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(cf., e.g., [1,5]). We wili later focus our attention on delay equations of the form-(1.1) in
which the nonlinearity f satisfies:

of Bt = [0, o) — Ry is continuous.

+ There is a unique equilibrium 7 > 0, so ur = f(¥) > 0.

.{f(r)>,ur forO0<r <F, (18)

fr) <pur forallr=F.

2. Comparison theorem and consequences
An gasy argument then provides the following basic comparison theorem.

Theorem 2. Let f,& and correspondingly g, n be as above with g nondecreasing. Set
xi=xgeandy:=3xp,

(1) Suppose f < g where relevant (i.e, f(r) < g(r) for each r in the range of f(x)) and
suppose £ < non[—1,0L Then x(t) < y() forall t.
(2) Suppose f = g where relevant and £ 2 non[—t,0]. Then x(t) =2 y(t) forall t.

Proof. Both cases go in essentially the same fashion, so we only consider the first case

" (with f < g, etc.). Now suppose the result were false. We could then find a largest ¢,
“ such that x(s) £ y(s)on [—7,t.). Forany f < t, + T wewould have r =t — 5 — 1 < 1,

for 0 < s <t whence x(r) € y(r}) for such r so f(x(r)) < glx(r)) < g(y(r)). It follows

. from (1.2) and the corresponding integrated formulation involving g that x(¢) < y(r) for

such 7 € [#,, t. + 7) as well, contradicting the definition of r,. O

We remark that this comparison theorem generalizes to equations in partially ordered

“ Banach spaces, etc., but we do not pursue this here.

. Corollary 3. Let f.§, x be as above in (1.1).

: (1) Suppose there is some M > 0 such that f(r) < wmax{r, M} and suppose x < M on

[t. — 1,8). Then, also x(t) < M forallt = t,.

(2) Suppose there is some m > 0 such that f({r) 2 pmin(r, m} and suppose x 2 m on

{t«. — 7,81 Then, alsox(t) zm forallt = t,.

Proof. Again, both cases go in essentially the same fashion so we need only consider the
first. Further, since we can restart at any t, it is sufficient to consider r, = 0 so we may
assume £ < M on[—7,0].

Take n = M and g(r) := pmax{r, M}. Clearly, g is nondecreasing and the hypotheses

Cyield £ < npand f < g. We immediately verify that y = M satisfies the delay differential

equation to have ¥ = x, , so that the result follows from Theorem 2. O
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We will be seeking asymptotic upper and lower bounds for solutions x(¢) of (1.1) and
to this end it is convenient to introduce

= i (x) = liminfx (1), M = M(x) =limsupx(z). 2.1

(=00
Lemma 4. Let f be bounded with 0 < f(r) < B. Then M < B/ .

Proof. From (1.2) we have
!

x(1) e M x(0) + f Be U9 gy,
-7

which gives the desired resultas t — co. O

We also note some information about the w-limit set of a nontrivial solution x, e.g., as
used in [10].

Lemma 5. For any bounded solution x = xsx of (1.1), there are functions u, v defined
on R such that

(1) w,vsatisfy (1.1) on R.

(i) m<u(t),v(t) <M.

(i) w(@) =M, a0 =0; w0)=m, v(0)=0, 2.2)
withm =m(x), M = M(x) as in (2.1).

For completeness, we sketch a proof here.

Proof. By the definition of M there is a sequence # — oo such that x(f;) — M and
we set uy(f) = x{t + t)—e.g., for t 2 —t;. The set {ug(-)} is uniformly bounded with
uniformly bounded derivatives, so there is a function u such that 4y — u uniformly on
compact sets in R. Since the derivatives also converge uniformly on compact subsets and
each uy satisfies (1.1), so does u. Since, for compact set 7 and any & > 0, the definition
of M gives mn — ¢ < uy < M + & for large enough k, we have (i) in the limit. Since
1 (0) = x(tx) — M, we have u(0) = M and, as that is necessarily a maximum, we also
have #{0) = 0. The construction of v{-) is similar, DO

3. Asymptotic bounds and attraction

Theorem 6. Let f, &, and x be as above in {1.1).

(1) Suppose there is some v 2 0 such that

frysur for0<r<r, i
f(ry<upur joralir>F. (3.1)

-k

g w

-y

-
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" Then, M < 7 < 00 and there is a nonincreasing positive function z . such that
x()=xp:() < 24(@) withzy () > Fast — o0, 3.2)
(2) Suppose there is some ¥ 2 0 such that
fryzur forrzr, ‘
fir)=ur forallG<r<¥. (3.3)
Then, m = r and there is a nondecreasing nonnegative function z_ such that
x(i=xpe{t) 22 () withz_(ty—>Fast— oo, (3.4)

Proof. Yetagain, both cases go in essentially the same fashion. For the first case we begin
by fixing M > r, M = &, and any & = gg > 0 with ¥ + £ < M. We then let

e i=max{ f(r)/r:F+e<r<M}<p (3.5)
and, choosing y so 3 € ¥ < y, set )
g(r) = ge(r) ==max{pu(F + &) yr}. (3.6)
Now, let A, > 0 satisfy the characteristic equation ‘
* f et yet=p (3.7
and set
’ YH(t) o= yi() 1= MeTM (3.8)

If we did not have & bounded on [—1, 0], we note that x is continuous for r = 0 so we
" could restart at T with bounded initial data. Note also that, since f was assumed continuous
. and [r + &, M] is compact and nonempty, the ‘max’ in (3.5) is achieved and y; < u.

Moreover, ong casily sees that (3.7) has a unique positive solution since ¥ < .

The construction yields y* which satisfies the delay differential equation

y() = —py() + yy(t — 1) (3.9)

_ 80, taking § = p; to be y* on [—7,0], this ¥* must coincide with y = x,,, so long as
y*(t — 1) = r + 6, where y (7 +8) = p(r + £). Note that we can—and do—choose y close
" enough to i to ensure that § < 2e. '

To apply Theorem 2, we note that g, as given by (3.6), is clearly nondecreasing and ob-
serve that our hypotheses ensure directly that f{(r) < g(r)forr<randforr <r<r+e,
while choosing y = ¥ ensures that f(r) < g(r) for ¥ + £ < r £ M. Since Coroliary 3
ensures x (t) € M, it follows that f < g where relevant and that £ < M < n. Thus, Theo-

" rem 2 applies and we have x < y := X, ,—Wwhence x < y* as long as y* coincides with y.
Noting that this includes an interval of length t on which y € ¥ + 8 < 7 + 2¢, we can apply
Corollary 3 again (now restarting at the end of this interval) to see that x thereafter remains

. below 7 + 2e—i.e., we have shown that

-

x(#y < z:.(t) = max{Me"A", F -+ 2¢e}

for all ¢. Since this holds for arbitrarily small £ > 0, we have (3.2), as desired, with z () :=
inf{z;(1): & > 0}. This completes the proof for the first case.
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Using the second case in Theorem 2, we will get a corresponding lower bound. First,
however, we note that (1.2} gives
0

x{ry=e""x(0) + f e~ fE(s)) ds,

-7
which will be strictly positive for nonnegative, nontrivial §—and then x(¢) will be strictly
positive for all # > 1. We can therefore assume, restarting if necessary, that £ 2 m for some
m > 0. The rest of the proof is then aimost exactly like that for the first case. O

Theorem 7. Let f, &, x be as above in (1.1) and suppose there is some r 2 0 such that
fr)y=>ur forO<r<r,
fry<ur forallr=>r. {3.10)
Suppose, also, that
either fryg<ur forQ<r<r
or fryzpur forallr27. (3.11)

Then, x rc(t) = 7 as t — o0 for every nontrivial initial data § 2 0—ie, m=r=M.

Proof. We consider explicitly only the first alternative in (3.11). Since this with (3.10)
inciude (3.1), the first case of Theorem 6 applies to give M<F Ifr= 0, we are now
done so we need only show m =5 when 7 > 0. For any ¢ > 0 we can choose § > 0 so
f(r)y =z f(ry—ueon [r, F+ 3] and there is some #5 such that x(#) £ F+-§ foralls 2 15— .
Setting F = ¥ — ¢, this gives f{r) = uF for F <r <7 + 4. Restarting at #;, and noting that
only values of r below 7 + 4 are relevant, we thus have the hypotheses for the second case
of Theorem 6 for the restarted problem with 7 replaced by 7. Thus, m 2 7 =r — ¢ for
arbitrary ¢ > 0 so m = ¥. Combining these upper and lower asymptotic bounds is just the
desired result. O

We henceforth will consider equations of the form (1.1) subject to the hypotheses (1.8).
If max{f(r): r > 0} = B < ur, giving the first case of (3.11), then we aiready know
from Theorem 7 that all solutions converge to the equilibrium 7, so we will also assume
henceforth that B > ur with yg < r: (1.8) then gives (3.10) but we have neither case
of (3.11).

4. Attraction dependent on the delay

As noted, we henceforth assume (1.8):
ef R, =[0, 00} — R4 is continuous.

# There is a unique equilibrium 7 > 0, so ur = f(7) > 0.

{f(r)>,ur for0<r <7, @n
f{r) <pr forallr>r. '
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Lemma 8, Assume (4.1). Then, for every nontrivial solution x of (1.1) we have

eHrEmSF<ME max  f(r)/u (4.2)

e MIELr T

with it = m(x), M = M(x) as in (2.1).

Proof. From Corollary 3 we know x is bounded and let &, v be as in Lemma 5. Then, as
#(0) =0 =v(0),
Fu(=1)} = peu (@) = uM > pu(—7)
and, similarly, f{v{—1)) = pv(0) < pv(—1). But f(r) > pr if and only if x < 7, so
u(—1) <7 € v(—1). Thus,
w(0)=m Lul(-7) <F<v(-1) < M. (4.3)
Since u, v satisfy (1.1} on all of R, we may apply (1.2) with tr =0, 2 = —t to get, as
F) =0,
0
m=v0) = "Tu(—1) + f e flx(s —))ds ze " Tu(—1) = eV
-1

and consequently, u(—17) = v(0) = e *7F. Therefore,

#(0) = f{u(—7))/u < max f(r)/u.

eHTFLr F

The proof is complete. O

Our next objective is to show global attraction to the equilibrium when the delay 7 is
not too large.

Theorem 9. Assume (4.1) and the following pair of one-sided Lipschitz conditions:

0K fr)—uFSLi(r—r) fore"rgr<r,

Ogur— frys La(r—r) forfF<r<B. (4.4)
Suppose t is such that

i
-\/L|L3.

(I—e"H <

(4.5)

_ Then, every nontrivial solution of (1.1) converges to the equilibrium r.

Proof. Let u, v be as in Lemmas 5 and 8. It then follows from (4.3) that there is some
a € [—1,0] such that u(a) = r and we set

A={s €[a,0]C[-1,0]: u(s — 1) <7}.

Note that for s € [—1,. 0]\ A wehave u = u(s — 1) > 7 so f{u) — ur £ 0 by (4.1), while
fort € A wehave u < 7 and e #7F € m < u from (4.2} in Lemma § so (4.4) gives

J) —pur < Li(F —u) < Li(r —m).
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Thus,

0
fe"”[f(u) — puF|ds < L1(F — ) f e ds = Li(F —m)(1l —e™"),
A -t
Applying (1.2) with t = 0 and this a, we then have
0 0
M —F = [u(0) — e"?u(a)] + ”’f e* ds = fe‘“[f(u(s — 1)) — ur)ds
a

a

< f 5[ £ () — pF] ds < Ly — m)(1 — &™) /.
A

Somewhat similarly, we have some a € [~7, 0] such that v(a) = F and now set A = {s €
[a,0]: v(s — 1) = F}, noting that (4.4) ensures that f(r) = uF for r € [e7#7F, 7). Much as
before we then get

F—m < LM -1 —e™")/p

and combining gives (r —m) < [LiL2(1 - e~#)2 /u?)(F — m). Thus, using the assump-
tion (4.5), wehave st =7 and then M =raswell. O

Essentially the same argument gives a localized version when, instead of (4.4) and (4.5),
we have | f'| suitably small near 7.}

5. Another stability resunlt

We now return to the integral formula (1.4), noting that if x is a solution of (1.1), then
v =x — F is a solution of (1.3) and an appropriate choice of g:

gy = Ay —0) with fi(r) :=[fF+r)— fFO)]+vr, (5.1

where, of course, we anticipate taking v = — f/(¥) for differentiable functions f, although
this is not required.

It is worth noting that with this choice of v we necessarily have L1, Ly 2 |f(F)| =v
in Theorem 9 so that Lemma | suggests that we could not expect asymptotically stable
convergence to equilibrium when v > u if we do not have (1.7); indeed, as we will note
in more detail in the following section, {1.1) will then have a nontrivial periodic solution.
Even ignoring the constraint on 7 in requiring that f(r) = ur for r € [e”#TF, F], the as-
sumption (4.5) taking Ly = Ly = — f'(F) = v leads to {1 — ™"} < u/v or

ke
T<—In . {(5.2)

! Since we anticipate having §(0) = 0, this part of (4.4) must be treated as a significant constraint on 1.
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Clearly this, as a sufficient condition for convergence to equilibrium, is the best one can
obtain using Theorem 9 and it is interesting to compare with the (necessarily weaker)
condition (1.7). There is obviously a gap between these, and we now seck to handle inter-
mediate delays under appropriate conditions.

Theorem 10. Suppose f is a unimodal function and t > O satisfies (1.7) with v = — f'(¥).
Further, suppose

|lfE+r) = fFP +vor| < LIr| fore " F—F<r<B—F. (5.3)

- If f is flat enough near equilibrium’ such that (5.3) holds with

L <1/1X{l, (-4)

where X is as in (1.4), then every nontrivial nonnegative solutzon of (1.1} converges to the

equilibrium r as t — oc.

. Proof. Set M= max{M — 7,7 ~ m) and, again, let u, v be as in Lemmas 5 and 8. First

suppose M = M —F. We then let yO)=u{r—=T)—-Fso M= u(@) —r=y(TywithT >0
arbitrary. We note that m < y < M gives |y| € M. Therefore, (5.3) gives | f1(y)| £ LM
uniformly. Thus, using {1.3) with (5.1}, we have .

T

M = yo(T)+ f X(T - 5)fi{y(s — 1)) ds < Fo(T) +f|X(T —s)|LMds
-0
<Fo(T)+LIX 1M (5.5)

‘ using (1.6) and letting yp = yo(-; M). For the alternative case M=7—m, welet y(t) =
" w(t—T)—F and, similarly, again obtain (5.5) for arbitrary 7. Since yo(T') — Oas T — o0,

(3.4)ensuresthat M =0sox(¥)—~rast—o00. O

6. Nonconstant periodic solution for large delay

in this section we will use Hopf bifurcation and fixed point theory to prove the existence

* of a nonconstant periodic solution when the delay t is large enough. To see more clearly
¢ the effect of delay we let g = 1. The usual linearized analysis lets x = F + £y and notes

that, to first order in &, the perturbation satisfies

yHy =iyt -1.

. Seeking a solution of the form y(z) = exp(A?), we obtain the characteristic equation for A:

A+ 1= f{ryexp(—1h).

. We will have linearized stability if all complex roots of this characteristic equation have
. negative real parts. If | f/(r)| < 1 we have the local convergence to the positive equilibrium

for all delays. If | F/(r)| > 1, the effect of delay will occur. More exactly, in this case with
1

1
> Ty = TR arccos )
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there is a nonconstant periodic solution of Eq. (1.1}.
Atay [1] used the Schauder fixed point theory to prove that there is a nonconstant peri-
odic solution of the equation

y=rth(y.y( - 1)),
provided

1 o
T> T = marccos(—s),
where h(u, v) is differentiable at the origin, (0, 0) = 0 and
0<C:= -*Z—Z(0,0) < D= —%(0, 0).
We let y(r) = x{tt) —r and
hu,v)y=r—u+ fv+r).
Then,
C=1, D=—f'(F)

and we reproduce
|

i
TCT arccos TG

Here, we assume that f'(7) < —1 and the function arc cosine takes its value in [0, 7 ].

Lemma 11. [f a positive solution x of (1.1) does not oscillate around the positive equilib-
vium F then x(t) tends to ¥ as t — 00. Consequently, every nonconstant positive periodic
solution should oscillate around the positive equilibrium.

-

Proof. If x does not oscillate around 7, then either ¥

limsupx(t) <7 or liminfx(r)=r.
f~+00 =00
From Lemma 8, in the first case, we have limsupx(t) = . For the second case, we have
liminfx(r) =r. So it is enough to consider the second case. Using the proof of Lemma 8,
we get F 2 u(—1) 2 v(0) = 7. Hence, u(—1) =r and u(0} = f{u(—t))=7. The proof is
now complete. O :

Y. Cao [2] proved that for T < 7, there is no periodic solution which is larger than yg
and oscillates slowly around the only positive equilibrium r. For v > ., there is at most
ong periodic solution which is larger than yy and oscillates slowly around 7. Recall that a
T -periodic solution is called sfowly oscillated around the positive equilibrium, if T > 7,
x(0) =x(T) =r, and there is o € (0, T — ) such that

x{tg) =7, x()y>F forte(0,ty) and x(t)<F forresn, T).

