



## รายงานวิจัยฉบับสมบูรณ์

โครงการพยาธิสรีริวิทยาของโรคที่พบบ่อยในประเทศไทย

**PATHOPHYSIOLOGY OF DISEASES PREVALENT IN THAILAND**

นายแพทย์ปรีดา มาลาอิทธิ และคณะ

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (สกอ.)

มีนาคม 2547

## รายงานวิจัยฉบับสมบูรณ์

### โครงการพยาธิสรีวิทยาของโรคที่พบบ่อยในประเทศไทย

### PATHOPHYSIOLOGY OF DISEASES PREVALENT IN THAILAND

#### คณะกรรมการ

หัวหน้าโครงการ : นายแพทย์ปรีดา มาลาสิต (Dr.Prida Malasit)  
หน่วยอัญชีวิทยาการแพทย์ คณะแพทยศาสตร์ศิริราชพยาบาล

ผู้ร่วมโครงการ หน่วยอัญชีวิทยาการแพทย์ คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

1. รศ.ดร.เพทาย เย็นจิตโสมนัส
2. ผศ.ดร.ส่งา พัฒนาภิสกุล
3. รศ.ดร.นพ.พรชัย โอดเจริญรัตน์
4. ดร.茱那吉ป มงคลธฤพยา
5. ดร.พญ.ปนิชฎ์ จิรุทธนันท์
6. ดร.ประพัฒน์ ศรียิ่งล

หน่วยปฏิบัติการเทคโนโลยีชีวภาพทางการแพทย์ ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ

1. ดร.ชัยญา พุทธิชัยน์
2. ดร.ดันสนีย์ น้อยศศาราม
3. ดร.ธุชา เส่งยมบุตร

สาขาวิชาภัณฑ์วิทยา ภาควิชาอาชญาศาสตร์ คณะแพทยศาสตร์ศิริราชพยาบาล  
มหาวิทยาลัยมหิดล

1. ศ.พญ.สุมาลี นิมนานนิตร
2. รศ.พญ.ลีนา องอาจยุทธ
3. นพ.สมเกียรติ วสุวรรณ์
4. นพ.สุชา� ศรีกิพยวรวน

ภาควิชาภูมิวิทยาศาสตร์ คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

1. ศ.พญ.อัจฉรา สัมบุณวนานนท์

ภาควิชาภาร্যวิภาคศาสตร์ คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

1. ดร.นพ.ถาวรชัย ลิ้มจินดาพร

ภาควิชาชีวเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

1. ศ.ดร.ประพนธ์ วิไลรัตน์

ภาควิชาเทคโนโลยีชีวภาพ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

1. ศ.ดร.ทิมโนที วิลเลียม เฟลเกล

ภาควิชาภูมิวิทยาการแพทย์ คณะเวชศาสตร์ขัตติย้อน มหาวิทยาลัยมหิดล

1. ผศ.สุพัตรา ทองรุ่งเกียรติ

โครงการวิจัยและพัฒนาวัคซีน สถาบันวิจัยและพัฒนาวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยมหิดล

1. ศ.ดร.ธีร์ ยกส้าน

ภาควิชาจุลชีววิทยา คณะแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่

1. รศ.นพ.นพพร ลิทธิสมบัติ

ภาควิชาภูมิคุ้มกันวิทยาคลินิก คณะเทคนิคการแพทย์ มหาวิทยาลัยเชียงใหม่

1. รศ.ดร.วชิระ กลิ่นฤกษ์

กลุ่มงานกุมารเวชกรรม โรงพยาบาลชลขอนแก่น

1. พญ.ศรีจิตต์ วานิชวัฒน์

ภาควิชาภูมิวิทยาศาสตร์ คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น

1. นพ.สมพนธ์ ทัศนิยม

กลุ่มงานกุมารเวชกรรม โรงพยาบาลสังขละ

1. พญ.วรรณี ลิมปิติกุล

สถาบันสุขภาพเด็กมหาวิทยาลัยแห่งชาติ

1. พญ.ศรีเพ็ญ กัลยาณรุจ

*Institute of Clinical Microbiology Mainz University, Germany*

1. ศ.นพ.สุจิวิท ภักดี

*The Centre National de Génotypage (CNG), France*

1. นพ.อนวัช ศกุนดาภัย

2. Prof. Mark Lathrop

3. Prof. Cecile Julia

*Faculty of Medicine, University of Chicago, U.S.A.*

1. Prof. Yasushi Nakagawa

*The Weatherall Institute of Molecular Medicine, University of Oxford, UK.*

1. Prof. Andrew Mc Michael

2. Dr. Gavin Scream

3. ดร.อุชาชิป มงคลรัพยา

## กิตติกรรมประกาศ

กลุ่มวิจัยข้อขอนคุณ สำนักงานกองทุนสนับสนุนการวิจัย ที่ให้การสนับสนุนเครื่องข่าย ร่วมทำวิจัยศึกษา ชีววิทยาการแพทย์พื้นฐานของกลุ่มโรคที่พบบ่อยในประเทศไทย ขอขอบคุณคณะแพทยศาสตร์ ศิริราชพยาบาล มหาวิทยาลัยมหิดล ที่ให้การสนับสนุนหน่วยอนุชีววิทยาการแพทย์ สถานส่งเสริมการวิจัย ได้มีโอกาสใช้ศักยภาพของ นักวิจัย ห้องปฏิบัติการ ตลอดจนเครือข่ายงานวิจัยของคณะฯ ทำให้งานวิจัยดำเนินไปอย่างมีประสิทธิภาพ ขอขอบคุณผู้ร่วมวิจัยทุกท่านที่มีขั้นตอนและวิธีระร่วมมือกัน เหลือในการศึกษาวิจัยและถ่ายทอดความรู้ให้กับ นักศึกษาในโครงการต่าง ๆ ทำให้เครือข่ายขยายตัว อย่างต่อเนื่อง

อนึ่ง งานทั้งหมดจะสำเร็จได้ หากไม่ได้รับความร่วมมือจากคณะแพทย์และพยาบาลที่ดูแลกลุ่มผู้ป่วย ไข้เลือดออก กลุ่มผู้ป่วยโรคไตเสียสมรรถภาพในการขับกรด (Renal Tubular Acidosis) และกลุ่มอื่น ๆ ใน โรงพยาบาล จ.ขอนแก่น จ.นครพนม และ จ.อุบลราชธานี

คณะผู้วิจัยขอขอบคุณทุกท่านที่ให้ความร่วมมือช่วยเหลือทำให้งานวิจัยนี้ดำเนินลุล่วงไปได้ด้วยดี

มีนาคม 2547

|                                                                          |    |
|--------------------------------------------------------------------------|----|
| บทคัดย่อ .....                                                           | 6  |
| EXECUTIVE SUMMARY .....                                                  | 9  |
| วัตถุประสงค์ .....                                                       | 9  |
| ทิศทางการดำเนินงานวิจัย .....                                            | 9  |
| การเสนอผลงานและสิ่งตีพิมพ์ .....                                         | 11 |
| การจดสิทธิบัตร .....                                                     | 11 |
| รางวัลยกย่องนักวิจัยและงานวิจัย .....                                    | 11 |
| ผลงานเด่นของหน่วยในช่วงปี 2543-2546 .....                                | 12 |
| การพัฒนาบุคลากร .....                                                    | 13 |
| โครงการวิจัย .....                                                       | 13 |
| แนวโน้มวิจัยและเส้นทางอาชีพนักวิจัย .....                                | 14 |
| เชื้อไวรัสเดิงกีและโรคไข้เลือดออก .....                                  | 15 |
| กลไกการเกิดโรคไข้เลือดออก .....                                          | 15 |
| การศึกษาไวรัสเดิงกีในระดับอณุ (MOLECULAR VIROLOGY OF DENGUE VIRUS) ..... | 16 |
| การวินิจฉัย .....                                                        | 17 |
| DENGUE CLINICAL RESEARCH DATABASE .....                                  | 17 |
| IMMUNOLOGY .....                                                         | 18 |
| GENETICS .....                                                           | 18 |
| RESEARCH NETWORK .....                                                   | 19 |
| GRADUATE STUDIES .....                                                   | 21 |
| PUBLICATION .....                                                        | 29 |
| PATENT .....                                                             | 34 |
| PROJECTS .....                                                           | 36 |

## บทคัดย่อ

รหัสโครงการ RTA/06/2543  
ชื่อโครงการ 项目生物医学研究：โรคที่พบบ่อยในประเทศไทย  
หัวหน้าโครงการ นพ. ปรีดา มาลาสิทธิ์  
e-mail: [sipml@mahidol.ac.th](mailto:sipml@mahidol.ac.th)  
ที่อยู่ หน่วยอนุเรียนวิทยาการแพทย์  
สถาบันส่งเสริมการวิจัย คณะแพทยศาสตร์ศิริราชพยาบาล  
ถนนพราหมณ์ เขตบางกอกน้อย กรุงเทพฯ 10700  
โทรศัพท์ +662 418 4793  
ระยะเวลาดำเนินการ ปี พ.ศ. 2543-2546

## วัตถุประสงค์

เพื่อสนับสนุนกิจกรรม เสริมสร้างนักวิจัยรุ่นใหม่ และเป็นกลไกเพื่อมุ่งประลองงานวิจัยทางด้าน  
วิทยาศาสตร์ชีวภาพการแพทย์ (Biomedical research) ของโรคที่พบบ่อยในประเทศไทย โดยมีจุดประสงค์ที่จะศึกษาทำ  
ความเข้าใจในกลไกการเกิดโรค ซึ่งจะนำไปสู่การวินิจฉัย การวิจัยและ การป้องกันที่ดีขึ้นในอนาคต กลุ่มวิจัยและ  
เครือข่ายที่สร้างขึ้นยังมีส่วนร่วมในการพัฒนาบุคลากร และร่วมมือกับบริษัทเอกชนในการพัฒนาผลิตภัณฑ์เพื่อ  
ส่งออกสู่ตลาด โดยขอบข่ายงานวิจัยครอบคลุม 3 ส่วนหลักคือ

1. งานวิจัยด้านไวรัสเดิงกี และโรคไข้เลือดออก (Dengue)
2. งานวิจัยทางด้านโรคทางพันธุกรรมของมนุษย์ (Genetics)
3. งานวิจัยพื้นฐานทางด้านภูมิคุ้มกันวิทยา (Immunology)

## ผลงานเด่นของหน่วยฯ ในช่วงปี 2543-2546

ผู้วิจัยได้ประสบความสำเร็จในการสร้างเครือข่ายงานวิจัยหลัก 3 ด้าน ดังที่กล่าวมานี้ ผลงานวิจัยเด่น  
ของเครือข่าย ได้แก่

- เครือข่ายวิจัยได้ตีพิมพ์บทความวิชาการด้านการวิจัยทางชีววิทยาการแพทย์ขั้นพื้นฐานในวารสารชั้นนำ  
ของโลกที่มีการอ้างอิงสูง (high impact international journal) อาทิ Nature Medicine และ Journal  
of Virology ผลงานวิจัยใน Nature Medicine เป็นเรื่องเกี่ยวกับ กลไกใหม่ทางภูมิคุ้มกันที่อาจเป็น  
ต้นเหตุของการเกิดภาวะซื้อคในคน ได้ใช้เลือดออก ทางด้านภูมิคุ้มกันที่ได้จดให้มีการทดลองข้ามกับสื่อมวลชน

ในกรุงดอนดอน ประเทศไทยอังกฤษ ก่อนตีพิมพ์ในปลายปี 2546 และจัดแสดงข่าวที่คณะแพทยศาสตร์ศิริราชพยาบาลด้วยเช่นกัน งานวิจัยดังกล่าวได้จดสิทธิบัตร ผลิตภัณฑ์ในประเทศไทยอังกฤษ

- รศ.นพ.นพพร สิทธิสมบัติ (ภาควิชาจุลชีววิทยา คณะแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่) ซึ่งเป็นนักวิจัยหลักท่านหนึ่งของเครือข่ายวิจัย โดยก่อนที่ นพ. นพพร จะมาร่วมอยู่ในเครือข่าย นพ.นพพร ประสบความสำเร็จในการสร้าง cDNA clone ของไวรัสเดิงก์ ซีโรทัยปี 2 โดยได้รับการสนับสนุนทุนวิจัย จาก สกอ. ซึ่งเครือข่ายได้ให้เทคโนโลยีโดยดังกล่าวในการศึกษา อยุธรีวิทยาของเชื้อไวรัสและสร้างไวรัสสายพันธุ์ในมหิดลสามารถนำมายลิตรชั้นในอนาคต
- สามารถสร้างไวรัสสายพันธุ์ที่มีแนวโน้มในการเป็น dengue vaccine strain และได้ทำการยืนยันด้วยสิทธิบัตรแล้ว (ปี 2545)
- ดำเนินการโครงการวิจัยที่มีประสิทธิภาพโดยอยู่ภายใต้หน่วยปฏิบัติการเทคโนโลยีชีวภาพทางการแพทย์ ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยี แห่งชาติ ซึ่งดังอยู่ที่ส่วนส่งเสริมการวิจัย คณะแพทยศาสตร์ศิริราชพยาบาล ผลงานเด่นของหน่วยฯ แพทย์ ได้แก่
  1. การพัฒนาชุดตรวจนับ CD4 lymphocyte ชนิด 2 สี และ 3 สี ซึ่งเป็นชุดตรวจที่ใช้น้ำยาที่ผลิตได้เอง มีคุณภาพเทียบเท่ากับน้ำยาจากต่างประเทศ ช่วยลดแทนการนำเข้าจากต่างประเทศ ได้ทำการยืนยันด้วยสิทธิบัตรแล้ว และมีการถ่ายทอดเทคโนโลยีสู่ภาคเอกชน เพื่อนำไปผลิตในเชิงพาณิชย์ (ปี 2545)
  2. ถ่ายทอดเทคโนโลยีในการผลิตวัคซีนบีแวนต์บีโปรตีน E ของไวรัสเดิงก์ ให้กับภาคเอกชน เพื่อนำไปพัฒนาชุดตรวจวินิจฉัยโรคไข้เลือดออกชนิดแรกเริ่ม (ปี 2544)
  3. ถ่ายทอดเทคโนโลยีในการตรวจหาระดับแอนติบอดีตต่อไวรัสเดิงก์ในเชื้อมดูปปาย โดยวิธี IgM/IgG capture ELISA ให้กับภาคเอกชน เพื่อนำไปพัฒนาเป็นชุดตรวจการติดเชื้อไข้เลือดออกในเชิงพาณิชย์ (ปี 2544)
- เครือข่ายวิจัยได้รับทุนสนับสนุนจากโครงการ T-2 เพื่อดำเนินโครงการศึกษาวิจัยเรื่องโรคไข้เลือดออกในจังหวัดขอนแก่นและจังหวัดสงขลา โดยมีการจัดตั้งหน่วยวิจัย 2 แห่งเพื่อทำหน้าที่ดูแลผู้ป่วย ไข้เลือดออกและดูแลผู้ป่วยที่มีภาวะทางชีววิทยาการแพทย์ รวมทั้งมีการสร้างฐานข้อมูลของคนไข้ที่ได้มาตรฐานสูงอีกด้วย โครงการนี้ทำหน้าที่เป็นศูนย์ที่ช่วยประสานและกระตุ้นให้เกิดการวิจัยทางด้านชีววิทยาศาสตร์การแพทย์และด้านคลินิกที่มีประสิทธิภาพในประเทศไทย
- ค้นพบลักษณะการก่อภัยพันธุ์ในโรค distal renal tubular acidosis disease หล่ายชนิด ทั้งแบบที่มีการถ่ายทอดแบบเด่นและต่อย นอกจากรูปแบบที่เป็น mutation hotspot บันทึกที่

เกี่ยวข้อง โรมดังกล่าวเป็นโรมที่พับมอยในภาคอีสาน และการคันพบกลไกทางพันธุกรรมจะมีประโยชน์ สำหรับการทำวิจัยป้องกันและรักษาโรม

- คันพบโปรดตีนในปีสสาวะที่มีคุณสมบัติในการป้องกันการจับตัวของแคลเซียม ซึ่งคาดว่าจะมีบทบาท ในการป้องกันการเกิดโรมนิ่วในทางเดินปีสสาวะ

## Executive summary

### วัตถุประสงค์

เพื่อสนับสนุนกลุ่มนักวิจัย เสริมสร้างนักวิจัยรุ่นใหม่ และเป็นกลไกเชื่อมโยงประสานงานวิจัยทางด้านวิทยาศาสตร์ วิชาการและการแพทย์ (Biomedical research) ของโรคที่พบบ่อยในประเทศไทย โดยมีวัตถุประสงค์ที่จะศึกษาทำความเข้าใจ ในกลไกการเกิดโรค ซึ่งจะนำไปสู่การวินิจฉัย การรักษาและการป้องกันที่ดีขึ้นในอนาคต

### ทิศทางการดำเนินงานวิจัย

หน่วยย่อยเน้นการทำวิจัยใน 3 ด้านหลัก ดังนี้

1. งานวิจัยด้านไวรัสเดิงกี และโรคไข้เลือดออก (Dengue) ซึ่งแบ่งสัดส่วนงานวิจัยออกเป็น 3 ด้าน ย่อยได้แก่
  - การศึกษาทางด้านสาเหตุและกลไกที่ทำให้เกิดโรค (Pathogenesis) เป็นงานวิจัยพื้นฐานทางด้านภูมิคุ้มกันของร่างกายที่มีผลต่อการเกิดโรคไข้เลือดออกหลังจากที่มีการติดเชื้อไวรัส ทั้งในส่วนของ humoral และ cellular immunity รวมถึงปัจจัยเกี่ยวข้องที่เกิดขึ้นจากโปรตีนของไวรัสโดยตรง
  - การศึกษาไวรัสเดิงกีในระดับอณู (Molecular virology of dengue virus) เป็นการศึกษาเพื่อให้เข้าใจถึงคุณสมบัติและกลไกการทำงานของโปรตีนบางชนิดของไวรัสเดิงกีต่อ การเพิ่มจำนวนของไวรัส เช่น prM และ NS1 โดยการใช้ infectious cDNA clone ของไวรัสเดิงกี 2 สายจะนำไปสู่การผลิตไวรัสสายพันธุ์ใหม่ที่อยู่ในทุทธิ์ลง (attenuation) เหมาะสมต่อการนำไปใช้ในการพัฒนาวัคซีนสำหรับโรคไข้เลือดออก
  - การวิจัยและพัฒนาวิธีการตรวจวินิจฉัยโรคไข้เลือดออก (Diagnosis) ประกอบด้วยการวิจัยและพัฒนาวิธีการตรวจหาสารตัวของแอนติบอดีต่อไวรัสเดิงกี (serology) ระดับของสารพันธุกรรมของไวรัสเดิงกี และโปรตีนของไวรัสในชีรัมคนไข้ รวมถึงการผลิตวัคซีน บีแนนต์โปรตีนของไวรัสเดิงกี และ การผลิตนูโน่โคลนอลแอนติบอดีต่อโปรตีนส่วนต่างๆของไวรัส เพื่อใช้เป็นสารตั้งต้นในการพัฒนาชุดตรวจด้วย
2. งานวิจัยทางด้านโรคทางพันธุกรรมของมนุษย์ (Genetics)

เน้นการศึกษาวิจัยโรคพันธุกรรมที่พบบ่อยในคนไทยโดยเฉพาะภาคอีสาน เช่นโรคไตผิดปกติใน การขับกรด (dRTA) โรคไข้ในไต เป็นต้น เพื่อหาสาเหตุและกลไกที่ทำให้เกิดโรคในระดับอนุ รวมถึงการพัฒนาเทคโนโลยีเพื่อการวิจัย และควรจัดตั้งศูนย์โรคทางพันธุกรรม

### 3. งานวิจัยพื้นฐานทางด้านภูมิคุ้มกันวิทยา (Immunology)

เป็นการศึกษาไปรษณีย์ในมbraneผิวเซลล์เม็ดเลือดขาว โดยให้ในในคลนอ่อนติบอดี และ พัฒนาเทคโนโลยีในการตรวจวินิจฉัยไปรษณีย์ในทางชิปแบบผิวเซลล์ที่เกี่ยวข้องกับการเกิดโรค

ในภาวะที่สองของทุนเมธิจัยอาบุโล กลุ่มวิจัยได้ขยายตัวและทำงานวิจัยที่มุ่งเป้าสู่เด็กนี้ โดยเป้าหมายหลักคือ การศึกษาเชื้อไวรัสเดิงก์และโรคไข้เลือดออก ในปัจจุบันเครื่องข่ายวิจัยได้ครอบคลุมงานวิจัยนักศึกษาด้าน ทั้งกลไกการ เกิดโรค งานศึกษาไวรัสในระดับอนุ ภูมิคุ้มกัน การวินิจฉัย และการพัฒนาวัคซีน โดยทุกด้านเป็นการวิจัยเพื่อเพิ่ม ความรู้ความเข้าใจไวรัสเดิงก์ รวมไปถึงการป้องกันและรักษาโรคไข้เลือดออกทั้งสิ้น การที่เรามีเป้าหมายที่รั้วเด็กและ ทำงานในลักษณะมุ่งเป้า ไม่เพียงแต่ทำให้เราใช้ทรัพยากรที่มีอยู่จำกัดได้ประโยชน์สูงสุด เพื่อที่จะให้ได้ผลงานที่มี คุณภาพออกมากล้าวยุคเดียวแล้ว หากยังทำให้ได้และโครงการสามารถขยายผลอื่นกันและกัน ทั้งทางด้านความรู้และ ผลงานที่ได้ งานวิจัยที่ขยายออกอย่างทำให้เราสามารถรองรับนักวิจัยและพัฒนานักศึกษาจะดับหนังสือภูมิคุ้มกัน ได้มาก ขึ้น นอกจากนี้ กลุ่มวิจัยยังก่อให้เกิดความร่วมมือระหว่างภาควิชา สถาบัน มหาวิทยาลัย และระหว่างประเทศ ผลที่ ได้รับคือ พากเรามีผลงานเดิมพิมพ์ในการสารานานาชาติที่มีชื่อเสียงอย่างสม่ำเสมอ สามารถผลิตนักศึกษาที่มีคุณภาพ แล้วด้วยเทคโนโลยีต่าง ๆ ไปสู่ภาคเอกชน

ในขณะเดียวกัน กลุ่มงานวิจัยทางด้านพันธุกรรมที่ทำการศึกษาโรคพันธุกรรมที่พบบ่อยทางภาคตะวันออกเฉียงเหนือ (อีสาน) มีการขยายตัวอย่างต่อเนื่อง ในขณะนี้กลุ่มวิจัยกำลังมุ่งศึกษาโรคในกลุ่ม distal renal tubular acidosis (dRTA) พากเราค้นพบลักษณะการกลายพันธุ์ (mutation) ที่เป็นสาเหตุหรือเกี่ยวข้องกับการเกิดโรคหลายแบบ ทั้งที่มี การถ่ายทอดแบบเด่นและแบบด้อย นอกจากความพยายามในการค้นหาการกลายพันธุ์แล้ว ทางกลุ่มวิจัยยังได้ศึกษา ถึงกลไกที่การกลายพันธุ์เหล่านี้เกี่ยวข้องกับการเกิดโรคด้วย ทางกลุ่มฯ ได้รักษาเด็กวัยรุ่นในม แลดพยายามสร้าง เครื่องข่ายเพิ่มขึ้นทั้งในและต่างประเทศ และมีการตีพิมพ์ผลงานในการสารานานาชาติอย่างต่อเนื่อง

ในส่วนของการศึกษาบทบาทของโปรตีน nephrocalcicin ที่อาจจะเกี่ยวข้องกับกลไกการเกิดโรคนี้ทางภาค ตะวันออกเฉียงเหนือ พากเราประสบความสำเร็จในการสร้างเครื่องมือและกระบวนการที่จำเป็นในการศึกษาโปรตีนใน ปัสสาวะ โดยเฉพาะการศึกษาคุณสมบัติในการป้องกันการจับตัวของแคลเซียม พากเราค้นพบโปรตีนในปัสสาวะที่มี ความสามารถในการขับยับการจับตัวของแคลเซียมได้ ซึ่งน่าจะมีบทบาทในการป้องกันการเกิดนิ่ว ในขณะนี้พากเรา กำลังใช้เทคนิคและเทคโนโลยีที่ทันสมัยในการศึกษาโปรตีน (proteomic instruments) เพื่อศึกษาถูกแบบของโปรตีน ในปัสสาวะของคนปกติและผู้ป่วยโรคนี้

### การเสนอผลงานและสิ่งตีพิมพ์

การเสนอผลงานในช่วงปีงบประมาณ 2543-2546 หน่วยแพทย์มีผลงานตีพิมพ์ในวารสารนานาชาติ จำนวน 27 เรื่อง เอกพัชท์ที่เกี่ยวข้องกับพิศทางการวิจัยของหน่วยฯ (รายละเอียดผลงานตีพิมพ์ หน้า 27) และมีการนำเสนอผลงานทางวิชาการทั้งสิ้น 58 เรื่อง โดยเป็นการเสนอผลงานระดับนานาชาติ 16 เรื่อง และระดับประเทศ 42 เรื่อง

| ปีงบประมาณ | จำนวน (เรื่อง)                                   |                                           |                                             |
|------------|--------------------------------------------------|-------------------------------------------|---------------------------------------------|
|            | วารสารวิชาการที่ได้รับ การตีพิมพ์ในระดับนานาชาติ | การเสนอผลงานในงานประชุมวิชาการระดับประเทศ | การเสนอผลงานในงานประชุมวิชาการระดับนานาชาติ |
| 2543       | 6                                                | 10                                        | 5                                           |
| 2544       | 6                                                | 8                                         | 3                                           |
| 2545       | 7                                                | 10                                        | 1                                           |
| 2546       | 8                                                | 14                                        | 7                                           |
| รวม        | 27                                               | 42                                        | 16                                          |

### การจดสิทธิบัตร

หน่วยแพทย์มีเทคโนโลยีที่จดสิทธิบัตร แล้วจำนวน 6 เรื่อง (รายละเอียดจดสิทธิบัตร หน้า 31)

### รางวัลยกย่องนักวิจัยและงานวิจัย

- นายพลรัตน์ พันธุ์แพร นักศึกษาปริญญาโท โดยมี รศ. ดร. วิชระ กสิณฤกษ์ เป็นอาจารย์ที่ปรึกษา ได้รับรางวัลtaguchi ประจำปี 2543 (Taguchi Prize for Outstanding Thesis Award 2000) จากสมาคมเทคโนโลยีชีวภาพแห่งประเทศไทย
- ดร. วิชระ กสิณฤกษ์ ได้รับรางวัลผลงานวิจัย ระดับชั้นประเทศ ประจำปี 2546 จากสำนักงานคณะกรรมการวิจัยแห่งชาติ เรื่อง การพัฒนาชุดน้ำยาและเทคโนโลยีในการตรวจนับจำนวนเม็ดเดือด ขาวสิมโฟร์ย์

## ผลงานเด่นของหน่วยฯ ในช่วงปี 2543-2546

- ประสบความสำเร็จในการสร้าง infectious cDNA clone ของไวรัสเดิงกีซีโรทัยปี 2 ซึ่งเป็นประโยชน์ต่อการตัดต่อหรือดัดแปลงสารพันธุกรรมของไวรัส เพื่อให้ได้เป็นไวรัสสายพันธุ์ใหม่ที่เหมาะสมต่อการเป็นวัคซีนได้ (ปี 2544) (เป็นงานวิจัยที่มีการเริ่มต้นมาต่อกันที่ นพ.นพพร สิทธิสมบัติ จะเข้าร่วมในเครือข่ายของหน่วยฯเพียง คณะโครงงานนี้ได้รับการสนับสนุนทุนวิจัยจาก ศกอ.)
- สามารถสร้างไวรัสสายพันธุ์ที่มีแนวโน้มในการเป็น dengue vaccine strain และได้ทำการยืนยันด้วยสิทธิบัตรแล้ว (ปี 2545)
- ค้นพบกลไกในการทำให้เกิดไวรัสเดิงกีต่อต้าน T-cell response และได้วิจัยการติดพิมพ์ในวารสารวิชาการชั้นนำของโลก คือ Nature Medicine (ปี 2546)
- การพัฒนาชุดตรวจนับ CD4 lymphocyte ชนิด 2 สี และ 3 สี ซึ่งเป็นชุดตรวจที่ใช้น้ำยาที่ผลิตได้เอง มีคุณภาพเทียบเท่ากับน้ำยาจากต่างประเทศ ช่วยลดภาระการนำเข้าจากต่างประเทศ ได้ทำการยืนยันด้วยสิทธิบัตรแล้ว และมีการถ่ายทอดเทคโนโลยีให้กับภาคเอกชน เพื่อนำไปผลิตในเชิงพาณิชย์ (ปี 2545)
- ถ่ายทอดเทคโนโลยีในการผลิตวิเคราะห์คอมบิแนต์ไปร์ตีน E ของไวรัสเดิงกี ให้กับภาคเอกชน เพื่อนำไปพัฒนาชุดตรวจทางด้านดีบอตต์อิวารัสเดิงกีในเชิงพาณิชย์ (ปี 2544)
- ถ่ายทอดเทคโนโลยีในการตรวจหาสารดับบลอนดิบอตต์อิวารัสเดิงกีในเชิงพาณิชย์ IgM/IgG capture ELISA ให้กับภาคเอกชน เพื่อนำไปพัฒนาเป็นชุดตรวจการติดเชิงไว้เดือดออกในเชิงพาณิชย์ (ปี 2544)
- ริเริ่มให้เกิดโครงการร่วมมือระหว่างนlaysสถาบัน ตั้ง Dengue Clinical Research Centers เพื่อที่จะเก็บตัวอย่างรูมห้องทั้งบ้านที่เกิดข้อมุลทางคลินิก และทางห้องปฏิบัติการที่จำเป็นโดยละเอียด ซึ่งจะเป็นทรัพยากรที่สำคัญสำหรับงานวิจัยโรคไวรัสเดิงกีต่อต้านในอนาคต
- ค้นพบลักษณะการก่อภัยพันธุ์ในมนุษย์ distal renal tubular acidosis หลายแบบ ทั้งแบบที่มีการถ่ายทอดแบบเด่นและด้อย นอกจากนี้ ยังค้นพบตำแหน่งที่เป็น mutation hotspot บนยีนที่เกี่ยวข้อง
- ค้นพบโปรตีนในปัสสาวะที่มีคุณสมบัติในการป้องกันการจับตัวของแคลเซียม ซึ่งคาดว่าจะมีบทบาทในการป้องกันการเกิดโรคนิ่วในทางเดินปัสสาวะ

### การพัฒนานักศึกษา

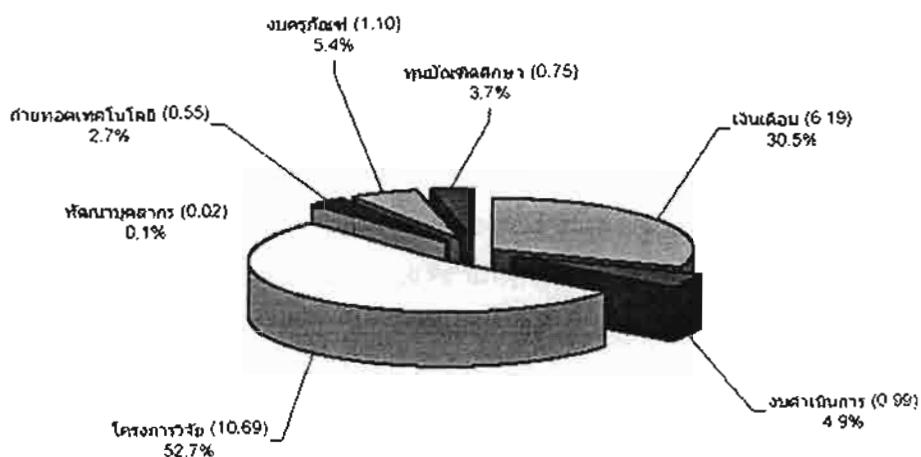
ในช่วงปีงบประมาณ 2543-2546 หน่วยฯ ได้รับนักศึกษาระดับปริญญาเอก จำนวน 6 คน ซึ่งแบ่งเป็นกลุ่มที่ได้รับทุนกาญจนากิจฯ จำนวน 2 คน และทุน MD.-Ph.D. ของมหาวิทยาลัยมหิดล จำนวน 4 คน และเป็นนักศึกษา ระดับปริญญาโท จำนวนทั้งสิ้น 19 คน หน่วยฯสามารถผลิตนักศึกษาที่จบการศึกษาในปี 2543 – 2546 ในระดับ ปริญญาโท จำนวน 14 คน และปริญญาเอก จำนวน 1 คน และขณะนี้มีนักศึกษาที่กำลังศึกษาอยู่ในระดับปริญญาเอก 12 คน และระดับปริญญาโท 21 คน (รายละเอียดในเอกสารหน้า 18)

| ปีการศึกษา  | จำนวนนักศึกษาที่รับ (คน) |     | จำนวนนักศึกษาที่จบ (คน) |     |
|-------------|--------------------------|-----|-------------------------|-----|
|             | โท                       | เอก | โท                      | เอก |
| 2543 (2000) | 1                        | 2   | 4                       | 0   |
| 2544 (2001) | 5                        | 1   | 2                       | 0   |
| 2545 (2002) | 5                        | 1   | 3                       | 1   |
| 2546 (2003) | 8                        | 2   | 5                       | 0   |
| รวมปี 43-46 |                          | 19  | 6                       | 14  |
|             |                          |     |                         | 1   |

### โครงการวิจัย

ในช่วงปีงบประมาณ 2543-2546 หน่วยฯ ดำเนินการวิจัยโดยได้รับทุนสนับสนุนจากแหล่งทุนต่างๆ เป็น จำนวน 16 โครงการ โดยแบ่งเป็นแหล่งทุนจาก ศช. 9 โครงการ สกอ. 2 โครงการ T-2 2 โครงการ WHO 1 โครงการ ทุนวิจัยคณะแพทย์ฯศิริราช 1 โครงการ และทุนทุนของมหาวิทยาลัย 1 โครงการ (รายละเอียดโครงการวิจัย หน้า 33)

## แนวโน้มวิจัยและเส้นทางอาชีพนักวิจัย


ในวาระที่ 2 ของทุนแม่วิจัยอาชีพ หน่วยและเครือข่ายได้พัฒนา และเลือกแนวโน้มในงานวิจัยและเส้นทางอาชีพ ของนักวิจัยไทยในอนาคต ในขณะนี้แนวโน้มงบประมาณต่าง ๆ ของหน่วยและเครือข่ายเริ่มปรับเปลี่ยนจากที่ได้รับ ทุนสนับสนุนส่วนใหญ่จากศูนย์พันธุ์วิศวกรรมแห่งชาติและมหาวิทยาลัยมหิดล เป็นทุนที่รับการสนับสนุนจากการ เชิญโครงการวิจัยและนำเสนอไปยังแหล่งทุนต่าง ๆ ในปีพ.ศ. 2456 งบประมาณที่ใช้ดำเนินการของหน่วยมากกว่า 50% เป็นเงินทุนจากโครงการต่าง ๆ (ดังแผนภูมิต้านล่าง) และมีนักวิจัยและผู้ช่วยวิจัยจำนวนหนึ่งรับการสนับสนุน จากทางทุนเหล่านี้เพียงแหล่งเดียว จะเห็นได้ว่า งานวิจัยของหน่วยในขณะนี้ใช้โครงสร้างพื้นฐานและบุคลากรที่ได้รับ การสนับสนุนจากองค์กร ในการสร้างงานวิจัยและเชิญโครงการ เพื่อที่จะได้รับทุนสนับสนุนจากแหล่งทุนที่มีการ แห่งขันและตัวต่อตัวตอบคุณภาพอย่างเข้มงวด

นักวิจัยระดับหลักปริญญาเอกในหน่วยที่ทำหน้าที่เป็นหัวหน้าโครงการจะมีโครงการอยู่ภายใต้การดูแลโดยตรงอย่าง น้อยคนละ 2 โครงการ ลักษณะการทำงานเช่นนี้ก่อให้เกิดผลดีคือ โครงการที่ได้รับทุนเป็นโครงการที่มีคุณภาพ และ เป็นประโยชน์ เพื่อการต้องผ่านการกลั่นกรองจากผู้เชี่ยวชาญในแต่ละสาขา และมักจะได้ผลงานที่ดี และรวดเร็วจาก การตรวจสอบและประเมินผลต่อเนื่องของแหล่งทุน ในขณะเดียวกันก็จะเป็นแรงผลักดันให้นักวิจัยมุ่งมั่นทำงาน และ สร้างบุคลากรในสาขาเพิ่มขึ้น เพื่อให้ได้งานที่มีคุณภาพตามที่ต้องการ สามารถตีพิมพ์และนำเสนอไปให้ประโยชน์ได้ในวง กว้าง

เพื่อให้งานดำเนินไปได้อย่างรับรื่นและรวดเร็ว นักวิจัยจึงรวมกลุ่มทำงานวิจัยที่มีเป้าหมายเดียวกัน โดยทำงานวิจัย ในแต่ละด้านที่ส่งเสริมเชิงกันและกัน ทั้งทางด้านความรู้ เทคโนโลยี และผลงาน ทำให้เกิดการขยายเครือข่าย มีการ ร่วมมือกัน ภายใต้สถาบัน ระหว่างองค์การ และระหว่างประเทศ เริ่มสร้างบรรยักษณ์ของความร่วมมือ ช่วยเหลือ และส่งเสริมเชิงกันและกัน เพื่อประโยชน์ของทุกฝ่าย

