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ABSTRACT

This research presents a three-dimensional model formulation of
extensible marine risers/pipes transporting fluid and parametric studies of the effects
of axial deformation and internal flow on the behaviors of risers/pipes. The
variational model formulation is developed based on the new idea employing from
the axially deformable elastica theory and from the view of continuum mechanics in
three descriptions namely, the total Lagrangian, the updated Lagrangian, and the
Eulerlian. By the principle of virtual work-energy, the governing dynamic
equilibrium equations are derived in the Cartesian coordinate and are validated by the
vectorial summation of forces and moments. Based on the hybrid approach and the
state space formulation, the finite element method is used to solve these equations.
The three-dimensional nonlinear static analysis and the two-dimensional dynamic
analysis are carried out in order to explore these effects on the nonlinear static
behavior, the dynamic stability, and the nonlinear oscillations of the pipe under a
tidal current and a regular incoming wave, respectively. The parametric studies have
demonstrated the effects of axial deformation and fluid transportation in many points
of view. The results of this study show that the axial deformation reduces large
deflections and nonlinear responses of the pipe, but increases the static and dynamic
stabilities of the pipe, while the transported fluid affects on the contrary. The
advantages of the present model! are related to the flexibility offered in choosing the
independent variable, and to the possibility of applying them to numerous elastica

problems, including some biomechanics applications.

KEYWORDS: Three-dimensional Marine Risers / Large Strain Formulations /
Variational Formulation / Elastica / Transported Fluid / Finite

Element Method
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EXECUTIVE SUMMARY

RESESEARCH SIGNIFICANCE AND PROBLEM STATEMENT

The increase of global energy consumption in recent years has urged to
find the new resources and leaded to the exploration of underwater resources in the
ultra deep ocean. This situation has prompted a substantial level of research activity
in the fields of deep offshore engineering and marine technology. Exploration in the
very deep ocean required more sophisticated equipment as well as the structural
system that can withstand severe environments than those in normal condition. The
exploration system, which is commonly used in the operations, is the floating
structure or platform, which has marine riser as a linkage between the structure and
sea floor. Thus, marine riser is the major component of the offshore/ocean drilling
system and it serves two main purposes; one is to convey fluid, the other is to guide
the drilling string from the platform to the wellhead at the sea floor. A failure of the
riser system cause not only severe environmental pollution but also significant
financial consequences. Recent offshore technology development has revealed that
the marine riser has been used for water depths greater than 1000 m. This challenges
the researchers and design engineers to enhance the performance of the marine riser,
thus researchers and engineers must have a complete understanding of the behavior

of marine riser to be operated in the ultra deep ocean.

OBJECTIVE OF RESEARCH

The objectives of this research project are as follows.

1. To develop a 3-D model formulation of marine riser/pipe experiencing large
displacement and large axial deformation in three-dimensional space based on
the virtual work-energy principle and elastica theory.

2. To study the effect of large strain deformation and fluid transportation on static
equilibrium configurations and dynamic behaviors of the riser/pipe.

3. To investigate structural motion stability of the riser.

4. To study the response of the riser due to current and wave forces.



v

RESEARCH METHODOLOGY AND RESULTS

Based on the variational formulation, the total virtual work of the riser
consists of the virtual work of the internal forces of the riser and the virtual work
done of the external forces acting on the riser. The virtual work of the internal forces
composes of the strain energies due to large axial, bending, and twisting
deformations. The virtual work of the external forces composes of the virtual work
of the apparent weight, hydrodynamics pressure, and inertia of the pipe and
transported fluid. Large axial strain formulation is emphasized in this research study.
Three deformation descriptions, namely the total Lagragian, the updated Lagragian,
and the Eulerian, are used to obtain the variational formulation for three different
views. The apparent tension concept and the dynamic interactions between fluid and
pipe are used to derive the virtual work of the external forces of the riser pipe. The
formulation is validated by the vectorial formulation, which considers the
equilibrium of forces and moments of a three-dimensional riser/pipe segment.

The numerical investigation presented in this research report covers two
main results; the first is of 3-D static analysis and the other is of 2-D dynamic
analysis. The finite element method based on the updated Lagrangian formulation is
used to solve the problem numerically for both static and dynamic analyses.

The catenary cable and the nonlinear beam problems are used to verify and validate
of the model and accuracy of the computer program developed in this work. Several
numerical examples of the 3-D static analysis are presented to demonstrate the
significance of the large axial and nonlinear deformation of the riser. For 2-D
dynamic analysis, a thorough investigation has been carried out for the effects of
large axial deformation and transported fluid on the natural frequencies as well as on
the nonlinear response of the riser due to current and wave forces. Stability of
motion of the linearized system is explained based on the Liapunov stability

definitions for the cases of stable and unstable motions.



FUTURE WORK AND RECOMMENDATION

The numerical results for 3-D marine riser have been reported only for
the case of large displacement static analysis, which excludes the effect of torsional
deformation. However, a thorough investigation the effects of large axial
deformation and internal fluid flow on nonlinear static and nonlinear dynamic
behaviors has yet to be done and will be carried out in the near future. The model
formulation developed in this study can readily handle for the aforementioned cases
but it requires extensive numerical investigation. Such investigation for the 3-D riser
has not been reported elsewhere in the open literature. Finally, there is a possibility
of applying the model formulation developed in this research study, with some
modifications, to some biomechanics problems such as the three-dimensional
structure of supercoiled DNA, and arteries and veins conveying fluid blood inside the

human body.
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1. INTRODUCTION

1.1 STATEMENT OF THE PROBLEM

In the past five decades, flexible riser pipes have been employed
extensively in numerous offshore engineering applications. The most vital function
of these is to transport fluids that are drilled from beneath the ocean floor such as oil,
gas, hydrocarbon and other crude resources, up to the production platform or drilling
ship. In the deep-ocean mining industry, flexible pipes play a role of the main
module in the production system as shown in Figure 1.1(a). In moderate sea-depth
applications, they are often used as the secondary part in cooperating with rigid risers
as shown in Figures 1.1(b) and 1.1(c).

In the literature, there are many papers related to analysis of flexible
marine riser pipes as reviewed by Chakrabarti and Frampton (1982}, Ertas and Kozik
(1987), Jain (1994) and Patel and Seyed (1995). The mathematical riser models
have been developed continually: from two-dimensional models to three-dimensional
models, from linear models to nonlinear models. However, it is remarkable that most
of them omit the effects of axial deformation of the pipe and fluid transportation.
Furthermore, all of themn did not inctuded the nonlinear terms of the large axial strain
in their model formulations.

As will be reviewed and discussed in this work, the individual effects of
axial deformations, and fluid transportation could be significant to behavior of low
flexible pipes. It is therefore conceivable that the combined action of all the effects
becomes more important on behavior of highly flexible pipes. In such cases, those
effects should be carefully examined in three-dimensional based upon the large strain

analysis.

1.2 LITERATURE REVIEW

The marine riser was first used in 1949 in the Mohole project (National
Engineering and Science Company, 1965), whereas the first technical paper on riser
analysis was carried out by St. Denis and Armijo (1955). The numerous research

papers published on this subject since may be summarized chronologically.
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In the 1960s, research work dealt predominantly with two-dimensional,
linear static analysis (Fischer and Ludwig (1966), Gosse and Barksdale (1969)) and
two-dimensional, linear dynamic analysis (National Engineering and Science
Company (1965), Graham et al. (1965)) that did not take the relative hydrodynamic
forces into consideration.

In the 1970s, the research work was escalated on various types of
dynamic analyses and methods of solution as demonstrated in Table 1.1. In addition
to the time domain analysis via the finite difference solution, the frequency domain
analysis and the nondeterministic random vibration analysis had drawn the attention
of several authors as well as the finite element method (Gardner and Kotch (1976))
and the modal analysis (Dareing and Huang (1979)). Although the paper by Bennett
and Metcalf (1977) was oriented towards nonlinear dynamics, their work was still
based on linear static solutions. The computer programs for the three-dimensional
riser analysis, NONSAP (Bathe et al., 1974) and NASTRAN (Gnone et al., 1975)
also originated in this period. Literature review on the marine riser analyses from
1950 to 1980 was given in the paper by Chakrabarti and Frampton (1982).

In the 1980s, researchers began to focus on three-dimensional large
displacement analysis and nonlinear dynamic analysis. As shown in Table 1.1, most
papers in this period were aimed at presenting the mathematical models for three-
dimensional nonlinear analysis. Several papers were presented to indicate significances
of three-dimensional analysis and nonlinear analysis (Natvig (1980), Felippa and
Chung (1981), Bernitsas (1982), Safai (1983), Bermitsas et al. (1985), Huang and
Chucheepsakul (1985), Owen and Qin (1987), Kokarakis and Bernitsas (1987),
Bernitsas and Kokarakis (1988), O’Brien and Mcnamara (1989)). The finite element
method was in widespread use for the spatial solution, whereas the numerical
integration methods for time history analysis were favored as well as the modal
transformation method for frequency domain analysis.

In this period, researches on the marine pipes considering the effect of
axial deformation in the variational formulation were published by Felippa and
Chung (1981), Irani, Modi and Weit (1987) and O’Brien and McNamara (1989).
Researches that included the effect of axial deformation in the vectorial formulation

were performed by Bernitsas and coauthors (Bernitsas et al. (1985), Kokarakis and



Bernitsas (1987), Bernitsas and Kokarakis (1988)). The effect of fluid transportation
or internal flow were specifically studied by Irani et al. (1987), Moe and
Chucheepsakul (1988) and Patel and Seyed (1989). The commercial package for the
three-dimensional riser analysis, FLEXCOM-3D (Marine Computation Services
International, 1989) was also launched in this period.

In the 1990s, research work on riser analysis had the trend of study of
specific problems. Huang and Leonard (1990), Karamanos and Tassoulas {(1991), and
Hah et al. (1992) investigated the stability of the marine riser pipes. The developments
of random dynamics and other types of the hydrodynamic loading were studied by
Trim (1990) and Thampi and Niedzwecki (1992). A number of authors extended
three-dimensional nonlinear analyses of marine risers by including accessory themes
such as various types of boundary conditions (Oran (1992), Chung et al.(1994a),
Chung et al. (1994b), Chung and Cheng (1996)), seabed contact problems (Tikhonov
et al.,, 1996), as well as other coordinate systems (Huyse et al. (1997), Ngiam
(1997)). In the same period, Wu and Lou (1991), Seyed and Patel (1992), Huang
(1993), Chucheepsakul and Huang (1994), and Moe et al. (1994) explored the effects
of internal flow, Jain (1994) and Patel and Seyed (1995) reviewed the analysis and
modeling of the flexible riser.

Above is an overview of previous research work concerning marine riser
pipe analysis. This research work is relevant to marine pipes that take into
consideration the in-depth effects of axial deformation, radial deformation, and fluid
transportation. A more detailed review of these subjects 1s given as foliows.

1.2.1 Three-dimensional model formulation

The three-dimensional models of the marine riser have been presented in
many research works, Most of them used the theory of the space curved rod that can
be found in the elasticity books such as Love (1944), Antman (1991), and
Atanackovic (1997), which serve as the basic theory for the three-dimensional
marine riser analysis.

To obtain the governing equations or the equation of motion of the
marine pipe, there are at least three difference approaches: First, the direct

equilibration based on D’ Alembert’s principle, Second, the variational method



based on the virtual work principle. Third, the variational method based on the
Hamilton’s principle.

The first approach is the most favorite method that can be found in many
research works, for example, Bernitsas (1982), Bernitsas, Kokarakis, and Imron
(1985), Kokarakis and Bernitsas (1987), Patrikalakis and Kriezis (1987), O’Brien,
McNamara and Dunne (1988), Bernitsas and Kokarakis (1988), and Bernitsas and
Vlahopoulos (1989). The three-dimensional model formulation of marine riser that
based on the principle of virtual work can be found in the works of Felippa and
Chung (1981) and Huang and Kang (1991). The research works that used the
Hamilton’s principle to formulate their governing equation are found in Doll and
Mote (1976), and Atadan et al. (1997).

From the literature mentioned above, most of them used the arc-length as
the independent variable. Therefore, the problem is limited to the case of specified
arc-length or the total arc-length known prior. In the real situation, the arc-length of
the marine riser may be unknown or changed due to the large displacement or large
axial deformation while the top tension is specified, therefore the formulation that
use the arc-length as the independent variable may be not convenient for numerical
analysis. To solve this problem, the sea depth may be used to be the independent
variable. Chucheepsakul and Huang (1985) is the pioneer in using the sea depth as
the independent variable in the formulation. Huang and Kang (1991) extended the
model to the three-dimensional formulation including the effect of torsion. However,

the effect of internal flow and the axial deformation are neglected in that work.

1.2.2 Significance of the Effect of Axial Deformation

The effect of axial deformation on marine cables was investigated by
Huang (1992), Chucheepsakul et al. (1995) and Chucheepsakul and Huang (1997).
On the suspended cables, they were studied by Huddleston (1981), Shih and
Tadjbakhsh (1984), Burgess and Triantafyllou (1988), Lin and Perkins (1995),
Triantafyllou and Yue (1994), Tjavaras and Triantafyllou (1996), and Tjavaras et al.
(1998). However, for marine pipes, it is only the low flexible pipes on which the
effect of axial deformation has been explored.

On static behavior, the effect of axial deformation is to increase large



displacements of low-tensioned cables due to extensibility domination, and to reduce
large displacements of high-tensioned cables due to pre-stressing domination
(Chucheepsakul et al. (1995), Chucheepsakul and Huang (1997)). Although
Bernitsas et al. (1985) and Bernitsas and Kokarakis (1988) found that the effect of
axial deformation on the static behavior of the low flexible pipes was rather small,
they did not provide evidence of the same result with the highly flexible pipes.

The effect of axial deformation on the dynamic behavior is to decrease
nonlinear responses as reported by Chung et al. (1994a), Chung and Cheng (1996),
Chung and Whitney (1983). It reduces the natural frequencies (Chucheepsakul and
Huang, 1997), and provokes the elastic mode transitions of cable vibrations
(Burgess and Triantafyllou (1988), Lin and Perkins (1995)). If the stress-strain
relation is hysteretic, the effect of axial deformation can amplify damping of the
dynamic strain in the axial direction (Triantafyllou and Yue,1994). Several papers by
Chung and coauthors (Chung et al. (1994a), Chung and Cheng (1996), Chung and
Whitney (1983)) highlighted the fact that the effect of axial deformation is crucial to
dynamic behavior of low flexible pipe, and should be considered in the design of the
pipe.

The interesting point in all the previous research is that the effect of axial
deformation has been investigated based on small strain analysis, which assumes that
the strains are small, and can be approximated by the binomial expansion. However,
this approach is proper if, and only if the axial strain is small compared to unity
(Fung, 1965). For highly flexible pipes, such a constraint is no longer confidential.
Thus, this dissertation proposes large strain modeling in which the relative

elongations or the square-root expressions of large strains are adopted.

1.2.3 Significance of the Effects of Fluid Transportation

Although fluid transportation is the main function of marine riser pipes,
marine riser analysis from the middie of 1950s to the end of 1970s gives little
attention on the influence of fluid transportation. In the same period, research
concerning mechanics of pipes conveying fluid had grown rapidly. Research work
related to vibrations of straight and curved pipes can be found in the papers by

Housner (1952), Gregory and Paidoussis (1966), Paidoussis (1970), Doll and Mote



(1976) and so on. It was reported that the internal flow reduced stability of the pipe
and acted on the pipe like the end follower force (Thompson and Lunn, 1981). As a
result, the internal flow can engender divergence instability or statical buckling of
simply supported pipes (Holmes, 1978), and can induce flutter instability or snaking
behavior of cantilever pipes (Gregory and Paidoussis, 1966).

The lack of connection between research work on marine pipes and pipes
conveying fluid brings about a misconception by some authors. When the effects of
internal flow on marine pipes were examined in the early of 1980s, it was considered
that the internal flow induced only the friction force to act on the pipe wall.
However, researchers concerned with pipes conveying fluid such as Gregory and Pai
doussis (1966), Paidoussis (1970} and Thompson and Lunn (1981) had been well
aware that the internal friction force did not act directly on the pipe, but transmitted
the internal pressure into the pipe wall, which yielded tensioning and pressure drop
(Paidoussis, 1998). In addition, the internal flow generated not only the effects of
pressure, but also other fictitious forces such as Coriolis and centrifugal forces.

By the end of 1980s, the effects of fluid transportation on behavior of
marine pipes began to draw specific interest from a number of researchers, and the
misconception was dispelled. Several interesting effects of fluid transportation were
reported. It was found that the internal flow reduced structural stiffness, provided
negative damping (Irani et al., 1987), and induced additional large displacements of
the pipes (Chucheepsakul and Huang, 1994). The natural frequencies of the pipes are
slightly reduced at a low speed of internal flow, but significantly reduced at a high
flow speed (Moe and Chucheepsakul (1988), Wu and Lou (1991)). The intemnal slug
flow can induce the significant cyclic fatigue loading in deep water (Patel and Seyed,
1989). The marine riser pipe transporting fluid buckles by the divergence instability
(Chucheepsakul et al., 1999).

However, the three-dimensional model formulations used in most of
those works do not consider geometric nonlinearity and axial deformation of the
pipes. In this research work, these objects have been taken into account in large
strain analysis of marine risers. Therefore, the novelties of this work are the large

strain model formulation of the three-dimensional extensible flexible marine



risers/pipes transporting fluid and the unveiling of the interaction between the

transported fluid and the pipe subjected to large axial deformations.

1.3 OBJECTIVES

The objectives of this research work are as follows:

1.3.1 To introduce and iltuminate the mathematical principles for large
strain analysis of the flexible marine riser pipes that are subjected to the combined
action of axial and fluid transportation from viewpoints of the total Lagrangian, the
updated Lagrangian and the Eulerian mechanics.

1.3.2  To show how to formulate large strain three-dimensional models
in the Cartesian coordinates by using the axially deformable elastica theory.

1.3.3  To examine the in-depth effects of axial deformations and fluid

transportation on behaviors of the marine pipes with large displacements.

1.4 ASSUMPTIONS AND SCOPE

The following assumptions and scope are stipulated in the present study:

1.4.1  The material made of the riser/pipe is linearly elastic..

1.4.2 At the undeformed state, the pipes are straight, and have no
residual stresses.

1.43  The pipe cross sections remain circular after change of cross-
sectional size due to the axial deformation effect.

1.44  Longitudinal strain is large, while the effect of shear strain is
small and can be neglected, so that the Kirchhoff’s rod theories can be employed.

1.4.5  Every cross section remains plane and remains perpendicular to
the axis.

1.4.6  Radial lines of the sections remain straight and radial as the
cross section rotates about the axis.

1.4.7  The internal and external fluids are inviscid, incompressible and
irrotational. Their densities are uniform along arc-lengths of the riser.

1.4.8  The internal flow is the one-dimensional plug laminar flow.



1.49  Morison’s equation is adopted for evaluating external
hydrodynamic forces of external fluid.

1.4.10 The effect of rotary inertia is negligible.

1.4.10 The pipe connections due to construction are presumed to be
homogeneous with the pipe body, and have the same properties.

1.4.11 The effect of wind flow over the sea surface is negligible for
deep-water riser pipe analysts.

1.4.12 Structural model. The riser pipe is pinned at the bottom end by
the ball joint of wellhead at seabed, and is held at the top end by the slip joint
beneath the vessel. The slip joint allows the pipe to change its length as the vessel
heaves and moves laterally. The surrounding kill and choke lines are assumed to
make no contribution to the structural stiffness. The rotational stiffness at the top end
of the riser and the ship motion compared to the water depth are small and negligible,
so the top end could be modeled as the slip joint with hinge. The ball joint at the
bottom end can not rotate freely around the tangential direction, but can rotate freely
around any other direction perpendicular to the tangent.

1.4.13 Research methodology. The nonlinear static analysis, the natural
frequency analysis and the nonlinear vibration analysis are rendered for studying the
effects of axial deformation, and fluid transportation on behaviors of the pipe as
shown in Figure 1.2. The nonlinearity in the vibration analysis is due to the nonlinear
hydrodynamic damping. The large strains and large displacements are fully treated in
the nonlinear static analysis, whereas the linear dynamic strains and the small
amplitude vibrations are assumed in the natural frequency analysis and the nonlinear
vibration analysis.

1.4.14 Current flow. The current is tidal. Its velocity profile can be
expressed in form of the polynomial functions of water depth (Larsen, 1976).

1.4.15 Wave flow. The wave is regular incoming, and can be described

by Airy’s wave theory (Chen and Lin, 1989).



Abbreviations:

AD = Assumed Displacement
FD = Finite Difference

FE = Finite Element

NI = Numerical Integrations

88 = Sinusoidal Steady State

TF = Complex Transfer Function
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Figure 1.2 Methods of Marine Riser Analysis
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2. MODEL FORMULATIONS OF THREE-DIMENSIONAL
FLEXIBLE MARINE RISERS TRANSPORTIG FLUID

This section presents the large strain model formulation of three-
dimensional flexible marine risers transporting fluid. The elastica theory of
extensible rod and the kinematics theory of mass transported on the moving frame
are used to obtain the model formulation.

In section 2.1, the behavior of the flexible marine risers and the physical
description of the mode! formulation are introduced. The concept of large strain
measurement in the three deformation descriptions referring to the Cartesian
coordinate is discussed in section 2.2.

It is realized that the change of the large axial strain is not only effect on
the differential arc-length of the riser but also effect on the property changes of the
riser cross section and transporting fluid velocity, which is discussed in section 2.3.
In section 2.4, the extensible elastica theorems for the Hookean material riser
corresponding to the three deformation descriptors is preformed. The effect of
hydrostatic pressures and hydrodynamic pressures is reviewed in section 2.5 and 2.6,
respectively.

In section 2.7, the elastica theory, the apparent tension concept and the
dynamic interactions between fluid and risers are used to formuiate the variational
formulations, which are validated by vectorial formulation in section 2.8. For the
sake of generality in obtaining the model solution, the nonlinear dynamic model
based on the strong form is derived in section 2.9. In section 2.10, climinating the
time-dependent terms in nonlinear dynamic model, the nonlinear static model is
derived.

One conspicuous feature of the present formulation is flexibility of the
model that allows users to select the independent variable to suit solution of their
own problems, therefore the guideline for choosing the independent variable is
discussed in section 2.11. Finally, the implementation of the present models is

covered 1n section 2,12,
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2.1 BEHAVIOR OF THE FLEXIBLE MARINE RISERS AND PHYSICAL
DESCRIPTION OF THE MODEL FORMULATION

The large displacement and large deformation behaviors of a flexible
marine riser transporting fluid are depicted in Figure 2.1. Firstly the riser is at rest and
unstretched at the undeformed configuration. Then, the riser is subjected to the time-
independent loads and its configuration changes to equilibrium configuration that is
the initial condition before the dynamic actions occur. Finally, at the displaced
configuration, dynamic actions such as wave, unsteady current, and unsteady internal

flow disturb the riser to sustain vibration about the equilibrium configuration.

Ya
I
I
V. |
Ty |
|
— |
T |
\\_* i
i
\ I
T | Displaced
Ty | configuration
\ l
|
e
\\“)- \
— | Equilibrium
— I configuration
|
T Undeformed
— configuration
T
Tk e
. 4;;'; e
k A5
O
g RS

Figure 2.1 Three configurations of marine riser.

The marine riser is modeled as a three-dimensional rod with a ball joint at

the bottom end and a slip joint at the top end. In this study, three orthogonal
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coordinate systems are used to define position, motion, and deformation of an
extensible marine riser. The orthogonal triad system i,A,band the cross-sectional
principal axes system ‘x,,’x,,’x, with unit normal vector ‘e, ’e,, ‘e, are used as the
local coordinate. The fixed cartesian system ‘x, 'y, ‘z with unit normal vector i Ik

is used as the global coordinate. The left superscript represents the state of marine

riser where 0 represents the undeformed state, 1 represents the equilibrium state and

2 represents the displaced state, therefore, i €(0,7,2).

Figure 2.2 shows the segments of the extensible marine riser in three
states. Since the centerline of the riser at any time ¢ is, in general, a three-

dimensional curve and can be described by one parameter, the parameter o,

ac {"x, v, 'z, "s} , that is employed in the formulation for the sake of generality.
Therefore if ‘x,"y,and ‘z are the coordinates of a point along the marine riser at time
t, then 'x = "x(a, l't), ‘y= iy(a, ’t), and z= "z(a, ft). The partial derivatives with

respect to @ and time ‘¢ are represented by superscripts (') and (), respectively.

Global coordinate

Local coordinate

Figure 2.2 Segments of the extensible marine riser in three states.
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2.2 MEASUREMENT OF LARGE AXIAL STRAINS

In Cartesian coordinate, the relations of differential arc-length at the

undeformed state, the equilibrium state and the displaced state(”s', 's'and 2s’) can be

expressed as

GS!:\/oxr2+ayf2+ozf2

2 2 Z
"s':\/’x'2+’y'2+'z"? =\/(OX’+IU’) +(oyr*lvr) +(azr+}wr)

2 2 2
ZSI:\/fo2+2yf2+ZZl‘2 =J(Ox'+2u') +(oyr+2vr) +(az.'+2wr)

s = \/("x'«r Iu'+u’)2 +("y’+ Iv'+v’)2 +(°z'+ IW'+W')2 (2.1 a-d)

According to the mechanics of deformable bodies, the definition of axial
strain can be provided in three forms, namely the Total Lagrangian Descriptor, the
Updated Lagrangian Descriptor, and the Eulerian Descriptor. Each of these forms

can be demonstrated as follows.

Total Lagrangian Descriptor (TLD)
The coordinate that follows motion and deformation of a deformable body
with respect to position, direction, and size of the body at the original state (or

undeformed state herein) is said to be the total Lagrangian descriptor.

: _ dis—d°’s d’s
Total strain ’F = = 1= 1+2(°L}-1
e s =)

Static strain ’E:dls dOS:dlS—]= ]+2(’L)*I

d’s d’s
Dynamic strai E—M—,/I+2(2L)~\/J+2(’L) (2.2 a-c)
y ic strain T 2a-<c

The Green strains in each state that represents in equation (2.2) can be

derived in the terms of displacements of the riser as follows.
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] ur2 v12 wr?
L=2L—JL:— lxaur+l 1v1+lzrwr+_+__+_ (23 a_c)
"s'z[ Y 2 2 2

Updated Lagrangian Descriptor (ULD)

The coordinate that follows motion and deformation of a deformable body
with respect to position, direction, and size of the body at the intermediate state (or
equilibrium state, the last known deformed configuration herein) is said to be the

updated Lagrangian descriptor.

Total strain e = dS ds \/I+20—,/I 2

H _ o
Static strain 'exd o ‘,d Sog- d’s _ - 2( )
d's d's
Dynamic strain &= d Sd d’s ZS—I NI+2v -1 (2.4 a-c)
‘s s

The updated Green strains in each state that represents in equation (2.4)
can be derived in the term of displacements of the riser which relate to the Green

strains as
2 2
\2 GS' o
og' I I S
"u=’u+u=’L[,—S,J » U= L[,S,J ; U=zu—’u=L[,—S,J (2.5 a-c)
Ny

Eulerian Descriptor (ED)

The coordinate that follows motion and deformation of a deformable body
with respect to position, direction, and size of the body at the final state (or the

displaced state herein) is said to be the Eulerian descriptor (ED).
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d’s—d°s d’s
ZEEZT:]—EZI— ]-—2(2E)

Static strain e = ds dS =I- 2E—,/1 2 2E

Total strain

2. gl
Dynamic strain b= d "; 25 s Z i =]-I1-2FK (2.6 a-c)

The Almansi strains in each state that represents in equation (2.6) can be

derived in terms of displacements of the riser which relate to the Green strains as

[ 2 - 2 P 2
E = 2L£2S,] JE = ’L(ZS'J JE = ZE‘IEZL(zS,J (2.7 a-c)
$ s s

\

From the definition of axial strain discussed above, the large axial strains
are measured by mean of relative elongation that can be called as engineering strains.
The square-root expressions in equations (2.2), (2.4) and (2.6) indicated that the large

axial strains are function of the Green strains ‘L, the updated Green strains ‘v, and

the Almansi strains ‘£ . In nonlinear dynamic analysis with large amplitude
vibrations and large strain of the flexible marine riser, the square-root expressions in
the large axial strain definitions have to be included in the formulation without
approximations.

In the case of the vibration problems with large amplitudes but strain is not
highly large, the approximate large strain can be used in numerical analysis. By
utilizing the two-term approximation of the binomial series, the approximate large

total strains can be expressed as follows.

2 '

For TLD: °% = f§+(-f§7_1](1+ 'F)="g+(VI+20-1)(1+'z)= 'F+v(1+ F)
S

For ULD: 28:’3+(\11+2U—1]z’£+u

I
For ED: 255=”a+[1—£—]=’53+[1~ ! jz’saﬂ) (2.8 a-c)
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Although the approximate large dynamic strains are used, the nonlinear
dynamic with large amplitude vibration is complicated and it is difficult to find the
solutions. To simplify this problem to be the linear dynamic with small amplitude
vibration, the total strain can be expressed same as the equation (2.8) but the updated

dynamic Green strain (v ) can be neglected the higher order terms as

b= i i (;x-ur+ L 4 }zrwr) (2.9)

('s)
In the most research works, the large displacement analysis has been
investigated by using the small strain assumption. Therefore, the engineering strains

can be approximated as

Tx’L e~y fex’E (2.10 a-c)

2.3 THE PROPERTY CHANGES OF THE RISER CROSS SECTION AND
TRANSPORTING FLUID VELOCITY

The change of the large axial strain among three states leads to relations of

differential arc-length of the riser, cross-sectional properties of the riser and internal

flow velocity of transported fluid as shown in this section.

a) Relations of differential arc-length of the riser

7 2
TLD; dos=25 45
I+ 1+°¢

[’] 2

ULD; 45 _g1g= 93
l-'¢g I+¢

a !
ED: d’s _ ds g @2.11 a<c)

- [-fg
b} Relations of cross-sectional properties of the riser

Since the riser volume is conserved, the cross-sectional areas of the riser at

the three states, ‘4, can be related to cach other as
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TLD; “4,="4,(1+'F)="4,(1+F)
4 A {1+
ULD: K. (?Efgf)
ED; =t (2.12 a-c)

The relations of diameter,(‘Dp), moment of inertia, ("I p), and polar

moment of inertia, (‘J p), of the circular riser among the three states determined

corresponding to equations (2.12 a-c) are shown below.

TLD; on = ‘,Dp VI+'E = sz VI+'F, afp = IIP(’H— IE)‘? = ZIP (]+ 25)2’

g, =17, (1+'8) =27, (1+ ) (2.13 a-c)
D [1+e T (1+&)
ULD; °D = F_ =D L =—F iy~ T
P m P Iﬁ‘,f,' P (1—15)2 P(]-—lg)z
IJ 2
T B ”3)2 (2.14 a-c)
(1—’3) 1-'¢)
‘D ’D T 7
ED; ‘D = L= L £ = £,
P J]_mg \/1_256 P (]_H:g)z (1_258)2
! 2
J
oy = o = ? (2.15 a-c)

c) Relations of internal flow velocity of transported fluid

By substituting equation (2.12) into the continuity equation of the fluid
flow in the control volume riser, the relationships of internal flow velocities at the

three states are obtained as

TLD; i A R
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. o — —_ ZVi (]g !8)
ULD; V=", (1- fg)»—m
ED; V=W, (1) =W, (1- %) (2.16 a-c)

2.4 THE EXTENSIBLE ELASTICA THEORY

The word “‘elastica” is the equilibrium (stable and unstable) shape of a bar
with large displacement, stable, linear elasticity, no section change, axial and shear
deformation neglected. In the case of extensible elastica, the material remains
linearly elastic while the strain maybe large. The extensible elastica theory
(Chucheepsakul et al., 2003) provided in this section is used to develop the large
strain formulations of three-dimensional extensible flexible riser, which will be

discussed later.

Theorem 1: When the TLD is adopted to describe deformation of the riser, the fiber

strain, the constitutive relations and the virtual strain energy are expressed as follows

’E, = 2§+§[2K(1+ "E)_ "ch
N=E°4,°8 M = E°L| e (1+78) ="K |,
szGaJP[2T(1+JE)_aT}’
SU = j{fNafﬂzMa[‘-’x(n E)- x|+ 2T§[Zr(l+25)—°r:|}dzs
SU = [["N&7s'+ M5 (°0'~0)+ T8 (¢ - °¢')+ 'Ts ("' - y') hex

(2.17 a-f)
Theorem 2: When the ULD is adopted to describe deformation of the riser, the fiber

strain, the constitutive relations and the virtual strain energy are expressed as follows

‘e, = 2£+§[2K'(]+8)—0K‘(1— 15]]
2N=E’AP25,2M:Ellp[zic(]+s)—oic(1—]8)],
2T=G'Jp[2r(]+£)—°r(f— ’8)],
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oU = H2N52£+ 2M5[2x(1+5)—°1c(]— ’8):|

+2T5[27:(I+3)— "r(]— ’5)}}01’5

U = [|*N67s'+ " M8(6' =0}« *T5 (’¢' ~°¢') + *T5 (' - *w') e

a

(2.18 a-f)
Theorem 3: When the ED is adopted to describe deformation of the riser, the fiber

strain, the constitutive relations and the virtual strain energy are expressed as follows

258¢ _ 2E€+§[ZK_DK(1_ZEE):|

N =E4, % M = B[ -k (1- %)

}

T = G"'Jp[zr— "r(l— ZEE)],

SU = j{ INSE + 2M5[ ke~ x(1- “’Eg)]

+2T5[2r— “r(l* 253)}}&?5
SU = [| 'N&%s'+°M5(°0'—°0')+ T8 (°¢' - °¢')+ T8 (*y' - *y') e

(2.19 a-f)

in which &, is the axial strain at any fiber radius (g’ ), E is the elastic modulus, G is

the shear modulus, N is the axial force, M is the bending moment, 7' is the torque, and

U is the strain energies due to axial force, bending moments, and torsion of the riser.

2.5 EFFECTS OF HYDROSTAITIC PRESSURES

Hydrostatic pressures arc the pressures of still fluids. In the past, the
hydrostatic pressure effects on marine riser pipe analysis were tackled via the effective
tension concept proposed by Spark (1984), as will be described in section 2.5.1.
However, because the effective tension concept limits v =0.5, thus the apparent
tension concept (Chucheepsakul et al., 2003) has proposed instead in order to cover all
values of the Poisson’s ratio, as will be explained in section 2.5.2. This research offers

a more advanced technique on treating the hydrostatic pressure effects.
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2.5.1 'The Effective Tension Concept

First of all, the Archimedes’ principle is recalled and used to explain the
effective tension concept. Consider Figure 2.3(a), the equilibrium of water column
element proves that the enclosing external pressure field is equivalent to the buoyancy

force p,gV, (see Figure 2.3(a3)), where p,, is the water density, g the gravitational
acceleration, and V , the volume of water column. In contrast, the enclosing internal
pressure field will thus induce the weight p gV, against the buoyant force (see

Figure 2.3(a5)). These tenets are so-called the Archimedes’ principle.

It is remarkable that Archimedes’ principle is usable with the enclosing
pressure fields. However, unlike the water column, the pressure fields of external and
internal fluids surround only the external and internal side surfaces of the riser
segment, as seen in Figure 2.3(bl). Both ends cut of the riser segment are not
subjected to the pressure fields, which are called the missing pressures, and thus
Archimedes’ principle cannot be used straightforwardly. Sparks (1984) solved this
problem by proposing the superposition technique as follows:

Step 1. The first step of the superposition technique is separating all forces
acting on the real system of the riser as shown in Figure 2.3(bl) into the two sets of
forces as shown in Figures 2.3(b2) and 2.3(b3). The missing pressures are added in at
the both ends of the riser segment in Figure 2.3(b2) to result in the pressure fields
enclosing the riser segment. However, the added pressures are non-existent, so they
must be removed for balance by applying the opposite pressure fields at the both ends
of the riser in Figure 2.3(b3).

Step 2. Since the previous step yields the pressured fields enclosing the riser
segment in Figure 2.3(b2), Archimedes’s principle is now applicable. Therefore, the

external pressure induces the buoyant force — p,V,g, and the internal pressure yields
the internal fluid weight p,V,g as shown in Figure 2.3(b4). Summation of these forces

with the aerial weight of the riser segment produces the total weight of the effective
system, which is so-called the effective weight. Therefore, the expression of the

effective weight per unit length w, is obtained as

w, =(p,4,- P4+ pA)g (2.20)
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Step 3. Summation between the true-wall tension and the balance forces of
the missing pressures in Figure 2.3(b3) yields the total tension of the effective system,
which is referred to as the effective tension, as shown in Figure 2.3(b5). Therefore, the
expression of the effective tension N, is obtained as

N, =N+p A4, -pA4 (2.21)

Step 4. Integrating the forces acting on Figures 2.3(b4) and 2.3(b5) together,
one obtains the effective system of the riser, which is subjected to the effective weight
and the effective tension as shown in Figure 2.3(b6).

Casting equations (2.20) and (2.21) into the general forms for the three
deformation descriptors, one can establish Proposition 2.1.

Proposition 2.1. According to the effective tension concept, the real system
of the submerged riser subjected to hydrostatic external and internal pressures is

equivalent to the effective system of an empty onshore riser that is subjected to the

effective weight and the effective tension
W, =(pp A —p, A+ P A)g (2.22)
‘N,=E'A,e=N+p,'4,-p'A, (2.23)

in which ‘4,=°4, for TLD, ‘4, ="4_ for ULD, ‘4,=A4, for ED when a e {P, e,i}.

2.5.2 The Apparent Tension Concept

The apparent tension concept is more accurate in undertaking the
hydrostatic pressure effects on elastic body than the effective tension concept. It
acknowledges that the riser is an elastic solid, and thus in the polar coordinates the
enclosing pressure fields in Figure 2.3(b2) can induce the triaxial stresses: the radial

stress o, , the circumferential stress ¢, , and the tensile stress o, . From the theory of
elasticity, these triaxial stresses provoke the axial strain and the tension in the form
g, =|o. -v(c, +a )|/E, N, = EA.¢,, (2.24 a,b)

In Figure 2.3(b2), the riser segment is subjected to the triaxial stresses due to the

hydrostatic internal and external pressures o, =o, =6, = (p, A, —p,A4,)/ 4,.
Consequently, equations (2.24) yield
N, =Qv-1}p.4, - p4) (2.24)
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For the apparent tension concept, this tension is added into Figures 2.3(b4) and 2.3
(b6), and the system in Figure 2.3(b6) is renamed to the apparent system. The tension

acting on the apparent system is called the apparent tension, of which the expression is

N,=N,+N,=N+2v(p A —pA). (2.25)

It is seen that N, = N, if, and only if v = 0.5. This signifies that the effective tension

concept is a subset of the apparent tension concept. Although the expressions of the
weights acting on the effective and the apparent systems are the same, the weight
acting on the apparent system is called the apparent weight.

Casting equation (2.25) into the general forms for the three deformation
descriptors, one can establish Proposition 2.2.

Proposition 2.2. According to the apparent tension concept, the real system
of the submerged riser subjected to hydrostatic external and internal pressures is
equivalent to the apparent system of an empty onshore riser that is subjected to the

apparent weight and the apparent tension

j.Wa =(pr iAP —P. jAe + P iAf)g s (2.25)

‘N, =E'due=N+2w(p, 4, —p,'4) (2.25)

2.6 EFFECTS OF HYDRODYNAMIC PRESSURES

Hydrodynamic pressures occur due to steady and unsteady flows of
external and internal fluids. Steady flows will cause the static forces, while unsteady
flows will engender the dynamic forces acting on the riser wall. For the marine riser
transporting fluid, the external flow is the horizontal cross flows of ocean current and
wave, whereas the internal flow is the tangential flow of transported fluid. In this
section, the hydrodynamic forces induced by the horizontal cross flows of current
and wave is demonstrated in section 2.6.1, whereas the hydrodynamic forces induced

by the tangential flow of transported fluid is derived in section 2.6.2.
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2.6.1 The Hydrodynamic Forces Due to the Horizontal Cross Flows of

Current and Wave

The hydrodynamic forces exerted on flexible marine risers with large
displacements in the orthogonal triad system based on the coupled Morison equation

(Chakrabartt, 1990) can be expressed as

fH: ;TCDI}/{ |y:‘ ?}1 VH:
FH = an :0'5pe 2‘De CDn}/n }/n +pe 214eC'a }}n +pe er VHn (226)
Sion C ¥ on |¥ bn \ Vo Y eion
Viscous grag force Hydmc‘j’ynamic Froude-krylov

mass force force

where C,,,C,, , and C,,, are the tangential, normal, and binormal drag coefficients;
C,is the added mass coefficient; V.V, , and V,,, are the tangential, normal and

binormal velocities of currents and waves; and y, =V, -u,,y, =V, ~v,, and

nl

Yin = Vi, — W, are the velocities of currents and waves relative to riser velocities
u,,v,, and w,, in tangential, normal, and binormal directions, respectively. For large
strain analysis, the effect of cross-sectional changes of the riser in equation (2.12) has
to be applied to equation (2.26).
To eliminate the difficulty of operating with absolute function in equation
{2.26), the signum function is used. Here
I ifyz0
sgn(y)= _ (2.27)
-1 ify <0.

With some manipulations, equation (2.26) can be arranged into

*

S c, 0 0|[d 1 C. 0 0 |4
Fh’ = f:’im == 0 Ca. 6 ‘.';n ~- ¢ C:qn 0 ")n
f Hbn 0 0 C; wbﬂ J 0 0 Cc:qbn wbn

Qﬁ+q%

+1 C VI 4CV,, (2.28)
C:an fobn + C:! VHb"
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where C°_.C' "

eqt» Cogn s Copsn @r€ the cocefficients of equivalent tangential, normal, binormal

damping, and C,,, C,,,,C,,, are the coefficients of tangential , normal, and binormal

drag forces, and C,,C,, are the equivalent coefficients of added mass and inertia

forces. They are, respectively, expressed as follows

Co = Coi[2Viy —1,],Cp, = 0.5p,°D,C, -sgn(7, ) (229 a,b)
Crpn = Cpu [V =¥, 1, Cp, =0.5p,°D,C,, -sgn(y,) (2.29 ¢,d)
Cgtn = Coon [V itn = Won | » Ciogn = 0.90,°D,Cry, - 581(1,,) (2.29 f,g)
C,=p,’4C,,C, = p, AL, (2.29 b,i)

in which C, is the added mass coefficient and C,, = I+ C, is the inertia coefficient.

In order to transform hydrodynamic force in the orthogonal triad system to

the fixed Cartesian coordinate system, Euler’s angle (Atanackovic, 1997) is used to

find the transformation matrix, which is the orthogonal matrix and can be written as

t a,, ay a; | |X
H yy Ay dyy |97 (2.30)

b A,y a; 4y, || Z

where

a,y = cos °9, cos '3, (2.31 a)
a,, =cos’Y,sin’9,cos*9 +sin’8, sin’, (2.31b)
a,, =cos 9, sin °9, sin °9, — sin * 8, cos *9, (2.31¢)
a,, = —sin’8, (2.3t d)
a,, = cos °9,cos °9, (2.31¢e)
a,, =sin’9, cos °4, (2.316)
a,, =cos’9,sin’9, (231 g)
a,, =sin’9, sin*9, cos °9, —cos 9, sin *9, (2.31 h)
a,, = sin’9, sin’4, cos °9, + cos >3, cos *3, (2.311)
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Thus, equation (2.28) can be transformed into the fixed Cartesian coordinates system

as
« I " » . 2.
f Hx Ca 0 0 x Ceqx Cequ Ceq.tz X
T _ _ - 2 _ * . * 2.
By ={fur=— 0 C. 01%5-|C, Cof Couli®y
* 2. * * * 2.
f Hz 0 0 Ca z Ceqxz Ceqyz Ceqz z

Added n:a; force Hydmdynami: damping force

CVu+C V2 +2C VW, +2C. V¥V, +2C, VoV, +C. V:+C V:

Y L] 2 L] L L] * 2 * 2

+¢ C Vy + CD, V. + ch ViV + ZCW ViV + ZCM ViV +C, Vo + sz Ve
* L] 2 - £ ] L r] 2 - 2

Co Vi +C V2 +42C, V¥, +2C, V.V, +2C. V.V, +C. V:+C V?

v
Hydredynamic excitation

(2.32)

where V,, ¥, and V, are the velocities of external fluid in x, y, and z directions
respectively, and

* _ * 2 * 2 L] 2
Ceqx = Ceq!af)( + Gy + Ceqbnasx

egn

£ _ * 2 * 2 * 2
Ceqy = Ceq,a”, +C, a5y + Ceqbnaj,, (2.33 a-c)

eqn

* _ * 2 * 2 * 2
Ceqz - Ceqtaiz + CeqnaZZ + Cethaj‘z

* * * L]
Cequ = Ceq:alXaiY + CeqnaZXaZY + CeqbnaJXa,?Y

* * * *
Cope: = CeqlaiXalZ + CeqnaZXaZZ + Ceqbnasxasz (2.34 a-c)
L ]

L ] * t ]
Cope = Cog@iy@yy + Coputyy @y, + €y @305,

eqyz eqt
* _ L] 3 [ ] 3 * 3
Cpe = Cpapy +Cpay0 + Cppayy
* _ * 3 L] 3 ® 3
Cp, =Cpayy +Cpray + Cppntlzy (2.35 a-c)
* _ * 3 L 3 » 3
Cp =Cptyy + Cpptyy + Cpy a3,

2 v 2 = 2
C.my} =Cp 14y + Cp, 55y +Cpp 353y

*

Comr = C;ra[zXa!Z + C:)najxazz + C:anajxaj'z
CZ)y.zl = C;tafya,z + C;nazzyazz + C;anaszrasz
C;);yz = C;):alxafzr' + C;)nazxajr + C;anasxajr s (2.36 a-g)
C.:"sz = C;)ral)(a}?z + C;)uazxajz + C;bnasxajz
C;)yzZ = C;,a”a,zz + C:Jnazrazzz + C;bnasyaiz

* L L] »
Crye = Cii@yx @y 7 + Cptyyy@yz + Cpyp 543y 57 )

Equations (2.33 a-c) represent the coefficients of equivalent hydrodynamic

damping force in x, y, and z directions. Equations (2.34 a-c) represent the
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coefficients of equivalent hydrodynamic damping force in x-y, x-z, and y-z planes.
Equations (2.35 a-c) represent the coefficients of drag force in x, y, and z directions.
Equations (2.36 a-g) represent the coefficients of drag force in x-y, x-z, and y-z
planes.

At the equilibrium state, static loading is due only to the steady flow of
external fluid. Therefore, the hydrodynamic forces from equations (2.28) and (2.32)

are reduced to

I fo* Ixs2
fH‘ CDJ Vm
s _ )i e iy2
F, =< fun 7= Cm VH" (2.37)
f) to* Iyr2
fH"’" Cubn an
{* fyp2 1 =" ! ! I ald i i ety i/ T it tyr2 [ Fald lyr2
’fm Cm Vm +2 CW Vi, VH),+2 Cnm Vi Vi +2 Cm” Vi Vi + CW V”y + CM Vm
I i _ | e iz bem* Ny o [~ Ipy ? [P L T [P ST R Pl L 7 F)
By =<'y b =1 'CWI42'C W, W, +2C W, Y, +2'C W, Y, 'C Y Y
! . . - - . .
Sin TV e2IC W, W, + 2'C Y, W+ 2'C W, T C Y Y
(2.38)

In this study, the horizontal cross flows of current and wave, in dynamic
analysis, are scoped to be in-plane flows, and the dynamic pressure ficlds are
assumed to be uniform around the cross-section of the riser, but vary along the arc-

length of the riser. Therefore

2VHx = 2Vc + ZVw’ ZVH

id

=0,v,

Z

=0, (2.39 a-c)

ZVH; = ZVHxalxﬂ ZVHn = JVHxai’x’ ZVan =0 (2.40 a-c)

where 'V, = *V.(’y) is the current velocity, and “V, = ?V (’y,t) the wave velocity.

The profile of the current velocity may be expressed in the form of polynomial

function as

2 H
y :VC,[O}’] , (2.41)

!
where V¥, is the current velocity at mean sea level, and °y, are surface sea level. The

index n can be varied from 0 to 1 depending upon the current profile. In this study,

n=1/7 is employed for the tidal current profile (Larsen, 1976).



33

For the regular incoming wave, the velocity of a water particle according

to Airy’s wave theory may be expressed as

W o=, cosot, (2.42)
where ¢ is the time, and o, the wave frequency. For deep water (°y, /L >0.5), the
velocity amplitude ¥, =V, (’y) is given by

T e (2.43)

where the wave amplitude
¢, =H/2, (2.44 a)
in which # is the wave height, the wave frequency
o, =27x/T, (2.44b)
in which T is the wave period, and the wave number
k=2rn/L, (2.44 c)
in which L is the wave length,

Substituting equation (2.39) into (2.32) yields

fo = —-C:i - C:qx')‘c - C;quy + CT); Vfix + C;:/! VHX ’ (245 a) ;
fuy=—Coy—Coy-Co i+Cp Vi +Cy V. (2.45b)
fip =0 (2.45 ¢)

Equations (2.32) and (2.45) capture the hydrodynamic pressure effects of both steady

and unsteady flows. These equations are exploited for dynamic analysis of the riser.

2.6.2 The Hydrodynamic Forces Due to the Tangential Internal Flows of

Transported Fluid

Based on the contro! volume approach of Computational Fluid Dynamics

(Shames, 1992), hydrodynamic forces due to flow of transported fluid inside
extensible flexible risers with large deformation can be derived as follows. Let 'V,
and 'V, represent the velocity vectors of transported fluid and the riser with respect to

the fixed frame of reference, then the velocity vector of transported fluid relative to the

riser velocity is given by
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Vi = (iVﬁD)jE - (iVF‘P)aifP /8% ="V ="Vp (246)

where ¥, is the internal flow velocity function: ‘¥, = °¥,, ‘¥, ='V,, and °V,, =

I

at the undeformed state, the equilibrium state, and the displaced state, respectively.
From Newton’s law of momentum conservation, the hydrodynamic pressures
due to internal flow induce the inertial force of transported mass as

j B,dv, = j p'( Ve)) J'{%(*VF)W‘.('EF)} dv, (2.47)

where ‘B, is the inertial force per unit control volume V,, ‘d, the acceleration

vector of transported fluid with respect to the fixed frame of reference at each states,

and

D()_o( ) 3() Ver 0 )
Dr Py (Ve V()= Y oa

(2.48)

It can be proved by Lemma 2.1 that Dp, / Dt vanishes.

Lemma 2.1. The conservative condition of transported mass yields

Dp,/Dt=0.

Proof. Utilizing equation (2.46), equation (2.47) can be written as

Iiﬁidvi = I Dip'Ve) dv, + J Dp Vi) dv, (2.49)
v E Dt v Dt
From the Reynolds transport theorem (Shames, 1992), the last integral is given by
D(p,'V, d i) i i ix
J%Vi :-5;|:J‘(pt VFP)d‘v’i]Hﬁ) Ve (0 Vip)d'A L), (250)
v, ¥, A

where ‘A, is the internal control surface of the riser.

Employing the Gauss divergence theorem, one can demonstrate that

PV (o Vep Jd'A, )= J[(p(vppmvp,aw(m Vi) Vi | d¥, (251)

Ay

Substituting equations (2.51) into (2.50), one obtains

D{p.('V,,
IMV':J p[a ;ﬂw( ‘A VF,,}

(1)
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+[—§+v.(p,»( VFP))} Ve pd¥,  (2.52)

(2)
Refer to equation (2.48), the bracketed term (1) is known as the acceleration of
transported fluid 2., , whereas following the continuity condition (Shames, 1992) the

term (2) 1s zero due to the continuity condition of conservation of mass. Thereby,

equation (2.52) yields

D(roi(jVFP)) _ p>(i§ﬁp)

o (2.53)

D(p('Vir)) Dp
Dt Dt

But

.(iVFP)+pi(’§FP) and 'V, #0, thus equation (2.53) is

valid if, and only if
Dp, /Dt =0 (2.54)

Q.ED. O

Using Lemma 2.1 in equation (2.47), one can constitute Proposition 2.3.

Proposition 2.3. The internal flow through the moving, deforming control
volume of the riser induces the inertial force per unit control volume acting on the

riser wall
'B,=p('d, ), (2.56a)

or the inertial force per unit riser-length

f=m(',), (2.56b)
where f,. is the inertal force, and m, the transported mass per unit riser-length.

From equation (2.56), it is seen that determining the inertial force on the
transported fluid needs the expression of transported mass acceleration a,.. Based on

Eulerian mechanics (Huang, 1993), the velocity and acceleration of transported fluid

can be derived as

= - - ot, V. or
Vo= Gy 1y = 2 S T 2.57)
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i .=d,+4a :D_VP_,_D\—/FP:___ arp VFP al'p
. oy o Dt e

— azfp +[2VFP] 62— ( FP} Y, E_i_ VeV e Ve s’ _ fop s” o

Q(r;_( dadt \ 5" ) 8a’ Js' (zs,)z (zs,)z (25:)3 da
! 2) (

3) {4 R e v
L (5) {e)

(2.58)

in which the term (1) is the transported mass acceleration, (2) is the coriolis
acceleration, (3) is the centripetal acceleration, (4) 1s the local acceleration due to
unsteady flow, (5) is the convective acceleration due to non-uniform flow, and (6) is
the relative accelerations due to local coordinate rotation and displacement.,

By using the differential geometry formulas given in appendix and let V,

be the relative velocity of the transporting fluid, i.e. ¥, =V, the velocity and

acceleration of transported fluid in the fixed Cartesian coordinate system and the
orthogonal triad coordinate system can be expressed as follows

In the fixed Cartesian coordinate system, at the displaced state:

2.7 2 2
VF—[%'HV; "'} {yﬂ/}%’}j{zzﬂ@f}k (2.59)
Ry

2 (2x’)2 21200 iy
ﬁF = 2.5(-'+ T_(.? )J 2,}1"— (g -)); 2}')'_ (2 )3 2Z-r K
Ry S' S.-’ S!

Feur 2.0y t2_r
NEN ‘rf j{}zi'+{%"(zy,)s1fﬂ'{zf J g
(’s) (*) (*s)
(2 w2+ 2 42 n 2.m2 5 2 02 n ' 2
Y=y T+ (T Ty ) Vz{%]y

(*s)

+
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. (2252xr_ZZvarr)2xr+(2zn2yr_szzyn)zyf V2+(-12£j 22' k”

(25')4 i Dt S'
(2.60)
in which D( )=6( )+-2—K¥a( ) (2.61)
Dt ot ‘s da
In the orthogonal triad coordinate system, at the displaced state:
Ve =, 4+, | E+[ 75, A+ P, | b (2.62)

At the equilibrium state, the time-dependent terms vanish, the velocity and
acceleration of transported fluid in the fixed Cartesian coordinate system and the
orthogonal triad coordinate system become

In the fixed Cartesian coordinate system, at the equilibrium state:

PR o
[xniyr Ixrlyrr Iyr+ Ixnlz.r }xv.fzn It IV; IK' ) \
3, = ( )(13)(4 )Z (th)2+ ( ;), _;% ;
+<—(Iyﬂlxl_Iyrlxn)lxt+(iynlzr_Iyrizn)fziT(JV)z-i- (II/[)IVJ_' J‘yr .
("S')4 i 1t lSr J
+<rr(lzn1xr lzrlxﬂ) Ixr+(lzrr1yr_lzrlyn) Iy!-([V)Z-I- (fVi)-'V" lzr ’2
(,'Sr)" ! lg! _ST
L _ AN s
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In the orthogonal triad coordinate system, at the equilibrium state:

Ve =) (2.66)

aF=[(IV")iV"' Pe[() (k)| (2.67)

2.7 VIRTUAL WORK FORMULATIONS

Based on the elastica theory, the apparent tension concept and dynamic
interactions between fluid and riser, the internal virtual work and external virtual
work can be obtained.

2.7.1 Internal Virtual Work

For the overall apparent system, the riser is subjected to the apparent
tension ~, in place of the axial force of the real system. Therefore, applying

equations (2.17-2.19) (the extensible elastica theory) to the apparent system yields

the stiffness equation of the initially straight riser:

8(%U) = [[*N,8 (%5 )+ M0 )+ T8 (*')+ T8 (') e (2.68)
where
E°A’E (TLD) E(°1,1+°7) (TLD)
N, =¢ E'd,’s (ULD),’M =’B(’c),’B=< E('I,)(/+¢) (ULD)
EZAP e (ED) E(ZIP) (ED)

G(°J,}{1+7¢) (TLD)
‘T="C{’r),°C=4 G('J,)(I+e) (ULD) (2.69 a-c)
G(’J,) (ED)
By utilizing the differential geometry expressions and integrating by parts

equation (2.68) three times, obtain the four forms of the internal virtual work can be

expressed as follows:
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{18 (y)jde 2.71)

_ TZ(FS)(zyF(ZZn)_ZZr(Zyn)) 2.72b)

(2.72¢)
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2_n
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2. .w
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2.0
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2_n

n

2

2_nm

2.n

2t

(2.72 h)

(2.72 i)



Form 3: Afier a second integration by part

7 B ()t 5(2w")_'
6(2U): (ZS') ZK' '

Form 4: After a third integration by part

’T Zb’f S| “u
s(v)=| | (w)

+F,,8 (' )+ By, 5( V) + F,.6(°2' )+ °T6

‘v

—
pa—
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[ uston st

;

[ RO(u)+ RS(v)+ R[]

2,

1%

N,

#[[{RYS (u)+ (SRS () + RS (w)+ {18 Py ) e 274)

(24

F, -¥, =°T(’x)(’b,)
F, -F;, = T(’x)(’,)
F, T, = T(’x)(’p,)

2

2.7.2 External Virtual Work

(2.75 a)
(2.75b)
(2.75¢)

(2.75 d)

(2.75¢)

(2.75 f)

The external forces exert upon the marine risers are the effective weight,

hydrodynamic loading, and inertial forces which depend on deformation of the riser.

Therefore, an evaluation of these forces should be done with respect to the current
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configuration of the riser. Then the variation of external virtual work evaluating from

the free bodies at displaced state is

SW =OW, + W, + W, (2.76)

where oW, ,6W, and oJW, are the virtual work of the apparent weight,
hydrodynamic pressure, and inertial forces of the riser and transported fluid

respectively. In the Cartesian coordinates, these expressions are written as follows,

oW, =~ [w,(’s')8(*v)da (2.77)

W, = { Lu(78)8(2u)+ £, (318 (V) + £ (P5') 8 (Pw) Hex (2.78)

o

W, = "_l[(m,,a,,, +m,.aF,)(2s']5(zu)+(mpapy +m,.a,,.y)(zs')5(zv)

a

w(ma,, +ma, )(*s)5(2w)+m, (2,) (%) ()5 (w) |da  (279)

in which a,=a,i+a,j+a,k=7=ii+,j+,w and the expressions of

hydrodynamic force, £, = fi,/ + f; Hy J+ szlg, and the accelerate of transporting fluid,

-

a = anf +a ij +apk, are given by equations (2.32) and (2.60) respectively.
Substituting equations (2.77)-(2.79) into equation (2.76) yields

oW = .[{ 2S'|:fo ML _mian:I 52u}da
+J'{ Zs'[uwa + [y — 1,4, '_mfapy:](s‘?V} da
+ _[{ ZSII:sz —-m,a,, —ma, :|§zw} da

-5 [m, (7, )(2) Jo (v )} de (2.80)

o

2,7.3 Total Virtual Work

From the principle of virtual work, the total virtual work of the effective

system is zero:

St = 6U —SW =0 (2.81)



46

Substituting equations (2.70) and (2.80) into equation (2.81) and utilizing
the differential geometry expressions in appendix yields the first weak form of the

total virtual work expressed in the fixed Cartesian coordinate.

+2T{ Zr(z;y ) —j—f‘_;(‘?x”(zz'”)ﬁ zx"'(‘?z ))
LR ey - )20 )

2 o T
+2Tl: Tg 'Z)+_%(2xﬂ(2ym)_2xm(2yn)]
) )

(OO 02) ) oo
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+2 23' (2x'(2y")wZy'(zx"))c?(zw"’)}da +[{ T8 (%) }da
iz =My ~miap, |8 zu)} da “

5[ -w, + fuy—m,a,, ~mag, |5(v)} da

[ fi ~m,a,, ~map, |8(*w)} da

oy (20,)() )0 ) e 28

1y r— 1 I

Integrating by part three times, one obtains the last weak form of the total

virtual work as follows.

opl b spam, b graa. b sin
(et et )J]

5( ﬂ){
+F,, 8 (u' )+ F,, 8 (V) + F,,8(’2')+ TS (*w)
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127

h)

{2#( 8 (%) + n,6 () + n 8 zw’))}

—_

-
Momen: boundary cendttion (term 3} "
0

2

+ 2R8(Pu)+ RS ( )+ RS 2w)]_

v
Force boundary condition (werm 2) a
a

(5 (oo () {85 g, o ()

2.83
+a +{JRZ'—ZS'(zqz)}5(2W)+{—2T'+ZS'[mp(zJp](zlji)J}é'(zy/) af )
‘ Eu!er'sequaz\i:m (term 1)
where
’q, = fu—m,a, —may, | (2.84 a)
‘g, =[-w,+ fy -m,a,, ~ma, | ~ (2.84D)
‘g, =[ fo—m,a, -ma, | (2.84 )

2.7.4 Euler Equations and Boundary Conditions

Considering the boundary conditions of the problem, two classes of
boundary conditions are identified, called essential and natural boundary conditions.
The essential boundary conditions are also called geometric boundary conditions and
correspond to prescribe displacements and rotations. The natural boundary
conditions are also called the force boundary conditions and correspond to prescribe
boundary forces and moments. In this problem, the hinge support is applied on top

and bottom end, therefore, the essential boundary condition are

“ula,,’t)=0"u(a,t)=0 (2.85 a)
(e, t)=0,v(a,, t)=0 (2.85 b)

2w(ao,2t):0, zw(a[,zt)=0 (2.85¢)
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To extract from the variational equation, equation (2.83), the governing

differential equations and natural boundary conditions can be obtained. One uses the
argument that the variations on “u,’v, and “w are completely arbitrary, except that

there can be no variations on the prescribed essential boundary conditions. Hence,
because u(,.’t),u(e,.’t),v(a,, ’t).v(a,t),"w(a,.’t), and ‘w(a, ’t) are
prescribed one has &(’u(a,, t)).6('u(a,. ) .8(v(a, 1)) .6( (@, 1)),
5(w(a,.’t)),and &(*w(a,,’t)) are equal to zero and term 2 in equation (2.83)
vanishes. Then

[*RO°u+R S v+Row,

S =0 (2.86)

Considering term 3 in equation (2.83), since the variations on ‘u’,*V',

and ’w' are completely arbitrary at any point, that means

r e _2B 2 7

Zz—ﬁf( n )l = Z(S,K) (n )| =0 (2.87 a)
2 (k& _ZB 2 %

2_11{(2”)') = Z(S-K)(Zny) =0 (2.87 b)
2 1% sz 2 & ‘

_"%47( n )| = z(f) (*n.)| =0 (2.87¢)

Considering term 4 in equation (2.83), one has

d 6(2w"(ao,2t)):0,2T5(2w(a0,zt)) (2.88 a-d)
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R R

mcS( w(e, 1)) =0,776 (% (a,, %)) (2.89 a-d)
[E.. 11 { —ZT(ZE; )Efc)y) cal (2.90 )
e K
[®], = —T(Ecsy)(:)x)s L (290 ¢)

It is true that equation (2.88) will be exact by two arguments. First, the

variation of the second derivative of displacements or the variation the twisting angle

are equal to zero, i.e.é‘(zu"(ao, 21)):0,,5(212"(050, ZI))=O, 5(214/"(0:0,21‘)):0, and
o (2w(ao,2t))=0. Second, the torque at the bottom end is equal to zero, i.e.

T (o:n, zt) =0. In this study, the bottom end of the riser can not rotate around the

tangential direction freely, but can rotate freely around any other direction
perpendicular to the tangent. Therefore, the second argument can not occur because
the torque reaction is not equal to zero, i.e. ‘T (ao, 2t)¢ 0. Consequently, the first

argument has been adopted and it can be concluded that the second derivative of the

displacement is a constant or equal to zero, 1.e.

2u"(aa, 2r) = Const , or zu”(ao, zt) 0

zv”(ao, zt) = Const , or Zv"(ao, 23)

0

zw"(aa, 21) = Const , or 2w"(.cza, Zt) =0

In the same manner, the equation (2.89) will be exact by two arguments

in the same manner as equation (2.88). At the top end, however, the riser can rotate
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freely around in every direction. Therefore, the first argument can not occur because

the torsion at the top end is not equal to zero, i.e. 'z (ao, Zt) # 0 . Since the torsion is

function of the second derivative of the displacement, they and their variation are not

equal to zero, i.e.
2u"(a,, zt) #0, and 5(21,:"(05,, Zt)) #0
2v"(a,, 2t) #0, and 5(2v"(a,, 2:]) #0

"w"(a,, 2¢)¢0, and 5(2w"(a,, 2:))¢0

Consequently, the second argument has been adopted and it can be
concluded that, the torque at the top end is equal to zero in the case of no applied
external torque. For the most general problem, the external torque may be applied

from the environment of the riser. Thus, the natural boundary condition of torque at

the top end becomes °T (a,, Zt) =T

Considering equation (2.90), each term is composed of the second

derivative of displacement and torque. From this reason, this condition corresponds

to the conditions of equation (2.88) and (2.89).

Since the variations on ‘u,’v, and ‘w are completely arbitrary at any
point except at the essential boundary, the governing differential equations are shown
in term 1 of equation (2.83) and can be called Euler’s equations. By substifuting
equations (2.75 d)-(2.75 f) into term 1 of equation (2.83), one obtain the governing

differential equations in three directions of the fixed cartesian coordinate system as

follows.

In x direction;

(%) (8,)] (') (2. ) =0 (2.91)
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In y direction:

Lﬁr%{iﬁ }] ‘

-[r()(8,)] ~(*5)(%a,) =0 (2.92)

In z direction:

) {(2’”"‘23“”)2)3_5“3{(53}}
‘[ZT(Z")(szﬂ' -(*s')(’q.)=0 (2.93)

In twisting rotation
27 = 2s'[mp(2Jp)("’y'/‘)] (2.94)

By using the differential geometry of space curve, equations (2.91)-

(2.93) can be written in the vector form as

L)ai(—M(""“)_{()}@i{_ﬂ

T 8 (W ’ 202
ETNE TN

Note that {— = 3-;; +2—i’,j’+2—31€ (2.96 a)
D _ 0 (XN 0 ()., 8 [,
%(%'J_g["_f}-kaa Zs']j+8a[‘?s'Jk (2365)

oo p 2 p “ ' "

2[5 CC CACRIATC)E a6

If @ = "5, equations (2.94)-(2.95) become

= m, (%7,)( )] | (2.97 a)

(2877 —[( N, - 2B( Z;c)z) 2?'] [ Zf")]' _G=0  (297b)
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which is compatible with the nonlinear dynamic equation given by Kokarakis and

Bernitsas (1987).

2.8 VECTORIAL FORMULATION

To validate equation (2.94)-(2.95), one has to use the relation between
three orthogonal coordinate systems and two moment differential equations to
eliminate shear forces. As a result, it is found that the six equilibrium equations are

reduced to three equations and can be arranged in vectorial form as equation (2.95).
Figure 3. shows the riser element of the length d’sin displaced state
loaded by forces and couples in the cross-sectional principal axes system. Let ‘R be
the vector of an internal force such that ‘R =°R,’¢, + °R,’¢, + °R,’e, where ', is
an axial force, ‘R, and ’R, are shear forces; let M be the vector of an internal
moment such that ‘M =’M,%é +°M,%é,+°M,’¢, where °M, is a twisting
moment, ‘M ,and ‘M , are bending moments. The vector of an external load, i.e.,
current and wave force, effective weight, inertial force, is represented by

‘G="q,°¢,+°q,%¢,+°q,7¢, and the vector of an external distributed moment is

represented by °m = ‘m ¢, +°m,’é, +°m,’é,.

Figure 2.3 Riser differential segment.
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Since the riser element is in equilibrium, therefore the sum of forces and
the sum of moments equal to zero. Hence, the equilibrium equations in the cross-

sectional principal axes system are

ZRF
23: +2R3 2w2_2R2 za)j :--Z-‘q.r (298 a)
2Rl'
25,’2 +2Rf20)3_2R32a)1=—2q2 (298 b)
ZRI'
2; +’R, "0, R, ’w, =g, (2.98¢)
2 [
M .
‘?s'] +°M, 0, - M, o, =="m, +[mp(2Jp)(2w):| (2.98 d)
ZMJ 4
2 2
zs’z + M‘, 2@3 _ M3 W, = 2R3 — zmz (2.98 e)
ZMI'
23'3 +°M, 0, - M, "0, =~"R, — ’m, (2.98 )

It is worth noticing in this formulation that the external forces are
assumed to act on the centerline of the riser, therefore the distributed external
moments are equal to zero.

By coordinate transformation and shear force elimination, the
components of internal force vector in fixed Cartesian coordinate can be derived and

wriften in vectorial form as follows

o ] ] ] it ) i 6 P=t
‘R= (!NG—IB(’K‘)Z)%_lB (1:")3 %('_Z'J

t

S A i - (2.99)
(fsr) cal ‘s’ sV Ball’s

Since, the summation of forces in fixed Cartesian coordinate and the

summation of moments in tangential axis are

‘R+7s'('g)=0 (2.100 a)
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=25 m, (0, )( )] (2.100 b)
therefore, it is confirmed that exact agreement is achieved among the vectorial

formulation and the variational formulation.

2.9 NONLINEAR DYNAMIC AND LARGE AMPLITUDE VIBRATION
MODELS

Based on the variational formulation, the governing equation describing
nonlinear dynamics of the flexible marine riser have been achived in the four weak
forms and in the one strong form. For the sake of generality in obtaining the finite
element model, however, the strong form is used to generate the large amplitude
vibration models. The governing equation in displacement-based strong form can be

expressed as follows

0
2 ’F L 4 " az_
+S,,,(LTJ6;:)+ZS,,”_ i n(9) v (]2
’s' L g ’(25:)2 (ZS')2 2S')3 0

S
:25’{ FH}— 5w j— sm{zy" (2.101)
0 s
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By utilizing the differential geometry of a space curve, each term in

equation (2.101 a) are expanded by
o*(’7) 0
Al T o)
P

0
[ s (m, +m,) 0 0 0 | 2
0 s'(m+m, 0 0 2
= (m, ) 2 (2.102 a)
0 0 ‘?s'[mp+mi) 0 z
2
2 l//
.0 0 0 (*s)(m,)(°7,),
(2yr)2+(22r) Zeryr Zx.vzzr .,
2 2=t 2
Bzi("}"—,]_ B5 2ty (fo) +(2zf]2 2y 2y
(7s) el () : 2
_2x12 r ~2y'zz' (zx:) Jr(zy.~)
(2.102 b)
2.
2t 2Nr ] 0 0
{w”l -0 1 0%y
> s 0 0 111°7
(2y')2+(22')2 Zxr.?yi' 2,120 W L,
2
+( N33 S22y (2xr)2 +(Ezr)2 ity 2" (2.102 ¢)
2 r
5 2
__ZerZi _2yr2zr (2xr)2+(2yr)2 Z
e R 5 ( bzzku bzzkfz b;kij ‘x"
23(2’() T +’B T a2 |7 bjkz,' bzzkzz bjksz 2y" (2.102 d)
s (25") aa &) 2 2 2 2w
S N ST LT z
2= 2=
rll sl E L)
7 2
T
0 el
T;‘?kl] 'rJzka Tfkm ’x" 0 0 0 Tzsz x'
" 2 2.
—_ rikm Tikzz Tikzj iym B 000 r22k24 2)’, (2.102 ¢)
r!ku T1k23 rikss z 0 0 0 ik z
0 0 0 y” 0 0 0 Tjkﬂ 4
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_(Zy')2+(22')2 _Zxr2yr 2yt ) , .
_ miV,z _zxrz ' Zx: 2_'_ sz 2 2 :er 2.n 2102
=i y (*) y Yoo @102h
§ 2_n
L fozzr zyr 22! (Zxr)2 +(2yr)2 Z

; 1 0 0
s'm, | — =— 10 1 0[3%; (2.102 g)
*lo o 1

22 2.t 2=
Zsfmi(_zz}:;-jaaia:)_2srm‘[l/'z( 'sz) a( f')
( S) Ja
20V () iy A
i B S ) RO B N S AT
( S) un?zr _2y!22r (2.5")2'*'(22’)2 22"
()]
—
. 2 2.0
m [%]ag;):zsr ’"_ZE_{_) (2.102 i)
m,.V,.(zz')
it

By substituting equations (2.32) and (2.102) i;lto (2.101) together with
some manipulation. The nonlinear dynamic, large amplitude model in the Cartesian

coordinate system is obtained as

TR BT P

(2.103)
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where the total mass matrix is

1 0 0
M="s(m,+m+C,) 0 1 0 (2.104)
6 0 1
the hydrodynamic damping matrix is
C C C
egx eqxy egxz
Cc="15 Cequ Ceqy Ceqyz (2.105)
Ceqxz Ceqyz Ceqz
the gyroscopic matrix is
r 2 2
2(2Sf) +(2xr) szrzyr _2x!22! 1
G - (Tif/]iz _Zx.'2yl' 2(281)2 +(2yf)2 “'Zylzzf (2106)
5
_ZerZr “ZyrZZr (ZSf)z +(Zz.r)2
the torsion stiffness matrix 1s
T:'?kl] Tfklz Tfklj‘ 0 0 0 0 TszM
ZK _ T]Zklz T.?k.?;’ T.?k23 0 + 0 0 0 T22k24 (2 107 a)
T - .
Tfk.'i TﬁkZ_? Tik.?.i 0 0 0 0 T;kje’
0 0 0 0 g 0 0 Tjk44
in which
ZC(ZS’ 6 5
Tfkn:_?K)T)(zy "y ) (2.107 b)
202 08
C( S [ " 2
ik, =——(2—;~)-5)--(22 x"—x"’z ) (2.107 c)
2 2.t 6
C( S ! L t n ?
ks, =—~——( ZK)) (2x T tyix ) (2.107 d)
ZC Zsl 6
Tfk” — Tgkﬂ - _ ( ) (ny ZZH__ ZZr2yﬂ)(ZZr2xn_ le.?zn‘) (2107 e)

(x)
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20 2 ¢
szki_;:?:?kj,l:“ (2(1(;2) (2yr2zrr_zzlzyn)(zxizyrr_2y12xn) (2107f)
Zky, = - s )) 27" =2k 2" (XY =7y X)) (2,107 g)
2 2 2 "
Tz .r4: I: z()zs gzz ) (2.107 h)
e [ o
Gl
2 - 2 2.t -
T;k34:(zsc,1)2 ( )( y()zsgzy)( ):l (2.107 )
2 2 zr, i
rokes = C{(fw'f(zs')] (2.107 k)
2 _(2}):)24_(22;)2 _2yr2y 2,020 i
LK = 2{35 ~x'?y (zx')2+(2z')2 -y (2.108 a)
( S) _Zxrzzr _2y!221 (Zxr)2+(2y )2
bzzkn bzzkm bjklj
hiKZ b;k.?l b22k22 b§k32 (2.108 b)
b22k,f3 bzzkm b22k33
in which
bjk” :(22?) [2( N y 12y Zyrr) 2x.r2yr+2(2 "2 2xr2zn)2xr22r] (2.108 ¢)
s
bjkﬂz 22?)? :2(2yn22 2yr2 n) y Z ﬁ2(2x”2yl' 2 zyn) 2xf2yr:| (2108 d)
5
bjkjs _ (;Bj)? :_2(236"22'“ Zxazzrr) Zxrzzr_z(.?yﬂzzr Zy 2 w) Zyrzzr] (2108 e)
s
2 B (12 wrs 22 V(20 2.0V 2. w20 2 42 0\2 42_s
bzk,'z——(x y-x J’)((J’) —(X))+(y zZ~"y z)x z
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4 zxrr?_zy 2 r2 n)zyr2zrj| (2108f)

2.on2 L2 -2 n)((zz.v]z_(2x1)2)__(2yﬂ22'__Zy.rJZn).?foyf

(
A

+(2x"2y’—2x'2y")2y'22'} (2.108 g)

szkzj - ( 221?)7 [( Zyn 20 Zyrzzrr)(( 221]2 _( 2yr)2 ) _( 2mar_ Zxr 2er) .?xr.?yr
A

W(Zxﬂ'nyu'2xl2yﬂ')2xI'ZZr:| (2.108 h)

the axial stiffness matrices are

_((Zyr)2+(2z!:2] Zxrzyr 2xf221 i
2x7t 2
NiK ( N(2 f;’iV ) gx,gy, _((2x,)2+(22;)2) 2yr22_r
g
S Zy.rzzr _((2yr)2+(2xr)2)
(2.109)
[ZN _mIV;V) I 0 0
wK= — 0 10 (2.110)
* 0 0 I

o Vi + c v+ 2c;m ViV +2C. ViV,

™o
-
I
L)
&
.

C Vi +C.V242C, VuV,, +2C, V,

o V + C Vs +2c;m ViV, +2C ViV,

Dx22  Hz il

+2C ViV +C V2+C v’ —mV[

)

] > (2.111)

i

+2C, V¥V, +C, V' +C, VZ—mV[

[

S
+2C V¥ +C. V2 +C, V‘?umV[ J
)
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2.10 NONLINEAR STATIC EQUILIBRIUM MODEL

The nonlinear static model is obtained by eliminating the time-dependent
terms in the nonlinear dynamic equation (2.102) and replacing the variables at the
displaced state by ones at the equilibrium state. Therefore, the nonlinear static model

can be expressed as follows.

r2kig
JKO0][ 0 Lk, (7] ([JK o7
+ 1, m + i I * F
0 0y roks LW L0 0]y
0.0 0 rk,

8 SR SR S e
0 0|’y 0 o'y 0 0|y 0

the torsion stiffness matrix is

T;kii T;kiz Tfklj 0 0 00 T;k”
I 'k s 0 g 0 0 k
; T2%
K = r;}k:z r{,kzz T!Jk23 ) n S ’k4 (2.113 a)
ity rifar rifss T2™34
0 0 0 0] [0 0 0 Lk,
in which
IC ISJ 6
]:'k”—— ,( 2) (iy:izn_fzr.'yrr)z (2.113b)
()
o1 6
Ik, = — }( 2) (.’Zrlxrr_!x.rfzvr)2 (2.113 ¢)
(')
1of g 6
;kjs__ I( ) (Ixr]yn_iyrfxn)z (2113 d)

1 i ]C(IS,)G ! i Il
= k2,:——( y'iz" =7 y")(’z”x"-’x"z”) (2.113 ¢)

le.'s - ;kﬂ :M__(.'yfizn_ !zr!yﬂ)(]x.viyn_ nyixrr) (2113 f)
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! 1 ays
;kzj _ ;k}z _ Cf( ‘;2) (!Z!Ixrr_ lxilzn)(ixrlyrf_ Iyr lxrr) (21 13 g)
K
Ik _ iC (.'y!)(]zn)]_(lzf)(lyﬂ) (2113 h)

e [(fz')(fx")— W' o

raks, = < (Ix')(!y")_(fyr)(jxﬂ)} (2.113j)

roky = IC[(II"’f’)ﬂL(]],)} (2.113 k)

(Iyr)2+(Izr)2 _lxrlyr —IJC”Z’ T
i ‘B IS, i fon? Poale
b,K=~(~T-:-)~3~ ~ix'y ('x) +('2) ~lyiz (2114 a)
5
It Iyt (lxr)2+(ly )2
b;kl.' b;klz b;kli
biK: b;kz.' b;kzz b;kﬂ (2.114 b)
b;k13 b;kj‘z b;kﬂ

bsz” _ ‘B —2(1xnlyr__ lxriyrr) !eryJ+2(!xrr}Zr_lxrizrr).'xrfzi] (2.114 ¢)

bszzz: ‘B _2(1ynfzr_Jyuzn)fyaizr_z(,'xnfyf_fxrfyn)fxriyr:| (2.114 d)

ko =—IB _—Z(Ix'”z'— Ix"z") ’x”z'—Z(’y”z'— 'y”z") ’y”z':l (2.114 ¢)

(.’xniy:_leiyrr)((.’yl)z_(le)2]+(iynlzr_Iyr}zrr) 1t
+(1x" X ) Y ’z':| (2.114 )

vikys = i |:(Ix”2'w lx"'z")((’z')z —(fx')z)_(fy"-'zr_ fyfizn) ytly
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+(1xnlyr_ Ixrfyn) Iyrizrjl

(2.114 g)

fk i{(lynizf_lyrlzn](( Izr)z_(.fyr)z)_(!xn!zr_ Ixrlzn) Ixrlyf

B2723 T (IS')T
_(Ixnlyr_lxrly#) lxrlzr:|

the axial stiffness matrices are

Igr
NzK_

P Iyr2 1t i ! IV L !

