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Then | — T is demiclosed at 0, ie, if x, — x weakly and x, — Tx, — O strongly, then
x € F(T), where F(T) is the set of fixed point of T .

2. Main results

In this section, we prove weak and strong convergence theorems of the modified Noor
iterations for asymptotically nonexpansive mapping in a Banach space. In order to prove
our main results, the following lemmas are needed.

Lemma 2.1. i (b,} and {c,} are sequences in [0, 1] such that limsup, _, (&, +¢5) < 1
and {k,} is a sequence of real numbers withk, 2 | foralln 2 | andlim, 00 ky = 1, then
there exist a positive integer Ny and y € (0, 1) such that cyk, < y forall n z Ny.

Proof. By limsup, _, (b, +cn) < |, there exists a positive integer Ng and 5 € (0, 1) such
that

S by+cqn<n, YaZzNg.

Let ' € (0, I) with " = 5. From lim,_, s k, = 1, there exists a positive integer Ny = Ny
such that + .

1
kn—1<-——1, VYazN,
n

from which we have k, < 1/n’, ¥rn = N{. Put y = n/n/, then we have c,k, < y for all
I 2 N|. O

The next lemma is crucial for proving the main theorems.

Lemma 2.2. Let X be a uniformly convex Banach space, and let C be a nonempty closed,
bounded, and convex subset of X. Let T be an asymptotically nonexpansive self-map of C
with {ky} satisfing kn 2 1 and Y no (kg — 1) < 00. Let (o), {Bn). {an), (bn) and {c,} be
real sequences in [0, 1] such that b, + ¢cp and o + B are in [0, 1] forall n 2 1. For a
given xy € C, let {xp), {y.) and {z,} be the sequences defined as in (1.1).

(1) If q is a fixed point of T, then limy .00 | xp — g || exists.
(i) {f liminfp,oan > 0 and 0 < liminf,_ 00 b < limsup,_, (bx + ¢a) < 1. then
limy, oo [1T" 20 — X2l = 0.
(i) 210 < liminfy_co &n < timsup,_, o (en + Ba) < 1, then limps oo [ T" yn — x: 11 = 0.
(iv) If 0 < liminf, 0 &4 € limsup,,_, o, (6r + ¢n) < | and
0 < liminfy sec 0n € himsup,,_, (o + Br) < 1, then limy oo [T"xn — X5l = 0.

Proof. From [5, Theorem 1], T has a fixed point x* € C. Choose a number r > 0 such
that C € B, and C — C € B,. By Lemma 1.2, there is a continuous, strictly increasing,
and convex function g : [0, oo) — [0, 0o}, £1(0) = O such that

[+ (1 — 0y [* < AxI? + (1= DIyl — wadgr (Ix — 1) (2.1)
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forall x, y € B,, . € [0, 1], where wa(}) = A{1 — )2 + 22(1 — ). It follows from (2.1)
that
lza = x* 12 = an(T 50 — x*) + (1 = @n)(xa — x|
L anll T = x* |2 4 (1 = @) llxn — x* 11 — walan) g1 (IT"xn — xnll)
L @kl llxg — 212 4+ (1 — an)fing — x* |12
< (1 +ank? — ag)lix, — x*|1%.

By Lemma 1.3, there exists a continuous strictly increasing convex function g7 : [0, o) —
[0, 00}, g2(0)y =0, such that

(ax + By + yzl* < Al + Blyl® + v lizl* — 28g2{llx — I}, (2.2)
forall x,y,ze B,,andall &, 8,y €10, 1] with A + g + y = 1. It follows from (2.2) that

iy = x* 1% = |Ba(T" 20 — x*) + (L= by — ca)(Fn — X*) + cn(T"x4 — x7)|?
< ballT 2y — x* 12+ (1 = by — cdllxa — x* I + call T2, — x* |12
— b (1 = b — )82 (Il T" 20 — xall)
< bk iz — X[ 4 cakZlxn — x* 12 4 (1 = b = ca)llxn — x* I
— ball = by — c)g2{IIT" 20 — xall)

and

Wasr = x* 12 = Jan (T yn = %) + (1 = @y — Ba) (tn — £*) + BalT 20 — )|
LAl T yn — x* 112 4+ (1~ ot — B lixn — 217 + BuliT" 20 — x* |12
"= an(l = o — B)g2 (1T yn — xall)
k2l yn — 217+ (| — n — Bu)llxa — 221 + Bakiliza — x*1I
—ap(l —tn — Bu)g2 (1T yn — x4}
< ank2 (bakPlzn — x* 12 + cakPllxa — x* |12
+ (1= by — ca)llxa — x*12 — bl = by — ) g2 (11T 20 — X 1))
+ Bk e — 22 + (1 —atn — Budlxn — x"1°
—an(1 =ty — B)g2 (17" yn — 2all)
=[x — x* 1 + (@nCak + ctak2(1 = by — Cn) = &t = Bu}llxa — x* |17
+ (anbaky + Brki iz — x*11?
— k2l (1 = b — ca)g2 (I T" 20 — x4 )
—an(l — 0t — B)&2(IT" yn — xal)
< llxg ~ x* I 4 {onkZen (k2 — 1)
+ ot (k2 = 1) — ankzby — Bu)llxs — x*117
4 (etbakt 4+ Bak2)(1 + ank? — an)lxq — x* |
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— nkibn (1 — by — ca)g2 (17" 20 — xal)
— ol = oty — B2 (11T ¥ — xa )

= |lxn — x* 1% + (@nkZen (k2 — 1) + an (k2 — 1) — auklby — Ba
+ Cnbuk? + Bk + (nbak + BukZ)an (k2 — D)} xn — x* 2
— ankZba(1 — by — cn)g2 (| T" 25 — xall)
—ag{l — oy — Bu)g2(IT" ¥ — xul)

= [lxn — x* 1% + {@nkZen (k2 — 1) + an (k2 — 1) + anbuk? (k2 — 1)
+ Ba(k2 — 1) + (@nbukp + BakZ)an(k2 — 1)Mlixa — x*|1?
— ctknbp(l — by — cn)g2{IT" 20 — Xnll)
—an(l — oy — Ba)g2(IT" yn — xull)

=|lxa — "1 + (k2 — 1){otnkZcn + ctn + 2abuki + Ba
+ (anbnky + Bukp)an) I xn — x* i
— atuk}bn (1 — by — cn)g2 (I 7" 20 — xall)
—an(l —an — Bu)g2 (I T" yn — xall). s

Since {k,} and C are bounded, there exists a constant M > 0 such that
(nkzcn + @ + @nbaky + Bn + (@nbnky + Buky)an)llxn — "7 < M

for all n == 1. It follows that

ank2ba (1 — by — ) g2 (17" 20 — %)
< B — x* 1 = oy — x™02 + M (K2 — 1) (2.3)

and

op{l —ay — ﬁn)g2("Tn)’n — Xn “)
< lxn — %117 = xng1 — x* 2 + M (K2~ 1). (2.4)

(i) If ¢ € F(T), by taking x* = ¢ in the inequality (2.3) we have [[x,41 — ¢|* <
lxn — qII2 + M(kﬁ — 1). Since E;’i,(kﬁ — 1) < o0, it follows from Lemma 1.1 that
limg, o0 [lxn — gk exists.

(ii} If iiminf, oo 0p > 0 and O < liminf, o0 by < limsup,_, (br + ¢n) < 1, then
there exists a positive integer ng and 7, 5 € (0, 1) such that

0<n<b,, O<n<a, and b,+c, <7 <1 forallnzng.
This implies by (2.3) that
P =082(IT" 20 — xnl) < Mxn —x* I = lkws1 —x* I+ Mk —1)  (2.5)

for all r 2= ny. It follows from inequality (2.5) that for m = ny,
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1

Z 82(|'IT"Zn — Xn H) £ _( 2 (”Xn -x* "2 = fxas __x*"2)

H=Hg ’72(1 —?’,t') n=ng
+M Y (k2 - 1))
n=ny
1 m
€ —5——|ltng =" 1P+ M k2 —1)|. 2.6
ﬁm—m@““x” 2%( )) (2.6)

Since 0 <12 — 126t — 1) foralls 2 1, the assumption ¥ oo (k, — 1) < oo implies that

52 (k2 —1) < 00. Let m — oc in inequality (2.6) we get 3 ne, g2 (7" 2 — xq 1) < 00,
and therefore lim, o6 g2()|T" 2n — xx[}) = 0. Since g7 is strictly increasing and continuous
at 0 with g(0) =0, it follows that limy— oo | 7724 — xx[j = 0.

(i) If 0 < liminf,_, o 0ty € limsup,, , (&, + Bi) < 1, then by using a similar method,
together with inequality (2.4), it ¢an be shown that lim, o0 | 7% ya — x| = 0.

(iv) If 0 < liminf,_, 00 b, < limsup,_, (b + ¢,) < 1 and 0 < liminfy oo, €
limsup,,_, (s + fr) < 1, by (i1} and {iii) we have

lim Ty, —x2|l=0 and lim |77z, —x.il =0. (2.7)
H— 00 n—>00
From y, = b, Tz, + caT"xp + (1 — by — ¢1)x,, we have

yn = 2nll € Bal T zn — xnll + calT" 20 — xall.

Thus
”Tn-xn —x ST %y — Tnyn” + i.lTn}’n — Xa||
: Skpllxg — yal + ”Tn}’n — xull
Skn(balT" 25 = xall + cal T"xn = 20 1) + 17" 37 — %n|
=kyby ”Tnzn —Xg |l + ann“Tnxn —xall + ”Tn.)’n —xq. (2.8)

By Lemma 2.1, there exists positive integer n and y € (0, 1) such that ¢k, < y for all
n = ny. This together with (2.8) implies that for n 2 n,,

€l — YT " x, —xnfl < (L —cnka)iT 20 — Xp |
& knbn“TnZn — Xl +UT" yp — Xnll.
It follows from (2.7) that lim, ., || T"x, — x4l =0. O

Theorem 2.3. Let X be a uniformly convex Banach space, and C a nonemply closed,
bounded and convex subset of X. Let T be a completely confinuous asymptotically
nonexpansive self-map of C with {kn} satisfying kn = ) and Y oo (kn — 1} < 00. Let
{an), 1bal, {en), lan), [Ba) be sequences of real numbers in [0, 1] with by + ¢, € 10, 1]
and o, + Bn €0, 11 foralin 2 1, and

(i) 0 < liminf,_,e0 by < limsup, oo (bn +¢n) < 1, and
(i) 0 <liminf,_ oo, € limsup, |, (0, + Bu) < 1.
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Let {x,}, {yn} and {z,) be the sequences defined by the modified Noor iterations (1.1).
Then {x,}, {yn) and {z2,} converge strongly to a fixed point of T.

Proof. By Lemma 2.2, we have

lim |7"y, — x2ll =0, im |72y — xall =0,

nm=3»00 n—0o0

lim |T"xy — xa |l = 0. (2.9)
H=—r 00

Since xp41 — xg = (T yy — xp) + Bn(T" 27y — xp), we have

Nxner = T x| S xpar — Xl F 0T 3000 = T2 0 + 17" 25— x4l
< Nengr = xnll + knlltner — xall + 1 T7x0 — x5l
= (1 + k)l xngy = Zall + 4T %0 — xg
LU +k)atallT"yn —"xnll + (1 + kn)BaIT" 20 — x4l
+ 117" %y — xnll.
This together with (2.9) implies that
Xyt = T"xpp1l > 0 (asn — co).

Thus

>

1 +1
[Xp41 — Tt Xt + 1T xpe1 — T" ol

[[xn41 — Txapr |l <
1
< a1 — T g |+ Ky Bxper — TP xa4a | = 0,

I
|
which implies

lim [|Txs — x4l = O. (2.10)
n—>00

Since T is completely continuous and {x, ] € C is bounded, there exists a subsequence
{xn,} of [x,} such that {Tx,,} converges. Therefore from (2.10), {x,,} converges. Let
Mg 00 Xn, = g. By continuity of T and (2.10) we have that Tg = g, so g is a fixed
point of T. By Lemma 2.2(i), lim,_, o [Xn — g || exists. But imy .o [lxn, — ¢l = 0. Thus
limy oo lx2 — gl =0.

Since

Hyn — 2 SBNT" 20 — xul + a1 T — X4l = 0 asn — oo, and
zn — xnll € @\ T" x5 — x4l = 0 asn — co,

it follows that limy o ¥yp =g and lim, 002, =g. O
Fore, = 8, =0 in Theorem 2.3, we obtain the following result.

Theorem 2.4 [23, Theorem 2.1]. Let X be a uniformly convex Banach space, and let C be
a closed, bounded and convex subset of X. Let T be a completely continuous asymptoti-
cally nonexpansive self-map of C with (k,) satisfying k, = | and Zﬁil(kn — 1Y < o0 Let
{an}, {bn}, {en) be real sequences in [0, 1] satisfying
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() 0 < liminfy o0 bn < limsup,_, oo ba < 1, and
(ii) 0 < liminfy, o o0y < liMaSUP, |, oo @ < L.

For a given x| € C, define
in = anT"xn + (1 —ag)x,,
Yan=by TnZn + (1 — bp)xy,
xn+l:anTn_Yn+(1 —0p)xn, n2 1.
Then {xa}, {ynl, {24) converge strongly to a fixed point of T.

When a; = ¢, = B, = 0 in Theorem 2.3, we can obtain Ishikawa-type convergence
result which 1s a generalization of Theorem 3 in [14].

Theorem 2.5. Let X be a uniformly convex Banach space, and let C be a closed, bounded
and convex subset of X. Let T be a completely continuous asymplotically nonexpansive
self-map of C with {kn) satisfying kn 2 1 and 3 v tky — 1) < 00. Let [by} and {an) be
real sequences in [0, 1] satisfying

(1) 0 < liminfy oo by < limsup,_, o, bn < 1, and
(il) 0 < liminf,_ oot < limsup,,_, o, < L.

For a given x| € C, define
¥n = bnTnxn + (1 - bﬂ)xﬂl
Inpl =0Ty + (1 —p)x,, nxl.
Then {xy) and {yn} comverge strongly to a fixed point of T.
For @y = by, = ¢p = B, = 0, then Theorem 2.3 reduces to the following Mann-type

convergence result, which is a generalization and refinement of [14, Theorem 2], [16, The-
orem 1.5], and [17, Theorem 2.2].

Theorem 2.6. Let X be a uniformly convex Banach space, and let C be a closed, bounded
and convex subset of X. Let T be a completely continuous asymptotically nonexpansive
self-map of C with (k,} satisfying k, 2 1 and Z?:](kn — 1) < o0. Let {an} be a real
sequence in [0, 1] satisfying

0 < liminfe,, € limsupo, < 1.
n—= 00 n—00

For a given x| € C, define
Ynpt =n T "xp + (1 —en)xe, n2zl

Then {x,} converges strongly to a fixed point of T.
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In the next result, we prove weak convergence for the medified Noor iterations (1.])

for asymptotically nonexpansive mapping in a uniformly convex Banach space satisfying
Opial’s condition. To do this, we need a lemma.

Lemma 2.7. Let X be a Banach space which satisfies Opial's condition and lef {x,) be a
sequence in X. Let u, v e X he such that imy,_, o || X, — u|| and lim,_, 00 ||x, — v exist. If

{xn,} and {xm, } are subsequences of {x,} which converge weakly to u and v, respectively,
then u = v.

Proof. Suppose that u # v, Then, by Opial’s condition, we have
lim (lx, —u|l = lim |Jxy, —u|l < lim |x, —v|
n—00 k— o0 k—oo

= lim |x, —v| = lim |xu,, —v|
R— 00 k—oo

< hm ||xpm, —ull = lim llx, —ul],
k—co A—+ oo
which is a contradiction. 0O

Theorem 2.8. Let X be a uniformly convex Banach space which satisfies Opidal s condition,
and C a nonempty closed, bovunded and convex subset of X. Let T be an asymptotically
nonexpansive self-map of C with {ka} satisfying k, 2 | and 3y o0 (ks — 1) < 0. Let
{an}, {bn), {cn), lan}, {Bn) be sequences of real numbers in [0, 1] with b, + ¢, € [0, 1]
and ey + By €0, 1] for alin 2 1, and

(1) 0 < liminf,_, o0 by < limsup,_, o (bn +cn) < 1, and
(1) 0 < liminf,_ oo @y € limsup,_, oo (e + Br) < L.

Let {x,)} be the sequence defined by the modified Noor iterations (1.1). Then (x,} con-
verges weakly fo a fixed point of T.

Proof. It follows from Lemma 2.2(iv) that limy, oo [T X, — x| = 0. Since X is uniformly
convex and {x,] is bounded, we may assume that x, — u weakly as n — 00, without loss
of generality. By Lemma 1.4, we have u € F(T). Suppose that subsequences {x,,} and
{xp, ) of {x,} converge weakly to u and v, respectively. From Lemma 1.4, u, v € F(T). By
Lemma 2.2(i), liMy—s oo X — & and limy o0 [|xn — v exist. It follows from Lemma 2.7
that u = v, Therefore {x,) converges weakly to a fixed pointof T. O

When ¢, = 8, =0 in Theorem 2.8, we obtain the following result.

