พิศิษฐ์ อริยเดชวณิช: การผลิตและประยุกต์ใช้ถ่านกัมมันต์จากยางล้อใช้แล้ว (PRODUCTION AND APPLICATION OF ACTIVATED CARBON FROM WASTE TIRES) อ. ที่ปรึกษา: ศ. ตร. วิวัฒน์ ตัณฑะพานิชกุล, อ. ที่ปรึกษาร่วม: ศ. ตร. ฮะจิ เมะ ทะมอน จำนวนหน้า 128 หน้า, ISBN 974-17-2212-5.

ถ่านกัมมันต์ได้รับการเตรียมจากยางล้อใช้แล้ว และยางล้อที่ผ่านการสลายพันธะแล้ว โดยวิธีการแอคติเวชั่นด้วยใอน้ำทั่วไป กระบวนการทั่วไปซึ่งเพิ่มการทรีทเมนต์ด้วยกรดก่อนการ แอคติเวชั่นด้วยใอน้ำ, และกระบวนการที่มีการพรี-ทรีทเมนต์ด้วยสารประกอบโลหะ และลักษณะรู พรุนของถ่านกัมมันต์ที่ได้นั้นได้รับการตรวจสอบ นอกจากนั้น ผลกระทบของอัตราการเพิ่ม อุณหภูมิในการคาร์บอไนเซชั่น, อุณหภูมิการคาร์บอไนเซชั่น, และอุณหภูมิการแอคติเวชั่น ที่มีต่อ คุณสมบัติของถ่านกัมมันต์ ได้รับการตรวจลอบเช่นกัน อนึ่ง ถ่านกัมมันต์ที่เตรียมได้นั้น มี ปริมาตรของเมโซพอร์ และไมโครพอร์ สูงถึง 1.62 และ 0.57 ลูกบาศก์เซนติเมตรต่อกรัม ตาม ลำดับ พร้อมกับค่าพื้นที่ผิวสูงถึง 1119 ตารางเมตรต่อกรัม

ในการศึกษาคุณสมบัติการดูดซับในเฟลของเหลวนั้น พีนอลและสีย้อมอินทรี ย์2 ชนิด ได้ แก่ แบล็ค 5 และ เร็ค 31 ได้ถูกเลือกเป็นสารดูดซับตัวอย่าง ถ่านกัมมันต์ที่เตรียมโดยมีการทรีท เมนต์ด้วยกรคไฮโดรคลอริคก่อนการแอคติเวชั่นถูกทดสอบเปรียบเทียบกับถ่านกัมมันต์ทางการค้า ผลการทดลองการดูดซับในเฟลของเหลวถูกระบุว่า ถ่านกัมมันต์ที่ได้นั้นมีความสามารถในการดูด ขับฟืนอลเปรียบได้กับถ่านกัมมันต์ทางการค้าแต่มีความสามารถในการดูดขับสีย้อมอินทรี ย์สูงกว่า ถ่านกัมมันต์ทางการค้าอย่างชัดเจน เนื่องค้วยคุณสมบัติในการดูดขับและประสิทธิภาพในการคืน สภาพด้วยเอธทานอลที่ดี ถ่านกัมมันต์ที่เตรียมได้นั้นมีความเหมาะสมอย่างมากลำหรับการนำไป ใช้ในระบบบำบัดน้ำเสีย โดยเฉพาะกรณีการดูดขับสารโมเลกุลใหญ่

ภาควิชา ว<u>ิศวกรรมเคมี</u> สาชาวิชา ว<u>ิศวกรรมเคมี</u> ปีการศึกษา 2545 ลายมือชื่อฉาจารย์ที่ปรึกษา วิจาน Aajime Samon

ธนิต สวัสดิ์เสวี: การจำลองอนุภาคแบบดิสครีตของสเปาเต็ดเบดที่มีการถ่ายเทความร้อน (DISCRETE PARTICLE SIMULATION OF SPOUTED BED WITH HEAT TRANSFER) อ. ที่ปรึกษา: ศ. ดร. วิวัฒน์ ตัณฑะพานิชกุล, อ.ที่ปรึกษาร่วม: ศ. ดร. ยูตากะ ชื่อจิ, รศ. ดร. ธวัชชัย ชรินพาณิชกุล จำนวนหน้า 115 หน้า. ISBN 974-17-3950-8

อากาศพลศาสตร์ของอนุภาคและการใหลของแก๊สในสเปาเต็ดเบดแบบสองมิติที่มีแผ่นกั้น (draft plates) อยู่ภายใน ได้ถูกศึกษาโดยอาศัยวิธีการแบบดีสครีตอีลิเมนต์ (Discrete element รูปทรงของสเปาเต็ดเบดแบบสองมิติที่มีแผ่นกั้นถูกกำหนดให้ใกล้เคียงกับการทดลอง method) ของ Kudra, 1992 และ Kalwar, 1991 คุณสมบัติของอนุภาคกำหนดให้ใกล้เคียงกับข้าวโพด ผล การคำนวณความเร็วต่ำสุดในการเกิดสเปาและความดันลด สอดคล้องตามความล้มพันธ์ของ Kudra, 1992 และ Kalwar, 1991 ในบริเวณสเปาพบว่าความเร็วในแนวดิ่งของอนุภาคลดลงตาม ความสูงของภาชนะที่เพิ่มขึ้น อัตราการใหลเวียนของอนุภาคเพิ่มขึ้นเมื่อสัมประลิทธิ์แรงเสียดทาน ลดลงหรือ ระยะห่างระหว่างแผ่นกั้นที่อยู่ในสเปากับฐานของภาชนะ (Separation height) เพิ่มขึ้น ที่จุดความเร็วต่ำสุดในการเกิดลเปา ความสูงของเบดไม่มีผลกระทบต่ออัตราการไหลเวียนของ อนุภาคในสเปาเต็ดเบดแบบสองมิติที่มีแผ่นกั้นอยู่ภายใน แผ่นกั้นที่อยู่ภายในสเปา ไม่เพียง ช่วย ลดความเร็วต่ำสุดในการเกิดสเปา และ ความดันลด แต่ ยังช่วยเพิ่มความสูงของเบดในการเกิดส เปา (Maximum spoutable bed height) ผลกระทบของการน้ำแผ่นกั้นภายในสเปาออกต่อ ปรากฏการณ์การเกิดสเปา และผลกระทบของแผ่นกั้นที่ด้านบนของสเปา (Deflector) ต่อการแตก หักของเมล็ด ได้ถูกศึกษาด้วย การถ่ายเทความร้อนระหว่างแก๊สไปยังอนุภาคในสเปาเต็ดเบดแบบ สองมิติที่มีแผ่นกั้นอยู่ภายในได้ถูกศึกษาโดยใช้วิธีการแบบดีสครีตอิลิเมนต์ร่วมกับแบบจำลองทาง ความร้อนที่ได้พัฒนาขึ้นมา ผลการศึกษาพบว่าการถ่ายเทความร้อนระหว่างแก๊สไปยังอนุภาคเกิด ขึ้นส่วนใหญ่ในบริเวณสเปา ซึ่งสอดคล้องกับรายงานของ Freitas and Freire (1998).

ภาควิชาวิศวกรรมเคมี	ลายมือชื่อนิสิต	The	אומפתה	
สาชาวิชาวิศวกรรมเคมี	ลายมือขึ่ออาจารย์ที่	ปรึกษา.	Sal one	า:พาเมื่อ
ปีการศึกษา2546				
				0

V. Chementled

ขจรศักดิ์ เพื่องนวกิจ : การบำบัคพร้อมกันของสารอินทรีย์ระเหยง่ายในก๊าซและฟืนอลในน้ำโคย ใช้เครื่องปฏิกรณ์ปล่อยโคโรนา (SIMULTANEOUS TREATMENT OF GASEOUS VOLATILE ORGANIC COMPOUNDS AND AQUEOUS PHENOL USING A CORONA DISCHARGE REACTOR) อ. ที่ปรึกษา : ศ.คร.วิวัฒน์ คัณฑะพานิชกุล, กาจรย์ที่ปรึกษาร่วม: รศ คร.โนริอากิ ซาโน จำนวนหน้า 132 หน้า, ISBN 974-17-6462-6.

การบำบัคพร้อมกันของก๊าซและน้ำเสียโคยใช้เครื่องปฏิกรณ์ปล่อยโคโรนาแบบผนังเปียกถูกนำเสนอใน งานวิจัยนี้ โดยอะเชทัลคีไฮต์ในอากาศและฟืนอลในน้ำถูกใช้เป็นกรณีศึกษา การศึกษาเริ่มจากการบำบัคอะเชทัลคี-ไฮด์ในก๊าซ, การบำบัคฟีนอลในน้ำ และการบำบัคพร้อมกันของอะเซทัลคีไฮด์ในก๊าซและฟีนอลในน้ำ หลังจากนั้น จึงทำการพัฒนาแบบจำลองทางคณิตศาสตร์ของระบบ โคยปัจจัยหลักที่ทำการศึกษาได้แก่ ของอะเซทัลดีไฮด์ ความเข้มข้นเริ่มต้นของฟืนอลในน้ำ ค่าความเป็นกรค-ค่างของน้ำ ทิสทางการใหลของก๊าซ และ ค่ากระแสโคโรนา ต่อกลไกและประสิทธิภาพการบำบัด ผลการทคลองชี้ให้เห็นว่าการบำบัดแบบพร้อมกันและ แบบแขกของอะเชทัลคีไฮด์ในก๊าซและฟืนอลในน้ำสามารถทำได้จริงอย่างมีประสิทธิภาพ ในการบำบัดแบบพร้อม กันนั้นก๊าซอะเซทัลดีใชค์สามารถถูกกำจัดจากกระแสก๊าซได้อย่างสมบรณ์โดยการคุดขึ้มก๊าซผ่านกระบวนการบับ-บลิ้ง เมื่อความเข้มข้นขาเข้าค่ำกว่า 200 พีพีเอ็ม ในขณะเคียวกันฟืนอลและอะเซทัลดีไฮค์ที่ถูกคูคชึมในน้ำสามารถ ถูกข่อขสลายได้อย่างมีประสิทธิภาพโดย ไฮครอกซิลแรคิลอล (OH) ในน้ำซึ่งผลิตจากการสัมผัสโดยตรงของก๊าซ โคโรนากับน้ำ นอกจากนี้โอโชนยังสามารถย่อยสถายฟืนอถและผลผลิตข้างเคียงบางส่วน อะเชทัลดีไฮค์ในช่วง ความเข้มข้นที่ค่ำกว่า 200 พีพีเอ็ม นั้น ไม่มีผลกระทบค่อการย่อยสลายของฟีนอลเข้มข้นค่ำกว่า 100 มิลลิกรัมค่อ ลิตร อย่างไรก็ตาม การย่อยสลายของออร์แกนิกคาร์บอนทั้งหมคจะถูกยับยั้งอย่างมากเมื่อความเข้มข้นขาเข้าของ อะเซทัลดีใชค์ สูงกว่า 100 พีพีเอ็ม ทั้งนี้เนื่องจากเกิดการสะสมในน้ำของกรคอะซิติกซึ่งเป็นผลผลิตระหว่างทางตัว สุดท้ายของระบบที่เกิดจากการย่อยสถายของอะเซทัลดีใชด์ นอกจากนั้นยังพบว่า การเพิ่มค่าความเป็นกรด-ค่าง ถึง 11 สามารถเร่งอัคราการย่อยสลายกรคอะซิติกอย่างเห็นได้ชัด

แบบจำลองทางคณิตศาสตร์สำหรับระบบการบำบัดพร้อมกันที่พัฒนาขึ้นสามารถใช้ทำนาขอัคราการข่อข สถาขของอะเซทัลดีไฮค์ ฟีนอล และ ผลผลิตระหว่างทางได้อย่างค่อนข้างดีและสอดคล้องกับผลการทคลอง ซึ่ง สามารถใช้เป็นพื้นฐานในการคำนวณขยาขขนาคระบบบำบัดจริงได้ด้วย กระบวนการบำบัดพร้อมกันนี้ นอกจากจะ สามารถประหยัดค่าใช้จ่ายในการคำเนินการ เวลา และพลังงานที่ใช้แล้ว ยังสามารถประหยัดเงินลงทุนด้านอุปกรณ์ โดยการบำบัดก๊าซและน้ำเสียในกระบวนการเดียวกัน

ภาควิชาวิศวกรรมเคมี	ลายมือชื่อนีสิค	42127	Morde	
สาขาวิชา วิศวกรรมเคมี	ลายนี้คซื้กดาจารย์เร็	ก็ปรีกษา	ononna	1P .
ปีการศึกษา2547	ลายมือชื่ออาจารย์	ที่ปรึกษาร่วม	hail	Serv

ประธาน วงศ์ศรีเวช : การคัดแยกอนุภาคในย่านละเอียคโดยใช้ไฮโครไซโคลน (PARTICLE CLASSIFICATION OF FINE SIZE REGION BY USING HYDROCYCLONE) อ. ที่ปรึกษา : ศ.คร.วิวัฒน์ ตัณฑะพานิชกุล, อ. ที่ปรึกษาร่วม : ศ.คร. ฮิเคโตะ โยชิคะ จำนวนหน้า 155 หน้า. ISBN 974-17-6886-9.

ไฮโดรไซโดลนแบบไฟฟ้าไม่เดยมีการวิจัยมาก่อน การลดขนาดของอนุภากเป็นสิ่งจำเป็นใน หลากหลายอุตสาหกรรม งานวิจัยนี้ไฮโดรไซโดลนแบบไฟฟ้าชนิดใหม่ถูกพัฒนาขึ้นและทดสอบโดยใช้ สารแขวนลอยของซิลิกาขนาดอนุภาคเฉลี่ย 0.754 ใมครอนและมีความเข้มข้น 0.2% โดยปริมาตร ทดสอบ ในไฮโดรไซโดลนขนาด 20 มม. อัตราส่วนทดสอบของอันเดอร์โฟล์ต่อทางเข้าคือ 0,0.1, 0.2 และ 0.3 อัตราไหลทดสอบถือ 0.083*10⁻³, 0.117*10⁻³ และ 0.167*10⁻³ ลบม.ต่อวินาที (5, 7 และ 10 ลิตรต่อนาที) pH ของสารแขวนลอยที่ศึกษาดือ 6.0, 8.0, 9.0 และ 10.0 ส่วนกรวยของไฮโดรไซโดลนต่อกับกล่องฝุ่นรูป ทรงกระบอกเส้นผ่านศูนย์กลาง 41.8 มม. โดยมีแกนโลหะอยู่ตรงกลางระหว่างผนังโลหะซึ่งสามารถ ประยุกต์ศักข์ไฟฟ้าขนาด 50 โวลต์ได้ ความยาวของกล่องฝุ่นที่ศึกษาคือ 53 และ 106 มม. เส้นผ่าน ศูนย์กลางของแกนกลางที่ศึกษามีขนาด 8, 12, 16 และ 20 มม. ทำการศึกษา 3 กรณีแตกต่างกันคือ ก. ไม่มี การประยุกต์ศักข์ไฟฟ้า ข. ขั้วบวกต่อกับแกนกลางและขั้วลบต่อกับด้านผนัง และ ค. ขั้วไฟฟ้าสลับกับ กรณี ข.

ทั้งในกรณีที่ไม่มีและมีอันเดอร์โฟล์ไฮโครไซโคลนที่ต่อกับกล่องฝุ่นแบบชาวจะให้ขนาคอนุภาค ที่ 50%, dso เล็กกว่ากรณีที่ต่อกับกล่องฝุ่นแบบสั้น ตามความกาคหมายทั้งกรณีที่ไม่มีและมีอันเดอร์โฟล์ จะลดขนาดของ dso เมื่อมีศักย์ไฟฟ้า ยิ่งไปกว่านั้นกรณีที่มีอันเดอร์โฟล์จะให้ dso เล็กกว่ากรณีที่ไม่มี อันเดอร์โฟล์ พบได้ว่ากรณี ค. ศักย์ไฟฟ้าจะแสดงผลต่อ dso มากกว่ากรณี ข. การประยุกต์ศักย์ไฟฟ้าใน กรณี ก. สามารถลดขนาดของ dso ได้ 9.6% เทียบกับไม่มีการใช้ศักย์ไฟฟ้า เมื่ออัตราส่วนของอันเดอร์ โฟล์ต่อทางเข้ามีก่าสูงขึ้น dso จะมีขนาดเล็กลง ค่าศักย์เชด้าจะเพิ่มขึ้นเมื่อสารแขวนลอยมี pH สูงขึ้น ศักย์ไฟฟ้ามีผลมากขึ้นเมื่อสารแขวนลอยมี pH สูงขึ้น เมื่อ pH สูงขึ้นจะทำให้ dso เล็กลง ผลรวมของ ศักย์ไฟฟ้าและ pH สามารถลดขนาด dso ได้ 18.8% เทียบกับไม่มีการใช้ศักย์ไฟฟ้า ร่วมกับแกนกลางขนาดใหญ่สุดและค่า pH สูงสุดสามารถลดขนาด dso ได้ถึง 22.7% เทียบกับไม่มีการใช้ ศักย์ไฟฟ้า สภาวะดีที่สุดที่ให้ dso ขนาดเล็กสุดก็อการใช้กล่องฝุ่นแบบยาว ระบบทำงานด้วยสาร แขวนลอยมี pH สูงสุด แกนกลางมีขนาดใหญ่สุด และต่อขั้วบวกกับด้านผนังโดยใช้กรณีแบบมีอันเดอร์ โฟล์ จากผลการทดลองสามารถหาดวามสัมพันธ์ของ dso ได้

ภาควิชา	วิศวกรรมเคมี	ถายมือชื่อนิสิค	ประชาน	379475	,6
สาขาวิชา	.วิ ศ วกรรมเคมี	ลายมือชื่ออาจารย์ที่	ปรึกษา	(1) 127) m	LOND.
ปีการศึกษา	2547	ลายมือชื่ออาจารย์ที่	เปรึกษาร่วม	Hideto	yo shida

วีรยา แซ่ลิ่ม: การพัฒนาแบบจำลองเชิงสโตแคสติกและการจำลองการเกาะแบบกลุ่มก้อน ของแอโรซอลบนเส้นใชอิเลกเทรต (STOCHASTIC MODEL DEVELOPMENT AND SIMULATION OF AGGLOMERATIVE DEPOSITION OF AEROSOL ON AN ELECTRET FIBER) อ. ที่ปรึกษา: ศ.คร. วิวัฒน์ ตัณฑะพานิชกุล, อ.ที่ปรึกษาร่วม: ศ.คร. ชิคาโอะ คานาโอกะ 117 หน้า. ISBN 974-53-1861-2.

ประสิทธิภาพการกรองของแผงกรองอีเลกเทรต แตกต่างจากประสิทธิภาพของแผงกรองที่ เนื่องจากประสิทธิภาพการกรองในช่วงต้นของเส้นใยอิเลกเทรตอาจจะลดลงเมื่อมี ให้โดยทั่วไป การศึกษาในที่นี้จะทำนายค่าสัมประสิทธิ์การเพิ่มประสิทธิภาพ(efficiency ภาระฝุ่นเพิ่มขึ้น enhancement factor) ในการจับอนุภาคบนเส้นใยภายใต้ภาระฝุ่นสำหรับอนุภาคที่ไม่มีประจุและ มีประจจากผลการทดลองที่มีผู้ตีพิมพ์ไว้แล้ว พบว่าค่าประสิทธิภาพการจับอนุภาคบนเส้นใยอิเลก เทรต สามารถคำนวณได้จากผลบวกของประสิทธิภาพเชิงไฟฟ้าและประสิทธิภาพเชิงกล ผลที่ได้ แสดงว่า ค่าประสิทธิภาพการกรองของแผงกรองอิเลกเทรตที่ได้มาจากการคำนวณ สอคคล้องกัน ค่อนข้างคีกับผลการทคลองที่เคยรายงานไว้ทั้งในกรณีอนุภาคที่มีประจุและไม่มีประจุ นอกจากนี้ยัง เพื่อจำลองลักษณะการเกาะตัวแบบกลุ่มก้อนของ ได้ขยายผลของแบบจำลองเชิงส โตแคสติก อนภาคบนเส้นใยอิเลกเทรต และได้ศึกษาถึงผลของค่าพารามิเตอร์ของการสกัดกั้น ค่าพารามิเตอร์ ของแรงทางไฟฟ้า ทั้งกรณีของแรงเหนี่ยวนำ (กรณีอนุภาคไม่มีประจ) และแรงคลอมบ์ (กรณี อนุภาคมีประจุ) จากการศึกษาทั้งกรณือนุภาคที่มีประจุและไม่มีประจุ พบว่าเมื่อค่าพารามิเตอร์ของ การสกัดกั้นมีค่าน้อย การเกาะของอนุภาคจะหนาแน่น ส่วนผลของแรงทางไฟฟ้าต่อรูปทรง พบว่า กรณีที่แรงทางไฟฟ้ามีค่ามาก ลักษณะของเคนไครต์จะสูงขึ้น ตรงขึ้น และเรียวขึ้น กว่ากรณีที่แรง ทางใฟฟ้านี้ค่าบ้อย

นอกเหนือจากที่กล่าวมาแล้วข้างต้น ได้ศึกษาและเปรียบเทียบค่าประสิทธิภาพของแผง
กรองอิเลกเทรต 4 ชิ้น ที่มีค่าเฉลี่ยความหนาแน่นในการบรรจุเท่ากัน แต่การกระจายตัวของเส้นใย
ตามทิสความหนาของแผงกรองมีค่าไม่เท่ากัน ผลที่ได้พบว่าสามารถยึดอายุการใช้งานของแผง
กรองได้ด้วยการทำให้เส้นใยมีความหนาแน่นในการบรรจุต่ำทางด้านขาเข้าของแผงกรอง และ
ค่อยๆเพิ่มความหนาแน่นในการบรรจุมากขึ้นไปยังด้านขาออก

ภาควิชา วิศวกรมมเคมี	ลายมือชื่อนิสิต 📿 🗗 🖳 แหล่น
สาขาวิชาวิศวกรรมเคมี	ลายมือชื่ออาจารย์ที่ปรึกษา 🤝 🦘 พาพนักรุง
ปีการศึกษา2548	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม <i>Ch.kar Karkada</i>

กนกวรรณ กรรโณ: การจำลองแบบสองมิติของการขยายตัวอย่างรวดเร็วของคาร์บอนไดออกไซด์เหนือ วิกฤต(TWO DIMENSIONAL SIMULATION OF RAPID EXPANSION OF SUPERCRITICAL CARBON DIOXIDE) อ.ที่ปรึกษาวิทยานิพนธ์: รศ. ดร. ธวัชชัย ซรินพาณิชกุล 148 หน้า ISBN 974-17-4497-8

การขยายตัวของของไหลเหนือวิกฤตผ่านหัวฉีดเป็นกระบวนการที่สามารถนำมาประยุกต์ใช้ในการผลิต อนุภาคขนาดเล็กมากๆ โดยอาศัยการเปลี่ยนแปลงค่าความหนาแน่นสารละลายของของไหลที่เกิดจากการขยายตัว ของของไหลจากสภาวะเหนือวิกฤตไปสู่สภาวะก๊าซ การจำลองปรากฏการณ์การขยายตัวอย่างรวดเร็วของ คาร์บอนไดออกไซด์เหนือวิกฤตโดยอาศัยแบบจำลองทางคณิตศาสตร์ ต้องคำนึงถึงการประมวลผลชุดสมการที่นำมา ใช้ในการพิจารณากลไกการใหลของของไหล รวมถึงชุดสมการสภาวะที่ใช้ในการประมาณค่าคุณสมบัติของ คาร์บอนโดออกไซด์ด้วย

จากการทดสอบพบว่าสมการสภาวะ Soave-Redlich-Kwong EOS ที่ใช้ค่า compressibility of CO₂ เป็น ชุดสมการสภาวะที่เหมาะสมสำหรับการประมาณค่าคุณสมบัติของคาร์บอนไดออกไซด์

ลำหรับเทคนิคที่นำมาใช้ในการพิจารณากลไกการใหลของคาร์บอนไดออกไซด์ที่เลือกใช้ในงานวิจัยนี้มี 2 เทคนิคคือวิธีผลต่างสืบแบบเอ็กซ์พลิสิทและแบบอิมพลิสิท พบว่าผลที่ได้ให้ค่าที่สอดคล้องกับงานวิจัยที่ผ่านมา จาก การศึกษาปัจจัยที่มีผลกระทบต่อการขยายตัวของคาร์บอนไดออกไซด์เหนือวิกฤตผ่านหัวฉีด พบว่าอุณหภูมิและความ ดันของคาร์บอนไดออกไซด์ก่อนออกจากหัวฉีดมีผลกระทบต่อกระบวนการค่อนข้างมาก ส่วนความเร็วของ คาร์บอนไดออกไซด์ที่ถูกฉีดออกจากหัวฉีดพบว่ามีผลกระทบต่อการขยายตัวน้อยมาก

ภาควิชา	วิศวกรรมเคมี	ุลายมือชื่อนิสิด	morn	ารรไทย	
สาขาวิชา	วิศวกรรษเคมี	. ลายมือชื่ออาจารย์ที่	ปรึกษา		~ ~>
ปีการศึกษา	วิศวกรรมเคมี 2546	ลายมือชื่ออาจารย์ที่เ	เร็กษาร่วม Www	nt Tanthay	rambhakoon

ศุภวัฒน์ นาควิมล : การทดสอบประสิทธิภาพของตาข่ายเปียกเอียงในการจับเก็บฝุ่นโดย ควบคุมวัฏจักรของเวลาเปิด-ปิดน้ำ (EFFICIENCY TEST OF WETTED INCLINED SCREEN FOR COLLECTING DUST BY ON-OFF CYCLE TIME CONTROL OF WATER) อ.ที่ปรึกษา : ศ.ดร.วิวัฒน์ ตัณฑะพานิชกุล : 282 หน้า ISBN 974--17--1611 -7

งานวิจัยนี้เป็นการศึกษาประสิทธิภาพในการจับเก็บผุ้น ของตาข่าย HDPE ในชุดอุปกรณ์การทดสอบ ที่ถูกจัดสร้างขึ้น และศึกษาถึงตัวแปรกระบวนการที่มีอิทธิพลต่อประสิทธิภาพการจับเก็บผุ้นของตาข่ายเปียก อันได้แก่ ความเข้มข้นฝุ่น, ชนิดของฝุ่น (ฝุ่นหินและ ฝุ่น EVA), ความเร็วลมปรากฏบริเวณตาข่ายเปียก อัตรา การใหลของน้ำที่เคลือบผิวตาข่าย, ช่วงเวลาของการเปิด-ปิดอัตราการใหลของน้ำ และลักษณะของการขึ้งตา ข่าย (แนวดิ่ง และเอียง 10 องศาจากแนวดิ่งไปด้านหน้า) นอกจากนี้ยังได้สังเกตปรากฏการณ์ที่เกิดขึ้นระหว่าง การจับเก็บฝุ่น รวมถึงศึกษาลักษณะสมบัติของฝุ่นที่ใช้ในการทดลอง

จากการศึกษาลักษณะสมบัติของฝุ่นทั้ง 2 ชนิดพบว่า มีขนาดอนุภาคที่ความถี่สะสม 50%เท่ากับ 4.71 และ 30.57 ไมโครเมตร สำหรับฝุ่นหินและฝุ่น EVA ตามลำดับ สำหรับประสิทธิภาพในการจับเก็บฝุ่นพบ ว่าประสิทธิภาพในการจับเก็บฝุ่น EVA สูงกว่าฝุ่นหิน เนื่องจากขนาดอนุภาคของฝุ่น EVA ใหญ่กว่าฝุ่นหินมาก และที่ความเร็วลมปรากฏหน้าตาข่ายเท่ากันเมื่อความเข้มข้นฝุ่นขาเข้าเพิ่มขึ้น ประสิทธิภาพในการจับเก็บฝุ่น ทั้งสองชนิดจะเพิ่มขึ้นทั้งนี้เนื่องจากการเกิดขั้นเค้กของอนุภาคบนตาข่ายได้หนาขึ้น ในการศึกษากรณีที่ ความเร็วปรากฏหน้าตาข่ายเปียกเพิ่มขึ้น ประสิทธิภาพในการจับเก็บฝุ่นจะเพิ่มขึ้น ทั้งนี้เนื่องมาจากการเกิด ของขั้นเค้กที่หนาขึ้นและอิทธิพลของกลไกการกระทบด้วยแรงเฉื่อยที่เพิ่มขึ้น เมื่ออัดราการไหลของน้ำเพิ่มสูงขึ้น ประสิทธิภาพในการจับเก็บฝุ่นจะสูงขึ้นเนื่องจากอิทธิพลของกลไกการเปิด-ปิดอัตราการใหลของน้ำอย่างเฉียบ พลันหรือ Shuttering Effect ที่เพิ่มขึ้น แต่เมื่อมีการควบคุมช่วงเวลาการเปิด-ปิดชัตราการใหลของน้ำเป็นรัฏ จักร พบว่าที่ช่วงเวลาของการเปิดอัตราการใหลของน้ำ 120 วินาที และมีการปิดอัตราการใหลของน้ำ 60 วินาที จะให้ประสิทธิภาพในการจับเก็บผุ้นที่สูงกว่ากรณีที่เปิดน้ำตลอดเวลา เนื่องจากในเวลาที่ปิดน้ำจะเกิดขั้นเค้กที่ ช่วยเพิ่มประสิทธิภาพในการจับเก็บฝุ่น และในช่วงที่เริ่มเปิดน้ำก็ยังมีชั้นเค้กเหลือมากกว่ากรณีที่เปิดน้ำตลอด สำหรับลักษณะของการขึ้งตาข่ายต่อประสิทธิภาพในการจับเก็บผู้นพบว่า ดาข่ายที่ถูกชึ่งเอียง 10 องศาจาก แนวดิ่งไปด้านหน้าจะให้ประสิทธิภาพในการจับเก็บฝุ่นดีกว่าดาข่ายแนวดิ่ง ที่สภาวะการทดลองเดียวกัน เนื่อง จากฟิล์มน้ำจะเปียกบริเวณด้านหน้าของตาข่ายได้ดีกว่า อนึ่งประสิทธิภาพสูงสุดในการจับเก็บผุ้นที่ทำได้คือ 74.48 % สำหรับฝุ่นหิน และฝุ่น EVA เท่ากับ 79.15%

ภาควิชาวิศวกรรมเคมี	ลายมือชื่อนิสิต ฟูกว์อบซ์ นุกลุวูมอ
สาขาวิชาวิศวกรรมเคมี	ลายมือชื่อนิสิต ฟกว์ณบ์ นาดามอ ลายมือชื่ออาจารย์ที่ปรึกษา 🗪 อานาวิหานิยาค
ปีการศึกษา2545	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

สิทธิเดช ลิทธิประณีต : การเตรียมแบบโฮโดรเทอร์มอถมถากรกำหนดถักษณะสมบัติ ของถ่านกัมมันต์จากผงถ่านหินแอนทราไซต์ (HYDROTHERMAL PREPARATION AND CHARACTERIZATION OF ACTIVAED CARBON FROM ANTHRACITE POWDER) อ. ที่ปรึกษา : ศ. ดร. วิวัฒน์ ตัณฑะพานิชกุล, จำนวนหน้า 128 หน้า. ISBN 974-17-4836-1

งานวิจัยนี้ได้นำน้ำที่สภาวะเหนือวิกฤตมาใช้เพิ่มรูพรุนของถ่านหินแอนทราไขด์ และถ่านกัม มันต์ 3 ประเภท คือถ่านกัมมันต์ทางการค้า ถ่านกัมมันต์จากยางรถยนต์ใช้และ และถ่านกัมมันต์จาก แอนทราไซด์ น้ำกลั่นและสารละลายไฮโครเจนเปอออกไซด์ได้ถูกใช้เป็นของเหลวที่ก่อให้เกิดสภาวะ เหนือวิกฤตในระบบ ตัวแปรที่ทำการศึกษาคือ เวลาที่ใช้ในการทำปฏิกิริยา การเตรียมถ่านแอนทรา ไซด์ด้วยสารละลายโซเดียมไฮดรอกไซด์หรือโพแทลเขียมไฮดรอกไซด์ก่อนทำปฏิกิริยา และความ เข้มข้นของสารละลายไฮโครเจนเปอออกไซด์ จากผลการทดลองพบว่า เวลาที่ใช้ และ การเตรียมถ่าน แอนทราไซด์ก่อนทำปฏิกิริยาไม่ส่งผลต่อรูพรุนของวัลอุการ์บอน ในกรณีที่ใช้น้ำกลั่นนั้น พื้นที่ผิว และ ปริมาตรของเมโซพอร์ของถ่านกัมมันต์เพิ่มขึ้นเล็กน้อย ในขณะที่ปริมาตรไมโครพอร์ลดลง นอกจากนี้จู พรุนของถ่านกัมมันต์ลดลงเมื่อความเข้มข้นของโฮโดรเจอเปอออกไซด์ลู ขึ้น อย่างไรก็ตามจากผลการ ทดลองสรุปได้ว่าวิธีนี้ไม่สามารถนำมาใช้เพื่อเพิ่มรูพรุนให้กับถ่านกัมมันต์ได้

ในการศึกษาคุณสมบัติการดูดซับในเฟลของเหลวและการนำกลับมาใช้ใหม่ด้วยน้ำที่สภาวะ เหนือวิกฤตนั้น ฟีนอลและสีย้อมอินทรีย์ เร็ด 31 ได้ถูกเลือกเป็นสารดูดขับตัวอย่าง ถ่านกัมมันต์ที่ เตรียมจากผงแอนทราไขต์ที่กระตุ้นด้วยไอน้ำโดยตรง ถูกทดลอบเบรียบเทียบกับถ่านกัมมันต์ทาง การค้า ผลการทดลองการดูดขับในเฟลของเหลวถูกระบุว่า ถ่านกัมมันต์ที่เตรียมได้นั้นมีความสามารถ ในการดูดขับสีย้อม อินทรีย์ต่ำกว่าอย่างขัดเจน นอกจากนี้ประสิทธิภาพในการนำกลับมาใช้ใหม่ครั้งที่ 1/ 2 ของถ่านกัมมันต์ที่เตรียมได้ และถ่านกัมมันต์ทางการค้าที่อิ่มตัวด้วยฟีนอลคือ 55/98 และ 65/99% ส่วนในกรณีที่อิ่มตัวด้วยสีย้อม อินทรีย์ เร็ด 31คือ 78/100 และ 338/93% ตามลำดับ โดยสูญเสียเนื้อถ่านน้อยกว่า 4% ในการนำกลับมาใช้ใหม่แต่ละครั้ง เนื่องด้วยการสูญเสียเนื้อถ่านที่ต่ำ และประสิทธิภาพในการนำกลับมาใช้ ใหม่ที่สูง การนำกลับมาใช้ใหม่เค้วยน้ำที่สภาวะเหนือวิกฤตจึงเหมาะสมที่จะนำมาใจ้บำบัดถ่านกัม มันต์ที่ใช้แล้ว

ภาควิชา วิ<u>ศวกรรมเคมี</u> สาชาวิชา ว<u>ิศวกรรมเคมี</u> ปีการศึกษา 2546 ลายมือซื่อนิสิต หักมาง หักมางไก ลายมือซื่ออาจารย์ที่ปรึกษา วอส. อันกะเพนธุล. กัมปนาท แก้วปลั่ง : การจำลองการเคลื่อนที่แบบ 3 มิติ ของอนุภาคเคี่ยว ตามการไหลแบบ ปั่นป่วนในก๊าชไซโคลนแบบเป่าลง (SIMULATION OF SINGLE PARTICLE MOTION ALONG 3-DIMENSIONAL TURBULENT FLOW IN AIR CYCLONE WITH BLOWDOWN) อาจารย์ที่ปรึกษา: รศ. คร. ธวัชชัย ชรินพาณิชกุล อาจารย์ที่ปรึกษาร่วม: ศ. คร. วิวัฒน์ ตัณฑะพานิชกุล จำนวนหน้า 109 หน้า. ISBN 974-17-6026-4.

