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Abstract: Many endocrine systems have been found to incorporate some form of cascade
mechanism into their operation. Such a mechanism involves an amplification system where
an initial reaction gives rise to the generation of multiple second reactions, each of which sets
off multiple third reactions, and so on. Examples will be presented, with special attention
paid to the hypothalamus—pituitary—testicular axis. The production and secretion of luteiniz-
ing hormone (LLH) is governed by the medial-basal region of the hypothalamus. It is well
known that the release of LH is a highly regulated process determined by negative and posi-
tive feedback, as well as neural components. The presence of gonadatropin-releasing hor-
mone {GnRH)} on specific adenohypophyseal cell membrane receptors results in the release
of LH, which is then transported systemically to the Leydig cells of the testes. All the factors
governing the release of these hormones, as well as a biochemical description of their actions,
have not been completely elucidated, nor is the mechanism behind the pulsatile fashion in
which the decapeptide GnRH and LH are released clearly explained. We describe how such
a cascade mechanism in a self-regulatory system may be modeled and analyzed by a singu-
lar perturbation approach, identifying conditions that give rise to episodic hormone secretion
or activity. Insightful and valuable interpretations can be made from such analysis of the cas-
cade system.

INTRODUCTION

In recent years, there has been a great surge of interest in the study of how information is represented
and transmitted in biological systems, specifically in the new field of bioinformatics. In nerve cells,
information is transmitted through electrical impulses, which are sometimes generated as high-fre-
quency bursts, followed by periods of quiescence. These impulses also cause muscles to contract and
endocrine cells to secrete hormones. Quite often, bursting or episodic activities are observed in biolog-
ical systems, particularly in endocrine cells. Attempts to model and simulate such mechanisms most fre-
guently lead to nonlinear differential equations. This presents us with quite a challenge to develop non-
linear systems theory and analytical techniques to qualitatively and quantitatively unravel the intrinsic
mechanisms that generate such behavior in these complex systems.

The study of endrocrinology ovet the past century has been mainly dependent upon the scientific
methodologies available to probe the various endocrine systems. Thus, endocrinology has developed
from being largely pursued at the physiological level into a biochemical era, which began in approxi-
mately 1955-1960 [1] and extends to the present time. Advances in chemical methodology, such as
chromatography, mass spectrometry, nuclear magnetic resonance spectroscopy (NMR), and X-ray crys-
tallography, have and continue to permit the detection and chemical characterization of minute quanti-
ties {(nanograms or picograms) of new hormones and the characterization of the many receptors.

*Plenary lecture presented at the International Conference on Bioinformatics 2002: North-South Networking, Bangkek,
Thailand, 6-8 February 2002. Other presentations are presented in this issue, pp. 881-914.
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With the invention of scanning electron microscopes and confocal microscopy, which allows real-
time imaging of living cells, the science of endocrinology is advancing rapidly. Scientists have been
busily active in categorizing and defining the scope of influence and molecular mode of action of dif-
ferent hormones, as well as the mechanisms in their secretion.

Many endocrine systems incorporate some form of cascade mechanism into their operation [1].
A system with a cascade mechanism is an amplification process where an initial reaction results in the
generation of multiple second reactions, each of which sets off multiple third reactions, and sc on.

In this paper, we first discuss two examples of such cascade systems and explain how modeling
and analysis of the system may be carried out based on singular perturbation principles. The method
utilizes simple geometric arguments based on the assumption of highly diversified dynamics inherent
to the cascade system. Application of the technique is done on the hypothalamus—pituitary—testicular
axis involved in the biosynthesis and secretion of testosterone in response to blood levels of luleinizing
hormone (LH). Episodic release of LH ts triggered by the presence of the gonadotropin-releasing hor-
mone (GuRH]}, secreted from the hypothalamus in a pulsatile fashion [1,2], which we attempt to explain
through modeling and analysis. The analysis will then be extended to encompass higher-dimensional
systems, which involve a multitude of compornents or species,

CASCADE HORMONE SYSTEMS

In the following, we describe two examples of systems with cascade mechanism. One classical bio-
chemical cascade mechanism, at the cellular and molecular level, is generated by the action of a hormone,
such as the action of glucagon at the cell membrane to produce an increase in cyclic AMP. Figure 1 shows
a schematic description of a mechanism leading from the celi surface hormonal signal to the cellutar
metabolic response: glucagon and glycogenolysis. The cascade may be visualized in terms of alter-
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Fig. 1 A schematic description of a mechanism leading from the cell surface hormonal signal 1o the cellular
metabolic response: glucagon and glycogenolysis,

© 2002 IUPAC, Pure and Applied Chemistry 74, 881-890



198 / Appendix # 1.7

Cascade mechanism in a self-regulatory endocrine system 883

ations of cellular response, stimulation of glycogenolysis to generate glucose for export to the extra-
cellular space, and the general circulating system {11,

As so clearly elucidated by Norman and Litwack [1], the cascade begins with glucagon combin-
ing with its cell membrane receptor, marked (1) in Fig. 1. This then stimulates the activity of adenylate
cyclase, possibly mediated by a transducing element, on the cytoplasmic side of the membrane, marked
(2) in Fig. 1. As a result, the level of cyclic AMP increases, which activates a protein kinase (3), while
the protein kinase subunits catalyze the phosphorylation of inactive phosphorylase kinase in reaction
{5), as well as the active glycogen synthetase (4), to produce the phosphorylated inactive form, a step
marked {6) in Fig. 1. The resulting phosphorylated inactive form consequently stimulates glycogenol-
ysis in step (7} to form glucose 1-phosphate, which is further metabolized to glucose (8). Finally, glu-
cose is transported to the extracellular space and into the general circulation (9). More detailed discus-
sion of each step in the above-described cascade may be found in the work by Norman and Litwack [1].
The system is considered a cascade system due to the fact that each step following hormone binding is
mediated by an enzyme that can turn over multiple substrate molecules.

Another system, which also incorporates the cascade mechanism, involves the central nervous
system (CNS), the hypothalamus, pituitary, and the distal hormone secretion glands.

As explained by Norman and Litwack in their seminal work on hormones [1], the cascade effect
may be produced by a single event or signal in the external or internal environment. A signal can be
sent by either electrical or chemical transmission to the limbic system and then to the hypothalamus.
This results in the secretion of a releasing hormone into the closed portal system connecting the hypo-
thalamus and anterior pituitary shown in Fig. 2. It has been documented that releasing hormones may
be secreted in nanogram amounts and half-lives of about 3-7 min. The releasing hormone consequently
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Fig. 2 Diagram showing the cascade hormonal system, the hypothalamus-pituitary~testicular axis, on proceeding
down the cascade from the releasing hormone Lo the terminal hormone, there are increasing masses of the hormones
released.
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signals the release of the specific anterior pituitary hormones, which may be secreted in microgram
amounts with half-lives on the order of 20 min or longer. The anterior pituitary in turns signals the
release of the ultimate hormone, which may be secreted in many micrograms or milligram amounts and
can be quite stable.

Thus, amplification of a single event at the outset could prove to be a factor of thousands to a mil-
lionfold, as hormone stability and the amounts of hormones increase as we proceed down the cascade.

Three-component cascade system

Letting x(#), ¥(#), and z{r) represent the densities or levels of the three components at anytime ¢ in the
cascade system described above, their rates of production will form a model consisting of the follow-
ing system of differential equations

x=f(x,y.2) M
y=£g(x.%2) (2)
z=e8h(x.y,7) (3)

where £ and & are small positive parameters. Thus, when the quantities on the right sides of eqs. 1-3 are
finite and different from zero. || is of the order £ and || is of the order £ 8. Thus, x is assumed to pos-
sess the fastest dynamics, y an intermedtiate time response, while z possesses the slowest dynamics of
the three components.

It is well known that the system (1--3) with small € and & can be analyzed with the singular per-
turbation method [3], which under suitable regularity conditions, allows the approximation of the solu-
tion of the system (1-3) with a sequence of simple dynamic transitions occurring at different speeds.

Given an initial condition (xg, ¥, Zg), the slow z and intermediate (y) variables are frozen, and the
system will develop according to the “fast system™.

t
ed
Thus, x(7))eventually tends toward a stable equilibrium X(x,, yg, z) of the fast system. Then, as z is still
frozen at z;,, the transitions will develop at intermediate speed according to the “intermediate system”

x(1)) = fix(t),yp. 20l + T =

W15) = g7 x0. ¥ (T2l M T2 ze) + T =%

until an equilibrium ¥(x,, ¥, z,) of the intermediaie system is reached. A third transition then develops
at low speed along the curve f= g = 0 to end at an equilibrium or form a closed cycle, depending on the
stability properties of the three equilibrium manifolds f=0, g =0, and = 0.

The sequence of these transitions thus constructed then approximates the solution of the system,
in the sense that the real trajectory is contained in a tube around the traced transitions, and that the
radius of the tube goes to zero with £ and 8. More detail of the main aspects of the method can be found
in the work by Muratori and Rinaldi [3], while examples of applications to nonlinear systems in biol-
ogy and medicine are available in the works of Lenbury et al. [4,5].

Application in modeling pulsatile secretion of LH

The hypothalamus—pituitary—testicular axis is diagrammed schematically in Fig. 2. The release of LH
is a highly regulated process determined by (a) negative feedback, (b) positive feedback, and {c} neural
components.

© 2002 \UPAC, Pure and Applied Chemistry 74, 881-890
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Table 1 Relevant information on testosterone.

Biochemical aspects Data
Plasma concentration {ng/100 ml) 300-1100
Testes secretion rate 5000
Metabolic clearance rate (litre/day) 980
Site of production Leydig cells of testes
OH

Structure

0
Principal biological function Maintenance of functional male repro-

ductive system and secondary male
sex characteristics

The decapeptide GnRH is released from the hypothalamus in a pulsatile fashion with short
latency and initiates the episodic secretion of LH. The LH is then transported systemically to the Leydig
cells of the testes. LH-mediated stimulation of testosterone synthesis and sceretion by the Leydig cells
is initiatcd by the binding of LH to hormone-specific receptors on the outer membrancs of the Leydig
cell. The rate of biosynthesis and secretion of testosterone, whose structure is shown in Table 1, is pos-
itively correlated with the blood levels of LH, whilc the sceretion of the gonadotropin can be dimin-
ished by increasing blood concentrations of testosterone, which facilitates their binding to steroid recep-
tors in both the hypothalamus and pituitary. This is called “suppressive negative feedback”. The precise
details of the feedback mechanism in this self-regulatory system arc not yet clear. Nevertheless, close
study of the process has led Liu and Deng [6] to propose a model consisting of the following equations.

2
@z a +a2}§+a3R 5 -'flsR 4
dr 1+ayT+asT" +agR+aR
dL g + @ g R
&L 9 10 —a13L (5)
dt 1+a”T+a12R
dT gl + oy, L°
— =44 +a]5L+ 16 7 17 —'a?_zT (6)
dr 1+ ogl+aol” +@agRT +aa RLT

where R, L, and T are concentrations of GnRH, LH {above the basal level), and testosterone, respec-
tively. The first term in eq. 4 accounts for the autoregulatory effect of GnRH and T on GnRH secretion.

. The second term represents the removal of GnRH proportional to the amount present, and similarly for

all the last terms in eqs. 4-6.

The factor “10R in eq. 5 accounts for the stimulating effect of GnRH on the release of LH, while
ag accounts for the autonomous secretion of LH independent of GnRH. The term @, 5L in eq. 6 accounts
for the stimulating effect of LH on testosterone secretion, while a, is the secretion rate of T independ-
ent of LH. The factors in the denominators of the positive terms in the 3 equations account for autoreg-
ulation on the rates of secretion of all 3 hormones.

Taking into account the cascade effect of the system described earlier, we can assume that the
time responses of the three components in the above system are quite diversified, and scale the dynam-
ics of the cascade by means of two small dimensionless positive parameters € and & as follows, Letting

© 2002 IUPAC, Pure and Applied Chemistry 74, 881-890
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ay as il B &3 2|5 *g o7
=K, = ‘\‘::EST‘ = — =—, =—; =, == a =, = —=,
x=Ry=¢lL.z A4 = e A5 S ey AT e AR E T S s ST A T T A =
o3 X9 _ & o) N LFY) -
=—=2 g = —=, dyp = —==, doy = ——, and ayy =—2=, we are led to the following system.
ag - 19 22 20 =5 21 25 =75 g Sy
dx ay +arx +azx*
—_= 1 22 3 5 —dgx = f(_x,y,z) (7)
dt  1+agz+asz” +agx+ax
dy ag + q1pX
=gl ————q = gg(x.y.2) 8
dt []+a1;z+a|2x 13y 3%y ®
dz ey +aygy”
—=£8 ag +a15y+ 3 —ainl EE(S!’!(I,)’,Z) (9)
dt l+alsy+a19y +a20xz+a21xyz
We are able to show that the relative positions of the 3 equilibrium manifolds f=0, g = 0 and
h = 0 will be as depicted in Fig. 3 if the following conditions hold:
ag < ay (10)
agttg —a; <0 (11}
a5 ajy + a7 g +2a15 a9 > dy Ay (12)
2747 +4p3 < 0 (13)
43+ 2750 \ (14)
Y1 < ¥ @0d ¥y < ¥y (15)
where
2
s
=2 16
p=3 (16)
253
—_rp 17
q 77 (a7
agag —
s= 285 (18)
,.a-,-ag
f=_a (19)
20763
2
|
U=y ——-L (20)
23
C1Cy 2C1
V=Cq — —_— (21)
Y
o= fGelg —d3 22
azag
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¢y = B 4 (23)
ayag
a
c3=——1 (24)
a-,-ag

while y,, y, are the y-coordinates of the minimum and maximum points, respectively, on the f=g =0
curve, and y_, v, are those of the =k = 0 curve, as seen in Fig. 3. Specifically, inequality (15) is the
separation condition which ensures that the slow manifold & = O separates the two stable branches of
the curve f= g = 0 for y in a certain interval containing the point where f= g =h = 0.

