รายงานวิจัยฉบับสมบูรณ์

โครงการ: การประยุกต์ใช้พันธุศาสตร์และเทคโนโลยีชีวภาพ เพื่อการพัฒนาการเพาะเลี้ยงสัตว์น้ำอย่างยั่งยืน สัญญาเลขที่ RTA4680010

ชื่อหัวหน้าโครงการวิจัยผู้รับทุน **ศาสตราจารย์ ดร.อุทัยรัตน์ ณ นคร** ระยะเวลาการรับทุน **1 กันยายน 2546 ถึ**งวันที่ **31 สิงหาคม 2549** (ขยายเวลาการวิจัย 12 เดือน)

บทคัดย่อ

งานวิจัยในโครงการประกอบด้วยโครงการย่อย 4 โครงการ ดังด่อไปนี้ (1) การใช้แนวทางพันธุ ศาสตร์เพื่อความยั่งยืนของปลาบึก: (1.1) <u>การใช้เครื่องหมายพันธุกรรมเพื่อการวางแผนการผสมพันธ</u>ุ์ <u>ปลาบึก</u>: การศึกษานี้มีวัตถุประสงค์เพื่อวางแผนการผสมพันธุ์พ่อแม่ปลาบึกที่เจริญพันธุ์ในโรงเพาะฟัก เป็นรุ่นแรก ไม่ให้เกิดการผสมเลือดซิด ทำการศึกษา microsatellite 7 ตำแหน่ง ในพ่อแม่พันธุ์ปลาบึก จำนวน 129 ตัวจากโรงเพาะฟัก 7 แห่ง คำนวณค่า genetic relatedness (r_{xy}) จากข้อมูลจีโนไทพ์ เพื่อใช้ ในการดัดสินว่าปลาคู่ใดไม่เป็นเครือญาดิกัน โดยใช้ค่า r_{xy} น้อยกว่า 0.07 [ค่า r_{xy} ต่ำสุดในการจับคู่ ระหว่างปลาที่ร่วมพ่อต่างแม่ (half-sib)] เป็นค่าตัดสินว่าปลาคู่นั้นๆไม่เป็นเครือญาติกัน จากการจำลอง สถานการณ์ ด้วยโปรแกรมคอมพิวเตอร์ เพื่อเปรียบเทียบประสิทธิภาพของการคัดเลือกพ่อแม่พันธุ์แบบ ต่างๆ พบว่าภารคัดเลือกคู่ผสมโดยพิจารณาจากค่า 🕰 สามารถรักษาความหลาภหลายได้ดีที่สุด; (1.2) <u>การศึกษาเครื่องหมายพันธกรรมที่จำเพาะต่อเพศในปลาบึกและปลาสวาย</u>: การศึกษาใช้เทคนิค AFLP โดยในปลาบึกนั้น ใช้คู่ไพรเมอร์ทั้งหมดจำนวน 570 คู่ไพรเมอร์ ศึกษาใน DNA pool ปลาบึกเพศ ผู้ 4 pools เพศเมีย 4 pools (10 ตัว/pool) ในปลาสวายตรวจสอบคู่ไพรเมอร์จำนวน 102 คู่ไพรเมอร์ ใน DNA pool ปลาสวายเพศผู้ 4 pool เพศเมีย 4 pool (7-8 ตัว/pool) ไม่พบเครื่องหมายพันธุกรรมที่ จำเพาะกับเพศ; (1.3) ความหลากหลายของ mitochondrial DNA ในปลาครอบครัว Pangasiidae: ได้ ร่วมกับโครงการ Genetic Characterization of the Threatened Mekong Pangasild Catfishes (สนับสนุนโดยศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ) ศึกษาความหลากหลายของลำตับเบส ของยืน 16S rRNA ในปลาครอบครัว Pangasiidae 9 ชนิด พบว่าปลาแต่ละชนิดมีค่าความหลากหลาย ของแฮโพลไทพ์ ต่ำจนถึงปานกลาง โดยมีค่าความหลากหลายของนิวคลีโอไทด์ ต่ำมาก โดยปลาบึกนั้น มีค่าความหลากหลายทางพันธุกรรมในระดับเดียวกับปลาชนิดอื่น ๆ (2) การใช้แนวทางพันธุศาสตร์ และการควบคุมเพศ เพื่อปรับปรุงประสิทธิภาพการผลิตของกุ้งก้ามกราม: (2.1) การผลิตกุ้ง ก้ามกรามเพศผู้ล้วนด้วยเทคโนโลยี neofemale: เนื่องจากกุ้งก้ามกรามเพศผู้เจริญเติบโตดีกว่าเพศเมีย การศึกษานี้จึงสนใจจะผลิตลูกกุ้งเพศผู้ล้วน โดยสร้างกุ้งเพศเมียที่มีพันธุกรรมเป็นเพศผู้ (genotype-ZZ เรียกว่า neofemale) เพื่อนำไปผสมกับกุ้งเพศผู้ปกติ (ZZ) แล้วจะได้ลูกเพศผู้ล้วน การสร้างกุ้ง