Carollary 2.9, Let X be a uniformly convex Banach space which satisfies Opial’s condi-
tion, and C a nonempty closed, bounded and convex subset of X. Let T be an asympltoti-
cally nonexpansive self-map of C with (k,} satisfying k, 2 1 and 3 o2 (ky — 1) < co. Let
{an}, {bnl), () be sequences of real numbers in [0, 1] and
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(1) 0 < liminf; 00 by € limsup,_, o ba < 1, and
{(11) 0 < liminf, . oo &, <limsup,,_, oo &n < L.

Let {x,}, {va} and {z,,} be the sequences defined by
Zn =, T %, + (1 — a)xn,
Yn=bnT "2y + (1 = bn)xp,
Enpl =0Ty + (1 —ay)xn, n2 1L
Then {x,} converges weakly fo a fixed point of T

When a, = ¢, = fn = 0 in Theorem 2.8, we obtain Ishikawa-type weak convergence
theorem as follows:

Corollary 2.10. Let X be a uniformly corvex Banach space which satisfies Opial’s condi-
tion, and C a nonempty closed, bounded, and convex subset of X Let T be an asymptoti-
cally nonexpansive self-map of C with {k,} satisfying k, = | and 3 07 (kp — 1) < 00, Lef
{ba} and {«e,} be sequences of real numbers in [0, 1] such that

(i) 0 < liminf, 00 b < limsup,,_, ., by < 1, and
(ii) 0 < liminf, oo cep < limsup,_, . &x < L.

Let {x,} and {yn} be the sequences defined by
Yn = bnTnxn + (1 - ba)xn,
Xntl =ea Ty +(l —p)x,, n=l.
Then {x,} converges wlakly to a fixed point of T.

When a, = b, = ¢, = B, =0 in Theorem 2.8, we obtain Mann-type weak convergence
theorem as follows:

Corollary 2.11. Ler X be a uniformiy convex Banach space which satisfies Opial’s condi-
tion, and C a nonempty closed, bounded and convex subset of X. Let T be an asymploti-
cally nonexpansive self-map of C with {k,} satisfying ky 2 1 and y oo (ka — 1) < c0. Lef
{o;) be a sequence of real numbers in [0, 1] such that

0 < liminfa, < limsupa, < 1.
=0 n—co

Let {x,} be the sequence defined by
Xnpl=n T + (1 —ay)x,, nzl.

Then {x,) converges weakly to a fixed point of T.
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Abstract

In this paper, weak and sirong convergence theorems of the modified Noor iterations with errors
are established for asymptotically nonexpansive mappings in Banach spaces. The results obtained in
this paper extend and improve the several recent results in this area.
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1. Introduction

Fixed-point iteration processes for.asymptotically nonexpansive mapping in Banach
spaces mcluding Mann and Ishikawa iterations processes have been studied extensively
by many authors; see [1-19,22,23]. Many of them are used widely to study the approx-
imate solutions of the certain problems; see [11,12,21]. In 2000, Noor [12] introduced a
three-step iterative scheme and study the approximate solutions of variational inclusion
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in Hilbert spaces. In 2002, Xu and Noor [23] introduced and studied a three-step scheme
to approximate fixed point of asymptotically nonexpansive mappings in a Banach space.
Cho et al. [3] extended their schemes to the three-step iterative scheme with errors and gave
weak and strong convergence theorems for asymptotically nonexpansive mappings in a Ba-
nach space. Suantai [17] defined a new three-step iterations which is an extension of Noor
iterations and gave some weak and strong convergence theorems of the modified Noor iter-
ations for asymptotically nonexpansive mappings in uniformly Banach space. Wangkecree
[20] gave a strong convergence theorem of Noor iterations with errors for asymptotically
nonexpansive mappings in the intermediate sense. Inspired and motivated by research go-
ing on in this area, we consider and study the modified Noor iterations with errors, This
scheme can be viewed as an extension for three-step and two-step iterative schemes of
Noor [10,11], Xu and Noor [23], Suantai [17] and Ishikawa [6]. The scheme is defined as
follows. -

Let X be a normed space, C be a nonempty convex subset of X, and T:C — C be a
given mapping. Then for a given x| € C, compute the sequences {x,}, {y»} and {z,} by the
iterative scheme

Zn =anT"Xn =+ (l — iy — )“n)xn + Ynin,
¥n —_—bnTnZn +enT xy + (1 —bp — cn — Un)Xn + fnUn,
Xn| =QnTnyn+ﬁnTnZn+(l_an—ﬂn_ln)xﬂ+lﬂw"' nzl, (l‘l)

where [an}, (ba}, {en), {an)s {Ba)s {¥r]: {ta), {Xa] are appropriate-sequences in [0, 1] and
{un), {vn} and {w,] are bounded sequences in C.

The iterative schemes (1.1) are called the modified Noor iterations with errors. Noor
iterations include the Mann-Ishikawa iterations as spacial cases. If y, = p, = A, =0,
then (1.1) reduces to the modified Noor iterations defined by Suantai [17]

Zn = an T "xq + (L —dtn)Xp,
Yn= b T 720 + CnTnxrz + {1 — b, —cn)xa,
Xnpt =0 Ty +ﬁnrnzn+(l_an_ﬁn)xm nzl, (1.2)

where {a,], (bn}, {cn}, (@}, {Ba) are appropriate sequences in {0, 1].
We note that the usual Ishikawa and Mann iterations are special cases of (1.1) and if
Cn = Bn = ¥n = in = Ay =0, then (1.1) reduces to the Noor iterations defined by Xu and
Noor [23]:
Zn =£1nTan +(1 — An)Xn,
¥n = bnTnZn + (1 = bp)xn,
Xnpt =0, T yn + (0 —@n)xn,, n21l, (1.3
where (an}, {bs), {an] are appropriate sequences in [0, 1].
Fora, =¢y = Bn = ¥n = tn = Ap = 0, {1.1) reduces to the usual Ishikawa iterative
scheme
Yo = bpT"xp + (1 — bp)xn,
K+l =anTN}'n +(l—a,,)x,,, nzl, (14)

@ &8~ ;™ kD N =

nY
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where {4,}, {«,} are appropriate sequences in [, 1].

ifay =by =c¢qy =By = ¥ =ty = Ay = 0, then (1.1) reduces to the usual Mann itera-
tive scheme

Xnpl =n T xg +(l —ap)xy, n21, (1.5)

where (o, } are appropriate sequences in [0, 1].

The purpose of this paper is to establish several strong convergence results of the mod-
ified Noor iterations with errors for completely continuous asymptotically nonexpansive
mappings in a uniformly convex Banach space, and weak convergence theorems of the
modified Noor iterations with errors for asymptotically nonexpansive mappings in a uni-
formly convex Banach space with Opial’s condition. Qur results extend and improve the
corresponding ones announced by Suantai [17], Xu and Noor [23] and others.

Now, we recall the well-known concepts and results.

Let X be normed space and C be a nonempty subset of X. A mapping T':C — C is
said to be asymptotically nonexpansive on C if there exists a sequence {k,}, k, = 1, with
lim,_,co k; = 1, such that

IT"x = T"y|| < knllx — yll,
forallx, ye C andeachn 2 1.

If k, =1, then T is known as a nonexpansive mapping. The mapping T is called uni-
SJormly L-Lipschitzian if there exists a positive constant L such that

IT"x =Tyl < Llix =y,
forall x, ye C andeachn > 1.
It 1s easy to see thaf if T is asymptotically nonexpansive, then it is uniformly L-
Lipschitzian with the uniform Lipschitz constant L = sup{k,: n 2 1}.

Recall that a Banach space X is said to satisfy Opial’s condition [13] if x, — x weakly
as n — co and x # y imply that

limsup {lx, — x|| < limsup |jx, — y|.
H—F 3O n—=ro0

In the sequel, the following lemmas are needed to prove our main results.

Lemma 1.1 [18, Lemma 1]. Let {a.}, {bn} and {8,) be sequences of nonnegative real
numbers satisfying the inequality

dnp1 S (L +8)a, + by, Yn=1,2,.. ..
I3 8 <ooand y oo by <00, then

(1) limpo 00 an exists.
(2) limyooo an = 0 whenever liminf, o oo a, = 0.

Lemma 1.2 (21, Theorem 2]. Lef p > |, r > O be two fixed numbers. Then a Banach
space X is uniformly convex if and only if there exists a continuous, strictly increasing,
and convex function g . [0, 00) — [0, 0c), g(0) =0, such that

ax + =2y |7 <Mell? + =017 — wpe (e — y1),

W @ oN D B W N =
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Jorall x,yin B, ={x € X: |x|| € r}, A €{0, 1], where
wp(X) = A1 — P +2P(1 — 1),
Lemma 1.3 3, Lemma 1.4]. Let X be a uniformly convex Banach space and B, = {x € X:

lxll € r), r > 0. Then there exists a continuous, strictly increasing, and convex function
g:10,00) — 10, 0c), g(0)y =0, such that

Ihx + By + yzll* < Aix I + BlyI? + vlizl* — 28g(lx — ylI),
Jorallx,y,z€ By, andall ., 8,v [0, |1Twithi+B+y =1

Lemmaz 1.4. Let X be a uniformly convex Banach space and B, = {x € X: ||x]| € r},
r > 0. Then there exists a continuous, strictly i mcreasmg and convex function g [0, oc) —

[0, co), g(0) =0, such that
llocx + By + pz + Awl|? <alx > + By 12 + whzll? + Awh? — «fg (IIx — yiI),
forallx,y,z,we B, andall o, B, . e |0, lwitha++u+i=1

Proof. We first observe that (u/(1 —a —B))z+ (A /(1 —a— BNw € B, forallz, w € B,
and e, B, i, L € [0, 1} with o + 8 + o + 4 = 1. It follows from Lergmas 1,3 and 1.2 that
there exists a continuous, strictly increasing, and convex function g : [0, co) — [0, ¢0),
£(0) =0, such that

lox + By + pz + dwll
2

=lex + v+ (1 — & ﬁ)[(lha—ﬁ)z_*_ (l—a——ﬁ)w]

alixl? + Blyl* ~aBg(llx — yl)

173
I—a—p) mlra—p"
S alxl? + BlyI? — eBg(llx — )

oy — e —2 e
+(l-a ﬁ{“_d_ i + _a_ﬁwwu]

B) (1
= allx|* + Biyl® + ullzl? + Awl® —afe(lx —yl). O

2

+({l—a«—§8

Lemma L.5 [3, Lemma 1.6]. Let X be a uniformly convex Banach space, C a nonempty
closed convex subset of X, and T :C — C be an asymptotically nonexpansive mapping.
Then I — T is demiclosed at 0, ie., if x, — x weakly and x, — Tx, — 0 strongly, then
X € F(T), where F(T) is the set of fixed points of T .

Lemma 1.6 [17, Lemma 2.7]. Let X be a Banach space which satisfies Opial’s condi-
tion and let {x,) be a sequence in X. Let u,v € X be such that im0 {|xa — u|| and
limMy s o0 flxn — vl exist. df (xn, } and {xn., } are subsequences of (x,} which converge weakly
10 u and v, respectively, then u = v.

w oW ~N O A W N =
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2. Main results

In this section, we prove weak and strong convergence theorems of modified Noor iter-
ations with errors for asymptotically nonexpansive mapping in a Banach space. In order to
prove our main results, the following lemmas are needed.

Lemma 2.1. [f {b,}, {cn} and {pn} are sequences in [0, 1] such that limsup,, _, (b, + ¢ +
1a) < | and {k,) is a sequence of real number with k, 2 1 for all n 2 1 and lim,_, o ky
= |, then there exist a positive integer N1 and y € (0, 1) such that cakn < y foralln 2 Ny.

Proof. By limsup, , . (ks + ¢r + 1a) < 1, there exist a positive integer Ng and 5 € (0, 1)
such that

ca S by +ontpn<n Yoz Ng.

Let n" € (0, 1) with " > 5. From lim, , ok, = 1, there exists a positive integer Ny = Ny
such that

]
ky—1<——1 VYnzN|,
n.’

from which we have &, < # ¥rn 2 N Puty = ﬁ,then we have ¢k, < y foralln = N;.
a

The next lemma is crucial for proving the main theorems.

Lemma 2.2. Let X be a uniformly convex Banach space, and let C be a nonempty closed,
bounded and convex sulpset of X. Let T be an asymptotically nonexpansive self-map of C
with (ks) satisfying k, 2 | and %2, (kn — 1) < 00. Let (an), {ba), fcx). (@), (Ba). (va),
{tn} and (1.} be real sequences in [0, 1] such that a, + ¥n, bn +cn + ftn and ay + Bn + A
arein[0. 1] foralin 2 1, and y oo | Vn <00, 3 e thn <00, 3 noy rp < 0C, and let (u,}),
{un} and {wy) be the bounded sequences in C. For a given xy € C, let {x,}, {yn} and {z,)
be the sequences defined as in (1.1).

(1) If g is a fixed point of T, then ity s [Xn — q|| exists.
(i1) If 0 < liminf,_, o 0ty and 0 < liminf,_, o0 &, < limsup,_, o(bn +cr + pa) < 1, then

limp oo [T"2, — x4} = 0.
(ii1) If 0 < liminfy— oo 0tn < imsup, o, (o -+ Br + An) < 1, then Uy oo 1Ty —xall
=0.

(iv) If 0 < liminf,_ 0 by < limsup,_, oo (bn + ¢ + ttn) <1 and 0 < liminf oo €
limsup, _, o (ttn -+ Bp + An) < 1, then Himp_ o0 | T7 X — X, 1| =0

Proof. From [4, Theorem 1], T has a fixed point x* € C. Choose a number r > 1 such
that C C B, and C — C € B,. By Lemma 1.3, there exists a continuous strictly increasing
convex fuaction g : [0, o0) — [0, 00), g1(0) = 0, such that

Ihx + By + vzl < Mixl? + lvlI2 + ylzh® — 2881 (Ix — yl), (2.1

[L- T I N IR R S R

246



© o N M W B W N =

S0022-247X(05)00315-X/FLA AID:10153 Vol.se [DTDB] P.6 (1~15)
YIMAA:ml v 1.38 Prn:28/04/2008; 13:07 §5ifﬁaa10153 by:Kris p. €

K. Nammanee et al, / J. Math. Anal. Appl. sse (100e) ses—sne

forall x,y,z€ B,,andall A, 8,y € [0, 1] with L + B8 4+ y = |. 1t follows from (2.1) that

lzn — x* 112 = [jan(T x5 — x*) + (1 = an = ¥u)Xn = £*) + yulatn — x)|°
Sapl T = x" 1P+ (1 = an = y)lxn — x* | + yallun — x|
— an{l —an — )i (IT" xn — xzll)
L anklllxn — x* 12+ (1 = an — yu)llxn — x™ 1 + Yalluw — x*112
—an(l —an —¥n)& (17" %0 — xal})
= (aakp + (L= @ — va)) 2t — x711% + yulln — x* |12
—an(l —ay — yu)gr (IT" xn — x, ). (2.2
By Lemma 1.4, there is a continuous, stnctlymcreasmg, and convex function g2 : [0, o0) —
[0, o0}, £2(0) = 0, such that
loex + By + pz + rw|?
ol + By I + wlzl? + Allwl® - aBga(lx — yll) (2.3)

andall ¢, B, pp, A €0, 1 withae+ B8+ p+ =1, forall x, y,z, w € B,. It follows from
(2.3) that

> -
lyn — %112
= [|6alT" 20 — x*) + (1 = by — €n — n) (xn — x*) -
+ (T xn = X*) + ttn(on — 29|
CoallT" 20 = x* 12 + (1 = by — Cn = ) 1xn — 212 + a7 — ™|
+ Unllve = £* 1 = ba(l — by — cn = ) g2 (I T" 2 — 22 [})
< bk llze = 312+ (1 = by — €n — i) llxn — 2™ 112 + ek llxn — ™|
+ allun — x*|12 = ball — bp — e — ) g2 (1T 25 — xa 11} (2.4
It follows from {2.2)2.4) that

st — x*112

= [l (T yu — x*) + (L — 0tp = B — An)(xn — x¥)
F BT 20 — x*) +hn(wn — x|

LT yn — 217 4 (L= ttn — B = A)llxn — x*1* + Bl T 20 — x* |17
+asllwn — x* 2=y (1 — o — Ba = An)g2(IT" Y — xn 1)

k2 liyn — X1 + (L= tn — B — M) llxn — x* 12 + Bakdllza — x™ |17
+ anllwn =212 = n () — oty — B — 20)82(IT" yp — xall)