เครื่องคัดแยกใชโคลนเป็นอุปกรณ์ที่นิยมใช้กันอย่างแพร่หลาย เพื่อแยกหรือคัดขนาด อนุภาคออกจากของไหล การปรับปรุงประสิทธิภาพของใชโคลนให้สามารถดักจับอนุภาคขนาด เล็กกว่าระดับไมครอน กระทำได้โดยการดึงของไหลออกจากส่วนบนของถังเก็บฝุ่น ดังนั้น วัตถุ ประสงค์หลักของงานวิจัยคือ ศึกษาการเคลื่อนที่ของของไหลและอนุภาคในก๊าซไซโคลน พร้อมทั้ง ศึกษาผลกระทบของอัตราการเป่าลงต่อประสิทธิภาพการดักจับอนุภาคขนาดเล็กกว่าระดับไมครอน และความดันตกคร่อมไซโคลน โดยประยุกต์ใช้วิธีการคำนวณพลศาสตร์ของไหล (CFD) ดังนั้น โปรแกรมเชิงพาณิชย์ FLUENT™ จึงถูกนำมาใช้เพื่อคำนวณการเคลื่อนที่แบบ 3 มิติ ของของไหล และอนุภาคในสภาวะการไหลแบบปั่นป่วนในไซโคลน

จากการวิจัยพบว่า ประสิทธิภาพการคักจับอนุภาคและความคันลคที่ได้จากการจำลองมี ความใกล้เกียงเป็นอย่างคีกับผลการทคลองของ Dirgo and Leith (1985) และ Yoshida (1996) โคย การใช้แบบจำลอง Reynolds Stress Model (RSM) จะให้ผลการจำลองที่สอคคล้องกับผลการทคลอง มากกว่าการใช้แบบจำลอง $k - \varepsilon$ และ $RNG - k - \varepsilon$ เนื่องจากสมมติฐานของค่าความหนีคปั่นป่วน เป็นแบบนอน-ไอโซทรอปิค ทั้งนี้ ผลการจำลองแสคงให้เห็นว่าการเพิ่มประสิทธิภาพการคักจับ อนุภาคขนาดเล็กกว่าระคับไมครอน สามารถทำได้โคยการเพิ่มความเร็วอากาศ หรือการเพิ่มอัตรา การเป่าลง จากการจำลองพบว่า การเพิ่มความเร็วอากาศจาก 15 เมตรต่อวินาที เป็น 20 เมตรต่อ วินาที จะทำให้ประสิทธิภาพการคักจับอนุภาคขนาด 1.5 ไมครอนเพิ่มขึ้นจาก 6% เป็น 10% และ ความคันลดเพิ่มขึ้น 80% ในขณะที่ การเพิ่มอัตราการเป่าลงเป็น 10% จะสามารถเพิ่มประสิทธิภาพ การคักจับอนุภาคจาก 6% เป็น 21% โดยความคันลดจะเพิ่มขึ้นเพียง 10% เท่านั้น คังนั้น วิธีการคึง อากาศออกจากถังเก็บฝุ่น จะทำให้เพิ่มประสิทธิภาพการคักจับอนุภาคที่มีขนาดเล็กกว่าระคับ ไมครอน และความคันลดได้คีกว่าวิธีการเพิ่มความเร็วอากาศขาเข้า

กาดวิชา	วิศากรรบเคมี	ลาชมือชื่อนิสิค	(~ <u>-</u>	_
				1		
สาขาวิชา	.วิศวกรรมเคมี	ลายมือชื่ออาจารย์ที่ปร	 เกษา		>>/-	
		ลาบมือชื่ออาจารย์ที่ปร	.	-	10	1
ปีการศึกษา	2547	. ลายมือชื่ออาจารย์ที่ปร	รีกษาร่วม	تعرفزت ا	ומת שלי	MUDIO
						/

นายธนญชัย บุญนะที่: การพัฒนาเครื่องมือเฟสดอปเปลอร์อนิโมมิเตอร์เพื่อการศึกษาสำหรับวัด ความเร็วและการกระจายขนาดของหยดน้ำ (DEVELOPMENT OF PEDAGOGICAL PHASE DOPPLER ANEMOMETER FOR MEASURING VELOCITY AND SIZE DISTRIBUTION OF WATER DROPLETS) อ. ที่ปรึกษา : รศ.ดร. ธวัขชัย ชรินพาณิชกุล, อ.ที่ปรึกษาร่วม : ผศ.ดร. หทัยขนก วานิชศรี, ดร. Gerard GREHAN, 175 หน้า. ISBN 974-17-5894-4.

การวิเคราะห์ขนาดของละอองน้ำที่ได้จากการพ่นละอองถือว่าเป็นงานการวิเคราะห์ลักษณะสมบัติ
อนุภาคที่จำเป็นอย่างยิ่ง ไม่ว่าจะเป็นทางอุตสาหกรรมและห้องปฏิบัติการ เฟสดอปเปลอร์อนิโมมิเตอร์เป็นอีก
เทคนิคหนึ่งที่ปัจจุบันกำลังได้รับความนิยมเพราะสามารถวัดความเร็วและขนาดของอนุภาค ไม่ว่าจะเป็น
อนุภาค หยดของของเหลว หรือฟองอากาศในระบบการไหลแบบ 2 วัฏภาค ได้ในเวลาเดียวกัน เทคนิคนี้อาศัย
หลักการการกระเจิงของแสง เมื่ออนุภาควิ่งผ่านปริมาตรที่จะทำการวัด ซึ่งเกิดขึ้นบริเวณที่ลำแสง 2 ลำแสงตัด
กัน โดยข้อมูลเกี่ยวกับขนาดจะคำนวณได้จากการเปลี่ยนแปลงเฟสของการกระเจิงแสง และความเร็วของ
อนุภาคคำนวณได้จากค่าความถี่ในการกระเจิงแสง

งานวิจัยนี้มีจุดประสงค์เพื่อพัฒนาเครื่องมือเฟสดอปเปลอร์อนิโมมิเตอร์ ชนิดหนึ่งมิติ โดยใช้แสง เลเซอร์ฮีเลียม-นีออน ที่มีความยาวคลื่น 632.8 นาโนเมตร และตัวรับสัญญาณ 2 ตัว เพื่อวัดความเร็วและการ กระจายขนาดของหยดน้ำที่ถูกพ่นออกจากหัวฉีดแบบใบนารีและหัวฉีดคลื่นเหนือเสียง โดยทำการปรับเทียบ มาตรฐานของเครื่องมือที่พัฒนาขึ้นด้วยอนุภาคทรงกลมที่รู้ขนาดแน่นอน จากนั้นทำการศึกษาผลของความ น่าเชื่อถือและความแม่นยำของเครื่องมือที่พัฒนาขึ้นโดยเปรียบเทียบผลการวัดความเร็วและการกระจายขนาด ของอนุภาคหยดน้ำกับเครื่องมือที่มีขายในท้องตลาด ผลการเปรียบเทียบพบว่าค่าความคลาดเคลื่อนเฉลี่ยของ ความเร็ว และขนาดของอนุภาคมีค่าน้อยกว่า 15 % และ 25 % ตามลำดับ ซึ่งผลการศึกษานี้แสดงให้เห็นถึง ศักยภาพของเครื่องมือที่พัฒนาขึ้น

ภาควิชา	วิศวกรรมเคมี
สาขาวิชา	วิศวกรรมเคมี
ปีการศึกษา	.2547

ลายมือชื่อฉิสิต ซันเก/ับ ลายมือชื่ออาจารย์ที่ปรึกษา ลายมือชื่ออาจารย์ที่ปรึกษาร่วม H. Vannami ลายมือชื่ออาจารย์ที่ปรึกษาร่วม Lichan

J

ล้นทมณี วังสะจันทานนท์: การพัฒนาเครื่องมาตรฐานสำหรับทดสอบการระเบิดวัสดุ อนุภาคขนาด 20 ลิตรในราคาประหยัด (DEVELOPMENT OF AN ECONOMICAL 20-LITER DUST EXPLOSIBILITY STANDARD TESTER) อาจารย์ที่ปรึกษา: รศ.ตร. ธวัชชัย ชรินพาณิชกุล, อาจารย์ที่ปรึกษาร่วม: ศ.ตร. วิวัฒน์ ตัณฑะพานิชกุล, 177 หน้า ISBN 974-17-7040-5.

วัตถุประสงค์ของงานวิจัยนี้คือ การสร้างเครื่องต้นแบบสำหรับทดสอบสมบัติการระเบิด วัสดุอนุภาค ทำการวัดค่าความดันสูงสุดจากการระเบิด (P_{MAX}) และอัตราสูงสุดของการเพิ่ม ความดัน (dP/dt)_{MAX} ของวัสดุอนุภาคมาตรฐาน หาเวลาหน่วงของการจุดชนวนระเบิดที่เหมาะสม และศึกษาอิทธิพลของขนาดอนุภาคเฉลี่ยที่มีต่อค่า P_{MAX} และ (dP/dt)_{MAX} การทดสอบเบื้องต้น พบว่าเวลาหน่วงก่อนการจุดชนวนระเบิดที่เหมาะสมเท่ากับ 20 มิลลิวินาที จากการทดสอบ อนุภาคมาตรฐาน 2 ชนิด (lycopodium และ nicotinic acid) ให้ค่า P_{MAX} และ (dP/dt)_{MAX} ใกล้เคียงกับที่มีตีพิมพ์ในต่างประเทศ ดังนั้นจึงสรุปได้ว่าเครื่องต้นแบบสำหรับทดสอบสมบัติการ ระเบิดวัสดุอนุภาคที่สร้างขึ้นนี้ให้ค่าน่าเชื่อถือเพียงพอในการวัดต่อไป ภายหลังการปรับแต่งและ สอบเทียบด้วยอนุภาคมาตรฐาน ดังที่คาดไว้มูลค่าในการสร้างชุดทดสอบนี้ประมาณหนึ่งในสิบ ของราคาเครื่องที่มีขายอยู่แบบเดียวกันในต่างประเทศ นอกจากนี้การทดลองหลังจากปรับค่าที่ เหมาะสมชี้ให้เห็นว่าค่า P_{MAX} และ (dP/dt)_{MAX} จะเพิ่มขึ้นตามความเข้มข้นของหมอกผุ้นที่เพิ่มขึ้น จนถึงความเข้มข้นค่าหนึ่งจากนั้นมีค่าลดลง สำหรับอิทธิพลของขนาดอนุภาคเฉลี่ยพบว่าค่า P_{MAX} และ (dP/dt)_{MAX} มีค่ามากขึ้นเมื่ออนุภาคมีขนาดอนุภาคเฉลี่ยลดลง

 นางสาวพรรณดา จาบทอง: จลนพลศาสตร์ของการดูดซับของสารละลายสององค์ประกอบในน้ำ ซึ่งประกอบด้วยพีนอล เรด31 และ/หรือ แบล็ค5 ด้วยถ่านกัมมันต์ที่ทำจากยางรถยนต์ใช้แล้ว (ADSORPTION KINETICS OF AQUEOUS BINARY MIXTURES CONTAINING PHENOL, RED31 AND/ OR BLACK5 ON ACTIVATED CARBON PREPARED FROM WASTE TIRES) อ. ที่ปรึกษา`: ศ.ดร. วิวัฒน์ ตัณฑะพานิชกุล, 119 หน้า. ISBN 974-17-5974-6.

ถ่านกัมมันต์ที่ผลิตจากยางรถยนต์ใช้แล้ว (AC_Tire) และ ถ่านกัมมันต์ที่ใช้ในการค้าขาย (AC_COM) มีสมบัติของรูพรุนแตกต่างกันคือมีขนาดรูพรุนขนาดเมโชพอร์และไมโครพอร์ตามลำดับ งานวิจัยนี้ได้ทำการศึกษาสมดุลและจลนพลศาสตร์การดูดขับของฟืนอลและเรด31 (แบล็คร์) ด้วย ถ่านกัมมันต์ทั้งสองประเภทนี้ การศึกษาจลนพลศาสตร์ของการดูดขับที่มีการแข่งขันกันระหว่างตัวถูกดูด ขับสองขนาด ได้แบ่งชุดการทดลองออกเป็นดังนี้จลนพลศาสตร์การดูดขับระบบหนึ่งองค์ประกอบ จลนพลศาสตร์การดูดขับระบบหนึ่งองค์ประกอบ เรด31 และจลนพลศาสตร์การดูดขับระบบสององค์ประกอบพร้อมกัน จลนพลศาสตร์การดูดขับพีนอลแล้วตามด้วย เรด31 และจลนพลศาสตร์การดูดขับเรด31แล้วตามด้วยฟืนอล จากการทดลองพบว่าสมดุลการดูดขับ ของฟืนอลและเรด31(แบล็คร์) ด้วย AC_Tire และ AC_COM สามารถอธิบายด้วยสมการของฟรุลด์ลิช และแลงก์เมียร์ตามลำดับ การถ่ายโอนมวลสารภายในถ่านกัมมันต์เป็นแบบการแพร่แบบนัดเสนและ ขั้นตอนในการควบคุมของกระบวนการดูดขับสามารถอธิบายได้ด้วยแบบจำลองอินทราพาร์ทิเคิล และ ความแตกต่างของลักษณะโครงสร้างของรูพรุนและการกระจายตัวของขนาดของรูพรุนส่งผลกระทบอย่าง มากต่อความสามารถการดูดขับและจลนพลศาสตร์การดูดขับของฟืนอลและเรด31(แบล็คร์)

ภาควิชาวิศวกรรมเคมี	ลายมือชื่อนิสิต ชาว่งนาก จาบทวง
ตาขาวิชาวิศวกรรมเคมี	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา2547	

นายวิกสิต อธิมุตติกุล : การพัฒนาสารเคลือบผิวประเภทพอลิเอสเทอร์จากน้ำมันชนิดต่างๆ (DEVELOPMENT OF POLYESTER COATING MATERIALS FROM VARIOUS OILS) อ. ที่ปรึกษา : รศ.คร. ศิริพร ดำรงค์ศักดิ์กุล, 145 หน้า. ISBN 974-17-6545-2.

งานวิจัยนี้ได้ทำการศึกษาการสังเคราะห์สารเคลื่อนผิวพอลิเอสเทอร์ชนิดอัลคิดเรซิน 2 ประเภท คือ Short oil alkyd และ Medium oil alkyd ด้วยกระบวนการแอลกอฮอไลซิส โคยใช้น้ำมันชนิคต่างๆที่ หาได้ภายในประเทศ 5 ชนิค คือ น้ำมันข้าวโพค น้ำมันรำข้าว น้ำมันคอกทานตะวัน น้ำมันถั่วเหลือง น้ำมัน ละหุ่งที่ขจัดน้ำออก เพื่อศึกษาผลกระทบของชนิดและปริมาณน้ำมัน รวมถึงอุณหภูมิการเกิดปฏิกิริยาใน การผลิตวัสดุเคลือบผิวพอลิเอสเทอร์ ที่มีต่ออัตราการแห้งตัว ความหนืด และความเป็นกรคของเรซิน และ สมบัติของสารเคลือบผิวที่ได้ เช่น ความมันเงา ความสามารถในการติดแน่น ความแข็ง และความสามารถ ในการทนน้ำ กรด และค่าง จากผลการทคลองพบว่าการใช้น้ำมันข้าวโพคและน้ำมันคอกทานตะวันจะให้ เรซินสีอ่อน น้ำมันรำข้าวและน้ำมันถั่วเหลืองให้เรซินสีเหลืองเข้ม โคยน้ำมันรำข้าวจะให้ฟิล์มที่มีการแห้ง ตัวช้าที่สุด สมบัติโดยรวมของเรซินและฟิล์มจะใกล้เคียงกัน ยกเว้นน้ำมันละหุ่งที่ขจัดน้ำออกจะให้เรซิน ที่มีความหนืดสูง ฟิล์มแห้งตัวเร็วและมีความแข็งมากกว่าการใช้น้ำมันชนิดอื่นๆ ทั้งนี้เนื่องจากโครงสร้าง ของน้ำมันละหุ่งที่ขจัดน้ำออกมีพันธะคู่สลับเคี่ยวซึ่งสามารถเกิคปฏิกิริยาพอลิเมอไรเซชันได้ง่าย และยังมี หมู่ไฮครอกซึ่งากกรคไขมันริซิโนลีอิกที่เป็นองค์ประกอบในน้ำมัน เรซินที่สังเคราะห์ได้มีความเป็นกรค สงกว่าการใช้น้ำมันชนิดอื่นๆ ทำให้มีความสามารถในการทนค่างน้อยกว่าการใช้น้ำมันชนิดอื่นๆ ช่วง อุณหภูมิที่เหมาะสมในการสังเคราะห์ Short oil alkyd คือ 210°C - 230°C เวลา 4 - 5 ชั่วโมง และอุณหภูมิ ที่เหมาะสมในการสังเคราะห์ Medium oil alkyd คือ 190°C - 210°C เวลา 5 - 6 ชั่วโมง โคยใช้อุณหภูมิ ในช่วงการเกิดมอนอกลีเซอไรค์ที่ 230°C นอกจากนี้ยังพบว่าสีเหลืองเข้มของอัลคิดเรซินมีสาเหตุหลักจาก การเกิดปฏิกิริยาออกซิเคชันในระหว่างการสังเคราะห์ ซึ่งสามารถแก้ไขให้อัลคิค์เรซินมีสีงางลงไค้ค้วย การจุ่มท่อแก๊สไนโตรเจนลงในสารละลายขณะทำการสังเคราะห์ และพบว่าอัลคิดเรซินทั้ง 2 ประเภทที่ สังเคราะห์ได้ผ่านเกณฑ์มาตรฐานอุตสาหกรรม (มอก.618)

ภาควิชาวิศวกรรมเคมี	ลายมือชื่อนิสิต	Anam	egymony
สาขาวิชาวิศวกรรมเคมี	ลายมือชื่ออาจารย์ที่	ปรึกษา	LSP
ปีการศึกษา 2547			

ภัสสรินท์ จงวิสุทธิลันต์ : การพัฒนาวัสดุพรีเพลกส์คุณภาพสูงจากเส้นใยคาร์บอนเพื่อใช้ทำ โครงสร้างรังผึ้ง (DEVELOPMENT OF HIGH PERFORMANCE CARBON FIBER BASED PREPREGS FOR HONEYCOMB STRUCTURE) อาจารย์ที่ปรึกษา: ผศ. ดร. ศราวุธ ริมคุลิต, 88 หน้า. ISBN 974-53-1279-7

งานวิจัยนี้มีจุดมุ่งหมายพัฒนาวัสดุพรีเพลกส์คุณภาพสูงจากเส้นใยคาร์บอนเพื่อใช้ทำโครงสร้างรังผึ้งโดยมีระบบเรริ นลามส่วน คือ เบนขอกชาขึ้นเรข็น อีพอกขีเรชิน และฟืนอลิกโนโวแลคเรขินเป็นเมตริกซ์ ทั้งนี้พรีเพลกส์ คือ เล้นใยเสริมแรงที่อาบ ด้วยเมตริกซ์เรซิน ซึ่งเมตริกซ์เรซินนั้นจะมีการพอลิเมอไทซชั่นเพียงบางล่วนทำให้พรีเพลกล้อยู่ในรูปพร้อมใจ้งาน การเก็บรักษาพรี เพลกส์จะอยู่ในรูปแผ่นหรือม้วน พรีเพลกส์เป็นวัสดุที่นิยมใช้งานมากในงานประเภทวัสดุในอวกาศยาน และวัสดุประกอบแต่งชั้น ลง ทั้งยังนำมาขึ้นรูปเป็นวัลดุแกนรังผึ้งได้อีกด้วย พอลิเบนซอกซาซีน (BA-a) เป็นพอลิเมอร์ในตระกูลฟืนอลิกมีคุณสมบัติที่ดีหลาย ประการ เช่น ลังเคราะห์ได้ง่าย ค่าความหนือก่อนการขึ้นภูปต่ำ ค่าการขยายตัวทางความร้อนใกล้ศูนย์ ค่าการดูดขึ้มน้ำต่ำและมี เลดียรภาพทางความร้อนสูง ระบบเรซินสามองค์ประกอบที่ได้มีความสามารถในการขึ้นรูปสูง คือช่วงอุณหภูมิของการขึ้นรูปที่กร้าง และให้ค่าสมบัติหลังการบ่มที่ดี โดยในระบบมีอีพอกซีทำหน้าที่เป็นสารลดความหนืดและยังช่วยเพิ่มปริมาณการเชื่อมโยงของสาย โข้โมเลกุล ในขณะที่พื้นอลิกโนโวแลคนอกจากจะเป็นตัวเร่งปฏิกิริยาการบ่มของเบนขอกขาขึ้นเรซินซึ่งทำให้อุณหภูมิการขึ้นรป ต่ำลงแล้วยังเป็นตัวทำแข็งของอีพอกรีอีกด้วย ในการทคลองนี้จะศึกษาผลกระทบของลัดส่วนของเร**ิ**นทั้งลามที่มีผลต่อลมบัติการ ขึ้นรูป สมบัติทางความร้อน และสมบัติทางกลของพอลิเมอร์ที่ได้ โดยมุ่งเน้นให้เหมาะสมกับการใช้เป็นเมตริกข์ของพรีเพลกส์เป็น ลำคัญ โดยที่ทำการปรับเปลี่ยนสัดส่วนของเรชินผสมต่างๆ เช่น เบนขอกชาชีน/อีพอกชี/ฟืนอลิก (BEP) ในอัตราส่วน 3:6:1 3:6:2 3:6:3 และ 3:6:4 โดยน้ำหนัก จากการทดลองพบว่าเมื่อปริมาณอีพอกซีเพิ่มขึ้นจะทำให้ความหนืดของเรซินผลมต่ำลง ในขณะที่ เมื่อปริมาณฟืนอลิกเพิ่มขึ้นจะทำให้อุณหภูมิปฏิกิริยาการเชื่อมโยงของเบนขอกขาขึ้นเรรินลคลง โดยสามารถสังเกตได้จากการ เปลี่ยนแปลงอุณหภูมิ ณ ๆคลูงสุดของปฏิกิริยาการบ่มใน DSC thermograms ความสามารถในการขึ้นรูปและระยะเวลาในการ เจลศึกษาด้วยหลักการ Fourier Transform Mechanical Spectroscopy (FTMS) จากการทดลองพบว่าเรจินสามระบบในลัดส่วน ที่ศึกษามีช่วงถุณหภูมิการขึ้นรูปที่กว้างสามารถขึ้นรูปได้ตั้งแต่ 50 องศาเขลเชียส ไปจนถึง 200 องศาเขลเชียส และยังสามารถคง ความหนึดที่ต่ำได้เป็นเวลานาน โดยที่สัดส่วน BEP362 ให้ความสามารถในการขึ้นรูปเป็นพรีเพลกส์ที่ดีที่สุด เช่น มีความหนึดต่ำ (1.4 Pa.s) และมีระยะเวลาเจลน้อยกว่า 5 นาที ค่าอุณหภูมิการเปลี่ยนสถานะคล้ายแก้วของระบบเรจินที่ศึกษามีค่าใกล้เคียงกัน คืออยู่ระหว่าง 150 ถึง 165 องศาเขลเขียส อย่างไรก็ตาม BEP362 ให้ค่าอุณหภูมิการเปลี่ยนสถานะคล้ายแก้วที่สูงที่สุด คือ 165 องคาเชลเซียส นอกจากนี้ BEP362 ยังมีอายุการใช้งานที่นานโดยมีการเปลี่ยนแปลงความสามารถในการขึ้นรูปเพียงเล็กน้อย เช่น มีการเปลี่ยนแปลงน้อยกว่า 25% เมื่อเก็บรักษาไว้ที่อุณหภูมิห้องประมาณ 33 องศาเขลเขียสเป็นเวลามากกว่า 270 วัน ทั้งนี้สมบัติ ต่างๆเหล่านี้จะแสดงลักษณะเด่นที่ดีในระบบ BEP362 ดังนั้นอัตราล่วนผลมของเมตริกร์ ที่เหมาะสมลำหรับทำคาร์บอนไฟเบอร์พรี เพลกส์คือ BEP362 สำหรับค่ามอคูลัสความคัดให้งและความแข็งแรงในการคัดให้งในระบบ BEP362 เมื่อปริมาณเส้นใชเป็น 55 เปอร์เจ็นต์โดยปริมาตรและทำการจัดเรียงเล้นใยแบบ cross-ply มีค่าประมาณ 68 จิกะปาสคาล และ 1,156 เมกกะปาสคาลซึ่ง วัลดูประกอบแต่งที่ได้จากระบบ BEP362 นี้ให้ค่าความแข็งแรงที่เหมาะสม นอกจากนี้พรีเพลกส์ที่มี BEP362 เป็นเมตริกษ์เรรินยัง ลามารถนำมาขึ้นรูปเป็นโครงสร้างรังผึ้งได้ดี

ภาควิชาวัศวกรรมเคมี	ลายมือชื่อนิสิต ภัศัสปินท์ จง วิสิทฮิสันด์
สาขาวิชาวิศวกรรมเคมี	J. Himolit.
ปีการศึกษา2547	ลายมือซื่ออาจาร _ั ย์ที่ปรึกษาร่วม

นางสาวณัชชา กำแพงเสรี : การพัฒนาผลิตภัณฑ์ประกอบแต่งทดแทนไม้ที่ทนการติดไฟจากพอลิเบน ชอกชาชีนอัลลอยด์ (DEVELOPMENT OF FIRE RESISTANT WOOD-SUBSTITUTED COMPOSITES FROM POLYBENZOXAZINE ALLOYS) อาจารย์ที่ปรึกษา : ผศ. ดร. ศราวุธ ริมดุสิต, อาจารย์ที่ปรึกษาร่วม : ดร. นิธินาถ ศุภกาญจน์, 81 หน้า. ISBN 974-17-5978-9