แนวโน้มที่เห็นได้ชัดเจนอีกประการหนึ่งคือ เมื่อกลุ่มวิจัยมีขนาดใหญ่ขึ้น งบดำเนินการส่วนใหญ่ได้มาจากโครงการ หลักโครงการภายใต้การดูแลของนักวิจัยหน่วยท่าน รวมทั้งมีโครงการขนาดใหญ่ที่ได้รับงบประมาณค่อนข้างสูง ทำ ให้การบริหารจัดการงานวิจัยมีความสำคัญอย่างยิ่ง ไม่เพียงแต่การบริหารทางด้านงบประมาณเท่านั้น การบริหาร ทรัพยากรบุคคล อุปกรณ์ต่าง ๆ รวมไปถึงการจัดค่าใช้จ่าย การเรียนรู้งาน และติดตามผลต่อเนื่องกลยุทธ์เป็นปัจจัย จำเป็นที่จะต้องมีความสำคัญของโครงการและหน่วย เพื่อให้งานวิจัยสามารถดำเนินไปได้อย่างราบรื่นและมี ประสิทธิภาพ และนักวิจัยสามารถทุ่มเทเวลาให้กับงานวิจัยได้อย่างเต็มที่ ในอนาคตงานวิจัยของไทยจะมีการ พัฒนาบุคลากรที่มีความรู้นานาด้านในการบริหารโครงการ เพื่อเข้ามาช่วยบริหารจัดการโครงการต่าง ๆ ให้ดำเนินไปได้ ตามเป้าหมาย

งบประมาณของหน่วยที่ได้รับทั้งหมดในปี 2546  
(20.29 ล้านบาท) แบ่งตามหมวดการใช้จ่าย



เชื้อไวรัสเดิงกีและโรคไข้เลือดออก

กลไกการเกิดโรคไข้เลือดออก

ถึงแม้ว่ามีการศึกษากลไกการเกิดโรคไข้เลือดออกมาเป็นเวลาหลายทศวรรษ แต่ในปัจจุบัน กลไกของการเกิดโรคยังคงไม่ชัดเจน การศึกษาทางระบบภูมิคุ้มกันให้เห็นชัดว่า โรคไข้เลือดออกมีความสัมพันธ์กับการติดเชื้อครั้งที่สองด้วยไวรัสซีโรทัยปีต่างชนิดกับไวรัสที่ติดเชื้อครั้งแรก ทำให้เกิดสมนติฐานที่นำเสนอโดย Dr.Halstead ว่า *antibody-dependent enhancement* โดยเชื่อว่าในการติดเชื้อครั้งที่สอง แอนติบอดี้ที่มีอยู่ในสามารถบีบอัดการติดเชื้อและการแบ่งตัวของไวรัสได้ แต่กลับช่วยให้ไวรัสสามารถเข้าเซลล์ได้ดียิ่งขึ้น ทำให้ปริมาณไวรัสสูงมากขึ้น ดังจะเห็นได้จากการทดลองในห้องปฏิบัติการและในสัตว์ทดลอง

อย่างไรก็ตาม สมมติฐานที่สร้างขึ้นไม่ได้อธิบายกลไกการเกิดโรคทั้งหมด ข้อมูลชุดหนึ่งที่ก่อสูญวิจัยของเราได้ศึกษาในตัวอย่างคลินิกจากผู้ป่วยโรคไข้เลือดออกในระดับความรุนแรงต่าง ๆ พบว่า ในร่างกายของผู้ป่วยมีการกระตุ้นระบบคอมพลีเม้นต์ (complement system) โดยที่ระดับความรุนแรงของอาการกระตุ้นมีความสัมพันธ์อย่างชัดเจนกับระดับความรุนแรงของโรค เรายังเชื่อว่าระบบคอมพลีเม้นต์มีความ密切ในกลไกการเกิดโรค และระดับความรุนแรงของการกระตุ้นระบบคอมพลีเม้นต์ของร่างกายได้อย่างมีประสิทธิภาพ

งานวิจัยอีกชิ้นหนึ่งของหน่วยฯที่ได้รับความสนใจอย่างกว้างขวางในกลุ่มนักวิจัยโรคใช้เลือดออก คือผลงานตีพิมพ์ในวารสาร nature medicine เกี่ยวกับสมมติฐานเรื่อง T cell response กับกลไกการเกิดโรค พวกเรารู้ว่าความสนใจกับ T cell ที่มี HLA subtype A\*11 ซึ่งเป็นสัดส่วน 30% ของประชากรเอเชียตะวันออกเฉียงใต้ โดยใช้เทคโนโลยีใหม่ในการสร้าง tetramer peptide เพื่อศึกษาคุณสมบัติต่าง ๆ ของ T cell ที่มี HLA subtype นี้ พวกเราระบุว่า T cell ซึ่งเพิ่มจำนวนนั้นเป็นกลุ่มที่จับกับไวรัสซีโรทับปีที่กำลังติดเชื้ออยู่ในขณะนี้ได้ไม่ดี(low affinity) แต่สามารถจับกับไวรัสซีโรทับปีที่สูงได้ดี(high affinity) ซึ่งทีมวิจัยคิดว่าเป็นเรื่องที่ผู้ป่วยได้รับจากการติดเชื้อครั้งที่แล้ว พวกเราระบุกระบวนการตอบสนองเด่นนี้เรียกว่า "original antigenic sin" เมื่อนำเข้าซ้อมล้วนไปประกอบกับสมมติฐานเรื่อง antibody-dependent enhancement เราอาจจะสร้างสมมติฐานเพื่ออธิบายเหตุการณ์นี้ได้ว่า เทคนิค enhancement ที่เกิดขึ้น อาจจะผลลัพธ์ให้ T cell ที่สามารถจับได้ดี ตายจากกลไก apoptosis ทำให้ปริมาณของ T cell ที่จับได้ไม่ดี คุณเมื่อเพิ่มขึ้น

จากงานวิจัยขึ้นนี้นำไปสู่การสร้างสมมติฐานเกี่ยวกับกลไกการเกิดโรคของใช้เลือดออกที่เกี่ยวข้องกับ T cell response ว่า ในการติดเชื้อไวรัสครั้งที่สองจะมีการกระตุ้น T cell ทำให้มีการเพิ่มจำนวนของ T cell แต่ T cell ที่เพิ่มจำนวนขึ้นนี้มีประสิทธิภาพต่ำ ไม่สามารถกำจัดไวรัสได้อย่างมีประสิทธิภาพ ในขณะเดียวกัน T cell เหล่านี้มีการตายแบบ apoptosis และมีการปล่อย cytokine ออกมาจำนวนมาก ซึ่งทั้งหมดนี้ล้วนก่อให้เกิดผลกระทบต่อร่างกาย นำไปสู่อาการต่าง ๆ ที่พบในโรคใช้เลือดออกได้

#### การศึกษาไวรัสเดิงก์ในระดับอนุ (Molecular virology of dengue virus)

งานวิจัยในส่วนนี้จุดน้ำไปอย่างรวดเร็วด้วยการร่วมเหลือจากนพ.นพพร ศิทธิสมบัติ ภาควิชาจุลชีววิทยา คณะแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่ โดยอาจารย์นพพรได้เข้าร่วมในเครือข่าย เพื่อช่วยเสริมความแข็งแกร่งในงานวิจัยใช้เลือดออกในการศึกษาไวรัสเดิงก์ในระดับอนุ ผลงานที่สำคัญคือการสร้าง infectious full-length cDNA plasmid clone ของเชื้อไวรัสเดิงก์ serotype 2 สำหรับการศึกษาในระดับอนุ ประโยชน์ที่สำคัญคือความสามารถในการสร้างไวรัสในหลอดทดลองได้ในปริมาณมาก ซึ่งเมื่อนำไป transfect ในเซลล์ จะได้ไวรัสปริมาณมากที่มีคุณสมบัติเหมือนกันทุกประการ ความสามารถในการจัดการตัดต่อชิ้นของไวรัสทำให้เราสามารถตั้งค่าตามและเรียนเป็นโครงการเพื่อที่จะได้ศึกษาและทำความเข้าใจเชื้อไวรัสเดิงก์มากขึ้น

ในขณะนี้ กลุ่มงานวิจัยของนพ.นพพรกำลังมุ่งวิจัยไปที่ตัวหนึ่งของไวรัสเดิงก์ ซึ่งว่า PrM โดยไปตัดตัวนี้จะถูกตัดออกเป็นโปรตีน M เมื่อไวรัสโดยเดิมที่ ทีมงานวิจัยของนพ.นพพรพบว่า โปรตีน PrM นี้มีผลต่อการแพร่กระจายของไวรัส และขณะนี้กำลังทำงานวิจัยเพื่อศึกษาถึงกลไกที่เกิดขึ้น นอกจากนี้ยังพบว่าเชื้อไวรัสที่มีภาระถูกพันธุ์ในสายโปรตีน PrM บางแบบมีการเปลี่ยนแปลงคุณลักษณะที่ทำให้คุณเมื่อเรื่อมีความรุนแรงน้อยลง มีคุณสมบัติหล่ายอย่างที่เข้าได้กับคุณสมบัติของเชื้อไวรัสที่สามารถนำไปผลิตวัคซีนได้ ขณะนี้ทางทีมของเรายังได้ติดต่อกับดร.สุรัช ยกส้านผู้เชี่ยวชาญพิเศษที่ศูนย์วัคซีน มหาวิทยาลัยมหิดล เพื่อสร้างความร่วมมือในการทดลองเชื้อไวรัสที่มีแนวโน้มที่จะนำไปทำวัคซีนได้

โปรดีนของไวรัสเดิงก์อีกตัวหนึ่งที่ปานส์ใจคือโปรดีน NS1 ซึ่งเป็น non-structural โปรดีนซึ่งยังไม่มีโครงสร้างหน้าที่ที่แน่ชัด ทีมวิจัยของเรามีข้อมูลเบื้องต้นว่าโปรดีน NS1 สามารถกระตุ้นระบบคอมพลีเม้นต์และมีบทบาทเกี่ยวกับการเพิ่มจำนวนของตัวไวรัส ในขณะนี้เรามีทีมวิจัย 2 ทีมที่กำลังศึกษาโปรดีนตัวนี้ ทีมนั้นจะศึกษารายละเอียดในหน้าที่ของโปรดีนที่กระตุ้นระบบคอมพลีเม้นต์ ส่วนอีกทีมหนึ่งจะศึกษาในเชิงของโครงสร้างและลักษณะต่าง ๆ ของโปรดีน รวมทั้งปฏิริยาของโปรดีนนี้กับโปรดีนของไวรัสตัวอื่น ๆ

### การวินิจฉัย

ทางทีมวิจัยได้ปรับปรุงวิธี RT-PCR ที่ได้พัฒนาในห้องปฏิบัติการของเรา เพื่อให้สามารถใช้เทคโนโลยีใหม่ real-time PCR (LightCycler-Roche) เพื่อให้สามารถที่จะบอกชนิดของเชื้อไวรัสไปและปริมาณของไวรัสได้พร้อม ๆ กันในตัวอย่าง ที่มาจากการตีเพียงหลอดเดียว ทางทีมวิจัยใช้สารเรืองแสง SYBR Green I ในการตรวจหา โดยได้ทดลองใช้กับ primers หลายชุดที่สามารถตรวจโปรดีน Envelope (E), junction PrM-E และ C regions ได้โดยพยายามปรับหาค่าที่เหมาะสม ในขณะนี้หากเราประดิษฐ์ความสำเร็จในการตรวจไวรัสตั้ง 4 สายพันธุ์ไปและสามารถหาปริมาณได้แล้ว แต่ยังมีปัญหาเรื่องความไว (sensitivity) ในบางสายพันธุ์ปัจจุบันค่าต่าง ๆ ให้เหมาะสมยังชั้น

### Dengue Clinical Research Database

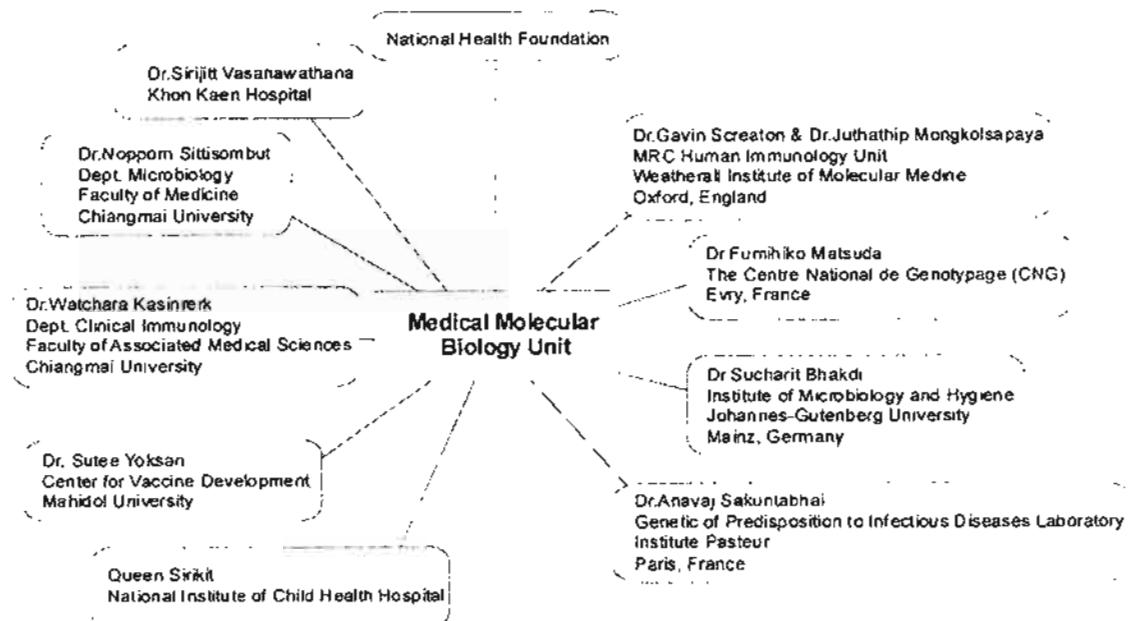
Dengue Clinical Research Database เป็นโครงการร่วมมือระหว่างหลายสถาบัน เพื่อให้นักวิจัยที่มีความสนใจในเรื่องไวรัสเดิงก์และโรคใช้เดือดออก มีตัวอย่างทางคลินิกพร้อมหั้งฐานข้อมูลที่สำคัญโดยละเอียด พร้อมสำหรับงานวิจัย ด้วยตัวอย่างและฐานข้อมูลที่เตรียมพร้อม เช่นนี้ นักวิจัยจะสามารถศึกษาระบบต่าง ๆ ของร่างกายที่ตอบสนองต่อการติดเชื้อไวรัส รวมไปถึงศึกษาผลจากการเกิดโรค นอกจากนี้ กระบวนการเก็บตัวอย่างจะทำให้เกิดการพัฒนาบุคลากร และแบบแผนในการคุ้มครองไว้ รวมไปถึงการพัฒนาวิธีดูแลการแพทย์ขั้นต้นที่ทันเร็ว ตัวอย่างที่ได้จากเครือข่าย โรงพยาบาลจะถูกนำมาใช้ในการพัฒนาการวินิจฉัยโรคใหม่ ทดสอบประสิทธิภาพของการวินิจฉัย และความไว้พื้นฐาน ต่าง ๆ รวมทั้งขั้นตอนที่นักวิจัยต้อง นั่นมาสนใจงานวิจัยโรคใช้เดือดออก ซึ่งเป็นโรคที่สำคัญของเมืองไทย โดยคุณผู้จัดตั้งห่วงว่าเครือข่ายนี้จะช่วยตอบความสำเร็จทางด้าน serology และ cellular ที่เกี่ยวข้องกับความรุนแรงของโรค รูปแบบการตอบสนองของภูมิคุ้มกันที่ทำให้การทดสอบของโรคแตกต่างกัน ทำให้นักวิจัยสามารถทดสอบเทคโนโลยีในการวินิจฉัยใหม่ สามารถตรวจส่วนขยายที่อาจมีภัยร้ายที่เกี่ยวข้องกับความรุนแรงของโรค ศึกษาพัฒนาการและการรับสาร รวมไปถึงศึกษาผลจากการเกิดร่อง และอาการแทรกซ้อนที่รุนแรงขึ้น ๆ

ตัวอย่างที่เก็บจากศูนย์จะมีคุณภาพสูง สามารถนำไปศึกษาทั้งในแง่ functional, biochemical cellular และ humoral ฐานข้อมูลและตัวอย่างจะเปิดทางให้เราใช้ความรู้ใหม่ทาง genome research เพื่อที่จะขยายที่เกี่ยวข้องกับความรุนแรงของโรค ระบบภูมิคุ้มกันที่เกี่ยวข้องต่าง ๆ

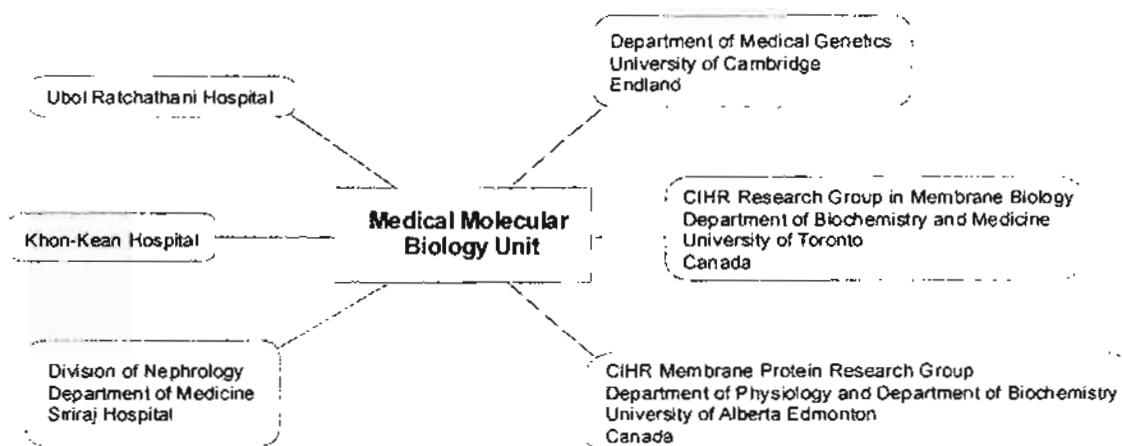
### Immunology

งานวิจัยพื้นฐานทางด้านภูมิคุ้มกันวิทยามีความก้าวหน้าอย่างรวดเร็ว โดยดร.วัชระ กิติณฤกษ์ ภาควิชาภูมิคุ้มกัน วิทยาคลินิก คณะเทคโนโลยีการแพทย์ มหาวิทยาลัยเชียงใหม่เป็นกลุ่มสำคัญ และทำหน้าที่เป็นเครือข่ายของ หน่วยฯ ดร.วัชระมีความเชี่ยวชาญพิเศษในการผลิต monoclonal antibody ซึ่งได้ทำงานวิจัยร่วมกับนักวิจัยของ หน่วยฯ เพื่อสร้าง monoclonal antibody ต่อไปต้านทุกชนิดของไวรัสเดิงกี ซึ่ง monoclonal antibody ที่ได้นี้ จะเป็น เครื่องมือสำคัญในการทำงานวิจัยเชือไวรัสเดิงกีและโรคไข้เลือดออก สามารถนำมาใช้ในการตรวจวินิจฉัย

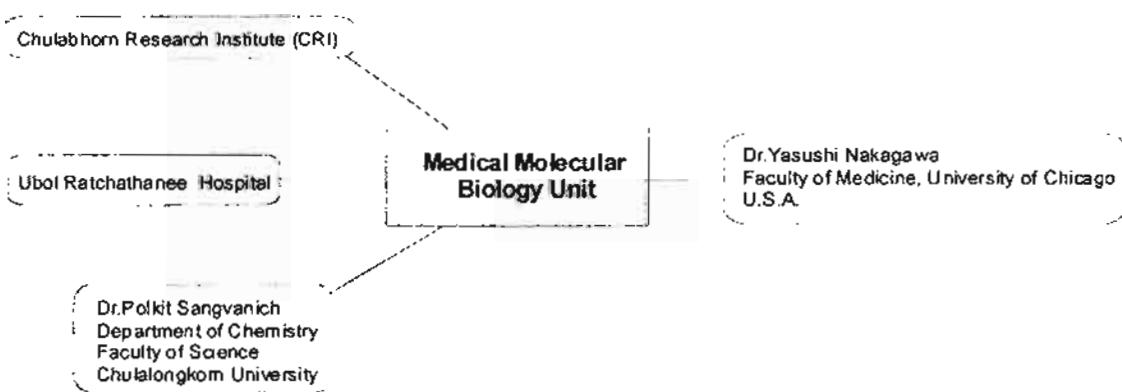
นอกจากนี้ ดร.วัชระยังศึกษาโปรตีนชนิดใหม่บนผิวเซลล์เม็ดเลือดขาว และพบบทบาทและหน้าที่ใหม่ที่สำคัญของ โปรตีนเหล่านี้ อาจารย์ยังได้ศึกษาและพัฒนาชุดตรวจนับเซลล์ CD4 และ CD8 ที่มีราคาถูกและมีประสิทธิภาพ เพื่อ ใช้ในการติดตามผลการรักษาสำหรับผู้ป่วยโรคเอดส์ ซึ่งเทคโนโลยีได้รับการจัดลิขสิทธิ์ และถ่ายทอดไปสู่ภาคเอกชน เพื่อนำไปผลิตและจำหน่ายต่อไป ผลงานของอาจารย์ได้รับการตีพิมพ์ และได้รับรางวัลอย่างสม่ำเสมอ


### Genetics

งานอีกส่วนหนึ่งที่ได้รับตั้งแต่ปี 2527 คืองานวิจัยในโรคที่พบบ่อยทางภาคอีสานของไทย ในระยะ 2-3 ปีที่ผ่านมา ทางกลุ่มวิจัยได้เน้นลงไปที่กลุ่มโรค renal tubular acidosis (RTA) ผู้ป่วยโรคนี้จะมีความผิดปกติในการขับกรดใน ส่วน distal nephron เป็นที่น่าสนใจว่าใน human anion exchanger 1 (AE1) ซึ่งมีรายงานว่าเป็นสาเหตุของโรค renal tubular acidosis (dRTA) ยังสามารถแสดงออกบันเม็ดเลือดแดงตัวอย่างตัวอย่าง AE1 จึงมีคุณสมบัติในการ แสดงออกหลายที่ (pleiotrophic) ทำให้เกิดความผิดปกติที่ดูเหมือนจะไม่มีความเกี่ยวข้องกัน คือความผิดปกติที่เม็ด เลือดแดงและที่ตัว


ความผิดปกติของเม็ดเลือดแดงที่มีชื่อว่า Southeast Asian ovalocytosis (SAO) เป็นความผิดปกติทางพันธุกรรมของ ยีน AE1 ที่พบบ่อยในภูมิภาคเอเชียตะวันออกเฉียงใต้ เกิดจากกราฟไบเปอร์ฟอฟส์ในยีน 27 คู่ที่ตำแหน่ง 400-408 (D400-D408) ทำให้เกิด in-frame 9 amino acid deletion ในสายโปรตีน ตามปกติแล้วจะไม่พบผู้ป่วยที่ เป็นทั้ง SAO และ dRTA อย่างไรก็ตาม มีบางกรณีที่เราสามารถตรวจพบความผิดปกติทั้ง 2 อย่างนี้ด้วยจากการ เกิด compound heterozygous ของ recessive AE1 mutations เช่น G701D/G701D, V488M, V488M, V850- DV850, DV850/A858D, G701D/S773P หรือ heterozygous ของ dominant AE1 เช่น R598H, R589C, R589S, S613F, R910X นอกจากนี้เรายังพบว่าตำแหน่ง codon ที่ 589 ของยีนนี้ยังเป็นสมิทอน mutational hot-spot เพราะ เรายังพบความผิดปกติที่ตำแหน่งนี้ร้า ๆ ในกลุ่มนร่างเฝ้าและพบการกลับพันธุกรรมในมอย่างน้อย 2 แบบ (R589H and R589C) ที่ตำแหน่งนี้ ตั้งน้ำในการกลับพันธุ์ของยีน AE1 มีลักษณะการถ่ายทอดได้ทั้งแบบเด่นและด้อย ขึ้นอยู่กับ ตำแหน่งที่เกิดการกลับพันธุ์ เรายังว่าการกลับพันธุ์หลายแบบที่เกิดขึ้นกับยีน AE1 ไม่มีผลต่อการทำงานของโปรตีน แต่กลับมีผลต่อการนำโปรตีนของยีนนี้ไปที่ผิวเซลล์ ทำให้ปริมาณโปรตีนที่จะทำงานที่ผิวเซลล์ลดลง

## Research network


แผนภูมิแสดงเครือข่ายขององค์กรหลักที่ร่วมมือในการทำวิจัยในโครงการต่าง ๆ แยกตามงานวิจัยหลัก 3 เรื่องที่ดำเนินอยู่ในหน่วยฯ คือ ไวรัสเดิงก์และโรคไข้เดือดออก โรค distal renal tubular acidosis และโปรตีนที่เกี่ยวข้องกับการเกิด renal stone



Key Collaborators in Network of Dengue Research



Key Collaborators in Network of Prevalent Diseases in Isan



Key Collaborators in Network of Renal Stone Research

## Graduate studies

นักศึกษาที่จบ ในปีงบประมาณ 2543-2546 จำนวน 14 คน และระดับปริญญา 1 คน ได้ยื่นรายงานคุณวุฒิในโครงการ

| ปีที่จบ | หลักสูตร | ชื่อผู้ศึกษา            | เรื่อง                                                                                                                                                     |
|---------|----------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2543    | Genetics | น.ส.ประภาพร ฐานครุฑ์*   | Detection of mutations in the factor VIII gene by mRNA analysis                                                                                            |
|         | Genetics | น.ส.รัตนา ตั้งศรีภูล*   | Analysis of amion exchanger 1 (AE1) gene in distal renal tubular acidosis (dRTA) in Northeastern Thai population                                           |
|         | Dengue   | น.ส.กฤษณา ตี เอกา *     | Construction of full-length DNA clones of dengo viruses                                                                                                    |
|         | Dengue   | น.ส.กอบพง บุญนาค *      | Production and characterization of Antibody against structural protein of Aedes albopictus denvovirus                                                      |
| 2544    | Genetics | น.ส.กัญญา ชุลลสวัสดิ์ * | A study of RegI b gene in Thai diabetic patients                                                                                                           |
|         | Dengue   | น.ส.ธนพร พัชร์มุกด      | Expression of dengue virus nonstructural protein (NS1) gene fragments in E.coli                                                                            |
| 2545    | Genetics | นายกรุงศรีภูงค *        | Development of the method for screening unknown b-globin gene mutations and its applications in Thai families with b-Thalassemia and b-globin variants     |
| -       |          | น.ส.อุบลวรรณ ใจพยัคฆ์ * | Molecular analysis of chloramphenicol resistance in <i>Staphylococci</i>                                                                                   |
| 2546    | Dengue   | น.ส.นกழகன นีழพู *       | Production and characterization of monoclonal antibodies specific to pre-membrane (pM) and envelope(E) protein complex of dengue virus by DNA immunization |

|            |                              |                                                                                                                                                                         |
|------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dengue     | น.ส.เพียงพนพ พริวงศ์*        | Densovirus: Its kinetics of growth and interaction with infectivity of dengue virus in mosquito cells                                                                   |
| Immunology | นายนภกานน พึ่งอี้นาร์        | Role of CD147 Molecule on Regulation of Cell Proliferation and Apoptosis                                                                                                |
| Dengue     | น.ส. ประภากัญญา จันทร์ ยิมาส | Effect of the amino acid replacement at the positions 201 (P5) and 202 (P4) of prM-M junction on dengue virus replication                                               |
| Immunology | นส. สิริพร ภราดร์ตันตระกูล** | Production and fluorescein isothiocyanate conjugation of antibodies against mouse immunoglobulins from chicken egg yolk and its application in immunofluorescence assay |

\* ได้รับทุนบัณฑิตศึกษาจุฬาฯ ศุภษา

\*\* ได้รับทุน TGIST

| ลำดับ | ชื่อผู้เรียน                       | สาขาวิชา                                                      | หัวเรื่องที่ศึกษา                                                                                                                                                         | ผู้สอน             |
|-------|------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1     | น.ส.กรุณา เรืองกรรณ์<br>(2542)     | ทุนพัฒนา<br>บัณฑิตศึกษา<br>ภาษาไทยระดับ<br>ภาษาไทยเชิงวิชาการ | Development of Enzyme-Linked Immunoassay PCR<br>Detection of Dengue NS1 antibody.<br>(ผศ.ดร. สรง พัฒนาภิจสกุล/นพ.ปรีดา มาลากิจ)                                           | Dengue             |
| 2     | น.ส. ดวงกานต์ บันพิตรชัย<br>(2542) | ทุนพัฒนา<br>บัณฑิตศึกษา<br>ภาษาไทยระดับ<br>ภาษาไทยเชิงวิชาการ | Molecular Genetic Studies of Polycystic kidney disease.<br>(วศ.ดร. เทชา เย็มจิตไสมนัส)                                                                                    | Genetics           |
| 3     | น.ส.ธีระพร พิภะเมธีกุล<br>(2543)   | ทุนพัฒนา<br>บัณฑิตศึกษา<br>ภาษาไทยระดับ<br>ภาษาไทยเชิงวิชาการ | Purification and Characterization of Nephnocalcin : a Urinary<br>Protein with Inhibitory Activity of Calcium Oxalate Crystal Growth.<br>(นพ.ปรีดา มาลากิจ)                | Prevalent diseases |
| 4     | น.ส.หนึ่งพิทย์ ลิ้วสก์<br>(2544)   | ทุนพัฒนา<br>บัณฑิตศึกษา<br>ภาษาไทยระดับ<br>ภาษาไทยเชิงวิชาการ | A Study of Anion Exchanger 1 Protein Expressed in Eukaryotic<br>Cultured Cells.<br>(วศ.ดร. เทชา เย็มจิตไสมนัส)                                                            | Genetics           |
| 5     | น.ส.ปัญจพร รัชบูรณ์<br>(2544)      | ทุนพัฒนา<br>บัณฑิตศึกษา<br>ภาษาไทยระดับ<br>ภาษาไทยเชิงวิชาการ | Effect of Site-directed Mutagenesis at Glycosylation sites of Non-<br>Structural Protein 1 (NS1) on Dengue Virus Phenotypes.<br>(นพ.ปรีดา มาลากิจ / ดร.ศันสนัน พันย์สกุล) | Dengue             |

| ลำดับ<br>ที่ | ชื่อผู้ศึกษา<br>(ผู้ที่เขียนตีพิมพ์)      | ทุนการศึกษาที่<br>ได้รับ                    | หัวข้อวิทยานิพนธ์<br>(อาจารย์ที่ปรึกษา)                                                                                                                              | กลุ่มวิจัย          |
|--------------|-------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 6            | น.ส.ประภารรณ ชลชาต<br>เชื้อสีดา<br>(2544) | ทุนพัฒนา<br>บัณฑิตศึกษา<br>รายปีในประเทศไทย | Production of the Recombinant Capsid Protein of Dengue-2 Virus in<br>E.coli.<br>(นพ. ปรีดา มาลาสินธ์, ดร. รัฐนุญา พุทธิชัยน์)                                        | Dengue              |
| 7            | น.ส.รัตติധาภรณ์ กัลยา<br>(2544)           | ทุนพัฒนา<br>บัณฑิตศึกษา<br>รายปีในประเทศไทย | Typing and Quantification of Dengue Virus by Real time RT-PCR<br>using the Lightcycler.<br>(ผศ.ดร.สุ่ง พัฒนาภิจกัล)                                                  | Dengue              |
| 8            | นายนันท์ ลลังหาร<br>(2544)                | ทุนพัฒนา<br>บัณฑิตศึกษา<br>รายปีในประเทศไทย | A Study of PAX 4 NKX 6.1 and NKX 2.2 genes in Thai diabetic patients with maturity-onset diabetes of the young. (ดร.ดร. เพชรา<br>เป็งจันติโนสัมฤทธิ์)                | Genetics / Diabetes |
| 9            | น.ส.วิชดา วงศ์วัฒน์<br>(2545)             | ทุนพัฒนา<br>บัณฑิตศึกษา<br>รายปีในประเทศไทย | Study of the interaction between dengue NS1 protein and host<br>cellular protein<br>(นพ. ปรีดา มาลาสินธ์, ดร.ศันสนีย์ น้อยสังเคราะญ แสงนพ. การชัย ลี้ม<br>จันดาวงศ์) | Dengue              |
| 10           | น.ส.รัตน์ ฤทธิ์ประดิษฐ์<br>ฤล<br>(2545)   | ทุนพัฒนา<br>บัณฑิตศึกษา<br>รายปีในประเทศไทย | Expression and subcellular localization of wild-type and mutant<br>anion exchanger 1 proteins fused with fluorescent protein<br>(ดร.ดร. เพชรา เป็งจันติโนสัมฤทธิ์)   | Genetics            |

| ลำดับ<br>ที่ | ชื่อผู้ศึกษา<br>(อาจารย์ผู้สอน)    | ทุนการศึกษาที่ได้รับ                   | หัวขอวิทยานิพนธ์<br>(อาจารย์ผู้จัดการ)                                                                                                                                                               | ผู้ดูแลวิจัย |
|--------------|------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 11           | น.ส. เทานี เส้าสุทธิพงศ์<br>(2545) | พรωω                                   | Development of simple-tube reverse transcriptase-polymerase chain reaction for identification of dengue viruses in clinical specimens<br>(นพ. ดร. สุ่ง พัฒนา กิจสกุล, รศ.ดร. เพกา เย็นจิตต์ โสมเนตร) | Dengue       |
| 12           | นายนรุจ คงสุข<br>(2546)            | TGIST                                  | Characterization of monoclonal antibodies to dengue proteins<br>(นพ. ปรีดา มาลากิจธ์, ดร. รัชฎา หาดินันธ์)                                                                                           | Dengue       |
| 13           | น.ส. ฤทธา เสียงไส<br>(2546)        | ทุนพัฒนา<br>บัณฑิตศึกษา<br>ภายในประเทศ | กำลังพัฒนาหัวขอวิทยานิพนธ์<br>(รศ.ดร. เพกา เย็นจิตต์ โสมเนตร, ดร.ศุภณณิช นัชยาศราราณ)                                                                                                                | Dengue       |
| 14           | น.ส. นันพยา ปัญญาตี<br>(2546)      | -                                      | กำลังพัฒนาหัวขอวิทยานิพนธ์<br>(ดร.พญ.ปริญญา ลิวจันทร์)                                                                                                                                               | Dengue       |
| 15           | น.ส. เพียงพาก รังษ์แสง<br>(2546)   | TGIST                                  | Investigation of the nuclear localization dengue core protein and its importance for the replication of dengue virus<br>(นพ. ปรีดา มาลากิจธ์, ดร.สุชา แสงบุญมาศ)                                     | Dengue       |
| 16           | น.ส. ชารญา จันทร์วัฒน์<br>(2546)   | ทุนพัฒนา<br>บัณฑิตศึกษา                | กำลังพัฒนาหัวขอวิทยานิพนธ์<br>(รศ.ดร. เพกา เย็นจิตต์ โสมเนตร)                                                                                                                                        | Genetics     |

| ลำดับ<br>ที่ | ชื่อผู้ศึกษา<br>(ผู้ที่เขียนคำบรรยาย)   | ที่มาศึกษาที่<br>ได้รับ                | หัวขอเรื่องที่ศึกษาที่<br>(อาจระบุที่ปรึกษา)                                                                                                                                                | หัวขอเรื่องที่นักเรียนพัฒนา | กลุ่มวิจัย |
|--------------|-----------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------|
|              |                                         | รายงานในประเทศ                         |                                                                                                                                                                                             |                             |            |
| 17           | น.ส. ประภานี พันธ์วิวัฒน์<br>(2546)     | ทุนพัฒนา<br>บัณฑิตศึกษา<br>ภายในประเทศ | กำลังพัฒนาให้เข้ากับยุคปัจจุบันนี้<br>(นพ. ปรีดา มาลากิจศรี, ดร. รัชฎา พุทธิชัณน์)                                                                                                          | Dengue                      |            |
| 18           | Miss Patchariya<br>Khankapura<br>(2546) | -                                      | กำลังพัฒนาให้เข้ากับยุคปัจจุบันนี้<br>(นพ. ปรีดา โภเจริญรุจัน)                                                                                                                              | Cancer                      |            |
| 19           | นาย เตชะรัตน์ ชาลา<br>สัมพัติ<br>(2546) | ทุนพัฒนา<br>บัณฑิตศึกษา<br>ภายในประเทศ | กำลังพัฒนาให้เข้ากับยุคปัจจุบันนี้<br>(นพ. ปรีดา มาลากิจศรี, ดร. รัชฎา พุทธิชัณน์)                                                                                                          | Dengue                      |            |
| 20           | นาย ชิตศักดิ์ ลังบัจัง<br>(2545)        | ทุนบัณฑิตศึกษา<br>ในประเทศ             | ผลกระทบจากการเปลี่ยนแปลงปรับเปลี่ยนบทบาทของ<br>ในบริการ pr-M cleavage junction ต่อการเพิ่มจำนวนของเชื้อไวรัสเด็ก<br>(นพ. นนพ. ลักษณ์สมบัติ, ดร. พุณสูร ทิพย়านง)                            | Dengue                      |            |
| 21           | นส. รัชดาพร จันทร์จร<br>(2545)          | ทุนบัณฑิตศึกษา<br>ในประเทศ             | ผลกระทบของการเปลี่ยนแปลงตำแหน่ง N-glycosylation site ภายใน<br>โปรดีนบูตต์ ต่อการตัด N-Ac Cleavage Junction และการเพิ่มจำนวนของเชื้อไวรัสเด็ก<br>(นพ. นนพ. สิทธิสมบัติ, ดร. พุณสูร ทิพย়านง) | Dengue                      |            |