- The system, initially at a generic point, say point A of Fig. 3, will make a fast O(1)} transition,
indicated by three arrows, to the stable portion of the slow manifold f= 0 (point B in Fig. 3). As point
B is approached, y has slowly become active. An O(g) transition at intermediate speed, indicated by two
arrows, is made along f= 0 in the direction of decreasing y, since g > 0 here, to point C on the stable
part of the curve f= g = (. From point C, a stow O(&d) transition, indicated by a single arrow, is then
made along this curve in the direction of increasing z, since 4 > 0 here below the surface = 0.

Once point D is reached, the stability of the manifold is lost. The (1) time-scale becomes dom-
inant once again. Hence, the orbit follows a path close to the curve y = constant, z = constant, at high
speed, bringing the system to point E on the other stable branch of the manifold f= 0. This is followed
by a motion at intermediate speed on f= 0 to peint F on the curve f = g = 0 Consequently, the system
will stowly develop along this line in the direction of decreasing z, since 4 is now negative.

At point G on this curve, the stability will again be lost and a fast transition will bring the sys-
tem back to point H on the stable portion of f= 0, followed by a motion at intermediate speed to point
I on the curve f = g = 0, before repeating the same previously described path, thereby forming a closed
cycle IDEFGHI. Thus, the existence of a limit cycle in the system for £ and § sufficiently small is
assured. The exact solution trajectory of the system will be contained in a tube about this closed curve,
the radius of which tends to zero with £ and 6.

Fig. 3 Shapes and relalive positions of the equilibrium manifolds in the case where a limit cycle exists. Here, three
arrows indicate fast transitions, two arrows indicate transitions at intermediate speed, and a single arrow indicates
slow transitions.

© 2002 IUPAC, Pure and Applied Chemisiry 74, B81-890



203 / Appendix #1.7

888 T. DUMRONGPOKAPHAN AND Y. LENBURY

A computer simulation of eqs. 7-9 is presented in Fig. 4 with parametric values chosen to sat-
isfy the inequalities (10-15). The solution trajectory, projected onto the (y, x)-plane, is seen in Fig. 4a
to tend to a limit cycle as theoretically predicted. The corresponding periodic time series of LH is shown
in Fig. 4b.

“
WOV TV
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Fig. 4 A computer simulation of the model system of eqs. 7-9 with parametric values chosen to satisfy the conditions
identified in the text for which periodic solutions exist. The solution trajectory, projected onto the (v,x)-plane,
is seen in (a) to tend toward a stable limit cycle as theoretically predicted. The corresponding time series of
GnRH (x) and LH (y) are shown in (b). Here, £ = 08. 6 = 0.05, a;, = 0.2, @, = 0.1, a3 = 3, g4 = 0.1,
as = 0.01, ag = 05, a;= 2, ag = 0.5, ag = 0.05. a;5= 135, ap = 1.0, a;, = 0.2, aq= 0.01, = 0.2, a5 =0.1,
a;6=01,a7;=01,a3=02,0q3=02,0a5,=0.1,a,; =01, and ay, = 0.1.

Extension to higher-dimensional systems

In order to extend the above concept to higher dimensional systems, let us consider a system of n + 3
differential equations which may be written in the form

© 2002 IUPAC, Pure and Applied Chemistry 74, 881-890
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i=ﬁ'(xa)’;2aw2a) ’ R o (25)
v=¢€G(x,y,7,w; ) o - ' {26)
y =86 Hix,y,z.w;0x) - 27
w=gén K{x,y,2,w;0) (28)

whe}re £, 8, and 1 are small positive constants, oe RN is the N-dimensional vector of system parameters,
X
while | y |e %> and
oy
W
w= :2 e RV
W

n

are the n + 3 state variables, and

[ A Ax,y.2,wicx)
Kyx,y, 7w
. K=| Axy )
| Ay(x, 5,2, W 00)
¢ . Hence, x is the fast variable, y the intermediate, z the slow, and w,i=1,2, .., n, the very slow com-

ponents of the system. . :
Employing the same line of arguments as above, we first assume that w is varying extremely
s slowly in comparison to the first three components x, y, and z. Then, we may initially assume that w is
kept frozen at a constant value w(0) while x, y, and z vary according to the three-dimensional system

§=£Glxy, L w0l =Eg(x,7.2) G30)

- y= €06 Hlx, v, 7, w(0)ae] = g8 h(x,v,2) 3D

Thus, if, for suitable parametric values ¢, the relative positions of the three equilibrivm manifolds
of the system (29-31) are the same as those three shown in Fig. 3, then trajectories will develop as
described earlier. However, as w varies with time, though very slowly, the shapes and positions of the

! three manifolds shift slowly as time passes. The coordinates of the points m, M, and O are, in this case,
. [xm(w;a),ym(w;a),zm(w;a)], [xpg w5 0, yp(ws 00,z (Wi )], and [x(w; 00,y (w; 00,z (w,00)] respectively,
since F, GG, and H are all functions of w.
" Moreover, if we further assume that each of the equations

Kz, y,zw,)=0, i=12,...n, (32)
can be solved for z as an explicit function of the other components:

1=Z(xy.wie), i=12...n, (33)

© 2Q02 IUPAC, Pure and Applied Chemistry 74, 881-890
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then separation conditions are needed to ensure that the mamfold H =0, as well as those described by
the equations in (33) are positioned in between the two stable branches of the curve F = G = 0, in order
that a limit cycle exists. These conditions are stated in the following theorem, under all the assumptions
mentioned above.

Theorem: Suppose that the functions F(x, y, z, w;0), G(x, ¥, z, w;t0), H(x, y, z. w; @), and K(x, y,
z, w; @), are continuous, and that the functions xy,(w; 00,5, (w;®), X (W;0),2,(wW;0Q), Xo(w;00,20(w;0),
and Z, i =1, 2, ..., 1, are continuous and bounded. If, for some permissible value of &, and each fixed
value of w, there exists a unique equilibrium point O, where F = G = H =0, and K = 0, such that

sup X, (Wi ) < inf xg (w; o) 34)
W w

supxp{w; 00} < inf xpg (w; ) (35)
w w

Sup zp, (w;ct) <mininf Z; (36)
w P4

maxsup Z; < inf Zyy(w;0r) 37

i A w

where the supremum and infemum of Z, are taken over its domain A; which is a subset of R™2 then a
limit cycle exists for the system of eqs. 25-28, provided that &, 8, and 7, are sufficiently small.

CONCLUSION

Analysis of a self-regulatory endocrine system that incorporates a cascade mechanism has been eluci-
dated through modeling and arguments based on the singular perturbation principles that have exploited
the highly diversified dynamics of the cascade system. The method decomposes the system into fast,
intermediate, and slow components. The slow-motion trajectories lie on the equilibrium manifold of the
fast component. The existence of limit cycles characterized by fast transitions between stable equilib-
ria gives rise to periodic solutions. Thus, the temporal secretion patterns often observed in clinical data
[1,2] appear to be the effect of the inherent cascade mechanism combined with the mixture of negative
and positive feedback autoregulation process, giving rise to a natural frequency in the pulsatile mode of
secretion. When this is interfered with by signals from the neural components or other external factors,
irregular secretion patterns may result which have been frequently observed clinically [1,2].

The above analysis provides an example of how episodic activities in a cascade system may be
modeled and explained. The technique has then been extended to higher-dimensional systems in order
to be capable of coping with multiple-component cascades.
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One-compartment, mathematical models for pressure controlled ventilation, incorporating volume
dependent compliances, linear and nonlinear resistances, are constructed and compared with data obtained
from healthy and (oleic acid) lung-injured pigs. Experimental data are used to find parameters in the
mathematical models and were collected in two forms. Firstly, the P.—V curves for healthy and lung
injured pigs were constructed; these data are used to compute compliance functions for each animal.
Secondly, dynamic data from pressure controtled ventilation for a variety of applied pressures are used
to estimate resistance parameters in the models. The models were then compared against the collected
dynarnic data. The best mathematical models are ones with compliance functions of the form C(V) =
a + BV where ¢ and b are constants obtained from the P.—V curves and the resistive pressures during
inspiration change from a linear refation P = R( to a nonlinear relation P, = RQ* where @ is the
flow into the one-compartment lung and ¢ is a positive number. The form of the resistance terms in the
mathematical models indicate the possible presence of gas-iiquid foams in the experimenta!l data.

Keywords: oleic acid injury; mathematical model; variable compliance.

1. Imntroduction

Oleic acid-injured animal models are used to test a wide variety of physiologic approaches and adjunctive
therapies in mechanical ventilation (Bowton & Kong, 1989; Hemandez et al., 1990; Wilson er al.,
2001). Using animal models of lung injury and disease, researchers have probed acute physiclogic and
therapeutic techniques ranging from liquid ventilation (Sawada et al., 2002), splanchnic perfusion and
oxygenation (Jedlinska er al., 2001}, ventilatory support (Martynowicz ez al., 2001; Mutch ez al., 2000,
Nam er al., 2000; Neumann er al., 2000; Neumann & Hedenstierna, 2001) to tracheal gas insufflation or
TGI (Carter et al., 2002; Cereda et al., 1999; Zhan er al., 2001). One of the more important uses of oleic
acid-injury models is to evaluate the efficacy of recruitment manoeuvres (Cakar et al., 2000; Crott er al.,
2001; Martynowicz et al., 2001; Pelosi er al., 2001; Van der Kloot et al., 2000). In this paper we report on
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data collected from pigs that were subjected 10 mechanical ventilation before and after oleic acid injury.
Using these data, robust mathematical models of prevailing lung mechanics are constructed that capture
the differences in pre- and post-injury physiology of the animals. Such;accurate mathematical models
allow prediction of key outcome variables of mechanical ventilation: tidal volume, average volume, end-
expiratory pressure, mean alveolar pressure, and ventilator power. The physiologic parameters of the
animals, compliance and resistance (both inspiratory and expiratory), must be identified so that these
quantities can be used in the dynamic mathematical models. Using the static elastic pressure—volume
(P.—V) curves, compliance functions are constructed for each animal and the dynamic data are used to
estimate inspiratory and expiratory resistance constants.

The experimental protocol was approved by the Animal Care and Use Committee of Region
Hospital; all animals were managed according to NIH standards. In these animal studies, pigs were
anesthetized with pentobarbital, paralyzed, and tracheally intubated. Mechanical ventilation was initiated
using pressure controlled ventilation with applied pressure (P} of 10 cm H2O during inspiration,
positive end-expiratory pressure (PEEP) of 5 cm Ha0, F1O, of 0-6, and duty cycles of either 1/3, 1/2,
or 2/3. Continuous IV general anesthesia and paralysis (pentobarbital and pancuronium) was provided.
P.—V curves were then collected for each animal. The pigs were ventilated using different combinations
of duty cycles and applied airway pressures during inspiration (Py,,).and expiration (Ppeep); the time,
airway pressure, and flow were measured over several cycles of the ventilator. Lung injury was then
induced by oleic infusion using a standard protocol and static P,—V curves again measured. Using the
same ventilator settings that were employed before injury, data were again collected for time, airway
pressure, and flow. .

The mathematical models used to analyse the experimental data are based on a unicompartmental
model that permits the compliance of the respiratory system to vary with lung volume: i.e. elastic
pressure, P, is given by P, = F(V) where V is the lung volume at any instant of time above its
rest volume and F is a function that can be calculated from the P.—V curves during inspiration and
expiration. Furthermore, the models permit the resistive pressure P, to depend on the flow Q = |V|ina
nonlinear fashion.

The paper is structured as follows. A brief overview of variable compliance is presented in Section 2,
showing that the compliance of the respiratory system can be approximated by continuous linear
functions of the volume V. In Section 3, a mathematical model for pressure controlled ventilation with
variable compliance, linear and nonlinear resistances is then constructed. In the clinical setting, the
clinician sets the levels of applied airway pressures (P, and Ppeep), frequency of breathing ( f), and
the inspiratory time fraction or duty cycle (D) while the compliance (C) and resistances (R, and R,) are
uncontrolled variables. The key outcome variables of the ventilation are the tidat volume { V), minute
ventilation (Vg), end-expiratory pressure ( Pey), mean alveolar pressure (Pn), and power ( W.,). These
quantities are computable from the mathematical model.

Data for the validation of the mathematical models were sampled from data collected in other
studies at Region Hospital. Although the database included several animals, in this paper we restrict
our discussions to three pigs (labelled A, B, C). The ideas presented here were tested on other animals
and found to be consistent with the data sets from the three pigs. For brevity, we do not include the extra
data.
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TABLE | One-segment compliance function parameters for inspiration

and expiration, pre- and post-injury, for a particular animal (Pig A}
£

Pre-injury Post-injury
Parameter Inspiration Expiraton Inspiration  Expiration
aj 0-0419 (-0952 0-0121 0-103™
b; -0-00272 —-0-0388 0-024} —0-0449
P, Pre--injury P, Post—injury
49 * L
. 30 -
30 < =
4 20 =
20 < _ . )
10 s 10
0-4 0-8 1-2 v 0-4 0-8 1-2 v

FiG. 1. Pe—'V data for a particular animal (Pig A) approximated by a one-segment compliance function.

2. A variable compliance model for the P~V carves.

In Crooke et al. (2002}, a variable compliance model was proposed for pressure controlled ventilation.
In its simplest form, it assumes that the elastic pressure in the lungs is of the form

1%
P, = 1
T a+t+ bV 21

where P, denotes the elastic pressure in the one-compartment lung, V is the volume of the compartment
above its rest volume, and the parameters, 2 and b, are obtained from experimental data. In the collection
of the elastic pressure—volume data, it is assumed that the end-expiratory pressure of the lung is zero. In
other words, these data were collected without applied PEEP after a protracted exhalation minimizing
auto-PEEP.

