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ABSTRACT

This research presents a three-dimensional model formulation of
extensible marine risers/pipes transporting fluid and parametric studies of the effects
of axial deformation and internal flow on the behaviors of risers/pipes. The
variational model formulation is developed based on the new idea employing from
the axially deformable elastica theory and from the view of continuum mechanics in
three descriptions namely, the total Lagrangian, the updated Lagrangian, and the
Eulerlian. By the principle of virtual work-energy, the governing dynamic
equilibrium equations are derived in the Cartesian coordinate and are validated by the
vectorial summation of forces and moments. Based on the hybrid approach and the
state space formulation, the finite element method is used to solve these equations.
The three-dimensional nonlinear static analysis and the two-dimensional dynamic
analysis are carried out in order to explore these effects on the nonlinear static
behavior, the dynamic stability, and the nonlinear oscillations of the pipe under a
tidal current and a regular incoming wave, respectively. The parametric studies have
demonstrated the effects of axial deformation and fluid transportation in many points
of view. The results of this study show that the axial deformation reduces large
deflections and nonlinear responses of the pipe, but increases the static and dynamic
stabilities of the pipe, while the transported fluid affects on the contrary. The
advantages of the present model! are related to the flexibility offered in choosing the
independent variable, and to the possibility of applying them to numerous elastica

problems, including some biomechanics applications.

KEYWORDS: Three-dimensional Marine Risers / Large Strain Formulations /
Variational Formulation / Elastica / Transported Fluid / Finite

Element Method
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EXECUTIVE SUMMARY

RESESEARCH SIGNIFICANCE AND PROBLEM STATEMENT

The increase of global energy consumption in recent years has urged to
find the new resources and leaded to the exploration of underwater resources in the
ultra deep ocean. This situation has prompted a substantial level of research activity
in the fields of deep offshore engineering and marine technology. Exploration in the
very deep ocean required more sophisticated equipment as well as the structural
system that can withstand severe environments than those in normal condition. The
exploration system, which is commonly used in the operations, is the floating
structure or platform, which has marine riser as a linkage between the structure and
sea floor. Thus, marine riser is the major component of the offshore/ocean drilling
system and it serves two main purposes; one is to convey fluid, the other is to guide
the drilling string from the platform to the wellhead at the sea floor. A failure of the
riser system cause not only severe environmental pollution but also significant
financial consequences. Recent offshore technology development has revealed that
the marine riser has been used for water depths greater than 1000 m. This challenges
the researchers and design engineers to enhance the performance of the marine riser,
thus researchers and engineers must have a complete understanding of the behavior

of marine riser to be operated in the ultra deep ocean.

OBJECTIVE OF RESEARCH

The objectives of this research project are as follows.

1. To develop a 3-D model formulation of marine riser/pipe experiencing large
displacement and large axial deformation in three-dimensional space based on
the virtual work-energy principle and elastica theory.

2. To study the effect of large strain deformation and fluid transportation on static
equilibrium configurations and dynamic behaviors of the riser/pipe.

3. To investigate structural motion stability of the riser.

4. To study the response of the riser due to current and wave forces.



v

RESEARCH METHODOLOGY AND RESULTS

Based on the variational formulation, the total virtual work of the riser
consists of the virtual work of the internal forces of the riser and the virtual work
done of the external forces acting on the riser. The virtual work of the internal forces
composes of the strain energies due to large axial, bending, and twisting
deformations. The virtual work of the external forces composes of the virtual work
of the apparent weight, hydrodynamics pressure, and inertia of the pipe and
transported fluid. Large axial strain formulation is emphasized in this research study.
Three deformation descriptions, namely the total Lagragian, the updated Lagragian,
and the Eulerian, are used to obtain the variational formulation for three different
views. The apparent tension concept and the dynamic interactions between fluid and
pipe are used to derive the virtual work of the external forces of the riser pipe. The
formulation is validated by the vectorial formulation, which considers the
equilibrium of forces and moments of a three-dimensional riser/pipe segment.

The numerical investigation presented in this research report covers two
main results; the first is of 3-D static analysis and the other is of 2-D dynamic
analysis. The finite element method based on the updated Lagrangian formulation is
used to solve the problem numerically for both static and dynamic analyses.

The catenary cable and the nonlinear beam problems are used to verify and validate
of the model and accuracy of the computer program developed in this work. Several
numerical examples of the 3-D static analysis are presented to demonstrate the
significance of the large axial and nonlinear deformation of the riser. For 2-D
dynamic analysis, a thorough investigation has been carried out for the effects of
large axial deformation and transported fluid on the natural frequencies as well as on
the nonlinear response of the riser due to current and wave forces. Stability of
motion of the linearized system is explained based on the Liapunov stability

definitions for the cases of stable and unstable motions.



FUTURE WORK AND RECOMMENDATION

The numerical results for 3-D marine riser have been reported only for
the case of large displacement static analysis, which excludes the effect of torsional
deformation. However, a thorough investigation the effects of large axial
deformation and internal fluid flow on nonlinear static and nonlinear dynamic
behaviors has yet to be done and will be carried out in the near future. The model
formulation developed in this study can readily handle for the aforementioned cases
but it requires extensive numerical investigation. Such investigation for the 3-D riser
has not been reported elsewhere in the open literature. Finally, there is a possibility
of applying the model formulation developed in this research study, with some
modifications, to some biomechanics problems such as the three-dimensional
structure of supercoiled DNA, and arteries and veins conveying fluid blood inside the

human body.
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1. INTRODUCTION

1.1 STATEMENT OF THE PROBLEM

In the past five decades, flexible riser pipes have been employed
extensively in numerous offshore engineering applications. The most vital function
of these is to transport fluids that are drilled from beneath the ocean floor such as oil,
gas, hydrocarbon and other crude resources, up to the production platform or drilling
ship. In the deep-ocean mining industry, flexible pipes play a role of the main
module in the production system as shown in Figure 1.1(a). In moderate sea-depth
applications, they are often used as the secondary part in cooperating with rigid risers
as shown in Figures 1.1(b) and 1.1(c).

In the literature, there are many papers related to analysis of flexible
marine riser pipes as reviewed by Chakrabarti and Frampton (1982}, Ertas and Kozik
(1987), Jain (1994) and Patel and Seyed (1995). The mathematical riser models
have been developed continually: from two-dimensional models to three-dimensional
models, from linear models to nonlinear models. However, it is remarkable that most
of them omit the effects of axial deformation of the pipe and fluid transportation.
Furthermore, all of themn did not inctuded the nonlinear terms of the large axial strain
in their model formulations.

As will be reviewed and discussed in this work, the individual effects of
axial deformations, and fluid transportation could be significant to behavior of low
flexible pipes. It is therefore conceivable that the combined action of all the effects
becomes more important on behavior of highly flexible pipes. In such cases, those
effects should be carefully examined in three-dimensional based upon the large strain

analysis.

1.2 LITERATURE REVIEW

The marine riser was first used in 1949 in the Mohole project (National
Engineering and Science Company, 1965), whereas the first technical paper on riser
analysis was carried out by St. Denis and Armijo (1955). The numerous research

papers published on this subject since may be summarized chronologically.



suresog e (9) adig ojqixslf e (q) JesnjouneNe ()
sadrd 19sny auuey 2[qIXa[ ['] 2m3ig

() (@ (®

J9SL1 12M0]|

a3sLI P
Fuipuegs a5y

1oabms yonposd
unof jesraAn 15U
unof esiearmm Anoq

adid sastx

adid 21q1xap

UOHISUU0D
O1gED PIUDISI) Iasu 2addn
W84S
129UU0sIp ¥2Inb




In the 1960s, research work dealt predominantly with two-dimensional,
linear static analysis (Fischer and Ludwig (1966), Gosse and Barksdale (1969)) and
two-dimensional, linear dynamic analysis (National Engineering and Science
Company (1965), Graham et al. (1965)) that did not take the relative hydrodynamic
forces into consideration.

In the 1970s, the research work was escalated on various types of
dynamic analyses and methods of solution as demonstrated in Table 1.1. In addition
to the time domain analysis via the finite difference solution, the frequency domain
analysis and the nondeterministic random vibration analysis had drawn the attention
of several authors as well as the finite element method (Gardner and Kotch (1976))
and the modal analysis (Dareing and Huang (1979)). Although the paper by Bennett
and Metcalf (1977) was oriented towards nonlinear dynamics, their work was still
based on linear static solutions. The computer programs for the three-dimensional
riser analysis, NONSAP (Bathe et al., 1974) and NASTRAN (Gnone et al., 1975)
also originated in this period. Literature review on the marine riser analyses from
1950 to 1980 was given in the paper by Chakrabarti and Frampton (1982).

In the 1980s, researchers began to focus on three-dimensional large
displacement analysis and nonlinear dynamic analysis. As shown in Table 1.1, most
papers in this period were aimed at presenting the mathematical models for three-
dimensional nonlinear analysis. Several papers were presented to indicate significances
of three-dimensional analysis and nonlinear analysis (Natvig (1980), Felippa and
Chung (1981), Bernitsas (1982), Safai (1983), Bermitsas et al. (1985), Huang and
Chucheepsakul (1985), Owen and Qin (1987), Kokarakis and Bernitsas (1987),
Bernitsas and Kokarakis (1988), O’Brien and Mcnamara (1989)). The finite element
method was in widespread use for the spatial solution, whereas the numerical
integration methods for time history analysis were favored as well as the modal
transformation method for frequency domain analysis.

In this period, researches on the marine pipes considering the effect of
axial deformation in the variational formulation were published by Felippa and
Chung (1981), Irani, Modi and Weit (1987) and O’Brien and McNamara (1989).
Researches that included the effect of axial deformation in the vectorial formulation

were performed by Bernitsas and coauthors (Bernitsas et al. (1985), Kokarakis and



Bernitsas (1987), Bernitsas and Kokarakis (1988)). The effect of fluid transportation
or internal flow were specifically studied by Irani et al. (1987), Moe and
Chucheepsakul (1988) and Patel and Seyed (1989). The commercial package for the
three-dimensional riser analysis, FLEXCOM-3D (Marine Computation Services
International, 1989) was also launched in this period.

In the 1990s, research work on riser analysis had the trend of study of
specific problems. Huang and Leonard (1990), Karamanos and Tassoulas {(1991), and
Hah et al. (1992) investigated the stability of the marine riser pipes. The developments
of random dynamics and other types of the hydrodynamic loading were studied by
Trim (1990) and Thampi and Niedzwecki (1992). A number of authors extended
three-dimensional nonlinear analyses of marine risers by including accessory themes
such as various types of boundary conditions (Oran (1992), Chung et al.(1994a),
Chung et al. (1994b), Chung and Cheng (1996)), seabed contact problems (Tikhonov
et al.,, 1996), as well as other coordinate systems (Huyse et al. (1997), Ngiam
(1997)). In the same period, Wu and Lou (1991), Seyed and Patel (1992), Huang
(1993), Chucheepsakul and Huang (1994), and Moe et al. (1994) explored the effects
of internal flow, Jain (1994) and Patel and Seyed (1995) reviewed the analysis and
modeling of the flexible riser.

Above is an overview of previous research work concerning marine riser
pipe analysis. This research work is relevant to marine pipes that take into
consideration the in-depth effects of axial deformation, radial deformation, and fluid
transportation. A more detailed review of these subjects 1s given as foliows.

1.2.1 Three-dimensional model formulation

The three-dimensional models of the marine riser have been presented in
many research works, Most of them used the theory of the space curved rod that can
be found in the elasticity books such as Love (1944), Antman (1991), and
Atanackovic (1997), which serve as the basic theory for the three-dimensional
marine riser analysis.

To obtain the governing equations or the equation of motion of the
marine pipe, there are at least three difference approaches: First, the direct

equilibration based on D’ Alembert’s principle, Second, the variational method



based on the virtual work principle. Third, the variational method based on the
Hamilton’s principle.

The first approach is the most favorite method that can be found in many
research works, for example, Bernitsas (1982), Bernitsas, Kokarakis, and Imron
(1985), Kokarakis and Bernitsas (1987), Patrikalakis and Kriezis (1987), O’Brien,
McNamara and Dunne (1988), Bernitsas and Kokarakis (1988), and Bernitsas and
Vlahopoulos (1989). The three-dimensional model formulation of marine riser that
based on the principle of virtual work can be found in the works of Felippa and
Chung (1981) and Huang and Kang (1991). The research works that used the
Hamilton’s principle to formulate their governing equation are found in Doll and
Mote (1976), and Atadan et al. (1997).

From the literature mentioned above, most of them used the arc-length as
the independent variable. Therefore, the problem is limited to the case of specified
arc-length or the total arc-length known prior. In the real situation, the arc-length of
the marine riser may be unknown or changed due to the large displacement or large
axial deformation while the top tension is specified, therefore the formulation that
use the arc-length as the independent variable may be not convenient for numerical
analysis. To solve this problem, the sea depth may be used to be the independent
variable. Chucheepsakul and Huang (1985) is the pioneer in using the sea depth as
the independent variable in the formulation. Huang and Kang (1991) extended the
model to the three-dimensional formulation including the effect of torsion. However,

the effect of internal flow and the axial deformation are neglected in that work.

1.2.2 Significance of the Effect of Axial Deformation

The effect of axial deformation on marine cables was investigated by
Huang (1992), Chucheepsakul et al. (1995) and Chucheepsakul and Huang (1997).
On the suspended cables, they were studied by Huddleston (1981), Shih and
Tadjbakhsh (1984), Burgess and Triantafyllou (1988), Lin and Perkins (1995),
Triantafyllou and Yue (1994), Tjavaras and Triantafyllou (1996), and Tjavaras et al.
(1998). However, for marine pipes, it is only the low flexible pipes on which the
effect of axial deformation has been explored.

On static behavior, the effect of axial deformation is to increase large



displacements of low-tensioned cables due to extensibility domination, and to reduce
large displacements of high-tensioned cables due to pre-stressing domination
(Chucheepsakul et al. (1995), Chucheepsakul and Huang (1997)). Although
Bernitsas et al. (1985) and Bernitsas and Kokarakis (1988) found that the effect of
axial deformation on the static behavior of the low flexible pipes was rather small,
they did not provide evidence of the same result with the highly flexible pipes.

The effect of axial deformation on the dynamic behavior is to decrease
nonlinear responses as reported by Chung et al. (1994a), Chung and Cheng (1996),
Chung and Whitney (1983). It reduces the natural frequencies (Chucheepsakul and
Huang, 1997), and provokes the elastic mode transitions of cable vibrations
(Burgess and Triantafyllou (1988), Lin and Perkins (1995)). If the stress-strain
relation is hysteretic, the effect of axial deformation can amplify damping of the
dynamic strain in the axial direction (Triantafyllou and Yue,1994). Several papers by
Chung and coauthors (Chung et al. (1994a), Chung and Cheng (1996), Chung and
Whitney (1983)) highlighted the fact that the effect of axial deformation is crucial to
dynamic behavior of low flexible pipe, and should be considered in the design of the
pipe.

The interesting point in all the previous research is that the effect of axial
deformation has been investigated based on small strain analysis, which assumes that
the strains are small, and can be approximated by the binomial expansion. However,
this approach is proper if, and only if the axial strain is small compared to unity
(Fung, 1965). For highly flexible pipes, such a constraint is no longer confidential.
Thus, this dissertation proposes large strain modeling in which the relative

elongations or the square-root expressions of large strains are adopted.

1.2.3 Significance of the Effects of Fluid Transportation

Although fluid transportation is the main function of marine riser pipes,
marine riser analysis from the middie of 1950s to the end of 1970s gives little
attention on the influence of fluid transportation. In the same period, research
concerning mechanics of pipes conveying fluid had grown rapidly. Research work
related to vibrations of straight and curved pipes can be found in the papers by

Housner (1952), Gregory and Paidoussis (1966), Paidoussis (1970), Doll and Mote



(1976) and so on. It was reported that the internal flow reduced stability of the pipe
and acted on the pipe like the end follower force (Thompson and Lunn, 1981). As a
result, the internal flow can engender divergence instability or statical buckling of
simply supported pipes (Holmes, 1978), and can induce flutter instability or snaking
behavior of cantilever pipes (Gregory and Paidoussis, 1966).

The lack of connection between research work on marine pipes and pipes
conveying fluid brings about a misconception by some authors. When the effects of
internal flow on marine pipes were examined in the early of 1980s, it was considered
that the internal flow induced only the friction force to act on the pipe wall.
However, researchers concerned with pipes conveying fluid such as Gregory and Pai
doussis (1966), Paidoussis (1970} and Thompson and Lunn (1981) had been well
aware that the internal friction force did not act directly on the pipe, but transmitted
the internal pressure into the pipe wall, which yielded tensioning and pressure drop
(Paidoussis, 1998). In addition, the internal flow generated not only the effects of
pressure, but also other fictitious forces such as Coriolis and centrifugal forces.

By the end of 1980s, the effects of fluid transportation on behavior of
marine pipes began to draw specific interest from a number of researchers, and the
misconception was dispelled. Several interesting effects of fluid transportation were
reported. It was found that the internal flow reduced structural stiffness, provided
negative damping (Irani et al., 1987), and induced additional large displacements of
the pipes (Chucheepsakul and Huang, 1994). The natural frequencies of the pipes are
slightly reduced at a low speed of internal flow, but significantly reduced at a high
flow speed (Moe and Chucheepsakul (1988), Wu and Lou (1991)). The intemnal slug
flow can induce the significant cyclic fatigue loading in deep water (Patel and Seyed,
1989). The marine riser pipe transporting fluid buckles by the divergence instability
(Chucheepsakul et al., 1999).

However, the three-dimensional model formulations used in most of
those works do not consider geometric nonlinearity and axial deformation of the
pipes. In this research work, these objects have been taken into account in large
strain analysis of marine risers. Therefore, the novelties of this work are the large

strain model formulation of the three-dimensional extensible flexible marine



risers/pipes transporting fluid and the unveiling of the interaction between the

transported fluid and the pipe subjected to large axial deformations.

1.3 OBJECTIVES

The objectives of this research work are as follows:

1.3.1 To introduce and iltuminate the mathematical principles for large
strain analysis of the flexible marine riser pipes that are subjected to the combined
action of axial and fluid transportation from viewpoints of the total Lagrangian, the
updated Lagrangian and the Eulerian mechanics.

1.3.2  To show how to formulate large strain three-dimensional models
in the Cartesian coordinates by using the axially deformable elastica theory.

1.3.3  To examine the in-depth effects of axial deformations and fluid

transportation on behaviors of the marine pipes with large displacements.

