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and hence

c= lm lyo~pll = lim [IBazn—p) + (1 ~ Bu)(Tnza — p)lI-

n—oo
By J. Schu's Lemmma, we have
lim ||z, — Trzs| = 0.
-0

Hence, for alll € I,

Fa

lzn ~ Thyinll lzn = Znatll + §Za+t — TostZntll + [ Tori®nsi — Tnsznl|

< 2lon = Tasdll + [2Zntt = Tnriznsill
which implies that
lim ||zp, — Typzal =0,V € L.
n—oeo
We note that any subsequence of a convergent number sequence converges to the
same limit. Thus

(3.2) |Zn — Tiznl =0,V € 1.

|
We now suppose that there exists one member T in {T} : i € I} to be semi-
compact. Without loss of generality we may assume that T} is semi-compact. There-
fore by (3.2), it follows that lim, o ||Zn — Tizell = O and by the definition of
semi-compact there exists a subsequence {,;} of {z,} such that z,, — p€ C as
j — oo. By (3.2) again, we have

lp = Tipl = lim |Tizn; — 2n,|| =0,V1 <L N.

It show that p € F. Furthermore, since lim,, o ||Zn—p|| exists, we have lim,, o [|Tn—
p|| = 0. This completes the proof. O

The next main theorem is prove the following convergent result for the process
(1.4). First of all, we shall need the following results.

Lemma 3.3. Let C be a nonempty closed convez subset of real Banach space X.
Let {T; : i € I} be N asymptotically quasi-nonezpansive self-mappings of C, i.
e., TPz — qill € (1 + uin)llz — gl for all z € C,q: € F(T3),i € I. Suppose that
F =0l F(T;) # 0, where F(T;) = {z € C : Tyz = z}. Let 79 € C,{a,} and {Bn}
be sequences in [0, 1], such that 0 < a < an < 1. Then the implicit iteration process
{z,} generated by (1.4) satisfies the following;

(1) For each p € F and for each n = (k — 1)N +1i > 1, we have

l£n — pll < (1 + bik}llzn-1 - 2l
where {bi} € [0,1] and Y7o, bix < +00 for alli € I;
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(2) There ezists a constant M > 0 such that {|Tnym — pl| < M|z, —p||,Vp €

FNn,m>1.

Proof. Let p € F. Then, for each n = (k — 1)N +1i > 1, we have

lz — pll
(3.3)
and
llyn — 2l
(3.4)

Substituting (3.4) into

|z — pll

where v = 2uy + u:?k'

lonzn-1 + (1 - an)Tg‘kyn - P”
opllza_1 —pll + (1- an)”ﬂkyn - P”
anl|Zn—1 — pll + (1 — an)(1 + uik)l|lyn — pli

IA

18azn + (1 — Ba)TFzn — ol

Brllzn = pli + (1 = Bu)| T zn — p
Brllzn — pll + (1 — Ba)(1 + vi)l|zn — pl|
Brllzn — pll + (1 — Bn + vik)||lzn — ol

(1 + ui)llzn — |-

(3.3), it can be obtained that

A IA A

< O‘ﬂ”mﬂ-l -l + (1 - O‘n)(l + uik)gllxn - p”

<

0n||Zn-1 = pl| + (1 — an + vi)||zn — Pl

Note that a,; > a > 0 for each n > 1. Then

[a
ol zn "p" < ap||ze-1 —'P" + uik"mw "'p" < an":’:n—l -l + Uik_aﬁllmn - pl

and so

(3.5)

a — Uik

lizn — pll < l|lZn-1 —2li-

Since Y po; vik < 0o for all i € I, limg o vix = 0. This implies that there exists a

natural number ng, as

Let

Then

Therefore

k> % +1, ie, n > ng such that

o
v,-k<—2—a.nda—v¢k>0.

Vik
O — Vi

1+by =

bik:(

oo
Z b <
k=1

=1+
@ — Uik

2
Vik < —Uik.
a — Uik (24

2 oo
—Z‘Uik<+00 forallie [
ak:l
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and (3.5) becomes

zn — pll < (1 + b}z —pl,Yp € F.

We now to prove (2). Let ap, = by where n = (k— 1)N +1,1 € I. Notice that
whenz > 0,14+ 2 <e%, and

lzn — pll < {1+ an)l|zn-1 —pll,¥p € F.

Then
lza+m — 2l < (1 + entm)llZntm—1 — 2l
< et Znim_1 — pll
< lntmtinem- £ +m—2 — Pl
< eZizn oz, —p|
< T itz —p|,Vpe F

for all natural number m,n. Let M = eZita TR bik > . Thus,

"xn-}-m “P" < M”:Bn "p"pr € F,Yyn,m > 1.
This completes the proof of (2). O

Theorem 3.4. Let C be a nonemply closed convexr subset of real Banach space
X. Let {T; : ¢t € I} be N asymptotically quasi-nonezpansive self-mapping of C,
ie, TPz — qill < (1 + i)z — ¢il|| for all z € C,q; € F(T3),i € I. Suppose that
F=nX,P(T)) # 0, where F(T}) = {z € C : Tixz = z}. Let 7o € C,{an} and {B,}
be sequences in [0,1) such that 0 < a < an <1 and ¥ .2, uik < 400 foralliel.
Then the implicit iteration sequence {z,} generated by (1.4) converges to a common
fized point in F if and only if liminf,_,., d(zn, F) = 0, where d(z,, F) denotes the
distance of = to set F, i.e., d(z, F) = infyecp d(z,y).

Proof. The necessity of the conditions is obvious. Thus we will only prove the

sufficiency. For any p € F, and for each n = (k — 1)V +1 > 1, it follows by Lemma
3.3 that

lzn — pll < (1 + bik}l|Zn—1 — pii-
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This implies that d{z,,, F) < (14bi)d(zn-1, F). From Lemma, 2.4, we have lim, o d(zy, F) =

0. Hereafter, we will prove that {z,} is a Cauchy sequence. By Lemma 3.3, there
exists a constant A > 0 such that

{3.6) |Ensm — pll £ Milz, —pl,Vpe F
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forallm,n > 1. Let ¢ > 0, since limp—, 00 d(Zy, F') = 0, there exists a natural number
N; such that d(zn, F') < 55, Yn > Np. In particular, we have d{zy,, F) < 357. This
implies that there exists a point p’ € F such that

€

r
N, — P < .
I M I 2M

It follows, from (3.6), that when n > Ny, for all m > 1,
[#n4m = Zall £ |Zmin ~ 2l + llzn — Pl £ Mllzn, — Pl + Mljzn, ~ 7' <&

This implies that {z,} is a Cauchy sequence. Because the space is complete, the
sequence {z,} is convergent. Let lim, ., z, = p. We note that

d(ps F) S d(xnaF) + "Iﬂ "p"yvn 2 1.

Since lim, —00 d(Zn, F) = 0 and the set F is closed, we have p € F, i.e. pis a
common point of {T; : i € I'}. This completes the proof. O

»
Corollary 3.5. Suppose that condition are as same as in Theorem 8.4. Then the
implicit iteration sequence {z,} generated by (1.4} converges to a common fired

point in F if and only if there exists a subsequence {zpn;} of {zn} which converges
to p.

We now to prove the following convergent result for process (1.4).

Theorem 3.6. Let X be a real uniformly conver Banach space, C a closed convex
nonempty subset of X. Let {T; : i € I} be N uniformly L-Lipschitzian asymptotically
quasi-nonezpansive self-mapping of C. Suppose that F = N, F(T}) # 0, and there
exists one member T in {T; : 1 € I} to be semi-compact. Let 2 € C, {an} and {Bn}
be sequences in (0,1] such that 0 < a € @n,fn < B < 1 and 3 72, uy < oo for
all i € I. Then the implicit iteration sequence {zn} generated by (1.4} converges
strongly to a common fized point of the mappings {T; : i € I'}.

Proof. Let p € F. From Lemma 3.3 , we have
20~ pll < (1 +big)llzn1 —pll,Vn = (k — )N +i > 1.

Since Y po, bix < oo for all i € I, it follows by Lemma 2.4 that limp— o0 (|2 — p|
exists. Let lim, ||z — p|| = ¢ for some ¢ > 0. Foralln > 1, Put y, =
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BnZn + (1 — Bﬂ)T!‘mn. Then

lyn =2l = 1Bazn+ (1 = Ba)T¥zn —pll
< Bullzn — pll+ (1 = B TEzn — pll
< Bullzn — pll + (1 = Ba)(1 + wig)l|zn — pij
< Ballzn — ol + (1 — Br + vik)liza — pl|

(1 + ui)lizn — pll

for all n > 1. Taking limsup,,__, .. in both sides, we obtain

limsup ||lyn — pll < limsup ||z, — pl| = lim |z, —pl| =c.
n——+00 nR—0C n—oo

Note that
limsup |{Tfya ~ pll < limsup|lyn —pli < lim |lzn —pll =<,
n—o0 n—ooQ n—oo
and
¢= nli_r’nm lzn —pll = n!i_f}noo lonn—1 + (1 — an)Tfk?:’n -7l

= nE-IPoo llan(zn-1 — p) + (1 — anX(TFyn — p)II.

We note that n = (k — 1)N + 1, T}, = Tyymonny = Tiy 1 € 1. By J. Schu’s Lemma, we
have ’
n[‘glw 1T&yn — Zn-1ll = nli_r’noo Ty — Za-1fl = 0.
Hence
fzn = Zn-1ll = (1 — an)|Txyn — Za-1l] — 0 as n — oo,
as well as
|zn — Zp4all — 0 for all I < N,
On the other hand, we cbserve that

lzn — P“ < apllzn-1 —pll + (1 - an)“Tikyn -7l

< anllze-1 - Tikyn" + an"Tikyn -pll+(1- C’fn)"Tikyn -l
< O-'n”-'nn—l - Tfynll + ”Tikyn _p”
< omllzn-1 — Thyall + (1 + wie) lyn — .

Since limy.yo0 ||Zn-1 — T¥ynll = 0, we obtain that
c=_lim jlzn —p| < liminflly, - pi.
It follows that

¢ < liminf |ly — pll < limsup jly. — p|l < ¢,
n—*o0 n—oo

314
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and so
tim (g —pll =<
This implies that
c=_lim [lyo—pl = lim [1Ba(zn ~p) + (1 = Ba)(Tnzn — D).
By J. Schu’s Lemmma, we have
nl—i—[-)noo 1zn — Tizall = 0.
We now to show that lim, , ||2n — Tize|| = 0,VI € I. Note that
|zn = Tnzall < llza — Tvlf-"’nn + "vaxn — Tazaq|
flzn — Tf’:xﬂ” + L"Tvl:_l - -"':n"
< ”-'En - Tkmn" + L("Tufhl Tk ~NIn- wil

IA

+

“ N-Tn— — Zn—N| + |za-n — z4ll)
Since n = (n — N){modN), we have T,, = T,_n. The above inequality becomes
|zn — Tazal < |z — Tk:rﬂ" + L2”-'L'n — Za-n[ + L" Nf"'n,_N — TNl + L||zs — za_n|

= ||#n = TXza|| + L + L)|jzn — To-n]| + L|| “NEn-N — Zn-n|| 2 0.

Which implies that
limn,_eollZn — Thzal = 0.
Hence, for alll € I,
|Za = TntiZnll £ N2Zn — Zowtl + [ Zoat — TatiZnsill + | TnviZrst — Trgazall

< (14 L)lzn ~ zawtll + ll2nst = TottZosill--

It follows that

Iimn_.,mlla:n - n+[:€n” = 0, viel.
Thus
(3.7 limn_oolltn — Tizal|| =0,V € 1.

which lies on the fact that any subsequence of a convergent number sequence con-
verges to the same limit. By hypothesis that there exists 7" in {T} : i € I} to be
simi-compact, without loss of generality we may assume that T} is semi-compact,
it follows that there exists a subsequence {zn;} of {z,} such that z,, — p as
j — oo. By (3.7) again, we have

lp —Tipll = jﬂnoo ”Tlxnj — In; |=0,¥1<I<N.
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It show that p € F and lim,_,o,d(z,, F) = 0, therefore by Theorem 3.4 and
‘Corollary 3.5 we have that {z.} converges to a common fixed point p in F. This
completes the proof. a

Acknowledgement. The authors would like to thanks The Thailand Research
Fund for financial support.
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THE CHARACTERISTIC OF NONCOMPACT CONVEXITY AND RANDOM
FIXED POINT THEOREM FOR SET-VALUED OPERATORS

SOMYOT PLUBTIENG AND POOM KUMAM

Abstract. Let {2, ) be a measurable space, X a Banach space whose characteristic
of noncompact convexity is less than 1, € a bounded closed convex subset of X,
KC(C) the family of all compact convex subsets of C. We prove that a set-valued
nonexpansive mappings T : € — KC(C) has a fixed point. Furthermore, if X is
separable then we also prove that a set-valued nonexpansive operator T : Q x C —
KC{C) has a random fixed point.

Keywords : random fixed point, set-valued random operator, measure of noncompacness.
MSC 2000 : ATH1Q, 4TH09, 4THO4. -

1. INTRODUCTION

The study of random fixed points has been a very active area of research in probabilistic oper-

ator theory in the last decade. In this direction, there have appeared various papers concerning

. random fixed point theorems for single-valued and sei-valued randeom operators; see, for example,
(6],[8],(9),(10],f11][14],{20] and reference therein.

In 2002, P. L. Ramirez [9] was proved the existénce of a random fixed point theorems for a random
nonexpansive operator in the framework of a Banach spaces with a characteristic of noncompact
convexity £,(X) is less than 1. On the other hand, Dominguez Benavides and Ramirez [4] was proved
a fixed point theorem for a set-valued nonexpansive and 1-A-contractive mapping in the framework of
a Banach spaces whose characteristic of noncompact convexity associated to the separation measure
of noncompactness £g(X) is less than 1. |

The purpose of the present paper is to prove a fixed point theorem for set-valued random nonex-
pansive operators in the framework of a Banach spaces with characteristic of noncompact convexity
associated to the separation measure of noncompactness eg(X) is less than 1. Moreover, we also
prove a fixed point theorem foe set-valued nonexpansive mapping in & Banach spaces with charac-

teristic of noncompact convexity associated to the separation measure of noncompactness £5(X) is
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less than L. Our results can also be seen as an extension of Theorem 6 in [9] and Theorem 4.2 in

|4], respectively.