งานวิจัยนี้เป็นการพัฒนาผลิตภัณฑ์ประกอบแต่งทดแทนไม้ที่ทนการติดไฟจากเมตริกซ์ที่เป็นพอลิเมอร์อัลลอยด์ระหว่างเบนซอก ขาขึ้นเรจินและพื้นอลิกโนโวแลคเรจินและสารเติมประเภทผงไม้ยางพารา พอลิเบนขอกขาขึ้น (BA-a) เป็นพอลิเมอร์ในตระกูลฟืนอลิกมี คุณสมบัติที่ดีหลายประการ เช่น สังเคราะห์ได้ง่าย ไม่มีผลพลอยได้จากการบ่ม ค่าความหนืดก่อนการขึ้นรูปต่ำ ค่าการขยายตัวทางความ ร้อนใกล้ศูนย์ คำการศุดขึ้มน้ำต่ำและมีเสถียรภาพทางความร้อนสูง ในขณะที่พื้นอสิกโนโวแลคเรชิน (P) มีคุณสมบัติที่น่าสนใจบางประการ เช่น สามารถยึดติดไม้ได้ดี ทนไฟได้ดี ไม่ปล่อยสารพิษเมื่อถูกเผาใหม้และราคาถูก วัตถุประสงค์ของงานวิจัยนี้คือเพื่อศึกษาอัตราส่วนผสม ของอัลลอยด์ระหว่างเบนขอกขาจีนและฟินอลิกในโวแลคเรซิน (BP) ที่เหมาะสมที่มีต่อความสามารถในการทนไฟ สมบัติทางความร้อน สมบัติทางกลและทางกายภาพที่สำคัญในการทำเป็นผลิตภัณฑ์ทดแทนไม้ โดยกำหนดปริมาณผงไม้ที่ใช้เติมเท่ากับ 50 และ 70 เปอร์เซ็นด์ โดยน้ำหนัก จากผลการทดลองพบว่าพื้นอลิกในโวแลคเรซินสามารถลดอุณหภูมิปฏิกิริยาการเชื่อมโเผของเบนขอกชาซีนเรซินโดยสามารถ สังเกตจากการเปลี่ยนแปลงอุณหภูมิ ณ จุดสูงสุดของปฏิกิริยาการปมใน DSC thermogram ค่าดัชนีออกซิเจนของระบบที่มีการเติมผงไม้ เท่ากับ 70 เปอร์เซ็นต์โดยน้ำหนัก มีค่าเพิ่มขึ้นจาก 22.7 ในระบบ BA-a เป็น 24.0 ในระบบ BP55 ค่าอัตราการเผาใหม้ลดลงจาก 18.5 มิลลิเมตรต่อนาที ในระบบ BA-อ เหลือประมาณ 15 มิลลิเมตรต่อนาทีในระบบ BP55 โดยมีผงไม้ 70 เปอร์เซ็มต์โดยน้ำหนักและสามารถดับ ไฟได้เองในระบบ BP82 เมื่อปริมาณผงไม้เป็น 50 เปอร์เซ็นต์โดยน้ำหนัก อย่างไรก็ตามค่าดัชนีลอกฉิเจนลดลงและค่าอัตราการเมาไหม้ เพิ่มขึ้นเมื่อปริมาณผงไม้เพิ่มขึ้น (ผงไม้มีค่าดัชนีออกซิเจนและค่าอัตราการเผาไหม้เท่ากับ 21 และ 42.8 มิลลิเมตรต่อนาที) อุณหภูมิการ สลายตัวทางความร้อนที่การสูญเสียมวลเท่ากับ 5 เปอร์เซ็นต์ เพิ่มขึ้นอย่างรวดเร็วจาก 271 องศาเซลเซียส ในระบบ BA-a เป็น 277 องศา เพลเซียล ในระบบ BP82 และเพิ่มขึ้นจนถึง 279 องศาเพลเซียส ในระบบ BP55 โดยมีผงไม้เท่ากับ 70 เปอร์เซ็นต์โดยน้ำหนัก โดยที่อุณหภูมิ การสลายตัวนี้จะมีคำลดเมื่อปริมาณผงไม้เพิ่มขึ้น (คำอุณากุมิการสลายตัวทางความร้อนของไม้ยางพาราเท่ากับ 265 องศาเขลเขียสซึ่งต่ำ กว่าเข็นทั้งสองที่ใช้) ส่วนค่าความเป็นเถ้า (ที่ 850 องศาเขลเซียส) ในบรรยากาศในโตรเจนซึ่งวิเคราะหโดยเครื่อง TGA เพิ่มขึ้นอย่างรวดเร็ว จาก 32.4 เปอร์เซ็นต์ในระบบ BA-a เป็น 35.5 เปอร์เซ็นต์ในระบบ BP82 และเพิ่มขึ้นจนถึง 36 เปอร์เซ็นต์ในระบบ BP55 โดยมีผงไม้ 70 เปอร์เจ็นต์โดยน้ำหนักและลดลงเมื่อปริมาณผงไม้เพิ่มขึ้น (ค่าความเป็นเถ้าของไม้ยางหาราเท่ากับ 14.43 เปอร์เซ็นต์) ทั้งนี้สมบัติต่างๆ เหล่านี้จะแสดงลักษณะเด่นที่ดีในระบบ BP82 ดังนั้นอัตราส่วนผสมของพอลิเมอร์จัลลอยด์ (BP) ที่เหมาะสมคือ BP82 สำหรับค่ามอลูลัส ความดัดใค้งในระบบ BP82 เมื่อผงไม้เป็น 70 เปอร์เซ็นต์โดยน้ำหนักพบว่ามีค่าประมาณ 6.38 จิกะปาสคาล ผลิตภัณฑ์ประกอบแต่ง ทดแทนไม้ในระบบ BP82 ที่มีผงไม้ 70 เปอร์เซ็นต์จึงเป็นระบบที่เหมาะสมที่ทำให้ผลิตภัณฑ์มีการทนไฟและสามารถใช้เป็นวัสดุก่อสร้างได้

ภาควิชาวิศวกรรมเคมี	ลายมือชื่อนิสิต มีโรรา กับพรงตัว
สาขาวิชาวิศวกรรมเคมี	ลายมือชื่ออาจารย์ที่ปรึกษา Bindst
ปีการศึกษา2547	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม ปิงเลก สุภพผงป

กฤษดา เปรินทร์: การพัฒนาวิธีการ โฟมพีวิซีแบบไมโกรเซลลูลาร์ (DEVELOPMENT OF MICROCELLULAR PVC FOAM PRODUCTION) อาจารย์ที่ปรึกษา: รส.คร.ธวัชชัย ชรินพาณิชกุล อาจารย์ที่ปรึกษาร่วม: คร.สุรัตน์ อาริรัตน์ จำนวนหน้า 68 หน้า ISBN 974-53-1100-6

ในงานวิจัยนี้ได้สึกษาวิธีการเตรียมโฟมพีวิซีแบบไมโครเซลลูลาร์โดยวิธีการทคลอง
แบบต่อเนื่องเพื่อลดการนำเข้าโฟมพีวิซีจากต่างประเทศโดยใช้สารฟูเชิงเคมีและสารเดิมแต่งอื่นๆ
ในการผสมกับเรซินพีวิซีโดยการใช้เครื่องมืออัครีคแบบเกลียวหนอนคู่ เพื่อศึกษาผลของอุณหภูมิ
ของหัวดายที่มีผลต่อความหนาแน่นของโฟมและสัดส่วนต่อร้อยส่วนของเรซินซึ่งใช้สารอโซโดการ์โบนาไมด์ใช้เป็นสารฟู โดยสารอโซโดคาร์โบนาไมด์จะสลายตัวที่หัวดายในช่วงอุณหภูมิ 160
ถึง 190 องสาเซลเซียส และนอกจากสารอโซโดคาร์โบนาไมด์แล้วยังมีนาโนแคลเซียมการ์บอเนต
ที่มีขนาคเฉลี่ย 60 นาโนเมตร โซเดียมไบคาร์บอนเนต และไดไอโซโนนิลพทาเลท เพื่อช่วยใน
การก่อตัวของฟอง จากการทคลองพบว่าเมื่อเดิมอโซโดคาร์โบนาไมด์ ในปริบาณ 0 ถึง 10
สัดส่วนต่อร้อยส่วนของเรซิน จะส่งผลให้กวามหนาแน่นลดลงจาก 1.25 กรับต่อลูกบาศก์
เซนติเมตรไปเป็น 0.41 กรับต่อลูกบาศก์เซนติเมตร แต่โซเดียมไบคาร์บอนเนตใช้ไม่ได้ผลกับการ
ทคลองเนื่องด้วยสมบัติการละลายในพีวิซีไม่ดี และการเดิมไดไอโซโนนิลพทาเลทจะทำให้สมบัติ
เชิงกลของโฟมพีวิซีลดด่ำลง และเมื่อทดสอบสมบัติเชิงกลพบว่าค่าการรับแรงดึงมีค่าค่อนข้าง
น้อย เนื่องจากการเตรียมโฟมพีวิซีที่มีความหนาแน่นด่ำไม่สามารถควบคุมรูพรุนให้สม่ำเสมอและ
ให้มีลักษณะเป็นเซลล์ปิดได้

ภาควิชา	วิศวกรรมเคมี	ลายมือชื่อนิสิต	CLON	/D
สายาวิชา	วิศากรรมเคมี	ลายนี้อดี่อดาการย์ที่ป	an C	2
점였	411 411 4 4 4411 44	ลายมือชื่ออาจารย์ที่ป [ั]	4	S. Aceryo.
บการศกษา	2547	<u>.</u> ลายมอชออาจารยทบ	รกษารวม	

11 -

ปราโมทย์ ผึ้งจินดา: การสังเคราะห์อนุภากการ์บอนในระดับนาโนเมตรโดยอาศัยการไพโรไร ซิสของผสมระหว่างเฟอโรซีนและแนฟทาลีน (SYNTHESIS OF CARBON NANOPARTICLE USING PYROLYSIS OF FERROCENE-NAPHTHALENE MIXTURE) อ. ที่ปรึกษา: รศ.ดร . ธวัชชัย ชรินพาณิชกุล, อ.ที่ปรึกษาร่วม: ศ.ดร .วิวัฒน์ ตัณฑะพานิชกุล, จำนวนหน้า 97 หน้า. ISBN 974-53-1260-6

การไพโรโลซิสร่วมของของผสมระหว่างเฟอโรซีนและแนฟหาลืนสามารถสังเคราะห์อนุภาค
คาร์บอนในระดับนาโนเมตรที่มีโลหะเหล็กเป็นองค์ประกอบภายในชั้นของแกรไฟต์ โดยอนุภาคที่สังเคราะห์
ได้นั้นประกอบด้วยอนุภาคสองประเภทใหญ่ๆคือ ท่อนาโนการ์บอน และคาร์บอนนาโนแกปซูล จุคเค่นของ
งานวิจัยนี้คือการใช้แนฟหาลืนเป็นแหล่งคาร์บอนเพิ่มเติมในการสังเคราะห์เพื่อลดปริมาณการใช้เฟอโรซีนล
งซึ่งนับว่าเป็นวิธีการลดค่าใช้จ่ายในการลงทุนได้อีกวิธีหนึ่ง

ในงานวิจัยนี้ใค้ทำการศึกษาถึงอิทธิพลอุณหภูมิที่ใช้ในการไพโร ไลซิส, อัตราส่วนผสมของของผสม
,อัตราการ ใหลและชนิดของแก๊สต่อลักษณะของอนุภาคที่สังเคราะห์ได้ ซึ่งจากผลการทดลองพบว่าอุณหภูมิ
ในช่วง 800-1050°C นั้นมีอิทธิพลอย่างมากต่อการเกิดอนุภาคเหล่านี้โดยที่อุณหภูมิสูงอนุภาคของเหล็กจะมี
ความว่องไวในการเกิดปฏิกิริยาสูงทำให้สามารถเกิดเป็นการ์บอนนาโนแคปซูลได้รวดเร็วอีกทั้งที่อุณหภูมิสูง
จะเกิดการรวมตัวของอนุภาคเหล็กทำให้อนุภาคที่ได้มีขนาดใหญ่ ในทางกลับกันที่อุณหภูมิต่ำการ์บอนอิสระ
จะเรียงตัวต่อกันอย่างเป็นระเบียบเนื่องจากอัตราการแพร่ของการ์บอนอิสระเป็นตัวควบคุมการเกิดปฏิกิริยาทำ
ให้เกิดเป็นท่อนาโนคาร์บอนที่เรียงดัวเป็นระเบียบได้

การเพิ่มปริมาณการ์บอนของอิสระขึ้น จะทำให้ได้สัดส่วนของการ์บอนอิสระค่อคัวเร่งปฏิกิริยาสูงขึ้น โดยอนุภาคที่สังเคราะห์ได้มีลักษณะเป็นท่อนาโนการ์บอนมากกว่าการ์บอนนาโนแกปซูล ส่วนชนิดของแก๊ส ที่ใช้ในกระบวนการนั้นจะส่งผลต่ออนุภาคที่สังเคราะห์ได้โดยเมื่อสังเคราะห์ภายใต้บรรยากาศของในโตรเจน นั้นอนุภาคที่ได้นั้นจะมีสัดส่วนของปริมาณการ์บอนอสัณฐาน(amorphous carbon) สูงกว่าอนุภาคทั้งสองแบบ นี้แต่เมื่อเปลี่ยนเป็นบรรยากาศของอาร์กอนจะช่วยลดสัดส่วนของ คาร์บอนอสัณฐานลงโดยบทบาทของแก๊ส อาร์กอนนั้นช่วยทำให้ลดการเกิดออกซิเดชันของอนุภาคเหล็กที่เกิดขึ้นและช่วยเสริมการฟอร์มชั้นแกรไฟต์ ของคาร์บอนได้ดีกว่าแก๊สในโตรเจน

ภาควิชาวิศวกรรมเคมี	ลายมือชื่อนิสิต ปราโพลง <u>ส่ง 1 ค.ค.</u>
สาขาวิชาวิศวกรรมเคมี	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา 2547	ลายมือชื่อนิสิต ปรกโพลง อีงวันคา ลายมือชื่ออาจารย์ที่ปรึกษา ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

ยรรยง วารีนิล: การปรับปรุงสมบัติความเป็นรูพรุนของรีโซซินอลฟอร์มัลคีไฮค์คาร์บอนเจลที่ผ่าน ขั้นตอนการทำให้แห้งด้วยคลื่นไมโครเวฟซึ่งเตรียมโดยใช้คลื่นเหนือเสียง (IMPROVEMENT IN POROSITY OF MICROWAVE DRIED RESORCINOL FORMALDEHYDE CARBON GELS PREPARED BY USING ULTRASONIC IRRADIATION) อ.ที่ปรึกษา: อ.ณัฐพร โทณานนท์, อ.ที่ปรึกษาร่วม: ผส.คร.สีรุ้ง ปรีชานนท์, 72 หน้า ISBN 974-53-1292-4

คาร์บอนเจลที่มีรพรนแบบมีใช (Mesoporous carbon gel) โดยปรกติแล้วได้จากการเผาให้เป็นการ์บอน (Carbonization) ของ รีโซซินอล-ฟอร์มัลคีไฮค์ เจล หรือ RF gcl ซึ่งสังเคราะห์ได้จากกระบวนการโซล-เจล โพลี คอนเคนเซชัน (Sol-gel Polycondensation) ของ รีโซซินอลกับฟอร์มัลดีใชค์ ในสารละลายที่มีฤทธิ์เป็นค่างอ่อน และตามด้วยการอบแห้งด้วยสภาวะเหนือวิกฤตหรือการอบแห้งแบบเย็นเยือก โดยในขั้นตอนของการอบแห้ง ผู้ทำวิจัยได้ศึกษาถึงความเป็นไปได้ในการอบแห้งค้วยคลื่นไมโครเวฟซึ่งพบว่าเมื่อใช้คลื่นไมโครเวฟในการ อบแห้ง ปริมาณตัวเร่งปฏิกิริยาชนิคค่างหรือก่า C/W ต้องมีก่าน้อยกว่า 40 โมลต่อลูกบาศก์เมตร เพื่อรักษารูพรน แบบมีโซไว้ แค่เมื่อค่า C/W มาก (C/W มากกว่า 40 ไมลต่อลูกบาศก์เมตร) คาร์บอนเจลจะมีรูพรุนแบบมีโซน้อย มาก ในงานวิจัยนี้คาร์บอนเจลที่มีรูพรุนแบบมีไซถูกเตรียมขึ้นโดยการปรับเปลี่ยนอัตราส่วนเชิงไมลของรีโซซิ-นอลกับตัวเร่งปฏิกิริยาชนิคค่างหรือค่า R/C ในสารละลายรีไซซินอล-ฟอร์มัลคีไฮค์ และการใช้คลื่นเหนือเสียง ระหว่างขั้นตอนโซล-เจล โพลีคอนเคนเซชัน แล้วตามคัวยการอบแท้งคัวยคลื่นไมโครเว:! (Microwave drying) พบว่าภายใต้สภาวะการเครียมที่มีค่า C/W สูง (C/W เท่ากับ 80 โมลต่อลูกบาศก์เมตร) การใช้คลื่นเหนือเสียงและ การเพิ่มค่า R/C ในสารถะลายรีโซซินอล-ฟอร์มัลคีไฮค์ในช่วง 100 ถึง 200 โมลค่อโมล ทำให้คาร์บอนเจลที่ได้ จากการอบแห้งด้วยคลิ้นในโครเวฟสามารถรักษารพรุมแบบมีโซไว้ได้หลังการเผาให้เป็นการ์บอน นอกจากนี้ยัง พบว่าสามารถใช้กลื่นไมโครเวฟในขั้นตอนการอบแห้ง การ์บอนที่มีสัญญามของช่องว่างแบบแมคโครระหว่าง อนุภาคการ์บอนที่เชื่อมทะสุถึงกันทั่วทั้งเนื้อวัสคุ (3 Dimentional interconnected macroporous monolith carbon gcl;3D-IMM) ใค้

ภาควิชา	วิศวกรรมเคมี	กายมือชื่อนิสิค (ปรรยา การีนุค	
สาขาวิชา	วิศวกรรมเคมี	ลายมือชื่ออาจารย์ที่ปรึกษา MW MM 1444	
ปีการศึกษา	2547	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม	

ขลิดา คล้ายโสม : การเตรียม การวิเคราะห์ และการออกแบบกระบวนการผลิต แบบต่อเนื่องของถ่านกัมมันต์จากยางรถยนต์ใช้แล้ว (PREPARATION, CAHRACTERIZATION AND CONTINUOUS PROCESS DESIGN OF ACTIVATED CARBON FROM WASTE TIRES) อ. ที่ปรึกษา :รศ.ดร. ธวัชชัย ชรินพณิชกุล, อ. ที่ปรึกษาร่วม : ศ. ดร. วิวัฒน์ ตัณฑะพานิชกุล จำนวนหน้า 118 หน้า. ISBN 974-53-1261-4.

ในงานวิจัยนี้ ถ่านกัมมันต์ถูกเตรียมขึ้นจากยางรถยนต์ใช้แล้ว โดยวิธีที่นิยมกันโดยทั่วไปและวิธีที่เน้น ในทางปฏิบัติได้ง่ายในการผลิตในอุตสาหกรรม เพื่อลดค่าใช้จ่ายในการผลิต อันมาจากค่าแก๊สเจื่อย ซึ่งใช้เป็น แก๊สตัวกลางในกระบวนการคาร์บอไนเซชัน และการกระตุ้น แก๊สที่นำมาใช้แทนแก๊สเจื่อยในกระบวนการคาร์บอ ในเซชันนั้นคือ อากาศ ส่วนในกระบวนการกระตุ้นนั้นใช้แก๊สผสมระหว่าง ไอน้ำ คาร์บอนไดออกไซด์ ออกซิเจน และในโตรเจน ซึ่งเป็นองค์ประกอบส่วนใหญ่ของแก๊สที่ออกมาจากปล่องเตาเผา นอกจากนี้ ได้ทำการศึกษาถึง ผลกระทบของอุณหภูมิและเวลาในการคาร์บอไนเซชันและการกระตุ้นต่อคุณสมบัติทางกายภาพ และคุณสมบัติ ทางความพรุนของถ่านกัมมันต์ จากนั้นถ่านกัมมันต์ที่ได้จากการเตรียมทั้งสองวิธีนี้จะถูกนำไปใช้เป็นตัวดูดชับใน ระบบการดูดซับสารอินทรีย์เหลว เช่น พีนอลและ สีย้อมเรด31 เปรียบเทียบกับถ่านกัมมันต์เกรดการค้า พบว่า ถ่านกัมมันต์ที่เตรียมได้นั้นสามารถดูดซับสี ย้อมเรด31 ได้ดีกว่าถ่านกัมมันต์เกรดการค้า เนื่องจากมีรูพรุนระดับเมโซพอร์มาก ถ่านกัมมันต์ที่เตรียมได้จาก งานวิจัยนี้ น่ามีความเหมาะสมในการใช้บำบัดน้ำเสีย ของประกอบที่ไม่ย่อยสลายทางชีวภาพ

โดยการอาศัยข้อมูลที่ได้จากการทดลองในระดับห้องห้องปฏิบัติการ และงานวิจัยที่เกี่ยวข้อง นำไปสู่
การคำนวณออกแบบแผนผังการไหลและดุลมวลและพลังงานของระบบ ซึ่งมีกำลังการผลิต 720 ตันต่อปี
จากนั้นจึงทำการกำหนดขนาดของอุปกรณ์หลักทุกตัวของกระบวนการ รวมทั้งการศึกษาถึงความเป็นไปได้
ทางด้านเศรษฐศาสตร์ พบว่ามีระยะเวลาคืนทุน 6 ปี โรงงานนี้นี้มีค่าอัตราการคืนทุนถึง 29% นอกจากนี้มีค่า
ดัชนีกำไรมากกว่าหนึ่ง ซึ่งบ่งชี้ว่าโครงการนี้เป็นไปได้ที่จะได้กำไร มีอัตราผลตอบแทน 20.58% นอกจากนี้ได้ทำ
การวิเคราะห์ตัวแปรที่มีผลต่อผลกำไรของโรงงาน ซึ่งตัวแปรเหล่านั้นประกอบด้วย ราคาวัตถุดิบ ราคาขายของ
ถ่านกัมมันต์ กำลังการผลิต ราคาแก๊ล LPG อัตราดอกเบี้ย และเงินลงทุนคงที่

ภาควิชา <u>วิศวกรรมเคมี</u> **ตาขาวิชา วิ<u>ศวกรรมเคมี</u> ปีการศึกษา <u>2548</u>** ลายมือชื่อนิสิต ๛์๓ ค่ามูโกม ลายมือชื่ออาจารย์ที่ปรึกษา ลายมือชื่ออาจารย์ที่ปรึกษาร่วม *กาะกะเกม* กา อมรศักดิ์ ชนะกุล : ผลของชนิดของไอออนลบและสารลดแรงตึงผิวร่วมต่อการสังเคราะห์อนุภาค ซึ่งค์ชัลไฟด์ขนาดนาโนเมตรในไมโครอิมัลชัน (EFFECTS OF TYPES OF ANIONS AND COSURFACTANTS ON Zns NANOPARTICLE SYNTHESIS IN MICROEMULSION) อ. ที่ปรึกษา: รศ.ดร. ธวัชชัย ชรินพาณิชกุล, อ.ที่ปรึกษาร่วม: ศ.ดร.วิวัฒน์ ตัณฑะพานิชกุล, ISBN:974-17-5093-5

ปัจจุบันการสังเคราะห์อนุภาคของสารกึ่งตัวนำในหมู่ II-VI ระดับนาโนเมตรได้รับความนิยมกัน อย่างแพร่หลายเนื่องจากคุณสมบัติที่ดีเยี่ยมทั้งทางด้านการเป็นตัวเร่งปฏิกิริยา, อุปกรณ์ทางแสง, การใช้ งานทางอิเล็กทรอนิกส์ และอื่นๆอีกมากมาย การสังเคราะห์อนุภาคซิงค์ชัลไฟด์ระดับนาโนเมตรนั้น สามารถทำได้หลายวิธี ซึ่งการใช้เทคนิคของไมโครอิมัลชันก็เป็นอีกวิธีหนึ่ง ซึ่งมีความได้เปรียบวิธีอื่น คือ ใช้สารเคมีที่มีอันตรายน้อย ไม่ต้องทำการทดลองที่อุณหภูมิ หรือความคันสูง และเครื่องมือที่มี ราคาไม่สูงมากนัก

ในงานวิจัยนี้ได้ทำการศึกษาตัวแปรหลายตัวเพื่อหาสภาวะที่เหมาะสมในการสังเคราะห์อนุภาคซิงค์ ซัลไฟด์ระดับนาโนเมตรที่มีขนาดและรูปร่างใกล้เกียงกัน ทั้งอิทธิพลของสารลดแรงตึงผิวร่วม ไอออน ลบ ความเข้มข้นของสารตั้งต้น อัตราส่วนโมลของน้ำต่อสารลดแรงตึงผิว และอุณหภูมิ ซึ่งจากผลการ ทดลองพบว่า อนุภาคระดับซิงค์ซัลไฟด์ระดับนาโนเมตรรูปร่างที่น่าสนใจ เช่น ท่อนาโน หรือ นาโน แบบแท่ง ได้ โดยจำเป็นต้องใช้ความเข้มข้นของสารตั้งต้น และค่าอัตราส่วนโมลของน้ำต่อสารลดแรง ตึงผิวที่สูงพอ นอกจากนี้ยังพบว่าสารลดแรงตึงผิวร่วมที่มีโมเลกุลขนาดใหญ่สามารถช่วยให้เกิดอนุภาค ระดับนาโนเมตรรูปร่างเหล่านี้ได้มากยิ่งขึ้น

การเติมใจออนลบเช่น คลอไรด์และโบรไมด์ ลงไปในไมโครอิมัลชั้นจะสามารถช่วยให้เกิดอนุภาค ระดับนาโนเมตรที่มีรูปร่างแบบแท่งและเข็มได้มากขึ้น โดยเฉพาะเมื่อใช้บิวทานอลซึ่งมีขนาดโมเลกุล เล็กกว่าเป็นสารลดแรงตึงผิวร่วม นอกจากนี้การเปลี่ยนแปลงอุณหภูมิของการเกิดปฏิกิริยายังมีผลกระทบต่อขนาดและรูปร่างของอนุภาค และเกิดอนุภาคระดับนาโนเมตรที่มีรูปร่างที่น่าสนใจ เช่น ท่อ นาโน และ เส้นใยนาโนที่ขนาดเส้นผ่านศูนย์กลางที่เล็กมากๆได้ เป็นต้น

		ลายมือชื่อนิสิต		
สาขาวิชา	วิศวกรรมเคมี	ถายมือชื่ออาจารย์ที่ปรึก	ษา 🗸	Chamthe
ปีการศึกษา	2548	ลายมือชื่ออาจารย์ที่ปรึก	ษาร่วม	John man-

CARBON

Carbon 41 (2003) 157-164

Preparation and characterization of mesoporous activated carbon from waste tires

P. Ariyadejwanich^a.*, W. Tanthapanichakoon^a, K. Nakagawa^b, S.R. Mukai^b, H. Tamon^b

*Department of Chemical Engineering, Chulalongkorn University, Bangkok 10330, Thailand

*Department of Chemical Engineering, Kyoto University, Kyoto 606-8501, Japan

Received 29 December 2001; accepted 1 August 2002

Abstract

Activated carbons were produced from waste tires and their characteristics were investigated. Rubber separated from waste tires was first carbonized at 500 °C in N₂ atmosphere. Next, the obtained chars were activated with steam at 850 °C. As a result, fairly mesoporous activated carbons with mesopore volumes and BET surface areas up to 1.09 cm³/g and 737 m²/g, respectively, were obtained. To further improve the porous properties of the activated carbons, the char was treated with 1 M HCl at room temperature for 1 day prior to steam activation. This treatment increased mesopore volumes and BET surface areas of the activated carbons up to 1.62 cm³/g and 1119 m²/g, respectively. Furthermore, adsorption characteristics of phenol and a dye, Black 5, on the activated carbon prepared via acid treatment were compared with those of a commercial activated carbon in the liquid phase. Although the prepared carbon had a larger micropore volume than the commercial carbon, it showed a slightly lower phenol adsorption capacity. On the other hand, the prepared carbon showed an obviously larger dye adsorption capacity than the commercial carbon, because of its larger mesopore volume.

© 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Activated carbon; Activation; Adsorption; Porosity

1. Introduction

The automobile has become an indispensable means of transportation for many households throughout the world. As a result, more than 330 million waste tires are discarded each year [1]. Such tires have become a serious source of environmental pollution. Several attempts have been made to reduce the number of waste tires, for example, by using them as dock bumpers, playground equipment, etc. However, from environmental and economical points of views, a much better solution is to convert such waste tires to valuable products.

Activated carbons are widely used as adsorbents in both gas-phase and liquid-phase separation processes and can be produced from various carbonaceous materials, for instance, coal, coconut shell, wood, and polymer scrap [2]. It has been reported that activated carbons can also be

obtained from municipal and industrial wastes such as PET waste [3] and refuse derived fuel (RDF) [4]. Waste tires represent another interesting source for activated carbons because of its high carbon content. As the production of activated carbon from waste tires changes hard-to-dispose waste to pollution-cleaning adsorbents, it is thought to be a very effective method to relieve environmental pollution.

The pyrolysis of tires in an inert atmosphere at 450-900 °C has been studied by many researchers, and the effects of pyrolysis conditions on the product yields (gases, oils and char) have been reported [1,5-7]. As the BET surface areas of chars obtained through the pyrolysis of waste tires are extremely low (30-90 m²/g), several attempts have been made to increase the surface areas of them by activation [5-8]. The influence of operating conditions on the porous properties of the obtained activated carbons has also been investigated [1], but not clearly elucidated.

Activated carbon is widely used for treating wastewater in many industries, for example food, textile, chemical and pharmaceutical [2]. Several researchers studying dye ad-

^{*}Corresponding author. Fax: +66-2-218-6480.

E-mail address: pisit.a@student.chula.ac.th (P. Ariyadej-wanich).

sorption on activated carbon [9-12] have pointed out that the presence of mesopores together with micropores in activated carbon granules and fibers enhances their adsorption capacities, especially against large adsorbates [10-14]. Therefore, several methods for the preparation of mesoporous activated carbons have been developed, for instance, through catalytic reaction [10,15-17], pre-treatment of precursor chars followed by steam activation [3], and chemical activation [12,18].

The main purpose of the present work is to prepare highly mesoporous activated carbons from waste tires, which are suitable for adsorbing relatively large molecules. The adsorption characteristics of the obtained carbons in the liquid phase are also investigated where phenol and an organic dye, Black 5, are used as representative adsorbates. In addition, the effects of acid treatment prior to steam activation on the porous properties of the resulting activated carbons are investigated.

2. Experimental

2.1. Waste tires

Waste tires were cut, crushed, ground, and centrifuged and the steel wires and fabric cords included in them were removed. The particle size of the rubber sample obtained through this process was smaller than 0.595 mm. The results of elemental analysis of the rubber sample are summarized in Table 1.

2.2. Preparation of activated carbons

Activated carbons were first produced from waste tires through the conventional process of carbonization followed by steam activation. In the carbonization step, about 3 g of waste tire rubber was first set in a quartz tube reactor. The reactor was electrically heated in N₂ atmosphere from room temperature to 500 °C at a constant heating rate of 0.5, 5 or 20 °C/min, then held at this temperature for 1 h, and finally left to naturally cool down. In the activation step, 0.3-0.5 g of the carbonized sample was activated with steam in a quartz tube reactor by heating the reactor from room temperature to 850 °C at a heating rate of 20 °C/min. The steam used for activation was generated

Table 1 Elemental analysis of waste tire rubber

Composition	wt.%
С	84.2
Н	12
N	1.1
S	2.1
Unknown	0.6

from a heating pot at a constant rate of 0.5 g/min, and was introduced to the reactor with a 200 cm³/min flow of N_2 . Therefore the partial pressure of water vapor was around 0.46. The activation time was varied in the range of $1 \sim 4$ h. The percentage of weight loss, % burn-off, was defined as follows:

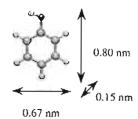
% burn-off =
$$(w_1 - w_2)/w_1 \times 100$$

where w_1 and w_2 were the initial weight of char and the weight of the obtained activated carbon, respectively. It should be noted that the weight loss is not totally due to activation, and that part of it is due to the effect of increasing the sample temperature from 500 to 850 °C.

