoting the Heviside step function, then the general solution of equation
(AS5) with the boundary condition R(0)=R, and R{N)= R, can be written as

[R, sinh wr + R, sinh (N —7)]
R (r)= :
sinh wN

—T[f—(c[)+%2—]{}?(o)ia}g(r,d):io (AT)

n

This equation (A7) is an integral equation which can be solved. The solution is

N
R, sinh o7 + R sinh o(N ~7 £
R, ()= Rasih o < Rysinh oV 7)) T2@), (o
: sinh wN ) m
(Rl +R1)Sinh gJ-?:-——sinh M_.—_l_l
+ 2 2

oN

cosh ——
2
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. N
4sinh ©% sinn 20V =) If(o)sinh 0T on @ =0)
2 2 2 2

+ ‘ 0 AS
masinh oN (AS)

The classical action of S(')’c, (R2 —~R;N,w)} is simply obtained by substituting R,

into the expressicn

Sy(R, ~R,; 00, N)= jd Ri mszTdﬂia R, (1)-R,(0)?

—Jdrf(r)Rc(r)
:%}[Rc (MR, (V)-R. (O)RC(O)} (A9)

to give

Sé(RZ-—RI;a))=£?—f)—coth——lR7 ~R,|’

- .mco J.drf (f)(smh —_—
2 sinh aJN e X0

w1 w(N --’L')

+ 2 sinh TNsmh Tsmh )
N
2R, ., o(N-1)
+':?TC—D-.([C{Tf(TXSInh 5
+ 2 sinh w—f—sinh —ag—-sinh co_(N_—_r_))

2

]?120)2

N1t
JIdeO‘f 7 )f (o Xsinh w(N —)sinh wo
00

(N -7)
2

+4sinh @7 sinh sinh ‘”2" sinh 2
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The classical action ‘S'OCI(R2 RI,N @) is then obtamed by settmg f(r)=0 in
equation (A10):

SO(‘R2HR,;co)—%i"-cohf)i{\R2 R (A1)

Next, to evaluate the trial propagator Go(R;,R,; N,w), the trial action is rewritten

as Sy (@) in the form

Solw)=S,(HP)- 22 JdrR(*r) (A12)

where S, (HP) is the simple harmonic potential action as shown in

N
So(HP)= Jdri;i(k
0

The second term of equation (A12) can be converted to an mtcoral form by the
identity

exp me* Jd”R =[ al } decxp

2mmn co

2

1)+ o’R (r)}. (A13)

deR(r . (Al4)
2me?

Form equations (A12) and (Al4), it can be found that the propagator Gy can be
expressed as

Go(Rz,R,;N,m)—( ]MRJD iljdfexp{—(so(HP) sz +jdﬂtr)f)

(A15)

Changing the order of integration, (A15) becomes
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l 3/2 2 )
'GO(RZ_,RI;N,CD)=[ N 21 J-dfex;{— AL 2:\GE(R2,R1;N,E)

2mmo 2mw
(A16)
where
R, 7 N _
Ge(R,, RN f)= j D[R(ﬂ:)]cxp\:— (S (HP)+ J.dTR(T)f):\ : (A17)
R, 0

The propagator (Al7) is the force hamonic oscillator propagator with a constant
external force f, which is

372

ma meo N 2
G:(R,,R; N, f —_— exp[—(——(coth—|R, - R
(R Ry N )= [msmth] Pl (coth =R, R, |

+tanhoo—;\]~(‘R2 +R1)2)+itanh£u—;—\l—(R2 +R, I

+( 3 t:amh—m————2 =N} . (A18)

Substituting (A18) into (A16), and performing the f-integration, equation (A19) is
obtained:
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Capture radius of magnetic particles in random cylindrical matrices
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An cffective medium treatment (EMT) was used to model the magnetic field around randomly

. distributed magnetic cylindrical fine wires and applied to calculate the capture radius of
paramagnetic particles in a filter operating either in the longitudinal or transverse design made. This
article reports capture radius as a function of the ratio of magnetic velocity to fluid entrance velocity
will a magnetic parameter which determines the strength of the magnetic short-range force, as a
parameter. Finally, comparisons of the resulls based on the EMT approach, wilh those obtained by
using the single-wire model, are given along with discussion on the criteria {or validity of the simple
single-wire model. © [%99 American Institue of Physics, [S0021-8979(99)00302-3]

L INTRODUCTION

The theory of magnetic filtration has long been investi-
pated; however, most of the theeorics published are based on
+ the simplest single collector model. Among those, the {or-
merly developed theory by Watson® has been referred to by
many authors. This theory explains the capture of the weakly
magnetic particles carried by fluid of potential flow type,
defined by Reynold’s number Re=pVyaf 531, where p, Vy,
7, and a are the fiuid density, enirance velogity, viscosity,
and collector radius, respectively. The theoretical mode! used
consicis of an isclated fine ferromagnetic cylindrical wire in
the background of a uniform applied magnetic field. Later,
Waison? calculated the capture radius of paramagnetic par-
ticles in a filter consisting of fine ferromagnetic wires using
the same approach as reported in the previous publication.!
This article includes analysis of the relation between the cap-
ture radius and the external uniform magnetic field with a
magnetic parameter K, which measures the short-range force
a5 a parameter.

Particle capture in the random matrix at low field inten-
sity limit has been treated by Sheerer er ol The capture
radius of a single wire with arbitrary orientation with respect
1o the applied magnetic field direction was evalualed and
used to determine the mean caplure radius in describing an
overall filter efficiency. In this research, the single-wire
theory is generalized and the results of Watson? are extended
by using the effective medium treatment (EMT) to predict
the magnelic field around the filter matrices consisting of
parallel wires distributed randomly. The same treatinent was
applied to a similar system of random sphere assemblage
presented by Moyer et al.*® and Natenapit.® The caplure ra-
dius results of this study were reported and compared with
those of Watson? based on the single-wire model. Finally,
the criteria for validity of the single-wire mode} used to Je-

termine magnetic  field around the filter matrices are
discussed. :

*“'Eteetronic mail: mayuree @ mail.sc.chula,ac.th

0021-8979/99/85(2)/660/5/515.00

Il. THE MAGNETIC FIELD AND FQRCES

To detenmine the magnetic field around parallel eylindri-
cal wires of high permeability, which are randomly distrib-
uted in a formerly vniform external magnetic ficld applied
perpendicular to the wires' axes, the effective medium treat-
ment originally conceived by Hashin’ to describe the effec-
tive conductivity of spherical particulale composites was em-
ployed. In this approach, the system of magnetic cylinders
and surrounding fluid medium is considered to be composed
of cylindrical cells, each containing one of the cylinders. The
ratio of the cylinder ta cell volume (a?/57%) is set equal to the
packing fraction of cylinders in the medium (F). Adjacent io
each cylinder (permeability #,) is the surrounding flvid nie-
dium {permeabilily z¢/). In this model, only a representative
cell is considered while the neighbor cells are replaced by a
homogeneous medium with effective permeability u™ to be
determined. Self consistency is achieved by requiring the
magnetic induction averaged over the composite cylinder
{cylindrical wire plus fluid shell) 10 be the volume average of
the magnetic induction over the effective medium’ [see Eq.
(A13)]. Taking Hy along x axis and the wite cross section on
the xy plane, the following equations were obtained (sce Ap-
pendix for details): :

K. K. .
H=AH | t + —|cos 8~ | 1 — —x|sin 88},
Fa Fa
b
l<r,,<; (1a)
b
=H;. ;<rﬂ<3°, (i)

where A=1/(1-FK,), K.=(v—1)(v+1), v=p,lpn,.
and r,=rla.

Alternatively and equivalemly, the effective permeabil-
ity has been defined intenns of the magnelic energy integral
and determined by using variational theorems.® The consis-
tent expression for the effective permeability p* has been
obtained. From Eq. (1a), one can see that the magnetization

© 1999 American Instijule of Physics
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FIG. 1. A% as a function of packing fraction.

of the matrix increases whe local field in the fluid shell, de-
pending on the overall shape of the matrix volume and the
magnetic parameter K,.. Equation (1b) is true for the EMT
mode] used here, resulting fram the boundary condition (i) in
the Appendix and the obtained p* without further assump-
tion on the magnetic ficld,

The magnetic force acting on a small particle of radius
rp and magneltic susceptibility x, located in the fluid of sus-
ceptibility x; is®

24 \
W= TpkoX VH X=X, s (2)

The particle is said to be paramagnetic if x,> x, and dia-
magnetic if Xp<Xr-

Substitwing H from Eq. (1) into Eq. (2), the mognetic
force which depends on the panticle radius, external field H,,
magnetic parameters K, and A% is obtained. Figure 1 shows
the variation of A? as a function of the packing fraction for

¢.=0.2 and 2. The other major force to be considered is the
viscous drag force which is generally assumed to obey
Stokes” law '

fy=—6mqr,(v- \'f). ) 3)
Here, v, is the fluid velocity, v=4r/d1 the paricle velocity,
and 7 the viscosity.
ilf. EQUATIONS OF MOTION

By using the magnetic field developed here and the
single-wire potential flow field, the equations of motion simi-
lar to those reported by Watson? were obtained as follows:

dr, (Vo i ; (V,,,) e K,+c0528
DT l"'r_g cos(@—a) el T},— T .

a

LY
d0 V, 1y Vil o, sin 20
,-aF{.:-(—f)(l+;—E)51n(0—a)"(-a—-)A'—’—_2——, {5}
dz,
_d_:'=0‘ (©)

P NG TR Qg ve. OGiyies [PV
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FiG. 2. Capture radius for parameagretic particles as a function of V1V,
for 2 longiludingl fiter with packing fraction F=0.0001.

where a=0 or /2 for a filter in longitudinal (HgllVg) or
transverse (Hgl V) design, respectively. Here, the magnetic
velocity

v _i X#OH(%";K:
"9 1na

is multiplied by the factor A%= /(1 — FK,)? to account for
the influence of the neighboring wires on the pattern of mag-
netic field around the filter matrices. It is noted that the mag-
netic parameier K, is equivalent to the familiar magnetic
parameter K, =M /{2 pgH ) for a single-wire model. For a
normal matrix with a very low cozrcive force, the maximum
value of K,=1, K,>1 can only occur for an hystesetic
matrix.!? .

The equations of motion are solved numerically for par-
licle trojeciories at varying initial positions on the xy plane,
The inspection of the particle trajectories yields the critical
capture radius (R} which depends on the following param-
clers: V,, fVg, F, and K.

V. RESULTS AND DISCUSSION

In this research, caplure radius for paramagnetic par-
ticles as a function of the ratio of magnetic velocity to fluid
entrance velocity (V. /Vp) in both longitudinal (HglfiVg) and
transverse (Hgd Vo) magnetic filiers with parameters X,
=0.2 and 2 were determined. Three cases of the magnetic
filters with different values of packing fraction are consid-
ered. First, for a very dilute limit of filter packing fraction
(F=0.0001), R, as a function of V_ /Vy is shown in Figs. 2
and 3. In this limit of packing fraction, A%=} for all values
of K, as can be observed from Fig. 1. This indicates that the
EMT results of R, obtained are consistent with the corre-
sponding single-wire model results reported by Watson.?
These are confirmed for the case of magnetic fillers operating
in longitudinal and ransverse modes as shown in Figs. 2 and
3, respectively. Funliermore, Fig. | also indicates that the
single-wire model is a good approximation for all values of
K. up to filter packing fraction F~0.05.
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FIG. 3. Capture radius for paramoagnetic particles as a function of V1V,
for a transverse filier with packing lraction F=0.0001.

Second, for a filter packing fraction F=0.1, the relation
between R, and V,,/Vg based on the EMT magnetic field
developed here, are compared with those based on the
single-wire model as shown in Figs. 4 and 5 for longitudinal
and transverse modes, respectively. Again two values of K,
=0.2 and 2 were used. For all cases, the EMT results for R,
are higher than the corresponding single-wire model results;
however, the difference is insignificant for K.=0.2, espe-
cially for the longitudinal mode. Thirdly, for a higher value
of packing fraction (F=0.2), the similar dependence of R,
on V,,/Vy are illustrated in Figs. 6 and 7 for the longitudinal
and transverse modes, respectively. Here the difference be-
tween the EMT and single-wire results for K.=2 is more
prongunced than the former case of a lower packing fraction
F=0.1. However, the difference is still very liule for the
simaller magnetic parameter K.=0.2.

—r Ty — T T—T—rTr
iF E
Re [ ]
[ 30 I
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FIG. 4. Capture radius for paramagnetic panicles as a function of ViV,

based on EMT (*%) and single-wise (T, [3) magnetic fiedds for a longiu-
dinal filter with packing fraction F=0.1,

M. Natenapit and W. Sanglek

4

T T

NN

T

]

g0 2.1
Vo /N,

FIG. 5. Capture radius for parsmagnetic particles as 2 function of ¥, 1V,

bascd on EME {*.%) and single-wire (O, [J) magnetic tields for a trans-
verse filier with packing (ruciien F=0.1.
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V. CONCLUSION

The two-dimensional description of the {low field around
cylindrical matrix wires is applied to a three-dimensional
problem and the geometry used is similar 1o that used by
Kuwabara'! to discuss the flow around cylindrical matrix
wires. It should be noted that the changes in flow produced
by the presence of the wire falls us +,? and so these are
considerably more important at low operaling parameter
Vi Vg, than the changes in magnetic field produced by the
matrix where there is a r)> and a r; ® dependence for cykin-
ders. In the case of spheres, the fall off is even more rapid'’
and the capture for a system of randomly packed spheres is
dominated by the short-range term r;’.

The studies also indicale that the effects of neigboring
wires on the magnetic field pattern around the filter mutrices
may be neglected for @ small packing fraction, e.g., F

YT T — ..1.,4
‘e
Re [
0.1 E
3
ooy L it i
0.01 0.1 1 i0

Vo/ Ve

FIG. 6. Capture radius for paramagnctic particles as a function of V,, /Vy

based on EMT (%, %) and single-wire (3, () magnenic ficlds for 2 longia-
dinal lilier with packing fraction F=0.2.
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based on EMT (*.%) zad single-wire (3, [J) magneiic felds for a trans-
verse filier with packing fraction £F=0.2.

