

รายงานวิจัยฉบับสมบูรณ์

โครงการกลไกทางสรีระเชิงนิเวศน์และพันธุกรรม
ที่ควบคุมการใช้ธาตุอาหารในพืช
(Ecophysiological processes and genetic controls
relating to plant nutrition)

โดย เบญจวรรณ ฤทธิ์กุล และคณะ

31 กรกฎาคม 2546

สัญญาเลขที่ RTA10/2543

รายงานวิจัยฉบับสมบูรณ์

โครงการกลไกทางสรีระเชิงนิเวศน์และพันธุกรรมที่ควบคุมการใช้ธาตุอาหารในพืช (Ecophysiological processes and genetic controls relating to plant nutrition)

คณะผู้วิจัย

- ศ.ดร. เบญจวรรณ ฤกษ์เกษม
- รศ.ดร. สายสมร ลำยอง
- รศ. ดร. ศันสนีย์ จำจด
- ผศ. ดร.ศักดา จงแก้ววัฒนา
- ดร. กนก ฤกษ์เกษม
- ดร.จารยา มณีโชติ
- นายสิทธิชัย ลอดแก้ว
- นายพิภพ ลำยอง
- นายนริศ ยิ่งแย้ม
- นางปนิตา บุญสิทธิ

สังกัด

มหาวิทยาลัยเชียงใหม่
มหาวิทยาลัยเชียงใหม่
มหาวิทยาลัยเชียงใหม่
มหาวิทยาลัยเชียงใหม่
มหาวิทยาลัยเชียงใหม่
มหาวิทยาลัยเชียงใหม่
กรมวิชาการเกษตร
มหาวิทยาลัยเชียงใหม่
มหาวิทยาลัยเชียงใหม่
มหาวิทยาลัยเชียงใหม่
มหาวิทยาลัยเชียงใหม่

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

ชุดโครงการส่งเสริมกลุ่มวิจัย

Table of Contents

Executive summary	i
Project outputs	iv
Technical contents	
Abstract	
Thai	viii
English	xii
1. Boron nutrition	1
1.1 Plant adaptation to soils low in boron	1
1.1.1. Genotypic variation in adaptation to low boron soils	1
• Difference among crop species in adaptation to low B	2
• Adaptation to low B soils in wheat and related species as a means to overcome the problem of B deficiency in crop production.	2
1.1.2. Mechanisms for adaptation to low B soils	3
• Boron efficient vs inefficient vs very inefficient wheat	3
• Wheat vs other small grain cereals	4
• Relating adaptation to low B to adaptation to toxic levels B in wheat	5
• Phloem mobility	5
1.2 Function	6
1.2.1. Reproductive development	6
• Wheat and barley	6
• Maize and sorghum	7
1.2.2. Seed quality	7
• Nutrients and the keeping quality of bean sprout – a new connection	8
1.2.3. Sugar	8
1.3 Genetic controls	9
1.3.1. Screening for B efficiency	9
1.3.2. Source of B efficiency	9
1.3.3. Genetic controls	10
1.3.4. Breeding for B efficiency	11
1.4 From B physiology to crop management	11
1.4.1. Individual organs and processes The B limiting step	12
1.4.2. Whole plant response	12
2. Other nutrients in rice	13
2.1 Iron in rice grain	13
2.1.1. Factors affecting rice grain iron	13
2.1.2. Determination of iron in individual rice grain	14
2.1.3. Location and form of iron in rice grain	15
2.2 Other nutritional problems	15
2.2.1. Adaptation to wetland and dryland condition	16
2.2.2. N fixing endophytes	16
2.2.3. Rice quality	17
3. Agrodiversity	18
3.1 Agrodiversity and biodiversity management	18
3.2 Fallow enrichment and forest regeneration	18
References	20

EXECUTIVE SUMMARY

1. ความสำคัญและที่มาของปัญหา

ชาติอาหารพืชเป็นปัจจัยสำคัญในการเพาะปลูกที่แพร่หลายที่สุดรองจากน้ำ การจัดการชาติอาหารพืชอย่างมีประสิทธิภาพนอกจากช่วยเพิ่มผลตอบแทนจากการเพาะปลูกแล้ว ยังช่วยลดผลกระทบต่อสภาพแวดล้อมจากการใส่ปุ๋ย และอนุรักษ์ทรัพยากร ความเข้าใจกลไกทางสีระเชิงนิเวศน์และพันธุกรรมควบคุมการใช้ชาติอาหารในพืช เป็นพื้นฐานที่จะนำไปสู่ระบบการจัดการชาติอาหารที่มีประสิทธิภาพในระดับฟาร์มและระบบนิเวศน์

2. วัตถุประสงค์

โครงการนี้มี 2 วัตถุประสงค์หลักคือ

- สร้างกลุ่มนักวิจัยที่มีขีดความสามารถสร้างองค์ความรู้ใหม่ ที่เกี่ยวกับกลไกควบคุมการใช้ชาติอาหารในพืช
- สร้างองค์ความรู้ใหม่เกี่ยวกับกลไกทางสีระเชิงนิเวศน์และพันธุกรรมที่ควบคุมการใช้ชาติอาหารที่เป็นปัจจัยสำคัญ ในพืชสำคัญ ในระบบเกษตรในประเทศไทย

3. ผลงาน (Output)

- ได้เพิ่มขีดความสามารถแก่นักวิจัย 17 คน นักศึกษาปริญญาเอก 12 คน (สำเร็จ/กำลังจะสำเร็จการศึกษาในปี 2546 4 คน) นักศึกษาปริญญาโท 20 คน (สำเร็จการศึกษาแล้ว 9 คน) ผู้ร่วมโครงการได้เลื่อนตำแหน่งทางวิชาการเป็น รองศาสตราจารย์ 1 ราย
- ได้ผลงานตีพิมพ์ในวารสารและหนังสือที่มี peer-review 26 เรื่อง เป็นวารสารและหนังสือที่มีกระบวนการตรวจสอบอย่างเข้มงวดเป็นที่ยอมรับในแวดวงวิชาการนานาชาติ 17 เรื่อง ได้ร่วมเป็นบรรณาธิการตีพิมพ์เผยแพร่หนังสือ 1 เล่ม บทความตีพิมพ์ได้รับรางวัลที่ 1 จาก United Nations University 1 เรื่อง
- ได้องค์ความรู้ใหม่เกี่ยวกับกลไกทางสีระเชิงนิเวศน์และพันธุกรรมที่ควบคุมการใช้ชาติอาหาร ดังต่อไปนี้
 - ในด้านชาติอาหารโนรอนในพืช โครงการวิจัยได้ครอบคลุมถึงการปรับตัวต่อสภาพดินโดยรอนต่า พันธุกรรมควบคุมการใช้โนรอน และบทบาทของโนรอนในกระบวนการทางชีวภาพในพืช ได้พับความหลากหลายในการปรับตัวต่อสภาพดินโดยรอนต่าของชั้นพืชและถั่วที่สำคัญ และพบว่าสมรรถภาพการใช้โนรอนในพืชบางชนิดมีมากพอที่จะใช้แก้ปัญหาการขาดโดยรอนในดินได้ ความเข้าใจในกลไกทางสีระและพันธุกรรมที่เป็นพื้นฐานของการปรับตัวต่อการขาดโดยรอนนี้ มีผลกระทบต่อการจัดการระบบการเพาะปลูก 3 ทาง คือ (ก) ช่วยเพิ่มประสิทธิภาพโครงการปรับปรุงพันธุ์ (ข) ช่วยเพิ่ม

ประสิทธิภาพการจัดการปุ่ยบอรอน (ค) เสริมสร้างความเข้าใจและการศึกษากลไกพื้นฐานเพื่อการจัดการการเพาะปลูกในภาวะเครียด

- ภาวะเครียดสามารถมีอิทธิพลต่อกระบวนการชีวภาพหล่ายกระบวนการ และมีการศึกษาและรายงานไว้ทุกกระบวนการ หากแต่ละกระบวนการมิได้มีความสำคัญต่อการตอบสนองของพืชทั้งต้นลดลงจากการผลิตเท่ากัน ถูกและสำคัญของการศึกษากลไกพื้นฐานที่จะมีประโยชน์อย่างแท้จริงต่อการเพาะปลูกจึงจำเป็นต้องเน้นกระบวนการที่เป็นขั้นตอนที่จำกัดการตอบสนองของพืชทั้งต้น
- การสนองต่อภาวะเครียดในพืช เป็นระบบที่มีการเปลี่ยนแปลงตลอดเวลา ทั้งในภาวะเครียดและการตอบสนองของพืชที่เปลี่ยนไปตามอายุขัย การศึกษากลไกสรีระพื้นฐานที่จะนำไปสู่ความเข้าใจกลไกการปรับตัวของพืช ที่นำไปใช้ในการเพาะปลูกได้จึงจำเป็นต้อง (ก) แยกแยะการเปลี่ยนแปลงของภาวะเครียดตามกาลเวลาที่สอดคล้องกับอายุขัยของพืช และ (ข) การเปลี่ยนแปลงในลักษณะการตอบสนองต่อภาวะเครียดตามอายุขัยของพืช