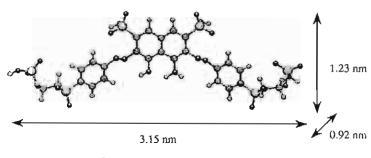
Next, in order to investigate the influence of acid treatment prior to steam activation, 2-3 g of char obtained through the carbonization step was immersed in 100 cm of 1 M HCl at room temperature. After 1 day, the acid-treated char was thoroughly rinsed with distilled water and dried in an oven at 110 °C. The adopted nomenclature for the chars and activated carbons is as follows:

C_n: Char carbonized at the heating rate of n °C/min HCl C_n: Char carbonized at the heating rate of n °C/min and acid-treated with 1 M HCl

AC_m_n: Activated carbon obtained by activating for m h char carbonized at the heating rate of n °C/min AC_m HCl_n: Activated carbon obtained by activating for m h char carbonized at the heating rate of n °C/min and acid-treated with 1 M HCl


HCl AC_m_n: Activated carbon obtained by activating for m h char carbonized at the heating rate of n °C/min and subsequently acid-treated with 1 M HCl

2.3. Porous properties of prepared activated carbons


The pore size distribution, BET surface area $S_{\rm merro}$ mesopore volume $V_{\rm meso}$, and micropore volume $V_{\rm micro}$, of the samples were determined from N_2 adsorption and desorption isotherms measured at 77 K using an adsorption apparatus (BELSORP 28, BEL Japan Inc., Japan). Pore size distributions and $V_{\rm meso}$ were evaluated by applying the Dollimore–Heal method [19] to the desorption isotherm, whereas the *t*-plot method [20] was used to estimate $V_{\rm micro}$. The Dubinin–Astakhov (DA) equation [21] was applied to CO_2 adsorption data measured at 25 °C to determine $V_{\rm micro}$ of tire char samples.

2.4. Liquid-phase adsorption

The adsorption characteristics of activated earhorn treated with HCl prior to steam activation, AC HCl, and commercial activated carbon, CAL (Calgon, USA), were compared in the liquid phase. Phenol (Wako Pure Chemical Industries, Japan) and a reactive dye, Black 5 (Asia Dyestuff Industries, Thailand), were used as adsorbates.

a) Phenol [C₆H₅OH] (MW: 94)

b) Black 5 $[C_{26}H_{21}N_5O_{19}Na_4S_6]$ (MW: 993)

Fig. 1. Molecular sizes and structures of adsorbates.

Their molecular sizes and structures, which were estimated using the WINMOPAC program, are shown in Fig. 1. Aqueous solutions of various initial concentrations were prepared by diluting the adsorbates with distilled water. Then, 20-60 mg of the activated carbons were added to the prepared solutions. To maintain well-mixed conditions, these mixtures were put in a gyratory air bath, which was kept at 30 °C. After equilibrium was achieved, which normally took 10 and 14 days for phenol and Black 5, respectively, the solutions were filtered and their residual concentrations were measured. The initial and residual concentrations were determined using a UV-visible spectrophotometer (UV-2200, Shimadzu Corporation, Japan) at wavelengths (λ_{max}) of 270 and 595 nm for phenol and Black 5 solutions, respectively. The amounts adsorbed on

the activated carbons were calculated from the measured concentrations, and adsorption isotherms were finally obtained.

3. Results and discussion

3.1. Porous properties of prepared chars

As shown in Table 2, chars were obtained through the carbonization of waste tire rubber at similar yields as those reported in the literature, which is normally in the range 33-38 wt.% [6-8]. Although it was reported that when N₂ is used as the carrier gas during carbonization, the yield decreases with the increase in heating rate [6], and when

Table 2
Porous properties of chars carbonized at 500 °C

Sample	Carbonization yield (%)	Ash content (%)	V_{mean} (cm ³ /g)	$(cm^3/g)^*$	$\frac{S_{m,t}}{(m^2/g)}$
C 0.5	35.07	14.70	0.318	0.025	75.4
C 5	35.10	14.99	0.356	0.030	81.0
C 20	35.08	14.63	0.420	0.023	89.8
HCI C 0.5	35.07	6.24	0.318	0.024	81.8
HCI C 5	35.10	6.47	0.335	0.035	79.9
HC1 C_20	35.08	6.19	0.311	0.024	84.7

^{*} Calculated by applying DA-plot to CO2 adsorption isotherms.

He is used an opposite trend is observed [7], the heating rate had no significant effect on the carbonization yield in our experiments.

Fig. 2 shows the N_2 adsorption-desorption isotherms of chars obtained at different heating rates, where q and P/P^0 are the amount of N_2 adsorbed and relative pressure, respectively. Interestingly, a slight hysteresis was observed in the isotherms which suggests the existence of mesopores in the carbons. The porous properties calculated using the isotherms are also summarized in Table 2.

The $S_{\rm BET}$ values of the obtained chars was about 80 m²/g which is a typical value for chars prepared from waste tires [6–8]. Surprisingly, the $S_{\rm RET}$ values of the chars slightly increased with the increase in the heating rate during carbonization, which contradicts the results of other researchers [7]. The existence of a moderate amount of mesopores within the chars can be confirmed from their $V_{\rm meso}$ values. This value slightly increased with the increase in the heating rate, whereas $V_{\rm micro}$ values remained essentially the same. Although acid treatment decreased the ash contents of the chars, it hardly affected their porous properties.

3.2. Porous properties of prepared activated carbons

Fig. 3 shows typical N_2 adsorption-desorption isotherms of the activated carbons obtained through the steam activation of the waste tire rubber derived chars at 850 °C. The development of micropores and mesopores can be clearly confirmed by the shape of the isotherms. The porous properties of the activated carbons calculated from the isotherms are summarized in Table 3.

It was found that fairly mesoporous activated carbons

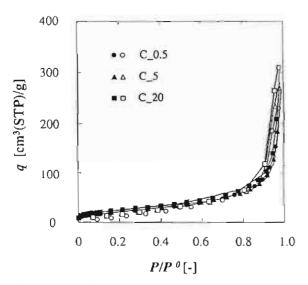


Fig. 2. N₂ adsorption-desorption isotherms of waste tire derived chars: closed symbols, adsorption; open symbols, desorption.

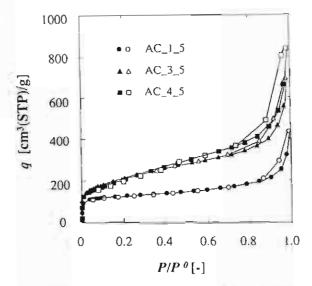


Fig. 3. N₂ adsorption—desorption isotherms of typical activated carbons prepared without acid treatment prior to steam activation: closed symbols, adsorption; open symbols, desorption.

with V_{meso} and S_{BET} values up to 1.09 cm³/g and 755 m²/g, respectively, could be obtained from waste tire rubber by conventional steam activation. In the literature, activated carbons with S_{BET} values in the range of 400–1000 m²/g have been prepared from waste tires by physical activation [7,8], in which range the S_{RET} values of the activated carbons obtained in this work also fall into. It was also reported that activated carbons with surface areas as high as 1260 m²/g can be obtained through the wet thermal decomposition of waste tires [5]. However, the V_{meso} values of such activated carbons were reported to be less than 0.3 cm³/g [22], which are significantly lower than those obtained in this work.

3.3. Improvement of porous properties by acid treatment prior to steam activation

Fig. 4 shows typical N₂ adsorption-desorption isotherms of the activated carbons obtained through the steam activation of waste tire rubber derived chars acid-treated with 1 M HCl at room temperature for 1 day. Significant development of mesopores can be confirmed by the change in the shape of the isotherms. Table 4 shows the porous properties of the activated carbons obtained from the isotherms.

Highly mesoporous activated carbons with $V_{\rm meso}$ and $S_{\rm BET}$ values up to $1.62~{\rm cm}^3/{\rm g}$ and $1119~{\rm m}^2/{\rm g}$, respectively, were obtained. It is noteworthy that this maximum $V_{\rm meso}$ value is extremely higher than the reported values of carbons obtained through various attempts to produce highly mesoporous activated carbons $(0.6-1.36~{\rm cm}^3/{\rm g})$ [3,15–18]. These results show that acid treatment prior to steam activation is a simple but effective method to

Fable 3
Porous properties of activated carbons prepared without HCl acid treatment prior to steam activation

	 _	45 - 35 / 5 - 15 - 11 4	to mean activation	
Sample	Burn-off (%)	V _{meso} (cm³/g)	V _{micro} (cm ³ /g)	$S_{\rm BET} (m^2/g)$
1_0.5	33.2	0.23	0.13	430
AC_3_0.5	67.7	0.53	0.21	718
AC_4_0.5	76.1	0.98	0.26	743
AC_1_5	34.3	0.32	0.13	435
C_3,5	67.3	0.82	0.22	752
C_4_5	75.8	90.1	0.26	737
C_1_20	32.2	0.21	0.12	386
AC_3_20	68.6	0.68	0.22	755
AC_4_20	73.7	0.62	0.25	722

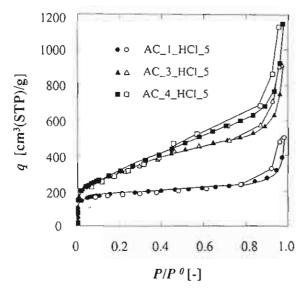


Fig. 4. N₂ adsorption-desorption isotherms of typical activated carbons prepared with acid treatment prior to steam activation: closed symbols, adsorption; open symbols, desorption.

increase the mesopore volume of activated carbons. It should be pointed out that this pretreatment also improves the microporosity of the activated carbon. Such results are consistent with our previous work [4], in which refuse

derived fuel (RDF) was carbonized, treated with HNO₃ then steam activated.

To confirm the effectiveness of the acid treatment, an activated carbon produced without any acid treatment was HCl-treated after activation and the porous properties of the resulting carbon were measured. The results are shown in the bottom row of Table 4. It is obvious that the activated carbon prepared with acid treatment prior to activation had both higher mesopore and micropore volumes than that prepared with acid treatment after activation. The improvements in porous properties by acid treatment after activation may reasonably be ascribed to the removal of inorganic compounds. In contrast, acid treatment prior to activation is thought to have produced more active sites, which subsequently developed into mesopores during steam activation.

Fig. 5 compares the pore size distributions of chars and activated carbons prepared from waste tires with acid treatment prior to activation using various activation times, where $R_{\rm p}$ and $V_{\rm p}$ are pore radius and pore volume, respectively. Although mesopores in the range of $1 < R_{\rm p} < 4$ can be hardly noticed in the char before activation, the development of mesopores in this size range during activation is significant. It is natural to assume that such mesopores were formed by the widening of micropores which existed in the char before activation. However, significant changes in $V_{\rm micro}$ values due to acid treatment cannot be seen in Table 2. By focusing on the micropore

Table 4
Porous properties of activated carbons treated with HCl prior to steam activation

Sample	Bum-off (%)	V_{meso} (cm ³ /g)	V _{micro} (cm ³ /g)	S_{BET} (m ² /g)
AC_I HCI 0.5	33.4	0.48	0.22	609
AC 3 HCI 0.5	60.5	0.99	0.48	1045
AC 4 HCI 0.5	71.0	1.27	0.56	1116
AC I HCL 5	33.1	0.49	0.22	664
AC 3 HCl 5	68.0	1.18	0.51	1107
AC_4 HCl_5	77.5	1.62	0.57	1119
AC_L HCl_20	30.7	0.53	0.20	585
AC_3 HCI_20	68.6	1.22	0.54	1177
AC 4 HCI 20	78.6	1.52	0.54	1166
HCI AC 4.5	73.7	1.13	0.45	1096

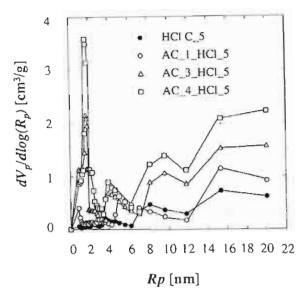


Fig. 5. Pore size distributions of a typical HCl acid-treated char and typical activated carbons prepared from this char.

volumes of the activated carbons in Tables 3 and 4, we may attribute the improvement in mesoporosity of acid-treated activated carbons to the appearance of many more micropores in the initial stage of activation.

3.4. Application of prepared activated carbon to liquidphase adsorption

The liquid-phase adsorption characteristics of a mesoporous activated carbon prepared with HCl acid treatment prior to steam activation and a commercial activated carbon were measured and compared. The porous properties of the tested carbons are given in Table 5. Liquid-phase adsorption experiments were conducted using phenol and a reactive dye, Black 5, as adsorbates.

Obviously, the activated carbon obtained in the present work has a significantly larger $V_{\rm maxo}$ value, but only slightly larger $V_{\rm maxo}$ and $S_{\rm BET}$ values than the commercial carbon. As illustrated in Fig. 1, phenol, which is often encountered in wastewater treatment, has a maximum dimension of ca. 0.80 nm while that of Black 5 is ca. 3.15 nm which is larger than the maximum diameter of micropores according to the IUPAC definition. The adsorption isotherms of phenol and Black 5 on both activated carbons are shown in Figs. 6 and 7, respectively, where q and C_c

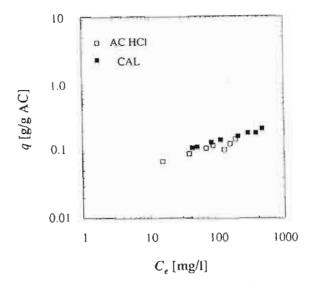


Fig. 6. Adsorption isotherms of phenol on activated carbons.

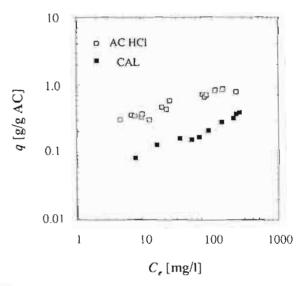


Fig. 7. Adsorption isotherms of a dye, Black 5, on activated carbons.

are amount adsorbed and equilibrium concentration, respectively.

As can be seen in Fig. 5, although the prepared activated carbon had larger $V_{\rm micro}$ and $V_{\rm meso}$ values, its phenol

Table 5
Porous properties of activated carbons used in liquid-phase adsorption

Sample	Burn-off (%)	Ash content (%)	(cm ⁵ /g)	V _{micro} (cm ³ /g)	S_{BET} (m^2/g)
AC HCI	67.0	18.3	0.79	0.48	998
CAL	-	8.4	0.24	0.39	956

adsorption capacity was found to be slightly lower than that of its commercial counterpart. This implies that phenol adsorption depends not only on the porous properties of the adsorbent but also on its surface properties. Due to its higher ash content, it is reasonable to assume that the surface of the prepared activated carbon was somewhat hydrophilic in nature, leading to a lower phenol adsorption capacity.

In contrast, because of its larger mesopore volume, the prepared activated carbon showed an obviously larger dye adsorption capacity than its commercial counterpart. It is reasonable to conclude that the mesopores of the carbon played an important role in the adsorption of large molecular adsorbates. From the results of liquid-phase adsorption experiments, we can conclude that the activated carbon prepared from waste tires with HCl treatment prior to steam activation is a suitable adsorbent for liquid-phase adsorption of bulky molecules.

4. Conclusion

In this work, fairly mesoporous activated carbons were produced from waste tires rubber through a conventional production process: carbonization followed by steam activation. Moreover, it was found that when the chars were acid-treated prior to steam activation, highly mesoporous activated carbons could be obtained. It was also found that acid treatment prior to steam activation could improve not only the mesoporosity but also the microporosity of the resulting activated carbons.

The phenol adsorption capacity of a typical mesoporous activated carbon prepared in this work was slightly lower than that of a typical commercial product, even though the micropore volume of prepared carbon was larger than the commercial one. On the other hand, due to its larger mesopore volume, the same activated carbon showed a larger dye adsorption capacity than its commercial counterpart. The results of liquid-phase adsorption experiments reveal that the acid-treated activated carbon prepared from waste tires is a suitable adsorbent for waste water treatment especially systems which involve bulky molecules.

Acknowledgements

P. Ariyadejwanich and W. Tanthapanichakoon, respectively receive full-expense Research Fellowship under Royal Golden Jubilee PhD Program and Senior Research Scholar Fund from Thailand Research Fund (TRF). In addition P. Ariyadejwanich also receives 1-year Student Exchange Scholarship from Association of International Education Japan (AIEJ) to study and do research in Kyoto University. H. Tamon and S.R. Mukai visited CU and

carried out this collaborative research under TJTTP-JBIC Project of CU.

References

- [1] Cunliffe AM, Williams PT. Influence of process conditions on the rate of activation of chars derived from pyrolysis of used tires. Energy Fuels 1999;13(1):166-75.
- [2] Jankowska H, Swiatkowski A, Choma J. Active carbon. Chichester, UK: Ellis Horwood, 1991.
- [3] Tamon H, Nakagawa K, Suzuki T, Nagano S. Improvement of mesoporosity of activated carbons from PET by novel pre-treatment from steam activation. Carbon 1999;37(10):1643-5.
- [4] Nagano S, Tamon H, Adzumi T, Nakagawa K, Suzuki T. Activated carbon from municipal waste. Carbon 2000;38(6):915-20.
- [5] Ogasawara S, Kuroda M, Wakao N. Preparation of activated carbon by thermal decomposition of used automotive tires. Ind Eng Chem Res 1987;26(12):2552-6.
- [6] Williams PT, Besler S, Taylor DT. The pyrolysis of scrap automotive tyres. Fuel 1990;69(12):1474-82.
- [7] Teng H, Serio MA, Wojtowicz MA, Bassilakis R, Solomon PR. Reprocessing of used tires into activated carbon and other products. Ind Eng Chem Res 1995;34(9):3102-11.
- [8] Merchant AA, Petrich MA. Pyrolysis of scrap tires and conversion of chars to activated carbon. AIChE J 1993;39(8):1370-6.
- [9] Lin SH. Adsorption of disperse dye by powdered activated carbon. J Chem Tech Biotechnol 1993;57(4):387-91.
- [10] Tamai H, Kakii T, Hirota Y, Kumamoto T, Yasuda H. Synthesis of extremely large mesoporous activated carbon and its unique adsorption for giant molecules. Chem Mater 1996;8(2):454-62.
- [11] Sankar M, Sekaran G, Sadulla S, Ramasami T. Removal of diazo and triphenylmethane dyes from aqueous solutions through an adsorption process. J Chem Technol Biotechnol 1999;74(4):337-44.
- [12] Hu Z, Srinivasan MP, Ni Y. Novel activation process for preparing highly microporous and mesoporous activated carbons. Carbon 2001;39(6):877-86.
- [13] Tamai H, Yoshida T, Sasaki M, Yasuda H. Dye adsorption on mesoporous activated carbon fiber obtained from pitch containing yttrium complex. Carbon 1999;37(6):983-9.
- [14] Hsieh C, Teng H. Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions. Carbon 2000;38(6):863-9.
- [15] Cazorla-Amoros D, Ribes-Perez D, Roman-Martinez MC, Linares-Solano A. Selective porosity development by calcium-catalyzed carbon gasification. Carbon 1996;34(7):869– 78
- [16] Leboda R, Skubiszewska-Zieba J, Grzegorczyk W. Effect of calcium catalyst loading procedure on the porous structure of active carbon from plum stones modified in the steam gasification process. Carbon 1998;36(4):417-25.
- [17] Liu Z, Ling L, Qiao W, Liu L. Effect of hydrogen on the mesopore development of pitch-based spherical activated carbon containing iron during activation by steam. Carbon 1999;37(12):2063-6.

- [18] Hu Z, Srinivasan MP. Mesoporous high-surface-area activated carbon. Microporous Mesoporous Mater 2001;43(3):267-75.
- [19] Dollimore D, Heal GR. An improved method for the calculation of pore size distribution from adsorption data. J Appl Chem 1964;14:109-14.
- [20] Lippens BC, de Boer JH. Pore system n catalysts V: the t-method. J Catal 1965;4:319-23.
- [21] Dubinin MM, Astakhov VA. Description of adsorption equilibria of vapors on zeolites over wide ranges of temperature and pressure. Adv Chem Ser 1971;102:69–85.
- [22] Cunliffe AM, Williams PT. Properties of chars and activated carbons derived from the pyrolysis of used tyres. Environ Technol 1998;19(12):1177-90.

Chemical Engineering Science

Chemical Engineering Science 58 (2003) 915-921

www.clsevier.com/locate/ces

Discrete particle simulation of solids motion in a gas-solid fluidized bed

Sunun Limtrakul^{a,*}, Ativuth Chalermwattanatai^a, Kosol Unggurawirote^b, Yutaka Tsuji^c, Toshihiro Kawaguchi^c, Wiwut Tanthapanichakoon^d

^aDepartment of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand ^bDepartment of Mechanical Engineering, Faculty of Engineering, Kasetsart University, Banakok, Thailand

Abstract

The solids motion in a gas-solid fluidized bed was investigated via discrete particle simulation. The motion of individual particles in a uniform particle system and a binary particle system was monitored by the solution of the Newton's second law of motion. The force acting on each particle consists of the contact force between particles and the force exerted by the surrounding fluid. The contact force is modeled by using the analogy of spring, dash-pot and friction slider. The flow field of gas was predicted by the Navier-Stokes equation. The solids distribution is non-uniform in the bed, which is very diluted near the center but high near the wall. It was also found that there is a single solids circulation cell in the fluidized bed with ascending at the center and descending near the wall. This finding agrees with the experimental results obtained by Moslemian. The effects of the operating conditions, such as superficial gas velocity, particle size, and column size on the solids movement, were investigated. In the fluidized bed containing uniform particles better solids mixing was found in the larger bed containing smaller size particles and operated at higher superficial gas velocity. In the system containing binary particles, it was shown that under suitable conditions the particles in a fluidized bed could be made mixable or non-mixable depending on the ratios of particle sizes and densities. Better mixing of binary particles was found in the system containing particles with less different densities and closer sizes. These results were found to follow the mixing and segregation criteria obtained experimentally by Tanaka et al.

© 2003 Elsevier Science Ltd. All rights reserved.

Keywards: Simulation; Modelling; Discrete particle simulation; Solids motion; Mixing; Fluidization

1. Introduction

The solids flow pattern and solids mixing in a fluidized bed are important for the design and operation of the bed. Mixing and segregation of particles in the bed influence rates of mass and heat transfer in the bed. However, the solids behavior in such bed is difficult to access due to the complex interaction of the particles in the bed. The measurement method of local solids motion in a three-dimensional fluidized bed usually is an invasive technique, which alters the flow pattern in the bed. Most of available information regarding the flow pattern and mixing in the literature provides only average characterization. The two-fluid model, which regards the solid particles as a continuum was usually used to simulate the flow behavior of gas-solid

system (Helland, Occelli, & Tadrist, 2002; Samuelsberg & Hjertager, 1996; Johnsson, Andersson, & Leckner. 1991; Bouillard, Gidaspow, & Lyczkowski, 1991; Prichett, Blake, & Garg, 1978). However, the great number of large particle in a fluidized bed requires the model based on realistic assumptions such as the distinct element method (DEM) (Cundall & Strack, 1979).

This work aims to investigate the solids motion in a gas-solid fluidized bed via discrete particle simulation. The motion of individual particles in a uniform particle system and a binary particle system was monitored by the solution of the Newton's second law of motion. The force acting on each particle consists of the contact force between particles and the force exerted by the surrounding fluid. The contact force is modeled by using the analogy of spring, dash-pot and friction slider, which was first proposed by Cundall and Strack (1979). The flow field of gas was predicted by the Navier-Stokes equation.

Department of Mechanophysics Engineering, Osaka University, Suita, Osaka, Japan

^dDepartment of Chemical Engineering, Chidalongkorn University, Bangkok, Thailand

^{*} Corresponding author. Tel.; 66-2-5792083; fax; 66-2-5792083.

E-mail address: Tengsul@ku ac th (S. Limtrakul).

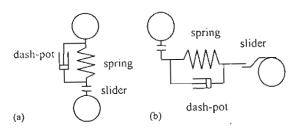


Fig. 1. Models of contact forces: (a) normal force and (b) tangential force.

2. Mathematical modeling

The mathematical models consist of equations of particle motion and equation of fluid.

2.1. Particle motion

The particle movement is evaluated by the Newton equation of motion which includes the effects of gravitational force, contact force, and fluid force. The equations of transitional and rotational motions can be written as

$$\vec{a}_S = \frac{\vec{F}}{m} + \vec{g},$$

$$\vec{\alpha}_S = \frac{\vec{T}}{I},$$
(1)

$$\vec{\alpha}_S = \frac{\vec{T}}{I},\tag{2}$$

where the acceleration of particles (\vec{a}_S) is a function of the sum of force acting on the particle (\vec{F}) and the angular acceleration of particles $(\bar{\alpha}_S)$ depends on the torque (\bar{T}) caused by the contact force and the moment of inertia of particles (1). The force acting on the particles consists of the particle contact forces (\tilde{f}_C) and the force exerted by the surrounding fluid (\bar{f}_D) :

$$\bar{F} = \tilde{f}_C + \tilde{f}_D. \tag{3}$$

The contact force between two spherical particles can be predicted by the simple model as shown in Fig. 1 which was first proposed by Cundall and Strack (1979). The model estimates the contact forces using the same concepts of spring, dash-pot and friction slider. Thus the model depends on the parameters of stiffness, dissipation and friction coefficients which can be obtained from the physical properties of the particles. The details of the estimation of parameters were shown in the previous work (Tsuji, Tanaka, & Ishida, 1992). The normal and tangential contact forces as shown in Fig. I are given as

$$\vec{f}_{Cn} = -k\vec{X}_n - \eta \vec{\hat{X}}_n, \tag{4}$$

$$\vec{f}_{Ci} = -k\vec{X}_i - \eta \vec{X}_i, \tag{5}$$

where \vec{X}_n and \vec{X}_t are the particle displacements in the normal and tangential directions, respectively, X the relative velocity of particles, k the stiffness of the spring and η the coefficient of viscous dissipation. If the following relation is satisfied

$$f_{Ct} > \mu_f |\bar{f}_{C_n}|, \tag{6}$$

then the Coulomb-type friction law is used instead.

$$f_{Cl} = -\mu_f |\bar{f}_{C_g}|,\tag{7}$$

where μ_f is the friction coefficient.

2.2. Fluid flow

The motion of fluid is described by the equation of continuity and the equation of momentum conservation with the local mean variables. The fluid is assumed to be incompressible and inviscid. The equations are written as follows:

Equation of continuity:

$$\frac{\partial \epsilon}{\partial t} + (\nabla \cdot \epsilon \vec{v}) = 0. \tag{8}$$

Equation of momentum conservation:

$$\frac{\partial(\varepsilon \vec{v})}{\partial t} + (\vec{v} \cdot \nabla)\varepsilon \vec{v} = -\frac{\nabla \varepsilon p}{\rho} + f_{si} \tag{9}$$

where ε is void fraction, v is velocity vector of fluid, ρ is fluid density, p is pressure of fluid, and f_{xx} is the fluid drag force exerted to the particles, which is given by

$$f_{si} = \frac{\beta}{\rho} (\vec{u}_p - \vec{v}), \tag{10}$$

where \vec{u}_p is the particle velocity vector averaged in a cell. The coefficient β depends on the void fraction given by (Prichett et al., 1978):

$$\beta = \frac{\mu(1-\varepsilon)}{d_p^2 \varepsilon} [150(1-\varepsilon) + 1.75R_e] \quad (\varepsilon \le 0.8), \tag{11}$$

$$\beta = \frac{3}{4} C_D \frac{\mu(1-\varepsilon)}{d_d^2} \varepsilon^{-2.7} R_{\varepsilon} \quad (\varepsilon > 0.8), \tag{12}$$

where d_p is the particle Liameter and μ is the fluid viscosity CD is the drag force on each single particle given by

$$C_D = 24(1 + 0.15 \text{Re}^{0.687})/\text{Re} \quad (R_e \le 1000),$$
 (13)

$$C_D = 0.43 \quad (R_e > 1000),$$
 (14)

$$R_e = \frac{|\vec{u}_p - \vec{v}|\rho\varepsilon d_p}{\mu}.$$

The equation of fluid motion was solved simultaneously with the equation of particle motion. The numerical method, SIMPLE, developed by Patankar (1980), was used.

3. Simulation results and discussions

The simulation was carried out in two main systems, the system containing uniform particles and the system containing two types of particles. The binary mixture of different density particles and the binary mixture of different size particles were monitored for the mixing and segregating behavior. The physical properties of the particles and the conditions for the simulation are shown in Table 1.

Table 1 Physical properties of the particles and the simulation conditions

Properties and conditions	Bed with uniform particles	Bed with different densities		Bed with different sizes	
Particle diameter (mm)	6	6/6		10.5/5 = 2.1	8/6 = 1.33
Particle number	20,000	10,000	0/10,000	2160/17,280	4,218110,000
Particle density (kg/m ³)	2500	2500/1000 = 2.5	2500/2000 = 1.25	2500/	2500
Minimum fluidizing velocity (m/s)	2.52	2.75/1.74	2.75/2.46	3.55/2.51	3.18/2.75
Superficial gas velocity (m/s)	2.75, 4.5, 6	3.0	3.0	3.9	3.5
Particle color	Red/yellow	Red/blue	Red/blue	Blue/red	Bluc/red
Initial particle layer	Bottom/top	Uniform mixed	Bottom/top	Un:form mixed	Bottom/top
Coefficient of restitution			0.9		
Coefficient of friction			0.3		
Stiffness (N/m)			800		

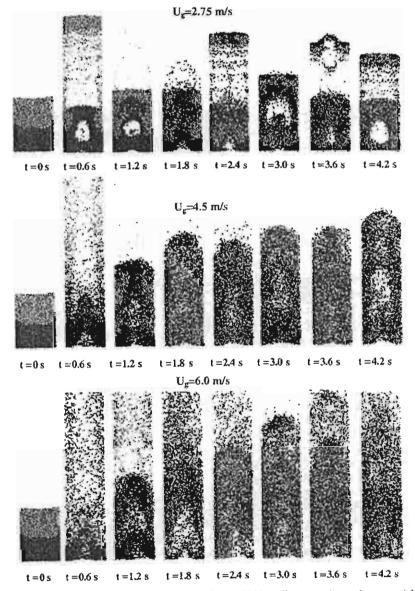
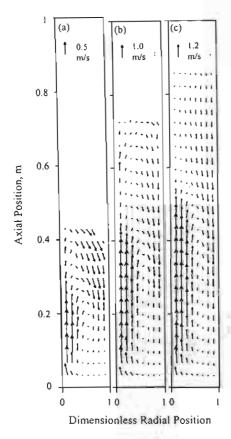



Fig. 2. Axially sliced two-dimensional particle distribution as a function of time, 0.152 m diameter column, 6 mm particle, particle number = 20,000, superficial gas velocity (U_g) = 2.75, 4.5, 6 m/s.

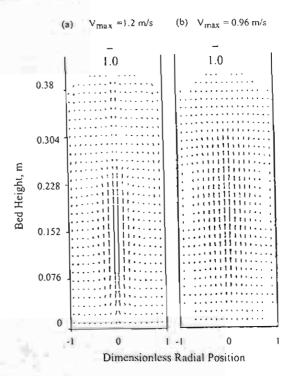


Fig. 4. Comparison of simulation result and experimental result: (a) simulation result and (b) experimental result by Moslemian (1987).

Fig. 3. Time-averaged two-dimensional velocity vector plot, superficial gas velocity; (a) $U_g = 2.75$ m/s, (b) $U_g = 4.5$ m/s, and (c) $U_g = 6$ m/s.