1.4 ASSUMPTIONS AND SCOPE

The following assumptions and scope are stipulated in the present study:

1.4.1  The material made of the riser/pipe is linearly elastic..

1.4.2 At the undeformed state, the pipes are straight, and have no
residual stresses.

1.43  The pipe cross sections remain circular after change of cross-
sectional size due to the axial deformation effect.

1.44  Longitudinal strain is large, while the effect of shear strain is
small and can be neglected, so that the Kirchhoff’s rod theories can be employed.

1.4.5  Every cross section remains plane and remains perpendicular to
the axis.

1.4.6  Radial lines of the sections remain straight and radial as the
cross section rotates about the axis.

1.4.7  The internal and external fluids are inviscid, incompressible and
irrotational. Their densities are uniform along arc-lengths of the riser.

1.4.8  The internal flow is the one-dimensional plug laminar flow.



1.49  Morison’s equation is adopted for evaluating external
hydrodynamic forces of external fluid.

1.4.10 The effect of rotary inertia is negligible.

1.4.10 The pipe connections due to construction are presumed to be
homogeneous with the pipe body, and have the same properties.

1.4.11 The effect of wind flow over the sea surface is negligible for
deep-water riser pipe analysts.

1.4.12 Structural model. The riser pipe is pinned at the bottom end by
the ball joint of wellhead at seabed, and is held at the top end by the slip joint
beneath the vessel. The slip joint allows the pipe to change its length as the vessel
heaves and moves laterally. The surrounding kill and choke lines are assumed to
make no contribution to the structural stiffness. The rotational stiffness at the top end
of the riser and the ship motion compared to the water depth are small and negligible,
so the top end could be modeled as the slip joint with hinge. The ball joint at the
bottom end can not rotate freely around the tangential direction, but can rotate freely
around any other direction perpendicular to the tangent.

1.4.13 Research methodology. The nonlinear static analysis, the natural
frequency analysis and the nonlinear vibration analysis are rendered for studying the
effects of axial deformation, and fluid transportation on behaviors of the pipe as
shown in Figure 1.2. The nonlinearity in the vibration analysis is due to the nonlinear
hydrodynamic damping. The large strains and large displacements are fully treated in
the nonlinear static analysis, whereas the linear dynamic strains and the small
amplitude vibrations are assumed in the natural frequency analysis and the nonlinear
vibration analysis.

1.4.14 Current flow. The current is tidal. Its velocity profile can be
expressed in form of the polynomial functions of water depth (Larsen, 1976).

1.4.15 Wave flow. The wave is regular incoming, and can be described

by Airy’s wave theory (Chen and Lin, 1989).



Abbreviations:

AD = Assumed Displacement
FD = Finite Difference

FE = Finite Element

NI = Numerical Integrations

88 = Sinusoidal Steady State

TF = Complex Transfer Function
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Figure 1.2 Methods of Marine Riser Analysis
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2. MODEL FORMULATIONS OF THREE-DIMENSIONAL
FLEXIBLE MARINE RISERS TRANSPORTIG FLUID

This section presents the large strain model formulation of three-
dimensional flexible marine risers transporting fluid. The elastica theory of
extensible rod and the kinematics theory of mass transported on the moving frame
are used to obtain the model formulation.

In section 2.1, the behavior of the flexible marine risers and the physical
description of the mode! formulation are introduced. The concept of large strain
measurement in the three deformation descriptions referring to the Cartesian
coordinate is discussed in section 2.2.

It is realized that the change of the large axial strain is not only effect on
the differential arc-length of the riser but also effect on the property changes of the
riser cross section and transporting fluid velocity, which is discussed in section 2.3.
In section 2.4, the extensible elastica theorems for the Hookean material riser
corresponding to the three deformation descriptors is preformed. The effect of
hydrostatic pressures and hydrodynamic pressures is reviewed in section 2.5 and 2.6,
respectively.

In section 2.7, the elastica theory, the apparent tension concept and the
dynamic interactions between fluid and risers are used to formuiate the variational
formulations, which are validated by vectorial formulation in section 2.8. For the
sake of generality in obtaining the model solution, the nonlinear dynamic model
based on the strong form is derived in section 2.9. In section 2.10, climinating the
time-dependent terms in nonlinear dynamic model, the nonlinear static model is
derived.

One conspicuous feature of the present formulation is flexibility of the
model that allows users to select the independent variable to suit solution of their
own problems, therefore the guideline for choosing the independent variable is
discussed in section 2.11. Finally, the implementation of the present models is

covered 1n section 2,12,
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2.1 BEHAVIOR OF THE FLEXIBLE MARINE RISERS AND PHYSICAL
DESCRIPTION OF THE MODEL FORMULATION

The large displacement and large deformation behaviors of a flexible
marine riser transporting fluid are depicted in Figure 2.1. Firstly the riser is at rest and
unstretched at the undeformed configuration. Then, the riser is subjected to the time-
independent loads and its configuration changes to equilibrium configuration that is
the initial condition before the dynamic actions occur. Finally, at the displaced
configuration, dynamic actions such as wave, unsteady current, and unsteady internal

flow disturb the riser to sustain vibration about the equilibrium configuration.

Ya
I
I
V. |
Ty |
|
— |
T |
\\_* i
i
\ I
T | Displaced
Ty | configuration
\ l
|
e
\\“)- \
— | Equilibrium
— I configuration
|
T Undeformed
— configuration
T
Tk e
. 4;;'; e
k A5
O
g RS

Figure 2.1 Three configurations of marine riser.

The marine riser is modeled as a three-dimensional rod with a ball joint at

the bottom end and a slip joint at the top end. In this study, three orthogonal
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coordinate systems are used to define position, motion, and deformation of an
extensible marine riser. The orthogonal triad system i,A,band the cross-sectional
principal axes system ‘x,,’x,,’x, with unit normal vector ‘e, ’e,, ‘e, are used as the
local coordinate. The fixed cartesian system ‘x, 'y, ‘z with unit normal vector i Ik

is used as the global coordinate. The left superscript represents the state of marine

riser where 0 represents the undeformed state, 1 represents the equilibrium state and

2 represents the displaced state, therefore, i €(0,7,2).

Figure 2.2 shows the segments of the extensible marine riser in three
states. Since the centerline of the riser at any time ¢ is, in general, a three-

dimensional curve and can be described by one parameter, the parameter o,

ac {"x, v, 'z, "s} , that is employed in the formulation for the sake of generality.
Therefore if ‘x,"y,and ‘z are the coordinates of a point along the marine riser at time
t, then 'x = "x(a, l't), ‘y= iy(a, ’t), and z= "z(a, ft). The partial derivatives with

respect to @ and time ‘¢ are represented by superscripts (') and (), respectively.

Global coordinate

Local coordinate

Figure 2.2 Segments of the extensible marine riser in three states.
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2.2 MEASUREMENT OF LARGE AXIAL STRAINS

In Cartesian coordinate, the relations of differential arc-length at the

undeformed state, the equilibrium state and the displaced state(”s', 's'and 2s’) can be

expressed as

GS!:\/oxr2+ayf2+ozf2

2 2 Z
"s':\/’x'2+’y'2+'z"? =\/(OX’+IU’) +(oyr*lvr) +(azr+}wr)

2 2 2
ZSI:\/fo2+2yf2+ZZl‘2 =J(Ox'+2u') +(oyr+2vr) +(az.'+2wr)

s = \/("x'«r Iu'+u’)2 +("y’+ Iv'+v’)2 +(°z'+ IW'+W')2 (2.1 a-d)

According to the mechanics of deformable bodies, the definition of axial
strain can be provided in three forms, namely the Total Lagrangian Descriptor, the
Updated Lagrangian Descriptor, and the Eulerian Descriptor. Each of these forms

can be demonstrated as follows.

Total Lagrangian Descriptor (TLD)
The coordinate that follows motion and deformation of a deformable body
with respect to position, direction, and size of the body at the original state (or

undeformed state herein) is said to be the total Lagrangian descriptor.

: _ dis—d°’s d’s
Total strain ’F = = 1= 1+2(°L}-1
e s =)

Static strain ’E:dls dOS:dlS—]= ]+2(’L)*I

d’s d’s
Dynamic strai E—M—,/I+2(2L)~\/J+2(’L) (2.2 a-c)
y ic strain T 2a-<c

The Green strains in each state that represents in equation (2.2) can be

derived in the terms of displacements of the riser as follows.
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] ur2 v12 wr?
L=2L—JL:— lxaur+l 1v1+lzrwr+_+__+_ (23 a_c)
"s'z[ Y 2 2 2

Updated Lagrangian Descriptor (ULD)

The coordinate that follows motion and deformation of a deformable body
with respect to position, direction, and size of the body at the intermediate state (or
equilibrium state, the last known deformed configuration herein) is said to be the

updated Lagrangian descriptor.

Total strain e = dS ds \/I+20—,/I 2

H _ o
Static strain 'exd o ‘,d Sog- d’s _ - 2( )
d's d's
Dynamic strain &= d Sd d’s ZS—I NI+2v -1 (2.4 a-c)
‘s s

The updated Green strains in each state that represents in equation (2.4)
can be derived in the term of displacements of the riser which relate to the Green

strains as
2 2
\2 GS' o
og' I I S
"u=’u+u=’L[,—S,J » U= L[,S,J ; U=zu—’u=L[,—S,J (2.5 a-c)
Ny

Eulerian Descriptor (ED)

The coordinate that follows motion and deformation of a deformable body
with respect to position, direction, and size of the body at the final state (or the

displaced state herein) is said to be the Eulerian descriptor (ED).
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d’s—d°s d’s
ZEEZT:]—EZI— ]-—2(2E)

Static strain e = ds dS =I- 2E—,/1 2 2E

Total strain

2. gl
Dynamic strain b= d "; 25 s Z i =]-I1-2FK (2.6 a-c)

The Almansi strains in each state that represents in equation (2.6) can be

derived in terms of displacements of the riser which relate to the Green strains as

[ 2 - 2 P 2
E = 2L£2S,] JE = ’L(ZS'J JE = ZE‘IEZL(zS,J (2.7 a-c)
$ s s

\

From the definition of axial strain discussed above, the large axial strains
are measured by mean of relative elongation that can be called as engineering strains.
The square-root expressions in equations (2.2), (2.4) and (2.6) indicated that the large

axial strains are function of the Green strains ‘L, the updated Green strains ‘v, and

the Almansi strains ‘£ . In nonlinear dynamic analysis with large amplitude
vibrations and large strain of the flexible marine riser, the square-root expressions in
the large axial strain definitions have to be included in the formulation without
approximations.

In the case of the vibration problems with large amplitudes but strain is not
highly large, the approximate large strain can be used in numerical analysis. By
utilizing the two-term approximation of the binomial series, the approximate large

total strains can be expressed as follows.

2 '

For TLD: °% = f§+(-f§7_1](1+ 'F)="g+(VI+20-1)(1+'z)= 'F+v(1+ F)
S

For ULD: 28:’3+(\11+2U—1]z’£+u

I
For ED: 255=”a+[1—£—]=’53+[1~ ! jz’saﬂ) (2.8 a-c)
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Although the approximate large dynamic strains are used, the nonlinear
dynamic with large amplitude vibration is complicated and it is difficult to find the
solutions. To simplify this problem to be the linear dynamic with small amplitude
vibration, the total strain can be expressed same as the equation (2.8) but the updated

dynamic Green strain (v ) can be neglected the higher order terms as

b= i i (;x-ur+ L 4 }zrwr) (2.9)

('s)
In the most research works, the large displacement analysis has been
investigated by using the small strain assumption. Therefore, the engineering strains

can be approximated as

Tx’L e~y fex’E (2.10 a-c)

2.3 THE PROPERTY CHANGES OF THE RISER CROSS SECTION AND
TRANSPORTING FLUID VELOCITY

The change of the large axial strain among three states leads to relations of

differential arc-length of the riser, cross-sectional properties of the riser and internal

flow velocity of transported fluid as shown in this section.

a) Relations of differential arc-length of the riser

7 2
TLD; dos=25 45
I+ 1+°¢

[’] 2

ULD; 45 _g1g= 93
l-'¢g I+¢

a !
ED: d’s _ ds g @2.11 a<c)

- [-fg
b} Relations of cross-sectional properties of the riser

Since the riser volume is conserved, the cross-sectional areas of the riser at

the three states, ‘4, can be related to cach other as
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TLD; “4,="4,(1+'F)="4,(1+F)
4 A {1+
ULD: K. (?Efgf)
ED; =t (2.12 a-c)

The relations of diameter,(‘Dp), moment of inertia, ("I p), and polar

moment of inertia, (‘J p), of the circular riser among the three states determined

corresponding to equations (2.12 a-c) are shown below.

TLD; on = ‘,Dp VI+'E = sz VI+'F, afp = IIP(’H— IE)‘? = ZIP (]+ 25)2’

g, =17, (1+'8) =27, (1+ ) (2.13 a-c)
D [1+e T (1+&)
ULD; °D = F_ =D L =—F iy~ T
P m P Iﬁ‘,f,' P (1—15)2 P(]-—lg)z
IJ 2
T B ”3)2 (2.14 a-c)
(1—’3) 1-'¢)
‘D ’D T 7
ED; ‘D = L= L £ = £,
P J]_mg \/1_256 P (]_H:g)z (1_258)2
! 2
J
oy = o = ? (2.15 a-c)

c) Relations of internal flow velocity of transported fluid

By substituting equation (2.12) into the continuity equation of the fluid
flow in the control volume riser, the relationships of internal flow velocities at the

three states are obtained as

TLD; i A R
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. o — —_ ZVi (]g !8)
ULD; V=", (1- fg)»—m
ED; V=W, (1) =W, (1- %) (2.16 a-c)

2.4 THE EXTENSIBLE ELASTICA THEORY

The word “‘elastica” is the equilibrium (stable and unstable) shape of a bar
with large displacement, stable, linear elasticity, no section change, axial and shear
deformation neglected. In the case of extensible elastica, the material remains
linearly elastic while the strain maybe large. The extensible elastica theory
(Chucheepsakul et al., 2003) provided in this section is used to develop the large
strain formulations of three-dimensional extensible flexible riser, which will be

discussed later.

Theorem 1: When the TLD is adopted to describe deformation of the riser, the fiber

strain, the constitutive relations and the virtual strain energy are expressed as follows

’E, = 2§+§[2K(1+ "E)_ "ch
N=E°4,°8 M = E°L| e (1+78) ="K |,
szGaJP[2T(1+JE)_aT}’
SU = j{fNafﬂzMa[‘-’x(n E)- x|+ 2T§[Zr(l+25)—°r:|}dzs
SU = [["N&7s'+ M5 (°0'~0)+ T8 (¢ - °¢')+ 'Ts ("' - y') hex

(2.17 a-f)
Theorem 2: When the ULD is adopted to describe deformation of the riser, the fiber

strain, the constitutive relations and the virtual strain energy are expressed as follows

‘e, = 2£+§[2K'(]+8)—0K‘(1— 15]]
2N=E’AP25,2M:Ellp[zic(]+s)—oic(1—]8)],
2T=G'Jp[2r(]+£)—°r(f— ’8)],
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oU = H2N52£+ 2M5[2x(1+5)—°1c(]— ’8):|

+2T5[27:(I+3)— "r(]— ’5)}}01’5

U = [|*N67s'+ " M8(6' =0}« *T5 (’¢' ~°¢') + *T5 (' - *w') e

a

(2.18 a-f)
Theorem 3: When the ED is adopted to describe deformation of the riser, the fiber

strain, the constitutive relations and the virtual strain energy are expressed as follows

258¢ _ 2E€+§[ZK_DK(1_ZEE):|

N =E4, % M = B[ -k (1- %)

}

T = G"'Jp[zr— "r(l— ZEE)],

SU = j{ INSE + 2M5[ ke~ x(1- “’Eg)]

+2T5[2r— “r(l* 253)}}&?5
SU = [| 'N&%s'+°M5(°0'—°0')+ T8 (°¢' - °¢')+ T8 (*y' - *y') e

(2.19 a-f)

in which &, is the axial strain at any fiber radius (g’ ), E is the elastic modulus, G is

the shear modulus, N is the axial force, M is the bending moment, 7' is the torque, and

U is the strain energies due to axial force, bending moments, and torsion of the riser.

2.5 EFFECTS OF HYDROSTAITIC PRESSURES

Hydrostatic pressures arc the pressures of still fluids. In the past, the
hydrostatic pressure effects on marine riser pipe analysis were tackled via the effective
tension concept proposed by Spark (1984), as will be described in section 2.5.1.
However, because the effective tension concept limits v =0.5, thus the apparent
tension concept (Chucheepsakul et al., 2003) has proposed instead in order to cover all
values of the Poisson’s ratio, as will be explained in section 2.5.2. This research offers

a more advanced technique on treating the hydrostatic pressure effects.
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2.5.1 'The Effective Tension Concept

First of all, the Archimedes’ principle is recalled and used to explain the
effective tension concept. Consider Figure 2.3(a), the equilibrium of water column
element proves that the enclosing external pressure field is equivalent to the buoyancy

force p,gV, (see Figure 2.3(a3)), where p,, is the water density, g the gravitational
acceleration, and V , the volume of water column. In contrast, the enclosing internal
pressure field will thus induce the weight p gV, against the buoyant force (see

Figure 2.3(a5)). These tenets are so-called the Archimedes’ principle.

It is remarkable that Archimedes’ principle is usable with the enclosing
pressure fields. However, unlike the water column, the pressure fields of external and
internal fluids surround only the external and internal side surfaces of the riser
segment, as seen in Figure 2.3(bl). Both ends cut of the riser segment are not
subjected to the pressure fields, which are called the missing pressures, and thus
Archimedes’ principle cannot be used straightforwardly. Sparks (1984) solved this
problem by proposing the superposition technique as follows:

Step 1. The first step of the superposition technique is separating all forces
acting on the real system of the riser as shown in Figure 2.3(bl) into the two sets of
forces as shown in Figures 2.3(b2) and 2.3(b3). The missing pressures are added in at
the both ends of the riser segment in Figure 2.3(b2) to result in the pressure fields
enclosing the riser segment. However, the added pressures are non-existent, so they
must be removed for balance by applying the opposite pressure fields at the both ends
of the riser in Figure 2.3(b3).

Step 2. Since the previous step yields the pressured fields enclosing the riser
segment in Figure 2.3(b2), Archimedes’s principle is now applicable. Therefore, the

external pressure induces the buoyant force — p,V,g, and the internal pressure yields
the internal fluid weight p,V,g as shown in Figure 2.3(b4). Summation of these forces

with the aerial weight of the riser segment produces the total weight of the effective
system, which is so-called the effective weight. Therefore, the expression of the

effective weight per unit length w, is obtained as

w, =(p,4,- P4+ pA)g (2.20)
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Step 3. Summation between the true-wall tension and the balance forces of
the missing pressures in Figure 2.3(b3) yields the total tension of the effective system,
which is referred to as the effective tension, as shown in Figure 2.3(b5). Therefore, the
expression of the effective tension N, is obtained as

N, =N+p A4, -pA4 (2.21)

Step 4. Integrating the forces acting on Figures 2.3(b4) and 2.3(b5) together,
one obtains the effective system of the riser, which is subjected to the effective weight
and the effective tension as shown in Figure 2.3(b6).

