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Recently, Xu et al. (5] using the BCS theory of superconductivity derived the Ginzburg—Landau free energy
density from the BCS free-energy density for temperatures at T, and near T, and found relations between the
microscopic and phenomenological coefficients. However, the coefficients of the expansion are found to depend
only on N(0), the density of states at Fermi level and 7, not on the material parameters like wp and T, since
they have taken the limit wy /7, = ® in their calculations.

In this paper, we will show new solutions for A F, the free-energy difference, the temperature dependence of
the order parameter, the critical fields, the entropy and the specific heat jump, taking into account the finite
value of w/T, at T=T, and near 7,, and to make the formulation complete, we consider both the s and d
pairing symmetries.

In Section 2, starting from the BCS gap equation we will give the complete expression for the temperature
dependence of the order parameter, then the complete expansion for the free-energy density will be obtained in
Section 3. Our improvement on the previous results will naturally lead to the modification of the coefficients of
the well-known Ginzburg-Landau equation. In Section 4, we will consider the thermodynamic properties of an
s-wave superconductor with finite @y /T, we will see that for large w, /7., all the BCS results are reproduced.
Analytical expressions for the thermodynamic properties of a d-wave superconductor are also given. Discussions
and conclusions are given in Section 5.

2. Order parameter equation

Within the BCS scheme, one obtains the BCS gap equation as

;v;,; 2E'tanh(Ek/2T) (1)
where
Ep=yei + Af | (2)
and
4;=A(T)g(d). ‘ (3)

Here ¢ is the polar angle specifying the direction of electron of momentum K in the plane and for g(¢) we
adopt the model g(¢) =1 (s-pairing) or cos2¢ (d-pairing). The BCS scattering matrix element Vi7 due to
phonon mediated interaction is assumed to have the usual separable form

Vip=Ve(d)g(d'), (4)

only if both &7 and &p are smaller than the Debye energy w),, so the attractive constant V is finite in a certain
strip of width 2wy, in the vicinity of the Fermi level.

Assuming a constant density of states at the Fermi level N(0), we apply standard transformation to Eq. (1)
and arrive at the following gap equation

1 Tag T de
oy~ ] 2Rt () | g (BT, | (5)
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By differentiating Eq. (5) with respect to T, we obtain

27 wp
L j ﬂgl(qb) [ desech?(E/27)
0

dA*(T) T?
dr = 21r 2 ° (6)
d¢ 4(¢)f sech*( E/2T) B tanh({ E/2T)
f 7zt 27E? E’
If the notation { g"(¢)) = [$"(d¢/27)g (@) is introduced, then at T= T, Eq. (6) can be written as
dAX(T {g*(¢))8T.tanh?y,
—dS]'*_)'|T=T= - ( tg.nhy - s where y, = w, /2T, (7)
(84(¢)>[ . ———13]
and
-— tan~' | ———— |, 8
b= g (2n+ 1) w2, &)
2
The second derivative of A*(T) in Eq. (5) with respect to T at T, is then given by
dA*(T) 8(g*(¢)rtanh y,
—"GF"—_I?ET,:: ) tanhy, 1 (a+B), (9)
(8 (¢))|
where

tanh’ y,
2 * 4
Ye

2y,

=1- - ,
* sinh2 y, [tanh ye 1 ] (10)
P £
Ye Ye
: 0 tam_hzyc 1 I
tanhy | ——— — — —
(s (8) o v (an
(g*($)Y [tanhyc 1 }
2, -~
yC yC
and
192 = 1 Y.
S erreTe N (2
n=0 ( )y [n + —]17
2
The Taylor’s expansion of A*(T) about T, yields the following equation
2( ) d2 A*(T)
A T)=(T-T.)—lr-1.+ = ( —r=r +.... (13)

dr?
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By substituting Egs. (7) and (9) into Eq. (13), the temperature dependence of the order parameter near T, is

found to be
T 1 T
T, 2\ T

Up to this point we can see that the BCS approximation y, = wp /27, — = and { g"(¢)> =1 for any n, give
the result for the A3~s(7) of an s-wave superconductor as

2 _S(aT) i-T [ 1 94 ) T
BaeslT) = =73 l T, ]{1 2(3 [74:(3)]2][1 T]} (1)

where {(n) is the Rieman zeta function. The last term on the right hand side of Eq. (15) is a correction to BCS’s
approximation. Recently, Xu et al. [5] calculated the temperature dependence of the order parameter near 7T,
their result is different from ours, our exact results show that their result is in error.

We now calculate the ratio A%(T)/42-5(T) as a function of wy, /7T, for different T/T, values.

First we take g(¢) =1 for an s-wave superconductor, then Egs. (14) and (15) yield the foliowing result

2 2 h
A1y - — B @by, ()

1 tanhy,
<84(¢)>[13+'y—_ 2 }

4 [

(a+,8)}. (14)

1 T
44(T) ) 75(3)tanhyc{1—-2“(1—;c)(a+ﬁs)} »
Aes(T) wz[z +_1__tanhyc] 1_3(1# 31Z(5) ][1_1] ’
Yy 82 2 (12(3)y T,

where 8., as defined in Eq. (11), becomes

tanh? y |
tanh y, 3 Lo — - 15}
c yC
B = 17
) tanh y, 1 2 a7
T~ h
Ye Ye

We can easily see that at T=T, and as w,/T, — @, the ratio AX(T)/A;.(T) reduces to 1, as it should.
Next, we take g( @) = cos2 ¢ for the d-wave superconductor, for this case { g?()) = 1/2, {g*($)) =3/8,
(g%(¢)) = 5/16, Egs. (14) and (15) give the result

¥

1
Adz(T) 28{(3)tanhyc{l—5(1-—?c

Ages(T) 3,”2[!3_4__1__wn}:yc](l_i(l—ﬂ)[l—i)}

T
(a+3d)}

(18)

20 (123’ T,

c
again from Eq. (11), one finds B, =(10/9)8;. In the limits T =T, and weak coupling w,/7, approaches ,
one has to AJ(T)/A3.(T) —»4/3.
These ratios, AZ(T)/A3(T) and AZ(T)/AL.,(T), written in terms of observable quantities such as the
cutoff and the transition temperature for different T =T, values are shown in Fig. 1. The two sets of curves

< <
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Fig. 1. Shows the variation of the dimensionless ratio 4%(T}/ A}, as a function of wy / T.. Two different types of pairing, s and d, and
two reduced temperatures T/ T, are plotted.

behave quantitatively in the same way and almost insensitive to temperature variations. We note that
A,(T) > A(T) for all parameter spaces.

3. Free energy difference

Thermodynamic properties depend on the free energy difference AF = Fg — F)y between the superconduct-
ing and normal states. The subscript § (N) refers to the superconducting (normal) state. The integral form of the
AF can be written as '

A(T)

aF= | dA’(T)\A'(T)VM (19)
0

dA(T)

Since, near T, the order parameter A(T') is very small, this allows Eq. (5) to be expressed as a series in powers
of (AX(T)/ & + w?), where w, =(n+ 1/2)wT is the usual Matsubara frequency, » is an integer, and we find
that Eq. (5) is converted into the following form:

wp -

i=4T i <gzm+2(¢)>(_1)mA2m(T)f N(D)de

4 n.m=0 0 (sz-l—w,f)MH .

In order to obtain the free energy difference near T, one substitutes Eq. (20) into Eq. (19) and integrates to
obtain

(20)

wp/2T

A2m+2(T)
(21::)2m+1 '!)‘

dxN(0)

aslfor 2]

(21

AF(T,wp) = 4T f‘, (—1)’"( ](g“‘”(qﬁ))

nm=0

m+1
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Retaining only the terms up to A%(T), we have

AF(T,0p) = By(T,,0p) A'(T) + By(T,,0p) A%(T), (22)
where
N(O)g* (o) 1 tanhy,
BT, ,wp) = 16T02_- 3 y_c‘“ il (23)
N(0)(g°(¢)> 1 tanh’y,
By(T..wp) = ——om | Lt~ | (24)
¢ Ye ¥e
The utilization of Eq. (14) modifies AF to
T\* T\{20 PB(T., wp)
AF=—By(T, o) Pl — = (14 |1 - = || = - 2t 27
F 2( c wD) [ Tc { ’I;:}( P Bz(TcawD)
TV Q> 30B(T.@
1= —-2-—_3(~—D) : (25)
T, P By(T.,wp)
here
dA*(T) T2 dA* (1)
P —L—gp r=r and Q= —glrer.

