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4. BACKGROUND AND RATIONALE:

Characterization of biological systems has reached an unparalled level of interest
and concentration. In order to arrive at a better fundamental understanding of life
processes, it is imperative that powerful conceptual tools from mathematics and the
physical sciences be applied to the frontier problems in biology. As stated in the 1996/
report of the National Science Foundation (NSF) of the United States, "modeling of
biclogical systems is evolving into an important partner of experimental work. All facets of
biology, environmental, organism, cellular and molecular biology are becoming more
accessible to chemical, physical and mathematical approaches”.

The goals of mathematical, statistical, and computational approaches are to
elucidate mechamisms for seeming disparate phenomena. The NSF report also voiced its
belief in the tremendous potential of mathematical and computational approaches in
leading to fundamental insights and important practical benefits in research on biological
systems. "Mathematical and computational approaches have long been appreciated in
physics and in the last twenty years have played an ever-increasing role in chemistry. It is
our opinion, they are just coming into their own in biology".

As evidenced by the NSF report and the establishment of several research centers
in biomathematics all over the world, it is clear that mathematical/computational methods
which are based on fundamental physical laws, theory of nonlinear systems, empirical data
analyses, and their combination, are providing a key element in biological research. These
methods can provide hypotheses that let one go beyond the empirical data and be ready for
constant testing for their range of validity. It is, in the opinion of this research team, our
undeniable task to try to keep pace with this high speed development.

Despite its recognized relevance, the science of mathematical modeling still
encounters resistance from some members of the professional field who might feel they
have no need for unrealistic mathematical models. According to Novak (1991), there can
be two answers to this skepticism. The first is that cellular and population interactions are
highly nonlinear, and that many examples show intuition alone is a poor guide to predicting
the behavior of nonlinear systems. Thus, although all good biologists and medical
researchers already use theory, that theory could be more rigorously defined and more
productively explored if it were expressed in mathematical form and its consequences

investigated on this ground.
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The second answer is to point out that even though the past two centuries have
provided us with a rapidly growing catalog of organisms, as well as increasing detailed
information about the interactions among them, it is still incomplete. Real advances in
understanding how individual populations, or communities of interacting populations,
respond to natural or artificial disturbance has come from combinations of mathematical
models and experimental programs deliberately focused on population-level properties.
The models, some of which are meant to contemplate specific systems in a detailed way,
while others are constructed to answer larger questions in a relatively abstract fashion, have
foundations on field and laboratory observations of the constituent individuals. All share
the common purpose of helping to construct a broad theoretical framework within which to
assemble an otherwise indigestible mass of field and laboratory data, and of helping us
understand how seemingly simple properties at the level of individual organisms can give
rise to surprising, and often bizarre, outcomes at the level of populations (Novak et al.,
1991).

Recent scientific advances has made it now possible to analyze complex
biological phenomena, including disease processes. Indeed, some of the most promising
discoveries in biomedicine have resulted from the insights of investigators with strong
backgrounds in physics, mathematics, and chemistry. Yet strong organizational barriers
often impede efforts to bring scientists and students with training focused in the physical,
mathematical, chemical, or quantitative sciences into research or graduate/postdoctoral
programs in the biomedical science. This research team has been an instrument in the effort
to”encourage collaborations across disciplines and lower the barriers for interdisciplinary
research. This is clearly reflected by the six subprojects carried out by the members of this
research team.

The key role of interdisciplinary research and training perhaps is nowhere more
evident than in the hot new field of "bioinformatics"—the study of how information is
represented and transmitted in biological systems. In nerve cells, information is transmitted
through electrical impulses which cause muscles to contract and endocrine cells to secrete
hormones. Quite often, impulses are generated in high-frequency bursts, followed by
periods of quiescence. This is particularly true in endocrine systems. It is believed that
modulation of amplitudes and/or frequencies of these temporal hormone secretory patterns
plays an important role in the regulation of receptor synthesis, internalization, and cellular

functions. Therefore, Subproject 1.1 has been involved with investigating such cascade
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b feedback endrocrine systems in terms of the temporal secretion characteristics which

s exhibit time lags in their response mechanism.

' a Moreover, recent advances in instrumentation have made it possible to measure

‘: motions and mechanical forces with high speed and efficiency. These techniques have
begun to supply data that has revived interest in cellular mechanics. It is now possible to
make realistic models of bio-mechanical processes that can be related directly to
experimentally observable, and controllable, parameters (Peskin and Oster, 1995).
Subprojects 1.2 and 1.3, on mechanical ventilation and antibiotic models respectively, have
taken advantage of these advances in experimental technology.

Furthermore, because of the ongoing revolution in computation theory and
technology, we can now solve fluid dynamics problems in the three spatial dimensions and
time (Ellington and Pedly, 1995). This opens up biological opportunities on many different
scales and sizes (NSF report, 1996). For example, one can now perform fluid dynamics
simulations of the embryonic and fetal heart at different stages of development. Such
models will help to elucidate the role of fluid forces and flows in the control mechanisms
of the human physiology. The research in Subproject 2. tackled the problem of blood flow
simulation under variable boundary conditions. The difficulty in measuring and simulation
of microscopic fluid flows and the dependence on access to large-scale scientific
computing make it important that the best technology be made available to scientists on a
scale sufficient to sustain this kind of research.

, On the other hand, on the scale of populations, opportunities also exist for
substantial advances in immunology by the use of modeling techniques. During the last
decade mathematical modeling has had a major impact on research in immunology and
virology (NSF report, 1996). Serious collaborations between theorists and experimentalists
have provided break through discoveries. For example, in AIDS research experiments in
which patients were given anti-retroviral drugs as perturbations of a nonlinear dynamical
system, mathematical modeling combined with analysis of data obtained during drug
clinical trials established for the first time that HIV is rapidly cleared from the body and
‘that approximately 10 billion virus particles are produced daily (Ho et al., 1995). Such
successes indicate that opportunities exist for developing realistic and useful models of
many viral diseases, studied as a nonlinear problem. Subproject 3. has met this challenge

" by concentrating on modeling transmission of re-emerging viral diseases, such as dengue
': haemorrhagic fever, Japanese encephalites, malaria, West Nile virus, SARs, and

Peptosprosis.
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Considering all the above mentioned research activities with which this project
has been involved, it is clear that crucial component of any research in modeling has to do
with data analysis and statistical techniques and concepts. Biological and biochemical
research is producing exponentially-growing data sets. Thus, a statistical component such
as the group proposing Subprojects 4. and 5. has been an important integral unit in this
research team. They have been devoted to modeling of processes which involve the

progression of tumor, incorporating useful concepts in statistics and stochastic principles.
Last, but not least, mathematical analysis is needed to interpret the results of
numerical simulations and modeling, as well as incorporate the insights into nonlinear
models. There are fundamental limits to predictability of biologically interesting quantities
since we are dealing with nonlinear systems with possible chaotic dynamics. This is the
reason why theory and modeling studies should develop in parallel fashion. Additional
theory of nonlinear systems should be made available as a necessary basis for modeling as
well as experimental measurements, so that it becomes and iterative, interactive process,
and thus the proposal of Subproject 6. It has provided us with the necessary theoretical

foundation for asymptotic stability analysis of nonlinear systems with delays.

PROJECT OBJECTIVES:

1.  Develop necessary theory, techniques and tools to construct and analyze models of
nonlinear systems.

2. Construct appropriate models of nonlinear systems such as the hormone secretion
system, mechanical ventilation, bacteria growth in the presence of antibiotics, blood
flow, tumor growth, disease transmission, and other biological processes of current
interest.

3. Analyze the models theoretically and numerically to gain insights leading to useful

suggestions for control/management strategies.

. RESEARCH ACTIVITIES:

This research team has in fact been studying, as well as those originally proposed
for this project, several other biological systems which were not specifically mentioned in
the proposal, yielding a lot more international publications than what has been promised.
The following is the detailed description of activities and outputs of each subproject in the

past 3 years.
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| Subproject 1: Dynamical Modeling of Systems in Medical Science

L Principal Investigator: Prof. Dr. Yongwimon Lenbury

In general, mathematical models can be used to promote an understanding of the
system of interest and they can be used to predict its behavior (Zahalak, 1992). An
enhanced understanding can be achieved by describing a complicated phenomenon in terms
of ‘a limited number of simpler concepts. A good model thus allows insights into the
relevant processes of the system. It can also enable one to assess how a system will behave
in situations that cannot be experimentally validated.

It is important to note that the model must be developed to match the task. To

* choose a model, one must select a suitable model form, an appropriate level of model

I
t
|
)
'
i

complexity, and a set of model parameters. Two general types of model form are structural
models and phenomenological models. Structural models (sometimes called 'parametric’

models) are based on fundamental physical properties of the system and may be most

| appropriate to gain insight into physiological processes. Phenomenological models

(sometimes called 'empirical' or 'non-parametric’ models) are based on observations of

‘| input/output relationships and may sometimes be suitable for simulation studies or control

implementation.
Another concern in selecting a model is that of model complexity. In general, a

model should be kept as simple as possible, 1.e. its order and number of parameters should

' be as low as possible (Zahalak, 1992). Only those physiological effects should be

+ considered that are relevant for the specific task.

The activities in this subproject can be categorized into 3 headings as follows.
11 Investigation of time lags in signaling responses in feedback cascade systems.
In many biological systems, information is transferred by hormonal ligands, and it
is assumed that these hormone signals encode developmental and regulatory programs in

mammalian organisms. Recently, it became apparent that hormone pulses contribute to this

hormonal pool which modulates the responsiveness of receptors within the cell membrane

. by regulation of the receptor synthesis, movement within the membrane layer, coupling to

signal transduction proteins and internalization.

In simple organisms, the detection of nonlinear or chaotic behavior in information
transfer is associated with differentiation and proliferation. Modulation of the amplitude
and/or the frequency of the hormone pulses in higher organisms is believed to be capable

of modifying intracellular signaling pathways, gene expression, cell proliferation, and

. cellular functions. Modeling of episodic hormone secretion and identification of nonlinear
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deterministic dynamics in an apparently irregular hormonal rhythm in human physiology
can lead to valuable insights into the physiological linkage between functional and genetic
programs of the living organisms.

Many hormone secretion systems incorporate some form of cascade mechanism
into their operation. A system with a cascade mechanism is an amplification process where
an initial reaction results in the generation of multiple second reactions, each of which sets
off multiple third reactions, and so on.

An example of cascade processes is found in eco-systems such as in the plant-
herbivore-carnivore food chain. In general, the biomass and the reproductive rates of the
components in the cascade increase as we proceed down the trophic levels. Another
example of systems which incorporate the cascade mechanism involves the central nervous
system, the hypothalamus, pituitary, and the distal hormone secretion glands.

Up to date, little attention to our knowledge has been devoted to analysis of
cascade systems and the time lags in their response mechanisms. Although several workers
have developed stability and oscillation theory for differential equations with delay
(Hamada and Anderson, 1983; Lee and Zak, 1986; Bainov, 1991; and Hennet and
Tarbouriech, 1997), they are concerned mainly with second order systems most of which
are linear. In 1995, Campbell et al. analyzed a- second-order, nonlinear delay-differential
equation with negative feedback, dealing with existence for limit cycles, tori, and complex

dynamics. Typically these equations take the form
X+px+ax=1(x,) (1.1)

where «,B are positive constants, t is the time delay, x,x_ are the values of the
controiled variable evaluated at, respectively, times t and t — 1, and the function f(u) is a

nonnegative, monotone decreasing function of u which describes negative feedback.
Most recently, Michiels et al. (2000) reported on the stability of perturbed delay
differential equations and stabilization of nonlinear cascade systems. They studied

nonlinear time delay systems of the form
z=1(z,z(t - 1)) +¥(z,z(t - )W (1.2)

where ze R",w e R. Investigation was carried out to find conditions under which global

stability would be preserved and if not, whether semi-global stabilization was possible by

reducing the size of the perturbation or modifying its shape.
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We have been able to identify 3 types of delay mechanism which have been
observed in biological/medical systems. The first type of delays is associated with the
maturation time required before a member of the population may procreate or produce off

v springs. In this case, the reproduction rate r(t) at time t is a function which depends on the

population density x at a time t—1; namely,
r(t) = f(x(t—1))

In past research works, f has been assumed to be a monotonic function. The theories
concerning existence, uniqueness, persistence, or stability of a solution to the model
equation usually depend on very stringent conditions on the function f. They are therefore
applicable only to limited number of population models. We have investigated this type of
delays as reported in Part a) below.

The second type of delays is found in cascade systems in which different
components in the system possess diversified dynamics. When we move down the cascade,
the components respond with drastically different speeds. A delayed response of one
component to change in another component is then due to this diversified characteristics.
This type of delay mechanisms can have very significant applications in the management
and control of nonlinear systems in biology and medicine. We have studied a system with
this type of delays as detailed in Part b) below.

The third type of delays is associated by the transport time required for a signal to
travel or an increased level in one component at the peripheral region to arrive at the target
organ and take its effects. For example, an injected dose of supplementary insulin may
require time in transport before its increase may be felt at the target site to give rise to a
reduction in the glucose level as intended. We have investigated this type of delays as
detailed in Part ¢) below. -

a) New analytical tools necessary for tackling the nonlinear system models
have been developed. We have successfully proved theorems for the existence, stability,

and persistance of solutions to delayed differential equations of the form
X(t) = —px(t)+f(x(t—1)) (1.3)

which is a delayed population model capable of modelling several dynamical systemsA of
interest in medical science, such as viral proliferation or cell divisions, etc., the rate of

which is delayed by the maturation time. The function f utilized in (1.3) was assumed
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in past research works to be monotone. We however allowed f to be non-monotone, and
sometimes not continuous, which is more general.

The following theorems have been proved.
Theorem 1 If f(u) <pu for all u> 0 then every solution x(t) of (1.3) converges to 0
as t—> o,

Conversely, if every solution of (1.3) converges to 0 then f(u) <puu forall u>0.
Theorem 2  Assume that f(x)> 0 forall x >0 and

f(x)

limsup——=<p
x—owo X

2

f(x)

liminf —=>p
x—>0+ X

Then, every solution x(t) of (1.3) is persistent.

Theorem 3  Suppose that f(x) is monotonically increasing and

limsup—f(i) <u, (1.4)
X—o2 X

fiminf 19 5 (1.5)
x->0 X

Then, every solution x(t) of (1.3) converges to the unique X such that f(X) =X.

Theorem 4  Suppose that f(x) is monotonically decreasing and the following system

K
b f@
7}

has a unique solution a = b =X . Then, every solution x(t) of (1.3) converges to X.

Theorem 5 Suppose that f(ygy)=maxf(x) < uyy. Also, (1.4) and (1.5) are assumed to
x20

be true. Let x(t) be a persistent solution of (1.3). Then lim,_, , x(t) =X.

Theorem 6 Suppose that (1.5) holds. Suppose, moreover, that the solution of the

following system of difference equations
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. f
dpn4l = nf _(X_)
xe[an,bn] 18
f
byep = sup ﬂ (n=12,..)
xe[an,bn] H
f
a1=inf—f—@ b1=sup(—x)

x>0 H x>0 M

converges to X. Then every persistent solution of (1.3) converges to X.

This part of our work has been published in the international journal Mathematical
and Computer Modelling. Please see the paper that has appeared in Appendix # 1.1.

We have continued to work on the model (1.3) and given further stability
conditions which depend on the delay t, as well as conditions under which periodic
solutions would exist. This portion of work has yielded another paper which has been
accepted for publication in the Journal of Mathematical Analysis and Applications. Please
see the full paper in Appendix # 1.2.

. Further, since many systems involve many interacting components, the analysis of
the system models needs more sophisticated techniques. We have therefore developed a
higher order singular perturbation technique for the analysis of cascade systems involving

n+3 components (n=1). The arguments yield separation conditions on the system

parameters by pivoting about the slow component of the cascade. This result has been
published in Mathematical and Computer Modelling as can be seen in Appendix # 1.3.

Also, in many of these honiinear system models, chaotic behavior has been often
discovered which poses serious problems for control. In order to investigate how we can
control such chaotic phenomena in biological systems, we considered a Komolgorov type
model of cascade systems, such as food webs, with external input and removals. Applying
a feedback control technique proposed by Isidori (1985), we were able to derive the rules
under which chaotic solution can be counteracted and system stability or robustness may be
assured. This result is published in ScienceAsia (appendix #1.4).

_ b) Modelling of bone formation has been carried out, the mathematical
fdrmulation of which was based biologically on clinical evidence observed in various
reports such as that of Hock and Gera (1992), Dempster et al. (1993), Momsen and
Schwarz (1997), Kong et al. (1999), Takahashi et al. (1999), Burgess et al. (1999), or Kroll

(2000) amongst several others.
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Firstly, since activated osteoclasts result from differentiation and activation of
osteoclast precursors, we assume that a high level in osteoclast precursors is reflected in the
high level of the resulting activated osteoclastic population C(t). Secondly, osteoclasts
resorb bone and liberate calcium, in order to counter balance the high level of calcium in
blood the rate of PTH secretion will decrease (Momsen and Schwarz, 1997). The equation

for the rate of PTH secretion is then assumed to take the form

@ __q
dt %k, +C

—d,P (1.6)

where P(t) denotes the level of PTH above the basal level. The first term on the right-hand
side represents the secretion rate of PTH from the parathyroid grand which decreases with

the increase in the number of active osteoclastic cells C(t), ¢, and k, being positive

constants. This accounts for the above mentioned observation that as active osteoclasts C
resorb bone and liberate calcium, the rate of PTH secretion will decrease to counter balance
the high level of calcium in blood. Therefore, a higher C should lead to lower PTH
secretion rate. Finally, it is assumed that the hormone is removed from the system at the

rate which is proportional to its current level with the removal rate constantd, .

The dynamics of the osteoclastic population, on the other hand, can be described

by the following equation

dC _ (¢, +¢,P)BC

d,C 1.7
dt k, +P’ ’ (D

where the first term on the right-hand side represents the reproduction of active osteoclasts
which requires the production of osteoclast differentiation factor (ODF) and its receptor on
osteoclasts (Kroll, 2000). The more C means the more ODF receptors available for the
reproduction of active osteoclasts, and hence the term is taken to depend on the number of
osteoclasts C at that moment in time.

Moreover, osteoclasts precursors possess RANK, a receptor of tumor necrosis
factor {TNF) family that recognizes ODF through a cell-to-cell interaction with osteoblasts
(Kong et al., 1999; Takahashi et al., 1999; Burgesé et al.,1999; Kroll, 2000), hence the rate
of reproduction is taken to depend also on the number of active osteoblastic cells B(t) at
any time t. Based on the well founded theory on mathematical modeling and population
dynamics known as the law of mass action (Leah, 1988), when an event occurs through

cell-to-cell interaction of the two populations involved, the rate may then be assumed to
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vary as their product, provided that the event occurs randomly. However, the rate of

| .reproduction of C increases with the increase in the level of PTH (Dempster et al., 1993;

Weryha and Leclere, 1995). On the other hand, it has been clinically observed (Kroll, 2000)
that as PTH level increases further, it begins to inhibit osteoclastic reproduction, and hence
the saturation expression (c, +c;P)/(k, +P?) is assumed for the stimulating effect of
PTH, where c,,c,, and k, are positive constants.

Thus, without any active osteoclasts or osteoblasts (C=0, B=0), the
reproductive rate of C should vanish. On the other hand, C will be produced at the rate
which varies directly as the product BC, by the law of mass actions mentioned before, with
the variation constant ¢, /k, at vanishing P. With PTH mediation, however, this variation
parameter increases initially with increasing P but decreases when P becomes too high
according to the saturation function utilized in Eq. (1.7), where ¢, is a measure of how late
the inhibition effect will set in.

Finally, the dynamics of the active osteoblastic population B(t) can be described

by the following equation

dB —c,P- c,PB
dt k,

+P-d,B (1.8)

where c, is the specific rate at which PTH stimulates reproduction of active osteoblasts

(Brown, 1991; Isogai et al., 1996), while the second term on the right-hand side of Eq. (1.8)
accounts for the clinically observed inhibition of osteoblastic differentiation due to the
PTH (Kroll, 2000). PTH stimulates osteoblast differentiation in immature osteoblasts but
inhibits it in more mature celis (Isogai et al., 1996), through the process of down-regulation
of the PTH receptors on osteoblasts. 11.-6, a cytokine produced by osteoblasts, enhances the
anti-proliferative effects of PTH by suppressing the PTH-induced Ca®* transients in
addition to the down-regulation of the PTH receptor caused by chronic activation of the
protein kinase A signal pathway. Therefore, PTH and IL-6 produced by osteoblasts exert a
receptor-mediated negative feedback on the conversion of preosteoblasts to osteoblasts
(Kroll, 2000). The inhibition effect is assumed here to take the form of the Holling type

response function ¢;P/(k; +P) which means that there should be no such inhibition if B
or P vanishes. The inhibition term ¢;PB/(k; +P) then tends to ¢,B at high PTH level, so

that the osteoblastic formation is predominantly stimulated positively by PTH according to
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the first term c,P in Eq. (1.4) at higher levels of this hormone. This is consistent with
observed clinical data reported by both Tam et al. (1982) and Hock and Gera (1992). The

parameters ¢, and k, may then be varied to accommodate different physiological data of
different individuals. The higher k; means the inhibition remains effective still at higher

level of PTH. The last terms in Egs. (1.6)-(1.8) are the removal rates of the three

components of the remodeling process with rate constants d,,d, and d,, respectively.

Our reference core model, therefore, consisted of Egs. (1.6)-(1.8), possessing
highly diversified nonlinear characteristics, upon which analysis and investigation were
carried out in an attempt to explain several mystifying empirical observations.

A singular perturbation analysis was carried out to yield conditions under which
periodic solutions can be expected. A bifurcation diagram was then constructed to identify
the ranges of a system parameter which permitted chaotic hormone secretory patterns. Our
theoretical results and numerical experiments conformed with observed clinical data.
Moreover, investigation of the effects of estrogen supplements suggested to us that, in
order to prevent severe osteoporosis, it might be possible to give estrogen supplements
only for disjointed periods and not for the entire time. The effect of a high enough dose,
given during a long enough period, can last for some time after the supplement has be cut
off. This lagged or delayed effect, due to the diversified time responses inherent to this
cascade, can last long enough to overlap with the next period of estrogen supplement.
Such dosing regimen may reduce the danger of side effects due to prolonged estrogen
treatment, such as cancer.

The result of this piece of research has already been accepted and appeared in
BioSystems, an international journal with impact factor 0.736. (Please see manuscript in
Appendix # 1.5)

c) Modelling of endocrine systems has been carried out by incorporating
time delays into a mathematical model of the hypothalamus adrenal cortex axis, which

resulted in the following system of nonlinear delay differential equations.

dR —AZ(t-1,

'E = B R 4k By (1-AZ(t-12)) (1.9
—C-lé?—: _62A+Kze pz(]—cl(t—tz})R(t_Tl) (110)
€ 5,crAlT,) (.11

dt
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- where R(1), A(t), and C(t) are plasma concentrations of corticotropin releasing hormone

(CRH), adrenocorticotropic hormone (ACTH), and cortisol (C), respectively, while §,,8,,
and &, are the respective hormone removal rates, and k,,k,, and k; are the respective

hormone secretion rate constants. B, and B, are the feedback response potencies. The

feedforward response is assumed to have a delay of ©, due to traveling time required

~ before the target is reached, while the feedback effect of cortisol on ACTH or ACTH

on CRH is assumed to have a delay of t,.

We analyzed the model system (1.9)-(1.11) by the Hopf bifurcation theory to

~ investigate the possibility of periodic solution and chaotic dynamics. The paper on the

results has been published in the Mathematical Medicine and Biology with impact factor
0.368. (Please see manuscript in Appendix # 1.6).
. We also applied these analytical techniques to a model of Liutinizing hormone

secretion system and published another paper in Pure and Applied Chemistry (Appendix #
1.7)

1.2 Mathematical modeling of non-invasive mechanical ventilation

Many forms of pressure preset ventilation have been introduced to clinical
practice, each characterized by the abrupt and periodic application and release of a set level
of airway pressure at the airway opening (Boysen and McGough, 1988; Stock et al., 1987,
THaratt et al., 1988).

Although numerous attempts have been made to model the behavior of the

respiratory system (Ligas et al., 1990; Burke et al., 1993; Venegas ¢t al., 1998), few have

accounted for the nonlinear pressure-flow relationships which characterize biological

systems. Linear approximations sometimes serve quite well, however, the frictional

component of pressure loss (influenced by changes in flow regime) varies non-linearly with

- the flow rate (Crooke and Marini, 1993).

In 1993, Marini and Crooke developed a general mathematical model for the

dynamic behavior of a single-compartment respiratory system in response to an arbitrary

~ applied airway pressure. It provided the means to compute most ventilation and pressure

variables of clinical interest from clinician-selected and patient-specific impedance
parameters, A general two-compartment model was considered by Crooke et al. in 1996. In

both models, clinically important outcome variables, such as tidal volume, end-expiratory
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pressure, minute ventilation and mean alveolar pressure were computed for an arbitrary
applied inspiratory airway pressure.

In 1993, Crooke and Marini also presented and analyzed a nonlinear mathematical
model of pressure preset ventilation which accounts for the interactive behavior of
inspiratory and expiratory half cycles. It comprises a set of nonlinear differential equations
which incorporates a variably nonlinear relationship between the resistive component of
applied pressure and flow rate. This model was compared to the linear model of pressure
preset ventilation which served to link the clinical input variables of pressure level,
frequency, inspiratory time fraction, and impedance with the key outcome variables of
clinical interest: tidal volume, minute ventilation, mean alveolar pressure, and end-
expiratory pressure. Predictive differences arise between linear and nonlinear formulations.

In 1998, dynamics of the elastic pressure-volume (Pg-V) curve were determined
during a single prolonged insufflation before and after the recruitment manoeuvre by
Svantesson et al. A mathematical three-segment model of the curve including a linear
intermediate segment, delineated by the lower (LIP) and upper (UIP) inflection points, was
used for illustration of the recorded curves. This was due to the fact that the model was
based on the concept that compliance varied with volume.

Our reference mathematical model for pressure support ventilation incorporates
pressure support ventilation that is applied to a single compartment lung with compliance
C, inspiratory resistance R;, and expiratory resistance R.. The ventilator cycle is split into
two parts: inspiration of duration t;, and expiration of duration t.. The total length of each
cycle is tgr = ti + t.. During inspiration, a preset pressure P is applied to the airway, and
during expiration, the ventilator applies a constant pressure Ppeep.

At any instant of time in [0,t], there is a pressure balance between applied
pressures to the compartment (Pyeqn), pressures due to elastic forces (Petasic), pressures due
to resistive forces (Presisive), and residual pressures (Presigual). The volume of the
compartment, V(t), is modeled by differential equations that correspond to the pressure

balances in the system:

pP_ =P

vent resistive

+P

elastic

+P - (1.12)

During inspiration, Pyent = Pset and during expiration Pyent = Ppeep.
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~*- " . This part of our work has yielded one published paper to date. In the paper, a one-
compartment, mathematical model for pressure controlled ventilation, incorporating
volume dependent compliances, -linear and nonlinear resistances, is constructed and
compared with data obtained from healthy and (oleic acid) lung-injured pigs. Experimental
data is used to find parameters in the mathematical model and was collected in two forms.

Firstly, the P, —V curves for healthy and lung injured pigs were constructed; this data is

usgd to compute compliance functions for each animal. Secondly, dynamic data from
pressure controlled ventilation for a variety of applied pressures is used to estimate
f resistance parafneters'in the model. The model was then compared against the collected
dynamic data. The best mathematical model is the one with compliance functions of the

" form C(V)=a+bV, where a and b are constants obtained from the P, —V curves, and

the resistive pressures during inspiration change from a linear relation P, =RQ to a

nonlinear relation P, = RQ® where Q is the flow rinto the one-compartment lung and € is a
po.sitive number. The form of the resistance terms in the mathematical model indicates the
:= possible presence of gas-liquid foams in the experimental data.

The model of non-invasive mechanical ventilation which incorporates variable
compliances can then be written as follows.

Inspiration

g V.

Rl(d;i”]* l:V +P =P, 0<t<t (1.13)
a; +o; v, :

R2 d:;vt]z V{:V +Pex set 2 tll —t<ti (1'14)
a; +b;V;,

Expiration

Rc[d;:°J+ V; 7P =Pt <t<t (1.15)

ae+ e @

where V.V, and V, are lung volumes during inspiration period 1, period 2, and that
’ ,dqiing expiration period, respectively. R; and R_ are the resistances; a;,b;,a., and b,

are the compliance constants; P, is the end-expiratory pressure, P, the preset pressure,

EX

and P___ the ventilator applied pressure. Here, we use €=1 during 0<t<t

|
beep q-and €= 5

during t,, <t<t., since these give the best fit to the experimental data. Also, the value of



20
t., is chosen to be the time when a sharp change in the slope of the pressure-flow curve is

observed.

We have determined the system parameters in the model from experimental data,
then used the model to compute key ventilatory outcome variables and compared them
with clinical data. The result has been published in Mathematical Medicine and Biology
with impact factor 0.368. (Please see manuscript in Appendix # 1.8).

1.3 Mathematical modeling of bacteria growth in the presence of antibiotics

Antibiotic resistance of bacteria is a growing problem. Mathematical models have
played an important part in understanding antibiotic resistance, such as the work of
Ganusov et al. (2000) which elaborated a structural approach to studying the regularities of
the population dynamics of unstable recombinant bacteria strain in a chemostat. The
approach was based on the mathematical modelling of all distribution in a population with
different numbers of plasmid copies. In another recent study, Dibdin et al. (1996) presented
a mathematical model that describes penetration of an antibacteria agent into a bacteria
biofilm. As well as dealing with penetration, and the consequent bacterial lysis, the model
considered diffusion of the released beta-lactamases in the extra cellular space and the
consequent inactivation there of further incoming antibiotic.

As observed by McGowan et al. (2001), pharmacokinetic models of infection can
make an important contribution to the study of the pharmacodynamics properties of an
antibacteria agent. Apart from providing data to allow for the optimization of drug dosing
regimens, such models can be used to describe the effect of a drug on a bacteria population,
and provide data for more-analytical studies, as well as hypothesis testing. Analysis of the
model can yield information on the pharmacodynamic parameters best correlated to the
chosen outcome. Pharmacokinetic models thus play a crucial role in ensuring antibiotic
efficacy and in reducing the chance of resistance.

The process of treatment of bacteria infections with antibiotics involves a
multitude of variables. Many factors effect the therapeutic efficacy, such as bacteria
susceptibility to antibiotics, physicochemical properties of the drug product, specific
properties of the infected tissue, metabolism and elimination of antibiotic, host factors, and
dosing regimen. According to Nolting and Derendorf (1995), some of the central questions

for addressing this problem are
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P10 What factors govern antibacterial activity?

2. How can antibiotic efficacy be quantified to permit reliable comparison between
different antibiotics?

v 3. How can efficacy of antibiotical treatment be optimized?

In the past, dosing regimens are often based on trial and error rather than on
rational design. An important step in addressing the above problem is the development and
analysis of a mode] of antibacterial activity. The most commonly used method was the
utilization of the killing curves which describe the time course of the antibacteria effect in
ofder to find the important parameters describing the killing behavior of the antibiotic over
time. Although widely emploved to characterize the susceptibility of a bacterium, the
method does not reflect the situation in vivo, where the antibiotic concentration is subject
to considerable fluctuation due to elimination and multiple dosing regimens (Mouton et al.,
1997)

In order to simulate more closely the in vivo conditions, we attempt to derive a
kinetic model of the dynamics of continuous flow peritoneal dialysis with single-pass flow
of fresh dialysate. We thus assume an open habitat, such as a chemostat for continuous
culture of microorganisms. Two strains of microorganisms compete for a single limiting
resource in the presence of an inhibitor (antibiotic) to which one strain of microorganisms
is sensitive and the other resistant. Let C and X be the concentrations of the resource and
the inhibitor, respectively, while S and R are the respective densities of the sensitive and

resistant strains. We arrive at the following system model.

SC
€ _(c,-C)o—r—ts¥s _Ex¥eCR (1.16)
; dt (1+yX ks +C) k. +C
§= ySC S g,RS _ 5 XS (1.17)
dt  (1+vX, Mk, +C) k,+R k +X,
AR _VCR R4 SR (1.18)

dt kp+C k., +R

App]iéation of the singular perturbation technique led us to necessary conditions
for the existence of limit cycle behavior. However, we have found that the conditions may
not be satisfied simultaneously since they are self contradictory. Thus, we have concluded
that the system model (1.16)-(1.18) does not permit periodic solutions. In such a case, the
model is deemed not suitable, since clinical data invariably shows oscillatory behavior. We

have therefore considered a modification of (1.16)-(1.18) as follows.
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dc ~ (i €5y SC g W CR

=(C, -C)o - - 1.19
dt o =C)o 1+vX, ks +C) ke +C (1.19)
dS  wCS(r-9) & RS
== —0S——t 2 A 1.20
&t T irX )k, +0) Tk s AN (120)

R
R VR R B8 (1.21)
dt k,+C k., +8

r

so that the susceptible bacteria S is limited by the physiological environment to grow only
up to the level r.

We have used experimental data supplied by Prof. John Hotchkiss at University of
Minnesota and Prof. Philip S. Crooke at Vanderbilt University to support our choices of the
terms utilized in the above model. The data has been collected from a culture of two
separate bacteria (Methicillin Susceptible Staphylococcus Aurens (MSSA) and Methicillin
Resistant Staphylococcus Aurens (MRSA)) growing in dialysis broth. The antibiotics used
were amoxicllian and vancomycin (Vanco).

The model analysis by the singular perturbation technique has been completed,
yielding conditions under which different dynamic behaviors may occur. We have written
the paper in a form ready to be submitted for publication. Our modelling results have been
interpreted in terms of bacteria-antibiotics inferaction in patients receiving dialysis
treatments. Although each dialysis treatment should be regarded as a batch process, a
sequence of treatments, one after the other, may be modeled as a continuous process.

However, Prof. Hotchkiss and Prof. Crooke are supplying additional
measurements on the gastrointestinal tract data which is more appropriate for modelling as
a continuous process. We are therefore waiting on these extra data to validate our model

further. The paper shall then be submitted in short order.
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Activity: Proposed (<—>)

| Actual (e—>)

Months
1-6

Months |
7-12

Months
13-18

Months
19-24

Months

25-30

Months
31-36

1. Qany out extensive literature
ss:arch to select the best
appro?ch and analytical tools
t:) de;relop and analyze the
model.

. Develop new analytical tools
if necessary, or modify the
existing ones to be more
of the

systems of interest.

capable tackling
. Develop models of cascade
systems characterized by
delay in response mechanism.
. Develop a model of
rinechanica] ventilation.

. Develop a model of bacteria
growth.

. Analyze the resulting models.
. Simulate the model to
Eomp‘mare with experimental
data’ and make model
modification, if necessary.

. Make clinical interpretations

-and conclusions.

v

ANA

v v

A4

Outputs of Subproject 1

Papers appeared/accepted in international journals

Papers presented in international conferences

"Ph.D. graduates

rMaster graduate

[ S S - ]
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Subproject 2: Mathematical Modeling of Blood Flow in the Coronary
Artery Bypass Grafting

Principal Investigator: Assoc. Prof. Dr. Benchawan Wiwatanapataphee
Heart acts as a pump creating the pulsatile pressure to propel blood from the heart

through arteries in which pressure is around 100 mmHg to channel the blood to arterioles

to capiilaries. The blood is transported back to the heart through a series of vessels:

capillaries to venules to veins in which pressure is around 20 mmHg . The walls of arteries

consist of three layers which are the tunica externa, the tunica media and the tunica intima.
The intima is the innermost layer composed of the endothelium and connective tissue.
Flow in the arteries is considered as a continuum. The arterial stretches when the pressure
rises during systole and it recoils when the pressure drops during diastole. When the
coronary artery is affected by a stenosis, critical flow conditions occur, for example
negative pressure, high shear rate at the arterial wall and wall compression, which are
thought to be the significant factors in the onset of coronary heart disease. In order to
understand the genesis of coronary diseases, a number of vivo using animal model and
vitro experiments have been conducted. It has been established that (i) blood behaves like a
viscoelastic and a shear-thinning liquid [Fung (1984), Chien et al. (1984)], (ii) blood flow
is controlled by the constriction or dilation of vessel wall, (iii) high shear stress at the wall
(WSS) is correlated with various degree of stenotic artery [Holme et al. (1997), Marano et
al (1998)], (iv) intimal thickeﬁing and WSS are correlated in the affected vessel [Lee et al.
(1998), Kraiss et al. (1991), Krams et al (1998)] and (v) when the WSS reaches a value
higher than 400 dyne/cm” the endothelial surface is irreversibly damaged [Ku (1997)]. In
1998, Marano et al. estimated WSS in collared carotid arteries of rabbits. They found that
the magnitudes of the wall shear rate (WSR) are 420 57'in the healthy small arteries and
between 2600-15000 s~ in the stenotic arteries.

Due to a difficult task of determining the critical flow conditions for both in vivo
and vitro experiments, the exact mechanism involved is still not well understood. In
general, mathematical modeling and numerical simulation can give better understanding of
the phenomena involved in vascular diseases. Over the last 2 decades, a number of
mathematical models based on Finite Element Method (FEM) have been proposed to
describe the rheological behavior of blood in the stenotic arteries using 1-D to 3-D with
rigid or compliant wall. The models with particular assumptions that blood acts like a

Newtonian fluid with constant viscosity and vessel is rigid seem not to be satisfactory to
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; predict the dynamics of real pulsatile blood flow in the artery. In 1990, Mann and Tarbell
~ used a non-Newtonian model to determine a nonlinear dependence of the viscosity of blood
_i on the strain rate in order to study the flow of blood analog fluids in rigid curved and
| straight artery models. Grigioni et al (2002) investigated the wall shear stress and velocity
field via the vivo experiment in unsteady vascular dynamics and proposed a non-
Newtonian model for an unsteady flow in rigid pipe driven by a known oscillatory pressure
gradient. Comparison to all the validated velocity points along the vessel’s lumen indicates
? tha:t the results of the model in a rigid pipe are not directly related to the data in vivo
experiment, However, the use of mathematical models and vivo experiments in the present
works allows us to understand the importance of the rheology in blood flow, at least from a
qualitative point of view. Therefore, the further development of mathematical model to
study blood flow is necessary. Once a satisfactory model has been generated, the benefits to
the future management of human health are unlimited.
In this study, a mathematical model is developed to study steady and unsteady
state blood flow through a stenotic artery with different severity. Blood is considered as a
non-Newtonian fluid. Using three geometry domains of straight tube with three different
sizes of stenosis: 25%, 50% and 65% . Numerical simulations based on FEM are carried
out for the flow field, temperature field and shear rate in the flow channel. Dependence of

the flow on the severity of stenosis has been investigated.

2.1 Numerical simulation of blood flow in a small artery channel with solid wall
This study focuses on the blood flow in stenotic artery. A mathematical model
based on FEM is developed to simulate blood flow with distribution of pressure. Blood is
considered as an incompressible and non-Newtonian fluid. The flow pattern with the
distribution of pressure and shear rate, are computed. The resuits show how the blood
flows through the present stenotic area. The quadratic profile is present in the flow channel
except in the stenosis area. Blood speed at the throat of the stenosis is blunt, resulting in
high shear rate and dropping of pressure there. Bigger size of stenosis gives bigger shear
rate and higher jumping pressure in the channel, especially around the stenosis.
2.1.1 Mathematical model
The computational domain is considered in the lumen channel. Blood is assumed
to be an incompressible fluid. The non-Newtonian model based on Carreau modei is used

to determine the viscosity of blood. The fluid motion is govermed by the continuity
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equation, Navier-Stokes equations and defined in the domain Q which is bounded by the

boundary 6Q =8Q, LA, LOQ

u. =0, @2.1)

ou.
pE'—V-n(ui‘j+uj,i)+pujuu+p'i=E, (2.2)

L}

where p denotes the blood density of 1.06g cm™, u, represents the component of velocity
vector in the ith direction, p denotes pressure in the channel, and F is the volume force
affecting the fluid. The quantity 1 1s the blood viscosity. We here use a Carreau model for

describing viscosity by the following four-parameter equation
n="n, +(n, -1+ A 1", (2.3)

where A =3.313s, the zero shear rate viscosity 1, = 0.56 dyn-s/cm’, the infinite shear rate

viscosity M, =0.0350 dyn-s/cm*® and n =0.3568.

The quantity # in equation (3) represents the shear rate given by

¥= \E@ui +4Vy HAWE +2uy Vi) +2(v, + Wy )T 20, + W)Y, (24)

For three-dimensional problem, the above system of equations can be manipulated to yield
a closed system of four partial differential equations in terms of four coordinates and time-

dependent unknown functions u,,u,,u, and p. The system, once supplemented by the
initial and boundary conditions, can be solved numerically to yield the velocity field with
pressure distribution and to determine the wall shear stress. In this work, we study both
steady state and unsteady state flow in the stenotic tube. The boundary conditions
considered for velocity field and pressure field include the Dirichlet type and the
Neumann/Robin type, i.e, for 1,j=1,2,3

u =7; o0,

i in

u =0 o0

i wall

pP=p, Ny, +(u,;) ) n=0 8Q

qut
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: In this work, we assumed that blood flows into an artery tube with constant velocity of
20.13 ems™ for steady state problem and flow with the pulsatile velocity for unsteady

state problem. We chose a pulsatile flow rate in the right coronary artery of 65 years old
| patient given by Bertolotti et al (2001) [20] and assumed that blood flows out with constant

. pressure 1.865x10° dyn/em’ or 140 mmHg .

+ 2.1.2  Weak formulation
To develop the variational statement for the boundary value problem, we consider

- the following representation of the problem.

Find u,,u,,u, and p such that for all test functions {i;, &1, ws € Hy, (©) and pe Hy (Q),

all the Dirichlet boundary conditions for the unknown functions are satisfied and

(u,,,P)=0, (2.5)

[P%,ﬁfj +{(puu,;,0;) —((n[ui?j +u;); ],ﬁi)+ (p, a0 = (F, &), (2.6)

where (-,-) denotes the inner product on the square integrable function space L*(Q),
H'(Q) is the Sobolev space W (Q) with norm
”-”LZ’Q,HLq(Q)= {veH' (€)|v=0o0n agq}. A standard procedure is then carried out o

reduce the second-order derivatives involved in the above problem into the first-order ones
using integration by parts and ensuring that all integrals involved are well defined.

To find the numerical solution of the problem, we pose the variational problem
into an N -dimension subspace. The computation domain € is discretized into a finite
number of elements connected by N nodes. Let U and P denote respectively the global
vectors of velocity and pressure fields with each ith entry representing the value of the
corresponding unknown function at the i th node of the finite element mesh. i’hen, by using

the Galerkin finite element formulation, we obtain the ordinary differential equations:

D U=0,
MU+A U+AP=F, (2.7)
where the superposed dot represents differentiation with respect to time and all coefficient

matrices are global matrices assembled from element matrices. Matrix M corresponds to

the transient term, matrices A and D, correspond to the advection and diffusion terms,



28

matrix A  corresponds to the pressure term and vector F provides forcing functions for

the Navier-Stokes equations.

2.1.3  Numerical results
A test example is given here to demonstrate the validity of mathematical model.

The example under consideration is a stenotic artery with a 25%,50% or 65% stenosis as

shown in Fig.2.1. The artery is modeled by a straight tube with the length of 5 ¢m and
diameter of 0.2 cm containing stenosis in the middle part at one side of the internal wall.
In this work, a spherical shape with radius of 0.15 c¢cm was used to define the stenosed
disease. We assumed that no volume force affects the fluid.

Fig. 2.2 shows the velocity vectors and streamlines of blood at stenosis in the
middle part of the domain. The flow patterns and streamlines clearly outline the path of the
blood and show how the blood flows through the stenosis. The maximum speed is present
at throat of the stenosis as shown in Fig. 2.3, The parabolic profile of velocity is present in
the upper part and lower part of the stenosis. Fig. 2.4 shows the distribution of pressure and
shear rate along a longitudinal line of the artery. It indicates that pressure drops very fast
and high shear rate occurs near the stenosis.

Comparing the results obtained from three tubes with 25%,50% and 65%

stenosis, blood speed profile at the throat of the stenosis in all domains is blunt. This
results in high shear rate and dropping of pressure there as shown in Fig. 2.3. Bigger size of
stenosis gives bigger shear rate and higher jumping pressure in the channel, especially near
the stenosis.

To study the transient flow in stenotic artery, we chose the artery with 50%
stenosis and used a flow rate wave form in the right coronary artery of a 65 years old
patient as an inlct flow [20]. Fig. 2.5 and Fig. 2.6 show the velocity vectors and streamlines
of blood along the arterial axis at time t=0, 0.3, 0.8 and t=1.2 s. Fig. 2.7 shows the
distribution of pressure and shear rate along a longitudinal line of the artery at different

times. The results show that the critical flow occurs at all time, especially between t=0.3 to

t=0.5 s with pressure between 1.96x10° to 2.23x10° dyn/em® and shear rate between

16,900 to 25,000 s™'.
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) 0 00 | 02 ] 03 | 04 | 05 | 06 | 07 | 08

U 32 0031 | 70 | 215 | 200 | 161 | 117 | 73 | 63
Powe X 10° | 187 | 1.89 | 192 | 2.03 | 1.98 | 196 | 1.92 | 1.90 | 1.90
yoox10° | 019 | 023 | 063 | 25 | 223 | 169 | 113 | 063 | 0.53

Re 47 42 100 | 389 | 359 | 276 | 191 109 90
1(s) 0.9 1.0 | 1.1 1.2 1.3 1.4 1.5 1.6 1.7
U e 78 102 | 121 125 113 91 66 47 35

Pux 10° | 101 | 193 | 194 | 154 | 193 | 191 | 190 | 189 & 1.88
y. x10° | 070 | 097 | 119 | 125 | 110 | 083 | 0.56 | 036 | 026
Re 117 | 160- | 195 | 205 | 183 | 141 | 97 | 65 | 47

2.1.4. Conclusions

A mathematical model for simulating blood flow in stenotic artery has been
constructed. The model is used to study the critical flow in stenotic artery with severity of
25%, 50% and 65% . The result shows the significant effect of the stenosis size on fluid
flow, pressure field and shear rate. The quadratic profile is present in the flow channel
except in the stenosis area. The blood speed at the throat of the stenosis is blunt, resulting
in high shear rate and dropping of pressure there. Bigger size of stenosis gives bigger shear

. rate and higher jumping pressure in the channel, especially around the stenosis. For 50%
© stenotic artery, the critical flow occurs at all time, especially during systolic period.

It should be addressed here that blood flow in a small stenotic artery is an
extremely complex phenomenon and there are still many unsolved modeling problems. The
presented work focuses on blood flow in the lumen channel without the effect of the wall.
Further work could be carried out to incorporate the fluid-wall interaction in a stenotic

artery.
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Figure 2.1 Computational domain (a) 25% stenotic tube (b) 30% stenotic tube (c)

65% stenotic tube.
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Figure 2.2 Velocity vector and streamline along the stenotic artery with different
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% 10° (a) Pressure along a longitudinal line of 50% stenotic artery.
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22 Numerical study of blood flow in stenotic arteries with solid wall and
permeable wall
This study focuses on the blood flow in stenotic arteries with solid wall and
permeable wall. A mathematical model based on Finite element method is developed to
simulate blood flow with distribution of pressure and shear rate in the lumen region and

arterial wall. Blood in the lumen is considered as incompressible and non-Newtonian fluid

{| and arterial wall is modeled as porous layer. The results show that the model with solid

* wall generates linear distribution of pressure along the arterial line except at the stenosis

i

whereas the model with permeable wall gives oscillating pressure along an arterial line.
High shear rate and Higher dropping pressure occurs at the stenosis. Bigger size of stenosis
gives higher shear rate and higher pressure with bigger dropping pressure around the

stenosis.

2.2.1 Mathematical model
 The computational domain consists of two regions: the arterial wall and the

arterial lumen. The velocity field in the artery lumen and in the arterial wall are computed

in-a fully coupled manner through the use of the lumen/wall condition. Blood is assumed to

be incompressible fluid and non-Newtonian fluid. The non-Newtonian model based on

Carreau model is used to determine the viscosity of blood. The artery wall is assumed to be

porous media with permeability of 1.0x107*. The fluid motion is governed by the
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continuity equation, Navier-Stokes equations and defined in the domain Q=Q, = LQ

wall

which is bounded by the boundary 0Q =0Q, WOQ. . . \JOQ ewan Y 020 -
V-v=0, (2.8)
~V-q(Vv+(VV) ) +p(v-V)v+Vp =T, (2.9)

where p denotes the blood density, v represents the 3D velocity vector, p denotes

pressure in the channel, and f is the volume force affecting the fluid. For this model, we

assume that no volume force is affecting the fluid, so f =0. The quantity n is the blood

viscosity defined by the following four-parameter equatton
n=mn, + M, — M)+, (2.10)

where A =3.313s, the zero shear rate viscosity m, = 0.56 dyn-s/cm’, the infinite shear rate
viscosity 1, =0.0.0345 dyn-s/cm* and n =0.3568.

The quantity ¥ in equation (3) represents the shear rate given by

y:J—l—Gui +HAVY +AWS 20y + vy ) +2(v, + Wy ) 20, +wy)') (2.11)

In arterial wall (porous domain), flow is described by the Brinkman equations according to

the following.

Vou=0, (2.12)

—p.Au+—i—u+Vp:g, (2.13)

where . denotes viscosity in porous layer, x is permeability, u represents the 3D velocity
vector, and g is the volume force affecting the fluid in artery. For this model, we assume
that no volume force is affecting the fluid in the artery, so g=0.

For three-dimensional problem, the above system of equations can be manipulated
to yield a closed system of eight partial differential equations in terms of eight coordinate
and time-dependent unknown functions v,v,,v;, u,,u,,u, and p_,p,. The system, once

supplemented by the initial and boundary conditions, can be solved numerically to yield the

velocity field with pressure distribution and to determine shear rate.

#
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The boundary conditions considered for velocity field and pressure field include

the Dirichlet type and the Neumann/Robin type, i.e, for i,j=1,2,3

v=v 3Q (2.14)

P, =Pp NVV+(VV)')-n=0 0Q,, (2.15)

For steady state flow, blood speed at inlet boundary 9, is set to the mean flow of 20.13
crL/s. and we assumed that blood flows out with constant pressure 1.865 x10° dyn/cm’ or
140 mmHg at 0Q,,

| At the interface between lumen and artery wall, the expression for the pressure

and velocity must be continuous across the interface. We thus set

P, 15.9)

wal — Pu |wal]

interface ? (2 1 6)

and

u|waﬂ -

M 2.17)

We also assumed that no slip condition 1s applied on the external wall. To this end, the
boundary value problem for blood flow in a stenotic artery is as follows.

BVP: Find v,p, and u,p, such that the field equations (2.8) and (2.13) are respectively.

satisfied in the computational domain Q and all boundary conditions are satisfied.

2.2.2  Weak formulation
To develop the variational statement for the boundary value problem, we consider

the following representation of the problem.
) Find v,p, and u',p, such that for all test function V¢ H;, (Q), p, € Hy, (Q),
ieHy,(Q), p,eHy, (Q), all the Dirichlet boundary conditions for the unknown

functions are satisfied and

¥

(Vv,p) =0, (2.18)
(pv-Vv,9)=(V-n(Vv+(VW)),¥]+(Vp,, ) = (f,9), (2.19)
(Vu,p,) =0, (2.20)

~p(Au,d) +%(u,ﬁ),+(Vpu i) = (g, ), (2.21)
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where (-,-) denotes the inner product on the square integrable function space L*(Q),

H'(Q) is the Sobolev space W"*(Q) with norm || , ,,H},, (@) ={veH'(€Q)|v=00n2Q,}.

12,007
A standard procedure is then carried out to reduce the second-order derivatives involved in
the above problem into the first-order ones using integration by parts and ensuring that all
integrals involved are well defined.

To find the numerical solution of the problem, we pose the variational problem
into an N -dimension subspace. The computation domain Q is discretized into a finite
number of elements connected by N nodes. Let V, P, and U, P, denote respectively the
global vectors with each ith entry representing the value of the corresponding unknown

function at the ith node of the finite element mesh. Then, by using the Galerkin finite

element formulation, we obtain the ordinary differential equations:

D,V =0,

AV+AP, =F, 2.22)
D,U =0,

AU+A,P =F, " (2.23)

where and all coefficient matrices are global matrices assembled from element matrices.

Matrices A,,A, and D ,D, comespond to the advection and diffusion terms, matrix

A, A, corresponds to the pressure term and vector F provides forcing functions for the

Navier-Stokes equations.

2.2.3  Numerical results

A test example is given here to demonstrate the validity of mathematical model.
The example under consideration is a stenotic artery with severity of 25%, 50% and 65%.
The artery is modeled by a straight tube with the length of 5 ¢m and diameter of 0.2 c¢m
containing stenosis in the middle part at one side of the internal wall. Wall thickness is
0.05 cm and diameter of the flow channel (lumen) is 0.2 cm. A spherical shape with radius
of 0.15 cm was used to define the stenosed disease. The computational domains are shown

in Section 1.

L
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Fig. 2.8-2.10 show the velocity vectors and streamline of blood near 25%, 50%

and 65% stenoses in the middle part of the solution, respectively. The flow patterns and

. streamlines clearly outline the path of the blood and show how the blood flows through the

stenosis. The maximum speed is present at throat of the stenosis as shown in Fig. 2.11 and
Fig 2.12.

Fig. 2.13 shows the distribution of pressure along a longitudinal line of stenotic

! arfery obtained from a model with solid wall and permeable wall. It is noted that (1) for

- 25% stenotic artery, both models with solid wall and with permeable wall give the same

préssure distribution which is a linear function along the longitudinal line of the artery; (2)
blood flow in the 50% stenotic artery with solid wall generates linear distribution of
pressure along an arterial line except at the stenosis where dropping pressure occurs,
whereas the model with permeable wall gives the oscillating pressure along the arterial
line; (3) comparison to a model with 50% stenosis, higher dropping pressure is present in
the model with 65% stenosis. The model with solid wall generates linear distribution of
préssure except at the stenosis whereas the model with permeable wall gives oscillating
pressure along an arterial line.

Fig 2.14 shows shear rate along a longitudinal line of 25%, 50% and 65%
stenotic arteries obtained from a model with solid wall and permeable wall. The results
indicate that high shear rate occurs at stenosis. Comparison to a model with solid wall, it is
found that (1) a model with permeable wall and 25% stenosis gives almost the same shear
rate from inlet boundary to the front hill of stenosis, lower shear rate from the hill to throat
of stenosis and then higher shear rate after leaving the throat of stenosis; (2) Blood flow
obtained from a model with permeable wall and 50% stenosis (1) generates oscillating

shear rate along the longitudinal line from inlet boundary to the back hill of stenosis, and

' gi\;es the same shear rate after traveling 3 cm from inlet boundary; (3) Blood flow obtained

from a model with permeable wall and 65% stenosis gives the same shear rate along the

longitudinal length except the area near the stenosis where shear rate is much higher.

2.2.4. Conclusions

The results show the significant effect of permeable wall on the flow pattern of
blood, especially at the stenosis area. In general, we conclude that blood speed at the throat
of the stenosis is blunt, resulting in high shear rate and dropping of pressure there. Bigger
size of stenosis gives bigger shear rate and higher jumping pressure in the channel,

esf)ecia]ly near the stenosis. Comparison the results obtained from the model with solid
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wall and permeable wall, it is found that the model with solid wall generates linear
distribution of pressure except at the stenosis and the model with permeable wall gives
oscillating pressure along an arterial line. Higher dropping pressure occurs at the stenosis.
Bigger size of stenosis gives bigger dropping pressure around there.

It should be addressed here that blood flow in a small stenotic artery is an
extremely complex phenomenon and there are still many unsolved modeling problem. The
presented work focuses on blood flow in a stenotic artery with solid wall and permeable
wall. Further work could be carried out to incorporate the fluid-wall interaction in a

stenotic artery when arterial wall is poroelastic material.

25% stenosis, solid wall 25% stenosis, permeable wall
=27 v ~—vrr y = 2.7 v v T
S RN AR AR I - EEE AN MY I
& [N B [ L b ]
8 +d 274 5 ) ‘o
5 25 WL 5 25) WAL Y
5 |4 AR g (¥ LIy
2 . =2 .
22.84x|l;\\\\\\\\\\;~- 9.2 RO TR
-0.1 g 01 '-8.1 0 0.1
radius axis (cm) radius axls {(cm)
25% stenosis, solid wall 25% stenosis, permeable wall
gZ.? 'g?.?r
L L
£ K=
= 25 = 2.5}
[ £
b= R
= 2
5 g
— 2‘ a i " — 2. il " P "N
-%.1 0 c.1 -%.1 0 0.1
radius axis (cm) radius axis (cm)
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Figure 2.9 Velocity profile along 50% steneotic artery obtained from a model with

solid wall and permeable wall.
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w (a) Blood speed at mid-plane of 25% stenotic artery
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Figure 2.11 Blood speed at (2) mid plane of stenosis with different severity obtained

from a model with solid wall and permeable wall.
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Figure 2.14 Shear rate along stenotic arteries with different severity obtained from a

model with solid wall and permeable wall,
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23 A Numerical study of non-Newtonian blood flow in stenosed coronary artery
bypass graft

It has been reported that cardiovascular disease is the leading cause of death in
developed countries [1, 2]. In recent years, surgical treatments of cardiovascular diseases
have been developed rapidly, and coronary artery bypass grafting (CABG) has been widely
used for patients with severe coronary artery diseases. The bypass grafts are worldwide
implanted each year. However, up to 25% of the grafts become occluded in one year and up
to 50% occluded in ten years [3]. Intimal hyperplasia which is related to the distribution of
wall shear stress (WSS) is an importance factor in failure of the coronary bypass surgery. In
general, atherosclerotic lesions in the coronary arteries have been related to low and
oscillating WSS [5, 4].

Another important factor in simulating blood flow is the behavior of blood. The
blood is a non-Newtonian fluid with low shear rate, less than 100 s [10]. Some numerical
studies assumed the blood to be Newtonian under the assumption that the shear rate is
larger than this value [11, 12, 13]. It has been known that near the center of the arteries the
shear rate is small. Therefore, a non-Newtonian behavior must be taken into account in the

model.

2.3.1 Mathematical model
The blood is assumed as an incompressible fluid and blood flow is laminar. The
governing equations consist of the continuity equation and the Navier-Stokes equations,

which can be expressed in vector notation as follows:

V-u=0, (2.24)
a—“+u-Vu=—1-V-c5', (2.25)
ot p

where u and the blood velocity vector, p is the density of blood. & is total stress tensor
which 1s defined by o=-pl+1, p is pressure, T is the stress tensor and linearly

dependent on the rate of deformation tensor D with the relation t=2n(y)D,
D= ‘;[Vu +VuT], 1 and y denote the viscosity of blood and shear rate respectively. For

the non-Newtonian property of blood, n depends on the shear rate 7. The complex

rheology of blood is approximated using a shear-thinning model by Carreau model.

Y
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n=n. +m, —n )1+ 2] (2.26)

For ¥, a scalar measure of the rate of deformation tensor, y = 2tr(D6 , M, and n_ denote

* zero shear viscosity and infinite shear viscosity. The consistency index, » is the parameter

between 0 and 1. The other parameters in equation (2.26) are based on Cho and Kensey
[61, M, =0.0345 gem™'s™, n, =056 gem™'s', n=0.3568, A =3.313s.

To completely define the flow problein, boundary conditions for the velocity and
pressure ﬁeldis must be specified. For a typical CABG system, the boundary of the
cofnputation region consists of four parts, namely the inflow surfaces of the native artery
and the bypass graft, the artery wall and the outflow boundary.

| On the inflow surfaces, The"pulsatile velocity used in this study is shown in Figure

2.15 [7]. The flow pattern is very large during systole and small during diastole.

A

4

(@ : (b)

Fi:gure 2.15 Geometry of three-dimensional 75% stenosed right coronary artery with

bypass grafting model: (a) global view; (b) x-z view.
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Figure 2.16 The right coronary artery volume flow rate [7].

No-slip condition is applied to the artery wall. The outflow boundary is assumed
to be

g-n=p,

where n is the unit normal vector to the outlet surface. We assume pressure at the outlet of
140 mmHg.

In summary, the fluid flow problem in CABG is governed by the following

boundary value problem.

BVP: Find u and p such that the field equations (1) and (2) are satisfied in Q

and all boundary condition are satisfied.

2.3.2 A Numerical algorithm based on the finite element method

The variational statement corresponding to the BVP is then VBVP: Find u and p

€ H'(Q) such that for all w* and w” € H (Q), all boundary conditions are satisfied and
(V-u,w")=0,

[%,w“]+(u -Vu,w" ) = !

P

(2.27)

(V-o,w"), (2.28)

where (-,) denotes the inner product on the square integrable function space L*(2),H'(Q)

is the Sobolev space W'*(Q) with norm ||-||,, and Hy(Q)={veH'(Q)|v=0 on the
Dirichlet type boundary } .

(]
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To find the Galerkin numerical solution of the above problem, we pose the
problem into a finite dimension subspace. The Galerkin finite element formulation was

used in the calculation. Then, we obtained the system of ordinary differential equation,

C"U =0,
. ~ (2.29)
MU+ A(U)U-CP =0,

2.3.3  Numerical example

Flow simulations were conducted under a typical physiological condition. The
ﬂﬁ}d properties are typical of human blood with density of 1.06 gecm™ [8]. The
computation region, as shown in Figure 2.15, represents the right coronary artery with 75%
ste”nosis located at 3.95 cm from the inlet boundary. Diameter of the native artery is equal
to :0.3 cm (D), and diameter of grafts is equal to 0.96xD [9]. The length of investigation
is about 8.5 cm.

We simulate the blood flow through stenosis right coronary artery with 45°, 60°
and 90° bypass operations in three-dimensions. The mesh as shown in Figure 2.15 consists
of 27030 nodes and 15819 elements. To get flow patterns in successive cycles, each of

which is divided into 280 time steps with step size 3.57 ms.
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Tablel: Mean/maximum velocities, pressures and mean/maximum and minimum wall

shear stress -

RCA with t U s j WSS, WSSuin
75% stenosis | (s) (cm/s) (mmHg) (dyn/em?) (dyn/cm?)
0.4 150.68 145.99 449.70 0.53
Without 0.8 47.55 141.56 113.75 0.55
bypass graft 1.2 92.91 143.38 255.98 0.79
1.6 36.91 140.91 80.61 0.34
0.4 154.16 147.72 442.03 1.422
With 45° 0.8 48.28 142.06 111.13 0.40
bypass graft 1.2 94.71 144.52 253.79 0.85
1.6 37.09 141.17 82.18 0.46
0.4 157.51 148.15 2760.47 0.00
With 60° 0.8 46.75 142.01 916.00 0.00
bypass graft 1.2 91.75 144 .48 1765.31 0.00
1.6 36.62 141.15 T 692.76 0.00
0.4 183.61 147.80 520.25 0.00
With 90° 0.8 49.78 141.75 123.35 0.00
bypass graft 1.2 94.54 143.96 273.83 0.00
1.6 38.05 141.01 87.22 0.00

Table 1 shows the maximum blood speed, pressures and maximum and minimum
wall shear stress. Maximum speed at the throat of stenosis obtained from each domain is
very high at the peak systolic. The results indicated that pressure drops along the arterial
axis. Figure 2.17 shows, in x-z plane, that the retrograde fiows occur along the vessel wall
in the neighborhood of heel part in the native artery. Bypass graft with 45° produces the
re-circulation zone in the cardiac cycle. The re-circulating jet flow tends to decrease as the
anastomosis angle increases as shown in Figure 2.18.

Figures 2.19 and 2.20 show the wall shear stress along the lines A and B,
respectively. The results indicate that very high WSS occurs during systole period. Figure
2.19 shows that wall shear stress at the bed of graft (line A) tends to increase after bypass

operation for all graft angles. Figure 2.20 shows WSS at the toe part of the graft (line B).

High WSS is present at the toe part as shown in Figure 2.20.

-}
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23.4 Conclusions

A mathematical model of blood flow patterns in the 75% right coronary artery

bypass grafting is presented based on the Bubnov-Galerkin Finite Element formulation.

* The thrée-dimensional non-Newtonian flow is calculated. On comparing the results with

other angles of bypass grafts, the ones of 45°graft angle seem to be satisfied. It can be
stated that the proper choice of the diameter of the graft might improve the balance of

~ inflow and outflow in the coronary artery. It should be addressed that to improve the
| accuracy of results, the effect of porous wall and wall deformation must be included.

, Therefore, further research work is required.
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Figure 2.17 The streamline velocity field in RCA (a) without and (b)-(d) with bypass

operation 45°, 60° and 90°, respectively, in x-z plane at specific times.
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Figure 2.19 The wall shear stress evaluation along line A: (a) without bypass grafting

and with bypass grafting of angles (b) 45°, (¢) 60° and (d) 90°.
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Figure 2.20 The wall shear stress evaluation along line B: (a) without bypass grafting

and (b)-(d) with bypass grafting of angles 45°, 60° and 90°, respectively.
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Activity: Proposed (<>)

Actual (e—>)

Months
1-6

Months
7-12

Months
13-18

Months
19-24

Months
25-30

Months
31-36

L. Cbnstruction of mathematical
model.
2. Development of numerical
technique
¢ Design of numerical
method (NM)
. iImplementation of NM in
‘I a computer
3. Vglidatlion
o V|Des}gn of schemes &
Ianalysis

[ V|Computati0n & analysis

M A

vV

v

A

A

Outputs of Subproject 2

Papers appeared/accepted in international journals

Papers presented in international conferences

Ph.D. graduates

Subproject 3:

Principal Investigator: Prof. Dr. I. Ming Tang

Mathematical Modeling of Disease Transmission

The project commenced around the end of the first academic semester of 2002. As

" a j)rogram director in the Institute of Science & Technology for Research & Development,

Mahidol University, the investigator of this subproject met on a regular basis with the

program directors of the Center for Vaccine Development (CVD) and the Conservation

. Biology Center (CVB). Through his acquaintance with Prof. Sutee of CVD, he met with

the French scientists at the Institute Recherche pour Developpement (IRD) who were

working on the transmission of infectious diseases in Thailand. Dr. Tang established very

" close collaboration with them, especially Dr. Phillippe Barbazan. Dr. Barbazan served as

- the co-advisor to three of Dr. Tang's Ph.D. students, who have subsequently graduated with

their Ph.D. They are now working at three universities in Thailand.
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Due to the interests of the investigator’s collaborators, he has worked on the
following diseases:
1. Dengue Fever
Malaria
West Nile Virus
Japanese Encepthalitis
Tuberculosis

Severe acute respiratory syndrome (SARS)

N e LN

Leptosprosis

8. Smallpox
and has published papers on these diseases. Please see Appendices # 3.1-3.14 for full
papers.

To further improve the research capabilities of the students, Dr. Tang have joined
up with Dr. Phillippe Barbazan to set up a Franco-Thai Collabrative Research network
involving six institutions and three units in France. We have been informed that our
proposal (one of fifteen accepted) has been accepted and it is now running. This is a four
year proposal. The title of the proposal is Spatial approach and mathematical modeling
of emerging infectious diseases transmission and development of resistance, It is under
the Franco — Thai Cooperation Program in Higher Education and Research. My team
is only interested in that part of the proposal that is underlined.

Several officials in the Ministry of Public Health have indicated interests in the
net-work of local surveillance centers in the provinces. Dr. Suwich Thammapalo, Chief,
Dengue Fever Control Section, Bureau of Vector Borne Disease Control, MOPH is
interested in my proposed network. Professor Dr. Virasakdi Chonsuvivatwong,
Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, who is the Ph.D.
thesis advisor of Dr. Suwich is interested in the work of Dr. Puntani Pongsumpun.
Dr. Suwich is working on a statistical model to correlate the data on the DHF cases, rain
fall, rain days, max. and min. temp. and humidity in the monthly records over the past 20
years (1977-1997). Dr. Viroj Tangcharoensathien, Director of IHPP-Thailand, MOPH is
working on projecting the HIV/AIDS incidences in different population groups in Thailand
over the next forty years to help in determining the public health policies on AIDS from an

economic viewpoint. The output of our work could assist the MOPH.
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The MOPH are interested in our proposed network because it will be based in the

provinces and not in Bangkok. This being the reason we recruited the students from the

Rajabhat Institutes. The undergraduate students at these institutes are from the local

villages in the provinces. They would return to the local villages and become teachers at

the tamboon schools. They might be able to get the local people interested in public health

issues of direct concern to them. Leptosprosis is a disease affecting the poorer provinces in

Thailand where the medical care is not as advanced as in Bangkok and the other big cities.

Having local people as part of a community-based public health surveillance units fits into

the governmental plan of getting local people involved in thier own development.

Leptosprosis is also being used as the bacterium to determine the toxicity of

nanoparticles, a project being undertaken in the Capacity Building Unit in Nanoscience &

Nanotechnology of the Faculty of Science. This unit is also being headed by Prof. Dr Tang.

Table I11: Proposed and Actual Activity for Subproject 3.

Activity: Proposed (<>

Actual («—>)

Months
1-6

Months
7-12

Months
13-18

Months
19-24

Months
25-30

Months
31-36

. M_;)delling P.

. M;pdelling transmission of

dengue hemorrhagic fever.
Modelling cannibalism in an
ag_le structured predator-prey
sy{stem.

falcipurum

malaria transmission,
i

. M_I:odell:ing of P. vivax malaria

transmission.

’.
. Analysis of feedback control

A
of blood platelet regulation by
TPO.

. Study EPQ regulation of

erythrocytes production.

. Modetl the spread of seeds in

i
tropical forests.
, :

y

<

A

N

A

o

0

* The investigator has become interested in SARs, Leptosporosis, and other diseases instead.




60

Outputs of Subproject 3

Papers appeared/accepted in international journals 14
Papers presented in international conferences 3
Ph.D. graduates 4
Master graduates 9

Subproject 4:  Application of Log-linear and Logistic Models to Cancer
Patients: A Case Study of the National Cancer Institute

Principal Investigator: Assoc. Prof. Dr. Montip Tiensuwan

The activities in this subproject have followed the proposed plan, that is,
(1) Application of log-linear models to cancer patients: a case study of data from the
National Cancer Institute.
(2) Application of logistic regression models to cancer patients: a case study of data from
the National Cancer Institute.

We finished number (1)} and submitted our paper to the Southeast Asian Journal of
Tropical Medicine and Public Health (see the manuscript in Appendix 4.1).

For number (2), application of logistic regression models, the aims of the study are
as follows:
1. To analyze the cancer data by using logistic regression models to identify factors
associated with the status of last contact of all cancer patients and estimate parameters of
the models which indicate association between cancer variables.
2.  To analyze the cancer data by using logistic regression models to identify factors
associated with the status of last contact of cancer patients for individual gender and
estimate parameters of the models which indicate association between cancer variables.
3. To analyze the cancer data by using logistic regression models to identify factors
associated with the status of last contact of cancer patients for the specific site and estimate

parameters of the models which indicate association between cancer variables.

Results of the completed study

The subjects were cancer patients treated at the National Cancer Institute. We
collected cancer data by using a cancer notification form of the National Cancer Institute.
The classification and coding of primary site and morphology are given in cancer
notification form, that is ICD-O (9). This data set includes the number of new cancer

patients who were admitted between January 2000 and December 2001 at the National
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. Cancer Institute. In this data set, there were 5,946 cancer patients which consisted of 2,042
- male patients and 3,904 female patients.

The cancer data were considered according to the sex of cancer patients: male
patients and female patients. In addition, each sex was classified into two parts as follows:
Part1 Personal data. This part consists of age, region, marital status, race and religion.
Part I Cancer/clinical data. Factors being important variables in this part were as

" follows: Diagnostic evidence, site of cancer, pathological, stage of diagnosis, sites of -
metastasis, treatment which consists of surgery, radiation, chemotherapy, hormone and

~ support and status of last contact.

Suﬁmaq of general data of most patients
_ PartI: personal data. More patients were females than males. The majority of male
. patients ranges from 56 to 65 years of age, while female patients ranges from 46 to 55 years
" of age. We found that many of the patients were middle aged. Most of the patients were of
Thai race, Buddhist religion, married / divorced / widowed patients and lived in the central
part of Thailand.
- Part II: cancer/clinical data. Most patients were diagnosed by using the histology of
- primary. A large number of female patients had cancer at their breasts and female genital
organs, whereas, digestive organs were the positions at which cancer occurred most often
- for male patients. The majority of male patients had squamous cell neoplasms, while
;‘female patients had ductal, lobular and medullary neoplasms. Most patients were in the
direct extension stage. Since more male patients were in the distant metastasis stage than
female patients, more male patients had the sites of metastasis than the female patients. For
treatments, radiation, surgery and chemotherapy, by order of preference, were used in male
patients. While female patients were treated by surgery, radiation and chemotherapy, by

order of preference. Most of patients survived with cancer.

'Model for all cancer patients
! The best logistic regression model to identify factors associated with the status of
last contact for all cancer patients is given by the following equation:

logit ()= -3.477 + 0.557X1 — 0.030X9 — 2.082X10 — 0.113X18 + 0.209X19 — 2.124X20
~ 0.784X21 — 1.229X22 — 0.891X23 + 0.559X36 + 1.429X37 + 0.101X38 +
0.511X39 — 0.615X40 + 1.424X41 + 1.06X42 — 0.677X44 + 2.001X47 —
1.755(X18 x X47) — 1.360(X19 x X47) + 1.462(X20 x X47) + 0.162(X21 x
X47) - 6.936(X22 x X47) + 0.133(X23 x X47).
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According to this model, the factors which effect the status of last contact are sex

{X1}, marital status {X9, X10}, site of cancer {X18 - X23}, sites of metastasis {X36 -
X423, radiation {X44}, support {X47} and site of cancer x support {(X18 - X23) x X47}.

Model for male cancer patients

By using the logistic regression models, the best model for male cancer patients
that identify factors associated with the status of last contact is given by the equation
below.

logit(z) = -2.939 + 0.546X8 — 1.472X9 + 0.107X16 + 0.760X17 — 1.013X18 - 0.923X19
- 1.450X39 - 0.842X40 + 1.661(X39 x X40).

According to the above model, the factors which effect the status of last contact
are marital status {X8, X9}, site of cancer {X16 - X19}, radiation {X39}, chemotherapy
{X40} and radiation x chemotherapy {X39 x X40}.

Model for female cancer patients

The best logistic regression model to identify factors associated with the status of
last contact for female cancer patients is given by the following equation.
logit(7) = -11.030 + 0.009X1 - 0.438X14 + 0.095X15 — 2.343X16 — 0.634X17 ~

0.244X18 + 6.026X25 + 8.594X26 + 5.731X27 + 0.428X28 + 7.583X37 +
3.072X38 — 1.712(X14 x X38) - 12.126(X15 x X38) + 1.327(X16 x X38) —
1.074(X17 x X38) — 0.802(X18 x X38) — 7.538(X25 x X37) — 6.276(X26
xX37) — 7.109(X27 x X37) + 0.744(X28 x X37) + 0.007(X1 x X25) —
0.043(X1 x X26) + 0.041(X1 x X27) — 0.027(X1 x X28) — 10.034(X37 x
X38).

According to the above model, the factors which effect the status of last contact
are age {X1}, site of cancer {X14 - X18}, stagé of diagnosis (extent) {X25 - X28},
chemotherapy {X37}, support {X38}, age x stage of diagnosis (extent) {X1 x (X25 -
X28)}, site of cancer x support {{X14 - X18) x X38}, stage of diagnosis (extent) x
chemotherapy {(X25 - X28) x X37} and chemotherapy x support {X37 x X38}.

Models for the specific site in cancer patients

We classified the specific sites in cancer patients into five groups.
Group 1:  Lip, oral cavity and pharynx
Group 2: Digestive organs

Group 3:  Respiratory system and intrathoracic organs
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Group 4: Female breast and female genital organs
Group 5: Thyroid gland, endocrine glands, eye, brain, central nervous system, lymph

nodes, skin, blood, connective tissue, urinary tract, peritoneum and bones,

Model for Group 1
By using the logistic regression models, the best model for the patients who have
cancer sites classified in this group, identifying factors associated with the status of last

contact, 1s given by the equation below:

 logit(7)= -3.609 +2.310X15

According to the above model, the factor which effects the status of last contact is

support {X15}.

Model for Group 2

The best model for the patients who have cancer sites classified in this group

. identifying factors associated with the status of last contact is given by the following

eqﬁation:
logit (7)=-3.648 + 0.925X1 + 1.218X26 + 0.204X27 — 0.404X28 — 0.529X29 + 1.945X30
+0.466X31

According to this model, the factors which effect the status of last contact are sex

{X1} and sites of metastasis {X26 - X31}.

Using the logistic regression models with the dependent variable being the status
of last contact, for the male patients who have cancer sites in this group, the best model is
given by the following equation.
logit(z)= -2.400-0.950X31

According to the above model, the factor which effects the status of last contact is

- chemotherapy {X31}.

Model for Group 3
For the patients who have cancer sites classified in this group, the best logistic
regression model to identify factors associated with the status of |ast contact is given by the

following equation:

logit(7)= -3.631 + 0.940X18 + 2.083X19 + 3.120X20 + 1.362X21 + 0.197X22 +

1.028X23 + 2.378X24 +2.650X28 —2.444(X18 x X28) —2.489(X19xX28) —
9.341(X20 x X28) — 2.779(X21xX28) — 6.418(X22xX28) — 2.127(X23 x X28)
_2.784(X24 x X28)
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According to the above model, the factors which effect the status of last contact
are sites of metastasis {X18 - X24}, support {X28} and sites of metastasis x support {(X18
- X24) x X28}.

Model for Group 4

By using the logistic regression models, the best model for the female patients
who have cancer sites classified in this group that identify factors associated with the status
of last contact is given by the equation below:

logit(#)= -6.630 + 1.708X17 + 1.459X18 + 3.273X19 + 2.205X27

According to the above model, the factors which effect the status of last contact

are stage of diagnosis (extent) {X17 - X19} and support {X27}.

Model for Group 5

For the patients who have cancer sites classified in this group, the best logistic
regression models to identify factors associated with the status of last contact is given by
the following equation:

logit(£)= -3.647 —0.025X1 — 1.844X24 + 1.764X25 — 17.490X26 + 0.325(X1 x X26)

According to this model, the factors which effect the status of last contact are age

{X1}, radiation {X24}, chemotherapy {X25}, support {X26} and age x support {X1 x
X26}.

logit(#)

In all the best models, the fitted value of each model is 7 = T
+e



Ly

[

Wl

Table I'V: Proposed and Actual Activity for Subproject 4.
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Activity: Proposed (<--->) | Months | Months | Months | Months | Months | Months
Actnal («—>) 1-6 7-12 13-18 19-24 25-30 31-36
L. Search literature: statistical ...
: meﬁhods R
. Test of independence
L Two-dimensional log-linear
models
o Three-dimensional log-
' linear models
¢ ' Logistic regression models
2. Data collection, G
| <>
3. FProgress report. < | >|< >
4. Test of independence G
between two cancer <>
variables.
5. Application of two . >
kdimensional log-linear <>
;models.
6. . Application of three o >
:dimensional log-linear <
models.
7. Application of logistic -
'?regression models < >
8. FFull progress report G
! i <>
Outputs of Subproject 4
Papers presented in international conferences 3
Master graduates 3
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Subproject 5: Modeling and Computer Simulation in Cancer
Research: Theory and Modeling of the Growth of

Tumors

Principal Investigator: Asst. Prof. Dr. Wannapong Triampo
Proposed activities

We now have completed our work on the stochastic cellular automata in silico
model for immune system- avascular tumor interactions in vivo: self-organized vascular
growth, pattern formation and fractal analysis. Also the final draft of the manuscript is
about to be finished and is expected to be submitted in a few weeks. It can be summarized
as follows. The stochastic discrete model on two-dimensional square lattice has been
developed. The cellular automata method was presented to describe the growth of an
avascular tumor based on microscopic scale of immune system response, cell proliferation,
cell death and degradation. The Monte-Carlo method was applied in this model which
enables us to idealize three regimes of Gompertzian growth. We have used scaling
techniques to analyze the fractality of tumor colony, proliferating tumor colony as well as

statistical properties to make conclusions about the fractality of the boundary.

5.1 The model
5.1,1 The microscopic scale

The basic biological principles, which is represented by the microscopic scale
change, are cell proliferation as well as its interaction with the immune system as shown in
Fig. 5.1.

It is established that the immune system has an important role which influences
the development of avascular tumor growth. The immune system is very complicated. Let
us consider a simplified process of a growing avascular tumor which effects an immune
response in the host immune system. By [10, 29 and 31], the tumor can be effectively
eliminated by tumor-infiltrating cytotoxic lymphocytes (TICLs). Practicaily, TICLs may be
cytotoxic lymphocytes, natural killer-like cells and/or lymphokine activated killer. TICLs
are assumed to interact with the tumor cell and then lymphocyte-tumor cell complexes are
formed. These lymphocyte-tumor cells complexes detachment results in either the death of
tumor cells by a program of lysis or by TICLs without damaging the proliferating tumor

cells.

a

.y F,
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The host tissue is represented by a lattice of size L x L. And any site has

coordinates (x,,y,), where x,,y, =1, 2, ..., L. We let the proliferating tumor cells, the

| dead tumor cells, the cytotoxic lymphocyte, and TICLs-tumor cell complexes be
represented by P, D, TICLs, and C, respectively. Then, the kinetics of fundamental feature

of tumor development could be represented as in Fig. 5.1.

’

p —plf , op

Fhinding .
P+TICLs c s, pLTICLs

Fdetach.

¥,
D decay

Fig. 5.1 Kinetic mechanisms of development of cancer with immune response

{(modified from [1, 10]).

The parameters 7, »¥uumgs Taetach> Tyss @nd 7, are non-negative kinetic

constants where r,,. describes the base rate of tumor proliferation. 7, represents the

rate of binding of TICLs to tumor cells, r,,,, 1s the rate of detachment of TICLs from
| cancer cell without damaging cells, 7, is the rate of detachment of TICLs from dead

" tumor cells, resulting in an irreversible programming of the tumor cells for lysis, and r,,,,

describes dissolution of the dead cancer cells. Additionally, we may define the function
Foonr. @S @n avascular tumor growth rate in vivo, by assuming Fvotig (1) = T ppoiiy (1-£),

where P(¢) denotes the number of proliferating tumor cells, and K denotes the carrying
capacity, which can be indicated as the restriction of nutrient for proliferation of cancer
cells and/or increasing waste product accumulation indices, decreasing the rate of

proliferation of cancer cells [27,28].

We investigated the influences of the parameters on the Gompertz growth curve.

By Fig. 5.5 (g), 7, decreases with increasing cancer cells, and this function incorporates

the fact that the proliferating tumor cells growth depends on the competition for resources

among the prollferatmg tumor cells. These effects are assumed in avascular microscopic
tumor growth in vivo [17] as illustrated in the first reaction of Fig. 5.1. By the second

reaction, the parameter r,, ., indicates the tumor’s potential for escaping the host’s
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immune surveillance whereas #,,,,. corresponds to the TICLs’ response in a chemotactic
manner towards tumor cells and 7, describes the TICLs’ detachment rate of activation
from tumor cells, being an irreversible programming of the tumor cells for lysis, and 7,

represents the dissolution process in which the dead tumor cells turn into normal tissues
and reflects the degraded dead tumor cells.

Table 5.1 Summary of functions and input constant parameters for the model.

