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These the residues of < P*,p > at A = — 5% — k is a functional concentrated on
the vertex of the cone.

Now consider the singular point A = ~k. By {3.11) and (3.12} and also See
(1, p255-256]. We obtain

)k—l

Sy P

< &5 H(P) o > (3.14)

where

k-1

*(k=1) _ 1 g 1 8 g-2m P(113) p-1

N (P >= 4m2[0 [(2m52m_1 B {s - W P dr.
s§=r

(3.15)

Summarizing, we have the following. For odd n for even n if k < ;in, the

generalized function P* has simple poles at A = —k for positive integral values of

k, where the residues are
a_ (=1F 50
1
L=yt (3.16)

Now consider the singular point at A = —5% — k, from (3.13) we have
1 [ &* n
A T —_ — k
,\=—“;"1“_..k<P’{p> y [Bu"@( 5 ,u)

u=0

for n odd with p odd and g even. Thus, for ¥ = 0 we have

res < P*yp>= ‘I)(—— 0).
A=—g
By (3.10), we obtain
res <P",cp>———-/ (1-10 ~ 7w t3m 4P, (0,0)dt
)\=—-f— 4
B %(0,0) F(gm)F(—% +1)
T 4m? L(—#F+1) '
since . P 1y
. -+
1—¢t) mmtIn—ldt = ——2m 2m )
fa-o T(-Z +1)
Now

1(0,0) = $(0,0) = [ #(0)d2y d, by (3.5)
=0, Qg p(0)
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and

(]

2w o
N, = and , = ——.
PTT(E) )

—

Thus

es < PYp>=
=T Pom T MR + )

SRR ()

Now, for p > 2m and p is even then I'(— 2= — 1) = co. Thus resy=_». < P}, >
= 0. From (3.17),

)ﬂm. (3.17)

1 PG (g +1) _4nH
_riasz_"; <She = L(-E& +1)  TEIE) =)
_ 1T +1) ol

Tm? (=& +1) TLEIE)

<8(z), 0> .

Thus o .
r 1—-)rz
res P = Lz (2’“);_ ;"‘)1:1 §(z).
A= m P(I - zm)P(z)r(z)
In particular, if m = 1 then (3.18) reduces to
(~1)ix?
res P = ~——n
A=-% (%)

which appeared in [1,eq.(23),p258].
Moreover, for equations {3.1) and (3.2), if m = 2 we obtain

(3.18)

&(z),

J— 1 (=1 ey
—~1}% = — B vy T P
,\Lefk( 1)* Ko 2i(z) (2n)n72 Ar=e§kP (2m)yn/2(k — 11! #)
and 5%
1 n
A = — \— - = k’
A:r_e%s—k <Plhe> k! | ouk ( 4 g «=0

where (—1)* Kz 2 (2) is the Fourier transform of the Diamond kernel, see (2, pages
715-723]. And if m = 4 we obtain

T -1 k-1 .
Ar_esk(_1)kK‘2k.2-k.‘2k,2k(I) = AieskP* _ 0 51,1 py

(k—1) !
and Gk
1 n
Aps=— | -2k
S <SP =g [auk -3 ’“)L_o

where (—l)szk‘zkgk‘zk(:E) is the Fourier transform of the distributional kernel of
the operator @*, defined by

a1k

4 ptgq 62

) - Z 32 . p+gq=n,see (3]0
s=pr1 9%

_ (&
o = \;81?
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Abstract

In this paper, we study the residue of the Fourier transform of the distri-
butional kernel K, g, . () related to its spectrum, where o, 8,7, v are complex
parameters and r € R"- the n-dimensional Euclidean space.

We found that the residue of ( —l)szm,gk(f ) exists for any nonzero point
£ belongs to such a spectrum where a = 8 = v = v = 2k, k is a nonnegative
integer and £ € R™.

1 Introduction

I. M. Gel’fand and G. E. Shilov (see [2, pp. 253-256}) have studied the generalized
function P*, where

_ 2 2 2 _ 2 2 .2
P=zgi+zyt+-+I, =Ty — Tpyo Toyg (1.1)

is a quadratic form, A is a complex number and p + ¢ = n is the dimensional of the
space R".

*Supported by The Royal Golden Jubilee Project grant No. PHD/0221/2543.



They found that P* has two sets of singularities, namely A = —1,-2,..., -k, .. ..
and A = —n/2, -nf2 - 1,...,—n/2 — k,..., where k is a positive integer. For th
singular point A = —k, the generalized function P* has a simple pole with residue

(1% ey y_ (DY e
) e Pr=——"4 P 1.2
= 1)1t (P) or resy—_¢ TR (P) (1.2)

for p+ ¢ = n is an odd with p odd and ¢ even.
Also, for the singular point A = —n/2 - k, they obtained

A _ (ZD)2LR(x)
FES)\:_%_;EP = 22kk'F(% T k) (13)

for p+ ¢ = n is odd with p odd and ¢ even.
The distributional kernel K, g,,.(z) is defined by the convolutions product of the

tempered distribution, (see, for details, [8, p. 66, Theorem 3.1}; see also (7, p. 226,
Theorem 3.1]). That is

Ko gy (z) = Ry (u) ¥ Rj(v) * Sy (w) + T,(2) (1.4)

where R[(u), R5(v), Sy(w) and T, (z) are defined by (2.2), (2.3),(2.6) and (2.7) re-
spectively. Since Rf(u), R§(v),S,(w) and T,(z) are all tempered distributions, thus

Ko g.(z) is also tempered distribution (see, for details, {3, p. 35, Lemma 2.2] and [1,
pp. 156-159]).

In this paper, we use the idea of Gel'fand and Shilov to find the residue of Fourier
transform (—'1)ka’2]€(5), where Ko ok 2k26(z) is defined by (1.4) with a = 8 =
v = v = 2k and k is a nonnegative integer. We found that for any nonzero point £ that
belongs to the spectrum of {(—1)¥ Koy 24 21 2k (), there exists the residue of the Fourier
transform (—1)’°K2@,2k(§).

Actually, (—1)¥ Ky ox o 2%(T) is an elementary solution of the operator @* iterated
k-times, that is, &% [(—1)*Kax 2k,2¢,2¢(2)] = 6, where & is the Dirac-delta distribution.

The operator &* defined by

P 5 1 Pt 1
ot = [y 2 (1.5)
(r:l al‘z) (ng axi)

where p + ¢ = n is the dimension of R™.
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The operator @F defined by (1.5) can be written in the form
oF = OFLELE (1.6)

where O is first introduced by Kananthai [4] and named as the Diamond operator
iterated k-time and denoted by

r 82 2 p+q 62 2 k
Kk _ _ -
¢ = (,-=1 ax,%) 6:1:?) (1.7)

i=pt1

and L¥ and L% are the operators defined by

p 32 p+q 62 k
k _ -
k= {; 27 +1 }: _axg] , (1.8)

j=p+1
» p+e k
o? 8°
k __ .
L2 = |: E 6332 —1 @] (19)
r=1 r j=p+1 7

where i = /-1 and k is a nonnegative integer.

We obtained the convolution (~1)*RE (u) x RS, (v) where R (u) and RS, (v) are
defined by (2.2) and (2.3) with a = 8 = 2k is elementary solution of the operator {*,
that is, &% [(—1)FRE (u) * R (v)] = 6, where § is the Dirac-delta distribution. Also,
we obtain the functions Sy (w) and Tyi(z) defined by (2.6) and (2.7) with v =v =2k
are elementary solutions of the operator L% and L% respectively, (see | 2 |).

2 Preliminaries

Now the following definitions and Lemmas are need for the purpose of this paper.
Let z = (z, Zy, ..., T} be a point in the space R® and write

u=al+ AT T — = Toy, (2.1)

where p -+ ¢ = n is the dimension of R®.
Denote by I'y = {z € R® : z; > 0 and u > 0} the set of an interior of the forward
cone and [', denotes it closure. For any complex number «, define

ga_rg
Rf(u) — ;:'u(a)’ fOI‘ xI 6 F+, (2‘2)
0, forz gy,



where the constant K, (a) is given by the formula

7T T(2g=) (45 (o)
PENEe)

K. (a) =

The function R¥ (u) is called the ultra-hyperbolic kernel of Marcel Riesz and was intro-
duced by Y. Nozaki ( see {9, p.72]).

It is well known that R¥ (u) is an ordinary function if Re(a) > n and is a distribution
of a if Re(a) < n. Let supp R (u) denote the support of R7(u) and suppose
supp R¥(u) c Ty, that is, supp R¥(u) is compact.

For any complex number 8, define

Ré(v) = 27 Fro T (2.3)
vy =22 I(——)—, :
g 2 1%
where

v=xi+ x5+ -+ Th. (2.4)

The function R5(v) is called the elliptic kernel of Marcel Riesz and is ordinary function
for Re(B8) > n and is a distribution of 8 for Re(f) < n.

Let £ = (zy,%9,...,Z,) be a point of the space R* and write
w=x%+$§+~-+$§—i(xf,+1+x,2,+2+---+sr:§+q) (2.5)

where p + ¢ = n is the dimension of R" and ¢ = /—1.
For any complex number «y, define

n
n—y,w?

2 )I‘(%

I

S (w) =277 F I( : (2.6)

S’

The function S,{w) is an ordinary function if Re(y) > n and is a distribution of y
for Re(y) < n. For any complex number v, define

| et ]

)

w|t

=n n—v. .z

T(2) =2 3T )

(2.7)

1A

where
z:$f+:c§+---+m§+i(xg+l+3:f,+2+---+3:f,+q), (2.8)
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We have T,(2) is an ordinary function if Re(r) > n and is a distribution of v for
Re(v) < n.

Let f(z) be continuous function and absolutely integrable on R", then the Fourier
transform of f(z), denoted by Sf(z) or f(£), is defined by

S7() = f6) = [ e f@)ds 29

where z = ($1,$2, e yzn) € Rn, ‘f = (611 62: e 1€n) € R",ﬂand (63 1‘.) = (61321 + 623:2 +
-+ &uzy). From (2.9), the inverse Fourier transform of f(£) is defined by

f@)=97(6) = [ e fe)an (2.10)

If f(z) is a distribution with compact support, by (10, p. 187, Theorem 7.4.3] can
be written as

Sf(z) = f(€) =< f(z),e™ &= > . (2.11)

Lemma 1. (Kananthai [4]; see also [1]) The functions RY (u), Rj(v), Sy(w) and T,(2)
defined by (2.2),(2.8),(2.6) and (2.7) respectively, are all tempered distributions.

Lemma 2. (Kananthai and Suantai [6]) The Fourier transform

e —

()2 (i)a2e++ 1+ (2 () D (Z)T ( e - Zf)

Hopoul®) = Ku(@) Hu(B) (1) Ha(V)
7\ ? p pte -
(Vze) (\/z 5 52) (\/Zp_le—z > f)
r=1 =1 j=p+i j=p+1
X (2.12)
r(=3= JL(E1)0(%5")
where H,(£) = —i,?(li_f)i and i = v/—1.
In particular, if o = B = v = v = 2k then (2.12) reduces to
1)k
SI(2k‘2k,2k‘2k(I) = ( 1) P (213)

[(5% +&+- -+ 52 (€p+1 + &Gt §§+q)4]
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The spectrum of the distributional kernel K, g .{z) is the support of the Fourier

transform m #(§) or the spectrum of K, g.,(z) = suppm »(€). In particular,
from (2.13) the spectrum of

1
(—=1)* Kok 2k 26 26(x) = supp .
(P, €t = (855 EDY)*
Lemma 3. Let P(xy,Zs,...,Z,) be a function of positive definite, and is defined by
r 4 ptq 4
P pama = (32) (¥ 4] 1
r=1 i=p+1

then for any testing function o(z) € D, the space of functlion of infinitely differentiable
with compact support,

<5(k)(P),(p>:/(; [ 8;;3) (s 8‘1’(“3)}] o (2.15)

and

< 8®(P), o >= (1) [o " [ = ar) gra-s 200 S)}] s (216)

where r? = 2%+ 23+ 422, 2 =22, +ad o+ -+ 12, P+g=nis the dimension
of the space R, k is nonnegative integer, and

U(r, s) ;[godﬂpdﬂq, (2.17)

where dQ, and d§Q, are elements of surface area on the unit sphere in RP and R?
respectively.

Proof. Assume that both p > 1 and ¢ > 1 and let us transform to bipolar coordinates
defined by

Ty =TWy, .., Tp = TWp, Tptl = 8Wpsl,s- -y Tpiq = SWpig (2.18)
» - pre 2
where 37 w? =1 and 2 iipw; =1

In these coordmate the element of volume is given by

dz = dzidzs . . . dr, = 177 97 drdsdQ,dS), (2.19)



where d2, and d{}, are element of surface area on the unit sphere in R? and R?
respectively. Then (2.14) becomes P = r® — s8.
Now let us choose the coordinates to be P, r and the w;, thus (2.19) becomes

dz = é(rs — PYe-82-14PdrdQ,d0),.
By [2, p. 248, Eq.(3) ], we have
< 8®(PY), o >= (_1)"/ (r — P)sle-8), P ldrdQ,dQ,.  (2.20)
(’)Pk P=0

Now, if we transform from P to s = (r® — P)!/® and 8/0P = —(1/857)(8/8s). Then
(2.20) becomes

1 & @ _
<5<")(P),eo>=f [( svas) {s* 88}} | drdSdd, (2.21)

Now, write
U(r,s) = /‘tpdﬂpdﬂqf (2.22)

which transforms (2.21) to be the form

< 6W(P), 0 >:/0 [( ;;S) {9~ B‘I'( ) }] P~ dr (2.23)

similarly, if we transform from P tor = (P + 38)%, we obtain

8P, p >= (—1)'°/0 [( 17 ;r) (o2 S)}} 97 \ds. (2.24)

Thus, we obtain (2.15) and (2.16) as required.
Now we are still assuming that ¢ vanishes in a neighborhood of the origin, so that
these integrals will converge for any k. If, further (p—1)+(¢—8)—-8k >0 or k<
+(p+ ¢ — 8) then these integrals converge for any ¢(z) € D. Thus we may take (2.23)
and (2.24) to be the defining equations for §)(P) if £ < t(p+ ¢ — 8). If, on the
other hand, & > {(p + ¢ — 8) we shall define < s (P),¢ > and < 88 (P), ¢ > as the

regularization of (2.23) and (2.24) respectively.



Moreover, if we put u = 7% | v = s® then (2.23) and (2.24) become

k 1 [®[8% 4 2=t
<88 p>= 81/, {ﬁ{v s U (u,v}} v=uu 5 du, (2.25)
1 [>[ 8 - _
< 6(*:)1 p >= (_l)k'gi '/(; l:a—ug{uLag‘I!l(U, 'U)}:l - 'U'Lﬁ_sd'v (226)

where ¥, (u,v) = ¥(r, s). It is obvious with the case in with either p or g is 1. O

Lemma 4. (Kananthai [5]) Let G, = {€ € R" : |&| < b, 6] < bay ..o [&n] < ba}
be a parallelepiped in R™ and b;(1 < i < n) is a real constant and the inverse Fourier
transform of Ko p.4,.(€) whose support contain in Gy is defined by

Ka,ﬁ,'y,u (IE) - g—l Ka,ﬁ,’y,u (E)

_ f HED R (€)de (2.27)
Gy

where Ky g, s defined by (1.1) and z,& € R*, then K, p.(x) can be extended to the
entire function K, g .(2) and analytic for all z = (21, 29,...,2,) € C" where C" is the
n-tupple space of complex number and

\Ka,p,v0(2)| < Cexp(b|Im{z)]) (2.28)
where
exp(b|Im(2)]) = exp[by|[Im(z1)| + balIm(22)| + - - - + ba|IMm(2,)|]
and
C= [ |Kapnn(§)ldg
Gy

is a constant. Moreover, K, g.,(2) has spectrum contained in Gb.

In particular for « = 8 = v = v = 2k, the spectrum of (—1)% Koy 2k 21 2 () is also
contained in Gy, that is supp[(—1)* Ko 2r 25,26 (€)] © Gy where (—1)* Ko 2k 26,26 (£) 15

an elementary solution of the operator @*. The Fourier transform (—1)* sz,gk (&)
given by (2.13) can be defined as follows:

T — 4 ! + nk:r if 6 E Gb?
(_I)kI{Qk‘Qk’Qk"zk(f) = [(Zf=l E‘?) _(E?=g+l 512) ] (229)
0, if £eCG,.

where £ = (£,,&,...,&) € R* and CG, is the complement of Gp.
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3 Main Results

These are the following main results.
For any nonzero point £ = (£1,&,,...,£,) € M where M is a spectrum of (—1) Ky,

then there exists the residue of the Fourier transform (—1)% Ko ok 26.2k(€) and such,
residue is

—1)*-t _ o kel i
Ek J 1)!5# Y or resy=—&(—1)" Kop 260,26 (€) = E_kl—_)ﬁ §’° 1)(P)
where 4
P:(€¥+...+§§)4—(§§+1+...+5§+q) (31

and 8% V(P) is defined by (2.25) with 64~ D(P) = 6* (P} and p+¢ = n is odd wil
p odd and g even.

In showing this main results; we use the technique of computation from LM
Gel'fand and G.E. Shilov (see [2, p. 248]) by evaluating

<P g>= [ PME)pl€)de (32
FP=>0

where P* is the generalized function with X is a complex number and P is given b

(3.1), £ = (&,&,...,&), d€ = d&dE, ... dE, and @(€) € D, the space of continuoy
function of infinitely differentiable with compact support. Now

A
<Phps= [ (e + ) - (G +60)") vl
P>0
Let us transform to bipolar coordinates defined by

Ty =TwWy ..., Ip = T(.Up, :E;D+1 = SLdp+1, ey $p+q = Swp+q,

P 2 ptq 2 _
where > 7 w; =1and 3 770 w;=1. Thus

From (3.2), we have




Since the volume d¢ = rP~'s7'drdsd§),dQ, where dS), and d<, are the element of the
surface area on the unit sphere in R? and RY respectively. Thus

<PYo>= f (r® — 5%) pr?~159" L drdsdQ,dS,
P>0

=f f(rs—sg)A\Il(r,s)r"'lsq_ldsdr
0o Jo

where ¥(r, s) = [ odQ,dQ,.

Since (£) is in D, then ¥(r, s) is infinitely differentiable function of r® and s® with
compact support.