Cao assumes that f is decreasing from yp < 7 until f(vp). He also requires that the
function A(x} = xf'(x}/f(x) is monotonically increasing in [vg, 7] and decreasing in
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[r, f(y0)]. Recall that f(yg) is the maximal value of f(y), when y > 0. Without these
assumptions on & one can construct several slowly oscillated periodic solutions for (1.1).
Also, it is known that, if a periodic solution is not oscillated slowly, it should be unstable.
Of course, Cao did not prove these results directly, but from his works one can deduce this,

7. Some applications

Equation (1.1) with unimodal f has been proposed as a model for a variety of physio-
logical processes, where in most cases, one of the model functions

Fx)y=kx®exp{—x) (7.1)
or .
kx
fx)y= gL (7.2)

with parameters &k > 0 and ¢ > 0, is considered {3,4,9,11-13].
The population dynamics of Nicholson's blowflies have been studied [9,12] using a
function f of the form (7.1) with ¢ = 1. In such a case, f is differentiable and one has

F=In—, ‘ (7.3)
I

and
k
v=—f(f = p.(ln— - 1).
"
Thus, Theorem 9 yields, using (5.2),

1 [ln(k/u) - 1]
t < —Iln| —————
wo [ Intk/p) -2

as a sufficient condition for convergence to equilibrium 7 given in (7.3), provided k > pe?.
Moreover, there is a nonconstant periodic solution to the model equation if

. _ 1 b
T T TG = D) mk ) m‘”’[l - ln(k/u)]’

using (1.7).
In respiratory studies, (1.1) has been employed in which the response function takes the
form (7.2). In such a case, one has the positive equilibrium

ljc
F= (;k; - l) , (7.4)

- provided k /e > 1. Then,

fem 2
v=—f(F)= ?[(c— Dk — cp).
Thus, Theorem 9 yiclds, using (5.2),

1 c(l—,u,/k)—l]

r<—ln[
o Lell - pfky—2
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as a sufficient condition for convergence to equilibrium 7 given in (7.4), provided

c(l—%):vl

Moreover, there is a nonconstant periodic solution to the model equation (1.1) with f asin
(7.2) if

1 1
T ueeQ 1o = DU = w8 am"s[l —e( - u/k)]'

t>71"

using (1.7).

8. Conclusion

We have given a basic comparison theorem and discussed some of their consequences.
The effect of delay on the asymptotic behavior has then been studied and the periodicity of
positive solutions investigated for large delays. Our discussions allow the nonlinearity f
to be nonmonotonic and nondifferentiable which are then more general than those of [8].
Thus, our results should be applicable to a wider range of population models; for example,
models arising from the study of an optically bistable device [3,4], blood cells production,
respiration dynamics, or cardiac arrhythmias [11,13]. We can also find application with a
system in which the growth fanction is not smooth, such as a population where growth
occurs in birth pulses (during the breeding season) and not continuously throughout the
year.

Open problem. Investigate the stability of periodic solutions of (1.1) and the structure of
w-limit sets when the delay is large enough!
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Abstract—Conditions are given on the function f, such that population x(t) given by
E(t) = —px(t) + flz(t — 7)),
becomes extinct or remains globally stable. Our theorems are shown to be applicable to the Nichol-

son's model of blowflies and the population dynamics of baleen whales. In some of these cases, the
function f is unimodal rather than monotone. (€ 2004 Elsevier Ltd. All rights reserved.

Keywords—Constant variation formula, Positivity of population models, w-limit set of a persis-
! tent solution, One parameter semigroup.

1. INTRODUCTION
Consider the following delay differential equation,
| E(t) = —pz(t) + fz(t - 1)), (1.1)

for ¢ > 0, where f : [0,00) — [0, 00) is a continuous function, f(0) = 0, while 1 and 7 are positive
phra.meters. The initial condition x|_, 0 = ¢ is given by a positive continuous function in [, 0].
The corresponding constant variation formula is given as

i z(t) = e~z (0) + -/.a e 0 f(z (g — 7)) dE, for t > 0. (1.2)
0

This can be proved by differentiating both sides. This formula also shows that z(t) > 0, for
all £ > 0, hence, (1.1) really is a model for population growth. The following theorem gives a
sufficient and necessary condition for the population to becomne extinet.
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appreciation to the Thailand Research Fund for the financial support of this research project, which is also
partially funded by a grant from the Ministry of University Affairs.

0895-7177/04/% - see front matter (€ 2004 Elsevier Ltd. Al rights reserved. Typeset by Ap4S-TEX
doi:10.1016 /j.mcm. 2003.09.038
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THEOREM 1. If f(u) < pu, for all u > 0, then, every solution xz(t) of (1.1) converges to 0 as
¢t — o0o. Conversely, if every solution of (1.1) converges to 0, then, f(u) < pu, for all u > 0.

PROOF. First, assume that f{u) < uu, for all u > 0. Let z(t) be a positive solution of (1.1) and
M = maX_r<e<o 2(€) + 1. We prove that z(t) < M, for all ¢ > 0. Indeed, assume, for the sake of
contradiction, that ¢y is the first positive point, such that z(ts) = M. The “first positive point”
only means that (€ — 7} < M, for all £ < t5. Then, by the constant variation formula

t
0
to
< e HoM (1+[ e“fudg) = M,
0

which is a contradiction. Therefore, z(t) < M, for all {. Let

M= z(to) = e“"""‘z(o) + / ° e-#(to—E) f(i-’-'(f - T)) d{,

fH = li:nsup z(t},
£ = limsup f(z(t - 7)).
t—r00

Let € > 0 be a small number, and let T = T'(¢) be, such that f(z{t — 7)) < +¢, forall t > T.
Now, if t > T, then, we have

T t
z(t) = e **z(0) +f e B8 f(x(€ — 7)) dE +/ e -8 f(x(e — 7)) dE
(] _ T
T t
< e Pz(0) + e""‘f e* f(z(€ ~ 7)) dE + (£ + e)e™# / erd dg
0 T
T
- _ (32 + e) e
<e Hz(0) +e "‘/0 e’ fz(€ — 7)) dE + — (1 — gmult T)) .
Taking limsup on both sides, we have

Since ¢ is as small as we wish, this gives

uly < b, (1.3)
On the other hand, from the definition of limsup, we can choose a sequence {t;} tending to
infinity for which
€= lim f{z(tx~7)).
k—oo
The sequence {z(¢, — 7)} is bounded because the function z(t) is bounded. Hence, this sequence

should contain some convergent subsequence. Without loss of generality, we assume that the
sequence {z(t; — 7)} converges to a limit £3, say. Since the function f is continuous, we have

&= lim f(z(t—7)) = 1 (&)

If 23 > 0, then,
&2 = f(&3) < pis.

Clearly, £3 < £1. Therefore, €3 < pf;. Considering (1.3), we have a contradiction. Consequently,
¢3 = 0. However, £; = f(£3), and so, €; is zero also. Combining this with {1.3}, we have £; =0,
and hence, the solution z(t) tends to 0 as t — oo.
Conversely, suppose that f(u) < pu is not satisfied, for all u > 0. Two cases are possible,
(i} f(e) = pa, for some a > 0.
(ii} f(u) > pu, for all u > 0.
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FIn the first case, z(t) = a is a positive solution which does not tend to 0. For the second
case, let z(t) < 2 for t € [-7,0]. We shall prove that z(t) > 1, for all £. Suppose, for the sake
of contradiction, that ¢, > 0 is the the first point, such that z(t;) = 1, and z{t) > 1, for all
0<t < tg. Then,

1 = z{tp) = Ze~#to 4 gHto _/:o e f(z(€ ~ 1)) d¢

to
> ekt (2 +/ e“‘Epd\f) =e7#% (1 4 1) > 1,
o

uirhich’is a contradiction. Therefore, z(t) > 1, for all ¢, which does not tend to 0. The proof is
complete.

2. THE PERSISTENCE
A positive solution z(t) is called persistent if
0< Iitm inf z(¢) < msupz(t) < co.
—+0Q t—o0

The following theorem gives a sufficient condition for the population to be persistent.

THEOREM 2. Assume that f(z) > 0, for all z > 0 and

lim sup -I—gl < i, (2.1)
tmpr 722> e2)

i

Then, every solution x(t) of (1.1) is persistent.

PRroor. First, we prove that {z(¢)} is bounded from above. Assume, for the sake of contradiction,
that lim sup z(t} = co. For each £ > —7, we define

¥
1
\

) aft) ;= max {p <t:z(p)= -'3‘5*’?5_::”(5)}‘

Qbserve that a(t) — co and that

Biut z(a(t)) = maxe<: z(§) and so, £(aft)) = 0. Therefore,
| .

zl-iﬂ}a z{a(t)} = oo.

;o 0 < #{a(t)) = —uz{a(?)) + fz(alt) — 7))

it
q.pd consequently,
b sz(a(t)) < f(z(alt) — ).
Since f is a continuous function, combining this inequality with the fact that
B!
lim a(a(t)) = oo,

we obtain
zljxglon:(a(t) —T) =00,
Theefoe, f(2) F(z(alt) - 7))
: . T . r{adt) -7
T PR e - o

which. contradicts (2.1). Thus, z(¢) is bounded from above.
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Next, we prove that lim inf,_.oo 2(t) > 0. Suppose, for the sake of contradiction, that lim inf z(%)
= 0. For each t > —71, we define

) = max{p < t:2(0) = _min (6)}.

Observe that 8(t) — oo and that
Jim z(B(t)) = 0.
However, z(5(t)) = ming<, z(£), and so £(6(t)) < 0. Therefore,
0 = #(B(t)) = —px(B(t)) + F(=(B(¢) ~ 7))

and consequently,
pz(B(t)) 2 f(z(8() - 7).

Since f is a continuous function, combining this inequality with the fact that

lim (8(2)) = 0,

we obtain
Jim Z(5(t) — ) =0.
Fherefore. («) Fa(Be) ~ )
.. f T L o flx( Bty — T
Pt ORI

which contradicts (2.2). The proof is complete.

Inequalities (2.1} and (2.2) give the lower and upper bounds for the death rate u in order that
the population may persist. As x becomes very large, to prevent the population from overflowing,
the lim sup of the ratio of the growth function f(x) and the population density z should be smaller
than the death rate p. On the other hand, as = becomes very small, the lim inf of that ratio
should remain bigger that the death rate u to keep the population from extinction.

In what follows, we will assume that x(-) is a persistent solution of (1.1) with x|, o) = ¥. We
let s be a variable in the interval [-,0] and denote by C[—7,0], the Banach space of continuous
functions in the interval [—7,0]. For each persistent solution z(-) and ¢ > 0, let z:(s) = z(t + s)
be a function with the variable s € [—r,0]. We consider the semigroup {T'(t)}:>0 of operators
from C[—7,0! into itself defined by letting T'(t)y = x,, where x is a persistent solution beginning
from 1. Clearly, the operator T'(t) is injective, for all ¢ > 0. The w-limit set of v is defined
to be the set of all limit points of the set {z, : £ 2 0}. This w-limit set is often denoted by
w(z) and is (nonempty) compact and invariant under T'(f), for each ¢t > 0. Moreover, T(t) is a
bijective mapping from this w-limit set into itself, for each t > 0 (see [1]). Therefore, we can
define T(t) = T{—t}, for all t < 0, to obtain a one-parameter group {T'(t)}icr of operators from
w(x) into itself. Letting up and vp be functions in w(z), such that us(0) = sup{¢(0) : ¢ € w(z)}
and vp(0) = inf{@(0) : ¢ € w(x}}, it is easy to see that 4o(0) = limsup,_,, z(t) and ve(0) =
lim inf, o z(t). We now let u(t) = T(t)uo(0) and v(t) = T(t)ve(0). Then, both u and v are
solutions of {1.1}, which can be extended to the whole real line. Moreover, u(t}), v(t) € [v(0),w{0)],
for all t € R. The constant variation formulae for the two full time solutions u(t) and v(t) are as
follows:

wy= [ et stule ~ g (2.3)

o)) = [ e floe - ) de. (2.4)
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3. THE STABILITY
. In what follows, we shall assume that the algebraic equation,
uK = f(K),
has the unique solution K = % in (0, co).

THEOREM 3. Suppose that f(z) is monotonically increasing and

tmsap L2 < (3.1)

Then, every solution z(t) of (1.1) converges to %.

ProOOF. By Theorem 2, every solution z(t) of (1.1) is persistent. We can, therefore, choose two
(full time} solutions u(t) and v(t), such that

u(0) = li:n sup z(t), v(0) = lim inf z{t). (3.3)

Using the constant variation formula, we have
i

w(0) = f '; & F(ult - 7)) dE < [ L e £(u(0)) dE = f—“-;fi” (3.4)
and similarly,
" 0 0
| w0) = [ estuie-mdez [ eswonae =1 ‘”“’”, (3.5)
If we let -
IP(:E) - I'(_) -

then, it follows from (3.4) that p(u{0)} > 0 aud from (3.5) that ¢(v(0}) < 0. On the other
hand, it follows from (3.1) that limsup,_, . ¢(z) < 0, and from (3.2) that lim inf, .o ¢{z) > 0.
If v{0) < ©{0), we have at least 2 distinct zeros of (z) in (0, v(0)}, (v(0), u(0)) and in (u(0), 00).
This contradicts our assumption that T is the only zero of . Thus, v(0) = u(0) = Z. We conclude
that
| lim z(t) = £
i—o0

The proof is complete.

THEOREM 4. Suppose that f(z) is monotonically decreasing and the following system

.0}
M

b= 10,
a i H

has a unique solution a = b = %. Then, every solution x(t) of (1.1) converges to %.

PROOF. By Theorem 2, every solution z(t) of (1.1) is persistent. We can, therefore, choose two
(full time) solutions u(t) and v(t), such that

u(0) = li:n sup z{t), v(0) = h{ag}f z(t), (3.3)
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Using the constant variation formula, we have

0
wo = [ " e flule - ) dE < [ e suonas < Z920 1o . (3.4)

and similarly,

0
o= [ L i soe-mde> [ et de > L L) (35)

We now let

f(bn)

Ant+1 = m ’ bn-i- =

f (an)

forn=1,2,....

Similarty to (3.4’) and (3.5'), 4(0) and v(0) belong to the interval [ay,b,], foralln =1,2,....
On the other hand, the sequence {a,} is monotonically increasing and the sequence {by} is
monotonically decreasing so that they converge. Let a and b be their respective limits. Then, o
and b satisfy the above system in the statement of our theorem. Our assumptions assure that
a = b = £. Therefore, u(0) = v(0) = Z. The proof is complete.

From this point on, we shall assume that, for some yp > 0, we have

fw) = max f(z)

and f(z) is increasing in [0,3o] and decreasing in (y¢,00). That is, f(z) is called 2 unimodal
function as we have mentioned in the abstract. Suppose further that x(t) is a persistent solution
of (1.1). Let u{t) and v(t) be two (full time) solutions of (1.1) with respect to a persistent
solution z. Using the constant variation formula, we have

0 0
w0 = [ etsae-mydes [ e iunya = T80, (36)

THEOREM 5. Suppose that f(yo} < pyo. Also, (3.1) and (3.2) are assumed to be true. Let x(t)
be a persistent solution of (1.1). Then, lim,_,o z(t) = Z.

PROOF. From (3.6), we have u(t) < u(0) < f(yo)/s € yo. Since the function f is increasing
in [0, yo), it follows from the constant variation formula that

1] 0
= o - = f(0)} ”
u(0) [ e flule - ) de < [ RaCOrEE (3.4
and similarly, .
0 Q
- 3 - euﬁ v = f(v(o)) 1
v(0) j_ Sl - e 2 [_ s = £, (3.5")
Let

It follows from (3.4"} that (u(0)) > 0 and &om (3.5") that ©(v(0)) < 0. On the other hand,
it follows from (3.1) that limsup__, . ¢(z) < 0, and from (3.2) that minf, .pe{z) > 0. If
v{0) < u(0), we have at least 2 distinct zeros of ¢(z) in (0, v(0)}, (v(0), u(0)) and in (u(0), 00).
This contradicts our assumption that I is the only zero of ¢. Therefore, v(0) = u(0) = Z. We
conclude that
tl_s_.:g: z{t) = T.
The proof is complete.
We can now state the following result.
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THEOREM 6. Suppose that (3.2) holds. Suppase, moreover, that the solution of the following
system of difference equations

e e 1@
nt IG[Gnubn] M ’
bpyr = sup lf—-(fz, n=12...,
zelﬂn,bn} F
a; = inf __f(.'c),
>0 g
b =sup -J—:E:l
>0 M

cbnveljges to ..'T:.l Then, every persistent solution of (1.1) converges to %.
4. APPLICATION

- Consider the Nicholson’s model of a population of blowflies {2],

Lo N{$) = —uN(@#) + aN(t - 7) exp (=BN(t - 7))

Il-;Iere, a and 3 are positive parameters and

; f(z) = axexp(—pz).