=0.08, for all possible values of the magnetic parameter &,
which determines the strength of the magnetic short-range
force [r7* term in Eq. (4)). Here K, depends on the ratio of
the wire permezbility to fluid permeability as K =g, /uy
— 1)/ (s fpy+ 1}, However, for a higher packing fraction,
the single-wire appreximation is still good only for the Jower
values of K (say <0.2).
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APPENDIX

To determine the magnetic field in the cell, the boundary
value problem of coaxial magnelic cylinders subject 10 the
beundary condition of uniform magnetie field at far away
from the cylindrical cell is solved. Taking z axis of cylindri-
cal coordinate along the cylinder axis and let o be the mag-
netic potential satisfying Laplace’s equation for each region

Vlc,co"-=0. b<re<=, (A1)
Vzt,:l=0. a<r<b, {A2)
Vig,=0, 0<r<a (Ad)

with e boundary conditions
() ¢olr.0)=—Hyr cos @
deelb. &) _ dg (. 6)

ol r— e,

(i EY] 30

v dgyla0)  dea(a.6)

(i) a0 a0 "
LIwolr.0) do,(r.8)

(v} p¥—7

i ar rmb

M. Nalenapit and W. Sanglek G63
and
NG dexlr,0)
A Y aaa— T
ci pun ar r=n

The general selutions of Laplace’s Egs. {A1)-(A3) are

v

colr 0)= = Hyr cos 0% 2, A" cos nf, (A4)
n=1
or, 0= E (B"+Cr "lcos nd, (A3)
. n=|
and
gi{r. g} = E D,r cos nd, (AG)

n=1

where the boundary condition (i} was imposed.
Applying e boundary conditions (ji)~(v), the constant
coefficients were obtained as follows:

A, =8,=C,=D,=0, for n#}, (AT)
Hga? N

1= (PP + D= D= (= D+ D], (49)
2Hyv*

By=—— {p+1), (AD)
2}1’0(1"1""c

C =5 (v=1), (A10)

aud

AH v

=TT {A11)

where v¥=p*lu, v=p fpe, and I=[(p*+1)(v+1])
- F(u=1)(p*=1)].
The magnetic field related o ¢ by

H=-Vo {A12)

is now obtained everywhere by inseninz Egs. (Ad)-(All)
into the sbove equation. Hewever, the results are given in-
terms of the unknown effeclive permeabilivy p*. p* is de-
termined self consistency by requiring the magnetic induc-
tion averaged over the composite cell (cyvlinder plus cell
medium} to be the volume average of the magnetic induction
over the effective medium, That is,

Fu i)+ (1= FludH )= u*(Hi, (Her==Vg).

(A13)

where § referred 10 %, ¥, or z. Substitmiing the magnetic field
o Ey. {A13) and 1aking the x component, we obtain the
relative effeetive permeability

_.l'(|+F)+(1—FJ o M7 o,
e e M G IS

Then, the magnetic fields in the cell and the effeclive me-
dium are obtained as
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KC Kf a
H=AH; l+":r cos Gi— 1—72- sin 4¢|,
a ]
b
P<r, <= (A152)
=Hy, bla<r,<w, (AT5b)

where A= /(1 ~FK.), K.=(v—0)/(v+1), and r,=rla.
We nole that in the limit of F(=a¥/b¥)-+0, v*=1 (or
a*=p,),-and Eq. (AlS52) is reduced to the single cylinder
solution as expected. For p, =, (ie. K, =0, A=1), lhe
hemogeneous magnetic field H=Hp is obtained,
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We have studied the electronic transport properties of open Sierpinski gasket systems connected to two
¢lectron reservoirs in the presence of a magnetic field. In the framework of a tight-binding model, the systems
are composed of one-dimensional ordered chains. A generalized eigenfunction method, which allows one to
deal with finite systems consisting of a large number of lattice sites (nodes), is used to calculate the transmis-
sion and reflection coefficients of the studied systems. The numerical results show that there are two kinds of
symmetries of the transmission coefficient T to magnetic flux ¢, and there are antiresonant state regions (T
=0} and resonant states (T=1). It is different from the open ring systems now the electronic energies of
resonant states do not coincide with the eigenenergies of the isolated Sierpinski gasket systems. It is also found
that the transmission behavior of the single exit systems is much more complicated than that of two exit

systems. [S0163-1829(99)03640-1)

L. INTRODUCTION

In the past decade, rapid progress has been made in the
area of mesoscopic physics. Quantum transport in mesos-
copic systems has been extensively studied both experimen-
tally and theoretically.'"" For mesoscopic systems at very
low temperatures, the scattering due to phonons, which is a
dephasing scattering, is significantly suppressed and the
phase-coherence length of electrons becomes large compared
to the system dimension. The scattering in the systems can
then be modeled as phase-coherent elastic scatterings. Fur-
thermore, if we consider the electron as a free particle, an
idealized sample becomes an clectron waveguide, which as-
sumes that the electron transport through the system is per-
fectly ballistic. In recent years, there have been many works
devoted to the study of the electronic properties of mesos-
copic systems within the framework of the waveguide
theory’** and the tight-binding model.™®15-1 Along these
lines, the theoretical work to date has focused largely on the
problems related to an isolated ring, or to open ring systems
connected via Jeads to electronic reservoirs together with a
magnetic flux & through the rings. For an isolated ring, the
persistent current has been the focus of attention.>~S The idea
is based on the possibility that the electron wave function
may extend coherently over the whole circumference of the
ring, and elastic scatterings, finite temperature, and weak in-
elastic scatterings do not destroy the coherence. As for the
open ring systems, the important problem is to study the
relationship among the transmission coefficient T, incident
electron energy E, and magnetic flux @ through the rings.
The electron reservoirs in the open ring systems act as the
source of energy dissipation or irreversibility, and all scatter-
ing processes in the leads and rings are assumed lo be elastic.

0163-1829/99/60(19)/13444(9)/$15.00 PRB 60

Based on the waveguide theory, Xia'® has studied the
Aharonov-Bohm effect in an open ring by calculating the
transmission and reflection amplitudes as functions of the
magnetic flux, the arm length, and the wave vector. Singha
Deo and Jayannavar'?' have studied the quantum transport
properties of serial stub or ring structures and the band for-
mation in these geometries. Takai and Ohta'* have published
a series of articles investigating similar problems in the pres-
ence of both an electrostatic potential and magnetic flux.
On the other hand, it is well known that the tight-binding
model is more flexible in theoretical treatments than the
waveguide theory as disorder can be introduced readily and
the band-structure effects are included. 22! Alon g these lines,
Entin-Wohlman et al.” and Kowal ef al.® have studied the
electronic transport properties of an open single ring, Aldea
etal!' studied the same problems using the Green's-
function method. Wu and Mahler® have developed the quan-
tum network theory of transport, by which the transmission
probability for an open A-B type ring with an arbitrary form
factor has been studied in detail. Liu and co-workers have
investigated the persistent current of an isclated disordered
ring,"* the effects of spin interaction on the persistent
current,'® as well as the electronic transport proYerties of
variant ring systems threaded by magnetic fiux.!’-!°
Fractals and their properties have been studied by physi-
cists for many years. Lakhtakia e al. have studied the con-
struction and the analytic properties of the fractal clusters,
and they also investigated the diffusion motion of the Pascal-
Sierpinski gaskets by using combinational algebra.?® For
electronic transmission, the fractal lattices are much more
complicated in structure compared with the ring systems.
One of the main points of interest has been the fact that these
self-similar objects are found to serve as a nontrivial model

13 444 ©1999 The American Physical Society
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FIG. 1. The fourth-generation Sierpinski gasket lattice, the elec-
rronic properties of which are studied in the text.

for the backbone of transport problems. Fractals, in particu-
lar deterministic fractals such as the Sierpinski gasket (SG)
fractal, possess some special properties, one of which is scale
invariance, and do not have any translational order. They in
fact bridge the gap between periodic and disordered
systems.? Therefore, a detailed study on the electronic prop-
erties of fractals would lead to new physical results and in-
crease our understanding of nonperiodic systems. Even
though there is a large volume in the literature concerned
with fractal systems, the study of their electronic properties
is not that exhaustive. Along these lines, the energy spectrum
and localization of electronic states in an isolated Sierpinski
gasket lattice (SGL) have been the subject of many
papers. 272" Domany er al.® studied the energy spectrum of
the isolated SGL bg the use of the recursive technique. Ram-
mal and Toulouse®® investigated the same problem in the
presence of a magnetic field, However, in recent years the
belief has been that in a highly correlated self-similar fractal
system, such as SGL, localized eigenstates can exist. This
should be a kind of structure-induced localization, which is
different from Anderson localization due to incoherent
scattering.2® Therefore, the electronic transport properties of
this kind of fractal structure would be an interesting problem.
Chakrabarti?® has found that in the absence of magnetic field
for the isolated SGL, there are extended electron states.
Wang®’ has studied the electronic localization of Sierpinski
lattices, and claimed that there exist an infinite number of
extended states. He has also studied the magnetic-field ef-
fects on the electronic states of the isolated SGL. But to the
best of our knowledge, up to now the study on the electronic
transport properties of an open SGL has not been reported
yet. The reason would be that to deal with an electronic
transmission problem of an open SGL, one would have to
solve a united equation set, in which the number of equations
roughly equals the number of the sites included in the SGL.
Therefore, even for a finite SGL, this js a difficult work.
Fortunately, we have found an effective approach o solve
this problem, in which the transmission and reflection ampli-
tudes are treated together with the electronic wave functions
in the sites of the SGL, so that we can deduce a simpler
formula to calculate the transmission and reflection coeffi-
cients, We have named this approach the generalized eigen-
function method {(GEM). By the use of this GEM we have
investigated the electronic transport properties of open SGL
up to its fourth-generation system containing 123 siles
(nodes), which is shown in Fig. 1. By the way, this GEM is
formally similar to the fast multipole method (FMM), which
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is commonly used in electromagnetic scattering problems,
but we should point out that they are essentially different
from each other,?® The main purpose of this paper is to in-
vestigate the behavior of the transmission coefficient T as the
incident electron energy E and the magnetic flux @, which
penetrates the elementary triangles of the SGL, are varied.
Detailed results are given in three-dimensional plots of T
against £ and @, and of which in the two-dimensional cross
sections T versus E. It is found that there are two kinds of
symmetries of transmission coefficient 7 to flux ®. The
transmission behavior of single-exit SGL systemns is much
more complicated than that of two-exit systems. We also
found that as the SGL generation increases, the antiresonant
regions corresponding to T=0 in the £-d space progres-
sively increase in both the region number and the region
area. This means that in these regions the magnetic flux com-
pletely blocks out the electronic transport. This is an inter-
esting quantum phenomenon. On the other hand, we have
also calculated the eigenenergy spectrum of the correspond-
ing isolated SGL, and found that in the open SGL case the
electron energies of resonant transmisston states do not co-
incide with the eigenenergies of the isolated SGL, which is
different from the open ring systems.'®

This paper is crganized as follows. In Sec. II, we intro-
duce the generalized eigenfunction method (GEM) to calcu-
Tate the transmission and reflection coefficients of an open
SGL. The numerical results and discussion of the electronic
transport properties are presented in Sec. IIL A brief sum-
mary is given in Sec. IV.

II. GENERALIZED EIGENFUNCTION METHOD
AND ITS APPLICATION IN OPEN SGL SYSTEMS

For the studied open Sierpinski gasket lattices (SGL)
which are coupled to two reservoirs via ideal leads, we as-
sume that the leads connected to neighboring sites are com-
posed of one-dimensional crdered chains with on-site energy
e, and transfer integral ¢+ between nearest-neighboring sites.
Denoting the incident electron energy by E and the projec-
tion of the Wannier wave function on the nth site by ¢, , in
the presence of a magnetic flux ¢ the tight-binding equation
can be written as!

(sn_E)'#n:z’ rrl.n"l’n+.v'|'! (1)

where the transfer integral ¢, - equals 1e=/279/(PeS)  the §
=13 is the circurnference length of the elementary triangle of
the SGL, the magnetic phase ¢=27P/(Py5), the @,
=hele is the elementary flux quantum, and the sum runs
over the nearest neighbors of site n. The wave function ¢,
can be written as the linear combination'®

g =Aet+ Be ik @)

where k is the wave vector, n is the site number, and we take
the lattice distance to be unity. In the tight-binding model,
the wave vector k is related with the incident electronic en-
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FIG. 2. First-generation Sierpinski lattice coupled to two reser-
voirs via ideal leads. The magnetic phase is equal 1o ¢ in the direc-
tion of the arrow and — ¢ otherwise. (a) One-exit case. (b) Two-exit
case; both exits are coupled to the same reservoeirs via ideal leads.

ergy E by formula E=21cosk. We first consider the first-
generation SGL with a single exit shown in Fig. 2(a). By the
use of Eq. (1) we. obtain the tight-binding equations on the
sites of the SGL as follows:

Egn=te ¢ tre Pyt 1y,

E e i@ 0 0 0
e'? E e i gid 0
0 e E e 0
0 e”i® Lld E e i$
0 0 0 el® E
Pl 0 eTi® it
1 0 0 4] 0
L © 0 0 | 0

For the sake of simplicity, in the above equation we have
chosen £,=0 and t=1,

If we denote the above matrix equation {5) as

then the reflection and transmission amplitudes are simply

r=(M7'Clyry, 1=(M7'C)psa, (6)

and the transmission coefficient T=|7}2.
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Egn=te®fn+re™ "y tee’Pgytre ™ Py,

Ey=te’®yp+re™ %y,

. _ (3
Ega=te™ Pyntre! i tre Pt re’ P+ gy,

Eys=te'®Pytie™ Py,

Ez,[/6=re“"‘sz,(/l+te’¢njf2+re“"’(/14+:e"'”q’;5,
On the other hand, for the special sites located in the entry
and exit we can write their wave function as'®

Po=1+r (n=0),

di=e*+re™™® (n=1),

4
=71 (n=0),

!i’l?:'reik (n=l)’

where r and 7 are the reflection and transmission amplitudes
of reflecting and outgoing wave functions, respectively. To
calculate both of them, we have to solve the above united
equation set (3) and (4); evidendy this is difficult. If we
consider higher-generation SGL, then obtaining an analytic
solution seems impossible. To numerically solve this prob-
lem, we introduce the following generalized eigenfunction
method {GEM). The trick of the GEM is that we treat the
amplitudes r and 7 the same as the wave functions ;. In this
way the united equation set (3) and {4) can be rewritten as
the following (& + 2)-order matrix equation. & is the number
of sites in the SGL:

el 1 o]t -1
s 0 0 i 0
0 0 0 ¥y 0
&i? 0 el ¥y 0
—ig 0 0 #”5 = 0 (5)
E 0 0 e 0
0 ~e7% 0 r e*
0 0 =1 T 0

Here we would like to emphasize two points. First, the
numerical solution of the above formula (6) is very easy to
obtain even with a personal computer. Second, the above
generalized eigenfunction method is a very powerful ap-
proach to deal with the electronic transport problems in lat-
tice (network) systems, no matter how many entries and exits
exist in the studied systems. Even for the quasiperiodic and
disordered ones, and for three-dimensional systems, this
GEM can also be very efficiently used. For example, the
matrix equation of the first-generation SGL with two exits
shown in Fig. 2(b) can be easily written as follows:



which is now an (N +3)-order matrix equation. In deducing
the above matrix equation (7) we have used the following
relations held in sites 3 and 5 of Fig. 2(b):

E'\I/_;:fe[qa!lfz‘i'fe_i¢¢f7+f1'l€ik,

Eys=1e'®+te™ P+ ime’®.