We now make the change of variable u = r8,v = s® and writing ¥(r, s) = ¥, (u, v).
Thus we obtain

P >= —f / u — v) ¥ (u, v)u%v%dvdu
=0 Jv=0

write v = ut, then

o0 1
<P} yp>= E}Z yrrata-1 f (1 — MT 0, (u, ut)dt. (3.3)
0

Let the function
O\, u) f (1 — 5T, (u, ut)dt. (3.4)

Thus ®(A, u) has singularity at A = —k where it has simple poles. By Gel'fand and
Shilov (2 , p.254, Eq.(12)] we obtain the residue of ®(),u) at A = —k, that is

_1yk=1 [ ak-1
%%kl_)l)! [gtk T )} (3.5)

t=1
Thus, resy=..x®(X, u) is a functional concentrated on the surface P=0(t =1,v=1u
and P = u — v = 0). On the other hand, from (3.3) and (3.4) we have

res)=—x®(\,u) =

<P p>= f WM EEHOTIG(N ) du., (3.6)
0
Thus < P* ¢ > in (3.6) has singularities at A = —n/8,-n/8 —1,...,-n/8 — k,....
At these points
1 [ 8" n
A — PR — vy —
res)=_n_x < P, p >= o [Gukq)( 5 k,u)]uzo. (3.7)
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These the residue of < P}, > at A = —% — k is a functional concentrated on the
origin of the surface P = 0, since © = 0 we have v = ut = 0. Thus r = s = 0, that
implies{ =0oré =6 =...=§, =0.

Now consider the case singular point A = —k. Write (3.4) in the neighborhood
of A = —k in the form ®(\,u) = %‘;—) + &, (A, u) where ®p(u) = resy=_x®(A,«) and

®1(A, u) is regular at A = —k substitute ®(\, u) into (3.6), we obtain
1 [o o] o0
< P p>= —/ u’\+%(p+")_1¢>g(u)du +/ u“%(p*’q)‘l@l()\,u)du.
A+k 0
Thus

00
resy—_, < P, p >= f u"“"%(’”‘”“‘@o(u)du.
' 0

By substituting ®(u) and (3.5), we obtain

1 (-1)*! gk —k+1(p+g)-1
res)=—k < P«‘, @ >= — f t's W, (u,ut)} w krslrra-14,
64 (k— 1) J, [8t+~ 1{ -1

since we put v = uf. Thus §*1/8tk~! = ¥~ (8%1/3v*~1), by substituting 85! /5tF~!

we obtain

-1 k—1 ak 1 g-8 :
resy—_x < P}, o >= Gi(k?— 1)!L [Btk 1{'u g \Ill(u,v)}] uf~ldu.

Now, by (2.25) for k > %(p + ¢ — 8), we obtain

u=y

resy—_x < P* ¢ >= Ek Dl R 6(’“ 1)(P) (3.8)

which is the residue of a functional concentrated on the surface P = 0.

. 4
Since P=r®— % u=18=(3*_ ) andv =s* = ( ?:Llf_,?) . Thus, for

P =0 we have v = v and u # 0, v # 0. It follows that £ = (£1,&,...,&) # 0.
Since, by Eq.(2.29) we have

(= 1)* Ko ookox(€) = P*,  for A= —k (3.9)

and £ € Gy. Let M be a spectrum of (—1)* Kop ok 2k 2x(z) and M C G, by Lemma 4.
~Thus for any nonzero £ € M we can find the residue of (—1)’“K2k'2k,2k,2k(§), that is,

res)——, < ("‘l)kK2k,2k,2k,2k(£): w(&) > =resyo_; < P'\,(P >

11



(-t
(k — 1)!

resy——g(—1)* Kok ok ox,2k(£) = 5§k_1)(P)-

for £ € M and £ # 0.

Now consider the case £ = 0. We have from (3.6) and (3.7) that, the residue of
< PX, ¢ > occurs at that point A = —n/8 — k, that is, resx=_nss_k < P*, ¢ > is
functional concentrated on the vertex of surface P. Since u = 0 and v = wut, then
u = v = 0, that implies

\/§f+€§+---+£3=\/£§+1+§§+2+---+§3+q=0. (3.11)

It follows that §, = & = --- = £,4, = 0,p + ¢ = n. Thus, the residue of < P*,p > is
concentrated on the point £ = 0. But in our work, we consider the residue of < P*, ¢ >
only at A = —k. Thus for £ = 0 in (3.6) and (3.7) not occur our the case.

In particular, for k =1 and k < (p + g — 8) we obtain

———

resy—.x — Kaz222(€) = 6(P)

for any nonzero £ € M where K52, is given by (1.4) witha ==~ =v = 2 and
p+g=n. 0 :
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Abstract

In this paper, we study the spectrum of the kernel of the generalized heat equation of
the form

%u(a:, t) + S (-A) u(z,t) = f(z,1)

k

where AF = ('ai:u' + ai:y + 4 ai:f) is the Laplacian iterated k-times, n is the dimen-
1 2 n

sion of the Euclidean space B", f(z,t) is continuous function for (z,t) € R™ x (0,00),

k is a nonnegative integer and ¢ is a positive constant. We obtain the convolution

u(z,t) = E(z,t) » f(z,t) as a solution of such equation where E(z,t) is the kernel. We

study the spectrum of E{z,t) and obtaining all properties which are interesting results.

1 Introduction

It is well known that the heat equation’

%u(z, t) = 2 Au(z, t) (1.1)
with the initial condition
u(z,0) = f(z)
has u(z,t) = F(z,t) * f(z) as the solution of (1.1) where

E(z,t) = ! X —ﬂ (1.2)
i) = (4c2mt)n/? P T e | '
is called the heat kernel of the equation (1.1).
Moreover, A. Kananthai and K. Nonlaopon [5] extended (1.1} to the general form
9.
at .

with the initial condition u(z,0) = f(z) and also obtained the generalized heat kernel.

(z,t) + (A u(z,t) =0



In this paper, we study the equation of the form

%u(x t) + A (—A)*u(z, t) = f(z,t) (1.3)
k
which is the generalized of (1.1) where AF = (ig +s5+- 3%;) is the Laplacian

iterated k-times, f(z,t) is continuous function for (z,t) E R™ x (0, oc), k is a nonnegative
integer and ¢ is a positive constant.

We obtain u{x,t) = E(z,t) * f(z,t) as a solution of (1.3) where

E(z,t) = (211r) / exp\: (252) +i(€,x) | dE (1.4)

is a kernel for (1.3} where £ = (£1,2,...,&:) € R®, (£,x) = &1z + &ozo + -+ - + €q2q and
i=+-1

If £ =1 in (1.3) then E(z,t) in (1.4) of the integral form reduces to (1.2).

Now we study the spectrum of the kernel E(x,t) of (1.4} by getting the idea from [5]
which is the spectrum of kernel of the Diamond operator {* related to the residue.

In this work, we apply the operator A to establish the equation (1.3) which is so called
the generalized heat kernel. At first we study all properties of E(z,t} in (1.4). Later we study

the spectrum of E(z,t} in the sense of n-dimensional Fourier transform and obtaining the
interesting results.

2 Preliminaries

Definition 2.1 Let f(z) € L, (R")-the space of integrable functions in R". The n-dimensional
Fourier transform of f(x) is defined by

~ 1 .
—_— - (E!I)
7 = Gy [ e @y (2.1)
where £ = (£1,8s,...,&.), £ = (21,%2,...,%Zn) € R?, (&,2) = &iz1 +E2z2 + -+ + £nTn i the
usual inner product in R® and dz = dzy dzs ... dzy,.

Also, the inverse of Fourier transform is defined by

i iE,5) £
1) = o |, <7 Fl0de (22)

Definition 2.2 Let T be tempered distribution on IR:‘, the Elosed set supp(f) is called the
spectrum of T where supp(T) denotes the support of T and T is the Fourier transform of T'.

Lemma 2.1 Given the function

flz) = exp [— (12: x?) k]



where (21,2Z2,...,Zn) € R®. Then

7 (%)

flz)dz| < T T(E)

Rn

RECEYS exp[ (Zx)] d.

Let us transform to bipolar coordinates defined by

(2.3)

Proof. We have

I =TW,Ty =TWy,...,&pn = Ty
where 3" w? = 1.
Thus
2 g
flz)dz = e " ldrdQ,
R‘n n

where dz = r"~ldrdQ,, dQ, is the element of surface area on the unit sphere in R*. By
direct computation, we obtain

e —r2k p_§
f(:c)d$=9n[ e " T hdr
R 0

21r %
)

Put v = rz", then we obtain

where £, =

Q, [® n
/ f(:z:)d:: < ?k_f e “uk ! du
Qn n
=-rp(l
2k 2k)
_ w2 D)
k T(3)
That is [z, f(z)dz is bounded. U
Lemma 2.2 Given the equation
Qu(;c,t) + (=N rulz, t) = flz,b). (2.4)

at
Then we obtain u(z,t) = E(x,t) * f(x,t) as a solution of (2.4) where

n k
1 .
E@1) = G fR _exp [—c? (nge?) +:(§,z)} dg (2.5)

is a kernel or the elementary solution of (2.4).

3
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Proof. Let

gtE(I ) + A~ A E(z, t) = §(z)5(¢)

where E(x,t) is the kernel or the elementary solution of the equation and § is the Dirac-delta
distribution. Take the Fourier transform to both sides of the equation, we obtain

2 Bt (Za) B0 = grdlt)

n k
D - e |- (£54)
=1

where H(t) is a Heaviside function. Since H(t} =1 for t > 0. Therefore,

n k
E"(a) - (21r:;n/2 exp [“62 (Z 612) t}
i=1

— (27:;“/2 exp [""Czlflzkt] (26)

Thus

where [£]2 = 3", €2. By taking the inverse Fourier transform we obtain

E(z,t) = —(%;n B /R ) B(£. 1)) gg

or

E(x,t)=(—2-jr—)n f exp[ (25,) t+f(s,z)} dt. (2.7)

To obtain the solution u{z,t) of (2.4), we convolve both sides of (2.4) by E(z,t) defined by
(2.7). Then we obtain u(z,t) = E(z,t) * f(z,t) as required. O

Definition 2.3 A sequence of functions fr(z), continuous and bounded on R" converges
narrowly to fo(z) having the same properties if and only if f,{z} converse to fo(z) uniform
on bounded subset of R™ and the numbers || fn|lco converges to || folloo where

llg(z)lloo = suplg(z)|
zeN

1 is bounded subset of R™.
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3 The properties of E(z,t)
Theorem 3.1 The kernel E(z,t) defined by (2.7) have the following properties :

(1} E(z,t) € C®-the space of continuous function for (z,t}) € R™ x (0,00} with infinitely
differentiable.

(2) E(z,t) >0 fort > 0.
(3) (& + A(—L)) E(z,t) =0 for t > 0.

(4) . rea)
IE(.’E,t)’ < 2nﬂ-n/2k(c2t)n/2k [‘(Z_f) !

where ' denotes the Gamma function. Thus E(z,t) is bounded for any fized t.

()
Je

where E"'(ﬂf‘?th) is the Fourier transform of E(z,t).
(6) }1_[}1(1j E(z,t)=4.

for t >0

B(&1)| d6 < 5 for >0

(C2t)"'f2k [‘(%) ’

Proof.
(1) From (2.7}, since

n k
o 1 ar _ 2 2 .
E’L‘; E(:C,t) - W Rn O exp l < (;El) t+ ?.(f,:l:):l d€

Thus E(z,t} € C* for z € R” and ¢ > 0.
(2) E(z,t) >0 for ¢t > 0 is obvious by (2.7).
(3) By direct computation, we obtain

(% N 02(—A)’°) E(z,t) = 0

for t > 0 where E(x,t) is defined by (2.7).

(4) We have
E{x,t) = (271T)"/I.R exp [ (Zél) t+i(£,ﬂ:):l dg.

n k
[E(z, )| < (2r )n/ exp I:_C% (;f?) :| df. =

Thus



Using the same procedure as Lemma 2.1, we obtain

1 I'(z%)
< .
|E(z,t)] < 2nan/2k(c2e)m/2k T(R)

Thus, for any fixed ¢t and , E(z,t) is bounded.

(5} From (2.6),
FED = Gy [ (ge‘z) ]

BD)|d < G n,g exp[ (Zc:, }

Thus

e
12

The same as (4),

1 INE)
(c2t)/2k T(Z)"

for £ > 0.

(6,0 de < 5o

{6) Form (2.7),

B 1) = o )n/ exp[ (Za) t+z£x)]d§

Thus

llm E(z,t) = (21) / exp [¢(€,z)] dé
=4 see [3, p396]

O
Theorem 3.2 Let Q be bounded subset of R x (0,00) and is defined by
Q={(,t) eR" x (0,00) : €2 + €24 --- + €2 < R?* and0<t<T}
where R and T' are real constants and let
g 1 —e2 (3 g2)F
E(f’ t) _ WGXP [ C (Ze:l ét) t] f01" (&,t) € Q., (31)
0 for (£,1) & QL.
Then E(z,t) defined by (2.7) can be extended to the entire function E{z,t}) where z =
(z1,22,...,2,) € C* the n-dimensional complez space and satisfies the inequality
1 ()
< .

if and only if E(z,t) has a spectrum contained in Q with respect to t where Im z denotes the
imaginary part of z. Moreover, E(x,t) is tempered distribution.
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Proof. Now, we have the inverse of Fourier transform
1 B2 56
Bet) = G | Benetes ac (3.3)

where E@?) is defined by (3.1). Since the integral (3.3) converge uniformly over every
bounded domain in complex plane. Then E(z,t) can be extended to the entire function
__1 e Dl
E(z,t) = (2w)n/2LE(§,t)e dg€.
Thus
i(¢,2)
EG01 = Gy [ VEEDIIe) .

Now
e62) ei[flzl +E€222+...4En zn].

Let z; = z; +iy;. Then
6z} — gtlamgileze  pihnTa Gyt o—62y2  p—fn¥n
Therefore,

67} < pllim+Eayat.tinyn)

el&y)
elEwl

ity
6R| Im z|

A IA

IA

where ||£|| = (¢ + & +--- + 5,21)1/2 and ||y|| = | Im z|. Therefore |e¢?)] < efl Im 2|, Thus

E(z,t)| < 2']& /2[|E’(‘§T‘t_)|d£.eRl Im 2|

Since

1 e 1 e ———
— | B, 1)dé < —— E(¢,t)d
(2?1_)“/2-/‘; (E‘ )dé _— (271_),1/2 [Rn (f ) é
thus by (5) of Theorem 3.1, we obtain

[:s

i)

Bz, )] < — ! K( ;

- (27r)n/2 2n/2k(c2t)n/2k ]_"(

exp (R|Im z|)

w52

or

1 ()
|E(Z? t)l S 2”7rn/2k(c2t)"/2k I‘(‘%) exp (Rilm Zl) *

Suppose E(z,t) satisfies the inequality (3.2) then E(z,t) is analytic function and also is the
entire function. Then by Paley-Wiener-Schwartz Theorem, see[2 ,p162], E(£,t) has support
contained in  that is E(x, ) has the spectrum with respect to f contained in 2. Since E(¢, t)

given by {3.1) has compact support, then E(£,t) is the tempered distribution see [4, p148].
It follows that E(z,t) is also a tempered distribution. O



4 The the spectrum of E(z,t)

Theorem 4.1 A point (£,t) belongs to the spectrum of E{z,t), that is (£9,t) € §) =

supp E(&,t) where E(£,t) is given by (3.1) if and only if there exists a sequence of functions
©@n in the Schwartz space S such that ¢, converge narrowly to

s @ [l6o 41 (£ + (o)

where (€o, ) = £nz1 + oaza + -+ - + EonZn-

————

Proof. Let (é,t) € supp E(£,t), then by Beurling Theorem [4, p230-231] there exists a
sequence ¢n(z,t) € § such that

E(z,t) * gp(z,t) — exp[i ((z, ), (£0,£))] narrowly

where

(($1t)v(€0=t)) = (("‘51:1:21--- :xn:t)a(EMs&OZa-" 1£0nvt))
= 21601 + T2k02 + - + Tnbon +

It follow that the Fourier transform

—_——— —— 1
nlZ,t

@) e Don(ert) — G [ exl-ite Do li (0, €0, 0)] do

&t ) a
= it fo T e =i 60
¥ n

Thus
————— eitz
n(z,t) — —4 é —£
wn(z,t) B (€ — &o)
-— eit2 (27r)ﬂ/2 CZEE]mct
T2 © 5(€ — &) by (26)
where |§|2 = ?:l 6;2

Thus, by the property of the Dirac-delta distribution 6{£ — &) we obtain

—— .

Gn(T,t) —> ¥ Mol ™5 (e g5,

By the inverse of Fourier transform

wnlz,t) —

] H6T) [eitz_eﬂzlﬁolz"tg(f - 50)} df

; ;42 2 2k
e"(EO:I).e"t ‘ec |50| t

(21:-)11/2
_ 1
N (2m)n/?
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Thus
1

enlz,t) — @) exp [c2|§g|2kt +4(t? + 50,:1:))] narrowly. (4.1)

Suppose (4.1) hold, we have

1 e L
(2m)n/2 e <[40l
1 ei(t2 +£0 rt)

~ @) Blgny)

(27r1)"/2 exp |6l +i(¢? + €o,0))| =

by (2.6)

since E——(E]'_:i) is defined by (3.1). It follows that (£g,t) belongs to the spectrum of E(z,t). O

Theorem 4.2 Consider the solution u(z,t) = E(z,t) * f(z,t) of the equation (2.4).

(1) Ifu(z,t) =0 for any fized t and for every x € R" then the Fourier transform HETE) =0
on the spectrum of E(z,t).

(2) Ifm = 0 on the spectrum of E(z,t} then the spectrum of u(x,t) is a perfect subset
of the boundary of the spectrum of E(zx,t).

Proof. (1) Suppose (£y,t) belongs to the spectrum of u(x,t), then by Beurling’s
theorem there exists a sequence ¢,{z,t) € § so that u(z,t) * p,(z,t) converge narrowly to

exp [i{(z, 1), (€0, T))].
Thus

u(z,t) * enlz,t) = (E(z,1) * f(2,1)) * pnlz, 1)
=0 V(z,t) € R* x (0,0).

Now, for fixed ¢

(E(z,t) * f(z,1)) * palz, t) = flz,t) * (E(z,t) * on(z,1))

= [ @D(E e~y 0dy
for all z € R™ and ¢ is fixed. Thus
0= [ F@tE *pu)(0 - )y

converges by the Lebesque theorem to

[ 1w 0elit-u.0, €00l = [ @ ne oDy

= (2m)" 2 (g0, 1) = 0

Thus fm) = 0. It follows that m = 0 on the spectrum of E{z,t).