We call the linear function, C(V) = a + bV, the compliance function of the model. Since, in
fact, C = %%, the approximation C(V) = a + bV is only accurate provided !’a‘i & 1. If C varies
too quickly with V, the physical data for the compliance function may deviate significantly from the
linear approximation ¢ + bV . The parameters, « and b, of the compliance function during inspiration
may be different from those during expiration. That is, there is hysteresis. During passive ventilation,
C represents the compliance of the total respiratory system, lungs and chest cavity, Because during
these experiments, the animals were pharmacologically paralyzed, this is an appropriate assumption. In
Fig. 1, each P,~V curve (inspiration/expiration and pre/post-injury) for a particular animal (Pig A) is
approximated by functions of the form P, = V /(a + bV) with a and b chosen to give the best least
squares fit. The constants for this data set are listed in Table 1. As can be seen in Fig. 1, we obtain
a reasonable fit of the experimental data, although there is some error at the extremes of the curves.
However, as will be seen in later sections, our model is found to uniformly produce good approximations
to experimental data.
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3. Maodels for pressure controlled ventilation

Along with the P,—V data collected for each animal in this study, pressure controlled ventilation data was
collected for a variety of P, and Pp..p combinations using breaths of'6 s in length and an inspiratory
time fraction or duty cycle of either 1/3, 1/2, or 2/3. In this section we atiempt 10 match the data with a
variety of mathematical models for controlled preset ventilation. .

Several mathematical models for pressure controlled ventilation of a single compartment lung were
examined. It is assumed that breaths are identical and are of duration t;,;. Each breath is subdivided
into an inspiratory phase of length r; and expiratory phase of length 1, so that t;5; = #; + fo. At any
instant of time in [0, t;0; ), there is a pressure balance between applied pressures or ventilatory pressures
(Pyent), pressures due to elastic forces { P.), pressures due (o resistive losses (P, ), and the end-expiratory
pressure (P, ):

Pr+ Po + Fex = Pyen:.

In this model, the symbol V() represents the volume above the volume of the lung at the end of
the previous breath. Hence, V(1) is referenced to a constant volume V,, which is explained below.
Assuming breaths of uniform length (7;5), V() is zero at the beginning and ending of each breath.
We define the end-expiratory volume (V,,) to be the volume of the lung above its rest volume dug .
to P.y; that is, P,y = Ve /C{Ve,). We denote by V;(z) the volume of the compartment above V,,
during inspiration and by V,(¢) the compartmental volume above V,, during expiration. We assume that
Vi(0) = V.(1,5:) = 0. Vr denotes the tidal volume and it is assumed that Vi = V;(t;) = V.(#;). For the
elastic pressure, we assume that P, = V/C (V) where C(V) is the compliance function discussed in the
previous section. For the resistive pressure, we assume that P, = R(Q¢ where ( is the flow into or out
of the lung, i.e. ¢ = |dV/dt|, R is a constant, and € is a positive parameter. We allow R, ¢, and C(V)
to be different during inspiration and expiration. In addition, during inspiration, a constant pressure Py,
is applied to the airway, Py.ny = Py, and during expiration, a constant pressure Pp,ep is maintained
until the start of the next breath, Pyeny = Ppeep. With these assumptions, we constructed the following
mathematical model for pressure controlled ventilation:

Inspiration:
R; (dv) + i + Poy=Poey, 0151 (3.1)
dr Ci(Vy)
Expiration:
—R, ( e )E' e P = Poeps i <1 <t (3.2)
d Ce(Ve) :

Differential equation (3.1) has the initial condition V;(0) = 0 and (3.2) requires V,(t) = Vr. The
constant P,y {end-expiratory pressure) is determined by the boundary condition Ve(t,,;) = 0. The
relationship between Py and Vey is given by Py = Vo / Co(Vey).

Special cases of the above model have been treated in the literature. In the case when €; = ¢, = |
and C; (V) = C.(V) = C, analytical solutions of the system of differential equations can be found (see
c.g. Burke et al., 1993; Marini & Crooke, 1993); fore; = ¢, = [/2 or2 and C; (V) = C.{V) = C, see
Crooke & Marini (1993); and when ¢; = €, = | and C;{V) and Ce( V) are piecewise linear functions of
V, see Crooke et al. (2002).

Data collected for the pre- and post-injury experiments are composed of ventilator delivered and
retrieved volume, flow, and airway pressure, sampled every 0-025 s. Various combinations of applied
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F1G. 2. Expetimental data for a pre-injury pig (Pig B) with Pyer = 10 ¢m Hy0, Ppeep = 0 cm H30, 515y = 65, D = 1/3, The

collected data for volume, flow, and airway

pressure are presented in (a), (b), and {c}, respectively.

pressures ( Pse; and Ppe.p) and inspiratory time fraction (D = 1;/1,0,) were used for ventilator settings.

A sample of the collected data (vol
If we assume that the dynami
equations (3.1) and (3.2), then the

ume, flow, and airway pressure) is pictured in Fig. 2.
¢ behaviour of the physical system is modelled by the differential
unknown resistances, R; and R,, in theory, can be obtained from the
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experimental data. For example, if we assume that the resistive pressure, P, is directly proportional to
an exponential power of the flow during inspiration or expiration, then

i i Vi
P,”:R,-Qf ZPMI_P”_C,'(V,') (3-3)
v , ‘
Pr(e) =K. le. = ""Ppeep + Pex + Ce(i/e) (3-4)

where V;, V., Q; and Q, are lung volumes and the fiows in and out of the lung during inspiration and
expiration, respectively. In (3.3} and (3.4), we assume that P, = Pp,.p and the compliance functions
are obtained from the P,—V data. The resistive pressure can then be plotted versus the flow and volume
and a nonlinear regression algorithm used to estimate R;, R, €;, and ¢,. Significant variability in the
data can occur for a particular animal and among the various data sets. This is primarily a problem in
the expiratory data since the flow levels are small and subject to experimental error. Furthermore, the
resistive pressure dependence on the flow must be checked for different dynamic settings: Pser, Ppeep,
and D.

Various models (i.e. different combinations for ¢; and €.) were investigated. The accuracy of (3.2) _
with ¢, = 1 was universally good over the various data sets. The accuracy of (3.1) with €; = 1 in some
cases seem to deteriorate at a particular point in the time during inspiration, which we denote by #;,. We
speculated that a new and different dynamics is in control for #;, < ¢ < ;. The difference was assumed
to reside solely in the resistive pressure behaviour during inspiration. This led us to a new hybrid model
which is defined by the differential equations (3.5)+3.7). In particular, the model assumes that there is
a change in the resistance law during inspiration from P, = RQ% to P, = R(Q. The change-over
time, #;,, was found from the experimental data. The initial conditions for each differential equation are
Vi (0) = 0, Vi, (1)) = Vi, (t;)), and V,(1;) = Vi, (#;). In particular, we have

Inspiration:
R: (‘%)G'JF_V"'—H =P, 0<1< 8 (.5)
AL dr CilViy +Ver) 7 7 TR '
dvi, [\ Vi
R; 2 2 —— 4+ Py =Py, 4 <t <4 .
” (‘ dt ) + Ci(viz + Vex) + Fex Buar: ti < n G6)
Expiration:
dv, [\* 1% .
—R, (’ —£ ) F o Pox = Ppepy 1 <1 < oy 3.7
dr Ce(Ve + Vex)

The values of ¢;,, €;,, €., together with R;,, R;,, and R,, were found by nonlinear regression of resistive
pressure—flow data. The value of the change-over time #, was taken also from observed data to be the
time at which an abrupt change in the slope of the resistive pressure—flow curve occurs. If this change is
not observed in the data, which is the case for most of our pre-injury data, then the change-over time #;,
is set equal to 1.

In Fig. 3, we present an example of the regression fit of P,—Q curves of both inspiration and
expiration periods for a pre-injury. data set, showing curves using five different values of €. For this
particular animal (Pig C), we found r;, = #; = 2 5 in the pre-injury data, so that the inspiration period
consists of only one part, namely 0 < ¢ < 1, in which ¢;, = 1 and R;;, = 10-3615 yielded the least sum -
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TABLE 2 The vaiues of respiratory resistunces, R;
and R, obtained for five different values of the flow
exponents {€) for inspiratory period and expiralory
period of a particular pre-injury pig (Pig B). The
Sum of Squares and Mean Square are from the

Mathematica ANOVA t1able used in the nonlinear v
regression
Inspiration
&) Ri, Sum of Squares  Mean Square
050 6-68892 45-7886 0-6024820
0.75 8.70176 10-9364 0-1439000
1.00  10-3615 4.77519 0-0628315
1.25 119432 7-54956 0-0993364
1-.50 13-5367 13-9685 0-1837960
Expiration
£ Re Sum of Squares  Mean Square
0-50  3-00691 34.3241 0-220026
0-75 4.33729% 260255 0-166830
1-00 5-52216 25.5054 0-163496
1-25  6-68317 26-9782 0-172937
1.50 790083 28-8444 0-184900

(b) .

o

FiG. 3. Curve fitting of resistive pressures during inspiration (a} and expiration (b} for pre-injury pig (Pig C) with different values
of parameters (R;, R, and €) given in Table 2. Here, Pyey = 20 cm HyO, Ppeep = 10 em Hp0, 1;0r = 65, and D = 1/3, while
iy =t = 2s.Forboth (a)and (b); —— —¢ = 1.5,----- € =125, e=1,— — —e=075-c---- € =05,
and e e rcal data.

of squares, compared with the other values of ¢; tried, as can be seen in Table 2. During the expiration
period for this pre-injury case (Fig. 3), ¢, = 1 and R, = 5-32216 yielded the least sum of squares, as
can be seen in Table 2, as well.

In Fig. 4, we present an example of the nonlinear regression fit of P,—Q curves of inspiration and
expiration periods for a post-injury data set, showing curves using five different vaiues of €. Here, we
found #;, = 0-525 with ; = 4, so that the inspiration period is split into two parts; one during 0 <1 < 1
and the other during 1;, < ¢ < 1. During the first part, we found ¢;, = 1 and R;, = 17-3134, while

8
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TABLE 3 The values of respiratory resistunces. Ry,
R;,, and R, obtained for five different values of the
ﬂo;v exponents (€) for the first part of inspiration, 0 <
t £ t;,, second part of inspiration, 1;, <1 < 1;. and
the expiration period, t; < t < U of a pariicidar
post-injury pig (Pig C} T

Inspiration
Ot gy =0525

£\ Ry Sum of Squares  Mean Square
0-50 16-9763 170-854 8.54272
075 17-4100 41-5195 2-07597
1-00 173134 21-0766 1.05383
1.25 168154 79-8231 399116
1-50  16-0472 189-879 9-49393

0525 <t €, =4

£iy R;, Sum of Squares  Mean Square
0.05  4.20541 516.723 3-717430 3
025 885992 225.081 1-619290 '
050  18.3022 72-1459 0-519035
0-75 29-4639 251-702 {-810800
1-00  37.5697 664-919 4.7835%0

Expiration
. i <1 tror =6

£e R, Sum of Squares  Mean Square
050 3-17990 22.1118 0-2871660
0-75 3-5435] 6-62740 0-0860701
1-00  3-66977 5-44785 0-0707512
1-25  3.65902 10.7329 0-1393890
1-50 3.56458 19:1001 0.2480530

in the second part, ¢;, = 0-5 and R;, = 18.3022 are the best choice, as shown in Table 3. During the
expiration period of this post-injury case (Pig C), €, = | and R, = 3-6698 gave the best fit.

We carried out the fitting of P,—Q curves from several other animals, apart from the ones shown here,
and found that using different data sets still yielded the resistive pressure exponent values close to those
found for the data set of Pig C shown in Figs. 3 and 4. In other words, the resistive pressure expenent ¢,
in each separate part of the breathing cycle, is not extremely sensitive to variations of different data sets,
not changing very much from one animal to another that exhibit similar modes of gas exchange. Thus,
it appears that the resistive pressure exponent € is a constant characteristic to a specific flow dynamics
and does not mirror the varying of physical data sets, while the nonlinear resistance R is the system
parameter which reflects such variations through the process of least squares fitting.

In all our experiments, constant pressure ventilation was used. That is, the applied pressure to-the
airway is constant during inspiration. In the airway pressure data, the measurement of the applied airway
pressure by sensors is for a sudden zero pressure to Pe,; at the beginning of inspiration and then a sudden
return in zero pressure at the end of inspiration. Although a slight variation from constant pressure at the
beginning and ending of inspiration is usually encountered, this was in fact found to have no significant
effect on the resistive pressure exponent €. This is indeed borne out by the observations made by some
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FI1G. 4. Curve fitting of resistive pressures during the first part of inspiration (a), second pant of inspiration (b) and expiration
{c) for post-injury case with different values of parameters (Riy, Riy. Re, and €) given in Table 3. Here, Pger = 25 em Hp0,
Pp,;.,, =S5 cm H30, frr = 65,and D = 2/3, while ;, # 1, For(a), (b}, and (¢); — — —e = 1.5, - -~ - -

€=1, —

— € =075,

€e=05,— — —e=025

€ = 0-05, and » « real data.

