

โครงการ: การประยุกต์ใช้พันธุศาสตร์และเทคโนโลยีชีวภาพ เพื่อการพัฒนาการเพาะเลี้ยงสัตว์น้ำอย่างยั่งยืน

โดย ศาสตราจารย์ ดร. อุทัยรัตน์ ณ นคร

โครงการ: การประยุกต์ใช้พันธุศาสตร์และเทคโนโลยีชีวภาพ เพื่อการพัฒนาการเพาะเลี้ยงสัตว์น้ำอย่างยั่งยืน

โดย ศาสตราจารย์ ดร. อุทัยรัตน์ ณ นคร

31 สิงหาคม **2550**

โครงการ: การประยุกต์ใช้พันธุศาสตร์และเทคโนโลยีชีวภาพเพื่อการ พัฒนาการเพาะเลี้ยงสัตว์น้ำ

	ผู้วิจัย	หน่วยง	าน	
หัวหน้าโดรงการ	ศ.จร.อุทัยรัตน์ ณ นคร	ภาควิชาเพาะเลี้ยงสัตว์น้ำ คณะปร	ระมง ม.เกษตรศาสตร์	
ผู้ร่วมโครงการ	ร.ผศ.ตร.สุภาวดี พุ่มพวง	ภาควิชาเพาะเลี้ยงสัตว์น้ำ คณะปร	ระมง ม.เกษตรศาสตร์	
•	2.ดร.วันศุกร์ เสนานาญ	ภาควิชาวาริชศาสตร์ คณะวิทยาศ	าสตร์ ม.บุรพา	
	3.อ.วิกรม รังสินธุ์	ภาควิชาสัตววิทยาคณะวิทยาศาส		
	4.ผศ.คร.วรวุฒิ เกิดปราง	คณะวิทยาศาสตร์และเทคโนโลยีป	ระมง มทร.ศรีวิชัย	
	5.ผศ.มาโนช ข่าเจริญ	คณะวิทยาศาสตร์และเทคโนโลยีป	lระมง มทร.ศรีวิชัย	
	6.ตร.วงศ์ปฐม กมลรัตน์ สำนักวิจัยพัฒนาประมงน้ำจืด กรมประมง			
	7.ดร.นฤพล สุขุมาสวิน สำนักวิจัยพัฒนาประมงน้ำจืด กรมประมง			
	8.รศ.อรุณี อิงคากุล	ภาควิชาเคมี คณะวิทยาศาสตร์ ม	.เกษตรศาสตร์	
	9.รศ.ดร.อุทัยวรรณ โภวิทวที	ภาควิชาสัตววิทยา คณะวิทยาชาย	สตร์ ม.เกษตรศาสตร์	
	10.ผศ.สาชิต โกวิทวที	มหาวิทยาลัยราชภัฏจันทร์เกษม	4	
	11. ผศ.ตร์.จิราภรณ์ ไตรศักดิ์	ภาควิชาการจัดการประมง คณะป	ระมง ม.เกษตรศาสตร์	
	12.คร.สุริยัน ธัญกิจจานุกิจ	ภาควิชาวิทยาศาสตร์ทางทะเล ค	ณะประมง ม.เกษตรศาสตร์	
	13.น.ส.จินตนา นักระนาด	ศูนย์วิจัยและพัฒนาประมงชายฝั่ง	ประจวบคีรีขันธ์ กรมประมง	
	14.นายสนธิพันธ์ ผาสุกดี	สถาบันวิจัยปลาสวยงาม กรมประ	มง	
นักศึกษาปริญญาโท	1.Mr.Suci Antoro	สาขาเพาะเลี้ยงสัตว์น้ำ คณะประม	เง ม.เกษตรศาสตร์	
	2.น.ส.กัณฑรีย์ เจริญทวี	สาขาเทคโนโลยีชีวภาพเกษตร ม.	เกษตรศาสตร์	
	 นายภาณุวัฒน์ ภูมิตินทรีย์ 	สาขาวาริชศาสตร์ ม.บูรพา		
	4.น.ส.ทักชินา เหมยคำ	สาขาเพาะเลี้ยงสัตว์น้ำ คณะประมง ม.เกษตรศาสตร์		
	5.น.ส.อัญลักษณ์ วชิรไชยกาล	สาขาพันธุวิศวกรรม ม.เกษตรศาล	เตร์	
นักศึกษาปริญญาเอก	สมเด็จพระเจ้าลูกเธอ เจ้าฟ้าจุฬา	ภรณวลัยลักษณ์ อัครราชกุมารี	ลาชาเพาะเลี้ยงสัตว์น้ำ	
			คณะประมง	
	น.ส.เกตุนภัส ศรีไพโรจน์	สาขาเพาะเลี้ยงสัตว์น้ำ คณะประม	เง ม.เกษตรศาสตร์	

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว.ไม่จำเป็นด้องเห็นด้วยเสมอไป)

สารบาญ

บทคัดย่อ	1
ABSTRACT	3
EXECUTIVE SUMMARY	6
เนื้อหางานวิจัย	10
1.โครงการย่อยที่ 1 Genetic Approaches for Sustainability of the Mekong Giant Catfish	10
1.1 การสืบประวัติพ่อแม่ปลาบึกโดยใช้เครื่องหมายพันธุกรรม microsatellite	
(1) การทดสอบการใช้เครื่องหมาย microsatellite สืบทราบพ่อและแม่ของปลา บึก โดยวิเคราะห์ multilocus microsatellite genotypes ของลูกปลาบึก และพ่อแม่	10
1.2 การศึกษาเครื่องหมายพันธุกรรมจำแนกเพศในปลาบึก	12
MtDNA diversity of the critically endangered Mekong River glant catfish (Pangasianodon gigas Chevey) and its closely related species:	14
implications for conservation	
2. โครงการย่อยที่ 2 Genetic Approach and Sex Manipulation to Improve	16
Production Efficiency of Freshwater Prawn	
2.1 การพัฒนาสายพันธุ์กุ้งก้ามกราม โดยการสร้างประชากรเพศผู้ล้วน	16
2.2 การปรับปรุงพันธุ์กุ้งก้ามกราม	17
(1) ความหลากหลายทางพันธุกรรมของกุ้งก้ามกรามจากธรรมชาติและบ่อเลี้ยง	
โดยใช้เครื่องหมายไมโครแซทเทลใลท์ดีเอ็นเอ	17
(1.1) การพัฒนาเครื่องหมายไมโครแชทเทลใลท์	17
(1.2) ความหลากหลายทางพันธุกรรมของประชากรกุ้งก้ามกราม	19
(1.3) การศึกษาสภาวะที่เหมาะสมในการเหนียวนำ triploid	21
3. โครงการย่อยที่ 3 Genetic Contributions to Fisheries Management and	22
Aquaculture of Orange-spotted grouper, Epinephelus coioides	
3.1 การศึกษาพลวัตรประชากรปลาเก๋าในเขตจังหวัดตรั้ง: ความหลากหลายทาง	22
พันธุกรรมในรอบปี ของกลุ่มลูกปลาเก๋าดอกแดง ที่ใด้จากแหล่งประมงใน จังหวัดตรัง	
 3.2 ความหลากหลายทางพันธุกรรมระหว่างชนิดปลาเก๋า 	23
 ความหลากหลายทางพันฐกรรมระหว่างประชากรของปลาเก๋าดอกแดง 	24

สารบาญ (ต่อ)

4. โครงการย่อยที่ 3 Genetic Diversity of Scallops, <i>Mimachlamys senatoria</i> and	
Amusium pleuronectes in Thaitand	28
4.1 การศึกษาความหลากหลายทางพันธุกรรมของ Amusium pleuronectes	28
4.2 การศึกษาความสัมพันธ์เชิงวิวัฒนาการของหอยเชลล์ในประเทศไทย	30
4.3 การพัฒนา microsatellite primers และการศึกษาความหลากหลายทาง	33
พันธุกรรมของ Mimachlamys senatoria	
OUTPUTS ที่ได้จากโครงการ	37
1. ผลงานวิจัยที่ตีพิมพ์ (หรือ accepted)	37
2. ผลงานวิจัยที่ส่งเพื่อดีพิมพ์ และดันฉบับ	38
3. หนังสือ	38
4. เอกสารเผยแพร่	38
5. การเผยแพร่ผลงานวิจัยในที่ประชุมวิชาการ	38
6. จัดการประชุมวิชาการประจำปี	39
7. การใช้ประโยชน์ผลงานวิจัยเชิงพาณิชย์	39
8. ผลงานอื่นๆ	40
9. รายชื่อนักวิจัยที่เพิ่มดำแหน่งทางวิชาการระหว่างโครงการ	41
10. รายชื่อนิสิตในโครงการและสถานภาพเมื่อสิ้นสุดโครงการ	41
11. หัวหน้าโครงการเป็นวิทยากรรับเชิญบรรยายในระดับนานาชาติ 🔹	42
12. รางวัลที่ได้รับระหว่างรับทุนส่งเสริมกลุ่มวิจัย	42
13. นักวิจัยในโครงการที่ได้รับรางวัล	42
14. อื่นๆ	43