CWIA2'C W, 1 2'C Y, Y
\g_ f ™ Iyr2 I ekl I i 1 * 1 1
f='s''CC Wl +2'C] W, W, +2'C. 'V, Y,

1p* dyr2 I L) i f I !
C W2 +42'C,_ W, W, +2'C. V'V,
ey} ! It Iyr2 I iyr2
+2'CT W, W+ 'C W IC Y

Hy Hz

Ixriyr _((Ixr)2+(lzr)2) lyrlzr

(2.114 h)

lxr.fzf

(2.115)

0 (2.116)

+2'C] Wy Vi +'C VA IC TV =, (2.117)

Hx v

+2'c” v, v, +'C Vi !
Dyrz ’d z Drzi Ha Dyt Hy

2.11 CHOICES OF THE INDEPENDENT VARIABLE «

One salient feature of the large strain formulations presented in this work

is that the independent variable « used in the formulations provides flexibility in the

choice of parameters defining elastic curves. The formulations therefore aliow users

to select the independent variable that is most efficient for their own problem

solution. For example, analysis of flexible marine risers as shown in Figure 2.1, has

at least four alternatives for the independent variable « such as the vertical

coordinate y, the in-plane offset distance x, the out-of-plane offset distance z, and

the arc length s.
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The advantage of using o = y is that the total water depth or the boundary
condition is known initially. While using &= x or &= z the boundary condition is
known if the offset at the top end of the riser can be assumed to be static, and is
unknown if the offset is dynamic. If one uses a =s, the boundary condition is
always unknown, because the total arc-length changes after deformation. The
problem for which the boundary condition is unknown, becomes much more
difficult, and requires specific treatment.

However, the disadvantage of using = y is that if elastic curves after
large displacements form like the U-shape or the semi U-shape as shown in Figures [
(b) and 1(c), the vertical position is no longer a one to one function for all points on
the elastic curves. Consequently, ¢ = y is not an effective choice in this case.
Likewise, using @ = x or a= z encounter the same difficulty when the elastic curves
after large displacements develop akin to the C-shape or the semi C-shape. In these
troublesome cases, using a@= s becomes the best way, because arc-length is an
intrinsic property, and thus is always a one to one function for all points of the elastic
curves.

Therefore for flexible marine risers which do not face the problem of
elastic curves having a U-shape, such as the high-tensioned risers, using o=y is
sufficient. However, if the risers confront the problem that occurs in the case of low-
tensioned risers, = s should be employed. It should be noted that in addition to the
four alternatives of o as exemplified earlier, there are still other choices of & such
as the span length, the rotational angle, and so on, which may be employed if

efficient.

2.12 IMPLEMENTATION OF THE MODEL FORMULATION TO
PRACTICAL ENGINEERING PROBLEMS

- The present formulations are applicable {o large strain analysis not only of
flexible marine risers, but also of any kind of engineering structures, which may have
the elastica’s behavior. The examples of these are listed as follows,

(a) Onshore pipes. The effect of external fluid would be excluded from

the present models.
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(b) Submerged pipes. The hydrodynamic pressure effect of external fluid
would be excluded.

(¢) Marine cables. Bending rigidity, Torsion rigidity and influence of
internal fluid would be excluded.

(d) Submerged cables. Bending rigidity, Torsion rigidity, influence of
internal fluid, and hydrodynamic pressure effect of external fluid would be excluded
from the present models.

{e) Onshore cables and strings. Bending rigidity, Torsion rigidity, and
influences of internal and external fluids would be excluded from the present models.

{g) Elastic rods, long columns, and long beams. Influences of external
and internal fluids would be excluded from the present models.

Even though the present models are intended for engineering structures
with environment-induced initial curvatures, the models can still be extended to the
structures with man-made initial curvatures such as curved beams and arches by
considering & # 0 in application of the extensible elastica theory developed in this

study.
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3. SOLUTION METHODS

In this chapter, the updated Lagrangian descriptor (ULD) is employed for

describing the nonlinear behaviors of the riser, and the independent variable o ="'y

is adopted. For the 3-D nonlinear static analysis, the weak formulation &'z =0 is
derived and solved by the hybrid finite element method as will be elaborated in
section 3.1. For the 2-D dynamic analysis, the ordinary differential equations of
motion are derived from the weak formulation &’z =0 by the finite element method
as will be shown in section 3.2. Based on the state-space formulation obtained from
section 3.2, the natural frequency analysis and the time history analysis of the

nonlinear vibrations will be carried out in sections 3.3 and 3.4, respectively.

3.1 THREE-DIMENSIONAL NONLINEAR STATIC ANALYSIS VIA THE
HYBRID FINITE ELEMENT METHOD

The hybrid finite element method herein refers to the finite element
solution of the weak formulation that is mixed with the strong formulation. One may
question why this method is essential for the nonlinear static analysis of the marine
riser. The answer is as follows. For the extensible analysis of most structures, the
static axial strain in the weak formulation is determined from the strain-displacement

relation such as

‘e=(d's-ds)/d’s. (3.1)
However, for extensible marine risers with large displacements this approach may
not be applicable, because in practices, marine risers do not have the undeformed
configuration as for reference. In other words, for marine risers d°s is nonexistence
for use in equation (3.1). The equilibrium state is the only initial state or the first
state of marine risers, which is unknown initially, while the undeformed state is the
ideal state, which never appears in the real situation. The way to solve this problem

is to establish the static axial strain from the constitutive equation

‘e=IN,/E'A,, (3.2)
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where the apparent axial force ‘N, is determined from the equilibrium equations.

This approach is called the hybrid method (O’Brien and Mcnamara, 1989).
It should be noted that this problem would not be encountered in the
dynamic analysis of the marine riser, because the dynamic axial strain can be

determined from the strain-displacement relation

e=(d’s—d's)/d's, (3.3)

where the reference configuration d’s in equation (3.3) refers to the equilibrium
configuration, which is known from static analysis. Therefore, the hybrid method is

not needed for dynamic analysis.
In section 2.7, there are at least four forms of the weak variational

formulations to be used. In this study, the second weak formulation is employed.
With application of & ="'y, and neglecting the time-dependent terms in equation

(2.71) and (2.80), the hybrid formulation for nonlinear static analysis is obtained as

s(a)= e L B

xl’."
-

AY

zﬂ'

s -

e |ls(w)

r(ISn)]
(')
r( IS")]
(s)

}
. "B "z" Iz!(lsn)\ o
5(u)+“2 — 5= 15 ('w")
+'F, 8 ('u)+ F5( W)+ 8w )+ 'F,8 ('w) + TS (y)
+'S’(—’fo+m,.("apx))5(’u)+’s'(—'sz+mf(’an))5(’w) d(’y)

(3.4)
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where

'K )+ 15’(’61:)}*(’)}), (3.5 a)

T('y)="T("yy (3.5b)

P tgp 1 ! 1 2’_’
9= "Jfu ms( am) Wa[ ;S,]a (3.5¢)
o =0-5pe(lDe)”Cm (IVH: )2 , (3.5 d)
Fun=0.5p,("D,)Cp (Vin) 3.5¢)
Soan =0.50.('D,)Co (Vi) » (3.5 f)
Fie= f( } Sun('n )+ (') (358
Isz:]sz(TjTJ"'}an(i z)+ Siaon (lb )a (3.5h)

H e
Iaﬂ:ﬁVi—l(S’V;), (3.51)
o= () )+ L) as)
('s)

fapz=’f<(’nz)(’lf:-)z+( ae) (3.5K)

(3.5m)
(3.5 n)

(
1 i IX' i ‘,Z'
VH: = VHx( 1SrJ+ VHz (TEJ’ (35 l)
n (n.)
)

"B E('I), 'B'=2E(")(1+ )¢, (3.6 a,b)
N ] P i oo
‘s —\ﬁ (Ix')2+(’z')2 , 8" = x( : )T,Z( Y ), (3.6¢c,d)
M
l ] i

() + (W) +((w)(2)-() (W) @9

oy m{ () (") () )

L) e)-Co - (o)) |- LRED
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S s U s o N
G () T
3= (kY (3.6 1)
'F,, ]T{ TI,(S,x')+2( S:)S( TJ)[ (’u")("z')—([x')('w") J(lw")} 3.6
;Ez:,T{’rglgiz')_2(1s;)s(’r,)( (%)) ~( ') () ](Iun):( (36K
'R, () 7 _T()(s) (3.6 L,m)

x ]S > 2z IS ’

In large strain analysis, the axial strain is one of degree of freedom and

the axial force can be derived from constitutive equation.
N (y)=E("4,)("e('y)) (3.7)

To satisfy both equilibrium equation and constitutive equation, equation
(3.7) has to be equal to equation (3.5 a), the constrain equation of this condition may
be written as
[YH
Sw, = J.{E(’Ap)’g(’y)—’Na(’y)}cS(’g):O (3.8)

.'yo

This constrain equation may be considered as an equivalent work term
and is added directly to the standard virtual work statement; equation (3.4).
From equations (3.4)-(3.8), it is seen that there are four dependent

variables ('u, ‘'w, ‘w, and ‘) and one independent variable ('y). Along with the

essential and the natural boundary conditions of the riser that has the slip joint at top

and the ball joint that can not rotate in tangential direction at the bottom end.

at 'y=0: "w=0,"'w=0,"v =0, (essential) (3.9 a,b)
W=0,'w=0 (natural) (3.9 c,d)
andat 'y ="y : ’u=0,'w:0,’£:(’NaH)/E(’APH)(essential) (3.10 a-¢)

'T=1T, (essential) (3.10 d)
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W=0,'w=0 (natural),  (3.10¢,)
the system of equations (3.4)-(3.10) is the boundary value problem that should be
discretized by using the C? finite elements so that all the boundary conditions are
constrained. Note that the C™ finite elements are the elements of which derivatives of

displacement field through order ‘m’ are continuous.
However, the higher derivatives of the twisting rotation 'y and the strain

‘e are equal to order one, thus it is sufficient to approximate the twisting rotation
and the strain by the C' element. Therefore, in this study the elements mixed between
the C' and the C* elements are used for approximating the displacement vector of
‘w,'e, 'uand 'w.

For ecase, the third and the fifth order polynomial shape functions are

employed to correspond the C' and the C? finite elements, respectively. Therefore,
the displacement vector is expressed as
Pay={u 'w 'y e =['N]{'d,}, (3.11)
where the generalized coordinates of the nodal displacements of each element are
{’&,,} :{fuf Wl fw w W Ty, Ty e e

I

b !oor i n i Iw 1 F I
|, uy Tuy Cw, wy W Ty, g

e, gl (3.12)
and the shape function matrix at the equilibrium state
‘N, 'N, N, 0 0 0 0 0 0 0
[}N]: 0 0 0 'N, 'N, 'N, 0 0 0 0

0 0 0 0 0 o 'N, 'N, 0 0
o0 0 0 0 0 0 0 'N, 'N,

'N,, 'N, 'N, 0 0 0 0 0 0 0
0 0 ‘N, 'Ns, ‘N, 0 0 0 0
0 0 0 0 0 0 ‘N, ‘N, 0 0
0 0 0 0 0 0 0 'N, 'N,

(3.13)

Note that ‘N, and 'N,, are the coefficients of the third and the fifth order

polynomial shape functions, respectively.
From equation (3.13), the number of degrees of freedom per element is 20.

From equation (2.81) and the calculus of variation, one has
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5(%”’)=§F(%W)}5(fdm.)=0. (3.14)

i=l a( Idm')

Equation (3.14) yields the twenty equilibrium equations of each element

o('7")
=0, fori=1,2, .., 20. (3.15)

a('d,)

Substituting equation (3.11) into equations (3.4) and (3.8), the matrix form of

equation (3.15) can be obtained as

!
(o () af 1, o ) Tyl
; a J'Sr !Si ("S')j lsr I(S,)z ix 0
k 0
r 2 Y
+ 'N (EJ_[‘B (lx) lz’)+ C z_f ’(IS) +'F [’N]T ;
a .'S J'Sl (‘-S,)B .fsi (S,)Z I 0
) 0
_ - 7
B [ W) T
(‘.S,)z g /(S,)z 2 0
L i 0
) [0 0
+ iBz[l;i_ f( 32)1+1FJZW[!N"]T ! +2T[’N ]T 0
()L ) 0 !
J 0 0
1 0
r |0 |1
+’s’[—}fo+m,-(fan)][:’N] {0>+15’(If,{z+ml(’ah))[ N] )
0) 0

0
HE('4,)("e)- ’Na)[’NT g}Ld(’y] (3.16)
I
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The Fortran-90 codes for solving the system of equation (3.16) has been developed

based on the aforementioned finite element method. The solution steps used in the

codes can be summarized as follows.

Step 1
Step 2
Step 3
Step 4
Step 5

Step 6

Step 6.1

Step 6.2

Step 6.3

Read the usual data from the data file.

Set the values of constants.

Determine the values of the constant.

Label the node number of all elements.

Initialize the guessed values of all degrees of freedom.

Form the system of finite element equations, in which the procedures are
as follows:

Calculate the nodal axial forces and the nodal axial strains based on
equation (3.5a).

Create the element equations based on equation (3.16). The numerical
integration is performed by using the fourth-order Gaussian quadrature.
The global degrees of freedom are transformed to the local. The third and
the fifth order polynomial shape functions are calculated. The shape
function matrices are formed. The generalized coordinates of
displacements are evaluated. The effects of radial deformation on the
changes of cross-sectional properties and velocity of transported fluid are
treated. The external loads due to the effects of the hydrostatic and the

hydrodynamic pressures are evaluated. The axial and shear forces at the
depth 'y are computed.

Assemble the element equations obtained from step 6.2 to generate the

global system of finite element equations.



73

Step 6.4  Impose the boundary conditions from equations (3.9) and (3.10).

Step 7 Solve the system of the finite element equations obtained from step 6 by
numerical methods. This study utilizes the modified Powell hybrid
algorithm based on the MINPACK subroutine HYBRD1 (More et al.,
1980} which will correct and update the guessed values of degrees of
freedom, and repeat steps 4-7 until the stopping error criterion is
satisfied.

Step 8 Save the numerical results in the result files.
3.2 TWO-DIMENSIONAL DYNAMIC ANALYSIS

The second weak formulation is employed for the dynamic analysis as
well. From equation (2.81) 67 =0, hence the second weak formulation may be

decomposed into the following four nonlinear dynamic equilibrium equations.

ZM a 2 1 .
Hopapselo) = pt)

S| fu—m,a,, —mag, |5(u) rda=0, (3.17 a)
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’s'| ~w, = fu, ~m,a,, —may, |5(7V) }da =0, (3.17b)

2S'[sz -m,a, %miaFJé'(zw)

cda =0, 3.17¢)

[{rrs (w25 (-m, (2, )(9)) 8 "w)lder =0, (3.17d)

24

By neglecting the out-of-plane motion and the effect of torsion, the two

nonlinear dynamic equilibrium equations for two-dimensional analysis can be

expressed as follows

I —
— A

S

2 s 2
~8 [—wa +ny—mPaPy—miaFy]5( v)

Q [V
+
| I —
—~
=
[
LY
=)
—_——
L}
A
f —
[
SN
N
[} o
H-
S~
|
ko
VY]
—
N
R
S
—
)
[
f S—
N
' [
k<--
S
| I |
™
—
L)
=
S —

Vda=0, (3.18 a)

+[(2Na - 23(2K)2)[%j+w[ ?{J]a(%’) Lda =0, (3.18 b)
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From the assumption of the linear dynamic strain of the vibrations with

infinitesimal amplitudes in equation (2.8) and (2.9), one has

I N S

N, ~ N, +E('4,) ZEL YL, (3.19)
('s)

By substituting equations (2.45), (2.65), and (3.19) into equations {3.18 a-b) together

with neglecting the higher order terms of the vibrations with infinitesimal

amplitudes, equations (3.18 a-b) can be expressed as

R D CRIET

{(’Nﬂ“’""(”"‘) )(zx')]a(zu')

< . b d
I =I5 1C (PR) 1L (PH) - Cly () o+ 'C;,VHx]a(?u) ’
i I s 2 |
(.’mP+ 'm )(ch')ﬁ-"m (’V){%—(’x')s}(zfc')
+15 i ( S)

" 5
n (| A

g { m( V)Z( V)}(zx)Jr_”ii_")%] (%) (3.20 a)




(3.20 b)
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Note that the following relations are used in the derivation of equations (3.20 a,b):

OOy o)) e

{%’m (v) 5(2u)-iﬂ "I[(I—Z ’m,-(zlﬁ)zci(‘?u)j z—g}da (3.21¢)
ety [-LIE s

2Sr

il
| —
L= —
- h--.
3
—
L
=
—
LN}
s
p——
2
<
o —
wl o
<
| |
5] R
I
k)
—
1
N
vl -
E
=
——
b
~
~—r
o
[» 5
——
[
<
—
A
L)

ylda (3.21d)

i (Zx')(z’*')“L’(zy')(z""), (3:21¢)

(3 . (3.21 6)
)

When the time-independent terms in equations (3.17a-c) are eliminated, the

equations of the vibrations with infinitesimal amplitudes can be obtained as
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' =G~ Cl k= "Cly v 'Co (VW + V)4 1CL Y, | Su

([mP + Im;‘)i‘-"' imi(fﬁ){%_((ix:; }j'
§

+°s' ou

sl ox

(3.22 a)
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A 7 = .
- Cyv-— Cequ— Cewu+’CDM(2VCVw+V‘f)}§v

('m,+'m, )i~ ’m,.(er.) %()3};')-}1'
E

v

(3.22 b)
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Along with the boundary conditions at 'y =0

u(0,1) = v(0,7) = O(essential), (3.23 a)

u"(0,#) = v"(0,1) = O (natural), (3.23 b)

and at 'y =7y, : u(°y,,t)=v("y,t)=0(essential), (3.24 a)
u'"(°y,t)=v"("y, t)=0 (naturat), (3.24 1)

and N, = N_, (essential), (3.24 ¢c)

and the initial conditions at time 7 =0:
u('v,0)="u,v('y,0)="v, (3.25 a,b)
i 'y,0)=0,v"y,0)=0, (3.25c,d)
the system of partial differential equations (3.22 a-b) is the initial-boundary-value
problem, which can be transformed to the system of ordinary differential equations

by performing the following three steps of the finite element method.

Step 1. By separation of variables, the displacement vector is assumed as
{dy={u v} =[N('y)]{d (1)}, (3.26)
where the generalized coordinates of the nodal displacements of an element are

” ' T
di=%u, u uw v, v v |u, u, uy v, vy v}, (3.27)
and the shape function matrix at the displaced state is

[N]: Ny, N, N, 0O 0 ¢ | Ny, N Ny 0 0 0
0 0 0 N, N, Ng;| 0 0 0 N, N, N

} .(3.28)
Note that N,; is the coefficients of the fifth order polynomial shape function.

Step 2. Substituting equation (3.26) into equations (3.22 a,b), the element

equations can be obtained as
[m®]{d,} + ([c®]+[g“Did, } + [k 1{d,} = {f}, (3.29)

where the element mass matrix is

(o] [N ()02 ) e, G309
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the element hydrodynamic damping matrix is

[ ]=] {[N]T (}S'){sgf“ %f"’}[N]}da , (330 b)

@ eqxy

the element gyroscopic matrix is

fely = " ('s')z (’S')z ' Lda c
(2] HHN] (), ) 2_(5}')2 [N]fde, (3300¢)

the element stiffness matrix is

(k] = [y T+ [ ]+ [y ]+ [ ], (3304)

in which the bending stiffness matrix of the fourth order derivative is
Nt N (LA ¥ i
k1= [y -2 () (x}(zy) [N"]dar, (330¢)
U0 ()

the bending stiffness matrix of the third order derivative is

ot )] 2000 (’y'f—(ﬂ . }d
* J{[ 0 Lfy'f—(’x'r )] .

the axial stiffness matrix of the second order derivative is

er[ 1 0] AT o)
N 70 4 S0 1

{ da (3.30 g)

[k

}

2

E('4,)

HN'T
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the axial stiffness matrix of the first order derivative is

(K1 = [{INY %QB ﬂ [N']Hde, (3.30h)
a §

the element hydrodynamic excitation vector is

. . tm (X
'CL VY +VHY+'CLY, ——,(S,—)—Dgtfi
{f9) = I[N]T(’s’) m (') da . (3.30 i)
o« x ml-
: DW;(ZVCVW+V:)——7§_)’—D£d

Step 3. Assembling the element equations, the global system of finite

element equations can be obtained as
[MI{D,} + ([C]+[G]D{D,} +[K]{D,} = {F}, (3.3
where {D, },{Dn}, {D_} are the global nodal displacement, velocity, and acceleration

vectors, respectively. In equation (3.31), the total mass matrix is

nelem

[M]= > '[m*“], (3.32 a)

i=1
the total hydrodynamic damping matrix is

nelem

[C]= > [c“], (3.32b)
=1
the total gyroscopic matrix is
[G]= nim[g“” 1. (3.32 ¢)
the total stiffness matrix 1s
k)= Sy, (3324)
i=l

the total hydrodynamic excitation vector is
[F1= Y [f“], (3.32¢)

and the global nodal displacement vector is
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D,]= "f[dﬂ], (3329
in which nelem is the number of finite elements.

It is noteworthy that although the assumption of the vibrations with
infinitesimal amplitude is adopted, equation (3.31) is still nonlinear. This is because
of the nonlinear effects of the hydrodynamic damping and the gyroscopic forces
appearing in the damping and the gyroscopic matrices.

To obtain the state space formulation, which is central to the development
of nonlinear vibration control theory, the second order model of equation (3.31) must
be transformed to the first order model. To achieve this, the following state vector is
defined:

X—D" 3.33
{R}_V, ()

where V.}=1{D,}. (3.34)

Substituting equation (3.34) into (3.31), one obtains
[MI{V,} +([C1+[GD{V,} +[K]{D,} = {F}, (3.35)

The system of equations (3.34) and (3.35) can be cast into the matrix form

I 0]|D 0 -1 |[D,] [0
et = . (3.36)
0 M|V, K C+G||V, F
Equation (3.36) can be manipulated in state space form

{X,} =[AliX,} + (B}, (3.37)

where the coefficient matrix or state transition matrix is

0 I
[A] :LM"‘K —M"(C+GJ’ (3.388)

and the deterministic input matrix is

0
{B} = {M_,F}. (3.38 b)

The state equation (3.37) is used for the natural frequency analysis in section 3.3, and

for the time history analysis in section 3.4.
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3.3 NATURAL FREQUENCY ANALYSIS

For free vibrations, equation (3.37) is reduced to

{X,) =[Al{X,}, (3.39)
where [A]l= [_ I\:"K _ MI“G} . (3.40)

Equation (3.39) has the harmonic solution in the exponential form
X,}=e"{X,u), (3.41)
where A =a tiw is the complex eigenvalues, @ the natural frequency, and {X ,}
the vector of complex coefficients or initial modal weights.
Inserting equation (3.41) into (3.39) and dividing through by e*, the
general algebraic eigenvalue problem is obtained as
[AlX,} = A{X,}, (3.42)
in which the matrix [A] is the real, nonsymmetrical matrix. The Fortran-90 codes for

implementing the eigenvalue problem of equation (3.42) has been developed based
on the QR-algorithm (Press et al., 1992). The steps to the solution used in the codes

are as follows:

Step | Compute the element matrices, in which the procedures are as follows:

Step 1.1  Form the element shape function matrix of equation (3.28).

Step 1.2 Determine the element mass matrix of equation (3.30 a).

Step 1.3 Determine the element gyroscopic matrix of equation (3.30 c).

Step 1.4  Determine the element stiffness matrix of equation (3.30 d).

Step 2 Assemble the clement matrices to obtain the structural matrices of
equations (3.32 a,c,d).

Step 3 Impose the boundary conditions of equations (3.23) and (3.24) by
utilizing the index matrix that identifies the dynamic degrees of freedom.

Step 4 Form the coefficient matrix of equation (3.40).

Step 5 Solve the eigenvalue problem of equation (3.42). This study uses the
implicit double-shifted QR algorithm based on the EISPACK routine
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HQR2 (Smith et al, 1976) to compute the eigenvalues and the
eigenvectors.
Step 6 Save the numerical results of the eigenvalues and the eigenvectors in the

result file.

3.4 NONLINEAR VIBRATION ANALYSIS

From equation (3.30 1), it is seen that the excitations inducing the nonlinear
forced vibrations of the marine riser originate from the unsteady flow of ocean wave

with velocity ¥ and the unsteady flow of transported fluid with velocity V. In
chapter 2, the expression of the ocean wave velocity ¥, has been determined by
using Alry’s wave theory, as shown in section 2.6.1. However, the expression of V,,

has not yet been mentioned. This is because the unsteady internal flow depends upon
many factors such as: the variation of fluid density along the riser length; the
unsteadiness of pump rate; the change of cross section of the riser due to the axial

deformation as described in section 2.3. Consequently, the accurate expression of V,,

closed to the real circumstances, is considerably more complicated and difficuit to
resolve by any theory. For simplicity, this study represents the unsteady internal flow

velocity V,, as

Vg =V,t+V, cosw, (3.43)
where ¥V, is the linear velocity amplitude of internal flow, ¥, the wave velocity
amplitude of internal flow, and @, the forcing frequency of internal flow.

From section 3.2, the initial-boundary-value problem of nonlinear
vibrations with infinitesimal amplitudes of the marine riser is reduced to the initial-
value problem of the state equation (3.37) i association with the initial conditions
(3.25) by using the finite element method. This initial-value problem is highly
nonlinear owing to the effects of nonlinear hydrodynamic damping. For
implementing such an initial-value problem to be solved by numerical integration,
the Fortran-90 computer code has been developed following the steps as shown

below.



Step 1
Step 1.1
Step 1.2
Step 1.3
Step 1.4
Step 1.5
Step 2
Step 3

Step 4

Step 5

Step 6
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Compute the element matrices, in which the procedures are as steps 1.1
to 1.5:

Form the element shape function matrix of equation (3.28).

Determine the element mass matrix of equation (3.30 a).

Determine the element gyroscopic matrix of equation (3.30 c).
Determine the element stiffness matrix of equation (3.30 d).

Determine the element hydrodynamic damping matrix of equation (3.30
b) and the element hydrodynamic excitation vector of equation (3.30 i).
Assemble the clement matrices to obtain the structural matrices of
equations (3.32 a-e).

Impose the boundary conditions of equations (3.23) and (3.24) by
utilizing the index matrix that identifies the dynamic degrees of freedom.
Form the coefficient matrix of equation (3.38 a) and the deterministic input
matrix of equation (3.38 b).

Integrate the initial-value problem of equation (3.37) in association with
the initial conditions (3.25) by the numerical integration. In this study,
the Gear’s stiff method using the backward differentiation formulas up to
order five based on the subroutine DIFSUB (Bathe, 1996) are applied.
The numerical values of the first derivatives of the state vector or the
left-hand side of equation (3.37) are computed.

Save the numerical results of the dynamic degrees of freedom of the state

vector in the result file.
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4. RESULTS AND DISCUSSIONS

In this chapter, validation of the numerical results obtained from the
solution procedures proposed in chapter 3 is demonstrated in section 4.1. The
important results of the three-dimensional static analysis are concluded in section
4.2. The parametric studies are designated in section 4.3. Based on the numerical
results of the parametric studies, the effects of axial deformation, and fluid
transportation on behaviors of the pipes are explained further in sections 4.4, and 4.5,

respectively.

4.1 VALIDATION OF NUMERICAL RESULTS

The accuracy of the solution can be verified in two ways: first, using the
direct methods, and second, using the indirect approaches. The direct methods deal
with monitoring and controlling the occurring numerical errors, while the indirect
ones involve cross-checking with the solutions of the test cases reported in literature.

4.1.1 The Direct Methods

In nonlinear static analysis for which the equilibrium equation is
['K]{'D} = {'R}, Bathe (1996) showed that there are two kinds of errors to be
controlled, namely the load error
{A'R}={'R}~['K]{'D}, (4.1)
and the solution error
{'D}-{'D}=['KI"{A'R}, 4.2)
where {'D} and {'D} are the calculated and the exact degrees of freedom. He also

demonstrated that the load error is usually much less than the solution error.

Consequently, although the load error seems to indicate an accurate solution, the
solution error may still be large, especially if ['K]”’ is very large. In this study, for
convenience the load error is kept very much small {A’R}— {0} in order to

approach the solution error to zero. To achieve this, the Frobenius matrix norm of the

load error, which has the scalar value
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g -3 e 03

is minimized to less than 107",
In the natural frequency analysis for which the standard equation is

[Al{X,} = A{X,}, the performance index, which was first developed by the

EISPACK project at Argonne National Laboratory (Smith et al., 1976), is employed
to measure the performance of the EISPACK routine HQR2. The performance index
is defined by

= o X — 2K

PI =
zis¥ 10g) A”l”Xm'

, (4.4)

1

where each pair of 4, and X, is the eigenvalue and the corresponding eigenvector
of the matrix [A] of order N, and ¢ the precision of arithmetic of the test machine.

Note that the norm used in equation (4.4) is a modified form of the 1-norm, namely
for the complex vector r: _
N

Iel, = - {Re)] + {tm(r )]} (4.5)
The performance of the EISPACI{lroutine HQR?2 in determining eigensolutions is
excellent if P/ <1, good if 1 < PI <100 and poor if P[> 100. In this study, all the
performance indexes are found to be less than 107, hence the excellent condition of
the eigensolutions is definitely achieved.

In the nonlinear vibration analysis, the state space formulation is
presented, thus the explicit time integration is preferred. However, the major
drawback to the explicit methods is that they are conditionally stable, because the
time step has a critical size. This shortcoming is overcome in this study by adopting
the automatically adaptive time-step-size algorithm, which is included in the
subroutine DIFSUB developed by Gear (1971). By using this algorithm, the time-
step-size is automatically improved during the integration process so that the

absolute error criterion:

max (error,) < tol (4.6)

is achieved. In this study, fof = 107 is set forth, and the corresponding adaptive time-

step-sizes are in the range 10 to 107" sec.
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Table 4.1 Comparisons of In-Plane Natural Frequencies of Test Cases

X

A = Undeformed cross-sectional area

F = Elastic modulus

Vi

suspended cable

Case !: the Nondimensional Parameter

iy 2+ 2
£ ;SOOO,ﬂM;O.95,Q=w\/E

w, S S g
Chord Quadratic
Inclination Mode Fifih Order Interpolation (This Study*) Interpolation
& No. [105]
4 Elements 10 Elements 20 Elements 8 Elements
0 ,(82)) (.62 (5.88) 0.62 (5.87) 0.62 (5.87) 0.60 (5.65)
@,(£2;) 0.92 (8.75) 0.92 (8.74) 0.92 (8.74) 0.92 (8.77)
30 w, (Ql) 0.58 (6.00) 0.53(5.43) 0.51(5.29) 0.50 (5.17)
@,(£2,) 0.98 (10.11) 0.85 (8.73) 0.81 (8.34) 0.80 (8.17)
60° @, (Q1) 0.30 (4.05) 0.27 (3.65) 0.26 (3.56) 0.27 (3.65)
@, (€2,) 0.52 (7.06) 0.46 (6.19) 0.44 (6.00) 0.47 (6.30)

Case 2: the Nondimensional Parameter

- 2+ 2
E 52500,——”}6‘8%50.98,9:0)\[3
g

w,S
Finite Element Method Initial-Value Method
oo | Fiemens tomieiing  sCune SOl
(This Study*) Element [105] | Elements [105] Mf o ‘1’\2‘;:}‘1‘:)‘;“5
@, 0.793 0.809 0.795 0.80 0.811
@, 1.148 1.185 1.155 1.16 1.175
w, 1.620 1.680 1.627 1.63 1.653
w, 1.984 2.090 1.998 1.99 2.027

* Including the effect of axial deformation
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4.1.2 The Indirect Methods

The indirect methods involve comparisons of numerical results with the
test cases. This study adopts the two test cases of the suspended cables reported in
the papers by Henghold and Russell (1977), Gambhir, Barrington and Batchelor
(1978), West, Geschwinder and Suhoski (1975) and West and Caramanico (1973).
As shown in Table 4.1, the natural frequencies of the suspended cables calculated
from the simplified version of this study are in good agreement with those obtained
from other works. Therefore validity of the numerical results is confirmed.

Yet there are other informai checks that are carried out in this work.
These include comparisons of the mode shapes of free vibrations of the marine pipes
with the results reported by Pesce et al. (1999) and Chucheepsakul (1983);
comparisons of the shapes of static equilibrium configurations and bending moment
diagrams with the results of Bernitsas et al. (1985); checking the precision of the
boundary conditions; checking that if subharmonic and superharmonic oscillations
do not occur, the response frequencies should be closed to the hydrodynamic
frequencies. The outcomes of these informal checks also manifest validity of the

numerical results.

4.2 THREE-DIMENSIONAL STATIC ANALYSIS

This section presents the important results of three-dimensional static
analysis of the deep-water risers. The properties of the riser used in the numerical
applications are summarized in Table 4.2. The riser is subjected to a tidal current
with an exponential velocity profile, Eq. (2.41), acting in the x-direction and a
triangular profile in the z-direction as show in Figure 4.1. The velocity of the current
at the surface is 0.75 m/s and 1.3 m/s, respectively. The displacement is computed in
two different ways. First, the three-dimensional model described in the previous
section is used to obtain the resuits. Second, the two-dimensional model is used to
approximate the three-dimensional deformation by vectorial summation of the two-

dimensional deformations in the x-y plane and z-y plane.
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Table 4.2 Properties of the riser used in the three-dimensional nonlinear static

analysis

Property Value
Undeformed external diameter of the riser 0.610 m
Undeformed internal diameter of the riser 0.575m
Density of pipe 7850 kg/m’
Density of sea water 1025 kg/m®
Density of internal fluid 998.3 kg/m’
Elastic modulus 2.07E+10"
The ratio of the top tension to the effective weight (TTR) 1.1,1.5
Sea depth (L) 2500 m
In-plane offset 0Om
Out-of-plane offset 0m
Normal hydrodynamic drag coefficient 0.7
Tangential hydrodynamic drag coefficient 0.03

YA
V =130ms

V™ 0.75 mis ‘

Figure 4.1 Deep-water riser subjected to the tidal and the triangular profile currents
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Table 4.3 Displacement

and bending moment
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comparison,

between two-

dimensional and three-dimensional nonlinear analysis, of a riser subject

to a tidal and a triangular current for TTR 1.1

Lateral Lateral Total Lateral
TlTlR dis‘:lfcl::fent é)ll;;l(;f;gﬁ:rft Displacement {'+)"+("2) Bending moment (N-m)
{m) (m) (N-m)
¥/ | 2D | 3D | 2D | 3-D | 2D | 3D | Diff 2D 3-D Diff
1.00 0.00 0.00 0.00 0.00 0.00 0.60 0.00 0.00 0.00 0.00
090 | 725 | 784 [10.17 [ 1403 [ 1248 [ 16.07 | 358 | 117391 | 1339.68 | 165.77
0.80 13.77 1473 | 17.68 | 2499 | 2241 | 259.01 6.60 1176.02 | 1399.39 22337
0.70 1946 | 20.55 {2279 | 33.06 [ 2997 | 38.93 8.96 111345 | 144347 330.01
0.60 | 24.15 | 25.14 | 25.73 | 38.36 | 35.29 | 45.86 | 10.57 | 1077.77 | 1417.98 | 34021
0.50 27.62 | 2829 | 2671 | 4097 | 3842 | 49.79 11.36 | 110493 | 1465.14 360.21
0.40 29.57 | 29.71 | 2588 | 40.89 | 39.2% | 50.54 11.25 | 124705 | 1654.05 [ 407.00
030 [ 29.46 | 2899 [ 2331 [ 37.93 | 37.57 | 47.74 | 10.17 | 1606.53 | 2040.57 | 434.03
020 [ 2639 | 2540 | 18.88 | 31.58 | 32.45 | 40.53 | 808 | 2424.71 | 2885.39 | 461.18
0.10 | 1842 [ 1736 | 1197 | 2047 | 21.97 | 26.84 | 4.87 | 426535 | 479843 | 533.07
0.00 0.00 0.00 (.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Table 4.4 Displacement and bending moment comparison, between two-
dimensional and three-dimensional nonlinear analysis, of a riser subject
to a tidal and a tritangular current for TTR 1.5
Lateral Lateral Total Lateral
TITSR disl;lfclea:fent ;2;1(; f:glll?:rft Displacement W]" Bending moment (N-m)
(m) (m) (N-m)

YL | 2D [ 3D | 2D [ 3D | 2D | 3-D [ Diff 2D 3-D Diff
1.00 0.60 0.00 (.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
090 | 457 | 554 | 679 | 934 | 8.18 | 1086 | 2.67 | 94343 | 1146.53 | 203.09
0.80 | 843 | 1009 | 1147 [ 16,13 | 1423 | 19.02 | 479 | 92488 | 118698 | 262.09
070 [ 1151 | 13.55 | 14.29 | 20.59 | 1835 | 24.65 | 630 | 84943 | 112026 | 270.83
(.60 13.71 15.86 | 15.50 | 22.92 | 20.69 | 27.87 7.18 786.38 1081.12 294.74
050 | 14.94 | 1691 | 1533 | 2330 | 2141 | 2879 | 7.38 | 75111 | 1032.66 | 281.54
040 | 15.04 | 1663 | 14.00 | 21.90 | 20.55 | 27.50 | 6.95 | 75436 | 1011.89 | 257.52
(.30 13.86 1495 | 11.69 | 18.83 | 18.13 | 24.04 591 805.00 1027.03 222.03
0.20 11.15 11.73 8.56 | 1415 | 14.06 18.38 432 904.88 1074.19 169.31
010 | 664 | 683 | 467 | 790 | 812 | 1044 | 2.33 | 100106 | 1106.75 | 105.69
0.00 0.00 .00 0.00 (.00 0.00 0.00 0.00 0.00 0.00 0.00
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Figures 4.2 and 4.3 show the plot of the nonlinear static configurations
and the bending moment diagram of the deep-water riser that are obtained from the
approximate two-dimensional nonlinear analysis and three-dimensional nonlinear
analysis for TTR = 1.1 and TTR = 1.5. The ratio of the top tension to the effective
weight (TTR) 1s defined as
'N,
w. L

e

TTR =

(4.7)

o

Tables 4.3 and 4.4 show the numerical comparisons of the lateral
displacement and bending moment between the two-dimensional and three-
dimensional analyses of the deep-water risers for TTR = 1.1 and TTR = 1.5,

When the top tension is specified and the arc-length of the riser is varied
with the magnitude of the large displacement. The lateral displacement and the
bending moment computed by the three-dimensional model is higher than the
displacement that computed by the two-dimensional model as shown in Figures 4.2
and 4.3. These results are due to the nature of nonlinearity in the model formulation.
The linear combination or the superposition method of 2-D cases can not be applied
to obtain the same results as those from the deep-water riser experiencing 3-D large
displacement.

The increasing of the ratio of the top tension to the effective weight
{TTR) reduces the lateral displacement and the bending moment as show in Tables
4.3 and 4.4. Moreover, the results in Tables 4.3 and Table 4.4 indicate that the
difference of the lateral displacement and the bending moment between the two-
dimensional and three-dimensional analysis are reduced when TTR is increased
because the increasing top tension increases the axial deformation, thus reduce the
effect of the large displacement. The discussion of the effect of the axial deformation
and the effect of the internal flow velocity are discussed in the next section.

From the discussion above, it can be concluded that the coupling of the
three-dimensional deformation affects on the large displacement and the bending
moment when the in-plane and the out-of-plane loads occur in the same time.
Therefore, the three-dimensional model formulation should be used in the general

case.
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43 PARAMETRIC STUDIES

The deep-water risers, which are the marine pipe under severe pressure
environments, are employed as the specimen of the parametric studies. Their input

parameters are given in Table 4.5. The details of the parametric studies are proposed
in Table 4.6, where the applied top tension #,, and the internal flow velocity °F, are

varied to demonstrate the effects of axial deformation, and fluid transportation on the
behaviors of the marine pipes, respectively. The reasons for choosing the parameters
N, and °V, for use in the parametric studies are that the axial strain £ a N, follows
the constitutive relation; and the rate of fluid transportation may be represented by

the internal flow velocity °F,.

Table 4.5 Input Parameters of the Deep-Water Riser Specimen

Parameter Standard Value
Elastic modulus E (N/m°) 0.207x10%*
External diameter of the pipe °D, {m) 0.610
Internal diameter of the pipe °D, {m) 0.575
Density of pipe material p, (kg/m’) 8337.9
Density of external fluid p. (kg/m’) 1625
Density of internal fluid p; (kg/m?) 1438
Static in-plane offset °x (m) {see Fig.4.1) 100
Static out-of-plane offset "z {m) (see Fig.4.1} ¢
°y, {m) (see PFig.2.1la) 2000
Applied top tension N, (N) 0.7x10’

L8]

Normal drag coefficient Cp,

Tangential drag coefficient Cp,

Current velocity at mean sea level V. (m/s)
Internal flow veleccity ¥ (m/s)

Added mass coefficient C

Wave amplitude ¢, (m)

Wave frequency o, (rad/sec)

Wave number k
Linear velocity amplitude of int. flow V,, {m/s)

Wave velocity amplitude of int. flow V,, (m/s)

O 0 O 0 Q0 ;OB N O O
o

Internal flow frequency m; {rad/sec)
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Table 4.6 Parametric Studies

To Study the Effects of The Values of Parameters in Table éli.2 are Reserved
Constant Except Varying

Axial deformation 'N =107,0.8x107,0.7x107, 0.67x107, 0.64x10'N
Fluid transportation V.=0,5, 10, 15, 20 m/s

4.4 EFFECTS OF AXIAL DEFORMATION ON BEHAVIORS OF THE
MARINE PIPES

4.4.1 Effects of Axial Deformation on Nonlinear Static Behavior

From the parametric study of the axial deformation effects
designated in section 4.3, the results are obtained as depicted in Figures 4.4-4.11.
The effects of axtal deformation on the nonlinear static behavior of the marine pipes
are illustrated in Figures 4.4 and 4.5, and can be summarized as follows:

44.1.1 Axial deformation reduces the large deflections of the
marine pipe. As seen in Figure 4.4, dropping the top tension, which induces a
reduction of the axial deformation, increases the sag of the marine pipe. This result is
not uncommon for a prestressed structure such as marine pipes. Diminishing degree
of prestressing significantly reduces the axial stiffness of the prestressed structure.
Consequently, the large deflections are raised.

4.4.1.2 Axial deformation affects behaviors of the marine pipe.
The pipe subjected to the large axial deformation due to high pretension behaves as
the taut pipe with low sag, whereas the low-tensioned pipe with low axial

deformation behaves as the slack pipe with large sag. As shown in Figure 4.4, the

pipe in the case where ‘N, =/0'N is taut, while the pipe subjected to
'N =6.4x10°N is largely slack, especially at the bottom portion 'y =0 - 200 m.

The vibration behaviors of the taut and the slack pipes are quite different, as will be

discussed fater.
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4.4.1.3 The allowable range of axial deformation indicates the
design patterns of the marine pipe. In Figure 4.4, the effective design criterion

belongs to the condition 0.7x10’ <'N, <10’ N. The pipe is overdesigned if

'N.>10'N is devised, and underdesigned if ‘N, <0.7xI10’N is adopted.

Overdesign is uneconomical, while underdesign results in the divergence instability
of the pipe.

44.1.4 Axial deformation reduces the rotations of the marine
pipe particularly at the large sag region. As shown in Figure 4.5 (a), the pipe that is
taut due to high axial deformation ('N, =70’N), gains much less rotation of the

bottom support than the pipe that is slack due to low axial deformation
('N, =6.4x10°N).

44.1.5 Axial deformation increases the axial strain in the marine
pipe. Figure 4.5 (b) manifests this deduction. It is seen that the axial strains in the

taut pipe with ‘N, = 10’ N are all positive or tensile and higher than those of the

slack pipe with ‘N, = 6.4x 10° N . The axial strains of such a slack pipe are found to

possess negative values at the bottom portion of the pipe.

4.4.1.6 Axial deformation augments the static stability of marine
pipes. As previously found, with reductions of the top tension, the axial strain is
reduced and can be negative at the bottom portion of the slack pipe. Following the
constitutive equation, a negative axial strain signifies a negative apparent tension.

The author found that when the top tension is decreased until ‘N, <6.4x10° N such

a negative apparent tension will become large enough to embark the local buckling at

the bottom portion of the pipe. It will be shown later that for ‘N, <6.4x10°N the

natural frequency of the pipe converges to zero, and the pitchfork bifurcation thus
OCCUTS.

4.4.17 Axial deformation magnifies the true-wall and the
apparent tensions in the marine pipe, as shown in Figure 4.5 (c). It should be note
that for marine structures, the apparent tension is more important than the true-wall

tension, because it is the total virtual tension appearing in marine structures.
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4.4.1.8 Axial deformation decreases the bending moments in the
marine pipe especially at the large sag portion. This result is due to the effects of
axial deformation on a reduction of the pipe’s rotations as shown in Figure 4.5 (b).
When the rotation 6 decreases, the bending moment M will also diminish
corresponding to the relationship

1 dé M

K=—=w-w=— .
R ds EI,

(4.8)

respectively. Figure 4.5 (d) asserts these results. It is found that the bending moment
diagrams of the pipe that is taut due to high axial deformation ('N, =10’N) are

almost vertically straight, whereas those of the pipe that is slack due to low axial

deformation ('N, = 6.4x10° N ) have the curve parts magnificently growing at 'y =0

- 200 m, where the slack pipe possesses large curvatures and large rotations.
Therefore, in the design of the slack pipe, the bending stress and the shear stress
should be carefully examined especially at the bottom part of the pipe. Sometimes
the bending and shear stiffeners may be desired at that portion to eliminate the
excessive conditions of large curvatures and bending moments, which may cause
poor serviceability and localized damage to the pipe.

4,42 Effects of Axial Deformation on Natural Freguencies

The effects of axial deformation on the natural frequencies and the
stability of the linearized system of the marine pipes are illustrated in Figures 4.6 -
4.8, and are summarized as follows:

4.42.1 Axial deformation raises the natural frequencies of the
marine pipe. To display this effect, the eigencurves are plotted in the stiffness-
frequency space as shown in Figure 4.6. It is revealed that the natural frequencies of

the pipe are increased with an escalation of the top tension. The natural frequencies

of the slack pipe with ‘N =6.4x10° N are significantly lower than those of the taut

pipe with 'N =10’ N. As the top tension is reduced continuously, the eigencurves

tend to intersect the top tension axis at the point, where the top tension possesses the
critical values and the natural frequencies are zero. This implies that buckling of the
pipe due to the effect of axial deformation is of static nature, and may be referred to

as the divergence buckling.
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4422 Axial deformation boosts the dynamic stability of the
linearized system of the marine pipe. To explain this effect, the complex plane of the
Argand diagram is displayed in Figure 4.7. A continuous reduction of the axial
deformation by incessantly diminishing the top tension motivates the pipe into
experiencing ‘static buckling’ or ‘divergence instability’ at the Pitchfork bifurcation
point, where the top tension has reached the critical value (Chucheepsakul and
Monprapussorn, 2001). This behavior is explained as follows.

Before buckling, the complex eigenvalues A have zero
real part, no matter how much the top tension is varied. The constant reduction of the
top tension yields a decrease in the natural frequencies of the pipe, which is
imaginary part of the eigenvalues, along the vertical line Re(A) =0 to converge to
zero. This type of the Argand diagram deals with the divergence instability via
Pitchfork bifurcation. After buckling, pitchfork bifurcation would change the
eigenvalues from wholly imaginary to become wholly real along the horizontal line
Im(A) =0 as shown in Figure 4.7.

Based on the Liapunov indirect method, the stability of
motion of the linearized system may be tested by examining the solutions of the
linearized equations of motion with respect to the Liapunov stability definitions
(Meirovitch, 1997). Such stability definitions can be interpreted into the complex
eigenvalue analysis as follows.

For the complex eigenvalues 4, =a; +iw,, in which
J=12,....2(numdfd) , and numdfd is the dynamic degrees of freedom,
(a) if Va, =0, the system has stable motion, which is pure oscillation, and neither
tends away nor moves to the equilibrium point as ¢ —» w0,
(b) if Va, <0, the system oscillates by asymptotically stable motion, which tends
to the equilibrium point as { — <,
(c) if 3a, >0, the system exhibits unstable motion, which departs away from the

equilibrium point as £ — .
Note that the universal quantifier ‘v’ means ‘all of °, and the existential quantifier

‘3’ abbreviates ‘some of .
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The system is said to possess ‘significant behavior’ if its
motion is either asymptotic stable or unstable, and is said to have ‘critical behavior’
if its motion is stable. The Russian mathematician and mechanician Liapunov
(Meirovitch, 1997) indicated that if the linearized system exhibits significant
behavior, the above stability criteria could be extended to the nonlinear system.
However, if the linearized system displays critical behavior, then conclusions about
the stability of the nonlinear system cannot be made accurately from the above

stability criteria.
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Adopting the stability criteria in the sense of Liapunov,
the complex eigenvalues of the marine pipe as shown in Figure 4.7 agree with the
condition (a), therefore free vibrations of the linearized system of the marine pipe
possess stable oscillations and critical behavior. As a result, the stability of the
linearized system cannot be guaranteed for the nonlinear system of the marine pipe.
Instead, the stability of nonlinear vibrations of the marine pipe should be probed by
the phase plane analysis based on the solutions of the nonlinear equations of motion,
including the fully nonlinear hydrodynamic forces, as will be shown later.

4423 Axial deformation affects the mode shapes of free
vibrations of the marine pipe. Figures 4.8 (a), and 4.8 (b) demonstrate the effect on
fundamental modes of free vibrations in the normal, and tangential directions,
respectively. It is seen that the axial deformation has a significant effect on changing
the mode shapes of normal and tangential free vibrations.

In Figure 4.8 (a), the fundamental mode shape of normal

vibration of the pipe that is slack due to low axial deformation ('N, = 6.4x 10° N ), has

one more curvature than that of the pipe that is taut due to high axial deformation

('N, = 10" N) at the bottom portion (’y = 0-200 m), where the pipe possesses a large

sag. In Figure 4.8 (b), the slack pipe has maximum amplitudes of the tangential
vibrations at the large sag portion of the pipe.

4.4.4 Effects of Axial Deformation on Nonlinear Vibration Behavior

The effects of axial deformation on the nonlinear forced vibrations
of marine pipes are illustrated in Figures 4.9 - 4.11, and are summarized as follows:

4.4.4.1 Axial deformation decreases nonlinear responses of

forced vibrations of the marine pipe. The nonlinear responses in a time period of 0-
60 seconds of forced vibrations of the taut pipe with ‘N, = /0’ N are plotted on the
left-hand side of Figure 4.9, while those of the slack pipe with ‘N, =6.4x/0°N are

displayed on the right-hand side of the same figure. By comparing the left- and the
right-hand side figures, it is evident that the slack pipe possesses much larger

amplitudes of the normal, and tangential vibrations than the taut pipe.
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vibrations of the marine pipe. Figures 4.10 (a), 4.10 (b) and 4.10 (c) demonstrate the

time histories of the normal vibrations of the top part ('y = 1800 m), of the middle

part ('y = 1000 m), and of the bottom part ('y =400 m) of the pipes, respectively. It

is seen that the slack pipe possesses much larger amplitudes of the normal vibrations

than the taut pipe.
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Figure 4.10 Effect of Axial Deformation on Time Histories of Normal Vibrations
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Over a long-term period, the normal oscillations of all
parts of the taut pipe are developed to steady motions, while all parts of the slack
pipe exhibit unsteady normal vibrations. Unsteadiness of the normal vibrations of the
slack pipe is remarkably great at the bottom part, where the slack pipe has a large
curvature. It is noticed that the response frequencies of normal vibrations of all parts
of the pipes ~2x/10 are close to the wave frequency 0.6. Therefore, the normal
oscillations of the pipes are ordinary harmonic.

4443 Axial deformation increases the stability of motion of the

marine pipe. The trajectories of the normal vibrations of the top part ('y = 1800 m),

of the middle part ('y = 1000 m) and of the bottom part ('y =400 m) of the pipes are

plotted in the phase planes as shown in Figures 4.11 (2), and 4.11 (b), respectively.
The figures revealed that as a time period passes all trajectories, which start at the
initial condition of the zero normal state speed and the zero normal displacement,
tend to the closed curves (bold lines), which may be referred to as ‘the limit cycle’
(Meirovitch, 1997).

The stability of a limit cycle can be evaluated through the
definitions of ‘the orbital stability’ or ‘the stability in sense of Poincaré’ (Meirovitch,

1997) as follows. Denoting the distance of a point x, to a periodic orbit C by
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dist(x,,C) = min {”1'(i -X

,forallx e C}, 4.9)
(a) if dist(x(z,),C) <8 for & >0 implicates an existence of any ¢ > 0 such that
dist(x(¢),C) < ¢ forall ¢t >¢,, (4.10)

then the periodic orbit C is orbitally stable,

(b) if dist(x(¢,),C) <& for & >0 implicates an existence of the condition
dist(x(?),C) >0 as - =, (4.11)

then the periodic orbit C is orbitally asymptotically stable,

(c) The periodic orbit C is orbitally unstable if it is not stable.

The physical meaning of the above definitions may be
illuminated as follows. For a given closed trajectory C, if every trajectory in the
neighborhood of C remains in the neighborhood of C, the motion of the system is
orbitally stable. If the trajectories approach C as ¢t —» «, the motion of the system 13
orbitally asymptotically stable. If the trajectories tend to leave the neighborhood of C
or approach C as ¢ —» -« , the motion of the system is orbitally unstable.

The concept of orbital stability can be extended to the
nonclosed orbits of nonperiodic solutions as follows. For the two orbits C; and C;

corresponding to the solutions x; and x», which are close to each other at time £_,

(a) if the orbits C,; and C, remain close at all subsequent times ¢ > ¢, , the orbits C,

and C; are orbitally stable,

(b) if the orbits Cy and C, converge to each other as ¢ — o, the orbits C; and C,
are orbitally asymptotically stable,

(c) 1if the orbits C; and C; tend away from each other or converge to each other as

t -» —o, the orbits C; and C; are orbitally unstable.

Adopting the aforementioned concept of orbital stability,
from Figures 4.11 (a), 4.11 (b) and 4.11 {c) it is found that the motions of all parts of
the taut pipe are orbitally stable, because all the closed trajectories remain in the
neighborhood of one another for all ¢ >z_, while those of the slack pipe are orbitally
unstable on the grounds that the closed trajectories tend to leave the neighborhood of

the others. This result indicates that the axial deformation augments the stability of

motion of the pipe.
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4.5 EFFECTS OF FLUID TRANSPORTATION ON BEHAVIORS OF THE
MARINE PIPES

4.5.1 Effects of Fluid Transportation on Nonlinear Static Behavior
From the parametric study of the fluid transportation effects

designated in section 4.3, the results are obtained as depicted in Figures 4.12 - 4.19.
The effects of fluid transportation on the nonlinear static behavior of the marine pipes
are illustrated in Figures 4.12 and 4.13, and are summarized as follows:

4,5.1.1 Fluid transportation increases large deflections of the
marine pipe. As seen in Figure 4.12, when the transportation rate is raised by an
increase of internal flow velocity, the sag of the marine pipe is enlarged.

4.5.1.2 Fluid transportation enlarges the rotations of the marine
pipe, particularly in the large sag portion of the pipe. As shown in Figure 4.13(a), the
pipe without fluid transportation has a lesser rotation of the bottom support than the
pipe with internal flow velocity 20 m/s.

45.1.3 Fluid transportation has ;1n insignificant effect on
reducing axial strain in the marine pipe as shown in Figure 4.13(b), and thus slightly
decreases the static stability of the pipe.

4.5.1.4 Fluid transportation has an insignificant effect on
reducing the true-wall and the apparent tensions in the marine pipe as shown in
Figure 4.18(d).

4.5.1.5 Fluid transportation amplifies bending moments in the
marine pipe, especially at the large sag portion. Figure 4.13(c) illustrates this result.
It 15 found that the bending moments of the pipe without fluid transportation are less
than those of the pipe with a transportation rate of 20 m/s, especially at the bottom

part of the pipe, where the pipe possesses large curvatures and large rotations.

4.5.2 Effects of Fluid Transportation on Natural Frequencies

The effects of fluid transportation on natural frequencies and the
dynamic stability of the linearized system of the marine pipes are illustrated in

Figures 4.14 - 4.16, and are summarized as follows:
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4.5.2.1 Flud transportation diminishes natural frequencies of the
marine pipe. As shown in Figure 4.14, the natural frequencies of the pipe decrease
with an escalation of the internal flow velocity. When the internal flow velocity is
increased continuously, the eigencurves tend to intersect the internal flow velocity
axis at the point where the internal flow velocity possesses the critical values and the
natural frequencies are zero. This implies that buckling of the pipe due to the effect
of fluid transportation is of static nature, and may be referred to as divergence
buckling.

4.5.2.2 Fluid transportation reduces the dynamic stability of the

linearized system of the marine pipe. The complex plane of the Argand diagram is
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displayed in Figure 4.15. It is found that a continuous augmentation of the internal
flow velocity causes the pipe to experience ‘the static buckling’ or “the divergence
instability’ at the Pitchfork bifurcation point, where the internal flow velocity
possesses the critical value. Based on the Liapunov indirect method, the complex
eigenvalues of the marine pipe as shown in Figure 4.15 have all zero real part,
therefore free vibrations of the linearized system of the marine pipe possess stable
oscillations and critical behavior.

4,523 Fluid transportation slightly affects the mode shapes of
the free vibrations of the marine pipe in the normal, and tangential, directions as

shown in Figures 4.16 (a), and 4.16 (b), respectively.

4.5.3 Effects of Fluid Transportation on Nonlinear Vibration Behavior
The effects of fluid transportation on nonlinear forced vibrations of

the marine pipes are illustrated in Figures 4.17 - 4.19, and are summarized as
follows:

4.5.3.1 Fluid transportation increases nonlinear responses of the
forced vibrations of the marine pipe. The nonlinear responses in the time period (-60
seconds of the forced vibrations of the pipe without fluid transportation are plotted
on the left-hand side of Figure 4.17, while those of the pipe with a transportation rate
of 20 m/s are displayed on the right-hand side of the same figure. By comparing the
left- and the right-hand side figures, it is evident that the pipe with a transportation
rate of 20 m/s possesses significantly larger amplitudes of the normal, tangential, and
radial vibrations, than the pipe without fluid transportation.

4.5.3.2 Flid transportation affects time histories of nonlinear
vibrations of the marine pipe. Figures 4.18 (a), 4.18 (b) and 4.18 (c) demonstrate the

time histories of the normal vibrations of the top part ('y = 1800 m), of the middie

part ('y = 1000 m), and of the bottom part ('y = 400 m) of the pipes, respectively. It

is seen that the pipe with a transportation rate of 20 m/s possesses significantly larger
amplitudes of the normal vibrations than the taut pipe without fluid transportation.

4.5.3.3 Fluid transportation reduces the stability of motion of the

marine pipe. The trajectories of the normal vibrations of the top part ('y = 1800 m),
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of the middle part ('y = 1000 m), and of the bottom part ('y =400 m) of the pipes

are plotted in the phase planes as shown in Figures 4.24(a), 4.24(b) and 4.24(c),
respectively. In all the figures, the orbital motion of the trajectory of the pipe with a
transportation rate of 20 m/s is more complex and unsteadier than that of the pipe
without flutd transportation. This result indicates that the orbital stability of the pipe is
reduced by the effect of fluid transportation.
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Figure 4.17 Nonlinear Responses in Time 0-60 Seconds of
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5. CONCLUSIONS

This research proposes the three-dimensional model formulation of an
extensible marine risers/pipes transporting fluid. The combined action of the large
axial deformation bending, torsion, and the internal flow are taken into account in the
formulation. A number of original theories of extensible elastica and new
formulation of riser/pipe transporting fluid have been developed in this research.

The original theories compose of the extensible elastica theorems and the
apparent tension concept. The extensible elastica theorems are developed in three
viewpoints; namely, the total Lagrangian, the updated Lagrangian, and the Eulerian
descriptions. The apparent tension concept is introduced in order to cover the effect
of the Poisson’s ratio.

The three-dimensional model formulation of an extensible marine
risers/pipes is developed via a variational approach based on the extensible elastica
theory, the work-energy principle, and the kinematics theory of mass transported on
the moving frame. The total virtual internal work of the risers/pipes consists of
virtual strain energies due to large axial deformation, bending rigidity, and torsional
deformations. The total virtnal external work consists of virtual work done by
effective weight of the risers/pipes, hydrodynamic loading, inertial forces of the
risers/pipes and transported fluid. The vectorial summation of forces and moments is
used to validate the variational formulation. The advantages of the present models
relate to the flexibility offered in choice of the independent variable, and the
possibility of applying them to numerous elastica problems, including some
biomechanics applications.

The numerical examples of the three-dimensional static analysis and two
—dimensional dynamic analysis have been presented by using the finite element
method based on the updated Lagrangian formulation. The parametric studies are
established and elaborated in order to explore the profound effects of axial
deformation, and fluid transportation on behaviors of the pipe. It is found that the
effects of axial deformations are very important to nonlinear static, nonlinear
vibration behaviors, and static and dynamic stabilities of marine pipes. The effects of

fluid transportation in present practice are found to be significant to nonlinear
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nonlinear vibration behavior, but insignificant to nonlinear static behavior and
natural frequencies of the pipe.

From the results of parametric studies, it can be concluded that axial
deformation reduces large deflections and nonlinear responses of the pipe, and
increases static and dynamic stabilities of the pipe. At the same time, fluid
transportation yields the contrary effects. Consequently, if axial deformation of the
pipe is designed too low, the pipe may be subjected to either poor serviceability or
buckling due to insufficient stiffness. On the other hand, if fluid transportation is
designed too high, the pipe may experience either poor serviceability or buckling due
to overloading. Therefore, the designers are encouraged to examine these effects
carefully in the design of the marine risers/pipes, especially for the design of the
highly flexible pipes with large sag.

Finally, the mathematical models developed in this research work could
be used as the basis of other research work and for the development of commercial
programs for marine riser pipe analysis. It is hoped that this study will be of some
value in the analysis and the design not only of marine risers/pipes, but also of any
kind of long slender rods and pipes that pursue rigorous treatments of extensibility,

and transported mass.
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DIVERGENCE INSTABILITY OF
VARIABLE-ARC-LENGTH ELASTICA PIPES
TRANSPORTING FLUID
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A flexible elastic pipe transporting fluid is held by an elastic rotational spring at one end, while
at the other end, a portion of the pipe may slide on a frictional support. Regardiess of the
gravity loads, when the internal flow velocity is higher than the critical velocity, large displace-
ments of static equilibrium and divergence instability can be induced. This problem is highly
nonlinear. Based on the inextensible elastica theory, it is solved herein via the use of elliptic
integrals and the shooting method. Unlike buckling with stable branching of a simply sup-
ported elastica pipe with constant length, the variable arc-length elastica pipe buckles with
unstable branching. The friction at the support has an influence in shifting the critical locus over
the branching point. Alteration of the flow history causes jumping between equilibrium paths
due to abrupt changes of direction of the support friction. The elastic rotational restraint brings
about unsymmetrical bending configurations; consequently, snap-throughs and snap-backs can
occur on odd and even buckling modes, respectively. From the theoretical point of view, the
equilibrium configurations could be formed like soliton loops due to snapping instability.

© 2000 Academic Press

1. INTRODUCTION

A CONSIDERABLE AMOUNT OF RESEARCH WORK was done concerning the problems of a pipe
conveying fluid as mentioned in the papers by Chen (1974), Paidoussis and Issid (1974), and
in the textbooks by Thompson (1982), Blevins (1990), and more recently by Paidoussis
(1998). Most of researchers determined stability criteria based on the small displacement
theory. This conventional approach, however, does not take into consideration the post-
buckling information, which supplements the lucid understanding of the mechanisms of
large deflection of pipes transporting fluid, and are indispensable to the design of nonlinear
system operation control, After publication of the paper by Thompson & Lunn (1981), the
static elastica theory is an alternative approach for nonlinear analysis of pipes conveying
fluid in the case where the pipe is dominated by divergence instability. In that study, the
elastica pipe was considered to have a constant arc-length.

Nevertheless, in some applications, the arc-length of pipe is not constant and it could
vary during operations. One may call such a pipe a variable-arc-length (VAL) pipe.
Marnne risers employed in deep-ocean mining (Huang & Chucheepsakul 1985) are
examples of the variable-arc-length pipe. The nser is a flexible conductor pipe, which
extends from the ball joint of the wellhead at seabed to the slip joint beneath the vessel.
The slip joint allows the riser to change its length as the vessel heaves and moves laterally;
consequently, the longitudinal strain is small and the effects of extensibility are negligible.
Because of large deflection behaviour under offshore environment, the initial (equilibrium)

0889-9746,/00/080895 + 22 $35.00/0 © 2000 Academic Press
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configuration of the riser may be defined as a VAL elastica and the riser behaves as a VAL
elastica pipe.

To the authors’ knowledge, the problem of VAL elastica pipes transporting fluid has not
yet been considered in the past, thus it is 'the purpose of this study to explore the
post-buckling behaviour and to investigate the possible equilibrium configurations of VAL
elastica pipes transporting fluid. Figure 1(a) illustrates the VAL pipe studied herein. The
pipe is installed on two stationary supports with a span length L and an overhang length /.
One end is held by the pinned support A of elastic rotational spring constant K, whereas the
other end-portion is propped by the support B with a static friction coefficient . After
buckling, it can slide over support B.

The literature review on various cases of the VAL pipe may be summarized as foliows.

(i) For K = (0and //L = 0the VAL pipe becomes a simply supported pipe, which cannot
flutter, as reported by Holmes (1978).

(i) For K =90 and ¢/L =0-582 the VAL pipe is an overhung pipe. Following the
equivalent force analogy given by Thompson & Lunn (1981), the results of Elishakoff
& Lottati (1988) show that if //L < (+582 the pipe is dominated by divergence, if
£fL > (-582 the pipe is dominated by flutter, and if /L = 0-582 the pipe is in transition
between divergence and flutter instability.

(iii) For K = o and #/L =0 the VAL pipe is a propped cantilever pipe. The experi-
mental and theoretical results given by Yoshizawa et al. (1985} show that the pipe does lose
stability by divergence.

{iv)] For K = o and ¢/L =~ 0-:686. The experimental results given by Jendrzejczyk
& Chen (1983) show that if #/L. < 0-686 the pipe is dominated by divergence, if //L > 0-686
the pipe is dominated by flutter, and if /L. = 0-686 the pipe is at a transition point between
divergence and flutter instability. The finite element solutions excluding the effects of
gravity forces and fluid pressures given by Escobar & Ting (1986) arrived at the same
deduction, but for the transition condition ¢/L = (-643.

(v) For K = oo and £/L = oo the VAL pipe becomes a cantilevered pipe, which behaves
as Beck’s problem (Beck 1952) and thus flutter instability dominates, as shown by Gregory
& Paidoussis (1966).

It is inferred from the above review that the condition that the VAL pipe could be
dominated by divergence is £/L < 0-582-0-686 for K = 0 to oo. From a practical point of
view, this condition is sufficient but not necessary; it is speculated that the VAL pipe with
any value of Z/L behaves as an elastica pipe if the transported fiuid 1s suddenly jetted over
the divergence velocity by a high-pressure pump. This situation, that the divergence
instability always dominates, is used as the main assumption of this study.

The static elastica formulation can be achieved by consideration of equilibrium condi-
tions between interacting flnid and pipe ¢lements. The governing nonlinear differential
equation obtained for elasticas, together with the boundary conditions, is solved analyti-
cally using elliptic integrals. As an independent check, the shooting method is also used to
obtain numerical solutions. The effects of spring stiffness and friction at the supports on the
stability criteria and post-buckling behaviour are studied and described in detail. Extensive
bending results are presented graphically and snap-bending incidents are highlighted.

2. ELASTICA FORMULATION

Figure 1(b) shows diagrams of the interacting fluid and pipe infinitesimal elements.
The transported fluid element is of density p,, steady flow speed U, pressure p;, and frictional
drag force 1, whereas an infinitesimal arc-length ds of the elastica pipe is of inner
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cross-sectional area A; and flexural rigidity EI. The positive directions of bending moment
M, vertical and normal shear forces IV and @, and horizontal and tangential forces Hand T,
in the intrinsic coordinate (s, §), are assigned in accordance with bending of a radius of
gyration r and positive curvature x as shown in Figure 1(b). Elastic buckling occurs after the
critical flow velocity as shown in Figure 1(c). It should be noted that despite sliding of the
pipe end-portion, the pipe tip E is assumed not to fall off the support B in the mathematical
treatment herein, because such a case is irrelevant to the VAL elastica pipe.

Figure 1{d) shows a free-body diagram of forces acting on an elastica pipe segment. When
the equilibrium of forces in the A and { directions of the diagrams of Figure I{b) are
considered, and the equilibrium of moments is taken about the centre point O of the pipe
element (the derivation is given in Appendix A), the internal force equations are obtained as

dn dg dmMm

40 Q=0 d9+N~vO, 0 @ =0, {la-c)
where N = T — p;A; — p; A;U? is the combined tension (Moe & Chuchecpsakul 1988).
Based on the constitutive equation of elastica theory,

do
M=—El— (2
ds
with some manipulation of equation (1), the second-order differential equations are
d*N d*Q d?¢
— + N=0, — =0, El— ={. -
402 + 10 +0 e +0=40 (3a—c)
A {Inley) B E {Outler)

Elastic spring

%/_, constant K
m Steady internal flow speed {/

(g Y = T S s - T S I S G M e T S E 3= tamucay

El :: Friction coeff. y
4

(a)

kol 40 M
Trods T B
0 tp+dp)A,
Fuid (b Pipe

Figure 1. The variable-arc-length (VAL) elastica pipe transporting fluid: (1) undeformed cenfiguration; (b)
interaction diagrams of an elastica segment.
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(Sa - S(‘)

H,
H, A R
- * -
9, M '
1N ’
LCA J _DH,y Coordinate transformation of forces
5 ' N N=Vsin+ Hcos
v H=Ncos@_Qsin 8
4 v {=Vcos8_Hsinb
agv V=0cosf+Nsin 8
S SR |
A4
¥
(d)

Figure 1. (continued) {c) a post-buckling configuration;(d) a free-body diagram of an elastica segment.

The general solution of equations (3) together with geometric relations and transformation
of forces as shown in Figure 1(d) yield the set of equations describing plane deformations of
elasticas transporting fluid, namely

d
N=—C,cos8+ C,sinfl, H=-—C,, £=cos€,
. dy )
Q=C;sinf +Cyco88, V=C, -——=sin, {4a~h)

ds

d?6 .
M=C1y+C2x+C3, EIE‘S_Z'"‘CISIHG‘{'C:;'COSG:O,

where C,, C, and C; are arbitrary constants.
The boundary conditions (BCs) of the VAL elastica shown in Figure 1{c) are as follows:

Geometric BCs Natural BCs
Support A (x,y) =(0,0), (5.6)=(0,80,), M =~ K0, (5a—)
Support B: (x, ) ={(L,0), (5.6} = (s, Og), M=0, Q=R, T=ylR| (5d-h)

Outlet end E: p, =0, N = pR| — p; A;U%. (5L,1)
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Once the boundary conditions (5) are applied to equations (4), the constants C;-C, and
the support reaction R are determined and written as

. K8
C]. = p,—AEUZ(COS 93 + A sin BB) + A4 i’(fgd, C2 = ’TA, C3 = - KGA,
A;U?L sin 85 + KO (6a-<)
pid; sinfp + K8, _
R= - , = tan(f \
L{cos8p + psin@p) A =tan(; ¥ w)

where @ = tan ™ 'y is the friction angle. The signs 4 and F in equations (6d,e) take care of
the value of |R|. Substituting equations (6) into (4) yields the governing equations of this
problem:

Ko
N=— [piA;Uz(COSGB + Asinfg) + AL “]cosﬂ + KTHA sin 8,

AKG, d—x—cose
L’ ds ’

H = — p;A;U*(cos 0z + Asin0p) +

0
Q= l:p,-A,-UZ(cos 0s + Asin0z) + AI; ‘jlsin 8+ E% cos B,

(7a-h)

AK# Kd
M= [p,-AiUz(cosﬂ,, + Asing) + T A]y + L“x — K#f,,

2

d%8 AKD K@
El P + [p;A.-Uz(cos 0 + Asinfg) + 3 A:lsine + T‘cos& = 0.

Thompson & Lunn (1981) showed that equations (7) can also be obtained from analysis
of the empty pipe subjected to the end follower force p; 4;U/* shown in Figure 1{c).

3. ELLIPTIC INTEGRAL SOLUTION

The following dimensionless quantities are introduced for the sake of generality:
s s s5p KL

qr2r2
s=3 o=l 5ot g REopgopdlL

x ¥ _
L L ss L EI EI

X== y= 8a-

X T ¥ (Ba-g)
where sg 1s the total arc-length of an elastica pipe. Then, equations (7h), (5¢,f} and the
n inflection conditions corresponding to the n unknowns 8., 8,5, ..., 8., (which are used in

the integration to determine the elastica solutions), can be written in a nondimensional form

d* . ) B )
3z T [Ulcos by + Asin 05} + AKB,]sin6 + K ,cos0 =0, 9a)
do L, df
ds 9-a, =Ko ds 8=0, =0 (95.0)
dé dé de
- _— = ... == — — N h h — 1.
dSlyzs.  dS|o=q,. H . 0 inwhichn=m+n,—1 9d)
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Let m be the order of the buckling mode and n, the number of rotational springs, here n, = 0
for K =0 and n, =1 for K # 0. The subscripts 4, B, C,, C,, ..., C, denote quantitics
evaluated at the support points A, B and at the inflection points C,, C,, ..., C,, respectively.

Upon integrating equation (9a) with respect to 8 and applying equations (Sb-d}, the
following set of first-order differential equations and the n + 1 constraint equations are
obtained:

_ de - dx dy .
x—d—gmi\/a+bsmﬂ+ccos(9, ES:—cosB, E—smﬂ, {10a—c)

b(sin 0y — sind.) + c(cosfy — cosd,) + K265 =0,

b(sin8p — sin ¢} + c{cosfy — cosbc) =0,
b(sin 6 — sin B¢,) + c{cos By — cosO¢ ) =0, (11)
b(sinflp — sinf;) + c(cos g — cos ) = 0,

where
a=—bsinflg —ccosfy, b=-—-2K0, c¢=2[Ulcosy+ Asinfg) + AKE,]. (12a~c)

The minus sign ( — ) of the dimensionless curvature « is for the concave curve, whereas
the plus sign ( + ) is for the convex curve of elastica portions.

The integration and mapping of equations (10) by elliptic integrals (Byrd and Friedman
1971) yield the closed-form solutions of equilibrium configurations as follows in tabular
form:

Coordinates The interval containing a point Z is from

refer from the

point AtoanyZ AtoC; C;toC, C,toB

§z= Saz Sac, ¥ 5cz - Sac, tSce, t o + S c, +icz (13)
Xz = Xaz Xac, ¥ Xe,z vt Xac, F Xeio, + 0+ X o+ X z(14)
yz= Vaz Vac, + ¥,z - Vae, t Ve, + 0+ e, + Yez (15)

In equations (13)-(15),

J-e 0 | \/5)1,4 [F(®;, k) - F(@, k)] for 6;> 0; of positive K,

- 16
o K \/5 o (16)
(bl )x,rq.[F(‘pu k) (p', k)] for Gj < 9; of negative «,

2c 2kb
% cos § 46 (bz—t{;T)'i,Ti l:??(cb,-, k) — n(®, k) + ~ (cos @; — cos dﬁi)] for 8,> @,
fij = J-
6

K - \/5(;

2kb
&+ " |:’T(€D.-, k) — nid;, k) + ?(cos d, —cosd ,»)} for 6; <6,

(17)
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\/fb
_ J‘ %sinfdf  (b* +
Yi; = =

e K| J/2b

I:r;(cbj, k) — n(Py k) — — (cos &; —cosd )] for 0; > 6,

2kc
[ﬂ(@f, k) - f’(¢j, k) — _b_ (COS ¢,‘ — COS§ ¢J’):| for 01 < 9,—,

(B + A7
(18
in which the following parameters are prescribed in mapping:
n (P, k) = 2E(P, k) — F(P,, k), ¢ =sin 1(2) =cos™* (%)
{19a-¢)

R e N = W NG

The functions F(®, k) and E(P, k) are the adjustable e]llptrc integrals of the first and
second kind, respectively, defined as

F(®, k) = sgn(f) x {Jacobi’s standard elliptic integrals of the first kind}, (191)
E(®, k) = sgn(f) x {Jacobi’s standard elliptic integrals of the second kind}, (19g)

where

_ 1 if sin{fp — 6) <0,
sgn(6) = { —1 if sin(p — ) > 0.

There are n + 2 unknowns in the foregoing elliptic integral formulation, namely either(8,,,
bs, ¢, Oc,, ..., Bc.) under displacement control or (84, 8¢, Oc,, ..., 8¢, U) under internal
flow control of the stability of the pipe. Therefore, n + 2 equations are required for solution,
for instance equations (5d) and (11). Equation (5d) with the assistance of equations (15) and
{(18) can be expressed in elliptic integrals form as

(19h)

Y8 = Yac, + e, T Voo, + - + Vet Jes =0, (20a)
where for n being an even number,
NP4, k) — 20(Dc,, k) + 21{Pc,, k) i

N

Vo= &2 + — o = 2P, , k) + 2n(Pc,, k) — (P, k) (20b)
_ 2kc fcos®, — 2cos D¢, + 2cos P,
b \ —--—2cos®c_, + 2cos P — cosPy ]

and when » is an odd number,

— (P, k) + 2n(Pc,, k) — 2n(Dc,, k) T

Sz

V8= 2 PR + = 2B, k) + 20( D, k) — n(Pp, K) |- (20¢)
__Z_E —COS¢A+2COS¢Ci*2COS®CZ
b \ 4+ - —2cosPc_, +2cos P —cos Py

The system of nonlinear algebraic equations (11) and (20) is sotved using the quasi-
Newton method of minimization for the sake of global convergence (Press et al. 1492). The
details of the iterative procedure are given in Chucheepsakul et al. {1999).
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4. SHOOTING METHOD

In view of equations (2), (5}, (7} and (8), another nondimensional form of the governing
differential equations and the boundary conditions can be written as

do _ _ .

FEh 5[ — KO, (x + Ay — 1) — Uy(cos 85 — Asin 8], 21)
dx  _ dy .
go¢ = Sneos 8, go% = Sesin 8, (22a,b)

X0 =0, W0)=0, 80)=8, x(1)=1, y1)=0, 6(1)=46s. (23a-f)

There are five unknowns in the above equations, namely either (8, x, y, 55, #,) under
displacement control or (U, %, 7, 55, 0,) under internal flow control of the stability of the
pipe. By employing the five end conditions of equations (23a-e), this boundary value
problem under internal flow control could be solved by the following procedure.

Firstly, the shooting angle is prescribed by the initial values of equations (23d-f} and the
guessed values of §5, U and 6,. Secondly, the integration is carried out from s* = 1 to
0 using the fifth-order Cash-Karp Runge-Kutta Fehlberg method (Press et al. 1992).
Thirdly, the error norms are evaluated relative to the targets of equations (23a—c) and the

following objective function JI is minimized using the downhill simplex method (Nelder
& Mead 1965):

Minimize IT = |%(0)| + [#(O)} + [0(0) — 6. (24)

500,

Finally, the foregoing steps are iterated until the allowable error is achieved.

5. STABILITY CRITERIA

The conventicnal approach for determining bifurcation criteria of the VAL elastica pipe is
based on linear theory, which uses the small displacement assumption, ds = dx,# = dy/dx
and cos @ = 1,sin§ = 0. Thereby, equations (6) yield C; = p;4;U%, C, = C3 =0,R =0and
A = F p. By manipulating equations (2) and (4g), one obtains the boundary value probiem
of linear system,

Voxxxx + B2 Vuxx = 0 {25a)

with the boundary conditions
y(0) =0, yL) =0, (25b,c)
P 0) = Kyx0),  pod L) =0, (25d.¢)

where a subscript { ),, = d( )/dx, $* = p;4;U%/EI and K = K/EL
Equation {25a) has the general solution

y=A;sinfix + A;cos fix + Aax + A,, (26)

in which 4,, 4,. 4; and A, are constants depending on the boundary conditions.
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Applying equation (26) to equations (25b-e) yields the characteristic equation

0 1 0 1

sin L cosBl. L 1
Py g g o en

prsin L picosfL 0O O

Expansion of this determinant along with some manipuiations yield

Ku
tany = AT R (28)
where u = L, and u? is the dimensionless bifurcation velocity U,. For the case of simply
supported VAL elastica pipes, K = 0, thus equation (28) is simplified to tanu =0 or
U, = m*a?, which is the well-known Euler buckling solution. For the case of fixed sup-
ported VAL elastica pipes, the limit of equation (28} when K — oo yields the characteristic
equation tan y = u.
On switching to the elastica theory, the same stability limits are derived from the
condition

S8 = S4c, + Scic, T 8c,c, + - + 3¢, ¢, + Sca= 1. (292)

Substituting equation (16) into equation (29a} yields the characteristic equations of stability
limits as follows. For n being an even number,

V2 [F@uk) = 2F(@c, ) + 2F(Pc k) 11 o

8= B+ | — - = 2F(Pc, _,, k) + 2F(Dc, k) — F(Pg, k) |
and for n being an odd number,
2 [ —F@.1)+2F&, k) - 2F(@c,, k) 7.
8= (b + | + - —2F(®c _, k) + 2F(®c, k) ~ F(Pg k) | L (9

Equations (29) are easily examined by hand in the case of K = 0 under the parameters
simplified from equations (19) as follows:

6[' g 0, i= A, Cl, Cz, aeay Cm B, a=— 2[7‘,, b= 0, = 2{7],, (303.—0)

@ = 0: p= Zﬁbs (pi = ga k = Os (BOngJ
T
~ if ;0"
1!.’ 3 i » ﬁ 1 )
F(®, k) = F(—, O) = RPN Y Saahaye—F (30h,1)
2 ~2 g0, CHT VT,
Substituting equations (30) into equations (29) yields the stability limit as
Up = (n + 1)’n* = m’n%, (31)

which is the Euler buckling solution as well. The numerical results of bifurcation velocity
determined from equations (28) and (29) are found identical and are shown in Figure 5(b).