€ = 1-25,
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F1G. 5. Comparison of mode! simulation and experimental data for a particular pre-injury pig (Pig C} of Fig. 3. Here, ;) = f; = 25,
Rjy = 10-3615 cm H,0/l/s, R, = 53-52216 cm HyO/lfs, and €, ='¢, = | (see Table 2). The solid line corresponds to the model
prediction of the lung volume, while the dots are data obtained from the experiment over one breathing cycle.

v
4_.&”
0-4
0-3 S -
0-2
\
0-1 4
w2 4
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F1G.6. Comparison of model simulation and expetimental data for a particular post-injury pig of Fig. 4 (Pig C). Here, #, =
05255, 4 = 45, R = 173134 om HyOllss, Ry, = 18-3022 cm HpO/lis, R, = 3-66977 em HaO/s, €5, = €, = 1, and
€;; = 0-5 (see Table 3). The solid line corresponds to the model prediction of the lung volume, while the dots are data obtained
from the experiment over one breathing cycle.

,

carlier researchers mentioned by Smith er al. (1991) that there was no convincing physiologic evidence
of an advantage on gas exchange derived from a given inspiration gas flow pattern. According to these
researchers, there were no significant differences in gas exchange or dynamics between various air fiow
waveforms. In view of this and our earlier discussion on the sensitivity of the resistive pressure exponent,
which appears to be characteristic of a specific flow structure, our assumption of a square wave form,
and the slight variation thereof, were found to have little effect on the exponent, as expected.

The model (3.5)+3.7), with ¢ and R found as described above, was then used to compare with pre-
injury and post-injury data of volume versus time. These comparisons with the experimental data are
shown in Figs. 5 and 6, respectively. The hybrid model was used for other sets of experimental data and
uniformly produced accurate approximations. Thus, this defines a class of models that is mathematically
tractable and capabie of accurate simulations of mechanical ventilation of normal and diseased lungs.
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TABLE 4 Theoretical tidal volumes, end-expiratory pressures, mean alveolar pressures, and average
lung volumes for different levels of applied PEEP using the hybrid model of Figs. 3 and 4 for both pre-
and post-injury cases of a particular animal {Pig C)

g

Pre-injury Post-injury
PEEP Vr Pex Py Vave Vr Pex Py Vave
0-0 0-66529 0-00473 613007 0-55141 0-62441 0-15164 1322760 0.49562
1-0 0-63207 1.00310 6-82353 0-52392 0-58600 1-10617 13-71900 0-51424
2-0 0-59884  2-00203 7-51701  0-49641 0-54978  2-07399 14.20520 0-44356

3.0 0-56559 3-00132 8-21049 0-46889 0-51569 3.0513% 14-68550 0-41915
4-0 0-53233  4.00086 8-90398 0-44136 0-48361 4-03561 15-16080 0-39581
5-0 0-49907 5.00056 9-59747 0.4138] 0-45340 5-02464 15-63000 0-37606

Having mathematical expressions for _V,-(r) and V,(r) permits the calculation of tidal volume Vr,
average volume V., minute ventilation Vg, end-expiratory pressure P, and mean alveolar pressure
Py, In particular, V3 = V;(1;), Pey is determined from solving V,(1;,;) = 0, and the other two ocutcomes
are defined by _

4
Vave = l/ Vi) d:
i Jo

L

D [ Vi(2) 1-D f’”’" Ve(®)
Py =— dr + ———————— dt + Pex.
o 8 fo Ci(Vi(t) + V) te Jy  Ce(Ve(t) + Vex) *

In Table 4, theoretical values for these quantities using the hybrid model simulations shown in Figs. 3
and 4, before and after injury, are shown. As one can see, there are substantial reductions in the tidal
and average volumes at different PEEP levels. At each level of PEEP, the reductions in tidal and average
volumes are approximately 5%. However, approximately 75% of the beginning (PEEP = 0) tidal and

and

“average volumes still remains at the last level of PEEP (PEEP = 5 cm H20). One possible explanation of

the drop-off in volumes from pre- to post-injury is the large resistance, R;,, in the post-injury simulations.
Although we do not show the calculation in this paper, it is possible to investigate changes in the key
outcome variables as functions of f and D. This could give the clinician insights into the optimal choice
of f and D to ventilate at a given Py and Ppeep.

4, Discussion and conclusion

An interesting speculation about the physiology during this mechanical ventilation (pre- and post-injury)
comes from the use of nonlinear resistive pressure P, = RQ¥. It was shown in Deshpande & Barigou
(2000) that the flow of gas-liquid foams in vertical pipes follows the rheological relationship

16LQ"

AP =k
mot

where AP is the pressure drop along the pipe, p is the radius of the circular pipe, L is its length, k is
a constant, and O is the steady flow of the foam—liquid. The parameter » is a number in the interval
[0-4, 0.9 with its exact value depending on the foam structure, liquid viscosity, and concentration. The
hybrid model fits the expetimental data quite well in the inspiratory time interval [1;,, #;], especially for
the post-injury data sets, perhaps because the airways of the lungs of the pigs are filled with gas-liquid
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foam due to edema (the lung failure condition caused by the accumulation of the fluid in the lungs). The
magnitude of R;, can then be used to indicate the severity of the edema which i1s a result of the oleic
injury and/or the ventilator induced injury. This hypothesis may have important clinical implication since
the model seems to agree well with experimental data (Hubmayr, 2002).

Our curve fitting in the pre-injury case invariably yielded 7;, = r; and ¢; = ¢;, = | during the
inspiration period, with the exception of only a few cases where 1;, was found to be a little less than #;. In
such a case then ¢;, = 1 and ¢;, = 0-5, or very close to it. We speculate that, although this is a pre-injury
data set, a short period of liquid—foam flow may have resulted from an injury induced by prolonged
ventilation with too high an applied pressure, before being subjected to oleic acid injury. As Scarpelli
(2003 ) has asserted in his discussion of the physiology of the alveolar surface network (ASN) that ASN
is the totally fluid continuum circulating through ultrathin molecular conduits formed by appositions of
unit bubbles of alveolar gas. In fact, ASN is the analogue of foam in vitro, and operates in all regions
of the lung, at all lung volumes, beginning at birth and continuing throughout life. The characteristics of
alveolar flooding are then explained by the ASN conformation. According to Scarpelli (2003), they are
analogous to liquid-overloading of an established foam in vitro to produce *froth’, in which the ratio of
continuous phase (liquid) to dispersed phase (gas in unit bubbles) is significantly increased.

In fact, one function of the pulmonary surfactant system is stabilization of the fluid balance in the -
lung and protection against lung edema. However, it has been shown that mechanical ventilation can
damage the lungs when a mode of ventilation that allows high mspiration lung volumes and fow levels
of positive PEEP is applied {Vazquez de Anda & Lachmann, 2001), leading to loss of surfactant from
the airways and eventually pulmonary edema.

The present work presents one-compartment mathematical models of respiratory systems,
incorporating variable compliances and nonlinear resistances. The predictions of the hybrid model were
compared against experimental data and were found to uniformly produce accurate approximations.
Desired outcomes of mechanical ventilation are a minute ventilation Vg that is adequate to protect the
systemic pH (via removal of CO;) and a mean alveclar pressure which is sufficient to maintain lung
volume and support adequate oxygenation. In Table 4, the tidal volume Vr, end-expiratory pressure P,,,
mean alveolar pressure P, and average lung volume V,,., are shown for different levels of PEEP, using
Pser = 20 cm H20, #;or = 6 5, and t; = 2 s in pre-injury case and Py, = 25 cm HaO, 55 = 6 5,
and t; = 4 s in post-injury case. These calculations demonstrate the usefulness of a mathematical model
as a means to experiment with the ventilation parameters to achieve the desired levels for the outcome
variables. The increase in applied PEEP is observed here to lower the tidal volume and the average lung
volume in both the pre-injury and post-injury cases. However, the magnitude of this change varies with
the injury.

It is worth nothing that incorporating a variable compliance and the nonlinear resistance was critical
to obtain models that accurately porirayed the experimental data. With all the caveats of using a one-
compartment model for a complex physical system, the mathematical model may indicate important
physiologic processes that are present in injured lungs. For example, is the value of r;, in the interval
[0, ;] and/or the magnitude of R;, an indication of the level of injury? Alternatively, are shifts in the
parameters, a; and b;, of the compliance function indicative of injury and if so, what is the level of
injury?

We have developed a hybrid model, depicted in (3.5)—(3.7), which is very robust, mathematically
tractable, and capable of accurate simulations of mechanical ventilation of normal and injured lungs.
The model will be used to study effects of clinical-set inputs on the key ventilation outcome variables.

An example of why such approaches may be useful is the controversy concerming appropriate
treatment of ARDS patients in ARDSNet studies (Stewart, 2002). The National Institute of Health
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has recently stopped these trials involving 20 medical institutions because it is difficult to determine
if the patients in the control group were receiving inferior treatment. An outcome based analysis of the
ARDSNet trails, along with four other independent studies, raised questions about the effectiveness of
low tidal volume ventilation on patient mortality (Eichacker et al., 2002). There is great variation from
patient to patient and treatment to treatment between studies. Accounting for this variability is difficult
and making judgements of the effectiveness of low tidal volume ventilation by this lbp-down approach to
the data is problematical. If it was possible to measure, non-invasively and instantaneously, physiofogic
parameters whose values indicate the level of lung injury during mechanical ventilation, then some of
the uncertainty of the treatment could be resolved, Furthermore, having the resistance and compliance
parameters permits calculation of important lung pressure variables such as the peak and mean alveolar
pressure, key predictors of lung injury.
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DO

Abstract. The age profiles of the infected populations of two dengue hemorrhagic fever (DHF)
epidemics, the 1997 epidemic, in Santiago de Cuba and the 1998 epidemic in Thailand, are
compared. Using an age-structured model of disease transmission, the dependence of the forces
of infection on age was determined for each epidemic. The difference in the behavior of the
two epidemics and the role of primary and secondary infection in the development of DHF are

discussed.

1
| INTRODUCTION

‘Dengue hemorrhagic fever (DHF) is an
emergmg viral disease that is spreading through-
out‘the tropics. Since its first appearance, in
the Philippines in 1953, DHF has become the
most important arthropod-borne viral disease
of humans (WHO, 1997). It has been estimated
that there are between 50 and 100 million
cases of dengué fever (DF) a year; more than
250,000 annual cases of dengue hemorrhagic
fever (DHEF) result in some 10,000 infant deaths.
Classu: dengue fever is a disease of older
ch:ldren and adults; DHF, on the other hand,
is p_nmanly a disease of children under the age
.. 15 (Gubler, 1998). DHF differs from DF:
plasma leakage is seen in DHF. Both diseases
are caused by one of four serotypes of the
dengue virus, (DEN1, DEN2, DEN3, and DEN4)
which belongs to the genus Flavivirus, family
Flaviviridae.

‘ Because two of the mosquito vectors,
Aedes aegypti and Aedes albopictus, exist in
the Amencas DF has become endemic in the
New World (Pan American Health Organiza-
tion, 1994). The first severe outbreak of DHF

Correspondence: IM Tang, Department of Physics,
Faculty of Science, Mahidol University, Bangkok
10400, Thailand.

E-mail: scimt@mahidol.ac.th
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in the Americas occurred in 1981 in Cuba
{(Guzman et al, 1990) and gave rise to 334,203
DF cases, 10,313 documented DHF cases, and
158 deaths. The serotype responsible for the
epidemic was DEN2. An earlier epidemic of
mild classic dengue fever. which occurred be-
tween 1977 and 1979. was caused by a dif-
ferent strain (DEN1). During this epidemic,
the sera of 44.5% of a random sample of 2,000
people contained DENI virus antibodies (HI;
hemagglutination inhibition). Strict infection
control measures adopted after the 1981 epi-
demic lead to the disappearance of DHF from
Cuba for the next sixteen years. A localized
outbreak of DHF occurred in Santiago de Cuba
in 1997 (Kouri et al, 1998; Guzman et al,
2000). The culprit was the DEN2 virus.

To get a better understanding of the trans-
mission of this disease, we compared the DHF
epidemic that occurred in Santiago de Cuba
in 1997 with the one that occurred in Thailand
in 1998. We weresinterested in the age dis-
tribution of those infected during the two epi-
demics. Most literature on DHF mentions that
the disease affects mainly those under the age
of 16; Guzman e al (1997) noted that almost
no-one under the age of 17 became sick with
DHF (Fig 1a). This is quite different from the
age pattern seen in epidemics, which occur in
countries in which the disease is fully estab-
lished. Fig 1b shows the age distribution in
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one province of Thailand during the 1993
epidemic (Ministry of Public Health, 1998).

- MATERIALS AND METHODS

Before a discussion of the differences
between the two distributions can be held, the
age distribution of the forces of infection in
" the 1997 DHF epidemic in Santiago de Cuba
must be determined. The force of the DHF
infection in Thailand during the 1998 epidemic
has already been established. Pongsumpun and
Tang (2001) who showed that the percentage
of infected people (I) in the i-th age cohort
(L) is

o Bh i,
I = Lt ————§,
oI+, O+,
for i = 2,.N-1 (i)
with
pr 11,
| = 1
o+r+
H (i
o
S = S,
Bhil, +oh .
(ii1)
and
A
‘o 1 o+ i
. (iv)

In the above, B" is the transition rate for
the virus to be transmitted to humans by
mosquitos (the force of infection); & is the rate
at which one cohort age into the next; r is the
recovery rate; A is the birth rate; p, is the death
rate of the human popuiation; and I is the
number of infected mosquitos divided by their
total number.

RESULTS AND DISCUSSION

The forces of the DHF infections can be
determined by fitting the incidence rates given

256

in Fig la to equations (i) to (iv) by varying
the values of B": this yields the values of p"
that are shown in Fig 2. The behaviors of the
forces of infection in the two epidemics look
the same, ie, an initial increase followed by
a drop to a nearly constant force of infection,
except that the initial increase is shifted 16
years in the case of the Santiago de Cuba
epidemic.

