RTA4580006 fi$m0 viiuing
'RTA4580006 #1610 WHuinG

A

|

4|8
a2
i

NenwIdeatiuaaysol

TA59n13

ngufaaasiIvutazngeUigiivng

Distributions and Banach Spaces Theory

Tae
¢ o r Qb s
MansIsEeIls v inanazaaed v
Mmadvnaamans aaeInansans

= Qs =i L]
unInenave v

AINGIAN 2548



@INAYI RTA4580006

eddeniivauysol
Tnsams

nquHaansinvutazngulagivnna

Distributions and Banach Spaces Theory

b g

v maasinsdd e v lnatavans

Qs Qs

: = ¢ d
AINH NNV IAUATITAT  AUSINFA AT

. =Y W Y
U INeazealv

avuayulasd it uNRIUaTUaYUNISIY

! ¥
@uriuluswaudiduvesdite anm. luinfudesiudomus i)



=y =
esagulszma

Huaitovesnugudninnunesmuminmuns e (an2.) 114 Mnuduasy
ngudtolurrenm 33 sudrSegaruthmingluded nazveveugumain
= o - L4 o L) [ ar aw o
Allarmaas AN IMEINEas yinanndodoalnl 1 eduayuandislasd sy
é'l d' X 9 & d' d' 9 ar - oar o 3
azaaniuises aom@msite aasasumsldgiinialaien fineadasiunudsy sl

i luded



Abstract
Distributions and Banach Space Theory

On the contract with the Thaitand Research Fund for the research grants of 3
years period. We have succeeded in doing research by discovering many new result.
The researches has been divided into € projects. The first three projects have been
studied on the partial differential operators and distribution theory and discovered the
properties of solutions, the spectrums and Residues.

The last three projects are Banach space theory which discovered the new
results, that are the k-nearly uniform convex property (k-NUC), uniform Kadec Klee
(property (H)), the fixed points theorem, particularly for nonexpansive mapping by using
the iteration methed. These results can be applied to find the solutions of many types of
equations.

Moreover, the researches also studied the are of probability and obtained the
new results. in Poisson binomial distributions and the approximations the error of
combinatorial central timit theorem.

For the completion of 3 year researches, we obtained more than 30 papers

which are published in the international journal.
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B nannoii paboTe Mbl HCCIIeAyeM ypaBHeHUE

g—tu(m,t) = —2(—-A)Fu(z, t)

€ HAYANBLHBIMH YCIOBHAMHM
u(z,0) = f(=),

rae £ € R™, R® — n-Meproe eskmuzoro npocrpascrso. Oneparop A* maspipaercs one-
patoponm Jlamwiaca, aTepupoBanupiM k pa3, ¥ onpefensercs Kak

2 ” \*
k_ 2 L2 4y 2
. "(&r%*ax%* +axa) ’

rae n — pa3MepHOCTh eBKJIMA0Ba npocTpaHcTBa R™; u(z,t) — HeussecTHAs ByHKURS OT
(z,t) = (zy,%2,...,Zn,t) € R™ x [0,00);, f(z) — 3amannasn obobmwenran Gpynxuua; k —
HEOTPHLATEABHOE LENoe YHCI0; ¢ — NQJOKHTEIbHAS TOCTORHHAS.

Pemrenye Takoro ypasHeHus, HA3bIBaeMOe OOOOIIEHHEIM SAPOM YPaBHEHHS TEIUIONPO-

BOAHOCTH, HMEECT HHTCPECHBIE CBOICTBA U CBA3aHO C pEIICHHCM YDPaBHEHUA TCINONPOBOA-
HOCTH.

Introduction

It is well known that for the heat equation

-g—tu(:n,t) = c?Au(zr, t) {0.1)

with the initial condition

u(z,0) = f(z),
n 62
where A = 5 Py is the Laplace operator, (z,t) = (1, Z2,...,Ts, t) € R" x [0, 00),

i=1 i
we obtain the solution

|z — y|?

we.8) = e [ o0 |2 | Sy

Rn

*Supported by The Royal Golden Jubilee Project grant No. PHD/0221/2543.
© MucTHTYT BRIuMCAMTERbHBLIX TexHonoruit Cnbupckoro otaenenus Poccuiickolt akaaeMun HAYK, 2004.
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Alternatevely, this solution can be represented in the convolution form

u{z,t) = E(z,t) * f(z), (0.2)

where

1 )
= () P { 4c2tj '
The function (0.3) called the heat kernel, where |z|> = 22 + 22 + --- + 22 and ¢ > 0, see [1,
p. 208, 209)].

Moreover, we obtain E(z,t) — & as £ — 0, where ¢ is the Dirac-delta function. We can
extend (0.1) to the equation

E(z,1) (0.3)

-g—t u(z, t) = —62A2U-(.'£, t) (04)

with the initial condition
u(z,0) = f(x),
where A% = AA is the biharmonic operator, that is

2 2 2y 2
A"’.—_(a 42 +---+‘9 )

2 2 2
dry  Oz3 0xz2

Using the n-dimensional Fourier transform we can find the following solution of (0.4)

(e t) = g [ [ €T ) dya (05)

Rﬂ Bﬂ.
Using (0.5) u(z,t) can be rewritten in the convolution form
u(z,t) = B(z,t) + f (=),

where

1 2

J— —C |ﬂ £+l(£,$)

B@.t) = G | ¢ d, (0.6)
. -

€' = (2 + & +---+€%)? and (£,1) = £;21 + T + -+ + £, The function E(x, t) in (0.6)

is the kernel of {(0.4), E(x,t) — ¢ as t — 0 since

1 :
M - —_ (E,I)l d ——
lal_r}rtl) E(z,t) o /,g ,d€ =4,

xn

see [3, p. 396, Eq. (10.2.19(b))].
Now, the purpose of this work is to study the equation

%u(l"t) = —cz(—A)ku(I},t) (07)

with the initial condition
u(z,0) = f(z), for z € R",
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where the operator A* denotes the Laplace operator iterated k-times. This operator is defined

as follows \
o2 o° i
k _ - R
FANGE— (Br% + 8:1:% + + 33:2) , (0.8)

n

where n is the dimension of Euclidean space R®, u(z,t) is an unknown function, (z,t) =
(z1,Z2,...,2Zn,t) € R* x (0,00), f(z) is the given generalized function, k is a nonnegative
integer and c is a positive constant.

We obtain u(z,t) = E(z,t) * f(z) as a solution of (0.7), where

" k
E(z,t) = (—Qi—)zlf exp | —c? (fo) t—i—i(«f,r)} d€. (0.9)

i=1

All properties of E(z,t) in (0.9) will be studied in details.
Now, if we set k¥ = 1 in (0.9) then (0.9) reduces to (0.3), which is the kernel of {0. 1) Also,
if we set k = 2 in (0.9), then (0.9) reduces to (0.6}, which is the kernel of (0.4).

1. Preliminaries

Definition 1.1. Let f(z) € L,(R") be the space of integrable functions in R*. The Fourier
transform of f(z) is defined by

i 1 .
_— - ((,1)
fi6) = Gy [ P 1@ (L.1)
Rn
where § = (61:62:" . afn): T = (mla$21 fee ,I'n) € Rn, (ga SE) = EIII + 522:2 +oee €n3:n is the
usual inner product in R*, dr = dz, dz, .. .dx,.
The inverse Fourier transform is given by

flz) =

t e 7
oy | e F@de (12)

nn

Lemma 1.1. Given the function

£(2) = exp {— (Z ” ,

where (Ty,Zq,...,2,) € R*. Then

(1.3)

where I denotes the Garmma function. Therefore, [ f(x)dz is bounded.
RI’\
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Proof. We have

[ f(z)dz = [ exp | - (Zzﬂ) iz,

70 %n =1

Let us transform to bipolar coordinates

Ty = TWy, Lo = TW2, ..., Ly = TWy,

i
where " w? = 1.
=]

Thus
/f(:r) dz = [e"zk?"""l dr dQ,,
Rn R~
where
dr = r* " ldr dsl,,

(1.4)

dSl, is the element of surface area on the unit sphere in R™. By direct computation we obtain

[f(z) dr = Q, f e~ =1y
R»r 0

3.-ni2
o

I(n/2)

When u = r?¥ we then obtain

where {1, =

Therefore, [ f(z)dz is bounded.
Rn

Lemma 1.2. Forallt > 0 and all x € R we have

/exp (—026215) dé = %

and

i 2,2 . T x?
/ exp [HC £ t+ 26,’5] d£ = @ exp _E ,

where ¢ 1s a positive constant,

Proof. See {2, p. 117, 118].

(1.5)

(1.6)

(1.7)

(1.8)

1.
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2. Main Results

Theorem 2.1. Given the equation

_;’_tu(r £) = -t~ A)eu(z, 1) (2.1)

with the initial condition
u(z,0) = f(z), (2.2)
where A¥ is the Laplace operator iterated k-times defined by

52 52 8?2 k
k o _ Cae
A= (Bzf * dx3 * 33,’3) ’

where n is the dimension of Euclidean space R™, k is a nonnegative integer, u(z,t) is en un-
known function, (x,t) = (x1,Z2,...,Zn,t) € R"x(0,00), f(z) is the given generalized function,
and c¢ is a posttive constant. Then we obtain that

w(z,t) = E(z,) + f(z) (2.3)
is a solution of (2.1), which satisfies (2.2) where E(z,t) is the kernel of (2.1) defined by

E(z,t) = (21) fexp ‘|:—c (262) t+1(é,x ] d¢t. (2.4)

Proof. Applying the Fourier transform (1.1) to both sides of (2.1), we obtain

(e, 1) = - (Z;) )

=1

Thus,

a(E,6) = K(€) exp [—& (253) t] , (2.5)

where K (&) is a constant and @(£,0) = K(£).
U{&,t) in (2.5) is bounded and from (2.2) we have

K(€) = 6(£,0) = f(&) =

R f e 2 f(z) dx (2.6)

and using the inversion in (1.2) we obtain from (2.5) and (2.6)

Wt = o f (e, 0 =

n k
i(€,x) ,—{E) 2
Qﬂ)n // £, £y f(y expii (;&) t:\ dyd{

R™ R™
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Therefore,
u(z, t) )ﬂ)n/[ i€,z y)exp{ (Zf) ] y)dyd€ (2.7)
Or
n k
exp [—62 (Z E?) t+i(§,z ~ y)} fly)dydé. (2.8)
R» Rn =1
Set