Fig. 2 shows the axially sliced two-dimensional particle distribution as a function of time at the superficial gas velocities in the range of 2.75-6 m/s. At the center of the bed, large bubbles are generated. Thus, the solids distribution is non-uniform in the bed, which is very diluted near the center but high near the wall. Fig. 3 shows the time-averaged two-dimensional solids velocity vector plots. There is a single solids circulation cell in the fluidized bed with ascending at the center and descending near the wall. The circulation movement of the solids causes the good mixing of the solids in the bed. The solids flow pattern from simulation agrees well with the solids flow pattern obtained by the radioactive particle tracking method (Moslemian, 1987) as shown in Fig. 4. The solids flow pattern and the solids mixing are dependent on the gas superficial gas velocity. The solids circulation velocity and the solids mixing increase as the superficial gas velocity increases from 2.75 to 6 m/s as shown in Figs. 2 and 3. At higher superficial gas velocity, the steady state can be approached faster. The effect of the particle size on the solid velocity and mixing is shown in Figs. 5 and 6, respectively. The solid mixing of particles in the bed can be shown by the ratio of solid holdup of particles located at the top part and the solid holdup of particles located at the

Fig. 5. Effect of particle size on time-averaged axial velocity.

bottom of the bed at the beginning. If the ratio approaches unity, the good mixing will be obtained. The particle sizes of 4, 6 and 10 mm were investigated. It was found that the small particles move with higher circulation leading to good mixing of particles in the bed $(\varepsilon_{top}/\varepsilon_{bottom} \rightarrow 1)$.

Figs. 7 and 8 show the effect of column size on the solids circulation and mixing. Better solid mixing and higher solid circulation were found in the larger bed diameter.

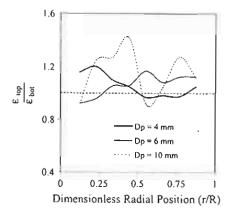


Fig. 6. Effect of particle size on the mixing (on the phase holdup of the top particles/the phase holdup of the bottom particles) at bed height (z/Z) = 0.28.

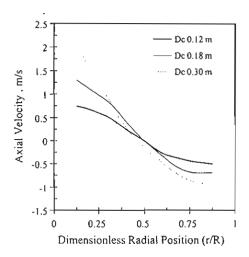


Fig. 7. Effect of column size on time-averaged axial velocity.

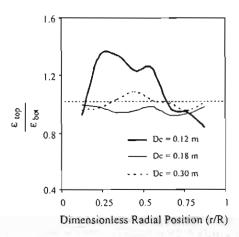


Fig. 8. Effect of column size on the mixing (on the phase holdup of the top particles/the phase holdup of the bottom particles) at bed height (z, Z) = 0.28.

Figs. 9(a) and (b) show the mixing and segregating behavior as a function of time in the period of 0-5.7 s for the system containing two types of particles with two densities. In the system containing binary particles with the density ratio of 2.5, the well-mixed bed at the beginning (at fixed bed condition) becomes segregated as fluidizing. The heavy particles are located on the bottom and the lighter particles are located at the top (see Fig. 9(a)). On the other hand the bed containing binary particles with the density ratio of 1.25 shows mixing behavior. The bed behavior alters from the segregating bed to mixing bed after changing from a fixed bed (t = 0) to a fluidized bed (see Fig. 9(b)). Similarly, the mixing and segregating behavior of the system containing two sizes of particles were shown in Figs. 9(c) and (d). The systems with size ratios of 1.33 and 2.1 show mixing behavior and segregating behavior, respectively. These results were also experimentally found by Tanaka, Mituji, and Takahashi (1996). They showed that conditions of mixing and segregation were formulated

$$0.5 < \left(\frac{D_{P(B)}}{D_{p(A)}}\right) \left(\frac{\rho_{P(B)}}{\rho_{P(A)}}\right)^2 < 2. \tag{15}$$

The simulation condition

$$\left(\frac{D_{P(B)}}{D_{p(A)}}\right) \left(\frac{\rho_{P(B)}}{\rho_{P(A)}}\right)^2 \text{ of } (1)(2.5)^2 = 6.25$$

is in the Tanaka's regime of segregation. The simulation results were found that the different density particles are non-mixable in the bed as shown in Fig. 9(a). On the other hand, Fig. 9(b) shows the simulation result at the Tanaka's mixing condition

$$\left(\frac{D_{P(B)}}{D_{p(A)}}\right) \left(\frac{\rho_{P(B)}}{\rho_{P(A)}}\right)^2$$
, of (1)(1.25)² = 1.56.

Similarly, in the mixture system of different size particles, the simulation conditions

$$\left(\frac{D_{P(B)}}{D_{p(A)}}\right) \left(\frac{\rho_{P(B)}}{\rho_{P(A)}}\right)^2 \text{ of } (2.1)(1) = 2.1 \text{ and } (1.33)(1) = 1.33$$

are in the Tanaka's regimes of segregation and mixing, respectively, as shown in Figs. 9(c) and (d).

4. Conclusions

This work successfully applied the discrete particle simulation to predict the flow pattern, and mixing and segregation of solids particles in a cylindrical fluidized bed. The solids distribution is non-uniform in the bed, which is very diluted near the center but high near the wall. It was also found that there is a single solids circulation cell in the fluidized bed with ascending at the center and descending near the wall. This finding agrees with the experimental results obtained by Moslemian (1987). In the fluidized bed

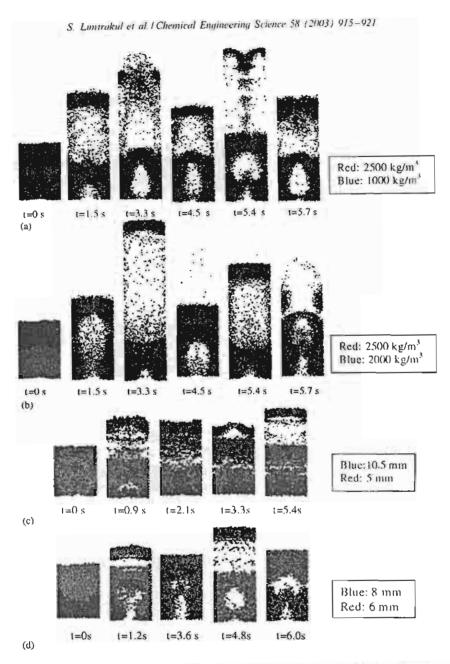


Fig. 9. Segregation and mixing behavior of fluidized beds containing particles with different types: (a) different densities $\rho_h/\rho_l = 2.5$, (b) different densities $\rho_h/\rho_l = 1.25$, (c) different sizes $d_h/d_s = 2.1$ and (d) different sizes $d_h/d_s = 1.33$.

containing uniform particles better solids mixing was found in a larger bed containing smaller size particles and operated at higher superficial gas velocity. In the system containing binary particles, it was shown that under suitable conditions the particles in a fluidized bed could be made mixable or non-mixable depending on the ratios of particle sizes and densities. Better mixing of binary particles was found in the system containing particles with less different densities and closer sizes. These results were found to follow the mixing and segregation criteria obtained experimentally by Tanaka et al.

Notation

\bar{a}_S	acceleration of particle
D _r Ē	particle diameter
-	sum of forces acting on particle
\tilde{f} c	contact force
J D	fluid drag force
\bar{g}	gravity acceleration of particle
I	inertial moment of particle
k	stiffness of particle
m	particle mass

$\vec{\mathcal{T}}$	torque
й _р г	particle velocity vector averaged in a cell
\vec{v}	velocity vector of fluid
\vec{X}	displacement of particle
$ec{\dot{X}}$	relative velocity of particles

Greek letters

$\vec{\alpha}_S$	angular acceleration of particle
E	void fraction (porosity)
η	coefficient of viscous dissipation
μ	gas viscosity
μ_f	friction coefficient
ρ	gas density

Subscripts

n	normal direction
1	tangential direction

Acknowledgements

This work was financially supported by the Thailand Research Fund (TRF) no. PDF/35/2540 under Post Doctoral Project. Partial financial supports from TRF Senior Research Scholar Project (Dr. Wiwut Tanthapanichakoon) and the

Kasetsart University Research and Development Institute (KURDI) are acknowledged.

References

- Bouillard, J. X., Gidaspow, D., & Lyczkowski, R. W. (1991).
 Hydrodynamics of fluidization: Fast-bubble simulation in a two-dimensional fluidized bed. *Powder Technology*, 66, 107-118.
- Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Geotechnique, 29, 47-65.
- Helland, E., Occelli, R., & Tadrist, L. (2002). Computational study of fluctuating motions and cluster structures in gas particle flows. International Journal of Multiphase Flow, 28, 199-223.
- Johnsson, F., Andersson, S., & Leckner, B. (1991). Expansion of a freely bubbling fluidized bed. *Powder Technology*, 68, 117-123.
- Moslemian, D., 1987. Study of solds motion, mixing and heat transfer in gas-solid fluidized beds. Ph.D. thesis, University of Illinois, USA.
 Patankar, S.V. (1980). Numerical heat transfer and fluid flow. New York: Hemisphere.
- Prichett, J. W., Blake, T. R., & Garg, S. K. (1978). A numerical model of gas fluidized beds. AIChE Symposium Series, 176(74), 134-148.
- Samuelsherg, A., & Hjertager, B. H. (1996). An experimental and numerical study of flow patterns in a circulating fluidized bed reactor. International Journal of Multiphase Flow, 22, 575-591.
- Tanaka, Z., Mituji, H., & Takahashi, T. (1996). Extractive fluidized classification. Advanced Powder Technology, 7, 199-205.
- Tsuji, Y., Tanaka, T., & Ishida, T. (1992). Langrangian numerical simulation of plug flow of cohesionless particles in horizontal pipe. Powder Technology, 71, 239–250.

Development of Mathematical Model for Continuous Spray Evaporator/Air (de)humidifier with Nonisothermal Polydisperse Droplets

Pratarn Wongsarivej and Wiwut Tanthapanichakoon'

Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.

'Corresponding author, E-mail: fchwtt@eng.chula.ac.th

Received 30 Apr 2001 Accepted 13 Aug 2002

Abstract A steady state model of co-current spray evaporator and air (de)humidifier for non-isothermal droplets has been developed to investigate the effect of polydispersity of droplet size on performance. The model is validated by comparison with results of Dickinson and Marshall (1968, AICHE J. 14,541). It reveals that their ideal assumption of constant droplet temperature leads to significant error when the droplet size distribution is strongly polydisperse. Numerous simulation cases of the spray evaporator show that the average droplet diameter and droplet size distribution of water spray significantly affect the change in the air properties and the size, velocity and temperature of water droplets. For polydisperse droplets, a narrower droplet size distribution (σ =0.2) shows a more rapid decrease in the diameter of the droplets, thus causing a more rapid temperature decrease and humidity increase of the air than the case of a broader droplet size distribution (σ =0.4) with the same volume-averaged diameter.

KEYWORDS: evaporator, dehumidifier, polydisperse droplet, non-isothermal droplet.

NTRODUCTION

The evaporation/condensation of a volatile component (usually water vapor) from/on spray droplets involves simultaneous heat and mass transfer. Upon contact between atomized droplets and drying air, heat is transferred by convection from the air to the droplet, and converted to latant heat during moisture evaporation. The vaporized moisture is transported into the air by convection through the gas boundary layer that surrounds each droplet. The velocities of droplets leaving the nozzle of the atomizer may differ greatly from the velocity of the surrounding air, and simultaneously with heat and mass transfer, there is an exchange of momentum between the droplets and surroundings. The rate of heat and mass transfer is a function of temperature, humidity and transport properties of the air surrounding each droplet. It is also a function of the droplet diameter and relative velocity between the droplets and air.1

Humidification processes are carried out to control the humidity of an air space or, more usually, to cool and recycle process water through contact with low-humidity air. The directions of heat and mass transfer are determined by the relation between the humidity and temperature of the inlet gas phase and the temperature of the contacting liquid. The most obvious form of humidification equipment is the spray chamber. Here, the contacting liquid is sprayed as a mist into the

gas stream. Gas velocity is kept low so that the contact time is high. Dehumidification processes are practised most commonly as a step in an air conditioning system. In this process, a warm vapor gas mixture is contacted with a cool liquid. Vapor condenses out of the gas phase, the gas phase cools, and the liquid is warmed. Both sensible and latent heat are transferred toward the liquid phase.

Some notable contributors to spray evaporation analysis are Probert³, Marshall⁴, Shapiro and Erickson⁵. Manning and Gauvin⁶, Bose and Pei⁷, Dickinson and Marshall⁸, Keey and Pham⁹, and Carslaw and Jaeger. 10 More specifically, Probert³ presented a theoretical analysis based upon a spray size distribution following the Rosin-Rammler distribution. Polydisperse spray droplets were considered to have zero relative velocity with respect to the air stream and changes in the temperature driving force were assumed negligible during evaporation. Marshall4 investigated spray evaporation of droplets following a logarithmic distribution, evaporating under zero relative velocity conditions and the same temperature driving force. Dickinson and Marshall⁸ studied the spray evaporation under ideal conditions of constant droplet temperature and both negligible and significant relative velocity between the spray and air.

Since the rate of evaporation depends on the individual droplet size and the droplet temperatures are expected to vary during the first stage of water-air

contact, especially in the case of an evaporation tower, it was decided to develop a more rigorous mathematical model of the co-current spray evaporator, in order to investigate the effect of variable droplet temperature and polydispersity. In addition the spray droplets were considered to have variable relative velocity. In fact, the present model is readily applicable to the humidification and dehumidification processes.

MATHEMATICAL MODEL

The main assumptions of the model are as follows.

- 1. With the exception of the water droplets, the process is adiabatic and at steady state.
- 2. Air movement in the spray column may be approximated as plug flow with negligible heat conduction in the radial direction and negligible flow disturbance from the presence of the droplets.
- 3. Liquid droplets are essentially spherical and move vertically downwards. The effects of droplet coalescence, breakage and wall collision are negligible.
- 4. Droplets are uniformly distributed over the cross section of the vertical column. They are introduced into the spray chamber at the same arbitrary inlet velocity $V_{\rm max}$.

Gas-phase water balance in the annulus:

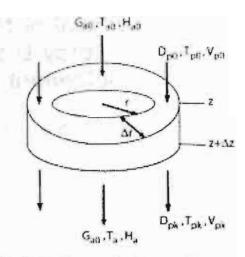


Fig 1. Control volume for heat and mass balances.

Case of Monodisperse Droplets

First we treat the case of monodisperse droplets of inlet diameter $D_{\rm po}$. By considering simultaneous heat and mass transfer between the air and droplets within an annulus of differential thickness Δr and height Δz , as shown in Fig. 1, five governing differential equations are derived as follows. 11

(1)

Overall water balance in the annulus:

$$0 = 2\pi r \Delta r G_{a0} H \Big|_{z=z} - 2\pi r \Delta r G_{a0} H \Big|_{z=z+\Delta z}$$

$$+ \left(\frac{\kappa \pi D_{p}^{3} \rho_{p}}{6} \right) (2\pi r \Delta r) \Big|_{z=z+\Delta z} - \left(\frac{\kappa \pi D_{p}^{3} \rho_{p}}{6} \right) (2\pi r \Delta r) \Big|_{z=z+\Delta z}$$
(2)

Water-phase energy balance in the annulus:

$$0 = \frac{8\pi D_{\rho}^{3} \rho_{p}}{6} \left(2\pi r \Delta r C_{p}\right) \left(T_{p} - T_{r}\right) \bigg|_{z=z} - \frac{8\pi D_{\rho}^{3} \rho_{p}}{6} \left(2\pi r \Delta r C_{p}\right) \left(T_{p} - T_{r}\right) \bigg|_{z=z+\Delta z}$$

$$+ 82\pi r \Delta r \frac{\Delta z}{V_{p}} h_{r} \pi D_{p}^{2} \left(T_{a} - T_{p}\right) - 82\pi r \Delta r \frac{\Delta z}{V_{p}} k_{g} \pi D_{p}^{2} \left(H_{p} - H\right) \left[\lambda_{p} + C_{v} \left(T_{a} - T_{p}\right)\right]$$

$$(3)$$

Overall energy balance in the annulus:

$$\theta = \frac{\mathbb{E}\mathcal{D}_{\rho}^{j} \rho_{\rho}}{6} (2\pi \Delta r C_{\rho})(T_{\rho} - T_{r}) \Big|_{t=1} - \frac{\mathbb{E}\mathcal{D}_{\rho}^{j} \rho_{\rho}}{6} (2\pi r \Delta r C_{\rho})(T_{\rho} - T_{r}) \Big|_{t=1+\Delta r} \\
+ 2\pi r \Delta r C_{\rho} C_{\rho} (T_{\sigma} - T_{r}) \Big|_{t=1} - 2\pi r \Delta r C_{\rho} C_{\rho} (T_{\sigma} - T_{r}) \Big|_{t=1+\Delta r} \\
+ 2\pi r \Delta r C_{\rho} \lambda_{r} H \Big|_{t=1} - 2\pi r \Delta r C_{\rho} \lambda_{r} H \Big|_{t=1+\Delta r} \tag{4}$$

Equation of motion of one representative monodisperse droplet in the annulus:

$$\frac{\rho_{p}\pi D_{p}^{3}}{6} \frac{dV_{p}}{dt} = \frac{\rho_{p}\pi D_{p}^{3}}{6} \left(\frac{\rho_{p} - \rho_{s}}{\rho_{p}}\right) g - \left(\frac{\pi D_{p}^{2} C_{b} \rho_{s} V_{r}}{8}\right) (V_{p} - V_{s})$$

$$(5)$$

Divide equations (1) to (4) by $\Delta r \Delta z$, take $\lim_{\Delta r \to 0}$ and then rearrange the terms to obtain

$$\frac{dH}{dz} = \frac{Rh_c \pi D_\rho^2 (T_s - T_\rho)}{G_{s0} \lambda_\rho V_\rho} \tag{6}$$

$$\frac{dD_{\rho}}{dz} = \frac{-2b_{c}(T_{s} - T_{\rho})}{\lambda_{\rho}V_{\rho}\rho_{\rho}} \tag{7}$$

$$\frac{dT_{p}}{dz} = \left(\frac{-6h_{c}}{\rho_{p}D_{p}V_{p}C_{p}}\right) \left[\frac{\lambda_{p}(H_{p}-H)}{C_{p}} + \frac{C_{p}(H_{p}-H)(T_{p}-T_{p})}{C_{p}} - \frac{C_{p}(T_{p}-T_{p})(T_{p}-T_{p})}{\lambda_{p}}\right] \tag{8}$$

$$\frac{dT_{s}}{dz} = \left(\frac{g p_{s} \pi D_{s}^{2}}{V_{s} G_{s0} C_{s}}\right) \left[\frac{\lambda_{s} (H_{s} - H)}{C_{s}} + \frac{C_{s} (H_{s} - H)(T_{s} - T_{s})}{C_{s}} - (T_{s} - T_{s}) - \frac{C_{s} (T_{s} - T_{s})(T_{s} - T_{s})}{\lambda_{s}}\right]$$

$$+\left(\frac{gb_{r}C_{r}\pi D_{r}^{2}}{V_{r}G_{s0}C_{s}\lambda_{r}}\right)(T_{r}-T_{r})(T_{s}-T_{r})$$

$$-\left(\frac{gb_{r}\pi D_{r}^{2}}{V_{r}G_{s0}C_{s}\lambda_{r}}\right)(T_{s}-T_{r})\left[C_{r}(T_{s}-T_{r})+\lambda_{r}\right]$$
(9)

Since z is the position of the representative droplet, then $\frac{dz}{dt}$ is the droplet velocity, V_p . Multiplying the left hand side of equation (5) by $\frac{dz}{dt}$, after rearranging we obtain

$$\frac{dV_{p}}{dz} = \left(\frac{\rho_{p} - \rho_{z}}{\rho_{p}}\right) \frac{g}{V_{p}} - \left(\frac{3C_{p}\rho_{z}}{4D_{p}\rho_{p}V_{p}}\right) (V_{p} - V_{z})^{2} \tag{10}$$

where C_D is drag coefficient. C_b is heat capacity of humid air. C_p is heat capacity of water. C_v is heat capacity of water vapor, D is diameter. g is gravitational acceleration, G is mass velocity of air, h_c is convective film heat transfer coefficient, H is air humidity, H_p is saturated air humidity at droplet temperature, k_g is film mass transfer coefficient, n is the number-based droplet flux, n is the radial coordinate, n is the principle n is the axial coordinate pointing downwards, n is latent heat of vaporization and n is density. The meaning of the subscripts is as follows. n in the condition, n is air, n is water droplet and n in reference state.

70 ScienceAsia 29 (2003)

Case of Polydisperse Droplets

It is assumed that the particle size distribution of the polydisperse droplets is given or known a priori. For simplicity, the inlet particles will be classified into **kclss** size fractions, say, **kclss** = 20 to 40. Each fraction is characterized by a single class size D_{pk} , which will change as a function of z as evaporation occurs. By considering all **kclss** class sizes and making a similar derivation as the monodisperse case, we obtain equations (11) to (15) in dimensionless forms as follows (k = 1, 2, 3, ..., **kclss**):

$$\frac{dH_{s}^{\prime}}{dz^{\prime}} = \pi \left(\frac{D_{i}}{D_{\rho 0, re}}\right) \sum_{i=1}^{lebs} \left[\gamma_{i}^{\prime} \left(\frac{g_{q}^{\prime} D_{\rho l}^{\prime 2}}{V_{\rho l}^{\prime}}\right) \left(T_{s}^{\prime} - T_{\rho l}^{\prime}\right) \right]$$
(11)

$$\frac{dD_{\rho k}^{\bullet}}{dz^{\bullet}} = -2 \left(\frac{D_{I}}{D_{\rho 0 \, ave}} \right) \left(\frac{h_{cl} \left(T_{z0} - T_{\rho 0} \right)}{\rho_{\rho k} \lambda_{\rho k} V_{\rho 0}} \right) \left(\frac{T_{z}^{\bullet} - T_{\rho k}^{\bullet}}{V_{\rho k}^{\bullet}} \right)$$

$$(12)$$

$$\frac{dT_{\rho i}}{dz} = -6 \left(\frac{D_{i}}{D_{\rho 0 \, ave}} \right) \left(\frac{h_{ci}}{\rho_{\rho i} C_{\rho \rho} V_{\rho 0}} \right) \left(\frac{1}{D_{\rho i} V_{\rho i}} \right) \\
\left[\beta_{i} \left(H_{\rho i} - H_{s}^{*} \right) + \left(\frac{C_{r}}{C_{b}} \right) \left(T_{s}^{*} - T_{\rho i}^{*} \right) \left(H_{\rho i}^{*} - H_{s}^{*} \right) \right] \\
- \left(T_{s}^{*} - T_{\rho i}^{*} \right) - \alpha_{i} \left(T_{s}^{*} - T_{\rho i}^{*} \right) \left(T_{\rho i}^{*} - T_{r}^{*} \right) \right] \tag{13}$$

$$\frac{dT_{s}^{'}}{dz^{'}} = \pi \left(\frac{D_{t}}{D_{p0,ne}}\right) \sum_{l=1}^{leds} \left\{ \begin{bmatrix} \beta_{l}^{'} \left(H_{pl}^{'} - H_{s}^{'}\right) + \left(\frac{C_{t}}{C_{b}}\right) \left(T_{s}^{'} - T_{pl}^{'}\right) \left(H_{pl}^{'} - H_{s}^{'}\right) \\ - \left(T_{s}^{'} - T_{pl}^{'}\right) - \alpha_{l}^{'} \left(T_{s}^{'} - T_{pl}^{'}\right) \left(T_{pl}^{'} - T_{s}^{'}\right) \end{bmatrix} \right\}
+ \pi \left(\frac{D_{t}}{D_{p0,ne}}\right) \sum_{l=1}^{leds} \left[\gamma_{l}^{'} \left(\frac{C_{pp}}{C_{b}}\right) \left(\frac{g_{s}^{'} D_{pl}^{'}}{V_{pl}^{'}}\right) \left(T_{s}^{'} - T_{pl}^{'}\right) \left(T_{pl}^{'} - T_{s}^{'}\right) \right]
- \pi \left(\frac{D_{t}}{D_{p0,ne}}\right) \left[\left(\frac{C_{r}}{C_{b}}\right) \left(T_{s}^{'} - T_{r}^{'}\right) + \frac{\lambda_{r} \left(T_{s0} - T_{p0}\right)}{C_{b}} \right]
\sum_{l=1}^{leds} \left[\gamma_{l}^{'} \left(\frac{g_{s}^{'} D_{pl}^{'}}{V_{pl}^{'}}\right) \left(T_{s}^{'} - T_{pl}^{'}\right) \right]$$
(14)

$$\frac{dV_{pl}}{dz} = \left(\frac{\rho_{pl} - \rho_z}{\rho_{pl}}\right) \left(\frac{gD_t}{V_{pl}^2}\right) \left(\frac{1}{V_{pl}}\right) - \left(\frac{3C_D}{4}\right) \left(\frac{D_t}{D_{plane}}\right) \left(\frac{\rho_z}{\rho_{pl}}\right) \frac{(V_{pl} - V_{pl})^2}{V_{pl}D_{pl}^2}$$
(15)

where 12

$$h_{d} = \frac{k_{d}}{D_{\rho low}} \int_{\rho l} \left\{ 20 + 0.60 \sqrt{D_{\rho l} | V_{\rho l} - V_{o} |} \left(\frac{C_{\rho l} \mu_{s}}{k_{d}} \right)^{0.33} \left(\frac{D_{\rho low} V_{\rho l} \rho_{s}}{\mu_{s}} \right)^{0.5} \right\}$$

$$k_{d}, C_{\rho l}, \mu_{s} \text{ and } \text{ are calculated at the film temperature. } T_{f} = \frac{\left(T_{s} + T_{\rho} \right)}{2}$$

$$D_{\rho l, mr} = \frac{\sum_{s=1}^{N} f_{s}(D_{r})(D_{r})}{100} . \qquad D_{\rho l} = \frac{D_{\rho l}}{D_{\rho l, mr}} . \qquad H_{a} = H_{a} .$$

$$T_{a}^{*} = \left(\frac{T_{a} - T_{\rho 0}}{T_{a0} - T_{\rho 0}}\right) . \qquad T_{r}^{*} = \left(\frac{T_{r} - T_{\rho 0}}{T_{a0} - T_{\rho 0}}\right) . \qquad V_{a0} = \frac{V_{a0}}{V_{\rho 0}} .$$

$$V_{\rho k} = \frac{V_{\rho k}}{V_{\rho 0}} . \qquad \Delta z^{*} = \frac{\Delta z}{D_{l}} . \qquad \alpha_{k}^{*} = \frac{C_{\rho \rho}(T_{a0} - T_{\rho 0})}{\lambda_{\rho k}} . \qquad \lambda_{\rho l}^{*} = \frac{H_{a}}{C_{b}(T_{a0} - T_{\rho 0})} . \qquad \lambda_{l}^{*} = \frac{h_{cl}(T_{a0} - T_{\rho 0})}{\lambda_{\rho l}} . \qquad \lambda_{l}^{*} = \frac{h_{cl}(T_{a0} - T_{\rho 0})}{\lambda_{\rho l}} . \qquad \lambda_{l}^{*} = \frac{h_{cl}(T_{a0} - T_{\rho 0})}{\lambda_{\rho l}} . \qquad \lambda_{l}^{*} = \frac{h_{cl}(T_{a0} - T_{\rho 0})}{\lambda_{\rho l}} . \qquad \lambda_{l}^{*} = \frac{h_{cl}(T_{a0} - T_{\rho 0})}{\lambda_{l}} . \qquad \lambda_{l}^{*} = \frac{h_{cl}(T_{a0}$$

is thermal conductivity, *kclss* is the total number of droplet class sizes, N is the total number of droplets and — is viscosity. The meaning of the subscripts are as follows: ave: average, f: film, k: droplet class size number, and t: column. The superscript * means dimensionless value.

In the case of monodisperse droplets, we may use kclss -1. Equations (11) to (15) are integrated simultaneously using the fourth-order Runge-Kutta method. In the present model, the droplet temperature of each size fraction is not assumed to be constant, but varies with z. In the case of polydisperse droplets, the droplet size distribution at the inlet will be represented by a sufficiently large number of droplet class sizes or fractions as shown in Table 1. The total number of ordinary differential equations is (3*kclss +2). The validation of the present model was carried out by comparing with the simulation results published by Dickinson and Marshall⁸ (D-Mmodel) as shown in Fig 2. According to D-M model the definitions of the evaporation index. , on the horizontal axis and the unevaporated volume fraction on the vertical axis are given by

Table 1. Example of log-normal distribution (volume-averaged $D_{\rm p}$ =200 μm , σ =0.2) and inlet flux of droplets in each size fraction.

Fraction number (k)	Droplet class size (µm)	Representative diarmeter (µm)	Flux of droplets (m ⁻² s ⁻¹)	Number of droplets (%)	
1	0-40	20	4.67E-08	5.33E-13	
2	40-80	60	8.75E+01	9.98E-04	
2	80-120	100	1.10E+05	1.26E+00	
4	120-160	140	1.75E+06	1.99E+01	
5	160-200	180	3.61E+06	4.12E+01	
6	200-240	220	2.33E+06	2.66E+01	
7	240-280	260	7.62E+05	8.70E+00	
8	280-320	300	1.67E+05	1.90E+00	
9	320-360	340	2.87E+04	3.27E-01	
10	360-400	380	4.29E+03	4.89E-02	
11	400-440	420	5.92E+02	6.76E-03	
12	440-480	460	7.85E+01	8.96E-04	
13	480-520	500	1.02E+01	1.17E-04	
14	520-560	540	1.34E+00	1.52E-05	
15	560-600	580	1.76E-01	2.01E-06	
16	600-640	620	2.37E-02	2.71E-07	
17	640-680	660	3.27E-03	3.73E-08	
18	680-720	700	4.62E-04	5.27E-09	
19	720-760	740	6.73E-05	7.68E-10	
20	760-800	780	1.01E-05	1.15E-10	
			8.77E+06	1.00E+02	

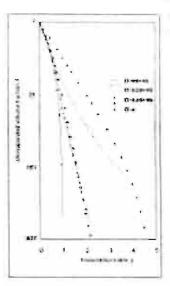


Fig 2. Comparison between the present model (dot) and Dickinson and Marshell (D-M) (lines) for log-normal polydisperse droplets.

ScienceAsia 29 (2003)

$$y = \frac{\sum_{i=1}^{lcdss} \left(D_{\rho 0 i}^{2} - D_{\rho i}^{2} \right)}{kclss}, \quad F = \frac{\sum_{i=1}^{lcdss} \left(g_{i} D_{\rho i}^{3} \right)}{\sum_{i=1}^{lcds} \left(g_{i} D_{\rho 0 i}^{3} \right)}$$
(17)

The major difference between the two models is the assumption of constant droplet temperature in the D-M model. As expected, when the droplet size distribution is monodisperse (=0) or relatively narrow (=0.2, or ratio = $\frac{D_{a}tQ_{c}}{D_{a}tQ_{c}}$ = \$5.13% = 1.49), the two

simulation results agree well. Here, Q_r is the cumulative distribution. However, when the size distribution is strongly polydisperse (σ =0.4, or ratio = 2.26), the discrepancy may be attributed to the fact that the smaller droplets have much higher specific surface area and experience faster cooling effect than the larger ones. This means that the assumption of constant droplet temperature leads to significant error in the prediction when very small and large droplets coexist. In any case, the applicability of the present model has been confirmed.