2. PRELIMINARIES

Through this paper we will consider a measurable spaces {1, £) (where ¥ is a o —algebra of subset
of ) and (X, d) will be a metric spaces. We denote by CL{X)(resp.CB(X), KC(X)) the family of

all nonempty closed (resp. closed bounded, compact convex) subset of X, and by H the Hausdorff
metric on CB{X) induced by d, i.e.,
H(A,B) = max {sup d(a, B),supd(b, A)}
acA beB

for A, B € CB(X}, where d(z, E) = inf{d(z, y}|y € E} is the distance from z to E C X.

Let C be a nonempty closed subset of a Banach space X. Recall now that a set-valued mapping
T : C — 2% is said to be upper semicontinuous on C if {z € C : Tz C V} is open in C whenever
V C X is open; T is said to be lower semicontinuous if THV) := {x € C : Tz NV # B}is
open in C whenever V C X is open; and T is said to be continuous if it is both upper and
lower semicontinuous (cf.[2] and [3] for details). There is another defferent kind of continuity for
multivalued operator: T : € — CB(X) is said to be continuous on C (with respect to the Hausdorff
metric H) if H(Tx,,Tz) — 0 whenever z,, — z. It is not hard to see (see Deimling {3])that both
definitions of continuity are equivalent if Tz is compact for every x € C.

A set-valued operator T : ©? = 2% is call (E)— measurable if, for any open subset B of X,
« T7'B)={weQ:T(w)nB#8}

belongs to £. A mapping = : 2 — X is said to be & measurable selecfor of & measurable set-
valued operator T : 2 — 2% if z(-) is measurable and z{w) € T(w) for all w € . An operator
T: 82 x C — 2% is call a random operator if, for each fixed z € C, the operator T(-,z) : @ — 2% is
measurable. We will denote by F(w) the fixed point set of T(w, "), i.e.,

Fw)={xreC:z€ T{w,z)}.

Note that if we do not assume the existence of fixed point for the deterministic mapping T'(w,-) :
C — 2%, F{w) may be nonempty. A measurable operator z : £ — C is said to be a rendom fized
point of a operator T : 2 x C — 2% if z(w) € T(w, z(w)) for all w € . Recall that T : @ x C — 2%
is continuous if, for each fixed w € €, the operator T : (w,-) — 2% is continuous.

If C is a closed convex subset of a Banach spaces X, then a set-valued mapping T': C — CB(X)

is said to be a contraction if there exists a constant &k € [0, 1) such that

H(TIsTy) < k"-’ﬂ - y”! T,y € Cn
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and T is said to be nonezpansive if

H(TJ.‘,T‘y) < "I - yill T,¥ € C|

A random operator T : 2 x C — 2% is said to be nonexrpansive if, for each fixed w € § the map

T : {w,-) — C is nonexpansive.

For later convenience, we list the following results related to the concept of measurability.

Lemma 2.1. { Wagner cf.[13]) Let (X, d) be a complele separable metric spaces and F : @ - CL{X)

e measurable map. Then F has a measurable selector.

Lemma 2.2. ( Itoh 1977, cf.[8]) Suppose {T.} is a sequence of measurable set-valued operator from
$1to CB(X) and T : 2 — CB(X) is en operator. If, for eachw € O, H(T,(w),T{w)) — 0, then T

is measurable.

Lemma 2.3. { Tan and Yuan cf[12]) Let X be a separable metric spaces end Y a metric spaces. If
f:Qx X > Y is a measurable in w € §1 and continvous inz € X, and if z : ! — X is measurable,

then f{-,z(-)) : 1 = Y) is measurable.
As an easy application of Proposition 3 of Itoh(8] we have the following gesult.

Lemma 2.4. Let C be 5 closed separable subset of a Banach space X, T : t x C — C a random
continuous operator and F : @ — 2 a measurable closed-valued operator. Then for any s > 0, the

operator G : Q2 — 2€ given by

Gw)={z € Flw):llz-T(wz)]| <s}, we
is measureble and so is the operator cl{G{w)} of the closure of G(w).

Lemma 2.5. { Dominguez Benavidel and Lopez Acedo cf.[6]) Suppose C is a weakly closed nonempty
separable subset of a Banach space X, F : @ — 2X o measurable with weakly compact values, f :
Q x C — R is a measurable, continuous and weakly lower semicontinuous function. Then ihe

margingl function r : @ — R defined by
= inf w,
r{w) xc_l?(:)f( z)
and the marginal mep. R: Q — X defined by

R(w) := {z € F(z) : f(w, ) =r(w)}

are measurable.
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Recall that the Kuratowski and Hausdorff measures of noncompactness of a nonempty bounded

subset B of X are respectively defined as the number
a{B) =inf {r > 0: B can be covered by finitely many sets of diameter < r},
x(B)=inf {r > 0: B can be covered by finitely many ball of radius < r}.
The separation measure of noncompacness of a nonempty bounded subset B of X defined by
B(B) = sup {¢ : there exists a sequence {z,} in B such that sep({z,}) > €}

Let X be a Banach spaces and ¢ = o, 8 or x. The modulus of noncompact convexity associated

ta ¢ is defined in the following way:
Ax 4(e) =inf {1 —d(0,A): AC Bx is convex, ¢{A)} > €},

where By is the unit ball of X.

The characteristic of noncompact convexity of X associated with the measure of noncompactness
¢ is defined by

(X)) =sup{e > 0: Ax4(e) =0}.
The following relationshops among the different lmoduli are easy to obtain
(21) Ax.ale) < Ax (e} < Axx(e),
and consequently
(2.2) T eal(X) 2 e5(X) 2 e4(X),

When X is a reflexive Banach spaces we have some alternative expressions for the moduli of non-

compact convexity associated 8 and yx.
Axgle) =inf {1 =iz : {z=} C Bx,z = w —y limz,, sep{{z.}) = €},

Axx(e) =inf {1 —|lz|} : {zn} C Bx,Z = w —n limzn, x({Zn}) 2 €} .

Let C' be a nonempty bounded closed subset of Banach spaces X and {z,} bounded sequence in
X, we use r(C, {zn}} and A(C, {z.}) to denote the asymptotic radius and the asymptotic center of

{zn} in C, respectively, i.e.
(C, {zn}) =inf {limﬂsup lzn — x|z € C} ,
AlC {z}) = {I eC: limﬂsup lzn — z|| = r{C, {zn})} .
If D is a bounded subset of X, the Chebyshev radius of D relative to C is defined by

ro(D) :=inf {sup{|lz —y|| :y€ D} : z € C}.
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Let {z.} and C be a nonempty bounded closed subset of Banach spaces X. Then {x,} is called
regular with respect to C if r(C, {za}) = r(C, {za,}) for all subsequences {z,,} of {za}.

Moreover, we also need the following Lemma

Lemma 2.6. (Benavides and Ramirez. Theorem 4.3 cf. [4].) Let C be a closed conver subset of a

reflerive Banach spaces X, and let x,, be ¢ bounded sequence in C which is regular with respect to
C. Then

(2.3) rc(A(C, %)) < (1 = Ax s(17))r(C, {zn)})-
Moreover, if X salisfies Lthe nonsirict Optal condition then
(2.4) Tc(A(C,zn)) € (1 = Axx (17)r(C, {zn})-

Lemma 2.7. (Deimling 1992, cf. [18]) Let E be nonempty bouned closed closed convez subset f a
Banach spaces end T : E — KC(X) a contraction. Assume Tz N Ig(z) #0 foraliz € E. Then T
has a fired point.

Proposition 2.8. (Kirk-Massa Theorem cf.[15]) Let C be a nonempty weakly compact separable
subset of a Banach space X. T : C — K(C) a nonezpansive mapping, and {z,} a sequence in C
such that lim, d(x, — Tz,) = 0. Then, there exists a subsequence {z,} of {z.} such that

TrNA#0Vz € A:=AC, {z.})

3. THE RESULTS

We begin this section with an extension of Benavides-Ramirez's result by the 1-A-contractive of

T, can be remove.

Theorem 3.1. Let C be a nonemply closed bounded conver subset of a Banach spaces X such that
eg(X) <1, end T : C — KC(C) be a nonexpansive mapping. Then T has a fired point.

Proof Let x4 € C be a fixed and, for each n > 1, define T,, : C — KC(C) by
1 1
Thx=—zpg+(1—=)Tz, YzeC.
n n

Then T}, is a set-valued contraction and hence has a fixed point z,,. It is easily see that dist(z,, Tx,) <
LdiamC — 0 as n — oo. By Goebel and Kirk [7], we may assume that {z.} is regular with respect

to C and using Proposition 2.8 we can also assume that

TzNA#0, Vre A:=A(C{z.})
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Since condition £4(X) < 1 implies reflexivity [2], we apply Lemma 2.6 to obtain
(3.1) rc(A) € Ar(C, {za}),

where A= (1 —Ax a(17)) < 1.
It is clear that A is a weakly compact convex subset of C.

Now fixed z; € A and for each n > 1, we define the contraction T} : A — KC(C) defined by
) 1 1
Ta(z)= -3+ (1 — =)T(z), vz € A.
n n
Since A is convex, each T! satisfies the same boundary condition as 7" does, that is, we have
TlznTa(z) £ 0, Vz € A,

Hence by lemma 2.7, T} has a fixed point z, € A. Consequently, we can get a sequence {zL.} in A

satisfying d(zl,T(zl)) — 0 as n — 00. as n — co. Again, applying Lemma 2.6, we obtain
{3.2) TC(AI) < ar(C, {I}l})'

where A! := A(C, {z}). Since, {z}(w)} C A., we have

(3'3) T(C, {I};}) < Tc(A),
and then
(3.4) ) Tc(Al) < /\2Tc(A).

By induction, for each m > 1, we construct A™, and {z]'}n where A™ = A(C, {z'}), 27} C A™!

such that d(z7, Tz7) —» 0 as n — oo and
(3.5) re(A™) < Arg(A) < A™r(C, {z.}).

By assumption £4(X) < 1 and diamA™ < 2rc(A™) leads to limm—oo diamA™ = 0. Since {A™}isa
descending sequence of weakly compact subset of C, we have N, A™ = {z} for some z € C. Finally,
we will show that z is a fixed point of T. Indeed, for each m > 1, we have

d(z,T2) < |z -2z +d(zg,Ta7) + H(Tz7, T2)

2|z — =7 + d(=z, Tx7)
< 2diamA™ +d(z*, Tz7).

IA

Taking the upper limit as n — 00,

d(z,Tz) < 2diamA™,

Now taking the limit in m in both sides we obtain z = Tz. O
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Corollary 3.2. {Theorem 4.2 in [4]) Let C be e nonempty closed bounded conver subsel of a Ba-
nach spaces X such that gg(X) < 1, and T : C — KC(C) be a nonexpansive and [-M-contraciive
nonezpansive mapping. Then T has a fired point.

Now we are ready to prove the main result of this paper.

Theorem 3.3, Let C be a nonempty closed bounded convex separable subset of a Benach spaces X
such that eg(X) < 1, and T : @ x C — KC(C) be e set-valued nonexpansive rendom operator. Then
T has a random fired point.

Proof For each w € §1, and for every n > 1, we set
Flw)={reC:2€T(w1)},
and
Fa(w) = {z € C : d(z,T(w, 7)) < %diamC.

It follows from [Theorem 3.1] that F(w} is nonempty. Clearly F(w) C Fp(w), and Fy,(w) is closed
and convex. Furthermore, by [8, Proposition 3], each F,, is measurable. Then, by Lemma 2.1, each

F, admits a measurable selector z,{w) and -
A (W), T{w, zn(w))) < %diamC —0asn— eo.
Define a function f; : ! x C —= R* by
Silw,2) = limnsup |zn(w) - ||, Vwe Q

By Lemma 3.1, it is easily seen that for each z € C, f1(-,z) : @ — R* is measurable and each w € 02,
filw,") : € — R* is continuous and convex (and hence weakly lower semicontinuous (w-ls.c.)).
Note that, condition £5(X) < 1 implies reflexivity (see [2]} and so C is a weakly compact. Hence,
by Lemma2.5 the marginal functions

n() = inf fi(w,2),
and
Ri(w)i={z€C: fi(w,z)=r{w)}

are measurable. By Geoble [7], for any w € £2 we may assume that the sequence {z,p{w)}} is regular
with respect C. Qbserve that R (w) = A(C, {za(w)}) and r1{w) = r{C, {£.(w)}), thus we can apply

Lemma 2.6 to obtain

(3.6) re{Ri(w)) < Ary(w),
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where A := 1 — Ax g(17) < 1, since £g(X) < 1. It is clear that Ry(w) is a weakly compact and
convex subset of C. By Lemma2.1 we can take x{(w) as a measurable selector of R;(w). For each

w € 2 and n > 1, we define the contraction T} {w,) : Ry(w) —» KC(C) defined by
1 1

ThHw,z) = ;xl(w) +(1 - ;)T(w,m), Yz € Ry(w).

Since R;(w) is convex, each T,, satisfies the same boundary condition as T does, that is, we have
T w,z) N Tg, (w)(z) # 0, Vz € Ri(w),

Hence by lemma 2.7, T, (w, -) has a fixed point z,{w) € R;{w),i.e. F{w)N Ri{w) # 0. Also it is easily
seen that

dist{zn(w), T(w, 22 (w))) < %diamc ~0asn— oo
Thus F}(w) = {z € Ri(w) : d(z,T{w,z)) € tdiamC} # @ for each n > 1, closed and by Lemma
2.4, measurable. Hence, by Lemma 2.1, we can choose x}, a measurable selector of F,{, and from

definition of it we have zl(w)} € Ri(w) and d(zl(w), T{w,zL(w))) — O0asn — oco. as n — co.
Consider the function fo : Q x C' — R defined by
fa{w,x) = limsup ||zh{w) — =, Vwe Q.
n
As above, f, is a measurable function and weakly lower semicontunuous function. Then the marginal
function
= inf
ro(w) J:Elﬂnl (w)fg(w,m)
and -
- Ra(w) :={z € Ri(w) : falw,z) = rz(w)}
are measurable. Since Rp{w) = A(R;(w), {z%(w)}), it follows that Rz(w) is a weakly compact and
convex. Also ra(w) = r{f(w), {zL(w)}). Again reasoning as above, for any w € §, we can assume

that the sequence {zl (w}} is regular with respect to R;(w). Again, applying Lemma 2.6, we obtain
3.7 ro(Ra(w)) € Arg(w).