E(x,t)=(2$)n/ [ (Za) t+z(&x} de. (2.9)
Rn

Thus, (2.8) can be rewritten in the convolution form

u({z,t) = E(z,t) « f(z), (2.10)

where u{z,t) in (2.8) is a solution of (2.1) and E(z,t) is defined by (2.9). It is clear that the
kernel E(z,t) exists.
Moreover, since E(z,t) exists, then

i — __l [ i€z} — n
ll_%E(a:,t) =@ ) e d¢ = 6(x), for z € R™. (2.11)
RI’I

See (3, p. 396, Eq. (10.2.19(b))].
From (2.11) we obtain

u(z,0) = limu(z, t) = lim(E(z,t) * f(z)) =6 x f(z) = f(x).

t—0 t—+0

Thus, u(z,t) in (2.3) satisfies (2.2).
In particular, if we set kK =1 in (2.9), then we obtain

1 i n _
E(z,t) = (21r)n:/.exp L—c2 (;{f) t+z(£,z)1 dt =
1 i n ' n
= (gﬂ)n/exp -—cgz‘fft-i—z;{ﬂj} dé =

fn i=1
n o
1
~ (2m)n H / ¢ [_6253?”7'53%] dé; =
PR
SR | Y K _ 5
LA P\ 4

from (1.8). Thus,
= ————ex _EE
= (a2 P\ et )
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T\? [P\ 7 [« z3
(czt) EXP( 4c2t) __I-[ cztexP( 4c?t
and ;£ =322
i=1

Therefor::, if we set k = 1in {2.1) and (2.9), then (2.1) and (2.9) will be reduced to (0.1)
and (0.3), respectively. If we set k = 2 in (2.9), then we obtain

E(m,t)=(2—71r);/ [ (ZE) t+i(,z }dc’z

since

Rn
1 21£14 :
—_— =c |€' t+’(£rz)
e )¢ %
Rﬂ.
where |£|* = (3 + €2 +--- + £2)%
Therefore, if we set k = 2 in (2.1) and (2.9), then (2.1} and (2.9) will be reduced to (0.4)
and (0.6), respectively. a

Theorem 2.2. The kernel E(z,t) defined by (2.9) has the following properties:
1) E{z,t) € C*®, where C™ is the space of continuous infinitely differentiable functions, z €
R*, t > 0;

2) (% + (- A)’“) E(z,t) =0 fort > 0;
3) E(z,t) >0 fort > 0;

4) (n)
' —

1 2k

|E{z, )| <
Inan/2L( 24 \n 2k n
mIHE T (3)

, fort >0,

where I denotes the Gamma function. Thus E(z,t) is bounded for any fized t;
5) %iﬂtl} E(z,t) =4.
—

Proof.
1. This property follows from (2.9), since

k
" 1 " o .
Y E(I,t) = W -6—,'1;; exp [ C (;&) t+1(€,$):| d
Rn -

Thus, E{z,t) € C* forz € R*, ¢t > 0.
2. By direct computation we obtain

(gﬁ + A (—=A) )E(:c,t) =0

for t > 0, where FE{z,t) is defined by (2.9).
3. E(z,t) >0 for t > 0 is obvious from (2.9).
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4. From {2.9) we have

n k
E(z,t) = (Q:Y)nfexp —c? (ZE?) t+ (&, x)| dE

RI’I

Therefore,

n k

1 2 2
|E(z,t)] < W]exp —c“t (in) dy.

Rn i=1
Using the same procedure as in Lemma 1.1, we obtain
L Dlg)
|E(z,1)| < k(2 [ (E) :
2

Thus, E(z.t) is bounded for any fixed ¢.
5. This property is obvious from (2.11). 0]
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Abstract: In this paper, we study the equation
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with the initial condition
u(z,0) = f(z)

for £ € R"-the n-dimensional Euclidean space and the operator O is an
ultra-hyperbolic operator defined by
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p + ¢ = n is the dimension of the Euclidean space R*, u(z,t) is an
unknown function for (z,t) = {z1,72,... ,Zn,t) € R* x [0,00), f(z) is
a given generalized function, & is a positive integer and ¢ is a positive
constant.

For suitable conditions, we gbtain the solution of such equation
which is the so-called ultra-hyperbolic heat kernel, if ¢ is a time and
« is a position. Moreover, such an ultra-hyperbolic heat kernel has in-
teresting properties and also is related to the heat kernel of the heat
equation on the suitable conditions of p,q and k.
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1. Introduction

It is well known that for the heat equation

2

0 izt =l
En u(z,t) =¢ 527 u(z,t), (1.1)

with the initial condition

u(z,0) = f(z)

for z € R and 0 < t < 0o, we obtain the solution

IR Y A P
wot) = e [ e (- ) i)

or the solution in the convolution form

u(z,t) = E{z,t) = f(z), (1.2)
where
1 z?
E(ﬂ:,t) = mexp (—4—&) . (13)

The function (1.3) is called the heat kernel for such equation. An inter-
esting property of E(z,t) is that E(z,t} — é as t = 0, where ¢ is the
Dirac-delta distribution.

Now, the purpose of this work is to study the equation

ggu(x, t) = ¢ u(:c, t) . (1-4)

with the initial condition
u(z,0) = f(z), for zeR*,

where the operator [0 is named the ultra-hyperbolic operator iterated
k-tines, defined by

32 32 32 6‘2 62
o=+ ... L _ < __“ _..
s + dx? toet dx? 62;;",“ 6:c§+2

18
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p+ ¢ = n is the dimension of the Euclidean space R*, u(z,t) is an
unknown function for (z,t) = (z1,Z2,... ,Zn,t) € R* x [0,00), f(z)
is the given generalized function, k is a nonnegative integer and c is a
positive constant.
We obtain u(z,t) = E(z,t) * f(z)} as a solution of (1.4}, where

p+q
(£)9 ( i=t T H E...p-i-l ;)
Bl t) = ey P |~ i > (16)

p+g¢=nandi= =L E(z,t) exists only if F_ = > 359 2.
The properties of E(z,t) in (1.6} will be studied in details.

Now, if we put ¢ =0 and n =1 in (1.6), then (1.6) reduces to (1.3)
which is the kernel of (1.1).

2. Preliminaries

Definition 2.1. Let f(z) € L;(R™) - the space of integrable func-
tion in R*. The Fourier transform of f(z) is defined by

& =G )m [ ¢} §(2)dz, (2.1)

wheref = (611621“' 1&“)) T = ($l=$2a-“ 1$n) € ]Rn: (63::) = 611:1 +

€azo+- - -+E€, Ty is the usual inner product in R* and dz = dz, dzs ... dzy.

Also, the inverse of Fourier transform is defined by

1 J(E2) T
— i(€,z) . 2.2
10 = Gy [, @ Fera (22)
Definition 2.2. Let L be the operator defined by
a
L= a —C D

where [J is the ultra-hyperbolic operator and ¢ is a positive constaut.
We say that the function E(z,t) is the ultra-hyperbolic heat kernel for
L,if L(E(z,t)) =0.

19
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Lemma 2.1. Given the equation
4 2
—u{z,t) = c"Aufz,t) (2.3)
ot
with the initial condition
u(z,0) = f(z) for z€R*, (2.4)

where (z,t} = (z1,%2,... ,Zn,t) € R* x [0,00), &A = 3, aﬁ:?' cisa

positive constant and f(x) is the given generalized function for z € R".
Then we obtain

u(z,t) = E(z,t) « f(z)
as a solution of (2.3) which satisfies (2.4), where

1 |z|?
E(ZE, t) = W exXp (‘-‘E) (25)

and |z|? =2 + 2 +.-- + 2.
Moreover, E(z,t) — é§ ast — 0, where § is the Dirac-delta distribu-
tion.

Proof. By applying the Fourier transform defined by (2.1) to the
equation (2.3), see [2, p. 208) and also for E(z,t) =+ § as t = 0, see [1,
p. 37], we see that, for the solution u(z,t) = E(z,t) = f(z) as t = (,

u(z,0) = limu(z,t) = lim (E(z,t) * f(z}) =& * f(z) = f(z).
t-+0 t—0
Thus, we obtain (2.4). O

Lemma 2.2, Given the function

P ptq
f(z) =exp |- fo—— Z :I:? , ptg=n,

i=1 i=p+1

then

. P g2yt g2
fer = ep [_( =i 421-"“5’)], (2.6)

Y
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Proof. By (2.1), we have

_ 1 , pte
j=p+1
Put
Ty =Y, T2 =42, &p = Up
and

Tpy1 = ’:yp-f—l: Tpi2 = t.?,’p+21 co- 3 Tpyg = iyp-!—q )

where 1 = «/—1. Thus
dz = (i)%dy, dyz . . . dyn = (i)9dy

and

q L R .
f(&) (2( ))n/2 f e"ftyl‘e—fzyﬂ . e"fp!lv"efp+lyp+l L. efp+qyp+q

X e‘(y?ﬂ%‘*""'""’:ﬂ)dy

_ (2(?4/2 f e —[v? +lfly1]dyl -[w e—[!f§+i€2y2]dy2 ees
TR —o0

o0
9 / e WE+iswl gy
—0C
oo =]
x/ 6—[y§+|"£?’+‘yp+l]dyp+l-.‘/ e-[yzﬂ_éwqypﬂ]d%ﬂ
-0 -0
() ~(w+ig) -4 * (i) -8
/ e e"4dy1...f e VP2 T dy,
—co

(Qw)n./l

2
...1‘_ o1
[ !.fy+1 ) € s dy;:+| e

2 2,
/ VP+U )e—ué dypiAq-
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By using well known formula

® 2
/ eV du = 7,

thus
7©
(i) mo | G Gt Gt G
- ot | :
_ o [_(£%+e%+---'+£§— §+1—£§+2—---—£§+q)}
= gn7 P 4 '
Thus ( )
~ (i)9 hag-yrié
&) = é;ﬁexp [— 4 i i}

3. Main Results

Theorem 3.1. Given the equation

-(?—u(:r:, t) = 20u(z, t) (3.1
ot
with the initial condition
u(z,0) = f(z), (3.2)
where (1 is the ultra-hyperbolic operator and defined by
32 32 62 32 32 32
O=| —+— 44+ — — —_———— ,
(8:1:? 8z dr?  azi,, 32:3 +2 Ay,

p+q = n is the dimension of Euclidean space R*, u(z,t) is an unkunown
function for (z,t} = (z1,T2,... ,Zn,t) € R* x [0,00), f(z) is the given
generalized function, and ¢ is a positive constant. Then we obtain

u(z,t) = E(z,t) « f(z} (3.3)
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as a solution of (3.1) which satisfies (3.2), where E(z,t) is the kernel of
(3.1} and is defined by

2 ptq 2
()7 (Sh - T3t 53)

EBle,t) = (4c2nt)n/2 N 4c?t ’

(3.4)

wherep+¢ =n,i = /=1 and 3_¥_, 22 > Z;H'z +1 %3 Moreover, we
obtain E(z,t) — § ast — 0, where é is the Dirac-delta distribution, and

Jan E(z,t)dz is bounded for z € R*.