If a < u, using Theorem 1, we have lim N (¢} = 0. This means that if the death rate g is higher
than «, then, the population becomes extinct. On the other hand, if we now let o > u, then
using Theorem 2, we have y

! 0 < liminf N(t) < limsup N(t} < oo
a.lnd tﬁe population persists. Moreover,

f'(z) = a1 - pz)exp(~pz),

and the (only) positive equilibrium is

We have £(1/8) = 0 and 7(1/8) = max f(z) = a/(e8). From (3.6), we have
g

. [23
i , meup N < 2257

If & < eu, then, from Theorem 5, we conclude that
:]—l-lgo N(t) = x.
Next, we consider the population dynamics of baleen whales [2]:

N(t) = —uN(t) + uN(@t - 1) {1 +q [1 - (&Kfﬂ) z] } .

Here, all parameters are positive and

sy =i oo~ (2]}
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satisfies conditions (2.1) and (2.2}, and so this population is persistent. Moreover,

rw=n{ivafi-(F) T} |(5) 3) 7] “:[1 ro- 1 2.

and hence,

max f(z) = f(yo) = pyo(l +q) -

1 +z'
where
144
=Ky —-
Yo g(l+ 2)
and the only positive equilibrium is
=K.

From (3.5}, we have
limsup N(¢) < yo(l+¢q) - ——
t—00 1

To use Theorem 5, we must assume that f{yo) < uyo or, equivalently, gz < 1. In this case, we
have lim N(t) = K

5. CONCLUSION

We have given conditions on the function f, such that the solution of the population model
equation
E(t) = —px(t) + flz(t - 7))

will persist or remain globally stable. We then discussed the applications of our results to the
population dynamics of Nicholson’s model of blowflies and that of baleen whales.

Finally, we note that the results proven here have not been shown by earlier researchers, who
have worked only with delay differential equations where the function f is monotone decreas-
ing [3-6]. The assumptions imposed on f in our theorems are less stringent than in any previous
work so that they should be applicable to a large variety of ecological models.
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ABSTRACT In this paper, we apply the feedback decoupling technique to a Kolmogorov type model for
three species food webs with harvesting or replenishment. A feedback control law is derived to decouple
the effect of predators from prey dynamics. It is found that the necessary and sufficient conditions for
the existence of the decoupling control law rely on the persistence of the prey population and the fact
that the specific growth rate of prey depends explicitly on the superpredator population density at any
moment in time. [t is shown that, without any control action of regulated replenishment or harvesting,
irregular or chaotic behavior is possible in such a process for certain ranges of the systern parameters.
This is illustrated by the construction of a bifurcation diagram for a model of a three-species food web
with response functions of the Holling type II. To make the system output or variables less sensitive to
irregular disturbances, the feedback control technique is applied which produces the desirable effect of
stabilizing the system. When such a model is applied to an activated sludge process, the objective of the

ScienceAsia 28 (2002) ; 205-215

control action can also be to regulate the inputs in order to obtain satisfactory water quality.

KEYWORDS: Kolmogorov model - control - chaos - stabilization.

INTRODUCTION

Ecological models may be classified as either
strategic or tactical, as identified by Holling {1966).
Tactical modeis are relatively more complex. They
usuélly rely on a great amount of supporting data,
and- are used for making specific predictions.
Strategic ‘models, on the other hand, can provide
broader insights into possible behaviors of the systern
based on simple assumptions (McLean and
Kirkwood, 1990}, such as the model considered by
Hadeler and Freedman (1989) for predator-prey
populations with parasitic infection, or the model
of continuous bioreactor analyzed by Lenbury and
Oréﬁkitja}‘oen (1995).

As Mosetti (1992) has observed, the control of
ecological systems for management purposes is a
difficult task due to the amount of supporting data
needed as well as the conflicting management goals.
In this respect, a simple reduced strategic model
which reqhires fewer data for calibration can be quite
a useful tool as a building block for the study of real
problems in order to give a decision-maker some
preliminary results.

The Kolmogorov model of population growth is,
mathematically, probably the most general model of
the types considered to date. It incorporates the

principle that the growth rate of species is pro-
portional to the number of interacting species
present. The classical ecological models of interacting
populations have typically focussed on two species.
The first Kolmogorov model, developed in 1936, was
expanded on by several researchers, including May
(1972) and Albrecht et al {1974). Such models have
been applied to plant and animal dynamics both in
aquatic and terrestrial environments (Hastings and
Powell, 1991). However, mathematical developments
reveal that community models involving only two
species as the building blocks may miss a great deal
of important ecological behavior. In fact, it is now
recognized that in community studies the essence
of the behavior of a complex system may only be
understood when attempts are made to incorporate
the interactions among a larger number of species.

Researchers in the last decade or so have turned
their attention to the theoretical study of food webs
as the “building blocks” of ecological communities
and have been faced with the problem of how to
couple the large number of interacting species.
Behavior of the entire community is then assumed
to arise from the coupling of strongly interacting
pairs. The approach is attractive by its virtue of being
tractable to theoretical analysis (Hastings and Powell,
1991}. Yet, many researchers have demonstrated that
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very complex dynamics can arise in model systems
with three species (Gilpin, 1979; Rai and Sreeni-
vasan, 1993). For example, an investigation by
Hastings and Powell (1991) showed that a con-
tinuous time model of a food chain incorporating
nonlinear functional responses can exhibit chaoctic
dynamics in long-term behavior when reasonable
parametric values are chosen. The key feature
observed in this chaotic dynamics is the sensitive
dependence on initial conditions.

In this paper, we first study the possibility of
making the ecosystem output or variables less
sensitive to irregular disturbances by applying the
feedhack control technigue in order to stabilize the
system. A feedback control law is derived to
decouple the effect of the predators from the prey
dynamics in a three-species food web of the
Kolmogorov type. It is found that the necessary and
sufficient conditions for the existence of the
decoupling control law rely on the persistence of
the prey population and the fact that the specific
growth rate of prey depends explicitly on the
superpredator population density at any moment in
time.

We demonstrate by the construction of a
bifurcation diagram for a model with response
functions of the Holling type II that, without any
control action, chaotic behavior may result through
period doubling bifurcations. Once, the feedback
decoupling control action is in place, the system can
be stabilized and, in this context, we obtain a process
which is more easily controllable.

Moreover, when the Kolmogorov type model
with input / removal terms is applied to an activated
sludge process, the main objective is perhaps to
regulate the inputs in order to obtain satisfactory
water quality. By simply fine-tuning the point in
time when the control action is set in motion, the
control technique considered here can be adjusted
to give the desirable cutcome.

Tue Kotmocorov Type MODEL AND THE
Stanic DecouprLing PROBLEM

We consider a general Kolmogorov type model
of n-species food webs, which may be written as
follows

X =XF+u,i=12 ...n {1)

where X, is the i-th species population density, u,is
the input/remaoval {replenishment/harvesting)} rate
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of the species which depends on the population

" densities of all n-species in the food web, and

F=F(X.X, .X), i=1,2,..n

Such a system (1) can be used to model population
dynamics of plant or animal interactions in an
aquatic or terrestorial environment such as in the
work of Lenbury and Siengsanan (1993), where an
activated sludge process was analyzed using a three-
species Kolmogorov type model. Also, in the study
by Lenbury and Likasiri (1994), the dynamic
behavior of a model for a food web was investigated
through the application of the singular perturbation
technique.

To formulate the static feedback decoupling
problem, we let

X=X, X, .. X)
F=(F,F, .. F}
U= (u, u,, ... u )
and

1 0 0

01 ¢ 0

o{4)= L 0

0 0 1

0 00 - 0

an nx (n- 1) matrix.
Then, the system of equations (1) with u, = 0
can be rewritten as

X=XE+[6U], i=1.2...n @

If we now take X| to be the state variable which is
more easily regulated externally, the “outcome” or
output of equation (2) is then assumed to be

HX)=(X, X, ... X, )" (3)

The static feedback decoupling problem, as stated
in the work by Mosetti (1992) and explained in
greater detail by Isidori (1985}, can be defined as
follows. "Given equations (2) and (3), we need to
find a feedback law a(X) and a state-dependent
change of coordinates ${X) in the input space 9"
such that the closed-lcop system formed by the
combination of (2) and (3) with the control law
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U=a(X) + f(X)V Ue R, Ve R,
has the i-th output dependent only on the i-th
component of the new input V",

" In order to accomplish this, we introduce the
folilowing notation. Letting

\

d d a Y
Vil ¥ ¥y ... X
['aXl ax, ”a,r]

”

then the operator V; is defined as
V.H=FV'H

where H, is the i-th component of the vector H(x)
defined in {3).

: We then understand that
VEH, =V (VS H)

while VS.7, = A,

‘Further, the characteristic number p, associated
with the output H; can be defined as the largest
integer such that for all k < p,

}
grad(Vf,H,.)G'}, =0 ,/=12,..,n-1

where G.is the j-th column of the matrix G.

‘Accordingly, the decoupling matrix A(X)
associated with equations (2) and (3) is the (n- 1)x
{n - 1) matrix

+

A0 =(a,)

where
a, = grad(V%H)G,

The static state-feedback decoupling theory (Mosetti,
1992) can be stated as follows.

Theorem 1A necessary and sufficient condition for
the existence of (&, B) which solves the decoupling
problem is that the decoupling matrix A(x) is
nonsingular. I this is the case then a possible
decoupling control is given by
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a(X) = -A"(X)]
BX) = AMX)

and

where
T= (VI H Ve, VY

provided that the decoupling matrix A(X) is
nonsingular.

Proof We refer readers to Isidori's work {1985) for
the proof of this theorem in the general case.

In order to establish the control law for the
Kolmogorov type model, we need to first prove the
following Lemma.

Lemma 1The characteristic number p, = 1 and p,
=0,i=2,3,..,0-1. =
Proof Tn the case of p, (i = 1), we first consider

grad (Vf,-ﬁfl)(?j,j: ,2,...,72~1, when k= 0. We

" find that

grad (V”FHI)G} = grad (X,)G,

"

_(ox 2, 21,0
ak, ax, " ax, |1 |« j—sthrow

0
0
0
]

=00 .0 1)0
1 | /- thTow
0
0

=0

since j < n.
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However, when k = 1, we find

grad (V}E)G’j = gradv(VL.A’”)G} ’

ax
X a
1 B/I’I
ax

»

25/1_,;'

-grad (£ £ - F)

ax,

" ax

"

= grad (F.X)G;

oA

if we assume that F|, is an explicit function of X, for

allj=1,2,..,n- 1. Therefore, p, =1.

Now, for p, i=2,3, .. n- 1, we consider

—_—

HES

— - throw

grad (V‘FHl)GJ for i > 2 when k = 0, and obtain

grad (V?Jf,)(}', = grad (X) G,

0

0

(o oar, ax o anjo
ax, a, o, ar, 1
0

0

& J-throw
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e =g
0 ifizj -

Thus, grad (V‘}H,)G; # Ofor some j, which means

thatpi=0.f0ri=2, 3,..n-1L ‘
We can now derive the entries a, of the decoupling

matrix A(x) as follows.

ay :‘grac'i: (VE,_H,)(}'Jr

ax,
xa/l,:
ax,
ox, {6,

=grad {(f]' Fz v

-

o,

o

grad (F.X)G;
oF,
T ax,

s

forj=1,2,...n-1.

On the other hand, for i 2 2, p, = 0, we therefore
obtain -

a, = grad (V[}HJ)G’}

i a=j
S0 if %]

forj=1,2,...n-1andi=2,3, .., n-1. Thus, the
decoupling matrix is
A A
ax, ax, at,,
0 1 0o 0 - 0
“Ax)= "0 0 10 0
. 0 0 0 0 1]
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AppuicATION TO THree Species Fooo Wees

The control law

We now derive the control law for the
Kolmogorov type model for a three species food web
which can be written as

,.r=xf'(x,y,z)+u!1 (4)
i t

y=yglxyz)+u {5)

%:zh(x,y,z) (6)

where z is the prey population density, y and x are
1

the predator and superpredator, respectively, while

i, and u, are the corresponding input rates. Then,

x=(x » 2f
F=(/ & %
U=(4 )
i 0
A0=0 1
0 0

and the output is
1

A=z 4 %

The main result of the static state-feedback
decoupling theory can be stated as foilows.

Theorem 2A necessary and sufficient condition for
the existence of (@, ) which solves the decoupling
problem.for equations (4)-(6) is that the prey
pophlation persists and the specific growth rate of
prejf h depends explicitly on the superpredator
population density. If this is the case, then a possible
decé:upling control is given by:

a(X)= _,;f—-}{’—(z&__ +/z)~yg]
7

r

LA
B(DO=| "k, 4
0 1
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and

% =-—.g"—7;'?-(z/z__+ﬁ)+;i;-vl -—-%—'Vz (8)

- r Xz x

U, =-yg+V, (9)
Proof From Lemma 1, we found that p, = | and
p;=0. We then obtain

V'H,:(O 0 z)’

so that V. /, = z4,and V5.4, = p. Therefore, we
are led to the decoupling matrix

zh  zh,
] (10)

A(X)=( .
o 1

Thus, A(X) is nonsingular if and only if det A= 0,
namely

zh, #0 (1)
This leads to the requirement that prey persists, in
which case z > 0, and that h, = 0 or, equivalently,

h depends explicitly on x,
Moreover, we have

VAR H =Vi(z) =V {VAz)}

VAl g Alr=

=V {hz)
x%(/zz)

d
=(/ £ 4 »3, )

d
lz;(/zz)
= xzfh, + yzgh, +z*hh, + zi’

Also,
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Vi H, =V ()

Therefore,
J=(ViH VEH)
[xzﬂ: + yzgh, + 2 Ak + z&z]
&=

which leads us to

a(X) =-ANX)J

== Zkl lkl
0 1 &
b
—xf =k 2
|,
- &
while
B(X) = AN (X)
i A,
= z;Zl’ ﬁ.r
0 1
as claimed.

If we now let

A
1A [rZﬁ + yzgh, + 2 hh, + 2

(12)
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tH;n.'s.ince z =zh we have

X

ar ax ay oz

L _Nh): Hh) A

= zh (xfru))+zh (yg+u,)+(zh+h)zh =V,
by applying the law in equations (8) and (8). Also,
using (9), we find

g)ﬁ:
Z:Jfé"*'%:vz

Therefore, in the new coordinate system (&, y, z) we
have

% _
> =V, (13)
a _
Z—Vz (14)
az
Z—é’ (15)

which clearly shows the decoupled structure, namely,
each of the control variables acts only on one state
variable. In fact, to keep the system decoupled, one
approach is to set v, = 0. Then, § now remains
constant, say at £(t).

Integrating (15), we obtain

z() = &{tg)t = z(t)

Thus, if £(¢t)) = 0 at a given initial time t= t, when
the control is activated, then

z(6) =z(ty)

for any subsequent time t, whatever the fluctuation
of v,. This means that the prey population will not
depend upon variations in the predator or
superpredator. This is the essential feature of this
technique, whereby the variations in the predator
and superpredators are decoupled from the prey
dynamics.

Persistence conditions

The question of persistence has been dealt with
in various literature in all its versions : weak persis-
tence; strong persistence; and uniform persistence
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{Huaping and Zhien, 1991). We shall give, in the
following Lemma, the persistence conditions for the
standard food web consisting of equations (4)-(6)
with

N C'_ 6'32 _
f(x,y,a)—éw Wi 4 (16)
_ G4z | &x
elx,vz)= —5“_ e 4 (7
_E_ AV _ 8
Ak, )= 1 k) Az 53+z (18)

where d is the specific removal rate, and the terms
J

and
(294

&+ y

are the population response functions of the Holling
type Il in which ¢, is the maximum growth rate and
b, is the so-called half-saturation constant. The
construction and analysis of the model in the case
that u; = u,= 0 may be found in the work of Lenbury
and Likasiri (1994).

A standard food web given by equations (4)-(6)
with (16)-(18) generally posesses only one positive

equilibrium £=(0, 5, z) and possibly only one
positive limit cycle T"={0, A2}, A¢)} for its sub-

system (5)-(6) with x set equal to zero. Under this
assumption, we are led to the following Lemma.

