

รายงานวิจัยฉบับสมบูรณ์

โครงการ

ทฤษฎีดิสตริบิวชันและทฤษฎีปริภูมิบานาค Distributions and Banach Spaces Theory

โดย
ศาสตราจารย์อำนวย ขนันไทยและคณะผู้วิจัย
ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์
มหาวิทยาลัยเชียงใหม่

รายงานวิจัยฉบับสมบูรณ์

โครงการ

ทฤษฎีดิสตริบิวชันและทฤษฎีปริภูมิบานาค Distributions and Banach Spaces Theory

ผู้วิจัย ศาสตราจารย์อำนวย ขนันไทยและคณะ สังกัด ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

เกียรติคุณประกาศ

ทีมงานวิจัยขอขอบคุณสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) ที่ได้ให้ทุนส่งเสริม กลุ่มวิจัยในช่วงเวลา 3 ปี จนสำเร็จลุล่วงตามเป้าหมายไปด้วยดี และขอขอบคุณภาควิชา คณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ ที่ สนับสนุนงานวิจัยโดยอำนวยความ สะควกในเรื่อง สถานที่การวิจัย ตลอคจนการใช้อุปกรณ์ต่างๆ ที่เกี่ยวข้องกับงานวิจัย จนทำให้ งานวิจัยสำเร็จไปด้วยดี

Abstract

Distributions and Banach Space Theory

On the contract with the Thailand Research Fund for the research grants of 3 years period. We have succeeded in doing research by discovering many new result. The researches has been divided into 6 projects. The first three projects have been studied on the partial differential operators and distribution theory and discovered the properties of solutions, the spectrums and Residues.

The last three projects are Banach space theory which discovered the new results, that are the k-nearly uniform convex property (k-NUC), uniform Kadec Kiee (property (H)), the fixed points theorem, particularly for nonexpansive mapping by using the iteration method. These results can be applied to find the solutions of many types of equations.

Moreover, the researches also studied the are of probability and obtained the new results in Poisson binomial distributions and the approximations the error of combinatorial central limit theorem.

For the completion of 3 year researches, we obtained more than 30 papers which are published in the international journal.

บทคัดย่อ

ทฤษฎีดิสทริบิวชันและปริภูมิบานาค

ตามสัญญารับทุนส่งเสริมกลุ่มวิจัย ที่มีกำหนดระยะเวลา 3 ปี บัดนี้การทำวิจัยดังกล่าวได้สิ้นสุด ลงตามสัญญา ในช่วงระยะเวลา 3 ปี ได้ทำงานวิจัยโดยแบ่งเป็นหัวข้องานวิจัยออกเป็น 6 โครง การย่อยในแต่ละโครงการได้ประสบผลสำเร็จเป็นอย่างดีโดยได้ค้นพบองค์ความรู้ใหม่จำนวนมาก ในแต่ละส่วนของทฤษฎีดิสทริบิวขัน ได้ค้นพบสมบัติของคำตอบ สเปคตรัม และเรซิดิวของตัว และในส่วนของปริภูมิบานาคนั้นได้แบ่งการศึกษาออกเป็นสามส่วนโดยที่ส่วนแรกนั้น เป็นการศึกษาสมบัติเรขาคณิตของปริภูมิลำดับเซซาโรที่วางนัยทั่วไปสองแบบ โดยที่แบบแรกเป็น การวางนัยทั่วไปโดยใช้ลำดับของจำนวนจริงบวก (p.) และแบบที่สองเป็นการขยายแนวคิดจาก ปริภูมิลำดับออร์ลิค และ มูสิลัก (Orlicz , Musielak sequence spaces) ทั้งสองปริภูมินั้น พิจารณาภายใต้ทั้งนคร์มลักเซมเบิร์กและนคร์มคคร์ลิค สมบัติที่ศึกษาคือสมบัติ uniform convex property (k- NUC) สมบัติ Uniform Kadec Klee สมบัติ (H) และ สมบัติ Convexity แบบต่างๆ ส่วนที่สองเป็นการศึกษาการมีจุดตรึง (fixed point) ของ การส่งชนิดต่าง ๆ โดยเฉพาะการส่งแบบ nonexpansive และ asymptotically nonexpansive mappings นอก จากนั้นก็เป็นการสร้างทฤษฎีที่เกี่ยวกับระเบียบวิธีทำซ้ำ (Iterations) แบบต่างๆ ที่ใช้สำหรับ ประมาณ และ หารจุดตรึงการ mappings ทฤษฎีที่ได้ต่างเป็นองค์ความรู้ใหม่เกี่ยวกับทฤษฎีจุด ตรึงในสองแนวทางข้างต้น และ สามารถใช้ประยุกต์เพื่อตอบการมี และ การหาคำตอบของสมการ ต่างๆ ได้ สำหรับส่วนที่สามนั้นแบ่งออกเป็นสองหัวข้อ คือ หัวข้อแรกเป็นการศึกษาทฤษฎีต่างๆ ของความน่าจะเป็น และ หัวข้อที่สองเป็นการศึกษาเกี่ยวกับการแปลงเมทริกซ์ของปริภูมิลำดับ ในหัวข้อแรกนั้นเป็นการศึกษาเกี่ยวกับหา non-uniform bound สำหรับ Poisson binomial distribution และ การประมาณแบบ pointwise ของ poisson distribution นอกจากนั้นเป็น การหาค่าประมาณความคลาดเคลื่อนบนทฤษฎี combinatorial central limit theorem สำหรับ ในหัวข้อที่สองนั้นเป็นการหาเงื่อนไขที่จำเป็นและเพียงพอสำหรับเมทริกซ์อนันต์ ที่ส่งจากปริภูมิ ลำดับหนึ่งไปยังอีกปริภูมิลำดับหนึ่ง

จากการได้ทำวิจัยดังกล่าวทั้งหมด 3 ปีมีผลงานตีพิมพ์ระดับนานาชาติร่วม 30 เรื่อง

คำนำ

คณิตศาสตร์นับเป็นวิชาพื้นฐานของงานวิจัยทางวิทยาศาสตร์ เทคโนโลยี และสาขาวิชา อื่น ๆ ที่เกี่ยวข้อง ทั้งนี้เพราะคณิตศาสตร์เป็นเครื่องมือที่สามารถอธิบายปรากฏการณ์ต่าง ๆ ที่เกิด ขึ้นทางธรรมชาติได้ดียิ่ง ปรากฏการณ์ต่าง ๆ จะถูกแทนด้วยสมการต่าง ๆ ทางคณิตศาสตร์ สมการเหล่านั้นจะสามารถอธิบายข้อเท็จจริงได้เป็นอย่างดี ซึ่งสร้างความมั่นใจให้กับงานวิจัยที่ซับ ข้อนได้

เนื่องจากวิทยาศาสตร์และเทคโนโลยีในปัจจุบัน ได้เจริญก้าวหน้าอย่างไม่หยุดยั้ง ดังนั้น คณิตศาสตร์ย่อมมีบทบาทต่อการพัฒนาวิทยาศาสตร์และเทคโนโลยีเป็นอย่างยิ่ง ด้วยเหตุนี้เอง การทำวิจัยทางคณิตศาสตร์จึงมีความจำเป็นที่จะต้องทำวิจัยอย่างต่อเนื่อง เพื่อให้พบองค์ความรู้ ใหม่ ในการตอบปัญหาต่าง ๆ ที่เกิดขึ้นในงานวิจัยของสาขาวิชาต่าง ๆ ที่เกี่ยวข้อง

ทฤษฎีดิสทริบิวชันและทฤษฎีปริภูมิบานาค จะเป็นหัวข้อหนึ่งในงานวิจัยทางคณิตศาสตร์ ซึ่งมีบทบาทสำคัญต่องานวิจัยสาขาวิชาต่าง ๆ ดังที่ได้กล่าวข้างต้น ทีมงานวิจัยในหัวข้อดังกล่าว ได้รับทุน สนับสนุนจากสำนักงานกองทุนสนับสนุนการวิจัย(สกว.) ซึ่งโครงการวิจัยดังกล่าวใช้เวลา 3 ปี และได้ทำงานวิจัยมาอย่างต่อเนื่อง จนครบกำหนด 3 ปี ในช่วงเวลาที่ได้ทำงานวิจัย ได้ค้นพบองค์ความรู้ใหม่โดยมีผลงานตีพิมพ์ในวารสารระดับนานาชาติ ผลงานที่ได้รับการยอมรับและผล งานที่ได้ส่งไปตีพิมพ์มากกว่า 30 บทความ และจากเงื่อนไขของ สกว. ทีมงานวิจัยจะต้องจัดให้มี การประชุมวิชาการประจำปีเพื่อรายงานความก้าวหน้าของงานวิจัยในแต่ละปี และในการประชุมวิชาการในครั้งนี้เป็นการประชุมในรอบปีสุดท้าย ของการรับทุน และทีมงานวิจัยได้เชิญผู้เชี่ยวชาญ ทางคณิตศาสตร์ทั้งในประเทศและต่างประเทศ มาช่วยบรรยายพิเศษในเนื้อหางานวิจัยทาง คณิตศาสตร์ซึ่งจะทำให้ผู้เข้าร่วมประชุมได้รับความรู้เพื่อเป็นแนวทางในการวิจัยต่อไป

ศาสตราจารย์ อำนวย ขนันไทย หัวหน้าโครงการ ภรกฎาคม 2548

สารบัญ

		หน้า
เกียรติคุเ	นประกาศ	ก
บทกัดย่ะ	อภาษาอังกฤษ	ข
บทคัดย่	อภาษาไทย	ค
คำนำ		4
บทที่ เ	บทนำ	1
	- ความสำคัญและที่มาของปัญหา	1
	- วัตถุประสงค์ของโครงการ	3
	- ระเบียบวิธีวิจัยโคยสรุป	3
	- แผนการคำเนินงานวิจัย	5
	- ประโยชน์ที่คาคว่าจะได้รับ	6
บทที่ 2	อัลตร้าไฮเปอร์โบลิกแบบรวมและตัวคำเนินการไคมอนค์	7
	- On the generalized heat kernel	9
	- On the ultra-hyperbolic heat kernel	17
	- On the ultra-hyperbolic heat kernel related to the sprectrum	28
	- On the convolution product of the distributional families related to the	
	Diamond operator	38
	- On the operator \bigoplus^k related to the wave equation and Laplacian	48
	- On the weak solution of the compound ultra- hyperbolic equation	59
	- On the Generalized ultra-hyperbolic heat kernel related to the spectum	65
	- On the convolution product of distributional kernel $K_{lpha,eta,\gamma, u}$	75
บทที่ 3	สมการเชิงอนุพันธ์ย่อยไม่เชิงเส้น	81
	- On the nonlinear Diamond operator related to the wave equation	82
	- On the product of the nonlinear Diamond operators related to	
	the elastic wave	88
	- On the Generalized nonlinear heat equation	98
	- On the nonlinear ultra-hyperbolic heat equation related to the spectrum	108
	- On the inversion of the kernel $K_{lpha,eta,r, u}$ related to the operator \oplus^k	118

บทที่ 4	เรซิคิวซ์และสเปคตรัมของสมการเชิงอนุพันธ์ย่อย	129
	- On the spectrum of the distributional kernel related to the residue	130
	- On the residue of the generalized function P^{λ}	139
	- On the residue of the Fourier transform of the distributional kernel	
	related to the spectrum	148
	- On the spectrum of the generalized heat kernel	161
บทที่ 5	สมบัติเรขาคณิตของปริภูมิบานาค	172
лии э	·	172
	- On Properties (H) and Rotundity of Difference Sequence Spaces	173
	- On k-Nearly Uniform Convex Property in Generalized Cesaro Sequence	
	Spaces	182
	- Some Geometric Properties of Cesaro Sequence Space	191
	- On Uniform Kadec-Klee Properties and Rotundity in Generalized Cesard	0
	Sequence Spaces	198
	- Extreme Point and Rotundity of Orlicz Difference Sequence Spaces	205
	- Locally Uniform Rotundity in Matrix Linear Space	215
	- Some Geometric Properties in Orlicz-Cesaro Sequence Spaces	225
	- Weak and strong convergence criteria of Noor iterations for	
	asymptotically nonexpansive mappings	230
	- Convergence Criteria of Modified Noor Iterations with Errors for	
	Asymptotically Nonexpansive Mappings	242
	- Uniform Opial Properties in Generalized Cesaro Sequence Spaces	257
บทที่ 6	ทฤษฎีจุคตรึ่งของปริภูมิบานาค	268
	- Demiclosedness principle fixed point theorem for mappings of	
	asymptotically nonexpansive type	269
	- Fixed point theorems of asymptotically nonexpansive type mappings	279
	- Fixed point theorems in spaces with a weakly continuous duality map	292

	- An implicit iteration process for a finite family of asymptotically	
	Quasi- nonexpansive mappings	304
	- The characteristic of noncompact convexity and random fixed point	
	theorem for set-valued operators	317
	- Ishikawa iteration sequences for Asymptotically quasi-nonexpansive	
	nonself-mappings with error members	327
d		
บทที่ 7	ทฤษฎีความน่าจะเป็น และ การแปลงเมทริกซ์ของปริภูมิลำคับ	339
	- A nonuniform bound for the approximation of Poisson binomial by	
	Poisson distribution	340
	- Pointwise Approximation of Poisson binomial by Poison distribution	346
	- Matrix transformations on the bounded variation vector-valued	
	sequence space	353
	- Error Estimation of Convergence of Distributions of Average of	
	Reciprocals of Sine to the Cauchy Distribution	365
	- A uniform bound on a Combinatorial Central Limit Theorem	379
	- An error estimation of convergence of random sums with	
	finite variances	405
	- Pointwise Approximation of Isolated Trees in a Random Graph	419
	- On the AIDS Incubation Distribution	430
Output	ที่ได้จากโครงการ	444
	- Publication Papers	444
	- Submitted Papers	447
	- ความก้าวหน้าในการสร้างนักวิจัย	449
	- กิจกรรมทางวิชาการอื่นๆ	450

บทที่ 1 บทนำ

1.1 ความสำคัญและที่มาของปัญหา

ปัญหาที่สำคัญมากทางคณิตศาสตร์สำหรับการหาคำตอบของสมการต่างๆ ทั้ง สมการเชิงเส้น สมการไม่เชิงเส้น สมการเชิงอนุพันธ์ธรรมดา และ สมการเชิงอนุพันธ์ย่อย ปัญหาแรก คือ การมีคำตอบ (existent) ของสมการต่างๆเหล่านั้น เราจะรู้ได้อย่างไรว่าสมการ ต่างๆเหล่านั้นมีคำตอบ(solution) ปัญหาแรกนี้ได้รับการพัฒนาจากนักคณิตศาสตร์ทั่วทุกมุมโลก กันอย่างกว้างขวางจนเกิดวิชาใหม่ ๆ ในสาขา Functional Analysis ขึ้นมามากมายโดยเฉพาะ การศึกษาทฤษฎีปริภูมิบานาค (Banach Spaces Theory) ทฤษฎีที่มีบทบาทมากที่สามารถ น้ำมาประยุกต์เพื่อยืนยันว่าสมการต่างๆนั้นมีคำตอบหรือไม่ก็คือ ทฤษฎีจุดตรึง (fixed point theory)บนปริภูมิบานาค การศึกษาทฤษฎีจุดตรึงบนปริภูมิบานาคจึงเป็นหัวข้อวิจัยหลักอีกหัวข้อ หนึ่งของการศึกษาทฤษฎีปริภูมิบานาค และได้รับการศึกษาและพัฒนากันมาอย่างต่อเนื่อง จาก การศึกษาปัญหาในเรื่องทฤษฎีจุดตรึงนั้น นักคณิตศาสตร์ก็ได้ค้นพบว่าการมีจุดตรึงของฟังก์ชัน บนบริภูมิบานาคนั้นขึ้นอยู่กับการมีสมบัติบางอย่างของปริภูมิบานาค สมบัติดังกล่าวนั้นคือสมบัติ ที่เรียกกันว่าสมบัติเรขาคณิตของปริภูมิบานาค (geometric properties of Banach spaces) ดังนั้นนักคณิตศาสตร์อีกจำนวนมากมายที่ให้การสนใจศึกษาเกี่ยวกับสมบัติเรขาคณิตของปริภูมิ บานาค และมีการค้นพบสมบัติเรขาคณิตต่างๆอีกมากมายจนถึงปัจจุบัน ในการศึกษาทฤษฎี ปริภูมิบานาคนั้นมีกรณีเฉพาะที่น่าสนใจคือปริภูมิลำดับ (sequence spaces) ทั้งนี้เพราะว่า ปริภูมิลำดับนั้นนับว่าเป็นตัวอย่างที่คลาสิกของปริภูมิบานาค ดังนั้นในการศึกษาทฤษฎีปริภูมิ บานาคจึงมีการศึกษาทฤษฎีของปริภูมิลำดับ (Theory of sequence spaces) ไปพร้อมๆกัน ทำให้เกิดทฤษฎีที่สำคัญต่างๆทางปริภูมิลำดับมากมาย และ ยังคงเป็นหัวข้อที่น่าสนใจศึกษาใน หมู่ของนักคณิตศาสตร์อีกจำนวนมาก หัวข้อที่สำคัญและเป็นที่นิยมศึกษากันมากในการศึกษา ทฤษฎีของปริภูมิลำดับคือ การศึกษาแปลงเมทริกซ์ของปริภูมิลำดับ ซึ่งปัญหาดังกล่าวนี้เป็น การศึกษาหาเงื่อนไขที่จำเป็น และ เพียงพอสำหรับเมทริกซ์อนันต์ที่ส่งจากปริภูมิลำดับหนึ่งไปยัง อีกปริภูมิลำดับหนึ่ง

ปัญหาหลักที่สอง ที่เกี่ยวข้องกับการหาคำตอบของสมการต่างๆ นั้น คือการหาวิธีการ ต่างๆ เพื่อหาหรือประมาณค่าคำตอบของสมการ หลังจากการใช้ทฤษฎีที่ใช้ในการศึกษาปัญหา แรก (existence) คือเมื่อมีหลักฐานยืนยันได้ว่า สมการที่กำลังสนใจศึกษานั้นมีคำตอบแล้ว นักคณิตศาสตร์จึงได้พยายามสร้างเครื่องมือและ หาวิธีการต่างๆ เพื่อช่วยหาคำตอบให้กับสมการ ต่างๆเหล่านั้น เช่นการศึกษาการหาคำตอบของสมการเชิงอนุพันธ์นั้น ได้มีการพัฒนาเครื่องมือที่

สำคัญที่ช่วยหาคำตอบของสมการคือ ทฤษฎีฟูริเยร์ (Fourier Theory) และ ทฤษฎีการแปลง ลาปลาซ (Laplace Transform) ในเวลาไม่ถึง 30 ปีหลังนี้ นักคณิตศาสตร์ได้สร้างและพัฒนา ทฤษฎีที่เรียกว่า ทฤษฎีดิสตริบิวชัน (Distributions Theory) ทฤษฎีดังกล่าวมีบทบาทเป็นอย่าง มากต่อการพัฒนาวิธีการหาคำตอบของสมการเชิงอนุพันธ์แบบธรรมดา และ สมการเชิงอนุพันธ์ ย่อย ดังนั้นจึงมีการศึกษา และ วิจัยทฤษฎีดิสตริบิวชัน กันอย่างต่อเนื่องและกว้างขวาง ในการ วิจัยทางดิสตริบิวชัน นักคณิตศาสตร์จะเน้นในการหาคำตอบของสมการเชิงอนุพันธ์ที่เกี่ยวข้องกับ ตัวดำเนินการต่างๆ ตัวอย่างเช่นในปี 1950 S. L. Sobolev [71] ได้ค้นพบวิธีการหาคำตอบของ สมการเงอนุพันธ์โดยอาศัยความรู้ทางดิสตริบิวชัน ต่อมาในปี1960 ,L.Schwartz [68] ได้พัฒนา วิธีการและทฤษฎีของดิสตริบิวชัน เพื่อนำไปประยุกต์ใช้ในการหาคำตอบสมการที่เกี่ยวกับตัว ดำเนินการลาปลาซ $\Delta = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$,ตัวดำเนินการคลื่น $\Box^k = \frac{\partial^2}{\partial t^2}$ และตัวดำเนินการความร้อน ∂

$$\frac{\partial}{\partial t} - \Delta$$

ต่อมาในปี 1987, S.E. Trone [82] ได้ศึกษาหาคำตอบของตัวดำเนินการอัลตราไฮเปอร์ โบลิค หาคำตอบของ

$$\Box^{k} = \left(\sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}} - \sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{k}$$

เมื่อ p+q =n โดยที่ n เป็นมิติของปริภูมิ \mathbb{R}^n

จากนั้นในปี 1994, M.A.Tellez [81] ได้แสดงให้เห็นว่าคำตอบของตัวดำเนินการอัลตรา ไฮเปอร์โบลิค ที่เป็นงานของ S.E. Trone นั้น จะเป็นจริงก็ต่อเมื่อ ก เป็นเลขจำนวนเต็มบวกคี่ โดย ที่ p เป็นเลขจำนวนเต็มบวกคี่

ต่อจากนั้นในปี 1997 A.Kananthai [43] ได้สร้างตัวดำเนินการซึ่งสัมพันธ์กับตัว ดำเนินการอัลตราไฮเปอร์โบลิค โดยได้ให้ชื่อตัวดำเนินการดังกล่าวว่า "ตัวดำเนินการไดมอนด์" (Diamond Operator)

$$\Diamond^{k} = \left[\left(\sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}} \right)^{2} - \left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}} \right)^{2} \right]^{k}$$

เมื่อ k เป็นจำนวนเต็มที่ไม่เป็นลบ ,p+q =n

และได้ทำการศึกษาสมบัติต่างๆของตัวดำเนินการดังกล่าว เช่น คำตอบขั้นพื้นฐาน (Elamentary Solutions) คอนวอลูชัน (Convolutions) การหาการแปลงฟูริเยร์ (Fourier Tranformations)

