- n(_n_ Z EXJJ"{UXJP(J) n(n z EXJp(k)ka(k)
ik
J’#k J#‘c

e 2
:_n(nz_l)zgxg (“_I)ZEX

+ m Z Z EXJmX.H + = 2( — 1)2 Z Z EXJ'IXJE"‘

Jk tm Ik tm
FektEm J¥kt#m
n"’(n—l) ZZ EX,mXJg 1) ZZEX-‘IX“
I;!fn J#k
4 o2
o JJ;H‘ e
4
ey ZJ: 3 EXjm Xy - ey Z Z EXuXu
:;ém J;ék
4 a?
= — [1 - 2 ]
n-1 n(d? + 02)
where we have used (2.6)}-(2.8) in the last equality. O

Proposition 2.3 ( Stein,(1986), p.9) Let (X, X’) be an exchangeable pair and
F : 2 — R be an anti-symmetric measurable function in the sense that, F(z,z’) =

—F(z',z) for all x,z" € . If E|F(X,X')| < oo, then EF(X,X') =0.
-

Proposition 2.4 E[S(p) Z)E’.-,-] = ﬁ.
ij

Proaof.

Let F{w,w') = {u')? — w?, By proposition 2.1, lemma 2.2(1) and proposition 2.3

387



we have

0 = EF(S(p). 5(p})
= E[5%(0} - $%(p)]
= E{25(p)[5(p) - S(p)] + [5(p) - S(a)]*}
= 2ES(p)[E®S(p) - 5(o)] + E[S(e) - S(o))?

= 2B5()(1 ~ 27)50) + s % X = St + E18() - S

= 2BS()(1 ~ 7 27)S06) + s 3 Ky = S+ BI() - S

=~ T ES ) + s EIS() SR EED - SO @9)

Hence, by (2.9), lemma 2.2(2) and the fact that ES*(p) = VarW = 1, we have

2

Eis(p)ZX:J] = ﬂ.ESz(p) — ’_ILT%QE[&(p) - S(p)]‘l - dzia_z.

i

To prove lemma 2.5 and lemma 2.6 we need the foliowing construction. Let

J, K, T, M be uniform distributed random variables on {1,2,...,n} which satisfy

the followings.
(J,K) and (L, )are uniformly distributed random variables on

{G.k)jsk =1,2,..,n and j# Kk},

- 381



{(J,K)Y, (L, K1) is uniformly on {{(, k), ({,m)}] 5. k.l m=1,2,...,n
and j# k! # m and (5,k) # (I, m)}
and [(J,K),(L,M)] and g are mutually independent.

Hence

1

P B, T D] = (6 k) b)) = Lo

for jk,om=1,2,..,n,5 # k,{ # m and (45,k) # (L, m).

In what follows, we let § = 108 and also let

Zigaytomd) = 1Kt + Kb = Xjm = Xl mings, | Xse + Xnm — Xjm = Xual),
Ziggarnem) = Zism.0om) — EZx. 0000001 s 2(0) = D ZiGmy totieten)

ik
F#k
and

2P} =Z(p) = LT Ry (0(D).0®N] — ZITF1 06 (L), 0 (R

+ 213 Ry (oA Dr0 (R T LT ) (o (T 0(RIN-

Observe that -
1) EZ%(p) = Var}_ Zi.an (o)t

2

2) Z EZy;0).q.m) = 0 for every (j,k) such that j # k, and
Iom

I¥Fm

3) (Z(p), Z(p)) is an exchangeable pair.



Lemma 2.5

1) E*Z(e) =0

2
BETrES e Loy n(n. -1 -1 >~ 2" Zigw el

ik Im
FEklgm

9.143n83
-1)-1
3) E}: 21tk (oti) .0tk > 2.3n for n > 32

ik
F7k

2) E(Z(p) - Z(p)* < for < 2=, and

L
350

Proof.
1) Using the same technique as in lemma 2.2(1}.
2) E[Z(p) - Z(p)]*
— 2
= ElZ13 %),(o@.0®M T ZUTF.0o0.00 ~ 1T R (6D ~ Z1ET),(o(D.0R)
2 2
< EZ13 7y (oD@ t ZI@ I (0@ o] + B2 Ry to(@ro®m + Zi 3. (030700
2 2 2 2
< AEZ i3 7y (o pB H EL@ I D10 T EZ1@ Ry oDy 0P + EZ(E T 001,07 M)

»

— 2 2
= 4EZ3 1) 00Ty .0(R T 45310.1?).(9(2).»(77)}1

il

4 2 2
- 22 , .
nfn—1) Jzk: EZ{(; k00010t + nin — 1)[n(n 1) -1 Z Z EZ[(J,k).(l.m)]

lm

ivk J'#
{ "'t)#(J k)
4
<
e ICIE ; § EZj;x.0my + Y 1)[n(n T ,z,; g EZ{; ay,m)
J#k lEm ek I#m
s EZ} -
ﬂ.(n — 1)‘1’1(11 — 1) — 1] Jzk ; (&) (t,m)]
Jrkl¥Em



862 N N . .
S DG 1= 1] 2 2 B+ X = o = X
F#kIFEmM
_ 8a(n-1)8 _ - 2
T nn-1) - IE{S(P) - 5(p)]
e

= H—l (by lemma 2.2 (2))

9.143n8
S -1

where we have used the fact that 8 < 3—;0- in the last inequality.

3} By the fact that
EI5(p) — §(p)® = E|X s0t) + Xicotay — Xspny — Xacatrcy*

< 64E| Xrael®

64 5
=2 Z E|X)°
W}
_ 840

Le)

2
min{a,b) > b - :— for a,b > 0 and lemma 2.2(2}, we have
Q

E|5(p) - S{p)| min(5,15(p) ~ S(p)) > {E1S(s) - S(p)| - %Elg(p) - S(e)*}

hd 4 o 6443
2{1vz—l[1_ﬂ(d’+a“)]_m}
> 12
T 5n

Hence
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EZ Zisantati).oten) = nln = 1) EIS(p) — S(p}l min(3, 13(p) - S(p)I)

Ik
i#k
> 12(n - 1)
- 5
>23n
for n > 32. #

Lemma 2.6 Assume that § < —3%6 and n > 32. Then

Var ) Ziganom pten S 4589778,
ik
ot
Proof.

Let T=Y Y Z(u.emi Bylemma 2.5(1} and the same argument as in (2.9)

Xk Lm
J#kiEm
we have

EZ%p) = — E[TZ(p) + &

1 (n-1)-1
{n~1) 4

ElZ() - Z). , (210)

Next, we will bound E[TZ(p)]. Let A = {(j, k,I,m,p,q,7,s)|j, k,{, m,p.q,7,8 €

{1,2,...,n} and 5 # k,l # m,p # q,r # s}. Note that

E[TZ(0)) = E[(Y_ Y ZiGanwm(Y Zip.arote).oam)]

J.k Im e
j#kiFEm peq

1 R .
ey —"Y 33N EZgmami Zieantra)

jok &ym P T8
Jk Ifm PR TR

1 . .
= > E(ZGx,0.m0 Zipa)tr o)) (2.11)

SR P SR

392



393

where A = I:J Ai and
Ay = iak,l,m}p'q.r,s) €Alr=1s=m},
As = {{j kI, mpqr ) €EAlr=m,s=1},
Az = {(j, kI, m,p,q,r8) EAlr =L, s # 1L s #m},
Ac={{j. kL, m,p,q,r8) € Alr = m, 5 # 1,5 £ m},
As = {(U, kL, m,p s} EAlr £Lr#£m s =1},
Ag = {(4, k,1,m,p,q,7,8) € Alr £l,r #m,s =m},
Ar = {(§.k, L, m,p,q,1,8) € Alr £, m,s £ L,m}.

Firstly, we consider the sum on A;. By the facts that

35303 EBlZigaraen Zie.antm]

ik L,m P9
17k I#m P¥q

< 52 E Z E(1 Xt + Xam — Xjm — Xutl| Kt + Xgm — Xpm — Xat|*)

j”:;'ékk P pie
<833 DBt + Kim = Xjm — Xual')?
:;;'Ekk tl;'e':‘u :;’tqq

X (Ei‘i'?‘ +}‘éqm - Xpm - anll:’)§

<1665 3 UEERuF + BlXml® + ElXml® + B Xual')}
J'ifg'ékk I‘;é':l. :fa'&

x (E|Xpal® + E|Xqm|® + ElZpml® + ElX ")}



166 . , . ;
<322 Y (EEl + | Kiml® + Xl + [ Xual*)
Hh e

326 - - . .
+ 2 20 D (Bl + | Xeml* + X pm [ + 1 Xatl®)

Tk timrra
=16n{n—1)§ 3 3 (EIXul + 1 Xuml® + | Xsml” + 1 Xue))
ik im
JJ?“‘ i¥m

< 64n’(n — 1)%48 EE[X&,‘P

(%]
= 640n’(n -~ 1)°4°

< 1.8207%(n — 124

and

2
[Z Ezl(j.k).(pu).pckm] -
.k
Tk
- ~ n - 2
<& [Z E\Xjuisy + Kot = Xiot = Kol
Y
J‘?#k
- . N 2
< &FpR2n-1) Z E|Xjp5] + 2}: Elxjp(kﬂ]
3 ik

i#

< 482 [n D EX il + Y Bl X s l] ’
7 *

< 88° [n“ SBNK it 0ty Ezlk:'p(j)l]
F] ik
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395

< 88? [na Y EXj +n? Z EXJ?MH]
: ;

2

=S‘52[3(1”"(dz+02))+ *(n ~ dziag)](by(z.ﬁ))

< 16n°8%
< 4.572n°8

< 0.005n%(n — 1)°8,

we have

2" B2 w0y i i)
Ay

=333 EllZigm.cmy — EZiGa11000.000 M Zitp.a) k) — EZ(tp.ay gotoy.otam)]
,-’;'5: tl;'e':. e

<3030 ElZGmamiZiea.amil

.k Im P
J#k tm PE?

