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4. BACKGROUND AND RATIONALE:

Characterization of biological systems has reached an unparalled level of interest
and concentration. In order to arrive at a better fundamental understanding of life
processes, it is imperative that powerful conceptual tools from mathematics and the
physical sciences be applied to the frontier problems in biology. As stated in the 1996/
report of the National Science Foundation (NSF) of the United States, "modeling of
biclogical systems is evolving into an important partner of experimental work. All facets of
biology, environmental, organism, cellular and molecular biology are becoming more
accessible to chemical, physical and mathematical approaches”.

The goals of mathematical, statistical, and computational approaches are to
elucidate mechamisms for seeming disparate phenomena. The NSF report also voiced its
belief in the tremendous potential of mathematical and computational approaches in
leading to fundamental insights and important practical benefits in research on biological
systems. "Mathematical and computational approaches have long been appreciated in
physics and in the last twenty years have played an ever-increasing role in chemistry. It is
our opinion, they are just coming into their own in biology".

As evidenced by the NSF report and the establishment of several research centers
in biomathematics all over the world, it is clear that mathematical/computational methods
which are based on fundamental physical laws, theory of nonlinear systems, empirical data
analyses, and their combination, are providing a key element in biological research. These
methods can provide hypotheses that let one go beyond the empirical data and be ready for
constant testing for their range of validity. It is, in the opinion of this research team, our
undeniable task to try to keep pace with this high speed development.

Despite its recognized relevance, the science of mathematical modeling still
encounters resistance from some members of the professional field who might feel they
have no need for unrealistic mathematical models. According to Novak (1991), there can
be two answers to this skepticism. The first is that cellular and population interactions are
highly nonlinear, and that many examples show intuition alone is a poor guide to predicting
the behavior of nonlinear systems. Thus, although all good biologists and medical
researchers already use theory, that theory could be more rigorously defined and more
productively explored if it were expressed in mathematical form and its consequences

investigated on this ground.
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The second answer is to point out that even though the past two centuries have
provided us with a rapidly growing catalog of organisms, as well as increasing detailed
information about the interactions among them, it is still incomplete. Real advances in
understanding how individual populations, or communities of interacting populations,
respond to natural or artificial disturbance has come from combinations of mathematical
models and experimental programs deliberately focused on population-level properties.
The models, some of which are meant to contemplate specific systems in a detailed way,
while others are constructed to answer larger questions in a relatively abstract fashion, have
foundations on field and laboratory observations of the constituent individuals. All share
the common purpose of helping to construct a broad theoretical framework within which to
assemble an otherwise indigestible mass of field and laboratory data, and of helping us
understand how seemingly simple properties at the level of individual organisms can give
rise to surprising, and often bizarre, outcomes at the level of populations (Novak et al.,
1991).

Recent scientific advances has made it now possible to analyze complex
biological phenomena, including disease processes. Indeed, some of the most promising
discoveries in biomedicine have resulted from the insights of investigators with strong
backgrounds in physics, mathematics, and chemistry. Yet strong organizational barriers
often impede efforts to bring scientists and students with training focused in the physical,
mathematical, chemical, or quantitative sciences into research or graduate/postdoctoral
programs in the biomedical science. This research team has been an instrument in the effort
to”encourage collaborations across disciplines and lower the barriers for interdisciplinary
research. This is clearly reflected by the six subprojects carried out by the members of this
research team.

The key role of interdisciplinary research and training perhaps is nowhere more
evident than in the hot new field of "bioinformatics"—the study of how information is
represented and transmitted in biological systems. In nerve cells, information is transmitted
through electrical impulses which cause muscles to contract and endocrine cells to secrete
hormones. Quite often, impulses are generated in high-frequency bursts, followed by
periods of quiescence. This is particularly true in endocrine systems. It is believed that
modulation of amplitudes and/or frequencies of these temporal hormone secretory patterns
plays an important role in the regulation of receptor synthesis, internalization, and cellular

functions. Therefore, Subproject 1.1 has been involved with investigating such cascade



7

b feedback endrocrine systems in terms of the temporal secretion characteristics which

s exhibit time lags in their response mechanism.

' a Moreover, recent advances in instrumentation have made it possible to measure

‘: motions and mechanical forces with high speed and efficiency. These techniques have
begun to supply data that has revived interest in cellular mechanics. It is now possible to
make realistic models of bio-mechanical processes that can be related directly to
experimentally observable, and controllable, parameters (Peskin and Oster, 1995).
Subprojects 1.2 and 1.3, on mechanical ventilation and antibiotic models respectively, have
taken advantage of these advances in experimental technology.

Furthermore, because of the ongoing revolution in computation theory and
technology, we can now solve fluid dynamics problems in the three spatial dimensions and
time (Ellington and Pedly, 1995). This opens up biological opportunities on many different
scales and sizes (NSF report, 1996). For example, one can now perform fluid dynamics
simulations of the embryonic and fetal heart at different stages of development. Such
models will help to elucidate the role of fluid forces and flows in the control mechanisms
of the human physiology. The research in Subproject 2. tackled the problem of blood flow
simulation under variable boundary conditions. The difficulty in measuring and simulation
of microscopic fluid flows and the dependence on access to large-scale scientific
computing make it important that the best technology be made available to scientists on a
scale sufficient to sustain this kind of research.

, On the other hand, on the scale of populations, opportunities also exist for
substantial advances in immunology by the use of modeling techniques. During the last
decade mathematical modeling has had a major impact on research in immunology and
virology (NSF report, 1996). Serious collaborations between theorists and experimentalists
have provided break through discoveries. For example, in AIDS research experiments in
which patients were given anti-retroviral drugs as perturbations of a nonlinear dynamical
system, mathematical modeling combined with analysis of data obtained during drug
clinical trials established for the first time that HIV is rapidly cleared from the body and
‘that approximately 10 billion virus particles are produced daily (Ho et al., 1995). Such
successes indicate that opportunities exist for developing realistic and useful models of
many viral diseases, studied as a nonlinear problem. Subproject 3. has met this challenge

" by concentrating on modeling transmission of re-emerging viral diseases, such as dengue
': haemorrhagic fever, Japanese encephalites, malaria, West Nile virus, SARs, and

Peptosprosis.
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Considering all the above mentioned research activities with which this project
has been involved, it is clear that crucial component of any research in modeling has to do
with data analysis and statistical techniques and concepts. Biological and biochemical
research is producing exponentially-growing data sets. Thus, a statistical component such
as the group proposing Subprojects 4. and 5. has been an important integral unit in this
research team. They have been devoted to modeling of processes which involve the

progression of tumor, incorporating useful concepts in statistics and stochastic principles.
Last, but not least, mathematical analysis is needed to interpret the results of
numerical simulations and modeling, as well as incorporate the insights into nonlinear
models. There are fundamental limits to predictability of biologically interesting quantities
since we are dealing with nonlinear systems with possible chaotic dynamics. This is the
reason why theory and modeling studies should develop in parallel fashion. Additional
theory of nonlinear systems should be made available as a necessary basis for modeling as
well as experimental measurements, so that it becomes and iterative, interactive process,
and thus the proposal of Subproject 6. It has provided us with the necessary theoretical

foundation for asymptotic stability analysis of nonlinear systems with delays.

PROJECT OBJECTIVES:

1.  Develop necessary theory, techniques and tools to construct and analyze models of
nonlinear systems.

2. Construct appropriate models of nonlinear systems such as the hormone secretion
system, mechanical ventilation, bacteria growth in the presence of antibiotics, blood
flow, tumor growth, disease transmission, and other biological processes of current
interest.

3. Analyze the models theoretically and numerically to gain insights leading to useful

suggestions for control/management strategies.

. RESEARCH ACTIVITIES:

This research team has in fact been studying, as well as those originally proposed
for this project, several other biological systems which were not specifically mentioned in
the proposal, yielding a lot more international publications than what has been promised.
The following is the detailed description of activities and outputs of each subproject in the

past 3 years.
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| Subproject 1: Dynamical Modeling of Systems in Medical Science

L Principal Investigator: Prof. Dr. Yongwimon Lenbury

In general, mathematical models can be used to promote an understanding of the
system of interest and they can be used to predict its behavior (Zahalak, 1992). An
enhanced understanding can be achieved by describing a complicated phenomenon in terms
of ‘a limited number of simpler concepts. A good model thus allows insights into the
relevant processes of the system. It can also enable one to assess how a system will behave
in situations that cannot be experimentally validated.

It is important to note that the model must be developed to match the task. To

* choose a model, one must select a suitable model form, an appropriate level of model

I
t
|
)
'
i

complexity, and a set of model parameters. Two general types of model form are structural
models and phenomenological models. Structural models (sometimes called 'parametric’

models) are based on fundamental physical properties of the system and may be most

| appropriate to gain insight into physiological processes. Phenomenological models

(sometimes called 'empirical' or 'non-parametric’ models) are based on observations of

‘| input/output relationships and may sometimes be suitable for simulation studies or control

implementation.
Another concern in selecting a model is that of model complexity. In general, a

model should be kept as simple as possible, 1.e. its order and number of parameters should

' be as low as possible (Zahalak, 1992). Only those physiological effects should be

+ considered that are relevant for the specific task.

The activities in this subproject can be categorized into 3 headings as follows.
11 Investigation of time lags in signaling responses in feedback cascade systems.
In many biological systems, information is transferred by hormonal ligands, and it
is assumed that these hormone signals encode developmental and regulatory programs in

mammalian organisms. Recently, it became apparent that hormone pulses contribute to this

hormonal pool which modulates the responsiveness of receptors within the cell membrane

. by regulation of the receptor synthesis, movement within the membrane layer, coupling to

signal transduction proteins and internalization.

In simple organisms, the detection of nonlinear or chaotic behavior in information
transfer is associated with differentiation and proliferation. Modulation of the amplitude
and/or the frequency of the hormone pulses in higher organisms is believed to be capable

of modifying intracellular signaling pathways, gene expression, cell proliferation, and

. cellular functions. Modeling of episodic hormone secretion and identification of nonlinear
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deterministic dynamics in an apparently irregular hormonal rhythm in human physiology
can lead to valuable insights into the physiological linkage between functional and genetic
programs of the living organisms.

Many hormone secretion systems incorporate some form of cascade mechanism
into their operation. A system with a cascade mechanism is an amplification process where
an initial reaction results in the generation of multiple second reactions, each of which sets
off multiple third reactions, and so on.

An example of cascade processes is found in eco-systems such as in the plant-
herbivore-carnivore food chain. In general, the biomass and the reproductive rates of the
components in the cascade increase as we proceed down the trophic levels. Another
example of systems which incorporate the cascade mechanism involves the central nervous
system, the hypothalamus, pituitary, and the distal hormone secretion glands.