Lemma 2The food web given by equations (4)-(6)
with {16)-(18) is persistent if

A Y (19)
bz+y bl+z

A
and (in the case that [ exists)
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A

Ll ar@d e |, . o
o ~ ”
b+ y(8) b+z(2)

where T'is the period of the limit cycle ", provided
that u, and u, are identically zero. Otherwise, the
population persists if

%(0,,2)>0 (21)

fal
and (in the case that [ exists)

2 (0, ), 2> 0 (22

Proof This is a straight forward extension of the
result given in one of our earlier papers (Lenbury
and Likasiri, 1994) with the addition of the input/
removal terms u, and u,.

Consequently, on substituting (16)-(18) into (8)
and (9), one obtains the following decoupling
feedback law.

PR (. I
&a‘f‘}/ bl+“

bl+z jhy ), o ¥_£_ afy = ahx
4 [I{ I b+: bﬁfI,{ pf} (;b,ﬁ—z}ﬁ(&jz)2
b}+z a(le+z (25)
gz h az(b,+z)
5= -;( A —ﬂ—d]w! (26)
q-}; b,‘l‘l"

Figure 1 shows the time courses of the three state
variables and the discharge rates u; and u, under
normal conditions. We then chose to start our
contro! action at the time ¢ = t; shown in the Figure

where z =§(ty) = 0. Thus, the effect of the control
action is seen in Figure 2 when the new input v, is
set equal to zero and V, is taken to be of the form

v, = Ae’" sin wt
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which corresponds to a damped sinuscidal input.
The prey population density z becomes constant after
the time t;,, while the predator and superpredator
vary in a sinusoidal fashion with damping amplitude.
As time passes, the new input rate vV, becomes
negligibly small and the corresponding population
densities of all three species are maintained at
constant levels as a result.

ConrtroL AcTion ON A CHAOTIC SYSTEM

In the work by Lenbury and Likasiri (1994}, the
model of a food web given by equations (4)-(6) with
(16)-(18) and u; = u, = 0 have been analyzed using
the singular perturbation method. Explicit
conditions were derived which separate the various
dynamic structures and identify the limit cycles
composed of alternately slow and fast transitions.
[n particular, it was found that the system will have
a unique global attractor in the first octant which is
a low-frequency limit cycle with a period of high-
frequency oscillation if the following conditions hold
on the system parameters.
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Fig 1. Time evolution of superpredator x [ ). predator y
A andpreyz (_ . _ _ ). and constant discharge
rates u, and u, with no control action. Here, a, = 0.05,
a,=0.5,a,=0.5, b;=4.0,5,=80,5,=80,¢,=150,¢,=15,
c,=1.5.d=1.0,k=10.0,r=10.0, v, = 0.05, and u, = 0.05,
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dapber 14 -Halk-4)-d4 + b

: (27)
(f+4Y 2 +h-4

Ka - d)> b(c +d) (28)

Bck-bd~df) _4hia +r)a(k-b)-d2h +£-4)]
a{f+4) {albj—a,qd)(zqm_@)m,q?u)_m
29

and %’, {r=1,2,3) are sufficiently high.

We now carry out a numerical investigation to
determine the ranges of parametric values where
chaotic dynamics were likely. Our choice of
parameters was guided by two factors. First, we
follow the example of the work by Lenbury and
Likasiri (1994) and assume that the ecological
system under study may be characterized by highly
diversified dynamics. Accordingly, we chose

. parametric values so that the time response of the
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Fig 2. Time evolution of superpredator x, predator y, and pray z,
and discharge rates w, and u, under control operations
starting at ¢ = f; with v, = 0 and v, = 100¢*® sin 3nt, and
other system parameters as in Figure 1.
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system equations (4)-(6) increases from top to
hottom. The prey is assumed to have very fast
dynamics, while the predator and superpredator have
intermediate and slow dynamics, respectively.
Phytoplankton - zooplankton - fish is a typical
example of an ecosystem where the time response
increases with the trophic levels. In fact, most food
cl_iains‘ observed in nature have time responses
increasing along the chain from top to bottom.

! Second, as has been noted by many previous
workers (Hastings and Powell, 1991; Rai and
Sreenivasan, 1993), one may be able to generate
chaos in a nonlinear system which already exhibits
limit cycle behavior. We therefore chose parametric
values to satisfy the conditions (27)-(29) found by
Lenbury and Likasiri {1994) to lead to a solution
trajectory on a low frequency limit cycle with bursts
of high frequency oscillations.

Our investigation involves letting the system run
for 100,000 time steps and examining only the last
80,000 time steps to eliminate transient behavior.
We use values of b, between 4.0 and 4.5, changing
b, in steps of 0.01. The relative maximum values
X\, Of X, collected during the last 80,000 time steps,
are plotted as a function of b, as shown in Figure 3.

! We 'discover in this bifurcation diagram the
appearance of a period doubling route to chaos,
similar to those exhibited by one-dimensional
difference equations such as the logistic population
model." Apparently, the system of equations (4)-(6)
with {16)-(18) exhibits chaotic dynamics for the
values of b, between 4.22 and 4.32 . Windows in
the bifurcation diagram are observed for b, in the
ranges of 4.26 < b, < 4.32 and 4.34 < b, < 4.40, for
example, where periodicity is re-established.

A4 -

30

[ g

bl

Fig 3. Bifurcation diagram for the model system (4)-{6)} with

{16)-(18). using the value of b, from 4.0 to 4.5, and other

i parametric values as in Figure 1. Plots are of the relative
maximum values of x vs b,.
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Figure 4 shows the solution trajectory of the
model system (4)-(6) with (16)-(18) using b, = 4.3
in the chaotic range identified in the bifurcation
diagram. The strange attractor is projected onto the
(v. z)-plane in Figure 4, and the corresponding
chaotic time courses of x, y and z in uncontrolled
conditions are shown in Figure 5 with the discharge
rates v, and u,.

T T T—* ™
a 507 1O00 150G 2DDC 2500 300G 350G 4DGC

x

Fig 4. Projection onto the (yz)-plane of the strange attractor
obtained on simulating the model system (4)-(B) with (16)-
(18) using b, = 4.3 in the chaotic range identified in the
bifurcation diagram, and other parametric values as in

Figure 1.
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Fig 5. Time courses of the three state variables exhibiting chaotic
behavior when there is no control action, and parametric
values are as in Figure 4.
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Figure 6 shows the time courses of z starting from
two different initial conditions. The difference in
the two starting values of z is merely 0.01. We observe
that, while the two plots fellow indistinguishable
paths during the initial short period, they begin to
diverge and follow noticeably different paths
eventually. This clearly demonstrates the sensitivity
to initial conditions which is the essential characteristics
of chaotic behavior.

Figure 7 then shows the effect of the control
action on the chaotic system of Figure 4 with v, set
equal to zero and v, irregular. Here, the control is

initiated at the point where z(#,)=0 and 2(4)<0.

Once the control action is in place, prey is maintained
at a constant high level, while the variations in
predator, superpredator, and the discharge rates u,
and u, are irregular.

On applying the model to an activated sludge
process, the state variables can be nutrient-bacteria-
protozoa, for example, and the objective of the
control action is perhaps to regulate the inputs in
order to obtain satisfactory water quality. Insucha
case, it is desirable to start the control action when

the variable z falls to its first lowest point ( z{#,)=0

and #(4,)>0). We will then be able to maintain z at
a constant low level.

CONCLUSION

It has been demonstrated that while some
inherent properties of a nonlinear model permit the
emergence of chaotic dynamics, they also allow the
existence of a feedback decoupling control mechanism.
Since the behavior of the entire community is
believed to arise from the coupling of these strongly
interacting species, the detection and possibility of
control of a chaotic system is of critical importance.
If a generalization from a food web model depends
crucially upon behavior after a long time, then the
role of chaos may be extremely relevant.

On a cautious note, the question of whether or
not deterministic chaos actually occurs in a real
ecasystem is still open to discussion. As has been
observed by Sabin and Summers (1993}, “... there
is still no generally accepted example of a chaotic
ecosystem in nature. Moreover, some traditional
ecologists believe that irregular oscillations in natural
populations are attributed to random perturbations
or noise in the environment rather than being the
result of the intrinsic nonlinear dynamics of the
systemn”.
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Perhaps the first concrete example of occurrence
of chaos in nature is due to Sugihara and May
{1990) who showed that there underlies a three-
dimensional chaotic attractor in the dynamics of
marine planktonic diatoms. Despite the fact that the
corresponding time series is very noisy, they have
been able to extract the information which allows
them to describe some of the dynamics as deter-
ministic chaos.

Such irregular behavior is not desirable when one
is interested in managing a system, since chaos allows

L

b 1=

-

ST —

.
=
T
e e A L e i e

e T A e -

- TR ST PPN
P —

i i s o < o

%
|
bos_ oz
4
B

A s

=
e
=3

id 147 AN 178

Tiww
Fofuite &
- Fig 6. Divergence of solutions when the systemn exhibits chaotic
dynamics. Prey densities are plotted for two different initial

conditions { and __ _), differing only by 0.01 in z.
1] % e e e .
| }
. ¥ ;
" L0 - aia
] RIS TI [ ——
- T
[T H N
2 L T
El R R e e
: . P
. L .
3 h iN 28 ot
;0 P
o ; J\ jo e T I
= N - T
e H —
I ~
TH S —
3t T T 1 v LI 1
'1% : 4 £ R w00 1z L& 15 o4& e
T ares
YT QI — -|
: —_ i
“ H [TFEE ]
o b i
w03 = : |
H : "
3 : :
o B e e
5 ! P i - T
= 1 U e
£ S
M [ ]‘ ;
) 1
Fl T

~30 — —
» B T H v T B {

Fig 7. Time evolution of the three state variables, using para-
metric values of Figure 5. The chaotic system becomes
stabilized when the control action is initiated at ¢ = t; with
v, =0 and v, irregular.



L L

L]

ScienceAsia 28 (2002}

only short-term predictions. Thus, a feedback control
mechanism such as the one we have been discussing
provides an attractive and useful tool to regulate the
process since it can stabilize the systermn and make it
less sensitive to the exogenous disturbances or noise
input. The present study has potential to act as a
spring board for a generalization to more complex
models in the hope of obtaining a more manageable
system,
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Abstract

Bone a major reservoir of body calcium, is under the hormonal control of the parathyroid hormone (PTH). Several aspects of
its growth, turmover, and mechanism, occur in the absence of gonadal hormones. Sex steroids such as estrogen, nonetheless, play
an 1mp0rtant role in bone physiology, and are extremely essential to maintain bone balance in adults, In order to provide a basis for
understanding the underlying mechanisms of bone remodeling as it is mediated by PTH, we propose here a mathematical model
of the process. The nonlinear system model is then utilized to study the temporal effect of PTH as well as the action of estrogen
replacement therapy on bone turnover. Analysis of the model is done on the assumption, supported by reported clinicza! evidence,
that the process is characterized by highly diversified dynamics, which warrants the use of singular perturbation arguments.
The model is shown to cxhibit limit cycle behavior, which can develop into chaotic dynamics for certain ranges of the system’s
patametric values. Effects of estrogen and PTH administrations are then investigated by extending on the core mode!. Analysis
of the model seems to indicate that the paradoxical observation that intermittent PTH administration causes net bone deposition
while continuous administration causes net bone loss, and certain other reported phenomena may be attributed to the highly
diversified dynamics which characterizes this nonlinear remodeling process.
© 200!3 Elsivier Science Treland Ltd. All rights reserved.

Keywords: Bone remodeling; Parathyroid hormone control; Esirogen therapy

1. Introduction

Bone is a highly organized tissue which differs from

reproductive tissues in many aspects of its growth and

turnover, are not dependent on gonadal hormones. It,

however, provides support and protection as well as

provides the environment for hemopoiesis. Moreover,
|

* Correspondmg author. Tel.: +-66-2-201-5341;
fax: +66-2-201-5343.
E-mail address: scylb@mahidol.ac.th (Y. Lenbury).

bone is the major calcium reservoir of the body since
over 99% of total body calcium is stored in the skeleton
(Heersche and Cherk, 1989).

In order to maintain its structural integrity, a great
deal of new cells must be produced continuously
(Heersche and Cherk, 1989). This involves two types
of cells: the osteoblasts which are responsible for bone
formation, and the osteoclasts which are responsible
for bone resorption. The knowledge of how these cell
types are regulated and how their proliferation and
differentiation are stimulated is most important to our

0303-2647/03/3 - sce fromt matter © 2003 Elsevier Science Ireland Lid. All rights reserved.

doi:10.1016/50303-2647(03)00040-6
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understanding of factors regulating their number and
activity in healthy or diseased human.

The skeleton undergoes continuous changes dur-
ing growth and, until recently, was believed to reach
its permanent shape after sexual maturation. How-
ever, it has now become clear that bone never attains
permanent state (Albright and Sauders, 1990). After
maximum skeletal mass has been reached, the fi-
nal adult phase begins. A steady loss of bone mass,
together with progressive architectural alterations
continues throughout life, with the rate of change in-
creasing with age. The severe loss of bone, especially
cancellous (trabecular) bone, and the “spontancous”
fracturing of the remaining bone, characterizes the
condition called osteoporosis (Whitfield et al., 1998).

Osteoporosis, a condition of generalized skeletal
fragility caused by a reduction in bone mass as well
as by a disruption of skeletal architecture, is a major
cause of morbidity and mortality in postmenopausal
women. It is estimated that women have lost 10%
of their bone mass by the time they go through

menopause and that 35% of cortical bone, and 50% of

trabecular bone are lost over a lifetime (DeChemey,
1993).

Prevention and reversal of bone loss require a
thorough understanding of the remodeling process in
bone, the mechanism of bone formation, resorption,
including the action of hormones such as estrogen
and parathyroid hormone (PTH).

Albright et al. (1941), first called attention to estro-
gen deficiency as the cause of postmenopausal osteo-
porosis. It has now been widely accepted that estrogen
deficiency plays an important role in the pathogenesis
of osteoporosis and that estrogen therapy can prevent
menopausal bone loss and reduces the risk of frac-
ture. The mechanisms by which estrogen exerts its
effects on bone remodeling process are not entirely
understood, however, and several puzzling discoveries
cannot be completely explained still. Recent studies
(Albright et al,, 1941; Prestwood et al, 1994) sur-
prisingly indicated that short-term estrogen treatment
of elderly women decreased values for biochemical
markers of bone turnover significantly. Since estrogen
therapy has some risks and side effects, the beneficial
effect of prolonged estrogen treatment is put in ques-
tion. Estrogen has important pharmacological side
effects on skeietal tissues. Bone blood flow appears
to be depressed by estrogen (Turner et al., 1994). A

change in blood flow might have profound effects on
bone cell metabolism. High doses of estrogen result
in weight loss in rats (Moon et al., 1991), and an
increase in tumor formation was noted in aging rats
following long-term treatment with estrogen.

The PTH has been proposed as an alternative agent
that can replace lost bone and restore bone strength
{Whitfield et al, 1998). Several researchers have
investigated pulsatile PTH secretion in health and os-
teoporosis (Harms et al., 1989; Schmitt et al., 1996),
concluding that pulsatile secretion of PTH in healthy
young men is the physiological mode of secretion.
Low pulsatile secretion of PTH might be related to
low turnover osteoporosis. Paradoxically, however,
PTH has been found (Kroll, 2000) to cause net bone
loss (resotption) when administered in a continuous
fashion, and net bone formation (deposition) when
administered intermittently.

A sensible model of the process of bone formation
and bone resorption should be capable of addressing
and, to a certain extent, explain the puzzling discov-
eries mentioned before. We shall, therefore, develop
a mathematical model for the differentiation of os-
teoblastic and osteoclastic populations in bone, based
on the differential effects of PTH. The model is shown
to admit pulsatile and chaotic secretory patterns in
PTH levels conformal to clinical observations re-
ported by Prank et al. {1995) recently. By expanding
on the model, the question about the marked effect
of short-term estrogen ireatment, or the paradoxical
effect of intermittent versus continuous PTH admin-
istrations mentioned before, can be explained as at-
tributes of the highly diversified nonlinear dynamics
which characterize this remodeling process.

2. Model development

Bone, being a major reservoir of body calcium,
is under the hormonal control of PTH (Kroll, 2000).
Osteoclasts resorb bone and liberate calcium, but
they lack receptors for PTH. The preosteoblastic
precursors and preosteoblasts possess receptors for
PTH, upon which the hormone induces differentiation
from the precursors to preosteoblasts and from the
preosteoblasts to osteoblasts. The osteoblasts, conse-
quently generate IL-6, which induces preosteoclasts
to differentiate into osteoclasts (Kroll, 2000).