The values of these derivatives have already been obtained [Egs. (7) and (9)], hence P and Q are known.

4. Thermodynamic properties

Since the critical field can be obtained from the difference between the normal and superconducting state free
energies, i.e. (HX(T)/8m) = —AF, where H(T) is the thermodynamic critical field, then from Eq. (25), one

has the critical field H(T) near T, as
H(T) {g*($))32N(0) T.tanhy, { 1 ( ,3] T] ,3( 7 )[ T]z}
= l—=la+ l-—=|—-—zlat+=8|l-=1 ).
| B S
(26)

1-T/T, tanh y, 2 3
\/<g4(¢)> 4

I+ — —
Sy

C c

By taking the wp, /T, — o limit and {g?($)) = 1 = {g*(¢)> Eq. (26) gives the BCS critical field as

H, ges(T) [ 327 N(0) 1 317(5) T
TT/TC—"TC 3 1—_(3 _")(1_-

27 e\ T

N 31:(5)2 (3_ 31¢£(5) 2)(1_1) } 27
(72(3)) 14(£(3)) L

<
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Combining Eqs. (26) and (27), we arrive at the following equation

H.(T) 7£(3)
——— ={g¥ o) 1 h tanhy,
H, ges(T) w2<g4(¢)) L+—— mnz)’c}
1 B B 7 TV
1—5 a+-§~] I—E —E(a-i-gﬁ][l"-']—;]
_1[3_ 315*(5)2 [1__T_]+ 31:(5)2 (3_ 314(5)2][1_1)
2 (7£(3)) L) (7(3) 14(£(3)) T,
(28)
When g(¢) =1, (s-wave case)
H(T) 703) -
HC.BCS(T) B 71'2 I +L_ tﬁl’lhyc A Ye
v ¥
1 B, T) B, 7 Ty’
“5[“?)( ‘i]“?[“aﬁsl(“i)
T (29)
1_1{3_ 31£(5) ](1u1]+ 314(5) [, _31L05) ][1_1]
217 (u3)y L) @@\ o)y .
and when g(d} = cos2¢ (d-wave case)
H, o(T) 14£(3)
= _ tl'lh .
H, pes(T) 32 13+ihtanhzyc} Ay
Yoo Y -
1 B, TV B, 7 T\*
1—E[a+?][1—?c]—?(a*f'gﬁd](l—i]
51 (30)

1 1 [3 31¢£(5) ]{1 T . 31¢(5) (3 31Z(5)
AN O A C{O) B BRI C))
Fig. 2 shows the H_ 4(T)/H,_pcs(T) ratio results as functions of increasing wp /7, for various T=7,
values and different pairing symmetries. We can see from the graphs that curves H, (T)/H, pco(T) and

H_(T)/H, gco(T) follow similar trend, with H, (T} > H, (T) for all wy, /T, values. Both H_ (T) and H, (T}
reach their peak values at w /7, = 4, and remain constant when wp /T > 10.

T
[1—_
T
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Fig. 2. Comparision of the normalized critical field, H.(T)/ H_pc5(T), as a function of wp, /T, for s- and d-wave superconductors at two

reduced temperatures T/ T, = 1.00 and 0.95.

If we take the limit y, = w, /2T, 2 and T=T,, then H, (T.)/H 3os(T.} =1 and H, (T,)/H, pcs(T)

=y2/3.
The specific heat jump is related to the thermodynamic potential difference by the general relation - -

Cy— Cy = AC= —T(0*AF /3T*) which gives

8N(0)T.{ g(¢)) tanh T, 3 T\’
AC(T) = (0)TL5%(¢)? t;nhy; {1—(3a+,8) L= —|+5(a=38)(a+p) 1—;] }
4 < c <
(g*(e) Is'*'y_'- 2 ] .
(31)
The normalized specific heat jump ratio
AC(T AC(T 12{ g*( $)) tanh? T
e I (o
Nl-*c ETFZN(O)TC w2<g4(¢)> 13+___ . c] ¢
Ye Ye at
3 T\?
+E(a--3B)(a+B) I-—E] . (32)
When g(¢) =1, as for the s-wave case
AC(T) 12tanh?y, 3 \ T :
CN(T;) - 5 1 mnhyﬂ] 1_(3a+Bs) 1_—c +-2-(a_ Bs)(a+ﬁs) Tc »
T I3+y—— y2
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and as y, = wp /2T, — o we find

AC, pes(T) 12 {1_3[3 31£(5) ][ T]

(L) 7(3) T 1E)Y T,
E[HE_'I(_S)_Z][I_ﬂ] T } (34)
2" (o) (%(3)) T,

and when g(¢)=cos2¢, as for the d-wave case

AC,(T) 8tanh’y, T} 3 T
AN - +i_tanhyc} 1-(3a+By) 1—?c +5(a—3ﬁd)(a+ﬁd)(l—i] .
Yy X
(35)
If we take y, = wp /2T, — % limit, we have
BCiwes(T) _ 8 [ [, 310405 ][ _1]
(L) () ( 9(7¢(3)) T.
+£[1+————310§(5)2][1———310;(5)2][1—£] } (36)
20 313y 9(7¢(3)) %

Egs. (33) and (35) are analytical expressions for the normalized specific heat jump AC{T)/Cy(T.) and
ACLT)/Cy(T.) within the BCS framework for the constant density of states near the Fermi energy. The ratios
are plotted as functions of wy /7, and pairing symmetries in Figs. 3 and 4. We can see from the curves that the
ratios first increase for low wp /T, values, produce a peak at /T, =4 and reach constant value for large

2.0

5 T/Ta =1.00

o

AC(TY , ol T/Te =0.95 ]
Cu(T.) i T
!
i
0.8 ¢
0.0 +
1 ] 10 15 20 25 30
wp/Ts

Fig. 3. The normalized specific heat jump of an s-wave superconductor AC(T)/ Cy(7,} versus wy, /7, for various values of T/T.. The
solid line corresponds to T/ T, = 1.00, the dashed line corresponds to 7/ T, = 0.95.
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Fig. 4. AC{T)/ C\(T,), the normalized specific heat jumps of a d-wave superconductor, versus wy, / T. for various values of T/ T,. The
solid and dashed lines corresponds to T/ T, = 1.00 and 0.95, respectively.

wp,/T,. For the s-wave superconductor, the ratio is found to be generally larger than the d-wave superconductor
and it reaches the BCS limit, 1.43, when /T, > 10. We note also from the graphs that as the reduced
temperature decreases, the normalized specific heat jump ratio also decreases.

5. Conclusions

In the present work, the BCS mode! of superconductivity is used to derive formulas for the temperature
dependence of the order parameter, the critical field and the specific heat jump at T, and temperature near T,.
We follow the BCS formalism with the important difference that we calculate all thermodynamic quantities
exactly.

We first investigate the temperature dependence of the order parameter and use it to derive an exact
expression for the free energy difference between the two phases. The critical field and the specific heat
expression are then obtained from the free energy difference.