+ 33 Y (EZim.0000.00 B Zip a1 totmr oot

ik Im P9
F#k 15m P4

< 1.834n°(n — 1)%g: (2.12)

-
We can use the same technique of (2.12} to find the sums on A2 — Ag and get the

bounds as follow:

> Byt Zigparren) < 1.8340% (n — 1)°5, (213)
Az



> EZgaamn Zipa e € 183408 (n - 1)°8, (2.14)
Aj

Y E(ZiG acmn Ziparinen) € 1.834n4 (n - 1)%5, {2.15)
Ag

> E(ZGm emnZipanes) < 18340t (n - 1)°8, (2.16)
Ay

> E(Zim.am Zip.airan) < 1.834n'(n - 1)76. (2.17)
Ag

Next we find the sum on A;. Note that

Y ECGmamiZivaea) = 2 2 9. 3 EZiga.amyZima. e
Ag

ik tm Py T8

F#k IEm PFe r;;lé:n
a#lm
=33 EZGmamm D 2. EZipayiren
ik tm Pg T
J#Ek I#m pHEg rEs
. N E 3
- Y EZgmemnEipa.ca
i=12f...,6

»

=- > EismariEZipama.  (218)
A

=126
Using the same arguments as in (2.12)-(2.17) we have

> B x).0m) Eipaay i) 2 —9:-144n" (n — 1), (2.19)

Ay

i~
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AZ E(ZiG )t E Ziipoay,inan) 2 —9.144n% (n — 1), (2.20)

2

> ECGay. N EZia) i) 2 —9.1440% (n — 1)8, (2.21)

Ay

3 B0 atm EZigpay.iray) = —9-144n°(n — 1)B, (2.22)

Aq

AZ E(Z1m) it EZ(p.01.0ren) = —9.1440°(n — 1), (2.23)
4

AZ E(Zl(j,k)‘u.m)]EZ[(P|Q)'(,',)]) > —9.144115(11. - l)ﬂ (2.24)
L3

Hence, by (2.11)-(2.24) and the fact that n > 32,

E[TZ(p)] < 3.668n%(n — 1)8 + 7.336n(n — 1)3 + 18.288nF + 36.576n" 3

< 45.825n(n — 1)8. (2.25)

So, by (2.10}, (2.25) and lemma 2.5(2) we see that

Var Y Zig . got.000 < 45.8250° 8 + 2.286nf < 45.807nf. a
Jik
i#

Propaosition 2.7(Concentration Inequality)
-

Ifﬁ(35—10-andn232,thenfora<bwehave

Pla £ 5(p) <) < 2(b—a) + 780,

Proof.



Let f : R — R be defined by

_%(b—a)—é if t<a—4
I =qt-Lb+a) if a-6<t<b+$

o~a)+d if t>b+4,
and

M(t) = (")) - SO < < 5(6) - 5(6) = 1(5(6) - S(p) < L < 0)]
where I is an indicator function.

Let F{w, ) = (& — w)(f{1#} + f(w)). By the same tecnique of (2.9} we have

0= 2 T EIS@ (SN + EI5(0) - SN B0 - 1SON + 77

where r = %E[f(S(P))ZX'J]

Then -
E[S{p)f(S(m)]

n

= ("B - SENE ) — F(SN] + 7
n_1. - SOELION
= " HESG) - S F(S(e) + )} + 7
Q
= THEE() - SN [ £(5() + {10 < ¢ < 5 - S()
- HS(p) - S(p) <t < O)dt +r

= E| jn F(S(p) + )M (D)) +r



> Ell(a < S(p) < b) ]Md M(8)dt] + 1

2 (“THEN (4 < S(p) < 8)15(0) — S(6)] min(6,13(p) — S(a))] + r

1
= Bl < 5(0) £8) ) Zisrtotir.ovsn] +7

J.k
ik
1 6n
2 L Ella < 5(0) ) 3~ ZiGm. oot (D Ziatetaton > )]+ 7
i .k ik
J?#" ;’#k
3 6n
2 g Ell{a < S(p) < B)I Q" Zimaetir.omm > A+
5.k
Fek

3 6
= I—OEII(G < 8(p) < b} — I{a < S(p) <5, Zigga.otidetii] < ?")] +r

I
i
3 Hn
2 5 Ele <500 <b) - IO Zitm.etiroton < S+
Fors
3 6n
= 5[P@ < 500) S8) = PO Zisntpiinocnt S £ +7- (2.26)
10 - 5
I
Frk

N . 2
By proposition 2.4, E(D)_ Xi;)* = nE(S(p) Y Xy) = JQL which implies

3 5 +d?
I = ZIEUUAN Y Kol € 20 - +8), [E Xl < T (Gb- 0 +8).
¥ i3

(2.27)

Hence, by (2.27),
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Pla< 5{(p)<b)

10 6n, 10r
< S EiS(a) (S + P(3" ZiG.m. (o000 < )
ik

i#

10
< FEISRM(S() + P(E 3" Ziga el oon = 3 ZiGaet) e 2 110) ~
f Ea

10,1 1 10r
< o f=(b— . . . _ =
< 3(306-a)+d)+ (“n)z"“’" E,— k: 2yt et — 3

J#k

< 2(b - a) + 780.

where we have used lernma 2.5(3) in the second inequality and lemma 2.6 and

(2.28) in the last inequality. '}

3 Proof of the Main Result.

-
In this section, we will prove our main result by using Stein's method. In 1972,

Stein gave a new method which is free from Fourier transform to find an error

bound in normal approximation. His method based on the differential equation
£'(w) ~ wf(w) = h{w) - E(h(Z)) (3.1)

where f : R — R is a continuous function , £ : R — R is a test function and Z is

the standard normal random variable. We always call (3.1) Stein's equation for

1or
3



normal approximation. For any real number z, let &; be an indicator function
defined by

1 if <z,
hi(z) = (3.2}

0 if x>z,

then Stein's equation (3.1) has the unigue solution f; : R — R defined by

Tred =" Blw)[l — B(2)] if w< 2,
e ()1 - d(w)] if w> 2.

By (3.1)-(3.3) we have fi(W) — W (W) = h, (W) — ®(z) which implies that
P(W < z) — ®(z) = Efi.(W) — EWf,(W). (3.4}

So, we can find a bound of E fy (W) — EW f.(W) instead of P(W < z) — 9(2).
To do this, we also need the some propeties of the solution f. of the Stein’s

equation (3.1) as follows. For s,t,w € R

- 1 f w+s<z,w+t>z,
felw+8) = L0+ 8) < (| + LZE)(jsl +12l) i 521, (35)
] ortherwise,

P
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e

£
£
<.
-
s

-1 if wt+s>zwHi<e,

Silw+s) = fr(w 8} 2 4 (] + LZE)(s| + 1ty if s <t, (36)

0 ortherwise,

(Chen and Shao (2001) p. 246-247)

il <1, (31
{(5tein(1986) p. 23)

IBLASENE [ Mide— Ef(S() [ M < 7, (29)

and EL(SEN Y Xl < % (3.9)

( Ho and Chen(1978) p.243-245).

From Chen and Shao (2001) p.246, we know that sup |P{(W < J:)ti’(:z:)l < 0.55
z€ER

for any random variable W such that EW = 0 and VarW = 1. Hence, it suffices

to prove the theorem in case of 8 < %6 and n > 32. Using the same argument

as in proving (2.26) we can show that

EIS()(S(o) = B [ £S(0) + OM(E) + ZESSWON Y Kol (310)



and

1= E[$%p)]| = E .[R M(t)dt + %E[S(p)z Xl
Let AS = S(p) — S(1). Then
P(W < z) — &(z)

= Ef.(W) - EW[(W)

= Ef.(S()) - E(S5(p)f=(S()))

= Efi(S(r)E ] M(t)dt+ - EIS(o) 3 XolESS()) ~ BIS(M(SG)] (by (3.11))

i3

<E ] FUSENM@a+ Y B f 1US() + M (B)at
R n R

+2EASGN Y K] (by (3.8) and (3.10)

<E [ St - £(S(0) + DM@+ 22 oy (3.9)
= B [1(S() - 1) + AS + oM+
R n

<FE f M(t)dt

S(r)<z
S(r)+AS+i>z

+E IS+ LIE)AST+ (M@ + = (by (3.5)
AS+t<0
-

=E P(z - AS -t < S(7) < z|AS)M(t)dt
AS+t>0

LY 1
+E 45 + Y2T (18] + |6 M(e)de + 18
AS+i<0 4 n
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~E P(z - t < S(p) < z + AS|AS)M(t)dt

ASH>D
w8 [ s+ SEiast+ w2

AS+iL

<2E f (1AS] + )M ()t + T80E j; Mty
R

S+e»0
+E f ISIUAS)+ (thM©de + Yo B f (IAS] + [t M(t)de
® 4 R

+ lnEl (by proposition 2.7}

<2E f (ASIM(t)dt + 2B f || M(e)dt + 788
+E f [S(rASIM(t)dt + B j [S(NUM ()t + 18. (3.12)

Note that

n-—l 64,6

E ] (e = B2y BI50) - S)F < B2y <8p, (313

E / ISEIEM(BEt = EIS()|E f lM (et < 86, . (314)
R R
and by the fact that

EIASIa = Eer—am,(L) + X.,.—t(M).,.(K) +Xrp+ Xxm

o O v o 3
= Xprtny = Xacr(ry — Xo-100ye — Xe-1oanmd

< 512,6,
n
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Abstract
Let (X,;) be a double sequence of random variables with finite variances and

(Z,) a sequence of positive integral - valued random variables such that for each
nZ,, Xu,X,2,...are independent. In this paper, we give an error estimation of the
convergence of the distribution functions of random sums X, + X, +---+ X,; and

show that it tends to zero when the distribution function of random sums approaches
a limit.
]

Keywords : random sums, infinitely divisible distribution function, Kolmogorov's formula,
weakly convergence.