-
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Thus, bone remodeling is a continuous cycle of
destruction and renewal of bone that is carried out by
teams of osteoclasts and osteoblasts (Marcus, 1994),
Osteoclasts and osteoblasts differentiate from . less
mature precursors, which line bone surfaces in an in-
active staté. In bone remodeling process, osteoclasts
appeé_ir on-a previously inactive surface of bone and
then, ithey fexcavate a lacuna on the surface of can-
cellous bone or resorption tunnel in cortical bone.
Osteoclasts are subsequently replaced by osteoblasts
and finally, osteoblasts refill the resorption cavity.
After osteoblasts have laid down their protein-based
matrix, known as osteoid, they bury themselves in
bony :matrix, becoming osteocytes, or revert to an
inactive cell form and line the bone surfaces as sur-
face osteocytes or resting osteoblasts (Turner et al.,
1994).

Therefore, the rate of bone deposition can be de-
termined by the number of osteoblasts (B) while the
rate of bone resorption can be determined by the
number of osteoclasts (C), the balance between the
number and activity of osteoblasts and osteoclasts
determines-whether net bone deposition or net bone
resorption ‘occurs. An excessively deep resorption
space’ produced by osteoclasts, or an incomplete re-
plenishmerit of the resorption space by the activation
of osfeoblasts can result in bone imbalance. If a re-
modeling imbalance exists after the completion of a
remodeling cycle, the degree of bone loss will be ex-
acerbated and that leads to osteoporosis (Turner et al.,
1994).

We now proceed to construct our core model, the
mathematical formulation of which is based biologi-
cally on clinical evidence observed in various reports
such as that of Hock and Gera (1992), Dempster et al.
(1993), Momsen and Schwarz (1997), Kong et al.
(1999), Takahashi et al. (1999), Burgess et al. (1999),
or Kroll (2000) amongst several othets.

F irétly, since activated osteoclasts result from dif-
ferentiation and activation of osteoclast precursors,
we shall assume in what follows that a high level in
osteoclast precursors is reflected in the high level of
the resultiig activated osteoclastic population C(¥).
Secondly, osteoclasts resorb bone and liberate cal-
cium, in order to counter balance the high level of cal-
cium in blood the rate of PTH secretion will decrease
{(Momsen and Schwarz, 1997). The equation for the
rate of PTH secretion is then assumed to take the

form
dP _ o« i P
& hyc @ M

where P(f) denotes the level of PTH above the basal
level. The first term on the right-hand side represents
the secretion rate of PTH from the parathyroid grand
which decreases with the increase in the number of
active osteoclastic cells C(s), ¢; and %, being posi-
tive constants. This accounts for the above-mentioned
observation that as active osteoclasts C resorb bone
and liberate calcium, the rate of PTH secretion will
decrease to counter balance the high level of calcium
in blood. Therefore, a higher C should lead to lower
PTH secretion rate. Finally, it is assumed that the hor-
mone is removed from the system at the rate which is
proportional to its current level with the removal rate
constant .

The dynamics of the osteoclastic population, on the
other hand, can be described by the following equation

dC _ (c2+c3P)BC

= —hC 2
dr k> + P? 2 @)

where the first term on the right-hand side represents
the reproduction of active osteoclasts which requires
the production of osteoclast differentiation factor
{ODF) and its receptor on osteoclasts {Kroll, 2000).
The more C means the more ODF receptors avail-
able for the reproduction of active osteoclasts, and
hence the term is taken to depend on the number of
osteoclasts C at that moment in time.

Moreover, osteoclasts precursors possess RANK, a
receptor of tumor necrosis factor {(TNF)} family that
recognizes ODF through a cell-to-cell interaction with
osteoblasts (Kong et al., 1999; Takahashi et al., 1999;
Burgess et al., 1999; Kroll, 2000), hence the rate of
reproduction is taken to depend also on the number of
active ostecblastic cells B(f) at any time ¢ Based on
the well founded theory on mathematical modeling
and population dynamics known as the law of mass
action (Leah, 1988), when an event occurs through
cell-to-cell interaction of the two populations involved,
the rate may then be assumed to vary as their product,
provided that the event occurs randomly. However, the
rate of reproduction of C increases with the increase
in the level of PTH (Dempster et al., 1993; Weryha
and Leciere, 1995). On the other hand, it has been
clinically observed (Kroll, 2000) that as PTH level
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increases further, it begins to inhibit osteoclastic
reproduction, and hence the saturation expression
(c2 + ¢c3P)/(ka + P?) is assumed for the stimulat-
ing effect of PTH, where ¢z, ¢3, and k; are positive
constants.

Thus, without any active osteoclasts or osteoblasts
(C = 0, B = 0), the reproductive rate of C should
vanish. On the other hand, C will be produced at
the rate which varies directly as the product BC, by
the law of mass actions mentioned before, with the
variation constant ¢z/k7 at vanishing P. With PTH me-
diation, however, this variation parameler increases
initially with increasing P but decreases when P be-
comes too high according to the saturation function
utilized in Eq. (2), where c3 is a measure of how late
the inhibition effect will set in.

Finally, the dynamics of the active osteoblastic pop-
ulation B(#) can be described by the following equation

dB _ CsPB
dr ¢4 k3+ P

— d3B 3)

where ¢4 is the specific rate at which PTH stimu-
lates reproduction of active osteoblasts (Brown, 1991,
Isogai et al., 1996), while the second term on the
right-hand side of Eq. (3) accounts for the clinically
observed inhibition of osteobiastic differentiation due
to the PTH (Kroll, 2000). PTH stimulates osteoblast
differentiation in immature osteoblasts but inhibits it
in more mature cells (Isogai et al., 1996), through the
process of down-regulation of the PTH receptors on
osteoblasts. IL-6, a cytokine produced by osteoblasts,
enhances the anti-proliferative effects of PTH by sup-
pressing the PTH-induced Ca?* transients in addition
to the down-regulation of the PTH receptor caused by
chronic activation of the protein kinase A signal path-
way. Therefore, PTH and IL.-6 produced by osteoblasts
exert a receptor-mediated negative feedback on the
conversion of preosteoblasts to osteoblasts (Kroll,
2000). The inhibitien effect is assumed here to take the
form of the Holling type response function esP/(k3 +
P) which means that there should be no such inhibition
if B or P vanishes. The inhibition term ¢s PB/(k3 + P)
then tends to ¢s B at high PTH level, so that the os-
teoblastic formation is predominantly stimulated posi-
tively by PTH according to the first term c4 P in Eq. (3}
at higher levels of this hormone. This is consistent
with observed clinical data reported by both Tam et al.
(1982) and Hock and Gera (1992), some of which

is shown in Fig. 1. The parameters cs and k3 may
then be varied to accommeodate different physiologi-
cal data of different individuals. The higher &3 means
the inhibition remains effective still at higher level
of PTH. The last terms in the above three equations
are the removal rates of the three components of the
remodeling process with rate constants dj, d», and 43,
respectively.

Our reference core model, therefore, consists of
Egs. (1)-(3), possessing highly diversified nonlinear
characteristics, upon which further analysis and inves-
tigation may be carried out in an attempt to explain
the mystifying empirical observations previously men-
tioned.

3. Theoretical analysis

Now, the argument for our assumption that the sys-
tem is characterized by highly diversified dynamics
goes as follows. According to Whitfield et al. (1998),
the need to repair microdamage in a patch of cortical
bone is sensed by an interconnected network of cells
called osteocytes, each of which is locked in a tiny
cubicle inside the dense cortical bone. The damage
may only strain the osteocytes or it may be severe
enough for them to suicidally trigger a process called
apoptosis. When osteocytes are injured or die, they
stop producing a major suppressor of osteoclastic
biosynthesis. This removes a major restraint on the
production of new ostecclasts, each of which will live
and dig for the next 2 weeks (Whitfield et al., 1998).

When the osteoclasts dissolve the bone mineral,
a lot of Ca®* is released. The Ca®t concentration
serves as a 2-way switch; “off” for the osteoclasts and
“on™ for the bone-making osteoblasts (Whitfield et al.,
1998). Osteoblasts take about five times longer to fill
the tunnels and trenches than osteoclasts take to dig
them. When the patch is finally repaired 69 months
later, the distress signals have stopped, the approx-
imately 3-month-old members of the last osteoblast
crew are now out of work, so they “commit apoptotic
suicide,” as explained in great detail by Whitfield et al.
(1998).

In view of the above discussion, therefore, it is
reasonable to assume that PTH, being the stimulating
agent in both bone resorption and formation, should
possess very fast dynamics, responding quickly to
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Fig. 1. Effects of PTH administration on bone surface formation and volume. (Adapted from Tam et al. (1982).)

changes in the cellular environment, specifically the
Ca?*,| concentration. The osteoclastic population is
the component with intermediate dynamics and more
stable than PTH, while the osteoblastic population
possesses the slowest dynamics, lasting up to approx-
imately 3 months, and therefore is the most stable of
the three components in this system.

Suppeorted by such well-documented clinical obser-
vatiog} (Whitfield et al., 1998), we scale the compo-
nents and parameters in terms of small parameters ¢ <
e« land 0 <« § & 1 as follows. Letting x = P, y =
C,z=B,u =c¢),az = c2le, a3 = c3yle, ag = c4/ed,
as = ¢s/ed, by = dy, by = dale, and dy = d3/ed, we
are led to the following system of differential equa-
tions.

dx aip.

E_k1+y

—b]XE F(X, v, Z) (4)

d_x s [(az + azx)yz

4 = pogra. - bzy] =eG(x, ¥, 2) (5)

EE =8 [a4x B b3z:, =egfH(x,y,2) {6)
k3 +x

which means that during transitions, when the
right-hand sides of Eqs. (4)-(6) are finite and non-zero,
|¥|] is of the order £ and |z| 15 of the order £5. In
the sequel, we will adopt the notation ¥ = O(g) and
7z = O(ed).

The system of Eqs. (4)}-(6}, with small £ and &,
can be analyzed with geometric singular perturbation
methods which, under suitable regularity conditions,
allow approximation of solutions of the system by a
sequence of simple dynamic transitions occurring at
different speeds. A resulting singular curve, composed
of these transitions, approximates an actual solution in
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the sense that the real trajectory is contained in a tube
around the curve, and that the radius of the tube tends
to zero with £ and 8. Examples where this technique
has been applied to biological systems can be found
in the work of Muratori and Rinaldi (1992) and that
of Lenbury et al. (1997). A detailed description of
singular perturbation theory can for instance be found
in the work of O’Malley (1974) on this subject. The
works by Jones (1994) and Kaper (1999) give good
overviews of geometric singular perturbation methods.
See also the classical text by Eckhaus (1979).

We call the system of Eqgs. {4)~(6) the fast system.
In the form of an intermediate system, where & and §
are positive, it can be written as follows

d
E = F(x,y,2) 0
d'l'[
2 Gy (8)
d‘[[
d
£ = dH(x. y, 2} {9
dl’l

where 1) = &1, or in the form of the slow system

dx
£8— = F(x,v,2) (10}
dI’z
dy
d— = ,
i Gix, ¥ 2) (1
2 by 12
in = N3z (12)

with 73 = &8z, Evolution on the time-scale ¢ is said to
be fast, evolution on the time-scale 7; is intermediate,
and evolution on the time-scale 72 is slow,

(Geometric singular perturbation theory allows us to
analyze the system of Eqs. (4)~(6) for small positive £
and & by suitably combining the dynamics of the fast,
intermediate, and slow limits. Under certain regularity
conditions and provided that the sets of critical points
(critical manifolds) are normally hyperbolic for £ = 0,
and & = 0, compact subsets of these critical manifolds
persist as locally invariant slow or intermediate man-
ifolds of the full problem Egs. (4)—~(6) for £ # 0, and
& # 0 but sufficiently small. These manifolds are O(s)
or Ofed) close to (F(x, ¥, z) = 0} and {F(x, y,2) = 0,
G(x, ¥, z) = 0}, respectively.

4. Analysis of the manifolds

The shapes and relative positions of the manifolds
{F = 0}, {G = 0}, and {H = 0} determine the di-
rections, speeds, and shapes of the resulting solution
trajectories. Therefore, we shall analyze each of the
equilibrium manifolds in detail. The delineating con-
ditions for the existence of limit cycie are arrived at
from the close inspection of these manifolds.

4.1. The manifold |F = 0)

This manifold is given by the equation

a)
X = ——— = U(y) (13)
bilk; +y)
We see that this mantfold is independent of the slow
variable z, thus this manifold is paralle! to the z-axis
and intersects the (x, z)-plane at the point where
1 (14)

x=— =
bk,

Moreover, U(y) is a decreasing function of y, so that
x — 0 as y — oc along this curve.

4.2. The manifold {G = 0}

This manifold consists of two submanifolds. One
is the trivial manifold y = 0, while the other is the
nontrivial manifold given by the equation

= by (ks + x?)

= V
P (x) (15)

We see that this nontrivial manifold, shown in Fig. 2,
is independent of the intermediate variable y, and thus
this manifold is paratlel to the y-axis. It intersects the
{x, z)-plane along a curve which is asymptotic to the
line
a
x=—-2 {16)
a3
The curve intersects the z-axis at the point where x =
0, and
bhaky
az

- —

20 a7

attaining its minimum at the point where

az

2
x=—2 (—) +hy = Xm (18)

az

-
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Fig. 2. Shapes and relative positions of the equilibrium manifolds in the case where a limit cycle exists. Here, three arrows indicate fast
transitions, two arrows indicate transitions at intermediate speed, and a single arrow indicates slow trangitions.

and
2= Vlxm) = Zm (19)
in the first octant.

Moreover, the manifold { F = 0} intersects the triv-
ial m@nifold y = 0 along the line x = x| on the (x,
z)-plane. On the other hand, the manifold {F = 0}
intersects the nontrivial manifold given by (15) along
the curve

ol t U2 (y)

- a2 + ai1lU(y)
which has a minimum peint Q{xm., ¥m. Zm) Where
Y = — Ky (20)
b]xm

utilizing (13). Also, the curve {F = G = 0} intersects
the (x, z)-plane at the point I/ where y = 0, x = xj,

and

252 2
r= by bikiky + aj =2 @n
bk \asbky + aja;3

Finally, z — zp as y — o0 along this curve as shown
in Fig. 2.

4.3. The manifold {H = 0)

This manifold is given by the equation
.= agx(ks + x)
{as + b1)x + bsks
which is independent of y. Thus, this manifold is par-
allel to the y-axis, and intersects the {y, z)-plane along

the y-axis. We also observe that W(x) is an increasing
function of x in the first octant.

= W(x) (22)
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The manifold {/{ = 0} intersects the manifold
{G = 0} along the straight line

ba(ks + x2)
£=x2, Z=L522} (23)

dz + ayx;

which is parallel to the y-axis, x2 being the real solution
of

(baas + baby — azaq)x® + (babsk; — azas
— azaski}x? + (asbaky + babsks — azasks)x
+ bab3kak; =0 (24)

which exists in the positive octant and is unique pro-
vided

baas + baby —azaqa < 0 (25)
babyky — azas — azagks < @ (26)
and

asbrky + babiky — azaaksy > 0 27

The manifold { H = 0} intersects the (x, z)-plane along
the curve z = W(x) which intersects the line x = x;
at the point 51 = (x1, 0, z3) where

_ ajas(hrkiksy + ai)

" biki[ai(as + b3) + b bakik3]
seen in Fig. 2,

Moreover, the curve {F = G = 0} intersects the
curve {G = H = 0} at the point 53 = (x2,0, 22)
located on the unstable portion QU of the curve
{F = G = 0} as shown in Fig. 2, provided that

23 (28)

X < X3 < Xy

5. Existence of an attracting limit cycle

The relative positions of the manifolds {F = 0},
{G = 0}, {H = 0}, and in particular the existence and
position of the point §; are apparently important for
the existence of a limit cycle. After the calculations
of the previous section, we are ready to state the main
result of this paper.

Theorem 1. Suppose inegualities (2527} hold. If ¢
and & are sufficiently small, and

Xm < X2 < Xy 29)

7] <73 <20 (0

where all parametric values are defined as before, then
the system of Eqs. (4)-(6) has a global attractor, in
the positive octant of the phase-space. This attractor
is a limit cycle that is singular in the limit ¢ — 0,
§ — 0. In that limit it can formally be constructed
by concatenating various transitions occurring at three
different speeds.

The proof of the theorem is based on geometric
singular perturbation methods, which are elaborated
by Jones (1994) and Kaper (1999) and utilized suc-
cessfully in many areas. These methods rely heavily
on using the different types of flows that can be dis-
tinguished: the fast O(1) flow, the intermediate O(z)
flow, and the slow O(e8) flow. Orbits can consist of
various parts; in Fig. 2 the fast parts are indicated by
three arrows, the intermediate parts by two arrows,
and the slow parts by a single arrow. Under the condi-
tions identified in the theorem, the shapes and relative
positions are as in Fig. 2.

