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both Japan and Japanese living abroad would become terrorist tar-
gets.” In response to the mailborne anthrax terronist attacks in the
United States,! the Ministry of Health, Labor and Welfare of the
Japanese govermnment has formed a working group on protection
against bioterrorism in December 2001, and has started preparing
mass production of vaccine against smallpox for 10 million civil-
ian persons using less neuropathogenic tissue culture freeze-dried
vaccine with LC16m8 strain.® The Ministry has alse begun to pre-
pare vaccines for first-line health care workers in case of small-
pox bioterrorism. The Self Defense Force personnel who are serv-
ing in peace-keeping operations in the Middle Eastern countries
have already been vaccinated.® Although the Minisiry has
announced a contingency plan for a possible outbreak of smallpox
in Japan,” detailed information and guidelines are still lacking
when compared 1o the ones produced by the CDC. Although the
Japanese government prepared its plan using much from the
CDC, unlike CDC, it has neither given the scientific justification
in their policy for amount of the vaccines necessary, nor provided
the reason why post-exposure vaccination should be carried out
within the four days after exposure. Because the Japanese govern-
ment has not made it clear to the public its policy and intention
regarding the smallpox vaccination, the public until date remains
ignorant and thus unprepared.

In the face of many unknowns, several mathematical epidemi-
ologists have challenged the presently used models for assessing
public health interventions including the vaccination policy
regarding the survival and spread of smallpox,''>"** or for esti-
mating its ransmissibility using past epidemiologic records, *'*
Models may be conceptualized as thought experiments, and are
extremely useful tools when physical experiments are impossible

to perform due to time, monetary, practical, or ethical con-
straints.”. The purposes of this study are to simulate the possible
scenarios which could arise from a bioterrorist attack of introduc-
ing smallpox into Japan, and to describe the possible outcome of
different nationwide vaccination policies based on the hypothesis
on residual immunity in the populiation. This would allow the
Japanese government to impose its original vaccination policy,
and determnine what rew epidemiologic study is needed.

METHQODS

Mathematical Model

The analysis presented in this paper is based on a deterministic
mathematical model for epidemic which could predict the epi-
demiologic outcome while simultanecusly evaluating the effect of
any specified control strategy on smallpox. The model is a modi-
fication of the SEL/R model,” which separates the population into
the classes of people who are susceptible (S), exposed (E), infec-
tious (/), diagnosed (), and recovered (R). The model is
described by a set of ordinal differential equations which are
based upon specific biological and intervention assumptions
about the transmission dynamics of smallpox (Figure 1). We firsi
separate the susceptible population (5) into three age groups
according to the expected immunity:” (Group A} represents those
who have never been vaccinated {54) i.e., born after 1977, and
who constitute the proportion (7-x-y) of the total population,
{Group B) represents those who received only primary vaccina-
tion (8a) i.e., born between 1969-1977, and is denoted as xN, and
(Group C) represents those who have received both primary and
revaccination {(Sc) i.e., born before 1969, and is denoted as yN. A

Figure 1. The transmission dynamics of the smallpox taking into account the impact of different residual immunity and interventions.

Here: S4. S5 and Sc represents the proportion of population susceptible among Groups A (born after 1977), B (bom in 1969-1977), and C
(born before 1969), respectively; £ represents the proportion of untraced Jatent individuals: f the proportion of the population infectious:
J the proportion of infectious isolated; R the proportion of recovered and death.
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certain proportion from each population groups (A, B, and C) are
assumed to be effectively protected by present vaccination strate-
gy, and denoted as p4, ps , and pc. A smallpox infection among
the susceptible population {Sx. 53, and Sc) firstly begins with a
non-infectious incubation period (E), which constitute the latency
period. It would be followed by prodrome with non-specific
symptoms, and by an overtly infectious (/) and symptomatic
stage, characterized by a pustular rash. By this time, most of
infections would be apparent and be diagnosed (/). The patients
\\Ivould 't'hen either slowly recover or die (R).* While infectious,
the infected patients can transmit the disease to other susceptible
individuals at a rate dependent on the basic reproduction number,
Ro.* There are currently three possible public health interventions
for interrupting the transmission of the virus. These are (1) vacci-
nating those who are at risk or may have already bezn exposed,
(2) quarantining certain proportion of those who are known to
have been exposed and therefore may be infected but are not yet
il {see Appendix), and (3) moving infectious individuals (f) into
isolation after being diagnosed (J}. We assume that each suscep-
tible makes { contacts per day with an infectious person. Among
the known contacts (in S4. Se, and Sc), some would be infected
with the probability of 3 per contacts (and enter into £) and (I- #)
remnains uninfected and susceptible. Untraced infectious persons
would recover or die after ¢ y 1)~ days. Apparent infectious per-
son would be diagnosed and isolated with the mean daily rate &
{and enter into J), and recover or die { ¥ 2) ™' days after isolation.
Because isolation can never be perfect, we estimate that those
who are isolated also contribute to the generation of newly infect-
ed cases. Therefore, relative measure of reduced risk among those
isolated () is multiplied to J. These processes can be modeled
using an approximately parameterized set of differential equations
[1] as given by:
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Because isolation measure is not usvally undertaken in the carly
stage of the epidemic (the stage of which is given by S4+Sp+5¢ =

_ Nand f(E(t), i), Jrop = (0. 0. 0), where N is the size of the popu-

Jlation in which the cpidemic occurs), f¢2) at the initial attack with-

out the effect of quarantine would be given by:
U~ | (- pis 0+ (1- - pSs O+ (1 -0-pIScO}- 1)) 2]

Therefore, the growth of infectious person at initial stage will fol-
low Malthusian model as follows:

BE{(1- pAS40)+ (1~ v - pp}Sa (D) + (1 —@2— pciSc(0} -
I(U=I(0)e[ {{(1- 05, 01+ (1~ v - pdSs (O + (1 —@0- pciSc 1 Yllf 3]

From the second generator approach,” we obtain the following
expression for the basic reproduction number, Ro:

Ry= {BN{(1-p) (1 =x=p) + (L —v—ppix + ([ -w-pcy}

1 én 4]
X{awl * y;_.(6+v.)}

A description of the other principal parameters in the model and
of their assigned value is presented below.,

Parameter Values

Table 1 contains the parameter values for our baseline case.
Assuming that the biological variables do not differ much from
those of past epidemics, we use the values given in previous epi-
demic modeling studies'™"'** for possible scenaric analyses. The
infection rate f#{ is chosen and fixed so that Ro = 6.87, which is
derived from an estimate on the order of 4.52 to 10.1 estimated in
the previous study that have invelved calculation of Ro.* Because
our purposes here are to draw crude pictures of the possible
smallpox bioterrorist aitack and describe the impact of residual
immunity, we performed an analysis based on a single value of Re
(although we have varied parameter assumption in sensitivity
analysis for assumed residual immunity and initial attack size dis-
cussed below). These types of analyses on the impact of public
health interventions are beyond the scope of this paper. Such
studies have aiready been undertaken elsewhere.""*-4 Therefore,
our sitnulation itself in this paper excludes the effect of quarantine
(see Appendix, where we formulated the model incorporating the
effect of quarantine). We assume that the pattern of contact is lin-
carly related to the population size so that every infectious person
will pass the disease to exactly Ro susceptible individuals simujta-
neously within an incubation period of { ¢)™' days. From this
assumption, {N denotes the daily number of contacts in the pop-
ulation. In addition, we use a singie value of Re throughout the
epidemic that represents the posi-detection scenario so as to csti-
mate the natural course {without interventions) of the epidemic
aithough the transmission rate is likely to decrease after the epi-
demic is detected and announced. Although homogenous (or
free} mixing is not an accurate description of the actual popula-
tion interactions, free mixing usually leads to larger epidemics
than nonrandom mixing.® In addition, we assumed homogenous
mixing because smallpox infections as caused by a bioterrorist
attack would not necessarily accumulate in a small number of
limited locations. We start the bioterrorism scenario with an entry
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of 10 initial cases into a population of 1,000,000 people, with
enough population density to give the more than necessary critical
proportion of the population, as our baseline case. It is assumed
that one million people with a certain population density is a typi-
cal representation of a population of one ward in an urban area in
Japan (i.e., Setagaya ward of Tokyo has a population of 815,000).
It is somewhat unrealistic to expect the population at the prefec-
tural or national level to be at risk because it would not be possi-
ble to have 100% of this population to come into possible direct
or indirect contact with the disease within the short time period of

concern. We have therefore considered a scenario of an epidemic
in a city or ward sized population, such as the one of Sctagaya.
We first simulate three possible scenarios for different propor-
tion of people whose residual immunity still exist. in the first sce-
nario, based on the hypothetical long-lasting immunity in Yapan
estimated using latest study in India,™ we assume that approxi-
mately 30% of Group B and 90% of Group C (with population
size of 1.05 X% 10* and 6.01 X 10%, respectively) will still have pro-
tective immunity against smallpox. The proportion of people with
immunity in Group B (v ) and C (w) would thus be set as (.30

Table 1, Parameter values for transmission dynamics of smallpox.

Parameters Description Baseline Values Referrence
i The probabtlity of transmission per contacts B{=426 *a
{ The daily number of contacts per capita *a
The proportion of exposed person among Group A
P4 ' L 0.00 *b
who was effectively protected by vaccination
The proportion of exposed person among Group B
pe . Lo 0.00 *b
who was effectively protected by vaccination
e The propoﬂion‘of exposed person amo‘ng F}roup C 0.00 *b
who was effectively protected by vaccination
o '_Thc a?'erage rate at which latent individuals become 0.0685 day" 3
infectious
5 T.he mean daily. rate at which infectious cases are 0.95 day” 3
diagnosed and isolaied
yi The percapita rate for recovery and deth 0.116 day" 27
¥2 The percapita rate for recovery and deth after isolated 0.132 day* 3,28
7 Relative measure of reduced risk among isolated cases 0.i0 16,29
x The proportion of Group B population 0.195 19
¥y The proporticn of Group C popuiation 0.601 1%
h . lati . . . .
v The proportion of pf)pu ation with residual immunity 0.30 19.24
among Group B estimated
Th i f lati ith residual i i
© e proportion of population with residual immunity - 0.90 19

among Group C estimated

*a: The infection rate f3{ is chosen and fixed so that the basic reproduction number becomes 6.87.
*b: Projected epidemic curves (baseline case) given by simulation ignored vaccination.
Discussion for these parameters are given in text,
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and 0.90, respectively. Because Group A consists of only those
who were born in 1977 and thereafter have never been vaccinat-
ed, no one in this group will have the protective immunity. For
the second scenario, we assume that half of estimated population
still possesses immunity ( v =0.15, w=0.45). 1t is believed that
loss of immune protection might contribute to the epidemic.' For
th‘_'e third scenario, we assume that no person posscss protective
immunity ( ¥ =0, @=0). To make the differences between those
three scenarios clearly visible, we assume that there is no public
health intervention except isolation in all three scenarios.

“We then consider the impact of different levels of vaccine dis-
uibutions for the three age groups (A, B, and C), which would
become crucial if nationwide mass-vaccinatior is required (level
III). By estimating the optimal condition in order to prioritize, we
géneralizc the condition with simple mathematical formula so that
it can b:'; applied to other communities having different age disiri-
bistion. | Finally, we estimate the total amount of smallpox vac-
cines needed in Japan using a peneralized formula. In this study,
the total number of people in the population is assumed to be con-
stant during the epidemic. The background mortality rate is
assumed to be negligible over the time periods examined.

Sensitivity analysis

Because model parameters regarding the proportion of the popu-
lation in Groups B and C with residual immunity ( #, @) and ini-
tial attack size (/{Q)N) possess the most uncertainty, a sensitivity
analysis comparing the reproduction number is performed for dif-
ferent settings of them. Firstly, we compare the sensitivity of the
reproduction number for either v or ®, and then varied both. In
three of the comparisons, both v and w are varied from 0 o 1.0
separately. When we vary both of them, we multiplied the relative
reliability, which we define as a variable from 0 to 1.0, to our
assumed immune proporton { v = 0.30 or w= 0.90). As for the
initial attack size, we analyzed the reproduction number by vary-
fng IfQ)N from 10 to 100,000 cases. A hundred thousand is select-
ed as the maximum number of initial cases because it would be
10% of the total population. Whatever the way of introduction
would be, we consider it is unrealistic to assume much more num-
ber of initial cases in our assumed ward-sized community.

W

RESULTS

The result of a simple scenario analysis is seen in Figure 2. It
shows ‘the probable dynamics of the smallpox epidemics under
different conditions of residual immunity. The results are given
for up to 50 days after the onset of epidemic. It is unrealistic to
estimate for longer period of time because one would not expect
the health policy and control strategies as well as social reactions
to remain static over longer periods, Without any public health
interventions and protective immunity, expenential growth of
daily number of new cases would occur. The point prevalence
(here denoted as the number of infectious individuals) would
:lexceeé 500 persons by the 33rd day after onset of epidemic. If the

half of estimated immune population in Groups B and C still pos-
sesses immunity, the incidence rate (=rapidity) of smallpox will
be lessened, but the trend of exponential growth would not cease
without any interventions. On the other hard, the daily number of
new cases would be in relatively controllable number if parts of
the Groups B and C were perfectly immune as hypothesized. It is
notable that trend of increase would still be observed without
interventions. The difference in the prevalence between a popula-
tion which had no immunity and the one which had the expected
imimunity at 50th day would be approximately 405 folds.

If a proportion p of the population is successfully immunized,
the critical proportion of the population to be immunized (pe-),
which is needed to attain the eradication,” is given simply by:

Peri =1 - 7§0— 5

Approximate estimate of the vaccination coverage (the degree of
herd immunity) needed 1o eradicate smallpox is known to be in
the order of 70 to 80%." Here, we separate the susceptible into
three age groups based on their possible residual immunity. Based
on this assumption, the condition 1o break the chain in the person-
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Figure 2. Dynamics of a smallpox attack with the basic
reproduction number Ro= 6.87.

The number of infectious smallpox cases according ta the protec-
tive (residual) immunity in Groups B (born in 1969-1977) and C
(born before 1969), v and & . Simulations were performed with a
time-step of 0.1 days.
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to-person transmission of smallpox is given by the equation [4):

{1-pa) (= x -y} + (1 - b= pg) x + (1-0 - pcly < Rio 16]

where x and y are the proportion of Groups B and C in susceptible
population, respectively. Population of the Group A can be repre-
sented as (/-x-y)N. If the hypothesized level of immunity were
perfectly realistic {such as our baseline case, v=0.30 and w=
0.90 described in Table I), the prioritization in order to achieve
the most effective vaccine intervention can be calculated by:

fipl =1 —x-y) pa+xpe+ypc
=0.294p, + 0.105ps + 0.601p¢

According to Arita’s assumptions,'” which he calculated from
another study carried in India,” the optimal distribution of vaccine
priority should be based on the population without immunity:

mg mp mc=(l-x-y): (l-v)x:(l-w)y

169:17:14 (8]

where ma4, ma, and mc are the ratio of the population who have
not been immune based on residual immunity by Group A, B, and
C. When we assume that the total amount of vaccines would be
constant (for the purpose of comparison of immune population 1o
be covered), we can transform these conditions into the ratio of
proportion in need of vaccination by adjusting for the number in
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The conditions here are expressed as the proportion of people
who needs to be vaccinated in each age group. Based on the equa-
tion [6]. the optimal distribution of vaccine priority (the amount
of vaccines) should be:

vi:vgive;84:4:12 [10]

where v4, va, and vc are the amount of vaccines needed by Group
A, B, and C. Because we have set Ro = 6.87, into egn. [6] and [7].
the minimum coverage and amount required to cause the small-
pox epidemic to settle down in each age group is,

Pa27421% v, =218,160
pa = 2.65% vp = 2,783 [11}
pc=859%  ve= 51,605

The total amount of vaccination (¥) should cover at least
vatvetwve = 272,557 persons in this scenario analysis. This can be
calculated from:

Vevs+vsg+ ve (12}
={pa(l-x-))+pex+pcy} N
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Figure 3. Sensitivity analysis for uncertain parameters.