Mathematics Subject Classification{2000) : Primary 60F05; Secondary 60G50.

1. Introduction and main results

Let {.X,) be a sequence of independent random variables with Var(X,) <« and Z be a
positive integral-valued random variable such that Z, X, X,,... are independent. = Many authors
{for examples, Blum, Hanson and Rosenblatt (1962), Mogyoro di (1967), Crazov (1972), Pecinkin
(1973), Kruglov(1976), Landers and Rogge(1976), Batirov, Manavic and Nagaev(1977), Krajka
and Rychilk(1993) and Neammanee(1993)) found conditions under which the sequence of the
distribution functions of random sums X, +X, +--+.X; converges to the standard normal
distribution function & . The etror estimation of the convergence was then investigated by Nakas
(1972), Korolev{1987), Korolev and Selivanovan(1991) and Neammanee(1992).

Azlarov and Dzamirzaev(1972), Szasz(1972), Belov and Recinkin(1979), Kubacki and

Szynal(1985), Bethmann(1988), Finkelstein, Tucker and Veeh(1991), Neammance(1993,2000)
considered a more general case of double arrays.

40!



Stochastic Modelling and Applications

Let (X,.), #=1,2,...,n=12,..., be a double sequence of random variables with finite

variances. Throughout this paper, we let F,,,¢., .4, and o 2 be the distribution function,
characteristic function, mean, and variance of X, respectively. We also let(Z,) be a sequence of
positive integral-valued random variables such that for each n,Z,, X, X,,,... are independent.
Let
SZ' = XH[ +X"2 +"'+.X"zﬂ
and F, be the distribution function of §7_.
Foreach ne N, welet Xy .y 1R —[0,0) be given by

L(q) x
K y(x) = Z quank (u+pp)

k=1 _
where the g-quantile [, :(0,1} - N is defined as
L@ =maxfkeN|P(Z, <k)<q)}.

Neammanee and Chaidee (2003) gave necessary and sufficient conditions of the convergence

of random sums. The theorem states as follows: -

Theorem 1.1 Assume that
(@) (X — B ) is random infinitesimal with respect to (Z,)) ,i.e., for evéry € >0,

max P Xy -ty ReE)—E0as n>w,

1sk<Z,
i,(q)

(PB) there exists a constant C > @ such that Zof,‘ < Cforae.qe(0,1),
k=l

falq)

{y) forae ge(0)]), (K, () and (Z W,y ) are monotone .
k=1

Then

1. F,—=>F,
2. the sequence of the variances of S converges to the variance ¢ 2 of F,ie.,

Z,
EQ k) —>c?

k=1

if and only if for a.e. ¢ €(0,1) there exist a function K’ in m and a constant p o such that

r Ky x> K @) (x) at all continuity point x of K9,

i
2" Ky, () = KD(@) and 0% = [KD (),
0



An Error Estimation of Convergence of Random Sums with Finite Variances

(1)
3 Z Mo l‘lq
k={

where m is the set of bounded, non-decreasing, right-continuous functions from R into [0,)
that vanish at — «

!
Furthermore, we know that F(x)= IF @(x)dg is the distribution function whose
0
characteristic function @9’ is given by

Ing@ () = in ¢ + J' £, x)dK D (x)
R

and the function f :R — C is defined by

L

—(e™ -1-ix), x#0

b

f.x)= (L.1)

—-!-t , x=0.
2

Let _
M, = sup IF,T (x)—F(x)| .

=X

In 2004, Neammanee and Rattanawong gave a bound of M, when F = @.In this paper, we
obtain bound of M, for gny F and show that whenever (F,) converges to F the bound of M

tends to zero as n — oo,
To state the main theorems, we need the following construction.

For each ¢ €(0,1), we let F9 be an infinitely divisible distribution function with mean,

variance, and characteristic function being p, ol, and ¢ respectively. According to

q E]
Kolmogorov's formula we have

g @ (1) = i 1 + J £t, )dKD (x)
R
and K'9(w) -—-cg.
For positive number A4 and 8, such that 0 <8, <24, and 14, are continue points of K @,
we define g(n, 4,,5,) as follows:
8(n, 45,8,y =g1(n,A4,,8,)+82(n,A4,,8,)+g5(n, 4,.,8,) + g4(n, 4,,8,) where
1.(g} !

1 N 2 3
g ,A ,6 =|— max o E a s N
I(n q q) [3 Lsk<l, (g) nk yr nk ]
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L(q) L
s 1
82(m,40,8) =[28,07 + 3 o5 1%,
k=1
i 1
g3(n,4,,0,) = [EI Koty (4g) = Kot () (- 4g) - K(q)(Aq) +K9(-4,) [1*, and

(]
3 4
£ A8 =12 D e =1y |+A—(an,(q)(°°)‘an,(q)(*“q)
q

k=1
]
+ KD (0)~ KD (A,) + Ky ) (-4,)+ KD (-4)) |17

Furthermore, we also let

SO =X, +X, +or X @

and let F{?,09 be the distribution function and the characteristic function of S, respectively.
-

The following are our main results.
1

Theorem 1.2 Let F be a distribution function such that F(x) = JF(") (xydg where F'? is the

0
infinitely divisible distribution function with finite variance. Suppose that

1.forae ge (O,l),%F @(x) exists and | %F @(x) |<B <o forall x,

2.0<ok <l forall mkeN.

Then there exists a constant € such that

1
sup | Fy(x)-F(x) | < cJ’ g(n, 4,,8 ,)dg.
0

=t LY 00

1
Theorem 1.3 Let F be a distribution function such that F(x)= JF @ (x)dg where F'9 is the
0

infinitely divisible distribution function. Suppose that
1. forevery neN and for ae. ge(0]), F @ and F ,,m are continuous everywhere except

possibly at x=x,(x; <x;,,,5=0,£1,#2,..)),
2. there exists a positive constant L such that min(x_,, —x,}2 L for s =0,x1,+2,...,
. d
3. forae g€ (0,1),% F9(x) exists everywhere except at x = x, and ™ F9(x) | <B<w

for all x #x,,5s=0,21,#2,...,

4. 0<o} <1 forall mkeN.
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Then there exists a constant C such that

— xS

1
sup | F(x)-F() | s CJ g(n, 4,,8,)dq.
0

Theorem 1.4 Under the assumptions of Theorem 1.1 and Theorem 1.2 ( or Theorem 1.1 and
Theorem 1.3 ), for a.e. g€ (0,1) and n e N, there exist positive numbers 3, ,, 4, , and constant

C such that

=00 X L)

[

sup | F,(x)-F(x) |< C‘I g, Ay 0,8,,,)da
0

and

'
J g(n,4,,,8, )dqg—>0 as n > .
0

Note that the normal and Poisson distribution functions are examples of F in Theorem 1.2
and Theorem 1.3 respectively.

2. Proof of the Main Theorems
To prove the main theorems, we need the following lemma and proposition.

-

Lemma 2.1 ( Bethmann (1988) p.336 ) For each n, let (a,, );., be a non-decreasing sequence of

nonnegative numbers and a20. Then @nz, —£—a if and only if a, —f ya for all
ge(0)).

Proposition 2.1 Under the conditions (x),{P),(y) and the necessary conditions of Theorem 1.1,
for every g €(0,1), we have

1. max 0% »0asn—ow,
Isksl, ()

1,(q)
2 (Zc %) is bounded.
k=1

Proof. Fix ¢ge{0})).
1. From Theorem 1.1, there exists a bouded, non-decreasing, right-continuous function X’ such
that K9 (- $=0and Ku () —* 53K Let £>0 and ¢, >0 be such that +c, are continuity
points of K@ and

| K@(c,)-K (=) e, KD (—,)se . .1

40
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Let ny € N be such that, for 7> ny,
| Kot (_Cq)_K(q)(“cq) '<8’

Kn[_(q)(cq)~K(q)(Cq) |<£ , and
| Koy () =K@ () | <. (2.2)

Hence for n > ny, we have
Lig)
Y, [t
k=] |u|2cql
= Ko ) (=€ 1+ Koty )= K 20 €
S| Kty (-60) =KD (=¢0) [+ KD () +] Ko,y (=) - KD (@) |
+ KD @) -KP(c) |+ | KD (eg)~ K (e |
< Se, 2.3)

which implies that

max o2
15ksi, (q)

= max [ [PdFyrnn)s [l [ldR @)

julse Ve du|<c, [1g2e,
5 J_ (g} )
Se+c; max P{lX,, —pu|>Ve)+ u'dF, (u+p,
9 o ( Xk =Bt | ) ; |.,|él; o+ R )
L]
< 6e+c? max P( X —pu |>VE) (2.4)

T 1sksl, (q)

By (o) and Lemma 2.1, we know that

lﬁziq)P(|Xuk——u,,k|>w/;)~—>0 as n-—>o.