Furthermore, {z1{w)} C Ry{w). Hence

(3.8) r2(w) < ro(Ri(w)),
and thus
(3.9) ro{Ra(w)) < A%r(w).

By induction, for each m > 1, we construct R, (w), rm(w) and {z™{w)}, where 27 (w) € R {(w)

such that d{z(w}), T(w, 7 (w))) — 0 as n — oo and

(3.10) re(Rm(w)) < Arm(w) < A7y {w).
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Since diamR,(w) € 2ro(Rm(w)) and A < 1, it follows that lim,,—. diamBRn(w) = 0. Since
{Rm{w)} is a descending sequence of weakly compact subset of C for each w € 1, we have
N R (w) = {z(w)} for some z{w)} € C. Furthermore, we see that

H{(Rim(w), {z(w)}) € diemBRm(w) = 0 as n — +o0.

Therefore, by Lemma 2.2, z{w) is measurable. Finally, we will show that z{(w) is a fixed point of T.

Indeed, for each m > 1, we have

d(z2(w), T(w, z(w) < flzw) =z (W) +d(z7} (), T{w, 27 (w)))
+ H(T(w,z7'(w)), T(w, 2(w}})
< 2z(w) - W)l + d(z3 (W), T{w, 27 (w)))
< 2diamBn(w) + d(z7(w), T{w, 27 (w))-

Taking the upper limit as n — oo,

d(z(w}, T(w, z(w)) < 2diamR,.(w).

Finally, taking limit in m in both sides we obtain z{w) € T'(w, z{w)). ]

Caorollary 3.4, Let C be a nonempty closed bounded convex separable subset of a Banach spaces
L

X such that eg(X) < 1, and T : 2 x C — C be o random nonexpansive operator. Then T has o

random fized point. .

Corollary 3.5. (Ramirez, Theorem 6 in [9]) Let C be a nonempty closed bounded convex separable
subset of a Banach spaces X such that e4(X) < 1, and T : @ x C — C be a random nonerpansive

operator. Then T has a random fixed point.

Proof By (2.2) we have that £,(X) < 1 implies gg(X) < 1.
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Abstract

-

Suppose C is a nonempty closed convex retract of a real uniformly con-
vex Banach space X with P as a nonexpansive retraction of X onto C. Let
T : C = X be an asymptotically quasi-nonexpansive nonself-mapping with se-
quence {kp}a>1 C [0,00),limk, = 0, F(T) = {z € C: Tz = =} # §. Suppose
{Zn}n>1 is generated iteratively by

21 €C, Tonn = Planza +ﬂnT(PT)n_lyﬂ +'Yuun)a
Un Plalzn + BLT(PTY 2y + Yivn),n 2 1

where {u,}, {vn} are bounded sequences in C and {an}, {Bn}, {1n}; {eL}{8:}
and {9} are sequences in {0,1] such that oy + B+ = 1 =al, + 8, + 7,
and 0 < @ < an, Bn,0h, B, < B < 1. It is prove that if 3>  k, < oo and T is
completely continuous and uniformly L-—Lipschitzian, {z,} strongly converges
to some fixed point z* € F(T).

keywords: Asymptotically quasi-nonexpansive nonself-maps; Completely con-
tinuous; nonexpansive retraction; uniformly convex

*Corresponding author.
Email addresses: Somyotp@nu.ac.th.(S. Plubtieng) and Rabianw@nu.ac.th.(R. Wangkeeree)
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1 Introduction

Let C be a subset of real normed linear space X, and let T be a self-mapping on
C. T is said to be nonezpansive provided |[|Tz ~ Ty|| < ||z — y|f for all z,y € C; T
is called asymptotically nonezpansive if there exists a sequence {k,} in [0, 00} with
lim, o0 kn = O such that foreach z,y € C'andn > 1, [Tz —T"y|| < (1+k,)||lz—y||-
T is said to be an asymptotically quasi-nonezpansive, if there exists a sequence {k,}
in [0, 00) with lim, 0, kp, = 0 such that

[T%2 — 2*|| < (1 + kn)llx — =*||, Yz € C, 2" € F(T), (1.1)

for all n > 1, (F(T') denotes the set of fixed points of T'ie. F(T)={z € C: Tz =
z}). T is said to be an uniformly L-Lipschitzien, if there exists a constant L > 0
such that for each x,y € C, |T"z —T™y|| < L|lz - y|l, ¥Yn > 1.

From the above definitions, it follows that if F(T) is nonempty then, nonex-
pansive mapping must be quasi-nonexpansive and an asymptotically nonexpansive
mapping must be asymptotically quasi-nonexpansive. But the converse does not
hold.

The concept of asymptf)tically nonexpansiveness was introduced by Goebel and
Kirk {?] in 1972. The itegative approximation problems for nonexpansive mapping
asymptotically nonexpansive mapping and asymptotically quasi-nonexpansive map-
ping were studied extensively by Browder [?, 7], Goebel and Kirk [?],Ghosh and
Debnath{?] and Liu[?, ?, 7).

In 1991[?] J. Schu introduced a modified Mann iteration process to approxi-
mate fixed point of asymptotically nonexpansive self-mappings defined on nonempty
closed convex and bounded subsets of Hilbert space H. More precisely, he proved
the following theorem:

Theorem JS ([?7, Theorem 1.5]). Let H be a Hilbert space, C closed convez
bounded nonempty subset of H. Let T : C — C be completely continuous asymptoti-
cally nonezpansive mapping with sequence {k,} C [0, 00) such that 320 | (k2+2k,) <
co. Let {an} be a sequence in [0,1] satisfying the conditione < ap <1—¢,Vn >1
and for some € > 0. Then the sequence {z,} generated from arbitrary z; € C, by

$n+l - (1 - an)mn + anTn:En,n 2 1’ (1.2)

converges strongly to some fized point of T.
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Recently, Chidume, Ofoedu and Zegeye[?] have introduced the class of asymp-
totically nonexpansive nonself-maps and proved demiclosed principle for such maps.
Moreover, they proved the strong and weak convergence theorems of a Mann itera-
tion process for asymptotically nonexpansive nonself-mappings.

It is our purpose in this paper first to introduce the class of asymptotically
quasi-nonexpansive nonself-mappings. Moreover, we prove the strong convergence
theorem of an Ishikawa iteration sequence with error members for such maps. Our
theorem improve and generalized important related results of Chidume, Ofoedu,
and Zegeye[?], and Liu[?].

2 Preliminaries

For the sake of convenience, we first recall some definitions and conclusions.

Definition 2.1 (see [?]). A Banach space X is said to be unifogmly convez if the
modulus of convexity of X

-

8x(e) = inf{l —

= +
BA oL o =yl =1l — vl = €} >0

for all 0 < € < 2(i.e., dx(¢€) is a function (0,2] — (0, 1)).

A subset C of X is called retract of X if there exists a continuous mapping
P : X — C such that Pz = z for all z € C. Every closed convex subset of a
uniformly convex Banach space is a retract. A mapping P : X — C is called
retraction if P2 = P. It follows that if a mapping P is a traction, then Py =y for
all y in the range of P.

Definition 2.2 (see [?]). Let X be a real normed linear space, C a nonempty
subset of X. Let P: X — C be the nonexpansive retraction of X onto C. A map
T : C = X is said to be asymptotically nonezpansive if there exists a sequence {ky}
in {0, 00) with lim,_, o kn = 0 such that the following inequality holds:

|T(PT)* 'z = T(PT)" 'yl < (1 + kn)llz — yll; Yo,y € Cyn 2 1. (2.1)

T is called uniformly L-Lipschitzian if there exists a constant L > 0 such that:

IT(PT)* 'z — T(PT)" 'yl < Ll|z - yl;Vz,y € C,n > 1. (2.2)
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Theorem 2.3 ([??, Theorem 3.7]). Let X be a real uniformly convex Benach space,
C closed convez nonempty subset of X. Let T : C — X be completely continuous and
asymptotically nonezpansive map with sequence {kn} C {0, 00) such that 3 o2 (k2 +
2kn) < o0 and F(T) # 0. Let {an} C (0,1) be such thate <1 — 0, <1 —¢,Vn 2> 1
and some € > 0. From arbitrary z, € C, define the sequence {zn} by

Zny1 = P((1 — ap)zn + anT(PT)n_lxn)sﬂ =21, (2.3)
where P is nonezpansive retraction of X onto C. Then {z,} converges strongly to
some fized point of T.

We shall make use of the following lemmas.

Lemma 2.4 ([??7, Lemma 2]). Let the nonnegative real number sequences {an}, {bs}
and {c,} satisfy that

an+1 S (L+br)ap +cp,Vn=1,2,. an<oo ch<oo

Then
(1) lim,_, o0 a, ezists;
(2) If liminf, ,o a, 50, then lim, o @y = 0.

Lemma 2.5 ([?], J. Schu’s Lemma ). Let X be a real uniformly convezr Banach
space, 0 < a <ty £ B < 1,Zy5,yn € X, limsup,_, o, [|Tn| < a,limsup,,_, lyall < a,
and limp_yo0 [[tnzn + (1 = to)ynll = a,a > 0. Then lim, 00 [|zn — ynll = 0.

3 Main results .

In this section, we give new definition and prove our main theorems.

Definition 3.1. Let C be a nonempty subset of a Banach space X. A mapping
T :C — X is said to be asymptotically quasi-nonezpansive nonself-map if there
exists a sequence {k,} in [0, 00) with limy 0 kn, = 0 such that:

IT(PT)* 'z — 2" < (A +kn)llz — 2"}l ¥z € C,2* € F(T),n > 1, (3.1)
where P is a nonexpansive retraction of X onto C.

Remark 3.2. If T is a self-map, then PT =T, so that (??) coincide with (?7).
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Let C be a nonempty closed convex subset of a real uniformly convex Banach
space X. The following iteration process is studied:

1 €C,ap41 = P (anxn + ﬁnT(PT)n_lyn + 'Ynun) )
yn = P(ahzn+ B T(PT)" 120 + Yjvn) (3.2)

where {u,}, {va} are bounded sequences in C and {e,}, {Bn}, {7}, {a,}{B.} and
{7} are sequences in [0,1] and P is a nonexpansive retraction of X onto C.

The following lemma is crucial in proving the main Theorem.

Lemma 3.3. Let X be a real uniformly convez Banach space, C a nonempty closed
convex subset of X. LetT : C — X be an asymptotically quasi-nonezpansive nonself-
mapping with sequence {ka} in [0,00) such that 3 oo, kn < 00 and F(T) # 0. Let
71 € C and {an}, {Bn}, {1}, {ch }. {BL} and {+,} be sequences in [0,1] such that
an+ Pt =1=0 + 8+ ThdpeiTn <00 and 3 oo, v, < co. Then the
sequence {zn} defined by (17) satisfies the following: .
1. For each z* € F(T) and each n > 1, we have ||zo41 — 2*|| € (1 + kn)?||zn —
z*|| + dn, where {dn} is ¢ nonnegative sequence with 3 oo | dy < 0.

2. For each m > 1, there ezists o constant K > 0 such that [|[Toym — 27|| <

K|z — z*|| + K 3272, dj; V2* € F(T),n > 1.

Proof. Let z* € F(T) and M = sup,5{llun — 3| V |lon — 2°|}}. Then, for each
n > 1, we have

|Zns1 — 2*[| = P (ann + BaT(PT)" " yn + Yatin) — Pz*||
< ”anxn + ﬁnT(PT)n_lyn + Yntin — :L""
< anllzn — 2*|| + Bl T(PT)* Lyn — 2*|| + |t — 2°
< agllzn — 2 + Ball + kn)llyn — z*|| + M (3.3)
and
lyn = 2|l = IIP (ahzn + BT (PT)* 20 + vivn) — P2*|

< ”a;;-":n + ﬁ;lT(PT)“_lscn + 'Y;;'Un —z*||

< dplizn — 2| + BulT(PT)* oy — 2*|| + vy llvm — 2°||

< alllan — 2l + Ba(l + ku)llza ~ o*]| + 7M. (3.4)
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Substituting (?7?) into (77?), it can be obtained that

< onllza — ¥ + Bnal (1 + kn)|lzn — =
+ BaBa(l + kn)?llTn — 2| + Bu(l + kn )V M + M,
< anllzn - J:'” + {1~ an)a:n(l + kn)2"$n —z"

”In+1 - 35‘"

+ (L= en)Bu(l +ka)llzn = 2| + dn

= anllgn = 2| + (1 — an)(1 + kn)?(afy + Bp)llzn — 2*| + dn
< agllgn — 2| + (1 = en)(1 + kn)?llzn — 2°[| + dn

< opllzn — 2% + (1 — an + 2kn + k2)||Tn — || + dn

(1 + 2kn + K2)lzn — 2*|| + d
(1 + kn)?(zq — 2°|| +

where dy, = (1 + kn)¥e M + My,. Since 3 oo, kn < 00 and Y po; Yn < 00, We have
Yoy dn < 00

We now to prove {2). Notice that when z > 0,1 + z < €*. For any z* € F(T),
it follows from (1) that

1A

"xn-{-m - 27*“ (1 + ku+m—1)2“$n+m-l -z ” + dn+m—1

IA

ezk"+m_l “mn-'rm—l - I*“ + dn-iv-m—l

(FaN

2k —1tkntm— * 2k -
elknten—1+kntm 2)”$n+m_2 — ||+ eHrtmoid o 4 dppmt

n+m-—1

+m—1 g +m—1 .
R A 1 B D DAY ”
j=n

1A

IA

o0
e Xi=tki ||z, — z*|| + 2 Xi ki Zdi
i=1

IA

o0
Klze -2l + K Y dj,Vn > 1,
i=1

where K = 2Li= ki > q, Thus,
[+
IZn+m — 2°I| < Kllza —2*[| + K> dj,¥n,m 2 1,z* € F(T).
i=1

This completes the proof of (2). a

We now to prove the following theorems.
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Theorem 3.4. Let X be a real uniformly convex Banach space, C a nonempty closed
convez subset of X. LetT : C — X be an asymptotically quasi-nonezpansive nonself-
mapping with sequence {k,} in [0,00} such that 3 22 ko < oo and F(T) # .
Let 71 € C,{on},{Br} {1} {cL},{Br} and {7} be sequences in [0,1] such that
an +Pnt+ T =1=0 + B+ Vo Dome1 Yo < 00 and Y o ¥y < 0. Then the
sequence {z,} defined by (?77) strongly converges to a fized point of T if and only
if lim inf,, o0 d(zn, F(T)) = 0, where d(z, F(T)) denote the distance of x to the set
F(T), t.e., d(z, F(T)) = infye p(r) d(z, y).