Up to date, little attention to our knowledge has been devoted to analysis of
cascade systems and the time lags in their response mechanisms. Although several workers
have developed stability and oscillation theory for differential equations with delay
(Hamada and Anderson, 1983; Lee and Zak, 1986; Bainov, 1991; and Hennet and
Tarbouriech, 1997), they are concerned mainly with second order systems most of which
are linear. In 1995, Campbell et al. analyzed a- second-order, nonlinear delay-differential
equation with negative feedback, dealing with existence for limit cycles, tori, and complex

dynamics. Typically these equations take the form
X+px+ax=1(x,) (1.1)

where «,B are positive constants, t is the time delay, x,x_ are the values of the
controiled variable evaluated at, respectively, times t and t — 1, and the function f(u) is a

nonnegative, monotone decreasing function of u which describes negative feedback.
Most recently, Michiels et al. (2000) reported on the stability of perturbed delay
differential equations and stabilization of nonlinear cascade systems. They studied

nonlinear time delay systems of the form
z=1(z,z(t - 1)) +¥(z,z(t - )W (1.2)

where ze R",w e R. Investigation was carried out to find conditions under which global

stability would be preserved and if not, whether semi-global stabilization was possible by

reducing the size of the perturbation or modifying its shape.
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We have been able to identify 3 types of delay mechanism which have been
observed in biological/medical systems. The first type of delays is associated with the
maturation time required before a member of the population may procreate or produce off

v springs. In this case, the reproduction rate r(t) at time t is a function which depends on the

population density x at a time t—1; namely,
r(t) = f(x(t—1))

In past research works, f has been assumed to be a monotonic function. The theories
concerning existence, uniqueness, persistence, or stability of a solution to the model
equation usually depend on very stringent conditions on the function f. They are therefore
applicable only to limited number of population models. We have investigated this type of
delays as reported in Part a) below.

The second type of delays is found in cascade systems in which different
components in the system possess diversified dynamics. When we move down the cascade,
the components respond with drastically different speeds. A delayed response of one
component to change in another component is then due to this diversified characteristics.
This type of delay mechanisms can have very significant applications in the management
and control of nonlinear systems in biology and medicine. We have studied a system with
this type of delays as detailed in Part b) below.

The third type of delays is associated by the transport time required for a signal to
travel or an increased level in one component at the peripheral region to arrive at the target
organ and take its effects. For example, an injected dose of supplementary insulin may
require time in transport before its increase may be felt at the target site to give rise to a
reduction in the glucose level as intended. We have investigated this type of delays as
detailed in Part ¢) below. -

a) New analytical tools necessary for tackling the nonlinear system models
have been developed. We have successfully proved theorems for the existence, stability,

and persistance of solutions to delayed differential equations of the form
X(t) = —px(t)+f(x(t—1)) (1.3)

which is a delayed population model capable of modelling several dynamical systemsA of
interest in medical science, such as viral proliferation or cell divisions, etc., the rate of

which is delayed by the maturation time. The function f utilized in (1.3) was assumed



12
in past research works to be monotone. We however allowed f to be non-monotone, and
sometimes not continuous, which is more general.

The following theorems have been proved.
Theorem 1 If f(u) <pu for all u> 0 then every solution x(t) of (1.3) converges to 0
as t—> o,

Conversely, if every solution of (1.3) converges to 0 then f(u) <puu forall u>0.
Theorem 2  Assume that f(x)> 0 forall x >0 and

f(x)

limsup——=<p
x—owo X

2

f(x)

liminf —=>p
x—>0+ X

Then, every solution x(t) of (1.3) is persistent.

Theorem 3  Suppose that f(x) is monotonically increasing and

limsup—f(i) <u, (1.4)
X—o2 X

fiminf 19 5 (1.5)
x->0 X

Then, every solution x(t) of (1.3) converges to the unique X such that f(X) =X.

Theorem 4  Suppose that f(x) is monotonically decreasing and the following system

K
b f@
7}

has a unique solution a = b =X . Then, every solution x(t) of (1.3) converges to X.

Theorem 5 Suppose that f(ygy)=maxf(x) < uyy. Also, (1.4) and (1.5) are assumed to
x20

be true. Let x(t) be a persistent solution of (1.3). Then lim,_, , x(t) =X.

Theorem 6 Suppose that (1.5) holds. Suppose, moreover, that the solution of the

following system of difference equations
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. f
dpn4l = nf _(X_)
xe[an,bn] 18
f
byep = sup ﬂ (n=12,..)
xe[an,bn] H
f
a1=inf—f—@ b1=sup(—x)

x>0 H x>0 M

converges to X. Then every persistent solution of (1.3) converges to X.

This part of our work has been published in the international journal Mathematical
and Computer Modelling. Please see the paper that has appeared in Appendix # 1.1.

We have continued to work on the model (1.3) and given further stability
conditions which depend on the delay t, as well as conditions under which periodic
solutions would exist. This portion of work has yielded another paper which has been
accepted for publication in the Journal of Mathematical Analysis and Applications. Please
see the full paper in Appendix # 1.2.

. Further, since many systems involve many interacting components, the analysis of
the system models needs more sophisticated techniques. We have therefore developed a
higher order singular perturbation technique for the analysis of cascade systems involving

n+3 components (n=1). The arguments yield separation conditions on the system

parameters by pivoting about the slow component of the cascade. This result has been
published in Mathematical and Computer Modelling as can be seen in Appendix # 1.3.

Also, in many of these honiinear system models, chaotic behavior has been often
discovered which poses serious problems for control. In order to investigate how we can
control such chaotic phenomena in biological systems, we considered a Komolgorov type
model of cascade systems, such as food webs, with external input and removals. Applying
a feedback control technique proposed by Isidori (1985), we were able to derive the rules
under which chaotic solution can be counteracted and system stability or robustness may be
assured. This result is published in ScienceAsia (appendix #1.4).

_ b) Modelling of bone formation has been carried out, the mathematical
fdrmulation of which was based biologically on clinical evidence observed in various
reports such as that of Hock and Gera (1992), Dempster et al. (1993), Momsen and
Schwarz (1997), Kong et al. (1999), Takahashi et al. (1999), Burgess et al. (1999), or Kroll

(2000) amongst several others.
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Firstly, since activated osteoclasts result from differentiation and activation of
osteoclast precursors, we assume that a high level in osteoclast precursors is reflected in the
high level of the resulting activated osteoclastic population C(t). Secondly, osteoclasts
resorb bone and liberate calcium, in order to counter balance the high level of calcium in
blood the rate of PTH secretion will decrease (Momsen and Schwarz, 1997). The equation

for the rate of PTH secretion is then assumed to take the form

@ __q
dt %k, +C

—d,P (1.6)

where P(t) denotes the level of PTH above the basal level. The first term on the right-hand
side represents the secretion rate of PTH from the parathyroid grand which decreases with

the increase in the number of active osteoclastic cells C(t), ¢, and k, being positive

constants. This accounts for the above mentioned observation that as active osteoclasts C
resorb bone and liberate calcium, the rate of PTH secretion will decrease to counter balance
the high level of calcium in blood. Therefore, a higher C should lead to lower PTH
secretion rate. Finally, it is assumed that the hormone is removed from the system at the

rate which is proportional to its current level with the removal rate constantd, .

The dynamics of the osteoclastic population, on the other hand, can be described

by the following equation

dC _ (¢, +¢,P)BC

d,C 1.7
dt k, +P’ ’ (D

where the first term on the right-hand side represents the reproduction of active osteoclasts
which requires the production of osteoclast differentiation factor (ODF) and its receptor on
osteoclasts (Kroll, 2000). The more C means the more ODF receptors available for the
reproduction of active osteoclasts, and hence the term is taken to depend on the number of
osteoclasts C at that moment in time.

Moreover, osteoclasts precursors possess RANK, a receptor of tumor necrosis
factor {TNF) family that recognizes ODF through a cell-to-cell interaction with osteoblasts
(Kong et al., 1999; Takahashi et al., 1999; Burgesé et al.,1999; Kroll, 2000), hence the rate
of reproduction is taken to depend also on the number of active osteoblastic cells B(t) at
any time t. Based on the well founded theory on mathematical modeling and population
dynamics known as the law of mass action (Leah, 1988), when an event occurs through

cell-to-cell interaction of the two populations involved, the rate may then be assumed to
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vary as their product, provided that the event occurs randomly. However, the rate of

| .reproduction of C increases with the increase in the level of PTH (Dempster et al., 1993;

Weryha and Leclere, 1995). On the other hand, it has been clinically observed (Kroll, 2000)
that as PTH level increases further, it begins to inhibit osteoclastic reproduction, and hence
the saturation expression (c, +c;P)/(k, +P?) is assumed for the stimulating effect of
PTH, where c,,c,, and k, are positive constants.

Thus, without any active osteoclasts or osteoblasts (C=0, B=0), the
reproductive rate of C should vanish. On the other hand, C will be produced at the rate
which varies directly as the product BC, by the law of mass actions mentioned before, with
the variation constant ¢, /k, at vanishing P. With PTH mediation, however, this variation
parameter increases initially with increasing P but decreases when P becomes too high
according to the saturation function utilized in Eq. (1.7), where ¢, is a measure of how late
the inhibition effect will set in.

Finally, the dynamics of the active osteoblastic population B(t) can be described

by the following equation

dB —c,P- c,PB
dt k,

+P-d,B (1.8)

where c, is the specific rate at which PTH stimulates reproduction of active osteoblasts

(Brown, 1991; Isogai et al., 1996), while the second term on the right-hand side of Eq. (1.8)
accounts for the clinically observed inhibition of osteoblastic differentiation due to the
PTH (Kroll, 2000). PTH stimulates osteoblast differentiation in immature osteoblasts but
inhibits it in more mature celis (Isogai et al., 1996), through the process of down-regulation
of the PTH receptors on osteoblasts. 11.-6, a cytokine produced by osteoblasts, enhances the
anti-proliferative effects of PTH by suppressing the PTH-induced Ca®* transients in
addition to the down-regulation of the PTH receptor caused by chronic activation of the
protein kinase A signal pathway. Therefore, PTH and IL-6 produced by osteoblasts exert a
receptor-mediated negative feedback on the conversion of preosteoblasts to osteoblasts
(Kroll, 2000). The inhibition effect is assumed here to take the form of the Holling type

response function ¢;P/(k; +P) which means that there should be no such inhibition if B
or P vanishes. The inhibition term ¢;PB/(k; +P) then tends to ¢,B at high PTH level, so

that the osteoblastic formation is predominantly stimulated positively by PTH according to
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the first term c,P in Eq. (1.4) at higher levels of this hormone. This is consistent with
observed clinical data reported by both Tam et al. (1982) and Hock and Gera (1992). The

parameters ¢, and k, may then be varied to accommodate different physiological data of
different individuals. The higher k; means the inhibition remains effective still at higher

level of PTH. The last terms in Egs. (1.6)-(1.8) are the removal rates of the three

components of the remodeling process with rate constants d,,d, and d,, respectively.