Hence max ¢ —»0asn—ow,
1skgl, (@)

2. The second statement follows from the second condition of Theorem 1.1 and the fact that

E(icfnz iP(z,. =1)‘:o,ﬁ
k=1

k=l i=l,(q)
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L.(g)
2 P(zn 21!(((]))2031:
k=1

,(q)

2(1-q) Y ok,
k=1

where we have used the fact that P(Z, <!,(g)) < ¢ in the last inequality.
2.1 Proof of Theorem 1.2
We shall first find a bound of Icp,,“”(t)—cp“”(t)' and then apply Berry-Esseen Theorem

(p-196 of Gnedenko and Kolmogorov(1954)) to obtain a bound of [F{? (x)- F@ (x).

Let F,; {x) = F{x+u,)and let (p:k be its characteristic function. Let a, (f)=¢ ,‘,k {t)-1.
So

la. (0] = _[(e"‘x ~1)dF,, (x)’
R

= J’(e"" ~1—itx)dF,, (x+ )
R

-

< ﬂ-;-exzxz'mk(n W, ) forsome p|<1
R

<dig eX)

2
where we have used the fact that e”* =1+itx +%6!2x2 in the first inequality. For each g € (0,])

1

————— . From {2.5), we see that, for Y|< T, and £ =1,2,3,...,7,(9),
N @.5) W=7, (@)

and neN,let T, =

03):
2g%(n, 4,,8,)
2
T i
2g{(n,4,,8,)

max o fk
15kl (q)

|ank (‘r)l =<

4
< —
5 2
2 4215

max <G
[( max 03%)?)
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i

4 -
<—[ max o]’
5 i<kl ()

<2
5

Because of this and the fact that |In(1+2)-Z |< |Z|2 for |Z| <1, we have
100 74.(6) — 2, (0] = 01 + @, (1) - 2, 1)

< () (2.6)
Note that forallne N, teR ,and g (0,1},
i,(q)

[re0dK ()= Y [(e™ —1-i)dFy (x+ 1)
R

k=l R

1,{¢)

= Zaﬂk(t) (27)

k=1
where f defined in (1.1). -

In order to obtain a bound of |]ncp£")(t)— lncp(‘”(t)l, we will find a bound of |ine ¥ (1) -y (1)

and h;,(,”)(t) - ln(p(“‘)(t)‘ , where
1.(q) i,{q)

YOO =it ) p+ I SOTK 0y (1) = > (it + 0 (1)) (2.8)
k=1 R k=1
Observe that
1,(q)
o)=Y Ing (1)
k=1
(3] 1.{9) .
=it ) py+ D (ngu @), 2.9)
k=l k=1

where the last equality comes from the fact that
@ () = ™ Ie"‘"“"* VAF , (x) = ™~ qa;k ).

R
Hence, from (2.8) and (2.9), we have
(. {q) .
() -y @)= (ng )~ au ()
k=l
f,(q)

b3 |lﬂ¢;k(1)—ank(f)l
k=1
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L(g)

< law @) by 26)
k=l

1,(q), 2 .\2,4
(o)t
L I by (2.5
E p (by (2.5))
k=1
1,(gq)
_—.r a o]
ax nkz %

From Lemma 3 p.619 in Shapiro(1955) we know that

[ 104K =K P )| < Dle.n, 4,,8,),

where

L@
D(t,n A,8,) = =3,|F |(Zcr,,,( +c2)
+1’K A)-K, A)-KDA)+ KD (-4
'2't al,(9) )= nf..(q)(" ) (4,)+ (-4;)
L2l
2 @)= Ko (4 KD @) - K (4,
4’
o HKy =4+ KD(=4).
Hence
i{q)
(?)(t)—ln(p(‘?)(f)l ank + If(t x)dK o (o (X) =i f—'[f(f,x)dK(q)(x)
k=1 R R
i,(q)
S 1E1 Y b=ty 14 jf(r )A(K g, g ()= K9 ()
k=l
{9

< Dt g | +D(6 0, 4,,5,).
=1

So, by (2.10) and (2.11),
o) -lne@ @] < (e -vPWI+ly PO -ne® @)
L.4q9) L(q)

IA

4 1sksl(q)

1 2 2
=% max 6% > oL+t Dy —p, |+ D(,n,4,.8,)
k=i =1

(2.10)

(2.11)
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h(t,n, 4,,8,).
From the fact that |Z| -2, | < | InZ,-InZ, | whenever | Z, |<1 and | Z, |<1, we have

[P -9 0| < htt,m 4,,8,) for 11T,

So

)

T
(C)FPPN ()] s
o) ¢ w&<Iqu,)

| t T |¢]
-T, -1,

T,
tht,n, A,
2'[_(L..q__fld;
LT
< £l ("qula ) gl(" Aq’a ) gJ(" Aq:6 )+g4(n, qsa )
gin, 4,5, ) g (n,A4,,8 ) gi(mA,,8,) 8(mAg.8,)
gl(n Aq’a ) gz(ﬂ’Aq:5) g}(n: qva) 8'4(", qr )
(1 A,5,) E10nA,5,) gl(mA5,)" EalmAgb,)
glm A,,5,). ]

From Theorem 1 p.196 of Gnedenko and Kolmogorov(1954), for every ge(0,1) and a>1, we
have

} (9}
| F® (x) - F@(x) |< Ca, B)g(n, 4,.,8,) ,

where C(a, B) is a constant depending on a and B. From Neammanee and Chaidec(2003), we

t
see that F,(x) = J‘F,,(‘”(x)dq for every x. So
0

sup | F,(x)-F(x}| < dg
—0Q L XC80 uoc,x(eo -
< C(a, B) jg(n, 4,,8,)dg. #
2.2 Proof of Theorem 1.3

The proof follows the same line of arguments as that of Theorem 1.2 except that the discontinuous
version of Berry-Esseen Theorem (p.200 of Gnedenko and Kolmogorov(1954)) is used instead. #

2.3 Proof of Theorem 1.4
For each g (0,1}, let 0<&,, <1 be such that +

are continuity points of K@ and

1
Bus
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1

8,0 »0as n > . Let 4, , =——. By Theorem 1.2 we have
g

|
sup | F,(x)— F(x)| < C(q, B) J-g(n, AngBng)dq.
0

=00 ¢ X € .
By 1" and 2" of Theorem 1.1, Proposition 2.1 and the fact that Sn_q —0 as n — o, we see that
g{n, A,,.q,é,,_q) >0asn—ow

L(q)

for every g€(0,]). Since (ZU 2) and K@(w) are bounded for all ¢e(01), then
k=1

g(n,4,,,5,,) is bounded. By Lebesgue dominated convergence theorem,

1
Ig(n, A, 0:8,,)dg >0 as n—>w. #
0

3. Exampies

The followings are some examples of the estimations when the limit distribution functions are
standard normal and Poisson.

Example 3.1 Let Z, and X, k=12,...,n be defined by

P(Z, =n’)=i3 and P(Z, =n +1)=1-—13-,
n n

-1 1 1

‘/,,_3)=P(Xnk=\/n_3)=2

Assume that , for each n,Z,, X, X ,5,... are independent. Then there exists a constant C

-
P(X,y =

sup IF,,(x)—‘D(x)IS%

—G <X Co0

where @ is the standard normal distribution function.

Proof. Note that

n if 0<q<-13—,
h@=y "
n+1 if —;;ﬁq«:l,

by =002 L and, for large n,

nl
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0 if u<0,
Kn!"(q)(u)= n3 +1
n

From Lukacs(1960) page 93 we know that the function X in Kolmogorov’s formula of @ is
defined by

if «>0.

‘[0 if u<0,
K(u)= )
(1 if u=20.

2

1
Since O(x) = I¢(x)dq, by Theorem 1.2 with & ¢ = L we have that
n
0

sup | F,(x)—d(x) I Si

—0<xLD \/;

for some constant C . #

Example 3.2 For A >0, let Poi(A) be a Poisson random variable wjth parameter A, ie,

=k
P(Poi(M)=w,y) = i . Fix Ae(O,l)andlet Z, and X, ,k=12,...,n, be defined by
0-
, n’ ( , nt
PZ, =n")=1- and P(Z, =2n") = ,
R Y I " 2n? +1

P(X,, =1)=nl‘3- and P(X,, =0)=1—;7§-.

Assume that, for each n,Z,, X, X ,5,... are independent. Then

sup ]J",,(J:)—F(:c)|s£

-0 X G \/ n
{

where F(x)= [F@(x)dg and F'@ is the distribution function of Poi(A) for 0<g s% and
0

Poi(2)) for —;— <g <1 and C is a constant.

Proof, Note that
2
n if 0<g<l-

2 »
I,,(q)= \ Zn© +1
n

2n% +1

2n®if 1-

g <],
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A
T =—3,0'3k =}T(] -%),and for large n
n n n
r 2
_A_[]-L}J if u<landO<g<g1- L s
n’ " 2n? +1
2
),[1-_-%-] if u>land0<g<l~ nz ;
n 2n° +1
Kty gy (M) = 2
2 A . n
=r-= if u<landl-——<g<l,
HJ na 2nt +1
2
21(1—%] if w>landl-~ nz <g<l.
L n 2n” +1

From Lukacs (1960) page 93 we know that the function X, and K,; in Kolmogorov’s formula
of Poi(L) and Poi(2).) are defined by

0 if u<l
K, @)= :
A Y
and
0 if u<l,
Kn(“)=1[

L2 if uzl,
respectively. By Theorem 1.3 for 4, , =2n, we have that

I

1
- 1 1 — ll
1 Ys [10 (3 )3 [6]51
sup |F {x)-FQYsCl| —F| +|— |8,.dq| +|—| +|—]| I.
_m<F<uaI () ()| [2"3J [3J il q} [2)‘!3 nz |
J

If we choose 8, , = iz it is clear that the bound is of the form < for some constant C . #
n

Jn
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A POINTWISE APPROXIMATION OF ISOLATED TREES IN A
RANDOM GRAPH

K. NEAMMANEE

ABSTRACT. In this paper, we give a pointwise approximation of the number
of isolated trees of order k in a random graph by Poisson distribution. The
technique we used here is the Stein's method.