The reproduction number under {(a) varied proportion of the population with residual protective immunity as well as relative reliability for
immunity among the population in Groups B (bomn in 1969-1977) and C (born before 1969), (b) different initial attack sizes from 10 to

100,000. The total population size was fixed at 10°
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-'Approximate coverage should be more than 27.3% of total popu-

lation in cur scenario analysis, while it woutd be necessary to
cover 85.4% if we do not take immunity into account. If it
becomes necessary to carry out nationwide mass-vaccination, we
:would need vaccines for between 27.3 and 85.4 million people
dependmg on the different policies. Because the number does not
take efficacy of the vaccine into account, the actual coverage
might be greater than is given here.

Figure 3 shows the results of sensitivity analysis. The reproduc-
tion number changes linearly related to v ,w and I(G}N.
Comparing the proportion of the population possessing residual
}mmunity between Group B and C, the reproduction number by
'varying Group B is more sensitive than C to the proportion of the
immune population. Although the reproduction number increases
as the relative reliability declines for both v and 4, its increase
Seems rather small compared to drastic change in ®. The repro-
duction number will also decline when inittal attack size increas-

“es. However, compared to the change of the reproduction number
'bn the order of 2.4 10 6.9 in Figure 3 (a), the varying interval in
Figure 3 (b) is limited such as from 6.1 t0 6.9

]

) DISCUSSION

Two important conclusions can be drawn from our assessments of
the impact of immunity on possible smallpox epidemic in Japan.
First, it demonstrates that the crude size of the potential epidemic
could be greatly affected by the possible residual immunity within
'the population. Depending on the actual protective immunity,
huge differences in smalipox incidence among the vartous popu-
lation groups might be observed. Secondly, it is possible to deter-
‘mine how the optimal levels of vaccination should be when a
nationwide vaccination becomes necessary, which is based on the
fimmune status of the individuals. Therefore, if we could formu-
ilate a prioritization scheme for vaccination, which is based on the
immunity of the individual, the total amount of vaccines could
turn out to be much lower than the estimate given by the equal
distribution policy.
‘ Despite the problems of uncertainty with the real epidemiologic
data of bioterrorism, a simple dynamic model still gave reason-
able simulations of the smallpox dynamics. Because transmission
bmemial varies from community to community, we performed a
sensmvny analysis according to the residual immunity and initial
attack size for determined Ro, which was within the range of pre-
“cise estimate. Because initial attack size itself does not largely
affect the transmission potential, the size of epidemic would be
linearly increase according to the initial attack size in further sim-
ulations based on our assumption {mostly it originates from
assuming homogenous mixing). Although the results of a long-
iasting protective effects of smallpox vaccination is still based on
theorctical analysis™ with certain assumptions, the impact of
residual immunity on the size of epidemic can clearly be demon-
strated when we examine the natural course of epidemic (without
any interventions). Because mass-vaccination measures greatly
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affect the transmissibility, the rapidity with which the smallpox
epidemic spread would largely be lessened by the presence of the
residual immunity. The national policy to achieve optimal distrib-
ution of vaccination should therefore be formulated on the basis
of residual immunity among its population. This might affect the
longevity of the epidemic as well as how fast it spreads. The con-
tribution of residual immunity to the probability of controlling
smailpox outbreak can be described by equation [6]. It might be
possible to estimate the total amount of vaceines needed (equation
{12]) when smallpox begins to spread into each community, The
model has also been generalized so that it can be used to achieve
the estimation for other communities. The minimum amount of
vaccines that needs to be stocked in order to obtain herd immuni-
ty (or eradicate) against smallpox would be 3.13 times lesser than
the amount needed when no immunity exists. According to sensi-
tivity analysis, the possible trajectories would be sensitive to the
proportion of immune population in Group C. It is considered to
be due to the large number of the population in Group C. The
overall number of vaccine doses would be an underestimate
because efficacy of the vaccine must also be taken into account if
a mass-vaccination was to take place.

Although our study demonstrates the large impact of residuoal
immunity on the epidemic, the real percentage and duration of

“immunity are unknown. Qur study is based on certain assump-

tions. It is therefore critically important to know the status of
immunity in the real population from epidemiologic studies. In
this study, we considered the impact of varying residual immunity
in each age group by looking at the sensitivity of associated para-
meters (v and @ being the most critical). Such sensitivity analy-
ses can help estimating the variability in the size of epidemic and
the reproduction number. One should also note that mass vaccina-
tion before a bioterrorist attack actually takes place is not practi-
cable in the real settings. Although we focused on the impact of
residual immunity and its application for calculating required
stock for vaccination as a possible implication, vaccination would
start after an identification of the attack. There would be & race of
time between implementing of vaccination and the spread of
transmission.”™* For the purpose of practical planning or simula-
tion, it would be necessary to consider these important aspects.
Qur study has several limitations, however. Much needs to be
overcome in order to increase model realism. First, one of the
major problems, which the world must confront, is the uncertainty
and lack of knowledge on smallpox bioterrorism, We believe that
one approach to aovercome the problem of risk management is to
model the potential episodes with mathematical modeling. This
study was conducted with only a few known parameter values,
and our method assumed a closed population with crude results
(in addition, simulations without quarantine). Although we
assumed the introduction of smallpox into an urban community,
epidemic could be different between urban and rural communities
because population density as well as many of the socio-demo-
graphic and behavioral characteristics vary. Thus there are many
uncertainties, It should be noted that many other variables could
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affect the course of epidemic in real world bioterrorism such as
the pattern of contacts. Although we assumed homogenous mix-
ing within the community, the spread in scale-free networks
should further be considered, and intercommunity migration
should also be taken into account. Secondly, the estimation of
total amount of vaccine needed is based on optimistic assumption.
We do not know the actual percentage of residual immunity and
the vaccine efficacy. We need further epidemiologic studies on
immunity as well as on vaccine trials for smallpox. Finally,
although possible outcomes were determined for a certain popula-
tion size, one should not expect the same outcome for cities of the
same size because of regional variances in the age distribution.
Since the formula for the total amount of vaccination needed has
been generalized, each community should be able to calculate the
requirements based on their own epidemiologic records and ape
distributions. In order Lo prepare the various communities, includ-
ing ours, for future possible bioterrorist attacks as well as to facil-
itate the use of mathematical models in policy formulation, we
open ourselves 1o criticisms, comments and suggestions for col-
laborations with others academic who share the same concern.
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APPENDIX

For the purposc of further realistic simulation, here we consider
the effect of quarantine onto our model (using additional five
compartments, Figure 4). We suppose the fraction g, of those who
are known to have been exposed and therefore may be infected
l:;ul are not yet ill, would be quarantined (denoted by the compart-
ment Eq). Those who are in Eq will become infectious after the
latency period {and enter into fg). Some of them would be diag-
nosed and moved into isolation with the mean daily rate & (and
enter into J). The other of infectious and traced individuals are
assumed to recover or die after ( ¥ 3)" days of quarantine. In addi-
tion to ﬁuaramining the infected individuals, we need to consider
uninfected and traced individuals. Among uninfected, (7/-gj(/- 5}
remains susceptible and g(7- /) would be traced and enters into

04, Or and Oc: which represent those who are traced but unin-
fected for each age group. Those who were traced but uninfected
would finish quarantine (released into community again and enter
the susceptible population) o' days after their known contact.
Since we should assume the guarantine can never be perfect to
protect an additional transmission, relative measure of reduced
risk among those quarantined (8) is multiplied to Iy.
Incorporating these assumptions onto equations [1), the transmis-
sion dynamics with the modification of quarantine system can be
described o

jjT‘ =={(1-p{q+B(i-g)) Sati+ Blg+nD+ 0 Qs
Br o {0-v-ppg+BO-9} SaU+ Ol r1)+ 005
e
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Figure 4. The transmission dynamics of the smallpox incorporating the effect of quarantine.

Additional compartments: Eg represents the proportion of traced latent contacts; Q. @ and Oc, the proportion of wraced uninfected
contacts from Groups A (born after 1977), B (born in 1969-1977), and C (born before 1969); /q the proportion of infectious in quarantine.
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In this case, the basic reproduction number would be given by

Ry= {BU-g) N{(1 —p) (1 —x = p)+ (1 —U - pplx + (I +w-pCIy }
1 8 ér 21
X {6+y. * S+v * y2(6+y1)}

This would allow to increase the realism for simuiation.
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Apstract: The dynamical behavior of time delay herbivore-plant-pollinator ecosystem is studied. The time
delay arises from the fact that it takes time for a pollinated flower to develop into a new plant. A dynamical
analysis is used to show thar a stable steady state undergoes a Hopf bifurcation to a limit cycle behavior asthe
delay time crosses a critical value. This prediction is verified by numerically solving the set of first order
differential equations. One linds that the trajectory which is spiraling into the steady state point when T <t
becomes a trajectory into a limit cycle about the state when t> 1.

Kevworps: Herbivore-plant-pollinator ecosystem, time delay, Hopf Bifurcation.

INTRODUCTION

Very recently, Bandyopadhyay, Bhaztacharyya and
Mukopadhyay (BBM)', studied the dynamics of an
autotroph-herbivore ecosystem with nutrient
recycling. They considered both the case where there
is no time delay and the case where there is a delay. For
the former case, they found that when the rate of
increase of the nutrients attained a certain threshold
value, the system became stable. The autotroph and
herbivore populations would oscillate about an interior
steady state point. Below the threshold value, the
system became unstable. Note that in the absence of
nutrient replenishing, the murients would eventually
disappear fromthe soiland the autotrophic state would
go to zero. For the latter case, BBM found thar a
sufficiently large delay in the time needed to convert
de‘}ad organic matter into the nutrients, would cause
the stable state 1o become unstable. Using Hopf
Bifurcation analysis?, they established the conditions
for the switching of the stability.

. Jang®hasstudied the dynamics ofa herbivore-plant-
potlinator ecosystem. Jangs model is somewhat
different from that of BBM. He looked at the roles of
the energetic rewards of the interactions between the
plant and the pollinator and of the specificity of the
pollinatortothe plant. Jang was particularly interested
in how the reduction of the visitation rate of the bee to
the plant caused by the action of the herbivore affected

the ecosystem. A Hopf Bifurcation analysis was again
used to determine the stability of the steady states.
Jang did not include any time delay*® into his model.

The purpose of the present paper is to determine
the effects of a time delay in Jangs model. Unlike the
BBM model, where the time delay should be inserted is
obvious, it is not in Jang’s model. We believe thar it
should be inserted into the term describing the birth
rate of the plant;

klo'uXY

— 1
1+opp’yY @
where X and Y are the bee and plant populations,
respectively; k , number of ovules fertilized per visit of
the bee; ¢, the probability of an encounter between the
flower and the bee, @, reciprocal of the time it takes the
beetoextract the nectar (or pollen);and it , the energetic
reward to the bee when it encounters the flower. This
gives the number of flowers fertilized atume t. 1ithen
takes time for the fertilized ovules to develop into
seedsand fall tothe ground. The number of new plants
that will begin to flower at time t will depend on the
number of ovules that were {ertilized at time t-T, where
Tisthe time delay. In Section 1, we introduce the Jang
model and present some of his results. We put the time
delay into the model in Section 111, and carry outa Hopl
Bifurcation analysis. In Section IV, we present cur
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numerical solution. In Section V, we present an
extension of our model and discuss how it can be used
to provide quantitative predictions for the farmers.

1. Jang's Model.

The herbivore-plant-pollinator ecosystem
considered by Jang consists of three first order
differential equations;

Xsz(}(_)o+Lngﬂz_xy

1+ o’y (2a)
y= Romg@XY ‘“1‘3 (2b)
and I+dou’Y a+
2="2 57 (20)
a+yY

where Z denotes the herbivore population; g(z)
represents theloss in attractiveness of the flower to the
bee due to the damage caused by the herbivore;

mzY

3
a+Y

isthe visitation rate of the herbivore to the plant; m, and
m,, the maximal ingestion rate and the leathopper
maximal growth rate with 0 <m, £ m, Tespectively;‘a’,
the half - saturation constant; &, the maximum per
capita birth rate of the bees; A and 8, the death rate of
the bees and herbivore, respectively; ‘b, the density
dependent regulation constant of bee, and K is the
measure of the diversity of bee to the plant (K=(5,-A)/
b). Inthepresent model, the flower on the plant becomes
pollinated and afterawhile, the plant dies. Thelife cycle
begins again when the seed developed from the
pollinated flower falls off the plant and germinates in
the soil. All of the population classes must be positive
at all times, i.e.,

XD, Y(1), Z{1) 320.

Setting the RHS of eqns. (2a)— (2c) to zero, we obtained

m =K+ M (%)
' b(1+$op’y)
¥= 4 ,m, >3 (4b)
and m, -8
z=2 +§ klkﬂ-*aoz; —a, _kpoK - 4
: m, b(1+¢0pl;)z =+ 1+ ‘t’OPZ; gx) =yl (4}

atone of the steady states (%,7,Z) . To determine when
the state is stable or not, we first diagenalize the Jacobian
of eqns. {2a) to (2c} at the steady state. We then check
to see if all the eigenvalues have negative real parts.
When this happens, the state is stable. Diagonalizing
the Jacobian, we obtain the following characteristic
equation

A+ (p, —s AT +(p, -5, )A+(p, -5,)=0 (5
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where

p, = ¥ +8— bK + 2b% - m,h{F) - k(7 ) + mZh'(H ’

P; = ¥5 — bKS - bKy + 2by% + bKh(¥)m, — Yh(yIm, — 2bh(¥)}¥m,
+2b8% — Yi(Pk,pg(? - Bi(F)k,ug(D + (Fhk,m,pe()

~bKzm, b{(y)+ 5Zm, I'(7) + 2b%zm, h'(F) -z kym pg(E W),

P, = 26T ~ bKyS + bKyh(FIm, - 2byh(P)Tm, ~ (P ug(z)
+YE PRIk, m,ug(Z) - bXsZm, h'(y) 268 Xzm;h'(P
—Bf(y)zk,m,ng(Dh'(F).

s, =g(DX kG,

5, = -bKg(DRK,[(F) + 8g(DX k,f(F )+ 2bg(@DE k[
-g(Dh(¥ X k;m, I'F+KPE Zkym, g (Dh'E

and

s, = 2b3g(FV% &, [ (1) ~ bKdg(DRk [ (7)+2b {F ¥ Zk.m gD W'F)
+bK (D) h() X k,m, [(7) - 2b g() h(F) ¥'k,m, {(F)
-bK (P T Zk,m, gD WD (6)

Equation {35) has negative real roots if and only if
{Theorem 1, Appendix)

P\-$,> 0, P;-8,> 0 and (P,-8,)(P,-S,)-(P,-5.)=0. (7}

When the above conditions are satisfied (xy,Z}, the
steady state will be stable.