Our reference core model, therefore, consisted of Egs. (1.6)-(1.8), possessing
highly diversified nonlinear characteristics, upon which analysis and investigation were
carried out in an attempt to explain several mystifying empirical observations.

A singular perturbation analysis was carried out to yield conditions under which
periodic solutions can be expected. A bifurcation diagram was then constructed to identify
the ranges of a system parameter which permitted chaotic hormone secretory patterns. Our
theoretical results and numerical experiments conformed with observed clinical data.
Moreover, investigation of the effects of estrogen supplements suggested to us that, in
order to prevent severe osteoporosis, it might be possible to give estrogen supplements
only for disjointed periods and not for the entire time. The effect of a high enough dose,
given during a long enough period, can last for some time after the supplement has be cut
off. This lagged or delayed effect, due to the diversified time responses inherent to this
cascade, can last long enough to overlap with the next period of estrogen supplement.
Such dosing regimen may reduce the danger of side effects due to prolonged estrogen
treatment, such as cancer.

The result of this piece of research has already been accepted and appeared in
BioSystems, an international journal with impact factor 0.736. (Please see manuscript in
Appendix # 1.5)

c) Modelling of endocrine systems has been carried out by incorporating
time delays into a mathematical model of the hypothalamus adrenal cortex axis, which

resulted in the following system of nonlinear delay differential equations.

dR —AZ(t-1,

'E = B R 4k By (1-AZ(t-12)) (1.9
—C-lé?—: _62A+Kze pz(]—cl(t—tz})R(t_Tl) (110)
€ 5,crAlT,) (.11

dt
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- where R(1), A(t), and C(t) are plasma concentrations of corticotropin releasing hormone

(CRH), adrenocorticotropic hormone (ACTH), and cortisol (C), respectively, while §,,8,,
and &, are the respective hormone removal rates, and k,,k,, and k; are the respective

hormone secretion rate constants. B, and B, are the feedback response potencies. The

feedforward response is assumed to have a delay of ©, due to traveling time required

~ before the target is reached, while the feedback effect of cortisol on ACTH or ACTH

on CRH is assumed to have a delay of t,.

We analyzed the model system (1.9)-(1.11) by the Hopf bifurcation theory to

~ investigate the possibility of periodic solution and chaotic dynamics. The paper on the

results has been published in the Mathematical Medicine and Biology with impact factor
0.368. (Please see manuscript in Appendix # 1.6).
. We also applied these analytical techniques to a model of Liutinizing hormone

secretion system and published another paper in Pure and Applied Chemistry (Appendix #
1.7)

1.2 Mathematical modeling of non-invasive mechanical ventilation

Many forms of pressure preset ventilation have been introduced to clinical
practice, each characterized by the abrupt and periodic application and release of a set level
of airway pressure at the airway opening (Boysen and McGough, 1988; Stock et al., 1987,
THaratt et al., 1988).

Although numerous attempts have been made to model the behavior of the

respiratory system (Ligas et al., 1990; Burke et al., 1993; Venegas ¢t al., 1998), few have

accounted for the nonlinear pressure-flow relationships which characterize biological

systems. Linear approximations sometimes serve quite well, however, the frictional

component of pressure loss (influenced by changes in flow regime) varies non-linearly with

- the flow rate (Crooke and Marini, 1993).

In 1993, Marini and Crooke developed a general mathematical model for the

dynamic behavior of a single-compartment respiratory system in response to an arbitrary

~ applied airway pressure. It provided the means to compute most ventilation and pressure

variables of clinical interest from clinician-selected and patient-specific impedance
parameters, A general two-compartment model was considered by Crooke et al. in 1996. In

both models, clinically important outcome variables, such as tidal volume, end-expiratory
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pressure, minute ventilation and mean alveolar pressure were computed for an arbitrary
applied inspiratory airway pressure.

In 1993, Crooke and Marini also presented and analyzed a nonlinear mathematical
model of pressure preset ventilation which accounts for the interactive behavior of
inspiratory and expiratory half cycles. It comprises a set of nonlinear differential equations
which incorporates a variably nonlinear relationship between the resistive component of
applied pressure and flow rate. This model was compared to the linear model of pressure
preset ventilation which served to link the clinical input variables of pressure level,
frequency, inspiratory time fraction, and impedance with the key outcome variables of
clinical interest: tidal volume, minute ventilation, mean alveolar pressure, and end-
expiratory pressure. Predictive differences arise between linear and nonlinear formulations.

In 1998, dynamics of the elastic pressure-volume (Pg-V) curve were determined
during a single prolonged insufflation before and after the recruitment manoeuvre by
Svantesson et al. A mathematical three-segment model of the curve including a linear
intermediate segment, delineated by the lower (LIP) and upper (UIP) inflection points, was
used for illustration of the recorded curves. This was due to the fact that the model was
based on the concept that compliance varied with volume.

Our reference mathematical model for pressure support ventilation incorporates
pressure support ventilation that is applied to a single compartment lung with compliance
C, inspiratory resistance R;, and expiratory resistance R.. The ventilator cycle is split into
two parts: inspiration of duration t;, and expiration of duration t.. The total length of each
cycle is tgr = ti + t.. During inspiration, a preset pressure P is applied to the airway, and
during expiration, the ventilator applies a constant pressure Ppeep.

At any instant of time in [0,t], there is a pressure balance between applied
pressures to the compartment (Pyeqn), pressures due to elastic forces (Petasic), pressures due
to resistive forces (Presisive), and residual pressures (Presigual). The volume of the
compartment, V(t), is modeled by differential equations that correspond to the pressure

balances in the system:

pP_ =P

vent resistive

+P

elastic

+P - (1.12)

During inspiration, Pyent = Pset and during expiration Pyent = Ppeep.
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~*- " . This part of our work has yielded one published paper to date. In the paper, a one-
compartment, mathematical model for pressure controlled ventilation, incorporating
volume dependent compliances, -linear and nonlinear resistances, is constructed and
compared with data obtained from healthy and (oleic acid) lung-injured pigs. Experimental
data is used to find parameters in the mathematical model and was collected in two forms.

Firstly, the P, —V curves for healthy and lung injured pigs were constructed; this data is

usgd to compute compliance functions for each animal. Secondly, dynamic data from
pressure controlled ventilation for a variety of applied pressures is used to estimate
f resistance parafneters'in the model. The model was then compared against the collected
dynamic data. The best mathematical model is the one with compliance functions of the

" form C(V)=a+bV, where a and b are constants obtained from the P, —V curves, and

the resistive pressures during inspiration change from a linear relation P, =RQ to a

nonlinear relation P, = RQ® where Q is the flow rinto the one-compartment lung and € is a
po.sitive number. The form of the resistance terms in the mathematical model indicates the
:= possible presence of gas-liquid foams in the experimental data.

The model of non-invasive mechanical ventilation which incorporates variable
compliances can then be written as follows.

Inspiration

g V.

Rl(d;i”]* l:V +P =P, 0<t<t (1.13)
a; +o; v, :

R2 d:;vt]z V{:V +Pex set 2 tll —t<ti (1'14)
a; +b;V;,

Expiration

Rc[d;:°J+ V; 7P =Pt <t<t (1.15)

ae+ e @

where V.V, and V, are lung volumes during inspiration period 1, period 2, and that
’ ,dqiing expiration period, respectively. R; and R_ are the resistances; a;,b;,a., and b,

are the compliance constants; P, is the end-expiratory pressure, P, the preset pressure,

EX

and P___ the ventilator applied pressure. Here, we use €=1 during 0<t<t

|
beep q-and €= 5

during t,, <t<t., since these give the best fit to the experimental data. Also, the value of
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t., is chosen to be the time when a sharp change in the slope of the pressure-flow curve is

observed.

We have determined the system parameters in the model from experimental data,
then used the model to compute key ventilatory outcome variables and compared them
with clinical data. The result has been published in Mathematical Medicine and Biology
with impact factor 0.368. (Please see manuscript in Appendix # 1.8).

1.3 Mathematical modeling of bacteria growth in the presence of antibiotics

Antibiotic resistance of bacteria is a growing problem. Mathematical models have
played an important part in understanding antibiotic resistance, such as the work of
Ganusov et al. (2000) which elaborated a structural approach to studying the regularities of
the population dynamics of unstable recombinant bacteria strain in a chemostat. The
approach was based on the mathematical modelling of all distribution in a population with
different numbers of plasmid copies. In another recent study, Dibdin et al. (1996) presented
a mathematical model that describes penetration of an antibacteria agent into a bacteria
biofilm. As well as dealing with penetration, and the consequent bacterial lysis, the model
considered diffusion of the released beta-lactamases in the extra cellular space and the
consequent inactivation there of further incoming antibiotic.

As observed by McGowan et al. (2001), pharmacokinetic models of infection can
make an important contribution to the study of the pharmacodynamics properties of an
antibacteria agent. Apart from providing data to allow for the optimization of drug dosing
regimens, such models can be used to describe the effect of a drug on a bacteria population,
and provide data for more-analytical studies, as well as hypothesis testing. Analysis of the
model can yield information on the pharmacodynamic parameters best correlated to the
chosen outcome. Pharmacokinetic models thus play a crucial role in ensuring antibiotic
efficacy and in reducing the chance of resistance.

The process of treatment of bacteria infections with antibiotics involves a
multitude of variables. Many factors effect the therapeutic efficacy, such as bacteria
susceptibility to antibiotics, physicochemical properties of the drug product, specific
properties of the infected tissue, metabolism and elimination of antibiotic, host factors, and
dosing regimen. According to Nolting and Derendorf (1995), some of the central questions

for addressing this problem are
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P10 What factors govern antibacterial activity?

2. How can antibiotic efficacy be quantified to permit reliable comparison between
different antibiotics?

v 3. How can efficacy of antibiotical treatment be optimized?