The corresponding reflection and transmission amplitudes of
reflecting and outgoing wave functions are, respectively,
r=(M"1C)nx1,

=M 'Clysa, T2a=(M 1Clyys.

it

From the above example we can see that in the same way
we can easily extend the GEM to multientries (and exits)
cases. To clarify the name GEM, we should compare the
generalized eigenfunction equation (5) with the energy ei-
genvalue matrix equation of an isolated SGL written in the
following. If we assume the site energy e,=0 for the whole
system, then the tight-binding equations in the sites and their
corresponding eigenvalue matrix equation are, respectively,

Eyp=te™ "y, +te™ "%y,
Eal12=Iewq’;l+re_f¢t,f13+te"¢a,[/4+te_"¢t,b6,

Etﬁ3=tei¢¢2+re_j¢¢4,

(%
Ey=te™*yn+ie'yy+re™' P st rei iy,
Egs=rte"®yy+ie" Py,
Egg=te™'*+ie'Pyatie TPy ey,
and
E 7 0 0 0 el? e
et E e~ gld 0 —ig A
0 et E e 0 0 gy |
R A I
0 0 0 gt E e ||y
=it gid 0 ei? ef® E We
(10)

ELECTRONIC TRANSPORT PROPERTIES OF ...

[ E % 0 ] gl

gl® E e~ pfd 0 e i
0 &* E e 0 0

0 e P ¢ E ef® Lid

0 0 0 e -id
eTi® of® 0 e (¢ E
1 0 0 0 0 0
0 0 1 0 0 0
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1 0 o7 | ¢ -1
0 0 0 e 0
0 e 0 ¥ 0
0 0 0 Wy 0
0 0 e gs | =| 0 {, )]
0 0 0 e 0
—e”™ 0 0 r e
0 -1 0 T 0
0 ¢ —1] Tz 0]

where we can see that the above N-order square matrix is the
submatrix of matrix M of the matrix equation (5), and the
above eigenwave function vector is the subvector of the cor-
responding vector of matrix equation (5). That is why we call
the method the generalized eigenfunction method.

III. NUMERICAL RESULTS AND DISCUSSION

The formalism mentioned in Sec. II can be easily imple-
mented numerically and the results for both the single- and
two-exit cases are obtained up to fourth-generation open
SGL with site (node) number N =123, The numerical calcu-
lation is easy and quick even with a personal computer. Be-
cause the main characters of the transport properties have
been revealed in the investigation of the first four generation
SGL, it is not necessary to consider the higher-generation
systems. In our calculations, the on-site energies are chosen
to be €,=0 and the transfer integrals ¢= —1.0. To examine
the accuracy of our numerical calculations, we check at ev-
ery intermediate stage of the calculation that the criterion
| 7|2+ |r|?=1 for the ransmission and reflection coefficients
is satisfied to a tolerance of 107! This accuracy enables us
to examine with confidence the electronic transport proper-

~ ties of the open SGL.

We consider two basic cases of the open SGL with one
and two exits, of which the first-generation systems are

%

S ot
"r',"e'?{u""’ ;
(LY
el s

g
¥
e

0.0

0.0 -2

FIG. 3. Transrnission coefficient T as a function of magnetic
flux & and incident electron energy £ for the first-generation Sier-
pinski lattice with a single exit.
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FIG. 4. Transmission coefficient T vs electron energy E as cross
sections of Fig. 3. The corresponding flux is marked in the pictures.
The two pictures are the same for &/P=0.4 and 0.6, but for
®/Py=0.1 and 0.4 they are “‘antisymmetric” to energy £ (see
text).

shown in Fig. 2. By the use of the GEM, we have totally
calculated the first four generation SGL. The numerical re-
sults are shown in Figs. 3-11, in which the typical three-
dimensional plots of the transmission coefficient T against
the electron energy E and magnetic flux & are shown in Figs.
3 and 5 for the first-generation SGL, in Figs. 7 and 8 for the
second-generation SGL, in Fig. 10 for the third-generation
SGL, and in Fig. 11 for the fourth-generation SGL. For the
sake of clear visualization and because of the symmetry of
the transmission spectrum, we plotted only a half and a quar-
ter of the whole periodic picture in Figs. 10 and 11, respec-
tively. To display the detail, we have also plotted some pic-
tures of the transmission coefficient T versus energy E, i.c.,
the cross sections of three-dimensional plots, for the first-
generation SGL in Fig. 4 (single exit) and Fig. 6 {two exits),
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FIG. 5. Transmission coefficient T as a function of magnetic
flux & and incident electron energy E for first-generation Sierpinski
lattice with two exits.

and for the second-generation SGL with two exits in Fig. 9,

From the obtained numerical results, we can see some
interesting transport properties, -which exist in all studied
SGL cases, First, following the enlargement of the SGL, the
transmission coefficient T fluctuates more and more, i.e.,
there exist more and more peaks, valleys, and more and big-
ger zero-transmission (T'=0) regions. This complexity of
the transmission behaviors can be understood as the result of
the quantum coherence effect among electrons traveling
through the SGL. This is due to the fact that the presence of
a magnetic flux destroys the time-reversal symmetry and the
paths going clockwise and anticlockwise over the systems
have different phases. Therefore, when the site number of the
systems increases, the variant possibility of quantum coher-
ence also increases, and the transmission coefficient as a
function of the electron energy E and magnetic flux & be-
comes increasingly complicated. For the same reason, from
the figures we can also see that the antiresonant state region,
i.e., the region with T=0, enlarges following the increase of
the site number. In Figs. 3 and 5 of the first-generation SGL
there is no such region, but one does appear in Figs. 7 and 8
of the second-generation SGL and enlarges in the next gen-
erations. In the fourth generation SGL several such regions
have appeared and their areas have quickly enlarged (see Fig.
11). This global behavior is clearly displayed in the three-
dimensional 7-E-® plots. To show the sophisticated relation-
ship between the incident electron energy and its transmis-
sion coefficient, we have plotted the E versus T curves with
Q/Py=0.1, 0.25, 0.4, 0.5, and 0.6, respectively, for the first-
and second-generation SGL, and shown them in Figs. 4, 6,
and 9, which compliment very well their corresponding 3D
plots.

Second, we have noticed the symmetry of transmission
behaviors. Because we need to use the eigenvalue matrix
equation (10) to discuss the parameter symmetry of the trans-
port property, we investigate in advance the relationship be-
tween the resonant electronic states of the open SGL and the
energy eigenvalues of the isclated SGL. An incident elec-
tronic state with peak-value transmission coefficient T is
called a resonant state. In the open ring systems the clec-
tronic energies of resonant states are close to the eigenener-
gies of the corresponding isolated ring systems.'® An inter-
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FIG. 6. Transmission coefficient T vs electron energy E as cross
sections of Fig. 5. The corresponding flux is marked in the pictures.
Long- and short-dashed lines are the transmission coefficients of
exits 7 and 8, respectively, Solid lines are the sum of them. The
plots show the same symmetry as the single-exit case (see text).

esting question is whether or not there exists the same kind
of relationship in the SGL systems. Figure 12 shows the
energy eigenvalue spectra of the isolated Sierpinski lattice
for the first, second, and fourth generations, which are ob-
tained by calculating Eq. (10). Comparing Fig. 12 with Figs.
3, 5,7, 8, and 11, which show the 7-®-E behaviors, we can
see that in both the single- and two-exit cases, there is no
definite correspondence between the ¢lectron energy of the
resonant states of the open SGL and the eigenenergy of the
isolated SGL. This means that the transport properties of the
fractal sjyslems are more complicated than those of the slab
systems >~ and ring systems.'® A plausible explanation for
this phenomenon should be that the structure of the fractal
systems is much more complicated than that of the ring sys-
tems, which leads to many more possibilities of variant re-
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FIG. 7. Transmission coefficient T as a function of magnetic
flux & and incident electron energy E for second-gencration Sier-
pinski lattice with single exit.

flection and transmission, so that quantum coherence effects
have a much greater chance to influence the transport prop-
erties and finally destroy the comespondence of the two kinds
of energies that exist in the open ring systems.

On the other hand, from the energy spectra shown in Fig,
12 we have noticed that there are two kinds of symmetries.
First, the energy spectrum is symmetric to ©/$y=0.3, i.e.,
for fluxes ©/P, and 1 — O/ P, two energy bands are exactly
the same. Second, to the ®/P;=0.25 (or 0.75) the energy
spectrum is *‘antisymmetric,” i.e., there is a correspondence
between E(®/Pg) and —E(0.5— $/dy) for $/Dy=0.25,
This symmetrization of the energy spectrum could be under-
stood from the eigenequation (10) of the first-generation
SGL. We have obtained the polynomial expression satisfied
by eigenenergies E-

—2—cos6¢+6E cosIp—56E" cos 3 p—4R0EY + 512E8

=0, (11)

from wHIch we can see that the symmetry of the eigenenergy
spectrum depends on the symmetry of cos3¢, where

FIG. 8. Transmission coefficient T as a function of magnetic
flux @ and incident electron energy E for second-generation Sier-
pinski Jattice with two exits.
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FIG. 9. Transmission coefficient T vs electron energy E as cross
sections of Fig. 8. The comresponding fux is marked in the pictures.
Long- and short-dashed lines are the transmission coefficients of
exits 7 and 8, respectively. Sclid lines are the sum of them. The

plots show the same symmetry as the first-generation case (see
text).

$=27P/3D, so that cos Ip=cos 27D, This is why
there are ©/®,=0.5 and &/Py=0.25 (0.75) kinds of sym-
metries, because they are merely the symmetries of cos3¢.
Here we can also ses that the energy spectrum is pcnodlc in
flux with period ®/@y=1.

For the same reason, the transmission cocfﬁcnent T also
posseses these two kinds of symmetries. In the three-
dimensional plots Figs. 3, 5, 7, and 8§, we can find that there
is a symmetric plane (®/P4=0.5,E) and two symmetric
centers (O/Py=0.25E=0) and (&/Py=0.75,E=0). The
symmetric centers are most clearly displayed in Fig. 8, which
is a three-dimensional plot for the second-generation SGL
with two exits. If we compare the generalized eigenequation
(5) with the eigenenergy equation (10), we can see that in the
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FIG. 10. Transmission coefficient T as a function of magnetic
flux ¢ and incident electron energy E for third-generation Sierpin-
ski lattice, For the sake of clear visualization only a half-period in
flux @ is shown. {a) Single-exit case. (b} Two-2xit case.

matrix M of Eq. (5) the matrix ¢lements related with flux ®
are exactly the same as those of the eigenenergy equation
(10). Therefore, they have the same dependence on the flux
®. For a better view, in Figs. 4 and 6 we show some T-E
cross sections of the three-dimensional T-®-E plots, which
show that the pictures of ®/Py=0.4 and 0.6 are exactly the
same, and those of &/®,=0.4 and 0.1 are *‘antisymmetric,”
ie., T(®/Dy,Ey=T(0.5—-D/D,,—E). Therefore, the
transmission coefficient T is symmetric for *E in the
D/ Py=0.25 case. This point is clearly shown in the two-
dimensional plots Figs. 4 and 6. These similarities also origi-
nate from the same relationship to flux @ for both of the
matrix equations {5) and (10).

Another interesting phenomenon displayed in the figures
is that the single-exit SGL shows more complicated trans-
mission behavior than the two-exit systems, i.e, in the
former the transmission spectrum contains more peaks, val-
leys, and bigger fluctuation. An intuitive explanation for this
phenomenon could be that from Fig. 2(b) we can see that the
two exits in the open SGL are symmetric, both of which
directly connect with the entry site by a straight lead, which
serves as a direct ‘‘transport channel.'’ This means that for
the two-exit systems the multiscattering effect and the
quantum-coherent effect of structure are weaker compared
with the single-exit systems.
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FIG. 1. Transmission coefficient 7 as a function of magnetic
flux @ and incident electron energy E for fourth-generation Sierpin-
ski lattice, For the sake of clear visualization only a quarter of a
period in flux @ is shown. (a) Single-exit case. (b) Two-exit case.

In Figs. 6 and 9 we show the total and individual trans-
mission coefficients T, T,, T, for the first- and second-
generation SGL with two exits. We can see the variation of
the transmission coefficients Ty and 7, with the change of
the magnetic flux &. Due to the moduiation of the magnetic
field, the T, and T, behaviors are different except in some
special cases, such as @/@,=0 and 0.5. Generally they pe-
riodically exchange the *‘position’* following the variance of
the flux ®. This behavior comes from the fact that the two
exits are symmetric in the structure of the SGL, therefore in
the modulation of the magnetic field the 7| and T have a
phase difference.

IV. BRIEF SUMMARY

We have introduced the generalized eigenfunction method
(GEM), which 18 2 very eificient and powedel approadh 1o

studying the electronic transport problems of aperiodic sys-
tems. By the use of the GEM we have studied the transport
properties of open Sierpinski gasket lattices (SGL) coupled
to two electron reservoirs via ideal leads. We have investi-
gated the electronic transport properties of an open SGL up
to its fourth-generation systems conlaining site number N
= 123. The main purpose of this paper is o investigate the
behavior of the transmission coefficient T as the incident
electron energy E and the magnetic flux @, which penetrates
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FIG. 12. Energy spectrum of isolated Sierpinski lattice as a
function of magnetic flux . From upper 1o bottom, they corre-
spond to the first-, second-, and fourth-generation Shierpinski lat-
tices, respectively. Readers should notice the symmetsies of the
specttum to $/Pp=0.5 and 0.25.

the elementary triangles of the SGL, are varied. The detailed
numerical results are given in three-dimensional plots of
transmission coefficient T against electron energy £ and flux
&, and in which the two-dimensional cross sections are T
versus E. It is found that following the enlargement of the
SGL, the transmission coefficient 7 fluctuates more and
more, there are more and more resonant peaks, low-
transmission valleys, and more and bigger antiresonant states
(T'=0) regions. In the transmission behaviors there are two
kinds of symmetries to flux ¢, In the three-dimensional
T-E-@ plots, the transmission coefficient T has 2 symmeldie
pane {DIP,=05,E) and two symmetric centers:  ( P/ Py
=0.25E=0) and ($/Py=0.75,E=0). The numercal re-
sults show also that the transmission behavior of single-exit
SGL systems is much more complicated than that of the two
exit systems, because in the former there are direct ‘‘trans-
port channels.”” It is different from the open ring systems
now the electronic energies of the resonant states do not
coincide with the eigenenergies of the isclated Sierpinski
gasket systems. It means that the transport properties of the
fractal systems are more complicated than those of the slab
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systems'>'* and ring systems.'® The above results increase

our understanding of the transport properties of fractal sys-
tems. In the present paper, as an example, we only discussed
the SG, which is a simple fractal pasket derived from the
Pascal triangle modulo 2, but it is well known that other
strictly self-similar gaskets can be derived from Pascal tri-
angle modulo n when n is prime, and even for a nonprime n
there also exists self-similarity in the asymptotic sense.”®*°
For these fractal structures, determining what kind of univer-
sal property there is in the electronic transport problem
would be a very interesting problem, and worth studying.
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ABSTRACT Based on the linear elasticity theory of the cubic quasicrystals, we have derived the equations
of wave propagating in the cubic quasicrystals and the analytical expression of the phase velocity of
wave propagation. Moreover, we extend the Debye hypothesis of continuous elastic medium to study
the specific heat of the cubic quasicrystals, for which we obtain an analytic expression of the specific
heat as well as an approach to calculate the Debye temperature &,
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INTRODUCTION

Since the discovery of the icosahedral quasicrystal
in Al-Mn alloys, the quasicrystals with noncrystallo-
graphic symmetry, such as decagonal, dodecagonal and
octagonal phases have been extensively studied.!*
For resent years in the process of the rapid solidified
V,Ni 51, alloy, Feng et aP® discovered a kind of
quasicrystal with cubic symmetry, which has been a
new subject in the field of quasicrystals. Wang et aFf
have discussed the projection description of the
cubic quasicrystals and Yang et aP have studied their
linear elasticity theory. There are still many physical
properties of the cubic quasicrystals have not been
studied yet. For example, one of the important physical
properties, the specific heat of cubic quasicrystals
has not been studied. It is well-known that for the
general quasicrystals it is impossible to obtain an
analytical solution of lattice vibration properties.
Therefore it is impossible to get an analytic result
for the physical properties related to the quasicrystal-
lattice dynamics. Due to the special structure of the
cubic quasicrystals, we can obtain some analytical
results on its lattice dynamics. In the present article
we will report our study on the specific heat of cubic
quasicrystals. We have first derived the equation of
wave propagation in the cubic quasicrystals and then
obtained the specific heat expression of the cubic
quasicrystals. It is well-known that the calculation
of the specific heat for both of the crystals and
quasicrystals has to base on the knowledge of their
lattice vibration modes. In order to simplify the
calculation, Debye® assumed that the lattice wave of
the solid is an elastic wave of continuous medium.