ຮະຕັບບັນດາຫຼຸດຂອາດ ຈຳນວນ 12 ດນ

| ລຳດັບທີ | ຈັກກຳກຳຂາ<br>(ບໍລິສັດສິນເກາ)              | ທຸນາຮັດສິກຂາ<br>ທີ່ໄດ້ຮັບ     | ທັນສົ່ງວິທະຍານິພນ<br>(ຂ່າຍເຫັນເປັນເກະຊາ)                                                                                                                                                                                                 | ກສຸມວິທະຍ          |
|---------|-------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1       | ນ.ສ.ສັກຍາ ກິຈນາຄານ<br>(2541)              | ບຣິດຸນາຂອກ<br>ກາດໝານ<br>ກີບຕາ | A defect of binding between kanadaplin and kidney anion exchanger 1 :<br>A possible molecular mechanism of distal renal tubular acidosis<br>(ຈ.ດ. ເພາຍ (ຢືນຈົດໂສມນັ້ນສ)                                                                  | *Genetics          |
| 2       | ນ.ສ.ວັນວິໄລ ເທົ່ານິຕີຕື່ສຍ<br>(2541)      | ບຣິດຸນາຂອກ<br>ກາດໝານ<br>ກີບຕາ | Identification of T-cell specific dengue peptide antigens in Thai<br>populations.<br>(ນ.ພ. ປັບຕາ ມາລາສິຫຼົກ)                                                                                                                             | Dengue             |
| 3       | ນ.ພ. ຊຸພາຍ ສັກພະວຽກ<br>(2542)             | ໄນ້ຕັດກຸນ                     | Gene mapping and analysis in renal calcium stone disease<br>(ນ.ພ. ປັບຕາ ມາລາສິຫຼົກ, ກ.ດ.ດ. ເພາຍ ເປົ້ນຈົດໂສມນັ້ນສ)                                                                                                                        | Prevalent diseases |
| 4       | ນາຍສົມມາຍ ທຸດີພາກສົມເນສ<br>(2543)         | MD,PhD.                       | Study of proteins inhibit kidney stone formation (ນ.ພ. ປັບຕາ ມາລາສິຫຼົກ)                                                                                                                                                                 | Prevalent diseases |
| 5       | ນ.ສ.ປານທິພົງ ຈຸນເກົ່າ<br>ກາດໝານ<br>(2544) | MD,PhD.                       | Study of the roles of dengue virus nonstructural protein 1 as the GPI-linked protein or dengue virus infected cells : Implication of pathogenesis of dengue hemorrhagic fever dengue shock syndrome (DHF/DSS)<br>(ນ.ພ. ປັບຕາ ມາລາສິຫຼົກ) | Dengue             |
| 6       | ນາຍໂພພັດສົກ ໂຫຍດູນວັນຈະ<br>(2545)         | MD,PhD.                       | Screening for serotype specific dengue virus T cell epitopes<br>(ນ.ພ. ປັບຕາ ມາລາສິຫຼົກ)                                                                                                                                                  | Dengue             |
| 7       | ນ.ສ.ສິດາ ກັບຍານຊຸງ                        | MD,PhD.                       | Human genes involved in genetic susceptibility for dengue hemorrhagic                                                                                                                                                                    | Dengue             |

| ลำดับที่ | ชื่อผู้คิดค้น                        | ที่มาศึกษา                                  | ที่ได้รับ                                                                                                                                               | หัวขอวิทยานิพนธ์<br>(ภาษาที่เป็นรือ)                                                           | กลุ่มตัวอย่าง |
|----------|--------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------|
|          | (2545)                               |                                             |                                                                                                                                                         | fever and dengue shock syndrome.<br>(น.ส. ปรีดา มาลาสิทธิ์, วศ.ดร. เพ wahy (เย็นจิตติโสมนันต์) |               |
| 8        | น.ส.พิพัตร์ บุญศรีสวัสดิ์<br>(2545)  | ปริญญาเอก<br>การดูแล<br>กีฬา                | กำลังพัฒนาหัวขอวิทยานิพนธ์ (วศ.ดร. เพ wahy เย็นจิตติโสมนันต์)                                                                                           | Genetics                                                                                       |               |
| 9        | นส. ลภษบัตร บุญมีน<br>(2545)         | ปริญญาเอก<br>การดูแล<br>กีฬา                | Production of monoclonal antibody to Potalo virus Y and development of ELISA for detection of Potalo virus Y<br>(วศ.ดร. วันรุ่ง กสิณฤทธิ์)              | Immunology                                                                                     |               |
| 10       | นายอ่อนนนท์รัช บัวมณีน<br>(2546)     | ปริญญาเอก<br>การดูแล<br>กีฬา                | กำลังพัฒนาหัวขอวิทยานิพนธ์ (วศ.ดร. เพ wahy เย็นจิตติโสมนันต์)                                                                                           | Genetics                                                                                       |               |
| 11       | น.ส.สุกัญญา พงศ์<br>เพพิตาเทพ (2546) | MD,Ph.D.                                    | กำลังพัฒนาหัวขอวิทยานิพนธ์<br>(วศ.ดร. เพ wahy เย็นจิตติโสมนันต์)                                                                                        | Genetics                                                                                       |               |
| 12       | น.ส.พรวรรณ จิตราทร<br>(2544)         | แม่ริบบิล่าไส<br>ศ.ดร. ฤทธิ์ศน. พู<br>เจริญ | Production of anti-hemoglobin Bart's antibody for thalassemia diagnosis<br>from chicken egg<br>(วศ.ดร. วันรุ่ง กสิณฤทธิ์ / ล.ศ.ดร. ฤทธิ์ศน. พู (เจริญ)) | Immunology                                                                                     |               |

| ลำดับ | การสร้างระดับป้องกันภัยธรรมชาติและสังคม                                                                                                                                                                                                                                                 | ผู้รายงานทางภูมิศาสตร์ |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 2543  | 1. Akkarapatumwong, V., S. Intorasoot, S. Oranwiroom, P. Thano-Olarakul, P. Pung-Amitt, G. Veerakul, C. Mahasandana, S. Panyim, and P. Yenchitsomanus 2000. Frameshift mutations with severe and moderate clinical phenotypes in Thai hemophilia A patients. <i>Hum Mutat</i> 16:530-1. | Genetics               |
|       | 2. Akkarapatumwong, V., S. Oranwiroom, P. Pung-Amitt, A. Treesucon, P. Thano-Olarakul, G. Veerakul, C. Mahasandana, S. Panyim, and P. Yenchitsomanus. 2000. Mutations of the factor VIII gene in thai hemophilia A patients. <i>Hum Mutat</i> 15:117-8.                                 | Genetics               |
|       | 3. Kangsadlampai, S., P. Yenchitsomanus, G. Chelvanayagam, N. Sawasdee, V. Laosombat, and P. Board. 2000. Identification of a new mutation (Gly420Ser), distal to the active site, that leads to factor XIII deficiency. <i>Eur J Haematol</i> 65:279-84.                               | Genetics               |
|       | 4. Kasinert, W., N. Tokrasinwit, S. Moonsom, and H. Stockinger. 2000. CD99 monoclonal antibody induce homotypic adhesion of Jurkat cells through protein tyrosine kinase and protein kinase C-dependent pathway. <i>Immunol Lett</i> 71:33-41.                                          | Immunology             |
|       | 5. Moonsom, S., and W. Kasinert. 2000. Production of anti-CD14 monoclonal antibodies using CD14 expressing COS cells as immunizing antigen. <i>Asian Pac J Allergy Immunol</i> 18:53-61.                                                                                                | Immunology             |
|       | 6. Thongnoppakhun, A., N. Rungroj, P. Wilairat, K. Vareesanghup, C. Sirinavin, and P. T. Yenchitsomanus. 2000. A novel splice-acceptor site mutation (IVS13-2A>T) of polycystic kidney disease 1 (PKD1) gene resulting in an                                                            | Genetics               |

RNA processing defect with a 74-nucleotide deletion in exon 14 of the mRNA transcript. *Hum Mutat* 15:115.

|      |     |                                                                                                                                                                                                                                                                                                   |            |
|------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 2544 | 7.  | Khunkeawla, P., S. Moonsom, G. Staffler, P. Kongtiaweler, and W. Kasinerk. 2001. Engagement of CD147 molecule-induced cell aggregation through the activation of protein kinases and reorganization of the cytoskeleton. <i>Immunobiology</i> 203:659-69.                                         | Immunology |
|      | 8.  | Moonsom, S., P. Khunkeawla, and W. Kasinerk. 2001. Production of polyclonal and monoclonal antibodies against CD54 molecules by intrasplenic immunization of plasmid DNA encoding CD54 protein. <i>Immunol Lett</i> 76:25-30.                                                                     | Immunology |
|      | 9.  | Oranwiroon, S., V. Akkarapatumwong, P. Pung-Amritt, A. Treesucon, G. Veerakul, C. Mahasandana, S. Panyim, and P. Yenchitsomanus. 2001. Determination of haemophilia A carrier status by mutation analysis. <i>Haemophilia</i> 7:20-5.                                                             | Genetics   |
|      | 10. | Rungroj, N., W. Thongnoppakhun, K. Vareesangthip, C. Sirinavin, P. Wilairat, and P. T. Yenchitsomanus. 2001. Molecular defect of PKD1 gene resulting in abnormal RNA processing in a Thai family. <i>J Med Assoc Thai</i> 84:1308-16.                                                             | Genetics   |
|      | 11. | Sriburi, R., P. Keelapang, T. Duangchinda, S. Pruksakorn, N. Maneekam, P. Malasil, and N. Sittisombut. 2001. Construction of infectious dengue 2 virus cDNA clones using high copy number plasmid. <i>J Viral Methods</i> 92:71-82.                                                               | Dengue     |
|      | 12. | Yenchitsomanus, P., P. Thanootarakul, V. Akkarapatumwong, S. Oranwiroon, P. Pung-Amritt, G. Veerakul, and C. Mahasandana. 2001. Mutation causing exon 16 skipping and partial exon 16 deletion in factor VIII transcript, and a method for direct mutation detection. <i>Haemophilia</i> 7:335-8. | Genetics   |

| ลำดับ | การพิสูจน์ตัวรับการต่อพิมพ์                                                                                                                                                                                                                                                                                                                                                               | ผลงานทางวิชาการที่มีต่อไป |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 2545  | 13. Chiampanichayakul, S., A. Szekeres, P. Khunkaewha, S. Moonsom, V. Leksa, K. Oribal, G. J. Zlabinger, R. Hofer-Warbinek, H. Stockinger, and W. Kasinerk. 2002. Engagement of Na,K-ATPase beta3 subunit by a specific mAb suppresses T and B lymphocyte activation. <i>Int Immunol</i> 14:1407-14.                                                                                      | Immunology                |
|       | 14. Kasinerk, W., S. Moonsom, and K. Chawansunti. 2002. Production of antibodies by single DNA immunization: comparison of various immunization routes. <i>Hybrid Hybridomics</i> 21:287-93.                                                                                                                                                                                              | Immunology                |
|       | 15. Mahasandana, C., P. Pung-Amilt, A. Treasucon, S. Petrarat, G. Veerakul, S. Visudhiphan, and P. T. Yenchitsomanus. 2002. Carrier detection by DNA linkage analysis in eighty Thai hemophilia A families. <i>J Med Assoc Thai</i> 85:S513-21.                                                                                                                                           | Genetics                  |
|       | 16. Raengsakulrach, B., A. Nisalak, N. Maneekarn, P. T. Yenchitsomanus, C. Limsomwong, A. Jaiungsrir, V. Thirawuth, S. Green, S. Kalayanarooj, S. Suntayakorn, N. Sittisombut, P. Malasit, and D. Vaughn. 2002. Comparison of four reverse transcription-polymerase chain reaction procedures for the detection of dengue virus in clinical specimens. <i>J Virol Methods</i> 105:219-32. | Dengue                    |
|       | 17. Roekring, S., L. Nielsen, L. Owens, S. N. Pattanakitsakul, P. Malasit, and T. W. Flegel. 2002. Comparison of penaeid shrimp and insect parvoviruses suggests that viral transfers may occur between two distantly related arthropod groups. <i>Virus Res</i> 87:79-87.                                                                                                                | Dengue                    |
|       | 18. Tayapiwatana, C., and W. Kasinerk. 2002. Construction and characterization of phage-displayed leukocyte surface molecule CD99. <i>Appl Microbiol Biotechnol</i> 60:336-41.                                                                                                                                                                                                            | Immunology                |

| ລ/ດ  | ວາງຄ່າກໍາຕັ້ງປະກາດພິພາກ                                                                                                                                                                                                                                                                                                                                     | ຜສນາຫຼາກສຳນົມກົດຈົບ |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|      | 19. Yenchitsomanus, P. T., S. Vassuvattakul, S. Kirdpon, S. Wasanawatana, W. Susaengrat, S. Sreethiphayawan, D. Chuawatana, S. Mingkum, N. Sawasdee, P. Thuwajit, P. Wilairat, P. Malasit, and S. Nimmannil. 2002. Autosomal recessive distal renal tubular acidosis caused by G701D mutation of anion exchanger 1 gene. <i>Am J Kidney Dis</i> 40:21-9.    | Genetics            |
| 2546 | 20. Kasinrerk, W. 2003. A flow cytometric method for enumeration of lymphocyte sub-populations in sample containing lysis-resistant red blood cells. <i>Immunol Lett</i> 86:259-64.                                                                                                                                                                         | Immunology          |
|      | 21. Mongkolsapaya, J., W. Dejnirattisai, X. N. Xu, S. Vasananwathana, N. Tanglhwornchaulkui, A. Chairunsri, S. Sawasdiworn, T. Duangchinda, T. Dong, S. Rowland-Jones, P. T. Yenchitsomanus, A. McMichael, P. Malasit, and G. Screaton. 2003. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. <i>Nat Med</i> 9:921-7. | Dengue              |
|      | 22. Putthikhunt, C., W. Kasinrerk, S. Srisa-ad, T. Duangchinda, W. Sillakate, S. Moonsom, N. Silitisombut, and P. Malasit. 2003. Production of anti-dengue NS1 monoclonal antibodies by DNA immunization. <i>J Virol Methods</i> 109:55-61.                                                                                                                 | Dengue              |
|      | 23. Sritippayawan, S., S. Kirdpon, S. Vasuvattakul, S. Wasanawatana, W. Susaengrat, W. Waiyawuth, S. Niemannit, P. Malasit, and P. T. Yenchitsomanus. 2003. A de novo RS89C mutation of anion exchanger 1 causing distal renal tubular acidosis. <i>Pediatr Nephrol</i> 18:644-8.                                                                           | Genetics            |
|      | 24. Somboonmanonda, A., P. Malasit, V. S. Tanphaichitr, S. Ong-Aiyoth, S. Petrarat, and A. Vongjirad. 2003. Renal tubular dysfunction in alpha-thalassemia. <i>Pediatr Nephrol</i> 18:257-60.                                                                                                                                                               | Genetics            |

| ច | រារសាងអាជីវការពីរបាយការពីពិសេស                                                                                                                                                                                                                                                                                              | មនុសានាការសំរាប់ |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|   | <p>25. Yenchitsomanus, P., V. Akkarapatumwong, P. Pung-Amritt, S. Intorasoot, P. Thanootarakul, S. Oranwiwoon, G. Veerakul, and C. Mahasandana. 2003. Genotype and phenotype of haemophilia A in Thai patients. <i>Haemophilia</i> 9:179-86.</p>                                                                            | Genetics         |
|   | <p>26. Yenchitsomanus, P. T., N. Sawasdee, A. Paemanee, T. Keskanokwong, S. Vasuvattakul, S. Bejjachandra, W. Kunachiwa, S. Fucharoen, P. Jitiphakdee, W. Yindee, and C. Promwong. 2003. Anion exchanger 1 mutations associated with distal renal tubular acidosis in the Thai population. <i>J Hum Genet</i> 48:451-6.</p> | Genetics         |

Patent

|   |                                  |                                                                                                                     |
|---|----------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 1 | ชื่อเรื่อง (Title)               | กรรมวิธีการแยกโปรตีนรีคอมบิเนนต์ E ที่ได้จาก E.coli ให้มีความบริสุทธิ์เพื่อนำไปใช้เป็นโปรตีนแอนติเจนในทดสอบวินิจฉัย |
|   | ชื่อผู้ประดิษฐ์ (Inventor)       | นายปรีดา มาลาสิทธิ์                                                                                                 |
|   | เลขที่คำขอ (Attorney Docket No.) | 048510                                                                                                              |
|   | วันที่รับคำขอ (Date)             | 3 กุมภาพันธ์ 2542                                                                                                   |
|   | ประเทศไทยที่ยื่นขอจด             | ไทย                                                                                                                 |

|   |                                  |                                                                                            |
|---|----------------------------------|--------------------------------------------------------------------------------------------|
| 2 | ชื่อเรื่อง (Title)               | ชุดน้ำยาตรวจนับ CD4 positive lymphocytes ในเลือดชนิด 3 สีที่ใช้กับเครื่องไฟล์ไซโตร์มิเตอร์ |
|   | ชื่อผู้ประดิษฐ์ (Inventor)       | นายวชระ กาศินฤกษ์                                                                          |
|   | เลขที่คำขอ (Attorney Docket No.) | 074492                                                                                     |
|   | วันที่รับคำขอ (Date)             | 14 มิถุนายน 2545                                                                           |
|   | ประเทศไทยที่ยื่นขอจด             | ไทย                                                                                        |

|   |                                  |                                                                                     |
|---|----------------------------------|-------------------------------------------------------------------------------------|
| 3 | ชื่อเรื่อง (Title)               | เข็มไวนิลเด้งกีดดับลิงสายพันธุ์ MBU 01-2002                                         |
|   | ชื่อผู้ประดิษฐ์ (Inventor)       | นางพูนสุข กีฟ้าแปลง / นายนพพร ลิทธิสมบัติ / นายวชระ กาศินฤกษ์ / นายปรีดา มาลาสิทธิ์ |
|   | เลขที่คำขอ (Attorney Docket No.) | 075425                                                                              |
|   | วันที่รับคำขอ (Date)             | 26 กรกฎาคม 2545                                                                     |
|   | ประเทศไทยที่ยื่นขอจด             | ไทย                                                                                 |

|   |                                  |                                                                                                                         |
|---|----------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 4 | ชื่อเรื่อง (Title)               | โนโน่คลนคลแอนติบอดีตต่อ Na, K ATPase <input checked="" type="checkbox"/> 3 subunit กดการตอบสนองของที่ และบี ลิมไฟช์บีท์ |
|   | ชื่อผู้ประดิษฐ์ (Inventor)       | นายวัชระ กษินรรค / นางสาวสาวีรี เจียมพาณิชยกุล                                                                          |
|   | เลขที่คำขอ (Attorney Docket No.) | 075651                                                                                                                  |
|   | วันที่รับคำขอ (Date)             | 5 สิงหาคม 2545                                                                                                          |
|   | ประเทศที่ยื่นขอจด                | ไทย                                                                                                                     |

|   |                                  |                                            |
|---|----------------------------------|--------------------------------------------|
| 5 | ชื่อเรื่อง (Title)               | Three-color reagent for measurement of CD4 |
|   | ชื่อผู้ประดิษฐ์ (Inventor)       | Watchara Kasinrerk                         |
|   | เลขที่คำขอ (Attorney Docket No.) | ThaiBiotec003                              |
|   | วันที่รับคำขอ (Date)             | 17 / 05 /2003                              |
|   | ประเทศที่ยื่นขอจด                | USA                                        |

|   |                                  |                                          |
|---|----------------------------------|------------------------------------------|
| 6 | ชื่อเรื่อง (Title)               | Dengue virus mutant strain MBU 01-2002   |
|   | ชื่อผู้ประดิษฐ์ (Inventor)       | Poonsook Keelapang / Nopporn Sittisombut |
|   | เลขที่คำขอ (Attorney Docket No.) | ThaiBiotec004                            |
|   | วันที่รับคำขอ (Date)             | 15 / 07 /2003                            |
|   | ประเทศที่ยื่นขอจด                | USA                                      |

Projects

โครงการวิจัยที่ดำเนินการในหน่วย ระหว่างปีงบประมาณ 2543-2546

| ลำดับที่ | ชื่อโครงการ                                                                                                           | ผู้อำนวยการโครงการ                              | แหล่งทุน                       | งบประมาณ   | ระยะเวลา          | สถานภาพ           | งบประมาณ             |
|----------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------|------------|-------------------|-------------------|----------------------|
| 1.       | การพัฒนาวิธีตรวจวิเคราะห์เชิงชีวภาพโดยรีบบ์ไซด์ในการวินิจฉัยไข้เมนเสส                                                 | ดร.เพทาย เย็นจิต<br>โภมเนส                      | ศธ.                            | 2539 -2543 | จบโครงการ<br>แล้ว | โครงการ           | กิจกรรม              |
| 2.       | การผลิตปฏีนีดีคอมบินีเนชันชีวภารสต์และนีซีส์ Fitchia pastoris                                                         | ดร.พุฒิชัย กันวิจัย                             | ศธ.                            | 2541 -2543 | จบโครงการ<br>แล้ว | Dengue            |                      |
| 3.       | การศึกษาหนานาของ anion exchanger 1 (AE1) gene ในผู้ป่วยติดปฏิกัดในกรดซีบกรด (dRTA)                                    | ดร.เพทาย เย็นจิต<br>โภมเนส                      | ทุนวิจัยคณบดีแพทย์ฯ<br>ศิริราช | 0.4        | 2541-2544         | จบโครงการ<br>แล้ว | Genetics             |
| 4.       | การพัฒนามาตรฐานดูดซับยาณต์บอดด์ ชนิด IgG/IgM ต่อเชื้อไวรัสสต์ฟานก์นิดทำได้ ง่ายและถูกงบประมาณ                         | ดร.บุญยศ เรือง<br>สกุลราช พ.บ.ร.ด.<br>มาลดาสิริ | ศธ. / บริษัทดูดซับฯ            | 2.5        | 2542 - 2544       | จบโครงการ<br>แล้ว | Dengue               |
| 5.       | การพัฒนาดูดซับยาณต์บอดด์ชนิด IgG และ IgM ในเชื้อรุ่งสูงบ่ายน้ำเพื่อติดต่อให้เชิง ELISA เป็นมาตรฐานดูดซับสำหรับญี่ปุ่น | ดร.บุญยศ เรือง<br>ลักษณ์ ผลปรีดา<br>มาลดาสิริ   | ศธ. / บริษัทดูดซับฯ            | 2.5        | 2543 - 2544       | จบโครงการ<br>แล้ว | Dengue               |
| 6.       | Pathophysiology of diseases prevalent in Thailand                                                                     | พ.บ.ร.ด. มาลดาสิริ                              | ศกร. (มศวัสดิ์บูรณะ)           | 7.5        | 2543 - 2546       | จบโครงการ<br>แล้ว | Dengue /<br>Genetics |

| ลำดับที่ | ชื่อโครงการ                                                                                                  | หัวหน้าโครงการ                            | แหล่งทุน | งบประมาณ<br>(ล้านบาท) | ระยะเวลา    | สถานภาพ                | กลุ่มวิจัย |
|----------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------|-----------------------|-------------|------------------------|------------|
| 7.       | Analysis of the structure-function relationship of dengue virus prM protein                                  | ดร.นพพร สิงค์ สมบูรณ์                     | 7-2      | 2.74                  | 2543 - 2546 | อยู่ในระหว่างดำเนินการ | Dengue     |
| 8.       | Molecular cloning, biochemical characterization and functional analysis of novel leukocyte surface molecules | ดร.วันรุษ ภสินธุ์กุช                      | สภาก.    | 2.0                   | 2543 - 2546 | อยู่ในระหว่างดำเนินการ | Immunology |
| 9.       | การพัฒนาวิธีการผลิตปฏิชีวนิมบีแอนติซโตรเจนที่รักษาไว้ในเซลล์ขาว วินิจฉัยโรคผู้สูงอายุ                        | ดร.รัชฎา พุทธิ์มีร์                       | สภ.      | 0.48                  | 2544 - 2545 | จบโครงการ<br>แล้ว      | Dengue     |
| 10.      | Production of antibodies to leukocyte surface proteins and characterization the recognized proteins          | ดร.วันรุษ ภสินธุ์กุช                      | สภ.      | 5.2                   | 2544 - 2549 | อยู่ในระหว่างดำเนินการ | Immunology |
| 11.      | Molecular Genetic studies of distal renal tubular acidosis (dRTA)                                            | ดร.เทพาย เย็นจิต โสมนัส                   | สภ.      | 3.3                   | 2545 - 2547 | อยู่ในระหว่างดำเนินการ | Genetics   |
| 12.      | Production and characterization of monoclonal antibodies to novel functional / rare epitopes in dengue       | นพ.ปรีดา มาตรา สิงค์ ดร.วันรุษ ภสินธุ์กุช | ศภ.      | 2.8                   | 2545 - 2547 | อยู่ในระหว่างดำเนินการ | Dengue     |

| ลำดับที่ | ชื่อโครงการ                                                                                                                                                            | หัวหน้าโครงการ          | แหล่งทุน        | งบประมาณ<br>(ล้านบาท) | ระยะเวลา    | สถานภาพ                | ผู้รับผิดชอบ |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|-----------------------|-------------|------------------------|--------------|
|          | proteins                                                                                                                                                               |                         |                 |                       |             |                        |              |
| 13.      | Large scale production of purified CD45 monoclonal antibody and fluorescein isothiocyanate labeling for using in reagent for enumeration of lymphocyte sub-populations | ดร.วีระ กลิ่นดีกัช      | ศรช.            | 0.1                   | 2545- 2546  | อยู่ในระหว่างดำเนินการ | Immunology   |
| 14.      | Development of new reagent for enumeration of CD4 positive lymphocytes in peripheral blood by using light microscope                                                   | ดร.วีระ กลิ่นดีกัช      | ทบวงมหาวิทยาลัย | 0.9                   | 2545 - 2546 | อยู่ในระหว่างดำเนินการ | Immunology   |
| 15.      | Utilization of human cell line stably expressing various forms of dengue virus NS1 protein to study contributions of NS1 in dengue virus infection                     | ดร.ศรีสุรัส น้อย ศรีรุณ | ร-2             | 0.9                   | 2546 - 2547 | อยู่ในระหว่างดำเนินการ | Dengue       |
| 16.      | Dengue virus prM as target of neutralization / infection-enhancement                                                                                                   | ดร. พุฒิชัย กีรตานันต์  | WHO             | 2.3                   | 2546 - 2548 | อยู่ในระหว่างดำเนินการ | Dengue       |

| ลำดับที่ | ชื่อโครงการ                                                                                                          | ผู้นำโครงการ                                  | หน้าผ้าโครงการ                    | แหล่งทุน                                      | งบประมาณ<br>(ล้านบาท) | ระยะเวลา       | สถานภาพโครงการ                                    | ผู้รับผิดชอบ    |
|----------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------|-----------------------------------------------|-----------------------|----------------|---------------------------------------------------|-----------------|
| 1.       | Development and pre-clinical evaluation of infectious cDNA clone-derived second generation dengue vaccine candidates | ดร. พนพงษ์ สิงห์<br>สมบัติ<br>ดร. อรุณ ยศสกุล | ดร. พนพงษ์ สิงห์                  | T-2                                           | 8.8                   | 2547 -<br>2550 | อนุมัติทุนแล้ว กำลัง<br>อยู่ระหว่างการทำ<br>สัญญา | Dengue          |
| 2.       | Network of excellence in dengue virus research and genomics/genetics of prevalent diseases                           | นพ. ปรีดา มหาษา<br>สิงห์                      | นพ. ปรีดา มหาษา<br>สิงห์          | สก. (เบร็ฟจีบี)<br>อาจารย์ระดับที่<br>2)      | 6.0                   | 2547- 2550     | อนุมัติทุนแล้ว กำลัง<br>อยู่ระหว่างการทำ<br>สัญญา | Dengue/Genetics |
| 3.       | Establishment of dengue clinical research centers supporting basic and clinical research                             | นพ. ปรีดา มหาษา<br>สิงห์                      | นพ. ปรีดา มหาษา<br>สิงห์          | T-2                                           | 24.0                  | 2546 -2549     | อนุมัติทุนแล้ว กำลัง<br>อยู่ระหว่างการทำ<br>สัญญา | Dengue          |
| 4.       | พัฒนาพันธุ์ Novel oncogenes PIK3CA และ PIK3R1 ในมะเร็งช่องปาก                                                        | ดร. พชร โภควิจัย<br>รัตน์                     | ดร. พชร โภควิจัย<br>รัตน์         | สภก. หรือ<br>มูลนิธิ<br>สถาบันสุข<br>แห่งชาติ | 1.6                   | 2547 - 2550    | อยู่ระหว่างขอรับ<br>อนุมัติ                       | Cancer          |
| 5.       | Development of a new test for assay neutralizing antibody to dengue and                                              | ดร. พญ. นรีรัชฎ์<br>อวีฤทธิ์สมมร.             | ดร. พญ. นรีรัชฎ์<br>อวีฤทธิ์สมมร. | ศิริราษฎร์                                    | 0.7                   | 2546- 2548     | อนุมัติทุนแล้ว                                    | Dengue          |

| ລັດທີ | ຊື່ໂຄຮກການ                                                                                                                               | ພັນດ້າໂຄຮກການ                    | ແພດຖຸນ    | ຈຳປະນານ<br>(ສ້າງບາກ) | ຮະບະລາ    | ສຕານາພົກສາກາ                  | ກຳນົມວິຊາ  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------|----------------------|-----------|-------------------------------|------------|
|       | JapaneseEncephalitis virus                                                                                                               |                                  |           |                      |           |                               |            |
| 6.    | Study of host cellular proteins and dengue viral nonstructural protein-1 interactions and its contribution to dengue viral infection     | ນພ ດາວວິຫຍຸ ສິມ<br>ຈົນດາພວກ      | ສ້າງຮາພ   | 1.0                  | 2546-2548 | ອົນດີທຸນແສ້ງ                  | Dengue     |
| 7.    | Dengue non-structural protein-1 (NS1) and its contribution to the immunopathogenesis of dengue hemorrhagic fever / dengue shock Syndrome | ຕ.ພວ.ບ.ນິຍົງ<br>ອົງກົດກົມເນັດກົດ | ກະ. / ຕ.2 | 1.8                  | 2546-2548 | ໄຕສັງຫຼັບເສັງ<br>ໂຄຮກການເສົ້າ | Dengue     |
| 8.    | Mechanism of Regulation of Lymphocyte Activation by A Leukocyte Surface Molecule P-3E10                                                  | ຕ.ກ ກົດກະສິດທິກະຊາດ              | ຕ.ກ       | 3.0                  | 2547-2550 | ຜົງໝາຍເສັນໂທດາກ<br>ແສ້ງ       | Immunology |
| 9.    | Investigation of the nuclear localization of dengue core protein and its importance for the viability of dengue virus                    | ຕ.ຮ.ສັກ ເສັງຍານບຸກ               | ໜີ້.      | 1.0                  | 2546-2548 | ອູ້ກະຫວາງກາ                   | Dengue     |
| 10.   | Development of an enzyme-linked immunosorbent assay (ELISA)                                                                              | ຕ.ກ. ສັກ ພິມນາກາດ                | ໜີ້.      | 1.5                  | 2547-2548 | ອູ້ກະຫວາງກາ                   | Dengue     |
|       |                                                                                                                                          |                                  |           |                      |           | ເຕັມບັນຫຼຸດສັນດູ              |            |

| លេខរដ្ឋ | ឯកត្រាអាជាហារ                                                                                                                           | ផែនធានាធិធានការ                  | ផែនធានាធិធានការ | អនុសញ្ញា<br>(តាមរាជ) | សម្រាប់រាយការ                                                  | សារពាណិជ្ជការ | កសិករិយា |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------|----------------------|----------------------------------------------------------------|---------------|----------|
|         | technique for detection of dengue NS1 antigen and antibody in patients with dengue hemorrhagic fever                                    | ធានា                             |                 |                      | បិទរាជការ                                                      |               |          |
| 11.     | Identification of functional epitopes of dengue E protein using a panel of anti-dengue E monoclonal antibody                            | ល្អ. ឈុយចុកា អុទិត<br>ឯុពិនិត្យ  | ល្អ.            | 1.0                  | 2547- 2548<br>កម្រិតអាជីវការ<br>ឲ្យបិទមីនូវការងារ<br>បិទរាជការ |               | Dengue   |
| 12.     | Identification of dengue 2 NS1 sequence that interacts with other dengue viral proteins involved in viral replication complex formation | ល្អ. ស៊ុនស៊ុនីយ ដែនីយ<br>អគ្គរាយ | ល្អ / T-2       | 1.5                  | 2547- 2549<br>កម្រិតអាជីវការ<br>ឲ្យបិទមីនូវការងារ<br>បិទរាជការ |               | Dengue   |

# ภาคผนวก

MUTATION IN BRIEF

## Frameshift Mutations With Severe and Moderate Clinical Phenotypes in Thai Hemophilia A Patients

Varaporn Akkarapatumwong<sup>1</sup>, Sorasak Intorasoot<sup>1</sup>, Sumalee Oranwiroom<sup>2</sup>, Prapaporn Thanootarakul<sup>2</sup>, Parichat Pung-amritt<sup>3</sup>, Gavivann Veerakul<sup>3</sup>, Chularatana Mahasandana<sup>3</sup>, Sakol Panyim<sup>1</sup>, and Pa-thai Yenchitsomanus<sup>2,\*</sup>

<sup>1</sup>Institute of Molecular Biology and Genetics, Mahidol University, Salayq Campus, Nakhon Pathom, <sup>2</sup>Division of Medical Molecular Biology, Department of Research and Development, <sup>3</sup>Division of Hematology, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

\*Correspondence to: Dr. Pa-thai Yenchitsomanus, Division of Medical Molecular Biology, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Telephone and Fax: 662-4184793; E-mail: grp.ye@mahidol.ac.th

Contract grant sponsors: National Center for Genetic Engineering and Biotechnology (BIOTECH), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand

Communicated by Mark H. Paalman

Six frameshift mutations in exon 14 of the factor VIII gene were identified in Thai hemophilia A patients. Although all these mutations created premature stop codons and expected to cause severe disease, the molecular defects and clinical severity were in discrepancy in some patients. Four mutations (delT3490, delACAC3618-21, delGA4429-30, and delA4658) were found in the patients with the severe clinical phenotype while two (delA3629-37 and insA4372-9) were observed in the patients who had moderate severity, with FVIII:C of 4.2 and 2.8%. The frameshift mutations in these two patients were due to deletion and insertion of an 'A' nucleotide in the stretches of 9As and 8As in codons 1191-4 and 1439-41, respectively. This indicates that deletion or insertion in the stretches of poly A nucleotides in exon 14 of the factor VIII gene is a likely cause of the moderate clinical severity in some cases of Thai hemophilia A patients. © 2000 Wiley-Liss, Inc.

KEY WORDS: hemophilia A; factor VIII; F8C; Thailand

### INTRODUCTION

Hemophilia A is a common X-linked recessive bleeding disorder, caused by mutations in the factor VIII gene (MIM # 306700; approved symbol, F8C), affecting approximately 1-2/10,000 male births in all ethnic groups (Antonarakis et al., 1995; Kemball-Cook et al., 1988; <http://europium.csc.mrc.ac.uk>). The factor VIII gene which is located on Xq28 consists of 26 exons, spanning 186 kb (Gitschier et al., 1984; Toole et al., 1984). Its mRNA (~9 kb) encodes a precursor protein of 2,351 amino acids with 19 residues of a hydrophobic leader sequence at the N-terminus. The factor VIII protein is divided into six distinct domains arranged in order of A1-A2-B-A3-C1-C2 (Vehar et al., 1984). Mutations of the factor VIII gene are heterogeneous and different types of mutations recorded include nucleotide substitutions, small deletions and insertions, gross deletions, and inversions. We have studied

Received 13 July 2000; Revised manuscript accepted 29 September 2000.

mutations of the factor VIII gene in Thai hemophilia A patients and previously reported a number of mutations (Akkarapatumwong et al., 2000). In the analysis of additional mutations in Thai hemophilia A patients, we found six frameshift mutations, all of which occurred in exon 14 of the factor VIII gene. It is interesting that although they were frameshift mutations introducing premature stop codons in the same exon, two of these mutations were observed in the patients with moderate clinical severity. The frameshift mutations in these two patients were due to deletion and insertion in the stretches of poly A nucleotides of the factor VIII gene. The mechanism resulting in moderate clinical severity in these two Thai hemophilia A patients is likely to relate to the deletion and insertion in these poly A stretches.