In the past, dosing regimens are often based on trial and error rather than on
rational design. An important step in addressing the above problem is the development and
analysis of a mode] of antibacterial activity. The most commonly used method was the
utilization of the killing curves which describe the time course of the antibacteria effect in
ofder to find the important parameters describing the killing behavior of the antibiotic over
time. Although widely emploved to characterize the susceptibility of a bacterium, the
method does not reflect the situation in vivo, where the antibiotic concentration is subject
to considerable fluctuation due to elimination and multiple dosing regimens (Mouton et al.,
1997)

In order to simulate more closely the in vivo conditions, we attempt to derive a
kinetic model of the dynamics of continuous flow peritoneal dialysis with single-pass flow
of fresh dialysate. We thus assume an open habitat, such as a chemostat for continuous
culture of microorganisms. Two strains of microorganisms compete for a single limiting
resource in the presence of an inhibitor (antibiotic) to which one strain of microorganisms
is sensitive and the other resistant. Let C and X be the concentrations of the resource and
the inhibitor, respectively, while S and R are the respective densities of the sensitive and

resistant strains. We arrive at the following system model.

SC
€ _(c,-C)o—r—ts¥s _Ex¥eCR (1.16)
; dt (1+yX ks +C) k. +C
§= ySC S g,RS _ 5 XS (1.17)
dt  (1+vX, Mk, +C) k,+R k +X,
AR _VCR R4 SR (1.18)

dt kp+C k., +R

App]iéation of the singular perturbation technique led us to necessary conditions
for the existence of limit cycle behavior. However, we have found that the conditions may
not be satisfied simultaneously since they are self contradictory. Thus, we have concluded
that the system model (1.16)-(1.18) does not permit periodic solutions. In such a case, the
model is deemed not suitable, since clinical data invariably shows oscillatory behavior. We

have therefore considered a modification of (1.16)-(1.18) as follows.
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dc ~ (i €5y SC g W CR

=(C, -C)o - - 1.19
dt o =C)o 1+vX, ks +C) ke +C (1.19)
dS  wCS(r-9) & RS
== —0S——t 2 A 1.20
&t T irX )k, +0) Tk s AN (120)

R
R VR R B8 (1.21)
dt k,+C k., +8

r

so that the susceptible bacteria S is limited by the physiological environment to grow only
up to the level r.

We have used experimental data supplied by Prof. John Hotchkiss at University of
Minnesota and Prof. Philip S. Crooke at Vanderbilt University to support our choices of the
terms utilized in the above model. The data has been collected from a culture of two
separate bacteria (Methicillin Susceptible Staphylococcus Aurens (MSSA) and Methicillin
Resistant Staphylococcus Aurens (MRSA)) growing in dialysis broth. The antibiotics used
were amoxicllian and vancomycin (Vanco).

The model analysis by the singular perturbation technique has been completed,
yielding conditions under which different dynamic behaviors may occur. We have written
the paper in a form ready to be submitted for publication. Our modelling results have been
interpreted in terms of bacteria-antibiotics inferaction in patients receiving dialysis
treatments. Although each dialysis treatment should be regarded as a batch process, a
sequence of treatments, one after the other, may be modeled as a continuous process.

However, Prof. Hotchkiss and Prof. Crooke are supplying additional
measurements on the gastrointestinal tract data which is more appropriate for modelling as
a continuous process. We are therefore waiting on these extra data to validate our model

further. The paper shall then be submitted in short order.
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Activity: Proposed (<—>)

| Actual (e—>)

Months
1-6

Months |
7-12

Months
13-18

Months
19-24

Months

25-30

Months
31-36

1. Qany out extensive literature
ss:arch to select the best
appro?ch and analytical tools
t:) de;relop and analyze the
model.

. Develop new analytical tools
if necessary, or modify the
existing ones to be more
of the

systems of interest.

capable tackling
. Develop models of cascade
systems characterized by
delay in response mechanism.
. Develop a model of
rinechanica] ventilation.

. Develop a model of bacteria
growth.

. Analyze the resulting models.
. Simulate the model to
Eomp‘mare with experimental
data’ and make model
modification, if necessary.

. Make clinical interpretations

-and conclusions.

v

ANA

v v

A4

Outputs of Subproject 1

Papers appeared/accepted in international journals

Papers presented in international conferences

"Ph.D. graduates

rMaster graduate

[ S S - ]
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Subproject 2: Mathematical Modeling of Blood Flow in the Coronary
Artery Bypass Grafting

Principal Investigator: Assoc. Prof. Dr. Benchawan Wiwatanapataphee
Heart acts as a pump creating the pulsatile pressure to propel blood from the heart

through arteries in which pressure is around 100 mmHg to channel the blood to arterioles

to capiilaries. The blood is transported back to the heart through a series of vessels:

capillaries to venules to veins in which pressure is around 20 mmHg . The walls of arteries

consist of three layers which are the tunica externa, the tunica media and the tunica intima.
The intima is the innermost layer composed of the endothelium and connective tissue.
Flow in the arteries is considered as a continuum. The arterial stretches when the pressure
rises during systole and it recoils when the pressure drops during diastole. When the
coronary artery is affected by a stenosis, critical flow conditions occur, for example
negative pressure, high shear rate at the arterial wall and wall compression, which are
thought to be the significant factors in the onset of coronary heart disease. In order to
understand the genesis of coronary diseases, a number of vivo using animal model and
vitro experiments have been conducted. It has been established that (i) blood behaves like a
viscoelastic and a shear-thinning liquid [Fung (1984), Chien et al. (1984)], (ii) blood flow
is controlled by the constriction or dilation of vessel wall, (iii) high shear stress at the wall
(WSS) is correlated with various degree of stenotic artery [Holme et al. (1997), Marano et
al (1998)], (iv) intimal thickeﬁing and WSS are correlated in the affected vessel [Lee et al.
(1998), Kraiss et al. (1991), Krams et al (1998)] and (v) when the WSS reaches a value
higher than 400 dyne/cm” the endothelial surface is irreversibly damaged [Ku (1997)]. In
1998, Marano et al. estimated WSS in collared carotid arteries of rabbits. They found that
the magnitudes of the wall shear rate (WSR) are 420 57'in the healthy small arteries and
between 2600-15000 s~ in the stenotic arteries.

Due to a difficult task of determining the critical flow conditions for both in vivo
and vitro experiments, the exact mechanism involved is still not well understood. In
general, mathematical modeling and numerical simulation can give better understanding of
the phenomena involved in vascular diseases. Over the last 2 decades, a number of
mathematical models based on Finite Element Method (FEM) have been proposed to
describe the rheological behavior of blood in the stenotic arteries using 1-D to 3-D with
rigid or compliant wall. The models with particular assumptions that blood acts like a

Newtonian fluid with constant viscosity and vessel is rigid seem not to be satisfactory to
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; predict the dynamics of real pulsatile blood flow in the artery. In 1990, Mann and Tarbell
~ used a non-Newtonian model to determine a nonlinear dependence of the viscosity of blood
_i on the strain rate in order to study the flow of blood analog fluids in rigid curved and
| straight artery models. Grigioni et al (2002) investigated the wall shear stress and velocity
field via the vivo experiment in unsteady vascular dynamics and proposed a non-
Newtonian model for an unsteady flow in rigid pipe driven by a known oscillatory pressure
gradient. Comparison to all the validated velocity points along the vessel’s lumen indicates
? tha:t the results of the model in a rigid pipe are not directly related to the data in vivo
experiment, However, the use of mathematical models and vivo experiments in the present
works allows us to understand the importance of the rheology in blood flow, at least from a
qualitative point of view. Therefore, the further development of mathematical model to
study blood flow is necessary. Once a satisfactory model has been generated, the benefits to
the future management of human health are unlimited.
In this study, a mathematical model is developed to study steady and unsteady
state blood flow through a stenotic artery with different severity. Blood is considered as a
non-Newtonian fluid. Using three geometry domains of straight tube with three different
sizes of stenosis: 25%, 50% and 65% . Numerical simulations based on FEM are carried
out for the flow field, temperature field and shear rate in the flow channel. Dependence of

the flow on the severity of stenosis has been investigated.

2.1 Numerical simulation of blood flow in a small artery channel with solid wall
This study focuses on the blood flow in stenotic artery. A mathematical model
based on FEM is developed to simulate blood flow with distribution of pressure. Blood is
considered as an incompressible and non-Newtonian fluid. The flow pattern with the
distribution of pressure and shear rate, are computed. The resuits show how the blood
flows through the present stenotic area. The quadratic profile is present in the flow channel
except in the stenosis area. Blood speed at the throat of the stenosis is blunt, resulting in
high shear rate and dropping of pressure there. Bigger size of stenosis gives bigger shear
rate and higher jumping pressure in the channel, especially around the stenosis.
2.1.1 Mathematical model
The computational domain is considered in the lumen channel. Blood is assumed
to be an incompressible fluid. The non-Newtonian model based on Carreau modei is used

to determine the viscosity of blood. The fluid motion is govermed by the continuity
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equation, Navier-Stokes equations and defined in the domain Q which is bounded by the

boundary 6Q =8Q, LA, LOQ

u. =0, @2.1)

ou.
pE'—V-n(ui‘j+uj,i)+pujuu+p'i=E, (2.2)

L}

where p denotes the blood density of 1.06g cm™, u, represents the component of velocity
vector in the ith direction, p denotes pressure in the channel, and F is the volume force
affecting the fluid. The quantity 1 1s the blood viscosity. We here use a Carreau model for

describing viscosity by the following four-parameter equation
n="n, +(n, -1+ A 1", (2.3)

where A =3.313s, the zero shear rate viscosity 1, = 0.56 dyn-s/cm’, the infinite shear rate

viscosity M, =0.0350 dyn-s/cm*® and n =0.3568.

The quantity # in equation (3) represents the shear rate given by

¥= \E@ui +4Vy HAWE +2uy Vi) +2(v, + Wy )T 20, + W)Y, (24)

For three-dimensional problem, the above system of equations can be manipulated to yield
a closed system of four partial differential equations in terms of four coordinates and time-

dependent unknown functions u,,u,,u, and p. The system, once supplemented by the
initial and boundary conditions, can be solved numerically to yield the velocity field with
pressure distribution and to determine the wall shear stress. In this work, we study both
steady state and unsteady state flow in the stenotic tube. The boundary conditions
considered for velocity field and pressure field include the Dirichlet type and the
Neumann/Robin type, i.e, for 1,j=1,2,3

u =7; o0,

i in

u =0 o0

i wall

pP=p, Ny, +(u,;) ) n=0 8Q

qut
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: In this work, we assumed that blood flows into an artery tube with constant velocity of
20.13 ems™ for steady state problem and flow with the pulsatile velocity for unsteady

state problem. We chose a pulsatile flow rate in the right coronary artery of 65 years old
| patient given by Bertolotti et al (2001) [20] and assumed that blood flows out with constant

. pressure 1.865x10° dyn/em’ or 140 mmHg .

+ 2.1.2  Weak formulation
To develop the variational statement for the boundary value problem, we consider

- the following representation of the problem.