RESULTS AND DISCUSSION

Case of Monodisperse Droplets

To better understand the heat and mass transfer phenomena, we first consider the case of a monodisperse spray of water droplets. The conditions of simulation are as follows. The temperature, spray inlet velocity and mass velocity of droplets at the evaporator inlet are 333.16 K, 40.8 ms 1 and 0.036724 kg m 2 s 1 . respectively. The inlet air temperature, humidity and mass velocity are 533.16 K, 0.00 kg vapor kg 1 dry air and 0.5298 kg dry air m 2 s 2 , respectively. To clearly elucidate the phenomena, perfectly dry air is chosen. The suitable integration step size Δz has been found in advance to be 2×10^{-5} m. The three cases of monodisperse spray have inlet diameters of 50, 100 and 200 μ m, respectively, with the same mass velocity.

Fig 3 reveals that when the droplets are smaller, the decreasing rate of droplet diameter is faster because small droplets have more surface area per volume than large ones. At steady state, the height required for complete evaporation of water droplets is only 0.1 m for D_{po} = 50 µm but increases to 1.2 m for D_{po} = 200 µm. Fig 4 confirms that the droplet temperature is not constant but shows a rapid decrease before increasing to a constant asymptotic value, which is essentially the wet-bulb temperature. Fig 5 shows a rapid drop in the droplet velocity near the inlet. As the droplet size decreases, the terminal velocity and the relative velocity of the droplets with respect to the air stream gradually

Fig 3. Relationship between droplet diameter and helght of chamber for monodisperse droplets.

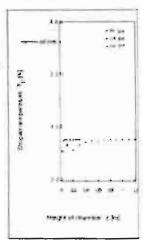


Fig 4. Relationship between droplet temperature and height of chamber for monodisperse droplets.

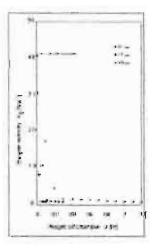


Fig 5. Relationship between droplet velocity and height of chamber for monodisperse droplets.

decrease. Similarly, Figs 6 and 7 show that a rapid decrease in the air temperature is accompanied by a corresponding increase in the air humidity. Smaller droplets effect a more rapid change in the air properties because they have greater surface area per volume than larger ones.

Case of Polydisperse Droplets

All simulation conditions are the same as the monodisperse case except the spray characteristics, which are as shown in Fig. 8. The mathematical definition of log-normal distribution is

$$\frac{d(N)}{d(D)} = \frac{1}{D\sigma\sqrt{2\pi}} \exp\left[-\frac{\left(\ln D - \ln D_{GH}\right)^2}{2\sigma^2}\right]$$
(18)

where N is the number of droplets of size between D and D+dD. D is droplet diameter, $\sigma=\ln\sigma_C$ is the standard deviation, σ_C is the geometric standard deviation, and D_{GM} is the geometric mean diameter. Note that, though the volume-averaged diameters for the two log-normal distributions in Fig 8 are the same, their inlet number-averaged diameters are 191.5 and 170.0 μm for $\sigma=0.2$ and $\sigma=0.4$, respectively. For simplicity, the entering droplets are divided into 20 class fractions.

Fig 9 shows that, in the case of polydisperse distributions, a size fraction with smaller droplets always evaporates faster than one with larger droplets. Since large droplets need longer distance to evaporate completely, the observed size distribution will no longer remain log-normal but change with the chamber height. Fig 10 shows that, as expected, smaller droplets show more rapid temperature change with the height than larger ones. Interestingly, the smallest droplets may experience notable sub-cooling in the early stage of evaporation, before all droplets reach essentially the same wet-bulb temperature. Fig 11 gives an example of the changes in droplet velocities with the chamber height for each size fraction of the droplets. As expected, the smaller the droplets, the lesser the distance it takes to reach the final terminal settling velocity. As evaporation occurs, the droplet size and its corresponding terminal velocity will become smaller. As a consequence, the distance required to reach the final velocity during evaporation will be longer than in the case of no evaporation. Fig 12 shows how th numberaveraged $D_{{\scriptscriptstyle prom}}$ and volume-averaged $D_{{\scriptscriptstyle prot}}$ droplet diameters change with the height. As expected, the narrower the droplet size distribution, the faster the change in average diameters. Therefore, the required height of the spray tower can significantly be reduced with the use of more nearly monodisperse spray. Though not shown here, it has been found that the narrower

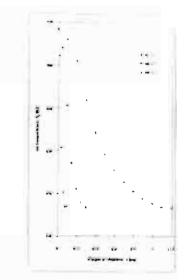


Fig 6. Relationship between air temperature and height of chamber for monodisperse dropiers.

Fig 7. Relationship between air humidity and height of chamber for monodisperse droplets.

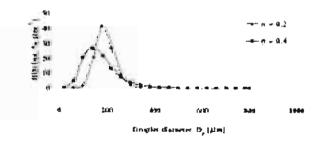


Fig 8. Log-normal inlet droplet size distribution (number basis) with the same volume-averaged diameter 200µm.

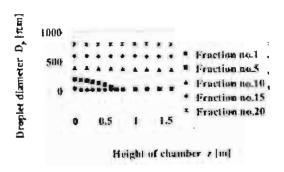


Fig 9. Relationship between droplet diameter and height of chamber for log-normal polydisperse droplets (σ =0.2).

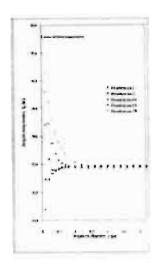


Fig 10. Relationship between droplet temperature and height of chamber for fog-normal polydisperse droplets (σ=0.2).

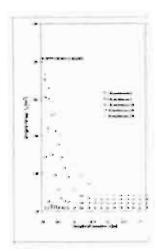


Fig 11. Relationship between droplet velocity and highly of chamber for log-normal polydisperse droplets (σ =0.2).

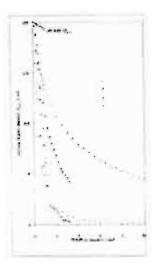


Fig 12. Effect of degree of polydispersity on the number and volume averaged droplet diameters.

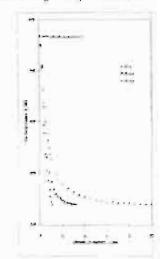


Fig 13. Effect of degree of polydispersity on the all temperature in the chamber.

Fig 14. Effect of degree of polydispersety on the air humidity in the chamber.

droplet size distribution shows a slightly more rapid decrease in the average droplet temperature than the broader distribution. When σ =0.2, it takes up to 1 m for all the average temperatures to reach the wet-bulb temperature. Figs 13 and 14 show that, as expected from Fig 11, the narrower droplet size distribution results in a more rapid change in the air temperature and humidity than the broader distribution with the same volume-averaged diameter. Since the mass velocities of hot air and water spray are the same in all three cases, the final air temperatures and humidities become the same in all cases.

CONCLUSION

From Fig 12, the required effective height of an evaporator in the case of monodisperse spray can be as small as one-eighth of that with broad polydispersity (log-normal distribution with σ =0.4). Therefore, a manufacturer must pay great attention to the selection and performance of the atomizer. As for the generally accepted assumption of constant droplet temperature in the evaporator. Figs. 4 and 10 show that for an inlet volume-averaged droplet diameter of 200 μm , the droplets will not reach the wet-bulb temperature within the first 0.5 m, in the case of monodisperse droplets, and not within 1 m for the largest size fraction when σ = 0.2. Therefore, the said assumption could lead to significant error in the prediction.

ACKNOWLEDGEMENTS

WT received partial financial support from Senior Research Scholar Grant, 1998-2002, of the Thailand Research Fund.

REFERENCES

- Master K (1979) Spray Drying Handbook. 3rd ed. p. 293. John Wiley & Sons, New York.
- Fousi AS (1980) Principles of Unit Operations, 2nd ed. p 437. John Wiley & Sons, New York.
- Probert RP (1946) The influence of spray particle size and distribution in the combustion of oil droplets. Phil Mag 37, 95.
- Marshall WR (1955) Heat and mass transfer in spray drying. Tran Amer Soc Mech Eng 77 (11), 1377.
- Shapiro AH and Erickson AJ (1957) Changing size spectrum of particle clouds undergoing evaporation, combustion, or acceleration. J Amer Soc Mech Eng 79, 775.
- Manning WP and Guavin WH (1960) Heat and mass transfer to deceierating finely atomized sprays. AIChE J 6. 184
- Bose AK and Pei DCT (1964) Evaporation rates in spray drying. Can J Chem Eng 42, 259.
- Dickinson DR and Marshall WR (1968) The rates of evaporation of sprays. AIChE J 14, 541.
- Keey RB and Pharm Q (1977) Residence time distribution of air in a tall-form spray chamber. Chem Eng Sci 32, 1219
- Carstaw HS and Jaeger JC (1959) Heat Conduction in Solids. Oxford University Press.
- Wongsarivej P (1997) Modelling of spray evaporation humidifier/dehumidifier and cooling tower with co-current flow of air and water droplets. M Eng Thesis. Chulaiongkorn University. Bangkok. Thailand.
- Renz WE and Mershall WR (1952) Evaporation from drops. Chem Eng Prog 48, 141.

Fluid Phase Equilibria 209 (2003) 113-129

Critical points calculation with a cubic equation of state and excess free energy mixing rules

Satok Chaikunchuensakun a,*, Wiwut Tanthapanichakoon b

Department of Chemical Engineering, Faculty of Engineering, Thammasat University (Rangsit Campus),

Klong Luang, Patum Tani 12121, Thailand

b Department of Chemical Engineering, Chulalongkorn University, Bangkok 10110, Thailand

Received 18 November 2002; accepted 6 March 2003

Abstract

This paper presents analytical partial derivative equations required for multicomponent critical point calculation. These partial derivative equations follow the computational scheme developed by Heideman and Khalil, but extended to excess free energy mixing rules. The mixing rules implemented in this paper are the Wong-Sandler (WS), the modified Huron-Vidal first and second orders mixing rules. The Peng-Robinson equation of state and the NRTL activity model are used in all calculations. However, the calculation based on the derivative is not limited to the mixing rules referred in this paper. It can also be applied to any other mixing rules. It is found that the calculations using these analytical partial derivative equations are superior, in computation time and reliability, that using the numerical partial derivative equations.

© 2003 Elsevier Science B.V. All rights reserved.

Keywords: Critical state; Method of calculation; Equation of state; Excess free energy; Mixing rule

1. Introduction

Calculations of critical points of mixtures are important in investigating high-pressure phase behavior. Measurements of critical points are costly. Therefore, they are often determined from thermodynamic model using phase equilibrium parameters. Recently, a number of researchers combined the excess free energy model with the mixing rule to extend the applications of simple equations of state to complex systems, including polar components [2,3]. Normally, the mixing rule parameters can be obtained directly from an excess free energy model, such as UNIQUAC and NRTL. This is done by setting the expression for excess free energy calculated from an equation of state equal to that of an activity model. The Wong-Sandler (WS) and the modified Huron-Vidal first and second orders (MHV1 and MHV2) mixing rules are among the most successfully and widely used of these excess free energy mixing rules.

0378-3812/03/\$ – see front matter © 2003 Elsevier Science B.V. All rights reserved. doi:10.1016/S0378-3812(03)00080-3

^{*} Corresponding author. Tel.: +662-564-3002-9x3122; fax: +662-564-3010. E-mail address: csatok@engr.tu.ac.th (S. Chaikunchuensakun).

Nevertheless only a few investigators studied the behavior of critical curve using a cubic equation of state with excess free energy mixing rules. Kolar and Kojima [4] calculated several types of critical phase behavior using the MHV1 mixing rule. Castier and Sandler [5] and Alvarado et al. [6] compared the calculation of critical points using the WS mixing rule with experimental data.

The objective of this paper is to develop analytical partial derivative equations for the computational method developed by Heidemann and Khalil [1]. A modified procedure is also presented. The Peng-Robinson equation of state and the NRTL activity model are used in this paper. The calculations with these analytical partial derivative equations are also compared with the calculations by the numerical partial derivative equations using a four-point difference scheme [7].

2. Thermodynamic model

An equation of state can be written as

$$P = \frac{RT}{v - b} - \frac{a}{(v + \delta_1 b)(v + \delta_2 b)} \tag{1}$$

where $\delta_1 = 2.414$ and $\delta_2 = -0.414$ for the Peng-Robinson equation of state [8]. The mixture parameters a and b are derived from excess free energy mixing rules.

Wong and Sandler [2] developed a mixing rule, in which the mixture parameters can be written as

$$b = \frac{Q}{1 - \alpha} \tag{2}$$

$$\alpha = \sum_{i} x_i \alpha_i - \frac{A_{\infty}^{\rm E}}{0.6232RT} \tag{3}$$

where

$$\alpha = \frac{a}{bRT}$$
 and $\alpha_i = \frac{a_i}{b_i RT}$ (4)

$$Q = \sum_{i} \sum_{i} x_{i} x_{j} \left(b - \frac{a}{RT} \right)_{ij} \tag{5}$$

The cross combination in Eq. (5) is given as

$$\left(b - \frac{a}{RT}\right)_{ij} = \frac{(b_i - (a_i/RT)) + (b_j - (a_j/RT))}{2} (1 - k_{ij}) \tag{6}$$

Orbey and Sandler [9] suggested a different form of the cross combination

$$\left(b - \frac{a}{RT}\right)_{ij} = \frac{b_i + b_j}{2} - \frac{\sqrt{a_i a_j}}{RT} (1 - k_{ij}) \tag{7}$$

The parameter k_{ij} is a binary interaction parameter and A_{∞}^{E} is infinite pressure excess Helmholtz free energy.

Dahl and Michelsen [3] developed the modified Huron-Vidal first and second orders mixing rules at zero pressure reference state. The mixture parameters can be written as

$$q_1\left(\alpha - \sum_{i} x_i \alpha_i\right) + q_2\left(\alpha^2 - \sum_{i} x_i \alpha_i^2\right) = \frac{g_0^{E}}{RT} + \sum_{i} x_i \frac{b}{b_i}$$
(8)

The parameter b follows the combination as suggested by Alvarado and Sandler [11].

$$b = \sum_{i} \sum_{j} x_{i} x_{j} b_{ij}, \qquad b_{ij} = \left(\frac{b_{i} + b_{j}}{2}\right) (1 - k_{ij})$$
(9)

where $q_1 = -0.593$ and $q_2 = 0$ for the MHV1, $q_1 = -0.4347$ and $q_2 = -0.003654$ for the MHV2 and g_0^E is an excess Gibbs free energy at zero pressure.

The corresponding pure-component parameters, b_i and a_i , are given by

$$b_i = 0.0778 \frac{RT_{ci}}{P_{ci}} \tag{10}$$

and

$$a_i = 0.45724 \frac{R^2 T_{ci}^2}{P_{ci}} \left(1 + m_i \left(1 - \sqrt{\frac{T}{T_{ci}}} \right) \right)^2$$
 (11)

where

$$m_i = 0.37464 + 1.5422\omega_i - 0.26992\omega_i^2 \tag{12}$$

The parameter T_c is a critical temperature, P_c a critical pressure, and ω is an acentic factor of a pure component.

3. A critical point condition

Practically, with a pressure-explicit equation of state, a critical condition is obtained from equating the second and third derivatives of the Helmholtz free energy to zero, and it can be written as

$$Q \Delta n = 0, \qquad \Delta n^{\mathsf{T}} \Delta n = 1 \tag{13}$$

where $Q_{ij} = (\partial^2 A/\partial n_i \partial n_j)_{T,V}$, and the cubic summation equation

$$C = \sum_{i} \sum_{j} \sum_{k} \Delta n_{i} \, \Delta n_{j} \, \Delta n_{k} \left(\frac{\partial^{3} A}{\partial n_{i} \partial n_{j} \partial n_{k}} \right)_{T,V} = 0 \tag{14}$$

Heidemann and Khalil [1] suggested a neat algorithm of critical point calculation. The calculation of a critical temperature is reiterated until the determinant of the matrix Q becomes zero at a specified volume, and the non-trivial element Δn_i is calculated from Eq. (13) while restricting Δn_n being positive. The critical volume is determined in the outer loop until the cubic summation in Eq. (14) becomes zero as well.

For simplification, notation of a constant temperature and a total volume is omitted for the partial derivative equations, which are presented in the subsequent sections.

4. General form of the partial derivative equations

Using analytical partial derivative equations (Eqs. (13) and (14)) can be written for Eq. (1) as

$$Q_{ij} = \frac{\delta_{ij}}{x_i} + \left(\frac{\partial nb}{\partial n_i} + \frac{\partial nb}{\partial n_j}\right) \frac{F_1}{b} + \left(\frac{\partial nb}{\partial n_i}\right) \left(\frac{\partial nb}{\partial n_j}\right) \frac{F_1^2 + \alpha F_3}{b^2} - \left(\frac{\partial^2 n\alpha}{\partial n_i \partial n_j}\right) \frac{F_5}{2} - \left[\left(\frac{\partial nb}{\partial n_i}\right) \left(\frac{\partial n\alpha}{\partial n_i}\right) + \left(\frac{\partial nb}{\partial n_i}\right) \left(\frac{\partial n\alpha}{\partial n_i}\right)\right] \frac{F_2}{2b} + \frac{1}{b} \left(\frac{\partial^2 nb}{\partial n_i \partial n_j}\right) \left(F_1 - \frac{\alpha F_2}{2}\right)$$
(15)

$$C = -\sum_{i} \frac{\Delta n_{i}^{3}}{x_{i}^{2}} + 3F_{1}\bar{n}\frac{\bar{\beta}_{2}}{b} + 3F_{1}^{2}\bar{n}\left(\frac{\bar{\beta}_{1}}{b}\right)^{2} - \frac{F_{5}}{2}\bar{\alpha}_{3} + \left(F_{1} - \frac{\alpha F_{2}}{2}\right)\frac{\bar{\beta}_{3}}{b} - 3\frac{F_{2}}{2}\left[\frac{\bar{\beta}_{1}}{b}\bar{\alpha}_{2} + \frac{\bar{\beta}_{2}}{b}\bar{\alpha}_{1}\right] + 3F_{3}\left(\frac{\bar{\beta}_{1}}{b}\right)^{2}\bar{\alpha}_{1} + 3(F_{1}^{2} + \alpha F_{3})\frac{\bar{\beta}_{1}}{b}\frac{\bar{\beta}_{2}}{b} + 2(F_{1}^{3} - \alpha F_{4})\left(\frac{\bar{\beta}_{1}}{b}\right)^{3}$$

$$(16)$$

where

$$\tilde{\beta}_1 = \sum_i \left(\frac{\partial nb}{\partial n_i}\right) \Delta n_i \tag{17}$$

$$\bar{\beta}_2 = \sum_i \sum_j \left(\frac{\partial^2 nb}{\partial n_i \partial n_j} \right) \Delta n_i \, \Delta n_j \tag{18}$$

$$\bar{\beta}_3 = \sum_i \sum_j \sum_k \left(\frac{\partial^3 nb}{\partial n_i \partial n_j \partial n_k} \right) \Delta n_i \, \Delta n_j \, \Delta n_k \tag{19}$$

$$\bar{\alpha}_1 = \sum_i \left(\frac{\partial n\alpha}{\partial n_i} \right) \Delta n_i \tag{20}$$

$$\bar{\alpha}_2 = \sum_i \sum_j \left(\frac{\partial^2 n\alpha}{\partial n_i \partial n_j} \right) \Delta n_i \, \Delta n_j \tag{21}$$

$$\bar{\alpha}_3 = \sum_i \sum_j \sum_k \left(\frac{\partial^3 n\alpha}{\partial n_i \partial n_j \partial n_k} \right) \Delta n_i \, \Delta n_j \, \Delta n_k \tag{22}$$

and F_1 – F_5 are given in Appendix A as functions of v/b. The first, second and third partial derivative equations of $n\alpha$ and nb with respect to composition at a constant temperature and a total volume are given in Appendix B for the basic, WS, MHV1 and MHV2 mixing rules. When substituting these derivative equations for the basic mixing rule in Eqs. (15) and (16), the resulting equations are equivalent to those presented by Michelsen and Heidemann [10].

Alternatively, Eq. (13) can be considered as the eigenvalue/eigen vector calculation of a vapor-liquid critical point. This is done by multiplying Eq. (15) with x_i and Eq. (13) can be re-arranged to

$$(M-I)\Delta n=0 \tag{23}$$

where

$$M_{ij} = -x_i \left(\left(\frac{\partial nb}{\partial n_i} + \frac{\partial nb}{\partial n_j} \right) \frac{F_1}{b} + \left(\frac{\partial nb}{\partial n_i} \right) \left(\frac{\partial nb}{\partial n_j} \right) \frac{F_1^2 + \alpha F_3}{b^2} - \left(\frac{\partial^2 n\alpha}{\partial n_i \partial n_j} \right) \frac{F_5}{2} + \frac{1}{b} \left(\frac{\partial^2 nb}{\partial n_i \partial n_j} \right) \left(F_1 - \frac{\alpha F_2}{2} \right) - \left[\left(\frac{\partial nb}{\partial n_i} \right) \left(\frac{\partial n\alpha}{\partial n_j} \right) + \left(\frac{\partial nb}{\partial n_j} \right) \left(\frac{\partial n\alpha}{\partial n_i} \right) \right] \frac{F_2}{2b}$$
(24)

With an initial guess $\sum_i x_i T_{ci}$, the element of the matrix M (Eq. (24)) is calculated. The critical temperature root is involved with the largest positive eigenvalue of matrix M. The shift inverse power algorithm [12] is utilized to determine this eigenvalue and its corresponding eigenvector pairs. The critical temperature and the non-trivial element Δn_i are obtained when this eigenvalue of the matrix M equals 1 at a specific volume. The critical volume is determined in the outer loop until the cubic summation becomes zero.

5. Examples

Critical points were calculated for three binary and one ternary mixtures. Table 1 presented the thermodynamics properties of selected pure components taken from Poling et al. [13] and Stevens et al. [14]. Table 2 presented the adjustable parameters k_{ij} and g_{ij} , of each system. The adjustable parameters of the first two systems were determined by fitting vapor-liquid equilibrium data from Seo et al. [15], Hiaki et al. [16] and Ishihara et al. [17], and to the Peng-Robinson equation of state and the mixing rules. The following objective function, F, was used:

$$F = \sum_{k} \left(\frac{T_k^{\text{Cal}} - T_k^{\text{Exp}}}{T_k^{\text{Cal}}} \right)^2 \tag{25}$$

where T^{Cal} and T^{Exp} were the calculated and the experimental bubble point temperatures, respectively.

The calculations using the analytical and numerical equations were compared in the average deviations of temperature and pressure, as follows:

 $|T_c^{\text{Anal}} - T_c^{\text{Num}}|$ and $|P_c^{\text{Anal}} - P_c^{\text{Num}}|$ were defined as the average absolute deviations of temperature and pressure between the calculated result using the analytical and numerical derivative equations, respectively.

Table 1
Thermodynamic properties of selected pure components

	7 (1/)	D (box)		
Component	<i>T</i> _c (K)	P _c (bar)	ω	
1-Butanol	563.05	44.23	0.590	
2-Butanol	532.63	42.26	0.618	
Carbon dioxide	304.34	73.94	0.225	
Ethanol 513.92		61.48	0.644	
<i>n</i> -Heptane 540.10		27.39	0.350	
Vinyl acetate 519.2		41.40	0.618	
Water	647.13	220.55	0.345	

Table 2
The adjustable parameters for the systems studied in this paper

I	2	Mixing rule	α	g_{12}/R	g_{21}/R	k ₁₂	Eq. (25)
n-Heptane	Ethanol	WS	0.05	802.70	-87.02	0.272	9.7e - 6
n-11eptane	Ettione.	MHVI	0.05	-1106.68	1979.38	0.239	1.5e – 6
		MHV2	0.05	-1115.06	2020.38	0.279	1.5e – 6
Carbon dioxide	l-Butanol	WS	0.3	572,14	9.74	0.130°	4.8e - 5
		MHVI	0.3	291.98	-77.40	0.203	3.8e - 5
		MHV2	0.3	263.90	234.39	0.285	2.6e - 5
2-Butanol	Water	WS	0.2	ь	c	0.300^{d}	e
Carbon dioxide	Vinyl acetate	WS	0.2	-310.68	413.16	0.470 ^d	r
Carbon dioxide	2-Butanol	WS	0.2	128.84	207.91	0.531 ^d	ſ
Vinyl acetate	2-Butanol	WS	0.2	253.24	325.55	0.061 ^d	ſ

^a Use Eq. (7) in the cross combination of the WS mixing rule.

 $|T_c^{Anal} - T_c^{Exp}|$ and $|P_c^{Anal} - P_c^{Exp}|$ were defined as the average absolute deviations of temperature and pressure between the calculated result using the analytical equations and the experimental data, respectively.

 $|T_c^{\text{Num}} - T_c^{\text{Exp}}|$ and $|P_c^{\text{Num}} - P_c^{\text{Exp}}|$ were defined as the average absolute deviations of temperature and pressure between the calculated result using the numerical equations and the experimental data, respectively.

The convergence criteria for Eqs. (13) and (14) were 10^{-2} when calculated using the numerical derivative equations. The convergence criteria employed for Eqs. (13) and (14) were 10^{-8} and 10^{-5} , respectively, when calculated using the analytical derivative equations. The average computational times using the analytical and numerical equations were also investigated.

The behavior of the cubic summation was first examined by using six trial v/b (4, 2, 1.5, 1.2, 1.15 and 1.11) to determine all possible numbers of critical conditions. The critical temperatures and volumes were calculated with initial guesses taken at approximated cubic summations in vicinity of zeroes.

6. n-Heptane + ethanol system

The critical curve of the binary *n*-heptane + ethanol system was predicted as shown in Fig. 1. It was equivalent to the calculation by Seo et al. [15]. The average temperature and pressure deviations in this calculation using the numerical equations were shown in Table 3. The *n*-heptane compositions varied from 0.1 to 0.9 with 0.1 increments. The WS mixing rule gave the lowest deviations of temperature and pressure when comparing the calculated results using the analytical equation with that using the numerical equation. Those calculations using the MHV2 mixing rule gave the highest deviations. When compared with the experimental data, it was found that the calculation using the analytical equations gave smaller deviations

 $^{^{\}rm b}g_{12}/R = 6140.6 - 11.311T - 929,325/T.$

 $c_{g_{21}}/R = 4951.5 - 0.781T - 961,591/T.$

d Use Eq. (6) in the cross combination of the WS mixing rule.

^c The adjustable parameter taken from Castier and Sandler [5].

The adjustable parameter taken from Stevens et al. [14].

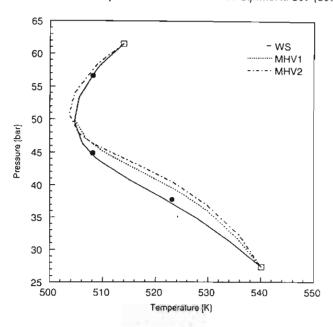


Fig. 1. Critical curve of the *n*-heptane and ethanol system using the analytical derivative equations with the WS, MHV1 and MHV2 mixing rules: (\square) critical point of pure components and (\blacksquare) Seo et al. [15].

of temperature and pressure than that using the numerical equations. The calculated results using the WS mixing rule gave the lowest deviations of temperature and pressure while the calculated results using the MHV2 gave the highest deviations of temperature and pressure. The average computational time required in this problem using the analytical and numerical equations for three mixing rules were also shown in Table 3. The calculated results using the analytical equations with the WS and MHV1 mixing rules were 19 times faster than those calculated using the numerical equations. The calculated results using the analytical equations with the MHV2 mixing rule were 32 times faster than those using the numerical equations.

Table 3

Average critical temperature and critical pressure deviations and average computational times for the *n*-heptane and ethanol system

	WS	MHVI	MHV2
TcAnal - TcNum	1.22	1.28	2.28
PAnal - PNum	1.06	1.55	1.87
$\begin{aligned} P_c^{\text{Anal}} - P_c^{\text{Num}} \\ T_c^{\text{Anal}} - T_c^{\text{Exp}} \end{aligned}$	0.71	1.43	0.71
$ P_c^{\text{Anal}} - P_c^{\text{Exp}} $ $ T_c^{\text{Num}} - T_c^{\text{Exp}} $	0.90	0.96	1.85
$T_c^{\text{Num}} - T_c^{\text{Exp}}$	1.11	1.31	1.79
$ P_{\rm c}^{\rm Num} - P_{\rm c}^{\rm Exp} $	0.78	0.97	0.88
Computational time (s)			
Num/Anal	5.8/0.31	4.9/0.26	9.3/0.29

Fig. 2. Critical curve of the carbon dioxide and 1-butanol system using the WS, MHV1 and MHV2 mixing rules: (□) critical point of pure components; (●) Seo et al. [15]; (◆) Ishihara et al. [17]; and (■) Oliver and Luna [19].

7. Carbon dioxide + 1-butanol system

The critical curve of the mixture of carbon dioxide and 1-butanol was predicted using there mixing rules, as shown in Fig. 2. The calculated critical curve fitted the experimental data [17–19], especially at high carbon dioxide mole fractions. The average temperature and pressure derivations of the calculation using the analytical derivative equations and that using the numerical derivative equations were shown in Table 4. The simulated carbon dioxide compositions varied from 0.1 to 0.7 with 0.1 increments. The

Table 4
Average critical temperature and critical pressure deviations and average computational times for the carbon dioxide and 1-butanol system

	WS	MHVI	MHV2
$T_c^{\text{Aual}} - T_c^{\text{Num}}$	8.31	12.99	29.23
PAnal - PNum	6.43	35.34	55.09
$T_{\rm c}^{\rm Anul} = T_{\rm c}^{\rm Exp}$	14.58	14.98	14.99
$P_{c}^{Anal} - P_{c}^{Exp}$	23.46	26.32	10.90
$T_c^{\text{Num}} - T_c^{\text{Exp}}$	8.35ª	13.96 ^b	46.78 ^b
$P_{\rm c}^{\rm Num} - P_{\rm c}^{\rm Exp}$	14.79 ^a	39.90 ^b	61.41 ^b
Computational time (s)			
Num/Anal	3.58/0.38	3.90/0.41	6.22/0.3

^{*} Three experimental data were not converted when using the numerical equations.

b Seven experimental data were not converted when using the numerical equations.

calculated results using the WS mixing rule gave the lowest deviations of temperature and pressure. The calculations using the MHV2 mixing rule gave the highest deviations of temperature and pressure. When compared with the experimental data, the calculated results using the numerical equations gave smaller deviations of temperature and pressure than those using the analytical equations. However it was found that some of calculations using the numerical equations were not converted. Among the calculations using the analytical equations, the WS mixing rule gave the lowest deviations of temperature and pressure while the MHV2 gave the highest deviations of temperature and pressure. The average computational time required for the calculations using the analytical and numerical equations were also shown in Table 4. The calculated results using the analytical equations with the WS and MHV1 mixing rules were nine times faster than those using the numerical equations. The calculated results using the analytical equations with the MHV2 mixing rule were 17 times faster than those using the numerical equations. It was also found that the derivations of the calculated results using three mixing rules increased from *n*-heptane + ethanol system. These were occurring because the molecular size different between carbon dioxide and 1-butanol was increasing.

8. 2-Butanol + water system

The critical curve of the mixture of 2-butanol and water was predicted using the WS mixing rule and shown in Fig. 3 along with the experimental data obtained from Moriyoshi et al. [20]. The adjustable parameters were taken from Alvarado et al. [6]. The calculation using the analytical equations was successfully to determine the high-density critical points similar to the calculation by Alvarado et al. [6].

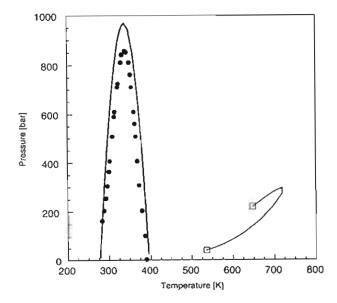


Fig. 3. Critical curve of the 2-butanol and water system using the WS mixing rule: (□) critical point of pure components and (●) Moriyoshi et al. [20].