Casting equations (2.20) and (2.21) into the general forms for the three
deformation descriptors, one can establish Proposition 2.1.

Proposition 2.1. According to the effective tension concept, the real system
of the submerged riser subjected to hydrostatic external and internal pressures is

equivalent to the effective system of an empty onshore riser that is subjected to the

effective weight and the effective tension
W, =(pp A —p, A+ P A)g (2.22)
‘N,=E'A,e=N+p,'4,-p'A, (2.23)

in which ‘4,=°4, for TLD, ‘4, ="4_ for ULD, ‘4,=A4, for ED when a e {P, e,i}.

2.5.2 The Apparent Tension Concept

The apparent tension concept is more accurate in undertaking the
hydrostatic pressure effects on elastic body than the effective tension concept. It
acknowledges that the riser is an elastic solid, and thus in the polar coordinates the
enclosing pressure fields in Figure 2.3(b2) can induce the triaxial stresses: the radial

stress o, , the circumferential stress ¢, , and the tensile stress o, . From the theory of
elasticity, these triaxial stresses provoke the axial strain and the tension in the form
g, =|o. -v(c, +a )|/E, N, = EA.¢,, (2.24 a,b)

In Figure 2.3(b2), the riser segment is subjected to the triaxial stresses due to the

hydrostatic internal and external pressures o, =o, =6, = (p, A, —p,A4,)/ 4,.
Consequently, equations (2.24) yield
N, =Qv-1}p.4, - p4) (2.24)
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For the apparent tension concept, this tension is added into Figures 2.3(b4) and 2.3
(b6), and the system in Figure 2.3(b6) is renamed to the apparent system. The tension

acting on the apparent system is called the apparent tension, of which the expression is

N,=N,+N,=N+2v(p A —pA). (2.25)

It is seen that N, = N, if, and only if v = 0.5. This signifies that the effective tension

concept is a subset of the apparent tension concept. Although the expressions of the
weights acting on the effective and the apparent systems are the same, the weight
acting on the apparent system is called the apparent weight.

Casting equation (2.25) into the general forms for the three deformation
descriptors, one can establish Proposition 2.2.

Proposition 2.2. According to the apparent tension concept, the real system
of the submerged riser subjected to hydrostatic external and internal pressures is
equivalent to the apparent system of an empty onshore riser that is subjected to the

apparent weight and the apparent tension

j.Wa =(pr iAP —P. jAe + P iAf)g s (2.25)

‘N, =E'due=N+2w(p, 4, —p,'4) (2.25)

2.6 EFFECTS OF HYDRODYNAMIC PRESSURES

Hydrodynamic pressures occur due to steady and unsteady flows of
external and internal fluids. Steady flows will cause the static forces, while unsteady
flows will engender the dynamic forces acting on the riser wall. For the marine riser
transporting fluid, the external flow is the horizontal cross flows of ocean current and
wave, whereas the internal flow is the tangential flow of transported fluid. In this
section, the hydrodynamic forces induced by the horizontal cross flows of current
and wave is demonstrated in section 2.6.1, whereas the hydrodynamic forces induced

by the tangential flow of transported fluid is derived in section 2.6.2.
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2.6.1 The Hydrodynamic Forces Due to the Horizontal Cross Flows of

Current and Wave

The hydrodynamic forces exerted on flexible marine risers with large
displacements in the orthogonal triad system based on the coupled Morison equation

(Chakrabartt, 1990) can be expressed as

fH: ;TCDI}/{ |y:‘ ?}1 VH:
FH = an :0'5pe 2‘De CDn}/n }/n +pe 214eC'a }}n +pe er VHn (226)
Sion C ¥ on |¥ bn \ Vo Y eion
Viscous grag force Hydmc‘j’ynamic Froude-krylov

mass force force

where C,,,C,, , and C,,, are the tangential, normal, and binormal drag coefficients;
C,is the added mass coefficient; V.V, , and V,,, are the tangential, normal and

binormal velocities of currents and waves; and y, =V, -u,,y, =V, ~v,, and

nl

Yin = Vi, — W, are the velocities of currents and waves relative to riser velocities
u,,v,, and w,, in tangential, normal, and binormal directions, respectively. For large
strain analysis, the effect of cross-sectional changes of the riser in equation (2.12) has
to be applied to equation (2.26).
To eliminate the difficulty of operating with absolute function in equation
{2.26), the signum function is used. Here
I ifyz0
sgn(y)= _ (2.27)
-1 ify <0.

With some manipulations, equation (2.26) can be arranged into

*

S c, 0 0|[d 1 C. 0 0 |4
Fh’ = f:’im == 0 Ca. 6 ‘.';n ~- ¢ C:qn 0 ")n
f Hbn 0 0 C; wbﬂ J 0 0 Cc:qbn wbn

Qﬁ+q%

+1 C VI 4CV,, (2.28)
C:an fobn + C:! VHb"
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where C°_.C' "

eqt» Cogn s Copsn @r€ the cocefficients of equivalent tangential, normal, binormal

damping, and C,,, C,,,,C,,, are the coefficients of tangential , normal, and binormal

drag forces, and C,,C,, are the equivalent coefficients of added mass and inertia

forces. They are, respectively, expressed as follows

Co = Coi[2Viy —1,],Cp, = 0.5p,°D,C, -sgn(7, ) (229 a,b)
Crpn = Cpu [V =¥, 1, Cp, =0.5p,°D,C,, -sgn(y,) (2.29 ¢,d)
Cgtn = Coon [V itn = Won | » Ciogn = 0.90,°D,Cry, - 581(1,,) (2.29 f,g)
C,=p,’4C,,C, = p, AL, (2.29 b,i)

in which C, is the added mass coefficient and C,, = I+ C, is the inertia coefficient.

In order to transform hydrodynamic force in the orthogonal triad system to

the fixed Cartesian coordinate system, Euler’s angle (Atanackovic, 1997) is used to

find the transformation matrix, which is the orthogonal matrix and can be written as

t a,, ay a; | |X
H yy Ay dyy |97 (2.30)

b A,y a; 4y, || Z

where

a,y = cos °9, cos '3, (2.31 a)
a,, =cos’Y,sin’9,cos*9 +sin’8, sin’, (2.31b)
a,, =cos 9, sin °9, sin °9, — sin * 8, cos *9, (2.31¢)
a,, = —sin’8, (2.3t d)
a,, = cos °9,cos °9, (2.31¢e)
a,, =sin’9, cos °4, (2.316)
a,, =cos’9,sin’9, (231 g)
a,, =sin’9, sin*9, cos °9, —cos 9, sin *9, (2.31 h)
a,, = sin’9, sin’4, cos °9, + cos >3, cos *3, (2.311)
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Thus, equation (2.28) can be transformed into the fixed Cartesian coordinates system

as
« I " » . 2.
f Hx Ca 0 0 x Ceqx Cequ Ceq.tz X
T _ _ - 2 _ * . * 2.
By ={fur=— 0 C. 01%5-|C, Cof Couli®y
* 2. * * * 2.
f Hz 0 0 Ca z Ceqxz Ceqyz Ceqz z

Added n:a; force Hydmdynami: damping force

CVu+C V2 +2C VW, +2C. V¥V, +2C, VoV, +C. V:+C V:

Y L] 2 L] L L] * 2 * 2

+¢ C Vy + CD, V. + ch ViV + ZCW ViV + ZCM ViV +C, Vo + sz Ve
* L] 2 - £ ] L r] 2 - 2

Co Vi +C V2 +42C, V¥, +2C, V.V, +2C. V.V, +C. V:+C V?

v
Hydredynamic excitation

(2.32)

where V,, ¥, and V, are the velocities of external fluid in x, y, and z directions
respectively, and

* _ * 2 * 2 L] 2
Ceqx = Ceq!af)( + Gy + Ceqbnasx

egn

£ _ * 2 * 2 * 2
Ceqy = Ceq,a”, +C, a5y + Ceqbnaj,, (2.33 a-c)

eqn

* _ * 2 * 2 * 2
Ceqz - Ceqtaiz + CeqnaZZ + Cethaj‘z

* * * L]
Cequ = Ceq:alXaiY + CeqnaZXaZY + CeqbnaJXa,?Y

* * * *
Cope: = CeqlaiXalZ + CeqnaZXaZZ + Ceqbnasxasz (2.34 a-c)
L ]

L ] * t ]
Cope = Cog@iy@yy + Coputyy @y, + €y @305,

eqyz eqt
* _ L] 3 [ ] 3 * 3
Cpe = Cpapy +Cpay0 + Cppayy
* _ * 3 L] 3 ® 3
Cp, =Cpayy +Cpray + Cppntlzy (2.35 a-c)
* _ * 3 L 3 » 3
Cp =Cptyy + Cpptyy + Cpy a3,

2 v 2 = 2
C.my} =Cp 14y + Cp, 55y +Cpp 353y

*

Comr = C;ra[zXa!Z + C:)najxazz + C:anajxaj'z
CZ)y.zl = C;tafya,z + C;nazzyazz + C;anaszrasz
C;);yz = C;):alxafzr' + C;)nazxajr + C;anasxajr s (2.36 a-g)
C.:"sz = C;)ral)(a}?z + C;)uazxajz + C;bnasxajz
C;)yzZ = C;,a”a,zz + C:Jnazrazzz + C;bnasyaiz

* L L] »
Crye = Cii@yx @y 7 + Cptyyy@yz + Cpyp 543y 57 )

Equations (2.33 a-c) represent the coefficients of equivalent hydrodynamic

damping force in x, y, and z directions. Equations (2.34 a-c) represent the
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coefficients of equivalent hydrodynamic damping force in x-y, x-z, and y-z planes.
Equations (2.35 a-c) represent the coefficients of drag force in x, y, and z directions.
Equations (2.36 a-g) represent the coefficients of drag force in x-y, x-z, and y-z
planes.

At the equilibrium state, static loading is due only to the steady flow of
external fluid. Therefore, the hydrodynamic forces from equations (2.28) and (2.32)

are reduced to

I fo* Ixs2
fH‘ CDJ Vm
s _ )i e iy2
F, =< fun 7= Cm VH" (2.37)
f) to* Iyr2
fH"’" Cubn an
{* fyp2 1 =" ! ! I ald i i ety i/ T it tyr2 [ Fald lyr2
’fm Cm Vm +2 CW Vi, VH),+2 Cnm Vi Vi +2 Cm” Vi Vi + CW V”y + CM Vm
I i _ | e iz bem* Ny o [~ Ipy ? [P L T [P ST R Pl L 7 F)
By =<'y b =1 'CWI42'C W, W, +2C W, Y, +2'C W, Y, 'C Y Y
! . . - - . .
Sin TV e2IC W, W, + 2'C Y, W+ 2'C W, T C Y Y
(2.38)

In this study, the horizontal cross flows of current and wave, in dynamic
analysis, are scoped to be in-plane flows, and the dynamic pressure ficlds are
assumed to be uniform around the cross-section of the riser, but vary along the arc-

length of the riser. Therefore

2VHx = 2Vc + ZVw’ ZVH

id

=0,v,

Z

=0, (2.39 a-c)

ZVH; = ZVHxalxﬂ ZVHn = JVHxai’x’ ZVan =0 (2.40 a-c)

where 'V, = *V.(’y) is the current velocity, and “V, = ?V (’y,t) the wave velocity.

The profile of the current velocity may be expressed in the form of polynomial

function as

2 H
y :VC,[O}’] , (2.41)

!
where V¥, is the current velocity at mean sea level, and °y, are surface sea level. The

index n can be varied from 0 to 1 depending upon the current profile. In this study,

n=1/7 is employed for the tidal current profile (Larsen, 1976).
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For the regular incoming wave, the velocity of a water particle according

to Airy’s wave theory may be expressed as

W o=, cosot, (2.42)
where ¢ is the time, and o, the wave frequency. For deep water (°y, /L >0.5), the
velocity amplitude ¥, =V, (’y) is given by

T e (2.43)

where the wave amplitude
¢, =H/2, (2.44 a)
in which # is the wave height, the wave frequency
o, =27x/T, (2.44b)
in which T is the wave period, and the wave number
k=2rn/L, (2.44 c)
in which L is the wave length,

Substituting equation (2.39) into (2.32) yields

fo = —-C:i - C:qx')‘c - C;quy + CT); Vfix + C;:/! VHX ’ (245 a) ;
fuy=—Coy—Coy-Co i+Cp Vi +Cy V. (2.45b)
fip =0 (2.45 ¢)

Equations (2.32) and (2.45) capture the hydrodynamic pressure effects of both steady

and unsteady flows. These equations are exploited for dynamic analysis of the riser.

2.6.2 The Hydrodynamic Forces Due to the Tangential Internal Flows of

Transported Fluid

Based on the contro! volume approach of Computational Fluid Dynamics

(Shames, 1992), hydrodynamic forces due to flow of transported fluid inside
extensible flexible risers with large deformation can be derived as follows. Let 'V,
and 'V, represent the velocity vectors of transported fluid and the riser with respect to

the fixed frame of reference, then the velocity vector of transported fluid relative to the

riser velocity is given by



34

Vi = (iVﬁD)jE - (iVF‘P)aifP /8% ="V ="Vp (246)

where ¥, is the internal flow velocity function: ‘¥, = °¥,, ‘¥, ='V,, and °V,, =

I

at the undeformed state, the equilibrium state, and the displaced state, respectively.
From Newton’s law of momentum conservation, the hydrodynamic pressures
due to internal flow induce the inertial force of transported mass as

j B,dv, = j p'( Ve)) J'{%(*VF)W‘.('EF)} dv, (2.47)

where ‘B, is the inertial force per unit control volume V,, ‘d, the acceleration

vector of transported fluid with respect to the fixed frame of reference at each states,

and

D()_o( ) 3() Ver 0 )
Dr Py (Ve V()= Y oa

(2.48)

It can be proved by Lemma 2.1 that Dp, / Dt vanishes.

Lemma 2.1. The conservative condition of transported mass yields

Dp,/Dt=0.

Proof. Utilizing equation (2.46), equation (2.47) can be written as

Iiﬁidvi = I Dip'Ve) dv, + J Dp Vi) dv, (2.49)
v E Dt v Dt
From the Reynolds transport theorem (Shames, 1992), the last integral is given by
D(p,'V, d i) i i ix
J%Vi :-5;|:J‘(pt VFP)d‘v’i]Hﬁ) Ve (0 Vip)d'A L), (250)
v, ¥, A

where ‘A, is the internal control surface of the riser.

Employing the Gauss divergence theorem, one can demonstrate that

PV (o Vep Jd'A, )= J[(p(vppmvp,aw(m Vi) Vi | d¥, (251)

Ay

Substituting equations (2.51) into (2.50), one obtains

D{p.('V,,
IMV':J p[a ;ﬂw( ‘A VF,,}

(1)
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+[—§+v.(p,»( VFP))} Ve pd¥,  (2.52)

(2)
Refer to equation (2.48), the bracketed term (1) is known as the acceleration of
transported fluid 2., , whereas following the continuity condition (Shames, 1992) the

term (2) 1s zero due to the continuity condition of conservation of mass. Thereby,

equation (2.52) yields

D(roi(jVFP)) _ p>(i§ﬁp)

o (2.53)

D(p('Vir)) Dp
Dt Dt

But

.(iVFP)+pi(’§FP) and 'V, #0, thus equation (2.53) is

valid if, and only if
Dp, /Dt =0 (2.54)

Q.ED. O

Using Lemma 2.1 in equation (2.47), one can constitute Proposition 2.3.

Proposition 2.3. The internal flow through the moving, deforming control
volume of the riser induces the inertial force per unit control volume acting on the

riser wall
'B,=p('d, ), (2.56a)

or the inertial force per unit riser-length

f=m(',), (2.56b)
where f,. is the inertal force, and m, the transported mass per unit riser-length.

From equation (2.56), it is seen that determining the inertial force on the
transported fluid needs the expression of transported mass acceleration a,.. Based on

Eulerian mechanics (Huang, 1993), the velocity and acceleration of transported fluid

can be derived as

= - - ot, V. or
Vo= Gy 1y = 2 S T 2.57)
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i .=d,+4a :D_VP_,_D\—/FP:___ arp VFP al'p
. oy o Dt e

— azfp +[2VFP] 62— ( FP} Y, E_i_ VeV e Ve s’ _ fop s” o

Q(r;_( dadt \ 5" ) 8a’ Js' (zs,)z (zs,)z (25:)3 da
! 2) (

3) {4 R e v
L (5) {e)

(2.58)

in which the term (1) is the transported mass acceleration, (2) is the coriolis
acceleration, (3) is the centripetal acceleration, (4) 1s the local acceleration due to
unsteady flow, (5) is the convective acceleration due to non-uniform flow, and (6) is
the relative accelerations due to local coordinate rotation and displacement.,

By using the differential geometry formulas given in appendix and let V,

be the relative velocity of the transporting fluid, i.e. ¥, =V, the velocity and

acceleration of transported fluid in the fixed Cartesian coordinate system and the
orthogonal triad coordinate system can be expressed as follows

In the fixed Cartesian coordinate system, at the displaced state:

2.7 2 2
VF—[%'HV; "'} {yﬂ/}%’}j{zzﬂ@f}k (2.59)
Ry

2 (2x’)2 21200 iy
ﬁF = 2.5(-'+ T_(.? )J 2,}1"— (g -)); 2}')'_ (2 )3 2Z-r K
Ry S' S.-’ S!

Feur 2.0y t2_r
NEN ‘rf j{}zi'+{%"(zy,)s1fﬂ'{zf J g
(’s) (*) (*s)
(2 w2+ 2 42 n 2.m2 5 2 02 n ' 2
Y=y T+ (T Ty ) Vz{%]y

(*s)

+
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. (2252xr_ZZvarr)2xr+(2zn2yr_szzyn)zyf V2+(-12£j 22' k”

(25')4 i Dt S'
(2.60)
in which D( )=6( )+-2—K¥a( ) (2.61)
Dt ot ‘s da
In the orthogonal triad coordinate system, at the displaced state:
Ve =, 4+, | E+[ 75, A+ P, | b (2.62)

At the equilibrium state, the time-dependent terms vanish, the velocity and
acceleration of transported fluid in the fixed Cartesian coordinate system and the
orthogonal triad coordinate system become

In the fixed Cartesian coordinate system, at the equilibrium state:

PR o
[xniyr Ixrlyrr Iyr+ Ixnlz.r }xv.fzn It IV; IK' ) \
3, = ( )(13)(4 )Z (th)2+ ( ;), _;% ;
+<—(Iyﬂlxl_Iyrlxn)lxt+(iynlzr_Iyrizn)fziT(JV)z-i- (II/[)IVJ_' J‘yr .
("S')4 i 1t lSr J
+<rr(lzn1xr lzrlxﬂ) Ixr+(lzrr1yr_lzrlyn) Iy!-([V)Z-I- (fVi)-'V" lzr ’2
(,'Sr)" ! lg! _ST
L _ AN s
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In the orthogonal triad coordinate system, at the equilibrium state:

Ve =) (2.66)

aF=[(IV")iV"' Pe[() (k)| (2.67)

2.7 VIRTUAL WORK FORMULATIONS

Based on the elastica theory, the apparent tension concept and dynamic
interactions between fluid and riser, the internal virtual work and external virtual
work can be obtained.