Proof. The necessity of the conditions is obvious. Thus we will only prove the
sufficiency. For any z* € F(T), from (?7?), it follows by Lemma 77 that

lzns1 — 2% < (A + kp)?||lzn = 2°|| + dn, YR 2> 1.

This implies that d(zni1, F(T)) < (1 + k)%d{zn, F(T)) + dn. From Lemma 77,
we have limy_, 00 d(zn, F(T)) = 0. Hereafter, we will prove that {z,} is a Cauchy
sequence. From Lemma ?7, there exists a constant K > 0 such that

o0
I€ntm — z°ll < Kllzn —2*| + K> _ dj,¥n,m > L. (3.5)
Jj=t

Let € > 0. Since lim, o0 d(zq, F{T)) = 0, there exists a natural number N; such
that for each n > N,

d(zn, F(T)) < 3_12 and de < — 6K

In particular, we have d(zn,,F(T)) < 3%. This implies that there exists a point
y' € F(T) such that

”:UN!. Yy ” <ar 3K
It follows, from (?7?), that when n,m > Ny,

o0
IZnsm=2nll < fZmin—v'll+12a—'| < Kllzn, —¢' |+ Kllzn, —¢'[|[4+2K D> d; <e.
=1

This implies that {z,} is a Cauchy sequence. Because the space is complete, the
sequence {z,} is convergent. Let limy_ o n = y. Moreover, we note that

d(y, F(T)) < d(zn, F(T)) + [|za —yll,¥n > 1.

Since limy_ye0 d(Zn, F(T)) = 0 and the set F(T') is closed, we have y € F(T), i.e. y
is a fixed point of T. This completes the proof. )
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Corollary 3.5. Suppose the conditions are as same as in Theorem ?7. Then the
sequence {zn} generated by (77) converges to a fized point of T if and only if there
exists a subsequence {x,,} of {zn} which converges to y.

Theorem 3.6. Let X be a real uniformly convez Banach space, C a nonempty closed
conver subset of X. Let T : C — X be an uniformly L-Lipschilzian completely
conlinuous end asymplotically quasi-nonezpansive nonself-mapping with sequence
{kn} in [0,00) such that 3 50 kn, < o0 and F(T) # 0. Let z; € C,{an},{Bn}
{}, {al}, {8y} end {v.} be sequences in [0,1] such that 0 < @ < @y, Bn, 0, By, <
B<lan+Bnt+m=1=ch+B,+7 > neiTn <00 and 3 ou, 7a < 00 Then the
sequence {zn} defined by (77} strongly converges to ¢ fixed point of T'.

Proof. Let z* € F(T). From Lemma ?7, we have

lzns — 27| < (1 + kn)zllzn — x| +dp,¥n > 1.

Since 377, kn < oo and 2;‘”:1 d, < 00, it follows by Lemma ?? that limp_,e0 ||Zn —
z*|| exists. Let lim;_ o0 ||Zn — z*|| = ¢ for some ¢ > 0. From the proof of Lemma
77, we have that

lvn = 271l < (1 + k)2 ~ 2% + ¥illen = 2°1l, ¥ 2 1.
Taking limsup,_,., in both sides, we obtain
limsup lly, —*z*|| < limsup||lzn — z*|| = lim ||z, —z"||=c.
n—oo n—+co R—00
Note that
limsup [|T(PT)" 'y, ~ z°|| < limsup flyn — z*|| < lim |z, — z*|| = ¢,
n—00 n—o0 n—oo
and by (?7), we have

c= lim [lzpy — 27| < lanzn + BaT(PT)" ' yn + Yntin — 27|

lim
n—oo

= lim flon((zn = 2%) + -2 (un — 3%)]

2,
+ Bal(T(PT)" 'y — 2*) + 5’%@“ — ")l
< Jim anllza = 2|l + lim Bl T(PT)" g, - 2°|
< Jim anllen — 2"+ Jim Aa(l+ ka)lign — 2°|
= lim (@allza = °|| + Ba(1 + kn)llym — ")
< lim (onllzn — 2|+ Ball + kn)?[lzn — 2°)

+'Y:n6n(1 + kp)llvn — z*|))
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< Jlim (an(1 + ka)?llzn — "l + (1 = an)(1 + k) — 27l)

< lim (14 kn)?lzn —o"f = .

Hence
c= nlibrrt;o lienl{zr ~— z*) + :‘;Lin(un — ")) 4 Bul(T(PTY* lyp — 2*) + 2 (up — )]
By J. Schu’s Lemma, we have

el TPTY -y 4 (TR e

Since limn—yco [|(Z2 — 35-)(un — 2*){ = 0. Then

. _ n—1 —
Tim 2w — T(PT)™ ] = 0.
It follows that
#ne1 — xn” < apllzn — T(PT)nulyn” —+ 0 asn o oo. (3~6)

On the other hand, we obtain that .

lon(@n — 2*) + Ba(T(PT)* 'y — &*) + alun — z°)|
anllzn = 2°|| + Ball + kn)llyn — 2*|| + mllun — 2|}
anllzn = T(PT)* 'yl + anliT(PT)" 'y — z°|
+ B (1 + ka)llyn — o[ + Yallun — 2|
otnllzn — T(PT)" 'ynll + an(l + kn)llym — ||
+Ba(l + ka)liyn — =°I| + Tallun — =7
< agllzn = T(PT)* 'yal + (1 = Br)(1 + kn)lyn — 2|
+Ba(1 + ka)llyn — z*[| + vnllun — 27|
< apllza — T(PTY" yall + (1 + kn)llyn — &° || + Yalivn — |-

”mn+l - $‘"

IA A IA

IA

Since limy 00 |0 — T(PT)* lyn|| = 0 = limy_y00 Yn, it follows that
¢= lm [xn — 2] < lim inf lyn — =

Hence

¢ < liminf [[yn — 2°[| < limsup lya — z°[| < ¢,
n-300 n—o0

and so

lim flyn —z*|| = c.
n—00
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This implies that

c= lim |y, —z*|} < li}m llohzn + ﬂ;T(PT]"_lIn + Yvn — =¥
n oo

n—oo
T

2a

_ . ' ok
= Jim llahl(on —2") + 55

(v = 2*)]

+ B (T(PT)" 'zn — z*) + ;'5, (v — )]

B * . -1 *
Jlim oy |z, — 2°|| + lim BL[IT(PT)" o0 — 27|

IA

< Tim allza — 2l + lim B4(1+ ka)llza ~ o
< lim (@pllzn = 2l + (1= ah)(1 + kn)llzn — °I)
< lim (1 +kp)|lzn — 2*| =<
n—o0
Then
¢= lim [[o4[(zn —z%) + i(u — )] + BLI(T(PT)*zp — z*) + i(un — ).
nooo ! T 20" " 28},

By J. Schu’s Lemma, we have

f !
3 — n—1 Tn _ Tn —_—®Y =
nlggo lzn — T(PT)" "z, + (———CM;1 ——2‘3:1)(1),, )| =0.

Since limnoo [|(72 — 7-)(wn — 2°)| = 0, it follows that
" lim |z, — T(PT)" z,)j = 0. (3.7)
n—o0
We now to show that lim,_, o0 |Zn — Tzn |l = 0. First, by (?7?) and (?7), we note that
lign = T(PTY**zall < llzn — En1ll + 10—y — T(PTY* 2zqi||
+ |1 T(PT)* 22y — T(PT)" a4

< lzn = zaotll + flon-1 = T(PT)"?znal| + Liiza-1 — zall

—+0as n— oo.

Thus from the above inequality, we have

[£n = Tzall < lign — T(PT)* 2|l + | T(PT)* ' 2p — Ty
= ||zn — T(PT)" 'z, + |T(PTY Y PT) Lz, — T(PT)! "1z,
< |lzn = T(PT)" 'zall + LI PT(PT)* 2z, — 2,
< o — T(PTY* 2]l + LI T(PT)" 2z, — za|| = 0 as n = oo.

It implies that
lim |[zn — Tzu|| = 0. (3.8}
n—o0
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We note from Lemma 77 that {z,} is bounded. Since T is completely continuous, it
follows that there exists a subsequence {T'zy,, } of {T'zn} such that Tz,, — ¢ € C as
k — oco. Moreover, by (?7), we have ||Tz,, — Zp,|| = 0 which implies that z,, — ¢
as k — oo. By (??) again, we have

“q - an = kl_i_;rgo “mnk - Txﬂk” = 0.

It show that ¢ € F(T). Furthermore, since lim,. 0 ||Tn — g|| exists. Therefore
lim, 00 ||z — ¢|| = 0. This completes the proof. O

Acknowledgement. The authors would like to thanks The Thailand Research
Fund for financial support.
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A NONUNIFORM BOUND FOR THE APPROXIMATION
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It is well known that Poisson binomial distribution can be approximated by Poisson
distribution. In this paper, we give a nonuniform bound of this approximation by
using Stein-Chen method.

2000 Mathematics Subject Classification: 60F05, 60G50.

1. Introduction and main result. ietX,,Xs,...,X, be independent, possibly
not identically distributed, Bernoulli random variables with P(X; = 1) =1 -
P(X;=0) = p; and let Sy = X1 + X2 + - - « + Xy;. The sum of this kind is often
called a Poisson binomial random variable. In the case where the “success”
probabilities are all identical, p; = p, § is the binomial random variable &(n, p).
Let A = X%, p; and let @, be the Poisson random variable with parameter A,
that is, P(®) = w) = e"*A%/w! for all nonnegative integers w. It has long been
known that if p;'s are small, then the distribution of $, can be approximated
by a distribution of &, (see, e.g., Chen [2]).

In this paper, we investigate the bound of this approximation. As an illus-
tration, we look at the case of p; = p; = -+« = pn = p. There are at least three
known uniform bounds: Kennedy and Quine [6} showed that, for 0 < A < 2~ /2,

[P(Sn s w)-P(Pr<w)] s2A[(1-p)" L - 7], (1.1
Barbour and Hall [1} showed that
|P(Sn = w)—P({Ps = w)| < min(p,Ap), (1.2
and Deheuvels and Pfeifer [5] proved that

| P(Shn < w)-P(Pr < w)|

(@1, _ (b1 (3, _ 1.3
5Mge_,‘{(fﬂp)a a'(a np) (np) b|(b np)}+R (1.3)

witha = {np+1/2+ np+1/4), b = (np +1/2 - ynp+1/4), and |R| =
(1/2)(2p)32{(1 - f2p), for 0 < p < 1/2, and [x] is understood to be the inte-
ger part of x.
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For the general case, Le Cam (7] investigated and showed that

Z |P(Sn—w)— _A‘} | Tsi (1.4)

It can be observed that the constant 16/A will be large when A is small. Stein
[10]) used the method of Chen [3] to improve the bound and showed that

n
|P(Sn < w)—P(Pa s w)| = (A1 A1) D p? (1.5)
in}
for w =0,1,2,...,nand A-1 A1l = min(A~!,1). In case when A tends to 0, one
can see that (1.5) becomes

n
[P(Sn s w)-P(Pr=w)| <> pi. (1.6}
i=1
[n this paper, we consider a nonuniform bound when A is small, that is,
Ae(C1]and w € {1,2,...,n—1}. Note that, when w ¢ {1,2,...,n1—1}, we can
compute the exact probabilities, that is,

P(Sx=0) = -p).  P(Sn=m)=[]ps
( ) E(I i) (Sn=m) jl:Ilm wn

P(Sa=w)=0, w=n+ln+2,..

In finding the uniform-bound, there are several techniques which can be used;
for example,
(i) the operatormethod initiated in Le Cam [7],
(i) the semigroup approach due to Deheuvels and Pfeifer {4},
(iii) the Chen-Stein technique, see Chen [3] and Stein [10],
{(iv) direct computations as in Kennedy and Quine {6],
{v) the coupling method, see Serfling [8] and Stein [10].
In the present paper, our argument closely follows the Chen-Stein technique
in Chen {3] and Stein [10]. The following theorem is our main result.

THEOREM 1.1. LetA (0,1} and wg € {1,2,...,n~1}. Then

1 n
|P(Sn = wo) —P(Ps = wo) | < a—Z (1.8)

2. Proof of the main result. Stein [9] gave a new technique to find a bound
in the normal approximation to a distribution of a sum of dependent random
variables. His technique was free from Fourier methods and relied instead on
the elementary differential equation

Filw) ~wf(w) = h(w)-N(h), (2.1)
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where h is a function that is used to test convergence and N{h) = E[h(Z)]
where Z is the standard normal. Chen (3] applied Stein's ideas in the Poisson
setting. Corresponding to the differential equation in the normal case above,
one has an analogous difference equation

Af{w+1)—wflw) = hiw) -Palh), (2.2)

where Pa(h) = E(h{P,)] and f and kh are real-valued functions defined on
Z*u{0}. Let wy € {1,2,...,n~1} and define h,hy,: Z* U {0} - R by

1, if w=uwo, 1, if w < we,
h{w) = , ° Ry (@) = _ ° (2.3)
0, ifw=+ woe, 0, if w > we.