3.2 งานธาตุอาหารในข้าว ประกอบด้วยงานเหล็กในเมล็ดข้าว ศึกษากลไกเกี่ยวกับประสิทธิภาพการใช้ธาตุอาหารเป็นหลัก งานที่ยังอยู่ในระยะแรกเริ่มได้แก่ประสิทธิภาพการใช้ฟอฟอรัส ประสิทธิภาพการใช้เหล็ก และการทบทวน ซึ่งเน้นการพัฒนาระบบการทดสอบพันธุ์ (screening) และการบ่งชี้พันธุ์ข้าวไทยที่มีประสิทธิภาพสูง พันธุ์ที่ทดสอบและอุดมเนียมเป็นพิษ ส่วนเรื่องที่มีความก้าวหน้าพอสมควรได้แก่ เรื่องเหล็กในเมล็ด การปรับตัวกับสภาพไร่ (ดินไม่มีขังน้ำ) และแบคทีเรียเอ็นโดไฟล์ที่ต้องในโตรเจนในข้าว เรื่องเหล็กในเมล็ดข้าวได้องค์ความรู้ที่บอกว่าการปรับปรุงพันธุ์เป็นวิธีเพิ่มปริมาณเหล็กในเมล็ดที่มีศักยภาพดีที่สุด ได้พัฒนาวิธีการตรวจสอบปริมาณเหล็กในเมล็ดอย่างง่าย สามารถตรวจสอบได้ที่ละเมล็ด ทำให้ได้พบความแตกต่างในปริมาณเหล็กในตัวอย่าง เมล็ดข้าวของเกษตรกรที่ยังคงมีความหลากหลายทางพันธุกรรมอยู่ จึงคาดว่าอาจพบพันธุ์ข้าวที่มีเหล็กสูงกว่าที่พบอยู่ในปัจจุบัน วิธีการตรวจสอบเหล็กด้วยการย้อมสีน้ำเงินจะมีประโยชน์ในการคัดเลือกพันธุ์เหล็กสูงในโตรเจนการปรับปรุงพันธุ์ทั้งยังจะเป็นประโยชน์ในการศึกษาพันธุกรรมที่ควบคุมปริมาณเหล็กในเมล็ดด้วย

ได้ริเริ่มโครงการดูดธาตุอาหารของข้าวในสภาพไร่ และพบว่าข้าวมีลักษณะพื้นฐานเป็นพืชน้ำ คือเจริญเติบโตในสภาพนาที่มีน้ำขังได้ดีกว่าในสภาพไร่ที่น้ำไม่มีขัง แต่ได้พบพันธุ์ข้าวไทยที่มีการปรับตัวต่อสภาพไร่ได้ดีกว่าข้าวนานาส่วนใหญ่ และเราได้พบว่าความสามารถนี้ส่วนหนึ่งขึ้นอยู่กับความสามารถในการดูดอาหารจากดิน ไม่มีขังน้ำ ข้อมูลการดูดอาหารเบื้องต้นชี้ว่าความสามารถนี้ขึ้นอยู่กับความสามารถในการสร้างรากในสภาพไร่ มากกว่าความสามารถในการดูดอาหารจำเพาะของราก (ต่อหน่วยน้ำหนักแห้งราก) กลุ่มผู้วิจัยคาดว่าความเข้าใจนี้จะนำไปสู่การปรับปรุงพันธุ์ให้มีการปรับตัวต่อสภาพไร่ ซึ่งรวมระบบการปลูกข้าวในระบบห่วงตั้งหมุด

ได้พบแบคทีเรียที่ครึ่งในโตรเจนได้อาศัยอยู่ในราก ต้นและใบข้าวเป็นหมื่นตัว/กรัม น้ำหนักสด และพบทั้งในข้าวปลูกและข้าวปา ซึ่งได้ยืนว่าเป็นแบคทีเรียที่ครึ่งในโตรเจน จากอาการได้จริงโดยวิธี Acetylene Reduction แต่ความรู้นี้จะมีผลกระทบต่อการปลูกข้าวได้ก็ต่อเมื่อสามารถถวัดได้ว่าแบคทีเรียเหล่านี้มีบทบาทอย่างไรต่อการใช้ชาตุอาหาร ในโตรเจนในต้นข้าว ซึ่งในขณะนี้กำลังอยู่ในระหว่างการวัดอยู่

ชาตุอาหารในโตรเจนยังอาจมีบทบาทต่อการผลิตข้าวอีกทางหนึ่งคือต่อคุณภาพ การสี ได้พบว่าในการสีข้าว ข้าวที่มีปริมาณในโตรเจนในเมล็ดสูง มีเมล็ดหักน้อยกว่า ข้าวที่มีปริมาณในโตรเจนในเมล็ดต่ำ นอกจากนี้พันธุ์ข้าวเมล็ดยาวของไทยมีความทนทานต่อการหักในระหว่างสีต่างกัน ขณะนี้ยังอยู่ในระหว่างการศึกษาลักษณะภายใต้ด้วย กล้องจุลทรรศน์ (แสง และอิเล็กตรอน) ว่ามีความแตกต่างกันอย่างไรตามระดับในโตรเจน และพันธุ์

3.3 งานด้านความหลากหลายในเกษตรนิเวศน์ (AGRODIVERSITY) ของกลุ่มได้เน้น การอนุรักษ์ความหลากหลายทางชีวภาพ และได้นำไปสู่การอนุรักษ์เชือพันธุ์ข้าวไทย¹ งานของโครงการทางด้าน AGRODIVERSITY ได้เน้นการค้นพบระบบองค์ความรู้ท้องถิ่นในการใช้พืชบำรุงดิน คือตันปะดะ (*Macaranga denticulata* (Bl.) Muell. Arg.) ซึ่งพบว่าปะกอนด้วย 2 องค์ปะกอนที่สำคัญคือ (ก) ตันปะดะ และ (ข) เชื้อรำไม่โคไรซ่า ระบบนี้สามารถรีไซเคิลชาตุอาหารอย่างมีประสิทธิภาพ สามารถทำให้เกษตรกรปลูกข้าวไว้ได้ผลผลิต 320 – 640 กก./ไร่ ได้อย่างยั่งยืน และน่าจะมีบทบาทสำคัญในการพื้นฟูป่าด้วย นอกจากนี้ยังพบว่าประชากรของเชื้อรำไม่โคไรซ่ามีความหลากหลายด้วย โดยพบถึง 29 species ใน 6 genera

สุดท้ายนี้สรุปได้ว่ากลุ่มวิจัยได้สร้างองค์ความรู้ใหม่มากมายภายใต้เวลา 3 ปี จากรถงานเดิมที่มีอยู่ก่อนแล้ว การสนับสนุนกลุ่มวิจัยจาก สกอ ได้เปิดโอกาสให้นักสามารถทางวิชาการที่มีอยู่มาประยุกต์ใช้ และขยายงานไปครอบคลุมถึงปัญหาการเพาะปลูกในประเทศไทย ซึ่งคาดว่าชีดความสามารถในกลุ่ม โดยเฉพาะที่เกี่ยวกับสมรรถภาพการใช้ชาตุอาหารพืช และการปรับตัวเข้ากับภาวะเครียดจะสามารถนำไปสู่การปรับปรุงระบบการเพาะปลูกที่ได้ผล โดยเฉพาะในการปลูกข้าว

¹ ซึ่งได้ขยายไปเป็นโครงการใหม่ “Agrodiversity for in situ Conservation and Management of Thailand’s Native Rice Germplasm” ได้รับทุนสนับสนุนจาก Collaborative Crop Research Program ของมูลนิธิ McKnight โครงการ McKnight นี้ได้อาศัยองค์ความรู้และวิธีการต่างๆที่ได้พัฒนามาจากโครงการเมธิจัยอาชูโคนน์ แต่ APPLICATION เหล่านี้ยังมิได้รวมไว้ในรายงานฉบับนี้ด้วย

Project Outputs

1. Peer-reviewed papers published (ตีพิมพ์เผยแพร่แล้ว หรืออยู่ในระหว่างการตีพิมพ์)
 - 1.1 Rerkasem B, Jamjod S, Niruntrayagul, S. Boron *In press*. Increasing boron efficiency in many international bread wheat, durum wheat, triticale and barley germplasm will boost production on soils low in boron. *Field Crop Research*
 - 1.2 Sansanee Jamjod, Sunisa Niruntrayagul & Benjavan Rerkasem. *In press*. Genetic control of boron efficiency in wheat (*Triticum aestivum L.*) *Euphytica*
 - 1.3 Wongmo, J., Jamjod, S. and Rerkasem, B. *In press*. Contrasting responses to boron deficiency in barley and wheat. *Plant and Soil*
 - 1.4 Duangjai Nachiangmai, Bernie Dell, Richard Bell, Longbin Huang and Benjavan Rerkasem. *In press*. Genotypic variation in boron long distance transport into the reproductive organ of wheat. *Plant and Soil*
 - 1.5 Yimyam, N. Rerkasem, K and Rerkasem, B. 2003. Fallow enrichment with pada (*Macaranga denticulata* (Bl.) Muell. Arg.) trees in rotational shifting cultivation in Northern Thailand *Agroforestry Systems* 57: 79-86.
 - 1.6 M. Leesawatwong, S. Jamjod and B. Rerkasem. 2003 Determinants of a premium priced special quality rice. *International Rice Research Notes*. 28: 34
 - 1.7 C. Prom-u-thai and B. Rerkasem. 2003. The effect of nitrogen on rice grain iron. *International Rice Research Notes*. December 2003.
 - 1.8 Rerkasem K, Korsamphan C, Thong-ngam C, Yimyam N and Rerkasem B. 2002. Agrodiversity lessons in mountain land management. *Mt. Res. Dev.* 22: 4-9 (บทความได้รับรางวัลที่ 1 จาก United Nations University)
 - 1.9 C. Prom-u-thai, B. Dell, G. Thomson, B. Rerkasem. *In press*. Easy and rapid detection of iron in rice grain. *ScienceAsia*
 - 1.10 Rerkasem, B. and K. Rerkasem. 2002 Agrodiversity for *in situ* conservation of Thailand's native rice germplasm. *CMU J.* 1: 129-148.
 - 1.11 Rerkasem B and Jamjod S. 2001. Overcoming wheat sterility problem with boron efficiency. *Dev. Plant Soil Sci.* 92: 82-83.
 - 1.12 Prom-u-thai, C. and Rerkasem, B. 2001. Iron in Thai rice. *Dev. Plant Soil Sci.* 92: 350-351.