รายการเอกสารแนบ

- Sriphairoj, K, Kamonrat, W, Na-Nakorn, U. 2007. Genetic aspect in broodstock management of the critically endangered Mekong giant catfish, *Pangasianodon gigas* in Thailand. Aquaculture 264: 36-46.
- Sriphairoj, K., Na-Nakorn, U., Brunelli, J.P., Thorgaard. G. No AFLP Sex Specific Markers Detected in *Pangasianodon gigas* and *P. hypophthalmus*. A short paper submitted to Aquaculture.
- 3. Na-Nakorn, U., S. Sukmanomon, M. Nakajima, N. Taniguchi, W. Kamonrat, S. Poompuang and T.T.T. Nguyen. 2006. Mt DNA diversity of the critically endangered Mekong River giant catfish (*Pangasianodon gigas* Chevey) and its closely related species: implications for conservation. Animal Conservation 9, 483-494.
- Rungsin, W., N. Paankhao and U. Na-Nakom. 2006. Production of All-Male Stock by Neofemale Technology of the Thai Strain of Freshwater Prawn, *Macrobrachium rosenbergii*. Aquaculture 259, 88-94.

สารบาญ (ต่อ)

- Charoentawee, K., S. Poompuang and U. Na-Nakorn. 2006. Isolation and characterization of microsatellites in glant freshwater prawn *Macrobrachium* rosenbergii. Molecular Ecology Notes. 6, 823-825.
- Charcentawee, K., S. Poompuang, U. Na-Nakorn and W. Kamonrat. 2007. Genetic diversity of hatchery stocks of giant freshwater prawn (*Macrobrachium rosenbergii*) in Thailand. Aquaculture: accepted 1 July 2007.
- Purnitinsee, P, Senanan, W, Na-Nakorn, U, Kamonrat, W, Koedprang, W. Temporal genetic variation of orange-spotted grouper (*Epinephelus coicoides*, Pisces: Serranidae) juveniles collected from an important fishing ground in Thailand
- Koedprang, W, Na-Nakorn, U, Nakajima, M, Taniguchi, N. 2007. Evaluation of genetic diversity of eight grouper species *Epinephelus* spp. based on microsatellite variations. Fisheries Science 73(2), 227-236.
- Antoro, S., U. Na-Nakorn and W. Koedprang. 2006. Genetic Diversity of Orangespotted Grouper, Epinephelus coloides from Thailand and Indonesia using micosatellite markers. Mar. Biotechnol. 8, 17-26.
- Mahidol, C, Na-Nakom, U, Sukmanomon, S, Taniguchi, N, Nguyen. TTT. 2007.
 Mitochondrial DNA diversity of the Asian moon scallop, Amusium pleuronectes (Pectinidae) in Thailand. Marine Biotechnology, DOI: 10.1007/s10126-006-6137-y
- 11. Mahidol, C, Na-Nakorn, U, Sukmanomon, S, Yoosuk, W, Taniguchi, N, Nguyen, TTT. 2007. Phylogenetic relationships among nine scallop species (Bivalvia: Pectinidae) inferred from nucleotide sequences of one mitochondrial and three nuclear gene regions. Journal of Shellfish Research 26(1): 1-8.
- 12. หนังสือเรื่องพันธุศาสตร์ประชาภรเพื่อการเพาะเลี้ยงสัตว์น้ำ*
- เอกสารเผยแพร่ "กายวิภาคของกุ้งก้ามกรามและการผลิตลูกกุ้งเพศผู้ล้วนโดยการ ทำลายค่อมแอนโดรเจนิค"*
- เอกสารแสดงเรื่องการยอมรับเทคโนโลยีของภาคเอกชน
 หมายเหตุ: * แนบเป็นเล่มต่างหาก ไม่ได้เย็บรวมมากับรายงาน

โครงการ: การประยุกต์ใช้พันธุศาสตร์และเทคโนโลยีชีวภาพ เพื่อการพัฒนาการเพาะเลี้ยงสัตว์น้ำอย่างยั่งยืน สัญญาเลขที่ RTA4680010

ชื่อหัวหน้าโครงการวิจัยผู้รับทุน **ศาสตราจารย์ ดร.อุทัยรัตน์ ณ นคร** ระยะเวลาการรับทุน **1 กันยายน 2546 ถึ**งวันที่ **31 สิงหาคม 2549** (ขยายเวลาการวิจัย 12 เดือน)

บทคัดย่อ

งานวิจัยในโครงการประกอบด้วยโครงการย่อย 4 โครงการ ดังด่อไปนี้ (1) การใช้แนวทางพันธุ ศาสตร์เพื่อความยั่งยืนของปลาบึก: (1.1) <u>การใช้เครื่องหมายพันธุกรรมเพื่อการวางแผนการผสมพันธ</u>ุ์ <u>ปลาบึก</u>: การศึกษานี้มีวัตถุประสงค์เพื่อวางแผนการผสมพันธุ์พ่อแม่ปลาบึกที่เจริญพันธุ์ในโรงเพาะพัก เป็นรุ่นแรก ไม่ให้เกิดการผสมเลือดซิด ทำการศึกษา microsatellite 7 ตำแหน่ง ในพ่อแม่พันธุ์ปลาบึก จำนวน 129 ตัวจากโรงเพาะฟัก 7 แห่ง คำนวณค่า genetic relatedness (r_{xy}) จากข้อมูลจีโนไทพ์ เพื่อใช้ ในการดัดสินว่าปลาคู่ใดไม่เป็นเครือญาดิกัน โดยใช้ค่า r_{xy} น้อยกว่า 0.07 [ค่า r_{xy} ต่ำสุดในการจับคู่ ระหว่างปลาที่ร่วมพ่อต่างแม่ (half-sib)] เป็นค่าตัดสินว่าปลาคู่นั้นๆไม่เป็นเครือญาติกัน จากการจำลอง สถานการณ์ ด้วยโปรแกรมคอมพิวเตอร์ เพื่อเปรียบเทียบประสิทธิภาพของการคัดเลือกพ่อแม่พันธุ์แบบ ต่างๆ พบว่าภารคัดเลือกคู่ผสมโดยพิจารณาจากค่า 🕰 สามารถรักษาความหลาภหลายได้ดีที่สุด; (1.2) <u>การศึกษาเครื่องหมายพันธกรรมที่จำเพาะต่อเพศในปลาบึกและปลาสวาย</u>: การศึกษาใช้เทคนิค AFLP โดยในปลาบึกนั้น ใช้คู่ไพรเมอร์ทั้งหมดจำนวน 570 คู่ไพรเมอร์ ศึกษาใน DNA pool ปลาบึกเพศ ผู้ 4 pools เพศเมีย 4 pools (10 ตัว/pool) ในปลาสวายตรวจสอบคู่ไพรเมอร์จำนวน 102 คู่ไพรเมอร์ ใน DNA pool ปลาสวายเพศผู้ 4 pool เพศเมีย 4 pool (7-8 ตัว/pool) ไม่พบเครื่องหมายพันธุกรรมที่ จำเพาะกับเพศ; (1.3) ความหลากหลายของ mitochondrial DNA ในปลาครอบครัว Pangasiidae: ได้ ร่วมกับโครงการ Genetic Characterization of the Threatened Mekong Pangasild Catfishes (สนับสนุนโดยศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ) ศึกษาความหลากหลายของลำตับเบส ของยืน 16S rRNA ในปลาครอบครัว Pangasiidae 9 ชนิด พบว่าปลาแต่ละชนิดมีค่าความหลากหลาย ของแฮโพลไทพ์ ต่ำจนถึงปานกลาง โดยมีค่าความหลากหลายของนิวคลีโอไทด์ ต่ำมาก โดยปลาบึกนั้น มีค่าความหลากหลายทางพันธุกรรมในระดับเดียวกับปลาชนิดอื่น ๆ (2) การใช้แนวทางพันธุศาสตร์ และการควบคุมเพศ เพื่อปรับปรุงประสิทธิภาพการผลิตของกุ้งก้ามกราม: (2.1) <u>การผลิตกุ้ง</u> ก้ามกรามเพศผู้ล้วนด้วยเทคโนโลยี neofemale: เนื่องจากกุ้งก้ามกรามเพศผู้เจริญเดิบโตดีกว่าเพศเมีย การศึกษานี้จึงสนใจจะผลิตลูกกุ้งเพศผู้ล้วน โดยสร้างกุ้งเพศเมียที่มีพันธุกรรมเป็นเพศผู้ (genotype-ZZ เรียกว่า neofemale) เพื่อนำไปผสมกับกุ้งเพศผู้ปกติ (ZZ) แล้วจะได้ลูกเพศผู้ล้วน การสร้างกุ้ง