< k2 (k2 llzn — x* 1 + cak2llxn — x* |12
+ (1 = by = — i) llxn — X" I* + penllvg — X712 + BukZllzn ~ <™
—by(1 = by — cn — )82{I1T" 20 — xa1l})

o e Nt B W N =
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+ (1~ = B = Amdlltn — £ 17 + Aallw — x* |2
— (1 ~ 0ty = Ba = Andg2 (17" yn — xa )
= ltn = X" + (ctncaky + @nkZ(1 ~ by — cn — tn) — n — Br = Mo} llxa — 5”2
+ ot ftnk? | Un = X" 1P + (tabakd + Bak2)lza — x*1I2
~ Gk (1~ by — co — )82 (17" 20 — Xa ) + Aaliwn — x*2
—an(l =y = By — k) g2 (1 7" ya — xall)
17 = x*I7 + (ctncaky + k(1 = by — €n — tha) — @ — B = Aa)lxu — x* |12
itk vy — x* |2
+ (0nbnky + Bakp) ((anks + (1~ ax — yu)) s — x* 1% + v ltw — x*2)
— bk (V= by — cn — )82 (1T 25 — Xa ) + Anllwn — x*12
—an(l —en = B~ 20)g2(I 7" yn — xall)
= llxn = x*I1* + (ctnnkp + 0nk2(1 = by — Cn — fn) =G = B — hn)llxn — x* |2
+ apinki | vn — x* 1% 4 (nbaks + Buk2) (@nk? + (1 = an ~ ) s — x*12
+ (tabnk) + Buk] ) yullttn — x* |2
— Cubuk2 (1 = by — cn — )82 (I T" 25 — Xall) + Aallwn — x* |12
—anll — oty = By — A g2(IT" yn — xalf)
= 1w = x* 112 4 (@ caky + nkZ(1 = by — Cn = ) = otn = B — An) %0 — x™112
+ Qnpnky | g = X*IP + (Cnbakp 4 BukZ + QntnbkS + anfak’
— G Vnbn®y — VuPnk? — GnGnbakd = anBuk?)llx, — x*|2
+ (ctnbnksy + BukZ ) ynllun — x*112
— bkl (1 = by — cn — )82 (1T 20 — Xall) + Anfwn — x|
— (] —an — B — 2)g2 (17" yp — xa ) .
S lon = 217 + (omcnkR (k2 = 1) + (k2 — 1) + cnbnk2 (k2 — 1) + B (K2 — 1)
+ Gk (k3 — 1) 4 apBak? (k2 — ))lx, — x*||2
+ nttnky(|ve — |2+ (ctnbnks + Buk?) vulltn — x*|1?
— bkl (1 = by — cn = )82 (17" 20 — %all) + A wn — 27|12
—anll —an — Bu = 282 (I T" yo — xnll)
< Mxn = x* 117 + (ctnCnk? + ctn + ctnbak? + B
+ antinbuky + an Buk2) (k2 = V)llxn — x* 12 + (k2 + kD) vl — x7 |12
+ k2 llva — x|

N

— bk (1 — by — cn — 122)@2 (K" 20 — %n 1} + Anllwn — x*||2
—an{l —a, — B, — ln)gl(“Tn.Vn — Xn ”)

W o ~w &M WD B W M
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Since {k,} and C are bounded, there exists a constant M > 0 such that
(anCnky + tn + Cybak + P + Gnlnbaky + Gnfukl)llxe — 577 < M,
forall n = 1. 1t follows that
anbnk,z,(l — by —cn — Mn)g2(”TnZn — Xp ")
< low = X117 = g — X712+ M(KE = 1) + Lyn + Ay + 120y
and
(1 —an — B — ) g2 (I T" yn — X))
< llatn = x* 12 = fixagr — 2712+ M(E2 = 1) + Lyn + At +r2kp,
where L = sup{(k? + k2)lu, — x*[1%: n > 1) and A =sup{kZ|lv, — x*||%: n > 1}.
Now, if we let K = max{M, L,k A, rz} then we get that
Cfnbuk,%(l - bn —Cn — pu'n)gZ(”TnZn — Xa ")
Kl = 212 = Pomer — "1+ K (k2 = 1) + v+ + ) (2.5)
and
(] _an_ﬁrz—)\n)gZ("Tnyn_xn”) )
< lxn — 17 = U — "1+ K (2 = 1) + v + pn + 1) (2.6)

(i) If g € F(T), by taking x* = g in the inequality (2.5) we hdve [ix,+] — g2 < ||xn —
gi12 + K (k2 = 1) + yp + ftn + An). Since 2% (k2 — 1) < oo, it follows from Lemma 1.1
that lim,, .o X, — g1l exists.

(i) If 0 < liminf,_, o0, and 0 < liminf, 00 by < limsup,_, oolbn + ¢n + ta) < 1,
then there exist a positive integer rg and v, 5,1’ € (0, 1) such that

»

O<v<o, and O<n<b, and by+cp+ug<n <\, forallnzng.
This implies by (2.5) that

vi(l — n)g2(IIT" 2 — xall)
S low = 212 = g — 212 4 K((k2 = 1)} + v + 120 + X)), (2.7)
for all n 2 ng. It follows from (2.7) that for m = ng,

m

> (17" 20 — xall)

n=ngq
1 n
< ——— Hn — x* 1% = e — x*|I2
(1l — 1) (;( " ! )

+K i((kf,—l)+y,.+.un+kn))

n=ny

1 %2 e 2
< g g (leno T+ K Z((kn i)+)’n+un+l,,)). (2.8)

a=np

© MmN B th & W N =
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Since 0 <2 — 1< 2(r — 1) forallt > 1, the assumption 350, (k, — 1) < oo implies that

% {k} —1) < 00. Let m — oo in inequality (2.8) we get Pomeng 82T 20 — x21) < 00,

and therefore limy, o o0 g2(|| T" 24 — xx||) = 0. Since g» is strictly increasing and continuous
at 0 with g(0) =0, it follows that lim,_, o, | T"z, — xx{| = 0.
(ii) If 0 < liminf, oo arp € limsup,_, o {ctn + B + Xy) < 1, then by using a similar
method, together with inequality (2.6), it can be shown that limp— oo [| 7%y, — x| = 0.
(V) If 0 < liminf, o 00 by < limsup,_, o, (by + ¢x + ) < 1 and 0 < liminf, o @,
limsup, _, (@, + B, + X,) < 1, by (ii) and (i1i) we have

lim | T"y, —x,/l=0 and lim |T"z, —x.[|=0. 2.9
=00 n—=rod
From y, = b6,T"zy 4+ cnT"x, + (1 — b, — ¢y — thn)Xp + fnta, we have

lyn —xnll S BallT 20 — Xl + €allT 50 — X0 b + ttallve — xall.
Thus

17" xn — xall ST %0 = Tyl + 17" yn — xall
knllxa = yall + 177 ya — x|l
kn (Bal T" 20 — Xull + cal T" X0 — xall + pallvn — xall)
T yn — xall
=knbplIT 20 — %pll + CuknllT" xn — Xgll + thrknllty — %l
+ 1Ty — xall. (2.10)

By Lemma 2.1, there exists positive integer n) and y € (0, 1) such that ¢k, < y for all
n = ny. This together with (2.10) implies that for n 2 ny,

S
<
<

(1 =T x0 — xpll < (1 — cnka) I T" X0 — X |
\<,_ knbn“TnZ.ra = -xn:H 1n #fnkn ” Up — Xp ” + ”Tnyn — Xp ”
It follows from {2.9) that lim,y_s00 | T"xy =24l =0. O

Theorem 2.3. Let X be a uniformly.convex Banach space, and C a nonempty closed,
bounded and convex subset of X. Let T be a completely continuous asymptotically non-
expansive self-map of C with {(ky) satisfying ky 2 1 and ¥ ov  tky, — 1) < 00. Let {an}.
{Ba), {cah (o) {Bn) {yn), (un) and {X;} be sequences of real numbers in [0, 1] with
B +cp + pn €10,1] and oy + Byt rn € [0,1] for all n 2 1, and Z:o:l VY < 00,
o M <00, Y02 Ay < 00 and

(1) 0 <liminf, o0 by S limsup,_, o (bn +cn + 1) < 1, and
(i) 0 < liminf,— 0o 0n < limsup, _, (e, + Bn +22) < L.

Let (xp), {yn} and {z,} be the sequences defined by the modified Noor iterations with errors
(1.1). Then (x,}, {ya)} and {z,} comverge strongly to a fixed point of T .

Proof. By Lemma 2.2, we have

@ e o~ 3 kW N -
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lim ”Tn)"n - x,—,” =0,
M=+0Q

lim ”Tnzn — Xy ll = 0,

a—+ 00 .

m || 7"x, — x,)| =0. (2.11)
n—co

Since x4 —xp = an(T"yy — xp) + Bu{T"2n — xp) + Ag(wn ~— xa), we have

xast = Tt | S HiXat = Xnll A+ 1T Xy — Tx0ll + 1T %0 — xpl
L lxnet = Xull + knlxp sy = xnll + 17" 20 = 2|
=1+ k) xnt1 — xall + 17720 — x|
S+ k)anll T yn — xnll + (1 + k) Bull T 20 — xa
+ (L + kA llwn — 2ol + 1T %0 — Xal.-
This together with (2.11) implies that

Nxnst — T xpp1ll = 0 {as n — o),
Thus

i
lxnat = Tt I € Mxnet = T o 14 1T 20y = T g
<

|
|£as1 — T xapl +H kil xasr — T x0mil = O,

which implies
lim | Tx, —x,||=0. (2.12)
R—>CQ

Since 7 is completely continuous and {x,} € C is bounded, there exists a subsequence
{xn,) of {xn] such that (Tx,,} converges. Therefore from (2.12), {x.,} converges. Let
limy o0 Xn, = g. By continuity of T and (2.12) we have that Tg = g, so ¢ is a fixed
point of T. By Lemma 2.2(1), lim,.co [X» — gl exists. But limy_, o llxn, — g = 0. Thus
limy 500 lXn —gil =0.

Since

yn —anll € Bo T "z — xall + caliT % = xall + tnllvn — 2l = 0 asr - oo,
and
hzn — xall € anllT"xn — xall + Yullttn —xal = 0 asn — o0,

it follows that limy, ., oo yo =g and limy o2y, =¢. O
For y, = pty = A, = 0 In Theorem 2.3, we obtain the following result.

Theorem 2.4 [17, Theorem 2.3). Let X be a uniformly convex Banach space, and C a
nonempty closed, bounded and convex subset of X. Let T be a completely continuous
asymptotically nonexpansive self-map of C with {ks) satisfying kr 2 1 and 3 oo, (kn — 1)
< 00. Let {a.). {bn}). {cn}) {on) and {Bn) be sequences of real numbers in [0, 1] with
bp+cpel0,Janday, + €10, 1) foralln 2 1, and

W ® N dm W A W N =
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(i) 0 < liminf,— oo bn € limsup,_, o (bn +cn) < 1, and
(ity 0 < liminfy_ oo, < limsup,_, ooy 4+ Bn) < L

Let {x,), {ya} and (2.} be the sequences defined by the modified Noor iterations (1.2). Then
[xn), {yn] and [z,) converge strongly to a fixed point of T

Forcp = B, =y = fin = Ay =0 in Theorem 2.3, we obtain the following result.

Theorem 2.5 [23, Theorem 2.1). Let X be a uniformly convex Banach space, and let C be a
closed, bounded and convex subset of X. Let T be a completely continuous asymptotically
nonexpansive self-map of C with {k,} satisfying k, = | and Zg’;, (ky — 1) < 00. Ler {a,),
{by) and e, } be real sequences in [0, 1] satisfying

() 0 < liminfymco by € limsup,_, o Pa < 1, and
(i) 0 <liminf,_ coon € limsup,_, oo < L.

For a given x| € C, define

e =a, T "x, + (1 —an)xa,
yrr:bnT"Zn +(l_bn)xn| ”21s
Xapy =Ty, + (1 —an)x,.

Then {xn), {ya} and (2.} converge strongly to a fixed point of T.

When a, = ¢, = 8., = ¥Yn = itn = A, =0 in Theorem 2.3, we can obtain Ishikawa-type
convergence result whifch is a generalization of Theorem 3 in [13].

Theorem 2.6. Let X be a uniformly convex Banach space, and let C be a closed, bounded
and convex subset of X. Let T be a completely continuous asympiotically nonexpansive
self-map of C with {k,) satisfying kn 2 1 and y e (ke — 1) < 00. Let {by) and (o) be
real sequences in [0, ] satisfying

(1) 0 <liminf, o0 bp < limsup,_, oo bn <1, and
(i) 0 < liminf,_, oo n € limsup, oo ttn < 1.

For a given x| € C, define
Yn = baT 7, + (1 — bn)xg,
X+ =0fnTn)’n+(1_0fn)xn: nzl
Then {x,} and {y,} converge strongly to a fixed point of T.
For a, = by = ¢y = Bn = ¥n = tn = Ay = 0, Theorem 2.3 reduces to the following

Mann-type convergence result, which is a generalization and refinement of Theorem 2 in
[t3], Theorem 1.5 in [15], and Theorem 2.2 in [16).

Wom N ! B W R -
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Theorem 2.7, Let X be a uniformly convex Banach space, and let C be a closed, bounded
and convex subset of X. Let T be a completely continuous asymptotically nonexpansive
self-map of C with {ky) satisfying kn 2 1 and 3 ;2 (ks — 1) < 00, Lef {,} be a real
sequence in [0, ] satisfying

0 < liminfe, < limsupa, < 1.
f—=oo n—o0

For agiven x) € C, define
Xn1 =0y T Xy +(l —an)xz, n2zl

Then {x,) converges strongly to a fixed point of T

In the next result, we prove weak convergence of the modified Noor iterations with
errors for asymptotically nonexpanstve mapping in a uniformly convex Banach space sat-
isfying Opial’s condition. '

Theorem 2.8. Let X be a uniformly convex Banach space which satisfies Opial s condition,
and C a nonempty closed, bounded and convex subset of X. Let T be an asymptotically
nonexpansive self-map of C with {k,} satisfying k, 2 | and Z;’il (kn — 1) < cc. Let {a,),
{ba), Len) {an), {Bal). (ttn) and {A,} be sequences of real numbers in [0, 1] with a, + y.,
by +cn + tin and Gn + o+ arein [0, 1 forall n 2 1, and ¥ % | ¥n <00, Yoo | thn
<00, ¥ o2, A, < 0o and

(1) 0 < liminf, e by S HmMsup, o (bn +cn + p) < 1, and

(ii) 0 < liminf,_ oo vy € limsup,_, o{(n + B +An) < .

Let {x,) be the sequence defined by modified Noor iterations with errors (1.1). Then {x,)}
converges weakly to a fixed point of T.

Proof. It follows from Lemma 2.2(iv) that lim,_, oo | TX; — x| = 0. Since X is uniformly
convex and {x,} is bounded, we may assume that x, — u weakly as n — oo, without loss
of generality. By Lemma 1.5, we have u € F(T). Suppose that subsequences {x,,} and
{xp, ) of {x,} converge weakly to u and v, respectively. From Lemma 1.5, 4, v € F(T). By
Lemma 2.2{0), limy— o lxn — || and lim,—, oo [|x, — v|i exist. It follows from Lemma 1.6
that u = v. Therefore {x,} converges weakly to fixed pointof 7. O

For y, = i, = A, =0 in Theorem 2.8, we obtain the following result.

Corollary 2.9 [17, Theorem 2.3). Let X be a uniformly convex Banach space which sat-
isfles Opial's condition, and C a nonempty closed, bounded and convex subset of X.
Let T be an asymptotically nonexpansive self-map of C with (k.) satisfying ky 2 | and

v (kn — 1) < co. Let {an}, {bn), {cr), {aa) and {Bn} be sequences of real numbers in
[0, 1) withb, +cy € [0, 1] and oy + B, € [0, 1) foralin 2 1, and

() 0 <liminfy, o0 by S lmSUp,_, oo(ba +cn) < 1, and
(i) 0 <liminf, oo, < limsup,,_, (o, + By) < 1

W M o~ ! s e N =

g
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Let {x,}, {yn} and {za) be the sequences defined by the modified Noor iierations (1.2). Then
{x,} converges weakly to a fixed point of T.

For ¢, = Bn = yu = ttn = A, = 0 in Theorem 2.8, we obtain the following result.

Corollary 2.10. Let X be a uniformly convex Banach space which satisfies Opial’s condi-
tion, and let C be a closed, bounded and convex subset of X. Let T be an asymptotically
nonexpansive self-map of C with {ky} satisfying k, 2 1 and ¥ ;2 (ko — 1) < co. Let {an},
{bn} and (&, ) be real sequences in [0, 1] satisfying

(1} 0 < liminf,_ 00 b < limsup,_, ., &n < |, and
(i) 0 < liminf,_, oo, < limsup,_, o, < 1.

For a given x| € C, define

w=ay T xs + (1 —ap)xy,
Y=ba Tz + {1 —by)x,, nzl,
Xl = 0y T yn + (1 — otn) X

Then {x,} converges weakly to a fixed point of T".