The numerical results of flow velocity—displacement curves shown in Figures (2) and 5(a)
indicate that the bifurcation velocities U, at the branching point are also the critical
velocities. Nevertheless, when the support friction is taken into account, the critical
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velocities are set apart from the bifurcation velocities as shown in Figure 4{a). In such a case,
the critical velocities are determined using the dichotomous search method (Rao 1996).

6. RESULTS AND DISCUSSION

The elliptic integral method and the shooting method have been cross-checked for
validating almost all of the postbuckling results presented in this study. An example to
show validity of the solution is given in Table 1 in which numerical results are compared
for the VAL elastica pipes with K =0 and u=9. It is secn that the two methods
yield almost identical results. However, the shooting method has advantage over the elliptic
integral method in view of the unknown number, complexity of formulation, and indepen-
dence of inflection points. To demonstrate the effects of arc-length variableness, of
support friction, and of elastic rotational restraint on postbuckling behaviour of the
VAL elastica pipe, the following three numerical examples with different boundary condi-
tions are studied.

6.1. SimpLy SuprporTED VAL ELastica Pipes

Figure 2 illustrates the relationship between the internal flow velocity U and the support
rotations d,, 8y of the constant-arc-length elastica pipe and the VAL elastica pipe. The
equilibrium paths of the systems are along the vertical axis, the horizontal branching lines,
and the ascendent and descendent branching curves. On the equilibrium paths overlying on
the vertical axis, the three states of possible behaviour of the pipes may be explained as
follows.

(a) Stable state {before a branching point). This state occurs when the pipes convey fuid
with internal flow velocity less than the critical flow velocity U,,. In this state the VAL
elastica pipe does not have both bending and sliding (6, = 83 = 0) because no buckling has
occurred. Consequently, there is no difference of behaviour between linear problems and
elastica problems.

(b} Critical state (at a branching point). This state occurs when the pipes convey fluid
with internal flow velocity equal to the critical flow velocity U,. In this state the VAL
elastica pipe still does not have both bending and sliding (8, = 8 = 0) because of being in
a transition state. This implies that the stability criteria of both linear problems and elastica
problems are the same.

(c) Unstable state (over a branching point). This state occurs when the pipes convey fluid
with internal flow velocity higher than the critical flow velocity ¥U,,. All the points that
belong to the flow velocity axis and are located above U, belong to this state. These
equilibrium states are unstable and cannot be maintained if a disturbance, however small, is
applied to the pipe. Practically, equilibrium paths will bifurcate along branching curves
rather than going on this state.

On the equilibrium paths along the horizontal branching lines, and the ascendent and
descendent branching curves, the three post-buckling states of the pipes may be explained
as follows.

(i) Stable post-buckling state {along the ascendent branching curves) is the state that
when U increases, the end rotations 8, and 8 will increase as well, and the elastica
will be bent stably, namely a small disturbance does not affect to the equilibrium of the
system. The constant-arc-length elastica pipe is on this state after buckling, as shown
in Figure 2. :
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p AUTL

Internal flow velocity U =
Ei
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60 —153.4

-20 -15 ~-10 ~05 0 0.5 1.0 1.5 2.4
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Figure 2. Relationship between internal flow velocity &7 and support rotations 6, and 5 for K =0 and u = 0.
-—=—-, Elastica pipes with constant arc-length; ——, linear, small deflection, ——, elastica pipes with variable
arc-length. The symbel °s” denotes stable state; and 0, unstable state. The numbers 1,2,3,4 indicate instability mode

numbers: 1,234, respectively.

(ii) Neutral post-buckling state {along the horizontal branching lines) is the state that
the pipe may undergo small lateral deflections with no change of the critical flow velocity
U,. This state occurs only with the ideal pipe based on the linear analysis, as shown
in Figure 2.

(iii) Unstable post-buckling state (along the descendent branching curves) is the state that
when Udecreases, the end rotations 8, and 65 increase instead of decreasing. This implies
that after buckling, the pipe will be bent unstably, namely a small disturbance will initiate
continuous pipe motion. The VAL elastica pipe is on this state after buckling, as shown in
Figure 2.

The possible unstable equilibrium configurations of VAL elasticas transporting fluid with
the steady flow velocity U = 6 are displayed in Figure 3 for the 1st-4th buckling modes. It
is found that for an equal U, the elastica length §5 of higher-order modes is longer than
that of lower-order modes. However, when the unstable equilibrium of all buckling modes
of the VAL elastica pipe reaches the final state # , = 6 = 7/2, the arc-length of all the modes
will become equal, and has the maximum value Sp;pay, = 2-1884 as shown in Table 1.



ELASTICA PIPES TRANSPORTING FLUID 907

2 mode shape, s,/L = 1.575186
3" mode shape, 5,/L = 1.797530

[elis]

1¥ mode shape, s, /L = 1.146920

Figure 3. Unstable equilibrium configurations for K =0, uy=0,and O = 6.

Chucheepsakul et al. (1995,1996,1997) were aware that this value is an invariant property of
the single curvature bending of VAL elasticas under moment gradient, end moment, and
point load.

6.2. FrictioNaLLY SurpORTED VAL ELasticA PiPES

The effect of friction at the support B is studied on the fundamental buckling mode by fixing
K = 0 and varying u = 0 to 1. Figure 4(a) shows the effect on flow velocity-displacement
relationships in the case of g = 0-25 and 0-5 for flow-loading condition (history of steady
flow increase) and g = —0-25and —0-5 for flow-unloading condition (history of steady flow
decrease}.

Under flow-loading conditions the equilibrium paths of the frictionally supported VAL
elastica pipe are somewhat different from those of the simply supported VAL elastica pipe.
Though their stable states are the same on the vertical axis, after bifurcation the branching

12
[ {J,, = 10.5346 {critical velocity) _
10 T, = 10.0495 (critical velocity) ~ Up = 98696
'::‘ (bifurcating velocity)
e I
- L
g of
= L
E oaf
g
= C
2r
0
0 05 10 15 2.0
(a) Support rotations 8,, , (rad)

Figure 4. (a} Effect of friction coefficient ¢ on the relationship between internal flow velocity U and support
rotations 0, and {j.
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Unlonded few a¢
D,y = 10.5326
'y
12 j-ow § 125
o 19 120 :_ 12.1991
g <y s 11.8126
g 2 st
] [
g S 1ofF
s z -
g = :
E 'g 105
£ £ f
100 F -unloading condition
9.
0 : : 9.5
0 0.5 1.01 1.5 2.0 0 02 04 06 08 10
(b) Support rotations 8,, 8, (rad) ©) Support friction coefficient u

P X

or L
05 Path abc
1.0 :_, Path ade

EN TN :

15k Path afg
20F Path ahi
25 “'_ Path aj

(d)

Figure 4. {continued)(b) Equilibrium path changes; {c) critical flow velocities U ; (d) equilibrium configurations:
path ‘abc’ is stable for U = 10 (loading), and unstable for U = 10-9-7259 (unloading); path ‘ade’ is critical for
U = 10-5346 (loading), and unstable for U = 10-5346-8-0452 (unloading); path ‘afg’ is unstable for both U = 10
(loading) and U = 10-5-5703 (unloading); path *ahi’ is unstable for I = 5 (loading), and no equilibrium for U = 5

(unloading); path ‘aj’ is unstable for I = 0 (loading), and no equilibrium for U = 0 {unloading).

TasLE 2

Parameters of equilibrium path change corresponding to Figure 4(b)

u=05 u=-05 Stability status change
Path sa/L Og(rad) U f{rad) ) Loading — Unloading
abc 1-0002 —0:0277 10 - 00277 9-7259 Stable — unstable
ade 10174 —0-2618 10-5346 —0-2618 8-0452 Critical — unstable
afg 1-0696 —0-5136 10 —0-5136 55703 Unstable — unstable
ahi 1-4368 —1-1406 5 — — Unstable —

no equilibrium exists
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curves of the frictionally supported VAL pipe grow, corresponding to an increase of support
rotations before reaching the critical point and their descent as shown in Figure 4(a). This
means that, after buckling, the pipe will be in the stable post-buckling state, the critical
post-buckling state, and the unstable post-buckling states, respectively. This behaviour

could be explained as follows.

> 20
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(7] 15
3
& 10
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5
2 5
0
0 05 1.0 15 20
G, (rad)
1st mode
4
120
I
2 100
T‘§ 80
-
2 e
g 40
2 |
=3
=20
10
\ 4" mode
m
S 200 194,021 | 197463 197.818
k;:‘ 173935
§ 150 [i5is1a 159891
2 3" mode
g 100 Treses] 118663 LLEHTS
= N 103.150
Ei Tese wm?
Ig I 2 e
S [
50 W o568
[ 30478 41394 1" hode
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0 Sl i, ol san -
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>
Zz 50
8
B 40
z
2 30
=
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0 0.5 1.0 1.5 20
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4
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L]
o
‘G 150 |
K]
[+
-
2ot
[ =
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§
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0
0 0.5 1.0 1.5 20
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@
- Characteristic
Range of K equations
0 < K< 1000 _ _
@to B tanu = Ku
w4+ K
over® | F2= ol =

01 10 10

Figure 5. Effect of spring stiffness K on (a) the relationship between  and 8, ~-A—, K = 0: —@—, B = I -

100 1000 10000
K

— A
* Where u =V = ‘-%- UL

)

K = 10; —+—, K = 10000; (b) critical flow velocity ..
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Before branching, support friction has no effect on the bifurcation velocity, because it is
still a nonworking force as long as the VAL pipes are motionless. Referring to equation (6d),
R(6,=0, 0, =0) =0, and thus the friction force yjR{ = 0. After branching, the friction
force becomes a working force, to resist large displacements, and thus stabilizes the elastica.
That yields an increase in the branching curves, which expresses the stable buckling state as
explained in the previous topic. However, when the larger end-rotations are induced due to
the higher internal flow velocity, it is seen that the branching curves tend to reach the peak
value of J, which is known as the maximum or critical value of U or UJ,,. There, the effect of
support friction is no longer enough to stabilize the elastica; thus the system turns back to
be dominated by the internal flow, and after that, it undergoes the unstable post-buckling
state along the descending curves as shown in Figure 4(a).

Under flow-unloading conditions as shown in Figure 4(a), the equilibrium paths of the
frictionally supported VAL elastica pipe are along the vertical axis, and the descendent
branching curves as well as those of the simply supported VAL elastica pipes in the previous
topic. The effect of support friction destabilizes the elastica owing to the opposite change of
friction direction. Also, in Figure 4(a), it is seen that the locus of critical state is raised as the
friction coefficient increases.

The direction of the support friction is nonconservative. If a flow-unloading condition
happens due to any reduction of flow velocity such as partially closing the valve at inlet, the
friction direction wiil be suddenly changed to the opposite direction. Consequently, the
equilibrium path is abruptly aitered, and then induced jumping between the equilibrium
paths of flow-loading and flow-unloading conditions as shown in Figure 4(b). As a result,
changes of stability status may occur as shown in Figure 4(b), paths abc, ade, afg, and ahi.
The parameters of these paths are listed in Table 2, and the equilibrium configurations
are shown in Figure 4(d). The cffect of the support friction on critical velocity shown in
Figure 4(c) is to increase the critical velocity under the flow-loading conditions, but have no
influence under the flow-unioading conditions.

04 2™ mode shape,
| K=10000 : syfL = 1.675517

4" mode shape,
5p/L=1.953898

[wIE

3 mode shape,

1" mode shape,
sylL=1.851182 R

s/l = 1349431

Figure 6. Unstable equiiibrium configurations for K = 10000, ¢ = 0, and U = 6.
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6.3. ErasTicALLY RESTRAINED VAL ELAsTICA PipES

The effect of elastic rotational restraint at the support A is studied in the 1lst-4th
buckling modes by fixing u =0 and varying K = 0-10000. Figure 5(a) shows the
effect on the relationship between the flow velocity { and the support rotation 0 for K = 0,
1, 10, and 10000. Figure 5(b) shows the effect on augmentation of the bifurcation
and critical velocities in semi-log scale. It is observed that the critical velocities are
almost constant for K > 1000. For such a condition, support A may be considered as a fixed
boundary condition.

The unstable equilibrium configurations of the VAL elasticas transporting fluid for
K = 10000, 2 = 0,and U = 6 are displayed for the 1st~4th buckling modes in Figure 6. It is
clearly seen that the elasticas are bent skew-forward in the odd buckling modes and
skew-backward in the even buckling modes. As a thorough investigation towards these
aspects, the authors detected the snap-throughs in the odd modes and the snap-backs in the
even modes of instability whenever K > 0. For example, in the case of K = 10000 and
i = 0, the complete flow velocity—displacement curves are shown and encircled with dashed
line boxes on the ranges of snap-bending appearance in Figure 7.

180 K=10000,4=0

160

= 100 '
Snap-back behavior
_______________ of even buckling modes:
20 | equilibrium configurations

are shown in Figure 9.

60
Snap-through behavior

40 of odd buckling modes:
i- """"" equilibrium configurations
: are shown in Figure 8.

2 5.

Q’ - =
—20 PR | P SIS P | 1 1 1 FPE | -
0 05 10 15 20 25 30 35 40 45 50

B, (rad)

Figure 7. Relationship between U and 8, for K = 10000 and g = 0. —&—, First instability mode; —@—, second
mode; 3, third mode; —+—, fourth mode.
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The snapping phenomena may be explained physically by comparing with the snap-
bending behaviour of a shallow arch. As the arch is subjected to transversal load until
a critical state, the snapping will occur suddenly to change the curvature of the arch from
convex to concave. Likewise, after buckling, the unsymmetrical large deflection of the VAL
elastica pipe enhances rolling the elasticas to the complex closed loops, as shown in the
gradual formation process in Figures 8 and 9. Such behaviour brings about switching of
every curvature of the elasticas either from concave to convex or from convex to concave,

~-501

n

-50
-40
~30F
201
-1.0

=< 00

10k
20
30
40f
5.0

[

6}

(b)

Figure 8. Loop formation of equilibrium configurations due to snap-throughs for K = 10000 and p = 0:(a) the
first instability mode; (b) the third instability mode.



ELASTICA PIPES TRANSPORTING FLUID 913

With the same incentive as in the case of the shallow arch, the changes of all curvatures of
the elastica pipe induce snapping phenomena as well.

The skew-forward bending of the elasticas in odd buckling modes induces snapping by
the counterclockwise rotation of curvatures as shown in Figures 8, which is called snap-
through. Conversely, the skew-backward bending of the elasticas in even buckling modes
induces snapping by the clockwise rotation of curvatures as shown in Figures 9, which is

(a)

i
— b

-0.8
-0.6
-04
-0.2

o
[l k]

0.2
04

Figure 9. Loop formation of equilibrium configurations due to snap-backs for K = 10000 and p = 0: (a) the
second instability mode; (b) the fourth instability mode.
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called snap-back. The complex closed-loop configurations of the elasticas are found akin to
the loop soliton formation of a very long flexible elastic structure such as elastic metal band,
rubber band or ribbon under chaotic motion, as shown by the experiments done by E!
Naschie (1990).

7. CONCLUDING REMARKS

The governing equations and post-buckling solutions for variable-arc-length elastica pipes
transporting fluid with steady flow velocity are presented. The two approaches used to solve
the problem, namely the elliptic integral method and shooting method, yield almost the
same results. The branching limits obtained from the linear theory and the elastica theory
are the same. After bifurcation, a simply supported elastica pipe with constant length
buckles with stable bending, while the variable arc-length elastica pipe buckles with
unstable bending.

Under flow-loading conditions, the support friction stabilizes the elasticas and increases
the critical velocities. Under flow-unloading conditions, friction destabilizes the elasticas,
but has no influence on branching states. The reduction of flow velocity may change the
stability status of the elasticas due to a sudden change of friction direction. The effect of
elastic rotational restraint is to stabilize the elasticas and to increase critical velocities. This
effect leads to the unsymmetrical bending of at least two curvatures and eventually results in
snap-bending behaviour.
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APPENDIX A: EQUILIBRIUM EQUATIONS

A.l. Forces AcTING ON A FLuiD ELEMENT

From Figure 1(b), the forces acting on a fluid element are
d
(i) the centrifugal force = (p; A;ds)a, = p; AU Ts = p; A;U? d8, (A1)
(i) the radial pressure force = (p; + dpy)A4;sin(d6/2) + p;A;sin(d6/2), but sin(d6/2) ~
df/2 and neglecting the higher-order term gives

the radial pressure force = (p.-de + g%dg)A,- = p;A,dé, {A.2)

(iii) the normal reaction between the fluid and pipe F,ds; from the Newton’s second law
(3. F, = the centrifugal force),

Fn ds — p[Al- dé = p;Al'Uz d9,
F,ds = (p,A;U? + p;A)d6, {A.3)

(iv) the tangential reaction between the fluid and pipe F, ds; because of U is constant
(a, = 0), therefore YF, = 0,

dd
Feds — (pi + dp,-)A;cos(—z—) + p.-A,-cos(d—ze) —tds =0,
but

cos(%q) = 1, F,ds — A;dp; — tds =0,

F.ds=Adp + 1ds. (A.4)
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A.2. FORCES ACTING ON A P1pE ELEMENT
From Figure 1(b), the forces acting on a pipe element are

{i} the normal reaction between the fluid and pipe F,ds;

F,ds — l:(Q + dQ)cos(%) - Qcos(%g)] - [(T + dT) sin(%q

F.ds = dQ COS(d—G) + (2T + dT)sin (92),

N

. (d@
+ Tsm(—z—)] =1{Q,
2 2

E,ds = dQ + Td#, (A.S5)
(i) the tangential reaction between the fluid and the pipe F, ds;

Eds + [(Q + d@) sin(%g) +0 sin(%)] — [(T +dT) cos(?) - Tcos(d—zeﬂ —zds =0,
Fds=dT cos(dz_g) —(2Q + dQ) sin(%) + tds,

Fds=dT — Qdf + tds. {A.6)

A.3. INTERNAL FORCE EQUATIONS

Combining equations (A.3) and (A.5) yields

dQ + (T - p,'A,’UZ — p,'Ai) dé =0. (A.7)
Define now the combined tension (Moe & Chucheepsakui 1988)
N =T —p:; 4 — p AU {A.8)
Therefore, equation (A.7) becomes
dg
30 +N=0. (A9)

Likewise, by equality of equations (A.4) and (A.6), one obtains
dT — Qdb — A;dp; = (T — piA; ~ p; A:U?) — ¢d8 = 0,
——0=0 Al
1 ¢ (A.10)
Taking a moment summation about the centre of curvature of the pipe element {point Q),
d;
—(M+dM)+M—F,ds(r+5)+(T+dT)r— Tr + tdsr=0.

Since r + di/2 =7, Fds = dT — Qdf + tds (equation (A.6)) and rdf = ds,
~dM —(dT — Qdf)r + rdT = —dM + Q ds =0,

dM
K_Q = (). (A.11)

Equations (A.9)-(A.11) are the general equilibrium differential equations of internal forces
for 2-D inextensible analysis of the elastica pipe, neglecting its own weight.
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Effect of axial stretching on large amplitude
free vibration of a suspended cable

Somchai Chucheepsakult

Department of Civil Engineering, King Mongkut's University of Technology Thonburi,
Bangkok 10140, Thailand

Sanit Wongsat

Department of Civil Technology Education, King Mongkut's University of Technology Thonburi,
Bangkok 10140, Thailand

Abstract. This paper presents the effect of axial stretching on large amplitude free vibration of an
extensible suspended cable supported at the same level. The model formulation developed in this study is
based on the virtual work-energy functional of cables which involves strain energy due to axial stretching
and work done by external forces. The difference in the Euler equations between equilibrium and motion
states is considered. The resulting equations govern the horizontal and vertical motion of the cables, and
are coupled and highly nonlinear. The solution for the nonlinear static equilibrium configuration is
determined by the shooting method while the solution for the large amplitude free vibration is obtained by
using the second-order central finite difference scheme with time integration. Numerical examples are
given to demonstrate the vibration behaviour of extensible suspended cables.

Key words: cables; axial stretching; free vibration; large amplitude vibration; nonlinear vibration.

Intreduction

Cable structures have been used extensively in many civil and ocean engineering applications.
Practical considerations of cable behaviour may be limited to the case of small sag or small
amplitude of vibration such as finding the natural frequencies and mode shapes. However, in some
engineering applications such as cables in offshore engineering operations, large amplitudes of
vibration are encountered. The large amplitude refers to the amplitude of vibration measured from
the cable’s equilibrium position which may be the same as or larger than the order of magnitude of
the sag. The subject of large amplitude vibration of cables has been investigated by many
researchers over the past several years, Early papers on the subject include those by Keller (1959)
and Anand (1969). Rega et al. (1984) used a simple model to investigate non-linear free vibration
of a suspended cable. Forced vibration of elastic suspended cables was investigated by Al-Noury
and Ali (1985). and Benedettini and Rega (1987). Ali (1986) investigated the nonlinear response of
sagged cables with movable supports. Cai and Chen (1994) investigated the nonlinear dynamic

+ Professor
T Lecturer
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response of an inclined elastic cable under parametric and external resonances. Leissa and Saad
(1994) studied the large amplitude free vibration of elastic strings in which the effects of
longitudinal and transverse displacements are coupied.

In almost all of the aforementioned papers, the static equilibrium configuration of the cables is
assumed to be straight line or having a small sag and the effect of axial stretching is not considered
seriously. The present paper aims to develop a rigorous formulation of the cable problem that
includes the effect of axial stretching on the large amplitude free vibration of a suspended cable
with a large sag. Equations of motion in the horizontal and vertical directions are obtained by
considering the difference in the virtual work-energy functional of the cable between two states,
namely the equilibrium state and the motion state. A finite difference scheme with time integration
is used to solve these equations. The effect of axial stretching on the large amplitude free vibration
behaviour of cables is investigated by considering some numerical examples for the case of
specified total unstrained arc-length of cable and the case of specified applied tension.

2. Development of equations of motion

Fig. | shows a typical cable problem considered in this study. The cable with a span length L is
supported at the same level, with one end of the cable fixed and the other end free to slide over the
support where the specified tension is applied to maintain the cable in equilibrium position. Three
distinct states of the cable configuration are to be noted. The first state is the unstretched state, the
second the equilibrium state, and the third the displaced state. In the unstretched state, the cable
suspends by its own weight and its configuration takes on the catenary form. Due to axial
stretching, the cable moves to the equilibrium position which is considered as an initial
configuration for the cable. Owing to disturbances in loading, the cable is in the vibration or
displaced state. The coordinate parameters in the three states are represented as follows:

1) Unstretched state: X, ¥, §
ii) Equilibrium state: xg, vo, 5o
iit) Displaced state: x, y, s.

1) Unstretched state

“ ) Equilibrium state
3} Displaced state
ds
¥ _ _
F={x- )+ o Y)f
u=ui+yy

ey
Gl

2. | Cable configurations at various states
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X

"
-~

YV
Fig. 2 Free body of infinitesimal cable segment

X

e
-

. dSo, Eg
dyo

H

u+du

Y v .
Fig. 3 Equilibrium and displaced positions of cable segment

Fig. 2 shows the components of the forces acting on an infinitesimal segment in the equilibrium
position. Fig. 3 shows the same segment at the displaced position in which « and v are the
displacement components in the x and y directions, respectively, and their magnitudes can be large.
Consider an element having an unstretched length dS. At the equilibrium position, its length ds, is

given by
dsg=A1 + Yo" dxg (1)

in which a prime denotes differentiation with respect to xq.
The strain & at the equilibrium position is

dsy—dS
=25 = and dsy=(1 + £)dS (24, b)
Using Egs. (1} and (2b), one gets
A1+ )’0’2
dS_(l+—€0)dx0 (3)

The arc length ds in the displaced position (see Fig. 3) is given by

ds=J(1 + 1’y + (¥’ +v")2dx, (4)

The strain at the displaced position is
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ds—dS
== (3)

In view of Eqgs. (3} and (4), Eq. (5} can be written as

1 ;
£=—+€9-—2,,/(1 +uw )+ 00 + v )1 6)

A/1+}’0

The variation of strain £ furnishes

5e 1+& (1+u)du' + (o +v)&

JU+30? Ja+w) + 00 +v')

)

3. Virtual strain energy due to axial stretching

The virtual strain energy of the cable at the displaced position is given by
8U= [ EAededs (8)

where E is the elastic modulus of the cable, and A the undeformed cross-sectional area of the cable.
Using Eqgs. (3), (6), and (7), Eq. (8) becomes

[ : 1
[EA(I+£0)(1+M,)_ EA(1 +u) }Su,
J1 +yo* J(l +u’)2+(yo'+vn’)2

[EA(I +EU) ’
4| ===

—(Yo +v)
,,/1 + Yo 2

sU=] - odxq (9

EA(Yo +Vv") }
— 6VI
J(l + H')z + (Yo + v')2

4. Virtual work due to self-weight and inertia force

For free vibration. the virtual work due to the self-weight and the inertia force are given by

’ ” , 2?2 l 2
6W=J't l:_w___l o ﬂ}5u+lzw I+Y0  wyl+Xo ] 5vl dx,

10
s(17 &) 1+ s(l+ey (1o

in which w is the weight of the cable per unit unstretched length, and the dot denotes differentiation
with respect to time.

5. Euler equations

The virtual work of the cable is written as

om = 6U - 6W : (11)
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Using Eqgs. (9) and (10), Eq. (11) becomes

Sr = EA /1 +g , EA(L + u') , wil+y”
TE—I ——T(1+u)—— - ou +—m_-"*—
J1+yo ,./(T+ W) (yy + v & £)

it 6u pdx,

| EA(1+E,,)( vy EA(yy +v') Sv' + _W«[l +)’0'2+WA/1+3’0'2,., Sv bax
= o L o (1+g)  g(l+&) ’

14y JO+ 0 Y 4(y + V)
(12)

For static equilibrium, é7=0 and 4 = v = &’ = v/ = &2 = ¢ = 0. Thus, the integration of Eq.
{12) by parts yields two Euler equations with respect to the virtual displacements du and &v.

EAgy, |
N1+¥7%
EAgy, | . wafl +¥"
/1 +y'3 {1+ ¢

These two equations can also be obtained by considering the equilibrium of forces on the cable
segment in the x and y directions, respectively.

For the cable in motion, u#v#u'#v' #4# v+ 0, and the integration by parts gives two Euler
equations associated with the virtual cable motion 8u and év.

[EA(1+80)(1+H,) }_{ EA(L + ') } wal +y72

=0 (14)

Tyt 0 1)

JU+y72 JA+u?) + (v +v7)

EAL+E) . o " EA(y, + V') ’+wJ1 +ye wil+ys
[1 +y,(z) J(l +u,)z+(y0,+v,)z (1+g) g(l+g)

By subtracting Eq. (13} from Eq. (15), and Eq. (14) from Eq. (16), one obtains the equations of
motion in the « and v directions, respectively, as

EA[(1+ ) (1 +yu” — (1 + " + equ”)yo'ye"] EAQ +v) (g + v Yu"~(1 + u')v"]

$=0 (16)

(L+y3)” [(1+a) + Gy +v)]”
wafl + y’é .
T e(lrey ()
EA [(1 + £)(1 "'y’(z))"” + (1‘“)’0’”'—50)’0’“’))’0”] __EA(I +u’) [(1 +u ) (yo" + v )—(yy + v')u”]
(1+y5)" | () + Gy v |7
= mwmv (18)

T og(l+g)
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Egs. (17) and (18) are the equations of motion for large amplitude free vibration of extensible
suspended cables. If the terms y,, yg, and y, are set to zero (implying the equilibrium
configuration of the cable is a straight line), then Eqs. (17) and (18) are reduced to the same form
given by Leissa and Saad (1994).

6. Method of solution

The shooting method is used to solve the nonlinear equilibrium Eqgs. (13) and (14). The results of
the static solution are the strain at the equilibrium state €, at any position and the equilibrium
position y, at any position x, along the span length. For the case of specified end tension, it is more
convenient to use an expression for the tension at any position in the calculations. This expression
can be obtained by considering the equilibrium equation in the tangential direction which is

w

dT = " Eodyo (19

Integrating from x, to L and replacing 7(x,) by EA&, one obtains

W
1+g

Eqgs. (13) and (20) are used for solving the case of specified end tension.

For free vibration analysis, Egs. (17) and (18) are solved using the finite difference approach. The
derivatives of u# and v appearing in the equations of motion are replaced by the following finite
difference approximations:

T(x,) = EAgy = T, -

y(xe) (20)

' ! I 1
Uiy —Uiy ,  Vie1— Vi

T, P =2Vt
oo e h‘:’ Ry lied ,;' = (222, b)
t+1 ' -1 r+1 1 -1
oy v i —2vit+;
gl TELME Vi DIV (23a, b)
k k

in which /% is the grid size and k is the time step.

7. Numerical examples and results

Numerical examples involving two practical cases are given to demonstrate the vibration
behaviour of u and v. The first case deals with a cable with a fixed value of unstrained total arc-
length and the elastic modulus is varied. The input data for this case are as follows: 5=800 m,
L=854 m, w=9.478 kN/m, A=0.1159 m?, and the values of the elastic modulus £ are 1.294x10°% kN/m>,
1.794x10° kN/m?, and 2.294x10° kN/m’. The second case deals with a cable with a fixed value of
applied tension and the elastic modulus is varied. The input parameters, other than A, L and w as
given in the first case, are taken as: T;=17,000 kN, the assigned values of E are 1.794x10° kN/m’,
1.794x10° kN/m?, and 1.794x107 kN/m".
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E=2294x10" kN/m®
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Fig. 4 Equilibrium profiles of cables for the specified unstretched total arc-length with different values of elastic
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Fig. 5 Equilibrium profiles of cables for the specified end tension with different values of elastic modulus

Fig. 4 shows the static equilibrium positions of cables with a fixed value of unstrained total
arc-length but different values of the elastic modulus. It is seen that the sag of the cable decreases
when the elastic modulus is increased. The result is expected as the cable experiences a greater
sag as FA decreases while T, remains the same. On the other hand, if £A remains unchanged but
T; increases, the sag decreases. Fig. 5 shows the equilibrium positions for cables with a fixed
value of the applied tension. Unlike the first case, it is seen that the sag increases with an
increase in the elastic modulus. Figs. 6 to 11 show the motion of « and v plotted at the quarter
and midspan length for the first case. The computed values of the maximum strain at the
equilibrium position are also given. It can be seen from these figures that the motion of v is more
periodic and has a much larger amplitude than the motion of u. The amplitude of v at midspan is
slightly higher than the one at quarter span while the amplitude of u at quarter span has a much
larger amplitude than the one at the midspan where it shows no oscillation. Fig. 12 shows the
combined amplitude of vibration of u# and v for the different values of E. The results show that
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Fig. 6 Vibration amplitude of v at mid span and quarter span for 5=800 m and E=1.294x10® kN/m?
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Fig. 7 Vibration amplitude of # at mid span and quarter span for $=800 m and E=1.294x10° kN/m®
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Fig. 8 Vibration amplitude of v at mid span and quarter span for $=800 m and E=1.794x10° kN/m*

the amplitude of vibration decreases as the elastic modulus increases. These results have the same
trends as those found in the static case.

Figs. 13 to 18 demonstrate the effect of stretching on the amplitude of vibration for cables with a
specified value of applied tension. The motion of 1 and v show the same vibration behaviour as in
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Fig. 9 Vibration amplitude of u at mid span and quarter span for $=800 m and E=1.794x10% kN/m?
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Fig. 10 Vibration amplitude of v at mid span and quarter span for $=800 m and E=2.294x10" kN/m’
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Fig. 11 Vibration amplitude of  at mid span and quarter span for S=800 m and E=2.294x10® kN/m?

the first case. However, it is found that the amplitudes of 4 and v increase as the elastic modulus
increases. The maximum combined amplitude of vibration of u and v versus elastic modulus is
plotted in Fig. 19. It is noted that as the elastic modulus is increased beyond the values used earlier,
the resulting cable motion is unstable and the amplitude of vibration cannot be determined.
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Fig. 12 Varnation of the maximum combined amplitude versus elastic modulus for the specified total unstrained
arc-length of 800 m
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Fig. 14 Vibration amplitude of « at mid span and quarter span for 7;=17,000 kN and E=1.794x10° kN/m>

8. Conclusions

The equations of motion of in-plane large amplitude free vibration of a suspended cable have
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Fig. 17 Vibration amplitude of v at mid span and quarter span for T;=17,000 kN and E=1.794x10" kN/m?

been developed. The formulation is applicable to cables with large sag and large axial deformation
as well as a variable tension force. The method can also be conveniently applied to cables with a
specified end tension. Numerical examples for the cases of fixed unstrained total arc-length and
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Fig. 19 Varation of the maximum combined amplitude versus elastic modulus for the specified end tension
17,000 kN

specified applied tension have been demonstrated. It can be concluded that for cables with a given
total arc-length, the amplitude of vibration decreases when the elastic modulus is increased.
However, for cables with a specified value of the applied tension, the results show that the
amplitude of vibration increases with increasing values of elastic modulus.
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This paper addresses the nonlinear buckling and post-buckling behavior of an extensible
marine elastica pipe conveying fluid. The mathematical model employed in the nonlinear
buckling analysis is developed based on the extensible elastica theory and the large strain
formulation, so that the high extensibility of the pipe due to large axial strains is tackled
thoroughily. The boundary value problem of the model is solved by the shooting method,
and the numerical elastica solutions are obtained. For stability examination, the method
of adjacent nonlinear equilibrium is exploited. It is revealed that the fundamental mode
of noanlinear buckling of the pipe is reached when the pipe experiences either the critical
top tension or the critical weight. Postbuckling behavior of the pipe is recognized to he
unstable. The investigation is extended to studying various parameters that impinge on
the limit states of the pipe. These parameters are the dimensionless quantities that relate
to density of pipe material, densities of external and internal fluids, applied top tension,
Poisson’s ratio, sienderness ratio, vessel offset, seawater depth, current-drag coefficients,
current velocity, and internal flow velocity.

Keywords: Marine risers, elastica pipes, nonlinear buckling, large strains, internal flow,
Poisson’s effect, heavy imperfection columns.

1. Introduction

The marine elastica pipe stated herein refers to a pipe experiencing large displace-
ments under offshore environment. Application of the marine elastica pipe can be
found extensively in deep-ocean mining industry such as the deployment of marine
risers, flexible pipes, and hoses. Even though nonlinear behavior is absolutely perti-
nent to the marine elastica pipes, hitherto buckling analyses for most of them have
not been carried out based on the elastica theory. Examples of the related work
are found in Huang and Dareing,!'? Bernitsas,® Bernitsas and Kokkinis,*® and
Vaz and Patel,” who studied the buckling problems of drilled string, marine risers,
and submerged slender tubular columns based on the linear small displacement
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theory. Although, the linear theory can yield the bifurcation criteria, it gives no
information on the nonlinear buckling behavior and post-buckling stability of the
structures, which are indispensable for nonlinear system operation control. Further-
more, the linear theory cannot capture the effect of imperfection or initial curvature
of the marine elastica pipes induced by large deformation behavior.

In this paper, the extensible elastica formulation involving large strains and
large displacements based on the authors’ work® is applied for the analyses of
nonlinear buckling and post-buckling of marine pipes. For generating the math-
ematical model of the marine elastica pipe transporting fluid, the following three
steps are obligatory. First, the real systems of the pipe and transported fluid are
transformed into the apparent systems for ease of taking the hydrostatic pressure
effects into consideration. Second, the equilibrium equations of the apparent systems
of the pipe and transported fluid are obtained from the Newtonian derivation in
the normal-tangential coordinate. Finally, the combination between the equilibrium
equations of the pipe and of transported fluid yields the governing differential
equations describing the nonlinear hehavior of the pipe.

For the sake of generality, these equations are rendered dimensionless through
the use of a set of designated dimensionless parameters. The resultant dimen-
sionless model considers the dimensionless expressions of the following para-
meters that affect the structural buckling behavior of the pipe: (1) density of pipe
material, (2) applied top tension, (3) density of external fluid, (4) density of inter-
nal Auid, {5} Poisson’s ratio, (6) slenderness ratio, (7) vessel offset, (8) seawater
depth, (9) normal current-drag coefficient, {10) tangential current-drag coefficient,
(11) external flow velocity of ocean current, and (12) internal flow velocity of trans-
ported fluid. By performing parametric studies, the influences of these parameters
on the limit states of the pipe are elucidated, and their significances are assessed
for use in practical stability design consideration.

Since the equilibrium method is dealt with both in the formulation and in the
solution of the elastica problem, it is thus suitable to apply the method of adjacent
nonlinear equilibriumn for nonlinear buckling analysis. This technique employs a
nonlinear static analysis with gradually increasing either loads or displacements to
seek the equilibrium paths. The stability condition at any point on the equilibrium
paths is evaluated based upon the definitions of stability. It should be noted that
buckling behaviors of a pipe-like shell such as wrinkling collapse of thin shell, and
cross-section ovalization of thick shell are not treated in the present study; only the
global Euler buckling problem is considered.

2. Large Strain Formulation

As menticned earlier, the large strain formulation based on the previous authors’
work® requests the three steps for creating the mathematical model of the marine
elastica pipe transporting fluid as follows:
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2.1. Step 1: Converting the real systems inio the apparent systems

The real system of the marine elastica pipe transporting fluid is portrayed in Fig. 1.
The undeformed configuration of the pipe is changed into the equilibrium one when
the pipe is subjected to the static loads such as gravitation, and steady flows of
wind, current and transported fluid. The equilibrium configuration is transfigured
into the displaced one when the pipe is subjected to the dynamic ioads such as ocean
wave, and unsteady flows of wind, current and transported fluid. The present study
concerns the former change.

Figure 2 depict transforming the real system of the pipe into the apparent
system. The total forces acting on the real system of the pipe column (the pipe
plus transported fluid) as shown in Fig. 2(a} are distributed to summation of the
forces acting on the pipe and transported fluid as shown in Figs. 2(g) to 2(n) by
using the superposition technique, the Archimedes’ law, and the elasticity theory
(see Ref. (B) for more details). The apparent system of the elastica pipe as shown
in Fig. 2o} is achieved by summing up Figs. 2(g), 2(i), 2(k) and 2(m), whereas the
apparent system of transported fluid as shown in Fig. 2(p) is attained by summing
up Figs. 2(h}, 2(j), 2(1) and 2(n). Finally, the overall apparent system as shown in
Fig. 2(q) is accomplished by merging Figs. 2(o) and 2(p) together.

2.2, Step 2: Ezxecuting the Newtonian derivation on the apparent
systems

Consider the apparent system of Fig. 2(p), the transported fiuid element with the
length s'de is subjected to (i) the internal pressure p;; (ii) its own weight m;g;
(iti) the inertial forces m;ar, and m;ar;; and (iv) the normal reaction fp, and the
wall-shear friction 7. Note that « is the parameter defining an elastic curve, and
( ) = 8( )/Ba. Applying the Newton's second law in the normal and tangential
directions yields ’

> Fp=0: frns' = (piA)0 — (mig sinf — miapa)s’ (1)
Z Fy =0:78 = (pA;) + (msg cosd + miap:)s’ (2)

in which (s, 8) are the coordinates of arc length and rotation. Similarly, for the
apparent system of the pipe element of Fig. 2(o) one obtains

3 Fn =0 fus’ = ~Q + (T + Turs + peAc)tf

+ [fun + (mp ~ me)g sind — mpapy]s’ (3)
D F =78 = QO + (T +Tors + pede)

+ [fae — (mp — m.)g cos® — mpapels’ (4)

ZMOIO:M’zQs' {5)
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where T, } and M are the true-wall tension, shear and bending moment, respec-
tively, pe, the external pressure, fy, and fgy, the hydrodynamic forces of ocean
current and wave, mpg the pipe’s weight, —m.g the buoyancy force, and mpap,
and mpap; the inertial forces of the pipe. From the theory of elasticity, the tension
induced by triaxial pressures T;;; can be expressed as

Tiri = (20 — 1}(peAe — piA;) (6)

in which v is the Poisson’s ratio, and A, and A; are the cross-sectional areas of the
pipe column, and internal fluid, respectively.

2.3. Step 3: Integrating the individual systems of the pipe and
transported fluid into the overall apparent system

Substituting Eq. {1) into (3), and (2) into {4) together with some manipulation,
one obtains

Q' = To8 + §'|fun + wq sinf — (Mpap, + miarn)| (7)

T, = —Q — 5'[fur — we cosl — (mpaps + myap)| (8)
where

To =T + 2v(peAe — piAi), wo = (Mp — M +my)yg, (9a, b)

are referred to as the apparent tension and the apparent weight, respectively. Note
that Ty = T, + Ty, where T, = T + pA. — p;A; is referred to as the effective
tension.” It is seen that T, = T, if, and only if v = 0.5. This signifies that the
effective tension concept? is a subset of the apparent tension concept.® Equations
(5), (7), and (8) are the governing differential equations describing the nonlinear
behavior of the overall apparent system of the pipe. The reader should not be
amazed why the transported fluid-frictional effects play no role in the overall system
equations. Indeed, they do, but not explicitly seen. Physically, the reaction f,, and
the friction v perform the tasks on transmitting the static and dynamic pressures
of transported fluid (the right-hand side terms in Eqgs. (1) and (2)) into the pipe
wall (through the left-hand side terms in Egs. (3) and (4)).

In this study, the deformed arc-length is used as the independent variable
{a = s), the updated Lagrangian formulation is adopted, and the conservation of
pipe's volume!? is presumed. Therefore,

£ = (ds — d5)/ds, Dy = Di/V1 +e, Ax = Ar/(1 + €) (10a—)
I + /(1 1), my + pi Ay = My /(1 + ) (104, e)

in which k € {e, ¢, P}. The subscripts {e), (¢), and (P) denote the properties of
the pipe column, of the internal fluid, and of the pipe, respectively. The upper
bar sign () denotes the property at the undeformed state. For example A, is the
cross-sectional area of the pipe column at the undeformed state, while A, is the
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pipe-column’s area at the equilibrium state. Note that ¢ is the axial strain at the
neutral axis, s the arc length, Dy, the diameter, Ay the cross-sectional area, I the
moment of inertia, p; the internal fluid density, and m; the mass per unit length of
transported fAuid.

For static analysis, the acceleration of the pipe ap = apnfii+ap.t is a nil vector,
and the acceleration of transported fluid is derived? as

ap = apph + apst = (WV2)0 + (VidVi/ds)t (11)

where k is the curvature, and V; the internal flow velocity at the equilibrium state.
The velocity V; is determined from the continuity conditions® as follows:

Vi = ViAi/A; = V(1 + ), dVi/ds = Vide/ds (12a, b)

in which V; is the constant pump discharge. The current loading along the pipe is
due to the drag forces

fan =0.5p.0.Cpy |V, cos bV, cosd {13a)
Frt = 0.5p.DwCpy |V, sind|V, sind (13b)

where p. is the external fluid density, /). the diameter of the pipe column, Cpn,
and C'p; the normal and tangential drag coefficients, and V. the current velocity.
The profile of current velocity may be expressed in the form

+ — n
Ve = Va (?’ e ) (14)
_ Y+

where V., is the current velocity at mean sea level, 7, and §; are defined in Fig. 1{a).
The index n can be varied from 0 to 1 depending upon the current profile. In this
study, n = 1/7 is employed for a tidal current profile.!!

Based on all the above derivations along with the geometric relations and the
constitutive equations of the extensible elastica theory,® the governing equations
obtained from the large strain formulation are summarized as follows:

(a) Geometric Relations:

dz . dy dae
_— —_— = = — 1
75 sin g, Is cosf, & s (15a—)
(b) Constitutive Eguations:
T, = EApe, M = Elpx. (16a, b)
(c) Equilibrium Equations:
dM
== _ 17
—=Q a7)
dQ N .
= (T, — m.V; )ds + fin + we sind (18)
dT, do dV;
T QE - Vit 19
ds st frr + wy cosb + mV; = (19)
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Differentiating Eq. {16a) with respect to s, the expression of de/ds can be obtained
as

de (1+¢) dTy
== . | = 2
o [EAP(l n 25)] (20)
Utilizing Eqs. {12a}, (12b), and (20}, we have
dV; m; V72 di,
Vo MY | e 21
mV g [E'Ap(l +2£)] 1)

Note that m;V;? = mV2(1 +¢). Substituting Eqgs. (21) into (19) together with some
manipulation, Eq. (19) can be cast in the form

de
0= _ . COS 8
dT, Q Ts Fire +w, cos

e . 22
ds B min" ( )

EAp(1+2¢)

3. Dimensionless Model and Solution Method

The following non-dimensional quantities are introduced:

s"=s/s, #=a/L,j=y/L,8=s/L,n=L/\/Ip/Ap (23a-¢)
M=M:/Elp, Q=QL*/Elp, T, = T,L*/Elp (23f-h)
pp =ppApgL®/Elp, pe = peAegL®/Elp, p; = p;AigL?| EIp (23i-k)

Voo = Ve vV PeD LS/EIPa V VL V Pi z/EIP (231: m}

where s; is the total arc-length, L = \/Z7 4 7 the span length, and 7 the slender-
ness ratio. Manipulating Eqs. (15)—(18) and (22) with application of Egs. (23}, the
governing equations in the non-dimensional form are obtained as

di g dM -
L ssing, D s, cos0, 0 _ a1+ 25 = aQ (24a-d)
ds* ds* ds*
dQ s e dé o
Jor = [Ta — V(1 +¢) 2ar + &1l siné (24e)
‘) dﬁi — .s'tfm + &, cos @
(24f)

V2(1 +g)?
72(1 + 2)
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The dimensionless quantities W,, Ffrin, fm and e are determined from Egs. (9b),
(13a), (13b) and (162), respectively, as follows:

wo L3 _ Pp = Pet pi

Wy == EIP = 1te (253)
3 _ anL3 0.5Cpn,
fun = BT, \/_|V c059|V cos (25b)
2 L
fu: = fg}P Oj:CDtW sin 0|V, siné (25¢)
X o
e=Tallte) _ Ta (254)
i (n? —Tg)
in which
peD.L* g+g ]
Vo=V /B2 = Vo | o—= . 25¢
Elp ot [yt + yb] (25¢)
The boundary conditions of a simply supported pipe are
at §* =0
£=0,3=00=0, M=0Q=0Q, T =T (26a-f)
at s* =1:
E=G,J=0,0=0M=0,0=0,T="T (27a-f)
in which the dimensionless tension 7" is determined from Eq. (9a) as
L TL o 20(pe - 5)G
7= - 20(pe — pi)( G — ) (28)

EIp

Note that £ + %2 = 1, #;/§; = tan ¢, where ¢ denotes the angle of inclination.

The system of Egs. (24), (26) and (27) describes the boundary value problem
with nine variables. In the case where the pipe buckles because of experiencing the
critical top tension, the nine variables are &, 4, 8, M ’f’a, &, Qt and T;. Whereas
if the buckling occurs because the pipe is subjected to the critical weight, the
nine variables are £, #, 9, M Q Ta, &, Qt and gp. In the former case, the nine
equations corresponding to the nine variables are given by Egs. 26(a), 26(b), 26(d)
and 27(a)—(f). The problem is solved by the shooting method of which the solution
steps!? are as follows:

1+¢

Step 1. Set the initial step size of integration and the initial values of Z(s*), §(s"),
0(s*), M(s*), Q(s*) and T(s ) at ¢* = 1, according to Egs. 27(a)-(f).

Step 2. Given #;, one guesses &;, (; and T} at the first iteration from the linear
small displacement theory.

Step 3. Integrate Eqgs. 24(a)-(f) from s* = 1 to 0 using the fifth order Cash-Karp
Runge-Kutta with adaptive step size control following Fehlberg method.!3
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Step 4. Minimize the error norm using the Nelder and Mead simplex method!* with
respect to &, Q¢ and T;. The objective function ® for the minimization
process is

Min @ = |(0)| + [§0)] + M (0)] (29)
Step 5. Add an incremental A#; to #; and repeat steps 3-4 to construct the curves
of T; versus 8y and 6;.

Validation of the numerical results dealing with the problem of a simple variable-
arc-length elastica pipe conveying fluid is given in Appendix A. It is shown that the
numerical results obtained from the numerical procedure employed in this paper are
in excellent agreement with the exact solutions obtained from the analytical elliptic
integral method.!® Thus the validity of the method in yielding accurate answers is
confirmed.

4. Stabilty Analysis Based on the Method of Adjacent Nonlinear
Equilibrium

Based on the method of adjacent nonlinear equilibrium, the stability of an equi-
librium state is defined by introducing a physical perturbation, and investigating
the subsequent nonlinear responses. The perturbation should provoke additional
infinitesimal deformations, which make the system move to the adjacent equilibrium
state. The criteria of stability are as follows:

1. Definition for a stable state. The state of nonlinear equilibrium is stable, if the
system at that state does oppose the additional displacement due to a perturba-
tion, and when the perturbation is eliminated the system returns to the previous
equilibrium state.

2. Definition for a critical state. The state of nonlinear equilibrium is critical or
neutral, if the system at that state is idle to the additional displacement due
to a perturbation, and when the perturbation is eliminated, the system stays in
the perturbation configuration, neither returns to the previous equilibrium state
nor goes to a different state.

3. Definition for an unstable state. The state of nonlinear equilibrium is unstable,
if after subjected to the additional displacement due to a perturbation, the sys-
tem at that state moves continuously to a very different state, and cannot go back
to the previous equilibrium state even if the perturbation would be eliminated.

To use these definitions in exploring the overall stability of the elastica, either
the load-displacement diagram or the stiffness-displacement diagram needs to be
constructed. For the load-displacement diagram and the stiffness-displacement dia-
gram exemplified in Figs. 3(a) and 3(b), the stability conditions at points “a”, “b”,
“¢”, “d” and “e” can be interpreted from the aforementioned definitions as follows:
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Fig. 3. The method of adjacent nonlinear equilibrium: {a) load-displacement diagram,
(b) stiffness-displacement diagram.

As an additional infinitesimal displacement due to a perturbation is applied to
the elasticas at the states at the points “a” and “e” as shown in Figs. 3(a) and
3(b), it is seen that the loads acting on the elasticas are increased, while the stifl-
ness values of the elasticas are decreased. These results signify that the elasticas are
against the additional displacements due to the perturbation according to defini-
tion 1. Thus, the equilibrinm states at the points “a” and “¢” are considered stable
states.

As an additional infinitesimal displacement due to a perturbation is applied to
the elasticas at the states at the points “b” and “d” as shown in Figs. 3(a) and
3(b}, it is seen that no response occurs. The values of stiffness and loads acting
on the elasticas have no change. These results imply that the elasticas are idle
to the additional displacements due to the perturbation according to definition 2.
Therefore, the equilibrium states at the points “b” and “d” are recognized as critical
states.
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As an additional infinitesimal displacetnent due to a perturbation is applied to
the elastica at the state at the point “c” as shown in Figs. 3{(a) and 3(h), it is seen
that the load acting on the elastica is decreased, while the stiffness of the elastica
is increased. These results signify that the elastica is in favor of the additional
displacements due to the perturbation according to definition 3. Hence, the state
at the point “c” is an unstable state.

The values of critical load and critical stiffness at the limit states can be
determined numerically by using the search techniques of minimization methods.
In this study, the dichotomous search algorithm!® is employed.

5. Parametric Studies and Discussion

As stated in the previous section, investigating the overall stability of the pipe
by the adjacent nonlinear equilibrium method needs the plots of either the
load-displacement or the stiffness-displacement curves. The question is what are
parameters of the load and the stiffness to be plotted. From Egs. (24)—(28), it is
observed that there exist twelve parameters that affect the behavior of the pipe.
These parameters are the dimensionless quantities of (1) density of pipe mate-
rial jp, (2) applied top tension T}, (3) density of external fluid p,, (4) density
of internal fluid p;, (5} Poisson’s ratio v, (6) slenderness ratio r, (7) vessel offset
#¢, (8) seawater depth @, (9) normal current-drag coefficient Cp,, (10} tangen-
tial current-drag coefficient Cp:, (11) current velocity at mean sea level I“fd, and
(12) internal fow velocity of transported fluid Vi. Mathematically speaking, several
of these parameters can have their own critical values.

In the literature, it is well known that a heavy column may buckle by its own
critical weight.!7-1® The marine elastica pipe, which behaves as a heavy imperfection
column, hence, is supposed to buckle by the critical weight as well. So in this case,
the load is referred to as the pipe’s weight parameter gp. On the other hand, the
bending rigidity has very little influence on the behavior of the pipe.!® The axial
stiffness performed by pretension at the top end of the pipe becomes the main
structural stiffness in preventing the buckling of the pipe. Therefore, in this case
the stiffness is referred to as the applied top tension parameter ;.

Adopting the rotational angles at the bottom and top supports 8, and &; as the
interested displacements, the stiffness-displacement curves are the plots of ff} -8,
and T, — #¢, while the load-displacement curves are the plots of pp — 8, and jp — 8.
The stiffness-displacement curves are used in analyzing the nonlinear buckling of
the pipe due to insufficient stiffness in Sec. 5.1, while the load-displacement curves
are utilized in studying the nonlinear buckling of the pipe due to overloading in
Sec. 5.2. Finally, the parametric studies of the parameters pe, g;, v, 1, &, ¥, Cpon,
Cp, V.. and V;, which are considered to provide secondary effects to the nonlinear
buckling behavior of the pipe, are carried out in Sec. 5.3. The input data of the
parameters used in parametric studies are given in Table 1. The parametric study
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Table 1. Input data used in parametric studies.

. The parametric study is carried out in
The typical value of the

parameter Figs. by varying
pp = 100.57 4(a})  pp = 100, 200, 400, 700, 1000, 1300, 1600
Tt = 235.13 5(a} Ty = 100, 500, 1000, 2000, 3000, 4000
fe = 32.16 6 pe = 10, 30, 50, 70,90
pi = 18.53 7 f; = 10, 30,50, 70,90
v =105 8 v =0,0.1,0.3050710
n = 1488.49 9 n = 1000, 1500, 2000, 2500, 3000, 4000, 5000
&¢ = 0.57 which yields 10 &y = 0, 0.2195, 0.4730, 0.8192, 1.4189, 3.0574, which yield
¢ = 35° ¢ = 159, 30°, 45°, 60°, 75°, respectively
% = 0.82 which yields 11 fe = 2.1402, 0.9933, 0.5735, 0.3311, 0.1537, 0, which yield
¢ = 35° ¢ = 15°, 30°, 45°, 60°, 75°, 90°, respectively
dip = 0.41 — —
Cpn = 0.7 12 Cpn =0, 0.3, 0.5, 0.7, 0.9
Cpe = 0.03 13 Cp, =0, 0.03, 0.05, 0.07, 0.1
Ve = 6.01 14 Ve, =0,5, 10, 15, 20, 30
Vi = 2,49 15 V;=0,5,10, 15

is performed by varying the value of the studied parameter, while the typical values
of other parameters are retained.

5.1. Nonlinear buckling of the pipe due to insufficient stiffness

Figures 4(a)-4(c) demonstrate influence of the applied top tension T} on the non-
linear buckling of the pipe. Based on the method of adjacent nonlinear equilib-
rium, it is found from the stiffness-displacement diagram as shown in Fig. 4(a)} that
continuous reduction of the applied top tension can change stability status of the
pipe from the stable staie in the stable zone to the critical state on the critical
tension path, and change from the critical state to the unstable state in the unsta-
ble zone, respectively. The nonlinear buckling of the pipe takes place at the lowest
points of the stiffness-displacement curves, where T: holds the limit value Tt(cr).

Therefore, the safety design values of the applied top tension 7, should not be
less than or equal to the critical tension Tt(c.r). Because if T} < Tt(c.r), meaning that
axial stiffness is designed insufficiently; consequently, no equilibrium state of the
pipe exists. In other words, the pipe is subjected to buckling suddenly. If T — Tt(cr)
is designed, the pipe will be in the transition state. A small perturbation will lead
the pipe into an unstable state, and divergence instability will occur suddenly.
Variations of the critical top tension Tt(cr}, when the pipe’s weight parameter gp
is varied, are also shown in Fig. 4(a). It is evident that the value of the critical top
tension is raised linearly by increasing the pipe’s weight parameter.
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Fig. 4. Nonlinear buckling by critical top tension: (a) stiffness-displacement curves,
{b) equilibrium configurations of the pipe, (¢) distribution of the apparent tension along arc-length;
the characters *g”, “u”, “cr” represent the stable, unstable, and critical states, respectively; the
consecutive numbers 1-5 represent Ty = 1100, 1300, 1500, 1700, 2000, respectively.



350 8. Chucheepsakul & T. Monprapussorn

Nonlinear behavior of the pipe before and after buckling by the critical top
tension is depicted in Figs. 4(b) and 4(c). Before buckling, the pipe is subjected to
a small sag, and the stable equilibrium configuration of the pipe has a moderate
curvature as shown in Fig. 4(b). Most of the positions of the lowest tension are at
the bottom support of the pipe and the gradient of distribution of the apparent
tension along arc length is almost linear with one slope as shown in Fig. 4(c).
After buckling, the pipe experiences a large sag and a large curvature as shown in
Fig. 4(b). As the large sag increases, the positions of the lowest tension move from
the bottom support of the pipe to the bottom points of sagging, where the apparent
tension approaches to zero, and the gradient of distribution of the apparent tension
along arc length turns into another slope as shown in Fig. 4(c).

From Fig. 4(c), it is important to note that the pipe may buckle, even if every
part has not yet been subjected to the compressive force. This is due to the fact
that the apparent tension is not enough to maintain equilibrium of the pipe. It is
not a familiar phenomenon under which structural buckling mostly occurs because
of compressive force.

5.2. Nanlinear buckling of the pipe due to overloading

Figures 5(a}-5(c) expose influence of the pipe’s weight parameter on the nonlinear
buckling of the pipe. Based on the method of adjacent nonlinear equilibrium, it
is found from the load-displacement diagram as shown in Fig. 5(a) that under a
constant applied top tension, a continuous increase of pipe’s weight can change
stability status of the pipe from the stable state in the stable zone to the critical
state on the critical weight path, and change from the critical state to the unstable
state in the unstable zone, respectively. The nonlinear buckling of the pipe takes
place at the peaks of the stiffness-displacement curves, where gp holds the limit
value ﬁp(cr). :

Therefore, to be under a certain limit of the maximum safety tension of the
tensioning system, the desired pipe’s weight should not be greater than or equal to
the critical weight parameter pp(c). In the case that pp > pp(cr), the pipe will be
overloaded, and no equilibrium state of the pipe exists. In other words, the pipe
is subjected to buckling suddenly. In another case if jpp — Jp(cr), the pipe will
be in the transition state. A small perturbation will cause the pipe stepping into
an unstable state, and divergence instability will occur suddenly. Variations of the
critical pipe’s weight parameter pp(.r), when the applied top tension T is varied,
are shown in Fig. 5(a). It is evident that the value of the critical pipe's weight
pararaeter is raised linearly by increasing the applied top tension.

Nonlinear behavior of the pipe before and after buckling by the critical weight
is depicted in Figs. 5(b} and 5(c). It can be explained in the same manmner as in the
case of nonlinear buckling by critical top tension. In fact, it is proper to state that
the nonlinear buckling of the pipe due to overloading is the reverse problem of the
nonlinear buckling due to insufficient stiffness.
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5.3. Other parameiric studies

In Secs. 5.1 and 5.2, the parameters T} and pp are studied, and found to be the major
factors in causing the nonlinear buckling of the pipe due to insufficient stiffness and
overloading, respectwely In this section, influences of the parameters pe, gi, v, 7,
4, U, Cons Cpe, Ve and V; on the nonlinear buckling behavior of the pipe are

scrutinized.
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The results of parametric studies are summarized in Table 2. The effects are
deliberated on the large displacements, the critical top tension, the critical pipe’s
weight, and the stability of the pipe. Significance of each parameter is assessed by
comparing with significances of the parameters T, and f2p, which are stipulated
to be vital. The brief explanations on the action of the parameters are given in
Table 2. It should be realized that the significance evaluation in Table 2 is done for
the individual parameter. Although, some parameters are considered to have not
much influence on the behavior of the pipe, it is not inferred that they should he
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of absolute negligence in the stability design of the pipe. The combined action with
other parameters may raise further importance of them on the behavior of the pipe.

6. Conclusions

Based on the numerical elastica solutions and stability examination by the method
of adjacent nonlinear equilibrium, it can be concluded that the nonlinear buckling
of the marine elastica pipe can occur due to insuflicient stiffness and overloading,
which are referred to as buckling by the critical top tension, and buckling by the
critical pipe’s weight, respectively. The marine elastica pipe may buckle even if
every part has not vet been subjected to the cormpressive force. This is because
the apparent tension may be deficient to hold the pipe in equilibrium position.
Furthermore, the nonlinear equilibrium state of the pipe after buckling is found to
be unstable.

The influences of all the parameters that affect the large displacement, the crit-
ical top tension, the critical pipe’s weight, and the stability of the marine elastica
pipe transporting fluid, are studied and summarized in Table 2. The results indicate
that the effects of applied top tension, external fluid pressure, Poisson’s ratio, and
tangential current-drag coeflicient are to reduce the large displacement and the crit-
ical top tension, and to increase the critical pipe’s weight and the structural stability
of the pipe. On the contrary, the effects of pipe’s weight, internal fluid pressure,
slenderness ratio, vessel offset, water depth, normal current-drag coefficient, current
velocity, and internal fiow velocity are to increase the large displacement and the
critical top tension, and to decrease the critical pipe’s weight and the structural
stability of the pipe.
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Appendix A: Validation of Numerical Results

The problem of a simple variable-arc-length elastica pipe conveying fluid as shown in
Fig. 16(a} is exploited in verification of the numerical solution procedure employed
in this paper. Validation of the numerical results is given in Table 3. It is clearly
seen that the numerical solutions obtained from the numerical method used in
this paper are in excellent agreement with the exact solutions that are obtained
from the elliptic integral method.!® The post-buckling configuration of the variable-
arc-length elastica pipe transporting fluid with internal flow velocity Vi = V5 is
shown in Fig. 16{a}. The bending moment M, the shear force @, and the axial
force T, are plotted along the normalized dimensionless arc-length s* as shown
in Fig. 16(b).
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Abstract

This paper presents a model formulation that can be used for analyzing the three-dimensional
vibration behaviours of an inclined extensible marine cable. The virtual work-energy func-
tional, which involves strain energy due to axial stretching of the cable and virtual work done
by external hydrostatic forces is formulated. The coupled equations of motion in the Cartesian
coordinates of global systems are obtained by taking into account the difference between
Euler's equations and equilibrium equations, The method of Galerkin finite element is used
to obtain the mass and stiffness matrices which are transformed into the local coordinate
systems. Then the cigenvalue problem is solved to determine its natural frequencies and corre-
sponding mode shapes. The model formulation developed herein is conveniently applied for
the cases of specified top tension. The numerical investigations are carried out to demonstrate
the validity of the model and to explore in details the influence of various parameters on the
behaviours of marine cables. Results for the frequency avoidance phenomenon, maximum
dynamic tension and coupled transverse mode shapes are presented and discussed. © 2002
Elsevier Science Ltd. Al rights reserved.
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1. Introduction

Analysis of marine cables has been of interest due to their wide range of appli-
cations in deep-ocean engineering. Normally, marine cables deployed in undersea
environments are particularly susceptible to vibration since their shapes attract fluc-
tuating forces when situated in a current field. For this reason, most marine cable
systems must be operating in a three-dimensional space, while one or two-dimen-
sional cases are rare in practical problems. All applications require the ability to
accurately predict their static and dynamic behaviour of cables.

The three-dimensional steady-state of cables has been investigated by various
researchers. De Zoysa (1978), Chucheepsakul and Subwonglee (1991), Wang et al.
(1993) and Frisweli (1995) presented numerous hydrodynamic force models acting
on the cables by using an identical model of the resulting two-point boundary value
problem. The axial extensibility of the cable was not considered in their studies.
Vaz and Patel (2000) have studied the three-dimensional behaviour of elastic cables
subjected to arbitrary sheared currents. The results displayed the importance of cur-
rent profiles on static equilibrium positions. However, all of the aforementioned stud-
ies are only limited to general steady-state cable problems and the ongoing analyses
about dynamic phenomena were not accomplished continuously.

Investigations into the dynamic analysis of marine cables have also received much
attention in the research literature with development of different algorithms to solve
the problem. Ramberg and Griffin {1977} measured the natural frequencies of hori-
zontal cables in air and in waler and obtained good agreement with the linear theory
of Irvine and Caughey (1974) for extensible cables having small sag. Griffin and
Rosenthal (1988) extended the studies into inclined slack cables with and without
arrays of attached discrete masses by using cable properties from Triantafyllou
(1984). Due to hydrodynamic drag forces, the dynamics of marine cables are quite
different from the cable in air, as proposed by Vassalos and Huang (1996). All the
numerical solutions for three-dimensional vibrations, which are mentioned above
begin with the derivation of a theoretical model about a planar and sagged equilib-
riom configuration leading to the associated eigenvalue problems governing free in-
plane and out-of-plane motions, referring to the case of submerged cables. The out-
of-plane motions are well described by using the taut string approximation but the
in-plane motions induce mainly longitudinal and transverse cable deflections. These
motions have been investigated analytically by Perkins and Mote (1987}, Behbahani-
Nejad and Perkins (1996). Nevertheless, they do not take into consideration marine
cables having three-dimensional equilibrium profiles resulting from the action of
hydrodynamic drag forces.

There are some efforts to extend the numerical analysis into three-dimensional
dynamics of elastic marine cables, such as Huang (1994), Sun and Leonard (1998),
but no comprehensive studies concerning the free vibration behaviours rigorously.
Especially on the natural frequencies and corresponding mode shapes, these research
works are very limited. Moreover, the analyses in most studies based on the specified
unstrained arc-length are rare in practical problems when the cable is limited to the
physical condition such as the given allowable tensile strength of cable material.
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According to this restriction, the numerical technique in which the top-point tension
specified first as the constant input parameter is recommended herein. Consequently,
this is the first time that the natural frequencies corresponding to the coupled trans-
verse modes, which are necessary for predicting the dynamic behaviours of elastic
marine cables, is presented.

The main objective of this study is to present the cable model formulation for
analyzing the three-dimensional motions of an inclined extensible marine cable based
on the work-energy variational principle. The hydrodynamic damping vanishes but
added mass is still considered to obtain three linearized undamped free vibration
equations of motion. These equations can be readily applied through the case of
submerged cables. Numerical results for two case studies are conveniently shown in
the form of non-dimensionalized quantities tabularly and graphically. The first case
is to investigate more details for out-of-plane motion and to explain the dynamic
behaviour of a submerged cable by comparing it to a cable in air. The second case
is 10 present new numerical results of marine cables in ocean studies. The natural
frequencies and corresponding mode shapes for various configurations are demon-
strated, in order to show the effect of current direction on the cable behaviour and
to show how cables vibrate in the form of coupled motion. The effects of axial
extensibility on the natural frequencies for both cases are also presented herein.
Finally, the effect of sag or curvature on the natural frequencies associated with the
lateral deflections are investigated for predicting dynamic tensions that can be
induced during the motion of the cables.

2. Derivation of equations of motion

Fig. 1a shows the reference configuration systems of the marine cables between
the Cartesian coordinate system represented by unit vectors i,/,k and the local
system represented by three orthogonal unit vectors p,g,7, i.e. tangential, bi-normal
and normal vectors, respectively. The geometric compatibility relation of both sys-
tems can be written in the form of a matrix as

cos¢ cos@ —sinf —sing cos@ P
7+ =|cos¢ sin@ cos® — sing sinBl G )
T sing 0 cosg -

where ¢ is the vertical angle between the XY plane and vector 7, @ is the horizontal
angle between the XZ plane and projection line of vector p, when vector g lies on
the XY plane. A cable is installed by two unmovable pinned-supports at the top and
bottom ends. The top end is tied to the floating structure whereas the bottom ead is
anchored on the seabed. With regards to Fig. Ib, it can be seen the circular plan
view of cable configuration (De Zoysa, 1978) in which 8, is the horizontal angle
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(a)

Bottom end

(b)

Current direction

EEEEE—

Bottom end

Fig. 1. (a} Reference configurations and coordinate systems of marine cables. (b} Plan view of cable
configurations.

between the X-axis direction and the projection Tine of cable chord length onto XY
plane, R is the horizontal distance projected onto the seabed between the top and
bottom ends. The X-axis is also the current direction. Fig. 2 displays the infinitesimal
element of cable in which u,v and w are the components of displacement from the
equilibrium position in the direction of unit vectors i, ,k, respectively.
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Equilibrium state

Displaced state

Fig. 2. Two different states of cabies.

2.1. Governing equations

Considering an element having an unstretched arc-length ds, its length at an equi-
librium state is

dsy = N1 + xo7 + yo2dzg (2)

in_which a superscript prime denotes a differentiation with respect to z, Let
V1 + x,2 + yo2 be s;, another form of ds, using Lagrangian strain definition is

dso = (1 + &) ds (3a)
Thus

ds =50 g (3b)

ST T+, ¢

Likewise, the arc length d5, the strain £ and the displacements u, v and w at the
displaced state are given by

d5s =V + u' Y + (o + V2 + (1 + w') dz, &)
ds = (1 + & ds (3)

From Egs. (2) to (5) one can write the strain at the displaced state as

ds—ds 1+ : .
S A Ty ¥ O v VP F A+ Wi — 1 (6)
ds 5y

£ =

and its variation can be written as



1072 8. Chucheepsakul, N. Srinil / Ocean Engineering 29 (2002) [067-1096

1+ e[y + )W u' + (Yo + VISV + (1 + w)d w‘] -

OF = 5o L Vixg + u'P + (yo + v+ (1 + w)?

2.2. Strain energy due to axial deformation

The strain energy due to axial deformation is caused by two actions: pulling on
the cable due to axial tension and squeezing of cable due to hydrodynamic pressure
(Sparks, 1984). The strain energy expression is written as

Sl' SI
1
U= f SEAEds + Jva“,ng(ZH—zO) ds (8)
0 O

where S, is the total undeformed arc-length , §, is the total deformed arc-length, E
is Young’s modulus, A and A, is the undeformed and deformed cable cross sectional
areas, respectively. Using Eqs. (3), (6) and (7), the variation of Eq. (8) becomes

ZH
U = J{[Tu . T,.,(l . j_ 21)][(10 + u')ou' + (v +; W'+ (1 + widw ]]da)
A <)
9
in which
. . i
xou' + oy’ +w + E(u'2 + v+ w?
A= . (10)

5o

T, = EAgy + 2vp gAZy— 7o) and T, = EA—2vp, gA(Z,—2,), when Z,, is the total
sea depth. If Poisson’s ratio v is set to zero it states that there is no reduction in
cable diameter, then T, is equal to the actual cable tension and axial strain is pro-
portional to this tension (Burgess, 1993). By neglecting small quantities of higher
order term and using the binomial approximation, Eq. (10) reduces to
Xy +w

A

(11a)

r 2
S0
and

1
W=l*l (11b)

Substituting Eq. (11) into Eq. (9) yields



S. Chucheepsakul, N. Srinil / Ocean Engineering 29 (2002) 10671096 1073

4

T, . Ty . . . )
L—."(x(, +u') + S—,%(xﬂ-u‘ + Xy’ + xgw') ]314'
0 (4]

Tﬂ . ' T L ' . ] v ] ’
85U = h [s—(yn + )+ Sy’ + v+ yow') ]5v bz, (12)
[y (4]

Tﬂ ’ Tb L] v ' '
s—,(1+w)+;.—3(x0u + yov' + w') Sw
. o o Fj

At ecquilibrium state, Eqg. (12) may be expressed by evaluating at
wov,w,u', v, wand A= 0 as

Zy

U = [:—'.“(x}ﬁu' + yodv' + Sw')dz, (13)
0

0

2.3. Virtual work done by external forces

The virtual work done by effective weight of submerged cable is expressed as
Z1
W, = — | 2% 5. dyy (14)
1+ &
]

where w, is the effective weight of the cable.
The virtual work done by inertia force is

Zy

oW, = -J(iﬁﬁﬁu + midv + mwdw)-dz, (15)

[}

where m = [wo/g(1 + €y)ls, is the cable mass per unit streiched length at the equilib-
rium state, and w, is the cable’s weight per unit unstretched length.
The virtual work done by hydrodynamic forces is written as

Zit
oW, = J(Fﬁu + F.Ov + F, 0w) sydzy (16)
0

in which the subscripts », v and w are the components of forces per unit arc-length
in the Cartesian system corresponding to these following expressions

7 direction: F, =D

pu

+ D, + D, (17a)
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j direction: F, =D, + D, + D,, (17b)

% direction: F.=D, +D, +D,, (17¢c)

where D,, D, and D, are the tangential and normal components of the Morison’s
drags and inertia forces due to added mass per unit arc length that can be simply
expressed as

1 ... “

D, = Ep“:cDOCD,pIpI + p,ACap (18a)
1 .. .

D, = 5P..DQCDN¢’116}1 + p.ACAT (18b)
1 .. .

D = EPI\D(}CDNﬁﬁ + p AL (18c)

The tangential and normal drag forces are proportional to the square of tangential
and normal relative fluid velocities (Friswell, 1995), in which p (g, p (§.7) are

the relative velocity and acceleration of the cable and fluid particle in unit vectors
7. g and T, C, is equal to Cy-1 and Cyyy, Cpyw, Ca, Cyy are the tangential drag, normal
drag, added mass and inertia coefficients, respectively. The model of current profile
chosen here is defined in Appendix A.

2.4. Euler's equations

The virtual work-energy of the marine cable system is written as

SMI=6U-8W, -8 W—8W, (19

Substitution of Eqs. (12), (14), (15) and (16) into Eq. (19), then integration by
parts of Eq. (19} is performed by evaluating u = v = dw = 0 at boundary conditions
{z=0 and z, = Z,). Then, Euler's equations associated with the virtual displace-
ment Su, dv and Sw are obtained respectively as

T, . T, . . , ' .
[?(In + M’) + %(xozu’ + Xu)’u\" +*Iﬂw’):| —Hi = — (D{m + un + Dm)sl)
0 Sy :
(20)
5 {vo + v} + ;ﬁ(—‘-’tﬂ’n“ + yov' Foygw') | i = — (Dpl' + qu + D.Jsg  (21)
0 0
1‘« r Th © oy ] ‘ o W‘, .
}Z(l + w) + ;F(.rq.u + oy ) —mw = —|D,+ D, + Dm.—1 T e Sy

(22)
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2.5. Equilibrium equations

By substituting the equilibrium conditions u=v=w=u"=v' =w' =u"=
Visw'mi=v=w=l=9v=w=0 into Egs. (20}, (21) and (22), one obtains
Euler’s equations corresponding to the equilibrium state in the directions of virtual
displacement du, dv and dw as follows,

T\ ~ = = .

( ;"'x() + (Dpu + un + Dru) s() = 0 (23)
0

Tys\ o ~ " .

(—i_&) + (D,lw + un' + Drr) Sﬂ = 0 (24)
{0

T\ _ N _ w,

- +|D,.+ D, + D, ——= 0 =10 2

(50) ( - ¢ 1+ 5{1) %0 @3

A superscript {7) represents for the components of drag force derived from Eq. (18)
when the latter terms of them vanish. It is seen that the equilibrium profile of a
marine cable is formed in three-dimensional space before vibrating.

2.6. Coupled equations of motion

Subtracting Eq. (20) with Eq. (23), Eq. (21) with Eq. (24), and Eq. (22) with Eq.
(25) yields the equation of motion in the directions of i, v and w, respectively. Three
equations are consequently written as

TwW T, . . . .
5 + _g'_l;(xozu" + XoyoV' + xgw") —mil = p,AgCyS,ii (26)
0 o

T',,V” Th L] T2 T =11 v

e + ?(xo)’(lu + ¥V A yow")—mi = p,ACasoV @n
{1 4]

Tw T, . . .
< + s"B(IuM" + yoV" + W)mw = p A CasoWw 28)
0 0

For undamped free vibration analysis, only the added mass terms are considered,
Eqgs. (26}, (27) and (28) can be rearranged in the form of matrix notation as

[Al{a} + [Bl{u"} = (F} 29
where
u
{uf =< v, (30a)
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o

0 .
[A] = 0l (30b)

o o
(=T

3

i
(F} = —p,AgCisoq ¥ (30c)
W
Lo Txd®  Toxavo Toxo
s so 5o 5o’
Towe T. Twe: T
(Bl = -| 2P0 ey o i 31)
So So So Sa
Toxy Thye er + T,
S s S So

For problems of submerged cables lying on the XZ plane, equilibrium configur-
ations are obtained from Eqgs. (23) and (25) by neglecting the components of drag
force, i.e. the cable suspended only by its own effective weight. These lead to the
associated problems governing the in-plane motions, which decouple from the out-
of-plane motion in the Cartesian coordinates. The coupled in-plane motions are
described by the in-plane components, ¥ and w, and the out-of-plane motion is
described by the out-of-plane component, v. By evaluating y' = 0, Eq. (31) becomes

T, Ty Tox,
- + bx? 0 'Lfﬂ
So Sy So”
T,
[B] = — 0 = 0 (32)
So
T’.’Z 0 Loy 1’;
i So Jo %o
Assembling Eqs. (30b) and (30c) together yields
[Al{a} + (Bl{«} = {0} (33)

in which
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<

L] 0
A]=[0 & O (34)
00

m
and i =i + P, AeCaso

3. Static solution

Since the closed form solution of nonlinear equilibriom equations ((23)—~(25)) is
generally unavailable. A numerical scheme recommended herein for solving the
three-dimensional equilibriuvm configuration is the finite element discretization
applied with the specified top-peoint tension. Under an independent variable z,, only
the variation of horizontal displacements is considered, dw = 0. The reference cable
configuration is determined by substitution of Eqgs. (12), (14), (15) and (16) into (19)
once again, and then the form of a hybrid formulation is modified by rearrangement

of Eq. (19) as

Zy

an = SI[TJVT'*' (X(') + u‘)2 + (y(’) + v’)z_Fusl")u_Frs;)v]dzﬂ = O (35)
1]
where F,=D,.+D,+D,, and F.=D, + D, + D,. At the displaced state,
X=Xxg+ U, Y=Y+ v, hence x' =xy +u', Sx=0u, &x' =du', y =y, +v', Sy=0v
and 8y’ = dv'. At the equilibrium state, x = x, and y = y,, then Eq. (34) can be con-
veniently simplified to

Zy

Sl =5 f TNT TR T yd—FsitomFsiyopdzo = 0 36)

L]

Three unknowns to be involved substantially in the algorithm consist of
xo(Za), Yolzo) and £4(zy). The relevant equilibrium equation corresponding to the tan-
gential direction of a cable segment, representing the cable tension at any point, is
considered and converted to the integral expression as follows,

Zy

w .
= — Ca— 5 TN 2 72
T.(z0) T, J[(l ¥ &) DN1 + x* + vy dz, (37)

£y

Using the combination of Egs. (36) and (37), these algorithm technique is appropriate

and efficient for solving the cable problem of which the top-point tension T, is speci-
fied.
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A set of vertical discrete elements of ocean depth is depicted in Fig. 3. The hori-
zontal projection of element coordinates x4(zo) and yy(zq) on the XZ and YZ planes
consist of two components which are linear (x,, y,)} and non-linear (xy., ynz). The
linear parts (x;, y,) are directly obtained from the specified cable positions while the
non-linear parts (xy,, y»,) are approximated by a cubic polynomials shape function
in z,, hence

X
ML= (Mg} (38)
Yne
N, N, 0 0 NN, 0 0O
[V,] = (39)
0 0 NN, O O N, N,

(g} = Lena(0) x0if0) ynif0) yaif0) xyelh) xnolh) ynulh) yeli) ™ (40)

in which [N,] is the matrix of the shape function in which each component is defined
in Appendix B, and {g} is the degree of freedom of nodal displacements and rotation.
For the kinematic relations of strain, the matrix notations can be written as

‘P

&

Projeciion on YE plane

FProjection an XZ plane

Nel@h = 2,

R
L s

Xpg

X

Fig. 3. Horizontal projection of the finite element coordinates on XZ and YZ planes.
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£ = LL] (e} 73}
L) = L1—zy/h zo/h) 42)
{e} = Les(0) ey (43)

where | L] is the matrix of the strain shape function and {e} is the nodal strain. The
global equilibrium condition 611 = (d7/d¢,)6 ¢, = 0 yields a system of non-linear
equations. Conseguently, by the Newton-Raphson iterative algorithm, one can write
the incremental process as follows

[KJ{AQ} = —{R} (44)

Consider the k'™ element, the contribution to the square matrix [K,], and to the
column vector {R}, are as follows,

h
o1 = |9 ] _ [IN.ITT,ENG]
t .\-]k - aqiaqj - (1 + x[’)Z + y;_)2)3.f2

0

dz, (45)

L]

_ a_Jri _ [M]T‘u x';’ _ T F"
(RE = {Bq,} B J (1 + x2 + y»'2 ]y, (N, F, 2 “6)

0

in which h is an element height, Q and g are the global and local degrees of freedom,
respectively. Egs. (45) and (46) are evaluated by using Gaussian quadrature numeri-
cal integration. The boundary conditions are the zero value of non-linear parts of
coordinates at z, = 0 and Z,. The detailed procedure and numerical examples for the
static case are given comprehensively by Petchpeart (1999).