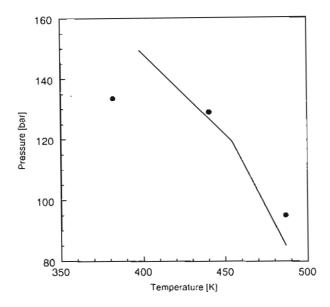


Fig. 4. Critical temperature and pressure of carbon dioxide(1) + vinyl acetate(2) + 2-butanol(3) at constant $x_2/x_3 = (1/3)$ using the WS mixing rule: (\bullet) Stevens et al. [14].

An average computational times required in the calculation using the analytical equations was 0.43 s and it was found that the calculations at the high-density critical points required more computational time than the calculations at the low-density critical points. However, the calculation using the numerical equations was successful in determining only for the low-density critical points in this example. Compared with

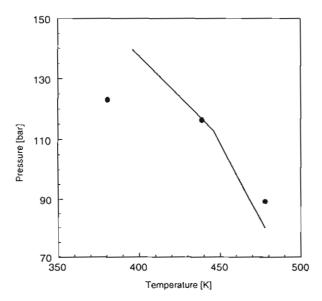


Fig. 5. Critical temperature and pressure of carbon dioxide(1) + vinyl acetate(2) + 2-butanol(3) at constant $x_2/x_3 = (3/1)$ using the WS mixing rule: (\bullet) Stevens et al. [14].

the experimental data, the calculated results using the analytical equations of $|T_c^{Anal} - T_c^{Exp}|$ of 33.27 K and $|P_c^{Anal} - P_c^{Exp}|$ of 170.21 bar.

9. Carbon dioxide + vinyl acetate + 2-butanol system

The critical points of the ternary system carbon dioxide, vinyl acetate and 2-butanol were calculated using the Wong-Sandler mixing rule. The adjustable parameters were taken from Stevens et al. [14] at 413.15 K. The critical curves of this system were shown in Figs. 4 and 5. The calculations were comparable to the experimental data, except at low temperatures. The calculated results using the analytical equations gave $|T_c^{\text{Anal}} - T_c^{\text{Exp}}|$ of 8.58 K and $|P_c^{\text{Anal}} - P_c^{\text{Exp}}|$ of 11.70 bar. An average computational time required for the calculation using the analytical partial derivative equations was 1.3 s. However, the calculation using the numerical derivative were converted only when increased the value of the tolerance of Eq. (14) to 600 and an average computational time was 18.86 s.

10. Conclusion

Generalized partial derivative equations are developed to connect the critical points calculation such as the method of Heidmann and Khalil. These partial derivative equations can be derived for all equations of state and their mixing rules, which are written in the manner of Eq. (1). Another critical point calculation method by Stradi et al. [21], which indicates all critical points at a given composition can also use these derivative equations to extend the ability of calculation to new mixing rules. A modification of the algorithm and scheme to predict multiple critical points are also presented. The calculation using this analytical derivative is faster than that using the numerical derivative. When the mixing rules are complicated and the number of components increased, the calculation based on the analytical derivative equations is superior in computation time and reliability to that of the numerical derivative equations.

List of symbols

parameters in an equation of state A_{∞}^{E} Cinfinite pressure excess Helmholtz free energy cubic summation volume functions (see Appendix A) 80 E excess Gibbs free energy at zero pressure G_{ij} interaction parameter in the NRTL model binary interaction parameter k_{ij} parameter in an equation of state mnumber of moles of ith component n_i total number of moles in the mixtures n_{T} pressure (1 bar = 10^5 Pa) P matrix of partial derivative Q universal gas constant = 8.3143 J/mol K Rtemperature

124

1)

specific volume

x mole fraction of a component

Greek letters

α reduced parameter

α NRTL parameter

 $\bar{\alpha}_k$ summation of the partial derivative order k of $n\alpha$ in Eqs. (22)–(24)

 $\bar{\beta}_k$ summation of the partial derivative order k of nb in Eqs. (19)–(21)

 δ_1, δ_2 constants in an equation of state

△ an increment

γ activity coefficient

κ dimensionless volume

τ NRTL parameter

ω acentric factor

Subscripts

c critical property

i, j, k, l component numbers

n number of components in a mixture

Superscripts

Anal calculated results using the analytical derivative equations

Cal calculated results using an excess free energy mixing rule

Exp experimental data

Num calculated results using the numerical derivative equations

Acknowledgements

The authors would like to acknowledge the financial support by the Thailand Research Foundation (TRF).

Appendix A

Volume functions $F_1(\kappa) - F_5(\kappa)$, $\kappa = v/b$

$$F_1 = \frac{1}{\kappa - 1} \tag{A.1}$$

$$F_2 = \frac{2}{\delta_1 - \delta_2} \left[\left(\frac{\delta_1}{\kappa + \delta_1} \right) - \left(\frac{\delta_2}{\kappa + \delta_2} \right) \right] \tag{A.2}$$

$$F_3 = \frac{1}{\delta_1 - \delta_2} \left[\left(\frac{\delta_1}{\kappa + \delta_1} \right)^2 - \left(\frac{\delta_2}{\kappa + \delta_2} \right)^2 \right]$$
 (A.3)

S. Chaikunchuensakun, W. Tanthapanichakoon/Fluid Phase Equilibria 209 (2003) 113-129

125

$$F_4 = \frac{1}{\delta_1 - \delta_2} \left[\left(\frac{\delta_1}{\kappa + \delta_1} \right)^3 - \left(\frac{\delta_2}{\kappa + \delta_2} \right)^3 \right] \tag{A.4}$$

$$F_5 = \frac{2}{\delta_1 - \delta_2} \ln \left(\frac{\kappa + \delta_1}{\kappa + \delta_2} \right) \tag{A.5}$$

Appendix B

The partial derivative of $n\alpha$, nb and activity coefficient with respect to composition at constant temperature and total volume where

$$x_i = \frac{n_i}{\sum n_j} = \frac{n_i}{n}$$

B.1. The partial derivative equations required for the van der Waals basic mixing rule

$$\frac{\partial nb}{\partial n_i} = b_i, \qquad \frac{\partial^3 nb}{\partial n_i \partial n_j \partial n_k} = \frac{\partial^2 nb}{\partial n_i \partial n_j} = 0$$
(B.1)

$$\frac{\partial n\alpha}{\partial n_i} = \alpha \left(\frac{2\sum_j x_j a_{ij}}{a} - \frac{b_i}{b} \right) \tag{B.2}$$

$$\frac{\partial^2 n\alpha}{\partial n_i \partial n_j} = \alpha \left(a_{ij} + \frac{b_i b_j}{b^2} - \frac{\sum_l x_l a_{il}}{a} \frac{b_j}{b} - \frac{\sum_l x_l a_{jl}}{a} \frac{b_i}{b} \right)$$
(B.3)

$$\frac{\partial^{3} n \alpha}{\partial n_{i} \partial n_{j} \partial n_{k}} = 2\alpha \left(2 \frac{b_{i} b_{j}}{b^{2}} \frac{\sum_{l} x_{l} a_{kl}}{a} + 2 \frac{b_{i} b_{k}}{b^{2}} \frac{\sum_{l} x_{l} a_{jl}}{a} + 2 \frac{b_{j} b_{k}}{b^{2}} \frac{\sum_{l} x_{l} a_{il}}{a} - 2 \frac{b_{i} b_{j} b_{k}}{b^{3}} - \frac{b_{i}}{b} a_{jk} - \frac{b_{j}}{b} a_{ik} - \frac{b_{k}}{b} a_{ij} \right)$$
(B.4)

$$\bar{\alpha}_3 = 2\alpha \left(\frac{\bar{\beta}_1}{b}\right)^3 + 6\left(\frac{\bar{\beta}_1}{b}\right)^2 \bar{\alpha}_1 - 6\alpha \frac{\bar{\beta}_1}{b} \bar{a}$$
(B.5)

$$\bar{a} = \sum_{i} \sum_{i} a_{ij} \, \Delta n_i \, \Delta n_j \tag{B.6}$$

B.2. The partial derivative equations required for the Wong-Sandler mixing rule

$$\frac{\partial nb}{\partial n_i} = \frac{2\sum_i x_i (b - (a/RT))_{ij}}{1 - \alpha} - \frac{b}{1 - \alpha} J_i$$
(B.7)

$$\frac{\partial^2 nb}{\partial n_i \partial n_j} = \frac{1}{(1 - \alpha)} \left(2 \left(b - \frac{a}{RT} \right)_{ij} + \frac{b}{C} \frac{\partial \ln \gamma_i}{\partial n_j} - \frac{\partial nb}{\partial n_j} J_i - \frac{\partial nb}{\partial n_i} J_j \right)$$
(B.8)

S. Chaikunchuensakun, W. Tanthapanichakoon / Fluid Phase Equilibria 209 (2003) 113-129

$$(1 - \alpha) \frac{\partial^{3} nb}{\partial n_{i} \partial n_{j} \partial n_{k}} = \frac{1}{C} \frac{\partial nb}{\partial n_{i}} \frac{\partial \ln \gamma_{j}}{\partial n_{k}} + \frac{1}{C} \frac{\partial nb}{\partial n_{j}} \frac{\partial \ln \gamma_{i}}{\partial n_{k}} + \frac{1}{C} \frac{\partial nb}{\partial n_{k}} \frac{\partial \ln \gamma_{i}}{\partial n_{j}} - J_{i} \frac{\partial^{2} nb}{\partial n_{j} \partial n_{k}}$$
$$+ J_{j} \frac{\partial^{2} nb}{\partial n_{i} \partial n_{k}} + J_{k} \frac{\partial^{2} nb}{\partial n_{i} \partial n_{j}} + \frac{1}{C} \frac{\partial^{2} \ln \gamma_{i}}{\partial n_{j} \partial n_{k}}$$
(B.9)

$$J_i = 1 - \alpha_i - \frac{\ln \gamma_i}{C} \tag{B.10}$$

$$\frac{\partial n\alpha}{\partial n_i} = \alpha_i + \frac{\ln \gamma_i}{C} \tag{B.11}$$

$$\frac{\partial^2 n\alpha}{\partial n_i \partial n_j} = \frac{1}{C} \frac{\partial \ln \gamma_i}{\partial n_j} \tag{B.12}$$

$$\frac{\partial^3 n\alpha}{\partial n_i \partial n_j \partial n_k} = \frac{1}{C} \frac{\partial \ln \gamma_i}{\partial n_j \partial n_k} \tag{B.13}$$

$$\bar{\beta}_3 = \frac{b}{(1-\alpha)}\bar{\alpha}_3 - \frac{3}{(1-\alpha)}(\bar{n} - \bar{\alpha}_1)\bar{\beta}_2 + \frac{3}{(1-\alpha)}\bar{\beta}_1\bar{\alpha}_2 \tag{B.14}$$

B.3. The partial derivative equations required for the MHVI mixing rule

$$\frac{\partial nb}{\partial n_i} = -b + 2\sum_j x_j b_{ij} \tag{B.15}$$

$$\frac{\partial^2 nb}{\partial n_i \partial n_j} = 2b_{ij} - \frac{\partial nb}{\partial n_i} - \frac{\partial nb}{\partial n_j} \tag{B.16}$$

$$\frac{\partial^3 nb}{\partial n_i \partial n_j \partial n_k} = -\left(\frac{\partial^2 nb}{\partial n_i \partial n_j} + \frac{\partial^2 nb}{\partial n_i \partial n_k} + \frac{\partial^2 nb}{\partial n_j \partial n_k}\right) \tag{B.17}$$

$$\frac{\partial n\alpha}{\partial n_i} = \alpha_i + \frac{1}{q_1} \left(\ln \gamma_i + \ln \frac{b}{b_i} + \frac{1}{b} \frac{\partial nb}{\partial n_i} - 1 \right)$$
(B.18)

$$\frac{\partial^2 n\alpha}{\partial n_i \partial n_j} = \frac{1}{q_1} \left(\frac{\partial \ln \gamma_i}{\partial n_j} - \frac{1}{n} \left(1 - \frac{1}{b} \frac{\partial nb}{\partial n_i} \right) \left(1 - \frac{1}{b} \frac{\partial nb}{\partial n_j} \right) + \frac{1}{b} \frac{\partial^2 nb}{\partial n_i \partial n_j} \right)$$
(B.19)

$$q_{1} \frac{\partial^{3} n \alpha}{\partial n_{i} \partial n_{j} \partial n_{k}} = \frac{\partial^{2} \ln \gamma_{i}}{\partial n_{j} \partial n_{k}} + 1 - \frac{1}{b^{2}} \left(\frac{\partial nb}{\partial n_{i}} \frac{\partial nb}{\partial n_{j}} + \frac{\partial nb}{\partial n_{i}} \frac{\partial nb}{\partial n_{k}} + \frac{\partial nb}{\partial n_{j}} \frac{\partial nb}{\partial n_{k}} \right)$$

$$+ \frac{1}{b} \left(\frac{\partial^{2} nb}{\partial n_{i} \partial n_{j}} + \frac{\partial^{2} nb}{\partial n_{i} \partial n_{k}} + \frac{\partial^{2} nb}{\partial n_{j} \partial n_{k}} \right) + \frac{1}{b} \frac{\partial^{3} nb}{\partial n_{i} \partial n_{j} \partial n_{k}}$$

$$- \frac{1}{b^{2}} \left(\frac{\partial nb}{\partial n_{i}} \frac{\partial^{2} nb}{\partial n_{j} \partial n_{k}} + \frac{\partial nb}{\partial n_{j}} \frac{\partial^{2} nb}{\partial n_{i} \partial n_{k}} + \frac{\partial nb}{\partial n_{k}} \frac{\partial^{2} nb}{\partial n_{i} \partial n_{j}} \right)$$
(B.20)

S. Chaikunchuensakun, W. Tanthapanichakoon/Fluid Phase Equilibria 209 (2003) 113-129

127

$$\bar{\alpha}_{3} = \frac{1}{q_{1}} \left(\sum_{ijk} \frac{\partial^{2} \ln \gamma_{i}}{\partial n_{j} \partial n_{k}} \Delta n_{i} \Delta n_{j} \Delta n_{k} + \bar{n}^{3} - 3\bar{n} \left(\frac{\bar{\beta}_{1}}{b} \right)^{2} + 2 \left(\frac{\bar{\beta}_{1}}{b} \right)^{3} + \frac{\bar{\beta}_{3}}{b} + 3 \frac{\bar{\beta}_{2}}{b} \left(1 - \frac{\bar{\beta}_{1}}{b} \right) \right)$$
(B.21)

B.4. The partial derivative equations required for the MHV2 mixing rule

$$\frac{\partial nb}{\partial n_i} = -b + 2\sum_j x_j b_{ij} \tag{B.22}$$

$$\frac{\partial^2 nb}{\partial n_i \partial n_j} = 2b_{ij} - \frac{\partial nb}{\partial n_i} - \frac{\partial nb}{\partial n_j} \tag{B.23}$$

$$\frac{\partial^3 nb}{\partial n_i \partial n_j \partial n_k} = -\left(\frac{\partial^2 nb}{\partial n_i \partial n_j} + \frac{\partial^2 nb}{\partial n_i \partial n_k} + \frac{\partial^2 nb}{\partial n_j \partial n_k}\right) \tag{B.24}$$

$$(q_1 + 2q_2\alpha)\frac{\partial n\alpha}{\partial n_i} = q_1\alpha_i + q_2(\alpha^2 + \alpha_i^2) + \ln\gamma_i + \ln\frac{b}{b_i} + \frac{1}{b}\frac{\partial nb}{\partial n_i} - 1$$
(B.25)

$$(q_1 + 2q_2\alpha)\frac{\partial^2 n\alpha}{\partial n_i \partial n_j} = \frac{\partial \ln \gamma_i}{\partial n_j} - 2q_2 \left(\alpha - \frac{\partial n\alpha}{\partial n_i}\right) \left(\alpha - \frac{\partial n\alpha}{\partial n_j}\right) + \frac{1}{b} \frac{\partial^2 nb}{\partial n_i \partial n_j} - \left(1 - \frac{1}{b} \frac{\partial nb}{\partial n_i}\right) \left(1 - \frac{1}{b} \frac{\partial nb}{\partial n_j}\right)$$
(B.26)

$$(q_{1} + 2q_{2}\alpha)\frac{\partial^{3}n\alpha}{\partial n_{i}\partial n_{j}\partial n_{k}}$$

$$= 1 + \frac{\partial^{2}\ln\gamma_{i}}{\partial n_{j}\partial n_{k}} - \frac{1}{b^{2}}\left(\frac{\partial nb}{\partial n_{i}}\frac{\partial^{2}nb}{\partial n_{j}\partial n_{k}} + \frac{\partial nb}{\partial n_{j}}\frac{\partial^{2}nb}{\partial n_{i}\partial n_{k}} + \frac{\partial nb}{\partial n_{k}}\frac{\partial^{2}nb}{\partial n_{i}\partial n_{j}}\right)$$

$$+ \frac{1}{b}\left(\frac{\partial^{2}nb}{\partial n_{i}\partial n_{j}} + \frac{\partial^{2}nb}{\partial n_{i}\partial n_{k}} + \frac{\partial^{2}nb}{\partial n_{j}\partial n_{k}}\right) - \frac{1}{b^{2}}\left(\frac{\partial nb}{\partial n_{i}}\frac{\partial nb}{\partial n_{j}} + \frac{\partial nb}{\partial n_{i}}\frac{\partial nb}{\partial n_{k}} + \frac{\partial nb}{\partial n_{j}}\frac{\partial nb}{\partial n_{k}}\right)$$

$$+ 2q_{2}\left(\left(\alpha - \frac{\partial n\alpha}{\partial n_{i}}\right)\frac{\partial^{2}nb}{\partial n_{j}\partial n_{k}} + \left(\alpha - \frac{\partial n\alpha}{\partial n_{j}}\right)\frac{\partial^{2}nb}{\partial n_{i}\partial n_{k}} + \left(\alpha - \frac{\partial n\alpha}{\partial n_{k}}\right)\frac{\partial^{2}nb}{\partial n_{i}\partial n_{j}}\right)$$

$$+ 2q_{2}\left(\left(\alpha - \frac{\partial n\alpha}{\partial n_{i}}\right)\left(\alpha - \frac{\partial n\alpha}{\partial n_{j}}\right) + \left(\alpha - \frac{\partial n\alpha}{\partial n_{i}}\right)\left(\alpha - \frac{\partial n\alpha}{\partial n_{k}}\right) + \left(\alpha - \frac{\partial n\alpha}{\partial n_{k}}\right)\right)$$

$$+ \frac{1}{b}\frac{\partial^{3}nb}{\partial n_{i}\partial n_{j}\partial n_{k}}$$
(B.27)

$$\bar{\alpha}_{3} = \frac{1}{q_{1} + \alpha q_{2}} \left(\sum_{ijk} \frac{\partial^{2} \ln \gamma_{i}}{\partial n_{j} \partial n_{k}} \Delta n_{i} \Delta n_{j} \Delta n_{k} + 6q_{2}\bar{n}(\alpha \bar{n} - \bar{\alpha}_{1})^{2} + 6q_{2}(\alpha \bar{n} - \bar{\alpha}_{1})\bar{\alpha}_{2} + \bar{n}^{3} - 3\bar{n}\left(\frac{\bar{\beta}_{1}}{b}\right)^{2} + 2\left(\frac{\bar{\beta}_{1}}{b}\right)^{3} + \frac{\bar{\beta}_{3}}{b} + 3\frac{\bar{\beta}_{2}}{b}\left(1 - \frac{\bar{\beta}_{1}}{b}\right) \right)$$
(B.28)

B.5. The NRTL activity models and their partial derivative equations for incorporating with the mixing rules

$$\frac{ng^{E}}{RT} = \sum_{i} n_{i} \frac{\sum_{l} \tau_{li} G_{li} n_{l}}{\sum_{l} G_{li} n_{l}} = \sum_{i} n_{i} \frac{\bar{\tau}_{i}}{\bar{G}_{i}}$$
(B.29)

$$\ln \gamma_i = \frac{\vec{\tau}_i}{\bar{G}_i} + \sum_j n_j \frac{G_{ij}}{\bar{G}_j} \left(\tau_{ij} - \frac{\bar{\tau}_j}{\bar{G}_j} \right) \tag{B.30}$$

$$\frac{\partial \ln \gamma_{i}}{\partial n_{j}} = \frac{G_{ij}}{\bar{G}_{j}} \left(\tau_{ij} - \frac{\bar{\tau}_{j}}{\bar{G}_{i}} \right) + \frac{G_{ji}}{\bar{G}_{i}} \left(\tau_{ji} - \frac{\bar{\tau}_{i}}{\bar{G}_{i}} \right) - \sum_{l} n_{l} \frac{G_{il}G_{jl}}{\bar{G}_{l}^{2}} \left(\left(\tau_{il} - \frac{\bar{\tau}_{l}}{\bar{G}_{l}} \right) - \left(\tau_{jl} - \frac{\bar{\tau}_{l}}{\bar{G}_{l}} \right) \right)$$
(B.31)

$$\frac{\partial^{2} \ln \gamma_{i}}{\partial n_{j} \partial n_{k}} = -\frac{G_{ij}G_{kj}}{\bar{G}_{j}^{2}} \left(\left(\tau_{ij} - \frac{\bar{\tau}_{j}}{\bar{G}_{j}} \right) - \left(\tau_{kj} - \frac{\bar{\tau}_{j}}{\bar{G}_{j}} \right) \right) - \frac{G_{ji}G_{ki}}{\bar{G}_{i}^{2}} \left(\left(\tau_{ji} - \frac{\bar{\tau}_{i}}{\bar{G}_{i}} \right) - \left(\tau_{ki} - \frac{\bar{\tau}_{i}}{\bar{G}_{i}} \right) \right) \\
- \frac{G_{ik}G_{jk}}{\bar{G}_{k}^{2}} \left(\left(\tau_{ik} - \frac{\bar{\tau}_{k}}{\bar{G}_{k}} \right) - \left(\tau_{jk} - \frac{\bar{\tau}_{k}}{\bar{G}_{k}} \right) \right) \\
+ 2 \sum_{l} n_{l} \frac{G_{il}G_{jl}G_{kl}}{\bar{G}_{l}^{3}} \left(\left(\tau_{il} - \frac{\bar{\tau}_{l}}{\bar{G}_{l}} \right) + \left(\tau_{jl} - \frac{\bar{\tau}_{l}}{\bar{G}_{l}} \right) + \left(\tau_{kl} - \frac{\bar{\tau}_{l}}{\bar{G}_{l}} \right) \right) \tag{B.32}$$

References

- [1] R.A. Heidemann, A.M. Khalil, Am. Inst. Chem. Eng. J. 26 (1980) 769-779.
- [2] D.S.H. Wong, S.I. Sandler, Am. Inst. Chem. Eng. J. 38 (1992) 671-680.
- [3] S. Dahl, M.L. Michelsen, Am. Inst. Chem. Eng. J. 36 (1990) 1829-1836.
- [4] P. Kolar, K. Kojima, Fluid Phase Equilib. 118 (1996) 175-200.
- [5] M. Castier, S.I. Sandler, Chem. Eng. Sci. 52 (1997) 3579-3588.
- [6] G.E. Alvarado, M. Castier, S.I. Sandler, J. Supercrit. Fluids 13 (1998) 49-54.
- [7] R. Stockfleth, R. Dohn, Fluid Phase Equilib. 145 (1998) 43-52.
- [8] D.Y. Peng, D.B. Robinson, Ind. Eng. Chem. Fundam. 15 (1976) 59-64.
- [9] H. Orbey, S.I. Sandler, Int. J. Thermophys. 16 (1995) 695-704.
- [10] M.L. Michelsen, R.A. Heidemann, Am. Inst. Chem. Eng. J. 27 (1981) 521-523.
- [11] G.E. Alvarado, S.I. Sandler, Am. Inst. Chem. Eng. J. 44 (1998) 1178-1187.
- [12] O. Axelsson, Iterative Solution Methods, Cambridge University Press, New York, 1994.

- [13] B.E. Poling, J.M. Prausnitz, J.P. O'Connell, The Properties of Gases and Liquids, fifth ed., McGraw-Hill, Singapore, 2001.
- [14] R.M. Stevens, A. Bakx, P.R.H. van der Neut, T.W. de Loos, J.S. Arons, J. Chem. Eng. Data 42 (1997) 1280-1284.
- [15] J. Seo, S. Lee, H. Kim, J. Chem. Eng. Data 47 (2002) 974-977.
- [16] T. Hiaki, H. Miyagi, T. Tsuji, M. Hongo, J. Supercrit. Fluids 13 (1998) 23-27.
- [17] K. Ishihara, A. Tsukajima, H. Tanaka, M. Kato, T. Sako, M. Sato, T. Hakuta, J. Chem. Eng. Data 41 (1996) 324-325.
- [18] S.D. Yeo, S.J. Park, J.W. Kim, J.C. Kim, J. Chem. Eng. Data 45 (2000) 932-935.
- [19] G.S. Oliver, L.A.G. Luna, Fluid Phase Equilib. 182 (2001) 145-156.
- [20] T. Moriyoshi, S. Kaneshina, K. Aihara, K. Yabumoto, J. Chem. Thermodyn. 7 (1975) 537-545.
- [21] B.A. Stradi, J.F. Brennecke, J.P. Kohn, M.A. Stadtherr, Am. Inst. Chem. Eng. J. 47 (2001) 212-221.

Aerosol Science 34 (2003) 1505-1522

Journal of
Aerosol Science

www.elsevier.com/locate/jaerosci

Estimation of collection efficiency enhancement factor for an electret fiber with dust load

Wiwut Tanthapanichakoon^{a,*}, Kreangkrai Maneeintr^a, Tawatchai Charinpanitkul^a, Chikao Kanaoka^b

^a Center of Excellence in Particle Technology, Faculty of Engineering, Chulalongkorn University,
Patumwan, Bangkok 10330, Thailand

^b Faculty of Engineering, Kanazawa University, Kodatsuno, Kanazawa 920, Japan

Received 29 January 2002; received in revised form 9 May 2003; accepted 13 May 2003

Abstract

In a previous study to investigate how the morphology of particles accumulating on an electret fiber evolves and affects the collection efficiency of the filter at dust-loaded condition, a three-dimensional stochastic model is utilized to simulate the deposition and agglomeration of particles on a cylindrical electret fiber via two different electrical effects, namely, induced force (for uncharged particles) and Coulombic force (for charged particles). In the present study, the additional effect of Brownian diffusion is incorporated in the model and the morphology of particle agglomerates obtained in the simulated results is found to agree well with experimental observations obtained by Hiragi and Kanaoka et al. for both uncharged and charged particles. In addition, the ratio of dust-loaded collection efficiency, η , to the clean-fiber collection efficiency, η_0 , can still be approximated as linear function in the case of weak electrical effects. However, when the electrical parameters are large, the normalized collection efficiency has to be represented by two linear relations, i.e., at low dust load and high dust load. Estimates of the initial collection efficiency and efficiency enhancement factor are given graphically and tabulated as function of Peclet number, the interception parameter and the two electrical parameters.

© 2003 Elsevier Ltd. All rights reserved.

Keywords: Efficiency enhancement factor; Electret fiber; Dust loading effect

0. Introduction

Air filtration is a highly efficient method for removing fine particles from a gas stream. An electret filter is composed of permanently charged fibers capable of collecting charged and uncharged fine

0021-8502/03/\$ - see front matter © 2003 Elsevier Ltd. All rights reserved. doi:10.1016/S0021-8502(03)00104-6

^{*} Corresponding author. Fax: +66-2-218-6894. E-mail address: twiwut@chula.ac.th (W. Tanthapanichakoon).

```
Nomenclature
         mobility of particle (s kg 1)
В
         dimensionless mobility of particle (dimensionless)
B'
         Brownian diffusivity (m<sup>2</sup> s<sup>-1</sup>)
D_{bm}
         diameter of fiber (m)
d_{\rm f}
         diameter of particle (m)
d_{\mathfrak{p}}
         external force vector (N)
         dimensionless external force vector (dimensionless)
F'
F_{\mathsf{C}}
         Coulombic force (N)
F_{G}
         long-range gradient force (N)
F_{\mathsf{R}}
         high-gradient force (N)
         dimensionless electrical parameter for Coulombic force (dimensionless)
K_{\mathbf{C}}
         dimensionless electrical parameter for induced force (dimensionless)
K_{\rm ln}
         standard normal random number (dimensionless)
         position vector (m)
D
P
         dimensionless position vector (dimensionless)
         Peclet number \left(=\frac{D_1U_{\infty}}{D_{BM}}\right) (dimensionless)
Pe
R_{\rm c}
         dimensionless radius of Kuwabara's cell (dimensionless)
         dimensionless radius of hemisphere of influence of high-gradient force (dimensionless)
r_{\rm E}
         interception parameter (d_p/d_f) (dimensionless)
R_i
         radius of fiber (m)
R_{\rm f}
         radius of particle (m)
R_{\rm p}
         fluid velocity (m s<sup>-1</sup>)
И
         dimensionless fluid velocity (dimensionless)
U
X
         x-coordinate (m)
         dimensionless x-coordinate (dimensionless)
X
V
         y-coordinate (m)
Y
         dimensionless y-coordinate (dimensionless)
2
         z-coordinate (m)
Ζ
         dimensionless z-coordinate (dimensionless)
\Delta t
         integration step size (s)
Δτ
         dimensionless step size (dimensionless)
         packing density (dimensionless)
O.
         polarization direction of the electret fiber (deg)
γ
         single-fiber collection efficiency (dimensionless)
η
         single-fiber collection efficiency (clean surface) (dimensionless)
7/0
λ
         overall collection efficiency enhancement factor (m3 kg-1)
         initial collection efficiency enhancement factor (m<sup>3</sup> kg<sup>-1</sup>)
\lambda_{t}
```

particles at high efficiency. In fact, electret fibers have been employed to enhance the collection efficiency of HEPA and ULPA filters. When a fiber is still clean, particles are collected directly on it. As more and more particles deposit on the fiber and/or on previously captured particles, they form

complicated accumulates, which lead to a marked increase in collection efficiency and pressure drop. To design a high-performance filter with improved service life, we need to predict its performance under dust load, which requires good understanding of how the morphology of accumulates on the fiber affects the collection efficiency and pressure drop of a dust-loaded filter. There are two types of theoretical models of particle deposition on the ordinary fiber under dust load, either deterministic (Payatakes & Tien, 1976; Payatakes & Tien, 1977; Payatakes & Gradon, 1980; Tanthapanichakoon & Kanaoka, 1993), or stochastic (Wang, Beizaie, & Tien, 1977; Kanaoka, Emi, & Tanthapanichakoon, 1983). The models predict how the filtration condition and mechanism affect the morphology of dendrites or accumulates as dust load increases.

Emi, Kanaoka, Otani, and Ishiguro (1987) carried out experiments and proposed correlations to calculate the efficiency of the electret filter. Kanaoka (1998) conducted experiments on an electret fiber with small electrical parameters. They also developed a stochastic model to simulate the convective deposition process on an electret fiber (Kanaoka, Hiragi, & Tanthapanichakoon, 2001). The deposition of aerosol particles relied on either of two different electrical deposition mechanisms, namely, induced force for uncharged and coulombic force for charged particles. Though the model was shown to predict the agglomerative deposition process reasonably well, estimates of the collection efficiency enhancement factors for the dust-loaded electret fiber are not given. Otani, Emi, and Mori (1993) also derived expressions for the collection efficiency of the electret filters in a wide range of Coulombic force and induced force parameters including the interception effect.