Then we sce that the solution f of (2.2) can be expressed in the form

M?\wo_w@,\(l —hy-1), if wy<w,
wo!
fu(w) = _(‘”_w“gAwo-wg,A(hw_l)' Fwozws>0, (2.4)
o!
0, Lifw =0,
AE[fwo(Sn + 1)] _E[Sﬂfwu(sn)] =P(Sp = wo) ~ P{Pr = wo). (2.5)

Let S = S, - X; for i = 1,2,...,n. By using the facts that each X; takes on
values 0 and 1 and that X;'s are independent, we have

E(Snfuno (Su)] = 3 peELF(SE +1)]

i=1

 AEUf (Sn + )]+ 5" PiELFuo (S +1) = fug (S +1)]

i=1

= AE[ fuo{Sn+1)]+ i PiE{Xi[ fuo (S +1) — fup (S +2) 1}

i=1
AU iy St 1)+ S P2ELfuag (S9 1) = fug (S +2)],

i=1
{2.6)

which implies, by (2.5}, that

P(Sn = wo) = P(Px = wo) = S PP fuo (S +2) ~ fu (S 4 1)), 2

i=1
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From (2.4}, it follows that

Sop W +2) — frpo (w+1)

-l\"‘m_w_zw&o!r{(w‘l' I)QA(hw-rl)'—A@A(hw)]- if w < wo-2,
|
= )\“’0“"‘2(%'1[(0.1 + Pl ~ hea1) +APa(ho)], if w=wo-1,
A‘”O"“"zfﬁ—l[(w+I)Q'PA(l—-hwn)'-?\@‘z\(l—hw)]- if w > wo. ‘i
(2.8) )

f.'
CASE I {w <wg—2). Since

w+l

k
(W+1DPr(Rpe1) ~APr(he) =e™* A—(w+1 k), (2.9
k=0

we have

w! wtl
| fuog (@ +2) = fug (@ + 1) | = Alwo-2-w w! [ -A Z __(w+1 k)]

{w+1) _1“’“ Ak
= wo! |:e Z F

k=0 (2.10)

< (wo—1)!
wp!

1

: ]
- wo

where we have used the facts that A€ (0,1] and 0 < w+1—-k < w +1 in the
first inequality and the conditions w < < wo— 2 and e 2 TP (A% /K <1 in the
second inequality.

CASE 2 (w0 = wo—1). We have

A=l = Ak ‘“O‘lAk
b fusg (@ +2) = frog(w +1) | . woe™ Y +der Y T

k=wq+1 k! k=0 k! Y
A-l N had Ak _A‘”O'l Akwl -
<=—ed Y k-+e > (k+1)—— i
0{ Kmsoort ] k! koo (k+1) <
~1
= —E[P)]
=L
= o

(2.11})



Es

A NONUNIFORM BOUND FOR THE APPROXIMATION OF PQISSON ...
CASE 3 (w 2 wg). Since

].4\“”2 2)‘w+3 3:\“”4
(@2 (w3 T (wedn T

< Aw-wo+2[ woAwe (wo +1)Awor! ]

wol{wg+1} -+ (w+2) * (wo+ 1) {wog+2)---(w+3) ree

Aw—wq+2 hiad k'\k
S(w0+1)(ou.g-c»2)---(ou+?.) k;on
. e“A“’“"O*zE[@A]

T (wo+1)(we+2)---(w+2)
e"A“"_w0+3

= {wo+1){we+2)---(w+2)’

(@ +DPa(1-hwa) -2APa(1-he) = = 5 To(k—(w+1)) <0,

k=w+2
(2.12)
we have
2 w! A i Ak
| fasp (@ +2) = frop (@ +1)| =A%07@"2——p~d 5" —fk—(cw+1))
Wo: k=w+2 kt
(2.13)
Aw! 1 .
< < .
T {w+2) T {w+1)(w+2)
From Cases 1, 2, and 3, we conclude that
1
| fuso (@ +2) = fuplw +1) | < oo (2.14)
By (2.7} and (2.14), we have
{P(Sn = wo) = P(Pr = wo) |
(2.15)

< (zpf)sufwo(s}j' +2) = fuo (S +1}]] < ;ul— 2 pi.
i=1

i=1
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1. [Entroduction and Main Results
Let \.X,....\, be independent. possibly uot identically distributed, Bernovlli random
varniables with P(Xj =D =1- P(Xj =0 =p, andlet §, =X, +X°; +--+X,. The sum of this

kind is often called a Poisson binomial random variable. In the cass wiere the “success™ are all
identical,

P; = p. S, is the binomial random variable B(n,p).Let A = Z p; and P, be the Poisson

=t
e—.l @
random variable with parameter 2 _ie.., P(P, =w) =

— for all non-negative integer . It
@l

has long been known that if p, ’s are small then the distribution of S, has approximately the
distribution of P, (see for example Chen(1974)). Many authors (see for examples, Barbour and
Hall (1984), Kennedy and Cuine (1989), Decheuvels and Pleifer (1986,1988)) investigated the
case of p, =p,=---=p,. Butin this work, we give a non-uniform bound when the p;'s are

not equal. This case was first investigated by Le Cam (1960). For a uniform bound, Stein (1986)
used the Stein’s method to find a bound and show that
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n
Lo - 3
1P(S, <w)- P(P,<@)| € min(A", 1)) p;. QL1
- =1 !
In case of pointwise approximation. Neammanee (2003) gave a bound in the form of

1 .

| P(S, =w,)— P(P, = @y)| < Q—Zp} (1.2)
0 j=1

for wye{L,2,....n-1}and Ae(0,1]. In this paper, we will improve (1.2) for the case of all
positive 4 . Here is our main result.

Theorem 1. Let g €{1,2,...,n—~1}. Then

R
| P(Sy =@}~ P(Py =a) | < min(—, “YY i (1.3)
Q J=1

We note that in case of @y =0 and @, > #, one can compute the exact probability of S, .

These are P(s,,=0)=]’[a-p,), P(S,,:n)=['[pj and P(S,=w)=0 for @>n.
J=1 J=1

2. Proof of Main Resuit
We will prove our result by using Stein’s method for Poisson distribution. In 1972, Stein
gave a new technique to find a bound in the normal approximation by using differential

equation and Chen(1975) applied Stein's idea to the Poisson case. The Stein’s equation for
Poisson distribution with parameter A4 is

Miw+lr-af (@) = h(w)— Py (k) @.1)
when P (h)= ElA(P)] and f and k are real valued functions defined on Z* «{0}. For
any given function 4, a solution of (2.1) is )

w-{
_ (-1 o
U h(w) = ;’j—,—,—z th() ~ P, (k) 22)

where @=1,2,... and U, A(0)=0. We also need the following proposition to provs the main
result (1.3).

Propesition 2.1

EWS,) = Py(h)+ )" piEIV, h(S¥) (2.3)
7=l
where  Vih(w) = U h(@+2)~U h(w+1) and SYP’ =S, -X .
Proof Let X|,X, ...,X, beindependent random variables independent of the X ;’s. Assume
that for each j X ; has the same distribution as X ;. With J uniformly distributed on
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{1,2,...,n } independent of the X ;s and X}'s, let S, =5,-X, +X;. Then (5,,5,)is an
exchangeable pair, i.e., P(S,€4.5,€B)=P(S,eB,S,€A) forall events Aand B . For
asbitrary f:Z* Uf0}— R, let F:Q? — R be defined by
Fle,x )= f M =x+1)— f(x)M(x=x +1)
where [ is an indicator function, Then F is anti-ssmmetric in the sense of
F(x,x") =—F(x,x"). By p.10 in Stein (1986), we have E[F(S,,S.)|=0. So
0 = EEM[f(S(S, =S, +D~ f(S (S, =S, +1)]
= E{f(S,+DE* (S, =S, +D~ [(S)E* (S, =5, -D)]
_1 ELf(S, +I)iES'I(X; -X; = l)—f(S,,)Z": ESI(X;-X; =1)]

n = =

=S Ef(S, 40 p, (X, =0)= f(5,)). AP, N(X, =D]
5=l =l

1 n B L

=— B[S, +D) p;A=1(X; =)= [(5,)) (A= p;¥iX; =),
J=1 J=1

which implies

-

0 =EfS,+DY, p, 01X, =1)~f(S,)Y (A= p,N(X; =D
r

J=

=E[f (S, +1D_ p,J-ELf(S, +DY pI(X; =)
.=

¥=l

"EU(S,.)ZI_(XJ- =DI+ELSEN) p (X =)
=

j=1

= FLAf(S, + DI~ ELf(S, +1 Y, (X ;=)
J=l

—E{S, [ S+ ELA(S,)Y. p,/ (X, =1
=1
That is

B S D= S, S =ELY p (X, =IXS(S, +D=[(S,)]. (2.4)
j=l
Substituting f =03k in (2.4), we obtain
ETh(S,)~ Pu(M)] = ETAMU 1hX(S, +1) =S, U hXS )]
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=ELY_ p (X ; =)W, 1S, +1)-U, kS,

=

=E[ij](.l'j =IMU S + X +1)-U mSY +X )]

=

= E[Z le(;\'j = [)(Ulh(s'('ﬂ +2)-U,‘h(Sflf’ +1)]

=1

=Y pIELU HSY +2)-U, H(SE +1)).
=1

Hence EN(S,)=Py(h)+ Y piEIV,A(SI].
j
Now, we ready to prove our main result (1.3). Letw, e { 1,2....,n—1}. For any subset 4 of
Z2* oo} tet hy:2* U0} R defined by
1 if wed

h =
a(@) {o f oed
For convenience, we will write A, for Ay and let C,, ={0,1.2....,@ }. Incaseof & in (2.1),
using #,, we see that the solution Uzh, of (2.2) can be expressed in the form

[ ) I .

(_s!"l-).‘ mpl(l_hc‘,_l) l_f S<a -

-1
U,h(w) = —@%A‘_“Pl(kc ) sze>0
- i L

0 i w=0.
L
[ ~ e %[(w'ﬂ)f’z(hc,,‘)"'U’z(hc_)] if wss-2
Ll
5!
1
A2 f’;{(a}n)& (-he )-P(~hc )| if  w2s.

Vih(wy=4¢ A’ o+ P (-he, )+AP) the, N if w=s-1
From (2.3), when A =hﬂ,° , we see that

|P(S, = @) - P(Py = @) | < )" pI EW hg (SYDN. .5

J=t

So, to prove (1.3) it suffices to prove that |V1h,‘,° | £ min( !
@y

A
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Step 1. We will show that iV).I_’m‘, B Z;‘
N 0

To do this, we improve the result in Neammance (2003) which is done in the case of 1 & (0,1].
Casel w <Sw, -2
Note that

A2 @+ )Py (he, ) - AP, (e, )l

ar+l Gk

A
= o tra,-2 Z—'—(ca +1-5b)
= K

(2.6)
l(m,—Z)—w A(%—Z)—mﬂ l(ao-l)
_1 sasuw
S(w+De™{ o + m oot pr H
{ay—2)o {ar, -2} +1
A 3@y -2 -w+ ] —2
[(wo —2)-@]! @y ~2)-w +1]!
A(wo_z)
+t{w+ D)o+ 2)“‘(&)0 — 2)@}
_ (m,—2)-0 (a2, ~2}-ar+1 (a,—2) »
<@ l)!e"’l A + A% P }
ol (wg ~2)-w]t! [(@w,-2)-w+]1]! (g =2} _
<@ Q@7
ol

Hence, 'by (2.6)and 2.7}

<(wy ~ e {[(@g —2) - ]!

0>V, h%(a)} 2—~L. {2.8)
@y

Case?2 w=a,-1.
It follows from Neammanee (2003) that
0<V, h% (@) s—l—. 2.9)
@
Case 3 wzey,.
By the fact that
ao ;"k

@+DPy(—he, ) -AP(-he =€ > “—(w+1-k) <0

o “ k=w+12 Kt

and

nd k

@+2 @+3 a4
z l—(k—w—l) = 4 + 24 + 34 o
L K (@+2) (w+3) (w+4)

...AMQ-Q[ A% + 222!
B (@, + D@y +2)(@+2) (@ +2) @y +3)---(w +3)
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32.‘”"42 +._“]
(wy +3) (@, +4)---(w+3)
< A7 %2 ax 4 At
B (o W@y +2)(@+2) (@y +{wy +3)---(w+3)
Amofz

+ +-]
@y + 2wy +3)-- (0 +3)
;La)wc:‘, +2 A.a’“ A% +t 1% +2
+ + 4]
(&,o +2)(@° +3)"‘(w+2) (wo)! (mo +l)l e (mo +2)'

Sel‘lm—m.,-fl (a)O +1)1

(0+2)1
we have .
0> Vyh, (@)2~—20t] SR SO L (210)
(@+1)e+2) w+2 g

From cases 1-3, step 1 is proved.

Step 2. We will show that |V h, |27
Note from (2.8)(2.10) that

>0 if o=a,-1
Vlhmn (60) et 0

<0 if w#ag-l.

Hence

Vlhm‘:(m) 2 Vih, (@)

3 Vlh(‘ﬂ“,'(a))
Vi)V hgo (@)
—Vahgn (@),

Il

which implies
iVlh% (N £ Vihy (@)
Since
. 4
Vihgu(@) = ~— @+ 01= Py the, )+ 2Py (he, )

—1
=14 ;2'_-'-_—1[ APy (he ) —(@+ 1P, (he, )]

ar+l

I L |
=27 - L[ (@ +1-D)]
w+1 s !
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si™,
we have [Vih, |< A

From step I, step 2 and (2.5) we have (1.3).
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Matrix Transformations on the Bounded
Variation Vector-Valued Sequence Space

Chanan Sudsukh *
Pongpan Rattanathanawan, Praiboon Pantaragphong and
Suputchara Kongnual

Abstract

In this paper, the characterizations of infinite matrices which trans-
form bounded variation vector-valued sequence space into Maddox se-
quence spaces, where the sequence p = (p;) are bounded sequences of
positive real numbers such that pr < 1 for all k € N is presented.