2.7.1 Internal Virtual Work

For the overall apparent system, the riser is subjected to the apparent
tension ~, in place of the axial force of the real system. Therefore, applying

equations (2.17-2.19) (the extensible elastica theory) to the apparent system yields

the stiffness equation of the initially straight riser:

8(%U) = [[*N,8 (%5 )+ M0 )+ T8 (*')+ T8 (') e (2.68)
where
E°A’E (TLD) E(°1,1+°7) (TLD)
N, =¢ E'd,’s (ULD),’M =’B(’c),’B=< E('I,)(/+¢) (ULD)
EZAP e (ED) E(ZIP) (ED)

G(°J,}{1+7¢) (TLD)
‘T="C{’r),°C=4 G('J,)(I+e) (ULD) (2.69 a-c)
G(’J,) (ED)
By utilizing the differential geometry expressions and integrating by parts

equation (2.68) three times, obtain the four forms of the internal virtual work can be

expressed as follows:
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{18 (y)jde 2.71)

_ TZ(FS)(zyF(ZZn)_ZZr(Zyn)) 2.72b)

(2.72¢)
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2_n
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2. .w
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2.0
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2_n

n

2

2_nm

2.n

2t

(2.72 h)

(2.72 i)



Form 3: Afier a second integration by part

7 B ()t 5(2w")_'
6(2U): (ZS') ZK' '

Form 4: After a third integration by part

’T Zb’f S| “u
s(v)=| | (w)

+F,,8 (' )+ By, 5( V) + F,.6(°2' )+ °T6

‘v

—
pa—
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[ uston st

;

[ RO(u)+ RS(v)+ R[]

2,

1%

N,

#[[{RYS (u)+ (SRS () + RS (w)+ {18 Py ) e 274)

(24

F, -¥, =°T(’x)(’b,)
F, -F;, = T(’x)(’,)
F, T, = T(’x)(’p,)

2

2.7.2 External Virtual Work

(2.75 a)
(2.75b)
(2.75¢)

(2.75 d)

(2.75¢)

(2.75 f)

The external forces exert upon the marine risers are the effective weight,

hydrodynamic loading, and inertial forces which depend on deformation of the riser.

Therefore, an evaluation of these forces should be done with respect to the current



45

configuration of the riser. Then the variation of external virtual work evaluating from

the free bodies at displaced state is

SW =OW, + W, + W, (2.76)

where oW, ,6W, and oJW, are the virtual work of the apparent weight,
hydrodynamic pressure, and inertial forces of the riser and transported fluid

respectively. In the Cartesian coordinates, these expressions are written as follows,

oW, =~ [w,(’s')8(*v)da (2.77)

W, = { Lu(78)8(2u)+ £, (318 (V) + £ (P5') 8 (Pw) Hex (2.78)

o

W, = "_l[(m,,a,,, +m,.aF,)(2s']5(zu)+(mpapy +m,.a,,.y)(zs')5(zv)

a

w(ma,, +ma, )(*s)5(2w)+m, (2,) (%) ()5 (w) |da  (279)

in which a,=a,i+a,j+a,k=7=ii+,j+,w and the expressions of

hydrodynamic force, £, = fi,/ + f; Hy J+ szlg, and the accelerate of transporting fluid,

-

a = anf +a ij +apk, are given by equations (2.32) and (2.60) respectively.
Substituting equations (2.77)-(2.79) into equation (2.76) yields

oW = .[{ 2S'|:fo ML _mian:I 52u}da
+J'{ Zs'[uwa + [y — 1,4, '_mfapy:](s‘?V} da
+ _[{ ZSII:sz —-m,a,, —ma, :|§zw} da

-5 [m, (7, )(2) Jo (v )} de (2.80)

o

2,7.3 Total Virtual Work

From the principle of virtual work, the total virtual work of the effective

system is zero:

St = 6U —SW =0 (2.81)
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Substituting equations (2.70) and (2.80) into equation (2.81) and utilizing
the differential geometry expressions in appendix yields the first weak form of the

total virtual work expressed in the fixed Cartesian coordinate.

+2T{ Zr(z;y ) —j—f‘_;(‘?x”(zz'”)ﬁ zx"'(‘?z ))
LR ey - )20 )

2 o T
+2Tl: Tg 'Z)+_%(2xﬂ(2ym)_2xm(2yn)]
) )

(OO 02) ) oo
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+2 23' (2x'(2y")wZy'(zx"))c?(zw"’)}da +[{ T8 (%) }da
iz =My ~miap, |8 zu)} da “

5[ -w, + fuy—m,a,, ~mag, |5(v)} da

[ fi ~m,a,, ~map, |8(*w)} da

oy (20,)() )0 ) e 28

1y r— 1 I

Integrating by part three times, one obtains the last weak form of the total

virtual work as follows.

opl b spam, b graa. b sin
(et et )J]

5( ﬂ){
+F,, 8 (u' )+ F,, 8 (V) + F,,8(’2')+ TS (*w)
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127

h)

{2#( 8 (%) + n,6 () + n 8 zw’))}

—_

-
Momen: boundary cendttion (term 3} "
0

2

+ 2R8(Pu)+ RS ( )+ RS 2w)]_

v
Force boundary condition (werm 2) a
a

(5 (oo () {85 g, o ()

2.83
+a +{JRZ'—ZS'(zqz)}5(2W)+{—2T'+ZS'[mp(zJp](zlji)J}é'(zy/) af )
‘ Eu!er'sequaz\i:m (term 1)
where
’q, = fu—m,a, —may, | (2.84 a)
‘g, =[-w,+ fy -m,a,, ~ma, | ~ (2.84D)
‘g, =[ fo—m,a, -ma, | (2.84 )

2.7.4 Euler Equations and Boundary Conditions

Considering the boundary conditions of the problem, two classes of
boundary conditions are identified, called essential and natural boundary conditions.
The essential boundary conditions are also called geometric boundary conditions and
correspond to prescribe displacements and rotations. The natural boundary
conditions are also called the force boundary conditions and correspond to prescribe
boundary forces and moments. In this problem, the hinge support is applied on top

and bottom end, therefore, the essential boundary condition are

“ula,,’t)=0"u(a,t)=0 (2.85 a)
(e, t)=0,v(a,, t)=0 (2.85 b)

2w(ao,2t):0, zw(a[,zt)=0 (2.85¢)
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To extract from the variational equation, equation (2.83), the governing

differential equations and natural boundary conditions can be obtained. One uses the
argument that the variations on “u,’v, and “w are completely arbitrary, except that

there can be no variations on the prescribed essential boundary conditions. Hence,
because u(,.’t),u(e,.’t),v(a,, ’t).v(a,t),"w(a,.’t), and ‘w(a, ’t) are
prescribed one has &(’u(a,, t)).6('u(a,. ) .8(v(a, 1)) .6( (@, 1)),
5(w(a,.’t)),and &(*w(a,,’t)) are equal to zero and term 2 in equation (2.83)
vanishes. Then

[*RO°u+R S v+Row,

S =0 (2.86)

Considering term 3 in equation (2.83), since the variations on ‘u’,*V',

and ’w' are completely arbitrary at any point, that means

r e _2B 2 7

Zz—ﬁf( n )l = Z(S,K) (n )| =0 (2.87 a)
2 (k& _ZB 2 %

2_11{(2”)') = Z(S-K)(Zny) =0 (2.87 b)
2 1% sz 2 & ‘

_"%47( n )| = z(f) (*n.)| =0 (2.87¢)

Considering term 4 in equation (2.83), one has

d 6(2w"(ao,2t)):0,2T5(2w(a0,zt)) (2.88 a-d)
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R R

mcS( w(e, 1)) =0,776 (% (a,, %)) (2.89 a-d)
[E.. 11 { —ZT(ZE; )Efc)y) cal (2.90 )
e K
[®], = —T(Ecsy)(:)x)s L (290 ¢)

It is true that equation (2.88) will be exact by two arguments. First, the

variation of the second derivative of displacements or the variation the twisting angle

are equal to zero, i.e.é‘(zu"(ao, 21)):0,,5(212"(050, ZI))=O, 5(214/"(0:0,21‘)):0, and
o (2w(ao,2t))=0. Second, the torque at the bottom end is equal to zero, i.e.

T (o:n, zt) =0. In this study, the bottom end of the riser can not rotate around the

tangential direction freely, but can rotate freely around any other direction
perpendicular to the tangent. Therefore, the second argument can not occur because
the torque reaction is not equal to zero, i.e. ‘T (ao, 2t)¢ 0. Consequently, the first

argument has been adopted and it can be concluded that the second derivative of the

displacement is a constant or equal to zero, 1.e.

2u"(aa, 2r) = Const , or zu”(ao, zt) 0

zv”(ao, zt) = Const , or Zv"(ao, 23)

0

zw"(aa, 21) = Const , or 2w"(.cza, Zt) =0

In the same manner, the equation (2.89) will be exact by two arguments

in the same manner as equation (2.88). At the top end, however, the riser can rotate
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freely around in every direction. Therefore, the first argument can not occur because

the torsion at the top end is not equal to zero, i.e. 'z (ao, Zt) # 0 . Since the torsion is

function of the second derivative of the displacement, they and their variation are not

equal to zero, i.e.
2u"(a,, zt) #0, and 5(21,:"(05,, Zt)) #0
2v"(a,, 2t) #0, and 5(2v"(a,, 2:]) #0

"w"(a,, 2¢)¢0, and 5(2w"(a,, 2:))¢0

Consequently, the second argument has been adopted and it can be
concluded that, the torque at the top end is equal to zero in the case of no applied
external torque. For the most general problem, the external torque may be applied

from the environment of the riser. Thus, the natural boundary condition of torque at

the top end becomes °T (a,, Zt) =T

Considering equation (2.90), each term is composed of the second

derivative of displacement and torque. From this reason, this condition corresponds

to the conditions of equation (2.88) and (2.89).

Since the variations on ‘u,’v, and ‘w are completely arbitrary at any
point except at the essential boundary, the governing differential equations are shown
in term 1 of equation (2.83) and can be called Euler’s equations. By substifuting
equations (2.75 d)-(2.75 f) into term 1 of equation (2.83), one obtain the governing

differential equations in three directions of the fixed cartesian coordinate system as

follows.

In x direction;

(%) (8,)] (') (2. ) =0 (2.91)
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In y direction:

Lﬁr%{iﬁ }] ‘

-[r()(8,)] ~(*5)(%a,) =0 (2.92)

In z direction:

) {(2’”"‘23“”)2)3_5“3{(53}}
‘[ZT(Z")(szﬂ' -(*s')(’q.)=0 (2.93)

In twisting rotation
27 = 2s'[mp(2Jp)("’y'/‘)] (2.94)

By using the differential geometry of space curve, equations (2.91)-

(2.93) can be written in the vector form as

L)ai(—M(""“)_{()}@i{_ﬂ

T 8 (W ’ 202
ETNE TN

Note that {— = 3-;; +2—i’,j’+2—31€ (2.96 a)
D _ 0 (XN 0 ()., 8 [,
%(%'J_g["_f}-kaa Zs']j+8a[‘?s'Jk (2365)

oo p 2 p “ ' "

2[5 CC CACRIATC)E a6

If @ = "5, equations (2.94)-(2.95) become

= m, (%7,)( )] | (2.97 a)

(2877 —[( N, - 2B( Z;c)z) 2?'] [ Zf")]' _G=0  (297b)
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which is compatible with the nonlinear dynamic equation given by Kokarakis and

Bernitsas (1987).

2.8 VECTORIAL FORMULATION

To validate equation (2.94)-(2.95), one has to use the relation between
three orthogonal coordinate systems and two moment differential equations to
eliminate shear forces. As a result, it is found that the six equilibrium equations are

reduced to three equations and can be arranged in vectorial form as equation (2.95).
Figure 3. shows the riser element of the length d’sin displaced state
loaded by forces and couples in the cross-sectional principal axes system. Let ‘R be
the vector of an internal force such that ‘R =°R,’¢, + °R,’¢, + °R,’e, where ', is
an axial force, ‘R, and ’R, are shear forces; let M be the vector of an internal
moment such that ‘M =’M,%é +°M,%é,+°M,’¢, where °M, is a twisting
moment, ‘M ,and ‘M , are bending moments. The vector of an external load, i.e.,
current and wave force, effective weight, inertial force, is represented by

‘G="q,°¢,+°q,%¢,+°q,7¢, and the vector of an external distributed moment is

represented by °m = ‘m ¢, +°m,’é, +°m,’é,.

Figure 2.3 Riser differential segment.
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Since the riser element is in equilibrium, therefore the sum of forces and
the sum of moments equal to zero. Hence, the equilibrium equations in the cross-

sectional principal axes system are

ZRF
23: +2R3 2w2_2R2 za)j :--Z-‘q.r (298 a)
2Rl'
25,’2 +2Rf20)3_2R32a)1=—2q2 (298 b)
ZRI'
2; +’R, "0, R, ’w, =g, (2.98¢)
2 [
M .
‘?s'] +°M, 0, - M, o, =="m, +[mp(2Jp)(2w):| (2.98 d)
ZMJ 4
2 2
zs’z + M‘, 2@3 _ M3 W, = 2R3 — zmz (2.98 e)
ZMI'
23'3 +°M, 0, - M, "0, =~"R, — ’m, (2.98 )

It is worth noticing in this formulation that the external forces are
assumed to act on the centerline of the riser, therefore the distributed external
moments are equal to zero.

By coordinate transformation and shear force elimination, the
components of internal force vector in fixed Cartesian coordinate can be derived and

wriften in vectorial form as follows

o ] ] ] it ) i 6 P=t
‘R= (!NG—IB(’K‘)Z)%_lB (1:")3 %('_Z'J

t

S A i - (2.99)
(fsr) cal ‘s’ sV Ball’s

Since, the summation of forces in fixed Cartesian coordinate and the

summation of moments in tangential axis are

‘R+7s'('g)=0 (2.100 a)
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=25 m, (0, )( )] (2.100 b)
therefore, it is confirmed that exact agreement is achieved among the vectorial

formulation and the variational formulation.

2.9 NONLINEAR DYNAMIC AND LARGE AMPLITUDE VIBRATION
MODELS

Based on the variational formulation, the governing equation describing
nonlinear dynamics of the flexible marine riser have been achived in the four weak
forms and in the one strong form. For the sake of generality in obtaining the finite
element model, however, the strong form is used to generate the large amplitude
vibration models. The governing equation in displacement-based strong form can be

expressed as follows

0
2 ’F L 4 " az_
+S,,,(LTJ6;:)+ZS,,”_ i n(9) v (]2
’s' L g ’(25:)2 (ZS')2 2S')3 0

S
:25’{ FH}— 5w j— sm{zy" (2.101)
0 s
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By utilizing the differential geometry of a space curve, each term in

equation (2.101 a) are expanded by
o*(’7) 0
Al T o)
P

0
[ s (m, +m,) 0 0 0 | 2
0 s'(m+m, 0 0 2
= (m, ) 2 (2.102 a)
0 0 ‘?s'[mp+mi) 0 z
2
2 l//
.0 0 0 (*s)(m,)(°7,),
(2yr)2+(22r) Zeryr Zx.vzzr .,
2 2=t 2
Bzi("}"—,]_ B5 2ty (fo) +(2zf]2 2y 2y
(7s) el () : 2
_2x12 r ~2y'zz' (zx:) Jr(zy.~)
(2.102 b)
2.
2t 2Nr ] 0 0
{w”l -0 1 0%y
> s 0 0 111°7
(2y')2+(22')2 Zxr.?yi' 2,120 W L,
2
+( N33 S22y (2xr)2 +(Ezr)2 ity 2" (2.102 ¢)
2 r
5 2
__ZerZi _2yr2zr (2xr)2+(2yr)2 Z
e R 5 ( bzzku bzzkfz b;kij ‘x"
23(2’() T +’B T a2 |7 bjkz,' bzzkzz bjksz 2y" (2.102 d)
s (25") aa &) 2 2 2 2w
S N ST LT z
2= 2=
rll sl E L)
7 2
T
0 el
T;‘?kl] 'rJzka Tfkm ’x" 0 0 0 Tzsz x'
" 2 2.
—_ rikm Tikzz Tikzj iym B 000 r22k24 2)’, (2.102 ¢)
r!ku T1k23 rikss z 0 0 0 ik z
0 0 0 y” 0 0 0 Tjkﬂ 4
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_(Zy')2+(22')2 _Zxr2yr 2yt ) , .
_ miV,z _zxrz ' Zx: 2_'_ sz 2 2 :er 2.n 2102
=i y (*) y Yoo @102h
§ 2_n
L fozzr zyr 22! (Zxr)2 +(2yr)2 Z

; 1 0 0
s'm, | — =— 10 1 0[3%; (2.102 g)
*lo o 1

22 2.t 2=
Zsfmi(_zz}:;-jaaia:)_2srm‘[l/'z( 'sz) a( f')
( S) Ja
20V () iy A
i B S ) RO B N S AT
( S) un?zr _2y!22r (2.5")2'*'(22’)2 22"
()]
—
. 2 2.0
m [%]ag;):zsr ’"_ZE_{_) (2.102 i)
m,.V,.(zz')
it

By substituting equations (2.32) and (2.102) i;lto (2.101) together with
some manipulation. The nonlinear dynamic, large amplitude model in the Cartesian

coordinate system is obtained as

TR BT P

(2.103)
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where the total mass matrix is