1.13 Benjavan Rerkasem. 2003. Biotechnology and Agriculture. An invited review, pp. 293-321, in Social Challenges for the Mekong Region, Mingsarn Kaosa-ard and John Dore (Eds.). White Lotus, Bangkok.

1.14 Kanok Rerkasem. 2003. Uplands Land Use. An invited review, pp. 323-346, in Social Challenges for the Mekong Region, Mingsarn Kaosa-ard and John Dore (Eds.). White Lotus, Bangkok.

1.15 Rerkasem, B. 2002. Crop responses to boron and genotypic variations. An invited review, pp. 269-280, in All Aspects of Plant and Animal Boron Nutrition, Eds: H. E. Goldbach, B. Rerkasem, M. A. Wimmer, P. H. Brown, M. Thellier and R.W. Bell. Kluwer and Plenum Academic Publishers

1.16 Ahmed M, Jaihiruddin M, Jamjod S and Rerkasem B. 2002. Boron efficiency in a wheat germplasm from Bangladesh. Pp. 299-303, in All Aspects of Plant and Animal Boron Nutrition, Eds: H. E. Goldbach, B. Rerkasem, M. A. Wimmer, P. H. Brown, M. Thellier and R.W. Bell. Kluwer and Plenum Academic Publishers.

1.17 NaChiangmai D, Dell B, Huang L, Bell R and Rerkasem B. 2002. The effect of boron on pollen development in two wheat cultivars (*Triticum aestivum* L.). Pp. 181-185, in All Aspects of Plant and Animal Boron Nutrition, Eds: H. E. Goldbach, B. Rerkasem, M. A. Wimmer, P. H. Brown, M. Thellier and R.W. Bell. Kluwer and Plenum Academic Publishers.

1.18 Rerkasem K, Thong-ngam C, Korsamphan C, Yimyam N and Rerkasem B. 2002. Pp. 200-232, in: Land Use Changes in the Highlands of Northern Thailand. An invited review paper in 'Cultivating Biodiversity' Eds. H Brookfield, C Padoch, H Parson and M Stocking. ITDG Publishers, London and United Nations University, Tokyo.

1.19 เนตรนภา อินสลด Richard W. Bell และเบญจวรรณ ฤกษ์เกษม 2546 การตอบสนองของพันธุ์ข้าวไร้และข้าวนาสวนต่อสภาพดินขังน้ำและดินระบายน้ำดี วารสารเกษตร (มช) ACCEPTED

1.20 จำเนียร วงศ์โน้ต, ศันสนีย์ จำจด และ เบญจวรรณ ฤกษ์เกษม 2546 เปรียบเทียบการตอบสนองต่อการขาดธาตุไบرونในข้าวบาร์เลย์และข้าวสาลี วารสารเกษตร (มช) ACCEPTED

1.21 กินกร ศรีวิชัย ศันสนีย์ จำจด และ เบญจวรรณ ฤกษ์เกษม 2546 การตอบสนองต่อไบرونในถั่วพู่ม วารสารเกษตร (มช) ACCEPTED

1.22 นริศ ยิ้มแย้ม สิทธิชัย ลอดแก้ว เบญจวรรณ ฤกษ์เกษตร และ กนก ฤกษ์เกษตร 2546 การจัดการความหลากหลายของดินป่าดิบในไร่หมุนเวียนของเครียงป่าในภาคเหนือของประเทศไทย วารสารเกษตร (มช) ACCEPTED

1.23 รัตถยา ยานะพันธุ์ และ เบญจวรรณ ฤกษ์เกษตร 2546 การคัดเลือกพันธุ์ข้าวไทยภายใต้สภาพข้าดมาตรฐานเหล็กโดยวัดปริมาณคลอร์ฟิลล์ในใบ วารสารเกษตร (มช) ACCEPTED

1.24 การเคลื่อนย้ายโบราณในถ้ำเขียว 2546 สาขาวิชา กอนแสง และเบญจวรรณ ฤกษ์เกษตร วารสารเกษตร (มช) ACCEPTED

1.25 สุพรรณิการ์ พันชนะ ศันสนีย์ จำจด และเบญจวรรณ ฤกษ์เกษตร 2546 การตอบสนองต่อความเป็นพิษของโบราณในข้าวสาลีสามพันธุ์ที่มีระดับความทนทานต่อการขาดโบราณแตกต่างกัน วารสารเกษตร (มช) ACCEPTED

1.26 อรุณรัตน์ คงบัน พันธุ์ ศันสนีย์ จำจด และ เบญจวรรณ ฤกษ์เกษตร 2546 อิทธิพลของโบราณต่อคุณภาพเมล็ดในถ้ำเขียวต่างพันธุ์ วารสารเกษตร (มช) ACCEPTED

2. Papers submitted for publication in peer-reviewed journals

2.1 Somchit Youpensuk, Benjavan Rerkasem, Bernie Dell and Saisamorm Lumyong. Arbuscular mycorrhizal fungi from the rhizosphere of a fallow enriching tree, *Macaranga denticulata* Muell. Arg. and their effect on the host plant. Submitted to Agroforestry Systems (January 2003).

2.2 C. Prom-u-thai, B. Dell, G. Thomson, B. Rerkasem. Distribution and structure of protein and phytin bodies in seed of four rice genotypes. Submitted to Canadian Journal of

3. Papers in preparation, submission expected by end of 2003

3.1 Ayut Kongpan, Sansanee Jamjod and Benjavan Rerkasem. Boron efficient germplasm identified in *Vigna mungo* (L.) Hepper and *Vigna radiata* (L.) Wilczek. For submission to Plant and Soil or Field Crop Research.

3.2 Supannika Punchana, Sansanee Jamjod and Benjavan Rerkasem. Are boron efficient wheat always susceptible to boron toxicity? For submission to Euphytica.

3.3 Chanakan Prom-u-thai and Benjavan Rerkasem. Iron in the Grain of High and Low Iron Density Rice Grown in Different Water Regimes.

3.4 Supawadee Ngorian, Sansanee Jamjod and Benjavan Rerkasem. Response of F_2 population derived from boron efficient (Fang 60) x boron inefficiency

(Bonza) wheat (*Triticum aestivum* L.) genotypes to boron levels. For submission to Euphytica or J. Plant Breeding.

3.5 Benjavan Rerkasem and Sansanee Jamjod. Boron Deficiency in Wheat: a Review Submitted to Field Crop Research

4. Book edited

4.1 Goldbach, H.E., Rerkasem, B., Wimmer, M.A., Brown, P.H., Thellier M. and Bell, R.W. 2002. All aspects of Plant and Animal Boron Nutrition, Kluwer and Plenum Academic Publishers

บทคัดย่อ

โครงการได้สร้างองค์ความรู้ใหม่ใน 3 เรื่อง คือ มาตรฐานอาหารโบราณ มาตรฐานอาหารอื่นในข้าว และ เรื่องความหลากหลายในระบบการเพาะปลูก

ในด้านมาตรฐานอาหารในพืช โครงการวิจัยได้ครอบคลุมถึงการปรับตัวต่อสภาพดินโบราณต่ำ พัฒนารูปแบบคุณการใช้โบราณ และบทบาทของโบราณในกระบวนการทางชีวภาพในพืช ได้พบความหลากหลายในการปรับตัวต่อสภาพดินโบราณต่ำของรัญพืชและถั่วที่สำคัญ ขawnับว่า ปรับตัวต่อได้ดีในโบราณต่ำได้ดีที่สุด เพราะไม่เคยพบว่าขาดเลย ข้าวสาลี ข้าวสาลีรุ่ม ข้าวนารี เลย และทริคิคาย ไม่ทันทันต่อการขาดโบราณในดินมากที่สุด ข้าวโพดถือว่าทนได้ปานกลาง การขาดโบราณมีผลต่อรัญพืชในระบบการเจริญพันธุ์ แต่มีข้อแตกต่างตรงที่ข้าวสาลีมีปัญหาที่เกสรตัวผู้แต่ข้าวโพดมีปัญหาเกสรตัวเมีย