Keywords: Bounded variation vector-valued; Maddox; sequence
space; infinite matrix transformation

-

1 Introduction

Let(X,])-|l) be a Banach space and p = (p,) are bounded sequences

of positive real numbers. We writez = (z) withz; in X forallk € N.
The X-valued sequence spaces bu(X, p), co(X, p), c(X, P}, Lo (X, p), leo (X, D)
and F,(X,p) are defined by
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B(X,p) = (5= (@) 3 lox — 2| < oo},
k=1

o(X,p) = {= = (z) : im [lzlf™ = 0},

o X,p) = {z = (zx) : kliﬂgo”mk - GHP" =0 forsome a€ X},

loo( X, p) = {z = (=) 1‘0"t;13||3!71rc||p'h < oo},

o
UX,p) = {z=(zi) : ) _ [|l=x||”* < o0},
k=1
lo(X,p) = {z = (z¢) : klif{.lo”‘gkzk”pk =0 for each (¢;) € cp},

F(X,p) = {z = (=) : Zk’"“mk”p" < 00}.
k=1

When X = K, the scalar field of X, the corresponding spaces are
written as bu(p), co(p), ¢(q): loo (P), {(P), Lo (p) and Fi(p)} respectively.
For bu(p) when p; = 1 for all k£ € N, it becomes bv which S.M Sri-
rajudeen {7] gave characterizations of infinite matrice to transform it
into Maddox sequence spaces in 1992. The spaces ¢o(p}, c(p) and l(p)
are known as the sequence spaces of Maddox. These spaces were in-
troduced and studied by Maddox (3,4] and Simons(5]. The space {(p)
was first define by Nakano sequence sequence space, and the space
{(X,p) is known as Nakano vector-valued sequence space. Grosse-
Erdmann [2] investigated the structure of the space co(p), ¢(p), leo(p)-
The problem of characterizing a matrix that maps a sequence space
of Maddox into another such space are studied by them in [3]. Suan-
tai [8,9,10] gave the matrix characterizations from I(X,p) into the
space ¢o(Y,p), c{X,p)lc(g) and Fy in thecase ppy < 1 forallk e N
and r > 0, where Y is a Banach space. Wu and Lui [11] gave
the matrix characterizations mapping from X-valued sequence spaces
co(X, p), loo (X, p) and I(X, p) into cp(q) and l(g). In [1] Chanan Sud-
sukh characterized an infinite matrix transformations from Maddox
vector-valued sequence space into Nakano sequence space and from
Nakano vector-valued sequence space into Maddox sequence space.

However, the matrix transformations from bounded variation vector-
valued sequence space into Maddox sequence space is also an open



problem, so the ohjective of this paper is to present the characteri-
zations of infinite matrices mapping bv{X,p) into Maddox sequence
spaces when p, < 1 for all £ € N. Furthermore, the results in {7} must
be covered and generalized by this paper .

2 Notations and Definitions.

Let (X, || - ||) be a Banach space with a scalar field K, the space of
all sequence in X is denoted by W(X) and ¢(X)} is denoted for the
space of all finite sequences in X. Let I be an X-valued sequence
space, for z € E and k € N, we write = stand for the &% term of
z. For k € N, denote e; by the sequence (0,0,0,...,0,1,0,...) with
1 in the k% position and e by the sequence (1,1,1,...). For z € X
and k € N, let e*(z) be the sequence (0,0,0,...,2,0,..) with z in the
k" position and let e(z)be the sequence (z,2,z,...). For a fix scalar
sequence u = (uy), the sequence space E, is defined as

E, = {:L‘ = (z) € W(X) : (ugzi) € E}

The X-valued sequence space F is called a K-space if for éach n €
N, the n** coordinate mapping p, : E ~+ X, defined by pa(z) = z,
is continuous on E.If the X-valued sequence spaceF is an fre'chet
and a K — space then E is called FK — space. Suppose that E
contains ¢{X), the space of all finite sequences in X, then E is said
to have property AB if the set {}_,€*(z) : n € N} is bounded
in E for every z = (z) € E. It is said to have AK — property if
{ > h-1€"(zk) = z} in E as n = oo for every £ = (z¢) € E. Let
A = (ff) with fI € X', the topologygical dual of X. Suppose that F
is a space of X-valued sequence space and F a space of scalar-valued
sequence, then A is said to map F into F, written by A: E — F, if
for each = = (zi) € E,An(z} = > puy fR{(zi)converges for eachn € N
and the sequence Az = (A.{z)) € F. Let (E, F) is denoted for the
set of all infinite matrices mapping F into FF. When u = {u) and
v = (v;) are scalar sequences, let

u(EsF)v = {A = (f.!?) : (unkai? € (E:F)}

If up #0 for all k € N we write u™! = (;15)
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3 Some Auxiliary Results.

In this part we discuss about about FK — space, AK — property and
B — dual of bu(X, p), These results will reduce our problems into some
simpler forms.

Proposition 1. Let (fi) be o sequence of continuous linear functional
on X and p = (pi) a bounded sequence of positive real numbers with
pe < 1. Then 3 77, fr(zk) converges for all z = (zi) € bu(X,p)

__l
if and only if there exists M € N such that sup; ||g;||M? < oo,
where g; is the bounded linear functional on X and g; is defined by
gi{z) = Z,ﬁj fe(x) forallz € X.

__l
Proof. Suppose that there exist M € N such that sup; ||g;||M % , then
i

there exist K > 0 such that ||g;]| < KM?i forall j € N, and for each
z = (zx) € bu(X,p), we know that (2;) = (z; — z;_1 € {(X,p) then
1

. -there exist jo € N such that M % ||z;|| < 1,¥j > jo.By p; < 1,¥j >
Jo, we have

1 L .
M ||z < (M7 23] = M|z

Considers,

oo J
3" fulm) = Jim > felz)
k=1 0°k=1
J
= lim {> gilz; = zj01) — gsa(zs)}
=1

oo
=> gilzi—zi01)  igseilzs) 20,0 > oo
i=1

o0
= gi(z) 12§ =T~ T
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o o0
_Zlgg z)| Z ligs 5]l
jo
= Z \gillllz3] + Z llgi 1l |
j=1 Jo+1
jo
S Z ll9sl1]zs1l + Z KM IEA
j=1 Jo+l
jo
= Z llgs[I1 =5t + & Z M ||z
i=1 Jo+1l
< oo

Tlns implies 3 72, g;(2;) converges, since we have 3722, Felzy) =

2 19i(z;), so we obta.m that 322, f(zx) converges for all
(5’5&) € bu(X).

Convesely, assume that 3 _p. , fx(zx) converges for all (zi) € bu(X,p),
then 72, fi(xx) converges for all (zi) € {(X,p) because I{X,p) C
bu(X,p). For each z = (z;} € I(X,p), choose scalar sequence ()
with {tx| = 1 such that fr(txzg) = |fe(ze)| for all & € N. Since
(tyzr) € [{X,p), by our assumtion, thus we have that ¥ o, fe(tczk)
converges, ang hence

S lfilz) <oo  for all z = (k) € U(X, p)- (1)
k=1

:.»1-

Now suppose that sup; |lgj||m® = oo for all m € N. For each
¢ € N, choose the sequence {m;) and (j;) of positive integers with
my < Mg < ma... and j; < jo2 < J3 < ... such that m; > 2' and

—1i

Hlgs.| mf_"_ > 1. Choose z;, € X with “m,‘” =1 such that

=1

|911(13‘)lm P = | 2 fL(-’EJ,”m Hiosy

k=j;



-1
with also [fi(@s)lm > 1. (2}
_._1
Let y = (y&), vk = i T ifk= j, for some ¢, and 0 otherwise, then
Ez?—-l ”yk”pk = ff—l m; < z!“l a7 =1 so that (yk) € i(X)p) and

-1

}:m ve)| = Zlfj.(m’ z;,)|

= Zm:j‘ |ft($3,)| =00 by (2),
i=1

and this contradiction with (1). Therefore, there exists M € N

:}_
such that sup; ||g;]|M ® < co.The proof is complete.
0

E

It is not difficult to show that bu(X,p) contains ¢(X) and has
property AK when p = (pr) is a bounded sequence of positive real
numbers and p; < 1 and also bv(X,p) is FK— space . 1h addition,
we also already know from {1} that the space {(¢g) is a FK— space

2
with property AK under the paranorm g(z) = Y g2, ||zk[|¥ where
M =max {1,supp}. Now let us quote a known result in [1]

Lemma 1. Let £ C WX) be an FK-space. with AK property of

scalar sequences. Then, for an infinite matriz A = (fl},A: E > F

if and only if

(1) for each n € N,Y 37, fR(zx) converges for all x = (zx) € E,

(2) for each k € N,(fR{2))32, € E for all z € X, and

(3) A: ¢(X) - F is continuous when ¢(X) is considered as a subspace
of E.

4 Main Results.

Now we start to give characterizations of matrix transformation from
bv( X, p) into I{q) by using lemma A.



Theorem 1. Let A = (fi) be an infinnite matriz of bounded linear
funtional on X. Let p = (pi) end ¢ = (gx) be bounded sequences of
positive real numbers with py < 1. Then A : bu(X,p) = Uq) if and
only if 1

(1) for each n € N, there is My, € N such that sup; “gJ “M,f’ < 00,
where g; is the bcunded linear functional on X define by g;‘(a:)
S, fi(@). Ve € X.

(2) for every k € N, 3 22 |fHz)|? < oo for allz € X and

(3) for each v € N there exists M, € N such that

I timaf] 4+ 3 llzx = ze-a ™ < g7 = P <:

kel n=1 kekK

for all £ = () € ¢(X) and for all subsets K of N.

Proof. Assume that A : bv(X,p) — I(g). Since bv(X,p) and l(g) are
FK-space, by Lemma 1 and proposition I, thus the condition (1)and
(2) are obtained. Now we have to show that (3) holds. Since bu(X, p)
and I(q) are FK-space and bu(X,p} has AK property, we have by
Lemma 1 that A : (X} — {(g) is continuous when ¢(X) considers as
a subspace of bu(X,p}. Let ¢ > 0 be given. Then there exists é > 0
such that

oo
212 Rl <e forall 7= (z) € $(X),
n=l kel
el = 1 timef] + 3 fn = wial <.
keK

That is, for each € > 0, there exist r € N with r > %, for each r
there exist M, € N with M, > } 5 such that

359



o0

DI Rz < = for all z = (zx) € $(X)
n=1 keK
. 1
when lz|| = ||limz|| + Y flag — zkog P < —-.
kEK M,

Thus the condition (3) holds.

Conversely, assume that the condition (1), (2) and (3) hold. The
condition (1), by proposition 1, implies that 72, ff(zx) converges
for all z = (z¢) € bu(X,p). We have (fF(x))S, € l(g), forallk € N
and for all z € Xbycondition(2). Thus A : ¢{X) — I(q). Now we shall
show that A : ¢(X) — l(g) is continuous when ¢(X) is considered as
a subspace of bu(X,p). Let € > 0 be any given, there exists r € N
such that r > 1. For each r € N, there exists M, € N such that
| lim z|| + Zkek |2k — zea1|P* < M = Yoo Izkek fR{ze)|™ <
1 <¢forall z = () € ¢(X) and for all subsets K*of N. By Lemma
1, A: bv(X,p) — l{q) is obtained.

O

Theorem 2. Let A = (fi'} be an infinite matriz of bounded linear
functional on X. Let p = (px) and ¢ = (qi) be bounded sequences of
positive real numbers with pr < 1. Then A: buv(X,p) — l(q) if

Supz llg7 1% < oo, (3)

I op=

when g5 is the bounded linear functional on X and g7 is defined by
g7 (= Zk_g fi(z) for allz € X and for alln € N.

Proof. Letsup; 327, |lg7l|*" < oo, that is for each n € N, sup; |lg} || <
oo. Let z = (z4) € bU(X p) so that we have ) ;o | lize —zp—1P* < o0,
say converges to L. For each n considers,
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fee) J
An(®) =D fRla) = lim > R (ze)
k=1 k=1

Jooo

J
= lim [Zg}'(xj —zj-1) — §)41(zJ)]
=1

oo
=> gizs—z;01)  gsilzs) = 0,7 = co.
=1

Let us write H = max{1,sup ¢, } then we observe that |A\|%* < max{l,|A|¥}
and not difficult to show that

Yooz — 2l < Ly 30532, llzj — zj-a P forp; <1,

considers

o0
|An()|?™ =) gi(zj — zj0)|®
) =

oo
- < llgpllzs = z5-al)®

j=1

D0
< (sup llgfll Y llzj — zi—1l)™ ;llgfll < supllgfll.vn € N
7 =1 1

00
< (supllgfllLy Y flaj — =il 5p; <1
7

j=1
= sup [|g7 1" L§": Lo = L1 L
7

[+ ] oC
Sothat ) [An(®)|" < 3 supllgf|™L"
n=l1 n=1 7

oG
<MY supllgi®

n=1 7



where M = max(1, Lf). From sup; 2.ney 19719 < oo so we have
o 1 1An(z)|™ < 0. Thus A : bu(X,p) —> l{q}). 0

The following from here we shall characterize infinite matrices

mapping from bu(X,p) into l(g), co(g) and e(g). For (zx) € bu(X,p)
and let z = z; — z;_;. Since we have

Zfl?(zk Zgj — Ty 1
k=1

so that we must have (z;) € {{X,p). When the infinite matrix

= (ff) and B = (g7})and since we already have theorems about
B : I(X,p) = lo(q). B : {X,p) = co(q): B : I(X,p) = c(q) from
[1). So we can characterize infinite matrix A : bv(X,p) = lo(g), A :
bu(X,p) = colq), A : bu(X,p) — c(q).

Theorem 3. Let A = (f) be an infinite matriz of pounded linear
functional on X. Let p = (pi) an ¢ = {(qi) be bounded sequence of
positive real numbers with pp < 1.Then A : bu(X,p} = l(q) if and
only if there exists M € N such that

2L
loll < M%7 orall mjen, @

when g7 is the bounded linear functional on X and g7 is defined by
g7(z) =3 fi{=) for allz € X and, for alln € N.

Proof. By [1,theorem 1.3], thus we have A : bu(X,p) — lo(q) if and
7t
only if ||lg}|| < M7 *"¥n,j € N. The proof is complete. ]

Theorem 4. Let A = (f7?) be an infinite matriz of bounded linear
functional on X. Let p = (pr) and q = (qi.) be bounded sequence of
positive real numbers with pr < 1. Then A : bu(X,p) — colg) if and
only if

(1) for all m.k ¢ N,m%ng;-‘ 250 as n— oo,

v

(2) for each m € N there exists My, € N such that mEJEHg;‘H?’i < My,

foralln,j € N,

when gJ 15 the bounded linear functional on X and g 1s defined by
Zk—; Yz) for all z € X and for alln € N.



Proof. Since

A:bv(X,p) = co(g) ifand only if B :I{X) — ¢fq).
& B :U(X) = N co(min),

& (nangl) : UX) = co, forall m e M.