neofemale ทำโดยการทำลาย androgenic gland ในกุ้งเพศผู้ระยะ 45 วันหลังคว่ำ จำนวน 87 ตัว กุ้งมี อัตรารอด 70% กุ้งที่รอดชีวิตทั้งหมดเปลี่ยนเป็นเพศเมีย 21% และ กุ้งจำนวนนี้ 62% สร้างไข่ จากนั้นได้ ทำการผสมกุ้ง neofemale กับเพศผู้ปกติ ได้ลูกเพศผู้ 88-100% (2.2) <u>การปรับปรุงพันธุ์กุ้งก้ามกราม</u>: กุ้งก้ามกรามสายพันธุ์พื้นเมืองผ่านการ domesticate มานาน อาจจะสูญเสียความหลากหลายทาง พันธุกรรม ซึ่งอาจเป็นสาเหตุของการเจริญเติบโตที่ลดลง ผู้วิจัยจึงทำการศึกษาความหลากหลายทาง พันธุกรรม เพื่อจะนำข้อมูลมาเป็นแนวทางปรับปรุงพันธุ์ต่อไป โดยได้พัฒนา microsatellite primer จาก กุ้งก้ามกราม 10 คู่ แล้วน้ำ primer จำนวน 6 คู่ ไปศึกษาความหลากหลายทางพันชุภรรมของกุ้ง ก้ามกรามสายพันธุ์พื้นเมือง และสายพันธุ์อื่นๆ 5 สายพันธุ์ เทียบกับประชากรธรรมชาติ 2 ประชากร ผล การศึกษาแสดงว่า ประชากรโรงเพาะฟัก มีความหลากหลายทางพันธุกรรมในระดับบ่านกลางและไม่ แตกต่างจากประชากรธรรมชาติ ดังนั้นแสดงว่าการสูญเสียความหลากหลายทางพันธุกรรมไม่ใช่สาเหตุที่ ทำให้กุ้งสายพันธุ์พื้นเมืองมีลักษณะด้อยลง กุ้งแต่ละประชากรมีพันธุกรรมแตกด่างกัน จัดเป็น gene pool ที่เป็นประโยชน์ในการปรับปรุงพันธุ์ (3) การบูรณาการความรู้ด้านพันธุศาสตร์ เพื่อการจัดการ ประมงและการเพาะเลี้ยงปลาเก๋า: (3.1) ความหลากหลายทางพันธุกรรมระหว่างชนิดปลาเก๋า: โดย การศึกษาเครื่องหมาย microsatellite 6 ตำแหน่ง ในปลาเก๋า 8 ชนิด พบความแตกต่างระหว่างชนิดอยู่ ในระดับสูง และ microsatellite บางตำแหน่งสามารถแสดงความแตกด่างระหว่างชนิด พบ private alleles ในปลาเก๋าทุกชนิด ยกเว้น E. ongus; (3.2) ความหลากหลายทางพันธกรรมเชิงพื้นที่ (spacial variation) ของประชากรุปลาเก๋าดอกแดง (Epinephelus coloides): ศึกษาในปลาเก๋าดอกแดง 6 ประชากรในประเทศไทยและอินโดนีเซีย โดยใช้ microsatellite 4 ดำแหน่ง ในภาพรวมความหลากหลาย ภายในประชากรปลาเก๋าดอกแดง มีค่าค่อนข้างต่ำ ระดับความแดกต่างระหว่างประชากร ไม่สัมพันธ์กับ ระยะทาง แต่สัมพันธ์กับทิศทางของกระแสน้ำ; (3.3) ความหลากหลายทางพันธกรรมเชิงเวลา (temporal variation) ในประชากรของปลาเก๋าดอกแดงจากจังหวัดดรัง: ในการศึกษานี้ ได้รวบรวมด้วอย่างลูกปลา เก๋า ณ อำเภอกันดัง จังหวัดดรัง ซึ่งเป็นแหล่งจับลูกปลาเพื่อนำไปเลี้ยง เก็บดัวอย่างทุก 3 เดือน ้คั้งแต่ มกราคม 2547 ถึง มกราคม 2548 และติดตามความหลากหลายพันธุกรรมของกลุ่มลูกปลาที่มี ชนาดใกล้เคียงกัน ตลอดทั้งปี ศึกษาโดยใช้เครื่องหมายไมโครแซทเหลไลท์ 6 ดำแหน่ง พบว่าตัวอย่าง เดือนกรกฎาคม มีพันธุภรรมแตกต่างจากกลุ่มอื่นๆ และเมื่อนำ genotype ของบ่ลาแต่ละตัวมาศึกษาโดย วิธี assignment test ปรากฏว่าปลาที่จับในเดือนกรกฎาคมร้อยละ 83 ถูกจัดเข้าสู่กลุ่มเดิมอย่างถูกต้อง ส่วนด้วอย่างที่เก็บในช่วงเวลาอื่นๆมีพันธุกรรมคล้ายคลึงกัน จากผลการทดลองทำให้เกิดข้อสันนิษฐาน ว่า มีปลามากกว่า 1 ประชากรในจังหวัดตรัง ซึ่งวางไข่ในเวลาที่ต่างกัน ดังนั้นจึงจำเป็นด้องศึกษาข้อมูล ้ด้านอื่นๆประกอบ เพื่อจะสามารถจัดการทรัพยากรที่หลากหลายนี้ ให้สามารถใช้ประโยชน์ได้อย่างยั่งยืน (4) ความหลากหลายทางพันธุกรรมของหอยเชลส์ 2 ชนิดในประเทศไทย: (4.1) ความหลากหลาย ทางพันธุกรรมของห<u>อยเชลล์ Amusium pleuronectes</u>: ศึกษาลำดับเบสของ 16S rRNA ในหอยเชลล์ จาก 6 แหล่งในอ่าวไทย และอีก 1 แหล่งจากฝั่งทะเลอันดามัน ความหลากหลายภายในประชากร มีค่า ล่อนข้างต่ำ แสดงว่าประชากรของ A. pleuronectes มีขนาดเล็ก หอยจากฝั่งอ่าวไทย และทะเลอันดามัน ไม่มี haplotype ที่เหมือนกันเลย ผลการศึกษาชี้ให้เห็นว่าไม่ควรมีการขนย้ายประชากรข้ามระหว่างอ่าว