Our results show that the newly calculated quantities such as A*(T), H, 4(T) and AC, ,(T) are generally
dependent on the ratio of T, and the Debye temperature wj, as well as on.the type of pairing. We have also
shown that the relative quantities such as A2(T)/Aicss H (. af(T)/H,pcs(T) and AC, (T)/Cy(T,) can differ
significantly from 1, 1, and 1.43, respectively and that these quantities are very sensitive to low @y /T, values
but independent for large wp/T,. The difference between BCS calculations and ours are most pronounced as
wy, /T, — 4. Nevertheless, our new formulas for the critical field and the specific heat jump of the s-wave
superconductor, which are one of the comerstones of the work, properly reduces to the BCS limit as
wp/ T, — . Our analysis shows that the constant density of states in the conventional BCS theory cannot
explain the large values of AC(T,)/T, found in many high temperature superconductors [6,7]. Also the s pairing
symmetry consideration does not give any appreciable enhancement of AC(T) or H.(T) over BCS value but the
d pairing symmetry decreases AC(T) and H.(T) considerably. We conclude that to explain the higher values of
AC(T)/C\(T,) and HT)/H_pcs(T) over BCS value within the BCS formalism, one may need to take into
account the energy dependent density of states with sharper peak at the Fermi level.
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Specific Heat Jump ‘at T, of High T, Superconductors:

Effect of Van Hove Singularity
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In the BOS framework, exact expressions for the rtio between the jumprin the specilic heat
at £, and the normal phase specilic heat are derived within the Van Hove singularity scenarino,
Analviical results are obloed 1or anisalropic s-wave and niseropic d-wive pairing symmet-
vics, Graphical soluvions of the ratko s functions of w/F, and F 2T where ey, is the catoll
cnergy and £y is the Fermi energy, show significant deviattons from the BCS vilue of .43,

KEY WORDS: Specibe hean pump: o pairing svnimeiy: Van Tove superconductor,

LAINTRODUCTION

To understand the origin of high-temperature
superconductivity. a model based on the close prox-
imity of the Fermi level 10 a guasi-two-dimensional
Van Hove singularity (VIHS) in the density of states
N(&) hus been suggested |1-3]. Recent high-resolu-
ton  angle-resolved  photoemission  spectioscopy
measurements on high 7, superconductorns [4- 6] have
identified the presence ol saddle points in the band
structure of these materianls and these saddle points
are shewn 1o correspond 1o logarithmic VIS in the
density of states. The influence of VIS on several
properties of cuprate superconductors hinve been
studied |7-9).

Specitic heat is an impartant property of i super-
conductor. It can inform us about the nature of phase
transition and the symmetry of the pairing <tate
DL The jump in the specitic heat, AC, at the

critical temperature provides a relative measure of

the supercanducting volume, showing the fraction
that undergoes the superconducting transition, In
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BOS theory the ratio AC(T)/CT) is o umiversal
constant. .43, In many high-temperature cuprate su-
perconductors this ratio has been Tound Lo be preater
than the BCS value [101]. The explanation of this
discrepaney has been attributed o the logarithmic
VHS in the normal state density of states with s-wave
order parameter [12,13], and also with the d-wave
order parameter {14,15]. Sarkar and Das [16] studied
the specific heat jump of s-wave cuprates and found -
that an extended VIS can account for some ol the
experimental results reasonably well, In their investi-
gation of the specific heat jump, Newns ef . |17]
showed that the d-wave version of the Van Hove
seenario-at the BOS Tevel of approaimation is viable.
Recently Dagotto ¢f af. 18] proposed a theoretical
model including both the VHS and antiferromagnetic
fTuctuation elfeet, Their moddl explains many (va-
tures of gl 1) matenials amd predicts a pap parame-
ter ol o, - wave type [19].

Now in the BCS framework. the specitic heat
jump s usually caleulated from the tempersture de-
rivative of the square of the gap parameter and the
reduccd gap ratio {R). Refs. {12 |13]. and |10]
defined A° = —d|ACTYAMWIHTIT) and B =
(AT AUEY is the temperature-dependent en-
ergy gap function, and obtained A = 174, /§ =176,
As s well known these quantitics having such values
when the condition wy/ f, — @ is considered. 1In con-
ventional superconductors this restriction is valid be-
canse the cutall enerpgy my, is muoch greater than 1.

i LTk LIS ESR o . eem) Plenn Publishos € orpaonaiesm




At 5
7 With the discovery of high-temperature oxides the
Dchyb cHoll wy is not that much greater than 7,
the dimensionless ratio e/ T 18 lindte, Therefore new
caleulations of A and I are needed [20). ,

I s, therefore of great interest (o obtain exact
analytical expressions for MCCT) O withowt
making any approximation concerning w1, (0
know what the BOS theory predicts Tor A, 13 and
ACCTYCUE)Y when w07, s hevond its restricted
value. The purpose of this paper is to investigale the
specific heat Jump of isotrapic s-wave and aniselropic
d-wave superconductors within the BOS frimewaork
fora constant density of sttes ind Tor o VIS density
of states, )

Section 2 deais with the thermaodynamie prop-
erty of a superconductor, I siars with the pap equa-
ton [rom which we dcriv- a tormal but compleiely
senerad formu-to=ie temperature dependencee of
the order parameter .md the normalized specilic heat
jump. Effects of canstant and VHS density of states
an the speatic heat difference are presented analyti-
cally and graphicadly in Section 3. Finalty, discussions
and conclusions are drawn in Scction |4,

2. TEMPERATURE DEPENDENCE OF THE
ORDER PARAMETLER AND SPECIIC
HEAT JUMP AT T,

Within the BCS tframework, the g Ip vyguation is
eiven by ihe equation

1 i A“ l.illh(,)—'})

")I‘-

o

AV (1)
L
where l:'% = {&1

- LY+ A e s he quasiparticle
energy, [

¢ 1% the Fermi energy. Az is the order param-
eter, Vigis the positive phonon medhated interaction,
which is finite within the energy range of fewy arcound
£y, and wyis the Debye frequency, For the sake of
simplicity we asswne tha

Vv

-
i

= Veide(d'), UE ~ s eroee- 1A by,

12

and gl = 1 or cos 24 depending on whether the
superconductor i an s- or d-wave ane, here s the
angle between the momenium & of the pair clectrons
andd the wawis of o Cuth plane, e b A
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k). and V represents the constant electron-phonon
interaction strength,

For the form of the scattering matrix clement
given by Fg. (2). the solution of the gap cquation
has the structure

Ar = AT )(d) (h
where AT ) is the temperature-dependent energy gap
function. Upon substituting Egs. (2) and (3} in L.
(1}, one abtains the equalion

! i gy 2l . I
v = Ju ﬁ‘_[ 2’( ,f,) ;l— N(&) tanh (57) (4)

iy o

where N(g) s the clectronic density of states per
spin. By differentiating F2q. (4) with respect 1o 7, the
temperiture pradient of AT at 7= T is given by
the expression

_l_ll'..\“('f')
oodlt

'\.ﬁ:i'_}{%)‘: (‘J)J“" CdxN(T,x) secl(v)

S [ [———SCC.‘;("')

[Fae, " AXNQT, ) :
n 2

A

_ lamhg_):\
(3

‘The jump in the specific heat 75 within the frame-
work of the BCS formalism is caleulated from the

usual expressions for specific heat of the normal and
superconducting phases given by

Cy=2 a1 “'I:(.} I )

‘T-IJ'. il (ﬁ)
Co=2Y !IM (7)

Here the indices N oand S denote 1the normal and
\llleLnndllLllllL\lqlh,\ respectively. fler) is the usual

Fermi distribution Tunclion for electron with vector
7: The factor 2 arisex Tor the sum overspins ol the
Cooper pair. We finally obtain the ratio between the
jump in the specific heat ar a transition from the
norimal to the supereonducting states and the normal
specitie heat as




1
CT) j " dxN(T.x)6 sech(x)

fj“"" AXNQT.x)x seehis) - T
- l [: ﬂg [ d.rN(z'f:.v)scch‘(.v)]‘

) dd
e el
=

2y [ demt0
sech’{x) ~tanh(x)
L e at J
, ()

3.1 Effect of Constant Density of Stafes

We note that Fgs. (5) and {(8) are exact analvtical
expressions fur the temperature gradient of A7)
and the normalized specilic heatjump SC(T O,
In the standard BCS treatment, N{e) s assumed o
be constant.independent of encrgy. Lo Ny = N,
i we take gldh) = 1 which is the y-wave case. then

ACCT YO simplifies to

l 5

[l + 1anh (;——) l

7 ) 5 i o o,
- T In| 2cosh ?— + Li)- e

_ tanhw, /1)
Sutth{copf2 7)) o
(wnd2TY {wd 2T

) _2_2 | an ( el 't )
'«'_,. w4y . (24 e Jr

)

where L) = 20, 2467 is the dilogarithmic fune-
tion (221 In the limit wp /7, — = 1. (9) reduees to
SCCEYCE) = 12H743) = 143, which is identical
e the standard classical BCS value. heve {3) is the
Ricmann zeta function and (7)) = 2/3 m"Adni .