1. INTRODUCTION

A random graph is a collection of points, or vertices, with lines, or edges, con-
necting pairs of them at random. The study of random graphs has a long history.
Starting with the influential work of Erdés and Rényi in the 1950s and 1960s [7-9],
random graph theory has developed into one of the mainstays of modern discrete
mathematics, and has produced a prodigious number of results, many of them
highly ingenious, describing statistical properties of graphs, such as distribution of
component sizes, existence and size of a giant component, and typical vertex-vertex
distances. .

Random graphs are not merely a mathematical toy; they have been employed
extensively as models of real world networks of various types, particularly in epi-
demiology. The p;ssage of a disease through a community depends strongly on the
pattern of contacts between those infected with the disease and those susceptible
to it. This pattern can be depicted as a network, with individuals represented by
vertices and contacts capable of transmitting the disease by edges. A large class of
epidemiological models known as susceptible/infectious/recovered (or SIR) model
[4,17,19] makes frequent use of the so-called fully mixed approximation, which is
the assumption that contacts are random and uncorrelated, i.e., that they form a
random graph.

Random graphs however turn out to have severe shortcomings as models of such
real world phenomena. Although it is difficult to determine experimentally the
structure of the network of contacts by which a disease is spread [14], studies have
been performed of other social networks such as networks of friendships within a
variety of communities [5,10,13], networks of telephone calls [1,2], airline timeta-
bles [3], the power grid [22], the structure and conformation space of polymers [16],
metabolic pathways (11,15}, and food webs [23]. There are many situations in which

2000 Mathematics Subject Classification. 60G07, 15A21.

Key words and phrases. Random graph, isolated tree, Poisson distribution, pointwise approx-
imation, Stein’s method.
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the theory tells us that the distribution of a random variable may be approximated
by Poisson distribution. In the random graph theory, one application of the ap-
proximation by Poisson distribution arises naturally when counting the number of
occurrences of individually rare and unrelated events within a large ensemble. In
this paper, we choose to count the number of isolated trees of order & in a random
graph with n vertices and give a non-uniform bound of the Poisson approximation
to this number.

Let G(n,p) be & random graph with n vertices 1,2,...,n, in which each possible
edge {¢,j} is present independently with probability p. A tree is, by definition, a
connected graph containing no cycles and a tree in G{n, p} is isolated if there is no
edge in G{n, p) with one vertex in the tree and the other outside of the tree. Let

Dy i = {(i1,d2, - ,ix)|l €4 <iz <...<ix <n}
be the set of all possible combinations of & vertices. For each i € Dy, ;, we define

1 if there is an isolated tree in G(n,p) that spans the vertices
Xi= i=(i1!i2-'-:ik):
0 otherwise,

and set,
Wore= Y Xo
€D, &
Clearly W,  is the number of isolated trees of order k in G(n,p) ind the X;'s are
not independent unless £ = 1. For the small value of probability p, that is when
2

E%p — 0 and "; — 0, Stein ([21], chapter 13} proved that the distribution of W, ;
can be approximated by Poisson distribution with parameter ~

A=EWny = (:) P(X; = 1) = K 2ph~1 (1 - pyHn=Rr+(3) k41
and the uniform error bound is given by
. B e —en ke
(1.1) |P(Wpr € A) — P(Poiy € A)| < ﬁ(l + )l o (cnet "")"c 1

for all A € NU{0},n € N, and & < n, where Poi, is a Poisson random variable
with parameter A, B is a constant independent of A, and

¢ = —nlog(l — p).
It is evident from (1.1) that the error bound tend to zero as ¢, decreases to zero
provided k& > 2. Observe that the bound in (1.1) is & uniform bound that works
for any possible number of trees in the graph. In this paper, we shall introduce s

non-uniform bound of the Poisson approximation, i.e. a better error bound once
the number of trees is specified.

Throughout the paper, let us fix the number of trees wo € {1,2,...,(})} and
denote for convenience

e-XAwu
wg!
where A = EW,, ;.. The following theorems are our main results.

Aln, k,wo) = |P(Wo i = wo) -

Theorem 1.1. Suppose 2k < n and wy £ 0. Then
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. 1 1 . Ak? e
1. A(n,k,w(,)sAmm{w—O,X}mm{‘Z,—n—(l-kc,,e )}, and
2. A(n, k,0) < min {1, A} min {2, A}.
In order to gain & better understanding of these results, some asymptotic behav-

iors of A(n, k,wp) and A as n goes to infinity are summarized in the following two
theorems.

Theorem 1.2. Letd > 1,k < O(n’f'), and p = O(%). Then, for 6* € (1,8), we
have

1 1
LAs 'ﬁo(nw—l)w-u——l)’

1 1
2. A(n, k,up) < =z O(nz(a' VRS ), and
1 1
3. A(n,k,0) < ﬁo(m),
where lim O(g—(n)) =c¢ for somec > 0.
n—e  g(n)

Theorem 1.3, Let § € (0, %), k< Onf), andp = O(%) for some § > 0. Then

Aln, k,w
1. forwo>2and6>l,%

2. ford > 2, wolAln, k,wp) — 0 as wy — oo.

—+ 0 asn — o0 and

Some remarks are in order.
1. When the probability p is small compared to a positive power of n, i.e,, p=

O(—h—) for § > 1, both the error bound and A tend to zero as n approaches infinity.
n

2Ifp= O(%) for some § > 1, then we are dealing with a Poisson distribution

1
with parameter A smaller than O(m) for all 8* € (1,8). Theorem

-
1.3(1) says that as n increases without limit, the error bound A(n, k, wg) tend to

=-Aywg
zero faster than the Poisson probability w)\'
OHY
-Ayuyp
3. Theorem 1.3(2) confirms that the Poisson prebability, £ o tends to zero
O

slower than the error bound A(wg, k, wo) as wy goes to infinity.
Throughout the paper, C stands for an absclute constant with possibly different
values at different places.

2. PROOF OF THE MAIN RESULTS

The main result in Theorem 1.1 will be proved by Stein’s method for Poisson
distribution. Stein {20] introduced a new technique of computing a bound in normal
approximation by using differential equation and Chen [6] applied Stein’s idea to
the Poisson case. The Stein's equation for Poisson distribution with parameter A
is given by

{2.1) Af(w+1) — wf(w) = h(w) — Pa(h)
where f and h are real-valued functions defined on NU{0} and P, (h} = E{R{Poi,)}.

421



K. NEAMMANEE

For each subset A of NU {0}, define ha: NU {0} — R by
1 fwedA
h = !
a(w) {0 ifwé A

For convenience, we shall write h,, for k) and denote C,, = {0,1,2,...,w}. For
each wy € KU {0}, it is well known [21, p.87| that the solution Uk, of {2.1) is of
the form

(’”w W wo-vp, (1~ he, ) ifwo < w,
0
(22) Uhwy(w) = _.——(ww ‘1)',\“"‘ TPalhe._y) if 0 < w < wo,
o°
0 ifw=0.

Some properties of Uyh,y, needed to prove Theorem 1.1.
Lemma 2.1. Let wy € N end Uyh,,, be the solution of (2.1) with h = hy,,. Then
1. Ushy,| < mm{ ,\} and

. 1 1
2. |Vahuy,| < min {;};, X}
where Vihy, (W) = Unhyo (w + 1) — Uphy, ().
Proof. To prove 1., we shall first derive that |Uyh,, (w)| € wi by splitting w into
0 =

two cases according to the definition of Ujh,,, (w).
When w > wp, it follows straightforwardly that

k
0 < Ushu () = =D yuo-ug=r Z A

wo .

k=w
_ (w- 1)13"\(’\% Awo+l Awo+2 _ )
wy! (w+1)! (w + 2)'
IO A R
we!  w! (w+1) (w+D(w+2)
1 X Awe A'"“'H /\""""'2
=t (Gu_!+ wllw+1) | wlw+ Dw+2) | )
1 —a Awo Awu«l—l Aw°+2
< Z 4 v
- 'U)oe (‘WO' {wp + 1) + {wo + 2)! + )
<—.
Wy

For w < wy, the bound of Uyh,,,(w) is cbtained as follows:

0.« = Wyu-up, e, )

wq!
(w1 [ dwemw | we-wil Awo-1
= € ottt o

(w — 1! e ((too — 1) = w + 1]IA{we—1)—w+l
wo! [(wo ~1) —w+1]!
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2-3- (wy — 1) —w + 2)IAlwo -1 -wt?
[(wo — 1) — w + 2]!
w 1}--- — 1Alwe—1)
o g uletl) - (wo—1)
(wg - l)!

(w—1)1 _;(wo—1)! Awo—1)—w+1
< wy! ex(w—l)!{[(wo—l)—w+l]!