1 0 0
M="s(m,+m+C,) 0 1 0 (2.104)
6 0 1
the hydrodynamic damping matrix is
C C C
egx eqxy egxz
Cc="15 Cequ Ceqy Ceqyz (2.105)
Ceqxz Ceqyz Ceqz
the gyroscopic matrix is
r 2 2
2(2Sf) +(2xr) szrzyr _2x!22! 1
G - (Tif/]iz _Zx.'2yl' 2(281)2 +(2yf)2 “'Zylzzf (2106)
5
_ZerZr “ZyrZZr (ZSf)z +(Zz.r)2
the torsion stiffness matrix 1s
T:'?kl] Tfklz Tfklj‘ 0 0 0 0 TszM
ZK _ T]Zklz T.?k.?;’ T.?k23 0 + 0 0 0 T22k24 (2 107 a)
T - .
Tfk.'i TﬁkZ_? Tik.?.i 0 0 0 0 T;kje’
0 0 0 0 g 0 0 Tjk44
in which
ZC(ZS’ 6 5
Tfkn:_?K)T)(zy "y ) (2.107 b)
202 08
C( S [ " 2
ik, =——(2—;~)-5)--(22 x"—x"’z ) (2.107 c)
2 2.t 6
C( S ! L t n ?
ks, =—~——( ZK)) (2x T tyix ) (2.107 d)
ZC Zsl 6
Tfk” — Tgkﬂ - _ ( ) (ny ZZH__ ZZr2yﬂ)(ZZr2xn_ le.?zn‘) (2107 e)

(x)
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20 2 ¢
szki_;:?:?kj,l:“ (2(1(;2) (2yr2zrr_zzlzyn)(zxizyrr_2y12xn) (2107f)
Zky, = - s )) 27" =2k 2" (XY =7y X)) (2,107 g)
2 2 2 "
Tz .r4: I: z()zs gzz ) (2.107 h)
e [ o
Gl
2 - 2 2.t -
T;k34:(zsc,1)2 ( )( y()zsgzy)( ):l (2.107 )
2 2 zr, i
rokes = C{(fw'f(zs')] (2.107 k)
2 _(2}):)24_(22;)2 _2yr2y 2,020 i
LK = 2{35 ~x'?y (zx')2+(2z')2 -y (2.108 a)
( S) _Zxrzzr _2y!221 (Zxr)2+(2y )2
bzzkn bzzkm bjklj
hiKZ b;k.?l b22k22 b§k32 (2.108 b)
b22k,f3 bzzkm b22k33
in which
bjk” :(22?) [2( N y 12y Zyrr) 2x.r2yr+2(2 "2 2xr2zn)2xr22r] (2.108 ¢)
s
bjkﬂz 22?)? :2(2yn22 2yr2 n) y Z ﬁ2(2x”2yl' 2 zyn) 2xf2yr:| (2108 d)
5
bjkjs _ (;Bj)? :_2(236"22'“ Zxazzrr) Zxrzzr_z(.?yﬂzzr Zy 2 w) Zyrzzr] (2108 e)
s
2 B (12 wrs 22 V(20 2.0V 2. w20 2 42 0\2 42_s
bzk,'z——(x y-x J’)((J’) —(X))+(y zZ~"y z)x z
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4 zxrr?_zy 2 r2 n)zyr2zrj| (2108f)

2.on2 L2 -2 n)((zz.v]z_(2x1)2)__(2yﬂ22'__Zy.rJZn).?foyf

(
A

+(2x"2y’—2x'2y")2y'22'} (2.108 g)

szkzj - ( 221?)7 [( Zyn 20 Zyrzzrr)(( 221]2 _( 2yr)2 ) _( 2mar_ Zxr 2er) .?xr.?yr
A

W(Zxﬂ'nyu'2xl2yﬂ')2xI'ZZr:| (2.108 h)

the axial stiffness matrices are

_((Zyr)2+(2z!:2] Zxrzyr 2xf221 i
2x7t 2
NiK ( N(2 f;’iV ) gx,gy, _((2x,)2+(22;)2) 2yr22_r
g
S Zy.rzzr _((2yr)2+(2xr)2)
(2.109)
[ZN _mIV;V) I 0 0
wK= — 0 10 (2.110)
* 0 0 I

o Vi + c v+ 2c;m ViV +2C. ViV,

™o
-
I
L)
&
.

C Vi +C.V242C, VuV,, +2C, V,

o V + C Vs +2c;m ViV, +2C ViV,

Dx22  Hz il

+2C ViV +C V2+C v’ —mV[

)

] > (2.111)

i

+2C, V¥V, +C, V' +C, VZ—mV[

[

S
+2C V¥ +C. V2 +C, V‘?umV[ J
)
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2.10 NONLINEAR STATIC EQUILIBRIUM MODEL

The nonlinear static model is obtained by eliminating the time-dependent
terms in the nonlinear dynamic equation (2.102) and replacing the variables at the
displaced state by ones at the equilibrium state. Therefore, the nonlinear static model

can be expressed as follows.

r2kig
JKO0][ 0 Lk, (7] ([JK o7
+ 1, m + i I * F
0 0y roks LW L0 0]y
0.0 0 rk,

8 SR SR S e
0 0|’y 0 o'y 0 0|y 0

the torsion stiffness matrix is

T;kii T;kiz Tfklj 0 0 00 T;k”
I 'k s 0 g 0 0 k
; T2%
K = r;}k:z r{,kzz T!Jk23 ) n S ’k4 (2.113 a)
ity rifar rifss T2™34
0 0 0 0] [0 0 0 Lk,
in which
IC ISJ 6
]:'k”—— ,( 2) (iy:izn_fzr.'yrr)z (2.113b)
()
o1 6
Ik, = — }( 2) (.’Zrlxrr_!x.rfzvr)2 (2.113 ¢)
(')
1of g 6
;kjs__ I( ) (Ixr]yn_iyrfxn)z (2113 d)

1 i ]C(IS,)G ! i Il
= k2,:——( y'iz" =7 y")(’z”x"-’x"z”) (2.113 ¢)

le.'s - ;kﬂ :M__(.'yfizn_ !zr!yﬂ)(]x.viyn_ nyixrr) (2113 f)
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! 1 ays
;kzj _ ;k}z _ Cf( ‘;2) (!Z!Ixrr_ lxilzn)(ixrlyrf_ Iyr lxrr) (21 13 g)
K
Ik _ iC (.'y!)(]zn)]_(lzf)(lyﬂ) (2113 h)

e [(fz')(fx")— W' o

raks, = < (Ix')(!y")_(fyr)(jxﬂ)} (2.113j)

roky = IC[(II"’f’)ﬂL(]],)} (2.113 k)

(Iyr)2+(Izr)2 _lxrlyr —IJC”Z’ T
i ‘B IS, i fon? Poale
b,K=~(~T-:-)~3~ ~ix'y ('x) +('2) ~lyiz (2114 a)
5
It Iyt (lxr)2+(ly )2
b;kl.' b;klz b;kli
biK: b;kz.' b;kzz b;kﬂ (2.114 b)
b;k13 b;kj‘z b;kﬂ

bsz” _ ‘B —2(1xnlyr__ lxriyrr) !eryJ+2(!xrr}Zr_lxrizrr).'xrfzi] (2.114 ¢)

bszzz: ‘B _2(1ynfzr_Jyuzn)fyaizr_z(,'xnfyf_fxrfyn)fxriyr:| (2.114 d)

ko =—IB _—Z(Ix'”z'— Ix"z") ’x”z'—Z(’y”z'— 'y”z") ’y”z':l (2.114 ¢)

(.’xniy:_leiyrr)((.’yl)z_(le)2]+(iynlzr_Iyr}zrr) 1t
+(1x" X ) Y ’z':| (2.114 )

vikys = i |:(Ix”2'w lx"'z")((’z')z —(fx')z)_(fy"-'zr_ fyfizn) ytly
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+(1xnlyr_ Ixrfyn) Iyrizrjl

(2.114 g)

fk i{(lynizf_lyrlzn](( Izr)z_(.fyr)z)_(!xn!zr_ Ixrlzn) Ixrlyf

B2723 T (IS')T
_(Ixnlyr_lxrly#) lxrlzr:|

the axial stiffness matrices are

Igr
NzK_

P Iyr2 1t i ! IV L !

CWIA2'C W, 1 2'C Y, Y
\g_ f ™ Iyr2 I ekl I i 1 * 1 1
f='s''CC Wl +2'C] W, W, +2'C. 'V, Y,

1p* dyr2 I L) i f I !
C W2 +42'C,_ W, W, +2'C. V'V,
ey} ! It Iyr2 I iyr2
+2'CT W, W+ 'C W IC Y

Hy Hz

Ixriyr _((Ixr)2+(lzr)2) lyrlzr

(2.114 h)

lxr.fzf

(2.115)

0 (2.116)

+2'C] Wy Vi +'C VA IC TV =, (2.117)

Hx v

+2'c” v, v, +'C Vi !
Dyrz ’d z Drzi Ha Dyt Hy

2.11 CHOICES OF THE INDEPENDENT VARIABLE «

One salient feature of the large strain formulations presented in this work

is that the independent variable « used in the formulations provides flexibility in the

choice of parameters defining elastic curves. The formulations therefore aliow users

to select the independent variable that is most efficient for their own problem

solution. For example, analysis of flexible marine risers as shown in Figure 2.1, has

at least four alternatives for the independent variable « such as the vertical

coordinate y, the in-plane offset distance x, the out-of-plane offset distance z, and

the arc length s.
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The advantage of using o = y is that the total water depth or the boundary
condition is known initially. While using &= x or &= z the boundary condition is
known if the offset at the top end of the riser can be assumed to be static, and is
unknown if the offset is dynamic. If one uses a =s, the boundary condition is
always unknown, because the total arc-length changes after deformation. The
problem for which the boundary condition is unknown, becomes much more
difficult, and requires specific treatment.

However, the disadvantage of using = y is that if elastic curves after
large displacements form like the U-shape or the semi U-shape as shown in Figures [
(b) and 1(c), the vertical position is no longer a one to one function for all points on
the elastic curves. Consequently, ¢ = y is not an effective choice in this case.
Likewise, using @ = x or a= z encounter the same difficulty when the elastic curves
after large displacements develop akin to the C-shape or the semi C-shape. In these
troublesome cases, using a@= s becomes the best way, because arc-length is an
intrinsic property, and thus is always a one to one function for all points of the elastic
curves.

Therefore for flexible marine risers which do not face the problem of
elastic curves having a U-shape, such as the high-tensioned risers, using o=y is
sufficient. However, if the risers confront the problem that occurs in the case of low-
tensioned risers, = s should be employed. It should be noted that in addition to the
four alternatives of o as exemplified earlier, there are still other choices of & such
as the span length, the rotational angle, and so on, which may be employed if

efficient.

2.12 IMPLEMENTATION OF THE MODEL FORMULATION TO
PRACTICAL ENGINEERING PROBLEMS

- The present formulations are applicable {o large strain analysis not only of
flexible marine risers, but also of any kind of engineering structures, which may have
the elastica’s behavior. The examples of these are listed as follows,

(a) Onshore pipes. The effect of external fluid would be excluded from

the present models.
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(b) Submerged pipes. The hydrodynamic pressure effect of external fluid
would be excluded.

(¢) Marine cables. Bending rigidity, Torsion rigidity and influence of
internal fluid would be excluded.

(d) Submerged cables. Bending rigidity, Torsion rigidity, influence of
internal fluid, and hydrodynamic pressure effect of external fluid would be excluded
from the present models.

{e) Onshore cables and strings. Bending rigidity, Torsion rigidity, and
influences of internal and external fluids would be excluded from the present models.

{g) Elastic rods, long columns, and long beams. Influences of external
and internal fluids would be excluded from the present models.

Even though the present models are intended for engineering structures
with environment-induced initial curvatures, the models can still be extended to the
structures with man-made initial curvatures such as curved beams and arches by
considering & # 0 in application of the extensible elastica theory developed in this

study.
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3. SOLUTION METHODS

In this chapter, the updated Lagrangian descriptor (ULD) is employed for

describing the nonlinear behaviors of the riser, and the independent variable o ="'y

is adopted. For the 3-D nonlinear static analysis, the weak formulation &'z =0 is
derived and solved by the hybrid finite element method as will be elaborated in
section 3.1. For the 2-D dynamic analysis, the ordinary differential equations of
motion are derived from the weak formulation &’z =0 by the finite element method
as will be shown in section 3.2. Based on the state-space formulation obtained from
section 3.2, the natural frequency analysis and the time history analysis of the

nonlinear vibrations will be carried out in sections 3.3 and 3.4, respectively.

3.1 THREE-DIMENSIONAL NONLINEAR STATIC ANALYSIS VIA THE
HYBRID FINITE ELEMENT METHOD

The hybrid finite element method herein refers to the finite element
solution of the weak formulation that is mixed with the strong formulation. One may
question why this method is essential for the nonlinear static analysis of the marine
riser. The answer is as follows. For the extensible analysis of most structures, the
static axial strain in the weak formulation is determined from the strain-displacement

relation such as

‘e=(d's-ds)/d’s. (3.1)
However, for extensible marine risers with large displacements this approach may
not be applicable, because in practices, marine risers do not have the undeformed
configuration as for reference. In other words, for marine risers d°s is nonexistence
for use in equation (3.1). The equilibrium state is the only initial state or the first
state of marine risers, which is unknown initially, while the undeformed state is the
ideal state, which never appears in the real situation. The way to solve this problem

is to establish the static axial strain from the constitutive equation

‘e=IN,/E'A,, (3.2)
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where the apparent axial force ‘N, is determined from the equilibrium equations.

This approach is called the hybrid method (O’Brien and Mcnamara, 1989).
It should be noted that this problem would not be encountered in the
dynamic analysis of the marine riser, because the dynamic axial strain can be

determined from the strain-displacement relation

e=(d’s—d's)/d's, (3.3)

where the reference configuration d’s in equation (3.3) refers to the equilibrium
configuration, which is known from static analysis. Therefore, the hybrid method is

not needed for dynamic analysis.
In section 2.7, there are at least four forms of the weak variational

formulations to be used. In this study, the second weak formulation is employed.
With application of & ="'y, and neglecting the time-dependent terms in equation

(2.71) and (2.80), the hybrid formulation for nonlinear static analysis is obtained as

s(a)= e L B

xl’."
-

AY

zﬂ'

s -

e |ls(w)

r(ISn)]
(')
r( IS")]
(s)

}
. "B "z" Iz!(lsn)\ o
5(u)+“2 — 5= 15 ('w")
+'F, 8 ('u)+ F5( W)+ 8w )+ 'F,8 ('w) + TS (y)
+'S’(—’fo+m,.("apx))5(’u)+’s'(—'sz+mf(’an))5(’w) d(’y)

(3.4)
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where

'K )+ 15’(’61:)}*(’)}), (3.5 a)

T('y)="T("yy (3.5b)

P tgp 1 ! 1 2’_’
9= "Jfu ms( am) Wa[ ;S,]a (3.5¢)
o =0-5pe(lDe)”Cm (IVH: )2 , (3.5 d)
Fun=0.5p,("D,)Cp (Vin) 3.5¢)
Soan =0.50.('D,)Co (Vi) » (3.5 f)
Fie= f( } Sun('n )+ (') (358
Isz:]sz(TjTJ"'}an(i z)+ Siaon (lb )a (3.5h)

H e
Iaﬂ:ﬁVi—l(S’V;), (3.51)
o= () )+ L) as)
('s)

fapz=’f<(’nz)(’lf:-)z+( ae) (3.5K)

(3.5m)
(3.5 n)

(
1 i IX' i ‘,Z'
VH: = VHx( 1SrJ+ VHz (TEJ’ (35 l)
n (n.)
)

"B E('I), 'B'=2E(")(1+ )¢, (3.6 a,b)
N ] P i oo
‘s —\ﬁ (Ix')2+(’z')2 , 8" = x( : )T,Z( Y ), (3.6¢c,d)
M
l ] i

() + (W) +((w)(2)-() (W) @9

oy m{ () (") () )

L) e)-Co - (o)) |- LRED
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S s U s o N
G () T
3= (kY (3.6 1)
'F,, ]T{ TI,(S,x')+2( S:)S( TJ)[ (’u")("z')—([x')('w") J(lw")} 3.6
;Ez:,T{’rglgiz')_2(1s;)s(’r,)( (%)) ~( ') () ](Iun):( (36K
'R, () 7 _T()(s) (3.6 L,m)

x ]S > 2z IS ’

In large strain analysis, the axial strain is one of degree of freedom and

the axial force can be derived from constitutive equation.
N (y)=E("4,)("e('y)) (3.7)

To satisfy both equilibrium equation and constitutive equation, equation
(3.7) has to be equal to equation (3.5 a), the constrain equation of this condition may
be written as
[YH
Sw, = J.{E(’Ap)’g(’y)—’Na(’y)}cS(’g):O (3.8)

.'yo

This constrain equation may be considered as an equivalent work term
and is added directly to the standard virtual work statement; equation (3.4).
From equations (3.4)-(3.8), it is seen that there are four dependent

variables ('u, ‘'w, ‘w, and ‘) and one independent variable ('y). Along with the

essential and the natural boundary conditions of the riser that has the slip joint at top

and the ball joint that can not rotate in tangential direction at the bottom end.

at 'y=0: "w=0,"'w=0,"v =0, (essential) (3.9 a,b)
W=0,'w=0 (natural) (3.9 c,d)
andat 'y ="y : ’u=0,'w:0,’£:(’NaH)/E(’APH)(essential) (3.10 a-¢)

'T=1T, (essential) (3.10 d)
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W=0,'w=0 (natural),  (3.10¢,)
the system of equations (3.4)-(3.10) is the boundary value problem that should be
discretized by using the C? finite elements so that all the boundary conditions are
constrained. Note that the C™ finite elements are the elements of which derivatives of

displacement field through order ‘m’ are continuous.
However, the higher derivatives of the twisting rotation 'y and the strain

‘e are equal to order one, thus it is sufficient to approximate the twisting rotation
and the strain by the C' element. Therefore, in this study the elements mixed between
the C' and the C* elements are used for approximating the displacement vector of
‘w,'e, 'uand 'w.

For ecase, the third and the fifth order polynomial shape functions are

employed to correspond the C' and the C? finite elements, respectively. Therefore,
the displacement vector is expressed as
Pay={u 'w 'y e =['N]{'d,}, (3.11)
where the generalized coordinates of the nodal displacements of each element are
{’&,,} :{fuf Wl fw w W Ty, Ty e e

I

b !oor i n i Iw 1 F I
|, uy Tuy Cw, wy W Ty, g

e, gl (3.12)
and the shape function matrix at the equilibrium state
‘N, 'N, N, 0 0 0 0 0 0 0
[}N]: 0 0 0 'N, 'N, 'N, 0 0 0 0

0 0 0 0 0 o 'N, 'N, 0 0
o0 0 0 0 0 0 0 'N, 'N,

'N,, 'N, 'N, 0 0 0 0 0 0 0
0 0 ‘N, 'Ns, ‘N, 0 0 0 0
0 0 0 0 0 0 ‘N, ‘N, 0 0
0 0 0 0 0 0 0 'N, 'N,

(3.13)

Note that ‘N, and 'N,, are the coefficients of the third and the fifth order

polynomial shape functions, respectively.
From equation (3.13), the number of degrees of freedom per element is 20.