ไทยและทะเลอันดามัน และควรนำเครื่องหมายพันธุกรรมที่มีระดับความหลากหลายสูง มาใช้ศึกษา ประชากรในอ่าวไทยอีกครั้งหนึ่ง เพื่อให้แน่ใจว่าประชากรเหล่านั้น แยกเป็นประชากรย่อยๆหรือไม่ ก่อนที่จะออกมาตรการเกี่ยวกับการจัดการประมง; (4.2) <u>การศึกษาความสัมพันธ์เชิงวิวัฒนาการของหอย</u> ัเชลล์ในประเทศไทย: ศึกษาลำดับเบสของยืน 4 ตำแหน่งได้แก่ 16SrRNA, ITS1, 5.8S และ ITS2 ใน หอยเซลล์ 9 ชนิด ทำการวิเคราะห์ด้วยวิธีต่างๆ 3 วิธี [maximum parsimony (MP), maximum likelihood (ML) และ Bayesian] ซึ่งทั้ง 3 วิธีให้ผลความสัมพันธ์เชิงวิวัฒนาการเหมือนกัน โดยสรป แผนภูมิความสัมพันธ์เชิงวิวัฒนาการที่ได้ สอดคล้องกับวิธีการจัดจำแนกของ Waller (1991, 2006) โดย หอยเซลล์ทั้ง 9 ชนิด อยู่ใน 2 ครอบครัวย่อย คือ Pectininae และ Chlamydinae ผลการศึกษายังแสดง ว่าครอบครัวย่อย Pectininae เกิดจากสายวิวัฒนาการมากกว่า 1 สาย (paraphyletic); (4.3) ความ หลากหลายทางพันธกรรมของหอยเซลล์ชนิดMimachlamys senatoria ในประเทศไทย: ในการศึกษานี้ ได้พัฒนา microsatellite primers จาก partial DNA library ของหอยเชลล์ M. senatoria แล้วนำไปศึกษา ความหลากหลายทางพันธุกรรมของหอยชนิดนี้ 4 ประชากร (3 ประชากรจากอ่าวไทย และ 1 ประชากร จากฝั่งอันดามัน) ผลการศึกษาแสดงว่าประชากรจากอ่าวไทยมีความหลากหลายภายในประชากรต่ำ ส่วนประชากรฝั่งอันดามันมีค่าความหลากหลายค่อนข้างสูง มีความแดกด่างทางพันธุกรรมระหว่างทุกคู่ ประชากร โดยเฉพาะอย่างยิ่งประชากรในอ่าวไทย มีความแตกต่างทางพันธุกรรมกับประชากรจากทะเล อันดามันอย่างซัดเจน