แม้ข้าวสาลีโดยทั่วไปจะปรับตัวต่อdinโบราณต่ำได้ไม่ดี แต่มีข้อยกเว้นในบางพันธุ์ที่สามารถปรับตัวต่อdinโบราณต่ำได้ดี และได้พบว่าพัฒนารูปแบบคุณการที่เกี่ยวข้องไม่สับซับซ้อน จึงเป็นทางน้าไปสู่การแก้ปัญหาการผลิตในพื้นที่โบราณต่ำได้ไม่ยากนัก ในโครงการได้พัฒนาวิธีการคัดเลือกที่ใช้ตรวจสอบการปรับตัวต่อdinโบราณต่ำของสายพันธุ์ข้าวสาลีจำนวนมากเป็นพันๆสายพันธุ์และใช้ในโครงการปรับปรุงพันธุ์ได้

องค์ความรู้ที่สร้างความเข้าใจเกี่ยวกับการปรับตัวต่อภาวะเครียดของพืช อีกทั้งจะช่วยให้ได้ประโยชน์จากการสามารถปรับตัวของพืชในการเพาะปลูกในสภาพดินโบราณต่ำอีกด้วยหนึ่งคือ กลไกที่เกี่ยวข้อง เราได้พบว่าพันธุ์ที่ปรับตัวได้มาก เช่น ฝาง 60 สามารถดูดโบราณจากดินได้อย่างมีประสิทธิภาพมากกว่า พันธุ์ที่อ่อนแอกว่าที่สุด เช่น บอนช่า และ แทดเทียร์ แต่ความสามารถดูดโบราณจากดินนี้ไม่สามารถอธิบายความแตกต่างระหว่างระหว่าง ฝาง 60 กับพันธุ์ที่อ่อนแอกว่างาน เช่น SW41 ได้ ความแตกต่างนี้อธิบายได้ด้วยการทดลองที่สามารถแยกโบราณที่ดูดเข้ามานานเวลาต่างกันด้วยไอโซโทป ^{10}B กับ ^{11}B การวัดปริมาณโบราณที่สะสมในร่างได้อย่างแม่นยำทันเวลาที่ต้องการในการสร้างละอองเรณูพอดี และการวัดผลของการขาดโบราณในละอองเรณูที่มีชีวิต ซึ่งได้พบว่าถึงแม้โบราณที่รากดูดได้จะมีปริมาณลดลง ฝาง 60 ยังสามารถตอบสนองความต้องการโบราณที่ใช้สร้างละอองเรณู (ซึ่งต้องการโบราณมากกว่าเนื้อเยื่อ somatic เช่นตัน ใน ราก และกลีบดอก ถึง 7-8 เท่า) ได้ดีโดยการลำเลียงโบราณโดยตรงจากราก ในขณะที่ SW41 มีปัญหาในการขาดโบราณที่จะนำไปสร้างละอองเรณู จึงทำให้มีละอองเรณูที่ด้วยไปถึง 40-70% เพราะไม่สามารถสนองความต้องการโบราณในกระบวนการ การสำคัญนี้ได้

เราได้พิสูจน์อย่างชัดเจนว่ากระบวนการรีไซเคิลไบโรมนไม่มีความสำคัญในข้าวสาลี แต่ได้พบว่า กระบวนการรีไซเคิลไบโรมน ซึ่งเกี่ยวข้องกับความสามารถในการลำเลียงไบโรมนในโพลเอ็ม อาจมีความสำคัญในการปรับตัวต่อสภาพอากาศไบโรมนในพืชสำคัญของไทย 6 ชนิดคือ ต้นสัก มะลากอ ฝรั่ง มังคุด ขันนุน และกาแฟ เพราะลักษณะของการกระจายไบโรมนตามอายุในของพืชเหล่านี้คล้ายกับการกระจายของโพเดสเซียมซึ่งเป็นธาตุที่มีการลำเลียงได้ดีในโพลเอ็มและมีการรีไซเคิลอยู่ตลอดเวลา พืชสำคัญอีก 6 ชนิดคือ มะนาว มันสำปะหลัง มะม่วง มะม่วงหิมพานต์ น้อยหน่า และสาวรส น่าจะไม่สามารถรีไซเคิลไบโรมนได้ เพราะมีลักษณะของการกระจายไบโรมนตามอายุในคล้ายกับการกระจายของแคลเซียมซึ่งเป็นธาตุที่รีไซเคิลไม่ได้ เพราะไม่มีการลำเลียงเลยในโพลเอ็ม

ความเข้าใจพื้นฐานเหล่านี้ได้นำไปสู่กฎเกณฑ์ 2 ข้อ ในการศึกษาการตอบสนองและปรับตัวต่อการขาดไบโรมนในพืช ซึ่งน่าจะใช้ได้ในการศึกษาการตอบสนองและปรับตัวต่อภาวะเครียดอื่นๆ ได้ด้วย ดังต่อไปนี้ คือ

- ภาวะเครียดสามารถมีอิทธิพลต่อกระบวนการรีไซเคิลไบโรมน และมีการศึกษา และรายงานไว้ทุกกระบวนการ หากแต่ละกระบวนการมีได้มีความสำคัญต่อการตอบสนองของพืชทั้งต้นตลอดจนการผลิตเท่ากัน ถูกใจสำคัญของการศึกษากลพื้นฐานที่จะมีประโยชน์อย่างแท้จริงต่อการเพาะปลูกจึงจำเป็นต้องเน้นกระบวนการที่เป็นขั้นตอนที่จำกัด การตอบสนองของพืชทั้งต้น
- การสนองต่อภาวะเครียดในพืช เป็นระบบที่มีการเปลี่ยนแปลงตลอดเวลา ทั้งในภาวะเครียด และการตอบสนองของพืชที่เปลี่ยนไปตามอายุขัย การศึกษากลไกสรีระพื้นฐานที่จะนำไปสู่ความเข้าใจกลไกการปรับตัวของพืช ที่นำไปใช้ในการเพาะปลูกได้จึงจำเป็นต้อง (ก) แยก แยกการเปลี่ยนแปลงของภาวะเครียดตามกาลเวลาที่สอดคล้องกับอายุขัยของพืช และ (ข) การเปลี่ยนแปลงในลักษณะการตอบสนองต่อภาวะเครียดตามอายุขัยของพืช

นอกจากการเจริญพันธุ์ อีกกระบวนการหนึ่งที่พบว่ามีผลต่อการปรับตัวต่อการขาดไบโรมนคือความอกรและการเจริญเติบโตของต้นอ่อน ซึ่งเราได้พบว่าเมล็ดถ้าที่ผลิตในดินไบโรมน ต่ำปานกลาง (ไม่มีผลต่อผลผลิต) อาจมีปริมาณไบโรมนในเมล็ดต่ำซึ่งมีผลต่อการอกรและการเจริญเติบโตของต้นอ่อน และเนื่องจากมีรายงานว่าไบโรมนอาจมีบทบาทในการสังเคราะห์ฟีโนลล์ อีกทั้งอาจเกี่ยวข้องกับการสร้าง oxygen free radicals จึงเป็นที่น่าสนใจว่าไบโรมนอาจมีบทบาท เกี่ยวข้องกับคุณภาพการเก็บรักษาของถั่วงอกด้วย

ภายใต้การสนับสนุนในโครงการนี้ ทางกลุ่มวิจัยได้เริ่มน้ำชาตุอาหารในข้าว โดยเน้นเรื่องกลไกเกี่ยวกับประสิทธิภาพการใช้ชาตุอาหารเป็นหลัก งานที่ยังอยู่ในระยะแรกเริ่มได้แก่ ประสิทธิภาพการใช้ฟอฟอรัส ประสิทธิภาพการใช้เหล็ก และการทบทวน ซึ่งเน้นการพัฒนาระบบการ

ทดสอบพันธุ์ (screening) และการปั่งชี้พันธุ์ข้าวไทยที่มีประสิทธิภาพสูง พันธุ์ที่น่าสนใจและอุดมเนียมเป็นพิเศษ ได้แก่พันธุ์ บีอิมด้าบอง บีอิปอล พันธุ์พิษณุโลก 1 มีประสิทธิภาพในการใช้เหล็กสูง เป็นต้น ส่วนเรื่องที่มีความก้าวหน้าพอสมควรได้แก่ เรื่องเหล็กในเมล็ด การปรับด้วยกับสภาพไร่ (ดินไม่ขังน้ำ) และแบบที่เรียกเอ็นโดไฟฟ์ที่ตั้งในโตรเจนในข้าว