neofemale ทำโดยการทำลาย androgenic gland ในกุ้งเพศผู้ระยะ 45 วันหลังคว่ำ จำนวน 87 ตัว กุ้งมี อัตรารอด 70% กุ้งที่รอดชีวิตทั้งหมดเปลี่ยนเป็นเพศเมีย 21% และ กุ้งจำนวนนี้ 62% สร้างไข่ จากนั้นได้ ทำการผสมกุ้ง neofemale กับเพศผู้ปกติ ได้ลูกเพศผู้ 88-100% (2.2) <u>การปรับปรุงพันธุ์กุ้งก้ามกราม</u>: กุ้งก้ามกรามสายพันธุ์พื้นเมืองผ่านการ domesticate มานาน อาจจะสูญเสียความหลากหลายทาง พันธุกรรม ซึ่งอาจเป็นสาเหตุของการเจริญเติบโตที่ลดลง ผู้วิจัยจึงทำการศึกษาความหลากหลายทาง พันธุกรรม เพื่อจะนำข้อมูลมาเป็นแนวทางปรับปรุงพันธุ์ต่อไป โดยได้พัฒนา microsatellite primer จาก กุ้งก้ามกราม 10 คู่ แล้วน้ำ primer จำนวน 6 คู่ ไปศึกษาความหลากหลายทางพันชุภรรมของกุ้ง ก้ามกรามสายพันธุ์พื้นเมือง และสายพันธุ์อื่นๆ 5 สายพันธุ์ เทียบกับประชากรธรรมชาติ 2 ประชากร ผล การศึกษาแสดงว่า ประชากรโรงเพาะฟัก มีความหลากหลายทางพันธุกรรมในระดับบ่านกลางและไม่ แตกต่างจากประชากรธรรมชาติ ดังนั้นแสดงว่าการสูญเสียความหลากหลายทางพันธุกรรมไม่ใช่สาเหตุที่ ทำให้กุ้งสายพันธุ์พื้นเมืองมีลักษณะด้อยลง กุ้งแต่ละประชากรมีพันธุกรรมแตกด่างกัน จัดเป็น gene pool ที่เป็นประโยชน์ในการปรับปรุงพันธุ์ (3) การบูรณาการความรู้ด้านพันธุศาสตร์ เพื่อการจัดการ ประมงและการเพาะเลี้ยงปลาเก๋า: (3.1) ความหลากหลายทางพันธุกรรมระหว่างชนิดปลาเก๋า: โดย การศึกษาเครื่องหมาย microsatellite 6 ตำแหน่ง ในปลาเก๋า 8 ชนิด พบความแตกต่างระหว่างชนิดอยู่ ในระดับสูง และ microsatellite บางตำแหน่งสามารถแสดงความแตกด่างระหว่างชนิด พบ private alleles ในปลาเก๋าทุกชนิด ยกเว้น E. ongus; (3.2) ความหลากหลายทางพันธกรรมเชิงพื้นที่ (spacial variation) ของประชากรุปลาเก๋าดอกแดง (Epinephelus coloides): ศึกษาในปลาเก๋าดอกแดง 6 ประชากรในประเทศไทยและอินโดนีเซีย โดยใช้ microsatellite 4 ดำแหน่ง ในภาพรวมความหลากหลาย ภายในประชากรปลาเก๋าดอกแดง มีค่าค่อนข้างต่ำ ระดับความแดกต่างระหว่างประชากร ไม่สัมพันธ์กับ ระยะทาง แต่สัมพันธ์กับทิศทางของกระแสน้ำ; (3.3) ความหลากหลายทางพันธกรรมเชิงเวลา (temporal variation) ในประชากรของปลาเก๋าดอกแดงจากจังหวัดดรัง: ในการศึกษานี้ ได้รวบรวมด้วอย่างลูกปลา เก๋า ณ อำเภอกันดัง จังหวัดดรัง ซึ่งเป็นแหล่งจับลูกปลาเพื่อนำไปเลี้ยง เก็บดัวอย่างทุก 3 เดือน ดั้งแต่ มกราคม 2547 ถึง มกราคม 2548 และติดตามความหลากหลายพันธุกรรมของกลุ่มลูกปลาที่มี ชนาดใกล้เคียงกัน ตลอดทั้งปี ศึกษาโดยใช้เครื่องหมายไมโครแซทเหลไลท์ 6 ดำแหน่ง พบว่าตัวอย่าง เดือนกรกฎาคม มีพันธุภรรมแตกต่างจากกลุ่มอื่นๆ และเมื่อนำ genotype ของบ่ลาแต่ละตัวมาศึกษาโดย วิธี assignment test ปรากฏว่าปลาที่จับในเดือนกรกฎาคมร้อยละ 83 ถูกจัดเข้าสู่กลุ่มเดิมอย่างถูกต้อง ส่วนด้วอย่างที่เก็บในช่วงเวลาอื่นๆมีพันธุกรรมคล้ายคลึงกัน จากผลการทดลองทำให้เกิดข้อสันนิษฐาน ว่า มีปลามากกว่า 1 ประชากรในจังหวัดตรัง ซึ่งวางไข่ในเวลาที่ต่างกัน ดังนั้นจึงจำเป็นด้องศึกษาข้อมูล ้ด้านอื่นๆประกอบ เพื่อจะสามารถจัดการทรัพยากรที่หลากหลายนี้ ให้สามารถใช้ประโยชน์ได้อย่างยั่งยืน (4) ความหลากหลายทางพันธุกรรมของหอยเชลส์ 2 ชนิดในประเทศไทย: (4.1) ความหลากหลาย ทางพันธุกรรมของห<u>อยเชลล์ Amusium pleuronectes</u>: ศึกษาลำดับเบสของ 16S rRNA ในหอยเชลล์ จาก 6 แหล่งในอ่าวไทย และอีก 1 แหล่งจากฝั่งทะเลอันดามัน ความหลากหลายภายในประชากร มีค่า ล่อนข้างต่ำ แสดงว่าประชากรของ A. pleuronectes มีขนาดเล็ก หอยจากฝั่งอ่าวไทย และทะเลอันดามัน ไม่มี haplotype ที่เหมือนกันเลย ผลการศึกษาชี้ให้เห็นว่าไม่ควรมีการขนย้ายประชากรข้ามระหว่างอ่าว

ไทยและทะเลอันดามัน และควรนำเครื่องหมายพันธุกรรมที่มีระดับความหลากหลายสูง มาใช้ศึกษา ประชากรในอ่าวไทยอีกครั้งหนึ่ง เพื่อให้แน่ใจว่าประชากรเหล่านั้น แยกเป็นประชากรย่อยๆหรือไม่ ก่อนที่จะออกมาตรการเกี่ยวกับการจัดการประมง; (4.2) <u>การศึกษาความสัมพันธ์เชิงวิวัฒนาการของหอย</u> ัเชลล์ในประเทศไทย: ศึกษาลำดับเบสของยืน 4 ตำแหน่งได้แก่ 16SrRNA, ITS1, 5.8S และ ITS2 ใน หอยเซลล์ 9 ชนิด ทำการวิเคราะห์ด้วยวิธีต่างๆ 3 วิธี [maximum parsimony (MP), maximum likelihood (ML) และ Bayesian] ซึ่งทั้ง 3 วิธีให้ผลความสัมพันธ์เชิงวิวัฒนาการเหมือนกัน โดยสรป แผนภูมิความสัมพันธ์เชิงวิวัฒนาการที่ได้ สอดคล้องกับวิธีการจัดจำแนกของ Waller (1991, 2006) โดย หอยเซลล์ทั้ง 9 ชนิด อยู่ใน 2 ครอบครัวย่อย คือ Pectininae และ Chlamydinae ผลการศึกษายังแสดง ว่าครอบครัวย่อย Pectininae เกิดจากสายวิวัฒนาการมากกว่า 1 สาย (paraphyletic); (4.3) ความ หลากหลายทางพันธกรรมของหอยเซลล์ชนิดMimachlamys senatoria ในประเทศไทย: ในการศึกษานี้ ได้พัฒนา microsatellite primers จาก partial DNA library ของหอยเชลล์ M. senatoria แล้วนำไปศึกษา ความหลากหลายทางพันธุกรรมของหอยชนิดนี้ 4 ประชากร (3 ประชากรจากอ่าวไทย และ 1 ประชากร จากฝั่งอันดามัน) ผลการศึกษาแสดงว่าประชากรจากอ่าวไทยมีความหลากหลายภายในประชากรต่ำ ส่วนประชากรฝั่งอันดามันมีค่าความหลากหลายค่อนข้างสูง มีความแดกด่างทางพันธุกรรมระหว่างทุกคู่ ประชากร โดยเฉพาะอย่างยิ่งประชากรในอ่าวไทย มีความแตกต่างทางพันธุกรรมกับประชากรจากทะเล อันดามันอย่างซัดเจน