Our exact result shows that AC(TYOGE) i
material dependent and depends only on the rtio
wpf T, Graphical computation of g, (9) shows thin
the curve of MCUEWCETY versus wpd f
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monotonically as e/ T, increases and reaches its con-
stant value of 1,43 when wpf T, is greater than 7.

As amatier of interest we also compute the jump
in the specific heat for the d-wave superconductor.
Taking g(P) = cos2p and N(&) = N{}) in Eq. (8),
we find that the normalized jump is given by
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This cquation gives ACCR MY C(T) = 095 in the limit
wnl T — = Graphicad solutions of AC(T Y C{(T.) vs.
wyf T, are plotted in Fig. 1. Again we can see that
the deviation of the ratio from the BCS result s
signilicantly for all wo/ 7, values,

A2 EfTect of VHS Density of States

Phoweser, al the density o stitles s enerpy
dependent such as in the case of VHS, by taking
for the x-wave case and Ng) = N(1Y)
i e i Bgs, (03 and (8), we obtain the aormal
phase specific heat and the ratio Between the specitic
hieat jump and the normal phase speciiic heat ol an
yawave Van Hove superconductor as
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with Doy, 1, 1) and o, L ) as delined in g
{13} and (14). respectively. Results are presented in
Fig, 2 Tor values ol wp/ 1, up 1o 25, In the lintit g,/
oo mand T, = 2000 B, (18) gives AC(T i
00 129 By goneral, we cansee that the normal-
ized speciiic heat jump for ad-wave superconducton
is predicted to be much smaller than the BCS value
of FAS However, Toran y-wave Van Hove supercon:
ductor, the jump s significantiy higher,

1. IHSCUSSIONS AND CONCLUSIONS

Our graphical solutions for the normalized spe-
ctlic heat jump hedp clarily how the jump is afleeted
by the electronie density of staies at the Fermi level,
the symmetry of order parameters, and material pa-
rameters, We can see that the deviations of the ratio
ACUEYCW(T) from the canonical BCS valoe in high
T, superconduciors citn be accounted for by consider-
e cither the symmetry of the gap or the VHS or

the values of the parameters such as wy, 7., and I,
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ol stabes ot the Beram feaeld
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Fig. 2. Normalived clectronic specilic het junip MO L0001
versus atio e/ D of o Van Hove <upereondacton The sobid aod
dashied curves corresponcd 1o am e dind dewiee i sy,
respectively. Carves | and 2 couvespond 1o £,

S0 208k -
spectively.

As shown in Fip_ 1 Tor the s-wave superconduc-
1ors with the constant density of states. our formula
recovers the usuad BOS result (1.43) by putting w,/
T, — o in Eq. (9). The fall of AC(T YTy with
decreasing wy/ 7 18 predicted when w7, s Jess than
ar 7.

Recently Bandvopadhyay er el |23 reported the
results of specific heat resulis of specitic heat mwea-
surements carricd out on samples of Tl-based 2-2-
2-3 compounds. their datd for the average Debye

temperature for 2-2-2-3 s 480 K, The 70 values of

the 2-2-2-3 system are 107 and 125 K. They evaluated
the BCS ratio AC(TMOLT) for the system and
found the ratios 1o be 145 This value is greater than
our for the s-wave superconductor, Henee the 1l-
systen s not a simple BOS superconducior,

We have also studicd ACUT O 7)Y as W Tune-
tion of wp/ 7, for a d-wirve superconductor having the
constant density ol states ag the Fermi fevel A0
and Ci( 1)) are caleulated using the exact exprossions
(6) and {8). It s found that the d-wave symmein
shifts AC{T,Y lower, hence the smaller value of the
ratio AC(T )Y CUE ) this is probably due 1o ihe faet
that there are i few more nonssuperconducting part-
cles when a d-wave gap parameters opens conyrred
to an s-wave pape The limiting values of 30077
o) s 129, which is considerably fower than the
BOS value of 143 The ratie of the specilic heat
W ACUT Y OWT)Y versus w1 Tor the d-wine vap

fecific Heat Jump at 7, of High T, Superconductors

parameler case is also presented in Fig. 1. Our for-
mula also predicts that the jump at 7, decrease when
w1 226 ‘

As for the VHS superconuuctor, we find that
the effect of VHS on the electronic-specific heat jump
of an y-wave superconductor is to increase the value
of the jump at 7, considerably over the BCS values.
The limiting value of ACCTYC(F) with wpl T, — »
is Jound to be 194 in tine agreement with Sarkar and
Das {16] who found the numerical value of the ratio
al 7 1o be 2013 by using a move realistic density of
states, Our results is also m agreement with Dorbolo
et al. |14 13) who in their study of the influence of
1 VHS on the ratio Tound the ratio at 1) 1o be 2,
when they ok A( 1o be 20 meV. We also Tound
that the aormlized rato increases rapidly as wud T,
increase from 2, reaches o maximum at w1, = 7
andasad T inerease further, the normalized specific-
heat jump remains unchanged. In addition our caleu-
lations show unambiguously that when the ratio £/
1, decreases. the jump ratio increuses.

Finally the normalized specilic heat difference
for the d-wave VHS case is presented in Fig, 2, The
praph shows that the normadized jump at 7, is much
fower than the BCS values and that the magnitude
of the jump is almost the same as that of the constant
density of states case. Dorbolo er ol |14, 15] found
that the vatio CLTWCLT)Y ina zero magnetic feld
in a d-wine superconductor with typical values of
physicat parameters in high 7, superconductor is 1.4,
which agrees well with our caleulation here, We
found that as F T deercases, the ratio ACUT Y
Col7 1 mercases. But Jor experimental data on
Y Ba-Cul)- | for which |26] obtained ACCEYCWT)
= AN our theory cannot explain the result: this may
he due 1o the fact that the figh- 7 seperconductos s
not guite two-dimensionad.

I conclusion, we would likg Lo stress here that
our crlenbation is sirictly two-dimensional. A test ol
the guantitative finding presented in this paper with
respect 1o parinieter changes cinn be made by varying
the ratio w0 oand F.077. Shoubd the fest Gl we
wouhl need W conclude that the BES theory thin
incorporates the VIS density of states is inapplicable
1o the neateriat and that o new or modified density
ol states and theory are required,
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The purpose of this paper is to explain the unusual isotope coefficients of cuprates by considering
the influence of a pseudogap and phononic and electronic interactions in weak-coupling limit. Ex-
act analytic expressions of the isotope exponent (&) for the s- and d-wave pairing symmetry are
derived. It is found that a can fit the experimental data well and that the presence of the pseudo-
gap increases « in the low-T¢ region, but has no effect in the high-T. region.

1. Introduction

The explanation of the isotope effect in high-T, cuprate superconductors remains ob-
scure through there are many possible explanations for its unusual doping dependence
[1]. Experimantally it is found that optimally doped samples show a very small isotope
exponent a of the order 0.05 or even smaller {2], wile in the simplest scenario for pho-
non-induced pairing, a = 0.05. This unusuvally small value in connection with high-7. va-
lues leads to the early suggestion that the pairing interaction ini high-7. cuprates might be
predominantly of electronic origin with a possible small phononic contribution [3]. This
scenario is difficult to reconcile with the fact that some isotope exponents also show unu-
sually high values, reaching values of 0.5 or even higher in some doped superconductors.