Based on this hypothesis he successfully obtained
the specific heat formulas and explained the
experimental phenomenon that the specific heat of
crystals decrease by T* at low temperature. In this
paper, following the Debye hypothesis we will extend
the continuous medium model to the cubic quasi-
crystals, in which the contributions of the phonons,
phasons and their couplings on the specific heat are
considered in the six-dimensional space but the wave
propagaation still exists in the physical spaee.”® By
this generalized Debye hypothesis we first derive the
wave equations to obtain the wave velocity
expression, then we derive the analytical expression
of specific heat for the cubic quasicrystals and
provide a set of formulas to calculate the Debye
temperature 0. This paper is organized as follows:
In Section 11 based on the linear elasticity theory we
derive the wave propagation equation and phase
velocities for the cubic quasicrystals. In Section 111,
based on the results of Section 11, we derive the
formulas to calculate the specific heat of the cubic
quasicrystals. The Section 1V is a brief conclusion.
Because up to now there is no related experiment
dates reported yet, therefore in this article we only
present the theoretical results.

Linear ELasticity THEORY AND WAVE
PropracATiON EQUATION OF THE CuBIC
QIUASICRYSTALS

According to the result of Wang et al’, the cubic
quasicrystals can be obtained by projecting a six-
dimensional periodic structure onto a three-

dimensional physical subspace. Letting E be a
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displacement vector in the six-dimensional space,

u and w be the components of & in the parallel
subspace (e, physical subspace V) and per-
pendicular subspace (ie, complementary subspace
V), respectively, then we have

g=u+w. (1)

For the cubic quasicrystals which possess the
crystatlographic point-group symmetury, physical-
property tensors in V; and V; can be transformed
under the same irreducible representation, Thereflore,
they will induce the same elastic behavior in that
two subspaces. If u,, u,, t, stand for the displacement
components of the phonon field u, and w,, w,, w,
for the displacement components of the phason field
w along main-axis x,, x,, X,, respectively, then we
have

u =u, 0, X, x; 0 (I=1,2,3)
w=w, (X, x,x; 0 (=1,2,3). (2)

According to the linear elasticity theory of the cubic
quasicrystals developed by Yang et ai®, the stress-
strain relations become

Ty, = ChE, +C By + CLE + RF) + RF, + RF,,
T, = CE + G B+ CLEL+ RF + R F, + R F,
Tyy=C,E + C B3+ C By + RF + R F, + R Fyy
Tzz = 2C,E; + 2R F,, =Ty,

31 =2CE, +2R)F, =T,

T, =2C E,,+ 2R;Fy, = Tu
H,=R Eu +R,E,+R Es:"‘Kan +K,F,, + K, Fyy
H,=R,E,; +R E +RE;;+ K, F + K | F,, + K, F;
H33 =R,E,, + RlEu +R.Ey, + K F, + K\, F + K| F;,
H,=2R,E,, + 2K, ,F,;= H;;
H, =2R,E, + 2K F, =H,
H,=2R,E,,+ 2K F,=H,, {3)

where E, are the strain components associated with
phonon field u, F, the strain components associated
with phason field w and

ol chod S i’ = aWJ
T+, z(ax, 2@

T, are the stress components similar to those in
convennonal crystals, H, the stress components due
to the existence of the phason field, C, the elastic
constants of the phonon field, K, the elastic constants
of the phason field, and R, the phonon-phason
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coupling elastic constants. The corresponding
equations of mass-point vibration are

Fu_aLy 9Ty
ot dxy Oy Xy
a:ul s gﬂ' &4. %
att  dxi o, oK,
aIU) aTa] arn aTn

=—+_—+

P T T om ax
a'wy — aHu aHu + aHu

P T o ox
a'w, _ OHu  JHxn | dHy

P "o an o
31W3 _ 8H]1 aHu C;Hn

R W Vv )

where p is the mass density of the quasicrystals.
Because a cubic quasicrystal is an anisotropic crystal
with nine independent elastic constants, the pro-
pagation of vibration varies with the polarization
direction. In the following we first discuss the wave
propagation in the direction g of the physical space.
Let I, m, n stand for the direction-cosines of g, we
can rewrite the Eq (4) as follows:

E11=I%,Eu=m%,}3,,=n%,£n=—;—(m%+n§u—;),

E‘,=%(n%ﬂ§u—§;),‘€n %(1‘3"—‘;+ gﬂ,

m:x%,Fu:m‘;“",E,: %ivl,F;,=%(m%+ %,
__(H%H ’).El=%(1%wg+ ). (6)

Substituting Eq (6) into Eq (3}, then into Eq (5)
again, we can obtain

Spgptgpnipndpaiialy
aa‘:‘ r,.gg"'; 4T 3?+r 3—+r %1 +Ty % r.‘;:‘
p%-rngl—;;m‘;?w ‘;—+r 3;; +T ‘3}:‘ r,‘;;’;
P T T T T G D
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dw L LA LA P L Fw L
— =y 4Ty Ty — + [ — 4T — 4Ty —

P T e e e e o
a a i a U] 3 W a W, 3‘“‘;

r_r +rﬂ "'rﬁ r“ n
P o e e

where

—I‘n = CUP' + C« (m] +H]) 1";1 = Cu.,m + C."Jm

= Cn]m + Culm I'n= Cnm}I + Cu (P + ﬂz)

Fn =Cnln+C“1n I‘u=C,2mn+C“mn

i (8)
r',, = Rlp +R3 (m’ +ﬂ]) F}q = R;Im+ R)Im
rls =R,Im +R,lm rn = lel + R] “1 + Hl)

‘ng =R1IH+R, Iﬂ, r—,\g =R1mH+R3mﬂ,

'Fn =C|31H+C« In Fﬂ -‘-RJl +R,(m‘ +H’)
I‘n = Cumﬂ + C«mﬂ l"q = R;]m + R]Im
r”=Cuﬂl+C«(P +m:) r.3=R11n+R31n

) 9)

FM=R:IR+R)IH r«=Ku]1+K“(mz+n])

Iy =Rymn+ Rymn Ts=Kulm+Kilm
[Tw =Rt + R (P +m?); [Ty =Rymn +Rumn,
[T = Ritm + Rl Tu=Rln+Rn
Ta=Rm*+R{P+n*} |Te=Rumn+Rmn
Iy =Rymn+ Ema To =Rin* +Ry{P +m?)
. Ty =Kyl + Ky Im Tw=Kiln+Kin

l",, = Kum, + K“ (P + HI) F.s = Kumn + K"mn

| Tss = Kiymn + Koymn Te =Kun' + Ko (I +m?).
Let E stand for elastic displacement vector related

1o the wave propagation along g direction, and p,
g, t p', q, r' for its direction-cosines in the six-
dimensional space, then

= pE, s = g€, s = £,y = prE, wy =g, W = £,
E=pu, +quy +1u; + p'wy +g’'w; + r'w,, (11)

where & is the length of E . Substituting Eq (11) into

&9
Eq (7), we obtain the following wave equation
2 2
a é = * ﬁ s (12)
Btz dgpt

which implies that the phase velocity v=+/C*/p, C*

is the effective elasticity coefficient, and satisfies the
following equations:

pha +qle + s + pTa +¢Ths +1eDe = pC*
Pla +qls + 1Ty + p'To + T + 15D =qC*
P +qly + 1Ty + p'Tas 4+ T + 1Dy =1C*
PTa+qle + Mo+ pTu +qTs + 1w =p’C* (13)
Pla+qls + 1T + p'Ty 4+ qTas + 15T =¢'C*
Pla +qla + 1T + pTu + ¢’ T + re e =1'C*,

Providing that the Eq (13) has a sclution, then we have

F,. -C* Fn rn rH rn rl6
r}l ru - C ! r:! ru ru rx

I',. - C * l',; rn - C * r}i r;! r!i
=0 (14)
T Ta Ta Ty-C* Ts T

n T Ty I P A

Ta Ta Ta T Ta Tu-C
Above Eq (14) is a secular-equation of effective
elastic constants C*. In principal, combining Eqs (8-
10} we can solve the Eq (14) to obtain C* and then
calculate the phase-velocities of wave propagation
along any direction. It is however very difficult 10
analytically solve the Eq (14) for all propagation
direction. To simplify the calculation and obtain a
possible analytical solution, we consider the wave
propagating along the {100) direction of cubic
quasicrystals in physical subspace. In this special
cace Eq (14) reduces to

Ci-C*0 0 R 0 0
0 Cu-C*0 0 & 0
0 0 Cu=C*0 0 R,
Ky-C*o0 0
Ka-C* 0
0 0 R 0 0 Ku-C1

=0. (15)
R 0 0

i} R 0 0
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The solutions of above equation are, respectively,

lR

G =Ci= HCu v Kt s (16)

==,
HRII

C{ =C; =C;=C;=—'(C« +K+4)+

J[Cu Xag )1+1R2 !

then the six velocities, v(i = 1, ... 6), of wave
propagating along the (100) direction of the cubic
quasicrystals in physical-subspace have the following
expressions:

(C11+K11)+T=--~1-u__. -

(CLI-E10 J2+4 47
\,’1 = \I4 =
P
HCu+Ku)+
JcTuaxu)hm;
A oY),
p

From above formulas we can see that Eq. (17)
contains only four parameters C,, K, R, and R,. If
we consider other propagation direction, says, to
calculate the phase velocities of wave propagating
along the (111) direction, then from Eq. (14) we
will see that the velocity expression would involve
nine independent elastic constants of the cubic
quasicrystals. Obtaining an analytic solution is
therefore very difficult. For these more general cases
ones can only expect to have a numerical solution.

Seeciric HEAT ofF THC CuBIiC QUASICRYSTALS

After obtaining the above velocity expressions
we now can evaluate the specific heat of the cubic
quasicrystals by extending the Debye hypothesis to
the studied systems. Debye® considered the crystals
as a continuous elastic medium to propagate the
waves of elastic vibration. Under this hypothesis he
calculated the specific heat of ideal crystals, which
was in good agreement with the experimental results
at low temperature. We will now iry to extend the
Debye hypotheses to the cubic quasicrystals, i.e., we
also consider the cubic quasicrystal as a continuous
elastic mediurmn. Noting that the phason do not form
new degrees of freedom, the total number of freedom
degrees remains three times the number of atoms
contained in the cubic quasicrystal. Therefore, there
are 3N independent harmonic vibration modes,
where N is the number of atoms in the cubic
quasicrystal. Denoting @ for the atom vibration
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circle-frequency and g(w) for the frequency
distribution function, then g{w)dewis the number of
the harmonic vibration modes between w and @ +
deo, and we have

Iy glw)do =3N. (18)

For the cubic quasicrystals containing phonon as
well as phason by the Debye hypothesis we have

glw)dw =Bw'dw, (19}
where
B Vol Ll 1,1 1

++—+—+—), (20
2} Vf vi _V) vi ) s V.s) ( )

and V represents the volume of the cubic quasi-
crystals, v(i=1, ..., 6) are defined by Eq (17).
Considering that the total number of freedom
degrees should be finite, so there is a maximam
frequency wy, then Eq {(18) can be rewritten as

j:” g{w)dw = 3N. 21

Substituting Eq (19) into the above formula and

because the phase velocities v, I = 1,2, ...6 are

independent of the frequency, so we easily obtain
wh =9N/B. (22)

If we introduce an effective average energy
the total energy reads

, then

E=E +XE(0)=E +], ° &(w)g(w)do, (23)
where E_ is a constant and

-_  ho
£= R

(24}

where k is the Boltzmann constant, T is the absolute
temperature, respectively. According to the definition
of specific heat,

_(%E
Cv= (aT)v (25)

Using Eqs (22-24) we obtain
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hmn’thwldm

_ R(“D mu
B.[o ( (mnr 1):’

(26)

where B is given by Eq. (20). If we introduce two
new parameters x and y as following:

- ho xJﬂ:%. Qn

kT kT T
where O, is the generalized Debye characteristic
temperature for the cubic quasicrystals, and evaluated
as

99=h&)9/k=7( )m h IBNIE

)m (28)

with

+—+——+—+»+—)
H V1 V; Vq V,

( 1,1, 1 1 (29)
v

then the Eq, (26} can be rewritten as

Cyv = Bk, (kT/h)‘( ; 1)1 dy

0( 1)1 y

Above Eq (30) is an analytic expression of specific
heat for the cubic quasicrystals. It is also one of
the main analytic results which we expect to obtain.