Find u,,u,,u, and p such that for all test functions {i;, &1, ws € Hy, (©) and pe Hy (Q),

all the Dirichlet boundary conditions for the unknown functions are satisfied and

(u,,,P)=0, (2.5)

[P%,ﬁfj +{(puu,;,0;) —((n[ui?j +u;); ],ﬁi)+ (p, a0 = (F, &), (2.6)

where (-,-) denotes the inner product on the square integrable function space L*(Q),
H'(Q) is the Sobolev space W (Q) with norm
”-”LZ’Q,HLq(Q)= {veH' (€)|v=0o0n agq}. A standard procedure is then carried out o

reduce the second-order derivatives involved in the above problem into the first-order ones
using integration by parts and ensuring that all integrals involved are well defined.

To find the numerical solution of the problem, we pose the variational problem
into an N -dimension subspace. The computation domain € is discretized into a finite
number of elements connected by N nodes. Let U and P denote respectively the global
vectors of velocity and pressure fields with each ith entry representing the value of the
corresponding unknown function at the i th node of the finite element mesh. i’hen, by using

the Galerkin finite element formulation, we obtain the ordinary differential equations:

D U=0,
MU+A U+AP=F, (2.7)
where the superposed dot represents differentiation with respect to time and all coefficient

matrices are global matrices assembled from element matrices. Matrix M corresponds to

the transient term, matrices A and D, correspond to the advection and diffusion terms,
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matrix A  corresponds to the pressure term and vector F provides forcing functions for

the Navier-Stokes equations.

2.1.3  Numerical results
A test example is given here to demonstrate the validity of mathematical model.

The example under consideration is a stenotic artery with a 25%,50% or 65% stenosis as

shown in Fig.2.1. The artery is modeled by a straight tube with the length of 5 ¢m and
diameter of 0.2 cm containing stenosis in the middle part at one side of the internal wall.
In this work, a spherical shape with radius of 0.15 c¢cm was used to define the stenosed
disease. We assumed that no volume force affects the fluid.

Fig. 2.2 shows the velocity vectors and streamlines of blood at stenosis in the
middle part of the domain. The flow patterns and streamlines clearly outline the path of the
blood and show how the blood flows through the stenosis. The maximum speed is present
at throat of the stenosis as shown in Fig. 2.3, The parabolic profile of velocity is present in
the upper part and lower part of the stenosis. Fig. 2.4 shows the distribution of pressure and
shear rate along a longitudinal line of the artery. It indicates that pressure drops very fast
and high shear rate occurs near the stenosis.

Comparing the results obtained from three tubes with 25%,50% and 65%

stenosis, blood speed profile at the throat of the stenosis in all domains is blunt. This
results in high shear rate and dropping of pressure there as shown in Fig. 2.3. Bigger size of
stenosis gives bigger shear rate and higher jumping pressure in the channel, especially near
the stenosis.

To study the transient flow in stenotic artery, we chose the artery with 50%
stenosis and used a flow rate wave form in the right coronary artery of a 65 years old
patient as an inlct flow [20]. Fig. 2.5 and Fig. 2.6 show the velocity vectors and streamlines
of blood along the arterial axis at time t=0, 0.3, 0.8 and t=1.2 s. Fig. 2.7 shows the
distribution of pressure and shear rate along a longitudinal line of the artery at different

times. The results show that the critical flow occurs at all time, especially between t=0.3 to

t=0.5 s with pressure between 1.96x10° to 2.23x10° dyn/em® and shear rate between

16,900 to 25,000 s™'.
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) 0 00 | 02 ] 03 | 04 | 05 | 06 | 07 | 08

U 32 0031 | 70 | 215 | 200 | 161 | 117 | 73 | 63
Powe X 10° | 187 | 1.89 | 192 | 2.03 | 1.98 | 196 | 1.92 | 1.90 | 1.90
yoox10° | 019 | 023 | 063 | 25 | 223 | 169 | 113 | 063 | 0.53

Re 47 42 100 | 389 | 359 | 276 | 191 109 90
1(s) 0.9 1.0 | 1.1 1.2 1.3 1.4 1.5 1.6 1.7
U e 78 102 | 121 125 113 91 66 47 35

Pux 10° | 101 | 193 | 194 | 154 | 193 | 191 | 190 | 189 & 1.88
y. x10° | 070 | 097 | 119 | 125 | 110 | 083 | 0.56 | 036 | 026
Re 117 | 160- | 195 | 205 | 183 | 141 | 97 | 65 | 47

2.1.4. Conclusions

A mathematical model for simulating blood flow in stenotic artery has been
constructed. The model is used to study the critical flow in stenotic artery with severity of
25%, 50% and 65% . The result shows the significant effect of the stenosis size on fluid
flow, pressure field and shear rate. The quadratic profile is present in the flow channel
except in the stenosis area. The blood speed at the throat of the stenosis is blunt, resulting
in high shear rate and dropping of pressure there. Bigger size of stenosis gives bigger shear

. rate and higher jumping pressure in the channel, especially around the stenosis. For 50%
© stenotic artery, the critical flow occurs at all time, especially during systolic period.

It should be addressed here that blood flow in a small stenotic artery is an
extremely complex phenomenon and there are still many unsolved modeling problems. The
presented work focuses on blood flow in the lumen channel without the effect of the wall.
Further work could be carried out to incorporate the fluid-wall interaction in a stenotic

artery.
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Figure 2.1 Computational domain (a) 25% stenotic tube (b) 30% stenotic tube (c)

65% stenotic tube.
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Figure 2.2 Velocity vector and streamline along the stenotic artery with different
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% 10° (a) Pressure along a longitudinal line of 50% stenotic artery.
2.05F
— A —t=0s
B B R t=03s
‘g“ """""" RIS ——t=08s
=) i -=-t=12s
@ 1.95 L
5 | T e :
B A8 T N
5 """“_i.!_..-a:.f..-"f;;'.'-l;f;.éli—';'-f;ifél;;;u ' """" P e
1'8% 4 3 2 1 0
longitudinal length (cm)
{a) Shear rate along a longitudinal line of 50% stenotic artery.
100001
~ 8000F i
» H
o 6000 i
o i
= 4000+
2 L
"B 2000 ST e
TSROSO PR P TIC : / T
" e y— e
% 4 3 2 1 0

longitudinal length (cm)

Figure 2.7 Distribution of (a) pressure (dyn/em ) (b) shear rate (1/s) along the

stenotic artery at different times t.

References

f1]

[2]

[3]

(4]

5]

K.B. CHANDRAN, J.H. MuN, K.K.CHol, J.S. CHEN, A.HAMILTON, A. NAGARAJ AND
D.D. MCPHERSON, 4 method for in-vivo analysis for regional arterial wall material
property alterations with atherosclerosis: preliminary results, Medical Engineering
and Physisa, 25 (2003), pp. 289-298.

F.N. VAN DE Vossg, J. DEHART, C.H.G.A. VAN OuEN, D. BESSEMS, T.W.M.
GUNTHER, A. SEGAL, B.J.B.M. WOLTERS, J.M.A. STIINEN AND F.P.T. BAAIJENS,
Finite-element-based computational methods for cardiovascular fluid-structure
interaction, Journal of Engineering Mathematics, 47 (2003), pp. 335-368.

B. CHAHBOUNE AND J.M. CROLET, Numerical simulation of the blood-wall
interaction in the human left ventricle, The European Physical Journal: Applied
Physics, 2 (1998), pp. 291-297.

B.M. JOHNSTON, P.R. JOHNSON, S. CORNEY, D. KILPATRICK, Non-Newtonian blood
flow in human right coronary arteries: steady state simulations, Journal of
Biomechanics, 37 (2004), pp. 709-720.

Y.I. CHo anND K.R. KENSEY, Effects of the non-Newtonain viscosity of blood on flows

in a diseased arterial vessel. Part 1: steady flows, Biorheology, 28 (1991), pp. 241-
262.



[6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

34
D.K. STANGEBY AND C.R. ETHIER, Coupled computational analysis of arterial LDL
transport-effects of Hypertension, Journal of Biomechanical Engineering, 5:3 (2002),
pp. 233-241.
P. RUENGSAKULRACH, R. SINCLAIR, M. KOMEDA, J. RAMAN, I. GORDAN, B. BUXTON,
Comparative histopathology of radial artery versus internal thoracic artery and risk
factors for development of intimal hypeplasia and altherosclerosis, Circulation,
November 9:2 (1999), pp. 139-144,
G. KARNER AND K. PERKTOLD, Effect of endothelial injury and increased blood
pressue on albumin accumulation in the arterial wall: a numerical study, Journal of
Biomechanics, 33 (2000), pp. 709-715.
G.A. HoLZAPFEL, T.C> GASSER, M., STADLER, 4 structural model for the viscoelastic
behavior of arterial walls: Continuum formulation and finite element analysis,
Eoropean Journal of Mechanics A/Solids, 21 (2002), pp. 441-463.
X. ZHANG, M. FATEMI, AND J.F. GREENLEAF, Vibro-Acoustography for modal
analysis of arterial vessels, IEEE, (2002), pp. 513-516.
G-T Liu, X-J WANG, B-Q A1, AND L-G Liu, Numerical study of pulsating flow
through a tapered artery with stenosis, Chinese Journal of Physisc, 42:4-1 (2004),
pp-401-409.
F.G. BAasoMBrIO, E.A. DaRri, G.C. BuscaGLiIA AND R.A. FEU0O, Numerical
experiments in compleax hamodynamic flows. Non-Newtonian effects, International
Journal of Computational Fluid Dynamics, 16:4 (2002), pp. 231-246.
M.R. KAAZEMPUR-MOFRAD AND C.R. ETHIER, Mass transport in an Anatomically
realistic human right coronary artery, Annals of Biomedical Engineering, 29 (2001),
pp. 121-127.
S. DEPARIS, M.A. FERNANDEZ, L. FORMAGGIA, F. NOBILE, Modified fixed point
algorithm in fluid-structure interation, Comptes Rendus Mecanique, 331 (2003), pp.
525-530.
J-F GERBEAU, M. VIDRASCU, P. FREY, Fluid-structure interaction in blood flows on
geometries based on medical imaging, Computers and Strucutres, 83 (2005), pp.
155-165.
M.A. FERNANDEZ, M. MOUBACHIR, An exact-Newton algorithm for solving fluid-

structure interaction problems, Comptes Rendus Mathematique, 1336 (2003), pp.
681-686.



J

35

i [17] D. TANG, C. YANG, S. KoBAYASHI, D.N. Ku, Steady flow and wall compression in

‘. stenotic arteries: a three-dimensional thick-wall model with fluid-wall interation,
Transactions of the ASME, 123 (2001), pp. 548-557.

| [18] B.R. SiMON, M.V. KAUFMANN, M.A. MCAFEE, A L. BALDWIN, Finite element models
Sor arterial wall mechanics, Journal of Biomechanical Engineering, 115 (1993), pp.
489-496.