#### MATERIALS AND METHODS

Six Thai hemophilia A patients and their family members including parents and sibs were studied. These patients and families were followed up at the Hematology Clinics, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok. Hemophilia A was diagnosed from clinical, hematological, and coagulation findings. Factor VIII activities (FVIII:C) were determined by one stage clotting assay. The factor VIII gene inversion was analyzed by Southern blot hybridization and not found in these patients. Venous blood samples were collected, with informed consent, in EDTA for RNA and DNA studies.

Mutations of the factor VIII gene were screened in the patients' factor VIII cDNA and genomic DNA by single strand conformation polymorphism (SSCP) method and identified by automated DNA sequencing. The details of these analyses have been described in our previous work (Akkarapatumwong et al., 2000).

#### RESULTS

Six patients were found to have mobility shifts of exon 14 fragments of the factor VIII gene, amplified from genomic DNA samples, in the SSCP analysis, while all other amplified fragments showed normal SSCP patterns. The narrow regions with suspected mutations were located and mutations were identified by sequencing analysis. The presence of mutations was confirmed by repeated analyses of amplified genomic DNA samples from the patients' mothers. Six frameshift mutations including three 1-bp deletions, one 2-bp deletion, one 4-bp deletion, and one 1-bp insertion, in exon 14 of the factor VIII gene were identified in the patients (Table 1). All these mutations were also observed in the patients' mothers when analyzed by DNA sequencing analyses. In the families with known inheritance of hemophilia A, the mutations were also demonstrated in other affected or carrier members by either SSCP or heteroduplex analyses (data not shown) but they were not detected in unaffected members and normal controls.

TABLE 1. Six frameshift mutations in exon 14 of the factor VIII gene identified in Thai hemophilia A patients.

| Patient   | Type of mutation | Mutation <sup>a</sup>     | Mutated codon <sup>a</sup> | Stop codon created | Exon | Domain | Clinical severity | FVIII:C (%) |
|-----------|------------------|---------------------------|----------------------------|--------------------|------|--------|-------------------|-------------|
| JGR7 (F)  | Frameshift       | 3490delT <sup>b</sup>     | 1145                       | 1151               | 14   | B      | Severe            | <1          |
| WYG72 (F) | Frameshift       | 3618-21delACAC            | 1187-8                     | 1197               | 14   | B      | Severe            | <1          |
| SWD20 (S) | Frameshift       | 3629-37delA               | 1191-4                     | 1198               | 14   | B      | Moderate          | 4.2         |
| TSR15 (F) | Frameshift       | 4372-9insA                | 1439-41                    | 1442               | 14   | B      | Moderate          | 2.8         |
| PCP33 (F) | Frameshift       | 4429-30delGA <sup>b</sup> | 1458                       | 1475               | 14   | B      | Severe            | <1          |
| SCW13 (F) | Frameshift       | 4658delA <sup>b</sup>     | 1534                       | 1547               | 14   | B      | Severe            | <1          |

<sup>a</sup>Nucleotide positions of FVIII cDNA and codons are numbered as reported by Wood et al. (1984); <sup>b</sup>Novel mutations which have not been recorded in the Hemophilia A Database (<http://europium.csc.mrc.ac.uk>); F, familial case; S, sporadic case.

## DISCUSSION

We have identified six additional mutations of the factor VIII gene in new cases of Thai hemophilia A patients. All of them were frameshift mutations in exon 14, three of which (delT3490, delGA4429-30, and delA4658) are novel. These six mutations created premature termination codons, resulting in truncations in the B domain of the factor VIII protein. Four mutations (delT3490, delACAC3618-21, delGA4429-30, and delA4658) were found in the patients with severe disease. Thus, molecular defects of the factor VIII gene in these patients correlated with the disease severity. However, two frameshift mutations (delA3629-37, and insA4372-9), were observed in the patients with moderate clinical phenotypes; therefore, the genotype and phenotype in these two patients were not correlated. The deletion and insertion of 'A' nucleotides in these two patients occurred in the regions containing the stretches of 9 As at codons 1191-4 and 8 As at codons 1439-41, respectively. There are at least 9 cases with an 'A' deletion (3 cases with an 'A' insertion) in the run of 9 As at codons 1191-4, and 4 cases with an 'A' insertion in the run of 8 As at codons 1439-41 documented in the Hemophilia A Database (<http://europium.csc.mrc.ac.uk>). Almost all were noted to be associated with severe hemophilia A. However, FVIII:C was not recorded in some of these cases and there were at least four cases with FVIII:C of 2%, 3%, 3%, and 1.4%. It should be mentioned that one case with 1191-4del A (FVIII:C of 3%) was found to have a moderate clinical severity (Gallardo et al, unpublished data in <http://europium.csc.mrc.ac.uk>). If the severity and FVIII:C in this group of hemophilia A patients were rightly recorded, there were some certain cases that had higher FVIII:C activities than that of other severe cases and some patients also presented moderate severity. A partial correction of a severe molecular defect in hemophilia A because of errors during expression of the factor VIII gene has been reported (Young et al. 1997). A deletion of a single nucleotide T (delT9813 at codon 1441) within an A<sub>8</sub>TA<sub>2</sub> sequence of exon 14 of the factor VIII gene was characterized in Japanese patients with mild to moderately severe hemophilia A. The A<sub>8</sub>TA<sub>2</sub> sequence was changed to the run of 10As, and it was found that the patients produced a significant number of in-frame mRNA transcripts. The errors in DNA replication or RNA transcription/translation resulted in a partial restoration of the correct reading frame and amelioration of an expected severe phenotype. A similar phenomenon might have occurred in these two Thai hemophilia A patients who had the frameshift mutations (delA3629-37, and insA4372-9) due to the 'A' deletion and insertion in the stretches of 9 As and 8 As. It is likely therefore that the deletion and insertion in these stretches of poly A nucleotides resulted in moderate clinical severity in some cases of Thai hemophilia A patients.

## ACKNOWLEDGMENTS

This work was financially supported by the National Center for Genetic Engineering and Biotechnology (BIOTECH), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand. We thank Dr. Prida Malasit, Head of Division of Medical Molecular Biology, Director of Medical Biotechnology Unit (BIOTECH), and a Senior Thailand Research Fund (TRF) Scholar, for his supports.

## REFERENCES

Akkarapatumwong V, Oranwiroon S, Pung-amritt P, Treesucon A, Thanootarakul P, Veerakul G, Manasandana C, Panyim S, Yenchitsomanus P. (2000) Mutations of the factor VIII gene in Thai hemophilia A patients. *Hum Mutat* 15:117-8.

Antonarakis SE, Kazazian HH, Tuddenham EGD. (1995) Molecular etiology of factor VIII deficiency in hemophilia A. *Hum Mutat* 5:1-22.

Gitschier J, Wood WI, Goralka TM, Wion KL, Chen EY, Eaton DH, Vehar GA, Capon DJ, Lawn RM. (1984) Characterization of the human factor VIII gene. *Nature* 312: 326-30.

Kemball-Cook G, Tuddenham EGD, Wacey AI. (1998) The factor VIII Structure and Mutation Resource SiteHAMSTeRS version 4. *Nucleic Acids Res* 26:216-9.

Liu M, Murphy MEP, Thompson AR. (1998) A domain mutations in 6 hemophilia A families and molecular modelling of dysfunctional factor VIII protein. *Brit J Haematol* 103:1051-60.

Toole JJ, Knopf JL, Wozney JM, Sultzman LA, Buecker JL, Pittman DD, Kaufman RJ, Brown E, Shoemaker C, Orr EC, Amphlett GW, Foster WB, Coe ML, Knutson GJ, Fass DN, Hewick RM. (1984) Molecular cloning of cDNA encoding human antihaemophilic factor. *Nature* 312:342-7.

Vehar GA, Keyt B, Eaton D, Rodriguez H, O'Brien DP, Rotblat F, Oppermann H, Keck R, Wood WI, Harkins RN, Tuddenham EGD, Lawn RM, Capon DJ. (1984) Structure of human factor VIII. *Nature* 312:337-42.

Wood WI, Capon DJ, Simonsen CC, Eaton DL, Gitschier J, Keyt B, Seeburg PH, Smith DH, Hollingshead P, Wion KL. (1984) Expression of active human factor VIII from recombinant DNA clones. *Nature* 312:330-7.

Young M, Inaba H, Hoyer LW, Higuchi M, Kazazian HH, Jr, Antonarakis SE. (1997) Partial correction of a severe molecular defect in hemophilia A, because of errors during expression of the factor VIII gene. *Am J Hum Genet* 60:565-573.

**MUTATION IN BRIEF**

## Mutations of the Factor VIII Gene in Thai Hemophilia A Patients

V. Akkarapatumwong<sup>1</sup>, S. Oranwiroom<sup>1</sup>, P. Pung-amritt<sup>2</sup>, A. Treesucon<sup>3</sup>, P. Thanootarakul<sup>4</sup>, G. Veerakul<sup>2</sup>, C. Mahasandana<sup>2</sup>, S. Panyim<sup>1</sup>, and P. Yenchitsomanus<sup>4\*</sup>

<sup>1</sup>*Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Nakhon Pathom;* <sup>2</sup>*Hematology Unit, Department of Pediatrics; Division of Medical Genetics, Department of Medicine; Molecular Genetics and Medical Molecular Biology Units, Office for Research and Development, Faculty of Medicine-Siriraj Hospital, Mahidol University, Bangkok, Thailand*

\*Correspondence to Pa-thai Yenchitsomanus, Molecular Genetics and Medical Molecular Biology Units, Office for Research and Development, Faculty of Medicine-Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Telephone and Fax: 662-4184793; E-mail: grpve@mahidol.ac.th

Contract grant sponsor: National Center for Genetic Engineering and Biotechnology (BIOTECH), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand

Communicated by Mark H. Paalman

### ABSTRACT

Hemophilia A is a common X-linked bleeding disorder caused by mutations in the coagulation factor VIII gene. The entire coding and essential sequences of the factor VIII gene were generated by a combination of genomic DNA amplification and long reverse transcription-polymerase chain reaction (long RT-PCR) using factor VIII transcripts prepared from lymphocytes. Mutations were then screened by non-radioactive single strand conformation polymorphism (SSCP) analysis and characterized by DNA sequencing. We have identified six potentially pathogenic mutations in the factor VIII gene in Thai hemophilia A patients, including two nonsense mutations (R-5X and R1966X), three missense mutations (D542Y, G1850V, and G2325C), and a 4-bp insertion (ACTA) at codon 2245. Three of these mutations (D542Y, G2325C, and 4-bp insertion) have never been previously reported, and the ins2245 is the first example of such insertion probably causing factor VIII elongation. R1966X, D542Y, G1850V, and 4-bp insertion were associated with a severe hemophiliac phenotype whereas R-5X and G2325C were observed in moderately affected patients. Mutations in the factor VIII gene in Thai hemophilia A patients are likely to be heterogeneous. This study represents the first attempt to further the understanding of the molecular basis of hemophilia A in Thai. © 1999 Wiley-Liss, Inc.

KEY WORDS: hemophilia A; factor VIII; F8C; Thailand

### INTRODUCTION

Hemophilia A is a common X-linked recessive bleeding disorder, affecting approximately 1/5,000-1/10,000 male births. The disease is caused by deleterious mutations in the factor VIII gene (F8C; MIM# 306700) resulting in a deficiency or a functional abnormality of coagulation factor VIII (Antonarakis et al., 1995). The factor VIII

Received 12 August 1999; Revised manuscript accepted 1 November 1999.

gene is located on the human chromosome region Xq28 and consists of 26 exons, spanning 186 kb. Its mRNA (~9 kb) encodes a precursor protein of 2,351 amino acids, the first 19 residues of which lie in a hydrophobic leader sequence. Based on amino acid sequence homology, factor VIII can be divided into six distinct domains, arranged in the order: A1-A2-B-A3-C1-C2 (Poustka et al., 1991; Gitschier et al., 1984; Vehar et al., 1984).

Hemophilia A is a genetically heterogeneous disorder resulting from a large number of different molecular defects in the factor VIII gene, including point mutations, deletions, insertions, and inversions. The molecular defects of factor VIII gene have been studied in many ethnic origins (Kemball-Cook et al., 1998), but not in Thai. This work was aimed to characterize mutations in factor VIII gene in Thai hemophilia A patients. We have employed a combination of long RT-PCR of illegitimate factor VIII transcripts and PCR of genomic DNA to amplify the entire coding and essential sequences of the factor VIII gene, which were then fractionated into eight fragments. These fragments were subjected to mutational analysis by non-radioactive SSCP. The amplified fragments, possibly containing mutations as detected by SSCP, were further characterized by DNA sequencing. Here, we report the identification of six potentially pathogenic mutations in Thai hemophilia A patients, three of which are novel.

#### MATERIALS AND METHODS

##### Subjects

Six Thai hemophilia A patients, their parents, and sibs included in this study were from the Hematology Clinics of the Department of Pediatrics, Faculty of Medicine-Siriraj Hospital, Mahidol University, Bangkok. The diagnosis of hemophilia A was based on clinical and hematological data. Their factor VIII activities (FVIII:C) were determined by one stage clotting assay. Inversion in factor VIII gene as a cause of hemophilia A was excluded in all six families by Southern blot hybridization (Akkarapatumwong et al. in preparation).

##### RNA and DNA Preparations

Whole blood samples (15 ml) were collected in EDTA for RNA and genomic DNA extractions. Peripheral lymphocytes were isolated from the blood samples by Lymphoprep™ (Nycomed Pharma AS, Oslo, Norway). Total RNA was extracted from lymphocytes by using Trizol™ reagent (Gibco BRL, Gaithersburg, MD). Genomic DNA was prepared according to standard procedures (Sambrook et al., 1989).

##### cDNA Synthesis and Amplification

Full-length factor VIII-cDNA (~9 kb) was synthesized from total RNA by Superscript II kit (Gibco BRL) using oligo(dT)<sub>12-18</sub> as a primer. The cDNA was further amplified by long PCR using a pair of primers flanking the open reading frame of factor VIII (forward primer: 5'ATGCTCTGCAAAGAAATTGGGAC 3', and reverse primer: 5'AAACCAGCAGGAAAATAAGAGC 3') in a reaction mixture (50 µl) containing 2 µl of cDNA, 1 U of ELONGASE Enzyme Mix (Gibco BRL), 60 mM Tris-SO<sub>4</sub> (pH 9.1), 18 mM (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 1.2 mM MgSO<sub>4</sub>, 200 µM dNTP mixture and 10 pmole of each primer. Amplification was carried out by denaturation at 94 °C for 30 sec, followed by 30 cycles with the temperature parameters comprising 94 °C for 30 sec, 60 °C for 30 sec and 68 °C for 10 min.

The exons 1-13 and 15-26 regions were amplified from long PCR product by using four pairs of primers as described by Naylor et al. (1991) to generate 4 nested fragments.

##### Genomic DNA Amplification

The putative promoter, exon 14, and the polyadenylation signal region of factor VIII gene were amplified from genomic DNA using primers as described by Naylor et al. (1991) to obtain 4 fragments, one each for the putative promoter and the polyadenylation signal, and two for exon 14. Fragment denominations were as formerly designated by Naylor et al. (1991).

##### Single Strand Conformation Polymorphism (SSCP)

A non-radioactive SSCP analysis was carried out as previously described by Bannai et al. (1994). Prior to screening for mutations by SSCP, the amplified fragments, except the one spanning the polyadenylation signal region (fragment T), were digested with restriction enzymes in order to generate fragment sizes suitable for SSCP.

analysis. The digestions were performed with a single or multiple restriction enzymes as follow: *Eco*RI/*Hind*III for fragment 1, *Alu*I and *Bam*HI/*Bst*NI for fragment 2, *Eco*RI/*Pst*I, *Pst*I/*Sst*I and *Sst*I/*Apal* for fragment 3, *Scal*/*Hae*II and *Xcm*I for fragment 4, *Sau*96I and *Dra*I/*Hinc*II for fragment 5, *Dde*I and *Dra*I/*Xba*I for fragment 6 and *Eco*RI for fragment P.

#### DNA Sequencing

PCR products showing abnormal electrophoretic mobility on SSCP gel were subjected to nucleotide sequencing either manually or by the ABI 377 automated sequencer. For manual sequencing, single stranded templates used for sequencing were generated by asymmetric PCR (McCabe, 1990). Sequencing was performed using the Sequenase® Version 2.0 sequencing kit (Amersham, Cleveland, OH) following the manufacturer's protocol. For automated DNA sequencing, the regions potentially containing mutations were cloned into pBluescript KS or pUC19 vector before sequencing using the ABI PRISM™ DNA Sequencing kit (PE Applied Biosystems).

#### Computer Analysis

CLUSTAL X, multiple sequence alignment program (Thompson et al., 1997) was used to analyze conserved motifs of factor VIII. The amino acid sequences of human, murine and pig factor VIII; human, murine and bovine factor V; and human and rat ceruloplasmin were derived by translation of DNA sequences from GenBank/EMBL database (accession numbers M14113, L05573, U49517, M16967, US2925, M81441, M13699 and L33869, respectively) and used for the analysis.

#### RESULTS

A total of six unrelated patients were studied. Eight fragments corresponding to putative promoter, coding sequences, and polyadenylation region of factor VIII gene were screened for mutation by non-radioactive SSCP method. SSCP analysis identified single-stranded DNAs with aberrant mobilities relative to those of normal controls. DNA sequencing was subsequently performed to identify mutations. Characterization of the mutations was also carried out in genomic DNA samples to verify that the mutations detected in cDNA prepared from the ectopic transcripts also existed in the factor VIII gene. We identified six potentially pathogenic mutations, details of which were summarized in Table 1. Three novel mutations, including two missense mutations (D542Y and G2325C) and a 4-bp insertion (ACTA) at codon 2245 in exon 25, were identified. The presence of the mutations was also determined in the corresponding family members. All but one (STJ3) of probands' mothers and, when available, affected male sibs were found to be carriers of a similar mutation. Mutations were not found in unaffected sibs and normal controls.

TABLE 1. Summary of mutations in factor VIII gene identified in six Thai hemophilia A patients.

| Patient   | Type of mutation | Mutation                           | Exon | Codon <sup>a</sup> | Domain              | Clinical severity | FVIII:C (%) |
|-----------|------------------|------------------------------------|------|--------------------|---------------------|-------------------|-------------|
| STJ3 (S)  | Nonsense         | CGA→TGA(R>X)                       | 1    | -5                 | Signal <sup>b</sup> | Moderate          | 2.8         |
| ADL29 (S) | Missense         | GAT→TAT (D542Y) <sup>c</sup>       | 11   | 542                | A2                  | Severe            | <1          |
| NMH49 (F) | Missense         | GGC→GTC(G1850V)                    | 17   | 1850               | A3                  | Severe            | <1          |
| APP11 (F) | Nonsense         | CGA→TGA(R1966X)                    | 18   | 1966               | A3                  | Severe            | <1          |
| RMV27 (S) | Frameshift       | 4-bp Insertion <sup>c</sup> (ACTA) | 25   | 2245               | C2                  | Severe            | <1          |
| CRG28 (S) | Missense         | GGC→TOC(G2325C) <sup>c</sup>       | 26   | 2325               | C2                  | Moderate          | 3           |

<sup>a</sup>Codons are numbered as in Wood et al. (1984); <sup>b</sup>Signal peptide; <sup>c</sup>These mutations have not been reported in the Hemophilia A Database (<http://europium.mrc.rpms.ac.uk/usr/WWW/WebPages/main.dir/main.htm>); F, familial case; S, sporadic case.

## DISCUSSION

By using a combination of genomic DNA amplification and RT-PCR using factor VIII cDNA prepared from ectopic transcripts, followed by non-radioactive SSCP analysis and DNA sequencing, we have identified six mutations in the factor VIII gene in Thai hemophilia A patients.

The nonsense mutation, R-5X, in the signal peptide identified in this study has previously been observed in three patients and was predicted to cause extreme truncation with no circulating normal factor VIII, resulting in severe hemophilia A (Pattinson et al., 1990; Reiner & Thompson, 1992; Bidichandani et al., 1995). However, STJ3 presented with a moderate hemophilia A phenotype having FVIII:C level of 2.8% (Table 1). Results of three repeated FVIII:C assays in this patient were consistent. Therefore, the clinical severity and FVIII:C level in this patient did not reflect the patient's genotype. DNA analyses of family members including his mother did not reveal the similar mutation. The maternity was confirmed by genetic linkage analysis using St14 VNTR and a dinucleotide repeat polymorphism in intron 13. The results indicated that this R-5X mutation was likely to occur *de novo*. Thus, one possible explanation for the genotype-phenotype discordance in this patient might be somatic mosaicism when R-5X occurred post-zygotically (Levinson et al., 1990; Bröcker-Vriend et al., 1990).

The three missense mutations characterized in this study included D542Y, G1850V and G2325C. Several arguments favored these three missense mutations as being causally related to hemophilia A phenotype. First, they affected highly conserved amino acid residues in factor VIII from other mammalian species and in other proteins known to be homologous to factor VIII (factor V and ceruloplasmin) (Fig. 1). Second, a single mutation of the factor VIII gene in each family could be detected and the frequency of neutral substitutions within the factor VIII gene was shown to be low (Kemball-Cook et al., 1998). Third, the missense mutations mentioned above were not identified in normal controls.

**FIGURE 1** Partial amino acid sequence lineups of human factor VIII and other homologous proteins. The figure represents partial alignment of A2, A3 and C2 domain sequences of human, pig and mouse factor VIII (HumFVIII, PigFVIII and MurFVIII); human, bovine and mouse factor V (HumFV, BosFV and MurFV); and human and rat ceruloplasmin (HumCP, RatCP). Highly conserved residues of human factor VIII and these related proteins are indicated in white characters on black background. Each of the missense mutations is denoted by an arrow pointing at the position above the aligned sequences.

The missense mutation, D542Y, was found in the A2 domain of factor VIII. Another mutation at this codon, D542G, has been reported in a severe hemophilia A patient (Higuchi et al., 1991). Analysis of the A domain model of factor VIII based on ceruloplasmin (Pemberton et al., 1997) and nitrite reductase (Pan et al., 1995) suggested that the side chains of Asp 542 and His 311 or Arg 541 participate in a salt bridge which would be disrupted by the replacement of its hydrophilic residue, Asp 542, with a hydrophobic one, Tyr. His 311 and Asp 542 located on the A1 and A2 domain, respectively. Substitution of Asp with Tyr at codon 542 would be predicted to eliminate the salt bridge as the phenolic group of tyrosine was uncharged. Thus, this mutation seemed to destabilize the structure of factor VIII, by weakening the A1/A2 domain interaction.

The substitution of glycine residue with valine in the A3 domain (G1850V) has recently been reported by (Tavassoli et al., 1998). This mutation was characterized in a severe hemophiliac but has not yet been studied at the structural level. Nonetheless, this mutation involving glycine residue should have destabilizing effect because this residue had backbone dihedral preferences distinct from other amino acids.

The missense mutation G2325C occurred in the C2 domain and was associated with moderate hemophilia A phenotype. Another mutation affecting this residue G2325 has also been reported to cause a severe hemophilia A phenotype (Becker et al., 1996). Recently, the disulfide bonds, between Cys 2021 and Cys 2164 within the C1 domain and between Cys 2174 and Cys 2326 within the C2 domain, have been discovered (Kaufman, 1998). Therefore, a change from glycine to cysteine at residue 2325 flanking the C2 disulfide bridge would more than likely interfere with the correct formation of its disulfide bonds. Furthermore, mutations that created a new free sulfhydryl group were selected against in the extracellular milieu because of their ability to complicate correct folding of protein. The C2 domain (residues 2303-2332) was shown to be involved in factor VIII interaction with phospholipid. Therefore, this G2325C mutation might affect the conformation of the phospholipid binding site in the C2 domain or result in destabilization of the structure of factor VIII because of misfolding of the protein.

In this study a novel 4-bp insertion (ACTA) at the codon 2245 within exon 25 has been identified. A shift in the reading frame was introduced after the point of insertion, and as a result, the normal termination codon, 265 nucleotides downstream, was shifted out of frame and was no longer read as a stop codon. Consequently, translation proceeded into the normally 3' untranslated region and continued for additional 33 amino acids until the next fortuitous termination codon was encountered at codon 2366. This was the first example of 4-bp insertion possibly causing factor VIII elongation. The abnormal amino acid sequence lied in the C2 domain (residues 2173-2332) of factor VIII protein which was thought to be a vitally important functional and structural region, especially for binding to von Willebrand factor (with residues 2248-2312) and to phospholipid (with residues 2303-2332) (Vlot et al., 1998; Foster et al., 1990). Therefore, this alteration would be expected to impair the structure and function of factor VIII. This insertion introducing a 4-bp directed repeat might be generated by a mutagenic mechanism involving slipped mispairing during DNA replication.

The mutations identified in this study represented the first attempt at understanding molecular defects underlying hemophilia A in Thai and demonstrated feasibility of carrier detection by a direct mutational analysis.

#### ACKNOWLEDGMENTS

We would like to express our gratitude to the patients and their relatives for their participation in this study and for donation of blood samples. We thank Dr. Chanin Limwongse for reading and editing the manuscript, and the staff of Hematology Unit, Department of Pediatrics Faculty of Medicine-Siriraj Hospital, Mahidol University for technical assistance. This work was financially supported by the National Center for Genetic Engineering and Biotechnology (BIOTECH), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand.

#### REFERENCES

Antonarakis SE, Kazazian HH, Tuddenham EG. 1995. Molecular etiology of factor VIII deficiency in hemophilia A. *Hum Mutat* 5:1-22.

Bannai M, Tokunaga K, Lin L, Kuwata S, Mazda T, Amaki I, Fujisawa K, Juji T. 1994. Discrimination of human HLA-DRB1 alleles by PCR-SSCP (single-strand conformation polymorphism) method. *Eur J Immunogenet* 21:1-9.

Becker J, Schwaab R, Moller-Taube A, Schwaab U, Schmidt W, Brackmann HH, Grimm T, Olek K, Oldenburg J. 1996. Characterization of the factor VIII defect in 147 patients with sporadic hemophilia A: family studies indicate a mutation type-dependent sex ratio of mutation frequencies. *Am J Hum Genet* 58:657-70.

Bidichandani SI, Lanyon WG, Shiach CR, Lowe GD, Connor JM. 1995. Detection of mutations in ectopic factor VIII transcripts from nine haemophilia A patients and the correlation with phenotype. *Hum Genet* 95:531-8.

Bröcker-Vriend AH, Briet E, Dreesen JC, Bakker B, Reitsma P, Pannekoek H, van de Kamp JJ, Pearson PL. 1990. Somatic origin of inherited haemophilia A. *Hum Genet* 85:288-92.

Foster PA, Fulcher CA, Houghton RA, Zimmerman TS. 1990. Synthetic factor VIII peptides with amino acid sequences contained within the C2 domain of factor VIII inhibit factor VIII binding to phosphatidylserine. *Blood* 75:1999-2004.

Gitschier J, Wood WI, Goralka TM, Wion KL, Chen EY, Eaton DH, Vehar GA, Capon DJ, Lawn RM. 1984. Characterization of the human factor VIII gene. *Nature* 312:326-30.

Higuchi M, Kazazian HH, Jr., Kasch L, Warren TC, McGinniss MJ, Phillips JA, Kasper C, Janco R, Antonarakis SE. 1991. Molecular characterization of severe hemophilia A suggests that about half the mutations are not within the coding regions and splice junctions of the factor VIII gene. *Proc Natl Acad Sci USA* 88:7405-9.

Kaufman RJ. 1998. Post-translational modifications required for coagulation factor secretion and function. *Thromb Haemost* 79:1068-79.

Kemball-Cook G, Tuddenham EGD, Wacey AI. 1998. The factor VIII Structure and Mutation Resource Site: HAMSTeRS version 4. *Nucleic Acids Res* 26:216-9.

Levinson B, Lehesjoki AE, de la Chapelle A, Gitschier J. 1990. Molecular analysis of hemophilia A mutations in the Finnish population. *Am J Hum Genet* 46:53-62.

McCabe PC. 1990. Production of single-stranded DNA by asymmetric PCR. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. *PCR Protocols: A Guide to Methods and Applications*. San Diego: Academic Press, pp 76-83.

Naylor JA, Green PM, Montandon AJ, Rizza CR, Giannelli F. 1991. Detection of three novel mutations in two haemophilia A patients by rapid screening of whole essential region of factor VIII gene. *Lancet* 337:635-9.

Pan Y, DeFay T, Gitschier J, Cohen FE. 1995. Proposed structure of the A domains of factor VIII by homology modelling [letter]. *Nat Struct Biol* 2:740-4.

Pattinson JK, Millar DS, McVey JH, Grundy CB, Wieland K, Mibashan RS, Martinowitz U, Tan-Un K, Vidaud M, Goossens M. 1990. The molecular genetic analysis of hemophilia A: a directed search strategy for the detection of point mutations in the human factor VIII gene. *Blood* 76:2242-8.

Pemberton S, Lindley P, Zaitsev V, Card G, Tuddenham EG, Kemball-Cook G. 1997. A molecular model for the triplicated A domains of human factor VIII based on the crystal structure of human ceruloplasmin. *Blood* 89:2413-21.

Poustka A, Dietrich A, Langenstein G, Toniolo D, Warren ST, Lehrach H. 1991. Physical map of human Xq27-qter: localizing the region of the fragile X mutation. *Proc Natl Acad Sci USA* 88:8302-6.

Reiner AP, Thompson AR. 1992. Screening for nonsense mutations in patients with severe hemophilia A can provide rapid, direct carrier detection. *Hum Genet* 89:88-94.

Sambrook J, Fritsch EF, Maniatis T. 1989. *Molecular cloning: a laboratory manual*. 2nd Ed. New York: Cold Spring Harbor Laboratory Press, pp 9.14-9.23.

Tavassoli K, Eigel A, Wilke K, Pollmann H, Horst J. 1998. Molecular diagnostics of 15 hemophilia A patients: characterization of eight novel mutations in the factor VIII gene, two of which result in exon skipping. *Hum Mutat* 12:301-3.

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Res* 25:4876-82.

Vehar GA, Keyt B, Eaton D, Rodriguez H, O'Brien DP, Rotblat F, Oppermann H, Keck R, Wood WI, Harkins RN. 1984. Structure of human factor VIII. *Nature* 312:337-42.

Vlot AJ, Koppelman SJ, Bouma BN, Sixma JJ. 1998. Factor VIII and von Willebrand factor. *Thromb Haemost* 79:456-65.

Wood WI, Capon DJ, Simonsen CC, Eaton DL, Gitschier J, Keyt B, Seeburg PH, Smith DH, Hollingshead P, Wion KL. 1984. Expression of active human factor VIII from recombinant DNA clones. *Nature* 312:330-7.

## Case Report

# Identification of a new mutation (Gly420Ser), distal to the active site, that leads to factor XIII deficiency

Kangsadalampai S, Yenchitsomanus P, Chelvanayagam G, Sawasdee N, Laosombat V, Board P. Identification of a new mutation (Gly420Ser), distal to the active site, that leads to factor XIII deficiency. *Eur J Haematol* 2000; 65: 279–284. © Munksgaard 2000.

**Abstract:** The molecular defects of the factor XIII A subunit gene were studied in a patient with factor XIII deficiency. Mutation analysis was performed on amplified DNA from each exon of this gene by single-strand conformation polymorphism (SSCP) and DNA sequencing techniques. A substitution of guanine by adenine at nucleotide 1258 in exon 10 of the coagulation factor XIII A subunit gene has been identified in the patient. The mutation results in the replacement of Gly420 by Ser in the core domain of the enzyme. Restriction enzyme analysis of amplified exon 10 DNA confirmed that the patient was homozygous for this mutation. A family study revealed that the mutation was inherited from both parents, who were first cousins. The potential effects of the mutation were predicted by molecular modeling of the amino acid substitution within the coordinates of the crystal structure. The substitution occurred within the core domain of the enzyme at a residue completely conserved among all known members of the transglutaminase family. The model of the mutant protein suggests that although the substitution of Gly420 by Ser causes only minor readjustment of the residues and does not appear to be particularly deleterious in terms of structure, the mutation is, however, likely to decrease the molecule's ability to undergo the conformational change that is thought to be required for full transglutaminase activity. Our data strongly support the previously published information about the functional significance of the residues surrounding, but not forming, the catalytic pocket in the A subunit of factor XIII.

Sasichai Kangsadalampai<sup>1</sup>,  
Pa-thai Yenchitsomanus<sup>2,3</sup>,  
Gareth Chelvanayagam<sup>4</sup>,  
Nunghathai Sawasdee<sup>2</sup>,  
Vichai Laosombat<sup>5</sup>, Philip Board<sup>4</sup>

<sup>1</sup>Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pratumthani, Thailand, <sup>2</sup>Division of Medical Molecular Biology, Siriraj Hospital, Mahidol University, Bangkok, Thailand.

<sup>3</sup>Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.

<sup>4</sup>John Curtin School of Medical Research, Australian National University, Canberra, Australia, and <sup>5</sup>Division of Hematology, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand

**Key words:** factor XIII deficiency; missense mutation; SSCP; computer modeling; transglutaminase enzyme, Thailand

**Correspondence:** Pa-thai Yenchitsomanus, PhD, Division of Medical Molecular Biology, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand. Fax: +66 2 4184793. E-mail: grpye@mahidol.ac.th

Accepted for publication 30 June 2000

Blood coagulation factor XIII is a transglutaminase enzyme which forms intermolecular  $\epsilon$ -( $\gamma$ -glutamyl) lysine bonds between adjacent fibrin molecules in a fibrin clot that contribute to the mechanical strength of the clot. Factor XIII also cross-links  $\alpha_2$ -antiplasmin into the clot to protect the clot from plasmin degradation (1). Plasma factor XIII is a weakly associated heterotetramer composed of two A and two B subunits (2, 3). The A subunits are associated as a dimer and are responsible for the catalytic activity of factor XIII (4, 5). The B subunit is a monomer and is thought to play a role in

protection of the A subunit from degradation in circulation (6–9).

Congenital factor XIII deficiency is a rare autosomal recessive disease, and only a few hundred cases have been documented. Bleeding from the umbilical stump or after circumcision is often the first clinical sign observed in deficient patients. Congenital factor XIII deficiency gives rise to a life-long bleeding diathesis and requires regular replacement therapy. A survey of factor XIII deficient patients indicated that they have a high risk of intracranial hemorrhage unless the disease has been

diagnosed and the replacement therapy commenced (10). In addition, it was noted that deficient patients may have abnormal wound healing, and there is a high incidence of spontaneous abortion among affected females. Other clinical features of the disease have been reviewed by Board *et al.* (10). So far, most cases of congenital factor XIII deficiency result from defects in the A subunit. Deficiency of the B subunit is clinically much less severe and possibly goes undiagnosed. Many amino acid substitutions in the A subunit occur in or directly influence residues in the catalytic pocket; however, several mutations that have been found to have no effect on the active site have deleterious effects on stability and flexibility of the protein (11–13).

The determination of the crystal structure of factor XIII A subunit (14) has provided not only a greater understanding of the structure and catalytic mechanism of the normal enzyme but has also permitted the prediction of possible effects on the protein structure caused by mutations (11–13, 15–21). In this study, we have identified a novel mutation in the factor XIII A subunit (Gly420Ser) which, although it occurs within the core domain, does not directly influence the proposed catalytic triad. The effect of the Gly420Ser substitution on the enzyme structure and function has been predicted by the application of computer modeling.

#### Patient and methods

##### Patient

The patient was a Thai boy whose great-grandparents were of Pakistani origin. There was consanguinity in this family, since the patient's parents were first cousins. There was no history of a bleeding tendency in this family. At the time of diagnosis, the patient was 5 yr old. His clinical presentation and urea solubility test led to the diagnosis of factor XIII deficiency and the patient was transfused with fresh frozen plasma (22). The patient did not receive prophylactic treatment thereafter; however, he had an occasional replacement therapy with cryoprecipitate when a severe bleeding was observed.

#### DNA amplification, single strand conformation polymorphism (SSCP) analysis, and nucleotide sequencing

Each of the 15 exons of the factor XIII A subunit gene was amplified from the patient's genomic DNA as described previously (23). The polymerase chain reaction (PCR) products were then subjected to SSCP analysis (24). The PCR product of an exon showing an electrophoretic abnormality was further

purified by a QIAquick gel extraction kit (Qiagen, Germany) and directly sequenced using the di-deoxynucleotide method (25) with ABI-PRISM™ BigDye™ Terminator Cycle Sequencing Ready Reaction Kit and an ABI-PRISM™ 310 Genetic Analyzer (PE Applied Biosystems, USA). Since the mutation identified in the patient was found to eliminate a *Hae*III cleavage site in exon 10, we also confirmed the mutation in the patient and his parents by *Hae*III digestion of the amplified exon 10 DNA and electrophoresis on 3% MetaPhor® agarose gel (FMC BioProducts, USA).