หลังจากที่ได้สร้างฐานข้อมูลเหล็กในเมล็ดข้าวไทยว่า ข้าวตอกมะลิ 105 กข 6 กข 15 และข้าวพันธุ์มาตรฐานอีนๆ และพันธุ์ปรับปรุงใหม่ทุกพันธุ์มีปริมาณเหล็กต่ำ เราได้พบว่ามีข้าวพันธุ์พื้นเมืองบางพันธุ์ที่มีเหล็กสูงกว่าเป็น 2 เท่า เราได้พบว่าสภาพแวดล้อมภายนอก (น้ำขัง ดินกรด/ด่าง ฯลฯ) มีผลต่อการดูดเหล็กเข้าไปในต้นข้าวแต่มีผลเพียงเล็กน้อยต่อการสะสมเหล็กในเมล็ด (ไม่นับเปลือก) ปริมาณเหล็กในเมล็ดตั้งแต่ข้าวกล้องเป็นต้นไป นับว่าควบคุมโดยพันธุกรรมเป็นส่วนใหญ่ จึงนับว่ามีโอกาสสูงที่จะปรับปรุงพันธุ์ให้มีปริมาณเหล็กสูงขึ้น

โครงการได้พัฒนาวิธีการตรวจสอบปริมาณเหล็กในเมล็ดอย่างง่ายและรวดเร็วโดยการย้อมสี (Perls' Prussian blue หรือ “น้ำเงิน PP”) สามารถตรวจสอบได้ที่ละเมล็ด (การวิเคราะห์ทางเคมีใช้เมล็ดถึงร้อยเมล็ดต่อหนึ่งตัวอย่าง) ทำให้ได้พบความแตกต่างในปริมาณเหล็กในตัวอย่าง เมล็ดข้าวของเกษตรกรที่ยังคงมีความหลากหลายทางพันธุกรรมอยู่ จึงคาดว่าอาจพบพันธุ์ข้าวที่มีเหล็กสูงกว่าที่พบอยู่ในปัจจุบัน การย้อมสี น้ำเงิน PP นี้ยังจะมีประโยชน์ในการคัดเลือกพันธุ์เหล็กสูงในโครงการปรับปรุงพันธุ์ทั้งยังจะเป็นประโยชน์ในการศึกษาพันธุกรรมที่ควบคุมปริมาณเหล็กในเมล็ดด้วย

ทางกลุ่มได้ริเริ่มโครงการศึกษาการดูดซึมอาหารของข้าวในสภาพไร่ และพบว่าข้าวมีลักษณะพื้นฐานเป็นพืชน้ำ คือเจริญเดิบโดยในสภาพนาที่มีน้ำขังได้กว่าในสภาพไร่ที่น้ำไม่ขัง แต่ได้พบพันธุ์ข้าวไทยที่มีการปรับดัดต่อสภาพไร่ได้กว่าข้าวนาสวนส่วนใหญ่ และเราได้พบว่าความสามารถนี้ส่วนหนึ่งขึ้นอยู่กับความสามารถในการดูดอาหารจากดินไม่ขังน้ำ ข้อมูลการดูดอาหารเบื้องต้นชี้ว่าความสามารถนี้ขึ้นอยู่กับความสามารถในการสร้างรากในสภาพไร่ มากกว่าความสามารถในการดูดอาหารจำเพาะของราก (ต่อหน่วย น้ำหนักแห้งราก) กลุ่มผู้วิจัยคาดว่าความเข้าใจนี้จะนำไปสู่การปรับปรุงพันธุ์ให้มีการปรับดัดต่อสภาพไร่ ซึ่งรวมระบบการปลูกข้าวในระบบหัวน้ำแห้งทั้งหมด

อีกชุดอาหารหนึ่งที่สำคัญต่อการปลูกข้าวคือในโตรเจน เราได้พัฒนาแบบที่เรียกที่ตั้งในโตรเจนได้อาศัยอยู่ในราก ต้นและใบข้าวเป็นหมื่นตัว/กรัมน้ำหนักสด และพบทั้งในข้าวปลูกและข้าวป่า ซึ่งได้ยืนยันแบบที่เรียกที่ตั้งในโตรเจนจากอากาศได้จริงโดยวิธี acetylene reduction แต่ความรู้นี้จะมีผลกระทบต่อการปลูกข้าวได้ก็ต่อเมื่อสามารถวัดได้ว่าแบบที่เรียกเหล่านี้มีบทบาทอย่างไร ต่อการใช้ชาติอาหารในโตรเจนในต้นข้าว ซึ่งในขณะนี้กำลังอยู่ในระหว่างการวัด

ชาติอาหารในโตรเจนยังอาจมีบทบาทต่อการผลิตข้าวอีกทางหนึ่งคือต่อคุณภาพการสี ได้พบว่าในการสีข้าว ข้าวที่มีปริมาณในโตรเจนในเมล็ดสูง มีเมล็ดหักน้อยกว่าข้าวที่มีปริมาณในโตรเจนในเมล็ด นอกจากนี้พันธุ์ข้าวเมล็ดยาวของไทยมีความทนทานต่อการหักในระหว่างสีต่างกัน ขณะนี้ยังอยู่ในระหว่างการศึกษาลักษณะภายใต้ความต้องการหักในระหว่างสีต่างกัน ความแตกต่างกันอย่างไรตามระดับในโตรเจน และพันธุ์

งานด้านความหลากหลายในเกษตรนิเวศน์ (agrodiversity) ของกลุ่มได้เน้นการอนุรักษ์ความหลากหลายทางชีวภาพ และได้นำไปสู่การอนุรักษ์เชือพันธุ์ข้าวไทย¹

งานของโครงการทางด้าน agrodiversity ได้เน้นการค้นพบระบบองค์ความรู้ท้องถิ่นในการใช้พืชบ่ำรุ่งดิน คือดันปะดะ (*Macaranga denticulata* (Bl.) Muell. Arg.) ซึ่งพบว่าประกอบด้วย 2 องค์ประกอบที่สำคัญคือ (ก) ดันปะดะ และ (ข) เชื้อรำไม่โคล่าซ่า ระบบนี้สามารถรีไซเคิลชาตุอาหารอย่างมีประสิทธิภาพ สามารถทำให้เกษตรกรปลูกข้าวໄระได้ผลผลิต 320 – 640 กก./ไร่ ได้อย่างยั่งยืน และน่าจะมีบทบาทสำคัญในการฟื้นฟูป่าด้วย ดันปะดะสามารถหมุนเวียนชาตุอาหารกลับไปยังรากและต้นได้ในปริมาณสูง คาดว่าจะเป็นสาเหตุหนึ่งที่ที่บะดะมีเชื้อรำไม่โคล่าซ่าในบริเวณมากกว่าดันไม้อื่นในบริเวณเดียวกัน นอกจากนี้ยังพบว่าประชากรของเชื้อรำไม่โคล่าซ่ามีความหลากหลายด้วย โดยพบถึง 29 species ใน 6 genera

ในท้ายนี้กลุ่มวิจัยได้สร้างองค์ความรู้ใหม่ๆ ใหม่ๆ ให้มากมายภายในเวลา 3 ปี โดยสร้างจากฐานงานเดิมที่มีอยู่ก่อนแล้ว การสนับสนุนกลุ่มวิจัยจาก สกอ. ได้เปิดโอกาสให้นำความสามารถทางวิชาการที่มีอยู่มาประยุกต์ใช้ และขยายงานไปครอบคลุมถึงปัญหาการเพาะปลูกในประเทศ ซึ่งคาดว่าจะมีความสามารถในกลุ่ม โดยเฉพาะที่เกี่ยวกับสมรรถภาพการใช้ชาติอาหารพืช และการปรับตัวเข้ากับภาวะเครียดจะสามารถนำไปสู่การปรับปรุงระบบการเพาะปลูกที่ได้ผล

¹ ซึ่งได้ขยายไปเป็นโครงการใหม่ “Agrodiversity for in situ Conservation and Management of Thailand’s Native Rice Germplasm” ได้รับทุนสนับสนุนจาก Collaborative Crop Research Program ของมูลนิธิ McKnight โครงการ McKnight นี้ได้อาศัยองค์ความรู้และวิธีการต่างๆ ที่ได้พัฒนามาจากโครงการเมธิวจัยอาชูโโนน์ แต่ application เหล่านี้ยังไม่ได้รวมไว้ในรายงานฉบับนี้ด้วย

ABSTRACT

Advances have been made in three areas, namely, boron (B) nutrition, other nutritional problems in rice and agrodiversity.

For B nutrition of plants, the areas covered included adaptation to low B soils, genetic control of B efficiency and function of B in plant processes. Genotypic variation in adaptation to low boron soils has been established among major crop species and within some important cereals and grain legumes. Rice is the most well adapted to low B soils, it has never been found to be deficient. Bread wheat, along with durum wheat, barley and triticale, is the most sensitive to B deficiency. Maize is intermediate between these two extremes. Wheat and its Triticeae relatives are affected by B deficiency in a different way from maize. Bread and durum wheat and barley and triticale are all affected by B deficiency primarily through the development of the male gametes, the pollen. Maize, on the other hand, is affected first through the function of the style of the female flower, commonly known as silk, during pollen germination.