]



(2) Let (£o,1) belongs to the spectrum of u(z,t), by the Beurling theorem there exists a

sequence ¢, € S so that u(z,t) * pn(z,t) converges narrowly to expli{{z,t), (£, t))]. For any
function 3 € &, then the convolutions

e pn D) @t) = [ (Bxfripn) = nthply. ) dy

for every x € R™ and t is fixed.
And such convolution converges by the Lebesgue theorem to

/ _expi((z — y, ), (60, )] (y, 1) dy = {17+ o)) /l; exp [—i(y, &) ¥(y, t) dy
= (2r)"? exp [i (¢? + (2,&0))] ‘4’(50, (4.2)

We now show that (&g, ) belongs to the boundary of the spectrum of E{z,t) only not belongs
to anywhere else.

If (£g,t) belongs to the complement of the spectrum of E(z,t), there exists a function
¥(z,t) € S whose Fourier transform (&) is supported by a neighborhood of (£,1) lying

wholly outside the spectrum of E(z,t) with (&g,t) = 1. Thus in this case E(z,t) * ¢(z,t)
vanishes identically.

Therefore, (E * f x ¢, ¥ 1) (z,t) also vanishes identically. Thus from (4.2), we obtain
gbm) = 0 contradict w’(f‘?}) = 1.

It follow that (£p,t) does not belong to the complement of the spectrum of E(x, ).

Similarly, if (£g, t) is an interior point of the spectrum of E(z,t), by the hypothesis there is
a neighborhood of (&g, ¢) for which m = 0. We choose ¥{z, ) so that @ is supported
by the neighborhood and satisfies d)m) = 1. Now f(z,t} = 0, since f(£,t) = 0. Thus
(f *) (z,t) =0 and also (E * f x @, *9¢) (z,t) = 0.

Thus, from (4.2) we obtain tpm) = ( contradiction. Therefore (£p,t) is not an interior
point of the set where m = 0, nor of the complement of the spectrum of E(z, t). It follows
that the point (£g,t) belongs to the boundary of the spectrum of E(z,t) only.

To show that the spectrum of u(z,t) is perfect, is to show that there is no isolated point
in that spectrum. The details of proving see {4, p233-234]. W

)
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ON PROPERTY (H) AND ROTUNDITY OF DIFFERENCE
SEQUENCE SPACES

A. KANANTHAIL, M. MUSARLEEN, W. SANHAN, AND S. SUANTAI"

ABSTRACT. In this paper, we define a modular on difference sequence space
£(A, p) and consider it equipped with the Luxemburg norm induced by the mod-
ular, where p = (pi) is a bounded sequence of positive real numbers with pi > 1
for all k € N. The main purpose of this paper is to show that €(A, p) has property
(H} and we also show that €(A, p) is rotund if and only if p; > 1 for all £ € N.

1. INTRODUCTION.

Convexity properties of Banach spaces is an important topic in functional anal-
ysis and plays an important role in infinite dimensional holomorphy. In order to
study the geometric properties of Banach spaces, Clarkson [5] introduced the very
important class of rotund (strictly convex) spaces. Since Clarkson’s paper, many
authors have defined and studied various convexity properties lying between uniform
convexity and rotundity (see (2, 3, 5, 12, 14, 17]. )

Among the geometrical properties of Banach spaces, property (H) has proved
to be particularly important and has been studied by various authors. Criteria for
property (H) in Orlicz spaces and Orlicz sequence spaces were given by S. Chen
and Y. Wang [4] and C. Wu, S. Chen and Y. Wang [20]. R. Pluciennik, T. Wang
and Y. Zhaag [19] obtained necessary and sufficient conditions for H- points and
denting points in Orlicz sequence spaces.

In [7], criteria are given for Musielak-Orlicz sequence spaces to have property
(H).

In this paper, we introduce the difference sequence space £(A, p), when p = (pg)
is a bounded sequence of positive real number with p, > 1 for all £ € N, and
consider it equipped the Luxemburg norm. We show that £(A, p} has property (H)
and establish criteria for rotundity.

We begin by introducing the basic notations and definitions. In the following,
Let R be the real line and N the set of natural numbers.

For a Banach space X, we denote by S{X) and B(X) the unit sphere and unit
ball of X, respectively. A point zp € S(X) is called:

a) an extreme point if for every z,y € S(X) the equality 2z¢9 = = + y implies
x =y,

b) an H-point if for any sequence (z,) in X such that ||z} = 1 as n — oo, the
weak convergence of (z,,) to z¢ (written z, — zp) implies that [[z, — z{l = 0 as
n — 0o;

2000 Mathemnatics Subject Classification. 46B20, 46B45, 46E30.
Key words and phrases. Property (H), rotundity, difference sequence spaces.
* Corresponding author.
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A Banach space X is said to be rotund (R}, if every point of S{(X) is an extreme
point. X is said to posses property (H) provided every point of S{X) is an H-point.
For these geometric notions and their role in Mathematics we refer to the mono-
graphs [2], [8], and [17]. Some of them were studied for Orlicz spaces in (3], [6], [9],
[10], [11], [19], and [20].
Let X be a real vector space. A functional g: X — [0,00] is called a modular if
it satisfies the conditions
(i} o(z) =0 if and only if z = 0;
(i) p(azx) = p(z) for all scalars a with ja| =1 ;
(i) plaz + By) < ofz) + o(y), foraliz,y € X andall o, § > 0 with a+ 8 = 1.
The modular p is called convez if
(iv) olaz+By) < ap(z)+Po(y), forallz,y € X andallo, B > O witha+5 =1,
If p is a modular in X, we define

X,={zeX: Alil'&_g(;\m) =0},

and X, ={z € X : p(Az) < oo for some A >0 }.
It is clear that X, C X7. If p is a convex modular, we define

z
. =1 : -1 < .
(1.1) el = inf{A > 0: o (/\) <1}
Orlicz (18] proved that if ¢ is a convex modular in X, then X, = X and ||.|| is
a norm on X, for which it is a Banach space. The norm ||.|| defined as in (1.1) is

called the Luxemburg norm.
A modular ¢ on X is called

(a) right-continuous if limy_,;+ o{Az) = o(z) for all z € X,
(b) left-continuous if limy_, - o(Az) = o(z) for all z € X,
(¢) cotinuous if it is both right-continuous and left-continuous.

The following known results gave some relationships between the modular g and
the Luxemburg norm {|.{f on X,.

Theorem 1.1 Let p be a convez modular on X and let x € X, and (z) @
sequence in X,. Then ||z, — z|| = 0 as n — co if and only if p(A(zy, — ) 2 0 as
n — oo for every A > 0.

Proof. See [16, Theorem 1.3].

Theorem 1.2 Let ¢ be a continuous conver modular on X. Then
(1) x|l < 1 if and only if p(z) < 1.
(it) [lz]] € 1 if and only if p{z) < 1.
(ii) ||zl =1 if and only if o(z) = 1.
Proof. See [16, Theorem 1.4].

Let us denoted by £° the space of all real sequences and let p = (py) be a bounded
sequence of positive real numbers. In [13], Kizmaz introduced the sequence spaces
loo(A), co(A) and c(A) by considering the difference sequence Az == {(Tp —~ Ti1)ior
for any sequence z € {7 | where €4, ¢y an ¢ are Banach spaces of bounded, null and
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convergent sequences, respectively. In [1], these sequence spaces were extended to
(A, p), co(A, p) and c(A, p), where, for example
boo(A,p) = {z €1’ . Az €ln(p)}
with
boo(p) = {z € 1% : sup|zx[P* < oo}
k

In [1] and [13] the authers determined the Kéthe-Toeplitz and generalized Kothe-
Toeplitz duals of these spaces and consider various matrix transformations.
In this paper we introduce the space (A, p) defined analogously as follows,
A p)y={zcl® : Az ctp)},

where -
tp) = {e e l® : S jak)* <o0}.
k=1

and study some of its geometric properties.
For details of the spaces £,,{p) and £(p), we refer to [15].
For z € £(A, p), we define

o0
op{z) = |x(1)| + Z |z(k) — z(k + 1}|P*
k=1
If pr > 1 for all k € N, we have, by the convexity of the functions ¢ — |{|’* for each

k € N, that g, is a convex modular on £{A,p). We consider £(4A,p) equipped with
the Luxemburg norm given by

Izl = inf{e > 0 gp(g) < 1}.

A normed sequence space S is said to be a K-space if each coordinate mapping
Py, defined by Pi{z) = zy, is continuous. If S is both a Banach and a K-space, it
is called a BK-space.

Throughout this paper we let M = sup, p, and assume that p, > 1 forall k € N

2. MAIN RESULTS

We begin by giving some basic properties of the modular on the space £(A. p).

Proposition 2.1 For z € {(A,p), the modular g, on €(A,p) satisfies the following:
(i) f 0 < a <1, then aMpy(=) < p,(z) and gy(az) < agy(z),
a
(ir) if a > 1, then p,(z) < aMQp(E),
a

(ii1) if a > 1, then py(z) < app(x) < pplaz).
Proof. It is obvious that (iii) is satisfied by the convexity of g,. It remains to prove
(i) and (ii).

For 0 <a <1, we have

op(z) = |z(1)] + > lz(k) — z(k + 1){Px
k=1
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_ :1:(1 2 |a(z(k) — z(k + 1) P

= +§ -

S oM a | 2(1) +0M§:xk)-:ck+l)
¢ k=1

=a QP(E)

It follows by the convexity of ¢ that gp(az) < agy(z) , hence (i) is satisfied.
1

Now, suppose that @ > 1. Then ~— < 1. It follows from (i) that
a

i\M 1\ M z/a T
(E) Qp(-f) = (a) Op (I/_a) <op (E) ;
so that g,(z) < aMg, (E) , hence (ii) is obtained. a
a
Proposition 2.2 The modular g, on €(A,p) is continuous.

Proof. For A > 1, by Proposition 2.1 (ii} and (iii), we have

(2.1) op(z) < Aop(z) < pp(Az) < AMp,(z)

By taking A — 1% in (2.1}, we have limy_,;+ 0,{Az) = gp(z). Thus g, is right-
continuous. If 0 < A < 1, by Proposition 2.1 (i), we have

(2:2) MMo,(z) < op(Az) < Agp(z)
By taking A — 17 in (2.2), we have that lim,_,;- gp{Az) = gp(z), hence, g, is
left-continuous. Thus g, is continuous. O

Next, we give some relationships between the modular p, and the Luxemburg
norm on £(A, p).

Proposition 2.3 For any z € £(A,p), we have

() if 2] < 1, then gy(z) < |,

() of |lzll > 1, then gp(x) 2 iz,

(113) jjz|| = 1 if and only if pp(z) = 1,

(iv) ||z]l <1 of and only if pp(z) < 1,

(v} |lz|l > 1 if and only if pp(x) > 1,

(vi) if 0 < a < 1 and ||z|| > a, then gy(z) > a™ , and

(vii) if a > 1 and ||z|| < e, then g,(z) < a*.
Proof. (i) Let ¢ > 0 be such that 0 < e < 1 — ||z|, so ||z]| + € < 1. By definition of
Il - ), there exists X > 0 such that ||z|| + ¢ > A and ¢(3) < 1. From Proposition

2.1(1} and (iii}, we have
((HIH +€) )
Cp I\ z

er ({2l +€)5)

IA

Qp(x)

i
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< (llzll + )e(3)

< izl +
which implies that g,(x) < ||zf], so (i) is satisfied.

-1
llfl:lmu , then 1 < (1= 9lzll < [zl By

definition of || - || and by Proposition 2.1 (i), we have

L<e (W)

S T\
lz]| —1

Izl
(11) is obtained.
Since g, is continuous (Proposition 2.2) , (iii) and (iv) follow directly from The-
orem 1.2.
(iv) follows directly from (i) and (iii).
(v) follows from (iii) and (iv).

(vi) Suppose 0 < @ < 1 and |jz|| > . Then ||EH > 1. By (v), we have Qp(z) > 1.
a

(ii) Let ¢ > 0 be such that 0 < ¢ <

so (1 —e}||z|] < gp{z) for all € € (0, ). This implies that ||z|| < gp(z), hence

Hence, by Proposition 2.1(i), we obtain that gp(z) > aMQp(f) > aM.

(vii) Suppose a > 1 and ||z|| < a. Then uE” < 1. By (iv), we have Qp(-:;—:) < 1. If
a
a = 1, it is obvious that g,(z) < 1 = aM. If a > 1, by Proposition 2.1(ii), we obtain
that op(z) < aMQp(E) <aM. O
a

Proposition 2.4 Lel (z,) be a sequence of elements of £(A,p).

(i) If l|lza)l = 1 as n — oo, then pp(zn) =1 asn — oo,

(i1} [|zall = 0 as n — oo if and only if pp(zn) = 0 asn — co.
Proof. (i) Suppose ||z,|| =+ 1 as n — co. Let € € {(0,1). Then there exists ¥ € N
such that 1 — ¢ < ||zp|| < 1+ € for all n > N. By Proposition 2.3 (vi) and (vii), we
have (1 — €)M < g,(zn) < (1 + €)M for all n > N, which implies that g,(zy) — 1 as
n — oo.
(ii) The only part of (ii) is true by Theorem 1.1, so we need to show only the if
part. Suppose |[z,|l /& 0 as n — oco. Then there is an ¢ € (0,1) and a subsequence
{(n,) of (z,) such that ||z,,|| > € for all £k € N. By Proprosition 2.3 (vi), we have
0p(Za,) > €M for all k € N. This implies gp(z,) 7 0 as n = o0, O

Next, we shall show that £{A,p) has property (H). To do this, we need two
lemmas.

Lemma 2.5 The space ¢{A,p) is a BK-space.

Proof. Since (A, p) equipped with the Luxemburg norm is Banach, we need only
show that £(A,p) is a K —space. Suppose (z,) C €(A,p) suth that z, — 0 as
n — oo. It follows by Proposition 2.4(1i) that g,(z,) = 0 as n. — oc. This implies
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that
za(1)] =0 as n— oo and
|zn(k) —zp(k+1)] 50 asn — co forall k€ N,

By induction, we have z,(k) — 0 as n — oo for all kK € N. Hence Pi(z,) —
0 asn — oo for all K € N. This implies that Py is continuous for all k € N.

Lemma 2.6 Let x € £(A,p) and (z,) C €A, p). If 0p(zn) = 0p(z) as n — 0o and
Zu(i) 2 z(i) asn > oo for alli € N, then T, = 2 as n — oo.

Proof. Let ¢ > 0 be given. Since g,(z) = |z(1)]| + >_722, [z(k) - z(k + 1)|P* < o,
there is kg € N such that

oo

(2.3) S fa(k) - m(k + D < £ oo

3 9oM+l°
k=ko+1

Since pp{zn) = 2p(z) as n — o0 and x,(i) -+ (i) as n — oo for all i € N, there is
ng € N such that for all n > ny,

ko
(2.4) op(wn) ~ (Ixn(l)l + 3 [za(k) - oalk + 1)|”‘=)

k=1
ko

< oplz) — (|1'(1)l + 3 lolk) —z(k + l)lpk) + 3_5@7
i=1

and
ko

(25)  lan(1) — 2 (D] + Y l(za(k) + (k) = (@alk + 1) = alk + DI < 3.

k=1
It follows from (2.3), (2.4) and (2.5) that for n > ng,

0p(tn ~ ) = |2a(1) — 2(1)] + D lzn(k) — 2(k)) = (Zalk + 1) — 2(k + 1))
k=1

= lza(1) - 2(1)] + 3 [(zalk) — 2(K)) ~ (alk + 1) - 2k + D)

k=1
+ > Hanlk) = 2(R)) — (zalk + 1) = alk + 1)
k=ko+1
< D opaM( i‘ |zp (k) — 2 (k + 1)|P* + Z lz(k) = x(k + 1)|P*)
3 k=ko+1 k=ko+1
ko
= =+ 2M(gp(2a) — (D] + 3 fan(k) = zalk + D)
k=1

+ Z k) — z(k + 1)[P%)

k=kg+1
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3+2M(gp — (J=(1) |+Z[I ) —z(k + 1)) + 3-62*"”’

+ 3 |x(k) — z(k + ¥
ko+1

£ M
3+2Y0 > lzk) - z(k+1)
k=ko+1
€ oM+1__ & £
< - +2 —
3t
E.

3-2M)

3 9M+1 + 3

This show that p,(z, —z) — 0 as n — co. Hence, by Proposition 2.4 (ii), we
have |z, — z|| -+ 0 as n — co.

Theorem 2.7 The space £(A,p) has property (H).

Proof. Let z € S(4(A,p)) and (z,) C A, p) such that ||z,]] = 1 and z, = z as
n — oo. From Proposition 2.3 (iii}, we have g,(z) = 1, so it follows from Proposition
2.4 (i) that gp(z,) — op(z) as n — oo. By Lemma 2.5, we have that the coordinate
mapping B : £(A,p) — R is continuous, so it follows that z,(i) = z(¢) as n = o
for all + € N. Thus, we have by Lemma 2.6 that z, —» z as n — oo. £

Theorem 2.8 The space £(A,p) is rotund if and only if p > 1 for all k € N.

Proof. Necessity. Suppose that there is kg € N such that py, = 1. Let = =
(1,1,1,...) and y = (0,0,0...,0,1,1,1,...). Then z # y and it is easy to see that
e —
kg

0p(z) = 0p(y) = 0p (m ;y) =1.

By Proposition 2.3(iii) , we have ¢,y and Tty € S{L(A,p)), so that £(A,p) is not

rotund.
Sufficiency. Suppose that p, > 1 for all k € N. Let z € S{({(A,p)) and y,z €

B(é(A,p)) with z = E; By convexity of g, and Proposition 2.3(iil), we have

+-=-=1.

N | =

1
1= 0p(z) < 5(ep(y) + 0p(2)) <
This implies that

(2.6) op(y) = 0p(2) = 1

(27) 00(2) = 3 (ap(v) + 0p(2)).
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By (2.7), we have

‘g(l)+z(1) +§’: (

2
k=1

=2 (mm PICEC 1)|P'=) s (lz(l)l * 2 lelh) — =k + 1)|‘°‘=)

(Iy(lil +1z(1)) (Z ly(k) — y(k + )P + > 2(k) — =k + 1)1"") ;

y(k) — y(k +1)) + (2(k) — 2(k + 1)) |>*

2

k=1
which implies that

(2.8) ly(1) + z(1)] = [y(1)| + [2(1)| and

(29) |WE) Zyl+1)) * (2(k) — 2(k + 1)) [P*

(ly(k) — y(k + DP* + [2(k) — 2(k + 1))

l\JIP—‘

forall ke N.