Functions in the model

+

L~ Rate of proliferation of cancer cells (varying with the number of proliferating
tumor cells)

Parameters

Y vl Base rate of proliferation of cancer cells

Viinding Rate of TICLs” binding to the tumor cell to become cell complexes

F tetach, Rate of TICLs’ detachment from the cell complexes without cell damage

Fiis Rate of TICLs® detachment from the cell complexes resulting in the lysis of
tumor cells

Faecay Death rate of tumor cells degrading to normal cells

K The maximum proliferating tumor cells extent

* The parameter values of #,... ¥y s Ty a0d 7y, have been modified from Qi et. al.

[1], and #,,,, and 7, have been modified from Matzavinos, A., et. al [10, 13, 30].

(a) (b)

Fig. 5.2 (a) The four nearest neighboring sites (gray) of the tumor site (black): with
the nearest neighboring rule of the so-called von Neumann
neighborhood,

(b) The initial configuration: five cancer cells in the center of the square

lattice.
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% 5.1.2  The methodology for stochastic CA
Time runs in discrete steps. The lattice compartment may accommodate either:

proliferating tumor cell ( P ), TICLs-tumor cell complexes (C), or dead tumor cell (D), on

host normal tissue. The flowchart of the simulation procedure is shown in Fig. 5.4. A

simulation is terminated after 1000 individual simulations with determined timesteps. A

random number (a), in the series of random generating numbers has the value in the range

of 0<a<]. We distinguish the total tumor cells to one of two possible states:

(D proliferating state (i.e. cancer or proliferating tumor cells, P ), and

(2) non-proliferating state or stationary state (i.e. C and D).

For each simulated tumor colony the tumor progress is simulated by the following
algorithm:

(D At t=0: Initial configuration is five cancer cells in the center of the normal tissue
as shown in Fig 5.2 (b).

(1) At each time step: The rules of cellular automaton are applied to each tumorous
cell one by one sequentially selected at random with the same probability and
carry out one of the actions upon its state as shown in schematic diagram (Fig.
5.3), described as follows:

(1) Proliferating state: If the selected cell is the cancer cell, the cancer cell takes one

of the following three actions with the function r,,,,, and parameier#, . -
(i) The cancer cell may invade the normal cell with the probability 7, .. if this

- cancer cell has at least one nearest neighbor normal cell (as shown in Fig. 5.2 (a)) randomly
chosen with the same probability.

(11) The cancer cell is bound by the TICLs with probability r,,, .. -
- (D) The cancer cell may not change with probability 1 — (7/,..; + % ) OF there is no
nearest neighboring normal site in the case of invasion with probability 7, .

2) Stationary state: If the selected cell is in the non-proliferating state, which consists
of dead cancer cells and TICLs —tumor complexes that maybe defined as cell complexes.
(2.1)  The complexes: If the selected cell is a complex. The cell may take one of the

following three actions with parameters 7, » Fhgine and 7, -

(i) The complexes revert into cancer cells with probability ..,

(it) The complexes may go thru lysis and become dead cancer cells with the

probability 7, .



70
(iii) The complexes may not change state with the probability 1 — (7,4 * 7 )-
(2.2)  The dead cancer cells: If the selected cell is a dead cancer cell, it takes one of two
actions. ' h
@ The dead tumor ce_ll may dilute into ﬁorma} cell w1th probhbility ecay -

(i) The dead tumor cell may not change with probability 1

- rdecay .
(III)  Step (II) continues until the set number of timesteps is reached.

<l/.

Remark: By this methodology we have to satisfy 7, + Fopme <7 and 700 7,0 <

TICLs

P(t) b.:rbmdmg » C*(t)
Proliferating Tumor-TICLs

tumor cells r cell complexes
detactf.
TICLs
rx’ysis leLS
r
rpro!if . Y

D(t)
Dead tumeor
cells

Fig. 5.3 Schematic diagram of cellular automaton model of tumor growth reveals the

possible acﬁons, reactions and éhanging states of each type of tumor cells.
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+ 5,1.3  Simulation Results _

| | The methodology described in Section 2 has ‘been transformed into a computer
simulation programming, Computer simulation experiments and computational
| re]:;fesentation of the results in a two-dimensional spatial visualization of tumor invasion of
normal tissues are shown in Figures 5.5 (a), 5.5 (b), 55. (fj, and 5.5 (g). We denote by P(¢)
- the'number of proliferating tumor celis at time ¢z, C*(¢) the number of TICL-tumor cells

complexes at time ¢, and D{¢) the number of dead tumor cells at time £. To investigate the

+ evolution of tumor growth, we also denote the total number of tumor cells by N(t) =

Pt )+C*(t)+ D(t). Clearly, N (t) can indicate the size of the tumor at time ¢.

" Fig. 5.5 (a) Snapshots of the simulated tumor 61x 61 squared lattice, proliferating cell
cluster, and its boundary colony at timesteps 0,15,30,50, and 80. The simulation

setting is r

votif. = 085 piniting = 01 Paor qop, = 051y = 035,140, = 0.35 and K = 550. B

prdliferating tumor cells, : TICLs-tumor cell complexes, B: dead tumor cells, and B:

- normal cells.
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Fig. 5.5 (b) Snapshots of the typical configuration of simulated tumor colonies (61x 61
squared lattice) with the different generating random number and the same
simulation setting at timesteps 15, 30, 50, and 80. The simulation setting is

Porotif. = 085, Mhinding = 0.1 Ve = 0.5.1, 0 =035 ryprn, = 0.35 and K = 550. H: proliferating

tumor cells, : TICLs-tumor cell complexes, B: dead tumor cells, and l: normal cells.
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. Fig. 5.5 (c) Plots of the time evolutions of the number of cancerous cells dual show

with the qualitative shape of simulated multicell tumor. The simulation results are
shown for one simulation (star)and averaging over 1000 individual simulations

(square), at timesteps 0, 15, 30, 50, and 80. The simulation setting is

. Forotig, = 085, Thinding = 0.1, Tagrach = 0.3 Ty =035, 7 =035 and K = 550.

f

ecay



75

‘@ 700
s |
2
o 800
8
-6 500 4 ..' W
- o
F4 D
o L
E 4004 o
2 P
c .
2 300 o
= .t
s
s
200 4 o
N
-
-
100 o
¢ The number of tumorous cells
& The number of proliferating tumor cells
B
T T T T T T 1
4] 20 40 80 80
Timestops
* The number of tumomus cely
#7004 iz . The number of prolierating twmar cells
© 1z -
£ o
@ B0 |
= -
2 :
& 500
e
@ “
a
E 400
E
B 4
2 3004
=
200
100
[

0 20 40 B0 80
Timesteps

Fig. 5.5 (d) Plots of the time evolutions of the number of tumoral cells (solid circle)
and proliferating tumor cells (hollow circle). A part of the curve in typical different
figures shows different dynamic growth. The simulational results are the

average of 1000 individual simulations, with torotif. = 0:83,
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Fig. 5.5 (g) The proliferating function value of avascular tumor growth, », . versus
time. The function is defined by 7, =7, (/—%). The average of 1000 individual

values of - from simulated tumor growth (the black solid line) and a

prolif.
typical simulation (gray) have been obtained with

Porolif. = 0'85'rbr'ndmg =01 gorach = 0.3, iy = 0.35, gy, = 0.35 and K = 550.
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circle) proliferating tumor colony by box counting method, using S individual
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By the methodology of Cellular automaton model, starting the simulation by
placing five proliferating tumor cells in the center of the square lattice, then both later
inv_ade and change their states by a series of random generating number to govern the
simulated tumor pattern as shown a typical snapshot in different timesteps in Fig. 5.5 (a).
Fig. 5.5 (b) reveals a number of simulated colonis made by the different seeds caused by
different series of random generating number. Apparently, the morphology of different
simulated tumor patterns are different. The growth curve of a typical simulated colony (red
star) and the average of 1000 colonies are shown in Fig. 5.5 (c).

The Gompertz growth curve is the best known model, which is succesfully used to

characterize the experimental data of tumor growth in vive [1, 16, 17], and can be written

as

V() =V, exp[% (1- exp(—Bt))J R (5.1)

. where V(1) is the size of tumor at time t, V, is the initial volume, while the positive

vy

parameters A and B are evaluated by the method of least squares. Based on the CA's
mode] which is described in Section 2.2, the averaged growth curve, as shown in Fig. 5.5
(a) can be described mathematically by Gompertz function approach to Enrich carcinoma
mouse growth in vivo [17] with the coefficient of nonlinear regression r’ =0.9997 by

computational simulation setting .. = 0.85, sy =01, Tpyuq =05, 1y =0.35,
Vieeay = 0.35, and K=350, and Gompertz parameter setting V, = 2.26x%x107 (cm)3 LA =

0.456 (days'l), B = 0.702 (days™). Ultimately, we normalized the data with V, =194

(cm)’, and N, =8394, N, =625, as shown in both growth curves in Fig. 5.6. By the

) growth curves of Fig. 5.6 and the typical five colonies, cell-doubling time versus number of

total tumor cells were plotted as shown in Fig. 5.7 with linear relationship.
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Fig. 5.6 The comparison between the theorectial prediction and the Gompertz

approach for the mouse carcinoma Ehrlich with the coefficient of nonlinear
regression r’ =0.9997. Gompertz parameters: v - 226x 10" (em)’, A =0.456(day)”,
B =0.102(day)" and v o =194 (cm)s. The parameters of the model are: with

No =838 N, =627.379, rpur =085 rp i = 0174000 = 0.5, = 0.35, Fgoeqy = 0.35 and

ra'y.\':'s

K =550,
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The number of tumor cells{cells)

Fig. 5.7 Cells-doubling time versus the number of tumor cells from 1000 individual
simulated tumor (solid circle) with five typical individual simulated colonies. The plot
of the cell-doubling time of tumor cell number against the number of tumor cells
in each colony shows their linear relationship, when parameter setting

rotig, = 0851, = 0y achy = 05, Ty = 035, Voo, =0.35 and K = 2000.
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The Gompertz curve can be mathematically divided into three regimes as done in
{17, 20]. The first regime or early phase, reflects the dynamics of the initial stages of
tumorigenesis until the number of tumor cells reaches the value equal to 0.37 of their
maximum number of tumor cells within referring time step, which is the time at the

infection point on the curve and is defined by ¢, . The second regime, or intermediate phase,

of the growth curve is the curve from the first segment, the curve being concave downward

~ until number of tumor cells at crossover time is reached, and the third regime, or saturated

" phase, begins at the crossover time and lasts until saturated state is reached as seen in Fig.

5.8. In other words, the Gompertzain growth curve can be divided into three regimes by the

time at infection point and the crossover time.

= Q o =
Iy o © o
1 " 1 1 1

The normalized number of tumorous cells
o
)
1

o
o
1

T

‘l tz Timestep
i Fig. 5.8 The three segments of sigmoidal Gompertzian curve from simulation result of
b Fig. 5.4. The first segment has the range from 0 to 14 timesteps within the first solid
|
‘ circle; the second phase covers days 15 until 31; the third phase begins at 32 days

beyond the second solid circle.
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Fig. 5.9 (a) and (b) Plots of the time evolutions of the number of tumoral cells and
proliferating tumor cells, respectively. The simmulation results are the average of 1000

individual simulations, with parameter s, .. varying from 6.6 to 0.9 in steps of 0.1,

and fixed parameters r,, ;.. =0.Lr . =05, 1y =035 rypey, =035and K =550.

Fig. 5.9 shows the simulation results when only r,,,,  was varied from 0.6 to 0.9

in steps of 0.1, whereas the other parameters were fixed. Fig. 5.9 (a) shows the growth
curve of the tumor with varying proliferating rate. We found that the growth rate and
saturated tumor cell number are increased with increasing proliferating rate. With the
recent finding of crossover time process, the growth curves of a greater proliferating rate
will take the shorter crossover time together with the increase in saturated tumor size.gBy

Fig. 5.9 (b), we also reach the same conclusion on the growth curve of total tumor cells as

that from Fig. 5.9 (a).
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Fig. 5.10 (a) and (b) Plots of the time evolutions of the total number of tumor cells and

the number of proliferating tumor cells. The simulation results are the average of

1000 individual simulations, with varying parameter r, . ., and fixed parameters

Forotyf. = 0-85 Paeraen = 0.3, Py =0.35, and K = 550.
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In order to investigate the role of immune system within this model which is

represented by the values of the parameters r,,,,. and, 7, . We consider the growth
curve of tumor when only r,,,,,.. is varied, with other parameters fixed as illustrated in Fig.

5.10 (a), while the growth curve of tumor with varying r,,., and other parameters fixed is

shown in Fig. 5.11 (a). Certainly, increasing the binding rate of TICLs, will increase the
binding rate effect in delaying or inhibiting tamor proliferation. Figures 5.10 (a) and (b)

show that when r,,,,. is increased, the growth curve will have more crossover time,

which means that the system will take more time to reach the saturated phase. In more
detail, considering the first regime of the growth curves in Fig. 5.10 (a) (t =1 to 13), the

growth will decrease with increasing Tbinding » WHiCh shows that the first regime is effected

by the number of proliferating cells more than other cell types. Between timesteps 25 and

29, each growth curve flips until the growth increases with increasing 7, » and the third
regime is reached with higher saturated size of tumor for higher value of ry,. ..

Apparently, according to Fig. 5.10 (b), the growth of proliferating cells decreases and the

saturated number of proliferating cell decreases with increasing 7., since the binding

role of immune system is to decrease the number of proliferating tumor cells. According to

Figures 5.10 (a) and (b), varying the parameter r,, ., indicates that higher number of
proliferating cells does not necessary mean larger tumor size. Morcover, 7,,.,,,, = 0.0 refers

to the proliferating tumor cells growing stochastically on two-dimensional square lattice

with von Neuman neighborhood.
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Fig. 5.11 (a) and (b) Plots of the time evolutions of the total number and the number

of 'proliferating tumor cells of simulated tumor. The simulation results are the

avérage of 1000 individual simulations with -, ., varying from 0.0 to 0.4 in steps of

5 0.13 and fixed parameters r,, ., =085

binding =01, Fiysis =0.35, Ydecay = 0.35 and K =550.

To investigate the influence of the r,,,, . we fixed the other parameters and vary

thié rate from 0.0 to 0.4 in steps of 0.1. According to Fig. 5.11 (a), we found that increasing

" P Wil decrease the crossover time of the growth curve, which means that the system

- will use shorter time to reach the saturated regime. However, the saturated size of the

tumor will decrease with lower 7, . Considering Fig. 5.11 (b), increasing 7, will lead

" 1o an increase in the number of proliferating tumor cell, larger saturated tumor size and less

~ crossover time.
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We have been interested in the qualitative result of avascular tumor growth model,
investigating the morphology of simulated tumor colony. Clinically, Bru et al. [27] have

defined the three regions of avascular tumor via the radius of tumor (R ), namely, an

. R . . . R 4R
innermost region {0 <r, < 5 ), an intermediate region (E <r < T)’ and an outermost

region 7, g , where #, is the radius of tumor colony from the origin. They measured the

proliferating cell of human colon adenocarcinoma colony in each region, the innermost
region covers 6% of proliferating cells and 25% of the whole colony surface, the
intermediate region covers 14% of proliferating cells and 39% of the whole colony surface,
and the outermost region consists of 80% of proliferating cells and 36% of the whole
colony surface. We also measured this quantity by computational algorithm applied to each
simulated tumor colony and we also found that the averaging ratio of proliferating cell in
the outtermost region is greater than those of both other regions by 70%, 18% and 12%
respectively as shown in Fig. 5.5 (f). The simulation results indicated that proliferating
cells are located mainly to the outtermost region which corresponds to the experimental
data in vivo of Bru et al [27].

It is found that the colonies obtained from the stochastic model have an
approximately circular shape with a rough boundary as shown in Figures 5.5 (a) and (b). A
few researchers [0, 7, 8, 22, 23, 25, 26] were interested in the fractal dimension of the
stochastic growth model. We defined the boundary cells of the simulated tumor growth by
assuming that the boundary cells are the outtermost cells covering the colony in each row
and each column in the lattice. We also found the fractal dimension of the expansion of
multicell tumor colony and the proliferating tumor cell against timesteps using Beniot 1.3
{36] as shown in Fig. 5.5 (h).

At each time step, if we let S be the number of tumor cells on the tumour

periphery. The center of mass of the boundary with coordinates (x, .y, ) is defined as

m)% 3 (%,.7,) 52)

periphery

The mean radius of the boundary is defined as

R =é Y Jx -%) (v, =) (5.3)

periphery
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The squared mean thickness of the boundary is defined as

2

o’ =é 2 [J(xn—f)2+(yn—?)2 —R] (5.4)

periphery

" For each colony, using least square method to find o and f in the relation

¢ =aR® (5.5)

: By equation (5.5), the value of B indicates how the dynamics of boundary growth depends

on the power law. We used the individuals of 1000 colonies for each timestep through to

35 timesteps, from the simulated result in Fig. 5.5, then we obtained
o =0.23439+0.01456, and B =0.63339+0.02581 with r* =0.96746. Our results are

different from the result given in [23] and [26], the stochastic cluster growth on a plane,
which found that B = 0.468 £ 0.092.

However, we obtained the same conclusion on the fractality of the boundary.

- Thus, we can conclude from the fractional value of B that the boundary is fractal. Which

means that it has the same amount of roughness when enlarged [23]. By the equation (5.5),
Wang et al. [26] concluded that if < 1, the larger colonies have smaller relative boundary
thickness.

In conclusion, the CA model showed that the macroscopic behavior of a tumor

- can be affected by setting the presence of an immune system response at microscopic scale.

In addition, the analysis of the morphology of simulated patterns by scaling law and the
growth rate of tumor in each phase of the Gompertzian curve were presented.
The cellular automata model on a three-dimensional square lattice with simulation

results is in progress.

. Other related activities

Apart from the work explained above on what has been proposed in this project,

‘we have spent some of our time in investigating different techniques of modelling and

simulation of cell division in various aspects. This part of our work has resulted in 3
published papers as can be seen in Appendices # 5.1-5.3. The work on growth of
Leptospire (in Appendix # 5.1) is done in support of the research work in Subproject 3,
while the work on bacteria cell division (Appendix # 5.3) will be of great use to the

continued research on bacterial growth and drug resistance in Subproject 1.
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Activity: Proposed (<> )

Actual (<—3)

Months

1-6

Month
7-12

Months
13-18

Months
19-24

Months
25-30

Months
31-36

. Construct models describing | ¢.....oo....

solid tumor growth.

. Simulate the solid tumor
growth using appropriate
programming tools.

. Interpret and compare
simulation results to
experimental data.

. Predict the response of tumor
growth to different
perturbations in time and
space.

. Examine the effects of
environmental heterogeneity
at different scales.

. Simulate angiogenesis and
other cancer related topics if
possible.

. Simulate different kinds of
cancer treatment (surgery,
radiation, and chemotherapy)
in order to optimize the
treatment strategies and
schedules prior to clinical

therapy.

N

AN A

v

A

* The investigator has become interested in investigation of different simulation techniques

for other cell divisions instead.

Outputs of Subproject 5

Papers appeared/accepted in international journals

Paper presented in international conference

3

)
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' Subproject 6: Research on Asymptotic Stability of Difference

Equations with Delays

| Principal Investigator: Dr. Piyapong Niamsup

The research work in this subproject may be summarized year by year as follows.
6.1 Year 1:
During the first year, we mainly studied the asymptotic stability of linear

difference equations of the form

Xpa — azxn—| + bxn—k =0 - (61)

" where a and b are arbitrary real numbers, k 1s a positive integer and n = 0,1,2,... The

motivation for studying the above difference equations came from a paper of S.A. Kuruklis
; [1]:in which he gave the necessary and sufficient conditions for asymptotic stability for the

linear difference equation of the form

X, —axX, +bx,_ =0 (6.2)

n

where a and b are arbitrary real numbers, k is a positive integer and n = 0,1,2,... The main

result in [1] reads as follows:

' Theorem A Let a be a nonzero real, b an arbitrary real, and k a positive integer greater than

! 1. Equation (6.2) is asymptotically stable if and only 1f |a[ < k;— 1 ,and

1
|a|—1 <b<{a’ —21a|cos¢+1}5 for k odd

' 1
|b-a|<1 and |b| < {a* —2|alcos¢+132  fork even

sinkd 1
sin(k +1)8  [a|°

. where ¢ is the solution in [O, T ] of
k+1
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Our main result on asymptotic stability of equation (6.1) is obtained as follows:
Theorem 1 Let a be a nonzero real, b an arbitrary real, and k a positive integer greater than

1. Equation (6.1) is asymptotically stable if and only if

la| <1 and a’ +|b| <1 for k even

1
|a|<‘,-]1i—4:—i and a’ —1<b<{a*-2a’cos2p+1}? forkodd

where ¢ is the solution in (0 T ] of sin(k-1)0 _ 1

k+1 sin(k+1)8_a2 .
Remark 1. Note that when a=0 or k=1 it is easy to show that the necessary and
sufficient conditions for (6.1) to be asymptotically stable is that ‘az - 1| <l.

2. The technique of proof in a main step of Theorem 1 is somewhat different

from that in Theorem A so that we pointed out an error of the proof of Theorem A in [1].

References
[11 S.A. Kuruklis, The Asymptotic Stability of x_, —ax_ +bx _, =0, ) Math. Anal.
Appl. 188 (1994), 719-731.

6.2 Year 2:
Continuing from the first year, in the beginning of the second year we have
investigated the necessary and sufficient conditions for asymptotic stability of the

following linear delayed difference equation:

N
Xoi = Xon FPD Xy =0 (6.3)
=1

where n is a nonnegative integer, p is a real number, k,1 and N are positive integers
where k > (N —1) 1. The idea of this investigation began when we read through a paper

written by R. Ogita, H. Matsunaga, and T. Hara {1], where they gave the necessary and
sufficient conditions for the asymptotic stability of the following linear delayed difference

equation

N
Xpg X, + pzxn—k+(j—l}l =0 (64)
=1
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where n is a nonnegative integer, p is a real number, k,land N are positive integers

* where k >(N~-1)1. The following is the main result obtained in [1]:

Theorem 1 Let k,land N be positive integers with k > (N~—l) 1. Then the zero solution
t of (6.4) is asymptotically stable if and only if

25in[i

2M

O<p<
P ) [Nln}
sin| ——
2M

A
v,
=

-~ ™

[l -
2k

N~ S

where M =2k+1-(N-1)1.
Using similar technique as in [4] we are able to obtain the necessary and sufficient

conditions for the asymptotic stability of (3) as follows:
|

' Theorem 2 Let k,land N be positive integers with k odd, 1 even and k > (N -1)1. Then
’F the zero solution of (6.4) is asymptotically stable if and only if
(= ] , [ In }
2sin| — |sin| —
[M o \2M

0<
p= X [NIRJ
sin| —

where M =2k—-(N-1)1.

- Theorem 3 Let k,1 and N be positive integers with k and | odd and k >(N-1}1. Then

 the zero solution of (6.4) is asymptotically stable if and only if

0<p<p,
‘ ZSin[—ﬁ]sin[%J
M=2k—(N-1)1, p, =min{p,,p }. p = .
~where ( )L, p, mm{p0 p} Po . [Nln]
sin| —
2
R ) M 1 M 1 M
p =min<p, m=|———|+1,| ——=1+2,...,— -1,
4 2 4
sin w sin1 m
m+ m 2m+1
P =2(-1)". N and w, =
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We note that the main tool in the proof is the analysis of the locations of the roots of the
characteristic equation of (6.3) to obtain the criterion for these roots to be located inside the

unit disk which imply the asymptotic stability of the zero solution of (6.3).

Similarly, we have the following result:

Theorem 4 Let k,land N be positive integers with k 2(N~1)1. Then the zero solution

of

N
Kpr + P2 X iy =0 (6.5)
j=l

is asymptotically stable if and only if
——I <p<
N P = Pumin

where p . is the smallest positive real value of p for which the characteristic equation of

(6.5) has a root on the boundary of the unit circle.
The other topics that we have been studying are the controllability and stability of

Chen chaotic dynamical system given by

x=a(y-x)
y=(c—a)x—xz+cy (6.6)
Z=Xxy—bz :

where a, b, ¢ are positive real parameters. In [2], HLN. Agiza and M.T. Yassen studied

synchronization of system (6.6) using adaptive control. In [3], Y. Wang, Z.H. Guan and X.
Wen studied adaptive synchronization of system (6.6) with fully unknown parameters. In
[4], M.T. Yassen studied the optimal control of system (6.6). Motivated by these results we
are interested in controllability and stability of the following modified Chen chaotic

dynamical system

x=a(y-x)
y=(c-a}x-xz+cy (6.7)
7 = Xy — bz + dx*

where a, b,c,d are positive real parameters. We are interested in studying the control of

chaos in the system (6.7) using linear feedback controls and bounded feedback controls, the
sufficient conditions on parameters which ensure the stabilities of equilibrium points, and

the synchronization of system (6.7) using adaptive control and active control.

LA
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> i References

[1]: R. Ogita, H. Matsunaga, and T. Hara, Asymptotic Stability for a Class of Linear

:: Delay Difference Equations of Higher Order, J. Math. Anal. Appl. 248 (2000), 83-96.
[2] H.N. Yagiza and M.T. Yassen, Synchronization of Rossler and Chen Chaotic
Dynamical System, Physic Letter A, 278 (2001), 191-197.
, [3]' Y. Wang, Z.H. Guan and X. Wen, Adaptive Synchronization for Chen Chaotic
| System with Fully Unknown Parameters, Chaos Solitons and Fractals, 19 (2004),
] 899-903.
' [4] M.T. Yassen, The Optimal Control of Chen Cahotic Dynamical System, Applied
Math. Comput., 131 (2002), 171-180.
6.3 Year 3:
. In year 3, one of our papers has appeared, namely
-‘ 1. T. Kaewong, P. Niamsup and Y. Lenbury, A note on asymptotic stability
. coﬁditions for delay difference equations. International Journal of Mathematics and
| Md?hematical Sciences. 7 (2005) 1007-1013.
* Note that in this manuscript, we have studied the asymptotic stability of
. X, ;1 + pi X pgee(jonyi =0 and we obtained the following result:
=1

{ Theorem 1 Let k,1 and N be positive integers with k > (N -—1) 1. Then the zero solution
of
' N
x11+l +pz Xn7k+(j_1)1 =0 (68)
=1
is asymptotically stable if and only if
| Lo,
N p pmm '

| The idea of this investigation began when we read through a paper written by R.
- Ogita, H. Matsunaga, and T. Hara [1], where they gave the necessary and sufficient

, conditions for the asymptotic stability of the following linear delayed difference equation
N
Xt‘H—l _xn + pzxn—lw(jfi)l = 0 (69)
=l _

“where n is a nonnegative integer, p is a real number, k,1 and N are positive integers

- where k > (N - 1) I. The following is the main result obtained in [1]:
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Theorem 2 Let k,1 and N be positive integers with k > (N—l) 1. Then the zero solution

of (6.4) is asymptotically stable if and only if

. T Y. (In
2sm| —— |sin| ——
i o)

O<p<

where M =2k +1-(N-1)1.

We have been investigating the following difference equation similar to (6.8) and

(6.9):

N
X —0X, + pz Xn_k+(j_|)1 =0 (6 1 0)
j=1

where 0<a <1. We note that when o =0, (6.10) becomes (6.8); and when « =1, (6.10)
becomes (6.9). Thus, it is natural to study the asymptotic stability of {6.10).
In year 2, we studied the controllability and stability of perturbed Chen chaotic
dynamical system given by
x=a(y-x)
y=(c-a)x-xz+cy (6.11)
7z =xy—bz+dx’

where a, b, c, d are positive real parameters.

We continue our work to the perturbed Chua’s circuit system given by

i 1,. ,
X= ~-—[2x"—-x
Py -3 )
V=Xx-y+z (6.12)
2=—qy+rx2 ~

where p,q,r are positive real parameters. We are interested in studying the control of

chaos in the system (6.12) using linear feedback controls and bounded feedback controls,
the sufficient conditions on parameters which ensure the stabilities of equilibrium points,
and the synchronization of the system (6.12) when the parameters of the drive system are
fully unknown and different with those of the response system using adaptive control and
active control. See [1]-[3] for more details.

References .

{11 J.H. Park, Chaos Synchronization between Two Different Chaotic Systems Using

Active Control, Chaos, Solitons and Fractals, 2005, in press.

-y
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2]  M.T. Yassen, Adaptive Control and Synchronization of a Modified Chua’s Circuit
? System, Applied Mathematics and Computation, 135(2003), 13-128.

[3] M.T. Yassen, Adaptive Synchromization of Rossler and Lu Systems with Fully

Uncertain Parameters, Chaos, Solitons and Fractals, 23(2005), 1527-1536.

Table VI: Proposed and Actual Activity for Subproject 6.

Activ;ity: Proposed (<-—->») | Months | Month | Months | Months | Months | Months
 Actual  («—>) | 16 712 | 13-18 | 19-24 31-36
1. C(');llect“papers, books. . S >
2. Study techniques used in < 5
pai)ers and books. < >
3. Résearéh to obtain new <
regults.f <
4, Sﬁjbmitipapers for < >
. pui)lica'tions. < >
.
 Outputs of Subproject 6
!  Papers appeared/accepted in international journals 4
" Master graduates 6
7. OVERALL OUTPUT
7.1 Summary table
“ Subproject Appeared/ | Inter, Ph.D. Masters
_ Accepted | Conference | graduates | graduates
1 8 2 6 1
j 2 1 2 2 -
bow 3 14 3 4 9
g 4 - 3 . 3
5 i i -
b 6 4 - - 6
Total 30 it 12 19
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Rank promotions

4 rank promotions:

1.

2
3.
4

Dr. Julian Poulter promoted to  Full Professor
Asst. Prof. Nardtida Tumrasvin  promoted to  Associate Professor
A. Somkid Amornsamankul promoted to  Assistant Professor

Dr. Wannapong Triampo promoted to  Assistant Professor

Publications output of the project

Subproject 1

1.

Dumrongpokaphan, T., Lenbury, Y. Cascade Mechanism in a Self-
regulatory Endocrine System: Modelling Pulsatile Hormone Secretion, Pure
and Applied Chemistry. 74(6) (2002) 881-890.

Lenbury, Y., Pansuwan, A., Tumrasvin, N, Chaos and Control Action in a
Kolmogorov Type Model for Food Webs with Harvesting or
Replenishment. ScienceAsia. 28(3) (2002) 205-215.

Rattanakul, C., Lenbury, Y., Krishnamara, N., Wollkind, D.J. Modeling of
Bone Formation and Resorption Mediated by Parathyroid Hormone:
Response to Estrogen/PTH Therapy. BioSystems. 70(1) (2003) 55-72.
Dumrongpokaphan, T., Lenbury, Y., Crooke, P.S. The Analysis of Higher-
Order Cascade Systems with Separation Conditions Pivoting on the Slow
Components: Application to a Model of Migration for Survival of the
Species. Mathematical and Computer Modelling. 38 (2003) 671-690.
Lenbury, Y., Giang, D.V. Nonlinear Delay Differential Equations Involving
Population Growth. Mathematical and Computer Modelling. 40 (2004)
586-590.

Lenbury, Y., Pornsaward, P. A Delay-differential Equation Model of the
Feedback-controlled Hypothalamus-pituitary-adrenal Axis in Humans.
Mathematical Medicine and Biology: A Journal of the IMA. 22 (2005)
15-33.

Crooke, P.S., Kongkul, K., Lenbury, Y., Adams, A B., Carter, C.S., Marini,
J.J., Hotchkiss, J.R. Mathematical Models for Pressure Controlled
Ventilation of Oleic Acid-injured Pigs. Mathematical Medicine and
Biology. 22 (2005) 99-112.

-
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Giang, D.V., Lenbury, Y., Seidman, T.I. Delay Effect in Models' of
Population Growth. Journal of Mathematical Analysis and Applications.
305 (2005) 631-643.

Subproject 2

1.

Poltem, D., Wiwatanapataphee, B., Ruengsakulrach, P., Lenbury, Y.,
Punpocha, M., Wu, Y.H. A Numerical Study of Blood Flow Patterns in
Coronary Artery Bypass Grafis. Quantitative Methods. 1(1) (2004) 1-7.

Subproject 3

1.

Pongsumpun, P., Yoksan, S., Tang, IM. A Comparison of the Age
Distributions in the Dengue Hemorrhagic Fever Epidemics in Santiago de
Cuba (1997) and Thailand (1998). Southeast Asian Journal of Tropical
Medicine and Public Health. 33 (2002) 255.

Pongsumpun, P., Lenbury, Y., Tang, M. Age Structure in a Model for the
Transmission of Dengue Hemorrhagic Fever in Thailand. Fast-West Journal
of Mathematics. Special Volume (2002) 93-103.

Kammanee, A., Lenbury, Y., Tang, .M. Transmission of Plasmodium Vivax
Malaria. East-West Journal of Mathematics. Special Volume (2002)
277-284.

Kanyamee, N., Lenbury, Y., Tang, .M. The Effect of Migrant Workers on
the Transmission of Malania. East-West Journal of Mathematics. Special
Volume (2002) 297-308.

Pongsumpun, P., Tang, .M. Transmission of Dengue Hemorrhagic Fever in
an Age Structured Population. Math. Comp. Model. 37 (2003) 949-961.
Kaewmanee, C., Tang, . M. Cannibalism in an Age-structured Predator-prey
System. Ecol. Modelling 167 (2003) 213-220.

Sriprom, M., Pongsumpun, P., Yoksan, S., Barbazan, P., Gonzales, J.P.,
Tang, .M. Dengue Haemorrhagic Fever in Thailand 1998-2003: Primary or
Secondary. Dengue Bulletin. 27 (2003) 39-45.

Nishiura, H., Tang, IL.M., Kakehashi, M. The Impact of Initial Attack Size on
Sars Epidemic for SARS Free Countries: Possible Reason for Japan without
a Domestic Transmission. Journal of Medical Safety. 1{1) (2003) e1-¢6.
Pongsumpun, P., Patanarapelert, K., Sriprom, M., Varamit, S., Tang, LM.
Infection Risk to Travellers Going to Dengue Fever Regions. Southeast

Asian Journal of Tropical Medicine and Public Health. 35 (2004) 155.
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Naowarat, S., Tang, .M. Effect of Bird-to-bird Transmission of the West
Nile Virus on the Dynamics of the Transmission of this Disease. Southeast
Asian Journal of Tropical Medicine and Public Health. 35 (2004) 162.
Nishiura, H., Patanaraspelert, K., Sriprom, M., Sarakorn, W_, Sriyab, S.,
Tang, .M. Modelling Potential Responses to Severe Acute Respiratory
Syndrome (SARS) in Japan: the Role of Initial Attack Size, Precaution and
Quarantine. J. Epid. Commun. Health. 58(3) (2004) 156.
Nishiura, H., Tang, LM. Modeling for a Smallpox-vaccination Policy
against Possible Bio-terrorism in Japan: The Impact of Long-lasting
Vaccinal Immunity. J. Epid. 14(2) (2004) 41.
Nishiura, H., Patanarapelert, K., Khortwong, P., Tang, .M., Pasakorn, A.
Predicting the Future Trend of Drug-resistant Tuberculosis in Thailand:
Assessing the Impact of Control Strategy. Southeast Asian Journal of
Tropical Medicine and Public Health. 35 (2004) 1.
Kaewpradit, C., Triampo, W., Tang, LM. Limit Cycle of a Herbuvire-plant-
bee Model Containing a Time Delay. ScienceAsia. 31 (2005) 193.

Subproject 4

1.

Tiensuwan, M.; Yimprayoon, P.; Lenbury, Y. Application of Log-linear
Models to Cancer Patients: A Case Study of Data from the National Cancer
Institute of Thailand, submitted to Southeast Asian Journal of Tropical
Medicine and Public Health.

Tiensuwan, M., Rattanapornpong, S., Lenbury, Y. Applications of Logistic
Regression Models to Cancer Patients: A Case Study of the National Cancer
Institute. (In preparation).

Subproject 5

1.

Triampo, W., Doungchawee, G., Triampo, D., Wong-Ekkabut, J., Tang,
LM. Effects of Static Magnetic Field on Growth of Leptospire, Leptospira
interrogans serovar canicola: Immunoreactivity and Cell Division. Journal

of Bioscience and Bioengineering. 98(3) (2004) 182-186.
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Ngamsaad, W., Triampo, W., Kanthang, P., Modchang, C., Nuttavut, N.,
Tang, IL.M., Lenbury, Y. A Lattice Boltzann Method for Modeling the
Dynamic Pole-to-pole Oscillations of Min Proteins for Determining the
Position of the Midcell Division Plane. J. Korean Phys. Soc. 46(4) (2005)
1025-1030. |
Modchang, C., Kanthang, P., Triampo; W., Ngamsaad, W., Nuttavut, N.,
Tang, 1.M., Lenbury, Y. Modeling of the Dynamic Pole-to-pole Oscillations
of the Min Proteins in Bacterial Cell Division: The Effect of an External

Field. J. Korean Phys. Soc. 46(4) (2005) 1031-1036.

Subproject 6

1.

Kaewong, T., Niamsup, P., Lenbury, Y. A Note on Asymptotic Stability
Conditions for Delay Difference Equations. International Journal of
Mathematics and Mathematical Sciences. 7 (2005), 1007-1013.
Plienpanich, T., Niamsup, P., Lenbury, Y. Controllability and Stability of -
the Perturbed Chen Chaotic Dynamical System. Applied Mathematics and
Computations. In Press.

Niamsup, P., Lenbury, Y. The Asymptotic Stability of
X,,, —a’x_, +bx,_, =0, accepted in Kyungpook Mathematical Journal.
(under minor revision).

Niamsup, P., Lenbury, Y. M, -Factors and Q, -Factors for Near Quasi-Norm
on Certain Sequence Spaces, to appear in to International Journal of

Mathematics and Mathematical Sci.ences,' 2005.

Publications output of P.I. (Prof. Y. Lenbury) in last 3 years

30.

31.

Kunphasuruang, W., Lenbury, Y., Hek, G. A Nonlinear Mathematical
Model for Pulsatile Discharges of Lufeinizing Hormone Mediated by
Hypothalamic and Extra-Hypothalamic Pathways. Mathematical Models
and Methods in Applied Sciences. 12(5) (2002) 607-624. (Impact factor
0.816)

Dumrongpokaphan, T., LenBury, Y. Cascade Mechanism in a Self-

- regulatory Endocrine System: Modelling Pulsatile Hormone Secretion. Pure

and Applied Chemistry. 74(6) (2002) 881-890. (Impact factor 1.750)
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33.

34.

3s.

36.

37.

38.

39.

40.
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Lenbury, Y., Pansuwan, A., Tumrasvin, N. Chaos and Control Action in a
Kolmogorov Type Model for Food Webs with Harvesting or
Replenishment. ScienceAsia. 28(3) (2002) 205-215. (Impact factor 0.06)
Suwanwongse, S., Chasreechai, S., Lenbury, Y., Kataunyuthita, S.
Modeling of AIDS Incidence and the Response of Transmission Rates to
Increased Awareness: a Case Study of the Thai Province of Nakorn Pathom.
Southeast Asian Journal of Tropical Medicine and Public Health. 33(3)
(2002) 581-588. (Impact factor 0.097)

Siripunvaraporn, W., Egbert, G., Lenbury, Y. Numerical Accuracy of
Magnetotelluric Modeling: A Comparison of Finite Difference
Approximations. Earth Planets and Space. 54(6) (2002) 721-725. (Impact
factor 0.822)

Pongsumpun, P., Lenbury, Y., Tang, .M. Age Structure in a Model for the
Transmission of Dengue Haemorrhagic Fever in Thailand. East-West
Journal of Mathematics. Special Volume (2002) 93-103. (Reviewed by
Math. Review)

Kammanee, A., Lenbury, Y., Tang, M. Transmission of Plasmodium Vivax
Malaria. East-West Journal of Mathematics. Special Volume (2002)
277-284. (Reviewed by Math. Review)

Kanyamee, N., Lenbury, Y., Tang, LM. The Effect of Migrant Workers on
the Transmission of Malaria. East-West Journal of Mathematics. Special
Volume (2002) 297-308. (Reviewed by Math. Review)

Rattanakul, C., Lenbury, Y., Krishnamara, N., Wollkind, D.J. Modeling of
Bone Formation and Resorption Mediated by Parathyroid Hormone:
Response to Estrogen/PTH Therapy. BioSystems. T70(1) (2003) 55-72.
(Impact factor (.846)

Maneesawarng, C., Lenbury, Y. Total Curvature and Length Estimate for
Curves in CAT(K) spaces. Differential Geometry and its Applications. 19
(2003) 211-222. (Impact factor 0.704)

Dumrongpokaphan, T., Lenbury, Y., Crooke, P.S. The Analysis of Higher-
Order Cascade Systems with Separation Conditions Pivoting on the Slow
Components: Application to a Model of Migration for Survival of the
Species. Mathematical and Computer Modelling. 38 (2003) 671-690.
(Impact factor 0.426)
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43.

44,

45.

46.

47.

48.

49.

50.
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~ Triampo, W., Triampo, D., Tang, IM., Lenbury, Y. Random Walk on a

Plane-Spin-Rotator System: Continuum Theory and Monte Carlo
Simulations. ScienceAsia. 29 (2003) 289-299. (Impact factor 0.06)
Wong-ekabut, J., Triampo, W., Tang, .M., Triampo, D., Baowan, D.,
Lenbury, Y., Vacancy-Mediated Disordering Process in Binary Alloys at
Finite Temperatures: Monte Carlo Simulation. Journal of the Korean
Physical Society. 45(2) (2004) 310-317. (Impact factor 0.505)

Poltem, D., Wiwatanapataphee, B., Ruengsakulrach, P., Lenbury, Y.,
Punpocha, M., Wu, Y.H. A Numerical Study of Blood Flow Patterns in
Coronary Artery Bypass Grafts. Quantitative Methods. 1(1) (2004) 1-7.
Lenbury, Y., Giang, D.V. Nonlinear Delay Differential Equations Involving
Population Growth. Mathematical and Computer Modelling. 40 (2004)
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8. ADDITIONAL COMMENTS
‘Two annual progress report meetings have been organized.
8.1 First annual meeting: May 8-9, 2003
| ' The program

3. Malee Sriprom

4.  Somporn Punpocha

2 invited lectures by Prof. Yuesheng Xu form West Verginia University.

13 contributed papers.
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Attendance
i} On May 8, 86 participants.
On May 9, 61 participants.

i) Participants were from 16 universities.

8.2 Second annual meeting: January 7-8, 2004.
The program

i) 4 invited lectures by
- Prof. Charles Micchelli from University at Albany, New York, U.S.A.

- Prof. Hideaki Kaneko from Old Dominion University, Virginia, U.S.A.
- Asst. Prof. Massimiliano Pontil from University College, London, U.K.
- Assoc. Prof. Wayne Michael Lawton from National University of Singapore,
Singapore.
it) 7 contributed papers.
Attendance
i) On January 7, 55 participants.
On January 8, 58 participants.

i) Participants were from 11 universities.

8.3 The final report meeting is being organized as an international conference
(ICMA-MU 2005) during December 15-17, 2005. Announcement has been
posted in the web (www.sc.mahidol.ac.th/sema/).
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Conditions Pivoting on the Slow Components:
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- Abstract—Cascade systems, characterized by highly diversified time responses, are considered in
- this paper. Singular perturbation principles, which have been used to analyze relaxation oscillations
. in second-order dynamical systems, will be extended here to accommodate nonlinear systems in which
| more state variables are involved in multiscale interactions. Separation conditions will be derived for
j the identification of limit cycle behavior in a higher-dimensional (rn > 4) cascade system. It is found

1 that when appropriate regularity and boundedness requirements are met by the slow components
of the dynamical system, pivoting on the slow components can lead to separation conditions which
identify limit cycle behavior as well as other dynamic behavior permitted by the model. The principle
is then applied to a model of two communities coupled by migration. Through such analysis, we
can examine how the mechanisms of migration, variations in reproduction, recruitment, mortality,
and feeding success, exploited by interacting species, may achieve survival and coexistence of the
populations concerned. © 2003 Elsevier Ltd. All rights reserved.

Keywords—Cascade systems, Singular perturbation, Sustained oscillation, Persistence, Migra-
rtiomn.
i

_ INTRODUCTION

Several important cascade systems are found in nature which incorporate some form of diversities
in their dynamics. Many endocrine systems are considered to constitute a cascade mechanism
for being an amplification system where an initial reaction gives rise to the generation of multiple
second reactions, each of which sets off multiple third reactions, and so on.

*Author to' whom all correspondence should be addressed.
Deepest appreciation is extended to the Thalland Research Fund for the financial support {Contract Num-
bers RTA/02/2542 and PHD/0029/2543).

0895-7177/03/% - see front matter & 2003 Elsevier Ltd. All r1ght= reserved. Typeset by Ap+5-TEX
doi: 10.1016/30895-7177(03)00239-0
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An example of endocrine cascade systems involves the hypothalamus, pituitary, and distal
endocrine secreting glands. A signal, in either the external or internal environment, is sent to
the limbic system and then the hypothalamus, resulting in the secretion of a releasing hormone
into the closed portal system connecting the hypothalamus and anterior pituitary. Releasing
hormones may be secreted in nanogram amounts and have half-lives of about 3-7 min [1]. They
then stimulate the release of the appropriate anterior pituitary hormones, which may be secreted
in microgram amounts with half-lives on the order of 20 min or longer. These hormones in turn
signal the secretion of the ultimate hormones, which may be secreted in many micrograms or
milligrams and may be fairly stable. Thus, the stability and amounts of the hormones increase
as one proceeds down the cascade.

Such cascade effects can be found also in ecosystems, in the majority of food chains where
the size and time needed for reproduction and growth of the individuals of each population
are increasing with the trophic levels. Phytoplankton-zooplankton-fish is a typical example [2].
In fact, almost all food chains belonging to the class vegetation-herbivore-carnivore have time
responses increasing along the chain from bottom to top, an exception of which is the chain

“tree-defoliator-bird” in which the second trophic level is that with the fastest dynamics [2i.
It is well known that such systems characterized by highly diversified dynamics can be analyzed
with the singular perturbation method |2], under suitable regularity assumptions. Such arguments
have been used to analyze relaxation oscillations in slow-fast second-order dynamical systems
and have been extended successfully to apply to three-dimensional systems by Muratori and
Rinaldi [3]. However, in a complex system where more than three state variables are involved,
analysis and identification of sustained oscillation become a formidable task. Since a great deal
of understanding and insights can be gained from such analysis which cannot be achieved from
numerical work alone, we attempt here to extend the concept to accommodate higher-dimensional
systems. Lenbury et al. [4] was able to derive the separation condition for a higher-dimensional
system by pivoting about the fast components of the system, upon certain assumptions of their
boundedness and regularity. Here, we show that in a different circumstance where pivoting
about the slow components is allowed, existence of sustained oscillations may be ascertained at
relative ease through the singular perturbation analysis. We derive the separation and delineating
conditions, which help us to identify different dynamical behavior permitted by a nonlinear system
of order greater than or equal to four.

Application is then made to a model of predator-prey communities coupled by migration in
order to investigate how certain species can survive by exploiting the mechanisms which involve
a combination of migration, variations in rates of reproduction, consumption, and mortality.

According to Matsumoto and Seno (5], population persistence is influenced by both biotic
and abictic environmental heterogeneity, namely, resource distribution, temperature, humidity,
stochastic disturbance, and so on. Some effect of local environmental heterogeneity is transferred
through population migration processes and affects the whole population to affect population
persistence.

Whitehead [6], in his report on the variation in the feeding success of sperm whales, stated that
a consideration of scale should be central in ecology. At the species level, patterns of environ-
mental variation over a wide range of spatial and temporal scales determine population ecology
and define evolutionary selective pressure. “Populations of particular species track spatial and
temporal variability in their environment at some scales but not others. Tracking at tempo-
ral scales longer than the organism’s lifetime and spatial scales broader than its home range
is largely achieved through variations in reproduction, recruitment, mortality, and migration.”
Environmental variability over smalter scales usually results in changes in the feeding success,
nutritional status, and. sumetines, the behavior of individual organisms.

Whitehead's study (6} found rhat sperm whales maintain high biomass and very low reproduc-
tive rates in an envitonmenr which shows great variability over time scales of oue or more years,
Ax the enviroumental caniation has ke coherence over seales of about 300k or more. the study

te
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found that sperm whales are able to. use migration as their principal strategy for surviving in an
uncerta.m habitat. During periods characterized by low feeding success groups of sperm whales
moved greater distances and are able to maintain high biomass and low reproductive rates in
an environment which, at any location, contains long, unpredictable periods of food shortage.
Grdups have been found to move more consistently in particular directions when feeding success
is low, and doubling back on their tracks when it is high.

Walde [7] also presented field data which indicated that population densities were higher and
pers1stence was greater where immigration rates were higher. Most importantly, it appeared that
f:empora.l patterns of density and, perhaps, probability of persistence, were dependent on the
a.mqunt of migration between populations.

As commented by Walde [7], most of the current debate is centered on the question of the
mechanisms underlying the étability among interacting species. One of the two alternative hy-
potheses in such a debate is that the predator-prey interaction is stable at a relatively small
spatial scale due to mechanisms such as foraging behavior, or due to fine-scale physical biotic
hetérogeneity. The other hypothesis is that the interaction is stable at a larger spatial scale due
to migration among partially subdivided populations.

We, therefore, study a simple model of two communities, assuming that predators can migrate
between communities, while prey cannot. Prey populations in the two communities are assumed
to exhibit different reproductive behavior to take into account the difference in abundance, and
dlﬂ"erent parameters are assigned to the predators response functions to model the variation in
the Efora.gmg success in the two communities. The condition for migration is the difference in
predator population densities. We derive the higher-dimensional separation conditions developed
in this paper to-identify limit cycle behavior and carry out an analysis of the dynamies of the
four-dimensional model in order to provide partial support for the arguments concerning the
stability of the system and the persistence of the populations in the coupled communities.

Singular Perturbation Arguments in the Lower-Dimensional Case

o ‘ . . .
“ ‘In order to understand how the singular perturbation arguments can be used to detect limit
cycles in a three component cascade system, let us consider a third-order system of the form

= f(z,y, z;a), (1)
¥ =eglx,y, z @), (2)
z =ebh(z,y, z; a), (3)

where € and ¢ are small positive parameters. Thus, when the right sides of equations (1)-(3) are
ﬁmte and different from zero, |y] is of the order £ and [Z] is of the order £6. Therefore, z is the
fast varlable z is the slow one, while ¥ has intermediate dynamics.

As explained by Muratori and Rinaldi {2,3], system (1)-(3) with small ¢ and § can be ana-
lyzed with the singilar perturbation method which, under suitable regularity conditions, allows

'app‘rox.iliﬂlating the solution of system (1)—(3) with a sequence of simple dynamic transitions oc-

curring at different speeds. The argument, followmg that of Muratori and Rinaldi’s {2,3], goes as

follows.
Given an initial condition (z(0), 4{0), z(0}), the slow z and intermediate (y) variables are frozen,

and'the “fast system”

: . [2

; a(r) = flz(m1),y(0). z{0); @), T 5 - (4)
is considered with initial condition £{0). Thus, the fast component r varies very quickly according

to equation {4), and eventually tends toward a stable equilibrium £(x(0), ¥(0), 2(0)) of (4}. Then,
stilllkeeping = frozen at z{0), we now consider the “intermediate system”

gired = g(E(r(0), u(r). 2(00), y{m2), 2(0); ). T2 = {5)

S| o

where _:'E(:}:('O), 4. 2{0V s a stable equilibrium of the fast system (4) with y(0) replaced by y.
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Referring to Figure 1, where slow, intermediate, and high-speed transitions are indicated,
respectively, by one, two, and three arrows, a transition at high speed (7 = t/ed) first develops
at constant y and z and brings the system from the point (z(0), y(0), z(0)), point A in Figure 1,
to point B on a stable equilibrium of the slow manifold f = 0. Then a second intermediate speed
(2 = t/4) transition is made on the manifold at constant z until an equilibrium F(z(0), »(0), 2(0))
of system (5) is approached (point € in Figure 1). A third transition then follows at low speed
along the line obtained by intersecting the slow manifold f = 0 and the intermediate manifold
g = 0. The transition may end at an equilibrium point where f = g = A = 0 or a situation may
occur in which the stability of the manifold f = g = 0 is lost first at a bifurcation point (D in
Figure 1}. Then, a fast catastrophic transition may bring the state of the system to a point on
the other stable branch of the manifold f = 0 (point E).

y4 f=.h=0
 {
E

DAF
g7

%
an ]

/ T
. g=0
7z Zw gz >

Figure 1. The three equilibrium manifoids in the case where the intermediate mani-
fold g = O separates the two stable branches of the curve f = h = 0.

Now, if the manifold g =0 is positioned in such a way that point O, where f =g¢=h =0, is
located between the two bifurcation points m and M on the curve f = h = 0 so that the manifold
g = 0 separates the two stable branches of the curve as shown in Figure 1, then g > 0 on one
branch (the front one in Figure 1) and g < 0 on the other (the back one).

In this case, once the system reaches point E, a transition develops at intermediate speed
downward towards point F located on the intersection between f = 0 and A = 0 and follows this
curve at slow speed in the direction of decreasing y until the bifurcation point m is reached. ‘A

catastrophic transition then brings the system to point G on the front part of f = 0, followed by

a transition at intermediate speed to point H on f = h = 0. Here ¢ > 0, and a slow transition
will develop in the direction of increasing y until the stability of the manifold is lost again at
point M. Another catastrophic transition takes the system to point I on the back portion of
f = 0 where g is now negative. A transition at intermediate speed then develops downward until
point J on f = h = 0 is reached. A slow transition then follows along this curve until m is
reached again. A quick jump to G closes up the cycle mGHM [ Jm.

o -
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Obviously, the cycle can be much more complex if, for suitable values of its parameters, sys-
tem (1)-(3) has multiple equilibria. However, we shall assume that for appropriately chosen
parametric values, the manifold ¢ = 0 intersects the curve f = h = 0 at only one point, namely
the point_;'O(:co,yo, zp) and the two bifurcation points on f = h = 0 are M(zpm, yar, zm) and
M{Tm, Ym, 2m). Then if, for a particular value of the system parameter o, the separation condition

Tm < To < ITpf (6)

holds, then the system of equations (1}-(3) has a stable limit cycle which is contained in a tube
around the transitions described above, and the radius of the tube goes to zero with £ and 3.

Extension to Higher-Dim;nsional Systems Pivoting about the Slow Components

In order to extend the above concept to higher-dimensionzltl systems, let us consider a system
of n + 3 differential equations which may be written in the form

&= f(z,y, 2, w; ), | (7)
¥ =eg(z,y, z,w; ), (8)
2z =¢gbh(z,y, z,w; a), (9)
w = ednk(z,y, z, w; a), (10)

where e,. 5, and n are small positive constants, & € RV is the N-dimensional vector of system
parameters, while

xr
y| e®R
Z
and
e wy
wy
w = . eR”
Wn

are the n + 3 state variables, and

kl (Ii Y, Z,w; Q)
kolz, ¥, 2, w; )

. kn(z,y, 2, w; @)

Hence, z is the fast variable, ¥ the intermediate, z the slow, and w;, i = 1,2,...,n, the very
slow components of the syste?ﬁ.

Employing the same line of arguments as above, we first assume that w is varying extremely
slowly in comparison to the first three components x, ¥, and z. Then, we may initially assume
that w is kept frozen at a constant value w(0) while z, y, and z vary according to the three-
dimensional system

-

5 = f(z.y, z,w(0); a0, (11)
y=cg(z.y,z,w(0);a), (12)
Z =cgbh(z,y, z, w(0); o). {13)

Thus, if, for suitable parametric values . the relative positions of the three equilibrium man-
ifolds of svstem {111-{13) are the same as those three shown in Figure 1, then trajectories will
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develop as described earlier. However, as w varies with time, though very slowly, the shapes and
positions of the three manifolds shift slowly as time passes. The coordinates of points m, M,
and O are, in this case, (zm(w; @), ym(w; ), zm(w; a}), (zm(w;a), yar(w; @), 2pm(w; @), and
(zo(w; @), yo(w; @), zo(w; @)), respectively, since f, g, and h are all functions of w.

Moreover, since w may not equilibrate and the manifolds ki(z,y, z,w;a) =0, i =1, 2,...,n,
may not be stable, as the transitions develop around the curve shown in Figure 1, the value of w
can swing about off the manifolds

ki(zava,wQa) =01 = 1,2,...,1’1. (14)

If we further assume that each of the equations in (14) can be solved for z as an explicit function
of the other components
Z=Zi(l‘,y,w§a), 'i=1,2,...,'ﬂ, (15)

then we see that extra separation conditions are needed to ensure that the manifolds described
by the equations in (15) are positioned in between the two stable branches of the curve f = h =0
as well, in order that a limit cycle exists. These conditions are stated in the following theorem,
under all the assumptions mentioned above.

THEOREM. Suppose that the functions f(x,y, z, w, &), g(z, ¥, z,w; a), h(z,y, z, w; a), and k(z, y,
z,w; o) are continuous, and that the functions xp(w; a), zp(w; @), Tm(w; @), zm(w; a), To(w; a),
zo(w;a), and Z;, i = 1,2,...,n, are continuous and bounded functions. If, for some permissible
value of «, and each fixed value of w, there exists a unique equilibrium point O, where f = g =
h =0, and k =0, such that

SUP Ty (W @) < i{luf zo(w; a), (16)
Szp To(w;a) < igfIM(w;a), (17)
szp zm(w; @) < miin igif Zi, (18)

max sgp Z; < irlzf zp (w; ), (19)

where the supremum and infemum of Z; are taken over its domain A; which is a subset of R*+2,
then a limit cycle exists for the system of equations (7)-{10), provided that ¢, §, and n are
sufficiently small.

ProoF. Since the functions involved are assumed to be bounded in their respective domains,
the infemna and suprema in inequalities (16)-(19) exist. The separating conditions (16),(17) and
the continuity of the functions concerned guarantee that, as w ranges over time, the intermediate
equilibrium manifold ¢ = 0 will remain in the appropriate position, separating the two stable
branches of the submanifold f = h = 0, under the regularity assumptions already mentioned
above. The transitions will develop as shown in Figure 1, even as w varies slowly. The separation
conditions (18} and (19) ensure that, as the transition reaches the highest value of z at point M
in Figure 1, which keeps shifting with w, the trajectory in the (n + 3)-dimensional space swings
to one side of the manifolds given by (15), and when the transition reaches the lowest value of z
at point m in Figure 1, the trajectory has swung over to the other side of the manifolds given
by (15). This guarantees that w shall not increase or decrease without bound, but remain close

to the manifolds z = Z;, i =1,2..... n, permitting sustained oscillation around a closed cycle as

identified in Figure 1, provided that =, 4. and #» are sufficiently small.

APPLICATION TO A MODEL OF
COMMUNITIES COUPLED BY MIGRATION

In order to illustrate how the technique can be applicable to practical situatious, we consider
a model of two predator-prey communities coupled by migration, consisting of the following

. iy

-



L A

- - ' 114 / Appendix # 1.1

Analysis of Higher-Order Cascade Systems 677

nonlinear differential equations:

Ly MY
z=rz(l x} pary vl (20)
. Cimzy
iy 72 — Dy — iy ~ 2), (21)
. Czrzzw ’
2= wt M, Dyz + paly — 2), (22)
0 = ng _ ngw ' (23)

T wHry w4+ My

where z, y, z, and w are thé population densities of prey in the first community, predators in
the first community, predators in the second community, and prey in the second community,
respectively. The growth rate of prey in the first community is assumed to be logistic, while a
saturation function is assumed for prey in the second community in order to incorporate the effect
of resource variability in the two environments. Holling type response functions are assumed for
both predators with conversion factors C and C; specifying the numbers of newly born predators
for each captured prey. Parameters 4; and I'y are the maximum predation rates, My,Ms,r3 the
half-saturation constants, [,,D; the corresponding death rates, and R; is the maximum birth
rate of prey in the second community. Parameters u; and us; are the variation constants of
migration from one community to the other, which are allowed to be different to account for the
difference in spatial capacities available in the two habitats.

We assume that prey has very fast dynamics and the feeding success of the predators is higher
in the first community. After a period of successful foraging, predator population density greatly
increases while the level of prey continuously drops leading to shortage of food due to intra-
population competition. Migration is then adopted as the predators’ strategy for surviving in
an uncertain habitat. The rate of migration from one community to the other is assumed to
vaty idirectly as the difference in the population densities. As Sherry observed in his recent
study (8], habitats are considered saturated when some individuals are unable to secure or defend
their ground due to competition, forcing settlement in less preferred areas. Thus, intraspecific
competition in the first community may drive the predators to migrate to a less favorable habitat
in which prey multiplies more slowly. However, evidence [6] shows that, confronted with low
food availability, organisms may die, fast, or move. An adjustment in their reproductive rate
and foraging behavior is a common strategy for survival in a less favorable environment and
a decline of body mass is found in individuals occupying the most drought-stressed habitats.
Therefore, predators in the second community are assigned slower dynamics than those in the
first. Consequently, we scale the dynamics of the four components of the system by means of
three small positive parameters ¢, 4, and 7 as follows.

Letting ¢ = Cyvi/e, di = Dife, vy = pi/e, ca = Col'p/ed, do = Dajed, vo = pafed,my =
Ry /b1, and yo = 72/£dn, we are led to the following model equations:

Nry

t=rz(l -7) - T+ M, = f(z,y,2,w), (24)

. Ty .

v=s —hy-unly—z)| =€ 25

] L At vy z)] eg(z.y, z,w), (25)

. CrIw

tmed | T daz by — 2)| = 2Sh(zy, 2 w), 26
['w VA d valy )] Sh(z,y, z. w) (26)

o= 551][ 2w _ 1;-2.-:u: ] =20nkiz, y, 2, w). (27)
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Thus, if £, §, and n are small, prey and predators in the first community have the fastest and
intermediate dynamics, respectively. In the second community, the predator population has a
relatively slow time response, while the prey population has the slowest dynamics.

We now study each of the equilibrium manifolds in detail.
THE MANIFOLD f = 0. This consists of the trivial manifold z = 0 and the nontrivial one given
by the equation
Tz + M)A -2), (28)
4
which intersects the (y, z)-plane along the line

y:

1
y=—M,.
B!

The maximum point on this manifold is located at the point where

1"1(1 +'M1)2 _
Yy=——F—— =M

29
am (29)
and { M
£ = LLQ_I) — (30)
as shown in Figure 2a.
THE MANIFOLD g = 0. This is the surface
Y a1x
== |d - 31
z ‘U1(1+U1 $+M1)’ ( )
which intersects the trivial manifold z = 0 along the line
2= 2 (dy +uy) (32)
"
and intersects the nontrivial manifold f = 0 along the curve
z= ——(1 = 2)((dy +v1 — c1)z + My(dy + ). (33)

Y1

Moreover, the curve f = g = 0 in (33) intersects the (z, y)-plane at the point where z = 0 and

- Mildtv) g (34)
¢ — (di +wy)
which is positive provided that
- - e > dy +uy. (35)
THE MANIFOLD h = 0. Thisis g,isurface given by
B vay(w + M>) (36)

- (dz + ug — c2)w + {do + v} M ’
which intersects the nontrivial manifold f = 0 along the curve given by

LT [ Az + M)(1 — z)(w + Ma) ]
Y1 (dg —+ vy — Cg)'w + (dz + Ug)Mz .

(37)

The maximum point of the curve f = A = 01in (37) is attained when = = z,; given in (30) and,
on substituting (30} into (37),

(38)

= J_,\,[(Ll-') =

riUs (1 + M) (w + M)
vy | {do +v2 — co)w + (da + v2) Mo '
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On differentiating zas(w), we find that

d
EZM(UJ) > 0)

for all parametric values. Thus,

inf zpr(w) = 2 (w)l =g
— 1"1’02(1 e M1)2 (39)
dy1(dy +vg) '
< supzp{w) = wlimm zpr(w)

_ _nu(l+ My)? (40)
dvi(da +va — &)’

which is positive if
da + va > co. (41)

The point where the curve f = h = 0 in (37) intersects the (y, z)-plane is found by substituting
z = 0 in (37), yielding

T [(d2 +7;:iﬂ::)(:: I g;)-l- v2) M) = zm(w) (42)
Differentiating z,,(w), we find that
| £ om(@) >0,
for a.ll parametric values, Thus,
| SUp 2 () = lim_2n(w)
T M (43)
n(dz +v2 — )’
inf zm(w) = zm(w)|,,_o
i ruaM; (44

T{da + v2)’
which is always positive.

Finally, the curve f = g = 0 in (33) intersects the curve f = h = 0 in (37) at the point where
z = zo(w) and ’

M ([(dy + Ul.j(;f+ vy — ¢2) — vivg] w + [(dy + v1)(da + v2) — vivz] M)
fryve — (dy +v1 — e1)(d2 + v2 ~ )] w+ [vrvs — (dy +v1 — e1)(dz +v2)| Ma

zo(w) = (45)

On differentiating zo(w}, one finds that

i:Ar( 0 o
dwow)< '

for all parametric values, and therefore,
inf zo(w) = lim zo{w)
w (i aapde e

M [{dy +vi){da +vs — ep) — vive] (46)
['UI'U‘Z —{d1 +v, — Ci)(dg + U — Cg)]
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and
supzo(w) = zo(W)|,—0

_ ((dy + v1)(da + v2) — viwg] My (47)
[Ul'UQ - (dl + v — Cl)(d2 + 'uz)] )

In a similar manner, one can find
igf zo{w) = 7—;1); (1 — sup Io('w)) (Ml(dl +wv1) + (d1 +v1 — e1) sup :zo(w)) (48)

and
sup zo(w) = —— (1= infzo(w)) (Mi(d +v1) + (d + v — er)infzo(w))  (49)

w Tiv

provided that (35) holds.
Moreover, we observe that the manifold i = 0 intersects the (y, z)-plane along the line given
by {36) whose slope is, for a given value of w,

va({w + Ma)
{d2 + v2 — e2)w + (do + vo) My’

which has a minimum value when w = 0 of vy/(d2 + v2). However, the slope of the line where
g = 0 intersects the (y, z)-plane is found from (32) as.(d; + v;1)/v;. Since

(dl + ’Ul)(dz + ’Uz) > vy

as long as dy > 0 and dy > 0, the line where g = 0 intersects the (y, z)-plane is always above the
one where h == 0 intersects that plane, as shown in Figure 2a.

THE MANIFOLD k = 0. This consists of a trivial manifold w = 0 and a nontrivial one given by

the equation
_ ?"2(‘0‘.0 + Mg)

o (w +73) = Zy(w), (50)

whose graph is shown projected onto the (w, z)-plane in Figure 3. Since

d 7‘2(1"3 —_ Mg)
2z — 2\ )
duw l(w) ’YZ(w + 7'3)2 1
which is negative if
Ty < ﬂ’fz, (51)
one finds M.
: T
ssup Zy(w) = Zy(w)]|y_g ——2 (52)
w ] YaT3
and
inf Zy(w) = lim Z(w) = 2. - (53)
o T =X ’Yz

We are now in the position to classify the different dynamic behavior exhibited by the system
of equations (24}-(27).
Casg 1. This case is identified by inequalities (35), (41), {51}, and the separation conditions
0 <infrp(w) and supzo(w) < T, (54)
w w

sup rp{w) <inf Z,(w)  and  sup Z)(w) < inf zp (w), (55)

LY

-
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with
O<zpy <2<, (56)

where the infemum and supremum values are as given earlier in (39), (40), (43), (44), and (46)-
(49). The inequalities in (54) are the separation conditions required in (16) and (17) of the above
theorem, while (55) are those required in (18) and (19). As w varies with time, point O remains
between the two stable branches of the curve f = h = 0 and the trajectory will develop into a
closed limit cycle, as seen in Figure 2a, which slowly shifts its position with the slowly varying w.

Stal,rting from a generic point, say point A4 in Figure 2a, a fast transition will develop towards
point:B on the manifold f = 0. Here, ¢ > 0 and a transition at intermediate speed will be made
in the direction of increasing y until point C on the curve f = g = 0 is reached. A slow transition
then follows along this curve to point D where the stability will be lost and a catastrophic
transition will bring the system to point F on the other stable branch of f = 0. Here, ¢ < 0 and
a transition at intermediate speed will develop in the direction of decreasing y toward point F' on
the curve f = h = 0. A slow transition then follows along f = h = 0 until at some point m the
stability of the submanifold will be lost. During this time, w will be increasing since w > 0 here,
due to the first inequality in (55). A jump to point G followed by a slow transition brings the

' system to the bifurcation point M. A catastrophic transition then brings the system to point H

on th'ge trivial manifold # = 0, during which time w will be decreasing since w < 0 here, due to

(a)

Figure 2. The rhree equilibrium manifolds f =0, g = 0, and A = 0 in the (x,y, z}-
space for a particular value of w, in the five cases identified in the text. The transi-
tions develop inte closed cycles in Figures 2a and 2b, approach the stable equilibrium
point (F inx the positive octant in Figures 2c and 2e, and approach the washout steady
state (e, o) = 10000 in Figure 2d.
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y A f=h=0

(c)

Figure 2. (cont.)
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(d)

(e}

Figure 2. (cont.)
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the second inequality in (55). A slow transition will now develop to point m which closes up the
cycle mGM Hm and thereby a limit cycle has been identified.

CasE 2. In this case, inequalities (35), (41), (51), (54), and (55) still hold, while (56) is now
violated and
0<Z<xzp. (57

The relative positions of the manifolds f = 0, ¢ = 0, and h = 0 are as shown in Figure 2b,
slowly shifting with time.

The transition will develop from point A in Figure 2b to B as before. However, a transition at
intermediate speed from B will continue upward until the bifurcation point C is reached, where
a catastrophic transition will bring the system to point D on the trivial manifold z = 0. A
transition at intermediate speed follows downward until the stability is lost at some point E and
a quick jump takes the system to point " on the other stable branch of f = 0 which almost closes
up the cycle. However, z has been varying slowly and so point F just misses B and the transition
continues upward to point G, then to H and so on, until a point 7 on the curve f = h =0 is
reached, from which point the transitions will trace out a closed cycle in the same manner as in
Case 1.

CaAsE 3. In this case, inequalities (35), {41}, (51), and (56) hold, while the separation condi-
tion (54) is violated and we have instead that

0 < zp < inf xo,(w). (58)

The trajectory will develop as in Case 1, initially. However, since now point O (in Figure 2¢) is
located on the stable branch of f = 0, the transition from point C on f = g = 0 will first reach
point O where f=g=h=0.
Considering the manifold k = 0 projected onto the (w, z)-plane in Figure 3, we see that w may
behave in three different manners. First, if it is further required that
ro My

inf zo(w) > sup Zy(w) = . (59)
w w 7273

Then the trajectory eventually stays in the region where w < 0 and w tends to zero as time
passes. Thus, this is the case where the predators can persist on the supply of only one prey pop-

w >

Figure 3 The graph of the munifold & = 0 projected on the (i, 2)-plane.
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ulatnon in’ one community. The mechanism of migration into the other community can be taken as

hlbernatlon or fasting periods during which some predators choose abstinence to insure survival.
Second if it is required, on the other hand, that

; sup 20(w) < inf Zy(w) = -~ (60)
a w w 2

thenf.the trajectory eventually stays in the region where 1w > 0 and we will find that w increases
unboundedly as time passes.
Fihally,' if we require

2 < inf zp(w) and sup zo(w) < raMs

61
oo w Y273 (61)

instead of inequality (59) or (60), then it is guaranteed that w will tend towards a stable nonzero
equlhbrlum value on the manifold &£ = 0. This is then the case where all four populations persist
at constant levels.

CASE 4. If inequalities (35), (51}, and (60) hold, but
Z>1, (62)

then we must have xpr < 0 as well, from considering equations (30) and (34). We also note that
the éurve; f = h = 0 can be shown to be concave up, while f = g = 0 is concave down as z
increases along the surface f = 0. Therefore, the two curves will not intersect at a point where
z > 0 if we make sure that the curve f = h =0 is steeper than f = g = 0 at the point z = 0,
namely, we need to require

vyup (M) +1)

63
da + vy ( )

(M1 +1)(d1 +v1) —er >
Then! the three manifolds are positioned as shown in Figure 2d and the transitions will develop
from’ the starting point A to point C on f = g = 0 as before. Here, however, h < 0 and so a slow
transmon will develop downward in the direction of decreasing z to end at the equilibrium peint
(:c,y, z) = (1,0,0) where f = g = h = 0. Thus, in this case the predator populations vanish in
hoth communities. Prey in the first community eventually reaches the steady level 1, and prey
in the second one increases unboundedly since 1 > 0 once z = 0.

CASE 5. On the other hand, if, apart from (35), (51}, and (62), we also have

‘U1'U2(M1 + 1)

64
do + v ( )

(M1 +1)(dy +v1) — a1 <
then the curve f =g =0 is steeper than f — h = 0 at the point z = 0, and they will intersect
at some point where z > 0 as shown in Figure 2c. The trajectory will, therefore, develop in
the same manner as in Case 3¢ The populations =, ¥, and z tend toward steady positive levels,
while w elther vanishes, establishes a positive constant level, or becomes unbounded, depending
on whether inequality (59), (60), or (61} holds, respectively.

DISCUSSION AND CONCLUSION

We present, in Pigure 4, a computer simulation of system (24)-(27) with parametric values
chosen to satisfy the delineating conditions in Cases 1-5 described above. Figures 4a—4e show
the solution trajectories projected onto the (z, y)-plane, corresponding to Cases 1-5, identified
earlier. respectively. The numerical results are in agreement with our theoretical predictions.

Fiénre 5 shows the corresponding time courses of the state variables in each of the five cases
showt in Figure 4. The population levels are seen to develop into sustained oscillations in Cases 1
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and 2 (Figures 5a and 5b, respectively), and tend toward steady-state levels in Cases 3 and 5
(Figures 5c and 5e, respectively). Case 5 is shown here with (60) being satisfied and all four
populations persist, while Case 3 is shown here with inequality (59) being satisfied, and only the
first three populations persist, while prey in the second community becomes extinct eventually.
Inequality (59) may be interpreted to say that even the lowest value of zp, the level of predators
in the second community, at the point where f = g = 0, below which the levels of both predators

2.5 1D.0
2.0
. 7.5 =
1.5 T
. ( Y 5.0 -
1.0 - |
2.5 —
0.5
_ 1
0.0 —————————— 0.0 {—F———F———7
0.25 0.50 .75 1.00 1.25 1.50 4] 2 4 & ]
z | z
(a) 1 = 08, cy = 0075, d]_ = 0.5, d2 = 03, (b) cp = 07, ¢y = 0-1, dl = 05' dz = 0_3' " =
T1=1,7=3, M =01, M=2,r=86,r; =2, 02 y=1 M =005 My=3,r =6, rp =2,
r3=1 vy =02 U2=2,E=1,t§=0.1,f)=0.5, T3 =2,‘U]_=0.1,U2=2,E= 1,6:0.1‘1?:0,5,
z{0) = 1.2, y(0) = 1, 2(0) = 1, and w(0) = 1. z(0) = 1.2, (0} = 1, z(0) = 1, and w(0) = 1.
2.5 3.0
2.5
2.0 —
y i
1.5 -
J
1.0
0.5 —
n.o T T T T T | .a.0 T 1 T | T T
0.2 c.4 0.5 0.8 1. 0.00 1.25 2.50 1.7% 5.00
Z z

() e = 0.8, c2 = 0.075, d, = 0.5, d3 = 0.3, {(d) c1 = 0.43, ca = 0.075, dy = 0.1, dy = 0.3,
v = Loy2 = 3, My, =01, My =2, ry = 6, mn=1v9=3 M =3, My =81, =6, rp =15,
ra =03 r3 =1, vy =02 vy =005 ¢ =1, m=l,uvu=01Lve=2¢e=1,6=017n=05,
§=01 17 =05 (0 = 1.2, y(0) = 1, 2{0) = 1, z(0) =2, y{0) = 2, z{0) = 5, and w(0) = 1.

and w(0) = 1.

Figure 4. Computer simulations of the model equations (28)-(29) in the five cases
mentionad in Figure 2. The simulation results agree with our theoretical prediction
set out in Figure 2.
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Figure 4. {cont.}
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Figure 3. 'Uhe time courses of three populations ={¢), y(¢), and w{t) in the corre-
sponding five cases shown in Figure -1

687



688

Xy

xy

T. DUMRONGPOKAPHAN et al,

@

| ﬁ
1.
—
e L.
o-
R
L) T T T T T T
O % A A A0 K0 an T
t
(c)
2 2o
L o0
4 L &0
L oo
1.
o
. 20
ol
- 0
0 Zo 40 @0 &0 WO TO W0 6D
t
{d)
" 3
9-
8-
L2
7
8.
5_
g
4A.
3_
2 . . : N—— 0
0 = ®w W P 2 W W

(e}

Figure 5. (cont.}

125 / Appendix # 1.1

-,



*

126 / Appendix # 1.1

Analysis of Higher-Order Cascade Systems 689

must be rising, is still too high to be sustainable by the preys in the second community, whose slow
dynamics then drive them to extinction. Thus, to ensure survival in this case, some predators
migrate out of the community or, equivalently, escape into hibernation when sustenance is low
in that community.

The separatlon conditions in (54) for sustained oscillation may be interpreted as follows. The
va.lue yas'is the highest possible level of predators in the first community, above which the level of
prey z in that community must decline (f < 0). On the other hand, yo is the level of predators,
at the point where f = g = h = (0, above which the levels of prey x and predators y must decline
while z begins to rise. The level x4 of prey in the first community, which sustains the first event,
must be high enough to exceed the level 5o, which sustains the latter, over all levels of prey w
in the second community. The first inequality in (55) may be interpreted as follows. The value
Z1(w) is the level of predators in the second community below which the level of prey w must
rise {k > 0). On the other hand, z,,(w} is the level of predators in the second community below
which its level must begin to rise when there is no prey in the first community (z = 0). The
levels of Z,, over all w, must exceed the levels of z,, over all w. A similar interpretation can be
made of the second inequality in (55).

Moreover, the requirement that Z;(w) is bounded above simply means that there should be an
upper bound for the levels of predators above which the prey population density in the second
community must begin to decline (& < 0). Similarly, the condition that Z;{w} should be bounded
below by a positive number means that there must be a positive level of predators below which
point the prey population density, whatever it is, must be increasing (w > 0).

If the requirements stated above are satisfied, then the surrounding conditions are suitable
for sustained oscillations in all four persisting populations. Field data which exhibits oscillatory
behavior in connection with migration have often been reported [9,10].

We further note that extinetion of predators in both communities is discovered in this system
in Case 4 when & > 1 and (63) holds as presented in Figure 5d. Considering the value of 7 given
by (34), £ will be less than one if

di+u < H%—Ij (65)
This means that, to keep from extinction, the predators in the first community must keep the
death and migration rates from being too high.

On the other hand. for persistence and stability in the case that ¥ < 1, we need inequality (41)
to hold for the existence of a positive attractor to be assured. This inequality can be satisfied if the
migration constant i is large enough while the death rate dy can still be low. Thus, migration
must be balanced in a proper way to achieve sustainability. In the case that v; = vy = v,
then (41) and (63} lead to the requirement that

cr —di (M + 1)
M+ 1 '

cg—do < v <

which gives the bounds for the migration rate v td keep the populations from extinction.

We have. thus. demonstrated the cructal role of migration, variation in reproductive rates, for-
aging suceess, and mortality as a mechanism which effects population survival, by the application
of the higher-dimensional separation conditions, which in this case pivots about the slow com-
ponent. Field data has been reported [7,11] which strongly suggests that increasing the number

of lnteracting popriation. and thus, migration rates, slows down the tendency to extinction. In
teving to model such o awleipopulated system, the separation conditions cen then become more
complex. There e several sophisticated computer prograrus. howaver, which can render the cal-
culations of boteds ol paremerrie values easy to accomplished. Studies ol several other cascade

!

wostems may be nnderiaken through sinitar woalyvses which invarinbiy vield valuable tsights into

L

ol mvsresns enwder sy
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1. Introduction

Given a continuous function f : R, — R, and a nonnegative function £ # 0 on[—1, 0],
we consider the delay differential equation
k4 px = f(x(-—1)), x(s)y=&(s) forse[—1,0]. (1.1)

For simplicity, we assume throughout that £ is bounded. It follows that (1.1) has a unique
solution—e.g., one can proceed by intervals of length T—with x7¢(\) nonnegative and
continuous for ¢ 2 0. We denote the solution of the delay differential equation (1.1)
by x(-) = xr.¢(-). It is easily seen that one has the equivalent integrated formulation:

x()=e H D@ + fe_"("”f(x(s - 1))ds (1.2)

for t 2 0. (Actually, continuity of f is not needed for (1.2), only enough regularity to
ensure the requisite integrability.) We further note the following

Lemma 1. Given real constants i, v and v > 0, there is a function X = X (t} such that the
solution y of the autonomous linear delay differential equation

yHuy+vyt -ty =g}, yl-w0 =7 (1.3)

has the integral representation

y(t)=yo(r;n)+/X(t—S)g(S)ds, (1.4)
4]

where yo = yo(-; n) is the solution of the associated homogeneous initial value problem.
Both X{-) and yo decay exponentially if

hz):=z4+p+ve F=0 = R <0, (1.5)
ie., if every root of the characteristic equation has (strictly) negative real part, and grow

exponentially if h{-) has any root with positive real part.

Proof. See, e.g., [6]. Note that
o)
l|X||1=f|X(r)|dt<oo (1.6)
0

when X decays exponentially. {1

A standard calculation shows that {1.5) holds for all t > 0 when |v| < u and, conversely,
fails when |v| > p unless t is restricted so that

arccos[—jt/v]

N 7

T < Ty =T, V)=
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(cf., e.g., [1,5]). We wili later focus our attention on delay equations of the form-(1.1) in
which the nonlinearity f satisfies:

of Bt = [0, o) — Ry is continuous.

+ There is a unique equilibrium 7 > 0, so ur = f(¥) > 0.

.{f(r)>,ur forO0<r <F, (18)

fr) <pur forallr=F.

2. Comparison theorem and consequences
An gasy argument then provides the following basic comparison theorem.

Theorem 2. Let f,& and correspondingly g, n be as above with g nondecreasing. Set
xi=xgeandy:=3xp,

(1) Suppose f < g where relevant (i.e, f(r) < g(r) for each r in the range of f(x)) and
suppose £ < non[—1,0L Then x(t) < y() forall t.
(2) Suppose f = g where relevant and £ 2 non[—t,0]. Then x(t) =2 y(t) forall t.

Proof. Both cases go in essentially the same fashion, so we only consider the first case

" (with f < g, etc.). Now suppose the result were false. We could then find a largest ¢,
“ such that x(s) £ y(s)on [—7,t.). Forany f < t, + T wewould have r =t — 5 — 1 < 1,

for 0 < s <t whence x(r) € y(r}) for such r so f(x(r)) < glx(r)) < g(y(r)). It follows

. from (1.2) and the corresponding integrated formulation involving g that x(¢) < y(r) for

such 7 € [#,, t. + 7) as well, contradicting the definition of r,. O

We remark that this comparison theorem generalizes to equations in partially ordered

“ Banach spaces, etc., but we do not pursue this here.

. Corollary 3. Let f.§, x be as above in (1.1).

: (1) Suppose there is some M > 0 such that f(r) < wmax{r, M} and suppose x < M on

[t. — 1,8). Then, also x(t) < M forallt = t,.

(2) Suppose there is some m > 0 such that f({r) 2 pmin(r, m} and suppose x 2 m on

{t«. — 7,81 Then, alsox(t) zm forallt = t,.

Proof. Again, both cases go in essentially the same fashion so we need only consider the
first. Further, since we can restart at any t, it is sufficient to consider r, = 0 so we may
assume £ < M on[—7,0].