ABSTRACT

The project comprised of four sub-projects, (1) Genetic Approaches for Sustainability of the Mekong Giant Catfish, Pangasianodon gigas which comprised of two research topics, (1.1) Application of genetic markers for designing mating plans for Mekong giant catfish (MGC): The research aimed to design mating plans for the first batch of broodstock of MGC that matured in captivity in order to avoid inbreeding. Seven microsatellite primers were scored in a total of 129 MGC brooders from seven hatcheries. Then the genetic relatedness (r_{xy}) between a brooder pair was calculated from the genotype data and used to identify the unrelated pairs that can be bred without causing inbreeding. The r_{xy} less than 0.07, which was derived from the minimum r_{xy} value of the pairing among individuals from a half-sib family, was used as a critical value for being unrelated. The results of different mating scenarios were obtained by simulation using a computer program and then compared. The results showed that the highest efficiency was obtained when the mating pairs were selected according to low $r_{\rm xy}$ value. (1.2) A study on sex specific markers for the Mekong giant catfish and the striped catfish (Pangasianodon hypophthalmus): The Amplified Fragments Length Polymorphisms (AFLP) was studied covering 570 primer pairs in MGC DNA pools (four pools of each sex, 10 individuals/pool). The study in P. hypophthalmus covered 102 primer pairs analyzed in eight

DNA pools (four pools of each sex, seven to eight individuals/pool). No sex specific markers were identified. (1.3) Mitochondrial DNA diversity of Pangasiid Catfishes: With a partial support from the project "Genetic Characterization of the Threatened Mekong Pangasiid Catfishes" (funded by BIOTEC, Thailand) sequences of 16S rRNA region in nine species of the Pangasildae were studied. The results showed that haplotype diversity was low to moderate while the nucleotide diversity was very low across species. Despite of being critically endangered, the Mekong giant catfish had genetic diversity comparable to other Pangasiids. One paper was published in Animal Conservation (IF=1.35). (2) Genetic Approach and Sex Manipulation to Improve Production Efficiency of Freshwater Prawn, Macrobrachium rosenbergii: (2.1) The production of the all-male freshwater prawn by the neofemale technology: This study aimed to produce the all-male freshwater prawn because males grow faster than females. The neofemale, a female with male genotype (ZZ), was produced by removing androgenic glands of a 45-day-old male postlarva. The removal of the androgenic glands in 87 post larvae resulted in 70% survival among which 21% changed sex to female and 62% of the sex-reversed prawn produced eggs. Then 10 neofemales were mated with normal males and the progeny were 88-100% male. (2.2) Genetic improvement of freshwater prawn: The project originated from the anecdotal information that the local strains of freshwater prawn which have been domesticated showed local adaptation but with growth retardation. Theoretically losing of genetic variation may explain the deterioration of traits. Therefore ten microsatellite primers were developed and seven primers were used to study genetic variation of five local strains in comparison with two natural populations. The local strains had moderate genetic variation which was comparable to that of the natural populations. Therefore loss of genetic variation may not explain the deteriorated traits observed in the local strains of freshwater prawn. All populations were genetically different from each other and hence should be used as gene pools for genetic improvement. (3) Integrating Genetic Knowledge to Fisheries Management and Aquaculture of Groupers: (3.1) Genetic diversity among species of grouper: Six microsatellite loci were studied in eight species of grouper and revealed large genetic differentiation between species. Species specific alleles were observed between some species pairs. Private alleles were observed in all species but E. ongus; (3.2) Spatial genetic variation among populations of Epihephelus coloides: Four microsatellite loci were used to study genetic variation of six populations of E. coloides in Thalland and Indonesia. Genetic variation within populations was low. Genetic diversity among populations did not correlate with geographic distance but correlated with the directions of sea current; (3.3) Temporal genetic variation of E. coloides in Trang Province: The samples of E. coloides fingerlings were collected

from Trang Province where most fingerlings for aquaculture are purchased. Samples were collected at three months interval, from January 2004 to January 2005. Then the genetic variation of each size-group was monitored throughout a year using six microsatellite loci. The overall genetic variation was moderate. The samples collected in July showed unique genetic profile. The assignment test verified the uniqueness of this group wherein 83% of individual genotypes were correctly assigned to the original group. The genetic profiles of the other sample groups were not different. The results suggested the existence of more than one populations of E. coioides in Trang Province. They may be separated by different spawning time. Therefore further studies are needed in order to facilitate sustainable exploitation of the resource. (4) Genetic Diversity of scallops, Chlamys senatoria and Amusium pleuronectes in Thailand. The studies included the three following topics. (4.1) Genetic diversity of Amusium pleuronectes: The variation at 16S rRNA was studied in six populations of A. pleuronectes in the Gulf of Thailand and one population from the Andaman Sea. The genetic variation within populations was low indicating small population size. No common haplotypes were found between the populations in the Gulf of Thailand and one from the Andaman Sea. Therefore the translocation of populations between the two coasts should be avoided. The study on genetic differentiation between populations in the Gulf should be repeated using more polymorphic markers before a management plan is made. (4.2) Phylogenetic relationship of scallops in Thailand: The sequence variation of nine species of scallops was studied at four gene regions, 16S rRNA, ITSi, 5.8S and ITS2. Three methods of analyses [maximum parsimony (MP), maximum likelihood (ML) and Bayesian method] were employed and resulted in similar tree topologies. In conclusion the clustering according to the sequences agreed well with the systematics of Waller (1991, 2006), wherein the nine species of scallops belong to two subfamilies, Pectininae and Chamydinae. Our results also showed that the subfamily Pectininae is paraphyletic. (4.3) Genetic diversity of Mimachlamys senatoria in Thailand: Four microsatellite primers were developed from a partial DNA library of Mimachiamys senatoria. They were subsequently used to study genetic diversity of four populations of M. senatoria, three from the Gulf of Thailand and one from the Andaman Sea. The results revealed low genetic variation within populations in the Gulf of Thailand while it was relatively high for a population from Andaman Sea. All population pairs were genetically different. The deep genetic divergence between the populations from the Gulf of Thailand and the Andaman Sea was observed.

EXECUTIVE SUMMARY

The project entitled "Application of Genetics and Biotechnology for Sustainable Development of Aquaculture" was conducted during September 1st, 2003 to August 31st, 2007 (12 months extension granted by TRF). It aimed for two overall objectives, (1) to utilize genetic approaches for establishing basic knowledge required for sustainable development of aquaculture of four aquatic organisms, *Macrobrachium rosenbergii*, *Epinephelus coioides*, *Pangasius gigas*, *Amusium pleuronectes*, and *Mimachlamys senatoria*, and (2) to develop four groups of specialists in the field of population and quantitative genetics, and biotechnology, each group specialized in one of the four groups of aquatic animals previously mentioned.

A total of 12 researchers and seven graduate students (two Ph.D. and five M.S.) involved in the project. The project was divided into four sub-projects; (1) Genetic Approaches for Sustainability of the Mekong Giant Catfish, Pangaslanodon gigas which comprised of two research topics, (1.1) Application of genetic markers for designing of mating plans for Mekong giant catfish (MGC): Recently the first batch of the captive stocks of Mekong giant catfish was ready to spawn. They requires good mating strategy to avoid inbreeding because they originated from a small number of wild caught parents. Seven microsatellite loci were scored in a total of 129 MGC brooders from seven hatcheries. Then the unrelated pairs of brooders (which can be bred without causing inbreeding) were identified based on the genetic relatedness (r_{∞}) calculated from the genotype data. The critical value of r_{∞} for being unrelated (0.07) was derived from the minimum r_{xy} value of the pairing among individuals from a half-sib family. The outputs of this study are, one paper published in Aquaculture (IF= 2.08); a mating plan submitted to the hatchery owners and Department of Fisheries, Thailand for endorsement; one workshop on broodstock management of MGC. (1.2) A study on sex specific markers for the Mekong giant catfish and the striped catfish (Pangasianodon hypophthalmus): Sex markers are required for sexing of juvenile fish so that farmers can reduce number of broodstock being kept in hatcheries. The Amplified Fragments Length Polymorphisms (AFLP) was studied covering 570 primer pairs in MGC DNA pools (four pools of each sex, 10 individuals/pool). The study in P. hypophthalmus covered 102 primer pairs analyzed in eight DNA pools (four pools of each sex, seven to eight individuals/pool). No sex specific markers were identified. The output of this study is one short paper accepted for publishing in Aquaculture. (1.3) Mitochondrial DNA diversity of Pangasiid Catfishes: With a partial support from the project "Genetic Characterization of the Threatened Mekong Pangaslid Catfishes" (funded by BIOTEC, Thailand) sequences of 16S rRNA region in nine species of the Pangasiidae were studied. The results showed that haplotype diversity was low to moderate while the nucleotide diversity was very low across species. Despite of being critically endangered, the Mekong giant catfish had genetic diversity comparable to other Pangasiids. One paper was published in Animal Conservation (IF=1.35).