ต่อมาในปี 2001 ,A.Kananthai และ S.Suantai [45] ได้ขยายตัวดำเนินการไดมอนด์ เป็น ตัวดำเนินการ ⊕^{*} เมื่อ

$$\bigoplus^{k} = \left[\left(\sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}} \right)^{4} - \left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}} \right)^{4} \right]^{k}$$

ทำให้เกิดองค์ความรู้ใหม่ที่ครอบคลุมตัวดำเนินการดังกล่าวทั้งหมด

ในการวิจัยนี้เราต้องการศึกษาคุณสมบัติที่สำคัญของตัวดำเนินการ อันได้แก่ ตัว ดำเนินการประกอบ (Compound Operator) ตัวดำเนินการไม่เชิงเส้น (Nonlinear Operator) เร ชิดิว (Residue) และ สเปคตรัม (Spectrum) ของตัวดำเนินการดังกล่าวข้างต้น ซึ่งเป็นงานวิจัยที่ ทำให้เกิดองค์ความรู้ใหม่เพื่อเป็นประโยชน์ต่อการพัฒนาในสาขาดิสตริบิวชันต่อไป

2. วัตถุประสงค์ของโครงการ

- 1. เพื่อศึกษาค้นคว้าหาคุณสมบัติต่างๆ ของตัวดำเนินการประกอบและหาคำตอบของสมการที่ เกี่ยวข้องกับตัวดำเนินการประกอบ
- 2. เพื่อศึกษาสมการไม่เชิงเส้นของตัวดำเนินการเชิงอนุพันธ์ย่อยโดยเน้นการหาคำตอบที่สัมพันธ์ กับตัวดำเนินการคลื่นและตัวดำเนินการศักย์ (potential operator)
- 3. เพื่อศึกษาเรซิดิวและสเปกตรัมของตัวดำเนินการเชิงอนุพันธ์ย่อย
- 4. เพื่อศึกษาสมบัติเรขาคณิตต่างๆของปริภูมิบานาค
- 5. เพื่อศึกษาทฤษฎีจุดตรึงบนปริภูมิบานาค
- 6. เพื่อศึกษาทฤษฎีต่างๆของปริภูมิลำดับ

3. ระเบียบวิธีวิจัยโดยสรุป

ในโครงการวิจัยนี้ได้แบ่งโครงการวิจัยเป็น 6 โครงการย่อยดังนี้

โครงการย่อยที่ 1 ชื่อ "compound ultra - hyperbolic and Diamond operator "

ในโครงการย่อยที่ 1 นี้ มีระเบียบวิธีการดังนี้

- 1. ศึกษาหาผลเฉลยเบื้องต้น (elementary solutions) ของสมการที่เกี่ยวข้องกับตัวดำเนินการ ประกอบอัลตราไฮเปอร์โบลิคและตัวดำเนินการไดมอนด์ ตลอดจนศึกษาสมบัติต่างๆของผล เฉลย
- 2. ศึกษาและค้นคว้าเกี่ยวกับคอนวอลูซันของตัวดำเนินการประกอบของอัลตราไฮเปอร์โบลิคและ ตัวดำเนินการไดมคนด์
- 3. ศึกษาและค้นคว้าเกี่ยวกับการแปลงฟูริเยร์ของตัวดำเนินการประกอบของอัลตราไฮเปอร์โบลิค และตัวดำเนินการไดมอนด์

โครงการย่อยที่ 2 ชื่อ "Non - linear of Partial Differential Operators " โครงการวิจัยย่อยที่ 2 นี้ มีระเบียบวิธีดำเนินการดังนี้

- 1. ศึกษาและค้นคว้าทฤษฎีใหม่ๆเกี่ยวกับผลเฉลยของสมการไม่เชิงเส้นที่เกี่ยวข้องกับตัว ดำเนินการเชิงอนุพันธ์ย่อย
- 2. ศึกษาและค้นคว้าทฤษฎีใหม่ๆเกี่ยวกับคำตอบของสมการไม่เชิงเส้นที่สัมพันธ์กับตัวดำเนินการ คลื่นและตัวดำเนินการลาปลาเซียน (Laplacian Operators)
- 3. ศึกษาและค้นคว้าหาทฤษฎีใหม่ๆเกี่ยวกับปัญหาค่าขอบเขตของตัวดำเนินการเชิงอนุพันธ์ย่อย

โครงการย่อยที่ 3 ชื่อ "The Residue and the spectrum of Partial Differential Operators " โครงการวิจัยย่อยที่ 3 มีระเบียบวิธีดำเนินการดังนี้

- 1. ศึกษาและค้นคว้าหาทฤษฎีใหม่ๆที่เกี่ยวกับ residue ของ generalized function P^{λ} ที่ สัมพันธ์กับตัวดำเนินการไดมคนด์
- 2. ศึกษาสมบัติต่างๆและค้นคว้าหาทฤษฎีใหม่ๆเกี่ยวกับสเปกตรัมของ Distributional Kernel ที่สัมพันธ์กับตัวดำเนินการเชิงอนุพันธ์ย่อย
- 3. ศึกษาและหาความสัมพันธ์ระหว่าง residue และสเปกตรัมของ tempered distributions.

โครงการย่อยที่ 4 ชื่อ " Geometric Properties of Banach Spaces" โครงการย่อยที่ 4 นี้ มีระเบียบวิธีการดำเนินการดังนี้

- 1. ศึกษาและค้นคว้าหาทฤษฎีใหม่ๆเกี่ยวกับสมบัติ Convexity ของปริภูมิบานาคต่างๆ
- 2. ศึกษาและค้นคว้าหาทฤษฎีใหม่ๆเกี่ยวกับการมีสมบัติเรขาคณิตต่างๆที่นำไปสู่การเป็นปริภูมิ สะท้อน (Reflexive Space)
- 3. ศึกษาและค้นคว้าหาทฤษฎีใหม่ๆเกี่ยวกับการมีสมบัติ nonsquare, locally uniform nonsquare, UNS ของปริภูมิบานาคต่างๆ

โครงการย่อยที่ 5 ชื่อ " Fixed Point Theory of Banach Spaces" โครงการย่อยที่ 4 นี้ มีระเบียบวิธีการดำเนินการดังนี้

- 1. ศึกษาและค้นคว้าหาเงื่อนไขเพียงพอสำหรับฟังก์ชัน nonexpansive หรือเงื่อนไขบน ปริภูมิบา นาคที่ทำให้เกิดจุดตรึงของฟังก์ชัน
- 2. ศึกษาและค้นคว้าวิจัยเกี่ยวกับสมบัติเรขาคณิตที่เกี่ยวข้องกับทฤษฎีจุดตรึงบนปริภูมิบานาค ต่างๆ

3. ศึกษาและค้นคว้าวิจัยเพื่อหาความสัมพันธ์ระหว่างสมบัติเรขาคณิตที่ทำให้เกิดสมบัติจุดตรึง และสมบัติจุดตรึงแบบอ่อน (weak fixed point property) บนปริภูมิบานาคต่างๆ

โครงการย่อยที่ 6 ชื่อ "Matrix Transformation of Sequence Spaces and Probability" โครงการย่อยที่ 6 นี้ มีระเบียบวิธีการดำเนินการดังต่อไปนี้

- 1. ศึกษาลักษณะต่าง ๆ ของดูอัล(dual) ต่าง ๆ ในปริภูมิลำดับ
- 2. ศึกษาและหาลักษณะเฉพาะของเมตริกซ์อนันต์ที่ส่งจากปริภูมิหนึ่งไปยังอีกปริภูมิหนึ่ง
- 3. ศึกษาและหาลักษณะเฉพาะของปริภูมิลำดับบานาคที่มีสมบัติเรขาคณิตต่าง ๆ
- 4. ศึกษาขอบเขตุแบบ nonuniform และ pointwise สำหรับการประมาณของ poisson binomail โดย การแจกแจง poisson

4. แผนการดำเนินงานวิจัยในแต่ละช่วง 6 เดือนตลอดระยะเวลาโครงการ

	แผนการการวิจัยในรอบ								
แผนการดำเนินการวิจัยของแต่ละโครงการย่อย		6 เดือนแรกของแต่ละปี							
	1	2	3	4	5	6			
1. อภิปรายปัญหางานวิจัยในแต่ละโครงการย่อยข้างต้น		•							
ในกลุ่มนักวิจัย เพื่อให้เห็นปัญหา และ แนวทางการวิจัย									
2. ศึกษาพื้นฐานความรู้ต่างๆที่เกี่ยวข้องกับปัญหาวิจัยจาก		-	-						
เอกสารอ้างอิงต่างๆ									
3. ศึกษา และ หาแนวทางในการแก้ปัญหาโดยใช้ความรู้									
พื้นฐานที่เกี่ยวข้อง				-	 				
4. เขียนรายงานความก้าวหน้าในรอบ 6 เดือนแรกของการวิจัย									
เสนอต่อ สกว.									

แผนการดำเนินการวิจัยของแต่ละโครงการย่อย	แผนการการวิจัยในรอบ 6 เดือนหลังของแต่ละปี					
	1	2	3	4	5	6
 คิดค้นทำวิจัยเพื่อให้ได้องค์ความรู้ใหม่ ๆ ตามวัตถุประสงค์ 	-		—			
ของแต่ละโครงการย่อย						
2. คิดค้น และ พัฒนางานวิจัยต่อจากในข้อ 1. เพื่อให้ได้องค์			•		>	
ความรู้ใหม่ ๆ ครอบคลุมตามวัตถุประสงค์ของแต่ละโครงการ						
ย่อย						
3. เตรียม และ เขียนผลงานวิจัยเพื่อส่งตีพิมพ์ในวารสารระดับ					←→	
นานาชาติ						
4. เขียนรายงานความก้าวหน้าในรอบ 1 ปี และเสนอต่อ สกว.						←→
เสนอต่อ สกว.						
			l			

5. ประโยชนที่คาดว่าจะได้รับ

- 5.1 ได้ทฤษฎีองค์ความรู้ใหม่ทาง Distributions และ Banach Spaces Theory ซึ่งเป็นการ พัฒนาความก้าวหน้าทางวิชาการในสาขาดังกล่าว
- 5.2 ได้สร้างนักวิจัยรุ่นใหม่ในสาขาวิชาดังกล่าวให้ได้มาตราฐานในระดับนานาชาติ
- 5.3 ได้สร้างและพัฒนาบัณฑิตทั้งระดับปริญญาโท และ ปริญญาเอก ทางคณิตศาสตร์ใน สาขาดังกล่าวเพื่อเป็นนักวิจัยต่อไป
- 5.4 ได้เกิดความร่วมมือระหว่างนักวิจัยทั้งใน และ ต่างประเทศ

บทที่ 2

อัลตร้าไฮเปอร์โบลิคแบบรวมและตัวดำเนินการไดมอนด์ (The compound ultra-hyperbolic and Diamond operator)

ในบทนี้ได้ศึกษาตัวดำเนินการอัลตร้าไฮเปอร์โบลิคและตัวดำเนินการไดมอนด์โดยเริ่มจาก การศึกษาคุณสมบัติของเคอร์เนลของตัวดำเนินการที่สัมพันธ์กับสมการความร้อน (heat equations) และสมการคลื่น (wave equations) ซึ่งตัวดำเนินการที่สัมพันธ์กับสมการความร้อนอยู่ในรูป

$$\frac{\partial u(x,t)}{\partial t} = -c^2 (-\Delta)^k u(x,t)$$

ภายใต้เงื่อนไขเริ่มต้น u(x,0)=f(x) โดยที่ $\Delta=\frac{\partial^2}{\partial x_1^2}+\frac{\partial^2}{\partial x_2^2}+...+\frac{\partial^2}{\partial x_n^2}$ เป็นตัว ดำเนินการลาปลาเซียน $x=(x_1,x_2,...,x_n)\in\mathbb{R}^n$ -ปริภูมิยูคลีเดียนมิติที่ n , f เป็นฟังก์ซันต่อเนื่อง $t\in[0,\infty)$ และ k เป็นจำนวนเต็มบวก เราสามารถหาเคอร์เนล หรือคำตอบมูลฐาน (elementary solution) ของสมการดังกล่าวคือ

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\xi^n} \exp\left[-c^2 \left(\sum_{i=1}^n \xi_i^2\right)^k t + i(\xi,x)\right] d\xi$$

ซึ่งเคอร์เนลนี้จะมีคุณสมบัติต่าง ๆ ที่น่าสนใจ เช่น คุณสมบัติการมีขอบเขต (boundedness) เป็นต้น จากสมการดังกล่าว ถ้าให้ $x \in \mathbb{R}$ และ k=1 สมการดังกล่าวจะเปลี่ยนเป็น

$$\frac{\partial u(x,t)}{\partial t} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2}$$
 ซึ่งเป็นสมการความร้อนใน 1 มิติ และมีเคอร์เนล

$$E(x,t)=rac{1}{\sqrt{4\pi t}}e^{-x^2/4t}$$
 , $t>0$ และในกรณี $t o 0$ จะได้ $E(x,t) o \delta(x)$ เมื่อ $\delta(x)$ คือ Dirac-

delta distribution

สำหรับตัวดำเนินการที่สัมพันธ์กับสมการคลื่นเขียนอยู่ในรูปสมการ

$$\frac{\partial^2 u(x,t)}{\partial t^2} = -c^2 (-\Delta)^k u(x,t)$$

ภายใต้เงื่อนไขเริ่มต้น

$$u(x,0) = f(x)$$
$$\frac{\partial u(x,0)}{\partial t} = g(x)$$

โดยที่ $u(x,t)\in\mathbb{R}^n imes (0,\infty)$, f และ g เป็นฟังก์ชันต่อเนื่องและเป็น Absolutely integrable , c เป็นค่าคงที่บวก และ k เป็นจำนวนเต็มบวก

เราสามารถหาคำตอบ (solution) ของสมการดังกล่าวที่สอดคล้องเงื่อนไขที่กำหนดให้ คือ

$$u(x,t) = f(x) * \psi_{\epsilon}(x) + g(x) * \phi_{\epsilon}(x)$$

เมื่อ ϕ , เป็น inverse Fourier transform ของ $\hat{\phi}$, $(\xi) = \sin 2\pi |\xi| t$ และ ψ , เป็น inverse Fourier transform ของ $\hat{\psi}$, $(\xi) = \cos 2\pi |\xi| t$

นอกจากนี้ในงานวิจัย ยังได้ขยายสมการดังกล่าวให้สัมพันธ์กับตัวดำเนินการอัลตราไฮเปอร์โบ ลิค คือ

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \Box^k u(x,t)$$

และตัวดำเนินการไดมอนด์ คือ

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \Diamond^k u(x,t)$$

เมื่อ
$$\Box^k = \left(\sum_{i=1}^p \frac{\partial^2}{\partial x_i^2} - \sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2}\right)^k$$
 และ $\Diamond^k = \left(\left(\sum_{i=1}^p \frac{\partial^2}{\partial x_i^2}\right)^2 - \left(\sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2}\right)^2\right)^k$

และสามารถหาเคอร์เนลและคำตอบของสมการได้และมีคุณสมบัติที่น่าสนใจ

จากการวิจัยในบทนี้มีผลงานที่ได้การตีพิมพ์ และผลงานที่ยังไปตีพิมพ์ ในระดับนานาชาติดังนี้

ON THE GENERALIZED HEAT KERNEL*

K. Nonlaopon, A. Kananthai

Department of Mathematics, Chiangmai University, Thailand e-mail: Kamsingn@yahoo.com, malamnka@science.cmu.ac.th

В данной работе мы исследуем уравнение

$$\frac{\partial}{\partial t}u(x,t) = -c^2(-\triangle)^k u(x,t)$$

с начальными условиями

$$u(x,0) = f(x),$$

где $x \in \mathbb{R}^n$, \mathbb{R}^n — n-мерное евклидово пространство. Оператор Δ^k называется оператором Лапласа, итерированным k раз, и определяется как

$$\Delta^k = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_n^2}\right)^k,$$

где n — размерность евклидова пространства \mathbb{R}^n ; u(x,t) — неизвестная функция от $(x,t)=(x_1,x_2,\ldots,x_n,t)\in\mathbb{R}^n\times[0,\infty)$;, f(x) — заданная обобщенная функция; k — неотрицательное целое число; c — положительная постоянная.

Решение такого уравнения, называемое обобщенным ядром уравнения теплопроводности, имеет интересные свойства и связано с решением уравнения теплопроводности.

Introduction

It is well known that for the heat equation

$$\frac{\partial}{\partial t}u(x,t) = c^2 \Delta u(x,t) \tag{0.1}$$

with the initial condition

$$u(x,0)=f(x),$$

where $\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$ is the Laplace operator, $(x,t) = (x_1, x_2, \dots, x_n, t) \in \mathbb{R}^n \times [0, \infty)$, we obtain the solution

$$u(x,t) = \frac{1}{(4c^2\pi t)^{n/2}} \int_{\mathbb{R}^n} \exp\left[-\frac{|x-y|^2}{4c^2t}\right] f(y) dy.$$

^{*}Supported by The Royal Golden Jubilee Project grant No. PHD/0221/2543.

[©] Институт вычислительных технологий Сибирского отделения Российской академии наук, 2004.

Alternatevely, this solution can be represented in the convolution form

$$u(x,t) = E(x,t) * f(x),$$
 (0.2)

where

$$E(x,t) = \frac{1}{(4c^2\pi t)^{n/2}} \exp\left[-\frac{|x|^2}{4c^2t}\right]. \tag{0.3}$$

The function (0.3) called the heat kernel, where $|x|^2 = x_1^2 + x_2^2 + \cdots + x_n^2$ and t > 0, see [1, p. 208, 209].

Moreover, we obtain $E(x,t) \to \delta$ as $t \to 0$, where δ is the Dirac-delta function. We can extend (0.1) to the equation

$$\frac{\partial}{\partial t}u(x,t) = -c^2 \Delta^2 u(x,t) \tag{0.4}$$

with the initial condition

$$u(x,0) = f(x),$$

where $\triangle^2 = \triangle \triangle$ is the biharmonic operator, that is

$$\triangle^2 = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_n^2}\right)^2.$$

Using the n-dimensional Fourier transform we can find the following solution of (0.4)

$$u(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{-c^2|\xi|^4 t + i(\xi,x-y)} f(y) \, dy \, d\xi. \tag{0.5}$$

Using (0.5) u(x,t) can be rewritten in the convolution form

$$u(x,t) = E(x,t) * f(x),$$

where

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{-c^2|\xi|^4 t + i(\xi,x)} d\xi,$$
 (0.6)

 $|\xi|^4 = (\xi_1^2 + \xi_2^2 + \dots + \xi_n^2)^2$ and $(\xi, x) = \xi_1 x_1 + \xi_2 x_2 + \dots + \xi_n x_n$. The function E(x, t) in (0.6) is the kernel of (0.4), $E(x, t) \to \delta$ as $t \to 0$ since

$$\lim_{t\to 0} E(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{(\xi,x)i}, d\xi = \delta,$$

see [3, p. 396, Eq. (10.2.19(b))].

Now, the purpose of this work is to study the equation

$$\frac{\partial}{\partial t}u(x,t) = -c^2(-\Delta)^k u(x,t) \tag{0.7}$$

with the initial condition

$$u(x,0) = f(x)$$
, for $x \in \mathbb{R}^n$,

where the operator \triangle^k denotes the Laplace operator iterated k-times. This operator is defined as follows

$$\Delta^{k} = \left(\frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial x_{2}^{2}} + \dots + \frac{\partial^{2}}{\partial x_{n}^{2}}\right)^{k}, \tag{0.8}$$

where n is the dimension of Euclidean space \mathbb{R}^n , u(x,t) is an unknown function, $(x,t) = (x_1, x_2, \ldots, x_n, t) \in \mathbb{R}^n \times (0, \infty)$, f(x) is the given generalized function, k is a nonnegative integer and c is a positive constant.

We obtain u(x,t) = E(x,t) * f(x) as a solution of (0.7), where

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp\left[-c^2 \left(\sum_{i=1}^p \xi_i^2\right)^k t + i(\xi,x)\right] d\xi.$$
 (0.9)

All properties of E(x,t) in (0.9) will be studied in details.

Now, if we set k = 1 in (0.9) then (0.9) reduces to (0.3), which is the kernel of (0.1). Also, if we set k = 2 in (0.9), then (0.9) reduces to (0.6), which is the kernel of (0.4).

1. Preliminaries

Definition 1.1. Let $f(x) \in \mathbb{L}_1(\mathbb{R}^n)$ be the space of integrable functions in \mathbb{R}^n . The Fourier transform of f(x) is defined by

$$\widehat{f}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-i(\xi, x)} f(x) \, dx,\tag{1.1}$$

where $\xi = (\xi_1, \xi_2, \dots, \xi_n)$, $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, $(\xi, x) = \xi_1 x_1 + \xi_2 x_2 + \dots + \xi_n x_n$ is the usual inner product in \mathbb{R}^n , $dx = dx_1 dx_2 \dots dx_n$.

The inverse Fourier transform is given by

$$f(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{i(\xi, x)} \widehat{f}(\xi) d\xi.$$
 (1.2)

Lemma 1.1. Given the function

$$f(x) = \exp\left[-\left(\sum_{i=1}^n x_i^2\right)^k\right],$$

where $(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$. Then

$$\left| \int_{\mathbb{R}^n} f(x) \, dx \right| \le \frac{\pi^{\frac{n}{2}}}{k} \frac{\Gamma\left(\frac{n}{2k}\right)}{\Gamma\left(\frac{n}{2}\right)},\tag{1.3}$$

where Γ denotes the Gamma function. Therefore, $\int_{\mathbb{R}^n} f(x) dx$ is bounded.