In recent years, the existence of a pseudogap in the normal state of underdoped
high-T, cuprate superconductors is considered to be among the most important features
of cuprates. The evidence of a gap-like structure in the normal state at T* > T, was
provided by a varicty of experimental methods [4-9]. Suzuki and Watanabe [10] have
shown that the magnitude of a pseudogap at T, is much larger than the superconduct-
ing gap at T = 0K in the underdoped region and smaller in the near optimum doping
and overdoped regions.

To explain the unusual isotope effect of cuprates being smaller, almost absence, than
the conventional value 0.5, many models have been proposed such as the van Hove
singularity [11-13], anharmonic phonon [14, 15], and pair-breaking effects [16). Re-
cently, Dahm [17] studied the influence of the pseudogap on the isotope exponent
showing an electronic pairing interaction with a subdominant electron-phonon interac-
tion. In the weak-coupling limit, he found that the introduction of 2 pseudogap leads to
a strong increase of the isotope exponent, higher than its values in the absence of a
pseudogap. He performs his study numerically.

1) e-mail: pongkaew@psm.swu.ac.th

© WILEY-VCH Verlag Berlin GmbH, 13086 Berlin, 2001 0370-1972/01/22608-0315 $ 17.50+.50/0
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The purpose of this paper is to explain the unusual isotope effect of cuprates being
smaller and higher than 0.5 by considering the influence of a pseudogap and subdo-
minant electron-phonon interaction in the weak-coupling limit. We will derive exact
formulas of the isotope exponent for superconductors having a constant density of
states.

2. Formulation

Within the simple model of Loram et al. [18] superconductivity and normal-state pscu-
dogaps are assumed to arise from independent and competing correlations and hence
the superconducting gap can be written as

A (T) = A™(T) + EL, (1)

where A'(k) is the superconducting order parameter and E, is the normal-state pseudo-
gap. Therefore, at T =T, A(T.) = E; and the linearized gap equation in the weak-
coupling limit for an anisotropic pairing interaction V{(k, k') reads as

tanh ,/e?, + E2/2T,
Ay =3 Vik, k) anh e ¥ EY Ak (2)
kl

24 fep + EZ

Here ¢, is the band dispersion and V{k, k) is the pairing interaction.

Following closely the work of Dahm [17], we assume that the pairing interaction con-
sists of two parts: a phononic part V(k, ') and the electronic part V,(k, k'), such that
the pairing interaction

Vik, k') = Vylk, k') + Velk, K. (3)
The dominant contribution should be V,. We have

Veo, 0¥y (K)¥y(k') if  lexl, |ew] < we,p
0 else

Vesll ) = { , (@
here w, and w, is the characteristic energy cutoff of the electronic and pﬁf)nonic part,
respectively. w, is assumed to be independent of the isotopic mass and wy varies with
the isotopic mass M like 1/v/M as in the harmonic approximation. ¥,(k) is the basis
function for the pairing symmetry considered and

W.(k)=1 for s-wave pairing,
= cos26 for d,._,» wave pairing, (5)
where 8 = tan~! (k,/k,) is the angular direction of the momentum k in the ab plane.

For such an interaction the superconducting order parameter can be separated into
two parts: A(k) = Ae(k) + Ap(k) with

Vil Yok} if f[a) €we
Ae‘p(k)={030!m 11() else'.kl_ e,

Because it is widely accepted that the pseudogap in cuprates occurs below a certain
temperature T*, which is much higher than T [19], we can assume that 7* > wp > w..

, (6)
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We also assume that A(k) and Eg(k) have the same symmetry [20-22], so we choose
Ey(k) to be

Btk = {

where Ey is constant.
If we substitute Eqgs. (3-7) into Eq. (2) and using the condition w, > w., we arrive at
the following equation:

Egp for s-wave pairing ,
Egcos(20) for da_,» wave pairing,

(7)

VeLe + VioLp
2
where L, = L(we, T¢) and L, = L{wp, T.) and

= NCES
L(w, T) =5 1 Jdewn(a)st\/‘%’% tanh( ng g) 9)
0 £+ 4 ¢

1
Awe, wp, Te) = +3 V(VeoLe — VoL, + 4VaViol2, (8

0

and T, is determined from the implicit equation

’l(me, Wy, Tc) =1. (10)
From the isotope exponent a can be calculated as
O oLy
1 dInT, w GL,, By

Wp
T. 04 OLp 02 OL.
L, 0T. ' BL. o1,

1 wp OL;
_ 2 T, Bar (a1
dL, R Veo (1 — Vil +2Vp0Le) OL.
T,  Vw 1- Vel a7,

For a superconductor with a constant density of states, N(E} = Ny through out the
Fermi energy. It is a basic DOS consideration. By inserting this DOS in E4. (9), we
calculate the isotope exponent in Eq. (11}, and find the s-wave isotope expenent as

ol + E2
Yp tanh (——p_iﬂ)

o = 1 1,‘0)2—}.E§0 2Tc (12)
| 1— Viulp +2Vpole. !
p0 po
s(wp) + 1= V 2 filwe)
where

/2 [2

f(w)zﬂtanh _w_—i-_Ego —@tanh Ep

: w 27 w - 27,
i 4T.EY B 5 w (13)
n=0 EQ +a2 / E§0+a
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and

IS 1 g2 + E20
Liw,T,) = N[}J d¢e—————tanh | —nr—
A ,152 + E’éo ZTC

% 1

w .
= 4Ny T, tan~! (14)
;0 \ 2 + a? (1/E§0+a2)

here a = 2aT.(n+1/2).
In the case Ey =0, Eq. (12) becomes

o = & ! , (15)
2 (1 Ve [L= VoL + 2VLe] tanh (@./2T,)
Vo 1~ Vele tanh (e, 2T¢)
where
T T,
Lw, T.) = Nﬂj de E‘m_(:‘/i_c_)
Ng e 4 1 w
270 —— S 16
P Z; TS (mn(nu/z)) (16)

Equation (15) gives a for the s-wave superconductor without a pseudogap. For a purely
electronic interaction, Vi = 0, Eq. (15) gives a = 0 and for a purely phononic interaction,
Vea = 0, it gives o = 1/2 that is the BCS result, and also agrees with Dahm [17] 5’ result.

For a d,2_,» wave pairing, we get

) w? + g%
P
L
c9"2:(Vw2+1‘5§0+az )

%= Veo [1— V,,OL F2Veole : 17
{fn +52 (F L £ | )
where
L(w, T)E
o) =
20 2 EZ
3 2 BB - FB )~ °

\f +a?)(w? + @) (@? + Ef, + a?)

AN, & r: ; - w2+E§0+a2
Loy T =3 0 == e FB, 6) B+ BB ) — o\,

g0

4 =2xTe(n+1/2), ﬂ:tan—l(_-__w___), g=— o

W To(n + 1/2) \/EW
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and, here F(8, q) and E(B, q) are the elliptic integral of first and second kind, respec-
tively.

In the case £y = 0, Eq. (17) gives ag of a d-wave superconductor without pseudo-
gap. This equation has the same form as ay, the s-wave superconductor equation with-
out a pseudogap, but L{w, T;) of d-wave = (1/2) L(w, T,) of s-wave.