- (2) Genetic Approach and Sex Manipulation to Improve Production Efficiency of Freshwater Prawn, Macrobrachium rosenbergii. The sub-project comprised of the following studies. (2.1) The production of the all-male freshwater prawn by the neofemale technology: This study aimed to produce the all-male freshwater prawn because males grow faster than females do. The neofemale, a female with a male genotype (ZZ), was produced by removing androgenic glands of a 45-day-old male postlarva. We were successful in producing the neofemales with 21% success and the neofemales, when mated with normal males, produced larvae comprising of 88-100% males. The technology has been transferred to farmers through training courses and demonstration in the farms. One paper was published in Aquaculture and we also published one technical booklet. (2.2) Genetic improvement of freshwater prawn: The project originated from the anecdotal information that the local strains of freshwater prawn which have been domesticated for decades showed growth retardation. Theoretically losing of genetic variation may explain the deterioration of traits. Therefore ten microsatellite primers were developed and seven primers were used to study genetic variation of five local strains in comparison with two natural populations. The results showed that the local strains had moderate genetic variation which was comparable to genetic variation of the natural populations. Therefore loss of genetic variation does not explain the deteriorated traits observed in the local strains of freshwater prawn. Further comparative studies on quantitative traits of each strain should be conducted because genetic differentiation between strains existed. We published two papers in international journals, Aquaculture and Molecular Ecology Notes (IF= 1.219).
- (3) Integrating Genetic Knowledge to Fisheries Management and Aquaculture of Groupers. This sub-project comprised of three studies, (3.1) Genetic diversity among species of grouper: Species identification of grouper is problematic due to the overlapping characteristics between species and differential appearance of juvenile and adult of a species. Therefore genetic markers were used to assist grouper systematic. Six microsatellite loci were scored in eight species of grouper. The results revealed large genetic differentiation between species. Species specific alleles were observed between some species pairs. Private alleles were observed in all species but *E. ongus*. The result was published in the international journal, Fisheries Science (IF=0.77). (3.2) Spatial genetic variation among populations of Epinephelus coioides: E. coloides is an important aquaculture species wherein natural fingerling are harvested and used for stocking. In this study genetic diversity of E. coloides was evaluated

using four microsatellite loci in six populations in Thailand and Indonesia. Genetic variation within populations was low. Genetic diversity among populations did not correlate with geographic distance but correlated with the directions of sea current. From this study, one paper was published in Marine Biotechnology (IF=1.545). (3.3) Temporal genetic variation of E. coioides in Trang Province: Trang is the most important site for harvesting of fingerling E. coioides for aquaculture. Despite its important the population of E. coioides in Trang has not been studied. Therefore we conducted the first study alming to clarify whether more than one genetic groups exist. The samples of E. coloides fingerlings were collected from Amphur Kuntung at three months interval, from January 2004 to January 2005. Then the genetic variation of each size-group was monitored throughout a year using six microsatellite loci. The results showed the existence of more than one population of E. coioides in Trang Province which may be separated by different spawning time. Therefore further studies are needed in order to facilitate sustainable exploitation of the resource. The manuscript is under revision according to the comments from the journal Marine Biology.

(4) Genetic Diversity of scallops, Mimachlamys senatoria and Amusium pleuronectes in Thailand. At present aquaculture of M. senatoria is being developed while commercial harvesting of A. pleuronectes is on decline. Therefore genetic diversity of these two species was studied aiming at collecting baseline data for planning management strategy to avoid adverse impact from aquaculture of M. senatoria, and for sustainable use of A. pleuronectes. The studies included the three following topics. (4.1) Genetic diversity of A. pleuronectes: The variation at 16S rRNA was studied in six populations of A. pleuronectes in the Gulf of Thailand and one population from the Andaman Sea. The results revealed low genetic variation within populations. Remarkable genetic differentiation existed between the populations in the Gulf of Thailand and the Andaman Sea. Therefore the translocation of populations between the two coasts should be avoided. The study on genetic differentiation between populations in the Gulf should be repeated using more polymorphic markers before a management plan is made. The result of this study was published in Marine Biotechnology. (4.2) Phylogenetic relationship of scallops in Thailand: Systematic of scallops cannot rely on morphological appearances alone. Rather it requires supporting data including molecular genetic data. This study aimed to verify classification systems of scallops using molecular genetic data. The sequence variation of nine species of scallops was studied at four gene regions, 16S rRNA, ITSi, 5.8S and ITS2. Three methods of analyses [maximum parsimony (MP), maximum likelihood (ML) and Bayesian method] were employed and resulted in similar tree topologies. In conclusion the clustering according to the sequences agreed well with the systematic of Waller

(1991, 2006), wherein the nine species of scallops belong to two subfamilies, Pectininae and Chamydinae. Our results also showed that the subfamily Pectininae is paraphyletic. The result of this study was published in Journal of Shellfish Research (IF=0.479). (4.3) Genetic diversity of Mimachlamys senatoria in Thailand: Four microsatellite primers were developed from a partial DNA library of Mimachlamys senatoria. They were subsequently used to study genetic diversity of four populations of M. senatoria, three from the Gulf of Thailand and one from the Andaman Sea. The results revealed low genetic variation within populations in the Gulf of Thailand while it was relatively high for a population from Andaman Sea. All population pairs were genetically different. The deep genetic divergence between the populations from the Gulf of Thailand and the Andaman Sea was observed. A manuscript was prepared from the result and will be submitted to an international journal.

The main outputs of the project included 10 publications in international journals with impact factors, one book and one technical booklet. Moreover two technologies were adopted by the target groups. Five and two papers were presented in the international and national conferences respectively and one Ph.D. and three master students were graduated.

เนื้อหางานวิจัย

1. โครงการย่อยที่ 1

Genetic Approaches for Sustainability of the Mekong Giant Catfish

โครงการนี้เกิดขึ้นเนื่องจากเห็นความสำคัญของปลาบึก (Pangasianodon gigas) ซึ่งเป็นปลาที่ เสี่ยงต่อการสูญพันธุ์อย่างยิ่ง ในปัจจุบันคาดว่ามีปลาบึกเหลืออยู่ในธรรมชาติไม่มากนัก กรมประมงได้นำ พ่อแม่พันธุ์ปลาบึกจากธรรมชาติมาเพาะพันธุ์สำเร็จตั้งแต่ปี พ.ศ. 2527 และได้ทำการเพาะพันธุ์เรื่อยมา จนมีลูกปลาเลี้ยงไว้ในสถานีของกรมประมง และแจกจ่ายให้ฟาร์มเอกชนจำนวนมาก ในปัจจุบันปลา เหล่านั้นเจริญพันธุ์และมีการนำมาผสมพันธุ์แล้ว แต่เนื่องจากไม่มีการทำเครื่องหมาย ทำให้เกิดความ กังวลว่าจะมีการผสมพันธุ์ระหว่างเครือญาติเกิดขึ้น ซึ่งในระยะยาวจะมีผลให้ประชากรปลาบึกนี้ ซึ่งเป็น ความหวังเดียวเพื่อการอนุรักษ์เลื่อมโรมลงโดยไม่มีหนทางแก้ไข

ในปัจจุบันเกษตรกรจำนวนมาก สนใจที่จะเลี้ยงปลาบึกเป็นการค้าเพื่อการบริโภค จึงทำให้โรง เพาะฟักหลายแห่งเลี้ยงพ่อแม่พันธุ์ปลาบึกไว้เพื่อเพาะพันธุ์ ซึ่งพบว่าการเลี้ยงต้องใช้พื้นที่มาก และ ดันทุนสูง แต่เกษตรกรก็จำเป็นต้องเลี้ยงปลาวัยรุ่นไว้จำนวนมากกว่าความต้องการ เพราะไม่ทราบว่า ปลาที่มีอยู่มีเพศใดบ้าง เนื่องจากไม่สามารถแยกเพศปลาบึกได้ก่อนวัยเจริญพันธุ์ (ปลาบึกเจริญพันธุ์เมื่อ อายุ 16-20 ปี) โครงการนี้จึงมีความสนใจที่จะศึกษาเครื่องหมายพันธุกรรมที่ใช้แยกเพศปลาบึก เพื่อจะ สามารถแยกเพศปลาได้ตั้งแต่อายุยังน้อย เกษตรกรจะสามารถคัดปลาเพศที่ต้องการไว้ในจำนวนที่ ต้องการ เป็นการลดต้นทุนได้อย่างดี

นอกจากนั้นแล้วยังได้ร่วมกับโครงการ Genetic Characterization of Pangasiid Catfishes in Thailand ซึ่งได้รับการสนับสนุนจาก ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ ศึกษาความ หลากหลายทางพันธุกรรมของปลาในครอบครัว Pangasiidae จำนวน 9 ชนิด เพื่อเป็นข้อมูลพื้นฐานใน การวางแผนอนุรักษ์