Since the function ¢ — |[{[P* is strictly convex for every £ € N, we see that({2.9)
implies,

(2.10) y(k) —y(k +1) = 2(k} — 2(k+ 1) forallk € N,

It follows from (2.6) and (2.10) that |y(1)| = |z(1)|. This implies by (2.8) that
y(l) = 2(1). This, together with {2.10), yields by an inductive argument that
y(k) = z(k) for all k € N. Hence y = z.
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We define a generalized Cesaro sequence space ces{p), where p = (p;) is abounded
sequence of positive real numbers, and consider it equipped with the Luxemburg
norm. The main purpose of this paper is to show that ces(p) is k-nearly uniform
convex {k-NUC) for k = 2 when limp . inf pp > 1. Moreover, we also obtain that
the Cesaro sequence space cesy (where 1 < p < o) is k-NUC, kR, NUC, and has a
drop property.

2000 Mathematics Subject Classification: 46B20, 46B45.

1. Introduction. Let (X, |- l} be a real Banach space and let B(X) and $(X)
be the closed unit ball and the unit sphere of X, respectively. For any sub-
set A of X, we denote by conv(A) (resp., €onv{A)) the convex hull (resp., the
closed convex hull) of Clarkson [1] who introduced the concept of uniform
convexity, and it is known that uniform convexity implies reflexivity of Banach
spaces. There are different uniform geometric properties which have been de-
fined between the uniform convexity and the reflexivity of Banach spaces. Huff
[6] introduced the nearly uniform convexity of Banach spaces. He has proved
that the class of nearly uniformly convexifiable spaces is strictly between su-
perreflexive and reflexive Banach spaces.

A Banach space X is called uniformly convex (UC) if for each € > 0, there is
6 > 0 such that for x,y € §(X), the inequality [|x — ¥ || > € implies that

”%(x+y)“<1—6. (1.1)
For any x & B(X), the drop determined by x is the set
D{x,B(X)) = conv({x}uB(X)). (1.2)

Rolewicz [12], basing on Dane§ drop theorem [4], introduced the notion of drop
property for Banach spaces.

A Banach space X has the drop property (D) if for every closed set C disjoint
with B(X), there exists an element x € C such that

D(x,B(X))nC = {x}. (1.3)
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. A Banach space X is said to have the Kadec-Klee property (or property (H)} if
every wei\kly convergent sequence on the unit sphete is convergent in norm.
In [13], Rolewicz proved that if the Banach space X has the drop property,
then X is reflexive. Montesinos [11] extended this result by showing that X has
the drop property if and only if X is reflexive and has the property (H).
Recall that a sequence {x,} C X is said to be e-separated sequence for some
e>Qif

sep (xn) =inf {||xn —xm||: 1t £ m} > €. (1.4)

A Banach space X is said to be nearly uniformly convex (NUQ) if for every
€ > 0, there exists § € (0,1} such that for every sequence {x,) & B(X) with
sep(xy) > €, we have

conv{xa) n{{1-8)B(X)) £ 2. (1.5)

Huff [6] proved that every NUC Banach space is reflexive and it has property
(H).

Kutzarova [7] has defined k-nearly uniformly convex Banach spaces. Let k =
2 be an integer. A Banach space X is said to be k-nearly uniformly convex (k-
NUC) if for any € > 0, there exists & > 0 such that for any sequence (x,) C B(X)
with sep(xy) = €, there are ny,n;,...,n; € N such that

xﬂl +Xn2 +xn3 +ore +x:;k
k

<1-4. (1.6)

Clearly, k-NUC Banach spaces are NUC but the opposite implication does not
hold in general (see [7]).

Fan and Glicksberg [5] have introduced fully k-convex Banach spaces. A Ba-
nach space X is said to be fully k-rotund (kR) if for every sequence (x,) ¢ B(X),
fxn, +Xng + -+« +xn, 0l = k as ny,nz,..., % — oo implies that (xy) is conver-
gent.

It is well known that UC implies kR and kR implies (k + 1)R, and kR spaces
are reflexive and rotund, and it is easy to see that k-NUC implies kR.

Denote by N and R the set of all natural and real numbers, respectively.

Let X be a real vector space. A functional ¢ : X — {0, ] is called a modular
if it satisfies the following conditions:

(i) o(x)=0if and only if x = 0;

(ii} o(ex) = p(x) for all scalar ox with || = 1;

(iii) plox+By) =pe(x)+eo(y)forallx,y e Xandalle, > 0withox+8 = 1.
The modular g is called convex if

{iv) e{ax + By) < xolx) + Boly) for all x, € X and all o, f = 0 with

x+p=1.
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If g is a modular in X, we define

Xg = {x eX:alir(ﬁQ(z\x) = 0}.

(1.7)
Xg =[x € X:p{Ax) < oo for some A > 0],
It is clear that X, ¢ X ¢ - Il ¢ is a convex modular, for x € X,, we define
, X
IESl =1nf{‘\>0:g(7\-) sl}. (1.8)

Orlicz {10] proved that if ¢ is a convex modular on X, then X, = X ¢ and il - |
is a norm on X, for which X, is a Banach space. The norm || - |[, defined as in
{1.8), is called the Luxemburg norm.

A modular g is said to satisfy the §;-condition (¢ € &) if for any € > 0,
there exist constants K = 2 and a > 0 such that

e(2u) <Kg(u)+e (1.9)

for all u € X, with g(u) < a.

If ¢ satisfies the 6;-condition for any a > 0 with K > 2 dependent on a, we
say that g satisfies the strong §:-condition (g € &3).

The following known results are very important for our consideration.

THEOREM 1.1. Ifp € &5, then forany L > 0 and & > 0, there exists § > 0 such
that

e(u+v)-eg(u)] <& (1.10

whenever u,v € X, with g(u) < L and g(v) < 4.
PROOE. See[2, Lemma 2.1]. o

THEOREM L1.2. (1) If ¢ € 63, then for any x € X,, lIxll = 1 if and only if
e(x)=1.

(2) If ¢ € 8, then for any sequence {xy) in X, lxuli — 0 if and only if
o(xn) —~0.

PROOF. See (2, Corollary 2.2 and Lemma 2.3]. (]

THEOREM 1.3. If ¢ € 8, then for any € € (0,1), there exists & € (0,1) such
that p{x) <1-¢ implies f|x|| = 1-6.

PROOF. Suppose that the theorem does not hold, then there exist € > 0 and
Xn € Xp such that p{xn} <1-€and 1/2 < {lxu|l 7 1.Let an = 1/|ixn||— L. Then
an —0asn— . Let L =sup{e(2xy); n € N}. Since g € 83, there exists K = 2

184



Py

I VYN R .
A AL Y e

W. SANHAN AND S. SUANTAI
such that
e(2u) = Kg(u)+1 (1.11)

for every u € X, with g{u} < 1.
By (1.11), we have p(2x,) < Kpi(xy)+1 <K+1forallnm e N, Hence, 0 <L <

oo, By Theorem 1.2(1), we have

= _xn_ = —_
lmg(uxn”) e{2anxn+{1—an}xn)

< an{2x0) + (1 -ay)e(xn) (1.12)
<apl+(1—€) —1-¢,
which is a contradiction. -

Let 19 be the space of all real sequences. For 1 < p < o0, the Cesaro sequence
space (cesp) is defined by

o " p
cesp={xel°:z (lZIx(i)l) <oo} (1.13)
n=1 ni=1

equipped with the norm

- " py Uip

1
x|l = (Z (— > |x(i)|) . (1.14)
ti=1 ni=1

This space was first introduced by Shiue [14], which is useful in the theory
of Matrix operator and others (see [8, 9)). Some geometric properties of the
Ceséro sequence space ces, were studied by many authors. It is known that
(cesp, [ - 11} is locally uniformly rotund (LUR) and has property (H) (see {9]). Cui
and Meng [3] proved that (cesp, || - II) has property (£).

Let p = (pn) be a sequences of positive real numbers with p, = 1 for all
n € N, The generalized Cesaro sequence space ces(p) is defined by

ces(p} = {x €’: p(Ax) < oo for some A > 0}, (1.15)

where

o0 n n
plxy= 3 (lz lx(i)l) (1.16)
n=1 nl

i-1

is a convex maodular on ces{p).
We consider ces(p) equipped with the Luxemburg norm;

le|1=inf{£>0:p(§) sl}. (1.17)
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When p, = g for all n € N, we see that ces(p) = ces,; and the Luxemburg norm
on ces( p) given in (1.17) is equal to the norm || - || given in (1.14). In this paper,
we show that ces{p) equipped with the Luxemburg norm is k-NUC for k = 2,
s0 it is kR and (NUC).

Throughout this paper, we assume that p = (p,) is bounded with

I'!i_r’rulc‘infp,, >1 {1.18)

and that M = sup,, pa.

2. Main results

PROPOSITION 2.1. For x € ces(p), the modular p on ces(p) satisfies the fol-
lowing properties:

(1} if0<a <1, thenap(x/a) < p{x) and plax) < ap(x),

(2) ifaz=1, thenp{x) =aMp(x/a),

(3) ifa=1, then p(x) <ap(x) < plax).

PrROOF. All assertions are clearly obtained by the definition and convexity
of p. (m]

PROPOSITION 2.2, For any x € ces(p),
(1) if llxll = 1, then p(x) =< {xil,

(2) if lixll > 1, then p(x) = lix],

(3) llxll =1 if and only if p(x) = 1.

PROOFE. (1) Suppose that || x|l < 1. If x =0, then p(x) = |Ix|t = 0. Suppose
x # 0. By the definition of || - ||, there is a sequence (e,) with €, | [|x|l such that
p({x/e,) < 1. This implies that p{x/||x||) < 1. By Proposition 2.1(1), we have

_ hxl-x ks
o) = o o )suxup(“x“)snxu. @.1)

(2) Suppose that llxll > 1. Then for € € (0, {llxli~1}/lixll), we have (1 —
€)||x|| > 1. By Proposition 2.1(1), we have

x pix)
Y (S P 22
<P\a—atxl) = T-enxi @2
so that (1 —e)ilx|l < p(x). By taking € — 0, we have p(x) = [|x]||.
{3) It follows from Theorem 1.2(1) because p € §3. (]

PROPOSITION 2.3. For any L > 0 and £ > 0, there exists & > 0 such that
lp(u+v)-pu)| <= (2.3)

whenever u,v € ces(p) withp(u) =L and p{v) < 8.

PrROOF. Since p = (pn) is bounded, it is easy to see that p € 3. Hence, the
proposition is obtained directly from Theorem 1.1. ]
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PROPOSITION 2.4. For every sequence (x,) € ces(p), ||xnll — 0 if and only
'Tp(xn) - 0.

PROOE. It follows directly from Theorem 1.2(2) because p € &3. a

THEOREM 2.5. Foranyx €ces{p) ande € (0,1}, there exists & € (0,1) such
that p(x) < 1—¢ implies ||x]| <1-6.

PROOF. Since p € 8}, the theorem is obtained directly from Theorem 1.3.
O

THECREM 2.6. The space ces(p) is k-NUC for any integer k = 2.

PROOEF. Lét € > 0 and {xy) C B(ces(p)) with sep(xy,) = €. Foreachm e N,
let

X = (0,0....,O,x,,(m),x,.(m+1),...). (2.4)

m-~1

Since for each i € N, (x,(i));., is bounded, by using the diagonal method,
we have that for each m € N, we can find a subsequence {x, 4} of (xn) such
that (x, J (i)) converges for each i € N, 1 < i < m. Therefore, there exists an in-
creasing sequence of positive integer (¢,,) such that sep((x,'{} }i>tm) = €. Hence,
there is a sequence of positive integers (rm)m-; With #1 <72 <73 <--- such
that ||x? | = €/2 for all m € N. Then by Proposition 2.4, we may assume that
there exists 7 > 0 such that

p(x;fn) =n VmeN. (2.5)

Let o« > O be such that 1 < o < limy, e inf py. For fixed integer k = 2, let €, =
((k®1-1)/(k-1)k*)(nf2). Then by Proposition 2.3, there is a & > 0 such that

lptut ) ~plu)] <& 2.6)

whenever p(u) < 1 and p(v) < 4.

Since by Proposition 2.2(1) p(x,) <1 for all n € N, there exist positive inte-
gers my; (i =1,2,...,k—1) with m; <m; < -+ <my_; such that p(x] ) <&
and « < p; for all j = my .. Define my = my_ +1. By (2.5), we have p(x;',',{‘k) =
n.Llets;=iforl <i<k-1andsg=tn,.

Then in virtue of (2.5}, (2.6), and convexity of function f;(u) = [u[?t (i e N),

we have
) Pn

X5 (l) +x.§2(i) toees +x3k(i)
k

)

i=1
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;

Xg (E)+ -+ +25,(0) )p"
k

Xy (0) + Xy (1) 4+ -« + X5, (D)
k

P

i=1

il (g_i X (D) + -+ + x4, (i) )”“
n=1 \ "oy k

o . . . ¥Pn
. Z (_1_%. X5y (B) + X5 (E) + -+« + x4, (0) ) re
n=n) +1 nixl k
my k n Pn

1 1

2 —les(i)l)
nalkj=l(nt'=l ’
RS (lZ X5y () + X5y (i) + -+ + g, (D) )""
n=my+l ni=l k

o . . R Pn
. Z (li Xp {1} + X3 (£} 4« -« + x4, (i) ) ve
n=mz+l ni-l k

2
oy Ek: (1 n o

- ‘_les ([”)
n=1kj=l ni.=1 !
, (12 Xy (£) + X5y (0) + <+ 4 X, (1)
n=nty+1 ni=1 k

= B e (D) b (D) 44 (D) ]
+ > ("’"Z 3 = T = ) +2¢€
n=mz+1 "’i=l
ey x n Pn

1 1

=3 —Zixs(in)
n=lkal(ni=l g

Pn

my 1 k 1 n Pn
SRR D WD) (;Zix,j(iﬂ)
n=ny_1+1 " j=k-1 i=1
® n R Pn
N BN i ) +k-1)e
nempet \Miail Kk
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Pn
. Co_ Pl )t p(xg ) 11 E .
= % +kr§1 nglx"‘(l)l

Pn
)

1 1 n Pn
+F Z (;izz:llxsk(l)) +(k—1)€1

n=nty+1
1 1 > {1z o
51_E+E[1" > (;g|x,k(i)|) ]

n=mg+1

Pn
1 < 1 )
+F Z ('ﬁle_;k(l)l) +(k—1)€1
n=mp+1

i=1

a-1_ o n Pn
S].+(k—l)£1—(k T 1) Z (lZL’CSk(I)‘)

n=w,+1 n {=1

kel
51+(k—1)el—( s )n

- (52)R)

(2.7)

By Theorem 2.5, there exist y > 0 such that §{x, +x5, +-- -+ x5 }/k[ < 1-y.
Therefore, ces(p) is k-NUC. O

Since k-NUC implies kR and kR implies R and reflexivity holds, and k-NUC
implies NUC and NUC implies property (H) and reflexivity holds, by Theorem
2.6, the following results are obtained.

COROLLARY 2.7. The space ces(p) is kR, NUC, and has a drop property.
COROLLARY 2.8. Forl < p < oo, the space ces, is k-NUC,

COROLLARY 2.9. For 1l < p < =, the space cesp is kR and NUC.
COROLLARY 2.10. For 1l <p < w0, the space cesy has the drop property.
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Some Geometric Properties of Cesaro Sequence Space

W. SANHAN® AND S. SUANTAI
Department of Mathematics, Chiang Mai University, 50200, Thailand
e-mail : suantailyahoo.com and winate_s€yahoo.com

ABSTRACT. In this paper we define a modular on the Cesaro sequence space ces(p) and
consider it equipped with the Luxemburg norm. We give some relationships between
the modular and the Luxemburg norm on this space and show that the space ces(p) has
property (H) but it is not rotund {R), where p = (p:) is & bounded sequence of positive
real number with pr. > 1 for all X € N.

1. Introduction

Let (X, |i.ll) be & real Banach space, and let B(X) (resp. S(X)) be the closed
unit ball {resp. the unit sphere) of X. A point £ € S{X) is an H-point of B(X) if
for any sequence (x,) in X such that |z,|| — 1 as n — oo, the weak convergence
of (z,,) to z (write z, — x ) implies that ||z, — || — 0 as n — oo. If every point
in S(X) is an H-point of B(X), then X is said to have the property (H). A point
z € §(X) is an extreme point of B(X), if for any y, z € §(X) the equality 2z = y+ =z
implies y = z. A point & € S(X) is an locally uniformly rotund point of B(X) (LUR-
point for short) if for any sequence (z,) in B(X) such that |z, +z| — 2asn — co
there holds ||z, — z|| — 0 as n — oo. A Banach space X is said to be rotund
(R), if every point of $(X) is an extreme point of B(X). If every point of S{X)
is a LUR-point of B(X), then X is said to be locally uniformly rotund (LUR). It
is known that if X is LUR, then it is (R) and possesses property (H). For these
geometric notions and their role in Mathematics we refer to the monographs |1}, {2],
[6} and {13]. Some of them were studied for Orlicz spaces in [3}, (7], (8], {9]and [14].

Let [ be the space of all real sequences. For 1 < p < oo, the Cesaro sequence
space {cesp, for short) is defined by

n

cesp={zel®: Z(;l; 2[:1:('5)[)? < oo}

a=1 i=1

equipped with the norm

Received December 4, 2001, and, in revised form, February 21, 2002.
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Il = (2 k@)
n=1 i=1
and -
Izl = (3= S =)
r=0 r

where 3 denotes a sum over the ranges 2° < i < 27%1,

It is known that these two norms are equivalent and ces, is Banach with respect
to each of the twoe norms. This space was introduced by J. S. Shue {15]. It is useful
in the theory of matrix operator and others (see [10] and [12]). Some geometric
properties of the Cesdro sequence space {cesp, ||.||) were studied by many mathe-
maticians. It is known that {(cesp, ||.||) is LUR and possesses property (H) (see [12]
). Y. A. Cui and H. Hudzik (4] proved that (cesp, ||.]|) has the Banach-Saks of type
pif p> 1, and it was shown in [5] that (cesp, |.||) has property (8).

Now let p = (px) be a bounded sequence of positive real number with p, > 1
for all £ € N. The Cesaro sequence space ces(p) is defined by

= =]
1 .
ces(p) = {z €1°: Z(lex(t)np"

r=0 *

where 3. denotes a sum over the ranges 2" <1 < 271,
For z € ces(p), let p(z) = 3 reo( 3 1z(2))P) and define the Luxemburg norm
on ces(p) by ’
lell =inf {e > 0: (3 <1}, = € ces(p).