Proof. We have

$$\int_{\mathbb{R}^n} f(x) dx = \int_{\mathbb{R}^n} \exp \left[-\left(\sum_{i=1}^p x_i^2\right)^k \right] dx.$$

Let us transform to bipolar coordinates

$$x_1 = r\omega_1, x_2 = r\omega_2, \ldots, x_n = r\omega_n,$$

where $\sum_{i=1}^{n} \omega_i^2 = 1$. Thus

$$\int_{\mathbb{R}^n} f(x) dx = \int_{\mathbb{R}^n} e^{-r^{2k}} r^{n-1} dr d\Omega_n,$$

where

$$dx = r^{n-1} dr d\Omega_n, (1.4)$$

 $d\Omega_n$ is the element of surface area on the unit sphere in \mathbb{R}^n . By direct computation we obtain

$$\int_{\mathbb{R}^n} f(x) \, dx = \Omega_n \int_0^\infty e^{-r^{2k}} r^{n-1} \, dr,\tag{1.5}$$

where $\Omega_n = \frac{2\pi^{n/2}}{\Gamma(n/2)}$.

When $u = r^{2k}$, we then obtain

$$\left| \int_{\mathbb{R}^n} f(x) \, dx \right| \leq \frac{\Omega_n}{2k} \int_0^\infty e^{-u} u^{\frac{n}{2k} - 1} \, du = \frac{\Omega_n}{2k} \Gamma\left(\frac{n}{2k}\right) = \frac{\pi^{\frac{n}{2}}}{k} \frac{\Gamma\left(\frac{n}{2k}\right)}{\Gamma\left(\frac{n}{2}\right)}. \tag{1.6}$$

Therefore, $\int_{\mathbb{R}^n} f(x) dx$ is bounded.

Lemma 1.2. For all t > 0 and all $x \in \mathbb{R}$ we have

$$\int_{-\infty}^{\infty} \exp\left(-c^2 \xi^2 t\right) d\xi = \sqrt{\frac{\pi}{c^2 t}}$$
(1.7)

and

$$\int_{-\infty}^{\infty} \exp\left[-c^2 \xi^2 t + i \xi x\right] d\xi = \sqrt{\frac{\pi}{c^2 t}} \exp\left(-\frac{x^2}{4c^2 t}\right), \tag{1.8}$$

where c is a positive constant.

2. Main Results

Theorem 2.1. Given the equation

$$\frac{\partial}{\partial t}u(x,t) = -c^2(-\Delta)^k u(x,t) \tag{2.1}$$

with the initial condition

$$u(x,0) = f(x), \tag{2.2}$$

where \triangle^k is the Laplace operator iterated k-times defined by

$$\Delta^{k} = \left(\frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial x_{2}^{2}} + \dots + \frac{\partial^{2}}{\partial x_{n}^{2}}\right)^{k},$$

where n is the dimension of Euclidean space \mathbb{R}^n , k is a nonnegative integer, u(x,t) is an unknown function, $(x,t) = (x_1, x_2, \dots, x_n, t) \in \mathbb{R}^n \times (0, \infty)$, f(x) is the given generalized function, and c is a positive constant. Then we obtain that

$$u(x,t) = E(x,t) * f(x)$$
(2.3)

is a solution of (2.1), which satisfies (2.2) where E(x,t) is the kernel of (2.1) defined by

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp\left[-c^2 \left(\sum_{i=1}^n \xi_i^2\right)^k t + i(\xi,x)\right] d\xi.$$
 (2.4)

Proof. Applying the Fourier transform (1.1) to both sides of (2.1), we obtain

$$\frac{\partial}{\partial t}\widehat{u}(\xi,t) = -c^2 \left(\sum_{i=1}^n \xi_i^2\right)^k \widehat{u}(\xi,t).$$

Thus,

$$\widehat{u}(\xi,t) = K(\xi) \exp\left[-c^2 \left(\sum_{i=1}^n \xi_i^2\right)^k t\right], \qquad (2.5)$$

where $K(\xi)$ is a constant and $\widehat{u}(\xi,0) = K(\xi)$.

 $\widehat{u}(\xi,t)$ in (2.5) is bounded and from (2.2) we have

$$K(\xi) = \widehat{u}(\xi, 0) = \widehat{f}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-i(\xi, x)} f(x) \, dx \tag{2.6}$$

and using the inversion in (1.2) we obtain from (2.5) and (2.6)

$$u(x,t) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{i(\xi,x)} \widehat{u}(\xi,t) d\xi =$$

$$= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{i(\xi,x)} e^{-i(\xi,y)} f(y) \exp\left[-c^2 \left(\sum_{i=1}^n \xi_i^2\right)^k t\right] dy d\xi.$$

Therefore,

$$u(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{i(\xi,x-y)} \exp\left[-c^2 \left(\sum_{i=1}^n \xi_i^2\right)^k t\right] f(y) \, dy \, d\xi \tag{2.7}$$

or

$$u(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \exp\left[-c^2 \left(\sum_{i=1}^n \xi_i^2\right)^k t + i(\xi, x - y)\right] f(y) \, dy \, d\xi. \tag{2.8}$$

Set

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp\left[-c^2 \left(\sum_{i=1}^n \xi_i^2\right)^k t + i(\xi, x)\right] d\xi.$$
 (2.9)

Thus, (2.8) can be rewritten in the convolution form

$$u(x,t) = E(x,t) * f(x),$$
 (2.10)

where u(x,t) in (2.8) is a solution of (2.1) and E(x,t) is defined by (2.9). It is clear that the kernel E(x,t) exists.

Moreover, since E(x,t) exists, then

$$\lim_{t \to 0} E(x, t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i(\xi, x)} d\xi = \delta(x), \text{ for } x \in \mathbb{R}^n.$$
 (2.11)

See [3, p. 396, Eq. (10.2.19(b))].

From (2.11) we obtain

$$u(x,0) = \lim_{t \to 0} u(x,t) = \lim_{t \to 0} (E(x,t) * f(x)) = \delta * f(x) = f(x).$$

Thus, u(x,t) in (2.3) satisfies (2.2).

In particular, if we set k = 1 in (2.9), then we obtain

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp\left[-c^2 \left(\sum_{j=1}^n \xi_j^2\right) t + i(\xi, x)\right] d\xi =$$

$$= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp\left[-c^2 \sum_{j=1}^n \xi_j^2 t + i \sum_{j=1}^n \xi_j x_j\right] d\xi =$$

$$= \frac{1}{(2\pi)^n} \prod_{j=1}^n \int_{-\infty}^{\infty} \exp\left[-c^2 \xi_j^2 t + i \xi_j x_j\right] d\xi_j =$$

$$= \frac{1}{(2\pi)^n} \prod_{j=1}^n \sqrt{\frac{\pi}{c^2 t}} \exp\left(-\frac{x_j^2}{4c^2 t}\right)$$

from (1.8). Thus,

$$E(x,t) = \frac{1}{(4c^2\pi t)^{n/2}} \exp\left(-\frac{|x|^2}{4c^2t}\right),$$

ON THE GENERALIZED HEAT KERNEL

since

$$\left(\frac{\pi}{c^2t}\right)^{\frac{n}{2}}\exp\left(-\frac{|x|^2}{4c^2t}\right) = \prod_{i=1}^n \sqrt{\frac{\pi}{c^2t}}\exp\left(-\frac{x_j^2}{4c^2t}\right)$$

and $|x|^2 = \sum_{i=1}^n x_i^2$.

Therefore, if we set k = 1 in (2.1) and (2.9), then (2.1) and (2.9) will be reduced to (0.1) and (0.3), respectively. If we set k = 2 in (2.9), then we obtain

$$\begin{split} E(x,t) &= \frac{1}{(2\pi)^n} \int\limits_{\mathbb{R}^n} \exp\left[-c^2 \left(\sum_{i=1}^n \xi_i^2 \right)^2 t + i(\xi, x) \right] \, d\xi = \\ &= \frac{1}{(2\pi)^n} \int\limits_{\mathbb{R}^n} e^{-c^2 |\xi|^4 t + i(\xi, x)} \, d\xi, \end{split}$$

where $|\xi|^4 = (\xi_1^2 + \xi_2^2 + \dots + \xi_n^2)^2$.

Therefore, if we set k=2 in (2.1) and (2.9), then (2.1) and (2.9) will be reduced to (0.4) and (0.6), respectively.

Theorem 2.2. The kernel E(x,t) defined by (2.9) has the following properties:

1) $E(x,t) \in C^{\infty}$, where C^{∞} is the space of continuous infinitely differentiable functions, $x \in \mathbb{R}^n$, t > 0;

2)
$$\left(\frac{\partial}{\partial t} + c^2(-\Delta)^k\right) E(x,t) = 0 \text{ for } t > 0;$$

3) $\hat{E}(x,t) > 0$ for $\hat{t} > 0$;

4

$$|E(x,t)| \leq \frac{1}{2^n \pi^{n/2} k (c^2 t)^{n/2k}} \frac{\Gamma\left(\frac{n}{2k}\right)}{\Gamma\left(\frac{n}{2}\right)}, \text{ for } t > 0,$$

where Γ denotes the Gamma function. Thus E(x,t) is bounded for any fixed t; 5) $\lim_{t\to 0} E(x,t) = \delta$.

Proof.

1. This property follows from (2.9), since

$$\frac{\partial^n}{\partial x^n} E(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \frac{\partial^n}{\partial x^n} \exp \left[-c^2 \left(\sum_{i=1}^n \xi_i^2 \right)^k t + i(\xi,x) \right] d\xi.$$

Thus, $E(x,t) \in C^{\infty}$ for $x \in \mathbb{R}^n$, t > 0.

2. By direct computation we obtain

$$\left(\frac{\partial}{\partial t} + c^2(-\triangle)^k\right) E(x,t) = 0$$

for t > 0, where E(x, t) is defined by (2.9).

3. E(x,t) > 0 for t > 0 is obvious from (2.9).

4. From (2.9) we have

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp\left[-c^2 \left(\sum_{i=1}^n \xi_i^2\right)^k t + i(\xi,x)\right] d\xi.$$

Therefore,

$$|E(x,t)| \le \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp\left[-c^2 t \left(\sum_{i=1}^n x_i^2\right)^k\right] dy.$$

Using the same procedure as in Lemma 1.1, we obtain

$$|E(x,t)| \leq \frac{1}{2^n \pi^{n/2} k (c^2 t)^{n/2k}} \frac{\Gamma\left(\frac{n}{2k}\right)}{\Gamma\left(\frac{n}{2}\right)}.$$

Thus, E(x,t) is bounded for any fixed t.

5. This property is obvious from (2.11).

Acknowledgement. The authors would like to thank The Thailand Research Fund for financial support.

References

- [1] JOHN F. Partial Differential Equations. N. Y.: Springer-Verlag, 1982.
- [2] IORIO R. J., IORIO JR, V. M. Fourier Analysis and Partial Differential Equation. Cambridge: Cambridge Univ. Press, 2001.
- [3] HABERMAN R. Elementary Applied Partial Differential Equations. Prentice-Hall Intern., Inc. 1983.

Received for publication September 17, 2003

International Journal of Applied Mathematics

Volume 13 No. 2 2003, 215-225

ON THE ULTRA-HYPERBOLIC HEAT KERNEL

 K. Nonlaopon¹, A. Kananthai²
 ^{1,2}Department of Mathematics Chiangmai University
 Chiangmai, 50200 THAILAND
 ²e-mail: Kamsingn@yahoo.com

Abstract: In this paper, we study the equation

$$\frac{\partial}{\partial t}u(x,t)=c^2\square u(x,t),$$

with the initial condition

$$u(x,0) = f(x)$$

for $x \in \mathbb{R}^n$ -the *n*-dimensional Euclidean space and the operator \square is an ultra-hyperbolic operator defined by

$$\Box = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \frac{\partial^2}{\partial x_{p+2}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2}\right),$$

p+q=n is the dimension of the Euclidean space \mathbb{R}^n , u(x,t) is an unknown function for $(x,t)=(x_1,x_2,\ldots,x_n,t)\in\mathbb{R}^n\times[0,\infty)$, f(x) is a given generalized function, k is a positive integer and c is a positive constant.

For suitable conditions, we obtain the solution of such equation which is the so-called *ultra-hyperbolic heat kernel*, if t is a time and x is a position. Moreover, such an ultra-hyperbolic heat kernel has interesting properties and also is related to the heat kernel of the heat equation on the suitable conditions of p, q and k.

AMS Subject Classification: 35L30, 46F12, 32W30

Key Words: ultra-hyperbolic partial differential equations, generalized functions, Fourier transform

Received: Octomber 16, 2003

© 2003 Academic Publications

Correspondence author

K. Nonlaopon, A. Kananthai

1. Introduction

It is well known that for the heat equation

$$\frac{\partial}{\partial t}u(x,t) = c^2 \frac{\partial^2}{\partial x^2}u(x,t), \qquad (1.1)$$

with the initial condition

$$u(x,0) = f(x)$$

for $x \in \mathbb{R}$ and $0 < t < \infty$, we obtain the solution

$$u(x,t) = \frac{1}{2c\sqrt{\pi t}} \int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{4c^2t}\right) f(y) \, dy$$

or the solution in the convolution form

$$u(x,t) = E(x,t) * f(x),$$
 (1.2)

where

$$E(x,t) = \frac{1}{2c\sqrt{\pi t}} \exp\left(-\frac{x^2}{4c^2t}\right). \tag{1.3}$$

The function (1.3) is called the heat kernel for such equation. An interesting property of E(x,t) is that $E(x,t) \to \delta$ as $t \to 0$, where δ is the Dirac-delta distribution.

Now, the purpose of this work is to study the equation

$$\frac{\partial}{\partial t} u(x,t) = c^2 \square u(x,t), \qquad (1.4)$$

with the initial condition

$$u(x,0) = f(x), \quad \text{for} \quad x \in \mathbb{R}^n$$

where the operator \square is named the ultra-hyperbolic operator iterated k-times, defined by

$$\Box = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \frac{\partial^2}{\partial x_{p+2}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2}\right), \quad (1.5)$$

ON THE ULTRA-HYPERBOLIC HEAT KERNEL

p+q=n is the dimension of the Euclidean space \mathbb{R}^n , u(x,t) is an unknown function for $(x,t)=(x_1,x_2,\ldots,x_n,t)\in\mathbb{R}^n\times[0,\infty)$, f(x) is the given generalized function, k is a nonnegative integer and c is a positive constant.

We obtain u(x,t) = E(x,t) * f(x) as a solution of (1.4), where

$$E(x,t) = \frac{(i)^q}{(4c^2\pi t)^{n/2}} \exp\left[-\frac{\left(\sum_{i=1}^p x_i^2 - \sum_{j=p+1}^{p+q} x_j^2\right)}{4c^2t}\right],$$
 (1.6)

p+q=n and $i=\sqrt{-1}$. E(x,t) exists only if $\sum_{i=1}^p x_i^2 > \sum_{j=p+1}^{p+q} x_j^2$. The properties of E(x,t) in (1.6) will be studied in details.

Now, if we put q = 0 and n = 1 in (1.6), then (1.6) reduces to (1.3) which is the kernel of (1.1).

2. Preliminaries

Definition 2.1. Let $f(x) \in \mathbb{L}_1(\mathbb{R}^n)$ – the space of integrable function in \mathbb{R}^n . The Fourier transform of f(x) is defined by

$$\widehat{f}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-i(\xi, x)} f(x) dx, \tag{2.1}$$

where $\xi = (\xi_1, \xi_2, \dots, \xi_n)$, $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, $(\xi, x) = \xi_1 x_1 + \xi_2 x_2 + \dots + \xi_n x_n$ is the usual inner product in \mathbb{R}^n and $dx = dx_1 dx_2 \dots dx_n$. Also, the inverse of Fourier transform is defined by

$$f(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{i(\xi, x)} \widehat{f}(\xi) d\xi.$$
 (2.2)

Definition 2.2. Let L be the operator defined by

$$L = \frac{\partial}{\partial t} - c^2 \Box,$$

where \square is the ultra-hyperbolic operator and c is a positive constant. We say that the function E(x,t) is the ultra-hyperbolic heat kernel for L, if L(E(x,t)) = 0.

Lemma 2.1. Given the equation

$$\frac{\partial}{\partial t}u(x,t) = c^2 \Delta u(x,t) \tag{2.3}$$

with the initial condition

$$u(x,0) = f(x)$$
 for $x \in \mathbb{R}^n$, (2.4)

where $(x,t) = (x_1, x_2, \ldots, x_n, t) \in \mathbb{R}^n \times [0, \infty)$, $\Delta = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$, c is a positive constant and f(x) is the given generalized function for $x \in \mathbb{R}^n$. Then we obtain

$$u(x,t) = E(x,t) * f(x)$$

as a solution of (2.3) which satisfies (2.4), where

$$E(x,t) = \frac{1}{(4c^2\pi t)^{n/2}} \exp\left(-\frac{|x|^2}{4c^2t}\right)$$
 (2.5)

and $|x|^2 = x_1^2 + x_2^2 + \cdots + x_n^2$.

Moreover, $E(x,t) \to \delta$ as $t \to 0$, where δ is the Dirac-delta distribution.

Proof. By applying the Fourier transform defined by (2.1) to the equation (2.3), see [2, p. 208] and also for $E(x,t) \to \delta$ as $t \to 0$, see [1, p. 37], we see that, for the solution u(x,t) = E(x,t) * f(x) as $t \to 0$,

$$u(x,0) = \lim_{t\to 0} u(x,t) = \lim_{t\to 0} (E(x,t) * f(x)) = \delta * f(x) = f(x).$$

Thus, we obtain (2.4).

Lemma 2.2. Given the function

$$f(x) = \exp \left[-\left(\sum_{i=1}^{p} x_i^2 - \sum_{j=p+1}^{p+q} x_j^2 \right) \right], \quad p+q=n,$$

then

$$\widehat{f}(\xi) = \frac{(i)^q}{2^{n/2}} \exp\left[-\frac{\left(\sum_{i=1}^p \xi_i^2 - \sum_{j=p+1}^{p+q} \xi_j^2\right)}{4}\right]. \tag{2.6}$$

ON THE ULTRA-HYPERBOLIC HEAT KERNEL

Proof. By (2.1), we have

$$\widehat{f}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-i(\xi,x)} \exp \left[-\left(\sum_{i=1}^p x_i^2 - \sum_{j=p+1}^{p+q} x_j^2 \right) \right] dx.$$

Put

$$x_1=y_1,x_2=y_2,\ldots,x_p=y_p$$

and

$$x_{p+1} = iy_{p+1}, x_{p+2} = iy_{p+2}, \ldots, x_{p+q} = iy_{p+q},$$

where $i = \sqrt{-1}$. Thus

$$dx = (i)^q dy_1 dy_2 \dots dy_n = (i)^q dy$$

and

$$\begin{split} \widehat{f}(\xi) &= \frac{(i)^{q}}{(2\pi)^{n/2}} \int_{\mathbb{R}^{n}} e^{-\xi_{1}y_{1}i} e^{-\xi_{2}y_{2}i} \dots e^{-\xi_{p}y_{p}i} e^{\xi_{p+1}y_{p+1}} \dots e^{\xi_{p+q}y_{p+q}} \\ &\times e^{-\left(y_{1}^{2}+y_{2}^{2}+\dots+y_{p+q}^{2}\right)} dy \\ &= \frac{(i)^{q}}{(2\pi)^{n/2}} \int_{-\infty}^{\infty} e^{-\left[y_{1}^{2}+i\xi_{1}y_{1}\right]} dy_{1} \int_{-\infty}^{\infty} e^{-\left[y_{2}^{2}+i\xi_{2}y_{2}\right]} dy_{2} \dots \\ &\times \int_{-\infty}^{\infty} e^{-\left[y_{p}^{2}+i\xi_{p}y_{p}\right]} dy_{p} \\ &\times \int_{-\infty}^{\infty} e^{-\left[y_{p+1}^{2}-\xi_{p+1}y_{p+1}\right]} dy_{p+1} \dots \int_{-\infty}^{\infty} e^{-\left[y_{p+q}^{2}-\xi_{p+q}y_{p+q}\right]} dy_{p+q} \\ &= \frac{(i)^{q}}{(2\pi)^{n/2}} \int_{-\infty}^{\infty} e^{-\left(y_{1}+i\frac{\xi_{1}}{2}\right)^{2}} e^{-\frac{\xi_{1}^{2}}{4}} dy_{1} \dots \int_{-\infty}^{\infty} e^{-\left(y_{p}+i\frac{\xi_{p}}{2}\right)^{2}} e^{-\frac{\xi_{p}^{2}}{4}} dy_{p} \\ &\times \int_{-\infty}^{\infty} e^{-\left(y_{p+1}-\frac{\xi_{p+1}}{2}\right)^{2}} e^{\frac{\xi_{p+1}^{2}}{4}} dy_{p+1} \dots \\ &\times \int_{-\infty}^{\infty} e^{-\left(y_{p+q}-\frac{\xi_{p+q}}{2}\right)^{2}} e^{\frac{\xi_{p+q}^{2}}{4}} dy_{p+q}. \end{split}$$

By using well known formula

$$\int_{-\infty}^{\infty} e^{-u^2} du = \sqrt{\pi},$$

thus

$$\widehat{f}(\xi) = \frac{(i)^q}{(2\pi)^{n/2}} (\sqrt{\pi})^n \exp\left[\frac{-\xi_1^2 - \xi_2^2 - \dots - \xi_p^2 + \xi_{p+1}^2 + \xi_{p+2}^2 + \dots + \xi_{p+q}^2}{4}\right] \\
= \frac{(i)^q}{2^{n/2}} \exp\left[-\frac{(\xi_1^2 + \xi_2^2 + \dots + \xi_p^2 - \xi_{p+1}^2 - \xi_{p+2}^2 - \dots - \xi_{p+q}^2)}{4}\right].$$

Thus

$$\widehat{f}(\xi) = \frac{(i)^q}{2^{n/2}} \exp \left[-\frac{\left(\sum_{i=1}^p \xi_i^2 - \sum_{j=p+1}^{p+q} \xi_j^2\right)}{4} \right].$$

3. Main Results

Theorem 3.1. Given the equation

$$\frac{\partial}{\partial t}u(x,t) = c^2 \Box u(x,t) \tag{3.1}$$

with the initial condition

$$u(x,0) = f(x), \tag{3.2}$$

where \(\sigma \) is the ultra-hyperbolic operator and defined by

$$\Box = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \frac{\partial^2}{\partial x_{p+2}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2}\right),$$

p+q=n is the dimension of Euclidean space \mathbb{R}^n , u(x,t) is an unknown function for $(x,t)=(x_1,x_2,\ldots,x_n,t)\in\mathbb{R}^n\times[0,\infty)$, f(x) is the given generalized function, and c is a positive constant. Then we obtain

$$u(x,t) = E(x,t) * f(x)$$
 (3.3)

ON THE ULTRA-HYPERBOLIC HEAT KERNEL

as a solution of (3.1) which satisfies (3.2), where E(x,t) is the kernel of (3.1) and is defined by

$$E(x,t) = \frac{(i)^q}{(4c^2\pi t)^{n/2}} \exp\left[-\frac{\left(\sum_{i=1}^p x_i^2 - \sum_{j=p+1}^{p+q} x_j^2\right)}{4c^2t}\right], \quad (3.4)$$

where p+q=n, $i=\sqrt{-1}$ and $\sum_{i=1}^p x_i^2 > \sum_{j=p+1}^{p+q} x_j^2$. Moreover, we obtain $E(x,t) \to \delta$ as $t \to 0$, where δ is the Dirac-delta distribution, and $\int_{\mathbb{R}^n} E(x,t) dx$ is bounded for $x \in \mathbb{R}^n$.

