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Table I'V: Proposed and Actual Activity for Subproject 4.
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Activity: Proposed (<--->) | Months | Months | Months | Months | Months | Months
Actnal («—>) 1-6 7-12 13-18 19-24 25-30 31-36
L. Search literature: statistical ...
: meﬁhods R
. Test of independence
L Two-dimensional log-linear
models
o Three-dimensional log-
' linear models
¢ ' Logistic regression models
2. Data collection, G
| <>
3. FProgress report. < | >|< >
4. Test of independence G
between two cancer <>
variables.
5. Application of two . >
kdimensional log-linear <>
;models.
6. . Application of three o >
:dimensional log-linear <
models.
7. Application of logistic -
'?regression models < >
8. FFull progress report G
! i <>
Outputs of Subproject 4
Papers presented in international conferences 3
Master graduates 3
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Subproject 5: Modeling and Computer Simulation in Cancer
Research: Theory and Modeling of the Growth of

Tumors

Principal Investigator: Asst. Prof. Dr. Wannapong Triampo
Proposed activities

We now have completed our work on the stochastic cellular automata in silico
model for immune system- avascular tumor interactions in vivo: self-organized vascular
growth, pattern formation and fractal analysis. Also the final draft of the manuscript is
about to be finished and is expected to be submitted in a few weeks. It can be summarized
as follows. The stochastic discrete model on two-dimensional square lattice has been
developed. The cellular automata method was presented to describe the growth of an
avascular tumor based on microscopic scale of immune system response, cell proliferation,
cell death and degradation. The Monte-Carlo method was applied in this model which
enables us to idealize three regimes of Gompertzian growth. We have used scaling
techniques to analyze the fractality of tumor colony, proliferating tumor colony as well as

statistical properties to make conclusions about the fractality of the boundary.

5.1 The model
5.1,1 The microscopic scale

The basic biological principles, which is represented by the microscopic scale
change, are cell proliferation as well as its interaction with the immune system as shown in
Fig. 5.1.

It is established that the immune system has an important role which influences
the development of avascular tumor growth. The immune system is very complicated. Let
us consider a simplified process of a growing avascular tumor which effects an immune
response in the host immune system. By [10, 29 and 31], the tumor can be effectively
eliminated by tumor-infiltrating cytotoxic lymphocytes (TICLs). Practicaily, TICLs may be
cytotoxic lymphocytes, natural killer-like cells and/or lymphokine activated killer. TICLs
are assumed to interact with the tumor cell and then lymphocyte-tumor cell complexes are
formed. These lymphocyte-tumor cells complexes detachment results in either the death of
tumor cells by a program of lysis or by TICLs without damaging the proliferating tumor

cells.

a
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The host tissue is represented by a lattice of size L x L. And any site has

coordinates (x,,y,), where x,,y, =1, 2, ..., L. We let the proliferating tumor cells, the

| dead tumor cells, the cytotoxic lymphocyte, and TICLs-tumor cell complexes be
represented by P, D, TICLs, and C, respectively. Then, the kinetics of fundamental feature

of tumor development could be represented as in Fig. 5.1.

’

p —plf , op

Fhinding .
P+TICLs c s, pLTICLs

Fdetach.

¥,
D decay

Fig. 5.1 Kinetic mechanisms of development of cancer with immune response

{(modified from [1, 10]).

The parameters 7, »¥uumgs Taetach> Tyss @nd 7, are non-negative kinetic

constants where r,,. describes the base rate of tumor proliferation. 7, represents the

rate of binding of TICLs to tumor cells, r,,,, 1s the rate of detachment of TICLs from
| cancer cell without damaging cells, 7, is the rate of detachment of TICLs from dead

" tumor cells, resulting in an irreversible programming of the tumor cells for lysis, and r,,,,

describes dissolution of the dead cancer cells. Additionally, we may define the function
Foonr. @S @n avascular tumor growth rate in vivo, by assuming Fvotig (1) = T ppoiiy (1-£),

where P(¢) denotes the number of proliferating tumor cells, and K denotes the carrying
capacity, which can be indicated as the restriction of nutrient for proliferation of cancer
cells and/or increasing waste product accumulation indices, decreasing the rate of

proliferation of cancer cells [27,28].

We investigated the influences of the parameters on the Gompertz growth curve.

By Fig. 5.5 (g), 7, decreases with increasing cancer cells, and this function incorporates

the fact that the proliferating tumor cells growth depends on the competition for resources

among the prollferatmg tumor cells. These effects are assumed in avascular microscopic
tumor growth in vivo [17] as illustrated in the first reaction of Fig. 5.1. By the second

reaction, the parameter r,, ., indicates the tumor’s potential for escaping the host’s
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immune surveillance whereas #,,,,. corresponds to the TICLs’ response in a chemotactic
manner towards tumor cells and 7, describes the TICLs’ detachment rate of activation
from tumor cells, being an irreversible programming of the tumor cells for lysis, and 7,

represents the dissolution process in which the dead tumor cells turn into normal tissues
and reflects the degraded dead tumor cells.

Table 5.1 Summary of functions and input constant parameters for the model.

Functions in the model

+

L~ Rate of proliferation of cancer cells (varying with the number of proliferating
tumor cells)

Parameters

Y vl Base rate of proliferation of cancer cells

Viinding Rate of TICLs” binding to the tumor cell to become cell complexes

F tetach, Rate of TICLs’ detachment from the cell complexes without cell damage

Fiis Rate of TICLs® detachment from the cell complexes resulting in the lysis of
tumor cells

Faecay Death rate of tumor cells degrading to normal cells

K The maximum proliferating tumor cells extent

* The parameter values of #,... ¥y s Ty a0d 7y, have been modified from Qi et. al.

[1], and #,,,, and 7, have been modified from Matzavinos, A., et. al [10, 13, 30].

(a) (b)

Fig. 5.2 (a) The four nearest neighboring sites (gray) of the tumor site (black): with
the nearest neighboring rule of the so-called von Neumann
neighborhood,

(b) The initial configuration: five cancer cells in the center of the square

lattice.
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% 5.1.2  The methodology for stochastic CA
Time runs in discrete steps. The lattice compartment may accommodate either:

proliferating tumor cell ( P ), TICLs-tumor cell complexes (C), or dead tumor cell (D), on

host normal tissue. The flowchart of the simulation procedure is shown in Fig. 5.4. A

simulation is terminated after 1000 individual simulations with determined timesteps. A

random number (a), in the series of random generating numbers has the value in the range

of 0<a<]. We distinguish the total tumor cells to one of two possible states:

(D proliferating state (i.e. cancer or proliferating tumor cells, P ), and

(2) non-proliferating state or stationary state (i.e. C and D).

For each simulated tumor colony the tumor progress is simulated by the following
algorithm:

(D At t=0: Initial configuration is five cancer cells in the center of the normal tissue
as shown in Fig 5.2 (b).

(1) At each time step: The rules of cellular automaton are applied to each tumorous
cell one by one sequentially selected at random with the same probability and
carry out one of the actions upon its state as shown in schematic diagram (Fig.
5.3), described as follows:

(1) Proliferating state: If the selected cell is the cancer cell, the cancer cell takes one

of the following three actions with the function r,,,,, and parameier#, . -
(i) The cancer cell may invade the normal cell with the probability 7, .. if this

- cancer cell has at least one nearest neighbor normal cell (as shown in Fig. 5.2 (a)) randomly
chosen with the same probability.

(11) The cancer cell is bound by the TICLs with probability r,,, .. -
- (D) The cancer cell may not change with probability 1 — (7/,..; + % ) OF there is no
nearest neighboring normal site in the case of invasion with probability 7, .

2) Stationary state: If the selected cell is in the non-proliferating state, which consists
of dead cancer cells and TICLs —tumor complexes that maybe defined as cell complexes.
(2.1)  The complexes: If the selected cell is a complex. The cell may take one of the

following three actions with parameters 7, » Fhgine and 7, -

(i) The complexes revert into cancer cells with probability ..,

(it) The complexes may go thru lysis and become dead cancer cells with the

probability 7, .
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(iii) The complexes may not change state with the probability 1 — (7,4 * 7 )-
(2.2)  The dead cancer cells: If the selected cell is a dead cancer cell, it takes one of two
actions. ' h
@ The dead tumor ce_ll may dilute into ﬁorma} cell w1th probhbility ecay -

(i) The dead tumor cell may not change with probability 1

- rdecay .
(III)  Step (II) continues until the set number of timesteps is reached.

<l/.

Remark: By this methodology we have to satisfy 7, + Fopme <7 and 700 7,0 <

TICLs

P(t) b.:rbmdmg » C*(t)
Proliferating Tumor-TICLs

tumor cells r cell complexes
detactf.
TICLs
rx’ysis leLS
r
rpro!if . Y

D(t)
Dead tumeor
cells

Fig. 5.3 Schematic diagram of cellular automaton model of tumor growth reveals the

possible acﬁons, reactions and éhanging states of each type of tumor cells.
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+ 5,1.3  Simulation Results _

| | The methodology described in Section 2 has ‘been transformed into a computer
simulation programming, Computer simulation experiments and computational
| re]:;fesentation of the results in a two-dimensional spatial visualization of tumor invasion of
normal tissues are shown in Figures 5.5 (a), 5.5 (b), 55. (fj, and 5.5 (g). We denote by P(¢)
- the'number of proliferating tumor celis at time ¢z, C*(¢) the number of TICL-tumor cells

complexes at time ¢, and D{¢) the number of dead tumor cells at time £. To investigate the

+ evolution of tumor growth, we also denote the total number of tumor cells by N(t) =

Pt )+C*(t)+ D(t). Clearly, N (t) can indicate the size of the tumor at time ¢.

" Fig. 5.5 (a) Snapshots of the simulated tumor 61x 61 squared lattice, proliferating cell
cluster, and its boundary colony at timesteps 0,15,30,50, and 80. The simulation

setting is r

votif. = 085 piniting = 01 Paor qop, = 051y = 035,140, = 0.35 and K = 550. B

prdliferating tumor cells, : TICLs-tumor cell complexes, B: dead tumor cells, and B:

- normal cells.
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Fig. 5.5 (b) Snapshots of the typical configuration of simulated tumor colonies (61x 61
squared lattice) with the different generating random number and the same
simulation setting at timesteps 15, 30, 50, and 80. The simulation setting is

Porotif. = 085, Mhinding = 0.1 Ve = 0.5.1, 0 =035 ryprn, = 0.35 and K = 550. H: proliferating

tumor cells, : TICLs-tumor cell complexes, B: dead tumor cells, and l: normal cells.
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. Fig. 5.5 (c) Plots of the time evolutions of the number of cancerous cells dual show

with the qualitative shape of simulated multicell tumor. The simulation results are
shown for one simulation (star)and averaging over 1000 individual simulations

(square), at timesteps 0, 15, 30, 50, and 80. The simulation setting is

. Forotig, = 085, Thinding = 0.1, Tagrach = 0.3 Ty =035, 7 =035 and K = 550.
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Fig. 5.5 (d) Plots of the time evolutions of the number of tumoral cells (solid circle)
and proliferating tumor cells (hollow circle). A part of the curve in typical different
figures shows different dynamic growth. The simulational results are the

average of 1000 individual simulations, with torotif. = 0:83,
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Fig. 5.5 (g) The proliferating function value of avascular tumor growth, », . versus
time. The function is defined by 7, =7, (/—%). The average of 1000 individual

values of - from simulated tumor growth (the black solid line) and a

prolif.
typical simulation (gray) have been obtained with

Porolif. = 0'85'rbr'ndmg =01 gorach = 0.3, iy = 0.35, gy, = 0.35 and K = 550.
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Fig. 5.5 (h) The evolution of fractal dimension of expanding tumor colony (solid
circle) proliferating tumor colony by box counting method, using S individual
colonies. The parameter setting of the five tumor colonies is
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By the methodology of Cellular automaton model, starting the simulation by
placing five proliferating tumor cells in the center of the square lattice, then both later
inv_ade and change their states by a series of random generating number to govern the
simulated tumor pattern as shown a typical snapshot in different timesteps in Fig. 5.5 (a).
Fig. 5.5 (b) reveals a number of simulated colonis made by the different seeds caused by
different series of random generating number. Apparently, the morphology of different
simulated tumor patterns are different. The growth curve of a typical simulated colony (red
star) and the average of 1000 colonies are shown in Fig. 5.5 (c).