#### Multiple sequence alignment

An alignment of transglutaminase and related sequences was performed to evaluate the relative conservation of each amino acid residue. The human factor XIII A subunit sequence was used to scan the sequence databases with the BLAST server computer tool (URL: <http://www.ncbi.nlm.nih.gov/BLAST/>) over a non-redundant set of protein sequences. Matched sequences were then extracted from the sequence databases and aligned with the CLUSTALW program (26) using default settings. The alignment and full list of database accession codes are illustrated in Fig. 3.

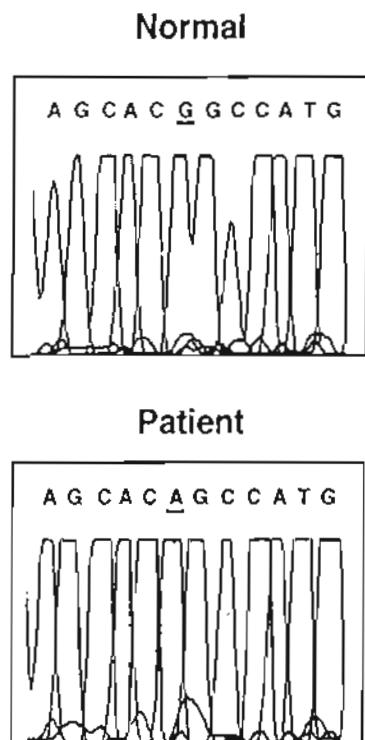



Fig. 1. Direct sequencing of amplified exon 10 of factor XIII A subunit gene from a normal individual and the patient with factor XIII deficiency. A nucleotide at position 1258 is underlined. The sequence with  $G^{1258}$  was found in the normal exon 10 while the sequence with  $A^{1258}$  was observed in the patient's exon 10.

Computer modeling of the Gly420Ser mutation in human factor XIII

To identify the relative location of Gly420, each of the four monomeric A subunits in two distinct crystal forms of the human factor XIII structures (PDB codes 1fie and 1ggt) were examined using the molecular modeling package Insight II (Biosym/MSI, USA). Possible effects of the Gly420Ser mutation were then explored with the HOMOLOGY module of the package, replacing the Gly residue with Ser and choosing a conformation which caused the least steric overlap. Focusing only on the core domain (residues 185–515), this model of the mutant structure was then improved by energy minimization calculations, using the DISCOVER module. The resulting model was free of any steric overlaps introduced by the Gly420Ser mutation, but nonetheless still contained many strained parameters that are present in the original crystal structure as determined by PROCHECK (27).

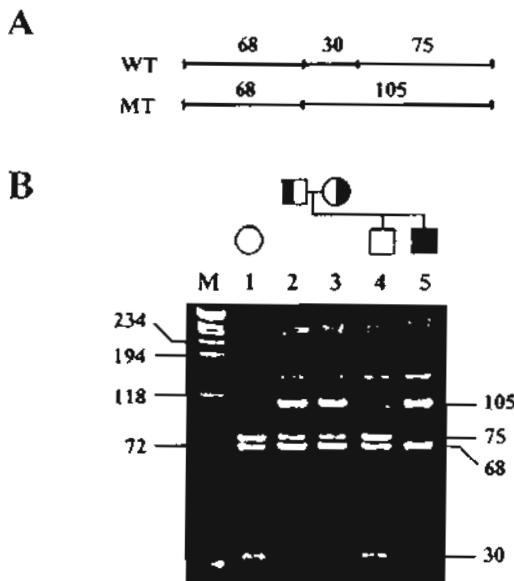



Fig. 2. Analysis of the G<sup>1258</sup> to A mutation in exon 10 of the factor XIII A subunit gene by *Hae*III restriction endonuclease digestion. (A) The fragment amplified from exon 10 is 173 bp in length and normally contains two *Hae*III sites. The digestion with this enzyme generates three fragments with the sizes of 68, 30, and 75 base pairs (bp). However, one of these sites is abolished by the G<sup>1258</sup> to A mutation; the *Hae*III digestion results in two fragments, 68 and 105 bp. (B) The fragment amplified from exon 10 of the patient, his parents and the elder brother were digested with *Hae*III and electrophoresed on agarose gel. The digested products of an unrelated normal amplified DNA were run as a control and the expected sizes of the DNA fragments after digestion are indicated. Lane M, molecular size markers; lane 1, DNA from an unrelated normal individual; lane 2, DNA from the patient's father; lane 3, DNA from the patient's mother; lane 4, DNA from the patient's elder brother; lane 5, DNA from the patient.

|        | 410                    | 420 | 430 |
|--------|------------------------|-----|-----|
| P00488 | GPASVQAIKIGHVCFQFDAPF  |     |     |
| Y12502 | GPASVQAVKIGHVCFQFDAPF  |     |     |
| P22758 | GPCSVEVKNGLIVYMKYDTPF  |     |     |
| P22735 | GPCSVEIKNGLIVYMKYDTPF  |     |     |
| P23606 | GPCSVEIKNGLIVYMKYDTPF  |     |     |
| Q05187 | GPASVLAVQRGEIGYMFDSPL  |     |     |
| Y10212 | GPAPIKAIKNGEIVYIGSDTNE |     |     |
| P21980 | GPVPVRAIKEGDLSTKYDAPF  |     |     |
| P51176 | GPVPVRAIKEGDLSTKYDAPF  |     |     |
| P21981 | GPVSVRAIKEGDLSTKYDAPF  |     |     |
| P08587 | GPVPVRAIKEGHLNVKYDAPF  |     |     |
| P49221 | GPSPLTAIRKGDIFIVYDTRF  |     |     |
| Q99041 | GPSPVSAIRQGLVQFMYDTRF  |     |     |
| Q08188 | GPASVIGVREGDVQLNEDMPF  |     |     |
| Q08189 | GPASVNAIKAGDVDRNEDMIF  |     |     |
| JCS133 | GPCPVKAVERGDGVGKYDAAF  |     |     |
| P52181 | GPCPVAIAIKEGNLGVKYDAPF |     |     |
| Q01841 | GPAPVKAIKEGDLQVQYDIPF  |     |     |
| P52183 | GPAPVVAVKQGEVLRPYDSAY  |     |     |
| 743818 | GPVSVRAIKEGDLSTKYDASF  |     |     |
| P16452 | DLVPVRAVKEGTVGLTPAVSD  |     |     |
| P49222 | SLVPVRAVKEGEIQLDPAVPE  |     |     |

: : \* :

Fig. 3. A multiple amino acid sequence alignment of the human factor XIII A subunit and other members of transglutaminase (TGase) family. Most sequences were obtained from SWISSPROT except Y12502 (embl), Y10212 (embl), JCS133 (pir) and 743818 (gi). The symbols “\*” and “:” under the alignment indicate conserved and conservative-changed positions, respectively. The position of Gly420 is indicated by an arrow. P00488, human factor XIII A subunit; Y12502, rat factor XIII A subunit; P22758, rabbit epidermal TGase; P22735, human epidermal TGase; P23606, rat epidermal TGase; Q05187, hemocyte TGase; Y10212, ascidian TGase; P21980, human tissue TGase; P51176, bovine tissue TGase; P21981, mouse tissue TGase; P08587, guinea pig tissue TGase; P49221, human prostate TGase; Q99041, rat prostate TGase; Q08188, human TGase E precursor; Q08189, mouse TGase E precursor; JCS133, chum salmon tissue TGase; P52181, red sea bream tissue TGase; Q01841, chicken tissue TGase; P52183, grasshopper annulin; 743818, rat GTP-binding protein Gh; P16452, human erythrocyte band 4.2; P49222, mouse erythrocyte band 4.2. In each case the amino acids are numbered according to the human factor XIII A subunit.

## Results

### SSCP analysis, nucleotide sequencing and PCR-RFLP

Migration of all the patient's 15 amplified exons in a native polyacrylamide gel did not show any differences compared with those of a normal individual. This indicated the absence of a large insertion or deletion in any exon. Therefore, possible small nucleotide insertions/deletions or substitutions in amplified exons were investigated by SSCP analysis. The SSCP analysis of the patient's amplified exons indicated an abnormality in exon 10 (data not shown). Direct sequencing of the amplified exon 10 DNA from the patient revealed a homozygous G to A transition at nucleotide 1258 (Fig. 1) which alters

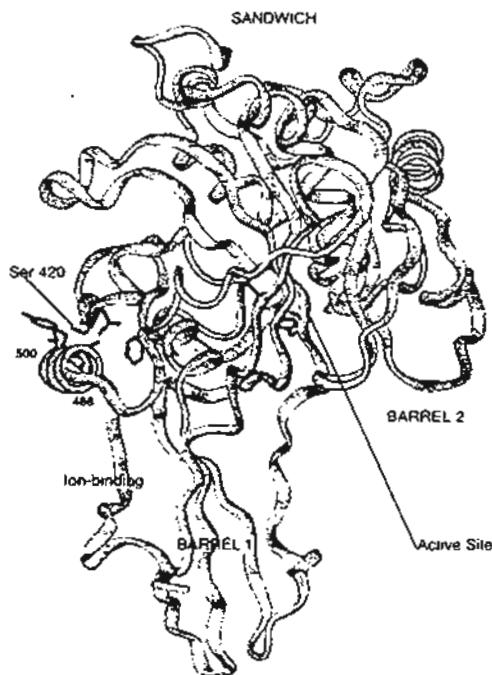



Fig. 4. A ribbon diagram of the core domain (residues 185–515) of human factor XIII A subunit showing the relative location of position 420 with respect to the putative active site of the molecule (Cys314, His373, Asp396). The sandwich domain (Domain 1) would lie directly above the core domain, while the barrel domains would occur over (out of the page) the regions indicated. The A subunit dimer interface is behind the diagram (into the page). Mutation of Gly420 to Ser requires adjustment of the relative positions of the Gly420 loop and the 488–500 helix below it. An ion-binding site is located under the helix, close to the site of  $\text{Ca}^{2+}$ -dependent cleavage (Lys513).

Gly420 to Ser (nucleotides and amino acids are numbered from the first serine of the mature factor XIII A subunit protein). The amplified exon 10 fragment was 173 bp in length which normally contained two *Hae*III sites that divided the PCR product into 68, 30 and 75 bp fragments. The mutation  $\text{G}^{1258}$  to A in this family abolished one of these *Hae*III sites leaving 68 and 105 bp fragments (Fig. 2A). A family study using *Hae*III digestion of amplified exon 10 showed that the patient inherited a similar mutant allele from each parent (Fig. 2B). This experiment also confirmed the previous observation suggesting that the patient's elder brother was normal.

To examine whether or not the mutant Gly420Ser allele is present in the general population, *Hae*III-digestion analysis of amplified exon 10 was performed in 70 DNA samples from normal individuals. The result revealed that the mutant allele was not present in the normal individuals tested.

#### Sequence alignment and computer modeling

Examination of a multiple sequence alignment of 22 transglutaminase and related molecules (Fig. 3)

shows that Gly420 is completely conserved across all sequences, including the non-enzymatic band 4.2 proteins. This conservation suggests an important structural or functional role for this residue. In the crystal structure of human factor XIII A subunit, Gly420 is located on a surface loop (residues 418–429) and by virtue of its small side chain, allows close packing of a helix (residues 488–500) with the loop. In the dimer, the loop remains on the surface but does form part of the dimer interface. Gly420 occurs within the core domain (Fig. 4) of the subunit but is on the opposite face to and at least 19 Å away from the putative active site triad (Cys314, His373, and Asp396).

The backbone dihedral angles show that Gly420 has left-handed helical dihedral angles that lie in the fringes of the allowable regions of  $\phi$ ,  $\psi$  space ( $\phi = 69.6\text{--}93.8^\circ$ ;  $\psi = 1.8\text{--}16.4^\circ$ ). Such angles are more easily adopted by, but not limited to, Gly residues. Notably, nearby Phe426 and Asp427 also have left-handed helical dihedral angles, while Pro411 has a *cis* and not *trans* peptide bond, suggesting this region of the molecule is conformationally strained.

Substitution of Gly420 for Ser introduces steric conflicts with the amino acids at positions 493 and 496. These conflicts, however, can easily be rectified by minor adjustments to the bond angles and distances of residues in the C-terminus of the core domain (residues 480–515), as was done with energy minimization calculations. Superposition of the model and the crystal structure shows that the helix from residues 488–500 undergoes a translation of approximately 0.6 Å in the directions pointing away from Ser420, making room for this side chain. Residues 508–515 also show considerable deviation with for example, Glu509 showing an root mean-square deviation (r.m.s.d.) of 0.77 Å for all heavy atoms.

#### Discussion

Factor XIII deficiency is a rare autosomal recessive disease and only some cases have been studied in sufficient detail to identify the causative mutation. In the present study we found a nucleotide transition,  $\text{G}^{1258}$  to A, leading to the Gly420Ser substitution in the core domain of the factor XIII A subunit. The mutation was suspected to be the cause of factor XIII deficiency in the patient. However, the fact that the sensitivity of SSCP analysis is not 100% led to the possibility that the  $\text{G}^{1258}$  to A substitution might simply be a natural polymorphism and the real mutation has not yet been detected by the analysis. To examine this possibility, the allele frequency of Ser420 in the general population was investigated. The result showed that the Ser420

allele has not been detected in normal individuals, suggesting that it is not a polymorphism but likely to be the cause of factor XIII deficiency. In addition, multiple sequence alignment of 22 transglutaminase and related proteins demonstrated that Gly420 is completely conserved across all sequences from different species (Fig. 3), indicating its important structural or functional role. The Gly420Ser mutation is therefore most likely to cause factor XIII deficiency. The three-dimensional structure of the A subunit has already been solved by X-ray crystallography; thus, it is possible to directly model the Gly420Ser substitution to evaluate its potential effect on the structure and function of the molecule.

Computer modeling of the Gly420Ser mutation shows that only minor readjustments of the residues in the C-terminus of the core domain are required to alleviate major steric conflicts introduced by the larger side chain of the Ser residue. The backbone torsion angles remain strained, but this is consistent with other residues nearby. It would thus appear that such a mutation should not be overly detrimental to the function of the molecule. Since Gly420 is one of only 46 out of over 700 amino acid positions that are completely conserved in the known transglutaminase and related sequences, this would suggest a specific role for the Gly420, in either a structural or functional sense. Being distal to the active site, as well as being present in non-enzymatic molecules (the band 4.2 proteins) supports a more structural role, consistent with the left-handed backbone torsional angles at position 420 that are more favoured by Gly. In the 2.5 Å resolution crystal structure of human factor XIII, Gly420 allows close packing of a loop with the last helical structure (residues 488–500) in the core domains (Fig. 4). Residues in the long loop subsequent to this helix lead into the first of the two immunoglobulin-like, barrel domains. It has been suggested that full activation of factor XIII requires allosteric changes whereby these barrel domains disengage, opening up the putative active site of the molecule to fibrin for crosslinking (14, 28). It has also been shown that prolonged incubation of factor XIII with thrombin leads to  $\text{Ca}^{2+}$ -dependent cleavage at Lys513 (29). Thus it is possible that minor adjustments to the orientation of the helix 488–500 and the core/barrel linker loop, as a result of the Gly/Ser mutation, may interrupt the molecule's ability to undergo this conformational change. This could be of particular importance since Asp438, Glu485, and Glu490 residues, which are around or within the 488–500 helix, are known to be involved in ion binding (30, 31). A more speculative alternative is that subsequent to conformational changes in the structure, the loop

containing Gly420 may also need to become more mobile, a process which would be assisted by a flexible Gly residue at position 420.

Although *in vitro* mutagenesis can be used to study the functional consequence of the Gly420Ser substitution, its presence only in the patient and its absence in the normal population, together with the nature of the mutated residue in a highly conserved position among the transglutaminases and related proteins, convincingly support the hypothesis that the Gly420Ser mutation has an important functional effect. The structure of the A subunit has been previously determined; however, precise details of substrate binding, activation and subunit interactions are not completely understood. Here it is shown that a Gly at position 420 is likely to be a requirement for normal transglutaminase activity and that mutation to Ser at this position leads to factor XIII deficiency. Characterization of other naturally occurring mutants in terms of their structural and functional effects can improve our understanding of the A subunit and transglutaminases in general.

#### Acknowledgements

This study was supported in part by Thammasat University. P.Y. is a recipient of a grant from the National Center for Genetic Engineering and Biotechnology (BIOTEC) of the National Science and Technology Development Agency (NSTDA), Thailand. G.C. is supported by the Australian Research Council.

#### References

1. FOLK JE, FINLAYSON JS. The  $\epsilon$ -( $\gamma$ -glutamyl)lysine crosslink and the catalytic role of transglutaminases. *Adv Protein Chem* 1977;31:1–133.
2. SCHWARTZ ML, PIZZO SV, HILL RL, MCKEE PA. The subunit structures of human plasma and platelet factor XIII (fibrin-stabilizing factor). *J Biol Chem* 1971;246:5851–5854.
3. SCHWARTZ ML, PIZZO SV, HILL RL, MCKEE PA. Human factor XIII from plasma and platelets. Molecular weights, subunit structures, proteolytic activation, and cross-linking of fibrinogen and fibrin. *J Biol Chem* 1973;248:1395–1407.
4. LORAND L, GRAY AJ, BROWN K, et al. Dissociation of the subunit structure of fibrin stabilizing factor during activation of the zymogen. *Biochem Biophys Res Commun* 1974;56:914–922.
5. CHUNG SI, LEWIS MS, FOLK JE. Relationships of the catalytic properties of human plasma and platelet transglutaminases (activated blood coagulation factor XIII) to their subunit structures. *J Biol Chem* 1974;249:940–950.
6. BOHN H, BECKER W, TROBISCH H. Molecular structure of fibrin stabilizing factors in man. II. Comparative immunologic studies on factor XIII deficient plasma and normal plasma. *Blut* 1973;26:303–311.
7. COOKE RD. Calcium-induced dissociation of human plasma factor XIII and the appearance of catalytic activity. *Biochem J* 1974;141:683–691.
8. BOARD PG. Genetic polymorphism of the A subunit of

human coagulation factor XIII. *Am J Hum Genet* 1980; 31:116-124.

9. LORAND L. Activation of blood coagulation factor XIII. *Ann NY Acad Sci* 1986;485:144-158.
10. BOARD PG, LOSOWSKY MS, MILOSZEWSKI KJA. Factor XIII: inherited and acquired deficiency. *Blood Rev* 1993;7: 229-242.
11. ANWAR R, STEWART AD, MILOSZEWSKI KJA, LOSOWSKY MS, MARKHAM AF. Molecular basis of inherited factor XIII deficiency: identification of multiple mutations provides insights into protein function. *Br J Haematol* 1995;91: 728-735.
12. MIKKOLA H, YEE VC, SYRJÄLÄ M, *et al.* Four novel mutations in deficiency of coagulation factor XIII: consequences to expression and structure of the A-subunit. *Blood* 1996;87:141-151.
13. KANGSDALAMPAI S, CHELVANAYAGAM G, BAKER R, TIEDEMANN K, KUPERAN P, BOARD PG. Identification and characterization of two missense mutations causing factor XIIIa deficiency. *Br J Haematol* 1999;104:37-43.
14. YEE VC, PEDERSEN LC, LE TRONG I, BISHOP PD, STENKAMP RE, TELLER DC. Three-dimensional structure of a transglutaminase: human blood coagulation factor XIII. *Proc Natl Acad Sci USA* 1994;91:7296-7300.
15. ASLAM S, POON MC, YEE VC, BOWEN DJ, STANDEN GR. Factor XIII<sub>A</sub> *Calgary*: a candidate missense mutation (Leu667Pro) in the beta barrel 2 domain of the factor XIII<sub>A</sub> subunit. *Br J Haematol* 1995;91:452-457.
16. ASLAM S, YEE VC, NARAYANAN S, DURAIASAMY G, STANDEN GR. Structural analysis of a missense mutation (Val414Phe) in the catalytic core domain of the factor XIII<sub>A</sub> subunit. *Br J Haematol* 1997;98:346-352.
17. INBAL A, YEE VC, KORNBROT N, ZIVELIN A, BRENNER B, SELIGSOHN U. Factor XIII deficiency due to a Leu660Pro mutation in the factor XIII subunit-A gene in three unrelated Palestinian Arab families. *Thromb Haemost* 1997;77:1062-1067.
18. ANWAR R, GALLIVAN L, MILOSZEWSKI KJ, MARKHAM AF. Splicing and missense mutations in the human FXIIIa gene causing FXIII deficiency: effects of these mutations on FXIIIa RNA processing and protein structure. *Br J Haematol* 1998;103:425-428.
19. ICHINOSE A, TSUKAMOTO H, IZUMI T, *et al.* Arg260-Cys mutation in severe factor XIII deficiency: conformational change of the A subunit is predicted by molecular modelling and mechanics. *Br J Haematol* 1998;101:264-272.
20. KANGSDALAMPAI S, CHELVANAYAGAM G, BAKER RT, *et al.* A novel Asn344 deletion in the core domain of coagulation factor XIII A subunit: its effects on protein structure and function. *Blood* 1998;92:481-487.
21. TAKAHASHI N, TSUKAMOTO H, UMEYAMA H, CASTAMAN G, RODEGHIRO F, ICHINOSE A. Molecular mechanisms of type II factor XIII deficiency: novel Gly562-Arg mutation and C-terminal truncation of the A subunit cause factor XIII deficiency as characterized in a mammalian expression system. *Blood* 1998;91:2830-2838.
22. LAOSOMBAT V, MAIPANG M, WONGCHANCHAILERT M. Congenital factor XIII deficiency: report of a case and literature review. *J Med Assoc Thai* 1989;72:701-707.
23. BOARD P, COGGAN M, MILOSZEWSKI K. Identification of a point mutation in factor XIII A subunit deficiency. *Blood* 1992;80:937-941.
24. ORITA M, SUZUKI Y, SEKIYA T, HAYASHI K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reactions. *Genomics* 1989;5:874-879.
25. SANGER F, NICKLEN S, COULSON AR. DNA sequencing with chain-terminating inhibitors. *Proc Natl Acad Sci USA* 1977;74:5463-5467.
26. THOMPSON JD, HIGGINS DJ, GIBSON TJ. CLUSTAL W: improving the sensitivity of multiple sequence alignment through sequence weighing, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res* 1994;22: 4673-4680.
27. LASKOWSKI RA, MACARTHUR MW, MOSS DS, THORNTON JM. PROCHECK: a program to check the stereochemical quality of protein structures. *J Appl Crystallogr* 1993;26: 283-291.
28. YEE VC, PEDERSEN LC, BISHOP PD, STENKAMP RE, TELLER DC. Structural evidence that the activation peptide is not released upon thrombin cleavage of factor XIII. *Thromb Res* 1995;78:389-397.
29. TAKAHASHI N, TAKAHASHI Y, PUTNAM FW. Primary structure of blood coagulation factor XIIIa (fibrinoligase, transglutaminase) from human placenta. *Proc Natl Acad Sci USA* 1986;83:8019-8023.
30. YEE VC, LE TRONG I, BISHOP PD, PEDERSEN LC, STENKAMP RE, TELLER DC. Structure and function studies of factor XIIIa by X-ray crystallography. *Sem Thromb Haemost* 1996;22:377-384.
31. FOX BA, YEE VC, PEDERSEN LC, *et al.* Identification of the calcium binding site and a novel ytterbium site in blood coagulation factor XIII by X-ray crystallography. *J Biol Chem* 1999;274:4917-4923.

MUTATION IN BRIEF

## A Novel Splice-Acceptor Site Mutation (IVS13-2A>T) of Polycystic Kidney Disease 1 (*PKD1*) Gene Resulting in an RNA Processing Defect with a 74-Nucleotide Deletion in Exon 14 of the mRNA Transcript

Wanna Thongnoppakhun,<sup>1,2</sup> Nanyawan Rungroj,<sup>1</sup> Prapon Wilairat,<sup>2</sup> Kriengsak Vareesangtip,<sup>3</sup> Chintana Sirinavin,<sup>1,4</sup> and Pa-thai Yenchitsomanus<sup>1,5,\*</sup>

<sup>1</sup>Molecular Genetics Unit, Office for Research and Development, Faculty of Medicine-Siriraj Hospital; <sup>2</sup>Department of Biochemistry, Faculty of Science; <sup>3</sup>Renal Unit, Department of Medicine, Faculty of Medicine-Siriraj Hospital;

<sup>4</sup>Division of Medical Genetics, Department of Medicine, Faculty of Medicine-Siriraj Hospital; <sup>5</sup>Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine-Siriraj Hospital, Mahidol University, Bangkok, Thailand

\*Correspondence to Pa-thai Yenchitsomanus, Molecular Genetics Unit, Office for Research and Development, Faculty of Medicine-Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok 10700, Thailand. Tel and Fax: +66 2 4184793; E-mail: grpye@mahidol.ac.th

Communicated by Mark H. Paoletti

Autosomal dominant polycystic kidney disease (ADPKD) occurs mainly from mutations of polycystic kidney disease 1 (*PKD1*) gene. A novel mutation of the *PKD1* gene due to a nucleotide substitution in splice-acceptor site of IVS13 (AG>TG) was identified by analyses of *PKD1*-cDNA and genomic DNA. The IVS13-2A>T substitution resulted in an inactivation of this splice site and utilization of cryptic splice acceptor site in exon 14, causing a 74-nucleotide deletion of this exon in the *PKD1*-mRNA transcript. The abnormal transcript was present ectopically in the patients' lymphocytes. The partial deletion of *PKD1*-mRNA leads to frameshift translation and introduces a termination signal at codon 1075. The truncated protein with about one quarter of the full-length polycystin-1 is most likely inactive. Thus, the effect of this mutation would be 'loss-of-function' type. Allele specific amplification (ASA) was developed to detect the mutation in DNA samples of other family members. The mutation was present in 11 affected but absent in 13 unaffected family members, corresponding to the results of linkage analysis. In addition, it was not observed in DNA samples of 57 unrelated healthy individuals. © 1999 Wiley-Liss, Inc.

KEY WORDS: Polycystic kidney disease 1; *PKD1*; long RT-PCR; cryptic splice-site; splicing defect; allele specific amplification; ASA; Thailand

Received 29 July 1999; Revised manuscript accepted 19 October 1999.

## INTRODUCTION

Autosomal dominant polycystic kidney disease (ADPKD; MIM# 173900) is one of the most common human inherited disorders worldwide, characterized by the development of multiple abnormal fluid-filled cysts in the kidneys, leading to end stage renal failure (Dalgaard, 1957). At least three genes are responsible for this disease: *PKD1* (MIM# 601313; approved symbol, PKD1) at 16p13.3 (The European Polycystic Kidney Disease Consortium, 1994; Hughes et al., 1995; The International Polycystic Kidney Disease Consortium, 1995), *PKD2* at 4q21-23 (Mochizuki et al., 1996), and the still unmapped, *PKD3* (Daoust et al., 1995). Abnormality of *PKD1* is responsible for about 85% of ADPKD (Peters and Sandkuijl, 1992). *PKD1* has the size of about 54 kb consisting of 46 exons and transcribing 14,148-nu mRNA (The European Polycystic Kidney Disease Consortium, 1994; Burn et al., 1995; Hughes et al., 1995; The International Polycystic Kidney Disease Consortium, 1995).

The existence of at least three *PKD1* homologs which share over 95% identity with *PKD1* on the same chromosome, has made it difficult to characterize *PKD1* mutations (The European Polycystic Kidney Disease Consortium, 1994). This has also resulted in bias of mutation analysis of *PKD1* in which the majority of mutations identified to date fall within its 3' unique region (HGMD; Human Gene Mutation Database: <http://www.uwcm.ac.uk/uwcm/mg/search/120293.htm!>). However, the mutations found in this region contribute to only 10-15% of all known cases of *PKD1* disease, indicating that most mutations are located in the reiterated region of *PKD1* (Peral et al., 1996). Recently, at least two groups have attempted to identify mutations in the reiterated part of *PKD1* by long-range PCR (LR-PCR) (Watnick et al., 1997; Peral et al., 1997). However, the methods that have been developed could isolate parts of the reiterated sequence of *PKD1*, unable to isolate the sequence beyond exon 15 to the 5' end of the gene. We have recently developed a long RT-PCR method for isolation of the entire coding sequence of *PKD1* from its mRNA transcript (Thongnoppakhun et al., 1999), eliminating the interference from the homologous sequences. In this report, we demonstrate the application of long RT-PCR and LR-PCR methods in identification of *PKD1* mutation in *PKD1* patients and report a novel mutation which results in RNA processing defect leading to partial deletion of exon 14 sequence in the *PKD1*-mRNA transcript.

## MATERIALS AND METHODS

## The PK015 family and linkage study

The proband (IV-6) of the Thai family PK015 (Fig. 2) was firstly referred to see nephrologist with the problems of a mild degree of chronic renal failure (serum creatinine of 4.2 mg/dl), hypertension and gross hematuria. An abdominal ultrasound demonstrated polycystic kidneys and liver. The diagnosis of ADPKD in the patient and other family members was made, based on the demonstration of renal cysts by an abdominal ultrasound (Ravine et al., 1994). Blood samples from the patients and relatives were collected with informed consent. Linkage analysis was performed by detecting 5 polymorphic DNA markers on chromosome 16p including D16S85 (3' HVR) (Reeders et al., 1985), SM7 (Harris et al., 1991), 16AC2.5 (Thompson et al., 1992), SM6 (Peral et al., 1994), and KG8 (Germann et al., 1993).

## RNA preparation, long RT-PCR, and nested PCR

The full-length *PKD1*-cDNA was synthesized from RNAs prepared from lymphocytes and then amplified by long PCR, following the protocols as previously described (Thongnoppakhun et al., 1999). The length of PCR product obtained was 13,634 bp. Nested PCRs were carried out by using nested primers (sequences available on request) to generate 9 overlapping fragments of 1,352-1,678 bp by the method as previously described (Thongnoppakhun et al., 1999). A fragment of amplified cDNA (nt 3115-4689) in the region of exons 12-15 (GenBank Accession No. L33243) was digested with either *Bsp*1/286 I, *Hinf*I, *Pst* I, or *Taq* I (New England Biolabs and Promega) for detailed analysis of deletion observed. Amplification with additional pair of primers covering nt 3254-3538 in exons 13-15 was also performed.

#### Direct DNA sequencing

PCR products were purified from agarose gel after electrophoresis by QIAquick<sup>TM</sup> Gel Extraction Kit (Qiagen GmbH, Hilden, Germany) as instructed by the manufacturer. The purified DNAs were sequenced manually by using fmol<sup>®</sup> DNA Sequencing System (Promega).

#### Amplification of genomic DNA

To isolate *PKD1*-specific DNA fragment out of the homologous sequences, a LR-PCR for amplification of genomic DNA (18,099 bp) was carried out by using a primer specific to the unique sequence (Ex34B at nt 44438-44409 in exon 34) coupled with a primer annealing to a region in the reiterated sequence (SI3.1F at nt 26340-26369 in exon 13), and then nested PCRs were performed by using internal pairs of primers. The primers were designed from sequence of *PKD1* gene (GenBank Accession No. L39891). The PCR reaction for a long-range amplification in a total volume of 50  $\mu$ l contained 200 ng genomic DNA, 200 nM of each primer, 200  $\mu$ M dNTP mixture, 1 unit ELONGASE Enzyme mix, 10% DMSO, and 1.0 mM MgSO<sub>4</sub>. The PCR conditions consisted of an initial incubation (hot start) at 95°C for 1 min 30 s, then amplification for 40 cycles at 94°C for 30 s, 61°C for 30 s, 68°C for 20 min, and a final incubation at 70°C for 10 min. The LR-PCR product was diluted up to 1,000 folds depending on its amounts to reduce contamination from genomic DNA and used as template for nested PCRs of the 1,064- and 320-bp products with the primers WT2F/SI3.1B and SI3.2F/SI3.2B, covering the regions of nt 26375-27438 (exon 13-15) and 26717-27036 (IVS 13-14), respectively. Sequences of the nested PCR primers are available on requested. Contamination of homologous sequences has been proven negligible in another similar experiment by the failure to amplify DNA regions outside a LR-PCR product of 12.9 kb, when this product was diluted 1,000 folds and used as template for nested PCRs (data not shown).

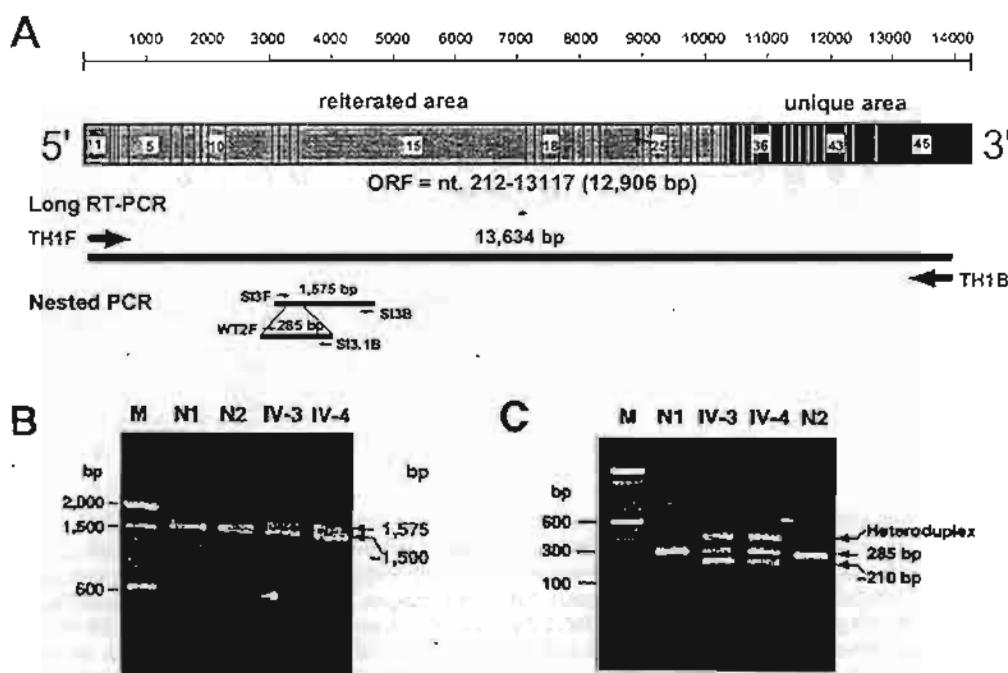
#### Mutation analysis by allele specific amplification (ASA)

Allele specific amplification (ASA), PCR for amplifications of wild-type and mutant alleles with allele-specific primers coupled with a shared primer (Newton et al., 1989), was invented for analysis of the *PKD1* mutation discovered. The wild-type and mutant primers had one different base at their 3' ends, each of which matched to the complementary base at the mutation site in the corresponding allele. Two additional mismatches were also introduced at the third and the ninth nucleotides from the 3'-end of primers to increase discriminating power when they bound across the alleles (Kwok et al., 1990). The sequences of wild-type (13WT) and mutant primers (13MU) are: TTCACTCACTGCGTCCCACCACCCGACA and TTCACTCACTGCGTCCCACCACCCGTCT (underlined are nucleotides altered to introduce mismatches), respectively. The sequence of shared primer (SI3.2B) is: GTTGGGGAGGAAGGGGGGCAGCTTGAC.

Each DNA sample was amplified in two separate reactions with a pair of primers for wild-type or mutant allele. A pair of primers (SI7.2F/SI7.2B) amplifying a region of 698-bp in exon 25/intron 26 (nt 38978-39675) of the *PKD1* gene were also added for internal control amplification in both reactions.

## RESULTS

#### Long RT-PCR and nested PCRs of samples from *PKD1* patients


A long RT-PCR method (Thongnoppakhun et al., 1999) was performed to study RNA samples prepared from two patients (IV-3 and IV-4) of PK015 family. The full-length *PKD1* cDNA was fractionated into 9 overlapping fragments by nested PCRs. The presence of products with two different sizes (normal 1,575 bp and a shorter fragment of about 1,500 bp) were observed in both patients' samples, using a primer pair amplifying the region between nt 3115 and 4689 (Fig. 1A and 1B). The shorter fragment might have resulted from a partial deletion in the mRNA transcript from the affected allele of *PKD1* in these patients. Restriction endonuclease mapping analyses of the nested PCR product from one patient (IV-3) in comparison with that of a normal individual, by using *Bsp*1286 I, *Hinf*I, *Pst* I and *Taq* I, were carried out to localize the area of deletion, which was found to locate between the first sites of *Hinf*I and *Bsp*1286 I (nt 3347-3477). A new set of primer pair covering the region of nt 3254-3538 were designed to amplify this region by nested PCR, generating an amplified product of 285 bp in normal samples (Fig. 1A). The samples from the two patients produced both the normal (285 bp) and a shorter (~210 bp) PCR products, as well as a slower migrating band of heteroduplex DNA (Fig. 1C). This data confirmed that there was indeed a deletion in this region of *PKD1* cDNA of both patients. Direct DNA sequencing of the smaller PCR product (~210

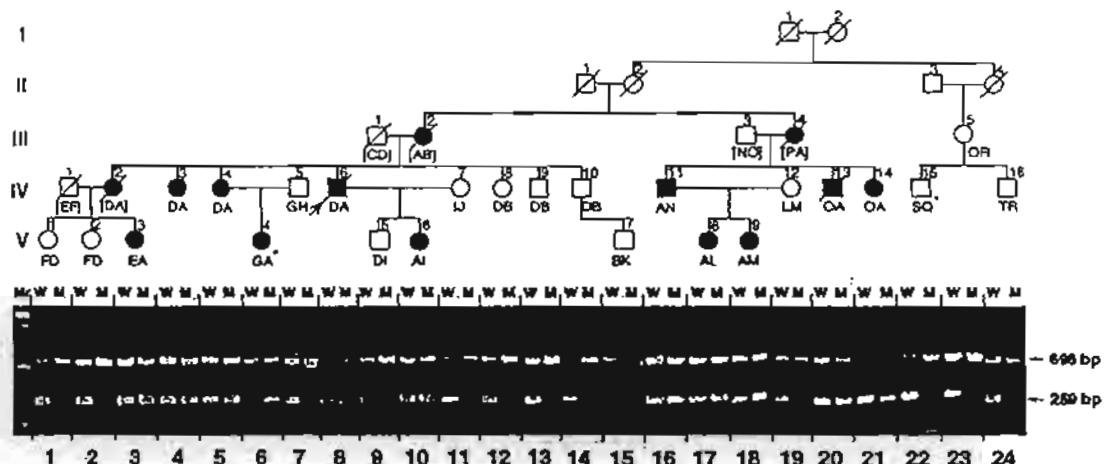
bp) from a patient revealed the 74-bp deletion corresponding to nt 3373-3446 in *PKD1* mRNA, the nucleotide positions 1-74 of exon 14 of *PKD1*.