Take an initial point L = (xg, ¥, 2p), with
F(xg, y0, zo) # 0. Under the conditions in Theorem 1,
without loss of generality we assume that the position
of L is as in Fig. 2. L lies in the fast field on an orbit
governed by

dx dy dz
——=Fux,y2), —=0—=
IR AL S dr

0 31D
and the £ = 0 orbit through L tends to the point M on
the fast stable manifold F = 0 while y and z remain
constant. Generically, G(x, v, z) # 0 at this point M.
Then, on this manifold the flow with respect to the
intermediate time 7; is given by

d
0 = F(x, y,2), = _ Gix, y, 2),
drg
F4
— =4&H 4
e (x, y,2) (32)

For sufficiently small §, 0 < § « 1, this is again a
singularly perturbed system. Inspection of G yields
that {G = 0} is normally hyperbolic attracting for
the § = 0 flow restricted to {F = 0}, and that the
full manifold {F = 0} serves as a stable manifold of
{G = 0} for the restricted § = 0 flow. The flow on
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{F =0, G # 0} is given by

dy d
0= F(x,y 2), = = G(x, ¥, 2), =0
dr dry

(33)

and is hence O(¢) or intermediate in the direction of
decreasing y, since G < 0 here. As long as G # 0 the
orbits on {F = 0} have constant x and z coordinates.
Then, the orbit reaches the peint N on the stable part
of {F =0, G = 0}, where the flow is prescribed by

0=Fx.y,2), 0=G(,y ),

dz )
an H(x, v, 2) (34)
and is hence O{&8) or slow in the direction of increas-
ing z, since H > 0 here, until the point O is reached,
where the stability of { F = 0, G = 0} is lost. (The ex-
istence and location of the point O has been discussed
and proved by Schecter (1985) and Osipove et al.
{1986).) The O(¢) time-scale becomes dominant once
again. Hence, the orbit follows an intermediate path to
the point P on the other stable partof {F = 0, G = 0},
Then, it tends to the point Q during which the flow
is O(&d) in the direction of decreasing z, since H < 0
here. Once the point Q is reached, a saddle node bi-
furcatibn occurs and the stability of {F =0, G = 0}
will again be lost. The O(¢) time-scale becomes dom-
inant again. This yields an intermediate trajectory to
the point R followed by a fast transition to the point
T on the stable part {F = 0, G = 0}. Consequently,
a slow transition with increasing z, since H > 0
here, will bring the system back to the point O, fol-
lowed by flows along the same path described before
repeatedly, resulting in the closed cycle OPQRTO.

Thus, the existence of a limit cycle in the system
for ¢ and § sufficiently small is assured. Finally, since
L was arbitrary, the limit cycle is a global attractor.

A computer simulation of Egs. (4)~(6) is presented
in Fig. 3, with parametric values chosen to satisfy
the inequalities identified in Theorem 1. The solu-
tion trajectory, shown in Fig. 3a projected onto the
(x, y)-plane, tends to a limit cycle as theoretically pre-
dicted.’ The ‘corresponding time courses of PTH and
active osteoclastic population level C are shown in
Fig. 3band c, respectively. Such oscillatory behavior
in the level of PTH has often been observed in clinical
data (Albright et al., 1941; Prank et al., 1995, 1994),

On comparing the spaces between PTH peaks in our
numerical simulation to those in available clinical data,
we are able to estimate that the scale of 1 day is equiv-
alent to 917 time steps in our model simulations.

6. Nenlinear dynamics in PTH secretion

Several researchers (Albright et al., 1941; Prank
et al.,, 1995, 1994) have reported evidence of non-
linear dynamics in pulsatile secretion of PTH in
normal human subjects. Prank et al. (1994) reported
low-dimensional deterministic chaos in the pulsatile
secretion of PTH in three young subjects. It appears
that a phase-space analysis may allow the definition
of health and disease by identifying the dynamic
differences in the subjects’ PTH secretory patterns.

In order to investigate the possibility of chaotic dy-
namics in the secretory pattern of PTH in our system,
we carried out a numerical experiment on our model
Egs. (4){6). A bifurcation diagram was constructed

" by choosing parametric values that would lead to cy-

cling in the x, y, and z components, guided by our work
in the previous section, then letting the system run for
10° time steps. We retained only the last 8 x 10* time
steps to eliminate transient behavior, using the values
of k| between 0.08 and 0.1, and changing &; in steps
of 1075, The relative maximum values xmax of x were
collected during the last 8 x 10* time steps and plot-
ted against k; as shown in Fig. 4. We discovered in
this bifurcation diagram that periodic orbits of period
2 can be expected in the model system for values of
k1 = 0.097. Chaotic dynamics occur for k7 between
0.087 and 0.089, emerging through a period doubling
route. In this chaotic range, the system is very sensi-
tive to initial conditions. From experimenting numer-
ically, we found that the time courses of solutions in
this situation, which start at very slightly different ini-
tial values, will stay close for only a short time, before
diverging and following drastically different paths as
time passes.

A computer simulation of the model systems
(4)-(6), with parametric values chosen under the
above-mentioned guidelines and k1 = 0.087 in the
chaotic range, is presented in Fig. 5. The strange
attractor is shown projected onto the (x, y)-plane in
Fig. 5a, and the corresponding chaotic time course of
PTH is presented in Fig. 5b.
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Fig. 3. A computer simulation of the model systems (4}(6) with £ = 0.1, § = 0.9, ¢ = 0.05, a2 = 0.009, a3 = 0.675, ug = 0.01,
as = 0.005, by = 0.1, bp =03, b3 =001, &y = 0.1, k3 = 0.5, k3 = 0.025, x(0) = 2, y(0) = |, and z(0} = 0.15. (a) The solution
trajectory projected onto the (x, y)-plane. (b) The corresponding time courses of PTH (x), and {¢) active osteoclasts ().

Thus, our model admits chaotic dynamics of
PTH secretion, conforming to the clinical evidence
in the above-mentioned reports which suggests a
new interpretation of osteoporosis and hyperparathy-
roidism as dynamic diseases (Prank et al., 1994),
associated with the loss of an adaptive hormonal
rhythm.

7. Responses to PTH/estrogen therapy

We further illustrate how the charactenstics of non-
linear diversified time responses inherent to the system
modeled by Egs. (4)—(6) can give rise to different sur-
prising dynamic behavior which might seem puzzling
when observed in clinical data.
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Fig. 4. Bifurcation diagram for the model systems (4)-(6) with £ = 0.8, = 0.1, a; = 0.0900, a7 = 0.01125, a3 = 1.3750, a5 = 0.1125, )
as = 0.0625, by = 0.1500, by = 0.4375, by = 0.1250, k2 = 1.5000, k1 = 0.0250, and 0.08 < k) < 0.1. Plots are of xyax against &).

7.1. Responses to PTH administration

We investigate the action of PTH, administered con-
tinuously and intermittently, by first incorporating a
term &, > 0 into the rate Eq. (4) to represent contin-
uous adminisiration of the PTH. The result of a com-
puter simuiation of the modified model system:

dx 1

— = —-bhx+k 35
d: ki +y t r S
dy (a2 + asx)yz

DAY S gy 36
ar 8[ fy + 12 2y (36)
dz _ s (a oo Xy z) 37)
dr T T hrx

is shown in Fig. 6a. Here, &k, = 0.5 and administration
starts at 1 = 15 = 10,000. We observe that oscillatory
behavior in the active osteoblastic population ceases
and the level tends toward a steady level higher than
the peak levels attainable prior to the administration.

However, the active osteoclastic population shows an
exponential increase, and hence a net bone loss can,
therefore, be expected. Looking closely at the posi-
tions of the three equilibrium manifolds in Fig. 2, we
can see that the addition of k, > 0 means a re-location
of the manifold { F = 0} which results in the violation
of the necessary condition for limit cycle behavior and
the solution trajectory is forced to follow the curve on
the manifold {F = 0} while x — 0, and y increases
without bound.

However, if we add the term &, > 0 only in pulses
or intermittently, a different dynamic behavior is
obtained, although the same value of k, = 0.5 is
used. Fig. 6b shows the simulation result of daily
administration of PTH which lasts for 6h at a time
{using the time scale estimate mentioned at the end of
Section 5). Although the active osteoblastic popula-
tion still oscillates about a mean which is close to that
prior to the start of the protocol, the active osteoclastic
population now oscillates around a lower mean value
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(a) X

2.25

% 1.50 —

0.75 —

G.00 T | T T T T T
50000 51250 52500 33750 55000
(b} t

Fig. 5. A computer simulation of 1the model systems (4}{6) with £ = 0.8, 5 = 0.1, a) = 0.0900, a2 = 0.01125, a3 = 1.3750, a4 = 0.1125,
as = 0.0625, by = 0.1500, by =0.4375, b3 = 0.1250, k2 = 1.5000, k3 = 0.0.250, and k| = 0.087 in the chaotic range, showing a strange
atrractor projected onto the (x, y}-plane in (a). The comesponding time series of PTH (x) is shown in (b).
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and peaks at a much lower level. This results in ap-
parent net bone formation, which is in agreement with
the reports from several researchers (Kroll, 2000; Tam
et al., 1982; Hock and Gera, 1992) that daily injection
of the hormone caused an increase in the bone apposi-
tion rate, accomypanied by an increase in the formation
surface without an increase in the resorption surface.
Continuous infusion, on the other hand, resulted in an
increased apposition, increases in both formation and
resorption surfaces, and a net decrease in bone volume.

Studying the three equilibrium manifolds more
closely, we understand that the addition of &, in-
creases the rate of change of PTH in an episodic
manner. The x-component (PTH) now has even faster
dynamics and changes very quickly with time. Thus,
C does not have time to reach a high peak, because
it is pulled back down as the PTH level starts to
rise very early and quickly, and similarly for the os-
teoblastic population. But since the effect only lasts
6h at a time, the system returns to its oscillatory pat-
terns in a short space of time. Thus, it appears that
the behavior clinically observed is one of the mani-
festations of the nonlinearity property of the system
together with the fact that the process is characterized
by highly diversified dynamics. If PTH therapy is to
develop into a viable alternative to estrogen treatment
against osteoporosis, possibilities of such nonlinear
or dissipative effects admitted by the system must be
more closely scrutinized.

7.2. Responses fo estrogen administration

On the other hand, realizing that long-term treat-
ment of estrogen poses risks of side effects, we also
attempted to better understand the action of estrogen
on bone remodeling by again incorporating an extra
term into the second rate Eq. (5) for the active os-
teoclastic population, According to Whitfield et al.
(1998), in a young woman, a normal premenopausal
estrogen concentration may limit the size of the pre-
osteoclast population by stimulating apoptosis. But as
her estrogen level declines with menopause, so does
the estrogen receptor-mediated signaling; osteoclast
precursors may thus live longer. Thus, to simulate the
effect of daily intake to supplementary estrogen, we
increase the removal rate of C by subtracting the term
key, ke > 0, from the rate Eq. (5) for a duration AT
of every interval of p days.

In so doing, we are assuming that estrogen is more
stable than PTH and remains effective in the human
body accumulatively over a long enough period so that
daily intake of estrogen can be taken as equivalent to
continuous application of the stercid, all through the
time period AT, during which time the model equa-
tions then become

_ @, (38)
dr ki1 +y
dy (@ + ayx)yz }

Y | BIE ek 39
Pk [ o) 2y —key (39)
dz asxz
— =g - —b 40
5= (mx pa 32) (40)

Fig. 7 shows the results of computer simulations
in two different cases. In Fig. 7a, the term —kcy is
kept in Eq. (39) for a duration of AT = 12 days, ev-
ery interval of p = 28 days. We observe that when
the administration period AT is over, the effect still
lasts for quite some time before the system recovers
itself and there is a resetting of oscillatory behavior
in the active osteoblastic population. The “plateau” is
much wider than AT. This is again a result of the di-
versified time responses of the three components in
this nonlinear system. Since B is the very slow vari-
able, it takes a long time to respond to the change in
the proliferation rate of C. In particular, the plateau
width is inversely proportional to £ and §. We also
found, upon experimenting with different values, that
different dosage (or k¢) will yield different plateau
width.

In Fig. 7b, AT = 21 days, and p = 28 days.
We see that there is no longer any resetting of os-
cillatory behavior. Even though estrogen has already
been cut off, the dissipative effect still lasts long
enough to overlap with the next application of es-
trogen. This seems to suggest that with appropriate
choices of AT, p, and the prescribed dosage, admin-
istration may not necessarily be kept on for the entire
time, while a net bone surface formation can still be
expected.

7.3. Investigating estrogen action in monthly bursts

In several clinical data, such as those mentioned
in Muse et al.’s report {1986), estrogen level was
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Fig. 7. Computer simulations of the extended model for estrogen treatment, Eqs. (38)—(40), with ¢ = 0.1, § = 0.9, a) = 0.05, a3 = 0.009,
ay = 0.675, as = 0.01, as = 0.005, by = 0.1, bz = 0.3, b3 = 0.01, k) = 0.1, k2 = 0.5, and k3 = 0.025. The duration of estrogen treatment,
initiated at the time fo = 10,000, is (a) 12 days, (b) 21 days, with k¢ = 0.2.

i i

observed to peak for a short period just a couple of
days prior to menstruation across a woman’s men-
strual cycle. This may lead us to wonder whether such
monthly bursts in estrogen secretion could play an
important role in the controlling mechanism by which
estrogen takes part in the regulation of bone mass
balance in the premenopausal women. We investi-
gate theoretically whether administration of estrogen
in mohthly, (equivalently every 28 days) bursts to a
posnnénopa'usal subject could effect some observable
change in the dynamics of the bone remodeling pro-
cess which may compensate for the functional role of
estrogén secretion in the premenopausal period. This
is done by taking the system of Eqgs. (38)—(40) to the
limit as AT — 0, while p = 28 days, such that the
single-bursts of estrogen across the menstrual cycle
can be modeled by the original system Eqs. (4)~(6)

with the additional resetting conditions:

x(m+) = x(m—) (41)
y(m+) = (1 — kc)y(m=~) (42)
2(m+) = z(m—) (43)
where m =pn,n =0, 1,2, ... and k¢ represents the

amplitude of the estrogen bursts. We can carry out an
analysis of the dynamics of solutions to the system
of Eqs. (4)—(6) with resetting conditions (41)}-(43) by
following the technique described by Robert and Kao
(1998} 1n their work on the dynamics of infectious
diseases with birth pulses.

If (x(1), ¥(1), z(£)) is a solution of (4)(6) for ¢ €
(0. p}, and boundary conditions

x(0) = x{(p) (44)
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y(0) = (1 —kc)y(p) (45) where

z(0) = z(p) (46) i 0 0
' J=|0 Ll—kc ©

then Eqgs. (4)(6) with (41)~(43) have a periodic solu-
tion defined by

(xp(0, yp(1), 2p(@0) = x (1), ¥(8), 2(D))
for te0.p)

and

(xp(t + p). yplt + p), 2p(t + p))
= (xp(f)v ¥p(0), zp(th)

for all non-integer r (Robert and Kao,
Heesterbeek and Robert, 1995).

The local stability of the period 1 solution (xp(¥),
yp(8), zp()} of (4){6) with (41)}43) may be deter-
mined by considering the behavior of small-amplitude
perturbations of the solution. Defining

1998;

(x(0), ¥(8), 2() = (xp(@) + x(8), ¥, (1)
+n(0), zp(0) + §()

these may be written as

X0 x{(0)

) | =2 | n0)

&0 £(0)
where @(/) satisfies
do(r) ~J &)

d (p¥paZyp)
while

aj
_b' k)2
azky — 2ayx — azx* (a2 + asx)z

fi= 8[ (k2 + x2)? jlz 5[ ky +x2

k3
£ [‘ (m)] 0

with ¢(0) = 1, the identity matrix. The resetting con-
ditions {(41)+(43) become

x(m+) x{m—)
n(m+) | =5 | nim—)
E(m+) E(m—)

0 0 1

Hence, if all three eigenvalues of

1 0 0
M=|0 1—kc 0|
0 0 1

have absolute values less than one, then the period
1 solution is locally stable (Heesterbeek and Robert,
1995).

Now, through some straightforward manipulations,
it can be found, for small-amplitude solutions about
the steady state (x;, 0, z3), that the conditions for the
absolute values of the three eigenvalues of M to be
less than one will be assured if those conditions for the
eigenvalues of J1{x|, 0, z3} to have negative real parts
are satisfied. To be precise, the stability conditions for
the eigenvalues of M to have absolute values less than
one are that
(a2 +asxi)zs

ko + x;f

and

(a2 + aaxy)zs
| —ke <exp|elby - ——25722 48
‘ "[( P ﬂ “

< by (CY)]

if all parametric values are assumed positive. However,
if (47) holds then (48) is automatically satisfied. But,
(47) is the required condition for the eigenvalues of
Ji{x1, 0, z3) to have negative real parts.