I11.Effect of Time Delay, _

Iila. The Stability of E =(X,¥,Z) with Time
Delay.

A time delay in the herbivore-plant-pollinator
system arises because a new flower only arrives after
the pollinated flower develops into a seed, falls ff the
plant, germinatesinto a new plantand then growsinto
the flowering stage of the new plant. To include the
effects of the time delay, we need to replace eqn. (2b)
by

)'( _ kypogl(t - 1)x( -yt~ 1) yy T2
- 1+doply(t -1y a+y

(2b}

The Jacobian matrix for eqns. (2a), (2b"} and 2¢)
evaluated at the steady state point E = (xy,2)is

bK— 265 + ky pglZ ) )
ky g e ™
0 myz )

ky pg@@) =

kopg @ () %
-m; hF Y+k; g3 )% Ky Ye 0T

m,  hiy) -6 (8)

—v~-m I W@P+k g@F G

5
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. Diagonalizing the above matrix, we obtain the following
: charactenstlc equation?®

@ +p1m +P,@+ P, =€ (5,0" +5,0+5,)  (9)

We now suppose that two of the eigenvalues oleqn. (9)
are a pair of complex conjugates
i.e., .= ult) x iv(1). Substituting w. into eqn. (9) and

. separating the real and imaginary parts, we get

u3 --3uv2 +P u2 —p1v2 4+pyu+tpg
i lsluzoos {ve)- slvzcos (v2) +syucos{ve) + sqc0s(ve)}

+25 uvsin(vr)+s, vsin(vr) (10)

and

3u'v-v' +2p v +p,v
1

=e 2suv gos(vr) +s,v cos(vr) —su’ sin(vr)

+5,v sin(vz)~susin{vz)-s, sin(vz)} (11}
where tis chosentobe the Hopf bifurcation parameter.

.For a Hopl bifurcation to occur, three conditions
must be metat thecritical value (z ); (1) u(z ) =0,(2) v(t )
#0and (3)u'(x)> 0 (Theorem 2 Appenchx] Toseeif
the elgenvalues of the Jacobian evaluated at the steady
state point E = (X y,Z) satisfy these conditions, we first
assume that the critical value defined by u(r_} = Oexist.
However, we do not use this condition to find’ 7. Instead
we substitute the condition into eqns. (10) and (1and
see whetheranon-zero value of v(t ) exist.* To do this,
we sz:t u(t ) = u*= 0 into the two equations to get

-plv 1y ps = (s5-5,v 2 }cos(v’ 1,) + 5,v"sin (v" 7.} (12)
V3 pyv =5,v cos(v T,) - (s4~5,v Dsinlv 1) (13)

Squaring the two equations and adding the squares
together, we obtain

L) # *2
VAR Iy e~ 2pipa— s 403 -53)=0
1 (14
i
Letting v, 77eqn. (14) becomes the following cubic
géquation

sm)= n’+dq+dn+d 0 (15)

whete 2 2
d; =p] —2p; —5; (16a)

2 2
dy =Py —2pjp3 —s3 + 25153 (16b)

d. = 2 2
35P3 75 (16¢c)
Forv(t )toexist, the roots of eqn. (15) must berealand
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positive. This can be determined by using the resulis
of the lemma stated in the Appendix. We now assume
that a set of values for the parameters can be found
which satisfies the conditions of Lemma 1.

Next we need to show that for the present u(t), the
following is true

du oe
d (an
T =1,

Thisis done by differentiating eqns. (10} and {11) with
respect to Tand then set 1= 1, Doing this, we get

B E‘i + Cd_v =D {18a)
d7lr=r, drir=r,

—C EE + B d_v =E {18b)
dr =T dr T=Ty

where
B= [—3\'% +py ~sycoslvgTg }— Isv 0sin(\.'otﬂ) + 531:0cos(v0t0)
2 .
-slvotocos(voto) + szvotosm(\-oro )]
= [-Zplvo + 251 veosvgty ) + 54 Tsinlvaty) - slv%tosin(voto
~5y sin(v Ty Y — 55V, g cos(vy Ty )]

D= (slvg - s3v0)sin(voto) + szv%cos(voto)
and

E= (slvg - s3¥y )COS(VO‘EO) - szv%sin(voto} (19

Solving for Ei we get
dr =1,
du BD-EC
— = T (20)
dr B” +C
T=To

where

4 2
BD-EC = V%BVO + zvo(p% ~2py ~ s%)+ (p% -2ppy —s;z,_ +2553)]

Qn
Therefore, we have
2
du [
0 4 2,2 2 2 2
;— = EZ::IB"O +2viipy - 2py — 51 ) +(p5 — 2pypy —&; + 2553l
T

=Ty (22}
Noting that

ds

E= 3112 + Z(p% —2p, - sf n+ (p% —2pipq - s% + 25153)
(23)

where 5 is defined byeqn. (15),eqn. (22) can be written as
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24
du ) V% ds 29
dt =2, B2 +C% dn n=vi

The condition A< 0 in part A of Lemma | requires the
two tuming points of S(11} not be a positive real root of
S(n), otherwise A would be equal to zero. The two
turning points of $(n),g, and g, (eqn. A2), are the zeros

ofeqn. (23). Sincev *2'g, o the following must be true
g§{ 20 25)
n q:\%
Thus ,
du Yo éi
deleas B2 +CZ dn n=v} (26)

and condition 3 of the Hopl bifurcation theory is
satisfied. Therefore the system undergoes a Hopf
bifurcation.

ITIb.Critical Time Delay.

The critical delay time can be found by using the
method introduced by Tam.® We rewriteeqns (12) and
(i3)as

Mcos(v * 7 )+ Nsin(v *1 }=P (27}

Neos(v * 1 ) - Msin(v *t )= Q 27

where
M= 5,-5V? \ {28a)
N= 5V (28b)
P=-PV'?i+P, (28cy
and
Q=-V?+P, V' ) (28d)

Eqns. (27a) and (27b) leads to

M N =P+ Q' =G ,whereG>0. (29)
M and N can be rewritten as

M=Gcecos 8@
N=Gsin 8 €0)]

Thisallowsustodeterminea® & | 0. 2% )uniquely. With
this value of 8, eqns. (27a) and (28b) become

Geos(t,v *)cosf+ Gsin(t, v)sind= P 1)
Geos(r,v *)siné- Gsin{t,v *)cos@#=Q  (32)

or
Geos(t,v*- 0) =P (33a)
Gsin(t,v*- 0)=Q (33b)
From this we get as the critical value
= —i—{lan_l(% )+6] (34)
v
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IV. Numerical Solution.

IVa. Numerical Parameters.

The numerical values of the parameters in the
herbivore-plant-pollinator ecosystem for a given plant
are scarce. Onme has to guess at them since many of
them will depend on which plant we are interested in,
what is the locality (or country) or what time of the year
itis. To gainideas of the range of values the parameters
can take, we look at the Mango tree, even though the
present model is not an appropriate model for this
plant. The model is developed for a flowering plant
which after becoming pollinated, dies. Most Mango
trees exhibit biannual flowering, once between May
and June and again in Decemnber-January. This flowering
is repeated every year for many years. Nevertheless,
we have used the data available for the Mango trees to
be typical of most plants.

Jamjanya” has looked at the increase in leathopper
population in two varieties of mango trees, On-som
and Na thub. He found that leafhopper infestation on
the Na-thub mango tree increased by 270% in a day,
while the leathoppers infestation on the On-sorn mango
tree increased 63% in a day. This implies that m,can
vary between 0.63 - 2.7 day! depending on the type of
Mango tree. Boongird® has measured the probability
thatabee will visita Nam dok mai mango tree in Thailand.
He found o to be 79.55%. In Trinidad, the probability
that a bee will visit the mango is about 21%.% We take
o, the probability of encounter to be in the range 0.21
- 1.0. The extraction rate of the nectar by the bee range
between 0.3 pl/sec in grove and 2.0 pl/sec in pool.'°g,
which is reciprocally related to the speed of nectar
extraction, is set to be in the range 1.93 x 10 - 3.86 x
10-° (pl/day)?. Other studies find that a bee will visit 8 -
10 flowers per visit.!! Since only about 5-75 % of the
flowers are perfect, the number of ovules fertilized per
visit, k , will be in the range of 0.4 - 7.5 flowers per visit.

Thenormal death rate of the bees has been changing.
The French National Bee Surveillance Unit'? has stated
that the death ofthe bees duringthe winter months was
one out of ten in previous years. Now, the death rate
issix out of ten. This means that A isin the range 0.001
- 0.006. For the birth rate of the bees, 8., we assume
that the queen bee lays about 1200 - 2000 eggs/day.
For a typical small hive containing perhaps 20,000
bees,” the birth rate of the bees would be in the range,
0.06-0.1 day”. The estimated values of the parameters
are listed in Table 1.

IVb. Numerical Solutions.

For the purpose of getting an idea of what might
occur, we have set the values of the parameters at:
2 =500,b=1/8, A = 0.0035, k = 3.95, k, = 0.00005,
m,=7.5,m =16,0=0.00003856,0=0.254=0.0111,
n=23and 5=0.05. Substituting the above valuesinto
eqns. (4a}-(4¢c), we get the steady state

&
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Iat_:le 1. Parameter values

?aramazrs Units

parameter range

a no. of flower 500

b 1#bee day) 1/8
1K no. of bee m—a'i,l'
nk, mango/(bee visit) 04-73

[K microliter/visit 22.72-63.63

9 (microliter/day)”! 1.93x107 - 3.B6x10°*
o - 0.21-10
il: 5, day* 0.06 - 0.1
ir day 0.001 - 0.006
1% microliter-! >1.48x10°

day”! 0.0111

d m, mango/day 10.93-910.75

;m, day! 0,63 -27

& day! 0.01-0.05

E(0.637873,16.129,29.4689).  (35)
Substituting the values of (X7,7} given by eqns.
{4a)-(4c) and the values of the parameters into eqn. (7),
we find that the Routh-Hurwitz conditions are met and
the steady state is stable. Substituting the same values
in eqn. (34), we find that the critical value is

1,=1.13 days . (36}

As T crosses this value, the steady state should become
unstable. To see if this happens, we have solved eqns.
{2a), (2b’}and (2c) (for a delay time of 1 day) using the
values of the parameters given above. In Figure 1, we
see the trajectory of the solution spiral into the
equilibrium state, eqn. (35). This would be expected
sincet<T . Wethen changed the value of the time delay
to be 1.13 days. The trajectory is now a limit cycle
(See Figure 2). Aswe have pointed out, the conditions
for the system to undergo a Hopf bifurcation to a limit
cycle are met with the values of the parameters used.
Finally, we pick T = 10 days. In Figure 3, we see
the trajectory spiraling away from the steady state
E(0.637873,16.129,29.4689). The trajectoryinitially
starts at the left face of the cube, heads towards the
steady state and then spirals away from the steady
stater. This implies that the steady state has become
unstable.

To understand why this happens, let uslook at the
biology. A nonzero steady state with 720 would be
possible if a new plant would begin to flower while
some of the original flowers are still present. This
would require that a flower, pollinated at the beginning
of the flowering season, would quickly develop into a
seed. Theseed must thenfalliothe ground and germinate
intoa plant that develops new flowers before the original
flowers dry up and die. This does not usually happen
in nature. Each step in the developmental stage of the
plant takes time. Since the new plants do not usually
arrive until the next year, the delay time appearing in
eqn. (2b') would be one year. Between the period the
time the last flowers of the season die and the new ones
arrive, there would be no flowering plants present.
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leafhopper
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Fig 1.Numerical solution of equations (2a), (2b") and (2c) for
atime delay of t= 1 (i<t ). The graph shows the trajec-
tory in the 3-D phase plane. The motion spirals toward

.the steady state solution E0.637873, 16.129, 20.4680).
The parameters used are: a=500, b=1/8, d,=0.08,
1=0.0033, k,=3.95, k,=0.00005, m=7.5, m=1.6,
j=0.0000386,5=0.25,g=0.0111, m=23,d=0.05

0.5 0.045

mango

15.6 0.8

bea

Fig 2.Numerical solution of equations (2a), (2b") and (2¢} at
the critical time delay 1= 1.13 days. The paratmeters
used are: the same as used for Figures 1. The trajectory
projecied on 3- dimensional phase plane. The motion is
a limit cycle.

leathopper
2

Fig 3.Numerical solution of equations (2a), (2b%} and (2c) for
a time delay of 1=10 (1>t} days. The graph shows the
trajectory in the 3-D phase plane. The trajectory moves
away from the steady state solution. The parame-ters
used are the same as those used to obtain Figs. 1 and 2.
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This would happen if the time delays are greater than
the lifetime of the flower, which we have taken to be
nine days.

IVc. Real Applications.

To see how the present model might be of use ta
the farmers, we have modified the model to more
accurately describe the production of mangos. We
have inserted into eqn. (2b"), the added term @3(t-t ) to
represent the appearance of non pollinated flowers on
the tree at time t . @ is the number of flowers that
appear on day t . We have assumed that the time delay
is six months which is greater than the critical delay
time. Therefore there will be no contribution from the
term given by eqn. (1) ineqn. (2b). Wenowlock to see
what would happen if the farmer has more bees on his
farm. To see this, we have solved eqns. (2a), (2b") and
{2¢) using K values of 1000, 1,500 and 2000. The
values of the other parameters are given on the figure
captions. In Figure 4, we plot the number of flowers
on a single tree that get pollinated each day after day
te. the day the flowers began to bloom. The initial
conditions for the starting day of the computer
simulation, are Y(0) = 0, and X(0) and Y{0} are arbitrary.
Asthe time passes, the number of bees begins to increase
untilit reaches the saturation value K. Onthe 100%, the
flowers bloom. The figure shows that only for a short
period do pollinated flowers get produced. The reason
for this is that only during these nine days are the non
pollinated flowers present. After this period, the flowers
driedup and died. This[gadstoy =0. Wealso see that
the number of flowers that get pollinated increases as
the number of bee increases. The three plots provide
a quantitative measure of how much more mangoes
can be obtained by increasing the number of bees

—
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Fig 4.Number of flowers pollinated per day per tree for K
equalto 1,000, 1,500 and 2,000¢. The number of flow-
ersappearing on day t is F=10,500,000. The values of
the other parameters are the same as used to obtain figs.
1,2and 3.
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available.