The main purpose of this paper is to show that the Cesaro sequence space ces{p)
equipped with the Luxemburg norm has property(H) but it is not rotund, so it is
not LUR. Throughout this paper we let M = sup p,, and for x € I° we put

r
z|; = (z(1),z(2), ..., (2}, 0,0, ...)

and
zn—i = (0,0,...,0,z(i + 1), z(i + 2), ...).

2. Main results
First, we show that p is a convex modular on ces(p).

Proposition 2.1. The functional p is a conver modular on ces(p).
Proof. It is obvious that p{x) = 0 & z = 0 and p{az) = p(z) for all scalar & with
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jo] = 1. Let a > 0,8 > 0 with o+ 3 = 1. By the convexity of the function t — [¢|Pr
for every r € N, we have

ploz+By) =Y (;—,Z:la:c(i) + ﬂy(i)l)
r=0
<y (a—ZIx(z)l +Bz Zly(a)l)
r=0
<a3>(35w01) 555 (F5001)
r=0 T r=0
= ap(z) + Be(y)- g

Proposition 2.2. For = € ces(p),the modular p on ces(p) satisfies the following
properties
(i) if 0<a<1, then ap(Z) < p(z) and p(ax) < ap(z),
@) if a>1, then p(z) < aMp(2),
(iil) if a2 1, then p(z) < ap(z) < plaz).

Proof. (i) Let 0 < a < 1. Then we have

5 (350)

r=0

g(gf}]a )
S (sme)

r=0

>3 aM (l,zrjl%) '

r=0

—a’“’i(;D x )

r=0 r

T
= GMP(E)-

il

o(z)

By convexity of p, we have p{az) < ap(z), so (i) is obtained
(ii) is an easy consequence of (i) when a is replaced by e




W. Sanhan and S. Suantai

(iii) follows from the convexity of p. _ O
Proposition 2.3. For any z € ces(p), we have
@ i llzl <1, then p(z) < izl
) i llzh > 1, then p(z) > |z,
(i) ||zl =1 if and only if p(x) = 1,
(iv) liz|| <1 if and only if p(z) < 1 and
(v) llzll > 1 if and only if p(z) > 1.

Proof. (i) Let € > 0 be such that 0 <& <1 - ||z||, so [|z] + ¢ < 1. By definition of
[i-Il, there exists A > O such that ||z} + e > A and p($) < 1. By Proposition 2.2(i)

and (iii), we have
pz)<p ((”L;Elz)

= (Ulzll +o5)

< (zll + 9(3)
<=l +e

which implies that p{z) < |jz}]. Hence (i) is satisfied.

(ii) Let € > 0 be such that 0 < € < "xlrrl_|1' then 1 < (1 — €}||z} < |=].- By

definition of .|| and by Proposition 2.2(i), we have 1 < p ((1_:’)"1‘:) < (1-¢1)l[z|| plz),

so (1 — &)|lz|| < pfz) for all € € (0, Jl-’[’rll-_rl), which implies that ||z|| < p(z).

(iii) Assume that [|z| = 1. Let € > 0, then there exists A > O such that 1+e¢ > A\ >

]l and p(%) < 1. By Proposition 2.2(ii), we have p{z) < AMp(§) < AM < (1+e)M,

so (p(z))¥ < 1+ ¢ forall € > 0 which implies that p(z) < 1. If p(z) < 1, let

a € (0,1) such that p(z) < ™ < 1. From Proposition 2.2(i), we have p(£) <

—rp(z) < 1, hence ||zfl < a < 1, which is a contradiction. Thus, we have p(z} = 1.
" Conversely, assume that plz) = 1. By definition of |J.||, we conclude that ||z}] <

1. If ||z|| < 1, then we have by (i} that p(z) <€ ||z]| < 1, which contradicts to our
assumption, so we obtain that ||z = 1.

(iv) follows from (i) and (iii).
(v) follows from (iii) and (iv). O

Proposition 2.4. For z € ces(p) we have

(i) if 0<a<] andlzl|>a, then p(z) > a™ and
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(i) if a>1 and ||z}l <a, then p(z) < a™.

Proof. (i) Suppose 0 < @ < 1 and |z|| > a. Then ||Z| > 1. By Proposition 2.3(ii),

we have p(£) > 1. Hence, by Proposition 2.2(i), we obtain that p(z) > e™p(Z) >
M

aM.

(ii) Suppose @ > 1 and ||z|| < a. Then ”f»'l < 1. By Proposition 2.3(i), we have

p(2) < 1. If a = 1, we have p(z) < 1 = a™. If a > 1, by Proposition 2.2(ii), we

obtain that p{z) < aMp(Z) < aM. 0

Proposition 2.5. Let (x,) be e sequence in ces(p).
) If limpooo llznll =1, then lim,_ep{za) = 1.

(1) If limpooo p(Tn) = 0 then lima_. llzall = 0.

Proof. (i) Suppose lim, . [|Znlf = 1. Let € € (0,1). Then there exists N € N such
that 1 — € < J|za| < 1+ € for all n > N. By Proposition 2.4, (1 — )™ < p(z,) <
(1+ €)™ for all n > N, which implies that im, .., p(z.) = 1.

(ii) Suppose ||zn| #+ 0. Then there is an ¢ € (0, 1) and a subsequence (z,, ) of (zn)
such that [jxn, || > € for all ¥ € N. By Proposition 2.4 (i}, we obtain p(z,,) > e
for all k € N. This implies p(z,) #+ 0 as n — co. a

Lemma 2.6. Let (z,) be a sequence in ces(p).If p(xn) — p(z) and z.(k) — z(k)
Vk, then x, — x asn — 00.

Proof. Suppose that z,, /+ z. By Proposition 2.5 (ii), we have p(£a-2} /4 0.Without
loss of generality we may assume that there exists € € (0, 1) such that p(E:%) > ¢
for all n € N. Since (p(¥272))5%, is a bounded sequence, it must have a convergent
subsequence. Passing through a subsequence, if necessary we can assume p(#5-£) —
€0 for some €y > €. Since p(x) = limy.o0 p(z]2:) and (p(x|2:))32, is nondecreasing,
we have p(z) = sup{p(z!s.} : i € N}. So there exists i € N such that p(zjs:) >
p{z) —¢/2. Thus

(2.1} p(zn-ai) < /2.

Since z,(k) — z(k) for all k € N, we have

(2.2) p(Tnlai) — pzl2:) and p(

Tn—1I
"2 f2s) — 0 as n — co.

By the convexity of p together with {2.1) and (2.2), we have

g0 = lim P
Tn—ZI Tn— 2%
= Jim [p(—5—1la) + P(— 5~ In-2:)
. Tp—X . Ip — %
= lim p(=5—l2) + lim p(=5—In-2¢)

19
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. In — X .
= lim p(=5—|z}+ lim_o(

In— I ]
2 IN-—?')

. ITpn—ZX
=0+ lim p(~|n_2)
o0 2

< 3 Jlm planl-z0) + 5p(al-a)
= 2 Jim (ple) — plzalac)) + 5olelnai)
= 3(0(2) — plala)) + gp(zIn-n)

= S plaln-zr) + 5plzl-)
= plz|n_2:)

<€f2

< €p,

which is a contradiction. Therefore z,, — x as n — co. O

Theorem 2.7. The space ces(p) has the property (H).

Proof. Let = € S(ces(p)), 2, € Bces(p)) for all n € N such that z, — z and
{|zal] — 1 as n — co. By Proposition 2.3(iii}, we have p(z) = 1. By Proposition
2.5(1), we obtain that p{z,) — 1 as n — oo. So p(z,) — p(r) as n — co. Since
£n —— z and the i*® coordinate mapping #; : ces(p) — R, defined by m;(z) = =i,
is continuous, it implies that z,(i) — z(i) as n — oo for all 1 € N. It follows from
Lemma 2.6 that r, — z as n — oo. O

The following resuls is obtained directly from Theorem 2.7.

Corollary 2.8. For 1 <p < o0, {cesp, ||-fo) has property (H).

Remark 2.9. For a bounded sequence of positive real numbers p = (px) with
pr = 1 for all k € N, the space ces(p) equipped the Luxemburg norm is not rotund,
so it is not LUR. To see this we put

z=1{0,1,1,0,0,....) and y = (0,2,0,0,...)

Then x,y € S(ces(p)) because p(z} = p(y) = 1 . Since p(ZEY) = 1, we have by
Proposition 2.3 (iii) that ||Z5¥|| = 1. This shows that ces(p) is not rotund, so it is
not LUR.

Acknowledgements. The author would like to thank the Thailand Research Fund
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NARIN PETROT and SUTHEP SUANTAI
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We consider the generalized Teséro sequence snaces defined by Suantai (2003) and consider
it equipped with the Amemiya norm. The main purpose of this paper is to show that ces(, )
equipped with the Amemiya norm is rotund and has uniform Kadec-Klee property.

2000 Mathematics Subject Classification: 46B20, 46B45.

1. Introduction. In the whole paper, N and R stand for the sets of natural numbers
and real numbers, respectively. Let (X, {l - li) be a real normed space and B(X}{S(X))
the closed unit ball (the unit sphere) of X.

A point x € S(X) is called an extreme point if for any v,z € B(X) the equality 2x =
¥ +z implies v = z. }

A Banach space X is said to be rotund (abbreviated as (R)) if every point of $(X) is
an extreme point.

A Banach space X is said to have the Kadec-Klee property (or H-property) if every
weakly convergent sequence on the unit sphere is convergent in norm.

Recall that a sequence {x,} € X is said to be ¢-separated sequence for some £ > 0 if

sep (x,) = inf {llxn —xmll:n £ m} > & (L.1)

A Banach space is said to have the uniform Kadec-Klee property (abbreviated as {UKK)}
if for every £ > 0 there exists & > 0 such that for every sequence (x,) in §(X) with
sep(xy) > £and x, — x, we have || x|| < 1 —&. Every (UKK) Banach space has H-property
(see {3]). :

A Banach space is said to be nearly uniformly convex (abbreviated as (NUC)) if for
every £ > 0 there exists & € (0,1} such that for every sequence {x,) € B(X) with
sep(xyp} > £, we have

conv(xa) N ({1 -8)B(X)) + @. (1.2)

Huff [3] proved that every (NUC) Banach space is reflexive and has H-property and
he also proved that X is NUC if and only if X is reflexive and UKK.

A Banach space X is said to be locally uniform rotund (abbreviated as (LUR)) if for
each x € §(X) and each sequence {x,) C ${X) such that lim,_.[[x, + x|l = 2 there
holds limy . llxn —xff = 0.
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A continuous function ¢ : R — R is called convex if

cb(uﬂ.r)stb(u)+tb(v) (1.3)
2 2
for all w,v € R, If, in addition, the two sides of inequality (1.3) are not equal for all
u # v, then we call & strictly convex.
For a real vector space X, a function ¢ : X — [0, o] is called a modular if it satisfies
the following conditions:
(i) o(x}=01if and only if x = (;
(ii) g(ox) = p(x) for all scalar o with le| = 1;
{iii) plax+By) <po(x)+e(y)forallx,yeXandal &, B = 0O with ¢+ 8 = 1.
"The modnlar g is called convex if
(iv} plax+By) <op(x)+8ely) ferallx,yeXendal o, 20 with x+f=1.
For any modular g on X, the space

Xe = {x € X:¢(Ax) < o for some A > 0} (1.4)

is called the modular space. If g is a convex modular, the functions

! =inf{A >o:g(§) < 1},

1 (1.5)
flxclly = }g(f}z(l +o(kx))
are two norms on X, which are called the Luxemburg norm and the Amemiya norm,
respectively. In addition, l|lx]l = llx|l, < 2llx| for all x € X,, (see [6}).
A modular g is said 1o satisfy the A»-condition (¢ € A;) if for any £ > 0 there exist
constants K = 2 and a > 0 such that

e(2x) <Kp({x)+s£ (1.6)

for all x € X, with g(x) = a.

If g satisfies the A;-condition for all a > 0 with K = 2 dependent on a, we say that ¢
satisfies the strong Az-condition (g € A3).

Let £° be the space of all real sequences. The Musielak-Orlicz sequence space £y,
where & = (¢;){2, is a sequence of Orlicz functions, is defined as

£o = {x = (x(i))7, € £°: pe(Ax) <  for some A > 0}, (1.7)

where po(x) = X1 ; Pi(x(i)) is a convex modular on £s. Then £¢ is a Banach space
with both Luxemburg norm || - ||, and Amemiya norm | - || 2 (see [6]). In [2], Hudzik
and Zbaszyniak proved that in the space £4 endowed with the Amemiva norm, there
exists k € R such that

Ixllpg = T (1 +ea(kx)) (x € s) (1.8)

if ¢p;(u)fu — 0 as u — oo forany i € N.
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For I < p < oo, the Cesdro sequence space (cesp) is defined by

o n v
cesp ={x€€°: 2 (-,I;Z |x(i)|) <oo} (1.9

n=1 i=1

equipped with the norm

-1

o n 4 llp
x|l = (Z (':I > lx(i)l) ) . (1.10)
n=1 3

This space was first introduced by Shue [8]. It is useful in the theory of matrix op-
erator and others (see [4, 5]). Some geometric properties of the Cesiro sequence space
ces, were studied by many authors. Now, we intreduce a generalized Cesaro sequence
space.

Let p = {p,) be a sequence of positive real numbers with p, = 1 for all n € N. The
generalized Cesdro sequence space €esy is defined by

ces = {x €1%: p(Ax) < oo for some A > C}, (1.11)

where

o n Pn

plx) = (_1_2 Ix(i)]) (1.12)
n=1 n i=1

is a convex modular on cesp). To simplify the notations, we put cesp) = {cesp, | - )

and ces‘(’p, = (ces(py, Il - ly)-

For ces(p), Suantai [9] proved that cesyp, is LUR, hence it is R and has H-property
where p = (pi) is a bounded sequence of positive real numbers with p; > 1 for all
k e N.

In ces?,), the set of all k's, at which the infimum in the definition of [ix1, for a fixed
X € ces{y, is attained, will be denoted by K(x).

Throughout this paper, we let p = {p) be a bounded sequence of positive real num-
bers.

2. Main results. We first give an important fact for ||x|{; on ces?p,.

ProrosrTiON 2.1. Foreachx € ces?p,, there exists k € R such that

lixll, = ilc—(l+p(kx)). @1

ProoF. First, we note that ¢(t) = |t|” (r > 1) is an Orlicz function which satisfies
dilu}/u — oo as u — oo.
Now, observe that for each x = (x(i)){., € ces],, we have

oo

n
x' = (l > |x(i@) l) ely, (2.2)
n i=1

n=1
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where ¢ = (¢p)2, and ¢;(t} = [t|7i for each { € N. Moreover, |Ix||, = IIx'lleg and by
(1.8) there exists k € R such that

Ixllg = llx"llg = k(1+e¢(kx )

PROPOSITION 2.2. For a modular space X, convergence in norm and convergence |
in modular are equivalent if and only if p € 4;. |

n Y @3)
> |x(i)|) = {1 +p(kx)). i
i=1 ‘

o

3=
?r

PrROOF, Seell]. o

PROPOSITION 2.3. Suppose that {xy} is a bounded sequence in ces?p, with py > 1 for |
all k € N and xn =~ x for some x € ces,,. If kn € K(xn) and ky — =, then x = 0.

PrROOF. ForeachneWN,n>0, put Gy ={ieN:(1/i) Z}=1 Ixn{f)[ = n}. First, we
claim that for each n1 > 0, G(n.»» = @ for all large n € N. If not, without loss of generality,
we may assume that G,g) # @ for all n € N for some i > 0. Then,

k Pi .
% (i € Gonm)- 2.4)
n

lxall, = -,;Euw(knx,,)) >

Applying the fact |£|7/t — o0 as f — co, where v > 1, we obtain ||xn||, - e« which contra-
dicts the fact that {xy} is bounded, hence we have the claim. By the claim, we have
(1 /i)Zj,—,l |[xn (i)l — 0 as n — o for all i € N. Hence, we obtain by induction that
xn(i) — 0 as n — o forall i € N. Since x, 2 x, we have x,(i) — x(i) forall i € N, so
it mustbe x (i) =0 forall i € N. O

THEOREM 2.4. The space ces(,, is R if each pr > 1.

PROOF. Let x € S(ces (p,) and suppose y,z € S(cesu,,) with y+2z =2x. Take k' €
K(y), k" € K(z) and define k = k'k"” (k" + k). Then by convexity of u — |ul?r for
every n € N, we have '

-+kf’ kf’ .. k'
e etk e

2
> %[1+p(ky+kz)] = o (1+0(2kx)] 2 2llxlly = 2.

=yl + zll, = p(k"z)]

(2.5)

This implies

Pn Pn Pn
k' k' Kk k2 2k &
—; Z Iy(tﬂ) - ( > Izml) = (—Z !x(i}l) (2.6)
+k ( k +k vt n =

for all n e N.
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Since the function u ~ [1|?" is strictly convex function for all n € N, it implies that
12 j 1 <
k'|— || =k"|— z(i)]| | = 2k| — x (i) (2.7}
DAL ALY w2 X0

for each n € N. This gives k'|y(i}| = k" |z(i}] for all i € K, and it foliows that k' =
1K' yll® = k"z||* = k", hence |¥(i)}] = [z(i)| for all { € N. To complete the proof, it
suffices to show that y(i) = z(i) for all i € N. If not, let i, € N be the first coordinate
such that y (i,) # z(i,), 50 v{i,) = —z(i,) and hence 2x(i,} = ¥{i,)} + z(i,) = 0. Since
k' = k' =2k, we have

i=1

R . | 1 ! .
I:io—l Z IZ(1)|J=|:E'_—1 Hz:l IX(IH '

. , (2.8)
13 12 )
'.—le(i)l = .—zlx(l)l
o5 to i3

which implies z(i,} = 0, whiclt' is a contradiction. Hence y = z. |

THEOREM 2.5. The space ces(,, is UKK if each py > 1.