Take n = M and g(r) := pmax{r, M}. Clearly, g is nondecreasing and the hypotheses

Cyield £ < npand f < g. We immediately verify that y = M satisfies the delay differential

equation to have ¥ = x, , so that the result follows from Theorem 2. O
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We will be seeking asymptotic upper and lower bounds for solutions x(¢) of (1.1) and
to this end it is convenient to introduce

= i (x) = liminfx (1), M = M(x) =limsupx(z). 2.1

(=00
Lemma 4. Let f be bounded with 0 < f(r) < B. Then M < B/ .

Proof. From (1.2) we have
!

x(1) e M x(0) + f Be U9 gy,
-7

which gives the desired resultas t — co. O

We also note some information about the w-limit set of a nontrivial solution x, e.g., as
used in [10].

Lemma 5. For any bounded solution x = xsx of (1.1), there are functions u, v defined
on R such that

(1) w,vsatisfy (1.1) on R.

(i) m<u(t),v(t) <M.

(i) w(@) =M, a0 =0; w0)=m, v(0)=0, 2.2)
withm =m(x), M = M(x) as in (2.1).

For completeness, we sketch a proof here.

Proof. By the definition of M there is a sequence # — oo such that x(f;) — M and
we set uy(f) = x{t + t)—e.g., for t 2 —t;. The set {ug(-)} is uniformly bounded with
uniformly bounded derivatives, so there is a function u such that 4y — u uniformly on
compact sets in R. Since the derivatives also converge uniformly on compact subsets and
each uy satisfies (1.1), so does u. Since, for compact set 7 and any & > 0, the definition
of M gives mn — ¢ < uy < M + & for large enough k, we have (i) in the limit. Since
1 (0) = x(tx) — M, we have u(0) = M and, as that is necessarily a maximum, we also
have #{0) = 0. The construction of v{-) is similar, DO

3. Asymptotic bounds and attraction

Theorem 6. Let f, &, and x be as above in {1.1).

(1) Suppose there is some v 2 0 such that

frysur for0<r<r, i
f(ry<upur joralir>F. (3.1)

-k

g w

-y

-
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" Then, M < 7 < 00 and there is a nonincreasing positive function z . such that
x()=xp:() < 24(@) withzy () > Fast — o0, 3.2)
(2) Suppose there is some ¥ 2 0 such that
fryzur forrzr, ‘
fir)=ur forallG<r<¥. (3.3)
Then, m = r and there is a nondecreasing nonnegative function z_ such that
x(i=xpe{t) 22 () withz_(ty—>Fast— oo, (3.4)

Proof. Yetagain, both cases go in essentially the same fashion. For the first case we begin
by fixing M > r, M = &, and any & = gg > 0 with ¥ + £ < M. We then let

e i=max{ f(r)/r:F+e<r<M}<p (3.5)
and, choosing y so 3 € ¥ < y, set )
g(r) = ge(r) ==max{pu(F + &) yr}. (3.6)
Now, let A, > 0 satisfy the characteristic equation ‘
* f et yet=p (3.7
and set
’ YH(t) o= yi() 1= MeTM (3.8)

If we did not have & bounded on [—1, 0], we note that x is continuous for r = 0 so we
" could restart at T with bounded initial data. Note also that, since f was assumed continuous
. and [r + &, M] is compact and nonempty, the ‘max’ in (3.5) is achieved and y; < u.

Moreover, ong casily sees that (3.7) has a unique positive solution since ¥ < .

The construction yields y* which satisfies the delay differential equation

y() = —py() + yy(t — 1) (3.9)

_ 80, taking § = p; to be y* on [—7,0], this ¥* must coincide with y = x,,, so long as
y*(t — 1) = r + 6, where y (7 +8) = p(r + £). Note that we can—and do—choose y close
" enough to i to ensure that § < 2e. '

To apply Theorem 2, we note that g, as given by (3.6), is clearly nondecreasing and ob-
serve that our hypotheses ensure directly that f{(r) < g(r)forr<randforr <r<r+e,
while choosing y = ¥ ensures that f(r) < g(r) for ¥ + £ < r £ M. Since Coroliary 3
ensures x (t) € M, it follows that f < g where relevant and that £ < M < n. Thus, Theo-

" rem 2 applies and we have x < y := X, ,—Wwhence x < y* as long as y* coincides with y.
Noting that this includes an interval of length t on which y € ¥ + 8 < 7 + 2¢, we can apply
Corollary 3 again (now restarting at the end of this interval) to see that x thereafter remains

. below 7 + 2e—i.e., we have shown that

-

x(#y < z:.(t) = max{Me"A", F -+ 2¢e}

for all ¢. Since this holds for arbitrarily small £ > 0, we have (3.2), as desired, with z () :=
inf{z;(1): & > 0}. This completes the proof for the first case.
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Using the second case in Theorem 2, we will get a corresponding lower bound. First,
however, we note that (1.2} gives
0

x{ry=e""x(0) + f e~ fE(s)) ds,

-7
which will be strictly positive for nonnegative, nontrivial §—and then x(¢) will be strictly
positive for all # > 1. We can therefore assume, restarting if necessary, that £ 2 m for some
m > 0. The rest of the proof is then aimost exactly like that for the first case. O

Theorem 7. Let f, &, x be as above in (1.1) and suppose there is some r 2 0 such that
fr)y=>ur forO<r<r,
fry<ur forallr=>r. {3.10)
Suppose, also, that
either fryg<ur forQ<r<r
or fryzpur forallr27. (3.11)

Then, x rc(t) = 7 as t — o0 for every nontrivial initial data § 2 0—ie, m=r=M.

Proof. We consider explicitly only the first alternative in (3.11). Since this with (3.10)
inciude (3.1), the first case of Theorem 6 applies to give M<F Ifr= 0, we are now
done so we need only show m =5 when 7 > 0. For any ¢ > 0 we can choose § > 0 so
f(r)y =z f(ry—ueon [r, F+ 3] and there is some #5 such that x(#) £ F+-§ foralls 2 15— .
Setting F = ¥ — ¢, this gives f{r) = uF for F <r <7 + 4. Restarting at #;, and noting that
only values of r below 7 + 4 are relevant, we thus have the hypotheses for the second case
of Theorem 6 for the restarted problem with 7 replaced by 7. Thus, m 2 7 =r — ¢ for
arbitrary ¢ > 0 so m = ¥. Combining these upper and lower asymptotic bounds is just the
desired result. O

We henceforth will consider equations of the form (1.1) subject to the hypotheses (1.8).
If max{f(r): r > 0} = B < ur, giving the first case of (3.11), then we aiready know
from Theorem 7 that all solutions converge to the equilibrium 7, so we will also assume
henceforth that B > ur with yg < r: (1.8) then gives (3.10) but we have neither case
of (3.11).

4. Attraction dependent on the delay

As noted, we henceforth assume (1.8):
ef R, =[0, 00} — R4 is continuous.

# There is a unique equilibrium 7 > 0, so ur = f(7) > 0.

{f(r)>,ur for0<r <7, @n
f{r) <pr forallr>r. '
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Lemma 8, Assume (4.1). Then, for every nontrivial solution x of (1.1) we have

eHrEmSF<ME max  f(r)/u (4.2)

e MIELr T

with it = m(x), M = M(x) as in (2.1).

Proof. From Corollary 3 we know x is bounded and let &, v be as in Lemma 5. Then, as
#(0) =0 =v(0),
Fu(=1)} = peu (@) = uM > pu(—7)
and, similarly, f{v{—1)) = pv(0) < pv(—1). But f(r) > pr if and only if x < 7, so
u(—1) <7 € v(—1). Thus,
w(0)=m Lul(-7) <F<v(-1) < M. (4.3)
Since u, v satisfy (1.1} on all of R, we may apply (1.2) with tr =0, 2 = —t to get, as
F) =0,
0
m=v0) = "Tu(—1) + f e flx(s —))ds ze " Tu(—1) = eV
-1

and consequently, u(—17) = v(0) = e *7F. Therefore,

#(0) = f{u(—7))/u < max f(r)/u.

eHTFLr F

The proof is complete. O

Our next objective is to show global attraction to the equilibrium when the delay 7 is
not too large.

Theorem 9. Assume (4.1) and the following pair of one-sided Lipschitz conditions:

0K fr)—uFSLi(r—r) fore"rgr<r,

Ogur— frys La(r—r) forfF<r<B. (4.4)
Suppose t is such that

i
-\/L|L3.

(I—e"H <

(4.5)

_ Then, every nontrivial solution of (1.1) converges to the equilibrium r.

Proof. Let u, v be as in Lemmas 5 and 8. It then follows from (4.3) that there is some
a € [—1,0] such that u(a) = r and we set

A={s €[a,0]C[-1,0]: u(s — 1) <7}.

Note that for s € [—1,. 0]\ A wehave u = u(s — 1) > 7 so f{u) — ur £ 0 by (4.1), while
fort € A wehave u < 7 and e #7F € m < u from (4.2} in Lemma § so (4.4) gives

J) —pur < Li(F —u) < Li(r —m).
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Thus,

0
fe"”[f(u) — puF|ds < L1(F — ) f e ds = Li(F —m)(1l —e™"),
A -t
Applying (1.2) with t = 0 and this a, we then have
0 0
M —F = [u(0) — e"?u(a)] + ”’f e* ds = fe‘“[f(u(s — 1)) — ur)ds
a

a

< f 5[ £ () — pF] ds < Ly — m)(1 — &™) /.
A

Somewhat similarly, we have some a € [~7, 0] such that v(a) = F and now set A = {s €
[a,0]: v(s — 1) = F}, noting that (4.4) ensures that f(r) = uF for r € [e7#7F, 7). Much as
before we then get

F—m < LM -1 —e™")/p

and combining gives (r —m) < [LiL2(1 - e~#)2 /u?)(F — m). Thus, using the assump-
tion (4.5), wehave st =7 and then M =raswell. O

Essentially the same argument gives a localized version when, instead of (4.4) and (4.5),
we have | f'| suitably small near 7.}

5. Another stability resunlt

We now return to the integral formula (1.4), noting that if x is a solution of (1.1), then
v =x — F is a solution of (1.3) and an appropriate choice of g:

gy = Ay —0) with fi(r) :=[fF+r)— fFO)]+vr, (5.1

where, of course, we anticipate taking v = — f/(¥) for differentiable functions f, although
this is not required.

It is worth noting that with this choice of v we necessarily have L1, Ly 2 |f(F)| =v
in Theorem 9 so that Lemma | suggests that we could not expect asymptotically stable
convergence to equilibrium when v > u if we do not have (1.7); indeed, as we will note
in more detail in the following section, {1.1) will then have a nontrivial periodic solution.
Even ignoring the constraint on 7 in requiring that f(r) = ur for r € [e”#TF, F], the as-
sumption (4.5) taking Ly = Ly = — f'(F) = v leads to {1 — ™"} < u/v or

ke
T<—In . {(5.2)

! Since we anticipate having §(0) = 0, this part of (4.4) must be treated as a significant constraint on 1.
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Clearly this, as a sufficient condition for convergence to equilibrium, is the best one can
obtain using Theorem 9 and it is interesting to compare with the (necessarily weaker)
condition (1.7). There is obviously a gap between these, and we now seck to handle inter-
mediate delays under appropriate conditions.

Theorem 10. Suppose f is a unimodal function and t > O satisfies (1.7) with v = — f'(¥).
Further, suppose

|lfE+r) = fFP +vor| < LIr| fore " F—F<r<B—F. (5.3)

- If f is flat enough near equilibrium’ such that (5.3) holds with

L <1/1X{l, (-4)

where X is as in (1.4), then every nontrivial nonnegative solutzon of (1.1} converges to the

equilibrium r as t — oc.

. Proof. Set M= max{M — 7,7 ~ m) and, again, let u, v be as in Lemmas 5 and 8. First

suppose M = M —F. We then let yO)=u{r—=T)—-Fso M= u(@) —r=y(TywithT >0
arbitrary. We note that m < y < M gives |y| € M. Therefore, (5.3) gives | f1(y)| £ LM
uniformly. Thus, using {1.3) with (5.1}, we have .

T

M = yo(T)+ f X(T - 5)fi{y(s — 1)) ds < Fo(T) +f|X(T —s)|LMds
-0
<Fo(T)+LIX 1M (5.5)

‘ using (1.6) and letting yp = yo(-; M). For the alternative case M=7—m, welet y(t) =
" w(t—T)—F and, similarly, again obtain (5.5) for arbitrary 7. Since yo(T') — Oas T — o0,

(3.4)ensuresthat M =0sox(¥)—~rast—o00. O

6. Nonconstant periodic solution for large delay

in this section we will use Hopf bifurcation and fixed point theory to prove the existence

* of a nonconstant periodic solution when the delay t is large enough. To see more clearly
¢ the effect of delay we let g = 1. The usual linearized analysis lets x = F + £y and notes

that, to first order in &, the perturbation satisfies

yHy =iyt -1.

. Seeking a solution of the form y(z) = exp(A?), we obtain the characteristic equation for A:

A+ 1= f{ryexp(—1h).

. We will have linearized stability if all complex roots of this characteristic equation have
. negative real parts. If | f/(r)| < 1 we have the local convergence to the positive equilibrium

for all delays. If | F/(r)| > 1, the effect of delay will occur. More exactly, in this case with
1

1
> Ty = TR arccos )
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there is a nonconstant periodic solution of Eq. (1.1}.
Atay [1] used the Schauder fixed point theory to prove that there is a nonconstant peri-
odic solution of the equation

y=rth(y.y( - 1)),
provided

1 o
T> T = marccos(—s),
where h(u, v) is differentiable at the origin, (0, 0) = 0 and
0<C:= -*Z—Z(0,0) < D= —%(0, 0).
We let y(r) = x{tt) —r and
hu,v)y=r—u+ fv+r).
Then,
C=1, D=—f'(F)

and we reproduce
|

i
TCT arccos TG

Here, we assume that f'(7) < —1 and the function arc cosine takes its value in [0, 7 ].

Lemma 11. [f a positive solution x of (1.1) does not oscillate around the positive equilib-
vium F then x(t) tends to ¥ as t — 00. Consequently, every nonconstant positive periodic
solution should oscillate around the positive equilibrium.

-

Proof. If x does not oscillate around 7, then either ¥

limsupx(t) <7 or liminfx(r)=r.
f~+00 =00
From Lemma 8, in the first case, we have limsupx(t) = . For the second case, we have
liminfx(r) =r. So it is enough to consider the second case. Using the proof of Lemma 8,
we get F 2 u(—1) 2 v(0) = 7. Hence, u(—1) =r and u(0} = f{u(—t))=7. The proof is
now complete. O :

Y. Cao [2] proved that for T < 7, there is no periodic solution which is larger than yg
and oscillates slowly around the only positive equilibrium r. For v > ., there is at most
ong periodic solution which is larger than yy and oscillates slowly around 7. Recall that a
T -periodic solution is called sfowly oscillated around the positive equilibrium, if T > 7,
x(0) =x(T) =r, and there is o € (0, T — ) such that

x{tg) =7, x()y>F forte(0,ty) and x(t)<F forresn, T).

Cao assumes that f is decreasing from yp < 7 until f(vp). He also requires that the
function A(x} = xf'(x}/f(x) is monotonically increasing in [vg, 7] and decreasing in



.
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[r, f(y0)]. Recall that f(yg) is the maximal value of f(y), when y > 0. Without these
assumptions on & one can construct several slowly oscillated periodic solutions for (1.1).
Also, it is known that, if a periodic solution is not oscillated slowly, it should be unstable.
Of course, Cao did not prove these results directly, but from his works one can deduce this,

7. Some applications

Equation (1.1) with unimodal f has been proposed as a model for a variety of physio-
logical processes, where in most cases, one of the model functions

Fx)y=kx®exp{—x) (7.1)
or .
kx
fx)y= gL (7.2)

with parameters &k > 0 and ¢ > 0, is considered {3,4,9,11-13].
The population dynamics of Nicholson's blowflies have been studied [9,12] using a
function f of the form (7.1) with ¢ = 1. In such a case, f is differentiable and one has

F=In—, ‘ (7.3)
I

and
k
v=—f(f = p.(ln— - 1).
"
Thus, Theorem 9 yields, using (5.2),

1 [ln(k/u) - 1]
t < —Iln| —————
wo [ Intk/p) -2

as a sufficient condition for convergence to equilibrium 7 given in (7.3), provided k > pe?.
Moreover, there is a nonconstant periodic solution to the model equation if

. _ 1 b
T T TG = D) mk ) m‘”’[l - ln(k/u)]’

using (1.7).
In respiratory studies, (1.1) has been employed in which the response function takes the
form (7.2). In such a case, one has the positive equilibrium

ljc
F= (;k; - l) , (7.4)

- provided k /e > 1. Then,

fem 2
v=—f(F)= ?[(c— Dk — cp).
Thus, Theorem 9 yiclds, using (5.2),

1 c(l—,u,/k)—l]

r<—ln[
o Lell - pfky—2
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as a sufficient condition for convergence to equilibrium 7 given in (7.4), provided

c(l—%):vl

Moreover, there is a nonconstant periodic solution to the model equation (1.1) with f asin
(7.2) if

1 1
T ueeQ 1o = DU = w8 am"s[l —e( - u/k)]'

t>71"

using (1.7).

8. Conclusion

We have given a basic comparison theorem and discussed some of their consequences.
The effect of delay on the asymptotic behavior has then been studied and the periodicity of
positive solutions investigated for large delays. Our discussions allow the nonlinearity f
to be nonmonotonic and nondifferentiable which are then more general than those of [8].
Thus, our results should be applicable to a wider range of population models; for example,
models arising from the study of an optically bistable device [3,4], blood cells production,
respiration dynamics, or cardiac arrhythmias [11,13]. We can also find application with a
system in which the growth fanction is not smooth, such as a population where growth
occurs in birth pulses (during the breeding season) and not continuously throughout the
year.

Open problem. Investigate the stability of periodic solutions of (1.1) and the structure of
w-limit sets when the delay is large enough!
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Abstract—Conditions are given on the function f, such that population x(t) given by
E(t) = —px(t) + flz(t — 7)),
becomes extinct or remains globally stable. Our theorems are shown to be applicable to the Nichol-

son's model of blowflies and the population dynamics of baleen whales. In some of these cases, the
function f is unimodal rather than monotone. (€ 2004 Elsevier Ltd. All rights reserved.

Keywords—Constant variation formula, Positivity of population models, w-limit set of a persis-
! tent solution, One parameter semigroup.

1. INTRODUCTION
Consider the following delay differential equation,
| E(t) = —pz(t) + fz(t - 1)), (1.1)

for ¢ > 0, where f : [0,00) — [0, 00) is a continuous function, f(0) = 0, while 1 and 7 are positive
phra.meters. The initial condition x|_, 0 = ¢ is given by a positive continuous function in [, 0].
The corresponding constant variation formula is given as

i z(t) = e~z (0) + -/.a e 0 f(z (g — 7)) dE, for t > 0. (1.2)
0

This can be proved by differentiating both sides. This formula also shows that z(t) > 0, for
all £ > 0, hence, (1.1) really is a model for population growth. The following theorem gives a
sufficient and necessary condition for the population to becomne extinet.

*Author to whom all correspondence should be addressed. The authors would like to extend their deepest
appreciation to the Thailand Research Fund for the financial support of this research project, which is also
partially funded by a grant from the Ministry of University Affairs.

0895-7177/04/% - see front matter (€ 2004 Elsevier Ltd. Al rights reserved. Typeset by Ap4S-TEX
doi:10.1016 /j.mcm. 2003.09.038
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THEOREM 1. If f(u) < pu, for all u > 0, then, every solution xz(t) of (1.1) converges to 0 as
¢t — o0o. Conversely, if every solution of (1.1) converges to 0, then, f(u) < pu, for all u > 0.

PROOF. First, assume that f{u) < uu, for all u > 0. Let z(t) be a positive solution of (1.1) and
M = maX_r<e<o 2(€) + 1. We prove that z(t) < M, for all ¢ > 0. Indeed, assume, for the sake of
contradiction, that ¢y is the first positive point, such that z(ts) = M. The “first positive point”
only means that (€ — 7} < M, for all £ < t5. Then, by the constant variation formula

t
0
to
< e HoM (1+[ e“fudg) = M,
0

which is a contradiction. Therefore, z(t) < M, for all {. Let

M= z(to) = e“"""‘z(o) + / ° e-#(to—E) f(i-’-'(f - T)) d{,

fH = li:nsup z(t},
£ = limsup f(z(t - 7)).
t—r00

Let € > 0 be a small number, and let T = T'(¢) be, such that f(z{t — 7)) < +¢, forall t > T.
Now, if t > T, then, we have

T t
z(t) = e **z(0) +f e B8 f(x(€ — 7)) dE +/ e -8 f(x(e — 7)) dE
(] _ T
T t
< e Pz(0) + e""‘f e* f(z(€ ~ 7)) dE + (£ + e)e™# / erd dg
0 T
T
- _ (32 + e) e
<e Hz(0) +e "‘/0 e’ fz(€ — 7)) dE + — (1 — gmult T)) .
Taking limsup on both sides, we have

Since ¢ is as small as we wish, this gives

uly < b, (1.3)
On the other hand, from the definition of limsup, we can choose a sequence {t;} tending to
infinity for which
€= lim f{z(tx~7)).
k—oo
The sequence {z(¢, — 7)} is bounded because the function z(t) is bounded. Hence, this sequence

should contain some convergent subsequence. Without loss of generality, we assume that the
sequence {z(t; — 7)} converges to a limit £3, say. Since the function f is continuous, we have

&= lim f(z(t—7)) = 1 (&)

If 23 > 0, then,
&2 = f(&3) < pis.

Clearly, £3 < £1. Therefore, €3 < pf;. Considering (1.3), we have a contradiction. Consequently,
¢3 = 0. However, £; = f(£3), and so, €; is zero also. Combining this with {1.3}, we have £; =0,
and hence, the solution z(t) tends to 0 as t — oo.
Conversely, suppose that f(u) < pu is not satisfied, for all u > 0. Two cases are possible,
(i} f(e) = pa, for some a > 0.
(ii} f(u) > pu, for all u > 0.
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FIn the first case, z(t) = a is a positive solution which does not tend to 0. For the second
case, let z(t) < 2 for t € [-7,0]. We shall prove that z(t) > 1, for all £. Suppose, for the sake
of contradiction, that ¢, > 0 is the the first point, such that z(t;) = 1, and z{t) > 1, for all
0<t < tg. Then,

1 = z{tp) = Ze~#to 4 gHto _/:o e f(z(€ ~ 1)) d¢

to
> ekt (2 +/ e“‘Epd\f) =e7#% (1 4 1) > 1,
o

uirhich’is a contradiction. Therefore, z(t) > 1, for all ¢, which does not tend to 0. The proof is
complete.

2. THE PERSISTENCE
A positive solution z(t) is called persistent if
0< Iitm inf z(¢) < msupz(t) < co.
—+0Q t—o0

The following theorem gives a sufficient condition for the population to be persistent.

THEOREM 2. Assume that f(z) > 0, for all z > 0 and

lim sup -I—gl < i, (2.1)
tmpr 722> e2)

i

Then, every solution x(t) of (1.1) is persistent.

PRroor. First, we prove that {z(¢)} is bounded from above. Assume, for the sake of contradiction,
that lim sup z(t} = co. For each £ > —7, we define

¥
1
\

) aft) ;= max {p <t:z(p)= -'3‘5*’?5_::”(5)}‘

Qbserve that a(t) — co and that

Biut z(a(t)) = maxe<: z(§) and so, £(aft)) = 0. Therefore,
| .

zl-iﬂ}a z{a(t)} = oo.

;o 0 < #{a(t)) = —uz{a(?)) + fz(alt) — 7))

it
q.pd consequently,
b sz(a(t)) < f(z(alt) — ).
Since f is a continuous function, combining this inequality with the fact that
B!
lim a(a(t)) = oo,

we obtain
zljxglon:(a(t) —T) =00,
Theefoe, f(2) F(z(alt) - 7))
: . T . r{adt) -7
T PR e - o

which. contradicts (2.1). Thus, z(¢) is bounded from above.
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Next, we prove that lim inf,_.oo 2(t) > 0. Suppose, for the sake of contradiction, that lim inf z(%)
= 0. For each t > —71, we define

) = max{p < t:2(0) = _min (6)}.

Observe that 8(t) — oo and that
Jim z(B(t)) = 0.
However, z(5(t)) = ming<, z(£), and so £(6(t)) < 0. Therefore,
0 = #(B(t)) = —px(B(t)) + F(=(B(¢) ~ 7))

and consequently,
pz(B(t)) 2 f(z(8() - 7).

Since f is a continuous function, combining this inequality with the fact that

lim (8(2)) = 0,

we obtain
Jim Z(5(t) — ) =0.
Fherefore. («) Fa(Be) ~ )
.. f T L o flx( Bty — T
Pt ORI

which contradicts (2.2). The proof is complete.

Inequalities (2.1} and (2.2) give the lower and upper bounds for the death rate u in order that
the population may persist. As x becomes very large, to prevent the population from overflowing,
the lim sup of the ratio of the growth function f(x) and the population density z should be smaller
than the death rate p. On the other hand, as = becomes very small, the lim inf of that ratio
should remain bigger that the death rate u to keep the population from extinction.

In what follows, we will assume that x(-) is a persistent solution of (1.1) with x|, o) = ¥. We
let s be a variable in the interval [-,0] and denote by C[—7,0], the Banach space of continuous
functions in the interval [—7,0]. For each persistent solution z(-) and ¢ > 0, let z:(s) = z(t + s)
be a function with the variable s € [—r,0]. We consider the semigroup {T'(t)}:>0 of operators
from C[—7,0! into itself defined by letting T'(t)y = x,, where x is a persistent solution beginning
from 1. Clearly, the operator T'(t) is injective, for all ¢ > 0. The w-limit set of v is defined
to be the set of all limit points of the set {z, : £ 2 0}. This w-limit set is often denoted by
w(z) and is (nonempty) compact and invariant under T'(f), for each ¢t > 0. Moreover, T(t) is a
bijective mapping from this w-limit set into itself, for each t > 0 (see [1]). Therefore, we can
define T(t) = T{—t}, for all t < 0, to obtain a one-parameter group {T'(t)}icr of operators from
w(x) into itself. Letting up and vp be functions in w(z), such that us(0) = sup{¢(0) : ¢ € w(z)}
and vp(0) = inf{@(0) : ¢ € w(x}}, it is easy to see that 4o(0) = limsup,_,, z(t) and ve(0) =
lim inf, o z(t). We now let u(t) = T(t)uo(0) and v(t) = T(t)ve(0). Then, both u and v are
solutions of {1.1}, which can be extended to the whole real line. Moreover, u(t}), v(t) € [v(0),w{0)],
for all t € R. The constant variation formulae for the two full time solutions u(t) and v(t) are as
follows:

wy= [ et stule ~ g (2.3)

o)) = [ e floe - ) de. (2.4)
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3. THE STABILITY
. In what follows, we shall assume that the algebraic equation,
uK = f(K),
has the unique solution K = % in (0, co).

THEOREM 3. Suppose that f(z) is monotonically increasing and

tmsap L2 < (3.1)

Then, every solution z(t) of (1.1) converges to %.

ProOOF. By Theorem 2, every solution z(t) of (1.1) is persistent. We can, therefore, choose two
(full time} solutions u(t) and v(t), such that

u(0) = li:n sup z(t), v(0) = lim inf z{t). (3.3)

Using the constant variation formula, we have
i

w(0) = f '; & F(ult - 7)) dE < [ L e £(u(0)) dE = f—“-;fi” (3.4)
and similarly,
" 0 0
| w0) = [ estuie-mdez [ eswonae =1 ‘”“’”, (3.5)
If we let -
IP(:E) - I'(_) -

then, it follows from (3.4) that p(u{0)} > 0 aud from (3.5) that ¢(v(0}) < 0. On the other
hand, it follows from (3.1) that limsup,_, . ¢(z) < 0, and from (3.2) that lim inf, .o ¢{z) > 0.
If v{0) < ©{0), we have at least 2 distinct zeros of (z) in (0, v(0)}, (v(0), u(0)) and in (u(0), 00).
This contradicts our assumption that T is the only zero of . Thus, v(0) = u(0) = Z. We conclude
that
| lim z(t) = £
i—o0

The proof is complete.

THEOREM 4. Suppose that f(z) is monotonically decreasing and the following system

.0}
M

b= 10,
a i H

has a unique solution a = b = %. Then, every solution x(t) of (1.1) converges to %.

PROOF. By Theorem 2, every solution z(t) of (1.1) is persistent. We can, therefore, choose two
(full time) solutions u(t) and v(t), such that

u(0) = li:n sup z{t), v(0) = h{ag}f z(t), (3.3)
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Using the constant variation formula, we have

0
wo = [ " e flule - ) dE < [ e suonas < Z920 1o . (3.4)

and similarly,

0
o= [ L i soe-mde> [ et de > L L) (35)

We now let

f(bn)

Ant+1 = m ’ bn-i- =

f (an)

forn=1,2,....

Similarty to (3.4’) and (3.5'), 4(0) and v(0) belong to the interval [ay,b,], foralln =1,2,....
On the other hand, the sequence {a,} is monotonically increasing and the sequence {by} is
monotonically decreasing so that they converge. Let a and b be their respective limits. Then, o
and b satisfy the above system in the statement of our theorem. Our assumptions assure that
a = b = £. Therefore, u(0) = v(0) = Z. The proof is complete.

From this point on, we shall assume that, for some yp > 0, we have

fw) = max f(z)

and f(z) is increasing in [0,3o] and decreasing in (y¢,00). That is, f(z) is called 2 unimodal
function as we have mentioned in the abstract. Suppose further that x(t) is a persistent solution
of (1.1). Let u{t) and v(t) be two (full time) solutions of (1.1) with respect to a persistent
solution z. Using the constant variation formula, we have

0 0
w0 = [ etsae-mydes [ e iunya = T80, (36)

THEOREM 5. Suppose that f(yo} < pyo. Also, (3.1) and (3.2) are assumed to be true. Let x(t)
be a persistent solution of (1.1). Then, lim,_,o z(t) = Z.

PROOF. From (3.6), we have u(t) < u(0) < f(yo)/s € yo. Since the function f is increasing
in [0, yo), it follows from the constant variation formula that

1] 0
= o - = f(0)} ”
u(0) [ e flule - ) de < [ RaCOrEE (3.4
and similarly, .
0 Q
- 3 - euﬁ v = f(v(o)) 1
v(0) j_ Sl - e 2 [_ s = £, (3.5")
Let

It follows from (3.4"} that (u(0)) > 0 and &om (3.5") that ©(v(0)) < 0. On the other hand,
it follows from (3.1) that limsup__, . ¢(z) < 0, and from (3.2) that minf, .pe{z) > 0. If
v{0) < u(0), we have at least 2 distinct zeros of ¢(z) in (0, v(0)}, (v(0), u(0)) and in (u(0), 00).
This contradicts our assumption that I is the only zero of ¢. Therefore, v(0) = u(0) = Z. We
conclude that
tl_s_.:g: z{t) = T.
The proof is complete.
We can now state the following result.
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THEOREM 6. Suppose that (3.2) holds. Suppase, moreover, that the solution of the following
system of difference equations

e e 1@
nt IG[Gnubn] M ’
bpyr = sup lf—-(fz, n=12...,
zelﬂn,bn} F
a; = inf __f(.'c),
>0 g
b =sup -J—:E:l
>0 M

cbnveljges to ..'T:.l Then, every persistent solution of (1.1) converges to %.
4. APPLICATION

- Consider the Nicholson’s model of a population of blowflies {2],

Lo N{$) = —uN(@#) + aN(t - 7) exp (=BN(t - 7))

Il-;Iere, a and 3 are positive parameters and

; f(z) = axexp(—pz).

If a < u, using Theorem 1, we have lim N (¢} = 0. This means that if the death rate g is higher
than «, then, the population becomes extinct. On the other hand, if we now let o > u, then
using Theorem 2, we have y

! 0 < liminf N(t) < limsup N(t} < oo
a.lnd tﬁe population persists. Moreover,

f'(z) = a1 - pz)exp(~pz),

and the (only) positive equilibrium is

We have £(1/8) = 0 and 7(1/8) = max f(z) = a/(e8). From (3.6), we have
g

. [23
i , meup N < 2257

If & < eu, then, from Theorem 5, we conclude that
:]—l-lgo N(t) = x.
Next, we consider the population dynamics of baleen whales [2]:

N(t) = —uN(t) + uN(@t - 1) {1 +q [1 - (&Kfﬂ) z] } .

Here, all parameters are positive and

sy =i oo~ (2]}
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satisfies conditions (2.1) and (2.2}, and so this population is persistent. Moreover,

rw=n{ivafi-(F) T} |(5) 3) 7] “:[1 ro- 1 2.

and hence,

max f(z) = f(yo) = pyo(l +q) -

1 +z'
where
144
=Ky —-
Yo g(l+ 2)
and the only positive equilibrium is
=K.

From (3.5}, we have
limsup N(¢) < yo(l+¢q) - ——
t—00 1

To use Theorem 5, we must assume that f{yo) < uyo or, equivalently, gz < 1. In this case, we
have lim N(t) = K

5. CONCLUSION

We have given conditions on the function f, such that the solution of the population model
equation
E(t) = —px(t) + flz(t - 7))

will persist or remain globally stable. We then discussed the applications of our results to the
population dynamics of Nicholson’s model of blowflies and that of baleen whales.

Finally, we note that the results proven here have not been shown by earlier researchers, who
have worked only with delay differential equations where the function f is monotone decreas-
ing [3-6]. The assumptions imposed on f in our theorems are less stringent than in any previous
work so that they should be applicable to a large variety of ecological models.
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ABSTRACT In this paper, we apply the feedback decoupling technique to a Kolmogorov type model for
three species food webs with harvesting or replenishment. A feedback control law is derived to decouple
the effect of predators from prey dynamics. It is found that the necessary and sufficient conditions for
the existence of the decoupling control law rely on the persistence of the prey population and the fact
that the specific growth rate of prey depends explicitly on the superpredator population density at any
moment in time. [t is shown that, without any control action of regulated replenishment or harvesting,
irregular or chaotic behavior is possible in such a process for certain ranges of the systern parameters.
This is illustrated by the construction of a bifurcation diagram for a model of a three-species food web
with response functions of the Holling type II. To make the system output or variables less sensitive to
irregular disturbances, the feedback control technique is applied which produces the desirable effect of
stabilizing the system. When such a model is applied to an activated sludge process, the objective of the

ScienceAsia 28 (2002) ; 205-215

control action can also be to regulate the inputs in order to obtain satisfactory water quality.

KEYWORDS: Kolmogorov model - control - chaos - stabilization.

INTRODUCTION

Ecological models may be classified as either
strategic or tactical, as identified by Holling {1966).
Tactical modeis are relatively more complex. They
usuélly rely on a great amount of supporting data,
and- are used for making specific predictions.
Strategic ‘models, on the other hand, can provide
broader insights into possible behaviors of the systern
based on simple assumptions (McLean and
Kirkwood, 1990}, such as the model considered by
Hadeler and Freedman (1989) for predator-prey
populations with parasitic infection, or the model
of continuous bioreactor analyzed by Lenbury and
Oréﬁkitja}‘oen (1995).

As Mosetti (1992) has observed, the control of
ecological systems for management purposes is a
difficult task due to the amount of supporting data
needed as well as the conflicting management goals.
In this respect, a simple reduced strategic model
which reqhires fewer data for calibration can be quite
a useful tool as a building block for the study of real
problems in order to give a decision-maker some
preliminary results.

The Kolmogorov model of population growth is,
mathematically, probably the most general model of
the types considered to date. It incorporates the

principle that the growth rate of species is pro-
portional to the number of interacting species
present. The classical ecological models of interacting
populations have typically focussed on two species.
The first Kolmogorov model, developed in 1936, was
expanded on by several researchers, including May
(1972) and Albrecht et al {1974). Such models have
been applied to plant and animal dynamics both in
aquatic and terrestrial environments (Hastings and
Powell, 1991). However, mathematical developments
reveal that community models involving only two
species as the building blocks may miss a great deal
of important ecological behavior. In fact, it is now
recognized that in community studies the essence
of the behavior of a complex system may only be
understood when attempts are made to incorporate
the interactions among a larger number of species.

Researchers in the last decade or so have turned
their attention to the theoretical study of food webs
as the “building blocks” of ecological communities
and have been faced with the problem of how to
couple the large number of interacting species.
Behavior of the entire community is then assumed
to arise from the coupling of strongly interacting
pairs. The approach is attractive by its virtue of being
tractable to theoretical analysis (Hastings and Powell,
1991}. Yet, many researchers have demonstrated that
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very complex dynamics can arise in model systems
with three species (Gilpin, 1979; Rai and Sreeni-
vasan, 1993). For example, an investigation by
Hastings and Powell (1991) showed that a con-
tinuous time model of a food chain incorporating
nonlinear functional responses can exhibit chaoctic
dynamics in long-term behavior when reasonable
parametric values are chosen. The key feature
observed in this chaotic dynamics is the sensitive
dependence on initial conditions.

In this paper, we first study the possibility of
making the ecosystem output or variables less
sensitive to irregular disturbances by applying the
feedhack control technigue in order to stabilize the
system. A feedback control law is derived to
decouple the effect of the predators from the prey
dynamics in a three-species food web of the
Kolmogorov type. It is found that the necessary and
sufficient conditions for the existence of the
decoupling control law rely on the persistence of
the prey population and the fact that the specific
growth rate of prey depends explicitly on the
superpredator population density at any moment in
time.

We demonstrate by the construction of a
bifurcation diagram for a model with response
functions of the Holling type II that, without any
control action, chaotic behavior may result through
period doubling bifurcations. Once, the feedback
decoupling control action is in place, the system can
be stabilized and, in this context, we obtain a process
which is more easily controllable.

Moreover, when the Kolmogorov type model
with input / removal terms is applied to an activated
sludge process, the main objective is perhaps to
regulate the inputs in order to obtain satisfactory
water quality. By simply fine-tuning the point in
time when the control action is set in motion, the
control technique considered here can be adjusted
to give the desirable cutcome.

Tue Kotmocorov Type MODEL AND THE
Stanic DecouprLing PROBLEM

We consider a general Kolmogorov type model
of n-species food webs, which may be written as
follows

X =XF+u,i=12 ...n {1)

where X, is the i-th species population density, u,is
the input/remaoval {replenishment/harvesting)} rate
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of the species which depends on the population

" densities of all n-species in the food web, and

F=F(X.X, .X), i=1,2,..n

Such a system (1) can be used to model population
dynamics of plant or animal interactions in an
aquatic or terrestorial environment such as in the
work of Lenbury and Siengsanan (1993), where an
activated sludge process was analyzed using a three-
species Kolmogorov type model. Also, in the study
by Lenbury and Likasiri (1994), the dynamic
behavior of a model for a food web was investigated
through the application of the singular perturbation
technique.

To formulate the static feedback decoupling
problem, we let

X=X, X, .. X)
F=(F,F, .. F}
U= (u, u,, ... u )
and

1 0 0

01 ¢ 0

o{4)= L 0

0 0 1

0 00 - 0

an nx (n- 1) matrix.
Then, the system of equations (1) with u, = 0
can be rewritten as

X=XE+[6U], i=1.2...n @

If we now take X| to be the state variable which is
more easily regulated externally, the “outcome” or
output of equation (2) is then assumed to be

HX)=(X, X, ... X, )" (3)

The static feedback decoupling problem, as stated
in the work by Mosetti (1992) and explained in
greater detail by Isidori (1985}, can be defined as
follows. "Given equations (2) and (3), we need to
find a feedback law a(X) and a state-dependent
change of coordinates ${X) in the input space 9"
such that the closed-lcop system formed by the
combination of (2) and (3) with the control law
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U=a(X) + f(X)V Ue R, Ve R,
has the i-th output dependent only on the i-th
component of the new input V",

" In order to accomplish this, we introduce the
folilowing notation. Letting

\

d d a Y
Vil ¥ ¥y ... X
['aXl ax, ”a,r]

”

then the operator V; is defined as
V.H=FV'H

where H, is the i-th component of the vector H(x)
defined in {3).

: We then understand that
VEH, =V (VS H)

while VS.7, = A,

‘Further, the characteristic number p, associated
with the output H; can be defined as the largest
integer such that for all k < p,

}
grad(Vf,H,.)G'}, =0 ,/=12,..,n-1

where G.is the j-th column of the matrix G.

‘Accordingly, the decoupling matrix A(X)
associated with equations (2) and (3) is the (n- 1)x
{n - 1) matrix

+

A0 =(a,)

where
a, = grad(V%H)G,

The static state-feedback decoupling theory (Mosetti,
1992) can be stated as follows.

Theorem 1A necessary and sufficient condition for
the existence of (&, B) which solves the decoupling
problem is that the decoupling matrix A(x) is
nonsingular. I this is the case then a possible
decoupling control is given by
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a(X) = -A"(X)]
BX) = AMX)

and

where
T= (VI H Ve, VY

provided that the decoupling matrix A(X) is
nonsingular.

Proof We refer readers to Isidori's work {1985) for
the proof of this theorem in the general case.

In order to establish the control law for the
Kolmogorov type model, we need to first prove the
following Lemma.

Lemma 1The characteristic number p, = 1 and p,
=0,i=2,3,..,0-1. =
Proof Tn the case of p, (i = 1), we first consider

grad (Vf,-ﬁfl)(?j,j: ,2,...,72~1, when k= 0. We

" find that

grad (V”FHI)G} = grad (X,)G,

"

_(ox 2, 21,0
ak, ax, " ax, |1 |« j—sthrow

0
0
0
]

=00 .0 1)0
1 | /- thTow
0
0

=0

since j < n.
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However, when k = 1, we find

grad (V}E)G’j = gradv(VL.A’”)G} ’

ax
X a
1 B/I’I
ax

»

25/1_,;'

-grad (£ £ - F)

ax,

" ax

"

= grad (F.X)G;

oA

if we assume that F|, is an explicit function of X, for

allj=1,2,..,n- 1. Therefore, p, =1.

Now, for p, i=2,3, .. n- 1, we consider

—_—

HES

— - throw

grad (V‘FHl)GJ for i > 2 when k = 0, and obtain

grad (V?Jf,)(}', = grad (X) G,

0

0

(o oar, ax o anjo
ax, a, o, ar, 1
0

0

& J-throw
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e =g
0 ifizj -

Thus, grad (V‘}H,)G; # Ofor some j, which means

thatpi=0.f0ri=2, 3,..n-1L ‘
We can now derive the entries a, of the decoupling

matrix A(x) as follows.

ay :‘grac'i: (VE,_H,)(}'Jr

ax,
xa/l,:
ax,
ox, {6,

=grad {(f]' Fz v

-

o,

o

grad (F.X)G;
oF,
T ax,

s

forj=1,2,...n-1.

On the other hand, for i 2 2, p, = 0, we therefore
obtain -

a, = grad (V[}HJ)G’}

i a=j
S0 if %]

forj=1,2,...n-1andi=2,3, .., n-1. Thus, the
decoupling matrix is
A A
ax, ax, at,,
0 1 0o 0 - 0
“Ax)= "0 0 10 0
. 0 0 0 0 1]
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AppuicATION TO THree Species Fooo Wees

The control law

We now derive the control law for the
Kolmogorov type model for a three species food web
which can be written as

,.r=xf'(x,y,z)+u!1 (4)
i t

y=yglxyz)+u {5)

%:zh(x,y,z) (6)

where z is the prey population density, y and x are
1

the predator and superpredator, respectively, while

i, and u, are the corresponding input rates. Then,

x=(x » 2f
F=(/ & %
U=(4 )
i 0
A0=0 1
0 0

and the output is
1

A=z 4 %

The main result of the static state-feedback
decoupling theory can be stated as foilows.

Theorem 2A necessary and sufficient condition for
the existence of (@, ) which solves the decoupling
problem.for equations (4)-(6) is that the prey
pophlation persists and the specific growth rate of
prejf h depends explicitly on the superpredator
population density. If this is the case, then a possible
decé:upling control is given by:

a(X)= _,;f—-}{’—(z&__ +/z)~yg]
7

r

LA
B(DO=| "k, 4
0 1
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and

% =-—.g"—7;'?-(z/z__+ﬁ)+;i;-vl -—-%—'Vz (8)

- r Xz x

U, =-yg+V, (9)
Proof From Lemma 1, we found that p, = | and
p;=0. We then obtain

V'H,:(O 0 z)’

so that V. /, = z4,and V5.4, = p. Therefore, we
are led to the decoupling matrix

zh  zh,
] (10)

A(X)=( .
o 1

Thus, A(X) is nonsingular if and only if det A= 0,
namely

zh, #0 (1)
This leads to the requirement that prey persists, in
which case z > 0, and that h, = 0 or, equivalently,

h depends explicitly on x,
Moreover, we have

VAR H =Vi(z) =V {VAz)}

VAl g Alr=

=V {hz)
x%(/zz)

d
=(/ £ 4 »3, )

d
lz;(/zz)
= xzfh, + yzgh, +z*hh, + zi’

Also,
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Vi H, =V ()

Therefore,
J=(ViH VEH)
[xzﬂ: + yzgh, + 2 Ak + z&z]
&=

which leads us to

a(X) =-ANX)J

== Zkl lkl
0 1 &
b
—xf =k 2
|,
- &
while
B(X) = AN (X)
i A,
= z;Zl’ ﬁ.r
0 1
as claimed.

If we now let

A
1A [rZﬁ + yzgh, + 2 hh, + 2

(12)
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tH;n.'s.ince z =zh we have

X

ar ax ay oz

L _Nh): Hh) A

= zh (xfru))+zh (yg+u,)+(zh+h)zh =V,
by applying the law in equations (8) and (8). Also,
using (9), we find

g)ﬁ:
Z:Jfé"*'%:vz

Therefore, in the new coordinate system (&, y, z) we
have

% _
> =V, (13)
a _
Z—Vz (14)
az
Z—é’ (15)

which clearly shows the decoupled structure, namely,
each of the control variables acts only on one state
variable. In fact, to keep the system decoupled, one
approach is to set v, = 0. Then, § now remains
constant, say at £(t).

Integrating (15), we obtain

z() = &{tg)t = z(t)

Thus, if £(¢t)) = 0 at a given initial time t= t, when
the control is activated, then

z(6) =z(ty)

for any subsequent time t, whatever the fluctuation
of v,. This means that the prey population will not
depend upon variations in the predator or
superpredator. This is the essential feature of this
technique, whereby the variations in the predator
and superpredators are decoupled from the prey
dynamics.

Persistence conditions

The question of persistence has been dealt with
in various literature in all its versions : weak persis-
tence; strong persistence; and uniform persistence
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{Huaping and Zhien, 1991). We shall give, in the
following Lemma, the persistence conditions for the
standard food web consisting of equations (4)-(6)
with

N C'_ 6'32 _
f(x,y,a)—éw Wi 4 (16)
_ G4z | &x
elx,vz)= —5“_ e 4 (7
_E_ AV _ 8
Ak, )= 1 k) Az 53+z (18)

where d is the specific removal rate, and the terms
J

and
(294

&+ y

are the population response functions of the Holling
type Il in which ¢, is the maximum growth rate and
b, is the so-called half-saturation constant. The
construction and analysis of the model in the case
that u; = u,= 0 may be found in the work of Lenbury
and Likasiri (1994).

A standard food web given by equations (4)-(6)
with (16)-(18) generally posesses only one positive

equilibrium £=(0, 5, z) and possibly only one
positive limit cycle T"={0, A2}, A¢)} for its sub-

system (5)-(6) with x set equal to zero. Under this
assumption, we are led to the following Lemma.

Lemma 2The food web given by equations (4)-(6)
with {16)-(18) is persistent if

A Y (19)
bz+y bl+z

A
and (in the case that [ exists)
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A

Ll ar@d e |, . o
o ~ ”
b+ y(8) b+z(2)

where T'is the period of the limit cycle ", provided
that u, and u, are identically zero. Otherwise, the
population persists if

%(0,,2)>0 (21)

fal
and (in the case that [ exists)

2 (0, ), 2> 0 (22

Proof This is a straight forward extension of the
result given in one of our earlier papers (Lenbury
and Likasiri, 1994) with the addition of the input/
removal terms u, and u,.

Consequently, on substituting (16)-(18) into (8)
and (9), one obtains the following decoupling
feedback law.

PR (. I
&a‘f‘}/ bl+“

bl+z jhy ), o ¥_£_ afy = ahx
4 [I{ I b+: bﬁfI,{ pf} (;b,ﬁ—z}ﬁ(&jz)2
b}+z a(le+z (25)
gz h az(b,+z)
5= -;( A —ﬂ—d]w! (26)
q-}; b,‘l‘l"

Figure 1 shows the time courses of the three state
variables and the discharge rates u; and u, under
normal conditions. We then chose to start our
contro! action at the time ¢ = t; shown in the Figure

where z =§(ty) = 0. Thus, the effect of the control
action is seen in Figure 2 when the new input v, is
set equal to zero and V, is taken to be of the form

v, = Ae’" sin wt
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which corresponds to a damped sinuscidal input.
The prey population density z becomes constant after
the time t;,, while the predator and superpredator
vary in a sinusoidal fashion with damping amplitude.
As time passes, the new input rate vV, becomes
negligibly small and the corresponding population
densities of all three species are maintained at
constant levels as a result.

ConrtroL AcTion ON A CHAOTIC SYSTEM

In the work by Lenbury and Likasiri (1994}, the
model of a food web given by equations (4)-(6) with
(16)-(18) and u; = u, = 0 have been analyzed using
the singular perturbation method. Explicit
conditions were derived which separate the various
dynamic structures and identify the limit cycles
composed of alternately slow and fast transitions.
[n particular, it was found that the system will have
a unique global attractor in the first octant which is
a low-frequency limit cycle with a period of high-
frequency oscillation if the following conditions hold
on the system parameters.
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Fig 1. Time evolution of superpredator x [ ). predator y
A andpreyz (_ . _ _ ). and constant discharge
rates u, and u, with no control action. Here, a, = 0.05,
a,=0.5,a,=0.5, b;=4.0,5,=80,5,=80,¢,=150,¢,=15,
c,=1.5.d=1.0,k=10.0,r=10.0, v, = 0.05, and u, = 0.05,

156 / Appendix # 1.4

ScienceAsia 28 (2002)

dapber 14 -Halk-4)-d4 + b

: (27)
(f+4Y 2 +h-4

Ka - d)> b(c +d) (28)

Bck-bd~df) _4hia +r)a(k-b)-d2h +£-4)]
a{f+4) {albj—a,qd)(zqm_@)m,q?u)_m
29

and %’, {r=1,2,3) are sufficiently high.

We now carry out a numerical investigation to
determine the ranges of parametric values where
chaotic dynamics were likely. Our choice of
parameters was guided by two factors. First, we
follow the example of the work by Lenbury and
Likasiri (1994) and assume that the ecological
system under study may be characterized by highly
diversified dynamics. Accordingly, we chose

. parametric values so that the time response of the
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Fig 2. Time evolution of superpredator x, predator y, and pray z,
and discharge rates w, and u, under control operations
starting at ¢ = f; with v, = 0 and v, = 100¢*® sin 3nt, and
other system parameters as in Figure 1.
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system equations (4)-(6) increases from top to
hottom. The prey is assumed to have very fast
dynamics, while the predator and superpredator have
intermediate and slow dynamics, respectively.
Phytoplankton - zooplankton - fish is a typical
example of an ecosystem where the time response
increases with the trophic levels. In fact, most food
cl_iains‘ observed in nature have time responses
increasing along the chain from top to bottom.

! Second, as has been noted by many previous
workers (Hastings and Powell, 1991; Rai and
Sreenivasan, 1993), one may be able to generate
chaos in a nonlinear system which already exhibits
limit cycle behavior. We therefore chose parametric
values to satisfy the conditions (27)-(29) found by
Lenbury and Likasiri {1994) to lead to a solution
trajectory on a low frequency limit cycle with bursts
of high frequency oscillations.

Our investigation involves letting the system run
for 100,000 time steps and examining only the last
80,000 time steps to eliminate transient behavior.
We use values of b, between 4.0 and 4.5, changing
b, in steps of 0.01. The relative maximum values
X\, Of X, collected during the last 80,000 time steps,
are plotted as a function of b, as shown in Figure 3.

! We 'discover in this bifurcation diagram the
appearance of a period doubling route to chaos,
similar to those exhibited by one-dimensional
difference equations such as the logistic population
model." Apparently, the system of equations (4)-(6)
with {16)-(18) exhibits chaotic dynamics for the
values of b, between 4.22 and 4.32 . Windows in
the bifurcation diagram are observed for b, in the
ranges of 4.26 < b, < 4.32 and 4.34 < b, < 4.40, for
example, where periodicity is re-established.

A4 -

30

[ g

bl

Fig 3. Bifurcation diagram for the model system (4)-{6)} with

{16)-(18). using the value of b, from 4.0 to 4.5, and other

i parametric values as in Figure 1. Plots are of the relative
maximum values of x vs b,.
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Figure 4 shows the solution trajectory of the
model system (4)-(6) with (16)-(18) using b, = 4.3
in the chaotic range identified in the bifurcation
diagram. The strange attractor is projected onto the
(v. z)-plane in Figure 4, and the corresponding
chaotic time courses of x, y and z in uncontrolled
conditions are shown in Figure 5 with the discharge
rates v, and u,.

T T T—* ™
a 507 1O00 150G 2DDC 2500 300G 350G 4DGC

x

Fig 4. Projection onto the (yz)-plane of the strange attractor
obtained on simulating the model system (4)-(B) with (16)-
(18) using b, = 4.3 in the chaotic range identified in the
bifurcation diagram, and other parametric values as in

Figure 1.
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Fig 5. Time courses of the three state variables exhibiting chaotic
behavior when there is no control action, and parametric
values are as in Figure 4.
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Figure 6 shows the time courses of z starting from
two different initial conditions. The difference in
the two starting values of z is merely 0.01. We observe
that, while the two plots fellow indistinguishable
paths during the initial short period, they begin to
diverge and follow noticeably different paths
eventually. This clearly demonstrates the sensitivity
to initial conditions which is the essential characteristics
of chaotic behavior.

Figure 7 then shows the effect of the control
action on the chaotic system of Figure 4 with v, set
equal to zero and v, irregular. Here, the control is

initiated at the point where z(#,)=0 and 2(4)<0.

Once the control action is in place, prey is maintained
at a constant high level, while the variations in
predator, superpredator, and the discharge rates u,
and u, are irregular.

On applying the model to an activated sludge
process, the state variables can be nutrient-bacteria-
protozoa, for example, and the objective of the
control action is perhaps to regulate the inputs in
order to obtain satisfactory water quality. Insucha
case, it is desirable to start the control action when

the variable z falls to its first lowest point ( z{#,)=0

and #(4,)>0). We will then be able to maintain z at
a constant low level.

CONCLUSION

It has been demonstrated that while some
inherent properties of a nonlinear model permit the
emergence of chaotic dynamics, they also allow the
existence of a feedback decoupling control mechanism.
Since the behavior of the entire community is
believed to arise from the coupling of these strongly
interacting species, the detection and possibility of
control of a chaotic system is of critical importance.
If a generalization from a food web model depends
crucially upon behavior after a long time, then the
role of chaos may be extremely relevant.

On a cautious note, the question of whether or
not deterministic chaos actually occurs in a real
ecasystem is still open to discussion. As has been
observed by Sabin and Summers (1993}, “... there
is still no generally accepted example of a chaotic
ecosystem in nature. Moreover, some traditional
ecologists believe that irregular oscillations in natural
populations are attributed to random perturbations
or noise in the environment rather than being the
result of the intrinsic nonlinear dynamics of the
systemn”.

158 / Appendix # 1.4

ScienceAsia 28 (2002)

Perhaps the first concrete example of occurrence
of chaos in nature is due to Sugihara and May
{1990) who showed that there underlies a three-
dimensional chaotic attractor in the dynamics of
marine planktonic diatoms. Despite the fact that the
corresponding time series is very noisy, they have
been able to extract the information which allows
them to describe some of the dynamics as deter-
ministic chaos.

Such irregular behavior is not desirable when one
is interested in managing a system, since chaos allows
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only short-term predictions. Thus, a feedback control
mechanism such as the one we have been discussing
provides an attractive and useful tool to regulate the
process since it can stabilize the systermn and make it
less sensitive to the exogenous disturbances or noise
input. The present study has potential to act as a
spring board for a generalization to more complex
models in the hope of obtaining a more manageable
system,
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Abstract

Bone a major reservoir of body calcium, is under the hormonal control of the parathyroid hormone (PTH). Several aspects of
its growth, turmover, and mechanism, occur in the absence of gonadal hormones. Sex steroids such as estrogen, nonetheless, play
an 1mp0rtant role in bone physiology, and are extremely essential to maintain bone balance in adults, In order to provide a basis for
understanding the underlying mechanisms of bone remodeling as it is mediated by PTH, we propose here a mathematical model
of the process. The nonlinear system model is then utilized to study the temporal effect of PTH as well as the action of estrogen
replacement therapy on bone turnover. Analysis of the model is done on the assumption, supported by reported clinicza! evidence,
that the process is characterized by highly diversified dynamics, which warrants the use of singular perturbation arguments.
The model is shown to cxhibit limit cycle behavior, which can develop into chaotic dynamics for certain ranges of the system’s
patametric values. Effects of estrogen and PTH administrations are then investigated by extending on the core mode!. Analysis
of the model seems to indicate that the paradoxical observation that intermittent PTH administration causes net bone deposition
while continuous administration causes net bone loss, and certain other reported phenomena may be attributed to the highly
diversified dynamics which characterizes this nonlinear remodeling process.
© 200!3 Elsivier Science Treland Ltd. All rights reserved.

Keywords: Bone remodeling; Parathyroid hormone control; Esirogen therapy

1. Introduction

Bone is a highly organized tissue which differs from

reproductive tissues in many aspects of its growth and

turnover, are not dependent on gonadal hormones. It,

however, provides support and protection as well as

provides the environment for hemopoiesis. Moreover,
|
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E-mail address: scylb@mahidol.ac.th (Y. Lenbury).

bone is the major calcium reservoir of the body since
over 99% of total body calcium is stored in the skeleton
(Heersche and Cherk, 1989).

In order to maintain its structural integrity, a great
deal of new cells must be produced continuously
(Heersche and Cherk, 1989). This involves two types
of cells: the osteoblasts which are responsible for bone
formation, and the osteoclasts which are responsible
for bone resorption. The knowledge of how these cell
types are regulated and how their proliferation and
differentiation are stimulated is most important to our

0303-2647/03/3 - sce fromt matter © 2003 Elsevier Science Ireland Lid. All rights reserved.
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understanding of factors regulating their number and
activity in healthy or diseased human.

The skeleton undergoes continuous changes dur-
ing growth and, until recently, was believed to reach
its permanent shape after sexual maturation. How-
ever, it has now become clear that bone never attains
permanent state (Albright and Sauders, 1990). After
maximum skeletal mass has been reached, the fi-
nal adult phase begins. A steady loss of bone mass,
together with progressive architectural alterations
continues throughout life, with the rate of change in-
creasing with age. The severe loss of bone, especially
cancellous (trabecular) bone, and the “spontancous”
fracturing of the remaining bone, characterizes the
condition called osteoporosis (Whitfield et al., 1998).

Osteoporosis, a condition of generalized skeletal
fragility caused by a reduction in bone mass as well
as by a disruption of skeletal architecture, is a major
cause of morbidity and mortality in postmenopausal
women. It is estimated that women have lost 10%
of their bone mass by the time they go through

menopause and that 35% of cortical bone, and 50% of

trabecular bone are lost over a lifetime (DeChemey,
1993).

Prevention and reversal of bone loss require a
thorough understanding of the remodeling process in
bone, the mechanism of bone formation, resorption,
including the action of hormones such as estrogen
and parathyroid hormone (PTH).

Albright et al. (1941), first called attention to estro-
gen deficiency as the cause of postmenopausal osteo-
porosis. It has now been widely accepted that estrogen
deficiency plays an important role in the pathogenesis
of osteoporosis and that estrogen therapy can prevent
menopausal bone loss and reduces the risk of frac-
ture. The mechanisms by which estrogen exerts its
effects on bone remodeling process are not entirely
understood, however, and several puzzling discoveries
cannot be completely explained still. Recent studies
(Albright et al,, 1941; Prestwood et al, 1994) sur-
prisingly indicated that short-term estrogen treatment
of elderly women decreased values for biochemical
markers of bone turnover significantly. Since estrogen
therapy has some risks and side effects, the beneficial
effect of prolonged estrogen treatment is put in ques-
tion. Estrogen has important pharmacological side
effects on skeietal tissues. Bone blood flow appears
to be depressed by estrogen (Turner et al., 1994). A

change in blood flow might have profound effects on
bone cell metabolism. High doses of estrogen result
in weight loss in rats (Moon et al., 1991), and an
increase in tumor formation was noted in aging rats
following long-term treatment with estrogen.

The PTH has been proposed as an alternative agent
that can replace lost bone and restore bone strength
{Whitfield et al, 1998). Several researchers have
investigated pulsatile PTH secretion in health and os-
teoporosis (Harms et al., 1989; Schmitt et al., 1996),
concluding that pulsatile secretion of PTH in healthy
young men is the physiological mode of secretion.
Low pulsatile secretion of PTH might be related to
low turnover osteoporosis. Paradoxically, however,
PTH has been found (Kroll, 2000) to cause net bone
loss (resotption) when administered in a continuous
fashion, and net bone formation (deposition) when
administered intermittently.

A sensible model of the process of bone formation
and bone resorption should be capable of addressing
and, to a certain extent, explain the puzzling discov-
eries mentioned before. We shall, therefore, develop
a mathematical model for the differentiation of os-
teoblastic and osteoclastic populations in bone, based
on the differential effects of PTH. The model is shown
to admit pulsatile and chaotic secretory patterns in
PTH levels conformal to clinical observations re-
ported by Prank et al. {1995) recently. By expanding
on the model, the question about the marked effect
of short-term estrogen ireatment, or the paradoxical
effect of intermittent versus continuous PTH admin-
istrations mentioned before, can be explained as at-
tributes of the highly diversified nonlinear dynamics
which characterize this remodeling process.

2. Model development

Bone, being a major reservoir of body calcium,
is under the hormonal control of PTH (Kroll, 2000).
Osteoclasts resorb bone and liberate calcium, but
they lack receptors for PTH. The preosteoblastic
precursors and preosteoblasts possess receptors for
PTH, upon which the hormone induces differentiation
from the precursors to preosteoblasts and from the
preosteoblasts to osteoblasts. The osteoblasts, conse-
quently generate IL-6, which induces preosteoclasts
to differentiate into osteoclasts (Kroll, 2000).

-
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Thus, bone remodeling is a continuous cycle of
destruction and renewal of bone that is carried out by
teams of osteoclasts and osteoblasts (Marcus, 1994),
Osteoclasts and osteoblasts differentiate from . less
mature precursors, which line bone surfaces in an in-
active staté. In bone remodeling process, osteoclasts
appeé_ir on-a previously inactive surface of bone and
then, ithey fexcavate a lacuna on the surface of can-
cellous bone or resorption tunnel in cortical bone.
Osteoclasts are subsequently replaced by osteoblasts
and finally, osteoblasts refill the resorption cavity.
After osteoblasts have laid down their protein-based
matrix, known as osteoid, they bury themselves in
bony :matrix, becoming osteocytes, or revert to an
inactive cell form and line the bone surfaces as sur-
face osteocytes or resting osteoblasts (Turner et al.,
1994).

Therefore, the rate of bone deposition can be de-
termined by the number of osteoblasts (B) while the
rate of bone resorption can be determined by the
number of osteoclasts (C), the balance between the
number and activity of osteoblasts and osteoclasts
determines-whether net bone deposition or net bone
resorption ‘occurs. An excessively deep resorption
space’ produced by osteoclasts, or an incomplete re-
plenishmerit of the resorption space by the activation
of osfeoblasts can result in bone imbalance. If a re-
modeling imbalance exists after the completion of a
remodeling cycle, the degree of bone loss will be ex-
acerbated and that leads to osteoporosis (Turner et al.,
1994).

We now proceed to construct our core model, the
mathematical formulation of which is based biologi-
cally on clinical evidence observed in various reports
such as that of Hock and Gera (1992), Dempster et al.
(1993), Momsen and Schwarz (1997), Kong et al.
(1999), Takahashi et al. (1999), Burgess et al. (1999),
or Kroll (2000) amongst several othets.

F irétly, since activated osteoclasts result from dif-
ferentiation and activation of osteoclast precursors,
we shall assume in what follows that a high level in
osteoclast precursors is reflected in the high level of
the resultiig activated osteoclastic population C(¥).
Secondly, osteoclasts resorb bone and liberate cal-
cium, in order to counter balance the high level of cal-
cium in blood the rate of PTH secretion will decrease
{(Momsen and Schwarz, 1997). The equation for the
rate of PTH secretion is then assumed to take the

form
dP _ o« i P
& hyc @ M

where P(f) denotes the level of PTH above the basal
level. The first term on the right-hand side represents
the secretion rate of PTH from the parathyroid grand
which decreases with the increase in the number of
active osteoclastic cells C(s), ¢; and %, being posi-
tive constants. This accounts for the above-mentioned
observation that as active osteoclasts C resorb bone
and liberate calcium, the rate of PTH secretion will
decrease to counter balance the high level of calcium
in blood. Therefore, a higher C should lead to lower
PTH secretion rate. Finally, it is assumed that the hor-
mone is removed from the system at the rate which is
proportional to its current level with the removal rate
constant .

The dynamics of the osteoclastic population, on the
other hand, can be described by the following equation

dC _ (c2+c3P)BC

= —hC 2
dr k> + P? 2 @)

where the first term on the right-hand side represents
the reproduction of active osteoclasts which requires
the production of osteoclast differentiation factor
{ODF) and its receptor on osteoclasts {Kroll, 2000).
The more C means the more ODF receptors avail-
able for the reproduction of active osteoclasts, and
hence the term is taken to depend on the number of
osteoclasts C at that moment in time.

Moreover, osteoclasts precursors possess RANK, a
receptor of tumor necrosis factor {(TNF)} family that
recognizes ODF through a cell-to-cell interaction with
osteoblasts (Kong et al., 1999; Takahashi et al., 1999;
Burgess et al., 1999; Kroll, 2000), hence the rate of
reproduction is taken to depend also on the number of
active ostecblastic cells B(f) at any time ¢ Based on
the well founded theory on mathematical modeling
and population dynamics known as the law of mass
action (Leah, 1988), when an event occurs through
cell-to-cell interaction of the two populations involved,
the rate may then be assumed to vary as their product,
provided that the event occurs randomly. However, the
rate of reproduction of C increases with the increase
in the level of PTH (Dempster et al., 1993; Weryha
and Leciere, 1995). On the other hand, it has been
clinically observed (Kroll, 2000) that as PTH level
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increases further, it begins to inhibit osteoclastic
reproduction, and hence the saturation expression
(c2 + ¢c3P)/(ka + P?) is assumed for the stimulat-
ing effect of PTH, where ¢z, ¢3, and k; are positive
constants.

Thus, without any active osteoclasts or osteoblasts
(C = 0, B = 0), the reproductive rate of C should
vanish. On the other hand, C will be produced at
the rate which varies directly as the product BC, by
the law of mass actions mentioned before, with the
variation constant ¢z/k7 at vanishing P. With PTH me-
diation, however, this variation parameler increases
initially with increasing P but decreases when P be-
comes too high according to the saturation function
utilized in Eq. (2), where c3 is a measure of how late
the inhibition effect will set in.

Finally, the dynamics of the active osteoblastic pop-
ulation B(#) can be described by the following equation

dB _ CsPB
dr ¢4 k3+ P

— d3B 3)

where ¢4 is the specific rate at which PTH stimu-
lates reproduction of active osteoblasts (Brown, 1991,
Isogai et al., 1996), while the second term on the
right-hand side of Eq. (3) accounts for the clinically
observed inhibition of osteobiastic differentiation due
to the PTH (Kroll, 2000). PTH stimulates osteoblast
differentiation in immature osteoblasts but inhibits it
in more mature cells (Isogai et al., 1996), through the
process of down-regulation of the PTH receptors on
osteoblasts. IL-6, a cytokine produced by osteoblasts,
enhances the anti-proliferative effects of PTH by sup-
pressing the PTH-induced Ca?* transients in addition
to the down-regulation of the PTH receptor caused by
chronic activation of the protein kinase A signal path-
way. Therefore, PTH and IL.-6 produced by osteoblasts
exert a receptor-mediated negative feedback on the
conversion of preosteoblasts to osteoblasts (Kroll,
2000). The inhibitien effect is assumed here to take the
form of the Holling type response function esP/(k3 +
P) which means that there should be no such inhibition
if B or P vanishes. The inhibition term ¢s PB/(k3 + P)
then tends to ¢s B at high PTH level, so that the os-
teoblastic formation is predominantly stimulated posi-
tively by PTH according to the first term c4 P in Eq. (3}
at higher levels of this hormone. This is consistent
with observed clinical data reported by both Tam et al.
(1982) and Hock and Gera (1992), some of which

is shown in Fig. 1. The parameters cs and k3 may
then be varied to accommeodate different physiologi-
cal data of different individuals. The higher &3 means
the inhibition remains effective still at higher level
of PTH. The last terms in the above three equations
are the removal rates of the three components of the
remodeling process with rate constants dj, d», and 43,
respectively.

Our reference core model, therefore, consists of
Egs. (1)-(3), possessing highly diversified nonlinear
characteristics, upon which further analysis and inves-
tigation may be carried out in an attempt to explain
the mystifying empirical observations previously men-
tioned.

3. Theoretical analysis

Now, the argument for our assumption that the sys-
tem is characterized by highly diversified dynamics
goes as follows. According to Whitfield et al. (1998),
the need to repair microdamage in a patch of cortical
bone is sensed by an interconnected network of cells
called osteocytes, each of which is locked in a tiny
cubicle inside the dense cortical bone. The damage
may only strain the osteocytes or it may be severe
enough for them to suicidally trigger a process called
apoptosis. When osteocytes are injured or die, they
stop producing a major suppressor of osteoclastic
biosynthesis. This removes a major restraint on the
production of new ostecclasts, each of which will live
and dig for the next 2 weeks (Whitfield et al., 1998).

When the osteoclasts dissolve the bone mineral,
a lot of Ca®* is released. The Ca®t concentration
serves as a 2-way switch; “off” for the osteoclasts and
“on™ for the bone-making osteoblasts (Whitfield et al.,
1998). Osteoblasts take about five times longer to fill
the tunnels and trenches than osteoclasts take to dig
them. When the patch is finally repaired 69 months
later, the distress signals have stopped, the approx-
imately 3-month-old members of the last osteoblast
crew are now out of work, so they “commit apoptotic
suicide,” as explained in great detail by Whitfield et al.
(1998).

In view of the above discussion, therefore, it is
reasonable to assume that PTH, being the stimulating
agent in both bone resorption and formation, should
possess very fast dynamics, responding quickly to
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Fig. 1. Effects of PTH administration on bone surface formation and volume. (Adapted from Tam et al. (1982).)

changes in the cellular environment, specifically the
Ca?*,| concentration. The osteoclastic population is
the component with intermediate dynamics and more
stable than PTH, while the osteoblastic population
possesses the slowest dynamics, lasting up to approx-
imately 3 months, and therefore is the most stable of
the three components in this system.

Suppeorted by such well-documented clinical obser-
vatiog} (Whitfield et al., 1998), we scale the compo-
nents and parameters in terms of small parameters ¢ <
e« land 0 <« § & 1 as follows. Letting x = P, y =
C,z=B,u =c¢),az = c2le, a3 = c3yle, ag = c4/ed,
as = ¢s/ed, by = dy, by = dale, and dy = d3/ed, we
are led to the following system of differential equa-
tions.

dx aip.

E_k1+y

—b]XE F(X, v, Z) (4)

d_x s [(az + azx)yz

4 = pogra. - bzy] =eG(x, ¥, 2) (5)

EE =8 [a4x B b3z:, =egfH(x,y,2) {6)
k3 +x

which means that during transitions, when the
right-hand sides of Eqs. (4)-(6) are finite and non-zero,
|¥|] is of the order £ and |z| 15 of the order £5. In
the sequel, we will adopt the notation ¥ = O(g) and
7z = O(ed).

The system of Eqs. (4)}-(6}, with small £ and &,
can be analyzed with geometric singular perturbation
methods which, under suitable regularity conditions,
allow approximation of solutions of the system by a
sequence of simple dynamic transitions occurring at
different speeds. A resulting singular curve, composed
of these transitions, approximates an actual solution in
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the sense that the real trajectory is contained in a tube
around the curve, and that the radius of the tube tends
to zero with £ and 8. Examples where this technique
has been applied to biological systems can be found
in the work of Muratori and Rinaldi (1992) and that
of Lenbury et al. (1997). A detailed description of
singular perturbation theory can for instance be found
in the work of O’Malley (1974) on this subject. The
works by Jones (1994) and Kaper (1999) give good
overviews of geometric singular perturbation methods.
See also the classical text by Eckhaus (1979).

We call the system of Eqgs. {4)~(6) the fast system.
In the form of an intermediate system, where & and §
are positive, it can be written as follows

d
E = F(x,y,2) 0
d'l'[
2 Gy (8)
d‘[[
d
£ = dH(x. y, 2} {9
dl’l

where 1) = &1, or in the form of the slow system

dx
£8— = F(x,v,2) (10}
dI’z
dy
d— = ,
i Gix, ¥ 2) (1
2 by 12
in = N3z (12)

with 73 = &8z, Evolution on the time-scale ¢ is said to
be fast, evolution on the time-scale 7; is intermediate,
and evolution on the time-scale 72 is slow,

(Geometric singular perturbation theory allows us to
analyze the system of Eqs. (4)~(6) for small positive £
and & by suitably combining the dynamics of the fast,
intermediate, and slow limits. Under certain regularity
conditions and provided that the sets of critical points
(critical manifolds) are normally hyperbolic for £ = 0,
and & = 0, compact subsets of these critical manifolds
persist as locally invariant slow or intermediate man-
ifolds of the full problem Egs. (4)—~(6) for £ # 0, and
& # 0 but sufficiently small. These manifolds are O(s)
or Ofed) close to (F(x, ¥, z) = 0} and {F(x, y,2) = 0,
G(x, ¥, z) = 0}, respectively.

4. Analysis of the manifolds

The shapes and relative positions of the manifolds
{F = 0}, {G = 0}, and {H = 0} determine the di-
rections, speeds, and shapes of the resulting solution
trajectories. Therefore, we shall analyze each of the
equilibrium manifolds in detail. The delineating con-
ditions for the existence of limit cycie are arrived at
from the close inspection of these manifolds.

4.1. The manifold |F = 0)

This manifold is given by the equation

a)
X = ——— = U(y) (13)
bilk; +y)
We see that this mantfold is independent of the slow
variable z, thus this manifold is paralle! to the z-axis
and intersects the (x, z)-plane at the point where
1 (14)

x=— =
bk,

Moreover, U(y) is a decreasing function of y, so that
x — 0 as y — oc along this curve.

4.2. The manifold {G = 0}

This manifold consists of two submanifolds. One
is the trivial manifold y = 0, while the other is the
nontrivial manifold given by the equation

= by (ks + x?)

= V
P (x) (15)

We see that this nontrivial manifold, shown in Fig. 2,
is independent of the intermediate variable y, and thus
this manifold is paratlel to the y-axis. It intersects the
{x, z)-plane along a curve which is asymptotic to the
line
a
x=—-2 {16)
a3
The curve intersects the z-axis at the point where x =
0, and
bhaky
az

- —

20 a7

attaining its minimum at the point where

az

2
x=—2 (—) +hy = Xm (18)

az

-
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Fig. 2. Shapes and relative positions of the equilibrium manifolds in the case where a limit cycle exists. Here, three arrows indicate fast
transitions, two arrows indicate transitions at intermediate speed, and a single arrow indicates slow trangitions.

and
2= Vlxm) = Zm (19)
in the first octant.

Moreover, the manifold { F = 0} intersects the triv-
ial m@nifold y = 0 along the line x = x| on the (x,
z)-plane. On the other hand, the manifold {F = 0}
intersects the nontrivial manifold given by (15) along
the curve

ol t U2 (y)

- a2 + ai1lU(y)
which has a minimum peint Q{xm., ¥m. Zm) Where
Y = — Ky (20)
b]xm

utilizing (13). Also, the curve {F = G = 0} intersects
the (x, z)-plane at the point I/ where y = 0, x = xj,

and

252 2
r= by bikiky + aj =2 @n
bk \asbky + aja;3

Finally, z — zp as y — o0 along this curve as shown
in Fig. 2.

4.3. The manifold {H = 0)

This manifold is given by the equation
.= agx(ks + x)
{as + b1)x + bsks
which is independent of y. Thus, this manifold is par-
allel to the y-axis, and intersects the {y, z)-plane along

the y-axis. We also observe that W(x) is an increasing
function of x in the first octant.

= W(x) (22)
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The manifold {/{ = 0} intersects the manifold
{G = 0} along the straight line

ba(ks + x2)
£=x2, Z=L522} (23)

dz + ayx;

which is parallel to the y-axis, x2 being the real solution
of

(baas + baby — azaq)x® + (babsk; — azas
— azaski}x? + (asbaky + babsks — azasks)x
+ bab3kak; =0 (24)

which exists in the positive octant and is unique pro-
vided

baas + baby —azaqa < 0 (25)
babyky — azas — azagks < @ (26)
and

asbrky + babiky — azaaksy > 0 27

The manifold { H = 0} intersects the (x, z)-plane along
the curve z = W(x) which intersects the line x = x;
at the point 51 = (x1, 0, z3) where

_ ajas(hrkiksy + ai)

" biki[ai(as + b3) + b bakik3]
seen in Fig. 2,

Moreover, the curve {F = G = 0} intersects the
curve {G = H = 0} at the point 53 = (x2,0, 22)
located on the unstable portion QU of the curve
{F = G = 0} as shown in Fig. 2, provided that

23 (28)

X < X3 < Xy

5. Existence of an attracting limit cycle

The relative positions of the manifolds {F = 0},
{G = 0}, {H = 0}, and in particular the existence and
position of the point §; are apparently important for
the existence of a limit cycle. After the calculations
of the previous section, we are ready to state the main
result of this paper.

Theorem 1. Suppose inegualities (2527} hold. If ¢
and & are sufficiently small, and

Xm < X2 < Xy 29)

7] <73 <20 (0

where all parametric values are defined as before, then
the system of Eqs. (4)-(6) has a global attractor, in
the positive octant of the phase-space. This attractor
is a limit cycle that is singular in the limit ¢ — 0,
§ — 0. In that limit it can formally be constructed
by concatenating various transitions occurring at three
different speeds.

The proof of the theorem is based on geometric
singular perturbation methods, which are elaborated
by Jones (1994) and Kaper (1999) and utilized suc-
cessfully in many areas. These methods rely heavily
on using the different types of flows that can be dis-
tinguished: the fast O(1) flow, the intermediate O(z)
flow, and the slow O(e8) flow. Orbits can consist of
various parts; in Fig. 2 the fast parts are indicated by
three arrows, the intermediate parts by two arrows,
and the slow parts by a single arrow. Under the condi-
tions identified in the theorem, the shapes and relative
positions are as in Fig. 2.

Take an initial point L = (xg, ¥, 2p), with
F(xg, y0, zo) # 0. Under the conditions in Theorem 1,
without loss of generality we assume that the position
of L is as in Fig. 2. L lies in the fast field on an orbit
governed by

dx dy dz
——=Fux,y2), —=0—=
IR AL S dr

0 31D
and the £ = 0 orbit through L tends to the point M on
the fast stable manifold F = 0 while y and z remain
constant. Generically, G(x, v, z) # 0 at this point M.
Then, on this manifold the flow with respect to the
intermediate time 7; is given by

d
0 = F(x, y,2), = _ Gix, y, 2),
drg
F4
— =4&H 4
e (x, y,2) (32)

For sufficiently small §, 0 < § « 1, this is again a
singularly perturbed system. Inspection of G yields
that {G = 0} is normally hyperbolic attracting for
the § = 0 flow restricted to {F = 0}, and that the
full manifold {F = 0} serves as a stable manifold of
{G = 0} for the restricted § = 0 flow. The flow on
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{F =0, G # 0} is given by

dy d
0= F(x,y 2), = = G(x, ¥, 2), =0
dr dry

(33)

and is hence O(¢) or intermediate in the direction of
decreasing y, since G < 0 here. As long as G # 0 the
orbits on {F = 0} have constant x and z coordinates.
Then, the orbit reaches the peint N on the stable part
of {F =0, G = 0}, where the flow is prescribed by

0=Fx.y,2), 0=G(,y ),

dz )
an H(x, v, 2) (34)
and is hence O{&8) or slow in the direction of increas-
ing z, since H > 0 here, until the point O is reached,
where the stability of { F = 0, G = 0} is lost. (The ex-
istence and location of the point O has been discussed
and proved by Schecter (1985) and Osipove et al.
{1986).) The O(¢) time-scale becomes dominant once
again. Hence, the orbit follows an intermediate path to
the point P on the other stable partof {F = 0, G = 0},
Then, it tends to the point Q during which the flow
is O(&d) in the direction of decreasing z, since H < 0
here. Once the point Q is reached, a saddle node bi-
furcatibn occurs and the stability of {F =0, G = 0}
will again be lost. The O(¢) time-scale becomes dom-
inant again. This yields an intermediate trajectory to
the point R followed by a fast transition to the point
T on the stable part {F = 0, G = 0}. Consequently,
a slow transition with increasing z, since H > 0
here, will bring the system back to the point O, fol-
lowed by flows along the same path described before
repeatedly, resulting in the closed cycle OPQRTO.

Thus, the existence of a limit cycle in the system
for ¢ and § sufficiently small is assured. Finally, since
L was arbitrary, the limit cycle is a global attractor.

A computer simulation of Egs. (4)~(6) is presented
in Fig. 3, with parametric values chosen to satisfy
the inequalities identified in Theorem 1. The solu-
tion trajectory, shown in Fig. 3a projected onto the
(x, y)-plane, tends to a limit cycle as theoretically pre-
dicted.’ The ‘corresponding time courses of PTH and
active osteoclastic population level C are shown in
Fig. 3band c, respectively. Such oscillatory behavior
in the level of PTH has often been observed in clinical
data (Albright et al., 1941; Prank et al., 1995, 1994),

On comparing the spaces between PTH peaks in our
numerical simulation to those in available clinical data,
we are able to estimate that the scale of 1 day is equiv-
alent to 917 time steps in our model simulations.

6. Nenlinear dynamics in PTH secretion

Several researchers (Albright et al., 1941; Prank
et al.,, 1995, 1994) have reported evidence of non-
linear dynamics in pulsatile secretion of PTH in
normal human subjects. Prank et al. (1994) reported
low-dimensional deterministic chaos in the pulsatile
secretion of PTH in three young subjects. It appears
that a phase-space analysis may allow the definition
of health and disease by identifying the dynamic
differences in the subjects’ PTH secretory patterns.

In order to investigate the possibility of chaotic dy-
namics in the secretory pattern of PTH in our system,
we carried out a numerical experiment on our model
Egs. (4){6). A bifurcation diagram was constructed

" by choosing parametric values that would lead to cy-

cling in the x, y, and z components, guided by our work
in the previous section, then letting the system run for
10° time steps. We retained only the last 8 x 10* time
steps to eliminate transient behavior, using the values
of k| between 0.08 and 0.1, and changing &; in steps
of 1075, The relative maximum values xmax of x were
collected during the last 8 x 10* time steps and plot-
ted against k; as shown in Fig. 4. We discovered in
this bifurcation diagram that periodic orbits of period
2 can be expected in the model system for values of
k1 = 0.097. Chaotic dynamics occur for k7 between
0.087 and 0.089, emerging through a period doubling
route. In this chaotic range, the system is very sensi-
tive to initial conditions. From experimenting numer-
ically, we found that the time courses of solutions in
this situation, which start at very slightly different ini-
tial values, will stay close for only a short time, before
diverging and following drastically different paths as
time passes.