The Gompertz growth curve is the best known model, which is succesfully used to

characterize the experimental data of tumor growth in vive [1, 16, 17], and can be written

as

V() =V, exp[% (1- exp(—Bt))J R (5.1)

. where V(1) is the size of tumor at time t, V, is the initial volume, while the positive

vy

parameters A and B are evaluated by the method of least squares. Based on the CA's
mode] which is described in Section 2.2, the averaged growth curve, as shown in Fig. 5.5
(a) can be described mathematically by Gompertz function approach to Enrich carcinoma
mouse growth in vivo [17] with the coefficient of nonlinear regression r’ =0.9997 by

computational simulation setting .. = 0.85, sy =01, Tpyuq =05, 1y =0.35,
Vieeay = 0.35, and K=350, and Gompertz parameter setting V, = 2.26x%x107 (cm)3 LA =

0.456 (days'l), B = 0.702 (days™). Ultimately, we normalized the data with V, =194

(cm)’, and N, =8394, N, =625, as shown in both growth curves in Fig. 5.6. By the

) growth curves of Fig. 5.6 and the typical five colonies, cell-doubling time versus number of

total tumor cells were plotted as shown in Fig. 5.7 with linear relationship.
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Fig. 5.6 The comparison between the theorectial prediction and the Gompertz

approach for the mouse carcinoma Ehrlich with the coefficient of nonlinear
regression r’ =0.9997. Gompertz parameters: v - 226x 10" (em)’, A =0.456(day)”,
B =0.102(day)" and v o =194 (cm)s. The parameters of the model are: with

No =838 N, =627.379, rpur =085 rp i = 0174000 = 0.5, = 0.35, Fgoeqy = 0.35 and

ra'y.\':'s

K =550,

Cell-Doubling Time({timesteps)
m

T TV T T . T T T 1
-200 Q 200 400 600 800 1000 1200 1400 1600

The number of tumor cells{cells)

Fig. 5.7 Cells-doubling time versus the number of tumor cells from 1000 individual
simulated tumor (solid circle) with five typical individual simulated colonies. The plot
of the cell-doubling time of tumor cell number against the number of tumor cells
in each colony shows their linear relationship, when parameter setting

rotig, = 0851, = 0y achy = 05, Ty = 035, Voo, =0.35 and K = 2000.
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The Gompertz curve can be mathematically divided into three regimes as done in
{17, 20]. The first regime or early phase, reflects the dynamics of the initial stages of
tumorigenesis until the number of tumor cells reaches the value equal to 0.37 of their
maximum number of tumor cells within referring time step, which is the time at the

infection point on the curve and is defined by ¢, . The second regime, or intermediate phase,

of the growth curve is the curve from the first segment, the curve being concave downward

~ until number of tumor cells at crossover time is reached, and the third regime, or saturated

" phase, begins at the crossover time and lasts until saturated state is reached as seen in Fig.

5.8. In other words, the Gompertzain growth curve can be divided into three regimes by the

time at infection point and the crossover time.

= Q o =
Iy o © o
1 " 1 1 1

The normalized number of tumorous cells
o
)
1

o
o
1

T

‘l tz Timestep
i Fig. 5.8 The three segments of sigmoidal Gompertzian curve from simulation result of
b Fig. 5.4. The first segment has the range from 0 to 14 timesteps within the first solid
|
‘ circle; the second phase covers days 15 until 31; the third phase begins at 32 days

beyond the second solid circle.
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Fig. 5.9 (a) and (b) Plots of the time evolutions of the number of tumoral cells and
proliferating tumor cells, respectively. The simmulation results are the average of 1000

individual simulations, with parameter s, .. varying from 6.6 to 0.9 in steps of 0.1,

and fixed parameters r,, ;.. =0.Lr . =05, 1y =035 rypey, =035and K =550.

Fig. 5.9 shows the simulation results when only r,,,,  was varied from 0.6 to 0.9

in steps of 0.1, whereas the other parameters were fixed. Fig. 5.9 (a) shows the growth
curve of the tumor with varying proliferating rate. We found that the growth rate and
saturated tumor cell number are increased with increasing proliferating rate. With the
recent finding of crossover time process, the growth curves of a greater proliferating rate
will take the shorter crossover time together with the increase in saturated tumor size.gBy

Fig. 5.9 (b), we also reach the same conclusion on the growth curve of total tumor cells as

that from Fig. 5.9 (a).
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Fig. 5.10 (a) and (b) Plots of the time evolutions of the total number of tumor cells and

the number of proliferating tumor cells. The simulation results are the average of

1000 individual simulations, with varying parameter r, . ., and fixed parameters

Forotyf. = 0-85 Paeraen = 0.3, Py =0.35, and K = 550.
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In order to investigate the role of immune system within this model which is

represented by the values of the parameters r,,,,. and, 7, . We consider the growth
curve of tumor when only r,,,,,.. is varied, with other parameters fixed as illustrated in Fig.

5.10 (a), while the growth curve of tumor with varying r,,., and other parameters fixed is

shown in Fig. 5.11 (a). Certainly, increasing the binding rate of TICLs, will increase the
binding rate effect in delaying or inhibiting tamor proliferation. Figures 5.10 (a) and (b)

show that when r,,,,. is increased, the growth curve will have more crossover time,

which means that the system will take more time to reach the saturated phase. In more
detail, considering the first regime of the growth curves in Fig. 5.10 (a) (t =1 to 13), the

growth will decrease with increasing Tbinding » WHiCh shows that the first regime is effected

by the number of proliferating cells more than other cell types. Between timesteps 25 and

29, each growth curve flips until the growth increases with increasing 7, » and the third
regime is reached with higher saturated size of tumor for higher value of ry,. ..

Apparently, according to Fig. 5.10 (b), the growth of proliferating cells decreases and the

saturated number of proliferating cell decreases with increasing 7., since the binding

role of immune system is to decrease the number of proliferating tumor cells. According to

Figures 5.10 (a) and (b), varying the parameter r,, ., indicates that higher number of
proliferating cells does not necessary mean larger tumor size. Morcover, 7,,.,,,, = 0.0 refers

to the proliferating tumor cells growing stochastically on two-dimensional square lattice

with von Neuman neighborhood.
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Fig. 5.11 (a) and (b) Plots of the time evolutions of the total number and the number

of 'proliferating tumor cells of simulated tumor. The simulation results are the

avérage of 1000 individual simulations with -, ., varying from 0.0 to 0.4 in steps of

5 0.13 and fixed parameters r,, ., =085

binding =01, Fiysis =0.35, Ydecay = 0.35 and K =550.

To investigate the influence of the r,,,, . we fixed the other parameters and vary

thié rate from 0.0 to 0.4 in steps of 0.1. According to Fig. 5.11 (a), we found that increasing

" P Wil decrease the crossover time of the growth curve, which means that the system

- will use shorter time to reach the saturated regime. However, the saturated size of the

tumor will decrease with lower 7, . Considering Fig. 5.11 (b), increasing 7, will lead

" 1o an increase in the number of proliferating tumor cell, larger saturated tumor size and less

~ crossover time.
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We have been interested in the qualitative result of avascular tumor growth model,
investigating the morphology of simulated tumor colony. Clinically, Bru et al. [27] have

defined the three regions of avascular tumor via the radius of tumor (R ), namely, an

. R . . . R 4R
innermost region {0 <r, < 5 ), an intermediate region (E <r < T)’ and an outermost

region 7, g , where #, is the radius of tumor colony from the origin. They measured the

proliferating cell of human colon adenocarcinoma colony in each region, the innermost
region covers 6% of proliferating cells and 25% of the whole colony surface, the
intermediate region covers 14% of proliferating cells and 39% of the whole colony surface,
and the outermost region consists of 80% of proliferating cells and 36% of the whole
colony surface. We also measured this quantity by computational algorithm applied to each
simulated tumor colony and we also found that the averaging ratio of proliferating cell in
the outtermost region is greater than those of both other regions by 70%, 18% and 12%
respectively as shown in Fig. 5.5 (f). The simulation results indicated that proliferating
cells are located mainly to the outtermost region which corresponds to the experimental
data in vivo of Bru et al [27].

It is found that the colonies obtained from the stochastic model have an
approximately circular shape with a rough boundary as shown in Figures 5.5 (a) and (b). A
few researchers [0, 7, 8, 22, 23, 25, 26] were interested in the fractal dimension of the
stochastic growth model. We defined the boundary cells of the simulated tumor growth by
assuming that the boundary cells are the outtermost cells covering the colony in each row
and each column in the lattice. We also found the fractal dimension of the expansion of
multicell tumor colony and the proliferating tumor cell against timesteps using Beniot 1.3
{36] as shown in Fig. 5.5 (h).

At each time step, if we let S be the number of tumor cells on the tumour

periphery. The center of mass of the boundary with coordinates (x, .y, ) is defined as

m)% 3 (%,.7,) 52)

periphery

The mean radius of the boundary is defined as

R =é Y Jx -%) (v, =) (5.3)

periphery
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The squared mean thickness of the boundary is defined as

2

o’ =é 2 [J(xn—f)2+(yn—?)2 —R] (5.4)

periphery

" For each colony, using least square method to find o and f in the relation

¢ =aR® (5.5)

: By equation (5.5), the value of B indicates how the dynamics of boundary growth depends

on the power law. We used the individuals of 1000 colonies for each timestep through to

35 timesteps, from the simulated result in Fig. 5.5, then we obtained
o =0.23439+0.01456, and B =0.63339+0.02581 with r* =0.96746. Our results are

different from the result given in [23] and [26], the stochastic cluster growth on a plane,
which found that B = 0.468 £ 0.092.

However, we obtained the same conclusion on the fractality of the boundary.

- Thus, we can conclude from the fractional value of B that the boundary is fractal. Which

means that it has the same amount of roughness when enlarged [23]. By the equation (5.5),
Wang et al. [26] concluded that if < 1, the larger colonies have smaller relative boundary
thickness.

In conclusion, the CA model showed that the macroscopic behavior of a tumor

- can be affected by setting the presence of an immune system response at microscopic scale.