Proof. Take the Fourier transform defined by (2.1) to both sides of (3.1), we obtain

$$\frac{\partial}{\partial t} \widehat{u}(\xi, t) = c^2 \left(-\xi_1^2 - \xi_2^2 - \dots - \xi_p^2 + \xi_{p+1}^2 + \xi_{p+2}^2 + \dots + \xi_{p+q}^2 \right) \widehat{u}(\xi, t)
= -c^2 \left(\sum_{i=1}^p \xi_i^2 - \sum_{j=p+1}^{p+q} \xi_j^2 \right) \widehat{u}(\xi, t).$$

Thus

$$\widehat{u}(\xi,t) = K(\xi) \exp \left[-c^2 \left(\sum_{i=1}^p \xi_i^2 - \sum_{j=p+1}^{p+q} \xi_j^2 \right) t \right], \quad (3.5)$$

where $K(\xi)$ is a constant depending on ξ . Now, for $\sum_{i=1}^{p} x_i^2 > \sum_{j=p+1}^{p+q} x_j^2$, $\widehat{u}(\xi,t)$ in (3.5) is bounded.

Now, by (3.2) we have

$$K(\xi) = \widehat{u}(\xi, 0) = \widehat{f}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-i(\xi, x)} f(x) \, dx \tag{3.6}$$

and by the inversion in (2.2), we obtain

$$u(x,t) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{i(\xi,x)} \widehat{u}(\xi,t) \, d\xi$$

$$= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{i(\xi,x)} e^{-i(\xi,y)} f(y)$$

$$\times \exp\left[-c^2 \left(\sum_{i=1}^p \xi_i^2 - \sum_{j=p+1}^{p+q} \xi_j^2\right) t\right] \, d\xi \, dy$$

by (3.5) and (3.6). Thus

$$\begin{split} u(x,t) &= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{i(\xi,x-y)} \\ &\times \exp\left[-c^2 \left(\sum_{i=1}^p \xi_i^2 - \sum_{j=p+1}^{p+q} \xi_j^2 \right) t \right] f(y) \, d\xi \, dy \,, \end{split}$$

ог

$$u(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \exp\left[-c^2 \left(\sum_{i=1}^p \xi_i^2 - \sum_{j=p+1}^{p+q} \xi_j^2\right) t + i(\xi, x - y)\right] \times f(y) \, d\xi \, dy. \quad (3.7)$$

Set

$$E(x, y, t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp \left[-c^2 \left(\sum_{i=1}^p \xi_i^2 - \sum_{j=p+1}^{p+q} \xi_j^2 \right) t + i(\xi, x - y) \right] d\xi.$$

By the same process as in Lemma 2.2, we obtain

$$E(x,y,t) = \frac{(i)^q}{(4c^2\pi t)^{n/2}} \times \exp\left[-\frac{\left(\sum_{i=1}^p (x_i - y_i)^2 - \sum_{j=p+1}^{p+q} (x_j - y_j)^2\right)}{4c^2t}\right]. \quad (3.8)$$

Thus (3.7) can be written as

$$u(x,t) = \int_{\mathbb{R}^n} E(x,y,t) f(y) dy,$$

or in convolution form:

$$u(x,t) = E(x,t) * f(x),$$

ON THE ULTRA-HYPERBOLIC HEAT KERNEL

where

$$E(x,t) = \frac{(i)^q}{(4c^2\pi t)^{n/2}} \exp\left[-\frac{\left(\sum_{i=1}^p x_i^2 - \sum_{j=p+1}^{p+q} x_j^2\right)}{4c^2t}\right], \quad (3.9)$$

and $\sum_{i=1}^{p} x_i^2 > \sum_{j=p+1}^{p+q} x_j^2$, which is (3.8) with the case y = 0. By A.H. Zemanian [3, p. 43-44],

$$E(x,t) \to \delta$$
 as $t \to 0$.

To show that $\int_{\mathbb{R}^n} E(x,t)dx$ is bounded for $x \in \mathbb{R}^n$, since

$$\int_{\mathbb{R}^n} E(x,t)dx$$

$$= \frac{(i)^q}{(4c^2\pi t)^{n/2}} \int_{\mathbb{R}^n} \exp\left[-\frac{\left(\sum_{i=1}^p x_i^2 - \sum_{j=p+1}^{p+q} x_j^2\right)}{4c^2t}\right] dx,$$

put

$$x_1=y_1,x_2=y_2,\ldots,x_p=y_p$$

and

$$x_{p+1} = iy_{p+1}, x_{p+2} = iy_{p+2}, \dots, x_{p+q} = iy_{p+q}.$$

Thus

$$dx = (i)^q dy_1 dy_2 \dots dy_{p+q} = (i)^q dy.$$

So, we have

$$\int_{\mathbb{R}^n} E(x,t)dx = \frac{(i)^q}{(4c^2\pi t)^{n/2}} \int_{\mathbb{R}^n} \exp\left[-\frac{\sum_{i=1}^{p+q} y_i^2}{4c^2t}\right] (i)^q dy$$
$$= \frac{(i)^q \cdot (i)^q}{(4c^2\pi t)^{n/2}} \cdot (4c^2\pi t)^{n/2}$$
$$= (-1)^q.$$

Thus

$$\int_{\mathbb{R}^n} E(x,t)dx = \begin{cases} 1 & \text{for } q & \text{is even} \\ -1 & \text{for } q & \text{is odd.} \end{cases}$$
 (3.10)

Now

$$\left| \int_{\mathbb{R}^n} E(x,t) dx \right| \le \int_{\mathbb{R}^n} |E(x,t)| dx$$

$$= \frac{|(i)^{2q}|}{|(4c^2\pi t)^{n/2}|} \int_{\mathbb{R}^n} \left| \exp\left[-\frac{\sum_{i=1}^{p+q} y_i^2}{4c^2 t} \right] \right| dy$$

$$= \frac{1}{|(4c^2\pi t)^{n/2}|} \cdot |(4c^2\pi t)^{n/2}|$$

$$= 1.$$

Thus $\int_{\mathbb{R}^n} E(x,t)dx$ is bounded for $x \in \mathbb{R}^n$. Now, from u(x,t) = E(x,t) * f(x), by the continuity of convolution, we obtain

$$u(x,0) = \lim_{t\to 0} u(x,t) = \lim_{t\to 0} (E(x,t) * f(x)) = \delta * f(x) = f(x).$$

Thus, we obtain (3.2).

Moreover, if q = 0 then E(x,t) in (3.9) reduces to the standard kernel E(x,t) in (2.5). Thus, we can say that equation (3.1) is the generalization of the heat equation (2.3).

Theorem 3.2. (The properties of the ultra-hyperbolic heat kernel E(x,t)) The kernel E(x,t), given by (3.4) has following properties:

- (1) $E(x,t) \in \mathbb{C}^{\infty}$ -the space of continuous functions for $x \in \mathbb{R}^n$, t > 0, infinitely differentiable.
 - (2) E(x,t) satisfies (3.1), that is

$$\frac{\partial}{\partial t}E(x,t)=c^2\Box E(x,t)$$
 for $t>0$.

(3) E(x,t) > 0 for t > 0 with q = 4m and E(x,t) < 0 for t > 0 with q = 4m + 2, where m is a nonnegative integer.

(4)
$$\int_{\mathbb{R}^n} E(x,t)dx = 1 \text{ for } q \text{ is even.}$$

(5)
$$E(x,t) \to \delta$$
 as $t \to 0$.

Proof. (1) Since $\frac{\partial^n}{\partial x^n}E(x,t)$ exists and is continuous for all n, thus $E(x,t)\in\mathbb{C}^{\infty}$.

ON THE ULTRA-HYPERBOLIC HEAT KERNEL

(2) By computing directly of $\frac{\partial}{\partial x}E(x,t)$ and

$$\Box E(x,t) = \left(\sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}} - \sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right) E(x,t),$$

we obtain that

$$\frac{\partial}{\partial t} E(x,t) = c^2 \square E(x,t)$$
 holds for $t > 0$.

- (3) By (3.4), E(x,t) > 0 for t > 0 with q = 4m and E(x,t) < 0 for t > 0 with q = 4m + 2, where m is nonnegative integer.
 - (4) By (3.10) with q is even.
 - (5) By the last proof of Theorem 3.1.

Acknowledgement

The authors would like to thank The Thailand Research Fund for financial support.

The first author is supported by the Royal Golden Jubilee Project grant No. PHD/0221/2543.

References

- I.M. Gel'fand, G.E. Shilov, Generalized Functions, Volume I, Academic Press, New York (1964).
- [2] F. John, Partial Differental Equations, Springer-Verlag, New York (1982).
- [3] A.H. Zemanian, Distribution Theory and Transform Analysis, Mc-Graw Hill (1965).

On the Generalized Ultra-hyperbolic Heat Kernel Related to the Spectrum

K. Nonlaopon, A. Kananthai

Department of Mathematics, Chiang Mai University, Chiang Mai, 50200 Thailand. e-mail: Kamsingn@yahoo.com

AMS Subject Classification: 46F10

Keywords: the spectrum of the kernel, the generalized ultra-hyperbolic heat kernel, generalized function

Abstract

In this paper, we study the equation

$$\frac{\partial}{\partial t}u(x,t)=c^2\Box^k u(x,t)$$

with the initial condition

$$u(x,0)=f(x)$$

for $x \in \mathbb{R}^n$ -the *n*-dimensional Euclidean space. The operator \square^k is named the ultra-hyperbolic operator iterated k-times, defined by

$$\Box^k = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \frac{\partial^2}{\partial x_{p+2}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2}\right)^k,$$

p+q=n is the dimension of the Euclidean space \mathbb{R}^n , u(x,t) is an unknown function for $(x,t)=(x_1,x_2,\ldots,x_n,t)\in\mathbb{R}^n\times(0,\infty)$, f(x) is the given generalized function, k is a positive integer and c is a positive constant.

We obtain the solution of such equation which is related to the spectrum and the kernel which is so called the generalized ultra-hyperbolic heat kernel.

Moreover, such the generalized ultra-hyperbolic heat kernel has interesting properties and also related to the the kernel of an extension of the heat equation.

^{*}Supported by The Royal Golden Jubilee Project grant No. PHD/0221/2543.

1 Introduction

It is well known that for the heat equation

$$\frac{\partial}{\partial t}u(x,t) = c^2 \Delta u(x,t) \tag{1.1}$$

with the initial condition

$$u(x,0) = f(x)$$

where $\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$ is the Laplacian operator and $(x,t) = (x_1, x_2, \dots, x_n, t) \in \mathbb{R}^n \times (0, \infty)$, we obtain the solution

$$u(x,t) = \frac{1}{(4c^2\pi t)^{n/2}} \int_{\mathbb{R}^n} f(y)e^{-|x-y|^2/4c^2t} dy$$

or the solution in the convolution form

$$u(x,t) = E(x,t) * f(x)$$

$$(1.2)$$

where

$$E(x,t) = \frac{1}{(4c^2\pi t)^{n/2}} e^{-|x|^2/4c^2t}.$$
 (1.3)

The equation (1.3) is called the heat kernel, where $|x|^2 = x_1^2 + x_2^2 + \cdots + x_n^2$ and t > 0, see [2, p208-209].

Moreover, we obtain $E(x,t) \to \delta$ as $t \to 0$, where δ is the Dirac-delta distribution. We can extend (1.1) to the equation

$$\frac{\partial}{\partial t}u(x,t) = c^2 \square u(x,t) \tag{1.4}$$

with the initial condition

$$u(x,0) = f(x) \tag{1.5}$$

where \square is the ultra-hyperbolic operator, that is

$$\Box = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \frac{\partial^2}{\partial x_{p+2}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2}\right).$$

Then we obtain

$$u(x,t) = E(x,t) * f(x)$$
 (1.6)

as a solution of (1.4) which satisfies (1.5) where E(x,t) is the kernel of (1.4) and is defined by

$$E(x,t) = \frac{(i)^q}{(4c^2\pi t)^{n/2}} \exp\left[-\frac{\left(\sum_{i=1}^p x_i^2 - \sum_{j=p+1}^{p+q} x_j^2\right)}{4c^2t}\right]$$
(1.7)

where p+q=n, $i=\sqrt{-1}$ and $\sum_{i=1}^p x_i^2 > \sum_{j=p+1}^{p+q} x_j^2$, see [1, pp. 215-225]. Moreover, we obtain $E(x,t) \to \delta$ as $t \to 0$, where δ is the Dirac-delta distribu-

Moreover, we obtain $E(x,t) \to \delta$ as $t \to 0$, where δ is the Dirac-delta distribution. In addition, we studied the ultra-hyperbolic heat kernel which is related to the spectrum, see [2, pp. 19-28].

Now, the purpose of this work is to study the equation

$$\frac{\partial}{\partial t}u(x,t) = c^2 \Box^k u(x,t) \tag{1.8}$$

with the initial condition

$$u(x,0) = f(x), \quad \text{for} \quad x \in \mathbb{R}^n$$
 (1.9)

where the operator \square^k is named the ultra-hyperbolic operator iterated k-times defined by

$$\Box^{k} = \left(\frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial x_{2}^{2}} + \dots + \frac{\partial^{2}}{\partial x_{p}^{2}} - \frac{\partial^{2}}{\partial x_{p+1}^{2}} - \frac{\partial^{2}}{\partial x_{p+2}^{2}} - \dots - \frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{k}, \tag{1.10}$$

p+q=n is the dimension of the Euclidean space \mathbb{R}^n , u(x,t) is an unknown function for $(x,t)=(x_1,x_2,\ldots,x_n,t)\in\mathbb{R}^n\times(0,\infty)$, f(x) is the given generalized function, k is a positive integer and c is a positive constant.

We obtain u(x,t) = E(x,t) * f(x) as a solution of (1.8) which satisfies (1.9) where

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\Omega} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k + i(\xi,x)\right] d\xi.$$
 (1.11)

and $\Omega \subset \mathbb{R}^n$ is the spectrum of E(x,t) for any fixed t>0. The function E(x,t) is called the generalized ultra-hyperbolic heat kernel iterated k-times or the elementary solution of (1.8). And all properties of E(x,t) will be studied in details.

Now, if we put k = 1 and q = 0 in (1.8) and (1.11) then (1.8) and (1.11) reduce to (1.1) and (1.3) respectively.

2 Preliminaries

Definition 2.1 We say $f \in L^1(\mathbb{R}^n)$ if

$$\int_{\mathbb{R}^n} |f(x)| \, dx < \infty.$$

For $f \in L^1(\mathbb{R}^n)$, we define its Fourier transform at a point $\xi \in \mathbb{R}^n$ as

$$\widehat{f}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-i(\xi,x)} f(x) dx \tag{2.1}$$

where $\xi = (\xi_1, \xi_2, \dots, \xi_n)$ and $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, $(\xi, x) = \xi_1 x_1 + \xi_2 x_2 + \dots + \xi_n x_n$ and $dx = dx_1 dx_2 \dots dx_n$.

Also, the inverse of Fourier transform is defined by

$$f(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{i(\xi, x)} \widehat{f}(\xi) d\xi.$$
 (2.2)

Definition 2.2 The spectrum of the kernel E(x,t) of (1.11) is the bounded support of the Fourier transform $\widehat{E(\xi,t)}$ for any fixed t>0.

Definition 2.3 Let $\xi = (\xi_1, \xi_2, \dots, \xi_n) \in \mathbb{R}^n$ and denote by

$$\Gamma_{+} = \{ \xi \in \mathbb{R}^{n} : \xi_{1}^{2} + \xi_{2}^{2} + \ldots + \xi_{p}^{2} - \xi_{p+1}^{2} - \xi_{p+2}^{2} - \ldots - \xi_{p+q}^{2} > 0 \text{ and } \xi_{1} > 0 \}$$

the set of an interior of the forward cone, and $\overline{\Gamma}_+$ denotes the closure of Γ_+ .

Let Ω be spectrum of E(x,t) defined by definition 2.2 and $\Omega \subset \overline{\Gamma}_+$. Let $\widehat{E(\xi,t)}$ be the Fourier transform of E(x,t) and define

$$\widehat{E(\xi,t)} = \begin{cases} \frac{1}{(2\pi)^{n/2}} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k\right] & \text{for } x \in \Gamma_+, \\ 0 & \text{for } \xi \notin \Gamma_+. \end{cases}$$
(2.3)

Lemma 2.1 Let L be the operator defined by

$$L = \frac{\partial}{\partial t} - c^2 \Box^k \tag{2.4}$$

where \Box^k is the ultra-hyperbolic operator iterated k-times defined by

$$\Box^{k} = \left(\frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial x_{2}^{2}} + \dots + \frac{\partial^{2}}{\partial x_{p}^{2}} - \frac{\partial^{2}}{\partial x_{p+1}^{2}} - \frac{\partial^{2}}{\partial x_{p+2}^{2}} - \dots - \frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{k},$$

p+q=n is the dimension of \mathbb{R}^n , $(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$, $t\in(0,\infty)$, k is a positive integer and c is a positive constant. Then we obtain

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\Omega} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k + i(\xi,x)\right] d\xi$$
 (2.5)

as a elementary solution of (2.4) in the spectrum $\Omega \subset \mathbb{R}^n$ for t > 0.

Proof. Let $LE(x,t) = \delta(x,t)$ where E(x,t) is the kernel or the elementary solution of operator L and δ is the Dirac-delta distribution. Thus

$$\frac{\partial}{\partial t}E(x,t) - c^2 \Box^k E(x,t) = \delta(x)\delta(t).$$

Take the Fourier transform defined by (2.1) to both sides of the equation, we obtain

$$\frac{\partial}{\partial t}\widehat{E(\xi,t)} - c^2 \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2 \right)^k \widehat{E(\xi,t)} = \frac{1}{(2\pi)^{n/2}} \delta(t).$$

Thus

$$\widehat{E(\xi,t)} = \frac{H(t)}{(2\pi)^{n/2}} \exp \left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2 \right)^k \right]$$

where H(t) is the Heaviside function. Since H(t) = 1 for t > 0. Therefore,

$$\widehat{E(\xi,t)} = \frac{1}{(2\pi)^{n/2}} \exp \left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2 \right)^k \right]$$

which has been already defined by (2.3). Thus

$$\begin{split} E(x,t) &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{i(\xi,x)} \widehat{E(\xi,t)} \, d\xi \\ &= \frac{1}{(2\pi)^{n/2}} \int_{\Omega} e^{i(\xi,x)} \widehat{E(\xi,t)} \, d\xi \end{split}$$

where Ω is the spectrum of E(x,t). Thus from (2.3)

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\Omega} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k + i(\xi,x)\right] d\xi \quad \text{for } t > 0.$$

Lemma 2.2 For all t > 0, c is a positive constant and all $x \in \mathbb{R}$, we have

$$\int_{-\infty}^{\infty} \exp\left(-c^2 \xi^2 t\right) d\xi = \sqrt{\frac{\pi}{c^2 t}} \tag{2.6}$$

and

$$\int_{-\infty}^{\infty} \exp\left[-c^2 \xi^2 t + i \xi x\right] d\xi = \sqrt{\frac{\pi}{c^2 t}} \exp\left(-\frac{x^2}{4c^2 t}\right). \tag{2.7}$$

3 Main Results

Theorem 3.1 Given the equation

$$\frac{\partial}{\partial t}u(x,t) = c^2 \Box^k u(x,t) \tag{3.1}$$

with the initial condition

$$u(x,0) = f(x) \tag{3.2}$$

where \square^k is the ultra-hyperbolic operator iterated k-times defined by

$$\Box^{k} = \left(\frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial x_{2}^{2}} + \dots + \frac{\partial^{2}}{\partial x_{p}^{2}} - \frac{\partial^{2}}{\partial x_{p+1}^{2}} - \frac{\partial^{2}}{\partial x_{p+2}^{2}} - \dots - \frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{k},$$

p+q=n is the dimension of Euclidean space \mathbb{R}^n , k is a positive integer, u(x,t) is an unknown function for $(x,t)=(x_1,x_2,\ldots,x_n,t)\in\mathbb{R}^n\times(0,\infty)$, f(x) is the given generalized function, and c is a positive constant. Then we obtain

$$u(x,t) = E(x,t) * f(x)$$
(3.3)

as a solution of (3.1) which satisfies (3.2) where E(x,t) is given by (2.5).