0

b il [(az + 631))’]
2 gl — 24
ka + x2

£ (-— asx —b3)
ki+x

This means that if the steady state (x1, 0, z3) is stable
before the application of estrogen in monthly bursts,
it will remain stable afterwards, apart from the spikes
appearing every period of 28 days in the osteoclasts
time series due to external estrogen administration.
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The andlysis of small perturbations about a dif-
ferent solution, other than (x;, 0, z3), is not so
straightforward, however, and we resorted to carrying
out numerical experiments instead. As a result, we
founel notiso surprisingly that estrogen applications
in monthly bursts do not appear to effect any change
in the dynamic behavior of the solution to the system
model in all the cases that we attempted, irrespective
of the magnitude of k¢, discounting the appearance
of spikes due to external estrogen each menstrual
cycle. Noticeable affect is only observed if the hor-
mone application lasts for a significant duration AT,
as has been noted in Section 7.2. This is, in fact, in
agreement with the conclusion made by Muse et al.
(1986), from their investigation, that the alterations in
calciﬁm-regulating hormones and bone mass that oc-
cur durmg menopause, and several amenorrhea states,
appear to occur when perturbations of gonadal steroids
are of greater magnitude and duration than those in the
normal menstrual cycle. We note, however, that clini-
cal reports are still contradictory and the mechanisms
behind thi§ steroid’s action remain unclear. Further
carefgl study and investigation need to be carried out
befor;e any definite conclusions can be made.

8. Conclusion

We have demonstrated, through the construction
and analys1s of a core model for the bone forma-
tion and resorption process mediated by PTH, that
several nonlinear dynamic behavior can be deduced
which closely simulates clinical data. Even though
the model is kept relatively simple, it incorporates
the nonhneanty property of the system as well as
the way the state variables possess highly diversified
time responses. The model can then elucidate certain
aspecfts of . the underlying mechanisms. Apart from
yielding valuable insights, such investigation, taken
with great care, can suggest new possibilities, new
interpretations, or a different approach in dealing with
this complexed remodeling process.

Mareover, it has been proposed (Prank et al., 1995,
Prank et al. . 1994) that in simple organisms, the detec-
tion of nonlinear behavior in information transfer is in
fact associated with differentiation and proliferation.
Modulation of the amplitude and/or the frequency of
the hormone pulses in higher organisms can modify

intracellular signaling pathways, gene expression, cell
proliferation, and cellular function (Goldbeter and
Li, 1989). Further studies on the effects of pulsatile .
hormone secretion on the regulation of cell and organ
function and structure can be found in the work of
Veldhuis (2000) and that of Brabant et al. (1992). More
recently, Hock et al. (2002) also gave a very clear
outline of the actions of PTH, focusing on the phys-
iological and cellular effects of PTH on the skeleton
but also considering the kidney and the cardiovascular
system, the latter being a recently recognized target of
PTH action. This line to investigation, therefore, de-
serves closer attention and further study, since it could
help explain the physiological linkage between func-
tional and genetic programs of the living organisms.
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The present work develops and analyzes a model system of delay-differential equa-
tions which describes the core dynamics of the stress-responsive hypothalamus-
pituitary-adrenal axis. This neuroendocrine ensemble exhibits prominent pulsatile
secretory patterns governed by nonlinear and time-delayed feedforward and feed-
back signal interchanges. Formulation and subsequent bifurcation analysis of the
model provide qualitative and mathematical frame work for better understanding
of the delayed responsive mechanisms as well as the dynamic variations in different
pathological situations.

Keywords: cortisol secretion; delay-feedback controlled system; Hopf bifurcation;
nonlinear model.

1 Introduction

The hypothalamus-pituitary-adrenal axis is a critical stress-responsive component
which initiates life sustaining adaptive reactions to internal stresses, such as disease,
and external stresses, such as hard work or lack of sleep. Signals may originate from
either outside or inside the body and are mediated by the central nervous systetn.
Thus, many changes in the environment ultimately can stimulate the secretion of
releasing hormones, which produce effects in the body in order to adapt to the
change.

*Corresponding author
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Neurons synthesize and package releasing hormone precursors in their cell bod-
ies, and these products are transported down the length of their axons to the nerve
endings, where a signal is awaited for secretion (Norman & Litwack, 1997). Since
most of the cell bodies of these neurons are found in different areas of the hy-
pothalamus, signals for secretion come from higher levels, usually from aminergic
or cholinergic neurons in various parts of the brain. The hippocampus of the limbic
system may signal the neurons to release the hormone by changing the firing rate of
electric signals or by chemical interneuronal contacts (Norman & Litwack, 1997).
The response of the hypothalamus to signals from the limbic system is the secretion
of the corticotropin-releasing hormone, CRH. CRH is released from specific cells
in the hypothalamus into a closed portal circulation intimately connected with the
anterior pituitary. Releasing hormones act at cognate plasma membrane receptor
levels either to cause an increase in cyclic AMP or to stimulate the phosphatidyli-
nositol cycle, leading to the stimulation of protein kinase C and an increase in
cytoplasmic calcium ion concentration. The increased level of cyclic AMP stimu-
lates protein kinase A leading to ACTH release from the corticotroph of the anterior
pituitary. Vasopressin also increases the secretion of ACTH, although the main role
of vasopressin appears to be one of helping CRH in this activity. Also, according
to Engler et al. (1999) the nanopeptide vasopressin is a weak ACTH secretagog in
rat and in man, although it appears to be potent in the bovine species. Therefore,
we shall not consider its direct stimulatory effect in this work.

Following the secretion of ACTH into the blood circulation after stimulation
by CRH from the hypothalamus, ACTH molecules bind to a specific receptor on
the outer cell membranes of all three layers of cells of the adrenal cortex, the
zona glomerulosa, the zona fasciculata, and the zona reticularis. Cortisol is the
main product of ACTH stimulation of the zona fasciculate and reticularis cells
of the human adrenal cortex. A glucocorticoid essential to life, cortisol acts on
different cells in different ways. Without the secretion of cortisol during stress,
a human could not survive. When cortisol is overproduced, often by a pituitary
tumor causing high level of circulating ACTH, the resulting disease is known as
Cushing’s disease. When cortisol is underproduced, the resulting disease is known
as Addison’s disease, which is most frequently the result of adrenal destruction.

When cortisol is produced in response to ACTH, it has negative feedback ef-
fects on various elements of the hormonal cascade system, schematically described
in Fig 1. Malfunctions in this negative feedback mechanisms can lead to several
complications. Lowered cortisol levels or enlarged output of ACTH by the anterior
pituitary, due to reduced negative feedback, results in adrenal hyperplasia and hy-
persecretion, which, together with adrenal testosterone, can lead to masculinization
of female babies. Precocicus puberty in males can also result from this condition
(Norman & Litwack, 1997).

It is therefore crucial that a better biomathematical description of such a pro-
cess be attempted to provide more solid framework for the study and assessment
of dynamic interfaces in health and disease. Such studies are necessary especially
since a recent report by [lias et al. (2002) on the complexity of cortisol seems to
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Cortizel

Figure 1: A schematic representation of feedforward feedback model of plasma
CRH, ACTH, and cortisol.

confirm that cortisol secretion operates under non-regular dynamics. Its fractal
dimension after sleep deprivation {a weakened state) is lower than that measured
before sleep deprivation (healthier state). In the past, basal cortisol secretion has
been proposed to arise via linear mechanisms. Then, in 1991 Lenbury and Pacheen-
burawana presented a mathematical model in which cortisol secretion was described
by nonlinear differential equations with exponential feedback terms. However, Hlias
et al. (2002) were the first, to our knowledge, to utilize nonlinear/fractal analy-
sis in the experimental study of the complex mechanisms underlying the circadian
secretion of cortisol.

Complexity and nonlinear methods have become one of the most versatile and
promising new research tools for the study and characterization of circadian rhyth-
micity in humans. Episodic secretion of cortisol has been clinically observed and
reported in several research works (Carnes et al., 1991; Carnes et al., 1989; Krieger
et al., 1971; Weitzman et al., 1971) as early as that of Weitzman et al. (1971) which
reported on twenty-four hour patterns of episodic cortisol secretion in normal sub-
jects. Their data seriously challenged the concept that a “steady state” or “basal
level” of cortisol is present during any extended time compartment of the 24-hour
cycle. In a different report in the same year, Krieger et al. (1971) attempted to
delineate more precisely the time course of adrenal secretory activity in the normal
human and patients with Cushing’s syndrome. Later, Moore-Ede et al. (1983)
pointed out several advances in characterization of the properties of hypothalamic
circadian pacemakers and the implications of such rhythmicity for medical diagno-
sis. It was not until very recently, however, that an attempt was made by Ilias et
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al. (2002) to use mathematical methods based on nonlinear/fractal analysis in the
experimental study of the underlying complex mechanisms. Their conclusion, that
post-sleep deprivation changes the fractal dimensions of cortisol, supports Lenbury
and Pacheenburawana’s (1991) suggestion that nonlinear dynamics analysis may
be a viable tool in our attempts to delineate pulsatile secretory patterns in health
and disease.

Lenbury and Pacheenburawana’s (1991} nonlinear model did not, however, ac-
count for the delays associated with the time interval needed before an action in
response to the stimulating signal can be taken by the release of the appropri-
ate hormones. Several studies have presented clinical evidence of such delayed
responses in the hypothalamus-pituitary-adrenal cortex (Norman, 1997; Posener et
al., 1997; Won et al., 1986). Specifically, Posener et al. reported in 1997 that cor-
tisol exerted a feedback effect by significantly decreasing plasma ACTH levels with
a time delay of approximately 60 min. An earlier study by Hermus et al. (1984)
reported a 30 min. delay in the positive feedforward effects of CRH on plasma
ACTH levels, the increase of which was followed by a rise in the cortisol level with
time delay of an extra 30 minutes.

To our knowledge, mathematical modelling and analysis of hormonal secretion
systems with delays have up to date been the subject of few published reports
in humans. In 2001, Keenan ef al. presented a biostatistical model which incor-
porated expected within axis physiological linkages via time-delayed, nonlinear,
dose-responsive, rate-sensitive, and integral feedforward and feedback controls. Al-
though the model appeared to generate realistic pulsatile secretory patterns, it
contributed little towards the illumination of the underlying mechanism of the se-
cretion network or the crucial role which the delayed responses might play in this
important, feedback controlled system. Because of its nonlinear structure, the in-
troduction of a time delay in feedback loops can alter the stability and dynamic
properties of the hormonal cascade yielding insightful clinical implications.

We propose, therefore, to incorporate such time delays into the earlier model by
Lenbury and Pacheenburawana {1991) and subsequently analyze the model by Hopf
bifurcation in order to find the eritical time delay, beyond which the model system
may exhibit periodic dynamics. With the set of parameters appropriately chosen
through such analysis, we shall construct a bifurcation diagram in order to identify
the ranges of the system’s parametric values for which chaotic secretory patterns are
permitted by our time-delay differential equation model. The simulated solution in
such a case appears to compare well with clinical data which consistently showed
multifactorical frequency structure (Carnes et ol., 1991).

2 A Feedforward-Feedback Delay Model

In formulating our mathematical model of the negative feedback regulation of cor-
tisol secretion, the following events are considered. CRH (R) is secreted from the
hypothalamus and stimulates the secretion of ACTH (A4) from the anterior pitu-
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itary with a delay of 71 in time. ACTH then stimulates the cortisol (C) secretion
from the adrenal gland with the same time delay 7 as that in the short loop feed-
forward effect of CRH on ACTH secretion. Thus, we assume equal delays in both
short feedforward loops in the cascade, following the clinical evidence reported by
Hermus et el. (1984) mentioned above. We also take into account the negative
feedback effects of cortisol on ACTH, incorporating a time delay of 7, supported
by the clinical evidence already mentioned above (Moore-Ede et al., 1983). The
investigation by Posener et al. (1998} also utilized a covariance analysis which
suggested that the inhibition effects of ACTH on CRH were not due to the rise in
cortisol caused by the rise in ACTH itself. Thus, we shall ignore the long-loop neg-
ative feedback effect of cortisol on CRH and only consider the short-loop feedback
effect of ACTH on CRH not mediated by cortisol, which is then assumed to occur
with a delay time of 7 as well.

These assumptions on delay are made here in order to carry out a theoretical
analysis to investigate the stability and the possibility of periodic solutions of the
system comparable to clinically observed behavior. In the later section, the time
lags in the feedforward or feedback loops are allowed to be different in our numerical
experiment to investigate the possibility of chaotic dynamics

In 1986, Won et el. investigated the mechanisms responsible for glucocorticoid
feedback on nonstress induced ACTH secretion in normal subjects and reported a
linear relationship between the degree of inhibition of ACTH (AACTH) levels after
cortisol administration. The degree of inhibition was measured as the reduction
in ACTH as percentages of the mean baseline level. They found that “A linear
correlation between the degree of inhibition of ACTH level and the corresponding
cortisol concentrations does exist at 60 min. after administration (r = 0.95, P <
0.05)”. From such clinical evidence, we see that the specific rate of change of ACTH
at time ¢, A;, due to the negative feedback effect of high cortisol concentration at
time t — 13, C(t — 72), may be described by the following equation

14d

— Ay = —kC{t— T 2.1

A, dC(t—m) " (#=m) @1)
where k is some positive constant of variation. Integrating (2.1) yields kye”(Cs ~C*{t=r2))
for the rate A;, where v = % and ky corresponds to the rate A, when C = Cj.

Thus, Cy is the eritical value of A, which means that if C falls below Cq then the
secretion rate of A should rise above k;. I C rises above Cp, on the other hand,
the secretion rate of A should be reduced in magnitude below ks, with a time de-
lay of 7. Similar arguments can be applied to the rate of change R;. However,
the rate of change of ACTH should also vary in direct proportion to plasma CRH
concentration at time § — 1, R(t — 1y). This concentration-dependent effects of
CRH on ACTH was investigated by Engler et al. (1999), who reported clinical
data showing ACTH release (not its level) increasing exponentially as the log of

-CRI. This means, in fact, that ACTH secretion rate may be assumed to depend

in a linear fashion on CRH level, at least to the first order. It is reasonable to
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also assume the same linear dependence between the secretion rate of cortisol and
ACTH level. Therefore, the three component hormonal cascade can be described
by the following system of nonlinear differential equations:

dii—t) = ~8,R(t) + kyett A5 A2 t=2) (2.2)
d—figﬁ = —82A(t) + ko R(t — 7y)e(C=C =T (23)
%L’ = —5;0() + ks Alt — 1) (2.4)

where R(t) is the concentration of CRH at any time t; A(t) and C(t) are the
concentrations of ACTH and cortisol, respectively, above their respective residual
levels, while ki, k2, and ka the respective secretion rate constants of R, 4, and C,
while & and 7 are the feedback potency constants. d;,d2, and §; are the removal
rates of R, A, and O, respectively. It is assumed that each of these hormones is
cleared from the blood stream according to the first-order kinetics. In order to
arrive at the above mathematically tractable model, we have assumed that the
stimulating /inhibitory effects of other known factors are relatively weak and thus
negligible. More detail of the derivation of the model can been seen in the paper
by Lenbury and Pacheenburawana {1991).
We associate the initial values of the form:

R(t) = qbl (t) for -7 S t S 0,
C(t)y=¢2(t) for —7m <t<0, .
A(t) = #3(t) for -1 <t <0, (2.5)

where 73 = maz(r, 72), ¢; € C([-7,0],R") and ¢;{0) >0, i=1,2,3.