In addition, the analysis of the morphology of simulated patterns by scaling law and the
growth rate of tumor in each phase of the Gompertzian curve were presented.
The cellular automata model on a three-dimensional square lattice with simulation

results is in progress.

. Other related activities

Apart from the work explained above on what has been proposed in this project,

‘we have spent some of our time in investigating different techniques of modelling and

simulation of cell division in various aspects. This part of our work has resulted in 3
published papers as can be seen in Appendices # 5.1-5.3. The work on growth of
Leptospire (in Appendix # 5.1) is done in support of the research work in Subproject 3,
while the work on bacteria cell division (Appendix # 5.3) will be of great use to the

continued research on bacterial growth and drug resistance in Subproject 1.
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Activity: Proposed (<> )

Actual (<—3)

Months

1-6

Month
7-12

Months
13-18

Months
19-24

Months
25-30

Months
31-36

. Construct models describing | ¢.....oo....

solid tumor growth.

. Simulate the solid tumor
growth using appropriate
programming tools.

. Interpret and compare
simulation results to
experimental data.

. Predict the response of tumor
growth to different
perturbations in time and
space.

. Examine the effects of
environmental heterogeneity
at different scales.

. Simulate angiogenesis and
other cancer related topics if
possible.

. Simulate different kinds of
cancer treatment (surgery,
radiation, and chemotherapy)
in order to optimize the
treatment strategies and
schedules prior to clinical

therapy.

N

AN A

v

A

* The investigator has become interested in investigation of different simulation techniques

for other cell divisions instead.

Outputs of Subproject 5

Papers appeared/accepted in international journals

Paper presented in international conference

3

)
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' Subproject 6: Research on Asymptotic Stability of Difference

Equations with Delays

| Principal Investigator: Dr. Piyapong Niamsup

The research work in this subproject may be summarized year by year as follows.
6.1 Year 1:
During the first year, we mainly studied the asymptotic stability of linear

difference equations of the form

Xpa — azxn—| + bxn—k =0 - (61)

" where a and b are arbitrary real numbers, k 1s a positive integer and n = 0,1,2,... The

motivation for studying the above difference equations came from a paper of S.A. Kuruklis
; [1]:in which he gave the necessary and sufficient conditions for asymptotic stability for the

linear difference equation of the form

X, —axX, +bx,_ =0 (6.2)

n

where a and b are arbitrary real numbers, k is a positive integer and n = 0,1,2,... The main

result in [1] reads as follows:

' Theorem A Let a be a nonzero real, b an arbitrary real, and k a positive integer greater than

! 1. Equation (6.2) is asymptotically stable if and only 1f |a[ < k;— 1 ,and

1
|a|—1 <b<{a’ —21a|cos¢+1}5 for k odd

' 1
|b-a|<1 and |b| < {a* —2|alcos¢+132  fork even

sinkd 1
sin(k +1)8  [a|°

. where ¢ is the solution in [O, T ] of
k+1
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Our main result on asymptotic stability of equation (6.1) is obtained as follows:
Theorem 1 Let a be a nonzero real, b an arbitrary real, and k a positive integer greater than

1. Equation (6.1) is asymptotically stable if and only if

la| <1 and a’ +|b| <1 for k even

1
|a|<‘,-]1i—4:—i and a’ —1<b<{a*-2a’cos2p+1}? forkodd

where ¢ is the solution in (0 T ] of sin(k-1)0 _ 1

k+1 sin(k+1)8_a2 .
Remark 1. Note that when a=0 or k=1 it is easy to show that the necessary and
sufficient conditions for (6.1) to be asymptotically stable is that ‘az - 1| <l.

2. The technique of proof in a main step of Theorem 1 is somewhat different

from that in Theorem A so that we pointed out an error of the proof of Theorem A in [1].

References
[11 S.A. Kuruklis, The Asymptotic Stability of x_, —ax_ +bx _, =0, ) Math. Anal.
Appl. 188 (1994), 719-731.

6.2 Year 2:
Continuing from the first year, in the beginning of the second year we have
investigated the necessary and sufficient conditions for asymptotic stability of the

following linear delayed difference equation:

N
Xoi = Xon FPD Xy =0 (6.3)
=1

where n is a nonnegative integer, p is a real number, k,1 and N are positive integers
where k > (N —1) 1. The idea of this investigation began when we read through a paper

written by R. Ogita, H. Matsunaga, and T. Hara {1], where they gave the necessary and
sufficient conditions for the asymptotic stability of the following linear delayed difference

equation

N
Xpg X, + pzxn—k+(j—l}l =0 (64)
=1
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where n is a nonnegative integer, p is a real number, k,land N are positive integers

* where k >(N~-1)1. The following is the main result obtained in [1]:

Theorem 1 Let k,land N be positive integers with k > (N~—l) 1. Then the zero solution
t of (6.4) is asymptotically stable if and only if

25in[i

2M

O<p<
P ) [Nln}
sin| ——
2M

A
v,
=

-~ ™

[l -
2k

N~ S

where M =2k+1-(N-1)1.
Using similar technique as in [4] we are able to obtain the necessary and sufficient

conditions for the asymptotic stability of (3) as follows:
|

' Theorem 2 Let k,land N be positive integers with k odd, 1 even and k > (N -1)1. Then
’F the zero solution of (6.4) is asymptotically stable if and only if
(= ] , [ In }
2sin| — |sin| —
[M o \2M

0<
p= X [NIRJ
sin| —

where M =2k—-(N-1)1.

- Theorem 3 Let k,1 and N be positive integers with k and | odd and k >(N-1}1. Then

 the zero solution of (6.4) is asymptotically stable if and only if

0<p<p,
‘ ZSin[—ﬁ]sin[%J
M=2k—(N-1)1, p, =min{p,,p }. p = .
~where ( )L, p, mm{p0 p} Po . [Nln]
sin| —
2
R ) M 1 M 1 M
p =min<p, m=|———|+1,| ——=1+2,...,— -1,
4 2 4
sin w sin1 m
m+ m 2m+1
P =2(-1)". N and w, =
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We note that the main tool in the proof is the analysis of the locations of the roots of the
characteristic equation of (6.3) to obtain the criterion for these roots to be located inside the

unit disk which imply the asymptotic stability of the zero solution of (6.3).

Similarly, we have the following result:

Theorem 4 Let k,land N be positive integers with k 2(N~1)1. Then the zero solution

of

N
Kpr + P2 X iy =0 (6.5)
j=l

is asymptotically stable if and only if
——I <p<
N P = Pumin

where p . is the smallest positive real value of p for which the characteristic equation of

(6.5) has a root on the boundary of the unit circle.
The other topics that we have been studying are the controllability and stability of

Chen chaotic dynamical system given by

x=a(y-x)
y=(c—a)x—xz+cy (6.6)
Z=Xxy—bz :

where a, b, ¢ are positive real parameters. In [2], HLN. Agiza and M.T. Yassen studied

synchronization of system (6.6) using adaptive control. In [3], Y. Wang, Z.H. Guan and X.
Wen studied adaptive synchronization of system (6.6) with fully unknown parameters. In
[4], M.T. Yassen studied the optimal control of system (6.6). Motivated by these results we
are interested in controllability and stability of the following modified Chen chaotic

dynamical system

x=a(y-x)
y=(c-a}x-xz+cy (6.7)
7 = Xy — bz + dx*

where a, b,c,d are positive real parameters. We are interested in studying the control of

chaos in the system (6.7) using linear feedback controls and bounded feedback controls, the
sufficient conditions on parameters which ensure the stabilities of equilibrium points, and

the synchronization of system (6.7) using adaptive control and active control.

LA
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> i References

[1]: R. Ogita, H. Matsunaga, and T. Hara, Asymptotic Stability for a Class of Linear

:: Delay Difference Equations of Higher Order, J. Math. Anal. Appl. 248 (2000), 83-96.
[2] H.N. Yagiza and M.T. Yassen, Synchronization of Rossler and Chen Chaotic
Dynamical System, Physic Letter A, 278 (2001), 191-197.
, [3]' Y. Wang, Z.H. Guan and X. Wen, Adaptive Synchronization for Chen Chaotic
| System with Fully Unknown Parameters, Chaos Solitons and Fractals, 19 (2004),
] 899-903.
' [4] M.T. Yassen, The Optimal Control of Chen Cahotic Dynamical System, Applied
Math. Comput., 131 (2002), 171-180.
6.3 Year 3:
. In year 3, one of our papers has appeared, namely
-‘ 1. T. Kaewong, P. Niamsup and Y. Lenbury, A note on asymptotic stability
. coﬁditions for delay difference equations. International Journal of Mathematics and
| Md?hematical Sciences. 7 (2005) 1007-1013.
* Note that in this manuscript, we have studied the asymptotic stability of
. X, ;1 + pi X pgee(jonyi =0 and we obtained the following result:
=1

{ Theorem 1 Let k,1 and N be positive integers with k > (N -—1) 1. Then the zero solution
of
' N
x11+l +pz Xn7k+(j_1)1 =0 (68)
=1
is asymptotically stable if and only if
| Lo,
N p pmm '

| The idea of this investigation began when we read through a paper written by R.
- Ogita, H. Matsunaga, and T. Hara [1], where they gave the necessary and sufficient

, conditions for the asymptotic stability of the following linear delayed difference equation
N
Xt‘H—l _xn + pzxn—lw(jfi)l = 0 (69)
=l _

“where n is a nonnegative integer, p is a real number, k,1 and N are positive integers

- where k > (N - 1) I. The following is the main result obtained in [1]:
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Theorem 2 Let k,1 and N be positive integers with k > (N—l) 1. Then the zero solution

of (6.4) is asymptotically stable if and only if

. T Y. (In
2sm| —— |sin| ——
i o)

O<p<

where M =2k +1-(N-1)1.

We have been investigating the following difference equation similar to (6.8) and

(6.9):

N
X —0X, + pz Xn_k+(j_|)1 =0 (6 1 0)
j=1

where 0<a <1. We note that when o =0, (6.10) becomes (6.8); and when « =1, (6.10)
becomes (6.9). Thus, it is natural to study the asymptotic stability of {6.10).
In year 2, we studied the controllability and stability of perturbed Chen chaotic
dynamical system given by
x=a(y-x)
y=(c-a)x-xz+cy (6.11)
7z =xy—bz+dx’

where a, b, c, d are positive real parameters.

We continue our work to the perturbed Chua’s circuit system given by

i 1,. ,
X= ~-—[2x"—-x
Py -3 )
V=Xx-y+z (6.12)
2=—qy+rx2 ~

where p,q,r are positive real parameters. We are interested in studying the control of

chaos in the system (6.12) using linear feedback controls and bounded feedback controls,
the sufficient conditions on parameters which ensure the stabilities of equilibrium points,
and the synchronization of the system (6.12) when the parameters of the drive system are
fully unknown and different with those of the response system using adaptive control and
active control. See [1]-[3] for more details.

References .

{11 J.H. Park, Chaos Synchronization between Two Different Chaotic Systems Using

Active Control, Chaos, Solitons and Fractals, 2005, in press.

-y
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2]  M.T. Yassen, Adaptive Control and Synchronization of a Modified Chua’s Circuit
? System, Applied Mathematics and Computation, 135(2003), 13-128.