Proof. Take the Fourier transform defined by {2.1) to both sides of
(3.1), we obtain

a . ' ; ~
U6 = (6 -G - — G+ G+t HE) UG
pt+q
= Z - Y gl
=1 i=p+l
Thus

P Pty
Ge,t) = K(©exp = | &~ > &t} (3.5)
i=l F=p4i
where K(£) is a constant depending on £. Now, for 3°0_, 22 > $°¢4¢
u(&,t) in (3.5) is bounded.
Now, by (3.2) we have

F=p+1 J’

KO =60 = [i§) = gy [ ()i 30

and by the inversion in {2.2), we obtain

i (€
U(Ia t) = (277)“/2 j‘;“ e'(f'z)u(fat) d{

i ) .
= o / " f e )

xexp[ (Zf - Ii‘f e)t] d dy

J=p+!
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by (3.5) and (3.6). Thus

‘u(fL‘,t) = (2:;)11 / / ei(fﬂ'—y)

P pte
X exp [—c2 (Z f,? - E fj) t] fly)d€dy,
i=i

j=p+l
or
u{x, t)
1 o, B
=(2ﬂ)u/ [ew |- | e- 3 @)tritcz-u)
Rn " i=1 J=p+1
x f(y)dgdy. (3.7)
Set
E(z,y,t)
1 P ptq
=Wf exp |—c* | D & - ) & |t+iltz-y)| &
R~ i=1 j=p+1
By the same process as in Lerr;ma 2.2, we obtain
) _ )
E(-U,‘y:t) - (4C27Tt)"’/2
) (S0 (i - ) = TPy - w)?) .
exp | — ico . .

Thus (3.7) cau be written as

w0 = [ E@y0iwi.
Rr:
ot in convolution forin:

u(z.t) = E(c.t) = f(x),

NN
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where
p+
o (Zras? - St e)
E(z,t —_— -~ 3.9
(z,t) = (dcznt)ol2 P ey ; (3.9)
and 377_, 27 > Y80 | 22, which is (3.8) with the case y = 0.
By A.H. Zemanian [3, p. 43-44],
E(z,t) =4 as t-— 0.
To show that [. E(z,t)dz is bounded for z € R, since
E{z,t)dz
g
+
(1) / ( R E”-ﬁﬂ 3) ds
T 4Rt Jgo P 4c%t :
put
T =YL, I2=Y4--- 2, Tp = Yp
and
Tp41 = Wpils Tp42 = 1Yp4+2,- -+ 1 Tptg = Wpg-
Thus

dr = (1)%dy1 dys . . . dypyqq = (i)%dy
So, we have
, (5) xR,
an E(-L', t)d-’!? = W ]“ exp :i 21t : (z)qdy

ST

= (—-1)9.
Thus

1 fi i
[ E{z,t)de = or g lseven (3.10)
n -1 for ¢ isodd.
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Now
E(z, t)dz 5/ |E(z,t)|dz
- o "2 pte, 2
- [(4!;5’-?&;"/2[ M {_ fiz'f‘] 4
- W.ch?wt)“/zl

=1.

Thus fR,, E(x,t)dz is bounded for z € R*. Now, from u(z.t) = E(z,t)+
f(z), by the continuity of convolution, we obtain

u(z,0) = lin u(s, t) = lim (E(z,t) « f(2)) = 0 f(x) = [(z).

Thus, we obtain (3.2).

Moreover, if ¢ = 0 then E(z,t) in (3.9) reduces to the standard
kernel E(z,t) in {2.5). Thus, we can say that equation (3.1) is the
generalization of the heat equation {2.3). O

Theorem 3.2. (The properties of the ultra-hyperbolic heat kernel
E(z,t)) The kernel E(z,t), given by (3.4) has following properties:

(1) E(z,t) € C®-the space of continuous functions forx € R*, ¢ > 0,
infinitely differentiable.

(2) E(«,t) satisfies (3.1), that is
9 2
é—t-E(:c,t} =c’OFE(x,t) for t>0.

(3) E(z,t) > 0 for t > 0 with g = 4m and E(z.t) <0 for t > 0 with
¢ = 4m + 2, where m is a nonnegative integer.

{4) E(z,t)de =1 for ¢ is even.
EA

(5) E(x,t) > d ast — 0.

Proof. (1) Siuce %E(u:,t) exists and is continuous for all 7, thus
E(x,t) € T,
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(2) By computing directly of %E(z, t) and

P 2 rtq 2
OE(z, t) = ( 29% - -"i—) Blz.t),

2
i=1 ! J=p+i 32:1

we obtain that

d
at
(3) By (3.4), E(x,t) >0 for t > 0 with ¢ = 4 and E(z,t) <0 for
t > 0 with ¢ = 4m + 2, where m is nonnegative integer.
{4) By (3.10) with ¢ is even.
(5) By the last proof of Theorem 3.1. 0O

E(z,t) = O E(z,t) holds for ¢t > 0.
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Abstract

In this paper, we study the equation
9 u(z, t) = 0%u(z, t)
at

with the initial condition )
u(z,0) = f(z)

for £ € R™-the n-dimensional Euclidean space. The operator [1* is named the
ultra-hyperbolic operator iterated k-times, defined by

k
[]’c o? +62 4+ ...+ 62 — o2 — o’ _...___.8_2.__)
822 " Bz dzr Oz, Dzl B3]’

p+ ¢ = n is the dimension of the Euclidean space R", u(z,t) is an unknown
function for (z,t) = (z1,z2,...,2n,t) € R* x(0,00), f(x) is the given generalized
function, k is a positive integer and ¢ is a positive constant.
We obtain the solution of such equation which is related to the spectrum and
the kernel which is so called the generalized ultra-hyperbolic heat kernel.
Moreover, such the generalized ultra-hyperbolic heat kernel has interesting
properties and also related to the the kernel of an extension of the heat equation.

“Supported by The Royal Golden Jubilee Project grant No. PHD/0221/2543.



1 Introduction
It is well known that for the heat equation
%u(z,t) = A u(z,t) (1.1)

with the initial condition

u(J":,O) = f(:!:)

n

where A = 2-6%2»; is the Laplacian operator and (z,t) = (z1,22,...,2,,t) € R" x
i=1 !

(0, 00), we obtain the solution

1 21t
_ —|lz—y|*fac*t
u(z,t) = mef(y)e el dy

or the solution in the convolution form

u(z,t) = E(z,t) * f(z) (1.2)
where )
E(IE, t) = W e-—|x|2/4c2t' (13)

The equation (1.3) is called the heat kernel, where |z[> =z + 22 +---+ 22 and ¢ > 0,
see [ 2, p208-209).

Moreover, we obtain E(z,t) — § as t — 0, where § is the Dirac-delta distribution.
We can extend (1.1) to the equation

9wz, t) = (s, 1) (1.4)
ot
with the initial condition
u(z,0) = f(z) (1.5)
where O is the ultra-hyperbolic operator, that is
32 62 32 32 32 32 )
O={"— 4+ 4. ... - — e — ..
(ax% M Oz} o dz2 0z, Oz, dr,,
Then we obtain
w(z,t) = B(z,1) + /() (1.6)

as a solution of (1.4) which satisfies (1.5) where E(z,t) is the kernel of (1.4) and is
defined by

4c24

: P2 yoPte 2
Bz, t) = (1) exp [_( i=1 i J=P+lx1)] (1.7)-

U DEE
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where p+¢=mn,i=+-land } 7_ z?> pi"gﬂ 2, see [1, pp. 215-225).

Moreover, we obtain E(z,t) — & as ¢ — 0, where § is the Dirac-delta distribu-
tion. In addition, we studied the ultra-hyperbolic heat kernel which is related to the
spectrum, see [2, pp. 19-28].

Now, the purpose of this work is to study the equation

éa—t u(z,t) = ZDk“(mi ) (1.8)
with the initial condition
u(z,0) = f(z), for zeR" (1.9)

where the operator OF is named the ultra-hyperbolic operator iterated k-times defined
by -

o 2 2 & o 5 \*
OF = . - _ o _
(6:1:% + Oz +ee ng Bxf,H 62:§+2 aa:f,ﬂ) ) (1.10)

p + ¢ = n is the dimension of the Euclidean space R®, u(z,¢) is an unknown function
for (z,t) = (z1,22,...,%Zn,t) € B x (0,00), f(z) is the given generalized function, k
is a positive integer and c is a positive constant.

We obtain u(z,t) = E(x,t) * f(z) as a solution of (1.8) which satisfies (1.9) where

ptg

E(z,t) = @ f exp |c*t E £ - 252) +i(€,z) | dE. (1.11)

j=p+1

and Q C R" is the spectrum of E(zx,t) for any fixed ¢ > 0. The function E(z,?) is
called the generalized ultra-hyperbolic heat kernel iterated k-times or the elementary
solution of {1.8). And all properties of F(z,t) will be studied in details.

Now, if we put k =1 and ¢ = 0 in (1.8) and (1.11) then (1.8) and (1.11) reduce to
(1.1) and (1.3) respectively.
2 Preliminaries

Definition 2.1 We say f € L'(R") if
[f(z)| dz < oo.
Rn

For f € L'(R"), we define its Fourier transform at a point £ € R™ as

F&) = oy | @) e (2.1)

30



where E = (§1v£2: s 1En) and z = (Ih Iz,..., :Bn) € Rn’ (EPT) - {1331 +E2x2+' - '+£‘n$n
and dz = dz, dx,...dz,.
Also, the inverse of Fourier transform is defined by

1) = oy [, €T de (22

Definition 2.2 The spectrum of the kernel E(z,t) of (1.11) is the bounded support of
the Fourier transform E(,t) for any fixed ¢ > 0.

Definition 2.3 Let £ = (£,&;,...,&,) € R® and denote by
[y ={6eR":&§+E8+... +& €~ ,—...—€,,>0andg > 0}

the set of an interior of the forward cone, and T, denotes the closure of T'.