When a, = ¢, = 81 = ¥ = ptn = A, =0 in Theorem 2.8, we can obtain Ishikawa-type
convergence result which is a generalization of Theorem 3 in [13].

Corellary 2.11. Let X be a uniformly convex Banach space which satisfies Opial's condi-
tion, and let C be a clesed, bounded and convex subset of X. Let T be an asymptotically
nonexpansive self-map of C with {ky} satisfying kn 2 1 and 3 po | (ka — 1) < 00, Let {by)
and {w,} be real sequences in [0, 1] satisfying

(1) 0 < liminf,cobs < limsup,_, osbn <1, and
(ii) 0 < liminf,_, oo, < limsup,,_, o on < L.

For a given x| € C, define
Yn = bnTHZn + (1 = bp)xy,
xn+I=anTHYH+(l_an)xn! nzl
Then {x,} converges weakly to a fixed point of T.
Fora, = by =cn = Bn = ¥n = ttn = Ay =0, then Theorem 2.8 reduces to the following

Mann-type convergence result, which is a generalization and refinement of Theorem 2 in
[13], Theorem 1.5 in [15], and Theorem 2.2 in [16].

Corollary 2.12. Let X be a uniformly convex Banach space which satisfies Opial’s condi-
tion, and let C be a closed, bounded and convex subsei of X. Let T be an asympiotically

© ®m ~N o 0 AW N =

I
- O

254



-

(2= - N N

10

S0022-247X(05)00315-X/FLA AID:10153 Vol.ee [DTD5] P.14 (1-15)
YIHAA:ml v 1.38 Pra:28/04/2005; 13:07 Sf_ffl’f3.2110153 by:Kris p. 14

K. Nammanee et al. / J. Math. Anal. Appl. ees (eses) see—eee

nonexpansive self-map of C with {k,) satisfying kn 2 Vand 3 oo (ko — 1) < 00. Let {0ty }
be a real sequence in [0, 1] satisfying

0 < liminfo, €limsupa, < 1.
=00 n—»co

For a given x| € C, define
Xnp1 = T"xg + {1 —apix,, nzl.

Then {x,) converges weakly to a fixed point of T.
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UNIFORM OPIAL PROPERTIES IN
GENERALIZED CESARO SEQUENCE SPACES

NARIN PETROT! AND SUTHEP SUANTAI?

ABSTRACT. The main purpose of this paper is consider the generalized Cesaro sequence
spaces defined by S. Suantai [12] by give some topological property and find condition for
Ces¢py equipped with both the Amemiya norm and Luxemburg norm to possesses uniform
Opial property.

Keyword: Generalized Cesaro sequence spaces, uniformm Opial property, Amemiya

norm, Luxemburg norm.

(2000) AMS Mathematics Subject Classification: 46B20, 16B45.

1. Introductions. R )

In the whole paper N and R stand for the sets of natural numbers and of real
numbers, respectively. The space of all real sequence z = (z(i))%2, is denoted by £°.
Let (X, || -]|) be a real normed space and B(X)(S(X)) be the closed unit ball (the unit
sphere) of X.

A Banach space (X, ||-||) which is a subspace of £V is said to be a Kéthe sequence
space, if :

(i) for any z € £° and y € X such that |z(i)| < |y(7)] for all i € N, we have z € X and
Jall < [l
(ii) there is x € X with x(¢) # 0 for all £ € N.

An element x from a Kothe sequence space X is called order continuous if for

any sequence (z,) in X, (the positive cone of X) such that z,, < |z| for all n € N and

Zn — 0 coordinatewise, we have ||z,| — 0.

1 Supported by The Royal Golden Jubilee Project grant No. PHD/0018/2546.
2 Corresponding author.

Typeset by AMS-TEX
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A Kothe sequence space X is said to be order continuous if any z € X is order
continuous. It is casy to see that X is order continuous if and only if ||(0,0,...,0,z(n +

), z(n+2),...)]| 2 0asn — cc.

The Opial property is important because Banach spaces with this property have
the weak fixed point property (see [3]). Opial has proved in [8] that the sequence spaces
fp(1 < p < 00) have this condition but L,[0,27](p # 2,1 < p < 0o} do not have it.

A Banach space X is said to have the Opial property (see [8]) if for any weakly

null sequence (x,) and every = # 0 in X there holds
lim infllzg|| < lim inf|le, + z|.
n—00 N—>00

A Banach space X is said to have the uniform Opial property (see [10]) if for
each £ > 0 there exists 7 > 0 such that for any weakly null sequence (z,) in S{X) and
r € X with ||z]| > e there holds

1+ 7 <liminfllz + x,|-
T

For a real vector space X, a function g : X — [0,00] is called a modular if it

satisfies the following conditions :

(i) o{z) =0 if and only if z = 0;

(ii) e{ax) = o(z) for all scalar a with |o| =1 ;

(iii) o(azx + By) < o(z) + o(y), for all z,y € X and all o, B > 0 with o+ = 1.
The modular p is called conver if

(iv) olaz 4+ By) < ap(z) + Poly), for allz,y€ X and all o, B > 0 with o+ 3 = 1.
For any modular ¢ on X, the space

X,={r € X: o{rz) < oo for some A > 0},

is called the modular space.
A sequence (z,) of elements of X, is called modular convergent to x € X, if there
exists a A > 0 such that g(A(z, — z)) — 0, as n — oo.

If p is a convex modular, the function

x

el =inf(a>0: o(F) <1},
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and
. 1
ol = inf (1 + okz)),
k>0

are two norms on X,, which is called the Luzemburg norm and the Amemiya norm,

respectively. In addition, ||z|| < ||zfi, < 2|z|| for all z € X, (see [7]).

Theorem 1.1 Let (x,) C X, then ||z,| — 0 (or equivalently ||z||, — 0) if and only if
o(AMzy)) = 0, as n — oo, for every A > (.
Proof. See [6, Theorem 1.3(a)].

A modular p is said to satisfy the As — condition (¢ € A») if for any € > 0 there
exist constants K > 2 and a > 0 such that

o(2z) < Ko(x) +¢

for all z € X, with o(z) < a.
If o satisfies the As-condition for all @ > 0 with K > 2 dependent on a, we say that p
satisfies the strong Ay — condition (p € Aj).

Theorem 1.2 Convergences in norm and in modular are equivalent in X, if p € Ag.
Proof. See [1, Lemma 2.3].

Theorem 1.3 If p € A$, then for any L > 0 and € > 0, there exists d > 0 such that
lo(u 4+ v) — o{u)| < e

whenever u,v € X, with g(u) < L and p(v) <.
Proof. See [1, Lemma 2.1].

Theorem 1.4 If p € A$, then for any ¢ > 0 there exists § = d(¢) > 0 such that
|z]l > 1+ 6 whenever p(z) > 1+e¢.
Proof. See [1, Lemma 2.4].

For 1 < p < oo, the Cesaro sequence space (write ces, , for short) is defined by
cesp, = {z € £0: 552, (25, 1a()]) < ),
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equipped with the norm

o i P\ ¥
lell = { > G > \m(a‘)l) . @
j=1 i=1
This space was first, introduced by Shue [11]. It is useful in the theory of Matrix operator
and others (see [4, 5]). Now, we introduce a generalized Cesaro sequence space.

Let p = (p;) be a sequences of positive real numbers with p; > 1 for all j € N.

The generalized Cesaro sequence space ces(,y and its subspace ces‘(’“p) are defined by
cespy = {z €1%: p(Az) < o0, for some A > 0},

cesf,y = {z €1°: p(Az) < oo,for all A > 0},

where

o0 1 j Pj

o= 3 (3 31e0)

=1 \7 =
is a convex modular on ces(y,) (see [12]). Assuming that the ces(,) is nontrivial it belongs
to the class of Kothe sequence spaces. It is easy to see that if [im sup p; < oc then

j—roo

p € A3, and ces{,, = ces(y). To simplify notations, we put ces(,) = (cespy, || - ||) and
C&S‘GJ) = (CBS(p), L)

In the case when p; = p,1 < p < oo for all j € N the generalized Cesaro sequence
space ces(p) is nothing buf the Cesaro sequence space ces, and the Luxemburg norm is
express by the formula (*).

In cesé}), if p; > 1 for all j € N then the set of all £’s at which the infimum in

the definition of ||z||, for a fixed = € ces‘a}) is attained, will be denoted by K(z) (see
(9, Theorem 2.1]).

Throughout this paper, for z € £°,7 € N we denote
i—1 times

N, .
e; = (0,0,..,0,1,0,0,0,...),

z), = (x(1),2(2),...,2(4),0,0,...),

T_, = (0,0,0,...,z(i + 1), z(i + 2),2(s + 3), ...),
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and
supp = = {i € N;z(z) # 0}.

2. Main Results

First we shall give some topological property of ces( For casy we denote

ces‘(l;J) = (cesgy, [ - 14)-

Theorem 2.1 ce.s?“‘;1 is a closed subspace of cesf‘)

Proof. It is easy to sce that ces( ) is a subspace of ces# ) Next we will prove that ces( )
is closed in ces(p). We must show that if z,, € ces(p) foreachne€ Nandz, >z € ces(p),
then z € ces‘(‘g’)’)q. Take any k& > 0. Since ||\z,, — ||, — 0 we have by Theorem 1.1 that
p(t(z — zn)) — 0, for all t > 0 hence, there exists N € N such that p(2k(zx —zn)) < 1
and by zn € ces( we have p(2kzn) < co. Thus

ol ZGZW)I)
& (k& [20el) ~ zn ) | 22 s
oo j i P
<y (%; > 2(x(@) —an ()] + l;z |2$N(i)|)
i=1 i=1 i=1
<1§(ki12(z(z>—m ) li( im )
a 2j=1 ji:l 2 =1 =1
= %p(?k(:{: —zn)) + ;P(QkxN) <o

a, A
Hence z ¢ cesyy -

Let E be the set of all finite sequences. The next lemma is a tool for showing
that ces‘a:)‘)4 =clFE.

Lemma 2.2 If p(z) < oo, then the distance d(z, E) from z to E is no more than 1.
Proof. Let ¢ > 0 be given. For each n € N define z,, € E by z,, = (z(1),z(2), ...,z(n), 0,0, ..
Then p(z,) — p{z) as n — oo, and p(z — z,) < p(z) — p(z,). Choose N € N such that
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plzn) > p(z) — . Henee, by the definition of || - ||, we have
Ao, B) < o onll, < 1+ ple —an) <1+ p(z) — plon) < 1+e,
which implies, d(z, E) < 1 since ¢ is arbitrary.

Theorem 2.3 If lim inf p; > 1, then following assertions are trues :
j—o0

(i) ces?;;l =dE.

(i1) ces?};‘;l is the subspace of all order continuous elements of ces‘(‘;).
(iii) ces?ﬁ;’f is separable.

Proof. (i) For any = € ce.‘s'(’;[;;11 and k£ > 1, we have kz € ces‘(lg’)f. Therefore, by Lemma

2.2 we get d(kx, F) <1 or d(z, F) < 1/k. Since k is arbitrary, we find that z € clF.
Conversely, since Theorem 2.1 asserts that ces‘(’“;;‘ is a closed linear subspace of

cesé), hence to show clE C ces‘(";;1 it suffices to show that e; € ces?;)'l for each ¢z € N.

Write o« = lim inf p; > 1. Fix ¢« € N and take any k& > 0. Choose j, > maz{i, k} such

that p; > ci?oo; all § > 7,. Thus,

Jo Dj oo Pj Jo P; o0 o
Z ENTY z kAT Z k™ Z k
=i N j=got1 N =i j=dot1

A
Hence ¢; € ces“’) )

(r
(ii) Let = € ces‘a;;4 we must show that ||z — z),|[, = 0 as ¢ — oco. Let € > 0 be

’ -
given. Since = € ces‘a’);1 we have that there exists i, € N such that p({z — z;,)/¢) < ¢

for all i > ¢,. Therefore, by the definition of || - ||, we have

le™ @ - )lls < 1+ p((z —2y)/e) S 1+e

for all ¢ > ¢, This yield ||z — z,[|, — 0 as ¢ — oo since ¢ is arbitrary.
Let x € cesé) be an order continuous element. Since ||[z—z|,[|, =0 as n — oo,

s0 it easy to see that = € clE and a proof is complete by (i).

iii) By (ii), we obtain that for any z € ces®?,z = 3_ a;e;. This implies that (e, )
()

is a basis of ces®? Hence ces™? is separable.
(p) (p)

Remark 2.4. Since || - || is equivalent to || - || ,, thus Theorem 2.1 and Theorem 2.3 are

also valid for CES(p)-



Uniform Opial properties in Generalized Cesiro Sequence Spaces

Now, we give conditions for ces‘(’;) and ces(p) to possess the uniform opial prop-
erty.
Theorem 2.5 If p; > 1 for all € N and Jlﬂrgo sup p; < oo then cesé)) has the uniform
opial property.
Proof. Take any e > Oand x € cesé)) with {|z||, > €. Let (z,) be weakly null sequence
in S(cesé))). By jlir;zo sup p; < oo, we have by Theorem 1.2 that there is 6 € (0,1)

independent of x such that p(§) > 6. Also, by lzm sup pj < oo, we have ces?) = ces(p)

then as in the first part of a proof in Theorem 2 3(11) assert that z is an order continuous

element, this allows us to find j, € N be such that
)

21vc e < 3
and
(1)
8
j=jo+1 i=1
It follows that,

which implies

(2 o

From z, — 0, it implies that xn(z') — 0 for all 7 € N. So there exists n, € N such
that

4
%, I, < 1 for all n > n,.
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Therefore,

|z + znll, = [(x +z0)),, + (@4 Ta)i,, s

2 “:Clja +$N|N_j0||A - “:E‘N—_;'D“A - H:L‘nb'o”A
)
2 ||$!jo + $nl~-jo||A Ty (2.2)

Consider, ||z|, + Zn|y_, |l4- Since p; > 1 for all j € N we have that there exists
k., > 0 such that

1
”',Llljo T Tny g, .= & -(1+ P(kn(xljo + I”"N-—ja)))
n

combine with (2.2) and the fact p(y + z) > p(y) + p(z) if supp =N supp y = 0 we get,

1 1 1 )
“m+$ﬂ“A 2 E + Ep(‘kﬂxbo) + k_np(kﬂmﬂ!N-jo) - 5
1 )
2 ||$n|N_j,,HA + k_p(k”mbo) - 5 (23)

We may assume without loss of generality that k, > % Since 2k, > 1, we have by

convexity of ¢ — [t[P that p(knz|, ) > 2k.p(z, ), thus inequalities (2.1) and (2.3)
implies that

‘T]jo 5
|z +2nll s = |Zn)y_,, 14 + 29(—) ~3
. 13 @)\ 6
Tt
> ||zni,, ||A+2Z = -5
—\J 2 2
(9, 140 §
478 2
=146

which deduce lim inf ||z + ||, > 1+ 9.
n—00

Theorem 2.6 If Iim sup p; < co then ces(p) has the uniform opial property.
J—}

Proof. Take any € > 0 and z € ces(p) with ||z|| > . Let (z,,) be weakly null sequence
in S(ces(p)). By lzm sup p; < o, ie., p € Aj, we have by Theorem 1.2 that there is
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d € (0,1) independent of z such that p(z) > 4. Also, by p € Aj, Theorem 1.3 assert
that therc exists §; € (0,4) such that

oy +2)— o) < (2.4

whenever, p(y) <1 and p(2) < 4;.
Choose j, € N such that

pj

i ; P
i 1 < , 1 . b
- @] o< Y [SD10] < (2.5)
J J 4
F=jo+1 "::jo+1 ) jzjo+1 =1

this give

< szjx(z )p + Z ( Z|J;(z |)pj

F=1 1i=1 F=Fo+1 i=1
do (1 S
. 1
<3 (1wl +5
3=1 J i=1

. . P
which implies Z-}"zl (% I |m(z)|) > %L >8-2 = 34‘5. This together with an

assumption that z, — 0, we have that there exists n, € N such that

3;_ ; ( Z|:r:n 1)-1—:1:(2)\) , (2.6)

j=1 i=1

for all n > n,, since weak convergence implies coordinatewise convergence. Again by
Ty — 0, there exists n; > n, such that H:cn‘jo Il <1-(1- %)ﬁ for all n > ny, where
M € N be such that p; < M for all j € N. Hence, by the triangle inequality of norm we
have that ||5L:n|N_J_0 || > (1 - %)ﬁ then it follows by the definition of || - || that

Tn © /1Y g, (z')l) "
1< IN=jq _ 3 i=Jjo+1 i
((1_') ) j=jZo+1( (1- )

M o0 3 L4]
1 1 .

J=de+1 1=jo+1
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A ; ; by
hich give, 1 — ¢ < PR (% > i1 |a:n(z)|) for all n > n;. This together with
24), (2.5) and (2.