ABSTRACT

The project comprised of four sub-projects, (1) Genetic Approaches for Sustainability of the Mekong Giant Catfish, Pangasianodon gigas which comprised of two research topics, (1.1) Application of genetic markers for designing mating plans for Mekong giant catfish (MGC): The research aimed to design mating plans for the first batch of broodstock of MGC that matured in captivity in order to avoid inbreeding. Seven microsatellite primers were scored in a total of 129 MGC brooders from seven hatcheries. Then the genetic relatedness (r_{xy}) between a brooder pair was calculated from the genotype data and used to identify the unrelated pairs that can be bred without causing inbreeding. The r_{xy} less than 0.07, which was derived from the minimum r_{xy} value of the pairing among individuals from a half-sib family, was used as a critical value for being unrelated. The results of different mating scenarios were obtained by simulation using a computer program and then compared. The results showed that the highest efficiency was obtained when the mating pairs were selected according to low $r_{\rm xy}$ value. (1.2) A study on sex specific markers for the Mekong giant catfish and the striped catfish (Pangasianodon hypophthalmus): The Amplified Fragments Length Polymorphisms (AFLP) was studied covering 570 primer pairs in MGC DNA pools (four pools of each sex, 10 individuals/pool). The study in P. hypophthalmus covered 102 primer pairs analyzed in eight