PROOF. For agiven € > 0, by Propaosition 2.2 there exists & € (0,1} such that ||y llp =
£/4 implies p(y) = 26. Given xn € B(cesl,)), xn — x weakly, and lxn ~ Xmllo = €
{n £ m), we will complete the proof by showing that lixllp = 1-4. Indeed, if x = 0, then
we have nothing to show. So, we assume that x # 0. In this case, by Proposition 2.3 we
have that {k.} is bounded, where k,, € K(x,). Passing to a subsequence, if necessary we
may assume that k. — k for some k > 0. Next, we select a finite subset J of ¥ such that
lIxyllo = lixllo — 8, say I ={1,2,3,...,.j}; since the weak convergence of {x,} implics
that x, — x coordinatewise, we deduce that x, — x uniformly on /. Consequently,
there exists 1, € N such that

. £
[xn=xm)llo =5 Vaumzm,, 2.9)
which implies
£
[{xn = xm) o, o 2 3 YH,mz=n, min. (2.10)

This gives [[xn,, lo = £/4 0r Xy, llo = £/4, for all m,n = n,, m # n, which yields
that lIxny, llo = £/4 for infinitely many n € N, hence p(xy,,,) 2 26. Without loss of
generality, we may assume that f1xn iy llo = €74, for all n € N. By using the inequality
{(a+b) za'+b' (a,b =0, t = 1) combined with the fact that k, = 1 and the convexity
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of function t — |t|P", we have

1-28 = ||xnllo _P(xnm\r)

I
= ||xﬂ”0—Ep(kﬂx"|N\l)
ke & Pi 1 o g i pi
(—"len(r)i) }——[ > (—."len(jw)[) ]
i knl.< i <
i=j+1 r=1
Sl & pi
Z('f2|xu(r)|) }
i=1 r=1
1 © P P - K Pi
* o 3 (—.“len(r)l) -3 ( “Z]x,.(_;+r)j) ]
" t i=j+1 \ b ora1
1 1 [d (k& &
e 4 —n
‘kﬂh[é(i Ellx"(r”) ]
k

oo K Pi
+—k1—[ > (-T"len(r)|+—2|xn(1+r)|)
7 i=j+1 r=1

r=1
o0 k l'_j Pi
- > T" fxa(i+7)|
i=j+1 r=1
. . Pi ; Pi
1 1’(kn' )]1-["’(kn’
>—+— =5 | xn(r}] + o — 2. |xn(r)]
Kn k“':i.—.zl 121 i kn J=JZ+1 Lgl "
1 1 1 1
= ';: +k—ﬂp(’\nxrz:;) - E‘* Ep(kx’;) = “x?;“O z llxlio -8,
(2.11)
hence {|xllg <1-6. (]

Since every (UKK) Banach space has H-property, the following result is obtained.
COROLLARY 2.6. The space ces?p, possesses H-property if each py > 1.

COROLLARY 2.7. The space ces?p, possesses the property NUC if each pr. > 1 and
limy - inf pg.

ProOF. By[7], cesw, is NUC, so it is reflexive. Since a Banach space X is NUC if and
only if X is reflexive and UKK, the corollary follows from Theorem 2.5. (m}
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EXTREME POINTS AND ROTUNDITY OF ORLICZ
DIFFERENCE SEQUENCE SPACES

NARIN PETROT* AND SUTHEP SUANTAI**

ABSTRACT. In this paper we define a new sequence space £3(A), generated by
Orlicz function M, and equipped with the Luxemburg norm. Extreme points of
the unit ball in this space are characterized and criteria for rotundity are given.

1. INTRODUCTIONS

Convexity properties in Banach space are an important topic in functional anal-
ysis and play an important role in infinite dimensional holomorphy. In order to
study the geometric properties of Banach spaces, Clarkson [5] introduced the very
important class of rotund (strictly convex) spaces. Since Clarkson's paper many
authors have defined and studied classes of Banach spaces lying between uniformly
convex and rotund spaces see [2] (12], and [16]. The criteria for rotundity in Orlicz
spaces were given in [4]).

In this paper we introduce the Orlicz difference sequence space £pr{A), where M
is an Orlicz function and consider it equipped with the Luxemburg norm. The main
purpose of this paper is to give criteria for extreme points and rotundity in £ps(A).

Now we introduce the basic notation and definitions. In the following, we denote
by N and R the set of natural numbers and real numbers, respectively. For a finite
subset A C N we denoted fA the number of elements in A. Let (X,]| - ||) be a real
Banach space, and let B(X} (resp. S(X)} be the closed unit ball (resp. the unit
sphere) of X. A point z € §(X) is called an extreme point if for every y, z € B(X)
the equality 2z = y+ 2 implies y = z. Let EztB(X ) denote for the set of all extreme
points of B(X). A Banach space X is said to be rotund (write (R) for short), if
EztB(X) = S(X). For its geometric implications and role in mathematics we refer
to the monographs {3], {7], [10], (14], and [15].

A function g : X — [0,00] is called a modular if it satisfies the conditions

(i) o(z) =0 if and only if z = 0;
(i1) e(az) = p(zx) for all scalar o with la| =1 :

(i) olaz + By) < o(x) + o(y), forall z,y € X andalla, 8 > 0 with a+ 8 = 1.
The modular g is called conver if

(iv) olaz+By) < ap(z)+PBo(y), forallz,y € X andall o, B > 0 witha+8 = 1.
For any modular p on X, the space

X, ={z € X: o(Ar) <o for some A > 0},

2000 Mathematics Subject Classification. 46B20. 46B45, 46E30.

Key words and phrases. Extreme points, Rotundity, Orlicz difference sequence spaces.
*Supported by The Royal Golden Jubilee Project grant No. PHD/0018/2516.
**Supported by The Thailand Research Fund.
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is called the modular space (generated by p). It is easy to show that X, is a vector
space. If g is a convex modular, the function

. T
Izl = inf{A>0: o (X) <1},

is a norm on X,, which is called the Luzemburg norm (see [15]).
The subspace X of X, is defined by

X,={zeX: o(Az) < oo forall A>0}.

A modular p is said to satisfy the Ay — condition (¢ € Ay) if for any £ > 0 there
exist constants K > 2 and a > 0 such that

p(2z) < Ko(z) + ¢

for all z € X, with p(z) < a. It is well known that X, = X7 if p € Ay (sce (8-
If o satisfies the As-condition for all ¢ > 0 with K > 2 dependent on a, we say
that ¢ satisfies the strong A, — condition (p € A).

A map M : R - [0,00] is said to be an Orlicz function if M vanishes only at 0,
and M is even, convex and continuous on the wheole of R In addition, an Orlicz
function N is called the complementary function of an Orlicz function M if

N{v) =sup{|vju — M(u) :u > 0}.
We say an Orlicz function M satisfies the d;-condition if there exist constants
K > 2,ug > 0 such that the inequality
M((2u) < KM(u)
holds for every u € R satisfying |u| < ug.
We say that v € R is a point of strict convezity of M if M (”'; ) <

whenever u = ”+2w and v # w. We denoted by Sy the sct of strictly convex points

of M.

An interval [a.b] is called a structurally affine interval for an Orlicz function M.
or simply, SAI of M, provided that M is affine on [e, )] and it is not affine either
on [a —¢€,b] or on [a,b+ €] for any € > 0. Let {[a;,b;]}; be all the SAIs of M, it is

obvious that
Sy =R\ U[a,‘, bi].

M(v)+ A (w)
2

In [9], Kizmaz introduced the sequence spaces £oo(A), co(A),and ¢(A) by con-
sidering the difference sequence Az = (z(i+1) — z(:))2, for any z € €%, where ¢° is
the space of all real sequences and £, ¢g, ¢ are the Banach spaces of bounded, null
and convergent sequences, respectively. In [1], these sequence spaces were extended
to Lo{A, p),co(A,p),and c(A,p). For example,

bo(Ap)={z € : Az et (p))
where p = (p,) is a sequence of positive real numbers; and
boo(p) = {z € & : sup|z|P* < o0).

k

In [1] and [13] the authers determined the Kothe-Teplitz and generalized Kéthe-
Toeplitz duals of these spaces and considered various matrix transformations.
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In this paper we introduced the space €p(A), where M is an Orlicz function.
The Orlicz difference sequence space €5;(A), is defined by

Ea(A) == {z € €0 : pps(Mx) < 0o for some A > 0},

where
00
0y (z) = lz(V)| + D M(z(i + 1) — z(i)).
i=1
By using the convexity of M it is easy to see that g,, is a convex modular on

Ep(A), and it is useful to note that if M € 4, then p,, € Aj. In this work we
consider £p¢(A) equipped with the Luxemburg norm given by

} x
lz|| =inf{e>0: QM(‘E) <1}
Moreover, we define the subspace hy (A) of €4:(A), by
har{A) := {z € £ : p,,(Ar) < 00 for all A > 0},

2. MAIN RESULTS

In order to establish our new results, we start by recalling some auxiliary lemmas.

Lemma 2.1 Let o be a convex modular on X, and z € X,. Then
(1) flzll €1 = ofz) < |zl
(2) =]l > 1= elz) > =], and
(3) o(z) =1 = Jz|| = 1, and the converse of (3} is true if p € Aj.
Proof. See [8].
Lemma 2.2 An Orlicz function M satistics the d, — condition if and only if there

exist [ > 1,u, > 0, and K > 1 such that M{lu) < KM (u) for all |u| < u,.
Proof. See [3].

Lemma 2.3 If M ¢ 49, then there exists x € €ar(A) \ har(A) such that ||z|| = 1
and g, (z) < 1.

Proof. Since M ¢ 87, by Lemnma 2.2. we can choose a sequence (ay) of positive
real numbers such that a; | 0, M(ax) < :71;;, and

1 . '
M((1+ p)ax) > 2%+ M (o) forall ke N
Choose an integer my such that

1
2k__+T S mkM(O!,l;) < 2-"‘

Let 2 € £2 be the sequence defined as follows - Put (1) = 0, and for 2 < i < my +1,
let

. a; ifiis even
z(i) = o
20 ;if 1 s odd.

20°
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Ifm; isodd, form +2<i<m +mg + 1, we let

. {a, Yoy ;ifiisodd
z(i) =

oy ;i1 1 is even,
and if m, iseven, for m; +2<i<m;+ma +1, we let

- 200 + o ;if i is even
z(i) = e
20 ;if 4 is odd.

Ifmoisodd and 2 < j < m3+ 1, we let

208

a1 +ag+az  ;ifm; is odd and j is even

z(my +myp + j) =

204 + ag + a3 ;if m; is even and j is even

ap +az ;ifm, is odd and j 15 odd
200 + a2 ;if iy is even and j is odd

and if, mq is even and 2 <7< my+1, welet

oy +a3  ;if myis odd and 7 is even

z{my +ma + ) =

oy ;if my is odd and j is odd
2oy ;if my is even and j is odd

Observe that if my 15 odd and 2 < 7 < m3 + 1, we have

elmy +mg+J) = {

and if, my is even and 2 < j < m3 + 1, we have

x(my +mg +3j) = {

By continuting in this way, for 2 < j < myg + 1, if mg_, is odd, we let

.r(ml +mo+ -4 mE_y+3) = {
and if, my_q is even, we let

w(m1+m2+---+mk_1+j)={

\e

x{m, + 2} +ay il § is even
z(my + 2) ;if 7 is odd,

z(my + 1)+ a3 ;if j is even
z{my + 1) ;if 7 is odd.

z{my +mo+ -+ mp_o + 2) + oy
z(my +ma + -+ Mg + 2)

w(my+me+ - mg_g+ 1) + oy
z(my +mg + - +mk-g + 1)

201 + a3 ;if mq is even and 7 is even

;if 7 is even
1if 7 is odd,

;if 7 is even
;if 7 is odd.
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Then we have

mi my+map+1l
o, (x) = =(1)] + ZM(&:(%’ + 1) —z(i)} + Z M{z(i+1)—z(@)) + -
i=1 i=mi+1
m)+ma—+--+mp+1
+ > M(z(i+1) —z(i)) + -

i=my+my+-mg g +1 .
=0+mM(a)) +moM(ag) +- - +mM(ag)+---

o0 oo 1
= meMon) < Y o =1
k=1 k=1

This shows that x € €p(A) and o, (z) < 1. But, for any I > 1, let k; € N satisfy
[ >1+ . Then

) = 3 mM(los) > 3 mad(1+ D)

k=1 k=kg
00
> Z mk2k+1M (ag) > Z 1 = oo,
k=k, k=k,

which-implies that ||:cHM =1 and z &€ har.

Corollary 2.4 M € & if and only if £p;(A) = hpr(A).
Proof. If M € §; then p,, € A and hence €y (A) = hpr(A). If M ¢ 65 then by
Lemma 2.3 we can find an element x € £3;{A) but z & hp(A).

Now we give a characterization of an extreme point of the closed unit ball of

Exr(A).

Theorem 2.5 For an Ortlicz function M and r € S{€x;(A)),z € ExtB(€p(A)) if
and only if

(1) 0,/ (z) = 1, and

(2) (a) I z(1) # Othen f{i e N:z(i + 1) —z(z) € ]R\S'M} =0,0r (b)ifz(1) =0
then f{i e N:z{(1 + 1) —m(z) € IR\SM} <L
Proof. Sufficiency. Let z = z, where y,z € S(€p(A)). By Lemma 2.1(1), we
ha‘l’e 2y (y) < Land g, (2) S I Then 1 = 0., (2) = 0, (E2) < §lon (y) + 0, (2)] <
1, hence -

0y (z) =0, =0,(2) = 1:_ : (2.1)
) = A0 b 0, 0

and

M (y(z’ +1) —y{1) + 20 + 1) - z(i))
2

= LM+ 1)~ yl0) + Ml + 1) - 26)] (23)
for alli € N
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It follows from (2.2) that sgn y(l) = sgn z{1).
Ifz(1) #0, by {7 : z(: + 1) — =z(i) € R\ Sp} = 0 and (2.3) we have
y(i+1) —y(d) = 2(6 + 1) - z{i) forall i€ N (2.4)
By (2.1) and (2.4}, we have

o0

()] =1-) M(y(i + 1) - y(i)

=1
00

=1- Z M{z(i + 1) — z(3))

i=1
= |z(1)],

this together with the fact that sgn y(1) = sgn z(1) gives y(1) = 2(1). By (2.4). we
obtain that

= y(1) = 2(1) = y(2) — 2(2) = Y(3) — 2(3) = - = y(i) ~ 2() = ---
for all i € N. Hence, we have y(i}) = z(i) for all i € N, that is y = z.
If z(1) = 0, by 2(b), we have
f{z :2(i +1) —z(i) e R\ Sm} < L (2.5)

Then there exists a most one j € N such that (i + 1) — z(¢) € Sps for all ¢ # 7. It
implies by (2.3) that

y(i+ 1) ~y(i) =z(: + 1) — z{i) forall 1 € N which i # j. (2.6)
Since (1) = 2(1) = 0. we have
My +1) —y(i) = 1= M(y(i +1) — y(3))
1#]
=1-3 M(2(+1) — 2(3))
1#]
= M(z(j + 1) — z(4)),
which implies that
ly(7 + 1) =y =120 + 1) — 2(5)|- (2.7)
Since 0 € Sar, we have y(j + 1) — y(7), 2(5 + 1} — 2(j) are in the same SAI of M.
This tmplies by (2.7) that y(5 + 1) — y(j) = 2(j + 1) — 2(j). This together with (2.6},
gives
0=y(l) - 2(1) =y(2) - 2(2) =y(3) ~ 2(3) = --- = y(§) — 2(8) =---
for all i € N. Hence, we have y{i) = z(z} for all i € N, that is y = 2.

Necessity. If condition (1) does not holds, then there is 0 < ¢ < 1 such that
0, {z) = c. Let d > 0 be such that ¢ +d < 1. Since lim M(z(i + 1) — z(z)) = 0 and
11— 00
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M is continuous, there exist i, € N and £ > 0 such that M{z(i,) —z(i,+ 1) Le) < d.
Let y and z be the sequences defined by

(i) = {m(i) 1< < g,

z{i) + € ;otherwise,

and

. z(1) ;if 1 <t <4,
z{t) = _ .
z(i) — € ;otherwise.

Then 2z = y + z and y # 2, and we have that

24 (y) = [=(1)| + D M(z(i + 1) — 2(3)) + M (2(io + 1) — z(i,) + €)
i,
<p,lz)+d<e+d< 1

Similarly, we have that p,, (z) < 1. Thus y,z € B(€p(A)), so z € ExtB(epr(A)).

If condition 2{a) does not hold, then we may assume that ihere exist j € N such
that x(5 + 1) — z(j) belong to an affine interval (e;,b;) of M.

Let M(u) = Aju+ Bj,u € (a;,b;), and choose € > 0 such that |z(1)| > Aje and
z(j + 1) — z(j) £ € € (aj, b;).

Let y and z be the sequences defined as follows:
If £(1) — Aje > 0, let

0 = 2(i) ~ Aje f1<i<g,
vier= z(i) — Aje + € ;otherwise,
and
2(i) = z(i) + Aje ifl <i <y,
=) + Aje —e ;otherwise,
If z(1) — Aje <0, let
(i) = z(i) — Aje ;if 1 <4 <7,
v = z{i) - Aje — € ;otherwise,
and
@) z(1) + Aje ;ifl <1<y,
z =
z(1) + Aje + € ;otherwise.
It is clear that y #£ 2z and 2z = y + z. By‘ the definition of y, we have
j—1
0n (v) = |2(1) ~ Ajel + > M(a(i+1) - 2(D)) + M(2(G +1) - 2(j) £ €)
i=1

o

+ > M(z(i+1) — z(4))

i=j+1
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j—1
= |z(1)| F Az + }: Mz{i + 1) — z{(i)) + Aj(z(F + 1) — z(j)) £ Aje + By

i=1

+ Y M(a:(i+1).w z(i))

1=j+1
= |z(1)| + ZM(z(i + 1) — z(i))
=om{z) = 1.

Similarly, we have that g,,(z) = 1. Thus y, z € S(¢m(A)), hence z & ExtB({p(A)).
If condition 2(b) does not hold, then we may assume that there are j,k € N.
j < k, such that z(j + 1) — z(j) and z(k + 1) — z(k) belong to some affite intervals
(@j,b;), (ak,bx) of M, respectively. Let M(u) = Aju + Bj,u € (aj,b;) and M(u) =
Agu + B, u € {ag, by).
Select £5,e¢ > 0 such that Aje; = Ageg and z(j + 1) — z(j) £ €; € (a;,b;) and
z(k + 1) — (k) L e, € (ar, b)-
Let y and z be the sequences defined by

- =) if1 <i <y,
y(i) = ¢ (i) + €5 ifj4 1 <1<k,
z{i) + €; — e ;otherwise,
and '
z(i) Jif1<i <,
z(i) = < z(d) — ¢ dfj+1<i <k,

z(i) —e; + €5 :otherwise.
It is clear that y # z and 2z = y + z. By the definition of y. we have

i1
on () =2+ > M(z(i + 1) — 2(3)) + M{z(j +1) - z(§) +¢;)

=1

k-1

+ > M{z(i+1) - z(i)) + M(a(k + 1) — z(k) — &)
i=j+1 A

+ Y M(z(i+1) - z(i)
i=k+1

j-1 :
= |lz(1)] + Z M{z(i + 1) — z(i)) + A;(=(j + 1) — z(5)) + Aje; + B;
k-1 =
+ Y M(z(i+ 1) - 2(i)) + A(z(k + 1) — z{k)) ~ Axex + By
i=j7+1

+ > M(z(i+1) - z(i))

i=k+1
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=|z(1)] + > M{z(i + 1) — z(i))
i=1
= pm(z) =1
Similarly, we have that p,,{z) = 1. Thus y, z € S(€ar(A)), hence z & ExtB(€y(A)).