[3] M.T. Yassen, Adaptive Synchromization of Rossler and Lu Systems with Fully

Uncertain Parameters, Chaos, Solitons and Fractals, 23(2005), 1527-1536.

Table VI: Proposed and Actual Activity for Subproject 6.

Activ;ity: Proposed (<-—->») | Months | Month | Months | Months | Months | Months
 Actual  («—>) | 16 712 | 13-18 | 19-24 31-36
1. C(');llect“papers, books. . S >
2. Study techniques used in < 5
pai)ers and books. < >
3. Résearéh to obtain new <
regults.f <
4, Sﬁjbmitipapers for < >
. pui)lica'tions. < >
.
 Outputs of Subproject 6
!  Papers appeared/accepted in international journals 4
" Master graduates 6
7. OVERALL OUTPUT
7.1 Summary table
“ Subproject Appeared/ | Inter, Ph.D. Masters
_ Accepted | Conference | graduates | graduates
1 8 2 6 1
j 2 1 2 2 -
bow 3 14 3 4 9
g 4 - 3 . 3
5 i i -
b 6 4 - - 6
Total 30 it 12 19
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Rank promotions

4 rank promotions:

1.

2
3.
4

Dr. Julian Poulter promoted to  Full Professor
Asst. Prof. Nardtida Tumrasvin  promoted to  Associate Professor
A. Somkid Amornsamankul promoted to  Assistant Professor

Dr. Wannapong Triampo promoted to  Assistant Professor

Publications output of the project

Subproject 1

1.

Dumrongpokaphan, T., Lenbury, Y. Cascade Mechanism in a Self-
regulatory Endocrine System: Modelling Pulsatile Hormone Secretion, Pure
and Applied Chemistry. 74(6) (2002) 881-890.

Lenbury, Y., Pansuwan, A., Tumrasvin, N, Chaos and Control Action in a
Kolmogorov Type Model for Food Webs with Harvesting or
Replenishment. ScienceAsia. 28(3) (2002) 205-215.

Rattanakul, C., Lenbury, Y., Krishnamara, N., Wollkind, D.J. Modeling of
Bone Formation and Resorption Mediated by Parathyroid Hormone:
Response to Estrogen/PTH Therapy. BioSystems. 70(1) (2003) 55-72.
Dumrongpokaphan, T., Lenbury, Y., Crooke, P.S. The Analysis of Higher-
Order Cascade Systems with Separation Conditions Pivoting on the Slow
Components: Application to a Model of Migration for Survival of the
Species. Mathematical and Computer Modelling. 38 (2003) 671-690.
Lenbury, Y., Giang, D.V. Nonlinear Delay Differential Equations Involving
Population Growth. Mathematical and Computer Modelling. 40 (2004)
586-590.

Lenbury, Y., Pornsaward, P. A Delay-differential Equation Model of the
Feedback-controlled Hypothalamus-pituitary-adrenal Axis in Humans.
Mathematical Medicine and Biology: A Journal of the IMA. 22 (2005)
15-33.

Crooke, P.S., Kongkul, K., Lenbury, Y., Adams, A B., Carter, C.S., Marini,
J.J., Hotchkiss, J.R. Mathematical Models for Pressure Controlled
Ventilation of Oleic Acid-injured Pigs. Mathematical Medicine and
Biology. 22 (2005) 99-112.

-
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Giang, D.V., Lenbury, Y., Seidman, T.I. Delay Effect in Models' of
Population Growth. Journal of Mathematical Analysis and Applications.
305 (2005) 631-643.

Subproject 2

1.

Poltem, D., Wiwatanapataphee, B., Ruengsakulrach, P., Lenbury, Y.,
Punpocha, M., Wu, Y.H. A Numerical Study of Blood Flow Patterns in
Coronary Artery Bypass Grafis. Quantitative Methods. 1(1) (2004) 1-7.

Subproject 3

1.

Pongsumpun, P., Yoksan, S., Tang, IM. A Comparison of the Age
Distributions in the Dengue Hemorrhagic Fever Epidemics in Santiago de
Cuba (1997) and Thailand (1998). Southeast Asian Journal of Tropical
Medicine and Public Health. 33 (2002) 255.

Pongsumpun, P., Lenbury, Y., Tang, M. Age Structure in a Model for the
Transmission of Dengue Hemorrhagic Fever in Thailand. Fast-West Journal
of Mathematics. Special Volume (2002) 93-103.

Kammanee, A., Lenbury, Y., Tang, .M. Transmission of Plasmodium Vivax
Malaria. East-West Journal of Mathematics. Special Volume (2002)
277-284.

Kanyamee, N., Lenbury, Y., Tang, .M. The Effect of Migrant Workers on
the Transmission of Malania. East-West Journal of Mathematics. Special
Volume (2002) 297-308.

Pongsumpun, P., Tang, .M. Transmission of Dengue Hemorrhagic Fever in
an Age Structured Population. Math. Comp. Model. 37 (2003) 949-961.
Kaewmanee, C., Tang, . M. Cannibalism in an Age-structured Predator-prey
System. Ecol. Modelling 167 (2003) 213-220.

Sriprom, M., Pongsumpun, P., Yoksan, S., Barbazan, P., Gonzales, J.P.,
Tang, .M. Dengue Haemorrhagic Fever in Thailand 1998-2003: Primary or
Secondary. Dengue Bulletin. 27 (2003) 39-45.

Nishiura, H., Tang, IL.M., Kakehashi, M. The Impact of Initial Attack Size on
Sars Epidemic for SARS Free Countries: Possible Reason for Japan without
a Domestic Transmission. Journal of Medical Safety. 1{1) (2003) e1-¢6.
Pongsumpun, P., Patanarapelert, K., Sriprom, M., Varamit, S., Tang, LM.
Infection Risk to Travellers Going to Dengue Fever Regions. Southeast

Asian Journal of Tropical Medicine and Public Health. 35 (2004) 155.
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Naowarat, S., Tang, .M. Effect of Bird-to-bird Transmission of the West
Nile Virus on the Dynamics of the Transmission of this Disease. Southeast
Asian Journal of Tropical Medicine and Public Health. 35 (2004) 162.
Nishiura, H., Patanaraspelert, K., Sriprom, M., Sarakorn, W_, Sriyab, S.,
Tang, .M. Modelling Potential Responses to Severe Acute Respiratory
Syndrome (SARS) in Japan: the Role of Initial Attack Size, Precaution and
Quarantine. J. Epid. Commun. Health. 58(3) (2004) 156.
Nishiura, H., Tang, LM. Modeling for a Smallpox-vaccination Policy
against Possible Bio-terrorism in Japan: The Impact of Long-lasting
Vaccinal Immunity. J. Epid. 14(2) (2004) 41.
Nishiura, H., Patanarapelert, K., Khortwong, P., Tang, .M., Pasakorn, A.
Predicting the Future Trend of Drug-resistant Tuberculosis in Thailand:
Assessing the Impact of Control Strategy. Southeast Asian Journal of
Tropical Medicine and Public Health. 35 (2004) 1.
Kaewpradit, C., Triampo, W., Tang, LM. Limit Cycle of a Herbuvire-plant-
bee Model Containing a Time Delay. ScienceAsia. 31 (2005) 193.

Subproject 4

1.

Tiensuwan, M.; Yimprayoon, P.; Lenbury, Y. Application of Log-linear
Models to Cancer Patients: A Case Study of Data from the National Cancer
Institute of Thailand, submitted to Southeast Asian Journal of Tropical
Medicine and Public Health.

Tiensuwan, M., Rattanapornpong, S., Lenbury, Y. Applications of Logistic
Regression Models to Cancer Patients: A Case Study of the National Cancer
Institute. (In preparation).

Subproject 5

1.

Triampo, W., Doungchawee, G., Triampo, D., Wong-Ekkabut, J., Tang,
LM. Effects of Static Magnetic Field on Growth of Leptospire, Leptospira
interrogans serovar canicola: Immunoreactivity and Cell Division. Journal

of Bioscience and Bioengineering. 98(3) (2004) 182-186.
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Ngamsaad, W., Triampo, W., Kanthang, P., Modchang, C., Nuttavut, N.,
Tang, IL.M., Lenbury, Y. A Lattice Boltzann Method for Modeling the
Dynamic Pole-to-pole Oscillations of Min Proteins for Determining the
Position of the Midcell Division Plane. J. Korean Phys. Soc. 46(4) (2005)
1025-1030. |
Modchang, C., Kanthang, P., Triampo; W., Ngamsaad, W., Nuttavut, N.,
Tang, 1.M., Lenbury, Y. Modeling of the Dynamic Pole-to-pole Oscillations
of the Min Proteins in Bacterial Cell Division: The Effect of an External

Field. J. Korean Phys. Soc. 46(4) (2005) 1031-1036.

Subproject 6

1.

Kaewong, T., Niamsup, P., Lenbury, Y. A Note on Asymptotic Stability
Conditions for Delay Difference Equations. International Journal of
Mathematics and Mathematical Sciences. 7 (2005), 1007-1013.
Plienpanich, T., Niamsup, P., Lenbury, Y. Controllability and Stability of -
the Perturbed Chen Chaotic Dynamical System. Applied Mathematics and
Computations. In Press.

Niamsup, P., Lenbury, Y. The Asymptotic Stability of
X,,, —a’x_, +bx,_, =0, accepted in Kyungpook Mathematical Journal.
(under minor revision).

Niamsup, P., Lenbury, Y. M, -Factors and Q, -Factors for Near Quasi-Norm
on Certain Sequence Spaces, to appear in to International Journal of

Mathematics and Mathematical Sci.ences,' 2005.

Publications output of P.I. (Prof. Y. Lenbury) in last 3 years

30.

31.

Kunphasuruang, W., Lenbury, Y., Hek, G. A Nonlinear Mathematical
Model for Pulsatile Discharges of Lufeinizing Hormone Mediated by
Hypothalamic and Extra-Hypothalamic Pathways. Mathematical Models
and Methods in Applied Sciences. 12(5) (2002) 607-624. (Impact factor
0.816)

Dumrongpokaphan, T., LenBury, Y. Cascade Mechanism in a Self-

- regulatory Endocrine System: Modelling Pulsatile Hormone Secretion. Pure

and Applied Chemistry. 74(6) (2002) 881-890. (Impact factor 1.750)
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33.

34.

3s.

36.

37.

38.

39.