A computer simulation of the model systems
(4)-(6), with parametric values chosen under the
above-mentioned guidelines and k1 = 0.087 in the
chaotic range, is presented in Fig. 5. The strange
attractor is shown projected onto the (x, y)-plane in
Fig. 5a, and the corresponding chaotic time course of
PTH is presented in Fig. 5b.
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Fig. 3. A computer simulation of the model systems (4}(6) with £ = 0.1, § = 0.9, ¢ = 0.05, a2 = 0.009, a3 = 0.675, ug = 0.01,
as = 0.005, by = 0.1, bp =03, b3 =001, &y = 0.1, k3 = 0.5, k3 = 0.025, x(0) = 2, y(0) = |, and z(0} = 0.15. (a) The solution
trajectory projected onto the (x, y)-plane. (b) The corresponding time courses of PTH (x), and {¢) active osteoclasts ().

Thus, our model admits chaotic dynamics of
PTH secretion, conforming to the clinical evidence
in the above-mentioned reports which suggests a
new interpretation of osteoporosis and hyperparathy-
roidism as dynamic diseases (Prank et al., 1994),
associated with the loss of an adaptive hormonal
rhythm.

7. Responses to PTH/estrogen therapy

We further illustrate how the charactenstics of non-
linear diversified time responses inherent to the system
modeled by Egs. (4)—(6) can give rise to different sur-
prising dynamic behavior which might seem puzzling
when observed in clinical data.
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Fig. 4. Bifurcation diagram for the model systems (4)-(6) with £ = 0.8, = 0.1, a; = 0.0900, a7 = 0.01125, a3 = 1.3750, a5 = 0.1125, )
as = 0.0625, by = 0.1500, by = 0.4375, by = 0.1250, k2 = 1.5000, k1 = 0.0250, and 0.08 < k) < 0.1. Plots are of xyax against &).

7.1. Responses to PTH administration

We investigate the action of PTH, administered con-
tinuously and intermittently, by first incorporating a
term &, > 0 into the rate Eq. (4) to represent contin-
uous adminisiration of the PTH. The result of a com-
puter simuiation of the modified model system:

dx 1

— = —-bhx+k 35
d: ki +y t r S
dy (a2 + asx)yz

DAY S gy 36
ar 8[ fy + 12 2y (36)
dz _ s (a oo Xy z) 37)
dr T T hrx

is shown in Fig. 6a. Here, &k, = 0.5 and administration
starts at 1 = 15 = 10,000. We observe that oscillatory
behavior in the active osteoblastic population ceases
and the level tends toward a steady level higher than
the peak levels attainable prior to the administration.

However, the active osteoclastic population shows an
exponential increase, and hence a net bone loss can,
therefore, be expected. Looking closely at the posi-
tions of the three equilibrium manifolds in Fig. 2, we
can see that the addition of k, > 0 means a re-location
of the manifold { F = 0} which results in the violation
of the necessary condition for limit cycle behavior and
the solution trajectory is forced to follow the curve on
the manifold {F = 0} while x — 0, and y increases
without bound.

However, if we add the term &, > 0 only in pulses
or intermittently, a different dynamic behavior is
obtained, although the same value of k, = 0.5 is
used. Fig. 6b shows the simulation result of daily
administration of PTH which lasts for 6h at a time
{using the time scale estimate mentioned at the end of
Section 5). Although the active osteoblastic popula-
tion still oscillates about a mean which is close to that
prior to the start of the protocol, the active osteoclastic
population now oscillates around a lower mean value
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Fig. 5. A computer simulation of 1the model systems (4}{6) with £ = 0.8, 5 = 0.1, a) = 0.0900, a2 = 0.01125, a3 = 1.3750, a4 = 0.1125,
as = 0.0625, by = 0.1500, by =0.4375, b3 = 0.1250, k2 = 1.5000, k3 = 0.0.250, and k| = 0.087 in the chaotic range, showing a strange
atrractor projected onto the (x, y}-plane in (a). The comesponding time series of PTH (x) is shown in (b).
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and peaks at a much lower level. This results in ap-
parent net bone formation, which is in agreement with
the reports from several researchers (Kroll, 2000; Tam
et al., 1982; Hock and Gera, 1992) that daily injection
of the hormone caused an increase in the bone apposi-
tion rate, accomypanied by an increase in the formation
surface without an increase in the resorption surface.
Continuous infusion, on the other hand, resulted in an
increased apposition, increases in both formation and
resorption surfaces, and a net decrease in bone volume.

Studying the three equilibrium manifolds more
closely, we understand that the addition of &, in-
creases the rate of change of PTH in an episodic
manner. The x-component (PTH) now has even faster
dynamics and changes very quickly with time. Thus,
C does not have time to reach a high peak, because
it is pulled back down as the PTH level starts to
rise very early and quickly, and similarly for the os-
teoblastic population. But since the effect only lasts
6h at a time, the system returns to its oscillatory pat-
terns in a short space of time. Thus, it appears that
the behavior clinically observed is one of the mani-
festations of the nonlinearity property of the system
together with the fact that the process is characterized
by highly diversified dynamics. If PTH therapy is to
develop into a viable alternative to estrogen treatment
against osteoporosis, possibilities of such nonlinear
or dissipative effects admitted by the system must be
more closely scrutinized.

7.2. Responses fo estrogen administration

On the other hand, realizing that long-term treat-
ment of estrogen poses risks of side effects, we also
attempted to better understand the action of estrogen
on bone remodeling by again incorporating an extra
term into the second rate Eq. (5) for the active os-
teoclastic population, According to Whitfield et al.
(1998), in a young woman, a normal premenopausal
estrogen concentration may limit the size of the pre-
osteoclast population by stimulating apoptosis. But as
her estrogen level declines with menopause, so does
the estrogen receptor-mediated signaling; osteoclast
precursors may thus live longer. Thus, to simulate the
effect of daily intake to supplementary estrogen, we
increase the removal rate of C by subtracting the term
key, ke > 0, from the rate Eq. (5) for a duration AT
of every interval of p days.

In so doing, we are assuming that estrogen is more
stable than PTH and remains effective in the human
body accumulatively over a long enough period so that
daily intake of estrogen can be taken as equivalent to
continuous application of the stercid, all through the
time period AT, during which time the model equa-
tions then become

_ @, (38)
dr ki1 +y
dy (@ + ayx)yz }

Y | BIE ek 39
Pk [ o) 2y —key (39)
dz asxz
— =g - —b 40
5= (mx pa 32) (40)

Fig. 7 shows the results of computer simulations
in two different cases. In Fig. 7a, the term —kcy is
kept in Eq. (39) for a duration of AT = 12 days, ev-
ery interval of p = 28 days. We observe that when
the administration period AT is over, the effect still
lasts for quite some time before the system recovers
itself and there is a resetting of oscillatory behavior
in the active osteoblastic population. The “plateau” is
much wider than AT. This is again a result of the di-
versified time responses of the three components in
this nonlinear system. Since B is the very slow vari-
able, it takes a long time to respond to the change in
the proliferation rate of C. In particular, the plateau
width is inversely proportional to £ and §. We also
found, upon experimenting with different values, that
different dosage (or k¢) will yield different plateau
width.

In Fig. 7b, AT = 21 days, and p = 28 days.
We see that there is no longer any resetting of os-
cillatory behavior. Even though estrogen has already
been cut off, the dissipative effect still lasts long
enough to overlap with the next application of es-
trogen. This seems to suggest that with appropriate
choices of AT, p, and the prescribed dosage, admin-
istration may not necessarily be kept on for the entire
time, while a net bone surface formation can still be
expected.

7.3. Investigating estrogen action in monthly bursts

In several clinical data, such as those mentioned
in Muse et al.’s report {1986), estrogen level was
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Fig. 7. Computer simulations of the extended model for estrogen treatment, Eqs. (38)—(40), with ¢ = 0.1, § = 0.9, a) = 0.05, a3 = 0.009,
ay = 0.675, as = 0.01, as = 0.005, by = 0.1, bz = 0.3, b3 = 0.01, k) = 0.1, k2 = 0.5, and k3 = 0.025. The duration of estrogen treatment,
initiated at the time fo = 10,000, is (a) 12 days, (b) 21 days, with k¢ = 0.2.

i i

observed to peak for a short period just a couple of
days prior to menstruation across a woman’s men-
strual cycle. This may lead us to wonder whether such
monthly bursts in estrogen secretion could play an
important role in the controlling mechanism by which
estrogen takes part in the regulation of bone mass
balance in the premenopausal women. We investi-
gate theoretically whether administration of estrogen
in mohthly, (equivalently every 28 days) bursts to a
posnnénopa'usal subject could effect some observable
change in the dynamics of the bone remodeling pro-
cess which may compensate for the functional role of
estrogén secretion in the premenopausal period. This
is done by taking the system of Eqgs. (38)—(40) to the
limit as AT — 0, while p = 28 days, such that the
single-bursts of estrogen across the menstrual cycle
can be modeled by the original system Eqs. (4)~(6)

with the additional resetting conditions:

x(m+) = x(m—) (41)
y(m+) = (1 — kc)y(m=~) (42)
2(m+) = z(m—) (43)
where m =pn,n =0, 1,2, ... and k¢ represents the

amplitude of the estrogen bursts. We can carry out an
analysis of the dynamics of solutions to the system
of Eqs. (4)—(6) with resetting conditions (41)}-(43) by
following the technique described by Robert and Kao
(1998} 1n their work on the dynamics of infectious
diseases with birth pulses.

If (x(1), ¥(1), z(£)) is a solution of (4)(6) for ¢ €
(0. p}, and boundary conditions

x(0) = x{(p) (44)
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y(0) = (1 —kc)y(p) (45) where

z(0) = z(p) (46) i 0 0
' J=|0 Ll—kc ©

then Eqgs. (4)(6) with (41)~(43) have a periodic solu-
tion defined by

(xp(0, yp(1), 2p(@0) = x (1), ¥(8), 2(D))
for te0.p)

and

(xp(t + p). yplt + p), 2p(t + p))
= (xp(f)v ¥p(0), zp(th)

for all non-integer r (Robert and Kao,
Heesterbeek and Robert, 1995).

The local stability of the period 1 solution (xp(¥),
yp(8), zp()} of (4){6) with (41)}43) may be deter-
mined by considering the behavior of small-amplitude
perturbations of the solution. Defining

1998;

(x(0), ¥(8), 2() = (xp(@) + x(8), ¥, (1)
+n(0), zp(0) + §()

these may be written as

X0 x{(0)

) | =2 | n0)

&0 £(0)
where @(/) satisfies
do(r) ~J &)

d (p¥paZyp)
while

aj
_b' k)2
azky — 2ayx — azx* (a2 + asx)z

fi= 8[ (k2 + x2)? jlz 5[ ky +x2

k3
£ [‘ (m)] 0

with ¢(0) = 1, the identity matrix. The resetting con-
ditions {(41)+(43) become

x(m+) x{m—)
n(m+) | =5 | nim—)
E(m+) E(m—)

0 0 1

Hence, if all three eigenvalues of

1 0 0
M=|0 1—kc 0|
0 0 1

have absolute values less than one, then the period
1 solution is locally stable (Heesterbeek and Robert,
1995).

Now, through some straightforward manipulations,
it can be found, for small-amplitude solutions about
the steady state (x;, 0, z3), that the conditions for the
absolute values of the three eigenvalues of M to be
less than one will be assured if those conditions for the
eigenvalues of J1{x|, 0, z3} to have negative real parts
are satisfied. To be precise, the stability conditions for
the eigenvalues of M to have absolute values less than
one are that
(a2 +asxi)zs

ko + x;f

and

(a2 + aaxy)zs
| —ke <exp|elby - ——25722 48
‘ "[( P ﬂ “

< by (CY)]

if all parametric values are assumed positive. However,
if (47) holds then (48) is automatically satisfied. But,
(47) is the required condition for the eigenvalues of
Ji{x1, 0, z3) to have negative real parts.

0

b il [(az + 631))’]
2 gl — 24
ka + x2

£ (-— asx —b3)
ki+x

This means that if the steady state (x1, 0, z3) is stable
before the application of estrogen in monthly bursts,
it will remain stable afterwards, apart from the spikes
appearing every period of 28 days in the osteoclasts
time series due to external estrogen administration.
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The andlysis of small perturbations about a dif-
ferent solution, other than (x;, 0, z3), is not so
straightforward, however, and we resorted to carrying
out numerical experiments instead. As a result, we
founel notiso surprisingly that estrogen applications
in monthly bursts do not appear to effect any change
in the dynamic behavior of the solution to the system
model in all the cases that we attempted, irrespective
of the magnitude of k¢, discounting the appearance
of spikes due to external estrogen each menstrual
cycle. Noticeable affect is only observed if the hor-
mone application lasts for a significant duration AT,
as has been noted in Section 7.2. This is, in fact, in
agreement with the conclusion made by Muse et al.
(1986), from their investigation, that the alterations in
calciﬁm-regulating hormones and bone mass that oc-
cur durmg menopause, and several amenorrhea states,
appear to occur when perturbations of gonadal steroids
are of greater magnitude and duration than those in the
normal menstrual cycle. We note, however, that clini-
cal reports are still contradictory and the mechanisms
behind thi§ steroid’s action remain unclear. Further
carefgl study and investigation need to be carried out
befor;e any definite conclusions can be made.

8. Conclusion

We have demonstrated, through the construction
and analys1s of a core model for the bone forma-
tion and resorption process mediated by PTH, that
several nonlinear dynamic behavior can be deduced
which closely simulates clinical data. Even though
the model is kept relatively simple, it incorporates
the nonhneanty property of the system as well as
the way the state variables possess highly diversified
time responses. The model can then elucidate certain
aspecfts of . the underlying mechanisms. Apart from
yielding valuable insights, such investigation, taken
with great care, can suggest new possibilities, new
interpretations, or a different approach in dealing with
this complexed remodeling process.

Mareover, it has been proposed (Prank et al., 1995,
Prank et al. . 1994) that in simple organisms, the detec-
tion of nonlinear behavior in information transfer is in
fact associated with differentiation and proliferation.
Modulation of the amplitude and/or the frequency of
the hormone pulses in higher organisms can modify

intracellular signaling pathways, gene expression, cell
proliferation, and cellular function (Goldbeter and
Li, 1989). Further studies on the effects of pulsatile .
hormone secretion on the regulation of cell and organ
function and structure can be found in the work of
Veldhuis (2000) and that of Brabant et al. (1992). More
recently, Hock et al. (2002) also gave a very clear
outline of the actions of PTH, focusing on the phys-
iological and cellular effects of PTH on the skeleton
but also considering the kidney and the cardiovascular
system, the latter being a recently recognized target of
PTH action. This line to investigation, therefore, de-
serves closer attention and further study, since it could
help explain the physiological linkage between func-
tional and genetic programs of the living organisms.
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The present work develops and analyzes a model system of delay-differential equa-
tions which describes the core dynamics of the stress-responsive hypothalamus-
pituitary-adrenal axis. This neuroendocrine ensemble exhibits prominent pulsatile
secretory patterns governed by nonlinear and time-delayed feedforward and feed-
back signal interchanges. Formulation and subsequent bifurcation analysis of the
model provide qualitative and mathematical frame work for better understanding
of the delayed responsive mechanisms as well as the dynamic variations in different
pathological situations.

Keywords: cortisol secretion; delay-feedback controlled system; Hopf bifurcation;
nonlinear model.

1 Introduction

The hypothalamus-pituitary-adrenal axis is a critical stress-responsive component
which initiates life sustaining adaptive reactions to internal stresses, such as disease,
and external stresses, such as hard work or lack of sleep. Signals may originate from
either outside or inside the body and are mediated by the central nervous systetn.
Thus, many changes in the environment ultimately can stimulate the secretion of
releasing hormones, which produce effects in the body in order to adapt to the
change.

*Corresponding author
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Neurons synthesize and package releasing hormone precursors in their cell bod-
ies, and these products are transported down the length of their axons to the nerve
endings, where a signal is awaited for secretion (Norman & Litwack, 1997). Since
most of the cell bodies of these neurons are found in different areas of the hy-
pothalamus, signals for secretion come from higher levels, usually from aminergic
or cholinergic neurons in various parts of the brain. The hippocampus of the limbic
system may signal the neurons to release the hormone by changing the firing rate of
electric signals or by chemical interneuronal contacts (Norman & Litwack, 1997).
The response of the hypothalamus to signals from the limbic system is the secretion
of the corticotropin-releasing hormone, CRH. CRH is released from specific cells
in the hypothalamus into a closed portal circulation intimately connected with the
anterior pituitary. Releasing hormones act at cognate plasma membrane receptor
levels either to cause an increase in cyclic AMP or to stimulate the phosphatidyli-
nositol cycle, leading to the stimulation of protein kinase C and an increase in
cytoplasmic calcium ion concentration. The increased level of cyclic AMP stimu-
lates protein kinase A leading to ACTH release from the corticotroph of the anterior
pituitary. Vasopressin also increases the secretion of ACTH, although the main role
of vasopressin appears to be one of helping CRH in this activity. Also, according
to Engler et al. (1999) the nanopeptide vasopressin is a weak ACTH secretagog in
rat and in man, although it appears to be potent in the bovine species. Therefore,
we shall not consider its direct stimulatory effect in this work.

Following the secretion of ACTH into the blood circulation after stimulation
by CRH from the hypothalamus, ACTH molecules bind to a specific receptor on
the outer cell membranes of all three layers of cells of the adrenal cortex, the
zona glomerulosa, the zona fasciculata, and the zona reticularis. Cortisol is the
main product of ACTH stimulation of the zona fasciculate and reticularis cells
of the human adrenal cortex. A glucocorticoid essential to life, cortisol acts on
different cells in different ways. Without the secretion of cortisol during stress,
a human could not survive. When cortisol is overproduced, often by a pituitary
tumor causing high level of circulating ACTH, the resulting disease is known as
Cushing’s disease. When cortisol is underproduced, the resulting disease is known
as Addison’s disease, which is most frequently the result of adrenal destruction.

When cortisol is produced in response to ACTH, it has negative feedback ef-
fects on various elements of the hormonal cascade system, schematically described
in Fig 1. Malfunctions in this negative feedback mechanisms can lead to several
complications. Lowered cortisol levels or enlarged output of ACTH by the anterior
pituitary, due to reduced negative feedback, results in adrenal hyperplasia and hy-
persecretion, which, together with adrenal testosterone, can lead to masculinization
of female babies. Precocicus puberty in males can also result from this condition
(Norman & Litwack, 1997).

It is therefore crucial that a better biomathematical description of such a pro-
cess be attempted to provide more solid framework for the study and assessment
of dynamic interfaces in health and disease. Such studies are necessary especially
since a recent report by [lias et al. (2002) on the complexity of cortisol seems to
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Cortizel

Figure 1: A schematic representation of feedforward feedback model of plasma
CRH, ACTH, and cortisol.

confirm that cortisol secretion operates under non-regular dynamics. Its fractal
dimension after sleep deprivation {a weakened state) is lower than that measured
before sleep deprivation (healthier state). In the past, basal cortisol secretion has
been proposed to arise via linear mechanisms. Then, in 1991 Lenbury and Pacheen-
burawana presented a mathematical model in which cortisol secretion was described
by nonlinear differential equations with exponential feedback terms. However, Hlias
et al. (2002) were the first, to our knowledge, to utilize nonlinear/fractal analy-
sis in the experimental study of the complex mechanisms underlying the circadian
secretion of cortisol.

Complexity and nonlinear methods have become one of the most versatile and
promising new research tools for the study and characterization of circadian rhyth-
micity in humans. Episodic secretion of cortisol has been clinically observed and
reported in several research works (Carnes et al., 1991; Carnes et al., 1989; Krieger
et al., 1971; Weitzman et al., 1971) as early as that of Weitzman et al. (1971) which
reported on twenty-four hour patterns of episodic cortisol secretion in normal sub-
jects. Their data seriously challenged the concept that a “steady state” or “basal
level” of cortisol is present during any extended time compartment of the 24-hour
cycle. In a different report in the same year, Krieger et al. (1971) attempted to
delineate more precisely the time course of adrenal secretory activity in the normal
human and patients with Cushing’s syndrome. Later, Moore-Ede et al. (1983)
pointed out several advances in characterization of the properties of hypothalamic
circadian pacemakers and the implications of such rhythmicity for medical diagno-
sis. It was not until very recently, however, that an attempt was made by Ilias et
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al. (2002) to use mathematical methods based on nonlinear/fractal analysis in the
experimental study of the underlying complex mechanisms. Their conclusion, that
post-sleep deprivation changes the fractal dimensions of cortisol, supports Lenbury
and Pacheenburawana’s (1991) suggestion that nonlinear dynamics analysis may
be a viable tool in our attempts to delineate pulsatile secretory patterns in health
and disease.

Lenbury and Pacheenburawana’s (1991} nonlinear model did not, however, ac-
count for the delays associated with the time interval needed before an action in
response to the stimulating signal can be taken by the release of the appropri-
ate hormones. Several studies have presented clinical evidence of such delayed
responses in the hypothalamus-pituitary-adrenal cortex (Norman, 1997; Posener et
al., 1997; Won et al., 1986). Specifically, Posener et al. reported in 1997 that cor-
tisol exerted a feedback effect by significantly decreasing plasma ACTH levels with
a time delay of approximately 60 min. An earlier study by Hermus et al. (1984)
reported a 30 min. delay in the positive feedforward effects of CRH on plasma
ACTH levels, the increase of which was followed by a rise in the cortisol level with
time delay of an extra 30 minutes.

To our knowledge, mathematical modelling and analysis of hormonal secretion
systems with delays have up to date been the subject of few published reports
in humans. In 2001, Keenan ef al. presented a biostatistical model which incor-
porated expected within axis physiological linkages via time-delayed, nonlinear,
dose-responsive, rate-sensitive, and integral feedforward and feedback controls. Al-
though the model appeared to generate realistic pulsatile secretory patterns, it
contributed little towards the illumination of the underlying mechanism of the se-
cretion network or the crucial role which the delayed responses might play in this
important, feedback controlled system. Because of its nonlinear structure, the in-
troduction of a time delay in feedback loops can alter the stability and dynamic
properties of the hormonal cascade yielding insightful clinical implications.

We propose, therefore, to incorporate such time delays into the earlier model by
Lenbury and Pacheenburawana {1991) and subsequently analyze the model by Hopf
bifurcation in order to find the eritical time delay, beyond which the model system
may exhibit periodic dynamics. With the set of parameters appropriately chosen
through such analysis, we shall construct a bifurcation diagram in order to identify
the ranges of the system’s parametric values for which chaotic secretory patterns are
permitted by our time-delay differential equation model. The simulated solution in
such a case appears to compare well with clinical data which consistently showed
multifactorical frequency structure (Carnes et ol., 1991).

2 A Feedforward-Feedback Delay Model

In formulating our mathematical model of the negative feedback regulation of cor-
tisol secretion, the following events are considered. CRH (R) is secreted from the
hypothalamus and stimulates the secretion of ACTH (A4) from the anterior pitu-
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itary with a delay of 71 in time. ACTH then stimulates the cortisol (C) secretion
from the adrenal gland with the same time delay 7 as that in the short loop feed-
forward effect of CRH on ACTH secretion. Thus, we assume equal delays in both
short feedforward loops in the cascade, following the clinical evidence reported by
Hermus et el. (1984) mentioned above. We also take into account the negative
feedback effects of cortisol on ACTH, incorporating a time delay of 7, supported
by the clinical evidence already mentioned above (Moore-Ede et al., 1983). The
investigation by Posener et al. (1998} also utilized a covariance analysis which
suggested that the inhibition effects of ACTH on CRH were not due to the rise in
cortisol caused by the rise in ACTH itself. Thus, we shall ignore the long-loop neg-
ative feedback effect of cortisol on CRH and only consider the short-loop feedback
effect of ACTH on CRH not mediated by cortisol, which is then assumed to occur
with a delay time of 7 as well.

These assumptions on delay are made here in order to carry out a theoretical
analysis to investigate the stability and the possibility of periodic solutions of the
system comparable to clinically observed behavior. In the later section, the time
lags in the feedforward or feedback loops are allowed to be different in our numerical
experiment to investigate the possibility of chaotic dynamics

In 1986, Won et el. investigated the mechanisms responsible for glucocorticoid
feedback on nonstress induced ACTH secretion in normal subjects and reported a
linear relationship between the degree of inhibition of ACTH (AACTH) levels after
cortisol administration. The degree of inhibition was measured as the reduction
in ACTH as percentages of the mean baseline level. They found that “A linear
correlation between the degree of inhibition of ACTH level and the corresponding
cortisol concentrations does exist at 60 min. after administration (r = 0.95, P <
0.05)”. From such clinical evidence, we see that the specific rate of change of ACTH
at time ¢, A;, due to the negative feedback effect of high cortisol concentration at
time t — 13, C(t — 72), may be described by the following equation

14d

— Ay = —kC{t— T 2.1

A, dC(t—m) " (#=m) @1)
where k is some positive constant of variation. Integrating (2.1) yields kye”(Cs ~C*{t=r2))
for the rate A;, where v = % and ky corresponds to the rate A, when C = Cj.

Thus, Cy is the eritical value of A, which means that if C falls below Cq then the
secretion rate of A should rise above k;. I C rises above Cp, on the other hand,
the secretion rate of A should be reduced in magnitude below ks, with a time de-
lay of 7. Similar arguments can be applied to the rate of change R;. However,
the rate of change of ACTH should also vary in direct proportion to plasma CRH
concentration at time § — 1, R(t — 1y). This concentration-dependent effects of
CRH on ACTH was investigated by Engler et al. (1999), who reported clinical
data showing ACTH release (not its level) increasing exponentially as the log of

-CRI. This means, in fact, that ACTH secretion rate may be assumed to depend

in a linear fashion on CRH level, at least to the first order. It is reasonable to
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also assume the same linear dependence between the secretion rate of cortisol and
ACTH level. Therefore, the three component hormonal cascade can be described
by the following system of nonlinear differential equations:

dii—t) = ~8,R(t) + kyett A5 A2 t=2) (2.2)
d—figﬁ = —82A(t) + ko R(t — 7y)e(C=C =T (23)
%L’ = —5;0() + ks Alt — 1) (2.4)

where R(t) is the concentration of CRH at any time t; A(t) and C(t) are the
concentrations of ACTH and cortisol, respectively, above their respective residual
levels, while ki, k2, and ka the respective secretion rate constants of R, 4, and C,
while & and 7 are the feedback potency constants. d;,d2, and §; are the removal
rates of R, A, and O, respectively. It is assumed that each of these hormones is
cleared from the blood stream according to the first-order kinetics. In order to
arrive at the above mathematically tractable model, we have assumed that the
stimulating /inhibitory effects of other known factors are relatively weak and thus
negligible. More detail of the derivation of the model can been seen in the paper
by Lenbury and Pacheenburawana {1991).
We associate the initial values of the form:

R(t) = qbl (t) for -7 S t S 0,
C(t)y=¢2(t) for —7m <t<0, .
A(t) = #3(t) for -1 <t <0, (2.5)

where 73 = maz(r, 72), ¢; € C([-7,0],R") and ¢;{0) >0, i=1,2,3.

We now introduce dimensionless variables by letting z = %, y = f‘;, z =
_CC_;? Kl = %]g: K2 = %Rﬂa 161 = aA%, ,82 = IYng and K3 = %%AD, where ROyAﬂr
and Co are the critical values of R, 4, and C, respectively. We are then led to

B(t) = —8,3(t) + K (-’ (t-m2) (2.6)
(1) = ~boy(t) + Kozt — mp )el2 07 (t=m2)) (2.7)
2(t) = —d32(8) + Kay(t — m). (2.8)

So that the steady state values of R, A, and C are Ry, Ag, and Cy, respectively,
at which point the 3 state variables should be stationary, we see that we need to
put Ky = &, Ky = &, and K; = §; in (2.6)-(2.8). We also note further that a
and v represent, the strength of the negative feedback effect of ACTH on CRH and
that of cortisol on ACTH, respectively. Since ACTH and cortisol are secreted at
noticeably different orders of magnitude o and 4 may be different. However, after

s e
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rescaling by Ao and Cp, the corresponding feedback potency constant 8 should
be comparable to 8. Therefore to carry out our bifurcation analysis, we first put
8 = B = B2, but will allow them to be different in our later investigation. We now
arrive at the following core model equations:

#(t) = —8,2(t) + 70~V (t-m2)) _ (2.9)
§(t) = —ay(t) + Spm(t — 1 )eB1—2"(1—72]) (2.10)
£(t) = —d32(t) + day(t — ). (2.11)

3 Bifurcation Analysis

The model system (2.9)-(2.11) has one positive steady state (zo, %o, 2z0), that is,

(5'50:1!0, zo) = (]-s 17 1)'
Letting X =2 —x9, ¥ =y — 30, and Z = z — 25, we are led to the following
linearized system of (2.9)-(2.11) at (zo, yo, 20)-

X —8 =286 0 X
Y| = |6 —35 =287 [ | ¥V (3.21)
zZ o 636—)”1 —d3 VA

The associated characteristic equation of the model system (2.9)-(2.11) is then

FO) =X +a)? + bA+c+ (did + dp)e M+ = (3.13)
where
a=08 +08,+68 (3.14)
b= 8165 + 6183 + 0283 (3.15)
¢ = 618255 (3.16)
di = 2865 [6, + &) (3.17)
da = 4/36,6083 (3.18)

using the steady state relations that & = § = # = 0 at the point (z,y,2) =(1,1,1).
We let 7 = 7, 4+ 72 be the composite lag-time and first consider equation {3.13)
when 7 = (. That is,

NaaX+(b+d)A+ (c+dx) =0. (3.19)

Using (3.14)-(3.18), it is easily shown that 2 > 0, ¢+d> > 0, and a(b+d;) —c—
ds > 0, for all positive parametric values. Thus, by the Routh-Hurwitz condition,
all roots of equation (3.19) have negative real parts. Therefore, the steady state
(1,1,1) is stable when 7 = 0.
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If we let A(7) = a{7) + tw(7), where @ and w are real, then we have a(0) < 0,
by the above reason. By continuity, we know that a(r) < 0 for positive value of 7
which is sufficiently small. Thus, the steady state shall remain stable for values of
T such that 0 € 7 < 1 for some 75 > 0.

Suppose a(m) = 0 for some 75 > 0, and a(7) < 0 for 0 < 7 < 74, then the
stability of (1,1,1) is lost at 7 = 7y, at which point A = iw(rg).

Now, iw is a root of (3.13) iff

3

—iw® — aw?® 4 ibw + ¢ + (idiw + da)(coswT — isinwr) = 0. (3.20)

Equating real and imaginary parts of both sides of {3.20), we obtain
~w® + b + dyweoswT — dysinwT =0 (3.21)

—aw® + ¢ + dywsinwr + dycoswr = 0. (3.22)

Adding up the squares of {3.21) and (3.22), one obtains

Flw) = w® + (a® — 20)w* + (B2 — 2ac — d)w? + ¢ — d2 = 0. (3.23)

If we let s = w?, p=a? - 2b, g =8 — 2ac -~ d}, and » = ¢? — d2, then equation
{3.23) becomes

h(s) =8 +ps® +gs+7r=0. (2.24)

We can consequently write down the following result.

Lemma 1. Suppose s; = M.

3

(i) Equation (3.24) has a positive root if either

(a) r<0 (3.25)
or

(b) r >0, (3.26)

P’ —3¢>0, (3.27)

81> 0, (3.28)

and  h(s;) <0. (3.29)

(ii} Equation (3.24) has no positive real roots if
r>0
and p*—-3¢<0.
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Proof,

(i) Suppose r < 0, then h(0) < 0. Since lim,,oh(s) = oo, equation
(3.24} must have a positive root where h = 0, by the intermediate value
theorem. Suppose 7 > 0, on the other hand, and p? — 3¢ > 0, then

s = _—pﬂ@ is the stationary point of i(s} located on the positive

z—axis if sy > 0. Thus, if k(s;) < 0 while A{0) = r > 0, by the

intermediate value theorem, h must vanish somewhere between 0 and

51,

(ii) If » > O while A’'(s) > 0, h is then an increasing function and does not
vanish anywhere along the positive z—axis a.

I conditions in Lemma 1(ii) hold, then all roots of the characteristic equation
{3.13) have negative real parts for all 7 > 0. Thus, the steady state (1,1,1) is
always stable in this case.

If, on the other hand, conditions in Lemma 1(i) hold, then equation (3.24) has
a positive root. Without loss of generality, we may denote the three positive roots
of (3.24) by s;, 82, and s3. Then, equation (3.23) has three positive roots

wr =5, k=1,2,3.
Now, let 15 > 0 be the smallest of such 7 for which a(7) = 0. Substituting w

into equations (3.21)-(3.22) and solving for 7, one obtains

(ad) — d2)w} + (bds — cdy )ws N 2r( — 1)

¥ = — aresi 3.30
™ o aresin| BT ] ™ (3.30)
where k= 1,2,3,and j =1,2, ...
Thus,
=70 = min {T(j)} (3.31)
0~ The 1<k<d, g1 L8
and
Wo = Wy (3.32)

Now, for our model system (2.9)-(2.11), the following result can be shown.

Lemma 2. 51 < 0if

5262 + 8262 + 6262
= 3.33
ﬁ < ﬂO \/ 453(51 +(53)2 ( 3 )
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Proof. From (3.14)-(3.17), we find that
q = 8303 + 8763 + 8583 — 48785 (61 + &)°
which is positive if (3.33) holds. We will then have
| P -3¢ <y’

and
p =062 +485+42>0.
Hence,

S Bl ks Y

51 3

We now make the claim that iy is a simple root of equation (3.13), provided
(3.33) holds.

Lemma 3. If (3.33) holds, then
dF . ‘
a(%wo) #0

Proof. Suppose, by contradiction, that %‘;(iwg) = 0, while F(iwg) = 0, then after
some lengthy manipulations, it can be shown that

d
af {wo) =0
However, '
d] dh
E‘Z—J(wo) = 2w0§(30)

where so = wg. Since wy > 0, we would have %(so) = 0 also. However, the
solution of h'(sq) = 0 would be

1
sp = g[—p:!: \/p2—3q] = 51.

But, 8; < 0 when {3.33) is satisfied, by Lemma 2. This would mean that sq < 0
which contradicts its definition. Therefore, h'(ss) # 0 and so ‘;—f(z’wo) # 0 as
claimed

This then leads us to conclude that iwp is a simple root of equation {3.13) which
implies that
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d

B;Re AlT) . #0. {3.34)
Thus, the steady state (1,1,1,) shall lose its stability and Hopf bifurcation will
occur as 7 increases past the critical value 7y, provided the conditions in Lemma
1(ia) and (3.33) are satisfied.

Summarizing the above analysis, we have the following theorem.

Theorem 1. For the composite lag-time 7 = 1, + 73, let the critical composite
lag-time 7 be defined as in (3.31), then the system of delay differential equations
(2.9)-(2.11) exhibits the Hopf bifurcation at (zo,0,20) = (1,1,1) if 1 < 8 < fy,
when B is as defined in (3.33). That is, there exists ¢ > 0 such that the system
(2.9)-(2.11) will have periodic solutions for 7 € (19, 79 + €).

Proof. it remains only to note that if g > % then, considering equations (3.16)
and (3.18), we would have r < 0 which is condition {ia) in Lemma 1. Thus, the
condition B > } ensures that there is a 75 > 0 such that the steady-state (1,1,1)
loses its stability at the point T = 7y. The condition 5 < fy, by Lemma 2, ensures
that (3.34), which is a necessary condition for Hopf bifurcation, is satisfied 0.

4 Numerical Results

Fig. 2 shows a computer simulation of equations {2.9)-(2.11) with parametric
values chosen to satisfy the requirements for Hopf bifurcation set out in the previous
section (Theorem 1}. The solution trajectory, projected onto the (y,z) plane, tends
to a limit cycle as theoretically predicted. The corresponding time courses of CRH
and ACTH are shown respectively in Fig. 2b) and 2¢} where they become periodic
as time passes.

Since there has been evidence (Carnes et al., 1991; Carnes et al., 1989; llias
et al., 2002; Krieger et al,, 1971) of low-dimensional chaos in pulsatile secretion
of plasma adrenocorticotropin mentioned in the introduction, we carried out a
numerical investigation to discover whether chaotic behavior may occur in our
delay feedback controlled model of the hormonal secretion cascade. To this end,
a bifurcation diagram was constructed by using parametric values that would lead
to cycling in the three state variables, guided by our work in the previous section.
Then the system of equations {2.6)-(2.8) was allowed to run for 105 time steps. We
retained only the last 2x10% time steps to eliminate transient behavior, using values
of B, between 3.75245 and 3.7538 and changing 8- in steps of 107%. The relative
maximum values of £ (CRH) were collected during the last 2x10¢ time steps and
plotted as a function of 3, as shown in Fig. 3.

We discover in this bifurcation diagram a period doubling route to chaotic
dynamics which can be expected for values of 5z beyond 3.7532. We observe that
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Figure 2: Computer simulation of equation (2.9}-(2.11) with & = 0.5,0; =
0.38,83 = 0.6,5=1.091,75 =122, = 0.5 and = = 0.77.

periodic orbits can be found for values of 82 in the range 0.26 < B2 < 3.7528
suggesting that chaotic mode of secretion is adopted when the negative feedback
effects are relatively strong. When the feedback signals are weak, a more regular
episodic secretory patterns are exhibited.

Fig. 4 shows a computer simulation of the model system (2.6)-(2.8) using the
parametric values in the chaotic range, with 53 = 3.75346. The strange attractor is
seen in Fig. 4a) projected onto the (y,z)-plane, while the corresponding time series
of CRH (z), ACTH (y), and cortisol {z) are shown in Fig. 4b)-4d), respectively.

Characteristic of such chaotic dynamics is the sensitivity to initial conditions.
We illustrate this sensitivity by simulating our model system, using the parametric
values in the chaotic range employed in Fig. 4, starting from two initial conditions
which are different only by 107 in z(0), while y(0) and 2z(0) are the same in the
two simulations. The two time courses follow the same path only for a short time
initially, but diverge to drastically different paths as time progresses as seen in
Fig. 5. This clearly demonstrates the sensitivity to initial conditions of the system
under nonlinear dynamics which, for this reason, makes any attempts at system
control an extremely difficult task to tackle.

L3

LT
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Figure 3: Bifurcation diagram of eguations (2.6)-(2.8) with §; = 047,86, =
0.401,6; = 0.422, K7 = 0477, K, = 0422, K; = 0.411,4 = 0.001,7 = 0.522,
. and 7 = 10.

5 Discussion and Conclusion

We present in Fig. 6a) some clinical data partly adapted from the report by Engler
et al. {1999) on the review of the evidence for the existence of inhibitory as well
as stimulatory hypophysiotropic regulation of adrenocorticotropin secretion and
biosynthesis. The figure shows pituitary venous concentrations of CRH in two
mares given naloxone at a low dose rate at the arrow. In Fig. 6b), actual data of
i plasma ACTH concentration in a rat sampled every 2 min. is shown, taken from
Carnes et al.’s (1989) earlier work. The time series exhibits irregular characteristics
in agreement with those simulated from our model, an example of which is shown
in Fig. 4, where we need to recall that the state variables z,y, and 2z plotted in

Fig. 4 are ratios of the three hormones over their respective critical levels.
However, there are at least three factors that complicate the interpretation,
if not the measurement, of CRH concentration, as cautioned by David N. Orths
(1992) in his work on CRH in humans. First, like other hypothalamic releasing
factors, the concentration of CRH, presumed to be present in the hypothalamic
hypophysial portal venous blood, is hugely diluted by the time it reaches the pe-
ripheral veins. Secondly, CRH is produced and presumably secreted by many
extrahypothalamic tissues, even though we have assumed this to be of relatively
small and thus negligible amount in our mode]. Finally, there are specific high-
affinity, high-capacity CRH-binding proteins present in human plasma. Thus, even
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Figure 4: Computer simulation of equations {2.6)-(2.8) with &, .= 0.47,42
0.401,6; = 0422 K, = 047T,K» = 0422, K; = 0411,8 = 0.001, 3,
3.75346, 1y = 0.522, and T = 10.

though it is possible to measure immunoreactive CRH in peripheral plasma, the
absoclute peripheral plasma CRH concentration at any moment may not accurately
reflect hypothalamic CRH secretion, and thus should be considered with caution.

ACTH measurement also poses problems associated with its bioassays at low
plasma concentration. Detection of primary abnormal functioning at the pituitary
level is made easier only by the availability of the releasing hormones that make
evocater tests possible. In cases of inadequate availability of a pituitary hormone,
such as ACTH supply, the target gland hormone {cortisol) is supplied instead
(Norman & Litwack, 1997).

In spite of such cautionary notes, our model still provides a viable means by
which the complexity and non-linear dynamics of diurnal hormone secretory pat-
terns can be analyzed and qualitative description can be made of this complex delay
feedback controlled systems. Our analysis yielded, for each set of physical param-
eters, a critical composite time delay 7y bevond which value the system exhibits
episodic secretory pattern if 3 > % As the feedback response factor 7 increases fur-
ther, more irregular secretory patterns may be expected. Low dimensional chaotic
dynamics would appear if #2 increased beyond a certain critical value 5. identified
in the bifurcation diagram. This seems to suggest, considering Ilias e al’s (2002)
result from their nonlinear analysis of cortisol secretory patterns before and after
sleep deprivation, that if the negative feedback effects are too weak, a diseased state
is the reasonable diagnosis which then corresponds to the more regular secretory
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Figure 5: Divergence of time courses, when 8; = 3.75346 in the chaotic range,
initiating from two different initial conditions only by 10~° in the initial value of
z.

patterns. A relatively strong negative feedback mechanism for larger 8 leads to
a more irregular pattern characteristic of a higher dimensional chaotic dynamics
associated then with health. When j, increases further, becoming greater than
approximately 3.87549, the feedback mechanism is now faulty and the system re-
turns to more regular periodic behavior which appears to be the mode of secretion
in a diseased state.

Also, there is a critical composite time-delay 7y below which all state variables
tend asymptotically to the respective steady-state levels as t — oo. We observe
that it is the value of the composite time-delay  which delineates different dynamic
behavior in the Hopf bifurcation analysis, not each of the feedforward delay n
or the feedback delay 75 in our model. We may deduce from this that, in the
human body, the feedforward and feedback response processes may be operating
in a complimentary fashion. In health, an over zealous response in the feedforward
loop can be compensated for by a late response in the feedback loop, and vise versa,
resulting in an optimal turn-around time for all components in the whole cascade.
When this complimentary mechanism is not functioning properly, a diseased state
may be expected. In Fig. 4, where the apparently irregular secretion pattern is
shown, comparable to the data presented in Fig. 6, the critical composite time-
delay is 75 = 0.522 in the unit in which ¢ is measured. We also observe that in
Fig. 6b) ACTH peaks approximately 3 times during a 4 hour period in a rat.
Comparing this with the corresponding simulated ACTH level in Fig. 4 where 3
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Figure 6: a) Pituitary venous concentrations of CRH in two mares (M, marel; o,
mare2) given naloxone (adapted from the work of Engler et al.’s (1999}). b) Plasma
ACTH concentration in a rat (taken from the work of Carnes et al’s (1989)).

peaks are observed in 100 units of time ¢, we may then scale accordingly by taking
t to be measured in the unit of 24 min., so that ¢ = 100 is equivalent to 4 hours.
Then, the critical composite time-delay may be estimated as

T & 0.522 x @ 2z 1.25 min.

100
in a rat, and the composite time-delay may be estimated as
240
~ 1 — = in.
T 0% 100 24 min

based on the parametric values used in the simulation shown in Fig. 4. Unfortu-
nately, similar estimates cannot be arrived at for humans, since frequent enough
hormone measurements cannot be made and less peaks may then appear in the
time series than there actually are. However, from the reports by Posener et al.
{1997) and Hermus et al. (1984) mentioned earlier, in humans the delay in the
short feedforward loop was observed to be around 30 min., while that in the short
feedback loop was around 60 min.

From the above observation, we are also led to conclude that the role of indi-
vidual time lag (m or 72) in each of the responsive mechanisms is apparently not
as significant to the well being of the cascade as the potency 8 of each feedback
responsive signal. As seen in the bifurcation diagram shown in Fig. 3, 85 was found
to be the bifurcation parameter which delineates different dynamical behavior and
identifies the interfaces between sickness and health.

Although more intensive experimental/theoretical studies are necessary before
definite conclusions can be made, such nonlinear approaches promise to offer sig-
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nificant contributions in our attempts to give a more qualitative description of the
diurnal variations of hormone secretion in order to better understand the dynamic
interfaces among different pathological situations.
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Abstract: Many endocrine systems have been found to incorporate some form of cascade
mechanism into their operation. Such a mechanism involves an amplification system where
an initial reaction gives rise to the generation of multiple second reactions, each of which sets
off multiple third reactions, and so on. Examples will be presented, with special attention
paid to the hypothalamus—pituitary—testicular axis. The production and secretion of luteiniz-
ing hormone (LLH) is governed by the medial-basal region of the hypothalamus. It is well
known that the release of LH is a highly regulated process determined by negative and posi-
tive feedback, as well as neural components. The presence of gonadatropin-releasing hor-
mone {GnRH)} on specific adenohypophyseal cell membrane receptors results in the release
of LH, which is then transported systemically to the Leydig cells of the testes. All the factors
governing the release of these hormones, as well as a biochemical description of their actions,
have not been completely elucidated, nor is the mechanism behind the pulsatile fashion in
which the decapeptide GnRH and LH are released clearly explained. We describe how such
a cascade mechanism in a self-regulatory system may be modeled and analyzed by a singu-
lar perturbation approach, identifying conditions that give rise to episodic hormone secretion
or activity. Insightful and valuable interpretations can be made from such analysis of the cas-
cade system.

INTRODUCTION

In recent years, there has been a great surge of interest in the study of how information is represented
and transmitted in biological systems, specifically in the new field of bioinformatics. In nerve cells,
information is transmitted through electrical impulses, which are sometimes generated as high-fre-
quency bursts, followed by periods of quiescence. These impulses also cause muscles to contract and
endocrine cells to secrete hormones. Quite often, bursting or episodic activities are observed in biolog-
ical systems, particularly in endocrine cells. Attempts to model and simulate such mechanisms most fre-
guently lead to nonlinear differential equations. This presents us with quite a challenge to develop non-
linear systems theory and analytical techniques to qualitatively and quantitatively unravel the intrinsic
mechanisms that generate such behavior in these complex systems.

The study of endrocrinology ovet the past century has been mainly dependent upon the scientific
methodologies available to probe the various endocrine systems. Thus, endocrinology has developed
from being largely pursued at the physiological level into a biochemical era, which began in approxi-
mately 1955-1960 [1] and extends to the present time. Advances in chemical methodology, such as
chromatography, mass spectrometry, nuclear magnetic resonance spectroscopy (NMR), and X-ray crys-
tallography, have and continue to permit the detection and chemical characterization of minute quanti-
ties {(nanograms or picograms) of new hormones and the characterization of the many receptors.

*Plenary lecture presented at the International Conference on Bioinformatics 2002: North-South Networking, Bangkek,
Thailand, 6-8 February 2002. Other presentations are presented in this issue, pp. 881-914.
*Corresponding author
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With the invention of scanning electron microscopes and confocal microscopy, which allows real-
time imaging of living cells, the science of endocrinology is advancing rapidly. Scientists have been
busily active in categorizing and defining the scope of influence and molecular mode of action of dif-
ferent hormones, as well as the mechanisms in their secretion.

Many endocrine systems incorporate some form of cascade mechanism into their operation [1].
A system with a cascade mechanism is an amplification process where an initial reaction results in the
generation of multiple second reactions, each of which sets off multiple third reactions, and sc on.

In this paper, we first discuss two examples of such cascade systems and explain how modeling
and analysis of the system may be carried out based on singular perturbation principles. The method
utilizes simple geometric arguments based on the assumption of highly diversified dynamics inherent
to the cascade system. Application of the technique is done on the hypothalamus—pituitary—testicular
axis involved in the biosynthesis and secretion of testosterone in response to blood levels of luleinizing
hormone (LH). Episodic release of LH ts triggered by the presence of the gonadotropin-releasing hor-
mone (GuRH]}, secreted from the hypothalamus in a pulsatile fashion [1,2], which we attempt to explain
through modeling and analysis. The analysis will then be extended to encompass higher-dimensional
systems, which involve a multitude of compornents or species,

CASCADE HORMONE SYSTEMS

In the following, we describe two examples of systems with cascade mechanism. One classical bio-
chemical cascade mechanism, at the cellular and molecular level, is generated by the action of a hormone,
such as the action of glucagon at the cell membrane to produce an increase in cyclic AMP. Figure 1 shows
a schematic description of a mechanism leading from the celi surface hormonal signal to the cellutar
metabolic response: glucagon and glycogenolysis. The cascade may be visualized in terms of alter-

glucose /
'y %:D—glucngon

glucagon
receptor
phosph?rylasc glycogen
® ATP  cAMP kinase : inactive synthetase active

@
active protein
kinase

phosphorylase
kinnse : active

@ phosphorylase -
active ®

phosphorylase :
inactive

glycogen

Fig. 1 A schematic description of a mechanism leading from the cell surface hormonal signal 1o the cellular
metabolic response: glucagon and glycogenolysis,

© 2002 IUPAC, Pure and Applied Chemistry 74, 881-890
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ations of cellular response, stimulation of glycogenolysis to generate glucose for export to the extra-
cellular space, and the general circulating system {11,

As so clearly elucidated by Norman and Litwack [1], the cascade begins with glucagon combin-
ing with its cell membrane receptor, marked (1) in Fig. 1. This then stimulates the activity of adenylate
cyclase, possibly mediated by a transducing element, on the cytoplasmic side of the membrane, marked
(2) in Fig. 1. As a result, the level of cyclic AMP increases, which activates a protein kinase (3), while
the protein kinase subunits catalyze the phosphorylation of inactive phosphorylase kinase in reaction
{5), as well as the active glycogen synthetase (4), to produce the phosphorylated inactive form, a step
marked {6) in Fig. 1. The resulting phosphorylated inactive form consequently stimulates glycogenol-
ysis in step (7} to form glucose 1-phosphate, which is further metabolized to glucose (8). Finally, glu-
cose is transported to the extracellular space and into the general circulation (9). More detailed discus-
sion of each step in the above-described cascade may be found in the work by Norman and Litwack [1].
The system is considered a cascade system due to the fact that each step following hormone binding is
mediated by an enzyme that can turn over multiple substrate molecules.

Another system, which also incorporates the cascade mechanism, involves the central nervous
system (CNS), the hypothalamus, pituitary, and the distal hormone secretion glands.

As explained by Norman and Litwack in their seminal work on hormones [1], the cascade effect
may be produced by a single event or signal in the external or internal environment. A signal can be
sent by either electrical or chemical transmission to the limbic system and then to the hypothalamus.
This results in the secretion of a releasing hormone into the closed portal system connecting the hypo-
thalamus and anterior pituitary shown in Fig. 2. It has been documented that releasing hormones may
be secreted in nanogram amounts and half-lives of about 3-7 min. The releasing hormone consequently

LIMBIC SYSTEM .
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Fig. 2 Diagram showing the cascade hormonal system, the hypothalamus-pituitary~testicular axis, on proceeding
down the cascade from the releasing hormone Lo the terminal hormone, there are increasing masses of the hormones
released.

© 2002 IUPAC, Pure and Applied Chemistry 74, 881-890
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signals the release of the specific anterior pituitary hormones, which may be secreted in microgram
amounts with half-lives on the order of 20 min or longer. The anterior pituitary in turns signals the
release of the ultimate hormone, which may be secreted in many micrograms or milligram amounts and
can be quite stable.

Thus, amplification of a single event at the outset could prove to be a factor of thousands to a mil-
lionfold, as hormone stability and the amounts of hormones increase as we proceed down the cascade.

Three-component cascade system

Letting x(#), ¥(#), and z{r) represent the densities or levels of the three components at anytime ¢ in the
cascade system described above, their rates of production will form a model consisting of the follow-
ing system of differential equations

x=f(x,y.2) M
y=£g(x.%2) (2)
z=e8h(x.y,7) (3)

where £ and & are small positive parameters. Thus, when the quantities on the right sides of eqs. 1-3 are
finite and different from zero. || is of the order £ and || is of the order £ 8. Thus, x is assumed to pos-
sess the fastest dynamics, y an intermedtiate time response, while z possesses the slowest dynamics of
the three components.

It is well known that the system (1--3) with small € and & can be analyzed with the singular per-
turbation method [3], which under suitable regularity conditions, allows the approximation of the solu-
tion of the system (1-3) with a sequence of simple dynamic transitions occurring at different speeds.

Given an initial condition (xg, ¥, Zg), the slow z and intermediate (y) variables are frozen, and the
system will develop according to the “fast system™.

t
ed
Thus, x(7))eventually tends toward a stable equilibrium X(x,, yg, z) of the fast system. Then, as z is still
frozen at z;,, the transitions will develop at intermediate speed according to the “intermediate system”

x(1)) = fix(t),yp. 20l + T =

W15) = g7 x0. ¥ (T2l M T2 ze) + T =%

until an equilibrium ¥(x,, ¥, z,) of the intermediaie system is reached. A third transition then develops
at low speed along the curve f= g = 0 to end at an equilibrium or form a closed cycle, depending on the
stability properties of the three equilibrium manifolds f=0, g =0, and = 0.

The sequence of these transitions thus constructed then approximates the solution of the system,
in the sense that the real trajectory is contained in a tube around the traced transitions, and that the
radius of the tube goes to zero with £ and 8. More detail of the main aspects of the method can be found
in the work by Muratori and Rinaldi [3], while examples of applications to nonlinear systems in biol-
ogy and medicine are available in the works of Lenbury et al. [4,5].

Application in modeling pulsatile secretion of LH

The hypothalamus—pituitary—testicular axis is diagrammed schematically in Fig. 2. The release of LH
is a highly regulated process determined by (a) negative feedback, (b) positive feedback, and {c} neural
components.

© 2002 \UPAC, Pure and Applied Chemistry 74, 881-890
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Table 1 Relevant information on testosterone.

Biochemical aspects Data
Plasma concentration {ng/100 ml) 300-1100
Testes secretion rate 5000
Metabolic clearance rate (litre/day) 980
Site of production Leydig cells of testes
OH

Structure

0
Principal biological function Maintenance of functional male repro-

ductive system and secondary male
sex characteristics

The decapeptide GnRH is released from the hypothalamus in a pulsatile fashion with short
latency and initiates the episodic secretion of LH. The LH is then transported systemically to the Leydig
cells of the testes. LH-mediated stimulation of testosterone synthesis and sceretion by the Leydig cells
is initiatcd by the binding of LH to hormone-specific receptors on the outer membrancs of the Leydig
cell. The rate of biosynthesis and secretion of testosterone, whose structure is shown in Table 1, is pos-
itively correlated with the blood levels of LH, whilc the sceretion of the gonadotropin can be dimin-
ished by increasing blood concentrations of testosterone, which facilitates their binding to steroid recep-
tors in both the hypothalamus and pituitary. This is called “suppressive negative feedback”. The precise
details of the feedback mechanism in this self-regulatory system arc not yet clear. Nevertheless, close
study of the process has led Liu and Deng [6] to propose a model consisting of the following equations.

2
@z a +a2}§+a3R 5 -'flsR 4
dr 1+ayT+asT" +agR+aR
dL g + @ g R
&L 9 10 —a13L (5)
dt 1+a”T+a12R
dT gl + oy, L°
— =44 +a]5L+ 16 7 17 —'a?_zT (6)
dr 1+ ogl+aol” +@agRT +aa RLT

where R, L, and T are concentrations of GnRH, LH {above the basal level), and testosterone, respec-
tively. The first term in eq. 4 accounts for the autoregulatory effect of GnRH and T on GnRH secretion.

. The second term represents the removal of GnRH proportional to the amount present, and similarly for

all the last terms in eqs. 4-6.

The factor “10R in eq. 5 accounts for the stimulating effect of GnRH on the release of LH, while
ag accounts for the autonomous secretion of LH independent of GnRH. The term @, 5L in eq. 6 accounts
for the stimulating effect of LH on testosterone secretion, while a, is the secretion rate of T independ-
ent of LH. The factors in the denominators of the positive terms in the 3 equations account for autoreg-
ulation on the rates of secretion of all 3 hormones.

Taking into account the cascade effect of the system described earlier, we can assume that the
time responses of the three components in the above system are quite diversified, and scale the dynam-
ics of the cascade by means of two small dimensionless positive parameters € and & as follows, Letting

© 2002 IUPAC, Pure and Applied Chemistry 74, 881-890
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ay as il B &3 2|5 *g o7
=K, = ‘\‘::EST‘ = — =—, =—; =, == a =, = —=,
x=Ry=¢lL.z A4 = e A5 S ey AT e AR E T S s ST A T T A =
o3 X9 _ & o) N LFY) -
=—=2 g = —=, dyp = —==, doy = ——, and ayy =—2=, we are led to the following system.
ag - 19 22 20 =5 21 25 =75 g Sy
dx ay +arx +azx*
—_= 1 22 3 5 —dgx = f(_x,y,z) (7)
dt  1+agz+asz” +agx+ax
dy ag + q1pX
=gl ————q = gg(x.y.2) 8
dt []+a1;z+a|2x 13y 3%y ®
dz ey +aygy”
—=£8 ag +a15y+ 3 —ainl EE(S!’!(I,)’,Z) (9)
dt l+alsy+a19y +a20xz+a21xyz
We are able to show that the relative positions of the 3 equilibrium manifolds f=0, g = 0 and
h = 0 will be as depicted in Fig. 3 if the following conditions hold:
ag < ay (10)
agttg —a; <0 (11}
a5 ajy + a7 g +2a15 a9 > dy Ay (12)
2747 +4p3 < 0 (13)
43+ 2750 \ (14)
Y1 < ¥ @0d ¥y < ¥y (15)
where
2
s
=2 16
p=3 (16)
253
—_rp 17
q 77 (a7
agag —
s= 285 (18)
,.a-,-ag
f=_a (19)
20763
2
|
U=y ——-L (20)
23
C1Cy 2C1
V=Cq — —_— (21)
Y
o= fGelg —d3 22
azag
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¢y = B 4 (23)
ayag
a
c3=——1 (24)
a-,-ag

while y,, y, are the y-coordinates of the minimum and maximum points, respectively, on the f=g =0
curve, and y_, v, are those of the =k = 0 curve, as seen in Fig. 3. Specifically, inequality (15) is the
separation condition which ensures that the slow manifold & = O separates the two stable branches of
the curve f= g = 0 for y in a certain interval containing the point where f= g =h = 0.

- The system, initially at a generic point, say point A of Fig. 3, will make a fast O(1)} transition,
indicated by three arrows, to the stable portion of the slow manifold f= 0 (point B in Fig. 3). As point
B is approached, y has slowly become active. An O(g) transition at intermediate speed, indicated by two
arrows, is made along f= 0 in the direction of decreasing y, since g > 0 here, to point C on the stable
part of the curve f= g = (. From point C, a stow O(&d) transition, indicated by a single arrow, is then
made along this curve in the direction of increasing z, since 4 > 0 here below the surface = 0.

Once point D is reached, the stability of the manifold is lost. The (1) time-scale becomes dom-
inant once again. Hence, the orbit follows a path close to the curve y = constant, z = constant, at high
speed, bringing the system to point E on the other stable branch of the manifold f= 0. This is followed
by a motion at intermediate speed on f= 0 to peint F on the curve f = g = 0 Consequently, the system
will stowly develop along this line in the direction of decreasing z, since 4 is now negative.

At point G on this curve, the stability will again be lost and a fast transition will bring the sys-
tem back to point H on the stable portion of f= 0, followed by a motion at intermediate speed to point
I on the curve f = g = 0, before repeating the same previously described path, thereby forming a closed
cycle IDEFGHI. Thus, the existence of a limit cycle in the system for £ and § sufficiently small is
assured. The exact solution trajectory of the system will be contained in a tube about this closed curve,
the radius of which tends to zero with £ and 6.

Fig. 3 Shapes and relalive positions of the equilibrium manifolds in the case where a limit cycle exists. Here, three
arrows indicate fast transitions, two arrows indicate transitions at intermediate speed, and a single arrow indicates
slow transitions.

© 2002 IUPAC, Pure and Applied Chemisiry 74, B81-890
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A computer simulation of eqs. 7-9 is presented in Fig. 4 with parametric values chosen to sat-
isfy the inequalities (10-15). The solution trajectory, projected onto the (y, x)-plane, is seen in Fig. 4a
to tend to a limit cycle as theoretically predicted. The corresponding periodic time series of LH is shown
in Fig. 4b.

“
WOV TV

0.00 —

l i l 4 D T l L} I L) I L)
10000 12500 15000 17500 20000 10000 12500 15000 17500 20000

t t
4b)

Fig. 4 A computer simulation of the model system of eqs. 7-9 with parametric values chosen to satisfy the conditions
identified in the text for which periodic solutions exist. The solution trajectory, projected onto the (v,x)-plane,
is seen in (a) to tend toward a stable limit cycle as theoretically predicted. The corresponding time series of
GnRH (x) and LH (y) are shown in (b). Here, £ = 08. 6 = 0.05, a;, = 0.2, @, = 0.1, a3 = 3, g4 = 0.1,
as = 0.01, ag = 05, a;= 2, ag = 0.5, ag = 0.05. a;5= 135, ap = 1.0, a;, = 0.2, aq= 0.01, = 0.2, a5 =0.1,
a;6=01,a7;=01,a3=02,0q3=02,0a5,=0.1,a,; =01, and ay, = 0.1.

Extension to higher-dimensional systems

In order to extend the above concept to higher dimensional systems, let us consider a system of n + 3
differential equations which may be written in the form

© 2002 IUPAC, Pure and Applied Chemistry 74, 881-890
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i=ﬁ'(xa)’;2aw2a) ’ R o (25)
v=¢€G(x,y,7,w; ) o - ' {26)
y =86 Hix,y,z.w;0x) - 27
w=gén K{x,y,2,w;0) (28)

whe}re £, 8, and 1 are small positive constants, oe RN is the N-dimensional vector of system parameters,
X
while | y |e %> and
oy
W
w= :2 e RV
W

n

are the n + 3 state variables, and

[ A Ax,y.2,wicx)
Kyx,y, 7w
. K=| Axy )
| Ay(x, 5,2, W 00)
¢ . Hence, x is the fast variable, y the intermediate, z the slow, and w,i=1,2, .., n, the very slow com-

ponents of the system. . :
Employing the same line of arguments as above, we first assume that w is varying extremely
s slowly in comparison to the first three components x, y, and z. Then, we may initially assume that w is
kept frozen at a constant value w(0) while x, y, and z vary according to the three-dimensional system

§=£Glxy, L w0l =Eg(x,7.2) G30)

- y= €06 Hlx, v, 7, w(0)ae] = g8 h(x,v,2) 3D

Thus, if, for suitable parametric values ¢, the relative positions of the three equilibrivm manifolds
of the system (29-31) are the same as those three shown in Fig. 3, then trajectories will develop as
described earlier. However, as w varies with time, though very slowly, the shapes and positions of the

! three manifolds shift slowly as time passes. The coordinates of the points m, M, and O are, in this case,
. [xm(w;a),ym(w;a),zm(w;a)], [xpg w5 0, yp(ws 00,z (Wi )], and [x(w; 00,y (w; 00,z (w,00)] respectively,
since F, GG, and H are all functions of w.
" Moreover, if we further assume that each of the equations

Kz, y,zw,)=0, i=12,...n, (32)
can be solved for z as an explicit function of the other components:

1=Z(xy.wie), i=12...n, (33)

© 2Q02 IUPAC, Pure and Applied Chemistry 74, 881-890
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then separation conditions are needed to ensure that the mamfold H =0, as well as those described by
the equations in (33) are positioned in between the two stable branches of the curve F = G = 0, in order
that a limit cycle exists. These conditions are stated in the following theorem, under all the assumptions
mentioned above.

Theorem: Suppose that the functions F(x, y, z, w;0), G(x, ¥, z, w;t0), H(x, y, z. w; @), and K(x, y,
z, w; @), are continuous, and that the functions xy,(w; 00,5, (w;®), X (W;0),2,(wW;0Q), Xo(w;00,20(w;0),
and Z, i =1, 2, ..., 1, are continuous and bounded. If, for some permissible value of &, and each fixed
value of w, there exists a unique equilibrium point O, where F = G = H =0, and K = 0, such that

sup X, (Wi ) < inf xg (w; o) 34)
W w

supxp{w; 00} < inf xpg (w; ) (35)
w w

Sup zp, (w;ct) <mininf Z; (36)
w P4

maxsup Z; < inf Zyy(w;0r) 37

i A w

where the supremum and infemum of Z, are taken over its domain A; which is a subset of R™2 then a
limit cycle exists for the system of eqs. 25-28, provided that &, 8, and 7, are sufficiently small.

CONCLUSION

Analysis of a self-regulatory endocrine system that incorporates a cascade mechanism has been eluci-
dated through modeling and arguments based on the singular perturbation principles that have exploited
the highly diversified dynamics of the cascade system. The method decomposes the system into fast,
intermediate, and slow components. The slow-motion trajectories lie on the equilibrium manifold of the
fast component. The existence of limit cycles characterized by fast transitions between stable equilib-
ria gives rise to periodic solutions. Thus, the temporal secretion patterns often observed in clinical data
[1,2] appear to be the effect of the inherent cascade mechanism combined with the mixture of negative
and positive feedback autoregulation process, giving rise to a natural frequency in the pulsatile mode of
secretion. When this is interfered with by signals from the neural components or other external factors,
irregular secretion patterns may result which have been frequently observed clinically [1,2].

The above analysis provides an example of how episodic activities in a cascade system may be
modeled and explained. The technique has then been extended to higher-dimensional systems in order
to be capable of coping with multiple-component cascades.
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One-compartment, mathematical models for pressure controlled ventilation, incorporating volume
dependent compliances, linear and nonlinear resistances, are constructed and compared with data obtained
from healthy and (oleic acid) lung-injured pigs. Experimental data are used to find parameters in the
mathematical models and were collected in two forms. Firstly, the P.—V curves for healthy and lung
injured pigs were constructed; these data are used to compute compliance functions for each animal.
Secondly, dynamic data from pressure controtled ventilation for a variety of applied pressures are used
to estimate resistance parameters in the models. The models were then compared against the collected
dynarnic data. The best mathematical models are ones with compliance functions of the form C(V) =
a + BV where ¢ and b are constants obtained from the P.—V curves and the resistive pressures during
inspiration change from a linear refation P = R( to a nonlinear relation P, = RQ* where @ is the
flow into the one-compartment lung and ¢ is a positive number. The form of the resistance terms in the
mathematical models indicate the possible presence of gas-iiquid foams in the experimenta!l data.

Keywords: oleic acid injury; mathematical model; variable compliance.

1. Imntroduction

Oleic acid-injured animal models are used to test a wide variety of physiologic approaches and adjunctive
therapies in mechanical ventilation (Bowton & Kong, 1989; Hemandez et al., 1990; Wilson er al.,
2001). Using animal models of lung injury and disease, researchers have probed acute physiclogic and
therapeutic techniques ranging from liquid ventilation (Sawada et al., 2002), splanchnic perfusion and
oxygenation (Jedlinska er al., 2001}, ventilatory support (Martynowicz ez al., 2001; Mutch ez al., 2000,
Nam er al., 2000; Neumann er al., 2000; Neumann & Hedenstierna, 2001) to tracheal gas insufflation or
TGI (Carter et al., 2002; Cereda et al., 1999; Zhan er al., 2001). One of the more important uses of oleic
acid-injury models is to evaluate the efficacy of recruitment manoeuvres (Cakar et al., 2000; Crott er al.,
2001; Martynowicz et al., 2001; Pelosi er al., 2001; Van der Kloot et al., 2000). In this paper we report on
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@ The Author 2005, Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications.
All rights reserved. For Permissions, please email: journals.permissions@oupjoumnals.org
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data collected from pigs that were subjected 10 mechanical ventilation before and after oleic acid injury.
Using these data, robust mathematical models of prevailing lung mechanics are constructed that capture
the differences in pre- and post-injury physiology of the animals. Such;accurate mathematical models
allow prediction of key outcome variables of mechanical ventilation: tidal volume, average volume, end-
expiratory pressure, mean alveolar pressure, and ventilator power. The physiologic parameters of the
animals, compliance and resistance (both inspiratory and expiratory), must be identified so that these
quantities can be used in the dynamic mathematical models. Using the static elastic pressure—volume
(P.—V) curves, compliance functions are constructed for each animal and the dynamic data are used to
estimate inspiratory and expiratory resistance constants.

The experimental protocol was approved by the Animal Care and Use Committee of Region
Hospital; all animals were managed according to NIH standards. In these animal studies, pigs were
anesthetized with pentobarbital, paralyzed, and tracheally intubated. Mechanical ventilation was initiated
using pressure controlled ventilation with applied pressure (P} of 10 cm H2O during inspiration,
positive end-expiratory pressure (PEEP) of 5 cm Ha0, F1O, of 0-6, and duty cycles of either 1/3, 1/2,
or 2/3. Continuous IV general anesthesia and paralysis (pentobarbital and pancuronium) was provided.
P.—V curves were then collected for each animal. The pigs were ventilated using different combinations
of duty cycles and applied airway pressures during inspiration (Py,,).and expiration (Ppeep); the time,
airway pressure, and flow were measured over several cycles of the ventilator. Lung injury was then
induced by oleic infusion using a standard protocol and static P,—V curves again measured. Using the
same ventilator settings that were employed before injury, data were again collected for time, airway
pressure, and flow. .

The mathematical models used to analyse the experimental data are based on a unicompartmental
model that permits the compliance of the respiratory system to vary with lung volume: i.e. elastic
pressure, P, is given by P, = F(V) where V is the lung volume at any instant of time above its
rest volume and F is a function that can be calculated from the P.—V curves during inspiration and
expiration. Furthermore, the models permit the resistive pressure P, to depend on the flow Q = |V|ina
nonlinear fashion.

The paper is structured as follows. A brief overview of variable compliance is presented in Section 2,
showing that the compliance of the respiratory system can be approximated by continuous linear
functions of the volume V. In Section 3, a mathematical model for pressure controlled ventilation with
variable compliance, linear and nonlinear resistances is then constructed. In the clinical setting, the
clinician sets the levels of applied airway pressures (P, and Ppeep), frequency of breathing ( f), and
the inspiratory time fraction or duty cycle (D) while the compliance (C) and resistances (R, and R,) are
uncontrolled variables. The key outcome variables of the ventilation are the tidat volume { V), minute
ventilation (Vg), end-expiratory pressure ( Pey), mean alveolar pressure (Pn), and power ( W.,). These
quantities are computable from the mathematical model.

Data for the validation of the mathematical models were sampled from data collected in other
studies at Region Hospital. Although the database included several animals, in this paper we restrict
our discussions to three pigs (labelled A, B, C). The ideas presented here were tested on other animals
and found to be consistent with the data sets from the three pigs. For brevity, we do not include the extra
data.
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TABLE | One-segment compliance function parameters for inspiration

and expiration, pre- and post-injury, for a particular animal (Pig A}
£

Pre-injury Post-injury
Parameter Inspiration Expiraton Inspiration  Expiration
aj 0-0419 (-0952 0-0121 0-103™
b; -0-00272 —-0-0388 0-024} —0-0449
P, Pre--injury P, Post—injury
49 * L
. 30 -
30 < =
4 20 =
20 < _ . )
10 s 10
0-4 0-8 1-2 v 0-4 0-8 1-2 v

FiG. 1. Pe—'V data for a particular animal (Pig A) approximated by a one-segment compliance function.

2. A variable compliance model for the P~V carves.

In Crooke et al. (2002}, a variable compliance model was proposed for pressure controlled ventilation.
In its simplest form, it assumes that the elastic pressure in the lungs is of the form

1%
P, = 1
T a+t+ bV 21

where P, denotes the elastic pressure in the one-compartment lung, V is the volume of the compartment
above its rest volume, and the parameters, 2 and b, are obtained from experimental data. In the collection
of the elastic pressure—volume data, it is assumed that the end-expiratory pressure of the lung is zero. In
other words, these data were collected without applied PEEP after a protracted exhalation minimizing
auto-PEEP.

We call the linear function, C(V) = a + bV, the compliance function of the model. Since, in
fact, C = %%, the approximation C(V) = a + bV is only accurate provided !’a‘i & 1. If C varies
too quickly with V, the physical data for the compliance function may deviate significantly from the
linear approximation ¢ + bV . The parameters, « and b, of the compliance function during inspiration
may be different from those during expiration. That is, there is hysteresis. During passive ventilation,
C represents the compliance of the total respiratory system, lungs and chest cavity, Because during
these experiments, the animals were pharmacologically paralyzed, this is an appropriate assumption. In
Fig. 1, each P,~V curve (inspiration/expiration and pre/post-injury) for a particular animal (Pig A) is
approximated by functions of the form P, = V /(a + bV) with a and b chosen to give the best least
squares fit. The constants for this data set are listed in Table 1. As can be seen in Fig. 1, we obtain
a reasonable fit of the experimental data, although there is some error at the extremes of the curves.
However, as will be seen in later sections, our model is found to uniformly produce good approximations
to experimental data.
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3. Maodels for pressure controlled ventilation

Along with the P,—V data collected for each animal in this study, pressure controlled ventilation data was
collected for a variety of P, and Pp..p combinations using breaths of'6 s in length and an inspiratory
time fraction or duty cycle of either 1/3, 1/2, or 2/3. In this section we atiempt 10 match the data with a
variety of mathematical models for controlled preset ventilation. .

Several mathematical models for pressure controlled ventilation of a single compartment lung were
examined. It is assumed that breaths are identical and are of duration t;,;. Each breath is subdivided
into an inspiratory phase of length r; and expiratory phase of length 1, so that t;5; = #; + fo. At any
instant of time in [0, t;0; ), there is a pressure balance between applied pressures or ventilatory pressures
(Pyent), pressures due to elastic forces { P.), pressures due (o resistive losses (P, ), and the end-expiratory
pressure (P, ):

Pr+ Po + Fex = Pyen:.

In this model, the symbol V() represents the volume above the volume of the lung at the end of
the previous breath. Hence, V(1) is referenced to a constant volume V,, which is explained below.
Assuming breaths of uniform length (7;5), V() is zero at the beginning and ending of each breath.
We define the end-expiratory volume (V,,) to be the volume of the lung above its rest volume dug .
to P.y; that is, P,y = Ve /C{Ve,). We denote by V;(z) the volume of the compartment above V,,
during inspiration and by V,(¢) the compartmental volume above V,, during expiration. We assume that
Vi(0) = V.(1,5:) = 0. Vr denotes the tidal volume and it is assumed that Vi = V;(t;) = V.(#;). For the
elastic pressure, we assume that P, = V/C (V) where C(V) is the compliance function discussed in the
previous section. For the resistive pressure, we assume that P, = R(Q¢ where ( is the flow into or out
of the lung, i.e. ¢ = |dV/dt|, R is a constant, and € is a positive parameter. We allow R, ¢, and C(V)
to be different during inspiration and expiration. In addition, during inspiration, a constant pressure Py,
is applied to the airway, Py.ny = Py, and during expiration, a constant pressure Pp,ep is maintained
until the start of the next breath, Pyeny = Ppeep. With these assumptions, we constructed the following
mathematical model for pressure controlled ventilation:

Inspiration:
R; (dv) + i + Poy=Poey, 0151 (3.1)
dr Ci(Vy)
Expiration:
—R, ( e )E' e P = Poeps i <1 <t (3.2)
d Ce(Ve) :

Differential equation (3.1) has the initial condition V;(0) = 0 and (3.2) requires V,(t) = Vr. The
constant P,y {end-expiratory pressure) is determined by the boundary condition Ve(t,,;) = 0. The
relationship between Py and Vey is given by Py = Vo / Co(Vey).

Special cases of the above model have been treated in the literature. In the case when €; = ¢, = |
and C; (V) = C.(V) = C, analytical solutions of the system of differential equations can be found (see
c.g. Burke et al., 1993; Marini & Crooke, 1993); fore; = ¢, = [/2 or2 and C; (V) = C.{V) = C, see
Crooke & Marini (1993); and when ¢; = €, = | and C;{V) and Ce( V) are piecewise linear functions of
V, see Crooke et al. (2002).

Data collected for the pre- and post-injury experiments are composed of ventilator delivered and
retrieved volume, flow, and airway pressure, sampled every 0-025 s. Various combinations of applied
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F1G. 2. Expetimental data for a pre-injury pig (Pig B) with Pyer = 10 ¢m Hy0, Ppeep = 0 cm H30, 515y = 65, D = 1/3, The

collected data for volume, flow, and airway

pressure are presented in (a), (b), and {c}, respectively.

pressures ( Pse; and Ppe.p) and inspiratory time fraction (D = 1;/1,0,) were used for ventilator settings.

A sample of the collected data (vol
If we assume that the dynami
equations (3.1) and (3.2), then the

ume, flow, and airway pressure) is pictured in Fig. 2.
¢ behaviour of the physical system is modelled by the differential
unknown resistances, R; and R,, in theory, can be obtained from the
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experimental data. For example, if we assume that the resistive pressure, P, is directly proportional to
an exponential power of the flow during inspiration or expiration, then

i i Vi
P,”:R,-Qf ZPMI_P”_C,'(V,') (3-3)
v , ‘
Pr(e) =K. le. = ""Ppeep + Pex + Ce(i/e) (3-4)

where V;, V., Q; and Q, are lung volumes and the fiows in and out of the lung during inspiration and
expiration, respectively. In (3.3} and (3.4), we assume that P, = Pp,.p and the compliance functions
are obtained from the P,—V data. The resistive pressure can then be plotted versus the flow and volume
and a nonlinear regression algorithm used to estimate R;, R, €;, and ¢,. Significant variability in the
data can occur for a particular animal and among the various data sets. This is primarily a problem in
the expiratory data since the flow levels are small and subject to experimental error. Furthermore, the
resistive pressure dependence on the flow must be checked for different dynamic settings: Pser, Ppeep,
and D.

Various models (i.e. different combinations for ¢; and €.) were investigated. The accuracy of (3.2) _
with ¢, = 1 was universally good over the various data sets. The accuracy of (3.1) with €; = 1 in some
cases seem to deteriorate at a particular point in the time during inspiration, which we denote by #;,. We
speculated that a new and different dynamics is in control for #;, < ¢ < ;. The difference was assumed
to reside solely in the resistive pressure behaviour during inspiration. This led us to a new hybrid model
which is defined by the differential equations (3.5)+3.7). In particular, the model assumes that there is
a change in the resistance law during inspiration from P, = RQ% to P, = R(Q. The change-over
time, #;,, was found from the experimental data. The initial conditions for each differential equation are
Vi (0) = 0, Vi, (1)) = Vi, (t;)), and V,(1;) = Vi, (#;). In particular, we have

Inspiration:
R: (‘%)G'JF_V"'—H =P, 0<1< 8 (.5)
AL dr CilViy +Ver) 7 7 TR '
dvi, [\ Vi
R; 2 2 —— 4+ Py =Py, 4 <t <4 .
” (‘ dt ) + Ci(viz + Vex) + Fex Buar: ti < n G6)
Expiration:
dv, [\* 1% .
—R, (’ —£ ) F o Pox = Ppepy 1 <1 < oy 3.7
dr Ce(Ve + Vex)

The values of ¢;,, €;,, €., together with R;,, R;,, and R,, were found by nonlinear regression of resistive
pressure—flow data. The value of the change-over time #, was taken also from observed data to be the
time at which an abrupt change in the slope of the resistive pressure—flow curve occurs. If this change is
not observed in the data, which is the case for most of our pre-injury data, then the change-over time #;,
is set equal to 1.

In Fig. 3, we present an example of the regression fit of P,—Q curves of both inspiration and
expiration periods for a pre-injury. data set, showing curves using five different values of €. For this
particular animal (Pig C), we found r;, = #; = 2 5 in the pre-injury data, so that the inspiration period
consists of only one part, namely 0 < ¢ < 1, in which ¢;, = 1 and R;;, = 10-3615 yielded the least sum -
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TABLE 2 The vaiues of respiratory resistunces, R;
and R, obtained for five different values of the flow
exponents {€) for inspiratory period and expiralory
period of a particular pre-injury pig (Pig B). The
Sum of Squares and Mean Square are from the

Mathematica ANOVA t1able used in the nonlinear v
regression
Inspiration
&) Ri, Sum of Squares  Mean Square
050 6-68892 45-7886 0-6024820
0.75 8.70176 10-9364 0-1439000
1.00  10-3615 4.77519 0-0628315
1.25 119432 7-54956 0-0993364
1-.50 13-5367 13-9685 0-1837960
Expiration
£ Re Sum of Squares  Mean Square
0-50  3-00691 34.3241 0-220026
0-75 4.33729% 260255 0-166830
1-00 5-52216 25.5054 0-163496
1-25  6-68317 26-9782 0-172937
1.50 790083 28-8444 0-184900

(b) .

o

FiG. 3. Curve fitting of resistive pressures during inspiration (a} and expiration (b} for pre-injury pig (Pig C) with different values
of parameters (R;, R, and €) given in Table 2. Here, Pyey = 20 cm HyO, Ppeep = 10 em Hp0, 1;0r = 65, and D = 1/3, while
iy =t = 2s.Forboth (a)and (b); —— —¢ = 1.5,----- € =125, e=1,— — —e=075-c---- € =05,
and e e rcal data.

of squares, compared with the other values of ¢; tried, as can be seen in Table 2. During the expiration
period for this pre-injury case (Fig. 3), ¢, = 1 and R, = 5-32216 yielded the least sum of squares, as
can be seen in Table 2, as well.

In Fig. 4, we present an example of the nonlinear regression fit of P,—Q curves of inspiration and
expiration periods for a post-injury data set, showing curves using five different vaiues of €. Here, we
found #;, = 0-525 with ; = 4, so that the inspiration period is split into two parts; one during 0 <1 < 1
and the other during 1;, < ¢ < 1. During the first part, we found ¢;, = 1 and R;, = 17-3134, while

8
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TABLE 3 The values of respiratory resistunces. Ry,
R;,, and R, obtained for five different values of the
ﬂo;v exponents (€) for the first part of inspiration, 0 <
t £ t;,, second part of inspiration, 1;, <1 < 1;. and
the expiration period, t; < t < U of a pariicidar
post-injury pig (Pig C} T

Inspiration
Ot gy =0525

£\ Ry Sum of Squares  Mean Square
0-50 16-9763 170-854 8.54272
075 17-4100 41-5195 2-07597
1-00 173134 21-0766 1.05383
1.25 168154 79-8231 399116
1-50  16-0472 189-879 9-49393

0525 <t €, =4

£iy R;, Sum of Squares  Mean Square
0.05  4.20541 516.723 3-717430 3
025 885992 225.081 1-619290 '
050  18.3022 72-1459 0-519035
0-75 29-4639 251-702 {-810800
1-00  37.5697 664-919 4.7835%0

Expiration
. i <1 tror =6

£e R, Sum of Squares  Mean Square
050 3-17990 22.1118 0-2871660
0-75 3-5435] 6-62740 0-0860701
1-00  3-66977 5-44785 0-0707512
1-25  3.65902 10.7329 0-1393890
1-50 3.56458 19:1001 0.2480530

in the second part, ¢;, = 0-5 and R;, = 18.3022 are the best choice, as shown in Table 3. During the
expiration period of this post-injury case (Pig C), €, = | and R, = 3-6698 gave the best fit.