#### Analysis of genomic DNA

The deletion of 74 nucleotides of exon 14 of the patients *PKD1* mRNA might result from deletion in this region of the gene or from point mutation located near the exon-intron junction producing an abnormally spliced RNA product. A LR-PCR for amplification of *PKD1*-specific sequence, about 18 kb, from genomic DNA was developed to eliminate contamination from sequences of the homologous genes. A pair of nested PCR primers (WT2F and SI3.1B positioned in exons 13 and 15, respectively) amplifying a region covering exon 14 and both flanking introns (1,064 bp) were also used for DNA deletion study in exon 14. The results of DNA analysis in four patients of PK015 family (IV-3, IV-4, IV-11, and V-9) indicated that there was no observable DNA deletion, particularly in the region of exon 14 of *PKD1*.

To identify mutation in exon 14 of *PKD1* precisely, a DNA segment of 320 bp was amplified by using nested PCR primer pair (SI3.2F/SI3.2B) and analysed by DNA sequencing. The result demonstrated a heterozygous A->T substitution at the position 26806 (with respect to the sequence of GenBank Accession No. L39891), which is the first position of the invariable dinucleotides (AG) of the splice acceptor site of intron 13, in *PKD1* of a patient studied. The substitution was confirmed by sequencing of the opposite strand, and it was present in altogether 6 patients examined, most likely to be the *PKD1* causative mutation in this family.




**Figure 1.** A: Diagrammatic representation of the full-length *PKD1* mRNA (upper), a long RT-PCR product (middle), and nested PCR products (lower). The reiterated region in the *PKD1* mRNA (between exons 1 and 32) is represented by the hatched area and the unique region (between exons 33 and 46) by the blackened area. The relative locations of the primers (TH1F/TH1B, SI3F/SI3B and WT2F/SI3.1B; solid arrows) used for amplifying a long RT-PCR product (long solid horizontal line) and the nested PCR products (short solid horizontal lines) are illustrated. A pair of PCR primers (WT2F/SI3.1B) were made for amplification of 285 bp in the region covering the deleted area (lowest) to confirm the prediction and for further analysis by DNA sequencing. B: Nested PCR products amplified from long *PKD1*-cDNA samples with the SI3F/SI3B primers from two normal individuals (N1 and N2) and from two *PKD1* patients (IV-3 and IV-4) of PK015 family. The normal samples showed one fragment of nested PCR product (1,575 bp) whereas the patients' samples demonstrated two fragments (1,575 and ~1,500 bp). Lane M is 100-bp DNA ladder. C: The nested PCR products amplified with the WT2F/SI3.1B primers in the deleted region from the long *PKD1*-cDNA samples of two normal individuals (N1 and N2) and the two patients (IV-3 and IV-4) of the PK015 family. While the normal

samples had only one fragment of 285 bp, the patients' samples contained two fragments of 285 and ~210 bp, as well as a heteroduplex DNA band. Lane M is 100-bp DNA ladder.

#### Mutation analysis by allele specific amplification (ASA)

Since the mutation observed in PK015 family did not create or abolish the sites of all known restriction endonucleases, the ASA method was employed to detect the mutation in all available members of this family. The genomic DNA sample from each individual was amplified in two separate reactions, with either a pair of wild-type (13WT/SI3.2B) or mutant (13MU/SI3.2B) primers, together with internal control (SI7.2F/SI7.2B) primers in both reactions. Normal and patient DNA samples consistently produced the internal control PCR product of 698 bp. DNA samples from normal individuals produced PCR products with the size of 259 bp only in the reaction containing the wild-type primer pair, whereas those from affected individuals generated PCR products with the size of 259 bp in both reactions.

Analysis by ASA of 24 members of PK015 family revealed 11 individuals with the *PKD1* mutation and 13 individuals without (Fig. 2). The same results were obtained when the LR-PCR products or the genomic DNA samples were used for the ASA analysis, indicating that the homologous sequences normally did not interfere with the reaction. The mutation linked (Fig. 2) and segregated with haplotype A or its variant (A\*) defined by the 5 polymorphic DNA markers. By ASA analysis, the mutation could not be detected in DNA samples obtained from 57 unrelated and healthy subjects.



**Figure 2** Detection of IVS13-2A>T mutation in *PKD1* by allele specific amplification (ASA) analysis in genomic DNA samples from members of PK015 family. Pedigree of the family is shown and haplotypes (A to T) in *PKD1* region of chromosome 16p13.3 as determined by using 5 polymorphic DNA markers are indicated under the symbols. Filled and blank symbols represent affected and unaffected members, respectively. DNA sample of each member was analyzed both for wild-type (W) allele with 13WT/SI3.2B primers and for mutant (M) allele with 13MU/SI3.2B primers, producing the same PCR-product size of 259 bp. A pair of internal control primers (SI7.2F/SI7.2B) were also added into both reactions, generating the PCR-product size of 698 bp. DNA samples of normal members (nos. 1, 2, 7, 9, 11, 12, 13, 14, 15, 19, 22, 23, and 24) showed only the product of the wild-type allele (259 bp) but those of affected members (nos. 3, 4, 5, 6, 8, 10, 16, 17, 18, 20, and 21) gave the products of both wild-type and mutant alleles, which had the same size (259 bp). Lane Mr is 100-bp DNA ladder. The mutant allele linked and segregated with the designated haplotype A (7.2 kb for 3' HVR, 123 bp for KG8, 121 bp for SM6, 169 bp for 16 AC2.5, and 98 bp for SM7) or its variant, A\* (4.0 kb for 3' HVR, 123 bp for KG8, 121 bp for SM6, 169 bp for 16 AC2.5, and 98 bp for SM7) with a possible deletion in the 3' HVR region.

#### DISCUSSION

We have developed a long RT-PCR method for isolation of the entire *PKD1* coding sequence from its mRNA transcript (Thongnoppakhun et al., 1999) and applied it to study mutation of *PKD1* in patients with ADPKD. A 74-bp deletion of exon 14 in a cDNA fragment amplified from the full-length *PKD1*-cDNA (~13.6 kb) was observed in two *PKD1* patients from the same PK015 family. Subsequent sequencing analysis of genomic DNA surrounding

exon 14 region of *PKD1* obtained by LR-PCR and nested PCR procedures revealed that a nucleotide transversion (A->T) had occurred at the position 26806 of *PKD1*. The nucleotide 'A' at this position is the first one in the invariable AG dinucleotide of the splice acceptor site in intron 13. Therefore, this IVS13-2A>T mutation was likely to result in the 74-nt deletion in exon 14 which is brought about by the inactivation of the normal splice acceptor site and utilization of a cryptic splice acceptor site at the nearby AG dinucleotide, located at position 73-74 in exon 14 of the *PKD1* mRNA (Fig. 3A).

When the 3' splice acceptor site is mutated, the effect may be either exon skipping or cryptic splice site utilization. This depends on the presence or absence of the next available legitimate or the next best, albeit illegitimate, splice site in the immediate vicinity (Krawczak et al., 1992). The observed RNA processing defect indicates that the AG dinucleotide at the positions 26880-26881 in exon 14 of *PKD1* is an available cryptic splice acceptor site. In normal splice acceptor sites, a pyrimidine tract is always present preceding the AG dinucleotide (Reed and Maniatis, 1985). A pyrimidine-rich tract, with two purine (GG) substitutions, prior to the AG nucleotide was observed in the cryptic splice acceptor site in exon 14 of *PKD1* (TCCTTCCCGTTCAG). The finding that the band intensity of the short cDNA fragment derived from the abnormally spliced mRNA was not reduced compared with that derived from the normally spliced mRNA (Fig. 1B and 1C) indicates that this cryptic splice acceptor site is used as efficiently as the normal splice acceptor site in intron 13. Additionally, the absence of a shorter cDNA fragment lacking entire exon 14 in the same experimental result indicates that exon 14 skipping associated with the IVS13-2A>T mutation did not occur.

Since this abnormal *PKD1*-mRNA was ectopically transcribed in the patients' peripheral blood lymphocytes, it is also highly probably transcribed in the kidneys and in other organs and cells that express polycystin-1. The resulting protein would have a normal amino-acid sequence for the first 1,054 amino acids followed by an abnormal sequence of 20 amino acids introduced by a frameshift (after the nucleotide at position 3373 in codon 1054) before a new stop signal (UGA) at codon 1075 is reached (Fig. 3B). This truncated polycystin-1 lacks the major part of the extracellular domain, all the transmembrane domains, and the cytoplasmic C-terminal portion, which are critical for its predicted function as a signal mediator.

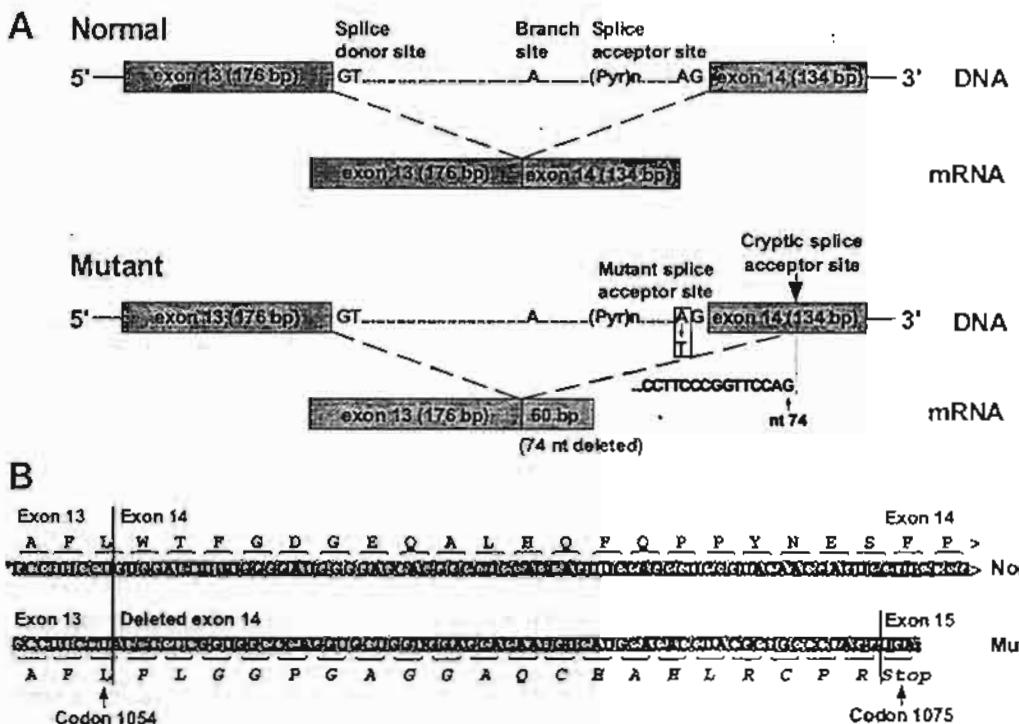



Figure 3 A: Diagram showing normal splicing of intron 13 (upper) and abnormal splicing at a cryptic splice acceptor site in exon 14 (lower) due to IVS13-2A>T mutation in the *PKD1* gene in the patients of PK015 family. The cryptic splice acceptor site has

the sequence of 'CCTTCCCGTTCCAG', homologous to the native splice acceptor site at the inton 13/exon 14 junction. The abnormal splicing resulted in 74-nt deletion of exon 14, leaving 60 nucleotides of this exon. **B:** Framshift in protein translation from the abnormal *PKD1* mRNA transcript with 74-nt deletion. Parts of protein translations from the normal (upper) and abnormal (lower) mRNA transcripts are compared. Frameshifting translation occurs after codon 1054 in the abnormal mRNA transcript, introducing 20 novel amino acids (italic letters), and prematurely terminates at codon 1075.

Using DNA sequencing, this mutation was found in altogether 6 affected individuals in this family. It was also detected by the ASA method in all 11 available affected members but not in 13 unaffected members. These results corresponded well with linkage analysis using 5 polymorphic DNA markers (Fig. 2). Moreover, the mutation could not be seen in 57 unrelated healthy individuals by using the ASA method. All these evidences support the notion that the *PKD1* mutation identified is the disease-causing gene in this family. The mutation affects *PKD1* by causing 'loss-of-function', which supports the 'two-hit' hypothesis (Qian et al., 1996; Brasier and Henske, 1997) which states that both germline and somatic mutations which would inactivate both alleles of *PKD1* are required.

Application of long RT-PCR and LR-PCR protocols for mutation analysis of *PKD1* in the *PKD1* patients will facilitate mutation discoveries, especially in the reiterated region of the gene. Data on *PKD1* mutation spectrum will help us to gain a better understanding of polycystin-1 function, the molecular pathogenesis of *PKD1*, and phenotypic expression in *PKD1* patients.

#### ACKNOWLEDGMENTS

We thank to Dr. Prida Malasit, Head, Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine-Siriraj Hospital, Mahidol University, for allowing to use laboratory facilities; staff of Renal Unit, Department of Medicine, Faculty of Medicine-Siriraj Hospital for collection of patients' blood samples; and all the patients and laboratory personnel who donated the blood samples. This work was partly supported by a grant from the Faculty of Medicine-Siriraj Hospital. P.W. is also a senior research scholar of the Thailand Research Fund.

#### REFERENCES

Brasier JL, Henske EP (1997) Loss of the polycystic kidney disease (*PKD1*) region of chromosome 16p13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis. *J Clin Invest* 99:194-199.

Burn TC, Connors TD, Dackowski WR, Petry LR, Van Raay TJ, Millholland JM, Venet M, Miller G, Hakim RM, Landes GM, Klinger KW, Qian F, Onuchic LF, Watnick T, Germino GG, Doggett NA (1995) Analysis of the genomic sequence for the autosomal dominant polycystic kidney disease (*PKD1*) gene predicts the presence of a leucine-rich repeat. *Hum Mol Genet* 4:575-582.

Dalgaard OZ (1957) Bilateral polycystic disease of the kidneys: a follow-up of two hundred and eighty four patients and their families. *Acta Med Scand* 328:1-255.

Daoust MC, Reynolds DM, Bichet DG, Somlo S (1995) Evidence for a third genetic locus for autosomal dominant polycystic kidney disease. *Genomics* 25:733-736.

Germino GG, Somlo S, Weinstat-Saslow D, Reeders ST (1993) Positional cloning approach to the dominant polycystic kidney disease gene, *PKD1*. *Kidney Int Suppl* 39:S20-S25.

Harris PC, Thomas S, Ratcliffe PJ, Breuning MH, Coto E, Lopez LC (1991) Rapid genetic analysis of families with polycystic kidney disease 1 by means of a microsatellite marker. *Lancet* 338:1484-1487.

Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K, Sannillan JL, Gamble V, Harris PC (1995) The polycystic kidney disease 1 (*PKD1*) gene encodes a novel protein with multiple cell recognition domains. *Nat Genet* 10:151-160.

Krawczak M, Reiss J, Cooper DN (1992) The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. *Hum Genet* 90:41-54.

Kwok S, Kellogg DE, McKinney N, Spasic D, Goda L, Levenson C, Sninsky JJ (1990) Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. *Nucleic Acids Res* 18:999-1005.

Mochizuki T, Wu QQ, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai YQ, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJM, Somlo, S (1996) *PKD2*, a gene for polycystic kidney disease that encodes an integral membrane protein. *Science* 272:1339-1342.

Newton CR, Graham A, Heptinstall LE (1989) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). *Nucleic Acids Res* 17:2503-2516.

Peral B, Ward CJ, Sanmillan JL, Thomas S, Stallings RL, Moreno F, Harris PC (1994) Evidence of linkage disequilibrium in the spanish polycystic kidney disease I population. *Am J Hum Genet* 54:899-908.

Peral B, Sanmillan JL, Ong ACM, Gamble V, Ward CJ, Strong C, Harris PC (1996) Screening the 3' region of the polycystic kidney disease 1 (*PKD1*) gene reveals six novel mutations. *Am J Hum Genet* 58:86-96.

Peral B, Gamble V, Strong C, Ong ACM, Sloanstanley J, Zerres K, Winearls CG, Harris PC (1997) Identification of mutations in the duplicated region of the polycystic kidney disease 1 gene (*PKD1*) by a novel approach. *Am J Hum Genet* 60:1399-140.

Peters DJM, Sandkuyl LA (1992) Genetic heterogeneity of polycystic kidney disease in Europe. In: Breuning MH, Devoto M, Romeo G (eds) *Contributions to nephrology 97: polycystic kidney disease*. Basel, Karger, p 128-139.

Qian F, Watnick TJ, Onuchic LF, Germino GG (1996) The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. *Cell* 87:979-987.

Ravine D, Gibson RN, Walker RG, Sheffield LJ, Kincaid-Smith P, Danks DM (1994) Evaluation of ultrasonographic diagnostic criteria for autosomal dominant polycystic kidney disease I. *Lancet* 343:824-827.

Reed R, Maniatis T (1985) Intron sequences involved in lariat formation during pre-mRNA splicing. *Cell* 41:95-105.

Reeders ST, Breuning MH, Davies KE, Nicholls RD, Jarman AP, Higgs DR, Pearson PL, Weatherall DJ (1985) A highly polymorphic DNA marker linked to adult polycystic kidney disease on chromosome 16. *Nature* 317:542-544.

The European Polycystic Kidney Disease Consortium (1994) The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. *Cell* 77:881-94.

The International Polycystic Kidney Disease Consortium (1995) Polycystic kidney disease: The complete structure of the *PKD1* gene and its protein. *Cell* 81:289-298.

Thompson AD, Shen Y, Holman K, Sutherland GR, Callen DF, Richards RJ (1992) Isolation and characterisation of (AC)n microsatellite genetic markers from human chromosome 16. *Genomics* 13:402-408.

Thongnoppakhun W, Wilairat P, Vareesangtip K, Yenchitsomanus P (1999) Long RT-PCR amplification of the entire coding sequence of the polycystic kidney disease 1 (*PKD1*) gene. *BioTechniques* 26:126-132.

Watnick TJ, Piontek KB, Cordal TM, Weber H, Gandalph MA, Qian F, Lens XM, Neumann HPH, Germino GG (1997) An unusual pattern of mutation in the duplicated portion of *PKD1* is revealed by use of a novel strategy for mutation detection. *Hum Mol Genet* 6:1473-81.

<sup>1</sup>Department of Clinical Immunology, Faculty of Associated Medical Sciences, <sup>2</sup>Department of Biochemistry, Faculty of Medicine, <sup>3</sup>Medical Biotechnology Unit, The National Center for Genetic Engineering and Biotechnology of the National Science and Technology Development Agency, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand, and <sup>4</sup>Institute of Immunology-Vienna International Research Cooperation Center at NFI, University of Vienna, Vienna, Austria

## Engagement of CD147 Molecule-Induced Cell Aggregation through the Activation of Protein Kinases and Reorganization of the Cytoskeleton

PANIDA KHUNKEAWLA<sup>1</sup>, SEANGDEUN MOONSON<sup>1</sup>, GUENTHER STAFFLER<sup>4</sup>,  
PRACHYA KONGTAWELERT<sup>2</sup>, and WATCHARA KASINRERK<sup>1,3</sup>

Received September 19, 2000 · Accepted in revised form January 31, 2001

### Abstract

CD147 is a broadly expressed cell surface molecule of the immunoglobulin superfamily whose expression is up-regulated upon T cell activation. Engagement of CD147 by CD147 monoclonal antibodies (mAbs) has been shown to induce homotypic aggregation of U937 cells. To study intracellular signal transduction induced by the engagement of CD147 molecules, protein kinase C (PKC) and protein tyrosine kinase (PTK) inhibitors were used to inhibit cell aggregation. The results indicated that a PKC inhibitor, sphingosine, and a PTK inhibitor, herbimycin A, inhibited CD147 mAb-induced cell aggregation in a dose-dependent manner. In contrast to herbimycin A, a PTK inhibitor, genistein, enhanced cell aggregation. This discrepancy may be due to the differential effect of herbimycin A and genistein on the target cells. Effect of actin filament polymerization blocking agent, cytochalasin B, was also studied and it was found that cytochalasin B completely inhibited CD147 mAb-induced cell aggregation. This result implied that U937 cell aggregation induced by CD147 mAbs is associated with cytoskeleton reorganization. Thus, our observations suggest that cell aggregation induced by the engagement of CD147 with specific mAbs depend upon the activation of protein kinases and a functional cytoskeleton.

### Introduction

CD147 is a human leukocyte surface protein, which was designated at the 6<sup>th</sup> International Workshop on Human Leukocyte Differentiation Antigen (HLDA) (1). It is a glycoprotein of 50,000–60,000 Dalton having typical features of a type I integral membrane protein of the Ig superfamily (1, 2). CD147 is also known as M6 antigen (3), extracellular matrix metalloproteinase inducer (EMMPRIN) (4), or human basigin (5).

\* S. MOONSON is research assistant supported by The National Science and Technology Development Agency of Thailand (NSTDA).

The CD147 molecule is broadly expressed on human peripheral blood cells, endothelial cells, hemopoietic and non-hemopoietic cells (1). In T cells, its expression is up-regulated upon activation (2, 3, 6).

The function of the CD147 molecule is not fully understood. However, investigations of the 6<sup>th</sup> HLDA workshop suggested that CD147 is a potential adhesion molecule with an unknown counter receptor (1). It may be involved in signal transduction and cell adhesion function, either directly as a signal transmitting adhesion molecule or as a regulator of adhesion. Upon interaction with fibroblasts, CD147 molecules seem to be responsible for the induction of expression of the matrix metalloproteinases, interstitial collagenase, gelatinase A and stromelysin-1 (4, 7). Certain CD147 mAbs inhibited homotypic aggregation of the estrogen-dependent breast cancer cell line MCF-7, as well as MCF-7 cell adhesion to type IV collagen, fibronectin and laminin (8). Furthermore, CD147 was found to co-precipitate with  $\alpha_3\beta_1$  and  $\alpha_6\beta_1$  integrins and to co-localize with these integrins in areas of cell-cell contact (9). Recently, we have reported that some CD147 mAbs induced homotypic cell aggregation of U937 cell line (6). Cell aggregation induced by the engagement of CD147 using mAbs to CD147 was described as a LFA-1/ICAM-1-dependent pathway (6).

In the present paper, more detailed molecular function of the CD147 molecule was investigated. We analyzed the molecular mechanism underlying CD147-mediated cell adhesion. Our results indicate that the PKC inhibitor, sphingosine, and PTK inhibitor, herbimycin A, inhibit CD147 mAb induced cell aggregation. However, the PTK inhibitor, genistein, enhances cell aggregation. The actin filament blocking agent, cytochalasin B, also inhibits cell aggregation induced by CD147 mAb.

## Materials and Methods

### Cells, reagents and antibodies

Human monocytic cell line, U937, were maintained in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS) (Gibco, Grand Island, NY, USA), 40  $\mu$ g/ml gentamicin and 2.5  $\mu$ g/ml amphotericin B in a humidified atmosphere of 5% CO<sub>2</sub> at 37°C. Stable CD147 expressing mouse BW cells were established by the standard retroviral gene transfer and that it was kindly provided by Dr. H. STOCKINGER, Institute of Immunology-Vienna International Research Cooperation Center at NFI, University of Vienna, Austria. BW cells were maintained in RPMI-1640 containing 10% FBS and antibiotics.

Cytochalasin B, genistein and sphingosine were purchased from Sigma (Sigma, St. Louis, MO, USA). Herbimycin A was purchased from Gibco. All reagents were dissolved in DMSO (Sigma). CD147 mAbs including M6-1D4 (6), M6-1F3 (6), M6-1E9 (6), M6-2F9 (6) and M6-2B1 (unpublished observation), CD4 mAb MT4 (10) and un-clustered mAb P-3E10 (unpublished observation) were generated in our department. For purification of the mAbs, affinity chromatography was used. IgM isotype mAbs were purified from ascites by using an anti-mouse IgM coated sepharose column (Zymed Laboratory Inc., San Francisco, CA, USA) according to the method described elsewhere (11). IgG isotype mAbs were purified by using a protein A coated sepharose column (Zymed).

### Homotypic cell aggregation assay

U937 cells were washed three times with RPMI-1640 medium and resuspended to a concentration of  $2 \times 10^5$  cells/ml with PMI-1640 supplemented with 10% FBS, 40  $\mu$ g/ml gentamicin and 2.5  $\mu$ g/ml amphotericin B. One hundred and fifty microliters of cell suspension were then distributed into 96-

well flat-bottomed microplates (NUNC, Roskilde, Denmark). Purified mAbs were added to each well to a final concentration of 10 µg/ml to obtain a total volume of 250 µl. Plates were incubated in a CO<sub>2</sub> incubator and examined for homotypic cell aggregation under a phase-contrast inverted microscope (Olympus, Tokyo, Japan) at various time points. The degrees of cell aggregation were scored as follows: 0, no aggregation (>90% of cells were un-aggregated); 1+, the majority of cells were un-aggregated, but a few small clusters of cells (1–5 cells/aggregate) were observed; 2+, some cells were in medium-sized aggregates (6–10 cells), with the remainder being single cells; 3+, cells were in medium-sized to large aggregates (10–20 cells); and 4+, cells were in large aggregates (>20 cells/aggregate). In the case of cell aggregation being more than that described for 4+, a score of >4 was given. Photographs were taken with an Olympus camera under an inverted microscope.

#### Effect of herbimycin A, genistein, sphingosine and cytochalasin B on cell aggregation

To study the effect of herbimycin A and genistein on CD147 mAb induced cell aggregation, U937 cells were pre-cultured with herbimycin A or genistein for 2 h, then purified mAbs were added. To study the effect of sphingosine, U937 cells were pre-incubated with sphingosine at 37 °C in a 5% CO<sub>2</sub> incubator for 15 min. Cells were washed twice and re-cultured with purified mAb M6-1D4. For cytochalasin B, cells were cultured with cytochalasin B in the presence of mAb. Homotypic cell aggregation was determined under a phase-contrast inverted microscope at various time points.

## Results

### Engagement of CD147 molecule induced homotypic cell aggregation

CD147 molecule was demonstrated to be involved in cell-cell interaction (1, 6, 8, 9). In this study, five CD147 mAbs were studied for induction of homotypic aggregation of U937 cells. As shown in Table 1, three CD147 mAbs, M6-1D4, M6-1F3 and M6-2F9, were found to induce cell aggregation, whereas, others (M6-1E9 and M6-2B1) did not. Cell aggregation was observed as time-dependent manner. Irrelevant mAbs, MT4 and

Table 1. Homotypic aggregation of U937 cells induced by CD147 mAbs

| Purified mAbs | Degree of cell aggregation <sup>a</sup> |   |   |   |    |
|---------------|-----------------------------------------|---|---|---|----|
|               | Incubation time (hr)                    |   |   |   |    |
|               | 2                                       | 4 | 6 | 8 | 24 |
| None          | —                                       | — | — | — | —  |
| P-3E10        | —                                       | — | — | — | —  |
| MT4           | —                                       | — | — | — | —  |
| M6-1D4        | 1                                       | 1 | 2 | 3 | 4  |
| M6-1F3        | 2                                       | 3 | 3 | 3 | 4  |
| M6-1E9        | —                                       | — | — | — | —  |
| M6-2B1        | —                                       | — | — | — | —  |
| M6-2F9        | 2                                       | 2 | 2 | 2 | 3  |

U937 cells were cultured in the presence or absence of indicated mAbs (10 µg/ml). Homotypic cell aggregation was determined under an inverted microscope at various time points.

<sup>a</sup> Degree of cell aggregation was graded as described in Materials and Methods. Results are representative of 7 separate experiments.

P-3E10, did not induce cell aggregation (Table 1). These results demonstrated that the engagement of CD147 molecules with certain specific antibodies induced homotypic aggregation of U937 cell line.

To confirm that all CD147 mAbs used are specific for CD147, all CD147 mAbs were used to stain a stable CD147 expressing transfectant, named BW-CD147, by indirect immunofluorescence and analyzed by flow cytometry. All CD147 mAbs strongly reacted to the BW-CD147 transfectants, but did not bind the un-transfected BW cells (data not shown).

#### Involvement of PTK and PKC in CD147 mAb-mediated homotypic aggregation

In the engagement of CD147-induced cell aggregation, this molecule may function as a signal-transmitting molecule. We, therefore, examined whether PTK and PKC were involved in cell aggregation after the engagement of CD147. U937 cells were cultured with CD147 mAbs in the presence or absence of PTK inhibitor, herbimycin A or genistein, or PKC inhibitor, sphingosine. The results showed that in the presence of herbimycin A, the degree of cell aggregation was decreased in a dose-dependent manner when compared to cells cultured in the absence of the inhibitor (Fig. 1 and 4). In con-

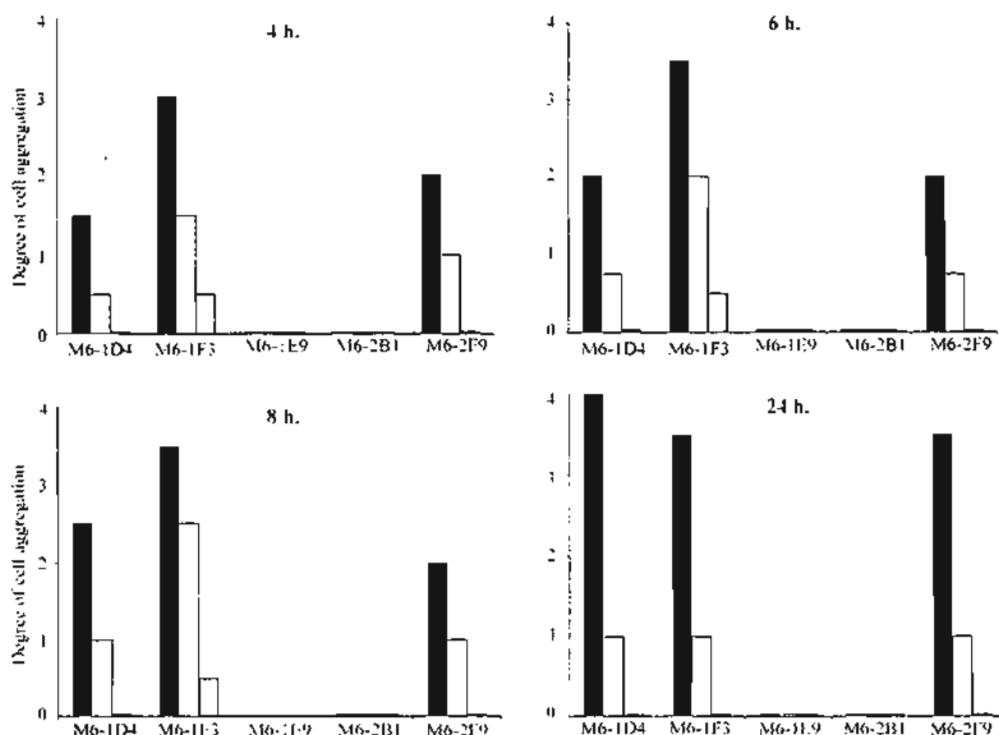



Fig. 1. Effect of herbimycin A on CD147 mAb induced U937 cell aggregation. U937 cells were treated with herbimycin A at 0 (dark bars), 50 (white bars) and 500 ng/ml (gray bars) in the presence of the indicated CD147 mAbs for 4, 6, 8 and 24 h. Results are representative of 3 separate experiments.

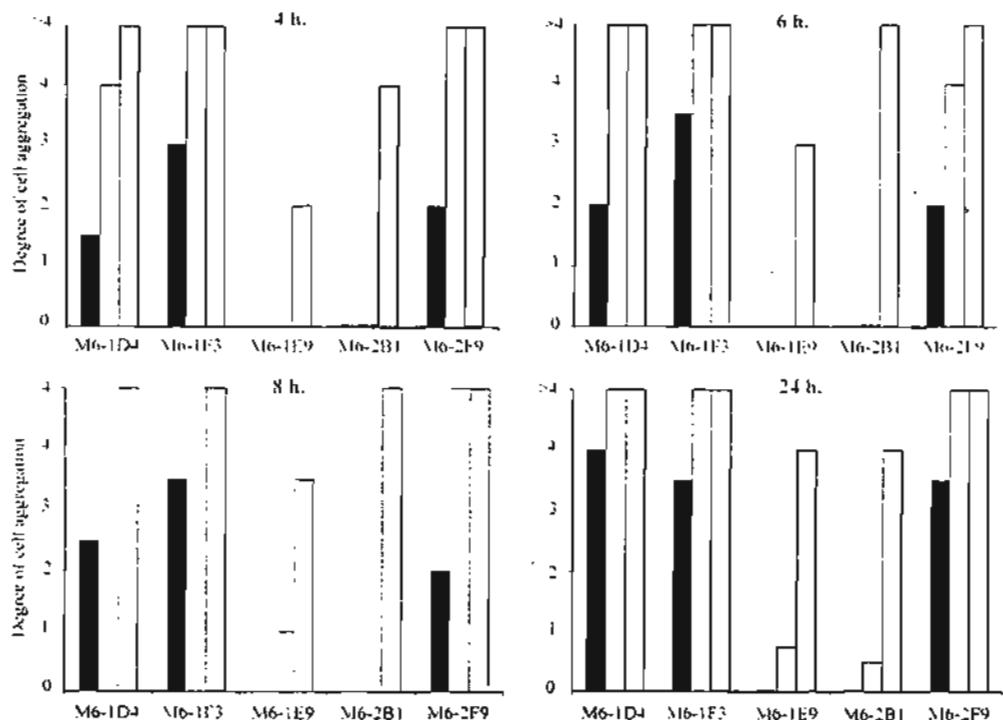



Fig. 2. Effect of genistein on CD147 mAb induced U937 cell aggregation. U937 cells were treated with genistein at 0 (dark bars), 3 (white bars) and 12 µg/ml (gray bars) in the presence of the indicated CD147 mAbs for 4, 6, 8 and 24 h. Results are representative of 3 separate experiments.

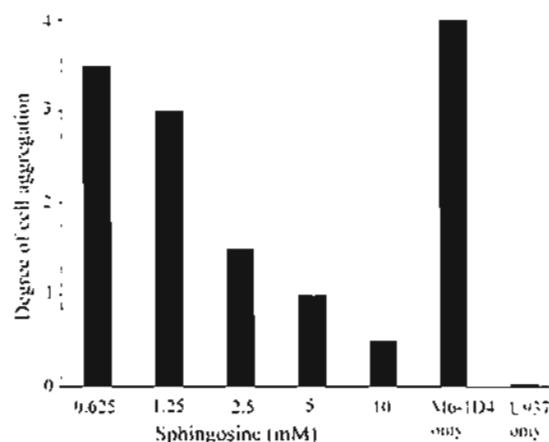



Fig. 3. Effect of sphingosine on CD147 mAb-induced U937 cell aggregation. U937 cells were treated with sphingosine at indicated concentrations and incubated with mAb M6-1D4. As controls, U937 cells were cultured without sphingosine in the presence or absence of M6-1D4. Results are representative of 3 separate experiments.