To understand why this happens and why
the age distributions shown in Figs 1a and 1b
are as they are, two theories of the pathogen-
esis of dengue hemorrhagic fever must be
considered. The first, more commonly ac-
cepted theory, is the immune enhancement or
secondary-infection hypothesis (Halstead, 1988).
According to this hypothesis, the pre-existing
heterologous dengue antibody in an infected
person recognizes a novel dengue virus and
forms an antigen-antibody complex, which then
bonds the virus to the membrane of a leuko-
cyte. Because the antibody is heterologous.
the virus is not neutralized and remains free
to replicate inside the leukocyte. These in-
fected cells then produce and secrete vasoac-
tive mediators in response to the infaciion;
these mediators cause an increase in vascular
permeability, leading to hypovolemia and shock.

In the second theory, the dengue virus
mutates as it replicates in the human and/or
the mosquito. Some of these mutations lead
to more virulent viruses: these viruses causing
DHF. Because a pré-existing antibody is im-
plicated in the first theory, the infection caus-
ing DHF must be a secondary one. In the
second theory, no pre-existing antibody is
required: primary dengue infection can cause
DHEF.

iy

If the secondary-infection hypothesis is
correct, the paucity of DHF-infected children
in the 1997 &pidemic in Cuba is under stand
able: no-one under the age of 16 would have
had pre-existing dengue virus antibodies in hig
blood because he would have been born after
the 1981 epidemic. Of the individuals under
the age of 16 years who were tested for dengue
antibodies in Santiago de Cuba. only 2% had

Vol 31 No. 2 June 2002
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Fig 1a

™ A LB e e

0-1 67 12-13 18-19 24-25 30-31 36-37 42.43 48-43 54-55 60-61
| n Age (years)

Fig tb

i W s e
0-.1 6-7 12-13 18-19 24-26 30-31 36-37 42-43 48-49 54-55 60-61
Age (years)

Fig 1-Age distribution of dengue hemorrhagic fever. (1a) Age
-distribution of the 1997 epidemic in Santiago de Cuba.
4 (Data from Guzman et al, 2000). {1b) Age distribution
of the 1998 epidemic in Mukdahan Province, Thailand

1 (Qata from Ministry of Public Health, 1998).

—&— Santiago,de Cuba 1997

~o— Mukdahan, Thailand
1998

1

0-1 67 12-13 1818 24-25 30-31 36-37 42-43 4B8-49 54-55 60-61

Age (years)

Fig 2-Forces of infection in the two epidemics. Forces of in-
fection in Santiago de Cuba are denoted by (): forces
of infections in Mukdahan Province, Thailand, are de-
noted by (@). Values obtained by fitting equations (i)

to (iv) to the incidence rates presented in Figs 1a and

{b. '
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the neutralizing antibodies to DEN2 and
none had the antibodies to DENI1
(Guzman et al. 2000). Serological tests
showed that the dengue infections in
98% of the DHF/DSS cases were sec-
ondary. In a study of the 1994 epidemic
in Thailand (Vaughn er al, 1997) it was
found that while 93% (56 of 60) of the
children with DHF were experiencing a
secondary infection, only 4% were ex-
periencing a primary infection. Vaughn
et al (1997) also showed that the vire-
mia was correlated with the body tem-
perature of the patient; they were able
to isolate the virus in 59 of 60 DHF
patients, who were in the early febrile
stage.

However, not all the evidence
supports the secondary-infection hypoth-
esis. During the 1996-1997 epidemic in
Belem, Brazil (Travassos de Rosa e al, -
2000} none of the 24 individuals, in
whom the DEN?2 virus was isolated and
who were previously infected with the
DEN1 virus, developed DHF.  Addi-
tional evidence was obtained about the
1998 epidemic in Thailand from the
serological records of the Department
of Pediatrics, Siriraj Hospital (the larg-
est hospital in Thailand). The pediatric
ward at Siriraj Hospital admitted 316
children suffering from DHF in 1998,
Hemagglutination inhibition assay (HAI)
and IgM/IgG capture enzyme-linked
immunosorbent assay were conducted
for serom samples from all the patients.
The dengue virus (49 DEN{, 29 DEN2,
41 DEN3, and 1 DEN4) was isolated
in 120 of these patients.

We aré interested in this subgroup.
Vaughn et al (1997) have suggested that
the foll{')wing criteria be used to deter-
mine whether an infection is primary or
secondary. Primary infection: HAI re-
ciprocal titers £ 640; IgM to IgG ratio
> 1.8. Secondary infection: HAI recip-
rocal titers > 1,280; IgM to IgG ratio
< 1.8 Applying these criteria to the
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serological results, 56 of the 120 DHF patients
were experiencing a primary infection by the
HAI criterion; 27 were experiencing a primary
infection by the IgM/G criterion; and 13 sat-
isfied both criteria. Among. this group of 13
children, there were 7 cases in which the pri-
mary infection was due to DENI virus; 3 cases
were due to DEN?2 virus, and 3 were due to
the DEN3 virus. This would appear to con-
tradict the findings from the 1994 Thai epi-
demic, in which only 4% of DHF cases were
the results of primary infection. We examined
the records of Siriraj Hospital for the year
1999. One hundred and thirty-seven children
suffering from DHF were admitted to the
pediatric ward that year. The dengue virus was
ieolated in 31 of these patients, none of whom
..«d a primary infection based on both tests.
It appears that the DHF epidemics in Thailand
during 1994 and 1999 differed from the 1998
epidemic in terms of the primary/secondary
cause of infection. The reason for this differ-
ence is not clear. It is interesting to note that
epidemics in Thailand peak every three years
(Hay et af, 2001): 1998 was a peak year, while
1994 and 1999 were not. We are now studying
this phenomenon to see whether it is of re-

levance to the problem of primary/secondary
infection.

ACKNOWLEDGEMENTS

P Pongsumpun would like to thank the
Thailand Research Fund for a Royal Golden
Jubilee PhD Scholarship (contract PHD 154/
2543). The authors would like to thank the
Serological Laboratory, Siriraj Hospital, and
the Ministry of Public Health, Thailand for the
~data used in this study.

258

REFERENCES

Gubler DJ. Dengue and dengue hemorthagic fever.
Clin Microbiol Rev 1998; 11: 480-91.

Guzman MG, Kouri GP, Bravo J, et al. Dengue hem-
orrhagic fever in Cuba, 1981: A retrospective
seroépidemiologic study. Am J Trop Med Hyg
1690; 42: 179-84.

Guzman MG, Kouri GP, Valdes L, et al. Epidemio-
logic studies on dengue in Santiago de Cuba,
1997. Am J Epidemiol 2000; 152: 793-9.

Halstead SB. Pathogenesis of dengue: challenges to
molecular biology. Science 1988; 239: 476-81,

Hay SI, Mymers MF, Burke DS, er al. Etiology of
interepidemic periods of mosquito-borne disease.
PNAS 2001, 97: 9335-9. ‘

Kouri G, Guzman MG, Aldes L., er al. Reemergence
of dengue in Cuba: A 1997 epidemic in Santiago
de Cuba. Emerg Infect Dis 1998, 4: 87-92.

Ministry of Public Health. Thailand. Annual Epide-
miological Surveillance Report (1992-8). Divi-
sion of Epidemiology, Ministry of Public Health,
Thailand, 1998.

'Pan American Health Organization. Dengue and den-

gue hemorrhagic fever in the Americas: guide-
lines for prevention and control, Washington DC:
PAHO. 1994, 548.

Pongsumpun P, Tang IM. A realistic age structured
transmission model for dengue hemorrhagic fe-
ver in Thailand. Southeast Asian J Trop Med
Public Health 2001; 32: 336-40.

Travassos da Rosa APA, Vasconcelos PFC, Travassos
da Rosa ES, ef al. Dengue epidemic in Belem,
Para, Brazil, 1996-97. Emerg Infect Dis 2000; 6:
298-301. '

Vaughn DW, Green S, Kalayanarooj §, et al. Dengue
in the early febrile phase: Viremia and antibody
responses. J fnfect Dis 1997; 176: 322-30.

World Health Organization. Dengue hemorrhagic fe-
ver: diagnoéis. treatment, prevention and control,
2¥ed, 1997, #

Vol 32 No 2 June 2002



- 229/ fpomendiy #3.2

Computational Mathematics and Modeling, pp. 93-103
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Abstract

The influence of age structure in the human population in the Susceptibie-
Infected-Recovered  (SIR) wmodel used to describe the transmission of Dengue
Haemorrhagic Fever {DHF) is studied. The human population is separated into an adult class
and juvenile class with only the juveniles being susceptibie to infection by the disease. A
new expression for the basic reproduction rate is obtained. It is found that age structure
reduces the periods of oscillations in the susceptible human population, infected human
population and infected mosquito population and the tightness of the spiraling into the
endemic equilibrium state.

Key words and phrases: Dengue haemorrhagic fever, Age structure, SIR model,
Endemic equilibrium, Local stability.

1 Introduction
Mathematical modeling of disease transmission has a long history. In 1917, an
epidemiology model for malaria transmission was developed by Ross [1]. MacDonald [2] later
added a layver of biological realism to the model by providing careful interpretation and
estimation of the parameter, which should go into the model. McKenzie {3] has pointed out that
the utility of a model depends not as much on how well"a mathematical job has been
accomplished but how on well a particular question has been transiated. One is interested in
disease transmission, it is imperative that the model describes as closely as possible the
characteristics of the disease being transmitted. In this paper, we are interested in the transmission
of dengue haemorrhagic fever (DHF).
Dengue Haemorrhagic fever is one of the emerging viral diseases spreading
lhroughout the tropical regions of the world. From its first appearance in the Philippines in 1953,
it has become the most important arthropod-bome viral disease of humans [4]. Tt has been
estimated that there are between 50 and 100 million cases a year, with approximately 10,600
infant deaths due to this disease. Its emergence is associated with the rapid urbanization occurring
in the developing countries. Because two of the transmitting vectors, the dedes aegypti and
Aedes albopictus mosquitees, exist in the Americas, it has been possible for the disease and its
rather benign precursor, dengue fever (DF) , to become endemic in the New World [5). The first
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severe outbreak of DHF in the Americas occurred in 1981 in Cuba with 116,000 hospitalized
patients, 34,000 documented DHF cases and 158 deaths. Important outbreaks of DHF have also
occurred in Mexicp[6]. '

In hopes’of understanding the mechanics that allow the invasion and persistence of a
serotype of the dengue virus in a region, Esteva and Vargas [7-9] introduced a mathematical
model to provide a qualitative assessment for the problem. The model they used is based on the
SusceptiblgvInfected-Recovered (SIR} model often used to model the dynamics of transmission
of some diseases. They showed that the endemic state was globally stable whenever a parameter

R, called the basic reproduction number is greater than one. Application of an ultra low volume
0 g

{ULY) amount of insecticides (the standard method used to control the spread of dengue fever
and other arthropod-borne disease) could reduce the value of R, to below one: The value of

Ro would return 10 the above one value once the application is stopped and since the endemic

state is globally stable, the disease would retumn. Therefore the eradication program would have to
be a continuing one,

in the SIR model used Esteva and Vargas, no age structure was incorporated into the
models. While the lack of an age structure may be appropriate for describing the 1981 DHF
epidemic in Cuba [10] and the DHF outbreak in Santiago de Cuba in 1997 [11], it is not
appropriate for Thailand. Most DHF cases in Thailand oceur in children less than 15 years old. In
figure 1, we show the age distribution of the incidence rates in one province in Thailand during
the 1998 DHF epidemic {12}. Feng and Veiasco-Hemandez [13] pointed to the need of a model
that incorporates age structure into the dengue population dynamics. It is the purpose of this
paper 1o report on a DHF transmission model, which includes an age structure in the human
population. Central to any discussion of any population growth is the basic reproduction rate or

number. The basic reproduction rate or number. The basic reproduction number Ro is the

number of off-spring (secondary infection) that a parent (primary infection) is intrinsically
capable of producing. The inclusion of an age structure leads to a new expression for this number.
This is done in section 3.

Figure 1. Age distribution of
the 1998 Dengue Fever
incidence rates in Mukdahan,
a province in Central Thailand.

Incidences rate per 4000 Papulations
H

o1 67 12713 1819 2425 3031 337
Age(yeas)
2 Mathematical Model

The simplest way to incorporate an age structure into a disease in which only the
children are susceptible to the disease is to divide up the human populaticn intc two categories,
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transmission of the dengue virus to the mosquito from an infected juvenile. [, is the
ransmission probability of dengue virus from an infected juvenile to the mosquito. Introducing

the normalized parameters S = S/ Ny, 1 = I/ Ny, R = R/Ny, A = A’/ N;,
S, =S,/ (B/jr,)and |, =1,/(Bf uy)}, equations (1a) to (2b) reduce to
a3

: === A - yptyS- (un +8)S - (32)
. dt
&
dl
5t = 7Sty = (pn + 8 +0) , (3b)
95: M —(un + )R (3¢)
dt
and
dl
il AUREE TR (3d)
where -
bAn(B [ uy) 4a
¥ h N 7 m (4a)
and
_ bAUN (4b)
v = Ny +m

The dynamical equations for A and S, are not needed since S+I+R+A=1and S, + 1, =

I. The requirement that Ny be a constant leads to the condition that the birth rate, 4 is equal to
the death rate, 4, .

2.1 Equilibrium States

The equilibrium states are obtained by sernting the RHS of equations (32) to (3d).to zero.
Doing this, we get two equilibrium states, the disease free equilibrium state, E;= (8, 0, 0, 0)
where

S = _Hh (5)
Hn + 6 ' :

and the endemic equilibrium state, E, = (S' . 1 ,R' R I;,) where
S . Y n * HnXo (6a)

Xolrn + upM)

I- Hvbny(Xog = M) (6b)
rvl(rn + #aM)
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R- _ “yl(Xy - M} (6¢)
yyM{yn + #aM) '
and
Foay = #aXe - M) (6d)
(rn + #nXyp)
with )
¥
M = Hn * 5 (7a)
Hn
and
X - Y nt v (7b)
# oy gy + & + 1)

2.2 Local Asymptotical Stability

The local stability of an equilibrium state is determined from the Jacobian
{gradient) matrix of the RHS of the set of differential equations evaluated at the equilibrium state,

2.2.1 Disease Free State

For the system defined by equations (3a) to (3d), the Jacobian matrix evaluated at E 4 is the
4 X 4 matrix given by

- (up +6) 0 0 -rniM
0 —{uy + 5 +1) 0 rni M (8)
o] r - (un +6) 0
0 Yv 0 - Hy

- Diagonalizing this matrix, yields the following characteristic equation;

e R Mo w12l <0 (9)
The eigenvalues are |

A= - (fn +9)
and

—{an +5+r+#v)iJ((M#h +1) ~ 1,)% +4u, My, "")“XM'Q'

B > 10)

For Xg < M, the square root will be less than (g, +6+r+ Hy) . This means that all the
eigenvalues will be negative; leading to the disease free state being locally asymptotically stable.