CONCLUSION

In this paper, we first obtained the wave pro-
pagation equation of the cubic quasicrystals. Based
on this equation, we derived the formulas of wave
velocities propagating in the cubic quasicrystals. By
extending the Debye’s continuous medium hypothesis
for ideal crystals to the cubic quasicrystals, we obtained
the analytic expresion of specific keat for the cubic
quasicrystals and provided an approach to calculate
the Debye temperature ©,. Formally the present
specific heat and Debye temperature expressions for
cubic quasicrystals are almost same as that of the
ideal crystals, but the @, contains the contributions
of the phonons, the phasons, and the coupling
between phonons and phasons. Thus, the present
theoretical results on the specific heat of the cubic
quasicrystals are an meaningful extension of the
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Debye theory for ideal crystals, and also only because
the special geometric structure of the cubic quasi-
crystals we can obtain these interesting analytical
resulis, for other kinds of quasicrystals we generally
can not cbtain such impact analytical solution. Ones
can only expect a numerical result, but it is a heavy
and tedious work.
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On the Pourier transform
of the Diamond Kernel of Marcel Riesy
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Abstract

In this paper, the operator {f is introduced and named as the Dnmond Operator
iterated k-times and is deﬁned by OF = [(8%/ax] + & /0x; + -'-—a’/av. ¥ - (& /E‘I\P 1+
0*fax] .y + -+ 070 p_Lq) I, where n is the dimension of the Euclidean space B, kis a
nonnegative integer and p + ¢ = n. The elementary solution of the operator & is called
the Diamond Kernel of Marcel Riesz. In this work we study the Fourier transform of

the elementary solution and also the Fourier transform of their convolutions. ® 1999
Elsevier Science Inc. All rights reserved.

AMS Classification: 46F10

Keywords: Diamond operator; Fourier iransl’orm Keinel of Marcel Riesz; Dirac delta distribu-
tions; Tempered distribution

1. Introduction

Consider the equation
Ofu(x) = o, (1)

where ¢f is the Diamond operator iterated k-times (k=0,1,2,...) with
O%u(x) = u(x) and is defined by

2 AN
(}k—- 82 +a_2+-. +.32_ 62 4 0 L o°
B oxj o3 ol o2, axf,,.,z Tt ’

ptg
(2)
where p 4+ g = n, the dimension of the Euclidean space R and «{x} ~ %2 gen-
eralized function, x == (xy,x2,...x,) € B" and 6 is the Dirac-delta distribution.

0096-3003/99/8 — sce Mront matter © 1999 Elsevier Science Inc. All rights reserved,
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Kananthai ([l] Theorem 1.3} has shown that the solution of convolution
form u(x) = (—1)*Sx(x) * Rx(x) is an unique elementary solution of Eq. (1)
where Si(x) and R_;(x) are defined by Egs. (4) and (6), respectively, with
« = 2k. Now (—1)* Sy (x) * Ry (x) is a generalized function, sez [1], and is called
the Diamond Kernel of Marcel Riesz. In this paper we study the Fourier
transform of (—1)"S;k(x) * R (x) and the Fourier transform of [(—1)kSzk(x) .
Rac(x)] = [(=1)" S5, (x) * Ran(x)] where k& and m are nonnegative integers,

2. Preliminaries

Definition 2.1. Let E(x) be a function defined by

2—n
L ' B
(2 —nmw,’
where x = (x1,...,x,) € R, x| = (x} +--- -i—.vc:’-l)l/_2 and w, = (27"2)/I (n/2) is
a surface area of the unit sphere.

It is well known that E(x) is an elementary solution of the Laplace operator

A, that is AE(x) = § where A =37 (8?/3x]) and & is the Dirac-delta distri-
bution.

E(x) =

Definition 2.2. Let S,(x) be a function defined by

= 2yl 5 | ' 4
S:(x) F(z)r(z) o )
where « is a complex parameter, |x| = (x] + - + x; N2 = (r,,. x,) € R

S.(x) is called the Elliptic Kernel of Marcel Riesz. Now S,(x) is an ordmary
function for Re{«) = n and is a distribution of « for Re(«) < n.
From Eqs. (3) and (4) we obtain

E(x) = —S;(x). (5)
Definition 2.3. Let x = {(x1,...,x,) be a point in R" and write
Vo=x +x§+---+x§-—-xi+i _xz+2 T "'x:;-pq:

where p+ ¢ = n. Define I', = {x € R": x; >0 and ¥ > 0} designating the in-
terior of the forward cone and denote I'y by its closure and the following
function introduced by Nozaki ([2), p. 72),

V(z-—u)/:! ) r
Rg(x)z{ Ry TxElw

(6)
0, if x ¢ T
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Here R.(x) is called the ultra-hyperbolic kernel of Marcel Riesz and « is a
complex parameter and » is the dimension of the space R".
The constant K,(«) is defined by

n(n‘ 1)/?1—-(1+= n)r(l ’)I"(a)
FE52) ()

K, (cc) =

Here R,(x) is an ordinary function if Re{«)
Re(«) < n.

Let supp R,(x) C I'. where supp R,(x) denote the support of R L(x).

=2 n and is a distribution of « if

Definition 2.4. Let f be a continuous function, the Fourier transform of f
denoted by

1
Ff = / e~ dx, 7
: (2r)"? . ( )
P."
where x=(x,...,x) € R, {=(&1,...,¢,) ER" and Gx=yxy + {axa + -+

+ &.x,.. Somet1mes we write & f(x) = = f(¢). By Eq. (7), we can define the in-
verse of the Fourle_r transform off(g) by

1
(27t)"/2

fx) =71/ = e f(¢) de. (8)

If £ is a distribution with compact supports by [3], Theorem 7.4-3, p. 187
Eq. (7) can be written as .

Ff = ),,,2 (), e, | (9)

Lemma 2.1. The functions S,{x) and R.(x) defined by Egs. (4) and (6),
respectively, for Re(«) < n are homogeneous distributions of order o — n.

Proof. Since R,(x) and S, (x) satisfy the Euler equation, that is

(e — n)R,(x) = Zx, . R L(x) and (« — n}S,(x) = Zx, S (x},

we have that R,(x) and S,(x) are homogeneous distributions of order « — .
Donoghue ([4], pp. 154 and 155) has proved that every homogeneous dis-
tribution is a tempered distribution.
That completes the proof.

Lemma 2.2 (The convolution of tempered distributions). The convolution
S.(x) % R.(x) exists and is a tempered distribution.
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Proof. Choose supp R,(x) = K C I'y where K is a compact set. Then R.(x)isa
tempered distribution with compact support and by 3], pp. 156-159 S,(x) *
R.(x) exists and is a tempered distribution.

Lemma 2.3. Given the equation {*u(x) = § where the operator &% is defined by
Eq. (2), x=(x1,...,x,) € R", kis a nonnegative integer and d is the Dirac-delta
distribution, then u(x) = (—1)" Sy (x)  Rax(x) is the unique elementary solution of

the equation where Sy (x) and Ry(x) are defined by Egs. (4) and (6),
respectively, with « = 2k.

Proof. By Lemma 2.2, for « == 2k, the distribution (—1)"Sy(x) = Ry (x) exists
and is a tempered distribution.
Now the distribution (—1)*$y(x) is obtained by the convolution

\Ej(r) x E(x) %% E(x) = &—Sg(x)) 2 (=83 (x)) = -+ (=52(x))

o T )
k-times : k-times

where E(x) is defined by Eq. (3) and by Eq. (5).
Kananthai ([5], Lemma 2.5) has shown that

—52(x) # (=5:()) # -+ % (=5:(x)) = (~1)" ()

——
k-times

1s an elementary solution of the Laplace operator A" iterated k-times. By
Eq. (2), &* can be written as

OF = OFAF, ' (10)

where _
- k
' 0% o’ L G o’
[‘_]": —t sttt — =
Oxy  0Ox3 ox2  Ox,,, F
and
Ck

¢ 3* o o2
A" = ﬁ_i_ﬁhl-_l—ﬁ H p—}-q:ﬁ-
2

By [1}, Theorem 3.1 u(x) = (=1)*$3(x) * Ryx(x) is the unique elementary so-
lution of the operator ¢f as required.

Lemma 2.4 (The Fourier transform of ¢*$).

#6404 Bt 8 = G+ Bt o+ 2,7
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where & is the Fourier transform deﬁned by Eq. (7) and if the norm of & is given
by el = (& + & + -+ + &) then

|7 O] < (2:),1,2 ™ ) (1)

that is F Q%6 is bounded and continuous on the space S' of the tempered distri-
bution. Moreover, by Eq. (8)

l ! ] k
ke _. - «2 LTI+ A E AN -+ , £2 -2 2
o6 = I(Zn)”ﬁ ((c_1 + &5+ F) — (Gt R G q)) :

Proof. By Eq. (9)

T = ),,,7<<>‘ ety
= (8,075
-5 l),,,, (5,0 ke by (10)
= f—)T G, (=1 G+ G+ + )T

e ),,,2<6( DE+E+ -+ ) (-1

X (& + &+ +§ G = Goa = Gga) e
e )m(* D*( &+ G+ =G~ —
1 k
(8P G2’
Now
.
900 = o (6 G4 G = G )
1
<o )n,z &+ +&
= ),,,2 lléll“',
where ||E) = (&34 -+ &) & (i=1,2,...,n) € R. Hence we obtain

Eq. (11) and ZF 6 is bounded and continuous on the space S’ of the tempered
distribution.

1ss -
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Since & is 1-1 transformation from the space ' of the tempered distribution
to the real space R, then by Eq. (8)

1 2 VK
<>k5“(2—),,75 ((51 +C) —(pr"'“*'C}T-q)_)-

That completes the proof.

3. Main results

Theorem 3.1.

F((—1)"S2(x) * Ras(x))

1
UG O = (G )]
and
[3""((—1)"5‘3;;(55) % Rap(x))| < G l)n/zM Jor a lmge & €R, (12)

where M is a constant. That is & is bounded and contintous on the space §' of the
tempered distributions.

Proof. By Lemma 2.3 OF((—1)"Su(x) * Ryu(x) = 8 or (OF8) = [(=1) Sau(x) »
ng(.’c)] p= 5 - -

Taking the Fourier transform on both sides, we obtain

F((0°8) = [(—1)Su(x) » Ru(x)]) = F6 = (2;):1/2
By Eq. (9)
e )n/’ ((O%0) = [(—1) Sa(x) = Ry(x)], ) (2n)n/2

By the definition of convolution

L ((050), ([(= 1S () * Rau(r)] €58y =

(2r)" | (2m)"
1 ~iir k -IC‘ 1
2" ([(~1) 82 (r) # Ra()], &5 ((048), e7%%) = 2y

F (((—1) o () * Ror(r r) P F(OF8) = : .
TS+ R (019 =
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By Lemma 2.4, i
' : 2 £242 2 1 \2 I
5;([(“1)&521'()‘) * Ry‘_(x)])(({f: sl pr - (§p+| tee ép'i-q) )k = W
It follows that
. ‘ ]
F([(—1) Sulx) # Ras()) = ——75 - — I
Qo) (E 4+ O (B e+ LT
Now
1 .
¥2 r242 2 2 21k
[(E -+ = (Epy + -+ &)
1 1
- : ) 13)
2 w2k w2 y ox2 gl rd C (
G+ +<&) (C;‘*‘"'TCP“‘CZH—"'“€;+q)f

Let &= (&, ...,c ) € I'y with I'y defined by Definition 2.3. Then (& + -

-

+ CE, Gprt — p ) > 0 and for a ldrge ¢; and a large %, the right- hand
side of Eq. (13) tends to zero. It follows that it is bounded by a positive con-

stant M say, that is we obtain Eq. (12) as required and also by Eq (12) &
continuous on the space §' of the tempered distribution.

Theorem 3.2. ‘
F([(— 1) Saelx) % Rax ()] # {[(—1)"S2m(x) * Ram(x)]) -
= ()2 F([(— 1) Su(x) # R (x)]F [(=1)" Sam(x) # Rom ()]
1 1
PG = (G e

where k and m are nonnegative integers and & is bounded and continuous on the
space S’ of the tempered distribution.

) ]k+m '

Proof. Since Ru(x) and Sx(x) are tempered dlSt[’lbUthnS with compact
supports, we have

[(—1)*Sae(x) = Ryu (x)] = [(-—1)"TS2,,,(x) % Rym(x)]
= (= 1Y (So(x) % S2ux)) * (Rax(x) % Ry (%))
= (= 1) (Sa4my () * Rogetm) (x))

by [3], pp. 156-159 and {2], Lemma 2.5. Taking the Fourier transform on both
sides and using Theorem 3.1 we obtain
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F([(=1)"Sar(x) # Rp(x)] * [(—1)"S2(x) * Rom(x)))

i
R Y = (B e+ SN
i .
e = (E e S
y (zﬁ)"f2
)&+ EY = (B S

= (?-E)"/lg’r[(“l) S2(x) % Ro (X)) Z (1) Sam (x) % Ran ()]

Since (—l)kSg(H,,,)(x) % Raremy(x) € S, the space of tempered distribution, and
by Theorem 3.1 we obtain that & is bounded and continuous on §'.
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Abstract

In this paper, we consider the equation {*u(x) =& where {* is introduced and
named as the diamond operator iterated k-times and is defined by ¢ =
(3P (82 /axd))? — ( j__fgﬂ(al/ax}))l)", u(x) is a generalized function, x=(x,
X2,..-,%:) € R" the n-dimensional Euclidean space, p+g=n,k=0,1,2,3,... and d is
the Dirac-delta distribution. Now u(x) is the elementary solution of the operator ¢* and
is called the diamond kerne! of Marcel Riesz. The main part of this work is studying the
convolution of u(x). ©® 2000 Elsevier Science Inc. All rights reserved.

Keywords: Diamond kernel; Ultra-hyperbolic kerne!l; Elliptic kernel; Tempered distribution

1. Introduction

Consider the equation

Ofulx) =6, (1.1)

where ¢* is the Diamond operator iterated k-times defined by

) ® o 2\ (e @ 2\’
“e\W\etee T ter) e Tea, T e,

-TPte

k

(1.2)
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Kananthzu [2, Theorem 3.1] has proved that the convolution solution
u(x) = (= 1) S5k (x) * Rye(x) is the elementary solution of (1.1) where Sy(x) and
Ry (x) are defined by (2.2) and (2.4), respectively with « = 2k. Now u(x) is
called the diamond kernel of Marcel Riesz and defines such a kernel by

Ta(x) = (=1)"Sam(x) * Rop(x), m=0,1,2,... (1.3)

In this work we study the existence of T,,(x} * 7,(x) and moreover the inverse
7! of T,,(x) in the convolution algebra &' is also considered.

2. Preliminaries

Definition 2.1. Let E(x) be a function defined by

|~ - 2.1)
(2-maw,’ '

where x = (x1,%,...,%,) €R", |x] = (Z +x2+---+x1)"* and o, = 2n"?)/
(I'(n/2)) is a surface area of the unit sphere.

E(x) =

It' is well known that E(x) is an elementary solution of the Laplace

operator 4, that AE(x) =6 where 4 =37 L 02/0x? and 8 is the Dirac-delta
distribution.