Another practice that can be carried out by the
farmer is to decrease the number of leafhoppers.
Sprayinginsecticides or introducing biotogical pests of
the leathoppers to kill them would accomplish this.
The first method would however also decrease the
number of bees unless the insecticide is of a type that
only affects the leafhoppers and not the bees. We
simulate the effects of employing an insecticide of this
type or using the second method by increasing the
value of the leafhopper’s death rate. 'We have solved
eqns. {2a), (2b") and (2c¢) for three values of the death
rate 8 (0.05, 0.07 and 0.09). in Figure 5, we see that
more flowers would be pollinated if the life time
(inversely proportional to the death rate) of the
leathopper were shorten. The time axis is changed so
that it staris at day 100. We see that the flowers are only
pollinated over anine day period (i.e., during the period

107
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Number of fertilized flower
w 0

-

Q0 0T im0 08 fe w07 A8 B 10
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Fig 5.A graph shows the number of fertilized flower per day
per tree for the death rate of leathopper, d, equal 10 0.05,
0.07 and 0.09. The number of fMowers
appearing on day v is F = 10,500,000. The values of the
parameters are: a=300, d,=0.08, 1=0.0035, k =3.95,
k,=0.00005, m =7.5, m,=1.6, [=0.0000386, 5=0.25,
g=0.0111, m=23,b= d,-1, K=1000

the flowers are present on the tree).

Another way for the number of pollinated flowers
to be increased is to increase the number of flowers on
the tree. This could be done by having the rain arrive
at the right titne and or having a new variety of mango
plants that have more flowers. These are however
beyond the control of the farmenr.
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APPENDIX

Lemma 1. Conditions for the Existence of Positive
Real Roots of a Cubic Equation.
Consider the following cubic equation
S(my=17" +d]rf +d,7 +d=0 (A1)

A. ifcither (i}d, <0,d,% Oand d1‘> 3d2, or (i) d,
<0:and A<0 ,theneqn. (Al)has positive simp!e roots.

where
43 _Ltaa 2 4 3 2
A= S(sl)S(sz)=§dz - 57917 5 dydady + —dydy v d3
(A2)
withe, and g, being the two turning points of S(ny) given by

2 2
—a, - i 34, .. -4 +yad -3,

3 2 3

g =

(A3)

B.1fd, 20, the necessary condition foreqn. (A1) to
have no positive
real roots are either

@ 95 <3d,

@ & =3d;

(iii} df -3d, >0 and A> 0, or

i) df -3d, >0 and A< 0,d; >0and d; >0
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Proof of this lemmais found in Khan and Greenhalgh [4].
Theorem 1. (Routh-Hurwitz Criteria). Let x®*bean
equilibrium point of eqn. (A4), and ] be the Jacobian
evaluated at the equilibrium point. Suppose the
diagonalization of ] yields the following characteristic
equation

A+ AR +BA+C=0 . (A6)

The equilibrium state x* will be local asymptotically
stable if the coefficients A,B and C satisfy the following
conditions:

A>0Q,
C=0
and
AB>C . (A7)

Theorem I1. (Hopf Bifurcation). Suppose the functions
F({x}) depends on parameter T € R. The Jacobian will
now depend on the parametert,i.e.,

oF.
- el -
(D)= DxF(x*.T) = axj (=z* 1) i, j=1,2,...n

IfJ(tY hasa pairof complex eigenvalues, A(ta) = u(t} z iv(t)
such that
u('ru) =0,
i v{t)=v*>0
and du
i, ——(t,)=0 (A8)
da

where T_is called a critical value of the bifurcation
parameter ‘7', and no other eigenvalues with zero real
patt exist, the system will undergo a transition toalimit
cycle about the point (x* ).

Prools of this theorem can be found in various
textbooks.?
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The effects of the exposure of the bacterium, Leprospira interrogans serovar canicola to a con-

i stant magnetic field with magnetic flux density from a permanent ferrite magnet=140+5mT

were studied. Changes in Leptospira cells after their exposure to the field were determined on the
' basis of changes in their growth behavior and agglutination immunoreactivity with a homologous
i antisernm using dark-field microscopy together with visual imaging. The data showed that the
| exposed Leptospira cells have lower densities and lower agglutination immunoreactivity than the

" tioms.

division]

Leptospirosis is an acute febrile illness caused by patho-
genic spirochete bacteria of the genus Leptospira (1, 2).
This disease has emerged as an important public health prob-
lem worldwide. The symptoms of this disease can range
frofn mild-flu-like symptoms to severe (often fatal) compli-
cations such as renal and/or liver failure and hemorrhage
{referred to as Weil's syndrome) (3). Most outbreaks tend to
be seasonal in nature and are often associated with environ-
mental factors, animals, and agricultural and occupational
cycles such as rice cultivation in marshy lands. Mammals
such as rats and cattle are commonly involved in the trans-
mission of this disease to humans via direct or indirect ex-
poSure to contaminated tissues or urine (1, 2, 4). Out-breaks
of leptospirosis occur mainly after flood, making it an accu-
pational ‘hazard for sanitary and agricultural workers, as
well as a recreational hazard for humans (5). Some patho-
genic Leptospira species have also been found to be associ-
ated with domesticated animals. For example, serovar cani-
cola (Leptospira canicola) has adapted itself to canines;
therefore, it has become common in many human communi-
ties. Although there has been no report of leptospirosis in
canines in Thailand, there is a great potential for the trans-
mission of the disease between humans and dogs kept as
hotisehold pets, unless one is aware of the disease.

* Corresponding author,
e-mail: scwtr@mahidol.ac th; wiriampo@yahoo.com
phone; +66-2-889-2337 fax: +66-2-354-7159

nnexposed control group. Interestingly, some of the exposed Leptospira cells showed abnormai
. morpholagies such as large lengths. We discussed some of the possible reasons for these observa-

j [Key words: leptospirosis, Leptospira interrogans, magnetic field, dark-field microscopy, immunoreactivity, cell

L. canicola cells used in our study are motile aerobes that
are very thin, flexible and spiral-shaped of about 0.1 pm
width and 6-20 um length. Leprospira cells are difficult to
observe under a light microscope. They can, however, be
observed by dark-field microscopy using wet samples. This
allows for the determination of agglutination immunoreac-
tivity to be determined. The Lepiaspira outer membrane or
surface antigens can be detected through its agglutination
with a homologous (antiserum). The optimal conditions for
its growth and as well, its biology are well documented in
the literature (1, 2). Moist environments with a neutral pH
are suitable conditions for the survival of Leptospira outside
the host. The optimal cultivation temperature is approxi-
mately 20-32°C. In general, Leptospira species are highly
susceptible to adverse environmental conditions such as ex-
posure to dry air, chemicals such as chlorine or iodine in de-
tergents, unfavorable pH (> 8.0 or <6.5), strong electromag-
netic fields and high temperatures (above 40°C).

Magnetic fields (MFs) also affect various biological func-
tions of living organisms, for example, DNA synthesis and

- transcription (6), as well as ion transportation through cell

membranes {7). Almost all living organisms are exposed to
magnetic fields from various sources. The geomagnetic field
on the surface of the earth is approximately 0.50-0.75 gauss
in strength. There have been several studies on the effects of
exposure to MFs and several of these have given rise to con-
troversies over the past decades. The growth rate of the Bur-
gundy wine yeast has been shown to decrease when an ex-
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tremely low magnetic flux density (MFD) of 4 gauss is ap-
plied (8). The growth of Trichomonas vaginalis is acceler-
ated when it is exposed to 460~1200 gauss (9). The growth
rate of Bacillus subtilis increases when exposed to 150
gauss and decreases when exposed to more than 300 gauss
(10). Similar results were reported for Chlorella; an expo-
sure of less than 400 gauss increases the growth, while ex-
posure to 580 gauss decreases the growth rate (11). Several
studies point to the MF as a factor influencing the growth
and survival of living organisms, which vary at different
MFDs (12-15). Other researchers have studied the effects
of MFs on bacteria at the enzyme (16) or genetic (17) level.

To study the efficacy of using magnetic field to control or
prevent the growth of leptospire, we applied MF on selected
Leptospira cells at various intensities and exposure duration
levels. We then detenmined the agglutinating activity of ex-
perimental bacteria using dark field microscopy.

MATERIALS AND METHODS

Pathogenic Leptospira interrogans, serovar canicola was used
in this study. Bacterial cells were grown in the Ellinghausen and
McCuilough modified by Johnson and Harris {(EMJH) liquid
medium (2). The bacterial cells were grown at a temperature of
27%1°C in the dark.

A cylindrical permanent ferrite magnet 5cm in diameter was
placed beside 15 m! culture glass tube (less than | ml apart} con-
taining | ml of a suspension of newly subcultured Leptospira cells
in the EMIH liquid medivm. MF and homogeneity of 1405 mT
(northpole) were checked using a teslameter (Hall effect Teslame-
ter digital, order no. 13610.93; Phywe Systeme, Goittingen, Ger-
many). The intensity of static magnetic field used in our experi-
ments was chosen on the basis of Genkov er al. (9) findings.
Genkov ef al. had used more or less this intensity of a constant MF
to induce the growth and development of Trichomanas vaginalis.
For this type of exposure, no shielding against the natural varia-
tions of terrestrial MF was required, the value of approximately
0.050 mT is negligible with respect to the MF intensities applied.
An experiment using cetls not exposed to MF was simuoltaneously
performed as the control, which was placed at a distance of about
100 cm from the exposed group.

In the absence of magnets, MFD was 0.05+0.01 mT. All bac-
terial samples were exposed 1o MF for different durations, that is,
(control sample), 1, 2, 3, 4, 5, and 6d. After MF exposure, indi-
vidual samples were further incubated for 7 d. Immediately after
7 d of incubation, dark-field micrographs were taken using a CCD
camera to observe cell development. The growth and agglutination
properties using the microscopy agglutination test (MAT) with a
homologous antiserum and immunoreactivity were scored as fol-
lows:

4+ = 100% absence of Leptospira celis from the field

3+ = 75% absence of Leprospira cells from the field

2+ = 50% absence of Leptospira cells from the field

1+ = 25% absence of Leptospira cells from the field
MAT has been commonly used as a diagnostic tool for leptospiro-
sis. This may not be the most reliable test. It, however, is arguably
the most appropriate test for this study. The same set of conditions
and specimens were used in the experiments, which were repeated
twice,

Atomic force microscopy (AFM) and sample preparation
Scanning probe microscopy (SPM) (Digital Instruments Veeco
Metrology Group, NY, USA) was used for AFM surface morphol-
ogy imaging. Images were acquired in the contact mode showing
height contours that highlight the spiral shape and fine surface
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morphology of Leptospira cells. An AFM scanner with hardware
correction for the nonlinearities of the piezoelectric element was
used. The scanner has a maximum xy range of 125 by 125 pm and
a Z range of 6 um. The cantilevers of Si,N,, 125 pm long and 35
wum wide with a spring constant of 0.58 Nm™' were used. To locate
the area of interest in the samples and identify any bacteria, we
used a built-in long-range on-axis microscope, capable of a 5:1
zoom and x3500 magnification. Imaging was carried out at scan
speeds between 1 and 50 um/s. Images were acquired at 256 x256
pixels. A typical imaging session began using 2 built-in optical mi-
croscope and by moving the x-y table to search for bacterial cells,
The AFM cantilever was then moved forward to the surface close
to the chosen bacterial celt.

Each sample was prepared using the method described above. [t
was then dropped on a microscope glass slide and dried in air.

RESULTS

Figure 1 shows the AFM picture of an L. inferrogans sero-
var canicola cell taken with a Digital Insttument Nanoscope
[Ha (Digital Instruments Veeco Metrology Group) in the
contact mode. The image shows a normal morphology of
L. interrogans serovar canicola, that is, the spiral shape. It
is worth noting that AFM usually reveals the actual rough-
ness of the surface of the bacterial envelope. Other types
of microscopy frequently show the surface to be relatively
smoaoth. This technique was also used to observe the surface
morphology of bacterial cells before and after the exposure
to MF. It should be noted that this image does not demon-
strate the rough envelope very clearly. However, it does
show the normal bacterial morphology.

Figure 2 shows some representative dark field micro-
graphs of L. interrogans serovar canicola taken at the loga-
rithmic growth phase (at 1:10 dilution of culture samples)
and for different durations of MF exposure, that is, 0, 2, 3,
and 6 d. After 7 d of incubation, the samples were observed

FIG. 1. Atomic force micrograph (AFM) of Leptospira interogans
serovar canicola taken using Digital Instrument NanoScope 111a in the
contact mode under control conditiens, that is, without MF exposure.
Scan size was 20 wm and scan tate was | Hz. Tt shows a spiral-shaped
leptospire of approximately 10-20 um.

r
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F IG 2. Dark field micrographs of L. inferrogans serovar canicola exposed to MF for different durations. The images were 1aken at the log
phase ofeach experimental culwre sample (dituted 1:10 of original). Bars: 100 um.

under a dark field microscope and images were taken using
a CCD camera. Even though there are some noises in the
unages the inhibition of cell growth could be observed. The
implications of these observations are significant given the
results of other studies (6—17). From Fig,. 2A to 2D, one can
clearly observe that cell density decreased with exposure
time, particularly after more than 3 d. This indicates the de-
crease in growth rate resulting in the decrease in the number
of hacterial cells. This is one of the factors that explain the
lower agglutination immunoreactivity, which indicates fewer

remaining living bacterial cells to agglutinate.

Figure 3 shows the dark field micrographs of aggluti-
nated bacterial cells after reacting with the specific antise-
rum; Fig. 3A shows a complete agglutination (100% im-
muno) and Fig. 3B shows 50% aggiutination (with only one
half of free-living bacterial cells present).

On the basis of the criteria mentioned at the end of the
previous section, the agglutination reactivities of the L.
Interrogans serovar canicola exposed to different intensities
of MF are listed in Table 1 (with longer exposure time, the

FIG. 3. Dark field micrographs of aggiutinated bacterial cells after reacting with homologous antiserum, showing compliete agglutination
(100% reactivity: A) and 30% agglutination with one-half of free-living bacterial cells remaining (B).
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TABLE 1. Agglutination characteristics of leptospires after magnetic field exposure for various durations
duration (d 1:50 1:100 1:200 1:400 1:800 1:1600 1:3200
Exposure duration (d) dilution dilution dilution dilution dilution dilution dilution
0 4+ 3+ 2+ 2+ 2+ 2+ 1+
1 3+ 2+ T+ - - - -
2 3+ 2+ 1+ - - - -
3 2+ - - - - - -
4 2+ - - - - - -
s 1+ - - - - - -
6 NA - - - - - -

* Representive sample of control unexposed leptospires showing a higher MAT titer (1 :1600) than exposed samples for various durations.

NA indicates no agglutination accurred.

Agglutination immunoreactivity
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FIG. 4. Plots of data shown in Table L.

Leptospira bacterial cells demonstrated a lower agglutina-
tton immunoreactivity than that of the reference antiserum
tested. The end point of reactivity was 50% agglutination
[2+]). The agglutination immunoreactivity score decreased
with exposure time of Leptospira cells as shown in Fig. 4.
Comparing the MAT results of control Leptospira cells (3 d
exposure) and those of bacterial cells after exposed to MF,
we found that the latter groups (particularly those with longer
exposure) showed lower agglutination reactivies. These find-
ings may indicate the presence of a lower amount of agglu-
tinin or number (density) of Leptospira cells in the exposed
samples than in the control samples. It should be empha-
sized that the same set of conditions and specimens were

used in the experiments that were repeated twice, and the
experiments yields exactly the same (semiquantitative) re-
sults. The scoring data therefore did not show an error. Once
again, in each experimental setup, it has one control (non-
exposed) group and six exposed groups with different dura-
tions of exposure.