Proof. Taking the Fourier transform defined by (2.1) to both sides of (3.1), we obtain

$$\frac{\partial}{\partial t}\widehat{u}(\xi,t) = c^2 \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2 \right)^k \widehat{u}(\xi,t).$$

Thus

$$\widehat{u}(\xi, t) = K(\xi) \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k\right]$$
(3.4)

where $K(\xi)$ is constant and $\widehat{u}(\xi,0) = K(\xi)$.

Now, by (3.2) we have

$$K(\xi) = \widehat{u}(\xi, 0) = \widehat{f}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-i(\xi, x)} f(x) \, dx \tag{3.5}$$

and by the inversion in (2.2), (3.4) and (3.5) we obtain

$$u(x,t) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{i(\xi,x)} \widehat{u}(\xi,t) d\xi$$

$$= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{i(\xi,x)} e^{-i(\xi,y)} f(y) \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k\right] d\xi dy.$$

Thus

$$u(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{i(\xi,x-y)} \exp \left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2 \right)^k \right] f(y) d\xi dy$$

or

$$u(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k + i(\xi, x - y)\right] f(y) \, d\xi \, dy. \quad (3.6)$$

Set

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k + i(\xi,x)\right] d\xi.$$
 (3.7)

Since the integral of (3.7) is divergent, therefore we choose $\Omega \subset \mathbb{R}^n$ be the spectrum of E(x,t) and by (2.5), we have

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k + i(\xi,x)\right] d\xi$$

$$= \frac{1}{(2\pi)^n} \int_{\Omega} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k + i(\xi,x)\right] d\xi. \tag{3.8}$$

Thus (3.6) can be written in the convolution form

$$u(x,t) = E(x,t) * f(x).$$

Moreover, since E(x,t) exists, then

$$\lim_{t \to 0} E(x,t) = \frac{1}{(2\pi)^n} \int_{\Omega} e^{i(\xi,x)} d\xi$$

$$= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i(\xi,x)} d\xi$$

$$= \delta(x), \quad \text{for } x \in \mathbb{R}^n.$$
(3.9)

See [5, p396, Eq.(10.2.19b)].

Thus for the solution u(x,t) = E(x,t) * f(x) of (3.1), then

$$u(x,0) = \lim_{t \to 0} u(x,t) = \lim_{t \to 0} (E(x,t) * f(x)) = \delta * f(x) = f(x)$$

which satisfies (3.2).

٦,

In particular, if we put k = 1 and q = 0 in (3.8), then we obtain

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\Omega} \exp\left[-c^2 t \left(\sum_{j=1}^n \xi_j^2\right) + i(\xi,x)\right] d\xi$$

$$= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp\left[-c^2 t \sum_{j=1}^n \xi_j^2 + i \sum_{j=1}^n \xi_j x_j\right] d\xi$$

$$= \frac{1}{(2\pi)^n} \prod_{j=1}^n \int_{-\infty}^{\infty} \exp\left[-c^2 \xi_j^2 t + i \xi_j x_j\right] d\xi_j$$

$$= \frac{1}{(2\pi)^n} \prod_{j=1}^n \sqrt{\frac{\pi}{c^2 t}} \exp\left(-\frac{x_j^2}{4c^2 t}\right)$$

by (2.7). Thus

$$E(x,t) = \frac{1}{(4c^2\pi t)^{n/2}} \exp\left(-\frac{|x|^2}{4c^2t}\right),$$

since

$$\left(\frac{\pi}{c^2t}\right)^{\frac{n}{2}}\exp\left(-\frac{|x|^2}{4c^2t}\right) = \prod_{j=1}^n \sqrt{\frac{\pi}{c^2t}}\exp\left(-\frac{x_j^2}{4c^2t}\right)$$

and $|x|^2 = \sum_{i=1}^n x_i^2$.

Therefore, if we put k = 1 and q = 0 in (3.1) and (3.8) then (3.1) and (3.8) reduce to (1.1) and (1.3), respectively.

Theorem 3.2 The kernel E(x,t) defined by (3.8) have the following properties:

- (1) $E(x,t) \in \mathcal{C}^{\infty}(\mathbb{R}^n \times (0,\infty))$ -the space of continuous function with infinitely differentiable.
- (2) $\left(\frac{\partial}{\partial t} c^2 \Box^k\right) E(x, t) = 0$ for all $x \in \mathbb{R}^n, t > 0$.

(3)
$$|E(x,t)| \leq \frac{2^{2-n}}{\pi^{n/2}} \frac{M(t)}{\Gamma(\frac{p}{2})\Gamma(\frac{q}{2})}, \quad \text{for all } x \in \mathbb{R}^n, t > 0,$$

where M(t) is a function of t in the spectrum Ω . Thus E(x,t) is bounded for any fixed t > 0.

(4) $\lim_{t\to 0} E(x,t) = \delta(x)$ for all $x \in \mathbb{R}^n$.

Proof.

(1) From (3.8), since

$$\frac{\partial^n}{\partial x^n} E(x,t) = \frac{1}{(2\pi)^n} \int_{\Omega} \frac{\partial^n}{\partial x^n} \exp \left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2 \right)^k + i(\xi,x) \right] d\xi.$$

Thus $E(x,t) \in \mathcal{C}^{\infty}$ for $x \in \mathbb{R}^n$, t > 0.

(2) By computing directly, we obtain

$$\left(\frac{\partial}{\partial t} - c^2 \Box^k\right) E(x, t) = 0.$$

(3) We have

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\Omega} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k + i(\xi,x)\right] d\xi.$$

$$|E(x,t)| \le \frac{1}{(2\pi)^n} \int_{\Omega} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k\right] d\xi.$$

By changing to bipolar coordinates

$$\xi_1 = r\omega_1, \xi_2 = r\omega_2, \dots, \xi_p = r\omega_p$$
 and $\xi_{p+1} = s\omega_{p+1}, \xi_{p+2} = s\omega_{p+2}, \dots, \xi_{p+q} = s\omega_{p+q}$
where $\sum_{i=1}^p \omega_i^2 = 1$ and $\sum_{j=p+1}^{p+q} \omega_j^2 = 1$. Thus

$$|E(x,t)| \leq \frac{1}{(2\pi)^n} \int_{\Omega} \exp\left[c^2 t \left(s^2 - r^2\right)^k\right] r^{p-1} s^{q-1} dr ds d\Omega_p d\Omega_q$$

where $d\xi = r^{p-1}s^{q-1} dr ds d\Omega_p d\Omega_q$, $d\Omega_p$ and Ω_q are the elements of surface area of the unit sphere in \mathbb{R}^p and \mathbb{R}^q respectively. Since $\Omega \subset \mathbb{R}^n$ is the spectrum of E(x,t) and we suppose $0 \le r \le R$ and $0 \le s \le T$ where R and T are constants. Thus we obtain

$$\begin{split} |E(x,t)| &\leq \frac{\Omega_p \, \Omega_q}{(2\pi)^n} \int_0^R \int_0^T \exp\left[c^2 t \left(s^2 - r^2\right)^k\right] r^{p-1} s^{q-1} \, ds \, dr \\ &= \frac{\Omega_p \, \Omega_q}{(2\pi)^n} M(t) \quad \text{for any fixed } t > 0 \quad \text{in the spectrum } \Omega \\ &= \frac{2^{2-n}}{\pi^{n/2}} \frac{M(t)}{\Gamma(\frac{p}{2})\Gamma(\frac{q}{2})} \end{split}$$

where

$$M(t) = \int_0^R \int_0^T \exp\left[c^2 t \left(s^2 - r^2\right)^k\right] r^{p-1} s^{q-1} \, ds \, dr$$

is a function of t, $\Omega_p = \frac{2\pi^{p/2}}{\Gamma(\frac{p}{2})}$ and $\Omega_q = \frac{2\pi^{p/2}}{\Gamma(\frac{q}{2})}$. Thus, for any fixed t > 0, E(x,t) is bounded.

(4) Obvious by (3.9). □

Acknowledgement

The first author is supported by The Royal Golden Jubilee Project Grant No. PHD/02241/2543 and Graduate School of Chiang Mai University. The authors would like to thank The Thailand Research Fund.

References

- [1] K. Nonlaopon, A. Kananthai, On the ultra-hyperbolic heat kernel, International Journal of Applied Mathematics 13(2)(2003): 215-225.
- [2] K. Nonlaopon, A. Kananthai, On the ultra-hyperbolic heat kernel related to the spectrum, International Journal of Pure and Applied Mathematics 17(1)(20034): 19-28.
- [3] F. John, "Partial Differential Equations", 4th Edition, Springer-Verlag, New York, (1982).
- [4] Rafael José Iorio, Valéria de Magalhães Iorio, "Fourier Analysis and Partial Differential Equations", Cambridge University Press, (2001).
- [5] R. Haberman, "Elementary Applied Partial Differential Equations", 2nd Edition, Prentice-Hall International, Inc. (1983).

ON THE CONVOLUTION PRODUCT OF THE DISTRIBUTIONAL FAMILIES RELATED TO THE DIAMOND OPERATOR

MANUEL A. AGUIRRE TELLEZ - A. KANANTHAI

In this paper, we introduce a distributional family $K_{\alpha,\beta}$ which is related to the Diamond operator \diamondsuit^k iterated k-times. At first we study the properties of $K_{\alpha,\beta}$ and then we give a sense to the convolution product of $K_{\alpha,\beta*}K_{\alpha',\beta'}$.

1. Introduction.

A. Kananthai [4] has first introduced the Diamond operator \diamondsuit^k iterated k-times which is defined by

where p+q=n is the dimension of the n-dimensional Euclidean space \mathbb{R}^n and k is a nonnegative integer. Actually (1) can be rewrite in the following form

$$\diamondsuit^k = \Box^k \Delta^k = \Delta^k \Box^k$$

where the operators \square^k and Δ^k are defined by

$$(3) \quad \Box^k = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \ldots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \frac{\partial^2}{\partial x_{p+2}^2} - \ldots - \frac{\partial^2}{\partial x_{p+q}^2}\right)^k$$

Entrato in redazione il 7 dicembre 2001

MANUEL A. AGUIRRE TELLEZ - A. KANANTHAI

and

(4)
$$\Delta^{k} = \left(\frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial x_{2}^{2}} + \ldots + \frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{k}, p+q=n$$

In this paper, the family $K_{\alpha,\beta}$ is defined by $K_{\alpha,\beta}(x) = R_{\alpha}^{e} * R_{\beta}^{H}$ where R_{α}^{e} is elliptic kernel defined by (5) and R_{β}^{H} is hyperbolic kernel defined by (8) and the symbol * designates as the convolution and $x \in \mathbb{R}^{n}$. By A. Kananthai ([4], p. 33, Theorem 3.1) $(-1)^{k}K_{\alpha,\beta}(x)$ is an elementary solution of the Diamond operator \diamondsuit^{k} defined by (1) for $\alpha = \beta = 2k$.

We found the following properties $K_{0,0}(x) = \delta(x)$ where δ is the Dirac-delta distribution, $K_{-2k,-2k}(x) = (-1)^k \diamondsuit^k \delta(x)$, $\diamondsuit^k (K_{\alpha,\beta}(x)) = (-1)^k K_{\alpha-2k,\beta-2k}$ and $\diamondsuit^k (K_{2k,2k}(x)) = (-1)^k \delta(x)$.

Moreover, we found the convolutions product $K_{\alpha,\beta} * K_{\alpha',\beta'} = B_{\beta,\beta'} R_{\beta+\beta'}^H * R_{\alpha+\alpha'}^e$ if p is even, and $K_{\alpha,\beta} * K_{\alpha',\beta'} = \left(R_{\beta+\beta'}^H + T_{\beta+\beta'}\right) * R_{\alpha+\alpha'}^e$ if p is odd, where

$$B_{\beta,\beta'} = \frac{\cos(\frac{\beta}{2}\pi)\cos(\frac{\beta'}{2}\pi)}{\cos(\frac{\beta+\beta'}{2})\pi}$$

and

$$T_{\beta,\beta'} = \frac{C(-\beta - \beta'2)4^{-1}}{C(-\frac{\beta}{2})C(-\frac{\beta'}{2})(2\pi i)^{-1}} \Big[H_{\beta+\beta'}^+ - H_{\beta+\beta'}^- \Big],$$

 $C(r) = \Gamma(r)\Gamma(1-r) \text{ and } H_r^{\pm} = H_r(u \pm io, n) = e^{\mp \frac{r\pi}{2}i} e^{\pm \frac{q\pi}{2}i} a(\frac{r}{2})(u \pm io)^{\frac{r-n}{2}}$ and $a(\frac{r}{2}) = \Gamma(\frac{n-r}{2})[2^r \pi^{\frac{n}{2}} \Gamma(\frac{r}{2})]^{-1}$.

2. Preliminaries.

Definition 2.1. Let the function $R_{\alpha}^{e}(x)$ be defined by

(5)
$$R_{\alpha}^{e}(x) = \frac{|x|^{\alpha - n}}{W_{\alpha}(\alpha)}$$

where $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, α is a complex parameter, n is the dimension of \mathbb{R}^n and $|x| = (x_1^2 + x_2^2 + \dots + x_n^2)^{\frac{1}{2}}$ and $W_n(\alpha)$ is defined by the formula

$$W_n(\alpha) = \frac{\pi^{\frac{n}{2}} 2^{\alpha} \Gamma(\frac{\alpha}{2})}{\Gamma(\frac{n-\alpha}{2})}.$$

ON THE CONVOLUTION PRODUCT OF...

The function $R^e_{\alpha}(x)$ is precisely the definition of elliptic kernel of Marcel Riesz [2] and the following formula is valid

(6)
$$R_{\alpha}^{e}(x) * R_{\beta}^{e}(x) = R_{\alpha+\beta}^{e}(x)$$

which hold for $\alpha > 0$, $\beta > 0$ and $\alpha + \beta \le n$ see([2], p. 20).

Definition 2.2. Let $x = (x_1, x_2, ..., x_n)$ be a point of \mathbb{R}^n and write

(7)
$$u = u(x) = x_1^2 + x_2^2 + \ldots + x_p^2 - x_{p+1}^2 - x_{p+2}^2 - \ldots - x_{p+q}^2$$

where p + q = n.

Denote by Γ_+ the interior of the forward cone defined by $\Gamma_+ = \{x \in \mathbb{R}^n : x_1 > 0 \text{ and } u > 0\}$ and by $\bar{\Gamma}_+$ designates its closure.

Similarly, define $\Gamma_- = \{x \in \mathbb{R}^n : x_1 < 0 \text{ and } u > 0\}$ and $\bar{\Gamma}_-$ designates its closure. For any complex number α , define

(8)
$$R_{\alpha}^{H}(u) = \begin{cases} \frac{\frac{\alpha - n}{2}}{k_{\alpha}(\alpha)} & \text{if } x \in \Gamma_{+} \\ 0 & \text{if } x \notin \Gamma_{+} \end{cases}$$

where $K_n(\alpha)$ is given by the formula

(9)
$$K_n(\alpha) = \frac{\pi^{\frac{n-1}{2}} \Gamma(\frac{2+\alpha-n}{2}) \Gamma(\frac{1-\alpha}{2}) \Gamma(\alpha)}{\Gamma(\frac{2+\alpha-p}{2}) \Gamma(\frac{p-\alpha}{2})}$$

The function R_{α}^{H} was introduced by Y. Nozaki ([3], p. 72). R_{α}^{H} , which is an ordinary function if $R_{\epsilon}(\alpha) \geq n$, is a distribution of α and is a distribution of α if $R_{\epsilon}(\alpha) < n$. Let supp $r_{\alpha}^{H}(u)$. Suppose

(10)
$$supp R_{\alpha}^{H}(u) \subset \bar{\Gamma}_{+}$$

We shall call R_{α}^{H} the Marcel Riesz's ultra-hyperbolic kernel. By putting p=1 in (8) and (9) and remembering the Legendre's duplication formula of $\Gamma(z)$,

(11)
$$\Gamma(2z) = 2^{2z-1} \pi^{-\frac{1}{2}} \Gamma(z) \Gamma(z + \frac{1}{2})$$

see([5], Vol I, p. 5) the formula (8) reduces to

(12)
$$M_{\alpha} = \begin{cases} \frac{u \frac{\alpha - n}{2}}{H_{\alpha}(\alpha)} & \text{if } x \in \Gamma_{+} \\ 0 & \text{if } x \notin \Gamma_{+} \end{cases}$$

Here $u = u(x) = x_1^2 - x_2^2 - \dots - x_n^2$ and

(13)
$$H_n(\alpha) = 2^{\alpha - 1} \pi^{\frac{n-2}{2}} \Gamma(\frac{\alpha}{2}) \Gamma(\frac{\alpha - n + 2}{2})$$

 M_{α} is precisely the hyperbolic kernel of Marcel Riesz ([2], p. 31).

MANUEL A. AGUIRRE TELLEZ - A. KANANTHAI

Lemma 2.1. The function $R^{\epsilon}_{\alpha}(x)$ has the following properties

3

(i)
$$R_0^e(x) = \delta(x)$$

(ii)
$$R_{-2k}^{\epsilon}(x) = (-1)^k \Delta^k \delta(x)$$

(iii)
$$\Delta^k R^e_{\alpha}(x) = (-1)^k R^e_{\alpha-2k}(x)$$

where Δ^k is the Laplace operator iterated k-times defined by (4).

The proofs of Lemma 2.3 is given by S.E Trione [5].

Lemma 2.2. (The convolutions of $R_{\alpha}^{H}(u)$)

- (i) $R_{\alpha}^{H} * R_{\beta}^{H} = \frac{\cos \alpha \frac{\pi}{2} \cos \beta \frac{\pi}{2}}{\cos (\frac{\alpha+\beta}{2})\pi} R_{\alpha+\beta}^{H}$ where R_{α}^{H} is defined by (8) and (9) with p is
- (ii) $R_{\alpha}^{H} * R_{\beta}^{H} = R_{\alpha+\beta}^{H} + T_{\alpha,\beta}$ for p is an odd, where

(14)
$$T_{\alpha,\beta} = T_{\alpha,\beta}(u \pm io, n) = \frac{\frac{2\pi i}{4}C(-\frac{\alpha-\beta}{2})}{C(-\frac{\alpha}{2})C(-\frac{\beta}{2})}[H_{\alpha+\beta}^{+} - H_{\alpha+\beta}^{-}]$$

$$\begin{split} &C(r) = \Gamma(r)\Gamma(1-r) \\ &H_r^{\pm} = H_r(u \pm io, n) = e^{\mp r\frac{\pi}{2}i}e^{\pm q\frac{\pi}{2}i}a(\frac{r}{2})(u \pm io)^{\frac{r-n}{2}} \\ &a(\frac{r}{2}) = \Gamma(\frac{n-r}{2})[2^r\pi^{\frac{n}{2}}\Gamma(\frac{r}{2})]^{-1} \\ &(u \pm io)^{\lambda} = \lim_{\epsilon \to 0}(u + i\epsilon|x|^2)^{\lambda} \ see([6], \ p. \ 275) \ u = u(x) \ is \ defined \ by \ (7) \\ ∧ \ |x| = (x_1^2 + x_2^2 + ... + x_n^2)^{\frac{1}{2}}. \end{split}$$

In particular $R_{\alpha}^{H} * R_{-2k}^{H} = R_{\alpha-2k}^{H}$ and $R_{\alpha}^{H} * R_{2k}^{H} = R_{\alpha+2k}^{H}$. The proofs of this Lemma is given by M. Aguirre Tellez ([1], p. 121-123).

Lemma 2.3.

(i)
$$R_{-2k}^H = \Box^k \delta$$

$$(ii) \quad \Box^k R^H_{\alpha} = R^H_{\alpha-2k}$$

(iii)
$$\Box^k R_{2k}^H = R_0^H = \delta$$

where \square^k is defined by (3).

Proof. See ([1], p. 123).

ON THE CONVOLUTION PRODUCT OF...

3. The family of distributions $K_{\alpha,\beta}(x)$.

Let $K_{\alpha,\beta}(x)$ be a distributional family defined by

$$K_{\alpha,\beta}(x) = R_{\alpha}^{e} * R_{\beta}^{H}$$

where the functions R_{α}^{e} and R_{β}^{H} are defined by (5) and (8) respectively. We now show that $K_{\alpha,\beta}$ exists an is in the space O'_{c} of rapidly decreasing distributions. We know from [1], p. 119, formulae (1,2,2) that the Fourier's transform of $R_{\alpha}^{H}(u)$ is given by the following formulae

(16)
$$\{R_{\alpha}^{H}(u)\}^{\wedge} = \frac{1}{2} [f_{\alpha}(Q+i0) + f_{\alpha}(Q-i0)]$$

if p is odd and

(17)
$$\{R_{\alpha}^{H}(u)\}^{\wedge} = \frac{1}{2i} \frac{\cos \frac{\alpha \pi}{2}}{\sin \frac{\alpha \pi}{2}} [f_{\alpha}(Q+i0) + f_{\alpha}(Q-i0)]$$

if p is even. Where

(18)
$$f_{\alpha}(Q \pm i0) = e^{\pm \frac{\alpha \pi i}{2}} (Q \pm i0)^{-\frac{\alpha}{2}}$$

and from [7] page 44 and [6], page 194, the Fourier transform of $R^e_{\alpha}(x)$ is given by the following formula

(19)
$$\{R_{\alpha}^{e}(x)\}^{\wedge} = |y|^{-\alpha} = (|y|^{2})^{\frac{-\alpha}{2}}$$

Now using the properties

$$(20) (Q \pm i0)^{\lambda} = Q_{+}^{\lambda} + e^{\pm \lambda \pi i} Q_{-}^{\lambda}$$

([6], page 276), where

(21)
$$Q_{+}^{\lambda} = \begin{cases} Q^{\lambda} & \text{if } Q \geq 0 \\ 0 & \text{if } Q < 0 \end{cases}$$

and

(22)
$$Q_{-}^{\lambda} = \begin{cases} (-Q)^{\lambda} & \text{if } Q \leq 0 \\ 0 & \text{if } Q > 0 \end{cases}$$

(

MANUEL A. AGUIRRE TELLEZ - A. KANANTHAI

and

(23)
$$Q = Q(y) = y_1^2 + \ldots + y_p^2 - y_{p+1}^2 - \ldots - y_{p+q}^2.$$

From [1] and [2], we have

(24)
$$[f_{\alpha}(Q+i0) + f_{\alpha}(Q-i0)] = 2\cos\frac{\alpha\pi}{2}Q^{-\frac{\alpha}{2}} + 2Q_{-}^{-\frac{\alpha}{2}}$$

if p is odd and

(25)
$$[f_{\alpha}(Q - i0) - f_{\alpha}(Q + i0)] = 2i \sin \frac{\alpha \pi}{2} Q_{-}^{-\frac{\alpha}{2}}$$

if p is even . Therefore

(26)
$$\{R_{\alpha}^{H}(u)\}^{\wedge} = \cos \frac{\alpha \pi}{2} Q^{-\frac{\alpha}{2}} + Q_{-}^{-\frac{\alpha}{2}}$$

if p is odd and

$$\{R_{\alpha}^{H}(u)\}^{\wedge} = \cos\frac{\alpha\pi}{2}Q_{-}^{-\frac{\alpha}{2}}$$

if p is even.