Theorem 2.6 £,;(A) is Rotund if and only if (1) M € 42 and (2) M is strictly
convex on [0, M~1(1)].
Proof. Sufficiency. Let © € S(€a;(A)). Since M € &7, we have by Lemma 2.1(3)
that g, (z) =1. Let I = {s e N: z(i) —z(: + 1) € R\ Sum}.

If (1) # 0, and there exist j € N with j € I, we have |z(j + 1) — z(j)| > M ~1{(1).
This implies that p,,{z) > 1, a contradiction. Hence J = 0.

If z(1) = 0, then by (2), we have |z() — z(i + 1)| > M~1(1) for all i € I. So,
I=40.
Therefore, we conclude by Theorem 2.5 that x € ExtB(fa(A)).

Necessity. If M ¢ §, by Lemma 2.3, there exists £ € S{€p(A)) such that
om(z) < 1, hence, z € ExtB(€p(A)) by Theorem 2.5.

If (2) does not hold, then M is affine on some interval [a,b] in [0, M ~'(1)]. Since
M(b) < 1, we can find ¢ € (a,b) and d > 0 such that M(c) +d = 1.
Define

r=(dd+c,d+cd+c,d+cd+e...).

Then ¢,,(z) = |d| + M(¢) = 1, but z(1) = d # 0 and z(2) — z(1) = ¢ € Sar. This
yields that z ¢ ExtB(£ps(4)) by Theorem 2.5.
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Abstract. A new notion of locally uniform rotundity (LURY} in a metric linear space,
which is a generalization of uniform rotundity introduced in [1] is defined and studied.
The main purpose of this paper is to show that in a metric linear space, uniform rotun-
dity implies locally uniform rotundity and locally uniform rotundity implies property
(H) and we also give some examples showing that the converse of above implications
are not true.

AMS Subject Classification: 46A03, 46A45.

Keywoards: Locally uniform rotundity, property (H), uniform rotundity, metric linear
spaces.

1. Introductions

The notion of rotundity (R) or strictly convexity in metric linear spaces was
introduced by Ahuja, Narang and Trehan [1] and the concept of uniform rotundity
(UR) in metric linear spaces was introduced by Sastry and Naidu [8]. These
notions are generalizations of the corresponding concepts in normed linear spaces.
T.D. Narang [6] gived a characterization of strictly convex metric linear spaces.
W. junde and C. Lianchang [2] showed that in a complete metric linear space
uniform rotundity implies reflexivity.

In [3|, W. Junde and T.D. Narang showed that if a metric linear space (X, d)
is (UR) then (X, d) has property (H). In this paper we introduce a new notion of
locally uniform rotundity (LUR) which is a generalization of uniform rotundity

!Supported by The Royal Golden Jubilee Project grant No. PHD/0018,/2546.
2Corresponding author.
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and give characterization of (LUR). We show that if a metric linear space X is
(LUR), then X has property (H). Moreover, examples showing that property
(H) docs not imply (LUR) and (LUR) does not imply (UR) are given.

Let X be a vector space over the scalar field of real numbers R and d an
invariant linear metric on X. We denoted By(0,7) = {z € X | d(z,0) < r} and
S4(0,7) = {z € X | d(x,0) = r}. A metric linear space (X, d) is called

a) uniformly rotund (written {UR) for short) if, for each r > 0 and ¢ > 0 there
exists § = d(-y > 0 such that z,y € B4(0,r) and d(z,y) > ¢ imply

d(xzyﬁ)<r—&

b) locally uniformly rotund (written (LUR) for short) if, for each » > 0,£ > 0
and for each z € 54(0,7) there exists § = §(¢ ) > 0 such that y € By(0,r)

and d(z,y) 2 £ imply
d(55E0) <r-a
2
c) rolund (written (R) for short) if, for each z,y € B4(0,r) and z # y imply

d(x—;y,{)) < T

A metric linear space (X, d) is said to have property (H) if for each x € 54(0, 7)
and (x,) C S4(0,7) such that x,——zx, implies z,, — z.

The subset A of X is absorbing if, for each = in X, there is a positive number ¢,
such that z € tA whenever ¢ > t,. For an absorbing subset A of X, the Minkowski
functional or quage functional of A is the function M4 : X — R defined by
My(z)=inf{t|t >0,z € tA} for each z in X.

The following known results are many useful in our consideration.

Proposition 1.1. [8] Let (X, d) be a strictly conver metric linear space. Then for
each e > 0,{z € X | d{z,0) < £} is an absolutely convex absorbing neighbourhood
of 0 in (X,d).

Proposition 1.2. [2] Let (X,d) be a strictly convezr metric linear space. If
A={ze X |d(z,0) <r}# X, then the Minkowski guage functional M4 of A is
a strictly conver norm and M4(x) = 1 if and only if d(z,0) = r.

Proposition 1.3. [2] Let (X,d) be a strictly convex metric linear space. Then
for any x € E,z # 0 the function [, : [0,00) — [0, 00) defined by

fz(t) = d(iz,0)

is strictly increasing and continuous function.
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2. Main results

First, we give a characterization of uniform rotundity in a metric linear space.

Theorem 2.1. A metric linear space (X, d) is (UR) if and only if (X, d) is (R)
and for each v > 0 if (z,),(¥=) C Ba(0,r) are such that d (x" t¥n
then d(z,,yn) — 0.

30 — T,

Proof. Necessity. Let r > 0 be given. Assume that (X,d) is (UR}. The
implication that (X,d) is (R) is obvious so it suffices to show that for each

(zn), (yn} C Ba{0,7) such that d (In ;yn

If not, it would be exist £ > 0 and subsequences (), (¥n,) of (z,) and (yn), res-
pectively, such that d(z, ,yn,} > € for all j € IN. Since (X, d) is (UR), there
exists 6 = d(. ) > 0 such that

,0} — 7, we must have d(z,, y,} — 0.

d(f;—“i;rﬁ,o) <r—6 forall jeN.

This implies
d(.’l?n_.,- ;ynJTO) ¥_’ T’

which is a contradiction.

Sufficiency. If (X,d) is not (UR) and it is (R), then there exists ¢ > 0

and sequences (z,), (4.} C Ba(0,7) such that d(z,,y,) > € and d (#, 0) >

1 . .
>r—_ for each n € IN. This together with the hypothesis that (X, d) is (R},
we have

1
.r—d(x——ner",O)‘ < = foreach n €N,
2 i
. Ty +Yn
that is d(T’O) — 7 asn — 00, and d(Tn, yn) #— 0.

By using analogy proof as in Theorem 2.1, characterization of (LURY) metric
linear spaces is given.

Theorem 2.2. A metric linear space (X,d) is (LUR) if and only if (X, d)
is (R} and for each v > 0 if x € S4(0,7) and (yn.) C Bg(0,7) are such that

d (m zy”,O) — 7, then d(z,yn)} — 0.

The following result deals with the property (H) in a metric linear space.
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Theorem 2.3. If (X,d) is ¢ (LUR) metric linear space, then (X,d) possesses
property (H).

Proof. Let r > 0 be given. Fixed z€ 54(0,7) and let z,,€54(0,7) (n = 1,2,3,...)
be such that z,—>z. If x, A— 1z, then there exists ¢ > 0 such that d(z,,z) > ¢,
¥n € IN (passing o a subsequence, if necessary). Since (X,d) is (LUR), there
exists § = d(cr,gy > 0 such that

2

Note that By(0,7) # (X, d). Indeed, if not, we have 2z, —z € By{(0,r) foralln € IN
and it follows by Proposition 1.3 that € < d(z,, z) < d(2(z,—x),0) = d(2x,—z, )
which implies that

d(x"+x,0) <r—4 forall nelN.

r—ézd(h"mfo,O) =d(z,,0) =1,

a contradiction. Let A = By(0,r). Since (X,d) is strictly convex we have by
Proposition 1.1 that A is an absorbing balance subset of X, this allows us to
define the Minkowski guage functional M4 of A. Moreover, from Proposition 1.2 we
know that (£, M4} is a normed space and M4(z) = 1. By Hahn-Banach Theorem
there exists f € (E, M), the dual space of (E, M,), such that | f|jx, = 1 and
f(:.t‘) = MA(:B) = 1.

Again, by Proposition 1.1 we have By(0, §) is an absorbing subset of (X, d) so
it must be exists ¢ > 0 such that tz € By(0, ), observe that f(tz) = tf(zx) =1 > 0.
Let z =tz € By(0,6), hence f(z) > 0, and

d($";$+z,0)‘§d(m";$,0)+d(0,z) <r—6+d=r.

Tn+ &

This give M4 ( + z) < 1. Thus we have

=7 (E R 2)| < Wl Ma (2] <1

+16) .

}f(wn) + f(z)
2

Since f{z,)— f(z), we have from above inequality that 1+ f(2) = f(z)+ f(2)<1,
this contradicts the choice of z.

Let (p;} be a bounded sequence of positive real numbers which p; > 1 for all
i € IN. Let M = sup{p; | i € IN}. The Nakano sequence space {(;,) is defined by

by = {.’JS e i lz(D)|P* < oo} .

i=1
We consider £,y under the metric given by

() = (i l2(i) - y(z’)l”‘) i
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Theorem 2.4. Let (p;) be a bounded sequence of positive real numbers which
p; 2 1 for all i € IN. Then

(1) (4., d) possesses property (H).
(ii) (¢, d) is (LURY) space if each p; > 1.
Proof. Denote M = sup{p; | ¢ € N}.
(i) Let r > 0 be given. Let x € Sy(0,7) and let z,, € S54(0,7) (n=1,2,3,...)
be such that z,—-z we must show that z, — =z. If z, #— z we have that
. Tp— T
there exist £ € (0,1) such that d( 5
-z
2

— o0
(d (mn 5 I,O)) is bounded, it has a convergent subsequence. Without loss
n—1

z
of generality we may assume that d ( z
i, € IN such that

(2.1) 3 )P < (5°)M

i=ips+1

) > ¢ for all n € IN (passing to a

Tn
subsequence, if necessary). Since d ( ,0) < ™ for all n € IN, the sequence

-

,0) — &, for some g, > £. Choose

By assumption z,——z and since the i* coordinate mapping 7; : ({4, d) — R,
defined by m;(z) = (i) is continuous, it implies that z,(i} — (i) as n — oo
for all ¢+ € IN. This give

(2.2) Zimn |”‘—>Z|$ P,

is

(2.3) >

i=1

za(i) — z(3) —a:(z) .0

as n — 00. By convexity of the mapping ¢ — [¢!? together with (2.1}, (2.2), and
(2.3), we have

e, = lim d(m"_m,o) -

n—oo 2

~ lim, (2 :r:n(i)2—$(z') - .:_Z+ | :r:n(z');gg(i) ) _
_ (,}Lﬂgog UL 5 ZORLU! ) _
-’r'n(i) — 'T(?')

2

1
P\ M
)" <

=(0+JLI£.IO 2

i=ip+1
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1 oo 1 & M
<im0 lza@P + 5 3 je@P ] =
2n ooz:z,,Jrl 21’:1,.,+1
1 s
= | = lim ( Z]xn(z "") +3 Z |z{D)Pe ] =
2o i=1 z ia+1
1
. 1 &= M
= 4 - TP ) + 5 \x(iw") ~

i=io+1

1 o
= 52 |”‘+—Z|$

1
M
i=to+ z te+1

1

=| > (i)l”‘) <

i=ig+1

1

€o M\ M
<((5) ) -
_ b
=2

which is a contradiction. Therefore z,, — z as n — o0.

(ii) Let 7 > 0 be given. Let x € S4(0,7) and z, € By(0,7) (n =1,2,3,...) be
such that d (w 0} — r, we must show that d(z,z,) — 0. First, we shall
show that z,(i) — x(i) as n — oo for all i € IN. Suppose on the contrary that
there exists 1 € IN which z,(i}) /— z(¢) as n — oo. Without loss of generality
we may assume that ¢ = 1, and there exists 7 > 0 such that

|2,(1) — z(1)|"* > 7 forall n € NN,
(passing to a subsequence if necessary), this give
|z, ()P + [z(1)[?*) > n for all n € IN.
Since ¢ +— [t[”! is a uniformly convex function so there exists é > 0 such that

za(1) +2(1)
2

2

: < (1-14) (|mn(1)|f’1 + [x(l)‘pl) for all n € IN.
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Thus,

: : P‘)-Alz

xn(i);—x(i))p‘

M

<

4 oo

+2
=2

En P + P | &
1—5)( 5 ) 5;2

(
(
=(§imn(z P 5 ol ('%(Ul”‘;lx(l)wnm .
(
(

2

1

ERESS Iw(z)l”') e

=2

MM on Tl”"
2t _2m+1)

én W
M
where a € (O,T—(T m2p1+1) j .

This implies d (Eig-_—w, 0) A= rasn — 00, a contradiction.
Next, let € > 0 be given. Since x,(:) — (i) as n — oo there exist
g, € (0,6M) and 4,,n, € IN such that

oo

\ 1p: £
> le(@ < WL“’

1=1o+1

i

> (lzad) — 2(3)

i=1

W< % for all n > n,, and

Z|$n (4)[P >Z|I(’£ |p‘—% for all n > n,.

i=1

Thus for all n > n,, we have

d(zn —7,0) = (i |2 (2) — x(i)]p") g =

i=1

= (i |zn(z) — z(2}| + i |z, (3} - z(i) p"j <

i=i,+1

(EOHM (i |n(4) P-+__§j |:c(i)|”")) <

t=fo+1

-
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(AN
(&
+
3]

=

P

~3

E

Sors 5 o))’

i=1 t=i,+1

€0 1o o0 ﬁ
<[ Z2 (MY P e+ X =P ]| =
L
M

i=1 i=io+1

= _— QM 3 )} | Pe o = =
37 (fzgﬂlxm +3'2M+i=§+ =t ))

t—ig+1
1
M
= +2M+l Z [z (@} + —a <
3 i=ig+1
(T Eo)ﬁ _
3 3 3 .

1
=¥ <¢.

Hence d(z, — z,0) ~— 0 as n — 00.

In the following we give an example of (LUR) metric linear space which is
not (UR).

Example 2.5. By Theorem 2.4(ii) we have that if (p;) = (g, %, g, Z—% )
then (¢(,,),d) is (LUR). We shall show that (£, d) is not (UR). Choose r =1

and define (z,,), (y.) C B4(0,1) by

1 ; if i=n
xn(i):

0 ; otherwise,

0 ; otherwise.

Ty + 1\ 1 Lﬁ%
n n4
d<n2yn’0):((§) +(3) ) o lesno

But d(zn, yn) = d(zn — yn, 0} = 93 foralln € IN, so Tp — Yy #~—+ 0 a8 1 — 00.
By Theorem 2.1, (¢,,),d) is not (UR).

_ 1 : ifi=n+1
Yn(i) =

Then

222
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The next example show that the converse of Theorem 2.3 is not true.

(1, 1, %, g, e n :; 1,...) . By Theorem 2.4(i}, (£(;.), d)
has property (H), we shall show that it is not (LUR). To show this we shall
show that (£,y,d) is not (R). Choose » = 2i. Let = = (1,1,0,0,0,...) and
v =(2,0,0,0,...). Then z,y € By(0, 2%) and

3 1 H
d($+y,0)=(—+§+0+0+...) =03

Example 2.6. Let (p;) =

L

2 2
Hence, (£,,),d) is not (R).
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Asstract: On the Orlicz- Cesaro sequence spaces { €esy, ) which are defined by using Orliez function b we
show that the space equipped with both Amemiya and Luxemburg norms possesses uniform Opial property
and uniform Kadec-Klee property if satisfy the condition.

¥evworos: Orlicz-Cesaro sequence spaces, unifortn Kadec-Klee property, uniform Opial property, Amemiya

norm, [uxemburg norm.

INTRODUCTION

In the whole paper N and R stand for the sets of
natural numbers and of real numbers, respectively. The
space of all real sequences is denoted by {°. Let (X .”)
be a real normed space and B(X)(5(X)) be the closed
unit ball (the unit sphere) of X

A Banach space { X ,|||6 which is a subspace of ° is
said to be a Kothe sequence space, if :

(i) for any x £}° and y € X such that|x(i) < y(i)|
forall ie N, we have xe X and || <|y[.

(i) thereis xe X withx(i)#0 forall ieN

An element x from a Kothe sequence space X is
called order continuous if for any sequence(x )} in

X, (the positive cone of x ) such thatx, <|x| for
allpeN andx, -0 coordinatewise, we have
o

A Kothe sequence space X is said to be order
continuous if any x € X is order continuous. Ivis easyto
see that xe X is order continucus if and only
it(0,0,...,0,x(n+1),x(n +2),.. ] > 0 asn > .

A Banach space X is said to have the Kadec-Klee
property {or H-property) if every weakly convergent
sequence on the unit sphere is convergent in norm.

Recall that a sequence{x, < X is said to be ¢ -
separated sequence for some g > 0 if

sep(x, ) =inf {[x, ~x,|:nem}>e.

A Banach space is said to have the uniform Kadec-
Klee property (write (UKK) for short}if forevery £> 0
there exists § > 0 such that for every sequence (x,) in
S(X) with sep(x,)>¢& and x,—“—>x, we have
llx]| <1 - &. Every (UKK) Banach space has H-property
(see [1])

The Opial property is important because Banach
spaces with this property have the weak fixed point
property {see [2]}). Opial has proved in {3} that the
sequence spaces £,{1 < p <) have this condition but

L:}O,ln‘}(p #2, 1< p<wo)donot.

A Banach space X is said to have the Opial property
(see 13]) if for any weakly null sequence(x,) and
every x =0 in X, we have

Silr;inf"xn < :i_r’nwinf"x,l +.

A Banach space X issaid to have the uniform Opial
property (see [4]) if for each g > (0 there existsr >0
such that for any weakly null sequence (x,) in $(X)
and x e X with||x]|> £ the follewinginequality holds:

1+7 < iminf|x, +x].