The range of genotypic variation in adaptation to low B is very large in wheat. Boron efficiency genotypes will set grain normally in the same soils in which B inefficient genotypes fail completely. We have also found that the international wheat germplasm used to improve production by most developing countries is largely B inefficient. Wheat production on the world's wheat growing areas on low B soils, hundreds of thousands of hectares already identified in Asia, can be greatly boosted by increasing B efficiency in these international germplasm. This should be relatively easy. Some advanced breeding lines, even only a few, in the international germplasm are already B efficient. The genetics of B efficiency has been proved to be relatively simple, involving two dominant genes. We have developed a simple screening that may be used to evaluate very large germplasm with thousands of entries as well as to select segregating materials. The other Triticeae cereals, durum wheat, barley and triticale, have somewhat more complex response to low B. They should nevertheless also benefit from similar increase in B efficiency.

One key issue in B nutrition in this project is the mechanism by which B efficient genotypes become adapted to low B soils. For wheat, B efficient Fang 60 and very inefficient genotypes such as Bonza and Tatiara are distinguished by their B uptake. This, however, does not explain the difference between B efficient Fang 60 or Sonora 64 with moderately inefficient genotypes such as SW41. The differential mechanism was demonstrated with the use of ^{10}B and ^{11}B and more precise methods for evaluating pollen viability. Fang 60 has the ability to maintain the B supply line from the root to the developing ear and so meeting demand for microsporogenesis even while external supply was interrupted. The inefficient SW41 cannot do this. It was also clearly established that phloem mobility and recycling of B did not play a part. On the other hand, we found some evidence that phloem mobility and the ability to recycle B may be very important in the adaptation to low B of some tropical species, including coffee, guava, jackfruit, mangosteen, papaya and teak. In custard apple, cashew, mango, lime, passion fruit, and cassava, B appeared to be as immobile as calcium.

We have established 2 simple rules to study adaptation with implications to crop management in low B soils that may be applied to the study of whole plant responses to any stress factor.

1. While adverse effects of a stress factor of so many processes may be of interest to physiologists, not all of them are equally important to whole plant response and so relevant to crop adaptation and production. Physiological studies with agronomic aims should always try to identify those processes that are most sensitive and are likely to adversely affect whole plant response.
2. Physiological studies of plant under stress must always take into account all possible dynamics of (a) changes in the stress condition over time, (b) changes in the plant's various responses over different growth and developmental stages.

In addition to the reproductive response, which appears to be the key whole plant response in many crop species, germination and seedling growth have been identified as a possible limiting step in the production of grain legumes on low B soils. Low B concentration in the seed may depress germination and affect the growth of seedlings when grown on low B soils. Phenol metabolism and the production of oxygen free radicals have both been suggested to involve B. Keeping quality of bean sprouts is therefore another effect of low B that should be further investigated in sprout making species such as mungbean, black gram and soybean.

Our research group has initiated nutritional work in rice in several areas under this project. Many of the study areas that are still in the preliminary stage include phosphorus efficiency, iron efficiency and tolerance to soil acidity. Progress has been made in development of screening methods and identifying efficient and tolerant genotypes from Thailand's native rice germplasm. Areas in which considerable progress has been made are in iron (Fe) in rice grain, adaptation to wetland (water logging) and dryland (aerated) condition and nitrogen fixing endophytes of rice.

For grain Fe, we have earlier established the baseline of grain Fe contents of Thailand's many important varieties, including KDM105, RD6 and RD15 and some new improved varieties and advanced breeding lines. These are generally low, about 10 mg Fe/kg in brown rice. We have also identified genotypes with almost twice as much Fe among local varieties. Some GxE effects on grain Fe have been found, but largely on whole plant Fe uptake. The grain Fe is a relatively small fraction of the whole plant uptake. The grain Fe, especially after the husk is removed, appears to be controlled largely by genetics. This makes genetic improvement promising as a means to increase grain Fe.

A rapid and simple method for assessing Fe in individual rice grains has been developed by using a dye called Perls' Prussian blue (PP blue) for staining localized Fe on the grain. The PP blue has enabled us to discover a relatively large range of grain Fe-content in farmers' normally heterogeneous seed lots. Thus we are now optimistic in find genotypes with even higher grain Fe. The PP blue should also be useful in selection and breeding programs aiming to increase grain Fe, as well as to study the controlling genetics.

In the newly initiated program on nutrient uptake efficiency of rice in dryland, we are finding that rice is basically a 'water' plant. It generally grows better when waterlogged in the wetland condition than in the aerated soil of the dryland condition.

Among Thailand's native rice germplasm, however, we are finding varieties that are better adapted to dryland than others. Part of this adaptation is an ability to take up nutrients in dryland. Preliminary nutrient uptake data show that this ability may be related to the ability to continue to grow more roots in aerated soil rather than the specific ability of the roots to take up nutrients from dry soil per unit root dry weight. This is expected to be an area of understanding that can make significant contribution to rice breeding for Thailand's largely rainfed growing condition. The program now focuses on nutrient uptake efficiency in intermittently waterlogged and aerated soil, in acidic soil and with a special focus on phosphorus, one of the most limiting nutrients in dryland condition.

Nitrogen (N) was another important nutrient covered by the project. We have found large numbers of N fixing endophytic bacteria inside the rice plant, from the roots, stems and leaves. They were found in both crop rice and wild rice. Their N fixing ability has been confirmed by acetylene reduction assays. Practical implications of these findings require measurement of the impact on rice growth and N use. The methodology for doing this is now under investigation. Another aspect of N nutrition is the negative relationship between grain N concentration and grain breakage during milling. Different rice varieties with similar long grained type have also been found with different tolerance to grain breakage. The internal structure of the rice grain is now being studied under light and electron microscopy to determine the effect of grain N concentration and variety.

The group's research on agrodiversity on biodiversity management has led to its application on the conservation of Thailand's native rice germplasm¹. The other area was in forest regeneration and fallow enrichment. We found a system of local knowledge system involving a small pioneer tree called pada (*Macaranga denticulata* (Bl.) Muell. Arg.). The system has a most impressive capacity to recycle nutrients that has proved to be effective in keeping upland rice yield at respectable levels of 2-4 t/ha that should also be useful in forest regeneration. Furthermore, we have found that the system has two key elements. First is a highly diverse population of arbuscular mycorrhizal (AM) fungi in the pada roots, which greatly enhanced nutrient uptake by the tree. Second is the tree itself which recycle a very large proportion of the nutrients back to the roots and soil. This second point may explain why the AM fungi are much more abundant in the rhizosphere of pada than other local tree species.

In conclusion, the group has made much progress in the 3 years of support from TRF. We have built on the work that had already been ongoing before August 2000. The TRF funding has enabled to group to embark on new areas, which are expected to have more impact on Thailand's agriculture. The group's technical capacity in nutrient efficiency should be particularly relevant particularly for understanding adaptation of rice and having real impact in improving production difficult growing conditions.

¹ This further evolved into the project "Agrodiversity for in situ Conservation and Management of Thailand's Native Rice Germplasm", which has received substantial funding from the Collaborative Crop Research Program of the McKnight Foundation. The McKnight project has been built on key findings and methodologies developed in this TRF project. However, findings on Thai rice germplasm from that project have largely been kept out of this report.

Ecophysiological processes and genetic controls relating to plant nutrition

1. BORON NUTRITION

Advances have been made in three areas of boron (B) nutrition in plants, namely, adaptation to low B soils, genetic control of B efficiency and function of B in plant processes. Adaptation studies explored differential ability to grow and yield in low B soils of different plant species and genotypes from the same species. This body of knowledge is useful to crop production on low B soils, by helping to identify adapted species and genotypes of plants that will not be constrained by B deficiency. Results of genetic studies help in the manipulation of the B efficiency trait, i.e. to increase B efficiency in agricultural germplasm through breeding and selection. Understanding the mechanism for B efficiency and physiological roles of B will reinforce genetic manipulation and crop management.

1.1 Plant adaptation to soils low in boron

Among the micronutrients, B deficiency is the most widespread and most frequently encountered in world crop production (Shorrocks, 1997; Sillanpaa, 1982). In Thailand, soils low enough in B to be a constraint to commercial crop production are common in the North and Northeast. Based on the idea of 'nutrient efficiency' suggested by Graham (1984), we have pioneered the use of 'B efficiency trait' to evaluate and identify plants that are adapted to low B soils without the need to specify the key mechanism(s) of that adaptation. A plant is more B efficient if it can grow and yield normally in a soil that is deficient in B for another plant. Thus any plant may be experimentally evaluated for B efficiency simply by growing them along side standard checks with known B adaptation ranges. This may be done in the soil that is naturally low in B, availability of soil B lowered by liming, or biologically available soil B depressed by an application of lime. We have also developed and adapted special culture media that can be used for the purpose, including solution culture, sand culture and B-buffered solution (*Sithichai Lordkaew*¹). A set of standard B efficiency check genotypes have also been established, ranging from very B inefficient (extremely poorly adapted to low B soil) to B efficient (well adapted to low B soil).

1.1.1. Genotypic variation in adaptation to low boron soils

We have evaluated germplasm from 11 crop species, including important cereals and grain legumes, for adaptation to low B, totaling more than 5,000 entries (Table 1). The emphasis was placed on the Triticeae cereals, which included bread and durum wheat, barley and triticale, for three reasons. Firstly, these were found to be much more sensitive to B deficiency than previously believed and documented (e.g. see Lamb, 1967; Marten and Westermann, 1991). Secondly, a very large range of adaptation to low B has been identified, especially among bread wheat. Thirdly, bread wheat and barley together offer a unique system on which a model for studying B efficiency may be built (see sections on genetics and mechanisms below). Two main findings have resulted from this evaluation of germplasm for adaptation to low B: (i) relative tolerance to low B soils among the species of cereals and legumes; (ii) the value of adaptation to low B soils, based on studies of wheat and related species.