DNA pools (four pools of each sex, seven to eight individuals/pool). No sex specific markers were identified. (1.3) Mitochondrial DNA diversity of Pangasiid Catfishes: With a partial support from the project "Genetic Characterization of the Threatened Mekong Pangasiid Catfishes" (funded by BIOTEC, Thailand) sequences of 16S rRNA region in nine species of the Pangasildae were studied. The results showed that haplotype diversity was low to moderate while the nucleotide diversity was very low across species. Despite of being critically endangered, the Mekong giant catfish had genetic diversity comparable to other Pangasiids. One paper was published in Animal Conservation (IF=1.35). (2) Genetic Approach and Sex Manipulation to Improve Production Efficiency of Freshwater Prawn, Macrobrachium rosenbergii: (2.1) The production of the all-male freshwater prawn by the neofemale technology: This study aimed to produce the all-male freshwater prawn because males grow faster than females. The neofemale, a female with male genotype (ZZ), was produced by removing androgenic glands of a 45-day-old male postlarva. The removal of the androgenic glands in 87 post larvae resulted in 70% survival among which 21% changed sex to female and 62% of the sex-reversed prawn produced eggs. Then 10 neofemales were mated with normal males and the progeny were 88-100% male. (2.2) Genetic improvement of freshwater prawn: The project originated from the anecdotal information that the local strains of freshwater prawn which have been domesticated showed local adaptation but with growth retardation. Theoretically losing of genetic variation may explain the deterioration of traits. Therefore ten microsatellite primers were developed and seven primers were used to study genetic variation of five local strains in comparison with two natural populations. The local strains had moderate genetic variation which was comparable to that of the natural populations. Therefore loss of genetic variation may not explain the deteriorated traits observed in the local strains of freshwater prawn. All populations were genetically different from each other and hence should be used as gene pools for genetic improvement. (3) Integrating Genetic Knowledge to Fisheries Management and Aquaculture of Groupers: (3.1) Genetic diversity among species of grouper: Six microsatellite loci were studied in eight species of grouper and revealed large genetic differentiation between species. Species specific alleles were observed between some species pairs. Private alleles were observed in all species but E. ongus; (3.2) Spatial genetic variation among populations of Epihephelus coloides: Four microsatellite loci were used to study genetic variation of six populations of E. coloides in Thalland and Indonesia. Genetic variation within populations was low. Genetic diversity among populations did not correlate with geographic distance but correlated with the directions of sea current; (3.3) Temporal genetic variation of E. coloides in Trang Province: The samples of E. coloides fingerlings were collected

from Trang Province where most fingerlings for aquaculture are purchased. Samples were collected at three months interval, from January 2004 to January 2005. Then the genetic variation of each size-group was monitored throughout a year using six microsatellite loci. The overall genetic variation was moderate. The samples collected in July showed unique genetic profile. The assignment test verified the uniqueness of this group wherein 83% of individual genotypes were correctly assigned to the original group. The genetic profiles of the other sample groups were not different. The results suggested the existence of more than one populations of E. coioides in Trang Province. They may be separated by different spawning time. Therefore further studies are needed in order to facilitate sustainable exploitation of the resource. (4) Genetic Diversity of scallops, Chlamys senatoria and Amusium pleuronectes in Thailand. The studies included the three following topics. (4.1) Genetic diversity of Amusium pleuronectes: The variation at 16S rRNA was studied in six populations of A. pleuronectes in the Gulf of Thailand and one population from the Andaman Sea. The genetic variation within populations was low indicating small population size. No common haplotypes were found between the populations in the Gulf of Thailand and one from the Andaman Sea. Therefore the translocation of populations between the two coasts should be avoided. The study on genetic differentiation between populations in the Gulf should be repeated using more polymorphic markers before a management plan is made. (4.2) Phylogenetic relationship of scallops in Thailand: The sequence variation of nine species of scallops was studied at four gene regions, 16S rRNA, ITSi, 5.8S and ITS2. Three methods of analyses [maximum parsimony (MP), maximum likelihood (ML) and Bayesian method] were employed and resulted in similar tree topologies. In conclusion the clustering according to the sequences agreed well with the systematics of Waller (1991, 2006), wherein the nine species of scallops belong to two subfamilies, Pectininae and Chamydinae. Our results also showed that the subfamily Pectininae is paraphyletic. (4.3) Genetic diversity of Mimachlamys senatoria in Thailand: Four microsatellite primers were developed from a partial DNA library of Mimachiamys senatoria. They were subsequently used to study genetic diversity of four populations of M. senatoria, three from the Gulf of Thailand and one from the Andaman Sea. The results revealed low genetic variation within populations in the Gulf of Thailand while it was relatively high for a population from Andaman Sea. All population pairs were genetically different. The deep genetic divergence between the populations from the Gulf of Thailand and the Andaman Sea was observed.