Forareal vectarspace x afunction 9T : X — [0,00f
is called a modularifit satisfies the following conditions:

(i)9(x)=0 iland onlyil x=0,

(i }(ax)=M(x) for all scalara with |a| =1,

GMax+ By} SM(x)+M(y), forallx,ye X
andalla,f20 witha+ =1

The modular 92 is called convex if

(i) M(ax+ By) <aIM{x)+ M(y), for all

x,ye X and alle, 20 witha + =1

For any modular 99t on X, the space

Xp={xeX:IM{Ax)—>0as A >0},

is called the modular space.

Asequence (x, ) ofelements of X, iscalled modular
convergent to x e Xy, if there exists a 1>0such
that M (A(x, —x}) =0, as n—> o,

97t is a convex modular, the function

Il = inf{)l‘, > 0:931(%) < 1},

and 1

I, =inf (1 + (1),

are two norms on Xg,, which are called the

Luxemburg norm and the Amemiya norm, respectively. In
additionrﬁx“ S"x“A <2||x] forall x e X, (see [5]).

Theorem 1.1 Let(x,)C Xy, thenflx,| >0 {(or
equivalently Ix,, " . — 0)ifand onlyif 9(A(x, )} —0,

as n —,



Proof. See [6, Theorem 1.3(a)].

A modular 99t is said o satisfy the A, -condition
(M A, Yilforany g >0 there exist constants K > 2
and g > 0 such that

IM2x)<KM{x)+¢&

for all x € X;; with 9M(x)<a.

1f 9% satisfies the A,-condition for allg>0
with K > 2 dependent ond, we say that 9 satisfies
the strong A, -condition (M e A3 ).

Theorem 1.2 Convergences in norm and in
modular are equivalent in X, if MeA,.
Proof. See [7, Lemma 2.3].

Theorem 1.3 [f9eA; then for anyL>0
and £ > 0, there exists § >0 such that
|5R(u+ v)~9ﬁ(u)|<£

wheneveru,ve Xg with®t(u)<1 and M(v)< 8.
Proof. See [7, Lemma 2.1}.

Theorem 1.41{ M e A], then forany ¢ >0 there
exists & =8(g)>0such that Nx“ 2148 whenever
M(x)=1+e.

Proof. See [7, Lemma 2.4].

Amap ®: R — [0,] issaid to bean Orlicz function
if it is even, convex, continuous and vanishing at 0
and d(u) > o as u — . Furthermore, we say thatan

(i)

Orlicz function @ is an N* -function if 3{'2%=°°
The Orlicz sequence space, £, where@ is an Orlicz
function is defined as

lo={xel 1 (Ax)<w I1>0},

where I (x) = Ziq’(x(!)) is a convex modular
on{,. Thenf, isaBanachspace withboth Luxemburg
norm || ||,5b and Amemiyanorm ! ||,° (see|5}). Denoted

by K(x} the set of allp>0 such that

1
=L, =¥(1 + 9 (kx)), it is well known that K(x) £ @

forall x € £, whenever @ isan N’ -function (see [8]).
An Orlicz function g is said to satisfy the &, -
condition (we will write @ e 8, for short) if there exist
constants K >2andu, >0 such that the inequality
iI)‘(2u)£K(I>(u) holds for everyueR satisfying
uj S u,.
For l<p<m, the Cesaro sequence space
(write ,ces,, for short) is defined by

ces, = {xeto Z,_,[ |x(t)|] <oo}

equipped with the norm

x"—[ ( z|xm|] ] L

ScienceAsia 31 (2005)

This space was first introduced by Shiuve [9]. 1t is
usefulinthe cheory of Matrix operators and others (see
[10] and [11]}. Some geometric properties of the Cesaro
sequence spaces €5, were studied by many authors.

Toran Orlicz function @ the Orlicz- Cesarosequence
space ,cesy, is defined by

Cesg = {xe £ pp(Ax) <, IA >O},

where
Polx)= Zn—lq)[ Z|x(‘)lJ

is a convex modular onces,. The subspaceE,

of cesq, is defined by
Eo={xe & : py(Ax)<w, VAi>0}.

Itis worth noting that if ® € 3,, then g, € A and
cesqy =E,.

Tosimplify notations, we put cesg —(ces,,,,|| || ) and
cesp = (ceso,ll “,‘) It the case when ®(t) = |t|P (p>1)
the Orlicz- Cesaro sequence space ces,, becomes the
Cesaro sequence space €65, and the Luxemburg norm
is that one defined by (1.1).

From now on, forx e #® andie N welet

%, =(x(1),x(2),...,.x(1),0,0,...),

x,, =(0,0,...x(A+1),x(1 +2),x(1+3),...),

and

suppx ={ieN: x(i)#0}.

Resurs
We first give an important fact for qu . on cesy,.

Lcmma 2.1 @ is an N'-function, then lor
eachxe ccsq, there existsk e R such that

Ix|, = (l+p,,(kx))
we have
€fs. Obscrve thatlX. =I#l, .

nai

and @ isan N'-function, by [8, Corollary2.3] there

Proof For eachx =(x(D)),, eces,

exists k e R such that
ol = H -—(1 +1, (k)
=— 1+ zn-l(p[ ztallx(l)”} = %(1 + Py (kx))

This completes the proof of our Lemma.

Proposition 2.2 Suppose that @ isan N* —funcuon
and let {x } be a bounded sequence in cesy such
that x, —=»x for somexeces). Ifk, eK(x,)
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and k, =, then x=0. 1
Proof. For eachneN,5>0, putGyy ={i eN: ?Zﬁ-xlxnﬁ)l = ’1}» First, we claim that for each
1>0.G, =D foralllarge n e N. Otherwise, without loss of generality, we may assume that G, 5, # @ forall

neN and forsomern >0. Then
1 o(kx,) |,
|Jc,I IL =~l;-(l+po (k"x,l ))2—(k——)— (1 eG(w)).

By applying the assumption that @ isan N’ -function, we obtain u ,,H , >, which contradicts to the fact
that {x,,} is bounded, hence we have the claim. By the claim, we have ?2}.l|1 )]0 asn oo forallien.

This implies that x,(i}) >0 asn > forallieN. Sincex, —~+x, we havex, (i)— x(i) forallie N, soit
follows that x(i)=0 forall je N,

Lemmma 2.3 For any Orlicz function ®, we have Eq © {x €cesy, :Hx =X, H , 0}-
Proof. Write A ={x €cesy -‘lx-x‘ IL —>0}- Let x€ E, and g0 begiven, Since x € By, thereexistsi, e N
such that Py ((X —x, )/€l<€ foralli>i . Therefore, by the definition of ”A we have
5! (x—x,l )IL Sl+,o“,[(x—xL )/e] <l+e

foralli>i,. This yields “(x - X ){‘ =0 asi 3w since £ is arbitrary. Hence x € A, proving the Lemma.

Theorem 2.4 The space ces is (UKK) if @ is an N* -function which satisfies the § - condition.

Proof. For a given £>0, by Theorem 1.2 there exists 5 €{0,1) such that}y|, 2% implies py { ¥) 2 25.
Givenx, € B(ces;),xn —x  weakly and[x, - x, |, 2&(n=m), we shall complete the proof by showing
that||x|, S1-J. Indeed, if x =0, then it is clear. So, we assume x = 0. In this case, by Proposition 2.2 we have
that {k, } is bounded, where k, € K(x, ). Passing 10 a subsequence if necessary we may assume thatk, -k for
some kg >(. Since® € J,, Lemma 2.3 assures that there exists j€ N such that u"u 'L 2 quA —3&. Since the weak
convergence of {x,} implies thatx, —»x coordinatewise, we deduce that x,(i)— x(i} uniformly on
{1,2,..., j}. Consequently, there existsn, € N such that

(xn _"m),J I s % forall a,mzn,,

Il("n Xy, )h 2% forall nmzn, m=n
1l
This gives or "X,.,,H ”A z % for alln,mzn,,m#n, which yields [xm_‘. z % for infinitely manyneN,
hence Po| X, , = 28. Without loss of generality we may assume that j*»,, A 2%, foralln e N. By using the
convexity of & and the inequality ©{(a+b) 2 ®(a)+®(b), a,beR" together with the fact thatk, 21, we have

1-28 2]x, |, - Po (%, )

>l 5 peesa,)

which implies

1 1= (k & 1 e k, )
=E +—E|-Z,:(D(Tr§ X, (r)|]_zl=§;ﬂ¢(_‘ir§1 x, (i + r)l]

1 g ka L 1 < ku ! = k,. I .
e ge( i) ] Eo(th o) £ o Ek o)

1 1y 1 = (& ko8, o (Rl )
=E+-§¢(l“-€;£|x, (r)|)+d‘ Eﬂd{—ilélxn (f+ 2B ( J+r)|J-I EP[TQ"" ( J+r)|)]

e} 5 02 S0

1= 141
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hence le-"A £1-4.

Theorem 2.51f ¢ 1san N’ -function which satisfies
& -condition, then ces} hastheumform opial roperty
Proof. Takeany £ >0 and x e cesd wn.h
Let (x, ) be weakly null sequence in S CCSw Bytb € 5 \
and Theorem t , here is £ €(0,1) independent of x
that £ *2-]>§- Also, by
have cesh =E,. By Lemma 2.3,x is an order
continuous element, thisallows us to find j, € ¥ such
that

such Ded,, we

"x’"-h i <_§

and
1.4 |x(1 | 4-’
b =,
)‘=§+1 [Jl—l 2 ] 8

i<t jeo2
whichimplies
7 b 1[X0) @1
8 E )E 2
From x, —+0, we have x, (i) >0 forallieN,
which implies that Po‘( -0, By Theorem 1.2 we
have %, E —0, so therg existsn, € N such that
K forall n>n,,
Therefore, ’ ’
e+ x.d, —“(x+x ), +xex) |

2 Xt F e,

—Ix,
A “"“k,q

- xnlh

(2.2)

> -5
2

Since is an N’ -function, by Lemma 2.1 there

-
X, X |

exists k, >0 such that

For i, om )

This together with (2.2) and the fact

that P (¥ +2) 2 pe (¥) + £o(2) ilsuppy N\ suppz=,
we have

||x+x “ +kip¢(k xlb)+k—p°( "y, )—%

2

) *E”“’(k-"*» ]‘% 23

We may assume without loss of generality
thatk, 2-2?- Since 2k, 21,by convexity of Orlicz

ScienceAsta 31 (2005)

function ¢ we have thatpq.(k X, )221’1 Po ("l )
Thus inequalities (2.1) and (2.3) imply that

| X rhe.), “;. *+2ps [%] k%

FA Ix(t)l
], +2,§¢[JM > 2

>
>1__€+li£_£
4 8 2
=1+¢& forall n>n,

Theorem 2.6 If ¢ is an Otlicz function which
satisfies &, -condition, then ces, hasthe uniform opial
property.

Proof. Take any £ >0 and x&ces,, with|x|, >4
Let(x,) bewea.klynullsequence in S(ccsu,) Bydesd,,
we have p, € A]. Thus by Theorem 1.2, there
ispe(0,1 mdependem of x suchthat < p, (x) <w,
Also, by p,, € A}, Theorem 1.3 asserts that there exists
ne (0 i)) such that

Ipo(y+Z)-Po(y)|<l

whenever o (¥) <1 and py (z) <1,.
Since o, (x) <, we choose j, e N such that

£ 0f! £ ko)< £ o L)

pe | JiAi J 4 @)
This gives
r<fo(3gh01 )+ £ o250
< Z(D[ le(:){)

f=1 jim

(2.4)

which implies
il n_37
@ x SR> =—
,“:-1 [J?-:l(')IJ Ty YT,

This together with the assumption that x, ——0,
there existsn, €N su h that

371
<
Jildi E'x )+x(t)|] 2.6
foralln > n,, since the weak convergence implies
the coordina[emse convergence. Again by x, ——0,

there existsn, >n, such that p, (xuh. )< n, for all
n >n,, so from (2.4) obtain

Y
Po(5, *+5, )P0 (%4,
since P (x ) =1. Hence,

1__-p°(x) <Pw("nn) el (

P/
4

A0))

j 1=+l
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for alln>n,. This together with (2.4), (2.5) and
(2.6) imply that forany n>n,,

()+x(u}]+ ) m[ %, (1)

ol )= ${ s

()]

T

3 w
22 3 o
4 Jr s+l }! 1+l

s 0l)-2

23—n+(1—lj--—q =1+g_.
4 4) 4 4

By g €A;, and by Theorem 1.4, there ist
depending on 77 only such that “x +x|| zl+1,

Corollary 2.7([12, Theorem 2|} Foranyl < p <,
the space ¢es, has the uniform Opial property.
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Abstract

Tn this paper, weak and strong convergence theorems are established for a three-step iterative
scheme for asymptotically nonexpansive mappings in Banach spaces. Mann-type and Ishikawa -type
iterations are included by the new iterative scheme. The results obtained in this paper extend and
improve the recent ones announced by Xu and Noor, Glowinski and Le Tallec, Noor, Ishikawa, and
many others.  * ’
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1. Introduction

Fixed-point iteration processes for asymptotically nonexpansive mapping in Banach
spaces including Mann and Ishikawa iterations processes have been studied extensively
by many authors; see [1-19,21,22]. Many of them are used widely to study the approxi-
mate solutions of the certain problems; see [4,6,11,12,21]. In 2000, Noor [12] introduced
a three-step iterative scheme and studied the approximate solutions of variational inclu-
sion in Hilbert spaces. Glowinski and Le Tallec [4] applied three-step iterative schemes for
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finding the approximate solution of the elastoviscoplasticity problem, eigenvalue problem
and liquid crystal theory.

Recently, Xu and Noor {23] introduced and studied a three-step scheme to approximate
fixed point of asymptotically nonexpansive mappings in 2 Banach space, and Cho, Zhou
and Guo (3] extended their schemes to the three-step iterative scheme with errors and
gave weak and strong convergence theorems for asymptotically nonexpansive mappings in
a Banach space. Wangkeeree [20] gave a strong convergence theorem of Noor iterations
with errors for asymptotically nonexpansive mapping in the intermediate sense. Inspired
and motivated by these facts, a new class of three-step iterative scheme is introduced and
studied in this paper. This scheme can be viewed as an extension for three-step and two-
step iterative schemes of Glowinski and Le Tallec [4], Noor [12], Xu and Noor [23], and
Ishikawa [8]. The scheme is defined as follows.

Let X be a normed space, C be a nonempty convex subset of X, and T:C — C be a
given mapping. Then for a given x| € C, compute the sequence {x,}, {¥,} and {z,]} by the
iterative scheme

n =anTnxn + (1 - aﬂ)xﬂv
¥n _—“bnTnZn +CnTnxn + {1l — b, — cplxn,
xn-{-l:anTnyn +ﬁnTnZn+(] —&n— Bn)xn, n21,

where {an}, {ba), {ca}, {&a}, {Bn} are appropriate sequences in {0, 1].

The iterative schemes (1.1) are called the modified Noor iterations. Noor iterations in-
clude the Mann-Ishikawa iterations as special cases. If ¢, = B, = 0, then (1.1) reduces to
Noor iterations defined by Xu and Noor [23]:

. N (1.1)

n=an T x, + (1 —a)xn.
¥n =b,T"z5 + (1 —bu)x,,
Xpal =0T yn + (1 —oz)xn, n2l, (1.2)

where {a,}, {fn}, {a) are appropriate sequences in [0, 1].
For a;, = ¢y = 82 =0, then (1.1) reduces to the usual Ishikawa iterative scheme

Yn= bnTnxn + (1 = bp)xg,
Xnpl = a7y + (L —ap)xn, n21, (1.3)

where {b,), {«n ] are appropriate sequences in [0, 1].
Ifa, = by = ¢y = By =0, then (1.1) reduces to the usual Mann iterative scheme

Xprl = o T xp + (0 —apdxy, nzl, (1.4)

where {«,) are appropriate sequences in [0, 1].

The purpose of this paper is to establish several strong convergence theorems of the
modified Noor iterations for completely continuous asymptotically nonexpansive map-
pings in a uniformly convex Banach space, and weak convergence theorems of the modified
Noor iterations for asymptotically nonexpansive mappings in a uniformty convex Banach
space with Opial’s condition. Our results extend and improve the corresponding ones an-
nounced by Xu and Noor [23}, and others.

Now, we recall the well-known concepts and results.
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Let X be normed space and C be a nonempty subset of X. A mapping 7:C — C is
said to be asymptotically nonexpansive on C if there exists a sequence {k,}, k, = I, with
lim,, 0 kn = | such that

17%% = Tyl S kallx =yl

forall x,ye Candeachn = 1.
If k, = 1, then T is known as a nonexpansive mapping. The mapping T is called uni-
Jormly L-Lipschitzian if there exists a positive constant L such that

177 =Tyl £ Lllx — I,
forallx, ye C and each n 2 1.
It 15 easy to see that if T is asymptotically nonexpansive, then it is uniformly
L-Lipschitzian with the uniform Lipschitz constant L = sup{k,: n 2 1}.

Recall that a Banach space X is said to satisfy Opial’s condition [13] if x, — x weakly
as n — oo and x 3 y imply that

limsup ||x, — x|| < limsup ||x, — yll.
=00 n—00

In the sequel, the following lemmas are needed to prove our main results.
Lemma {.1{18, Lemma 1]. Let {a,), {by) and {8,) be sequences of nonnegative real num-
bers satisfying the inequality
Anpl (1 +8)an +b,, Yr=1,2,....
I35 8y <ocandy ooy by <00, then

(1) limy, o0 ay, gxists. .
(i) limy— oo an = O whenever liminf, o o a, = 0.

Lemma 1.2 [2], Theorem 2} Let p > |, r > 0 be two fixed numbers. Then a Banach
space X is uniformly convex if and only if there exists a continuous, strictly increasing,
and cormvex function g 1[0, o) — [0, 00), g{0) = 0 such that

|2x 4+ (1= 2y |7 < Alxli? + (1= 21y lIP — wp g (lx — »ll),
Jorallx,yin B, ={x e X: ||x}| £r}, X €[0, 1], where
wp(A) =A(l — NP AP — ).
Lemma 1.3 {3, Lemma 1.4]. Lef X be a uniformiy convex Banach space and B, = {x € X

lx|l € r), r = 0. Then there exists a continuous, strictly increasing, and convex function
£:[0,00) = [0, 00), g(0) = 0 such that

Ihx + By + yall* < Allxl® + Bliyi* + v lizii> — 28g(lx — yl),
Jorallx,y,z€ Brandall A, B8,y €[0, 1]with A+ +y =1

Lemma 1.4 [3, Lemma 1.6]. Let X be a uniformly convex Banach space, C a nonempty
closed convex subset of X, and T . C — C be an asymptotically nonexpansive mapping.
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