We carried out the fitting of P,—Q curves from several other animals, apart from the ones shown here,
and found that using different data sets still yielded the resistive pressure exponent values close to those
found for the data set of Pig C shown in Figs. 3 and 4. In other words, the resistive pressure expenent ¢,
in each separate part of the breathing cycle, is not extremely sensitive to variations of different data sets,
not changing very much from one animal to another that exhibit similar modes of gas exchange. Thus,
it appears that the resistive pressure exponent € is a constant characteristic to a specific flow dynamics
and does not mirror the varying of physical data sets, while the nonlinear resistance R is the system
parameter which reflects such variations through the process of least squares fitting.

In all our experiments, constant pressure ventilation was used. That is, the applied pressure to-the
airway is constant during inspiration. In the airway pressure data, the measurement of the applied airway
pressure by sensors is for a sudden zero pressure to Pe,; at the beginning of inspiration and then a sudden
return in zero pressure at the end of inspiration. Although a slight variation from constant pressure at the
beginning and ending of inspiration is usually encountered, this was in fact found to have no significant
effect on the resistive pressure exponent €. This is indeed borne out by the observations made by some
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FI1G. 4. Curve fitting of resistive pressures during the first part of inspiration (a), second pant of inspiration (b) and expiration
{c) for post-injury case with different values of parameters (Riy, Riy. Re, and €) given in Table 3. Here, Pger = 25 em Hp0,
Pp,;.,, =S5 cm H30, frr = 65,and D = 2/3, while ;, # 1, For(a), (b}, and (¢); — — —e = 1.5, - -~ - -

€=1, —

— € =075,

€e=05,— — —e=025

€ = 0-05, and » « real data.

€ = 1-25,
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1%
0-3r & 5
-!
0-2
0-1
> - .
1 2 3 1 &

F1G. 5. Comparison of mode! simulation and experimental data for a particular pre-injury pig (Pig C} of Fig. 3. Here, ;) = f; = 25,
Rjy = 10-3615 cm H,0/l/s, R, = 53-52216 cm HyO/lfs, and €, ='¢, = | (see Table 2). The solid line corresponds to the model
prediction of the lung volume, while the dots are data obtained from the experiment over one breathing cycle.

v
4_.&”
0-4
0-3 S -
0-2
\
0-1 4
w2 4
1 2 3 4 5 %

F1G.6. Comparison of model simulation and expetimental data for a particular post-injury pig of Fig. 4 (Pig C). Here, #, =
05255, 4 = 45, R = 173134 om HyOllss, Ry, = 18-3022 cm HpO/lis, R, = 3-66977 em HaO/s, €5, = €, = 1, and
€;; = 0-5 (see Table 3). The solid line corresponds to the model prediction of the lung volume, while the dots are data obtained
from the experiment over one breathing cycle.

,

carlier researchers mentioned by Smith er al. (1991) that there was no convincing physiologic evidence
of an advantage on gas exchange derived from a given inspiration gas flow pattern. According to these
researchers, there were no significant differences in gas exchange or dynamics between various air fiow
waveforms. In view of this and our earlier discussion on the sensitivity of the resistive pressure exponent,
which appears to be characteristic of a specific flow structure, our assumption of a square wave form,
and the slight variation thereof, were found to have little effect on the exponent, as expected.

The model (3.5)+3.7), with ¢ and R found as described above, was then used to compare with pre-
injury and post-injury data of volume versus time. These comparisons with the experimental data are
shown in Figs. 5 and 6, respectively. The hybrid model was used for other sets of experimental data and
uniformly produced accurate approximations. Thus, this defines a class of models that is mathematically
tractable and capabie of accurate simulations of mechanical ventilation of normal and diseased lungs.
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TABLE 4 Theoretical tidal volumes, end-expiratory pressures, mean alveolar pressures, and average
lung volumes for different levels of applied PEEP using the hybrid model of Figs. 3 and 4 for both pre-
and post-injury cases of a particular animal {Pig C)

g

Pre-injury Post-injury
PEEP Vr Pex Py Vave Vr Pex Py Vave
0-0 0-66529 0-00473 613007 0-55141 0-62441 0-15164 1322760 0.49562
1-0 0-63207 1.00310 6-82353 0-52392 0-58600 1-10617 13-71900 0-51424
2-0 0-59884  2-00203 7-51701  0-49641 0-54978  2-07399 14.20520 0-44356

3.0 0-56559 3-00132 8-21049 0-46889 0-51569 3.0513% 14-68550 0-41915
4-0 0-53233  4.00086 8-90398 0-44136 0-48361 4-03561 15-16080 0-39581
5-0 0-49907 5.00056 9-59747 0.4138] 0-45340 5-02464 15-63000 0-37606

Having mathematical expressions for _V,-(r) and V,(r) permits the calculation of tidal volume Vr,
average volume V., minute ventilation Vg, end-expiratory pressure P, and mean alveolar pressure
Py, In particular, V3 = V;(1;), Pey is determined from solving V,(1;,;) = 0, and the other two ocutcomes
are defined by _

4
Vave = l/ Vi) d:
i Jo

L

D [ Vi(2) 1-D f’”’" Ve(®)
Py =— dr + ———————— dt + Pex.
o 8 fo Ci(Vi(t) + V) te Jy  Ce(Ve(t) + Vex) *

In Table 4, theoretical values for these quantities using the hybrid model simulations shown in Figs. 3
and 4, before and after injury, are shown. As one can see, there are substantial reductions in the tidal
and average volumes at different PEEP levels. At each level of PEEP, the reductions in tidal and average
volumes are approximately 5%. However, approximately 75% of the beginning (PEEP = 0) tidal and

and

“average volumes still remains at the last level of PEEP (PEEP = 5 cm H20). One possible explanation of

the drop-off in volumes from pre- to post-injury is the large resistance, R;,, in the post-injury simulations.
Although we do not show the calculation in this paper, it is possible to investigate changes in the key
outcome variables as functions of f and D. This could give the clinician insights into the optimal choice
of f and D to ventilate at a given Py and Ppeep.

4, Discussion and conclusion

An interesting speculation about the physiology during this mechanical ventilation (pre- and post-injury)
comes from the use of nonlinear resistive pressure P, = RQ¥. It was shown in Deshpande & Barigou
(2000) that the flow of gas-liquid foams in vertical pipes follows the rheological relationship

16LQ"

AP =k
mot

where AP is the pressure drop along the pipe, p is the radius of the circular pipe, L is its length, k is
a constant, and O is the steady flow of the foam—liquid. The parameter » is a number in the interval
[0-4, 0.9 with its exact value depending on the foam structure, liquid viscosity, and concentration. The
hybrid model fits the expetimental data quite well in the inspiratory time interval [1;,, #;], especially for
the post-injury data sets, perhaps because the airways of the lungs of the pigs are filled with gas-liquid
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foam due to edema (the lung failure condition caused by the accumulation of the fluid in the lungs). The
magnitude of R;, can then be used to indicate the severity of the edema which i1s a result of the oleic
injury and/or the ventilator induced injury. This hypothesis may have important clinical implication since
the model seems to agree well with experimental data (Hubmayr, 2002).

Our curve fitting in the pre-injury case invariably yielded 7;, = r; and ¢; = ¢;, = | during the
inspiration period, with the exception of only a few cases where 1;, was found to be a little less than #;. In
such a case then ¢;, = 1 and ¢;, = 0-5, or very close to it. We speculate that, although this is a pre-injury
data set, a short period of liquid—foam flow may have resulted from an injury induced by prolonged
ventilation with too high an applied pressure, before being subjected to oleic acid injury. As Scarpelli
(2003 ) has asserted in his discussion of the physiology of the alveolar surface network (ASN) that ASN
is the totally fluid continuum circulating through ultrathin molecular conduits formed by appositions of
unit bubbles of alveolar gas. In fact, ASN is the analogue of foam in vitro, and operates in all regions
of the lung, at all lung volumes, beginning at birth and continuing throughout life. The characteristics of
alveolar flooding are then explained by the ASN conformation. According to Scarpelli (2003), they are
analogous to liquid-overloading of an established foam in vitro to produce *froth’, in which the ratio of
continuous phase (liquid) to dispersed phase (gas in unit bubbles) is significantly increased.

In fact, one function of the pulmonary surfactant system is stabilization of the fluid balance in the -
lung and protection against lung edema. However, it has been shown that mechanical ventilation can
damage the lungs when a mode of ventilation that allows high mspiration lung volumes and fow levels
of positive PEEP is applied {Vazquez de Anda & Lachmann, 2001), leading to loss of surfactant from
the airways and eventually pulmonary edema.

The present work presents one-compartment mathematical models of respiratory systems,
incorporating variable compliances and nonlinear resistances. The predictions of the hybrid model were
compared against experimental data and were found to uniformly produce accurate approximations.
Desired outcomes of mechanical ventilation are a minute ventilation Vg that is adequate to protect the
systemic pH (via removal of CO;) and a mean alveclar pressure which is sufficient to maintain lung
volume and support adequate oxygenation. In Table 4, the tidal volume Vr, end-expiratory pressure P,,,
mean alveolar pressure P, and average lung volume V,,., are shown for different levels of PEEP, using
Pser = 20 cm H20, #;or = 6 5, and t; = 2 s in pre-injury case and Py, = 25 cm HaO, 55 = 6 5,
and t; = 4 s in post-injury case. These calculations demonstrate the usefulness of a mathematical model
as a means to experiment with the ventilation parameters to achieve the desired levels for the outcome
variables. The increase in applied PEEP is observed here to lower the tidal volume and the average lung
volume in both the pre-injury and post-injury cases. However, the magnitude of this change varies with
the injury.

It is worth nothing that incorporating a variable compliance and the nonlinear resistance was critical
to obtain models that accurately porirayed the experimental data. With all the caveats of using a one-
compartment model for a complex physical system, the mathematical model may indicate important
physiologic processes that are present in injured lungs. For example, is the value of r;, in the interval
[0, ;] and/or the magnitude of R;, an indication of the level of injury? Alternatively, are shifts in the
parameters, a; and b;, of the compliance function indicative of injury and if so, what is the level of
injury?

We have developed a hybrid model, depicted in (3.5)—(3.7), which is very robust, mathematically
tractable, and capable of accurate simulations of mechanical ventilation of normal and injured lungs.
The model will be used to study effects of clinical-set inputs on the key ventilation outcome variables.

An example of why such approaches may be useful is the controversy concerming appropriate
treatment of ARDS patients in ARDSNet studies (Stewart, 2002). The National Institute of Health
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has recently stopped these trials involving 20 medical institutions because it is difficult to determine
if the patients in the control group were receiving inferior treatment. An outcome based analysis of the
ARDSNet trails, along with four other independent studies, raised questions about the effectiveness of
low tidal volume ventilation on patient mortality (Eichacker et al., 2002). There is great variation from
patient to patient and treatment to treatment between studies. Accounting for this variability is difficult
and making judgements of the effectiveness of low tidal volume ventilation by this lbp-down approach to
the data is problematical. If it was possible to measure, non-invasively and instantaneously, physiofogic
parameters whose values indicate the level of lung injury during mechanical ventilation, then some of
the uncertainty of the treatment could be resolved, Furthermore, having the resistance and compliance
parameters permits calculation of important lung pressure variables such as the peak and mean alveolar
pressure, key predictors of lung injury.
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A COMPARISON OF THE AGE DISTRIBUTIONS IN THE
DENGUE HEMORRHAGIC FEVER EPIDEMICS IN SANTIAGO
| DE CUBA (1997) AND THAILAND (1998)

P Pongsumpun', S Yoksan? and IM Tang??

‘Department of Mathematics; Department of Physics, Faculty of Science, Mahidol University,
- Bangkok 10400, Thailand; *Center for Vaccine Development, Institute of Science and
Technology for Research and Development, Mahido!l University, Nakhon Pathom 71730, Thailand

DO

Abstract. The age profiles of the infected populations of two dengue hemorrhagic fever (DHF)
epidemics, the 1997 epidemic, in Santiago de Cuba and the 1998 epidemic in Thailand, are
compared. Using an age-structured model of disease transmission, the dependence of the forces
of infection on age was determined for each epidemic. The difference in the behavior of the
two epidemics and the role of primary and secondary infection in the development of DHF are

discussed.

1
| INTRODUCTION

‘Dengue hemorrhagic fever (DHF) is an
emergmg viral disease that is spreading through-
out‘the tropics. Since its first appearance, in
the Philippines in 1953, DHF has become the
most important arthropod-borne viral disease
of humans (WHO, 1997). It has been estimated
that there are between 50 and 100 million
cases of dengué fever (DF) a year; more than
250,000 annual cases of dengue hemorrhagic
fever (DHEF) result in some 10,000 infant deaths.
Classu: dengue fever is a disease of older
ch:ldren and adults; DHF, on the other hand,
is p_nmanly a disease of children under the age
.. 15 (Gubler, 1998). DHF differs from DF:
plasma leakage is seen in DHF. Both diseases
are caused by one of four serotypes of the
dengue virus, (DEN1, DEN2, DEN3, and DEN4)
which belongs to the genus Flavivirus, family
Flaviviridae.

‘ Because two of the mosquito vectors,
Aedes aegypti and Aedes albopictus, exist in
the Amencas DF has become endemic in the
New World (Pan American Health Organiza-
tion, 1994). The first severe outbreak of DHF

Correspondence: IM Tang, Department of Physics,
Faculty of Science, Mahidol University, Bangkok
10400, Thailand.

E-mail: scimt@mahidol.ac.th

Vol 33 No. 2 June 2002

in the Americas occurred in 1981 in Cuba
{(Guzman et al, 1990) and gave rise to 334,203
DF cases, 10,313 documented DHF cases, and
158 deaths. The serotype responsible for the
epidemic was DEN2. An earlier epidemic of
mild classic dengue fever. which occurred be-
tween 1977 and 1979. was caused by a dif-
ferent strain (DEN1). During this epidemic,
the sera of 44.5% of a random sample of 2,000
people contained DENI virus antibodies (HI;
hemagglutination inhibition). Strict infection
control measures adopted after the 1981 epi-
demic lead to the disappearance of DHF from
Cuba for the next sixteen years. A localized
outbreak of DHF occurred in Santiago de Cuba
in 1997 (Kouri et al, 1998; Guzman et al,
2000). The culprit was the DEN2 virus.

To get a better understanding of the trans-
mission of this disease, we compared the DHF
epidemic that occurred in Santiago de Cuba
in 1997 with the one that occurred in Thailand
in 1998. We weresinterested in the age dis-
tribution of those infected during the two epi-
demics. Most literature on DHF mentions that
the disease affects mainly those under the age
of 16; Guzman e al (1997) noted that almost
no-one under the age of 17 became sick with
DHF (Fig 1a). This is quite different from the
age pattern seen in epidemics, which occur in
countries in which the disease is fully estab-
lished. Fig 1b shows the age distribution in
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one province of Thailand during the 1993
epidemic (Ministry of Public Health, 1998).

- MATERIALS AND METHODS

Before a discussion of the differences
between the two distributions can be held, the
age distribution of the forces of infection in
" the 1997 DHF epidemic in Santiago de Cuba
must be determined. The force of the DHF
infection in Thailand during the 1998 epidemic
has already been established. Pongsumpun and
Tang (2001) who showed that the percentage
of infected people (I) in the i-th age cohort
(L) is

o Bh i,
I = Lt ————§,
oI+, O+,
for i = 2,.N-1 (i)
with
pr 11,
| = 1
o+r+
H (i
o
S = S,
Bhil, +oh .
(ii1)
and
A
‘o 1 o+ i
. (iv)

In the above, B" is the transition rate for
the virus to be transmitted to humans by
mosquitos (the force of infection); & is the rate
at which one cohort age into the next; r is the
recovery rate; A is the birth rate; p, is the death
rate of the human popuiation; and I is the
number of infected mosquitos divided by their
total number.

RESULTS AND DISCUSSION

The forces of the DHF infections can be
determined by fitting the incidence rates given

256

in Fig la to equations (i) to (iv) by varying
the values of B": this yields the values of p"
that are shown in Fig 2. The behaviors of the
forces of infection in the two epidemics look
the same, ie, an initial increase followed by
a drop to a nearly constant force of infection,
except that the initial increase is shifted 16
years in the case of the Santiago de Cuba
epidemic.

To understand why this happens and why
the age distributions shown in Figs 1a and 1b
are as they are, two theories of the pathogen-
esis of dengue hemorrhagic fever must be
considered. The first, more commonly ac-
cepted theory, is the immune enhancement or
secondary-infection hypothesis (Halstead, 1988).
According to this hypothesis, the pre-existing
heterologous dengue antibody in an infected
person recognizes a novel dengue virus and
forms an antigen-antibody complex, which then
bonds the virus to the membrane of a leuko-
cyte. Because the antibody is heterologous.
the virus is not neutralized and remains free
to replicate inside the leukocyte. These in-
fected cells then produce and secrete vasoac-
tive mediators in response to the infaciion;
these mediators cause an increase in vascular
permeability, leading to hypovolemia and shock.

In the second theory, the dengue virus
mutates as it replicates in the human and/or
the mosquito. Some of these mutations lead
to more virulent viruses: these viruses causing
DHF. Because a pré-existing antibody is im-
plicated in the first theory, the infection caus-
ing DHF must be a secondary one. In the
second theory, no pre-existing antibody is
required: primary dengue infection can cause
DHEF.

iy

If the secondary-infection hypothesis is
correct, the paucity of DHF-infected children
in the 1997 &pidemic in Cuba is under stand
able: no-one under the age of 16 would have
had pre-existing dengue virus antibodies in hig
blood because he would have been born after
the 1981 epidemic. Of the individuals under
the age of 16 years who were tested for dengue
antibodies in Santiago de Cuba. only 2% had

Vol 31 No. 2 June 2002
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Fig 1a

™ A LB e e
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Fig 1-Age distribution of dengue hemorrhagic fever. (1a) Age
-distribution of the 1997 epidemic in Santiago de Cuba.
4 (Data from Guzman et al, 2000). {1b) Age distribution
of the 1998 epidemic in Mukdahan Province, Thailand

1 (Qata from Ministry of Public Health, 1998).

—&— Santiago,de Cuba 1997

~o— Mukdahan, Thailand
1998

1
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Fig 2-Forces of infection in the two epidemics. Forces of in-
fection in Santiago de Cuba are denoted by (): forces
of infections in Mukdahan Province, Thailand, are de-
noted by (@). Values obtained by fitting equations (i)

to (iv) to the incidence rates presented in Figs 1a and

{b. '
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the neutralizing antibodies to DEN2 and
none had the antibodies to DENI1
(Guzman et al. 2000). Serological tests
showed that the dengue infections in
98% of the DHF/DSS cases were sec-
ondary. In a study of the 1994 epidemic
in Thailand (Vaughn er al, 1997) it was
found that while 93% (56 of 60) of the
children with DHF were experiencing a
secondary infection, only 4% were ex-
periencing a primary infection. Vaughn
et al (1997) also showed that the vire-
mia was correlated with the body tem-
perature of the patient; they were able
to isolate the virus in 59 of 60 DHF
patients, who were in the early febrile
stage.

However, not all the evidence
supports the secondary-infection hypoth-
esis. During the 1996-1997 epidemic in
Belem, Brazil (Travassos de Rosa e al, -
2000} none of the 24 individuals, in
whom the DEN?2 virus was isolated and
who were previously infected with the
DEN1 virus, developed DHF.  Addi-
tional evidence was obtained about the
1998 epidemic in Thailand from the
serological records of the Department
of Pediatrics, Siriraj Hospital (the larg-
est hospital in Thailand). The pediatric
ward at Siriraj Hospital admitted 316
children suffering from DHF in 1998,
Hemagglutination inhibition assay (HAI)
and IgM/IgG capture enzyme-linked
immunosorbent assay were conducted
for serom samples from all the patients.
The dengue virus (49 DEN{, 29 DEN2,
41 DEN3, and 1 DEN4) was isolated
in 120 of these patients.

We aré interested in this subgroup.
Vaughn et al (1997) have suggested that
the foll{')wing criteria be used to deter-
mine whether an infection is primary or
secondary. Primary infection: HAI re-
ciprocal titers £ 640; IgM to IgG ratio
> 1.8. Secondary infection: HAI recip-
rocal titers > 1,280; IgM to IgG ratio
< 1.8 Applying these criteria to the

257
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serological results, 56 of the 120 DHF patients
were experiencing a primary infection by the
HAI criterion; 27 were experiencing a primary
infection by the IgM/G criterion; and 13 sat-
isfied both criteria. Among. this group of 13
children, there were 7 cases in which the pri-
mary infection was due to DENI virus; 3 cases
were due to DEN?2 virus, and 3 were due to
the DEN3 virus. This would appear to con-
tradict the findings from the 1994 Thai epi-
demic, in which only 4% of DHF cases were
the results of primary infection. We examined
the records of Siriraj Hospital for the year
1999. One hundred and thirty-seven children
suffering from DHF were admitted to the
pediatric ward that year. The dengue virus was
ieolated in 31 of these patients, none of whom
..«d a primary infection based on both tests.
It appears that the DHF epidemics in Thailand
during 1994 and 1999 differed from the 1998
epidemic in terms of the primary/secondary
cause of infection. The reason for this differ-
ence is not clear. It is interesting to note that
epidemics in Thailand peak every three years
(Hay et af, 2001): 1998 was a peak year, while
1994 and 1999 were not. We are now studying
this phenomenon to see whether it is of re-

levance to the problem of primary/secondary
infection.
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Abstract

The influence of age structure in the human population in the Susceptibie-
Infected-Recovered  (SIR) wmodel used to describe the transmission of Dengue
Haemorrhagic Fever {DHF) is studied. The human population is separated into an adult class
and juvenile class with only the juveniles being susceptibie to infection by the disease. A
new expression for the basic reproduction rate is obtained. It is found that age structure
reduces the periods of oscillations in the susceptible human population, infected human
population and infected mosquito population and the tightness of the spiraling into the
endemic equilibrium state.

Key words and phrases: Dengue haemorrhagic fever, Age structure, SIR model,
Endemic equilibrium, Local stability.

1 Introduction
Mathematical modeling of disease transmission has a long history. In 1917, an
epidemiology model for malaria transmission was developed by Ross [1]. MacDonald [2] later
added a layver of biological realism to the model by providing careful interpretation and
estimation of the parameter, which should go into the model. McKenzie {3] has pointed out that
the utility of a model depends not as much on how well"a mathematical job has been
accomplished but how on well a particular question has been transiated. One is interested in
disease transmission, it is imperative that the model describes as closely as possible the
characteristics of the disease being transmitted. In this paper, we are interested in the transmission
of dengue haemorrhagic fever (DHF).
Dengue Haemorrhagic fever is one of the emerging viral diseases spreading
lhroughout the tropical regions of the world. From its first appearance in the Philippines in 1953,
it has become the most important arthropod-bome viral disease of humans [4]. Tt has been
estimated that there are between 50 and 100 million cases a year, with approximately 10,600
infant deaths due to this disease. Its emergence is associated with the rapid urbanization occurring
in the developing countries. Because two of the transmitting vectors, the dedes aegypti and
Aedes albopictus mosquitees, exist in the Americas, it has been possible for the disease and its
rather benign precursor, dengue fever (DF) , to become endemic in the New World [5). The first
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severe outbreak of DHF in the Americas occurred in 1981 in Cuba with 116,000 hospitalized
patients, 34,000 documented DHF cases and 158 deaths. Important outbreaks of DHF have also
occurred in Mexicp[6]. '

In hopes’of understanding the mechanics that allow the invasion and persistence of a
serotype of the dengue virus in a region, Esteva and Vargas [7-9] introduced a mathematical
model to provide a qualitative assessment for the problem. The model they used is based on the
SusceptiblgvInfected-Recovered (SIR} model often used to model the dynamics of transmission
of some diseases. They showed that the endemic state was globally stable whenever a parameter

R, called the basic reproduction number is greater than one. Application of an ultra low volume
0 g

{ULY) amount of insecticides (the standard method used to control the spread of dengue fever
and other arthropod-borne disease) could reduce the value of R, to below one: The value of

Ro would return 10 the above one value once the application is stopped and since the endemic

state is globally stable, the disease would retumn. Therefore the eradication program would have to
be a continuing one,

in the SIR model used Esteva and Vargas, no age structure was incorporated into the
models. While the lack of an age structure may be appropriate for describing the 1981 DHF
epidemic in Cuba [10] and the DHF outbreak in Santiago de Cuba in 1997 [11], it is not
appropriate for Thailand. Most DHF cases in Thailand oceur in children less than 15 years old. In
figure 1, we show the age distribution of the incidence rates in one province in Thailand during
the 1998 DHF epidemic {12}. Feng and Veiasco-Hemandez [13] pointed to the need of a model
that incorporates age structure into the dengue population dynamics. It is the purpose of this
paper 1o report on a DHF transmission model, which includes an age structure in the human
population. Central to any discussion of any population growth is the basic reproduction rate or

number. The basic reproduction rate or number. The basic reproduction number Ro is the

number of off-spring (secondary infection) that a parent (primary infection) is intrinsically
capable of producing. The inclusion of an age structure leads to a new expression for this number.
This is done in section 3.

Figure 1. Age distribution of
the 1998 Dengue Fever
incidence rates in Mukdahan,
a province in Central Thailand.

Incidences rate per 4000 Papulations
H

o1 67 12713 1819 2425 3031 337
Age(yeas)
2 Mathematical Model

The simplest way to incorporate an age structure into a disease in which only the
children are susceptible to the disease is to divide up the human populaticn intc two categories,
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transmission of the dengue virus to the mosquito from an infected juvenile. [, is the
ransmission probability of dengue virus from an infected juvenile to the mosquito. Introducing

the normalized parameters S = S/ Ny, 1 = I/ Ny, R = R/Ny, A = A’/ N;,
S, =S,/ (B/jr,)and |, =1,/(Bf uy)}, equations (1a) to (2b) reduce to
a3

: === A - yptyS- (un +8)S - (32)
. dt
&
dl
5t = 7Sty = (pn + 8 +0) , (3b)
95: M —(un + )R (3¢)
dt
and
dl
il AUREE TR (3d)
where -
bAn(B [ uy) 4a
¥ h N 7 m (4a)
and
_ bAUN (4b)
v = Ny +m

The dynamical equations for A and S, are not needed since S+I+R+A=1and S, + 1, =

I. The requirement that Ny be a constant leads to the condition that the birth rate, 4 is equal to
the death rate, 4, .

2.1 Equilibrium States

The equilibrium states are obtained by sernting the RHS of equations (32) to (3d).to zero.
Doing this, we get two equilibrium states, the disease free equilibrium state, E;= (8, 0, 0, 0)
where

S = _Hh (5)
Hn + 6 ' :

and the endemic equilibrium state, E, = (S' . 1 ,R' R I;,) where
S . Y n * HnXo (6a)

Xolrn + upM)

I- Hvbny(Xog = M) (6b)
rvl(rn + #aM)
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R- _ “yl(Xy - M} (6¢)
yyM{yn + #aM) '
and
Foay = #aXe - M) (6d)
(rn + #nXyp)
with )
¥
M = Hn * 5 (7a)
Hn
and
X - Y nt v (7b)
# oy gy + & + 1)

2.2 Local Asymptotical Stability

The local stability of an equilibrium state is determined from the Jacobian
{gradient) matrix of the RHS of the set of differential equations evaluated at the equilibrium state,

2.2.1 Disease Free State

For the system defined by equations (3a) to (3d), the Jacobian matrix evaluated at E 4 is the
4 X 4 matrix given by

- (up +6) 0 0 -rniM
0 —{uy + 5 +1) 0 rni M (8)
o] r - (un +6) 0
0 Yv 0 - Hy

- Diagonalizing this matrix, yields the following characteristic equation;

e R Mo w12l <0 (9)
The eigenvalues are |

A= - (fn +9)
and

—{an +5+r+#v)iJ((M#h +1) ~ 1,)% +4u, My, "")“XM'Q'

B > 10)

For Xg < M, the square root will be less than (g, +6+r+ Hy) . This means that all the
eigenvalues will be negative; leading to the disease free state being locally asymptotically stable.

4]
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2.2.2 Endemic Disease State

The characteristic equation for the Jacobian matrix evaluated at the endemic equilibrium
state, given by equations {6a) — (6d), is

£ A+ py + SN+ AR +BA+C) =0 (an
where
A = Holrn + u4nXg) + o X (7o + 4nM) + Yoy (12)
4 n *+ HnM n *+ X HyXg
B o HAnryrn(Xe = M) o pnlre + uaMN uiXg + rorn) |
Xo{rn + upM) Holrn + HnXe) (13)
(yhxo(r., + phM)](a.,n,(xo - M)J
(rn + #nXg) (rn + upM)
and
= M
T 19

The real parts of the eigenvalues are negative when the coefficients A,B and C satisfy the Routh-
Hurwitz criteria, [7] i.e.,

i. A >0
ii. C >0 (15)
and

iii. AB > C.

Looking at equations (12} to {14), we see that conditions i. is always satisfied. Conditions ii. and
iii. are satisfied when Xy > M.[To see that condition iii. is satisfied when Xg > M, we note

" that the cross product AB will be the sum of positive terms. Given the sum of positive numbers is

greater than any individual number, we have AB > ,u'h{/ufxo + ¥n¥v} (this being the
product of the first term in A and the second term in B). Dropping pe Xo in the bracket, we see
that f4nyny is larger than ghypyy (1-M 7/ Xg), which is C. We thus have AB > C.] This
shows that if Xy > M, the real parts of all the eigenvalues of the Jacobian evaluated at the

endemic state are negative, Thus the equilibrium state E, (S‘ . 1 . R , l;,) given by equations
{6a) - (6d) is a locally asymptotically stable state.
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3 Discussion
3.1 Basic Reproduction number

For a disease to be capable of invading and establishing itself in a host population, the basic
reproduction number R, must be greater than one. If Ry < 1, then every successive generation
will diminish in size until its number approaches zero. The basic reproduction number for a

particular ng:wth can be determined by direct observation of the growth pattern, If ¢, is the first
doubling time of the epidemic in a human population, then

R = in 2
° [(,, <o, “]

whers 4 and & refer to the inverse life time and recovery time of the human. The average
repreduction number for the 1990-91 dengue fever epidemic in twelve cities in Brazil was 2.03
(14]. This number means that each infective person infected 2.03 other people. Koopman et
al.,[15] found the number to be 1,33 for the dengue fever epidemic in Mexico in the same year.

The different moedels for disease transmission have yielded expression for the basic
reproduction number. These expressions have provided insights into the control of the various
diseases. One of the first expressions obtained was

2
R, = B, A.m (16)
MY
where m is the ratio between the mosquito population and the human population. Based on the
epidemiological data, Molineaux and Gramiccia [16] estimated R, to be 80 for the malaria

epidemic in northern Nigeria. The implication of this {each infective person infects 80 other
people) points to possible shortcoming of the model used model the transmission of malaria. We

note that for dengue fever, Ry s close to 2. It was pointed out by MacDonald that the malaria

transmission model did not take into account an incubation period during which the malaria
parasite develops inside the mosquito and during which the mosquito is not infections. Taking
this period into account, MacDonald obtained a new expression for the basic reproduction
number
Ry = bzﬂhﬁvm a=#T a7n
HY :
where ,u' and 7 are the inverse life time of the mosquito and the incubation period of the
malaria parasite in the mosquito. Equation (17) points to the fact that if the incubation period is
fonger than the life expectancy of the mosquito, the disease will not be established since the
mosquito will die before it becomes infectious. The appearance of an exponential factor
containing the life expectancy of the mosquito has led to the changes in the strategy of control
malaria, exterminate the mosquito during its adult state and not in it’s the larva stage.
Looking at the conditions (given in sections 2.2.1 and 2.2.2), which made the disease free
state or the endemic state, the stable equilibrium state, we obtain the following conditions
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bzﬁvlghthT(B.l :uv) < 1]

py(Np +m) 2 (uy + 6 + 1) py +8)
for the equilibrium state to be the disease free state. If however,

b2ByBnunNy (B py) > 1
Ho(Np s m) 2 (up + 6 + ) py + 5)

e
then the endemnic steady state is the equilibrium state. We can therefore identify the LHS of the
two inequalities as being the basic reproduction number, i.e.,

Ry = b2B8yBntinN(B/ a,) o (18)
Ay(Ny +m)2(uy + 8 + 1) gy + 6)

If the susceptible humans are not divided up into juveniles and adults, there is no need for the
parameter &, the rate at which juveniles mature into adults. Setting & = 0, expression (18)
reduces to the expression for the basic reproduction rate obtained in [7]. The modification to R,
we have introduced to taken into account the presence of an age structure is similar to the one

introduced by Esteva and Vargas in [9] where they looked at the changes arising when both a
vertical and horizontal mode of wransmission of the dengue virus to the masquitoes are possible,

3,2 Numerical Studies

The main effect of introducing an age structure into the model is change the definition of the
basic reproduction rate. Using the values of the parameters similar to those used by Esteva and

Vargas ( 4, = 0.0000457, g, = 0.25,b = 0.5, B, = 0.75, By = 1.0,m = 0.0,r= 0.1428,

N; = 10,000, A = 5,000) , the value of the basic reproduction number defined in 7] would be
10.5. Numerically solving the set of equations given by Esteva and Vargzas (equation (2) in [7]),
we obtain the time development of the susceptibie human as seen in Figure 2a). In figure 2b), we
show the solution to equation (3a), the values of some of the parameters have been changed (i.e.,

& = 0.000183, B = 200, 4, = 0.00003914, &, = 0.0714 and r = 0.0714, with the others

staying the same). Substituting these values in expression (18), we get R = 1.8. In figure 3 and

4, we show the time development of the infected humans and infected mosquitoes for the case of
no age structure and an age structure model, In Figure 5, we plot the number of infected humans
versus the number of susceptible humans in both a no age structure population and an age
structure population. The values of the parameters are such that for both populations, the
equilibrium state is the endemic state. The endemic state is a stable spiral state. As we see, the
period of fluctuations in the number of individuals in each class is much shorter in the absence of
any age siructure. The spiraling is much more severe in the absence of the age structure. The age
structure appears to calm down the fluctuations.
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Figure 2. Number of susceptible humans as a function of time. 2a) Solution of equation (2) in [7] for a SIR
model of dengue fever transmission with no age structure. 2b) Solution of equation (3a) of the present text
for a SIR mode! having an age structure. The values of the parameters are given in the text.
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Figure 3. Number of infected humans as a function of time. 3a) Solution of equation (2) in [7] for a SIR
model of dengue fever transmission with no age structure. 3b) Solution of equation (3b) of the present text
for a SIR model having an age structure. The values of the parameters are given in the text.

0.00100 0.003 -
0.00067 J 0.002 —
1 >
3 - ra LA
0.00033 — 0.001 ~ /
UI
0.00000 . r 0.000 T
[u} 15000 30000 45000 0 13000 30000 45000
[ t :
ot 1
4a) 4b) ek



b

LY L

237 / Appendix # 3.2

102 AGE STRUCTURE IN A MODEL FOR THE TRANSMISSION OF DENGUE

Figurc 4. Number of infected mosquitoes as a function of time. 4a) Behavier in a non age structure SIR
model. 4b) Behavior in an age structured model.
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Figure 5. Plot of number of susceptible and infected humans. 5a) Behavior in a nop age structured SIR
model. 5b) Behavior in an age structured model,
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Abstract

In this paper, we look at the transmission of Plasmodium wivaxr malaria.
_ We divide the host population into 3 categories containing susceptible, infected
i - and dormant population as well as construct the nonlinear differential equations
system. By using the basic dynamical method, we obtain the basic reproduction
number Ry, which is considered by the steady state. If Rg < 1, then the
; i malaria becomes extinct; moreover, if RAp > 1 then the equilibrium point,is
' asymptotically stable that endemic state occurs.

:1 -Introduction

. Malaria is a serious disease endemic in many parts of Africa, Asia, the Middle East,
'Central and South America, Hispaniola, and Oceania [10]. There are more than 3 hun-
jdred million cases of malaria each year,with between 1 and 1.5 million death mostly
among children [7]. Malaria in humans is due to 4 species of the intraerythrocytic
protozoa of the genus Plasmodium,i.e., Plasmodium falciparum, Plesmodium vivaz.
Plasmodium malariae and Plasmodium ovale. Most of the death in childhood is due
to P. falciparum. Recently P. vivar has become an enormous problem.In 1997 P.
+ faleiparum and P.vivez were found 36.7% and 48.9% of infected population in United
states,respectively. In 1997 Luxemburger et al. showed that the transmission rate for
. P, vivaz parasite is higher than that for the P. falciparum.
" The mathematical model of malaria has a long history. Ronald Ross was the first
gperson to created a mathematical model of malaria. His model consisted of 4 dif-
“ferential equations, describing changes in the densities of not only the susceptible
and the infected host population but also the uninfected (susceptible) and infected
mosquitoes [9]. In 2000, McKenzie described the advantages and shortcoming of mod-
eling malaria. He stated that models help us to understand and analyze relationship
among variables. Most mathematical model presented so for describe the dynamic
‘of P. falciparum malaria infection [6|.Because of the increaséd incidence of P. vivax
"infection, we are faced with the need to model the dynamics of P.vivez infection.
The progression of P. vivaz malaria differs from P. falciparum in that a patient can
die from P. falciparum but does not die from P. vivaz infection. Also a person who
suffers from P. falciparurn will recover from the disease {if he does not die from his
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illness); a person who is ill with P. vivaz infected will suffer relapses. The P. vivaz
is induced into blood circulation in the sporozoite form by the bite of an infected
female mosquitoes of the genus Anopheles.The sporozoite will then migrate to the
liver. The sporozoites separate themselves into 2 groups. The first group are the
merozoites which ipvade the blood cell and produce the illness. The second group
are the hynozoites “which lay dormant in the liver. When the patient is weak, the
hynozoites will transform themselves into the merozoites and reinvade the blood cell
and reproduce the sickness. These relapes can occur up to five years after the first
infection [2]. A mathematical model for P. vivaz transmission should take this into
account,

2 The Mathematical Model

We begin the formulation of the model by dividing the host population (total V) into
3 groups; susceptible (S}, infected (I ) and dormant (Dh) population. The dormant
population can move to either the infected or susecptible class. The latter occurs since
malaria does not confer permanent immunity to further infection. We assume that a
susceptible mosquitoes when biting a person in the dormant class will not reinfected

dN.
the person. We also assume that the number of mosquitoes is constant (—d—ti = 0).The

rnosqultos population (total NU) is separated mto 2 sets; the uninfected (susceptlble)
(S,) class and the infected (I,) class. Ny = S, + I, + D, and N, = S, + I, are ,
respectively, the total human and vector pOpulat1on at time ¢t. The model is a,ssumed
that newborns in both population are uninfected.

The time rate of change of any state is equal to the number entering into the state

minus the number leaving the state. The dynamic equation describing the density of
host population are then

di = ANp+ (1 - a)r 1Ih + 'r3D,.1 (7;11':, + #h)S; (1)
% = YLy S + 12D, — (11 + ), &
dih = ar @, — (r2 + 13 + un) D, (3)
and %\% = (Yn — pn) Ny )

where all parameter in the model are assumed positive; A is the natural birth rate of
host population; w is the natural mortality rate of human population which will be
the same for all classes; r7 ! is the mean life time for the parasite to remain infectious
in the human; e is the percentage of individuals leaving the infected state and entering

dormant state; rp is the relapse rate; r3 is the recovery rate. The transmission rate
for malaria is given by
. B
Tn

 Nu+p

epw
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Iwhe_re b is the specie-dependent bitting rate of the mosquitoes; p is the population
of other animals the the mosquitoes can fed on and 3, is the probability that the P.
vivaz is passed on by the mosquito to the human. If there is no the dormant state
(Dr) and ro = 0, the model! is reduced to the transmission model for P. falciparum.

The rate equations of mosquitoes’ population are

g

ds,,

2 = A= 7,0S, ~ mS, (5)
ar, . ,
_d'TU = ’71:th1; - ,‘U’UI'U (6)
dN, ' .
and -—C-E-r-A—u,,Nv (7)

whefe A is the recruitment rate which is not related to the mosquito’s birth rate A,.
The: ‘mosquitoes lay eggs which give rise to the larvae stage of the mosquitoes. Only
- small number of the larvae will grow into the adult stage. This number depend on
the carrying capacity of the environment and not on the number of eggs laid at (2].

We assume that the total number of humans and mosquitoes are constant, N, =

. S + 1, W+ D and N = .S' + I We now introduce the normalized variables S, =
3; Ih _D, s, Iy
! A f;,, = Ny D =N, — 8y = A and [, = m The domain of acceptable solution

is given by

1= {(ShrImDh:SmIUNO < Sha-[h;Dh)Sv,Iu < 1}

The dynamic equations can now be rewritten as

dsS
—5 = A+ (L= Nl +73Dn = (s + a) S (8)
dl
4 "d—: = YLy Sk + r2Dn — (r1 + pn)ln (9)
dD
—dti = aryly — (rg + ra + pn) Dy (10)
as, .
dt = Hy — FYHIth - P"vsu & (11)
drl,
and i YolnSy — puly (12)

7

where yn = *rh‘; and v, = Y,Nn. We use Sp+ I+ Dy =1 and S+ 1, =1 to
' dSh dl, dDy

reduce the number of differential equations from 5 to 3 since el —«(—d—t— + 5
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dS, dl,
and % - We t}}us have

dl,
v = YJu(1 = In = Dp) + r2Dn — (71 + pn)1n (13)

¥ dD
d—th =arify — (ro + 73+ pa)Dr (14)

dr.
and d—; = ’?’th(l - I‘u) — poly (15)

2.1 Equilibrium State

Setting the RHS of (13)-(14) to zero and solving for the 3 variables, we gain two
equilibrium states; the disease free state Eg = (0,0,0) and the endemic state E; =

ary Yo Ry~1 .
IT, Dy, IF) where D} = ——— I, I = ———— I} and I} = with
(_h h ) h T+ T3 + s h '7UI€+P'1: h 4] RO
ar -7
M=1+ il + 1(yn = 72) and the basic reproduction number is found to
Yh Yal{re + 73 + pn)
be given by
YhYuv
Ry = — TS . (16)
T —_———————— e
HylT1 T Hh ro + 73 + bn

Examiniting the expressing above, we find that physical values of I;, D} and I} are

possible when Ry > 1. When Ry < 1, the epidemic state is not possible. This leaves
the disease free state as the only possibilily.

2.2 Locally Asymptotical Stability

The local stability of the equilibrium state is determined by the Jacobian {gradi-
ent) matrix evaluated at the equilibrim states. We find its eignvalues by solving the
determinant equation det |J — AI| = 0 where

—(r1 + pn +1nly) re — Yol (1~ I} — D})
J(I}:,D;,I;) = TGy _(T2+7‘3+.“Lh) 0
(1l —13) Y — (Yol — )

The equilibrium state is stable if the real parts of all the eigenvalus are negative.
The trajectory of the state towards this equilibrium occurs when two of the eigenvalues
are complex conjugates pairs.

2.2.1 Disease Free State

The system equation (4),the gradient matrix at disease free state,Fy, is given by

~{r1 + fn) T2 “h
J(0,0,0) = ary —(ro+r3+pn) O
Yo 0 — My
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The charectesistic equation is found that is A% + a1 A% + agA + a3 = 0 where

ay=r; + 7o+ 13+ 2t + Ly
ag = (1) + pa)(ra + 73 + pn + o) + pu{re + 73 + pa) — Ya7 — ani7T2
ag = po(T1 + pa){r2 + 13 + pr) — YaYe(T2 + T3 4+ pa) — T4,

The real parts of eigenvalues will be negative if a; > 0. Two of the eigenvalues will
be conjugate pairs if a3 > 0. We see that this condition is satisfied if R < 1.
2.2.2 Endemic Disease State

The characteristic equation for the gradient matrix evaluated at the endemic disease
state is given by

M4+ a3 A% +agh+ag =0 (17)

* where

| ay =711+ 7 —i—'f":;—i—?,uh—i—,u.v—f'(’)‘a'&-f-’)f,,)I,’l
02 = (r1 + pn +YrTp )72 + 73 + tn) + Yo ln + o) + (T2 + 73 + 1) (Yo Iy + fo0)

(L= L)1 = Iy = D) - ari(rs + L)
ag = -det(J)

The root of equation (17) will have a negative real part when a; > 0. We find that
¢ this is always true if Ry > 1. We have a stable spiral mode if ap > 0. When ay < 0,
+ but a; > 0, the trajectory will be a stable star mode.

| ’ * »
, 3 Discussion

_! 3.1 The Basic Reproduction Number

The basic reproduction number ,Rp, is defined as the number of secondary infections

+ produced by an initial infect [7]. MacDonald (5] defined Rq for P. falciparum malaria
i to be

Ry — ma?byboe T (18)
ur
| |
| where m is the ratio of mosquito to post population density; b; is the transmission
of the infectiousness from an infected human to a mosquito; by 4s the transmission
of the infectiousness from an infected mosquito to a human; p is the daily death
of the mosquito; T is the parasite’s developmental period in the mosquito; r is the
recovery rate in human and e #7 is the probability that the mosquito survives the
developmental period of the parasite from the initial infection to become infectious.
MacDonald concluded that changes in the mosquito death would have most effect
o Ry. Here we are interested in the effects of the relapse on the transmission of
P.vaviz malaria. We find that Rg increase as the relapse rate increase.

»
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Fig 5. Initial behaviour of the proportions Iy and Dj.The parameters are the same as in Figure 3

There is a threshold parameter Ry and the disease can exist in the epidemic state if
and only if Ry exceeds one. The disease-free equilibrium exists and is globally stable
if Rg < 1. The endemic equilibrium is a stable spiral state.
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Fig 1. Diagram showing graph of Ro against Ju where pp = ggzhemir1 = 0.76;72 = 0.5;r3 =
0.001;a = 0.84; py = 0.25; v, = 0.1428; v, = 0.5

We plotted Ry again I, In figure 1,we can clearly see that the proportions of
infected mosquitoes vary with the basic reproduction number. When Ry is below
30, a small change in Ry will lead to a large changes in Ij. However for high Ry.
the increase is at a slower rate. Reducing the density of the mosquitos’ population
will not have a significant effect in the endemic regions where the basic reproduction
number is large (Ry decline as the density of the mosquito decline)

3.2 Simulation

We have numerically solved equations (8) — (12) using a computer. The program was
run for different sets of initial conditions. The steady state solutions are the same.
We have formed the endemic steady state solution to be unique and globally and
asymptotically stable. We have pick set of the values of the variable appearing in the
expressions for the equilibrium states to be [, = 0.5, D), = 0.25 and I, = 0.00001.
For case of Ry > 1, we formed that the endemic equilibrium would be locally and
asymptotically stable. Numerical simulation confirmed this result.

Sh va Time

Sh

0.00 —————— T
o 625 1250 1875 2500
Time ‘
Fig 2. Initial behavior of the proportions S, and D, with time (days).The parameters are r7 =
0.000007; @ = 0.65;r3 = 0.005; ry == 0.91; uy, := 0.25; 7y, := 1.95; and~y, = 0.25;
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Tv vs Time

6.005

g.004 ]

0.003—1

> — v
a
9.002
0.001 -{
0.000 — . — T —
a 625 1250 1875 2500

Tine

Fig 3. Initial behaviour of the proportions It. with time (days).The parameters are the same as
Figure 2
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Fig 4. Initial behaviour of the proportions [, with time {days).The parameters are the same as
in Figure 2
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THE EFFECT OF MIGRANT WORKERS
ON THE TRANSMISSION OF MALARIA
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*Institute of Science & Technology for Research & Development
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Abstract

In this research, we model the transmission of malaria in the movement of
population by considering a system of nonlinear differential equations in the
Susceptible-Infected-Susceptible (SIS) model. The human popaulation is di-
vided into a host population {in community) class and a migrant workers class.
We analyze the behavior of our system. The conditions for equilibrium are ob-
. tained by locoking at the conditions for zeros in a third degree polynomial. By
8 considering the standard dynamical method, the percentage of infectious mi-
grant worker is used as an adjustable parameter. Numerical simulations are

N i used to illustrate the results for supporting our theoretical data.

1 Introduction

\ Malarla is a serious acute and chronic relapsing infection to human[14]. It is trans-
‘ rmtted to human by biting of mosquitoes in genus Anopheles. Four types of protozoa
l:l spec1es (strain) belonging to the genus Plasmodium, namely P.falciparum, P. vivasz,
P.malarige and P. ovale, cause an infection. The World Health Organization esti-
mated that thete are over one million child deaths per year in sub-Saharan Africa,
300-500 million cases of malaria per year and more than two billion people are at risk
throughout the world[13].
The first person who attempts to construct a mathematical model of the dynamics
, of malaria transmission was Ronald Ross(9|. His model consisted of a few differential
‘equations to describe changes in the densities of susceptible and infected people and
mosquitoes. He found that for any given set of malariological circumstances some
minimum number of mosquitoes, above zero, was needed to keep transmission go-
ing. If number fell below, the disease becomes extinct. After Ross demonstrated
that malaria are transmitted by mosquitoes, he stated [8] that To say that a disease
depends upon certain factors is not to say much, until we can also form an estimate
. as to how largely each factor influences the whole result. Recently, McKenzie[8] had
pointed out that models can be powerful tools for integrating information from dif-
ferent disciplines. In 1950, Macdonald [6], extended the model by introduced a layer
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of biological realism (infection rate) to the model. He studies the influences of the
mosquito malaria-infection rate. The Ross-Macdonald model is used to analyze equi-
librium state for malaria in term of the influence of the mosquito malaria-infection
rate on the human infection rate and of the human infection rate on the mosquito
infection rate. Other advance models about malaria transmission have been intro-
duced. In 2000, A. Kammanee, N. Kanyamee and I.M. Tang[3| have introduced a
new model for the transmission of P.viver malaria. The population is divided into
4 classes by considering the possibility of relapse. In the present work, we use some
parameter and introduce a migration factor from this model.

The incidences of malaria have increased in many regions in the world and in area
which people thought was disease free[7]. One of the important factor that leads to
the malaria transmission is the movement of migrant worker due to the poverty. The
spread of disease is enhanced when population move from that place to the others.
In Luxemburger (5] study, a town located on the western border of Thailand, reported
that in the area adjacent to Burma there are significant population movements. This
movement was thought to be a major factor in the regional spread of multi-drug
resistance. There are many evidences in other regions in the world supporting this idea
[13]. At the beginning of the 1960’s malaria had been eradicated from Tajikistan, but
it reappeared an endemic in the 1990’s in the area bordering Afghanistan. Laboratory-
confirmed malaria cases increased from 175 in 1990 to 2400 in 1994, mainly from the
southern border areas. The appearance of malaria in the United Kingdom was due to
the infection being brought in from abroad. Of the 1,887 malaria cases in the United
Kingdom, 704 occurred in people who, while living in the UK, traveled to visit family
in their country of origin. In Cambodia, about 2.5 million people have malaria. 26%
of the population is considered to live in areas at risk of malaria transmission. The
most intense transmission occurs in the forested areas along the Thai border and in
the northeastern part of the country. In this study we are interested in the effect of
migration in the malaria transmission. The identification and understanding of the

influence of those population movements can improve the prevention measures and
malaria control programs.

2 The Mathematical Model

In our study, we construct a simple model for malaria transmission. We assume that
the human population and mosquito population (NVy/) are constants; resulting birth
and death rates are the same. The total population is divided into two populations, a
host population (N7} with a total population of a migrant worker populatlon (Nw).
The host population is divided into two subclasses, susceptible (S') and infected
(I Yhost population. The migrant populatlon is also divided into two subclasses that
are susceptible (S, ) and infected (I, )worker population. In the standard transmis-
sion model for P. vivaz [3], the model has 4 subclasses with no migration term. We
consider the effect of migrant workers by adding the migration term into the model.
The mosquito (vector) population is also divided into two subclasses, uninfected (sus-
ceptible) (S) and infected (I,) mosquito population. Since malaria does not give a
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permanent immunity to further infection, we allow the individual in an infected class
to reenter into the susceptible class, with rate r, the rate at which they loss their
immunity.

The flowchart of the disease is shown in the figure below. We assume that the
workers migrate in and out at constant rates. The infectious migrant workers enter
the country with percentage p. The time rate of change of any class is equal to the
number entering into the class minus the number leaving the class. .The migrant
worker population moves out rom country with rate «, the reciprocal of the time
migrant workers stay in the country. A is the recruitment rate of mosquitoes. B is
the recruitment rate of migrant workers. A is the birth rate among host population.
We assume that the migrant worker population stays long enough to reproduce. g,
is the natural death rate of human and g, is the natural death rate of moguitoes.

WATRTSARSS Lo L T 1 S B S0 TR
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AN, | Susceptible host Tnfected host
R S S Ir S~
“ W v
A Suscepsible Infected
— mosquite mosquity  |——ally
* +—] g . I
‘ H, v
il ' 4 '
Co . A
i ' Susceptible Tafected
' worker N worker H,
o (1-0F 5! I, L a

o e

The dynamic equations for this SIS model with migration is described by the flow-
chart are

; dj = ANg + 7l =3, 1,5 — S’ (1)
ar .. '
— =ML = (1) (2)
dS:ﬂ I o ) i
= (L=p)B +r1y ~ 1L Sy’ — (un + )5S 3)
de" [ !
and el pB + 7, 1,5, — (pn + a + 1)1, (4)

' For vector (mosquito) transmitted disease, <y, is the unrenormalized rate of trans-

s
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mission of malaria parasite from mosquitoes to humans as shown by Esteva and Vargas

[2] and [3]

L b )
Tn = Nr+ Ny, +m
where species-dependent biting rate b of mosquitoes is the average number of bites per
mosquito per day; m denote the number of other animals available as blood sources
and B, is the transmission probability that parasite passed from vector to human and
continue to thrive in the human.
The time rates of changes of the mosquito population are given by

S = A= TS, LS S, )
dr,,
and  Zt =y, IS, + 7,18, - (7y -

where 7, is the unrenormalized rate at which the mosquito becomes infected with the
malaria parasites once the mosquito has bitten an infected human and it is given|2]

’ bﬁv
’YU - Ng +m (8)

where 3, is the transmission probability that parasite passed on an infection from
human to vectors.

When the total population of each group is constant, we normalized the variables

by dividing by N, Ny or N, (N, = ‘—L";"B?{, N, = j%), i.e., the proportions S =
S I S, I, s, I,

— =5, == —4t—.ly==— 5. = g =

Nt Nr B/(un +a) Bf(pn + ) Alpy A/

Since we have S+ 7 =1, 5, + I, = 1, and S, + [, = 1, only three of the six
variables will be independent. Picking the three to be [, I, and I, we have

dl
< =l =) = (4 7)I (9)
arl.,
¢ = Pl + o) +nlo(l = Lu) ~ (un + e+ 1) (10)
dl, Na
and _'Tv-[(l Iy )+7‘u ) w(l )"'P-UIU (11)
dt NT

The domain region A of biological interest is given by

A= {(S!I?Sw1I‘IU!S‘lI1I1J)|O S S)IJS'LU!I’w:S'U':Iv S 1)0 S S+I S 1’

0<Sp+71,<1,0<8, +1, <1}, (12)

This domain is positively invariant under the flow induced by the six equations, as
- the vector field on the boundary does not point to the exterior.

-
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2.1 Equilibrium points of the model

We use the standard dynamical modelling methods to analyze vur moael. The equi-

librium points of our system are obtained by setting the RHS of equatlons {9) to (11)
to zero. The equilibrium points are given by:

Ath‘u
= —_— 13
Yolv + pn + 7 (13)
+ a) + vl
_ plentad+n (12)
Yody +pn +a+r
N,
Yol + 'Yv(N_w)Iw }
and [, = N X (15)
vuI-+-7u(P;”)Iw + po
T

Substituting Eq.(13) and (14) into Eq. (15) , Eq. (15) can be rearranged as a cubic
equation in [, i.e.,

byI3 +boI2 + by, + by = 0 - (16)
lln
‘where
Ny
- . by = 'Y}%.'Yv + 'Yr%%(’ﬁ“) -+ nguuv
T
' N, - Ny,
b = YY(pr +a+7)+ v (=)p(pn + @) + re (== ) pn +7)
N Nr
Ny
+  Ynpeo(pn + &+ T) + Yoo (n +7) ~ iy — ”rﬁ'ru(ﬁ;)
Ny
by = 'rv(-N—T)p(#h +a)(pn + 1) + po(pn +7){pn + o+ 1)
N, N,
— Yol + o + 1) = YaYe (= )p(itn + @) — v (=) (k + 7)
Nt Ny
Ny,
and by = _7u(ﬁjf)p(ﬂh +al{pun + 1) (17)

Denoting I} as the solutions of Eq. (16}, we have a nonzero equilibrium state exists
if at least one solution of Eq. (16) is real and positive. This will happen when either
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() by < 0,b3 >0 b2 > 3byby,and 0 <0
or (ii) by > 0,63 <0 and 2 <0
or (iii) by > 0,b3 > 0,45 > 3b1b3,and Q< 0

. 1 . Q.11
or (iv) (54—1711,,(9191532‘53 — 27b3by “‘25’%)4'(2)2)“
(e (Obrboby — 27624 — 268) — (H3)E > 22 sna@>0  (18)
43 L R A 3,
where 4 1 4 9
Q= Efblbg - 2_7-5353 + ﬁbgbz; - 551525354 + b783.

Proof of these conditions is given in the appendix.

If any of the above conditions are met, then one of the solutions of Eq. (16) will - -
be real and positive. Calling this solution I, the equilibrium state will be

E:(S*:I*}S* I* S* I*)

wTwrrur Tty

where I is the solution of Eq.(16),

I T, I p(pn + a) + 1,
i+ pn+r Y oy IEtpupta+r

(19)

S*=1-1I*,8; =1—-1I},and S; =1~ I (Once it has been established that a
positive real solutions of Eq.(16) exists, numerical method can be used to find it).

2.2 Stability of the equilibria

The local stability of the equilibrium points can be determined by linearizing the
system (Eq.(9) to (11)) about the equilibrium point (I*,I%,I:). The eigenvalues
are found by diagonalizing the Jacobian matrix or det |J — AT| = 0 .This gives the
Jacobian matrix

| Iy = (pn + ) 0 V(1 —17)
J(I*, I:u, I,:) — 0 “")’}LI:; — (,U'h + @+ ?‘) ’Yh(l ;V_I.:,)
: V(11 [ i —YoI* = Yo ()0 — 1
Yol ) Y(F - L) Y Yol o — ¢
Computing this matrix and noting
. 1
Wi, +{pn+1) = I;_.,E
Yly + (e +a+7) = p(#h+?3+’yhf"
Ny
N Yol® +’Y1J(_N—)I:u
and Y I" + (=)0 + e = L , (20}
Nr I
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we get the following characteristic equation

Mo e d+e3=0 (21)
{ﬁvher"e _
N,
’ . * ‘UI‘ U—_—lif:u
L e = 7h‘[:+(p(”h+a)+7h'[v))+(7 TRy )
AR £ Iz I
i q ' N,
: . o L
l +a +'Y I‘u ’Y N w * * Nw *
e L (Y (B S (R oA
w v T
| ' ' N.
* ‘UI* 'u’_w 1:;
‘ B 7h1$(p(#n+a)+"mfv) Yol Y NTI )
o e plis o) + yaly) . Ny 1
C:'nd 3 = I*( I Wyl +'YUNTIw
. I Ny . . 4+ a) + y LF '
N S o Yo L L S B L S Y e G e AN (22)
I NT Iw

The eigenvalues are the solutions of (21) will be negative real part when the coef-
ficient ¢, ¢o, and c3 satisfy the Routh-Hurwith criteria[l], i.e,

cy >0 (23)
¢y >0 (24)
and ¢jcz > c3 (25)

We see that the first condition is always satisfied hence we only need to consider
conditions {24) and (25) to establish whether the equilibrium point is locally and
asymptotically stable.

3 'Discussion

In this section, we performed some numerical simulations to illustrate the results of
our model. The numerical values of the parameters were picked so that conditions
(23} to {25) and (18) are satisfied. The numerical program was written in Fortran
to solve the set of Eq. (9)to (11). Using the parametric values in unit of year, v =
0.27,v, = 0.7, pp = 1/60, p, = 15.0,r = 0.16, @ = 0.2, Nt = 100,000, NV,, = 50,000,
and N, = 2,000,000. At time ¢t = 0, the following initial conditions were used as
I(0) = 0.45, I,(0) = 0.6, and I,,(0) = 0.5 where the other variables are obtained from
§=1-1,8,=1-1,,and 5, =1—1I,.

The general behavior of the model is shown in figures 1 to 5 where the numerical re-
sults are plotted in time (year) versus the normalized populations. Figures 1 to 4 show
the initial and long time behavior of human populations plotted on the same graph



254 } Appendix # 3.4

304 The Effect of Migrant Workers on the Transmission of Malaria

when p increases from (1.00005 to 0.5 and 0.95 respectively. The equilibrium point is
given by E = (S§*, 1,5} . I, 5;, 1) are (0.999999, 0.00000125, 0.999971, 0.00002929,
0.999999, 7.35882x1077), (0.989033, 0.0109673, 0.708703, 0.291297, 0.992744,
0.0072557), and (0.979614, 0.0203857, 0.550844, 0.986384,.0.0136164) when p in-
creases from 0.00005 to 0.5 and 0.95 respectively. In Figure 1, we see that when
infected workers first introduced into the community for small values of p the suscep-
tible worker population is rapidly rising to 0.999971 and infected worker population
is declining to 0.708703. In Figure 2 where p is set to be 0.5, the susceptible worker
population keep on increasing but at a rate smaller than previously. When p is 0.95,
we see in Figure 3 that the normalized infected worker population is higher than the
normalized susceptible worker population whereas the normalized host population has
the same behavior with a smaller change. Figure 4 represents the long-term behavior
of the normalized human population. At first, they change but as time changed they
become stable for a long time period (year). Figure 5 represents the behavior of the
normalized mosquito population. It appears not to change as we increase p but it

actually does. In conclusion, the higher percentage of infected workers affects high i

level of infected population and small leve] of susceptible population.

p=0.00005

Fig 1. Initial behaviour of the human proportions 5,7, Sy and [, with time (years) when p is
0.00005.

p=0.5

Fig 2. Initial behaviour of the human proportions S, f, 5y, and I, with time {years) when p is 0.5.

« Wy
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Fig 3. Initial behaviour of the human proportions S, I, 8y and I, with time (years) when p is 0.95.
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Fig 4. Long-term behaviour of the human proportions S, I, Sy, and I, with time (years) when
p increases from 0.00005 to 0.5 and 0.95 respectively.
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from 0.00005 to 0.5 and 0.95, respectively.
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Appendix
Diving Eq.(16) by b;,we get

FUDN =17 4 el +anll 403

ba bs by
where ay == —,ap = —, and a3 = —

. Since by > 0 and by < 0, a3 < 0. We have[11]
bl b] bl

I_lim fj)=o00 and f{0)=a3<0

Given the above, there is a cutting point I} 5 € [0,00) at which f(I},) = 0.We,
however, require at least one positive real root for I in our domain, I} € [0,1].
For cubic equation, we have two possibility when f(I)) is large where I} is large
(f(I2) — oo as It — o00).We begin by differentiation f(I7). Doing this, we get

£ =8 + 218 + ay

The zeros of this equation are located at the extrema of f(I;) and are at

. —2a; + /462 — 124, 1 1
I; = 6 : =—§a1:t§\/a§—3a2
. . 1 1 7 1 1
t.e, Iv,c] = _‘gal + g a% —3az = —gal + ‘3'VA
. 1 i 1 1
a"’?‘d I:,c-gZ“EQI_EVQ%_SGZZ—:‘O"&]HE-VA

case 1: all roots are positive real

Since f(0) = as, all roots would not equal to zero. In this case, both turning points
are positive real so we need

. 11
Iv,62:—§a1—3\1a§—3a2>0
a1 <0 and —a3>+/a?—3a; and A >0

a? > a? — 3a, a? > 3ay
ap >0

The conditions for f(I}) to have at least one positive real root are a; < 0,ay > 0
and a? > 3as.

case 2: two negative and one positive real roots
In this case, we separate the behavior of turning points into 2 cases.
case 2.1: one turning point is negative and another one is positive. We need

-k o
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2 _ 3 -
v/ a1 ag > —a1

a; > 0 and —3a: >0
as < (O

iz

In this case, A is always positive since ap < 0. The conditions for f(i}) to have at
least one positive real root are a; > 0 and az < 0.
' case 2.2: one turning point is negative and another turning point is negative or
zero. We need

a;>0 and a?>a®—3a; and A>0

as > 0 a§>3a2

t The conditions for f(I}) to have at least one positive real root are a; > 0,a2 > 0
and af > 3.
IMoreover (4] since f(I;.,) > f(0) > 0 and f(I]

f. 1 Q*zf('ucl)f( ucz)

)< 0so

u,Cy

1 4 1

QF = ~2—%a3 27&?% + 27a1a3 3010203 +a3 <0

| b by by
By using a; = —-2-, ay = —, and a3z = —, * becomes
bl b] bl

' 4 4 2

Q= —bhb— b2b —b3by — —bybobsby + b2b3.
| 57 1% T g7t g7z 3 174

Conditions (i) to (iii) in {18) are proven.
For case (iv), complex case, the possibility to get at least one positive real root

is only the case for one real and two complex conjugate roots. From mathematical
handbook[12], let

9ayay — 27a3 — 2a3
%

.; S=YR+ V@R, T=VR-VP+R

The conditions for f(I}) to have at least one positive real root are Q3 + R? > 0

and § +7T > %al.

2
-2 1  R=

1 - 1
Q@+ R?= 55(270,2 27a2a2 + 9atay — a%) + e —(81a%a3 — 486a1a2a3 — 36atas
+27%a2 +108ala3 +4a%) > 0

4 1 4 2
Q*+R?= 5792 a3 2—,{&%&% + —2-'-7—0.:]%0.3 — 3010203 +a2>0
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this is the same as Q7 so condition Q3+ R* > 0is ¢ > 0. By substituing a; =
1
Z—z,ag = %:i, and a3 = b the condition S + 7T > 3N becomes (W(gb]bgbg —
1 1 1
27b3bs — 263) + ($)1)¥ + (55 (9brbaby — 27030, — 203) ~ (93 )i > 2
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Abstract—The influence of age structure in the human population in the susceptible-infected
recovered (SIR) model used to describe the transmission of Dengue hemorrhagic fever (DHF) is stud-
,  ied. The human population is separated into an adult class and juvenile class with the transmission
of the disease being different in the two classes. Two equilibrium states are found and the condition
K for stability of one of these states, the disease free state, is established. The stability of the endemic
gtate of this model is discussed. A simplified version of the model, one in which no adults become
sick, is introduced. The conditions for the stability of the endemic state of this latter model are de-
termined. Numerical calculations show that age structure in the simplified model reduces the periods
of oscillations in the susceptible human population, the infected human population, and the infected
mosquito population and the tightness of the spiraling into the endemic equilibrium state. (© 2003
Elsevier Science Ltd. All rights reserved.

Keywords—Disease transmission, Dengue hemorrhagic fever, Age structure, SIR model.

H 1. INTRODUCTION

Mathematica.l modeling of disease transmission has a long history. In 1911, an epidemiology model
for malaria transmission was developed by Ross [1]. MacDonald (2] later added a layer of biological
realism to the model by providing careful interpretation and estimation of the parameter, which
should go into the model. McKenzie [3] has pointed out that the utility of a2 model depends not
as much on how well 2 mathematical job has been accomplished but on how well a particular
question has been translated. If one is interested in disease transmission, it is imperative that

it
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the model describes as closely as possible the characteristics of the disease being transmitted. In
this paper, we are interested in the transmission of Dengue hemorrhagic fever (DHF).

Dengue hemorrhagic fever is one of the emerging viral diseases spreading throughout the trop-
ical regions of the world. From its first appearance in the Philippines in 1953, it has become
the most important arthropod-borne viral diseases of humans [4). It has been estimated that
there are between 50 and 100 million cases of Dengue fever (DF) a year, over 250,000 cases of
Dengue hemorrhagic fever (DHF) with approximately 10,000 infant deaths due to the latter form
of this disease. The classical Dengue fever is a disease of older childzen and adults. DHF on the
other hand is primarily a disease of children under the age of 15, see [5]. DHF differs from DF
by the manifestation of plasma leakage in DHF. DF and DHF are illnesses arising through an
infection by any one of the four serotypes of a virus belonging to the genus Flavirus, in the family
Flavicidae. Immunity to one serotype does not confer immunity to the others. Since two of the
transmitting vectors, Aedes aegypti and Aedes albopictuus mosquitoes, exist in the Americas, it
has been possible for DHF and its benign precursor, DF, to become endemic in the New World,
see [6). The first severe outbreak of DHF in the Americas occurred in 1981 in Cuba with 116,000
hospitalized patients, 34,000 documented DHF cases, and 158 deaths. Important outbreaks of
DHEF have also occurred in Mexico, see {7].

In hopes of understanding the mechanisms that allow the invasion and persistence of a serotype
of the Dengue virus in a region, Esteva and Vargas [8-10] introduced a mathematical model to
provide a qualitative assessment for the problem. The model they used is based on the susceptible-
infected-recovered (SIR) model often used to model the dynamics of transmission of some diseases.
They showed that the endemic state was globally stable whenever a parameter R, called the basic
reproduction number is greater than one. Application of an ultra low volume (ULV) amount of
insecticides (the standard method used to control the spread of Dengue fever and other arthroped-
borne disease} could reduce the value of R, to below one. The value of R, would return to the
above one value once the application is stopped and since the endemic state is globally stable,
the disease would return. Therefore, the eradication program would have to be a continuing one.

In the SIR model used by Esteva and Vargas, no age structure was incorporated into the models.
While the lack of an age structure may be appropriate for describing the 1981 DHF epidemic
in Cuba [11] and the DHF outbreak in Santiago de Cuba in 1997 (12, it is not appropriate for
Thailand. Most DHF cases in Thailand occur in children less than 15 years old, in agreement
with the remark made by Gubler [5]. Feng and Velasco-Hernandez [13] have pointed to the need
for a model that incorporates age structure into the Dengue population dynamies. It is the
purpose of this paper to report on a DHF transmission model, which includes an age structure
in the human population. In our model, the human population is divided into two classes, a
juvenile class and an adult class, In Section 2, we introduce a mathematical model describing
the transmission of DHF in a two class age structure of the human population. A mathematical
analysis of this model is done in Section 3. In Section 4, we perform a complete analysis of a
simplified model, one in which no further infection occurs in the adult population. Numerical
solutions of the simplified model are presented in Section 5.

2. MATHEMATICAL MODEL

The simplest way to incorporate an age structure into a disease model is to divide up the
human population into two classes, juveniles (J) and adults (A). Another way is to divide
the population into N coherts and then divide up the cohorts into the three subcategories,
susceptible, infected, and recovered. This latter approach (leading to what is known as a realistic
age structure (RAS) approach) would make an analytical analysis difficult and one would have
to resort to simulations {14]. We have chosen the first method since it allows us to establish the
conditions ieading to the disease free state and the endemic state. We have allowed infection to
occur in both classes but with rate of infection in the adult class being much lower than that in
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Figure 1. Age distribution of the 1998 Dengue fever incidence rates in Mukdahan, a
province in central Thailand.

the juvenile class. In Figure 1, we show the age distribution of the incidence rates in one province
in Thailand during the 1998 DHF epidemic [15]. As we see, most cases occur in children under
the age of 15. However, a small number of cases do occur in older people. Similar distributions
are seen in the other provinces in the country.

‘Most adults in the population have been exposed to the infection even though they are not
aware of it. Burke et al. [16] reported that 87% of the infected children in his study (done in
Bangkok, Thailand in 1980-1981) were either asymptomatic or minimally symptomatic. Anti-
bodies against the virus will still develop in these infected children. This silent population will
enter into adulthood, immune to further infections. The adult population will then be composed
of people who are known to have been infected, members of the silent population and people
who were never infected as a juvenile. We have initially classified ali the adults as susceptible
adults §,, because of the uncertainty of which group the adult comes from. Treating all adults
as being the same leads to the rate of transmission of the virus from a mosquito to a susceptible
adult to be the average of the transmission rates to the different subclasses the adults came from.
This leads the transmission rates of the virus to a (average) susceptible adult to be much lower
than that to a susceptible juvenile.

In our SIR model with age structure, the dynamics of each component of the human is given
by

dS.’I Y bBs ' T t

dt = A NT - NT +m SJIu - (P"h + J)S.h (18')
deI i ’ dIJ b3, g 1

5 = 1=+ OR; == = Np 4 —53L, = (pn + 6+ 1), (1b)
ds, , b ,

= 6(ST+ I+ RS - EﬁJN SAI' — B8y, (1c)
dR’ ; ,

th =1l — Ry, (1d)

and ar’ b
‘T: = €ﬂJ——-—-Sf4IL — (pn + 1)1, (le)

where Sy, I 4y, and R}y, are the numbers of susceptible juveniles (aduits), infected juveniles
(adults), and recovered juveniles (adults), respectively; Nr, the total population (taken to be
constant); m, the number of other animals the mosquitoes can bite; b, the average number of
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bites a mosquito takes per day; X, the birth rate; uy,, the death rate (assumed to be the same for
all categories); 4, the rate at which the juveniles pass into adulthood, and r is the rate at which
the infected juveniles recover. I, is the number of infected mosquitoes; 87, the probability of
the virus surviving in the juvenile after being bitten by an infected mosquito (8], and £8; is the
probability of the virus surviving in a susceptible adult after being bitten by an infected mosquito.
£ is the ratio between the probability that an adult becomes infected and the probability that a
juvenile becomes infected by the bite of an infected mosquito and is assumed to be less than one.
If we add equations (1a)-(1f) together, we get

d(S) + It + R + Sy + I, + RY)
dt

=ANp —pp (S5 + 15+ Ry + S, + I + R)). (2a)

For the total human population to be constant, i.e., —JT- = 0, the birth rate would have to be
equal to the death rate, A = u;. If we now add only equations (1a)-{1c) together, we get

dNy

—¢ = MVr = (pe + 8N, (2v)

where Nj(= 8% + I} + R/;) is the total number of juveniles, Assuming that the total number of
juveniles is also constant, equation (2b) would give us the ratio between the number of adults

and the number of juveniles, i.e.,
Ny &

Ny

where N4 is the total number of adults and is equal to.S% 4 I% + R),.
The dynamics of the mosquitoes is described by

as, _, b,

v _a_ ’ ’

dt Nr + S (I} +I4) — oS, (3a)
and dr,  bg,

= S+ L)~ L, (3b)

where S;, and I/, the number of susceptible and infected mosquitoes, respectively; p,, the death
rate of the mosquitoes; A, the carrying capacity of the environment (for the mosquitoes) and
By is the probability that a Dengue virus transmitted to the mosquito from an infected human,
be it a juvenile or adult. If we add equations (3a) and (3b) together, we get

a(S, + 1)

o = A — pNy, (3¢)

where N, is the number of mosquitoes and is equal to S, + I’. If the number of mosquitoes is
also constant, equation (3c) gives N, = Afu,.

Introducing the normalized parameters Sycay = Saay /Niay, Tray = E(A)/NJ’(A), Ry =
Rf,( 4) [N3ay, and I, = I, /(A/py), we find that equations (1a)-(1f) and equation (3b) can be
rewritten as

ds;

= (pn + 6)(1 ~ S1) = mSal,, (48)
% =Ssly — (pn + 8 + 1)y, (4b)
ddSt = ph — &1nSale — unSa, (4c)
(%4- = eyrSaly ~ (pn +1)14, (4d)
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and
al,
E’ = Ys(1 _Iu)IJ+'7uA(1‘Iu)IA-PuIv: (49)
where
_ bBs(A/py)
. Nr+m (58.)
and bBLN
_ YPelVia)
Yolta) = g (5b)

'The dynamical equations for R4 and S, are not needed, since 5 say + Liay + Ryay = 1
and S, +1, = 1.

3. MATHEMATICAL ANALYSIS

3.a. Equilibrium States

The equilibrium states (S;, Iy, Sa, la, I,) are obtained by setting the RHS of equations (4a)-
(4e) to zero. Doing this, we get two equilibrium states, the disease free state £, = (1,0,1,0,0)
and the endemic state Ey = (Sy*, I;x, Sa*, Ia*, I,x) where

1

Sye= ,
I T o T ) o (62)
bBs(A/ 1)
L= et m)an+7" " Lo, (6b)
1.
Sk = Ix, 6c
A = T OB AT (N £ ) " (6c)
and b8s(A/m)
, _ (Ao
i Iax E(ph+r)(NT+m)SA*I°*' (6d)
with I,* being the solution of
Al(Iu*)z + Asl, * +4A3 =0, (78.)
with
Tva fy
) 7h
=% [I‘h(l‘h+f+6) (sn +1)(pn +8) .uh(.uh +5)] (7o)
ThYod Yhikv By Tva YhYuJ TYhYvA
= +e + 7
I‘ untr+d pptd " [#A patr pa(patr4d)  (ua+r)(ua +5)] (7e)
and
_ _ YuJ Yva
A3—ph “Yn [#h+f+5+e}1h+f‘]’ (7d)

with Y, Yua. and v, defined by equations (5a} and (5b}.

3.b. Local Asymptotical Stability

- The local stability of an equilibrium state is determined from the Jacobian (gradient) matrix
of the RHS of the above set of differential equations evaluated at the equilibrium state.
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3.h.1. Disease free state

For the system defined by equation (4a)-(4e), the Jacobian matrix evaluated at E, is the 5x 5
matrix given by

—(pn +6) 0 0 0 =Th
0 ~(pn+r+8) O 0 Yh
0 0 —Hn 0 —&Yh |- 8
0 0 0 ~(un+7) &M
0 Yol 0 TvA —Hv

The eigenvalues are obtained by solving the matrix equation, det |[AJ] —J| = 0. Using the program
MATHEMATICA, {Wolfram Research, Champaign, IL) to evaluate the determinant, we get the
following characteristic equation:

(A4 pn + 6)(A+ pn) (A + AAZ4 BA+C) =0, (9)
where
A= (pn+7)+(pa+1+8)+ po, (10)
B = (un +7pp +7+8) + poptn + 7+ 8)(1 = R1) + po(pn +7)(1 — €Ry), (11)
and
C = polpn +7)(pn +r +8) (1 - R, (12)
with
__ BB.BiNs(Alpy)
P u(Nr ¥ mP(pn + 1 +0)’
_ _BBuBsNa(A/ )
2T Nt +mP(un + 1)’
and
R, = Ry +¢€R,. (13)

Looking at the characteristic equation, equation (9), we see that two of the eigenvalues are
Ar=—(pn +6) and A= ~(un+r+9). (14)

Both of these are negative. The signs of the other three eigenvalues can be ascertained by the
use of the Routh-Hurwitz conditions [18]

(i) A>0,
(ii) C>0, and (15)
(iif) AB>C.

Looking at equation (19), we see that Condition (i) is always satisfied. Condition (ii) is satisfied
if R, < 1. To see when Condition {iii) is satisfied, we note that the cross product AB will be the
sum of positive terms if Ry < 1 and Ry < 1. Given that the sum of positive numbers is greater
than any individual number, we have AB > uy(pn + r){pn + 7 + 6)(2 — R,,) (this being the sum
of the product of the first term in A and the second term in B and the product of the second
term in A and the third term in B). juy(un + v)(us + 7+ 8)(2 — R)) > C. We therefore have
AB > C. From the definition of R}, R, <1 implies B; < 1 and R; < 1. Thus, the real parts of
the three eigenvalues determined from

Ny AL BA+C=0

will be negative. Combining this with the signs of the first two eigenvalues, equation (14), we
see that all the real parts of all eigenvalues are nepative. Thus, the disease free state will be a
locally asymptotically stable state when R, < 1.

-]
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3'.b.2. Endemic state

- The stability of the epidemic state, E;, like that of E,, is determined by looking at the eigen-
values of the Jacobian evaluated at E;. The Jacobian for this state is

—(pn +8) =Ly 0 0 o ~ TS
mlv* —(un +r+8) 0 0 ThSr*
0 0 —pp —eynlu* 0 e Sx . (16)
0 0 ety —(pn +7) ~ep S
0 Tud (1 — L%} 0 Yoall = Iu®) —py —vosla s —yuslse

where Sy%, I+, Sa*, I4*, and I« are given by equation (5a)-(5d) and equation (6). The 5 x §
matrix equation, det [A] — J| == 0, can again be solved by MATHEMATICA. MATHEMATICA can
also diagonalize the above Jacobian. The characteristic equation will be a fifth-order polynomial
in A and the expressions for the eigenvalues will be very long and complicated, preventing an
easy analysis. We find out that an easy analysis can be made if we make a further simplifying
assumption, no adults become sick with DHF.

4. SIMPLIFIED MODEL

fll
|§ Looking at the medical records of Department of Pediatrics, Siriraj Hospital, the largest health
care hospital in Bangkok, Thailand, out of the 318 patients with confirmed DHF who were
admitted in 1998, only two were above the age of 15; of the 137 patients admitted in 1999, only
one was above 15 years old; out of 84 patients admitted in 2000, again only one was above 15 years
old and out of 332 patients admitted in 2001, none were above 15 years old. From these records,
it appears that in Bangkok, the adults have only a small or no chance of becoming sick with
DHF. To overcome the untractable mathematical nature of the analysis of the epidemic state
encountered in our original model, we have looked at a model in which adults do not become sick
with the disease. Such a model can be obtained by setting £ to be zero. Doing this, the 5 x 5
Jacobian matrix given by equation (16) takes on a much simplified form. But before we find the
eigenvalues of the new Jacobian, let us review some additional modifications we will have made.
We now assume that the reason for the aduits not becoming sick with DHF is that they are
immupe to the infections. The categories I’ and R} would no longer exist and all the adults fit
into one category, 5. The dynamics of the human population is given by

dS"] R bﬂJ B ’
— =ANr- Nptm 31, ~ (pn + 6)S5, (17a)
dI.’J bﬂJ ! T I
hainl A i - 1
& " Neim 1oy — (b + 6 + )], (17b)
;-
% =7l — (un + o), (17¢c)
q.nd
ds, ¢ ' ’

In the absence of infected adults, the dynamics of the mosquitoes are now given by

S, . b wr o
= A= ST = S, (182)
and
o
dy _ % _gp_ .. (18b)

at Nr+m
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Introducing the new set of normalized parameters S = S} /Ny, I =I}/Ny, R= R} /Ny, Sp =
S’ [Ng, and I, = I /(A/p.), equations (17a)—(18b) reduce to

.‘;t_s = A — IS — (uh + 6)S, (19a)
dI
= =WSL = (47 +8)I, (19b)
dR
5 =+ )R, (19¢)
and
d,
=2 = (1~ B~ ok, (19)
_ b8, Nt
Y= WNe+my) (1)

It should be noted that -y, differs from 7,7 in that it has an N7 instead in the numerator. The
dynamical equations for S4 and S, are not needed since S+ I+ R+ Sy =1land S, +1, = 1.
The requirement that Np be a constant leads to the condition that the birth rate, X is equasl to
the death rate, up.