Alwo—1)—w+2 A{wo—1) }

+

Y- D-wrdi T Mo

1 —A{ '\(wu—l)—w+l A(wo—l)—w+‘2
4}

wo=1) w1 | [(wo-1) —w+2]

Alwo—1)
T o

wy

Combining the two cases gives

23) Vb ()] < o

1
Similarly, we show that |Uyhy,| < 3 by considering two cases. If w > wy,

L= 1) awetl  jwok2  yuo+3
0<U)‘hw°(w)_x. wg! w! +(w+1)!+(w+2)!+“-

1 Jwotl Awot2 Awo+3

= ~e + + 4+

-5 wolw  wolw(w+1)  welw(w + 1)(w + 2)
1 N ’\wu+1 /\wo-l'-? /\wu+3

< —e”

=3 N wor ) T w9 T T
1

< —.

— A

For w < wy,

-1\t
0D< M,\WO—WP’\(hC‘"—‘)
wnl

1w~ 1’!3-*{ [wp — w+ 1|IA%e=w+! 2.3, .|y — w + 2Awo—w2

=3 w! fo—wr 1t [wo —w+ 2)!

+---

w(w + 1) ---woz\"”}
+ !
wo!

T{w-1) _, we! Awo —w+l Jwo—w+2 Awo
hl e~ + 4o
A wy! (w—1)1"] lwo —w+1]!  [wo—w+2|! wg!
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1 N )\wo—w+1 Awo—w+2 Awo
= e + TR
x° [wo ~w+ 1! |wg ~w+ 2! wy!
1
< -,
— A
The above two inequalities demonstrate that
1
(2.4) s by, (W) < 3

Therefore, by (2.3) and (2.4), 1. is proved.
Formula of Vy\h,,, is easily derived from that of Uk, in (2.2}, that is

swomwomt (W=D b 4 kel — APy~ h if w > 1
wol A Cw A C..._l)] Itw 2 we+1,
—1)!
Waban () = { oot =y (1 = b ) 4 3P = )i = o,
— I
—A“"’““’“(—w—uﬁl[wp,\(hcw) — APa(ho,_ 2} ifw<wy+1.

Similar arguments as in Neammanee [18] produce the desired bound for Viky, in

2. a

Proof of Theorem 1.1. Proof of 1. is divided into two steps.
Step 1. We claim that

Aln, k,wo) < Amin {wio ;} min{2, E{Wo i — Wo-zil}.>
In fact, for each i € Dy, i,
E[X:f (W)l = B{E[X:f(Wni)lX:]}
= B[X; f(Wa k)| X; = 0JP(X; = 0)
+ E[X; f(Wo )1 X = 1|P(X; = 1)
= E[f(Woe)lX: = 1)P(X; = 1)
= P(X; = DE[f(Wi_¢ +1)],
where W;_, ;. ~ (War — Xi)|Xi = 1 is the number of isolated trees of order k in
the graph G{n — k,p} obtained from G(n,p) by dropping the vertices ,,12...14x

and all the edges containing any of these vertices. By the fact that W;_, , has
identical distribution as W, _4 &, we easily deduce

EWasf(Wai)l= D E[Xif (Wa)l

€D, .
(2.5) = Y P(Xi=1DE[f(Wa_tk +1)]
€D, &
= AB[f(Wa—k s + 1)}

Once we set h = hy, in (2.1) and apply (2.5) to the left hand side of (2.1), it follows
immediately that

—aAMe
P(Wag = wo) = €7 5| = |EDUnuo (Was + 1) = Wo sUs b (W)l
S AE Uy (Wak + 1) — Upby (Wrn_p.k + 1}
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< Al2sup [Unhu, (w + 1)]|
W

11
< 2Amin { —, ——}
< mm{wo Y
where Lemma 2.1(1) was used in the last inequality.

By writing U huwo{Wa x+1)—Usbuwy (Wa_kx+1) as the sum of 1-step increments
and applying Lemma 2.1(2),

Ao
P(W, . = wp) — e-AW_O'| < ABUnhy (Wak 4 1) — Unhoo(Wak i + 1)
< AE|sup[Uphw, (w + 1) = Upheyg (w)]
w
X [(Wak +1) = (Waorx + 1)
. 1 1
= )mun{a, 'A_}Eiwn.k - Wn-k.k'-

Hence Afn, k,wg) < ,\min{ala, —1-} min{2, E{W, ¢ — W, _xkl}

Step 2. It now suffices to find a bound of E|W, p — W, _ x| for n > 2.
By [21] {p. 140, 142), this expectation can be estimated by

EtWo g = Waikr| = E(Wpoe — Wo_ga}t + E(Wo_k e — Wo i)t
k2 .
S SEWak+ [1- (1= 9| EWa_i

K K2 EWp_k i
= (G -a-pf]EE
and for n > 2k, we have
EWniih o8,
A
Therefore
k2 K2 k2
_ P - _ {en—-1)
E|W,,,k Wn—k,kl < (n + [1 (1 p) ]e )/\
= (E petlent e'%))\
n
K2 g 2
—(;1—+(e v - 1le -)/\
Py k2
o T(Cn-l)
<2 14 )

where we have used the fact that e — 1 € ze” for z > 0 in the last inequality.
It follows readily from step 1. and step 2. that

Aln, k, wo) < ,\mm{w—l—o, -}{}min{l 5-:—2 (1 + .:,.e“—f(c-—ll) }

The bound of A(n, k,0) in 2. is obtained in the same fashion as that of A{n, k, wp)
except that the inequalities

1. |Uxko| < min{l,%}
2. [Vahol 5min{1,%}
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are used instead of Lemma 2.1. With a few obvious adjustments, proof of Lemma

2.1 work equally well for U, hg and Vyhg. O
Proof of Theorem 1.2. From Theorem 1.1 and the fact that
1 1

we see that

P

. <

(2 7) A(ﬂ., ks wﬂ) = c nwp
and

2.2
(2.8) Afn, k,0) < c"ﬂk .

Under the settings, we would naturally like an estimate of A in terms of n and k.
By (19)-(22) in p. 141 of [21], A can be factored as

(2.9) A = alk)S(k, p)y(n, k. p}

ktde-k 5 343
where O:(k) = k—kle—‘ﬂ(kip) = k_fekpk_l(l — p)_(‘_—;_k)"'l and

k-1 .
_ —kcn 7
¥{n, k,p) = nFe ke Jl;[l (1 - ;).

»
The Stirling’s formula {{12] p.54),
VarkEthemketier < b < amkitie ke T
easily derives the inequalities
1 1
2.10 — < ak) < ———.
(2.10) ey < k) o
Finally, by (2.6), (2.9)—(2.10) and the fact that &k < O(n?),
Cn* Ly ke
A _<_ k% ek(l ,.)pk 1
_ Cn 1-cayk—-1_1—c, P k-1
= G lene ) e (—log(l —p))
Cn —eavk—~1.1—
< E__(c“el c,.)k 161 Cr
n e yk-1
= _k_é_o(n's‘l)
1 1
(2.11) < k_go(—_—n(a-—x)(k-n-x)
. p k"“
where we have used the facts that lim ————) = 1 in the second in-
nmo \ = log(1 — p)

equality and lim fﬁ = 0 for all 8 > 0 in the last inequality. And the theorem

follows from (2.7)-(2.8) aad (2.11). O
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Proof of Theorem 1.8. Let us first observe that

en) I (1-2) e[ - HED 88

=1

for k < % with 0 < 8 < 1. So, after substituting (2.12} into (2.9} and noting the

2

k
fact that lim — = 0, we obtain
n—oo 1

A> C_:"(cnel-c..)k—lel—c.
k2
_C ka 1
= O(n(é—-l)(k—-l)—l)'
With this lower bound of A, (2.7) becomes
Aln, k,wq) < 3 ( 1
Awo ~ wgelwo-2)(k-1} n(w0—2)|(6-1)(k—1)—1+§,§]+1-2ﬁ)
nlwo—2)-1+28 1
2.13 =
(2.13) (woe(wu—‘z)(k—l))O(n(wo—z)[(s—l)(k—1)+§,‘3 )
1 1
< —0 .
~ wy (n(wo—2)[(6-—l)(k-1)+2f-])
Obviously, the right hand side converges to 0 as n goes to infinity. Again by

Stirling’s formula ([12],p.52), k! ~ v2xk**4e~*%, an upper bound of the number of
isolated trees can be computed. That is, )

wa < ny _ n!
=k} (n— k)
. n o A"rEn—kyk
”"2“(n—k) ( k )
- < Cnft -8k
< C-1DtE-1)

0<

for k sufficiently large. This immediately implies that, for k large enough,
(U-’D _ 1)1 < Cn(un—2)(5—l)(k—1).

Thus, we conclude from this bound and (2.13) that

Aln, E,w

0 < wolA(n, k,ung) < wu!%-'ro—)

1
1y
< (wo 1)°0(n(wo—z)[w'l)(k-l)"'!gl)
1

S FAGwo-2)

which converges to zero as wyp increases to infinity. a
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Abstract

This paper derives the distribution of the ATDS incubation period, by considering two models which
are more complicated than the ones usually studied. Model 1 is a multistate Markovian model with
probabilities of moving back and forth from one state to the next, with the possible onset of AIDS at any
stages. Model 2, of a similar kind, has an added state B for the onset of AIDS related illnesses, which
may also lead to AIDS. There follows a good deal of matrix algebra, ending with distributions of the
AIDS incubation period which are (different) weighted sums of gamma distributions for both Models.
Keywords: HIV incubation distribution, homogeneous Markov process, generator matrix and first pas-
sage probability distribution .