Let 2 be spectrum of E(z,t) defined by definition 2.2 and @ C T,. Let E(E}") be
the Fourier transform of E(z,t) and define

k
o PHe g2 S g2
E(£,1) = (2«)n/2 €xp [02t ( =pt1 &5 i=1 51) ] forz ely, (2.3)
0 for£ ¢ T,

Lemma 2.1 Let L be the operator defined by
3]

L = a - CZE]k (24)
where OF is the ultra-hyperbolic operator terated k-times defined by
# P # @ i o \*
0zf  Oz% Or; Or;, Orpy, Oz, .,

p+ q = n is the dimension of R™, (21,%2,...,%,) € R*, t € (0,00), k is a positive
integer and c is a positive constant. Then we obtain

E(z,t) = (2 )nfexP [czt Z f Zfz) + 4( f,:!:)} (2.5)

j=p+1
as a elementary solution of (2.4) in the spectrum Q0 C R" for t > 0.

Proof. Let LE(x,t) = 6(z,t) where E(z,t) is the kernel or the elementary solution of
operator L. and 4 is the Dirac-delta distribution. Thus

% E(z,t) — COFE(z, 1) = 6(z)6(t).
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Take the Fourier transform defined by (2.1) to both sides of the equation, we obtain

0 —— 2 AL 2 ? 2 k/“' 1
EE(EJ)*C ‘:PZ;@ —;&) E(,t) = WJU)-
Thus
o H p4q k
BE) = Gy exp [ct(Z & - Zs.)
j=p+1

where H(t) is the Heaviside function. Since H(t} = 1 for ¢ > 0. Therefore,

E?E,?>=ﬁexplct > & Z&”

j=p+1

which has been already defined by (2.3). Thus
1 1,(6 a;) e —
HIE(E, ) d
E(z,t) = @n )"/2_/ (&,8) d€

= (271)“75 /;) e""”ﬁa)d&

where Q is the spectrum of E(z,¢). Thus from (2.3)

E(z,t) = (21) [exp {czt Z 62 262) + i(€, x) } for t > 0.

j=p+1

Lemma 2.2 For allt > 0, ¢ is a positive constant and all x € R, we have

32

f ” exp (—c%¢%t) d€ = /% (2.6)
oo T 352

and

Proof. See [4, pp. 117-118].



3 Main Results

Theorem 3.1 Given the egquation

d
— u(z, t) = 0Fu(z, t) (3.1)
ot
with the initial condition
u(z,0) = f(z) (3.2)
where % is the ultra-hyperbolic operator iterated k-times defined by
o & 2 ik & \*
[]k;: (___§_+ __3.4_... 5 — 3 P 5 ) ,
dz; 0Oz oz oz, aazp +2 O0Tyiq
p+ g = n is the dimension of Euclidean space R™, k is a positive integer, u(:c,.t) is
an unknown function for (z,t) = (z1,%2,...,Zn,t) € R® x (0,00), f(z) is the given
generalized function, and ¢ is a positive constant. Then we obtain
u(z,t) = E(x,1)  f(z) (3.3)

as a solution of (8.1) which satisfies (3.2) where E(z,t) is given by (2.5).
Proof. Taking the Fourier transform defined by (2.1) to both sides of (3.1), we obtain

£’t)_c Z 5 _Z&) u({,

j=p+1

Thus

j=p+1

(€, t) = K(£) exp lc% y - Zez)] (3.4)

where K (£) is constant and 4(£,0) = K(£).
Now, by (3.2) we have

K(E) = 0(6,0) = F(6) = gy [ ¢S (@) s (35)

and by the inversion in (2.2), (3.4) and (3.5) we obtain

u(z 1) = (2;),1,2 [ e e

f=p+1

p+e » k
f f PRI :(-f'y)f(y ) exp A2t Z 52 Z {E? d€ dy. .
(211' R’ JRn i=1
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Thus
1 : Aa ‘]
wet) = o [ [ e [c% > g- 262) f () de dy
or
u(z,t) = (271r)" /n/ exp lc”t (ilﬁz ZEZ) +i&,z—y)| fly)dédy. (3.6)
Set

j=p+1

E(z,t) = (2:r1r)"_/ exp {ct Z €2 Zfz) (% ] X (3.7)

Since the integral of (3.7) is divergent, therefore we choose {2 C R™ be the spectrum of
E(z,t) and by (2.5), we have

1 rt+q
E(x’t):Wf exp lczt dog- Z&z) +14 EJ)]

i =p+1
1 [ 2 2 2
=-——{f exp |t &— ) & +ig ) (3.8)
@m)* Ja [ (J_,ZH Z )
Thus (3.6) can be written in the convolution form
u(z,t) = E(z,t) * f(z).

Moreover, since E(z,t) exists, then

&) d¢

ll_r’r& E(z,t) = (

[
i
g’
E)

T 5

ei(£$I) d&

n

=§(z), for reR". (3.9)

See [5, p396, Eq.(10.2.19b}].
Thus for the solution u(z,t) = E(z,t) * f(z) of (3.1), then

u(z, 0} = limu(z,t) = %1_% (E(z,t) * f(z)) =6 % f(z) = f(x)

t—0

which satisfies (3.2).
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In particular, if we put £ = 1 and ¢ = 0 in (3.8), then we obtain
1
E(xz,t -
(z,t) = GEnp [exp [ c*t (ZEJ) +1 cf,:z:) d€
1 / 2 2 .
= - exp | —ct )y & +1 5| dE
mo foo [0 Sem
Y .
~ @) H[ ooexp [t + iz dE;

=17

n :1;2
)" H @t ° (‘4‘5{)

=1

by (2.7). Thus

1 |z[®
Ble,t) = apgymre &P ( 452-%)

(%)ie (:LZ) H\/_ep( 4cﬂt)

and IIIZ = ?:1 'T?'

Therefore, if we put k=1 and ¢ = 0 in (3.1) and (3.8) then (3.1) and (3.8) reduce
to (1.1) and (1.3), respectively. a

since

Theorem 3.2 The kernel E(z,t) defined by (3.8} have the following properties :

(1) E(z,t) € C®(R" x (0, 00))-the space of continuous function with infinitely differ-
entiable.

(2) (& - *0F) E(z,t) =0 for allz € R*,t > 0.

(3)

227" M(t

where M(t) 1s a function of t in the spectrum 2. Thus E(z,t) is bounded for any
fized t > 0.

forall z € Rt >0,

(4) 31_% E(x,t) = é(z) for all z € R".
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Proof.
(1) From (3.8), since

" 1 o ptgq
FE(x,t) = W/n@ exp [czt ._Zp;lfz 252) +1 E,x)}

Thus E(z,t) € C® forx € R*, t > 0.

(2) By computing directly, we obtain

(gt 2D’°) E(z,t) = 0.

(3) We have
1 P+q
E(z,t) = /exp it Z 52 Z§2 + (&, z) | dE.
(2m)" j=p+1
. 1 pt+a
B@ 1l < 5 [exp G| Y &- Zf,
N) j=p+1
By changing to bipolar coordinates
&L =rw, b =rwy, ..., =rw, and §p+1 = SWp+1,Ept2 = SWpi2, - -+ Epaq = SWpig
where 37 wf =1 and 3?1 w? = 1. Thus

|E(z,t)| < . exp |c’t (s® —r? *| 15971 dgr ds dS, dY
@2m)" Ja P

where d€ = r?~ 159! dr ds d§), d€),, d2, and §, are the elements of surface area of the
unit sphere in R? and RY respectively. Since 2 C R" is the spectrum of E(z,t) and we
suppose 0 <7 < R and 0 < 8 < T where R and T are constants. Thus we obtain

(27r)“f f eXpCt(S _T)]T” Lst 1 ds dr

|E(x

= %?—M(t) for any fixed ¢ > 0 in the spectrum 2
T n
22-m  M(t)

~ 2R
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where -
M(t) = / [ exp [c2t (s* - rz)k] rP=1st 1 dsdr
0o Jo
is a function of ¢, Q, = % and Q, = ﬁi%/-)i Thus, for any fixed ¢ > 0, E(z,t) is
bounded.

(4) Obvious by (3.9). O
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ON THE CONVOLUTION PRODUCT OF
THE DISTRIBUTIONAL FAMILIES RELATED
TO THE DIAMOND OPERATOR

MANUEL A. AGUIRRE TELLEZ - A. KANANTHAI

In this paper, we introduce'a distributional family K4, which is related
to the Diamond operator O iterated k-times. At first we study the properties
of K, p and then we give a sense to the convolution product of Ky ge Ko g

1. Introduction.

A. Kananthai [4] has first introduced the Diamond operator < iterated
k-times which is defined by

k : 32 2 AL 32 2 )
¢ o =((Zgg) -2 5;))

i=1 i j=p+1 i

where p+ ¢ = n is the dimension of the n-dimensional Euclidean space R" and
k is a nonnegative integer. Actually (1)} can be rewrite in the following form

(2) OF = F Ak = ArOt
where the operators [(1¥ and A* are defined by
k
7 3?2 92 92 a2 3?
@ =D - =
ax?  ax? axr  axl., dxl,, 8x} i,

Entrato in redazione il 7 dicembre 2001
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and

k
L 82 3t a2
X, & %544

In this paper, the family K, g is defined by K, g(x) = R} * Rg where RY is
elliptic kernel defined by (5) and R,_,‘;" is hyperbolic kernel defined by (8) and
the symbol * designates as the convolution and x € R". By A. Kananthai ([4] ,
p. 33, Theorem 3.1) (— l)kKavﬁ(x) is an elementary solution of the Diamond
operator O* defined by (1) for @ = 8 = 2k.

We found the following properties Kgp(x) = &(x) where § is the
Dirac-delta distribution, K g _2(x) = (—1)*OA8(x), O*(Kap(x)) = (=)
Ko—2 g2 and O Ky 2 (%)) = (—1)¥6(x).

Moreover, we found the convolutions product K, g% Ko g = Bg g R ;" o ¥

R, . if piseven, and Kyp * Ko g = (R[;’w, + Tﬁw) * RS, if p is odd,

where )
cos(gn)cos(%-n)

cos(ﬁ—*iﬂ)rr

Bﬂ‘ﬂf =

and

+ —_
Hpp — Hﬁ+ﬂ’]‘

C(—p — 4! [

Ty g = -
PP =By (=) riy!

C(r) = T(r)T(1 —r) and HE = H(u tio,n) = e¥3ieXFia(5)(u £ io) T
and a(§) = T30 2 nir(H).