¹ Researcher or graduate student responsible for the work

Difference among crop species in adaptation to low B. Among all of the crops evaluated, rice was found to be the most tolerant to low external B supplies. It never exhibited any sign of B deficiency in soil with 0.1 mg hot water soluble (HWS) B kg⁻¹, in solution or sand culture to which no B had been added. Rice can be made B deficient only when B contamination in the water and chemicals used in experimentation is removed with the aid of B-specific resin (IRA-743, Sigma Chemical Co.). The next group of crops following rice includes soybean, maize, sorghum, green gram and cowpea. These are occasionally affected by B deficiency in the field, but can be made B deficient in sand or solution culture to which B had been omitted. The group of crops which may be considered least well adapted to low B soils, include the Triticeae cereals, bread and durum wheat, barley and triticale, and black gram. These have been shown to become deficient in B on the lighter soils of Northern Thailand, e.g. Sansai or Lampang series, with about 0.1 mg HWS B kg⁻¹. The poor adaptation to low B soils of wheat and other small grain cereals compared with dicots such as soybean or green gram, in spite of their relatively lower functional requirement for B, is explained in the section on mechanisms below. Genotypic variation in adaptation to low B soils was found in soybean (*Nattawut Sukcumpa*¹), cowpea (*Tinnakorn Srivichai*¹) and mungbeans, i.e. both green and black gram (*Ayut Kongpan*¹). The range of variation, however, was greatest in wheat and related species of Triticeae cereals.

Adaptation to low B soils in wheat and related species as a means to overcome the problem of B deficiency in crop production. Boron deficiency depresses the yield of wheat, barley and triticale by depressing grain set. Adaptation to low B soils of germplasm of bread and durum wheat, barley and triticale was evaluated by means of the grain set index (GSI, percentage grain set in the first two florets of 10 central spikelets, Rerkasem and Loneragan, 1994). This was conducted on the international germplasm received from CIMMYT each year. They included mainly bread wheat (High Temperature Wheat Yield Trial; Elite Selection Wheat Yield Trial; Semi-Arid Areas Wheat Screening Nursery; International Bread Wheat Screening Nursery) and some durum wheat (International Durum Yield Nursery), barley (International Barley Observation Nursery) and triticale (International Triticale Yield Nursery; International Triticale Screening Nursery).

The International Maize and Wheat Improvement Center (CIMMYT) is the world's single most important source of wheat germplasm. Each year thousands of lines and breeding populations from CIMMYT are introduced into countries throughout the world. In the last four years alone, more than 160 bread wheat, durum wheat, triticale, and barley varieties derived from CIMMYT germplasm have been released by more than 30 countries (www.cimmyt.org/Research/wheat). About 55 million hectares of spring bread wheat, nearly 80% of annual spring wheat area in the developing world excluding China, are now sown each year with varieties developed from the CIMMYT germplasm. Results from the 2000/01 germplasm illustrated the typical range of adaptation to low B found in this international germplasm (Table 2). Two important findings came out of this evaluation. Firstly, the germplasm is dominantly B inefficient, but a few B efficient wheat genotypes were also present in each year. Secondly, the most B efficient genotypes were bread wheat, none of the barley, durum and triticale were as well adapted to low B soils as Fang 60.

The high frequency of B inefficiency in this international germplasm is a cause for concern. In areas prone to B deficiency, the genetic yield potential of this introduced germplasm cannot be fully utilized because of the B deficiency constraint. Furthermore, new improved varieties selected from these on research stations where B fertilizer has been applied can be expected to fail commercially, unless advanced breeding lines are assessed for B efficiency before they reach on-farm trials. The remarkable adaptation to low B soils conferred by the B efficiency trait, on the other hand, can prevent grain set failure and yield losses, by ensuring B efficiency in germplasm destined for areas prone to B deficiency. Boron efficient genotypes identified in the CIMMYT germplasm include advanced breeding lines that have already incorporated desirable modern characteristics for high yield and disease resistance (Table 3). National breeding programs can choose to release these where they prove to be also adapted to local environment. They can also be used as sources for B efficiency genes, which may be easily incorporated into new cultivars (see section on genetics).

These findings have direct implications for the world wheat growing areas on low B soils. Wheat germplasm from Bangladesh have been found to be largely B inefficient (Ahmed et al., 2002) (Table 4). Increasing B efficiency will boost wheat production on soils low in B which are found in many of the world's major growing areas (Rerkasem et al., *in press*). Valuable lessons for the management of other crop species in soils low in other nutrients (see 2.2, below).

1.1.2. Mechanisms for adaptation to low B soils

Physiological studies attempted to identify the mechanism(s) governing adaptation to low B soils, to compare B efficient Fang 60 with inefficient SW41 (*Duangjai Na Chiangmai*¹), very inefficient Bonza (*Jumnien Wongmo*¹), between B efficient and inefficient barley (*Tamarong Pasook*¹), between wheat and barley (*Jumnien Wongmo*¹), and between bread and durum wheat and barley and triticale. In order to prevent inadvertently selecting for genotypes poorly adapted to toxic levels B while searching to increase B efficiency we attempted to relate adaptation to low B to adaptation to toxic levels B in wheat (*Supannika Panchana*¹). Also explored were differences between the B efficient green gram and B inefficient black gram (*Ayut Kongpan*¹) and the ability of different tropical species to recycle B from older tissues (*Sawika Konsaeng*¹).

Boron efficient vs inefficient vs very inefficient wheat The effect of B deficiency on grain set in wheat and other small grains may be detected in fertility or sterility of the male gametes, the pollen grain. The iodine (KI/I2) test, which indicates starch accumulation, is very effective in determining dead pollen but was found to be somewhat imprecise in determining live pollen. That is, dead pollen does not normally accumulate starch, but those pollen that accumulate starch are not always viable. Two other methods for examining pollen viability were adapted for use on wheat pollen, the fluorochromatic (FCR) test, presence or absence of nuclei by the DNA-specific fluorochrome (DAPI) (*Duangjai Na Chiangmai*¹). These two new tests were used to evaluate pollen viability and found to be much more sensitive than the iodine test (Nachiangmai et al., 2001). Withholding B for 5 days during the microsporogenesis was found to depress pollen viability in the B inefficient wheat genotype SW41 by 40-70% but had no effect on the B efficient Fang 60. This effect,

however, was detectable only with the FCR and DAPI tests, but not by the iodine test. All pollen accumulated starch and stained black with iodine, including those of SW41, which were no longer viable due to short term B deficiency.

This improved precision in determining the effect of B deficiency on pollen viability enabled the effect of B deficiency on B efficient Fang 60 and B inefficient SW41 to be compared more rigorously (Nachiangmai et al., *in press*). Following this finding of the effect of short term B deficiency on B inefficient SW41 and not on B efficient Fang 60, we were able to detect the greater ability of Fang 60 to continue to accumulate B in its developing ear even while external supply is interrupted. By labeling B with ^{10}B and ^{11}B , it was further found that the continuing B supply to the ear of Fang 60 (i) had not been recycled from previously taken up B, but (ii) had come from its ability to keep sending B to the ear for pollen development even from the greatly diminished external supply to the roots. Furthermore, we found that Fang 60 can accumulate more B in the ear than SW41 when external supply is limited. This, however, is detectable only at the crucial moment, around microsporogenesis. In the past, others have failed to pinpoint this difference (Rerkasem and Loneragan, 1994; Subedi et al, 1999) because ear samples were collected long after this time, e.g. at ear emergence or anthesis. The somatic ear tissues, the lemma, palea and rachis, can continue to accumulate B long after the damage has already been done to pollen development. This taught a valuable lesson about the often highly dynamic nature of plant responses to a stress factor.

We have previously ranked wheat genotypes according to their adaptation to low B soils in into 5 classes, efficient (E), moderately efficient (ME), moderately inefficient (MI), inefficient (I) and very inefficient (VI) (Rerkasem and Jamjod, 1997). Different adaptation mechanisms have been found associated with some classes. The difference in adaptation to low B soil between Fang 60 (E) and SW41 (MI) was detectable only in this ability to keep sending B from a much diminished supply in the root to the ear, and not in the specific B uptake capacity of their roots (mg B per unit root dry weight) or the partitioning of B to different plant parts (Subedi et al, 1999). In contrast, in the case of the VI group, B uptake and partitioning may be the key to their poor adaptation to low B soils. Genotypes such as Tatiara and Bonza set virtually no grain in soils with 0.1 mg HWS B kg $^{-1}$ or in sand culture without added B are also found to accumulate much less B in their leaves and ears (Wongmo et al., *in press*).