เนื้อความโดยย่อของการศึกษาแต่ละเรื่องมีดังต่อไปนี้

1.1 การสืบประวัติพ่อแม่ปลาบีกโดยใช้เครื่องหมายพันธุกรรม microsatellite

งานนี้เป็นส่วนหนึ่งของวิทยานิพนธ์ระดับปริญญาเอก ของนางสาวเกตุนภัส ศรีไพโรจน์ ซึ่งได้รับทุน โครงการปริญญาเอกกาญจนาภิเษก (คปก) โครงการย่อยนี้ ประกอบด้วย 2 การทดลองย่อย

(1) การทดสอบการใช้เครื่องหมาย microsatellite สืบทราบพ่อและแม่ของปลาบึก โดย วิเคราะห์ multilocus microsatellite genotypes ของลูกปลาบึก และพ่อแม่

การศึกษานี้ทำเสร็จสมบูรณ์ ได้ถ่ายทอดผลจากการวิจัยให้แก่กรมประมงและฟาร์มเอกชนโดย การจัดการประชุมเชิงปฏิบัติการ แล[้]ะได้ดีพิมพ์รายงานในวารสาร Aquaculture (IF 2006 = 2.081) แล้ว ในชื่อเรื่อง Genetic Aspect in Broodstock Management of the Critically Endangered Mekong Cattish (*Pangasianodon gigas*) in Thailand โดย Kednapat Sriphairoj, Wongpathom Kamonrat and Uthairat Na-Nakorn (เอกสารแนบ 1) โดยมีเรื่องย่อดังต่อไปนี้

วัตถุประสงค์ของการศึกษาเพื่อวางแผนการผสมพันธุ์พ่อแม่ปลาบึกที่เจริญพันธุ์ในโรงเพาะฟัก เป็นรุ่นแรก ทั้งนี้เพื่อป้องกันการผสมเลือดชิด การศึกษาทำโดยเก็บตัวอย่างพ่อแม่ปลาบึกจำนวน 129 ตัวจากโรงเพาะฟัก 7 แห่ง ซึ่งเป็นปลาที่ได้จากการเพาะพันธ์ประมาณ 3 ปี นำเนื้อเยื่อครีบมาสกัดดีเอ็น เอ และศึกษาความหลากหลายของ microsatellite จำนวน 7 คู่ โดยใช้ไพรเมอร์ที่พัฒนาโดย Na-Nakorn et al. (2006) 6 คู่ และ Hogan and May (2002) 1 คู่ ผลการศึกษาแสดงว่าความหลากหลาย ทางพันธุกรรมของปลาบึกในภาพรวมมีค่าค่อนข้างด่ำ [จำนวนอัลลิลเฉลี่ยต่อดำแหน่ง มีคำระหว่าง 2.29±0.76 ถึง 4.00±1.83; จำนวนอัลลิลเฉลี่ยต่อดำแหน่ง โดยปรับค่าด้วยความถี่ยืนแล้ว (effective number of alleles/locus) มีค่าระหว่าง 1.84±0.51 ถึง 3.04±1.04; เฮดเทอโรไซโกซิดีจากการสังเกดู มี ค่าระหว่าง 0.58±0.34 ถึง 0.80±0.12; เฮดเทอโรไซโกซิตีทางทฤษฎี มีค่าระหว่าง 0.43±0.21 ถึง 0.66±0.11]. นำข้อมูลจีโนไทพ์ไปคำนวณค่า genetic relatedness (r_{xy} : Ritland, 1996) เพื่อใช้ในการ ดัดสินว่าปลาคู่ใดไม่เป็นเครือญาติกัน และสามารถผสมพันธุ์กันได้ แต่ก่อนที่จะดัดสินดังกล่าว จำเป็นต้องศึกษาค่า r_{xy} มาตรฐาน โดยนำปลาที่มาจากครอบครัวเดียวกัน (full-sib) 5 ครอบครัว มา ศึกษาค่า $r_{x_{\nu}}$ ในขณะเดียวกันก็ศึกษาค่านี้ในปลาที่ร่วมพ่อด่างแม่ (หรือร่วมแม่ด่างพ่อ) (half-sib) พบว่า ค่า 🕵 ของแต่ละประเภทความสัมพันธ์มีค่าอยู่ในช่วงกว้าง ถ้าจะใช้ค่า 🕵 ที่เป็นค่าเฉลี่ยของปลาที่ไม่ เป็นเครือญาติกัน (r_{xy} =-0.02 – 0.41) เป็นค่าตัดสินว่าคู่ผสมนั้นไม่เป็นเครือญาติกัน ก็พบว่าจะมีปลาที่ เป็นทั้ง full-sib และ half-sib ดิตมาจำนวนมาก ดังนั้นจึงตัดสินใจใช้ค่า r_{xy} ด่ำสุดของ half-sib (r_{xy} =0.07) เป็นคำดัดสิน (คู่ผสมที่มีคำ 🚓 ด่ำกว่า 0.07 ถือว่าไม่เป็นเครือญาดิกัน)

ค่าเฉลี่ย r_{xy} ภายในฟาร์ม (0.21±0.13 – 0.31±0.07) มีค่าค่อนข้างสูง เมื่อเปรียบเทียบกับ ค่าเฉลี่ย r_{xy} ของปลาทุกคู่ผสม (0.20±0.01) แสดงให้เห็นว่าควรมีการแลกเปลี่ยนพ่อแม่พันธุ์ระหว่าง ฟาร์ม ในระยะสั้นได้สมมุติสถานการณ์ในการจัดการพ่อแม่พันธุ์ต่าง ๆกัน 6 แบบ โดยพิจารณาเฉพาะพ่อ แม่ปลาที่รู้เพศแล้ว ซึ่งประกอบด้วย เพศเมีย 63 ตัว และเพศผู้ 28 ตัว สถานการณ์สมมุติมีดังนี้

- จับคู่ผสมระหว่าง เพศผู้ 28 ตัว และเพศเมีย 28 ตัว โดยเลือกคู่ที่มีค่า กุ ด่ำที่สุด โดยตัวผู้แต่ ละตัวจะผสมพันธุ์เพียงครั้งเดียว
- เช่นเดียวกับข้อ 1 เพียงแต่เพศผู้แต่ละตัวจะผสมกับเพศเมีย 2 ตัว เพื่อใช้ประโยชน์สูงสุด จากเพศเมียซึ่งมีมากถึง 63 ตัว
- 3) ผสมพันธุ์เป็นคู่ ๆ โดยเลือกเฉพาะคู่ที่มีค่า 🚓 ต่ำกว่า 0.07 โดยตัวผู้แต่ละตัวจะผสมพันธุ์ เพียงครั้งเดียว
- 4) เช่นเดียวกับข้อ 3 เพียงแต่เพศผู้แต่ละตัวจะผสมกับเพศเมีย 2 ตัว
- 5) ผสมพันธุ์เป็นคู่ๆ โดยใช้เพศผู้ทั้งหมดผสมกับเพศเมียที่มีค่า mean kinship value (mk value: ค่าเฉลี่ย r_{xy} ของปลาตัวหนึ่งกับปลาเพศตรงช้ามทุกตัว) โดยตัวผู้แต่ละด้วจะผสม พันธุ์เพียงครั้งเดียว
- 6) เช่นเดียวกับข้อ 5 เพียงแต่เพศผู้แต่ละตัวจะผสมกับเพศเมีย 2 ตัว

ผลการศึกษาแสดงว่าวิธีการผสมพันธุ์ที่จะสามารถรักษาระดับความหลากหลายทางพันธุกรรมได้ ดีที่สุด โดยมีค่าการผสมเลือดชิดต่ำที่สุด คือการคัดเลือกคู่ผสมโดยพิจารณาจากค่า 🛴

การวางแผนการผสมพันธุ์ในระยะยาว พิจารณาบนพื้นฐานที่ว่า ปลาทั้ง 129 ตัวเจริญพันธุ์แล้ว และวางแผนการผสมโดยไม่คำนึงถึงเพศ และสมมุติสถานการณ์ 2 แบบ ได้แก่ 1) ผสมพันธุ์แบบสุ่ม โดย ใช้พ่อแม่จำนวนต่างกัน ได้แก่ ใช้ทั้งหมด 129 ตัว, ใช้ 100, 50, 30 หรือ 10 ตัว ผสมแบบนี้ไป 10 ชั่ว อายุ; 2) เลือกพ่อแม่ปลาโดยพิจารณาจากค่า mk ในชั่วอายุแรก โดยเลือกปลาที่มีค่า mk ต่ำที่สุดมา จำนวน 100, 50, 30 หรือ 10 ตัว เพื่อใช้เป็นประชากรเริ่มต้น จากนั้นทำการผสมพันธุ์แบบสุ่มไป 9 ชั่ว อายุ ทำการ simulate โดยใช้โปรแกรม BOTTLESIM (Kuo and Janzen, 2003) ผลการ simulate แสดง ว่า ถ้าผสมด้วยวิธีสุ่มเพียงอย่างเดียว ต้องใช้ฟอแม่พันธุ์ 100 ตัว เพื่อที่จะรักษาจำนวนอัลลิลเฉลี่ยต่อ ตำแหน่งไว้ได้มากกว่า 90% ภายใน 4 ชั่วอายุ (120 ปี) ถ้าใช้การคัดเลือกพ่อแม่ตัวยวิธีพิจารณาจากค่า mk เพียงชั่วอายุแรกเท่านั้น จะสามารถลดจำนวนพ่อแม่พันธุ์ลงได้ถึงไม่ต่ำกว่า 30 ตัว โดยได้ผลในการ อนุรักษ์ความหลากหลายได้เท่า ๆกัน

เอกสารอ้างอิง

Hogan, Z.S. and B.P. May. 2002. Twenty-seven new microsatellites for the migratory Asian catfish family Pangasiidae. Mol. Ecol. Notes 2, 38-41.