! [19] F. ARMERO, E. LOVE, An arbitrary Lagrangian-Eulerian finite element method for

P finite strain plasticity, International Journal for Numerical Methods in Engineering,

I 57(2003), pp. 471-508.

| [20] C. BERTOLOTTI, V. DEPLANO, J. FUSERI, P. DUPOUY, Numerical and experimental
methods of post-operative realistic flows in stenosed coronary artery bypasses,

Journal of Biomechanics, 34 (2001), pp. 1049-1064.

22 Numerical study of blood flow in stenotic arteries with solid wall and
permeable wall
This study focuses on the blood flow in stenotic arteries with solid wall and
permeable wall. A mathematical model based on Finite element method is developed to
simulate blood flow with distribution of pressure and shear rate in the lumen region and

arterial wall. Blood in the lumen is considered as incompressible and non-Newtonian fluid

{| and arterial wall is modeled as porous layer. The results show that the model with solid

* wall generates linear distribution of pressure along the arterial line except at the stenosis

i

whereas the model with permeable wall gives oscillating pressure along an arterial line.
High shear rate and Higher dropping pressure occurs at the stenosis. Bigger size of stenosis
gives higher shear rate and higher pressure with bigger dropping pressure around the

stenosis.

2.2.1 Mathematical model
 The computational domain consists of two regions: the arterial wall and the

arterial lumen. The velocity field in the artery lumen and in the arterial wall are computed

in-a fully coupled manner through the use of the lumen/wall condition. Blood is assumed to

be incompressible fluid and non-Newtonian fluid. The non-Newtonian model based on

Carreau model is used to determine the viscosity of blood. The artery wall is assumed to be

porous media with permeability of 1.0x107*. The fluid motion is governed by the
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continuity equation, Navier-Stokes equations and defined in the domain Q=Q, = LQ

wall

which is bounded by the boundary 0Q =0Q, WOQ. . . \JOQ ewan Y 020 -
V-v=0, (2.8)
~V-q(Vv+(VV) ) +p(v-V)v+Vp =T, (2.9)

where p denotes the blood density, v represents the 3D velocity vector, p denotes

pressure in the channel, and f is the volume force affecting the fluid. For this model, we

assume that no volume force is affecting the fluid, so f =0. The quantity n is the blood

viscosity defined by the following four-parameter equatton
n=mn, + M, — M)+, (2.10)

where A =3.313s, the zero shear rate viscosity m, = 0.56 dyn-s/cm’, the infinite shear rate
viscosity 1, =0.0.0345 dyn-s/cm* and n =0.3568.

The quantity ¥ in equation (3) represents the shear rate given by

y:J—l—Gui +HAVY +AWS 20y + vy ) +2(v, + Wy ) 20, +wy)') (2.11)

In arterial wall (porous domain), flow is described by the Brinkman equations according to

the following.

Vou=0, (2.12)

—p.Au+—i—u+Vp:g, (2.13)

where . denotes viscosity in porous layer, x is permeability, u represents the 3D velocity
vector, and g is the volume force affecting the fluid in artery. For this model, we assume
that no volume force is affecting the fluid in the artery, so g=0.

For three-dimensional problem, the above system of equations can be manipulated
to yield a closed system of eight partial differential equations in terms of eight coordinate
and time-dependent unknown functions v,v,,v;, u,,u,,u, and p_,p,. The system, once

supplemented by the initial and boundary conditions, can be solved numerically to yield the

velocity field with pressure distribution and to determine shear rate.

#
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The boundary conditions considered for velocity field and pressure field include

the Dirichlet type and the Neumann/Robin type, i.e, for i,j=1,2,3

v=v 3Q (2.14)

P, =Pp NVV+(VV)')-n=0 0Q,, (2.15)

For steady state flow, blood speed at inlet boundary 9, is set to the mean flow of 20.13
crL/s. and we assumed that blood flows out with constant pressure 1.865 x10° dyn/cm’ or
140 mmHg at 0Q,,

| At the interface between lumen and artery wall, the expression for the pressure

and velocity must be continuous across the interface. We thus set

P, 15.9)

wal — Pu |wal]

interface ? (2 1 6)

and

u|waﬂ -

M 2.17)

We also assumed that no slip condition 1s applied on the external wall. To this end, the
boundary value problem for blood flow in a stenotic artery is as follows.

BVP: Find v,p, and u,p, such that the field equations (2.8) and (2.13) are respectively.

satisfied in the computational domain Q and all boundary conditions are satisfied.

2.2.2  Weak formulation
To develop the variational statement for the boundary value problem, we consider

the following representation of the problem.
) Find v,p, and u',p, such that for all test function V¢ H;, (Q), p, € Hy, (Q),
ieHy,(Q), p,eHy, (Q), all the Dirichlet boundary conditions for the unknown

functions are satisfied and

¥

(Vv,p) =0, (2.18)
(pv-Vv,9)=(V-n(Vv+(VW)),¥]+(Vp,, ) = (f,9), (2.19)
(Vu,p,) =0, (2.20)

~p(Au,d) +%(u,ﬁ),+(Vpu i) = (g, ), (2.21)
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where (-,-) denotes the inner product on the square integrable function space L*(Q),

H'(Q) is the Sobolev space W"*(Q) with norm || , ,,H},, (@) ={veH'(€Q)|v=00n2Q,}.

12,007
A standard procedure is then carried out to reduce the second-order derivatives involved in
the above problem into the first-order ones using integration by parts and ensuring that all
integrals involved are well defined.

To find the numerical solution of the problem, we pose the variational problem
into an N -dimension subspace. The computation domain Q is discretized into a finite
number of elements connected by N nodes. Let V, P, and U, P, denote respectively the
global vectors with each ith entry representing the value of the corresponding unknown

function at the ith node of the finite element mesh. Then, by using the Galerkin finite

element formulation, we obtain the ordinary differential equations:

D,V =0,

AV+AP, =F, 2.22)
D,U =0,

AU+A,P =F, " (2.23)

where and all coefficient matrices are global matrices assembled from element matrices.

Matrices A,,A, and D ,D, comespond to the advection and diffusion terms, matrix

A, A, corresponds to the pressure term and vector F provides forcing functions for the

Navier-Stokes equations.

2.2.3  Numerical results

A test example is given here to demonstrate the validity of mathematical model.
The example under consideration is a stenotic artery with severity of 25%, 50% and 65%.
The artery is modeled by a straight tube with the length of 5 ¢m and diameter of 0.2 c¢m
containing stenosis in the middle part at one side of the internal wall. Wall thickness is
0.05 cm and diameter of the flow channel (lumen) is 0.2 cm. A spherical shape with radius
of 0.15 cm was used to define the stenosed disease. The computational domains are shown

in Section 1.

L
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Fig. 2.8-2.10 show the velocity vectors and streamline of blood near 25%, 50%

and 65% stenoses in the middle part of the solution, respectively. The flow patterns and

. streamlines clearly outline the path of the blood and show how the blood flows through the

stenosis. The maximum speed is present at throat of the stenosis as shown in Fig. 2.11 and
Fig 2.12.

Fig. 2.13 shows the distribution of pressure along a longitudinal line of stenotic

! arfery obtained from a model with solid wall and permeable wall. It is noted that (1) for

- 25% stenotic artery, both models with solid wall and with permeable wall give the same

préssure distribution which is a linear function along the longitudinal line of the artery; (2)
blood flow in the 50% stenotic artery with solid wall generates linear distribution of
pressure along an arterial line except at the stenosis where dropping pressure occurs,
whereas the model with permeable wall gives the oscillating pressure along the arterial
line; (3) comparison to a model with 50% stenosis, higher dropping pressure is present in
the model with 65% stenosis. The model with solid wall generates linear distribution of
préssure except at the stenosis whereas the model with permeable wall gives oscillating
pressure along an arterial line.

Fig 2.14 shows shear rate along a longitudinal line of 25%, 50% and 65%
stenotic arteries obtained from a model with solid wall and permeable wall. The results
indicate that high shear rate occurs at stenosis. Comparison to a model with solid wall, it is
found that (1) a model with permeable wall and 25% stenosis gives almost the same shear
rate from inlet boundary to the front hill of stenosis, lower shear rate from the hill to throat
of stenosis and then higher shear rate after leaving the throat of stenosis; (2) Blood flow
obtained from a model with permeable wall and 50% stenosis (1) generates oscillating

shear rate along the longitudinal line from inlet boundary to the back hill of stenosis, and

' gi\;es the same shear rate after traveling 3 cm from inlet boundary; (3) Blood flow obtained

from a model with permeable wall and 65% stenosis gives the same shear rate along the

longitudinal length except the area near the stenosis where shear rate is much higher.

2.2.4. Conclusions

The results show the significant effect of permeable wall on the flow pattern of
blood, especially at the stenosis area. In general, we conclude that blood speed at the throat
of the stenosis is blunt, resulting in high shear rate and dropping of pressure there. Bigger
size of stenosis gives bigger shear rate and higher jumping pressure in the channel,

esf)ecia]ly near the stenosis. Comparison the results obtained from the model with solid
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wall and permeable wall, it is found that the model with solid wall generates linear
distribution of pressure except at the stenosis and the model with permeable wall gives
oscillating pressure along an arterial line. Higher dropping pressure occurs at the stenosis.
Bigger size of stenosis gives bigger dropping pressure around there.

It should be addressed here that blood flow in a small stenotic artery is an
extremely complex phenomenon and there are still many unsolved modeling problem. The
presented work focuses on blood flow in a stenotic artery with solid wall and permeable
wall. Further work could be carried out to incorporate the fluid-wall interaction in a

stenotic artery when arterial wall is poroelastic material.
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Figure 2.9 Velocity profile along 50% steneotic artery obtained from a model with

solid wall and permeable wall.
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w (a) Blood speed at mid-plane of 25% stenotic artery
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Figure 2.11 Blood speed at (2) mid plane of stenosis with different severity obtained

from a model with solid wall and permeable wall.
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Figure 2.14 Shear rate along stenotic arteries with different severity obtained from a

model with solid wall and permeable wall,
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23 A Numerical study of non-Newtonian blood flow in stenosed coronary artery
bypass graft

It has been reported that cardiovascular disease is the leading cause of death in
developed countries [1, 2]. In recent years, surgical treatments of cardiovascular diseases
have been developed rapidly, and coronary artery bypass grafting (CABG) has been widely
used for patients with severe coronary artery diseases. The bypass grafts are worldwide
implanted each year. However, up to 25% of the grafts become occluded in one year and up
to 50% occluded in ten years [3]. Intimal hyperplasia which is related to the distribution of
wall shear stress (WSS) is an importance factor in failure of the coronary bypass surgery. In
general, atherosclerotic lesions in the coronary arteries have been related to low and
oscillating WSS [5, 4].