Wheat vs other small grain cereals Adverse effects of B deficiency on barley and triticale are more complex than those observed on wheat (*Jumnien Wongmo*¹; *Tamarong Pasook*¹). In addition to male sterility, B deficiency has been found to depress terminal spikelet development in some barley and triticale genotypes. In these genotypes the number of spikelets per ear may be reduced by half to 1/5 of its normal size by B deficiency (Table 5). These two effects of B deficiency, the grain set response and ear size response, do not appear to be linked. Relative response to B in grain set correlated very weakly with the relative B responses in number of tillers per plant, ears per plant and spikelets per ear. Unlike wheat, in which adaptation to low B may be measured by just one single measure of the grain set index (GSI), barley and triticale may also be affected through spikelets and ear development. Delayed ear emergence was another adverse effect of B deficiency were observed in barley. Examination of primordial at floral initiation found that B deficiency did not affect

the onset of floral initiation. Delayed ear emergence in B deficient barley appeared to have resulted from suppressed elongation of the peduncle instead.

Relating adaptation to low B to adaptation to toxic levels B in wheat Since 'exclusion', i.e. the ability to keep B out of the roots, has been found to be one of the primary mechanisms for adaptation to soils with toxic level B in wheat (Nable et al., 1997), our finding that B toxicity tolerant wheat varieties such as Bonza, Halberd and Schomburgk are generally very inefficient is a cause for concern for selection and breeding wheat for soils where toxic and deficient levels B may occur in close proximity such as Pakistan (Rashid et al., 2002) or the Anatolia in Turkey (Gezgin et al. 2002), or anywhere B fertilizer has just been applied. Should the mechanisms for adaptation to toxic level B turns out to be the mirror image of adaptation to low B soils, any attempt to increase B efficiency by selection and breeding would inadvertently results in genotypes that accumulate B and so are susceptible to B toxicity.

We have found that the relationship between adaptation to low and toxic levels B in wheat may be classified into 4 groups (Table 6). In the first group is Fang 60 which is B efficient, adapted to low B soils but poorly adapted to high B soils because it accumulates B in its leaves. In the second group are most CIMMYT materials that are B inefficient and poorly adapted to low B soils and at the same time have potential to be susceptible to B toxicity because they also accumulate B. In the third group are Bonza and Turkey 1473 which are very well adapted to soils with toxic levels B but are not so well adapted to low B soils because they are very inefficient. Theoretically there should be a fourth group, which is adapted to both toxic levels and low B. No genotype in existence has yet been found in this group. Existence of wheat genotypes in this group may be proved by testing lines already developed from crosses between Fang 60 of group 1 and Bonza of group 3.

Phloem mobility Since B has been found to be mobile in the phloem of certain temperate crop species, phloem mobility is seen a mechanism for adaptation to low B soils. In those species with phloem mobility, B may be recycled from old tissues to young growing points when external supply runs out. We took up the study of mobility of B in the phloem as a new direction to understand B efficiency in tropical species (*Sawika Konsaeng*¹). First B concentration was examined in the leaf of mangosteen (*Garcinia mangostana*) collected monthly at the age of 3 to 7 months. The trend in B concentration was compared with that of Ca (phloem immobile) and K (phloem mobile). Calcium concentration in the mangosteen leaf increased linearly with leaf age, from less than 1.2% at 3 months to 1.35% at 7 months. This is typical of the accumulation of a phloem immobile nutrient. Potassium, on the other hand, showed the typical trend of non-accumulation of a phloem mobile nutrient. Its concentration remained constant at about 0.47% from 3 to 7 months. Leaf B in mangosteen showed a trend similar to phloem mobile K, i.e. was constant around 34 mg B kg⁻¹ from 3 to 7 months. Leaf samples from 11 other species were collected and analyzed for B, K and Ca. They included coffee, custard apple, guava, jackfruit, cashew, mango, lime, papaya, passion fruit, teak and cassava. Concentration gradient between young and old leaves in six species, namely, custard apple, cashew, mango, lime, passion fruit, and cassava, suggested phloem immobility of B. Boron concentration in these species showed the same trend as phloem immobile Ca, i.e. increasing with leaf age. Five species, coffee, guava, jackfruit, papaya and teak,

showed concentration gradient of B between old and young leaf that was similar to the phloem mobile K. It is likely that these five species, along with mangosteen, represent tropical species, which are more efficient in their use of B by being able to recycle it from older tissues (Table 7). Direct determination of phloem mobility of B in some of these species will be made with the use of B isotopes, ^{10}B and ^{11}B . Mechanism for B transportation in the phloem may be explored with B transport molecules such as sugar alcohols.

1.2 Function

We have established that the key limiting step through which B deficiency may adversely affect productivity of many crops is reproductive development. For grain legumes, namely, green gram, black gram and cowpea, B deficiency, which may or may not be expressed in yield loss, may also affect seed quality. Since many authors have reported the involvement of B in sugar transport, we have also explored the possibility of direct effect of B deficiency on sugar accumulation in sugarcane and yam bean.

1.2.1. Reproductive development

In addition to wheat and barley (*Duangjai Nachiangmai; Jumnien Wongmo; Tamarong Pasook*¹) we have examined the role of B in reproductive development of maize and sorghum (*Sithihai Lordkaew*¹).

Wheat and barley We have established that functional B requirement that is specific to reproductive development in wheat is 7-8 times the amount needed for vegetative growth, including somatic tissues of the secondary sex organs such as the lemma, palea and rachis. There is a critical stage for this B requirement at about five days from premeiotic interphase stage to the young microspore stage. Interrupting B supply to the anthers during this crucial 5 days proved to be detrimental to pollen development (Nachiangmai et al, in press).

Maize and sorghum Similar to wheat and barley, B deficiency has been found to affect reproductive development in maize and sorghum much more than their vegetative development (*Sithichai Lordkaew*¹). When grown in sand culture, omission of B from the nutrient solution depressed seed set and seed yield in both maize and sorghum while having no adverse effect on their shoot dry weight (Table 8). Although the adverse effect of B deficiency was not measurable in shoot dry weight, typical symptoms of B deficiency were observed in maize leaves. Appearing all over the upper leaves were thin (0.5-1 mm) longitudinal streaks of dead, papery white tissues, that may be short (3-4 cm) or long, running along the whole length of the leaf blade.

The effect of B deficiency on reproductive development was most strong in maize, which was later confirmed (Table 9). Boron concentration at 4-5 mg B/kg appeared to be more than sufficient to meet the requirement for vegetative growth. The reproductive organs, both male (the tassels, anthers and pollen) and female (baby corn and silk), required more B per unit dry weight. Measurable effects of B efficiency on the male flower are small. Occasionally the whole tassel or florets on a few branches will appear to be poorly developed, the lemma and palea are white and

papery. Inside these dead and white florets, the anthers are much smaller (3-4 mm Vs. 5-6 mm) or thinner (0.2-0.3 mm Vs. 1.2-1.5 mm) than those with sufficient B, or they may be absent altogether. These anthers may contain no or very few pollen grains. On the whole there were only a few of these poorly developed tassel branches. About the same amount of pollen were harvested from B0 and B20 plants by shaking the tassels over a receptacle (Table 9c). The harvested pollen from both B0 and B20 stained positive with iodine in KI/I₂ solution. However, detection of viable pollen was more precise with the fluorochromatic (FCR) test, using autoclaved pollen as control. In this way it was possible to detect the effect on B deficiency on pollen viability in maize.

The role of B in reproductive development of maize is, however, very different from that in wheat and the small grains. The adverse effect of B deficiency was much more pronounced on the female flower, i.e. the ear, which includes the baby corn and silk. The next sign of B deficiency that was observed after the papery streaks on leaves was that there were multiple, 2-3, ears in B0 compared with the normal single ear at the ear node. Externally these appeared just like normal maize ears covered with husk. However, when the husk was removed they do not look like normal babycorn, but have the appearance of branching panicle more close resembling the tassel. Those female flowers that developed normally in B0 into babycorn were smaller, having only one quarter of the dry weight on those in B20. Boron deficiency also clearly depressed development of the style or silk. The silk on the maize ear in B0 was much shorter and had only about half of the dry weight as that on the ear in B20.

In addition to development of the male and female flowers, B deficiency also had adverse effects on the function of various reproductive parts of the flowers. We assessed this by experimentally crossing male and female flowers with different B status (Table 10). The role of B in the function of pollen and style was clearly seen in the success of the crosses. Clearly, the effect of B deficiency in maize is much more severe on the development and function of the female flower. This includes (a) development of babycorn and the silk, and (b) the function of the silk during fertilization (presumably through the B supply for germinating pollen in the silk – this is now under investigation by *Sithichai Lordkaew*¹).

Rice, wheat and maize – a new challenge. It is very curious that the world's three most important food grains should have uniquely different adaptation to low B. Rice is so highly insensitive to low B, it hardly ever is B deficient. Maize is affected through the female flower, which may depress fertilization, or B deficiency may 'switch' the reproductive primordia from female into male. Wheat, on the other hand, is affected primarily through development of the male gametes. Understanding these differences, and also genotypic variation within each, will enable us to control the reproductive process of three important species. This will have implications not only for the production of these crops on low B soils but also in the control of their breeding systems such as in hybrid seed production.

1.2.2. Seed quality

We have known for a long time that grain legumes growing on low B soils may produce seed of low quality even when there is no adverse effect of deficiency