40.
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Lenbury, Y., Pansuwan, A., Tumrasvin, N. Chaos and Control Action in a
Kolmogorov Type Model for Food Webs with Harvesting or
Replenishment. ScienceAsia. 28(3) (2002) 205-215. (Impact factor 0.06)
Suwanwongse, S., Chasreechai, S., Lenbury, Y., Kataunyuthita, S.
Modeling of AIDS Incidence and the Response of Transmission Rates to
Increased Awareness: a Case Study of the Thai Province of Nakorn Pathom.
Southeast Asian Journal of Tropical Medicine and Public Health. 33(3)
(2002) 581-588. (Impact factor 0.097)

Siripunvaraporn, W., Egbert, G., Lenbury, Y. Numerical Accuracy of
Magnetotelluric Modeling: A Comparison of Finite Difference
Approximations. Earth Planets and Space. 54(6) (2002) 721-725. (Impact
factor 0.822)

Pongsumpun, P., Lenbury, Y., Tang, .M. Age Structure in a Model for the
Transmission of Dengue Haemorrhagic Fever in Thailand. East-West
Journal of Mathematics. Special Volume (2002) 93-103. (Reviewed by
Math. Review)

Kammanee, A., Lenbury, Y., Tang, M. Transmission of Plasmodium Vivax
Malaria. East-West Journal of Mathematics. Special Volume (2002)
277-284. (Reviewed by Math. Review)

Kanyamee, N., Lenbury, Y., Tang, LM. The Effect of Migrant Workers on
the Transmission of Malaria. East-West Journal of Mathematics. Special
Volume (2002) 297-308. (Reviewed by Math. Review)

Rattanakul, C., Lenbury, Y., Krishnamara, N., Wollkind, D.J. Modeling of
Bone Formation and Resorption Mediated by Parathyroid Hormone:
Response to Estrogen/PTH Therapy. BioSystems. T70(1) (2003) 55-72.
(Impact factor (.846)

Maneesawarng, C., Lenbury, Y. Total Curvature and Length Estimate for
Curves in CAT(K) spaces. Differential Geometry and its Applications. 19
(2003) 211-222. (Impact factor 0.704)

Dumrongpokaphan, T., Lenbury, Y., Crooke, P.S. The Analysis of Higher-
Order Cascade Systems with Separation Conditions Pivoting on the Slow
Components: Application to a Model of Migration for Survival of the
Species. Mathematical and Computer Modelling. 38 (2003) 671-690.
(Impact factor 0.426)
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43.

44,

45.

46.

47.

48.

49.

50.
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~ Triampo, W., Triampo, D., Tang, IM., Lenbury, Y. Random Walk on a

Plane-Spin-Rotator System: Continuum Theory and Monte Carlo
Simulations. ScienceAsia. 29 (2003) 289-299. (Impact factor 0.06)
Wong-ekabut, J., Triampo, W., Tang, .M., Triampo, D., Baowan, D.,
Lenbury, Y., Vacancy-Mediated Disordering Process in Binary Alloys at
Finite Temperatures: Monte Carlo Simulation. Journal of the Korean
Physical Society. 45(2) (2004) 310-317. (Impact factor 0.505)

Poltem, D., Wiwatanapataphee, B., Ruengsakulrach, P., Lenbury, Y.,
Punpocha, M., Wu, Y.H. A Numerical Study of Blood Flow Patterns in
Coronary Artery Bypass Grafts. Quantitative Methods. 1(1) (2004) 1-7.
Lenbury, Y., Giang, D.V. Nonlinear Delay Differential Equations Involving
Population Growth. Mathematical and Computer Modelling. 40 (2004)
586-590. (Impact factor 0.426)

Lenbury, Y., Pornsaward, P. A Delay-differential Equation Model of the
Feedback-controlled Hypothalamus-pituitary-adrenal Axis in Humans,
Mathematical Medicine and Biology: A Journal of the IMA. 22 (2005)
15-33.

Crooke, P.S., Kongkul, K., Lenbury, Y., Adams, A.B., Carter, C.S., Marini,
J.J., Hotchkiss, J.R. Mathematical Models for Pressure Controlled
Ventilation of Oleic Acid-injured Pigs. Mathematical Medicine and
Biology. 22 (2005) 99-112.

Giang, D.V., Lenbury, Y., Seidman, T.L Délay Effect in Models of
Population Growth. Journal of Mathematical Analysis and Applications.
305 (2005) 631-643. (Impact factor 0.458)

Siripunvaraporn, W., Egbert, G., Lenbury, Y., Uyeshima, M. Three-
Dimension Magnetotelluric Inversion: Data Space Method. Physics of the
Earth and Planetary Interiors. 150 (2005) 3-14. (Impact factor 1.246)
Ngamsaad, W., Triampo, W., Kanthang, P., Tang. .M., Nuttawut, N,
Modjung, C., Lenbury, Y. A Lattice Boltzmann Method for Modeling the
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8. ADDITIONAL COMMENTS
‘Two annual progress report meetings have been organized.
8.1 First annual meeting: May 8-9, 2003
| ' The program

3. Malee Sriprom

4.  Somporn Punpocha

2 invited lectures by Prof. Yuesheng Xu form West Verginia University.

13 contributed papers.
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Attendance
i} On May 8, 86 participants.
On May 9, 61 participants.

i) Participants were from 16 universities.

8.2 Second annual meeting: January 7-8, 2004.
The program

i) 4 invited lectures by
- Prof. Charles Micchelli from University at Albany, New York, U.S.A.

- Prof. Hideaki Kaneko from Old Dominion University, Virginia, U.S.A.
- Asst. Prof. Massimiliano Pontil from University College, London, U.K.
- Assoc. Prof. Wayne Michael Lawton from National University of Singapore,
Singapore.
it) 7 contributed papers.
Attendance
i) On January 7, 55 participants.
On January 8, 58 participants.

i) Participants were from 11 universities.

8.3 The final report meeting is being organized as an international conference
(ICMA-MU 2005) during December 15-17, 2005. Announcement has been
posted in the web (www.sc.mahidol.ac.th/sema/).
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- Abstract—Cascade systems, characterized by highly diversified time responses, are considered in
- this paper. Singular perturbation principles, which have been used to analyze relaxation oscillations
. in second-order dynamical systems, will be extended here to accommodate nonlinear systems in which
| more state variables are involved in multiscale interactions. Separation conditions will be derived for
j the identification of limit cycle behavior in a higher-dimensional (rn > 4) cascade system. It is found

1 that when appropriate regularity and boundedness requirements are met by the slow components
of the dynamical system, pivoting on the slow components can lead to separation conditions which
identify limit cycle behavior as well as other dynamic behavior permitted by the model. The principle
is then applied to a model of two communities coupled by migration. Through such analysis, we
can examine how the mechanisms of migration, variations in reproduction, recruitment, mortality,
and feeding success, exploited by interacting species, may achieve survival and coexistence of the
populations concerned. © 2003 Elsevier Ltd. All rights reserved.

Keywords—Cascade systems, Singular perturbation, Sustained oscillation, Persistence, Migra-
rtiomn.
i

_ INTRODUCTION

Several important cascade systems are found in nature which incorporate some form of diversities
in their dynamics. Many endocrine systems are considered to constitute a cascade mechanism
for being an amplification system where an initial reaction gives rise to the generation of multiple
second reactions, each of which sets off multiple third reactions, and so on.

*Author to' whom all correspondence should be addressed.
Deepest appreciation is extended to the Thalland Research Fund for the financial support {Contract Num-
bers RTA/02/2542 and PHD/0029/2543).

0895-7177/03/% - see front matter & 2003 Elsevier Ltd. All r1ght= reserved. Typeset by Ap+5-TEX
doi: 10.1016/30895-7177(03)00239-0
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An example of endocrine cascade systems involves the hypothalamus, pituitary, and distal
endocrine secreting glands. A signal, in either the external or internal environment, is sent to
the limbic system and then the hypothalamus, resulting in the secretion of a releasing hormone
into the closed portal system connecting the hypothalamus and anterior pituitary. Releasing
hormones may be secreted in nanogram amounts and have half-lives of about 3-7 min [1]. They
then stimulate the release of the appropriate anterior pituitary hormones, which may be secreted
in microgram amounts with half-lives on the order of 20 min or longer. These hormones in turn
signal the secretion of the ultimate hormones, which may be secreted in many micrograms or
milligrams and may be fairly stable. Thus, the stability and amounts of the hormones increase
as one proceeds down the cascade.

Such cascade effects can be found also in ecosystems, in the majority of food chains where
the size and time needed for reproduction and growth of the individuals of each population
are increasing with the trophic levels. Phytoplankton-zooplankton-fish is a typical example [2].
In fact, almost all food chains belonging to the class vegetation-herbivore-carnivore have time
responses increasing along the chain from bottom to top, an exception of which is the chain

“tree-defoliator-bird” in which the second trophic level is that with the fastest dynamics [2i.
It is well known that such systems characterized by highly diversified dynamics can be analyzed
with the singular perturbation method |2], under suitable regularity assumptions. Such arguments
have been used to analyze relaxation oscillations in slow-fast second-order dynamical systems
and have been extended successfully to apply to three-dimensional systems by Muratori and
Rinaldi [3]. However, in a complex system where more than three state variables are involved,
analysis and identification of sustained oscillation become a formidable task. Since a great deal
of understanding and insights can be gained from such analysis which cannot be achieved from
numerical work alone, we attempt here to extend the concept to accommodate higher-dimensional
systems. Lenbury et al. [4] was able to derive the separation condition for a higher-dimensional
system by pivoting about the fast components of the system, upon certain assumptions of their
boundedness and regularity. Here, we show that in a different circumstance where pivoting
about the slow components is allowed, existence of sustained oscillations may be ascertained at
relative ease through the singular perturbation analysis. We derive the separation and delineating
conditions, which help us to identify different dynamical behavior permitted by a nonlinear system
of order greater than or equal to four.

Application is then made to a model of predator-prey communities coupled by migration in
order to investigate how certain species can survive by exploiting the mechanisms which involve
a combination of migration, variations in rates of reproduction, consumption, and mortality.

According to Matsumoto and Seno (5], population persistence is influenced by both biotic
and abictic environmental heterogeneity, namely, resource distribution, temperature, humidity,
stochastic disturbance, and so on. Some effect of local environmental heterogeneity is transferred
through population migration processes and affects the whole population to affect population
persistence.

Whitehead [6], in his report on the variation in the feeding success of sperm whales, stated that
a consideration of scale should be central in ecology. At the species level, patterns of environ-
mental variation over a wide range of spatial and temporal scales determine population ecology
and define evolutionary selective pressure. “Populations of particular species track spatial and
temporal variability in their environment at some scales but not others. Tracking at tempo-
ral scales longer than the organism’s lifetime and spatial scales broader than its home range
is largely achieved through variations in reproduction, recruitment, mortality, and migration.”
Environmental variability over smalter scales usually results in changes in the feeding success,
nutritional status, and. sumetines, the behavior of individual organisms.

Whitehead's study (6} found rhat sperm whales maintain high biomass and very low reproduc-
tive rates in an envitonmenr which shows great variability over time scales of oue or more years,
Ax the enviroumental caniation has ke coherence over seales of about 300k or more. the study

te
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found that sperm whales are able to. use migration as their principal strategy for surviving in an
uncerta.m habitat. During periods characterized by low feeding success groups of sperm whales
moved greater distances and are able to maintain high biomass and low reproductive rates in
an environment which, at any location, contains long, unpredictable periods of food shortage.
Grdups have been found to move more consistently in particular directions when feeding success
is low, and doubling back on their tracks when it is high.

Walde [7] also presented field data which indicated that population densities were higher and
pers1stence was greater where immigration rates were higher. Most importantly, it appeared that
f:empora.l patterns of density and, perhaps, probability of persistence, were dependent on the
a.mqunt of migration between populations.