2. Preliminaries.

Definition 2.1. Let the function R:{x) be defined by

(5) R" ( ) lx la—n
= W)
where x = (x(,x2,..., x,) € R", ¢ is a complex parameter, n is the dimension

of R and |x]| = ()c,2 + x% + ...+ xfﬁ and W, () is defined by the formula

73290 (%)

Woo) =
@)=
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The function R (x) is precisely the definition of elliptic kernel of Marcel
Riesz [2] and the following formula is valid

(6) Ry (x) * Rg(x) = Ry, 4(x)
which hold fora > 0, 8 > 0 and @ 4 8 =< n see([2], p. 20).

Definition 2.2. Let x = (x|, x2, ..., x,) be a point of R" and write
)] u=u(x)=x12+x%+...+x§—x§+l—x§+2—...—x§+q
where p+ g =n.

Denote by I',. the interior of the forward cone defined by I'y. = {x e R" :
x; > 0 and u > 0} and by I';. designates its closure. )

Similarly, define I'. = {x e R" : x; < 0 and u > 0} and I'_ designates its
closure. For any complex number «, define
®) RIw = Fw o *€ly

0 if x¢l;

where K,{a) is given by the formula

=T D (EEP (59T (@)

9 Ko@) =
® @ r ez (22)

The function R¥ was introduced by Y. Nozaki ([3], p. 72). RY, which is
an ordinary function if R.(¢) > n, is a distribution of & and is a distribution of
a if R (@) < n. Let supp r¥ (u). Suppose
(10) suppR¥(w) c Ty

We shall call RY the Marcel Riesz’s ultra-hyperbolic kernel. By putting p = 1
in (8) and (9} and remembering the Legendre’s duplication formula of I'(z),

; 1
(1 I"(2z) = 2% g0z + 5)
see{[5], Vol I, p. 5) the formula (8) reduces to
(12) M, = [""‘—ZI) if xely

0 if X ¢ l"+
Here u = u(x) =x} —x? — ... —x% and

n=2 - + 2

(13) Hy(a) = 2““n—='r(§)r(%—f)

M, is precisely the hyperbolic kernel of Marcel Riesz {[2], p. 31).
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Lemma 2.1. The function R.(x} has the following properties 3

(i} Rg(x}) =38(x)
(i) RSy (x) = (=D*A*S(x)

(ili) AFRE(x) = (—1)*R_,, (x) (
where AK is the Laplace operator iterated k-times defined by (4). \
The proofs of Lemma 2.3 is given by S.E Trione [5]. )

Lemma 2.2. (The convolutions of R¥ («))

(i) R« R} = %wa where RY is defined by (8) and (9) with p is
an even.
(ii) R x RY = RE ; + T,z forp is an odd, where

Zm (____)

(14) Tap=Taplution) = m axp — Heip)

Cry=Trra-—-n

H¥ = H.(ution) =e¥ietiia(f)(u+io)¥

a(3) =& 2 7irEn!

(u :|: i = llme.,g(u + 161):52)" see([6] p. 275) u = u(x) is defined by (7)
and x| = (2 + x% + ... 4+ x2)1.

In particular R » R, = RH , and RY « R, = RY ,,.

The proofs of this Lemma is given by M. Aguirre Tellez ({1], p. 121-123).
Lemma 2.3.

(i) R—{IZk - Dka
(i) O'RY = RY_,,
(i) O*RE =Rl =35

where [ is defined by (3).
Proof. See ([1], p. 123).
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3. The family of distributions K, g(x).
Let K, g(x) be a distributional family defined by

(15} Kap(x) = RS x Rf

where the functions R and R{," are defined by (5) and (8) respectively. We now
show that K, g exists an is in the space O, of rapidly decreasing distributions.
We know from [1], p. 119, formulae (I1,2,2) that the Fourier’s transform of
RH (u) is given by the following formulae

(16) (RE))" = <[ £u(Q +i0) + fo(Q —i0)]

NS

if p is odd and

H A 1 cos °—'2’£ . .
an (R, ()} = g [fa(Q +i0) + fo(Q —i0)])
i SIn 5

if p is even. Where
(18) fo(Q£i0) = e F(Q£i0)}

and from [7] page 44 and [6], page 194, the Fourier transform of R} (x) is given
by the following formula

(19) (REGN = ™ = (yHF
Now using the properties

(20) (Q+i0) = Q} + 77 Qb
([6), page 276), where

A _lor if @20
e Q+_{0 if Q<0

and

A _ oY if g<0
(22) Q‘“[o if 0>0
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and
(23) Q=0 =yi+..ct Y = Yo — = Ve

From [1] and [2], we have

s

(24) [£a(Q +10) + fu(@ = i0)] = 2cos - 0¥ + 20"
if p is odd and

(25) [falQ = i0) = fa(Q@ +i0)] =2i sin 2L 0F
if p is even . Therefore

(26) (RE)" = cos Z-07% + 07
if p is odd and

27) (RH (u)}" = cos %Q:

if p is even.
The formulae (26) and (27) using (21) and (22) can be rewrite

(28) {Rf(w)}" = cos ‘-";(lyl,%r%(l — oI+ (D7) —sHE
if p is odd and
29) (RE @)} = ~cos (=) H(yD 781 = 5175

if p is even, where

(30) Y2 =yi+.. .+

31) Y2 =Y+ 4V
2

(32) 2 Ylg

R
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2
{(33) 52 = % < |
Iyl3
Now using that
(1+r*) e Oy

([8], page 271) where

Pe=xit L tx A x,
from (28) and (29) we have
(34) (R (1)) € Oy
where Oy is the space of functions slow growth (slowly increasing, c.f. [8],
page 243). Similary from [4], we have
(35) {RE(w))" € Op.

On the other hand, from [8] theorem XV, page 268 the Fourier’s transforms F

and F are reciprocal isomorphisms form Oy and O; respectively. In addition
if

(36) TeOy = F{T}e O,
and if
37 TeO. = F{T)e Oy

where O is the space of rapidly decreasing distributions and if
g=F(f}= f=Flg)=F (g}

Now putting

(38) Has = {R] )} (R )}

and considering (34) and (35) we have

(39) Hyp € Op

Therefore considerring (36), (37), (38) and (39) we have

(40) F(Hap) = F™'(Hapl € O;

Taking into account (38) and (40) we can define the distribution families K, 4
in the following from

(41)  Kap = Ko p(x) = R (u) * RE(x) = FTI{{RY ()" (RE(x))™)

From (40) the families K, g exists an is in 0.
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Lemma 3.1. The following formulae are valid

(1) Koolx) = 8(x)
(i) K_ o -n(x) = (—D*O*(x)
(iii) OY(Kyp(x)) = (—1)* Ko gk p2e(x)
(iv) OF(Kara(x)) = (—1)*8(x).
Proof.
(i) By (14) Ko o(x) = R{ = Rg", and by Lemma 2.3(i) and Lemma 2.5(1) we
obtain Kgo(x) =6%d =4
(ii} We have

O* Ko p(x) = OX(RE % RY)

= O*A*(RZ x R
= A*R: « (¥ RY
= (—D*RS_, * R}, by Lemma 2.3(iii) and Lemma 2.5(ii)
= (—1)* Kyt p-2e(x)

putting & = § = 0 and (i) we obtain K_z _2x(x) = (—1)*O*8(x).

(i) Similarly as (ii)

(iv) Putting @ = B = 2k in (iii) we obtain

O (K (1)) = (=1} Koo(x) = (=Dfs(x) O

4. Main results.

Theorem 4.1. Let the families Ko p(x) and K, g(x) be defined by (14) then
the convolution product Ko g(x) * Ky p-(x) can be obtained by the following
Jormulae

(1) Kqp(x)* Ky p(x) = Bgp R, 4 * RS, . where R} and RS are defined
by (8) and (5) respectively which p is an even and

cos(gn') cos(%'zr)
£e cos(%—ﬂn)

(11) Ka‘p(x) * an_ﬂr(x) = (ng' + Tﬂ_ﬁl) * R;+a’ !fp is an odd and Tﬁ.ﬁ' is
defined by (13}
(iti} Kop(x) * K g 2 (x) = (=D O* Ky p(x).
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Proof.
(i) We have

Kap(x) * Ko g (x) = (RS * RY') % (RS, % R[Y)
= (R * RL) « (R} * R})
= RZ, . % (RE = RI)by (6)
= (Rl * REY* RS,
= Bsp Rf+,a' * R by Lemma 2.4(i) for p is even,

) cos(E.
where By p = Z22X)ee(m)

cos(Eizﬂx)

(i) from(i), Ko g(x)* Ko p(x) = (R * REV* RS 0 = (RE, o +Tp p ) RS
by Lemma 2.2(ii) for p is odd and T g is defined by (14)

(i) we have Ko g(x) * K_n _n(x) = Bp - Rj_;, % RS, for p is even.
Since

cos(g—fr) cos‘(—2k)’-;- _

Bg _u = -
# cos(£2—2"zr)

+

we have Ko p(x) * K_ge_2k(x) = Rf , * R, 5 = Ka-ip-n(x). Now

for p is odd, we have Kgp(x) * Kook —(x) = (R o, + Tp—n) * R 5.
i 4% -
By (14) Tp o = E‘(—_%aly_—;[H;_u ~ Hy_y] where C(r) = I'(r)I'(1 — r),
2 2
H* = e¥3 et Fia(f)(utio)T and a(}) = I'(%55)[2'w 10(5)]~". Applying

r

the formula T (Z)['(1-2) = %~ to C(—E22), C(—£) and C(k) and also the

formulae Hy . and a(£5%) we obtain Ty = 0 and T_y g = 0. It follows
that Ko g(x) * K¢ 2e(x) = R§L 5 * RS 5, = Kot p-u(x) for p is odd.
Now OFK, (x) = (—1)Y* K, p-u(x) by Lemma 3.1(ii).