Mathematical Subject Classification 2002: 60G07, 15A21

1 Introduction and main results.

In the studies of incubation of Acquired Immunodeficiency Syndrome (AIDS), an important problem is
the characterization of the probability distribution of the random time between infection with Human
Immunodeficiency Virus (HIV) to AIDS onset. This probability distribution has been referred to as the
AIDS incubation distribution. We also know that the mean value of this distribution is usually very large
taking a value of about 10 years for people between ages 20-50 (Anderson et al., 1989).
In this paper, we will derive this probability distribution in two models as follows.
b2 , B Br-1 B

8 ¢ ; 52 ¢ 3 e — 8 ——= S
il Y2 The—2 Ye-1

AIDS



Figure 1:  Maodel 1

The model given in Figure 1 is for the HIV epidemic in which f;, (> 0} and p; denote the transition
rates. In this model, §; corresponds to the exposure stage of the Walter-fleed staging system (WRO
stage, see Redfield and Burke, 1988) and is the HIV infected but antibody negative stage defined in
Longini et al.(1989a, 1989b, 1991, 1992). In Tan and Hsu (1989), S; was referred to as the latent stage
(L-stage) to account for the latency of HIV provirus. In Figure 1, AIDS denotes the AIDS stage and S;
denotes the (i — 1)st substage of the infective stage (i = 2,3,...,k). The Walter-Reed staging system
assumed k = 5; Hethcote et al.{1991) assumed k = 6 whereas Longini et al.(1991) assumed k = 7. The
model in Figure 1 is more general than most of the models in the literature in the following two aspects:

(2) We assume that it is possible to have backward transition from 5; to S;_;. The data reported by
Nagelkerke et al.(1990) suggests that this is possible and hence should be taken into account.

(b) We assume also that it is possible to develop AIDS from any substages of infective stages, i.e.,
5; — AIDS for i < k. The MACS data (Multicenter AIDS Cohort Studies) reported by Zhou et
al.(1993) and the new revised 1993 AIDS defined by CDC (Center for Disease Control, Atlanta,
GA) suggest that it is possible to have §; — AIDS for i < k and hence should be taken into account.

Notice that if §; =0 for2 £i < kandif pj =0 for 1 < j € k— 1, then the model in Figure 1 reduces
to the model considered by Longini et al.(1989a, 1983b, 1991, 1992).

Figure 1 is assumed that AIDS can be developed directly from any substages of the infective stages.
Since the average incubation period is usually very long, intuitively it is difficult to imagine that AIDS
would be developed directly from early substages of the infective stage. Because of this consideration, we
will postulate a state B for AIDS-related illness and consider a modified model in Figure 2. Notice that
in the CDC staging system (see CDC Report, 1986), the stage B has been suggested as a stage between
the infective stage and the AIDS stage. Hence the model in Figure 2 is in essence a reformulation of the
CDC staging system of the HIV epldenuc.

Ae-a [:
§) === 5 —— ...... _ S —/
‘!k—: ‘Yls—l
.
AIDS

Figure 2: Model 2

In Model 1 and Model 2, let X; (t > 0) be a random variable which value is the stage of HIV epidemic
at the time ¢ and vy is the transition rate at which X, jumps from i to j. We assume that (X,) is a
homogeneous Markov process and the transition matrix P(t) = [p;;(t)] satisfies (1.1) as follows.
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For At — 0,
Pii(At) = vi; At + o{At)  where 1 # j,
pi(At) = 1 — vy At + ofAt), (1)
o(At)

Uiz 2 O,U.'i = gv‘-j and t.‘]::I—I-lO At =0.

Qur main results can be stated as follows :

Theorem 1.1 (Model 1) For ig = 1,2,...,%, let T}, be the first passage time of state S;, to AIDS stage
in Model 1 and f;, be its probability function. Then
k-1 k
1. fi, can be written in the weighted sums of Gamma density function, f;,(t) = EZc::';t"e‘b“
: =0 i=1
where ¢;} and b; are constants, and -1 k

i |
2. the average time of AIDS incubation from stage S;, is E(T;,) = Z Zc:;(—]bj;—.‘l,)
F=0i=1 i

Theorem 1.2 (Model 2) Let T;,, f;, and E(T;,} be defined as in Theorem 1.1 for Model 2. Then

k k+1 L k k+1 . (J + 1)' i
fio(t) = Zzaﬁ.‘;t.‘re-m and E(T;,) = ZZJ:_‘;—F— where d;} and b; are constants.
=0 i=1 j=0i=1 i
Furthermore, if we follow the procedure in Section 4, the constants in Theorem 1.1 and Theorem 1.2
can be found. -
2 Proof of Theorem 1.1. -

In the first four theorems, we give some auxiliary results on matrix algebra in order to prove our main
results.

Theorem 2.1. {Curtis 1984, Chopter 7) Let A be a k x k matriz with eigenvalues by, bz, ..., bs. Then
A is similar to a k x k matriz J which of the form

Ji 0 0 0
¢ J, 0 0

J=|: e (2.1)
0 - 0 Joo1 0
0 ... 0 Jn

for somen €N and for | = 1,2,...,n there exists b; (i = 1,2,...,k) such that
b 1 0 .-~ 0
0o 5 1 --- 0
J=1: : ok or [b;].
0 0 b 1
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The matriz J 15 colled the Jordan canonical form corresponding io A.

Furthermore, we know that the Jordan canonical form J corresponding to A can be represented in the
form

b, d 0 . 0
0 b d - 0
0 0 by drer
[ 1 S 0 by

where d; € {0,1}.
Theorem 2.2. Let Ay be a iri-diagonal k x k matriz of the form

(A -1 0 6 ]

—ﬂg AQ -2 0 ... 0

0 -8 X -7 0 0
Ae=1] . A

0 ... L R

| 0 0 —Bx A i

where 3; 20, 7 >0 and i 2 v + 0; fori =1,2,...,k. Then A, has a positive deferminant.

Proof. Let A\; = i + B; + ¢; for some ¢; > 0. It is clear that det A; > 0. To prove the theorem by
induction, we suppose that

det A, det Ay, ..., det A; have positive determinants for k € N. (2.2)
In order to show det Ag,y > 0, it suffices to prove the following:
A2 =m0 0
- —B3 A -y 0 ...l 0
det A; > (1 + )| : Do lEmmeeem >0 (2.3)
0 e, “Brot Aot =it
G 0 -5 At

for 1 =2,3,...,k+1.
We also prove (2.3) by induction on {2,3,...,k+1}. Sincedet Ay = (m+G1+a)(e+B2+e)—1b2 2

{61 +€1)A2 + 7112 > 0, the basis step of induction holds. Next we assume that (2.3) holds for 2,3,...,m
where m € {2,3,...,k}. Then

det Api
A —y 0 .. 1] - —v2 0 .. 0
—Bs Az —vs 0 ....... 0 0 X3 -1 0 «ooenl. 0
=m+H+a)l : ColAmy o :
0 ... Am Y 0 ... Am —¥m
0 e —Bmsr Amet 0 e Bt Amel
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A2 =2 O e 0 P 0
—ﬁg A3 “73 0 ....... 0 —ﬁ.: )q —74 0o ....... 0
={f+ea) - mb|
O e Am —Ym 0 e, A —Ym
0 e Bt Amai 0 oo —Boir Amat
Az -2 0 ... 0
B A =3 O ... 0
) :
0 Am —~Ym
0 e, —Bosr Am
A =2 0 i 0 M =1 0 .. 0
-3 A —-—m 0 ... 0 =By M 12 0 ....... 0
2B t+e) -~ mb) ! :
0 e Am ~Ym 0 e Am =
0 el —Brt1 Amir 0 e —Bmtr Ama
A o—wm 0 Ll 0 -
—f4 M -1 0 ... 0
+71 | (B2 +e)] : R I o i Ry MY
0 i Am ~Ym
0 il B+l Amtl
Ag Y2 0 ..., 0
B A - 0 . 0
2(B+e) ol Ym4r >0
0 Am —Ym
0 .. —Bm+1 Am+l

where we have used the induction hypothesis in the first inequality and (2.2) in the second inequality.

Theorem 2.3. (Curtis 1984, Chapter 10) Let A and B be k x k matrices such that AB = BA. Then

etef = efet where eX = Z —X’ and X© is the identity matric with the same dimension of X.
i=0
Sk+1} where Sk is the AIDS state. Hence

In Model 1, the state space of {X;|t > 0} is {$;,5:,...,
k, we see that 51, 53,...,5

the state k+1 is an absorbing state and by the fact that »; > 0for: = 1,2,...,
are transient states. Starting at time ¢t = 0, let T; be the random time that S; is absorbed into Siyq,

i=1,2,...,k Then T; is referred to as the first passage time of S; and f;(t), the probability function,



the first passage probability of S;. In what follows, we put f(t) = [fi(t},..., fe(t)]T, where T denotes
the transpose.

Theorem 2.4. 1} The generator matriz of (X,) is the (k+ 1) % (k + 1) matriz -Q such that

(A% - ... 0 0 ~p |
- Az ~72 ... Y ~H2
A : (2.4)
0 0 . Ak ~Te-r —HE-L
0 0 ... =B A ~Yk
6 0 .. 0 0 0

where i =Bi+vitpifori=1,2,.. . k-1, A, =0 +7 and §; =0.

2) Let A= A in Theorem 2.2. If A is invertible, then f(t) = e~ 4 A1y where 1, =[1,1,..., 47,

k
Proof.

1) From Model 1 and (1.1}, for every 4,7 = 1,2,...,k wesee that v = O for [ — 3| > 1, vy =
Yiy Vifk+1) = i and Vifi-1) = Bi (i 1). Since the (k + 1)st state is an absorbing state, v(x41); = 0 for
j=1,2,...,k. Sothe generator matrix of {X,|f > 0} is —Q where Q is defined by (2.4).