Besides the decrease in the number of Leprospira cells as
the cause of the decrease in agglutination immunoreactivity
as mentioned above, the “denaturing effect” of the antigen-
antibedy reaction may be an other contributing factor to this
phenomenon, which can be explained as follows: Typically,
antibodies are large soluble protein molecules known as
immunogiobins and are produced by B-cells. They bind to
specific antigens in a fock-and-key fashion (lock = anti-
body; key = antigen) (18). Their shape should, therafore, be
specific to particular antigens. When a specific antibody en-
counters an antigen, it will form an antigen-antibody com-
plex through some noncovalent forces such as electrostatic
force, hydrogen bond, van der Waal force or hydrophobic
force. When a change in what of a single atom occurs, the
complex can become unbound. This specificity could be the
underlying factor for the denaturation of the antigen-anti-
body reaction. Under the conditions used in the study, the
motion or transfer of any electrons or ions onto the cell
membrane could induce an electric current. This current
may perturb the other charge particle motion in the cell thus
resulting in the loss of binding (19).

Surprisingly, we observed that some Leprospira cells ex-
posed for three or more days were longer than the control

FIG. 5. Dark-field micrographs of L. imerrogans serovar canicola taken at the same magnification (x200). Control sample unexposed to mag-
netic field; the leptospires have an approximate length of 10-20 um (A) compared with magnetic field-exposed leptospires (B} with some cells

longer than others. Circles indicate individual bacterial cells. Bars: 100 um.
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bacterial cells (see Fig. 5). This preliminary finding proba-
bly indicates that there is some disturbance in cell division.
More experiments must be carried out to examine and deter-
mine the exact mechanism underlying these observed phe-
nomena, Our present explanation for this abnormality in cell
division is based on the following: Like most bacteria and
archaea, Leptospira cells divide symmetrically possibly via
the formation of a septum in the middle of the cell (we con-
sider that binary fission is less likely). For the time being,
we use AFM in the investigation of division-related mor-
phologies. Recent evidence indicates that synthesized pro-
teins dedicated to cell division are assembled between seg-
regated chromosomes at an appropriate time (20). The key
to this assembly is the filamentous temperature exposure
sensitive (Ftsz structural) analogue of tubulin (21). DNA
damage caused by MF exposure induces mutation, resulting
in the abnormal synthesis of F#sZ, which in turn could inter-
fere or stop cell division. Similar to previous studies of Esch-
erichia coli, FisZ appears to induce the earliest (known)
step in cell division. E. coli cells with a mutation of ftsz
caused by exposure to certain conditions do not divide. This
result in the formation of long filamentous cells that can
replicate and segregate their chromosomes (22).

Our finding is at least the first step toward a grater under-
standing of the development of diagnostics, treatment, and
prevention schemes for bacterium and leptospirosis. We
hope that further studies of leptospirosis will lead to this
disease in the near future,
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k| Determining the middle of the bacteria cell and the proper placement of the septum is essential to
. the division of the bacterial cell. In E. coli, this process depends on the proteins MinC, MinD, and

MinE. Here, the lattice Boltzmann method (LBM) is used to study the dynamics of the oscillations
of the min proteins from pole to pole. This determines the midcell division plane at the cellular level,

The LBM is applied to the set of deterministic reaction diffusion equations proposed by Howard et

el to describe the dynamics of the Min proteins. The LBM results are in good agreement with

. those of Howard et el and agree qualitatively with the experimental results. Qur good results
indicate that the LBM can be an alternative computational tool for simulating problems dealing
with complex biological systems that can be described by using the reaction-diffusion equations

" ' PACS numbers: 87.15.Aa

I. INTRODUCTION

‘fCell division or cytokinesis is the process by which a
cell separates into two after its DNA has been duplicated
and distributed into the two regions that will become
the futiire daughter cells. For a successful cell division
to take place, the cell has to determine the optimal loca-
tion of the cell separation and the time to start the cell
cleavage. This involves the identification of the midpoint
of the cell where the septum or cleavage furrow will form.
For Escherichie coli and other rod-like bacteria, evidence
accumnulated over the past few years indicate that the
separation into two danghter cells is achieved by form-
inig a septum perpendicular to their long axes. To induce
the separation, the FtsZ ring {Z ring), a tubulin-like GT-
Pase, is believed to initiate and guide the septa growth by
contraction [1]. The Z ring is usually positioned close to
the center, but it can also form in the vicinity of the cell
poles. Two processes are known to regulate the place-
ment of the division site: nucleoid occlusion [2] and the
action of the min proteins [3]. Both processes interfere
with the formation of the Z ring, which is believed to

"E-mail: wtriampo@yahoo.com; Fax: 662-201-5843

-1-

Keywords: Lattice Boltzmann method, Bacteria, E.coli, Cell division, Min proteins, MinCDE oscillation

determine the division site. Nucleoid occlusion is based
on cytological evidence that indicates that the Z ring
assembles preferentially on those portions of the mem-
brane that do not directly surround the dense nuclecid
mass [4].

The min proteins that control the placement of the
division site are the MinC, MinD, and MinE proteins
[3]. Experiments involving the use of modified proteins
show that MinC is able to inhibit the formation of the
FtsZ-ring {5]. MinD is an ATPase that is connected pe-
ripherally with the cytoplasmic membrane. It can bind
to MinC and activate the function of MinC [6,7]. Re-
cent studies show that MinD recruits MinC to the mem-
brane. This suggests that MinD stimulates MinC by
concentrating it near its presumed site of activation [8,
9]. That MinE is required to give site specificity to the
division inhibitor suggests that MinE acts as a topolog-
ical specificity protein, capable of recognizing the mid-
cell site and preventing the MinC division inhibitor from
acting at that site [10]. Its expression results in a site-
specific suppression of the MinC/MinD action so that
the FtsZ assembly is allowed at the middle of the cell,
but is blocked at other sites {3]. In the absence of MinE,
the MinC/MinD is distributed homogeneously over the
entire membrane. This results in a complete blockage
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of the Z-ring formation and the subsequent formation of
a long filamentous cell which that will fail to divide [8,
9,11,12]. By fluorescent labeling, MinE was shown to
attach to the cell wall only in the presence of MinD [13,
14]. Because MinD interacts with MinC, it is likely that
they oscillate together. This results in a concentration
of the division inhibitor at the membrane on either cell
end, alternating between being high or low every other
20 seconds, so that the period of oscillation is about 40
seconds per cycle [8,9]. MinE is not only required for
the MinC/MinD oscillation, it is also involved in setting
the frequency of the oscillation cycle {11]. Several lines
of evidence indicate that the MinE localization cycle is
tightly coupled to the oscillation ¢cycle of MinD. Recently,
microscopy of flucrescently labeled proteins involved in
the regulation of E.coli division uncovered coherent and
stable spatial and temporal oscillations of these three
proteins [15]. The proteins oscillate from one end of the
bacterium to the other and move between the cytoplas-
mic membrane and the cytoplasm. The detailed mecha-
nism by which these proteins determine the correct posi-
tion of the division plane is currently unknown, but the
observed pole-to-pole oscillations of the corresponding
distribution are thought to be of functional importance.

I1. LATTICE BOLTZMANN METHOD AND
MODEL DESCRIPTION

The Lattice Boltzmann method (LBM) is 2 numeri-
cal scheme evolved from the lattice gas model (LGM) in
order to overcome the difficulties encountered with that
model [16,17]. The LGM or lattice gas automata is a
method to determine the kinetics of particles by wutiliz-
ing a discrete lattice and discrete time. It has provided
insights into the underlying microscopic dynamics of the
physical system whereas most other approaches focus
only on the solution to the macroscopic equation. How-
ever, the LGM, in which the particles obey an exclusion
principle, has microscopic collision rules. These rules
are very complicated and require many random numbers.
These random numbers create noise or fluctuations. An
ensemble averaging is then required to smooth out the
noise in order to obtain the macroscopic dynamics which
are the results of the collective behavior of the many mi-
croscopic particles in the system and which are not sen-
sitive to the underlying details at the microscopic level.
The averaging requires a long time, which leads to an in-
crease in the amount of computational storage required
and which in turn leads to a reduction in the computa-
tional speed. For these reasons, the LBM is used only
when one is interested in the evolution of averaged quan-
tities and not in the influence of the fluctuations. The
LBM gives a correct average description on the macro-
scopic level of a fluid. The LBM can also be viewed as
a special finite difference scheme for the kinetic equation
of the discrete-velocity distribution function. The sim-
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plicity and the kinetic nature of the LBM are among its
appealing features,

The LBM consists of simple arithmetic calculations
and is, therefore, easy to program. In the LBM, the
space is divided into a regular Cartesian lattice grid as a
consequence of the symmetry of the discrete velocity set.
Each lattice point has an assigned set of velocity vectors
with specified magnitudes and directions connecting the
lattice point to its neighboring lattice points. The total
velocity and particle density are defined by specifying
the number of particles associated with each of the veloc-
ity vectors. The microscopic particle distribution func-
tion, which is the only unknown, evolves at each time
step through a two-step procedure: convection and col-
lision. The first step, convection {or streaming), simply
advances the particles from one lattice site to another lat-
tice site along the directions of motion according to their
velocities. This feature is borrowed from kinetic theory.
The second step or ¢ollision is models various interactions
among particles by allowing for the relaxation of a dis-
tribution towards an equilibrium distribution through a
linear relaxation parameter. The averaging process uses
information based on the whote velocity phase space.

Most research reported in the literature is limited to
the LBM for the Navier-Stokes equations {18,19]. The
LBM scheme has been particularly successful in simulat-
ing fluid-flow applications for a broad variety of complex
physical systems and has found application in different
areas, such as hydrodynamic systems [17,20], multiphase
and multi-component fluids [21], advection-dispersion
122] and blood flow {23-25]. Application to complex bio-
logical systems at the cellular and the molecular biolog-
ical levels has been rare.

In the present paper, we propose a LBM to study the
partitioning of the bacterial cell during cell division. This
provides an alternative method to investigate quantita-
tively the division of the cell. We compare our results
with those obtained by numerically solving a set of deter-
ministic coarse-grained coupled reaction-diffusion equa-
tions [26] to demonstrate the validity of the proposed
LBM.

1. Reaction-diffusion Equation Model

We focus on the E. coli bacteria, a commonly stud-
ted rod shaped bacteria of approximately 2 — 6 pm in
length and around 1 - 1.5 pm in diameter. Each E.
coli bacteria divides roughly every hour via cytokine-
sis. We adopted the dynamic model of the compartmen-
tization in the bacterial cell division process proposed
by Howard et sl In the Howard model, dynamics at
the mean-field level are given by a set of coarse-grained
non-linear reaction-diffusion equations. The reaction-
diffusion equations have often been used in biological
applications to model self-organization and pattern for-
mation [27].

1]
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Our starting point is the set of one-dimensional deter-
ministic coupled reaction-diffusion equations used to de-
scribe the dynamics of the interactions between the local
densities of MinD and MinE proteins given by Howard
et al [26]. They describe the time rates of change of the
densities due to the diffusions of MinD and MinE and to
the mass transfer between the cell membrane and the cy-
toplasm. Ba.sed on the experimental results given in Ref.
9, which showed that the MinC dynamics are similar to
those of MinD, we have not written out the equations for
Mir;C. In dimensionless form, the dynamics are written
as .| d

B?TD - Da_;;g =Rp = liL +oaneng (1)
Ba Dd% =-Rp= {228 mns (@)
:%E : BBZZE =Rg= 1—:477;1; —ognpng  (3)
4%’% .—De% =-Rp = —% + oanpng (4)

where' n; is the mass density of particle of specics
5= {D,d,E,e} at time t and position . The first equa-
tion is for the cytoplasmic MinD density np. The second
is for theé membrane-bound MinD density ny. The third
is for the cytoplasmic MinE density ng, and the last is
for the membrane-bound MinE density n.. R, is the re-
action term and depends on the density of the species
ngland on the densities of the other species that react
with species s.D, is the diffusion coefficient. In this pa-
pef‘, we assume that D, is isotropic and independent of
T. IThe constant g, represents the association of MinD
toithe membrane [12]. o, corresponds to the membrane-
bound MinE suppressing the recruitment, of MinD from
the cytoplasm. o3 reflects the rate that MinE on the
membrane drives the MinD) on the membrane into the
cytoplasm. Based on the evidence of the cytoplasmic in-
teraction between MinD and MinE [7], we let o3 be the
rate that cytoplasmic MinD recruits cytoplasmic MinE
for the membrane while ¢4 corresponds to the rate of
dissociation of MinE from the membrane to the cyto-
plasm. Finally, 04 corresponds to the cytoplasmic MinD
suppressing the release of the membrane-bound MinE.
The time scale of the diffusion on the membrane is much
sléwer than that in cytoplasm. It seems, therefore, rea-
sonableito set Dy and I}, to zero. In this dynamics,
we allow for the Min protein to bind/unbind from the
membrane, but not for it to be degraded in the process.
Thus, the total amount of each type of Min protein is
conserved. The zero-flux boundary condition will be im-
posed. This boundary condition gives a closed system

with reflecting or hard-wall boundary conditions.
H y
|
2. Lattice Boltzmann Equation

The dynamics determined by Eqs. (1)-(4) can be sim-
ulated using a Lattice-Boltzmann method having three
one-dimensional velocities. Let f,(Z,:,t) be the one
particle distribution function of species s with velocity
€; at some dimensionless time ¢ and dimensionless posi-
tion £. The coordinate F only takes on a discrete value:
the nodes of the chosen lattice. The nearest neighbor
vectors are defined as

-

0 i=0
=< & i=1 (5)
- i=2

where £ is a unit vector along the ¢ direction. For
each lattice site, we have three states for each species.
Following Ref. 28, the lattice Boltzmann equation for
fo(£,1,t) can be written as

flE+ &6t 4+ 1) - fo(F,4,8) = 0,(F,1,1) (6)

where ), is the collision operator for the species s and
depends on the distribution function f,. The collision
operator {1, can be separated into two paris EQ a non-
reactive term ($¥¥f) and a reactive term (%), i.e.,

e = (VR L qf {7)

In order to relate the results obtained by solving Eq.
{(6) with the solutions of Eqs. (1)-(4), we need to derive
the evolution equations for the moments of the function
fs- The zeroth moment of f,, the total number of par-
ticles of species s at time ¢ and position z, is defined
as

ny(# 1) = Zfs(“t PR IIERR) (8)

For the nonreactive term, Q® we use the Bhatnagar-
Gross-Krook (BGK) approximation with a single relax-
ation time 7, [30]:

AR = L(£,(5,0,0) - f50(5,0,)] ©

where the equilibrium distribution function of the
species f£9(Z%,4,t) depends on & and ¢t through the lo-
cal density and velocity. Here, we use the simple equi-
librium distribution function corresponding to a system
with zero mean flow as follow:
:q = ws,;n, (10)
where the weights w, ; depend on the lattice symmetry
[31]. We can write

& : =10
Wi = { fl — )2 i- 1,2, (11)

where z, denotes the fraction of particles at rest and
can be different for different species. For the reactive
term QF, we use the simple isotropic form [31]

Qf = ws,iRs‘ (12)
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where H, is a non-linear reaction term and depends
on the densities of the reacting species. Thus, it couples
the Boltzmann equations for the different species. The
choice given in Eq. (12) is the simplest choice that can
provide the right macroscopic solution when using the
LLBM (as we shall see later).