4]
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2.2.2 Endemic Disease State

The characteristic equation for the Jacobian matrix evaluated at the endemic equilibrium
state, given by equations {6a) — (6d), is

£ A+ py + SN+ AR +BA+C) =0 (an
where
A = Holrn + u4nXg) + o X (7o + 4nM) + Yoy (12)
4 n *+ HnM n *+ X HyXg
B o HAnryrn(Xe = M) o pnlre + uaMN uiXg + rorn) |
Xo{rn + upM) Holrn + HnXe) (13)
(yhxo(r., + phM)](a.,n,(xo - M)J
(rn + #nXg) (rn + upM)
and
= M
T 19

The real parts of the eigenvalues are negative when the coefficients A,B and C satisfy the Routh-
Hurwitz criteria, [7] i.e.,

i. A >0
ii. C >0 (15)
and

iii. AB > C.

Looking at equations (12} to {14), we see that conditions i. is always satisfied. Conditions ii. and
iii. are satisfied when Xy > M.[To see that condition iii. is satisfied when Xg > M, we note

" that the cross product AB will be the sum of positive terms. Given the sum of positive numbers is

greater than any individual number, we have AB > ,u'h{/ufxo + ¥n¥v} (this being the
product of the first term in A and the second term in B). Dropping pe Xo in the bracket, we see
that f4nyny is larger than ghypyy (1-M 7/ Xg), which is C. We thus have AB > C.] This
shows that if Xy > M, the real parts of all the eigenvalues of the Jacobian evaluated at the

endemic state are negative, Thus the equilibrium state E, (S‘ . 1 . R , l;,) given by equations
{6a) - (6d) is a locally asymptotically stable state.
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3 Discussion
3.1 Basic Reproduction number

For a disease to be capable of invading and establishing itself in a host population, the basic
reproduction number R, must be greater than one. If Ry < 1, then every successive generation
will diminish in size until its number approaches zero. The basic reproduction number for a

particular ng:wth can be determined by direct observation of the growth pattern, If ¢, is the first
doubling time of the epidemic in a human population, then

R = in 2
° [(,, <o, “]

whers 4 and & refer to the inverse life time and recovery time of the human. The average
repreduction number for the 1990-91 dengue fever epidemic in twelve cities in Brazil was 2.03
(14]. This number means that each infective person infected 2.03 other people. Koopman et
al.,[15] found the number to be 1,33 for the dengue fever epidemic in Mexico in the same year.

The different moedels for disease transmission have yielded expression for the basic
reproduction number. These expressions have provided insights into the control of the various
diseases. One of the first expressions obtained was

2
R, = B, A.m (16)
MY
where m is the ratio between the mosquito population and the human population. Based on the
epidemiological data, Molineaux and Gramiccia [16] estimated R, to be 80 for the malaria

epidemic in northern Nigeria. The implication of this {each infective person infects 80 other
people) points to possible shortcoming of the model used model the transmission of malaria. We

note that for dengue fever, Ry s close to 2. It was pointed out by MacDonald that the malaria

transmission model did not take into account an incubation period during which the malaria
parasite develops inside the mosquito and during which the mosquito is not infections. Taking
this period into account, MacDonald obtained a new expression for the basic reproduction
number
Ry = bzﬂhﬁvm a=#T a7n
HY :
where ,u' and 7 are the inverse life time of the mosquito and the incubation period of the
malaria parasite in the mosquito. Equation (17) points to the fact that if the incubation period is
fonger than the life expectancy of the mosquito, the disease will not be established since the
mosquito will die before it becomes infectious. The appearance of an exponential factor
containing the life expectancy of the mosquito has led to the changes in the strategy of control
malaria, exterminate the mosquito during its adult state and not in it’s the larva stage.
Looking at the conditions (given in sections 2.2.1 and 2.2.2), which made the disease free
state or the endemic state, the stable equilibrium state, we obtain the following conditions
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bzﬁvlghthT(B.l :uv) < 1]

py(Np +m) 2 (uy + 6 + 1) py +8)
for the equilibrium state to be the disease free state. If however,

b2ByBnunNy (B py) > 1
Ho(Np s m) 2 (up + 6 + ) py + 5)

e
then the endemnic steady state is the equilibrium state. We can therefore identify the LHS of the
two inequalities as being the basic reproduction number, i.e.,

Ry = b2B8yBntinN(B/ a,) o (18)
Ay(Ny +m)2(uy + 8 + 1) gy + 6)

If the susceptible humans are not divided up into juveniles and adults, there is no need for the
parameter &, the rate at which juveniles mature into adults. Setting & = 0, expression (18)
reduces to the expression for the basic reproduction rate obtained in [7]. The modification to R,
we have introduced to taken into account the presence of an age structure is similar to the one

introduced by Esteva and Vargas in [9] where they looked at the changes arising when both a
vertical and horizontal mode of wransmission of the dengue virus to the masquitoes are possible,

3,2 Numerical Studies

The main effect of introducing an age structure into the model is change the definition of the
basic reproduction rate. Using the values of the parameters similar to those used by Esteva and

Vargas ( 4, = 0.0000457, g, = 0.25,b = 0.5, B, = 0.75, By = 1.0,m = 0.0,r= 0.1428,

N; = 10,000, A = 5,000) , the value of the basic reproduction number defined in 7] would be
10.5. Numerically solving the set of equations given by Esteva and Vargzas (equation (2) in [7]),
we obtain the time development of the susceptibie human as seen in Figure 2a). In figure 2b), we
show the solution to equation (3a), the values of some of the parameters have been changed (i.e.,

& = 0.000183, B = 200, 4, = 0.00003914, &, = 0.0714 and r = 0.0714, with the others

staying the same). Substituting these values in expression (18), we get R = 1.8. In figure 3 and

4, we show the time development of the infected humans and infected mosquitoes for the case of
no age structure and an age structure model, In Figure 5, we plot the number of infected humans
versus the number of susceptible humans in both a no age structure population and an age
structure population. The values of the parameters are such that for both populations, the
equilibrium state is the endemic state. The endemic state is a stable spiral state. As we see, the
period of fluctuations in the number of individuals in each class is much shorter in the absence of
any age siructure. The spiraling is much more severe in the absence of the age structure. The age
structure appears to calm down the fluctuations.
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Figure 2. Number of susceptible humans as a function of time. 2a) Solution of equation (2) in [7] for a SIR
model of dengue fever transmission with no age structure. 2b) Solution of equation (3a) of the present text
for a SIR mode! having an age structure. The values of the parameters are given in the text.
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Figure 3. Number of infected humans as a function of time. 3a) Solution of equation (2) in [7] for a SIR
model of dengue fever transmission with no age structure. 3b) Solution of equation (3b) of the present text
for a SIR model having an age structure. The values of the parameters are given in the text.
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Figurc 4. Number of infected mosquitoes as a function of time. 4a) Behavier in a non age structure SIR
model. 4b) Behavior in an age structured model.
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Figure 5. Plot of number of susceptible and infected humans. 5a) Behavior in a nop age structured SIR
model. 5b) Behavior in an age structured model,
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Abstract

In this paper, we look at the transmission of Plasmodium wivaxr malaria.
_ We divide the host population into 3 categories containing susceptible, infected
i - and dormant population as well as construct the nonlinear differential equations
system. By using the basic dynamical method, we obtain the basic reproduction
number Ry, which is considered by the steady state. If Rg < 1, then the
; i malaria becomes extinct; moreover, if RAp > 1 then the equilibrium point,is
' asymptotically stable that endemic state occurs.

:1 -Introduction

. Malaria is a serious disease endemic in many parts of Africa, Asia, the Middle East,
'Central and South America, Hispaniola, and Oceania [10]. There are more than 3 hun-
jdred million cases of malaria each year,with between 1 and 1.5 million death mostly
among children [7]. Malaria in humans is due to 4 species of the intraerythrocytic
protozoa of the genus Plasmodium,i.e., Plasmodium falciparum, Plesmodium vivaz.
Plasmodium malariae and Plasmodium ovale. Most of the death in childhood is due
to P. falciparum. Recently P. vivar has become an enormous problem.In 1997 P.
+ faleiparum and P.vivez were found 36.7% and 48.9% of infected population in United
states,respectively. In 1997 Luxemburger et al. showed that the transmission rate for
. P, vivaz parasite is higher than that for the P. falciparum.
" The mathematical model of malaria has a long history. Ronald Ross was the first
gperson to created a mathematical model of malaria. His model consisted of 4 dif-
“ferential equations, describing changes in the densities of not only the susceptible
and the infected host population but also the uninfected (susceptible) and infected
mosquitoes [9]. In 2000, McKenzie described the advantages and shortcoming of mod-
eling malaria. He stated that models help us to understand and analyze relationship
among variables. Most mathematical model presented so for describe the dynamic
‘of P. falciparum malaria infection [6|.Because of the increaséd incidence of P. vivax
"infection, we are faced with the need to model the dynamics of P.vivez infection.
The progression of P. vivaz malaria differs from P. falciparum in that a patient can
die from P. falciparum but does not die from P. vivaz infection. Also a person who
suffers from P. falciparurn will recover from the disease {if he does not die from his

277
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illness); a person who is ill with P. vivaz infected will suffer relapses. The P. vivaz
is induced into blood circulation in the sporozoite form by the bite of an infected
female mosquitoes of the genus Anopheles.The sporozoite will then migrate to the
liver. The sporozoites separate themselves into 2 groups. The first group are the
merozoites which ipvade the blood cell and produce the illness. The second group
are the hynozoites “which lay dormant in the liver. When the patient is weak, the
hynozoites will transform themselves into the merozoites and reinvade the blood cell
and reproduce the sickness. These relapes can occur up to five years after the first
infection [2]. A mathematical model for P. vivaz transmission should take this into
account,

2 The Mathematical Model

We begin the formulation of the model by dividing the host population (total V) into
3 groups; susceptible (S}, infected (I ) and dormant (Dh) population. The dormant
population can move to either the infected or susecptible class. The latter occurs since
malaria does not confer permanent immunity to further infection. We assume that a
susceptible mosquitoes when biting a person in the dormant class will not reinfected

dN.
the person. We also assume that the number of mosquitoes is constant (—d—ti = 0).The

rnosqultos population (total NU) is separated mto 2 sets; the uninfected (susceptlble)
(S,) class and the infected (I,) class. Ny = S, + I, + D, and N, = S, + I, are ,
respectively, the total human and vector pOpulat1on at time ¢t. The model is a,ssumed
that newborns in both population are uninfected.

The time rate of change of any state is equal to the number entering into the state

minus the number leaving the state. The dynamic equation describing the density of
host population are then

di = ANp+ (1 - a)r 1Ih + 'r3D,.1 (7;11':, + #h)S; (1)
% = YLy S + 12D, — (11 + ), &
dih = ar @, — (r2 + 13 + un) D, (3)
and %\% = (Yn — pn) Ny )

where all parameter in the model are assumed positive; A is the natural birth rate of
host population; w is the natural mortality rate of human population which will be
the same for all classes; r7 ! is the mean life time for the parasite to remain infectious
in the human; e is the percentage of individuals leaving the infected state and entering

dormant state; rp is the relapse rate; r3 is the recovery rate. The transmission rate
for malaria is given by
. B
Tn

 Nu+p

epw
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Iwhe_re b is the specie-dependent bitting rate of the mosquitoes; p is the population
of other animals the the mosquitoes can fed on and 3, is the probability that the P.
vivaz is passed on by the mosquito to the human. If there is no the dormant state
(Dr) and ro = 0, the model! is reduced to the transmission model for P. falciparum.

The rate equations of mosquitoes’ population are

g

ds,,

2 = A= 7,0S, ~ mS, (5)
ar, . ,
_d'TU = ’71:th1; - ,‘U’UI'U (6)
dN, ' .
and -—C-E-r-A—u,,Nv (7)

whefe A is the recruitment rate which is not related to the mosquito’s birth rate A,.
The: ‘mosquitoes lay eggs which give rise to the larvae stage of the mosquitoes. Only
- small number of the larvae will grow into the adult stage. This number depend on
the carrying capacity of the environment and not on the number of eggs laid at (2].