Thus K, p(x) * K_n _n(x) = (=1)*O*K, g(x). That completes the
proofs. (]
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Abstract

In this paper, we study the Green function of the operator &*, iterated k-times and is
defined by

o-[(£2)-(52)]

where p+ ¢ = n is the dimension of the space C", where C is a complex field, x =
(x1,x2,...,%,) € C" and k is a nonnegative integer. At first we study the eclementary
solution or the Green function of the operator &* and then such a solution is related
to the solution of the wave equation and the Laplacian. We found that the relationships
of such solutions depending on the conditions of p, g and £.
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Keywords: Diamond operator; Ultra-hyperbolic Kernel of Marc Riesz; Wave equation; Conve-
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1. Introduction

The operator &* can be expressed in the form

R i a?. z Pta 2 ¢ [ 2 l.f’ﬂl 62 k

J=p+l r=1 r J=p+l Kl

] aZ

r 2 *
x[z%_iz az]* (L)

r=1 r J=p+1 x}
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0096-3003/02/% - see front matter ® 2002 Elsevier Science [nc. Ali rights reserved.
PIT: S0096-3003(01)00i29-1

4¢



A. Kananthai et al. | Appl. Math. Comput. 132 (2002) 219-229

where p 4 g = n is the dimension of C", 1 = v/—1 and k is a nonnegative integer.
The operator

r=| axf J=p+l ax,?

is first introduced by Kanathai [1] and named as the Diamond operator and
denoted by

7 aj 2 py 62 2
= — | - — | . I.
0=|2 30 2 axz.) (12)
r= r J=p+l J

Let us denocte the operators

LI ¥
LI:ZIEF_,—l.Za_E- (1.3)
r= 4 i=p+l 7
and
2 al g 62
L= —-iy —. (14)
r=1 axE J=p+! ax}
Thus (1.1) can be written by
& = QrLtLs. (1.5)

Now, the operator { can also be expressed in the form ¢ = 04 = OA where
O is the ultra-hyperbolic operdtor defined by

az al 62 a?. az al

O=cg+ost - Fos—o5— 25—~ — — (1.6)
ax! o o ax, oxl,, o,
where p+q = n and A is the Laplacian defined by
62 62 az
= — P— [ ——, 1_7
T A R (1.7)

By putting p = | and x; = ¢ {time) in (1.6) then we obtain the wave operator

a‘_) i 2
D:E—;GT?, (1.8)

and from {1.1) with ¢ = 0 and &£ = 1, we obtain

__ a4
® = A,

(1.9)
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where

o* & ??
P=<3—ch+8—x§+”.+a—xf,' (110)
In this work, we can find the elementary solution K(x) of the operator &*,
that is &*K(x) = & where & is the Dirac-delta distribution. Moreover, we can
find the relationship between K(x) and the elementary solution of the wave
operator defined by (1.8) depending on the conditions of p, ¢ and & of (1.1) with
p=l,g=n—-1,k=1and x; = {time).
Also, we found that K (x) relates to the elementary solution of the Laplacian
defined by (1.9) and (1.10) depending on the conditions of g and & of (1.1) with
g=0and k=1.

2. Preliminary

Definition 2.1. Let x = (x),x3,...,%,) € R" and write
W= AR i Ay =y g

Denote by I', = {x € R : x; > 0 and u > 0} the interior of forward cone and
I', denote its closure.
For any complex number «, we define the function

W er
R =<Ky "0 (2.1)
0 if X € F+,

where the constant K, («) is given by the formula
_ AL () ()
- (%)

K, (a)

The function R¥ is first introduced by Nozaki [4, p. 72] and is called the
ultra-hyperbolic kernel of Marcel Riesz. Now R () is an ordinary function if
Re(a) = n and is a distribution of « if Re{a) < n.

Now, if p = 1, then (2.1) reduces to the function M,(u) say, and defined by

u(1—n)/3 f
M)y ={ @ TEEl (2.2)
0 ifxgr,,
where
u=ux;—x3 . —x> and H,,(a)zn("-”ffz*'r(“—_m;ﬁ).

The function M, (u) is called the hyperbolic kernel of Marcel Riesz.
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Definition 2.2, Let x = (x|, x;,...,x,) € R" and write
v=xf+x§+~-+x5.

For any complex number f, define the function

o ~ B oifm

Ri(v) = 27Pn ~f2r(” v (2.3)

t
2./ r(%)

The function Rj(v) is called the elliptic kernel of Marcel Riesz and is ordinary
function if Re(f) = r and is a distribution of § for R.(f) < n.
Definition 2.3. Let x = (x),x2,...,%,) be a point of C" and write

wzxf +x§+...+x§_i(xf,+l +xf’+2+...+xf’+q)
and

z=R b+, A, ), prg=n

For any complex number y and v, define

E.__Z
S,(w) = 277n"2 F_IE_;_J whr=n/2 (2.4)
2
and
Ie=
e (;)) s (25)
2

Lemma 2.1. The functions R (u) and ( -—1)*R‘,_,((v) are the elementary solutions
of the operator T and n*, respectively, where ' and A" are the operators it-
erated k-times defined by (1.6) and (1.7), respectivelv, RY (v) defined by (2.1) with
w = 2k and RS, (v) defined by (2.3) with § = 2k.

Proof. We have to show that 3*R% (1) = & and A*(~ 1)*R, (v) = 4.
To prove [*RY (u) = &, see [2, p. 147] also A*(—l)kng(v) = @, see [I, p.
i O

Lemma 2.2. The convolution R (u) * (-l)kng (v) is an elementary solution of
the operator OF iterated k-times and is defined by (1.2).

Proof. We need to show that {f (RS (u) * (=1)¥Rs, (b)) = 8. To prove this. see
[ILp.33]. DO
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Lemma 2.3. The functions RY,, (u) and (—1)¥Re () are the inverses in the
convolution algebras of RY(u) and (— 1) Rs,(v), respectively.

Proof. We nced to show that

Ry (u) * R (u) = Rﬁznzk(“) =Ry (u) =0
and

(= 1) R 5 (0) # (= 1)'R5, (0) = RG(v) = &.

To prove these, see [7, p. 123], [3, p. 10) and [5, p. 118, p. 158]. O

Lemma 2.4.

L. The functions (~1)f (—1)"*Ss(w) and (—1)*())*”* Tu(2) are the elementary so-
lutions of the operators LY and L%, respectively, where Sy (w) and T (z) are de-
Sfined by (2.3) and (2.4), respectiveiy, with y = v = 2k. The operators LY and L%
are defined by (1. 3) and (1.4), respectively.

2. The functions {(—1)*{—1)*?S_ u(w) and ( DA )T 2,.(2) are the inverses in

the convolution algebras of (—1) (=1)"2Sy(w) and (—1)* (1) Ty (z), respec-
tively.

Proof. (i) We need to show that
L1 ()" Sn(w)) = 6
and
LE[(-1* )" Tu(z)) = 6.

At first we have to show that

LiS,(w) = (=1)S,-a(w), (2.6)

LT, () = (1) Tron(2), (2.7)
and also |

S_au(w) = (-1 ()14, (2.8)

Tou(z) = (1) (=)"*L4s. (2.9)

Now, for k=1,

4 aZ fax) a2
LS = 3 as+iy o3 |50,
r= F

b
=1 ax“ J=p+l

where S.(w) is defined by (2.4). By computing directly, we obtain
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I
L]S-{.(w) = 2":‘71.—"/— ( 2 ) ('P _ n)('}) _ 2)w{y-27n}/2

r(3)
n=(r=2)
= (=1)272 ( = )w(wzw)/z
r(w)

by the properties of Gamma function. Thus L;5.(w) = —5._s(w). By repeating
k-times in operating L, to S,(w), we obtain

LiS,(w) = (—1)'S._u(w).
Similarly,
LT(2) = (- 1)'T._u(2).
Thus we obtain (2.5) and (2.7) as required. Now consider
w=xi+xg 4+ X il +x, X ), prg=n

by changing the vartable

— _ Yo+1 -
Xp =V, X2 = V2,00 -y Xp = Yoy Xpad =\/__—i:xp+2 = '\/_—_l’ <y Xpig —f—l
Thus we have

W=+t A AV Vg

Denote w = r* = y? + )2 + --- + 32 and consider the generalized function w* =

% where A is any complex number. Now (w*, @) = [, w'¢(x)dx, where
¢ € & the space of infinitely differentiable functions with compact supports.
Thus

; . O{xy,x2, ..., %a)
w, =/,2'- Al LR EEERLLL ISP R )
( gp} R (Pa()’laYZa---,}Jn) 7!

! I3
(=i [m"z o

L.
= W(F @)
By Gelfand and Shilov [6, p. 271]. the functional +** have simple poles at
A = (—n/2) — k, k is nonnegative and for k¥ = 0 we can find the residue of +** at
2= —n/2 and by [6, p. 73], we obtain

. 2 n/2
res ¥ =8
i=-nj2 r)

(x).
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Thus

iy T (2.10
res w* = (i — . .

,..:_"’,2 () F(%) (x) )

We next find the residues of w* at 2 = (—n/2) — k. Now, by computing directly
we have

Liw* ™t =202+ 1)(24 + m)w?,

where w is defined by Definition 2.3 and L, 1s defined by (1.3). By &-fold
iteration, we obtain

LW = 80+ D2 +2) - A+ k) A+DO+ 2+ D) - (A+2+ k= Dw
or
wh = ‘ 1
SO+ DEH2) AR+ D (AR T)

Lfi wz,+k .

Thus

. 1 :
res w'= res Lfwh.
i=(~af2)k ShG+hk—-1D)(E+k~2) - Limnp2 !

By (2.10) and the properties of Gamma functions, we obtain

2"t

). ‘

res =t — _[i6{x). 211
L Ty EEW R (2.11)
Now we consider S_y(w) we have *

S_n(w) = _Ilir_rng(w)
lim._ _p whi—i2 "y
— hf2 y——2k —r
T __lim-,_.—zk F(i) ,’,l_l.lﬂk (2 F( 5 ))

. lir‘n}'-'—u(}’ + Zk)w(-'l_:')/z zur(n + 2]:)
fim._ (7 1+ 207 (2) 2

res wli="/2
— 41\'7{—':/2 ==-2k 7‘ r(n + Zk ) )
res I(s) 2

Since

2(-1)"

Lo (R VA 2y
res  w' = res w and ;_igszkr(g)— P

i=(—nf2)—k =2

by (2.11} and the properties of Gamma function we obtain
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S u(w) = (=1) ()2 L¥5(x).
Similarly

Toulz) = (—1)" (=) 155(x).
Thus we have

So(w) = (i)**5(x),

To(w) = (—=1)"28(x).

Now, from (2.6) L:Sx{w) = (—1)*Ss(w) for y = 2k. Thus, by (2.12) we obtain
LA~ 1)* (=) Sy (w) = 8(x). It follows that (— (- )"/252& (w) is an elementary
solutxon of the operator L. Similarly (—1) (:)"/ Ty {z) is also an elementary
solution of L}.
(ii) We need to show that

[{(— D (=i)"2S_se(w)] * [(=1) (=) Sw)] =

(2.12)

and

(1 G T ()] * [(-1) ()" Tul2)] = 4.