Definition 2.2. Let S,(x) be a function defined by

Sz — Y% ~n/2 n—a lex—n 2.
() =2"x r( 2 )F(a/Z) (22)
where « is a complex parameter, |x| = (x2 +x2 + -~-+x§)l/2, x= (x1,x3,:..,
x,) € R*. S,(x) is called the elliptic kernel of Marcel Riesz. Now S,(x) is an
ordinary function for Re(a) > n and is a distribution of « for Re{a) < n.

From (2.1) and (2.2) we obtain
E(x) = —5(x) : (2.3)
and it can be shown that
é’(x) * E(x) % -- % E(x) = (=1)*Su(x)
k- t?r’ncs

is the elementary solution of the operator 4% iterated k-times that is
A ( 1) Sz;\(x) -—5 see [3]

Definition 2.3, Let x = (x,,xz, ..., X,) be a point of R" and write

V=xi+xi+ o txl—xb, —x,— - —xh, ptg=n
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Iy ={xeR"x;>0and ¥V > 0} designates the interior of the forward cone

and denotes I, by its closure and the following function introduced by Nozaki
(4, p. 72) that |

_ vk (@) ifxerly,
R ={ fxels (2.4)

Here, R,(x) is called the ultra-hyperbolic kernel of Marcel Riesz and « is a
complex parameter and n is the dimension of the space R”.
The constant K,(«) is defined by

= VRP((2 4o —n)/2)T (1 — ) /2) T ()
F(2+a—p)/2)T((p—a)/2)

Now R,(x) is an ordinary function if Re(«} > » and is a distribution of « if
Re(o) < n.

K, (o) =

Let supp R,(x) C T, where supp R,(x) denotes the support of R,(x).

Lemma 2.1. The functions S,(n) and R,(x) defined by (2.2) and (2.4) respectively,

for Re{o) < n are Homogeneous distribution of order « — n and also a tempered
distribution.

Proof. Since R,(x) and S,(x) satisfy the Euler equation, that is
(a0 — MR, (x) = Zx, S (x) and (o —n)S.(x) = Zx, R (%),

- we have R,(x) and S,(x) are homogeneous distributions of order « —n and
Donoghue [1, pp. 154-155] has proved that every homogeneous distribution is
a tempered distribution. That completes the proof. O

Lemma 2.2 (The convolution of tempered distributions). The convolution
Sa(x) * Ry(x) exists and is a tempered distribution.

Proof. Choose supp R,(x) == K C I, where K is a compact set. Then R,(x) is a
tempered distribution with compact support and by Donoghue [1, pp. 156~
159], Sa.{x) = R,(x) exists and is a tempered distribution. 0O

Lemma 2.3. Given the equation {Fu(x) = & where {* is the operator defined by
(1.2), x = (x1,x2,-..,%,) € R*, K is a nonnegative integer and & is the Dirac-delta
distribution. Then u(x) = (— 1) S (x) * Ry (x) is the unique elementary solution
of the equation where S,(x) and R,{(x)} are defined by (2.2) and (2.4), respectively
with o == 2k. Moreover u(x) is a tempered distribution.
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Proof. See [3, Theorem 3.1] and by Lemma 2.2, u(x) = (-—-l)kSyc(x) * Ryu(x) is a
tempered distribution. O '

Lemma 2.4 (The convolutions of R,(x) and S,(x)). Let S.(x) and R,(x) be de-
fined by (2.2) and (2.4) respectively, then we obtain the following formulas:
1. S.(x) * Sg(x) = S,45(x), where u and B are complex parameters.

2. Ry(x) * Rp(x) = Rypp(x), for w and B are both integers and except only the case
both o and f§ are odd integers.

Proof. Proof of first formula, see [1, p. 158].
Proof of second formula, for the case « and f§ are both even integers, see¢ [3]

and for the case « is odd and f is even or « is even and f is odd, we know from
Trione [5] that

O R, (x) = Ry_ok(x) (2.5)
and
Ry =68, k=0,1,2,... (2.6)

where OO is and ultra-hyperbolic operator iterated k-times (k=0,1,2,...)
defined by

- Now let m1 be an odd integer, we have

E]kRm (x) = Rm_gk(x)

and
Ryx(x) % OF R (x) = Rox(x) % Ra (%)
or
(Rt (x)) * Ron(%) = Rai(x) * Rp—ae(x),
o % Rm(X) = Ru(x) % Rm_zk(X) by (26),
or

Ru(x) = Rag(x) * Rp—ar(x).

Since m is odd, hence m — 2k is odd and 2k is a positive even. Put « = 2k,
B = m — 2k we obtain

Ra(x) * Ry(x) = Rayp(x)

for « is a nonnegative even and f is odd.
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For the case « is a negative even and f is odd, by (2.5) we have
CFRo(x) = Rozk(x) or 06 = R_x(x)
where Rg(x) = §. Now ,
R_gi(x) % OF Ry (x) = Ry (x) * R,,_ar(x} for mis odd,

or

(Dka) ® DkRm(x) == R—zk(x) * Rm_'_)_k(X),
8« 0% R, (x) = R_ap(x) = Ry_n (),

R0y (X) = Ry (x) * Rar(x).

Put « = —~2k and § = m — 2k, now «a is a negative even and f is odd. Then we
obtain

Ra(x) # Rg(x) = Rosg ().
That completes the proofs. O

3. Main results

Theorem 3.1. Let T,,(x) the diamond kernel of Marcel Riesz defined by (1.3), then
T is a tempered distribution and can be expressed by

Tn(x) = Tnr(x) = To(x),

where r is a nonnegative integer and r < m. Moreover if weputé=m—r, n=r
we obtain

Te(x) * T,(x) = Tppn(x) for £4+n=m.

Proof. Since T, = (—1)"Sy,,(x) * Ryp(x), (m=10,1,2,...),byLemma227T,isa
‘tempered distribution. Now by Lemma 2.3, $"T, =9, then O'O™ 7T, =
& for m > r and by Lemma 2.3 again, we obtain O" T, = (—1) Sar(x) * Ra.(x).
Convolving both sides by (—1)""" Sym_r) (x) * Ragm-»(x), we obtain

(= 1) Sam-r) (%) * Ropm-n)(x)] * O" 7T,
= [(“l)m—.rng_g,-(X) * Rzm_z,-(x)] * [(—1)'S2,(x) * Rz,(x)] (31)

or

Q" (=1)"""Ss(mry(x) * Ra(mer) (X)) * Ty
= (—1)"(Szn-2-(x) % S2,(x) * (Ram-2-(x) * Rar(x)),
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since Sy (x) and Ry, (x) are tempered distributions and are the elements of the
space of convolution algebra, «'.
By Lemmas 2.3 and 2.4 we obtain

6 * Tp(x) = (=1)"S2n (%) * Rom(x),
Tn(x) = (—1)"Sam(x) * Rym(x).

From (3.1) we have T,(x) = T,_.(x) = T,(x), put £=m —r, n=r, it follows
that

To(x) * Tu(x) = Tepnlx) = Tn(x)
as required. 0

Theorem 3.2, Let T,,(x) be defined by (1.3) then T, is an element of the space o' of
convolution algebra and there exist an inverse T2™' of T,, such that

Tn(x)x T2 = T2 < T, (x) = 6.

Proof. Since 7,(x) = (—1)"Sy.(x) * Ry, (x) is a tempered distribution by Lemma
2.2. Now the supports of S»,(x) and R,,(x) are compact. Then they are the
elements of the space of convolution algebra &’ of distribution. By Zemanian
[6, Theorem 6.2.1, p. 151] there exist a unique inverse 7:~! such that

T.(x)x T =T« T,(x) = 6.

That completes the proof. [
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ABSTRACT. We study the spectrum of the distributional kernel K g{x), where a and 3 are
complex numbers and x is a poirt in the space R™ of the n-dimensional Euclidean space.
We found that for any nonzero point £ that belongs to such a spectrum, there exists the

residue of the Fourier transform (—l)"ng_Zk(E), where ot = 8 = 2k, k is a nonnegative
integer and £ € R™.

2000 Mathematics Subject Classification. 46F10, 46F12.

1. Inroduction. Gel'fand and Shilov [2, pages 253-256] have studied the general-
ized function P}, where

P4
P=3xI- 3 x} (1.1)

i=1 Jj=p+1
is a quadratic form, A is a complex number, and p + g = 1 is the dimension of R"™.
They found that P? has two sets of singularities, namely A = -1,-2,...,~k,... and

A=-nf2,-nf2-1,...,—nf2-k,..., where k is a positive integer. For the singular
point A = —k, the generalized function P? has a simple pole with residue

(-1* g-n Ao (=DF Cgen

(k—1)161 P or resp._ P = (k"1)16, {P) {1.2)
for p +q = n is odd with p odd and g even. Also, for the singular point A=-n/2-k
they obtained

a_ (=1)32Lk5(x)
resa=ni2-kPT = kT ((nj2) + k) (1-3)
for p + g = n is odd with p odd and q even.

Now, let K g{x) be the convolution of the functions RY (1) and Rg(v), that is,

Kuplx) = RY(u) % R§(v), (1.4)

where R (u) and R;(v) are defined by (2.1) and (2.3), respectively. Since R#(w) and
R;(v) are tempered distributions, see [4, pages 30-31], thus K. g{x} is also a tempered
distribution and is called the distributional kernel.

In this paper, we use th_e’id___ga of GeFfand and Shilov to find the residue of the
Fourier transform (—1)*Kzp2k(E), where Kz 2x is defined by (1.4) with ot = 8 = 2k
and k is a nonnegative integer. We found that for any nonzero point £ that belongs
to the spectrum of (~1)}*Kag2,{x), there exists the residue of the Fourier transform
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(«1)"Km§). Actually (-1)*Kap 21 (x)} Is an elementary solution of the operator o*
iterated k times, thatis, ¢*[(—1)*Kzr 2k (x}] = §, where & is the Dirac-delta distribution.

The operator o* was first introduced by Kananthai {4] and named as the Diamond
operater defined by )

2 2 232 2 2 2 32k
°k= _.a._..+,_§_.+...+_a_2 —_ __8_2_+~az__+...+_i_. s (1‘5)
axi ax3 oxp 3x5. OXp.2 | 9xieq
where p + q = n is the dimension of R™.

Moreover, the operator ¢* can be expressed as the product of the operators o¥ and
k that i
L%, that is,

ok = nkak = AkQk, (1.6)

where o is an ultra-hyperbolic operator iterated k times defined by

P ooz Pra o nk
2 2
kB __ ~ __.._) (1.7)
m} E E . ]
(1‘=1 dx? o ax}-

where p +4q = n. The operator AX is an elliptic operator or Laplacian iterated k times
defined by

2 2 2\
Ak=(£~%—+a—i—§+---+§%). (1.8)
Trione [7, page 11} has shown that the function R%, (1) defined by (2.1) with « = 2k
is an elementary solution of the operator 0. Also, Aguirre Téllez {1, pages 147-148]
has proved that the solution R%’k(u) exists only for odd n with p odd and g even
{p + g = n). Moreover, we can show that the function (—l)kng(v) is an elemenztary
solution of the operator A¥, where Rﬁk(v) is defined by (2.3) with 8 = 2k.

2. Preliminaries

DEFINITION 2.1, let x = (x1,x2,...,Xn) be a point of R™, and write u = x{ +
X34+ xF-xh - =-x2, p+q=n. Denotebyl, = {x € R":x >0, u >0}
the set of an interior of the forward cone, and T, denotes the closure of .. For any

complex number o, define

wla-n)f2

TIF g v f r+!
RH(u) =4 Knl&) orxe .1

0, forx&l,,
where the constant Ky (&) is given by the formula

w22+ - n) /23T ((1 — &}/ 2)F{ex)

Knla) = T((2+a-p)/2)T((p~a)/2)

(2.2)

The function RH (1) is called the ultra-hyperbolic kernel of Marcel Riesz and was
introduced by Nozaki [6, page 72]. The function R# is an ordinary function or classical
function if Re(x) = n and is a distribution of & if Re{o) < n. Let suppR¥(u) c T,
where supp R (1) denotes the support of RY (u).
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DEFINITION 2.2. Let x = (x1,x3,...,Xn) be a point of R”, and write v = x} +
x% +--.+x2, For any complex number 8, define
-Byp-ni2 - (B-n)2
2P T ((n-B)/2)v ' (2.3)
[(B/2)

Rg(v) =

The function Rﬁ(v) is called the elliptic kernel of Marcel Riesz and is an ordinary
function for Re(8) = n and is a distribution of B for Re(8) < n.

DEFINITION 2.3. Let f be a continuous function, then the Fourier transform of f,
denoted by Jf or f(E), is defined by

9f = flo) = e~ 1EX) f(x)dx, (2.4)

el
(2m)ni2 Jgn

where x = (x1,x2,...,Xp} € R", £ = (£),82,....&n) € R": and {Z,x) = §1x1 + Eaxa +
-+ -+ Enxp. From (2.4), the inverse Fourier transform of f{£) is defined by

~1 F 1 i(Ex) 7
00 =9 FE) = s [ €80 Fghax. (2.5)

If £ is a distribution with compact support, by {8, Theorem 7.4.3, page 187] {2.5) can
be written as
IV S —itE.x)
3f=f@ =GR (f(x),e ) (2.6)

LEMMA 2.4. Given the equation
okulx) =6, (2.7)

where ok is the operator defined by (1.5), and & is the Dirac-delta distribution, u{x) is
an unknown, k Is a nonnegative integer and x € R™, where n is odd with p odd, q even
(n=p+q). Thenu(x) = (=1)*Kae s (x) is an elementary solution of the operator ok,
Here Kakax(x) = RY, (w) x RS, (v) from (1.4) with o = B = 2k.

PROOF. See [4, page 33). 0

In this paper, we study the spectrum of (~1)¥Kzx21{x), relate to the residue of the
Fourier transform (—1)*Kax 21 (E).