The formulae (26) and (27) using (21) and (22) can be rewrite

$$(28) \ \{R_{\alpha}^{H}(u)\}^{\wedge} = \cos\frac{\alpha\pi}{2}(|y|_{p}^{2})^{-\frac{\alpha}{2}}(1-\rho^{2})^{-\frac{\alpha}{2}} + (-1)^{-\frac{\alpha}{2}}(|y|_{q}^{2})^{-\frac{\alpha}{2}}(1-s^{2})^{-\frac{\alpha}{2}}$$

if p is odd and

(29)
$$\{R_{\alpha}^{H}(u)\}^{\wedge} = -\cos\frac{\alpha\pi}{2}(-1)^{-\frac{\sigma}{2}}(|y|_{q}^{2})^{-\frac{\sigma}{2}}(1-s^{2})^{-\frac{\sigma}{2}}$$

if p is even, where

(30)
$$|y|_p^2 = y_1^2 + \ldots + y_p^2$$

(31)
$$|y|_q^2 = y_{p+1}^2 + \ldots + y_{p+q}^2$$

(32)
$$\rho^2 = \frac{|y|_q^2}{|y|_p^2} < 1$$

ON THE CONVOLUTION PRODUCT OF...

(33)
$$s^2 = \frac{|y|_p^2}{|y|_q^2} < 1$$

Now using that

$$(1+r^2) \in O_M$$

([8], page 271) where

$$r^2 = x_1^2 + \ldots + x_p^2 + x_{p+1}^2 + \ldots + x_{p+q}^2$$

from (28) and (29) we have

$$(34) {R_{\alpha}^{H}(u)}^{\wedge} \in O_{M}$$

where O_M is the space of functions slow growth (slowly increasing, c.f. [8], page 243). Similarly from [4], we have

$$(35) {R_{\sigma}^{e}(u)}^{\wedge} \in O_{M}.$$

On the other hand, from [8] theorem XV, page 268 the Fourier's transforms F and F are reciprocal isomorphisms form O_M and O_c' respectively. In addition if

$$(36) T \in O_M \Rightarrow \bar{F}\{T\} \in O'_c$$

and if

$$(37) T \in O'_c \Rightarrow \bar{F}\{T\} \in O_M$$

where O'_c is the space of rapidly decreasing distributions and if

$$g = F\{f\} \Rightarrow f = \bar{F}\{g\} = F^{-1}\{g\}$$

Now putting

(38)
$$H_{\alpha,\beta} = \{R_{\alpha}^{H}(u)\}^{\hat{}}\{R_{\alpha}^{e}(u)\}^{\hat{}}$$

and considering (34) and (35) we have

$$(39) H_{\alpha,\beta} \in O_M$$

Therefore considerring (36), (37), (38) and (39) we have

(40)
$$\bar{F}\{H_{\alpha,\beta}\} = F^{-1}[H_{\alpha,\beta}] \in O_c'$$

Taking into account (38) and (40) we can define the distribution families $K_{\alpha,\beta}$ in the following from

(41)
$$K_{\alpha,\beta} = K_{\alpha,\beta}(x) = R_{\alpha}^{H}(u) * R_{\alpha}^{e}(x) = F^{-1}\{\{R_{\alpha}^{H}(u)\}^{\wedge}.\{R_{\alpha}^{e}(x)\}^{\wedge}\}\}$$

From (40) the families $K_{\alpha,\beta}$ exists an is in O'_{c} .

MANUEL A. AGUIRRE TELLEZ - A. KANANTHAI

Lemma 3.1. The following formulae are valid

- (i) $K_{0,0}(x) = \delta(x)$
- (ii) $K_{-2k,-2k}(x) = (-1)^k \diamondsuit^k \delta(x)$
- $(iii) \ \diamondsuit^k(K_{\alpha,\beta}(x)) = (-1)^k K_{\alpha-2k,\beta-2k}(x)$
- $(iv) \diamondsuit^k(K_{2k,2k}(x)) = (-1)^k \delta(x).$

Proof.

- (i) By (14) $K_{0,0}(x) = R_0^e * R_0^H$, and by Lemma 2.3(i) and Lemma 2.5(i) we obtain $K_{0,0}(x) = \delta * \delta = \delta$
- (ii) We have

$$\diamondsuit^k K_{\alpha,\beta}(x) = \diamondsuit^k (R_{\alpha}^e * R_{\beta}^H)$$

$$= \Box^k \Delta^k (R_{\alpha}^e * R_{\beta}^H)$$

$$= \Delta^k R_{\alpha}^e * \Box^k R_{\beta}^H$$

$$= (-1)^k R_{\alpha-2k}^e * R_{\beta-2k}^H$$
 by Lemma 2.3(iii) and Lemma 2.5(ii)
$$= (-1)^k K_{\alpha-2k,\beta-2k}(x)$$

putting $\alpha = \beta = 0$ and (i) we obtain $K_{-2k,-2k}(x) = (-1)^k \diamondsuit^k \delta(x)$.

- (iii) Similarly as (ii)
- (iv) Putting $\alpha = \beta = 2k$ in (iii) we obtain

$$\diamondsuit^k(K_{2k,2k}(x)) = (-1)^k K_{0,0}(x) = (-1)^k \delta(x)$$

4. Main results.

Theorem 4.1. Let the families $K_{\alpha,\beta}(x)$ and $K_{\alpha',\beta'}(x)$ be defined by (14) then the convolution product $K_{\alpha,\beta}(x) * K_{\alpha,\beta'}(x)$ can be obtained by the following formulae

(i) $K_{\alpha,\beta}(x) * K_{\alpha',\beta'}(x) = B_{\beta,\beta'} R_{\beta+\beta'}^H * R_{\alpha+\alpha'}^e$ where R_{β}^H and R_{α}^e are defined by (8) and (5) respectively which p is an even and

$$B_{\beta,\beta'}\frac{\cos(\frac{\beta}{2}\pi)\cos(\frac{\beta'}{2}\pi)}{\cos(\frac{\beta+\beta'}{2}\pi)}$$

- (ii) $K_{\alpha,\beta}(x) * K_{\alpha',\beta'}(x) = (R_{\beta+\beta'}^H + T_{\beta,\beta'}) * R_{\alpha+\alpha'}^e$ if p is an odd and $T_{\beta,\beta'}$ is defined by (13)
- (iii) $K_{\alpha,\beta}(x) * K_{-2k,-2k}(x) = (-1)^k \diamondsuit^k K_{\alpha,\beta}(x)$.

Proof.

(i) We have

$$K_{\alpha,\beta}(x) * K_{\alpha',\beta'}(x) = (R_{\alpha}^{e} * R_{\beta}^{H}) * (R_{\alpha'}^{e} * R_{\beta'}^{H})$$

$$= (R_{\alpha}^{e} * R_{\alpha'}^{e}) * (R_{\beta}^{H} * R_{\beta'}^{H})$$

$$= R_{\alpha+\alpha'}^{e} * (R_{\beta}^{H} * R_{\beta'}^{H}) \text{by (6)}$$

$$= (R_{\beta}^{H} * R_{\beta'}^{H}) * R_{\alpha+\alpha'}^{e}$$

$$= B_{\beta,\beta'} R_{\beta+\beta'}^{H} * R_{\alpha+\alpha'}^{e} \text{by Lemma 2.4(i) for } p \text{ is even,}$$

where $B_{\beta,\beta'} = \frac{\cos(\frac{\beta}{2}\pi)\cos(\frac{\beta'}{2}\pi)}{\cos(\frac{\beta+\beta'}{2}\pi)}$.

- (ii) from(i), $K_{\alpha,\beta}(x) * K_{\alpha',\beta'}(x) = (R_{\beta}^H * R_{\beta'}^H) * R_{\alpha+\alpha'}^e = (R_{\beta+\beta'}^H + T_{\beta,\beta'}) * R_{\alpha+\alpha'}^e$ by Lemma 2.2(ii) for p is odd and $T_{\beta,\beta'}$ is defined by (14)
- (iii) we have $K_{\alpha,\beta}(x)*K_{-2k,-2k}(x)=B_{\beta,-2k}R_{\beta-2k}^H*R_{\alpha-2k}^e$ for p is even. Since

$$B_{\beta,-2k} = \frac{\cos(\frac{\beta}{2}\pi)\cos(-2k)\frac{\pi}{2}}{\cos(\frac{\beta-2k}{2}\pi)} = 1,$$

we have $K_{\alpha,\beta}(x) * K_{-2k,-2k}(x) = R_{\beta-2k}^H * R_{\alpha-2k}^e = K_{\alpha-2k,\beta-2k}(x)$. Now for p is odd, we have $K_{\alpha,\beta}(x) * K_{-2k,-2k}(x) = (R_{\beta-2k}^H + T_{\beta,-2k}) * R_{\alpha-2k}^e$. By (14) $T_{\beta,-2k} = \frac{\frac{2\pi i}{4}C(-\frac{\beta+2k}{2})}{C(-\frac{\beta}{2})C(\frac{2k}{2})}[H_{\beta-2k}^+ - H_{\beta-2k}^-]$ where $C(r) = \Gamma(r)\Gamma(1-r)$, $H_r^{\pm} = e^{\mp \frac{r\pi}{2}i}e^{\pm \frac{q\pi}{2}i}a(\frac{r}{2})(u\pm io)^{\frac{r-n}{2}}$ and $a(\frac{r}{2}) = \Gamma(\frac{n-r}{2})[2^r\pi^{\frac{n}{2}}\Gamma(\frac{r}{2})]^{-1}$. Applying the formula $\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin 2\pi}$ to $C(-\frac{\beta+2k}{2})$, $C(-\frac{\beta}{2})$ and C(k) and also the formulae $H_{\beta-2k}^{\pm}$ and $a(\frac{\beta-2k}{2})$ we obtain $T_{\beta,-2k} = 0$ and $T_{-2k,\beta} = 0$. It follows that $K_{\alpha,\beta}(x) * K_{-2k,-2k}(x) = R_{\beta-2k}^H * R_{\alpha-2k}^e = K_{\alpha-2k,\beta-2k}(x)$ for p is odd. Now $\diamondsuit^k K_{\alpha,\beta}(x) = (-1)^k K_{\alpha-2k,\beta-2k}(x)$ by Lemma 3.1(iii).

Thus $K_{\alpha,\beta}(x) * K_{-2k,-2k}(x) = (-1)^k \diamondsuit^k K_{\alpha,\beta}(x)$. That completes the proofs. \square

REFERENCES

- [1] M.A. Aquirre Tellez S.E. Trione, *The distributional convolution products of Marcel Riesz's ultra-hyperbolic kernel*, Revista de la Union Matematica Argentina, 39 (1995), pp. 115-124.
- [2] M. Riesz, Integrale de Riemann-Liouville et le probleme de Cauchy, Acta. Math., 81 (1949), pp. 1-223.

MANUEL A. AGUIRRE TELLEZ - A. KANANTHAI

- [3] Y. Nozaki, On Riemann-Liouville integral of ultra-hyperbolic type, Kodai Mathematical seminar Report, 6 2 (1964), pp. 69-87.
- [4] A. Kananthai, On the solutions of the n-Dimensional Diamond operator, Applied Mathematics and Computation, 88 (1997), pp. 27-37.
- [5] S.E. Trione, La Integral de Riemann-Liouville, Courses and Seminarr de Matematica, Fasciculo 29, Facultad de Ciencias Exactas, Buenos Aires, Agentina.
- [6] I.M. Gelfand G.E. Shilov, Generalized Functions, Vol I. Academic Press, New York 1964.
- [7] N.S. Landkof, Foundations of modern potential Theory, Springer-Verlag New York Heidelberg Berlin 1972.
- [8] L. Scwartz, Theorie des distributions, Hermann, Paris 1966.

Manuel A. Aguirre Tellez, Núcleo Consolidado Matematica Pura y Aplicada, Facultad de Ciencias Exactas Pinto 399, 7000 Tandilk (ARGENTINA)

> A. Kananthai, Department of Mathematics, Chiangmai University, Chiangmai 50200 (THAILAND)

LSEVIER Applied Mathematics and Computation 132 (2002) 219-229

APPLIED
MATHEMATICS
AND
COMPUTATION

www.elsevier.com/locate/amc

On the operator \bigoplus^k related to the wave equation and Laplacian

A. Kananthai *, S. Suantai, V. Longani

Department of Mathematics, Chiangmai University, Chiangmai 50200, Thailand

Abstract

In this paper, we study the Green function of the operator \oplus^k , iterated k-times and is defined by

$$\bigoplus^{k} = \left[\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}} \right)^{4} - \left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}} \right)^{4} \right]^{k},$$

where p + q = n is the dimension of the space C^n , where C is a complex field, $x = (x_1, x_2, \ldots, x_n) \in C^n$ and k is a nonnegative integer. At first we study the elementary solution or the Green function of the operator \bigoplus^k and then such a solution is related to the solution of the wave equation and the Laplacian. We found that the relationships of such solutions depending on the conditions of p, q and k. © 2002 Elsevier Science Inc. All rights reserved.

Keywords: Diamond operator; Ultra-hyperbolic Kernel of Marc Riesz; Wave equation; Convolution algebra

1. Introduction

The operator \oplus^k can be expressed in the form

$$\bigoplus^{k} = \left[\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}} \right)^{2} - \left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}} \right)^{2} \right]^{k} \left[\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}} + i \sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}} \right]^{k} \\
\times \left[\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}} - i \sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}} \right]^{k}, \tag{1.1}$$

E-mail address: malamnka@science.cmu.ac.th (A. Kananthai).

0096-3003/02/\$ - see front matter © 2002 Elsevier Science Inc. All rights reserved. PII: S0096-3003(01)00129-1

^{*}Corresponding author.

A. Kananthai et al. 1 Appl. Math. Comput. 132 (2002) 219-229

where p + q = n is the dimension of C^n , $i = \sqrt{-1}$ and k is a nonnegative integer. The operator

$$\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}\right)^{2} - \left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{2}$$

is first introduced by Kanathai [1] and named as the Diamond operator and denoted by

$$\diamondsuit = \left(\sum_{r=1}^{p} \frac{\partial^2}{\partial x_r^2}\right)^2 - \left(\sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2}\right)^2. \tag{1.2}$$

Let us denote the operators

$$L_{1} = \sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}} + i \sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}$$
 (1.3)

and

$$L_2 = \sum_{r=1}^{p} \frac{\partial^2}{\partial x_r^2} - i \sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2}.$$
 (1.4)

Thus (1.1) can be written by

$$\oplus^k = \diamondsuit^k L_1^k L_2^k. \tag{1.5}$$

Now, the operator \diamondsuit can also be expressed in the form $\diamondsuit = \Box \triangle = \Box \triangle$ where \Box is the ultra-hyperbolic operator defined by

$$\Box = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \frac{\partial^2}{\partial x_{p+2}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2}, \tag{1.6}$$

where p + q = n and \triangle is the Laplacian defined by

$$\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_2^2}.$$
 (1.7)

By putting p = 1 and $x_1 = t$ (time) in (1.6) then we obtain the wave operator

$$\Box = \frac{\partial^2}{\partial t^2} - \sum_{i=1}^{n-1} \frac{\partial^2}{\partial x_i^2},\tag{1.8}$$

and from (1.1) with q = 0 and k = 1, we obtain

$$\oplus = \Delta_p^4,$$
(1.9)

A. Kananthai et al. | Appl. Math. Comput. 132 (2002) 219-229

where

$$\Delta_p = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_p^2}.$$
 (1.10)

In this work, we can find the elementary solution K(x) of the operator \bigoplus^k , that is $\bigoplus^k K(x) = \delta$ where δ is the Dirac-delta distribution. Moreover, we can find the relationship between K(x) and the elementary solution of the wave operator defined by (1.8) depending on the conditions of p, q and k of (1.1) with p = 1, q = n - 1, k = 1 and $x_1 = t$ (time).

Also, we found that K(x) relates to the elementary solution of the Laplacian defined by (1.9) and (1.10) depending on the conditions of q and k of (1.1) with q = 0 and k = 1.

2. Preliminary

Definition 2.1. Let $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ and write

$$u = x_1^2 + x_2^2 + \dots + x_p^2 - x_{p+1}^2 - x_{p+2}^2 - \dots - x_{p+q}^2, \quad p+q = n.$$

Denote by $\Gamma_+ = \{x \in \mathbb{R}^n : x_1 > 0 \text{ and } u > 0\}$ the interior of forward cone and $\overline{\Gamma}_+$ denote its closure.

For any complex number α , we define the function

$$R_x^H(u) = \begin{cases} \frac{u^{(\alpha-n)/2}}{K_n(\alpha)} & \text{if } x \in \Gamma_+, \\ 0 & \text{if } x \notin \Gamma_+, \end{cases}$$
 (2.1)

where the constant $K_n(\alpha)$ is given by the formula

$$K_n(\alpha) = \frac{\pi^{(n-1)/2} \Gamma\left(\frac{2+\alpha-n}{2}\right) \Gamma\left(\frac{1-\alpha}{2}\right) \Gamma(\alpha)}{\Gamma\left(\frac{2+\alpha-p}{2}\right) \Gamma\left(\frac{p-\alpha}{2}\right)}.$$

The function R_x^H is first introduced by Nozaki [4, p. 72] and is called the ultra-hyperbolic kernel of Marcel Riesz. Now $R_x^H(u)$ is an ordinary function if $\text{Re}(\alpha) \ge n$ and is a distribution of α if $\text{Re}(\alpha) < n$.

Now, if p = 1, then (2.1) reduces to the function $M_x(u)$ say, and defined by

$$M_{x}(u) = \begin{cases} \frac{u^{(x-n)/2}}{H_{n}(\alpha)} & \text{if } x \in \Gamma_{+}, \\ 0 & \text{if } x \notin \Gamma_{+}, \end{cases}$$
 (2.2)

where

$$u = x_1^2 - x_2^2 - \dots - x_n^2$$
 and $H_n(\alpha) = \pi^{(n-1)/2} 2^{\alpha-1} \Gamma\left(\frac{\alpha - n + 2}{2}\right)$.

The function $M_x(u)$ is called the hyperbolic kernel of Marcel Riesz.

A. Kananthai et al. 1 Appl. Math. Comput. 132 (2002) 219-229

Definition 2.2. Let $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ and write

$$v = x_1^2 + x_2^2 + \cdots + x_n^2$$

For any complex number β , define the function

$$R_{\beta}^{e}(v) = 2^{-\beta} \pi^{-n/2} \Gamma\left(\frac{n-\beta}{2}\right) \frac{v^{(\beta-n)/2}}{\Gamma\left(\frac{\beta}{2}\right)}. \tag{2.3}$$

The function $R^e_{\beta}(v)$ is called the elliptic kernel of Marcel Riesz and is ordinary function if $Re(\beta) \ge n$ and is a distribution of β for $R_e(\beta) < n$.

Definition 2.3. Let $x = (x_1, x_2, \dots, x_n)$ be a point of C^n and write

$$w = x_1^2 + x_2^2 + \dots + x_p^2 - i(x_{p+1}^2 + x_{p+2}^2 + \dots + x_{p+q}^2)$$

and

$$z = x_1^2 + x_2^2 + \dots + x_p^2 + i(x_{p+1}^2 + x_{p+2}^2 + \dots + x_{p+q}^2), \quad p+q = n.$$

For any complex number γ and ν , define

$$S_{\gamma}(w) = 2^{-\gamma} \pi^{-n/2} \frac{\Gamma\left(\frac{n-\gamma}{2}\right)}{\Gamma\left(\frac{\gamma}{2}\right)} w^{(\gamma-n)/2} \tag{2.4}$$

and

$$T_{\nu}(z) = 2^{-\nu} \pi^{-n/2} \frac{\Gamma(\frac{n-\nu}{2})}{\Gamma(\frac{\nu}{2})} z^{(\nu-n)/2}. \tag{2.5}$$

Lemma 2.1. The functions $R_{2k}^H(u)$ and $(-1)^k R_{2k}^e(v)$ are the elementary solutions of the operator \Box^k and Δ^k , respectively, where \Box^k and Δ^k are the operators iterated k-times defined by (1.6) and (1.7), respectively, $R_{2k}^H(u)$ defined by (2.1) with $\alpha = 2k$ and $R_{2k}^e(v)$ defined by (2.3) with $\beta = 2k$.

Proof. We have to show that $\Box^k R_{2k}^H(u) = \delta$ and $\Delta^k (-1)^k R_{2k}^e(v) = \delta$. To prove $\Box^k R_{2k}^H(u) = \delta$, see [2, p. 147] also $\Delta^k (-1)^k R_{2k}^e(v) = \delta$, see [1, p. 31]. \Box

Lemma 2.2. The convolution $R_{2k}^H(u) * (-1)^k R_{2k}^e(v)$ is an elementary solution of the operator \diamondsuit^k iterated k-times and is defined by (1.2).