4. Dynamic solution

Continuing from the static analysis in discretization of domain, the assumed dis-
placement fields for a single element in the Cartesian systems , v and w are approxi-
mated by

{ay=[N1{d} 47)
where

(dy =Luy u) v, vV, w, W) s 8y vy V2 wa wal (48)

NN.O OO ONN O 0 0O
INf=|0 O N, N, 0 O O O N, N, 0 0 (49)
0 000NN OGOTO 0NN,
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Here N, i=1,2,3.4 represent the weight functions and are the same cubic polynomial
shape functions as those used in static analysis. Following the standard procedure
of Galerkin finite element method proposed by Cook et al. (1989), and if the displace-
ments in the rectangular coordinates are transformed to the local displacement fields
in the p—g—7 vector systems, the structural equation of motion (Eg. 33) in the
matrix form is obtained

[M1(D} + [K1{D} = {0} (50)
where {D} and {D} are the acceleration and displacement vectors, respectively, in
the coordinate systems of p—¢—7 vectors, [M] is the total mass matrix defined as

I
Nel

[M] = EJ [TY7(NT[A] [N] [T) dz, (51

—
=%

and [K] is the total stiffness matrix defined as

h
Nel

> J [TITIN 17[B] [N’ [T} dz, (52)

=t

I

(K]

1]

in which Ne! is the total number of used elements and [7] is the transformation
matrix expressed by the following notation,

TI, 0 T2, 0 T3 O 0 0 0 0 0 0
T4, TI, TS, T2, T6, 13, O 0 0 0 0 0
7, 0 73 0 T9, 0 0 0 0 0 0 0
TI0, 7, TI, 78, 712, 79, O 0 0 0 0 0
TI3, 0 0 0 TI4 0 0 0 0 0 0 0
TI5, T13, O O Ti6, Ti4, 0 0 0 0 0 0 (53)
c o o o 0 o0 T, O T2, 0 T3, 0
6 o 6 ¢ 0 ©0 T4, T, TS. T2, T6., T3,
o ¢ © ¢ 0 O T&, O T, 0 T9%, O
¢ 0 ¢ 0 0 0 T, T, T, T8, T2, T9.
0 0o ¢ ¢ 0 0 T3, O 0 0 T4, 0
Lo ¢ 0 0 0 0 TI5. T3, O 0TI, T4,

where subscripts j and j+1 denote the first and second node of the individual cable
segment, and T(i) = T(6,9,0',¢’) is defined in Appendix C. It can be noted that

8 = tan~ "(vy/xp) (54a)
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1
- -1
¢ = tan (m) (54b)
XoYo—Yo¥o
g =\—"-" S4c
(«'fn2 + yn’) ( )

and

o = — (%o + Yo¥o)
(1 + x> + yo?xg? + 32

(54d)

Under this coordinate transformation treatment, the physical meaning of cable
behaviour can be clearly seen and the mode shapes of cable vibrations can be
described explicitly. For harmonic undamped free vibration, Eq. (50) leads to the
following eigenvalue problem

(IKlI—e’IMD{D} = {0} (55)

where @, is the natural frequency of vibration and {D} is the corresponding mode
shapes in the p—¢—7 coordinates. The boundary conditions are the zero values of
cable displacements at the top and bottom ends. Finally, the eigenvalue problem is
solved using the method of inverse iteration.

5. Numerical results and discussions

Certain checks must be made first to test the validity of the model formulation
and the procedure presented herein. The finite element model used in the analysis
also calculates the out of plane and in-plane frequencies for a cable starting from
the 2D equilibrium configuration, in addition to the frequencies of three dimensional
coupled motions. After transforming coordinates, the out-of-plane motion is specified
by the g (bi-normal) direction and the in-plane motions are specified by the p
(tangential) and ¥ (normal) directions.

A simple case of an inclined extensible cable in air suspended by its own weight
is considered. The distributed external load can be expressed as
wNT + x2(1 + €,), representing the uniform weight of cable per unit stretched
length associated with the actual cable tension. This tension is modified in order to
handle the corresponding static configurations. The in-plane and out-of-plane dimen-
sionless frequencies for the first for modes are favorably compared with Henghold
et al. (1977) in Table 1 for a value of cable stiffness to weight ratio EA/mgl=5000,
and dimensionless frequencies formed as @ = w/g/L, in which L is the unstretched
cable length. Considering these resuits, the authors believed that the model formu-
lation developed herein would yield sufficient accuracy in applications. In the next
examples, the numerical results for predicting the three-dimensional vibration behav-
iour of a cable are considered.
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Table 1
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Comparisons of the first four dimensionless frequencies for an inclined extensible cable in air for a value
of AE/mgl= 500"

Mode Dimensionless frequencies, &

Inclined cable 30¢

Inclined cable 60"

This study Henghold et al. (1977) This study Henghold et al. (1977)
(40 clements) (40 elements)

0 2.84 2.83 2.24 2.24

I 5.28 5.17 357 3.65

a 5.63 5.67 4.45 4.53

I 834 8.17 6.01 6.30

* O: out-of-plane modes; I: in-plane modes.

5.1. Qut-of-plane maotions

Since Griffin and Rosenthal (1988) have illustrated the hybrid behaviour of the
frequency plots for an inclined cable in air, the following results will confirm the
same behaviours with sag to length ratio for an inclined submerged cable as shown
in Fig. 4. The only difference is that the natural frequencies in each mode decrease
when the cable in air moves to under water. For in-plane motion, the frequency of
the first mode approaches that of the second mode with an increase of cable sag-to-
length ratio and so on. The mode shapes become hybrid (not symmetry or anti-

Natura! frequencics (radfsee,)

10.0

Mude shapes

A = gmti-symatnc T

S = symmetric
b = hybrid

T T 7 T T T

- In-plane modes

e — Cut-of-plane modes ]

P BN I |

sy cable lenpth

Fig. 4. The first ten in-plane and out-of-plane frequencies for an inclined extensible submerged cable
as a function of cable sag to cable length ratio.
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symmetry) and the modal crossover is not found. On the other hand, the frequency
is remarkably linear with sag for the out-of-plane motion. These appearances are
well-known and were discussed intensively by Triantafyllou (1984).

It was known from Burgess and Triantafyllou (1988) that the in-plane frequencies
corresponding to elastic mode shapes depend significantly on the elastic modulus of
the cable material. A further result is to demonstrate the effect of extensibility on
the out-of-plane frequencies of inclined submerged cables. To facilitate the numerical
results, a value of top-point teasion to cable stiffness ratio is formed from the follow-
ing dimensionless quantity T,/EA. Fig. 5a and b shows the first five out-of-plane
frequencies for an inclined extensible submerged cable, versus the different values
of T,/EA, which are fixed in value of specified top-point tension and cable cross-
sectional area for cable having a value of vertical chord inclination angle ¢, equal
to 60 and 36 degrees, respectively. For every nonzero chord inclination, the out-of-
plane frequencies decrease with the increase in value of elastic modulus and stand
constantly for high value of elastic modulus or very low extensible cable. Further-
more, by comparing Fig. 5a and b, the out-of-plane frequencies increase with the
increase of chord inclination angle.

5.2. Coupled transverse motions

The focus of this study is to demonstrate the coupling of three-dimensional motion
considered with the small amplitude assumptions for marine cables, which are not
reported elsewhere. At the static cquilibrium state, the time-independent drag forces
resulted from the steady current velocity in the X-axis direction are included in the
calculations. It is quite difficult to explain the vibration behaviours because of the
coupled motion, however it can be properly described by the natural frequencies.
Hence, in order to show the preliminary numerical investigation, the effect of
changes in the horizontal chord inclination angle to the X-axis, i.e. 8,, and the exten-
sibility on the natural frequencies were carried out to be the numerical example using
the cable properties defined in Table 2.

Numerical results as given in Table 3 show the first four natural frequencies of
marine cable under the variations in values of 8, from 0 to 180 degrees in each
value of the cxtensibility index T,/EA. A value of 8, is varied considerably from 0
to 180 degrees so that the significance of current direction can be clearly seen when
maintaining the uniform current profile in the X-axis direction. An interesting result
from this study is that there are virtually no differences in the natural frequencies
in each mode with the different angles of 6,. In odd modes, the natural frequencies
form like a taut string, since the frequencies of the next odd modes and the higher
ones (not shown herein) are found to be multiples of the first mode. Moreover, the
frequencies tend to decrease with the increasing value of elastic modulus and to be
unchanged for a high value of elastic modulus, as well as out-of-planc motion. By
contrast, the natural frequencies for the even modes increase with an increase in
value of elastic modulus, as well as the in-plane motion in the case of submerged
cable (Chucheepsakul and Huang, 1997)

However, when the value of 8, increases, these appears to be a modal transition
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Fig. 5. Effect of clasticity on out-of-planc frequencies for an inclined extensible submerged cable, for
the different values of T,/EA, (a) ¢,= 60 degrees and (b) ¢,= 36 degrees.

of cable shapes developing from value of 8, from 0 to 180 degrees as shown in Fig.
6, which plots the first two normalized mode shapes (7)) as the non-dimensionalized
are-length (£). Considering these local standing modes, two distinct physical mech-
anisms of vibration are identified. These correspond to the longitudinal or elastic
modes and the coupled transverse modes, which are dominated substantially and
simultaneously by the bi-normal and normal amplitudes.

As reported by Burgess and Triantafyllou (1988), the elastic modes, which can
occur in much higher order modes, do not appear to be also presented here in the
low mode. Only in angles, 8,=0 and 180 degrees, the frequencies of the odd modes
and even modes corresponding to the out-of-plane and in-plane motions, respectively.
Because the current direction is parallel to the X-axis line, therefore the force compo-
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Table 2

Cable properties for program input parameters

Cable properties Symbols Values Unit
Specified top-peint tension T, 25 kN.
Water depth Zy 500 m
Top-to-bottom point R 300 m
distance

Qutside diameter D, 0.023 m.
Density of cable 23 4039.8 kg/m?
Density of water p.. 1021 kg/m?
Effective weight w, 12.3 N/m.
Uniform current velocity in v, 3.7 km_the.
X-axis direction

Elastic modulus E 0.601x1¢° kN/m?
Normal drag coefficient Con 1.00

Tangential drag coefficient C,,, 0.05

Inertial coefficient Cu 2

nent in the bi-normal direction is not generated. This makes a cable lie only in the
vertical plane, and the mode shapes of vibrations for the first and second modes
correspond to the bi-normal and normal directions, respectively.

Moreover, the further observation is the switch of the local amplitude directions
between two ranges of angle 8,. For instance, the amplitude corresponding to the
bi-normal direction in the first quadrant (0<<8,<90 deg.) switches to be the normal
direction in the second one (90<8,<180 deg.) for the first mode of vibration. These
changes are amenable to the specified vectors and start approximately from a value
of 8, equal to 90 degrees.

Figs. 7 and 8 display graphically the overall configurations (global systems) for
the first three mode shapes for an inclined extensible marine cable using the forgoing
cable properties in Table 2, with the projection on three planes that are XZ, YZ and
XY planes. These plots are used to represent two crucial aspects. The first is to show
initially the cable equilibriurn configuration in three dimensions (solid line) for two
different angles of @, that are 60 and 150 degrees, and the second is to demonstrate
typically how the cable vibrates in the Cartesian coordinate systems. Due to the
difference in the establishment of the cable equilibrium profiles in any prescribed
angle 8,, the modal transition or the changes in the mode of vibration is formed
substantially over these regions. It should be remarked that these examples would
become to be the other form, if the value of the prescribed angle 8, and the profile
of current, both in terms of magnitudes and directions, are separate from this situ-
ation.

5.3. Dynamic tension for coupled transverse motions

To gain further insight into the dynamic behaviours of the coupled transverse
motions, 1t is necessary to examine the characteristics of frequency spectra and
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The fiest four natural frequencies of marine cable and comresponding mode shapes for different values
of 8, and T,/EA, for cable properties defined in Table 2*

T, /EA Mode Natural frequencies (rad./sec.)
8y {degree)
0 30 60 20 120 150 180
0.0001 ay 0.545 0545 0544 0545 0546 0549 0547
o 1.078 1.076  1.073 1074 1.076 1076 1.057
w, 1.090 1089 1.088 1.090 1.092 1.094 1.094
W, 1.552  1.551 1.550 1551 1.550 1.532 1.531
0.001 @, 0546 0545 0544 (0545 0546 0547 0.547
, 1078 1076 1073 1.072 L0770 1.069  1.060
W, 1.0%0  1.090 1.088 1.09G 1.093 1.094 1.094
o, 1.509 1.509 1.508 1494 1.493 1.475 1.474
0.01 0, 0548 0547 0547 0547 0548 0549 0.549
W 0875 0880 0876 (826 0827 0815 03814
, 1.084 1.083 1.084 1.089 1.094  1.097 1.098
@, 1.095 1.094 1.093 1094 1.097 1.098 1.098
T /EA Mode Corresponding mode shapes
8, (degree)
0 30 60 90 120 150 180
0.0001 o, 0 C C C C C O
0.001 fi: N 1 C C C C C 1
0.01 w, 0 C C C C C 0
w, 1 C C C C c I

* O: out-of-plane modes; I: in-plane modes; C: coupled transverse modes.

dynamic tension plots for a cable having significance in sag and curvature in each
mode. For cables of engineering interest FA>>>T,, by setting cable stiffness to be
invariant and applying consecutively a value of specified top tension as the foregoing
input parameters from values of 15 kN. to 150 kN, this modification leads to the
additional numerical results for a cable having a difference in sags. Employing the
following dimensionless quantities for the sake of convenience and simplicity:

/M
T,

(56a)

(56b)
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and
Al = %(W,Lo)zcosz% (56¢)

in which M is the total mass of the submerged cable plus added mass per unit length,
T, represents the static cable tension at ¢ = ¢, when ¢, is the vertical angle of the
chord inchination measured from the XY plane, L is the stretched cable length. These
parameters are the well-known frequency, the dynamic tension factor and cable para-
meter accounting for the cable equilibrium geometry and material properties (Irvine
and Caughey, 1974). The parameter () is non-dimensionalized by dividing it with
the first transverse nmatural frequency of taut string while a variable g, is the
maximum dynamic strain obtained from the following expression,

xfnuf + yfovl' + w' I
1+ 27+ ¥

£, = MAX, [(1 + 5‘,)(1 + (57)

i = 1,2,....Nel

The natural frequency spectrum represented for cable having a value of 8, = 60
degrees is manifested in Fig. 9a as a function of the parameter A/n. The plots for
the odd modes, which are drawn perfectly straight in the horizontal line, will not be
shown herein because the parameters {) are independent of A/x, as well as the case
of taut string. On the other hand, the phenomenon of frequency avoidance exists for
each pair of even mode and the gaps of avoidance region are very close. The mode
shapes in the veering region comresponding to the coupled transverse amplitudes,
become hybrids (/) in certain value of A/ within this range (A/mr = 0.792 for mode
2 and A/ = 0.859 for mode 4), and are extremely sensitive to small changes in the
cable parameter A/m. Consequently, the dynamic tension in the cable increases sub-
stantially over the modal transition range as displayed in Fig. 9b.

Once again, by alternating the value of &, to be 150 degrees, the characteristics
of the frequency spectrum (frequency avoidance phenomenon) and dynamic tension
plots are still the same as the first angle range but the gaps of avoidance are increased
substantially, as shown in Fig. 10a and b. In addition to the distinction of cable
equilibrium profile between two angle ranges, the qualitative differences are the shifts
of the avoidance region from the left to the right in the frequency spectrum following
a value of A/x. For example, a value of A/ over the first avoidance region in Fig.
10a (8, = 150 degrees) is approximated as 2.186 whereas it is approximated as 0.829
in Fig. 9a (6, = 60 degrees). From these values, it can be stated that the sag condition
{following the cable parameter) of cable placing in the first quadrant for the occur-
rence of frequency avoidance is slack more than a cable placing in the first one.

Fig. 11 illustrates the modal transition of the even modes corresponding to the
coupled transverse amplitudes in the first veering phenomenon for a cable having
value of 6, equals to 150 degrees. In order to display how the coupled transverse
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Fig. 9. (a) Natural frequency spectrum of marine cable corresponding to the first ten even modes, rep-
resented for a value of 8, = 60 degrees, h: coupled transverse hybrid medes. (b) Dynamic tension factor
gf marine cable corresponding to the first ten even modes, represented for a value of 8, = 60 degrees.

modes become hybrids (A/a = 2.022 for mode 2 and A/1 = 2.186 for mode 4) even
for cable vibrating from the three-dimensional static configuration. It should be
remarked that mode shapes corresponding to the odd modes (not shown herein) do
not change to be the hybrid form for the variation of the parameter A/z, as well as
the taut string case.

The present numerical examinations reveal that the features in the frequency spec-
trum and dynamic tension plots of 2 marine cable resemble those of a cable in air
and a submerged cable (comparing the odd modes with out-of-plane modes, and the
even modes with in-plane modes). The difference in the free vibration characteristic
is the local standing mode shapes, which now have been identified herein as the
coupled transverse mode, and can occur whenever a marine cable vibrates from the
three-dimensional static configuration.
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6. Conclusions

The model formulation for analyzing the three-dimensional vibration behaviours
of an inclined extensible marine cable is presented. This model is efficient and con-
veniently applied for solving the cable problem with the specified top tension. The
coupled equations of motion derived in a global coordinate system are transformed
into a local coordinate system by a matrix transformation technique. Based on the
Galerkin finite element solution, numerical studies have shown that the axial extensi-
bility of the cable has an effect on the natural frequencies for both of out-of-plane
motions and three-dimensional coupled motions.

An interesting result of this paper is that of the two modal transitions of marine
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Fig. 11. Modal transition of the even modes for the first avoidance region, for marine cable having a
value of 8, = 150 degrees, solid line {dash line) denotes bi-normal (normal) direction.

cables subjected to the current fields. The first modal transition is caused by the
variation of the angle between ocean current direction and the projection of the top-
to-bottom point distance line onto the horizontal plane, which slightly affects the
natural frequencies. The second one is formed over the avoidance region in the
frequency spectrum plots for a cable vibrating in the even modes. In that region, the
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dynamic tension in the cable is increased substantially and the corresponding mode
“shape becomes hybrid. By contrast, the frequencies in the odd modes are independent
of the cable parameter and form like a taut string motion. Nevertheless, the odd and
even mode shapes are coupled in the transverse directions. The coupled transverse
modes are dominated by the bi-normal and normal amplitudes simultaneously.
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Appendix A

Current profile

The current velocity is a function of depth only and is given by

V= vlz)i + vlz)] (A1)

In terms of local coordinate system, the current profile is

[vdzo)cosgcosd + v, (zy)cospsind]p +
V= [ v (zo)sinf + v (zy)cosf]q + (A2)

[—v.(zp)singcos8— v, (z,)singsind] 7

Appendix B

Components of cubic shape functions matrices [N,] and [N]

Ny = 1=3@/h%) + 2Z/h) (B1)
Ny = zo=2(z/h) + (@/h°) (B2)
Ny = 3(z/h*)—2z3/R) (B3)

Ny = —(zith) + (z/h?) (B4)
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C

Components of transformation matrix [T]

Tl = cosgcosf
T2 = —sind
T3 = —singcosB
T4 = (—cospsind-0' —singcos0-¢')
T5 = —cos6-9'
T6 = (singsing-6' —cosgcos6-¢')
T7 = cosgsing
T8 = cos@
T9 = —singsin®
T10 = (cos¢cosB-8' —singsinf-¢')
Tl1 = —sinG@’
T12 = (—singcos@-8" —cosPsing-¢")
713 = sing
T14 = cosg
T15 = cos¢-¢’
T16 = —sing-¢’
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Abstract

‘This paper presents an alternative domain/boundary element technique for analyzing plates on two-parameter elastic foundations, in which
the fundamental solution for the linear plate theory is used in the formulation. The main advantages of using this technique are that the
kernels of the boundary integral equations are conveniently established and can be used for solving plate problems with various boundary
conditions as well as mixed boundary conditions. The surface integration of the kernels for the foundation pressure is evaluated using a
numerical procedurc presented herein instead of the conventional Gauss-Legendre method, resulting in the reduction of computing time.
The application of higher-order elements, i.e. cubic elements, for improving the solution is adopted. Numerical results of several problems
with various boundary conditions are given to demonstrate the accuracy and validity of the method. © 2002 Elsevier Science Lid. All rights

reserved.

Keywards: Boundary element method; Plates; Two-parameter elastic foundations; Domain integrals: Cubic elements

1. Introduction

Two-parameter elastic foundation models have been
developed to overcome the inadequacy of Winkler's
model in describing the real soil response and the mathema-
tical complexity of the three-dimensional continubum. They
are characterized by two independent elastic constants and
they are derived either as an extension of the Winkler's
mode] by assuming the interaction between the spring
elements or by simplifying the three-dimensional con-
tinuum. The two-parameter foundations can be modeled to
include the Filonenko-Borodich, Pasternak Vlasov and
Winkler models. Although these foundation models can
adequately approximate the soil—structure interaction, an
analytical solution to the governing boundary value probtem
is obtained only when the plate has a simple geometry and
toading.

Boundary integral equation formulation is a powerful
methed for solving this problem. Many researchers have
extensively studied the problem of plates on Winkler
foundation. Katsikadelis and Armenakas [1,2] introduced
this method for simply supported and clamped boundary
conditions. Costa and Brebbia [3,4] generalized the analysis

* Corresponding author. Tel.: +662-470-9146; fax: +662-427-9063.
E-mail uddress; somchai.chu@kmutiac.th (S, Chucheepsakul).

to plates with arbitrary shapes and boundary conditions.
Puttonen and Varpasuo [5] employed direct and indirect
boundary element formulations for plates on one- or two-
parameter foundations, but their analysis was limited to
plates with smooth boundaries and the accuracy of results
depends on the location of an auxiliary boundary. Benzine
(6] proposed a new method by using an original boundary
integral equation involving the fundamental solution for
plate fiexure problems. El-Zafrany et al. (7] introduced a
new fundamental solution based upon newly defined modi-
fied Kelvin functions. For plates on two-parameter founda-
tions, a limited number of publications have been found.
Balas et al. [8] have presented a boundary integral formula-
tion for plates of any shape and they employed Fourier
integral transform for the derivation of fundamental solu-
tions. Katsikadelis and Kallivokas [9] have used the bound-
ary element method for plates on Pasternak-type elastic
foundation with clamped boundary, and the same authors
[10] have presented a boundary differential integral equa-
tion method for the analysis of plates with free boundaries of
any shape resting on biparametric elastic foundations.

In the present paper, an alternative method of boundary
clement analysis is developed for analyzing plates on two-
parameter elastic foundations. The proposed method uses
the fundamental solution of linear plate theory and treats
the subgrade reactions as unknown domain forces. Thus,

(955-T9972% - see from mattes © 2002 Elsevier Science Lid. AlEaights reserved.

PI SO955-7997(02)00007-3
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the kernels of the boundary integral equations are conveni-
ently established and evalvated and they can be used for
solving the plate problems with various boundary conditions
including mixed boundary conditions. The emphasis of this
study is placed on evaluating an integration representation
for foundation pressure. In integrating over the boundaries,
cubic elements are employed for improving the solution.
"Numerical results of several problems with various bound-
ary conditions are provided to demonstrate the accuracy and
the validity of this method.

2. Formulation of the boundary value probiem

Consider a plate with bending rigidity D as shown in
Fig. 1 resting on two-parameter elastic foundation (Paster-
nak model) subjected to a transverse loading intensity g. Let
S be the interior of the plate and I its boundary. Assuming
that the plate maintains contact with the subgrade and that
there are no friction forces at the interface, its transverse
deflection w(P) at any point P € § satisfies the following
differential equation:

4 Ps q
Viw+ D=1 4))]
where p, is the interaction pressure between plate and
subgrade and is defined as

P = kw ~ GV2w (2)
Eq. (1) can be considered in a more general form as

-1
Lw D {3)

where L is an operator defined as

vt Og2y k
L=V D Vo + D (4)
where V% =3%ax® + o%ey?, V=%, D=
ER*12(1 — v*) is the flexural rigidity of the plate, G the
shear modulus, and k the modulus of subgrade reaction.

In this paper, plates with free boundaries are not treated
here. In this case, it is necessary to consider the interaction
of the plate on its boundary with the foundation. Detailed

Foundation
Pressure

Fig. 1. Plate on two-parameter elastic foundation and notation,

iformation related to this case can be found in the work of
Balas et al. 18] and Katsikadelis and Kallivokas [10].

3. Boundary element method

The integral representation of the solution can be
obtained by combining the Rayleigh—Green identity for
the biharmonic equation with classical Green identity for
the harmonic equation. This identity can be written as

J- J- (ulw — wlu)d§
7]
1 aw di
= _D_ J-r[wvn(“) - E;Mn(u) + 'é“"t‘Mn(w)

; 3
—uVowy— G ¢ Gw—”]dr (5)
an an

where u, w, V,, M, are deflections, equivalent shear force,
normal bending moment and 8/6n denotes the outward
norinal derivative.

Eq. (5) is valid for any two functions w and &, which are
four times continuously differentiable inside the region §
and three times continuously differentiable on its boundary
I'. However, the identity of Eq. (5} ignores the corner force
term, which will not affect the results by using discontinu-
ous elements at all corners as discussed by Venturini and
Paiva [11]

Normally, the problem of plates on two-parameter elastic
foundations consists of taking the suitable fundamental
solution to Eq. (1) that is a singular particular solution of
the following differential equation:

Lu= &0~ P)D ©)

in which 8Q — P) is the Dirac delta function, @ is the field
point and P is the source point. The nature of the solution to
Eqg. (6) involves the zero-order Hankel function of the first
kind that cannot be evaluated easily because of its mathe-
matical complexity. This formulation has been used by
many authors [5,8-10] who have treated this problem
with the boundary integral equation method.

The formulation proposed herein uses the classical funda-
mental solution for plate flexure problem:

Viu = 8Q -~ P)yD @

and represents the pressure distribution in the foundation
interface by the load applied at each node of a mesh used
to discretize the plate domain.

The fundamental solution of Eq. (7) is given as

up(P, Q) = welr) = Alnr 8)

where r = |—ﬁé| and the subscript F denotes the fundamental
solution corresponding to a concentrated unit force. Sub-
stituting Egs. (7) and (8) into Eq. (5) one gets the deflection
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for any point P inside the domain as follows:

e
Wpey = ‘J |:'M'( \"I, + GN[) - i(Ik’i: + GH;:)
r an

+ M Np — V,,up:ldr— J-j }(kup - GV up)w dS
1

+ Jj qudSs 9)
1

where the equivalent shear force Vn. normal hending
moment Mg normal slope Ny and VZHF resulting from the
fundamental solution of Eq. (8) are expressed as follows
[12]:

cos B (11—
== +{(1 — s 28] + 2
Ve T [2 + {1 — ¥)cos 2] - cos 28
1+ -
M.;:—( ")(]+Inr)—(’ V)cos’lB
8
(10)
Ni = -8—1{5(! + 2ln r)r cos B
2 1
Vo = —= (I +
1y 2':7D( Inr)

where B is an angle between direction r and outer normal
veclor .

Letting point P tend to  on the boundary and taking the
limit value of the integral, the following equation for a
regular point P on the boundary is obtained as

aw

0.5Wper"—-' - J{.[ll'(v': + GNI:) - TH{M}: + Gu;:)

+ Mnhr}: - Vnup]dr— JJ (ku;:
i1

- GV up)w dS + ”nqupds (1)

In addition to the solution in Eq. (8), a second fundamental
solution is required. This solution corresponds to a concen-
trated unit moment applied at P that is

V=280 - PyD (12)
an

The solution of Eg. (12} is

rinrcos ¢ (13}

Uy = Wolr) = -—
where ¢ is the angle of rotation of r with respect to a local
coordinate 1 ¢ applied at point P. By substituting Egs. (12)
and {13} into Eq. (3} and taking £ in the dircction of the
normal, the normal derivative of w a1 point £ along the

boundary is obtained:

[ty

_ =" Jl'[(\" - “'lF)(vm + GN,)

dipey
dw
- H_(M'" + Guy,) + M N, — V,,um]dl"
n
— JJ (kg — szﬂm)w ds + J-J- qudS
n n
(14)
where
N, = L[cos ¢ cos B+ In reos(¢ + B)]
2D
M, = L[—(] + vcos b + (1 — p)sin ¢ sin 23]
27r
|
V, = —— § - 244 - 52
m = 5—3 (cos(B = &)Z + (1 = w)cos 2f] (15)

+ 2(1 — ¥)sin ¢ cos Bsin 28}

L .
sin ¢ sin 23

TRy
2 1 cosd¢
Vi =057

The subscript m denotes the fundamental solution corre-
sponding 1o a concenirated unit moment [12]. Using Eqgs.
(9, (11) and (14) and the boundary conditions, one can
solve for the unknowns along the boundary and the
unknown deflections inside the domain,

3.1 Evaluation of demain imtegrals for foundation pressure

In view of Egs. (9), (11) and (14), to solve the problem by
the present method it is necessary to evaluate the domain
integrals:

” (ku — GV 2u)w dS
1
The steps to solve these domain integrals are as follows:

Step 1: discretize the plate domain into m finite panels.
Step 2: assume the value of the deflection w of each panel
is constant and s defined at the center point of each panel
(Fig. 2).

. L] ] L]
[ . L L]
» L] L4 '4———Wi
. [ L [

Fig. 2. Domain discretization for unknown deflections.
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Step 3: use the following property of Dirac delta function:
Jf(f)(sff — Iphdi = fizg) (16)
then

I .I-ﬂ (ku — GV 2 wwdS

=3 kAqu(p, Q) — GALY *ulp, Q)Iw; a7
i=l

where P is the source point, O; the center point of each
panel, A the area of each panel, and w; is the unknown
deflection inside the domain.

When the source point P and the field point Q; are at the
same point then the domain integrals:

”n (e — GV 2u)wdS

G a+ 5
+a2mm*(f)+bzmd‘(f)] (18)
a b

where @ and & are the width and length of each panel,
respectively.

Obviously, by using this method the integral representa-
tion for the foundation pressure need not perform the
surface integration of the kernels by Gauss-Legendre
method, so computer time is considerably reduced.

4. Numerical procedure

In order to solve the boundary integral Eqs. (9), (11) and
(14) by means of the boundary element method, discretiza-
tion of the boundary needs to be done. The boundary is
partitioned into a number of boundary elements and the
associated boundary functions are interpolated by piecewise
polynomials. The problem, thus, is reduced to the task of
determining the nodal values of the unknown functions by a
point collocation procedure.

In order to improve the numerical solution the high-order
elements such as isoparametric cubic elements are adopted

in the calculation of the unknown functions along the
boundary. These functions can be expressed as

4
HH =D Fi(od; (19)
i=1

where ¢ varies between —1 and +1, F(£) are the interpola-
tion functions defined later.

4.1. Continnous cubic elements

These elements assume a cubic variation of the values
¢{(£). The interpolation functions are (Fig. 3(a))

1 s
Fl®= E(—s;'g3 +9£24+ -1

FYE = %(2’@3 —9¢2 - 278+ 9)

(20)
3 1 3 2
Fl(& = 1—6—(—27.5' — 9L+ 2765+ 9)
i
FUO = 108 +98 —£-1)
4.2. Discontinuous cubic elements
The interpolation functions are (Fig. 3(b)}
. 9 5 3, 1 i
= —— + = + —f— =
Fl@=—28+ 28+ 26— ¢
9 3 2
Fio =& - ¢ -2+ =
=36 -5 -2+ 3
(21)

2

o= gt - 2 2
FiO=—58 - £ +2%+ 3

=243 1, 1
FUo= 26+ 58 - 26 ¢

The interpolation functions of cubic elements both contin-
uous and discontinuous elements can be derived according
to the procedure suggested by Kane [13].

Gaussian quadrature formula is used in the integration
procedure to calculate the coefficients of the rodal variables.
However, in integrating over boundary elements adjacent to
the source point, some terms of the integrand become

&)

Fig. 3. Cubic elements: (a) continuous elements: (b) discontinuous elements.
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singular and the integrals are generally evaluated in the
Cauchy principal value sense.

5. Matrix formalation
5.1. Matrix formulation of boundary integral equation

A matrix formulation for Eqs. (11) and (14) can be
obtained by:

1. discretization of the boundary into a number of elements
with total n nodes of which the value of deflection w,
normal slope aw/dn, normal bending moment M (w),
equivalent shear force V,(w) are defined;

2. discretization of the domain § in m rectangular panels at
the middle (nodal points) of which the value of deflec-
tions w are defined.

For Eq. (11) one obtains
S 0w) =[ap]on) + [BP]{%} +[cr]ima)
+ [PtV + [ER] w0 + (d0) @2

and for Eq. (14):
St = [ar + [8i]{ 32} + [
+[DH]tva) + [EF]twar + 101 23)

With Egs. (22) and (23) and boundary conditions the follow-
ing formuiation is performed:

[Grild) + Upltw,} = {gr) (24)

where |G} is a 2n by 2n matrix, [Jr] a 2n by m matrix, {/}
the vector with 2r components of which are the 22 boundary
unknowns among w, awfon, M,(w) and V,(w), {W,} the
vector with m components of which are the m unknown
domain deflections and {§r} the load vector with 2n compo-
nents. Subscript I” shows that the matrices are obtained in
the case of point P belonging to the boundary.

5.2. Marrix formulation of deflection inside domain S

For the point P inside the domain $, Eg. (9) can be written
in the matrix form similar to Eq. (24) as

[GsI} + Ushws} = (g5} (25)

where [G] is an m by 2n matrix and [J/s] an m by m matrix.

The plate bending on two-parameter elastic foundation
problem consists of solving simultaneously Eqs. (24) and
(25), which have (2n +m) equations with (2n + m)
unknowns. Nevertheless, it is more useful to modify the
formulation by the elimination of the boundary unknowns
{f} using a procedure according to Benzine {6].

6. Evaluation of stress resultants inside the plate domain

When Eqgs. (24) and (25) are solved, all the boundary
values {w,ow/dn,M,,V,) and the deflections inside the
domain are obtained. Then, the deflection w(P) at any
point inside the domain can be obtained from Eq. (9).

The bending moments M,, M,, the twisting moment M,,
and the shear force ¢, O at any point of the plate are
expressed as '

3w a’w
M, =~-D] — +v—= 26
x D( a2 8y’ ) (262)
M =D iw  dw (26b)
e e
d o2
ax
9 o2
0, =-D—V'w (264d)
i ay
Fw

My = —M, =D(l — )

dx dy (26¢)

The second and third order derivatives of the deflections in
Eqs. {(26a)-(26e) can be evaluated from the computed
values of the deflections with sufficient accuracy using
numerical differentiation in which the hyper-singular domain
integrals do not occur, However, the stress resultants become
maore accurate when they are evaluated by direct differentia-
tion of Eq. (9) which yields the singular domain integrals.
The technique to convert the singular domain integrals with
kemel derivatives of the fundamental solution to regular
boundary integrals can be found in Refs. [14,15].

7. Numerical examples and results

A computer program based upon some modifications
from a plate flexure program with cubic boundary elements
has been developed. Examples aiming at validating the
formulations of this method presented in this work are
analyzed. Numerical results of examples are compared
with those obtained from analytical or other numerical solu-
tions. In all the cases, the boundary has been divided into 16

Y
A&

E
.-

1
A\
>

3 i
t T 1

Fig. 4. Boundary discretization with 16 cubic elements.
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Table [

Influence coefficients For & = wiPa™D) at v = 0. v = O in a clamped rectangular (2a X 2h} plate

Load position

o

0 0.2 0.4 06 08
yib 0 Present work 32504 % 107" r9324x 10 8.7404 x 107° 34393x 107 92576 X 107°
Kaisikadelis and Kallivokas |9] 319701077 1.9200 % 107 8.7650x 107 3.4650 107° 9.3300% 107*
02 Present work 1.6679% 107} 1.2595% 107" 6.5810% 107" 2.7732%107* 7.7405 x 10~°
Katsikadelis and Kallivokas [9] 1.6640% 107} §.2610% 1077 6.6200x 1071 2.7960% 107 7.7350 % 107°
0.4 Present work 6.2807 x 107 52671 %107 32531 %107 1.5429x 107 44870 x 107"
Katsikadelis and Kallivokas (9] 6.3310% 107 5.3140% 107 3.2870% 107 1.5580x 107" 4.5470% 107*
06 Present work 2.0053x 10 1.8365 % 1074 1.2475% 1071 6.4484>107° 19528 % 107%
Katsikadetis and Kallivokas |9) 220x 10! 1.8580% 10 * 1.2610% 107* 6500 x 10 * 19700 10
0.8 Present work 51148 % 107° 4.5760% 107* 32274%x10°° 17294 % 107° 5.5783IX%10°°
Kaisikadelis and Kallivokas [9] 51620 107* 46020 107F 32480 x 1677 L7270 % 107} 51260 % 107°

Table 2
Central deflections in simply supported plate subjected to vniform foad
Thickness 1-Parameter 2-Parameter

This work Analytical [16] This work FEM [17]
10 (.772910 0.771390 (L732820 0.731427
20 0.218810 0.218070 0215250 0.214917
50 0.016742 0.016680 0.016720 0.016850

cubic elements as shown in Fig. 4 and the domain has been
divided into 15 X 15 rectangular panels. This model uses
discontinuous elements at all corners as mentioned in
Section 3. In the following examples, the results obtained
by this model are shown to be in good agreement with those
from well-recognized methods.

7.1. Clamped plate subjected to a point load

For this example, the present resuits are compared with
those of Katsikadelis and Kallivokas [9] for 2a X 2& rectangu-
lar plate with b/a = 1.2. In Table 1 the influence coefficients
for the central deflection w = wI(PaZID) are given for various
positions of the concentrated load P with the subgrade reaction
modulus k = 625D/a* and the shear modulus G = 49D/a’.

As can be seen, it is clear that the present results agree
very well for every position of load location except for that
near a comner of plate (x == 0.8a, y = 0.86)} which show

Table 3

some discrepancies. This may be due 1o strong singularity
near that position,

7.2. Simply supported plate subjected to a uniform load

A simply supported plate with the following properties is
considered:

plate dimension: 1000 X 1000 mm?
load intensity: 0.01 N/mm’
Young's modulus: 210,000 N/mm?
Poisson’s ratio: 0.3

For this example, the present results are compared with
those obtained from the finite element method {(FEM) [17].
To demonstrate the accuracy of the proposed method,
numerical results of the central deflection are compared in
Table 2. Two cases are considered: (a) a plate on Winkler
foundation with k = 0.0123 N/mm® and (b) a plate on
Pasternak foundation with k = 0.0123 N/mm’ and G =
60 N/mm. It is obvious that the results obtained from this
proposed method are in very good agreement with the FEM
and analytical solution {16}, thus confirming the validity of
the formulations. Moreover, for the plate thickness k = 10,
the deflections, bending moments and shear forces at the
plate center with variation of k and G are given in Tables
3 and 4, respectively. One can see the insignificant differ-
ence between the proposed approach and the FEM.

Deflections, bending moments and shear forces at center in simply supported plate subjected to uniform lgad with variation of &

k G Deflection Bending moment Shear force

This work FEM [17] This work FEM [17]) This work FEM [17}
Q.0123 60 0.732820 0.731427 144,18 142.61 1.49 t.4!
0.0247 60 0.446620 046139 75.80 75.51 1.12 1.05
0.0329 60 0.351800 0351389 53.91 53.88 0.99 0.93
0.0657 o0 01841710 N 183949 17.80 17.91 0.7 0.69
0.0822 60 0.146630 0.146362 10.71 10.76 0.68 0.63
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Table 4

Deflections. bending moments and shear forces ai center in simply supported plate subjected to uniform load with variation of &

k G Deflection Bending moment Shear force
This work FEM [17] This work FEM [17] This work FEM [17)
0.0123 60 0.732820 0.731427 14418 14261 1.49 1.41
0.0123 120 0.689060 0.691051 133.80 133.93 1.44 1.35
0.0123 200 0.642750 0.642922 124.14 123.53 1.37 1.28
0.0123 400 0.550510 0.549367 105.16 103.50 1.22 1.14
0.0123 800 0.428450 0.424273 80.73 78.11 1.03 095
Table 5
Influence coeflicients for W = wi(Pa®/D} of a quarier of square plate subjected to concentrated load at center {(x =0,y = 0)
Position xla
0 0.t 0.2 0.3 0.4
yib 0 20366 107 1.5653% 1073 1.0085 x 107 5.8153% 107 26294 % 107
0.1 1.5531%107? 1.3110x 1073 8.8915% 10~ 5.2412% 107 23925% 107"
0.2 9.6218x 107" 855071074 6.2208 % 107* 3.8288x 101 1.7855x 10~
0.3 48999 x 107 4.4512x1071 33776 % 107 21505% 1071 Lo222% 107
0.4 151 x1t 1.3839 % 1074 1.0675 % 107" 6.8958 % 10°° 3.3043% 10°F

7.3, Plate with opposite edges simply supported and the
other two edges clamped

This example demonstrates an application of the proposed
method for a combination of various boundary conditions. A
square (¢ X a) plate subjected 10 a concentrated load at its
center is considered with k = 1000D/a* and G = 100D/a”
(Fig. 5(a)). The influence coefficients for the deflection w =
wi(Pa*D) of a quarter of the plate are given in Table 5 and the

L a eyl
r i
I S i ——
A lr
A “
L
/1 L]
a ) X L
A ly
A s
X = ——
{a)

{b)

Fig. 5. (a} Plate with a combination of simply supported and ¢lamped edges:
(b the perspective of the deflection surface of a square plate.

perspective of the deflection surface is shown in Fig. 5(b).
Finally, the equivalent shear forces along clamped and simply
supporied edges are plotted and shown in Figs. 6 and 7, respec-
tively. Because of using cubic elements (higher-order
elements), it can be seen that there are no oscillations in the
equivalent shear force values along the boundaries.

3.5 -0.3 0.1 1 03 0.5
.00 T T T T ¥y /a

0.25 4

.50
V,afP

Fig. 6. Equivalent shear force along clamped edge.

V,afP
0.10
0.06 -
0.02
002 ; . : Y xfa
0.5 03 0.1 0.1 0.3 0.5

Fig. 7. Equivalent shear force along simply supponted edge.
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F— - m—

w . i
2,50 ;+h=10‘
J =13
2.00 \
=5
1.50 1 LM =20
1.00 1 ‘\'\‘_\\'\. —*—h=50,
0.50 | “‘\H\H
0.00 S P = - K

0.00 0.02 0.04 0.06 0.08 G.10

Fig. 8. Clamped plate: vaniation of central defiection with & by constant G = 6f).

0.00 0.02 0.04 0.06 0.08 0.10

Fig. 9. Clamped plate: variation of normal bending moment at a middle side
with & by constant G = 60.

w
1.50 7

l—l—.%___.__\“-

1.00 1

.50 1

1,00 +—Weilemift —l
0 200 400 600 300 1000

Fig. 10. Clamped plate: variation of central deflection with G by constant
k == 0.0123.

The above examples provide confirmation to the validity
and accuracy of the proposed method. In Section 7.4, a
parametric study is conducted to determine the influence
of various parameters on bending of plates on two-para-
meter elastic foundations.

7.4. Parametric study

The parameters concerned in this study are plate thick-
ness (k), subgrade reaction modulus (&), and shear modulus

Mn
1400

1200J
1000 ‘*‘\n\‘
800 1 .\
600 |
400}
200

0 G
0 200 400 600 300 1000

Fig. 11. Clamped plate: vaniation of normal bending moment at a middle
side with G by constant & = 0.0123.

w
0.8 ~——h=10
—8—p=] 5
0.6 —k—h=20
—¥=ph=30
0.4 —%—p=s0
0.2
o ___x._:!=l_,____:ﬁ—_3_r_, Kk
Q.00 0.02 0.04 0.06 0.08 0.10

Fig. 12. Simply supponed plate: vanigtion of central deftection with & by
constant G = 6.

(G). Two cases are considered: (a) a clamped plate subjected
to a point load (P = 10, 000 N) at the center and (b) a simply
supported plate subjected to a uniform load (g=
0.0t N/mm?). All plates have the following properties:

plate dimension: 1000 X 1000 mm®
Young's modulus: 210,000 N/mm?
Poisson's ratio: 0.3

by varying 10=h=50, 00123=k=0822 and
60 = G = 800.

For clamped plates the central deflection and normal
bending moment at mid-side with variation of k and G
are plotted in Figs. 8—11. It is obvious that the central
reflection and normal bending moment at mid-side
decrease as the foundation parameter (k or G) increases.
The present results tend to be unvaried for the plates
which have the higher value of thickness. For simply
supported plates the central defiection and central bend-
ing moment with variation of k and G are shown in
Figs. 12-15. It can be concluded in the same way as
the first case that the present results decrease as the
foundation parameter increases and tend to be unvaried
when plate thickness increases.
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Mx
309 ——h=10
400 1 )5
200 | —A— =20
—N—h=]0
200 1 =50
100
[i] T T T T 1 k
0.00 0.02 0.04 0.06 0.08 0.10

Fig. 13. Simply supported plate: variation of ceniral bending moment (M, )
with & by constant G = 60,

w
08
—4—h=10
0.6 1 —o—p=15
—&— =20
04 H\'\.\- -3 130
—X¥—}h=50
o I o S —X — G
[H] 200 400 600 800 1000

Fig. 14. Simply supported plate: variation of central deflection with G by
constant £ = 0.0123.

Mix
) e — x
mh&.\:\ﬂ_
200
lOON"'\O\’
0 ' ' ~ G
0 200 400 600 $00 1000

Fig. 15. Simply supported plate: vanation of central bending moment (M.}
with G by constant & = 5.0123,

8. Conclusions

The following conclusions can be drawn from this study:

1. In the proposed formulation the classical fundamental
solution is used to solve plates bending on two-parameter
elastic foundations. Thus. the difficulty in the evaluation
of the integrals is alleviated. The application of higher-
order elements, i.e. cubic elements is adopted for improv-
ing the solution.

2. The domain integral representation for the foundation
pressure along with the proposed method is easily eval-
uated without necessity to perform the surface integration
by Gauss—Legendre method.

3. The kemels of the boundary integral equations are con-
veniently established, thus plates with various boundary
conditions including mixed boundary conditions can be
solved.

4. The proposed method can be applied conveniently to
solve for the nonhomogeneous two-parameter elastic
foundations by specifying the foundation parameters
(k and G) in each subdomain.
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Abstract. This paper presents a finite clement approach for determining the natural frequencies for
planar inclined arches of various shapes vibrating in three-dimensional space. The profile of inclined
arches, represented by undeformed centriodal axis of cross-section, is defined by the equation of plane
curves expressed in the rectangular coordinates which are : circular, parabolic, sine, elliptic, and catenary
shapes. In free vibration state, the arch is slightly displaced from its undeformed position. The linear
relationship between curvature-torsion and axial strain is expressed in terms of the displacements in three-
dimensional space. The finite element discretization along the span length is used rather than the total arc
length. Numerical results for arches of various shapes are given and they are in good agreement with
those reported in literature. The natural frequency parameters and mode shapes are reported as functions
of two nondimensional parameters: the span to cord length ratio (¢) and the rise to cord length ratio (f).

Key words: finite elements; free vibrations; inclined elastic arches; mode shapes.

1. Introduction

A considerable amount of research work has been done on the problem of free vibrations of
arches and curved beams over the past several decades. In the literature, most of the research work
is limited to arches supported at same level, and the analyses have been done only in a single plane:
either in-plane or out-of-plane motion. Analytical solution for free vibrations can be found in cases
where arches have simple geometry. For more complex configurations, a numerical method such as
finite element method may be used. In-plane vibration analysis of circular arches were reported by
Den Hartog (1928), Wolf (1971), Veletsos er al. (1972), Austin and Veletsos (1973), Irie er al.
(1983) and Wilson et al. {1994). Arches with variable curvature (non-circular geometries) had been
studied by many researchers, including, Volterra and Morell (1960, 1961a), Wang (1972), Romanelli
and Laura (1972), Lee and Wilson (1989) and Oh et al. (1999). Free vibration of planar catenary
arch with unsymmetric axes was reported by Wilson and Lee (1995). Circular arches and curved
beams vibrating out-of-plane were reported by Culver (1967), Shore and Chaudhuri (1972), Volterra
and Morell (1961b), and Irie et al. (1980, 1982a, 1982b).

Although the analysis of arches and curved structures using the finite element method has been
well established, it does not take advantage of arch geometry. In many practical cases, arch

+ Professor
T Graduate Student
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geometry can be defined by the equation of plane curves in rectangular coordinates. With this
information, it is more convenient to use the present procedure to solve the problem of planar
inclined arch vibrating in three-dimensional space. In the procedure, geometry of the arch is
represented by the undeformed centroidal axis of cross section and defined by equation of plane
curves expressed in rectangular coordinates. In the vibration state, where the arch is slightly
displaced from its undeformed position, the linear relationship between curvature-torsion and axial
strain is expressed in terms of displacements in three-dimensional space. In the finite element
formulation, the displacements causing bending, torsion and axial deformations along its curved axis
are approximated by cubic polynomials in terms of the arc length parameters. The effects of shear
deformation, rotatory inertia and warping are not considered in the present paper. In the discretizing
process, the span length of the arch rather than total arc length is subdivided into a number of
elements since, from the architectural point of view, span length is usually known or given, but the
total arc length may not. Together with the arch geometry information, input data can be reduced
and alleviated. The stiffness and mass matrices are formulated to obtain the natural frequencies and
corresponding mode shapes of free vibrations. Numerical results of the test problems are presented
and compared favorably with those found in the literature. The natural frequency parameters and the
corresponding in-plane and out-of-plane modes are demonstrated as functions of two geometrical
parameters: the span to cord length ratio (¢) and the rise to cord length ratio (f).

2. Method of analysis

The geometry of an inclined arch with a uniform cross-section is shown in Fig. 1(a). It can be
represented by the equation of plane curves expressed in rectangular coordinates. For a given shape
of the plane curve, span length, cord length and arch rise, every location along the curve can be
determined. The equations of plane curves for various shapes of arches are as follows

/— arch axis, y = y(x)
. 5
I hinged/fixed 1 : Y
U YR ¥ L Cw

M,V -

—.-A_—-b\‘:

Y
H

hinged/fixed

(a) (b)

Fig. 1 {a) Arch geometry and geometric parameters; (b) coordinates at centroidal axis
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¥(x) = - (R—H) + /R’—( —%)2, 0sx<l

2.1 Circular arch

where
(L +aH B ) I\
R —( s j H=(R+h)+ /R —(1—2)
2.2 Parabolic arch
y(x) = %{(Lx—x"), 0<x<!
where
%
T 4L-D

2.3 Sinusoidal arch
y(x) = H-a+asin(bx + bal), 0sx<i

where

a = H b= Fi4
" 1-sin(bal)’ T L(1+2a)

H = h+a-asin(bl+bal)
2.4 Elliptic arch
C 2 2
yx) = —(c-H)+7 |d —( —~), 0<x<l

where

___dH__ L
d—L«/a+a2 2

_ ¢l (i LY
H = (h+c)—a, d —[!—2)

c + al

2.5 Catenary arch

y(x) = H+ po—pocosh(ﬂ], 0<x<l

Po
where

715

(1a)

(1b, ¢)

(2a)

(2b)

(3a)

(3b, ¢)

(3d)

(4a)

(4b, ¢)

(4d)

(5a)

(5b)
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The geometric parameters in Eqs. (1)-(5) are defined as follows, [ is the span length; L is the cord
length; 4 is the different distance of both ends supported; H is the arch rise; R is the radius of the
curvature of the circular arch; o is the parameter used for identifying sinusoidal and elliptic arches
only; and pp is the radius of curvature at the crown of the catenary arch which is determined by
normalizing Eq. 5(a) by the catenary cord length. The non-dimensional equation of the catenary
arch is defined by the shape parameters (f) and (g) as

Y(X) = f+g —g cosh[g(x - 05)] ©

where
x=x/L, y=y/L (7a, b)
f=H/L, g=L/p, (shape factors) (8a, b)

Substituting x = 1 and y = 0 into Eq. (6) leads to
fg—cosh(05g)+1 =10 9

For a given catenary shape factor f, the corresponding g value can be obtained from Eq. (9) using
the Newton-Raphson method.

In this study it is assumed that the undeformed centroidal axis of cross-section has a shape
resembling that of plane curves. Finite element discretization along the arch length, which is not yet
known, may be inconvenient for the input data process, therefore, it is preferable to discretize along
the span length. In the vibration state, the undeformed centroidal axis is assumed to be slightly
displaced from its initial position. The &, 7, and { axes form a right-handed coordinate system in
normal, binomial and tangential directions, and the displacements u, v, and w at the ceniroidal axis
corresponding to the coordinate system are shown in Fig. 1(b). The relations between curvature-
torsion, strain and displacements at the deformed state for any section s along the curved centroidal
axis, are obtained and given here as follows (Chucheepsakul 1989):

d*v
Kp = —— + k@ (10a)

ds

d’u > dx
K, = K+ds2+lcu+wds {(10b)
do dv

T = P + Kd.’s (10c¢)
g = %“ Ku (10d)

where kg, &, and 77 are the final curvatures and torsion about the &, 17, { axes, respectively. 6 is the
rotation about the {-axis, £ is the axial strain and K is the in-plane curvature of the undeformed
centroidal axis and is defined as
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y”
K= —2— (11)
(1 +y,2)3/2

2.6 Element strain energy and kinetic energy

Considering the ¢™ element along the curved axis, the element strain energy, U.,, and the element
kinetic energy, T,, can be expressed as

U, = [[[EAE; + EIgk; + EL (1, %)’ + GIT,ds (12)

r= S5+ (5 + (35 Jo @)

where El; and EI, are the bending rigidities about £ and 7 axes, GJ and EA are the torsional and
axial rigidities, p is the mass density of arch per unit length, /, is the mass polar of inertia per unit
length about £ and [ is an element length measured along the curve. Eqs. (12) and (13) can be
written in the following form as

U, = -I [{<}Y{EHK'} + {e} EA{€}]ds (14)
T, = 3 {a) (p) i} ds 1s)
where
K El, 0 0
{x}=x-x: [El=]|g EI, 0| {e} = ¢ (16-18)
Ke 0 0 GJ
p000
du dv dw 20 _{0p0O0
ta} = l:c?t at ot BJ' P 00p0 {19, 20
0001,

3. Finite element formulation
The displacement components u, v, w and 8 of the e™ clement can be expressed by cubic

polynomials in term of the arc length parameter s. Hence, the displacement vector {1} can be simply
expressed in terms of a nodal displacement vector {d) through the matrix of shape functions [F] as:

{u} = [F]{d} 21)
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in which
{u} =[uv w8 (22)
The elements of 4 x 16 matrix {F] are

0000004000000
00f,000000££0000
0000f££000000Fff 00
000000f££000000Fff

[F] = (23)

where the components f, f>, f3, and f; are the standard shape functions for a beam element (Cook
1981), and

{d} = [u, “1’ vy V; W WI 0, 9: i u; vy vy Wy Wy 0, 91:]T (24)

Substitution of Eq. (21} into Eqs. (14) and (15). the strain energy and kinetic energy can be
written as:

U, = YTk} 25)
T, = 34d) [m){d} 26)

in which { d’} is the nodal velocity vector, and [k,] and {m,] are the element stiffness and element
mass matrices, written respectively as:

(k] = [IGY[AI'LENA) + [P)EA[P1(G]ds 7
im,] = [ [FI"[pl[Flds 28)

where matrices [G], [A] and row matrix [P] are as follows:

5, £, 0 00000/ f,0000O O
fifi000000Ff 000000
frfy 0000O0O0f f 000000
0 0 f ff 00000 O0F f 0000
[Gl=10 0f f 00000 0f,ff 0000 (29
0 000/f/,000000O0FfHf£0OO
0 0 0 OF f 00000 O0Fffi 00
000000Fff£ 000000 ff
000 00 00ff 000000/ f]
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0000-100x0

[Al= 10100 000 (30)
000Kk0 0001
[Pl=[-k 0000010 0] (31)

Here ‘prime’ denotes the derivative with respect to s.
Because of discretizing along the x coordinate, before the element matrices are evaluated, the
variables in term of s are required to be expressed in term of x by the following relation:

ds = J1+y"dx (32)
Therefore, the derivative terms with respect to s can be changed to x by the relation:

d() _ 1 d()
ds 2 dx

(33)
1+y

After the element stiffness and mass matrices are evaluated they are assembled to the global
system. Hence, the global equations of motion for free vibration are:

[K1{D} = &'[M1{D} (34)

where [K] and [M] are global stiffness and mass matrices, {D} is a mode shape vector, and @ is the
natural frequencies of vibrations. The boundary conditions are as follows:

{a) hinged-hinged arches:
u=v=w=0=0, at the left end (x=0) and the right end (x =1{) 35)

{(b) hinged-fixed arches:

u=v=w=8=90, at the left end (x=0) (36a)
u=u=v=v=w=w' =0=8 =0, at the right end (x=1) (36b)

(c) fixed-hinged arches:
u=u =v=v=w=w =08=0 =0, at the left end (x=0) (37a)
u=v=w=0=0, at the right end (x=1) (37b)

(d) fixed-fixed arches:
t=u'=v=v =w=w' = 8=0 =0, at the left end (x =0) and the rightend (x=1{) (38)

Gaussian quadrature numerical integration with four points is used to calculate the stiffness and mass
matrices. and a standard inverse vector iteration (Bathe and Wilson 1976} is used to solve Eg. (34).
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4. Numerical results and comments

A Fortran computer program based on the procedure described above was developed for
determining the natural frequencies and the corresponding mode shapes. Test examples of arch
problems are used to demonstrate the validity of the model formulation. The total number of span
elements used throughout this analysis is twenty elements. For ease of calculation, the arches having
uniform prismatic cross section and two axes of symmetry are used. The material properties of
arches are as follows: cross-section area A =1.2 x 10> m% mass per unit length p=9.42 kg/m,
moment of inertia I;=1;=12x 107" m*, torsional constant J=2.02464 x 107 m", elastic modulus
E =210 x 10° N/m?, shear modulus G = 81 x 10° N/m% Table 1 shows the numerical comparison of
frequency parameter C,; for the in-plane mode of various arch shapes whereas Table 2 shows the

Table 1 Comparison of frequency parameter C, for in-plane mode

Frequency parameter, C,;

. Mode

Geometry of arch (ni) Thi Veletsos ef al. Lee and Wilson Wilson and  gha00#

is study pe

(1972) (1989) Lee (1995)

Circular I 27.50 27.51 - - A
hinged-hinged, 2 63.79 63.80 - - S
[ =L=10606m, 3 123.07 123.12 - - A
H=02197m 4 141.56 141.52 - - S
Parabolic 1 36.11 - 36.52 - A
hinged-hinged, 2 64.95 - 64.83 - S
I=L=10m, 3 88.92 - 89.38 - hY
H=01m 4 148.64 - - - A
Sinusoidal 1 28.52 - 29.35 - N
hinged-fixed, a=0.5, 2 67.45 - 68.44 - N
I=L=10m, 3 119.31 - 119.86 - N
H=03m 4 149.65 - - - N
Elliptic 1 20.77 - 20.88 - A
fixed-fixed, =05, 2 49.15 _ 4995 - S
I=L=10m, 3 85.68 - 85.79 - A
H=05m 4 128.28 - - - h
Catenary 1 45.02 - Co- 46.32 A
hinged-hinged, 2 107.44 - - 107.79 s
[=075m,[=10m, 3 166.83 - - 166.51 s
H=03m 4 203.69 - - 204.21 A®
Catenary 1 73.18 - - 7221 AT
fixed-fixed, 2 130.99 - - 129.23 s
[=075m,L=10m, 3 182.39 - - 180.57 5
H=03m 4 256.94 - - 254.69 A’

#A = antisymmetric; § = symmetric; N = neither antisymmetric nor symmetric; A* = close fit to antisymmetric;
§* = close fit to symmetric.



Free vibrations of inclined arches using finite elements 721

Table 2 Comparison of frequency parameter C,, for out-of-plane mode

Frequency parameter, C,, Mode

Geometry of arch (no) - - #

This study Shore and Chaudhuri (1972) shape
Circular 1 5.10 5.10 A}
hinged-hinged, 2 28.63 28.65 A
=L =1.0606 m, 3 68.48 68.55 S
H=02197m 4 124.39 124.51 A

#A = antisymmetric; S = symmetric.

out-of-plane frequency parameter C,, of a circular arch. The values of frequency parameters C,; and
C,, are defined as follows:

Cni = 0L/ JEL/p (39)
Cpo = W, L2/ JEI/p (40)

It can be seen that the results are in good agreement for all cases. Thus, the authors believe that
the model formulation presented herein can be used for determining the natural frequencies of
arches of various shapes having geometry defined by the equation plane curves expressed in the
rectangular coordinates.

The results shown in Figs. 2-17 depict the values of the first four frequency parameters (C,; and C,,)

500
J
g
g
fry
g
g
(£
0+ — . . .
0.50 0.60 0.70 0.80 0.90 1.00
Span to cord length ratio, ¢
Fig. 2 Hinged-hinged arches: effect of e with f=0.3 on frequency for in-plane vibration; ——, circular; ——,

parabolic; -=---- , sinusoidal(a = 0.5); —-—-, elliptic{a = 0.5); —-—, catenary
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Frequency parameter, C,

41
.50 0.60 0.70 0.80 0.50 1.00

Span to cord length ratio, ¢

Fig. 3 Hinged-fixed arches: effect of e with f=0.3 on frequency for in-plane vibration. Key as Fig. 2

Cu

Frequency parameter,

0.50 0.60 070 0.80 0.90 1.00

Span to cord length ratio, ¢

Fig. 4 Fixed-hinged arches: effect of e with f=0.3 on frequency for in-plane vibration. Key as Fig. 2

corresponding to the first four free vibration modes of the five arch shapes. The hinged-hinged,
hinged-fixed, fixed-hinged, and fixed-fixed end constraints were considered for each of the arch
geometry with the given parameters of the span to cord length ratio (), and the rise to cord length
ratio (f } and o (it is noted here that ¢ is used for sinusoidal and elliptic geometries only).

Figs. 2-9 show the variation of C,; and C,, due to effect of the span 10 cord length ratio ¢ with
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Frequency parameter, C,,

0.50 0.60 0.70 0.80 0.90 100
Span to cord length ratio, ¢

Fig. 5 Fixed-fixed arches: effect of ¢ with f=0.3 on frequency for in-plane vibration. Key as Fig. 2

8

Frequency parameter, O,

0.50 0.60 0.70 0.80 0.90 1.00
Span to cord length rmatio, ¢

Fig. 6 Hinged-hinged arches: effect of ¢ with f = 0.3 on frequency for out-of-plane vibration. Key as Fig. 2

fixed value of f=0.3 and o= 0.5. The end constraint of all five arches are varied consecutively from
hinged-hinged, to hinged-fixed, to fixed-hinged, and to fixed-fixed conditions. It can be seen that
each value of frequency parameter increases with the increase of constraint condition, while the
other parameters remain constant. It is also observed that the frequency parameters decrease with
the increase in span to cord length ratio. For in-plane vibration (Figs. 2 and 5), it appears that
frequency crossover as well as modal transition occur between two mode shapes ni =3 and ni =4,
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Frequency parameter, Cuo

] il no=1

0 , — ———
0.50 0.60 0.70 0.80 0.90 1.00

Span to cord length ratio, ¢

Fig. 7 Hinged-fixed afches: effect of ¢ with f= 0.3 on frequency for out-of-plane vibration. Key as Fig. 2

Frequency parameter, Cho

no=}

] no=1
1] — — — 7T —
0.50 0.60 0.70 0.80 0.90 1.00

Span to cord length vatio, ¢

Fig. 8 Fixed-hinged arches: effect of ¢ with f=0.3 on frequency for out-of-plane vibration. Key as Fig. 2

except for hinged-fixed and fixed-hinged conditions in Figs. 3 and 4. The circular arch is nearly fit
to symmetric mode shape at where ni =2, where as the arches with variable curvature (parabolic,
sinusoidal, elliptic and catenary) are nearly fit to antisymmetric and changed to symmetric mode
shapes when the span to cord length ratio is increased, as shown in Figs. 2 and 5 respectively. For
out-of-plane vibration (Figs. 6-9). the values of C,, for all arch geometries are slightly different and
have the same trend. The lowest torsional frequency parameter Ci(T) represented by the torsional
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Frequency parameter, Ch

0.50 0.60 0.70 0.80 0.90 1.00
Span 1w cord length ratio, ¢

Fig. 9 Fixed-fixed arches: effect of e with f=0.3 on frequency for out-of-plane vibration. Key as Fig. 2

Frequency parameter,

0.00 0.10 ‘020 030 0.40 0.50
Rise 1o cord length ratio, f

Fig. 10 Hinged-hinged arches: effect of f with ¢ = 1.0 on frequency for in-plane vibration. Key as Fig. 2

angle is found and at e = 0.5 this value belongs to the fourth mode of vibration.

Figs. 10-17 show the variation of C,; and C,, due to the effect of the rise to cord length ratio f
with fixed value of ¢ = 1.0 and = 0.5. The end constraint conditions are varied from hinged-hinged
to hinged-fixed (or fixed-hinged) to fixed-fixed conditions for all geometry of arches. It can be seen
that each value of frequency parameter increases, while other parameters remain constant (for
hinged-fixed and fixed-hinged arches, the frequency parameters are equivalent due to the same end
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200

—

Lh

=1
1.

Frequency parameter, C;
g

o
<
PR

4] — T Ty T
0.00 0.1¢ 0.20 0.30 040 0.50

Rise to cord length ratio, f

Fig. 11 Hinged-fixed arches: effect of f with ¢ = 1.0 on frequency for in-plane vibration. Key as Fig. 2

200

T 150 4

w ;

w

L

g

g 100 -

a 4

>

3 ]

&

[

=

=4 ]

2

™) 50 4
I+
0.00 0.10 0.20 0.30 0.40 0.50

Rise to cord length ratio, f

Fig. 12 Fixed-hinged arches: effect of f with ¢ = 1.0 on frequency for in-plane vibration. Key as Fig. 2

constraint condition). For in-plane vibration (Figs. 10 and 13), it is observed that frequency
crossover as well as modal transitions can occur between two mode shapes ni=1 and ni=2, ni =3
and ni = 4, however, the frequency crossover does not occur in hinged-fixed and fixed-hinged arches
as found in Figs. 11, 12. For out-of-plane vibration (Figs. 14-17), it is found typically that the
frequency parameters decrease with the increasing value of rise to cord length ratio, and the mode
shapes of arches with same end conditions can be identified. The mode shapes for arches with



Free vibrations of inclined arches using finite elements 727

250
200 4
150 4

100 1

Frequency parameter, C

50 1

.00 0.10 020 0.30 040 0.50
. Rise to cord lengh ratio, f

Fig. 13 Fixed-fixed arches: effect of f with ¢ = 1.0 on frequency for in-plane vibration. Key as Fig. 2

200

& 150 4

L 4

._" 4

g 100 no=4

j= 9

oy

=

o

&

g ]

& 50 -
| S ———— L
0.00 0.1¢ 020 030 0.40 0.50

Rise to cord length ratio, f
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mixed end conditions can be neither symimnetric nor anti-symmetric.
5. Conclusions

A finite element procedure for free vibration analysis of the planar arches with support at the
same or different level, and vibrating in three-dimensional space has been presented. The geometry
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of arches is represented by an equation of a plane curve in rectangular coordinates The model
formulation has been verified by the favorable comparisons the values of the frequency parameters
with those reported in the literature. For a given set of arch parameters (¢ and f) and matching end
constrains, numerical results have shown that the frequency parameters for arches with variable
curvature (parabolic, sinusoidal, elliptic and catenary arches) change only slightly in these groups;
but show somewhat larger differences for the circular arch due to its constant curvature. As
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expected, the mode shapes for the hinged-fixed and fixed-hinged cases are neither symmetric nor
antisymmetric because of the difference in end conditions. For the hinged-hinged and the fixed-fixed
types of arches supporting at the same level the mode shapes are found to be the alternating pattern
between anti-symmetric and symmetric modes. For the hinged-hinged and the fixed-fixed end
conditions of arches supporting at different levels, the numerical results have shown that neither
pure symmetric nor pure antisymmetric mode shapes exist.
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Abstract

This paper develops mathematical formulations for large strain analysis of extensible flexible marine pipes
transporting fluid in two different coordinates: Cartesian and natural coordinates. Both the virtual work method and
the vectorial method are applied to generate the large strain formulations, in which deformation descriptions based
upon the total Lagrangian, the updated Lagrangian, and the Eulerian mechanics are taken into consideration. The new
ideas used in the model formulations deal with applications of the extensibie elastica theory and the apparent tension
concept to handie combined action of the effect of axial deformation with large strain and behaviour of flow of
transported fluid inside the pipe including the effect of Poisson’s ratio. The present models cover nonlinear statics and
nonlinear dynamics, and provide fiexibility in the choice of the independent variables used to define the elastic curves.
© 2002 Elsevier Science Litd. All rights reserved.

1. Introduction

In the past five decades, flexible pipes have been employed extensively in numerous offshore engineering applications.
The most vital function of them is to transport fluids drilled frem underneath ocean floor such as oil, gas, hydrocarbon,
and other crude resources, up to the production platform or drilling ship. In the deep-ocean mining industry, flexible
pipes play the role of the main module of the production system as shown in Fig. 1(a). In moderate seca-depth
applications, they are often used as the secondary part, linked to rigid risers as shown in Fig. 1b and c.

In the literature, there are many papers related to flexible pipe analysis as reviewed by Chakrabarti and Frampton
(1982), Ertas and Kozik (1987), Jain (1994) and Patel and Seyed (1995). It is remarkable that most of them omit the
effect of axial deformation of the pipe, and the influence of internal flow. Furthermore, all of them overlook the
Poisson’s ratio effect. As will be reviewed and discussed later, the individual effect of axial deformation, internal flow,
and Poisson’s ratio can be significant for behaviour of low flexibility pipes. It is therefore conceivable that combined
actions of ali the effects become more important for behaviour of highly flexible pipes. In such cases, those effects
should be carefully examined, and large strain analysis is essential.

However, hitherto a mathematical treatment for the large strain analysis that takes into consideration the combined
actions of those effects has not been elucidated. Hence it is the objective of this paper: first to introduce and explain the
mathematical principles for large strain analysis of extensible flexible marine pipes conveying fluid from viewpoints of
the total Lagrangian, the updated Lagrangian, and the Eulerian mechanics; second to show how to formulate large
strain models of marine pipes in Cartesian and natural coordinates by relying upon the extensible elastica theory and

*Corresponding author, Tel.: +662-470-9134-36; fax: + 662-427-9063.
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Nomenclature

Ae, Aeo, A, sectional areas of the external fluid column at the three states

A;, Ajp, A; sectional areas of the internal fluid column at the three states

Ap, Apo, A, sectional areas of a pipe at the three states

ar,arp acceleration vectors of transported fluid relative to a fixed frame and a pipe

@Fu, OF1, GFx, dp,  accelerations of transported fiuid relative to a fixed frame in normal, tangential, horizontal, and
vertical directions, respectively ’

ap acceleration vector of a pipe relative to a fixed frame

apy,dp, dpy,ap, accelerations of a pipe relative to a fixed frame in normal, tangential, horizontal, and vertical
directions, respectively

B, B,, B bending rigidities at the three states

Cpns Cpr, Ca, Cy  coefficients of normal drag, tangential drag, added mass, and inertia

D,, D, D, diameters of the external fluid column at the three states

Dp,Dp,,Dp diameters of a pipe at the three states

E elastic modulus

ff,.f external load vectors at the three states

i, 1o, Ty hydrodynamic force vectors at the three states

Fyn, Fyr, Friy, Fyy hydrodynamic forces in normal, tangential, horizontal, and vertical directions, respectively

JtinsJrnuxSuy hydrodynamic forces per unit length in normal, tangential, horizontal, and vertical directions,
respectively

Fipn Fyjo Fj, normal inertial forces of a pipe, transported fluid, and overall system

Fyp, Fyy Fyy tangential inertial forces of a pipe, transported fluid, and overall system

Jea normal reaction between pipe wall and transported fluid per unit length

Ju-Juf.fr external load components in Eqgs. (123c) and (129g)

g gravitational acceleration

H, H,, H horizontal internal forces at the three states

ij horizontal and vertical unit vectors in Cartesian system

Ip, Ip,, Ipmoments of inertia of a pipe at the three states

M, M,, M bending moments at the three states

N, N,, N axial forces at the three states

M., My, m, masses of the external fluid column per unit length at the three states

my, m;,, m; masses of the internal fluid column per unit length at the three states

Mp,mp,,mp masses of a pipe per unit length at the three states

i, f,, i normal unit vectors in natural system at the three states

DPesPi pressures of external and internal fluids

0, Q,, O shear forces at the three states

F.rp,r  radii of curvatures at the three states

¥r,Trp  position vectors of transported fluid relative to a fixed frame and a pipe

Tp position vector of a pipe relative to a fixed frame

%,50,5  arc-length coordinates at the three states

T, T,, T true wail tensions at the three states

T2 Toos T, apparent tensions at the three states

T., Teo, T. effective tensions at the three states

T apparent tension due to triaxial stress

t time (time derivative denoted by overdot such as 8x/9r = %)

tf,,t tangential unit vectors in natural system at the three states

u,,u displacement vectors from state 1 to 2 and state 2 to 3

Uo, U horizontal displacements from state 1 to 2 and state 2 to 3

o, 4,  normal displacements from state 1 to 2 and state 2 to 3

V, V,,V vertical internal forces at the three states

Vo, Ve current velocities at mean sea level and at any sea depth

Vr, Vep velocity vectors of transported fluid relative to a fixed frame and a pipe

Vi, Vi external hvdrodynamic velocities in normal and tangential directions
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Vive. Ve external hydrodynamic velocities in horizontal and vertical directions
V., V.. V, internal flow velocities at the three states

Vp velocity vector of a pipe relative to a fixed frame

Vev, Vee, Vg horizontal, vertical, and rotational velocities of a pipe
Ve wave velocity

Uy, vertical displacements from state 1 to 2 and state 2 to 3

Uno-tn  tangential displacements from state 1 to 2 and state 2 to 3

Wp, W,, W; weights of a pipe, the external fluid column, and the internal fluid column
Wy, Wae, W, apparent weights per unit length at the three states

Xp, X Cartesian vectors of displacements from state | to 2 and state 2 to 3

X, x,.x horizontal Cartesian coordinates at the three states

z static offset

F.¥a, ¥  vertical Cartesian coordinates at the three states

#n, 7, vertical distances from bottom support to seabed and to sea surface
Greek symbols

o independent variable (its derivative 8/0« denoted by ("))

Y4.5¢ Almansi’s and Green’s strains

T, Ta: 74 total, static, and dynamic updated Green strains

Var 71 relative velocities of external fluid in normal and tangential directions
££,,¢  axial strains at the three states

g, &,. £¢ - total, static, and dynamic axial strains (¢4 = ¢ — ¢,)

Eiri axial strain due to the tension T,

&, &r0. & volumetric strains of a pipe at the three states

£ axial strain at a fibre radius coordinate ¢

a

g a fibre radius coordinate

§.6,.0 rotational angles at the three states

K,x,.k curvatures at the three states

¥ Poisson’s ratio

Tan, Tar, Taxs Ty t0tal virtual works of apparent system in normal, tangential, horizontal, and vertical directions,
respectively

Pps P p; densities of a pipe, external fluid, and internal fluid

ap end effect stress

g:,64,d, triaxial stress in Fig. 4(f)

T shear stress in pipe wall

Tir wall shear friction between pipe wall and transported fluid

Fers Verr Vor  control volumes of a pipe at the three states

¥, Yoo, Yo volumes of the external fluid column at the three states
¥:, Vi, ¥; volumes of the internal fluid column at the three states
¥p.Yp,,¥p volumes of a pipe at the three states

Subscripts

pipe

external fluid
internai fluid

static quantity
dynamic quantity
natural coordinates.

N o, A ey
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Fig. 1. Flexible marine pipes: (a) marine riser; (b) flexible pipe; and (c) hoseline.

the apparent tension concept; and finally to #lustrate versatile and sophisticated models suitable for two-dimensional
large strain analysis of extensible flexible marine pipes conveying fluid.

1.1 Significance of effect of axial deformation

From a literature review, the effect of axial deformation on behaviour of marine cables was investigated by Huang
(1992), Chucheepsakul et al. (1995) and Chucheepsakul and Huang (1997). The effect on behaviour of suspended cables
was studied by Huddleston (1981), Shih and Tadjbakhsh {1984), Burgess and Triantafyllou (1988), Lin and Perkins
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(1995), Triantafvliou and Yue (1994) and Tjavaras et al. (1996, 1998). The effect was included in analysis of low
flexibility marine risers by Chung and Whitney (1983), Chung et al. (1994), Chung and Cheng (1996) and Bernitsas and
Kokarakis (1988):; Bernitsas et al. (1985).

It was reported that the effect of axial deformation on static behaviour of those structures is to increase static
displacements of low-tensioned cables, due to extensibility dominating; but to reduce the static displacement of high-
tensioned cables, due to pre-stressing dominating (Chucheepsakul et al.,, 1995; Chucheepsakul and Huang, 1997).
Although Bernitsas and Kokarakis (1988); Bernitsas et al. (1985) found that the effect on static behaviour of low:
flexibility pipes was rather small, they did not provide evidence of the same result with the highly flexible pipes.

In relation to the dynamic behaviour of these structures, the effect of axial deformation is to increase dynatnic stresses
(Chung and Whitney, 1983; Chung et al. (1994); Chung and Cheng, 1996), to reduce natural frequencies
{Chucheepsakul and Huang, 1997), and to provoke elastic mode transition of cable vibrations {Burgess and
Triantafyllou, 1988; Lin and Perkins, 1995). If the stress—strain relation is hysteretic, the effect can amplify damping of
dynamic strain in the axial direction (Triantafyllou and Yue, 1994). Several papers by Chung and Whitney (1983),
Chung et al. (1994), Chung and Cheng (1996) comment that the effect of axial deformation is crucial to dynamics of low
flexibility pipes and should be considered in the design of the pipe.

The interesting point in all the previous research is that the effect of axial deformation has been investigated by using
small-strain analysis that adopts quadratic expressions for strain definitions. This approach, however, is proper if, and
only if, the axial strain is small compared to unity (Fung, 1994). For highly flexible pipes, such an assumption is no
longer necessarily valid; thus, this paper proposes large strain modelling by employing the square-root expressions for
large strain definitions, as wiil be shown later.

1.2, Significance of influence of internal flow

Although transporting fluid is the main function, marine riser pipe analysis from the middle of the 1950s to the end of
the 1970s paid little attention to the influence of transported fluid. In the same period, research concerning mechanics of
pipes conveying fluid grew rapidly. Research work related to vibrations of straight and curved pipes can be found in the
papers by Housner (1952), Gregory and Paidoussis (1966), Paidoussis (1970) and Doll and Mote (1976). [t was reported
that the internal flow reduced stability of the pipe and acted on the pipe like an end follower force (Thompson and
Lunn, 1981). As a result, it could engender divergence instability or buckling of simply supported pipes (Holmes, 1978},
and could induce flutter instability or snaking behaviour of cantilever pipes (Gregory and Paidoussis, 1966).

The lack of connection between research work on marine pipes and pipes conveying fluid has led to a misconception
amongst some authors. When the effect of internal flow on marine pipes was handled in the early 1980s, it was
considered that internal flow induced only friction forces to act on the pipe wall. However, researchers concerned with
pipes conveying fluid, such as Gregory and Paidoussis (1966), Paidoussis (1970), and Thompson and Lunn (1981), had
been well aware that the internal friction forces did not act directly on the pipe, but they affected the internal pressure
transmitted to the pipe wall, which vielded tensioning and pressure drop (Paidoussis, 1998). In addition, internal flow
generates not only the pressure effects, but also the other fictitious forces such as Coriolis and centrifugal forces.

By the end of the 1980s, the effect of internal flow on behaviour of marine pipes began to draw specific interest from a
number of researchers, and the misconception was remedied. It was reported that internal flow reduced structural
stiffness, provided negative damping (Irani et al., 1987), and induced additional large displacements of the pipes
{Chucheepsakul and Huang, 1994); reduction of natural frequencies of the pipes is slight at a low speed of internal flow,
bat significant at a high speed of internal flow (Moe and Chucheepsakul, 1988; Wu and Lou, 1991); internal slug flow
can induce significant cyclic fatigue loading in deep water (Patel and Seyed, 1989); and simply supported marine riser
pipes transporting fluid lost stability by divergence (Chucheepsakul et al., 1999).