.p(:rn—l—a: Z( Z\:cn + z( )|) + Z (IZ|$n +:z:(z)

j=ja+1 i=1

6) we can obtain for any n > n, that

=S (%len(z’)—l—x(i)l) + Y ! > za(i) + (i)

J

3i=1 i=1 F=Jot1 t=jo+1
. P;

36 wom 1 $
> — - : - -
>3+ 2 |5 2 Ol -

J=jo+1 t=jo+1

34 ] )
> 4(1-59)-2
— 4 + 4) 4
—14 0
= "

iy p € A§, we have by Theorem 1.4 that there is 7 depending on é only such that
t+z|| > 1+ 7.

dorollary 2.7 [2, Theorem 2] For any 1 < p < oo, the space ces, has the uniform
Upial property.
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DEMICLOSEDNESS PRINCIPLE AND FIXED
POINT THEOREM FOR MAPPINGS OF
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Issara Inchan and Somyot Plubtieng
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Abstract

The object of the present paper to verify the demiclosedness principle for
mappings of asymptotically nonexpansive type certain class of Banach space.
In this paper, we proved the demiclosedness principle at zero for mappings of
asymptotically nonexpansive type in some class of Banach space. Moreover,
we investigated the behavior of the iterates {T™x} for mappings of asymp-
totically nonexpansive type. Finally, we shown that the upiformly Opial
condition implies the fixed point property for mappings of asymptotically
nonexpansive type defined on weakly compact convex subset.

1.Introduction

Let X be a real Banach space and let C be a nonempty closed convex subset
of X. A mapping T : C — X is said to be nonezpansive if

ITx - Ty|| < [|x- y]|, for all x, y € C,

and asymptotically nonexpansive [Goebel and Kirk, 1972] if there exists a
sequence (k,) of real number with k,—1 such that

| T*x - Ty|| € kallx - y||, for all x, y €C and neN.
More generally T is of asymptotically nonezpansive type [Kirk, 1974] if TV is

continuous for some integer N>>1 and, for each x€C, there holds the inequal-
ity

lim sup,fsup{|T"x - T%| - Ix-yl|: y € C}] < 0.

%]



By for the closed unit ball of X , Sx for the unit sphere of X, — for weak
convergence, and — for strong convergence.

In the sequel, we adopt the notations : lim = limsup, lim = liminf ,

A mapping f:C — X is demiclosed ( at y) if f(x) = y whenever (x,)C C
with x,—x and f (x,)—y.

One of the fundamental results in the theory of nonexpansive mappings is
Browder’s demiclosedness principle {Browder, 1968], which states that if X
is a uniformly convex Banach space, C is a closed convex set and T :C—X is
nonexpansive, then I -T is demiclosed. This principle is also seen to be valid
in spaces satisfying Opial’s condition [Opial, 1967]:

If x,—xg and x # Xo  then limp|[x, - xol| < Tma|lx, - x|I.
Given a Banach space X and sequence (x,) in X let
rx(c; x,) ;= inf{lim,||x, - x| - 1: |Ix]| > ¢ }.

We say X has the locally uniform Opial condition [Lin, Tan and Xu, 1993] if

rx(c; x,) > 0 whenever ¢ > 0, lim|x,]] > 1, and x,—0,

and the uniform Op;ial condition [Prus, 1992] if

rx(c) == inf{limp|jx, + x|| - 1 : [Ix]| >¢, lim|xa]| 21 and x,—0} > 0,
whenever ¢ > 0.

We observe that in the definition of Opial’s modulus rx of X, "lim” can
be replaced by "lim”, that is

rx(c) := inf{lim,|jx, + x| - L : ||Ix}] 2¢, lim|x,| >1 and x,—0}.

The norm of X is said to be UKK (uniformly Kadec-Klee) if given € > 0
there exists §(¢)>0 such that if {x,} is a sequence in Bx converging weakly
to x and such that sep(x,) := inf{||Xn - Xm|| : R #m } > €, then
[Ix[| < 1- 8(e).

Recently the demiclosedness of I -T at 0 for T of asymptotically nonex-
pansive type has been established by Xu {1991] when x is uniformly convex
and for asymptotically nonexpansive maps by Lin and Xu [1993] when X is
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a Banach space with the locally uniform Opial condition, and hence when X
is UKK (uniformly Kadec-Klee, [Huff, 1990]) with Opial’s condition. Demi-
closedness of I - T at 0 when T is of asymptotically nonexpansive type and X
satisfies the Generalized Gossez-Lami Dozo property (GGLD) and an Opial’s
condition studied by Garcia-Falset, Sims and Smyth [1996].

Moreover, in [1995] Lin, Tan and Xu was proved that the uniform Opial
condition implies the fixed point property for asymptotically nonexpansive
mappings defined on weakly compact convex subset.

2. Demiclosedness principle.

In this section we prove the demiclosedness principle for mapping of
asymptotically nonexpansive type either in a Banach space with the locally
uniform Opial condition or in a Banach space satisfying Opial’s condition
and whose norm is UKK. The following lemma was proved by Garcia-Falset,
Sims and Smyth [1996]. We now give the another proof.

L.emma 2.1 Suppose X is Banach space satisfying Opial's condition and C
is weakly compact convex subset of X and T:C — C is a uniformly contin-
uous mapping of asymptotically nonexpansive type. Suppose also {x,} is a
sequence in C converges weakly to x and for which the sequence {x, - Tx,}
converges strongly to 0. Then {T"x} converges weakly to x.

Proof Showing the weakly convergence of {T"x} to x is equivalent to show-
ing M 3P= @{Tx: i>m} = {x}. Let the functional f be defined by
F(y) = limg|ix,, - y|| , y€X. If there exists yo € N 2, e0{T*x :i > m} such
that yo #x, then by Opial’s condition, f{lve)> f(x). Write R :=f (yo)-f (x).
By the definition of asymptotically nonexpansive type, there exist ng€ N
such that

sup{||T"x - T*¥| - [Ix - y|:y€ C} < R/2,
for all n > my. Since yo€To{T"x : i > mg+1}, there exist an integer p >1
and nonnegative numbers t1,ta,...,t, with ¥5_;t; = 1 such that

Il yo - 5= ¢ ;T™%x|| < R/2.
It follows that
f(y0) = limta|lxa - yo ||
< limg(flxn - Tho T xl+H| 25,6, T™x - yol))



< R/2 4 lim,|| 35 6% - X5t T™0 x|

< R/2 + T8 ti{limalxn - T™0Hx,|| + limy || T™0ix,, - Tmotix|]
< R/2 + Y5 t[lEma (sup{ [ T™*x, - T™ x|} - |Ixs - x{I})

+ limq ||z, - x|}

<R/2+R/2+ () = [ (vo). |
This contradiction shows that we must have | 2_, co{Tx : i > m} = {x}.

Theorem 2.2 Suppose X is a Banach space satisfying the locally uniform
Opial condition, C is a nonempty weakly compact convex subset of X, and
T:C — C is a uniformly continuous mapping of asymptotically nonexpansive
type. Then I - T is demiclosedness at zero.

Proof Suppose we are given a sequence {x,} in C such that x,—x and
X - Tx,— 0. Since T: C—C is uniformly continuous, it follow that

Xp - T™x, — 0 for each fixed m € N. By lemma 2.1, we have T"x— x.
It follows from the definition of asymptotically nonexpansive type that , for
each x

Limy[sup{||T"x - Ty} - fIx - y|l : y eC}< 0.
Then

o, T[T - Tx| = Bl T - T(T™ x|
= limmlamg (| T x - T™(T*x)|| - [lx - T~™x|| +{lx - T*~"x]))
<Timm(sup{[[T™x - T™(T*"x)|{ - {lx - T*"™x{|}
+ limylx - T*™x]))

< 0 + lmy||x - T x||.
Hence, by [Lin,Tan and Xu, Proposition 2.2 p 931], we have T"x—x. There-
fore Tx = x by the uniformly continuity of T. The proof is complete.

Theorem 2.3 Suppose X is a Banach space satisfying Opial’s condition
and whose norm is UKK and C is weakly compact convex subset of X, and
T: C—C is a uniformly continuous mapping of asymptotically nonexpansive
type. Then I-T is demiclosed at zero.

Proof Suppose that {x,} is a sequence in C with x, — x and
X - Tx, — 0. It follows by Lemma 2.1 that T"x — x. Let
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r = lim,{|T"x - x|} and 1y, = lim,,||T"x - T™x|| for all m>1.
By the definition of Opial’s condition, we have r < r,, for all m>1. We
now show that lim,—.colm = T.

Let ¢ > 0. By the definition of asymptotically nonexpansive type, there exist
mg € N such that, for each n > my,

sup{||T*x - T - |Ix - ¥l y¢ C} < e
Thus, for all m>mg, we obtain that
I = iy, || T™ - T™x||
< supapm{[[T™(T"™x) - T™x]| - [T*"™x - x||} + lima[|[T""™x - x|.
< e+ limy||T"x-x|| =€+ r
Hence lim,, .o I'm= r. Suppose r > 0. Then {T"x} does not contain any
strongly convergent subsequence and, therefore, {T"x} has a subsequence
{T™x} such that sep(T™x) > 0. Set ¢ = sep(T™x}/2r. By the definition
of UKK, there exist a 6y > 0 such that ||v|]| € 1 - 4§, for any sequence {v,}
in Bx converging weakly to v and such that sep(v,) > ¢. Choose 0< 5 <1
such that (1 + 7)(1 - 8p) < 1. Since T is an asymptotically nonexpansive
type, there exist N; > my such that
sup{]|T"x - Ty|| - ||x - y]|: y€C} < nr/2, for all n > N,.
For m > N;, we have
T = lm,||T"x - T™x||
< Hma (I T™x - T™T™ ™) - [lx - T[] +Lima [T "x - x|
< sup{|IT™x - T™u| - [|x - ul|: u€C} + lim, [T ™x - x||.
< (nr/2) + lim,|| T"x - x|| '
<{nr/2)+r<(1+nr
It implies that there exist jo € N such that
IT%x - T™x|l <(1 + 7)r for all j >jo.
Let y; = (T%x - T™x}/(1 + n)r for all j > jo. Then [ly;|| < 1,
y;j = {(x - T™x)/(1 + n)r, and sep(y;) > €. By the definition of UKK, we
have
lix - T™x|| < (1 + #)(1 - do)r
for all m > N;. By passing to the limit as m— oo, we obtain
r = bmpllx - T™x|| < (1 + 7)(1 - éo)r.
A

4



274

This is a contradiction to the fact that (1 + n)(1 - &)r < 1. Hencer = 0,
and therefore x = Tx by the uniformly continuity of T.

3. Weak convergence of iterates.
In this section we investigate the asymptotic behavior of the iterates
{T"x} for a mappings of asymptotically nonexpansive type T.

Theorem 3.1 Suppose X is a Banach space satisfying the uniform Opial’s
condition and C is weakly compact convex subset of X,and T: C — C is an
asymptotically nonexpansive type. The given an converge to a fixed point of
T if and only if T is weakly asymptotically regular at x, i.e.{ T"x-T"*1x) — 0.

Proof Assume that T"x-T"*!x — 0. Consider w,(x) the set of all weak
subsequence limit of (x,).
wy(x) = {yeX:T"x—y,for some increasing subsequence(n;)CIN}. We shall
show that w,(x)C Fix(T). Let y be in w,(x). Then we have a subsequence
{T"x} of {T™x} such that T"x—y. It follows by our hypothesis that, for all
integers m > 0, T%+™x—y. Set by =lim; o[ T™+™x - y||. By the definition
of Opial's condition, we have

limj oo T ™ Hex - y|| < Timjoof T9H™x - T*y|| for all m, k > 0.
Let €>0 and let b = inf{b,,:m>0}. Then there exists an my€N such that
bme< b + €/2. Since T is a mapping of asymptotically nonexpansive type,
there exist an integers Ny>mg such that, for all n>N;,

sup{[|IT"x -“I"y|l-|Ix - y[:yeC}< e/2.
This implies that, for all integers j>N;,

Brmg+5 < Bimjoueo| T+ 0% x - Ty
<sup{||T*u - Ty]i-llu - yl: wECH-Tim o T+ ™ox - y|.

<€/2 + bp,.
Hence limp_oobm = inf{by,:m>0}.
For all m > N;, we note that
IT™ eyl < Lmp | Tmx- T+ {4+ Tim, || T 2™y |

<sup{[IT™y-T™ul|- (ly-ull: uEC}+limncolly -T™*™x]|)
Himg [| T+ 37x - |

S 6/2 + bm + b2m-
If b = 0, then lim, .| T™x-y|| = 0, and therefore Ty = y by continuity of



TN for some N >1. Suppose now b>0. For m >N;. Let
z{™ = (T%*™x - y)/bm.
Then for each fixed m > 0, z{™ — 0 and Tim, [|z{™|| = 1. By the definition
of Opial’s modulus ry of X, we obtain fimy,|[z{™ - z|| > 1 + rx(c) for all
z € X with ||z >c
Taking z = (y-T™y)/bap, we get

lima 2™ + 2z} =lima||((T%**™x - y)/bzm) + ((y-T™y)/b2m)ll
<(1/bom ) [sup{{|(T™u -T™y||-||u-y|l: ueC}}
+ limg | T ™x - y|]

<(1/bam){ /2 + bu]

for all n > N,. It follows by the definition of the Opial modulus that
Borm (rx(1(y-T™y)/brall) + 1)</2 + b

Taking the limit as m— oo we get b(rx(lim,,||(y-T™y)/bl]) + 1)<¢/2 + b
and  rx(limm||(y-T™y)/b[)< €/2b.

Since rx is nondecreasing and continuous, we have limy,|ly-T™y| = €/2
Hence T™y— y, and therefore Ty = y by the continuity of TV for some

N > 1. Thus wy(x) C Fix(T).

4. Existence result.

In this section we show that the uniform Opial’s condition implies the
fixed point property for mappings of asymptotically nonexpansive type de-
fined on weakly compact convex subsets. To prove the mean result we use
the following lemmas.

-

Lemma 4.1 [Kim and Xu,1998] Let T be an asymptotically nonexpansive
type on a nonempty weakly compact convex subset of a Banach space X.
Then there are a closed convex nonempty subset K of C and p> 0 such that

(i) if x € K, then every weak limit point of {T"x} is contained in K,
(ii) pz(y) = p for all x,y € K, where p, is the function define by
px(y) = limq||ITx - yll, y€X.

Lemma 4.2 Let C be a nonempty weakly compact convex subset of a Ba-
nach space X satisfying Opial’'s condition and let T be a mapping of asymp-
totically nonexpansive type on C. Let { x,, } be a sequence in C which satisfies
the following condition
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w - lim, T"%,, = 2m, Vm2>0.
Then limpby, = inf{b,:m> 0}. where by, = lim,|T™%, - Zml|.

Proof Let ¢ > 0, and let b = inf{b,,:m>1}. Then there exist natural
number mg such that b, - b < ¢/2. By the definition of asymptotically
nonexpansive type, there exist a natural number N such that

sup{lT™(zmo) - T"¥Il - Izm, - ¥ll: y€C} < ¢/2,¥n > N.
By the definition of Opial’s condition, we have

Brmg+j = Uima|| T X, - Zeng 5]
< Lima || T™ %, - T2,
SEMA (| T X T2 |- T™ %1 = Zeng |+ T™%5 - Zamo )
<SUP{ [ Tt “T72gng 1[I - Zeno || WECHTEMA ]| T™ X0 - Zomal
< (¢/2) + by, forallj > N.

This implies that || b- byl <€ Vj=>N.
Therefore lim, _.oobym = inf{b,:m>1}.

Theorem 4.3 Suppose X is a Banach space satisfying the uniform Opial
condition, C is weakly compact convex subset of X, and T: C—C is an
asymptotically nonexpansive type. Then T has a fixed point.

Proof Let K,p, and p be as in lemma 4.1. Let x€K and let{T%x} be a
weakly convergence subsequence of {T"x}. Passing to subsequence, we may
assume that {T™*™x} converge weakly for every m > 0, say

TrHmyx — 2,,. Let by, = lim [ T ™x - 24|
By lemma 4.2, {b,,} converge to b = inf{b,, : m >0} > 0. We note by

Lemma 4.1, that 2,,€K for each m > 0. By weak lower semi-continuous of
the norm implies

2 = Z | < Titioollzm - T*™ |<p, for all m, m'>0.
Hence, diam({z,:m>0}) <p.
We claim that
(i).for any >0 there exist yeK, m'>0 and N>0 such that

Ty - 2, || <€, whenever n > N,and
(ii). p=0.



Case I. limy_,oobm = 0. For any >0, there is m' >0 such thus if m>m’,

then b,,< ¢/3. By the definition of asymptotically nonexpansive type, there
exist mg>m’ such that

sup{||T"i+”"+’°x - Tz - ||T"‘J""'“’x - z|1}<e/3 for all k>my.
Thus, for all k>myg, we have
12 4 = T2 (| < Timyllz g yp T+ o] + Timy || T+ +ox -Thz,,, ||

< by grbsup{ [T+ Tz [T x 2,0 ||}
Mmoo | T ™ x 2,0 ||
S bm'+k+€/3 + bm"< €.
If choose y = z_,» and N = 1,Then (1) is hold in this case.