3. Discussion

By using Eqgs. (10}, (12) and (17), we plot the isotope exponent a versus T, for the s-
and d-wave cases. The influence of pseudogap on the isotope exponent for the s-wave
pairing is shown in Fig. 1 and that for d-wave pairing in Fig. 2. We compare our calcula-
tions with the experimental data of La; ,Ba,CuQ;, La; ,Sr,CuQy [23), and (Y., Pr,-
Cay)BayCuaO7_s, (Y1-xPr;)Ba; CusO7 s, YBap(Cui—,Zn,)307_5 [24], and
(Y1-:Pr,)Ba;CuzO7_s [25), and YBay_;L.a,Cua0y. 5 [26]. With various values of wp, we,
Ap and Eg, the curve fit the experimental data both for the s- and d-wave case so that
the isotope exponent will decrease when T, of doped cuprate increases. Here we define
that Ay, = NoVn and A. = NpVp. Although, we cannot fit all points using one set of
parameters, we are sure that every point can be fitted with an appropriate set of param-
eters. We can predict the trend of isotope exponent by using this model. The isotope
exponent of a high-T. superconductor should decrease and be almost absent in the
high-T. region, and in the low-T. region it depends on the magnitude of the pseudogap.
In the low-7; region, higher values of the pseudogap give higher values of the isotope
exponent. In the high-T, region, the pseudogap has no effect on the isotope exponent.

10—
.3
0.8 da
.
0.6 Y
- . - '-‘ , -
e RS -
0.4 w \_\
L] B e s
02| s RNy
. el : ot . "y \%h_"““——-____
# B SR -
0 E‘ x o x R R
25 50 75 100
Fig. 1
T

Fig. 1. Plot of the isotope exponent a versus T, (in K) for the s-wave pairing and various values of
wp, We, Ap and Eg: (-—~-) 4, =03, wp =500K, w, =400K, Egp=50K; (- -~ =) 4, =03,
w, =500K, we =400K, Ep=0K; (- --- ) 4, =02, wp =500K, w. =400K, Egp = 120 K; and
(~-) A4 =02, @, = 500K, w. =400K, Eg =0 K. We compare our calculation with the experi-
mental data of La;_Sr;CuQ, (M), La;..Ba,CuOy [23] (), and (Y;-.—,Pr.Ca,)Ba,Cu307_s (®),
(Y1-:Pr:)Ba;CusO7_s (81), YBaz{Cu;_,Zn, )05 [24] (%), (Y1_Pr,)BazCu3Os_s [25] (+), and
YBaz_,La,Cuz0;_4 [26] (2)
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T e e g s

100
Fig. 4

Fig. 2. Plot of the isotope exponent a against T, (in K) for d-wave pairing and various values of

wp, We, dp and Eg: (- =--) 4, =035, wp, =500K, w. =400K, Ep=0K; (—..—) 1, =04,
wp = T00K, @, = 650K, Ep=0K; (~--) 4, =04, w, =7T00K, o = 650K, Egp = 150K and
(- — =} 4; =033, wp = S00K, w. = 400K, Ey =250 K. We also compare our calculations with

the same set of experimental data as in Fig. 1

In our model, the valies of the parameters in the d-wave case are higher than in the
s-wave case, yet for both cases our a can fit the experimental data well. So we need
more experimental data to confirm our prediction for a.

4. Conclusion

We have investigated the effect of pseudogap on the isotope exponent in s- and d-wave
pairing states in the weak-coupling iimit. We can explain the unusual isotope effect of
cuprates both smaller and higher than 0.5. The magnitude of the isotopestxponent is
proportional to the magnitude of the pseudogap in the low-T; regions but there is no
effect of pseudogap in the higher-7; region.
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Abstract

We derive the exact formula for the free-energy difference between the superconducting and the normal state
of a weak-coupling superconductor at temperature close to zero as a function of temperature T, order paramete:
A(T), and cut-off temperature wp. Corrections to the BCS’s result are found and the variation of the free-energ
difference with the reduced temperature T/A(T) is presented in analytical form. © 2002 Elsevier Science B.V. All right
reserved.
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Recently, Xu et al. {1] derived a formula for
calculating the free-energy difference between the
superconducting and the normal states of a
weak-coupling superconductor near zero tem-
perature. Starting from the frec-energy density
difference
A({))}

1 2 2 4l
Fs— Fny = -EN(O)A (T) — N(0)4(T) ln[A(T)

hwp —
— 4N(OKT / deln(l 4 ¢ FV/ ATy
o

+ énzN(O)(kT)z, (1)

where F5 and Fy are the free-energy densities of
the superconducting state and normal state,
respectively; A(T) and A(0) are superconducting

*Corresponding author. Tel.ffax: + 66-2-2584002.
E-mail address: suthat@psm.swu.ac.th (S. Yoksan).

.order parameters at temperature 7 and zer

temperature, respectively; N(0) is the density «
states at the Fermi level: ¢ is the electron’s kinet
energy measured from the Fermi surface; hwp tF
Debye cut-off energy; & the Boltzmann constan
and = 1/kT, Ref. [1] obtained the free-enery
difference

AF =Fs — Fy_
- _ Vo — 2 40y
= = ZNOAYT) ~ NOA(T) In Ll ( T)}
+ %ﬂzN(O)(kT)z — AN(OWT (——”H ;(T ))

' 3T
w e= 4T (4 '
e + 8A(T) \
This expression for AF is obviously incorre
since it is independent of wp, whereas 1
integration in Eq. (1) is wp dependent.

0921-4526/02/3 - see front matter © 2002 Elsevier Science B.V. All rights reserved.
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We start with the free-energy density difference
of a BCS superconductor [2]:

AT & (1
FS—FN=/0 dA (A (D 5 (T)( ) 3)

where V' is the electron—phonon coupling constant.
Together with the gap equation

@b de

— = N(0 [

y =M )]u Vel + AX(T)
g2 + A°(T)

tanh
x tan T ,

(4)

we obtain by direct substitution of Eq.(4) in
Eq. (3) the following expression:

Fy — Fy “p
N (D) =A? (T} sinh™ l:A(O):|~4T,[0 ds

cosh((1/2T /&2 + A1) )J )

x ln

cosh(e/2T)

The expression for the zero-temperature order
parameter, 4(0) is obtained by setting T =0 in
Eq. (4) and one arrives at the relation

|
7 N(0)sinh™ LI(O)] (6)

Since at T = T, A(T.) = 0, Eq. (4) becomes

1 - = 4 1 CI)D/TC
v N(O); Grn= D 2" [(2;1 n 1);:]‘

Egs. (6) and (7) give us the expression for 4(0) as

(7}

wp

sinh[Y" o (4/(2n + D) tan™Yop/T./(2n + 1)m)]
(8

A(0) =

After straightforward integration and lengthy
algebra, Eq. (5) becomes

AF . _ [£3] 5]
Wud (T)[smh (A(O)) sinh '(m)]

- [cum/wf) + 44T — wg]

2
+ 7 [% + 4Liy(—e" v/ T)}

— 4wpT In [1 +e V “‘fﬁd:(ﬂﬂ]

£ e—m’l(T)/T TL'A(T)T
— AT (4])11-!-1
?L:ll n 2n

o T n
* ;[mx(r)J

At

F(m +3) — T'on + 3,nd(T))
Im+ DIG - m)

. )

where I'(z+1)= f° dee™"F, is the well known
gamma function, 'z + L, a(T)) = [, (TJ dre 't
is the incomplete gamma function [

3], (1) =
[> \/wh + AX(T) — AD)/T, and Lis(x) is the

dilogarithm function [4]. At T = 0, Eq. (9) reduces

to AF/N(0) = — wpy/wp + 47 (0}, and in the
limit wp » A(0), AF/N(O) is equal to _EA (0).

If we take the limit wp /7T, — oo, approximation
of Eq. (9) is performed to the term containing the

factor (T/A(T))*, we have

=My - —N(O):l HTY = N(O)AHT) In [A(O)}

A(T)

+ %nzN(O) 7" — 4N(O)Te *TVT /_nTg(T)
(10)
1+3( T ) 15 _T_)3
MT) ﬁ(zl(r) '

The last term on the right-hand side of Eq. (10)is a
correction to the Xu et al.’s result [1].
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We theoretically study the thermodynamic properties of a BCS superconductor near
zero temperature. Derivations of the temperature dependence of the order parameter
and an exact formula for the fres-energy difference between the superconducting and
normal states are presented as functions of temperature and material parameters of the
superconductor. Under the condition that the cut-off energy is much greater than the
temperature, formulas for the critical field and specific heat in the superconducting state
are presented. Our expressions for these thermodynamic quantities show new corrections
to the BCS’s results,

Keywords: Thermodynamic properties; BCS superconductor; zero temperature.