Now, from (2.8) (—1)*(—i)*’S.x(w)=L¥6 convolving both sides by
(=1)*(~i)"*Su(w) we obtain

[(=1) (—')q/zszx(W] (=1 (=) _pe(w))

_ [( q/2Su w)] *Lk
- L’.‘[(—x) (=) (w)] * &
=56*x6=24

by Lemma 2.4(1).
Similarly [(— 1) ()" T_x(2)] * (- ')’ Tu(2)] = 6. O

3. Main results

Theorem 3.1. Given the equation
GB"K(x) — 5, (31)

where & is the operator iterated k-times defined by (1.1), 8 is the Dirac-delta
distribution, x = (x\,x1,...,x,} € R" and k is a nonnegative integer. Then we
obtain

K(x) = [Ri () * (=1 B3 (0)] * (= 1) (=) (0} » (= 1) () T (2)
(3.2
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as an elementary solution of (3.1} where RY (1), RS, (v), Su(w) and Tu(z) are
defined by (2.1}, (2.3), (2.4) and (2.5), respecttvely, withao=f=y=v=2kkis
a nonnegative integer.

Moreover, from (3.2) we obtain

(= 1R (0) * [(= D (—)S 2 ()] * [(= ) (D T (2)] * K (x) = R (w)
(3.3)

as an elementary solution of the operator OF iterated k-times defined by (1.6) and
in particular from 32) and 3N withp=1, g=n—1, k=1 and x, =t, we
obtain

(= DR (v} * [(= 1)(=1)72S_2(w)] * [(— DGY Toa(2)] * K(x) = My (u)
(3.4)

as an elementary solution of the wave operator defined by (1.8) where M,(u) is
defined by (2.2) with a = 2. Also, for g = 0 then (3.1} becomes

A:"K(x) =3 (3.5)
and by (3.2) we obtain
K(x) = (—1)'Ry(0) * (= 1) Ry (0) * (= 1) R, (0) * (—1)'R3, ()
= (=1)¥Rg,(v) = Rgu(v) (3.6)
is an elementary solution of (3.5) where A% is the Laplacian of p-dimension, it-
erated 4k-times and is defined by (1.10) and v = x? + x5 + -+ - + x%.
Proof. From (3.1) and (1.5) we have
&K (x) = (CLLYK(x) = 6
convolving both sides of the above equatlon by the convolution
[RE, () % (=1) Rg(0)] * [(= 1) (=) Sae(w)] % [(=1)*(1)*"* Tax(2)] and the prop-
erties of convolution with derivatives, we obtain
*(R”(u) (=1 Ry (0)) % Li((= D (- )82 ()
* Ly[(— 1) ()" Tue(2)] * K (x)
= [Rzk u) x (=1 Ry (0)] = (= DA (=12 S (w)] * [(= 1) ()" Tu(2)].
Thus
d*dx 5 K(x) =K(x)
= [Rou(w) * (—1) R (0)] % [(= 1) (=1)*2S (w)]
* [(_1) i) Ty (2)]
by Lemimas 2.2 and 2.4(1).
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Thus we obtain (3.2) as required. Now we will relate the elementary solu-
tion K{x) given by (3.2) to the elementary solution of the wave equation defined
by (1.8) and the Laplacian defined by (1.10). Now from (3.2) and by Lemmas
2.3 and 2.4(2) and the properties of inverses in the convolution algebra, we
obtain

(=1 R (0) * (1) ()72 S_aelw)] (1) () Tnl2)] # K (x)
=F** R;’;(u) = Rﬁ,(u)
Actually, by Lemma 2.1 R%, (1) is an elementary solution of the operator O
iterated k-times defined by (1.6).
In particular, by putting p=1, g=n—1, £=1 and x; =1 in (3.2) and

(3.3) then RY(u) reduces to M>{u) where M;(u) is defined by (2.2) with a = 2.
Thus we obtain

(— 1 RE,(0) * [(=1)(=i)*2S_o(w)} * (= 1)* () T_a(2)] * K (x) = Ma(u)

as an elementary solution of the wave operator defined by (1.8) where u =

PR B TR

n—-1°

Also, for ¢ = 0 then (3.1) becomes

BY¥K(x) =9, 3.7

where A;" is the Laplacian of p-dimension iterated 44-times. By Lemma 2.1, we
have

K(x) = (=1)“ R (v) = Rg, (v)
as an elementary solution of (3.7) where
v=xf+x§+---+x§.

On the other hand, we can also find K (x) from (3.2), since ¢ = 0, we have R (u)
reduces to (-1 )kR‘z“_(u) and (—1)" Sy (w) reduces to (—1)* R, (v) also (—1) Tu(z)
reduces to (—l)"R‘i‘_(u), where v =x] + 5+ - +x..

Thus, by (3.2) for ¢ = 0, we obtain

K(x) = (=17 Ry, () + (= 1) Ry, (0) * (= 1) Ry (0) * (— 1) R, (0)
= (-1 )“Rguzuznzk(”) = Ry (o)

by Donoghue [5, p. 158].
This completes the proof. O
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ABSTRACT
In this paper we have studied the compound ultra-hyperbolic equation of the form

o Oruto) =fx),
r=0

where " is the ultra-hyperbolic operator iterated r-times (r =0, 1, 2, ..., m), f is a given
generalized function, u is an unknown function, x = (x, x,, ..., x ) € 0" the Euclidean
n-dimensional spaces and c_is a constant.

It is found that the equation above has a weak solution u(x) which is of the form
Marcel Riesz’s kernel and moreover, such a solution is unique.

1. INTRODUCTION
Consider the equation

C* ufx) = fix), (1.1)

where « and f are some generalized functions, and [J* is the ultra-hyperbolic operator iterated
k -times and is defined by

(PP ? ¥ * # :
= i ...afp],(.z)

I Taxg e AR
p + q = nis the dimension of the space [I", x = (x, x,, .., x ) e[, and & is a nonnegative
integer.

Trione (1987) has shown that (1.1) has u(x) = R, (x) as a unique elementary solution
where R, (x) is defined by (2.1) with o = 2k. Moreover, Tellez (1994) has proved that R, (x)
exists only for case p is odd with p + g = n.

In this paper we develop the equation (1.1} to the form

m

e 1 u(x) = f(x) (1.3)

r=0Q
which is called the compound ultra-hyperbolic equation and by conventionJ° u(x) = u (x).
We use the method of convolution of tempered distribution to find the solution of equation
(1.3).
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2. PRELIMINARIES

Definition 2.1 Let x = {(x, X, ..., x)bea point of the n-dimensional Euclidean space| " and
write

Vaxl+x7+ 42 -2 ?

n pl - X e T 7 _rJ+q

pPrag=n,

Pefine o= {xell": x, >0, V>0}, which designates the interior of the forward cone, and
I', designates of its closure, and the following functions introduced by Nozaki (1964) that

[*3

Z for xe I,
R, (x)= { 2.1

(o)
0 for xe [,

n

Nl

R_(x) is called the ultra-hyperbolic kernel of Marcel Riesz.

Here o is a complex parameter and n 1s the dimension of the space. The constant
K _{(0) is defined by

n-1
2r(“»"§ —”)r(—— )T
K(o)=—— : : (2.2)
s P)F(" %)

and p is the number of positive terms of

— 2 2 22 a 2 -
V—x|+x2+...+xp—x - - xt o p+g=En, (2.3)

pel pel Py

and let supp R_(x) < T
Now R (x)is an ordinary function if Re(&) . and is a distribution of o if Re(o) < n.
Definition 2.2 A generalized function u(x) is called an elementary solution of n-dimensional

ultra-hyperbolic operator iterated k-times if «(x) satisfies the equation * u(x) = 8, where .2*
defined by (1.2) and § is the Dirac-delta distribution.

Lemma 2.1 R_(x)is a homogeneous distribution of order & - . In particular, it is a tempered
distribution.



Proof. We need to show that R_(x) satisfies the Euler equation

v PR ) = (@- R ().

=t ' ox,
Now
" " a-n
X -a R (x) = —-——lw X a,(x12+ e+ X [T T 3’ ) 2
=t odx, K(c) =v " dx, P i
! L !
a—n-2
=1 fa-n)(x7+ .. +X -x -..-x 2
K(OC) P 7+ peg
"
-2 2 2 _ a2
X+ mx - )
1 -2 2,2 R
= o (o-n) (x4 LA -xt - xt ) 2
K((X) ! P P Py
"

(o -n)R (x).

" CMU. Journal (2002) Vol. 1(3)

Hence R (x) is a homogeneous distribution of order « - n. Donoghue (1969) proved that
every homogeneous distribution is a tempered distribution. So R (x) is a tempered

distribution. This is complete of proof.

Lemma 2.2 The function u(x) = R, (x} with o = 2k of (2.1) is the unique elementary solution

of the equation (1 u(x) = &
Proof. See Trione (1987) and Tellez (1994).

Lemma 2.3 Let R (x) and K (o) be defined by (2.1) and (2.2). Then
(@) K(a+2)=a(a+2-n) K (a),

(b) R, (x)=0* 8, where k is a nonnegative integer,

(c) ¥ R (x)= R, ,.(x), where k is a nonnegative integer.

Proof, See Trione (1987).
Moreover, from (b) we obtain R (x) = ¢ and also from (c)

fR(N=R()=0

Lemma 2.4 (The convolution of tempered distributions)

(a) ((*O*u(x) =" *u(x) where u is any tempered distribution.

(b) LetR,_(x)and R',,j (x) be defined by (2.1) then R (x) * RB {(x) exists and
is a tempered distribution.

(c) LetR (x)and R, (x) be defined by (2.1) and if R_(x) * R’ﬂ (x) = dthen
R (x)is an inverse of R!j (x) in the convolution algebra, denoted by
R _(x)= Rﬂ"' (x), moreover R!}*” (x) is unique.
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Proof.
(a) First, we consider the case k = 1, now

P 826 p+q 826

l]5-J lax- ,p+|8x2’p+q_”

and fet @ (x) be a testing function in the Schwartz space s. By the definition of convolution,
we have

< (110) *u(x),@ (x) > =< u(x),<10(y), @ (x + y) >>
PG Sy

= < it(x),<
i1 dx? j=p+l ax?

e+ y)>>

= <u@< 8, TOED. TFg L,

axf j=p+l a.)CJ2

=< u(x),< g a.,z_q)L)") - e 9 ()C)

i=t ax? jepel Eh
__ " uxy "7 9Pu(x)
=< . axf o axf. L0 (x) >

= <[Ju(x),@ (x) >.