4.a. Endemic Equilibrium States

Setting the RHS of equations (19a)-(19d), we obtain endemic equilibrium state E; = (5=, Ix,
R, Ixy), where

_ B+ M
5= ((pa +8)/pn)(B+ MX,)' (20s)
_ (X, -1)
Ix = -——B+ MX, (20b)
r X, -1
Re = (uh +a) (ﬁ’+ Mx.,) : (20¢)
and
. Xo—1
r-6(rs ) (204)
where
_ HaYh Y
Xe= o o T Dn T8 (212)
M= pntétr (21b)
pn
and
g = L—" (21c)

For the endemic state to be meaningful, X, > 1. Equations (20a), (20b), and (20d) have the
same form as those in Esteva and Vargas’s paper [8] except for the definitions of X, (the basic
reproduction number (R,;) in [8]) M and the presence of some prefactors. In the limit, § goes to
zero and there is no differentiation between adults and juveniles, they are the same,

LE
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:1 4.b."Local Asymptotical Stability
For the system defined by equation (19a}-(19d), the Jacobian matrix evaluated at E is the
4 X 4 matrix given by
—(kn + 8) — L+ 0 0 —yh Sk
0 ~(up+6+7) 0 Yp S
0 r ~(un + 6) 0 (22)
0 Yol — Iy*) 0 —pty — YaI*
Using MATHEMATICA to diagonalize this matrix, we obtain the following characteristic equation;
A+pa+8) (A3 + AN +Br+C) =0, (23)
where
B+ M Xg) ( 8+M )
A= - - -~
(#n+6)( aear ) HeaM X | e ) (24)
B+ M Xo) ( KXo~ 1 )
B= OM | ———— v HX —, 5
| pin(pin + 6) (3+M + polpn +6)Xo + pounMB BT HMX; (25)
and
C = pulpen +7)(pn + 7+ 8)(X, ~ 1), (26)
’ where Xp, M, and 3 are given by equations (21a)~(21c). The real parts of the eigenvalues are

negative when the coefficients A, B, and C satisfy the Routh-Hurwitz condition given by equa-

tion (15). Looking at equation {23), we see that Condition (i) is always satisfied. Conditions (ii)

and (iii) are satisfied when X, > 1. {To see that Condition (iii) is satisfied when X > 1, we note

that the cross product AB > py,pp{pn + )M X, (this being the product of the second terms in A

and B). This term is larger than C. We thus have AB > C.)

¢ - This shows that if Xy > 1, the real parts of all the eigenvalues of the Jacobian evaluated
at the endemic state are negative. Thus, the equilibrium state Ey(S*,Ix, R, I ¢} given by
equations (202)—(20d) is a locally asymptotically stable state. Since the simplified model is

obtained
v.150
0.200
t T
0.125 ~
0.150 —
li' o
o .
& 0,100 0.100 — ﬁ'n'-_
L Y
" -1 7
Y 0.050 - 0.075 —
‘.‘ J
, |
©.000 — 0.050 ———r—
0 12500 25000 37500 50000 0 25000  SQOOO 75000 100000
T | 4

{a} Solution of equation (2) in [7] for an SIR (b) Solution of equation (3a} of the present text for
g model of Dengue fever transmission with no age a SIR model having an age structure. The values
. structure. . of the parameters are given in the text.

o Figure 2. Number of susceptible humans as a function of time.
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ﬂ 0.00028
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H 0,0004 —
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1
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— 1 v T 1
Olumu l L i L —l L T Ll
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12500 214875 J1250 40625 50000
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{(a) Solution of equation (2) in [7}. {b) Solution of equation {3b) for a SIR model hav-
ing an age structure.

Figure 3. Number of infected humans as a function of time.
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0.00500
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{a) Behavior in a nonage structured SIR model. (b) Behavior in an age structured model.
Figure 4, Number of infected mosquitoes as a function of time.

from equations (la)—(1f) by setting ¢ to zero and dropping the categories 4, R4, one would
expect that an analysis similar to the one done in Section 3.b.1 would yield the same results
(except that £ would be equal to 0). When £ in Rj is set to zero, we find that R} = H;, which
is the same as X after N; has been replaced by uaNr/(us + §) (this being what N is equal
to) in the definition of R;. We can therefore conclude that when Xy < 1, the equilibrium state
is the disease free state and that this state is locally asymptotically stable.

4.c. Numerical Studies

‘The main effect of introducing an age structure into the model is to change the definition of the *
basic reproduction rate. Using the values of the parameters similar to those used by Esteva and
Vargas (ps = 0.0000456, u, = 0.23, b= 0.3, B = 0.75, f, = 1.0, m = 0.0, r = 0.343, Np =

by
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(a) Behavior in a nonage structured SIR model, (b} Behavior in an age structured model. The
equilibrium states in both cases are stable spiral
nodes.

f Figure 5. Plot of number of susceptible and infected humans.

10,000, A = 5000), the value of the basic reproduction number defined in {8] would be 10.3.
Numerically solving the set of equations given by Esteva and Vargas (8, equation (2)], we obtain
the time development of the susceptible humans as seen in Figure 2a. In Figure 2b, we show
the solution to equation (3a). The values of some of the parameters have been changed (i.e.,
J = 0.000283, A = 200, and r = 0.0713, with the others staying the same). Substituting these
values into equation (16), we get Ry = 1.8. In Figures 3 and 4, we show the time development of
the infected humans and infected mosquitoes for the case of no age structure and an age structure
model. In Figure 5, we plot the number of infected humans versus the number of susceptible
humans in both a nonage structure population and age structure population. The values of the
parameters are such that for both populations, the equilibrium state is the endemic state. The
endemic state is the stable spiral state. As we see, the periods of fluctuations in the number of
individuals in each class are much shorter in the absence of any age structure. The spiraling in is
much more severe in the absence of the age structure. The age structure appears to calm down
the fluctuations.

5. DISCUSSION

i The square of the basic reproduction number is the number of secondary infections, which can
result from one primary infection. For a disease to be capable of invading and establishing itself
in a host population, this must be greater than one. If the number is less than one, then every
successive generation will diminish in size until its number approaches zero. To determine what
this number is, we note that an infected juvenile (adult) will be bitten by

b(A/pv) ( b(A/pv) )
: (Nt +m)(pn + 1+ 8) \(Nr + m)(un + 7}
mosquitoes during the time juvenile (adult} is infectious. Of these mosquitoes, a portion of them

will become infected (the above numbers muitiplied by 5,). One of these infected mosquitoes
V\fill in turn bite BN, BN,

(N7 +m)p, (Np +m)p,
during its lifetime. Multiplying the first number by 8, and the second by £3;, we get the number
of juveniles and adults infected by an infecticous mosquito. Multiplying the number of juveniles

(27)

juveniles and adults .
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infected by the number of mosquitoes infected during the lifetime of the infectious juvenile, we
get
pnb? BB N (Af )
o (N7 +m)2{un +6+71)

If we multiply the number of infectious adults infected by the number of mosquitoes infected
during the lifetime of the infectious adults, we get

(28)

. 2052 By B Na(A/ i)
(N7 + m)2(un + 1)

(29)

Adding these two numbers together, we obtain the basic reproduction number. The sum of
equation (28) and (29) is the R§ given by equation (21).

The different models for disease transmission have ylelded expressions for the basic reproduction
number. These expressions have provided insights into the control of the various diseases. One
of the first expressions obtained was the basic reproduction number for the spread of malaria. It
is given by

R, = bzﬁuﬂhm
wuofpn + 1) ’

where m is the ratio between the mosquito population and the human population. Based on
the epidemiological data, Molineaux and Gramiccia [18] estimated Rp to be 80 for the malaria
epidemic in northern Nigeria. The implication of this (each infective person infects 80 other
people) points to possible shortcoming of the model. It was pointed out by MacDonald that the
malaria transmission model did not take into account an incubation period during which mosquito

is not infectious. Taking this period inte account, MacDonald obtained a new expression for the
basic reproduction number

(30)

L= bzﬁuﬂhm e;.p‘,-,-
ﬂv(nuh + 7')

where 7 is the incubation period of the malaria parasite in the mosquito [19]. Equation (31)
points to the fact that if the incubation period is longer than the life expectancy of the mosquito,
the disease will not be established since the mosquito will die before it becomes infectious. The
appearance of an exponential factor containing the life expectancy of the mosquito has led to the

changes in the strategy for controlling malaria, exterminate the mosquito during its adult state
and not in its larva stage.

, (31)
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Abstract

The effect of cannibalism on an age-structured predator—prey system is studied. Three stable equilibrium states are found.
Using a Hopf bifurcation analysis, it is found that the non washout steady state looses its stability as the cannibalism attack rate
incréases past a bifurcation point S.. The dependence of the bifircation point on the other parameters in the model is found. It
is shown that the trajectory of the solution spirals in for attack rates S < §, and exhibits limit cycle behavior for S> 5.
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i
1. Introduction

P

Under what circumstances is cannibalism adaptive?
For%evolutionary games being played on a small part
of nature’s stage, one could measure the rewards of
the ;games in terms of expected future reproductive
success, i.e. by seeing whether the species goes extinct
or not To win the game, one looks for an evolutionary
stable strategy (ESS) (Maynard-Smith, 1982). An ESS
is a population strategy that yields a higher reward
than any other feasible mutant strategies. The nature
of the strategy depends on the values of the ecological
parameters which are present at the time. Change the
time and the ESS may be different, e.g. it may be one
of the mutant strategies or it could be a completely
new one.

An intuitive belief of biologists is that evolution
should favor behaviors with the lowest cost to the

* Cormresponding author. Present address: Institwe of Science &
Technology for Rescarch & Development, Mahidol University,
Nakorn Pathom 71730, Thailand.

E-inail address: scimt@mahidol.ac.th (1.M. Tang).

species practicing them (Mesterton-Gibbons and
Adams, 1998). Because it costs energy to breed and
because cannibalism would waste this energy, evolu-
tion would not select cannibalism as a desirable trait.
Another reason is that intraspecific feeding facilitates
the spread of prion proteins (abnormal protein growth
in the brain and other internal organs) among the
individuals within the species. The presence of these
proteins in the brains leads to fatal diseases such as
bovine spongiform encephalopathy (BSE) in cows,
trans-missible spongiform encephalopathy (TSE) in
sheep and kuru in the Fore people of New Guinea. The
first two diseases are not due to cannibalism per se, but
are the result of eating feed meal made from ground
up diseased animals of the same species. The much
dreaded disease vCID (variant Creutzfeidt-Jakob dis-
ease) is due to the interspecific transmission of bovine
prion proteins from the cow to the human. Because
the bovine prion is foreign to humans, the efficacy
of the transmission would be much less than that of
intraspecific transmission. This is one of the reasons
for the incidence of vCJD not being as wide spread as
that of BSE. Cannibalism, thus leads to a higher mor-

0304-3800/% — sce front matter © 2003 Elsevier B.V. All rights reserved

doi:10.1016/50304-3800(03)00150-X
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tality rate and animals that practice it would then be
at a competitive disadvantage with those who do not.

Having said the above, it was surprising when two
recent mathematical studies of cannibalism showed
that cannibalism could stabilize a predator—prey sys-
tem. Kohlmeier and Ebenhdh (1995) found that the
cannibalism of the predator could lead to an increase
of the standing stocks of both the prey and preda-
tor. The authors were surprised by this result since as
they pointed owt, it is contrary to infuitive expecta-
tion. Van den Bosch and Gabriel {1997} have pointed
out that in the absence of cannibalism, the system of
equations used in by Kohimeier and Ebenhth (KE)
has for certain parameter combinations an unstable in-
ternal steady state. For these parameter combinations,
predator—prey cycles occur. Cannibalism suppresses
these cycles since increasing cannibalism attack rates
causes the internal steady state to change from be-
ing unstable to being stable. We would like to point
out that the model of KE employs a Holling type 11
functional response. This means that they are using a
model that contains predatory switching. The reason
for pointing this out is that several studies (see for in-
stance, Pelletier, 2000} have shown that prey switch-
ing has a strong stabilizing effect on a multi-species
ecosystem.

In their paper, Van der Bosch and Gabriel went on
to improve the predator-prey model by incorporating
an age structure in the predator populatton. It was rea-
soned that cannibalism usnally involves larger (adult)
predators eating smaller (juvenile) predators and so an
age structure would be required to properly describe
the predator—prey relation. The predator—prey cycles
in their study are generated by the age structure while
the cycles seen in KE’s study are due to the inter-
action between the logistic prey growth and the hy-
perbolic functional response. Increasing the cannibal-
ism attack rate would diminish the effects of the age
structure. The fluctuations (cycles} would, therefore,
be suppressed implying that cannibalism stabilized the
predator—prey system.

Recently, Magnusson (1999) has reexamined the ef-
fects of cannibalism on the predator—prey system. He
found that cannibalism has a destabilizing effect. For
the case of large prey carrying capacity of the environ-
ment, Magnusson finds that as the cannibalism attack
rate is increased, the non washout equilibrium point
(a stable spiral point) becomes unstable via a Hopf

bifurcation. He goes on to state that the loss of sta-
bility is not possible without a high juvenile mortality
rate and a low adult recruitment rate. We have studied
cannibalism in an age-structured predator—prey sys-
tern described by the same set of basic equations as
those used by Magnusson but with a different set of
scaling parameters. The new set of equations allows
us to follow the loss of stability for all values of the
parameters in the model (not just those for large car-
rying capacity, high juvenile mortality rates and low
adult recruitment rate) as the cannibalism attack rate
is changed continucusly. Like Magnusson, we use an
analysis based on the Hopfbifurcation theory. We have
found the dependence of the bifurcation point on the
values of the other parameters in the system.

In this study, we have ignored any structure, which
may occur in the juvenile population. In their smdy,
Van den Bosch and Gabriel proposed that only ju-
veniles of an age within the “cannibalism window™
would be vulnerable to cannibalism by adults. Juve-
niles of age below this window would be too small
to satisfy the hunger of the adults or would be pro-
tected by their mothers. Older juveniles would be ac-
tive enough to get away from the adults. This brings
up the question of whether the old juveniles should be
reclassified as young (immature) adults. In this type
of population structure, it is not the age, which counts,
but the size. The population model should, therefore,
be called a size-structured population model (Cushing,
1992).

A true age-structured population model is achieved
when the juvenile population or, the adult population
or the whole population is divided into discrete age
groups regardless of other distinctions. The division
of the juvenile population is often done in the study
of the transmission of childhood diseases (Anderson
and May, 1992). These studies are often referred to as
being realistic ape-structured population model stud-
ies. The division of the adult poputation has been
used in a study of fishery management (Allen and
Miranda, 1998). The erratic recruitment of a specie
of fish (crappie) year to year has caused difficulties
in the development of management strategies of this
fish. Allen and Miranda divided the adult population
into cohorts of fishes entering into the population each
year and followed the progression of each cohort as
they are subjected to various life and death factors.
Many population studies (Roughgarden, 1979) divide

-y
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up the whole population into different age groups and
see ﬂvhat the age distribution would be under different
circlimstances.

It:has been noted that cannibalism in certain species
are often directed at the egg or larvae of the specie.
This would necessitate the division of the juveniles
intoidifferent developmental stages. Yang et al. (1997)
divided the citrus rust mite population into four pop-
ulations: egg, protonymph, deutonymph and adults
in their studies of the population dynamics of fruit
mite—fungal pathogen system. Krivan and Havelka
(2000) divided the gall-midge juvenile population into
three sub populations: egg, larvae and pupae, in their
study of the use of gall-midge for biological control
of pests. This type of division leads to what would be
better called a stage-structured population model.

Having pointed out that “juvenile” (nonadult) pop-
ulation often has an internal structure, we will never-
theless assume that the juvenile population is a sin-
gle group. Cushing (1991) remarked that even a sim-
ple two-age class population model with appropriate
negative and positive feedbacks due to cannibalism
can account for several important phenomena coneern-
ing cannibalistic populations. Cushing’s study differs
frorﬁ ours in that it uses discrete time, while this work
is based on a continuous time development. In Section
2, we introduce the model and obtain the equilibrium
states, while in Section 3, we perform a stability anal-
yses of both washout and non washout equilibrium
states. In Scction 4, we study the effects of canni-
balism on the stability of the non washout state. We
present the numerical solutions, which show the tran-
sition from a steady state behavior to a limit cycle be-
havior as the attack rate increases past the critical at-
tack rate.’ In Section 5, we present some conclusions.

i
2. The model
| ,
The ecosystem in our model consists of a single
predator species, a prey population and the vegetation,
The predator population is divided into juvenile preda-

- tors {denoted by ¥) and adult predators (denoted by X).

The prey population may consist of several herbivore
species, but since we use only one set of parameters
to describe their interaction with each other and the
rest of the ecosystem, the prey population is treated as
being a single species (denoted by Z). We assume that

the prey population is subjected to a logistic growth
condition. Magnusson makes the implicit assumption
that there is a second prey species present. The sec-
ond species is required since Magnusson allows for
the possibility that the predator population can exist
when the primary prey species becomes extinct. The
equations describing their ecosystem do not contain
any reference to the second prey population. The sec-
ond species would, therefore, be invisible to the preda-
tor species, meaning that the predators could not feed
on them when the primary prey species becomes ex-
tinct. The fourth steady state (xg, yg, 0) obtained by
Magnusson would, therefore, be impossible. In our
ecosystem, the different species interact via some sort
of mass action inaction. This leads to the time rate of
change of the prey population density to be given by

dZ
»(—huz(T—UZ)Z—VZX (D
where T is the net rate of growth; T/U, the prey car-
rying capacity and VX is the increase in the prey’s
mortality rate due to predation by the adult predator.
As we have pointed out, Kohlmeier and Ebenhéh use
a Holling type 1I functional response to describe the
predation. Its use means that the predation will change
depending on whether the population density of the
prey or predator is high or low. This is probably a bet-
ter description of the actual predation seen in nature.
Since we are interested in this paper on the effects of
cannibalism, we have used the simplest description,
i.e. predation is described by a constant value. In writ-
ing Eq. (1), we have assumed that juvenile predators
do not eat any prey. They obtain their subsistence from
their parents.

The time rates of change of the predator populations
are given by

dXx
E:AY—,uaX+ySXY+CXZ (¢3]
and
dy
E=)uX—AY—,qu---SXY (3)

where A is the recruitment rate (rate at which juveniles
mature into adults); 1, (1), mortality rate of the adult
{(juvenile) predator; S, the cannibalism attack rate; ySY
and CZ, the increases in the adult mortality rate due
to being better fed through eating juveniles and prey,
respectively, and A is the birth rate of the predators.
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Looking at Eqs. (2) and (3), we see that there are five
{plus the two mortality rates) parameters whose values
have to be assigned. There are three additional param-
eters in Eq. (1). We can reduce the number of param-
eters by making the following change of variables (a
rescaling):

v C VA
x=—X, z=—2, yv=-—Y
a Ma Ha
and
= T #)

Making these changes, Eqs. (1)(3) assume the much
simpler form

dx txzt s dy

—_ =y - X , — = - — 85X

o y—x+xz+ysxy it rX —my 'y
and

d

& ={t—uz—x)z (5
dr

where 5 = S/V, ¥ = yuald, t = Tlga, r = RA/ug,
u = U/C and m = (A + p)/1ty. The rescaling here
is different from those introduced by Magnusson. We
believe that they are better since they allow for the
role of the cannibalism attack rate to be followed more
closely (s is directly proportional to the cannibalism
attack rate).

The equilibrium (or steady state) points are obtained
by setting the LHS of Eq. (5} to zero. Doing this, we
get the following equilibrium points E(x,y,2);

E| = (0,0, 0), (6a)
t
E» = (0, 0, ;) (6b)
and
Ey=(x*y". 7" {6c)
where
ks V62 — ds(mu — ru — tm) ' )
25
N rx*
= 7b
y m + sx* (70)
and
t —_ *
r=_" (7c)

with § = st — su — m + ¥'sru. It can be shown that
the term appearing in the square root in Eq. (7a) is
always positive. The requirement that x* > 0, places
certain restrictions on the values of the parameters.
Their values must be such that st—su—m+y'sru > 0
and mu — ru — tm < 0. We will discuss the stability
of the three equilibriurn points in the next section. We
do not find a fourth equilibrium point £4. As we have
mentioned, the existence of the equilibrium point at
{x0, ¥0, 0} would imply that it would be possible for
the predators to exist in the absence of food to eat.

3. Stability analysis

The stability of the equilibrium peints is determined
by first linearizing the system of first-order differential
equations and then assuming that the solutions vary as
exp {A1} where the As are the eigenvalues of the Ja-
cobian matrix evaluated at the equilibrium point. The
equilibrium point is a stable point if all the eigenvalues
are real and negative; unstabie point if they are real
and positive and is a saddle point if two of them are
real and of opposite signs. If the eigenvalues are com-
plex, the equilibrium points are stable spiral points or
unstable spiral points if the real parts of the eigenval-
ues are negative or positive.

3.1. Predator washout states (0, 0, 0) and (0, 0, t/u)

The Jacobian matrix for the present set of differen-
tial equations is

147+ y’sy’ 1+ psx! ¥
r—sy —m — sx' 0 (8)
-7 0 t—x' —2uz

where X', ' mad #’ are the values of rescaled variables
at the equilibrium point. For the first predator washout
state, the diagonalization of the Jacobian matrix yields
the following characteristic equation

A=0Z+m+ DA+ (m—n)=0. 9)
The eigenvalues for the washout state (0, 0, 0) are

AM=t>0

and

=+ DES DI —4m —r)

A
23 )

(10)
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Form > rand m > —1, X3 3 are both negative. There-
fore, the washout equilibrium state is a saddle point.

Evaluating the Jacobian matrix at the second
washout point (0, 0, #/u), we find that the eigenvalues
for this equilibrium point are

L1+ m — (¢
+/(1+m—(t/u))2=4(m — r — (t/u)m)
> :

Az3 =

(11}

It can be shown that all of these eigenvalues will be
negative if

LA (12)
Hoom

If the values are the parameters satisfy condition (11},
then (0, 0 t/u) is a stable equilibrium. If the opposite
is tljue, then (0, 0, t/x/) will be an unstable saddle point.

3.2} Nown washout predaior state (x*, y*, z*)

The eigenvalues of the Jacobian evaluated at the
non washout equilibrium point are the roots of the
following cubic equation

Mra+ar+a=0 (13)

where

ag=z" [mu (z'+-’% - l) +x*(m+ sx*)] ,
t 3

x* r
a| = uz* (y_ -|-r———) +x*—m (l -5 - —)
Xx* y* n

and

* *
ay = y—*"+ rix-; + uz* (14)
LR .
where x*, y* and z* are given by Egs. (7a){(7c).
Given ap, a; and a2, we now define

[ a
g=1a—gal, r=}aar —3ao) ~ 3@

S12=[rtg® +rH/Y s (15)

If & +r? > 0, Ay and A would be the complex
conjugate of each other and A3 would be real.

In terms of the above constants, the three eigenval-
ues of the Jacobian matrix are

1 a; /3
Kz =—=(5) +5) — = +i¥(s; —
1,2 2(|+ 2) 3=f:12(5'1 52)
and
a
M=m+m=§. (16)

Now if the values of the parameters are such that

—2a2

a
<S[+S2<?2,

the real parts of all three cigenvalues would be negative
and the non washout state £3 would be stable.

4. Effect of cannibalism on stability of non
washout state

4.1. Bifurcation point

A Hopf bifurcation occurs (sece Marsden and Mc-
Cracken, 1976) when for some critical value of the
bifurcation parameter (which we take in this study to
be the cannibalism attack rate), the following are true
(a) Reri2(s") =0
(b) Red/12(s*) £ 0
(c} Imh 2(s") #0
(d) The real parts of all other eigenvalues of the Jaco-

bian evaluated at the steady state point negative,

From the above conditions, it can be shown that for
Hopf bifurcation to occur, we need

ap >0, aa <ap
with
az < 0.

If we define s as the critical value where ay(s7)a2(s7)
= agp(s)), we get

T 1 ru 1
S>Sl=y—* +—: + o *(x*)2

x[ ( i—)+z(b+cxc+v )]

(17)



277/ Appendix # 3.6

218 C. Kaewmanee, I M. Tang/Ecological Modelling 167 (2003) 213-220
- where
2
u(y*)
a=m(* =D+ @ +r b=2u+ 0 >
: (x*)

Fig. 1. Trajectory of the solution of Egq. (3) for values of the
parameters lying in region II. X denotes the adult predator; ¥, the
juvenile predator and Z, the prey. The non washout steady state
point is a stable spiral point. The values of the parameters are
s=09,m=1,9v =15 rim=05and u="01

Fig. 2. Trajectory of the solution of Eq. (5) when s is changed to 1.0 which is greater shan the critical bifurcation point s* = 0.98. X

and
c=u* —m.

Next we define another critical value 53 as the value
where ag(s3) = 0. This give us

*
M;E_'.”“_[l_i_z*_x_] (18)

(x*)2 m u

Since s > 57 > 53, we can pick the bifurcation point
5" to be 57.

4.2. Description of parametric space

To study the effect of increasing the (rescaled) can-
nibalism attack rate ‘s’, we introduce a hyperspace £2
in which each point is designated by the values of s,
rom, tbuand ¥, ie (5, F, m', £, 4, ¥"). In this hy-
perspace, there are families of hypersurfaces on which

6109

denotes the adult predator; ¥, the juvenile predator and Z, the prey. The values of all other parameters are the same as those used for

Fig. 1. The bifurcation is a supercritical one,

-
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the parameters have the values satisfying the relation-
ship a» > 0. Each of the hypersurfaces are divided
into three regions by the hypercurves @p = 0 and
a\a; = ap. In region 1 of the hypersurface, the values
of the parameters are such that ap < 0 and aya2 >
ap; in region 11, the values are such that ag > 0 and
aaz > ag; while in region 1, the values are such

that ag > 0 and aaz < ap. Only the two washout

states (0, 0, 0) and (0, 0, #/z) would be possible for
values of the parameters in region I. The first would
be a saddle point while the second would be a stable
or unstable point depending on the initial conditions.
The values of the parameters in region 1I would pro-
duce a phase solution trajectory which would spiral
into the non washout steady state (x*, y*, z*) given by
Eqgs. (7a)}(7¢). For values of parameters in region 1iI,
the non washout steady state would lose its stability
and the trajectory of the solution in phase space would
jump to a limit cycle behavior.

4.3. Numerical solutions

Given Eq. (14), we can calculate the value of the
bifurcation point. Picking m = 1, ¥y = 1, #/im = 0.5
and ¢ = 1.3, we have calculated s* to be 0.98. Picking
s = 0.9, we have a set of parameters belonging to
region il. Numerically solving Eq. (5), we obtain the
three-dimensional trajectory shown in Fig. [. As we
see, the trajectory spirals into the stable point (x*, y*,
z*). If we change s (only) to 1.0, we would then be in
region I11. Now solving, Eq. (5), we get the limit cycle
behavior seen in Fig. 2. Further increasing the value
of s, vields limit cycle trajectories. All the bifurcations
appear to be supercritical.

5. Conclusion

Qur numerical studies show that the predator non
washout steady state solution of a predator—prey sys-
tem looses its stability as the cannibalism attack rate
increases beyond a critical value s*. Whether or not
this is adaptive depends on whether or not the preda-
tor species becomes extinct. Passage into a limit cycle
behavior means that during some time in its life cycle,
the predator will experience harshness in its life. This
would cause nature to select those traits that would al-
low future descendants to have the ability to adapt to

changes in the environment. Many species who have
reached the pinnacle of their food chain have become
over specialized and have become extinct when nature
changed; witness of the fate of the dinosaurs.

Magnusson has obtained results similar to ours,
However, he restricts his conclusions to the case where
there is high juvenile mortality and/or low recruitment
rate and high conversion efficiency. One of the reasons
for this is the nature of the rescaling he introduced.
The only parameter appearing in his equations that
depends on the cannibalism attack rate, depends on
the inverse of attack rate, As the attack rate increases,
its influence on the dynamics would decrease. Also,
he assumes that the carrying capacity for the prey is
high. This allows him to drop a very important factor
in his predator—prey model (limitations due to logistic
growth of the prey).

The appearance of oscillations in the populations
in certain cannibalistic ecosystems has also been ex-
plained by Diekmann et al. (1986). Their approach is
somewhat different from the one used in this study.
They used integrodifferential equations to model their
predator—prey interaction. Cushing (1991) has used
difference equations to study the predator prey sys-
tem. He finds that if the environmental resources are
low and the net reproductive number is below replace-
ment, then cannibalism might insure the survival of the
species. All of this shows that the predicted outcome
of cannibalism on a predator—prey system depends on
the model used to model the system.
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Introduction

Dengue fever (DF) is a rather benign febrile
disease, afflicting mainly older children and
adults™ and often remaining unapparent in
young children. The sudden onset of fever
and a variety of non-specific signs and

* Far correspondence: scimt@mahidol.ac.th

symptoms characterize DFE The high fever
jasts for two or three days, followed by
additional symptoms. its clinical
presentations are similar to those of several
other diseases, meaning thereby that many
of the reported cases of DF could be due to
other febrile ilinesses and also that many

Dengue Bulletin - Vol 27, 2003
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dengue infections are not recognized.
During the 1977 epidemic in Santiage de
Cuba®™, only 3,012 out of 9,747 people who
developed febrile illnesses and whose sera
were tested, turned out to be infected with
dengue fever, DF is caused by the dengue
virus which belongs to the genus, Flavivirus,
in the Flaviviridae family. There are four
serotypes of this virus known as DEN-1,
DEN-2, DEN-3 and DEN-4. Infection by any
of the four serotypes causes similar clinical
presentations, and confers permanent
immunity to that particular serotype, but
only a temporary one to the others.

The dengue virus is transmitted by the
Aedes mosquitoes, i.e. Aedes aegypti and
Aedes albopictus, in countries of South-East
Asia. Introduction of the dengue virus by just
one individual into a susceptible population
residing in a locality where the above
maosquitoes are prevalent can quickly lead to
an epidemic. In many tropical countries, DF
has now emerged as a major public health
problem®.

The pathogenesis of dengue
haemorrhagic fever (DHF) is stilt a matter of
controversy. According to one school of
thought'™, pre-existing heterologous dengue
antibodies recognize the infecting virus and
form an antigen-antibody complex, which
then binds the virus 1o the cell membrane of
some leukocyctes. Since the antibodies are
only heterologous, the virus is not
neutralized and is free to replicate once
inside the cell. It is then thought that these
cells secrete vasoactive mediators in
response to dengue infection. These
mediators cause an increased vascular
permeability, which leads to hypovolemia
and shock. Since the antibodies have to be

pre-existing, this hypothesis terms it as the
secondary infection or immune
enhancement,

A cautionary note should be added
here. It appears that the occurrence of DHF
after a second infection depends on the
strain of the serotype. During the 1996-1997
dengue epidemic in Belem Para, Brazil,
none of the 24 patients who had been
previously infected by the DEN-1 virus
developed DHF after they had been re-
infected by the DEN-2 virus®. Watts et al”
observed the same pattern during the 1995
epidemic in lquitos, Peru. No cases of
DHF/DSS were reported even though it was
expected that between 887 to 10,247 cases
would have occurred. The DEN-2 isolates
were found to be of the American genotype
{strain). Kochel et al™ attributed the non-
occurrence of DHE/DSS to the presence of
common envelope epitopes in both the
American strain of the DEN-2 virus and the
DEN-1 wvirus and the absence of these
epitopes in the Asian strain of the DEN-2
virus. The common epitopes could have
been acquired through the recombination
between the American DEN-2 and the DEN-
1 virus co-circulating in the Americas or
through genetic drift (mutation).

The other school of thought™ maintains
that the mutation of the viruses could have
produced viruses with greater virulence and
therefore greater epidemic potential. DHF
wouid then be due to the appearance of
these mutant strains among the circulating
virus. This second hypothesis does not pre-
suppose the presence of pre-existing
antibodies and so the DHF/DSS infection
would be the result of a primary infection. In
an attempt to contribute to this debate, we

40
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reviewed the serological status of children
suffering from DHF who were admitted to
the Paediatrics ward of Siriraj Hospital (a
tertiary-care medical centre with a 300-bed
facility in Bangkok, Thailand) between 1998
and mid-2003. A similar review of children
admitted to the Department of Paediatrics,
Chulalongkorn Hospital, Bangkok, between
1985 and 1995 was made recently®,

Materials and methods

Criteria for primary and secondary
infections

The World Health Organization (WHQ)®
has established a set of criteria to determine
whether a case of dengue fever is due to
primafy or a secondary infection. The
determination is based on the results of
gither H! tests or ELISA tests or both, done
on a paired set of sera taken at least seven
days apart, one in the acute phase and the
other in the convalescence phase. The
criteria for primary infection are that, for a
paired set of sera specimens there should be
a fourfold increase in the IgM antibody
response and HI titers of any of the DEN
serotypes and the IgM/lgG ratio should be
>1.8 andfor the HI titers in the
convalescence phase should be <1,280. The
criteria for determining secondary infection
are that the IgM/IgG ratio should be <1.8
andfor the HI titers in the convalescence
phase should be 22,560.

Patients

Admission to the ward was based on the
clinical presentation of DHF as per the case

definition of WHO™. Serological tests, i.e.
haemagglutination inhibition (Hi) assay"®
and IgM/IgG enzyme-linked immunosarbent
assay (ELISA)'", were used to determine
whether the patients had dengue virus
infection. Attempts were made to isolate the
virus on Toxorhynchites mosquito to identify
the serotype of the virus responsible for the
iliness.

Results

The results of the laboratory survey are
given in the Table. Of the 1,183 patients
admitted, the serological tests established
that 1,082 of them were confirmed as of
DHFE A total of 214 patients were
determined to be due to primary infections,
291 due to secondary infection and 577
remained undetermined. One hundred
and one patients turned out not to be sick
with DHFE. The virus responsible for the
infection was isolated in 373 cases. The
predominant wvirus was DEN-1 (162),
followed by DEN-2 (121), DEN-3 (70) and
DEN-4 {17). Multiple viruses were found in
three patients (not included in the table).
On the basis of the serological tests and
using the WHO criteria for primary and
secondary infections. our study found that
in 1998, 14 of the cases for which paired
sera specimens were tested by both tests (or
9.6% of 146 cases) had resulted from
primary infection. In 1999, 2000, 2001,
2002 and the first half of 2003, three out of
57 cases (5.3%), six out of 48 cases (12.5%),
85 out of 293 cases {29%)}, 23 out of 90
cases (25.6%) and 16 out of 56 cases
(28.6%), respectively, had resulted from
primary infection.
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Table. Summary of the serological records of DHF patients admitted to Siriraj Hospital, 1998-2003

1999 137 112 9 13 3 4 29
2000 84 EA 13 13 5 0 3
2001 334 334 49 36 17 8 110
2002 186 186 23 22 4 1 50
2003 121 121 17 9 0 3 29

"From lanuary - June 2003

Regarding the results of virus isolation, of
the 121 cases where virus was isolated in
1998, 40.0% were of DEN-1, 24.2% were of
DEN-2, 34.2% were of DEN-3 and 1.7% were
of DEN-4. In 1999, the respective
percentages were 31.0, 44.8, 10.3 and 13.8.
In 2000, the percentages changed to 42, 42,
16.1 and 0, respectively. In 2001, they were
445, 32.7, 155 and 14.1. In 2002, they
were 46.0, 44.0, 8.0 and 2.0 respectively. For
the first half of 2003, the percentages were
58.6, 310, 0 and 10.3 respectively.
Comparing the percemtages year by year, we
can quantify the relative amount of the virus
in circulation during that year. The relative
abundance of DEN-1 virus appears to be
increasing year after year, while that of DEN-3
appears to be decreasing. Overall, DEN-2
appeared to be the second-most abundant
serotype in circulation throughout the study
period.

The age distribution of the patients
suffering from DHF is given in the Figure.

This looks similar to the one of the DHF/DSS
patients admitted to Yangon Children’s
Hospital, Myanmar, between 1995 and
1996, but is different from that of the
children admitted to the Children’'s Hospital
in Bangkok between 1995 and 1998"2. The
age distribution pattern for the latter hospital
shows a bimodal distribution, with the
second maximum in infants below the age of
one year. Halstead et al''? proposed that this
group should be the one to study for
understanding primary infections. They
found that infants with DHF/DSS constituted
4.9% of the patients in their study group.
Only eight infants were recorded in our
study group. A similarly small number of
infants was seen in the study group of
Pancharoen et al®. Also shown in the Figure
is the age distribution of the DHF cases
resulting from primary infection. In all the
three studies, DHF infections in infants were
primary infections.
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Figure. Age distribution of primary infection and total DHF patients
(1998-2003) The numbers listed are for the patients whase ages are
known and include those whose diagnoses are based on either
single sera test or clinical presentations
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The pericd covered in the present study
spans two complete three-year cycles in the
month of incidence of DHF in Bangkok,
Thailand, between January 1998 and June
2003. Hays et al"® carried out a spectral
density analysis of the data and found an
annual variation and a super-annual
variation (of three years). The 1998
epidemic was one of the peak years in the
annual occurrence of DHF in Thailand.
Based on this, Hays predicted during a
dengue fever conference heid in December

peak year for DHF. This was borne out by
the increase observed in the incidence of
DHF in Bangkok in that year. Many of us
also made similar predictions™.  As
observed in this study, the incidence of
DHF peaked in 1998 and then decreased in
1999 and again went down in 2000. It rose
sharply in 2001 (a2 peak year in the three-
year cycle) and then dropped in 2002. The
decrease appeared to be continuing in
2003. Based on the previous trends, it is
expected that there will be a rise in the
incidence of DHF in 2004,
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In the present study, dengue virus was
isolated only in 34.5% of the 1,082 DHF
patients confirmed by serological
examinations. This is far below the
percentage isolated by Vaughn et al®®, who
were able to isolate the virus in 98% of their
patients. Their study was done in 1994. The
difference in the percentages is due to the
fact that Vaughn et al carried out their
isolation within three days of the beginning
of the high fever. Using similar criteria for
differentiating  between  primary  and
secondary infections as the cause of the DHF
ilness, Vaughn et al established that only 8%
of the acute dengue ilinesses were due to
primary infections (92% were due to
secondary infections).

The relative abundance of the four
serotypes cbserved by Vaughn et al, in 1994
was DEN-1 (20.3%), DEN-2 (28.8%), DEN-3
(16.9%) and DEN-4 (33.9%). Combining
these numbers with the relative abundance
observed in our study and in 1960"9, we
observed that there was permanent
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The impact of initial attack size on SARS epidemic for SARS free

countries: Possible reason for Japan without a domestic transmission.
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Background: The newly identified coronavirus has caused an epidemic of severe acute respiratory syndrome (SARS)
to appear worldwide, particularly in parts of Asia. Although Japan has experienced the entry of a SARS-CoV infected
person, the virus has so far not succeeded in invading the community.

Method: A mathematical model based on Kermack & McKendrick epidemic model, was recently devetoped to be
used, is applied for evaluating the effect of interventions such as quarantine and isolation. An analysis ceatered on
initial attack size has been done to estimate the conditions needed for the successful invasion of SARS.

Results: The possible trajectories of SARS epidemics are obtained for different initial attack sizes, i.e., the number of
infectious persons who are first introduced into a specific community having a susceptible population. It was
demonstrated that the successful invasion of SARS would largely dependent on the initial attack size under certain
assumptions. Mathematical analyses were performed to prove that the maximum number of susceptible humans who
would be infected could be estimated on the basis of the initial attack size, using simple formulas.

Conclusion: The initial attack size is one of the most important determinants of whether a SARS epidemic can occur
or not. Under an effective quarantine {(which would lead to R, < 1) regime, it would be difficult to generate secondary
cases through the entry of only a few infectious individuals into large populace. The method was considered to also be
useful when we estimate the degree of quarantine required.

Keywords: Severe Acute Respiratory Syndrome (SARS); Mathematical Model; Initial Attack Size; Japan

1. Introduction
Since November 2002, SARS (Severe Acute

This work was presented at the SARS e-Conference . ) .
Respiratory Syndrome)-associated coronavirus (SARS

by World Health Risk Management Center, October

-CoV) has caused outbreaks of an atypical pneumonia
2003, Tokyo, Japan.

worldwide, particularly in parts of Asia®’. Since the
average overall case-fatality rate for all countries has

* gorresponding author. 2 o
ranged from 10.4 to 14.7 %~, growing fears for SARS

Tel: +66-(0)2-246-1381
fax: +66-(0)2-246-1381
E-mail address: Nishiurah@aol.com (H. Nishiura}

among public as well as health-care workers have
spread dramatically. The spread of SARS stopped
when public health measures such as quarantine and
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isolation were imposed on the public. Riley et al®
believed that the reduction in the contact rate between
the infectious individual and the rest of the susceptible
population was the main reason for the end of the
SARS crisis. By the time of the last report of someone
becoming sick with SARS, 8457 individuals had been
afflicted with the illness, 813 of who died”.

From the beginning of the epidemics, SARS has
been a worry to Japan because of its close proximity to
Hong Kong and other SARS affected Southeast-Asian
countries™, Many Japanese and foreign travelers have
traveled to these countries and have returned to Japan
after their visits. The Japanese govemment has
therefore drawn up contingency plans for the
possibility of SARS-infected individuals entering into
Japan. Medical doctors of national hospitals have been
dispatched to each airport quarantine office around the
country. In addition, thermometers has been put in
place, and all passengers from countrics where SARS
infections are presently occurring have been subject to
a temperature check upon their arrival at each airport.
Although strengthened quarantine has been carried out
at each international airport, Japan has experienced the
enfry of a SARS-CoV (SARS associated coronavirus)
infected person in mid May, 2003. He traveled to
western Japan for a vacation and was later confirmed
to be suffering from SARS®. Formnately, Japan with
its highly concentrated peopulation has so far not
experienced a domestic spread of SARS.

One of the greatest concerns and questions, among
Japanese experts as well as public, is why SARS
epidemic or domestic transmission has not occurred in
Japan. Recently, we proposed possible reasons,
through the use of mathematical model, for why ‘the
introduction of only a few cases into the communities
in Japan can not easily lead to an epidemic”’. Here we
present further mathematical analysis centered on the
impact of initial attack size on SARS epidemic in
order to clarify the reason and to determine the
optimal level of quarantine that can break the
transmission cycle of SARS-CoV.

2. Materials and Methods
Here, we employ a mathematical model for SARS

epidemic to determine properties of disease invasion,
spread and persistence of the disease. The model is
based on a simple modification of the Kermack &
McKendrick epidemic model”. The new model is a
SEIR (Susceptible-Exposed—Infectious—Recovered (or
Dead) type model”) and is described by a set of
ordinal differential equations. Fig. 1 illustrates the
simple flow diagram about our model. We
incorporated the effects of quarantine and isolation
into our model. It is assumed those who were
quarantined and isolated would not contribute to the
spread of SARS-CoV. Detailed descriptions of model
structure and parameter assumptions are beyond the
scope of this paper, and are given elsewhere”. The
equations describing the new model is given by the
following approximately parameterized set of
differential equations:

%=-§(q—-/3(q+fr—l))51+ﬂ
ar

—=(1- gl S -oT

dr

d

%:ﬁq(l—x)g’Sl-gaEq

dE

— = PU-ai-6)gsI-gE [1]
Q _ g,

2 " PEa-(n+ 00

df

-‘;=¢E—(}f,+5)l

dlg

?=5(1+Q)-—71[q

dR '
i n{+igy+ 10
The basic reproductive number, Ry is given by:

|
e B~ (1= 2
R, 547 B-g-o)N (2]

Here, 1/ 8+y) is the mean duration of infectious
period. {f represents the infection rate because ¢ and
B are the probability of transmission per contact and
the daily number of contacts per capita, respectively.
The fraction of those who undertook 100% effective
precaution and those whose contacts were traced and
removed would be described by & and g respectively.
Both & and ¢ are the function of precaution and
quarantine. V is the size of the population in which the
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epidemic occurs.

The values of the biological variables for Japan will
be assumed to be not much different from those for
Hong Kong'®, although this is clearly a rough

* assumption, We have used the values given in the

M and analyses'™® of the

epidemiologic reports
epidemics in Hong Kong in our analyses. Secondiy,
we -have assumed that there is homogenous mixing
among the infectious and susceptible, so that every
infectious person would transmit the virus to exactly
R, susceptible individuals within an infectious period.
This means that the cases of “super-spreading” events
(SSEs), those arising from individuals who generate
much more than the average number of secondary
cases, and which has been described as a rare

BN are not taken into

heterogenous events
consideration. This is done since the purpose of this
report is to understand the role of initial attack size

and - interventions with the commonest transmission

* route as a possible scenario in Japan. The degree of

quarantine is assumed to be 75%, the number for the
epidemic occurring case in Hong Kong. This is a
pessimistic values given that the Japanese government
has traced approximately 2500 persons among 2600
suspected contacts. Further description of the principal
parameters in the model and of their assigned value is

. presented elsewhere”’.

In this study, two important analyses are performed.
First, simulations have been done using different basic

" Quarantine

Teaced, Uninfected Traced Latent

reproductive numbers. We then perform a linear
regression analyses to establish the linear correlation
that can be approximated by a simple mathematical
formula. Secondly, further mathematical analyses were
carried out in order to investigate the role of initial
attack size in SARS epidemic. The model has been
programmed using Turbo Pascal Version 1.5 (Borland
International Inc. Scotts Valley, CA, USA) working on
Microsoft WindowsTM® platform. All data from the
program were analyzed using Microsoft Excel 2000
{Microsoft Corporation, Redmond, WA, USA) except
regression analysis performed using Epi Info 2002
(Centers for Disease Control and Prevention, Atlanta,
GA, USA).

3. Results

Fig. 2 shows the model generated maximum number
of newly infected generated over the time period
examined for different values for R, Linear
correlations between the initial attack size and the
maximum number of infected are seen when the
values of Ry are less than I because of the level of
public health interventions. Based on this finding, we
propose that the coefficient of initial attack size could
be represented as the function of basic reproductive
number by:

(E(t)+ Eq(t) . = (%—0.167)1(0) 131

This result was found in the previous study”. It should

Figure 1. The transmission dynamics

Isol

fi-g)g SEIR

of the SARS taking into account the
impact of precautionary measures and
E quarantine system. The new infection
8 ould be quarantined or not with a
proportion g. A proportion, & of the
potentially  infected contacts is
protected.
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be noted that the simuiations were done under the
condition that the initial attack size is small compared
to the susceptible population. When the susceptible
population is small in comparison to the ‘traced and
uninfected’ population, equations [1] can be simply
described (for the purpose of analysis) to

as
—r=~{pu=nsI

L - pa-g-x¢si-¢5 1l

dI
E:ng—(y, +0)

According to analyses by Kendall who applied phase
portrait into simple epidemic model'¥, there should be
an equilibrium point at which the number of
susceptible at infinite time is given by

him,_, §(t)=S(+00) [5]

and K¢} and E(t) are zero. The epidemic curve would
always start at an unstable equilibriuin point and end
up at the stable equilibdum point described above. It

can be shown that the function given by
#+d

V(S,E )= § HORelimasteil g

would be constant for every S, E, and f (see Appendix
1). Vis called as Liapunov function that would always
give us the constant solutions. Taking the time t = #,,,,
to be one at which

dE  dl 16-2]

dr dt

we can obtain E,,,,; and [, the values of E and ] at

N
o p—
58
E &
R
Figure 2. Maximum number of newly 5‘3
infected SARS cases according to different E S
% g
basic reproductive numbers, Ry. The linear § =
correlation can be seen for whole values
drawn here,

LY
=

[
=]

the peak of epidemic curve. The value of S, is given
by

¥+d
B~ x)(1-g)

S 18 Often denoted as N,,, a proportionality constant,

Smax = S(Imax) =

whose inverse would be the sum of alt the biological,
social, and environmental aspects of transmission.
Independent from the time after onset of epidemic, V
would be constant due to equation [6]. Hence

V(Smax'Em’Imu)=V(S0’E03IQ) [8]
Performing a logarithmic manipulation in expression
[8] gives
Bt s 4 (—g)S, +E,+1

ﬁé’(l _ K) -0 1] 0 0 [9]

¥ +d
=——"———log S, +( =5, + Epp + 1 n
pLa-R) ¢

Substituting E,. by Ly, since E = }'1_4-5 | -
we get
(M +01 .,

¢ [10)

A
=(-g)S,— S )+ Eg+ I+ (1—-9)5 ., logS—'“’L’L
0

Therefore, I,. can be seen as being a function of
initial attack size under the assumptions used in our
model. Clearly, one could obtain the same result for
the maximum number of infected, using an analysis

similar to one given above.

—R0=1.5
—R0O=2.0

1 : —

0 5 i0 15
Initial Attack Size [person]
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4. Discussion

It has been demonstrated that the maximum number
of newly infected, or the crude size of epidemic, conld
be estimated on the basis on initial attack size in the
presence or in the absence of any public health
intérventions. In this study, we provided  both a
ma‘ihematical analyses and numerical solutions of the
equations describing the model. Our analysis shows
that it would be possible to predict-the fate of
epio]demic whenever SARS infected persons enter into
an)'r communities having approximately the same
wransmissibility and employing the same . control
strategy. In spite of the fact that our theoretical
framework did not take into account stochastic effects
and that conditions such as such as J{0JN < 1 does not

exist in real situations, we obtained a simple formula .

which showed that the introduction of only a few cases
into a given community would not necessarily lead to
an epidemic. The fact that number of infected
individuals entering into Japan is below the number to
su(‘:jceed invasion might be one of the reasons for Japan
not experiencing the SARS epdemic so far. In addition,
by . taking into account the initial attack size and
wransmission potential of pathogen, the formula might
be : generalized for it to estimating the degree of
quarantine required.

Homogenous mixing may not be a correct depiction
of actual population interactions of SARS
trapsmission. Although we are still presented with
mahy unknowns including the role of SSEs, the small
number of transmissions in most of the countries that
experienced SARS occurrences suggests that the daily
cmfnact among the populace is not sufficient for
Irai'lsmission did not occur'®. For instance, an index
case, not a SSEs, caused the cpidcmib in one hospital
in :Toronto'”. Secondly, the fact that 76% of the

infections in Singapore were acquired in a health-care

faqiiitym points to the easy spread of SARS in only
certain settings. Therefore, it is too optimistic to apply
thej assumption that every infected person will pass the
disease to exactly Ry susceptible individuals to the real
world. It would be necessary to incorporate probability
theory and contact patterns into the research since the
epidemic  threshold parameters are based on

approximating the infection process during its initial
stages as a branching process'”. It should be possible
to apply network theory when it comes to the story of
SARS, since the thesis of transmission dynamics on
scale-free networks is well fitted to several
epeidemiologic findings of SARS. Complex systems
of transmission dynamics of SARS are not based upon
random networks as has been thought for the last 40
years, but are poverned by power laws, and that only a

‘few hubs dominate the whole network'”. We must

apply these thoughts by considering models, which are
most realistic, as well as ones that include variance in
reproductive number.

One approach to overcome the problem of risk
management is to model the potential episodes with
mathematical modeling. SARS is believed to recur in
this winter because of the viral ecology®”. In order o
prepare the possible recurrence of SARS, much more
studies in ecological aspects are required as well.
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Appendix 1.

Let us look for a V that will always be a constant. We
begin by considering the ordinary differential equation

of VO (id‘i =0). That is, we start by considering
t

dv @V dS oV dJE oV dl
t——

dt 35 dt BE dt 9 dr

Here, each solution can be written as follows:

+8
vV ds _‘Msﬁle[“—q]S*E‘*fl
LE - pra-msi| AU-©
as dr ros

+{1—¢q)§ ﬁ{ll—rle[tl—whsul

v e .
Z—E%‘? = § B0 ENl B (] L k)1 - q)SI - PE)
vdar SR
Y § Aii-m la=psaEd] [E-(n+ )]
Putting everything together, we have
av_
dr

This completes the proof,
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~ Abstract:

The risk of dengue virus infection to travelers visiting dengue fever endemic regions
if studied through the use of mathcmatical modelling. A Susceptible-Infected-Recovered
(SIR) model is used to describe the transmission of Dengue Fever (DF) in an endemic
region into which tourists enter. The dynamics of a new class of humans, the travelers, is

. : ipcorporated into the systems of first order differential equations in the SIR describing the ‘
dynamics of the transmission in the host region. Using standard dynamic analysis methods,
the numbers of travelers who become infected with the dengue virus are calculated as a

function of the length of time the tourist stays in the region.

Keywords: Disease Transmission, Dengue Fever, SIR Model, and Foreign Travel.
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L. Introduction.

Dengue fever (DF) is an illness that is characterized by a moderately high fever,
extreme pain in and stiffness in the jomts, a rash and a reduction in the white blood cells
(Gubler 1998). These symptoms are caused by the toxins produccﬁ by one of the four
serotypes of a virus belonging to the genus Flavivirus, in the family Flaviviridae. In many
cases, the iliness is asymptomatic and an infection can only be deternined through serologic
tests. It has been estimated that there are between 50 and 100 million cases of dengue fever
(DF) a year. Some 40% of the world’s population live in the endemic areas of this disease.
Areas which are potential endemic region for this disease are those in which the transmitting
vectors dedes aegypti and Ae. albopictuus mosquitoes thrive and where the climate is right
for the development of the virus. In 1990, almost 30% of the world population lived in
regions where the risk of dengue transmission was greater than 50% (Hales et al., 2002).

As air travel becomes less expensive, people from non-endemic countries in Europe
and the United States are increasingly traveling to countries where the disease is endemic.
The travelers (tourists) should be aware of the risk of dengue virus infection and so many
governmental health organization (such as Center for Discase Control and Preventicn
(CDC), 2003) issue out travel wamnings. Dengue infections are the second most commeon
infections (after malaria) among travelers who go aboard (Schwartz ef al., 1996). Because
there are no prophylaxis or vaccine against the dengue virus, the travelers to the dengue-
endemic regions are at special risk. The only defense is not to be bitten by the mosquitaes,
Awareness of the risk then becomes the best defense.

Recently there have been reports of increased number of travelers to Thailand who
are being infected with the dengue virus. A special report issued by the surveillance net
TropNetEurop (2002) point out that during 2002, 61.4% of the 68 reported cases (among
German or Swiss tourists) had become infected while they were visiting Ko Phangan and

Ko Samui, two islands in the Gulf of Thailand. During the previous three years, only 20.4%

2y
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of the imported dengue cases among this group of tourists originated in Thailand. Ina study
of Swedish tourists (Lindback ef al., 2003}, 71% of the importeé dengue cases during 1998-
99 were infected in Thailand. A similar preponderance was seen among Israeli tourists
during 1994-1995, i.e., 14/18 confirmed infections originated on the island of Ko-Pangan
{Schwartz et al, 1996). The average duration of the visits in these three studies was three
to four weeks. A p;ospective study of Israehi travelers to tropical countries who stay a long
time (at least three months) indicate that the incident rate of dengue infection for these
travelers may be as high as 600 per 100,000 travelers (Potasman et al., 1999). |

To study the risk of travelers (tourists) becoming infected while they are visiting an
endemic area, we have set up a mathematical model to describe the transmission of the
dengue virus in a host population in which B numbers of travelers visit per unit time and
stay for a length of time, 3. We arc interested in this study on what the risk increases with
tlhe time spent in the endemic area. It is assumed that the conditions are such that the
disease is endemic in the host population and that none of the travelers carry the virus when

they enter into the country. In Section II. we introduce the mathematical model. The results

of dynamical analyses of the system of equations are presented in Section IIl. In Section IV,

we present the results of our numerical solutions of the equations and discuss their

implications.

Il. Mathematical Model.

To formulate a mathematical model for the transmission of der_lgue virus in the system
of interest, we need to introduce different population groups. The time rate of change in the
number of subjects in each group is equal to the number of subjects entering into the group
minus the number leaving the group. For our system, we have two human popuiations, host
and travelers, and one mosquito population. Each human population is divided into three
‘classes, susceptible, infected and recovered, i.e., 'y, I'y and R’ (S, Iy and R7)),

respectively, The mosquito population is divided into two classes, §'y and I'y. To see how
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the rate of change of the numbers n cach population, let us consider in detail the rate of

change of the number of susceptible travelers, 1.e.,

dSt _B. by S,

i' /T !
a Np e :v‘(th( 1)St

(1)
where Ny is the total host population (taken to be constant); i, the death rate (assumed to
be the same for all categdries); b, the biting rate of the mosquito; ¢, the total number.of other
animals which can also be bitten by the mosqu'ito and Bh is the probability that the dengue
virus will survive in the hurﬁan after it is tra-nsmitted from the mosquito. The first term on
the RHS is the numEer of travelers entering into the region. The next term is the number of
travelers lost by them becoming infected. To get this term, we note that bl’, is the total
number of bit‘es, which could transmit the virus, 8’¢/(Nt+c) is the fraction of the bites
which are delivefed to suséeptib!c &avclcrs and 3, is the probability that these virus
transmitted by the bite survive in the human and begin to reproduce there. The next two
terms are the losses due to natural déath and to the tra;'e]er leaving the region. The other
equations are obtained by.similar considerations (Esteva and Vargas, 1998).

The number of equations we need to consider would be reduced to five if we assi:me
that the total numﬁefs of host, travelers and mosquitoes remain constant. It can be easily
established the total number of travelers is B/(uy, + (1/1))) and the total mosquito population
is A/py, where A is the recruitment rate of the mosquitoes and y is the death rate of the
mosquitoes. Dividing S'p, I'y, and Ry by N; 87, I’y and R’ by the total number of
travelers and S’y and I',, by the total number of mosquitoes, we obtain the population
densities and the conditions S+ I, + Ry =1, S, + |+ Ry=1and S, + [, = 1. The

differential equations for the time rate of change of the population densities are

ds
j;gh +(H/ 1) =Sy ~(up + (/115
(2a)



and

with

and

dSp
—dt——h“')’h Shlv —#hSh

dl .
d—f‘ =YnShly —(pp + ™y

dl¢

dt

di,

dt

YhStly —(up + A/ 7)) + 1)1

Yv,hSvlh + 7y, i1t —pyly

Th =bBpm
Yv,t =bBpmg
Yv,h =bBy
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; (2b)

: (2c)

(2d)

(2¢)

, (3a)

) (3b)

(3¢)

where J, is the probability that the virus after it is transmitted to the mosquito will survive;

r, the rate at which the infected recover; m and m, are the ratios between the total number of

mosquitoes and total number of host humans and between the total number of travelers and

total number of host humans. Eqn. (2a) is obtained by dividing eqn. (1) by B/(py+)1/74)),

the total number of visitors. We have also assumed that N7 >>B/(u,+)1/1))), i.e, the

number of people permanently living in the area is greater than the number of visitors.

IIL.

Analytical Results.

Equilibrium States.

The equilibrium states are obtained by setting the RHS of eqns. (2a) to (2¢) to zero.

Doing this, we get two equilibrium states, the disease free state, E, =(1, 0, 1, 0, 0) and the

endemic equilibrium state, E, = (Sp*, I*, S¢*, I*, I,*) where
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I

Sh - b+ Byby ™
(4a)
Ih*z—‘ﬂzl" .
1+ fly *
, (4b)
e L
1+ B3l *
(4c)
[, = ﬁ4IV*
1+ B3I, *
(4d)

with By = yn/tin, B2 = yn/(nt1), B3 = yn/(int(1/7y)), Ba = va/(unH(1/11)+1) and 1,* is the
positive solution of a quadratic equation obtained by substituting eqns. (4a) to (4d) into the
RHS of eqn. (2e) and setting it equal to zero. The algebraic expression for I,* is quite

complicated and therefore will not be written down.

ILb Local Asymptotical Stability,

The local stability of an equilibrium state is determined from the Jacobian (gradient)
matrix of the RHS of the set of differential equations evaluated at the equilibrium state, If
all the eigenvalues (obtained by diagonalizing the Jacobian matrix) have negative real parts,
then the equilibrium state in question is locally asymptoticaily stable. Performing the
necessary calculations for the disease free state, we find that the characteristic equation is a
product of three polynomials, two of order one and the remaining of order three. The
eigenvalues given by the two polynomials of order one are negative. Using the Routh-
Horwitz criterion (May, 1973) for the eigenvalues determined by a third order charac;eristic
equation to have negative real parts, we find that the conditions would be satisfied if Rg ; <
1 and Rp 2 < 1 where Ry j and Ry 7 are defined as

bzﬁvﬁhmmo

_b%88nm _
py(ep +0@y + (/1))

Cpy(pp 1)

RO,I and RO,?_

(5)
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i'il'he disease free state will occur since the basic reproduction number Ry = R 47 < 1, and
“since m,, << 1, the second condition will also be met. The disease frec state will arise
whenever the number of mosquitoes falls below py(pp + r)/szhB\;.
The determination of the stability of the endemic state is mere difficult. This is due

.io the fact that the Jacobian matrix evaluated at endemic equilibrium state E; is much more
&:omplicated than that for the disease free state. Diagonalizing this 5x5 matrix is quite
Eiiifﬁcult and so we have used the computer program MATHEMATICA™ to perform this
task. The program yields a fifth order characteristic equation of the form

MR K3 KNP s KN+ K =0

(6)

where the coefficients Kg, Ky, K3, K3 and K4 are extremely complicated expressions. In
somé cases, they have up to 45 terms. The Routh-Hurwitz stability criterion for fifth orders
polynomials to use to determine whether all the eigenvalues determined from eqn. (6) have
negative real parts. Again, this is done by MATHEMATICA™. The program shows that
the Routh-Hurwitz criterions are met when Rg 1> 1 and Rg 3 <1. The endemic e(jui!ibrium
state E; = (Sy*, Iy*, S¢*, I*, 1,*) will therefore be locally asymptotically stable when these

two conditions are met. In the next section, we show numerically that this is indeed true.

III. Numerical Results and Discussion.

In this paper, we are interested in the transmission of the dengue virus, not whether a
person is sick or not. Therefore, we should only be interested in whether a person has
”immuniry to the virus or not and whether the person 1s infectious or not. A susceptible ‘
person is one who 1s both not immune and not infectious. An infected person should be one
who s infectious. This occurs only during the period of viremia which last for
approximately three days. After that, the infected person still suffers from the presence of
Elhf: toxins produced by the virus and is classified as still being sick. He has immunity to

new infections during both stages of the illness. Once the toxin disappears, the person
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becomes well and is classified as being recovered. For dengue infection. he keceps his
immunity after he has recovered. For the purpose of transmission, there is no difference
between the infected person after the viremia stage and a recovered person (provided we do
not consider the presence of more than one strain of the dengue vi}'us) since both will have
immunity to the virus and not be infectious. This means that the recovery rate r should be
1/3 per day.

The values of the other parameters used are: p, = 0.0000456 per day, corresponding to
a life expectancy of 70 years; p.= 0.071 per day, corresponding to a mean life of 14.day’s: b
=0.33, one bite providing enough bloodmeal for three days; B,=0.5, .= 0.75, which are
arbitrarily chosen; r = 0.33, the reciprocal of the viremia period. The length of stay 1s varied
from one week to three months while the two ratios m and m, are adjusted to have Ry | and
Ry 2 have the values for the endemic state to be locally asymptotically stable and were taken
to be 0.17 and 0.0007. These values yiclded a Rg ; equal to 2.48 and Ry 7 less than one,
This means that the trajectory of the solutions in phase space should be that of a stable spiral
node. Numerically solving eqns. (2a) to (2e) and plotting I, versus Sy, for the case of 1) =90
days on Figure 1a, we do indeed see a stable spiral node. In Figure 1b, we plot the time
development of the infected travelers for this case. In Figure 2, we plot the equilibrium
values of the infected travelers as a function of 7;. As we see, the incidence rates
(proportional to I} increase (but not linearly) as the tourists stay longer in the endemic
region. The risk appears to level off, as the tourists stay longer. This appears reasonable
since the risk of infection to the tourists should approach the risk to the host population if
they stay long enough

To see whether there is evidence for the risk to infection to increase with the duration
of stay, we consider another group of travelers, U.S. soldiers. While not tourists, American
military personnel have spent time in various dengue fever endemic regions around the

world. They are ideal candidates for this type of determunation since their medical care are
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well documented. They are taken 10 medical facilitics almost as soon as they come down
with a febrile illness. Among the 30,000 U.S. troops who participated in !)pe‘ration. Restore
Hope in Somalia during 1992-1993, 59 out of 289 febrile cases were confirmed as being due
to the dengue virus (Sharp er al., 1996). The average length of time spent 1n Somalia before
';they become sick was four weeks. Given the ﬁumber of troops, this indicates an incidence
rate for dengue infe;clion of 195 per 100,000 troops (visitors). In another operation,
:'Opcration Uphold Democracy, Hait:, 1994 (CDC, 1994), where 20,000 U.S. soldiers
participated, the onset of the febrile illness among the soldiers showed a peak in the fourth
"week after the soldiers’ arrival. 24 out of the 106 cases of febrile illness showed clinical
symptoms of dengue fever. This gives an incidence rate of 120 per 100,000 troops -
'i(visitors). These incidence rates should be compared to those of the Israeli travelers (GOd
per 100,000 travelers) who stayed a much longer (three months vs. one month for the U.S.
soldiers). Even though we have not given the values of basic reproduction rates for the
differcnt endemic regions that the visitors went to so that real comparisons can be made, it
“does appear that the incidence of dengue fever iﬁcreases as the travelers (visi.tors) extend

‘their stays in an epidemic area in keeping with our predictions.
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Figure Caption.
Numerical Solutions of Eqns. (2a) to (2e). (1a) Phase space trajectory of
I, - Sy, for the case of 11 = 90 days. (1b) Time de\;glopmcnt of the infected

travelers for this case. Values of other parametérs given in the text.

Equilibrinm values of infected travelers population as a function of the

time they stay in an endemic area..
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Introduction

The spread of diseases knows no international borders, witness the recent spread of
severe acute respiratory syndrome (SARS) (WHO, 2003) and West Nile fever (WNF) (CDC,
2003). The first was spread by the international travel of infected persons from Hong Kong,
while the second is believed to be spread by the migration of birds. WNF has been of
particular concern to the American public health community because the disease, as was
pointed out at the 69" annual meeting of the American Mosquito Control Association
(Minnaepolis, and Minn, 2003), is a foretaste of possible newly emerging diseases that can be
brought into the USA. Unlike SARS where the spread of the disease to uninfected countries
can be controlled by the strict quarantine of the persons exposed to the SARS virus, the WN
virus is spread to uninfected areas by the migration of birds (Rappole ef af, 2000) that can not

be controlled.

The spread of WN virus to the Western Hemisphere was preceded by its
appearance in Romania in 1996-97. Hubalek and Halouzka, (1999) warned of the
possible appearance of WNF epidemics in the temperate countries of Western Europe
in the vears following the Romanian outbreak. Instead, the migration of birds brought
the epidemic to New York City (Bemard et af, 2000). From there, it spread to the rest
of the Amcricés&(again through thtf: migration of birds’ (Rappole er al, 2000)). Any
regions in the world having the right conditions and are along the flight patterns of the
migration of particular birds become candidates for future WNF epidemics. WNF is
therefore a potential public health threat to Asia since one of the major bird migration
paths in the world is along the West Coast of North Amcrica, over the Bering Sea and

into North-castern Asia. The case-fatality rate of this discase has been reported to be

s
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as high as 10% in some regions (CDC, 20003; Hubalek and Haiouzka, 1999) of the
World, which have experienced the epidemic. WNF would thercfore be of a great
threat to countries that do not have a well-developed pGBlic health ‘infrastructure. Also
in countries having warmer climates, tihe transmission of West Nile virus can be year

round (CDC, 2003).

A full understanding of the transmission dynamics of the WN virus is still being
developed. In 2002, it was reported that human-to-human transmission of the WN virus was
possible by 1) blood transfusion, 2) organ transplantation, 3) transplacental transfer, and 4)
breast-feeding. Very reéently, WN viral infection among turkey farm workers was reported
(Glaser et al, 2003). Turkeys belong to one of the bird species that do not develop enough
viremia to infect the mosquitoes that bite them. The authors suggested that the transmission
was accomplished by some less typical routes, e g, exposure of broken skin or mucous to
infected turkey feces or exposure to aerosolized infected turkey feces. The last route is
believed to be the means by which the 280 people at the Amoy Gardens Apartment Complex
in Hong Kong became infected with the SARS (WHO, 2003). Komar et ai, (2003) have found
WN virus in the feces of 71% of the 24 species of (infected) birds they studied and that the

American Crow was one of them.

One of the best ways to studylthe effects of non-typical routes of infections or specific
public heath measures is through mathematical modeling. During the early stages of the WNF
epidemic in New York City, Thomas and Urena, (2001) introduced a mathematical model to
describe the evolution of West Nile-like encephalitis in New York City. Their model was
based on several assumptions, which have subsequently turned out to be wrong. This report is

concerned with the effects of non-mosquito transmission (through inhalation of aerosolized
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In the above, Spey) is the density of the susceptible bird (human) population and Io(meny)is the
density of the infected bird (mosquito(human)) population. We ‘have assumed that the total
populations of the three groups are constant and so Sp + 1 + Ryp=1, Sm'+ Im=1andSy+1I
+ Ry = 1 (where R represents the density of the recovered in each group). The total hird
population is denoted by Ny, which we take to be a constant. This occurs if we assume that
the no additional deaths are caused disease. This is an approximation given that many dead
birds are seen during the epidemic. dy, | p and r , are the rates at which the birds are
introduced in the location, died of natural causes and recover from the virus, respectively. The
birth rate, the death rate and the recovery rates of the human population are denoted as

A, B and ry. p is the death rate of the mosquitoes. vy, ¥ and vy are the rates at which the
WN virus is transmitted to a bird by a bite of the mosquito, is transmitted to a mosquito when
it bites a bird and is transmitted to a human by a bite of the mosquito. Because the viremia in
an infected human is not high enough for the virus to be transmitted to a susceptible mosquito,

the transmission tate ry_yy IS Zero.

The factor

aly,
[b“J : @

is a Holling type II‘_ r;esponse function. It goes to zero as I, — 0 and goes 1o a non-zero
constant as Iy, becomes large. Its presence means that the direction transmission of the WN
virus only occurs when the density of the birds is large, i ¢, during the flocking of the birds. In
nprma! situations, the birds are spread out and so the mosquitoes are nee(i;ed' in order to

maintain the virus in the bird population. What determines whether the density is small or

large is the constant b, whether [p<b or > b.

o
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Results

Numerical Solutions
We have numerically solved eqns (la) to (le) for diffe.rent values of a, a

measure of the contribution of the bird-to-bird route to the transmission of the West
Nile virus among the birds belonging the Corvidae family. B was chosen so that
calculated density of birds varied from being a high density and a low density during
different periods in the transmission cycle.

Table 1

Other parameters used in the calculations

Rate at which birds are introduced dp 1/2,920 days
!i Death rate of the birds oy »
Recovery rate of infected birds 1l 1 1/3 days
Birth rate of humans A 1/21,900 days
Death rate of humans Bh ”
Recovery rate of infected humans h 1130 days
Death rates of mosquitoes Hm 1/25  days

Transmission probability from
an infected mosquito to a bird b 0.95
Tran&mission probability from
an infected bird to a mosquito ¥m 0.0792
Transmission probability from

an infected mosquito to a human Yh 0.275

In Figure 1, we show the frajectory of the human population densities in the I;-

I, phase space for increasing contributions of the bird-to-bird route to the transmission
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of the West Nile virus. B is set to 0.001. The value of a is changed from 0 (Fig 1a) to
0.475 (Fig 1b), to 0.95 (Fig ic) and to 1.9 (Fig 1d). Fig‘q'l a, shows that the trajectory
spirals into its equilibrium state. As the contribution of Ithe bird-t6-bird route begins to
increase, Fig 1b shows that the trajectory is spiraling into a tight limit cycle. As the
contribution 1s further increases, the trajectories exhibit more complicated limit cycles
behavior (Fig Ic and 1d).

In Figure 2, we show the trajectories for the case b = 0.0025. The values of a are now;
0.475 (Fig 2a), 0.95 (Fig 2b), 1.9 (Fig 2¢) and 2.85 (Fig 2d). Comparing Fig 1b and
Fig 2a, we see for the same values of ‘a’ (measure of the contribution of the bird-to-
bid route to the transmiésion dynamics, an increase in the parameter ‘b’ delays the
transition of the trajectory into a limit cycle. As we mentioned before, ‘b’ is a
parameter that determines at what density the new transmission route makes a

difference to the dynamics of the spread of the disease.

Discussion
The present study shows that the presence of bird-to-bird transmission can play

an important role in the transmission of West Nile Fever. Bird-to-bird transmission of
WN Vil'.l.]S has bee}l shown to be possible when the density of birds (including some
belonging to the corvidae family) is high. We have used a Holling type II reéponse
function to represent the existence of two contact rates for this route of infect_ioﬁ. Our
results indicatel that a limit cycle trajectory can be prevented by keepin.g the density of

the birds lower, which can be done by preventing the birds from flocking together

before the beginning of the mosquito scason.
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Figure 1 Transmission dynamics of
the SARS taking into occount the impact

of precautionary measures and
¥2 varantine system. The subscript g
3eno?es whether the new infections are
quarantined or net with a proportion g.
When 100% effective precautionary

Lqll - B) o BIY - xjat lq

1t measures are implemented, a
R preportion, k, of the potentially infected

contacts is pro . 5 and { represent
the proportion of the population
susceptible and infectious; E, the
proportion of untraced latent persons;

n £q the proportion of traced latent

B -1 - q)% ¢

contgcts; T, the propartion of traced
uninfected contacts; G the proportion of
infectious in quarantine; iq the

biological and intcrvention assumptions about the transmis-
sion dynamics of SARS (fig 1). An SARS-CoV infection of the
susceptible population (S} results first in a non-infectious
incubation period, which constitute the latency period (E).
A proportion of the exposed persons, who had taken
cffective precautionary measures, would not be infected.™
The others become infectious, often being symptomatic
with fever followed by rapidly progressive respiratory
compromise (these being labelled (7)) and, then slowly
recover or dic (R).' While infectious, they transmit the
diseasc to susceptible persons at a rate dependent on the
basic reproductive rate, R,. Two of the public health
interventions for interrupting the transmission are
quarantining the people who are known to have been
cxposed and therefore may be infected but are not yet
ill (denoted by the compartments T and E, which does
cach refer to “traced but not infected” and “traced and
infected” in fig 1) and moving infectious people into isclation
(£,}." We assume cach susceptible makes L contacis per day
with the infectious person. Among the known contacts {in §),
some would be infected with the probability of  per contacts
{and enter into Eg) and (!-f) remains uninfected {and cnter
into T). These processes can be modelled using an approxi-
mately paramcterised sct of differential cquations{l) as
follows:

%§=C(q—ﬁ(q+n— 1))SIT+ 0T

T

= (1= 8¢St —oT

ﬁ“'qu = B4(1 — x)(ST — QE,

dE

2 =AU =1 - w)(SI - gF M
1

2 = 45g - (m + 60

dl

o = GE = (n+8)

‘;Lf =48I+ Q) — ml,

dR

P Tl + 1) + 1Q

Given that our medcl is based on the Kermack and
McKendrick epidemic modcl,” the situation just before the
entrance of infectious persons into the community is given by
(S¢f), E¢t). 1), R()=(N. 0. 0. &) and its subscquent
development by:

proportion of infectious isolated; R the
praportion of recovered and death.

d{d_(:) = (B0t —g)(} = &)CN — {m: + 8)I(N)

()

where N is the size of the population in which the epidemic
occurs. As the condition that SARS becomes possible to
invade the community is f{l—gj{1—r)}{N—{{+7,)>0, the
basic reproductive raic, R,, is given by:

_ B —a)() —~ k)CN

ko b4

(3)

A description of the other principal parameters in the
model and of their assigned value is presented below.

Parameter values

Table | contains the parameter values for cur base case.
Assuming that the biological variables for Japan do not differ
much from those of Hong Kong becausce of similar population
densitics and lifestyles (this clearly being a rough assump-
tion}), we use the values given in the epidemic modelling of
Hong Kong™ for those parameters whose values are not
available for Japan. The infection rate f§ { is chosen so that
Ry =3, which is thc mean value on the order of 2 10 4
estimated in the previous studies done in similar ways.'* * =
We assume that the pattern of contact is linearly related 1o
the population size so that { N denotes the daily number of
contacts in the population. We¢ varied R, while doing
sensitivity analyses with regards to g and k. We assume that
an attack of 10 initial cases entered inte a population of
287 000 persons, supposedly Shinjuku, Tokyo, as our baseline
case but vary the attack size between 0 and 20 cases in our
sensitivity analysis. It is somewhat unrealistic to expect that
the population at risk would be at the national or prefecrural
level as it would not be possible to have 100% of this
population come into possible direct or indirect contact with
the discasc within the short time period of concern. We have
instead considered the cpidemic within a city or ward sized
population level, such as Shinjuku. Here, Shinjuku is
assumed because of its similar population density to Hong
Kong in addition to its population size.

We first estimate the number of newly infected (second-
ary) cases that resufts in .a failed invasion in certain
community for different initial attack size. We defined
“failed invasion” as therc being no secondary cases within
incubation period after contacts with infectious people. We
then performed a lincar regression analysis to establish the
lincar correlation using a simple mathemarical formula.
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Table 1 Parameter values for transmission dynamics of SARS in Japan

Parameters  Description Baselins values  Reference

B. the probability of tronsmission per contocts mdg 14

q the daily rate ot which lotent individuals are traced 0.75 14, see text
the proporfion of exposed persen who performed effective 0 Soe

* precowtion ot

I the average rate ot which latent individuals become infectious  0.2/day 7
the rate at which the traced uninfected contodts 0.2/ 29

¢ released into the community 2fday

4 the daify number of contacts per capita 9/person/doy 14

5 the mean doily rate ot which infectious cases are isolated 0.0333333/day 14

n the percapite rate for recovery and death 0.1666667/day 27

{ya™! the mean durafion for quarantine 10 days »

Additional assumptions are that no transmission occurs from
thosc pcople who are quarantined, isolated, dead, and
recovered. As for the precautionary measures, we would like
to point out that it may be too optimistic to assume that the
measures are 100% effective so that there are no spreads of
the disease among the people coming in contact with the
infected. An analysis on the impact of isolation is not covered
in this paper because it has already been well analysed.™

In this study, the total number of people in the population
is taken to be constant during the epidemic. The background
mortality rate is assumed to be negligible over the time
periods cxamined. As the cases of “super-spread” events
{SSEs), where a person may generate much more than the
average number of sccondary cases, has been described as a
rare heterogeneous event,® ** we did not take this mode of
transmission into consideration as the known values R, for
SARS were calculated with certain adjustments of the
number of secondary infections in this phenomeneon and
our aim is not to cstimate the exact value of the basic
reproductive rate but to understand, as a possible scenario in
Japan, the role of initial attack size and interventions for the
commonest transmission route. We assume that there is
homopenous mixing among the infectious and susceptible, so
that every infected person will pass the disease to exactly Ry
susceptible persons simultancously within an  infectious
period of (y,)”' days. Simulations were performed with a
time step of 0.1 days, The model has been programmed using
Turbe Pascal Version 1.5 (Borland International, Scotis
valley, CA, USA) working on Microsoft Windows platform.
All data from the program were analysed using Microsoft
Excel 2000 (Microsoft Corporation, Redmond, WA, USA)
except regression analysis performed using Epi Info 2002

{Centers for Disecase Control and Prevention, Atlanta, GA,
USA).

RESULTS

The results of a simple scenario analysis show the probable
dynamics of the SARS epidemics under different conditions
(fig 2). The results in the analyses are given for up to 50 days
after the onset of epidemic in the figure. It is unrealistic 1o
cstimate for longer time periods as one should not expect the
health policy and control strategies as well as social reactions
to remain static over longer periods. In figure 2A, four
possible trajectories are shown for different initial attack
sizes—that is, how many infectious persons were first
introduced into a specific community having a susceptible
population. The number of newly infected cases quickly rises,
peaks, and then falls when more than five initial number of
infectious (I(0)N=5} are introduced while dramatic increase
is not seen with one initial infectious {I{0)N<!). Even
though the control strategy remains the same, a more steep
increase and more prolonged epidemic would be caused by
bigger initial attack size. Figure 2B shows the model
generated maximum number of newly infected as well as
cumulative incidence over the time period cxamined. The
maximum number of newly infected denotes the number of
newly infected at the peak of the curve in figure 2A. It was
found that there cxists a linear correlation (cocfficient of
determination, r* = 0.998) between the maximum number
and the initial attack size. The cumulative incidence, on the
other hand, looks like a power two dependence on the initial
attack size that is mathematically expected as the cumulative
incidence is the area between the curves and x axis in
figure 2A. From a regression analysis, the relation between

. — I{0IN = 20 — Maximum number Figure 2 Dynamics of a SARS attack
-~==-J{O)N = 10 of infacted with the basic r?roducﬁve rate Rp=3.
; — 0N =5 Cumulative Effectiveness of the quaranfine denoted
= A | e OJN = B incidence by, q=0.75, and of the precautionary
S 30~ T 25 100 measures, k=0, [A) Number of newly
z 2 infected SARS cases according to initial
a < & number of infedtious population. (B
§] = o -jo-80 # Maximum number of newly in
] ES & SARS cases and the cumulative
£ €5 ~o.40 5 incidence as a function of the initial
= 5 5 ] uﬂu::(e:lize {number of people initially
3 55 = in ).
& 230 040 2
s e =
@ E E
-E E 5 - 0.20 6
= E
5! 2 ] | ! 0.00
I z o0 !
=R 0 3 10 15 20

Time {days)
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the proportion of initial attack size (7(G)) and the proportion
of maximum number of newly infected persons
((E(t)+Eq(t})max) among total number of population, was
found to be (under the assumptions leading to the cpidemic)

(EQ) + Eq()dpay = 1.295 x 107° + 1.3111{0)
(4)

where 1.295x107° and 1.311 are the regression cocffident of
intercept and slope, respectively. Here, 1.295x107% can be
ignored as it does not lead to a large affect even though it is
multiplied by total population N. Performing regression
analysis by varying R,, the correlation was found to be
represented by:

(E() + Eq{t)yax = (523 - 0.167)1(0) (5)

when R,<<! because of public health interventions
{ =0.977). When we consider the maximum number of
newly infected (denoted by m, where m = N(E(t)1Eq(1) ) pax).
we found that it was possible to relate this value with Ry and
I{0) through:

by
{ON =7 (8)
Ry
5 = 0167

Next, we found the condition that would result in failed
invasion (no secondary transmission) for each of the specific
communities with population (N), is m<(! in equation (6).
Based on this, theoretically, at lcast 0.750 persons infected
with SARS must be introduced inte the population to
produce secondary cases in our baseline simulation.

Figure 3A shows the number of newly infected SARS cases
for various values of k (the proportion of susceptible peopie
who have undertaken the precautionary public health
measurcs) and when no quarantine was carried out. Four
possible trajectorics are shown. Less effective precautionary
measures (k = 0.30) lcad to an cxponential growth of SARS.
Even with rciatively high proportion of people undertaking
precautionary measures {(x = 0.60}, a gradual increase in the
number of new SARS cases is secen. When effective
precautionary measures are taken by a higher proportion of
the susceptible persons, one sees qualitative reductions in the
number of cases. This occurs even in the absence of
quarantine. The cffect of a quarantine system is shown by
the lincar correlation with R, in figure 3B. It is scen that in
the abscence of any precautionary measures, onc necds to
quarantine at least 66.7% of the susceptible people who had
contacts into compartment Eg and T in order for the cpidemic
to die down. Other information can bc gained from the
formula of basic reproductive rate, by noting that by
interchangeable variables and ¢ in figures 3A and 3B, wc
would be looking at the effects of changing the values of g
with no precautionary measurcs being taken. Hence, the

Key points

o Initial attack size is one of the determinants of whether
SARS can successfully invade or not.

® [t is seen that the introduction of only a few cases info
certain communities would not lead easily lo on
epidemic.
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condition to break the chain in person to person transmission
of SARS can be described as:

(=91 =x) <5 7)

This relation is shown in figure 3C. The curve shows the cut
off points for R, to be 1. Figure 3D shows the changing
pattern of R, for different combination of quarantine cover-
age and precautionary measure coverage in a three dimen-
sional illustration. For the baseline simulation where B, =3,
the left form of equation {7) should be less than 0.33 in order
to control SARS cffectively.