We assume that the total number of humans and mosquitoes are constant, N, =

. S + 1, W+ D and N = .S' + I We now introduce the normalized variables S, =
3; Ih _D, s, Iy
! A f;,, = Ny D =N, — 8y = A and [, = m The domain of acceptable solution

is given by

1= {(ShrImDh:SmIUNO < Sha-[h;Dh)Sv,Iu < 1}

The dynamic equations can now be rewritten as

dsS
—5 = A+ (L= Nl +73Dn = (s + a) S (8)
dl
4 "d—: = YLy Sk + r2Dn — (r1 + pn)ln (9)
dD
—dti = aryly — (rg + ra + pn) Dy (10)
as, .
dt = Hy — FYHIth - P"vsu & (11)
drl,
and i YolnSy — puly (12)

7

where yn = *rh‘; and v, = Y,Nn. We use Sp+ I+ Dy =1 and S+ 1, =1 to
' dSh dl, dDy

reduce the number of differential equations from 5 to 3 since el —«(—d—t— + 5
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dS, dl,
and % - We t}}us have

dl,
v = YJu(1 = In = Dp) + r2Dn — (71 + pn)1n (13)

¥ dD
d—th =arify — (ro + 73+ pa)Dr (14)

dr.
and d—; = ’?’th(l - I‘u) — poly (15)

2.1 Equilibrium State

Setting the RHS of (13)-(14) to zero and solving for the 3 variables, we gain two
equilibrium states; the disease free state Eg = (0,0,0) and the endemic state E; =

ary Yo Ry~1 .
IT, Dy, IF) where D} = ——— I, I = ———— I} and I} = with
(_h h ) h T+ T3 + s h '7UI€+P'1: h 4] RO
ar -7
M=1+ il + 1(yn = 72) and the basic reproduction number is found to
Yh Yal{re + 73 + pn)
be given by
YhYuv
Ry = — TS . (16)
T —_———————— e
HylT1 T Hh ro + 73 + bn

Examiniting the expressing above, we find that physical values of I;, D} and I} are

possible when Ry > 1. When Ry < 1, the epidemic state is not possible. This leaves
the disease free state as the only possibilily.

2.2 Locally Asymptotical Stability

The local stability of the equilibrium state is determined by the Jacobian {gradi-
ent) matrix evaluated at the equilibrim states. We find its eignvalues by solving the
determinant equation det |J — AI| = 0 where

—(r1 + pn +1nly) re — Yol (1~ I} — D})
J(I}:,D;,I;) = TGy _(T2+7‘3+.“Lh) 0
(1l —13) Y — (Yol — )

The equilibrium state is stable if the real parts of all the eigenvalus are negative.
The trajectory of the state towards this equilibrium occurs when two of the eigenvalues
are complex conjugates pairs.

2.2.1 Disease Free State

The system equation (4),the gradient matrix at disease free state,Fy, is given by

~{r1 + fn) T2 “h
J(0,0,0) = ary —(ro+r3+pn) O
Yo 0 — My
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The charectesistic equation is found that is A% + a1 A% + agA + a3 = 0 where

ay=r; + 7o+ 13+ 2t + Ly
ag = (1) + pa)(ra + 73 + pn + o) + pu{re + 73 + pa) — Ya7 — ani7T2
ag = po(T1 + pa){r2 + 13 + pr) — YaYe(T2 + T3 4+ pa) — T4,

The real parts of eigenvalues will be negative if a; > 0. Two of the eigenvalues will
be conjugate pairs if a3 > 0. We see that this condition is satisfied if R < 1.
2.2.2 Endemic Disease State

The characteristic equation for the gradient matrix evaluated at the endemic disease
state is given by

M4+ a3 A% +agh+ag =0 (17)

* where

| ay =711+ 7 —i—'f":;—i—?,uh—i—,u.v—f'(’)‘a'&-f-’)f,,)I,’l
02 = (r1 + pn +YrTp )72 + 73 + tn) + Yo ln + o) + (T2 + 73 + 1) (Yo Iy + fo0)

(L= L)1 = Iy = D) - ari(rs + L)
ag = -det(J)

The root of equation (17) will have a negative real part when a; > 0. We find that
¢ this is always true if Ry > 1. We have a stable spiral mode if ap > 0. When ay < 0,
+ but a; > 0, the trajectory will be a stable star mode.

| ’ * »
, 3 Discussion

_! 3.1 The Basic Reproduction Number

The basic reproduction number ,Rp, is defined as the number of secondary infections

+ produced by an initial infect [7]. MacDonald (5] defined Rq for P. falciparum malaria
i to be

Ry — ma?byboe T (18)
ur
| |
| where m is the ratio of mosquito to post population density; b; is the transmission
of the infectiousness from an infected human to a mosquito; by 4s the transmission
of the infectiousness from an infected mosquito to a human; p is the daily death
of the mosquito; T is the parasite’s developmental period in the mosquito; r is the
recovery rate in human and e #7 is the probability that the mosquito survives the
developmental period of the parasite from the initial infection to become infectious.
MacDonald concluded that changes in the mosquito death would have most effect
o Ry. Here we are interested in the effects of the relapse on the transmission of
P.vaviz malaria. We find that Rg increase as the relapse rate increase.

»
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Fig 5. Initial behaviour of the proportions Iy and Dj.The parameters are the same as in Figure 3

There is a threshold parameter Ry and the disease can exist in the epidemic state if
and only if Ry exceeds one. The disease-free equilibrium exists and is globally stable
if Rg < 1. The endemic equilibrium is a stable spiral state.
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Fig 1. Diagram showing graph of Ro against Ju where pp = ggzhemir1 = 0.76;72 = 0.5;r3 =
0.001;a = 0.84; py = 0.25; v, = 0.1428; v, = 0.5

We plotted Ry again I, In figure 1,we can clearly see that the proportions of
infected mosquitoes vary with the basic reproduction number. When Ry is below
30, a small change in Ry will lead to a large changes in Ij. However for high Ry.
the increase is at a slower rate. Reducing the density of the mosquitos’ population
will not have a significant effect in the endemic regions where the basic reproduction
number is large (Ry decline as the density of the mosquito decline)

3.2 Simulation

We have numerically solved equations (8) — (12) using a computer. The program was
run for different sets of initial conditions. The steady state solutions are the same.
We have formed the endemic steady state solution to be unique and globally and
asymptotically stable. We have pick set of the values of the variable appearing in the
expressions for the equilibrium states to be [, = 0.5, D), = 0.25 and I, = 0.00001.
For case of Ry > 1, we formed that the endemic equilibrium would be locally and
asymptotically stable. Numerical simulation confirmed this result.

Sh va Time

Sh

0.00 —————— T
o 625 1250 1875 2500
Time ‘
Fig 2. Initial behavior of the proportions S, and D, with time (days).The parameters are r7 =
0.000007; @ = 0.65;r3 = 0.005; ry == 0.91; uy, := 0.25; 7y, := 1.95; and~y, = 0.25;
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Tv vs Time
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a 625 1250 1875 2500
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Fig 3. Initial behaviour of the proportions It. with time (days).The parameters are the same as
Figure 2

ih v Time
D.0060
0.0045 ~
g 0.0030 | Ih
A
0.0015 -
0.0000 —T T —
o] 625 1250 1875 2500
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Fig 4. Initial behaviour of the proportions [, with time {days).The parameters are the same as
in Figure 2
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THE EFFECT OF MIGRANT WORKERS
ON THE TRANSMISSION OF MALARIA

N. Kanyamee!, Y. Lenbury! and I. M. Tang*

- it Department of Mathematics and * Department of Physics
Faculty of Science, Mahidol University, Rama 6 Rd. Bangkok 10400, Thailand
*Institute of Science & Technology for Research & Development
Salaya Campus, Mahidol University, Nakorn Pathem 71730, Thailand

Abstract

In this research, we model the transmission of malaria in the movement of
population by considering a system of nonlinear differential equations in the
Susceptible-Infected-Susceptible (SIS) model. The human popaulation is di-
vided into a host population {in community) class and a migrant workers class.
We analyze the behavior of our system. The conditions for equilibrium are ob-
. tained by locoking at the conditions for zeros in a third degree polynomial. By
8 considering the standard dynamical method, the percentage of infectious mi-
grant worker is used as an adjustable parameter. Numerical simulations are

N i used to illustrate the results for supporting our theoretical data.

1 Introduction

\ Malarla is a serious acute and chronic relapsing infection to human[14]. It is trans-
‘ rmtted to human by biting of mosquitoes in genus Anopheles. Four types of protozoa
l:l spec1es (strain) belonging to the genus Plasmodium, namely P.falciparum, P. vivasz,
P.malarige and P. ovale, cause an infection. The World Health Organization esti-
mated that thete are over one million child deaths per year in sub-Saharan Africa,
300-500 million cases of malaria per year and more than two billion people are at risk
throughout the world[13].
The first person who attempts to construct a mathematical model of the dynamics
, of malaria transmission was Ronald Ross(9|. His model consisted of a few differential
‘equations to describe changes in the densities of susceptible and infected people and
mosquitoes. He found that for any given set of malariological circumstances some
minimum number of mosquitoes, above zero, was needed to keep transmission go-
ing. If number fell below, the disease becomes extinct. After Ross demonstrated
that malaria are transmitted by mosquitoes, he stated [8] that To say that a disease
depends upon certain factors is not to say much, until we can also form an estimate
. as to how largely each factor influences the whole result. Recently, McKenzie[8] had
pointed out that models can be powerful tools for integrating information from dif-
ferent disciplines. In 1950, Macdonald [6], extended the model by introduced a layer
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of biological realism (infection rate) to the model. He studies the influences of the
mosquito malaria-infection rate. The Ross-Macdonald model is used to analyze equi-
librium state for malaria in term of the influence of the mosquito malaria-infection
rate on the human infection rate and of the human infection rate on the mosquito
infection rate. Other advance models about malaria transmission have been intro-
duced. In 2000, A. Kammanee, N. Kanyamee and I.M. Tang[3| have introduced a
new model for the transmission of P.viver malaria. The population is divided into
4 classes by considering the possibility of relapse. In the present work, we use some
parameter and introduce a migration factor from this model.

The incidences of malaria have increased in many regions in the world and in area
which people thought was disease free[7]. One of the important factor that leads to
the malaria transmission is the movement of migrant worker due to the poverty. The
spread of disease is enhanced when population move from that place to the others.
In Luxemburger (5] study, a town located on the western border of Thailand, reported
that in the area adjacent to Burma there are significant population movements. This
movement was thought to be a major factor in the regional spread of multi-drug
resistance. There are many evidences in other regions in the world supporting this idea
[13]. At the beginning of the 1960’s malaria had been eradicated from Tajikistan, but
it reappeared an endemic in the 1990’s in the area bordering Afghanistan. Laboratory-
confirmed malaria cases increased from 175 in 1990 to 2400 in 1994, mainly from the
southern border areas. The appearance of malaria in the United Kingdom was due to
the infection being brought in from abroad. Of the 1,887 malaria cases in the United
Kingdom, 704 occurred in people who, while living in the UK, traveled to visit family
in their country of origin. In Cambodia, about 2.5 million people have malaria. 26%
of the population is considered to live in areas at risk of malaria transmission. The
most intense transmission occurs in the forested areas along the Thai border and in
the northeastern part of the country. In this study we are interested in the effect of
migration in the malaria transmission. The identification and understanding of the

influence of those population movements can improve the prevention measures and
malaria control programs.

2 The Mathematical Model

In our study, we construct a simple model for malaria transmission. We assume that
the human population and mosquito population (NVy/) are constants; resulting birth
and death rates are the same. The total population is divided into two populations, a
host population (N7} with a total population of a migrant worker populatlon (Nw).
The host population is divided into two subclasses, susceptible (S') and infected
(I Yhost population. The migrant populatlon is also divided into two subclasses that
are susceptible (S, ) and infected (I, )worker population. In the standard transmis-
sion model for P. vivaz [3], the model has 4 subclasses with no migration term. We
consider the effect of migrant workers by adding the migration term into the model.
The mosquito (vector) population is also divided into two subclasses, uninfected (sus-
ceptible) (S) and infected (I,) mosquito population. Since malaria does not give a
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permanent immunity to further infection, we allow the individual in an infected class
to reenter into the susceptible class, with rate r, the rate at which they loss their
immunity.

The flowchart of the disease is shown in the figure below. We assume that the
workers migrate in and out at constant rates. The infectious migrant workers enter
the country with percentage p. The time rate of change of any class is equal to the
number entering into the class minus the number leaving the class. .The migrant
worker population moves out rom country with rate «, the reciprocal of the time
migrant workers stay in the country. A is the recruitment rate of mosquitoes. B is
the recruitment rate of migrant workers. A is the birth rate among host population.
We assume that the migrant worker population stays long enough to reproduce. g,
is the natural death rate of human and g, is the natural death rate of moguitoes.

WATRTSARSS Lo L T 1 S B S0 TR

]

AN, | Susceptible host Tnfected host
R S S Ir S~
“ W v
A Suscepsible Infected
— mosquite mosquity  |——ally
* +—] g . I
‘ H, v
il ' 4 '
Co . A
i ' Susceptible Tafected
' worker N worker H,
o (1-0F 5! I, L a

o e

The dynamic equations for this SIS model with migration is described by the flow-
chart are

; dj = ANg + 7l =3, 1,5 — S’ (1)
ar .. '
— =ML = (1) (2)
dS:ﬂ I o ) i
= (L=p)B +r1y ~ 1L Sy’ — (un + )5S 3)
de" [ !
and el pB + 7, 1,5, — (pn + a + 1)1, (4)

' For vector (mosquito) transmitted disease, <y, is the unrenormalized rate of trans-

s
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mission of malaria parasite from mosquitoes to humans as shown by Esteva and Vargas

[2] and [3]

L b )
Tn = Nr+ Ny, +m
where species-dependent biting rate b of mosquitoes is the average number of bites per
mosquito per day; m denote the number of other animals available as blood sources
and B, is the transmission probability that parasite passed from vector to human and
continue to thrive in the human.
The time rates of changes of the mosquito population are given by

S = A= TS, LS S, )
dr,,
and  Zt =y, IS, + 7,18, - (7y -

where 7, is the unrenormalized rate at which the mosquito becomes infected with the
malaria parasites once the mosquito has bitten an infected human and it is given|2]

’ bﬁv
’YU - Ng +m (8)

where 3, is the transmission probability that parasite passed on an infection from
human to vectors.