To show that the lattice Boltzmann equation is valid
for a reacting system, we employ a procedure called the
Chapmann-Enskog expansion [17]. We first expand the
left-hand side of Eq. 6 via a Taylor series:

fs(f+ ézaia t + 1) - fs(fsi,t)a
o Ofs(E0,1) | 8fu(F4t) 1 ,8%f(,1.1)
- 8t +eé Oz + 3% Oz !
=Q,. (13)

We then expand f, about the equilibrium distribution
function in terms of the parameter e :

fo= [+ (14)
We now assume [29]
a 8
- _- 1
dr - Ec'?:c (15)
a i)
fhall 2= 16
EARA:T (16)
R, €°R, (17)

Substituting Fgs. (15), (16), and (17) into Eq. (13),
we obtain

BfEI(E,4,1) W(E,4,1)
e = -

18
t Oz Ts (18)
to order £* and
ofe(dit) | 8fV(E i)
ot : Oz
1,8 Fe9(F,i,1)
boel g = el (19)
to order €2. From Eq. (18), we immediately obtain
M= 5 4y — 8,
fs (22,1, t) = —TeWs i (20)
0,

Inserting Eq. (20) to Eq. (19) and doing some simple
algebra, we have, to order g2,
n 1, ,8%n
e
Fliminating the e? term by carrying out an averaging
with weight w, ;, we get
Ong .
M

= R (21)

1)3271,,
27 9x2

(1= Z;){rs — = R, (22)

which is the dimensionless wversion of thc imitial
reaction-diffusion equation.

To summarize, we will now implement the numerical
evaluation in two steps

+ Collision step: fu(#,i,t + 1) = fo(#i,t) — L[fs —
f:q} + ws.iRs y

- Streaming step: f,(& + €5,1,£+ 1) = f(F,i,£+ 1)

The boundary treatment is an important issue in the
LBM simulation and advancernent are still being made
[32,33]. Here, we use the impermeable boundary sug-
gested by Zhang et al. [34].

III. NUMERICAL RESULTS AND
DISCUSSION

To demonstrate the validity of the proposed LBM ap-
plied to the Howard dynamic model for determining the
partition of E. coli mediated by min proteins, we im-
plemented the LBM as given in the previous section on
a PC using C programming. In the simulation, we use
the parameters given by Howard et al. The 2-micron-
long bacterium is divided into 250 grids. The discrete
space steps are, therefore, dr = 0.008 um. A time step
of dt = 6.4107° s is chosen. The dimensionless param-

MinDr MinE

Time (reverse)

Space

Fig. 1. Space-time plots of the total MinD (left) and MinE
(right} densities. The color scale runs from the lowest (blue)
to the highest (red). The MinD depletion from midcell and
the MinE cnhancement at midcell are immediately evident.
Times increase from top to bottom, and the pattern repeats
indefinitely as time increases. The vertical scale spans a time
of 1000 second. The horizontal scale spans the bacteria’s
length (2 pm).
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0 Mo . e 10 are in good agreement with those given by Howard et
al. The results, in particular the oscillatory pattern of
o2 09 min proteins, are also in qualitative agreement with ex-
: perimental results [35]. The LBM approach provides an
g oo o alternative fast computational tool to study protein os-
§ a2 o7 cillation. We believe that the LBM is a useful scheme
v ; N for simulating at the cellular level those biological sys-
‘o8 08 tem governed by the reaction-diffusion equations. In a
future work, we will generalize the current LBM so that
% s R T I 2 it can be used to study the effects of the inhomogeniety

x

Fig. 2. Time-average MinD (left) and MinE (right)
densities, < n{x) > [fma- , relative to their respective time-
average maxima as functions of the position x (in pm) along
the bacterium,

eters are Dp = 0.28,Dg = 06,Dy = D, = 0,0y =
128 x 1072, 04 = 512 x 107%,0, = 4032 x 107,05 =
2.56 x 10~%,¢, = 0.028, and o, = 0.027. The relax-
ation time is calculaied by using Eq. (22) and is given
as 7 = Dy /(1 — Z,) + 0.5. The initial number of MinD
and MinE is randomly initialized as 3000 for np and 170
for ng. Each simulation takes 156,250,000 iterations for
10% s of the time division of the bacterium. We test the
system with two possible sets of the rest particle frac-
tion, z, = 1/3 and 2/3, for all species. We found that
2, = 2/3 gave the more accurate result. We now present
some results to show the validity and the accuracy of our
LBM and compare them with the results obtained from
the deterministic reaction-diffusion equations.

In Fig. 1, the space-time plots of the MinD) and the.

MinE concentrations for a cell of length 2 j:m are shown.
They are in qualitative agreement with the simulation
obtained by Howard et el. [26] and are in agreement
with the experimental results. The MinE forms a line
up in the middle of the cell and then sweeps towards a
cell pole, displacing the MinD, which then reforms at the
opposite pole. In Fig. 2, we plot the time-averaged MinD
and MinE densities as functions of position. These are
again in excellent agreement with those given by Howard
et ol [26]. The results in both works are also in excel-
lent agreement with the experimental data of Hale et al.
{15]. The MinE concentration peaks at mid cell and has
minimum at the cell rims, with MinD being virtually out
of phase with MinE.

IV. CONCLUDING REMARKS

In this paper, we have proposed a new LBM approach
to investigate the dynamic pole-to-pole oscillations of
min proteins used to determine the middle of bacterial
cell division. We have developed a numerical scheme
based on the LBM to simulate the coarse-grained cou-
pled reaction-diffusion equations model used to describe
the MinD/MinE interaction. Tt is found that our results

in the intracellular space and the possibility of asymmet-
rical cell division.
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One of the most important. steps in the developmental process of the bacteria cells at the cellular
level is the determination of the middle of the cell and the proper placement of the septum, these
being essential to the division of the cell. In E. coli, this step depends on the proteins MinC, MinD,
and MinE. Exposure to a constant electric field may cause the bacteria’s cell-division mechanism to
change, resulting in an abnormal cytokinesis. To see the effects of an external field e.g., an electric
or magnetic field on this process, we have solved a set of deterministic reaction diffusion equations,
which incorporate the influence of an electric field. We have found some changes in the dynamics of

PACS numbers: 87.15.Aa, 87.17.Aa

the oscillations of the min proteins from pole to pole. The numerical results show some interesting
effects, which are qualitatively in good agreement with some experimental results.

5l Keywords: External fields, Bacteria, £. cofi, Cell division, Min proteins, MinCDE oscillation

1. INTRODUCTION

Cell division is the process by which a cell separates
into two new cells after its DNA has been duplicated and
distributed into the two regions that will later become
the futfire daughter cells. For a successful cell division
to take place, the cell has to determine the optimal loca-
tion of the cell separation and the time to start the cell
cleavage. This involves the identification of the midpoint
of the cell where the septum or cleavage furrow will form.
For Escherichia coli (E. coli)and other rod-like bacteria,
evidence has accumulated over the past few years which
mdlcates that the separation into two daughter cells is
achleved by forming a septum perpendicular to parent
cell’s long axis. To induce the separation, the FtsZ ring
(Z ring), a tubulin-like GTPase, is believed to initiate
and guide the septa growth by a process called contrac-
tion [1].. The Z ring is usually positioned close to the
center, but it can also form in the vicinity of the cell
poles. Two processes are known to regulate the place-
ment of the division site: nucleoid occlusion 2] and the
action of the min proteins [3]. Both processes interfere
with the formation of the Z ring that determines the di-
vis}on site. Nucleoid occlusion is based on eytological

'Email: wtriampo@yahoo.com; Fax: 662-201-5843

evidence that indicates that the Z ring assembles prefer-
entially on those portions of the membrane that do not
directly surround the dense nucleoid mass [4].

The min proteins that control the placement of the
division site are the MinC, the MinD, and the MinE
proteins [3]. Experiments, involving the use of modified
proteins show that inC is able to inhibit the formation of
the FtsZ-ring [5]. MinD is an ATPase that is connected
peripherally to the cytoplasmic membrane. It can bind
to the MinC and activate the function of the MinC [6,7)].
Recent studies show that MinD can also recruit MinC
to the membrane. This suggests that MinD stimulates
MinC by concentrating MinC near to its presumed site
of activation [8,9]. MinE provides topological specificity
to the division inhibitor [10]. Tts expression results in
a site-specific suppression of the MinC/MinD action so
that FtsZ assembly is allowed at the middle of the cell,
but is blocked at other sites [3]. In the absence of MinE,
MinC/MinD is distributed homogeneously over the en-
tire membrane. This results in a complete blockage of
Z-ring formation. The long filamentous cells that are
subsequently formed are not be able divide (8,9,11,12].
With fluorescent labeling, MinE was shown to attach to
the cell wall only in the presence of MinD [13,14]. As
MinD dictates the location of MinC, the latter will oscil-
late by itself. This will result in a concentration of the
division inhibitor at the membrane on either cell end, al-
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ternating between being high or very low every other 20
s or 50 [8,9]. The presence of MinFE is not only required
for the MinC/MinD oscillation but also involved in set-
ting the frequency of the oscillation cycle [11]. Several
sets of evidence indicate that the MinE localization cycle
is tightly coupled to the oscillation cycle of MinD.

Recent microscopy of the fluorescent labeled proteins
involved in the regulation of E. coli division has uncov-
ered stable and coherent oscillations (both spatial and
temporal) of these three proteins [15]. The proteins os-
cillate from one end to the other end of the bacterium,
moving between the cytoplasmic membrane and cyto-
plasm. The detail mechanism by which these proteins
determine the correct position of the division plane is
currently unknown, but the observed pole-to-pole oscil-
lations of the corresponding distribution are thought to
be of functional importance. Under different culture con-
ditions and/or environment changes, e.g. pH, light, and
external field, changes in the pole-to-pole oscillations can
affect the growth of the bacteria. Here, we discuss only
the effects of an electric field.

In the present work, we use a mathematical approach
to investigate the influence of an external constant ex-
ternal field on cytokinesis mediated by pole-to-pole os-
cillations of the min protein. We propose a mathemat-
ical model and then solve it numerically to see how the
min protein oscillation mechanism for bacteria cell divi-
sion may change. We also present some comments about
the connection between our mathematical approach and
real-world experimental results.

II. MODEL

Sets of reaction-diffusion equations have often been
used in biological applications to model self-organization
and pattern formation {16]. These mathematical equa-
tions have two components. The first component is the
diffusion term that describes diffusion of the chemical
species. At the molecular level, the diffusion term of-
ten results in 4 net flow of chemical species from re-
gions of high concentration to regions of lower concen-
tration. The second component is the reaction term that
describes the self-organization of the biological systems.

We have adopted the dvnamic model of compartmen-
tization in the bacterial cell division process proposed
by Howard [17] by adding an extra term that depends
on the external electric field. The dynamics of bacteria
in the presence of an external field is described by a set
of four non-linear coupled reaction-diffusion equations.
We focus on the E. coli bacteria, which are commonly
studied rod-shaped bacteria of approximately 2 ~ 6 pm
in length and around 1 ~ 1.5 pgm in diameter. E. coli
divides roughly every hour via cytokinesis. Qur starting
point is the set of one dimensional deterministic conpled
reaction-diffusion equations describing the dynamics of
the interactions between the Jocal concentrations of the

MinD and the MinE proteins. The equations describe
the time rates of change of the concentraticns due to
the diffusion of the MinD and the MinE and to trans-
fer between the cell membrane and the cytoplasm. The
dynamics of these min proteins in the presence of an ex-
ternal field, are described by

"’(‘9';:3 _ DDa;_:,‘fi + JD%D - 1—‘2-‘3% + 030,04, (1)
%pti = Dd% + Jd%% - —1:_1% — Oo2pepar (2)
Bg% = Dg a;;f + JE% = O3PDPE = T o1 :‘:T,:no
and

%“le = De(‘zﬁ + Je%’% + 03pppPE ~ l—f&?ﬁ (4)

where pp and pg are the concentrations of the MinD
and the MinE proteins in the cytoplasm, respectively,
and py and p, are the concentrations of the MinD and
the MinE proteins on the cytoplasmic membrane. The
first equation describes the time rate of change of the
concentration of MinD (pp) in the cytoplasm. The sec-
ond is for the change in the MinD concentration {p4) on
the cytoplasmic membrane. The third is for the change
of the concentration of MinE (pg) in the cytoplasm. The
last one is for the change in the MinE concentration {p,.)
on the cytoplasmic membrane. Since the experimental
results given Ref. 9, show that the MinC dynamics sim-
ply follows that of the MinD protein, we have not written
out the equations for the MinC explicitly.

The important feature of our model is the second terms
on the right-hand sides of the equations. They represent.
the effect of the external field in the reaction-diffusion
equation [18,19] controlled by the external field parame-
ter. We assuime that a chemical substance moving in the
region of an external field will experience a force that
is proportional to the external field parameter J times
the gradient of the concentration of that substance. In
general, J = pk, where E is the field strength and p
is the ionic mobility of the chemical substance. pu, in
general, will be proportional to the diffusion coefficient
of the chemical substance and will depend on the total
amount of free charge in that substance. In this model
Ji = wiEB{i = D,E,d,e} is the external field parame-
ter for each protein types. We assume that the diffusion
coefficients {Dp, Dg, D4, D} are isotropic and indepen-
dent of r. The constant ¢, represents the association of
MinD to the membrane wall [12]. o, corresponds to the
menbrane-bound MinE suppressing the recruitment of
MinD from the cytoplasm. o3 reflects the rate that the
MinE on the membrane drives the MinD on the mem-
brane into the cytoplasm. Based on evidence for the
cytoplasmic interaction between MinD and MinE [7], we
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let o3 be the rate that cytoplasmic MinD recruits cyto-
plasmic MinE to the membrane and o4 be the rate of dis-
sociation of MinE from the membrane to the cytoplasm.
Finaily, 04 corresponds to the cytoplasmic MinD sup-
pressing the release of the membrane-bound MinE. Ev-
idence points to most of the diffusion process occurring
in the cytoplasm. It is, therefore, reasonable to set Dy
and D, to'zero. It foliows immediately that pg = g, =0
and Jd =J.=0

In'our model, we assume that the total number of each
type of protein is conserved. We further assume that
the min proteins can bind/unbind from the membrane
and that the proteins do not degrade during the process.
The zero-flux boundary conditions are imposed at both
ends of the bacterium. The total amounts of MinD and
MinE, obtained by integrating pp + pg and pg + p. aver
the length of the bacterium, are conserved.