We now introduce dimensionless variables by letting z = %, y = f‘;, z =
_CC_;? Kl = %]g: K2 = %Rﬂa 161 = aA%, ,82 = IYng and K3 = %%AD, where ROyAﬂr
and Co are the critical values of R, 4, and C, respectively. We are then led to

B(t) = —8,3(t) + K (-’ (t-m2) (2.6)
(1) = ~boy(t) + Kozt — mp )el2 07 (t=m2)) (2.7)
2(t) = —d32(8) + Kay(t — m). (2.8)

So that the steady state values of R, A, and C are Ry, Ag, and Cy, respectively,
at which point the 3 state variables should be stationary, we see that we need to
put Ky = &, Ky = &, and K; = §; in (2.6)-(2.8). We also note further that a
and v represent, the strength of the negative feedback effect of ACTH on CRH and
that of cortisol on ACTH, respectively. Since ACTH and cortisol are secreted at
noticeably different orders of magnitude o and 4 may be different. However, after

s e

-



aim

"

184 / Appendix # 1.6

A delay-differential equation model of the feedback-controlled hypothalamus-pituitary-adrenal cortex?

rescaling by Ao and Cp, the corresponding feedback potency constant 8 should
be comparable to 8. Therefore to carry out our bifurcation analysis, we first put
8 = B = B2, but will allow them to be different in our later investigation. We now
arrive at the following core model equations:

#(t) = —8,2(t) + 70~V (t-m2)) _ (2.9)
§(t) = —ay(t) + Spm(t — 1 )eB1—2"(1—72]) (2.10)
£(t) = —d32(t) + day(t — ). (2.11)

3 Bifurcation Analysis

The model system (2.9)-(2.11) has one positive steady state (zo, %o, 2z0), that is,

(5'50:1!0, zo) = (]-s 17 1)'
Letting X =2 —x9, ¥ =y — 30, and Z = z — 25, we are led to the following
linearized system of (2.9)-(2.11) at (zo, yo, 20)-

X —8 =286 0 X
Y| = |6 —35 =287 [ | ¥V (3.21)
zZ o 636—)”1 —d3 VA

The associated characteristic equation of the model system (2.9)-(2.11) is then

FO) =X +a)? + bA+c+ (did + dp)e M+ = (3.13)
where
a=08 +08,+68 (3.14)
b= 8165 + 6183 + 0283 (3.15)
¢ = 618255 (3.16)
di = 2865 [6, + &) (3.17)
da = 4/36,6083 (3.18)

using the steady state relations that & = § = # = 0 at the point (z,y,2) =(1,1,1).
We let 7 = 7, 4+ 72 be the composite lag-time and first consider equation {3.13)
when 7 = (. That is,

NaaX+(b+d)A+ (c+dx) =0. (3.19)

Using (3.14)-(3.18), it is easily shown that 2 > 0, ¢+d> > 0, and a(b+d;) —c—
ds > 0, for all positive parametric values. Thus, by the Routh-Hurwitz condition,
all roots of equation (3.19) have negative real parts. Therefore, the steady state
(1,1,1) is stable when 7 = 0.
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If we let A(7) = a{7) + tw(7), where @ and w are real, then we have a(0) < 0,
by the above reason. By continuity, we know that a(r) < 0 for positive value of 7
which is sufficiently small. Thus, the steady state shall remain stable for values of
T such that 0 € 7 < 1 for some 75 > 0.

Suppose a(m) = 0 for some 75 > 0, and a(7) < 0 for 0 < 7 < 74, then the
stability of (1,1,1) is lost at 7 = 7y, at which point A = iw(rg).

Now, iw is a root of (3.13) iff

3

—iw® — aw?® 4 ibw + ¢ + (idiw + da)(coswT — isinwr) = 0. (3.20)

Equating real and imaginary parts of both sides of {3.20), we obtain
~w® + b + dyweoswT — dysinwT =0 (3.21)

—aw® + ¢ + dywsinwr + dycoswr = 0. (3.22)

Adding up the squares of {3.21) and (3.22), one obtains

Flw) = w® + (a® — 20)w* + (B2 — 2ac — d)w? + ¢ — d2 = 0. (3.23)

If we let s = w?, p=a? - 2b, g =8 — 2ac -~ d}, and » = ¢? — d2, then equation
{3.23) becomes

h(s) =8 +ps® +gs+7r=0. (2.24)

We can consequently write down the following result.

Lemma 1. Suppose s; = M.

3

(i) Equation (3.24) has a positive root if either

(a) r<0 (3.25)
or

(b) r >0, (3.26)

P’ —3¢>0, (3.27)

81> 0, (3.28)

and  h(s;) <0. (3.29)

(ii} Equation (3.24) has no positive real roots if
r>0
and p*—-3¢<0.



e

(=

W

n

~ 186 / Appendix # 1.6

A delay-differential equation model of the feedback-controlled hypothalamus-pituitary-adrenal cortex9

Proof,

(i) Suppose r < 0, then h(0) < 0. Since lim,,oh(s) = oo, equation
(3.24} must have a positive root where h = 0, by the intermediate value
theorem. Suppose 7 > 0, on the other hand, and p? — 3¢ > 0, then

s = _—pﬂ@ is the stationary point of i(s} located on the positive

z—axis if sy > 0. Thus, if k(s;) < 0 while A{0) = r > 0, by the

intermediate value theorem, h must vanish somewhere between 0 and

51,

(ii) If » > O while A’'(s) > 0, h is then an increasing function and does not
vanish anywhere along the positive z—axis a.

I conditions in Lemma 1(ii) hold, then all roots of the characteristic equation
{3.13) have negative real parts for all 7 > 0. Thus, the steady state (1,1,1) is
always stable in this case.

If, on the other hand, conditions in Lemma 1(i) hold, then equation (3.24) has
a positive root. Without loss of generality, we may denote the three positive roots
of (3.24) by s;, 82, and s3. Then, equation (3.23) has three positive roots

wr =5, k=1,2,3.
Now, let 15 > 0 be the smallest of such 7 for which a(7) = 0. Substituting w

into equations (3.21)-(3.22) and solving for 7, one obtains

(ad) — d2)w} + (bds — cdy )ws N 2r( — 1)

¥ = — aresi 3.30
™ o aresin| BT ] ™ (3.30)
where k= 1,2,3,and j =1,2, ...
Thus,
=70 = min {T(j)} (3.31)
0~ The 1<k<d, g1 L8
and
Wo = Wy (3.32)

Now, for our model system (2.9)-(2.11), the following result can be shown.

Lemma 2. 51 < 0if

5262 + 8262 + 6262
= 3.33
ﬁ < ﬂO \/ 453(51 +(53)2 ( 3 )
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Proof. From (3.14)-(3.17), we find that
q = 8303 + 8763 + 8583 — 48785 (61 + &)°
which is positive if (3.33) holds. We will then have
| P -3¢ <y’

and
p =062 +485+42>0.
Hence,

S Bl ks Y

51 3

We now make the claim that iy is a simple root of equation (3.13), provided
(3.33) holds.

Lemma 3. If (3.33) holds, then
dF . ‘
a(%wo) #0

Proof. Suppose, by contradiction, that %‘;(iwg) = 0, while F(iwg) = 0, then after
some lengthy manipulations, it can be shown that

d
af {wo) =0
However, '
d] dh
E‘Z—J(wo) = 2w0§(30)

where so = wg. Since wy > 0, we would have %(so) = 0 also. However, the
solution of h'(sq) = 0 would be

1
sp = g[—p:!: \/p2—3q] = 51.

But, 8; < 0 when {3.33) is satisfied, by Lemma 2. This would mean that sq < 0
which contradicts its definition. Therefore, h'(ss) # 0 and so ‘;—f(z’wo) # 0 as
claimed

This then leads us to conclude that iwp is a simple root of equation {3.13) which
implies that
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d

B;Re AlT) . #0. {3.34)
Thus, the steady state (1,1,1,) shall lose its stability and Hopf bifurcation will
occur as 7 increases past the critical value 7y, provided the conditions in Lemma
1(ia) and (3.33) are satisfied.

Summarizing the above analysis, we have the following theorem.

Theorem 1. For the composite lag-time 7 = 1, + 73, let the critical composite
lag-time 7 be defined as in (3.31), then the system of delay differential equations
(2.9)-(2.11) exhibits the Hopf bifurcation at (zo,0,20) = (1,1,1) if 1 < 8 < fy,
when B is as defined in (3.33). That is, there exists ¢ > 0 such that the system
(2.9)-(2.11) will have periodic solutions for 7 € (19, 79 + €).

Proof. it remains only to note that if g > % then, considering equations (3.16)
and (3.18), we would have r < 0 which is condition {ia) in Lemma 1. Thus, the
condition B > } ensures that there is a 75 > 0 such that the steady-state (1,1,1)
loses its stability at the point T = 7y. The condition 5 < fy, by Lemma 2, ensures
that (3.34), which is a necessary condition for Hopf bifurcation, is satisfied 0.

4 Numerical Results

Fig. 2 shows a computer simulation of equations {2.9)-(2.11) with parametric
values chosen to satisfy the requirements for Hopf bifurcation set out in the previous
section (Theorem 1}. The solution trajectory, projected onto the (y,z) plane, tends
to a limit cycle as theoretically predicted. The corresponding time courses of CRH
and ACTH are shown respectively in Fig. 2b) and 2¢} where they become periodic
as time passes.

Since there has been evidence (Carnes et al., 1991; Carnes et al., 1989; llias
et al., 2002; Krieger et al,, 1971) of low-dimensional chaos in pulsatile secretion
of plasma adrenocorticotropin mentioned in the introduction, we carried out a
numerical investigation to discover whether chaotic behavior may occur in our
delay feedback controlled model of the hormonal secretion cascade. To this end,
a bifurcation diagram was constructed by using parametric values that would lead
to cycling in the three state variables, guided by our work in the previous section.
Then the system of equations {2.6)-(2.8) was allowed to run for 105 time steps. We
retained only the last 2x10% time steps to eliminate transient behavior, using values
of B, between 3.75245 and 3.7538 and changing 8- in steps of 107%. The relative
maximum values of £ (CRH) were collected during the last 2x10¢ time steps and
plotted as a function of 3, as shown in Fig. 3.

We discover in this bifurcation diagram a period doubling route to chaotic
dynamics which can be expected for values of 5z beyond 3.7532. We observe that
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Figure 2: Computer simulation of equation (2.9}-(2.11) with & = 0.5,0; =
0.38,83 = 0.6,5=1.091,75 =122, = 0.5 and = = 0.77.

periodic orbits can be found for values of 82 in the range 0.26 < B2 < 3.7528
suggesting that chaotic mode of secretion is adopted when the negative feedback
effects are relatively strong. When the feedback signals are weak, a more regular
episodic secretory patterns are exhibited.

Fig. 4 shows a computer simulation of the model system (2.6)-(2.8) using the
parametric values in the chaotic range, with 53 = 3.75346. The strange attractor is
seen in Fig. 4a) projected onto the (y,z)-plane, while the corresponding time series
of CRH (z), ACTH (y), and cortisol {z) are shown in Fig. 4b)-4d), respectively.

Characteristic of such chaotic dynamics is the sensitivity to initial conditions.
We illustrate this sensitivity by simulating our model system, using the parametric
values in the chaotic range employed in Fig. 4, starting from two initial conditions
which are different only by 107 in z(0), while y(0) and 2z(0) are the same in the
two simulations. The two time courses follow the same path only for a short time
initially, but diverge to drastically different paths as time progresses as seen in
Fig. 5. This clearly demonstrates the sensitivity to initial conditions of the system
under nonlinear dynamics which, for this reason, makes any attempts at system
control an extremely difficult task to tackle.

L3
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Figure 3: Bifurcation diagram of eguations (2.6)-(2.8) with §; = 047,86, =
0.401,6; = 0.422, K7 = 0477, K, = 0422, K; = 0.411,4 = 0.001,7 = 0.522,
. and 7 = 10.

5 Discussion and Conclusion

We present in Fig. 6a) some clinical data partly adapted from the report by Engler
et al. {1999) on the review of the evidence for the existence of inhibitory as well
as stimulatory hypophysiotropic regulation of adrenocorticotropin secretion and
biosynthesis. The figure shows pituitary venous concentrations of CRH in two
mares given naloxone at a low dose rate at the arrow. In Fig. 6b), actual data of
i plasma ACTH concentration in a rat sampled every 2 min. is shown, taken from
Carnes et al.’s (1989) earlier work. The time series exhibits irregular characteristics
in agreement with those simulated from our model, an example of which is shown
in Fig. 4, where we need to recall that the state variables z,y, and 2z plotted in

Fig. 4 are ratios of the three hormones over their respective critical levels.
However, there are at least three factors that complicate the interpretation,
if not the measurement, of CRH concentration, as cautioned by David N. Orths
(1992) in his work on CRH in humans. First, like other hypothalamic releasing
factors, the concentration of CRH, presumed to be present in the hypothalamic
hypophysial portal venous blood, is hugely diluted by the time it reaches the pe-
ripheral veins. Secondly, CRH is produced and presumably secreted by many
extrahypothalamic tissues, even though we have assumed this to be of relatively
small and thus negligible amount in our mode]. Finally, there are specific high-
affinity, high-capacity CRH-binding proteins present in human plasma. Thus, even



191 / Appendix # 1.6

14 Y. LENBURY ET AL.

1.00850

1.80000 —— e

1.007s50 —

1.00700 —

_
1.00z220
g

1.00143 —

1.00055 —

0.sPe68 —

o .asan —

L= -] = hr g =k |
3. 7?5245 B3 .TEZTS A.7S5313 F.75346 3.75380

i

i

Figure 4: Computer simulation of equations {2.6)-(2.8) with &, .= 0.47,42
0.401,6; = 0422 K, = 047T,K» = 0422, K; = 0411,8 = 0.001, 3,
3.75346, 1y = 0.522, and T = 10.

though it is possible to measure immunoreactive CRH in peripheral plasma, the
absoclute peripheral plasma CRH concentration at any moment may not accurately
reflect hypothalamic CRH secretion, and thus should be considered with caution.

ACTH measurement also poses problems associated with its bioassays at low
plasma concentration. Detection of primary abnormal functioning at the pituitary
level is made easier only by the availability of the releasing hormones that make
evocater tests possible. In cases of inadequate availability of a pituitary hormone,
such as ACTH supply, the target gland hormone {cortisol) is supplied instead
(Norman & Litwack, 1997).

In spite of such cautionary notes, our model still provides a viable means by
which the complexity and non-linear dynamics of diurnal hormone secretory pat-
terns can be analyzed and qualitative description can be made of this complex delay
feedback controlled systems. Our analysis yielded, for each set of physical param-
eters, a critical composite time delay 7y bevond which value the system exhibits
episodic secretory pattern if 3 > % As the feedback response factor 7 increases fur-
ther, more irregular secretory patterns may be expected. Low dimensional chaotic
dynamics would appear if #2 increased beyond a certain critical value 5. identified
in the bifurcation diagram. This seems to suggest, considering Ilias e al’s (2002)
result from their nonlinear analysis of cortisol secretory patterns before and after
sleep deprivation, that if the negative feedback effects are too weak, a diseased state
is the reasonable diagnosis which then corresponds to the more regular secretory
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Figure 5: Divergence of time courses, when 8; = 3.75346 in the chaotic range,
initiating from two different initial conditions only by 10~° in the initial value of
z.

patterns. A relatively strong negative feedback mechanism for larger 8 leads to
a more irregular pattern characteristic of a higher dimensional chaotic dynamics
associated then with health. When j, increases further, becoming greater than
approximately 3.87549, the feedback mechanism is now faulty and the system re-
turns to more regular periodic behavior which appears to be the mode of secretion
in a diseased state.

Also, there is a critical composite time-delay 7y below which all state variables
tend asymptotically to the respective steady-state levels as t — oo. We observe
that it is the value of the composite time-delay  which delineates different dynamic
behavior in the Hopf bifurcation analysis, not each of the feedforward delay n
or the feedback delay 75 in our model. We may deduce from this that, in the
human body, the feedforward and feedback response processes may be operating
in a complimentary fashion. In health, an over zealous response in the feedforward
loop can be compensated for by a late response in the feedback loop, and vise versa,
resulting in an optimal turn-around time for all components in the whole cascade.
When this complimentary mechanism is not functioning properly, a diseased state
may be expected. In Fig. 4, where the apparently irregular secretion pattern is
shown, comparable to the data presented in Fig. 6, the critical composite time-
delay is 75 = 0.522 in the unit in which ¢ is measured. We also observe that in
Fig. 6b) ACTH peaks approximately 3 times during a 4 hour period in a rat.
Comparing this with the corresponding simulated ACTH level in Fig. 4 where 3
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Figure 6: a) Pituitary venous concentrations of CRH in two mares (M, marel; o,
mare2) given naloxone (adapted from the work of Engler et al.’s (1999}). b) Plasma
ACTH concentration in a rat (taken from the work of Carnes et al’s (1989)).

peaks are observed in 100 units of time ¢, we may then scale accordingly by taking
t to be measured in the unit of 24 min., so that ¢ = 100 is equivalent to 4 hours.
Then, the critical composite time-delay may be estimated as

T & 0.522 x @ 2z 1.25 min.

100
in a rat, and the composite time-delay may be estimated as
240
~ 1 — = in.
T 0% 100 24 min

based on the parametric values used in the simulation shown in Fig. 4. Unfortu-
nately, similar estimates cannot be arrived at for humans, since frequent enough
hormone measurements cannot be made and less peaks may then appear in the
time series than there actually are. However, from the reports by Posener et al.
{1997) and Hermus et al. (1984) mentioned earlier, in humans the delay in the
short feedforward loop was observed to be around 30 min., while that in the short
feedback loop was around 60 min.

From the above observation, we are also led to conclude that the role of indi-
vidual time lag (m or 72) in each of the responsive mechanisms is apparently not
as significant to the well being of the cascade as the potency 8 of each feedback
responsive signal. As seen in the bifurcation diagram shown in Fig. 3, 85 was found
to be the bifurcation parameter which delineates different dynamical behavior and
identifies the interfaces between sickness and health.

Although more intensive experimental/theoretical studies are necessary before
definite conclusions can be made, such nonlinear approaches promise to offer sig-
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nificant contributions in our attempts to give a more qualitative description of the
diurnal variations of hormone secretion in order to better understand the dynamic
interfaces among different pathological situations.
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