When the total population of each group is constant, we normalized the variables

by dividing by N, Ny or N, (N, = ‘—L";"B?{, N, = j%), i.e., the proportions S =
S I S, I, s, I,

— =5, == —4t—.ly==— 5. = g =

Nt Nr B/(un +a) Bf(pn + ) Alpy A/

Since we have S+ 7 =1, 5, + I, = 1, and S, + [, = 1, only three of the six
variables will be independent. Picking the three to be [, I, and I, we have

dl
< =l =) = (4 7)I (9)
arl.,
¢ = Pl + o) +nlo(l = Lu) ~ (un + e+ 1) (10)
dl, Na
and _'Tv-[(l Iy )+7‘u ) w(l )"'P-UIU (11)
dt NT

The domain region A of biological interest is given by

A= {(S!I?Sw1I‘IU!S‘lI1I1J)|O S S)IJS'LU!I’w:S'U':Iv S 1)0 S S+I S 1’

0<Sp+71,<1,0<8, +1, <1}, (12)

This domain is positively invariant under the flow induced by the six equations, as
- the vector field on the boundary does not point to the exterior.

-
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2.1 Equilibrium points of the model

We use the standard dynamical modelling methods to analyze vur moael. The equi-

librium points of our system are obtained by setting the RHS of equatlons {9) to (11)
to zero. The equilibrium points are given by:

Ath‘u
= —_— 13
Yolv + pn + 7 (13)
+ a) + vl
_ plentad+n (12)
Yody +pn +a+r
N,
Yol + 'Yv(N_w)Iw }
and [, = N X (15)
vuI-+-7u(P;”)Iw + po
T

Substituting Eq.(13) and (14) into Eq. (15) , Eq. (15) can be rearranged as a cubic
equation in [, i.e.,

byI3 +boI2 + by, + by = 0 - (16)
lln
‘where
Ny
- . by = 'Y}%.'Yv + 'Yr%%(’ﬁ“) -+ nguuv
T
' N, - Ny,
b = YY(pr +a+7)+ v (=)p(pn + @) + re (== ) pn +7)
N Nr
Ny
+  Ynpeo(pn + &+ T) + Yoo (n +7) ~ iy — ”rﬁ'ru(ﬁ;)
Ny
by = 'rv(-N—T)p(#h +a)(pn + 1) + po(pn +7){pn + o+ 1)
N, N,
— Yol + o + 1) = YaYe (= )p(itn + @) — v (=) (k + 7)
Nt Ny
Ny,
and by = _7u(ﬁjf)p(ﬂh +al{pun + 1) (17)

Denoting I} as the solutions of Eq. (16}, we have a nonzero equilibrium state exists
if at least one solution of Eq. (16) is real and positive. This will happen when either
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() by < 0,b3 >0 b2 > 3byby,and 0 <0
or (ii) by > 0,63 <0 and 2 <0
or (iii) by > 0,b3 > 0,45 > 3b1b3,and Q< 0

. 1 . Q.11
or (iv) (54—1711,,(9191532‘53 — 27b3by “‘25’%)4'(2)2)“
(e (Obrboby — 27624 — 268) — (H3)E > 22 sna@>0  (18)
43 L R A 3,
where 4 1 4 9
Q= Efblbg - 2_7-5353 + ﬁbgbz; - 551525354 + b783.

Proof of these conditions is given in the appendix.

If any of the above conditions are met, then one of the solutions of Eq. (16) will - -
be real and positive. Calling this solution I, the equilibrium state will be

E:(S*:I*}S* I* S* I*)

wTwrrur Tty

where I is the solution of Eq.(16),

I T, I p(pn + a) + 1,
i+ pn+r Y oy IEtpupta+r

(19)

S*=1-1I*,8; =1—-1I},and S; =1~ I (Once it has been established that a
positive real solutions of Eq.(16) exists, numerical method can be used to find it).

2.2 Stability of the equilibria

The local stability of the equilibrium points can be determined by linearizing the
system (Eq.(9) to (11)) about the equilibrium point (I*,I%,I:). The eigenvalues
are found by diagonalizing the Jacobian matrix or det |J — AT| = 0 .This gives the
Jacobian matrix

| Iy = (pn + ) 0 V(1 —17)
J(I*, I:u, I,:) — 0 “")’}LI:; — (,U'h + @+ ?‘) ’Yh(l ;V_I.:,)
: V(11 [ i —YoI* = Yo ()0 — 1
Yol ) Y(F - L) Y Yol o — ¢
Computing this matrix and noting
. 1
Wi, +{pn+1) = I;_.,E
Yly + (e +a+7) = p(#h+?3+’yhf"
Ny
N Yol® +’Y1J(_N—)I:u
and Y I" + (=)0 + e = L , (20}
Nr I
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we get the following characteristic equation

Mo e d+e3=0 (21)
{ﬁvher"e _
N,
’ . * ‘UI‘ U—_—lif:u
L e = 7h‘[:+(p(”h+a)+7h'[v))+(7 TRy )
AR £ Iz I
i q ' N,
: . o L
l +a +'Y I‘u ’Y N w * * Nw *
e L (Y (B S (R oA
w v T
| ' ' N.
* ‘UI* 'u’_w 1:;
‘ B 7h1$(p(#n+a)+"mfv) Yol Y NTI )
o e plis o) + yaly) . Ny 1
C:'nd 3 = I*( I Wyl +'YUNTIw
. I Ny . . 4+ a) + y LF '
N S o Yo L L S B L S Y e G e AN (22)
I NT Iw

The eigenvalues are the solutions of (21) will be negative real part when the coef-
ficient ¢, ¢o, and c3 satisfy the Routh-Hurwith criteria[l], i.e,

cy >0 (23)
¢y >0 (24)
and ¢jcz > c3 (25)

We see that the first condition is always satisfied hence we only need to consider
conditions {24) and (25) to establish whether the equilibrium point is locally and
asymptotically stable.

3 'Discussion

In this section, we performed some numerical simulations to illustrate the results of
our model. The numerical values of the parameters were picked so that conditions
(23} to {25) and (18) are satisfied. The numerical program was written in Fortran
to solve the set of Eq. (9)to (11). Using the parametric values in unit of year, v =
0.27,v, = 0.7, pp = 1/60, p, = 15.0,r = 0.16, @ = 0.2, Nt = 100,000, NV,, = 50,000,
and N, = 2,000,000. At time ¢t = 0, the following initial conditions were used as
I(0) = 0.45, I,(0) = 0.6, and I,,(0) = 0.5 where the other variables are obtained from
§=1-1,8,=1-1,,and 5, =1—1I,.

The general behavior of the model is shown in figures 1 to 5 where the numerical re-
sults are plotted in time (year) versus the normalized populations. Figures 1 to 4 show
the initial and long time behavior of human populations plotted on the same graph
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when p increases from (1.00005 to 0.5 and 0.95 respectively. The equilibrium point is
given by E = (S§*, 1,5} . I, 5;, 1) are (0.999999, 0.00000125, 0.999971, 0.00002929,
0.999999, 7.35882x1077), (0.989033, 0.0109673, 0.708703, 0.291297, 0.992744,
0.0072557), and (0.979614, 0.0203857, 0.550844, 0.986384,.0.0136164) when p in-
creases from 0.00005 to 0.5 and 0.95 respectively. In Figure 1, we see that when
infected workers first introduced into the community for small values of p the suscep-
tible worker population is rapidly rising to 0.999971 and infected worker population
is declining to 0.708703. In Figure 2 where p is set to be 0.5, the susceptible worker
population keep on increasing but at a rate smaller than previously. When p is 0.95,
we see in Figure 3 that the normalized infected worker population is higher than the
normalized susceptible worker population whereas the normalized host population has
the same behavior with a smaller change. Figure 4 represents the long-term behavior
of the normalized human population. At first, they change but as time changed they
become stable for a long time period (year). Figure 5 represents the behavior of the
normalized mosquito population. It appears not to change as we increase p but it

actually does. In conclusion, the higher percentage of infected workers affects high i

level of infected population and small leve] of susceptible population.

p=0.00005

Fig 1. Initial behaviour of the human proportions 5,7, Sy and [, with time (years) when p is
0.00005.

p=0.5

Fig 2. Initial behaviour of the human proportions S, f, 5y, and I, with time {years) when p is 0.5.

« Wy
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Fig 3. Initial behaviour of the human proportions S, I, 8y and I, with time (years) when p is 0.95.
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Fig 4. Long-term behaviour of the human proportions S, I, Sy, and I, with time (years) when
p increases from 0.00005 to 0.5 and 0.95 respectively.
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Fig 5.. The behaviour of the mosquito proportions Sy and I, with time (years) when p increases
from 0.00005 to 0.5 and 0.95, respectively.
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Appendix
Diving Eq.(16) by b;,we get

FUDN =17 4 el +anll 403

ba bs by
where ay == —,ap = —, and a3 = —

. Since by > 0 and by < 0, a3 < 0. We have[11]
bl b] bl

I_lim fj)=o00 and f{0)=a3<0

Given the above, there is a cutting point I} 5 € [0,00) at which f(I},) = 0.We,
however, require at least one positive real root for I in our domain, I} € [0,1].
For cubic equation, we have two possibility when f(I)) is large where I} is large
(f(I2) — oo as It — o00).We begin by differentiation f(I7). Doing this, we get

£ =8 + 218 + ay

The zeros of this equation are located at the extrema of f(I;) and are at

. —2a; + /462 — 124, 1 1
I; = 6 : =—§a1:t§\/a§—3a2
. . 1 1 7 1 1
t.e, Iv,c] = _‘gal + g a% —3az = —gal + ‘3'VA
. 1 i 1 1
a"’?‘d I:,c-gZ“EQI_EVQ%_SGZZ—:‘O"&]HE-VA

case 1: all roots are positive real

Since f(0) = as, all roots would not equal to zero. In this case, both turning points
are positive real so we need

. 11
Iv,62:—§a1—3\1a§—3a2>0
a1 <0 and —a3>+/a?—3a; and A >0

a? > a? — 3a, a? > 3ay
ap >0

The conditions for f(I}) to have at least one positive real root are a; < 0,ay > 0
and a? > 3as.

case 2: two negative and one positive real roots
In this case, we separate the behavior of turning points into 2 cases.
case 2.1: one turning point is negative and another one is positive. We need

-k o
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2 _ 3 -
v/ a1 ag > —a1

a; > 0 and —3a: >0
as < (O

iz

In this case, A is always positive since ap < 0. The conditions for f(i}) to have at
least one positive real root are a; > 0 and az < 0.
' case 2.2: one turning point is negative and another turning point is negative or
zero. We need

a;>0 and a?>a®—3a; and A>0

as > 0 a§>3a2

t The conditions for f(I}) to have at least one positive real root are a; > 0,a2 > 0
and af > 3.
IMoreover (4] since f(I;.,) > f(0) > 0 and f(I]

f. 1 Q*zf('ucl)f( ucz)

)< 0so

u,Cy

1 4 1

QF = ~2—%a3 27&?% + 27a1a3 3010203 +a3 <0

| b by by
By using a; = —-2-, ay = —, and a3z = —, * becomes
bl b] bl

' 4 4 2

Q= —bhb— b2b —b3by — —bybobsby + b2b3.
| 57 1% T g7t g7z 3 174

Conditions (i) to (iii) in {18) are proven.
For case (iv), complex case, the possibility to get at least one positive real root

is only the case for one real and two complex conjugate roots. From mathematical
handbook[12], let

9ayay — 27a3 — 2a3
%

.; S=YR+ V@R, T=VR-VP+R

The conditions for f(I}) to have at least one positive real root are Q3 + R? > 0

and § +7T > %al.

2
-2 1  R=

1 - 1
Q@+ R?= 55(270,2 27a2a2 + 9atay — a%) + e —(81a%a3 — 486a1a2a3 — 36atas
+27%a2 +108ala3 +4a%) > 0

4 1 4 2
Q*+R?= 5792 a3 2—,{&%&% + —2-'-7—0.:]%0.3 — 3010203 +a2>0
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this is the same as Q7 so condition Q3+ R* > 0is ¢ > 0. By substituing a; =
1
Z—z,ag = %:i, and a3 = b the condition S + 7T > 3N becomes (W(gb]bgbg —
1 1 1
27b3bs — 263) + ($)1)¥ + (55 (9brbaby — 27030, — 203) ~ (93 )i > 2
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Abstract—The influence of age structure in the human population in the susceptible-infected
recovered (SIR) model used to describe the transmission of Dengue hemorrhagic fever (DHF) is stud-
,  ied. The human population is separated into an adult class and juvenile class with the transmission
of the disease being different in the two classes. Two equilibrium states are found and the condition
K for stability of one of these states, the disease free state, is established. The stability of the endemic
gtate of this model is discussed. A simplified version of the model, one in which no adults become
sick, is introduced. The conditions for the stability of the endemic state of this latter model are de-
termined. Numerical calculations show that age structure in the simplified model reduces the periods
of oscillations in the susceptible human population, the infected human population, and the infected
mosquito population and the tightness of the spiraling into the endemic equilibrium state. (© 2003
Elsevier Science Ltd. All rights reserved.

Keywords—Disease transmission, Dengue hemorrhagic fever, Age structure, SIR model.

H 1. INTRODUCTION

Mathematica.l modeling of disease transmission has a long history. In 1911, an epidemiology model
for malaria transmission was developed by Ross [1]. MacDonald (2] later added a layer of biological
realism to the model by providing careful interpretation and estimation of the parameter, which
should go into the model. McKenzie [3] has pointed out that the utility of a2 model depends not
as much on how well 2 mathematical job has been accomplished but on how well a particular
question has been translated. If one is interested in disease transmission, it is imperative that

it
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