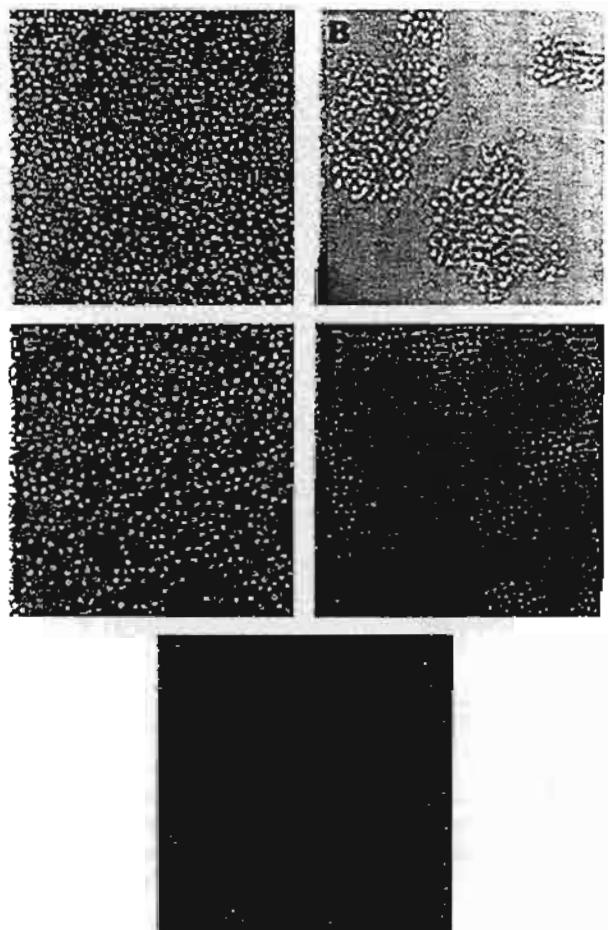



Fig. 4. Photomicrography (X100) of homotypic cell aggregation induced by CD147 mAb. U937 cells were treated with sphingosine 20 mM (A), genistein 12  $\mu$ g/ml (B), or herbimycin A 500 ng/ml (C), in the presence of mAb M6-1D4. U937 cells cultured with or without mAb M6-1D4 in the absence of inhibitor are shown in D and E, respectively.

trast, genistein treatment enhanced cell aggregation in a dose-dependent manner (Fig. 2 and 4). Interestingly, M6-1E9 and M6-2B1 which by themselves did not induce cell aggregation (Table 1), but with the treatment of genistein, these mAbs markedly enhanced cell aggregation (Fig. 2). In PKC signaling pathway, sphingosine inhibited mAb M6-1D4-induced cell aggregation (Fig. 3 and 4). Culturing cells with the inhibitors in the absence of CD147 mAbs was also tested for determining the effect of all inhibitors used on U937 cells. The results showed that the inhibitors alone did not induce U937 cell aggregation (data not shown). As all inhibitors used were dissolved in DMSO, the effect of DMSO diluent was examined and showed no effect on cell aggregation (data not shown). At all concentrations of the inhibitors used, by trypan blue dye exclusion test, cell viability was greater than 95%.

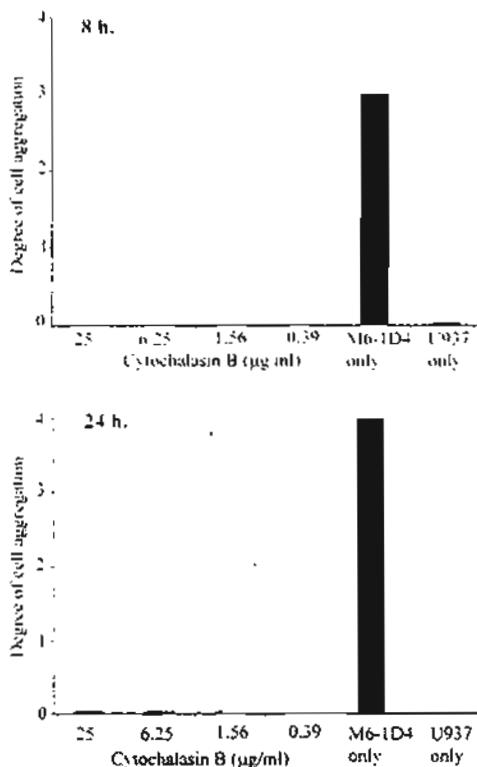



Fig. 5. Effect of cytochalasin B on CD147 mAb-induced U937 cell aggregation. U937 cell line was incubated with M6-1D4 in the presence of cytochalasin B at indicated concentrations for 8 and 24 h. As controls, U937 cells were cultured without cytochalasin B in the presence or absence of M6-1D4. Results are representative of 3 separate experiments.

#### Homotypic aggregation of U937 cells triggered via CD147 depends upon a functional cytoskeleton

Cell aggregation associated with cytoskeleton reorganization has been demonstrated (12–15). To analyze whether actin filament polymerization is required for cell aggregation induced by CD147 mAb, an actin filament blocking agent was used to block cell aggregation. As shown in Figure 5, paralysis of the cytoskeleton by cytochalasin B strongly inhibited U937 cell aggregation induced by mAb M6-1D4. Cell viability in the presence of the inhibitor was greater than 90%. These results indicate the requirement for an intact cytoskeleton for induction of cell aggregation by CD147 mAb.

#### Discussion

The CD147 is a widely distributed cell surface molecule with two immunoglobulin-like domains that may be involved in cell-cell interaction (1–9). We recently demonstrated

that certain CD147 mAbs induced homotypic aggregation of U937 via LFA-1/ICAM-1 pathway (6). It was speculated that the binding of CD147 mAb to CD147 molecule, which mimics the natural ligand binding, may generate intracellular signal(s) that activate LFA-1/ICAM-1 intracellular adhesion pathway. In the present study, we further investigated the signal transduction induced by CD147 molecule engagement.

Signal transduction, the process of transmission of an extracellular message to the interior of the cell, requires the activation of specific cell membrane receptors and downstream intracellular signaling cascades. Engagement of a number of cell surface molecules can increase LFA-1-mediated adhesives through an "inside-out" signaling pathway (16–19). Several reports have demonstrated that the homotypic aggregation induced by several mAbs are mediated by PKC and/or PTK-dependent intracellular signaling pathway (15–17, 19–22). We, therefore, asked whether PKC and/or PTK-dependent intracellular signaling pathways are involved in CD147 mAb-mediated cell aggregation. Our results show that a PKC inhibitor, sphingosine (23–25), and a specific PTK inhibitor, herbimycin A (26, 27), blocked cell aggregation induced by CD147 mAbs in a dose-dependent manner. This finding indicates that CD147 molecule-mediated cell adhesion of U937 cells is an active process involving PTK and PKC-dependent intracellular signaling pathways.

In contrast to herbimycin A, a PTK inhibitor genistein (28, 29) enhanced cell aggregation induced by CD147 mAbs. The enhancing effect was clearly observed when the CD147 mAbs M6-1E9 and M6-2B1, which by itself did not induce cell aggregation, were used. Herbimycin A as well as genistein are known as the potent inhibitors of protein tyrosine kinase with different modes of action (26–29). Treatment of human melanoma cells with herbimycin A did not increase the expression of deNAC-gangliosides on cell surface, whereas a significant increase was observed with genistein treatment (30). Herbimycin A markedly inhibited both the resting and induced levels of phosphoryrosine-containing proteins, including the gamma 1 isozyme of PLC and zeta chain of the TCR, and prevented activation of PLC by anti-TCR mAb. It did not inhibit activation of PLC by heterologous human muscarinic receptor (HM1). In contrast, genistein had much less pronounced effect than herbimycin A on the appearance of tyrosine phosphoproteins. Moreover, genistein inhibited activation of PLC by both the TCR and HM1 (31). In addition, genistein was cytotoxic and merely inhibited protein synthesis in both cell line and peripheral blood lymphocytes. Herbimycin A, however, was not cytotoxicity. Therefore, herbimycin A, but not genistein, is suggested as a specific inhibitor of PTKs in T cells (31). KANATANI et al. demonstrated that genistein exhibited preferential cytotoxicity to a leukemogenic variant, but induces differentiation of non-leukemogenic variant of the mouse monocytic leukemia Mn cell line. In contrast, herbimycin A inhibited the growth of non-leukemogenic variant (32). In the regulation of ion channels, genistein, but not herbimycin A, activates Cl<sup>-</sup> channels and the Na<sup>+</sup>/K<sup>+</sup>/2Cl<sup>-</sup> cotransporter (33). This stimulatory effect of genistein is not mediated through its inhibitory action on PTK, but rather the structure of favone itself. In the present study, the differential effect of herbimycin A and genistein on CD147 mAb-induced cell aggregation is, however, still unknown. This may be due to the effect of genistein on a mechanism independent of its effects upon tyrosine kinases (34, 35) or that genistein has a selective effect on specific tyrosine kinases that are not affected by herbimycin A (29, 30). Further studies are needed to delineate the molecular mechanism of the effect of genistein on enhancing cell aggregation.

Cell adhesion mediated by integrins, including LFA-1 and ICAM-1, requires an intact cytoskeleton for the establishment and maintenance of stable cell conjugation (36–38). As the engagement of CD147 induced U937 cell aggregation is reported to be ICAM-1/LFA-1 dependence (6), we therefore evaluated the effect of actin filament polymerization blocking agent on CD147 mAb-induced cell aggregation. By using an actin filament polymerization blocking agent, cytochalasin B, paralysis of the cytoskeleton completely abrogated cell aggregation induced by CD147 mAb. These results imply that U937 cell aggregation induced by mAb to CD147 molecule is associated with cytoskeleton reorganization, as was described for LFA-1/ICAM-1 interaction (36–38).

In summary, we are providing evidence here that the engagement of the CD147 molecule by specific mAbs activate PKC and PTK intracellular signaling pathways in U937 cells resulting in cell aggregation. A functional cytoskeleton is also required for the induction of cell aggregation.

#### Acknowledgements

We are grateful to Dr. HANNES STOCKINGER for his helpful discussions and comments on the manuscript. This work was supported by the National Science and Technology Development Agency of Thailand and The Thailand Research Fund.

#### References

1. STOCKINGER, H., T. EBEL, C. HANSMANN, C. KOCH, O. MAJDIC, E. PRAGER, D. D. PATEL, D. A. FOX, V. HOREJSI, K. SAGAWA, and D. C. SHEN. 1997. CD147 (neurotrophin/basigin) Workshop Panel Report. In: Leukocyte typing VI. T. KISHIMOTO, H. KIKUTANI, A. E. G. KR V. D. BORNE, et al., eds. Garland Publishing, New York. 760 pp.
2. KOCH, C., G. STAFFLER, R. HUTTINGER, I. HILGERT, E. PRAGER, J. CERNY, P. STEINLEIN, O. MAJDIC, V. HOREJSI, and H. STOCKINGER. 1999. T cell activation-associated epitopes of CD147 in regulation of the T cell response, and their definition by antibody affinity and antigen density. *Int. Immunol.* 11: 777.
3. KASINRERK, W., E. FIEBINGER, I. STEFANOVA, T. BAUMRUCKER, W. KNAPP, and H. STOCKINGER. 1992. Human leukocyte activation antigen M6, a member of the Ig superfamily, is the species homologue of rat OX-47, mouse basigin, and chicken HT7 molecule. *J. Immunol.* 149: 847.
4. BISWAS, C., Y. ZHANG, R. DECASTRO, H. GUO, T. NAKAMURA, H. KATAOKA, and K. KABESHIMA. 1995. The human cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. *Cancer Res.* 55: 434.
5. MIYAUCHI, T., Y. MASUZAWA, and T. MURAMATSU. 1991. The basigin group of the immunoglobulin superfamily: complete conservation of a segment in and around transmembrane domains of human and mouse basigin and chicken HT7 antigen. *J. Biochem.* 110: 770.
6. KASINRERK, W., N. TOKRASINWIT, P. PHUNPAE. 1999. CD147 monoclonal antibodies induce homotypic cell aggregation of monocytic cell line U937 via LFA-1/ICAM-1 pathway. *Immunology* 96: 184.
7. GUO, H., S. ZUCKER, M. K. GORDON, B. P. TOOLE, and C. BISWAS. 1997. Stimulation of matrix metalloproteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese hamster ovary cells. *J. Biol. Chem.* 272: 24.
8. SCHIAVONE, E. M., V. TORTORA, F. ARMETTA, P. BONTEMPO, M. R. MOSTI, L. PEZONE, E. NOLA, G. A. PUCA, C. VACCÀ, and A. M. MOLINARI. 1997. CD147 workshop: expression, modulation, and involvement in homotypic aggregation and adhesion to matrix of molecules recognized by monoclonal antibodies to CD147 on breast cancer cell lines. In: Leukocyte typing VI. T. KISHIMOTO, H. KIKUTANI, A. E. G. KR V. D. BORNE, et al., eds. Garland Publishing, New York. 764 pp.

9. BERDITCHCHEVSKY, F., S. CHANG, J. BODORAVA, and M. E. HEMPF. 1997. Generation of monoclonal antibodies to integrin-associated proteins: Evidence that  $\alpha_3\beta_1$  complexes with EMALPRIN/Basigin/OX47/M6. *J. Biol. Chem.* 272: 29174.
10. KASINRERK, W., N. TOKRASINWIT, and P. NAVEEWONGPANIT. 1998. Production of monoclonal antibody to CD4 antigen and development of reagent for CD4 $^{+}$  lymphocyte enumeration. *J. Med. Ass. Thai.* 81: 879.
11. HARLOW, E., and D. LANE. 1988. Storing and purifying antibodies. In: *Antibodies: a Laboratory Manual*. E. HARLOW, and D. LANE, eds. Cold Spring Harbor Laboratory, New York. 283 pp.
12. IKEWAKI, N. 1997. A novel human monoclonal antibody rapidly induces homotypic cell aggregation and promotes antibody-secreting activity by human B lymphoblastoid cell line IM-9. *J. Clin. Immunol.* 17: 127.
13. KOLANCS, W., and B. SEEDS. 1997. Integrins and inside-out signal transduction: converging signals from PKC and PIP3. *Curr. Opin. Cell Biol.* 9: 725.
14. BAIHNA, M., S. WEBER, K. MAMMERT, and B. M. HENZ. 1998. Signal transduction via CD43 (Leukosialin, Sialophorin) and associated biological effects in a human mast cell line (HMC-1). *Biochem. Biophys. Res. Com.* 243: 163.
15. KASINRERK, W., N. TOKRASINWIT, S. MOONSONG, and H. STOCKINGER. 2000. CD99 monoclonal antibody induces homotypic cell aggregation of Jurkat cells through protein tyrosine kinase and protein kinase C-dependent pathways. *Immunol. Letters* 71: 33.
16. LAUENER, R. P., R. S. GEHA, and D. VERCELLI. 1990. Engagement of the monocyte surface antigen CD14 induces lymphocyte function-associated antigen-1/intercellular adhesion molecule-1 dependent homotypic adhesion. *J. Immunol.* 145: 1390.
17. MOURAD, W., R. S. GEHA, and T. CHATILA. 1990. Engagement of major histocompatibility complex class II molecules induces sustained lymphocyte function associated molecule-1 dependent cell adhesion. *J. Exp. Med.* 172: 1513.
18. DANG, L. H., and K. L. ROCK. 1991. Stimulation of B lymphocytes through surface Ig receptors induces LFA-1 and ICAM-1 dependent adhesion. *J. Immunol.* 146: 3273.
19. KANSAS, G. S., and T. F. TEDDER. 1991. Transmembrane signals generated through MHC class II, CD19, CD20, CD39, and CD40 antigens induce LFA-1-dependent and independent adhesion in human B cells through a tyrosine kinase-dependent and in-dependent pathway. *J. Immunol.* 147: 4094.
20. ODUM, N., H. YOSHIZUMI, Y. OKAMOTO, N. KAMIKAWAJI, A. KIMURA, Y. NISHIMURA, and T. SASAZUKI. 1992. Signal transduction by HLA class II molecules in human T cell: Induction of LFA-1 dependent adhesion. *Human Immunol.* 35: 71.
21. LORENZ, H. M., T. HARRER, A. S. LAGO, A. BAUR, G. EGER, and J. R. KALDEN. 1993. CD45 mAb induces cell adhesion in peripheral blood mononuclear cells via lymphocyte function-associated antigen-1 (LFA-1) and intracellular cell adhesion molecule (ICAM-1). *Cell Immunol.* 147: 110.
22. LUB, M., Y. VAN KOOK, and C. G. FIGDOR. 1995. Ins and outs of LFA-1. *Immunol. Today* 16: 479.
23. HANNUN, Y. A., C. A. LOOMIS, A. H. MERRILL, and R. M. BELL. 1986. Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. *J. Biol. Chem.* 261: 12604.
24. HANNUN, Y. A., and R. M. BELL. 1989. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. *Science* 243: 500.
25. GORDGE, P. C., and W. J. RYVES. 1994. Inhibitors of protein kinase C. *Cellular Signaling* 6: 871.
26. UEHARA, Y., M. HORI, T. TAKEUCHI, and H. UMEZAWA. 1986. Phenotypic change from transformed to normal induced by benzoquinonoid ansamycins inactivation of p60<sup>src</sup> in rat kidney cells infected with Rous sarcoma virus. *Mol. Cell Biol.* 6: 2198.
27. UEHARA, Y., and H. FUKAZAWA. 1991. Use and selectively of herbimycin A as inhibitor of protein-tyrosine kinases. *Methods Enzymol.* 201: 370.
28. AKIYAMA, T., J. ISHIDA, S. NAKAGAWA, H. OGAWARA, S. WATANABE, N. FUCHI, M. SHIRUYA, and Y. FUKAMI. 1987. Genistein. A specific inhibitor of tyrosine-specific protein kinases. *J. Biol. Chem.* 262: 5592.

29. AKIYAMA, T., and H. OGAWARA. 1991. Use and specificity of genistein as inhibitor of protein tyrosine kinases. *Method Enzymol.* 201: 362.
30. SJOBERG, E. R., R. CHAMMA, H. OZAWA, I. KAWASHIMA, K. H. KHOO, H. R. MORRIS, A. DELL, T. TAI, and A. VARKI. 1995. Expression of de-N-acetyl-gangliosides in human melanoma cells is induced by genistein or nocodazole. *J. Biol. Chem.* 270: 2921.
31. GRABER, M., C. H. JUNE, L. E. SAMELSON, and A. WEISS. 1992. The protein tyrosine kinase inhibitor herbimycin A, but not genistein, specifically inhibits signal transduction by the T cell antigen receptor. *Int. Immunol.* 4: 1201.
32. KANATANI, Y., T. KASUKABE, M. HOZUMI, K. MOTOYOSHI, N. NAGATA, and Y. HONMA. 1993. Genistein exhibits preferential cytotoxicity to a leukemogenic variant but induces differentiation of a non-leukemogenic variant of the mouse monocytic leukemia Mm cell line. *Leuk. Res.* 17: 847.
33. NISSATO, N., Y. ITO, and Y. MARUNAKA. 1999. Activation of Cl-channel and Na<sup>+</sup>/K<sup>+</sup>/2Cl<sup>-</sup> cotransporter in renal epithelial A6 cells by flavonoids: genistein, daidzein, and apigenin. *Biochem. Biophys. Res. Commun.* 254: 368.
34. HUANG, J., M. NASR, Y. KIM, and H. R. MATTHEWS. 1992. Genistein inhibits protein histidine kinase. *J. Biol. Chem.* 267: 15511.
35. ABLER, A., J. A. SMITH, P. A. RANDAZZO, P. L. ROTHENBERG, and L. JARETT. 1992. Genistein differentially inhibits postreceptor effects of insulin in rat adipocytes without inhibiting the insulin receptor kinase. *J. Biol. Chem.* 267: 3946.
36. BURRIDGE, K., K. FATH, T. KELLY, B. NUCKOLIS, and C. TURNER. 1988. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. *Annu. Rev. Cell Biol.* 4: 487.
37. HARRIS, E. S., T. M. MCINTYRE, M. S. PRESCOTT, and G. A. ZIMMERMAN. 2000. The leukocyte integrins. *J. Biol. Chem.* 275: 23409.
38. WOODS, A., and J. R. COUCHMAN. 2000. Integrin Modulation by lateral association. *J. Biol. Chem.* 276: 24233.

Dr. W. KASINRERK, Department of Clinical Immunology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand, e-mail: watchara@chiangmai.ac.th

# Production of polyclonal and monoclonal antibodies against CD54 molecules by intrasplenic immunization of plasmid DNA encoding CD54 protein

Seangdeun Moonsom, Panida Khunkeawla, Watchara Kasinrerk \*

Department of Clinical Immunology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand

Received 26 July 2000; accepted 7 November 2000

## Abstract

DNA immunization, in theory, is of great interest as a source of specific antibodies against different antigens. In an attempt to produce polyclonal and monoclonal antibodies against cell surface molecules by using the DNA immunization strategy, intramuscular and intrasplenic routes of DNA injection were compared. Two to five, but not a single, intramuscular DNA immunizations induced anti-CD54 and anti-CD147 antibody production. In contrast, a single intrasplenic immunization of CD54-encoding DNA could induce anti-CD54 antibody production. To produce monoclonal antibody (mAb), spleen cells obtained from an intrasplenic CD54-encoding DNA immunized mouse were fused with myeloma cells using the standard hybridoma technique. A hybridoma secreting specific mAb to CD54 was established. The generated mAb reacted to CD54 protein expressed on transfected COS cells and various cell types, the same as using standard CD54 mAb MEM-111. Our results demonstrated that direct immunization of antigen-encoding DNA into spleen is an effective route for production of both polyclonal and monoclonal antibodies to cell surface molecules. This finding is very useful for the production of antibodies to cell surface molecules where the protein antigen is not available or difficult to prepare, but cDNA encoding the corresponding protein is available. © 2001 Elsevier Science B.V. All rights reserved.

**Keywords:** CD54; DNA immunization; Intrasplenic immunization; Monoclonal antibody

## 1. Introduction

Immunization with plasmid vectors encoding protein antigens derived from pathogens or tumor cells, termed DNA immunization or DNA vaccine, has been reported to induce protective immunity in several animal models [1–3]. The theoretical advantages of DNA immunization over conventional vaccines including, (1) the induction of both antibody and cell-mediated immune responses; (2) the relative ease of production; and (3) the ability to express proteins intracellularly for the induction of cytotoxic T cell (CTL) responses. In addition, the DNA immunization strategy has been used as a tool for production of the hyperimmune globulin products [4–7].

\* Corresponding author. Tel.: +66-53-946043; fax: +66-53-946043.

E-mail address: [watchara@chiangmai.ac.th](mailto:watchara@chiangmai.ac.th) (W. Kasinrerk).

Monoclonal antibodies directed against leukocyte surface molecules are powerful reagents for biochemical and functional characterizations of the corresponding proteins. To generate a mAb to a molecule where the protein antigen is not available or difficult to prepare, but cDNA encoding the corresponding protein is available, DNA immunization is, therefore, very useful. Few reports have demonstrated the use of this strategy for production of mAbs to molecules of interest [8,9]. However, in our attempts to produce mAbs to leukocyte surface proteins by intramuscularly immunization of antigen-encoding DNA, unsuccessful experiments were obtained (unpublished observations). Direct immunization of protein antigen into spleen (i.e. intrasplenic immunization) has been reported as an effective method for the production of polyclonal and monoclonal antibodies [10–20]. Direct immunization of plasmid DNA into spleen may, therefore, be a possible alternative route for production of both polyclonal and monoclonal antibody.

In the present report, we compared two plasmid DNA immunization routes, intramuscular and intrasplenic, for the production of polyclonal antibodies to cell surface molecules. It was demonstrated that a single DNA immunization by intrasplenic route could induce antibody production, whereas, a single-dose intramuscular immunization could not. Furthermore, by using intrasplenic immunization, an anti-CD54 mAb could be generated by DNA immunization.

## 2. Materials and methods

### 2.1. Cells and antibodies

Human monocytic cell line, U937 cells, were maintained in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS) (Gibco, Grand Island, NY), 40 µg/ml gentamicin and 2.5 µg/ml amphotericin B in a humidified atmosphere of 5% CO<sub>2</sub> at 37°C. COS7 cells were cultured in MEM (Gibco) containing 10% FBS and antibiotics. Purified CD54 mAb MEM-111 (IgG2a) [21] were kindly provided by Dr Vaclav Horejsi (Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic). FITC-conjugated rabbit F(ab')2 anti-mouse immunoglobulin antibodies was purchased from Dako (Glostrup, Denmark).

### 2.2. Preparation of plasmid DNA

cDNA encoding CD54 protein inserted into an eukaryotic expression vector pCDM8 (designated CD54-DNA) was a kind gift from Dr Hannes Stockinger, University of Vienna, Vienna, Austria. cDNA encoding CD147 protein, named CD147-DNA, was generated in our Department [22]. For large-scale preparation, the plasmid DNA were transformed into *Escherichia coli* MC1061/p3. The plasmid DNA were then isolated from transformed *E. coli* by Qiagen chromatography columns (Qiagen, Hilden, Germany). The plasmid DNA obtained were resuspended subsequently in PBS. The concentration and purity of DNA preparation were determined by OD260/280 reading. DNA were stored at -20°C, until injected into mice.

The isolated plasmid DNA were proved for expression of the corresponding proteins by using the COS cell expression system and indirect immunofluorescent staining of the transfected COS cells with specific mAbs.

### 2.3. DNA immunization

For intramuscular immunization, BALB/c mice were injected one or five times at 2-week intervals by intramuscular route at the hind legs (100 µg of DNA per

dose). For intrasplenic immunization, mice were anesthetized with diethylether. The skin and peritoneum on the left side of the body was open to expose the spleen. Fifty microliters (100 µg) of plasmid DNA were injected into the spleen. The peritoneum and skin were then closed by fine sutures. Blood samples were collected from the immunized mice by tail bleeding at 2-week intervals. Sera were separated and stored at -20°C.

### 2.4. Hybridoma production

Spleen cells were collected from CD54-DNA intrasplenic immunized mouse and fused with P3-X63Ag8.653 myeloma cells by the standard hybridoma technique using 50% polyethylene glycol. After HAT medium selection, culture supernatants were first analyzed for antibody reactivity against CD54 expressing U937 cells using indirect immunofluorescent assay. The positive supernatants were then differentially screened for CD54 specificity using CD54 transfected COS cells. The positive hybridomas were subcloned by limiting dilution. The isotype of antibodies was determined by using the isotyping enzyme-linked immunosorbent assay kit (Sigma, St. Louis, MO).

### 2.5. Immunofluorescence analysis

To determine antibodies in the sera, indirect immunofluorescence was carried out. To block nonspecific Fc-receptor-mediated binding of antibody, U937 cells were pre-incubated for 30 min at 4°C with 10% human AB serum before staining. Blocked cells were then incubated for 30 min at 4°C with tested sera. After washing, cells were incubated with FITC-conjugate for 30 min. Membrane fluorescence was analyzed on a FACSCalibur (Becton Dickinson, Sunnyvale, CA) flow cytometer.

The reactivity of anti-CD54 mAb with peripheral blood cells was assessed by indirect immunofluorescence using the lysed whole blood staining method. EDTA-blood was incubated with tested mAb for 30 min at 4°C. After washing, cells were incubated with FITC-conjugate for another 30 min at 4°C. RBCs were lysed by using RBC lysis solution (Becton Dickinson). Membrane fluorescence was then analyzed by using a flow cytometer (FACSCalibur, Becton Dickinson). For flow cytometry analysis, individual populations of blood cells were gated according to their forward and side scatter characteristics.

### 2.6. DEAE-dextran transfection of COS cells

Plasmid DNA were transfected into COS cells by the DEAE-dextran transfection method. Briefly, 1 × 10<sup>6</sup> COS cells were transferred to 6-cm tissue culture dishes

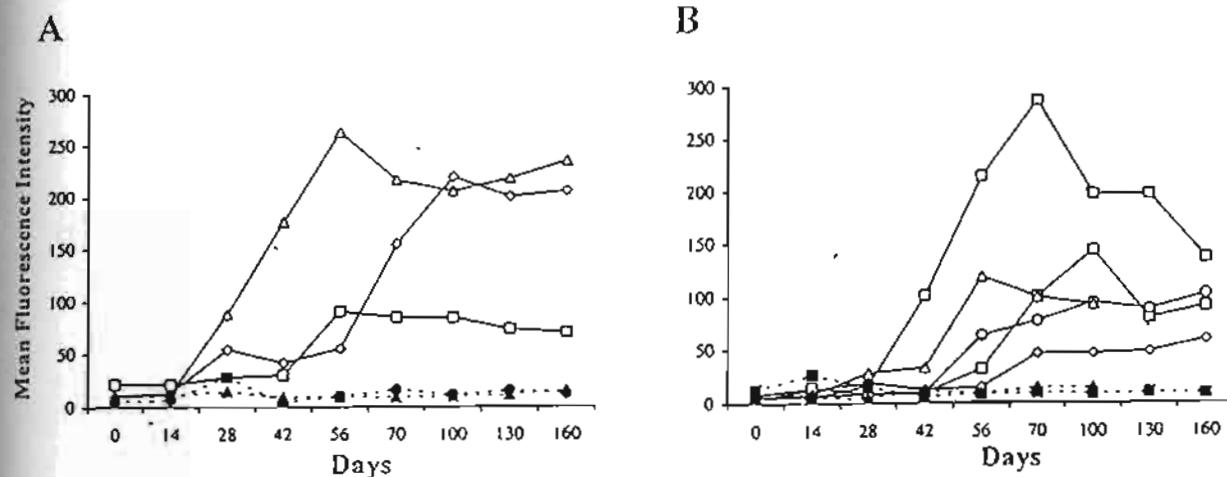



Fig. 1. Antibody response in mice intramuscularly immunized with CD54-encoding DNA (A) or CD147-encoding DNA (B). Groups of mice were immunized on days 0, 14, 28, 42 and 56 (solid lines) or single immunization at day 0 (dashed lines). Sera from blood drawn periodically were analyzed by indirect immunofluorescence and flow cytometry using CD54 and CD147 expressing U937 cells as antigens.

(NUNC, Roskilde, Denmark) on the day before transfection. Cells were incubated with 2 ml of MEM containing 250 µg/ml DEAE-dextran (Sigma), 400 µM chloroquine diphosphate (Sigma) and 2 µg DNA for 3 h at 37°C. Supernatant was removed and cells were treated with 10% dimethyl sulfoxide (DMSO) in PBS for 2 min at room temperature. Cells were then cultured in MEM containing 10% FBS overnight, washed once, and re-cultured with the same medium for another 2 days to allow expression of the corresponding proteins.

### 3. Results

#### 3.1. Production of polyclonal antibodies by immunization of plasmid DNA encoding CD54 and CD147 protein

In order to produce antibodies to human leukocyte surface molecules by injection of antigen-encoding plasmid DNA, intramuscular immunization and direct immunization of plasmid DNA into spleen were used as inoculation routes. In this study, plasmid DNA encoding CD54 and CD147 protein, termed CD54-DNA and CD147-DNA, respectively, were prepared by using Qiagen chromatography column. The plasmid DNA obtained were able to express the corresponding proteins on transfected COS cell surfaces (data not shown). Mice were intramuscularly immunized with CD54-DNA or CD147-DNA five times at 2-week intervals or with a single injection. In some mice, CD54-DNA were inoculated by single intrasplenic immunization. Sera collected at 2-week intervals from each mouse were first screened for the presence of anti-CD54 or anti-CD147

antibodies by staining U937 cells. As shown in Fig. 1, sera from all five-doses intramuscularly immunized mice (8/8) reacted to U937 cells. In contrast, none of the sera from single-dose intramuscularly immunized mice (0/4) reacted to U937 cells. Interestingly, sera obtained from two out of four single-dose intrasplenic immunized mice showed positive reactivity (Fig. 2).

To confirm that the generated antibodies after plasmid DNA immunization were specific for CD54 and CD147 protein, CD54-DNA and CD147-DNA transfected COS cells were stained with the positive sera. As predicted, sera obtained from CD54-DNA immunized mice reacted to CD54 transfectants, but did not react to mock transfectants (data not shown). Sera obtained from CD147-DNA immunized mice bound CD147

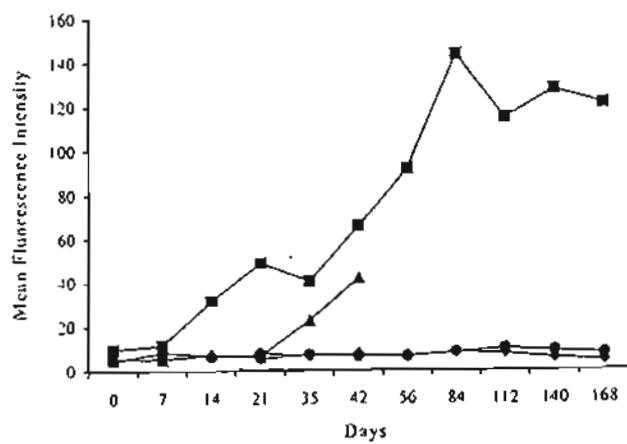



Fig. 2. Antibody response in mice intrasplenic immunized with CD54-encoding DNA. Mice were single immunized on day 0 and sera from blood drawn periodically were analyzed by indirect immunofluorescence and flow cytometry using CD54 expressing U937 cells as antigens.

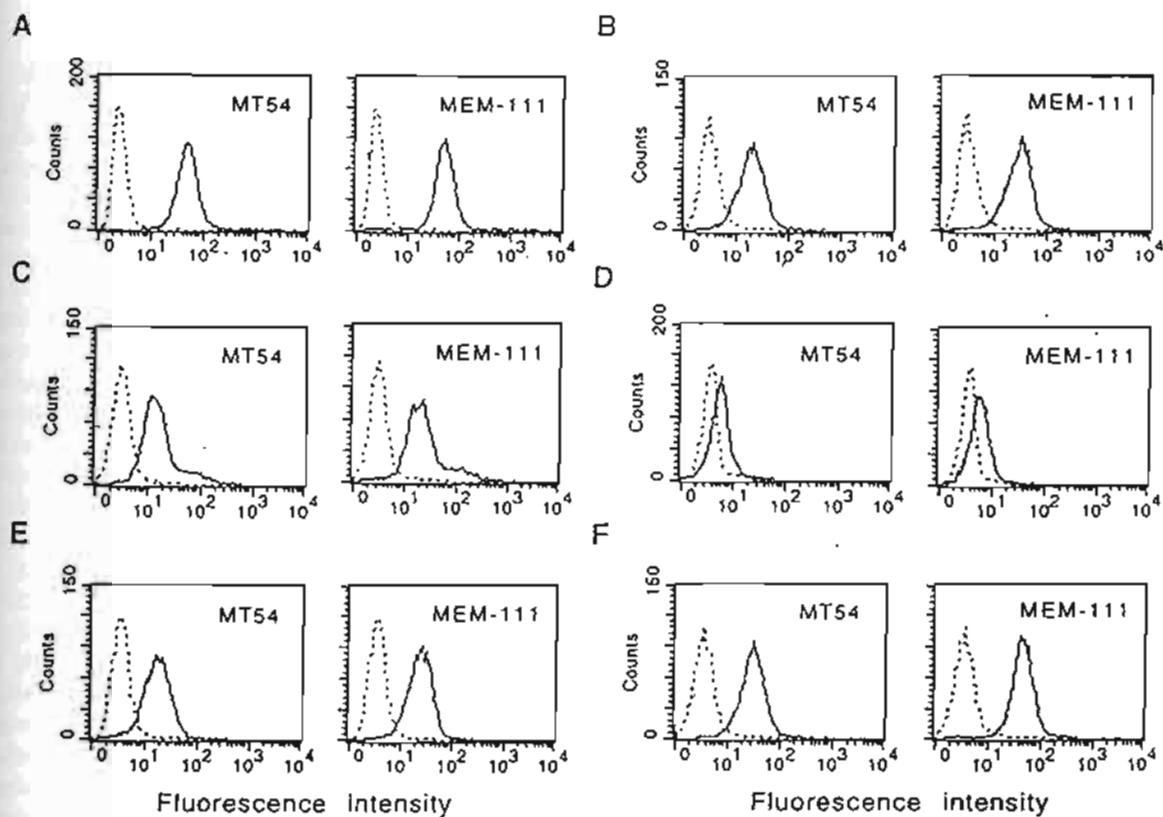



Fig. 3. Immunofluorescence analysis of the reactivity of mAb MT54 with U937 (A), K562 (B), Daudi (C), Molt4 (D), Jurkat (E) and Sup T1 (F). Solid lines represent the immunofluorescence profiles of cells stained with indicated mAb and dashed lines represent background fluorescence of the negative control mAb.

transfectants, but did not react to mock transfectants (data not shown). Pre-immune sera of each mouse did not react to any transfectants. These results indicated that DNA immunization can be used to produce polyclonal antibodies to cell surface proteins. Direct immunization of plasmid DNA into spleen can induce antibody response after only a single DNA immunization.

#### 3.2. Production of monoclonal antibodies to CD54 protein by intrasplenic immunization of plasmid DNA

To produce monoclonal antibody to CD54 protein, spleen cells from a CD54-DNA intrasplenic immunized mouse, which produced anti-CD54 antibodies, were fused with myeloma cells using the conventional hybridoma technique. Hybrids that produced anti-CD54 mAb were determined by indirect immunofluorescence using CD54 transfected COS cells as antigen. By this screening, an anti-CD54 mAb, designated MT54 (IgG2a isotype), which bound strongly to CD54 transfectants, but not to mock transfectants, was obtained. To confirm that MT54 is an anti-CD54 mAb, the reactivity of this mAb to various cell lines and peripheral blood leukocytes was studied and compared with

standard anti-CD54 mAb, MEM-111 [21]. All cell lines tested including the human monocytic cell line U937, the erythroid/myeloid cell line K562, the B cell line Daudi and the T cell lines Molt4, Jurkat and Sup T1 were positive with MT54 (Fig. 3). With peripheral blood leukocytes, the mAb MT54 bound to lymphocytes and monocytes and reacted weakly to neutrophils ( $n=5$ ) (Fig. 4). All of these staining patterns were similar to those obtained by using mAb MEM-111 (Figs. 3 and 4). Data obtained from the COS cell transfectant experiments together with the cellular distribution patterns, indicated that the generated mAb MT54 is an anti-CD54 mAb. Our results demonstrated that direct immunization of plasmid DNA into spleen is a possible alternative route for the production of both polyclonal and monoclonal antibodies to cell surface molecules.