1. Introduction

Recently, Xu et al! derived a formula for calculating the free-energy difference
between the superconducting and normal states of a weak-coupling superconductor
near zero temperatute. Starting from the free-energy density difference

Fs—Fy = —%N(U)AZ(T) — N(0)AX(T)In [%} )

hwn
— AN(O)KT / deln(1+e*3\/52+‘5‘2(""))+%W'ZN(O)(RT)Q, (1)
0

where Fg and Fy are the free-energy density of the superconducting state and
normal state, respectively, A(T') and A(0} are superconducting order parameters
at temperature T and zero temperature, respectively, N(0} is the density of states
at the Fermi level, € is the kinetic energy of the electron measured from the Fermi
surface, iwp the cut-off energy, k the Boltzman constant, and 3 = 1/&T. Due to
the difficulty in evaluating the integral term in (1), it is usually assumed that in

3615
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the limit' ™3 7' — 0K, wp/T — oco. As a consequence, in Ref. 1 the approximate
free energy density difference is calculated to be

AF = Fs ~ Fy =~y NOAXT) - NOA D) 1n | 23]

A(T)
1/2
+ W NOY(KT)? ~ AN(ORT (—-—”’“T?(T) )
x e-A(T)/kT (1 %’IT:_)) . (2)

Usually, it is very straightforward to obtain numerically the full temperature
dependence to any desired accuracy, but it is of theoretical interest to derive this
free energy difference as a function of the temperature and material parameters
explicitly. The purpose of this paper is therefore to present the exact derivation of

the free energy difference and use it to obtain new expressions for the critical field”

and specific heat of a BCS superconductor near zero temperature.

The paper is organized as follows. In Sec. 2 starting from the BCS gap equation,
the temperature dependence of the order parameter is calculated and the complete
expression for the free energy difference is obtained. Section 3 deals with the ther-
modynamic critical field and specific heat. New expressions for these quantities are
presented. Finally, discussions and conclusion are presented in Sec. 4.

2. Gap and Free Energy Difference Equations

Within the BCS scheme, and assuming a constant density of states at the Fermi
level, we have the following gap equation

1 e de o [ VEFAAT)
N(O)V‘/_w.,z FTAT) h( 2T ) ©

where the attractive constant V is finite within a strip of width 2wp in the vicinity
of the Fermi level.
At T =0 K, an integration of (3) gives

1 B —1 f.UD
= —. 4
v~ |25 “
aF
When T — 0 K, A(T)/T > 1, the expansion
E [ o}
tanh (2—2:) =1+2) (-1)e"E/T (5)
n=1

may be employed in the integral term of (3), allowing us to obtain the following
equation:

1 [ wp o e WD dee— PV E+AT)
———N(O)V_smh [A(T)}+2n§;l( 1)/0 Erv el (6)

e

s e
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Putting ¥ -+ 1 = /&2 + A2(T)/A(T), {6) can be written as

NOWV AT

+/ [wo/A(T)+1-1 dye—nA(T)y/T
x / L (7)
0 VyE+2y )

Using the relation

T e (L) “

where T'(n) is the gamma function®® (7) is reduced to

N((l})V = sinh™? [A(T)] +22( 1renATY/T
= fis m+1/2
X 'rnZ:O D(m + 1)\1{—(% _ m) (2n§(T))

nA(T) /T[\/[wp /A(T)]2+1—1]
[ dte ™12 (9)
0

= sinh™! [ ] +2Z Z( " o~ A(T)/T

n=1m=0

NG

X Fm + DI (% N m) (QHE(T))M‘*‘U? {I‘ (m + %)
r[ (L nam (W 1)} } (10)

where T(z,x) = [ dte™"*"" is the incomplete gamma finction.*>
Combining (4) and {10}, and since wp > A(T), A(0) one arrives at the following

relation
0 A(T) Zoo Zoo n_—nA(T)/T
! [A(O)} ? (1)

n=1m=0

X

(11)

Var(mig) g mewe
()™

[(m+1)F (% ~ AT
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In the low temperature limit, we approximate In[A{T)/A(0)] ~ -1 + A(T")/A(0),
which leads to the expression

A(T) _ 27T 1/ T
a@ et K@{l‘ﬁ(m)

+1_g—é (Afo))z - 1324 (A'{O))B}' (12)

The last three terms on the right of (12) are the corrections to the BCS's ap-
proximate result. Compared with the result of Abrikosov et al®; A(T)/A(0) =
— /20T JA(0)e~2O/T{1 — [T/8A(0)]}, (12) gives the same result as theirs. As
for the result of Xu et al., our formula for A(T} differs from that given there. This
is due to the fact that they calculated the temperature dependence of the gap by
minimizing AF with repect to A(T). This procedure is incorrect because the free
energy obtained by the coupling constant integral is the equilibrium free-energy for
a definite gap, therefore one cannot re-determine the gap from it any further.
Next we start with the free-energy density difference

AT a(1/V)
— F _ — [ / 2______
AF =Fy — Fy /0 dA (TY[A(T)] BANT)’ {13)
and obtain by direct substitution of (3) into (13), the following expression
FS - FN A2 - /A(O) Al
N == A*(T") sinh [A(O)] -2 dA'AN(T)

W

NN R ey Ve |
0 e AR 2T

= A%(T)sinh™! [Ai(’f)‘)] -2 j de{/ + AT ~ ¢
0
+2T [l 4 e~ VA2 OVT) a7 In[1 + 54}, (14)
After a straightforward integration and lengthy algebra, (14) becomes
Fg—Fy 2 - . . —1]| wp
S = s ] - | 8 .

2
- {wpyJwh + AHT) ~wp] + T* [53- + 4Li2(—e~wD/T)]

s8]
— dwpT 01 4 e V@b +AHINT) _ AZ(TZ 1)+t

dey/x? — 1e7AT/T (18)

where Liz(x) is the dilogarithmic function®® = 327  (z"/n?).

X

/\/ {wo/A(T))2+1

1
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Introducing the variable z = 1 + [tT/nA(T)], the integral term in (15) can be
evaluated exactly. This gives finally the explicit dependence of AF on A(T'), A(0)
T, and wp as

¥

E‘}% = AX(T) [sinh“ (X%) —sinh™ (Ai(DT'))]

f ~ [wpyfwh + AX(T) -~ wp} + T? [%2 + 4Lig(—ewn/ T)]

/ . i
: —dwpT ln[l + Vb HADIT) 4 S~ (pnHis —

X W,g [mg(ﬂ]m : (m+ g) — (n:r ;mﬂT)) ., (16)

F{m+1)r (5 - m)

where ¢(T) = [\/w}, + AT) — A(T)]/T.

This formula is the central result of the present work.