Case II. lim,_oobm = b > 0. If follow by the uniform Opial property of X
that for any ¢>0 there is 6>0 and an integer N>1 such that for all integer
m>N and z€ X,

limj_of T ™ x z | Kb+ 6= ||z - 2all e =(*)
Next, we choose an integer N so large that for all m>N,
bm < b +6/2.
Since T is asymptotically nonexpansive type, there exist an integer mg>N
such that
sup{||T"x -T"y||-{|x -¥|l:yeC} < /2, for all n>m,.
so if k>mg, then
Lim || T+ motex Trzp, || < sup{||T% ™o+ % -Tizm, [|-|T™0x -2m, I}

+ Tm | T -2 |-

< 6/2 4 bp,< b+ 4.
If we choose m' =mg and y=2m,, then for any j>N, we have
IT7y - 245l < € by (*).

Finally, it follows by use as argument as in the proof of Theorem
5.1{Lin,Tan and Xu, p 944] we can show that p = 0. Hence K={x} and
limy oo [|[T™x - x||=0. Therefore Tx = x by continuity of T¥ for some N>1.
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1. Introduction

Let C be a nonempty subset of a Banach space X and T : C — C be
a mapping. Then T is said to be asymptotically nonexpansive 6] if there
exists a sequence (k) of real numbers with lim,_,o kn, = 1 such that

1Tz — T"y|| < kallz— 9y, for all z,y € C and n=1,2,3... (1.1)

If (1.1) is valid for all &k, = 1,then T is said to be nonexpansive. If for each
z in C, there holds the inequality

limsup[sup{||T"z - T"y|| — llz — vl : y € C}] < 0, (1.2)
then T is said to be of asymptotically nonexpansive type [8].

In 1968, Kirk [7] proved that if C is a weakly compact convex subset of a
Banach space with normal structure, then every nonexpansive self-mapping T’
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Fixed point theorems of asymptotically nonexpansive type mappings

of C has a fixed point. A nonempty convex subset C of a normed linear space
is said to have normal structure if each convex subset of C' consisting of more
than one point contains a nondiametral point. That is, a point £ € K such
that sup{||lz—y|| : v € K} <sup{|lu—v| : u,v € K} = diam K. Seven years
later, in 1972, Goebel and Kirk [6] prove that if the space X is assumed to be
uniformly convex, then every asymptotically nonexpansive self-mapping T of
C has a fixed point. This was extended to mappings of asymptotically nonex-
pansive type by Kirk in [8]. More recently these results have been extended
to wider classes of space, see for example [3,5,9,10,16,17]. In particular,
Lin, Tan and Xu [10] have demomstrated the existence of fixed point for
asymptotically nonexpansive mappings in Banach space with uniform Opial
condition. It is know [11] that if the Maluta's constant D(X) < 1, then
X is reflexive and has normal structure and hence the fixed point property
for nonexpansive mappings. However, it is not clear if D(X) < .1 implies
the fixed point property for asymptotically nonexpansive mappings. In 1994,
Lim and Xu [9] proved two partial answers to this question.

The present paper answer a question raised by Lim and Xu in [9]. It
extends results in their paper to mappings of asymptotically nonexpansive
type. Precisely, we prove in section 2 the strong convergence (under cer-
tain assumptions) of an approximating fixed points for an asymptotically
nonexpansive type mapping in a Banach space with a uniformly Gateaux
differentiable norm. Finally, we extends results in paper {10} to mappings of
asymptotically nongxpansive type.

2. Maluta’s constant.

Let X be a Banach space. Then recall that Maluta's constant D(X) [11]
of X is defined by

D(X) = sup{(limsup d(Zs+1, co(z1, ..., Tn)) /diam(z,)} (2.1)
where the supremum is taken over all bounded nonconstant sequence {z,}

in X. Let S(X) = {z € X : ||z|| = 1}. Then the norm of X is said to be
Gateaux differentiable (and X is said to be smooth) if

Ll ty] i
t—0 i

(2.2)

(
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exists for each z and y in S{X). It is also said to be uniformly Gateaux
differentiable if for each y € S(X), the limit (2.2) attained uniformly for =
in S(X). With each = € X, we associate the set

J(z) = {z* € X* : (z,2*) = [l=]|* = ||=*|}

Then J : X — X* is said to be the duality mapping. It is well know if
X is smooth, then the duality mapping J is single-valued and strong-weak*
continuous. It is also know that if X has a uniformly Gateaux differentiable
norm, J is uniformly continuous on bounded sets when X has its strong
topology while X* has its weak star topology; see Diestel [4].

In this section we provide a fixed point theorem for asymptotically non-
expansive type mappings which connect with Maluta’s constant for a Banach
space. Moreover, we prove the strong convergence of an approximating fixed
points for an asymptotically nonexpansive type mapping in a Banach space
X (whose norm is uniformly Gateaux differentiable) such that D(X) < 1.

Theorem 2.1. Suppose that X is a Banach space such that D(X) < 1, that
C is a nonempty bounded subset of X, and T : C — C i an asymptotically
nonexpansive type mapping such that 7' is continuous on C. Further, suppose
that there exist a nonempty closed convex subset K of C with the following

property (w):
z € K implies w,(z) C K,

where wy(z) is the weak w-limit set of T" at z; that is, the set
{y € X : y = weak — limT™z for some n; 1 co}.

Then T has a fixed point in E.

To prove the theorem we use the following two lemmas.

Lemma 2.1. [17]. Let C be a nonempty subset of a Banach space X and let
T be a mapping of asymptotically nonexpansive type on C. Suppose there
exists a nonempty bounded closed convex subset E of C with the property
(w). Then there is a closed convex subset K of C and a p > 0 such that:

(1) if z € K, then every weak limit of {T"z} is contained in K;
(i1) p.(y) = p for all z,y € K where p, is the functional defined by
p=(y) =limsup|[T"z —y||, y€ X. (2.3)

n—oo
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Lemma 2.2. Suppose that X is a Banach space such that D(X) < 1,
that K is closed bounded convex subset of X, and that T : K’ — K is an
asymptotically nonexpansive type mapping. If {T"z} is a sequence in X
converging weakly to z € K, then {T™z} converges (strongly) to .

Proof. Assume that {T"z} does not converges to z. Then there is a subse-
quence {T™z} of {T"z} such that

limsup ||T™z — z|| > 0.

k—00

Take a real number ¢ > 0 small enough so that

0 < g < limsup ||[T™z — z|| and (1+¢)D(X) < 1.

k—+oo

It then follow from the definition of D(X) that

limsup ||T™z — z|| < D(X)diam({T™*z}).

k—oo

By the definition of asymptotically nonexpansive type, there exists a natural
number N such that

sup({[IT"z —~ T"yl| ~ llz — yll : y € K}) < ¢*/2,

for all n > N. Now we show that limsup, |[T™ — z|| = 0. Clearly we may
assume that

sup({[[T7z — T™y|| - iz — vl : y € K}) < ¢°/2,
for all k > 1. However, for any fixed i > j, notting the fact that T +{ni—mdg

z weakly as £ — oo and the weakly lower semi-continuous of the norm || - ||,
we have

772 — Ta| = [Tz — T (T%~"sz)|
< sup({{|T™z — Tl - 1z — 9ll : y € K}) + [Tz — g

< @%/2 + limsup,_,, [|T™ ™Mz ~ T+ ) g

< @?/2+Hlimsup,_,  (||T "z — T~ 0 (Teg)|| — || Tz — z||)

+ limsup,_,o, [Tz — z|
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< (14 g)limsup,_, ., [[T™z — z||.
We thus obtain

limsup, ||[T™z — z|| < (1 + ¢)D(X) limsup, || T™x — z||
which implies that limsup,_,, || 7™z — z|| = 0 since (1 +q)D(X) < 1.
Therefore {T"z} converges strongly to z. O

Proof of theorem 2.1. Let K, p, and p be as in lemma 2.1. Let S be a
free Ultrafilter on the set of positive integer. We then define a mapping S on
K by

S(z)=w - liénT“a:, z € K,

Since K is weakly compact, S(z) is well define for all = € K. By the
definition of asymptotically nonexpansive type, we obtain S is nonexpansive
mapping on K. Hence, § has a fixed point = € K, that is,

w— lisr}nT"x =z ' (2.4)

This yields a subsequence T"z of T"z converge weakly to . Now we show
that z is a fixed point of 7. Passing to subsequences and using the diagonal
method, we may assume that {T™+™z} converges weakly to every m > 0, say
w — lim;_ o T™* ™z = z,,. By lemma 2.2, we have lim;_,o, ||T™ ™z — 2| =
0 tor all m > 0 . We note by lemma 2.1 that z,, € K each m > 0. By weak
lower semi-continuous of the norm || - || implies

< limsup; , ||zm — T"“”“’:z:” < Pz
for all m,m > 0. Hence, diam(¢o{z, : m > 0}) < p. We claim that;

(1) for any € > 0, there exists y € K,m' > 0 and N > 0 such that
|T"y — 2, || < € whenever n > N;

(2) p=0.
To prove (1). For any € > 0, there is m > 0 such that if n > m', then
sup{||T"z — T"u|| — ||z —u|| ;v € K} < e.

If we choose N =m and y = z,,, then for any j > N, we have

. - . ! :
”Zml +j - TJyH S hm Supi»}oo ”Zm' +j - Tﬂ.+m +J$H
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+ limsup,_, ., IIT"‘J’"“”-’E — Ty||
< lim sup;_ o (|| T™*™ iz — Tiy]| — | Tm4m 5 — 2 |)
+ limsup;_, IIT“"+"‘,$ — Z ||

< €.
To prove (2), we distinguish two cases.

Case I. There is Ny > 0 such that diam(co{z,, : m > No}) = p < p.
By (1), there are y € K,m', N € N such that |T"y ~ z_, /|| < (o —
p)/2, forall n> N. Soifn>max{N, Ny}, then

lzno = Tyl < llzn = 2oy | + |Znsm = T I < (04 0)/2-

Case II. diam (¢6{z, : m > N}) = p for all N € N. Since X has normal
structure and K is weakly compact, K has normal structure. Hence, there
exists 2y € €0{zy : m € N}, such that

P = SUPen 120 — Zim| < diam(eo{zn : m € N}) = p.

By (1), there are y € K,m',N € N such that Ty ~ z, o ell < (p—p)/2
whenever n > N. Sp if n > N, then

lizo = T"yll < 120 = Zp || + 1Znsm — Tl < (0 + £) /2.
This prove (2).

By (2), im0 ||T"z — z|| = 0. Therefore, Tz = z by continuity of 7. O

As a direct consequence of Theorem 2.1 we have the following:

Corollary 2.1. Let C and X be as in Theorem 2.1 and let T : C — C be
an asymptotically nonexpansive mappings. Suppose there exists a nonempty
bounded closed convex subset of K of C with the property(w). Then T has
a fixed point in K.

Corollary 2.2. Let X be a Banach space such that D(X) < 1, let C be a
bounded closed convex subset of X, and suppose T': C' — (' is a continuous
mappings of asymptotically nonexpansive type. Then T has a fixed point.
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Suppose now C' is a bounded closed convex subset of a Banach space X
and T : C — C is an asymptotically nonexpansive mapping (we may always
asumme k,, > 1 for all n > 1). For any n > 1, we lake ¢, = min{l — (k, —
1)3,1 — £}. Fix a u in C and define for each integer n > 1 the contraction
S5,:C — C by , t

Sp(z)=(Q1-— k—';)u - -éT“:r,.
Then the Banach Contraction Principle yields a unique point z,, € C that is
fixed by S, that is, we have
tn

tn
zp = (1 - E)u + k—nT“:nn. (2.5)

Theorem 2.2. Let X be a Banach space with a uniformly Géteaux differen-
tiable norm such that D(X) < 1. Suppose in addition the following condition

lim|z, — Tz,||=0 (2.6)

holds. Then the sequence z, defined by (2.5) converges strongly to a fixed
of T.

Proof. Suppose that the sequence {z,} defined by (2.5). From corollary
2.1, the fixed point set F(T') of T is nonempty. We now show that (z,)
converge strongly to a fixed point of 7. Now let i be a Banach limit and
define f : C — [0, 00) by

f(2) = pa||zn — 2| for every z € C.

Then, since the function f on C is convex and continuous, f(z) — oo as
llz|| = oo, and X is reflexive it follows from [1, p. 79] that there exists u € C
with f(u) = inf,ec f(2). Define the set

M={veC: f(v)=inf f(z)}.

Then M is a nonempty, closed and convex. We further claim that M has the
property (w). If z isin M and y = w —lim; 7™z belong to the weak w-limit
set wy,(x) of T at z, then from the weakly lower semicintinuous of f, we have

f(y) = liminf f(T™z) < limsup,_,o, f(T™z)
< lim sup,{pinl|zn — T™2]|).

Since T is uniformly continuous it follows from z,, — Tz, — 0 that z, —
Tmz, — 0 for each fixed m € N. Thus
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f(z) < limsup,, (pa||[T™z, — T™x|)
< limSUpm(km#nHIn —z||) = ptallzn — x”

= infiec f(2) < fly).
This show that y belongs to M and hence M satisfies the property (w). It
follows from corollary 2.1, that T has a fixed 2o € M. Next, to show that (z,)
converges strongly to a fixed point of T. We note that, for any w € F(T),

(0 =TTy, J(2q — w)) = (zn —w, J(2n —w)) + (w —T"z,, J(z, — w))
2 ||lzn = wii? — llw = Tzall|lzn — wl]
—(ka = Dllza — w|®

> —(kn — 1)d?

where d = diam C. Since z,, is a fixed point of 5, it follows that

kn_tn

—Trz, =
s

(u - J:n)

and from last inequality above,we get

(Tn —u, J(z, — w)) < 5,d°, (2.7)

where s, = 5('—‘,;(5'—@1 — 0 as n — co. So, putting w = z,, we have

(Zn — u, J(z, — 20)) < sndz. (2.8)

On the other hand, since z; is the minimizer of the function f on C, by [14,
Lemma 3], we have

iz — 29, J(Tn = 29)) <0
for all z € C. In particular, we have
pnlu — 2o, J(2n — 20)) < 0. (2.9)
Combining (2.8} and (2.9), we get
pnlZn — 20, J(Zn — 20)) = wallzn — 20||* < 0.

Therefore, there is a subsequence (z,,) of (z.) which converges strongly to
zg. To show that {z,) converges strongly to a fixed point of T, let (z,,) and
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(zm;) be subsequences of (z,,) such that z,, — z and z,,; — 2’. Then z and
z' are fixed points of T by hypothesis (2.6). It follows from (2.7) that

(z~u,J(z—2")) <0
and

(z' —u,J(z' — 2)} <0.
Adding these two inequalities yields

(z =2, J(z=2))=|z~Z|"=0.

So we have z = 2'. Therefore (z,) converges strongly to a fixed point of T.00

3. Uniform Opial condition.

A Banach space X is said to satisfy Opial’s condition [12] if each sequence
{zn} in X the condition z, — z implies that

-

limsup ||z, — z|| < limsup |z, — y|| (3.1)
n—oo n—oc

for all y # z. A Banach space X is said to satisfy the uniform Opial condition

[13] if for each ¢ > 0, there exists an r > 0 such that

1+ r < liminf ||z + z,|| (3.2)
n—+00

for each z € X with ||z|| > ¢ and each {z,} in X such that w — limz, =0
and liminf,_ o [|Za]] = 1. We now define Opial’s modulus of X, denote by
rx, as follows

rx(c) = mf{h&gfﬂz +z,|| — 1}, (3.3)

where ¢ > 0 and the infimum is taken over all x € X with ||z|| > ¢ and
sequence {z,} in X such that w — limz, = 0 and liminf, o ||z.|| > 1. It
is easy to see that the function rx is nondecreasing and that X satisfies the
uniform Opial condition if and only if rx(c) > 0 for all ¢ > 0.

In this section we show that the uniform Opial condition implies the fixed

point property for mappings of asymptotically nonexpansive type defined on
weakly compact subset.

Theorem 3.1. Suppose that X is a Banach space satisfying the uniform
Opial condition, C' is a nonempty weakly compact convex subset of X, and
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T : C — C is an asymptotically nonexpansive type mapping such that T is
continuous on C. Then T has a fixed point.

To prove the theorem we use the following lemma.