Kuo, C.H. and F.J. Janzen. 2003. BOTTLESIM: a bottleneck simulation program for long-lived species with overlapping generations. Mol. Ecol. Notes 3, 669-673.

Na-Nakorn, U., K. Sriphairoj, S. Sukmanomon, S. Poompuang and W. Kamonrat. 2006.

Polymorphic microsatellite primers developed from DNA of the endangered Mekong giant catfish, *Pangasianodon gigas* (Chevey) and cross-species amplification in three species of *Pangasius*. Mol. Ecol. Notes 6(4), 1174-1176.

Ritland, K., 1996. Estimators for pairwise relatedness and individual inbreeding coefficients.

Genet. Res. 67, 175-185.

1.2 การศึกษาเครื่องหมายพันธุกรรมจำแนกเพศในปลาบึก

การศึกษาเรื่องนี้เสร็จสมบูรณ์ประมาณเดือนเมษายน 2550 ซึ่งเป็นช่วงขอขยายเวลา โครงการวิจัย รายงานการวิจัยเขียนเป็น short paper เรื่อง No AFLP Sex Specific Markers Detected in *Pangasianodon gigas* and *P. hypophthalmus* โดย Kednapat Sriphairoj, Uthairat Na-Nakorn, Joseph P. Brunelli และ Gary Thorgaard (เอกสารแนบ 2) ส่งดีพิมพ์ในวารสาร Aquaculture มี เนื้อความโดยย่อดังต่อไปนี้

การจำแนกเพศในปลาบึก (Pangasianodon gigas) จะสามารถทราบได้อย่างชัดเจนก็ต่อเมื่อ ปลาเช้าสู่วัยเจริญพันธุ์แล้ว (ประมาณ 16-20 ปี; Manosroi et al., 2003) ทำให้เกษตรกรด้องเก็บปลาไว้ ในจำนวนมากเพื่อให้แน่ใจว่าได้ปลาทั้งสองเพศในบริมาณที่ใกล้เคียงกันไว้เป็นพ่อแม่พันธุ์ ซึ่งจะส่งผลทำ ให้ดันทุนการเลี้ยงสูงขึ้น และพื้นที่การเลี้ยงอาจไม่พอ เนื่องจากปลาบึกเมื่อโดเด็มที่แล้วจะมีขนาดใหญ่ ต้องการพื้นที่ในการเลี้ยงมาก เครื่องหมายทางพันธุกรรมที่สามารถจำแนกเพศได้ดั้งแต่ปลายังมีขนาด เล็กจะทำให้การจัดการพ่อแม่พันธุ์ปลาบึกมีประสิทธิภาพมากขึ้น การศึกษาในครั้งนี้จึงมีวัดถุประสงค์เพื่อ พัฒนาเครื่องหมายพันธุกรรมสำหรับจำแนกเพศปลาบึก ทั้งนี้ได้ทำการศึกษาในปลาสวาย (Pangasianodon hypophthalmus) ซึ่งเป็นปลาที่มีความสัมพันธ์ใกล้ชิดกับปลาบึก (Na-Nakorn et al., 2006) และเป็นปลาน้ำจืดที่สำคัญทางเศรษฐกิจ ควบคู่ไปด้วย

การศึกษานี้ใช้เทคนิค AFLP ซึ่งเป็นเครื่องหมายดีเอ็นเอชนิดหนึ่งที่นิยมนำมาใช้ในการศึกษาหา เครื่องหมายจำแนกเพศ (Griffiths et al., 1999; Brunelli and Thorgaard, 2004; Felip et al., 2005; Cui et al., 2006) ในการศึกษาและพัฒนาไพรเมอร์ที่มีความจำเพาะกับเพศปลาบึก และปลาสวาย จาก การตรวจสอบคู่ใพรเมอร์ทั้งหมดจำนวน 570 คู่ไพรเมอร์ ใน DNA pool ปลาบึกเพศผู้ 4 pools เพศเมีย 4 pools (10 ตัว/pool) ไม่พบชิ้นส่วนดีเอ็นเอที่มีความจำเพาะกับเพศอยู่เลย สำหรับปลาสวายตรวจสอบ คู่ใพรเมอร์จำนวน 102 คู่ใพรเมอร์ ใน DNA pool ปลาสวายเพศผู้ 4 pools เพศเมีย 4 pools (7-8 ตัว/pool) พบชิ้นส่วนดีเอ็นเอที่มีความจำเพาะกับเพศจำนวน 28 ชิ้นส่วน (เพศผู้ 21 ชิ้นส่วน เพศเมีย 7 ชิ้นส่วน) นำชิ้นส่วนเหล่านี้ไปเพิ่มจำนวน (cloning) หาลำดับเบส และออกแบบไพรเมอร์ ได้ไพรเมอร์ที่มี ความจำเพาะกับเพศจำนวน 44 คู่ ทดสอบไพรเมอร์เหล่านี้ด้วยดีเอ็นเอปลาสวายทั้งสองเพศด้วยเทคนิด พีซือาร์ พบว่าไพรเมอร์ทั้งหมดสามารถใช้เพิ่มปริมาณดีเอ็นเอบลาสวายได้ทั้งสองเพศ มีไพรเมอร์เพียง ่ 1 คู่ (PHM8 F1R2) เท่านั้นที่ให้ผลว่าสามารถเพิ่มปริมาณดีเอ็นเอปลาสวายเพศผู้ได้ดีกว่าเพศเมีย โดย ผลจากการทดสอบดีเอ็นเอปลาสวายทั้งสองเพศจำนวนเพศละ 28 ดัว ปรากฏผลผลิตพีชีอาร์ในเพศผู้ จำนวนมากกว่าในเพศเมีย (25 ดัวในเพศผู้ 13 ดัวในเพศเมีย) และผลผลิตพีซีอาร์ที่ขึ้นในเพศเมียนั้นไม่ มีความชัดเจนเท่ากับในเพศผู้ อย่างไรก็ตามเมื่อทดลองใช้ไพรเมอร์ PHM8 F1R2 เพิ่มปริมาณดีเอ็นเอ ปลาสวายจากประชากรแหล่งอื่น พบว่าผลผลิตพีซีอาร์ที่เกิดขึ้นในทั้งสองเพศไม่มีความแตกต่างกัน การ วิเคราะห์ SSCP ของผลผลิตพีซีอาร์ที่ได้จากการใช้ไพรเมอร์ PHM8 F1R2 พบว่ารูปแบบของแถบดีเอ็น เอที่เกิดขึ้นในเพศผู้และเพศเมียไม่มีความแตกต่างกัน

การไม่พบเครื่องหมายพันธุกรรมที่สามารถจำแนกเพศได้ในครั้งนี้อาจเป็นไปได้ว่าปลาบึก และ ปลาสวายไม่มีโครโมโซมเพศ หรือระบบการควบคุมเพศอาจไม่ได้เกิดจากผลของพันธุกรรมเป็นหลัก ทำ ให้ไม่พบเครื่องหมายพันธุกรรมที่แสดงความแดกต่างระหว่างเพศ ทั้งนี้ในการศึกษาที่ประสบความสำเร็จ ที่ผ่านมามักจะเป็นการศึกษาในปลาที่ปรากฏว่ามีโครโมโซมเพศชัดเจน เช่น ปลา African catfish (Kovács et al., 2001) ปลา chinook salmon (Brunelli and Thorgaard, 2004) หรือถ้าไม่มีโครโมโซม เพศก็จะมีระบบกำหนดเพศโดยการควบคุมของพันธุกรรมเป็นหลัก เช่น ปลา three-spined stickleback (Griffiths et al., 2000) อย่างไรก็ตามการศึกษาครั้งนี้แม้จะไม่พบเครื่องหมายพันธุกรรมที่สามารถนำไป ประยุกด์ใช้จำแนกเพศปลาทั้งสองชนิดได้ แต่ข้อมูลที่ได้อาจมีประโยชน์ในแง่เป็นข้อมูลพื้นฐาน สำหรับ การศึกษาหาเครื่องหมายจำแนกเพศในปลาชนิดอื่นๆของกลุ่ม Pangasiid ต่อไป

เอกสารอ้างอิง

- Brunelli, J. and G.H. Thorgaard. 2004. A new Y-chromosome-specific marker for Pacific salmon.