At T = 0K, (16) reduces to AF/N(0) = w —wp+/w} + A%(0), and in the limit
of wp > A(0), AF/N(0) is equal to —(1/2)A%(0). Using the BCS approximation,
we compute AF/N(0) in the limit wp /T — oo, gives

AF 1 A(T) " e-n{_‘.(T)/T
0 = ~3AN) + D) [A(O)]+ Ttwg( et
3
F'{m+ -
7A(T)T T " ( 2)
2n X:O [ZnA(T)] an

T(m +1)r(§—m) |

To obtain an exphicit expression for AF, we neglect all terms of order e~ &T}/T
I for n greater than 1, and obtain

\ Fs = Fy — %N(O)Az(T) N(0)AZ(T) m[ AT ] + 2 1T2N(0)

2

Our approximate (18) gives the same result for Fs as Xu et al’s (6),! yet it is
different from (36.7) of Ref. 3. The latter is incorrect because Ref. 3 used the
asymptotic expansion of the Bessel function in performing the integral evaluation.
Whereas we do the integral in power series of temperature.
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3. Thermodynamic Properties
3.1. Critical field near T =0
Since the critical field H (T} is given by
HYT) = —8xAF(T), (19)
we therefore have, by {16),

2 2272
253 -+ 3] 2o

37T 15/ T \°

X{1+§A(T) " 128 (A(T)) } (20)

Since (20) gives H2(0)/87N(0) = (1/2)A%(0), we calculate H2(T")/H2(0), and as-
sume that near T = 0 K, A(T) =~ A(0), we obtain

%21_%(%)2—5&(0}/1" 8”(3%)3

(D) ()

The last term in (21) is the correction to the BCS’s result.?

3.2. Specific heat near T' =0

The specific heat is related toc the free energy by the general relation Cg =
~T&? Fs/0T?. From (16), we evaluate the superconducting free energy Fg(T) by
using {12). We find

A%(0) _a 7A(0) T 15 T2
Fg=N —— - O/Tpe/2 ) I (12— = |
©) { 5 e 2 \'TEA@ 128 52(0)

(22)
By differentiating Fg twice with respect to T, we obtain

3/2
Cs(T) = 2V2rN(0)e2O/TA(0) ( i(no))

2l

(@B -

Equation (23) is an analytical expression for the superconducting specific heat
Cs within the BCS framework. Terms in the brackets are improvements on BCS
result.? The specific beat result of (23) again differs from the Xu et al’s. This is
due to the fact that they used the incorrect formula for A{T) in determining the
temperature dependence of Cs.

v ronmnan
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4. Discussions and Conclusion

In this paper, we have studied the thermodynamic properties of a BCS super-
conductor near zero temperature. Starting from the gap equation, we derive the
temperature dependence of the order parameter (12}. Then using the coupling con-
stant integral, we derive the free-energy density difference exactly as a function of
the temperature and material parameters.

The approximate free energy expression is then used to obtain all order
temperature corrections to the thermodynamic quantities. We thereby obtain the
temperature dependence of the critical field H.(T') and specific heat Cs(T'}, [(21)
and (23), respectively].

We found that we have made improvements in the calculation for AF in the
BCS theory by evaluting the coupling constant integral exactly. We also find new
expressions for A(T"), H.(T) and Cg(T) which give corrections to BCS’s approxi-
mate results.
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P. Yingpratanporn'™, B. Krunavakarn!"), S. Kaskamalas®, P. Boonma®®
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IThe Continuing Education Center, Chulalongkorn University, Bangkok 10330,
Thailand
(Y Department of Physics, Srinakharinwirol University, Bangkok 10110,
Thailand

Abstract

The critical temperature of 2 non-Fermi liquid superconductor is stud-
ied, using the model of Yin and Chakravarty. We derive an exact intrinsic
equation for the critical temperature and study numerically its hehavior
as a function of o, the non-Fermi parameter which depends on the inter-
action between electrons. The critical value of the coupling constant A is
calcnlated. Our results give appreciable corrections to the work done hy
Grosu [J. Supercond. 15 263 (2002)].
Key Words: Superconductivity; non-Fermi liguid.

The importance of non-Fermi liguid behavior in high temperalure supercon-
ductors has been realized since the discovery of the anomalous behavior of many
normal state properties which cannot be well explained by the standard Ferms
liquid theory. The non-Fermi liquid model, for high-7'. snperconductors has heen
used by many authers, such as Anderson [1], Varma et al. [2]. and Chakravarty
and Anderson {3]. The model uses o as the non-Ferni parameter, where a non-
zero o implies breakdown of Yermi liquid theory.

Recently Grosn [4] applied the Yin and Chakravariy model [3] of the non-
Fermi superconductor to study the critical temperature and the impurity effects.
Bascd on the Thouless criterion and BCS approach with an infinile energy cutoff,
Girosu calculated the particle-particle bubble and obtained approximate formulas
for the critical temperature T,, and critical coupling A...

In this paper, with a proper finite energy cutofl. we find an exact intrinsic
cquation for T,. Qur numerical calculations for T, show that the 7} values of Ref.
[4] as a function of the non-Fermi parameter are greatly exaggerated.

Following Ref. [4], we assume that the superconducting state appears due to
an attractive interaction V, and the critical temperature 1, is obtained by using
the Thouless criterion:

| - VII(0,6) =0 (1)
Here T1(0, 0) is the particle-pariicle bubble, which is given by
1(0.0) = T. Z / = 1300“ i) Gol — F. —ian) 2)
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where |
GO(E, wn) = gla) 9[“’")1 ‘-"‘ + 0?—:‘;‘:;)(" 2 (3)
we (?-Lu‘,-,_ - f-j—) 4
and ;
gfia) = ﬂlﬂa_/” ) (4)
sinza /2

here w, is a cutoff energy, #{w) is the Heaviside function. and w, = #T.(2n + 1)
is the Matsubara frequency. Using the constant density of states N{0), 0{0,0)
becomes

11(0,0) = 2¥(0) 2 by m_q} [ (5)

Wi =0 W | r_(:5;)2}’”“”

where wp is the Debye energy cutoff.
The integral in Eq. (5} can be evaluated exactly. and substituted in Eq. (1),
to obtain the following equation for T,:

W=

wy o

i_l_g_u(i,) B(]I)—i o

NV A m \2xT, 2’2 ) & (n+%)‘“2°
oy — 1-1%- 2

rglam) % e (3o

here F[a, 3;7; z] is the hypergeometric fuaction [6].
This intrinsic 7% formula is the central result of the present work.

In the limit o = 0, since F [I, ;, 5 —z’] = ‘E‘——L (6]. and glex) =1 “Wwe obtain
R S | 28N 1 , (ﬂ;fzn + 1))
- = —— tan™ { ———— (7)
A ; n+ %) T ; (n+ %) )
here Nmgy = 728 — ;.
Since wp > T., Eq. {7} can be written as
l Mmax 2 ; d’) ) N
- = e tan " 8
A g(u—.%)w (WT(17+]) (8)

we reobtain the familiar BCYS resuls

We next consider the case wy » 7. and @ < 3. in this limit the second term
in Fq. {6) vanishes and we reobtain Eq. (11) of Ref. [4].

Using Eq. (6). we compute T, numerically and plot it a+ a function of a for
given valties of A, w, and wp. From graph, we can see that, for these parameters

2
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Figure 1; Plot of T, as a function of the a paraweter for w. = 1000K, wp = 200K
and A = 0.3. Bottam curve is our result, and top curve is Grosu’s result.

the critical temperatures have much smaller values than those obtained by taking
an infinite cutoff 4). :

Following closely the work of Ref. [4], we cvaluatc the sums in Eq. (6) and
obtain the critical coupling factor

(@ N 2rag (o]
)‘cr(,a:' =i T |1 .J (9)
- [8(5'5"0)4"%]

which satisfies limg, .y A-{@) = 0. For all o # 0. our ), is the samme as M, of Ref.
[4] and A, increases as & increases.
Finally we obtain the following equation for the critical temperature:

7= “D (M‘l) (10)

n 2% - do
where f(a) =1 - 3_212%152&)3 here I'{x) is the well known gamnma function [6].
TG
When o — 0, the critical temperature g
1
T, = 1.18upezp 1—.—“] (11)

as expected.

In this paper we extended the work of Grosu [4) on the Anderson non-Ferm

liquid, using the Green’s function of Yin and Chakravarty {5]. By imposing a finite

3
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energy cutoff and within the B(CS approach, we have derived an intrinsic exact
T. equation and found approximate formulas for 7, and critical coupling. From
out study it is revealed that the variations of T, with « is decreased considerably
as compared to the Grosu’s approximate results. '
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