#### 4. Discussion

Production of monoclonal antibodies to leukocytic surface molecules by DNA immunization is very useful for producing specific antibody where the protein antigen is absence but antigen-encoding DNA is available.

In our previous experiments, intramuscular immunization of plasmid DNA encoding various human leukocyte surface molecules, including CD4, CD14, CD45, CD54 and CD147, induced antibody responses ([5–7] and unpublished observations). In theory, spleen cells from antibody-producing mice can be used in the hybridoma technique. However, in our previous fusion experiments, none hybrid produced specific antibody was generated from the DNA intramuscularly immunized mice. Instead of intramuscular immunization, an optimal DNA immunization route must be taken into consideration for the generation of hybrid produced monoclonal antibody of interest.

Injection of protein antigen directly into lymphoid organs such as lymph node or spleen offers some strong theoretical advantages over other injection routes [13,23]. In this type of immunization, the immunogen is concentrated in one region that is specialized in dealing with it. Intrasplenic immunization was introduced by Nilsson [13] as an extremely efficient procedure, especially useful for low amounts of antigen. This immunization route has been further used for polyclonal and monoclonal antibody production purposes [10–20]. In the present study, intrasplenic and intramuscular routes were, therefore, compared for the production of antibodies to cell surface proteins after antigen-encoding DNA immunization.

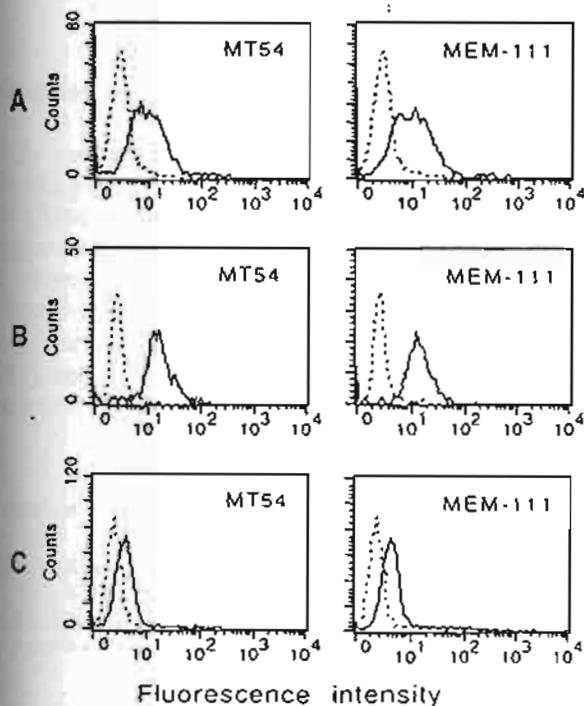



Fig. 4. Immunofluorescence analysis of the reactivity of mAb MT54 with lymphocytes (A), monocytes (B) and neutrophils (C). Solid lines represent the immunofluorescence profiles of cells stained with indicated mAb and dashed lines represent background fluorescence of the negative control mAb.

In this study, mice immunized with plasmid DNA encoding CD54 and CD147, generated specific antibodies after two to five DNA inoculations (Fig. 1). In contrast, no mice that obtained a single dose intramuscular immunization generated an antibody. Intramuscular injection of plasmid DNA has been widely used with DNA vaccines. In most cases of DNA intramuscular immunization, high titers of antibodies have been found against the expressed protein. Some investigators demonstrated that a single intramuscular immunization of plasmid DNA induced antibody responses [24–26], however, booster(s) was required in several reports including this one [27–30]. These differences appear to be due to the nature of the particular antigen, the expression vector used and may be due to the skill of the individual administering the DNA [29,31]. In contrast to intramuscular immunization, only a single DNA intrasplenic injection resulted in the production of serum antibodies (Fig. 2). These results indicate the possibility of using intrasplenic immunization for the induction of antibody responses by DNA immunization. Enhancement of antibody responses by intrasplenic immunization is likely to be related to that the injected plasmid DNA are directly transfected splenocytes, including antigen presenting cells. The antigens are then expressed and concentrated in the spleen, where the immune responses are initiated. Antigen presenting cells are thought to play at least three distinct roles in DNA immunization, (1) MHC class II-restricted presentation of antigens secreted by neighboring, transfected cells; (2) MHC class I-restricted 'cross' presentation of antigens released by neighboring, transfected cells; and (3) direct presentation of antigens by transfected antigen presenting cells themselves [32]. Therefore, immunization of DNA into spleen allows direct delivery of antigens to the spleen and the induction of antibody responses is occurred. In protein immunization, it was clearly easier to obtain an antibody response using minute amounts of antigen by intrasplenic route than by the intraperitoneal or intravenous route [33]. Spitz et al. reported the production of antibodies after a single intrasplenic injection of either soluble antigen or of allogeneic cells [10]. In agreement with protein immunization, this study demonstrated that injection of CD54-encoding DNA into spleen induced antibody response better than that intramuscular route, as the antibodies could be detected after a single intrasplenic immunization. While this manuscript was in preparation, the use of intrasplenic immunization of plasmid encoding carcinoembryonic antigen (pCEA) for induction of immune responses was reported by White et al. [34]. Intrasplenic administration of pCEA could induce specific antibody responses and partial immunoprotection against tumor challenge [34]. This and our findings support future investigations of DNA vaccination strategies that specifically promote the uptake of plasmid by splenocytes.

Spleen cells from a CD54-DNA intrasplenic immunized mouse were fused with myeloma for generation of monoclonal antibody. A hybridoma cell line stably secreting specific mAb to CD54 was established. The generated mAb reacted to CD54 protein expressed on transfected COS cells and various cell types as well as using a standard CD54 mAb MEM-111. Our results show that, rather than polyclonal antibody production, intrasplenic immunization can be used to produce monoclonal antibody by DNA immunization.

Intrasplenic immunization of protein antigens has been demonstrated to be an efficient procedure for the induction of antibodies [13]. Antibody responses were also obtained when the immunogen was immobilized on nitrocellulose or Sepharose beads [11,32]. As described here, the intrasplenic route was used for production of both polyclonal and monoclonal antibodies using plasmid DNA as immunizing agent. Intrasplenic immunization seems to be an appropriate route for raising polyclonal and monoclonal antibodies against cell surface proteins by DNA immunization. However, many constraints have limited the use of this immunization route. Intrasplenic immunization is not easy to perform, especially in small animals such as mice, since major surgical procedures are required and animal mortality and morbidity cannot be underestimated. This immunization route should be carried out only under the guidance of a trained animal worker or veterinarian.

#### Acknowledgements

The authors wish to thank Vaclav Horejsi and Hannes Stockinger for providing mAbs to CD54 protein and CD54-encoding DNA, respectively. This work was supported by the National Science and Technology Development Agency of Thailand and the Thailand Research Fund. S. Moonsom and P. Khunkeawla are researchers supported by The Thailand Research Fund (TRF) and The National Science and Technology Development Agency of Thailand (NSTDA), respectively.

#### References

- [1] J.B. Ulmer, J.J. Donnelly, S.E. Parker, et al., *Science* 259 (1993) 1745–1749.
- [2] J.J. Donnelly, J.B. Ulmer, J.W. Shiver, M.A. Lui, *Ann. Rev. Immunol.* 15 (1997) 617–648.
- [3] E. Munickan, K.L. Karem, B.T. Rouse, *Crit. Rev. Immunol.* 17 (1997) 139–154.
- [4] W.H. Robinson, S.S. Prolaska, J.C. Santoro, et al., *J. Immunol.* 155 (1995) 4739–4748.
- [5] W. Kasinrerk, N. Tokarsinwit, Y. Piluk, *Asia Pacific J. Allerg. Immunol.* 14 (1996) 99–105.
- [6] W. Kasinrerk, N. Tokarsinwit, K. Changlumrung, *Asia Pacific J. Mol. Biol. Biotechnol.* 5 (1997) 123–129.
- [7] W. Kasinrerk, N. Tokarsinwit, *Immunol. Lett.* 67 (1999) 237–242.
- [8] M.A. Barry, M.E. Barry, S.A. Johnston, *Biotechniques* 16 (1994) 616–620.
- [9] C. Olivieri, D. Burroni, J.L. Telford, C.T. Baldari, *J. Biotechnol.* 51 (1996) 191–194.
- [10] L. Spitz, M. Spitz, R. Thorpe, E. Eugui, *J. Immunol. Methods* 70 (1984) 39–43.
- [11] B.O. Nilsson, P.C. Svalander, A. Larsson, *J. Immunol. Methods* 99 (1987) 67–75.
- [12] A.J. Gearing, R. Thorpe, L. Spitz, M. Spitz, *J. Immunol. Methods* 27 (1988) 305–343.
- [13] B.O. Nilsson, A. Larsson, *Immunol. Today* 11 (1990) 10–12.
- [14] M. Jin, L. Johansson, P. Sundstrom, B.O. Nilsson, *Mol. Reprod. Dev.* 37 (1994) 446–451.
- [15] E.M. Fusi, A.M. Gasparri, M. Pelagi, et al., *Am. J. Reprod. Immunol.* 33 (1995) 122–130.
- [16] M. Jin, A. Larsson, B.O. Nilsson, *Mol. Reprod. Dev.* 43 (1996) 47–54.
- [17] N. Tumosa, J.R. Baker, *Vis. Neurosci.* 13 (1996) 671–682.
- [18] N.R. Gidlund Damasco, J.A. Lindoso, D.S. Abdalla, H. Goto, *Braz. J. Med. Biol. Res.* 29 (1996) 1625–1628.
- [19] S.P. Schrimpf, U. Hellman, L. Carlsson, et al., *Prostate* 38 (1999) 35–39.
- [20] T.S. Hu, Y.C. Qian, Y.G. Yang, Y.L. Hu, X.M. Qu, S.L. Yang, *Hybridoma* 19 (2000) 95–99.
- [21] K. Imai, M. Tsujisaki, T. Hareyama, Y. Minoda, in: T. Kishimoto, H. Kikutani, A.E.G.Kir.v.d. Borne, et al. (Eds.), *Leukocyte Typing VI*, Garland Publishing, 1997, p. 409.
- [22] W. Kasinrerk, E. Fiebinger, I. Stefanova, et al., *J. Immunol.* 149 (1992) 847–854.
- [23] M.B. Sigal, Y.N. Sinha, W.P. VanderLaan, *Methods Enzymol.* 93 (1983) 3–12.
- [24] M. Major, L. Vitvitski, M.A. Mink, et al., *J. Virol.* 69 (1995) 5798–5805.
- [25] W. Bohm, A. Kuhrober, T. Paier, et al., *J. Immunol. Methods* 193 (1996) 29–40.
- [26] A. Noll, N. Bucheler, E. Bohn, et al., *Eur. J. Immunol.* 29 (1999) 986–996.
- [27] D. Gray, H. Skerfval, *Nature* 336 (1988) 70–73.
- [28] B. Wang, J. Boyer, V. Srikanth, et al., *DNA Cell Biol.* 12 (1993) 799–805.
- [29] H.L. Davis, *Curr. Opin. Biotechnol.* 8 (1997) 635–646.
- [30] J. Hinkula, C. Svanholm, S. Schwartz, et al., *J. Virol.* 71 (1997) 5528–5539.
- [31] Y. Nishimura, A. Kamei, S. Uno-Furuta, et al., *Vaccine* 17 (1999) 675–680.
- [32] A. Takashima, A. Morita, *J. Leukocyte Biol.* 66 (1999) 350–356.
- [33] A. Larsson, B.O. Nilsson, *Scand. J. Immunol.* 27 (1988) 305–309.
- [34] S.A. White, A.F. LoBuglio, R.B. Arani, et al., *J. Gene Med.* 2 (2000) 135–140.

## Determination of haemophilia A carrier status by mutation analysis

S. ORANWIROON,\* V. AKKARAPATUMWONG,† P. PUNG-AMRITT‡, A. TREESUCON§,  
G. VEERAKUL,‡ C. MAHASANDANA,‡ S. PANYIM† and P. YENCHITSOMANUS,\*††

\*Divisions of Medical Molecular Biology, Department of Research and Development, ‡Hematology, Department of Paediatrics, §Medical Genetics, Department of Medicine, and ††Molecular Genetics, Department of Research and Development, Siriraj Hospital, Mahidol University, Bangkok, Thailand; and †Institute of Molecular Biology and Genetics, Salaya Campus, Nakhon Pathom, Thailand

**Summary.** A reliable method for determination of carrier status and genetic counselling is required for effective control of haemophilia. Linkage analysis is currently the most widely used method for this purpose; however, in cases where there is no prior family history and/or unavailability of informative polymorphic markers it is less applicable. Detection of a mutation characterized in each family may be an alternative method for determination of the carrier status. In this study, linkage analysis using four polymorphic DNA markers, and direct mutation analysis were compared to determine the carrier status in six unrelated Thai haemophilia A families, two with a family history and four without. In the two families with a family history of haemophilia A, the carrier and noncarrier statuses could readily be determined in eight females by either linkage or direct mutation analysis. In the four families without

a family history, the polymorphic DNA markers for linkage analysis were informative in two families and uninformative in the other two. The carrier status could be excluded in all four female siblings of the patients in the former. However, the specific FVIII gene mutation was not observed in the mother of one patient, who should have carried the mutation. In the remaining two families with uninformative polymorphic DNA markers, the carrier and noncarrier statuses of four female members could only be determined by direct mutation analysis. Therefore, direct mutation analysis could circumvent the limitations of linkage analysis in the determination of haemophilia A carrier status in families without a previous history or informative polymorphic markers.

**Keywords:** carrier detection, FVIII gene, haemophilia A, linkage analysis, mutation analysis, Thai.

Haemophilia A is the most common X-linked recessive bleeding disorder and results from a deficiency or dysfunction of coagulation factor VIII (FVIII) due to mutations in the FVIII gene, which is located on the most distal region of the long arm (q28) of the X chromosome [1]. The disease almost exclusively affects males, who possess only one allele of the FVIII gene, whereas females inherit two alleles; therefore, a male with a defective allele will have the disorder, while a female with an abnormal allele is usually an

asymptomatic carrier, with a 50% probability of transmitting the abnormal allele to her child.

Carrier determination and genetic counselling are important parts of haemophilia care and the effective genetic control of the disease [2]. The size of the FVIII gene, which is 186 kb containing 26 exons [3,4], and the heterogeneity of its mutations [5], have made it difficult to determine the molecular defects in carriers and affected fetuses. For this reason, the determination of carrier status and prenatal diagnosis are usually achieved by linkage analysis, using restriction fragment length polymorphisms (RFLPs) [6] or short tandem repeats (STRs) [7–9] to track the defective allele of the FVIII gene in affected families in which the causative mutations have not been identified. Linkage analysis of haemophilia A is technically straightforward, but this method has

Correspondence: Dr Pa-thai Yenchitsomanus, Divisions of Molecular Genetics and Medical Molecular Biology, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.

Tel./fax: + 662 4184793; e-mail: grp.ye@mahidol.ac.th

Accepted 12 July 2000

certain limitations. In families lacking a prior history of haemophilia A and/or informative polymorphic markers, linkage analysis is not applicable. In these families, direct mutation testing may be an alternative method for the carrier detection and prenatal diagnosis. To apply this method, it is necessary to characterize the mutation of the FVIII gene in each family.

Recently, we have systematically carried out a study of mutations of the FVIII gene in Thai haemophilia A patients [10,11] in order to elucidate its molecular defects. This has allowed us to apply direct mutation analysis to determine haemophilia A carrier status in female members of affected families in which mutations of the FVIII gene have already been identified. The results that we present here demonstrate a distinct advantage of this approach for carrier detection when compared to the conventional method of linkage analysis in some haemophilia A families with no previous history of the disease or with uninformative polymorphic DNA markers.

## Materials and methods

### Subjects

Seven haemophilia A patients from six unrelated families, who were attending the Haematology Clinic of the Department of Paediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, were included in this study, together with their family members. The diagnosis of haemophilia A was made by clinical and laboratory findings. The FVIII activity (FVIII:C) was measured by the one-stage clotting assay [12]. Of these seven patients, five had severe haemophilia A (FVIII:C < 1%) and two had moderate disease (FVIII:C 1–5%). Previous studies by Southern blot analysis [V. Akkarapatumwong *et al.*, in preparation] showed that these patients did not carry the FVIII gene inversion.

### Linkage analysis

Linkage analysis was performed to determine the haplotypes of the X chromosomes in the affected families by using FVIII intragenic and close extragenic polymorphic DNA markers. Analyses of the intron 13 (CA)<sub>n</sub> STR [8], intron 22 (GT)<sub>n</sub>(AG)<sub>n</sub> STR [9], intron 18 *Bcl*I polymorphism [13], and St14 VNTR [14] were carried out as previously described. The extragenic St14 VNTR has a potential 5% crossover rate; it was therefore analysed together with other intragenic markers to construct the haplotypes.

### RNA and DNA preparations

Fifteen millilitres of EDTA-anticoagulated blood samples from the patients and normal controls were collected for RNA and DNA preparations. RNA was prepared from peripheral lymphocytes, and genomic DNA was prepared from the remaining white blood cells. Only genomic DNAs were prepared from the haemophilia A family members.

### Mutation screening and characterization

Mutations of the FVIII gene were screened by silver-stained single-strand conformation polymorphism (SSCP) and characterized by DNA sequencing as previously described [11].

### Carrier detection

The regions of the FVIII gene where mutations are usually located were amplified from the genomic DNA samples of the patients and other family members with appropriate PCR primers (details available on request). The amplified products were subjected to the analysis by either restriction endonuclease digestion/agarose-gel electrophoresis, SSCP [15] or heteroduplex analysis (HA) [16].

## Results

From the linkage analysis using the FVIII intragenic and closely extragenic polymorphic DNA markers in the six families, 15 haplotypes of the FVIII gene (designated 'a' to 'o') were observed (Table 1). The results of this analysis (Fig. 1) showed that in the two families with a prior family history (families A and B) and two of the families without a prior history (families C and D), the polymorphic DNA markers were informative (i.e. the patients' mothers were heterozygous for the FVIII gene, with one allele being abnormal), but in another two families without a family history (families E and F), they were not informative (i.e. the patients' mothers were homozygous). By this linkage analysis, six potential carriers and eight noncarriers in the four families with informative polymorphic markers were identified. In the two families with noninformative polymorphic DNA markers (families E and F), two females (the patients' mothers) might be the carriers; however, the status of two other female members of family F could not be confirmed.

Six potentially pathogenic mutations of the FVIII gene were identified in the six haemophilia A patients whose families were studied by the PCR-SSCP and

Table 1. Haplotypes of the FVIII gene, determined by the analyses of four polymorphic DNA markers, observed in six Thai haemophilia A families.

| Marker            | Haplotype        |                  |     |      |     |       |     |      | n   | o    |
|-------------------|------------------|------------------|-----|------|-----|-------|-----|------|-----|------|
|                   | a                | b                | c   | d    | e   | f     | g   | h    |     |      |
| Intron 18 (Bcl I) | +                | +                | -   | -    | -   | -     | -   | -    | +   | +    |
| Intron 13 STR     | 147 <sup>b</sup> | 147 <sup>b</sup> | 153 | 151  | 149 | 151   | 149 | 149  | 149 | 145  |
| Intron 22 STR     | 88               | 86               | 84  | 84   | 84  | 84    | 86  | 86   | 86  | 86   |
| Stu I VNTR        | 660              | 1350             | 660 | 1650 | 660 | >1900 | 660 | 1350 | 660 | 1210 |

<sup>a</sup> and - represent the presence and absence of Bcl I restriction site, respectively. <sup>b</sup>The numbers are sizes of alleles in base-pairs (bp).

DNA sequencing [11]. Three different techniques were used for analyses of these mutations (Fig. 1).

#### Technique 1

The G1850V missense mutation in family A resulted from a single nucleotide substitution at codon 1850 (GGC → GTC) in exon 17 of the FVIII gene, which changed a *Stu* I restriction site from AGGCCT to AGTCCT. Thus, the presence or absence of the mutation could be detected by *Stu* I digestion of the PCR product amplified from the genomic DNA sample, followed by a simple agarose-gel electrophoresis. The size of PCR product amplified was 1313 bp. In a normal individual, this PCR product contained two *Stu* I restriction sites, generating three fragments of sizes 95, 500, and 718 bp. In the patient, the second *Stu* I site was eliminated, generating only two fragments (95 and 1218 bp). The carrier of this mutation would have a combination of both patterns, i.e. 95, 500, 718, and 1218 bp. Usually, the 95-bp fragment was not observed on the agarose gel. The result of the G1850V mutation analysis in family A (Fig. 1) showed that the patient's mother and two younger sisters were carriers of the mutation while another younger sister was not. This result agreed with that of the linkage analysis, i.e. the mutation occurred on haplotype *b* of the FVIII gene, which was inherited from the mother by the patient and two younger sisters but not by the other sister.

#### Technique 2

The R1966X and R5X nonsense mutations in families B and C, and the G2325C and D542Y missense mutations in families D and E were determined by PCR-SSCP analysis. The four mutations caused different mobility shifts of single-stranded DNAs on the SSCP gel electrophoresis (Fig. 1).

The two affected individuals in family B (the patient and his uncle), who carried the R1966X mutation, had the same pattern of migration of single-stranded DNAs, which was different from that of the father and younger brother, who were normal. The patient's mother also had the same band of single-stranded DNA as that found in the two affected individuals, indicating the presence of the R1966X mutation; she was therefore a carrier. Three female members in this family (the patient's younger sister and two aunts) did not have the indicator band for the mutation, thus, they were not carriers. All these results were compatible with those from the linkage analysis. Additional variations of SSCP patterns were also observed in the patient's father,

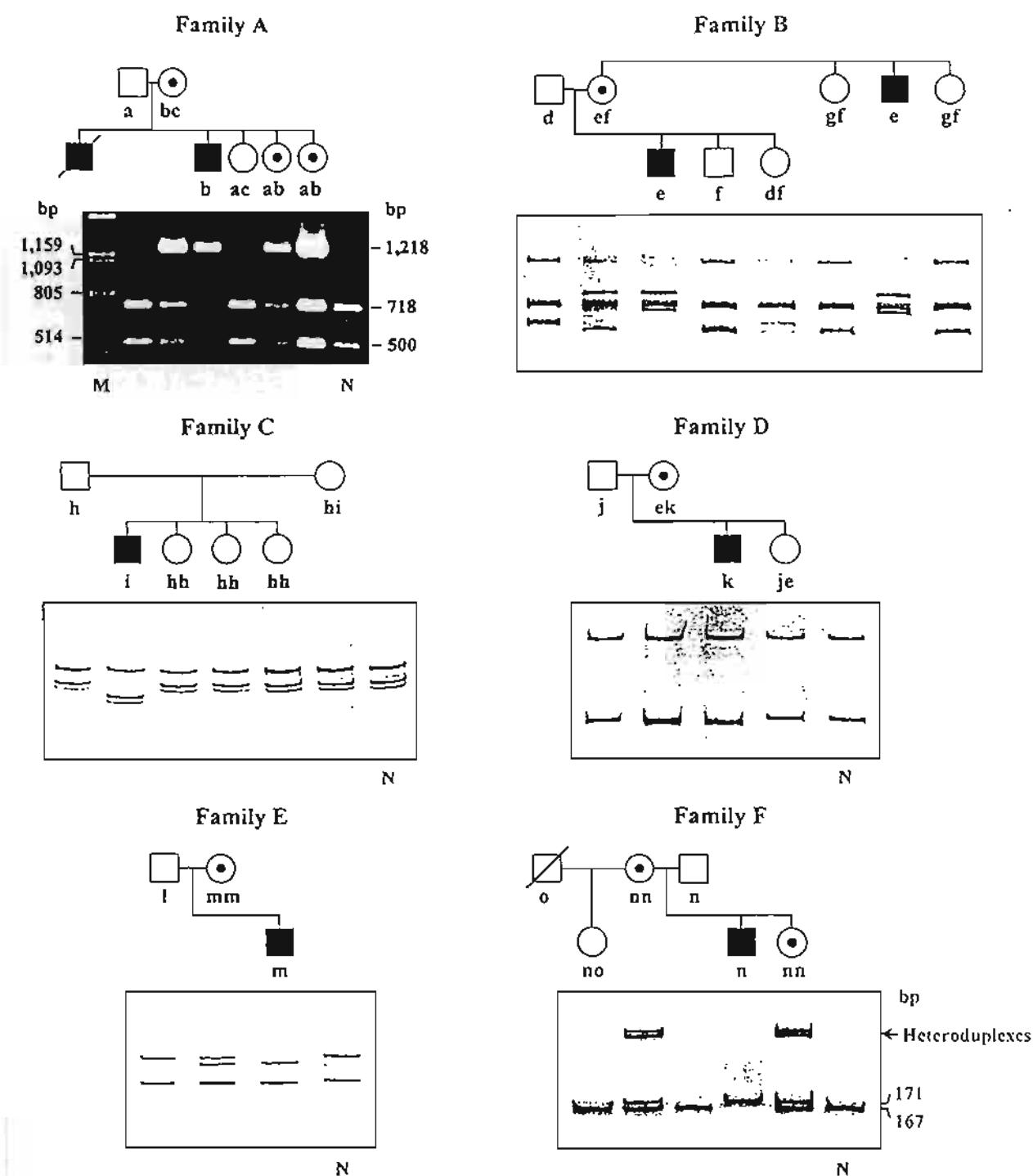



Fig. 1. Determination of haemophilia A carrier status in female members of six affected families. Pedigrees of the six families are shown and haplotypes generated from the linkage analysis using four polymorphic DNA markers (see details in Table 1) are indicated under the symbols. The G1850V missense mutation in family A was analysed by the *Sst*I digestion of amplified DNA and agarose gel electrophoresis. The mutation resulted in loss of the restriction site and the presence of a 1218 bp fragment instead of two fragments of 718 and 500 bp, which indicated the absence of this mutation. The mutation was observed in the mother, patient, and two sisters but was not detected in another sister. Lane M is DNA size markers (*Pst*I-digested  $\lambda$  DNA). The mutations in families B, C, D, and E were analysed by the SSCP method. The patients' mothers in the families B, D, and E were carriers but the patient's mother in the family C was not a carrier. *De novo* mutation in the family C was proposed. All other female members of these families were not carriers. The 4-bp (ACTA) insertion in family F was detected by the heteroduplex analysis. The patient showed only the 171-bp fragment while the mother and a sister who were carriers showed heteroduplex DNAs as well as the 171-bp and 167-bp fragments. The patient's elder sister was not a carrier. N is normal control.

brother, sister, and two aunts, due to different *BclI* polymorphisms in intron 18 of the FVIII gene, present at the 3' end of the fragment analysed.

Surprisingly, in family C, the patient's mother, who was expected to be the carrier, did not have the R-SX mutation. The patient's three younger sisters were not carriers of this mutation, the result of linkage analysis showing that they did not have haplotype *i* bearing this mutation. These results were also confirmed by DNA sequencing analysis of the PCR products from the patient's mother and three younger sisters (data not shown).

In family D, a lower band of single-stranded DNA was found to have a slight mobility shift in the patient who had the G2325C mutation on haplotype *k*. This band was also observed in the patient's mother, thus, she was a carrier. The patient's younger sister, who had haplotypes *j* and *e*, did not have the band with the mobility shift and was therefore not a carrier.

The patient's mother in family E who had the homozygous haplotype *m* was found to be a carrier of the D542Y mutation as expected.

### Technique 3

Because the mutation in the patient of family F was a frameshift 4-bp (ACTA) insertion at codon 2245, the amplified product with the insertion (171 bp) could form heteroduplexes with the normal amplified product (167 bp) in the heterozygous female, easily detectable by polyacrylamide gel electrophoresis. Heteroduplex analysis (HA) was therefore used for determination of carrier status in this family, whose polymorphic markers were not informative, as the patient's mother had homozygous haplotype *n*. The result of mutation analysis in this family showed that the patient's mother and younger sister were carriers of the mutation while the elder sister, who had the haplotypes *n* and *o*, was not a carrier.

### Discussion

We carried out linkage analysis, using intragenic and extragenic polymorphic DNA markers, to investigate the presence of a defective allele of the FVIII gene in female family members of haemophilia A patients. This method is applicable to families with a known family history of haemophilia A, in which the inheritance of haemophilia A has been established, usually by the presence of more than two affected males. As previous characterization of mutations is not required, linkage analysis is relatively simple and inexpensive. The major drawbacks to linkage analy-

sis occur when DNA samples from the affected male are unavailable, or when polymorphic DNA markers are uninformative. Furthermore, in families with a sporadic case of haemophilia A, the result of linkage analysis is uncertain and cannot be used for confirmation, but can be used for exclusion of carrier status. Direct mutation analysis, however, offers precise diagnosis of carrier and noncarrier status by determination of the presence or absence of the disease-causing mutation(s) in the at-risk females. This approach essentially requires the characterization of the specific FVIII gene mutation, a laborious process because of the large size of the FVIII gene and its extremely heterogeneous mutations.

We characterized mutations of the FVIII gene in six unrelated Thai haemophilia A patients and identified six potentially pathogenic mutations [11]. This made it possible to determine the carrier status of female members of the families by direct analysis of the defective allele, and to compare the result of this method with that of the linkage analysis. The results of this study (Fig. 1) showed that in two families which had a family history of haemophilia A and in which the polymorphic DNA markers were informative (families A and B), determination of the carrier status by linkage analysis and direct mutation analysis were equally efficient. With either method, four females from both families were found to be haemophilia A carriers and another four females were not carriers.

Four families had no family history of haemophilia; in two of these, where the polymorphic DNA markers used in the linkage analysis were informative (families C and D), four at-risk siblings were identified as not carrying the defective FVIII alleles by the linkage analysis, because they did not have the same haplotypes as those found in the patients. Direct mutation analysis confirmed that the mutations were absent in these female members. In these two families, direct mutation analysis also provided the interesting finding that, while the mother of the patient in family D was found to carry the mutation, the mother of the patient in family C did not, because the mutation was not detected by PCR-SSCP, a finding that was also confirmed by DNA sequencing analysis. The patient had haplotype *i* of the FVIII gene, which was also observed in the mother. It seems likely therefore that *de novo* mutation has occurred in this family [11]. This result was not detected by linkage analysis, demonstrating another advantage of direct mutation analysis.

In the two families with sporadic cases of haemophilia A in which the polymorphic DNA markers were not informative (families E and F), the mothers

in both families were found to carry the mutations; in family E the patient had no sisters, but in family F, there were two female siblings who were at risk of being carriers. Although it was impossible to determine the carrier status by using linkage analysis in female members of family F, it was possible by direct mutation detection. The result showed that the elder sibling was normal whereas the younger one was a carrier. The result in this last family has shown an obvious advantage of the direct mutation detection over linkage analysis for determination of carrier status.

In conclusion, this study has demonstrated that direct mutation analysis is useful for determination of haemophilia A carrier status in families with sporadic cases of haemophilia A where polymorphic DNA markers for linkage analysis are not informative.

#### Acknowledgements

This work was financially supported by the National Center for Genetic Engineering and Biotechnology (BIOTECH), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand. We thank Dr Prida Malasit, the Head of the Division of Medical Molecular Biology, Department of Research and Development and the Medical Biotechnology Unit (BIOTECH) for his support, and the staff of the Hematology Unit, Department of Paediatrics, Faculty of Medicine Siriraj Hospital, for technical assistance.

#### References

- 1 Poustka A, Dietrich A, Langenstein G, Toniolo D, Warren ST, Lehrach H. Physical map of human Xq27-pter: localizing the region of the fragile X mutation. *Proc Natl Acad Sci USA* 1991; 88: 8302-6.
- 2 Peake IR, Lillicrap DP, Boulyjenkov V et al. Haemophilia: strategies for carrier detection and prenatal diagnosis. *Bull World Health Organ* 1993; 71: 429-58.
- 3 Gitschier J, Wood WI, Goralka TM et al. Characterization of the human FVIII gene. *Nature* 1984; 312: 326-30.
- 4 Toole JJ, Knopf JL, Wozney JM et al. Molecular cloning of a cDNA encoding human antihaemophilic factor. *Nature* 1984; 312: 342-7.
- 5 Kemball-Cook G, Tuddenham EGD, Wacey AI. The FVIII structure and mutation resource site: HAM-STErs, Version 4. *Nucleic Acids Res* 1998; 26: 216-9. URL: <http://europium.mrc.rpms.ac.uk>
- 6 Kogan SC, Doherty M, Gitschier J. An improved method for prenatal diagnosis of genetic diseases by analysis of amplified DNA sequences. Application to hemophilia A. *N Engl J Med* 1987; 317: 985-90.
- 7 Oberle I, Camerino G, Heilig R et al. Genetic screening for hemophilia A (classic hemophilia) with a polymorphic DNA probe. *N Engl J Med* 1985; 312: 682-6.
- 8 Laloz MR, McVey JH, Partinson JK, Tuddenham EG. Haemophilia A diagnosis by analysis of a hypervariable dinucleotide repeat within the FVIII gene. *Lancet* 1991; 338: 207-11.
- 9 Laloz MR, Schwaab R, McVey JH, Michaelides K, Tuddenham EG. Haemophilia A diagnosis by simultaneous analysis of two variable dinucleotide tandem repeats within the FVIII gene. *Br J Haematol* 1994; 86: 804-9.
- 10 Pung-amritt P, Treesucon A, Petrarat S, Veerakul G, Mahasandana C, Yenchitsomanus P. FVIII gene deletion in a Thai haemophilia A patient. *AsPac J Mol Biol Biotechnol* 1998; 6: 115-20.
- 11 Akkarapatumwong V, Oranwiroon S, Pung-amritt P et al. Mutations of the FVIII gene in Thai hemophilia A patients. *Hunt Mutat (Online)* 2000; 15: 117-8.
- 12 Proctor PR, Rappaport SI. The partial thromboplastin time with kaolin. A simple screening test for first stage plasma clotting factor deficiencies. *Am J Clin Pathol* 1961; 36: 212.
- 13 Kogan SC, Gitschier J. Genetic prediction of haemophilia A. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. *PCR Protocols: a Guide to Methods and Applications* San Diego: Academic Press 1990: 288-99.
- 14 Richards B, Heilig R, Oberle I, Storjohann L, Horn GT. Rapid PCR analysis of the St14 (DXS521) VNTR. *Nucleic Acids Res* 1991; 19: 1994.
- 15 Bannai M, Tokunaga K, Lin L et al. Discrimination of human HLA-DRB1 alleles by PCR-SSCP (single-strand conformation polymorphism) method. *Eur J Immunogenet* 1994; 21: 1-9.
- 16 White MB, Carvalho M, Derse D, O'Brien SJ, Dean M. Detecting single base substitutions as heteroduplex polymorphisms. *Genomics* 1992; 12: 301-6.

# Molecular Defect of *PKD1* Gene Resulting in Abnormal RNA Processing in a Thai Family

NANYAWAN RUNGROJ, M.Sc.\*,  
KRIENGSAK VAREESANGTHIP, M.D., Ph.D.\*\*,  
PRAPON WILAIRAT, Ph.D.\*\*\*\*,

WANNA THONGNOPPAKHUN, Ph.D.\*,  
CHINTANA SIRINAVIN, M.D.\*,\*\*\*,  
PA-THAI YENCHITSOMANUS, Ph.D.\*,\*\*\*\*

## Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is a common human autosomal disorder caused mainly by mutations of the *PKD1* gene. In analysis of *PKD1* transcripts by long RT-PCR and nested PCR procedures, we observed *PKD1*-cDNA fragments from three ADPKD siblings from the same family with a size approximately 250 base pairs (bp) shorter than normal. Further investigations showed that the *PKD1* transcripts from these patients had been abnormally processed, the nucleotide sequence of exon 43 containing 291 nt was missing from the transcripts, which would result in an abnormal polycystin-1 with an in-frame deletion of 97 amino acids. This splicing defect did not result from a mutation that disrupted the splice donor or acceptor sites adjacent to exon 43 or the branch sites in flanking introns but was most likely due to 20-bp deletion observed in intron 43. The intronic deletion was present in 8 affected members but absent in 11 unaffected members, corresponding with the results of genetic linkage analysis using 5 polymorphic markers in the *PKD1* region. Molecular diagnosis of *PKD1* in this family could, therefore, be carried out by genomic DNA amplification to directly detect the *PKD1* intronic deletion.

**Key word :** Polycystic Kidney Disease 1 (*PKD1*), *PKD1* Mutation, Intronic Deletion, Exon Skipping, RNA Processing Defect, Abnormal Splicing

RUNGROJ N, THONGNOPPAKHUN W, VAREESANGTHIP K,  
SIRINAVIN C, WILAIRAT P, YENCHITSOMANUS P  
J Med Assoc Thai 2001; 84: 1308-1316

\* Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine Siriraj Hospital.

\*\* Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital.

\*\*\* Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital.

\*\*\*\* Department of Biochemistry, Faculty of Science.

\*\*\*\*\* Division of Medical Molecular Biology, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.