+ III. NUMERICAL RESULTS AND
DISCUSSION

Smce the bacterium length is very short, it is rea-
sona})le to assume that the applied electric field has a
constant value throughout the bacterium length. We
have numerlca.lly solved the set of four coupled reaction-
diffusion equations, Eqs. (1)-(4}, by using the explicit
Euler method [20]. The length of the E. coli is taken
to be 2 ym. The total time needed for each simula-
tion is approximately 10* s. In our simulations, we
have discretized space and time; i.e., we have taken
de =8 x 107% pm and df = 1 x 1075 5. The space
covering the bacterium is divided into 251 grid points,
and the time is divided into 10? times steps (10% itera-
tion'steps). Initially, we assume that MinD and MinE
are mainly at the opposite ends of the bacterium with
the number of min molecules in each cell being 3000 for
the MinD population [6] and 170 for the MinE popula-
t10n'[21} Since the total amount of MinD and MinE
in E. coli-must be conserved, we set the flux of MinD
and iMmE to zero at both ends of the hacterium. Since
there are no experimental values of g for either MinD
and MinE, we work with the external field parameter J,
which is proportional to F, instead of E explicitly, We
also ‘assume that up = pg {we assume MinD and MinE
havé the same type of charges). It follows immediately
that Jp = Jg = J. The values of the other parameters
are: DD =028 yum?s~!, Dg = 0.6 um?s~!, 5y = 20 s_l,

oy = 0.028 ,um oy = 0.0063 pms™!, 0z = 0.04 pms~
oy = 0 857!, and 04 = 0.027 pgm. In our analyses of the
numerical results we looked at the time-averaged values
of the concentrations of MinD and MinE and at the pat-
terns of the oscillations of MinD and MinE for various J
values.

In the absent of an external field, the numerical results
[17) show that most of the MinD will be concentrated at
the.f_nemb__rane and the MinE at mid cell. This results in

Fig. 1. Space-time plots of the total (¢p + o4) MinD
(above} and total {og + g} MinE (below) concentration for
J=10.0m/s to J = 0.4 m/s. The color scale, running from
blue to red, denotes an increase in the concentration from
the lowest to the highest. The MinD depletion from mid cell
and the MinE enhancement at the mid cell are immediately
scen. The vertical scale spans time for 500 s. The times
increase from bottom to top, and the oscillations pattern re-
peats infinitely as time increases. The horizontal scale spans
the bacterial length (2 pm). Note the increase in the MinD
and MinE concentrations at the left end of the bacterium as
J increases.

an accurate division at mid cell. In the presence of an
external field, both MinD and MinE experience a force
in the same direction. This force causes a shift of the
time-averaged minimum of MinD. This shifts the division
site from mid cell. Qur numerical solutions show that
the behavior of the Min system in the presence of an
external field depends on the strength of the external
field parameter J.

Figure 1 shows the oscillation patterns for Jg = Jp =
J=00m/s to J = 04 m/s. [t is seen that as Jin-
crease, both the MinD and the MinE concentrations in
the left part of the E. coli become larger while the two
concentrations in the right part become smaller as Jis
increased. This behavior is a reflection of the fact that
the external force is acting in the left direction. These
patterns show a shifting in the concentrations of the min
proteins towards the left pole.

In Figure 2, we show the time-averaged concentrations
of the MinD and the MinE proteins at different positions
within the bacteria. In these curves, positive values of
the external field parameter are used. From this Figure,
we see that in the case of no external field (J = 0.0 m/s),
the time-averaged concentrations of MinD and MinE are
symmetric about mid cell. MinD has 2 minimum at mid
cell while MinE has a maximum. When an external field
is applied, we see a shift in the minima of MinD and in
the maxima of MinE. The time-averaged concentration



356/ Appendix # 5.3

4 Journal of the Korean Physical Society, Vol. 46, No. 4, April 2005

MinD 45

L 40
[L].7] 35

o
g”/ 1m0 Im42 30 4
o E 25 1
1o & 20
07 15 1
10
0.6 5
[\] T T T T g T

1] a3 1 L5 2
space

Fig. 2. Time-averaged concentration of MinD (above) and
MinE (below} relative to their respective time-averaged max-
ma, {o(£)}/Omaz, as a function of the position £ (in pm)
along the bacterium axis under the influence of positive val-
ues of a static external field. The curves show a shift in the
local minima of the MinD) and the local maxima of the MinE
from the mid cell that depends on the strength of the field.

curves are no longer symmetric about mid cell. In nature,
the MinE protein looks like a ring structure that effec-
tively positions the anti-MinCD activity [11,14]. MinCD
inhibits the division process, so in nature, the bacterium
divides at the site where the minimum MinD concentra-
tion occurs. The value of the MinE concentration is not
maximurn at the mid cell. The minimum of the MinD
shifts to the right pole under the influence of positive J
values.

We have measured the percent of shifting of the time-
averaged concentration in the local minima of MinD and
the local maxima of MinE. This is shown in Fig. 3.
The figure shows that the minimum of MinD is always
shifted to the right pole. This is the result of the external
force pulling MinD to the left. The maximum of MinE
is not always shifted to the right. When J < 0.2 m/s,
the maximum of MinE is shifted to the right, but when
J > 0.2 m/s, it shifted to the left of mid cell. This
difference arises because of the relative magnitudes of the
forces acting on the two proteins. First of all, there is an
internal force between the MinD and the MinE proteins.
This force causes MinE to repel MinD. In the absence
of any other forces, this explains why the location of
the maximum of MinE is the location of the minimum of
MinD. When an external field is applied (as expressed by
a non-zero value of J), then one must take into account
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Fig. 3. Percents of the shifting of the local minima of MinD
{above) and the local maxima of MinE (below) from mid cell
for various values of J. Positive values denote a shift to the
right pole and a negative value to the left pole.

the relative magnitudes of the two forces.

When Jis large {larger than 2 m/s), the external force
dominates the internal force between the MinD and the
MinE proteins. The external force pulls MinD and MinE
in the same direction, causing the location of the max-
imum of MinE to be no longer at the location of the
minimum of MinD. If Jis small (smaller than 0.2 m/s),
the internal force between MinD and MinE dominates.
This results in the two location (the maximum of MinE
and the minimum of MinD) to be nearly the same. In
Fig. 3, we also see that the shifts of the minimum of the
MinD concentrations increase as the field parameter J in-
creases. Since the division site will be the location where
the MinD concentration is minimum, the shift in the min-
imum of MinD concentration to the right pole indicates
that the division site must also shift to the right pole.
When we let J be negative, the results are very similar
to those for positive J values, as expected; the curves
for the time averages of the concentrations of the min
proteins shift in the mirror side about mid cell.

In Figs. 4(a) and 4(b), we show the concentrations of
the MinD and the MinE proteins at the left end grid,
the middle grid, and the right end grid versus time. In
these figures, it is easy to see that when J = 0.0 m/s,
the concentrations of MinD {or MinE) ai the left end
grid and the right end grid have the same patterns of
oscillation with the same frequencies and amplitudes, but
with a phase difference of 180°. At the mid cell grid, the
frequency of the oscillation is two times greater than that

E
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Fig. 4. (a) Plots of the concentration of MinD at the the left end grid (+), the middle grid (x), and the right end grid ()
versus time in seconds for J = 0.0 m/s to J = 0.4 m/s. The vertical scales denote concentration in molecules per meter. (b)
Plots of the concentration of MinE at the left end grid {+), the middle grid (x)}, and the right end grid (-} as functions of time
in seconds for J = 0.0 m/s to J = 0.4 m/s. The vertical scales denote concentration in molecules per meter.
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Fig. 5. Plots of the concentration of MinE at the left
end grid (+), the middle grid (x}, and the right end grid
() as functions of time in seconds for J=0.0m/s to J= 0.4
m/s. The vertical scales denote concentration in molecules
per meter.

of right end grid. When an external field is applied, the
amplitudes of the oscillations at the two end grids are
no longer equal, but the frequencies of the oscillations of
the three grids become the same. As J is increased, the
amplitude of the oscillation at the right end grid is seen
to decrease while those of the left end and mid cell grids
are seen to increase.

Figure 5 show the periods of oscillation for the MinD
concentration at the left end grid for various value of J.
In this figure, we see that for the case of no external field,
the period of the oscillation is equal to 115 s, which is in
good agreement with the experimental value. When an
external field is applied, the period of the oscillation is
seen to increase. When J is not too large {J < 0.3), the
period of the oscillation increases as J is increased. The
increase in the period of oscillation as an external field
is applied indicates that in the presence of an external

field, the bacterium needs a longer time to divide.

IV. CONCLUDING REMARKS

Proper divisions of bacteria require accurate definition
of the division site [3]. This accurate identification of the
division site is determined by the rapid pole-to-pole os-
cillations of MinCDE (8,11,22]. Using a mathematical
model to describe the dynamics of the min pole-to-pole
oscillations, Howard et al. [17} found that the mid cell
position in the Escherichia coli bacteria corresponded to
the point where the time-averaged MinD and MinE con-
centrations were minimum and maximum, respectively.
They also found that the concentrations of these two
proteins were symmetric about the mid cell position.

To see the effect of exposing F. coli bacteria to an elec-
tric field, we have added some additional terms to the
reaction-diffusion equations for the pole-to-pole oscilla-
tions proposed by Howard et al for the min proteins in
the E. coli bacteria. The additional terms are the gradi-
ent terms appearing in Egs.(1)-(4). These terms depend
on the strength of the external field and the charge of the
protein. We then used a numerical scheme to solve the
resulting coarse-grained coupled reaction-diffusion equa-
tions. The results are shown in Figs. 1 to 5. Qur results
shows deviations from the results obtained by Howard et
al., e.g.. the concentrations of MinD and MinE are no
longer symmetric about the middle of the long axis, nor
are the minimum and the maximum of the MinD and
the MinE concentrations at the middle of the long axis.
The shift in the minimum of the time-averaged concen-
tration of MinD from mid cell should shift the division
site. The shift of the minimum concentration of MinD
from the midpoint appears to depend on the strength of
the external field. This indicates that if the parent cell
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can divide under these condition, it must divide into two
filamentous cells, providing the external field is strong
enough. Since an external field can shift the minimum
of the time-averaged concentration of MinD, an external
electric field can interfere with the division process.

ACKNOWLEDGMENTS

We thank M. Howard, J. Wong-ekkabut, and M.
Chooduang for their useful comments and suggestions.
This research is supported in part by the Thailand Re-
search Fund through grant numbers TRG4580090 and
RTA4580005, and the Commission on Higher Education.
The support of the Industrial and Research Projects for
Undergraduate Students Program 2547 given to Charin
Modchang and W. Triampo is acknowledged, as is the
support of the Development and Promotion of Science
and Technology Talents program given to Waipot Ngam-
saad.

REFERENCES

[1] J. Lutkenhaus, Mol. Microbiol. 9, 403 (1993).

[2] C. L. Woldringh, E. Mulder, P. G. Huls and N. Vischer,
Res. Microbiol, 142, 309 (1991).

{3] P. A. J. de Boer, R. E. Crossley and L. I. Rothfield, Cell.
156, 4303 (1989).

[4] E. Mulder and C. L. J. Woldingh, Bacteriol. 171, 4303
(1989).

[5] P. A. J. de Boer, R. E. Crossley and L. I. Rothfield, Proc.
Natl. Acad. Sci. USA 87, 1129 (1990).

[6] P. A. J. de Boer, R. E. Crossley, A. R. Hand and L. L.
Rothfield, EMBO J. 10, 4371 (1991).
[7] J. Huang, C. Cac and J. Lutkenhaus, J. Bacteriol. 178,
5080 (1996).
[8] 2. Hu and J. Lutkenhaus, J. Mol. Microbiol. 34, 82
(1999).
[9] D. M. Raskin and P. A. J. de Boer, . Bacteriol. 181,
6419 (1999).
[10] X. Fu, Y-L. Shih, Y. Zhang and L. I. Rothfield, Proc.
Natl. Acad. Sci. USA 98, 980 {2001).
{11] D. M. Raskin and P. A. J. de Boer, Proc. Natl. Acad.
Sci. USA 96, 4971 (1999).
{12] 8. L. Rowland, X. Fu, M. A. Sayed, Y, Zhang, W. R.
Cook and L. L. Rothfield, J. Bacteriol. 182, 613 (2000).
{13] K. C. Huang, Y. Meir and N. S. Wingreen, Proc. Natl.
Acad. Sci. USA 100, 12724 (2003).
(14] D. M. Raskin and P. A. J. de Boer, Cell. 91, 685 {1997).
[15] C. A. Hale, H. Meinhardt and P. A. J. de Boer, EMBO
1. 20, 1563 (2001).
[16] G. Nicolis and I. Prigogine, Self Organization in Nonlin-
ear Sysiems (Wiley, New York, 1977).
[17] M. Howard, A. D. Rutenberg and $. de Vet, Phys. Rev.
Lett. 87, 278102 (2001).

[18] E. P. Zemskov, V. S. Zykov, K. Kassner and S, C. Miiller,

Physica D. 183, 117 (2003).

{19] A. P. Munnzuri, V. A. Davydov, V. Perez-Munuzuri, M,
Gomez-Gesteira and V. Perez-Villar, Chaos, Solitons &
Fractals 7, 585 (1995).

[20] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B.
P. Flannery Numerical Recipes in C++: The Art of Sci-
entific Computing {Cambridge University Press, 2002).

{21] C-R. Zhao, P. A. I. de Boer and L. I. Rothfield, Proc.
Natl. Acad. Sci. USA. 92, 4313 (1995).

[22] H. Meinhardt and P. A. J. de Boer, Proc. Natl. Acad.
Sci. USA 98, 14202 (2001).



359 / Appendix # 6.1

A NOTE ON ASYMPTOTIC STABILITY CONDITIONS
FOR DELAY DIFFERENCE EQUATIONS

T. KAEWONG, Y. LENBURY, AND P. NIAMSUP

Received 26 May 2004 and in revised form 27 February 2005

‘We obtain necessary and sufficient conditions for the asymptotic stability of the linear
delay difference equation x4 + pZJ.‘P-‘;,x,,‘HU_m =0, where n =0,1,2,..., p is a real
number, and k, I, and N are positive integers such that k > (N — 1)i.

1. Introduction

In 4], the asymptotic stability condition of the linear delay difference equation

N

Xn4l _xr|+pzx|!—k+[j—l)l=01 {1.1)
J=1

where n € Ny = NU{0}, p is a real number, and k, !, and N are positive integers with
k > (N — 1)I is given as follows.

TuroreM 1.1. Letk, I, and N be positive integers with k > (N < 1)I. Then the zere solution
of (1.1) is asymptotically stable if and only if

2sin{z/2M) sin{ln/2M)

0< sin(Nla/2a)

(1.2)

where M = 2k+1 - (N~ 1)L

Theorem 1.1 generalizes asymptotic stability conditions given in |1, page 87|, [2, 3, 5],
and [6, page 65]. In this paper, we are interested in the situation when (1.1} does not
depend on x,, namely we are interested in the asymptotic stability of the linear delay
difference equation of the form

N

Xnti ‘*‘szn‘kﬂj—l]! =0, (1.3)
i=1

where n € Ny = NU{0}, p is a real number, and k, [, and N are positive integers with
k = (N — 1)I. Our main theorem is the following.