A —p

2} We observe that Q =
0 0

where p = [w1,pi2,-..,ux)7 and O = [0,0,---,0].
LS
k

]forj=1,2.---. From this fact and

] (b+1)x{k+1)
Al Ay
0 0
the facts that P(t) = e‘Q:(see Sydney (2002) p.388) and

Hence, by inductive reasoning, we have that Q7 =

- ¢ s B
ANk —eMu=-A ‘{Z(—I)’ﬁﬁ’ —li}p = -E(—l)’ﬁA’ “,

j=0 i=1
o -tJ .
we have Pit) =Y (-1 =
= ¥
T LA
=TI+ Z(—l)"ﬁ 4] 0
j=1
b o = o
DA -4 DR
=hp+ |7 3=t
O 0

-At ~1 _ a—AL
_ 4 A [Ik € l,U- ) (25)
0y 1
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T
Let h(t) = [Pl(k-{-l)(t) pg(k.,_;)(t) R pk(k+1)(t)] . Hence, by (25), we have

h(t) = A~ (L — A (2.6)

Fort>0andi=1,2,...,k we note that

[0, +,0, 1,0, -, O)(h(2))

i—th

= Pige+1) ()

= Prob{{X, = k+1L,Ti > t|Xo = i}) + P({X, = k+ 1,Ts < t|Xo = i})
= Prob({X, = k+1,T; < t|Xo =1})

= Prob(T; < t)

= Fy(t)  where F;(t) is the distribution function of T;.

Hence f(t) = i(h(t . From this fact, (2.6) and the fact that
dt

A]_ it 31 0 ....... 0
-0 Az =2 e 0 *r
Aly,=| 0 =B A ....... 0 = [ﬂl TR ka] = W, 2.7
0 L 0 -6 Al 1
we have, f(t) = —:—t[A‘I[Ik —e MAL) = %{lk —e A, = emAt4),, #

Proof of Theorem 1.1 Let A be defined as in Theorem 2.4. By Theorem 2.2, and Theorem 2.4 we have

f(t) = e~ ALAL,. (2.8)

From Theorem 2.1, there exist the k x k Jordan Canonical form

[, &, 0 ......... 0 ]

0 b d2 0 --- 0

0 0 by ds 0
J=1]. . .

0 ...... 0 bg-1 di—y

0 .. 0 b

where by, b3,. .., b are eigenvalues of A and d; € {0,1} fori = 1,2,...,k and an invertible matrix V such

that A = VJV ~1. Moreaver, we know that there exists n € N such that J can be written in the form of
(2.1). Foreach {=1,2,...,n, if
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[ Y| 0 0 b, O 0 ¢ 0 i 0
0 & 1 0 0 & O 0 0 0 1 ¢
J = Jlet §p= e, and N =
] C b 1 ¥} c b O 0 0 0 1
0 ... 0 b 0 e 0 b 0 .. 0
and if J; = [b;], let S = [b;] and N; = [0]. Then
J=8+N and SN =NS forall=12...,n
Let
N, 0 0 ver 0 0 &4 0 - 0
0 N O 0 0 0 d; 1]
N= = : »
0 0 Ny 0O 0 0 0 di
0 ........ 0 N, 0 ........ 0 0
S5 0 0 0 b 0 0 0
0 S O 0 0 & 0 0
S = E = '
0 0 S,.; 0 0 0 by 0
0 ........ 0 8. 0 ... 0 b
N=VNV~! and §=VSVL,
So, J =N+ § and NS~ SN. These imply
A=N+F% and NS=FN. (2.9)
Note that
et 0 ... 0
oo ~bat
-5t _ (—tS)" - 0 € 0
€ - nz:=0 n! - . .
0 ... e~ oxt

and for natural number m we have N™ = [ng") ] where
i+m—1
]_[_ d, fj=i+mandj<k,

I=t

0, otherwise.

ng") =



-1 m
(—tA:) = [,G“J'] where

Hence N™ =0 for m > k and ¢~ Nt = Z

m=0

S;”( |)= ifj>iand j=i+p,
p.
B =41, if j =i,
0, if § <.

By (2.7) and (2.8) we have

fio () = egf(t) where e:f: = (0,...,0,\_\1’_1,0,...,0)
ip—th

AL T .
=e [#1 Mz e m:] ;  which by (2.9)

— T
=efeSte N [Ml Hz - m;]

—51 —Ntv-

T
=el Ve [# B2 - P-k]

T
k k k
= [e"‘“v.-ul LG R ﬂ'““%k] 18:5) [2 Yk v ot D ”ii#i]
i=1 i=1 i=1

where V = (v;;) and V™1 = (uf;) -
= |e~ bty E(—l)z"e‘b“v n2 A Zk:(—l)k le=bity, mlE=0_= !
ol & iolH2 (2- ) & “ViglTh ik (k 0!
k ko T
[;1 vlt.""i Z: 112.[.1, Tt E vk\'”‘-]
k-1 k
= Zc“?tje"'“
=0 i=1
where
2V 4y 2 ifi+j<k,
. , itz +4
gp=¢ 7' Yot E. ' ‘u'"v('h)r i+ (2.10)
0, otherwise,
i
and [[di=1forj<i.
I=i
n!
By the fact that f trebtdt = i We see that the average time of AIDS incubation from stage S, is
- o

k-1 &

b = [ eta@a =Yy e

F=0i=1




439

3 Proof of Theorem 1.2.

Let A be the (k + 1) x {k 4+ 1) matrix defined by A = [}i ;:] where
A -m O e 0
B A -m 0
R=| : : ,u=[#1,ﬂ2:---,#k]T and 0 ={0,0,...,0].
¢ o =Bror Aol —Te-1 k
0 ... —Bh Ak

Since R has the positive determinant, we have det A = g det R > 0 which implies that A has the positive
determinant. By the argument in Theorem 2.4 we can show that f; (t) = e ™ Rl;,. Let

by dy ....... 0

0 b ....... 0
J =

........... b dy

............... by

be the Jordan canonical form corresponding to A where by, ..., by are eigenvalues of A and d; € {0, 1}

and U = [uy], U™ = [u},] be such that A = UJU~1. By following the argument in the proof of Theorem
1.1 we have

k k4l
Folty=ehe ™Rl =) ) digtie s
j=01i=1
-
where
(_1)1' i+j-1 , . .
do=¢ ! ( Il d‘) Yieilfiyjyeen)¥Br i+ SR,
i3 =i
0, otherwise.
R REL Gy
We also know that the mean-time of Model 2 is E{T;,) = Z Z d::‘—l;fﬁ_ #
j=0i=1 i

4 Procedure to find AIDS incubation and examples.

From the proof of Theorem 1.1, we have the procedure to find AIDS incubation as follows :



Step 1. Find all eigenvalues by, b,. .., b of the matrix

Al —M aes 0 0
-f2 A2 -m v 0
A=| : ' . .
0 0 v Ak—l —Yk-1
0 0 ver =B Ak
Step 2. Find the invertible matrix P and the Jordan canonical form
6, & 0 ......... 0]
0 b d 0 - 0
0 0 b3 d3 - 0
J=1. . . .
0 ...... 0 by dry
0 ... 0 b |

where d; € {0,1} (see Bronson (1969), Chapter 8) which satisfy the condition A = PJP~! .
Step 3. By substitution all of constants from Step 1 and Step 2 in formulas (2.10) we can solve the
AIDS incubation distribution.

For Model 2, we also have the same procedure of Model 1.
Example 4.1. {Model 1 of Tan and Byers 1993) Assume that y; =0 fori=1,2,»..,k— 1 and 5; =0,
ym=vfori=12,...,k

§ —— 85—+ 8 S, —— AIDS
Model 1 of Tan and Byers 1993
Step 1 Since

¥y =y 0 ... 0

0 ~ — 0 0
A= '

0 ........ 0 v -~

0 e 0 ¥

we can see that - is the eigenvalue of matrix A in this model.
Step 2 We can find

. 0 ... o]
(—m)*? 0 ...... 0 (—)k-? .
0 (-7)k-? 0 0 0 = 0 0
P ={u;]= , Pl = [v;j] =
0 0 — 0 1
0 0 1 ¢ 0 5 °
0 0 1




and
¥y 1 0 ... 0
0 10 0
J =
o ..... 0
[ 0 =
Henced; =1fori=1,2,...,k—1.
Step 3 From Step 1, Step 2 and (2.10),
gkttt . .
c::= m, lf‘l=’lo&ndj=k—-1‘-o,
0, otherwise.
FRmiot _
So fi,(t) = T ti~% e~ which is the Gamma density.
—ig)!

Example 4.2. (Model 1 of Longini et al. (1989a, 1989b, 1991) and Anderson et al. (1989)) Assume that
pi=0fori=12... k-1 8, =0fori=1,2,...,k and ~; are distinct.

S — w8 8 Sy —*~ AIDS
Meodel 1 of Longini et al. (1989a, 1989b, 1991) and Anderson et al. {1989)
Follow the procedure, we have

M N 0 ... 0 T 0 ... 1]
0 % -7 0 0 0 72 0 0
A = E N J= 3
-
0 ... 1] Te—-1 —Tk-1 1] 0 Y1 0
0 e 0 Yk o ...... [0 Tk
P = [p;;] and P~! = [p;] where
it
i=1 Ve
X itigy, L=, i<,
Pij = < b=t it i Bamle /1 and o = lZI ('Yt _ "".)
0, ifi>j, t=itl
0, ifi>j.
Hence d; =0 fori=1,2,...,k — 1 which implies that
k
fa =y e =PI || 0 e e
i=1 =1 \j=1 77 F II (v —w) =t 1[0y —w)
F=i+l i=1

A
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