From equation (2.81) and the calculus of variation, one has
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5(%”’)=§F(%W)}5(fdm.)=0. (3.14)

i=l a( Idm')

Equation (3.14) yields the twenty equilibrium equations of each element

o('7")
=0, fori=1,2, .., 20. (3.15)

a('d,)

Substituting equation (3.11) into equations (3.4) and (3.8), the matrix form of

equation (3.15) can be obtained as

!
(o () af 1, o ) Tyl
; a J'Sr !Si ("S')j lsr I(S,)z ix 0
k 0
r 2 Y
+ 'N (EJ_[‘B (lx) lz’)+ C z_f ’(IS) +'F [’N]T ;
a .'S J'Sl (‘-S,)B .fsi (S,)Z I 0
) 0
_ - 7
B [ W) T
(‘.S,)z g /(S,)z 2 0
L i 0
) [0 0
+ iBz[l;i_ f( 32)1+1FJZW[!N"]T ! +2T[’N ]T 0
()L ) 0 !
J 0 0
1 0
r |0 |1
+’s’[—}fo+m,-(fan)][:’N] {0>+15’(If,{z+ml(’ah))[ N] )
0) 0

0
HE('4,)("e)- ’Na)[’NT g}Ld(’y] (3.16)
I
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The Fortran-90 codes for solving the system of equation (3.16) has been developed

based on the aforementioned finite element method. The solution steps used in the

codes can be summarized as follows.

Step 1
Step 2
Step 3
Step 4
Step 5

Step 6

Step 6.1

Step 6.2

Step 6.3

Read the usual data from the data file.

Set the values of constants.

Determine the values of the constant.

Label the node number of all elements.

Initialize the guessed values of all degrees of freedom.

Form the system of finite element equations, in which the procedures are
as follows:

Calculate the nodal axial forces and the nodal axial strains based on
equation (3.5a).

Create the element equations based on equation (3.16). The numerical
integration is performed by using the fourth-order Gaussian quadrature.
The global degrees of freedom are transformed to the local. The third and
the fifth order polynomial shape functions are calculated. The shape
function matrices are formed. The generalized coordinates of
displacements are evaluated. The effects of radial deformation on the
changes of cross-sectional properties and velocity of transported fluid are
treated. The external loads due to the effects of the hydrostatic and the

hydrodynamic pressures are evaluated. The axial and shear forces at the
depth 'y are computed.

Assemble the element equations obtained from step 6.2 to generate the

global system of finite element equations.
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Step 6.4  Impose the boundary conditions from equations (3.9) and (3.10).

Step 7 Solve the system of the finite element equations obtained from step 6 by
numerical methods. This study utilizes the modified Powell hybrid
algorithm based on the MINPACK subroutine HYBRD1 (More et al.,
1980} which will correct and update the guessed values of degrees of
freedom, and repeat steps 4-7 until the stopping error criterion is
satisfied.

Step 8 Save the numerical results in the result files.
3.2 TWO-DIMENSIONAL DYNAMIC ANALYSIS

The second weak formulation is employed for the dynamic analysis as
well. From equation (2.81) 67 =0, hence the second weak formulation may be

decomposed into the following four nonlinear dynamic equilibrium equations.

ZM a 2 1 .
Hopapselo) = pt)

S| fu—m,a,, —mag, |5(u) rda=0, (3.17 a)




74

’s'| ~w, = fu, ~m,a,, —may, |5(7V) }da =0, (3.17b)

2S'[sz -m,a, %miaFJé'(zw)

cda =0, 3.17¢)

[{rrs (w25 (-m, (2, )(9)) 8 "w)lder =0, (3.17d)

24

By neglecting the out-of-plane motion and the effect of torsion, the two

nonlinear dynamic equilibrium equations for two-dimensional analysis can be

expressed as follows

I —
— A

S

2 s 2
~8 [—wa +ny—mPaPy—miaFy]5( v)

Q [V
+
| I —
—~
=
[
LY
=)
—_——
L}
A
f —
[
SN
N
[} o
H-
S~
|
ko
VY]
—
N
R
S
—
)
[
f S—
N
' [
k<--
S
| I |
™
—
L)
=
S —

Vda=0, (3.18 a)

+[(2Na - 23(2K)2)[%j+w[ ?{J]a(%’) Lda =0, (3.18 b)
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From the assumption of the linear dynamic strain of the vibrations with

infinitesimal amplitudes in equation (2.8) and (2.9), one has

I N S

N, ~ N, +E('4,) ZEL YL, (3.19)
('s)

By substituting equations (2.45), (2.65), and (3.19) into equations {3.18 a-b) together

with neglecting the higher order terms of the vibrations with infinitesimal

amplitudes, equations (3.18 a-b) can be expressed as

R D CRIET

{(’Nﬂ“’""(”"‘) )(zx')]a(zu')

< . b d
I =I5 1C (PR) 1L (PH) - Cly () o+ 'C;,VHx]a(?u) ’
i I s 2 |
(.’mP+ 'm )(ch')ﬁ-"m (’V){%—(’x')s}(zfc')
+15 i ( S)

" 5
n (| A

g { m( V)Z( V)}(zx)Jr_”ii_")%] (%) (3.20 a)




(3.20 b)
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Note that the following relations are used in the derivation of equations (3.20 a,b):

OOy o)) e

{%’m (v) 5(2u)-iﬂ "I[(I—Z ’m,-(zlﬁ)zci(‘?u)j z—g}da (3.21¢)
ety [-LIE s

2Sr

il
| —
L= —
- h--.
3
—
L
=
—
LN}
s
p——
2
<
o —
wl o
<
| |
5] R
I
k)
—
1
N
vl -
E
=
——
b
~
~—r
o
[» 5
——
[
<
—
A
L)

ylda (3.21d)

i (Zx')(z’*')“L’(zy')(z""), (3:21¢)

(3 . (3.21 6)
)

When the time-independent terms in equations (3.17a-c) are eliminated, the

equations of the vibrations with infinitesimal amplitudes can be obtained as
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' =G~ Cl k= "Cly v 'Co (VW + V)4 1CL Y, | Su

([mP + Im;‘)i‘-"' imi(fﬁ){%_((ix:; }j'
§

+°s' ou

sl ox

(3.22 a)
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A 7 = .
- Cyv-— Cequ— Cewu+’CDM(2VCVw+V‘f)}§v

('m,+'m, )i~ ’m,.(er.) %()3};')-}1'
E

v

(3.22 b)
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Along with the boundary conditions at 'y =0

u(0,1) = v(0,7) = O(essential), (3.23 a)

u"(0,#) = v"(0,1) = O (natural), (3.23 b)

and at 'y =7y, : u(°y,,t)=v("y,t)=0(essential), (3.24 a)
u'"(°y,t)=v"("y, t)=0 (naturat), (3.24 1)

and N, = N_, (essential), (3.24 ¢c)

and the initial conditions at time 7 =0:
u('v,0)="u,v('y,0)="v, (3.25 a,b)
i 'y,0)=0,v"y,0)=0, (3.25c,d)
the system of partial differential equations (3.22 a-b) is the initial-boundary-value
problem, which can be transformed to the system of ordinary differential equations

by performing the following three steps of the finite element method.

Step 1. By separation of variables, the displacement vector is assumed as
{dy={u v} =[N('y)]{d (1)}, (3.26)
where the generalized coordinates of the nodal displacements of an element are

” ' T
di=%u, u uw v, v v |u, u, uy v, vy v}, (3.27)
and the shape function matrix at the displaced state is

[N]: Ny, N, N, 0O 0 ¢ | Ny, N Ny 0 0 0
0 0 0 N, N, Ng;| 0 0 0 N, N, N

} .(3.28)
Note that N,; is the coefficients of the fifth order polynomial shape function.

Step 2. Substituting equation (3.26) into equations (3.22 a,b), the element

equations can be obtained as
[m®]{d,} + ([c®]+[g“Did, } + [k 1{d,} = {f}, (3.29)

where the element mass matrix is

(o] [N ()02 ) e, G309
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the element hydrodynamic damping matrix is

[ ]=] {[N]T (}S'){sgf“ %f"’}[N]}da , (330 b)

@ eqxy

the element gyroscopic matrix is

fely = " ('s')z (’S')z ' Lda c
(2] HHN] (), ) 2_(5}')2 [N]fde, (3300¢)

the element stiffness matrix is

(k] = [y T+ [ ]+ [y ]+ [ ], (3304)

in which the bending stiffness matrix of the fourth order derivative is
Nt N (LA ¥ i
k1= [y -2 () (x}(zy) [N"]dar, (330¢)
U0 ()

the bending stiffness matrix of the third order derivative is

ot )] 2000 (’y'f—(ﬂ . }d
* J{[ 0 Lfy'f—(’x'r )] .

the axial stiffness matrix of the second order derivative is

er[ 1 0] AT o)
N 70 4 S0 1

{ da (3.30 g)

[k

}

2

E('4,)

HN'T
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the axial stiffness matrix of the first order derivative is

(K1 = [{INY %QB ﬂ [N']Hde, (3.30h)
a §

the element hydrodynamic excitation vector is

. . tm (X
'CL VY +VHY+'CLY, ——,(S,—)—Dgtfi
{f9) = I[N]T(’s’) m (') da . (3.30 i)
o« x ml-
: DW;(ZVCVW+V:)——7§_)’—D£d

Step 3. Assembling the element equations, the global system of finite

element equations can be obtained as
[MI{D,} + ([C]+[G]D{D,} +[K]{D,} = {F}, (3.3
where {D, },{Dn}, {D_} are the global nodal displacement, velocity, and acceleration

vectors, respectively. In equation (3.31), the total mass matrix is

nelem

[M]= > '[m*“], (3.32 a)

i=1
the total hydrodynamic damping matrix is

nelem

[C]= > [c“], (3.32b)
=1
the total gyroscopic matrix is
[G]= nim[g“” 1. (3.32 ¢)
the total stiffness matrix 1s
k)= Sy, (3324)
i=l

the total hydrodynamic excitation vector is
[F1= Y [f“], (3.32¢)

and the global nodal displacement vector is
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D,]= "f[dﬂ], (3329
in which nelem is the number of finite elements.

It is noteworthy that although the assumption of the vibrations with
infinitesimal amplitude is adopted, equation (3.31) is still nonlinear. This is because
of the nonlinear effects of the hydrodynamic damping and the gyroscopic forces
appearing in the damping and the gyroscopic matrices.

To obtain the state space formulation, which is central to the development
of nonlinear vibration control theory, the second order model of equation (3.31) must
be transformed to the first order model. To achieve this, the following state vector is
defined:

X—D" 3.33
{R}_V, ()

where V.}=1{D,}. (3.34)

Substituting equation (3.34) into (3.31), one obtains
[MI{V,} +([C1+[GD{V,} +[K]{D,} = {F}, (3.35)

The system of equations (3.34) and (3.35) can be cast into the matrix form

I 0]|D 0 -1 |[D,] [0
et = . (3.36)
0 M|V, K C+G||V, F
Equation (3.36) can be manipulated in state space form

{X,} =[AliX,} + (B}, (3.37)

where the coefficient matrix or state transition matrix is

0 I
[A] :LM"‘K —M"(C+GJ’ (3.388)

and the deterministic input matrix is

0
{B} = {M_,F}. (3.38 b)

The state equation (3.37) is used for the natural frequency analysis in section 3.3, and

for the time history analysis in section 3.4.
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3.3 NATURAL FREQUENCY ANALYSIS

For free vibrations, equation (3.37) is reduced to

{X,) =[Al{X,}, (3.39)
where [A]l= [_ I\:"K _ MI“G} . (3.40)

Equation (3.39) has the harmonic solution in the exponential form
X,}=e"{X,u), (3.41)
where A =a tiw is the complex eigenvalues, @ the natural frequency, and {X ,}
the vector of complex coefficients or initial modal weights.
Inserting equation (3.41) into (3.39) and dividing through by e*, the
general algebraic eigenvalue problem is obtained as
[AlX,} = A{X,}, (3.42)
in which the matrix [A] is the real, nonsymmetrical matrix. The Fortran-90 codes for

implementing the eigenvalue problem of equation (3.42) has been developed based
on the QR-algorithm (Press et al., 1992). The steps to the solution used in the codes

are as follows:

Step | Compute the element matrices, in which the procedures are as follows:

Step 1.1  Form the element shape function matrix of equation (3.28).

Step 1.2 Determine the element mass matrix of equation (3.30 a).

Step 1.3 Determine the element gyroscopic matrix of equation (3.30 c).

Step 1.4  Determine the element stiffness matrix of equation (3.30 d).

Step 2 Assemble the clement matrices to obtain the structural matrices of
equations (3.32 a,c,d).

Step 3 Impose the boundary conditions of equations (3.23) and (3.24) by
utilizing the index matrix that identifies the dynamic degrees of freedom.

Step 4 Form the coefficient matrix of equation (3.40).

Step 5 Solve the eigenvalue problem of equation (3.42). This study uses the
implicit double-shifted QR algorithm based on the EISPACK routine
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HQR2 (Smith et al, 1976) to compute the eigenvalues and the
eigenvectors.
Step 6 Save the numerical results of the eigenvalues and the eigenvectors in the

result file.

3.4 NONLINEAR VIBRATION ANALYSIS

From equation (3.30 1), it is seen that the excitations inducing the nonlinear
forced vibrations of the marine riser originate from the unsteady flow of ocean wave

with velocity ¥ and the unsteady flow of transported fluid with velocity V. In
chapter 2, the expression of the ocean wave velocity ¥, has been determined by
using Alry’s wave theory, as shown in section 2.6.1. However, the expression of V,,

has not yet been mentioned. This is because the unsteady internal flow depends upon
many factors such as: the variation of fluid density along the riser length; the
unsteadiness of pump rate; the change of cross section of the riser due to the axial

deformation as described in section 2.3. Consequently, the accurate expression of V,,

closed to the real circumstances, is considerably more complicated and difficuit to
resolve by any theory. For simplicity, this study represents the unsteady internal flow

velocity V,, as

Vg =V,t+V, cosw, (3.43)
where ¥V, is the linear velocity amplitude of internal flow, ¥, the wave velocity
amplitude of internal flow, and @, the forcing frequency of internal flow.

From section 3.2, the initial-boundary-value problem of nonlinear
vibrations with infinitesimal amplitudes of the marine riser is reduced to the initial-
value problem of the state equation (3.37) i association with the initial conditions
(3.25) by using the finite element method. This initial-value problem is highly
nonlinear owing to the effects of nonlinear hydrodynamic damping. For
implementing such an initial-value problem to be solved by numerical integration,
the Fortran-90 computer code has been developed following the steps as shown

below.



Step 1
Step 1.1
Step 1.2
Step 1.3
Step 1.4
Step 1.5
Step 2
Step 3

Step 4

Step 5

Step 6
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Compute the element matrices, in which the procedures are as steps 1.1
to 1.5:

Form the element shape function matrix of equation (3.28).

Determine the element mass matrix of equation (3.30 a).

Determine the element gyroscopic matrix of equation (3.30 c).
Determine the element stiffness matrix of equation (3.30 d).

Determine the element hydrodynamic damping matrix of equation (3.30
b) and the element hydrodynamic excitation vector of equation (3.30 i).
Assemble the clement matrices to obtain the structural matrices of
equations (3.32 a-e).

Impose the boundary conditions of equations (3.23) and (3.24) by
utilizing the index matrix that identifies the dynamic degrees of freedom.
Form the coefficient matrix of equation (3.38 a) and the deterministic input
matrix of equation (3.38 b).

Integrate the initial-value problem of equation (3.37) in association with
the initial conditions (3.25) by the numerical integration. In this study,
the Gear’s stiff method using the backward differentiation formulas up to
order five based on the subroutine DIFSUB (Bathe, 1996) are applied.
The numerical values of the first derivatives of the state vector or the
left-hand side of equation (3.37) are computed.

Save the numerical results of the dynamic degrees of freedom of the state

vector in the result file.



87

4. RESULTS AND DISCUSSIONS

In this chapter, validation of the numerical results obtained from the
solution procedures proposed in chapter 3 is demonstrated in section 4.1. The
important results of the three-dimensional static analysis are concluded in section
4.2. The parametric studies are designated in section 4.3. Based on the numerical
results of the parametric studies, the effects of axial deformation, and fluid
transportation on behaviors of the pipes are explained further in sections 4.4, and 4.5,

respectively.

4.1 VALIDATION OF NUMERICAL RESULTS

The accuracy of the solution can be verified in two ways: first, using the
direct methods, and second, using the indirect approaches. The direct methods deal
with monitoring and controlling the occurring numerical errors, while the indirect
ones involve cross-checking with the solutions of the test cases reported in literature.

4.1.1 The Direct Methods

In nonlinear static analysis for which the equilibrium equation is
['K]{'D} = {'R}, Bathe (1996) showed that there are two kinds of errors to be
controlled, namely the load error
{A'R}={'R}~['K]{'D}, (4.1)
and the solution error
{'D}-{'D}=['KI"{A'R}, 4.2)
where {'D} and {'D} are the calculated and the exact degrees of freedom. He also

demonstrated that the load error is usually much less than the solution error.

Consequently, although the load error seems to indicate an accurate solution, the
solution error may still be large, especially if ['K]”’ is very large. In this study, for
convenience the load error is kept very much small {A’R}— {0} in order to

approach the solution error to zero. To achieve this, the Frobenius matrix norm of the

load error, which has the scalar value
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g -3 e 03

is minimized to less than 107",
In the natural frequency analysis for which the standard equation is

[Al{X,} = A{X,}, the performance index, which was first developed by the

EISPACK project at Argonne National Laboratory (Smith et al., 1976), is employed
to measure the performance of the EISPACK routine HQR2. The performance index
is defined by

= o X — 2K

PI =
zis¥ 10g) A”l”Xm'

, (4.4)

1

where each pair of 4, and X, is the eigenvalue and the corresponding eigenvector
of the matrix [A] of order N, and ¢ the precision of arithmetic of the test machine.

Note that the norm used in equation (4.4) is a modified form of the 1-norm, namely
for the complex vector r: _
N

Iel, = - {Re)] + {tm(r )]} (4.5)
The performance of the EISPACI{lroutine HQR?2 in determining eigensolutions is
excellent if P/ <1, good if 1 < PI <100 and poor if P[> 100. In this study, all the
performance indexes are found to be less than 107, hence the excellent condition of
the eigensolutions is definitely achieved.