Proof. We need to show that $\diamondsuit^k(R_{2k}^H(u)*(-1)^kR_{2k}^e(v))=\delta$. To prove this, see [1, p. 33]. \square

A. Kananthai et al. 1 Appl. Math. Comput. 132 (2002) 219-229

Lemma 2.3. The functions $R_{-2k}^H(u)$ and $(-1)^k R_{-2k}^e(v)$ are the inverses in the convolution algebras of $R_{2k}^H(u)$ and $(-1)^k R_{2k}^e(v)$, respectively.

Proof. We need to show that

$$R_{-2k}^H(u) * R_{2k}^H(u) = R_{-2k+2k}^H(u) = R_0^H(u) = \delta$$

and

$$(-1)^{k} R_{-2k}^{e}(v) * (-1)^{k} R_{2k}^{e}(v) = R_{0}^{e}(v) = \delta.$$

To prove these, see [7, p. 123], [3, p. 10] and [5, p. 118, p. 158].

Lemma 2.4.

- 1. The functions $(-1)^k(-i)^{q/2}S_{2k}(w)$ and $(-1)^k(i)^{q/2}T_{2k}(z)$ are the elementary solutions of the operators L_1^k and L_2^k , respectively, where $S_{2k}(w)$ and $T_{2k}(z)$ are defined by (2.3) and (2.4), respectively, with $\gamma = v = 2k$. The operators L_1^k and L_2^k are defined by (1.3) and (1.4), respectively.
- 2. The functions $(-1)^k(-i)^{q/2}S_{-2k}(w)$ and $(-1)^k(i)^{q/2}T_{-2k}(z)$ are the inverses in the convolution algebras of $(-1)^k(-i)^{q/2}S_{2k}(w)$ and $(-1)^k(i)^{q/2}T_{2k}(z)$, respectively.

Proof. (i) We need to show that

$$L_1^{k}[(-1)^{k}(-1)^{q/2}S_{2k}(w)] = \delta$$

and

$$L_2^k[(-1)^k(i)^{q/2}T_{2k}(z)] = \delta.$$

At first we have to show that

$$L_1^k S_7(w) = (-1)^k S_{7-2k}(w), (2.6)$$

$$L_2^k T_v(z) = (-1)^k T_{v-2k}(z), (2.7)$$

and also

$$S_{-2k}(w) = (-1)^k (i)^{q/2} L_1^k \delta, \tag{2.8}$$

$$T_{-2k}(z) = (-1)^k (-i)^{q/2} L_{\gamma}^k \delta. \tag{2.9}$$

Now, for k = 1,

$$L_1S_{\gamma}(w) = \left(\sum_{r=1}^{p} \frac{\partial^2}{\partial x_r^2} + i\sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2}\right) S_{\gamma}(w).$$

where $S_{i}(w)$ is defined by (2.4). By computing directly, we obtain

A. Kananthai et al, 1 Appl. Math. Comput. 132 (2002) 219-229

$$L_{1}S_{\gamma}(w) = 2^{-\gamma} \pi^{-n/2} \frac{\Gamma(\frac{n-\gamma}{2})}{\Gamma(\frac{\gamma}{2})} (\gamma - n)(\gamma - 2) w^{(\gamma - 2 - n)/2}$$
$$= (-1)2^{-(\gamma - 2)} \frac{\Gamma(\frac{n - (\gamma - 2)}{2})}{\Gamma(\frac{\gamma - 2}{2})} w^{(\gamma - 2 - n)/2}$$

by the properties of Gamma function. Thus $L_1S_{\gamma}(w) = -S_{\gamma-2}(w)$. By repeating k-times in operating L_1 to $S_{\gamma}(w)$, we obtain

$$L_1^k S_{\gamma}(w) = (-1)^k S_{\gamma-2k}(w).$$

Similarly,

$$L_2^k T_v(z) = (-1)^k T_{v-2k}(z).$$

Thus we obtain (2.5) and (2.7) as required. Now consider

$$w = x_1^2 + x_2^2 + \dots + x_p^2 - i(x_{p+1}^2 + x_{p+2}^2 + \dots + x_{p+q}^2), \quad p+q = n$$

by changing the variable

$$x_1 = y_1, x_2 = y_2, \dots, x_p = y_p, x_{p+1} = \frac{y_{p+1}}{\sqrt{-i}}, x_{p+2} = \frac{y_{p+2}}{\sqrt{-i}}, \dots, x_{p+q} = \frac{y_{p+q}}{\sqrt{-i}}.$$

Thus we have

$$w = y_1^2 + y_2^2 + \dots + y_n^2 + y_{n+1}^2 + \dots + y_{n+n}^2$$

Denote $w = r^2 = y_1^2 + y_2^2 + \dots + y_n^2$ and consider the generalized function $w^{\lambda} = r^{2\lambda}$ where λ is any complex number. Now $\langle w^{\lambda}, \varphi \rangle = \int_{\mathbb{R}^n} w^{\lambda} \varphi(x) dx$, where $\varphi \in \mathscr{D}$ the space of infinitely differentiable functions with compact supports. Thus

$$\langle w^{\lambda}, \varphi \rangle = \int_{\mathbb{R}^{n}} r^{2\lambda} \varphi \frac{\partial(x_{1}, x_{2}, \dots, x_{n})}{\partial(y_{1}, y_{2}, \dots, y_{n})} dy_{1} dy_{2} \cdots dy_{n}$$

$$= \frac{1}{(-i)^{q/2}} \int_{\mathbb{R}^{n}} r^{2\lambda} \varphi dy$$

$$= \frac{1}{(-i)^{q/2}} \langle r^{2\lambda}, \varphi \rangle.$$

By Gelfand and Shilov [6, p. 271], the functional $r^{2\lambda}$ have simple poles at $\lambda = (-n/2) - k$, k is nonnegative and for k = 0 we can find the residue of $r^{2\lambda}$ at $\lambda = -n/2$ and by [6, p. 73], we obtain

$$\operatorname{res}_{\lambda=-n/2} r^{2\lambda} = \frac{2\pi^{n/2}}{\Gamma(\frac{n}{2})} \delta(x).$$

A. Kananthai et al. 1 Appl. Math. Comput. 132 (2002) 219-229

Thus

$$\underset{\lambda = -n/2}{\text{res}} w^{\lambda} = (i)^{2(q/2)} \frac{\pi^{n/2}}{\Gamma(\frac{n}{2})} \delta(x). \tag{2.10}$$

We next find the residues of w^{λ} at $\lambda = (-n/2) - k$. Now, by computing directly we have

$$L_1 w^{\lambda+1} = 2(\lambda+1)(2\lambda+n)w^{\lambda},$$

where w is defined by Definition 2.3 and L_1 is defined by (1.3). By k-fold iteration, we obtain

$$L_1^k w^{\lambda+k} = 4^k (\lambda+1)(\lambda+2)\cdots(\lambda+k)(\lambda+\frac{n}{2})(\lambda+\frac{n}{2}+1)\cdots(\lambda+\frac{n}{2}+k-1)w^{\lambda+k}$$

or

$$w^{\lambda} = \frac{1}{4^{k}(\lambda+1)(\lambda+2)\cdots(\lambda+k)(\lambda+\frac{n}{2})(\lambda+\frac{n}{2}+1)\cdots(\lambda+\frac{n}{2}+k-1)}L_{1}^{k}w^{\lambda+k}.$$

Thus

$$\operatorname{res}_{\lambda=(-n/2)-k} w^{\lambda} = \frac{1}{4^k k(\frac{n}{2}+k-1)(\frac{n}{2}+k-2)\cdots \frac{n}{2}} \operatorname{res}_{\lambda=-n/2} L_1^k w^{\lambda}.$$

By (2.10) and the properties of Gamma functions, we obtain

$$\operatorname{res}_{\lambda = (-n/2) - k} w^{\lambda} = \frac{2(i)^{q/2} \pi^{n/2}}{4^k \Gamma(\frac{n}{2} + k)} L_1^k \delta(x). \tag{2.11}$$

Now we consider $S_{-2k}(w)$ we have '

$$S_{-2k}(w) = \lim_{\gamma \to -2k} S(w)$$

$$= \pi^{-n/2} \frac{\lim_{\gamma \to -2k} w^{(\gamma - n)/2}}{\lim_{\gamma \to -2k} \Gamma(\frac{\gamma}{2})} \lim_{\gamma \to -2k} \left(2^{-r} \Gamma\left(\frac{n - \gamma}{2}\right) \right)$$

$$= \pi^{-n/2} \frac{\lim_{\gamma \to -2k} (\gamma + 2k) w^{(\gamma - n)/2}}{\lim_{\gamma \to -2k} (\gamma + 2k) \Gamma(\frac{\gamma}{2})} 2^{2k} \Gamma\left(\frac{n + 2k}{2}\right)$$

$$= 4^k \pi^{-n/2} \frac{\underset{\gamma = -2k}{\text{res}} \Gamma(\frac{\gamma}{2})}{\underset{\gamma = -2k}{\text{res}} \Gamma(\frac{\gamma}{2})} \Gamma\left(\frac{n + 2k}{2}\right).$$

Since

$$\underset{\lambda = (-n/2) - k}{\text{res}} w^{\lambda} = \underset{\gamma = -2k}{\text{res}} w^{(\gamma - n)/2} \quad \text{and} \quad \underset{\gamma = -2k}{\text{res}} \Gamma(\frac{\gamma}{2}) = \frac{2(-1)^k}{k!},$$

by (2.11) and the properties of Gamma function we obtain

A. Kananthai et al. | Appl. Math. Comput. 132 (2002) 219-229

$$S_{-2k}(w) = (-1)^k (i)^{q/2} L_1^k \delta(x).$$

Similarly

$$T_{-2k}(z) = (-1)^k (-i)^{q/2} L_2^k \delta(x).$$

Thus we have

$$S_0(w) = (i)^{q/2} \delta(x),$$

$$T_0(w) = (-i)^{q/2} \delta(x).$$
(2.12)

Now, from (2.6) $L_1^k S_{2k}(w) = (-1)^k S_0(w)$ for $\gamma = 2k$. Thus, by (2.12) we obtain $L_1^k (-1)^k (-i)^{q/2} S_{2k}(w) = \delta(x)$. It follows that $(-1)^k (-i)^{q/2} S_{2k}(w)$ is an elementary solution of the operator L_1^k . Similarly $(-1)^k (i)^{q/2} T_{2k}(z)$ is also an elementary solution of L_2^k .

(ii) We need to show that

$$[(-1)^{k}(-i)^{q/2}S_{-2k}(w)] * [(-1)^{k}(-i)^{q/2}S_{2k}(w)] = \delta$$

and

$$[(-1)^k(i)^{q/2}T_{-2k}(z)] * [(-1)^k(i)^{q/2}T_{2k}(z)] = \delta.$$

Now, from (2.8) $(-1)^k (-i)^{q/2} S_{-2k}(w) = L_1^k \delta$ convolving both sides by $(-1)^k (-i)^{q/2} S_{2k}(w)$ we obtain

$$[(-1)^{k}(-i)^{q/2}S_{2k}(w)] * [(-1)^{k}(-i)^{q/2}S_{-2k}(w)]$$

$$= [(-i)^{k}(-i)^{q/2}S_{2k}(w)] * L_{1}^{k}\delta$$

$$= L_{1}^{k}[(-i)^{k}(-i)^{q/2}S_{2k}(w)] * \delta$$

$$= \delta * \delta = \delta$$

by Lemma 2.4(1).

Similarly
$$[(-1)^k(i)^{q/2}T_{-2k}(z)] * [(-1)^k(i)^{q/2}T_{2k}(z)] = \delta$$
. \square

3. Main results

Theorem 3.1. Given the equation

$$\bigoplus^{k} K(x) = \delta, \tag{3.1}$$

where \oplus^k is the operator iterated k-times defined by (1.1), δ is the Dirac-delta distribution, $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ and k is a nonnegative integer. Then we obtain

$$K(x) = \left[R_{2k}^{H}(u) * (-1)^{k} R_{2k}^{e}(v)\right] * (-1)^{k} (-i)^{q/2} S_{2k}(w) * (-1)^{k} (i)^{q/2} T_{2k}(z)$$
(3.2)

as an elementary solution of (3.1) where $R_{2k}^H(u)$, $R_{2k}^e(v)$, $S_{2k}(w)$ and $T_{2k}(z)$ are defined by (2.1), (2.3), (2.4) and (2.5), respectively, with $\alpha = \beta = \gamma = v = 2k$, k is a nonnegative integer.

Moreover, from (3.2) we obtain

$$(-1)^{k} R_{-2k}^{e}(v) * [(-1)^{k} (-i)^{q/2} S_{-2k}(w)] * [(-1)^{k} (i)^{q/2} T_{-2k}(z)] * K(x) = R_{2k}^{H}(u)$$
(3.3)

as an elementary solution of the operator \square^k iterated k-times defined by (1.6) and in particular from (3.2) and (3.3) with p = 1, q = n - 1, k = 1 and $x_1 = t$, we obtain

$$(-1)R_{-2}^{e}(v) * [(-1)(-i)^{q/2}S_{-2}(w)] * [(-1)(i)^{q/2}T_{-2}(z)] * K(x) = M_{2}(u)$$
(3.4)

as an elementary solution of the wave operator defined by (1.8) where $M_2(u)$ is defined by (2.2) with $\alpha = 2$. Also, for q = 0 then (3.1) becomes

$$\Delta_p^{4k}K(x) = \delta \tag{3.5}$$

and by (3.2) we obtain

$$K(x) = (-1)^k R_{2k}^e(v) * (-1)^k R_{2k}^e(v) * (-1)^k R_{2k}^e(v) * (-1)^k R_{2k}^e(v)$$

= $(-1)^{4k} R_{2k}^e(v) = R_{2k}^e(v)$ (3.6)

is an elementary solution of (3.5) where \triangle_p^{4k} is the Laplacian of p-dimension, iterated 4k-times and is defined by (1.10) and $v = x_1^2 + x_2^2 + \cdots + x_p^2$.

Proof. From (3.1) and (1.5) we have

$$\bigoplus^k K(x) = (\diamondsuit^k L_1^k L_2^k) K(x) = \delta$$

convolving both sides of the above equation by the convolution $[R_{2k}^H(u)*(-1)^kR_{2k}^e(v)]*[(-1)^k(-i)^{q/2}S_{2k}(w)]*[(-1)^k(i)^{q/2}T_{2k}(z)]$ and the properties of convolution with derivatives, we obtain

$$\bigoplus^{k} (R_{2k}^{H}(u) * (-1)^{k} R_{2k}^{e}(v)) * L_{1}((-1)^{k} (-i)^{q/2} S_{2k}(w))
* L_{2}[(-1)^{k} (i)^{q/2} T_{2k}(z)] * K(x)
= [R_{2k}^{H}(u) * (-1)^{k} R_{2k}^{e}(v)] * [(-1)^{k} (-i)^{q/2} S_{2k}(w)] * [(-1)^{k} (i)^{q/2} T_{2k}(z)].$$

Thus

$$\delta * \delta * \delta * K(x) = K(x)$$

$$= [R_{2k}^{H}(u) * (-1)^{k} R_{2k}^{e}(v)] * [(-1)^{k} (-i)^{q/2} S_{2k}(w)]$$

$$* [(-1)^{k} (i)^{q/2} T_{2k}(z)]$$

by Lemmas 2.2 and 2.4(1).

A. Kananthai et al. 1 Appl. Math. Comput. 132 (2002) 219-229

Thus we obtain (3.2) as required. Now we will relate the elementary solution K(x) given by (3.2) to the elementary solution of the wave equation defined by (1.8) and the Laplacian defined by (1.10). Now from (3.2) and by Lemmas 2.3 and 2.4(2) and the properties of inverses in the convolution algebra, we obtain

$$(-1)^{k} R_{-2k}^{e}(v) * [(-1)^{k} (-i)^{q/2} S_{-2k}(w)] * [(-1)^{k} (i)^{q/2} T_{-2k}(z)] * K(x)$$

= $\delta * \delta * R_{2k}^{H}(u) = R_{2k}^{H}(u)$

Actually, by Lemma 2.1 $R_{2k}^H(u)$ is an elementary solution of the operator \Box^k iterated k-times defined by (1.6).

In particular, by putting p = 1, q = n - 1, k = 1 and $x_1 = t$ in (3.2) and (3.3) then $R_2^H(u)$ reduces to $M_2(u)$ where $M_2(u)$ is defined by (2.2) with $\alpha = 2$.

$$(-1)^k R_{-2}^e(v) * [(-1)(-i)^{q/2} S_{-2}(w)] * [(-1)^k (i)^{q/2} T_{-2}(z)] * K(x) = M_2(u)$$

as an elementary solution of the wave operator defined by (1.8) where u = $t^2 - x_1^2 - x_2^2 - \dots - x_{n-1}^2$. Also, for q = 0 then (3.1) becomes

$$\Delta_p^{4k}K(x) = \delta, (3.7)$$

where \triangle_p^{4k} is the Laplacian of p-dimension iterated 4k-times. By Lemma 2.1, we have

$$K(x) = (-1)^{4k} R_{8k}^{e}(v) = R_{8k}^{e}(v)$$

as an elementary solution of (3.7) where

$$v = x_1^2 + x_2^2 + \dots + x_n^2$$

On the other hand, we can also find K(x) from (3.2), since q = 0, we have $R_{2k}^H(u)$ reduces to $(-1)^k R_{2k}^e(v)$ and $(-1)^k S_{2k}(w)$ reduces to $(-1)^k R_{2k}^e(v)$ also $(-1)^k T_{2k}^e(z)$ reduces to $(-1)^k R_{2k}^e(v)$, where $v = x_1^2 + x_2^2 + \cdots + x_p^2$.

Thus, by (3.2) for q = 0, we obtain

$$K(x) = (-1)^{k} R_{2k}^{e}(v) * (-1)^{k} R_{2k}^{e}(v) * (-1)^{k} R_{2k}^{e}(v) * (-1)^{k} R_{2k}^{e}(v)$$

= $(-1)^{4k} R_{2k+2k+2k+2k}^{e}(v) = R_{8k}^{e}(v)$

by Donoghue [5, p. 158].

This completes the proof. \Box

Acknowledgement

The authors would like to thank the Thailand Research Fund for financial support.

References

- [1] A. Kananthai, On the solutions of the *n* dimensional diamond operator, Applied Mathematics and Computation 88 (1997) 27–37.
- [2] M. Aguirre Tellez, The distributional Hankel transform of Marcel Riesz's ultra-hyperbolic kernel, Studies in Applied Mathematics 93 (1994) 133-162.
- [3] S.E. Trione, On Marcel Riesz's ultra-hyperbolic kernel, Trabajoc Matematica, vol. 116, 1987 (preprint).
- [4] Y. Nozaki, On Riemann-Liouville integral of ultra-hyperbolic type, Kodai Mathematical Seminar Report 6 (2) (1964) 69-87.
- [5] W.F. Donoghue, Distributions and Fourier Transforms, Academic Press, New York, 1969.
- [6] I.M. Gelfand, G.E. Shilov, Generalized Functions, vol. 1, Academic Press, New York, 1964.
- [7] M. Aguirre Tellez, S.E. Trione, The distributional convolution products of Marcel Riesz's ultrahyperbolic kernel, Resvista de la Unión Matemática Argentina 39 (1995) 115-124.

On the Weak Solution of the Compound Ultra-hyperbolic Equation

Amnuay Kananthai* and Kamsing Nonlaopon

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiangmai 50200, Thailand

*Corresponding author. E-mail: malamnka@science.cmu.ac.th

ABSTRACT

In this paper we have studied the compound ultra-hyperbolic equation of the form

$$\mathop{c}_{r=0}^{m} \int u(x) = f(x),$$

where \Box ^r is the ultra-hyperbolic operator iterated r-times (r = 0, 1, 2, ..., m), f is a given generalized function, u is an unknown function, $x = (x_1, x_2, ..., x_n) \in \Box$ ⁿ the Euclidean n-dimensional spaces and c is a constant.

It is found that the equation above has a weak solution u(x) which is of the form Marcel Riesz's kernel and moreover, such a solution is unique.

1. INTRODUCTION

Consider the equation

$$\Box^k u(x) = f(x), \tag{1.1}$$

where u and f are some generalized functions, and \Box^k is the ultra-hyperbolic operator iterated k-times and is defined by

$$\Box^{k} = \left(\frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial x_{2}^{2}} + \dots + \frac{\partial^{2}}{\partial x_{p}^{2}} - \frac{\partial^{2}}{\partial x_{p+1}^{2}} - \frac{\partial^{2}}{\partial x_{p+2}^{2}} - \dots - \frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{k}, \quad (1.2)$$

p+q=n is the dimension of the space $[]^n$, $x=(x_1, x_2, ..., x_n) \in []^n$, and k is a nonnegative integer.

Trione (1987) has shown that (1.1) has $u(x) = R_{2k}(x)$ as a unique elementary solution where $R_{2k}(x)$ is defined by (2.1) with $\alpha = 2k$. Moreover, Tellez (1994) has proved that $R_{2k}(x)$ exists only for case p is odd with p + q = n.

In this paper we develop the equation (1.1) to the form

which is called the compound ultra-hyperbolic equation and by convention $\Box^0 u(x) = u(x)$. We use the method of convolution of tempered distribution to find the solution of equation (1.3).