As commented by Walde [7], most of the current debate is centered on the question of the
mechanisms underlying the étability among interacting species. One of the two alternative hy-
potheses in such a debate is that the predator-prey interaction is stable at a relatively small
spatial scale due to mechanisms such as foraging behavior, or due to fine-scale physical biotic
hetérogeneity. The other hypothesis is that the interaction is stable at a larger spatial scale due
to migration among partially subdivided populations.

We, therefore, study a simple model of two communities, assuming that predators can migrate
between communities, while prey cannot. Prey populations in the two communities are assumed
to exhibit different reproductive behavior to take into account the difference in abundance, and
dlﬂ"erent parameters are assigned to the predators response functions to model the variation in
the Efora.gmg success in the two communities. The condition for migration is the difference in
predator population densities. We derive the higher-dimensional separation conditions developed
in this paper to-identify limit cycle behavior and carry out an analysis of the dynamies of the
four-dimensional model in order to provide partial support for the arguments concerning the
stability of the system and the persistence of the populations in the coupled communities.

Singular Perturbation Arguments in the Lower-Dimensional Case

o ‘ . . .
“ ‘In order to understand how the singular perturbation arguments can be used to detect limit
cycles in a three component cascade system, let us consider a third-order system of the form

= f(z,y, z;a), (1)
¥ =eglx,y, z @), (2)
z =ebh(z,y, z; a), (3)

where € and ¢ are small positive parameters. Thus, when the right sides of equations (1)-(3) are
ﬁmte and different from zero, |y] is of the order £ and [Z] is of the order £6. Therefore, z is the
fast varlable z is the slow one, while ¥ has intermediate dynamics.

As explained by Muratori and Rinaldi {2,3], system (1)-(3) with small ¢ and § can be ana-
lyzed with the singilar perturbation method which, under suitable regularity conditions, allows

'app‘rox.iliﬂlating the solution of system (1)—(3) with a sequence of simple dynamic transitions oc-

curring at different speeds. The argument, followmg that of Muratori and Rinaldi’s {2,3], goes as

follows.
Given an initial condition (z(0), 4{0), z(0}), the slow z and intermediate (y) variables are frozen,

and'the “fast system”

: . [2

; a(r) = flz(m1),y(0). z{0); @), T 5 - (4)
is considered with initial condition £{0). Thus, the fast component r varies very quickly according

to equation {4), and eventually tends toward a stable equilibrium £(x(0), ¥(0), 2(0)) of (4}. Then,
stilllkeeping = frozen at z{0), we now consider the “intermediate system”

gired = g(E(r(0), u(r). 2(00), y{m2), 2(0); ). T2 = {5)

S| o

where _:'E(:}:('O), 4. 2{0V s a stable equilibrium of the fast system (4) with y(0) replaced by y.
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Referring to Figure 1, where slow, intermediate, and high-speed transitions are indicated,
respectively, by one, two, and three arrows, a transition at high speed (7 = t/ed) first develops
at constant y and z and brings the system from the point (z(0), y(0), z(0)), point A in Figure 1,
to point B on a stable equilibrium of the slow manifold f = 0. Then a second intermediate speed
(2 = t/4) transition is made on the manifold at constant z until an equilibrium F(z(0), »(0), 2(0))
of system (5) is approached (point € in Figure 1). A third transition then follows at low speed
along the line obtained by intersecting the slow manifold f = 0 and the intermediate manifold
g = 0. The transition may end at an equilibrium point where f = g = A = 0 or a situation may
occur in which the stability of the manifold f = g = 0 is lost first at a bifurcation point (D in
Figure 1}. Then, a fast catastrophic transition may bring the state of the system to a point on
the other stable branch of the manifold f = 0 (point E).

y4 f=.h=0
 {
E

DAF
g7

%
an ]

/ T
. g=0
7z Zw gz >

Figure 1. The three equilibrium manifoids in the case where the intermediate mani-
fold g = O separates the two stable branches of the curve f = h = 0.

Now, if the manifold g =0 is positioned in such a way that point O, where f =g¢=h =0, is
located between the two bifurcation points m and M on the curve f = h = 0 so that the manifold
g = 0 separates the two stable branches of the curve as shown in Figure 1, then g > 0 on one
branch (the front one in Figure 1) and g < 0 on the other (the back one).

In this case, once the system reaches point E, a transition develops at intermediate speed
downward towards point F located on the intersection between f = 0 and A = 0 and follows this
curve at slow speed in the direction of decreasing y until the bifurcation point m is reached. ‘A

catastrophic transition then brings the system to point G on the front part of f = 0, followed by

a transition at intermediate speed to point H on f = h = 0. Here ¢ > 0, and a slow transition
will develop in the direction of increasing y until the stability of the manifold is lost again at
point M. Another catastrophic transition takes the system to point I on the back portion of
f = 0 where g is now negative. A transition at intermediate speed then develops downward until
point J on f = h = 0 is reached. A slow transition then follows along this curve until m is
reached again. A quick jump to G closes up the cycle mGHM [ Jm.

o -
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Obviously, the cycle can be much more complex if, for suitable values of its parameters, sys-
tem (1)-(3) has multiple equilibria. However, we shall assume that for appropriately chosen
parametric values, the manifold ¢ = 0 intersects the curve f = h = 0 at only one point, namely
the point_;'O(:co,yo, zp) and the two bifurcation points on f = h = 0 are M(zpm, yar, zm) and
M{Tm, Ym, 2m). Then if, for a particular value of the system parameter o, the separation condition

Tm < To < ITpf (6)

holds, then the system of equations (1}-(3) has a stable limit cycle which is contained in a tube
around the transitions described above, and the radius of the tube goes to zero with £ and 3.

Extension to Higher-Dim;nsional Systems Pivoting about the Slow Components

In order to extend the above concept to higher-dimensionzltl systems, let us consider a system
of n + 3 differential equations which may be written in the form

&= f(z,y, 2, w; ), | (7)
¥ =eg(z,y, z,w; ), (8)
2z =¢gbh(z,y, z,w; a), (9)
w = ednk(z,y, z, w; a), (10)

where e,. 5, and n are small positive constants, & € RV is the N-dimensional vector of system
parameters, while

xr
y| e®R
Z
and
e wy
wy
w = . eR”
Wn

are the n + 3 state variables, and

kl (Ii Y, Z,w; Q)
kolz, ¥, 2, w; )

. kn(z,y, 2, w; @)

Hence, z is the fast variable, ¥ the intermediate, z the slow, and w;, i = 1,2,...,n, the very
slow components of the syste?ﬁ.

Employing the same line of arguments as above, we first assume that w is varying extremely
slowly in comparison to the first three components x, ¥, and z. Then, we may initially assume
that w is kept frozen at a constant value w(0) while z, y, and z vary according to the three-
dimensional system

-

5 = f(z.y, z,w(0); a0, (11)
y=cg(z.y,z,w(0);a), (12)
Z =cgbh(z,y, z, w(0); o). {13)

Thus, if, for suitable parametric values . the relative positions of the three equilibrium man-
ifolds of svstem {111-{13) are the same as those three shown in Figure 1, then trajectories will
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develop as described earlier. However, as w varies with time, though very slowly, the shapes and
positions of the three manifolds shift slowly as time passes. The coordinates of points m, M,
and O are, in this case, (zm(w; @), ym(w; ), zm(w; a}), (zm(w;a), yar(w; @), 2pm(w; @), and
(zo(w; @), yo(w; @), zo(w; @)), respectively, since f, g, and h are all functions of w.

Moreover, since w may not equilibrate and the manifolds ki(z,y, z,w;a) =0, i =1, 2,...,n,
may not be stable, as the transitions develop around the curve shown in Figure 1, the value of w
can swing about off the manifolds

ki(zava,wQa) =01 = 1,2,...,1’1. (14)

If we further assume that each of the equations in (14) can be solved for z as an explicit function
of the other components
Z=Zi(l‘,y,w§a), 'i=1,2,...,'ﬂ, (15)

then we see that extra separation conditions are needed to ensure that the manifolds described
by the equations in (15) are positioned in between the two stable branches of the curve f = h =0
as well, in order that a limit cycle exists. These conditions are stated in the following theorem,
under all the assumptions mentioned above.

THEOREM. Suppose that the functions f(x,y, z, w, &), g(z, ¥, z,w; a), h(z,y, z, w; a), and k(z, y,
z,w; o) are continuous, and that the functions xp(w; a), zp(w; @), Tm(w; @), zm(w; a), To(w; a),
zo(w;a), and Z;, i = 1,2,...,n, are continuous and bounded functions. If, for some permissible
value of «, and each fixed value of w, there exists a unique equilibrium point O, where f = g =
h =0, and k =0, such that

SUP Ty (W @) < i{luf zo(w; a), (16)
Szp To(w;a) < igfIM(w;a), (17)
szp zm(w; @) < miin igif Zi, (18)

max sgp Z; < irlzf zp (w; ), (19)

where the supremum and infemum of Z; are taken over its domain A; which is a subset of R*+2,
then a limit cycle exists for the system of equations (7)-{10), provided that ¢, §, and n are
sufficiently small.

ProoF. Since the functions involved are assumed to be bounded in their respective domains,
the infemna and suprema in inequalities (16)-(19) exist. The separating conditions (16),(17) and
the continuity of the functions concerned guarantee that, as w ranges over time, the intermediate
equilibrium manifold ¢ = 0 will remain in the appropriate position, separating the two stable
branches of the submanifold f = h = 0, under the regularity assumptions already mentioned
above. The transitions will develop as shown in Figure 1, even as w varies slowly. The separation
conditions (18} and (19) ensure that, as the transition reaches the highest value of z at point M
in Figure 1, which keeps shifting with w, the trajectory in the (n + 3)-dimensional space swings
to one side of the manifolds given by (15), and when the transition reaches the lowest value of z
at point m in Figure 1, the trajectory has swung over to the other side of the manifolds given
by (15). This guarantees that w shall not increase or decrease without bound, but remain close

to the manifolds z = Z;, i =1,2..... n, permitting sustained oscillation around a closed cycle as

identified in Figure 1, provided that =, 4. and #» are sufficiently small.

APPLICATION TO A MODEL OF
COMMUNITIES COUPLED BY MIGRATION

In order to illustrate how the technique can be applicable to practical situatious, we consider
a model of two predator-prey communities coupled by migration, consisting of the following

. iy

-
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nonlinear differential equations:

Ly MY
z=rz(l x} pary vl (20)
. Cimzy
iy 72 — Dy — iy ~ 2), (21)
. Czrzzw ’
2= wt M, Dyz + paly — 2), (22)
0 = ng _ ngw ' (23)

T wHry w4+ My

where z, y, z, and w are thé population densities of prey in the first community, predators in
the first community, predators in the second community, and prey in the second community,
respectively. The growth rate of prey in the first community is assumed to be logistic, while a
saturation function is assumed for prey in the second community in order to incorporate the effect
of resource variability in the two environments. Holling type response functions are assumed for
both predators with conversion factors C and C; specifying the numbers of newly born predators
for each captured prey. Parameters 4; and I'y are the maximum predation rates, My,Ms,r3 the
half-saturation constants, [,,D; the corresponding death rates, and R; is the maximum birth
rate of prey in the second community. Parameters u; and us; are the variation constants of
migration from one community to the other, which are allowed to be different to account for the
difference in spatial capacities available in the two habitats.