Lemma 3.1. Let C be a nonempty weakly compact convex subset of
a Banach space X satisfying Opial’s condition and let T be a mapping of

asymptotically nonexpansive type on C. Let {z,} be a sequence in C which
satisfies the following condition

w—limT"z, = z,, forallm > 0.
n

Then lim,, by, = inf{b,, : m > 0},  where b, = limsup, ||[T™z, — zx||.
Proof Let e > 0, and let b = inf{b,, : m > 1}. Then there exist natural
number mq such that b, — b < €/2. By the definition of asymptotically
nonexpansive type, there exist a natural number N such that

sup{{|T"(zmo) — T"y|| — l2mo — ¥l : ¥ € C} < ¢/3,¥ n > N,

Using Opial’s condition, we have for j > N,
bimo+; = lim sup,, N0t 20 ~ Zme+5i
< limsup,, [|[T™ %z, — Tz, ||
< limsup, ([T 2, —T7 2mo || = 177020 — 2mq || + | T2 — 2o ||)

< (/3) + limsup,, |[T™%n — Zm ||

< (€/2) + bpn.
This implies that bn,+; — b < ¢, forall j > N.
Therefore limy,_y00 b = inf{b,, : m > 0}. O

Proof of theorem 3.1 Let K,p, and p be as in lemma 3.1. Let z € K
and let {T™z} be a weakly convergence subsequence of {T"z}. Passing
to subsequence, we may assume that {T™*™z} converge weakly for every
m > 0, say w — lim, T™z, = zn. Let b, = limsup, [[T™*™z — z,||. By
lemma 3.1, {b,} converge to b = inf{b,, : m > 0} > 0. We note by lemma
2.1, that z, € K for each m > 0. By weak lower semi-continuous of the
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norm implies

|z — 2 || < limsup |[2m — T™*™ z|| < p,
1300

for all m,m’ > 0. Hence, diam{{zn,:m > 0}) < p. We claim that:

() for any € > 0 there exist y € K, m’ > 0 and N > 0 such that
1Ty — z, || < € whenever n > N.

To prove our claim, we distinguish two cases.

Case L limy_ye0 bm = 0. For any € > 0, there is m' > 0 such thus if m > m,

then b, < ¢/3. By the definition of asymptotically nonexpansive type, there
exist mg > m’ such that

sup{||T+™ +ez — Thuf| — |T*+™ 5 — uf] 1u € K} <¢/3,
for all & > mqy. Thus for k& > my,

I‘me+k — Tkzml“ S Iimsupj ”zm’-{-k — T“j+m’+k$” .

+ lim sup; [Tt g — Tz |
']
+Hlimsup, [T+ 2 — 2,/ ||

<botef3+by <e
If we choose y = 2,y and N = 1, then (* ) is holds in this case.
Case II. lim,_,o0 by, = b > 0. It follows by the uniform Opial property of
X that for any € > 0 there is § > 0 and an integer NV > 1 such that for all
integer m > N and 2z € X,

limsup ||T%*™"z — 2| Kb+ = ||z — znl < e (3.4)

Froo

We may ssume that N is chosen so large that for all m > N,
b < b+ 6/2.

Since T is asymptotically nonexpansive type, there exist an integer mg > N
such that
sup{[|T"x — T ul|| — ||z — u|| : v € C} < /2,
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for all n > myp. So if & > my, then
limsup;_, o, [Tty — Thz ||

< limsupj—boo{“Tnj-‘-m-'-k‘r - szmo” - ”Tﬂj-*-moz - Zmu”}
+lim SUP; 400 [Ttz — 2, -

<6/24 by < b+ 6.
If we choose m' = mg and y = Zm,, then for any 7 > N, we have
|77y — sz,H-Il < € by (3.4). This proves (x ).

Finally, it follows by use as argument as in the proof of Theorem 2.1
we can show that p = 0. Hence lim, ||[T"z — z|| = 0. Therefore Tz = z
by continuity of T" . (I
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Fixed point theorems in spaces with a
weakly continuous duality map

Issara Inchan and Somyot Plubtieng*

Department of Mathematics, Naresuen University, Phitsanulok 65000, THAILAND

1. Introduction.

In 1965, Kirk [5] proved that if C is a weakly compact convex subset of a
Banach space with normal structure, then every nonexpansive self-mapping T’
of C has a fixed point. A nonempty convex subset C of a normed linear space
is said to have normal structure if each convex subset of C consisting of more
than one point contains a nondiametral point. That is, a point z € K such
that sup{||lz—y| : v € K} <sup{|lu—v|| : u,v € K} = diam K. Seven years
later, in 1972, Goebel and Kirk {4] prove that if the space X is assumed to be
uniformly convex, then every asymptotically nonexpansive self-mapping T of
C has a fixed point. In 1994,Lim and Xu [7] verify that the existence and
weak convergence of fixed point of asymptotically nenexpansive mapping in
a space with a weakly continuous duality map. However, whether a weakly
continuous duality map implies the existence of fixed points for mappings of
asymptotically nonexpansive type is a natural quesion that remains open.

In this paper we present the existence and weak convergence of fixed
point of asymptotically nonexpansive type mapping in a space with weakly
continuous duality map. Precisely, we prove the strong convergence ( under
certain assumption) of an approximating fixed point for as asymptotically
nonexpansive mapping in space with uniformly Gateaux differentiable norm.

2. Preliminaries.

Let C be a nonempty subset of a Banach space X and T : C — C be
a mapping. Then T is said to be asymptotically nonexpansive [4] if there
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exists a sequence (k,) of real numbers with limp_,c0 &» = 1 such that
Tz — T"y|| < kpliz—y|l, forallz,y e Cand n=1,2,3... (2.1)

If (1.1) is valid for all k, = 1, then T is said to be nonexpansive. If for each
zin C, and T is continuous for some N > 1 and there holds the inequality

lim sup[sup{||T"z — T"y|| - Iz — yI{ : y € C}] <0, (2.2)

then T is said to be of asymptotically nonexpansive type [6].

Let ¢ be mean on positive integers N, i.e. a continuous linear functional
on I* satisfying ||u|| = 1 = g(1). Then we know that 4 is a mean on N if
and only if

inf{a, : n € N} < p(a) < sup{a, : n € N}
for every a = (a1, as,...) € I*®. According to time and circumstance, we use
tin(ay) instead of p(a). A mean p on N is called a Banach limit if

tnl@n) = ttn(@n+1)

for every a = (a1, a,...) € I*.Using the Hahn-Banach’ theorem, or the Ty-
chonoff fixed point theorem, we can prove the exists of a Banach limit. We
know that if x is a Banach limit, then

liminf a, < pa{a,) < limsupa,
n—o0

n—0oQ
for every a = (ay,as,...) € [®. So, if ¢ = (a1,82,...) € [® and a, — ¢, as
n — oo we have u,(a,) = p{e) =c.

Let S(X) = {z € X : ||z|| = 1}. Then the norm of X is said to be
Gateaux differentiable (and X is said to be smooth) if

t —_
o 2+ ] = Tl
t—+0 i

(2.2)

exists for each z and y in S(X). It is also said to be uniformly Gateaux
differentiable if for each y € S(X), the limit (2.2) attained uniformly for z
in S(X).

Recall that a Banach space X is said to satisfy Opial’s condition (8] if,
for any sequence {z,} in X, the condition that {z,.} converges weakly to
z € X implies that

limsup ||z, — z|| < limsup ||z, — ¥||
s n
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for all y € X,y # z. It has been proven that Opial’s condition implies
weakly normal structure and, hence, the fixed point property for nonexpan-
sive mappings. And Opial’s condition implies the fixed point property for
asymptotically nonexpansive mappings provide by Lim and Xu in 1994.How-
ever, it is not clear whether Opial’s condition implies the fixed point property
for asymptotically nonexpansive type mappings. Theorem 3 of section 3 will
provide a partial answer to this question.

By a gauge we mean a continuous strictly increasing function ¢ defined
R* := [0,00) such that ¢{0) = 0 and lim,_, @(r) = co. We associate with
a gauge ¢ a (generally multivalued } duality map J, : X — X* defined by

Jo(z) = {z" € X* :< z,2" >= lzlle(lil)andllz” || = (l|zl])}.

Clearly the ( normalized ) duality map J corresponds to the gauge (i) = ¢.
Browder [1] initiated the study of certain classes of nonlinear operators by
means of a duality map J,. Set for ¢t > 0,

B(t) = fo  o(r)ar.

Then it is known that J,(z) is the convex function ®(]| - ||) at . Now recall
that X is said to have a weakly continuous duality map if there exists a
gauge ¢ such that the duality map J,, is single-valued and continuous from
X with the weak topology to X* with the weak® topology. A space with
a weakly continuous duality map is easily seen to satisfy Opial’s condition
(cf.[1]). Every IP(1 < p < o0) space has a weakly continuous duality map
with the gauge ¢(t) = t*~1.

Lemma 1 [10, lemma 1] Let C be a nonempty weakly compact convex
subset of Banach space X. For each z in closed convex nonempty subset K
of C, defined the functional

pa(y) = limsup (T7z —yl|, y € X.
n—o0

Then the function p.(-) is a constant on K and this constant is independent
ofz € K.

Lemma 2 [10, lemma 2] Let C be a nonempty weakly compact convex
subset of Banach space X and let T : C — C be a mapping of asymptoti-
cally nonexpansive type such that TV is continuous for some integer N > 1.
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Suppose there exist a closed convex nonempty subset K of C' which has
properties:

(i)ze K =>w,(z)C K

(ii) for each z in K and each subsequence {n;} of the positive integers
{n},{T™z} admits a norm-convergent subsequence; and

(iii) for each z € K, w(x) is norm-compact, where w(z) = {y € X : y =
| - || — limiye0 Tz for some n; T oo} is the w-set of T at z. Then T has a
fixed point.

3. Main result.

This section we prove that the existence and weak convergence of fixed
point of asymptotically nonexpansive type mapping in a space with weakly
continuous duality map. Precisely, we prove the strong convergence ( under
certain assumption) of an approximating fixed point for as asymptotically
nonexpansive mapping in space with uniformly Gateaux differentiable norm.

Theorem 3 Suppose X is a Banach space with a weakly continuous duality
map J,, C is a weakly compact convex subset of X, and T : C — C, is an
asymptotically nonexpansive type. Then we have following conditions:

(2) T has a fixed point in C, and

(#1) if T is weakly asymptotically regular at z € C that is w—lim, oo (T"z—
Tntlz) = 0, then {T"z} converges weakly to a fixed point of T

Proof. (i) Let F be the family of subset K of C' which are nonempty, closed,
convex, and satisfy the following property,

(w) z € K implies wy(z) C K.

F' is then ordered by inclusion. The weak compactness of C now allows one
to use Zorn's lemma to obtain a minimal element say K in F. We defined
r: X >R, by foreach z € C

rz(y) = limsup [Tz — y/l.
n—30Q
Then by lemma 1,2(i), when z lies in K, 7, is a constant over y € K and
this constant is independent of x € K; that is
imsup ||[T"z —y||=r forall z,y € K.

n—oo
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Now fixed z € K and {T™z} be a subsequence of {T™z} converging weakly
to same y € K by property (w) and such that limsup, ,, [|[T™z — y|| exists.
Say r = limsup, . ||T™z — y|l. For any integers n,m > 1, noting the
identity

Wl +3l) = 2(el) + | < v Tola+ 1) > o

for all z,y € X.

Claim that r' = 0. We must show that ®(r') = 0.
Consider,
&(|[T"z — T™z|)) = @(||(T"z - y) + (y — T"z)]})

= (| Tz —yl)+Jy < (y—T"3), J((T"z—y) +t(y—T™z)) > dt
For subsequence n; of n letting ¢t — oo, we get .
lim;yoo B(IT™2 — T™zl]) = &(') + [y < (y ~ T™z), J(tly — T™z)) > dt

= &(r) + [} ly — T zlio(tlly — T™z||)dt

= &(r') + ®(lly — T™zl))
It follows that
lm sup,, _, 0 (lim;_yoo B(| Tz — T™x|)) = limsup,, o, (2(r') +@(|ly—T™z|))

= lim sup,,_,o, ®(r') + limsup,, ,., ®(|ly — T™z||)

=9(r') + &(r)
Then
(r') 4+ &(r) = limsup,,_,,(limje (|| 7™z — T™z||))

< limsup,, .. (limsup,_,., ®(||T"z — T™z||))

< limsup,,_,(limsup,_, ., ®(|T™z —-T™ (T "z)|| - |lz — T ™z||
+l|z - T ]))

= limsup,,_, . (®(limsup,_, (| Tz —T™ (T "z)||— ||z — T ™|
+Hlz - T "z1)))

< limsup,,_, . (®(limsup,_, (| Tz —T™(T" ™z)||—||z—T"*"™z||}
+Hmsup,_, ||z — T*™z||})

< ®(limsup,,_, ., sup{||T™z — T™{T"™z)| — ||z — T" ™|}

+limsup,,_, . limsup,_ ||z — T"™z||)



< ®(0 + lim sup,,_, o, limsup,_, . ||z — T"z||)

= O(limsup, o [l — Ta|l) = ¥(r)

Thus ®(r') + ®(r) < ®(r). Hence &(r') = 0= r' = 0. Then {T"z} strongly
convergence to y. )

This proves that, for each z € K, the strong w -limit set w(z) := {y ¢
X : y — strong — lim; Tz for some n; T co} of T at z is nonempty. It is
clearly closed. We further claim that w(z) is norm-compact. In fact, given
any sequence {u;} in w(z). It is easy to construct a subsequence {T™ z} of
{T™z} such that || T™z — u;|| < Ji for all j > 1. Repeating the argument
above, we get a subsequence {T74' z} of {T™z} converging strongly to some
z € w(z). Hence, u; — z strongly indicating the norm-compactness of w(zx).
Now bylemma 2(iii}, T has a fixed point and (%) is thus proven.

Now, we turn to proof of (ii). First observe that for any p € F(T'), the
lmy, e || Tz — pl| exist.

In fact, for all integers n,m > 1, we have

[T+ — pl| < limsup,_,q, | T"*™z — pl|

= lim supp, oo ([|T(T™z) — T7p|| — IT™z — pi| + ||T™z — pl|)
< limsup,,_, o (sup{[|T" — T"p|| — |lu — p[|-: v € C})
+limsup, _, [|T™z — p||
< limsup,_,q, [|T™z — pl| = [|T™z - pl|
It follows that for all integers m > 1,

limsup |[T"z — pl| = limsup {|T™""z — p|| < ||T™z ~ p||

300 n—co
Which implies that limsup, . [|[T"z — p|| < liminfy e [[T™z — p||.
Hence lim,., ||T™z — p|| exists.

To show that {T"z} converges weakly to a fixed point of T'. It suffics to
show that

wy(z) C F(T)

where wy(z) == {y € X : T%z — y, for some n; 1 co}.

First, claim that w,(z) is singleton set. Let py,p2 € wy(z) and p; # py, there
exist subsequence {T™z}, {T™z} of {I™z} such that Tz — p,, T™z — ps.
Since X is weakly continuous duality map and by [1] that weakly continuous
duality map satisfies Opial’s condition, then
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lim, o0 (T2 — pr]| = liminge || Tz — pil|
< limyy0 || Tz — pai|
= limjo0 |[T™ x — pof|
< limyj o0 [Tz — i)

= limp 00 ”Tﬂﬂ" - pl“
Then lim, o0 |77z — p1]} < limpoeo |72 — pi|| 2 contradiction.

Hence wy(z) is singleton set. Thus we have T"z — z.

To show that wy(z) C F(T). Let y € w,(z), there exist subsequence
{T"iz} of {T"z} such that 7"z — y. By weakly asymptotically regular of
T at z, we have

Ty — Tz — Q.
And we have TMixz — y. For all integers m > 0,
(Thiz — Tritmg) < (Thig — Trtig) + (TPt — Trit2g) + L.

+(Tn,-+(m—1)$ — Tn,-+mx) —~0
Thus TPz — (Thig — Th*Mg) 2y — 0 = ThtMg sy
Let r, = limsup,_,, ||T%+ "z — y|| and r = inf{ry, : m > 0}.
Claim that lim,, 0 Tm = 7. Let € > 0, by the definition of asymptotically
nonexpansive type,

-~

limsup(sup{||[T"z — T™|| - llz ~yll:y € C}) <0<

€
n—oo 2
then there exist Ny € N such that,
€
sup{lIT"z ~ Tl - [l — yll :y € C}) < &

for all n > N;. And since r + £ is not lower bound of r, there exist mg € N
such that r <rp, <r+ 3. For I > Ny,
Tme+t = limsup;_,, |Tmitmoty — y|| < lim SUPj00 [Tri¥mottz — Thy)|

= lim sup;_, o, ([T ™4z — T'yl| — [T+ ™oz — y|| + [T oz — y|j)
< limsup,_, o (sup{[| T — T'y|| — llv — yll : w € C})
+limsup,_,, |77z — ||

< limsup,_,,,(§) + limsup;_,, [|T%*™z ~ gy



— €
=5+ Tmg

Then limy, o0 'm = 7 exist.
Now, for all integers m, 7 > N,, we have
(T +2mg — yl) = STz — (T™y) + (T™y - y)l])

— ‘I,(||Tnj+2mx _ Tmy”)

+ fo <(T™y =), J (T ™z — T™y), {T™y — y)) > dt
we can take §j — oo, T™+?™ < y and

limsup;_,o P(|| 772"z — yli} = limsup;_,o(R([T™**"z — T™y}))

+ [y < (T™y—y), J(T™+™z — T™y), t(T™y — )} > dt)
and then,

®(limsup,_,, |T™1?"z — y||) = ®(limsup,_,, [|Tmi+2m g — T™y|)
— 5 1™y — ylleEIT™y — yll)dt
P(rom) < S(imsup;,q, |7z — T™y|) — @(||T™y — y|)
= @(lim sup,_, (|| T™(T™*™z) — T™y|| — IIE"""""‘&': |
+| Ttz — yl)) — 2(IT™y — yl)
< ®(lim sup;._ oo (sup{|T™(T™*+™z) — T™y|| — [T+ - y]| -
(T+mg) C C}) + limsup;, o [T+ ™z — yll) — 2(|T™y — y|)

&5+ rm) — (I T™y — yll)
Then .
&(IT™y ~ yl) < B + 1) — B(ram)

Take m — oo, we get
: T _ €
2(lim |7y — yl)) = lim S(IT™y - yll) < B(5)

By @ is increasing, ||[T™y —y|| < § <eforallm > N,.
This implies that T™y — y strongly and, hence T'y = y by continuity of TV
for some N > 1, then y € F(T). Hence wy(z) C F(T).