However, mathematical models used in most of those works do not consider the effects of geometric nonlinearity,
extensibility, and the Poisson’s ratio effect on the pipes, despite the fact that flexible marine pipes are inclined, initially
curved, significantly deflected and deformed. This shortcoming motivates the aim of this work to exhibit how to take
into account these effects in large strain formulations of flexible marine pipes conveying fluid. Revealing the interaction

between the transported fluid and the pipe subjected to these effects provides new understanding of the behaviour of
such systems.

1.3. Significance of Poisson’s ratic effect and fluid pressures
It will be shown later that the Poisson’s ratio effect and lateral actions of fluid pressures disturb the behaviour of

flexible marine pipes in three ways: first, altering structural stiffness; second, modifying internal flow characteristics; and
third, varying the apparent tension in the pipe.
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A review of the literature shows that while the first two effects have not been examined in marine pipe analysis, the
first effect has been included in marine cable analysis by Goodman and Breslin (1976). Even if the third effect on the
flexible marine pipes has been treated through the effective tension concept proposed by Sparks (1984), the Poisson’s
ratio effect is not fully taken into account.

As will be shown later, using the effective tension concept creates an error in evaluating the apparent tension arising in
the cross-section of the pipe, whenever the Poisson’s ratio is not equal to (.5. The greater the difference of Poisson’s ratio
from 0.5, the higher the error grows, especially under a condition of severe fluid pressures. [n order to avoid such an error,
this paper establishes the apparent tension concept instead of the effective tension concept. The detailed treatments of the
first two effects on mathematical models for large strain analysis of fiexible marine pipes are also included.

1.4, Assumptions

The following assumptions are stipulated in the present mathematical modelling:

(2) The pipe materials are linearly elastic. Therefore, the Kelvin—Voigt internal dissipation or the dissipative recovery
is not relevant,

(b} At the undeformed state, the pipes are initially straight, and have no residual stresses.

{(c) The pipes are sufficiently thick-walled to suppose that, ideally, their cross-sections remain circular after change of
cross-sectional size due to the Poisson’s ratio effect, so that the elastic rod theories are usable, and Brazier’s effect
or flattening of bent tubes is negligible.

(d} Longitudinal strain is large, but shear strain is insignificant for elastic rods with high slenderness ratio.

{e) Plane sections of the pipes remain plane at all states.

(f) The internal and external fluids are inviscid, incompressible, and irrotational. Their densities are uniform along arc
lengths of the pipes.

(g) The internal flow is the one-dimensional plug laminar flow.

(h) The general form of Morison’s equation is adopted for evaluating external hydrodynamic forces of external fluid.
The distributed couple induced by a flow asymmetry due to vortex shedding is neglected.

(i) The effect of rotary inertia is negligible.

2. Fundamentals of large strain modelling of flexible marine pipes conveying fluid

Large displacement behaviour of an extensible flexibie marine pipe is depicted in Fig. 2. Firstly, the pipe is at rest and
unstretched at state L: the undeformed state. Subsequently, as the pipe is subjected to time-independent loads due to
gravitation, steady current flow, and steady internal fiow, the pipe experiences large displacement and forms the initial
condition of the pipe at state 2: the equilibrium state. Finally, under dynamic actions of disturbances such as waves,
unsteady current, and unsteady internal flow, the pipe sustains vibration about the equilibrium configuration at state 3:
the displaced state.

Corresponding 10 the three states, mathematical treatments of the following subjects are considered to be requisite for
large strain analysis of extensible marine pipes transporting fluid: (1)} physical descriptions, (2) large strain
measurements, (3) the extensible elastica theory, (4) the apparent tension concept, and (5) dynamic interactions
between fluids and pipes. Details of these subjects are given as follows.

2.1. Physical descriptions

In order to define positions, motions, and deformations of an extensible flexible pipe and transported fluid, the
descriptions for geometry, kinematics, and deformation are necessary for large strain modelling.

(a) Geometric description. Fig. 2 uses the Cartesian coordinates (i.)) and the intrinsic coordinates of arc length and
rotation (§, §) as the global geometric descriptors, and employs the natural coordinates (&, 1) as the local geometric
descriptor. From the two global systems, there exist a number of choices of the independent variable. For
versatility of mathematical models, the symbol o€ {X, xo, X, 7, Vo, ¥, 5, Su, 5, é, G,.,G} is introduced to represent any
independent variable, and the superscript (') denotes &()/&x.

(b) Kinematic and deformation descriptions. As shown in Fig. 3, there may be three ways to describe motions and
deformations of a pipe and transported fluid. These involve the descriptions by total Lagrangian, updated
Lagrangian, and Eulerian coordinates as follows.
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Fig. 2. Schematics of large displacemenits and large deformations.
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Definition 1. The coordinate that follows motion and deformation of a deformable body with respect to position,
direction, and size of the body at the original state (or the undeformed state herein) is said to be the total Lagrangian
descriptor (TL) as shown in Fig. 3{(a).

Definition 2. The coordinate that follows motion and deformation of a deformable body with respect to position,
direction, and size of the body at the intermediate state (or the equilibrium state herein) is said to be the updated
Lagrangian descriptor (UL) as shown in Fig. 3(b).

Definition 3. The coordinate that follows motion and deformation of a deformable body with respect to position,

direction, and size of the body at the final state (or the displaced state herein) is said to be the Eulerian descriptor (EL) as
shown in Fig. 3(c).

2.2. Large strain measurements

Corresponding to the three deformation descriptors defined in the previous section, definitions of the total axial

strain g, the static strain &,, and the dynamic strain £; can be provided in the following three forms.
(1) For deformation descriptor TL:

4

8—?— l, (la)
5

Eu—.—?— 1, (lb)
J-4

En‘_—— s‘_’ "_ (IC)

(ii} For deformation descriptor UL:

y-7
£= - (2a)
¥
W=l 5 @b)
s
WGl 20)

(i) For deformation descriptor EL:

4
e=1 — (3a)
s -F
Ey = v (3b)
5,
g =1 —'?. (3c)

Note that & = ¢, + &4, and the differential arc lengths at the undeformed, the equilibrium, and the displaced states ¥, s,
and 5’ may be expressed as

Y= VT, ()

s, = \/(; + @)+ + ), (4b)

in Cartesian coordinates:

§ =\ (¥ 4, + Y + (7 + v, + ), (4c)
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in natural coordinates:

§ = /), + o) + (5, + v, — w,0) (4d)

The large strain expressions given by Egs. (1)3) can be exhibited in classical square-root forms of axial strains as
follows.

Definition 4. The large axial strain for fiexible pipe analysis is defined by
;—— l=¢+ (S-S,—,— l)(l +g)=+/14+2y;—-1 forTL,
a

g= s’;?=a,,+(§ul)=\/1+2yd—\/1—2yd for UL, (5a—c)
[

o

1-?:5,,4—(1—%)—1—,/[—2“ for EL.

In other words, the large axial strains are measured by means of ‘engineering strains’ or ‘relative elongations’. The
square-root expressions in Eqs. {5) demonstrate that the large axial strains are functions of the lower-order axial strains
such as the static updated Green strain v, the dynamic updated Green strain y,, the total updated Green strain y, the
Green strain yg, and the Almansi strain y,. By substituting Egs. (4} into Eqs, (5), and undertaking some manipulation,
the expressions of these lower-order axial strains can be obtained as

1 .'2 2
Tﬂ .‘.12 [i'u‘ + ?’b' + 2 + 2 ] (63)
in Cartesian coordinates: -
] W2 o
Pa = S,Z(xu+yav+ ) +2) (6b)

in natural coordinates:

_ i (g, + ';119:;}1 ), - u,,B:J}?'
Ya = ‘sTOZ[SO(UJI - "ﬂ‘&;) + 2 + 7 R (GC)
Y=Y+ Yo =HGIEV, 14 = /80 (6d—f)

For lower-order large strain analysis, the dynamic axial strains in Eqs. (5) may be approximated by the two-term
binomial series such that

s 1
— =14+ 2pxl +y,;, 2=—=1-1y, (7a—b)
@ s \/l +2yd

Inserting Eqs. (7) into Eqgs. (5), the quadratic forms of axial strains are derived as Definition 5.

Definition 5. The nonlinear second-order axial strain for flexible pipe analysis is defined by

{ go + va(l + &) for TL,
Er

8a,b
8+ vy for UL and EL, (8a,b)

to which quadratic expressions of y; as shown in Egs. (6b) and (6¢)} are applied.

For linear approximation, the second-order terms of y, are negligible as higher-order terms, so that Eq. (6b) is
linearized to

in Cartesian coordinates:
~—(x o+ ¥, (92)
in natural coordinatES'
Va —4»,, w0, 0,). (9b)

By utilizing Eq. (9), the linear forms of axial strains are derived as Definition 6.
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Definition 6. The linear axial strain for flexible pipe analysis is defined by Eqs. (8), to which linear approximation of y,
by Egs. (9) is applied.

The large strain definition (Definition 4) is considered necessary for nonlinear dynamic analysis of flexible pipes, in
which large amplitude vibrations and large strain behaviour are concerned. The nonlinear second-order strain definition
(Definition 5) is desired for nonlinear dynamic analysis of flexible pipes, in which large amplitude vibrations with large
static and small dynamic strains are interested. The lincar strain definition {Definition 6) is sufficient for dynamic
stability analysis and linear dynamic problems of flexible pipes, to which large static and infinitesimal dynamic strains
are relevant.

Variations of the axial strain among the three states bring about variations of differential arc length of the pipe, cross-
sectional properties of the pipe, and internal flow velocity of transported fluid as follows.

(a) Variations of differential arc length of the pipe. By solving Eqgs. (1a) and (1b) for ¥, solving Eqgs. (2b) and (2¢) for s/,
and solving Egs. (3a) and (3c) for &/, one obtaing

A s
=1T%e o= Toe for TL, {10a)
s =5 = for UL {10b)
1-5, ° l+ay ’
¥ = S =5 for EL. (10c)
1-¢ 1-—&4

(b) Variations of cross-sectional properties of the pipe. The volumetric strain of the pipe is expressed as
dvp—d¥p A Aps

—1=2H1 -1 for TL,
p  ArF _( o) or
d¥p—d¥p Aps — Ap¥  Ap A
p = = 1) — —g) for UL, 1la—
v Ares ZE(I + &) l g ) or U (l1la—c)
dvp — d¥p Ap3 Ap
T*l.—m_l_Apl 8) for EL.

Based on the control volume approach (Goodman and Breslin, 1976), the pipe volume is conserved, and thus the
volumetric strain of the pipe ¢, = £, = 0. Once these conditions are applied to Eqs. (11}, the cross-sectional areas of the
pipe at the three states can be related together as

Ap = Apfl +e,) = Ap(1 +&) for TL, (12a)
= Are (L +edp

Apml_sam =) for UL, (12b)
= _ APn _ AP

AP_lha,,_l—s for EL. {12c)

Corresponding to Eqs. (12), variations of diameter and moment of inertia of the circular pipe among the three states
are determined as

= Dp,\/1 +&,=Dpy/1+¢ forTL, (13a}

o l

Dp=_2r0__p, [itE UL (13b)
¥4 I- £€n i— &

_ )

Dp=-—2p Do gpr (13¢c)

\,’l"‘ﬁu \]—8

Io=Ipdl + &y =Ip(l +¢F for TL, (14a)
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i1 natural coordinates:

2

' = [ty + 0,0 + (5, + 1], — u,8) (4d)

The large strain expressions given by Eqs. (1)(3) can be exhibited in classical square-root forms of axial straias as
follows.

Definition 4. The large axial strain for flexible pipe analysis is defined by

-{w1=s.,+ (§~—~1)(l+s¢,)=\/1+2}v6—1 for TL,

]

£ = s’;?=s,,+(§—l)=\/l+2y‘,A~\/l—2y" for UL, (5a—c)

o o

1_:;:304.(1_%)—_—1-‘/]—2“ for EL.

In other words, the large axial strains are measured by means of ‘engineering strains’ or ‘relative elongations’. The
square-root expressions in Egs. (5) demonstrate that the large axial strains are functions of the lower-order axial strains
such as the static updated Green strain y,, the dynamic updated Green strain y;, the total updated Green strain y, the
Green strain y, and the Almansi strain y,,. By substituting Eqgs. {(4) into Eqs. (5), and undertaking some manipulation,
the expressions of these lower-order axial strains can be obtained as

fql

l =f ! =f T llf 02
y,,:_?zx'uﬂ+yva+?+7, (6a)
in Cartesian coordinates: -
1 u? o
Ya= -J,—z(x;u’ +y o+ ~2—), (6b)
[+

in natural coordinates:

_ 1 ; (”:, + Unei,)z (U:; - unf’:,)z
Va4 = _S? [s:)(un - NHB::) + 3 + 2 ] ’ (6C)
Y=Yt Vas Y = -y(s;/j’}l, Ya = }’(s:,/s’)l- (Gd_f)

For lower-order large strain analysis, the dynamic axial strains in Eqgs. (5} may be approximated by the two-term
binomial series such that

s s 1

=ty =l -y, (7a—b

-5‘:, Vd Vo ¥ m Yo )
Inserting Eqs. (7) into Eqs. (5), the quadratic forms of axial strains are derived as Definition 5.
Definition 5. The noalinear second-order axial strain for flexible pipe analysis is defined by

+e, r TL,
e 26+ 74( £) Jo (8a,b)
£+ V4 for UL and EL,

to which quadratic expressions of 7, as shown in Egs. (6b) and (6c) are applied.

For linear approximation, the second-order terms of y, are negligible as higher-order terms, so that Eq. (6b) is
linearized to

in Cartesian coordinates:
1 .
Ya 2__(x:ll" + y:]?; Jv (93)
52
in natural coordinates:
1
Vi :F{U:' — u ). (b}

By utilizing Eq. (9), the linear forms of axial strains are derived as Definition 6.
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Definition 6. The linear axial strain for flexible pipe analysis is defined by Egs. (8), to which linear approximation of y,
by Eqs. (9) is applied.

The large strain definition (Definition 4) is considered necessary for nonlinear dynamic analysis of flexible pipes, in
which large amplitude vibrations and large strain behaviour are concerned. The nonlinear second-order strain definition
(Definition 5) is desired for nonfinear dynamic analysis of flexible pipes, in which large amplitude vibrations with large
static and small dynamic strains are interested. The linear strain definition (Definition 6) is sufficient for dynamic
stability analysis and linear dynamic problems of flexible pipes, to which large static and infinitesimal dynamic strains
are refevant.

Variations of the axial strain among the three states bring about variations of differential arc length of the pipe, cross-
sectional properties of the pipe, and internal flow velocity of transported fluid as follows,

(a) Variations of differential are fength of the pipe. By solving Eqs. (1a) and (1b) for ¥, solving Eqs. (2b) and (2¢) for &,
and solving Eqgs. (3a) and (3¢) for &, one obtains

s s
7= 2o "T+s for TL, (10a)
¥ s
T—_gﬂ = S}t; = m for UL, (IOb)
¥ S
1—£=|—€J—Sl for EL. (10c)

{b) Variations of cross-sectioral properties of the pipe. The volumetric strain of the pipe is expressed as

de —ds‘p APS’ Ap
T =2 -1 fi
s e 1 2;(1 + &) or TL,
dVP—dgp Aps —jp.?’ Ap jp
3 = = d) — — &y 3 la—
R R TP P A P (e~
dv, — d¥p Ap? Ap
_— =l ] - fi .
v, ! e A—CP 1-¢) or EL

Based on the control volume approach (Goodman and Breslin, 1976), the pipe volume is conserved, and thus the
volumetric strain of the pipe &, = £, = 0. Once these conditions are applied to Eqs. (11), the cross-sectional areas of the
pipe at the three states can be related together as

jp = Ap,(1 +&,) = Ap(l +¢) for TL, (12a)
4 AP{J - (l + E([)Ap
Ap = e (-e) for UL, {12b)
- APU AP

= = fi .
Ap T—e T-¢ or EL {12c)

Corresponding to Egs. (12), variations of diameter and moment of inertia of the circular pipe among the three states
are determined as

Dp = Dp,\/1 46, = Dpy/1+¢ for TL, {13a)

= Dp,, 1+ &y

Dp = =D for UL, 13b
d AR d 1 —¢, (13b)

. Dp, D

Dp=—= =  forEL, (13c)

Ip = Ip{l + &, = Ip(1 +&f° for TL, (14a)
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I = Ipy = r(l +€d); for UL, (14b)
(I1-&) (1-&)

. ) I

I =—1* £ for EL. (14c)

Ty (—e)

(¢} Variations of internal flow velocity of transported fluid. From the fluid mechanics (Munson et al., 1994), the
continuity equation for transitions of a transportation rate among the three states can be displayed in the form
OVeul(s, 1)

FTR (15)

Nevertheless, because the pipe volume is conserved, time rate of control volume of the pipe 9V /0t is zero. With
application of Egs. (12), Eq. (15) vields the relationships of internal flow velocities at the three states as follows:

AiV; = Ain(50)Violso) = Ads, HVils, 1) +

- Vi Vi

Pt T -

- (1 _Bo)Vi

Vi=Ve(l - = fi s 16b
(1 —&) % 2)) or UL (16)

V:=Vo(l —8,)=V{l —¢) for EL. (16¢c)

Physical interpretation of Eqs. (16) substantiates Propositions 1 and 2.

Proposition 1. The plug flow of incompressibie fluid inside largely deformable pipes that is the steady uniform flow
(OV;/0u = 8V;/8t = 0) at the undeformed state, would become the steady nonuniform flow (0¥, /8u#0, 8V, /0t = 0) at
the equilibrium state, and then the unsteady nonuniform flow (0V; /a0, OV;/0t#0) at the displaced state.

Proposition 2. Extensibility of the pipes causes an increase of internal flow velocity of transported fluid.

2.3. The extensible elastica theory

A sophisticated strategy highlighted in this work is to adopt the extensible elastica theory for large strain
formulations of extensible flexible pipes. In Appendix A, the following extensible elastica theorems corresponding to the
three deformation descriptors are developed.

Theorem 1. For the Hookean material pipe, if the TL is employed to describe deformation of the pipe, then the constitutive
relations are

g =e+¢r(l +&) —#], (17a)
N = Edps, (17b)
M = EIpx(l + &) — &l (17¢)
5U = [ (Nos+ Molx(1 + o) — aly ds = (N33 + 16@ - )] a7d)

in which ¢ is the axial strain at any fibre radius ¢, £ the elastic modulus, N the axial force, M the bending moment, and
U the strain energy of the pipe.

Theorem 2. For the Hookean marterial pipe, if the UL is employed to describe deformation of the pipe, then the constitutive
relations are

& =+ ¢l +£g) ~ &(1 —¢,)], (15

N = EAp,e, _ (18b)
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M = Elp,[r(l + 20} — R(1 — &,)], {18c)

U = [{N&s + MEr(l + e, — /(1 — &)} ds, = ][Né‘s’ + M0 — @) da. (18d)

Theorem 3. For the Hookean material pipe, if the EL is employed to describe deformation of the pipe, then the constinutive
relations are

g =g+ gl — &(1 — &}, {19a)
N = EAps, (19b)
M = Elp[k — &(1 — g)), (19¢)
U = /{N&s + Mk — /(1 — )]} ds = f[Nﬁs' + M - Mjda. (19d)

2.4, The apparent tension concepl

Externally and internally flowing fiuids interact with a pipe through hydrostatic and hvdrodynamic pressures. The
apparent tension concept is proposed herein to represent the effect of hydrostatic pressures, while the effect of dynamic
pressures will be considered in the next section.

The apparent tension concept for handiing the hydrostatic pressure effect of external and internal fluids 1s iHustrated
in Fig. 4. First of all, Archimedes’ law, which will be used in the apparent tension concept, is recalled. As shown in
Fig. 4(a), equilibrium of an external fluid column in an external pressure field proves physically that the enclosing
external pressure field induces a vertical buoyancy force equal to the weight of the cxternal fluid column p,gv.. This
tenet is commonly referred to as the first law of Archimedes. A reverse viewpoint of the first law of Archimedes yields the
corollary that the enclosing internal pressure field generates the apparent weight of the internal fluid column p,g¥;.

It is remarkable that Archimedes’ principle is usable with the enclosing pressure fields. However, for marine pipes, the
pressure fields of external and internal fluids surround only external and internal side surfaces of the pipe segment, as
seen in Fig. 4(b). Both cut ends of the pipe segment are not subjected to the pressure fields, which are called the missing
pressures. Archimedes’ principle cannot therefore be used straightforwardly for marine pipe analysis. Fortunately, this
problem can be solved by the superposition technique to transform the real system into the apparent system of marine
pipes as follows.

Step 1: The total forces acting on the real system of the pipe column (the pipe plus transported fluid) as shown in
Fig. 4(b) are equal to thc summation of the forces acting on the pipe columns in Figs. 4(c—¢):

Fig. 4(b) = Fig. 4(c) + Fig. 4(d) + Fig. 4(e). (20)
Step 2: The forces acting on the pipe column in Fig, 4(c) are equal to the summation of the forces acting on the pipe
columns in Figs. 4(f) and (g)
Fig. 4(c) = Fig. 4f) + Fig. 4(g). 2D
Step 3: The static pressures exerted on the pipe column in Fig. 4(f) are made enclosing the pipe column by adding in
the missing pressures at both cut ends of the pipe segment. However, the added pressures are nonexistent, so they must
be removed for balance by applying the opposite pressure fieids at the both ends of the pipe in Fig. 4(g).

Step 4. After the pressure fields enclose the pipe segment, Archimedes’s principle is now applicable. Therefore, the
enclosing external and internal pressure fields induce the buoyancy force W, and the internal fluid weight W,:

W.=pN.g W,=pVg. {22a,b)

In addition, the enclosing pressure fields in Fig. 4(f) induce triaxial stresses, which in polar coordinates are: the radial
stress a,, the circumferential stress gy, and the tensile stress due to the missing pressures o,. These triaxial stresses
provoke the axial force '

Tvi = EApeps = (2v — Dip.A, — piA;). (22¢)
Note that from the theory of elasticity (Timoshenko and Goodier, 1984):
£ = [a; — v(o, + op)]/E, (22d)
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Fig. 4. Transformation from the real system to the apparent system.
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Fig. 4 {continued).
and the enclosing pressure fields in Fig, 4¢f) yield
gg=0p+7, G, =dp—T, Gp+0,=2op, {22e—g)
ap = (g4, — peA)/Ap, (22h)

where 7 is the shear stress in pipe wall, and ap the end effect stress (Sparks, 1984).
Step 5: The pipe column in Fig. 4(f) is decomposed into a combination of the pipe element in Fig. 4(h) and the
transported fluid element in Fig. 4(i):

Fig. 4(f) = Fig. 4(h) + Fig. 4(i). (23)

The effect of the enclosing pressure fields is replaced by W, and T} in Fig. 4(h), and by W; in Fig. 4(1).
Step 6: The pipe column in Fig. 4(g) is decomposed into a combination of the pipe element in Fig. 4(j} and the
transported fluid element in Fig. 4(k):

Fig. /g) = Fig. 4(3) + Fig. 4(k). (24)

The missing pressure p. A4, is entirely transmitted to the pipe element, because the transported fluid element cannot
resist tension.
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Fig. 4 (continued).

Step 7. The pipe column in Fig. 4(d) is decomposed into a combination of the pipe element in Fig. 4(1) and the
transported fluid element in Fig. 4(m):

Fig. 4(d} = Fig. 4(1) + Fig. 4(m). {25)

Shear forces and bending moments are entirely transmitted to the pipe element, because the transported fluid element
cannot resist them.

Step &: The pipe column in Fig. 4(e) is decomposed into a combination of the pipe element in Fig. 4(n) and the
transported fluid element in Fig. 4(0):

Fig. 4(e) = Fig. 4(n) + Fig. 4{0). (26)

Step 9: Substituting Eqgs. (21), (23)~(26) into Eq. (20) together with some manipulation, one can obtain the expression

Fig. 4(b) = [Fig. 4(h) -+ Fig. 4(j) + Fig. 4(1) + Fig. 4(n)] + [Fig. 4(i) + Fig. 4(k)Fig. 4(m) + Fig, 4(0)]. 27
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The first bracket on the right-hand side of Eq. (27) represents the apparent system of the pipe as portrayed in Fig. 4(p),
while the second bracket expresses the apparent system of transported fluid as displayed in Fig. 4(q). Combination of
the apparent systems of the pipe and transported fluid in Eq. (27) yields the overall apparent system of the pipe column
that is subjected to the apparent weight w, and the apparent tension T, as shown in Fig. 4(r).

Writing expressions for the apparent weight and the apparent tension generally for the three deformation descriptors,
one obtains

wo = (ppdp ~ p A + pA)g, (28)

T, = Edpe = T + 29(p.A. — p:A)), 29)

in which 4, = 4, for TL, 4, = A,, for UL, 4, = 4, for EL, and the subscript a€ {P,¢,i}.
Ability to transform the real system into the apparent system of the pipe column establishes Proposition 3 that
describes the apparent tension concept.

Proposition 3. The real system of the pipe column that is subjected to static external and internal pressures as shown in

Fig. 4(b) is equivalent to the overall apparent system of the pipe column that is subjected to the apparent weight and the
apparent tension as shown in Fig. 4(r).

On the other hand, the apparent tension may be expressed as

Te =T + T, (30)
where -
:rc' = T+P('jc _piATr‘ (31)

is referred to as the effective tension (Sparks, 1984). From Eqs. (29), it is seen that the condition T, = T, is achieved if,
and only if, v = 0.5. This signifies that the effective tension concept is a subset of the apparent tension concept, and can be
evidently inaccurate, whenever realistic Poisson’s ratio of the pipe is significantly different from 0.5.

2.5. Dynamic interactions between fluids and pipes

For flexible marine pipes transporting fluid, dynamic interactions between fluid and pipe occur due to steady and
unsteady flows of external and internal fluids through the displaced pipe. Steady flows will cause quasi-static forces, and
unsteady flows will engender dynamic forces t0 act on the pipe wall. The flow outside the pipe is normally associated

with cross flows of ocean currents and waves, whereas the flow inside the pipe relates to the tangential flow of
transported fluid.

2.5.1. Hydrodynamic forces due to cross-flows of currents and waves
Based on the coupled Morison equation (Chakrabarti, 1990), the hydrodynamic forces exerted on flexible marine
pipes with large displacements in natural coordinates can be expressed as

f.‘h’ Cﬂﬂ]'r 7 ¥ V:Hn
fy=1¢""1%=05pD, il | pACH + PeAe . (32)
S “Cﬂf?rl?’fl ¥ Vi
N o hL" N . ———
Viscous drag {orce Hydrodynamic mass force  Froude—Krylov force

where overdot denotes 8()/0t, Cp, and Cp, are the normal and tangential drag coefficients, C, the added mass
coefficient, Vi, and ¥y, the normal and tangential velocities of currents and waves; and v, = Vg, — 1, and y, =
Vue — 0, are the velocities of currents and waves relative to pipe velocities i, and £, in normal and tangential directions,
respectively. For large strain consideration, the effect of cross-sectional changes of the pipe according to Eqs. (12) and
(13} has to be applied to Eq. (32).

In order to eliminate the difficulty of operating with absolute functions in Eq. (32), the signum function is introduced:

b ify=0,
sgn(y)={_] :’;ZO (33)
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Using the sighum function, Eq. (32) can be manipulated into the form
o | c, 0 i, ConViatCas Viin
‘.H _ fHu - _ ; d _ eqn 1 + ti :1' fl i \ (34)
Sr 0 C| Liw 0 Cl Lin Cp, Vi, +Coy Frn
N——— —— R N
Added mass force  Hydrodynamic damping force  Hydrodynamic excitation

where the ¢ oefficients of equivalent damping and drag forces in the normal direction are

Coon = Cpul2Viin — i), Cp, = 0.59,D.Cpyn sgn(y,); (35a,b)
the coefficients of equivalent damping and drag forces in the tangential direction are
Cop = Col2Vim — 8], Cp, = 0.5p,DenCop; sgnly}; (35¢,d)

and the coefficients of added mass and inertia forces are
Cy = p,AcCay  Cyy = p,AcChr, (35¢,1)

in which Cyy = 1 4+ C, is the inertia coefficient.
in Cartesian coordinates, Eq. (34) can be transformed to

rH — f Hx — C; 0 X _ C:q,r C:'q.\'_r x
f}f_l' 0 C‘: ¥ C:\t.'.\')'c':'qj' b
N — ’

N, [N 4

{ C;J.\' Vf{.\'+2C;7 ol Vi Vi it C;)Jr_rl Vfla'_r + C;J VH'" }
2 . 2 . 3
C;)_l' VH_I‘ +2CL.\'_\'2 V" ix V’ f-"+CD.\"|'I VH.\' +CM V”J‘

Added mass force  Hydrodynamic damping force Hydrodynarﬂrﬁc excitation
(36)

where ¥y, and Vy, are the horizontal and vertical velocities of external fluid; the coefficients of equivalent damping and
drag forces in the horizontal direction are

Coe = C,

[Z7AN oqn

- *

cos’ 0+ C,, sin’ 0, Cp, = Cp,cos’ 6+ Cp,sin’ 6; (37a,b)
the coefficients of equivalent damping and drag forces in the vertical direction are

Cogy = CognSin* 0 + C

oqy eqr

-

cos® 6, C,‘D_,. = —Cp, sin* 8 + Cp, cos’ §; (37c,d)
the coupling coefficient of equivalent hydrodynamic damping in the x — y plane is

Copey = (—Copn + C,,

[ eyt eql

}sin 8 cos 8, (37e)
and the coupling coefficients of drag forces in the x -- y plane are

Cz‘),\-,ps = —Cp, sinf cos’ @ + Cp, sin’ & cos 6, (370)

Chyy2 = Chy sin” @ cos B + C),, sin 6 cos® 8. (37g)

At the equilibrium state, static loading is due only to the steady flow of external fluid. Therefore, the hydrodynamic
forces from Egs. (34) and (36} are reduced to

o Con V3
'-Hu = an = 13?0 ’2{"0 L] (38)
fH“’ C.Dm VHID

1 ﬂf,\'u C;),\'o Vlzf.\'n +2 C;l\'.l'lu Vf 130 V’ fye + C;)‘\'J'Eo V.‘ZI v

Ho = = - - +
f Hyo C.Dj'o V}!yo + 2CDA\'y2o VH-\‘W VH)"’ + C;l\'_l'lo V]-‘?I.\’n

respectively. Note that the additional subscrpts ‘¢’ on all varniables designate the equilibrium-state parameters. For

example, Cp,,, implies the equilibrium state of Cj,,; hence, Eq. (35b) uses equilibrium-state parameters to obtain
C;Jm = O'SPrD('GCD" Sgn(?uu)-

(39)

2.5.2. Hydrodynamic forces due to internal flow of transported fluid

Based on the control volume approach of Computational Fluid Dynamics, hydrodynamic forces due to flow of
transported fluid inside extensible fAexible pipes with large deformation can be derived as follows. Let Vr and Vp
represent the velocity vectors of transported fluid and the pipe with respect to the fixed frame of reference, then the
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velocity vector of transported fluid relative to the pipe velocity is given by
Vip = Vppt = VipOrp/8s = Vp — Vp, (40)

where Fpp is the internal flow velocity function: Vep = Vi, Vep = V,o, and Vrp = V; at states 1, 2, and 3, respectively.
From Newton’s law of momentum conservation, hydrodynamic pressures due to internal flow induces the inertial
force on the transported mass:

f B.dv; = f D(”'V" ) dv; = f [I;‘:‘vp+p,.a;] dv,, 1)
i V.'

where B; is the inertial force per unit control volume ¥;, ar the acceleration vector of transported fluid with respect to
the fixed frame of reference, and

DO _ a() () Ve ()
=/ =1y AFA 42
Dr = T (Ver V)() 2t T F Ba 42)
Note that
0x 2 ay-: 0z -~ 0. o A 0 s il V[:p d
Vep V=V, —it—jt+t—k{=Vep—= 43
#rV ”’[a 3s '+as"Hax'+ay’+az ] P5%- 5 o “3)
Lemnma 1 shows that Dp, /Dt vanishes.
Lemma 1. The conservation condition of transported mass yields Dp,/Dr = 0.
Proof. Utilizing Eq. (40), Eq. (41) can be written as
D(p;Vr) D(p;V¢r)
B;dv¥; = —| dv; —L—"C} dv,. 44
L av jv[ 4 dv+[& AP (44)
From the Reynolds transport theorem (Shames, 1992), the last integral is given by
D(g,V o
[P av, = 21 [ (o Ver) e + § Vertp Ve d (45)
vy, Dt ol fy, i
where A,; is the vector of internal control surface of the pipe As;.
Employing the Gauss divergence theorem, one can demonstrate that
§Ver(p;Vrp-dAy) = / [(e:Vrr - VIVep + V -(p,Vrp}Vip] 4V, (46)
A, A/
* Substituting Eqs. (46} into Eq. (45) together with some manipulation, one obtains
D{p,V av ap;
i DoVer) gy, [0 R+ Ven- W] + [t - o Ver)| Vi ¥, @n
vw Dr v, o o

— % e’
r—

(l) (34}

Referring to Eq. (42), the bracketed term (1) is known as the acceleration of transported fluid arp, whereas term (2) is
zero due to the continuity condition of conservation of mass. Thereby. Eq. (47) yields

D{p,Ver)
ok B 48
D piagp (48)
Since
D(p;Ver) Dp,
('DTIFP) = —D% Ver + piage,

and Vep#0, Eq. (48) is valid if, and only if,
Dp,/Dt =0.0 (49)

Using Lemma 1 in Eq. (41), one can constitute Proposition 4.
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Proposition 4. [nternal flow of transported fluid through the moving, deforming internal control volume of the pipe induces
the inertial force exerted on the pipe wall:

B;=par or F;=mar, (50a,b)
where ¥; and m; are the inertial force and the transported mass per unit length of the pipe.
. From Eqgs. (50), it is seen that determining the inertial force on the transported fluid needs the expression of

transported mass acceleration ap. Based on Eulerian mechanics (Huang, 1993), the velocity and acceleration of
transported fluid can be derived as

or VepOr
Ve=VetVep=2+—r=r, (1)

DVe DVg D (arp) D (VFP al'p)

ot Dt

ar =8t =t o T D Di\ ¥ o

azl‘p Ve azl'p Vip azl'p Viep 0%rp 0 (Vep Vep O {Vip\ |Orp
ﬁ[’a:—ﬁTaaarl‘*‘T twte Ty o)t [a T) +T$(T) B ©2
a‘;- l:P_

Eq. (52) can be rearranged to obtain

ar =

az Fp 2 VFP azrp + VFP 2azl'lp VFP + VFF V;’P VFP.'Y’ VE—P.SJ'I al',n (53)
or s Joodt ¥ ] ol s 52 5?2 s 0o’
N — ¢ , R

( o o ) ] (6)

in which term (1) is the transported mass acceleration, (2) the coriolis acceleration, (3) the centripetal acceleration, (4)
the local acceleration due to unsieady flow, (5) the convective acceleration due to nonuniform flow, and (6) the relative
accelerations due to local coordinate rotation and displacement.

In 2-D Cartesian coordinates, at the displaced state:

Vip=Vi, tp=xi+yj, & =x2+)2, ¢ =xx"+y)", s =xx +)y. (54a—e)
Inserting Egs. (54) into Egs. (51) and (53), onc obtains
Ve =[x+ ViX/sli+ [y + Viy' /5]i. (55)

e {oe B2 (e () ()

Xy 2 2 wx' DVNY 12
- v —X} [ S [ A hial VZ LN -
+{y+[ (5’3) +(s’ .«3))' R MO 6)
Note that
K ™N o, /Y Kx' x x?
?'V’ — (}gz) X — (s’—':/) y”, —7 = — (5"_{) x” + (F) y”. (573., b)
In 2-D natural coordinates, at the displaced state:
Vep = V; {58a)
al‘P -
a =5t (58b)
a:rP ftn "
e =580+ 5t (58¢)
a':I'P

Eﬁ — ﬁ,,ﬁ + i:,;t. (58d)
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-l
Crp

—_— ‘O §'t 58
55 s0n + §'t. (58¢)
Exploiting Eqgs. (58), Egs. (51} and (53) yield
Vi = i1+ (6, + V)R, (39)
. ma [ W& DW].
ar = [, +2Vi0 + & V)6 + [v,,+-—;,i+—D—ti]t. (60)

It is evident that the relative accelerations due to local coordinate rotation and displacement vanish in the natural
system.

At the equilibrium state, Vep = Vi, (x,9) = (Xo, Vo), ty = ty = 0, {5,0) = (5,.0,), and the time-dependent terms
vanish. Thereby, Eqs. (55), (56), (59), and (60) are reduced to

Ve = (Vi [0+ (VoY /5] = Vak, (61)
B TLOAYIROZEAR KXo\ 2 VeV Yoli_ . o215 ViaVip| =
“""{(s;)'/“ ) st.}”{‘(T)””TE“["“V"’]” 5 )" ©

3. Virtual work formulations

Based on the method of virtual work, the fundamentals of large strain modelling proposed in Section 2 are employed
to develop large strain formulations of extensible flexible marine pipes transporting fluid as follows.

Step 1: Converting the real system into the apparent system of the marine pipe by the apparent tension concept
(Section 2.4).

Step 2: Applying the extensible elastica theory (Section 2.3) on the apparent system to obtain the stiffness or internal
virtual work equation.

Step 3: Expressing the equation of external virtual work induced by the apparent weight (Section 2.4), hydrodynamic
forces due to external and internal flows (Section 2.5}, and inertial forces of the pipe.

Step 4. Applying the principle of virtual work to generate weak and strong forms of the large strain formulations of
the apparent system.

3.1. Step 2: Applying the extensibie elastica theory on the apparent system
In Fig. 4(r), the overall apparent system is subjected to the apparent tension T, in place of the axial force ¥ of the real

system. Therefore, applying Egs. (17d), (18d}, and (19d) of the extensible elastica theory on the apparent system yields
the stiffness equation:

U, = [ [T.05 + M0 — 6] do, (63)
where U, is the strain energy of the apparent system,
T, = EATF“% (64a)
EI[k(1 + &) — §] for TL,
M = { Elp[a(l +£4) — ®(1 —g,)] for UL, (641b)
Elslk — £(1 - g)) for EL.

From the assumption that the pipe is straight in the undeformed state, and the basic formulas of differential geometry,
one has

i=§=0, {(65a)
s =x+1, {65b)

f = (x"v — xXy")/s" (65c)
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Substituting Eq. (65a) into Eq. (64b). and taking the first variation of Egs. (65b) and (65¢) in association with the
coordinate transformations of the displacement vectors, one obtains

Els(l +¢) for TL,
M = Bk, B=< Elp/(l +¢4) for UL, {66a,b)
Elp for EL,

in Cartesian coordinates:

(s (Y

w-35)o0 -1 5) 5905 )56

in natural coordinates:

35’ = 8, — &' éu,, (68a)
3, + 6 bu,
8 = P [———f—] (68b)

By substituting Eqs. (66)68) into Eq. (63), and then taking integrations by parts twice, the three forms of the internal
virtual work can be expressed as follows:
Form 1: In Cartesian coordinates:

i

S (5)o0+ [m-m(3) -5 5(5) o

g As s
o, = / Bic oy da, (69a)

* "+ — Bl = ¢ —1 -
s’( )50’ [(If}I Bx )(s')_'-Bhs’l(s')] '
and in natural coordinates:
5U, = f ([=Tu) un + [T,) 6, + [M166} da (69b)
Form 2 (after a first integration by parts): In Cartesian coordinates:
SU, = [M 307} + f {H &' + Vo'l da, (702)
I

and in natural coordinates:

U, = [M o6]; + f{—[Q} o), — [Tu6'1 8u, + [T, 80, + [Q6'] bvy} da, (70b)

(£)-of5) ‘
() ofs)

== (71c)

where

Form 3 (after a second integration by parts): In Cartesian coordinates:
U, = {Hdu+ Vor+ MOy, + /{[—H']éu +[—¥'6v} de, (72a)
and in natural coordinates:

§U, = [T, dvy — Qét, + M 58] + / (O — T80 Suy + [~ T — 06 60,} da. (72b)
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Note that
x'/s =sin8, /5 =cos8, k=4@&/5=("y —-xy)s".

3.2, Step 3: Expressing the equation of external virtual work
The equation of external virtual work is given by
oW, =W, + Wy + oW, (73)

where W, Wy, and W; are the virtua) works done by the apparent weight, hydrodynamic pressures, and inertial forces
of the pipe and transported fluid. In Cartesian coordinates:

W, = — f w,s dvda, (74a)
Wy = f [(Fre8) Bu + {fr5)30) da, (75a)
W, = f [(mpapy + miar,)s Su+ (mpap, + myap,)s' 8v] da. (76a)

In natural coordinates:

W, =— / [(—w,s sin 8) Sty + (w,s' cos 8) dv,] da, (74b)

Wy = [ (05 Bt + (fres) B0,) e, (75b)

oWy = — [ [('”.PaPu + miaﬁl)s’ ou, + (mpap + miaFl)S’ 5”::] da. (76b)
k4

Note that ap = apﬁ‘+ ag.._i‘: ip=x + jif =_ii'i‘ + ﬁi and ap = ap,f + apt = ii,H + ,f. The expressions of w,, fi =
Sunh + [k, O = fud + find 8F = apd + agd, and ar = apfi + api are given by Egs. (28), (34), (36), (56), and (60),
respectively.

Substituting Eqgs. (74)(76) into Eq. (73), in Cartesian coordinates one obtains

W, = j {S Vs — mpap, — miar) du} da
+ f {s'=wo + fisy — mpap, — miap,] 6v} da, (77a)
and in natural coordinates:
oW, = ]{s’[w,, $in @ + fy — mpapy — miag,) Suy, ) da

+ /{s’[—w‘, cos 8 + fi, — mpap, — mag) bu, } da. (77b)
k4

3.3, Step 4: Applying the principle of virtual work
From the principle of virtual work, the total virtual work of the apparent system is zero:
5?:(! - ‘5Ua - al/Vm =0. (78)

By substituting Eq. (69}, (70). (72). and (77) into Eq. (78), the three weak forms of the total virtual work are obtained as
follows:
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Weak form 1: In Cartesian coordinates;

Bx 1 x sy / '
I, = /I{FRG_?) Su' + [(T,, — BxY) (F) — BKF(%):‘ ou' — 8 [fuy — mpapy — Muap) éu} do

TN N N1 s o

{79a)
In natural coordinates:
S = ] (— T8 = [We 508 + fign — mptpn — miGr]} Sty dt
+ -L{[Ta] 84}, — '[—w, €05 6 + frr, — mpap, — map} duv,} da
+ f {[M]66'} da = 0. (79b)
@
Weak form 2. In Cartesian coordinates:
Smy =M 86 + / (81 — $[fyre — mpapy — miar,] u} da
2
+ [{V&u’ — §[~Wa + S, — mpap, ~ mag,)dv} da = 0. (80a)
In natural coordinates: |
o, =[M 56T} + f{—Q«Su:, ~ [Tatf + 5 (wasin @ + fru, — mpap, — magp,)] du,} da
2
+ /{Taéu:, +{08 — 5'(—w,cos0 + fi, ~ mpap, — rap)ldv,} da = 0. {80b)
Weak form 3: In Cartesian coordinates:
om, =[H du+ V do+ M} + f {[—H - ¢(f11x ~ mpap, — miag,)] du} da
%
+ [1{[— V' — s'(—wq + firy — mpap, — map,)] 0} do = 0. (81a)
In natural coordinates:
ony =[Ty0v, — Q b1y + M 3617
[0 ~ T8 = 5y 5in 0+ fty ~ mipara ~ miapy) ) O
+ f{[—T; ~ QO — §(~w, cos 0 + fyy, — mpap, — miar)) dv,} da = 0. (81b)

3.3.1. Governing equations by weak form 1

In view of Eqgs. (79), the following conditions are necessary and sufficient for dn, to vanish for ali admissible
functions of virtuai displacements.
In Cartesian coordinates:

Bu [y " x’ sy .
S, =0 f:{?({;) éu” 4+ [(T(, — B;cz)(?) - Bh-ﬁ(%)] Su' ~ 5[y — mpap, — myar] éu} da =0, (82)

Bu (XN 2 (¥ s X ,
S, =0 /1{—-7(?) 8" + [(T,, — Br) (%) + B 573(?)] ' — §'T—wu + fire — mpap, — miar,] 6v} da=0.

(83)
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In natural coordinates:

Ot =0 f { [%—:] S, — [Bvc :”E] 81, + [~ Tu8' — s'(w, S8 + fryy — mpap, — Miag,)) 5u,,} da =0, (84)
x

S, =0 f { [T. + B 80, + [%—K(G” — ks"Y — §'(—~w, cos 8 + [y, — mpap; — m,-an)] 50,.} do =0, (85)
x

3.3.2. Governing equations by weak form 2

Similarly, in view of Eqs. (80), the following conditions have to be valid.
In Cartesian coordinates:

Oy =0 / {Hoi — 5'[fyx — mpapy — marg] St} do = 0, (86)
@

Sty =0 [ (Vo — S{~Wa + ity — mpapy — miag,} 66} do = 0, @7

with the natural boundary condition of bending moment:
[M 6] =0. (88)

In natural coordinates:

O =0 /{-—Q&r/n — [T + 5(w, 8in 0 + fr, — mpap, — miap,)] 6u,} de = 0, (89)

oy, =0 /{T,,éu:, + [0 — 5(—w,cos8 + fii; — mpap, — mag)) bv,} da = 0, (90)
x
with the same boundary condition as Eq. (88).
3.3.3. Governing equations by weak form 3

Likewise, the necessary and sufficient conditions of Eqs. (81) yield the weak form 3.
In Cartesian coordinates:

10 =02 [ A-H' = $fuc — mpap, — mias )]} dz =, ©1)
S =0 ] =V ~ S(~Wp + fu — mpap, — miar)] 6v} da = 0, ©2)
with the natural boundary conditions of horizontal and vertical forces, and bending moment:
[H du+ V dv+ M 6L = 0. (93)
In natural coordinates:
Oy = 0 / {[Q — T.0 — §'(w, $in @ + fr, — mpapy — Miar,)) du,} da =0, 94)
5, =0 f (=T, — QO — 5'(~wq c0S 8+ fy — mpap, — muar)] bv,} do = 0, 95)
x

with the natural boundary conditions of apparent tension. shear force, and bending moment:
[T dt, — Qdu, + M 80T = 0. 96}

It is important to make a decision which forms of governing equations should be used. In the governing equations by
weak form 1, there is no natural boundary condition (BC). So if those equations are employed, all natural BCs may be
unconstrained. Another choice is using the governing equations by weak form 2 such that ail essential BCs and some
natural BCs such as Eq. {88) would have to be constrained. On the other hand, if the governing equations by weak form
3 are sclected, all essential BCs and all natural BCs such as Egs. (93) and (96) need to be constrained.
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3.3.4. Swong fornudations by weak form 3

By considering that all virtual displacements du, dv, du, and dv, in Eqs. (91), (92), (94) and (35) are nonzero, the
following strong formulations are achieved:

(i} Force-based strong form. In Cartesian coordinates:

LF=0:~H - §(fpc —mpap, — mag,) =0, on

LF, =0: V' — s (=w, + fuy ~ mpap, ~ mag)=0. (98)
In natural coordinates:

IF=0:Q — T.6 — s'(wysin 6 + fy, — mpapy ~ miap,) =0, 99)

EF,=0:-T,— Q8 — s (—w,cos 0+ fu, — mpap, — miar;) = 0. {100)

I the right-hand sides of Egs. (97){100) are considered as the residuals, one can demonstrate that based on the
Galerkin method, Egs. (91), (92), (94) and (95) yield the weighted residual forms of Eqgs. (97)-{100), respectively. This
fact indicates that the governing equations obtained from the weak variational method and the Galerkin residual
method, are the same. As a result, if both methods used the same approximating functions, their solutions would be
identical.

The vector expressions of Eqs. (97)-(100) are given by

—P - §'(—w,j + Ty — mpap — mar) =0, (101)

where the internal force vectors P are represeated by

" T8 — s x| H
Pyy=1 b+ and Pyp=< ° a_ | / S T(102)
V ! T+ ot x'fs Y/ V
in Cartesian and natural coordinate systems, respectively.
(1) Displacement-based strong form. Based on Eqs. (71a)(71c), one can demonstrate that

o fo-soim(Z)(]- 20

_ i'4 NEAYES Bx f- !
V= [(Ta—BKZ)?—Bh(SQ) (}-)] + [-;-(y)} (103b)
consequently, one obtains .
. _paTp f’ar',,'_qg&”
= fr-meit-o(5)5 (3 -lamd)] o
Note that
a r’ a x’ - a - A ~ af
a(?") za(?)i + 5&-(%) =i+ (—xx)j=t = Fh. (105)

Utilizing Eqs. (53) and (104), Eq. (101} can be transformed into the displacerent-based form:

, Frp, {2Vep\ Oy B @ (t,\1"
s(mp+m,-)?:+sm,-(%)$a’;+ [F&(FP)]

.2 lJP ¥\ 0 IJP ! VF.P 262r_n
-8 -8G5 (%) oo ()

P VFP V,’_-p VFPSJ Vf'?-PJJ' al'p __ ;= V,r:p arp
+ 5'm; [ e e e My — swaj— s'm; |7 (106)
If x = s is used and the internal flow effect is excluded, Eq. (106) is reduced to
mpip + (BXy) — (T, = B =T — wij, (107)

which is compatible with the vector equation of motion of slender rods given by Garrett {1982).
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4. Vectorial formulation

Based on the vectorial method, the fundamentals of large strain modeliing proposed in Section 2 are employed to
develop large strain formulations of extensible flexible marine pipes transporting fluid as follows.

Siep 1: Converting the real system of the pipe column into the apparent systems of the pipe and transported fluid by
the apparent tension concept (Section 2.4),

Step 2: Using the Newtonian derivation for the apparent systems of the pipe and transported fluid.

Step 3: Integrating the individual systems of the pipe and transported fiuid into the overall apparent system, which is
subjected to the apparent weight (Section 2.4), hydrodynamic forces exerted by external and internal flows (Section 2.5),
and inertial forces of the pipe.

Step 4: Applying the extensible elastica theory (Section 2.3) on the apparent system to obtain the constitutive
equations.

4.1. Step 2: Using the Newtonian derivation for the apparent systems

Consider Fig. 4(q). The apparent system of the transported fluid element with the length 5" da is subjected to (i) the
internal pressure p;; (i) the internal fluid weight mg; (iii) the inertial forces mar, and myar,; and (iv) the normal reaction
[frn and the wall-shear friction 1., Note again that « could be any parameter used to define the elastic curve of the pipe,
and (¥ = &()/0«. Applying Newton’s second law in normal and tangential directions, one obtains

z F,=0:f,5 = (0.4)0 — (nygsin 6 — mag,)s’, (108)

D F=0:1.8 = (idi) + (migcos 0 + mar)s, (109)

in which (s, @) are the coordinates of arc length and rotation. Similarly, for the apparent system of the pipe element as
shown in Fig. 4(p), applying Newton’s second law in normal and tangential directions yields

Z Fa=0 :f;nsl = —Q +(T+ T +P¢'A¢=)6’ + U;'lu + (mp—m,)gsin@ — mpap,,].!", (110)
ZF} =0:1,8 = Q0 + (T + Tyi + peAc) + [f1se — (mp — m,)g cos 8 — mpap,)s, (I11)
S M, =0:M =0, 112

where T, O, and M are the true wall tension, shear, and bending moment, respectively, p, the external pressure, fyy, and
S the hvdrodynamic forces of external fluid given by Eq. (34), mpg the pipe weight, —m.g the buoyancy force, mpap,
and mpap, the inertial forces of the pipe, and T}, the tension induced by triaxial pressures given by Eq. (22¢).

4.2. Step 3: Integrating the individual systems of the pipe and transported fluid into the overall apparent system

The relationship between Eqs. (108) and (110), and Eqs. (109) and (111), respectively indicates that the interaction
between the pipe and the transported fluid is such that physically the reaction f;, and the friction t have the effects of:

¢ transmitting the effect of hydrostatic and hydrodynamic pressures of transported fluid represented by the right-hand
side terms in Eqs. (108) and (109) into the pipe wall through the lefi-hand side terms in Eqgs. (110) and (111), and

® conversely, transmitting the effect of resultant forces in pipe wall represented by the right-hand side terms in
Eqs. (110) and (111} into transported fluid through the left-hand side terms in Eqs. (108) and (109).

The former effect induces deformation of the pipe, and the laiter alters the characteristics of the internal flow of
transported fluid as described by Proposition 1.

The interaction links together the individual systems of the pipe and transported fluid into the overall system. Using
this fact. one substitutes Eq. (108) into Eq. (110), and Eq. {109) into Eq. (111) to obtain

$F,=0: O —7T,0 —5(w,sin0+ f1,, — mpap, — muap,) =0, {13
TF=0: -T — Q0 —s(~w,cos 0+ fu, — mpap, — mag) =90, (114)

where w,, and T, are referred to as the apparent weight and the apparent tension, as given by Eqgs. (28) and (29). The
governing differential Egs. (112)-(114) describe the nonlinear behaviour of the overali apparent system of the pipe.
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Comparing Egs. (113) and (114) with Eqgs. (99) and (100), we can see that the vectorial method yields the same force-
based strong formulation as that obtained from the virtual work method. Thus exact agreement between the virtual
work and vectorial formulations is confirmed.

4.3. Step 4: Applying the extensible elastica theory on the apparent system

On the apparent system, the axial force appears to be the apparent tension T, rather than the true wall axial force N
of the real system. Applying the extensible elastica theory on the apparent system therefore deals with replacing the
axial force N in the constitutive Eqs. (17b), (18b) and (19b) by the apparent tension 7,. As a result, Eqs. (64) are
obtained as the constitutive equations of the apparent system.

Based on the foregoing derivations along with the geometric relations, the governing equations for the vectoriai
formulation are summarized as follows:

(a) Geometric relations:

X/d =sin8, /¢ =cos8, k=8&/ ="y -xY)" (115a~c)

(b) Constitutive equations:

T,=EApe, M = Bx. (116a,b)

(c) Equilibrium equations:

M =50, , (n
O = T8 + 5'[fun + w, sin @ — (mpap, + miag,)), (118)
T, = —Qf — 5[ftn — wacos 6 — (mpap, + miar)]. (119)

5. Nonlinear dynamic, large amplitude vibration models

Based on the virtual work and the vectorial formulations, the governing equations describing nonlinear dynamics of
the flexible marine pipe have been achieved in the three weak forms such as Eqgs. (82)(85), (86)-{(90), and (91)}(96), and
in the one strong form such as Eqgs. (97)+100), or Eqgs. (101) and (106), or Eqgs. (115)119). Hence, large amplitude
vibration models of the pipe may be generated in four ways, namely from any of the three weak forms or the strong
form. However, if the weak forms are employed, the intermediate procedure will require application of some
approximate method such as the Rayleigh—Ritz method, the assumed-modes method, or the finite element method. A
drawback is that these methods are applicable to self-adjoint systems alone. On the other hand, the models obtained via
this approach are concerned with integral equations.

On the other hand, in the case where the strong form is exploited for creating the models, there is no need for any
approximate method to be used during the process, and the obtained models deal with differential equations. This yields
the possibility of using a broad range of numerical solution methods, including the weighted residuals methods, which
are applicable to both self-adjoint and nonseif-adjoint systems. For the sake of generality in obtaining the model
solution, the strong form thus seems preferable to the weak forms. Derivation of the nonlinear dynamic models based
on the strong form given by Eq. (106) is as follows.

5.1, Large amplitude vibration models in the Cartesian system

By utilizing Eqs. (54) and introducing the position vector in the Cartesian system
x={x y" (120a)
one has the gyroscopic matrix

- mV; [2.?’3 —x" —x'y }

- ) hl al
s Xy 2y

(120b)
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the bending stiffness matrices

B y.vz kx.'yl Bx 2x/yr yll = x?
ko =— kpz = — ) (120c,d)
s —x’y’ X': * - s yrz . xIZ —2x’y’

and the axial stiffness matrices

(Ta —m; Vl) —_}7": -\Jy} T:; — My V,‘ V: 1 0
kr|=—s,3—' Xy x| kp=-—- Mo 1l {120e,1)
and one can express that
Vep\ &1 Vips"\or (AN
s’m,-[(%) Bm; ~ ( ;f;" )a_:] =m,-V,.2(F") , (121a)
ZVFP all'p VF,PJ-" al'p et 12“))
S'm"[( ] )aaa:_( I )aa = 8x ¢
B 3 (1 "
F&(?E) = kp x", (121c)
(T, ~ Bu‘z}';—" - B(?;)a%(%) = T,,x? — kpx", (1214d)
AV NTAY
(T,, f) —mV} (-S!}) = —kgx" - k;x'. (121e)

By substituting Eqgs. (36) and (i21) into Eq. (106) together with some manipulation, the nonlinear dynarmic, large
amplitude vibration model in the Cartesian system is obtained as

mX + ck + g?.(‘ + (kmx”)” + (kbz‘.l(”)’ + kﬂx” -+ k,zx’ = f, (122)

where the total mass matrix is

.1 0
m= s"(mp + m Ca) [0 1} . (‘233)

the hydrodynamic damping matrix is

C;qt C:.'q\‘r
ce=4 C'. C"- , (123b)

equy eqy

and the external load vector is

‘o { I } s { CpoVip + 2Ch Vi Vigg + Cpoa Vi + Cog Vire ~ miVix' /¢ }

. ) ! . (123¢)
f" CD_I' Vi-l_r + 2CI).\‘_|'2 Vire V”}' + CD,\'yl Vlli\ + CM V”J' — Wy — M V‘)//S’

In Eq. (122), the effect of large axial strain and the Poisson’s ratio effect contribute in all the coefficient matrices,
especially to the terms of the combined tension T, — m; V,? and the tension gradient 77 — m; V; V] in the axial stiffness
matrices. It is also evident that the effect of transported fluid is

to add the inertial force of transported mass into the total mass matrix,

to provide the negative damping force in the gyroscopic matrix,

to reduce the internal tension and axial stiffness of the system in the axial stiffness matrices,
to provide an excitation term in the external load vector.
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5.2. Large amplitude vibration models in the natural svstem

Introducing the bending coefficients in the natural system

B 28 3B{s" B By
b“, Z“S-;S*, bz,, =F—F§‘(?), b3n =Pt{“;§(?), (k24a"C)
B 3B/(9\  B(s"\ 3B\’
ban = g3 *?‘s“(?) _F(?) +?(?) ' (124d)
one can express that
_ (Br) 12 g . " |
Q_ 5 _.s"aaz(Bs’ —bln(sl9 )+b31r(5’0), (125)
Bxy'
o- [( :’] = 18"+ bu$ ") + b, 126)
where the expressions for s and @ can be determined from the geometric relations
ssin(@—0,) =, +v.0,, 5 cos(f—8,)=g +0,~ub, (127a,b)
bl l/ + v 9’
PR 2 o LA —f)= u "
5=, + 0l + (8, + v, —w0,),  tan(@ - 6,) Py (127¢,d)

By substituting Egs. (34), (58a), (60), (125), and (126) into Eq. (101) together with some manipulation, the large
amplitude vibration model in the natural system is obtained as

N ol I L GRS LA SR Sl S L0 U L0 G 128
m 5, +c, B 2. & bl Jga" H2u .SJG'Z ila 0 2n y = M, ( )

where the hydrodynamic damping matrix is

C 0
¢, =5 [ o } (129a)
0 C,
the gyroscopic matrix is
20
By =My Vi 01 * (lng)
the bending stiffness matrices are
b1 0 by 0
kpn = , Kpgn = , 129¢,d
bln [ 0 —bm] b2 [ 0 —by, (125¢,d)
the axial stiffness matrices are
T,—m;¥H (1 O T —mV, V[0 0
Kin = [bdn _(45,—’)] 0 0], Koy = —(ﬁs,—) [0 ll, (129,1)

and the external load vector is

f = {f;’}_sl{ C.;nVlzfn_'_C;{VHn'!‘waSing }

o ¥ ; 129
i Co: Vfﬂ + Cp Vi - wycos0 —myV; (129g)

It is evident that in the natural coordinate system there is no coupling term in all the coefficient matrices. Note that
for the lower order analysis, the following approximations by two-term binomial expansion may be used in Eq. (128):

S, + v, —wb, 8x0,+ 6+ .8)/5, (130a,b)

o

o i . Ly - . i Ry o " .
i), — 8, o=, +0,0, 5S0xs6 +u+ 200 {130c—e)

T} LI
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H-ne o " H

sre&l tS:JH:” + u:;‘l + Ullo.' sl‘g."lf gSl Gm + “JIN + [,"”0’ . (130r! g)
SO =s 07 + 20, SO0 s G0 + "6 (130h, i)

[l a7 (il nro

5.3. First-order models for large amplitude vibrations

Once Eqgs. (36) and (56) are substituted into Egs. (97) and {98), the second-order modet of large amplitude vibrations
of the pipe is established. To reduce the second-order system to the first-order system, the velocity expressions following
Eqgs. (131a)(131c) are introduced. By adopting Eqgs. (115)<(117) and (123c), the first-order model can be obtained as

ox
Fria Vs, (131a)
ay
- = ’ 131
af VP_I t) ( 3 b)
o8
e Vo, (131c)
& _ ¢sino, (132a)
O
.
32 s cos @, (132b)
of M
o B (132¢)
%%:s’(VsinB—Hcosa), (132d)
. aVp, e . . Vp,
oA =5 {mp + m; + C“)—P'-{- m; V(2 — sin” B)-a——VL —m;V; sm()cos&a L
Ox at O ot
* » 'Vi ’ -
+5 (Ceqx Vex + ch.\-y VP)' +m; V,2 A—; cosd + il ¢ Vl sin B) - fe {132¢)
4 + OVp, Ve, N )
a— =5(mp + m; + C‘,,)gi — m;¥;sin Gcosea fx oy m; V(2 — cos™ Q)aV—F’
O ot Oa LS
- » M . m;V; V:
+4 (Cem' Ves + Cop Vpy — m V2 Fsin 0+ s” cos 9) - (1321)

If & = 5 is used, and hydrodynamic effects due to external flow, and unsteady, nonuniform internal flow are excluded,
Eqgs. (132) become

Bx

Frie sin 8, (133a)

Y coso, (133b)

of M

== (133¢)

%= Vsind — Hcos0, (133d)
Js

oH OVp, M

e (mp + m;) o + 2m; ViVpgcos 0 + m; V' _ECOS a, (133e)
V aV . ) .

% ={mp + m,-)FP"A = 2m Vi Vpysin@ — i V7 % sin B+ (mp + m,)g. {133f)
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Note that
Ve _'x _aVe  ¥x o dVp Oy
o o Tmess T Sy YRSt =l m
and
Ve, Oy M Oy d'x M. . 80ox_ dy
a o BCOSB-BSGS__@’ _Esmg“_aas_asl'

(134a,b)

(134c,d)

Eqgs. (133} describe the nonlinear dynamics of an onshore pipe steadily conveying fluid (Atanackovic, 1997; Paidoussis,

1998).

6. Nonlinear static equilibrinm models

The static equilibrium models are derived by eliminating the time-dependent terms in the nonlinear dynamic
equations. As a result, all parameters at the displaced state contained in the nonlinear dynamic equations will alter to

the parameters at the equilibrium state for noniinear static equilibrium models.

6.1. Nonlinear static models in the Cartesian system

Eliminating the time-dependent terms int Eq. (122), and replacing the variables at the displaced state by those at the

equilibrium state, one obtains the static equilibrium model as
(kn1ox"0)" + (kp2oX"0) + KiioX"s + ki2oX, = £,

where the position vector is
Xo={xo ya}",

the bending stiffness matrices are

B,,[ »2 _x;ya} Ky, < Boo

Kp1o =

S5 —xy, X2 I A A

wly, 2 Aﬂ

and the axial stiffness matrices are

k rﬁ(Tan""miuV;E,) _)":;2 x'uy:; k _ T"m—m,-,,l/,-(,l/',.'a 1 0
rla—-s,‘{} x:,‘y; "".XJGZ’ Ilo—__.s‘,—_"_ 0 1 ’

o
and the external load vector is

f = {fro } =4 { C;)xo V.l'zi.w + 2CI)xylo Vo VHJ'U + C.‘D.\'_)-'lo Vlzfyo }
0= =35, .

f:"o C‘D,ro VEI fyo + 2CI).\21'20 Viiixo VH}’O + C.D

2
tonVH.\'o — Wap

6.2. Nonlinear static models in the natural system
Similarly, eliminating the time-dependent terms in Eq. (128) vields the static model

5,8, 5,8 5,8, 0
Ksino .529:,9:; + Kp2no Sf,ﬂ:,z + kllno 0 + krlna .T:J = fm:’

where the bending stiffness matrices are

b lne 0 b"no 0
k ne = 4 k e = ; ’
" [ 0 ‘blnu :l i [ 0 _blnu ]

in which the bending coefficients are

B, 2B, 3B,/s B, B, (s
bllm = E; b}tm = ?‘ - ? ;’j » bSrra = ;‘2 - _U('_J);

{135)

(136a)

(136b,c)

(136d, e)

(136f)

(137)

(138a,b)

(139c—e)
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B! 3B, /s\ B,(s"\ 3B, (9’
_ Il of e 139f
b JJJ S" (S’) S’J( ) * 31}3 (‘5‘:)) ’ ¢ )
the axial stiffness matrices are
(Top ~ Mg V2) 0 Top = ViV, \ | @ O
- _ e 7 ia! = [—@ ~ T i 139g,. h
kmw [bdm S:, 0 0 » errw S; 0 1 ) (3 2, )
and the external load vector is
' ] V‘.! - 9
oo = 4970 4 = g ] ConoVitma ¥ Wan sin by |, (139i)
Jeo C;)m Vitte = Wan €08 8,

6.3. First-order models for nonlinear static equilibriums

Likewise, once the time-dependent terms in Egs. (131) and (132) are eliminated, the system of the first-order
differential equilibrium equations is obtained as

dx =5, sinf,, (1402)
da
4. _ s, cos 8, (140b)
da

a8, M,

e _ 14
da % B,’ (1400)
af _ H, c056,) = 5,00, (140d)
da

ng _ 2 2 M, L Vm Vm _

e sﬁ,( tio Vi —— B, cos B, + v sin 9,,) Fron (140¢)
oV, s M, m, Vi, Vi

= =4 ( M V' "’B —Csin b, +—'3-;:’——Qcos90) = fyos (1401)
dg,

dQ!! = (T — My, Vz}_ +fﬂ'01 (l40g)
d7,, da, d V,,,
W_ "“Q d +mj Vi, —— ’"ﬁa (140h)

The boundary-value problem of the system of the first-order ordinary differential equations {140) can be solved
directly by numerical integrations. Application of the system of equations (140} to a nonlinear bucking analysis of
extensible flexible marine pipes transporting fluid via the method of adjacent nonlinear equilibrium has been
demonstrated by Chucheepsakut and Monprapussorn (2001).

7. Choices of the independent variable

One salient feature of the large strain formulations presented in this work is that the independent variable a used in
the formulations provides flexibility in the choice of parameters defining elastic curves. The formulations therefore
allow users to select the independent variable that is most efficient for their own problem solution. For example,
analysis of flexible marine pipes as shown in Fig. 1 has at least three alternatives for the independent variable « such as
the vertical coordinate y, the offset distance x, and the arc length s.

The advantage of using ¢ = y is that the total water depth or the boundary condition is known initially, while by
using 2 = x the boundary condition is known if the offset at the top end of the pipe can be assumed tg be static, and is
unknown if the offset is dynamic. If one uses o = s, the boundary condition is always unknown, because the total are
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length changes after deformation. The problem for which the boundary condition is unknown becomes much more
difficult, and requires specific treatment.

However, the disadvantage of using o = y is that if elastic curves after large displacements form like the U-shape or
the semi-U-shape as shown in Figs. 1(b) and {(c), the vertical position is no longer a ene-to-one function for all points on
the elastic curves. Consequently, # = y is not an effective choice in this case. Likewise, using o = x encounters the same
difficulty when the elastic curves after large displacements develop akin to the C-shape or the semi-C-shape. In these
troublesome cases, using o = s becomes the best way, because arc length is an intrinsic property, and thus is always a
one-to-one function for all points of the efastic curves.

Therefore for flexible marine pipes which do not face the problem of elastic curves having a U-shape, such as the
high-tensioned pipes as shown in Fig. 1(a), using a = y is sufficient. However, if the pipes confront the problem that
occurs in the case of low-tensioned pipes as shown in Figs. 1(b) and (c), = s should be employed. It should be noted
that in addition to the three alternatives of x as exemplified earlier, there are still other choices of a such as the span
length, the rotational angle, and so on, which may be employed if efficient.

8. Extension to other applications

The present formulations are applicable to large strain analysis not only of flexible marine pipes, but also of any kind
of elastica structures listed below.

(a) Onshore pipes: The effect of external fluid would be excluded from the present models,

(b) Submerged pipes: The hydrodynamic pressure effect of external fluid would be excluded.

{c) Marine cables: Bending rigidity and influence of internal fluid would be exciuded.

(d) Submerged cables: Bending rigidity, influence of internal fluid, and hydrodynamic pressure effect of external fluid
would be excluded from the present models.

{(e) Onshore cables and sirings: Bending rigidity, and influences of internal and external fluids would be excluded from
the present models.

(f} Elastic rods, long columns, and long beams: Influences of external and internal fluids would be excluded from the
present models.

Even though the present models are intended for elastica structures with environment-induced initial curvatures, the
models can still be extended to elastica structures with man-made initial curvatures such as curved beams and arches by
considering £#£0 in application of the extensible elastica theory presented in this paper.

9. Conclusions

A literature review has shown that the effects of axial deformation, internal flow, and Poisson’s ratio effect can be
significant in the behaviour of flexible marine pipes. To take account of the combined action of these effects in flexible
marine pipe analysis, large strain formulations are needed. The essential mathematical principles for large strain
modelling are developed in this paper. These include original developments of the apparent tension coneept, and the
extensible elastica theories from the viewpoints of total Lagrangian, updated Lagrangian, and Eulerian mechanics.
Based on large strain elasticity and the apparent tension concept, it is shown that the Poisson’s ratio effect influences the
characteristics of internal flow, and induces the apparent tension rather than the effective tension. Therefore, the
apparent tension should be used in large strain analysis for general Poisson’s ratios.

Based on the proposed mathematical principles, the large strain formulations are developed by the virtual work
method and the vectorial method in both Cartesian and natural coordinates. The virtual work method produces large
strain models in the three weak forms of integral equations, and one strong form of differential equations, while the
vectorial method yields the identical strong form. All the four forms of the models can be used for large strain analysis
of the pipe, however, with different aspects of model solutions as summarized in Table 1. Relying upon the strong form,
one can create large strain models of large amplitude vibrations and nonlinear static equilibrium of pipes. The
advantages of the present modeis relate to the flexibility offered in choice of the independent variable, and the
possibility of applying them to numerous elastica problems, including even some biomechanics applications such as
veins conveying fluids inside the human body. and vessels rising water in the xylem of a plant.
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Table 1
Alternatives of large strain modeling of flexible marine pipes
Large strain Governing equations Constraint of  Solution methods
models by natural BCs
Equations Type
Weak form 1 (82)-(85) None
Weak form 2 (86), (87), (89), (90) Integral equations Some Limited to assumed
mode methods
Weak form 3 (91), (92), (94), (95) Ali
Strong form (97100}, or (101}, (106), or Dilferential All Unlimited
(115)<119) equations
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Appendix A. Derivation of extensible elastica theory

Consider Fig. 2(b). Displacements and deformations of the pipe element from the undeformed state (state 1) to the
equilibrium state (state 2), and then to the displaced state (state 3) result in changes of

axial stratn at the neutral axis E—g, —¢,
bending moment Af — M, — M,

radius of curvature F—r, —r,
differential arc length d5— ds, —ds,
differential rotation angle d@—d4, - d#.

Rotations of cross-section from state 1 to 2, from state 2 to 3, and from state 1 to 3 are denoted by de, = d8, — dé,
do, = d8 - dd,, and de = d# — df, respectively.
In order to describe these changes, the three deformation descriptors previously defined in Section 2.1 are employed.

Consequently, the extensible elastica theory can be developed by the total Lagrangian, the updated Lagrangian, and the
Eulerian formulations as follows.

A1, Total Lagrongian formulation

The total Lagrangian formulation considers total changes from state 1 to 3 by neglecting the intermediate state 2. All
changes are measured relative to the original state 1. The theoretical development starts by expressing the undeformed
and deformed arc lengths of the fibre at any radius ¢ as

ds. = (F + 2)d6, (A.1a)

ds. = (r+ ;¥de + df) = rd@ + c(de + dd). (A.1b)
Since df = d5/7 and 4@ = ds/r = (1 + &) ds/r, Egs. (A.1) may be written in the form

ds. = (1 + ;) ds = (1 + ¢&) d3, (A.22)

_ ds de =\ .

ds. = (1 +¢&)ds+ 3 d(p+—F- =\ 1+etogotar ds, (A.2b)
where £ = 1/F and x = 1/r are the curvatures at the undeformed and the displaced states, and

do _dfds df

E‘_;ma—d}—d—f'zk‘{l%'ﬁ)*f, (A?’)
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From Definition 4, the TL-strain of the fibre at any radius ¢ is defined by

. _ds.—ds;  (e+c(de/d5)ds e+ k(1 +¢) - A] (Ad
FTods. T (I +cedas T4gR ’ 4
The stress corresponding to the TL-strain ¢. = E¢; is referred to as the Kirchhoff stress. The axial force and the bending
moment due to the Kirchhoff stress can be expressed as
" N={ cdip=kg [ [PEUTO-R g (A.5a)
i ir 14 ¢k

Ap

M={ a;gdfb:Ef

Ap A

[EG + (1 + &) — ]
i

dA .
T+ R ] Ap, (A.5b)

in which E is the elastic modulus and A is the undeformed cross-sectional area of a pipe.
If the following geometrical properties of the cross-section

- djp =+ gdjp ] dejp .
A= | — = [ === = [ 2= “(Aa—
P /:;,ngz’ Ce _/,—,,1+gxz’ Ir PR (A6a—c)
are defined, Eqs. (A.5) may be rewritten in the form
N = EApe+ EQplx(1 +£) — &], M = EQpe+ El[k(1 +¢) — . (A.7a,b)

The TL-strain energy due to the TL-strain &; is measured with respect to the undeformed volume of the pipe ¥p.
Therefore, its expression is given by

2
68 & .
U= / —=d¥p = = d¥p. AR
w2 S22 “8
Taking the first variation of Eq. (A.8), one obtains
SU = / Ee.de.d¥p = ] [ o [68 + 2ol + ) — “]] dApds. (A9)
W 5 Ja, 1+¢k

For elastica problems, ¢& = ¢/F<1, thus 1/(1 + ¢f)~ |. Consequently, Eqs. (A.6) yield 45~ A4p, 0p=0, and = Tp.
Substituting these conditions in Eqgs. (A 4), (A.7), and {A.9), the constitutive equations of the extensible ejastica theory
can be obtained as

TL-axial strain:

& =&+ ¢kl + &) - &, (A.10)
TL-axial force:
N =Edps, (AID)

TL-bending moment:
M = EI[k(1 + &) — &), (A.12)

TL-strain energy:

U = / {N3e + Md[w(l +¢) - R]} d5 = [ [Nés' + M — @) da (A-13)
Note that
ds — ds do df -
e = a( E S) =85/5, 8x(l+¢&)~—R]= 5(55 *E) =0 - §)/5.

A.2. Updated Lagrangian formulation

The updated Lagrangian formulation considers the two-step changes from state ] to 2, and then from state 2 to 3. All
changes are measured relative to the intermediate state 2. The development starts by expressing the three state arc
lengths of the fibre at any ¢ as

ds. = (F+ ¢)df = Fdf + ¢(df, — dg,). (A.14a)
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dS,, = (ra + ;) dgm (Al4b)

ds; = (r + g)(de, + d6,) = rd8 + ¢(de, + d8,). (A.14¢0)
Since df = d3/F = (1 - &,) ds,/F, 40, = ds,/r,, and d8 = ds/r = (1 + &4) ds, /r, Eqs. (A.14) may be written in the form

di. = (1 — ;) ds, + (;(ct‘i - d(po) = (I — &y + Ko — g:f") ds,, (A.15a)

ds,; = (1 + ;g‘“) dsy = (I + ¢K,) ds, (A.15b)

]
ds(, dq)d

ds; = (1 +en)ds, +c{dos+— | = l+a,;+;a—s—+grco ds,, {A.150)
where £ = 1 /7, k, = 1/r,, and & = 1 /r are the curvatures at the three states, and

d dg, df ds

T a5 G, = e R o (A.162)

de, d#ds dé,

_gvads e _ . . A 16b

& S GBd @, K(1 + &4} — Ko, ( )

92=d_4’2+%=,c(| +eg) — /(1 — &,). (A.16c)

ds, ds, ds,

From Definition 4, the UL-strain of the fibre at any radius ¢ is defined by
ds; - dj._: _ [gﬂ' +E+ g(d¢d/dsﬂ + dtpn/dsﬂ)] d‘so _ & + Q[K(l + Ed') - E(l — Ea)]
dso: (1 + cr, ) ds, - 1+ ¢x, '

The stress corresponding to the UL-strain is referred to as the updated KirchhofT stress. The axial force and the bending
moment due to the updated Kirchhoff stress can be expressed as

g, =

(A.17)

N={ o.ddp=E f [E el +eq) — R(1 - 3")]] dAo, (A.18)
Ap Ap, i+ EKa
2| 2
M={ ocddp=E f [“C toll+en - & —e)) (A.18b)
Ar, Aro b+,

in which Ap, is the deformed cross-sectional area of the pipe at the equilibrium state.
If the following geometrical properties of the cross-section

. ddp, . f cdAp, . A ddp,
A = ) = ., b= e A.1%a-c¢)
po ./Ap,, 1 +¢x, QP Aps 14¢x, Fo Apo 1+4¢x, (
are defined, Eqs. (A.18) may be rewritten in the form
N = EAp e+ EQp k(1 + £4) — (1 — £,)], (A.20a)
M = EQp ¢ + EIL [1(} + £4) ~ £(1 ~ &,)]. (A.20b)

The UL-strain energy due to the UL-strain &, is measured based on the deformed volume at the equilibrium state of
the pipe ¥p,. Thus, it can be expressed as

!
v={ ZSdv, = [ % a¥p,. (A21)
Yra 2 ¥pu 2
Taking the first variation of Eq. {A.21), one obtains
—®/(l—¢g,
8U= [ Es.be.d¥p, = / f . [‘5” SOl(l + o) — (1 — & )]] dAp, ds,. (A22)
Yr. Xy oS Ap, l + SKa

For elastica problems, ¢k, = g/r, <1, so 1/(1 + ¢i,)= 1. Consequently, Egs. (A.19) produce Ay, = Ap,, 05, ~0, and
Iy, = Ip,. Using these conditions in Egs. (A.17), (A.20). and {A.22), the constitutive equations of the extensible elastica
theory can be obtained as
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UL-axial strain:

g =&+ Sl + &4) — (1 — &)}, (A23)
UL-axial force:

N = Edp,, (A24)
UL-bending moment:

M = Elp,[1(1 + ¢4) — R(1 — &,)], (A.25)

UL-strain energy:

oU = f {Ne+ M[K(1 + &) — R(1 — £,)]} ds,

- f [N3S + M3(@ — )] de. (A.26)
Note that
dg = 6(dsd;d§) = &7 /%, é[x(‘l +&q) = ®’(1 — &) = 5((%% - d—ds%) =8¢ - /s,

A.3. Eulerian Formulation

The Eulerian formulation considers total changes from state 1 to 3 by neglecting the intermediate state 2, All changes
are measured relative to the final state 3. The development starts by expressing the undeformed and deformed arc
lengths of the fibre at any radius ¢ as

43, = (F+5)df = 7Fdf + ¢(d6 — do), (A.27a)

ds. = (r+2)dé. (A.27b)
Since df = (1 ~ ¢)ds/F and d@ = ds/r, Eq. (A.27) may be written in the form

d.?;:(l—s)der;(?—dtp) = (1 —e+grc—%—?) ds, (A.28a)

ds. = (1 4+ ¢r)ds, (A.28b)
where £ = [ /F and & = | /r are the curvatures at the undeformed and the displaced states, and

dp d0 dfds

E—a*s*—-d-}amh—h(l —8). (A29)

From Definition 4, the EL-strain of the fibre at any radius ¢ is defined by
_ds;—ds; (e +c(de/ds))ds e+ clx — &(1 - g)]
T oods. T (+c)ds I +4ck

-

£~
v

(A.30)

The stress corresponding to the EL-strain is referred to as the Cauchy stress. The axial force and bending moment due
to the Cauchy stress can be expressed as

N= G;dAP=Ef [M] dAp, (A.31a)
Ap Ar t+c¢k
2 — 71 —
M= a;;dAP=Ef [‘”“;“[" & 8)]] dAp, (A31b)
Ap ) Ap !+§K

in which Ap is the deformed cross-sectional area of the pipe at the displaced state.
If the following geometrical properties of the cross-section

. dAP
A, = [ 3 (A32a
N PR )

. :dAp
= - A.32b
2 /_4,. 1+ o ( )

]
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. gz dAP
Ip = fb e (A.32¢c)
are defined, Egs. (A.31) may be rewritten in the form
N = Edpe+ EQplx — R(1 —£)), {A.33a)
M = EQpe + Elfic — /(1 — &)). (A.33b)

The EL-strain energy due to the EL-strain ¢ is measured with respect to the deformed volume at the displaced state
of the pipe ¥p. Thus, its expression is given by

2
v= [ &gy, = f % avy. (A34)
e 2 Ve 2
Taking the first variation of Eq. (A.34), one obtains
U = f Ee g, dVp = f f o [‘S“’“‘s["' it _8)]] dApds. (A35)
Vr s Jdp I4cx

For elastica problems, ¢k = ¢/r<1, thus 1/(1 +¢x)x1. As a result, Eqs. (A.32) vield Ap=~Ap, Qp~0, and Ipx1p.