Another important factor in simulating blood flow is the behavior of blood. The
blood is a non-Newtonian fluid with low shear rate, less than 100 s [10]. Some numerical
studies assumed the blood to be Newtonian under the assumption that the shear rate is
larger than this value [11, 12, 13]. It has been known that near the center of the arteries the
shear rate is small. Therefore, a non-Newtonian behavior must be taken into account in the

model.

2.3.1 Mathematical model
The blood is assumed as an incompressible fluid and blood flow is laminar. The
governing equations consist of the continuity equation and the Navier-Stokes equations,

which can be expressed in vector notation as follows:

V-u=0, (2.24)
a—“+u-Vu=—1-V-c5', (2.25)
ot p

where u and the blood velocity vector, p is the density of blood. & is total stress tensor
which 1s defined by o=-pl+1, p is pressure, T is the stress tensor and linearly

dependent on the rate of deformation tensor D with the relation t=2n(y)D,
D= ‘;[Vu +VuT], 1 and y denote the viscosity of blood and shear rate respectively. For

the non-Newtonian property of blood, n depends on the shear rate 7. The complex

rheology of blood is approximated using a shear-thinning model by Carreau model.

Y
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n=n. +m, —n )1+ 2] (2.26)

For ¥, a scalar measure of the rate of deformation tensor, y = 2tr(D6 , M, and n_ denote

* zero shear viscosity and infinite shear viscosity. The consistency index, » is the parameter

between 0 and 1. The other parameters in equation (2.26) are based on Cho and Kensey
[61, M, =0.0345 gem™'s™, n, =056 gem™'s', n=0.3568, A =3.313s.

To completely define the flow problein, boundary conditions for the velocity and
pressure ﬁeldis must be specified. For a typical CABG system, the boundary of the
cofnputation region consists of four parts, namely the inflow surfaces of the native artery
and the bypass graft, the artery wall and the outflow boundary.

| On the inflow surfaces, The"pulsatile velocity used in this study is shown in Figure

2.15 [7]. The flow pattern is very large during systole and small during diastole.

A

4

(@ : (b)

Fi:gure 2.15 Geometry of three-dimensional 75% stenosed right coronary artery with

bypass grafting model: (a) global view; (b) x-z view.
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Figure 2.16 The right coronary artery volume flow rate [7].

No-slip condition is applied to the artery wall. The outflow boundary is assumed
to be

g-n=p,

where n is the unit normal vector to the outlet surface. We assume pressure at the outlet of
140 mmHg.

In summary, the fluid flow problem in CABG is governed by the following

boundary value problem.

BVP: Find u and p such that the field equations (1) and (2) are satisfied in Q

and all boundary condition are satisfied.

2.3.2 A Numerical algorithm based on the finite element method

The variational statement corresponding to the BVP is then VBVP: Find u and p

€ H'(Q) such that for all w* and w” € H (Q), all boundary conditions are satisfied and
(V-u,w")=0,

[%,w“]+(u -Vu,w" ) = !

P

(2.27)

(V-o,w"), (2.28)

where (-,) denotes the inner product on the square integrable function space L*(2),H'(Q)

is the Sobolev space W'*(Q) with norm ||-||,, and Hy(Q)={veH'(Q)|v=0 on the
Dirichlet type boundary } .

(]
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To find the Galerkin numerical solution of the above problem, we pose the
problem into a finite dimension subspace. The Galerkin finite element formulation was

used in the calculation. Then, we obtained the system of ordinary differential equation,

C"U =0,
. ~ (2.29)
MU+ A(U)U-CP =0,

2.3.3  Numerical example

Flow simulations were conducted under a typical physiological condition. The
ﬂﬁ}d properties are typical of human blood with density of 1.06 gecm™ [8]. The
computation region, as shown in Figure 2.15, represents the right coronary artery with 75%
ste”nosis located at 3.95 cm from the inlet boundary. Diameter of the native artery is equal
to :0.3 cm (D), and diameter of grafts is equal to 0.96xD [9]. The length of investigation
is about 8.5 cm.

We simulate the blood flow through stenosis right coronary artery with 45°, 60°
and 90° bypass operations in three-dimensions. The mesh as shown in Figure 2.15 consists
of 27030 nodes and 15819 elements. To get flow patterns in successive cycles, each of

which is divided into 280 time steps with step size 3.57 ms.
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Tablel: Mean/maximum velocities, pressures and mean/maximum and minimum wall

shear stress -

RCA with t U s j WSS, WSSuin
75% stenosis | (s) (cm/s) (mmHg) (dyn/em?) (dyn/cm?)
0.4 150.68 145.99 449.70 0.53
Without 0.8 47.55 141.56 113.75 0.55
bypass graft 1.2 92.91 143.38 255.98 0.79
1.6 36.91 140.91 80.61 0.34
0.4 154.16 147.72 442.03 1.422
With 45° 0.8 48.28 142.06 111.13 0.40
bypass graft 1.2 94.71 144.52 253.79 0.85
1.6 37.09 141.17 82.18 0.46
0.4 157.51 148.15 2760.47 0.00
With 60° 0.8 46.75 142.01 916.00 0.00
bypass graft 1.2 91.75 144 .48 1765.31 0.00
1.6 36.62 141.15 T 692.76 0.00
0.4 183.61 147.80 520.25 0.00
With 90° 0.8 49.78 141.75 123.35 0.00
bypass graft 1.2 94.54 143.96 273.83 0.00
1.6 38.05 141.01 87.22 0.00

Table 1 shows the maximum blood speed, pressures and maximum and minimum
wall shear stress. Maximum speed at the throat of stenosis obtained from each domain is
very high at the peak systolic. The results indicated that pressure drops along the arterial
axis. Figure 2.17 shows, in x-z plane, that the retrograde fiows occur along the vessel wall
in the neighborhood of heel part in the native artery. Bypass graft with 45° produces the
re-circulation zone in the cardiac cycle. The re-circulating jet flow tends to decrease as the
anastomosis angle increases as shown in Figure 2.18.

Figures 2.19 and 2.20 show the wall shear stress along the lines A and B,
respectively. The results indicate that very high WSS occurs during systole period. Figure
2.19 shows that wall shear stress at the bed of graft (line A) tends to increase after bypass

operation for all graft angles. Figure 2.20 shows WSS at the toe part of the graft (line B).

High WSS is present at the toe part as shown in Figure 2.20.

-}
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23.4 Conclusions

A mathematical model of blood flow patterns in the 75% right coronary artery

bypass grafting is presented based on the Bubnov-Galerkin Finite Element formulation.

* The thrée-dimensional non-Newtonian flow is calculated. On comparing the results with

other angles of bypass grafts, the ones of 45°graft angle seem to be satisfied. It can be
stated that the proper choice of the diameter of the graft might improve the balance of

~ inflow and outflow in the coronary artery. It should be addressed that to improve the
| accuracy of results, the effect of porous wall and wall deformation must be included.

, Therefore, further research work is required.
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Figure 2.17 The streamline velocity field in RCA (a) without and (b)-(d) with bypass

operation 45°, 60° and 90°, respectively, in x-z plane at specific times.
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Figure 2.20 The wall shear stress evaluation along line B: (a) without bypass grafting

and (b)-(d) with bypass grafting of angles 45°, 60° and 90°, respectively.
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Activity: Proposed (<>)

Actual (e—>)

Months
1-6

Months
7-12

Months
13-18

Months
19-24

Months
25-30

Months
31-36

L. Cbnstruction of mathematical
model.
2. Development of numerical
technique
¢ Design of numerical
method (NM)
. iImplementation of NM in
‘I a computer
3. Vglidatlion
o V|Des}gn of schemes &
Ianalysis

[ V|Computati0n & analysis

M A

vV

v

A

A

Outputs of Subproject 2

Papers appeared/accepted in international journals

Papers presented in international conferences

Ph.D. graduates

Subproject 3:

Principal Investigator: Prof. Dr. I. Ming Tang

Mathematical Modeling of Disease Transmission

The project commenced around the end of the first academic semester of 2002. As

" a j)rogram director in the Institute of Science & Technology for Research & Development,

Mahidol University, the investigator of this subproject met on a regular basis with the

program directors of the Center for Vaccine Development (CVD) and the Conservation

. Biology Center (CVB). Through his acquaintance with Prof. Sutee of CVD, he met with

the French scientists at the Institute Recherche pour Developpement (IRD) who were

working on the transmission of infectious diseases in Thailand. Dr. Tang established very

" close collaboration with them, especially Dr. Phillippe Barbazan. Dr. Barbazan served as

- the co-advisor to three of Dr. Tang's Ph.D. students, who have subsequently graduated with

their Ph.D. They are now working at three universities in Thailand.
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Due to the interests of the investigator’s collaborators, he has worked on the
following diseases:
1. Dengue Fever
Malaria
West Nile Virus
Japanese Encepthalitis
Tuberculosis

Severe acute respiratory syndrome (SARS)

N e LN

Leptosprosis

8. Smallpox
and has published papers on these diseases. Please see Appendices # 3.1-3.14 for full
papers.

To further improve the research capabilities of the students, Dr. Tang have joined
up with Dr. Phillippe Barbazan to set up a Franco-Thai Collabrative Research network
involving six institutions and three units in France. We have been informed that our
proposal (one of fifteen accepted) has been accepted and it is now running. This is a four
year proposal. The title of the proposal is Spatial approach and mathematical modeling
of emerging infectious diseases transmission and development of resistance, It is under
the Franco — Thai Cooperation Program in Higher Education and Research. My team
is only interested in that part of the proposal that is underlined.

Several officials in the Ministry of Public Health have indicated interests in the
net-work of local surveillance centers in the provinces. Dr. Suwich Thammapalo, Chief,
Dengue Fever Control Section, Bureau of Vector Borne Disease Control, MOPH is
interested in my proposed network. Professor Dr. Virasakdi Chonsuvivatwong,
Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, who is the Ph.D.
thesis advisor of Dr. Suwich is interested in the work of Dr. Puntani Pongsumpun.
Dr. Suwich is working on a statistical model to correlate the data on the DHF cases, rain
fall, rain days, max. and min. temp. and humidity in the monthly records over the past 20
years (1977-1997). Dr. Viroj Tangcharoensathien, Director of IHPP-Thailand, MOPH is
working on projecting the HIV/AIDS incidences in different population groups in Thailand
over the next forty years to help in determining the public health policies on AIDS from an

economic viewpoint. The output of our work could assist the MOPH.
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The MOPH are interested in our proposed network because it will be based in the

provinces and not in Bangkok. This being the reason we recruited the students from the

Rajabhat Institutes. The undergraduate students at these institutes are from the local

villages in the provinces. They would return to the local villages and become teachers at

the tamboon schools. They might be able to get the local people interested in public health

issues of direct concern to them. Leptosprosis is a disease affecting the poorer provinces in

Thailand where the medical care is not as advanced as in Bangkok and the other big cities.