By [1,theorem 1.5 and proposition2.3(i)], we have A : bv(X,p) — co(gq)
if and on ly if the conditions (1) and (2} hold.

O

Theorem 5. Let A = (fZ) be an infinite matriz of bounded linear
functional on X. Let p = (pr) and ¢ = (qr) be bounded sequence of
positive real numbers with pp < 1. Then A : bv(X,p) — c(q) if and
only if there is a sequence (g;) with g; € X' for all j € N such that

__1
(1) for some M € N,supllg;||M 7 < oo,
i

(2) for all m,jEN,mbli(g;-‘—gj)ﬂ;O s n—oo and

7
(3) for each m € N,supman |ig} —g;|” < oo forall n,j€N.
V)

Proof. By [1}theorem 3.1.8], we have A : bu(X,p) — ¢(q) if and only
if the conditions (1), (2) and {(3) hold. O
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ABSTRACT. Let X, X2,--- be a sequence of independent Ldent.u:ally dlstributed random

variables such that sin X, # 0 and F, the distribution function of — z . Neammanee

sz

({7]} showed that lim Fa(x) = F(z} where F is the Cauchy dlstnbutmn In this pa-
n—o0

per, we investigate the accuracy of the approximation of F(z) to Fn(z). Under general

conditions, we show that  sup lFr.(x) ~ F(z}| is bounded by v for 0 <d < %

-3 Cx d
where C is a constant.

1. Introduction and main result

Let X;,X2,--- be & sequence of independent continuous random variables.
Many authors (for examples, Shapiro ([9]-[11]), Termwuttipong ([12]}, and Neam-
manee ([4]-[7]}} investigated the limit distribution of reciprocals of the random
variables. Neammanee ([7]) showed that under general conditions the distribution
function F,, of the average of the reciprocals of sine of the random variables weakly
converges to the Cauchy distribution function F. In this paper the error involved
in using Fas an approximation to F, is investigated. More specifically we shall

find a bound on sup IF..(:c} — F{z)| which converges to zero as n — oo,
- Lz

It will be observed that the specific form of the random variables X, is not
specified. In this sense our result will resemble the Berry-Esseen estimates for the
case of convergence to the normal distribution function (Feller, [2]). To obtain
the order of the bound, we also assume that X;, Xa,--- are identically distributed
random variables with common probability density function f. Suppose that L =

x

Z f(jm) is positive. Neammanee ([7]) gave the conditions to show that

I=—-=x

Received October 29, 2003.
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. 1 1 1, n .1 X
= —An<z) = =(= +tan”! —
.}L’&P(nkz_lsinxk An <) 1r(2+ an ‘H'L)
where A, = f Mdu. If f is symmetric it follows that A, =0 and
lul>L U
(1.1) lim Fu(z) = F(z) forall z
=0

l "
where F,, is the distribution function of — E
n k=1

- and F is the Cauchy distri-
sin Xy,

bution function defined by

1 w 4 T
F'(:c) = %—(-i-}-tan 1;5)

The following theorem gives & bound of (1.1).

Theorem 1.1. Let X}, Xs,--- be ¢ sequence of independent identically distributed
cantinuous random variables with common symmetric probability density function f
and sin X, # 0 for every n. Assume thal

=
(a) Z J(Gm + u) is uniformly bounded on |u| <n

J=-
0 =
(b) Z F (G + u) is uniformly bounded in some neighborhood of 0.
Jj==20 M

Then for eny fized 0 < d < -!'5 there ezists a constant C such that

c
sup |Fu(z) — F(z)| < e

—oG L EC 0

We also give an example which satisfies Theorem 1.1 in section 3. Throughout
this paper, C stands for an absolute constant with possibly different values in dif-
ferent places.

2. Proof of main result

For each n andk, let X, = nsi; X and let H be the common distribution
k
function of X;. For ¢ > 1 we define X3, = X if —a € X, € a and otherwise
let X:Jc = 0.
That is

1 .
:k= m if XpeA
0 i Xe g A

3¢
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where

A = U [‘2j1r+sin'1(;1-lz).(2j+l)ﬂ-sin"(;;la)]u[@j—l)rr

JE—noc
1 1
+ sin~}(—~—), 27 sin™}(——}].
sin™} (=), 2jm + sin™}(— )|
Let F2., ¢%, une(a) and ¢2,(a) be the distribution function, characteristic
function, mean and variance of X5, respectively. Let S, = Xn1 + Xn2+ -+ + Xan
and S5 = X% + Xa, +- -+ Xpy-
To bound sup |[Fn(z)— F(z)[, we note that

(2.1) |Fa(z) - Fz)] € |Fa(z) - FR(z)] + |F(z) - F(z)]

where £77 is the distribution function of 3.

Hence, in order to prove Theorern 1.1 we need to bound both terms on the right
side of {2.1). The following lemma. will give a bound on the first term.

Lemma 2.1. For a > 1, there exists a positive constant C such that

sup [Fafe) - Fta)l < <.

—ooLr<o0

Proof. Boonyasombat and Shapiro ([1]} showed in their paper that

(2.2) |Fa(z) — FE(z)| < n{Fak(-a} + 1 — Fri(a)}
and Neammanee ([7]) showed that
(2.3) '
j;x[f{(z}w) — H{(2j - 1)), if 7 =0or |n—II| >1
j::;xw((zj ~ D —sin™ () - H((2] - )]
+ i [H(2j=) = H(2jm +sin*'(;};))|. if —1< nl—z <0

Far(z) = < j=—oo

Y |H(2jm) - H{(25 - V)] +1
Jj=—3
> [H(zjn+sin-l(n_lz))
J=—oe

| -H((25 - 1) - sin! ()} 0 < é <1
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Hence, by (2.2) and (2.3) we have
[Fa{z) — FR(2)]

n Z [H(ij-%sin‘l(n_la)) — H(2jn +Sin4(_fa))

j==o0

+ H{(2§ — 1) —sin™}(

IA

=) = (2% = D - sin™ ()

2Zimw+sin~ L) (2j=1)r—sin~ (-4
n Y1 f(e)dz + ]( 1(z) da)

2jm+sin=i(—L) 2j—mw—sin—1(L)

il

j=—o0
o0 L . P | L . =1
we f(24m +sin™" u) /.,.. J({25 = 1)w —sin™ " u)
= e du+ d
ﬂj;mlf—ﬁ vi—we s V1-? "]
n X [
£ f fm +sin™ u) du
1—-(:—‘:)2 j=z—:co _?.]':
< nC
- (na)? —1
< nC
B (na)?
2 A7
(na)? - 2
C -
B

wherc we have used the fact that Z F(jm +sin! ) is uniform bounded in third
j=-00

inequality. O

To give a bound of the second term on the right of (2.1} we need the following
construction.

According to Lukacs ([3]) p.93, we know that Levy-Khinchine formula of the
characteristic function ¢ of F' be defined by

[T e, w143
oge(t) = [ e -1- 1 de

22
-1 wL
where G(u) = Ltan™  u + < Let G : R — [0, 1] defined by
0 if ug-a

G u) = {Gu)-G(—a) i ~a<u<ea
G{a)—G(~a) f u>a,
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s o - / LiGw),
Juj>e ¥

~2
Il

pla) = ‘)r“+/_mJ l—lLdG“(u)
and K*(u) = /u (14 z%)dG°(z).

We also let F® be an infinitely divisible distribution function whose logarithm of its
characteristic function given by '

tog (1) = infa) + [ "t m)dK (2)

where ]
(e" - 1—itz)= if z#0
_ x
f(t,I) = t2 g
- if =0
2
and

Ki(u) = n/ T dF% (T + pran(a)).
—

For 0 < § < 2a, define

m = m(a,8) = [%‘“] +1

where [z] is the greatest integer that is less than or equal to z.
et —a = 2y < 3 < -+ € Zn = a be such that 1nax (z; —zic1) <

Si1sm

§. Boonyasombat and Shapiro ([1]) show that

(2.4) sup |Fi(z) — F(z)| € C¢*(n,m(a,é),7)
—od¥r<oo
when 0 < 02, {a) < 1 for large n and k=1,2,--- ,n and

g*(n, m{a,é),r)

$ m %
= ai(a)lxqukag“aik(a)] + [Zlff:(x.-)—m(xm] + [8e3 (@) + 2]}
- i=0

+ {21K3(00) — K§(a) + K*(00) — K*(a) + K&(~a) + K*(~a)]

(o) =@ + (7 [ prec

for any r € (0,1).
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Lemma 2.2. For large n and r € (0, 1) we have & constant C such that

sup |Fi(z) - F(z}} £ Ch%(n,m(a,d),r)

00 <L T < oD

where

1
K@) = |2 ] [DK:(x,-)—K“(x.n] + [galt
=1

+ {% [Ke(o0) — K2(a) + K2(—a)] } + [r(l

Proof. First, we will show that (2.4) holds. To do this, it suffices to prove that
0< J,zlk(a) < 1 for large n and k = 1,2,--- ,n. Since f is symmetric, we have

o (2i4+1)w—rin~ (L) f( ) o2 maninT! (- Ao} f(x)
pnela) = / T + / ——dz
n ( ) Pl 2j1r+lin_'(:]:) nsmx J=Z_°o {zj_,),,_sin_:(_“_lq_)nsma:

o f(2j+1)z—ui::“(-1-) f(J:) ~Zjmtsin - 1) f(m)
- 2+ /
je—ec 2jm+ain=1 (k) nsm::: (=2 -Vw—sin~ (- L) 11511’117
_ oo f(21+1)wvslu "(-1-) f(.’l.') ]-(21+1)w—51n L '“')'f(—.'l':)
jm—oo ¥ 2fmsinTI(L) nsm:z 2w +sin-1(k) nsm:r
= 0.

From the above fact, the fact that

ax 2j1r+uin_l(-7.1;) f(I)
f T gy
{

je—scd (T —Dr—sin=t (- L) (nsinz)?

x* 2jn—F§
- >/ @,
] {2i—1)mw—sin—}{~ L) (ﬂ sin ;[,‘)

r=—2

2jﬂ+sin'l(—;l;)
N @,
Bin—Z (nsinz)?

I3

_ “1 —f((25 - )m —sin™ ) - F(257 +sin~ ! u)
- 'n2 Z [ V1~ u? +-/:1 u2y/1 - u?

J"—x

)+ f(247 + sin~! u)] du

1 2j — L) —
_ nz[ Z:lf((] ) Sm\h_—”u"z

j=—n0

3N
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< < /_“ 1 du
n? 4 u?V1-u?
c 1
= = _(—)2
- &g
Ca
< =
n
i (27 +1)r—sin" (L) c
and [ L)z < 28 . we have
oo Uxtin (k) (nsinz) n
ork(a)
j=-ee 2 H3e) (n51n1:)2 j=—00 {2j-1)r—sin-1{- L) (nsmz)2
Ca
< a
n

ie,0<o2 (a) <1forlargenand k=1,2,--- ,n. So (2.4) holds.

In our case,we see that

7" =0, u{e) =0, -pafe) = pnia) + -+ + prnfa) = 0,

0 ifu<-—a
K*(u) = ¢ L{awu) if —a<u<a
2La ifuza,

o{a) = K%(o0) = 2La and
f luf'dG(u) = 2L f i du < 2L / mu'-ﬂ du = — 2
lul>a w= a 142 - a B (l_r)al--r'

Hence g%(n,m{e,8},7v) < h%(n,m(a,é),r). The lemma follows from this fact and
(2.4). O

To bound h%(n, m{a, d), r) we need the formula of F2, in the following lemma.
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Lemma 2.3.
0, if z<—a

3 1@ = 1™ () - H(2 2

—sin"l(—ﬂ—!—a))]+ Z [H(2j7r+sin“'(—;tl—a))

j=-x

1
. so—1p 1 . _
H(2jm + sin (na:))]’ if a<z<0

F,‘,‘k(z)=4 Z{H(2j1r+sin‘1(£a))—H((2j—l)w—sin'l(;%))] i z=0

j==c0

S (H@in+ sm-l(n—la)) — H((2j - )

j=oo
—sin'l(—i))] +1- i (H (247 + sin‘l(—l—))
na _ nI
e
—-H{(2j - )7 - sin'l(E))], sif 0<z<a
1 T if z>a

Proof. Case 1. x € —a.

Il
e

1 .
Flu(z) = P(Xz <2) = P{(— <sinXi)NA] = P(¢)
Case2. —a<z <0,

Falr) = P(XL, <-e)+ P{-a< X}y £3)
0+ P ((-1- < sinXe < ——l—)r\A)
nx na

P( U [(25 — )7 —sin™}(

j=-x

1 . o1y 1
—;;E) < Xp < (2= 1)7 —sin (E)
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or (2jm + sin'l(é) < X < 2m + Sin-l(—ﬁ%)l)
- ,.:ZJH((Z" — ) —sin ™)) = B((27 - )i (- D))
+ J'=Zm|ﬂ(2,‘iﬂ' + sin'l(—%)) — H(Zjn + sin_l(é))].
Case3. z =0
Fals) = P(X3, <0)
= P(XJ € -a)+ P(-a < X3, < 0) + P(X7, = 0)
P((sinXk < _;11:) nA)

+ P[ U (25 = I)m "Sin_l(zla)) < X < (2§ — U —sin_l(—-%))]

j=—o0

+ P[ |J @i+ Si“_l(—i)) < Xp < 2jm + sin-l(;:—a))]

J=-oo
= P[ C' (25 — )= —sin‘l(_.l_)) < Xp < 2m +siu_1(—l))]
j=—vo na na
. =y g - Y
* P[ij((b D —sin™ (—)) < X < (27 — 1) —sin™'( na))]
, g 1 ) L
+ P[jyx(%w +sin ™ na.)) < Xi < 2jm + sin (na))|]
= 3 B (o) - B2 - D - s
j==oo na na
For the other cases we can prove in the same argument as in case 3. G

Lemma 2.4.