Substituting these conditions in Egs. (A.30), (A.33), and (A.35), the constitutive equations of the extensible elastica
theory are obtained as

EL-axial strain:

£; =&+ ¢k — ®(1 — ¢)), (A.36)
EL-axial force;

N = Edps, (A.37)
EL-bending moment:

M = Elplx — R(1 —g)], (A.38)
EL-strain energy:

U= f{N&e-{— Mok — k(1 — )} ds = f[Nés’ + M — &) da. (A.39)

Note that
ds - df _ de df =

de = 5( & ) =dd [y, dx—R(l-g)= 6(5 —a) =30 — &)/,
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Abstract

This paper presents a variational model formulation that can be used for analyzing the three-dimen-
sional steady-state behavior of an extensible marine cable. The virtual work-energy functional, which in-
volves virtual strain energy due to a cable stretching, and virtual works done by the gravitational, inertial
and external drag forces, is formulated. Euler—Lagrange’s equations, obtained by considering the first
variation of the functional, are identical to those obtained by equilibrating forces on a cable infinitesimal
segment. Two mathematical simulations, namely, the finite element method and the shooting-optimization
technique, are employed to solve and evaluate the problems. The numerical investigations are carried out
for the case of a specified end tension, whereas the specified cable unstrained length case can be applied in
the algorithm procedure. The validity of the present model and the influence of various geometrical pa-
rameters on the cable equilibrium configuration are demonstrated. The effects of cable extensibility and the
omnidirectionality of current actions are presented and discussed.
© 2003 Elsevier Inc. All rights reserved.

Keywords: Mathematical simulation; Variational approach; Three-dimensional marine cable model; Extensible marine
cables; Finite element method; Shooting-optimization method

1. Introduction

With the increases in deployment of cables in deep-ocean engineering, the determination of
cable configurations as well as cable tensile forces has become the important parameters in the
design process. As far as the hydrodynamic drag forces are concerned, the performance of marine
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cables must be considered in three-dimensional space. Hence, to accomplish a fundamental un-
derstanding of cable behaviors, accurate three-dimensional modelling of cable should be fully
accounted for in the analysis.

The research work by De Zoysa [1] on the three-dimensional steady-state analysis of under
cable towing a sea buggy was recognized by a number of researchers in the past. In that paper the
static equilibrium equations of the problem are solved by using a shooting method. The obtained
results showed the variations of tension components at the buggy end with respect to different
directions made by the currents. Chucheepsakul and Subwonglee [2] solved the same problem
using a variational approach. Wang et al. [3] used the shooting-optimization technique to yield
more accuracy of the results. Friswell [4] corrected the hydrodynamic force model used by Wang
et al. [3] and suggested approximate guidelines on choosing optimum cable length in the operating
systems, in addition to the cable profile and tensile force developments. All of the aforementioned
studies, however, do not take into consideration the effect of axial extensibility, which is essential
for determining the cable configuration. This restriction may not yield an accurate analysis, es-
pecially in the case of cables having high extensibility.

Recently, a various of mathematical models of extensible cables has been considered by many
researchers. A brief review of their work should be mentioned herein, Webster [5] presented the
finite element approach to simulate the non-linear effects under hydrodynamic actions. Huyse
et al. [6] modified the riser model to a three-dimensional tensioned string and used the cylindrical
coordinates to obtain the admissible configuration. Dreyer and Van Vuuren [7] derived the nu-
merical solutions of both continuous and discrete models through the concept of inextensible
cable (elastic modulus is assumed to be large). Vassalos [8] provided detailed information on
explaining the appropriate models in the design of marine structure. However, the essential pa-
rameters associated with the static behavior have not been tackled rigorously in their study [5-8].
Vaz and Patel [9] were particularly interested in investigating the cable configuration during in-
stallation in sheared current field. They demonstrated the importance of current profile for pre-
dicting of suspended line behaviors, especially when imposing a more complex three-dimensional
current profile. Nevertheless, the influence of cable extensibility has not yet been thoroughly in-
vestigated. Thus, it is the main objective of this study to examine the geometrical parameters for
any cable equilibrium configuration by including the extensibility effect under the omnidirec-
tionality of the current actions. The important factors in the preliminary design stage include the
cable tension distribution, elongation and geometric relations, such as cable unstrained or
strained arc-length, vertical and horizontal angles of any point along a cable.

In the present paper numerical computations based on the finite element approach are used.
The numerical technique presented in this study is computationally efficient to carry out for the
solution in which the top tension is specified. However, the technique is not limited to the solution
in which the total arc-length of cable is specified. A more detail description of this technique for
two-dimensional case can be found in Chucheepsakul et al. [10]. As an alternative check, the
shooting method is also used to validate the numerical solutions obtained from the variational
approach.

The following assumptions are made throughout this analysis:

(1) A cable is installed with two stationary supports at the bottom and top end positions. Each
end is held by the pinned support.
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(2) The effect of bending, shear and torsional rigidities is neglected.
(3) The material of cable is assumed to be linearly elastic and the material density per unit volume
remains invariant during stretching.

Numerical results are demonstrated tabularly and graphically for two case studies, namely, the
practical cases of specified top tension and specified cable unstrained arc-length.

2. Cable model and governing equations

A typical cable model in its relationship to a fixed Cartesian reference frame called the global
coordinate system is represented in Fig. la, which also shows the rotated system, i.e., the local
coordinate system. This system is useful since it allows a simplified expression of the equations.
The geometric compatibility relation of both systems can be expressed as the following matrix
notation,

cospcosfl —sin@ —singcosl| [ p
= | cos¢sin® cosf —singsinf q (1)
sin ¢ 0 cos ¢ ¥

in which unit vectors 7, /, ¥ and B, g, 7 represent for the sets of global and local coordinate systems,
respectively. The cable orientation at any point is defined by ¢ and 6, where ¢ is the vertical angle
between the XY plane and vector B, 8 is the horizontal angle between the XZ plane and projection
line of vector p, when vector ¢ lies on the XY plane. The bottom end of the cable is anchored at the
seabed, while the top end is tied to the floating structure. With regard to Fig. 1b, it can be seen the
circular plan view of the cable configuration, in which 6 is the horizontal angle between X-axis
and the projection line of cable chord length on XY plane, R is the distance along the seabed
between the top and bottom ends.

The current velocity is a function of depth only and is given by ¥ = v,(zo)i + v,(20)j. In terms
of the local coordinate system, the current profile is taken as ¥ = p,p + ¢.§ + r,7, namely

Ly e WL

Ps = Ux(2p) cos pcos 8 + v,(zp) cos ¢ sin 8 (2a)
gs = —y(20) sin 8 + v,(z) cos & (2b)
rs = —0y(2g) sin ¢pcos & — v,(zo) sin P sin 0 (2c)

For stationary cable, the drag force is given by D = D,p + D,4 + D,7, in which D,, D, and D,
are the components of drag force along the direction of vectors p, § and 7, respectively. Simple
time-independent hydrodynamic loading models are chosen here, where the tangential and normal
forces are proportional to the square of tangential and normal fluid velocities. Thus, Dr becomes

DF:CTps[pslp"" CN(QS'&'*"'S'F) fI?""‘f (3)

Cr = 1p,DnCor(l — veg) and Cn =1p,DCopn(1 — veo) (4a,b)

in which p,, is the density of seawater, Cpr and Cpy are the tangential and normal drag coeffi-
cients, D(1 — vgg) is the deformed cable diameter, and v is the Poisson’s ratio.
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Current direction

s

Bottom end

Botiom end

e Prajection on XY-piane

(&) (b)

{1 +dF)p +dp)

D, ds,q

{cy -Tp

Fig. 1. (a) Reference configuration and coordinate systems of marine cables. (b) Circular plan view of cable modet.
(c) Forces on cable infinitesimal segment.

Referring to Fig. lc, the equilibrium equations for an infinitesimal element of an immersed
cable as given by Berteaux [11] can be written along the direction of g, g, ¥ as

ar _ we sin ¢ _

dso (l+&) 7

do D,

&~ Toosd (5a.b.)

do /wecosd,)_D\ /T

dSo_ (1+£0) "
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where T 1s the cable effective tension and not the actual tension that controls the extensibility of
the cable. The effective tension [12] is written as

T = EAgy + 2vp,gA(1 ~ vso)z(ZH —zp) (6)

3. Variational formulation

Fig. 2 shows an infinitesimal element of cable in which «, v and w are the components of
displacement from the equilibrium position in the direction of unit vectors i, J, k, respectively. The
derivatives of its length dsp in each direction are

dxy = cos pcosBdsy, dyw =cos¢sinfidsy, and dzy =sin¢dsg (7a,b,c)
Differentiation of Eq. (7) with respect to z; (), the cable stretched length is

dso = /1 + %2 + y2dz (8)

Let /1 + x7 + y? be s,. Another form of dsy using the Lagrangian strain definition is

dso = (1 + &) ds (9a)
Thus,

__% 9

1 -+- &g dZo ( )

in which ds is the unstretched cable length. Likewise, the arc-length d3, the strain & and the dis-
placements u, v and w at the displaced state are given by

a5 = /() + ) + (0 +0)2 + (1 + w)dz (10a)
ds = (1 + 5)ds (10b)

Eguilibrium state

Displaced state

Fig. 2. Two different states of cables.
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From Eqgs. (8)—(10), one can write the dynamic strain as

ds —ds
P

and its variation can be written as

gE=

lg%d%+wf+%+uf+u+wf~1 (1)

1+ | (x) + )0 + (3 + V)80 + (1 + w')dw

08 = g N2 N2 2
\/(x3+u) + (0 +v) + (1 +w)

(12)

3.1. Strain energy due to axial deformation

The strain energy due to axial deformation is caused by two actions, namely, pulling on the
cable due to tension and the squeezing of the cable due to hydrostatic pressure, as proposed by
Sparks [13]. The strain energy expression is written as

Sl 1 §|

U= / EEAEZdS +f zvang(ZH — Zo)d.? (13)
0 0

where S, is the total undeformed arc-length, S, is the total deformed arc-length, E is Young’s

modulus, 4 and A4 is the undeformed and deformed cable cross-sectional areas respectively. Using

Eqgs. (9), (11) and (12), the variation of Eq. (13) becomes

Z) i ]
_ [T (1 N]TOq+u)du + (0 + )80 + (1 + w)dw' 1)
L A A e " dzy  (14)
o3 W AW 4 0 ) )

s§
in which T, = FAsgy + 2vp,gAo(Zy — zp) and Ty, = EA — 2vp, gAo(Zy — 23), when Zy is the total sea
depth. It is seen that Eq. (6) and 7, are identical to the usual form of the cable effective tension. If
Poisson’s ratio v is set to be zero so that there is no reduction in cable diameter, then 7, is equal to
the cable actual tension and axial strain is proportional to this tension [14]. By neglecting the small
quantities of higher order terms, and using the binomial approximation, Eq. (15) reduces to
X' + v +w 1

d a1_ 4 16a.b
2 e AT (16a,b)

Substituting Eq. (16) into Eq. (14) yields

A

Zu T
QU = [ | [—% (xp+u') + E; (x[,zu’ + xpt’ + x:)w’)-l ou’
0 5o 56
Ta 7 T !
+ l—}g(){, + 1) +$(x6y{]u’ + v +y(',w’)-|8'u
T

+ r?ﬂ(l+w’)+L;1'PTI;(Jc;,u'—i—y{lv’+w’)]814/]dzo (17)
0 0
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3.2, Virtual work done by external forces

The virtual work done by effective weight of a submerged cable is expressed as

I sl
W, = — =0, dwdz, 18
[0 2 Bz (18)

where w, is the effective weight of the cable.
The virtual work done by hydrodynamic forces is written as

Zn
B = f 39|(Dpu + Dgu + D)t + (Do + Dgo + D)0 + (D + D + Dp)oWldzg - (19)
0

in which the subscripts #, v and w denote the forces per unit length components corresponding
to the Cartesian system.
The virtual work done by inertia force is

Zn
SH; = — f (i 51t + 72 B0 + i 5w Lz, (20)
0

where = (wc/g(1 + &))s}, is the cable mass per unit stretched length at the equilibrium state,
and wc is the cable weight per unit unstretched length.,

3.3. Euler’s equations

The virtual work-energy of the marine cable system is written as
81 =&U —3W, — 6y — W =0 (21)
Substitution of Eqs. (17)+20) into Eq. (21), then integration by part of Eq. (21) is per-
formed by evaluating 6u = v = dw = ( at boundary conditions, i.e., zy = 0 and z, = Zy. Then,

Euler’s equations associated with the virtual displacement du, dv and dw are obtained respectively
as

T, Ti

2 ) 4 2o+ )| — i = (O + Do+ D 22)
T; Ti ! W ' — .

(% (y(’, é(x’ay{)u + Y + yhw )] — mb = —(Dp, + Dy + D)8 (23)
T !

r (1+w’) 3(.’c(,u + yt +w’)-‘ —ﬁzﬁz=—/Dpw+qu+D,w— e \.s{, (24)

86 1+&
3.4. Equilibrium equations

Applying the initial conditions u =v=w=u'=vV=w =v"=v"=w' =4=9=w=0 on
Eqs. (22)+24), the following equilibrium equations are obtained
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T\’

/ :60\ 4+ (Dpy + Dy + D )sy =0 (29)
T !

/%\ + (Dpo+ Dy + Dr)sy =0 (26)
Ta li

/?0\ +/Dpw+qu+Drw-—lj_e80\S’0=0 (27)

It is noted that when assembling these equations using vector relations yields the equilibrium
equation, which is identical to Eq. {5).

4. Mathematical simulations

Eqs. (25)-(27) are the system of non-linear differential equations, analytical solution to these
equations are not be obtainable. Numerical solutions using the finite element method or the
shooting-optimization may be used for practical problems. For the purposes of comparison and
validation of the results, the two numerical methods are employed in this investigation. In the
finite element procedure, the variational formulation given in Egs. {17)-(21) is involved while in
the shooting-optimization method the governing differential equation given in Eqgs. (5) is used. In
each method, either top tension or the cable unstrained arc-length may be either known a prior or
may be determined.

4.1. Finite element method

For independent variable zp, only the variation of horizontal displacement is considered,
ow = dw = 0. The reference of three-dimensional equilibrium configuration is determined by
substitution of Eqs. {17)-(20) into Eq. (21) again, and then Eq. (21) is rearranged in the form of
a hybrid formulation as follows

Zn
8 = 6/ rTa\/l + (e +u) + O+ v) — Fshu— Fysho'dzg =0 (28)
0

in which F, =D, + Dy, +D,, and F,=D,, -+ D, +D,. At the displaced state, x = xo + u,
¥ =)o+, hence x’ = xj + o/, ox = du, &' = 8, y =y, -+ ¢/, &y = dv and 3y = 8v'. At the equi-
librium state, x = xp and y = y, then Eq. (28) can be simplified to

oy \
an:&/ Tor/1+x2 432 — Fus'peo — Fosly \dzo = 0 29
; o+ oXo oo dzg (29)

This formulation is suitable and efficient for a practical cable problem of which the top tension is
specified, the total cable arc-length either unstrained or strained is to be determined. Three un-
knowns to be involved in the algorithm are xo(z), yo(z0) and ey(zp). The relevant equilibrium
equation corresponding to the tangential direction of a cable segment (5a), representing the cable
tension at any point, is converted to the following integral expression
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Tﬁ,(zo):;'}ﬂl—fH [(lf )—D1/1+x’2+y’2-|dzo (30)

Z

in which Ty is the specified tension at the top end. The combination of Eqs. (29) and (30) are used
to solve for the cable static problem.

Since the vertical axis is chosen as an independent variable, the total water depth is discretized
into number of regions or elements, each with an equal length # as depicted in Fig. 3. In the
analysis, the horizontal projection of element coordinates xo(zo) and 1{zp) on XZ and ¥YZ planes
consist of two components which are linear and non-linear. The linear parts (xi,y;) are directly
obtained from the prescribed positions of cable while the non-linear parts (xnp,ynL) are ap-
proximated by a cubic polynomials shape function in z,, thus

[ _
w — IVHg} (31)

Projection on XZ plane

Nel@h = Z,,

X, o P
ne Vi —-Y

X

Fig. 3. Modelling for horizontal projection of the finite element coordinates on XZ and YZ planes.
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where
=M % 0 0 M Moo o
Ny = 1= 3@/ +2G/R), No =20 - 22 /) + @/1) (300
Ny = 3[R - 22K, No=—(E/h) + (@)
{at = I20(0) #40©) »el0) %u(0) xwi(h) Hlh) wa(h) y ()| (34)

in which [N} is the matrix of the shape function and {g} is the degree of freedom of nodal dis-
placement and rotation. For the kinematic relations of strain, the matrix notations can be written as

& = [L]{e} (35)
L] = [t —2/h zo/h| (36)
{e} = | &(0) &o(h)]” (37)

where | L] is the matrix of the strain shape function and {e} is the nodal strain. The global equi-
librium condition 3II = (0n/dq;)dq; = 0 yields a system of non-linear equations. Consequently, by
the Newton—Raphson iterative algorithm, one can write the incremental process as

[K]{AQ} = —{R} (38)

Consider the kth element, the contributions to the square matrix [Kj, and to the vector {R}, are as
follows,

[ &m 1 _ [ IN]" T, [N)

K= 0g,0q; fo (L+x2+32)77 (39)
) ’ N'|Ta [ rf A

Bh= "% hfo [(1 X2 W N g, |9 (40)

in which % is an element height, {Q} and {¢} are the global and local degrees of freedom, re-
spectively. Egs. (39) and (40) are evaluated by using Gaussian quadrature numerical integration
with four points. The boundary conditions are the zero value of non-linear parts of coordinates at
zp = 0 and Zy. The step-by-step iteration procedure can be comprehensively described as follows:

e The initial estimated value of global strain {@} and global degrees of freedom {Q} are assumed
to be zero.

e The values of F,, F, and T, are calculated consecutively.

¢ After the components of [K], and {R}, are numerically evaluated, all element matrices are as-
sembled together to form the global systems.

¢ By applying boundary conditions, the solutions of {AQ} are obtained using Eq. (38).

e The new value of nodal strain is updated by the Newton-Raphson process; that is, &' =
g" — f(e")/f'(¢"), in which n=step of iteration,
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Zy I' w -|
d — EA n A 1 _ 2 _ - e _ ’)
F(eg) &y + 20p,,84(1 — vel) (Zy — z0) TH+-/;0 Tra) D142 + 32 dz
and f'(e}) is approximated using the forward difference formula; namely f'(&f) = (f (s} + 4) —
f1e3))/A. Since the spatial variation of the initial static strain of cable is very small compared to

unity, the spatial step length used A is assumed to be a constant and it is set to be equal to 1 x 1078,

e Then an incremental global strain {A@} is obtained.

e Adding an incremental global displacement {AQ} to Q and repeating overall steps, the iterative
procedures are terminated when {AQ} and {A®} are negligible or the error tolerance is
achieved.

4.2. Shooting-optimization method

The following governing eight first-order differential equations, Eqs. (41)—(44), together with
the eight known end conditions, Eq. (45) or (46), may be solved for T, 8, ¢, xo, y, 5o, s and g as
functions of zy. Let £, i=1,2,...,8 be the unknown parameters. In view of these governing
equations and their associated initial conditions at the seabed, z; = 0, the preceding differen-
tial equations corresponding to the equilibrium of cable segment, Eq. (5), can be rearranged as
follows

dT_ / W, Dp \ _

dzo  (1+&) sing ’ TO)=¢&

de { D \ B

dzg  Tcos q;sin ¢ 0(0) = & {41a,b,c)
dp _ [wecosg

A -
dZo (1 +£0) —D,. T'sin qbu ¢(0) - 63

Differentiation of Eq. (6) with respect to z, gives

deg _ d7/dzy + 2vp,gd(l — veo )’
dZo o {EA - 4V2png(1 - ‘VE[)) (ZH — ZQ)} ’

&(0) = ¢ (42)

From the geometrical considerations, Eqgs. (7a){7¢) can be rewritten as
dxg [cos¢cosf

dz, sin ¢ » %(0) =0
%’3 _/ 9‘_:’%*;8_;:‘9\, 3(0) = 0 (43a,b,c)
%2—: fﬁ\, 50(0) =0
Finally, from the strain definition, Eq. (9a) can also be rewritten as
Sl AN se=0 (44)

Az sing(l+e)
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The terminal boundary conditions depend on whether the top tension force or the unstrained
cable length is specified, namely, for the case of specified top tension,

8(zn) = {5, @(zn) = {6 solzn) = {5, s(za) = {s

. Ty {45a-h)
T(zn) =Ta, xo(zu) =RcosBy, w(za) =Rsinly, eo(zu) = 71
for the case of specified cable unstrained length,
8(za) = (s, @lzn) =0 solzm) =05, s(zu) = St
) ts {(46a—h)
T(zu) = {3, xo(zu) = Rcosby, »(zu) =Rsinby, &fzu)= Ed

Instead of solving a set of algebraic equations formed from the error between the prescribed
and computed terminal boundary values, the error norms are minimized by an optimization al-
gorithm, The numerical procedure starts from the initial estimated values of T, 0, ¢ and ¢ at the
bottom end. Then, the integration is carried out from z; = 0 to zy = Zy using the fifth-order Cash—
Karp Runge-Kutta method as given in Press et al. [15]. An objective function ¥ for the opti-
mization exercise is minimized using the downhill simplex method proposed by Nelder and Meade
[16], depending on the specified values, namely, for the case of specified top tension,

Minimize ¥ = |Xo(Zn)} ~ R costy| + |yo(Zu) — R sinbp| + |T(Zy) — Tx| (47)

X0:¥0 1T

or for the case of specified cable unstrained length,
Minimize ¥ = |xo(Zy) — R cosby| + {yo(Zu) — Rsinbg| + |s(Zy) — Sy | (48)

X0.¥0,58
Consequently, the overall steps are iterated until the allowable error is achieved. It should be
remarked that the integration with respect to z, coordinate {from the seabed to the surface) has an
implicit constraint that cable profile must lie above the seabed.

5. Computational results and discussion

Three case studies for some typical problems are presented. The first case provides confirmation
of the accuracy of the variational formulation. The finite element method (FEM) and the
shooting-optimization method (SOM) have been cross-checked for the validity of the cable model
and mathematical examinations. The latter two cases consider the static behavior of cable, using
the specified top tension or cable unstrained length to be the main type of analyses.

The cable data input parameters are as follows: Zy = 500 m; R = 300 m; uniform current ve-
locity in X -axis direction ¥ = 3.7 km/h; cable diameter D = 0.023 m; weight of cable in seawater
we, = 12.3 N/m; Cpn = 1.0; Cpr = 0.05; p,, = 1021 kg/m?, and E = 0.1628 x 107 kN/m?, and
v = 0. The specified unstrained arc-length is 550 m and the specified top tension is 25 kN.

Numerical results given in Tables 1 and 2 show the cable tension components corresponding to
the global directions at the bottom end and the cable strained length S, versus the variations in
values of 8y from 0° to 180°, for the case of specified top tension and cable unstrained length,
respectively. The calculated length of Sy, is equal to 3_0%, f: V1 +x3 + yf2dz, in which N, is the
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Table 1

Comparisons of cable tension components at the bottom end and cable strained length for the specified top tension
case, FEM: finite element method, SOM: shooting-optimization method

0y (deg) Cable tension components at the buggy end Strained length

T, N) T, (V) T, (N) S, (m)

FEM SOM FEM SOM FEM SOM FEM SOM
0 1304477 13044.82 0.00 0.00 13917.31 13917.26 587.18 587.18
30 11860.48 11860.42 517570 517596 14004.11 1400406 587.26 587.26
60 849560  8495.53 9168.76  9168.88 14379.29 14379.25 587.21 587.21
90 3421.33 3421.33 11057.45 1105749 1512285 15122.82 586.44 586.44
120 -2401.31 -2401.30 10051.88 10051.10 15986.69 15986.68 584.99 584.99
150 -7179.69 -7179.6% 5986.84  5986.84 16565.44 1656543 583.71 583.71
180 —9024.86 —9024.87 0.00 0.00 16735.33  16735.32 583.25 583.25

Table 2

Comparisons of cable tension components at the bottom end and cable strained length for the specified cable unstrained
arc-length case, FEM: finite element method, SOM: shooting-optimization method

8, (deg) Cable tension components at the buggy end Strained length

. (N) 7, (N 7. (N) S, (m)

FEM SOM FEM SOM FEM SOM FEM SOM
0 2364142  23641.38 0.00 0.00 31267.32 3126722 584.16 584.16
30 21078.43  21078.44 10398.89 10398.83 31397.11 31397.05 584.19 584.19
60 13875.21 13875.27 18226.10 18226,12 3179884 31798.88 584.18 584.18
90 3525.51 352550  21387.09 21387.02 3234499 3234486 584.00 584.00
120 -7370.06  -7370.05 1874721 18747.21 3275248 3275243 583.62 583.62
150 -15613.49 -15613.50 10871.71 10871.72 32895.07 32895.07 583.27 583.27
180 —18671.59 -—18671.58 0.00 0.00 32905.56  32905.52 583.14 583.14

number of elements used in FEM. This study used 20 elements in the calculation. It is seen that
both methods yield almost identical results. In spite of the fact that on convergence of SOM is
limited by an initial estimated condition, this method is efficient and robust, especially when the
initial estimate is close to the solution. The solution of FEM is based on the total number of
prescribed elements, whereas the solution of SOM is based on an adaptive step-size controlled by
an algorithm in the Runge-Kutta process. To gain further insights into the cable static behavior,
the following examples for various cable geometrical parameters are studied. For the sake of
convenience, the following dimensionless quantities are introduced as an extensibility index,
namely Ty /EA and w.S;/EA.

5.1. Specified top tension case

In this case, it was known that the maximum and minimum tensions occur at the cable top and
bottom ends respectively, and the tension distribution is a function of ocean depth. A preliminary
numerical investigation was carried out to demonstrate the effect of axial extensibility, using the
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forgoing input data and FEM. The parameter of Ty;/E4, fixed in value of top tension and cable
diameter, is assumed to be equal to 1.0, 0.1, 0.01, 0.001 and 0.0001. The value of elastic modulus
was varied considerably so that the extensibility effect can be clearly seen, and a value of pre-
scribed angle 8y was also varied so that the significance of omnidirectional current actions is
involved by maintaining the uniform current profile in the X-axis direction.

Fig. 4a— illustrate the distribution of cable tension components corresponding to the global
directions at the bottom end in each value of Ty /EA under the variations of 8, from 0° to 180°. It
can be seen that the changes in a value of 6, and cable extensibility have effect on the tension in

each direction as well as the resultant forces, namely T, = /T2 + T? + T2, as shown numerically

in Table 3. The tension T;, decreases with the decreasing values of 7y /E4 and with the increasing
values of 6,. This tension is the important parameter in designing a cable and is capable of
prediction to the cable sag condition [1,9].

15 Y T T T T 12 T T T T
[ — Ty/EA= 10 R
. Ty 7EA = 01 10} /'/ \.\. .
10f- \\_ == Ty 7EA = 0.0001 ] ./' AN
A ' A\
N 8 / \ 7
~ S 1 = i/ N
% 5 6k /_/ \\ j
* >,
SN 4 & 4 X
a- /4 -
N — T lEA =10
st A - o0 45 L Ty /A = 0. 4
\_‘\ — — Ty {EA = 0.0001
St
[] ] L} 1 1 1 0 Il 1 1 i |
[} 30 60 %0 120 150 180 0 30 60 90 120 150 180
{a) 8, (deg.)

______ — Ty /EA = 10
- Ty /EA= 01
—— Ty /EA = 00001
lz i 1 1 J 1
0 30 60 90 120 150 180
(c) 8, (deg.)

Fig. 4. Variation in tension components at the bottom end in each value of Ty; /EA, for a different value of angle 8y, for
the specified top tension case: (a) tension in X-axis direction, (b) tension in Y-axis direction and (¢) tension in Z-axis
direction.
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Calculated values of the resultant forces at the bottom end and cable unstrained length in each value of Ty /EA, for the
specified top tension case

B Tu/EA=1.0 Tu/EA = 0.1 Ty/EA = 0.01 Ty /EA = 0.001 Tu/EA = 0.0001
Mg oy Sm KM SmM LA Sm LN Sm KN S m
0 21855.66 301.77 19382.31 539.06 18934.62 582.13 18 886.46 586.77 18881.61 587.23
30 21848.02 302.06 19374.84 539.21 18927.20 582.23 18 879.05 586.86 18874.20 587.33
60 21832.78 302.54 19359.85 539.29 18912.32 582.19 183864.18 586.81 18859.32 587.27
90 21824.19 302.50 19351.14 538.64 18903.60 581.40 18 855.46 586.00 18 850.61 586.47
120 21815.76 302.27 1934298 53741 18 895.53 579.94 18 847.40 584.51 18 842.55 584.97
150 21800.52 302.25 19328.14 536.38 18 880.84 578.65 18832.73 583.20 18827.88 583.66
180 21792.84 302.30 19320.62 536.03 18873.38 578.19 18825.27 582.73 18 820.42 583.18
In each value of Ty/EA, the «calculated unstrained length of S, equal to

Nl foh V1 +x¢ +372/(1 + &) dz is not quite different under the variations of 6. The shortest
length can be found when cable having high extensible cable (7 /EA = 1.0), however, the length is
increased under high elongation and almost equal to the lower one at the equilibrium state, as
shown in Fig. 5. The effect of extensibility on the cable unstrained and strained length can be
clearly seen when Ty /EA is greater than 0.1. The shortest strained length may be approximated
when 6, is equal to 180°,

The next investigation was to consider the cable orientation under the influence of current time-
independent forces, in terms of magnitude and direction. Three values of velocity were considered,
V is taken to have value of 0, 2.0, 3.7 km/h, and 73 /EA was taken to be 0.1. Figs. 6 and 7 present
the distributions of vertical angle ¢ and horizontal angle § against the ocean depth under the
variations of 6, for any nodal point along the cable, where ¢ is measured from XY plane and € is

588 ¥ L !
587 & = Odeg. :
,_..‘._.._.._._._.._t‘.’;-_g.d;; _______
586r
-
0, = 120des.
%sss-———*——-—"————?-———ﬁ—-ﬁ
A
584 g, = 150 deg. PR
ss3b g - isoes 1
582 1 X I
0601 001 01 1 1
Ty/EA

Fig. 5. Variation in total cable strained length in each value of angle 8, for a different value of Ty /EA4, for the specified
top tension case.
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Fig. 6. Distribution of vertical angle ¢ at any point along a cable against ocean depth, for a different value of angle 6,
for the specified top tension case and Ty/EA =0.1: (a) ¥ = 2.0 kim/h and (b) ¥ = 3.7 km/h.
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Fig. 7. Distribution of horizontal angle 8 at any point along a cable against ocean depth, for a different value of angle
f, for the specified top tension case and Ti/E4 = 0.1: (@) ¥ = 2.0 km/h and (b) ¥ = 3.7 km/h (—3—: no current).

measured from the 7 direction. These illustrations are useful for evaluating the cable equilibrium
profile in space with the different action of current forces instead of cable sag prediction.

As shown in Fig. 6a for ¥ = 2.0 km/h, the distribution of ¢ is varied along the depth, and the
values of ¢ at the top and bottom ends are respectively greater and less than the value of ¢,. For
6y = 0°, it may be speculated that cable is more slack than the others since values of ¢ are
maximum and minimum at the top and bottom ends, respectively. When 8, = 90°, the plot is
identical to the case of no current.

As shown in Fig. 6b, when the magnitude of ¥ is increased to 3.7 km/h, the plots for &; equal to
120°, 150° and 180° are different from the former case. For 8, = 120°, the value of ¢ in the range
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of 250-500 m depth aligns closely to the angle ¢,. Hence, the sag of cable is apparently small for
this situation. For 8y = 150° and 180°, the values of ¢ at the top and bottom ends are respectively
less and greater than ¢,. Therefore, the profiles are formed in the contrary direction with respect
to a normal shape of the other prescribed angles 6,. This feature may be explained as current
forces in the lateral direction having a more significant influence on the cable configuration more
than the cable effective self-weight. This effect becomes significance especially as the magnitude of
V increases.

20-0 L L} 1 L L
—— V= 20km/r.
198 ~— e P=37kmbr |
~ —— F=45kmih.

188 L -l

0 30 60 90 120 150 180
8, (deg.)

Fig. 8. Variation in the resultant forces at the bottom end in each current magnitude, for a different value of angle 8,
for the specified top tension case and T /EA = 0.1,

V=45 kehr.
0 L ———— —— S {
V=3Tkmhr,
L e SR T__“_"_‘_'f--..______
2 T L et
.a 580
550
E Va 4.5 ke,
''''''''''' e 5
sapp— — — — B¥EE T~ ]
w‘;@ .............. e s
530 - L L L .
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Fig. 9. Variation of cable strained and unstrained lengths in each current magnitude, for a different value of angle 8,
for the specified top tension case and Ty /EA = 0.1.
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Fig. 7a presents how the current forces displace the cable laterally, which is more noticeable
with the higher magnitude of the current velocity, as compared with Fig. 7b. The vertical lines in
the plots are used to represent for the absence of currents in each specified value of f;. It may be
seen that cable configuration entirely lies in the vertical plane because there is no force to disturb
the cable from the plane, as is well-known for the case of a submerged cable. For 6, = 0° and 180°
(not shown herein), the current direction is parallel to the cable configuration line, therefore the
force component in the bi-normal direction (g) is not generated. This makes a cable lies in the
vertical plane and only in the distribution of vertical angle has been presented in Fig. 6.

Fig. 8 shows the influence of changes in the magnitude of current velocity on the resultant
forces at the bottom end in each value of 6. It can be seen that, for the ranges of 0° < 8, < 90°
and 90° < 8, < 180°, respectively, tension T; increases and decreases with the increasing magni-

80— T T T T 90 T T T T T
~ — w5, /A = 0 — WS, /EA = 0.1
L ~ w5, /E4 = 0.0l ’s WS /EA = 001
—-— —— w,S,/EA = 0.001 r . —— w,5,/EA = 0.001 |
40 o~ \ — w,5,/EA = 0.0001 g : s =
\\ . w, 5, / \\— w, 5, /EA 0.0001
~ )\ |
\\\_
A
............................ N\
A
80! 1 1 4 L o ] = 1 1 i L ! A
0 30 60 90 12¢ 150 180 0 30 &0 90 120 150 180
(a) g, (deg.) (b) 8, (deg.)
140 T T T T T
120 e —————— ————— -
100 1
% L
= —— w5, /Ed = 0
& g0l o w8 EA = 001 -
—— w5, /Ed = 0001
ol — - W5 /Ed = 0.000]
20 .
1] L L 1 1 1
0 30 60 90 120 150 180
(©) 6, (deg.)

Fig. 10. Variation in tension components at the bottom end in each value of w,S; /EA4, for a different value of angle 6,,
for the specified cable unstrained arc-length case: (a) tension in X-axis direction, (b) tension in ¥-axis direction and
(c) tension in Z-axis direction,
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tude of current velocity. Moreover, the cable strained and unstrained lengths increase with the
increasing magnitude of current velocity, as presented in Fig. 9.

5.2, Specified unstrained arc-length case

Although the numerical algorithm mentioned above is efficient for solving the cable problem
with the case of specified top tenston, this algorithm can be treated using the concept of specified
unstrained length. Firstly, the initial trial value of top tension is assigned, and then the approx-
imated unstrained length is calculated. If the computed length is not equal to the prescribed one,
then a new trial value of tension will be assumed and the procedure is repeated until the allowable
error is achieved.

Table 4
Calculated values of the resultant forces at the bottom and top ends in each value of w,S; /EA, for the specified cable
unstrained arc-length case

Oo (deg)  wiS./EA=0.1 weSe/EA — 0.01 oS /EA = 0.001 W5 /EA — 0.0001
T, (N) Ty (N) T, (N) Ta (N) T (N) Ty (N) L (N) Ta (N)
0 21403.77 25337.52 39897.99 45 390.63 99 605.96 105368.65 142913.56 148 750.00
30 21374.50 2537205 39881.10 45447.08 99 609.28 105153.04 142838.37 148750.00
60 21291.62 25418.22 31977490 4548828 9949251 105479.74 14268798 148750.00
90 21172.94 25374.98 36483.72 45275.88 99027.31 105090.33 140737.33 146875.00
120 2101482 2529222 3898738 4485840 98182438 104321.29 13730234 143515.63
150 20837.21 25248.79 38491.45 44 512.63 97 375.51 103664.55 133401.68 139765.63
180 20762.51 2524096 3839826 4439438 97068.48 103432.62 131920.12 138359.38
586 — T
— 6= Odeg

585

583

582 : o
0001 .00 .0t A

w,S, / E4

Fig. 11. Variation in total cable strained length in each value of angle 6, for a different value of w.S;/EA, for the
specified cable unstrained arc-length case.
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In accordance with the representation of specified top tension case, the following results are
shown to demonstrate the effect of extensibility and the omnidirectionality of current forces. By
assuming a parameter of w,S./E4 = 0.1, 0.01, 0.001, 0.0001, the value of w./4 is kept constant,
whereas the specified cable unstrained length §; is equal to 400, 550, 575 and 582 m, and the
corresponding cable elastic modulus E is equal to 0.118 x 10, 0.163x 107, 0.170x 108, 0.172x 10?
kN/m?, respectively. Once again, Fig. 10a—c illustrate the distributions of cable tension compo-
nents at the bottom end in each value of w.S; /E4 and under the variations of 8y from 0° to 180°. It
can be clearly seen that the changes in a value of 8, and cable extensibility have effects on the
tension in each direction and also on the resulting force T;,, which decreases consecutively from

500, T T T 50 i
—— = Odeg — G = 0dy i
........ 8, = g e Gy = 0deg. “
400F ——. g, - cDdeg ] 40 —— G~ Ghdeg ‘l\ i
—_ — -G Wdeg ~ — By = Wde i
E' — = 120deg g — - G = 120deg. L}
= 300 — - g, = 150deg A ~ — -~ = 150deg. b
% — - 6, = 180 deg. '-og — — ) =180 deg.
LM —=— sngle of chord inclination tne 1T} —=— angle of chord inclination line
o bo = 103 rad. b~ by = 103nRd |
200! - 20
o —¢— o turrent g —*— 1o current
A % i
!
100/ - 100/ \ -
W
= 2.0 kmihs, 7 W Ve 3.7 km/be
0 1 s 4 0 N N I ! 1\ ) —
R .95 1.00 1.05 1.10 1.15 .85 90 95 1.00 1.05 1.10 1.15 1.20
(@) ¢ (rad) (b) ¢ (rad.)

Fig. 12. Distribution of vertical angle ¢ at any point along a cable against ocean depth, for a different value of angle 6,
for the specified cable unstrained arc-length case and w,S;/E4 = 0.01: (a) ¥ = 2.0 ki/h and (b) ¥ = 3.7 km/h.

5 ¥ =2.0 kewhrf ' ; ' ‘ ' , " SOOV-J.Htmfhr p ‘,’ ' f T [ o
3 | ; J o f , [
400[. } | 1 40 l' { I N
N | p l _ ! ! l j
E 3001 g I I
27T a ¢ g 2 - $ ef pf 2 / iy
§ SN N U £ S R R I I
S oo ® & S - & €| ei & &
3% 3 Lo b
) I f / / !
100} f : [ 1 1 : / : [ y
7o | oo
0 ] i 1 1 0 | |r Il 1]‘
0.0 5 1.0 L5 10 25 30 0.0 a3 1.0 1.5 20 25 30
(a) & (rad.) {b) & (rad.)

Fig. 13. Distribution of horizontal angle # at any point along a cable against ocean depth, for a different value of angle
6y, for the specified cable unstrained arc-length case and w.S;/E4 = 0.01: (a) ¥ = 2.0 km/h and (b) ¥ = 3.7 km/h
(—0O—: no current).

[
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0y = 0° to 180°, as shown in Table 4. In each value of w.S; /EA, the maximum required top tension
Ty can be found when 6, = 60°, approximately.

Fig. 11 shows the computed cable strained length for each angle 6. It is worth noticing that
these strained lengths are comparable (in the range of 583-586 m), even though the specified
unstrained cable lengths are quite different (400-582 m) for each value of w,S;/EA. This can be
explained that the highly extensible (small £) cable with shorter length can be stretched consid-
erably more than that of the low extensible (large E) cable with longer length. Figs. 12 and 13 are

L}

48 — : . . _
V=45 kv,
T L T T,
Va2 0kmbe, e .‘_'_‘_f'_"n._____
H‘“' ....... .
5 42
«@ -
= 40 . _¥=3T7kmiu . )
LAz 3Tkmhe _
S raamkey ST
______ —
gl "
36 J ‘ , B '
0 30 60 90 120 150 180
6, (deg)

Fig. 14. Variation in the resultant forces at the top and bottom ends in each current magnitude, for a different value of
angle 6, for the specified cable unstrained arc-length case and w.S,/EA = 0.01,

586 - T
— F=2.0kmhr.
------ ¥ =17 kehr.
5851 == Fw4.5 km/r.

583t
582 " — : 4
0 30 60 %0 120 150 180
6, (deg.)

Fig. 15. Variation of cable strained length in each current magnitude, for a different value of angle 6, for the specified
cable unstrained arc-length case and w,.S;/EA = 0.01.
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plotted to show the distribution of ¢ and 6 for w.S;/E4 = 0.01, under the variation in magnitude
and direction of current velocity. [t can be scen that the results in these figures are in good
agreement with those in the aforementioned case. Fig. 14 shows the effect of current on the re-
sultant forces at the top and bottom ends under the variation in value of 8. The results show that
tensions Ty and 7 increase with the increasing magnitude of current velocity as well as the
strained length, as shown in Fig. 15.

6. Conclusions

The variational model formulation and computational results for analyzing the three-dimen-
sional steady-state behavior of an extensible marine cable is presented. Two mathematical sim-
ulations were used to solve and evaluate the problems, namely, the finite element approach and
the shooting-optimization procedure, which gave almost identical results. The cable model and
algorithm technique proposed in this study is efficient and robust when the top tension is specified.
Numerical investigations were carried out for the specified top tension case and specified cable
unstrained arc-length case. A number of parametric studies have been presented to evaluate cable
profile, the tensile force development and the cable length estimation. The combined effects of
axial extensibility and the current forces, both in terms of magnitude and directions, have been
shown to be significant on the static behavior of extensible marine cable.
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This paper presents exact closed-formed sclutions using elliptic integrals for large deflection analysis of elastica of a beam
with variable arc-length subjected to an inclined follower force. The beam is hinged at end but slides freely over the support
at the other end. In the undeformed state, the inclined follower force applied at any distance from the hinged end making an
angle “y with respect to vertical axis while in the deformed state its direction remains at an angle v from the normal to the beam
axis. The set of nonlinear equations is obtained from the boundary conditions, and solved iteratively for the solutions. The
effect of the direction and the position of the follower force on the beam bending behaviour is demonstrated. Comparisons of
equilibrium configurations of the beam under non-follower force and follower force are also given,

1 Introduction

Research studies on large deflection of elastica of beam with variable arc-length have dealt mostly with the conservative force
(see, for example in Chucheepsakul and Huang [1], Chucheepsakul et al. [2], and Wang et al. [3]). In the case of non-conservative
force, most of the research works in this field have dealt with the problem of cantilever beam (Hartono [4], Rao and Rao {5],
Shwartsman [6], Rao et al. [7]). There are a few studies dealt with the problem of variable-arc-length beam subjected to a
follower (non-conservative) force (Wang et al. [8], Hartono [9], Chucheepsakul and Monprapaussorn [10]). As mentioned
above, the problem of variable-arc-length beam under a follower force acting within the span length of beam has not yet been
studied elsewhere before. Therefore, the purpose of this paper is to continually investigate and present the new results of this
beam problem under an inclined follower force.

In the present work, the follower force is attached to the beam with initial inclined angle + with respect to the vertical
line of the undeformed configuration of the beam and away from the hinged support at distance L. The force maintains the
inclined angle - when the beam deforms. The governing nonlinear differential equation together with the boundary conditions
is solved analytically using elliptic integrals which give the closed-form solutions, and the results are exact and could serve as
a benchmark for other numerical investigations.

2 Formulation of the problem

From Fig. 1a, consider a simple flexible elastic beam of constant flexural rigidity £7 and span length L. It is hinged at end A
and rested on the frictionless support at end B. This beam is subjected to a follower force, which is applied at a distance L
away from end A and it inclines at an angle - from the vertical undeformed configuration of the beam.

A deformed configuration of the simple beam is shown in Fig. 1b. The slope of the deflected beam atend A and B is @4 and
g, respectively. The angle O is the slope of deflected beam at the position of the follower force. In a deformed configuration
of the beam, the original position (8L, 0} of the follower force is changed into the new position (x*, y*), where x* and y* are
the length measured from end A in horizontal and vertical directions respectively. The follower force P maintains the inclined
angle v when the beamn deforms, while the arc-length AC still equals to SL. Sign conventions are also demonstrated in Fig. 1b.
Fig. 1c illustrates the free-body diagram of part of the beam from support A on the left of force P.

Referring to the free body diagram of the deflected beam as shown in Fig. Ic, the equations of bending moment A can be
written as:

Casel:z < z*

tan @
M:P{ (sin((-)ch'y)— anL B(m*cos(ec+'y)+y*sin(®c +'y)))y

+ (cos (Oc +7) — %(ﬂ;‘ cos (B¢ +7) +y*sin (B¢ + 7))) :c}, (1a)

* Corresponding author, e-mail: somchai.chu@kmutl.ac.th

(© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim  0044-2267/03/8311-0001 $ 17.50+.504)
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Fig. 1 (a) Undeformed configuration of elastica; (b) deformed configuration and positive direction of elastica;
{c) free body of elastica segment.

ar Case Ill:ix > z*

]
M= P{ (sin (Oc+7v) - taer = (z*cos (B¢ +7) + ¥ sin{O¢ + 7))) Y

1
+ (cos (Oc+v) — 7 (z* cos (B¢ + ) +y"sin (B¢ + 7))) z

~sin (Oc + ) (v — ") ~ cos (Bc +) (e~ ") . (1)
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From the elastica theory and geometric relations of the beam in deformed configuration, the constitutive relation and the
geometric relations are given by

ag M dz dy
= T _cosf, -2 —sing, b,
% Bl Is cos s sin {2a,b,c)
where z and y are the Cartesian coordinates measured from end A, @ is the slope of the centroidal axis of the beam with respect
to the horizontal axis, and s is the arc-length of the deformed shape of the beam.
The following non-dimensional quantities are introduced for generality:
— oz ¥y _ s - PL?
CE=L, =t =2 Pat Jabedef
rEVY T ST El (3abcde.f)
In view of eqs. (1) and (2a), and upon differentiating eq. (2a) with respect to arc-length s, one obtains the following
non-dimensional equations:

Case: 8¢ < @ < 8,

T

-2 po
‘“L’ y_

2
% = —P[{sin (fc + ) — §tanfp)sin é + (cos (fc + ) — §)sind], {4a)
Case Il: g < 8 < 6¢
d?6 - ,
e —P[—(5tanfp)sind — dcosd, (4b)

where the symbol & in egs. (4a} and (4b) is defined by the following equation:
§=x"cos{fc +v)+y*sin(fc+7). (5)

Multiplying eqgs. (4a) and (4b) by df/ds and integrating with respect to 8, one obtains the following first-order differential
equations:

gg :i\/j?}s{(fcos(ﬂc+’7)+5)sin9+(sin(6c+7)—6tan93)c036+01}, fc <0 < ba, (6a)
dg ———
- — 21/2P {dsin0 — Stanfpcos+ C}, 05 < 0 < 6. (6b)

Geometric relations eqgs. (2a,b) are rewritten as

.
E_E = cos G, % = sin 4. {7a,b}
Eqs. (6) and (7) are the set of differential equations for solving the problem. The arbitrary constants C'; and Cy in egs. (6a) and
(6b) are evaluated by the following boundary conditions:

48 =0 for Cj, d

=0 for (5 8a,b
ds 9=8, ds #=8y o ? ( ? )

Applying these boundary conditions (egs. (8a) and (8b)), the arbitrary constants C; and C; are evaluated and obtained as

Sin(@A - 03)

Cp=sin(fp ~0c—v) -8 o5 0n

, Ca=0. (9a,b)
In view of eqgs. (6a) and (6b), the minus sign (—) is applied into these equations because the angle & decreases as the arc-length
& increases.

Substitution of ) and C5 into eqs. (6a) and (6b) vields the curvature expression of the beam as follows:

1
%:—X(ﬁlﬁLugsinG-i-ugcosﬁ), Oc <0 <B4, (10a)
j—i:%( ,u,4sin9+,u56059), 0y < 0 < 6, (10b)
where
sin(fa — Og)

g1 =sin{fa —bc—7v) -6 , po=—cos(fc+v)+9, (11a,b)

cos By
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1
ps =sin{fc+y) ~dtandy, ps=96, ps= dtanfp, A= —.

2

"l

(Ile,de,f§

s Considering curvature expressions (eqs. (10a) and (10b) and two geometric relations (egs. (7a) and (7b)), one can express
so (8, dT, and 4y as functions of § and these expressions can be integrated using the elliptic integral technique. The closed-form

s solutions in the terms of elliptic integrals of the first kind F'(¢, k) and the second kind F(¢, k) [10] are obtained.

o Casel: 8c <8<6,

m
= — — . >
B -] Ad@ nl{F(gsk) F(¢9k)}) 9_‘101u
S:/ sin @ + ps cos @ ™
o Vi + pasind+ g *—‘771{5'(@36)*}?(5%)}, f < 1,

’=nz{(F(¢.k}“F(g’k))

_— b )\c?s()dﬂ 3

g, Vi1 + pasin® + pzcosf =n2{2(E(¢,k)—E(%,k))
| -(Fen-r(RR) - 2] o<,

(o0 -r(34)
e e 00 ﬁE(E(qb,k)—E(g—,k))+w—f§cos(¢)}, 6> ¢,

v g, Vi1 +uzsin9+uacos(9< =1;3{2(E(¢,k)—E(g,k)
_(F(¢,k)—F(g,k))+2”‘:%03(4))}, 0 < o,

s2  where

4= s 1\] (\/u%-i-,ug)*pgsin@m,ugcos@
= sin ,
1+ Vs + g

bt Vi
AV RS

1 H2
o1 =sin ! | w4 |,
(v@+ﬁ)
VZA V23 V2

nl = T TH74 T]z = _-..’ 1

(13 4 43 (13 + 13

es Casell: g <0 <8¢

~ry

3:,@wa Ad6 ‘ﬁ—m{F%@-l—z)F(%%)}, 6 > s,

ind + [
b V148D E 1 15 cos =ﬁ—n4{

(12)

(13}

(14)

(13)

(16)

{17

(18a,b,c}

(19)
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‘=?f—n{2(5(¢ i)—5(¢ L))
5 73 7
1 1
- | F — | = _—
(#(055) -7 (%))
\/_M
=3 ¢ X cos Bdf (COS‘?b”‘COSGf’C)} 8 > a2, N
= bc Viasing +pscos® | { - 1 F( 1 ) (20)
- -m{( (“b’ﬁ)‘ o 75)
1 1
-2 F — | - -
(o3 o)
+@(cos¢—-cos¢c)}, 8 < g,
" Hs
7afle(os) o )
Yy s ,\/2— C,‘/§
1 1
— | F — ) - el
(7 (o) -7 (%))
o —@?(cowcosqﬁc)}, 6 > s,
ﬁ=—*‘f Acos Bdd a .
y b ViasmO 1 psoosd | {( (¢1) (QS )) (
=¥ Ti6 ,f Cy T
1 1
-2 FE Eaiiy [ —
(5(s.75) ~# (% 5))
L “—@(COS¢COS¢C)}, 8 < 99,
Ha
s where
J\;‘ .‘1'4+/J5) pasinf — u5cosf9 )
—Slﬂ
Vg T H;
— Ha
wy=sin! | —2—_ |, 23)
i (\/u§+u§)
+ sinfc — ps cos b
$e = sin~ J v (F + u2) — pasinbe — ps cosfc o
VP'4+AU5
— fe —Acosfdf
* — )
! 6, V1 + pgsnd + ugcosd’ (25)
— " —Asin 846
"= 26
Y 8, Vi + pzsinf + pugcos@’ (26)
2X pY
e V2 - n5:m‘f_ﬂ‘53ﬁ, nzqfiﬁﬂm P
(1 + f) (13 + ui) (13 + p)

& The integral terms in £qs. (25) and (26) can be transformed into elliptic integral forms by setting ¢ = ¢¢ in eqs. {13) and

s (14) and replacing 7 by z* and § by y*.

e Assigning a value of load P into the foregoing elliptic integral formulatlons, there are five unknowns (64, 85, fc, z*, and

s ) to be evaluated for the solutions in which five

equations are needed.
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a
The first equation is obtained by setting = z* and # = ¢ in eq. (13). This results in
— B A cos 0df
= x* + =
h 8, Vi1 + posing + uzcosf (28)
The second equation is obtained by setting T = 1 and § = 3 in eq. (20).
fom b Acos 8dg + On Acos 8df 1=0 29
’ 8. VH1t+ pzsind + pacosd ge Viasing + pycosd e 29)
The third equation is obtained by using the continuity of the moment at 6 = 8¢, which gives
. sin (fa — Og) i
= fp—Oc —v) - ————~ = 0.
fa=sin(fs — 0 — ) p—y d+siny=10 &10)]
The fourth equation is obtained by setting # = g and ¥ = O ineq. (21).
e Asin 0d0 P Asin 8d6
fa= - + - = 3
8, Vi T posing + uzcosd oc Viasind+ pscosd
The last equation is obtained by using the condition that the arc-length AC is always equal to 5L:
e Adf
fo=0+ (32

- =0
an V1 + p2sind + pscosf

The above equations are the system of nonlinear equations and the Newton-Raphson procedure has been used to determine
the solutions #4,8g, fc, z*, and y* for a given value of a load P. Difficulties may arise when load P is used as the control
variable. The value of the critical load Py is necessary to determine before assigning load P. If load P > Py, is assigned,
then the iterative procedure does not converge. Therefore, an alternative procedure is recommended. In this procedure, angle
By is chosen to be the control variable instead of load P. The Newton-Raphson iterative scheme is utilized in the procedure
of solving the nonlinear equations (eqs. (28)—(32). The first step is to assign a value of angle 0y (0 < |6g| < 325) and then to
estimate the initial value of z%,y*, 8,4, fic, and P. After that, substitute these parameters into eqs. (28)~(32) and examine values
of f;, where i = 1,...,5, in eqgs. (28)—(32). If | f;| < 1074, then the solutions of the nonlinear equations are correct. By
varying angle g, the curves of P versus 8, and fg can be created.

3 Results and comments

Figs. 2a—2c show the variations of load P with respect to the end slopes {04 and 6g) for v = 1.047,0 and —1.047 and
(3 = 0.25,0.5 and 0.75. Load P and the end rotation (8, or |fp|) are initially increasing from zero. When P reaches a critical
value Py, the maximum load that the beam can resist, an infinitesimal increase in P will result in continuous beam motion,
Beyond this critical load, as (8, or |#g|) increases, P decreases and becomes zero when 84 = |fg| = 7. At this point, the
beam shows symmetrical configuration about mid-span of the beam and the total arc-length L is 2.1884 [2,8] for every value
of -y and (3. Observing the curves in Figs. 2a, 2b, and 2c it can be seen that, for a given value of load P and angle -, there are
two values of angle 8 and 8y representing two states of the equilibrium configurations. The configuration with smaller 1fg|
{or 84) is stable state while larger |#g| (or 04) is unstable state. It is worth noticing that Py tends to decrease as 3 increases
for v > 0, but Pcp increases as 3 increases for « is negative. This can be explained that force P changes from pushing to
pulling with respect to the support A. Thus, the left portion of the beamn is in tension state rather than in compression state. The
deformed shapes of beams corresponding 10 v = —1.047 and 3 = 0.75 is shown in Fig. 3.

The relationship between critical load Pegr (using Dichotomous search algorithm [12]) and 3 is shown in Table 1, in which
the value of position 3 is varied between (.1 and 0.9, and angle v = 1.5707, 1.047,0.5235,0, —0.5235, and —1.047. Table 1
shows that the solution for Por does not exist for 3 = 0.9 and v = —1.047. The reason for this is that the beam changes
from compression state to tension state. It also shows that P decreases with increasing 3 and then increases after a certain
value of 3 for all values -+ except v = «/2. When v = n/2 and 3 = 0.9 the beam behaviour is almost identical to a classical
pin-ended column under axial compressive force and the corresponding P is close to 72 or the well-known Euler buckling
load. The results of Py versus /3 as shown in Table 1 are plotted in Figs. 4a and 4b.

The paths of the follower force {z* and y*) for six values of v (1.5707, 1.047, 0.5235, 0, -0.5235, -1.047) are shown in
Fig. 5 for 8 = 0.25,0.5, and 0.75. For small 3 the paths almost coincide with each other and they become more separated for
larger 3. Table 2 shows comparison results of the follower force and non-follower force (2] of equal magnitude for v = 0 and
53 = 0.5. The results are close to each other when the beams are in stable state, but they are distinct in unstable state. Some of
these results are demonstrated in Fig. 6 which shows comparisons of the deformed shapes of beams for P = 6.3114 (stable
equilibrium) and for P = 4.6525 (unstable equilibrium).
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Fig. 3 Deformed shapes of the beam for 8 = 0.75 and v = —1.047.
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Fig.4 Relationship between Por and g for (2) v = 1.047,0.5235, 0, and 1.5707; (b) v = —0.5235, —1.047.
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Table 1 Relationship between Per and 3.
‘ﬁCR
¥ = 1.5707 ~v=1.047 ~y=05235 vy=0 «=-0.5235 v =-1.047
0.1 266.8828 42.4977 26.8546 24.3682 29.5311 56.5664
0.2 73.2403 19.4413 13.3125 12.6679 16.1726 34.8599
0.3 36.0234 12.3296 9.0532 9.0258 12.1852 30.0855
0.4 22.6555 9.1427 7.1345 74516 10.6944 30.7485
0.5 16.4151 7.5066 6.1914 6.7850 10.4393 35.3868
0.6 13.1021 6.6685 5.8043 6.7047 11.2213 45.3139
0.7 11.2659 6.3571 5.8582 7.2067 13.4938 66.3166
0.8 10.3047 6.5267 6.4433 8.6471 19.3419 122.3383
0.9 3.0192 7.4364 8.0959 12.7527 79.3274 NA
0.00
0.0
2
¥ /L
4 -
8 -
N
B
Fig. 5 Paths of the follower force at 3 = 0.25,0.5, and 0.75.
Table 2 Comparison of the results between follower and non-follower force [1] for v = (¢ and 3 = 0.5,
GA 9B ?Max —E
P Follower Non-follower  Follower Non-follower  Follower Non-follower  Follower Non-follower
force force [2] force force [2] force force [2] force force [2]
2.7084 0.1750 0.1745 —0.1740 —0.1745 0.0584 0.0584 1.0082 1.0081
49358 0.3523 0.3491 —(.3449 —0.3491 0.1182 0.1184 1.0332 1.0332
6.3114 0.5287 0.5236 —(.5051 —0.5236 0.1789 0.1816 1.0749 1.0771
6.6571 0.6177 0.6891 —0.5815 —0.6891 0.2102 0.2503 1.1026 1.1431
6.0206 (0.9887 0.8727 -0.8694 —0.8727 0.3491 0.3270 1.2704 1.2369
4.6525 1.2044 1.0472 —-1.0242 —1.0472 0.4428 0.4158 1.4187 1.3676
2.9334 1.4148 1.2217 —1.1911 —-1.2217 0.5601 0.5225 1.6328 1.5497
0.6565 1.5812 1.3963 —1.4660 —1.3963 0.7659 (.6565 2.0458 1.8084
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P =0
Undeformed Position
x/L
0.00 .25 . .
0.0 75 1.00

1A
2 A

Stable States

YL _
P=4.0525_
3 A
4 4
Nan-follower force[2]
Unstable States Follower force

5 -

Fig. 6 Deformed shapes of beam subject to follower force (= 0) and non-follower vertical force at mid-span.

4 Conclusion

Exact-closed form solutions using elliptic integrals are obtained for elastica of the beam with variable arc-length subjected
to an inclined follower force. The beam exhibits two equilibrium configurations when inclined angle (-y) is positive or small
negative value for all values of location of applied force (&), but it has only one equilibrium configuration for large negative
value of v and large value of 3. Comparing the results with that of the beam subject to non-follower (vertical) force, they
deviate when both beams are in unstable equilibrium configurations,
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Abstract. The nonlinear characteristics in the large amplitude three-dimensional free vibrations of inclined sagged
clastic cables are investigated. A model formulation which is not limited to cables baving simall sag-to-span ratios
and takes into account the axial deformation effect is considered. Based on a multi-degree-of-freedom cable model,
a finite difference discretization is employed within a numerical solution of the governing equations of three-
dimensional coupled motion. Various numerical examples of arbitrarily inclined sagged cables with initial out-of-
plane or in-plane motions are carried out for the case of a specified end tension. The major findings consist of
highlighting the extent of two-and three-dimensional nonlinear couplings, the occurrence of nonlinear dynamic
tensions, and the meaningfulness of modal transition phenomena ensuing from the activation of various intermal
resonance conditions. The influence of cable inclination on the nonlinear dynamic behavior is also evaluated.
Comprehensive discussion and comparison of large amplitude free vibrations of horizontal and inclined sagged
cables are presented.

Keywords: Inclined cable, multi-degree-of-freedom model, large amplitude three-dimensional free vibration,
internal resonance, modal transition, dynamic tension.

1. Background and Motivation

Problems related to the vibrations of cable structures are encountered in a wide variety of
engineering applications [1]. Amongst them, large amplitude nonlinear vibrations are of great
theoretical and practical interest. Indeed, according to linear theory [2, 3], the natural frequen-
cies and mode shapes are independent of vibration amplitude, but if the amplitudes become
large enough to introduce significant nonlinear behaviors, this does not hold any more, and
cable nonlinear dynarmics have to be analyzed.

Most research studies in the field have been devoted to a suspended cable with fixed sup-
ports at the same level. Nonlinear free and forced vibrations have been widely investigated
both theoretically [4-16] and experimentally [17, 18]. The importance of internal resonance
conditions occurring in multi-degree-of-freedom (MDOF) systems when the natural frequen-
cies are commensurable with each other has been highlighted. Internal resonances cause
strong modal coupling effects and result in multi-mode and multi-frequency responses, In
addition, they may cause mode transition phenomena where the cable vibrates, e.g. in a purely
free planar dynamics, with two companion modes which interact and combine with each other
in a hybrid mode during time evolution [16].

* Author for correspondence. E-mail: giuseppe.rega@uniroma.it.
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Nevertheless, in several practical applications, cable structures can span over great dis-
tances, and inclined sagged cables are encountered. When such a cable is subjected to overalt
environmental !oading, such as wind force or hydrodynamic drag excitations, it may ex-
perience inherently three-dimensional (3-D) vibrations. Therefore, a 3-D nonlinear dynamic
analysis of inclined sagged cables is needed to determine the main features of the relevant
response.

Linear vibrations of inclined cables [3, 19] exhibit interesting dynamic features, such
as frequency avoidance (or veering) and the associated hybrid mode shapes [3, 19], which
characterize them (as well as other asymmetric structural systems) with respect to horizontal
symmetric cables. As regards nonlinear vibrations, very little work has appeared regarding
both theoretical formulation and investigation of structural behavior. Cai and Chen [20] in-
vestigated parametric and external resonances in an inclined elastic cable for application to a
stack/wire system. Warnitchai et al. [21] developed a nonlincar dynamic model of an inclined
cable in the framework of a cable-structure system. Zhao et al. [22] made a perturbation
analysis of the coupling between in-plane and forced out-of-plane vibrations in a two-degree-
of-freedom model of inclined cable under 1:1 intemal resonance. In all cases, very small
values of cable sag-to-span ratios were considered. Takahashi and Konishi (23] examined non-
linear free vibrations of inclined sagged cables and briefly discussed geometrically nonlinear
effects arising from system quadratic and cubic nonlinearities, but they did not address such
important effects as cable inclination, cable extensibility, and internal resonances. Their effects
on the system dynamic behavior will be discussed in this study. Indeed, due to the asymmetry
of equilibrium configuration of inclined sagged cables - and to the ensuing linear dynamics
features - their nonlinear dynamic characteristics may be different from those characterizing
horizontal cables. Therefore, a relevant systematic investigation seems to be worthwhile from
both a theoretical and a technical point of view.

The nonlinear characteristics of the large amplitude 2-D and 3-D free vibrations of elastic
cables with arbitrary sags and arbitrary inclinations are analyzed numerically. To this aim,
a realistic 3-D cable model accounting for cable extensibility and large sag effects [16] is
implemented for inclined cables (Section 2). A MDOF model is then considered by discret-
izing through finite differences and solving the nonlinear equations of 3-D coupled motion
{Section 3). Qualitative and quantitative results obtained under prescribed initial conditions
for different values of the elasto-geometrical cable parameter are discussed in detail, dis-
tinguishing between 3-D nonlinear coupling (Section 4) and modal transition phenomena
occurring in planar nonlinear dynamics (Section 5). Emphasis is placed on investigating:
(i) how significant 3-D and 2-D nonlinear interactions are; (if) which internal resonances
are actually activated at different frequency avoidance regions; and (iii) whether and how
a dominant internal resonance plays a major role in system nonlinear dynamics. In turn, the
influence of cable inclination is analyzed in Section 6, by looking at the overall nonlinear
behaviors against those previously outlined for the horizontal cable [16]. The paper ends with
a summary of results and with some general conclusions.

2. Cable Model and Equations of Motion

Figure 1 illustrates the inclined cable under consideration with horizontal span X 5 and vertical
span Y. Cable inclination, measured clockwise from the horizontal span to the cable chord
line between two supports at different level, is represented by the angle 8. The horizontal



Large Amplitude Three-Dimensional Free Vibrations of Inclined Cables 131

Z
Xy
X X
T 2 > x
i
|
i .
, .
Y,
a's%
3 T
ds,, H
Py
|
ds
% w unstretched state (x, y)

equilibrium state (x,, y,)
displaced state (x,+u, y;t+v, w)

Figure 1. Reference configurations of an inclined cable.

cable can be obtained by setting 8¢ or ¥ equal to zero. The upper left end is fixed while the
lower right end is the position where the specified tension T} is applied to maintain the cable
in its static configuration.

A Cartesian (global) coordinate reference frame fixed in 3-D space is established for
describing displacement components and cable tension. As defined in [16], three distinct
configurations of the cable element are considered, namely the unstretched (natural) state
ds, the stretched (equilibrium) state dsg, and the displaced (dynamic) state ds, denoting with
u, v and w and the components of displacement measured from the equilibrium configuration
(xa, Yo) in the longitudinal X, vertical ¥ and out-of-plane Z directions, respectively. A local
reference frame attached to the cable at any point is also employed to characterize the natural
mode shapes of the cable. Introducing orthogonal coordinates, the local displacement field for
the in-plane motion is described using the two variables p and g in the tangential and normnal
directions, which in terms of global displacement components read:

p=ucost +vsind, g =—usind + vcosd, (n

where sin # and cos 8 are functions of both space and time given by

dxg + du (1 +u')
cosf = - = . ()
ds VA + )+ () + v)? + w?
sing = dyo +dv (O + V) (3)

& A+ O+ Y+ w?
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Here, 8 is the angle in the vertical plane between the horizontal line and the tangential dis-
placement vector at any point along the cable, whereas a superscript prime indicates differen-
tiation with respect to xqg. Of course, the out-of-plane displacement w is independent of any
coordinate system.

In deriving the equations of motion by the virtual work-energy principle, the cable is con-
sidered to be a perfectly fiexible, homogeneous, linearly elastic, one-dimensional continuum
with negligible torsional, bending and shear rigidities. Therefore, the strain energy is due only
to stretching of the cable axis. The total strain of the cable centerline at the displaced state
reads:

G-ds_ Qte) /

where gp is the initial static strain. Following [16], the governing equations of motion in the
global coordinate system read

€= (I +u'y 4+ (p+ v +w? -1, (4)

{EA + EAQ 4 e EA(l +u) V_we g %, (5)
\ Ny SO+ o rw?z ]l glite)

/EAy(’} + EA(1 + g9)v’ B EA(yy+ ") \ _ we 1+ )’(’)Zi), ©)
| 42 SO+ + 7 +w? I gte)

{ EAQL + eo)w’ EA(w") Vw1 -

V' Ay JOFwrEop oy et | T gt

where the dot denotes differentiation with respect to time 7, g is the gravitational force, E is
Young’s modulus of the cable, A is the cross-sectional area, and w is the cable weight per unit
unstretched length. This system, involving geometrical nonlinearities and coupled through
the static equilibrium configuration, is useful for analyzing 3-D, undamped, large amplitude
free vibrations under specified initial conditions. The boundary conditions corresponding to
hinged-hinged cable ends are

w(0,1) = v(0, 1) = w0, 1) = u(Xp, 1) = v(Xgy. t) = w(Xg, 1) = 0. @®)

It is worth noticing that Equations (5-8) reduce themselves to those obtained by Leissa and
Saad [24) in the case of a horizontal string {i.e., no initial sag) vibrating with large amplitude
in the longitudinal and vertical directions. Also, they are similar to the equations of motion
obtained by Takahashi and Konishi [23] for an arbitrarily sagged and inclined cable, which
however are formulated in the local coordinate system instead of the global one used in this
study.

3. Numerical Investigation

Prior to analyzing the nonlinear free vibration characteristics of cable system, the equilibrium
configuration with arbitrary sag and inclination angle, and the static tension at any point,
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are evaluated. The nonlinear equilibrium equations (see, e.g., [16]) were successfully solved
by the shooting method [25] in conjunction with the fourth-order Runge—Kutta integration
scheme for the problem of a specified end tension [25, 26].

A finite difference discretization, coupled with a predictor-corrector method, was then em-
ployed to solve Equations (5-8). Central differences were used for approximating all spatial
derivatives as well as second-order temporal derivatives, leading to an explicit discrete form
of the governing equations for the unknown displacements. The displacements obtained were
then used as initial trial value of the next process by means of a predictor-corrector iterative
algorithm. The simulation results over each time step were iterated until the convergence
was satisfactory, and the allowable tolerance was achieved by the criterion of the second
order vector norm. The values of space and time discretizations were also examined through
convergence tests based on the desired accuracy in the solution. Using this numerical tech-
nique, accurate results were obtained for horizontal cables in [16], where good agreement
with theoretical predictions {27] of system dynamics is highlighted. The major advantage of
using a finite difference approach is in capturing the spatial richness of the response and its
time-varying content, as well as in obtaining reliable predictions of the significant involvement
of higher-order modes, which ensues from the considered MDOF model.

A continuous cable similar to that of Srinil et al. [16] is used in the numerical simuia-
tion. The relevant parameter values are as follows: A = 0.1159 m?, cable density equal to
8,337.9 kg/m?, E = 1.794 x 10® kN/m?. The cable is discretized into 50 segments and the
integration is performed with a time step equal to 0.00001. The horizontal span X, equal
to 850 m, is fixed, whereas the vertical span Yy is varied to attain an arbitrary inclination
angle. The extent of 2-D and/or 3-D nonlinear interactions in cable motion strongly depends
on system parameters, but it is always enhanced by the occurrence of some internal resonance
conditions. Accordingly, attention is focused on internally resonant cables,

Internal resonances are characterized by (perfect) tuning of system natural frequencies, a
situation being nearly realized for inclined cables in the so-called avoidance regions of natural
frequencies @/, which occur for well established values of the system elasto-geometrical
parameter A/m [2, 3]. This parameter accounts for also the cable inclination angle (6¢) and
is defined [3] as A% = [(wcSp)?EA/ T?]cos(f¢), in which Sy is the cable equilibrium length
and T, is the static tension at the cable nodal point where the static angle is equal to 6¢. Note
that for given values of EA, wc, and 8¢, A? (the sag) mostly depends on the applied 7, (Ty),
the greater A2 (sag) the smaller T, (Ty), whereas Sy slightly affects A? because most of the
considered cables have small initial strain.

In Figure 2, nondimensionalizing the natural frequencies with respect to the fundamental
frequency of an equally inclined taut string, the frequency spectrum for the cable with 6, =
30°, obtained by a finite element analysis [26], is exemplified for the first three avoidance
regions (A & 2nm, n = 1, 2, 3). Over each avoided crossing (or veering) region, two in-plane
frequencies (solid lines: I) become nearly close — but never equal — to each other, and the
corresponding modes become hybrid (H1-H6) due to a mixture of symmetric/anti-symunetric
modal shapes. In contrast, the out-of-plane frequencies (dashed lines: O) are independent of
the system parameter A /m. Various frequency commensurabilities do coexist over the veering
regions. For instance, at first avoidance point (A/m = 2) the natural frequencies of the first
(H1) and second (H2) hybrid in-plane modes are markedly close to each other and nearly twice
the natural frequency of the first symmetric out-of-plane mode (O1). Moreover, the angle 6¢
has a significant effect on the extent of the avoided crossing zone, as illustrated in Figure 3 for
the first avoided crossing. The approaching frequencies are seen to remain as more apart from
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0 i i 1 1 1 1 i
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AT
Figure 2. Natural frequency spectrum around the first three avoidance regions for inclined cable with 80 = 30%:
— in-plane frequencies (I); - - - out-of-plane frequencies (O).

each other as greater 6 is: this corresponds to a progressive decrease of the frequency ratio
of first and second hybrid modes (Table 1), which is approximately equal to 0.958, 0.924 and
0.878 for 8¢ = 30°, 45° and 60°, respectively.

Considering the first three avoidance regions and three different values of 6, the cable
properties obtained by varying the specified tension Ty are given in Table 1. For each value
of the cable parameter A/m, they include, besides Ty and Sy, the maximum static tension
Ty, and the cable sag-to-span ratio 4/ Xy corresponding to different inclination angles. As
the latter increases, the cable sag-to-span ratio becomes greater. The linear out-of-plane and
in-plane frequencies are also documented for all cases. The properties listed in Table 1 are
representative of long, either shallow or large-sagged cables, as well as low-, medium- or
high-inclined cables.

To the aim of highlighting the extent of nonlinear interactions, single-mode initiations
are considered and the involvement of other modes due to some internal resonances is in-
vestigated. Nonzero values of initial displacements and zero values of initial velocities are
prescribed. The initial displacement vectors are assumed proportional to the linear eigenfunc-
tion vectors [26] of either in-plane or out-of-plane modes, normalized in such a way that
the maximum amplitude of nodal displacement is equal to unity, and they are subsequently
multiplied by the initial amplitude (a) specified in each case. It is important to note that the
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Figure 3. Effect of cable inclination on the extent of first avoided crossing region.

assigned amplitude must be large enough to produce significant nonlinear behavior, but in any
case such to avoid compression in the cable.

In the following, analysis resulis are presented and discussed in terms of three different —
and complementary — representation tools: (i) time histories of the responses at selected points
giving the most significant contributions to the overall dynamics; (ii) time-varying spatial
profiles (displayed versus the cable arc length in the local coordinate system) selected within
the neighbourhood of the time instant where the nonlinear dynamic responses reveal remark-
able changes with respect to prescribed initiations, due to any kind of nonlinear interaction;
(iii) frequency response measures suitable to describe specific features of system dynamics.
Response amplitudes and time are nondimensionalized relative to the horizontal span and to
the period of each prescribed mode, respectively. Of great importance from the engineering
viewpoint, the cable total tension response (summation of static and dynamic tensions) is
also evaluated by the present model, which can capture both spatial and temporal variations in
cable tension. This is accomplished by calculating Tp = E Az from the displacements through
Equation (4); consequently, their maximum and minimum values relative to the maximum
static tension (7)) are plotted.

In the foillowing, we will start by analyzing the 3-D nonlinear coupling ensuing from
application of an out-of-plane mode as initial displacement condition.

4. Features of Three-Dimensional Nonlinear Coupling

Let us first consider initial condition of the first symmetric out-of-plane (first $-0O) mode with
a = 10 m at first avoidance {1/ = 2) for the cable with 6c = 45°. The longitudinal, vertical
and out-of-plane responses at quarter span from left (solid line) and right {dashed line) ends,
and the cable maximum (solid line} and minimum (dashed line) total tension responses, are
plotted in Figure 4.
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An asymmetric feature of system dynamics is evident in both the driven longitudinal (Fig-
ure 4a) and vertical responses (Figure 4b), whose amplitudes at quarter span from the left
end are unequal to those at quarter span from the right end. Conversely, the exciting out-of-
plane responses are unaffected by the system asymmetry, the amplitudes at those points being
equal (Figure 4c). However, a beating-type exchange with amplitude-modulated 3-D motion
is observed in all responses. In particular, the out-of-plane amplitudes decrease due to the
interaction with the driven longitudinal and vertical amplitudes, both of which are periodically
excited through geometrically nonlinear coupling with the out-of-plane motion and are con-
siderably greater than those obtained for cables away from avoided crossings. In addition, the
longitudinal amplitudes are comparable to the vertical ones, thus meaningfully contributing to
the interaction with the out-of-plane amplitudes, and to the increase of cable total tension. As
a matter of fact, substantial cable tension responses are induced and enhanced in the nonlinear
range (Figure 4d) due to the corresponding driven in-plane vibration amplitudes, unlike the
zero tension occurring in the linear theory due to first-order cable stretching assumption.

When initiating the first anti-symmetric out-of-plane (first A-O) mode at second avoidance,
the overall responses yield the same nonlinear behaviors as those explained for the first -0
mode initiation. To characterize the driven in-plane responses actually interacting with the
initiated out-of-plane modes, their MDOF normal amplitudes g are plotted in Figures 5a and
5b versus the normalized arc-length coordinate at setecied times, for the first S-O (at A /m ~ 2
fora = 10 m and 8, = 45°) and first A-O (at A/m =~ 4 fora = 3 m and 8 = 60°)
made initiations, respectively. In Figure 5a (T = 2.8, 3.0), the dominant mode is, evidently,
the second hybrid mode (H2), whose longitudinal and vertical amplitudes at quarter span
from right end being greater than those at quarter span from left end (Figures 4a and 4b) is
explained. They are subsequently enhanced to attain maximum values when T = 7.1 and
7.4. Correspondingly, the out-of-plane amplitude is decreased considerably due to a beating
phenomenon. It is worth observing that the first hybrid mode (H1) may take place in some
time intervals (T = 11.6, 11.9), where the amplitudes at quarter span from left end become
the greatest (Figures 4a and 4b). Nevertheless, due to their small amplitudes, the correspond-
ing out-of-plane responses are unaffected by this in-plane mode interaction, as shown by the
steady maximum amplitude in Figure 4¢c. Though various frequency commensurabilities do
coexist at first avoidance point, the dynamic characteristics and modal interaction observed in
Figures 4 and 5a illustrate how the meaningful one involving the initiated first S-O mode is
the nearly tuned 2:1 internal resonance between the second hybrid and first S-O modes.

In Figure 5b, the mode shapes of the excited in-plane response under first A-C mode
initiation may be either the third hybrid (H3: see, c.g., at T & 5.5, 5.8) or the fourth hybrid
modes (H4: see, e.g., at T ~ 2.3, 2.5, 9.3, 9.5). Since their amplitudes are comparable to
each other (see, e.g., at T == 2.3 for the H4 mode and at T = 5.5 for the H3 mode), both
of them are involved in the interaction with the out-of-plane amplitudes. Figure 5b highlights
how both the existing, nearly tuned, 2:1 internal resonances — between the third {or fourth)
hybrid mode and the first A-O mode — are actually activated. Consistent with a comparable
phenomenon observed for the horizontal cable [16], this is likely to occur because a high
frequency hybrid (instead of symmetric) in-plane mode — out of the two nearly coexisting at
second avoidance - is involved in each internal resonance, though no theoretical expectation
comparable to the companion horizontal cable [16] is available. The hybrid character follows
from the lack of symmetry in the equilibrium of the inclined cable, which entails high modal
density and asymmetric system dynamics.
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Figure 5. Cable vibration profiles at selected times for inclined cable with: (a} A/x =~ 2 and 6 = 45° under first
S-0 mode initiation; (b} A/ = 4 and 8¢ = 60° under first A-O mode initiation.