DISCUSSION

Twe important conclusions can be drawn from our analyses
on the assessment of the role of initial attack size, and of the
impact of interventions on possible SARS epidernic in Japan.
Firstly, it is shown that the maximum number of newly
infected, or the crude size of cpidemic, could be roughly
estimated based on initial attack size under certain public
health interventions. In other words, it would be possible 10
predict the fate of an epidemic when SARS infected persons
enter cach community having approximately the same trans-
missibility and using the same control strategy. Secondly, the
possible trajectories of a SARS epidemic depends on the levels
of public health interventions as quarantine and precau-
tionary measures greatly affect the transmissibility. There
exist threshold levels of interventions to cause the SARS
epidemic to settle down, and improved effective interventions
can lead to dramatic decreascs in its incidence.

Despite problems with the accuracy and uncertainty with
the data released by WHO,™ a simple dynamical mode! still
gives reasonable simulations of the SARS dynamics. Except
for the crucial parameter for the transmissibility, B £, it was
determined that the initial attack size is one of the most
important factors to determine the course of the epidemic. It
should be pointed out the cumulative incidence follows a
power two law dependence on the initial attack size while the
maximum number has a linear cotrelation with the size.
Thus, a larger epidemic would be experienced if the initial
attack size grows. The contribution of initial aitack size to a
SARS outbreak can be transliterated inte equation (6).
Although it is obtained within a theorctical framework based
on certain assumptions without taking stochastic effect into
account, and though the condition such as I{G)N<I might
not be practical in the real situation, we showed that the
introduction of a few cases into a given community would
not necessarily lead to an epidemic using this formula—that
is, successful invasion is hard to be achieved with a few initial
cases. It might be possible to say that the introduction of only
a few infectious persons into Japan was one of the reasons
for Japan not experiencing the SARS epidemic so far.
Although the fate of epidemic is determined by threshold
theorem,” that is, Ry>1 or not, successiul or failed invasion
itself can be considered using generalised formula such as
ours under the condition when R,<<!. The formula could be
reasonably applied to other countries.

One must be cautious about its application, however,
because the formula is based on mathematical assumptions
that might sometimes not be true. As each compartment,
denotes the proportion of total population, it could give us
the value of real number of persons to be smaller than 1. This
may not be practical findings, but theoretically this notion
becomes important in analyses such as ours. It should be also
noted that it is based on several simple assumptions that
may not be the same for all countrices. The pattern of contacts
between people differs from country 10 country.™ Lipsitch ef af
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Figure 3 {A} Number of newl

in?eded SARS cases for diﬂere?{t
priﬁlorﬂon of susceptible persons who
performed 100% ive
precautionary measures for the case of
Ro=3, and q=0. (B} and {C) Sensitivity
analysis for model parometers whose
values are unknown. Basic reproductive
rate, Ry, versus (B} the prapartion of
quarantined contacts, [C) both the
proportion of quaranfined contacts and
the proportion of exposed persons who
took effective precautionary measures.

L (D} The necessary condition to have the
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described an outbreak of SARS through the use of probability
theory of non-extinction of a branching process.” Such a
probability theory should be taken inio account when it
comes to describe the possibility of a SARS epidemic. It also
should be noted that the size of the epidemic does not always
depend on the initial attack size. This is clearly evident when
we note that 76% of the infections in Singapore™ were
acquired in a healthcare facility. SARS can casily be spread by
direct personal contact in the hospital setting.™ As is well
known, air borne transmission is not through the droplet
nuclei but is instead through the large droplets, themselves.
The wearing of a surgical mask'® can stop this.
i Another example of why the initial attack size may not be
the important factor is seen in Hong Kong. There we see that
clusters have played an important part in the coursc of the
cpidemic in that city.”” The role of close and casual contacts®
and the possibility of other routes of transmission such as
through touching contaminated objects or other unknown
way should be incorporated into the model.
I There has becn an intensive assessment of the different
‘I public heaith interventions that contributed substantially to
y the eventual curtailing of the epidemic in Hong Kong. It is
v well known that an effective strategy requires aggressive
public health measures in combination with stringent

{ll Policy implications

"' ® There exist threshold levels of interventions at which the

SARS epidemic setfles down.

o . Two of the most effective policy procedures to prevent
new infections would be to apply stringent precau-
tionary measures and to impose quicker and more
effective quarantine of the exposed populace.

www.jech.com
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hospital infection control practices that meet the recommen-
dations of World Health Organisation.” ** The SARS pan-
demic has shown that governments and public health
officials need to consider the use of quarantine as a public
health tool 1o prevent the spread of infectious discases,
particularly when other preventive interventions (for cxam-
ple, vaccines and antibiotics) are unavailable.” From our
study, it is shown that either 100% cffective precautionary
measurcs or quarantine would lead to decline in the
incidence. Both of them reduce R, in a linear way unlike
the practice of isolation. The importance in the coverage
should be therefore emphasised. Although recent studies
with modelling" ” provided us with dynamics of SARS
including wransmissibility as well as the impact of quarantine
and isofation, the role of precautionary steps was not taken
into consideration. Precautionary measures themsclves are
quite important especially in hospital settings because a high
proportion of the SARS patients were healthcare workers as
was pointed our.® *

The increased amount of world travel increases the
likclihood of this disease spreading faster than past world-
wide epidemics. It is therefore critically important to prepare
for the possible introduction of SARS into the country by
introducing specific public health measures now. Two of the
most effective procedures would 1o introduce stringent
precautionary measures and to impose better and quicker
quaranting of those exposed. This would reduce the number
of people who get a secondary infection from contacts with
infectious persons. The imporiant chatlenge is that some of
the most important public health measures have to be taken
outside the health sector.”™ These measures include main-
tenance in a healthy and hygienic environment such as
penaltics for spitting and closcly monitoring the integrity of
sewage disposal systems.” * The government distributing
free surgical masks and showing how they can be uscd
cffectively can overcome the strong fear among the general
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population about this disease. In addition to infection control
measurces, it should be noted that case detection, reporting,
clear and timely dissemination of information would play
important parts in the fight against SARS.”

Qur study has several limitations, however. Firstly, onc of
the major prablems, which the world must confront, is the
absence of knowledge on SARS. In particular, it would be
hard 1o predict the possible trajectories in Japan as the
country has no experience with this epidemic. We believe
that one approach to overcome the problem of risk manage-
ment is to model the potential episodes with mathematical
modelling. This study was conducted with only a few known
parameter values. Although we used a single value of R,
throughout an epidemic, R, is likely to decrease after the
onset of an epidemic is detected and announced. The
qualitative and quantitative patterns of diminishing R;,
because of behavioural change (thar is, if people reduce the
frequency of going out), should be incorporated in further
studies. We here performed sensitivity analyses of Ry for
parameters whose values are not known. Secondly, we made
a simple assumption that either the precautionary measures
or the quarantine were perfectly effective {an optimistic
assumption) or not. Thirdly, although possible outcomes
were determined for a certain population sizes, for example,
that of Shinjuku, Tokyo, one should not expect the same
outcome for cities of the same size because of regional
variances in the age distribution, behaviour, and contact
pattern. Intercommunity transportation, migration, should
also be taken into account. Further research is therefore
necessary. It would be important to incorporate probability
theory and contact patterns into the research as the epidemic
threshold parameters should be considered based on approx-
imating the infection process, during its initial stages, by a
branching process.” The mathematical model might be
modified so that the effects of changing staffing policy for
the healthcare facilities could be simulated. Finally, incor-
porating quarantine of visitors from overseas might give us
more practical simulation.
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Modeling for a Smallpox-vaccination

Policy against Possible Bioterrorism in

Japén: The impact of Long-lasting Vaccinal immunity

'+

Hiroshi Nishiura,? and I, Ming Tang.”

BACKGRCOUND: There has been concern that variola virus might be held clandestinely elsewhere.
Through constructing mathematical model based on the detailed epidemiologic data, we focused on
simulating the various possible scenarios arising from a bioterrorist attack whereby smallpox virus was
introduced into Japan, and sought t¢ develop the most effective way of nationwide vaccination policy
based on the theory of residual immunity.

METHOD: The analysis is based on a deterministic mathematical model which predicted the epi-
demiologic outcome while simultaneously evaluating the effect of any specified control strategy of the
smallpox epidemic. To clarify the required amount of vaccings, we performed mathematical analysis for
hypothetical population to acquire herd immunity based on long-lasting vaccinal immunity.

RESULTS: It is demonstrated that the crude size of the potential epidemic could be greatly affected
by possible level of residual immunity. The results also suggest the possibility to develop optimal distri-
bution of nationwide vaccination according 1o the immune status. The prevalence at 50th day among
population without immunity it our simulation would be approximately 405 times greater than expected
population with residual immunity, and required amount of vaccines for equal distribution would be 3.13
times more than optimal distribution.

CONCLUSION: The mathematical model formulated could determine the vaccination priority based
on the real status of immunity which required much less amount of vaccinations than would be calculat-
ed using an equal distribution program. It is therefore crucial to determine the reai immunity status of

o ; the population via epidemiolegic studies.
i J Epidemiol 2004;14:41-50.

Key words: smallpox; bicterrorism; models, mathematical; vaccination; immunity.

Bioterrorism is the intentional use of micro-organisms, or their
.produc;ts, to cause harm, and may be used to target humans, ani-
‘mals or crops.' Variola virus, which causes smallpox, is one of the
‘most dangerous bioterrorism agents to be worried about. If used
'as a biological weapon. it poses a serious threat to the civilian
popula;tions because of its case fatality proportion of 30% or more
:among the unvaccinated persons and the absence of specific ther-
:apy.l Furthermore, because the World Health Organization
‘(WHO“) announced the total eradication of the smallpox in 1979,
routinﬁ vaccination gradually ceased worldwide,” leaving the
younger age individuals today who have never been vaccinated,
and ar'e thus extremely susceptible to smallpox infection. There is

concern that the virus might be held clandestinely and less secure-
ly elsewhere.” In the aftermath of the September 11 terrorist
attacks in 2001, the United States, after receiving direct threats,
began stockpiling 286 million doses of smallpox vaccine, and the
Centers for Disease Control and Prevention (CDC) interim
response plan calling for targeted vaccination and quarantine.®
Disaster plans for managing a biological attack must be devel-
oped in detail and realistic training provided to ensure effective
response to an actual termorist event.”

Japan should not feel that it is exempt from the various terrorist
threats, It has been said that if Japan were to become a key ally in
a United States-led military campaign against terrorism in Asia,
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both Japan and Japanese living abroad would become terrorist tar-
gets.” In response to the mailborne anthrax terronist attacks in the
United States,! the Ministry of Health, Labor and Welfare of the
Japanese govermnment has formed a working group on protection
against bioterrorism in December 2001, and has started preparing
mass production of vaccine against smallpox for 10 million civil-
ian persons using less neuropathogenic tissue culture freeze-dried
vaccine with LC16m8 strain.® The Ministry has alse begun to pre-
pare vaccines for first-line health care workers in case of small-
pox bioterrorism. The Self Defense Force personnel who are serv-
ing in peace-keeping operations in the Middle Eastern countries
have already been vaccinated.® Although the Minisiry has
announced a contingency plan for a possible outbreak of smallpox
in Japan,” detailed information and guidelines are still lacking
when compared 1o the ones produced by the CDC. Although the
Japanese government prepared its plan using much from the
CDC, unlike CDC, it has neither given the scientific justification
in their policy for amount of the vaccines necessary, nor provided
the reason why post-exposure vaccination should be carried out
within the four days after exposure. Because the Japanese govern-
ment has not made it clear to the public its policy and intention
regarding the smallpox vaccination, the public until date remains
ignorant and thus unprepared.

In the face of many unknowns, several mathematical epidemi-
ologists have challenged the presently used models for assessing
public health interventions including the vaccination policy
regarding the survival and spread of smallpox,''>"** or for esti-
mating its ransmissibility using past epidemiologic records, *'*
Models may be conceptualized as thought experiments, and are
extremely useful tools when physical experiments are impossible

to perform due to time, monetary, practical, or ethical con-
straints.”. The purposes of this study are to simulate the possible
scenarios which could arise from a bioterrorist attack of introduc-
ing smallpox into Japan, and to describe the possible outcome of
different nationwide vaccination policies based on the hypothesis
on residual immunity in the populiation. This would allow the
Japanese government to impose its original vaccination policy,
and determnine what rew epidemiologic study is needed.

METHQODS

Mathematical Model

The analysis presented in this paper is based on a deterministic
mathematical model for epidemic which could predict the epi-
demiologic outcome while simultanecusly evaluating the effect of
any specified control strategy on smallpox. The model is a modi-
fication of the SEL/R model,” which separates the population into
the classes of people who are susceptible (S), exposed (E), infec-
tious (/), diagnosed (), and recovered (R). The model is
described by a set of ordinal differential equations which are
based upon specific biological and intervention assumptions
about the transmission dynamics of smallpox (Figure 1). We firsi
separate the susceptible population (5) into three age groups
according to the expected immunity:” (Group A} represents those
who have never been vaccinated {54) i.e., born after 1977, and
who constitute the proportion (7-x-y) of the total population,
{Group B) represents those who received only primary vaccina-
tion (8a) i.e., born between 1969-1977, and is denoted as xN, and
(Group C) represents those who have received both primary and
revaccination {(Sc) i.e., born before 1969, and is denoted as yN. A

Figure 1. The transmission dynamics of the smallpox taking into account the impact of different residual immunity and interventions.

Here: S4. S5 and Sc represents the proportion of population susceptible among Groups A (born after 1977), B (bom in 1969-1977), and C
(born before 1969), respectively; £ represents the proportion of untraced Jatent individuals: f the proportion of the population infectious:
J the proportion of infectious isolated; R the proportion of recovered and death.
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certain proportion from each population groups (A, B, and C) are
assumed to be effectively protected by present vaccination strate-
gy, and denoted as p4, ps , and pc. A smallpox infection among
the susceptible population {Sx. 53, and Sc) firstly begins with a
non-infectious incubation period (E), which constitute the latency
period. It would be followed by prodrome with non-specific
symptoms, and by an overtly infectious (/) and symptomatic
stage, characterized by a pustular rash. By this time, most of
infections would be apparent and be diagnosed (/). The patients
\\Ivould 't'hen either slowly recover or die (R).* While infectious,
the infected patients can transmit the disease to other susceptible
individuals at a rate dependent on the basic reproduction number,
Ro.* There are currently three possible public health interventions
for interrupting the transmission of the virus. These are (1) vacci-
nating those who are at risk or may have already bezn exposed,
(2) quarantining certain proportion of those who are known to
have been exposed and therefore may be infected but are not yet
il {see Appendix), and (3) moving infectious individuals (f) into
isolation after being diagnosed (J}. We assume that each suscep-
tible makes { contacts per day with an infectious person. Among
the known contacts (in S4. Se, and Sc), some would be infected
with the probability of 3 per contacts (and enter into £) and (I- #)
remnains uninfected and susceptible. Untraced infectious persons
would recover or die after ¢ y 1)~ days. Apparent infectious per-
son would be diagnosed and isolated with the mean daily rate &
{and enter into J), and recover or die { ¥ 2) ™' days after isolation.
Because isolation can never be perfect, we estimate that those
who are isolated also contribute to the generation of newly infect-
ed cases. Therefore, relative measure of reduced risk among those
isolated () is multiplied to J. These processes can be modeled
using an approximately parameterized set of differential equations
[1] as given by:

Ba (B paSsr+ 1

dt

By o tp0-v-psati+ 1)
Be o (pa-w-poSct+n))
= BLAQ-puSe+ (1= v=paSs (1 -0-p0Sc) U410 -0E [1]
d

e DE-(y+d)]

a = -

= §1-yJ

&R

ral Wi+ gt

Because isolation measure is not usvally undertaken in the carly
stage of the epidemic (the stage of which is given by S4+Sp+5¢ =

_ Nand f(E(t), i), Jrop = (0. 0. 0), where N is the size of the popu-

Jlation in which the cpidemic occurs), f¢2) at the initial attack with-

out the effect of quarantine would be given by:
U~ | (- pis 0+ (1- - pSs O+ (1 -0-pIScO}- 1)) 2]

Therefore, the growth of infectious person at initial stage will fol-
low Malthusian model as follows:

BE{(1- pAS40)+ (1~ v - pp}Sa (D) + (1 —@2— pciSc(0} -
I(U=I(0)e[ {{(1- 05, 01+ (1~ v - pdSs (O + (1 —@0- pciSc 1 Yllf 3]

From the second generator approach,” we obtain the following
expression for the basic reproduction number, Ro:

Ry= {BN{(1-p) (1 =x=p) + (L —v—ppix + ([ -w-pcy}

1 én 4]
X{awl * y;_.(6+v.)}

A description of the other principal parameters in the model and
of their assigned value is presented below.,

Parameter Values

Table 1 contains the parameter values for our baseline case.
Assuming that the biological variables do not differ much from
those of past epidemics, we use the values given in previous epi-
demic modeling studies'™"'** for possible scenaric analyses. The
infection rate f#{ is chosen and fixed so that Ro = 6.87, which is
derived from an estimate on the order of 4.52 to 10.1 estimated in
the previous study that have invelved calculation of Ro.* Because
our purposes here are to draw crude pictures of the possible
smallpox bioterrorist aitack and describe the impact of residual
immunity, we performed an analysis based on a single value of Re
(although we have varied parameter assumption in sensitivity
analysis for assumed residual immunity and initial attack size dis-
cussed below). These types of analyses on the impact of public
health interventions are beyond the scope of this paper. Such
studies have aiready been undertaken elsewhere.""*-4 Therefore,
our sitnulation itself in this paper excludes the effect of quarantine
(see Appendix, where we formulated the model incorporating the
effect of quarantine). We assume that the pattern of contact is lin-
carly related to the population size so that every infectious person
will pass the disease to exactly Ro susceptible individuals simujta-
neously within an incubation period of { ¢)™' days. From this
assumption, {N denotes the daily number of contacts in the pop-
ulation. In addition, we use a singie value of Re throughout the
epidemic that represents the posi-detection scenario so as to csti-
mate the natural course {without interventions) of the epidemic
aithough the transmission rate is likely to decrease after the epi-
demic is detected and announced. Although homogenous (or
free} mixing is not an accurate description of the actual popula-
tion interactions, free mixing usually leads to larger epidemics
than nonrandom mixing.® In addition, we assumed homogenous
mixing because smallpox infections as caused by a bioterrorist
attack would not necessarily accumulate in a small number of
limited locations. We start the bioterrorism scenario with an entry



327/ Appendix # 3.12

44 Modeling $malipox Vaccination in Japan

of 10 initial cases into a population of 1,000,000 people, with
enough population density to give the more than necessary critical
proportion of the population, as our baseline case. It is assumed
that one million people with a certain population density is a typi-
cal representation of a population of one ward in an urban area in
Japan (i.e., Setagaya ward of Tokyo has a population of 815,000).
It is somewhat unrealistic to expect the population at the prefec-
tural or national level to be at risk because it would not be possi-
ble to have 100% of this population to come into possible direct
or indirect contact with the disease within the short time period of

concern. We have therefore considered a scenario of an epidemic
in a city or ward sized population, such as the one of Sctagaya.
We first simulate three possible scenarios for different propor-
tion of people whose residual immunity still exist. in the first sce-
nario, based on the hypothetical long-lasting immunity in Yapan
estimated using latest study in India,™ we assume that approxi-
mately 30% of Group B and 90% of Group C (with population
size of 1.05 X% 10* and 6.01 X 10%, respectively) will still have pro-
tective immunity against smallpox. The proportion of people with
immunity in Group B (v ) and C (w) would thus be set as (.30

Table 1, Parameter values for transmission dynamics of smallpox.

Parameters Description Baseline Values Referrence
i The probabtlity of transmission per contacts B{=426 *a
{ The daily number of contacts per capita *a
The proportion of exposed person among Group A
P4 ' L 0.00 *b
who was effectively protected by vaccination
The proportion of exposed person among Group B
pe . Lo 0.00 *b
who was effectively protected by vaccination
e The propoﬂion‘of exposed person amo‘ng F}roup C 0.00 *b
who was effectively protected by vaccination
o '_Thc a?'erage rate at which latent individuals become 0.0685 day" 3
infectious
5 T.he mean daily. rate at which infectious cases are 0.95 day” 3
diagnosed and isolaied
yi The percapita rate for recovery and deth 0.116 day" 27
¥2 The percapita rate for recovery and deth after isolated 0.132 day* 3,28
7 Relative measure of reduced risk among isolated cases 0.i0 16,29
x The proportion of Group B population 0.195 19
¥y The proporticn of Group C popuiation 0.601 1%
h . lati . . . .
v The proportion of pf)pu ation with residual immunity 0.30 19.24
among Group B estimated
Th i f lati ith residual i i
© e proportion of population with residual immunity - 0.90 19

among Group C estimated

*a: The infection rate f3{ is chosen and fixed so that the basic reproduction number becomes 6.87.
*b: Projected epidemic curves (baseline case) given by simulation ignored vaccination.
Discussion for these parameters are given in text,
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and 0.90, respectively. Because Group A consists of only those
who were born in 1977 and thereafter have never been vaccinat-
ed, no one in this group will have the protective immunity. For
the second scenario, we assume that half of estimated population
still possesses immunity ( v =0.15, w=0.45). 1t is believed that
loss of immune protection might contribute to the epidemic.' For
th‘_'e third scenario, we assume that no person posscss protective
immunity ( ¥ =0, @=0). To make the differences between those
three scenarios clearly visible, we assume that there is no public
health intervention except isolation in all three scenarios.

“We then consider the impact of different levels of vaccine dis-
uibutions for the three age groups (A, B, and C), which would
become crucial if nationwide mass-vaccinatior is required (level
III). By estimating the optimal condition in order to prioritize, we
géneralizc the condition with simple mathematical formula so that
it can b:'; applied to other communities having different age disiri-
bistion. | Finally, we estimate the total amount of smallpox vac-
cines needed in Japan using a peneralized formula. In this study,
the total number of people in the population is assumed to be con-
stant during the epidemic. The background mortality rate is
assumed to be negligible over the time periods examined.

Sensitivity analysis

Because model parameters regarding the proportion of the popu-
lation in Groups B and C with residual immunity ( #, @) and ini-
tial attack size (/{Q)N) possess the most uncertainty, a sensitivity
analysis comparing the reproduction number is performed for dif-
ferent settings of them. Firstly, we compare the sensitivity of the
reproduction number for either v or ®, and then varied both. In
three of the comparisons, both v and w are varied from 0 o 1.0
separately. When we vary both of them, we multiplied the relative
reliability, which we define as a variable from 0 to 1.0, to our
assumed immune proporton { v = 0.30 or w= 0.90). As for the
initial attack size, we analyzed the reproduction number by vary-
fng IfQ)N from 10 to 100,000 cases. A hundred thousand is select-
ed as the maximum number of initial cases because it would be
10% of the total population. Whatever the way of introduction
would be, we consider it is unrealistic to assume much more num-
ber of initial cases in our assumed ward-sized community.

W

RESULTS

The result of a simple scenario analysis is seen in Figure 2. It
shows ‘the probable dynamics of the smallpox epidemics under
different conditions of residual immunity. The results are given
for up to 50 days after the onset of epidemic. It is unrealistic to
estimate for longer period of time because one would not expect
the health policy and control strategies as well as social reactions
to remain static over longer periods, Without any public health
interventions and protective immunity, expenential growth of
daily number of new cases would occur. The point prevalence
(here denoted as the number of infectious individuals) would
:lexceeé 500 persons by the 33rd day after onset of epidemic. If the

half of estimated immune population in Groups B and C still pos-
sesses immunity, the incidence rate (=rapidity) of smallpox will
be lessened, but the trend of exponential growth would not cease
without any interventions. On the other hard, the daily number of
new cases would be in relatively controllable number if parts of
the Groups B and C were perfectly immune as hypothesized. It is
notable that trend of increase would still be observed without
interventions. The difference in the prevalence between a popula-
tion which had no immunity and the one which had the expected
imimunity at 50th day would be approximately 405 folds.

If a proportion p of the population is successfully immunized,
the critical proportion of the population to be immunized (pe-),
which is needed to attain the eradication,” is given simply by:

Peri =1 - 7§0— 5

Approximate estimate of the vaccination coverage (the degree of
herd immunity) needed 1o eradicate smallpox is known to be in
the order of 70 to 80%." Here, we separate the susceptible into
three age groups based on their possible residual immunity. Based
on this assumption, the condition 1o break the chain in the person-
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Figure 2. Dynamics of a smallpox attack with the basic
reproduction number Ro= 6.87.

The number of infectious smallpox cases according ta the protec-
tive (residual) immunity in Groups B (born in 1969-1977) and C
(born before 1969), v and & . Simulations were performed with a
time-step of 0.1 days.
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to-person transmission of smallpox is given by the equation [4):

{1-pa) (= x -y} + (1 - b= pg) x + (1-0 - pcly < Rio 16]

where x and y are the proportion of Groups B and C in susceptible
population, respectively. Population of the Group A can be repre-
sented as (/-x-y)N. If the hypothesized level of immunity were
perfectly realistic {such as our baseline case, v=0.30 and w=
0.90 described in Table I), the prioritization in order to achieve
the most effective vaccine intervention can be calculated by:

fipl =1 —x-y) pa+xpe+ypc
=0.294p, + 0.105ps + 0.601p¢

According to Arita’s assumptions,'” which he calculated from
another study carried in India,” the optimal distribution of vaccine
priority should be based on the population without immunity:

mg mp mc=(l-x-y): (l-v)x:(l-w)y

169:17:14 (8]

where ma4, ma, and mc are the ratio of the population who have
not been immune based on residual immunity by Group A, B, and
C. When we assume that the total amount of vaccines would be
constant (for the purpose of comparison of immune population 1o
be covered), we can transform these conditions into the ratio of
proportion in need of vaccination by adjusting for the number in
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The conditions here are expressed as the proportion of people
who needs to be vaccinated in each age group. Based on the equa-
tion [6]. the optimal distribution of vaccine priority (the amount
of vaccines) should be:

vi:vgive;84:4:12 [10]

where v4, va, and vc are the amount of vaccines needed by Group
A, B, and C. Because we have set Ro = 6.87, into egn. [6] and [7].
the minimum coverage and amount required to cause the small-
pox epidemic to settle down in each age group is,

Pa27421% v, =218,160
pa = 2.65% vp = 2,783 [11}
pc=859%  ve= 51,605

The total amount of vaccination (¥) should cover at least
vatvetwve = 272,557 persons in this scenario analysis. This can be
calculated from:

Vevs+vsg+ ve (12}
={pa(l-x-))+pex+pcy} N
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Figure 3. Sensitivity analysis for uncertain parameters.

The reproduction number under {(a) varied proportion of the population with residual protective immunity as well as relative reliability for
immunity among the population in Groups B (bomn in 1969-1977) and C (born before 1969), (b) different initial attack sizes from 10 to

100,000. The total population size was fixed at 10°
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-'Approximate coverage should be more than 27.3% of total popu-

lation in cur scenario analysis, while it woutd be necessary to
cover 85.4% if we do not take immunity into account. If it
becomes necessary to carry out nationwide mass-vaccination, we
:would need vaccines for between 27.3 and 85.4 million people
dependmg on the different policies. Because the number does not
take efficacy of the vaccine into account, the actual coverage
might be greater than is given here.

Figure 3 shows the results of sensitivity analysis. The reproduc-
tion number changes linearly related to v ,w and I(G}N.
Comparing the proportion of the population possessing residual
}mmunity between Group B and C, the reproduction number by
'varying Group B is more sensitive than C to the proportion of the
immune population. Although the reproduction number increases
as the relative reliability declines for both v and 4, its increase
Seems rather small compared to drastic change in ®. The repro-
duction number will also decline when inittal attack size increas-

“es. However, compared to the change of the reproduction number
'bn the order of 2.4 10 6.9 in Figure 3 (a), the varying interval in
Figure 3 (b) is limited such as from 6.1 t0 6.9

]

) DISCUSSION

Two important conclusions can be drawn from our assessments of
the impact of immunity on possible smallpox epidemic in Japan.
First, it demonstrates that the crude size of the potential epidemic
could be greatly affected by the possible residual immunity within
'the population. Depending on the actual protective immunity,
huge differences in smalipox incidence among the vartous popu-
lation groups might be observed. Secondly, it is possible to deter-
‘mine how the optimal levels of vaccination should be when a
nationwide vaccination becomes necessary, which is based on the
fimmune status of the individuals. Therefore, if we could formu-
ilate a prioritization scheme for vaccination, which is based on the
immunity of the individual, the total amount of vaccines could
turn out to be much lower than the estimate given by the equal
distribution policy.
‘ Despite the problems of uncertainty with the real epidemiologic
data of bioterrorism, a simple dynamic model still gave reason-
able simulations of the smallpox dynamics. Because transmission
bmemial varies from community to community, we performed a
sensmvny analysis according to the residual immunity and initial
attack size for determined Ro, which was within the range of pre-
“cise estimate. Because initial attack size itself does not largely
affect the transmission potential, the size of epidemic would be
linearly increase according to the initial attack size in further sim-
ulations based on our assumption {mostly it originates from
assuming homogenous mixing). Although the results of a long-
iasting protective effects of smallpox vaccination is still based on
theorctical analysis™ with certain assumptions, the impact of
residual immunity on the size of epidemic can clearly be demon-
strated when we examine the natural course of epidemic (without
any interventions). Because mass-vaccination measures greatly
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affect the transmissibility, the rapidity with which the smallpox
epidemic spread would largely be lessened by the presence of the
residual immunity. The national policy to achieve optimal distrib-
ution of vaccination should therefore be formulated on the basis
of residual immunity among its population. This might affect the
longevity of the epidemic as well as how fast it spreads. The con-
tribution of residual immunity to the probability of controlling
smailpox outbreak can be described by equation [6]. It might be
possible to estimate the total amount of vaceines needed (equation
{12]) when smallpox begins to spread into each community, The
model has also been generalized so that it can be used to achieve
the estimation for other communities. The minimum amount of
vaccines that needs to be stocked in order to obtain herd immuni-
ty (or eradicate) against smallpox would be 3.13 times lesser than
the amount needed when no immunity exists. According to sensi-
tivity analysis, the possible trajectories would be sensitive to the
proportion of immune population in Group C. It is considered to
be due to the large number of the population in Group C. The
overall number of vaccine doses would be an underestimate
because efficacy of the vaccine must also be taken into account if
a mass-vaccination was to take place.

Although our study demonstrates the large impact of residuoal
immunity on the epidemic, the real percentage and duration of

“immunity are unknown. Qur study is based on certain assump-

tions. It is therefore critically important to know the status of
immunity in the real population from epidemiologic studies. In
this study, we considered the impact of varying residual immunity
in each age group by looking at the sensitivity of associated para-
meters (v and @ being the most critical). Such sensitivity analy-
ses can help estimating the variability in the size of epidemic and
the reproduction number. One should also note that mass vaccina-
tion before a bioterrorist attack actually takes place is not practi-
cable in the real settings. Although we focused on the impact of
residual immunity and its application for calculating required
stock for vaccination as a possible implication, vaccination would
start after an identification of the attack. There would be & race of
time between implementing of vaccination and the spread of
transmission.”™* For the purpose of practical planning or simula-
tion, it would be necessary to consider these important aspects.
Qur study has several limitations, however. Much needs to be
overcome in order to increase model realism. First, one of the
major problems, which the world must confront, is the uncertainty
and lack of knowledge on smallpox bioterrorism, We believe that
one approach to aovercome the problem of risk management is to
model the potential episodes with mathematical modeling. This
study was conducted with only a few known parameter values,
and our method assumed a closed population with crude results
(in addition, simulations without quarantine). Although we
assumed the introduction of smallpox into an urban community,
epidemic could be different between urban and rural communities
because population density as well as many of the socio-demo-
graphic and behavioral characteristics vary. Thus there are many
uncertainties, It should be noted that many other variables could
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affect the course of epidemic in real world bioterrorism such as
the pattern of contacts. Although we assumed homogenous mix-
ing within the community, the spread in scale-free networks
should further be considered, and intercommunity migration
should also be taken into account. Secondly, the estimation of
total amount of vaccine needed is based on optimistic assumption.
We do not know the actual percentage of residual immunity and
the vaccine efficacy. We need further epidemiologic studies on
immunity as well as on vaccine trials for smallpox. Finally,
although possible outcomes were determined for a certain popula-
tion size, one should not expect the same outcome for cities of the
same size because of regional variances in the age distribution.
Since the formula for the total amount of vaccination needed has
been generalized, each community should be able to calculate the
requirements based on their own epidemiologic records and ape
distributions. In order Lo prepare the various communities, includ-
ing ours, for future possible bioterrorist attacks as well as to facil-
itate the use of mathematical models in policy formulation, we
open ourselves 1o criticisms, comments and suggestions for col-
laborations with others academic who share the same concern.
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APPENDIX

For the purposc of further realistic simulation, here we consider
the effect of quarantine onto our model (using additional five
compartments, Figure 4). We suppose the fraction g, of those who
are known to have been exposed and therefore may be infected
l:;ul are not yet ill, would be quarantined (denoted by the compart-
ment Eq). Those who are in Eq will become infectious after the
latency period {and enter into fg). Some of them would be diag-
nosed and moved into isolation with the mean daily rate & (and
enter into J). The other of infectious and traced individuals are
assumed to recover or die after ( ¥ 3)" days of quarantine. In addi-
tion to ﬁuaramining the infected individuals, we need to consider
uninfected and traced individuals. Among uninfected, (7/-gj(/- 5}
remains susceptible and g(7- /) would be traced and enters into

04, Or and Oc: which represent those who are traced but unin-
fected for each age group. Those who were traced but uninfected
would finish quarantine (released into community again and enter
the susceptible population) o' days after their known contact.
Since we should assume the guarantine can never be perfect to
protect an additional transmission, relative measure of reduced
risk among those quarantined (8) is multiplied to Iy.
Incorporating these assumptions onto equations [1), the transmis-
sion dynamics with the modification of quarantine system can be
described o

jjT‘ =={(1-p{q+B(i-g)) Sati+ Blg+nD+ 0 Qs
Br o {0-v-ppg+BO-9} SaU+ Ol r1)+ 005
e

S =-ta ~t-pg+B{l-¢)} S+ BL+nly+ 0Qc

-‘% =(1-pd{(1-8) LgSqti+ Bi+ m -0y

405
at

% = (-w-pd (I-8) {gSc(f+ 81+ mh-00c

={l-v-py) (1-8) {gSs(i+ 8L+ NH- 0 Qs

Fa < BCq{U-pSit 1-v-p)So+ (-a-p) Sc) 1+ Blys R0,

g
=
Qa . Sa {1-pa)itq
(1-paX1 B
‘Eq
(1-palpt{i—q)
[+]
Qs < Sa
(t-v—pe}1-fitq E

Q
Q¢ | Sc
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Figure 4. The transmission dynamics of the smallpox incorporating the effect of quarantine.

Additional compartments: Eg represents the proportion of traced latent contacts; Q. @ and Oc, the proportion of wraced uninfected
contacts from Groups A (born after 1977), B (born in 1969-1977), and C (born before 1969); /q the proportion of infectious in quarantine.
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In this case, the basic reproduction number would be given by

Ry= {BU-g) N{(1 —p) (1 —x = p)+ (1 —U - pplx + (I +w-pCIy }
1 8 ér 21
X {6+y. * S+v * y2(6+y1)}

This would allow to increase the realism for simuiation.
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Apstract: The dynamical behavior of time delay herbivore-plant-pollinator ecosystem is studied. The time
delay arises from the fact that it takes time for a pollinated flower to develop into a new plant. A dynamical
analysis is used to show thar a stable steady state undergoes a Hopf bifurcation to a limit cycle behavior asthe
delay time crosses a critical value. This prediction is verified by numerically solving the set of first order
differential equations. One linds that the trajectory which is spiraling into the steady state point when T <t
becomes a trajectory into a limit cycle about the state when t> 1.

Kevworps: Herbivore-plant-pollinator ecosystem, time delay, Hopf Bifurcation.

INTRODUCTION

Very recently, Bandyopadhyay, Bhaztacharyya and
Mukopadhyay (BBM)', studied the dynamics of an
autotroph-herbivore ecosystem with nutrient
recycling. They considered both the case where there
is no time delay and the case where there is a delay. For
the former case, they found that when the rate of
increase of the nutrients attained a certain threshold
value, the system became stable. The autotroph and
herbivore populations would oscillate about an interior
steady state point. Below the threshold value, the
system became unstable. Note that in the absence of
nutrient replenishing, the murients would eventually
disappear fromthe soiland the autotrophic state would
go to zero. For the latter case, BBM found thar a
sufficiently large delay in the time needed to convert
de‘}ad organic matter into the nutrients, would cause
the stable state 1o become unstable. Using Hopf
Bifurcation analysis?, they established the conditions
for the switching of the stability.

. Jang®hasstudied the dynamics ofa herbivore-plant-
potlinator ecosystem. Jangs model is somewhat
different from that of BBM. He looked at the roles of
the energetic rewards of the interactions between the
plant and the pollinator and of the specificity of the
pollinatortothe plant. Jang was particularly interested
in how the reduction of the visitation rate of the bee to
the plant caused by the action of the herbivore affected

the ecosystem. A Hopf Bifurcation analysis was again
used to determine the stability of the steady states.
Jang did not include any time delay*® into his model.

The purpose of the present paper is to determine
the effects of a time delay in Jangs model. Unlike the
BBM model, where the time delay should be inserted is
obvious, it is not in Jang’s model. We believe thar it
should be inserted into the term describing the birth
rate of the plant;

klo'uXY

— 1
1+opp’yY @
where X and Y are the bee and plant populations,
respectively; k , number of ovules fertilized per visit of
the bee; ¢, the probability of an encounter between the
flower and the bee, @, reciprocal of the time it takes the
beetoextract the nectar (or pollen);and it , the energetic
reward to the bee when it encounters the flower. This
gives the number of flowers fertilized atume t. 1ithen
takes time for the fertilized ovules to develop into
seedsand fall tothe ground. The number of new plants
that will begin to flower at time t will depend on the
number of ovules that were {ertilized at time t-T, where
Tisthe time delay. In Section 1, we introduce the Jang
model and present some of his results. We put the time
delay into the model in Section 111, and carry outa Hopl
Bifurcation analysis. In Section IV, we present cur



194

numerical solution. In Section V, we present an
extension of our model and discuss how it can be used
to provide quantitative predictions for the farmers.

1. Jang's Model.

The herbivore-plant-pollinator ecosystem
considered by Jang consists of three first order
differential equations;

Xsz(}(_)o+Lngﬂz_xy

1+ o’y (2a)
y= Romg@XY ‘“1‘3 (2b)
and I+dou’Y a+
2="2 57 (20)
a+yY

where Z denotes the herbivore population; g(z)
represents theloss in attractiveness of the flower to the
bee due to the damage caused by the herbivore;

mzY

3
a+Y

isthe visitation rate of the herbivore to the plant; m, and
m,, the maximal ingestion rate and the leathopper
maximal growth rate with 0 <m, £ m, Tespectively;‘a’,
the half - saturation constant; &, the maximum per
capita birth rate of the bees; A and 8, the death rate of
the bees and herbivore, respectively; ‘b, the density
dependent regulation constant of bee, and K is the
measure of the diversity of bee to the plant (K=(5,-A)/
b). Inthepresent model, the flower on the plant becomes
pollinated and afterawhile, the plant dies. Thelife cycle
begins again when the seed developed from the
pollinated flower falls off the plant and germinates in
the soil. All of the population classes must be positive
at all times, i.e.,

XD, Y(1), Z{1) 320.

Setting the RHS of eqns. (2a)— (2c) to zero, we obtained

m =K+ M (%)
' b(1+$op’y)
¥= 4 ,m, >3 (4b)
and m, -8
z=2 +§ klkﬂ-*aoz; —a, _kpoK - 4
: m, b(1+¢0pl;)z =+ 1+ ‘t’OPZ; gx) =yl (4}

atone of the steady states (%,7,Z) . To determine when
the state is stable or not, we first diagenalize the Jacobian
of eqns. {2a) to (2c} at the steady state. We then check
to see if all the eigenvalues have negative real parts.
When this happens, the state is stable. Diagonalizing
the Jacobian, we obtain the following characteristic
equation

A+ (p, —s AT +(p, -5, )A+(p, -5,)=0 (5
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where

p, = ¥ +8— bK + 2b% - m,h{F) - k(7 ) + mZh'(H ’

P; = ¥5 — bKS - bKy + 2by% + bKh(¥)m, — Yh(yIm, — 2bh(¥)}¥m,
+2b8% — Yi(Pk,pg(? - Bi(F)k,ug(D + (Fhk,m,pe()

~bKzm, b{(y)+ 5Zm, I'(7) + 2b%zm, h'(F) -z kym pg(E W),

P, = 26T ~ bKyS + bKyh(FIm, - 2byh(P)Tm, ~ (P ug(z)
+YE PRIk, m,ug(Z) - bXsZm, h'(y) 268 Xzm;h'(P
—Bf(y)zk,m,ng(Dh'(F).

s, =g(DX kG,

5, = -bKg(DRK,[(F) + 8g(DX k,f(F )+ 2bg(@DE k[
-g(Dh(¥ X k;m, I'F+KPE Zkym, g (Dh'E

and

s, = 2b3g(FV% &, [ (1) ~ bKdg(DRk [ (7)+2b {F ¥ Zk.m gD W'F)
+bK (D) h() X k,m, [(7) - 2b g() h(F) ¥'k,m, {(F)
-bK (P T Zk,m, gD WD (6)

Equation {35) has negative real roots if and only if
{Theorem 1, Appendix)

P\-$,> 0, P;-8,> 0 and (P,-8,)(P,-S,)-(P,-5.)=0. (7}

When the above conditions are satisfied (xy,Z}, the
steady state will be stable.

I11.Effect of Time Delay, _

Iila. The Stability of E =(X,¥,Z) with Time
Delay.

A time delay in the herbivore-plant-pollinator
system arises because a new flower only arrives after
the pollinated flower develops into a seed, falls ff the
plant, germinatesinto a new plantand then growsinto
the flowering stage of the new plant. To include the
effects of the time delay, we need to replace eqn. (2b)
by

)'( _ kypogl(t - 1)x( -yt~ 1) yy T2
- 1+doply(t -1y a+y

(2b}

The Jacobian matrix for eqns. (2a), (2b"} and 2¢)
evaluated at the steady state point E = (xy,2)is

bK— 265 + ky pglZ ) )
ky g e ™
0 myz )

ky pg@@) =

kopg @ () %
-m; hF Y+k; g3 )% Ky Ye 0T

m,  hiy) -6 (8)

—v~-m I W@P+k g@F G

5
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. Diagonalizing the above matrix, we obtain the following
: charactenstlc equation?®

@ +p1m +P,@+ P, =€ (5,0" +5,0+5,)  (9)

We now suppose that two of the eigenvalues oleqn. (9)
are a pair of complex conjugates
i.e., .= ult) x iv(1). Substituting w. into eqn. (9) and

. separating the real and imaginary parts, we get

u3 --3uv2 +P u2 —p1v2 4+pyu+tpg
i lsluzoos {ve)- slvzcos (v2) +syucos{ve) + sqc0s(ve)}

+25 uvsin(vr)+s, vsin(vr) (10)

and

3u'v-v' +2p v +p,v
1

=e 2suv gos(vr) +s,v cos(vr) —su’ sin(vr)

+5,v sin(vz)~susin{vz)-s, sin(vz)} (11}
where tis chosentobe the Hopf bifurcation parameter.

.For a Hopl bifurcation to occur, three conditions
must be metat thecritical value (z ); (1) u(z ) =0,(2) v(t )
#0and (3)u'(x)> 0 (Theorem 2 Appenchx] Toseeif
the elgenvalues of the Jacobian evaluated at the steady
state point E = (X y,Z) satisfy these conditions, we first
assume that the critical value defined by u(r_} = Oexist.
However, we do not use this condition to find’ 7. Instead
we substitute the condition into eqns. (10) and (1and
see whetheranon-zero value of v(t ) exist.* To do this,
we sz:t u(t ) = u*= 0 into the two equations to get

-plv 1y ps = (s5-5,v 2 }cos(v’ 1,) + 5,v"sin (v" 7.} (12)
V3 pyv =5,v cos(v T,) - (s4~5,v Dsinlv 1) (13)

Squaring the two equations and adding the squares
together, we obtain

L) # *2
VAR Iy e~ 2pipa— s 403 -53)=0
1 (14
i
Letting v, 77eqn. (14) becomes the following cubic
géquation

sm)= n’+dq+dn+d 0 (15)

whete 2 2
d; =p] —2p; —5; (16a)

2 2
dy =Py —2pjp3 —s3 + 25153 (16b)

d. = 2 2
35P3 75 (16¢c)
Forv(t )toexist, the roots of eqn. (15) must berealand
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positive. This can be determined by using the resulis
of the lemma stated in the Appendix. We now assume
that a set of values for the parameters can be found
which satisfies the conditions of Lemma 1.

Next we need to show that for the present u(t), the
following is true

du oe
d (an
T =1,

Thisis done by differentiating eqns. (10} and {11) with
respect to Tand then set 1= 1, Doing this, we get

B E‘i + Cd_v =D {18a)
d7lr=r, drir=r,

—C EE + B d_v =E {18b)
dr =T dr T=Ty

where
B= [—3\'% +py ~sycoslvgTg }— Isv 0sin(\.'otﬂ) + 531:0cos(v0t0)
2 .
-slvotocos(voto) + szvotosm(\-oro )]
= [-Zplvo + 251 veosvgty ) + 54 Tsinlvaty) - slv%tosin(voto
~5y sin(v Ty Y — 55V, g cos(vy Ty )]

D= (slvg - s3v0)sin(voto) + szv%cos(voto)
and

E= (slvg - s3¥y )COS(VO‘EO) - szv%sin(voto} (19

Solving for Ei we get
dr =1,
du BD-EC
— = T (20)
dr B” +C
T=To

where

4 2
BD-EC = V%BVO + zvo(p% ~2py ~ s%)+ (p% -2ppy —s;z,_ +2553)]

Qn
Therefore, we have
2
du [
0 4 2,2 2 2 2
;— = EZ::IB"O +2viipy - 2py — 51 ) +(p5 — 2pypy —&; + 2553l
T

=Ty (22}
Noting that

ds

E= 3112 + Z(p% —2p, - sf n+ (p% —2pipq - s% + 25153)
(23)

where 5 is defined byeqn. (15),eqn. (22) can be written as
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24
du ) V% ds 29
dt =2, B2 +C% dn n=vi

The condition A< 0 in part A of Lemma | requires the
two tuming points of S(11} not be a positive real root of
S(n), otherwise A would be equal to zero. The two
turning points of $(n),g, and g, (eqn. A2), are the zeros

ofeqn. (23). Sincev *2'g, o the following must be true
g§{ 20 25)
n q:\%
Thus ,
du Yo éi
deleas B2 +CZ dn n=v} (26)

and condition 3 of the Hopl bifurcation theory is
satisfied. Therefore the system undergoes a Hopf
bifurcation.

ITIb.Critical Time Delay.

The critical delay time can be found by using the
method introduced by Tam.® We rewriteeqns (12) and
(i3)as

Mcos(v * 7 )+ Nsin(v *1 }=P (27}

Neos(v * 1 ) - Msin(v *t )= Q 27

where
M= 5,-5V? \ {28a)
N= 5V (28b)
P=-PV'?i+P, (28cy
and
Q=-V?+P, V' ) (28d)

Eqns. (27a) and (27b) leads to

M N =P+ Q' =G ,whereG>0. (29)
M and N can be rewritten as

M=Gcecos 8@
N=Gsin 8 €0)]

Thisallowsustodeterminea® & | 0. 2% )uniquely. With
this value of 8, eqns. (27a) and (28b) become

Geos(t,v *)cosf+ Gsin(t, v)sind= P 1)
Geos(r,v *)siné- Gsin{t,v *)cos@#=Q  (32)

or
Geos(t,v*- 0) =P (33a)
Gsin(t,v*- 0)=Q (33b)
From this we get as the critical value
= —i—{lan_l(% )+6] (34)
v
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IV. Numerical Solution.

IVa. Numerical Parameters.

The numerical values of the parameters in the
herbivore-plant-pollinator ecosystem for a given plant
are scarce. Onme has to guess at them since many of
them will depend on which plant we are interested in,
what is the locality (or country) or what time of the year
itis. To gainideas of the range of values the parameters
can take, we look at the Mango tree, even though the
present model is not an appropriate model for this
plant. The model is developed for a flowering plant
which after becoming pollinated, dies. Most Mango
trees exhibit biannual flowering, once between May
and June and again in Decemnber-January. This flowering
is repeated every year for many years. Nevertheless,
we have used the data available for the Mango trees to
be typical of most plants.

Jamjanya” has looked at the increase in leathopper
population in two varieties of mango trees, On-som
and Na thub. He found that leafhopper infestation on
the Na-thub mango tree increased by 270% in a day,
while the leathoppers infestation on the On-sorn mango
tree increased 63% in a day. This implies that m,can
vary between 0.63 - 2.7 day! depending on the type of
Mango tree. Boongird® has measured the probability
thatabee will visita Nam dok mai mango tree in Thailand.
He found o to be 79.55%. In Trinidad, the probability
that a bee will visit the mango is about 21%.% We take
o, the probability of encounter to be in the range 0.21
- 1.0. The extraction rate of the nectar by the bee range
between 0.3 pl/sec in grove and 2.0 pl/sec in pool.'°g,
which is reciprocally related to the speed of nectar
extraction, is set to be in the range 1.93 x 10 - 3.86 x
10-° (pl/day)?. Other studies find that a bee will visit 8 -
10 flowers per visit.!! Since only about 5-75 % of the
flowers are perfect, the number of ovules fertilized per
visit, k , will be in the range of 0.4 - 7.5 flowers per visit.

Thenormal death rate of the bees has been changing.
The French National Bee Surveillance Unit'? has stated
that the death ofthe bees duringthe winter months was
one out of ten in previous years. Now, the death rate
issix out of ten. This means that A isin the range 0.001
- 0.006. For the birth rate of the bees, 8., we assume
that the queen bee lays about 1200 - 2000 eggs/day.
For a typical small hive containing perhaps 20,000
bees,” the birth rate of the bees would be in the range,
0.06-0.1 day”. The estimated values of the parameters
are listed in Table 1.

IVb. Numerical Solutions.

For the purpose of getting an idea of what might
occur, we have set the values of the parameters at:
2 =500,b=1/8, A = 0.0035, k = 3.95, k, = 0.00005,
m,=7.5,m =16,0=0.00003856,0=0.254=0.0111,
n=23and 5=0.05. Substituting the above valuesinto
eqns. (4a}-(4¢c), we get the steady state

&
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Iat_:le 1. Parameter values

?aramazrs Units

parameter range

a no. of flower 500

b 1#bee day) 1/8
1K no. of bee m—a'i,l'
nk, mango/(bee visit) 04-73

[K microliter/visit 22.72-63.63

9 (microliter/day)”! 1.93x107 - 3.B6x10°*
o - 0.21-10
il: 5, day* 0.06 - 0.1
ir day 0.001 - 0.006
1% microliter-! >1.48x10°

day”! 0.0111

d m, mango/day 10.93-910.75

;m, day! 0,63 -27

& day! 0.01-0.05

E(0.637873,16.129,29.4689).  (35)
Substituting the values of (X7,7} given by eqns.
{4a)-(4c) and the values of the parameters into eqn. (7),
we find that the Routh-Hurwitz conditions are met and
the steady state is stable. Substituting the same values
in eqn. (34), we find that the critical value is

1,=1.13 days . (36}

As T crosses this value, the steady state should become
unstable. To see if this happens, we have solved eqns.
{2a), (2b’}and (2c) (for a delay time of 1 day) using the
values of the parameters given above. In Figure 1, we
see the trajectory of the solution spiral into the
equilibrium state, eqn. (35). This would be expected
sincet<T . Wethen changed the value of the time delay
to be 1.13 days. The trajectory is now a limit cycle
(See Figure 2). Aswe have pointed out, the conditions
for the system to undergo a Hopf bifurcation to a limit
cycle are met with the values of the parameters used.
Finally, we pick T = 10 days. In Figure 3, we see
the trajectory spiraling away from the steady state
E(0.637873,16.129,29.4689). The trajectoryinitially
starts at the left face of the cube, heads towards the
steady state and then spirals away from the steady
stater. This implies that the steady state has become
unstable.

To understand why this happens, let uslook at the
biology. A nonzero steady state with 720 would be
possible if a new plant would begin to flower while
some of the original flowers are still present. This
would require that a flower, pollinated at the beginning
of the flowering season, would quickly develop into a
seed. Theseed must thenfalliothe ground and germinate
intoa plant that develops new flowers before the original
flowers dry up and die. This does not usually happen
in nature. Each step in the developmental stage of the
plant takes time. Since the new plants do not usually
arrive until the next year, the delay time appearing in
eqn. (2b') would be one year. Between the period the
time the last flowers of the season die and the new ones
arrive, there would be no flowering plants present.
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leafhopper
2 3 8 8 d
o - n [-] ~

k2
a8
N

mango

55 o063

Fig 1.Numerical solution of equations (2a), (2b") and (2c) for
atime delay of t= 1 (i<t ). The graph shows the trajec-
tory in the 3-D phase plane. The motion spirals toward

.the steady state solution E0.637873, 16.129, 20.4680).
The parameters used are: a=500, b=1/8, d,=0.08,
1=0.0033, k,=3.95, k,=0.00005, m=7.5, m=1.6,
j=0.0000386,5=0.25,g=0.0111, m=23,d=0.05

0.5 0.045

mango

15.6 0.8

bea

Fig 2.Numerical solution of equations (2a), (2b") and (2¢} at
the critical time delay 1= 1.13 days. The paratmeters
used are: the same as used for Figures 1. The trajectory
projecied on 3- dimensional phase plane. The motion is
a limit cycle.

leathopper
2

Fig 3.Numerical solution of equations (2a), (2b%} and (2c) for
a time delay of 1=10 (1>t} days. The graph shows the
trajectory in the 3-D phase plane. The trajectory moves
away from the steady state solution. The parame-ters
used are the same as those used to obtain Figs. 1 and 2.
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This would happen if the time delays are greater than
the lifetime of the flower, which we have taken to be
nine days.

IVc. Real Applications.

To see how the present model might be of use ta
the farmers, we have modified the model to more
accurately describe the production of mangos. We
have inserted into eqn. (2b"), the added term @3(t-t ) to
represent the appearance of non pollinated flowers on
the tree at time t . @ is the number of flowers that
appear on day t . We have assumed that the time delay
is six months which is greater than the critical delay
time. Therefore there will be no contribution from the
term given by eqn. (1) ineqn. (2b). Wenowlock to see
what would happen if the farmer has more bees on his
farm. To see this, we have solved eqns. (2a), (2b") and
{2¢) using K values of 1000, 1,500 and 2000. The
values of the other parameters are given on the figure
captions. In Figure 4, we plot the number of flowers
on a single tree that get pollinated each day after day
te. the day the flowers began to bloom. The initial
conditions for the starting day of the computer
simulation, are Y(0) = 0, and X(0) and Y{0} are arbitrary.
Asthe time passes, the number of bees begins to increase
untilit reaches the saturation value K. Onthe 100%, the
flowers bloom. The figure shows that only for a short
period do pollinated flowers get produced. The reason
for this is that only during these nine days are the non
pollinated flowers present. After this period, the flowers
driedup and died. This[gadstoy =0. Wealso see that
the number of flowers that get pollinated increases as
the number of bee increases. The three plots provide
a quantitative measure of how much more mangoes
can be obtained by increasing the number of bees

—
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Number of fertilized flower
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1 2 k] L] 5 ] 7 8 g 1‘0 L1}
Time (day)

Fig 4.Number of flowers pollinated per day per tree for K
equalto 1,000, 1,500 and 2,000¢. The number of flow-
ersappearing on day t is F=10,500,000. The values of
the other parameters are the same as used to obtain figs.
1,2and 3.
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available.

Another practice that can be carried out by the
farmer is to decrease the number of leafhoppers.
Sprayinginsecticides or introducing biotogical pests of
the leathoppers to kill them would accomplish this.
The first method would however also decrease the
number of bees unless the insecticide is of a type that
only affects the leafhoppers and not the bees. We
simulate the effects of employing an insecticide of this
type or using the second method by increasing the
value of the leafhopper’s death rate. 'We have solved
eqns. {2a), (2b") and (2c¢) for three values of the death
rate 8 (0.05, 0.07 and 0.09). in Figure 5, we see that
more flowers would be pollinated if the life time
(inversely proportional to the death rate) of the
leathopper were shorten. The time axis is changed so
that it staris at day 100. We see that the flowers are only
pollinated over anine day period (i.e., during the period

107

B T T T T T T Y

- 5=0.08
— §=047
-— §=008

w

.

Number of fertilized flower
w 0

-

Q0 0T im0 08 fe w07 A8 B 10
Time (day)

Fig 5.A graph shows the number of fertilized flower per day
per tree for the death rate of leathopper, d, equal 10 0.05,
0.07 and 0.09. The number of fMowers
appearing on day v is F = 10,500,000. The values of the
parameters are: a=300, d,=0.08, 1=0.0035, k =3.95,
k,=0.00005, m =7.5, m,=1.6, [=0.0000386, 5=0.25,
g=0.0111, m=23,b= d,-1, K=1000

the flowers are present on the tree).

Another way for the number of pollinated flowers
to be increased is to increase the number of flowers on
the tree. This could be done by having the rain arrive
at the right titne and or having a new variety of mango
plants that have more flowers. These are however
beyond the control of the farmenr.
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APPENDIX

Lemma 1. Conditions for the Existence of Positive
Real Roots of a Cubic Equation.
Consider the following cubic equation
S(my=17" +d]rf +d,7 +d=0 (A1)

A. ifcither (i}d, <0,d,% Oand d1‘> 3d2, or (i) d,
<0:and A<0 ,theneqn. (Al)has positive simp!e roots.

where
43 _Ltaa 2 4 3 2
A= S(sl)S(sz)=§dz - 57917 5 dydady + —dydy v d3
(A2)
withe, and g, being the two turning points of S(ny) given by

2 2
—a, - i 34, .. -4 +yad -3,

3 2 3

g =

(A3)

B.1fd, 20, the necessary condition foreqn. (A1) to
have no positive
real roots are either

@ 95 <3d,

@ & =3d;

(iii} df -3d, >0 and A> 0, or

i) df -3d, >0 and A< 0,d; >0and d; >0
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Proof of this lemmais found in Khan and Greenhalgh [4].
Theorem 1. (Routh-Hurwitz Criteria). Let x®*bean
equilibrium point of eqn. (A4), and ] be the Jacobian
evaluated at the equilibrium point. Suppose the
diagonalization of ] yields the following characteristic
equation

A+ AR +BA+C=0 . (A6)

The equilibrium state x* will be local asymptotically
stable if the coefficients A,B and C satisfy the following
conditions:

A>0Q,
C=0
and
AB>C . (A7)

Theorem I1. (Hopf Bifurcation). Suppose the functions
F({x}) depends on parameter T € R. The Jacobian will
now depend on the parametert,i.e.,

oF.
- el -
(D)= DxF(x*.T) = axj (=z* 1) i, j=1,2,...n

IfJ(tY hasa pairof complex eigenvalues, A(ta) = u(t} z iv(t)
such that
u('ru) =0,
i v{t)=v*>0
and du
i, ——(t,)=0 (A8)
da

where T_is called a critical value of the bifurcation
parameter ‘7', and no other eigenvalues with zero real
patt exist, the system will undergo a transition toalimit
cycle about the point (x* ).

Prools of this theorem can be found in various
textbooks.?
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The effects of the exposure of the bacterium, Leprospira interrogans serovar canicola to a con-

i stant magnetic field with magnetic flux density from a permanent ferrite magnet=140+5mT

were studied. Changes in Leptospira cells after their exposure to the field were determined on the
' basis of changes in their growth behavior and agglutination immunoreactivity with a homologous
i antisernm using dark-field microscopy together with visual imaging. The data showed that the
| exposed Leptospira cells have lower densities and lower agglutination immunoreactivity than the

" tioms.

division]

Leptospirosis is an acute febrile illness caused by patho-
genic spirochete bacteria of the genus Leptospira (1, 2).
This disease has emerged as an important public health prob-
lem worldwide. The symptoms of this disease can range
frofn mild-flu-like symptoms to severe (often fatal) compli-
cations such as renal and/or liver failure and hemorrhage
{referred to as Weil's syndrome) (3). Most outbreaks tend to
be seasonal in nature and are often associated with environ-
mental factors, animals, and agricultural and occupational
cycles such as rice cultivation in marshy lands. Mammals
such as rats and cattle are commonly involved in the trans-
mission of this disease to humans via direct or indirect ex-
poSure to contaminated tissues or urine (1, 2, 4). Out-breaks
of leptospirosis occur mainly after flood, making it an accu-
pational ‘hazard for sanitary and agricultural workers, as
well as a recreational hazard for humans (5). Some patho-
genic Leptospira species have also been found to be associ-
ated with domesticated animals. For example, serovar cani-
cola (Leptospira canicola) has adapted itself to canines;
therefore, it has become common in many human communi-
ties. Although there has been no report of leptospirosis in
canines in Thailand, there is a great potential for the trans-
mission of the disease between humans and dogs kept as
hotisehold pets, unless one is aware of the disease.

* Corresponding author,
e-mail: scwtr@mahidol.ac th; wiriampo@yahoo.com
phone; +66-2-889-2337 fax: +66-2-354-7159

nnexposed control group. Interestingly, some of the exposed Leptospira cells showed abnormai
. morpholagies such as large lengths. We discussed some of the possible reasons for these observa-

j [Key words: leptospirosis, Leptospira interrogans, magnetic field, dark-field microscopy, immunoreactivity, cell

L. canicola cells used in our study are motile aerobes that
are very thin, flexible and spiral-shaped of about 0.1 pm
width and 6-20 um length. Leprospira cells are difficult to
observe under a light microscope. They can, however, be
observed by dark-field microscopy using wet samples. This
allows for the determination of agglutination immunoreac-
tivity to be determined. The Lepiaspira outer membrane or
surface antigens can be detected through its agglutination
with a homologous (antiserum). The optimal conditions for
its growth and as well, its biology are well documented in
the literature (1, 2). Moist environments with a neutral pH
are suitable conditions for the survival of Leptospira outside
the host. The optimal cultivation temperature is approxi-
mately 20-32°C. In general, Leptospira species are highly
susceptible to adverse environmental conditions such as ex-
posure to dry air, chemicals such as chlorine or iodine in de-
tergents, unfavorable pH (> 8.0 or <6.5), strong electromag-
netic fields and high temperatures (above 40°C).

Magnetic fields (MFs) also affect various biological func-
tions of living organisms, for example, DNA synthesis and

- transcription (6), as well as ion transportation through cell

membranes {7). Almost all living organisms are exposed to
magnetic fields from various sources. The geomagnetic field
on the surface of the earth is approximately 0.50-0.75 gauss
in strength. There have been several studies on the effects of
exposure to MFs and several of these have given rise to con-
troversies over the past decades. The growth rate of the Bur-
gundy wine yeast has been shown to decrease when an ex-
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tremely low magnetic flux density (MFD) of 4 gauss is ap-
plied (8). The growth of Trichomonas vaginalis is acceler-
ated when it is exposed to 460~1200 gauss (9). The growth
rate of Bacillus subtilis increases when exposed to 150
gauss and decreases when exposed to more than 300 gauss
(10). Similar results were reported for Chlorella; an expo-
sure of less than 400 gauss increases the growth, while ex-
posure to 580 gauss decreases the growth rate (11). Several
studies point to the MF as a factor influencing the growth
and survival of living organisms, which vary at different
MFDs (12-15). Other researchers have studied the effects
of MFs on bacteria at the enzyme (16) or genetic (17) level.

To study the efficacy of using magnetic field to control or
prevent the growth of leptospire, we applied MF on selected
Leptospira cells at various intensities and exposure duration
levels. We then detenmined the agglutinating activity of ex-
perimental bacteria using dark field microscopy.

MATERIALS AND METHODS

Pathogenic Leptospira interrogans, serovar canicola was used
in this study. Bacterial cells were grown in the Ellinghausen and
McCuilough modified by Johnson and Harris {(EMJH) liquid
medium (2). The bacterial cells were grown at a temperature of
27%1°C in the dark.

A cylindrical permanent ferrite magnet 5cm in diameter was
placed beside 15 m! culture glass tube (less than | ml apart} con-
taining | ml of a suspension of newly subcultured Leptospira cells
in the EMIH liquid medivm. MF and homogeneity of 1405 mT
(northpole) were checked using a teslameter (Hall effect Teslame-
ter digital, order no. 13610.93; Phywe Systeme, Goittingen, Ger-
many). The intensity of static magnetic field used in our experi-
ments was chosen on the basis of Genkov er al. (9) findings.
Genkov ef al. had used more or less this intensity of a constant MF
to induce the growth and development of Trichomanas vaginalis.
For this type of exposure, no shielding against the natural varia-
tions of terrestrial MF was required, the value of approximately
0.050 mT is negligible with respect to the MF intensities applied.
An experiment using cetls not exposed to MF was simuoltaneously
performed as the control, which was placed at a distance of about
100 cm from the exposed group.

In the absence of magnets, MFD was 0.05+0.01 mT. All bac-
terial samples were exposed 1o MF for different durations, that is,
(control sample), 1, 2, 3, 4, 5, and 6d. After MF exposure, indi-
vidual samples were further incubated for 7 d. Immediately after
7 d of incubation, dark-field micrographs were taken using a CCD
camera to observe cell development. The growth and agglutination
properties using the microscopy agglutination test (MAT) with a
homologous antiserum and immunoreactivity were scored as fol-
lows:

4+ = 100% absence of Leptospira celis from the field

3+ = 75% absence of Leprospira cells from the field

2+ = 50% absence of Leptospira cells from the field

1+ = 25% absence of Leptospira cells from the field
MAT has been commonly used as a diagnostic tool for leptospiro-
sis. This may not be the most reliable test. It, however, is arguably
the most appropriate test for this study. The same set of conditions
and specimens were used in the experiments, which were repeated
twice,

Atomic force microscopy (AFM) and sample preparation
Scanning probe microscopy (SPM) (Digital Instruments Veeco
Metrology Group, NY, USA) was used for AFM surface morphol-
ogy imaging. Images were acquired in the contact mode showing
height contours that highlight the spiral shape and fine surface
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morphology of Leptospira cells. An AFM scanner with hardware
correction for the nonlinearities of the piezoelectric element was
used. The scanner has a maximum xy range of 125 by 125 pm and
a Z range of 6 um. The cantilevers of Si,N,, 125 pm long and 35
wum wide with a spring constant of 0.58 Nm™' were used. To locate
the area of interest in the samples and identify any bacteria, we
used a built-in long-range on-axis microscope, capable of a 5:1
zoom and x3500 magnification. Imaging was carried out at scan
speeds between 1 and 50 um/s. Images were acquired at 256 x256
pixels. A typical imaging session began using 2 built-in optical mi-
croscope and by moving the x-y table to search for bacterial cells,
The AFM cantilever was then moved forward to the surface close
to the chosen bacterial celt.

Each sample was prepared using the method described above. [t
was then dropped on a microscope glass slide and dried in air.

RESULTS

Figure 1 shows the AFM picture of an L. inferrogans sero-
var canicola cell taken with a Digital Insttument Nanoscope
[Ha (Digital Instruments Veeco Metrology Group) in the
contact mode. The image shows a normal morphology of
L. interrogans serovar canicola, that is, the spiral shape. It
is worth noting that AFM usually reveals the actual rough-
ness of the surface of the bacterial envelope. Other types
of microscopy frequently show the surface to be relatively
smoaoth. This technique was also used to observe the surface
morphology of bacterial cells before and after the exposure
to MF. It should be noted that this image does not demon-
strate the rough envelope very clearly. However, it does
show the normal bacterial morphology.

Figure 2 shows some representative dark field micro-
graphs of L. interrogans serovar canicola taken at the loga-
rithmic growth phase (at 1:10 dilution of culture samples)
and for different durations of MF exposure, that is, 0, 2, 3,
and 6 d. After 7 d of incubation, the samples were observed

FIG. 1. Atomic force micrograph (AFM) of Leptospira interogans
serovar canicola taken using Digital Instrument NanoScope 111a in the
contact mode under control conditiens, that is, without MF exposure.
Scan size was 20 wm and scan tate was | Hz. Tt shows a spiral-shaped
leptospire of approximately 10-20 um.

r
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F IG 2. Dark field micrographs of L. inferrogans serovar canicola exposed to MF for different durations. The images were 1aken at the log
phase ofeach experimental culwre sample (dituted 1:10 of original). Bars: 100 um.

under a dark field microscope and images were taken using
a CCD camera. Even though there are some noises in the
unages the inhibition of cell growth could be observed. The
implications of these observations are significant given the
results of other studies (6—17). From Fig,. 2A to 2D, one can
clearly observe that cell density decreased with exposure
time, particularly after more than 3 d. This indicates the de-
crease in growth rate resulting in the decrease in the number
of hacterial cells. This is one of the factors that explain the
lower agglutination immunoreactivity, which indicates fewer

remaining living bacterial cells to agglutinate.

Figure 3 shows the dark field micrographs of aggluti-
nated bacterial cells after reacting with the specific antise-
rum; Fig. 3A shows a complete agglutination (100% im-
muno) and Fig. 3B shows 50% aggiutination (with only one
half of free-living bacterial cells present).

On the basis of the criteria mentioned at the end of the
previous section, the agglutination reactivities of the L.
Interrogans serovar canicola exposed to different intensities
of MF are listed in Table 1 (with longer exposure time, the

FIG. 3. Dark field micrographs of aggiutinated bacterial cells after reacting with homologous antiserum, showing compliete agglutination
(100% reactivity: A) and 30% agglutination with one-half of free-living bacterial cells remaining (B).
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TABLE 1. Agglutination characteristics of leptospires after magnetic field exposure for various durations
duration (d 1:50 1:100 1:200 1:400 1:800 1:1600 1:3200
Exposure duration (d) dilution dilution dilution dilution dilution dilution dilution
0 4+ 3+ 2+ 2+ 2+ 2+ 1+
1 3+ 2+ T+ - - - -
2 3+ 2+ 1+ - - - -
3 2+ - - - - - -
4 2+ - - - - - -
s 1+ - - - - - -
6 NA - - - - - -

* Representive sample of control unexposed leptospires showing a higher MAT titer (1 :1600) than exposed samples for various durations.

NA indicates no agglutination accurred.
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FIG. 4. Plots of data shown in Table L.

Leptospira bacterial cells demonstrated a lower agglutina-
tton immunoreactivity than that of the reference antiserum
tested. The end point of reactivity was 50% agglutination
[2+]). The agglutination immunoreactivity score decreased
with exposure time of Leptospira cells as shown in Fig. 4.
Comparing the MAT results of control Leptospira cells (3 d
exposure) and those of bacterial cells after exposed to MF,
we found that the latter groups (particularly those with longer
exposure) showed lower agglutination reactivies. These find-
ings may indicate the presence of a lower amount of agglu-
tinin or number (density) of Leptospira cells in the exposed
samples than in the control samples. It should be empha-
sized that the same set of conditions and specimens were

used in the experiments that were repeated twice, and the
experiments yields exactly the same (semiquantitative) re-
sults. The scoring data therefore did not show an error. Once
again, in each experimental setup, it has one control (non-
exposed) group and six exposed groups with different dura-
tions of exposure.

Besides the decrease in the number of Leprospira cells as
the cause of the decrease in agglutination immunoreactivity
as mentioned above, the “denaturing effect” of the antigen-
antibedy reaction may be an other contributing factor to this
phenomenon, which can be explained as follows: Typically,
antibodies are large soluble protein molecules known as
immunogiobins and are produced by B-cells. They bind to
specific antigens in a fock-and-key fashion (lock = anti-
body; key = antigen) (18). Their shape should, therafore, be
specific to particular antigens. When a specific antibody en-
counters an antigen, it will form an antigen-antibody com-
plex through some noncovalent forces such as electrostatic
force, hydrogen bond, van der Waal force or hydrophobic
force. When a change in what of a single atom occurs, the
complex can become unbound. This specificity could be the
underlying factor for the denaturation of the antigen-anti-
body reaction. Under the conditions used in the study, the
motion or transfer of any electrons or ions onto the cell
membrane could induce an electric current. This current
may perturb the other charge particle motion in the cell thus
resulting in the loss of binding (19).

Surprisingly, we observed that some Leprospira cells ex-
posed for three or more days were longer than the control

FIG. 5. Dark-field micrographs of L. imerrogans serovar canicola taken at the same magnification (x200). Control sample unexposed to mag-
netic field; the leptospires have an approximate length of 10-20 um (A) compared with magnetic field-exposed leptospires (B} with some cells

longer than others. Circles indicate individual bacterial cells. Bars: 100 um.
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bacterial cells (see Fig. 5). This preliminary finding proba-
bly indicates that there is some disturbance in cell division.
More experiments must be carried out to examine and deter-
mine the exact mechanism underlying these observed phe-
nomena, Our present explanation for this abnormality in cell
division is based on the following: Like most bacteria and
archaea, Leptospira cells divide symmetrically possibly via
the formation of a septum in the middle of the cell (we con-
sider that binary fission is less likely). For the time being,
we use AFM in the investigation of division-related mor-
phologies. Recent evidence indicates that synthesized pro-
teins dedicated to cell division are assembled between seg-
regated chromosomes at an appropriate time (20). The key
to this assembly is the filamentous temperature exposure
sensitive (Ftsz structural) analogue of tubulin (21). DNA
damage caused by MF exposure induces mutation, resulting
in the abnormal synthesis of F#sZ, which in turn could inter-
fere or stop cell division. Similar to previous studies of Esch-
erichia coli, FisZ appears to induce the earliest (known)
step in cell division. E. coli cells with a mutation of ftsz
caused by exposure to certain conditions do not divide. This
result in the formation of long filamentous cells that can
replicate and segregate their chromosomes (22).

Our finding is at least the first step toward a grater under-
standing of the development of diagnostics, treatment, and
prevention schemes for bacterium and leptospirosis. We
hope that further studies of leptospirosis will lead to this
disease in the near future,
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k| Determining the middle of the bacteria cell and the proper placement of the septum is essential to
. the division of the bacterial cell. In E. coli, this process depends on the proteins MinC, MinD, and

MinE. Here, the lattice Boltzmann method (LBM) is used to study the dynamics of the oscillations
of the min proteins from pole to pole. This determines the midcell division plane at the cellular level,

The LBM is applied to the set of deterministic reaction diffusion equations proposed by Howard et

el to describe the dynamics of the Min proteins. The LBM results are in good agreement with

. those of Howard et el and agree qualitatively with the experimental results. Qur good results
indicate that the LBM can be an alternative computational tool for simulating problems dealing
with complex biological systems that can be described by using the reaction-diffusion equations

" ' PACS numbers: 87.15.Aa

I. INTRODUCTION

‘fCell division or cytokinesis is the process by which a
cell separates into two after its DNA has been duplicated
and distributed into the two regions that will become
the futiire daughter cells. For a successful cell division
to take place, the cell has to determine the optimal loca-
tion of the cell separation and the time to start the cell
cleavage. This involves the identification of the midpoint
of the cell where the septum or cleavage furrow will form.
For Escherichie coli and other rod-like bacteria, evidence
accumnulated over the past few years indicate that the
separation into two danghter cells is achieved by form-
inig a septum perpendicular to their long axes. To induce
the separation, the FtsZ ring {Z ring), a tubulin-like GT-
Pase, is believed to initiate and guide the septa growth by
contraction [1]. The Z ring is usually positioned close to
the center, but it can also form in the vicinity of the cell
poles. Two processes are known to regulate the place-
ment of the division site: nucleoid occlusion [2] and the
action of the min proteins [3]. Both processes interfere
with the formation of the Z ring, which is believed to

"E-mail: wtriampo@yahoo.com; Fax: 662-201-5843
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Keywords: Lattice Boltzmann method, Bacteria, E.coli, Cell division, Min proteins, MinCDE oscillation

determine the division site. Nucleoid occlusion is based
on cytological evidence that indicates that the Z ring
assembles preferentially on those portions of the mem-
brane that do not directly surround the dense nuclecid
mass [4].

The min proteins that control the placement of the
division site are the MinC, MinD, and MinE proteins
[3]. Experiments involving the use of modified proteins
show that MinC is able to inhibit the formation of the
FtsZ-ring {5]. MinD is an ATPase that is connected pe-
ripherally with the cytoplasmic membrane. It can bind
to MinC and activate the function of MinC [6,7]. Re-
cent studies show that MinD recruits MinC to the mem-
brane. This suggests that MinD stimulates MinC by
concentrating it near its presumed site of activation [8,
9]. That MinE is required to give site specificity to the
division inhibitor suggests that MinE acts as a topolog-
ical specificity protein, capable of recognizing the mid-
cell site and preventing the MinC division inhibitor from
acting at that site [10]. Its expression results in a site-
specific suppression of the MinC/MinD action so that
the FtsZ assembly is allowed at the middle of the cell,
but is blocked at other sites {3]. In the absence of MinE,
the MinC/MinD is distributed homogeneously over the
entire membrane. This results in a complete blockage
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of the Z-ring formation and the subsequent formation of
a long filamentous cell which that will fail to divide [8,
9,11,12]. By fluorescent labeling, MinE was shown to
attach to the cell wall only in the presence of MinD [13,
14]. Because MinD interacts with MinC, it is likely that
they oscillate together. This results in a concentration
of the division inhibitor at the membrane on either cell
end, alternating between being high or low every other
20 seconds, so that the period of oscillation is about 40
seconds per cycle [8,9]. MinE is not only required for
the MinC/MinD oscillation, it is also involved in setting
the frequency of the oscillation cycle {11]. Several lines
of evidence indicate that the MinE localization cycle is
tightly coupled to the oscillation ¢cycle of MinD. Recently,
microscopy of flucrescently labeled proteins involved in
the regulation of E.coli division uncovered coherent and
stable spatial and temporal oscillations of these three
proteins [15]. The proteins oscillate from one end of the
bacterium to the other and move between the cytoplas-
mic membrane and the cytoplasm. The detailed mecha-
nism by which these proteins determine the correct posi-
tion of the division plane is currently unknown, but the
observed pole-to-pole oscillations of the corresponding
distribution are thought to be of functional importance.

I1. LATTICE BOLTZMANN METHOD AND
MODEL DESCRIPTION

The Lattice Boltzmann method (LBM) is 2 numeri-
cal scheme evolved from the lattice gas model (LGM) in
order to overcome the difficulties encountered with that
model [16,17]. The LGM or lattice gas automata is a
method to determine the kinetics of particles by wutiliz-
ing a discrete lattice and discrete time. It has provided
insights into the underlying microscopic dynamics of the
physical system whereas most other approaches focus
only on the solution to the macroscopic equation. How-
ever, the LGM, in which the particles obey an exclusion
principle, has microscopic collision rules. These rules
are very complicated and require many random numbers.
These random numbers create noise or fluctuations. An
ensemble averaging is then required to smooth out the
noise in order to obtain the macroscopic dynamics which
are the results of the collective behavior of the many mi-
croscopic particles in the system and which are not sen-
sitive to the underlying details at the microscopic level.
The averaging requires a long time, which leads to an in-
crease in the amount of computational storage required
and which in turn leads to a reduction in the computa-
tional speed. For these reasons, the LBM is used only
when one is interested in the evolution of averaged quan-
tities and not in the influence of the fluctuations. The
LBM gives a correct average description on the macro-
scopic level of a fluid. The LBM can also be viewed as
a special finite difference scheme for the kinetic equation
of the discrete-velocity distribution function. The sim-
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plicity and the kinetic nature of the LBM are among its
appealing features,

The LBM consists of simple arithmetic calculations
and is, therefore, easy to program. In the LBM, the
space is divided into a regular Cartesian lattice grid as a
consequence of the symmetry of the discrete velocity set.
Each lattice point has an assigned set of velocity vectors
with specified magnitudes and directions connecting the
lattice point to its neighboring lattice points. The total
velocity and particle density are defined by specifying
the number of particles associated with each of the veloc-
ity vectors. The microscopic particle distribution func-
tion, which is the only unknown, evolves at each time
step through a two-step procedure: convection and col-
lision. The first step, convection {or streaming), simply
advances the particles from one lattice site to another lat-
tice site along the directions of motion according to their
velocities. This feature is borrowed from kinetic theory.
The second step or ¢ollision is models various interactions
among particles by allowing for the relaxation of a dis-
tribution towards an equilibrium distribution through a
linear relaxation parameter. The averaging process uses
information based on the whote velocity phase space.

Most research reported in the literature is limited to
the LBM for the Navier-Stokes equations {18,19]. The
LBM scheme has been particularly successful in simulat-
ing fluid-flow applications for a broad variety of complex
physical systems and has found application in different
areas, such as hydrodynamic systems [17,20], multiphase
and multi-component fluids [21], advection-dispersion
122] and blood flow {23-25]. Application to complex bio-
logical systems at the cellular and the molecular biolog-
ical levels has been rare.

In the present paper, we propose a LBM to study the
partitioning of the bacterial cell during cell division. This
provides an alternative method to investigate quantita-
tively the division of the cell. We compare our results
with those obtained by numerically solving a set of deter-
ministic coarse-grained coupled reaction-diffusion equa-
tions [26] to demonstrate the validity of the proposed
LBM.