In the nonlinear vibration analysis, the state space formulation is
presented, thus the explicit time integration is preferred. However, the major
drawback to the explicit methods is that they are conditionally stable, because the
time step has a critical size. This shortcoming is overcome in this study by adopting
the automatically adaptive time-step-size algorithm, which is included in the
subroutine DIFSUB developed by Gear (1971). By using this algorithm, the time-
step-size is automatically improved during the integration process so that the

absolute error criterion:

max (error,) < tol (4.6)

is achieved. In this study, fof = 107 is set forth, and the corresponding adaptive time-

step-sizes are in the range 10 to 107" sec.
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Table 4.1 Comparisons of In-Plane Natural Frequencies of Test Cases

X

A = Undeformed cross-sectional area

F = Elastic modulus

Vi

suspended cable

Case !: the Nondimensional Parameter

iy 2+ 2
£ ;SOOO,ﬂM;O.95,Q=w\/E

w, S S g
Chord Quadratic
Inclination Mode Fifih Order Interpolation (This Study*) Interpolation
& No. [105]
4 Elements 10 Elements 20 Elements 8 Elements
0 ,(82)) (.62 (5.88) 0.62 (5.87) 0.62 (5.87) 0.60 (5.65)
@,(£2;) 0.92 (8.75) 0.92 (8.74) 0.92 (8.74) 0.92 (8.77)
30 w, (Ql) 0.58 (6.00) 0.53(5.43) 0.51(5.29) 0.50 (5.17)
@,(£2,) 0.98 (10.11) 0.85 (8.73) 0.81 (8.34) 0.80 (8.17)
60° @, (Q1) 0.30 (4.05) 0.27 (3.65) 0.26 (3.56) 0.27 (3.65)
@, (€2,) 0.52 (7.06) 0.46 (6.19) 0.44 (6.00) 0.47 (6.30)

Case 2: the Nondimensional Parameter

- 2+ 2
E 52500,——”}6‘8%50.98,9:0)\[3
g

w,S
Finite Element Method Initial-Value Method
oo | Fiemens tomieiing  sCune SOl
(This Study*) Element [105] | Elements [105] Mf o ‘1’\2‘;:}‘1‘:)‘;“5
@, 0.793 0.809 0.795 0.80 0.811
@, 1.148 1.185 1.155 1.16 1.175
w, 1.620 1.680 1.627 1.63 1.653
w, 1.984 2.090 1.998 1.99 2.027

* Including the effect of axial deformation
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4.1.2 The Indirect Methods

The indirect methods involve comparisons of numerical results with the
test cases. This study adopts the two test cases of the suspended cables reported in
the papers by Henghold and Russell (1977), Gambhir, Barrington and Batchelor
(1978), West, Geschwinder and Suhoski (1975) and West and Caramanico (1973).
As shown in Table 4.1, the natural frequencies of the suspended cables calculated
from the simplified version of this study are in good agreement with those obtained
from other works. Therefore validity of the numerical results is confirmed.

Yet there are other informai checks that are carried out in this work.
These include comparisons of the mode shapes of free vibrations of the marine pipes
with the results reported by Pesce et al. (1999) and Chucheepsakul (1983);
comparisons of the shapes of static equilibrium configurations and bending moment
diagrams with the results of Bernitsas et al. (1985); checking the precision of the
boundary conditions; checking that if subharmonic and superharmonic oscillations
do not occur, the response frequencies should be closed to the hydrodynamic
frequencies. The outcomes of these informal checks also manifest validity of the

numerical results.

4.2 THREE-DIMENSIONAL STATIC ANALYSIS

This section presents the important results of three-dimensional static
analysis of the deep-water risers. The properties of the riser used in the numerical
applications are summarized in Table 4.2. The riser is subjected to a tidal current
with an exponential velocity profile, Eq. (2.41), acting in the x-direction and a
triangular profile in the z-direction as show in Figure 4.1. The velocity of the current
at the surface is 0.75 m/s and 1.3 m/s, respectively. The displacement is computed in
two different ways. First, the three-dimensional model described in the previous
section is used to obtain the resuits. Second, the two-dimensional model is used to
approximate the three-dimensional deformation by vectorial summation of the two-

dimensional deformations in the x-y plane and z-y plane.
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Table 4.2 Properties of the riser used in the three-dimensional nonlinear static

analysis

Property Value
Undeformed external diameter of the riser 0.610 m
Undeformed internal diameter of the riser 0.575m
Density of pipe 7850 kg/m’
Density of sea water 1025 kg/m®
Density of internal fluid 998.3 kg/m’
Elastic modulus 2.07E+10"
The ratio of the top tension to the effective weight (TTR) 1.1,1.5
Sea depth (L) 2500 m
In-plane offset 0Om
Out-of-plane offset 0m
Normal hydrodynamic drag coefficient 0.7
Tangential hydrodynamic drag coefficient 0.03

YA
V =130ms

V™ 0.75 mis ‘

Figure 4.1 Deep-water riser subjected to the tidal and the triangular profile currents



X-Y Plane
(TTR 1.1)

1.00

.80

60

40 1

Nondimensional Y coordinate

20 7

2D
3D

N

/

0.00
0

Displacement in Z direction (m)

Displacement in X direction (m’

Figure 4.2 Static configurations and bending moment diagram of the deep-water

T I
5 10
Displacement in X direction (m)

I T T F

15 20 25 30 35

Figure 4.2 (a)
X-Z plane
(TTIR 1.1)
50
40
30
-~
20 1 /
10 - e
e
0 — —=— 2D
3D
| I T T T T
0 5 10 15 20 25 30 35

Figure 4.2 (c)

92

Nondimensional Y coordinate

1.00

.80

.60

40

.20

Nondimensional Y coordinate

0.00 =
0

Z-Y plane
(TTR 1.1)
— —— 2D
AN 3D
AN
\
\
\
l
/
/
/
/
lb 25 35 ;0 50

Displacement in Z direction (m)

Figure 4.2 (b)
1.20
_——— 2D
1.00 4 iD
80 l {(TTR L.1)
60 |
A0 !\
20 7
]
0.00
1 I L] I ) T
= [we} o N o0 — —_ —
2 2 8 8 8 8 &
S 888§ % g
Bending moment (N-m)

Figure 4.2 (d)

riser subject to the tidal and the linear profile currents with TTR 1.1



X-Y plane
PR, (S
— 3D
[ ¥] \
5 80 - N
&
§ N
° 60 \
Z \
E
2 l
240 -
L-*)
E /
: /
z .20 4
0.00 T T T T T T 1
0 2 4 6 8 1012 14 16 18

Displacement in X direction (m)

Figure 4.3 (a)

X-Z plane
(TTR 1.5)

25

[y
=
1

Displacement in Z direciton (m)

2D
iD

Displacement in X direction (m)

Figure 4.3 Static configurations and bending moment diagram of the deep-water

T T T T T F T i

0 2 4 6 8

10 12 14 16 18

Figure 4.3 (c)

93

Z-Y plane
1.00 (Z'T-.RI_S) — 7D
N 3D
i N
E \
;_’ 60 \
= |
§ 40 /
E /
E /
> .20 /
/
0.00 T T T T
0 5 10 15 20 25

Displacement in Z direction (m)

Figure 4.3 (b)
(TTR 1.5)
1.2
_——— 2D
o 10 — ib
E <<
= .
= 8 /
5 /
6
3 [
£ \
L
£ \
= 2
E >
z
0.0
1 1] T T T T T I
°CE S 23820 E a3 @
SeSSgs88¢
Bending moment (N-m)

Figure 4.3 (d)

riser subject to the tidal and the linear profile currents with TTR 1.5



Table 4.3 Displacement

and bending moment
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comparison,

between two-

dimensional and three-dimensional nonlinear analysis, of a riser subject

to a tidal and a triangular current for TTR 1.1

Lateral Lateral Total Lateral
TlTlR dis‘:lfcl::fent é)ll;;l(;f;gﬁ:rft Displacement {'+)"+("2) Bending moment (N-m)
{m) (m) (N-m)
¥/ | 2D | 3D | 2D | 3-D | 2D | 3D | Diff 2D 3-D Diff
1.00 0.00 0.00 0.00 0.00 0.00 0.60 0.00 0.00 0.00 0.00
090 | 725 | 784 [10.17 [ 1403 [ 1248 [ 16.07 | 358 | 117391 | 1339.68 | 165.77
0.80 13.77 1473 | 17.68 | 2499 | 2241 | 259.01 6.60 1176.02 | 1399.39 22337
0.70 1946 | 20.55 {2279 | 33.06 [ 2997 | 38.93 8.96 111345 | 144347 330.01
0.60 | 24.15 | 25.14 | 25.73 | 38.36 | 35.29 | 45.86 | 10.57 | 1077.77 | 1417.98 | 34021
0.50 27.62 | 2829 | 2671 | 4097 | 3842 | 49.79 11.36 | 110493 | 1465.14 360.21
0.40 29.57 | 29.71 | 2588 | 40.89 | 39.2% | 50.54 11.25 | 124705 | 1654.05 [ 407.00
030 [ 29.46 | 2899 [ 2331 [ 37.93 | 37.57 | 47.74 | 10.17 | 1606.53 | 2040.57 | 434.03
020 [ 2639 | 2540 | 18.88 | 31.58 | 32.45 | 40.53 | 808 | 2424.71 | 2885.39 | 461.18
0.10 | 1842 [ 1736 | 1197 | 2047 | 21.97 | 26.84 | 4.87 | 426535 | 479843 | 533.07
0.00 0.00 0.00 (.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Table 4.4 Displacement and bending moment comparison, between two-
dimensional and three-dimensional nonlinear analysis, of a riser subject
to a tidal and a tritangular current for TTR 1.5
Lateral Lateral Total Lateral
TITSR disl;lfclea:fent ;2;1(; f:glll?:rft Displacement W]" Bending moment (N-m)
(m) (m) (N-m)

YL | 2D [ 3D | 2D [ 3D | 2D | 3-D [ Diff 2D 3-D Diff
1.00 0.60 0.00 (.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
090 | 457 | 554 | 679 | 934 | 8.18 | 1086 | 2.67 | 94343 | 1146.53 | 203.09
0.80 | 843 | 1009 | 1147 [ 16,13 | 1423 | 19.02 | 479 | 92488 | 118698 | 262.09
070 [ 1151 | 13.55 | 14.29 | 20.59 | 1835 | 24.65 | 630 | 84943 | 112026 | 270.83
(.60 13.71 15.86 | 15.50 | 22.92 | 20.69 | 27.87 7.18 786.38 1081.12 294.74
050 | 14.94 | 1691 | 1533 | 2330 | 2141 | 2879 | 7.38 | 75111 | 1032.66 | 281.54
040 | 15.04 | 1663 | 14.00 | 21.90 | 20.55 | 27.50 | 6.95 | 75436 | 1011.89 | 257.52
(.30 13.86 1495 | 11.69 | 18.83 | 18.13 | 24.04 591 805.00 1027.03 222.03
0.20 11.15 11.73 8.56 | 1415 | 14.06 18.38 432 904.88 1074.19 169.31
010 | 664 | 683 | 467 | 790 | 812 | 1044 | 2.33 | 100106 | 1106.75 | 105.69
0.00 0.00 .00 0.00 (.00 0.00 0.00 0.00 0.00 0.00 0.00
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Figures 4.2 and 4.3 show the plot of the nonlinear static configurations
and the bending moment diagram of the deep-water riser that are obtained from the
approximate two-dimensional nonlinear analysis and three-dimensional nonlinear
analysis for TTR = 1.1 and TTR = 1.5. The ratio of the top tension to the effective
weight (TTR) 1s defined as
'N,
w. L

e

TTR =

(4.7)

o

Tables 4.3 and 4.4 show the numerical comparisons of the lateral
displacement and bending moment between the two-dimensional and three-
dimensional analyses of the deep-water risers for TTR = 1.1 and TTR = 1.5,

When the top tension is specified and the arc-length of the riser is varied
with the magnitude of the large displacement. The lateral displacement and the
bending moment computed by the three-dimensional model is higher than the
displacement that computed by the two-dimensional model as shown in Figures 4.2
and 4.3. These results are due to the nature of nonlinearity in the model formulation.
The linear combination or the superposition method of 2-D cases can not be applied
to obtain the same results as those from the deep-water riser experiencing 3-D large
displacement.

The increasing of the ratio of the top tension to the effective weight
{TTR) reduces the lateral displacement and the bending moment as show in Tables
4.3 and 4.4. Moreover, the results in Tables 4.3 and Table 4.4 indicate that the
difference of the lateral displacement and the bending moment between the two-
dimensional and three-dimensional analysis are reduced when TTR is increased
because the increasing top tension increases the axial deformation, thus reduce the
effect of the large displacement. The discussion of the effect of the axial deformation
and the effect of the internal flow velocity are discussed in the next section.

From the discussion above, it can be concluded that the coupling of the
three-dimensional deformation affects on the large displacement and the bending
moment when the in-plane and the out-of-plane loads occur in the same time.
Therefore, the three-dimensional model formulation should be used in the general

case.
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43 PARAMETRIC STUDIES

The deep-water risers, which are the marine pipe under severe pressure
environments, are employed as the specimen of the parametric studies. Their input

parameters are given in Table 4.5. The details of the parametric studies are proposed
in Table 4.6, where the applied top tension #,, and the internal flow velocity °F, are

varied to demonstrate the effects of axial deformation, and fluid transportation on the
behaviors of the marine pipes, respectively. The reasons for choosing the parameters
N, and °V, for use in the parametric studies are that the axial strain £ a N, follows
the constitutive relation; and the rate of fluid transportation may be represented by

the internal flow velocity °F,.

Table 4.5 Input Parameters of the Deep-Water Riser Specimen

Parameter Standard Value
Elastic modulus E (N/m°) 0.207x10%*
External diameter of the pipe °D, {m) 0.610
Internal diameter of the pipe °D, {m) 0.575
Density of pipe material p, (kg/m’) 8337.9
Density of external fluid p. (kg/m’) 1625
Density of internal fluid p; (kg/m?) 1438
Static in-plane offset °x (m) {see Fig.4.1) 100
Static out-of-plane offset "z {m) (see Fig.4.1} ¢
°y, {m) (see PFig.2.1la) 2000
Applied top tension N, (N) 0.7x10’

L8]

Normal drag coefficient Cp,

Tangential drag coefficient Cp,

Current velocity at mean sea level V. (m/s)
Internal flow veleccity ¥ (m/s)

Added mass coefficient C

Wave amplitude ¢, (m)

Wave frequency o, (rad/sec)

Wave number k
Linear velocity amplitude of int. flow V,, {m/s)

Wave velocity amplitude of int. flow V,, (m/s)

O 0 O 0 Q0 ;OB N O O
o

Internal flow frequency m; {rad/sec)
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Table 4.6 Parametric Studies

To Study the Effects of The Values of Parameters in Table éli.2 are Reserved
Constant Except Varying

Axial deformation 'N =107,0.8x107,0.7x107, 0.67x107, 0.64x10'N
Fluid transportation V.=0,5, 10, 15, 20 m/s

4.4 EFFECTS OF AXIAL DEFORMATION ON BEHAVIORS OF THE
MARINE PIPES

4.4.1 Effects of Axial Deformation on Nonlinear Static Behavior

From the parametric study of the axial deformation effects
designated in section 4.3, the results are obtained as depicted in Figures 4.4-4.11.
The effects of axtal deformation on the nonlinear static behavior of the marine pipes
are illustrated in Figures 4.4 and 4.5, and can be summarized as follows:

44.1.1 Axial deformation reduces the large deflections of the
marine pipe. As seen in Figure 4.4, dropping the top tension, which induces a
reduction of the axial deformation, increases the sag of the marine pipe. This result is
not uncommon for a prestressed structure such as marine pipes. Diminishing degree
of prestressing significantly reduces the axial stiffness of the prestressed structure.
Consequently, the large deflections are raised.

4.4.1.2 Axial deformation affects behaviors of the marine pipe.
The pipe subjected to the large axial deformation due to high pretension behaves as
the taut pipe with low sag, whereas the low-tensioned pipe with low axial

deformation behaves as the slack pipe with large sag. As shown in Figure 4.4, the

pipe in the case where ‘N, =/0'N is taut, while the pipe subjected to
'N =6.4x10°N is largely slack, especially at the bottom portion 'y =0 - 200 m.

The vibration behaviors of the taut and the slack pipes are quite different, as will be

discussed fater.
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4.4.1.3 The allowable range of axial deformation indicates the
design patterns of the marine pipe. In Figure 4.4, the effective design criterion

belongs to the condition 0.7x10’ <'N, <10’ N. The pipe is overdesigned if

'N.>10'N is devised, and underdesigned if ‘N, <0.7xI10’N is adopted.

Overdesign is uneconomical, while underdesign results in the divergence instability
of the pipe.

44.1.4 Axial deformation reduces the rotations of the marine
pipe particularly at the large sag region. As shown in Figure 4.5 (a), the pipe that is
taut due to high axial deformation ('N, =70’N), gains much less rotation of the

bottom support than the pipe that is slack due to low axial deformation
('N, =6.4x10°N).

44.1.5 Axial deformation increases the axial strain in the marine
pipe. Figure 4.5 (b) manifests this deduction. It is seen that the axial strains in the

taut pipe with ‘N, = 10’ N are all positive or tensile and higher than those of the

slack pipe with ‘N, = 6.4x 10° N . The axial strains of such a slack pipe are found to

possess negative values at the bottom portion of the pipe.

4.4.1.6 Axial deformation augments the static stability of marine
pipes. As previously found, with reductions of the top tension, the axial strain is
reduced and can be negative at the bottom portion of the slack pipe. Following the
constitutive equation, a negative axial strain signifies a negative apparent tension.

The author found that when the top tension is decreased until ‘N, <6.4x10° N such

a negative apparent tension will become large enough to embark the local buckling at

the bottom portion of the pipe. It will be shown later that for ‘N, <6.4x10°N the

natural frequency of the pipe converges to zero, and the pitchfork bifurcation thus
OCCUTS.

4.4.17 Axial deformation magnifies the true-wall and the
apparent tensions in the marine pipe, as shown in Figure 4.5 (c). It should be note
that for marine structures, the apparent tension is more important than the true-wall

tension, because it is the total virtual tension appearing in marine structures.
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4.4.1.8 Axial deformation decreases the bending moments in the
marine pipe especially at the large sag portion. This result is due to the effects of
axial deformation on a reduction of the pipe’s rotations as shown in Figure 4.5 (b).
When the rotation 6 decreases, the bending moment M will also diminish
corresponding to the relationship

1 dé M

K=—=w-w=— .
R ds EI,

(4.8)

respectively. Figure 4.5 (d) asserts these results. It is found that the bending moment
diagrams of the pipe that is taut due to high axial deformation ('N, =10’N) are

almost vertically straight, whereas those of the pipe that is slack due to low axial

deformation ('N, = 6.4x10° N ) have the curve parts magnificently growing at 'y =0

- 200 m, where the slack pipe possesses large curvatures and large rotations.
Therefore, in the design of the slack pipe, the bending stress and the shear stress
should be carefully examined especially at the bottom part of the pipe. Sometimes
the bending and shear stiffeners may be desired at that portion to eliminate the
excessive conditions of large curvatures and bending moments, which may cause
poor serviceability and localized damage to the pipe.