Consider now the cable with 8 = 45° at third avoidance ()./7 = 6). By initiating the
first $-O mode with a = 10 m, the driven longitudinal and vertical responses at mid-span
{(Figures 6a and 6b) are markedly nonperiodic, unlikely the periodically driven responses in
Figure 4, which are dominated by the stricter 2:1 internal resonances. Because of the high
modal densities of inclined cable suspensions, significant higher order in-plane modes may be
involved in the response when a single out-of-plane mode is initiated, even for a cable having
a relatively low sag-to-span ratio (d/ Xy = 0.128). This multi-harmonic character shows the
need to consider a MDOF cable model in order to obtain reliable response predictions, and
is similar to that occurring for nonresonant horizontal cables with either small or, mostly,
large values of sag-to-span ratio [16]. The difference here is that the spatial profiles of the
driven nonperiodic responses are, of course, asymmetric. In contrast, the periodic out-of-
plane response (at mid span} involves a single mode/frequency, and a nearly steady amplitude
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Figure 6. Dynamic responses at mid-span for inclined cable with A/7 = 6 and 8¢ = 45° under first 5-O mode
initiation: (a) longitadinal; (b) vertical; (¢) out-of-plane.

(Figure 6¢). This highlights how no one of the underlying internal resonances (Table 1) comes
actually into play when initiating the (low-frequency) first $-O mode for this A /7.

As a summary, it can be stated that apart from the hybrid character of the driven in-
plane responses, the involved modal interactions and periodical energy transfers in the 1:2
internal resonances at first and second avoidance points are similar to those highlighted for
the horizontal cable at corresponding crossovers [16], where the first and second symmetric
in-plane modes are excited.

5. Modal Transition Phenomena in Planar Dynamics

Modal transition has been observed in various crossover cables [16] when considering mono-
frequent in-plane vibrations. A companion analysis is pursued herein for inclined cables to
determine how the main changes in the spatial content of the responses evolve when the
frequency crossover phenomenon is replaced by the frequency avoidance typical of these
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(a) )
Figure 7. Longitudinal and vertical responses for inclined cable with A/m =~ 2 and 8¢ = 45° under (a) first
hybrid mode initiation: — at mid-span; - - - at quarter-span from right end; (b} second hybrid rede initiation:
— at mid-span; - - - at quarter-span from left end, and corresponding total tension responses: — maximum,;
- - - mipimum,

cables. This is accomplished by considering a cable subject to initial conditions of in-plane
modes, which entail no coupling with out-of-plane motions.

Various kinds of modal transition are likely to occur for a given inclined cable. In the
following, we will discuss mainly the transition features occurring at each avoidance region
as a consequence of a dominant internal resonance, analyzing them against the background of
interaction phenomena highlighted for the horizontal cable [16].

5.1. FIRST AVOIDANCE FREQUENCY (A/m = 2)

The cable with 6 = 30° is considered in this section. Some remarkable nonlinear aspects
of systemn dynamics are revealed. By applying the initial condition of the first hybrid mode
(H1) with @ = 5 m, the longitudinal and vertical amplitudes at mid-span (solid lines) and
quarter-span from right end (dashed lines) are shown in Figure 7a. No outstanding features
are observed, different from the horizontal cable at first crossover, for which the first anti-
symmetric mode is accommodated into the response initiated by the first symmetric mode
[16]. Both longitudinal and vertical responses are periodic and their amplitudes increase
slightly in some intervals: the nearly tuned 1:1 internal resonance occurring at first avoid-
ance frequency does not meaningfully affect the system dynamics. Also, the cable tension
responses have a steady maximum value. In contrast, when initiating the second hybrid mode
(H2) with the same assigned amplitude, the longitudinal and vertical amplitudes at mid-span
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Figure 8. Modal transition for inclined cable with A/m = 2 and 8¢ = 30° at different instants under second
hybrid mode initiation.

(solid lines), which are initially greater than those at quarter-span from left end (dashed lines),
are reduced up to approaching nearly zero values in some intervals (Figure 7b). Correspond-
ingly, both longitudinal and vertical amplitudes at quarter span are increased considerably due
to an amplitude exchange with corresponding mid-span guantities, and their magnitudes are
grown up to 3.63 and 4.56 times their initial values, respectively.

Even though the modal shapes of both initiated modes are hybrid, Figure 7 highlights how
the (beating-like) amplitude exchange phenomenon becomes evident only when initiating the
second hybrid mode. To understand what kind of response occurs in this amplitude exchange
interval, the vibration profiles at sclected times are reported in Figure 8. Only the dominant
normal displacement g is illustrated, Starting from T = 1.0, the vibration profile corresponds
to the initiated second hybrid mode (H2) at first avoidance. Then, it develops smoothly towards
an anti-symmetric shape when 7' = 9.0, which accounts for a superimposition of first and
second hybrid modes, and dominates the response up to T = 12.0. The original shape of the
second hybrid mode is completely recovered at T = 20.0. The contemporaneous decrease
and increase of the amplitude at mid and quarter spans (Figure 7b) is thus explained. In turn,
though remaining appreciable, the maximum tension response is slightly decreased when the
resulting anti-symmetric mode takes place (Figure 7b), which is the nonlinear counterpart of
the no-tension effect of the anti-symmetric modes occurring in the linear range. Therefore,
Figures 7b and 8 highlight how the first hybrid mode is excited and accommodated into the
response when initiating the second hybrid mode: contrary to the previous case, this is a visible
effect of the nearly tuned 1:1 internal resonance in which they are involved. This kind of modal
interaction looks similar to that induced on the first anti-symmetric mode by the perfectly
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Figure 9. Modal transition for inclined cable with A/n &~ 4 and 8¢ = 45° at different instants under first
anti-symmetric in-plane mode initiation.

tuned 1:1 internal resonance occurring at first crossover for horizontal cable, when the first
symmetric mode is initiated [16]. However, the spatial character of both the driving and the
excited modes is herein hAybrid.

5.2. SECOND AVOIDANCE FREQUENCY (A/m = 4)

In this section, the cable with 6 = 45° is considered. Having in mind the interaction phe-
nomena of the horizontal cable, the first anti-symmetric mode (I1) with ¢ = 5 m is initiated,
first. The ensuing longitudinal, vertical and nonlinear tension responses show a continuous
exchange of energy between driving and excited modes: it produces decrement in magnitude
and increment in frequency of the longitudinal and vertical responses, and is likely governed
by an internal resonance existing at second aveidance.

To gain insight into the response, the vibration profiles are drawn comparatively. As shown
in Figure 9, the shape of the initiated anti-symmetric profile (7 == 0.5) rapidly changes into
an asymmetric mode shape (T =~ 3.4), and further evolves at 7 =~ 4.2 and T = 6.8. These
shapes are seemingly associated with the involvement of higher-order hybrid in-plane modes
in the cable response, and result in an asymmetric vibration profile due to a participation of
the fourth hybrid mode (7 = 4.2), and of the third hybrid mode (T =~ 6.8). After attaining
a further asymmetric shape {T" = 9.7), the anti-symmetric mode resettles again (T = 10.8),
with the relevant response being now opposite in phase with respect to the original one (T =
0.5). Therefore, Figure 9 reveals how the higher hybrid modes nearly coexisting at second
avoidance are both excited by the initiated first anti-symmetric mode due to their involvemnent
in a nearly tuned 2:1 internal resonance, like the out-of-plane/in-plane interaction discussed
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in Section 4 with the first A-O mode initiation. However, due to the high modal density in
the frequency range of the excited modes, no one of them can dominate the spatial shape
of the system in any interval. Apart from the different (hybrid) character of the driven in-
plane modes, this behavior looks similar to that occurring for the horizontal cable at second
crossover [16], where the second symmetric mode is excited.

On the contrary, when initiating one of the two higher-order hybrid modes (the third and
fourth modes) nearly coexisting at second avoidance, the lower first anti-symmetric mode is
driven according to the nearly tuned 2:1 internal resonance, irrespective of the order of the
initiated modes. To highlight this phenomenon, the modal transitions of the vibration profiles
under initial conditions of third (H3) and fourth (FH4) hybrid modes with the same assigned
amplitude (¢ = 2.5 m) are displayed comparatively in Figures 10a and 10b. The first one
illustrates the transition from the third hybrid mode (T % 4.6) to the lower excited anti-
symmetric mode (T = 41.0), whereas the second one illustrates the transition from the fourth
hybrid (T = 5.2) mode to the lower excited anti-symmetric mode (I" = 44.4). During these
transitions, there occurs a different kind of mode superimposition between the two involved
moedes giving rise to various asymmetric mode shapes (see, e.g., at T == 31.0 in Figure 10a and
at T = 34.6 in Figure 10b). Afterwards, both initiated modes will dominate again the vibration
profiles and the whole processes will repeat themselves as long as no external disturbances are
imposed to the cable. It is worth noticing that the outcomes of the nearly internal resonance
occurring at second avoidance are different from those obtained for the horizontal cable, whose
lower first anti-symmetric mode is excited only when the second symmetric mode — out of the
two modes coexisting at second crossover — is initiated [16]. Again, this is a consequence of
the hybrid character of the two modes at second avoidance. Nevertheless, those results were
numerical confirmations of theoretical predictions, whereas just the present numerical results
are available for the inclined cable.

To verify the actual activation of the 2:1 internal resonance, the nonlinear frequencies
dominating the system responses are evaluated using the Fourier amplitude spectral densit-
ies. Considering initiations of first anti-symemetric, third hybrid, and fourth hybrid modes,
Figures 1la-11c show the frequency contents of their dominant vertical amplitudes at quarter-
span from right end, respectively. Evidently, all power spectra show two major peaks, approx-
imately equal to (0.122) and 0.249 Hz in Figure 1la, 0.117 and ((.230) Hz in Figure 11b,
0.122 and (0.249) Hz in Figure llc. All of these frequency ratios are commensurable to a
nearly tuned 2:1 internal resonance. By comparing the nenlinear frequencies of the initiated
modes (the values in parenthesis) with those of the corresponding linear ones (Table 1), it is
seen that the first anti-symmetric initiation produces hardening behavior, whereas both higher-
order hybrid initiations produce softening behavior. Moreover, instead of having two distinct
peaks corresponding to the exciting and driven modes, dominant peaks with side frequencies
are sometimes observed (see, e.g., Figure 11a). These sideband frequencies are a direct result
of the nonlinear interactions, and because they are not symmetric about the main peaks, the
response is both amplitude- and phase-modulated [28].

5.3. THIRD AVOIDANCE FREQUENCY (A/m ~ 6)

It is of interest to analyze the effect of internal resonances at third avoidance frequency, where

higher-order modes are involved in the dynamics. The cable with & = 30° is considered.
When applying the initial condition of the first symmetric mode (I12) with @ = 3 m, the

amplitude responses are disturbed by a number of higher frequencies, as shown by the Fourier
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Figure 10. Modal transition for inclined cable with A/m =~ 4 and 8¢ = 45° at different instants under (a} third
hybrid mode initiation and (b) fourth hybrid mode initiation.
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Figure 11, Fourier amplitude spectra for inclined cable with A /7 = 4 and 8¢ = 45° under initial conditions of:
{a) first anti-symmetric; (b) third hybrid; (c) fourth hybrid, in-plane modes.

spectrum of the dominant vertical amplitude at mid-span (Figure 12a). No peaks exist corres-
ponding exactly to a perfectly tuned internal resonance. In other words, no single higher order
mode enters the system dynamics. Accordingly, the modal profiles in different time intervals
display various kinds of asymmetric shapes due to participation of higher order modes. Again,
these dynamic characteristics ensue from the high modal density of the inclined cable, and
result in a behavior different from that of the horizontal cable at third crossover, for which
only the third symmetric mode is driven by the initiated first symmetric, according to the
stricter 2:1 internal resonance [16].

Conversely, when initiating the fifth hybrid mode (H5) with reduced amplitude ¢ = 1.5 m,
some worthy phenomena are noticed. There is a sort of energy exchange involving frequency-
and amplitude-modulation features, and suggesting likely activation of some kind of internal
resonance. Accordingly, the Fourier amplitude spectrum of the dominant vertical amplitude
at mid-span (Figure 12b) indicates apparently three major peaks, one corresponding to the
exciting mode (0.371 Hz), and the others corresponding to the driven lower (0.186 Hz) and
higher (0.742 Hz) modes. This highlights how lower and higher modes are simultaneously
accommodated into the response when the fifth hybrid mode is initiated, due to their frequency
commensurability according to a nearty tuned mulriple (1:2:4) internal resonance. Indeed, the
driven lower and higher frequencies are associated with the first symmetric (I2) and the sixth
anti-symmetric modes, respectively.
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Figure {2. Fourier amplitude spectra for inclined cable with A/mn = 6 and ¢ = 30° under initial conditions of:
(a) first symmeitric; (b) fifth hybrid; (¢) sixth hybrid, in-plane modes.

It is worth analyzing the vibrational profiles of this multiple resonant cabie at different
instants. As shown in Figure 13, apart form the fifth hybrid mode assigned initially (T =z 0.0),
none of the driven lower or higher modes dominates the system dynamics. In particular, the
vibration profiles manifest themselves as a combination of contributions from higher (sixth
anti-symmetric) and lower (first symmetric) modes, with either the former (T = 26.1 and
T = 28.1) or the latter (T =& 32.2 and T = 43.2) being more apparent in the spatial shape.
However, because of the high modal density of inclined cables including various kinds of
symmetric/anti-symmetric modes — which becomes even stronger for cables sagging signific-
antly — and of the high order of the mode being initiated at third avoidance, the driven lower
and higher modes cannot dominate the response in any interval. This circumstance is markedly
different from the case of second avoidance where the first anti-symmetric mode, excited by
both the third and fourth hybrid modes, clearly dominates the response in some intervals.

Qualitative difference is observed when initiating the sixth hybrid mode (H6), nearly coex-
isting with the fifth one at third avoidance, with the same amplitude as before. In Figure 12c,
the frequency response highlights only two main peaks, one corresponding to the exciting
mode (0.371 Hz), and the other corresponding to the lower driven first symmetric mode (0.186
Hz). Therefore, no one of the higher-order modes is excited, unlike the previous case of fifth
mode initiation. Apart from the hybrid character of the initiated mode, the system response is
now governed by the nearly mned 2:1 internal resonance, similar to the corresponding case
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Figure 13. Modal transition for inclined cable with A /7 = 6 and 8¢ = 30° at different instants under fifth hybrid
mode initiation.

of horizontal cable at third crossover [16]. Nevertheless, the driven lower (symmetric) mode
cannot dominate the vibration profile in any interval, as with the fifth mode initiation.

6. Influence of Cable Inclination

It is now interesting to investigate the influence of cable inclination on its behavior. The first
relevant issue is discussed with reference to Figures 14a and 14b, which show the maximum
dynamic tensions, computed by subtracting the static tension Ty from the total one Tp, for the
cable under initial conditions of first 8-O and first A-O modes. With the same assigned amp-
litude as used in Section 4 and the same time duration measured, the dynamic tensions for six
A/m values and four angles 8¢ including the horizontal cable (8- = 0°) are given. It is shown
that, for each &¢, the dynamic tensions are increased substantially when the cable parameters
are associated with the first (A/7r = 2) and second (A/m = 4} avoidance (crossover) points,
where the first 5-O and first A-O modes are initiated, respectively. In both cases, the highest
peak occurs for the horizontal cable, which corresponds to the perfectly tuned 2:1 resonance at
each crossover. Overall, the enhancement in cable dynamic tension is due to the increased in-
plane vibration amplitudes resulting from nearness to the 2:1 internal resonance between the
driving out-of-plane and the excited in-plane modes at avoidance (crossover) points. However,
the peak of maximum tension for each resonant case is seen to decrease considerably as the
inclination increases, up to becoming ncarly equal to that of a generic (nonresonant) case for
8¢ = 60F°, though being the 2:1 internal resonance generally activated for all ..

As a second issue, the 1:1 resonant cable at A/ = 2 is considered again with the same
prescribed amplitude of the second hybrid mode as in Section 5.1, but with larger inclinations,
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Figure 14. Effect of cable inclination on the maximum dynamic tension under initial conditions of (a} first 5-O
mede; (b) first A-O mode.

i.e. 8¢ = 45° and 60°, When 8 = 45°, the beating-type amplitude exchange is evident
in Figure 15a, where a decrement in longitudinal and vertical amplitudes at mid-span (solid
lines), and an increment in those at quarter-span from left end (dashed lines), are observed,
just as in Figure 7b. Again, the tension responses are slightly decreased when the exchange
occurs. However, being the longitudinal and vertical amplitudes at mid-span different from
zero, no mode transition phenomenon resulting in the anti-symmetric mode takes place and
only amplitude-modulated responses are observed. This is different from the corresponding
case with lower inclination (8 = 30°, Figure 7b) where the anti-symmetric mode settles
down (Figure 8).

The effect of cable inclination becomes definitely evident when 8 = 60°. Firstly, the
longitudinal amplitude is greater than the vertical one, as shown in Figure 15b, and dominates
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Figure 15. Longitudinal and vertical responses for inclined cable under second hybrid mode initiation:
(a) A/m =~ 2 and O = 45°% (b) A/m = 2 and ¢ = 60°, — at mid-span; - - - at quarter-span from left end,
and corresponding total tension responses: — maximum; - - - minimum.

the cable mode shape. As a result, the tension responses are mainly due to the longitud-
inal amplitude. Secondly, the difference in amplitude of maximum and minimum tensions
is enhanced, thus highlighting the importance of accounting for axial deformation or strain
variations in the analysis of inclined cables. Finally, there is no beating-like phenomenon,
as well as no correlated mode transition, since the response amplitudes are perfectly periodic
and steady. This ensues from the 1:1 internal resonance being just barely tuned when the cable
inclination increases.

Additional information about internal resonance activation at frequency avoidance points
are given in Table 2, where all of the previously discussed behaviors obtained from numerical
analysis - as well as others not reported — are summarized, and a comparison with the hori-
zontal cable at crossovers is given [16]. To this aim, the first three crossovers and first three
avoidance points are dealt with comparatively in Tables 2a and 2b, where information about
the spatial content of the interacting modes are also provided for each activated resonance.
It is worth noticing that the reported values of the angle 8¢ are those for which the internal
resonance is activated. By distinguishing between out-of-planefin-plane interactions, between
frequency avoidance/crossover points, and between low/high mode initiations, the following
general observations are made.

(i) Apart from the hybrid character of driven in-plane modes, 1:2 internal resonance in-
volving the initiated out-of-plane mode is activated at all avoidance points and for all cable
inclinations, similar to that occurring for horizontal cable at @/l crossover points.
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Table 2. A comparison in activated internal resonances between (a) horizontal (crossover) and (b) in-
clined {avoidance) cables.

(a)
A | Type of intemal | Interaction | Involved Modes
resonance Lower: Higher
2 1:2 (Cuty:In | (1™ symm):1% symm
1:1 In:(En) 1* anti-symm:(1* symm)
4 1:2 (OutyIn | (1" anti-symm):2* symm
1:2 (In):In (1* anti-symm):2™ symm
1:2 In:(In) 1* anti-symm:(2" symm)
6 1:2 (Outyln | (2™ symm):3"™ symm
1:2 (To):In (1" symm):3™ symm
1:2 In:(In) 1*' symm:(3™ symm)

(...) Exciting mode; ... Driven mode

A | Type of iniernal | Interaction | Involved Modes Inclination
resonance Lower: Higher angle: &,

2 1:2 (Outyln | (1* symm):2™ hyb 30,45.60
1:1 Tri;(In) 1* hyb:(2°? hyb 30,45

4 1:2 (OutyIn | (1" anti-symm):3” and/or 4% hyb | 30,45,60
1:2 {In):In (1* anti-symm):3™ and/or 4" hyb | 30,45,60
1:2 In:(In) 1* anti-symm:(3" hyb) 30,45,60
1:2 In:(In) 1* anti-symm:(4® hyb 30,45

6 1:2 (Out):tn | (2" symm):5" and/or 6™ hyb 30,4560
1:2:4 In:(Iny:In | 1% symm:(5™ hyb):6™ anti-symm | 30,45,60
1:2 In:(In) 1* symm:(6" hyb) 30

{...) Exciting mode; ... Driven mode

(ii) When initiating a lower pure in-plane mode, a nearly tuned 1:2 internal resonance is
activated only at second avoidance but for ali cable inclinations, similar to that occurring for
horizontal cable at second and third crossovers.

(iii) When initiating a higher Avbrid in-plane mode, a nearly tuned 1:1 (1:2) resonance is
activated at first {(second) avoidance point, whereas a nearly tuned 1:2;4 resonance or a 1:2
resonance may be activated at third avoidance point. In any case, internally resonant behavior
between in-plane modes does not occur when the cable inclination becomes greater and/or the
order of considered mode becomes higher (see, ¢.g., the 1:1 resonance at first avoidance, the
1:2 resonance between first anti-symmetric and fourth hybrid modes at second avoidance, and
the 1:2 resonance between first symmetric and sixth hybrid modes at third aveidance).

7. Summary and Conclusions

The nonlinear characteristics of the large amplitude free vibrations of inclined sagged elastic
cables have been investigated numerically, based on a 3-D model formulation not restricted
to cables having small sag-to-span ratios and taking into account the axial deformation effect.
A finite difference discretization in both space and time has been implemented to obtain
time histories and time-varying spatial profiles of the nonlinear response of a MDOF cable
model. Various numerical examples of arbitrarily inclined cables with initial out-of-plane or
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in-plane displacements have been carried out for the case of a specified end tension. The
overall nonlinear behavior is remarkably influenced by the high modal density of the system
and by the ensuing hybrid modal character at avoidance points.

In the case of out-of-plane initial displacement conditions, the following main results are
summarized:

s Multi-harmonic responses characterized by driven nonperiodic in-plane displacements
do occur for nonresonant cables under periodic out-of-plane initiations. Though occur-
ring regardless of cable sag and inclination angle, these features are enhanced for cables
sagging significantly and/or with high inclination. This highlights the need to account for
a MDOF model in the analysis of inclined cables.

e Strong coupling phenomena are observed for cables at first two (or three) avoided cross-
ing points. They are associated mostly with 1:2 internal resonance conditions activated
for all inclination angles and involving different modes in the various cases. Apart from
the hybrid character of the driven in-plane modes, the involved modal interactions and
periodical energy transfers are similar to those highlighted at corresponding crossovers
for the horizontal cable [16]. Overall, the observed periodic interactions do confirm the
constraining (in terms of modal content) and regularizing effects induced by internal
resonances on system dynamics.

e In any case, internal resonance conditions enhance both 3-D nonlinear coupling and
cable nonlinear tension, the latter effect being mainly due to the increased in-plane
vibration amplitudes. In turn, the induced dynamic tension is considerably reduced as
cable inclination increases.

In the case of in-plane initial displacement conditions, various mode transition phenom-
ena take place during the ensuing in-plane vibrations, depending on the spatial character of
the involved two (three) modes nearly coexisting at avoidance points, on the order of mode
considered, and on the magnitude of prescribed amplitude. Indeed, besides the activation of
a nearly tuned 1:1 internal resonance at first avoided crossing and 2:1 internal resonances at
second and third avoided crossings, a multiple 1:2:4 internal resonance may be activated at
third avoided crossing, where a higher and a lower mode are simultaneously accommodated
into the response initiated by a single mode. Apart from the hybrid character of the involved
modes, some general features of the observed two-mode (1:1 and 1:2) intemally resonant
interactions are similar to those occurring for the horizontal cable. However, meaningful
differences also occur, which are likely connected just with the hybrid character of the linear
modes at avoidance points: see, e.g., the accommodation of a lower anti-symmetric mode
into the 1:2 internally resonant response at second avoidance, irrespective of the higher-order
hybrid mode being excited. In turn, the three-mode (1:2:4) interaction at third avoidance seems
to be peculiar of inclined cables.

Cable inclination also plays a major role in system dynamic behaviors, especially with
respect to the energy being periodically transferred between the involved in-plane modes. The
following points are summarized:

e As regards 1:1 internal resonance, there can be amplitude exchange and shape modal
transition (low inclination), only amplitude exchange (medium inclination), no amplitude
exchange (high inclination), depending on the extent of the avoided crossing zone -
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which is as higher as the sag is larger and the cable is more inclined — as well as on
the ensuing closeness/separateness of the relevant frequency ratio to/from perfect tuning.
As regards 1:2 internal resonance, it does not play any role when the cable inclination
and/or the order of mode increase.

The longitudinal amplitude becomes greater than the vertical one as cable inclination
increases, thus having a major infiuence on cable total tension. Moreover, the increasing
difference in magnitude between maximum and minimum total tensions confiris the
need to account for strain variations (axial deformation effect) in the inclined cable
model.

Besides providing worthwhile information about which one of the nearly coexisting in-

ternal resonances are actually activared at avoided crossing points, the numerical results high-
light how most of the modifications induced by cable inclination are concerned with planar
dynamics interaction. This is a somehow expected circumstance, since the modification from
crossover to avoidance in linear dynamics ~ and the ensuing passage from pure to hybrid mode
shapes — are actually planar issues. They make the nonlinear dynamics features of inclined
cables meaningfully different from those characterizing horizontally suspended cables.
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Abstract

This paper presents a model formulation capable of analyzing large-amplitude free vibrations of a
suspended cable in three dimensions. The virtual work-energy functionali s used to obtain the non-linear
equations of three-dimensional motion. The formulation is not restricted to cables having small sag-to-span
ratios, and is convemiently applied for the case of a specified end tension. The axial extensibility effect is also
included in order to obtain accurate results. Based on a multi-degree-of-freedom model, numerical
procedures are implemented to solve both spatial and tempeoral problems. Various numerical examples of
arbitrarily sagged cables with large-amplitude initial conditions are carried out to highlight some
outstanding features of cable non-linear dynamics by accounting also for internal resonance phenomena.
Non-linear coupling between three- and two-dimensional motions, and non-linear cable tension responses
are analyzed. For specific cables, modal transition phenomena taking place during m-plane vibrations and
ensuing from occurrence of a dominant internal resonance are observed. When only a single mode 1s
initiated, a higher or lower mode can be accommodated into the responses, making cable spatial shapes
hybrid in some time intervals.

i 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Cable systems are of great interest in a wide range of practical applications for supplying both
support and stability to large structures. Moreover, they are of interest from a theoretical point of
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view, owing to many fundamental non-lnear phenomena induced by the overall slenderness and
inherent flexibility of cable structural systems. As a result of dynamical susceptibility to excitation
from surrounding mediums, cable vibrations of large amplitudes may happen in some
circumstances, and may eventually degrade the system performance. To reach a fundamental
understanding of cable behaviors, three-dimensional (3-D) modelling and geometrically non-
linear characteristics should be fully accounted for in the analysis.

Non-linear free vibrations of a suspended cable have been investigated by a number of
researchers, which include Hagedorn and Schafer [1], Luongo et al. [2,3], Rega et al. [4], and
Benedettini et al. [5]. Al of them deal with simple cable models, with one or two degrees of
freedom, developed and utilized to obtain analytical solutions. In the same theoretical framework,
both single-degree-of-freedom [6,7] and multi-degree-of-freedom (m.d.o.f) [8-12] models have
been considered to explore numerous non-linear phenomena arising in cable forced vibrations.
These include the meaningful effects of non-linear modal coupling under various external/internal
resonance conditions and the possibility of non-periodic responses. The richness of cable non-
linear dynamics has been further highlighted through systematic experimental investigations
(13,14]. In ali theoretical models, a certain number of assumptions have been introduced to
simplify the analytical treatment. Namely, the initial static strain is disregarded so as to obtain an
inextensible parabolic profile of the cable equilibrium configuration where the sag-to-span ratio is
of the order of % or less. Moreover, the dynamic tension is defined as a function of time only, thus
being spatially uniform, which ensues from the inertial force in the longitudinal direction being
neglected according to a quasi-static stretching model of the cable in motion.

However, Behbahani-Nejad and Perkins [15] have illustrated that the analysis of tension waves
propagating freely along the cable length cannot be accomplished using simple models.
Pakdemirli et al. [16] and Rega ¢t al. [17] have documented that the results obtained by analyzing
reduced-mode discretized models of cable may be guantitatively erroneous for cables with non-
zero sag. Moreover, several studies have highlighted how, depending on system elasto-geometric
properties, the effect of axial deformation on the dynamic behaviors can be significant and should
be considered in the analysis [18 -24]. For arbitrarily supported cables or cables with large
curvature, the investigation may require further numerical implementations [25,26]. Takahashi
and Konishi [27] examined sagged cables with either horizontal or inclined supports qualitatively,
and discussed geometrically non-lhinear effects, but they overlooked the significance of cable
extensibility. Recently, Luo and Mote [28] developed a comprehensive 3-D model governing the
steady response of a travelling, arbitrarily sagged, elastic cable, and obtained exact, closed-form
solutions for steady motion under various loadings. Nevertheless, it seems worth investigating
further 3-D non-linear coupling, as well as the vanability of dynamic tension during vibration, by
considering a m.d.o.f. model which accounts for cable extensibility and non-uniform dynamic
tenston, and which is not restricted to low values of the sag-to-span ratios.

The objective of the present study is to analyze numerically the large-amplitude {ree vibrations
of arbitrarily sagged elastic cables through a rigorous formulation, which takes into account the
axial deformation effect. Based on the principle of virtual work-energy, the non-linear equations
of 3-D coupled motions are derived in Section 2. A m.d.o.f. model, which is not limited to cables
having small sag-to-span ratios, is utilized within a numerical solution of the spatial and temporal
problems (Section 3). The attention is then placed on the investigation of the cable 3-D non-linear
free dynamics ensuing from a given set of initial conditions (Section 4), With this aim, the linear
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modal coordinates of each vibration mode achieved from the previous study of Chucheepsakul
and Sriml [24] are assumed as initial conditions for spatial displacements. The aim is to analyze: (1)
how the cable non-linear response evolves, also in terms of dynamic tension; (ii) how significant
the coupling of 3-D motion is; and (ii1) whether and how the internal resonance conditions affect
the dynamics. The non-linear free vibration characteristics of out-of-plane and in-plane vibrations
are examined comprehensively and are discussed in detail.

2. Derivation of equations of motion

Fig. 1 displays the typical reference configuration of a suspended cable of hortizontal span Xy
with two immovable pinned-supports at the same ground level. One end of the cable is fixed while
the other one is the position where the specified tension 7 is applied to maintain the cable in its
static configuration. The coordinates of any point along the cable are represented using the
Cartesian system. Three different states of cable configuration are distinguished, namely the
unstretched, the equilibrium and the dynamic states. The cable forms a catenary suspension under
its own weight at the initial unstretched state (x, ¥). Due to axial stretching, the cable moves to the
equilibrium position (xo, yp), which is considered as the initial configuration for cable dynamics.
Owing to disturbances from external excitation, the cable then moves to the dynamic or displaced
state, in which u, » and w are the components of displacement measured from the equilibrium
configuration in the direction of X-, Y- and Z-axis, respectively.

1y

unstretched state {x, y)

equitibrium state (x,, v,)

displaced state (x+u, y, v, w)

}J

Fig. 1. Reference configurations of a suspended cable.
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The length dsp of an infinitesimal cable element at the equilibrium state can be writlen as

dso = /1 + ¥ dxo, (1)

where a superscript prime denotes a differentiation with respect to xo. Using Lagrangian-strain
definition, the cable segments at the unstretched state ds and displaced state d5 are expressed,

respectively, as
1+ 38

=" ——dxy, 2
ds 1+ & o )
di = /(1 + &) + () + )" + w2 dxy, (3)
in which ¢ is the initial static strain. The total strain at the displaced state is
Ezm)—\/(l+u’)2+()/6+v’)z+w’2—1. (4)

N

The strain energies caused by bending, torsional and shear rigidities are neglected based on the
assumption of a perfectly flexible cable. Hence, the strain energy is due only to the stretching of
the cable axis. In view of the application of the principle of virtual work, the strain energy
variation is written as

s
oU = f EAEde ds, (5)
0
where S is the total undeformed arc-length, E Young’s modulus of the cable, and A its cross-

sectional area, which 1s assumed to be constant. Substituting Eq. (4) and its variational expression
into Eq. (5} yields

EA(L +e)(1 + o) EA(l + ) sl
1+ VE (0 +u'Y + () + v) + w2
Xy ; ! I ’
SU = / J | EAQ+@)0h vv) EAGy + V) v/ Sduxo, (6)

0 VAR A (A + Y+ + )+ w?

EA(L + e0)(w) EAW ,

_ oW

1+ yd \ﬂ1+u’)2+(y{)+v’)2+w’2 )

The virtual work done by the cable weight we per unit unstretched length is expressed as

X wea/1 +y62
oW, = / ————dxg dv.
¢

1+ & 7
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In turn, the virtual work done by the inertial forces is given by

X we 1+y62
R R
0

e (iidu + 56v + Wwow) dxo, (8)

where wey/1 + V§#/g(1 + &) is the cable mass per unit stretched length, ¢ is the gravitational
force, i, # and W are the accelerations in the direction of X -, Y- and Z-axis, respectively. Utilizing
the standard principle of virtual displacement, the total virtual work-energy of the cable system is
expressed as

ST = 86U — (3W, + 5W;) = 0. ©9)

After substitution of Eqs. (6)(8) into Eq.(9), and integration by parts of the latter with
application of the boundary conditions du =dv=0w =10 at xy =0 and xy = Xy, Euler’s
equations associated with the virtual displacements du, dv and dw read, respectively:

7

EA{L+ e}t +v) EA( +v) ARG (10)
.'1 + yaz \/(1 + u.')Z + (y,(] 4 UI)2 4 w2 g’(l + 50)
EA(l + 50 +¢) EA(, + ) wey/ 1 +y’o2 L+ yf S0
NIES \/(1+u’)2+(ya+v’)2+W’2 o) 1+£
EA(L + eo)(w') EAW ”’Cm =0 (12)

L+ VL + )+ + o)+ wh g1 + )

By substituting the equilibrium conditions u=v=w=v'=v=w =" =v"=w'=i=i=
w = (t into Eqgs. (10)-(12), one can obtain Euler’s equations corresponding to the equilibrium state
in the direction of virtual displacements du and dv:

5 ’
(EA eo/ 4/ 1 +y62) =, {13)
!
(EA oo/ 1+y32) Fwer/ Ly /(1 + &) = (14)

Subtracting Eq. (10) by Eq. (13), and Eq. (11) by Eq. (14), the governing equations of motion
corresponding to the displacements in the directions u,v and w, respectively, are

!

EA + EAQ + s/ EA(1 ~ ) _wey/l+yg

e = i, (15)
I+ g (1+u) + (v + V') + w2 g(1 + &o)
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!

Edyy+ EA( + &) EAG, +0) ey /1y ﬁ ”
V 1+ yg (1+w) + v + V) + w? gl +&)
’ 2
EA(L +e)w EA(w') _ Wcmw. (17

JIHE  Just et ewe)  SETE)

These equations are highly non-linear and are coupled through the cable equilibrium
configuration. The associated boundary conditions read

w(0,6) = v(0,8) = w0, ) = W Xp, 1) = (Xp, 1) = w(Xp, 1) = 0. (18)

This system is useful for analyzing 3-D undamped large-amplitude free vibrations under
specified initial conditions. It is worth noticing that the formulation considered could be
accounted for also in a local coordinate reference frame by using the relevant coordinate
transformation relationship [24] or suitable Euler-angle formulations [22].

3. Method of soluticn

Cable equilibrium configuration is to be evaluated. The shooting method is used to solve the
non-linear equilibrium Eqs. (13) and (14). Since a specified tension is imposed at one end of the
cable, in the computation it is more convenient to use an expression for the tension at any point
along the cable in place of Eq. (14). For this purpose, the equilibrium condition of a cable segment
in the tangential direction is used and is then converted into the following integral expression:

T(xo) = Tor ] B

we f
. dxg. 19
x, (e 00 (19)

Using Eqgs. (13) and (19), the proposed algorithm reveals itself to be efficient for solving the
cable problem with a specified end tension [29]. Each step of spatial integration is performed
through the fourth order Runge-Kutta scheme.

In order to analyze the free vibration problem, each partial differential equation (Eqs. (15)-
(17)) i1s differentiated term by term with respect to the spatially independent variable xp. The
ensuing equations of motion are written as follows:

(@/¥0 + (L /PYFG " 0,007 W W) = i, (20)

(@/PW + (1/VGO ", v, 0" W', w')y = 6, (21)

(@/Pw' + (1/WYHG W0 0" w o w'y =, (22)
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where the spatial variables @ = (1+¢)/+/(1+ 3} and ¥ =wcy/1 +y2/EAg(l + &) are
defined, and the functions F(..}, G(..) and H(..) of the displacement variables read:
g’ (L u +ed)ypyy
T+t A+
B oy + V' + wh — (L + W)y + 0h + 7)) — (L4 u)w'w” ’
(1 + ) + (3 + v) + w2yl

F(.)= (23)

vy + gt 3 (g + v + e )ypp
T+ W

G(.) = X 1 @
A+ d) (g + )+ w?(yg + 0"y = (1 4+ u)(yh + oW’ — (v + v )w'n”

((L+uw) + O+ oY+ wﬂ)” ?

gW ('t sow Voo
L+ +yg)?

B (1+ uf)Zwu + (yf, + UJ)ZWU _ W"(l 1 u/)un - wf(y.'o + UI)(yIDI 1 U”)
(1 +w) + (o + )+ w2)?

H()= (25)

Numerical soluitons to Eqs. (20)+(22) were obtained using finite difference discretization in
both space and time. Central differences were used for approximating spatial derivatives and the
second temporal derivatives. This led to a simple explicit form of the equations of motion for a
solution of the unknown displacements. The obtained displacements were then utilized as initial
guess of the next process by means of a predictor—corrector iterative algorithm. The solution over
each time step was iterated repeatedly until the convergence was satisfactory, and the allowable
tolerance was accomplished by the criterion of the second order vector norm.

4. Numerical results and discussions

A long suspended cable with horizontal span Xy == 850m is analyzed in order to better
highlight the effect of strain variatton on non-linear dynamics. The cable has a cross-sectional
area 4 =0.1159m? cable density equal to 8337.9kg/m®, and modulus of -elasticity
E = 1.794 x 10" kN/m?. The cable is discretized into 50 segments. Integration was performed in
all cases with a time step equal to 0.00001. The linear eigenvector is evaluated and normalized in
such a way that the maximum amplitude of nodal displacement is equal to unity [24].
Subsequently, each nodal displacement is multiplied by the initial amplitude (A) specified in each
case. Without structural damping, this amplitude has been chosen to attain a moderately large
value to ensure that the summation of the cable static tension and the additional dynamic one
does not become a compressive force. The initial velocities for all directions are assumed to be
identically zero throughout the present study.
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Table 1
Cable properties and corresponding linear frequencies for four different cables

Cable A/n Ty (KN) &, d(m) S(m) Sp(m) Linear natural frequencies (Hz)

Out-of-plane mode: O In-plane mode: [

Ist $-O Ist A-O Ist S-I 1st A-I 2nd S 2nd A-I

A 0,72 30000 0.01443 28.39 840.48 352,53 0.104 0.208 0123 06206 0312 0414
B 200 15642 0.00752 56.59 853.69 859.96 0.074 0.147 0.145 0145 0226 0.292
C 4.00 10500 0.00505 89.37 870.51 874.67 0.058 0.115 0.158 0112 0.222  0.229
D 10,01 7000  0.00337 164.11 926.65 929.31 0.043 0.085 0119 0076 0206 0.165

S: symmetric mode; A: antisymmetric mode.

Table 1 gives the physical properties of four different cables, including the specified end tension
Ty, maximum static strain g,, cable sag 4, cable unstretched length S and cable equilibrium
length Sp, which are all governed by the unique cable parameter governing the linear frequency
spectrum [20,30], ie, A/n = \}(\chg)zEA/Tg/n (T, is the static tension at cable mid-span). The
corresponding linear out-of-plane and in-plane frequencies are also documented. The specified
tensions have been selected to guarantee the existence of 1.l internal resonance conditions
between symmetric and antisymmetric in-plane frequencies at the first and second crossover
points in the spectrum (i/7 = 2, 4 for cables B and C, respectively), in comparison with non-
crossover points (cables A and D). By altering this specified tension, the influence of cable
extensibility (strain variation) and cable sag can be seen. Obviously, the maximum extensibility is
that of cable A, whereas the maximum sag is that of cable D. Emphasis is placed on a prescribed
initial displacement condition according to the first four natural modes, namely the first
symmetric and antisymmetric modes of the in-plane and out-of-plane vibrations. Attention is
focused, on one side, on crossover cables, whose actual dynamic behaviors are analyzed versus the
background of theoretical conditions for activation of the existing internal resonances obtained
within an infinite dimensional analytical framework [31]; on the other side, attention is focused on
a large sag cable exhibiting higher multi-mode and axial extensibility effects. The analysis is
performed basically in terms of time histories of dynamic responses. In addition, spatial or phase-
portrait representations of cable motion and frequency response measures are provided to
describe specific features of system dynamics.

The 3-D non-linear responses at mid and quarter spans non-dimensionalized by the horizontal
span (Xg) are typically shown. Time (7') is non-dimensionalized by the fundamental period of
each linear frequency. The cable total tension Tp = EAE is readily computed from the
displacements through Eq. (4), and is then non-dimensionalized by the value of the maximum
static tension (7). Total tension responses inclusive of the initial static strain are presented rather
than simple additional dynamic tension. Moreover, not only the maximum tension—which is of
interest to the designer for evaluating the tensile strength capability—is investigated, but also the
minimum tension so as to search for the position where compression possibly happens. The
dynamic strain being a function of both space and time, the positions at which maximum and
minimum tensions occur may change, depending on how the nodal points vibrate in each time
step.
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4.1. Large-amplitude out-of-plane free vibrations

The analysis starts by considering out-of-plane initial conditions with either symmetric or
antisymmetric spatial shapes.

4.1.1. First symmetric out-of-plane mode {Ist S-O mode)

The assigned amplitude A is equal to 15 m for each cable. Starting from taut cable A, the out-of-
plane response is perfectly periodic (Fig. 2(c)). The energy driven by the out-of-plane response
geometrically induces longitudinal and vertical responses through kinematic coupling of 3-D
motion. The vertical non-periodic response is disturbed by a higher frequency (Fig. 2(b}), while
the longitudinal one has a considerably lower amplitude (Fig. 2(a)). The out-of-plane motion does
not involve any first order cable stretching in the linear theory [30], corresponding substantially to
a pendulum-like motion. In contrast, Fig. 2(d) displays the additional forces induced in the non-
linear range.

Cable B corresponds to the first crossover (4/m = 2), where various internal resonances do
coexist. However, the meaningful one involving the imitiated out-of-plane mode is the 2:1
resonance between 1st S-I and 1st S~O modes, which is actually activable due to non-
orthogonality of the relevant non-linear normal modes, which are both symmetric [31].
Consistently, a beating phenomenon is observed in the relevant responses (Fig. 3), as already
highhghted in Ref. [5] for a two-degree-of-freedom cable model. The maximum out-of-plane
amplitude decreases to about (.64 times its initial value (Fig. 3(c)) due to the interaction with the
corresponding in-plane response, whose maximum amplitude rises from zero to about 43.74% of
the maximum out-of-plane amplitude. Correspondingly, the cable maximum tensions in Fig. 3(d)
are enhanced considerably, and are greater than those obtained for cable A, being associated
mostly with the increased in-plane vibration (Fig. 2(d}). The relationship between vertical and out-
of-plane displacements at mid-span is depicted in Fig. 4(a). It can be seen that the out-of-plane
component vibrates nearly symmetrically about the in-plane axis. The in-plane amplitude reaches
the maximum negative value when the out-of-plane amplitude is close to zero. This implies that
the cable configuration drifts upwards when the cable vibrates close to the vertical plane, as shown
by the cable 3-D profiles in Fig. 4(b) for T~0 — 5.

Consider now cable D sagging significantly (/X = 1/5). The relevant longitudinal and vertical
responses contain many high-frequency components and are definitely non-periodic (Figs. 5(a)
and (b)), whereas the out-of-plane response in Fig. 5(c) is still periodic. The maximum amplitude
of tension response is lower than that obtained for the resonant cable B. Since the cut-of-plane
response of each cable has a single (low) frequency, the Fourier amplitude spectral densities of the
driven vertical responses are illustrated in Fig. 6 against those of cables A and B, in order to check
the dominant frequency of the vibrations. Evidently, the vertical responses of cables A and D
contain a number of higher frequency components (Figs. 6(a) and (¢)) relevant to their non-
periodic nature. In contrast, cable B attains a single frequency (0.156 Hz) twice that of the out-of-
plane one (0.078 Hz), due to the energy being periodically transferred between the driving and
excited modes of the 2:1 resonant cable (Fig. 6(b)). ,

It is worth analyzing the spatial shape of non-periodic responses by focusing attention on the
large sag cable D, whose longitudinal, vertical and transversal vibration profiles at different
instants (7 = 6.0—6.5) are illustrated in Fig. 7. Apparently, the in-plane response profiles manifest
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themselves as a combination of contributions from many modes (Figs. 7(a) and (b)), different
from the nearly unimodal out-of-plane profile (Fig. 7(¢)). Because of the high modal densities of
cable suspensions, significant higher order in-plane modes are generated when a single-mode out-
of-plane amplitude is initiated. This multi-harmonic character of the driven in-plane response
occurs even for the shallower cables, though to a minor extent. This highlights the need of

utilizing a m.d.o.f. cable model in order to obtain detailed and reliable non-linear response
predictions, mostly for a relatively large sag cable.
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4.1.2. First antisymmetric out-of-plane mode (1st A-O mode)

For cable B with A4 = 15m, the longitudinal and vertical displacements—the former still
exhibiting much lower amplitude values--are disturbed by high-frequency components. The in-
plane response is that of the 2nd S—-I mode, which is supposed to be excited according to a super-
harmonic coupling (of the order of % approximately) induced by the driving st A—O mode,
whereas the out-of-plane response is perfectly periodic and its maximum amplitude 1s of course
greater than that occurring at quarter-span when exciting the 1st S-O mode (Fig. 3(c)).
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When considering cable C with 4 = 5m, the beating phenomenon is observed again for the
overall responses (Fig. 8), resembling that obtained for the first resonant cable B in Fig. 3. The
associated cable parameter is that of the second crossover where various frequency
commensurabilities do occur. Amongst them, the nearly 2:1 internal resonance between the 2nd
S-1 and 1st A-O modes is actually activable for involving a high-frequency symmetric in-plane
mode [31] and, indeed, it plays an important role, as shown by the spatial shapes of the
longitudinal and vertical responses of the excited 2nd S-1 mode reported in Figs. 9(a} and (b),
respectively (T=2.4—3.4). The graphs in Figs. 8 and 9 confirm how the non-linear coupling is
enhanced due to the internal resonance, which also entails a regularization of the in-plane
response—towards which the energy is periodically transferred—with respect to cable B. In
particular, the maximum amplitude of the out-of-plane response is reduced to about 0.79 times its
initial value, whereas the maximum vertical amplitude rises from zero to about 33% of the
maximum out-of-plane amplitude.
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With the same initial amplitude, a combination of high-frequency components occurs again in
the in-plane responses of cable D for which no internal resonance exists. The Fourier amplitude
spectrum of the corresponding in-plane response is illustrated in Fig. 10 against those of cables B
and C. The driven vertical responses of cables B and, mostly, D contain higher frequency
components (Figs. 10(a) and (c)). Due to a 2:1 resonant condition, the vertical response of cable C
has a single frequency (Fig. 10(b)), whose value (0.234 Hz) is approximately twice that of the out-
of-plane one (0.117 Hz). These results highlight the fact that, apart from the regularizing effects
entailed by the internal resonance condition, the in-plane response excited by the out-of-plane
motion for a generic (non-resonant) cable is non-periodic, due to a combination of high-frequency
components, irrespective of cable sag condition. The multi-harmonic longitudinal and vertical
responses of cable D are displayed in Figs. 11(a) and (b) (T 24.0—4.5) against the harmonic out-
of-plane one (Fig. 11(c)), with the amplitude of the longitudinal response being now nearly
comparable to that of the vertical one due to the large sag effect.

From the numerical results obtained in Section 4.1, non-zero values of vertical responses are
obtained at cable mid-span. While highlighting that symmetric in-plane modes are excited by a
prescribed out-of-plane mode, either symmetric or antisymmetric, this also confirms numerically
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the theoretically predicted role [31] of symmetric in-plane modes in the actual activation of 2:1
internal resanances at crossover points. As regards cables with significant sag, it is worth noticing
that the occurrence of a multi-harmonic response in the driven displacement components justifies
the consideration of a m.d.o.f. cable model.

4.2. Large-amplitude in-plane free vibrations

Without any external excitation, no 3-D coupling occurs when only in-plane amplitude is
initiated. This 1s because of the existence of monofrequent in-plane vibrations [2], consistent with
the vamshing of all terms in the coupled equation of motion (Eq. (22)) when the variables
corresponding to the out-of-plane displacement are set to zero. Nevertheless, there occur some
interesting interaction behaviors, which are discussed below.

4.2.]. First symmetric in-plane mode (1st S5-I mode)
When considering cable A with 4 = [5m, the longitudinal responses are very low, the vertical
responses are periedic, and the maximum tension has a steady maximum value greater than that
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induced by the symmetric out-of-plane mode. In contrast, when considering cable B with the same
inittal amplitude, some outstanding characteristics are observed in the responses (Fig. 12). The
vertical amplitude at mid-span, which is of course larger than the amplitude at quarter-span, 1s
reduced evidently in some intervals (7= 12 — 15). Correspondingly, the longitudinal amplitude 1s
increased due to a beating-like exchange. In contrast, both longitudinal and vertical amplitudes at
quarter-span increase up to 4.74 and 2.00 times their initial values, respectively.
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(a)

Fig. 13, Modal transition of cable B at different instants under initial condition of the 1st S~] mode: (a) T=2.1; (b)
Tx=52;(c) T84, (d) T=10.5; (e) T=12.6; (N T=23.0.

For the sake of convenience, the transition of the vibration profile is shown to explain what
occurs during this time duration. Only the dominant vertical displacements are displayed. As
exemplified in Fig. 13, initially (7 2 2.1) the vibration profile corresponds closely to the symmetric
in-plane mode at the first crossover, namely it 1s tangential to the equilibrium cable profile at each
support (Fig. 13(a)). The associated antisymmetric longitudinal displacement is nearly zero at
mid-span. Then, the vibration profile evolves smoothly towards a hybrid asymmetric shape (Figs.
13(d) and (e)) which accounts for a superimposition of the first symmetric and antisymmetric
modes. Accommodation of the latter into the response ensues from cable B corresponding to a
perfectly tuned 1:1 internal resonance between the two in-plane modes and from 1:1 internal
resonances being always activable at crossover points [31]. Due to the antisymmetric vertical
displacement accompanied by a symmetric longitudinal one with maximum value at quarter-span
[30], the simultaneous increase of both corresponding amplitudes in Figs. 12(a) and (b) is
explained. Afterwards, the vibration profile returns back to the symmetric mode (T = 23.0, Fig.
13(f). In turn, the tension responses—which attain rather large values, on average—change
slightly when the hybrid mode phenomenon takes place (Fig. 12(c)). The previous results further
confirm some peints made in the literature (see, e.g., Refs. [11,14]) about the antisymmetric mode
being driven in the response by an existing symmetric one due to non-linear modal coupling and a
mechanism of induced dynamic tension. The difference here is that the in-plane coupled dynamics
are non-stationary.

Exciting the large-sagged cable D with a reduced initial amplitude (4 = 5m), the longitudinal
and vertical responses are slightly disturbed by high-frequency components. This implies that the
cable sag has an influence also on the in-plane response besides the out-of-plane one. Moreover,
the difference in magnitude occurring between maximum and minimum tensions (Fig. 14) justifies
the need to take into account strain variations in the non-linear cable model.

4.2 2. First antisymmetric in-plane mode (1st A-I mode)
No special features are observed in the dynamic response of the 1:1 resonant cable B with
A = 15m, different from the previous case of excitation with symmetric mode, in particular no
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other modes enter the response. Considering cable C with 4 == 5m, the beating phenomenon 1s
clearly observed in the force responses (Fig. 15(c)), while some noteworthy characteristics occur in
the displacement time histories, too (Figs. 15(a) and (b)). The observed behavior is governed by a
kind of internal resonance existing at the second crossover. The vibration profiles at different
times are displayed comparatively in Fig. 16. Evidently, the shape of vertical response evolves
from the initial antisymmetric mode, occurring when T2 1.0 (Fig. 16(a)), to the second symmetric
mode (Fig. 16(b)), up to a hybrid profile accounting for the two modes when T =4.7 (Fig. 16(d)).
Then, the shape returns to the second symmetric mode (Fig. 16(e)), and eventually develops to
become again the original antisymmetric mode when T=x6.7 (Fig. 16()). Thus, Fig. 16 reveals
how the 2nd S-1 mode is excited and accommodated into the response initiated by the 1st A—]
mode due to their involvement in a 1.2 internal resonance, which is again activated because of the
higher-frequency mode being symmetric [31]. This higher mode is seen to substantially dominate
the cable vibration profile in some intervals of the considered time stepping, and to cause
meaningful increases in the magnitude of cable tension respounses (Fig. 15(c)). The non-linear
frequencies dominating the longitudinal and vertical responses are evaluated using the Founer
amplitude spectral densities, as shown 1n Figs. 17(a) and (b). They are approximately equal to
0.115 and 0.225Hz, thus being both greater than the corresponding linear frequencies of first
antisymmetric and second symmetric modes (Table 1), respectively: the system is thus seen to
exhibit a weakly hardening non-linear behavior.

Two points are worth noticing for the present cable C at the second crossover, where various
mternal resonances occur. (1) The (coexisting) 2:1 resonance between the 2nd A-1 mode and the
initiated 1st A--I mode does not play any role, which ensues from the activation of 2:1 in-plane
resonances requiring contribution from at least one (higher-frequency) symmetric mode [31]. (11)
The activable 1:1 internal resonance involving the 2nd S-T and 2nd A-I modes—and
characterizing the second crossover -also occurs, but it does not play any role, too, since the
1st A-I mode is initiated. Consequently, it seems worth analyzing how the motion behaves when
applying the 2nd S—-I mode as the initial condition, instead. Fig. 18 shows the overall responses
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under this ipitiation with the same assigned amplitude (4 = 5m) as before. Two interesting
features are observed. (i) The longitudinal and vertical amplitudes at quarter-span are both
increased to about 3.23 and 1.54 times their initial value, respectively; (i) correspondingly, the
relevant non-linear frequencies both decrease.

To explain the first point, the transition of the vibration profiles associated with the vertical
amplitudes is displayed in Fig. 19 for those particular time intervals. Starting from 7'~ 11.4, the
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Fig. 16, Maodal transition of cable C at different instants under initial condition of the lst A-I mode: (a) T=1.0; {b)
T=27(c) T=~37,(d) T=47, () T=51;(f) Tx=6.7.

110 xi?

Fouriar amplitude spectrum
Fourier amphtude spactrum

LX)

] 028 0% 01 1 ] O.JH 131 Qs 1
(@) Frequency (Hz) (b) Frequency (Hz)

Fig. t7. Fourier amplitude spectra of cable C under initial condition of the st A-1 mode: (a) longitudinal response at
quarter span; (b) vertical response at quarter sparn.

profile corresponds to the 2nd S-1 mode (Fig. 19(a)), then it evolves to a hybnid profile when
T=20.7 (Fig. 19(b)), up to changing completely into the st A-I mode when T=x22.6 and 24.3
(Figs. 19(c) and (d)). After attaining a further hybrid shape (Fig. 19(e)), the 2nd S5-I mode resettles
again at T x30.4 (Fig. 19(f)). This phenomenon of modal transition repeats itself as long as no
external disturbance is imposed on the cable. Thus, Fig. 19 reveals how the lower order
antisymmetric mode is excited and accommodated into the cable response due to the 2:1 internal .
resonance condition. During the time interval where the vertical profile coincides approximately
with the antisymmetric mode, the cable tension in Fig. 18(c) diminishes by about 43% with
respect to its maximum value, as expected from the linear theory since antisymmetric modes entail
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no first order axial stretching. The obtained results (Figs. 18 and 19) are substantially the reverse
of those in Figs. 15 and 16, with the role of the two involved modes being exchanged with each
other during the transition interval. A difference is represented by the amplitude decrease
(increase) of both the longitudinal and vertical responses occurring in the transition interval when
the first antisymmetric {(second symmetric) mode is initiated. Besides ensuing from the specific
profile changes, it also expresses the circumstance of the 2nd S—-1 mode being more constrained
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Fig. 19. Modal transition of cable C at different instants under inital condition of the 2nd S-{ mode: (a) Tx=11.4; (b)
T=207 (c) T=226;(d) Ta243; (e) T=263; () Ta304.
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Fig. 20. Fourier amplitude spectra of cable C under initial condition of the 2nd S-I mode: (a) longitudinal response at
quarter span; (b) vertical response at quarter span.

than the 1st A-1 one, which entails a lower amplitude of the former with respect to the latter at a
given energy level. Thus, one can conclude that the dominant internal resonance is the 2:1 one
even when initiating the 2nd S-1 mode. The possible activation of the 2nd A-I mode involved in
the 1:1 resonance with the excited symmetric one does not actually occur, since the 2:1 resonance
usually dominates instead of the coexisting 1:1 {14].

To check the frequency of longitudinal and vertical responses in the transition interval, the
Fourier amplitude spectra are illustrated (Figs. 20(a) and (b)). The non-linear frequencies are
equal to 0.107 and 0.210 Hz, approximately, and denote a weakly softening non-linear behavior,
contrary to the first antisymmetric initiation. Phase-plane portraits are also reported in Fig. 21,
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whose variable p in the vertical axis is the linear perioed of the inititated mode. They exhibit
elliptical trajectories of maximum displacements with features of amplhitude modulation of both
longitudinal and vertical responses, as well as of small perturbations of the former. Fig. 21 shows
how the energy of the motion changes through the dominant resonant condition, namely the inner
repeated ellipses indicate the motion on the second symmetric mode, whereas the outer ellipses
correspond to the first antisymmetric mode.

This section is concluded with a further short comment about numerical checks on possible
activation/non-activation of coexisting internal resonances. Another cable yet to be referred (not
reported i Table 1) corresponds to the 3rd crossover pomt (namely, 1/x = 6) of in-plane
frequencies. In such a case, theoretical predictions [31] suggest that the 3:1 resonance occurring
between 3rd S-1 mode (w=0.281 Hz) and st A-I mode (w~0.094 Hz) 1s not activable because the
involved modes are of a different type (symmetric-antisymmetric), whereas the 2:1 resonance
between 3rd S-I and 1st S5-I {(w~0.14]1 Hz) could be activated since it involves two symmetric
modes. Numerical results confirm these predictions, as highlighted in Figs. 22 and 23. The former
shows the overall responses of this new cable due to 3rd S-I initiation; the vibration profiles in the
latter show the accommodation of the 1st S~I mode (Fig. 23(d)) in the response dominated by the
3rd S—I mode (Figs. 23(a) and (), within the transition interval of Figs. 22(b) and (c¢) where the
vertical amplitude at mid-span increases and the dynamic tension decreases.

5. Conclusions

A 3-D model formulation capable of analyzing the large-amplitude free vibrations of a
suspended cable has been developed. According to a m.d.o.f. model of cable, which accounts for
the axial deformation effect, the formulation is not restricted to cables having small sag-to-span
ratios. A finite difference discretization of the equations of motion in both space and time has
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Fig. 22. Dynamic responses of cable corresponding to the 3rd crossover point (A/n=6) under initial condition of the
3rd $-1 mode: (a) lengitudinal response; (b} vertical response: -——— mid-span, ——— quarter span,; (c) cable tension
response: maximum, - munimum.

been performed and numerically implemented to obtain time histories of non-linear dynamic
response. Numerous examples of cables subjected to initial large-amplitude out-of-plane or in-
plane vibrations have been discussed in the case of a specified end tension.
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Fig. 23. Modal transition of cable corresponding to the 3rd crossover point (4/= % 6) at different instants under initial
condition of the 3rd $-I mode: (a) Tx6.2; (b) T=93; (¢) T=11.3; (d) T 153, (¢) Tx19.0; () T=28.2.

Based on the analysis results, the following points on cable non-linear behaviors are drawn, in
the case of out-of-plane nitial displacement conditions.

¢ Symmetric in-plane modes are excited irrespective of the initiating out-of-plane motion being
symmetric or antisymmetric, with the fatter case involving higher symmetric modes.

e Regardless of cable sag condition, the driven in-plane response of a non-resonant cable 1s non-
periodic, unlike the periodically driven response of an internally resonant cable. In turn, non-
linear 3-D coupling is enhanced by the occurrence of an internal resonance condition.

e The cable tension is augmented mostly due to the occurrence of increased in-plane vibration
amplitudes, and is further enhanced when the cable exhibits internally resonant frequencies.

e For a cable sagging significantly, the cable vibration profiles exhibit qualitatively multi-
harmonic responses due to geometric non-linearities: this accounts for the need to consider
m.d.o.f cable models. In addition, the longitudinal response tends to become nearly
comparable to the vertical one, though being an order of magnitude lower than that for
low-sagged cables.

In the case of in-plane imitial displacement conditions, depending on driving mode and on
magnitude of specified initial amplitude, worthwhile phenomena of modal transition may take
place for crossover cables during the ensuing m-plane vibrations. Indeed, due to the occurrence of
a dominant internal resonance, a higher or lower mode can be accommodated into the response
initiated by a single mode, making the cable vibration profile hybrid in some intervals of the
considered time marching. Besides the well-known 1:1 internally resonant cable at the first
crossover, whose first antisymmetric mode is excited when the first symmetric mode is initiated,
various modal transition phenomena occur for 2:1 resonant cables. E.g., at the second crossover,
the second symmetric (first antisymmetric) mode 1s excited when the first antisymmetric {second
symmetric) mode Is initiated: the excited symmetric (antisymmetric) mode may dominate
substantially the cable vibration profile, as well as induce meaningful increase (decrease) in the
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magnitude of cable tension responses. Moreover, the difference in magnitude between maximum
and minimum tensions increases for a cable with significant sag, which highlights the need to
account for strain variation in the cable model.

All of the numerical results obtained for cables at crossovers have been discussed against the
background of the theoretical predictions about activation of 1:1 or 2:1 internal resonances made
within an infinite dimensional analytical framework [31]. Besides highlighting the dynamic effects
entailed by their actual activation, numerical results provide worthwhile information about which
one of the coexisting internal resonances actually governs the system dynamics,
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Abstract

A boundary element method is developed for the bending analysis of plates having nounlinear boundary conditions
and resting on two-parameter ¢lastic foundations. The nonhinearity of the problem arises from the normal bending
moment of plates which is assumed to be nonlinear function of the boundary slepe recognized as a support model with
nonlinear rotational restraint., Thus, the solution can be treated all cases of the boundary conditions ranging from
simple support to completely fixed support. The kernetls of the boundary integral equations are conveniently established
which the fundamental solution for the linear plate theory is used. The surface mtegration of the kernels for the
foundation pressure is evaluated by using the property of Dirac delta function. The system of nonlinear equations is
established and solved by the Newton-Raphson iterative process. The application of high-order elements, i.e. cubic
elements, for improving the solution is adopted. Numerical results of several problems are given to demonstrate the

accuracy and applicability of the proposed method.
© 2003 Published by Elsevier Ltd.
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1. Introduction

Recently, a number of research studies have been
carried out on the problem of plates on two-parameter
elastic foundations using the boundary element tech-
nique. The two-parameter foundation models may be
considered as the Filonenko-Borodich, Pasternak,
Generalized, Vlasov and Winkler models. A brief review
of the past and recent investigations using boundary in-
tegral method and boundary clement technique to solve
the plate problems is mentioned herein. The plates on
one-parameter foundations have been extensively stud-
1ed by many researchers [1-7], and the bending behavior
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of plates on Winkler foundation is the major concerns in
those studies. While the plates on two-parameter foun-
dations have been treated by a limited number of re-
searchers. Balas et al. [8] presented a boundary integral
formulation for plates of any shape, and they employed
Fourier integral transform for the derivation of funda-
mental solutions. Katsikadelis and Kallivokas [9] used
the boundary element method for plates on Pasternak-
type elastic foundation with clamped boundary, and the
same authors [10] presented a boundary differential n-
tegral equation (BDIE) method for the analysis of plates
with free boundaries of any shape resting on bipara-
metric elastic foundations. Chucheepsakul and Chinna-
boen [11] presented the alternative domain/boundary
element technique for solving the plates with various
boundary conditions as well as mixed boundary condi-
tions. All of the aforementioned works have been carried
out based upon the conventional boundary conditions.
These boundary conditions are very important as they
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are the limiting conditions. It is known, however, that in
many structural engineering applications, such as ship,
aircraft, and other structures do not have simply sup-
ported or clamped edges but in general they are re-
strained elastically against rotation at the boundaries. In
the open literature, it has been observed that the plates
on two-pararneter elastic foundations with nonlinear
boundary conditions have not been treated elsewhere
using the boundary element method.

In the present paper, a boundary element method is
developed for analyzing plates with nonlinear boundary
conditions on two-parameter elastic foundations. In the
analysis, the normal bending moment of the plate is
assumed to be nonlinear function of the boundary slope
which is recognized as a kind of support model with
nonlinear rotational restraint. Thus, the solution can be
treated all cases ranging from simple suppert to com-
plete fixity of the boundary. The proposed method uses
the fundamental solution of linear plate theory and
treats the subgrade reactions as unknown domain for-
ces. Thus, the kernels of the boundary integral equations
are conveniently established and evaluated. The tech-
nique for evaluating the surface integration of the
kernels for the foundation pressure is presented. The
obtained system of nonlinear equations is solved by
the Newton—-Raphson method. In integrating over the
boundaries, cubic elements are employed for improving
the solution. Numerical results of several problems are
given to demonstrate the accuracy and applicability of
the proposed method.

2. Formulation of the boundary value problem

Fig. 1 shows a plate with bending rigidity D resting on
the Pasternak model of elastic foundation and subjected

to a transverse loading intensity g. Let S be the interjor of
the plate and I” its boundary. Assuming that the plate
maintains contact with the subgrade and that there is no
friction force at the interface, its transverse deflection
w(P} at any point P € § satisfies the following diflerential
equation:

S
Vw+D o (1)

where p; is the interaction pressure between plate and
subgrade and defined as

ps =kw — GVw (2)

Eq. (1) can be considered in a more general form as
g

Iw=2
w=? )
where L is an operator defined as
G k

- v4 _ ___vZ e 4
L 5V +5 (4)
where

52 az

:_ 9 9 4 _ o2yt

Vicaetge VOO0

b =ER]12{1 =)

is the flexural rigidity of the plate, G is the shear mod-
ulus, and £ is the modulus of subgrade reaction.

The commonly used boundary conditions of the
plates are known to be specified by respectively two
boundary values:

simple support: w=0 and M,=0 (5.1)

w=0 and a—W=0 (5.2)

| d s t:
clamped suppor -

Nonlinear Boundary Condition

Foundation
Pressure

Fig. 1. Plate on two-parameter elastic foundation with nonlinear boundary condition and notation.
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free support: ¥, =0 and M,=0 (5.3)

Bw . .
where w, V,, M, P are the deflection, equivalent shear
n

force, normal bending moment and slope at the
boundary, respectively.

2.1. Nonlinear boundary conditions

Eqgs. (5.1)-(5.3) are the boundary conditions used in
the conventional engineering practice. However, in
general the plate elements of structures behave more
complicated in many practical problems, since they are
restrained elastically against rotation at the boundary
supports. The normal bending moments have been as-
sumed to be proportional to the rotations of these
boundaries with a coefficient ¢ as follows:

ow

=¢ 6
M, Can (6)

The values of ¢ vary between 0 for a simply supported
edge and oo for a clamped edge. However, this boundary
condition in Eq. (6) is still linear, so it does not require
nonlinear treatment. For more general cases, the pro-
portional coefficient ¢ in Eq. (6) is reasonable to be
considered as deformation-dependent. Then the coeffi-
cient ¢ may be expressed as a function of the slope at the
boundary as follows [12]:

c:f(%%j (N

Thus, the normal bending moment M, depends nonlin-

0
early on the boundary slope —a;—v

3. Boundary element method

The integral representation of the solution can be
obtained by combining the Rayleigh—Green identity for
the biharmonic equation with classical Green identity
for the harmonic equation. This identity can be written
as

L / Galibe — w S
=115 /r [wr/,,(u) a gl:M,,(u) +%M,,(W) — u¥,{w)

- Gu-@Jr Gw?]df (&)

on n

where u, w, ¥, M, are deflections, equivalent shear force,
normal bending moment and 8/0n denotes the outward
normal derivative.

Normally, the problem of plate on two-parameter
elastic foundation consists of taking the suitable fun-

damental sclution to Eq. (1), that is a singular particular
solution of the following differential equation

Lu=8(Q—-P)/D 9

in which 8{Q — F) is the Dirac delta function, Q is the
field point, P is the source point. The nature of the so-
lution to Eq. (9) involves the zero-order Hankel function
of the first kind that can not be evaluated easily because
of its mathematical complexity. This formulation has
been used by many authors [5,8-10] who have treated
this problem by the boundary integral equation method.
The formulation proposed herein uses the classical
fundamental solution for plate flexure problem that is

Viu=8(0 - P)/D (10)

and represents the pressure distribution in the founda-
tion interface by the load applied at each node of a mesh
used to discretize the plate domain.

The fundamental soluticn of Eq. (10) is given as

udP,Q):wﬂr):ﬁr"!nr (1)
where r = |?§| and the subscript F denotes the funda-
mental solution corresponding to a concentrated unit
force. Substituting Eqs. (10} and (i1) into Eq. (8), one
gets the deflection for any point £ inside the domain as
follows:

0
Wpes = —/ [w(VF + GNg) — == (M + Gug)
r an

+ M,Ng — V,,up] dr — f f{kup - GViup)wdS
0

+/Q /undS (12)

where the equivaient shear force ¢, normal bending
moment Mg, normal slope Mg and V2ug resulting from
the fundamental solution of Eq. (J1) can be found in
Chucheepsakul and Chinnaboon [11}.

Letting point P tend to @ on the boundary and
taking the limit value of the integral, the following
equation for a regular point P on the boundary is ob-
tained as

3
0.5wper = — / [W(VF + GNy) ~ —a—:(MF + Gur) + M,N¢
r

- V,.up} ar - f f(kup — GV up)wdS
Q

+ L f qurds (13)

In addition to the solution in Eq. (11), a second fun-
damental solution is required. This solution corresponds
to a concentrated unif moment applied at P that is

V“u=a—i5(Q*P)/D (14)



4 S. Chucheepsakul, B. Chinnaboon | Compurers and Stnectures xxx (2003) xxx-xxx

The solution of Eq. (14) is

Um = Wnlr) =

2TD—r]nrcosqb (15)

where ¢ is the angle of rotation of r with respect to a
local coordinate né applied at point P. Substituting Egs.
(14) and (15) into Eq. (8) and taking € in the direction of
the normal, the normal derivative of w at point P along
the boundary 15 obtained:

v _/r [(w— W12) (Vi + GN,)

Onper

—E,E(M + Guy) + M, N, — Vum]df

//(lcu ﬁGVumwdS+/‘/‘qumdS

(16)

where the equivalent shear force #;,, normal bending
moment M,,, normal slope Ny, and V2u,, resulting from
the fundamental solution of Eq. (15} can be found in
Chucheepsakul and Chinnaboon [11] as well. The sub-
script m denotes the fundamental solution correspond-
ing to a concentrated unit moment. Using Egs. (12}, (13)
and (16) with the preseribed boundary conditions, one
can sotve for the unknowns along the boundary and the
unknown deflections inside domain.

3.1. Evaluation of domain integrals for foundation pres-
sure

In view of Egs. (12), (13) and (16), to solve the
problem by the present method it is necessary to eval-
uate the domain integrals:

L / (ke — GV)wdS

The steps to solve these domain integrals are as follows:

Step 1. Discretize the plate domain into m finite panels,

Step 2. Assume the value of the deflection w of each pa-
nel is constant and is defined at the center point
of each panel (see Fig. 2).

Step 3. Use the following property of Dirac delta func-
tion.

/f(x)é(t —tg)dr = f(1y) (17)

then

/Q /(ku - GV)ywdS

= kdau(p, Q) — G4V ulp, 0w (18)

] ® ] ®
® ® ® ®
® ® ® ®—w,
L ® ® o

Fig. 2. Domaig discretization for unknown deflections.

where P is the source point, O; is the center point of each
panel, 4 is the area of each panel, and w, is the un-
known deflection inside the domain,

When the source point P and the field point O; are at
the same point then the domain integrals

/f(ku~GV2
el (%42))
+a’tan™! (g) + b tan™ (g)] (19)

where a and b are the width and length of each panel.

Obviously, along with this method, the integral rep-
resentation for the foundation pressure does not require
the surface integration of kemels by Gauss-Legendre
method, therefore the computer time is considerably
reduced.

4. Numerical procedure

In order to solve the boundary integral equations
(12), {13) and (16) by means of the boundary element
method, discretization of the boundary domain needs to
be done. The boundary of the domain is partitioned into
a number of boundary elements and the associated
boundary functions are interpolated by piecewise poly-
nomials. The problem, thus, reduces to the task of de-
termining the nodal values of the unknown functions by
a point collocation procedure.

Because the problem of plate bending on two-
parameter elastic foundation is governed by a fourth-
order differential equation. So, in order to improve the
numerical solution, the high-order elements such as
isoparametric cubic elements are adopted in the calcu-
lation of the unknown functions along the boundary.
These functions can be expressed as



(a)

(b)

Fig. 3. Cubic elements: {a} continuous elements; (b) discontinugus elements.

$(&) = ZF' 9L (20)

where € varies between —1 and +1, F/{¢) are the inter-
polation functions. The interpolation function of cubic
clements, both continuous and discontinuous elements
{see Fig. 3(a) and (b)), can be derived according to the
procedure suggested by Kane [13] and used in the pre-
vious work [11].

Gaussian quadrature formula is used in the integra-
tion procedure to calculate the coefficients of the nodat
variables. However, in integrating over boundary ele-
ments adjacent o the source peint, some terms of the
integrand become singular, and the integrals ar¢ gener-
ally evaluated in the Cauchy principal value sense.

5. Matrix formalation with nonlinear boundary conditions

A matrix formulation for Egs. (12), (13) and (16} can
be obtained by:

(1) discretization of the boundary into a2 number of ele-
ments with total » nodes, of which the value of de-
flection w, normal slope @w/3n, normal bending
moment M,(w), equivalent shear force ¥,(w) are de-
fined;

(2) discretization of the domain S in m rectangular pan-
els at the middle (nedal points), of which the value
of deflections w are defined.

For Eq. (12) one obtains
(b = sl + B6l{ 52 } + (Colo)
+IDS} + [Eshoms} + (@) (21)
for Eq. (13):
3 0oh = L) + 881 52 |+ chlon)
+ DY Fa} + (B2 (we} + (2} ()

and for Eq. (16):

S —unea+ B0} + c0n)
+[DH{F} + [E{ws} + {37} (23)

Egs. (21)(23) are transformed into the following set of
simultaneous linear algebraic equations:

{Al{w}HB]{ }+[CI{M}+[DHV,.}
- [E}we} + (3} =0 (24)

where [4|, [B], [C] and [D| are 2n 4+ m by n matrices
whose coefficients stem from the curvilinear integrals of
Egs. (12), {13) and (16). [E] is a 2n+m by m matrix
whose coefficients stem from the domain integral due to
the foundation pressure of Eqs. (12), (13) and (16). {g} is
a column vector whose 2n +m components are the
values of the domain integral due to external loads of
Eqgs. (12), {13) and (16).

For nonlinear boundary conditions, which the nor-
mal ending moments have been assumed to be propor-
tional to the rotations of these boundaries with a
coefficient ¢. In this paper, the proportional coefficient ¢
is expressed as function of the slope at the boundary as
follows:

%)
c=c|vé%+cz (25)

Substituting Eq. (25) into Eq. (6), one gets

ow\? Ow
M,-,——-C|(‘a-n) -!-Cz‘a—n (26)

As can be seen, the normal bending moments depends

3 .
nonlinearty on the boundary slepe {a—:} By substitu-

tion of Eq. (26) into Eq. (24) yields the following system
of nonlinear equations as

4] (w} +c|[C]{(a:) } + (|8} +CleD{Z—:}

+[DI{#} + [E){ws} + {g} =© (27)

Supplementary use of one more prescribed boundary
condition, say for the supported plate the deflection
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vanishes {w} = 0, makes the system of nonlinear equa-
tions solvable. These systems of nonlinear equations are
solved by the Newton-Raphsen method starting with
the known linear solution for ¢, =0 and ¢, = const.
until the sufficient convergence is satisfied. The Newton—
Raphson scheme can be formulated from the Taylor
series expansion. The procedure to solve the system of
nonlinear equations is as follows:

Step 1. Rewriting Eq. {27) in the following form:
F(X,)=0 {28)

where X are the unknowns and subscript & is the
number of increment.

Step 2. Expanding the restdual function as a Taylor se-
ries about an approximate solution:

aF
R S

F(Xpn) =F(X,) + [

Step 3. Considering that X;,, is the exact solution, L.e.
F(X;.) =0, the following expression is ob-
tained:;

JAX o = —F(X,) (30)

in which J = 8F/2¢X is the Jacobian matrix and
AX is the vector of increments.

Step 4. Starting from the linear solution for ¢, = 0 and
¢y = const., for each iteration the updated solu-
tion is obtained through the increment expres-
sion
Kipr = Xi + AXp (31)

and the iteration process continues until the
residual vector is sufficiently small.

6. Evaluation of stress resultants inside the plate domain

When Eq. (27) is solved, all the boundary values

(W,Z—W,M,,, Vn) and the deflections inside the domain
7T

are obtained. Then, the deflection w(P) at any point
inside the domain can be obtained from Eq, (12).

The bending moments M., M,, the twisting moment
M, and the shear force 0,, O, at any point of the plate
are expressed as:

2 2
Mlz—D(%—?—{-v%—T) .
X
a (32a,b)

M,=-D al_w+ &

YTOU 2 "

d_, d_,

Q. = —Dav w, ), = -Da—yv w (32¢,d)

otw

Mx_v = *M,,x =D(i - v)é.ﬁ

(32¢)

The second- and third-order derivatives of the deflec-
tions in Egs. (32a—¢) can be evaluated from the com-
puted values of the deflections with sufficient accuracy
using numerical differentiation in which the hyper-sin-
gular domain integrals do not occur. However, the stress
resultants become more accurate when they are evalu-
ated by direct differentiation of Eq. (12) which yields the
singular domain integrals. The technique to convert the
singular domain integrals with kernel derivatives of
the fundamental solution to regular boundary integrals
can be found in Nerantzaki and Katsikadelis [14], and
Katsikadelis and Nerantzaki [15].

7. Numerical examples and results

A computer program based upen some modifications
from a plate flexure program with cubic boundary ele-
ments has been developed. Examples aiming at validat-
ing the formulations of this method presented in this
work are analyzed. Numerical results of examples are
compared with those obtained from analytical or other
numerical solutiens. In all the cases, the boundary has
been divided into 16 cubic elements as shown in Fig. 4,
and the domain has been divided into 15 x 15 rectan-
gular panels. This model uses discontinuous elements at
all corners as discussed by Venturini and Paiva [16]. In
the following examples, the results obtained by this
model are shown to be in good agreement with those
from well-recogmized methods.
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Fig. 4. Boundary discretization with 16 cubic elements.
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7.1. Example 1

This example demonstrates an application of the
proposed method for a plate with nonlinear boundary
conditions. A (2a x 2a) square plate is subjected to a
concentrated load P at center and a uniform load ¢ re-
spectively. Three cases are considered: (a) a plate that
does not rest on an elastic foundation (k¥ = 0,G = 0}, (b}
a plate on Winkler foundation with k = 625D/a* and (c)
a plate on Pasternak foundation with & = 625D/a* and
G = 49D/a*. Each case is analyzed for a simply sup-
ported plate and a clamped plate respectively. For a
simply supported plate, it can be analyzed with respect
to the value of ¢ approaching zero (¢; — 0,c; — 0)
which the results are obtained from the system of non-
linear equations solved by the Newton-Raphson
method. The same analogy applied to a clamped plate, it
can be analyzed with respect to the value of ¢ ap-
proaching infinity {¢; — 00,¢; — oo). The obtained re-
sults, as shown in Table 1 for a plate subjected to a
concentrated load P at center and Table 2 for a plate
subjected to a uniform load g, are compared with the
analytical solution [17] or the boundary element method
(BEM). It is obvious that the results obtained from the
system of nonlinear equations solved by the Newton—
Raphson method are in very good agreement with the
referred solutions, thus confirming the validity and ap-
plication of the proposed method.

7.2. Example 2

This example is intended to show the variations of
the normal bending moments and the equivalent shear
forces between the simple support to complete fixity
of the boundary. A (2a x 2b) rectanguiar plate with
b/a = 1.2 subjected to a concentrated load P at center is
analyzed. A plate rests on Pasternak foundation with the
subgrade reaction modulus with k = 625D/e* and the
shear modulus G = 49D/¢®. For nonlinear boundary
conditions, the coefficient ¢; = D/« is applied to all cases
and the coefficients ¢, are varying between 0, for the case
of linear spring restraint, and 100D/, The influence
coefficients for normal bending moment M, =M, /P and
equivalent shear force ¥, = V,a/P are plotted in Figs. 5
and 6 respectively. Because of using cubic elements
(high-order elements), it can be seen that no oscillation
in the value of the equivalent shear forces occurs along
the boundary supports.