1. Reaction-diffusion Equation Model

We focus on the E. coli bacteria, a commonly stud-
ted rod shaped bacteria of approximately 2 — 6 pm in
length and around 1 - 1.5 pm in diameter. Each E.
coli bacteria divides roughly every hour via cytokine-
sis. We adopted the dynamic model of the compartmen-
tization in the bacterial cell division process proposed
by Howard et sl In the Howard model, dynamics at
the mean-field level are given by a set of coarse-grained
non-linear reaction-diffusion equations. The reaction-
diffusion equations have often been used in biological
applications to model self-organization and pattern for-
mation [27].
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Our starting point is the set of one-dimensional deter-
ministic coupled reaction-diffusion equations used to de-
scribe the dynamics of the interactions between the local
densities of MinD and MinE proteins given by Howard
et al [26]. They describe the time rates of change of the
densities due to the diffusions of MinD and MinE and to
the mass transfer between the cell membrane and the cy-
toplasm. Ba.sed on the experimental results given in Ref.
9, which showed that the MinC dynamics are similar to
those of MinD, we have not written out the equations for
Mir;C. In dimensionless form, the dynamics are written
as .| d

B?TD - Da_;;g =Rp = liL +oaneng (1)
Ba Dd% =-Rp= {228 mns (@)
:%E : BBZZE =Rg= 1—:477;1; —ognpng  (3)
4%’% .—De% =-Rp = —% + oanpng (4)

where' n; is the mass density of particle of specics
5= {D,d,E,e} at time t and position . The first equa-
tion is for the cytoplasmic MinD density np. The second
is for theé membrane-bound MinD density ny. The third
is for the cytoplasmic MinE density ng, and the last is
for the membrane-bound MinE density n.. R, is the re-
action term and depends on the density of the species
ngland on the densities of the other species that react
with species s.D, is the diffusion coefficient. In this pa-
pef‘, we assume that D, is isotropic and independent of
T. IThe constant g, represents the association of MinD
toithe membrane [12]. o, corresponds to the membrane-
bound MinE suppressing the recruitment, of MinD from
the cytoplasm. o3 reflects the rate that MinE on the
membrane drives the MinD) on the membrane into the
cytoplasm. Based on the evidence of the cytoplasmic in-
teraction between MinD and MinE [7], we let o3 be the
rate that cytoplasmic MinD recruits cytoplasmic MinE
for the membrane while ¢4 corresponds to the rate of
dissociation of MinE from the membrane to the cyto-
plasm. Finally, 04 corresponds to the cytoplasmic MinD
suppressing the release of the membrane-bound MinE.
The time scale of the diffusion on the membrane is much
sléwer than that in cytoplasm. It seems, therefore, rea-
sonableito set Dy and I}, to zero. In this dynamics,
we allow for the Min protein to bind/unbind from the
membrane, but not for it to be degraded in the process.
Thus, the total amount of each type of Min protein is
conserved. The zero-flux boundary condition will be im-
posed. This boundary condition gives a closed system

with reflecting or hard-wall boundary conditions.
H y
|
2. Lattice Boltzmann Equation

The dynamics determined by Eqs. (1)-(4) can be sim-
ulated using a Lattice-Boltzmann method having three
one-dimensional velocities. Let f,(Z,:,t) be the one
particle distribution function of species s with velocity
€; at some dimensionless time ¢ and dimensionless posi-
tion £. The coordinate F only takes on a discrete value:
the nodes of the chosen lattice. The nearest neighbor
vectors are defined as

-

0 i=0
=< & i=1 (5)
- i=2

where £ is a unit vector along the ¢ direction. For
each lattice site, we have three states for each species.
Following Ref. 28, the lattice Boltzmann equation for
fo(£,1,t) can be written as

flE+ &6t 4+ 1) - fo(F,4,8) = 0,(F,1,1) (6)

where ), is the collision operator for the species s and
depends on the distribution function f,. The collision
operator {1, can be separated into two paris EQ a non-
reactive term ($¥¥f) and a reactive term (%), i.e.,

e = (VR L qf {7)

In order to relate the results obtained by solving Eq.
{(6) with the solutions of Eqs. (1)-(4), we need to derive
the evolution equations for the moments of the function
fs- The zeroth moment of f,, the total number of par-
ticles of species s at time ¢ and position z, is defined
as

ny(# 1) = Zfs(“t PR IIERR) (8)

For the nonreactive term, Q® we use the Bhatnagar-
Gross-Krook (BGK) approximation with a single relax-
ation time 7, [30]:

AR = L(£,(5,0,0) - f50(5,0,)] ©

where the equilibrium distribution function of the
species f£9(Z%,4,t) depends on & and ¢t through the lo-
cal density and velocity. Here, we use the simple equi-
librium distribution function corresponding to a system
with zero mean flow as follow:
:q = ws,;n, (10)
where the weights w, ; depend on the lattice symmetry
[31]. We can write

& : =10
Wi = { fl — )2 i- 1,2, (11)

where z, denotes the fraction of particles at rest and
can be different for different species. For the reactive
term QF, we use the simple isotropic form [31]

Qf = ws,iRs‘ (12)
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where H, is a non-linear reaction term and depends
on the densities of the reacting species. Thus, it couples
the Boltzmann equations for the different species. The
choice given in Eq. (12) is the simplest choice that can
provide the right macroscopic solution when using the
LLBM (as we shall see later).

To show that the lattice Boltzmann equation is valid
for a reacting system, we employ a procedure called the
Chapmann-Enskog expansion [17]. We first expand the
left-hand side of Eq. 6 via a Taylor series:

fs(f+ ézaia t + 1) - fs(fsi,t)a
o Ofs(E0,1) | 8fu(F4t) 1 ,8%f(,1.1)
- 8t +eé Oz + 3% Oz !
=Q,. (13)

We then expand f, about the equilibrium distribution
function in terms of the parameter e :

fo= [+ (14)
We now assume [29]
a 8
- _- 1
dr - Ec'?:c (15)
a i)
fhall 2= 16
EARA:T (16)
R, €°R, (17)

Substituting Fgs. (15), (16), and (17) into Eq. (13),
we obtain

BfEI(E,4,1) W(E,4,1)
e = -

18
t Oz Ts (18)
to order £* and
ofe(dit) | 8fV(E i)
ot : Oz
1,8 Fe9(F,i,1)
boel g = el (19)
to order €2. From Eq. (18), we immediately obtain
M= 5 4y — 8,
fs (22,1, t) = —TeWs i (20)
0,

Inserting Eq. (20) to Eq. (19) and doing some simple
algebra, we have, to order g2,
n 1, ,8%n
e
Fliminating the e? term by carrying out an averaging
with weight w, ;, we get
Ong .
M

= R (21)

1)3271,,
27 9x2

(1= Z;){rs — = R, (22)

which is the dimensionless wversion of thc imitial
reaction-diffusion equation.

To summarize, we will now implement the numerical
evaluation in two steps

+ Collision step: fu(#,i,t + 1) = fo(#i,t) — L[fs —
f:q} + ws.iRs y

- Streaming step: f,(& + €5,1,£+ 1) = f(F,i,£+ 1)

The boundary treatment is an important issue in the
LBM simulation and advancernent are still being made
[32,33]. Here, we use the impermeable boundary sug-
gested by Zhang et al. [34].

III. NUMERICAL RESULTS AND
DISCUSSION

To demonstrate the validity of the proposed LBM ap-
plied to the Howard dynamic model for determining the
partition of E. coli mediated by min proteins, we im-
plemented the LBM as given in the previous section on
a PC using C programming. In the simulation, we use
the parameters given by Howard et al. The 2-micron-
long bacterium is divided into 250 grids. The discrete
space steps are, therefore, dr = 0.008 um. A time step
of dt = 6.4107° s is chosen. The dimensionless param-

MinDr MinE

Time (reverse)

Space

Fig. 1. Space-time plots of the total MinD (left) and MinE
(right} densities. The color scale runs from the lowest (blue)
to the highest (red). The MinD depletion from midcell and
the MinE cnhancement at midcell are immediately evident.
Times increase from top to bottom, and the pattern repeats
indefinitely as time increases. The vertical scale spans a time
of 1000 second. The horizontal scale spans the bacteria’s
length (2 pm).
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0 Mo . e 10 are in good agreement with those given by Howard et
al. The results, in particular the oscillatory pattern of
o2 09 min proteins, are also in qualitative agreement with ex-
: perimental results [35]. The LBM approach provides an
g oo o alternative fast computational tool to study protein os-
§ a2 o7 cillation. We believe that the LBM is a useful scheme
v ; N for simulating at the cellular level those biological sys-
‘o8 08 tem governed by the reaction-diffusion equations. In a
future work, we will generalize the current LBM so that
% s R T I 2 it can be used to study the effects of the inhomogeniety

x

Fig. 2. Time-average MinD (left) and MinE (right)
densities, < n{x) > [fma- , relative to their respective time-
average maxima as functions of the position x (in pm) along
the bacterium,

eters are Dp = 0.28,Dg = 06,Dy = D, = 0,0y =
128 x 1072, 04 = 512 x 107%,0, = 4032 x 107,05 =
2.56 x 10~%,¢, = 0.028, and o, = 0.027. The relax-
ation time is calculaied by using Eq. (22) and is given
as 7 = Dy /(1 — Z,) + 0.5. The initial number of MinD
and MinE is randomly initialized as 3000 for np and 170
for ng. Each simulation takes 156,250,000 iterations for
10% s of the time division of the bacterium. We test the
system with two possible sets of the rest particle frac-
tion, z, = 1/3 and 2/3, for all species. We found that
2, = 2/3 gave the more accurate result. We now present
some results to show the validity and the accuracy of our
LBM and compare them with the results obtained from
the deterministic reaction-diffusion equations.

In Fig. 1, the space-time plots of the MinD) and the.

MinE concentrations for a cell of length 2 j:m are shown.
They are in qualitative agreement with the simulation
obtained by Howard et el. [26] and are in agreement
with the experimental results. The MinE forms a line
up in the middle of the cell and then sweeps towards a
cell pole, displacing the MinD, which then reforms at the
opposite pole. In Fig. 2, we plot the time-averaged MinD
and MinE densities as functions of position. These are
again in excellent agreement with those given by Howard
et ol [26]. The results in both works are also in excel-
lent agreement with the experimental data of Hale et al.
{15]. The MinE concentration peaks at mid cell and has
minimum at the cell rims, with MinD being virtually out
of phase with MinE.

IV. CONCLUDING REMARKS

In this paper, we have proposed a new LBM approach
to investigate the dynamic pole-to-pole oscillations of
min proteins used to determine the middle of bacterial
cell division. We have developed a numerical scheme
based on the LBM to simulate the coarse-grained cou-
pled reaction-diffusion equations model used to describe
the MinD/MinE interaction. Tt is found that our results

in the intracellular space and the possibility of asymmet-
rical cell division.
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One of the most important. steps in the developmental process of the bacteria cells at the cellular
level is the determination of the middle of the cell and the proper placement of the septum, these
being essential to the division of the cell. In E. coli, this step depends on the proteins MinC, MinD,
and MinE. Exposure to a constant electric field may cause the bacteria’s cell-division mechanism to
change, resulting in an abnormal cytokinesis. To see the effects of an external field e.g., an electric
or magnetic field on this process, we have solved a set of deterministic reaction diffusion equations,
which incorporate the influence of an electric field. We have found some changes in the dynamics of

PACS numbers: 87.15.Aa, 87.17.Aa

the oscillations of the min proteins from pole to pole. The numerical results show some interesting
effects, which are qualitatively in good agreement with some experimental results.

5l Keywords: External fields, Bacteria, £. cofi, Cell division, Min proteins, MinCDE oscillation

1. INTRODUCTION

Cell division is the process by which a cell separates
into two new cells after its DNA has been duplicated and
distributed into the two regions that will later become
the futfire daughter cells. For a successful cell division
to take place, the cell has to determine the optimal loca-
tion of the cell separation and the time to start the cell
cleavage. This involves the identification of the midpoint
of the cell where the septum or cleavage furrow will form.
For Escherichia coli (E. coli)and other rod-like bacteria,
evidence has accumulated over the past few years which
mdlcates that the separation into two daughter cells is
achleved by forming a septum perpendicular to parent
cell’s long axis. To induce the separation, the FtsZ ring
(Z ring), a tubulin-like GTPase, is believed to initiate
and guide the septa growth by a process called contrac-
tion [1].. The Z ring is usually positioned close to the
center, but it can also form in the vicinity of the cell
poles. Two processes are known to regulate the place-
ment of the division site: nucleoid occlusion 2] and the
action of the min proteins [3]. Both processes interfere
with the formation of the Z ring that determines the di-
vis}on site. Nucleoid occlusion is based on eytological

'Email: wtriampo@yahoo.com; Fax: 662-201-5843

evidence that indicates that the Z ring assembles prefer-
entially on those portions of the membrane that do not
directly surround the dense nucleoid mass [4].

The min proteins that control the placement of the
division site are the MinC, the MinD, and the MinE
proteins [3]. Experiments, involving the use of modified
proteins show that inC is able to inhibit the formation of
the FtsZ-ring [5]. MinD is an ATPase that is connected
peripherally to the cytoplasmic membrane. It can bind
to the MinC and activate the function of the MinC [6,7)].
Recent studies show that MinD can also recruit MinC
to the membrane. This suggests that MinD stimulates
MinC by concentrating MinC near to its presumed site
of activation [8,9]. MinE provides topological specificity
to the division inhibitor [10]. Tts expression results in
a site-specific suppression of the MinC/MinD action so
that FtsZ assembly is allowed at the middle of the cell,
but is blocked at other sites [3]. In the absence of MinE,
MinC/MinD is distributed homogeneously over the en-
tire membrane. This results in a complete blockage of
Z-ring formation. The long filamentous cells that are
subsequently formed are not be able divide (8,9,11,12].
With fluorescent labeling, MinE was shown to attach to
the cell wall only in the presence of MinD [13,14]. As
MinD dictates the location of MinC, the latter will oscil-
late by itself. This will result in a concentration of the
division inhibitor at the membrane on either cell end, al-
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ternating between being high or very low every other 20
s or 50 [8,9]. The presence of MinFE is not only required
for the MinC/MinD oscillation but also involved in set-
ting the frequency of the oscillation cycle [11]. Several
sets of evidence indicate that the MinE localization cycle
is tightly coupled to the oscillation cycle of MinD.

Recent microscopy of the fluorescent labeled proteins
involved in the regulation of E. coli division has uncov-
ered stable and coherent oscillations (both spatial and
temporal) of these three proteins [15]. The proteins os-
cillate from one end to the other end of the bacterium,
moving between the cytoplasmic membrane and cyto-
plasm. The detail mechanism by which these proteins
determine the correct position of the division plane is
currently unknown, but the observed pole-to-pole oscil-
lations of the corresponding distribution are thought to
be of functional importance. Under different culture con-
ditions and/or environment changes, e.g. pH, light, and
external field, changes in the pole-to-pole oscillations can
affect the growth of the bacteria. Here, we discuss only
the effects of an electric field.

In the present work, we use a mathematical approach
to investigate the influence of an external constant ex-
ternal field on cytokinesis mediated by pole-to-pole os-
cillations of the min protein. We propose a mathemat-
ical model and then solve it numerically to see how the
min protein oscillation mechanism for bacteria cell divi-
sion may change. We also present some comments about
the connection between our mathematical approach and
real-world experimental results.

II. MODEL

Sets of reaction-diffusion equations have often been
used in biological applications to model self-organization
and pattern formation {16]. These mathematical equa-
tions have two components. The first component is the
diffusion term that describes diffusion of the chemical
species. At the molecular level, the diffusion term of-
ten results in 4 net flow of chemical species from re-
gions of high concentration to regions of lower concen-
tration. The second component is the reaction term that
describes the self-organization of the biological systems.

We have adopted the dvnamic model of compartmen-
tization in the bacterial cell division process proposed
by Howard [17] by adding an extra term that depends
on the external electric field. The dynamics of bacteria
in the presence of an external field is described by a set
of four non-linear coupled reaction-diffusion equations.
We focus on the E. coli bacteria, which are commonly
studied rod-shaped bacteria of approximately 2 ~ 6 pm
in length and around 1 ~ 1.5 pgm in diameter. E. coli
divides roughly every hour via cytokinesis. Qur starting
point is the set of one dimensional deterministic conpled
reaction-diffusion equations describing the dynamics of
the interactions between the Jocal concentrations of the

MinD and the MinE proteins. The equations describe
the time rates of change of the concentraticns due to
the diffusion of the MinD and the MinE and to trans-
fer between the cell membrane and the cytoplasm. The
dynamics of these min proteins in the presence of an ex-
ternal field, are described by

"’(‘9';:3 _ DDa;_:,‘fi + JD%D - 1—‘2-‘3% + 030,04, (1)
%pti = Dd% + Jd%% - —1:_1% — Oo2pepar (2)
Bg% = Dg a;;f + JE% = O3PDPE = T o1 :‘:T,:no
and

%“le = De(‘zﬁ + Je%’% + 03pppPE ~ l—f&?ﬁ (4)

where pp and pg are the concentrations of the MinD
and the MinE proteins in the cytoplasm, respectively,
and py and p, are the concentrations of the MinD and
the MinE proteins on the cytoplasmic membrane. The
first equation describes the time rate of change of the
concentration of MinD (pp) in the cytoplasm. The sec-
ond is for the change in the MinD concentration {p4) on
the cytoplasmic membrane. The third is for the change
of the concentration of MinE (pg) in the cytoplasm. The
last one is for the change in the MinE concentration {p,.)
on the cytoplasmic membrane. Since the experimental
results given Ref. 9, show that the MinC dynamics sim-
ply follows that of the MinD protein, we have not written
out the equations for the MinC explicitly.

The important feature of our model is the second terms
on the right-hand sides of the equations. They represent.
the effect of the external field in the reaction-diffusion
equation [18,19] controlled by the external field parame-
ter. We assuime that a chemical substance moving in the
region of an external field will experience a force that
is proportional to the external field parameter J times
the gradient of the concentration of that substance. In
general, J = pk, where E is the field strength and p
is the ionic mobility of the chemical substance. pu, in
general, will be proportional to the diffusion coefficient
of the chemical substance and will depend on the total
amount of free charge in that substance. In this model
Ji = wiEB{i = D,E,d,e} is the external field parame-
ter for each protein types. We assume that the diffusion
coefficients {Dp, Dg, D4, D} are isotropic and indepen-
dent of r. The constant ¢, represents the association of
MinD to the membrane wall [12]. o, corresponds to the
menbrane-bound MinE suppressing the recruitment of
MinD from the cytoplasm. o3 reflects the rate that the
MinE on the membrane drives the MinD on the mem-
brane into the cytoplasm. Based on evidence for the
cytoplasmic interaction between MinD and MinE [7], we
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let o3 be the rate that cytoplasmic MinD recruits cyto-
plasmic MinE to the membrane and o4 be the rate of dis-
sociation of MinE from the membrane to the cytoplasm.
Finaily, 04 corresponds to the cytoplasmic MinD sup-
pressing the release of the membrane-bound MinE. Ev-
idence points to most of the diffusion process occurring
in the cytoplasm. It is, therefore, reasonable to set Dy
and D, to'zero. It foliows immediately that pg = g, =0
and Jd =J.=0

In'our model, we assume that the total number of each
type of protein is conserved. We further assume that
the min proteins can bind/unbind from the membrane
and that the proteins do not degrade during the process.
The zero-flux boundary conditions are imposed at both
ends of the bacterium. The total amounts of MinD and
MinE, obtained by integrating pp + pg and pg + p. aver
the length of the bacterium, are conserved.

+ III. NUMERICAL RESULTS AND
DISCUSSION

Smce the bacterium length is very short, it is rea-
sona})le to assume that the applied electric field has a
constant value throughout the bacterium length. We
have numerlca.lly solved the set of four coupled reaction-
diffusion equations, Eqs. (1)-(4}, by using the explicit
Euler method [20]. The length of the E. coli is taken
to be 2 ym. The total time needed for each simula-
tion is approximately 10* s. In our simulations, we
have discretized space and time; i.e., we have taken
de =8 x 107% pm and df = 1 x 1075 5. The space
covering the bacterium is divided into 251 grid points,
and the time is divided into 10? times steps (10% itera-
tion'steps). Initially, we assume that MinD and MinE
are mainly at the opposite ends of the bacterium with
the number of min molecules in each cell being 3000 for
the MinD population [6] and 170 for the MinE popula-
t10n'[21} Since the total amount of MinD and MinE
in E. coli-must be conserved, we set the flux of MinD
and iMmE to zero at both ends of the hacterium. Since
there are no experimental values of g for either MinD
and MinE, we work with the external field parameter J,
which is proportional to F, instead of E explicitly, We
also ‘assume that up = pg {we assume MinD and MinE
havé the same type of charges). It follows immediately
that Jp = Jg = J. The values of the other parameters
are: DD =028 yum?s~!, Dg = 0.6 um?s~!, 5y = 20 s_l,

oy = 0.028 ,um oy = 0.0063 pms™!, 0z = 0.04 pms~
oy = 0 857!, and 04 = 0.027 pgm. In our analyses of the
numerical results we looked at the time-averaged values
of the concentrations of MinD and MinE and at the pat-
terns of the oscillations of MinD and MinE for various J
values.

In the absent of an external field, the numerical results
[17) show that most of the MinD will be concentrated at
the.f_nemb__rane and the MinE at mid cell. This results in

Fig. 1. Space-time plots of the total (¢p + o4) MinD
(above} and total {og + g} MinE (below) concentration for
J=10.0m/s to J = 0.4 m/s. The color scale, running from
blue to red, denotes an increase in the concentration from
the lowest to the highest. The MinD depletion from mid cell
and the MinE enhancement at the mid cell are immediately
scen. The vertical scale spans time for 500 s. The times
increase from bottom to top, and the oscillations pattern re-
peats infinitely as time increases. The horizontal scale spans
the bacterial length (2 pm). Note the increase in the MinD
and MinE concentrations at the left end of the bacterium as
J increases.

an accurate division at mid cell. In the presence of an
external field, both MinD and MinE experience a force
in the same direction. This force causes a shift of the
time-averaged minimum of MinD. This shifts the division
site from mid cell. Qur numerical solutions show that
the behavior of the Min system in the presence of an
external field depends on the strength of the external
field parameter J.

Figure 1 shows the oscillation patterns for Jg = Jp =
J=00m/s to J = 04 m/s. [t is seen that as Jin-
crease, both the MinD and the MinE concentrations in
the left part of the E. coli become larger while the two
concentrations in the right part become smaller as Jis
increased. This behavior is a reflection of the fact that
the external force is acting in the left direction. These
patterns show a shifting in the concentrations of the min
proteins towards the left pole.

In Figure 2, we show the time-averaged concentrations
of the MinD and the MinE proteins at different positions
within the bacteria. In these curves, positive values of
the external field parameter are used. From this Figure,
we see that in the case of no external field (J = 0.0 m/s),
the time-averaged concentrations of MinD and MinE are
symmetric about mid cell. MinD has 2 minimum at mid
cell while MinE has a maximum. When an external field
is applied, we see a shift in the minima of MinD and in
the maxima of MinE. The time-averaged concentration
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Fig. 2. Time-averaged concentration of MinD (above) and
MinE (below} relative to their respective time-averaged max-
ma, {o(£)}/Omaz, as a function of the position £ (in pm)
along the bacterium axis under the influence of positive val-
ues of a static external field. The curves show a shift in the
local minima of the MinD) and the local maxima of the MinE
from the mid cell that depends on the strength of the field.

curves are no longer symmetric about mid cell. In nature,
the MinE protein looks like a ring structure that effec-
tively positions the anti-MinCD activity [11,14]. MinCD
inhibits the division process, so in nature, the bacterium
divides at the site where the minimum MinD concentra-
tion occurs. The value of the MinE concentration is not
maximurn at the mid cell. The minimum of the MinD
shifts to the right pole under the influence of positive J
values.

We have measured the percent of shifting of the time-
averaged concentration in the local minima of MinD and
the local maxima of MinE. This is shown in Fig. 3.
The figure shows that the minimum of MinD is always
shifted to the right pole. This is the result of the external
force pulling MinD to the left. The maximum of MinE
is not always shifted to the right. When J < 0.2 m/s,
the maximum of MinE is shifted to the right, but when
J > 0.2 m/s, it shifted to the left of mid cell. This
difference arises because of the relative magnitudes of the
forces acting on the two proteins. First of all, there is an
internal force between the MinD and the MinE proteins.
This force causes MinE to repel MinD. In the absence
of any other forces, this explains why the location of
the maximum of MinE is the location of the minimum of
MinD. When an external field is applied (as expressed by
a non-zero value of J), then one must take into account
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Fig. 3. Percents of the shifting of the local minima of MinD
{above) and the local maxima of MinE (below) from mid cell
for various values of J. Positive values denote a shift to the
right pole and a negative value to the left pole.

the relative magnitudes of the two forces.

When Jis large {larger than 2 m/s), the external force
dominates the internal force between the MinD and the
MinE proteins. The external force pulls MinD and MinE
in the same direction, causing the location of the max-
imum of MinE to be no longer at the location of the
minimum of MinD. If Jis small (smaller than 0.2 m/s),
the internal force between MinD and MinE dominates.
This results in the two location (the maximum of MinE
and the minimum of MinD) to be nearly the same. In
Fig. 3, we also see that the shifts of the minimum of the
MinD concentrations increase as the field parameter J in-
creases. Since the division site will be the location where
the MinD concentration is minimum, the shift in the min-
imum of MinD concentration to the right pole indicates
that the division site must also shift to the right pole.
When we let J be negative, the results are very similar
to those for positive J values, as expected; the curves
for the time averages of the concentrations of the min
proteins shift in the mirror side about mid cell.

In Figs. 4(a) and 4(b), we show the concentrations of
the MinD and the MinE proteins at the left end grid,
the middle grid, and the right end grid versus time. In
these figures, it is easy to see that when J = 0.0 m/s,
the concentrations of MinD {or MinE) ai the left end
grid and the right end grid have the same patterns of
oscillation with the same frequencies and amplitudes, but
with a phase difference of 180°. At the mid cell grid, the
frequency of the oscillation is two times greater than that

E
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Fig. 4. (a) Plots of the concentration of MinD at the the left end grid (+), the middle grid (x), and the right end grid ()
versus time in seconds for J = 0.0 m/s to J = 0.4 m/s. The vertical scales denote concentration in molecules per meter. (b)
Plots of the concentration of MinE at the left end grid {+), the middle grid (x)}, and the right end grid (-} as functions of time
in seconds for J = 0.0 m/s to J = 0.4 m/s. The vertical scales denote concentration in molecules per meter.
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Fig. 5. Plots of the concentration of MinE at the left
end grid (+), the middle grid (x}, and the right end grid
() as functions of time in seconds for J=0.0m/s to J= 0.4
m/s. The vertical scales denote concentration in molecules
per meter.

of right end grid. When an external field is applied, the
amplitudes of the oscillations at the two end grids are
no longer equal, but the frequencies of the oscillations of
the three grids become the same. As J is increased, the
amplitude of the oscillation at the right end grid is seen
to decrease while those of the left end and mid cell grids
are seen to increase.

Figure 5 show the periods of oscillation for the MinD
concentration at the left end grid for various value of J.
In this figure, we see that for the case of no external field,
the period of the oscillation is equal to 115 s, which is in
good agreement with the experimental value. When an
external field is applied, the period of the oscillation is
seen to increase. When J is not too large {J < 0.3), the
period of the oscillation increases as J is increased. The
increase in the period of oscillation as an external field
is applied indicates that in the presence of an external

field, the bacterium needs a longer time to divide.

IV. CONCLUDING REMARKS

Proper divisions of bacteria require accurate definition
of the division site [3]. This accurate identification of the
division site is determined by the rapid pole-to-pole os-
cillations of MinCDE (8,11,22]. Using a mathematical
model to describe the dynamics of the min pole-to-pole
oscillations, Howard et al. [17} found that the mid cell
position in the Escherichia coli bacteria corresponded to
the point where the time-averaged MinD and MinE con-
centrations were minimum and maximum, respectively.
They also found that the concentrations of these two
proteins were symmetric about the mid cell position.

To see the effect of exposing F. coli bacteria to an elec-
tric field, we have added some additional terms to the
reaction-diffusion equations for the pole-to-pole oscilla-
tions proposed by Howard et al for the min proteins in
the E. coli bacteria. The additional terms are the gradi-
ent terms appearing in Egs.(1)-(4). These terms depend
on the strength of the external field and the charge of the
protein. We then used a numerical scheme to solve the
resulting coarse-grained coupled reaction-diffusion equa-
tions. The results are shown in Figs. 1 to 5. Qur results
shows deviations from the results obtained by Howard et
al., e.g.. the concentrations of MinD and MinE are no
longer symmetric about the middle of the long axis, nor
are the minimum and the maximum of the MinD and
the MinE concentrations at the middle of the long axis.
The shift in the minimum of the time-averaged concen-
tration of MinD from mid cell should shift the division
site. The shift of the minimum concentration of MinD
from the midpoint appears to depend on the strength of
the external field. This indicates that if the parent cell
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can divide under these condition, it must divide into two
filamentous cells, providing the external field is strong
enough. Since an external field can shift the minimum
of the time-averaged concentration of MinD, an external
electric field can interfere with the division process.
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A NOTE ON ASYMPTOTIC STABILITY CONDITIONS
FOR DELAY DIFFERENCE EQUATIONS
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‘We obtain necessary and sufficient conditions for the asymptotic stability of the linear
delay difference equation x4 + pZJ.‘P-‘;,x,,‘HU_m =0, where n =0,1,2,..., p is a real
number, and k, I, and N are positive integers such that k > (N — 1)i.

1. Introduction

In 4], the asymptotic stability condition of the linear delay difference equation

N

Xn4l _xr|+pzx|!—k+[j—l)l=01 {1.1)
J=1

where n € Ny = NU{0}, p is a real number, and k, !, and N are positive integers with
k > (N — 1)I is given as follows.

TuroreM 1.1. Letk, I, and N be positive integers with k > (N < 1)I. Then the zere solution
of (1.1) is asymptotically stable if and only if

2sin{z/2M) sin{ln/2M)

0< sin(Nla/2a)

(1.2)

where M = 2k+1 - (N~ 1)L

Theorem 1.1 generalizes asymptotic stability conditions given in |1, page 87|, [2, 3, 5],
and [6, page 65]. In this paper, we are interested in the situation when (1.1} does not
depend on x,, namely we are interested in the asymptotic stability of the linear delay
difference equation of the form

N

Xnti ‘*‘szn‘kﬂj—l]! =0, (1.3)
i=1

where n € Ny = NU{0}, p is a real number, and k, [, and N are positive integers with
k = (N — 1)I. Our main theorem is the following.

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:7 (2005) 1007-1013
DOI; 10.1155/1]MM5.2005.1007
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TrueoreM 1.2, Letk, I, and N be positive integers with k = (N — 1)I. Then the zero solution
of {1.3) is asymptotically stable if and only if

_%}' <p< Pmins (1-4)

where pmin is the smallest positive real value of p for which the characteristic equation of
(1.3) has a root on the unit circle,

2. Proof of theorem

The characteristic equation of (1.3} is given by
Flz) =2 + p(zW-Dg o oor 1) =0 (2.1

For p = 0, F(z) has exactly one root at 0 of multiplicity k + 1. We first consider the location
of the roots of (2.1) as p varies. Throughout the paper, we denote the unit circle by C and
letM=2k+2— (N~ 1)L

Propostrion 2.1. Let z be a root of (2.1) which lies on C. Then the roots z and p are of the
form

z= e, (2.2)

p=(—1)m*! sin{lw,,/2)

sin(Nlwar2) -~ P (23)

forsomem=0,1,....M — 1, where wy,, = (2m/M)n. Conversely, if p is given by (2.3), then
z = e" isarootof (2.1).

Proof. Note that z = | is aroot of (2.1) if and only if p = —1/N, which agrees with (2.2)
and (2.3) for w,, = 0. We now consider the roots of (2.1) which lie on C except the root z =
1. Suppose that the value z satisfies z¥' = 1 and 2/ £ 1. Then 2V — 1 = (' - 1)(2W-D 4
<o 42 +1) = 0 which gives z¥-1 + ... 4 2/ + 1 = 0, and hence z is not a root of (2.1).
As a result, to determine the roots of {2.1) which lie on C, it suffices to consider only the
value z such that z¥' # 1 or 2/ = 1. For these values of z, we may write (2.1) as

Zh+l

Pz_z(N—lJl+...+zI+1‘ (2.4)
Since p is real, we have
wh+1 —k=1+(N-1}l
Z z
L S e B S ) = I (2:5)
where Z denotes the conjugate of z. It follows from (2.4) and (2.5) that
LAH2=(N=DI _ 4 (2.6)

which implies that (2.2) is valid for m = 0,1,...,M — 1 except for those integers s such
that eNWei = | and e™=' # 1. We now show that p is of the form stated in (2.3). There are
two cases to be considered as follows.
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Case 1. zis of the form e" for some m = 1,2,....,M—1and zN' £ 1.
From (2.4), we have

B zk-ﬂ (zf . 1) B e(k+l)wmi(el1v,,,i _ 1)
P=—m Ny ST il

! e{kH—(N—l)(UZ))w..,.,i(Efwmi/?. _ e—iw,,.i/?.)

eNWnif2 _ p=Nlwnif2

. @.7)
(kL (N= (2 i _SIDE W/ 2)

sin{Niw,,/2}
sin(iwn/2) _
sin{Niw,/2) Pm.

= —g

sin{Iw,,/2)
sin(Nlw,,/2)

L

= (__ 1)m+l

Case 2. z is of the form e™ forsome m=1,2,.... M —land z = 1.
In this case, we have lw,,, = 2gn for some positive integer q. Then taking the limit of
Pom as lwn, — 2qm, we obtain

H 1 m4g{N=1)
p= -—%‘. (28)

From these two cases, we conclude that p is of the form in (2.3} form=1,2,...,.M -1
except for those m such that eV = 1 and el*~ £ 1,

Conversely, if p is given by (2.3), then it is obvious that z = e"n is a root of {2.1). This
completes the proof of the proposition. O

From Proposition 2.1, we may consider p as a holomorphic function of z in a neigh-
borhood of each z,,. In other words, in a neighborhood of each z,,, we may consider p as
a holomorphic function of z given by

zf.'t:+l

P(Z) = _Z(N_l)f_!_ . ‘f‘Z!+l' (2‘9)
Then we have
dp(z) (k + 1)z (N - DN oy g
=- + 7 (2.10)
dz ZWN=- g ppig ] (ZN-Dlp .oz 41)

From this, we have the following lemma,
LEMMA 2.2. dp/dz| eeemi £ Q. In particular, the roots of (2.1) which lie on C are simple.
Proof. Suppose on the contrary that dp/dz| .- m: = 0. We divide (2.10} by p(z)/z to ob-
tain

H(N=1)zWN-"D .o gt}

fet+1- gN-W ... 4241 =0 (211)

Substituting z by 1/ in (2.10}, we obtain

H(N = 1)+ (N = 2)zl 4 - - +20-24}
ZN-D . gglt ]

k+1- =0 (2.12)
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By adding (2.11) and (2.12), we obtain .
2k+2-(N-1I=0

which contradicts k = (N — 1)I. This completes the proof.

362 / Appendix # 6.1
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{2.13)

(il

From Lemma 2.2, there exists a neighborhood of z = " such that the mapping p(z)

is one to one and the inverse of p(z) exists locatly. Now, let z be expressed as z = re*.

Then we have

E —E{E.F"-E_B.}
dp rldp “dp

which implies that

dr r dz
a;—“e{;d—p}

i

(2.14)

(2.15)

as p varies and remnains real. The following result describes the behavior of the roots of

(2.1) as p varies,

ProrosiTioN 2.3. The moduli of the roots of (2.1} at z = e“~' increase as | p| increases.

3

Proof. Let r be the modulus of z. Let z = ¢"n be a root of (2.1) on C. To prove this

propaosition, it suffices to show that

dr
a}s P =gl >0
There are two cases to be considered.
Case 1 (zV' £ 1). In this case, we have
A1) A f(2)
pla)=- N T TNy
where f(z) = z(z! — 1). Then
dp __#7'g(a)
dz (e - )Y

where g(z) = (kf(z) +2f(2))(2N' — 1) — N2V f(2), Letting w(z) =

we obtain
dr r dz
E = Re(;%) = TRE(W).

We now compute Re(w). We note that

f@

Zi+2 !

Fiz ="

P

f@=

(2.16)

(2.17)

{2.18)

—(zN = )%/ (kg (z)),

(2.19)

(2.20)

Fe
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where h(z) = I+ 1 — 2/, From the above equalities and as zM = 1, we have
—k e 1 U RO 11 NI .
#50= 1| (0@ 11 @) (5o -1) - gmso)
(- kf(2)+zh(z)}(1 - z"") + NIf(2)
= NI ZHE : @.21)
(—kf()+ k() (1 - M) + NIF(2)
- Z2NI-k .
It follows that
Re{w) = W;W
_ _1{ (-1 (- 1)1}
2{ z*g(z) 7*g(2)
_ _l{ﬁkg(i)(zm - 1) + 24 g(2) 2V - 1)1}
2 g2’
) o {(—kf(z)+zh(z))(l—z”’)+le(z) (N
- - Zlg(z)|2 lelak .
2
. ! + 2 (k@) +2f ) (2 =1) uN‘lzN‘f(z))(;l\,—l—l) }
(2™ - 1)’k !
_W{(mz) — zh(2)) (2" - 1) + Nif (2)
(k2 +2f"(2) (2 - 1)) - NI f(2)]
. . ~ (zm _ 1)32k . _
4_~——222mlg(z)lz{zkf(z)-rz(f (z) — h(2))} - NIf(2)}.
(2.22)
Since
f 2 f(2) +2(f'(2) — (2)) — NI (2) = Mf(2), (2.23)
: we obtain
- (N - 1)4M ' -z f(z) _ (2N - 1)4Mp
Re(w) = 1w gz) [P AN -1 22N g(z)) (2.24
The value of Re(w) at z = ¢"' is
_(ZN'—1)4_ Mp 2. _Mp 2
Re(w) = o 2|g(2)|2 = (2cosNlwy, — 2) 2|g(z)|2 > (2.25)
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Therefore,
g‘i _ 2r(cosNlwn ~ 1)°Mp (2.26)
P |g(z)|
and it follows that (2.16) holds at z = g%,
Case 2 (7 = 1). With an argument similar to Case 1, we obtain
2
dr _ 2rN*Mp i (2.27)
dp  |(M+1)z-M+1|
which implies that (2.16) is valid for z = e¥n.
This completes the proof. ]

We now determine the minimum of the absolute values of p,, given by (2.3). We have
the following result.

Prorosition 2.4. |pol = min{|py,|:m=0,1,... .M — 1}
To prove Proposition 2.4, we need the following lemma, which was proved in [4].

Lomma 2.5. Let N be a positive integer, then

sinN¢
sint

‘ <N (2.28)

holds forall t € R.

Proof of Proposition 2.4. From{2.3), pm = (— 1) (sin(lw,,/2}/ sin{N1w,,/2)). For m = 0,
it follows from L'Hospital’s rule that pp = —1/N. Form = 1,2,...,M — 1, we have

sin(Iw,,/2) o1

_ _1ym+l —
lpml = | 0™ Ny | 2 N

(2.29)

by Lemma 2.5. This completes the proof. 0
We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Note that F(1) = 1+ Np = 0 if and only if p < ~1/N. Since
lim, .+ F(2) = +00, it follows that (2.1) has a positive root « such that & > 1 when p <
—~1/N. We claim that if |p| is sufficiently small, then all the roots of (2.1) are inside the
unit disk. To this end, we note that when p = 0, {2.1) has exactly one root at 0 of multi-
plicity & -+ 1. By the continuity of the roots with respect to p, this implies that our claim
is true. By Proposition 2.4, pg = —1/N and | p.»| = I/N which implies that [ po| = 1I/N is
the smallest positive value of p such that a root of (2.1) intersects the unit circle as | p!
increases. Moreover, Proposition 2.3 implies that if p > py,,, then there exists a root « of
(2.1) such that ja} = 1, where pyiq is the smallest positive real value of p for which (2.1)
has a root on C. We conclude that all the roots of (2.1) are inside the unit disk if and only
if —1/N < p < Pmin- In other words, the zero solution of (1.3) is asymptotically stable if
and only if condition (1.4) holds. This completes the proof. !

LTI Y
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3. Examples

Example 3.1. In (1.3), Let [ and k be even positive integers, then we have
F(-1)=~1+pN. 3.1

Thus if p = 1/N, then F{-1) = 0 and we conclude that (1.3) is asymptotically stable if
and only if —1I/N < p < 1/N.

Example 3.2. In (1.3),let N =3,1=3, and k = 6. Then M = 8 and we obtain po=—-1/3,
Py = sin(3/8)n/sin{9/8)m, py = —sin(3/4)n/sin(9/4) 7, ps = sin(9/8)n/sin{27/8)1, py =
—sin(3/2)m/sin(9/2}n, ps = sin(15/8)n/sin(45/8)n, ps = —sin{9/)n/sin{27/4)7, and
p7 = sin(21/8)n/sin(63/8)n. Thus, p3 = ps = sin(n/8)/sin(37/8) is the smallest positive
real value of p such that (2.1) has a root on C. We conclude that (1.3) is asymptotically
stable if and only if —1/3 < p < sin{7/8)/sin(371/8).
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1. Introduction

In the recent years, controlling chaos and synchronization of the dynamical
systems have attracted many researchers. Controlling chaos and chaos syn-
chronization have focused on the nonlinear systems such as Chen chaotic
dynamical system. Various control algorithms have been proposed to control
chaotic systems. The existing control algorithms can be classified mainly into
two categories: feedback and nonfeedback. In this paper, we only focus on
feedback control. Linear feedback control and bounded feedback control are
proposed to control chaos of the system to the equilibrium points.

In [4], Yassen’s studied the optimal control of Chen chaotic dynamical sys-
tem presented by

k=aly —x),
y={c—a)x—xz+cy,

z=xy— bz

where x, y, z are state vaniables and a, b, ¢ are real positive constants.

In [1}, Agiza's studied the different methods to control chaotic behavior of
the coupled dynamos system, where the mathematical model equations for this
system are :

X = e+ y(z +a),

y=py +x(z—a),

z=1-xp,

where x, y, z are state variables and u, o are positive constants.

In [2], Agiza and Yassen’s studied synchronization of Rossler and Chen cha-
otic dynamical systems using active control.

In [3}, Wang, Guan and Wen’s paper studied adaptive synchronization for
Chen chaotic system with fully unknown parameters.

The objectives of this paper are as follows. Firstly, to give sufficient condi-
tions of parameters that make equilibrium points of perturbed Chen chaotic
dynamical system to be asymptotically stable. Secondly, to apply linear feed-
back control and bounded feedback control for controlling chaocs of the per-
turbed Chen chaotic dynamical system, described by

j:a(y_x)s
y=(c—a}x—xz+cy, (1.1
z=xy—bz+di’,

where x, y, 7 are the state variables and a, b, ¢, d are positive real constants.

&’
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Thirdly, to study synchronization of perturbed Chen chaotic dynamical sys-
tem using active control. Finally, to present adaptive synchronization for per-
turbed Chen chaotic dynamical system when the parameters of the drive system
are fully unknown and different from those of the respense system.

2. Stability of the perturbed Chen chaotic dynamical system
We will study the perturbed Chen chaotic dynamical system that is

described by system of ordinary differential equations (1.1).
The equilibrium points of the system (1.1) are

£ :(0$ 01 0)) E?.:(B:ﬁ:?)a EH:(—'IB:“.E!?):
where ff = &—’; and y=2¢c — a.
Proposition 2.1. The equilibrium point E, = (0,0,0} is

(i) asymptotically stable if a > 2c and ac < b” < 2ac.
(i) unstable if 2¢ > a.

Proof. The Jacobian matrix of the system (1.1) at the equilibrium point
E, =(0,0,0) is given by

—a a 0
Ji=|c—a ¢ O
0 0 —-b

The characteristic equation of the Jacobian J; has the form

Prai+ami+a;=0,

where
ay=a+b—c,
ay = bla — ¢) + a{a — 2c),
ay = ab(a — 2c},

ayaz — as = (ab + a*)(a ~ 2¢) + a(b* — ac) + ¢(2ac — b*) + b’

We see that a; and ¢;a; — a3 satisfy the Routh—-Hurwitz criteria when a > 2¢
and ac < b* < 2ac, thus the equilibrium point E; = (0,0,0) is asymptotically
stable. [
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Similarly, we have the following results:
Proposition 2.2. The equilibrium point Es = (§,8,y) is

(1) asymptotically stable if%c <a<leb>6candi<d<1
(i) unstable if b<c<aand a <%c

Proposition 2.3. The equilibrium point Ey= (—f,-8,7) is

(i) asymptotically stable if ic < a < 2¢, b>6candi <d < 1.
(ii) unstable if b<c<aand a <%c

3. Controlling chaos

In this section, the chaos of system (1.1) is controlied Lo one of three equi-
librium points of the system. Feedback and bounded feedback control are ap-
plied to achieve this goal. We shall study in the case when equilibrium points of s
(1.1) are unstable. For this purpose, we assume that 6 <c¢<aand a <ic.

3.1. Feedback control s

The goal of linear feedback control is to control the chaotic behavior of the
system (1.1) to one of three unstable equilibrium points (£, E; or E;). We
assume that the controlled system is given by

x = ﬂ(y - x) + 1,
y={c—a)x—xz+cy+uy, ‘
z=xy - bz +dd® + s,

where 4, 1 and w3 are controllers that satisfy the following control law

.\'c=a(y—x) —k“(x—f),
y={c—ajx—xz+cy~kny-y), (3.1)
z=xy— bz +dx* - kalz — 2),

where E = (¥, ,%) is an equilibrium point of (1.1).

3.1.1. Stability of the equilibrium point E; = (0,0,0)
In this case £ = E| and the controlled system (3.1) is in the form of

i:a(y—x) — k”x,
y=(c—ayx—xz+cy—kny, (3.2)
2:xy—bz+dx2~k33z.

,’I
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Theorem 3.1.1. The equilibrium point Ey = (0,0,0) is asymptotically stable if
k“ =0, k33 >0 and kgg > 3c.

3.1.2. Stability of the equilibrium point E; = (5, B,v)
1n this case £ = E, and the controlled system (3.1) is in the form of

x=aly—x)—kn(x—8),
y=(c—a)x—xz+cy~hkn(y—f), (3.3)
F=xy—bz+dd —kyu(z—7).

Theorem 3.1.2. The equilibrium point E,= (B, B,v) is asymptotically stable if
k“., k33 >0 and kzz > 2c.

3.1.3. Stability of the equilibrium point E3 = (—f, —B,y)
In this case £ = E; and the controlled system (3.1) is in the form of

x=aly—x)—knx+8),
y=(c—ax—xz+cy—knly+§), (3.4)
é=xy—-bz+dx2—k33(z—y).

Theorem 3.1.3. The equilibrium point E; = (—f, ~B, v} is asymptotically stable if
kyw ka3 > 0 and kay > 2¢.

3.1.4. Numerical simulation

Numerical experiments are carried out to investipate controlled systems by
using fourth-order Runge—Kutta method with time step 0.001. The parameters
a, b, c and d are chosen as a = 35, b = 3, ¢ = 28 and 4 = 2 to ensure the existence
of chaos in the absence of control. The initial states are takenas x = 0.1, y = 0.2
and z = 0.3. The control is active at ¢ = 10. The equilibrium point £, = (0,0, 0) of
the system (1.1) is stabilized for ky; = 0, &;2 = 85 and ka3 = 5. Fig. 1 show the
behavior of the states x, y and z of the controlled system (3.2) with time. The
equilibrium point £, = (V21,v/21,21) of the system (1.1) is stabilized for
ki1 =1, kpp = 60 and k33 = 5. Fig. 2 show the behavior of the states x, y and z
of the controlled system (3.3) with time. The equilibrium point Ej =
(—\/ZT,—J:ZT,ZI) of the system (1.1) is stabilized for k;; = 1, k22 = 60 and
ka3 = 5. Fig. 3 shows the behavior of the states x, y and z of the controHed sys-
tem (3.4) with time.

3.2. Bounded feedback control

In this case, we control chaos with bounded controller that vanishes after
the stabilization is achieved.
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Fig. 1. The timc responses for the states x, y and z of the controlled system (3.2} before and
after control activation with time. The control is activated at ¢ =10, ki, =0, k33 =85 and s

f33 = 5.

Xy

12 14 16 18 20

Fig. 2. The time responses for the states x, y and = of the controlled system (3.3) before and
after control activation with time. The control is activated at =10, k;; = 1, ks =60 and
]\233 =35,

3.2.1. Stability of the equilibrium point E; = (0,0,0)
In order to stabilize this equilibrium point by bounded feedback control, the
control is chosen for system (1.1) as follows:

e
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80

Fig. 3. The time responses for the states x, y and = of the controlled system (3.4} before and
after control activation with time. The control is activated at (=10, kyy =1, k3, =60 and
k:\] =35,

x =aly —x),
= (c—a)x —xz+cy +ul(t), (3.5)
2:xy—bz+dx2,

where u(t) = —k(a(x + ), k= 0.
Theorem 3.2.1. The cquilibrium point E;= (0,0,0} is asymptotically stable if

2.
k>

3.2.2. Stability of the equilibrium point E; = (§,8,7)
In order to stabilize this equilibrium point by bounded feedback control, the

control is chosen for system (1.1) as foliows:

x=aly —x},
y=(c—a)x —xz+ cy 4 u(t), (3.6)
t=xy— bz +dd,

where u(t) = —k(aly — x)), k> 0.

Theorem 3.2.2. The equilibrium point E, = (f,f.y) is asymptotically stable if
k> V2.
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3.2.3. Stability of the equilibrium point E; = (—f, —f,v}
In order to stabilize this equilibrium peint by bounded feedback control, the
control is chosen for system (1.1) as follows:

x=aly - x),
y={(c—a)x —xz+cy+u(t), (3.7)
g=xy—bz+ ax?,

where u(t) = —f(aly — x)), k> 0.

Theorem 3.2.3. The equilibrium point E3 = (—f, —f,7) is asymptotically stable if
k> V2

3.2.4. Numerical simulation

We will show a series of numerical experiments by using the fourth-order
Runge-Kutta method with step size 0.001. The parameters a, b, ¢ and d are
chosen as ¢ =35, h=13, ¢ =28 and 4= 2 to ensure the existence of chaos in
the absence of control. The control is active at = 10 for all simulations. In
the first numerical experiment, we intend to control the chaos te equilibrium
point E, =(0,0,0) of system (1.1). Figs. 46 show the time response of the
states x, ¥ and z of system (3.5) and the controller u(¢) with time for k= 1.6.
The initial condition are x =0.1, y = 0.2 and = = 0.3. In the second numerical
experiment, we intend to control the chaos to equilibrium point

6 8 10 12 14 16 18 20

Fig. 4. The states x of the controlled system {3.5) and the control u(f) respond with time before and
after contral activation. The control is activated at r= 10, k= 1.6.
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Fig. 5. The states y of the controlled system (3.5) and the control «(f) respond with time before and
after control activation. The control is activated at 1 = 10, k= 1.6.
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Fig. 6. The states z of the controlled system (3.5) and the control u(f) respond with time before and
after control activation. The control is activated at ¢ = 19, k= 1.6.

Ey = (v/21,21,21) of system (1.1). Figs. 7-9 show the time response of the
states x, ¥ and z of system (3.6) and the controller «(¢) with time for k& = 2.
The initial condition are x = —2.5, y = —2.5 and z = 3. In the third numerical
experimeni, we intend to control the chaos to equilibrium point
Ey = (—v21,~+/21,21) of system (1.1). Fig. 10-12 show the time response
of the states x, y and = of system (3.7) and the controller u(?) with time for
k = 2. The initial condition are x =2.5, y=2.5and z = 3.
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Fig. 7. The states x of the controlled system (3.6) and the control u() respond with time before and
after control activation. The control is activated at =10, k= 2.
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10 12 14 16 18 20

Fig. 8. The states y of the conirolled system (3.6} and the control u(¢) respond with time before and
after control activation. The control is activated at 7= 10, = 2.

4. Synchronization

To begin with, the definition of chaos synchronization is given as follows.
For two nonlinear chaotic system: ’ '

i= £, %), (4.1)

e
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Fig. 9. The states = of the controlled system (3.6} and the control u(f) respond with time before and
after control activation. The control is activated at ¢ = 10, k= 2.

20
15
10¢

u(t)

i

Fig. 10. The states x of the controlled system (3.7) and the control u(t) respond with time before
and after contral activation. The control is activated at 1 = 10, k= 2.

y=g(t,y) +ult,x,y), (4.2)

where x, ye R", fLg e C[R" x B" R, u e C'[R* x B" x R"R"], r = I, R" is
the set of non-negative real numbers. Assume that (4.1} is the drive system, and
{4.2) is the response system, u(t, x, ) is the control vector. Response system and
drive system are said to be synchronic if for Vx(1p), y{t) € R",

tim [lx(¢) — ()]} = 0.
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u()

12 14 16 18 20

Fig. 11. The states p of the controlled system (3.7) and the control u{f) respond with r..imc before
and after control activation. The control is activaied at r = 10, k=2,

?Olf- T T T T
60

o
 u \J W

0 2 4 6 & 10 12 14 16 18 20
t

u(t)

Fig. i2. The states z of the controlled system (3.7) and the control u(r) respond with time before
and after control activation. The control is activated at =10, k= 2.

4.1 Active control

In this section, we will give some particular active control which ensures syn-
chronization of drive system and response system of perturbed Chen chaotic
dynamical system. System (1.1) has chaotic behavior at the parameters values

-

LY
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@ =35 b=3, c=28 and 4 = 2. Our aim is to make synchronization of system
(1.1) by using active control. The drive system is defined as follows,

¥ = aly, —x1),
¥y = {c—ayx; —xz + ey, (4.3)
o =xy, — bz +dxf

and the response system is given by

X2 = a(y; — x2) + w0,
¥y = {c — a)xs — Xz + ¥y + (1), (4.4)
2y = Xy, — bz + dixs + 1, (1).

We have introduced three control functions g (2),p2(f) and p3(1) in (4.4).
These functions are to be determined. Let the error states be

Xy = X3 — X[,

Vi=Ya— o
Z3 =23 — Z1.

e

Using this notation, we obtain the error system.

gy = aly; —x3) + (),

Lo

1= (c—a)xz+ ey —xam + Xz + 1, (8), {(4.5)
" :3:3=wb23—x|y|+x;yz+dx§-—-dx?+,u3(t).
We define the active control functions p(1), u2(t) and ps(2) as
) (8 = V(D)
wa(t) = x20 — 3121 + V(1) (4.6)
pa{8) = X1y, = Xay2 — dx; + dx} + V3(2).
Hence,
¥y = a(y; —x3) + V1 (1),
Py = (c — a)xs +cyy + Va(1), 4.7

2y = —bzy + V3(0).

The control inputs ¥ (), V2(f) and V;(¢) are functions of x3, y3 and =3 and
are chosen as

Vi) X3
Vi) | =41 | (4.8)
Vg(!) F4
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where the matrix A4 is given by

a—1 —a 0
A=la—-c —(14+¢) 0
0 0 b—1

With this particular choice of 4, (4.7) has eigenvalues which are found to be
—1, —1 and —1. The choice will lead to the error states x3, y3 and z3 converge
to zero as time ¢ tends to infinity and this implies that the synchronization of
perturbed Chen system is achieved.

4.1.1. Numerical simulation

Fourth-order Runge-Kutta method of differential equations (4.3) and (4.4)
with time step size 0.001 arc used in all pumerical simulations.

The parameters are selected in (4.3) asfollow: ¢ =35, 5=3,c=28and d=2
to ensure the chaotic behavior of perturbed Chen system. The initial value of
the drive system are x(0) =0.5, »,(0)=1 and z,(0) =1 and the initial value
of the response system are x;(0) = 10.5, y,(0) = 1 and z,(0) = 38. Then the ini-
tial value of the error system are x3(0) = 10, y3(0) = 0 and z3(0) = 37.

Figs. 1315 show the synchronization is occurred after applying active con-
trol at 1= 5.

4.2. Adaptive control

This section considers adaptive synchronization of perturbed Chen system.
This approach can synchronize the chaotic systems with fully unmatched

20

Fig. 13. The states xy, x; of the coupled perturbed Chen system of equations with the active control
activated.
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Fig. 14. The states y|, v; of the coupled perturbed Chen system of equations with the active control
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Fig. 15. The states =y, =3 of the coupled perturbed Chen system of equations with the active control
activated.

parameters. The synchronization problem of perturbed Chen systems with
fully unknown parameters will be studied in which the adaptive controller will
be introduced.

Let system (1.1) be the drive system. Suppose that the parameters of the sys-
tem (1.1) are unknown or uncertain, then the response system is given by
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i.—i = (i’()”) - i‘) — Uy,
y=(E—a)k -X+ & — u, (4.9)
=3y — bi+di — us, )

where &, 5, ¢ and d are parameters of the response system which need to be esti-
mated. Suppose that

w = ke,
Uy = kzey, (410)

uy = ke, + dxe,,

where e, =x—x, e, =y —yand e; =2~z and

a=fo=—yF—%)pe: + vXey,

b=ty = e, @.11)
¢ = fo= —f(x + e,

& =fd = —5)?262,

where ki, I, k3 = 0 and p, 7, 8, B, 6 > 0 are constants.

Theorem 4.2.1. Suppose that M¢, > |x|,Mc, > |y[,Mc. > |z|, p, v, 0, B, & are
positive constants. When ky, ky and k320 are properly chosen such that the
Jollowing matrix inequality holds,

plki +a) —slpa—atc+Mc) —5(Mc, +dMc,)
P=|-1(pa—a+c+Mc) ky—c 0 >0
—3 (M, +dMc,) 0 ks +b
(4.12)

or equivalently if k\, ka and ks are chosen so that the following inequalities hold:

(1) A4 = p(ky + a){kz — ¢) —l(pa —a+e+ M) >0,
L (4.13)
(if) 8 = Alks + ) — 7 (Mc, + dMe Y (ks —¢) >0

then the two perturbed Chen systems (1.1} and (4.9) can be synchronized under
the adaptive control of (4.10) and (4.11).

Proof. It is easy to see from (1.]) and (4.9) that the error dynamics can be
obtained as follow

Tl
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e, =a{y—x) —aly — x) — u,
€,=—axr+ax-+e—cx+ ey —cy—Xz4xz—u, (4.14)

6, = —bz + bz + iy — xy — us.
Lete, =a—a, e, = b—b,e.=¢é—c eq= d — d. Choose the following Lyapu-
nov function:
1% ____1 2 2+2+12+_1_2+12+12 415)
(e)n ey;ez) - E pe, + e, Te ;ea aeb ﬁec 6ed ( -

in which the differentiation of V along trajectories of (4.14) gives

. 1 A S
V=peé, +ee, +ee, +;e,,é‘z +§eaea +Ee5eb +3eded

= pefaly—%) —aly—x) —u] + ey [—ax +ax + & —ex + Iy — ey — ¥z +xz —
. 1 I 1 1
+ e.[—bF + bz +XF —xy — u3] -1—;6,]} +£—)ebﬁ, +Ee,fc +5edf,;
= [pa(y — %) — pa(y — X) + pa(y — %) — pa(y — x)|ex — puiex
+ [—a% + ax — ax + axle, + [~¥2 + ¥z — Xz -+ xzle, —uzey
+ (@ +7) — c(E+7) + (@ +§) —clx+y)le,
4 [—b# + bz — b7+ bzle. + (¥ — Ty +3y — xyle:

is

it

1 1
Beuﬁ+38dfd

= p(§ —X)ese, + pale, — e;)e. — pure, — Se,e, ~ aece, —Xeye; — ze.e, — ey

- 1 1
+ [di'z - diz +d)_.'2 — de]e; — U3€e; -!-;e,,f,, +-éebﬁ, +

+ee,(X+¥) +electe)e, —Zewe, ~ be’ +xe,e, + ye,e;

1 1 1 I
+3Peqe. +dese (i +x) —me: +¥eu_fa +§ehﬁ: + Eeaﬂ' +3€dfd

— p(§ — X)esex + pale, — e,)ex — pkie? —Tese, — acce, — Feye, — aese, —kaey
+ecey(X+y)+clect+e)e, —Zere — bef +xeye: +ye.e; +5ese;

| 1

Eecfc +sedfs

= —plky +a)et — (k2 — c)ei — (ks + DY +{pa+c—a—z)ee,+ (y+xd)ece,

+e, [%fa + (j’_i)pex —.i'e_,,jl +ep [éfb "”Eez:l

" 1 1
+ dece.(x +x) — (ke; +dXe, e, +;elf; +gen Jo+

+ e, [%ﬂ + (i +j})ey] €y [%f;f +izez:|

< —plk+aded — (ko — c)ei ~ (ks +b)el + (pa+c—a—Mc,)leel
+ (MC,- +dMC.)‘ere:| = —eTPes

%
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where e = [le,] |e,| |e:|]”, Pis as in (4.12). Thus the differentiation of V(e,,
e,,¢;) is negative definite, which implies that the origin of error system (4.14) is
asymptotically stable. Therefore, the response system {4.9) is synchronizing

with the drive system (1.1). O

-
o

le,l

N w s 0 O N D W

Do . . \ .
0 2 4 [ 8 10 12 14 16 18
1

Fig. 16. Synchronization errors: |e,].

20

Ieyl

0 2 4 8 8 10 12 14 16 18

Fig. 17. Synchronization errors: |e,|.
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4.2.1. Numerical simulation

The numerical simulations are carried out using the fourth-order Runge-
Kutta method. The initial conditions of the drive and response systems are
(0.5, 1, 5) and (10.5, 20, 38). The parameters of the drive system are « = 35,
h=3 c¢c=28and d=2.

In order to choose the control parameters, M¢, > |x|, M¢ > |y| and
Mc, > |z| must be estimaied. Through simulations, we obtain M, = 20,

35

le,l

5
OLLL. . . L L N

Q 2 4 5} 8 10 12 14 16 18 20
t

Fig. 18. Synchronization errors: {¢|.

35

25

20f

0 2 4 6 8 0 12 14 16 18 20

Fig. 19. Changing parameters: &.



384 / Appendix # 6.2

4] 2 4 6 8 0 12 14 16 18 20
t

Fig. 20. Changing parameters: &.
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Fig. 21. Changing parameters: ¢.

Mg, =25 and M, =~ 70. Then we firstly choose p = M7 /(ab). Then choose
y=8=f=1 and then choose k; =25, k» =88, k3 = 50 “which satisfy (4.13)
and the initial valucs of the parameters 4,b,¢ and d are all chosen to be 0,
the response system synchronizes with the drive system as shown in Figs.
16-18 and the changing parameters of & b,& and 4 are shown in Figs. 19-22.
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Fig. 22. Changing parameters: d.
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The asymptotic stability of ...

P. Niamsup and Y. Lensury

I suggest few minor changes which might help the reader to better understand the
present paper.

1. In the abstract, you just mention the topic paper -~ but you do not describe its
content. A few words might been added, e. g.
- that the conditions are explicitly stated in terms of the coefficients of the given
equation and
- a short remark about the methods of proof.

2. In the first line of the second page you announce that 'some properties of the
Mobius transformation’ will be used. However, neither the phrase 'Mibius
transformation' does appear again at any other place in the paper nor could I find
any place (notably in the proof of Lemma2.5) where a property of Mobius
transformations has been used. However, what 1 have found is that the paper
heavily hmgs on arithmetic of complex numbers, polar coordmates and the
{complex) sinus function.

Therefore, I suggest that
- either: if you make use of a property of a Mébius transformation you explicitly
mention this in the prove at the place where you use it.
« or: you replace that sentence by a more accurate description of your methods of
proof (should be consistent with the remark to be added in the abstract).

3. Overall evaluation:

+ The result of the present paper is of interest.

- All the proofs required some lengthy calculations which locally are not difficult
(at least not difficult to check) but at the whole it isn't trivial.

+ The length is appropriate and all the necessary details of the proofs have been
given. Any shortening might make it more difficult for any reader to understand
the paper. No additions — beside the above mentioned ones — are needed.

- Consequently, I do recommend the paper to be published at its full length.
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M, -FACTORS AND Q, -FACTORS FOR NEAR
QUASINORM ON CERTAIN SEQUENCE SPACES

PIYAPONG NIAMSUP AND YONGWIMON LENBURY

Received 15 July 2004 and in revised form 20 June 2005

We study the multiplicativity factor and quadraticity factor for near quasinorm on cer-
tain sequence spaces of Maddox, namely, I(p) and l.(p), where p = (pi) is a bounded
sequence of positive real numbers.

1. Introduction

Let X be an algebra over a field F (R or C). A quasinorm on X isa function - {: X = R
such that

(i) |0| =0!
v (i) x| =0, forall xe X,
o (i) | - x| = |x], forall x€ X,
po (i) lx+yl < x|+ |y, foral x,y € X,
(VY ifty € F, [ty —t] — 0,and xp, x € X, %, — x| — 0, then jfx, ~ tx| — 0.

“ If | - | satisfies only properties {i) to {iv}, then we call | - | a near quasinorm. If the
quasinorm satisfies {x| = ¢ if and only if x = 0, then it is said to be total.

A quasinormed linear space (QNLS) is a pair (X,| - |) where | - | is a quasinorm on
X.If(X,| - |) is a quasinorm space, then the map | - | : X ~ R is continuous. For p >0,
a p -seminorm on X is a function || - || : X ~ R satisfying

(i) llxll =0, forall xe X,
(if) \exll = |¢[2]lx]l, for all t € F, for all x € X,
(iit) lx+ ¥l < [lxll + 1 p1l, forall x,y € X.
A seminorm is called a norm if it satisfies the following condition:
{(iv) lix|t = 0 ifand only if x = 0.
A p-seminormed linear space (p-semi-NLS) is a pair (X, - [|) where {| - || is a semi-
norm on X. p-normed linear spaces (p-normed-LS) are defined similarly.

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:00 (2005) 1-6
DOI: 10.1155/[JMMS.2005.1
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text to normal math,
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the title to
“QUASINORM.”
Please check.

[nternational fournal of Marhematics and Mathematical Sciences



We changed “3” to

“there exists” twice.
Please check.

389 / Appendix # 6.4

2 M,-factors and Q,-factors

In {1, 2}, multiplicativity factors (or M -factors) and quadrativity factors (or Q -factors)
for seminorms on an algebra X have been introduced and studied in detail. A number u >
0 is said to be a multiplicativity factor for a seminorm S if and only if S(xy} < pS(x)S(»),
for all x,y € X. Similarly, 2 number A > 0 is said to be a quadrativity factor for $ if and
only if §(x?) < AS(x)?, for all x € X. The necessary and sufficient conditions for existence
of M-factor and Q-factor for S are answered in the following results.

'THEOREM 1.1. Let X be an algebra and let S + 0 be a seminorm on X. Then
(a) S has M-factors on X if and only if Ker § is an ideal in X and

pinf = sup {S(xy) 1 x, ¥y € X, S(x) = 8{y) = 1} < +0o, (1.1)

(b) if 8 has M-factors on X and pins > 0, then piins is the best (least) M-factor for S,
(c) if S has M-factors on X and pins = 0, then u is an M-factor for S if and only if u > 0.

THEOREM 1.2. Let X be an algebra and let § + 0 be a seminorm on X. Then

(a} S has Q-factors on X if and only if KerS is closed under squaring (i.e., (Ker8)? c
KerS) and

Aing = sup {8{x?) 1 x € X, §(x) = 1} < +00, (1.2)

(b) if S has Q-factors on X and Aing >0, then Ay is the best (least) Q-factor for S,
(¢) if $ has Q-factors on X and digs = O, then A is a Q-factor for S if and only if A > 0.

If § is a norm, then KerS = {0}. If in addition X is finite-dimensional, then a sim-
ple compactness argument shows that giq¢ is finite. Therefore, by Theorem 1.1, norms
on finite-dimensional algebras always have M-factors. If § is a seminorm on a finite-
dimensional algebra X, then § has M-factors on X ifand only if Ker § is a (two-sided) ideal
in X. In [1, 2] several examples of seminorms having M-factors and Q-factors are given.
In (3], scalar multiplicativity factors for near quasinorms on certain sequence spaces of
Maddox are studied. Motivated by these results we define M,-factors and Q,-factors for a
near quasinorm g on an algebra X as follows.

A number y > 0is an M,-factor for g if and only if g(txy) < u[t|"g{x)q(y) , there exists
r>0,forall teF,forall x,y € X.

A number A >0 is a Q,-factor for g if and only if g(tx?) < A[t]"g(x)? , there exists
r>0,forall te F, forall xe X.

Let

gltxy)

Yinf = sup{ltqu(x)q(y)

te F— {0}, x,yEX—Kerq},
(1.3)

_ q{tx?)
Ainf = SUp { gy teF-{0},xeX- Kerq}.

2. M,-factors and Q,-factors for near quasinorms

In this section we will prove the following theorems.

fie3

4
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THEOREM 2.1. Let X be an algebra over a field F (F = C or R). Let q be a near quasinorm
on X. Then

{a) q has M,-factors on X if and only if Kerq is a (two-sided) ideal in X and pigs < + 00,
(b} if g has M,-factors on X and pins > 0, then pins is the best (least) M, - factor for g,

(¢) if q has M,-factors on X and gins = 0, then y is an M,- factor for q if and only if
>0

Tueorem 2.2, Let X be an algebra over a field F (F = C or R). Let q be a near quasinorm
on X. Then

(a) g has Q.-factors on X if and only if Ker q is closed under squaring (i.e., x* € Kerg, for
all x € Kerq) and Aj < 400,

{b) if g has Q,-factors on X and kins > 0, then A is the best (least) Q,-factors for g,

{c) if q has Q.-factors on X and Ains = 0, then A is a Q,-factors for g if and only if A > 0.

Proof of Theorem 2.1. (a) Suppose that g has an M, -factor u on X. Clearly, Kerg is a sub-
space of X. Now take any x € Kerg and y € X. Then g(xy) £ pq(x}g(y} = 0 which implies
that xy € Kerg. Similarly, yx € Kerg, so Kerg is a {two-sided) ideal in X. Now for f €
F — {0} and x,y € X — Kerg, we have g(txy) < plt|"g{x)q(y) or q{txy)/1t|"q{x}g(y) = p
which implies that yin < g < +00. Conversely, suppose that Kerg is a (two-sided) ideal
in X and piar < +00, If t = 0, x € Kerg, or y € Kerg, then txy € Kerg, so 0 = g{txy) =
pinclE7g(x)q(y). If t #+ 0 and x,y & Kerg, then q(txy)/1t1"g(x)g{y) < pins or g(txy) <
Hinf[£17q(x)q(y). Therefore, g(txy) < pinelt|"g(x)g(y), for all ¢ € F and for all x,y € X
which implies that g has M, -factors on X.

{b) Let g be an M, - factor for g on X and pins > 0. Then g{txy) < u|tl"g(x)g(y) forall
t € Fand for all x,y € X. Therefore, g{txy)/|f"g(x)gq(y) = p, forall t € F — {0} and for
all x, ¥ € Kerg, 50 ptins < .

(c) This part follows directly from definition of pjnr and M, -factors for g on X. O

Proaf of Theorem 2.2. The proof of this theorem is a simple modification of the proof of
Theorem 2.1 and will be omitted. a

-3, M,-factors and Q,-factors for near quasinorm on

certain sequence spaces of Maddox

Let p = (pi) be a bounded sequence of positive real numbers. The sequence spaces of
Maddox i (p) and I{ p) are defined as follows:

lo(p) = {{xk) txx € C, sup x| P* < oo},

: (3.1)
I(p) = {(xk) ix €C, Z |x;.-|Pk < 00}.
K

We changed “factors”
to “factor.” Please check
similar highlighted
cases throughout,
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With the usual multiplication (i.e., (xx) (3} = (xxyx)), both L. (p) and I(p) are algebras
over C. We define near quasinorms g, on L.{p) and ¢. on (p} as follows:

g1 ((xx)) = sup | ™M, () € (),

M (3.2)
g ((x0)) = (Z |xk|”*) . ) € i),
k

where M = max{1,sup, px}. We observe that g, and g, may or may not be quasinorms.
For example, when (pi) = (1/k), then ¢, is a near quasinorm but not a quasinorm; if
(pe} = (1 - 1/(k+1)), then g, is a quasinorm.

In this section we give necessary and sufficient conditions for sequence spaces l..{p)
and I(p) to have M,-factors and Q,-factors.

Tueorem 3.1. Let p = {pi) and let M be defined as above. Then the following are equiva-
lent.

(a) po = pr = piw for all k = 0 where py is a positive real number.
{b) q1 has M,-factors on lo(p).

{c) g1 has Q,-factors on l.(p).

(d) g 1s a po/M-seminorm on l.(p).

THEOREM 3.2. Let p = (pi) and let M be defined as above. Then the following are equiva-
lent.

(a) po = pi = pr+1 for all k = 0 where py is a positive real number.
{(b) g2 has M, -factors on I(p).

() g2 has Q.-factors on I(p).

(d} g7 is @ po/M-seminorm on i{p).

Proof of Theorem 3.1. {a)=(b) If po = px = pys: forall k = 1, then

qiltxy) = S\Jltpltxyip"'“ = s:pltxyi"“’M < [t|PMg, (x)q(») (3.3)

forall x,y € l.{p), 50 g, has an M,-factor on l.(p).
(b)=(a) Assume that g, has M,-factors on l.{p). This implies that

q: (txy)

— e F- {0}, x,ye X - K . 34
[tlrqi{x}gi{y) < 0} %y GTQ1}<+°° G4

Hinf = sup{



=

L2
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We shall show that r = sup; px/M = infy pi/M which implies that py = prey for all
k = 1. To this end we observe that

qi(txy) ‘
inf = SUp4 —————:t€F- {0}, x,ye X - Ki
Hinf P{Itl'ql(x)q;(y) 10} %y erq‘}
q1(txy) }
= — ——te F-{0}, x,y=(1,L,1,... .
sup{ltqul(x)ql(}’) { } X }’ ( ) (3 5)
y sup, |¢|P+M supy pi/M
= sup —“T——:tEF, Iti=1 =sup{|t| P PE :teF,ltlzl}
so that
|t|5UPkPi"M
Hinf = sup{ TG teF [t = l}. (3.6)

If r < sup, px/M, then s = +oo which is a contradiction. Therefore, r = sup, ps/M.
Similarly, we can show that r < infy pi/M from which it follows that r = sup, pi/M =
infy px/M and the proof is complete.

(a)=>{c) The same proof as (a}=(b).

(¢)=>(a) The same proof as (b)=(a).

{d)}={b) This is obvious.

(b)=(d) Assume that g, has M,-factors. Then, by {a), pp = px = pry forall k= 0
where py is a positive real number. Moreover, we have

qi(txy) = sup |t (x) () | Pl = 117 sup | iy M =10 Ma (k) (37

forall x = (%), y = (w) € le(p) and all t € F. Putting y = (1,1,1...) we see that
qi(tx) = [t|P™Mg(x) (3.8)

and the proof is complete. g

Proof of Theorem 3.2. The proof is almost the same as in Theorem 3.1 and will be omit-
ted. O

Remark 3.3. If the algebra X has an identity element xp for multiplication and g # 0 is
a near-quasinorm on X which has an M,-factor on X, then we obtain g(xp) > 0, fin; =
1/g(xp} and

2o )it [t1"g(xy) < gltxy) < pins |t g(x)g(y) (3.9)

forallx,y € X andallt € F,
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. 411/ Appendix # 7

All interested parties are cordially invited to join our
Special Seminar on

Compact Operators

Date: September 22, 2003
Time: 13.30-15.30
Location: Rm. M301 M. Building

Schatten Class Operators:

Date: September 26, 2003
Time: 13.30-15.30
Location: Rm. K136 K. Building

Schatten Class Operators

Date: September 29, 2003
Time: 13.30-15.30
Location: Rm. M301 M. Building

C* - Algebras
Date: October 3, 2003
Time: 13.30-15.30
Location: Rm. M301 M. Building

C* - Algebras
Date: October 6, 2003
Time: 13.30-15.30
Location: Rm. M301 M. Building

Vonn Neumann Algebras
Date: October 10, 2003
Time: 13.30-15.30
-Location: Rm. M202 M. Building

. By
Prof. Dr. Sing-Cheong Ong
Central Michigan University, U.S.A. .

Host : Department of Mathematics, Faculty of Science
Mahidol University
Tel. 02-644-5419 Fax. 02-201-5343

1} ]
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All interested parties are cordially invitea to join our
| Special Seminar
On

Convection in Smart Liquids Under Terrestrial or Micro-gravity

Situations

By
Prof. Dr. Pradeep G. Sidheshwar
UGC Centre for Advanced Studies in Fluid Mechanics
Department of Mathematics,
Bangalore University
Karnataka, India

Date : 29-30 April 2004
Time : 10.00-12.00

Host : Department of Mathematics, Faculty of Science, Mahidol University
Location : Rm. M 302 M. Building, Faculty of Science, Mahidol University
Rama 6 Rd., Bangkok 10400 Tel. 02-644-5419 Fax. 02-201-5343
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All interested parties are cordially invited to join our
Special Seminar
on

Robustness of t-statistic and t-test

by
Prof. Bimal K. Sinha
Department of Mathematics and Statistics,
University of Maryland, Baltimore County, U.S.A.

Date : March 25, 2004
Time : 13.30-14.30

Host : Department of Mathematics, Faculty of Science, Mahidol University
Location : Room M 202 M. Building, Faculty of Science, Mahidol University
Rama 6 Rd., Bangkok 10400 Tel. 02-644-5419 Fax. 02-201-5343
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All interested parties are cordially invited to join our
Special Seminar

on

On The Modeling of Stochastic Systems
With Time-Delayed Feedback

By
Dr. Till Daniel Frank

Department of Physics University of Miinster
Wilhelm-Klemm-Str. 9, 48149 Miinster, Germany

Date : March 24, w.oo#
Time : 10.00-11.00

Host : Department of Mathematics, Faculty of Science, Mahidol University
Location : Rm. M 304 M. Building, Faculty of Science, Mahidol University
Rama 6 Rd., Bangkok 10400 Tel. 02-644-5419 Fax. 02-201-5343
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All interested parties are cordially invited to join our
Special Seminar

on

Data Mining and Text Classification

by
Nick Cercone
Dalhousie University

Date : March 15, 2004
Time : 13.00-16.00 -

Host : Department of Mathematics, Faculty of Science, Mahidol University
Location : Rm. M 202 M. Building, Faculty of Science, Mahidol University
Rama 6 Rd., Bangkok 10400 Tel. 0 2644 5419 Fax. 0 2201 5343
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All interested parties are cordially invited to join our
Special Seminar

on

Intelligent Interface

by
Nick Cercone

Dalhousie University

Date : March 12, 2004
Time : 10.30-11.30

Host : Department of Mathematics, Faculty of Science, Mahidol University
Location : Rm.-M 202 M. Building, Faculty of Science, Mahidol University

Rama 6 Rd:, Bangkok 10400 Tel. 0 264475419 Fax. 0 2201 5343
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All interested parties are cordially invited to join our
Special Seminar on

Common Cyclic Vectors for Normal Operators

by
Professor Dr. Warren Wogen
Umiversity of North Carolina, U.S.A.

Date :  February 9, mooa
Time : 10.00-12.00

Host : Department of Mathematics, Faculty of Science Mahidol University
Location : Rm. M302 M. Building, Faculty of Science, Mahidol University
Rama 6 Rd., Bangkok 10400 Tel. 02-644-5419 Fax. 02-201-5343
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Please note the change of schedule.*
Special Seminar

on

Some Asymptotic Problems for a Reaction/Diffusion System

by
Professor Thomas I. Seidman
Department of Mathematics and Statistics,

University of Maryland, Baltimore County, U.S.A.

Date : January 23, 2004*
Time : 13.00 - 15.00

‘Host : Department of Mathematics, Faculty of Science, Mahidol University
Location :-Rm:. M- 304* M:-Building, Faculty of Science, Mahidol University
Rama 6 Rd., Bangkok 10400 Tel. 0 2644 5419 Fax. 0 2201 5343
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All interested parties are cordially invited to join our
Special Seminar

on

Hybrid Systems: Discontinuous Dynamics in a Continuous World

by
Professor Thomas I. Seidman
Department of Mathematics and Statistics,

University of Maryland, Baltimore County, U.S.A.

Date : January 20, 2004
Time : 10.00 - 12.00

Host : Department of Mathematics, Faculty of Science, Mahidol University

Location : Rm. M 306 M. Building, Faculty of Science, Mahidol University
Rama 6 Rd., Bangkok 10400 Tel. 0 2644 5419 Fax. 0 2201 5343

¢t # xipuaddy ; ozy



All interested parties are cordially invited to join our
Special Seminar

on

Entitled Introduction to Learning Theory

by
Asst. Prof. Dr. Massimiliano Pontil
Department of Computer Science

University College London, U.K.

Date : January 12, 2004
Time : 11.00 - 12.00

Host : Department of Mathematics, Faculty of Science, Mahidol University
Location :"Rm> M 303 M: Building, Faculty-of Science,"Mahidol University
Rama 6 Rd., Bangkok 10400 Tel. 0 2644 5419 Fax. 0 2201 5343
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‘All interested parties are cordially invited to join our
Special Seminar

on

Symmetry and its Application to Mechanics

by
Assoc. Prof. Dr. Wayne Michael Lawton
Department of Mathematics,

National University of mmcmmwoa

Date : January 9, 2004
Time : 10.00 - 12.00

Host : Department of Mathematics, Faculty of Science, Mahidol University
Location : Rm. M 304 M. Building, Faculty of Science, Mahidol University
Rama 6 Rd., Bangkok 10400 Tel. 0 2644 5419 Fax. 0 2201 5343
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433 7 Appendix # 7

All interested parties are cordially invited to join our

Special Seminar on

Delay- and Nonlinear Fokker-Planck Equations

Beyond Conventional Fokker-Planck
Equations: Delay- and Nonlinear
Fokker-Planck Equations

Date: August 23, 2004
Time: 13.30-14.30
Location: Rm. M202 M. Building

Stochastic Processes Described by
Conventional Fokker-Planck Equations

Date: August 25, 2004
Time: 13.30-14.30

- Lecation: Rm. M202 M. Building

Solutions of Delay Fokker-Planck Equations

Date: August 27, 2004
Time: 13.30-14.30
Location: Rm. M202 M. Building

Data Analysis in Stochastic Systems with
Time-Delayed Feedback

Date: August 31, 2004
Time: 13.30-14.30
Location: Rm. M202 M. Building

Solutions of Nonlinear Fokker-Planck
Equations

Date: September 2, 2004
Time: 13.30-14.30
Location: Rm. M202 M. Building

By

Dr. Till Daniel Frank

Institute for Theoretical Physics, University of Muenster,
Muenster, Germany

Host: Department of Mathematics, Faculty of Science,

Mahidol University

Tel: 02-644-5419 Fax: 02-201-5343
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o -~ All interested parties are cordially invited to join our
- o Special Seminar on

M

itr

Three formulations of the problem of finding equilibrium configurations

| * Date: 24 September 2004

Time: 13.30 - 16.30
Location: Rm. K 130 Chalerm Prakiat Building

' i Solving the problem by using Lax-Milgram Lemma
- Date: 25 September 2004
- Time:  13.30-16.30

Location: Rm. K 130 Chalerm Prakiat Building

Solvmg the problem through Optimization Theory- Equwalency
Date: 1 October 2004
Time: 13.30 - 16.30
Location: Rm. K 130 Chalerm Prakiat Building

The direct method of Calculus of Variation
Date: 2 October 2004
Time: 13.30 - 16.30 |
Location: Rm. K 130 Chalerm Prakiat Building

LA

Some elements of Convex Analysis
Date: 8 October 2004
Time: 13.30 - 16.30
Location: Rm. K 130 Chalerm Prakiat Building

Some elements of Convex Analysis (continued)
Date: 9 October 2004

| Time: 13.30 - 16.30

: | Location: Rm. K 130 Chalerm Prakiat Building

by
Professor Christian Licht
University of Montpellier 11, France

Host: Department of Mathematics, Faculty of Science,
Mahidol University, Rama 6 Rd., Bangkok 10400
Tel. 02-644-5419 Fax. 02-201-5343
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. 436/ Appendix # 7

All interested parties are cordially invited to join our
< Special Seminar on

“Partial Actions of Groups on Algebras”

Topic Date — Time — Location
¢ Introduction Date October 4, 2004
) Partia]l actions Time 10:00 - 12:00
' Location : Rm.t- %05 Building
+ Enveloping actions Date October 5, 2004
| Time 10:00 — 12:00
Location : Rm.w-305 Building
e Partial skew group rings Date October 6, 2004
o The associativity question Time 10:00 — 12:00
L : Location : Rm ©-307 Building
* Partial action Date October 7, 2004
on senilipr:ime algebras Time 10:00 — 12:00
1 : Location : Rm. "-205 Building
e Morita equivalence Date October 8, 2004
L Time  : 10:00 - 12:00
Location : Rm.M-305 Building
e Partial skew polynomaial rings Date October 11, 2004
;~ Time : 10:00-12:00 :
o o Location : Rm.-20¢ Building
= | e Partial Galois theory Date . October 12, 2004
of commutative rings Time - 10:00-12:00
« Some questions Location : Rm.!"-305 Building
. to be considered .
» Discuss and Exchange ideas Date October 13 - 14, 2004
T Time 10:00 — 14:00
. Location : Rm -“-~305 Building
By

Professor Dr. Miguel Ferrero
Department of Mathematics, Federal University of Rio Grande do Sul,
Porto Alegre, Biazil

Host © Department of Mathematics, Faculty of Science, Mahidol University
' Tel ; 02-644-5419 Fax : 02-201-5343
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