1. KZ(o0) — K&{e) + K2(—a) =0 and
c .
2. |Kg(x) — K*z;)| € -n—hlna foranyi=1,2,-.- ,m.

Proof. By Lemma 2.3 and the fact that p,c(a) = 0, we have
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{0, if v<—-a

/ f((23 l)vr—sin"l(ﬂ—-lx))
j=—oc” 78 \/1 - (‘nl_x)z

N f2im+sin™! (L))
K2{v) = ¢ - (%)

| dz, f —a<wv<a

Z"’: *f - U - sin”' (L))
j=—v T \fl - (;;1;)2
N f(29m +sin~' (L))
L V1-Ge)?
Hence 1. follows immediately from the formula of K. To prove 2., we divide into
3 cases as follows.

Case 1. TS -

| dz if v>a.

nsine’
By Mean-Value Theorem, for all u € |sin™}(
(277 + u,257) such that

|f (257 +u) = f(2jm)| = | (nl) ()]

and there exists &7 € ({27 — 1)7, {27 — 1) —u) such that
1£((27 — D —w) = £((25 - Dm)l = [F(€D)(w)l.
By conditions (a) and (b), -

L-)sin7 (=L )] there exists 7 €

n

o /sin-‘(—f:) i |f (257 + u) (zjﬂ.}ldu
" rin=1(=l) smu)2

==
sin~H-4) =

f ne S —ulf’ (ﬂi)l
sin-i(y 5k n(smu)"‘
C sin"(-;‘;)

-—U

el d
< n Jain-1(d) (sinu)? u
_ C " 1 =1 1
_ :[-nasm (—E)cos(sm (—E 1n|—_l+ln|nz.]
< Elnma,
n
0 - /sin"(—;]:) i‘: £((21 — 1)m —w) = f((2 ~ V)m)| ,
"o sin"(';‘sT) j=—-x n(SHIUJz

C
< —lInna,
n
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—l.

sin Jcos 0 — cosul
Co = A e T
/m_‘w 11_2_;1'(( j = D e
ﬂu_’( ;E) bl | Smﬁl( u)
_ (2 - singii—u) for s € {u,0
/sm'l(—l—) ’;-Z_mftj n{sin u}? or some £ € (w.0)
sin” H{—4) —
< Cf *u'"*du
a1 () n(sinu)?
< —lona
n
and
sin~l(-L) o jeos0 — cos ul
D, = ]ﬁn_l(*) |J_\;”f(zm|——-—n(sm)z du
< —Inna
Hence
(2.5) IK“(:C.-) - K*(z)]
— | Z = f (2J - 1)71') —Sln_](nz )+ f(2]1'r+ﬁlll (a:_z))
Pt V1-(5)?
- (J((25 — V)m) + f(24%)) d$|
. , - /sin“(:i—‘.){f((zj—l)w—u)+f(2:iﬂ+“)
=0 sin:‘(—;“‘;) cosu
cosu
+{f(&F - )m) + f(zjﬂ))}n(smu)z ’
S An+Bn +Cn+D"
C
< =—Inna.
n
Case2. — <ETS ——-
nsine
We observe from (2 5) that
“(“nsme) K (—nsms)l - lnna

and, by the fact that |z;| < ——,
nsing
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' Z f_ (27 — D) —sin™ (L)) + f(2im +sin™ (L))

P S S 1- (L)

— Ldz|

< /u-mz Z 1£({25 - L}m — sm_l( )) + f(2jw +sin_1(n]—1))| da 9
_nuhn:J——oo 1/1—(1}2 n
< ¢
n
So
|Ka(zi) — K“(w-)l
< |Ke(-
- ( nsms nsms)‘
+ ‘ Z / F((25 - Y)m) —sin 1(%)) + f(25m + Si“—l(;;l;)) Ldr
i SRS 1- (1)
< glnna..
n
Case 3. Ti> —.
nsineg
Using the same arguments of case 1 and case 2, we can show that
PKS(x:) — K (z:)| € %lnna.
(]

Proof of Theorem 1.1.
From Lemma 2.2 and Lemma 2.4 we see that

[

h*(n, m(a,8).1) < c[(fnf.)i + {(-n"l";—l——l)lnm}% + (Sa)t + (;(,.)(__)}—;E]

=]

which immplics

(2.6) sup |Fa(z) — F(z)|

=0T OO

< ¢ +(——)*+{(

l)lnna}i + (da) +c(,-)(é)1‘1—.'?]

where C(r) are constants depending on r.
We set a = n®* and § = n~*%2 where k; and k; are positive numbers. Then we see
that the orders in {2.6) are

1 1 (1+k)lnn 1 1

- C(r)
v Ti-3kg ! Ak kg ' Eg_kp ! K (1-r) "
nkt a0 agh N
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We determine k) and kq such that the function
1=-2k) 1—k;j— ks ka— Kk
5 3 '
By maximin criterion, we consider the six lines corresponding to six combinations

ol equalitics among the linear functions involved in the definition of the Iunction
in (2.7) and by computing the value of (2.7) at the intersection of these lines, we

(2.7) min(ky, ) is maximized.

1
obtain that k; = 3 and kg = -g— gives the maximum value of — for the function in

9 S 1
implies ky —— = - —a.W
7% implies that k; T5r =0 a. We

1
have that for any constant 0 < d < g there exists a constant € such that

(2.7). For0<a < é— the choice of r =

sup |Fa(z) - F(z)l < ;?;—.

—oo <X

3. Example

For each n, let X,, be a Cauchy random variable with parameter 1 such that
sin X, # 0. I {X,) is independent, by Theoremn 1.1 we know that a sequence of
"

distribution functions F,, of l E

converges to the Cauchy distribution
n
K

sin

=1

1l w o I
F(I:) = ;(E-FE&H IH)

[s ]
1
where L = * Z T and for 0 < d < } there exists a constant C such that
oo

C
- sup |Fu(z) - F(z)| < .
zeR n
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Abstract: This paper establishes a combinatorial central limit theorem for an
array of independent random variables (X¢), 1 € 4,7 € n, {n — oo} with finite
third moments. Let m = (x(1),%(2). ..., x{r)) be a permutation of {1,2,...,n} ,

and define W,, = Z Xingiy. Then the authors prove the following uniform central

L]
18
limit property: sup|Fn{z) — ®(x)| < 1983 + gt where F, is the distribution of
R
W, — EW,
W VarW,

X,; is a suitable normalization of Xi;. The proof uses the Stein's method and the

, & is the strandrad normal distribution, and 8 = éz E{X:,)® with
7

result generalizes and improves a number of known results.

~
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1 Introduction and main results.

Let (Xi;) be an n x n matrix of independent random wvariables with fi-
nite third moment and = = (7 (1), 7(2),...,w(n)) be a random permutation of
{1,2,...,n} such that = and X.-,-‘s are independent. This paper is concerned
with the normal approximation to the distribution function of W, = Z Kixtiy-
The special cases of W,, are the statistics nn = Z:a.-b,,(,-) and £n = .z:q,,(.-,
where a;, b;; and ¢; (4,7 = 1,2,...,n) are real :‘lumbers. Both statis‘tics fin
and £, arise in permutation tests in nonparametric inference.(seefor examples
Fraser(1957),Puri and Sen(1971), Does(1982)). The literature concerning the
limit behavior of W, dates back to 1944 when Wald and Wolfowitz(1944) first
established the asymptotic normality of 7. with some strong sufficient condi-
tions. After that, a theorem has been proved under various conditiong by Hoeffd-
ing(1951), Matoo{1957), Hajek(1961), Robinson(1972), Kolchim and Chistyakov
{1973),Ho and Chen(1978), Does{1982),Bolthausen{1984), Schneller(1988} and
Loh(1996}. Almost all of the literatures gave a bound when X;; are constants and
the best bound of order % is given by Bolthausen(1934) and Chen and Neam-
manee (2003}). In case of Xi;'s are any random variables, the estimations have
been obtained by Von Bahr(1976) and Ho and Chen (1978) but they yield the

7

rate L only under some boundedness condition like sup {X;;| = O(n~ 1 ). In this
g

3¢



paper we give the rate % by using Stein's method and the idea from Chen and
Neammanee(2003).

Stein(1972) or-iginally introduced his method for obtainning rate of conver-
gence on a central limit theorem for sums of nearly independent random variables.
There are at least 3 approaches to use Stein’s method when the limit distribution
is normal, i.e. namely a concentration inequality approach (see for examples, Ho
and Chen(1978) and Chen and Shao(2001)}, an inductive approach (see for exam-
ple, Bolthausen(1984)} and a coupling approach {see for examples, Stein{1986)).
In this work we use the concentration inequality approach.

For each 1,7 € {1,2,...,n}, let 1i; and or?, be the mean and variance of X;,

respectively and

Hi. = %Z#a’j: Hy = %Z#i;‘- H. = #Z#ij
7 Al 2,3

2 1 ) 2 2 1 2
= (—n_—l)izj:(ﬂ-‘j—m.—#.: +p.)" and o ;Zjau'-

It

From Ho and Ck‘:en(1978) we know that VarW, = d% + o2,
Define

- W= ﬁ Z:(Xi:(i) —u).
So EW =0,VarW =1 and

Wa — EW, .
W= ———xn-= Kingi
VVarW, z w
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where X;‘j

1 -
ﬁ()‘ij - i — g )

Qur imain result is the following theorem.

Theorem 18
sup |Fu(z) - 2(x)| < 1988 + —
R
n - Ewn .
where F, is the distribution function of KV__' & is the standard normal
ar¥a

. . 1 -3
distribution function and 8 = - ZJ E{Xgl®.

2 Concentration inequality.
In this section, we will prove the concentration inequality (proposition 2.7)

which is the important tool for proving the main result in section 3. In order

to prove the concentration inequality, we need the following construction from Ho

and Chen(1978).
In
Let J, K, L, M be random variables which uniformly distribution on {1,2,...,n}
and 7 = (7 (1), ®(2), ..., 7{n)), p = (p{1), p(2), ..., p{n)) and 7 = (v(1}, 7(2), ..., T(n)}

are random permutations of {1,2,...,n}. Assume that
{J,K,L,M,n,p, 7} is independent of X;;'s, (2.1)
(J,K) and (L, M) are uniformly distributed on {(f,k}|7,k = 1,2,..,n and j # k},
(2.2)

{J,K),(L, M) and 7 are mutually independent, (2.3)

Y
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(J. K} and p are mutually independent, and (2.4)
() if e J K 7Y L),T7H(M),
L if a=J
pla) =< pm if a=K, (2:5)
r(J) i a=1YL),
T(K) if  a=r1"M),

where p(p~!(a)) = p™ (p()) = o
We note that there exists a systemn which satisfies (2.1)-(2.5) (see for example,

Ho(1975)}. Let

S(p) = Z)A(.-pﬁ) and S'(p) = S(p) — XJ,(J) — XKp(K) + XJP(K) =+ XK,,(J)-

Proposition 2.1 (5{p),5(p)) is an ezchangeable pair, in the sense of
P(S(p) € B,5(p) € B) = P(S(p) € B,$(p) € B)

- -
for every Borel sets B and B.
Proof.

Let a,b € R and S, be the set of all permutations of {1,2,...,n}. Then the



propaosition follows from the following fact.
P(S(p) < a,5(p) < b)

:E Z P(Zx’“d ﬁa,)-(u,+-~+X,1*+~--+XHJ+—--+)‘(“,"gb,
Jk (I.d2.dn)€ES, i
i#k

(J! K) = (J: k)xﬂ = ([hl?'“'vlﬂ))

=Y Y PO Ra<aXu+ o+ X+ Xy 4o+ X, <0,

:,J;i 1 d2, . 0 )ESR i
(LEK)=(Gkhe= (N, nbi—n e, e, o lees b lkgn s dn)

=E E P(X111+-~-+thk+---+)2krj+"'+XntnSa.E f{.—;,gb,
7 Wtz dn)ESn i
F;

(‘]1 K) = (31 k)HD = (!1,12,...,[‘1))

= P(S(p) < 0,5(p} < b). s

Lemma 2.2 Let B be a o-olgebra genernted by p and X{;s. Then

-

1. BE%S8(p)=(1- n—?_—i)S(p) + Jn—g—dl) ‘; Xij  and

2

2. E[8(p) - 5(p)F = n i plt - n(d:+ o)

1

where EP(X) is the conditional expectation of X with respect to B.

Proof.



1. EBS(p) = EB[S(p) - XJ,;(J) - X.l\’p(h’) + X.Ip{f\’) + XKp(J)]
= 5(p) - E®[Xyp0y + Xicoticy = Xuptry — Xicotn)

1 ; 1 &
=S(p) - - > B X - n > E® Koy
[ &

n(n -1 Z E® XJJ’(") + 1) z E® X*P(J)
Ja“c J#k
=5(p) — = ZE XJP(J) t = ( -1) Z E X.w(k)
#h

= 8(p) - ZXJ.D(J) + 1) [z XJP('“) ZXM(J)]
=n-2- IS(6) + RS

n ( -1 1) ’
= (- S+ Ty Zx.,

2. For each i,7 = 1,2, ...,n, let fi;; be the mean of X,-; . We note that

Zﬁ..‘j = 0 for every i and }:ﬁ.-,- = 0 for every j,
j i

2

-1 2 d
and Z = Frot %(#ij = =g+ p)” = - Dgog)

F\-om t.hese fagts, we have

o d2
%.:Exl?jid"’-k 2(2"'1)"'2“*1“"’ 7

& +o?’

(2.6)
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S = D
fym it — Zﬂ;!fm)

ik I,
Fiktsm Sy
P f
= - E fjeiie + E i
3kl ol
id

;M:Zﬁkﬁ-(ﬂ— 1)—dQ——
s d* +o?

d2

=(n-1)5—
d? + o2’

(27)

and 3 X i EX ]X’;I (ﬂ 1)
I E 42 72 ( )

j Im
I#m !
izk

Hence
E[8(p) - S(o))?

sk kp plk)

iRk
»

= _L_ 2 EX + EX +EX X + EX X
nln—1 (BX50i .
) o Fols) J?p(k) X; { X
Jplk) <L kp(s) X X
Fol(i) kn(‘:)]

-

1#k

_ 4
n(n - 1) (B X;o00 X, :
¥ i o Y je() +EX; X
ii stk) Xkp(x)]
- 2%
n{n — 1)[(n ~1)> EXL;+) E X,
E, : n+ Y EX] S EX
- L Jplk) — EXJ?P(HI
3

E': Je(k) Tt ﬂ(
) n ) § : Jels)
- kp(k)

i*k
iFk