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:7 (2005) 1007-1013
DOI; 10.1155/1]MM5.2005.1007
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TrueoreM 1.2, Letk, I, and N be positive integers with k = (N — 1)I. Then the zero solution
of {1.3) is asymptotically stable if and only if

_%}' <p< Pmins (1-4)

where pmin is the smallest positive real value of p for which the characteristic equation of
(1.3) has a root on the unit circle,

2. Proof of theorem

The characteristic equation of (1.3} is given by
Flz) =2 + p(zW-Dg o oor 1) =0 (2.1

For p = 0, F(z) has exactly one root at 0 of multiplicity k + 1. We first consider the location
of the roots of (2.1) as p varies. Throughout the paper, we denote the unit circle by C and
letM=2k+2— (N~ 1)L

Propostrion 2.1. Let z be a root of (2.1) which lies on C. Then the roots z and p are of the
form

z= e, (2.2)

p=(—1)m*! sin{lw,,/2)

sin(Nlwar2) -~ P (23)

forsomem=0,1,....M — 1, where wy,, = (2m/M)n. Conversely, if p is given by (2.3), then
z = e" isarootof (2.1).

Proof. Note that z = | is aroot of (2.1) if and only if p = —1/N, which agrees with (2.2)
and (2.3) for w,, = 0. We now consider the roots of (2.1) which lie on C except the root z =
1. Suppose that the value z satisfies z¥' = 1 and 2/ £ 1. Then 2V — 1 = (' - 1)(2W-D 4
<o 42 +1) = 0 which gives z¥-1 + ... 4 2/ + 1 = 0, and hence z is not a root of (2.1).
As a result, to determine the roots of {2.1) which lie on C, it suffices to consider only the
value z such that z¥' # 1 or 2/ = 1. For these values of z, we may write (2.1) as

Zh+l

Pz_z(N—lJl+...+zI+1‘ (2.4)
Since p is real, we have
wh+1 —k=1+(N-1}l
Z z
L S e B S ) = I (2:5)
where Z denotes the conjugate of z. It follows from (2.4) and (2.5) that
LAH2=(N=DI _ 4 (2.6)

which implies that (2.2) is valid for m = 0,1,...,M — 1 except for those integers s such
that eNWei = | and e™=' # 1. We now show that p is of the form stated in (2.3). There are
two cases to be considered as follows.
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Case 1. zis of the form e" for some m = 1,2,....,M—1and zN' £ 1.
From (2.4), we have

B zk-ﬂ (zf . 1) B e(k+l)wmi(el1v,,,i _ 1)
P=—m Ny ST il

! e{kH—(N—l)(UZ))w..,.,i(Efwmi/?. _ e—iw,,.i/?.)

eNWnif2 _ p=Nlwnif2

. @.7)
(kL (N= (2 i _SIDE W/ 2)

sin{Niw,,/2}
sin(iwn/2) _
sin{Niw,/2) Pm.

= —g

sin{Iw,,/2)
sin(Nlw,,/2)

L

= (__ 1)m+l

Case 2. z is of the form e™ forsome m=1,2,.... M —land z = 1.
In this case, we have lw,,, = 2gn for some positive integer q. Then taking the limit of
Pom as lwn, — 2qm, we obtain

H 1 m4g{N=1)
p= -—%‘. (28)

From these two cases, we conclude that p is of the form in (2.3} form=1,2,...,.M -1
except for those m such that eV = 1 and el*~ £ 1,

Conversely, if p is given by (2.3), then it is obvious that z = e"n is a root of {2.1). This
completes the proof of the proposition. O

From Proposition 2.1, we may consider p as a holomorphic function of z in a neigh-
borhood of each z,,. In other words, in a neighborhood of each z,,, we may consider p as
a holomorphic function of z given by

zf.'t:+l

P(Z) = _Z(N_l)f_!_ . ‘f‘Z!+l' (2‘9)
Then we have
dp(z) (k + 1)z (N - DN oy g
=- + 7 (2.10)
dz ZWN=- g ppig ] (ZN-Dlp .oz 41)

From this, we have the following lemma,
LEMMA 2.2. dp/dz| eeemi £ Q. In particular, the roots of (2.1) which lie on C are simple.
Proof. Suppose on the contrary that dp/dz| .- m: = 0. We divide (2.10} by p(z)/z to ob-
tain

H(N=1)zWN-"D .o gt}

fet+1- gN-W ... 4241 =0 (211)

Substituting z by 1/ in (2.10}, we obtain

H(N = 1)+ (N = 2)zl 4 - - +20-24}
ZN-D . gglt ]

k+1- =0 (2.12)
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By adding (2.11) and (2.12), we obtain .
2k+2-(N-1I=0

which contradicts k = (N — 1)I. This completes the proof.
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(il

From Lemma 2.2, there exists a neighborhood of z = " such that the mapping p(z)

is one to one and the inverse of p(z) exists locatly. Now, let z be expressed as z = re*.

Then we have

E —E{E.F"-E_B.}
dp rldp “dp

which implies that

dr r dz
a;—“e{;d—p}

i

(2.14)

(2.15)

as p varies and remnains real. The following result describes the behavior of the roots of

(2.1) as p varies,

ProrosiTioN 2.3. The moduli of the roots of (2.1} at z = e“~' increase as | p| increases.

3

Proof. Let r be the modulus of z. Let z = ¢"n be a root of (2.1) on C. To prove this

propaosition, it suffices to show that

dr
a}s P =gl >0
There are two cases to be considered.
Case 1 (zV' £ 1). In this case, we have
A1) A f(2)
pla)=- N T TNy
where f(z) = z(z! — 1). Then
dp __#7'g(a)
dz (e - )Y

where g(z) = (kf(z) +2f(2))(2N' — 1) — N2V f(2), Letting w(z) =

we obtain
dr r dz
E = Re(;%) = TRE(W).

We now compute Re(w). We note that

f@

Zi+2 !

Fiz ="

P

f@=

(2.16)

(2.17)

{2.18)

—(zN = )%/ (kg (z)),

(2.19)

(2.20)

Fe
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where h(z) = I+ 1 — 2/, From the above equalities and as zM = 1, we have
—k e 1 U RO 11 NI .
#50= 1| (0@ 11 @) (5o -1) - gmso)
(- kf(2)+zh(z)}(1 - z"") + NIf(2)
= NI ZHE : @.21)
(—kf()+ k() (1 - M) + NIF(2)
- Z2NI-k .
It follows that
Re{w) = W;W
_ _1{ (-1 (- 1)1}
2{ z*g(z) 7*g(2)
_ _l{ﬁkg(i)(zm - 1) + 24 g(2) 2V - 1)1}
2 g2’
) o {(—kf(z)+zh(z))(l—z”’)+le(z) (N
- - Zlg(z)|2 lelak .
2
. ! + 2 (k@) +2f ) (2 =1) uN‘lzN‘f(z))(;l\,—l—l) }
(2™ - 1)’k !
_W{(mz) — zh(2)) (2" - 1) + Nif (2)
(k2 +2f"(2) (2 - 1)) - NI f(2)]
. . ~ (zm _ 1)32k . _
4_~——222mlg(z)lz{zkf(z)-rz(f (z) — h(2))} - NIf(2)}.
(2.22)
Since
f 2 f(2) +2(f'(2) — (2)) — NI (2) = Mf(2), (2.23)
: we obtain
- (N - 1)4M ' -z f(z) _ (2N - 1)4Mp
Re(w) = 1w gz) [P AN -1 22N g(z)) (2.24
The value of Re(w) at z = ¢"' is
_(ZN'—1)4_ Mp 2. _Mp 2
Re(w) = o 2|g(2)|2 = (2cosNlwy, — 2) 2|g(z)|2 > (2.25)
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Therefore,
g‘i _ 2r(cosNlwn ~ 1)°Mp (2.26)
P |g(z)|
and it follows that (2.16) holds at z = g%,
Case 2 (7 = 1). With an argument similar to Case 1, we obtain
2
dr _ 2rN*Mp i (2.27)
dp  |(M+1)z-M+1|
which implies that (2.16) is valid for z = e¥n.
This completes the proof. ]

We now determine the minimum of the absolute values of p,, given by (2.3). We have
the following result.

Prorosition 2.4. |pol = min{|py,|:m=0,1,... .M — 1}
To prove Proposition 2.4, we need the following lemma, which was proved in [4].

Lomma 2.5. Let N be a positive integer, then

sinN¢
sint

‘ <N (2.28)

holds forall t € R.

Proof of Proposition 2.4. From{2.3), pm = (— 1) (sin(lw,,/2}/ sin{N1w,,/2)). For m = 0,
it follows from L'Hospital’s rule that pp = —1/N. Form = 1,2,...,M — 1, we have

sin(Iw,,/2) o1

_ _1ym+l —
lpml = | 0™ Ny | 2 N

(2.29)

by Lemma 2.5. This completes the proof. 0
We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Note that F(1) = 1+ Np = 0 if and only if p < ~1/N. Since
lim, .+ F(2) = +00, it follows that (2.1) has a positive root « such that & > 1 when p <
—~1/N. We claim that if |p| is sufficiently small, then all the roots of (2.1) are inside the
unit disk. To this end, we note that when p = 0, {2.1) has exactly one root at 0 of multi-
plicity & -+ 1. By the continuity of the roots with respect to p, this implies that our claim
is true. By Proposition 2.4, pg = —1/N and | p.»| = I/N which implies that [ po| = 1I/N is
the smallest positive value of p such that a root of (2.1) intersects the unit circle as | p!
increases. Moreover, Proposition 2.3 implies that if p > py,,, then there exists a root « of
(2.1) such that ja} = 1, where pyiq is the smallest positive real value of p for which (2.1)
has a root on C. We conclude that all the roots of (2.1) are inside the unit disk if and only
if —1/N < p < Pmin- In other words, the zero solution of (1.3) is asymptotically stable if
and only if condition (1.4) holds. This completes the proof. !

LTI Y
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3. Examples

Example 3.1. In (1.3), Let [ and k be even positive integers, then we have
F(-1)=~1+pN. 3.1

Thus if p = 1/N, then F{-1) = 0 and we conclude that (1.3) is asymptotically stable if
and only if —1I/N < p < 1/N.

Example 3.2. In (1.3),let N =3,1=3, and k = 6. Then M = 8 and we obtain po=—-1/3,
Py = sin(3/8)n/sin{9/8)m, py = —sin(3/4)n/sin(9/4) 7, ps = sin(9/8)n/sin{27/8)1, py =
—sin(3/2)m/sin(9/2}n, ps = sin(15/8)n/sin(45/8)n, ps = —sin{9/)n/sin{27/4)7, and
p7 = sin(21/8)n/sin(63/8)n. Thus, p3 = ps = sin(n/8)/sin(37/8) is the smallest positive
real value of p such that (2.1) has a root on C. We conclude that (1.3) is asymptotically
stable if and only if —1/3 < p < sin{7/8)/sin(371/8).
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1. Introduction

In the recent years, controlling chaos and synchronization of the dynamical
systems have attracted many researchers. Controlling chaos and chaos syn-
chronization have focused on the nonlinear systems such as Chen chaotic
dynamical system. Various control algorithms have been proposed to control
chaotic systems. The existing control algorithms can be classified mainly into
two categories: feedback and nonfeedback. In this paper, we only focus on
feedback control. Linear feedback control and bounded feedback control are
proposed to control chaos of the system to the equilibrium points.

In [4], Yassen’s studied the optimal control of Chen chaotic dynamical sys-
tem presented by

k=aly —x),
y={c—a)x—xz+cy,

z=xy— bz

where x, y, z are state vaniables and a, b, ¢ are real positive constants.

In [1}, Agiza's studied the different methods to control chaotic behavior of
the coupled dynamos system, where the mathematical model equations for this
system are :

X = e+ y(z +a),

y=py +x(z—a),

z=1-xp,

where x, y, z are state variables and u, o are positive constants.

In [2], Agiza and Yassen’s studied synchronization of Rossler and Chen cha-
otic dynamical systems using active control.

In [3}, Wang, Guan and Wen’s paper studied adaptive synchronization for
Chen chaotic system with fully unknown parameters.

The objectives of this paper are as follows. Firstly, to give sufficient condi-
tions of parameters that make equilibrium points of perturbed Chen chaotic
dynamical system to be asymptotically stable. Secondly, to apply linear feed-
back control and bounded feedback control for controlling chaocs of the per-
turbed Chen chaotic dynamical system, described by

j:a(y_x)s
y=(c—a}x—xz+cy, (1.1
z=xy—bz+di’,

where x, y, 7 are the state variables and a, b, ¢, d are positive real constants.

&’
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Thirdly, to study synchronization of perturbed Chen chaotic dynamical sys-
tem using active control. Finally, to present adaptive synchronization for per-
turbed Chen chaotic dynamical system when the parameters of the drive system
are fully unknown and different from those of the respense system.

2. Stability of the perturbed Chen chaotic dynamical system
We will study the perturbed Chen chaotic dynamical system that is

described by system of ordinary differential equations (1.1).
The equilibrium points of the system (1.1) are

£ :(0$ 01 0)) E?.:(B:ﬁ:?)a EH:(—'IB:“.E!?):
where ff = &—’; and y=2¢c — a.
Proposition 2.1. The equilibrium point E, = (0,0,0} is

(i) asymptotically stable if a > 2c and ac < b” < 2ac.
(i) unstable if 2¢ > a.

Proof. The Jacobian matrix of the system (1.1) at the equilibrium point
E, =(0,0,0) is given by

—a a 0
Ji=|c—a ¢ O
0 0 —-b

The characteristic equation of the Jacobian J; has the form

Prai+ami+a;=0,

where
ay=a+b—c,
ay = bla — ¢) + a{a — 2c),
ay = ab(a — 2c},

ayaz — as = (ab + a*)(a ~ 2¢) + a(b* — ac) + ¢(2ac — b*) + b’

We see that a; and ¢;a; — a3 satisfy the Routh—-Hurwitz criteria when a > 2¢
and ac < b* < 2ac, thus the equilibrium point E; = (0,0,0) is asymptotically
stable. [
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Similarly, we have the following results:
Proposition 2.2. The equilibrium point Es = (§,8,y) is

(1) asymptotically stable if%c <a<leb>6candi<d<1
(i) unstable if b<c<aand a <%c

Proposition 2.3. The equilibrium point Ey= (—f,-8,7) is

(i) asymptotically stable if ic < a < 2¢, b>6candi <d < 1.
(ii) unstable if b<c<aand a <%c

3. Controlling chaos

In this section, the chaos of system (1.1) is controlied Lo one of three equi-
librium points of the system. Feedback and bounded feedback control are ap-
plied to achieve this goal. We shall study in the case when equilibrium points of s
(1.1) are unstable. For this purpose, we assume that 6 <c¢<aand a <ic.

3.1. Feedback control s

The goal of linear feedback control is to control the chaotic behavior of the
system (1.1) to one of three unstable equilibrium points (£, E; or E;). We
assume that the controlled system is given by

x = ﬂ(y - x) + 1,
y={c—a)x—xz+cy+uy, ‘
z=xy - bz +dd® + s,

where 4, 1 and w3 are controllers that satisfy the following control law

.\'c=a(y—x) —k“(x—f),
y={c—ajx—xz+cy~kny-y), (3.1)
z=xy— bz +dx* - kalz — 2),

where E = (¥, ,%) is an equilibrium point of (1.1).

3.1.1. Stability of the equilibrium point E; = (0,0,0)
In this case £ = E| and the controlled system (3.1) is in the form of

i:a(y—x) — k”x,
y=(c—ayx—xz+cy—kny, (3.2)
2:xy—bz+dx2~k33z.

,’I