Generally, strong electrostatic effect of the electret fiber may be considered to overwhelm the effect of Brownian motion of a particle. Therefore, Kanaoka et al. (2001) omitted the effect of Brownian motion in their stochastic model. Obviously, this assumption is valid when the particles have come sufficiently close to the surface of the electret fiber. In principle, the shape or morphology of an agglomerate will depend on the exact location of an approaching particle, which in turn will be influenced by a succession of the Brownian effect upstream. Thus complete neglect of the Brownian effect may lead to subtle difference in the morphology of the agglomerates and the resulting collection efficiency under dust load. Consequently, it is a more conservative approach to consider the Brownian motion in the estimation of the collection efficiency enhancement factor of the electret fiber by incorporating the Brownian motion in the present three-dimensional stochastic model (Tanthapanichakoon, Charinpanitkul, Maneeintr, & Kanaoka, 2001).

0.1. Experimental evidence

Experimental results have been obtained for uncharged and charged particles, respectively, at low and high dust loads (Kanaoka et al., 2001; Hiragi, 1995). Since the deposition of uncharged particles on the electret fiber is dominated by induced forces, the particles are more or less uniformly collected all around the fiber in the initial stage. Most of them then form chainlike agglomerates and grow essentially perpendicular to the surface up to a certain height. In contrast the deposition of charged particles is dominated by coulombic forces. Though the morphology of agglomerates looks somewhat similar to the case of induced forces, its typical chain length appears shorter than the latter and the fiber surface has several sporadic patches on which no particles deposit.

1. Present stochastic model for electret fiber

1.1. Equation of particle motion

The genesis of the three-dimensional model is the Langevin's equation (Kanaoka et al., 1983) plus the effect of relevant external (electrical) forces. In the case of convective Brownian motion of a fine particle moving along an air stream with local air velocity, u, the position vector p of the particle at time $t_i = t_{i-1} + \Delta t$ can be approximated by Eq. (1) with the addition of the electrical effect.

$$p_i = p_{i-1} + u_{i-1}\Delta t + \sigma n_{i-1} + FB\Delta t,$$

$$\sigma = \sqrt{2D_{\text{bm}}\Delta t},$$
(1)

where σ is the standard deviation characteristic of Brownian motion, $n = (n_x, n_y, n_z)$ is a standard normal random vector with zero mean and unit variance.

Eq. (1) may be transformed into dimensionless form as Eq. (2)

$$P_{i} = P_{i-1} + U_{i-1}\Delta\tau + 2\sqrt{\frac{\Delta\tau}{P_{e}}} n_{i-1} + F'B'\Delta\tau.$$
 (2)

Here, the local fluid velocity U of viscous flow across a random array of parallel fibers with packing density α is obtained via Eq. (5) and Pe is Peclet number representing the effect of Brownian motion. On the right hand side of Eq. (2), the second term represents the convective movement of the particle; the third term, the Brownian movement of the particle and the last term, the movement caused by electrical forces.

F'B' is a dimensionless electrical parameter defined as follows: for uncharged particle:

$$F'B' = K_{\rm in}F_{\rm g},\tag{3a}$$

for charged particle:

$$F'B' = K_{\mathbf{C}}F_{\mathbf{c}}.\tag{3b}$$

Kuwabara stream function, given by Eq. (4), is used to determine the dimensionless gas velocity (U_x, U_y, U_z) around the fiber.

$$\psi = \frac{Y}{2K} \left[\left(1 - \frac{\alpha}{2} \right) \frac{1}{X^2 + Y^2} - (1 - \alpha) + \ln(X^2 + Y^2) - \frac{\alpha}{2} (X^2 + Y^2) \right],\tag{4}$$

$$U_x = -\frac{\partial \psi}{\partial Y}, \quad U_y = \frac{\partial \psi}{\partial X}, \quad U_z = 0,$$
 (5)

where

$$K = -\frac{1}{2} \ln \alpha + \alpha - \frac{\alpha^2}{4} - \frac{3}{4}$$
 and $X = \frac{x}{R_f}$, $Y = \frac{y}{R_f}$, $Z = \frac{z}{R_f}$. (6)

Table 1 Simulation conditions used

```
Interception parameter R, (-) = 0.03; Peclet no. Pe (-) = 200.5000, 50000
Packing density of filter \alpha (-) = 0.06
Electrical parameters:

Induced force K_{\rm In} (-) 0.004 and 0.1, or
Coulombic force K_{\rm C} (-) 0.016 and 0.1, with
Polarization direction \gamma (degree) 90 and 180
Length of fiber section
Z_{\rm I} (-) = Z_{\rm S} (-) = 3d_p; Z_{\rm C} (-) = Z_{\rm A} (-) = 5 d_p; Z_{\rm S} (-) = 20 d_p
Radius of fiber R_{\rm F} (-) = 1; Half height of generation plane H (-) = 2
Integrating step size \Delta \tau (-) = 0.05; Maximum layers of captured particles = 30
Radius of hemisphere of influence R_{\rm e} (-) = 1.5
```

To carry out Monte-Carlo simulation of the agglomerative deposition process on the electret fiber, the following assumptions have been made (Table 1):

- (1) Though the existence of agglomerates on the fiber does affect the local flow field around the fiber in a very complicated manner, its ultimate effect on the deposition process is assumed negligible.
- (2) Spatial and time distribution of the oncoming particles are random microscopically.
- (3) The next particle will not enter the Kuwabara's cell until the existing one either deposits or passes through the cell.
- (4) A particle is always retained once it is captured on a dendrite or the fiber surface, and there is no re-entrainment or detachment of captured particles or dendrites from the fiber.
- (5) The inlet particle size distribution is monodisperse.
- (6) Both positive and negative charges are uniformly distributed on either half of the fiber surface.
- (7) The charge on a particle is equal to either -1 for charged, or 0 for uncharged particles.

1.2. Simulation approach

The dimensionless radius of Kuwabara's cell (R_c) is related to the filter packing density α by

$$R_{\rm c} = \frac{1}{\sqrt{\alpha}}.\tag{7}$$

A schematic diagram of Kuwabara's cell has been given elsewhere (Kanaoka et al., 1983). The total length Z of the electret fiber is subdivided into 5 sections with lengths Z_1, Z_2, Z_3, Z_4, Z_5 , respectively. The effective length of the fiber was Z_3 , within which the deposition process is expected to resemble that obtained using a much longer fiber. In the case of the electret fiber, numerous kinds of electrical forces may act between the particles themselves, and between the particles and fiber. Coulombic forces F_C (between the particle and fiber), F_{CP} (between the particle and another nearby particle), and image force F_1 come into play only when the oncoming particle has electric charge. Non-uniform electric field around the electret fiber and around an agglomerate lead, respectively, to the long-range gradient force F_C and particle-string formative, or high-gradient, force F_R . Under typical filtration

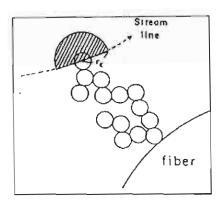


Fig. 1. Region of high-gradient electrostatic field.

conditions, Hiragi (1995) has concluded that F_R becomes dominant after an oncoming particle comes in close proximity to a deposited particle and that, until the particle enters this proximity region, only either F_C in the case of charged particles, or F_G in the case of uncharged particles, needs to be considered. His conclusions agree with Zebel (1963) and are adopted here.

Typical examples of the trajectory of uncharged and charged particles around the clean fiber and the effect of charge polarization direction (γ) are given elsewhere (Kanaoka et al., 2001). Using the stochastic model described in Eqs. (2)–(6), Monte-Carlo simulation is carried out using a similar flowchart shown there. The new position vector P_i at the end of each tiny time step is checked to see whether the particle comes in proximity to the free end of deposited particles or a dendrite tip. If so, its subsequent movement is controlled by the high-gradient force F_R which is prominent only at the tip of the particle string (dendrite). In this case, only the electrostatic field around the dendrite tip needs to be considered. Once an oncoming particle enters this projected hemisphere of influence of the high-gradient field at the dendrite tip, it is considered to deposit at the center of the hemisphere as shown in Fig. 1.

1.3. Interaction between Brownian diffusion and Coulombic force in electret filtration

In the electret filtration of charged ultrafine particles, Brownian diffusion and Coulombic force are the dominant collection mechanisms. Lee, Otani, Namiki, and Emi (2002b) investigated this interactive effect by solving the convective diffusion equation incorporating Coulombic force, and the obtained numerical results are compared with experimental data. They concluded that there is a negative interaction between Brownian diffusion and Coulombic force. More specifically, Coulombic capture efficiency is reduced as *Pe* decreases, and the combined Brownian-diffusion and Coulombic-capture efficiency is not a simple sum of the individual counterparts.

Recently manufacturers of electret filters have tried to increase the electrical charge density of electret fibers in order to enhance their collection performance. In the case of these high-performance electret filters (HPEF), a question was raised on whether the previously available prediction equations for collection efficiency are applicable to these HPEF. Lee, Otani, Namiki, and Emi (2002a) measured the collection efficiencies of recently developed HPEF and studied the applicability of the available prediction equations. Since these HPEF have electrical charge density twenty times as high as that of

the conventional electret filter, their single-fiber efficiency was close to the maximum limit determined from the packing density of fibers. They concluded that the conventional equations can be applied to predict the collection efficiency by induced force, but not by Coulombic force, because the single-fiber efficiency due to the combined induced force and Brownian diffusion is already high and close to the upper limit even without the collection by Coulombic force. These two recent studies indicate the importance of incorporating and considering all relevant mechanisms simultaneously.

As mentioned above, Kanaoka et al. (2001) omitted the effect of Brownian diffusion from their stochastic model. Because of this simplifying assumption, they found that the morphology of the simulated dendrites tended to be unrealistically straighter and taller than their experimental observations. So they incorporated a heuristic rule to account for the effect of "local flow field disturbance" associated with the presence of the dendrites. In other words, they postulated that this disturbance caused the exact location of deposition of a new particle to shift slightly backwards by a certain fixed angle from the calculated point of collision. The appropriate angle was determined by comparison with the observed morphology of the dendrites. In the present model, the incorporation of the Brownian diffusion term allowed the deletion of this heuristic rule while resulting in more realistic morphology. In addition, the model should avoid the problem associated with the interaction between Brownian diffusion and Coulombic force reported be Lee and Otani et al.

2. Results and discussion

In this section, the simulation results of aerosol deposition by induced force and Coulombic force are analyzed, presented and discussed in terms of collection efficiency, normalized collection efficiency, and collection efficiency enhancement factor.

2.1. Aerosol deposition in the presence of induced force

2.1.1. Shapes of accumulates on electret fiber surface

Figs. 2 and 3 show some typical examples of the numerous simulations carried out. Generally speaking, since induced forces are prevalent, initially uncharged particles are collected rather uniformly around the entire fiber surface, forming relatively straight chainlike agglomerates, which subsequently become irregular and complicated. In the initial stage, the agglomerates tend to grow essentially perpendicular to the electret surface up to a certain height. For a small value of K_{ln} , the morphology of the accumulates appears comparatively fatter and shorter than the case of a large K_{ln} . Conversely, for a large K_{ln} , a typical dendrite tends to be taller, more slender and straighter. Moreover, a number of dendrites are dispersed sporadically around the entire surface. These results agree with our experimental observations (Kanaoka et al., 2001).

2.1.2. Collection efficiency

Table 2 compares the obtained clean-fiber collection efficiencies η_0 with those from Emi's empirical correlation (Emi et al., 1987). It is obvious that the two sets of values agree reasonably well. Figs. 4 and 5 show the graphical relations between the initial collection efficiency η_0 and Pe, and between η_0 and $K_{\rm In}$, respectively. It is evident that the collection efficiency η_0 decreases with increasing Pe because of a decrease in Brownian effect. Generally η_0 increases with an increase of

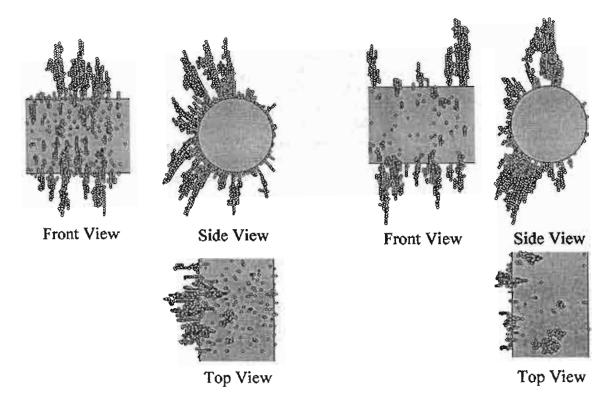


Fig. 2. Typical configuration of accumulates for the case of $R_i = 0.03$, $K_{In} = 0.004$ and Pe = 200.

Fig. 3. Typical configuration of accumulates for the case of $R_i = 0.03$, $K_{ln} = 0.004$ and Pe = 50,000.

 R_i because of the interception effect. As expected, when electrical forces are dominant, η_0 increases with an increase in K_{1n} .

2.1.3. Normalized collection efficiency

Figs. 6 and 7 shows examples of the observed relation between the normalized collection efficiency η/η_0 and dust load. The initial value of η/η_0 for each condition is approximately equal to unity because the predicted values slightly deviate from Emi's empirical correlation. In Fig. 7, the relation shows some non-linearity when $K_{\rm In}$ becomes larger. In fact, the experimental η/η_0 of the electret filter was reported to initially drop before gradually increasing with dust load (Walsh & Stenhouse, 1997). After a period of time, the electrostatic effect becomes weakened and dominated by the mechanical effect, so η/η_0 begins to increase essentially linearly but with a steeper slope. This phenomenon is well-known experimentally for the electret filter.

For simplicity, η/η_0 will be approximated with two linear correlations: the early stage and the subsequent stage, respectively. The former is represented by $\eta/\eta_0 = a_1 + \lambda_1 m$ and the latter, $\eta/\eta_0 = a + \lambda m$. The collection efficiency enhancement factor of the early stage, λ_1 , is always smaller than that of the subsequent, or overall dust-loaded, period λ . This is due to the fact that at the early stage, the effect of electrical parameter is dominant but gradually decreases as the agglomerates grow larger. Subsequently, the mechanical effect of dust load begins to dominate.

Table 2 Clean-fiber collection efficiency η_0 (%) obtained from Monte-Carlo simulation (upper row) and Emi's empirical correlation (1987) for the case of $K_{\rm In}=0.004$ or $K_{\rm C}=0.016$ and $R_{\rm i}=0.03-0.1$

				Pe	
Mechanism	Efficiency	200	1000	5000	50,000
	$R_i = 0.03$	10.82	4.04	2.52	1.22
	Emi's correlation	11.45	5.29	3.19	2.33
Induction	R; 0.05	11.77	4.83	2.67	1.46
$K_{\text{ln}} = 0.004$	Emi's correlation	11.65	5.49	3.39	2.53
	R_i 0.1	12.21	5.95	3.24	2.53
	Emi's correlation	12.93	6.78	4.67	3.81
	$R_i = 0.03$	7.22	3.78	1.80	1.28
	Emi's correlation	10.39	4.22	2.11	1.26
Coulomb	$R_i = 0.05$	9.46	4.43	2.06	1.67
$K_{\rm C} = 0.016$	Emi's correlation	10.59	4.42	2.31	1.46
γ = 90°	$R_i = 0.1$	10.51	5.31	2.86	2.48
	Emi's correlation	11.87	5.70	3.59	2.74
	R, 0.03	9.80	5.47	2.89	1.96
	Emi's correlation	10.39	4.22	2.11	1.26
Coulomb	$R_i = 0.05$	11.91	6.01	2.95	2.31
$K_{\rm C} = 0.016$	Emi's correlation	10.59	4.42	2.31	1.46
$\gamma = 180^{\circ}$	$R_i = 0.1$	13.80	6.55	3.62	3.16
•	Emi's correlation	11.87	5.70	3.59	2.74

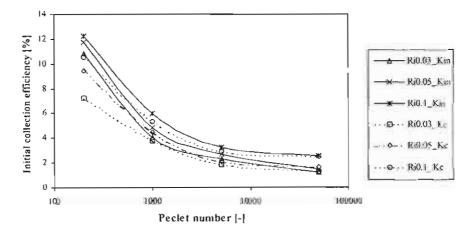


Fig. 4. Relation between initial collection efficiency and Pe number ($K_{ln} = 0.004$, $K_C = 0.016$ and $\gamma = 90^{\circ}$).

2.1.4. Collection efficiency enhancement factor

Tables 3 and 4 show the collection efficiency enhancement factor λ obtained from our simulations, and Figs. 8 and 9 show the graphical relations between λ and Pe number, and λ and K_{In} , respectively. It is known that when Pe increases, the clean-fiber collection efficiency η_0 decreases and the ratio η/η_0 becomes higher. That is why λ becomes higher. Similarly, when R_i decreases, it leads to a

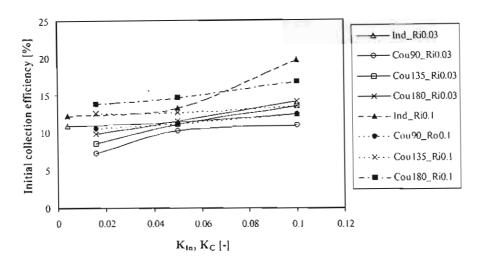


Fig. 5. Normalized collection efficiency of a dust-loaded fiber for the case of $R_i = 0.03$ and $K_{ln} = 0.004$.

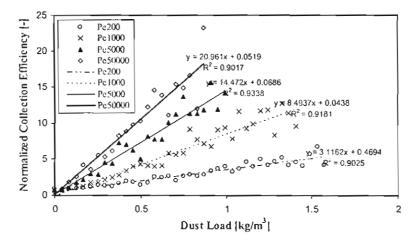


Fig. 6. Relation between initial collection efficiency and K_{ln} or K_C and γ (Pe = 200).

decrease in η_0 , thus resulting in higher λ . Again, λ will likewise increase if K_{In} decreases because η_0 at a lower K_{In} is smaller than η_0 at a higher K_{In} .

2.2. Aerosol deposition in the presence of Coulombic force

In this section, simulation results of aerosol deposition by Coulombic force are discussed. In addition, the effect of polarization direction of the electret fiber is also investigated.

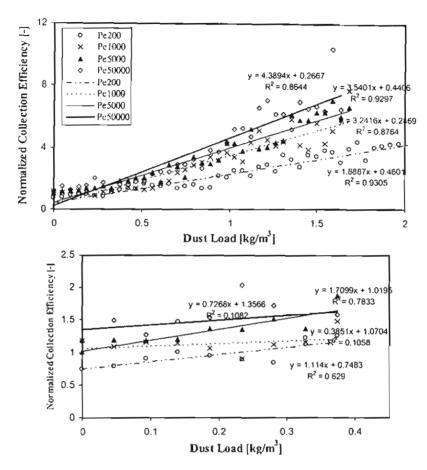


Fig. 7. Normalized collection efficiency of a dust-loaded fiber for the case of $R_t = 0.03$ and $K_{In} = 0.1$ (above: overall dust load period, below: initial dust load period).

2.2.1. Shapes of accumulates on an electret fiber surface

Figs. 10-12 show examples of the shapes of accumulates. As in the case of $K_{\rm In}$, the effect of a large $K_{\rm C}$ on the morphology makes a typical agglomerate taller, straighter and more slender than a small $K_{\rm C}$, and initially dendrites are found scattered over specific areas of the fiber surface. With respect to the surface areas of opposite polarity, a few particles can still deposit on it when the effect of $K_{\rm C}$ is sufficiently weak. Generally speaking, as the polarization direction, γ , increases, more particles are captured. However, the effect of γ on the average shape of dendrites is hard to elucidate because it would be necessary to fully understand how the electrical charges on the deposited particles are exchanged among themselves and transferred to the electret fiber.

2.2.2. Collection efficiency

As mentioned above, Table 2 also shows the clean-fiber efficiency η_0 for charged particles. Again the predicted values agreed reasonably well with those from Emi's empirical correlation. As for the effect of the polarization direction γ of the electret fiber, the table reveal that values of η_0 for the

Table 3 Collection efficiency enhancement factor (λ) in the overall stage for the case of $K_{\rm in}=0.004$ or $K_{\rm C}=0.016$ and $R_{\rm i}=0.03-0.1$

		Pe				
Mechanism	λ	200	1000	5000	50,000	
Induction	R; 0.03	3.12	8.49	14.47	20.96	
$K_{10} = 0.004$	R, 0.05	2.78	7.32	11.06	13.68	
THE COLUMN	$R_i = 0.1$	2.24	4.29	6.18	8.47	
Coulomb	$R_i = 0.03$	3.98	10.00	20.67	39.34	
$K_{\rm C} = 0.016$	$R_i = 0.05$	3.33	8.14	15.96	25.37	
$\gamma = 90^{\circ}$	$R_i = 0.1$	2.38	5.51	9.36	12.92	
Coulomb	R, 0.03	3.81	9.33	22.05	34.13	
$K_{\rm C} = 0.016$	R; 0.05	3.27	8.41	15.29	24.62	
$\gamma = 180^{\circ}$	R_i 0.1	2.74	6.32	9.46	11.60	

Table 4 Collection efficiency enhancement factor (λ) in both early stage (lower row) and late stage (upper row) for the case of $K_{ln} = 0.1$ or $K_C = 0.1$ and $R_i = 0.03-0.1$

				Pe	
Mechanism	λ	200	1000	5000	50,000
	R_i 0.03	1.89	3.24	3.54	4.39
	Initial	1.11	0.39	1.71	0.73
Induction	$R_i = 0.05$	1.70	3.04	3.58	4.09
$K_{ln} = 0.1$	Initial	0.03	1.10	0.06	1.60
	$R_i = 0.1$	1.69	2.39	2.54	2.71
	Initial	0.62	1.62	2.18	2.29
	$R_{i} = 0.03$	2.66	5.68	9.10	11.05
	Initial	0.33	3.58	3.15	5.51
Coulomb	$R_i = 0.05$	2.47	5.11	6.89	7.13
$K_c = 0.1$	Initial	1.26	4.69	2.83	4.04
) == 90°	$R_i = 0.1$	1.95	3.55	4.38	5.09
	Initia}	2.25	2.55	3.39	5.35
	$R_i = 0.03$	2.88	5.13	10.8	8.70
	Initial	0.17	2.38	1.49	2.15
Coulomb	$R_i = 0.05$	2.28	4.68	5.67	7.49
$K_{\rm C} = 0.1$	Initial	0.21	0.78	1.36	1.70
$\gamma = 180^{\circ}$	$R_i = 0.1$	1.76	2.51	3.72	3.50
	Initial	0.41	1.75	2.30	2.70

case of $\gamma = 180^{\circ}$ are higher than those for a lower γ because at $\gamma = 180^{\circ}$ the charge or polarity of the entire front surface of the fiber lies opposite to that of the particles.

Figs. 4 and 5 also show the graphical relations between η_0 and Pe, and η_0 and K_C , respectively. As discussed above η_0 decreases with increasing Pe due to a decrease in the Brownian effect.

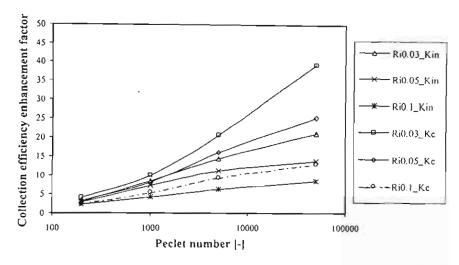


Fig. 8. Relation between collection efficiency enhancement factor and Pe number ($K_{ln} = 0.004$, $K_C = 0.016$ and $\gamma = 90^{\circ}$).

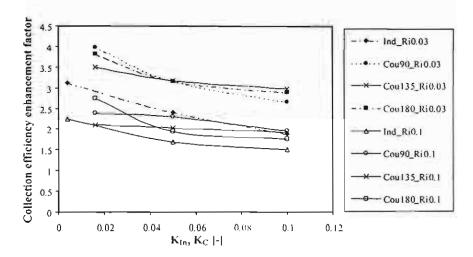


Fig. 9. Relation between collection efficiency enhancement factor and K_{ln} or K_{C} and γ (Pe = 200).

Furthermore, η_0 also increases with an increase in R_i . It is found that η_0 increases slightly as γ increases. Finally, η_0 increases with an increase of K_C because the electrical forces become dominant.

2.2.3. Normalized collection efficiency

Figs. 13–16 show the observed relations between the normalized collection efficiency and dust load. The initial value of η/η_0 for each condition is approximately equal to unity because the predicted values slightly deviate from Emi's empirical correlation. As in the case of $K_{\rm In}$, the normalized relation shows some non-linearity when $K_{\rm C}$ becomes larger. Walsh and Stenhouse (1997) have experimentally shown that the collection efficiency of the electret fiber initially drops before gradually rising with dust load. Again, η/η_0 can be approximated with two linear correlations: the early stage and the

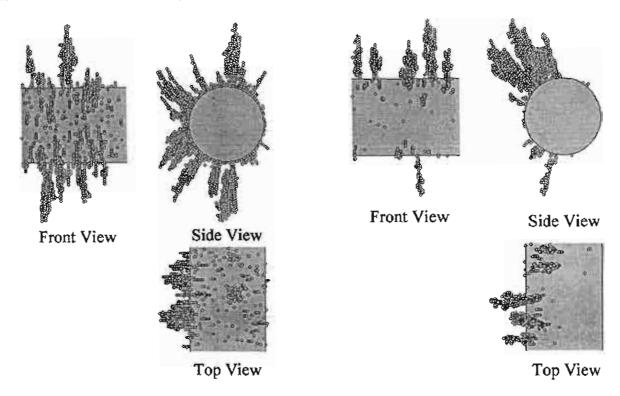


Fig. 10. Typical configuration of accumulates for the case of $R_i = 0.03$, $K_C = 0.016$, $\gamma = 90^{\circ}$ and Pe = 200.

Fig. 11. Typical configuration of accumulates for the case of $R_i = 0.03$, $K_C = 0.016$, $\gamma = 90^{\circ}$ and Pe = 50,000.

subsequent stage, respectively. As discussed earlier, λ_1 is always smaller than λ . In any case, the major difference between uncharged and charged particles is that η/η_0 for the latter has a steeper slope than that for the former. However, the effect of γ on the normalized collection efficiency is not clear-cut.

2.2.4. Collection efficiency enhancement factor

Tables 3 and 4 also show the collection efficiency enhancement factor λ , and Figs. 8 and 9, the graphical relation between λ and Pe, and between λ and K_C , respectively. When Pe increases, the initial collection efficiency η_0 decreases and the ratio η/η_0 becomes larger. The reason is the same as the case of uncharged particles. As discussed above, as R_i decreases, λ becomes bigger. Similarly, λ increases as K_C decreases. However, the effect of γ on λ is not clear-cut.

3. Conclusion

In this study, a three-dimensional stochastic model that takes account of Brownian effect is used to simulate the agglomerative deposition processes of fine aerosol particles on a cylindrical electret fiber and to estimate the collection efficiency under dust load and the collection efficiency enhancement

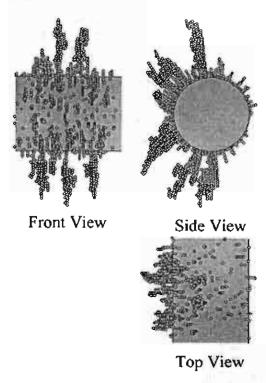


Fig. 12. Typical configuration of accumulates for the case of $R_t = 0.03$, $K_C = 0.016$, $\gamma = 180^{\circ}$ and $P_C = 200$.

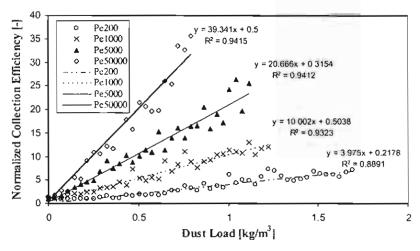


Fig. 13. Normalized collection efficiency of a dust-loaded fiber for the case of $R_i = 0.03$, $K_C = 0.016$ and $\gamma = 90^{\circ}$.

factor. Major results are summarized as follows:

1. Compared with our experimental results, the morphology of the agglomerates on the electret fiber predicted by the present stochastic model is more realistic because the model is more rigorous than our previous stochastic model (Kanaoka et al., 2001).

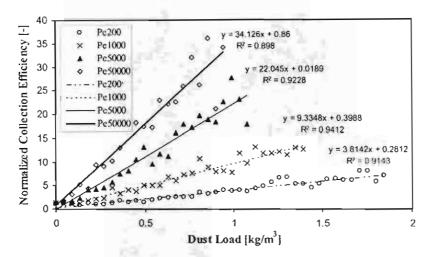


Fig. 14. Normalized collection efficiency of a dust-loaded fiber for the case of $R_t = 0.03$, $K_C = 0.016$ and $\gamma = 180^\circ$.

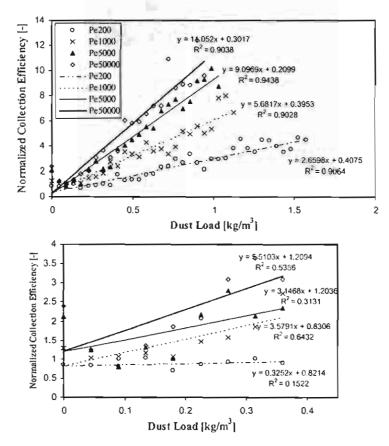


Fig. 15. Normalized collection efficiency of a dust-loaded fiber for the case of $R_t = 0.03$, $K_C = 0.1$ and $\gamma = 90^{\circ}$ (above: overall dust load period, below: initial dust load period).

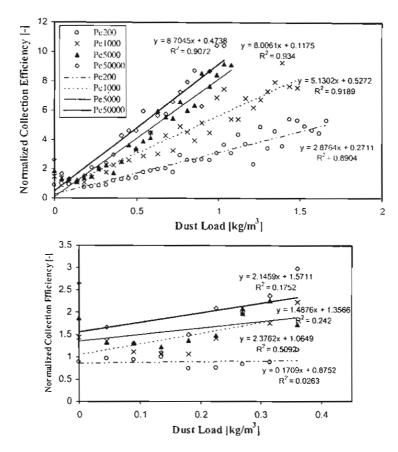


Fig. 16. Normalized collection efficiency of a dust-loaded fiber for the case of $R_i = 0.03$. $K_C = 0.1$ and $\gamma = 180^{\circ}$ (above: overall dust load period, below: initial dust load period).

- 2. The electrical effect dominates particle collection in the early stage of the filtration, especially in the case of smaller particle size. Therefore, the initial collection efficiency is generally higher than the case of an ordinary (non-electret) fiber. In the case of induced forces, the enhanced collection efficiency remains high in the early stage but it tends to decrease slightly before increasing in the case of coulombic forces because of the mechanical effect of dust load. Generally, the normalized collection efficiency η/η_0 can be approximated by two linear correlations: the early stage and the subsequent stage. The efficiency enhancement factor of the early stage, λ_1 , is always smaller than λ of the subsequent period.
- 3. The collection efficiency enhancement factor λ is known to be a function of the following dimensionless groups: interception parameter R_i , Peclet number Pe, and induced force parameter K_{In} , or coulombic force parameter K_{C} . In addition, the polarization direction γ , is an additional parameter in the case of coulombic effect. According to the simulation results, the value of λ will be increased as Pe increases or R_i decreases. In the case of induced force effect, λ is smaller than that in the case of Coulombic force. In either case, λ will be increased as K_{In} or K_{C} decreases. However, the effect of γ on λ is not clear yet.