4,42 Effects of Axial Deformation on Natural Freguencies

The effects of axial deformation on the natural frequencies and the
stability of the linearized system of the marine pipes are illustrated in Figures 4.6 -
4.8, and are summarized as follows:

4.42.1 Axial deformation raises the natural frequencies of the
marine pipe. To display this effect, the eigencurves are plotted in the stiffness-
frequency space as shown in Figure 4.6. It is revealed that the natural frequencies of

the pipe are increased with an escalation of the top tension. The natural frequencies

of the slack pipe with ‘N =6.4x10° N are significantly lower than those of the taut

pipe with 'N =10’ N. As the top tension is reduced continuously, the eigencurves

tend to intersect the top tension axis at the point, where the top tension possesses the
critical values and the natural frequencies are zero. This implies that buckling of the
pipe due to the effect of axial deformation is of static nature, and may be referred to

as the divergence buckling.
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4422 Axial deformation boosts the dynamic stability of the
linearized system of the marine pipe. To explain this effect, the complex plane of the
Argand diagram is displayed in Figure 4.7. A continuous reduction of the axial
deformation by incessantly diminishing the top tension motivates the pipe into
experiencing ‘static buckling’ or ‘divergence instability’ at the Pitchfork bifurcation
point, where the top tension has reached the critical value (Chucheepsakul and
Monprapussorn, 2001). This behavior is explained as follows.

Before buckling, the complex eigenvalues A have zero
real part, no matter how much the top tension is varied. The constant reduction of the
top tension yields a decrease in the natural frequencies of the pipe, which is
imaginary part of the eigenvalues, along the vertical line Re(A) =0 to converge to
zero. This type of the Argand diagram deals with the divergence instability via
Pitchfork bifurcation. After buckling, pitchfork bifurcation would change the
eigenvalues from wholly imaginary to become wholly real along the horizontal line
Im(A) =0 as shown in Figure 4.7.

Based on the Liapunov indirect method, the stability of
motion of the linearized system may be tested by examining the solutions of the
linearized equations of motion with respect to the Liapunov stability definitions
(Meirovitch, 1997). Such stability definitions can be interpreted into the complex
eigenvalue analysis as follows.

For the complex eigenvalues 4, =a; +iw,, in which
J=12,....2(numdfd) , and numdfd is the dynamic degrees of freedom,
(a) if Va, =0, the system has stable motion, which is pure oscillation, and neither
tends away nor moves to the equilibrium point as ¢ —» w0,
(b) if Va, <0, the system oscillates by asymptotically stable motion, which tends
to the equilibrium point as { — <,
(c) if 3a, >0, the system exhibits unstable motion, which departs away from the

equilibrium point as £ — .
Note that the universal quantifier ‘v’ means ‘all of °, and the existential quantifier

‘3’ abbreviates ‘some of .
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The system is said to possess ‘significant behavior’ if its
motion is either asymptotic stable or unstable, and is said to have ‘critical behavior’
if its motion is stable. The Russian mathematician and mechanician Liapunov
(Meirovitch, 1997) indicated that if the linearized system exhibits significant
behavior, the above stability criteria could be extended to the nonlinear system.
However, if the linearized system displays critical behavior, then conclusions about
the stability of the nonlinear system cannot be made accurately from the above

stability criteria.
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Adopting the stability criteria in the sense of Liapunov,
the complex eigenvalues of the marine pipe as shown in Figure 4.7 agree with the
condition (a), therefore free vibrations of the linearized system of the marine pipe
possess stable oscillations and critical behavior. As a result, the stability of the
linearized system cannot be guaranteed for the nonlinear system of the marine pipe.
Instead, the stability of nonlinear vibrations of the marine pipe should be probed by
the phase plane analysis based on the solutions of the nonlinear equations of motion,
including the fully nonlinear hydrodynamic forces, as will be shown later.

4423 Axial deformation affects the mode shapes of free
vibrations of the marine pipe. Figures 4.8 (a), and 4.8 (b) demonstrate the effect on
fundamental modes of free vibrations in the normal, and tangential directions,
respectively. It is seen that the axial deformation has a significant effect on changing
the mode shapes of normal and tangential free vibrations.

In Figure 4.8 (a), the fundamental mode shape of normal

vibration of the pipe that is slack due to low axial deformation ('N, = 6.4x 10° N ), has

one more curvature than that of the pipe that is taut due to high axial deformation

('N, = 10" N) at the bottom portion (’y = 0-200 m), where the pipe possesses a large

sag. In Figure 4.8 (b), the slack pipe has maximum amplitudes of the tangential
vibrations at the large sag portion of the pipe.

4.4.4 Effects of Axial Deformation on Nonlinear Vibration Behavior

The effects of axial deformation on the nonlinear forced vibrations
of marine pipes are illustrated in Figures 4.9 - 4.11, and are summarized as follows:

4.4.4.1 Axial deformation decreases nonlinear responses of

forced vibrations of the marine pipe. The nonlinear responses in a time period of 0-
60 seconds of forced vibrations of the taut pipe with ‘N, = /0’ N are plotted on the
left-hand side of Figure 4.9, while those of the slack pipe with ‘N, =6.4x/0°N are

displayed on the right-hand side of the same figure. By comparing the left- and the
right-hand side figures, it is evident that the slack pipe possesses much larger

amplitudes of the normal, and tangential vibrations than the taut pipe.
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vibrations of the marine pipe. Figures 4.10 (a), 4.10 (b) and 4.10 (c) demonstrate the

time histories of the normal vibrations of the top part ('y = 1800 m), of the middle

part ('y = 1000 m), and of the bottom part ('y =400 m) of the pipes, respectively. It

is seen that the slack pipe possesses much larger amplitudes of the normal vibrations

than the taut pipe.
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Figure 4.10 Effect of Axial Deformation on Time Histories of Normal Vibrations
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Over a long-term period, the normal oscillations of all
parts of the taut pipe are developed to steady motions, while all parts of the slack
pipe exhibit unsteady normal vibrations. Unsteadiness of the normal vibrations of the
slack pipe is remarkably great at the bottom part, where the slack pipe has a large
curvature. It is noticed that the response frequencies of normal vibrations of all parts
of the pipes ~2x/10 are close to the wave frequency 0.6. Therefore, the normal
oscillations of the pipes are ordinary harmonic.

4443 Axial deformation increases the stability of motion of the

marine pipe. The trajectories of the normal vibrations of the top part ('y = 1800 m),

of the middle part ('y = 1000 m) and of the bottom part ('y =400 m) of the pipes are

plotted in the phase planes as shown in Figures 4.11 (2), and 4.11 (b), respectively.
The figures revealed that as a time period passes all trajectories, which start at the
initial condition of the zero normal state speed and the zero normal displacement,
tend to the closed curves (bold lines), which may be referred to as ‘the limit cycle’
(Meirovitch, 1997).

The stability of a limit cycle can be evaluated through the
definitions of ‘the orbital stability’ or ‘the stability in sense of Poincaré’ (Meirovitch,

1997) as follows. Denoting the distance of a point x, to a periodic orbit C by
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dist(x,,C) = min {”1'(i -X

,forallx e C}, 4.9)
(a) if dist(x(z,),C) <8 for & >0 implicates an existence of any ¢ > 0 such that
dist(x(¢),C) < ¢ forall ¢t >¢,, (4.10)

then the periodic orbit C is orbitally stable,

(b) if dist(x(¢,),C) <& for & >0 implicates an existence of the condition
dist(x(?),C) >0 as - =, (4.11)

then the periodic orbit C is orbitally asymptotically stable,

(c) The periodic orbit C is orbitally unstable if it is not stable.

The physical meaning of the above definitions may be
illuminated as follows. For a given closed trajectory C, if every trajectory in the
neighborhood of C remains in the neighborhood of C, the motion of the system is
orbitally stable. If the trajectories approach C as ¢t —» «, the motion of the system 13
orbitally asymptotically stable. If the trajectories tend to leave the neighborhood of C
or approach C as ¢ —» -« , the motion of the system is orbitally unstable.

The concept of orbital stability can be extended to the
nonclosed orbits of nonperiodic solutions as follows. For the two orbits C; and C;

corresponding to the solutions x; and x», which are close to each other at time £_,

(a) if the orbits C,; and C, remain close at all subsequent times ¢ > ¢, , the orbits C,

and C; are orbitally stable,

(b) if the orbits Cy and C, converge to each other as ¢ — o, the orbits C; and C,
are orbitally asymptotically stable,

(c) 1if the orbits C; and C; tend away from each other or converge to each other as

t -» —o, the orbits C; and C; are orbitally unstable.

Adopting the aforementioned concept of orbital stability,
from Figures 4.11 (a), 4.11 (b) and 4.11 {c) it is found that the motions of all parts of
the taut pipe are orbitally stable, because all the closed trajectories remain in the
neighborhood of one another for all ¢ >z_, while those of the slack pipe are orbitally
unstable on the grounds that the closed trajectories tend to leave the neighborhood of

the others. This result indicates that the axial deformation augments the stability of

motion of the pipe.
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4.5 EFFECTS OF FLUID TRANSPORTATION ON BEHAVIORS OF THE
MARINE PIPES

4.5.1 Effects of Fluid Transportation on Nonlinear Static Behavior
From the parametric study of the fluid transportation effects

designated in section 4.3, the results are obtained as depicted in Figures 4.12 - 4.19.
The effects of fluid transportation on the nonlinear static behavior of the marine pipes
are illustrated in Figures 4.12 and 4.13, and are summarized as follows:

4,5.1.1 Fluid transportation increases large deflections of the
marine pipe. As seen in Figure 4.12, when the transportation rate is raised by an
increase of internal flow velocity, the sag of the marine pipe is enlarged.

4.5.1.2 Fluid transportation enlarges the rotations of the marine
pipe, particularly in the large sag portion of the pipe. As shown in Figure 4.13(a), the
pipe without fluid transportation has a lesser rotation of the bottom support than the
pipe with internal flow velocity 20 m/s.

45.1.3 Fluid transportation has ;1n insignificant effect on
reducing axial strain in the marine pipe as shown in Figure 4.13(b), and thus slightly
decreases the static stability of the pipe.

4.5.1.4 Fluid transportation has an insignificant effect on
reducing the true-wall and the apparent tensions in the marine pipe as shown in
Figure 4.18(d).

4.5.1.5 Fluid transportation amplifies bending moments in the
marine pipe, especially at the large sag portion. Figure 4.13(c) illustrates this result.
It 15 found that the bending moments of the pipe without fluid transportation are less
than those of the pipe with a transportation rate of 20 m/s, especially at the bottom

part of the pipe, where the pipe possesses large curvatures and large rotations.

4.5.2 Effects of Fluid Transportation on Natural Frequencies

The effects of fluid transportation on natural frequencies and the
dynamic stability of the linearized system of the marine pipes are illustrated in

Figures 4.14 - 4.16, and are summarized as follows:
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4.5.2.1 Flud transportation diminishes natural frequencies of the
marine pipe. As shown in Figure 4.14, the natural frequencies of the pipe decrease
with an escalation of the internal flow velocity. When the internal flow velocity is
increased continuously, the eigencurves tend to intersect the internal flow velocity
axis at the point where the internal flow velocity possesses the critical values and the
natural frequencies are zero. This implies that buckling of the pipe due to the effect
of fluid transportation is of static nature, and may be referred to as divergence
buckling.

4.5.2.2 Fluid transportation reduces the dynamic stability of the

linearized system of the marine pipe. The complex plane of the Argand diagram is
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displayed in Figure 4.15. It is found that a continuous augmentation of the internal
flow velocity causes the pipe to experience ‘the static buckling’ or “the divergence
instability’ at the Pitchfork bifurcation point, where the internal flow velocity
possesses the critical value. Based on the Liapunov indirect method, the complex
eigenvalues of the marine pipe as shown in Figure 4.15 have all zero real part,
therefore free vibrations of the linearized system of the marine pipe possess stable
oscillations and critical behavior.

4,523 Fluid transportation slightly affects the mode shapes of
the free vibrations of the marine pipe in the normal, and tangential, directions as

shown in Figures 4.16 (a), and 4.16 (b), respectively.

4.5.3 Effects of Fluid Transportation on Nonlinear Vibration Behavior
The effects of fluid transportation on nonlinear forced vibrations of

the marine pipes are illustrated in Figures 4.17 - 4.19, and are summarized as
follows:

4.5.3.1 Fluid transportation increases nonlinear responses of the
forced vibrations of the marine pipe. The nonlinear responses in the time period (-60
seconds of the forced vibrations of the pipe without fluid transportation are plotted
on the left-hand side of Figure 4.17, while those of the pipe with a transportation rate
of 20 m/s are displayed on the right-hand side of the same figure. By comparing the
left- and the right-hand side figures, it is evident that the pipe with a transportation
rate of 20 m/s possesses significantly larger amplitudes of the normal, tangential, and
radial vibrations, than the pipe without fluid transportation.

4.5.3.2 Flid transportation affects time histories of nonlinear
vibrations of the marine pipe. Figures 4.18 (a), 4.18 (b) and 4.18 (c) demonstrate the

time histories of the normal vibrations of the top part ('y = 1800 m), of the middie

part ('y = 1000 m), and of the bottom part ('y = 400 m) of the pipes, respectively. It

is seen that the pipe with a transportation rate of 20 m/s possesses significantly larger
amplitudes of the normal vibrations than the taut pipe without fluid transportation.

4.5.3.3 Fluid transportation reduces the stability of motion of the

marine pipe. The trajectories of the normal vibrations of the top part ('y = 1800 m),
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of the middle part ('y = 1000 m), and of the bottom part ('y =400 m) of the pipes

are plotted in the phase planes as shown in Figures 4.24(a), 4.24(b) and 4.24(c),
respectively. In all the figures, the orbital motion of the trajectory of the pipe with a
transportation rate of 20 m/s is more complex and unsteadier than that of the pipe
without flutd transportation. This result indicates that the orbital stability of the pipe is
reduced by the effect of fluid transportation.
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Figure 4.17 Nonlinear Responses in Time 0-60 Seconds of

(a) Normal Vibrations (b) Tangential Vibrations



119

o The values of ¥, for lines
90: —— - 20 ws
807 —dp— - 0 /s l ‘ i

¥

703 ] :
.60 ] LR LA l ‘

J | R ' j , r
.50 4% 4 \ | I
.40
.30
.20
.10-_
.00
.10
.20
.301 T T T T T T T T M T T T T T M T T T T T 1

0 10 20 3¢ 40 50 60 70 80 90 100 110 120
time (sec)

(a)

v (m)at'y=1800m

The values of ¥, for lines
—+— = 0 m/s
9

v (m) at 'y = 1000 m
=S = S S S < S S S-S S S S
o

-20 T T T T T T T T T T T T T T T T 1
0 10 20 30 40 50 60 70 aao 90 160 110 1290
time (sec)

(b)

T T T T  E—

0.69 5 The values of ¥, for lines
1 20 m/s

0.50-]

+
0] TH -ows

400 m
<

o

.30 IR
.20—: 1 : "’ :

0.10+

(m) atv'y
o

a

v

0.001 i : ‘ _‘W
W

_0-20 T T T T T T T T T T T T T T ¥ T T T T T )
0 10 20 30 40 50 60 70 80 90 100 110 120
time (sec)

(©

Figure 4.18 Effect of Fluid Transportation on Time Histories of Normal Vibrations



120

0.0 0.5 1.0 0.0 0.4 0.8 1.2 1.6
v (m)at'y= 1800 m v, (m) at 'y = 1000 m
(a) (b)
v

In all figures, the values of ¥, for lines
--A-- =20 w/s
—af— = 0 m/s

-0.40

00 0.20 0.40 0.6
v (m)at 'y =400 m
(©)

-0.20 0.

Figure 4.19 Effect of Fluid Transportation on Trajectories of Normal Vibrations



121

5. CONCLUSIONS

This research proposes the three-dimensional model formulation of an
extensible marine risers/pipes transporting fluid. The combined action of the large
axial deformation bending, torsion, and the internal flow are taken into account in the
formulation. A number of original theories of extensible elastica and new
formulation of riser/pipe transporting fluid have been developed in this research.

The original theories compose of the extensible elastica theorems and the
apparent tension concept. The extensible elastica theorems are developed in three
viewpoints; namely, the total Lagrangian, the updated Lagrangian, and the Eulerian
descriptions. The apparent tension concept is introduced in order to cover the effect
of the Poisson’s ratio.

The three-dimensional model formulation of an extensible marine
risers/pipes is developed via a variational approach based on the extensible elastica
theory, the work-energy principle, and the kinematics theory of mass transported on
the moving frame. The total virtual internal work of the risers/pipes consists of
virtual strain energies due to large axial deformation, bending rigidity, and torsional
deformations. The total virtnal external work consists of virtual work done by
effective weight of the risers/pipes, hydrodynamic loading, inertial forces of the
risers/pipes and transported fluid. The vectorial summation of forces and moments is
used to validate the variational formulation. The advantages of the present models
relate to the flexibility offered in choice of the independent variable, and the
possibility of applying them to numerous elastica problems, including some
biomechanics applications.

The numerical examples of the three-dimensional static analysis and two
—dimensional dynamic analysis have been presented by using the finite element
method based on the updated Lagrangian formulation. The parametric studies are
established and elaborated in order to explore the profound effects of axial
deformation, and fluid transportation on behaviors of the pipe. It is found that the
effects of axial deformations are very important to nonlinear static, nonlinear
vibration behaviors, and static and dynamic stabilities of marine pipes. The effects of

fluid transportation in present practice are found to be significant to nonlinear
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nonlinear vibration behavior, but insignificant to nonlinear static behavior and
natural frequencies of the pipe.

From the results of parametric studies, it can be concluded that axial
deformation reduces large deflections and nonlinear responses of the pipe, and
increases static and dynamic stabilities of the pipe. At the same time, fluid
transportation yields the contrary effects. Consequently, if axial deformation of the
pipe is designed too low, the pipe may be subjected to either poor serviceability or
buckling due to insufficient stiffness. On the other hand, if fluid transportation is
designed too high, the pipe may experience either poor serviceability or buckling due
to overloading. Therefore, the designers are encouraged to examine these effects
carefully in the design of the marine risers/pipes, especially for the design of the
highly flexible pipes with large sag.

Finally, the mathematical models developed in this research work could
be used as the basis of other research work and for the development of commercial
programs for marine riser pipe analysis. It is hoped that this study will be of some
value in the analysis and the design not only of marine risers/pipes, but also of any
kind of long slender rods and pipes that pursue rigorous treatments of extensibility,

and transported mass.
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