We assume that prey has very fast dynamics and the feeding success of the predators is higher
in the first community. After a period of successful foraging, predator population density greatly
increases while the level of prey continuously drops leading to shortage of food due to intra-
population competition. Migration is then adopted as the predators’ strategy for surviving in
an uncertain habitat. The rate of migration from one community to the other is assumed to
vaty idirectly as the difference in the population densities. As Sherry observed in his recent
study (8], habitats are considered saturated when some individuals are unable to secure or defend
their ground due to competition, forcing settlement in less preferred areas. Thus, intraspecific
competition in the first community may drive the predators to migrate to a less favorable habitat
in which prey multiplies more slowly. However, evidence [6] shows that, confronted with low
food availability, organisms may die, fast, or move. An adjustment in their reproductive rate
and foraging behavior is a common strategy for survival in a less favorable environment and
a decline of body mass is found in individuals occupying the most drought-stressed habitats.
Therefore, predators in the second community are assigned slower dynamics than those in the
first. Consequently, we scale the dynamics of the four components of the system by means of
three small positive parameters ¢, 4, and 7 as follows.

Letting ¢ = Cyvi/e, di = Dife, vy = pi/e, ca = Col'p/ed, do = Dajed, vo = pafed,my =
Ry /b1, and yo = 72/£dn, we are led to the following model equations:

Nry

t=rz(l -7) - T+ M, = f(z,y,2,w), (24)

. Ty .

v=s —hy-unly—z)| =€ 25

] L At vy z)] eg(z.y, z,w), (25)

. CrIw

tmed | T daz by — 2)| = 2Sh(zy, 2 w), 26
['w VA d valy )] Sh(z,y, z. w) (26)

o= 551][ 2w _ 1;-2.-:u: ] =20nkiz, y, 2, w). (27)
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Thus, if £, §, and n are small, prey and predators in the first community have the fastest and
intermediate dynamics, respectively. In the second community, the predator population has a
relatively slow time response, while the prey population has the slowest dynamics.

We now study each of the equilibrium manifolds in detail.
THE MANIFOLD f = 0. This consists of the trivial manifold z = 0 and the nontrivial one given
by the equation
Tz + M)A -2), (28)
4
which intersects the (y, z)-plane along the line

y:

1
y=—M,.
B!

The maximum point on this manifold is located at the point where

1"1(1 +'M1)2 _
Yy=——F—— =M

29
am (29)
and { M
£ = LLQ_I) — (30)
as shown in Figure 2a.
THE MANIFOLD g = 0. This is the surface
Y a1x
== |d - 31
z ‘U1(1+U1 $+M1)’ ( )
which intersects the trivial manifold z = 0 along the line
2= 2 (dy +uy) (32)
"
and intersects the nontrivial manifold f = 0 along the curve
z= ——(1 = 2)((dy +v1 — c1)z + My(dy + ). (33)

Y1

Moreover, the curve f = g = 0 in (33) intersects the (z, y)-plane at the point where z = 0 and

- Mildtv) g (34)
¢ — (di +wy)
which is positive provided that
- - e > dy +uy. (35)
THE MANIFOLD h = 0. Thisis g,isurface given by
B vay(w + M>) (36)

- (dz + ug — c2)w + {do + v} M ’
which intersects the nontrivial manifold f = 0 along the curve given by

LT [ Az + M)(1 — z)(w + Ma) ]
Y1 (dg —+ vy — Cg)'w + (dz + Ug)Mz .

(37)

The maximum point of the curve f = A = 01in (37) is attained when = = z,; given in (30) and,
on substituting (30} into (37),

(38)

= J_,\,[(Ll-') =

riUs (1 + M) (w + M)
vy | {do +v2 — co)w + (da + v2) Mo '



w o

116 / Appendix # 1.1

Analysis of Higher-Order Cascade Systems 679
On differentiating zas(w), we find that

d
EZM(UJ) > 0)

for all parametric values. Thus,

inf zpr(w) = 2 (w)l =g
— 1"1’02(1 e M1)2 (39)
dy1(dy +vg) '
< supzp{w) = wlimm zpr(w)

_ _nu(l+ My)? (40)
dvi(da +va — &)’

which is positive if
da + va > co. (41)

The point where the curve f = h = 0 in (37) intersects the (y, z)-plane is found by substituting
z = 0 in (37), yielding

T [(d2 +7;:iﬂ::)(:: I g;)-l- v2) M) = zm(w) (42)
Differentiating z,,(w), we find that
| £ om(@) >0,
for a.ll parametric values, Thus,
| SUp 2 () = lim_2n(w)
T M (43)
n(dz +v2 — )’
inf zm(w) = zm(w)|,,_o
i ruaM; (44

T{da + v2)’
which is always positive.

Finally, the curve f = g = 0 in (33) intersects the curve f = h = 0 in (37) at the point where
z = zo(w) and ’

M ([(dy + Ul.j(;f+ vy — ¢2) — vivg] w + [(dy + v1)(da + v2) — vivz] M)
fryve — (dy +v1 — e1)(d2 + v2 ~ )] w+ [vrvs — (dy +v1 — e1)(dz +v2)| Ma

zo(w) = (45)

On differentiating zo(w}, one finds that

i:Ar( 0 o
dwow)< '

for all parametric values, and therefore,
inf zo(w) = lim zo{w)
w (i aapde e

M [{dy +vi){da +vs — ep) — vive] (46)
['UI'U‘Z —{d1 +v, — Ci)(dg + U — Cg)]
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and
supzo(w) = zo(W)|,—0

_ ((dy + v1)(da + v2) — viwg] My (47)
[Ul'UQ - (dl + v — Cl)(d2 + 'uz)] )

In a similar manner, one can find
igf zo{w) = 7—;1); (1 — sup Io('w)) (Ml(dl +wv1) + (d1 +v1 — e1) sup :zo(w)) (48)

and
sup zo(w) = —— (1= infzo(w)) (Mi(d +v1) + (d + v — er)infzo(w))  (49)

w Tiv

provided that (35) holds.
Moreover, we observe that the manifold i = 0 intersects the (y, z)-plane along the line given
by {36) whose slope is, for a given value of w,

va({w + Ma)
{d2 + v2 — e2)w + (do + vo) My’

which has a minimum value when w = 0 of vy/(d2 + v2). However, the slope of the line where
g = 0 intersects the (y, z)-plane is found from (32) as.(d; + v;1)/v;. Since

(dl + ’Ul)(dz + ’Uz) > vy

as long as dy > 0 and dy > 0, the line where g = 0 intersects the (y, z)-plane is always above the
one where h == 0 intersects that plane, as shown in Figure 2a.

THE MANIFOLD k = 0. This consists of a trivial manifold w = 0 and a nontrivial one given by

the equation
_ ?"2(‘0‘.0 + Mg)

o (w +73) = Zy(w), (50)

whose graph is shown projected onto the (w, z)-plane in Figure 3. Since

d 7‘2(1"3 —_ Mg)
2z — 2\ )
duw l(w) ’YZ(w + 7'3)2 1
which is negative if
Ty < ﬂ’fz, (51)
one finds M.
: T
ssup Zy(w) = Zy(w)]|y_g ——2 (52)
w ] YaT3
and
inf Zy(w) = lim Z(w) = 2. - (53)
o T =X ’Yz

We are now in the position to classify the different dynamic behavior exhibited by the system
of equations (24}-(27).
Casg 1. This case is identified by inequalities (35), (41), {51}, and the separation conditions
0 <infrp(w) and supzo(w) < T, (54)
w w

sup rp{w) <inf Z,(w)  and  sup Z)(w) < inf zp (w), (55)

LY

-
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with
O<zpy <2<, (56)

where the infemum and supremum values are as given earlier in (39), (40), (43), (44), and (46)-
(49). The inequalities in (54) are the separation conditions required in (16) and (17) of the above
theorem, while (55) are those required in (18) and (19). As w varies with time, point O remains
between the two stable branches of the curve f = h = 0 and the trajectory will develop into a
closed limit cycle, as seen in Figure 2a, which slowly shifts its position with the slowly varying w.

Stal,rting from a generic point, say point A4 in Figure 2a, a fast transition will develop towards
point:B on the manifold f = 0. Here, ¢ > 0 and a transition at intermediate speed will be made
in the direction of increasing y until point C on the curve f = g = 0 is reached. A slow transition
then follows along this curve to point D where the stability will be lost and a catastrophic
transition will bring the system to point F on the other stable branch of f = 0. Here, ¢ < 0 and
a transition at intermediate speed will develop in the direction of decreasing y toward point F' on
the curve f = h = 0. A slow transition then follows along f = h = 0 until at some point m the
stability of the submanifold will be lost. During this time, w will be increasing since w > 0 here,
due to the first inequality in (55). A jump to point G followed by a slow transition brings the

' system to the bifurcation point M. A catastrophic transition then brings the system to point H

on th'ge trivial manifold # = 0, during which time w will be decreasing since w < 0 here, due to

(a)

Figure 2. The rhree equilibrium manifolds f =0, g = 0, and A = 0 in the (x,y, z}-
space for a particular value of w, in the five cases identified in the text. The transi-
tions develop inte closed cycles in Figures 2a and 2b, approach the stable equilibrium
point (F inx the positive octant in Figures 2c and 2e, and approach the washout steady
state (e, o) = 10000 in Figure 2d.
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y A f=h=0

(c)

Figure 2. (cont.)
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(d)

(e}

Figure 2. (cont.)
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the second inequality in (55). A slow transition will now develop to point m which closes up the
cycle mGM Hm and thereby a limit cycle has been identified.

CasE 2. In this case, inequalities (35), (41), (51), (54), and (55) still hold, while (56) is now
violated and
0<Z<xzp. (57

The relative positions of the manifolds f = 0, ¢ = 0, and h = 0 are as shown in Figure 2b,
slowly shifting with time.

The transition will develop from point A in Figure 2b to B as before. However, a transition at
intermediate speed from B will continue upward until the bifurcation point C is reached, where
a catastrophic transition will bring the system to point D on the trivial manifold z = 0. A
transition at intermediate speed follows downward until the stability is lost at some point E and
a quick jump takes the system to point " on the other stable branch of f = 0 which almost closes
up the cycle. However, z has been varying slowly and so point F just misses B and the transition
continues upward to point G, then to H and so on, until a point 7 on the curve f = h =0 is
reached, from which point the transitions will trace out a closed cycle in the same manner as in
Case 1.

CaAsE 3. In this case, inequalities (35), {41}, (51), and (56) hold, while the separation condi-
tion (54) is violated and we have instead that

0 < zp < inf xo,(w). (58)

The trajectory will develop as in Case 1, initially. However, since now point O (in Figure 2¢) is
located on the stable branch of f = 0, the transition from point C on f = g = 0 will first reach
point O where f=g=h=0.
Considering the manifold k = 0 projected onto the (w, z)-plane in Figure 3, we see that w may
behave in three different manners. First, if it is further required that
ro My

inf zo(w) > sup Zy(w) = . (59)
w w 7273

Then the trajectory eventually stays in the region where w < 0 and w tends to zero as time
passes. Thus, this is the case where the predators can persist on the supply of only one prey pop-

w >

Figure 3 The graph of the munifold & = 0 projected on the (i, 2)-plane.
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ulatnon in’ one community. The mechanism of migration into the other community can be taken as

hlbernatlon or fasting periods during which some predators choose abstinence to insure survival.
Second if it is required, on the other hand, that

; sup 20(w) < inf Zy(w) = -~ (60)
a w w 2

thenf.the trajectory eventually stays in the region where 1w > 0 and we will find that w increases
unboundedly as time passes.
Fihally,' if we require

2 < inf zp(w) and sup zo(w) < raMs

61
oo w Y273 (61)

instead of inequality (59) or (60), then it is guaranteed that w will tend towards a stable nonzero
equlhbrlum value on the manifold &£ = 0. This is then the case where all four populations persist
at constant levels.