2. PRELIMINARIES

Definition 2.1 Let $x = (x_1, x_2, ..., x_n)$ be a point of the *n*-dimensional Euclidean space $|\cdot|^n$ and write

$$V = x_1^2 + x_2^2 + \dots + x_p^2 - x_{p+1}^2 - x_{p+2}^2 - \dots - x_{p+q}^2 p + q = n$$

Define $\Gamma_{+} = \{x \in \square'' : x_{+} > 0, \ V > 0\}$, which designates the interior of the forward cone, and $\overline{\Gamma}_{+}$ designates of its closure, and the following functions introduced by Nozaki (1964) that

$$R_{\alpha}(x) = \begin{cases} \frac{V^{\frac{\alpha-n}{2}}}{X_{n}(\alpha)} & \text{for } x \in \Gamma_{+}, \\ 0 & \text{for } x \notin \Gamma_{+}. \end{cases}$$
 (2.1)

 $R_{\alpha}(x)$ is called the ultra-hyperbolic kernel of Marcel Riesz.

Here α is a complex parameter and n is the dimension of the space. The constant $K_n(\alpha)$ is defined by

$$K_{n}(\alpha) = \frac{\pi^{\frac{n-1}{2}} \Gamma\left(\frac{\alpha+2-n}{2}\right) \Gamma\left(\frac{1-\alpha}{2}\right) \Gamma(\alpha)}{\Gamma\left(\frac{2+\alpha-p}{2}\right) \Gamma\left(\frac{p-\alpha}{2}\right)}$$
(2.2)

and p is the number of positive terms of

$$V = x_{\perp}^{2} + x_{\perp}^{2} + \dots + x_{p}^{2} - x_{p+1}^{2} - x_{p+2}^{2} - \dots - x_{p+q}^{2}, \quad p + q = n,$$
 (2.3)

and let supp $R_{\alpha}(x) \subset \overline{\Gamma}_{+}$.

Now $R_{\alpha}(x)$ is an ordinary function if $\text{Re}(\alpha) = n$, and is a distribution of α if $\text{Re}(\alpha) < n$.

Definition 2.2 A generalized function u(x) is called an elementary solution of n-dimensional ultra-hyperbolic operator iterated k-times if u(x) satisfies the equation $-^k u(x) = \delta$, where \Box^k defined by (1.2) and δ is the Dirac-delta distribution.

Lemma 2.1 $R_{\alpha}(x)$ is a homogeneous distribution of order α - n. In particular, it is a tempered distribution.

Proof. We need to show that $R_{\alpha}(x)$ satisfies the Euler equation

$$\int_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}} R_{\alpha}(x) = (\alpha - n) R_{\alpha}(x).$$

Now

$$\frac{1}{x} \frac{\partial}{\partial x_{i}} R_{\alpha}(x) = \frac{1}{K_{n}(\alpha)} \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} (x_{1}^{2} + \dots + x_{p}^{2} - x_{p+1}^{2} - \dots - x_{p+q}^{2})^{\frac{\alpha - n}{2}}$$

$$= \frac{1}{K_{n}(\alpha)} (\alpha - n) (x_{1}^{2} + \dots + x_{p}^{2} - x_{p+1}^{2} - \dots - x_{p+q}^{2})^{\frac{\alpha - n + 2}{2}}$$

$$\times (x_{1}^{2} + \dots + x_{p}^{2} - x_{p+1}^{2} - \dots - x_{p+q}^{2})$$

$$= \frac{1}{K_{n}(\alpha)} (\alpha - n) (x_{1}^{2} + \dots + x_{p}^{2} - x_{p+1}^{2} - \dots - x_{p+q}^{2})^{\frac{\alpha - n}{2}}$$

$$= (\alpha - n)R_{\alpha}(x).$$

Hence $R_{\alpha}(x)$ is a homogeneous distribution of order α - n. Donoghue (1969) proved that every homogeneous distribution is a tempered distribution. So $R_{\alpha}(x)$ is a tempered distribution. This is complete of proof.

Lemma 2.2 The function $u(x) = R_{2k}(x)$ with $\alpha = 2k$ of (2.1) is the unique elementary solution of the equation $\Box^k u(x) = \delta$

Proof. See Trione (1987) and Tellez (1994).

Lemma 2.3 Let $R_{\alpha}(x)$ and $K_{n}(\alpha)$ be defined by (2.1) and (2.2). Then

- (a) $K_n(\alpha+2) = \alpha (\alpha+2-n) K_n(\alpha)$,
- (b) $R_{2k}(x) = \Box^k \delta$, where k is a nonnegative integer,
- (c) $\bigcap^k R_{\alpha}(x) = R_{\alpha,2k}(x)$, where k is a nonnegative integer.

Proof. See Trione (1987).

Moreover, from (b) we obtain $R_0(x) = \delta$ and also from (c)

$$^{\prime k}R_{2k}(x) = R_0(x) = \delta$$

Lemma 2.4 (The convolution of tempered distributions)

- (a) $(1/\delta)^* u(x) = 1/\delta u(x)$ where u is any tempered distribution.
- (b) Let $R_{\alpha}(x)$ and $R_{\beta}(x)$ be defined by (2.1) then $R_{\alpha}(x) * R_{\beta}(x)$ exists and is a tempered distribution.
- (c) Let $R_{\alpha}(x)$ and $R_{\beta}(x)$ be defined by (2.1) and if $R_{\alpha}(x) * R_{\beta}(x) = \delta$ then $R_{\alpha}(x)$ is an inverse of $R_{\beta}(x)$ in the convolution algebra, denoted by $R_{\alpha}(x) = R_{\beta}^{*-1}(x)$, moreover $R_{\beta}^{*-1}(x)$ is unique.

Proof.

(a) First, we consider the case k = 1, now

$$\Box \delta = \int_{i=1}^{p} \frac{\partial^{2} \delta}{\partial x_{i}^{2}} - \int_{j=p+1}^{p+q} \frac{\partial^{2} \delta}{\partial x_{j}^{2}} p + q = n$$

and let $\varphi(x)$ be a testing function in the Schwartz space s. By the definition of convolution, we have

$$<(\Box\delta) *u(x), \varphi(x) > = < u(x), < \Box\delta(y), \varphi(x+y) >>$$

$$= < u(x), < \frac{\rho}{i=1} \frac{\partial^2 \delta(y)}{\partial x_i^2} - \frac{\rho+q}{j=p+1} \frac{\partial^2 \delta(y)}{\partial x_j^2}, \varphi(x+y) >>$$

$$= < u(x), < \delta(y), \frac{\rho}{i=1} \frac{\partial^2 \varphi(x+y)}{\partial x_i^2} - \frac{\rho+q}{j=p+1} \frac{\partial^2 \varphi(x+y)}{\partial x_j^2} >>$$

$$= < u(x), < \frac{\rho}{i=1} \frac{\partial^2 \varphi(x)}{\partial x_i^2} - \frac{\rho+q}{j=p+1} \frac{\partial^2 \varphi(x)}{\partial x_j^2} >$$

$$= < \frac{\rho}{i=1} \frac{\partial^2 u(x)}{\partial x_i^2} - \frac{\rho+q}{j=p+1} \frac{\partial^2 u(x)}{\partial x_j^2}, \varphi(x) >$$

$$= < \Box u(x), \varphi(x) >.$$

It follows that $(\Box \delta)^* u(x) = \Box u(x)$. Similarly for any k, we can show that $(\Box^k \delta)^* u(x) = \Box^k u(x)$.

- (b) Since $R_{\alpha}(x)$ and $R_{\beta}(x)$ are tempered distributions by Lemma 2.1. Now choose supp $R_{\alpha}(x) = K \subset \overline{\Gamma}_+$ where K is a compact set and $\overline{\Gamma}_+$ appear in Definition 2.1. Hence, by Donoghue (1969), $R_{\alpha}(x) * R_{\beta}(x)$ exists and is tempered distribution.
- (c) Since $R_{\alpha}(x)$ and $R_{\beta}(x)$ are tempered distributions with compact supports, thus $R_{\alpha}(x)$ and $R_{\beta}(x)$ are the elements of space of convolution algebra U' of distribution. Now $R_{\alpha}(x)^*$ $R_{\beta}(x) = \delta$ then by Zemanain (1965) show that $R_{\alpha}(x) = R_{\beta}^{*-1}(x)$ is a unique inverse.

For example, if $\alpha = 2k$ where k is nonnegative integer and by Kananthai (1997), we have $R_{2k}(x)$ is an inverse of $R_{2k}(x)$, that is

$$R_{2k}(x) * R_{2k}(x) = R_{2k+2k}(x) = R_0(x) = \delta$$

3. RESULTS

Theorem 3.1 Given the compound ultra-hyperbolic equation

$$\sum_{r=0}^{m} r^{r} |r|^{r} u(x) = f(x),$$
(3.1)

where \Box^r is the ultra-hyperbolic operator iterated r-times (r = 0, 1, 2, ..., m) defined by (1.2), f is a tempered distribution, $x = (x_1, x_2, ..., x_n) \in \Box^n$ the Euclidean n-dimensional spaces and n is odd and c_r is a constant. Then (3.1) has a unique weak solution

$$u(x) = f(x) * R_{2m}(x) * (c_m R_0(x) + W(x) R_2(x))^{*-1}$$
(3.2)

where

$$W(x) = c_{m-1} + c_{m-2} \cdot \frac{V}{2(4-n)} + c_{m-3} \cdot \frac{V^2}{2 \cdot 4(4-n)(6-n)} + \dots$$

$$+c_0 \cdot \frac{V^{m-1}}{2.4.6...2(m-1)(4-n)(6-n)...(2m-n)}$$
 (3.3)

and V defined by (2.3) and $(c_m R_0(x) + W(x) R_2(x))^{*-1}$ is an inverse of $c_m R_0(x) + W(x) R_2(x)$.

Proof. By Lemma 2.4(a), equation (3.1) can be written as

$$(c_m \square^m \delta + c_{m-1} \square^{m-1} \delta + \dots + c_1 \square \delta + c_0 \delta) * u(x) = f(x)$$

Convolving both sides by $R_{2m}(x)$ defined by (2.1), we obtain

$$(c_m \Box^m R_{2m}(x) + c_{m-1} \Box^{m-1} R_{2m}(x) + \ldots + c_1 \Box R_{2m}(x) + c_0 R_{2m}(x)) * u(x) = f(x) * R_{2m}(x)$$

By Lemma 2.2, Lemma 2.3(c), we obtain

$$(c_{m}\delta + c_{m-1}R_{2}(x) + c_{m-2}R_{4}(x) + \dots + c_{1} \square R_{2(m-1)}(x) + c_{0}R_{2m}(x)) * u(x) = f(x) * R_{2m}(x)$$
(3.4)

By Lemma 2.3(a), we obtain

$$R_4(x) = \frac{V^{\frac{2-n}{2}}}{K_n(4)} = \frac{V^{\frac{2-n}{2}}V}{2(2+2-n)K_n(2)} = R_2(x) \cdot \frac{V}{2(4-n)}$$

Similarly,

$$R_{6}(x) = R_{2}(x). \frac{V^{2}}{2.4(4-n)(6-n)}$$

$$R_{8}(x) = R_{2}(x). \frac{V^{3}}{2.4.6(4-n)(6-n)(8-n)}$$

$$\vdots$$

$$R_{2m}(x) = R_{2}(x). \frac{V^{m-1}}{2.4...2(m-1)(4-n)(6-n)...(2m-n)}$$

Thus we obtain the function W(x) of (3.3). Now W(x) is continuous and infinitely differentiable in classical sense for n is odd. Since $R_2(x)$ is a tempered distribution with compact support, hence $W(x)R_2(x)$ also is tempered distribution with compact support and so $c_m R_0(x) + W(x)R_2(x)$. By Lemma 2.4(c), $c_m R_0(x) + W(x)R_2(x)$ has a unique inverse denoted by $(c_m R_0(x) + W(x)R_2(x))^{*-1}$.

Now (3.4) can be written as

$$(c_m R_0(x) + W(x)R_2(x))^* u(x) = f(x)^* R_{2m}(x), R_0(x) = \delta$$

Convolving both sides by $(c_m R_0(x) + W(x)R_1(x))^{*-1}$, we obtain

$$u(x) = f(x) * R_{2m}(x) * (c_m R_0(x) + W(x) R_2(x))^{*-1}$$

Since $R_{2m}(x)$ is a unique by Lemma 2.2 and $(c_m R_0(x) + W(x)R_2(x))^{*-1}$ also a unique by Lemma 2.4(c), it follows that u(x) is a unique weak solution of (3.1) with odd dimensional n. This completes the proof.

ACKNOWLEDGEMENTS

The authors would like to thank The Thailand Research Fund for financial support.

REFERENCES

Donoghue, W.F. 1969. Distributions and Fourier transform. Academic Press, New York.

Kananthai, A. 1997. On the distribution related to the ultra-hyperbolic equations. Computational and Applied Mathematics, Elsevier Science Inc. 84:101-106.

Nozaki, Y. 1964. On Riemann-Liouville Integral of Ultra-hyperbolic Type. Kodai Mathematical Seminar Reports. 6(2):69-87.

Tellez, M.A. 1994. The distribution Hankel transform of Marcel Riesz's ultra-hyperbolic kernel. Studies in Applied Mathematics. Massachusetts Institute of Technology. Elsevier Science Inc. 93:133-162.

Trione, S.E. 1987. On Marcel Riesz's ultra-hyperbolic kernel. Trabajos de Matematica, 116. Zemanian, A.H. 1965. Distribution and transform analysis. McGraw-Hill, New York.

On the Generalized Ultra-hyperbolic Heat Kernel Related to the Spectrum

K. Nonlaopon, A. Kananthai

Department of Mathematics.

Chiang Mai University.

Chiang Mai. 50200 Thailand. e-mail: Kamsingn@yahoo.com

AMS Subject Classification: 46F10

Keywords: the spectrum of the kernel, the generalized ultra-hyperbolic heat kernel, generalized function

Abstract

In this paper, we study the equation

$$\frac{\partial}{\partial t}u(x,t) = c^2 \Box^k u(x,t)$$

with the initial condition

$$u(x,0) = f(x)$$

for $x \in \mathbb{R}^n$ -the *n*-dimensional Euclidean space. The operator \square^k is named the ultra-hyperbolic operator iterated k-times, defined by

$$\Box^{k} = \left(\frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial x_{2}^{2}} + \dots + \frac{\partial^{2}}{\partial x_{p}^{2}} - \frac{\partial^{2}}{\partial x_{p+1}^{2}} - \frac{\partial^{2}}{\partial x_{p+2}^{2}} - \dots - \frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{k},$$

p+q=n is the dimension of the Euclidean space \mathbb{R}^n , u(x,t) is an unknown function for $(x,t)=(x_1,x_2,\ldots,x_n,t)\in\mathbb{R}^n\times(0,\infty)$, f(x) is the given generalized function, k is a positive integer and c is a positive constant.

We obtain the solution of such equation which is related to the spectrum and the kernel which is so called the generalized ultra-hyperbolic heat kernel.

Moreover, such the generalized ultra-hyperbolic heat kernel has interesting properties and also related to the kernel of an extension of the heat equation.

^{*}Supported by The Royal Golden Jubilee Project grant No. PHD/0221/2543.

1 Introduction

It is well known that for the heat equation

$$\frac{\partial}{\partial t}u(x,t) = c^2 \Delta u(x,t) \tag{1.1}$$

with the initial condition

$$u(x,0) = f(x)$$

where $\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$ is the Laplacian operator and $(x,t) = (x_1, x_2, \dots, x_n, t) \in \mathbb{R}^n \times (0, \infty)$, we obtain the solution

$$u(x,t) = \frac{1}{(4c^2\pi t)^{n/2}} \int_{\mathbb{R}^n} f(y)e^{-|x-y|^2/4c^2t} dy$$

or the solution in the convolution form

$$u(x,t) = E(x,t) * f(x)$$

$$(1.2)$$

where

$$E(x,t) = \frac{1}{(4c^2\pi t)^{n/2}} e^{-|x|^2/4c^2t}.$$
 (1.3)

The equation (1.3) is called the heat kernel, where $|x|^2 = x_1^2 + x_2^2 + \cdots + x_n^2$ and t > 0, see [2, p208-209].

Moreover, we obtain $E(x,t) \to \delta$ as $t \to 0$, where δ is the Dirac-delta distribution. We can extend (1.1) to the equation

$$\frac{\partial}{\partial t}u(x,t) = c^2 \Box u(x,t) \tag{1.4}$$

with the initial condition

$$u(x,0) = f(x) \tag{1.5}$$

where \square is the ultra-hyperbolic operator, that is

$$\Box = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \frac{\partial^2}{\partial x_{p+2}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2}\right).$$

Then we obtain

$$u(x,t) = E(x,t) * f(x)$$
 (1.6)

as a solution of (1.4) which satisfies (1.5) where E(x,t) is the kernel of (1.4) and is defined by

$$E(x,t) = \frac{(i)^q}{(4c^2\pi t)^{n/2}} \exp\left[-\frac{\left(\sum_{i=1}^p x_i^2 - \sum_{j=p+1}^{p+q} x_j^2\right)}{4c^2t}\right]$$
(1.7)

where p+q=n, $i=\sqrt{-1}$ and $\sum_{i=1}^p x_i^2 > \sum_{j=p+1}^{p+q} x_j^2$, see [1, pp. 215-225]. Moreover, we obtain $E(x,t)\to \delta$ as $t\to 0$, where δ is the Dirac-delta distribution. In addition, we studied the ultra-hyperbolic heat kernel which is related to the spectrum, see [2, pp. 19-28].

Now, the purpose of this work is to study the equation

$$\frac{\partial}{\partial t}u(x,t) = c^2 \Box^k u(x,t) \tag{1.8}$$

with the initial condition

$$u(x,0) = f(x), \quad \text{for} \quad x \in \mathbb{R}^n$$
 (1.9)

where the operator \square^k is named the ultra-hyperbolic operator iterated k-times defined by

$$\Box^{k} = \left(\frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial x_{2}^{2}} + \dots + \frac{\partial^{2}}{\partial x_{p}^{2}} - \frac{\partial^{2}}{\partial x_{p+1}^{2}} - \frac{\partial^{2}}{\partial x_{p+2}^{2}} - \dots - \frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{k}, \tag{1.10}$$

p+q=n is the dimension of the Euclidean space \mathbb{R}^n , u(x,t) is an unknown function for $(x,t)=(x_1,x_2,\ldots,x_n,t)\in\mathbb{R}^n\times(0,\infty),\ f(x)$ is the given generalized function, kis a positive integer and c is a positive constant.

We obtain u(x,t) = E(x,t) * f(x) as a solution of (1.8) which satisfies (1.9) where

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\Omega} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k + i(\xi,x)\right] d\xi.$$
 (1.11)

and $\Omega \subset \mathbb{R}^n$ is the spectrum of E(x,t) for any fixed t>0. The function E(x,t) is called the generalized ultra-hyperbolic heat kernel iterated k-times or the elementary solution of (1.8). And all properties of E(x,t) will be studied in details.

Now, if we put k=1 and q=0 in (1.8) and (1.11) then (1.8) and (1.11) reduce to (1.1) and (1.3) respectively.

2 Preliminaries

Definition 2.1 We say $f \in L^1(\mathbb{R}^n)$ if

$$\int_{\mathbb{R}^n} |f(x)| \, dx < \infty.$$

For $f \in L^1(\mathbb{R}^n)$, we define its Fourier transform at a point $\xi \in \mathbb{R}^n$ as

$$\widehat{f}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-i(\xi, x)} f(x) \, dx \tag{2.1}$$

where $\xi = (\xi_1, \xi_2, \dots, \xi_n)$ and $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, $(\xi, x) = \xi_1 x_1 + \xi_2 x_2 + \dots + \xi_n x_n$ and $dx = dx_1 dx_2 \dots dx_n$.

Also, the inverse of Fourier transform is defined by

$$f(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{i(\xi, x)} \widehat{f}(\xi) d\xi.$$
 (2.2)

Definition 2.2 The spectrum of the kernel E(x,t) of (1.11) is the bounded support of the Fourier transform $\widehat{E(\xi,t)}$ for any fixed t>0.

Definition 2.3 Let $\xi = (\xi_1, \xi_2, \dots, \xi_n) \in \mathbb{R}^n$ and denote by

$$\Gamma_{+} = \{ \xi \in \mathbb{R}^{n} : \xi_{1}^{2} + \xi_{2}^{2} + \ldots + \xi_{p}^{2} - \xi_{p+1}^{2} - \xi_{p+2}^{2} - \ldots - \xi_{p+q}^{2} > 0 \text{ and } \xi_{1} > 0 \}$$

the set of an interior of the forward cone, and $\overline{\Gamma}_+$ denotes the closure of Γ_+ .

Let Ω be spectrum of E(x,t) defined by definition 2.2 and $\Omega \subset \overline{\Gamma}_+$. Let $\widehat{E(\xi,t)}$ be the Fourier transform of E(x,t) and define

$$\widehat{E(\xi,t)} = \begin{cases} \frac{1}{(2\pi)^{n/2}} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k\right] & \text{for } x \in \Gamma_+, \\ 0 & \text{for } \xi \notin \Gamma_+. \end{cases}$$
(2.3)

Lemma 2.1 Let L be the operator defined by

$$L = \frac{\partial}{\partial t} - c^2 \Box^k \tag{2.4}$$

where \square^k is the ultra-hyperbolic operator iterated k-times defined by

$$\Box^k = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \frac{\partial^2}{\partial x_{p+2}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2}\right)^k,$$

p+q=n is the dimension of \mathbb{R}^n , $(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$, $t\in(0,\infty)$, k is a positive integer and c is a positive constant. Then we obtain

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\Omega} \exp\left[c^2 t \left(\sum_{j=p+1}^{p+q} \xi_j^2 - \sum_{i=1}^p \xi_i^2\right)^k + i(\xi,x)\right] d\xi$$
 (2.5)

as a elementary solution of (2.4) in the spectrum $\Omega \subset \mathbb{R}^n$ for t > 0.

Proof. Let $LE(x,t) = \delta(x,t)$ where E(x,t) is the kernel or the elementary solution of operator L and δ is the Dirac-delta distribution. Thus

$$\frac{\partial}{\partial t}E(x,t) - c^2 \Box^k E(x,t) = \delta(x)\delta(t).$$