7.3. Example 3

Rectangular {2a x 2b) plates with 6/a = 1.0, 1.2, 1 4,
1.6, 1.8 and 2.0 subjected to a uniform load ¢ are ana-
lyzed. Two cases are considered: (a) plates that do not
rest on an ¢lastic foundation and (b) plates on Winkler
foundation with & = 256D/¢*. The influence coefficients

Table 1

The influence coefficients for deflection w = w/(Pa*/D) of a {2a x 2a) plate subjected to a concentrated load 7

Deflection due to point load: w =

k=0,G=0

x/a

9D/

625D/a%, G

k=

0

625D/a", G

k=

CL®

¢ — oc¥

0.0924
0.3387
0.8720

S8

¢ — 0*

0.1319
0.3669
0.8892

— CL

0.0393
0.3477

Ssk — CL® ¢ — 0 Sst

¢ —

0.0924
0.3387
0.8720
1.9014
32018

0.1319
0.3669
0.8892
1.9129

3.2119

0.0393
0.3477
1.2889
3.1428
4,9836

0.0305
0.3399
1.2870
3.144]

4.9912

0.0306
0.3402
1.2861
31436
4.9856

2.0645
6.8980
13.0078
18.9969
22.4469

2.0641
6.8973
13.0068
18.9958
22.4475

11.7727
23,1653
33.6175
42,1231

11.8121
23.2353

0.8

0.6

1.2889
31428
49836

33.7079
42.2246
46,5083

0.4

1.9014
3.2018

1.9129
32119

46,4026
Clamped support.

0.0

Simple support, CL
*The present method (nonlinear BC).

® The analytical solution (Ref. [17]}.

°BEM (conventional BC).
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Table 2

The influence coefficients for deflection w = w/(ga*/D) of a (2a x 2a) plate subjected to a uniform lead ¢

Deflection due to uniform load: w i‘;ﬁi—}r‘ﬁ_

k

xfa

625D/a*, G = 49D/

k=

=10

625D/a%, G

k=

0,G=0
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CLf
0.4135

0.9040

¢ — oot
0.4135
0.9040
1.2084
1.3328
1.3839

c— 85°

CLs

ssb — CL® e— 07 8sP

c— 0

0.7044
1.1244
1.3497
1.4289

0.7044
1.1244
1.3497
1.4289
1.4680

(.5089

0.5089
1.2126
1.6292
1.7937
1.8281

1.0280
1.53926
1.7770
1.7933
1.7836

1.0292
1.5948
1.7774
1.7948
1.7835

3.0682
9.0755
14.8798
18.8500
20.2433

3.0697
9.0780
14.8828
18.8534
20.2468

21.0487

39.4030

53.3814

62.0611
Clamped support.

21.1430
39.5669
53.5925
62.2981

0.8

1.2126
1.6292
1.7937
1.8281

0.6
0.4

0.2

1.2084
1.3328
1.3839

1.4680

64.9976

65.2428

Simple support, CL
* The present method (nonlingar BC).

®The aralytical solution (Ref. [17]).

“BEM (conventionat BC).
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Fig. 5. The variations of normal bending moment of a plate on
Pasternak foundation with &k = 625D/a* and G = 49D/a? sub-
jected to a concentrated load P.
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Fig. 6. The variations of equivalent shear force of a plate on
Pasternak foundation with & = 625D/a* and G = 49D/a* sub-
jected Lo a concentrated load P.

for bending moment M, = M, /qa’ at the plate center are
shown in Fig. 7 for case (a) and Fig. 8 for case (b) re-
spectively. The results of clamped plates and simply
supported plates are compared with the analytical so-
lution [17] except for those of clamped plates in Fig. 8.
This exception is compared with those obtained from
the finite element method [18]. It can be seen that the
results between the proposed and well-accepted methods
are insignificantly different. In Fig. 7, when the ratio &/a
increases the bending moment at the plate center also
increases. On the other hand, Fig. 8 shows the trend that
the bending moment converges to a constant value when
b/a approaches the large value. This corresponds to the
case of infinite beams resting on elastic foundations.

7.4. Example 4

The purpose of this example is to show the effect
of nonlinear rotational restraint and the foundation
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Bending Moment ot Center : M, = M, /3¢’
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Fig. 7. The variations of central bending moments of plates

that do not rest on an elastic foundation subjected to a uniform
load ¢.
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Fig. 8. The variations of central bending moments of plates on
Winkler foundation & = 256D /a4 subjected to a uniform load 4.

parameter to the central deflection. A (2a x 28) plate
with b/a = 2 subjected to a uniform load g is investi-
gated. In Fig. 9, the variations of central deflections of
plates on Winkler foundation are plotted, Moreover, the
variations of central deflections of plates on Pasternak
foundation with a constant k = 16D/a® are shown in
Fig. 10. As may be observed, the central deflections tend
to be unvaried when the foundation parameters in-

. Cenleal Deflection : w=w/(ga*/ D)
wx10?

04 —T T T—T

— T —

0 0 40 & #0100 W Mt 160 180 e O

Fig. 9. The variations of central deflections of plates on Win-
kler foundation subjected to a uniform load g.

Central Deflection:  w= w/(ge* 7 D)

w1
g
7
= SSEEM)
6 ¢ —>0
& CL(BEM)
H —_————r 3=
—w—oc =0
4 ———c, = Df
3
\
2| 3%
~
1 ) ~5
e S e
04 T T — — T T v T —

n A0 a0 .41 1o 120 140 L60 138 200 b

Fig. 10. The variations of central deflections of plates on Pas-
ternak foundation with a constant k = 16D/a* subjected to a
uniform load 4.

crease. The perspective of the deflection surface for the
plate on Pasternak foundation with % = 16D/a* and
G = 25D/a?, in which the coefficients of nonlinear ro-
tational restraint are given as ¢ = D/t and ¢; = D/a, is
shown in Fig. 11.

8. Conclusions
The boundary element method has been extended to

solve the bending analysis of plates on two-parameter
elastic foundations with nonlinear boundary conditions,

Fig. 11. The perspective of the deflection surface for the plate on Pasternak foundation with nonlinear rotational restraint.
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The nonlinear boundary conditions associated in the
study arise from the normal bending moment of the plate
which is assumed to be nonlinear function of the
boundary slope. The results from the demonstrated ex-
amples show that the proposed method can be used for
analyzing plates on two-parameter elastic foundations
for various degrees of fixity of the support conditions.

Furthermore, by employing the cubic elements in the
calculation would help improving accuracy of the re-
sults. The proposed method is applicable not only to the
plate problems considered hetein, but it can also be
modified to solve other engineering problems such as the
nonlinear heat transfer problem with temperature-de-
pendent convection coefficients, and radiation boundary
conditions.
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ABSTRACT

This paper presents large deformation analysis of flexible pipes conveying fluid in which two %

complicate behaviours are taken into consideration. The first is the coupling between radial
and axial deformations of pipe-wall, and the other the interaction between a deformed pipe
and transported fluid having variable internal flow wvelocity. The coupled radial-axial
deformation theory of the pipes and the continuity theory of flow inside the moving deformed
pipes are developed to undertake these coupling behaviours. All strong and weak forms of
governing equations are obtained by carrying out the virtual work formulation. The hybrid-
finite-element method is used to solve the highly nonlinear static problems, which configure
the initial large deflection and large strain conditions of the pipes. The state-space-finite-
element model for use in analyses of nonlinear vibration and system stability is established as
well as the suggested numerical solution procedures. The numerical studies of the pipes under
circumstances of intense radial loads such as deep-water risers demonstrate that even slight
change of the radial deformation has significant effect in increasing nonlinear responses, and

reducing stabilities of the pipes.

KEYWORDS: Radial deformation, axial deformation, marine risers, flexible pipes, internal

flow, Poisson’s ratio effect.
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1. INTRODUCTION o

Flexible pipes have applications in various fields of engineering industrial for years. One of
those is offshore resource exploration, which use the pipes as a linkage to transport fluids that
are drilled from beneath the ocean floor such as oil, gas, hydrocarbon, and other crude
resources, up to the production platform or drilling ship, as shown in Figure 1.

The literature reviews by Chakrabarti and Frampton (1982), Ertas and Kozik (1987), Jain
(1994), and Patel and Seyed (1995) demonstrate that analysis of flexible marine riser pipes in
most work uses small deformation analysis. Particular motivation of this work 1s focused on
the point that radial deformation of the pipe has not yet been taken into account in the
analysis. Even though recent work by the authors (Chucheepsakul et al. 2003) tries to build up
the large strain models that can take into consideration large axial deformation, the Poisson’s
ratio effect, and the transported mass effect, the work 1s based on the assumption that the
volumetric strain of the pipe is zero, or in other words a volume of the pipe segment is always
constant, in order to simplify consideration of the Poisson’s ratio effect. That assumption
constrains that the radial deformation depends upon magnitude of axial deformation.

However, based on the three-dimensional elasticity theory the radial deformation does not
depend upon the axial deformation (Monprapussorn 2001). In fact, the radial deformation is
the independent deformation induced by the radial loads to interact with the axial deformation
through the Poisson’s ratio effect, as depicted in Figure 2(a). Therefore, for high radial load
conditions under which tﬁe effect of radial deformation is significant enough, the use of that
assumption may lead to some physical errors on the models representing mechanical
behaviour of the pipe. In such case, the coupled radiai-axial deformations analysis, which will
be presented herein, becomes another way out in seeking accuracy for large deformation
analysis of flexible pipes conveying fluid.

Other factors to consider importance of the coupled radial-axial deformations analysis
relate to properties and service conditions of the flexible pipes. The flexible pipes are
composed of highly deformable materials, thus they could be subjected to a higher level of the
Poisson’s ratio effect and large deformations in both axial and radial directions than the rigid
pipes. In service condition, the flexible marine pipes customarily experience high pretension,
and lateral actions of vigorous external fluid pressures. In addition, to raise capability of the
production system, advancement of drilling and pumping technology today try increasing the
rate of fluid transportation, which induces the higher internal pressures. The conditions of the

high radial loads due to the external and internal pressures all distinguish the importance of

radial deformation, and so the essential of the coupled radial-axial deformations analysis.

(8)



This paper presents the mathematical methods and the finite element solutions for the
large deformation analysis of flexible pipes that takes account of the effects of axial
deformation, radial deformation, and fluid transportation. Ingenuity inside the mathematical
models deals with ability to handle two coupled problems: first, the coupling between axial
and radial deformations of the pipe, and second, the fluid-structure interaction due to flow of
transported fluid inside the pipe suffering the coupled deformations.

The former arises due to the cycle of concurrent action-reaction between radial and axial
deformations of the pipe, as depicted in Figure 2(a). The Poisson’s ratio effect stimulates the
manner that radial deformation influences axial deformation, and vice versa. Such behaviour
1s said to be the coupled radial-axial deformations of the pipe. To handle the effect of this
behaviour in the flexibie pipe analysis, the coupled radial-axial deformations theory of the
pipe is developed in Sec. 2.

The latter is the sequence of the former. As the pipe undergoes the coupled radial-axial
deformations, the continuity condition of the pipe flow would constrain internal flow to
change the velocity and the flow aspect in relative to the coupled deformations of the pipe. Of
more interest is as shown in Figure 2(b) that the change of internal flow velocity does induce
respective:

» alteration of internal pressures by conservation of energy,

s alteration of radial and axial loads by conservation of momentum,

e alteration of the coupled radial-axial deformations following Hook’s law for triaxial

stress,

e and then alteration of the internal flow velocity once more by conservation of mass.
These alterations loop the concurrent action-reaction between the fluid and the pipe as the
cycle shown in Figure 2(b). The cycle is said to be the fransported fluid-pipe interaction such
that the coupled radial-axial deformations influences internal flow velocity, and vice versa.
Analytical proof and governing equations of this interaction will be determined in Sec. 3.

The mathematical formulations taking into account the coupled behaviours are developed
by the virtual work approach in Sec. 4. Generalization of the models is carried out enough for
using with any kind of a flexible pipe conveying fluid. The models are applicable even to
biological conveying systems such as an artery conveying blood inside human body, and a
vessel rising water in the xylem of a plant. However, to give a numerical example toward
engineering application, the formulations are applied to the analyses of an offshore flexible
riser transporting fluid in Sec. 5.

The finite-element algornthms for solving the problem are expressed in Sec. 6, where the

hybrid-finite-element method is used for determining the equilibrium configurations of the
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pipe, and the state-space-finite-element method for the eigenvalue analysis, the nonlinear
vibration analysis, and the system stability analysis. Significance of the effect of radial
deformation obtained from the coupled radial-axial deformations analysis is evaluated in Sec.

7. The main assumptions used in this work are as follows:

(a) Pipe matefii\l\s are linearly elastic.
(b) The pipexis thinswalled.

{¢) The radial stress o, in pipe wall is negligible (for plane stress problems).
(d) Size of cross-sections of the pipe could change.

(e) Shape of cross-sections of the pipe does trivially change.

(f) Flattening of bent tubes due to Brazier’s effect is negligible.

{g) Shear deformation is insignificant (for a high-slenderness-ratio pipe).

{h) Plane section of the pipe remains plane.

(1) Internal and external fluids are inviscid, incompressible and irrotational.
(3) Fluid densities are uniform along the pipe length.

(k) Internal flow is the one-dimensional plug laminar flow.

() The effect of rotary inertia is negligible.

{m) There are no residual stress and strain in the pipe wall in the undeformed state.

For effectiveness to presenting mathematical models for the large deformation analysis of
flexible pipes, this work employs the following notations:
(1) Notations identifying state of a parameter. The subscript (o) and the upper sign bar (™)
notify the equilibrium state and the undeformed state of the parameter, respectively. For
example A4, ,A,,,A, are the cross-sectional areas of the pipe at the undeformed, the
equilibrium, and the dynamic states, respectively.
(ii) Notations identifying property of a parameter. The subscripts (e), (i), and (P) denote the

properties of the external flmd column, the internal fluid column, and the pipe, respectively.

For example A4, .4 .4, are the cross-sectional areas of the external fluid column, the internal
fluid column, and the pipe, respectively.

(ii1) Notations identifying coordinates of a parameter. The subscript (n) denotes the normal-
tangential coordinates. For example (u,.v,) is the displacement vector in the normal-

tangential coordinates, whereas (u,v) the displacement vector in the Cartesian coordinates.
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(tv) Notations identifying behaviour of a parameter. The subscripts (o) and (d) indicate the

static and dynamic behaviours, respectively. For example (#,,v, ) is the static displacement

vector, and (u,,v,) is the dynamic displacement vector, whereas (u,v)}=(u,,v,)+(u,,v,) is

the total displacement vector.

In order to define a position, motion and deformation of the pipe and transported fluid for

the large deformation analysis, the below physical descriptors are adopted:

(a) Geometric descriptors. The Cartesian coordinates (CSC) of the horizontal and vertical axes

(x,y) and the intrinsic coordinates (1SC) of arc-length and rotation (s,0) are used as the

global geometric descriptors. The normal-tangential coordinates (NTC) are employed as the local

one. For providing flexibility in the choice of the independent variable of the problem, this

work adopts the symbol @ e {f,xo,x, VoV,  ¥5.5,.5,0,0 9} to represent any independent

o0?

variable, and the superscript (') to denote &( )/d0a .

(b) Kinematic and deformation descriptors. Chucheepsakul et al. (2003) exhibited that there
exist the three kinds of kinematic and deformation descriptors, namely the total Lagrangian,
the updated Lagrangian, and the Eulerian descriptors. In this work, the updated Lagrangian
descriptor (ULD), which is referred to as the coordinate that follows motion and deformation of
a deformable body with respect to the position, direction, and size of the body at the

intermediate state (or the equilibrium state herein), is adopted.

2. THE CONSTITUTIVE EQUATIONS OF THE COUPLED RADIAL-AXIAL
DEFORMATIONS OF THE PIPES

A pipe segment against external and internal pressure fields of both static and dynamic
pressures is considered, as shown in Figure 3(a). Firstly, the pipe is at rest and unstretched at
state-1: the undeformed state. Subsequently, when the pipe is subjected to time-independent
loads such as gravitational force, steady flows of external and internal fluids, the pipe
undergoes large displacements to the static equilibrium condition at state-2: the equilibrium
state. Finally, under dynamic actions of the disturbances due to unsteady flows of external and
internal fluids, the pipe sustains vibrations around the static equilibrium condition at state-3:
the dynamic state. Schematics of axial and radial deformations are depicted in Figure 3(a) and
3(b), respectively.

The state-transitions from the state-1 - the state-2 - the state-3 result in changes of

(a) the arc length from ds - ds, - ds;



(b) the curvature angle from d6 - dé8, - dé;
(¢) the cross-sectional angle from ¢ - ¢, - ¢;

(d) the average radius of cross section of the pipe from R - R, - R.

Consequently, further properties of the pipe also modify as follows:

(e) The radial displacement alters from W =0 - w, - w by the relations
w,=w+(R,—R),w=w,+(R—R)=w+(R-R). (lab)

Note that the term R — R expresses the dynamic radial displacement w, .

(f) The axial strain at the neutral axis alters from £ =0 - ¢, » ¢ by the relations

g,,=§+{1—£], g:e€,+[f’i—1]=§+dsd_d§. (2a,b)
A

]

Note that the term ds/ds, —1 indicates the dynamic axial strain &,. Equations (2) yield the

formulas of the arc-length variations:

das ds

=ds = . 2c
1-¢, o 1+s, (2¢)
(g) The circumferential strain alters from &, =0 - g,, - &, by the relations
_ Rd¢ Rd _  Rdg¢-Rd¢
Eg0 =& + 1- ¢ s Eg = &g, t _i_- :‘c".‘)+¢—£' (Baab)
R()d¢l) Rﬂd¢0 Rf}d¢()

For thin-walled pipes without twist in 2D-analysis, 8¢ = d¢, = 8¢ ; therefore, equations (3)
become
w, w w
EE?U = RT( ’ 8(‘9 = 59() +("§LJ = :;E:“ (4a’b)

(4 L]

where the term w, / R represents the dynamic circumferential strain &,, .

(h) The radial strain alters from &, =0 - £, » &, by the relations

F3 :%, £ =&,+ an, =d—w. (5a,b)
" dR dR, | dR,

Note that the term dw, / dR, represents the dynamic radial strain &,,.

(i) The sectional properties of the circular pipe alter from

sectional diameters:

D D, =D +2w D, =D, +2w, (6)

(24



sectional areas:
A, =xD} /4 A, =a(D,+2w,) 14 A =r(D, +2w) /4, (7
sectional area of the pipe:
A, =A,-A > Ay =A,~A, > A, =A — A, (8)
moments of inertia:
1,=nD}/645 1, =a(D,+2w,) /64 1 =nr(D,+2w)" /64, (9)
moment of inertia of the pipe:
Io=I -1 -1,=1I1,-1,1,=1I -1, (10)

in which the subscript « €{e,i}, the subscripts ‘e’ and */" indicate the properties due to

‘external’ and ‘internal’ surfaces of the pipe, respectively. For example D, and D, are the

external and internal diameters of the pipe, respectively. Equations (6)-(10) yield the formulas

of the sectional-properties variations among the three states:

Ba: Dau— — Daﬁ . (11)
(I+w, /R,y (+w/R))

R S — (12)
(I+w, /R,y (1+w/R_)

I Lo L : (13)

“T(+w,/R) (+wiR)Y

() The curvature alters from ¥ =0 .. x, - &, as well as the curvature radius from
R LR, - N by the relations:

:d_g_,x' = :ﬂ K l—de (143.-C)
ds

E = 4 L ? = -,
R, ds, R ds

1
R
(k) The internal forces alter from axial force: N.=0. N_ - N_, from bending moment:
M.=0-M_ - M., and from shear force: 0. =0-0_ - Q..

(1) The strain energy alters from U =0.U, - U .

Derivation of the constitutive equations of the coupled radial-axial deformations of the
pipes involves developing respectively (1) force-stress relations, (i1) stress-strain relations, (iti)

strain-displacement relations, (1v) force-displacement refations, and (v) strain energy expressions.

2.1 THE FORCE-STRESS RELATIONS

For convenience in handling hydrostatic pressure effect, analysis of underwater structures

needs transformation of structural system from the real to the apparent systems. The real
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system that is subjected to actual axial force, actual weight, and external and internal
hydrostatic pressures can be equivalent to the apparent system experiencing apparent axial
force and apparent weight, as previously demonstrated by Chucheepsakul et al. (2001, 2003),
and Monprapussorn (2001).

In the real system of the pipe, the force-stress relations can be expressed for the actual

force and moment in the axial direction:
N.= [o.d4,,. M. = [o.Rd4,, . (15a,b)
and for the actual force and moment in the circumferential direction:
N, = [o,dd, . M, = [o,RdA,, =0. (16a,b)
where A, is the surface area of the pipe at the reference state.

In the apparent system of the pipe, the force-stress relations can be expressed for the

apparent force and moment in the axial direction:
N, = [o.d4,, . M., = o Rdd,,. (17a,b)
and for the apparent force and moment in the circumferential direction:
Ny, = [o,dd,, . My, = [0,,RdA,, =0. (18a,b)
Note that the moment M, = M, =0 because of the assumption (e) that shape of the pipe-

section 1s trivially changed.

2.2 THE STRESS-STRAIN RELATIONS

From the elasticity theory, in cylindrical coordinates one has the actual stress and strain
formulas in the axial direction:

E

o. = m[(l—v).e: +ve, +ve, ], €. = %[0': -vo, —vo,], (19a,b}

the actual stress and strain formulas in the circumferential direction:

~ E
1+ v)(1-2v)

o [(1-v)e, +ve. + ve,_], &p = %[0'19 -vo. -va, ], (20a,b)

and the actual stress and strain formulas in the radial direction:

E

1
o, =————|(1-v)e, +ve. +vg, |, €, =—|o, —vo.—-vo,|. (21a,b)
(1+v)(1—2v)[ +veo] E -]
where E is the elastic modulus, and v Poisson’s ratio. By using the assumption (¢) that o, =0

for plane stress problems of a thin-walled pipe, the actual stress and strain formulas of the thin-

walled pipe can be derived as

o.= . [g__ +V€3], £. =%[cr_ fvcrg], (22a,b)



E 1
Oy ::_——VZS[EG +ve ], & :E[Gg ~vo_],
o, =0,¢, =—%[o: +0'5]=—1J:—V[5: +ge].

In the apparent systemn, the apparent stress-strain formulas are given by

St
k-

o,=ke. =0 —-vo,, . =

a
Oy, = L&y =0, —vO., & =%,
Vv
o-m :O" gr :“(I_V)E[O-:a +O-&I]'

2.3 STRAIN-DISPLACEMENT RELATIONS

(23a,b)

(24a,b)

(25a,b)
(26a,b)

(27a,b)

Denoting the rotations of the pipe-section from the state-1 to 2 by dg, = d8, —d6 and from

the state-2 to 3 by deo, =df - db

o’

can be expressed as
ds. =(R+R)dO = RdO + R(dO, -dp,),
ds., =(R,+R)d6,,
ds. =(R+R)dp, +dB,)=RdO+ R(dp, +dB,).

the undeformed and deformed arc-lengths of pipe wall

(28a)
(28b)
(28¢)

From equations (2c) and (14): Rd0 =ds =(1—¢,)ds,. Rd@ =ds =(1+¢,)ds, and R d6, =ds,,

therefore equations (28) may be rewritten in the form

—d _ _
ds. =(1-¢g,)ds, +R(—$—d¢“)=(l—e,} +Rxk, —Rdi”i)ds ,

e}

ds

L2 o

dS:n h (1 * %")dsﬂ = (1 + R(JK{J )dSrJ *

€

d
ds. = (1+&,)ds, + R(dp, + mi =(+e, +R ‘if”"

(i o

where
dp, dé, g@i ds

[¢]

ds ds, ds ds,

[ 4]

dp, _do ds _df,

ds,  ds ds , ds

7]

dp de, do, _
T TV k(i he,)-R(-6).
dS ds ds K ( gd ) K ( Eu)

@ 0 0

k,—k(l-g,),

=x{l+e,)—-x,.

2

+ Rk ,)ds

(29a)

(29b)

(29¢)

(30a)

(30b)

(30¢)

Using equations (4), (5), (29), and (30), the strain-displacement relations can be obtained as
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_ds. —d5. e+ Rx(l+e)-(1-w/R)i(1-¢,)]

£. 31
’ dg_‘l‘) 1+ RF)K(I ( a)
w dw
Ey=—, & =—. 31b,
6= g dR, ( c)

2.4 FORCE-DISPLACEMENT RELATIONS

By neglecting the higher order term R x, in equations (29b) and (31a), and substituting

equations (22a)-(27a), and (31) into (15a)-(18a). together with some manipulations, one

obtains the force-displacement relations in the apparent system:

N:u = EA}’{JS > M:a = EIP() [K(]' + gd ) - (1 - W./ R)E(l - gn )] H] (32a9b)
Nﬂa = E ISBM,\‘U » M&; = 0 » (32C,d)
and the force-displacement relations in the real system:
1 1 vEA, w M
N.= N_+VvE |g,d4,, |= ——| N +—L— | M =—2_ 33a.b
- l—Vzli a _[9 -'u:' ].—V_I: zu R” i! - l—Vz ( a )
1
N-‘} =—‘)|:N8(r +VE _‘-g:dA,\'r)il’ MH :0 (33Cad)
1-v*

2.5 STRAIN ENERGY EXPRESSIONS

The internal virtual work done by the strain energy of the pipe is derived as

oU = [{oe} {oldv,, = [[0.06. + 0,08, + 0,2, 1V,
1 (34)
= || [o.6c.d4,, +—,(qu” + [Eg,day, |z, | ds,,
-0F 1—1° :
where V¥, is the volume of the pipe at the reference state. Inserting equations (31) into (34)

together with neglecting the higher order term R« in equation (31a), one obtains

U = [{N.&" +M.5lo ~ 1 - w/ R |+ —2 W (B s ae. 33)
JU . 1-v:| R R

3. THE CONTINUITY EQUATIONS OF FLOW INSIDE THE COUPLED
DEFORMATIONS PIPES

Derivation of the continuity equations of internal flow that undergoes the effect of the coupled
radial-axial deformations of the pipe, involves developing the following relations:

(i) relations between the pipe deformations and the local kinematics of the internal flow,

(ii) local-global kinematics relations of the internal flow, and

(iii) relations between the kinematics and pressure loads of the internal flow.
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3.1 THE RELATIONS BETWEEN THE PIPE DEFORMATIONS AND THE LOCAL KINEMATICS OF THE

INTERNAL FLOW

As shown in equation (12), the effect of the coupled radial-axial deformations is to change
cross-section area of the pipe among the three states. From principles of fluid mechanics, this
effect engenders the consequence that the flow inside the pipe has to vary the velocity to
maintain conservation of system mass according to the continuity condition

AV, = A, (5,0, (5,) = At (s.0y+ T

where V.V,

= a constant volume flow rate, (36)
V..V, represent the internal flow velocities at the undeformed, the equilibrium, and
the dynamic states, respectively. If the internal volume of a pipe element &V, represents the

control volume V¥, , the time rate of vV, is derived as

v

av a(adv ) aav ‘ids =&, me = 6'“11? .
at vlr) sr: ! , (37)

in which the expression of the volumetric strain of the pipe &, is denoted by

o . 4v, —dV,  Ads-Ads (1+w/R)Y(l+g,)-(1-¢))
" av A, ds, (1+w,/R)’

L]

(38)

Utilizing equation (37), the relationship representing changes of internal flow velocities of

transported fluid among the three states can be obtained from equation (36) as

AV =AYV =AV /(1-¢)). (39)
This interprets that the effect of the coupled deformations of the pipe stimulates the steady
uniform flow (8V, /@ = 8V /3t = 0) of transported fluid at the undeformed state to change
into the steady non-uniform flow (0V, /8a # 0, oV, /0t =0) at the equilibrium state, and
then become the unsteady non-uniform flow (8V, /8a # 0,0V, /8t # 0) at the dynamic state.

3.2 THE LOCAL-GLOBAL KINEMATICS RELATIONS OF THE INTERNAL FLOW

Consider Figure 4. As the internal flow velocity V., e{V 14

,,,,V} of transported fluid has
changed due to the effect of the coupled radial-axial deformations, the velocity ¥, and the

acceleration a, of transported fluid would alter as a result, according to the relationships

A% =\7 \7 Q&. ﬂ‘__?i‘_f
: o s Pa

DV, DV, N DV, _ 2[@] + _!Z(Kw_' 5&}
"ot bt Dt Di\& ) Dt

— azfp +VJ-‘." azfr _'_Kfi azfp +Vn’ azfi’ + _@_[VH'J +r’,1-'r i(VFP] or,, (41a)
o s fadt| 5 | dadt 5 8a’ or\ s s dal\ s )| Ba

a, a,

(40

s Oa
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. afr:,,, +(2V{_,,Jaff~,, +[V,_.’,,J' azi,z. Vie ViVip Ve Vis" 51‘*,,’ @1b)

al"' 2 "2 2 3
ot s oadt s lele1 5 5 s s oo
m (2) 3 4 i3) 6

where V. is measured with respect to the moving frame of the pipe in local coordinates xyz,

V.. 1s measured relative to the fixed frame of reference in global coordinates XYZ, and the
position vector of the pipe-wall elemept is described in Figure 4 as

Fp =T gy + By irzn = X Y+ (R AW, (42)
It is worthwhile to note that n_ is the unit normal vector in the radial direction, and in

equation (41) the term (1) is the transported mass acceleration, (2) the coriolis acceleration,
(3) the centripetal acceleration, (4) the local acceleration due to unsteady flow, (5) the
convective acceleration due to non-uniform flow, and (6) the relative accelerations due to
rotation and displacement of the local coordinates.

In the 2-D CSC, at the dynamic state:
Vip =V,, B = xi+yi+(R+wi, , (43a.b)

I B A L N S U e S B VL (43c-e)
Supposing that the higher order term (R +win| = —RB’EL‘ = —Rs'xﬂ — 0 is negligible, and
utilizing equations (43), equations (40) and (41) can be obtained, after manipulation, as

V, =l+vxs i+ [+ vy s is e v s (44)
12 ot ' .
o L2 (22
s'os" s s Dt )s
1 2 r2 ) ' s DV I .
PR
5 5 5" $ Dt )s
o2 () [ B o
Wt | = W + | W + - -7 T L |
s s s Dt s 0y

r 2 P er xl I , xi? .

Note that i, =(y—,4—]x”—[—)%]y",and -— =—[ ,J: jx +[T]y . {(46a,b)
s s s K} s s
In 2-D NTC, at the dynamic state:

) ~ a—- 'y az—- e L L3

V=V, F =+ (R4wWi,, =< =5't, —< =0 h+s"1, (47a-d)
oa oa”

o < =g R+ L, OF. _voa+s't. (47¢.1)
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Similarly, supposing that the term (R +w)i! = -RO%t =-Rs'xt, - 0 is negligible, and

utilizing equations (47), equations (40) and (41) can be rewritten in the form

V. =an+@, +V)t+[w+vw/s'h_, (48)
) ) Vs
EF:[iin+2V,9+KV,2}n+[ﬁ"+ 2 +ﬂ}
s' Dt
2 5 (49)
R
+W+—'W+—’— W+—' —'j—nwn(..
Ry § s Dt s 5

At the equilibrium state, the time-dependent terms vanish. Thus, one obtains ¥, =V,

(x,y,wy=(x,,y,.w,), (5,6)=(s,,8,), u, =v, =0, and equations (44), (45), (48), and (49)

consequently become

in CSC’ V = (Kuxr) /s (V'(lyf) /S:J )j + [V'ﬂ w:' /S:J }ﬁ('o M (50)
VJ‘ r n ! ) V Vr r .
{( (Jyl) J ": HJ' N xr’J }i + {_[’(r)"xn } V’“; + .'n, 10 _J_’}%}j
rJ Su Su Sﬂ Sn
(51)
i) I/r:;u V',jS: L (e
Sr? - Sg_‘{ wu nr.'u’
in NTC" V! 2] ]Ymt::» + [I/m wu / s‘u :Fir:n * (52)

b)
vyl V., vV, v.s
= _ 2|a w' o 0 " w0’ o w o rla -
aFr) - [K(JI/i'rJ ]n() + r tn + I Wu + 2 - r1 wo nc()‘ (53)
SU SO S\’} SU‘

3.3 THE RELATIONS BETWEEN THE KINEMATICS AND PRESSURE L.OADS OF THE INTERNAL FLOW

Based on the control volume approach of Computational Fluid Dynamics, Chucheepsakul et
al. (2003) showed the derivation that the internal fluid flowing through the moving,
deforming control volume of the pipe induces dynamic pressures in form of the inertial force

per unit pipe-length to act on the pipe wall at the dynamic state:

f=ma,, (54a)

1

and at the equilibrium state:

f,=m, (54b)

wS oY

where the transported mass per unit pipe-length at the reference state is m,, = p,4,,, in which

p, 1s the internal fluid density.

1

From the relations in equations (39), (40), (41), and (54), the transported fluid-pipe
interaction shown in Figure 2(b), can be explained as follows. Firstly, the coupled

deformations due to & and w induce the alteration of the local internal flow velocity
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Vip € {V,,Vm,V,} following equation (39). Later, the local velocity induces the global velocity

V, and the global acceleration a, following equations (40) and (41) due to the relativity of
motion of transported mass on the moving frame of the pipe with large displacements. Then,

the global acceleration a, induces the dynamic pressure load f as equation (54a). Finally,

the pressure load f induces the pipe deformations & and w by the force-displacement

relations as equations (32)-(33), and the loop of the interaction is repeated concurrently.

4. VARIATIONAL FORMULATIONS

Based on the constitutive equations proposed in Sec. 2, the continuity equations derived in

Sec. 3, and the method of virtual work, the coupled radial-axial deformations formuiation of

flexible pipes conveying fluid has the following procedure:

Step 1: Create the equations of internal virtual work by using the strain-displacement, the
force-displacement, and the energy-force-displacement relations from equations
(31)-(33), and (35) in Sec. 2

Step 2: Express the equations of external virtual work induced by the apparent weight, static
and dynamic pressure forces, and inertial forces of the pipe and transported fluid.
The continuity conditions from equations (39), (41). and (54) are applied to the
external work done by the inertial force of transported fluid.

Step 3: Apply the principle of virtual work to generate weak and strong formuliations of the
system.

In all steps, the effects of parameters changes among the three states must be taken into

account by using equations (1)-(14).

4.1 INTERNAL VIRTUAL WORK

Based on the basic formulas of differential geometry, and the assumption that the pipe 1s
straight in the undeformed state, one has
F=0'=0,s5" =x"+y?, 8 =x"y-xv)s". (55a-c)
Substituting equation (55a) into (32b), and taking the first variation of equations (55b) and
(55¢) together with coordinate transformations of the displacement vectors, one obtains
M. =Bx.B=El, (l+¢,). (56a,b)
in CSC: &' =[£—j5u'+(i:]§v',' (57a)

'
5

5
s = (Do | o D)+ (2] -2 o o[£ )- 53 o 5
Y 5 R S S S 5 s STUS
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(58a,b)

L

in NTC: & =& —0'u,. 50’ = {M}
oa 5

Inserting equations (56)-(58) into (35), and then taking integrations by parts twice, the three

Form 1: in CSC,

oU =

forms of the internal virtual work can be expressed below:
Bx §u —{

N

1-v)s' 1-vis? s

+ { 5v {(N - B"})(i:} B S( ﬂ&)}da (59a)
(l I-v- '\ s 1-v* s

+ [VN EAP"W}é‘w}da,
1- R

rn|><

inNTC, 86U = J.{[vNﬂ']é‘un +[N.Jov, +[M.] o0+ S [‘”N =3 EAP;’W}é'w}da. (59b)

2 2
4 Rn Ra

Form 2 (after the first integration by parts): in CSC,

SU =[M_56]" —;—J{Hé'u LY.V + S:’,{VN:f'+EAf’;*W}5w}da, (60a)
1-v| R R
in NTC,
8U =[M.80]" + [{-|0.]6u, ~[N.0')6u, +[N.]6v, +[0.0']6v, ) dar
T (60b)
N J{ s, ’ liVN__“ +EA”’W}5w}da.
1=V R, R
where H_zN_(x—:]—Q_{y,} V.= N[ ]+Q[ } 0. = Q=",,Q__(,=(B") (61a-d)
) s 5 l-v~ §

Form 3 (after the second integration by parts): in CSC,

SU =[H.5u+V.6v+M.50]" + j{[—H;]au [V Su_ {"g =2 E‘jé;iw} 5w} da, (622)
., A ;

a 7] 2

in NTC,

SU =[N.6v, —0.6u, + M:c?ﬁ]: + j{[Q_ﬁ - N.O'|Su, +[-N.-0.6'|6v,}da

S:J VN"U EA} “W (62b)
+J ; L+ ———|ow da.
M4 R R

0 12

Note that x'/s"=sinf, y'/s'=cosf and x =8'/s' = (x"y' —xy")/s".
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4.2 EXTERNAL VIRTUAL WORK

The external virtual work done by the force vectors f,, £, f,,, and f,, which are exerted by

P2

the apparent weight w,, the static pressures f,, the dynamic pressures f,,, and the inertial

forces of the pipe and transported fluid respectively, is expressed as

oW = £, +1, +1, +1, |- 6u,5da, (63)

where f,=—w,j=(w,sin@)h+(-w, cosO)i. (64a)
f =/fh, (64b)

£ = fid + Sind+ b, = i+ fud+ £, 0, (64c)

f,=—[m,a,+ma,|, (64d)

U, —wi+Vvj+wh, =un+v i+wi.. (64e)

Note that m,, = p,4,, is the pipe mass per unit length at the reference state, p, is the pipe-

material density, and a, is the acceleration vector of the pipe.

The non-vector forms of equation (63) may be expressed as:

in CSC,
oW = I{s:, [fix = Mputy, —mmaf,r_‘]éu}da
+ I{s:, [—wa S M, G mma,,l_] c?v}da (65)
+ I{S:) [ o= Sine = Mp Qe — 11,84, ] o w}da,
in NTC,
SW = I{sf’) |w, siné + £, —my,a.,—m,a,, |6u, }da
+ _[{s{', [-w,cosO+ 1, —mp,a,, —m,a, ]6v, }a’a (66)

o

'
+ J{ Sr} I:f,n - me- - m."uaf’m' - mma.’-'m' :I 5W}da

o

4.3 ToTAL VIRTUAL WORK

Relying upon the principle of virtual work, the total virtual work of the system is zero:
o =0U —6W =0. (67)
Since there exist the three forms of SU as shown in equations (59), (60), and (62), the three

weak forms of the total virtual work thus are obtained as
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Form 1: in CSC,

(g g (LA g Pt ]
+j (1-v)s'\ s 1-vi'\s') 1-v's"\s da  (68a)

in NTC,

on = J{—N:H’ - S,', [wa sind + an My, py — M4y ]} Junda

+ {[N |6V, — s, [-w, cos@ + f,, —my,a, —m,a,,|6v,} da

(68b)
EA, ,
+J = [v a szaw]_su [fﬂ “ Frowe = Mpulp, —m,,,aﬁnc]}éwda
+ [{[Mm.]66'} da
Form 2: in CSC,
m =[M.001 + [{H.6u' =5, [ frun =My, p, =m0, | 6u} dax
+ J-{V__é vi—s! [—wH + foy — MG, —m Ay ] o v} da (69a)

+I{l rv [V?{r Ef{ w} [f S e = MGy, "m,(,a;.-,,t.]}c?wda,

in NTC,
om =M. 86

+ I{—[Q |6u, =[N0 +s,(w,sind+ f,, —mya,, —m,a,,)|6u, } da

j{ |6v, +[Q9 = s, (-w, cos@+ f,, —m,,a,, ~m,a,) ]5v }da (69b)

. vN_, EA4,w o,
+ - 2 ~--’.r + "1” - ‘Su - e m ’na me mma ne §Wda
J{I—V—[ R R_ :l [jp jH PattF F :‘}

Form 3: in CSC,
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S = H_,§u+K__£v+M_.66’ +.|‘ [—H;—s(',(fo—m,,”a,,.‘,—mma,,_r):léu de
O @, e )

r f 3
+ _I.< |:_V': -5, (_wa + va - m.”ua."j' - mman'-f\‘ ‘,I:| oV da

“ %)
s, |vN_, EA,w ,
+ J..J ]_ _ Vz [ ié- + }‘ép‘_) :r— Su (f{) - ‘fh'm‘ - mPr)af’nc - mir)a.‘*hc') 5Wda’ (70a)

(6)
in NTC,

£

o =| N.ov, —(Q.0u, +M_56
[ e
(7 (8) ()

f ’ ] : 5
+ _[‘ I:Q: - N:9 -3, (wtl' s 8 + .an —Mp,dp, — ML, )] 511" da

| )
(70b)

+ _[< [—N; —~Q.0' =5 (-w, cos@ + f,, —m, a, —-m,a,, )] ov, >da
(10)

r

s, \vN, EA, w| |,
+ J. [ == + }'ézr - Su l:fp - me - mPoaPnc - mlr)a}-hcil (S-Wda'

1-v| R

6)

In equations (70), the terms (1), (2), (3), (7), and (8) denote the boundary conditions of the
horizontal forces, vertical forces, moments, tensions, and shear forces, respectively. The terms
(4), (5), (6), (9) and (10) indicate the resultant forces in the horizontal, vertical, radial, normal,

and tangential directions, respectively.

4.4 STRONG FORMULATIONS

The strong formulations are achieved by considering that all the terms in the right-hand side
of equations (70a,b) are linearly independent. Therefore, they must be zero if equation (67) 1s
to be valid. Because the virtual displacements du, ov, dw. du, and v, are nonzero, the
terms (4), (5), (6), (9) and (10) in equations {70a,b) have to be zero. As a result, the governing
differential equations describing the nonlinear behaviors of the pipe can be obtained as

ZF\' = O : -H; - S:J (fH.\' - ml’ua.“.\' - mr'ua.f-.r) = 0 . (71)
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EFV = O . _V-z, - S; (‘_wa + ny - niPaaPy _m!any) = O > (72)
s. | vN, Ed,w , 3

z"er‘ = O 1 _ V'_) l: Ro + ]% :l— So (fp - anc _mPoaPnc _‘mmaFm) - O ’ (73)

TF, =0: Q.- N,0' -5, (w,sin@ + fy, ~my,a,, —m,a,)=0, (74)

LF, =0: -N;-0.0' -5, (_wa cos @ + fy, —Mp,ap, —miaaFt) =0. (75)

In appendix A, by using the vectorial method it is demonstrated that equations (71)-(75) are
identical to the equilibrium equations of the forces in the horizontal, vertical, radial, normal,
and tangential directions, respectively, as shown in Figure 5. This aspect confirms the exact

agreement between the variational and the vectorial formulations.

5. APPLICATION TO DEEP-WATER-RISER ANALYSIS

The deep-water-riser, as shown in Figure 6, is the flexible pipe for which the effect of
coupled radial-axial deformations can be important. As a long-spanned slender structure, a
large amount of top tension is applied to maintain functionality and equilibrium. Behaviour of
the coupled radial-axial deformations takes place in such a way that the heavy axial load
induces the pipe to undergo large axial deformation, which yields significant radial
deformation as a consequence of the Poisson’s ratio effect, as described in Figure 2(a). On the
other hand, hydrostatic and hydrodynamic pressures inside and outside the pipe exert the
intense radial loads to the riser pipe wall. The radial loads magnify the radial deformation of
the pipe, which produces the axial deformation by the Poisson’s ratio effect, as described in
Figure 2(a).

The mathematical formulations presented in Sec.4 can be directly put into operation of the
deep-water-riser analysis. The external loads imposed by an offshore condition, such as
apparent weight, hydrostatic and hydrodynamic pressures, and inertial forces, should be
applied to equations (64). Their expressions are determined as follows.

5.1 APPARENT WEIGHT
Based on the apparent tension concept (Chucheepsakul et al. 2003) the apparent weight in

equation (64a} is expressed as
wa = (lOPAPa - )OeAen + piAv‘o)g ’ (76)
where g is the gravitational acceleration; o, p,,and p, the densities of pipe material, external

fluid, and internal fluid, respectively.

5.2 HYDROSTATIC PRESSURES

The internal and external hydrostatic pressures induce the force acting on a unit length of the

thin-walled pipe as shown in equation (64b). The expression of the force is given by
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Jo=27(R,p,—R,p)E(Y, - ). (7
where y, is the vertical distance measured from the sea surface to the bottom support of the

riser, as shown in Figure 6.

5.3 HYDRODYNAMIC PRESSURES

Based on the coupled Morison equation (Chucheepsakul et al. 2003), the expressions of the
hydrodynamic forces in equation (64¢) can be derived in the following forms:

¢ the force in normal direction

S ==Coti, —Co i, +CL Vi +Cr V. (78a)
o the force in tangential direction
S =—Co¥, —Co ¥, +CpL¥Va +Cr V, (78b)
e the force in radial direction
Jre =Cow+CL W+ CL Ve +C V. (78¢)
¢ the force in horizontal direction
S ==Cx=Co i =Co p+Cp Vi +2C, VoV +CroaVi +Co Vi, (78d)

s the force in vertical direction
. ¥ % . ~ ¥ . < ¥ 2 * > N 3 B -
.fHJ = ﬁ( uy - (’uqyy - C €yx) X+ ( I)_\‘VH_\ + ZCIJ.\’_\'J VH,\‘I/Hl + ( 1) VHr + C A VH)‘ * (786)
where

C* = C;)l? [2VHH - I'ln]’ C.:)l: = O'Spr:DeuCDu‘Sgn(yn)’ yn = VH

eyn n u (793-(:)

are the coefficient of equivalent hydrodynamic damping, the coefficient of drag force, and the

velocity of the external fluid relative to the pipe in the normal direction, respectively,

C* = C:)l [ZVH.' _".)n]’ C:): :O‘SpchoIC.')r'Sgn(},f) s Ve = VH.' -V

et

(79d-1)

are the coefficient of equivalent hydrodynamic damping, the coefficient of drag force, and the

velocity of the external fluid relative to the pipe in the tangential direction, respectively,

C ; = C:")m‘ [2 VH

ane HC

+ 1V.V:I’ C;)nc' = O'SPeDL'r)C,')u'Sgn(}/m') - ym* = VHm.' + w" (79g-i)

are the coefficient of equivalent hydrodynamic damping, the coefficient of drag force, and the

velocity of the external fluid relative to the pipe in the radial direction, respectively,

1ify =20 .
sen(y) = : 79
egn(y) ][—1ify<0 (79)
defines the signum function, 7
(’Y: = pc Auac‘u ? C‘:.’ = pu: Auoc-'.U : (79k’1)

are the coefficients of added mass and inertia forces,
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* _ * '_;l Ed - 2 * _ & 3 "t . 3
Cpe =C,pc08 8+C,, sin"0,C,, =C; cos"0+C,, sin” 8. (79m,n)

are the coefficient of equivalent hydrodynamic damping and the drag force coefficient in the

horizontal direction,
L]

L ® P * bl _ * .3 * 3 .
Cop =Copsin" 0+C, cos" 0, C, =-C, sin"0+C, cos” 8 (790,p)

are the coefficient of equivalent hydrodynamic damping and the drag force coefficient in the

vertical direction,
Copy =(=C,,, +C,,)sinfcos6: (79q)

egn vefl

is the coupling coefficient of equivalent hydrodynamic damping in the x— y plane,
Ch =—C, sinfcos’ 8+ Cy, sin’ Bcosh, (79r)
Clypr = Cpy, sin® @eos@+C), sinfcos’ 8. (79s)
are the coupling coefficients of drag forces in the x - y plane.
Note that D, is the reference diameter of the external fluid column; C,,, and C,, the normal
and tangential drag coetficients; C, the added mass coefficient; and C,, =1+ C, the inertia

coefficient. It is seen that all the equivalent hydrodynamic dampings induce highly nonlinear
aspect of the marine pipe vibrations.

In this study, the horizontal cross flows of current and wave are scoped, and the dynamic
pressure fields are assumed uniform around the cross-section of the pipe, but vary along arc-

length of the pipe. Therefore

Vie =V V.V, =0, (80a,b)
Vi =V =V, cos8, V,, =V, sinf, (80c.d)
where V_ =V _(y) is the current velocity, and V, =V, (y.1) the wave velocity. The profile of

the current velocity may be expressed in the form of polynomial function (Larsen 1976) as
V. - V[y—”L] , (81)

YotV

where ¥ is the current velocity at mean sea level. and 7, and y, are defined in Figure 6. The

index # can be varied from 0 to 1, depending upon the current profile. In this study, n=1/7
is employed for the tidal current.
For the regular incoming wave, the velocity of a water particle according to Airy’s wave

theory could be expressed as

V.=V, coso.t, (82)
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where ¢ is time, and @, the wave frequency. For deep water ((y, + ¥,)/ L 2 0.5), the velocity

amplitude V, =V, (y) is given by

V., =c,m, el RS (83)
where the wave amplitude, the wave frequency, the wave number are respectively:
=H/!2, 0, =27x/T, k=2n/L, {(84a-c)
in which H 1is the wave height, T the wave period, and L the wave length.
Substituting equation (80b) into (78d.e) yields

fun=—Cox=CL %=C. 5+Ch V2 +CLV,. . (85a)

223 Cyxy

f=-CyCyC

cqr X +C an + ( V (85b)
Equations (78) and (85) can capture the hydrodynamic pressure effects of both steady and
unsteady flows. These equations are exploited for dynamic analysis of the riser. However, for
static analysis only the steady flow effects will be encountered. By eliminating the unsteady

tlow effects in equations (78) and (85), one obtains the hydrodynamic force equations for riser

statics as
e =Croe Vo c0860.) . fr = C,‘,,,, (V. sin@)?, (86a,b)
Sinco = Cimeo Voo €056,07 0 Frr = CriVns Frto = CoioVen - (86c-¢)

where
Ch =05p,D,C, . Ch =05p,D,7C,, .C, =05p.D,C,,. (87a-c)
C,., =C;, cos 8 +C, sin" @ . (87d)
C;,_U_‘l” =-C; o SINE COS™ 49 -+-C,)m sin” 8 cosé (87¢)
Vi =V, {W} : (87h)
Y+,

5.4 INERTIAL FORCES

The inertial force of the system described by equation (64d) depends upon the acceleration
vectors of the pipe wall and of the transported fluid, which is measured with respect to the
fixed frame of reference XYZ, as shown in Figure 4. Appendix B shows that even if the pipe
wall has a motion over the moving centerline of the pipe in the perpendicular direction, the
coriolis acceleration has no effect, and the acceleration of the pipe wall in equation (64d) can

be simplified to

a,=u, =X+ Yj+Wn, =i n+Vt+wn . (88)
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For the transported fluid, the acceleration expression has been given in equations (41). For

simplicity, this study uses the profile of internal flow velocity in equations (41) as

Vip =V, =V, (s,)+V,(5.0), (89)
where V¥, is the steady part of the velocity. The unsteady part of the pulsating flow V, may
be written as

V,=Vt+V coswt, (90)

where ¥, is the linear velocity amplitude, ¥, the wave velocity amplitude, and @, the

forcing frequency of internal flow.

6. FINITE ELEMENT SOLUTIONS
In this study, the vertical coordinate « =y, is employed as the independent variable for the

problem solution. The finite element formulations are derived from the weak formulation
or, =0 for the static analysis, and 7 =0 for the dynamic analysis. The finite-clement-
solution methods for the coupled radial-axial deformations analysis are based upon the hybrid

method for the nonlinear static analysis, and the state-space approach for the natural

frequency and time history analysis of the nonlinear vibrations.

6.1 NONLINEAR STATIC ANALYSIS VIA THE HYBRID-FINITE-ELEMENT METHOD

When the constraint conditions and corresponding field variables need to be applied along the
interelement boundary of the finite elements, the finite-element formulations are referred to as
the hybrid-finite-element models, and the method to solve them is called the hybrid-finite-
element method. The answer to the question why this method is essential for the nonlinear
static analysis of extensible flexible pipes is as follows. For the extensible analysis of most
structures, the static axial strain in the weak formulation is determined from the strain-
displacement relation such as

g, =(ds, —ds)/ds, . 91)
However, for extensible flexible pipes with large displacements this approach will not be
successful, because in practice the pipes do not have the undeformed configuration ds for
reference. The equilibrium state is the only initial state or the first state of extensible flexible
pipes, which is unknown initially, while the undeformed state is the ideal state, which never
appears in the real situation. The way to solve this problem is using the hybrid method by

establishing the static axial strain from the constitutive equations (32a) and (33a)

N_'(h’) — (l—v-)N:U _ V;’(} . (92)

e ]

gl’ f] =
EA,  EA
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where the axial force N_, as the field variable is determined from the constraint condition of
the force equilibrium (75). It should be noted that the hybrid method is unnecessary for the
dynamic analysis of the pipe, because the dynamic axial strain can be determined from the
strain-displacement relation &, = (ds —ds, )/ ds, ., in which the reference configuration ds, is
known from the static analysis.

In Sec. 4, from equations (68a,b)-(70a,b) there are at least the three forms of the weak
variational formulations to be used. This study employs equation (68a). By applying a = y,,

and neglecting the time-dependent terms in equation {68a), the hybrid formulation for

nonlinear static analysis is obtained as the objective function:

5”0 = '[ —B';_D u:5u: + N;-o - 280?0 gl x{:é‘u:’ + S:) [—f:l{m + mmal-'mlé.un dy«;
S a=v)s, s. (1=v7)s) ' '

S:) EAF i) Vgr; wﬂ ' o _
+ ‘I][w_ |:RTU + R_jil + So I:_fpu + me-o + mioa.’-hw ]}5Mr}dyn - 0? (93)
subjected to the constraint condition derived from the force equilibrium equation (75):
7, w
N:o = N:.' + J‘I:QZ(}Q(: + S::(_ _l:“ + AfH.lu - m:n)a.'-l'fj ]:}d o7 (94)
.s.“
where from (61c), (77), (86¢.,d), (51), and (53):
B , 3 ’ I‘Hl _
Q'u = ——{:—F Srrrg: - S::en + M * .fpo = Zﬁ(lem - pc Reo )g(yr - yu) * (95a’b)
T (l=-v)s) R,
2 . (_‘ T[C x'3 4
|f‘Hm‘n = O'SPL' DI:U(-".’)H (I/L‘u /S:J )- * .fH_\‘u w OISPGDL’U[ f:;” + 1:’3 - JI/L; 2 (gscvd)
St‘)_ Sf)
Vo | o [Vl Vast] K,V ViV, Ve
Ao = {_"{L} W, +|: "””"” - m;’u”:| 0y gy = 1 + r ¢ e = ' : (gse_g)
S(J S(; S(J’ S() S(J Srl e
Note that for ¢ =y,
B,=El,. x, =22 sing, =2 cosp, = - (96a-d)
S{i Su Sn
= ’ " L r _ 2 . r '”8
sy =lex L sn =20 0 =2t g) = e (96e-h)
S{J ‘1)- Sn‘)k
Along with the essential and natural boundary conditions of the simply supported pipe
at v, =0: u, = O (essential), | = 0 (natural). (97a.b)
andat y, =¥, u, = 0 (essential), », = 0 (natural), (98a,b)

and N_, =7, (essential),

(98¢)
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the system of equations (93) and (94) is the boundary value problem (BVP) having the three

dependent variables (u, . w,, and N _, ) and the one independent variable ( y ).

Since w, has the same order with the circumferential strain (g, =w,/R ), thus it is
sufficient to approximate the displacement field of w, by the third order shape functions. To
constraint all boundary conditions of #, from equations (97) and (98), the fifth order shape
functions are used for approximating the displacement field of #,. Thereby, the displacement
vector is expressed as 7

b=, wi =[NJd,}. (99)
where the generalized coordinates of the nodal displacements of each element are

| a
{don}: {unl u:)l u::l wul W‘ cu u"" u:l W,y W’ } ’ (100)

al 02 02 02 T

and the shape function matrix at the equilibrium state is

Note that ¥, and N, are the coefficients of the third and the fifth order polynomial shape

functions, respectively.
From equation (100), the number of degrees of freedom per element is 10. Based on

equation (67) and the calculus of variation, one has

10 bl ﬂ.(ﬂ
o' = ——&d,, =0. 102
o ;[ad{”" } oni ( )
Equation (102) yields the ten equilibrium equations for each element
(e)
%y 0 fori=1.2....10. (103)
od

Of

Substituting equations (99) into (93}, the matrix form of equation (103) can be obtained as

B rlugl | N, 2Bu” r|x
— - |IN" ¢ = — Ca N’ ?
. [(l—vz)sf}[ 3 {0 }J{ 5! (l—vz)sf}[ ! {0}
I< | s [— o +m,.ﬂaF_m] 1 de” =0. (104)
0 +[N” ! siEA,, Ve, Wy |, o ["-f v F sma ];
1—V2 R“ .Rj o < po 7 Hueo e e J

The system of the objective function (104) subjected to the constraint equation (94) and the
boundary equations (97) and (98) can be solved by using the algorithm of the hybrid-finite-
element method, as described in Figure 7. For solving the nonlinear-algebraic-finite-clement

equation, this study utilizes the modified Powell hybrid algorithm based on the MINPACK
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subroutine HYBRID1 (More et al. 1980). The stopping criterion for the numerical iteration is

nuprdfs
. e . . 2 .
to minimize the Frobenius matrix norm of the load error: AR, [ = > AR

=i

2
o

., where the load

error {AR,}={R,}—[K, 1{D,} for the equilibrium equation [K,]{D,}={R_}, in which

{D,} and {D,} are the calculated and the exact degrees of freedom.

6.2 DYNAMIC ANALYSIS VIA THE STATE-SPACE-FINITE-ELEMENT METHOD

From equation (67): o7 =0, hence equation (68a) may be decomposed into the following

three nonlinear dynamic equilibrium equations.

e -2
om, =0: I(I—V')S' s' Tol=vi s ) vt s da=0, (105a)

a '
-5, [fH.\' —Mp,dp, — WL, A, }SM

- Bri [X—J&'# (N - BK‘))[y_’}+ BK‘W sj[X_) S’
5;;‘:0:] (1-v7)s'\ s Tol-vis 1-v- s s da =0, (105b)

1' "
- ‘So [_ wr_l + fH1 - m!’r)a."’_\ - mluaﬁ' b‘/

S:J VN:H EA ’.;;W ' > g
§7rnc = 0 : I{l N Vz { R + 1{[2 i|— S“ [fp - _me‘ - m},ua,,m, - mmal,,—m ]}EWda = 0 B (IOSC)

€

For the vibrations with infinitesimal amplitudes, the axial force can be approximated by

EA ! L3 r + r_t
N_ = Nﬁ“ + .IU’ xnu j.ynv + de ) (106)
’ I e s R

o &

By substituting equations (45), (77). (78c), (85a,b), (88), and (106) into equations (105a-c)
together with neglecting the higher order terms, eliminating the time-independent terms, and

using the relations that

Bx® (x' Bx s" (' Bx 5 e

- 7| | = | = XY+ (Y = xT) 107a)
1_V_[S,] — S,_[s.] Ty S U B
Bx® [y Bx " (x Bx » o

_ |4+ T = ’2 _xr_ xrr_ 2xr r ” 107b
1—12 S:] 1_y? g2 (S'j (1—V2)S'4 [(y ) ( y)y] ( )
f{s;m,,,lf,"ﬂ,}éuda{s’: m,,,VFéux—,} - [s‘: m,,,VfﬁuJi, da  (107¢)

A A S 1, a, Y Ry

t

J{s:,mmlf,{—’of Hﬁvda:[s—';mmlf,l&vl’fJ - (S—':mmV,z&vJ Llda  (107d)
5 R N a, o, A 5

r- e "
. Xd+ Yy x"y - x'y"
§lm— k=

§ 5

(107¢,0)

equations (105a-c) can be expressed as
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o r2 " ot ” (N-u m I i r
B (o -y o | Y
(l - V )SrJ S”

EA, x4 (x W ‘w,
!r; ( o ) ,E uyu)v + VX 51{'
(l—v-) S{i‘ R(JS(J
B)Ko L 4 £2 '2 ” !
- ;2; [(zxu y(? )u + (yn- - x(i- )v bu
J (I-v)s, \d
[ C u thwu Cu;nuv + C:).\'H(ZV;-I/W + I/u: ) + C;:!u V.w }5“

&

2 xrl \\ Yl y:
] 7] o ot e |
+ Su (ml'n + mm )u + mlr}K{l[T“ 5 3 Ju - mn‘uV;u ';‘: v 5“
, s

X}
o /

Yo 7

L
+Sl‘ ( 1} f(JVYflJ] ’ + mHJxU DV 5’,‘

ki
s s, Dt

[l

a,
m Vu'
+ L] &‘ — 0’

5
. (108a)

[LLR ) ’

Bn o " r2 L4 " (N- -m V )v,
vl il €9 1) + xn- v + —'—-_«
(1»v-)s:-[( oy s,

EAI’u (x:iy{rj )u’ + (y:a: )v’ V_V:)Wf 5\)'
(1-v?) s R 5!

4] (a7}

B,k 12 Iy, LR '
- 1 02 N £ [(y,,_ —x, -(2x,y W ]{5‘)
(I-v7)s, de

—seivoc b Cl 2V, + V)

o quu Lq\m ¢
@ P rr
x, v, 2y
r Ko -t
S: (m.” +mm )V mme[ 3 J + mme[_'__ 3 v 5"’
SrJ S(: 5“
mV V! y DV
' i i o m © il
+5, 3 v 4 ;
s, s, Dt

miie sl Ly
(108b)

5

]

2

§

o

r Foor LA
Sy EAI’U xnu + Yo v wd
. 1% +-— 1w,
VR, R

o

3

m.lu Vl(: 4 r ’ ~
o {T wd :|&’vd - S{J [ZE(R"' p.l - R.q.p« )g(gv)]dwd

e '
- 2 _V;, i 7 <

1 + S(IJ {( el (.f + (‘ ey (I I)HLU (ZV Kl + Vu_ ){_,J + (' Mo Vu [_‘_} &vu‘ da
SU S{l

2m V m V v m V. s"
s ! o | whww e e '
SJ (ml'u +mm)w4f +( Sf Wu, + wd &uli

[~ —

Sl'(

0 ©

6]

it i} ! LA r LN 3
S,3 (xuwuu + ynu}nv ) EW:I

o

{m W DV,d m,V,
H}V:

=

L5, } =0. (108¢)
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Along with the boundary conditions at y, =0

u(0,1) = v(0,1) = 0 (essential), (109a)

u"(0,1)Y=v"(0,7) = 0 (natural), (109b)

andat y, =,: u(y,.t) =v(y,.t) = 0 (essential), (110a)
uw'(y,.t) =v"(y,.t) = 0 (natural). (110b)

and N_ =T, (essential), (110c)

and the initial conditions at time 7 =0:
u(y, 0 =u,, v(y,,H)=v ,w,(y,0=w, (111a-c)
u(y,,00=0,v(y, H=0.w,(y,.0=0, (111d-H)
the system of partial differential equations (108a-c) is the initial-boundary-value problem,
which can be transformed to the system of ordinary differential equations by performing the

following three steps of the finite element method.

Step 1. By separation of variables, the displacement vector is assumed as

di={u v w, =[N, o} (112)

where the generalized coordinates of the nodal displacements ot an element are

: H
— t ” . ' L Fo r L . J n y i
{du}“{”l Wy W vy vy VW W U, Uy Uy Y, T, Yy W, Wz} . (113)

and the shape function matrix at the displaced state 1s

Nsp Nsy Ns3 0 0 0 0 0 iNg Neg Ny, 0 0 0 0 0
[N]z 08 0 Ny Ny Ny 000 10 0 0 Ng Mg Ny o o . (114)

0 0 0 0 0 G Ny .’\'32§ o] 0 0 0 0 0 Ny N

N

34
Note that N, and N, are the coefficients of the third and the fifth order polynomial shape
functions, respectively.

Step 2. Substituting equation (112) into equations (108a-c), the element equations can be

obtained as
[ml’ej ]{a” } + ([crr.')] + [gfw ]){d” } + [kf"f ] {d” } = {fwJ } N (1 IS)

where the element mass matrix 1s

i 00
(m]= [{[NY s, (m,, +m,, +C,) 0 1 0|[N]yda. (116a)
a 0 0 1
the element hydrodynamic damping matrix is
‘ j:(,l.\m j:c'i.\'_'m O
[¢]= [{IN]"s) Clpo Coe O [[Nlda, (116b)

*

“ 0 0 C

Teghen



the element gyroscopic matrix is

x'’? Xy W
o ol o

- 12 ! 0
Sn SH
x:yr yrl

(€)1 o 0 ’
[g“']= [{IN)'m,p, -=222 2-22 O|N')ida,

@ 5, 5,
[ toor

xuwu .yuwu o)

2 [ =

|_ Srj Sn B

the element stiffness matrix is
(KT =iy 1+ (S 1+ 3 T+ [ T+ [0 T+ KL,
in which the bending stiffness matrix of the fourth order derivative is

r2 [
yr) _xn o O

¢ B ot r2 »
[kgﬂ)] = J- [N ] 15 xnyn xh‘ 0 [N ] o,
(1=v")s,
“ 0 0 0

the bending stiffness matrix of the third order derivative is

2x()y{1 yl")z - x:): 0
G21= [N —,4 Yl -x? -2xy, 0|Nda.
~v)s,
0 0 0

the axial and circumferential stiffness matrix of the second order derivative is

1 0 0 1 00

V!

N’ S“ 01 0 —L;, ©lo 1 0[N
1o o o] |00 1
[k“’]—J'< . (da,

. x, xy, 0

o

- FEA, )
HINT o Byl o 0N
N 0 0 0

the circumferential stiffness matrix of the first order derivative is

0 0 x

3 [ZV2 EA ”V 'rj
ks = [{IN"] e |® 0 ¥ [Nder,

o 0 " 0 0 O

the axial and circumferential stiffness matrix of the first order derivative is

A I T
[NJ'| PeZelo o 1 |- "elete g o o |[N7]

1o 0 1 o0 01

k$']= | ot

g, 0 0 0

. EA,
+[N]’———-~“’VR 0 O[N]
Gkl v o
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(116c)

(116d)

{l16e)

(116f)

(116g)

(116h)

(1161)
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' Ed 0 0 0
[N]7 —2e=2re g 0 O[N]
(=vOR; 0 0 1
k)= 3 da (116j)
. 00 0 |
+ [N] g 27@-8:) (pl Rr'() - p(.‘REr)) 0 0 0 [N]
010
the element hydrodynamic excitation vector is
;o m x, DV
VYV, +V+C, et T
.')\'u( ) Uu W S:} Dt
, 7 DV
() = [INY 54Ch @0, +¥2) = Tude DYy da.  (116k)
[¢3 SO Dt
“m” (ZV V + V ) ( oV [y:; } mm'“)u DI/;(I
s, s, Dt

Step 3. Assembling the element equations, the global system of finite element equations

can be obtained as

[M]{D,} + ([C]+[G]{D,} +[K]{D,} = {F}, (117)

nelem

where [D,] = Z [d,1.{D,}.{D,} are the global nodal displacement. velocity, and acceleration
=1

nelem

vectors, respectively; [M]= Z[m“']] the total mass matrix:

=]

nelem
[C]= > [¢""] the total
=1
nefem
Z[g“"] the total gyroscopic matrix; [K]=
=]
nefem
the total stiffness matrix; and [F]= Z[f “'] the total hydrodynamic excitation vector, in
=1
which nelem 1s the number of finite elements.

nelem

2 K]

=1

hydrodynamic damping matrix; [G]=

To obtain the state space formulation, which is central to the development of nonlinear
vibration control theory, the second order model of equation (117) must be transformed to the

first order model. To achieve this, the following state vector is defined:

{X,,}={D”}, (118)
v,
where V.1 =(D,}. (119)
Substituting equation (119) into (117), one obtains

[M]{V, } +([CT+[G]{V, } +[K]{D,} = {F}, (120)

The system of equations (119) and (120) can be cast into the matrix form
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H P L]

Equation (121} can be manipulated in state space form

{X,} =[Al{X,} + (B}, (122)
where the coefficient matrix or state transition matrix is
0 I
[A]= o " , (123a)
-M"K -M(C+G)

and the deterministic input matrix is

0
{B} = {M_,F} . (123b)

The initial-value problem of the highly nonlinear state equation (122) in association with
the initial condition equations (111) can be solved to determine the nonlinear responses by the
direct time integration. The scheme for the explicit time integration is described in Figure 8.
The drawback to the explicit methods that they are conditionally stable due to the critical step
size of time is overcome in this study by employing the Gear’s stiff method that includes the
automatically adaptive time-step-size algorithm (Gear 1971). This algorithm automatically
improves the time-step-size during the integration process so that the absolute error criterion:

rfllakfs(error, ) <tol (124)
is achieved. In this study, rol = 107 is set forth, and the corresponding adaptive time-step-

sizes are in the range 10~ to 10™" sec.

For free vibrations, equation (122) is reduced to
{X,}=[Al{X,}. (125)
which has the harmonic solution in the exponential form
{X,}=e"{X,.}. (126)
where A =a tiw is the complex eigenvalue, @ the natural frequency, and {X  } the vector
of complex coefficients or initial modal weights. Inserting equations ([26) into (125) and
dividing through by e”, the general algebraic eigenvalue problem is obtained as
[AlX,}=A4{X, ], (127)
in which the matrix [A] is the linearized real, nonsymmetrical matrix. This equation can be

solved to determine the eigenvalues and eigenvectors by the implicit double-shifted QR
algorithm based on the EISPACK routine HQR2 (Smith et al.1976). The algorithm to form

the finite-element equation (127) ts demonstrated in Figure 9.
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7. THE EFFECT OF RADIAL DEFORMATION ON THE FLEXIBLE PIPE
BEHAVIOURS

This section is to demonstrate how important slight change of radial deformation is to
influence behaviour of the flexible pipes, especially under condition of intense radial pressure
loads. The deep-water riser with the input data, as shown in Figure 6, is the case studied. The
hydrostatic pressures are varied, so that the riser undergoes approximately 1 mm change of
the maximum static radial displacement. The parametric study is to indicate the effects of
radial deformation on the nonlinear static behaviour, natural frequency, and nonlinear

vibration behaviour of the riser pipe.

7.1 EFFECTS OF RADIAL DEFORMATION ON NONLINEAR STATIC BEHAVIOUR OF THE PIPE

As the maximum internal hydrostatic pressure at the bottom support of the riser is varied from

0 - 9.806 — 18.0430 — 23.5344 - 28.2020 MPa (N/mm?), the maximum radial displacement

W, al the same position is increased from —0.661— —0.378 - 0.140 > 0.019 - 0.155 mm,

as shown in Fig. 10(a). Consequently, the nonlinear static behaviour of the riser is affected by
the effect of radial deformation. as can be summarized as follows.

{a) Radial deformation has the effect on increasing the large deflection of the flexible
pipe. As seen in Figure 10(b), ~ | mm escalation of the radial deformation of the pipe
increases the sag of the marine pipe significantly, and the pipe changes from taut to slack.

(b) Radial deformation has the effect on enlarging the rotation of the flexible pipe
particularly at the large sag region, as shown in Figure 11(a).

(¢) Radial deformation has the effect on reducing the axial strain and axial force in the
pipe, as shown in Figure 11(b) and 11(c), respectively.

(d) Radial deformation has the effect on diminishing the statical stability of the pipe. As
previously found, the axial force is reduced by the effect of radial deformation, so the axial
stiffness is decreased as well as the buckling capacity of the riser system.

(e) Radial deformation has the effect on amplifying the bending moment in the pipe
especially at the large sag portion, as shown in Figure 11(d). This agrees with the effect on

enlarging the rotation aforementioned in (b).

7.2 EFFECTS OF RADIAL DEFORMATION ON NATURAL FREQUENCIES OF THE PIPE

As the maximum radial displacement is varied increasing up to ~1 mm, as shown in Fig.
10(a), the natural frequencies of the riser are altered by the effect of radial deformation, as can

be summarized as follows.
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(a) Radial deformation has the effect on diminishing the natural frequencies of the pipe.
As shown in Figure 12(a), the natural frequencies of the pipe are decreased by an escalation of
the maximum radial displacement. When the radial displacement increases continuously, the
eigencurves of the fundamental vibration-mode tend to intersect the internal fluid density axis
at the point where the natural frequencies are zero, and buckling of the pipe due to the effect
of radial deformation can be induced.

(b) Radial deformation has the effect on reducing the dynamical stability of the pipe.
Consider the complex plane of the Argand diagram displayed in Figure 12(b). It is found that
a continuous augmentation of the maximum radial deformation motivates the pipe to
experience ‘the statical buckling’ or ‘the divergence instability’ at the Pitchfork bifurcation
point. Based on the Liapunov indirect method (Meirovitch 1997), the complex eigenvalues of
the pipe as shown in Figure 12(b) have all zero real parts, therefore free vibrations of the
linearized system of the flexible riser pipe possess stable oscillations and critical behaviour.
As a result, the stability of the linearized system cannot be guaranteed for the nonlinear
system of the pipe. Instead, the stability of nonlinear vibrations of the pipe should be
investigated by the phase space analysis based on the solutions of the nonlinear equations of
motion, including the fully nonlinear hydrodynamic forces.

(¢) Radial deformation has the effect to the mode shapes of the pipe. Figures 13(a), 13(b),
and 13(c) demonstrate the effect on the fundamental modes of free vibrations in the normal,
tangential, and radial directions, respectively. It is seen that the radial deformation affects
significantly the mode shapes of the normal and tangential free vibrations, but trivially for the

mode shapes of the radial vibrations.

7.3 EFFECTS OF RADIAL DEFORMATION ON NONLINEAR VIBRATION BEHAVIOUR OF THE PIPE

As the maximum radial displacement is varted increasing up to ~1 mm, as shown in Fig.
10(a), the nonlinear vibrations of the riser pipe 1s influenced by the effect of radial
deformation, as can be summarized as follows.

(a) Radial deformation has the effect on increasing nonlinear vibration responses of the
pipe. Before increasing the radial displacement, the pipe has the nonlinear vibration responses
in a time period 0-60 seconds, as shown on the left-hand side of Figure 14. After increasing up
to ~1 mm maximum radial displacement, the maximum vibration amplitudes obviously grow
larger than the former, as shown on the right-hand side of the same figure.

(b) Radial deformation has the effect on reducing steadiness of the vibrations of the pipe.
Consider Figures 15(a), 15(b), and 15(c), which demonstrate the time histories of the normal

vibrations of the top ( v, = 1800 m), middle ( y, = 1000 m), and bottom parts ( y, =400 m) of
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the pipe, respectively. It is found that over a long-term period, normal oscillations of the pipe
with the low radial displacement are developed to the steady motions, while the pipe
experiencing the ~1 mm radial displacement increase, still exhibits the vibrations with more
unsteadiness. The unsteadiness 1s remarkably great at the bottom part, where the pipe has a
large curvature. It is worthwhile to note that the response frequencies of the pipes are equal to
~ 22 /10, which are close to the wave frequency 0.6, therefore, the normal oscillations of the
pipes are ordinary harmonic.

(c) Radial deformation has the effect on reducing the stability of motion of the pipe.
Consider Figures 16(a), 16(b), and 16(c), which demonstrate the trajectories of the normal

vibrations of the top ( y, = 1800 m), middle ( y, = 1000 m), and bottom parts ( y, =400 m) of

the pipe, respectively. The figures show that as a time period passes all the trajectories, which

start at the initial condition of the zero normal state speed #, =0 and the zero normal
displacement #, =0, tend to the orbits.

Based on the definitions of “the orbital stability’ or in other words “the stability in
sense of Poincaré’ (Meirovitch 1997), it is revealed that the motions of the pipe with the low
radial displacement (as shown on the left-hand side of Figure 16) are orbitally stable. This is
because all trajectories remain in the neighborhood of one another for all 1 > ¢, in which 7, is
the reference time. Differently, the motions of the pipe experiencing the ~1 mm radial
displacement increase (as shown on the right-hand side of the same figure) are orbitally
unstable, based on the grounds that the trajectories tend to leave the neighborhood of the
others. This result indicates reduction of the stability of motion of the pipe by the effect of

radial deformation.

8. CONCLUSIONS
This paper proposes the novel method for large strain modeling of flexible pipes transporting
fluid. The new ideas of the method deal with using the coupled radial-axial deformations
theory to derive the structural stiffness equations of the pipes. and taking account of the
effects of hydrostatic and hydrodynamic pressures of internal flow by employing the
continuity theory of pipe flow. By adopting this approach, large strain formulations of the
pipes can be undertaken more accurately than ever, and the effects of the coupled radial-axial
deformations, and the influence of fluid transportation can be simply taken into consideration
in the analysis and the design of the flexible pipes.

The results of parametric study show that the effect of radial deformations is very

important for all behaviours of the flexible pipes under severe pressure condition such as
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marine riser pipes. Therefore, the coupled radial-axial deformations analysis is highly
recommended for accuracy of the analysis and the design of those pipes. It is concluded that
radial deformation of the pipe has the influences on increasing large deflections and nonlinear
responses, and reducing statical and dynamical stabilities of the pipe. Consequently, if radial
deformation is designed excessively, the pipe may experience either poor serviceability or
buckling due to overloading. Therefore, the designers are encouraged to examine the effect
carefully in the design of the high-pressure pipes. It is hoped that this study will be of some
value in the analysis and the design not only of the flexible pipes, but also of any kind of long
slender structures that pursue rigorous treatments of extensibility, radial deformation, and

transported mass.
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APPENDIX A: NEWTONIAN DERIVATION
Consider Figure 5(a). The force equilibrium equations in the horizontal, vertical, normal, and

tangential directions are derived as follows.

IF =0: (H.+Hda)-H. +5,(fy, —mp,a, —m,a, )da=0.
—H! =5, { fu =~ Mp,ap, —m,a, )=0. (A.1)
XF, =0: (V. +Vida)-V. +s,(-w, + fy. —my,ap —m,a, Jda=0.
V! =5\ (=W, + fy —mp,a, —m,a, )=0. (A.2)

—Q0.+Q'da— Q:)cos[%—daJ +(N_+Nlda+ N__)sin[%daJ
xF =0 pe (A.3)
+ S:J [Wﬁ Sin(g + Eda} + .an - m!’ua."u - mma!-'n ]da = 0

(N.+Nlda- N:)cos(%da} +(0. +Q.da +Q__)sin(%’da}

ZF, =0: o (A.4)
+5) [—wu 005[9 +Eda] + fo =M, 4 —ma,, } da =0.
The higher order terms are neglected by using the approximations that
(da)’ —>0,sin[ida]:Eda,cos(—q—danl. (A.5)
2 2 2
Applying equation (A.5), equations (A.3) and (A.4) are reduced to
E.F” = O : Q; - N:Q’ - S:: (wa Sin 9 + an - m}’na!’n - mma!-'n ) = 0 » (AG)
TF =0: —N.-Q.8 -5, (-w,cos8 + f,, —mp,a, —m, a)=0. (A.7)

Consider Figure 5(b). The force equilibrium equation in the radial direction is derived as

follows.
- —m,d, —m a,

ZF,. =0: —20,hds, sin(ﬁJ+ To ™ Fue = My = M d¢ds,=0. (A.8)

2 2r
Since sin[—aﬁjzgg,

2 2

, ) N_ EA,

and 271‘;10'0 =&2)Th0'9 zﬁo'g _—‘_—Ef-liﬁ-_,—- V8_+*-M-)— — 1 - VIV, + .F;Jw )
R, R, R(A-v?) =~ R, | 1-v| R R;

equation (A.8) is reduced to

st | vN_, Ed,w e .
ZF:'C = O : 1 _ Vj |: R + sz :l - Sr} (f_n - .fh'm' - m}’oai'm' - mma.'ﬁn-) = 0 ' (Ag)

12 12}
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APPENDIX B: KINEMATICS OF THE PIPE-WALL ELEMENT
From Figure 4, the position vector of the pipe-wall element is given by

U =Tz + Fpvrzy - (B.1)
Differentiating equation (B.1) with respected to time yields the velocity vector of the pipe-
wall element |

Vo =F gy + Fpon F@XFas - (B.2)
where Q is the angular velocity of frame xyz. Note that Fd_wz) and Qx Tp(mey are the
velocities due to linear motion and rotation of frame XYZ, respectively. Similarly,
differentiating equation (B.2) with respect to time yields the acceleration vector of the pipe-
wall element

+2Qx rm oo ¥ {ﬂ X Fpeny + 0 x (Qx Fpens) )}. (B.3)

a _rt[ﬂ?) + Pe(xyz)

Since the rotary inertia due to rotations of the cross section of the pipe is assumed insignificant,
the acceleration due to rotations of the frame XYZ {fl X Eppemy + Qx (Qx P,,ﬁ_wﬂ)]l is negligible.
In addition, because € =txat/ér and FPL_W,:, =wn,, the corolis acceleration Zfzxf',,‘.m._.]

vanishes as follows:

2QXF,, .., =2tx ﬂvaﬁf =2(t-wh, )——2 i a =0, (B.4)
Pe(xys) 61‘ at 3

Thereby, equation (B.3) is reduced to

Ay, =Tyt =X+ Jj+wWn, =i n+V t+wn,. (B.5)

[ W
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Adopt the results of all DOFs from the static analysis

v

Form the element shape function matrix from eq. (114)
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