Corollary 4 Suppose X is a Banach space with a weakly continuous duality
map J,, C is a weakly compact convex subset of X, and 7 : C — C, is an
asymptotically nonexpansive. Further, suppose that there exists a nonempty
closed convex subset K of C with the following property (w):

z € K implies wy,(z) CK



where w,,(z) is the weak w — limit set of T at z; that is, the set
{y € k:y=weak — imT™z for some n; 1 oo}.
i

Then T has a fixed point in K.

Suppose now C' is a bounded closed convex subset of a Banach space X
and T : C — C is an asymptotically nonexpansive mapping {we may always
asumme k, > 1 for all n > 1). For any n > 1, we lake ¢, = min{l - (&, —
1)7,1 - 1} Fix a u in C and define for each integer n > 1 the contraction
5,:C —>C by

Su(z) = (1 = )y g, 3.1)
kn kn

Then the Banach Contraction Principle yields a unique point z, € C that is
fixed by S, that is, we have

tn tn n
Tp = (1— -]-c:)u + -k—n-T Zy. (3.2)

Theorem 5 Suppose that X is a reflexive Banach space with weakly con-
tinuous duality map and uniformly Gateaux differentiable norm. Suppose in
addition the following condition

lim||z, — Tz.|| =0 (3.3).
n

Then (z,) converge strongly to a fixed point of 7.

Proof. Suppose that the sequence {z,} defined by (3.2). From corollary 4,
the fixed point set F(T) of T is nonempty. We now show that (z,) converge
strongly to a fixed point of 7. Now let x be a Banach limit and define
f:C —[0,00) by

f(2) = pnllzn — 2|l  for every z € C.

Then, since the function f on C is convex and continuous, f(z) — oo as
l|z]| = oo, and X is reflexive it follows from [2, p. 79] that there exists u € C
with f(u) = inf,ec f(z). Define the set

M ={veC: f(v) = inf ()}
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Then M is a nonempty, closed and convex. We further claim that M has the
property (w). If z isin M and y = w —lim; T™iz belong to the weak w-limit
set wy(z) of T at z, then from the weakly lower semicintinuous of f, we have

f(y) = liminf f(T™z) < limsupy,_,o S(T77)
< limsup,, (¢al{zn — T™2|]).

Since 7" is uniformly continuous it follows from z,, — Tz, — 0 that x,, —
T™z, — 0 for each fixed m € N. Thus

f(2) < limsup,, (al| 7720 — T™x|])
< limsup,, (kmpinll®n — zl) = pallza — z||
= inf.ec f(2) < f(y)-
This show that y belongs to M and hence M satisfies the property (w). It

follows from corollary 4, that T has a fixed zp € M. Next, to show that (z,)
converges strongly to a fixed point of 7. We note that, for any w € F(T),

(xn - Tnxm J(xn. - w)) = (In —w, J(:Cﬂ - w)> '*i (w - Tnzm J(xn - w))

2 |lzn = wli? — [lw — T"znll{lz2 — ]|

> ~(kn — L)fjzn ~ 'w”2

> ~(k, — 1)d?
where d = diam C. Since z, is a fixed point of S,, it follows that
ko — 1,
Tn — Tz, = nt (v — zq)

n

and from last inequality above,we get
(T — u, J(Tq — w)) < 5,d%, (3.4)

where s, = 5&%2—%1 — 0 as n — o0. So, putting w = z,, we have

Ty — u, J(Tn — 20)) < 5,d° (3.5)

On the other hand, since zy is the minimizer of the function f on C, by [9,
Lemma 3], we have

pinlz — 20, J(Tn — 20)) <0



for all z € C. In particular, we have

Balt — 20, J(Zn — 20)) £ 0. (3.6)
Combining (3.5) and (3.6), we get

.U'n(xn - ZO’J(xn - 20)) = unHwn - ZU||2 <0

Therefore, there is a subsequence (z,,) of (z,) which converges strongly to
zo. To show that (z,) converges strongly to a fixed point of T, let (z;) and
(zm,) be subsequences of (z,) such that z,; — z and z,;, — 2’. Then 2z and
z' are fixed points of T by hypothesis (3.3). It follows from (3.4) that

(z—u,J(z~2)) <0

and
(' —u,J(z' = 2)) <0.

Adding these two inequalities yields
(z=2,J(z-2)) =|z—2|*=0.

So we have z = 2'. Therefore (x,) converges strongly to a fixed point of 7.00

-
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AN IMPLICIT ITERATION PROCESS FOR A FINITE FAMILY
OF ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS

SOMYOT PLUBTIENG AND RABIAN WANGKEEREE

Department of Mathematics, Naresuan University Pitsenulok 65000,
Thailand

ABSTRACT. In this paper, we prove that the new modified implicit iteration se-
quence for finite family of nonexpansive (asymptotically quasi-nonexpansive) self-
mappings converges strongly to a common fixed point of the family in a uniformly
convex Banach space, requiring one member T in the family to be semi-compact.
Qur rebults extend and improve some recent results of Xu and Ori[17] and Sunf14],
respectively.

keywords: Implicit iteration process; Finite family of asymptotically quasi-
nonexpansive mappings; semi-compact; Common Fixed point
-

1. INTRODUCTION

Let C be a subset of normed space X, and let T be a self-mappingon C. T
is said to be nonezpansive provided ||T'z — Ty|| < ||z — y|| for all z,y € C; T is
called asymptotically nonezpansive if there exists a sequence (u,) in [0,00) with
lim, 00ty = 0 such that {|T"z — T™y|| < (1 + uplllz — || for all z,y € C and
n > 1. T is said to be an asymptotically quasi-nonezpansive map, if there exists a
sequence (ugn) in [0, 00) with lim, o0 tip, = 0 such that [Tz —p|| < (1+un)||z—p||
forallz € C and p € F(T) and n > 1 ( F(T) denotes the set of fixed points of T’
ie. F(M)={z e C:Tz =zx}).

Corresponding author.
Email addresses: Somyotp@nu.ac.th(Somyot Plubtieng) and Rabian@nu.ac.th.
{Rabian Wangkeeree).
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The class of quasi-nonexpansiveness was introduced by Daiz and Metcalf [5]
in 1967, the concept of asymptotically nonexpansiveness was introduced by Goebel
and Kirk [6] in 1972. The iterative approximation problems for nonexpansive map-
ping, asymptotically nonexpansive mapping and asymptotically quasi-nonexpansive
mapping were studied extensively by Browder [1, 2], Goebel and Kirk [6] and Liu
[8], Wittmann [15], Chang et al [3] in the settings of Hilbert spaces and uniformly
convex Banach spaces.

Let C be a nonempty convex subset of X, and let 71,73, ..., T be N nonexpan-
sive self-mappings of C. We will denote the index set {1,2,..., N} by I. In {17], Xu
and Ori have introduced the following implicit iteration process. For an initial point

zp € C and {ay}n>1 a real sequence in (0, 1) the sequence {z,}n>1 is generated as
follows:

2y = %+ (1 — o)z,
T = gz + (1 — ag)Tozy,
-
zy = oanzy-1+ (1 —-an)Tnzy,
gn+1 = an41Zy + {1 —anp)TizN 4,

The scheme is expressed in a compact from as:
(1.1) ZTn = 0nZp_i + (1 — an)Tnzn, n>1,
where Tk = Tk mod N.

Using this iteration process, they proved the following convergence theorem for
nonexpansive maps in Hilbert spaces.

Theorem XO [17]. Let H be a Hilbert space and let C a nonempty closed convex
subset of H. Let {T; : i € I} be N nonexpansive self-mappings of C such that
F =n¥,F(Ty) # 0, where F(T;) = {z € C: Tiz = z}. Let 29 € C, and {0},
be a sequence in (0, 1) such that lim, e @y = 0. Then the sequence {z,} defined

implicitly by (1.1) converges weakly to a common fixed point of the mappings {T; :
i€ I}

Recently, Sun [14] was extended the process (1.1) to process for a finite family of

asymptotically quasi-nonexpansive self-mappings on the nonempty bounded closed
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convex subset C of X, with {a,} a real sequence in (0,1), and an initial point
zg € C, which is defined as follows:

1 = ozo+ (1 - al)lel
9o = ooz + (1 — ag)Tezy
Iy = anzy_1+(1-— onN)TnzN
2
N1 = ant1TN + (1 —ani) Ty 2N+
2
Tan = agnTan-1 + (1 — aon)Thzan
3
Tont1 = can+i%an + (1~ aan 1) Ty Tan 41

which can be written in the following compact from:
(1.2) Tn = onZp_1 + (1 — an)TFz, forall n > 1,
where n = (k- )N +4,i€ {1,2,..,N} =T
Furthermore, Sun[i4] was study the implicit iteration process (1.2) in the gen-

eral setting of a unifsrmly convex Banach space and prove the strong convergence
of the process to a common fixed point.

In this paper, we will extend the process (1.1) to a process for a finite family

of nonexpansive mappings, with {a,}, {Bn} are two real sequences in [0,1], and an
initial point zo € C, which is defined as follows:

(1.3) ZTn = 0pZn-1 + (1 — an)Tn(Bntn + (1 = Br)Thzs), n 2 1,

where Ty = Tk mod - It is easy to see that the sequence {z,} generated by process
(1.2) always exists by Banach’s contraction principle. Moreover, we will extend the
process (1.2) to a process for a finite family of asymptotically quasi-nonexpansive
self-mappings on the nonempty closed convex subset C of X, with {a,}, {8} are
two real sequences in [0, 1], and an initial point 2o € C:

(1.4) Tn = AnTn-1 + (1 ~ an) T (BnZn + (1 — an)T'T0), n 2> 1,
where n = (k — 1)N +4,1 ¢ I.

Throughout this paper, we always suppose that the sequence {z,} generated
by process (1.4) exists. Our purpose in this paper is to study the implicit iteration
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process {1.3) and (1.4) in the general setting of a uniformly convex Banach space
and prove the strong convergence of the process to a common fixed point, requiring
only one member T in the family {T; : ¢ € I} to be semi-compact. The results

presented in this paper generalize and extend the corresponding main results of Xu
and Ori [17], and Z. h. Sun [14].

2. PRELIMINARIES

We first recall some definitions.

Definition 2.1. (see [6]). A Banach space X is said to be uniformly convez if the
modulus of convexity of X

. T+
x(e) = intfl — 23V o =y = 1yl = ) > 0

for all 0 < € < 2(i.e., dx(¢) is a function (0,2] — (0,1)).

Definition 2.2. (see [3]). Let C be a closed subset of a Banachsspace X. A mapping
T : C — C is said to be semi-compact if, for any sequence {z,} in C such that
[[zn — Tzy|| — 0 as n — oo, there exists a subsequence {Z,} of {zn} such that
T, — 2 €C.

Definition 2.3. A mapping T : C — (' is called uniformly L-Lipschitzien if there
exits a constant L > 0 such that Vz,y € C|

|77z — T y|| < Ll||z — yl|, for all n > 1.

In what follows, we shall make use the following lemmas.

Lemma 2.4. ( see [12]). Let the nonnegative number sequences {an}, {bn} satisfy
that

ant1 < (14 bp)aq, Vo =1,2,. Zb < o0.
Then
(1} limp, o an exists, and
(2) If iminf, . an, =0, then limy,_,oan = 0.

Lemma 2.5 (J. Schu's Lemmall3] ). Let ba a uniformly convez Banach space,
0<asty <P <1,za,yn € X,limsup,,_,, ||.‘1:n|| <ag,limsup, o [|yall < a, and
lim, oo l[taZn + (1 — to)ynll = a,a > 0. Then limg 00 |[Zn — ynll = 0.
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3. MAIN RESULTS

In this section, we study the convergence properties of the sequences (1.3) and
(1.4). First of all, we shell need the following results.

Lemma 3.1. Let C be a nonempty closed convez subset of Banach space X. Let
{I;y : i € I} be N nonezpansive self-mapping of C such that F = N} F(T;) # 0,
where F(Ty) = {z € C : Tijz = z}. Let zg € C, and {an},{Bn} be sequences in
[0,1], and {zn} be the sequence generated by process (1.83) Then for each p € F,
limp—00 ||Zn — Pl ezists.

Proof. Let p € F.Then, from (1.3), we have that

lzn —pll = lonZn_1 + (1 — op)Tn(Bazn + (1 — ﬁn)Tnxn) — (1 —an)p ~ anp||
< an”In—l - p" + (1 - an)”Tn(ﬁnxn + (1 - ﬁn)Tnmn) - Tnp”
< anllzar — 2l + (1 — a)Brllzn — pll + (1 — 2n }(1 — Bn)llzn — pl|
= ap|Ta-1 — pll + (1 — an)llzn — pl|.
Hence
(3.1) iz — Pl L Nzn-1 = pll < llzn-2 —pll £ ... <21 ~ pl|-

So from (3.1), we get that {zr} is bounded and decreasing, we have lim, ¢ ||zn —pl|
exists. This completes the proof. O

The purpose of the next main theorem is to prove the following convergent
result for the process {1.3).

Theorem 3.2. Let X be a real uniformly convex Banach space, C a closed convez
nonempty subset of X. Let {T;: i € I} be N nonezpansive self-mapping of C such
that F = N F(T;) # 0, where F(T}) = {z € C : Tz = z}. Let 9 € C, {o,} and
{Bn} be sequences in [0,1], such that 0 < a@ < an,fn < B < 1 for some o,f in
(0,1) and {zp} be the sequence generated by process (1.8). Then, for each | € I,
Hmy, o0 |Tn — Tiznll = 0. Moreover, if there exists one member T in {T; : i € I}
to be semi-compact, then the sequence {zn} strongly converges to a common fized
point of the mappings {T; 11 € I}.

Proof. Let p € F. Then, by Lemma 3.1, we obtain lim,__, |jzn — 2 exists. Let
lim, e [lZn — pll = ¢ for some real number ¢ > 0. For each n > 1, putting
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Yn = BnZn + (1 — Bu)TpZy. Then

"yn - p” = ”ﬁﬂxn + (1 - ﬁn)Tnzn _p”
< Bullzn = pll + (1 = Ba)lizn — Pl
= |lzn — plf,

for each n > 1. Taking limsup, _, ., in both sides, we obtain
limsup [y — pll < limsupllzs — pll = lim_|lew 5l =<
n—oo n—oo TT—300
Moreover, we note that
limsup | Ty — pll < limsuplyn —pll < _lim |l —pll = ¢,
n—3io0 n—oo n—oo
and

c= n-l_:l_gloo lzn — 2l = nu_’moo lonza-1 + (1 — an)Thyn — pll

= lim [lan(za-1 —p) + (1 — o) (Tngm — Pl

n

Then, by J. Schu’s Lemma, we have

[

RE)noo “Tnyn - $n—1“ =0,

-

and hence

Nz — Tp—1ll = (1 — ep)||Thtin — Zn—aff — 0 as n — oo.

This implies that

|Tn — Znetll — 0 as n — oo, foralll < N.

On the other hand, we have

lzn —pll < anllza—1 =20 + (1 — )| Taya — pli

@nl|Zn_1 ~ Tnynll + onlTayn — pll + (1 — an)llym — 2l
anl|Zn-1 — Tuynll + enllyn — pll + (1 — cn)liyn — 2l
anl|Ta—1 — Tnyell + ly= — 2l

A IA

I

for each n > 1. Since limp oo ||[Zn-1 — Tnyn|| = 0, we obtain that
c=_lim |z, —p|| <liminflly, - pjf.
It follows that
¢ <liminf{ly, —pll < fim sup flyn —pll < c.
Thus

lim llyn —pll =c¢
n—»oo