Having local people as part of a community-based public health surveillance units fits into

the governmental plan of getting local people involved in thier own development.

Leptosprosis is also being used as the bacterium to determine the toxicity of

nanoparticles, a project being undertaken in the Capacity Building Unit in Nanoscience &

Nanotechnology of the Faculty of Science. This unit is also being headed by Prof. Dr Tang.

Table I11: Proposed and Actual Activity for Subproject 3.

Activity: Proposed (<>

Actual («—>)

Months
1-6

Months
7-12

Months
13-18

Months
19-24

Months
25-30

Months
31-36

. M_;)delling P.

. M;pdelling transmission of

dengue hemorrhagic fever.
Modelling cannibalism in an
ag_le structured predator-prey
sy{stem.

falcipurum

malaria transmission,
i

. M_I:odell:ing of P. vivax malaria

transmission.

’.
. Analysis of feedback control

A
of blood platelet regulation by
TPO.

. Study EPQ regulation of

erythrocytes production.

. Modetl the spread of seeds in

i
tropical forests.
, :

y

<

A

N

A

o

0

* The investigator has become interested in SARs, Leptosporosis, and other diseases instead.
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Outputs of Subproject 3

Papers appeared/accepted in international journals 14
Papers presented in international conferences 3
Ph.D. graduates 4
Master graduates 9

Subproject 4:  Application of Log-linear and Logistic Models to Cancer
Patients: A Case Study of the National Cancer Institute

Principal Investigator: Assoc. Prof. Dr. Montip Tiensuwan

The activities in this subproject have followed the proposed plan, that is,
(1) Application of log-linear models to cancer patients: a case study of data from the
National Cancer Institute.
(2) Application of logistic regression models to cancer patients: a case study of data from
the National Cancer Institute.

We finished number (1)} and submitted our paper to the Southeast Asian Journal of
Tropical Medicine and Public Health (see the manuscript in Appendix 4.1).

For number (2), application of logistic regression models, the aims of the study are
as follows:
1. To analyze the cancer data by using logistic regression models to identify factors
associated with the status of last contact of all cancer patients and estimate parameters of
the models which indicate association between cancer variables.
2.  To analyze the cancer data by using logistic regression models to identify factors
associated with the status of last contact of cancer patients for individual gender and
estimate parameters of the models which indicate association between cancer variables.
3. To analyze the cancer data by using logistic regression models to identify factors
associated with the status of last contact of cancer patients for the specific site and estimate

parameters of the models which indicate association between cancer variables.

Results of the completed study

The subjects were cancer patients treated at the National Cancer Institute. We
collected cancer data by using a cancer notification form of the National Cancer Institute.
The classification and coding of primary site and morphology are given in cancer
notification form, that is ICD-O (9). This data set includes the number of new cancer

patients who were admitted between January 2000 and December 2001 at the National
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. Cancer Institute. In this data set, there were 5,946 cancer patients which consisted of 2,042
- male patients and 3,904 female patients.

The cancer data were considered according to the sex of cancer patients: male
patients and female patients. In addition, each sex was classified into two parts as follows:
Part1 Personal data. This part consists of age, region, marital status, race and religion.
Part I Cancer/clinical data. Factors being important variables in this part were as

" follows: Diagnostic evidence, site of cancer, pathological, stage of diagnosis, sites of -
metastasis, treatment which consists of surgery, radiation, chemotherapy, hormone and

~ support and status of last contact.

Suﬁmaq of general data of most patients
_ PartI: personal data. More patients were females than males. The majority of male
. patients ranges from 56 to 65 years of age, while female patients ranges from 46 to 55 years
" of age. We found that many of the patients were middle aged. Most of the patients were of
Thai race, Buddhist religion, married / divorced / widowed patients and lived in the central
part of Thailand.
- Part II: cancer/clinical data. Most patients were diagnosed by using the histology of
- primary. A large number of female patients had cancer at their breasts and female genital
organs, whereas, digestive organs were the positions at which cancer occurred most often
- for male patients. The majority of male patients had squamous cell neoplasms, while
;‘female patients had ductal, lobular and medullary neoplasms. Most patients were in the
direct extension stage. Since more male patients were in the distant metastasis stage than
female patients, more male patients had the sites of metastasis than the female patients. For
treatments, radiation, surgery and chemotherapy, by order of preference, were used in male
patients. While female patients were treated by surgery, radiation and chemotherapy, by

order of preference. Most of patients survived with cancer.

'Model for all cancer patients
! The best logistic regression model to identify factors associated with the status of
last contact for all cancer patients is given by the following equation:

logit ()= -3.477 + 0.557X1 — 0.030X9 — 2.082X10 — 0.113X18 + 0.209X19 — 2.124X20
~ 0.784X21 — 1.229X22 — 0.891X23 + 0.559X36 + 1.429X37 + 0.101X38 +
0.511X39 — 0.615X40 + 1.424X41 + 1.06X42 — 0.677X44 + 2.001X47 —
1.755(X18 x X47) — 1.360(X19 x X47) + 1.462(X20 x X47) + 0.162(X21 x
X47) - 6.936(X22 x X47) + 0.133(X23 x X47).
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According to this model, the factors which effect the status of last contact are sex

{X1}, marital status {X9, X10}, site of cancer {X18 - X23}, sites of metastasis {X36 -
X423, radiation {X44}, support {X47} and site of cancer x support {(X18 - X23) x X47}.

Model for male cancer patients

By using the logistic regression models, the best model for male cancer patients
that identify factors associated with the status of last contact is given by the equation
below.

logit(z) = -2.939 + 0.546X8 — 1.472X9 + 0.107X16 + 0.760X17 — 1.013X18 - 0.923X19
- 1.450X39 - 0.842X40 + 1.661(X39 x X40).

According to the above model, the factors which effect the status of last contact
are marital status {X8, X9}, site of cancer {X16 - X19}, radiation {X39}, chemotherapy
{X40} and radiation x chemotherapy {X39 x X40}.

Model for female cancer patients

The best logistic regression model to identify factors associated with the status of
last contact for female cancer patients is given by the following equation.
logit(7) = -11.030 + 0.009X1 - 0.438X14 + 0.095X15 — 2.343X16 — 0.634X17 ~

0.244X18 + 6.026X25 + 8.594X26 + 5.731X27 + 0.428X28 + 7.583X37 +
3.072X38 — 1.712(X14 x X38) - 12.126(X15 x X38) + 1.327(X16 x X38) —
1.074(X17 x X38) — 0.802(X18 x X38) — 7.538(X25 x X37) — 6.276(X26
xX37) — 7.109(X27 x X37) + 0.744(X28 x X37) + 0.007(X1 x X25) —
0.043(X1 x X26) + 0.041(X1 x X27) — 0.027(X1 x X28) — 10.034(X37 x
X38).

According to the above model, the factors which effect the status of last contact
are age {X1}, site of cancer {X14 - X18}, stagé of diagnosis (extent) {X25 - X28},
chemotherapy {X37}, support {X38}, age x stage of diagnosis (extent) {X1 x (X25 -
X28)}, site of cancer x support {{X14 - X18) x X38}, stage of diagnosis (extent) x
chemotherapy {(X25 - X28) x X37} and chemotherapy x support {X37 x X38}.

Models for the specific site in cancer patients

We classified the specific sites in cancer patients into five groups.
Group 1:  Lip, oral cavity and pharynx
Group 2: Digestive organs

Group 3:  Respiratory system and intrathoracic organs
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Group 4: Female breast and female genital organs
Group 5: Thyroid gland, endocrine glands, eye, brain, central nervous system, lymph

nodes, skin, blood, connective tissue, urinary tract, peritoneum and bones,

Model for Group 1
By using the logistic regression models, the best model for the patients who have
cancer sites classified in this group, identifying factors associated with the status of last

contact, 1s given by the equation below:

 logit(7)= -3.609 +2.310X15

According to the above model, the factor which effects the status of last contact is

support {X15}.

Model for Group 2

The best model for the patients who have cancer sites classified in this group

. identifying factors associated with the status of last contact is given by the following

eqﬁation:
logit (7)=-3.648 + 0.925X1 + 1.218X26 + 0.204X27 — 0.404X28 — 0.529X29 + 1.945X30
+0.466X31

According to this model, the factors which effect the status of last contact are sex

{X1} and sites of metastasis {X26 - X31}.

Using the logistic regression models with the dependent variable being the status
of last contact, for the male patients who have cancer sites in this group, the best model is
given by the following equation.
logit(z)= -2.400-0.950X31

According to the above model, the factor which effects the status of last contact is

- chemotherapy {X31}.

Model for Group 3
For the patients who have cancer sites classified in this group, the best logistic
regression model to identify factors associated with the status of |ast contact is given by the

following equation:

logit(7)= -3.631 + 0.940X18 + 2.083X19 + 3.120X20 + 1.362X21 + 0.197X22 +

1.028X23 + 2.378X24 +2.650X28 —2.444(X18 x X28) —2.489(X19xX28) —
9.341(X20 x X28) — 2.779(X21xX28) — 6.418(X22xX28) — 2.127(X23 x X28)
_2.784(X24 x X28)
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According to the above model, the factors which effect the status of last contact
are sites of metastasis {X18 - X24}, support {X28} and sites of metastasis x support {(X18
- X24) x X28}.

Model for Group 4

By using the logistic regression models, the best model for the female patients
who have cancer sites classified in this group that identify factors associated with the status
of last contact is given by the equation below:

logit(#)= -6.630 + 1.708X17 + 1.459X18 + 3.273X19 + 2.205X27

According to the above model, the factors which effect the status of last contact

are stage of diagnosis (extent) {X17 - X19} and support {X27}.

Model for Group 5

For the patients who have cancer sites classified in this group, the best logistic
regression models to identify factors associated with the status of last contact is given by
the following equation:

logit(£)= -3.647 —0.025X1 — 1.844X24 + 1.764X25 — 17.490X26 + 0.325(X1 x X26)

According to this model, the factors which effect the status of last contact are age

{X1}, radiation {X24}, chemotherapy {X25}, support {X26} and age x support {X1 x
X26}.

logit(#)

In all the best models, the fitted value of each model is 7 = T
+e