LEMMA 2.5. The Fourier transform

Kap () = (2m)"/23RH (u)3RS ()

_ (i)920+8qn T{ot/2)T(B/2)
(2m)n2Kn () Hn(B) T((n—a)/2)[ ((n-B)/2)

i=1 J=p+1

" (2.8)



718 AMNUAY KANANTHAI

In particular, if o = B = 2k, k is a nonnegative integer,
1 1

RTO™M2 (81 4+ ES 4+ + EB) — (B2 + Eora + - + Eduq))

(-1 ¥Kop2k(8) = o (2.9

where Rﬁ(u) and Rﬁ(v) are defined by (2.1) and (2.3), respectively.
PROOF. See (2, page 194} and (5, pages 156-157). ' 0

DEFINITION 2.6. The spectrum of the distributional kernel K g{x) is the support

of the Fourier transform Km) or the spectrum of Kqp(x) = supme). Now,
from Lemma 2.5 we obtain

suppK:ﬁ-(bE-) = (suppIR¥(u))n (suppSRg(v)). {2.10)
In particular, from (2.9) the spectrum of

1
mm2((37. 8) - ( j?::+,§§)2)k]’

LEMMA 2.7. Let P{x,x2,...,Xn) be a quadratic form of positive definite, and is de-
fined by

(~1)Y*Kax2x(x) = supp [ (2.11)

4 2 pt+4q 2
P=P(x1,xz,...,xn)=(2x§) .,( > x}) , (2.12)
i=1

J=p+1

then for any testing function @{x)} € D, the space of infinitely differentiable function
with compact support, -

oo =[] (o8) (252, e @12

=5

wherer? =xf+xf+---+x2, 2 =x2 1 +Xx3 4+ +x3

peqr and

Wwir,s) = Jcpdﬂ”dﬂ“,‘ (2.15)

where d)P and dQ? are the elements of surface area on the unit sphere in RP and
R, respectively. Both integrals (2.13) and (2.14) converge if k < (1/4)(p + q — 4) for
any g{x}y € D. If k = (1/4)(p + g — 4}, these integrals must be understood in the
sense of their regularization and (2.13) defined as (6‘1"’( phLp) and (2.14) defined as
(5% (p), @). Moreover, if we putu = r2, v = 52, thus (2.13) and (2.14) become

o k
(6“"(p>.w)=fgfo [;ﬁ(v““"”‘wx(u,vn] W4 gy (2.16)

v=u

") - ﬂth [_a_iwtp-41f4 ] (1/4)(q-4)
{6 (p), @) = 6 o auk(u wi{u,v)) u=vv -V dv, (2.17)

where i {u,v) = @(r,s).



ON THE SPECTRUM OF THE DISTRIBUTIONAIL KERNEL ... 719
PROOF. See [2, pages 247-251). a

LEMMA 2.8. LetGp = {E€ B™: 1] 5 by, |E2] £ by, [En] = ba} beapara[le!gfjg_e_d
inR" and b; (1 = i< n) isareal constant and the inverse Fourier transform of K« g(%)
is defined by

Kaplx) = 97 Ko p(B) = e B (B dE, (2.18)

o]
(2-”')?1,‘2 Gy
where Ko g Is defined by (1.4) and x,£ € R™, then K, g(x) can be extended to the entire
function Ky g(z) and be analytic for all z = (21,z3,...,2,) € (", where C" is the n-tuple
space of complex number and

|Kag(2)| < Cexp(b|Im(2)|), (2.19)

where exp(blIm(fl_\_)__= explbiiIm(zy)] + balIm(z2)] + -+« + bu|Im{zy)l] and C =

(1/2m)""2) [, \Kap(E)AE is a constant. Moreover, Ko 2(x)} has a spectrum contained
in Gp.

Proo¥. Since the integral of (2.18) converges for all £ € Gy, thus K4 z(x) can be
extended to the entire function K« g{z) and be analytic for all z € ™. Thus (2.18) can
be written: as ’

Kaglz) = 'S K, 5 (E)dE. (2.20)
b

ol
(2m)™2 Jg

Now,

i = . , .
|Kapiz)| = W.l-c | Kap(E) | | exp (iZ121 + 18222 + - - - +i8n2zn) [dE
b

1 P~ R . .
= WL‘.‘ |Ka,3('§); | exp(l}jla'l +i&20 4 +1iEn0n (2.2}
b
&1 —E2piz =+ - —Enltn} | dE,
where
zi=o+ig; (j=1,2,...,m), (2.22)
thus

1 o
|Kagtz)| = (_2?)"—’5.[5 | Kog(8) | dEexp (byln| + b2lial + -+ - + balial)  (2.23)
b

for £l < by, or IKa‘g(z)I‘ = Cexp(by|Im(z1}] + bz2|Im(2z2)] + - - - + bnlIm(za}]), Or
Kagl(2)| = Cexp(btlm{z)|), where C = (1/{2m)"/2) 50,, 1Kag(E)IAE 15 a constant. O

We must show that the support of K.g{£) is contained in G,. Since Kz g(2) is an
analytic function that satisfies the inequality (2.19} and is called an entire function of
order of growth <1 and of type < b, then by Paley-Wiener-Schartz theorem, see [3,

page 162], Km) has a suppaort contained in G, that is the spectrum of Ky g(x) is
contained in Gy,.
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In particular, for « = 8 = 2k, the spectrum of (—=1)}¥K3y 21 {x) is also contained in Gy,
that is suppl{~1)*K;1 2k ()] € Gp, where (-1)%K2k{x)} is an elementary solution of

the Diamond operator o* by Lemma 2.4, and the Fourier transform (~1)kf<m§)
given by {2.9) can be defined as follows.

DEFINITION 2.9. The Fourier transform

! . forZeGy
(~D¥Kopar(E) = 1 @mn2[(SP 812 (2522, 21 T 224

0, for & € CGy,

where £ = (51,&2,...,&x) € R™ and CGy is the complement of Gy,

3. Main results

THEOREM 3.1. Foranynonzero peointf € M whereM is aspectrumof (-1 )"nglgk {x),
and (—l)szk_zk(x) is an elementary solution of the operator o* by Lemma 2.4. Then

there exists the residue of the Fourier transform (—l)ka L) at the singular point
A = —k and such a residue is

(—1)k-1 (k=13 (p) KT ey (=1)¥-! k=1
—_(Zn)"fz(k—l)!51 or  resy--k(~1)*Ka2k(g) = (27r)"f2(k—1)1'5 (p ,)
3.1
where
P= (8048 + -+ 8~ (B2 + 820+ -+ E2,), 3.2)

p+q =n and 5V (P) is defined by (2.16) with 8%~V (P) = 61 (P) and n is odd
with p odd, q even.

PROOF. We define the generalized function P?, where P is given by (3.2)and A is a
complex number, by

(PN, @) = JP>OPA(§)¢(§)d§- (3.3)

where & = (£),82,...,8x) and dT = d¥§,dE; - - - dE, and @ (&) € D, the space of contin-
uous infinitely differentiable function with compact support. Now,

(Ph o) = L>O [ +E e +B2) - (B + Brp - + ER) ) @ (BVAE. B4
We transform to bipolar coordinates defined by

Li=vwy, a=rws, ..., Sp=T1Wp,

(3.5}
Epi1 =S5Wpay, Epaz2 = SWpy2, oouy Epag = SWpagy, P+A=M,

LI pra .2 _
where 3¢, wi =1and 37, wi = 1. Thus

P pra
r= |28, s=| > . (3.6)
Ni=1

Jj=p+1
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We have {(P*, @) = [[r* - s 1A @ (£)dE. Since the volume dE = +? 1591 drds dQ, dQ,

where dQ, and dQ, are the elements of surface area on the unit sphere in R” and R¥%,
respectively. Thus -

(P, @) =I 0(r4—s”)'\(prp“lsq‘ldrdsdﬂp dq
p>
0o T A (3.7}
=L J (ri=sH)'wr, )P 158 tdsdr,
0

where w(r,s5) = @ dQ,dQ,.
Since (&) is in D, then y(r,s) is an infinitely differentiable function of +* and

5% with bounded support. We now make the change of variable u = r%, v = 5%, and
writing @ (r,s) = ¢y (u, v). Thus we obtain

o u®
(PR ) = I_IG‘J‘ QJ‘ ﬂ(u—v)"t,ul(u,v)u""‘”“v“*"”*’4 dvdu. (3.8)
u=0Jy=
Write v = ut. We obtain

o0 I
(P}, ) = I_IG-L LA a1 gy, L (1= MA@V e ur)de. (3.9)

Let the function

1
(A, u) = 1_16_,-0 (1—t) t'a-N13y, (u, ut)dt. (3.10)

Thus $(A,u) has singularity at A = —k where it has simple poles. By Gel'fand and
Shilov [2, page 254, equation (12)] we obtain the residue of (A, 1) at A = —k, that is,

resp-—®(A,u) =

1 (_l)k—l [ ak—l

16 {(k-1)! ark—l{tm_“Hw‘m'ut)}] ' G.11)

Thus, resa=-3®(A,u) is a functional concentrated on the surface P'= 0{t=1, u=1v,
p =u—v = 0). On the other hand, from (3.9) and (3.10) we have

(P*, ) =j WM UDED-1 G (A, u)du. O 312)
0
Thus (P}, ) in (3.12) has singularities at A = —n/4,-nf4-1,...,~n/4 — k. At these
points,
1] a* n

reSac—nsa-k (P @) = -E[-a-mcb(—z—k,u)]“o. (3.13)
Thus the residue of (P".Ep) at A = (-1/2)n—k is a functional concentrated on the
vertex of the surface P. Now consider the case when the singular point A = —k. Write
{3.10) in the neighborhood of A = —k in the form (A, u) = do{u)/(A+ k) + I (A, u)
where $g(u) = resa--rP(A,u) and &; (A, u) is regular at A = —k. Substitute ${A,u)
into (3.12) we obtain

(P ) = ﬁ—kL u"*“f“(wm*lcpo(u)du+L YA ARG (A wydu.  (3.14)
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Thus resy. (P, @) = [y w Fr1Ne-a~1go(u) du. By substituting $o(u) and (3.11),
we obtain .

AR G r’[ak_l la-4)/4 ] ke (1p -
resp-—k (P, @) = 16(k—1)1 Jo | kT {t yn (w,ut)} Y du
(3.15)

since, we put v = ut. Thus 34173151 = yk-1(3%-1/3v*-1), by substituting 9%~} /3t-1
we obtain

_1yk (e[ gkl
resaa_x (PN, @) = (-1) L [aatk_l{v““"‘)“l{ll(u,v)}]

1/ p-1
16(k—1)! vu P-ldu. (3.16)

Now, by {2.16)

o D T
resa._x (PY, @) = ((k—)l)l s NP, (3.17)
Since, by Definition 2.9 we have
kT 1 A
{(—1)*Kap2x(E) = WP for A = -k, (3.18)

and £ € Gp. Let M be a spectrum of (—1)}*Kzx2k(x) and M € Gy by Lemma 2.8. Thus
for any nonzero £ € M we can find the residue of (-1)kK2k_2k(§), that is,

resae— {(~1)*Kzz2k(E), PE)) = resa._i (P, @)

1
(2m)niz

o (=kt?
T Emm2(k -1

{(3.19)
(8P, )

or resac—x(—~1)¥Kapar(E) = ((=1)¥ "1/ (2(m)2 (k= 1)))6¥ Y (P) for E€ M and E £ 0.

Now consider the case £ = 0. We have from (3.13) that, the residue of (P}, @) occurs
at the point A = (-1/2)n -k that is res;.,mu,zm_k(P". @) is a functional concentrated
on the vertex of surface P. Since u = 0 and v = ut, then u = v = 0, that implies

VEF+ER 4+ BB = B2 + B2 gt +ERrg = 0. (3.20)

It follows that & = & = -+ = Ep.q = 0, p + g = n. Thus, the residue of (PA, @} is
concentrated on the point £ =0.

Since, from Definition 2.9, (1/(21)*/2)P? = (~1)¥Kag.2x(£) if A = —k. Thus we only
consider the residue of (—1)"K2fz?f‘g’) at A = —k, From (3.12), we consider the residue
of (P} @) only at A = -k. That implies (1/4){(p+q)~1=0orn =4 (p+4g =n).
Since n = 4 is an even dimension which contradicts Lemma 2.4, the existence of the
elementary solution (—1)*Kzx 2. (x) that exists for odd n. Thus cases (3.12) and (3.13)
do not occur. This implies that the case § = 0 does not happen. It follows that

resa-_x{— 1) Kapo () = ('—l)k_l—é““”(m - (3.21)
Aook AT amyrz (k-1 ‘
for nonzero point £ € M concentrated on the surface P = 0, where M is a specttum of
(=1)*Kaiz2k(x). o
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Abstract

In this paper, we study the solution of the equation {*u(z) = f(z) where {*
is the Diamond operator iterated k times and is defined by

o = (p 82>2 p+q 82)2
- o2 - 9.2
£~ Oz; el 0x;

where p+¢ = n is the dimension of the n-dimensional Euclidean space R™, z =
(%1, %2,...,2,) € R™ k is a nonnegative integer, u(z) is an unknown and f is a
generalized function.

It is found that the solution u(z) depends on the conditions of p and ¢ and

moreover such a solution is relatad to the solution of the Laplace equation and
the wave equation.

1 Introduction

The operator {* has been first introduced by A. Kananthai [3] and is named
as the Diamond operater iterated k times and is defined by

2 2 2
Ok = ((aﬁ?.{.a%g_i_..._{.;_x;)?_ o
(6 4 i +.__+__§;'_)2)k (')

where p+ g = n is the dimension of the space R*,z = (z,,z3,...,T») € R" and
k is a nonnegative integer.

0362-546X/01/$ - see front matter © 2001 Published by Elsevier Science Ltd.
Pll: S$0362-546X(01)00272-3



1374 Third World Congress of Nonlinear Analysts 47 (2001) 1373-1382

Actually the operator {* is an extension of the ultrahyperbolic operator
and the Laplacian. So the operator {* can be expressed as the product of the
operator U and A |, that is &F = OFA* = A*[TF where

& o o2 9 2 \"
(BT E e
dzt 9} o2 0x2,, G2l dz,, (1.2)

is the ultrahyperbolic operator iterated k-time with p+ ¢ = n, and

a2 52 a2 \*
A= s+ s+ 4= 1.
(33:% * dz} o G‘mi) (1.3)
is the Laplacian iterated k-times.
A. Kananthal {[3], Theoremn 3.1 p33) has shown that the convolution
(—1)*Rs.(z) = RE.(x) is an elementory solution of the operator ¥, that is

OF ((—1)*Rsi(e) * Rij(x)) = & (1.4)

where 6§ is the Dirac-delta distribution and the functions R, and RZ are
defined by (2.5) and (2.1) respectively with a = 2k, k is nonnegative integer.
In this paper, we study the solution of the equation

Fu(z) = f(z) (1.5)

This equation is the geheralization of the ultrahyperbolic equation and it can
be applied to the wave equation and potential that has been shown in the last
part of this paper.

Let K, 5(z) be a distributional family and is defined by
K, p(z) = RS * Rf (1.6)

where R¢ is called the elliptic Kernel defined by (2.5) and Rj is called the

ultra-hyperbolic Kernel defined by (2.1) and «, 3 are the complex parameters.
The family K, g(x) is well-defined and is a tempered distribution, since

R¢ * R} is a tempered, see ([1], Lemma 2.2) and R} has a compact support.
In this paper, we can show that

u(z) = (=1 Ri(x) * (R yy ()™ + (= 1)* Koz (2) * f(2)

is a solution of (1.5) where m = 234 n > 4 and n is even number and ko ox ()
is defined by (1.6) witha =3 = 2!». Moreover, we can show that the solution
u(x) relates to the solution of Laplace operator A% defined by (1.3)and also
the wave operator defined by (1.2) withk=1and p=1.
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2 Preliminaries

Definition 2.1 Let © = (2,22, ...,2,) be a point of the n-dimensional Eu-
clidean space R™,
— 2 2 2
Depote by v = af + 25+ -+ 2l —ad,, —2l,, — - =22, pt+q=n
the nondegenerated quadratic form. By T'y we designate the interior of the
forward cone.