It follows that (Td)*u(x) = Ju(x). Similarly for any k, we can show that ({* 8)*u(x) =11 u(x).

(b) Since R _(x) and R (x) are tempered distributions by Lemma 2.1. Now choose supp R (x)
=Kc l"+ where K is a compact set and I+ appear in Definition 2.1. Hence, by Donoghue
(1969), Ru(x)*R (x) exists and is tempered distribution.

{c) Since R (x) and Rﬁ (x) are tempered distributions with compact supports, thus R_(x) and
Rﬁ (x) are the elements of space of convolution algebra U ' of distribution. Now R_(x)*
R'B (x) = d then by Zemanain (1965) show that R (x)= Rﬁ*" (x) is a unique inverse.

For example, if o = 2k where & is nonnegative integer and by Kananthai (1997). we
have R (x) 1s an inverse of R, (x), that is :

RZk (x)*R-Zk (1) = ),(+7,( ( ) R (Y) =
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3. RESULTS
Theorem 3.1 Given the compound ultra-hyperbolic equation

¢, i1"ufx) = f(x), (3.1)

r=(}

where |7 is the ultra-hyperbolic operator iterated r -times (r = 0,1,2,...,m) defined by (1.2},
fis a tempered distribution, x = (x,.v,,....x,) e (1" the Euclidean n-dimenstonal spaces and n
is odd and ¢, is a constant. Then (3.1) has a untque weak solution

u(x) = f)*R, ()*(c, R (x) + W ()R, ()™ (3.2)

2 ar )

where

Wkxy=c, , +c¢ j,»———v*—— +C v + ..
" 24 -n) ™ 2.4(4 - n)(6-n)

HCy o e R — (3.3}
2.4.6..2(m - )4 - n)6-n)..2m - n)
and V defined by (2.3) and (¢, R, (x)+ W (x) R (x))"' is an inverse of ¢, R (x}+ W (x) R,(x).

Proof. By Lemma 2.4(a), equation (3.1) can be written as

(c,0"6+c, O™ 6+.4c 00 +c,0)*u(x) = f (x)

Convolving both sides by R, (x) defined by (2.1), we obtain

(c,0™R, (x) +c, O m-1 Rh(x) +.t ¢, UR,, (x) +¢ R (O)*ulx) = f (X)*R,, (x)

2m

By Lemma 2.2, Lemma 2.3(c), we obtain

(cm5 +c,  R(x) +c, R (x)+.+¢ DRQ(M_”(x) +Cy R, (X)) *u(x) = fF)*R, (x)  (3.4)

2m

By Lemma 2.3(a), we obtain

A~ 2-n

v v iy v
R.(¥) = - / R
49 K& — 22+2-mK(2) Y

Similarly,
Vl
Ro=Reo. .Y
) =R () 246 16 - )
v3

R.(x) = R.(x).
) = R) 2.4.6(4 - n)(6 - n)(8 - n)
vm-l

R, (x)y= R (x)
24 20m - DA - a6 - ). {2m - )
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Thus we obtain the function W (x) of (3.3). Now W (x) is continuous and infinitely
differentiable in classical sense for n is odd. Since R(x) is a tempered distribution with
compact support, hence W (x)R (x) also is tempered distribution with compact support and
$0 ¢, R (x) +W (x)R,(x). By Lemma 2.4(c), ¢ R (x) +W (x)R,(x) has a unique inverse denoted

by (¢, R (x) +W (x)R,(x))"".

m

Now (3.4) can be written as
(c,Ry(x) +W ()R, () *u(x) = f ()*R,, (x), R(x) = &
Convolving both sides by (¢ R (x} +W (x)R,(x))"!, we obtain
u(x) = f ()*R,, (x)*(c, R (x) +W ()R (x))™!

m 0

Since R, (v} is a unique by Lemma 2.2 and (¢, R (x) +W ()R (x))"' also a unique by Lemma
2.4(c), it follows that u(x) is a unique weak solution of (3.1) with odd dimensional n. This
completes the proof.
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Abstract
In this paper, we study the equation
5 u(z, t) = 0% (x, t)
with the initial condition
u(z,0) = f(z)

for € R"-the n-dimensional Euclidean space. The operator [F is named the
ultra-hyperbolic operator iterated k-times, defined by

i (& & A & ) '
F=l—4+—+4+ - — — —— — - — — 1 .
Bz?  Oxl Az Bz, Oxi,, or2,,

P+ g = n is the dimension of the Euclidean space R”, u(x,t) is an unknown
function for (x,t) = (xy,z2,...,%n, t) € R x(0,00), f(x) is the given generalized
function, k is a positive integer and ¢ is a positive constant.
We obtain the solution of such equation which is related to the spectrum and
the kernel which is so called the generalized ultra-hyperbolic heat kernel.
Moreover, such the generalized ultra-hyperbolic heat kernel has interesting
properties and also related to the the kernel of an extension of the heat equation.
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1 Introduction

[t is well known that for the heat equation
9 2
a?u(:r.,i) =c"ADufx, 1) (1.1)

with the initial condition

u{x,0) = f(x)

N 2 i .

where A = Z%g is the Laplacian operator and (.t} = (ry,z0,...,7,.1) € R" x
=1

(0. 00). we obtain the solution

1 STV e 7
I’L('T‘t) = (_16271.{)”/2 . f(y)ff S fdy

or the solution in the convolution form

u{z, t) = E(x, t) = f(z) (1.2)
where ) .
E(’l",t): We_lml /4c i. (13)

The equation (1.3} is called the heat kernel, where |z|> =22 + 22 + -+ 2% and t > 0,
see | 2, p208-209].

Moreover, we obtain E(x,t) — & as t — 0, where § is the Dirac-delta distribution.
We can extend (1.1) to the equation

9 w(z,t) = *0ulz, t) (1.4)
ot
with the initial condition
w(z, 0) = £(x) (1.5)
where [ is the ultra-hyperbolic operator, that is
32 32 32 82 82 62
Od=l-—+—=4+---4 — — — N
(81‘% a3 M Oz  dxi,  0x3,, 3;rf,+q)
Then we obtain
u(z,t) = E(z, t) * f(z) (1.6)
as a solution of (1.4) which satisfies {1.5) where E(x,t) is the kernel of (1.4) and is
defined by
r 2 ptgq 2
FE(r ) = —(z)—exp - : A (L.7)

(4c2mt)n/2 4¢2t
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where p+g=n.i=+/-Taud 30_ 2% > ?;;‘;H 72, see [1, pp. 215-225)].

Morcover, we obtain I(xr. ) — 4 as t — 0, where ¢ is the Dirac-delta distribu-
tion. In addition. we studied the ultra-hyperbolic heat kernel which is related to the
spectrum, see [2. pp. 19-28].

Now. the purpose of this work is Lo study the equation

Ta— ulr, t) = A0, t) (1.8)
ot
with the initial condition
(e, 0) = f(r), for xreR” (1.9)

whiere the operator 0% is named the wltra-hyperbolic operator iterated k-times defined
by

92 o2 o2 2 o2 2 K
OF = | Lo e e —— — - _ , 1.10
(amf Yo T T a2 T a2, T o, axg+,,) (1.10)

»+ ¢ = n is the dimension of the Euclidean space R™, u(x,{) is an unknown function
for (x,t) = (ry,22,...,7,,1) € R* x (0,00}, f(x} is the given generalized function, &
is a positive inleger and ¢ is a positive constant.

We obtain u(x,t) = E(z,t) x f(x) as a solution of (1.8} which satisfies (1.9) where

k
1 , pte. P \ ’.
E(x,t) = W/Qexp ct -:ZP;LIEJ - ;fi +i(&, )| dE. (1.11}

and Q C R" is the spectrum of E(z,t) for any fixed £ > 0. The function E(z,t) is
called the generalized ultra-hyperbolic heat kernel iterated k-times or the elementary
solution of (1.8). And all properties of £(x,t) will be studied in details.

Now, if we put k =1 and ¢ = 0 in (1.8) and (1.11) then (1.8) and (1.11) reduce to
(1.1) and (1.3) respectively.

2 Preliminaries

Definition 2.1 We say f € LY(R") if
| f(x)| dx < oo.
Rn
For f € LY(R"), we define its Fourier transform at a point £ € R" as

F©) = G [ @y 2.)
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where & = (£, 6. ..., &) and & = (g, wg. ..., x,) E R (E.1r) = &r) + Eora+- -+ &0,
and di = drg d.:z coodry,.

Also. the inverse of Fourier transform is defined by

f(z) = (2W1)r?/2 / ) e (2.2)

Definition 2.2 The spectrum of the kernel F(x. ¢) of (1.11) is the bonnded support of
the Fourier transform F(€. 1) for any fixed ¢ > 0.

Definition 2.3 Let £ = {£;.&.....£,) € R" and denote by
[y ={eeR:E+&E+.. +& -6 —Ep—...—&,, >0and§ > 0}

thie set of an interior of the forward cone, and I' | denotes the closure of I, .

Let Q be spectrum of E(x,t) defined by definition 2.2 and Q C T'; . Let E(E__ﬁhi_) be
the Fourier transform of E{z,t) and define

k
W exp {czt (Z?lgﬂéf -5 512) ] forxecly,

E(€.1) = (2.3)
0 for £ &1,
Lemma 2.1 Lef L be the operator defined by
AT
= — —¢0O0 2.4
L=g —c (2.4)
where OF is the ultra-hyperbolic operator iterated k-times defined by
& & P 0? & \*
Dk*(—2+-.—2+..+ 3 5 — s ) .
dzrs  Or; oz 8:cp +1 a:cp L2 c')rp ",

p+q = n is the dimension of R", (x),za,...,7,) € R", ¢t € (0,00), k is a positive
integer and ¢ is a positive constant. Then we obtain

ptg

(2) /eXp ctl )&= Zf) +i(€,x)| de (2.5)

f=p+1

E(x, )=

as a elementary solution of (2.4) in the spectrum & C R™ for t > 0.

Proof. Let LE(r,t) = é(x,t) where E(z,t) is the kernel or the elementary solution of
operator L and ¢ is the Dirac-delta distribution. Thus

%E(;L" t) — AOFE(x, t) = d(x)d(1).

68