CASE 4. If inequalities (35), (51}, and (60) hold, but
Z>1, (62)

then we must have xpr < 0 as well, from considering equations (30) and (34). We also note that
the éurve; f = h = 0 can be shown to be concave up, while f = g = 0 is concave down as z
increases along the surface f = 0. Therefore, the two curves will not intersect at a point where
z > 0 if we make sure that the curve f = h =0 is steeper than f = g = 0 at the point z = 0,
namely, we need to require

vyup (M) +1)

63
da + vy ( )

(M1 +1)(d1 +v1) —er >
Then! the three manifolds are positioned as shown in Figure 2d and the transitions will develop
from’ the starting point A to point C on f = g = 0 as before. Here, however, h < 0 and so a slow
transmon will develop downward in the direction of decreasing z to end at the equilibrium peint
(:c,y, z) = (1,0,0) where f = g = h = 0. Thus, in this case the predator populations vanish in
hoth communities. Prey in the first community eventually reaches the steady level 1, and prey
in the second one increases unboundedly since 1 > 0 once z = 0.

CASE 5. On the other hand, if, apart from (35), (51}, and (62), we also have

‘U1'U2(M1 + 1)

64
do + v ( )

(M1 +1)(dy +v1) — a1 <
then the curve f =g =0 is steeper than f — h = 0 at the point z = 0, and they will intersect
at some point where z > 0 as shown in Figure 2c. The trajectory will, therefore, develop in
the same manner as in Case 3¢ The populations =, ¥, and z tend toward steady positive levels,
while w elther vanishes, establishes a positive constant level, or becomes unbounded, depending
on whether inequality (59), (60), or (61} holds, respectively.

DISCUSSION AND CONCLUSION

We present, in Pigure 4, a computer simulation of system (24)-(27) with parametric values
chosen to satisfy the delineating conditions in Cases 1-5 described above. Figures 4a—4e show
the solution trajectories projected onto the (z, y)-plane, corresponding to Cases 1-5, identified
earlier. respectively. The numerical results are in agreement with our theoretical predictions.

Fiénre 5 shows the corresponding time courses of the state variables in each of the five cases
showt in Figure 4. The population levels are seen to develop into sustained oscillations in Cases 1
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and 2 (Figures 5a and 5b, respectively), and tend toward steady-state levels in Cases 3 and 5
(Figures 5c and 5e, respectively). Case 5 is shown here with (60) being satisfied and all four
populations persist, while Case 3 is shown here with inequality (59) being satisfied, and only the
first three populations persist, while prey in the second community becomes extinct eventually.
Inequality (59) may be interpreted to say that even the lowest value of zp, the level of predators
in the second community, at the point where f = g = 0, below which the levels of both predators

2.5 1D.0
2.0
. 7.5 =
1.5 T
. ( Y 5.0 -
1.0 - |
2.5 —
0.5
_ 1
0.0 —————————— 0.0 {—F———F———7
0.25 0.50 .75 1.00 1.25 1.50 4] 2 4 & ]
z | z
(a) 1 = 08, cy = 0075, d]_ = 0.5, d2 = 03, (b) cp = 07, ¢y = 0-1, dl = 05' dz = 0_3' " =
T1=1,7=3, M =01, M=2,r=86,r; =2, 02 y=1 M =005 My=3,r =6, rp =2,
r3=1 vy =02 U2=2,E=1,t§=0.1,f)=0.5, T3 =2,‘U]_=0.1,U2=2,E= 1,6:0.1‘1?:0,5,
z{0) = 1.2, y(0) = 1, 2(0) = 1, and w(0) = 1. z(0) = 1.2, (0} = 1, z(0) = 1, and w(0) = 1.
2.5 3.0
2.5
2.0 —
y i
1.5 -
J
1.0
0.5 —
n.o T T T T T | .a.0 T 1 T | T T
0.2 c.4 0.5 0.8 1. 0.00 1.25 2.50 1.7% 5.00
Z z

() e = 0.8, c2 = 0.075, d, = 0.5, d3 = 0.3, {(d) c1 = 0.43, ca = 0.075, dy = 0.1, dy = 0.3,
v = Loy2 = 3, My, =01, My =2, ry = 6, mn=1v9=3 M =3, My =81, =6, rp =15,
ra =03 r3 =1, vy =02 vy =005 ¢ =1, m=l,uvu=01Lve=2¢e=1,6=017n=05,
§=01 17 =05 (0 = 1.2, y(0) = 1, 2{0) = 1, z(0) =2, y{0) = 2, z{0) = 5, and w(0) = 1.

and w(0) = 1.

Figure 4. Computer simulations of the model equations (28)-(29) in the five cases
mentionad in Figure 2. The simulation results agree with our theoretical prediction
set out in Figure 2.
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Figure 4. {cont.}
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Figure 3. 'Uhe time courses of three populations ={¢), y(¢), and w{t) in the corre-
sponding five cases shown in Figure -1
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must be rising, is still too high to be sustainable by the preys in the second community, whose slow
dynamics then drive them to extinction. Thus, to ensure survival in this case, some predators
migrate out of the community or, equivalently, escape into hibernation when sustenance is low
in that community.

The separatlon conditions in (54) for sustained oscillation may be interpreted as follows. The
va.lue yas'is the highest possible level of predators in the first community, above which the level of
prey z in that community must decline (f < 0). On the other hand, yo is the level of predators,
at the point where f = g = h = (0, above which the levels of prey x and predators y must decline
while z begins to rise. The level x4 of prey in the first community, which sustains the first event,
must be high enough to exceed the level 5o, which sustains the latter, over all levels of prey w
in the second community. The first inequality in (55) may be interpreted as follows. The value
Z1(w) is the level of predators in the second community below which the level of prey w must
rise {k > 0). On the other hand, z,,(w} is the level of predators in the second community below
which its level must begin to rise when there is no prey in the first community (z = 0). The
levels of Z,, over all w, must exceed the levels of z,, over all w. A similar interpretation can be
made of the second inequality in (55).

Moreover, the requirement that Z;(w) is bounded above simply means that there should be an
upper bound for the levels of predators above which the prey population density in the second
community must begin to decline (& < 0). Similarly, the condition that Z;{w} should be bounded
below by a positive number means that there must be a positive level of predators below which
point the prey population density, whatever it is, must be increasing (w > 0).

If the requirements stated above are satisfied, then the surrounding conditions are suitable
for sustained oscillations in all four persisting populations. Field data which exhibits oscillatory
behavior in connection with migration have often been reported [9,10].

We further note that extinetion of predators in both communities is discovered in this system
in Case 4 when & > 1 and (63) holds as presented in Figure 5d. Considering the value of 7 given
by (34), £ will be less than one if

di+u < H%—Ij (65)
This means that, to keep from extinction, the predators in the first community must keep the
death and migration rates from being too high.

On the other hand. for persistence and stability in the case that ¥ < 1, we need inequality (41)
to hold for the existence of a positive attractor to be assured. This inequality can be satisfied if the
migration constant i is large enough while the death rate dy can still be low. Thus, migration
must be balanced in a proper way to achieve sustainability. In the case that v; = vy = v,
then (41) and (63} lead to the requirement that

cr —di (M + 1)
M+ 1 '

cg—do < v <

which gives the bounds for the migration rate v td keep the populations from extinction.

We have. thus. demonstrated the cructal role of migration, variation in reproductive rates, for-
aging suceess, and mortality as a mechanism which effects population survival, by the application
of the higher-dimensional separation conditions, which in this case pivots about the slow com-
ponent. Field data has been reported [7,11] which strongly suggests that increasing the number

of lnteracting popriation. and thus, migration rates, slows down the tendency to extinction. In
teving to model such o awleipopulated system, the separation conditions cen then become more
complex. There e several sophisticated computer prograrus. howaver, which can render the cal-
culations of boteds ol paremerrie values easy to accomplished. Studies ol several other cascade

!

wostems may be nnderiaken through sinitar woalyvses which invarinbiy vield valuable tsights into

L

ol mvsresns enwder sy
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Abstract

First, we systematize earlier results on the global stability of the model x + px = f(x(- — 1))
. of population growth. Second, we investigate the effect of delay on the asymptotic behavior when
the nonlinearity f is a unimodal function. Qur resuits can be applied to several population mod-
" els [Elements of Mathematical Ecology, 2001 [7]; Appl. Anal. 43 (1992} 109-124; Math. Comput.
Modelling, in press; Funkt. Biol. Med. 256 (1982) 156-164; Math. Comput. Modelling 35 (2002}
719-731; Mat, Stos. 6 (1976) 25-40] because the function f does not need to be monotone or dif-
ferentiable. Specifically, our results generalize carlier result of [Delay Differential Equations with
* Applications in Population Dynamics, 1993], since our function f may not be differentiable.
. ® 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Given a continuous function f : R, — R, and a nonnegative function £ # 0 on[—1, 0],
we consider the delay differential equation
k4 px = f(x(-—1)), x(s)y=&(s) forse[—1,0]. (1.1)

For simplicity, we assume throughout that £ is bounded. It follows that (1.1) has a unique
solution—e.g., one can proceed by intervals of length T—with x7¢(\) nonnegative and
continuous for ¢ 2 0. We denote the solution of the delay differential equation (1.1)
by x(-) = xr.¢(-). It is easily seen that one has the equivalent integrated formulation:

x()=e H D@ + fe_"("”f(x(s - 1))ds (1.2)

for t 2 0. (Actually, continuity of f is not needed for (1.2), only enough regularity to
ensure the requisite integrability.) We further note the following

Lemma 1. Given real constants i, v and v > 0, there is a function X = X (t} such that the
solution y of the autonomous linear delay differential equation

yHuy+vyt -ty =g}, yl-w0 =7 (1.3)

has the integral representation

y(t)=yo(r;n)+/X(t—S)g(S)ds, (1.4)
4]

where yo = yo(-; n) is the solution of the associated homogeneous initial value problem.
Both X{-) and yo decay exponentially if

hz):=z4+p+ve F=0 = R <0, (1.5)
ie., if every root of the characteristic equation has (strictly) negative real part, and grow

exponentially if h{-) has any root with positive real part.

Proof. See, e.g., [6]. Note that
o)
l|X||1=f|X(r)|dt<oo (1.6)
0

when X decays exponentially. {1

A standard calculation shows that {1.5) holds for all t > 0 when |v| < u and, conversely,
fails when |v| > p unless t is restricted so that

arccos[—jt/v]

N 7

T < Ty =T, V)=