[, ={z e R":z >0andv > 0}, and by I'. designate its closure. For
any complex number «, define

pha=n)/2
RH (v} = { Ty forzell (2.1)
0 forz ¢ Ty
where K, (a) is given by the formula
=D (2gma) 1 (152) F(e)
D(2572) T (5%) '

K.(o) = (2.2)
The function R7(z) was introduced by Nozaki ([4], p.72).

It is well known that R7(z) is an ordinary function if Re(a) > n and it is
a distribution of o if Re{a) < n. Let suppR7(z) denote the support of R¥ (z).
Suppose that suppR7(z) c T,.

From S.E Trione ([5], p11), RZ (v) is an elementary solution of the operator
[0 that is

O*RE(v) =6 (2.3)

where [I* is defined by (1.2).

By putting p = 1 in (2.1) and (2.2) and remembering the Legendre’s du-
plication of I'(z).

['(2z) = 227177120 (2) (2 + 1) then the formula (2.1) reduces to

oz
M,(v) = { e Hr€ls (2.4)
0 gD,
Here v =17 — 28 — -+ — 22 and H,(a) = n(*~D/22e-1] (2=222) 1 (g .

M, (v) is, precisely, the hyperbolic kernel of Marcel Riesz.

Definition 2.2 Let z = (z1, 22, ..., T ) be a point of R™ and the function Rf(x)
be defined by

_ lxla—n

Ry (z) = W@

(2.5)

n/2n0 a
where W, (a) = %l, a is a complex parameter and |z| = (¢ + z+ 22 +
e+ 2212 i

It can be shown that R, (z) = (—1)FA¥§(z) where A¥ is defined by (1.3).
It follows that R§(z) = § , see ([2], p118).
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Moreover, we obtain (—1)*R¢, (x) is an elementary solution of the operator

AF | that is
AF ((~1)* R () = 6 (2.6)
see ([3]) , Lemma 2.4 p31).

Lemma 2.1 Given P is a hyper-surface then
Po™(P) + k6%D(P) =0

‘where 6(%) is the Dirac-delta distribution with & derivatives.
Proof. See ([1], P233).

Lemma 2.2 Given the equation
AFu(z) =0 (2.7)
where A¥ is defined by (1.3} and z = (21, 23, ...,2,} € R then
{(m)
u(z) = (=1)%k-1 (Rg(k_l)(m)) is a solution of (2.7) where m is a nonnegative

{m)
integer with m = 254, n > 4 and n is even and R 1)(:c)) is a function
defined by (2.5) with m derivatives with o = 2(k — 1)
Proof. We first show that the generalized function u(z) = 6™ (r?) where
r? =|z|* = 2 + 2} + - + 22 is a solution of

Aulz) =0 (2.8)

2
where A = Y " | 2 is a Laplace operator.Now

3%2;_6("‘)(1'2) = 2z,6Mm(r?)
226 (r?) = 260 (r?) + 42l (r?).
Thus
A = S0 B 52

20+ (12) 4 4r260m+ 2 (+2)
= 2n8M*V(r2) — 4(m + 2)}6™ 1 (r?)

by Lemma 2.1 with P = 72.We have

A = [2n — 4(m + 2)]6 D (r2)
= 0 if2n—4(m+2)=0

or m = 234 even. Thus §™(r?) is a solu‘uon of (2.8) with
m = "2 n >4 and n is even. Now Afu(z) = A(A*'u(z)) = 0 then from
n >

the above proof A u(z) = 60" (r?) with m = 234 n > 4 and n is even.
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Convolving both sides of the above equation by the function (ul)k’lRZ(k_ iz}
, we obtain

(Ml)k_le(kul) (z) x & u(z) = (=1)"TREG () & ()
v 8 ()5 Ry y(@) wule) = (-1 Ry () = 70

freet

or  §xu(z) =u(z) = ()T R y(z) = 67 (r?) by (2.6)

Now from {2.1)

Re (m) . !5’5'2(1‘_1)_“
2(k-1) = Wa(a)
(lxiz)Qg —ll—n rq)?gk—l!—n
= Wi la) = Wnla)

where 7 = |z| = (2% + 2% + - - + 22)/2. Hence

2{k—~1)—n
2
Rg(k_l)(x) * 6(m)(r2) o QWW « 6((7“) (%)
(r2)2!k—])—n m) e ()
O [Rz(k-l)(x)} :

(m)
It follows that u(z) = (—1)*! [Rg(k_l)(:c)] is a solution of {2.7) with m =

n—4

7,7 > 4 and n is even dimension of R".

Lemma 2.3 Given the equation
OFu(z) =0 (2.9)

where (% is defined by (1.2) and z = (z1,29,...,2,) € R™ then u(z) =

[Rf(k_l)(v)] ™ is a solution of (2.9) with m = 2=% n > 4 and n is even

TL
(m) |

dimension and v is defined by Definition 2.1. The function [Rf(k_l)(v)J is
defined by {2.1) with m-derivatives and « = 2(k — 1).

Proof At first we show that the generalized function 6™ (r* — 52} where
=i tai++zland P =22 42,4+ 2, phg =005
solution of the equation ‘

Ou(z) =0 (2.10)

where O is defined by (1.2) with k£ = 1 and z = (z;, 22, ..., 1,) € R™. Now
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3 5(711) (?. . 52) —_ QIi(S(m+1)(T2 _ 32)
6 6{111)( 82) — 26(m+1)(?"2 - SQ) +4$?6(m+2)(?‘2 _ 82)
f’ | oo 632 5 (r? — 52y = 2p6mIN(r2 — 5?) 4 4r260mFH (2 - 52)

2p6 U (72 . 57)
+4(1‘2 . 32)5(1?1-4-2)(7.2 . S?)
1445260+ (2 — %)

— Qpé(m+1)(,r2 _ 52)
~—4(m + 2)5(m+1)(T2 . 52)
+4528m+D (r2 _ 42)

= [2p— 4(m + DI (2 - 57)
+4325(m+2)(7”2 - 52)

by Lemma 2.1 with P = r% — 52,

Similarly,
B =) = [F2g+4(m+ 26N - )
4428t (p2 g,
Thus
D62 - %) = Fh, E) o6 (r? — %) - A L6 (r? - 5?)

= [2(p+ ) ~ 8(m + )60 (17 — )
—-4(?‘2 . 52)5(m+2)(r2 — .5‘2)
= [2n — 8(m + 2)}6{m+(r? — 5?)
+4(m + 2}60m+ 1 (r? — 5?) by Lemma 2.1
= [2n — 4(m + 2)]6(™+D(r? — 5?).

If 2n — 4(rn + 2) = 0, we have 6™ (2 — 5?) = 0. That is u(z) = 6§ (r? — %)
is a solution of (2.10) with m = 234, n > 4 and n is even dimension. Now
CFu(z) = O (O u(z)) = 0.

From (2.10) we have ¥ 'u(z) = 6™ (r? — s?) with m = "33, n > 4 and n
is even dimension.

Convolving the above equation by R{,‘Ek_l)(v), we obtain

Rff_y(v) « O lu(z) = R ,y(v)* 6(”;)(?“2 — %)
L [R2(k N )] xu(z) = [Réfk 1)(0)] where v = 7% — 2
{m)
§xu(z) =ulz) = [ Q(k—-l)(v)]
by (2.3) and v = r? — s? is defined by Definition 2.1.

(m]
Thus u(z) = [ 2(e-1) (U )] is a solution of (2.9) with m = "=, n > 4 and
n is even dimension.
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Lemma 2.4 Given the equation

SFulz) =0 (2.11)

where {* is the Diamond operator iterated k-times defined by (1.1) and u(x)
is an unknown generalized function.Then

u(z) = (—1)* Rg(z) * (Rl (0))™ (2.12)

{m)
is a solution of (2.11), (Rf(k_l)(v)) is a function with m-derivatives defined
by (2.1) and v is defined by definition 2.1.

(=)
Proof Now {*u(z) = OFA*u{z) = 0. By Lemma 2.3 ,A*u(z) = (ng~l)(‘v)) .
Convolving both sides by (—1)*R§,(z) , we have
e e m])
(~1)*R5i(e) + A*u(z) = (~1)*Rgy(2) % (R ()"

By (26), A* ((~1)*Rgy(2)) u(z) = Sxu(z) = (~1) Ry (z)= (R, ().
It follows that

u(z) = (~1)* R (z) * (RE ()™ (2.13)
3 Main results
Theorem Given The equation

O*u(z) = f(z) (3.1)

where {>* is the Diamond operator iterated k-times defined by (1.1), f(z)
is a generalized function, u(z) is an unknown generalized function and z =

(z1,%3,...z,) € R"-the n-dimensional Euclidean space and n is even, then
(3.1) has the general solution

u(z) = (1) Re(z) * (R )™ + (1) Kaea(z)  f(z)  (3.2)

(m)
where (Rﬁkml)(v)) is a function with m-derivatives defined by (2.1) and
Kok ox(z) is defined by (1.6) with & = 8 = 2k.
Proof Convolving (3.1) both sides by (—1)* Ky 2x(z), we obtain

(—1)’:1{2&'2;:(2:) * Oku(:c) = (*l)ngk'gk(x) * f(.’L‘)

By (1.4) O% ((~1)* Kan(a)) * u(x) = 6 » ulz) = (=1)*Kauzil(z) » 1 ().
We obtain u(z) = (—1)*Ko(z) » f(z). Since, for a Homogeneous equation

{(m)
O*u(x) = 0 we have a solution u(z) = (—1)*R5,(z) * (ng_i)(v)) :
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Thus the general solution of (3.1) is

u(z) = (~1)* R (z) * (ng_l)(v))(m) + (1) Kok 0 (z) = f ().

In particular, if ¢ = 0 the equation (3.1) becomes the Laplace equation
A%yu(z) = f(z) where z = (&, 2, z3, . Z,) € RP and p is even. Using the
formulae T'(22) = 2% 17~ V2T(2)I(z + 3) and ['(3 + 2)I(} — 2) = msec(nz).
Then for o = 2k the function of (2.1) becomes (—1)*RS, (z) where RE (z) is
defined by (2.5) and = = (z,,z3, ..., %,) € RP. Thus by (1.6)

(D) Koa(z) = (=1)*R5(z) * (—1)*R3,(2)
= RS (z) see ([2], p156-159)

where z = (21,2, ...,2,) € R” and p is even.
Now, from (2.12) for g = 0 we have

u(z) = (-1 Rgyla) » (~1 (R (@)
= (—1)%k-1 (Rjk_g(m))(m) for z = (z1,z9, ..., x,) € RP.

Thus the equation (3.2) becomes

u(z) = (-1 (Rg_y(2))™ + Ryu(2) * fl) (3.3)

for z = (x4, zs,...,2,) € RP and p is even.
It follows that (3.3) is the general solution of the Laplace equation A% u(z) =
f(z) where A% is the Laplace operator iterated 2k-times defined by (1.3) for
z = (%, %2,...,Tn) € R™ and n is even.

Now consider the case for the Wave Equation. Given the equation

OV (z) = f(x) (3.4)

where f(z) is a generalized function,[J* is defined by (1.2) and V(z) is an
unknown function. By ([5),p11) we obtain V(z) = R{.(v) * f(z) is a solution
of (3.4) where RZ (v) is defined by (2.1).

Now, from (3.1) we have u(z) = (—1)* Ko 2 (z) * f(z) is a solution where
Kok 2k(z) 1s defined by (1.6) with a =8 =2k or
u(z) = [(=1)*R(e) * R3:(v)] » f(z) (3.5)
Convolving both sides of (3.5) by (—1)*R®,,(z), we obtain

(1) Rig(a) *ule) = ((-1)*Rip(e)* B (2)) * RiL(v) * f(2)
= ERS(x)*Réi(v))*f(x)
= (6% RE(v)) = f(z)

— RE(v)* f(z) see ([2],p156-159)
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Thus it follows that
V(z) = (~1)*R% g (2) * u(z) (3.6)

In particular, for k = 1, we obtain V(z) = R¥ (v) * f(z) is a solution of the
equation

OV(z) = f(x). (3.7
If we put p = 1 and z; = t(time),then 0 = gfg D ai;? is the wave operator.
Thus (3.7) becomes wave equation,
52 n &2
(5;2 _ 25—) V) = fie) ©8)

Thus V(z) = Ma(v) = f(z) is a solution of (3.8) and the general solution of
(3.8) is V(z) = 6™ (v) + Ma(v) ¥ f(z) where 6™ (v) is a solution for f(z) =0

v=1t?—zj -2}~ .. —z% and Mo(v) is defined by (2.4) with v = ¢* — 23 —
2 2
$3 —_ . — Iﬂ'

Now in (3.1),put k£ =1 and by (3.2) we obtain

u(z) = (~1)R(z)* (RE@))™ + (~1)Kaa(z) * ()
= (~1)Rj(z) * 6™ (v) + (~1) Ksa(2) * f(2)

is a solution of the equation Qu(z) = f(z) and by (3.6) with & = 1,V (z) =
(—1)R%,(x) = u(z) is a solution of (3.7) where u(z) is defined by (3.9). Thus

V(g) = (~1)R%, (@)= (~1)Rs(z) * 6(w))
Eré—l()f;zzg)(*)()(—;()Igz.z)(m) v ()

€ (x) = Ri(x)) » 6\ (v
(R y(x) » R5(2)) « RE(z) * () (3.10)
Re(z) * 8 (v) + R3(z) * (R (z) * 1(2))
6M(v) + RE(x) * f(z)  (Re(z) = 6)

(3.9)

Il

(i

wherev =z} 4+ 23+ -tz -2, -2, - -z, prg=n.
Now, if we put p = 1 and z; = ¢, then (3.10) becomes V (z) = 6™ (v) 4 Ma(v) *
f(z) since R¥(z) becomes My(v) for v = t2 — 22—z — - .. — x2 where My(v) is

defined by (2.4) with a = 2. Thus V(z) = 6™ (v) + M,(v) = f(z) is the general
solution of the wave equation (3.8) and 6™)(v) is a solution of

P K
(- 3am) o o

Now v = t? — 23 — 22 — ... — 22 let 2 = 22 + 2} + .- + z2. Thus by
([1],p234-236) we obtain V(z,t) = 6™(t* — r?) is the solution of (3.11) with
the initial conditions V(z,0) = 0 and ?—V—éf—@ = (=1)"27™*1§(z) at t = 0 and
I = (IQ,.’Ig, ...,In) € R*1L,
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