 Trans. Amer. Fish. Soc. 33: 1247-1253.
- Cui, J., X. Shen, Q. Gong, G. Yang and Q. Gu. 2006. Identification of sex markers by cDNA-AFLP in *Takifugu rubripes*. Aquaculture 257: 30-36.
- Felip, A., W.P. Young, P.A. Wheeler and G.H. Thorgaard. 2005. An AFLP-based approach for the identification of sex-linked markers in rainbow trout (*Oncorhynchus mykiss*). Aquaculture 247: 35-43.
- Griffiths, R. and K. Orr. 1999. The use of amplified fragment length polymorphism (AFLP) in the isolation of sex-specific markers. Mol. Ecol. 8: 671-674.
- Griffiths, R., K.J. Orr, A. Adam and I. Barber. 2000. DNA sex identification in the three-spined stickleback. J. Fish. Biol. 57: 1331-1334.
- Kovács, B., S. Egedi, R. Bártfai and L.Orbán. 2001. Male-specific DNA markers from African catfish (*Clarias gariepinus*). Genetica 110: 267-276.
- Manosroi, J., K. Meng-Umphan, U. Meevatee and A. Manosroi. 2003. Chromosomal karyotyping from peripheral blood lymphocytes of the Mekong Giant Catfish (*Pangasianodon gigas*, Chevey). Asian Fisheries Sci. 16: 241-246.
- Na-Nakorn, U., S. Sukmanomon, M. Nakajima, N. Taniguchi, W. Kamonrat, S. Poompuang and T.T.T. Nguyen. 2006. MtDNA diversity of the critically endangered Mekong giant catrish (*Pangaslanodon gigas* Chevey, 1913) and closely related species: implications for conservation. Animal Conservation 9: 483-494.

1.3 MtDNA diversity of the critically endangered Mekong River giant catfish (Pangasianodon gigas Chevey) and its closely related species: implications for conservation

ร่วมกับโครงการ "Genetic Characterization of the Threatened Mekong Pangasiid Cattishes" ซึ่งได้รับการสนับสนุนจาก ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ และสิ้นสุด โครงการเมื่อเดือนกุมภาพันธุ์ 2548 โดยได้ข้อมูลลำดับเบส ของสาย 16S rDNA ในปลาบึก ปลาเทโพ และปลาเทพา แต่ไม่เพียงพอที่จะตีพิมพ์ได้ จึงได้ใช้งบประมาณของโครงการเมธีวิจัยอาวุโส เพื่อศึกษา เพิ่มเติมในปลาอีก 6 ชนิด ได้ดีพิมพ์ผลงานเรื่อง MtDNA diversity of the critically endangered Mekong River giant catfish (Pangasianodon gigas Chevey) and its closely related species: implications for conservation โดย Uthairat Na-Nakorn, Srijunya Sukmanomon, Masanishi Nakajima, Nobuhiko Tanikuchi, Wongpathom Kamonrat and Thuy T.T.T. Nguyen โดยพิมพ์ใน วารสารนานาชาติ Animal Conservation (IF=1.309) (เอกสารแนบ 3) โดยมีเนื้อเรื่องโดยย่อ ดังนี้

ปลา Catrish ในครอบครัว Pangasiidae มีความสำคัญต่อการประมงในแม่น้ำโขง ในปัจจุบัน จำนวนปลาในกลุ่มนี้หลายชนิดได้ลดจำนวนลงอย่างมาก เนื่องจากสาเหตุต่าง ๆคือ การจับเกินกำลังผลิต และความเปลี่ยนแปลงของถิ่นที่อยู่อาศัย เนื่องจากกิจกรรมต่าง ๆของมนุษย์ ปลาบึกเป็นปลาใน ครอบครัว Pangasiidae ที่อาจกล่าวได้ว่าสำคัญที่สุดในแง่การอนุรักษ์ ในการศึกษาครั้งนี้มีวัตถุประสงค์ เพื่อศึกษาความหลากหลายทางพันธุกรรมของปลาบึกและปลา Pangasiid อื่น ๆอีก 8 ชนิด โดยศึกษา จากลำดับนิวคลีโอไทด์ของ subunit ขนาดใหญ่ (16S rRNA) ของ mitochondria

ศึกษาลำดับนิวคลีโอไทด์ขนาดความยาวประมาณ 570 คู่เบส (bp) ในด้วอย่างจำนวนทั้งสิ้น 633 ตัว ของปลา 9 ชนิด (Pangasianodon gigas, P. hypophthalmus, Pangasius Iarnaudii, P. sanitwongsei, P. bocourti, P. conchophilus, P. macronema, Helicophagus waansdersii และ Pteropangasius pleurotaenia) พบแฮโพลไทพ์ทั้งสิ้น 56 แบบ โดยชนิดที่มีจำนวนแฮโพลไทพ์ สูงที่สุด (11 แฮโพลไทพ์) คือปลาเทโพ (P. Iarnaudi) ชนิดที่มีจำนวนแฮโพลไทพ์ด่ำที่สุด (2 แฮโพลไทพ์) คือ P. macronema สำหรับปลาบึกซึ่งเป็น ชนิดที่เสี่ยงต่อการสูญพันธุ์อย่างยิ่ง แม้จะมีจำนวนตัวอย่างเพียง 16 ดัว แต่มีแฮโพลไทพ์ จำนวน 4 แฮโพลไทพ์ ในปลาชนิดที่พบในแม่น้ำหลายๆสาย จะมี แฮโพลไทพ์ แตกต่างกันตามแหล่งที่มา

ในภาพรวมพบว่าปลาแต่ละชนิดมีค่าความหลากหลายของแฮโพลไทพ์ (haplotype diversity) ต่ำจนถึงปานกลาง (ค่าระหว่าง 0.118 ± 0.101 ถึง 0.667 ± 0.141)โดยมีค่าความหลากหลายของ นิวคลีโอไทด์ (nucleotide diversity) ต่ำมาก (มีค่าระหว่าง0.0002 ± 0.0003 ถึง 0.0016 ± 0.0013) P. macronema มีความหลากหลายทางพันธุกรรมต่ำที่สุด ในขณะที่ P. pleurotaenia ซึ่งมีจำนวน ตัวอย่างน้อยที่สุด เป็นชนิดที่มีความหลากหลายสูงสุด สำหรับปลาบีกนั้น มีค่าความหลากหลายทาง พันธุกรรมในระดับเดียวกับปลาชนิดอื่นๆ (haplotypes diversity = 0.350 ± 0.148, nucleotide diversity = 0.0009 ± 0.0008) ข้อมูลนี้สำคัญยิ่งต่อการวางแผนอนุรักษ์ปลาบีก โดยแสดงว่าปลาบึกใน ธรรมชาติยังมีจำนวนมากในระดับหนึ่ง จึงไม่ควรปล่อยปลาบึกจากโรงเพาะฟักลงในแม่น้ำโขง เพราะจะ ทำให้ความหลากหลายทางพันธุกรรมของปลาในธรรมชาติลดลง

2. โครงการย่อยที่ 2

Genetic Approach and Sex Manipulation to Improve Production Efficiency of Freshwater Prawn

โครงการนี้มีวัดถุประสงค์ 3 ประการ คือ

- 1) การพัฒนาสายพันธุ์กุ้งก้ามกราม โดยการสร้างประชากรเพศผู้ล้วน
- 2) การปรับปรุงสายพันธุ์ด้วยวิธีการคัดพันธุ์
- การเหนี่ยวนำกุ้งก้ามกราม triploid (เสนอเพิ่มเดิมในรายงานครั้งที่ 1)

ผลการศึกษาในแต่ละวัตถุประสงค์ (โครงการย่อย) มีดังนี้

2.1 การพัฒนาสายพันธุ์กุ้งก้ามกราม โดยการสร้างประชากรเพศผู้ล้วน

การศึกษานี้ทำสำเร็จแล้วและดีพิมพ์ในวารสาร Aquaculture ในชื่อเรื่อง Production of all-male stock by neofemale technology of the Thai strain of freshwater prawn, *Macrobrachium rosenbergii* โดย Wikrom Rungsin, Nattapong Pankao and Uthairat Na-Nakorn (เอกสารแนบ 4) นอกจากนั้นยังได้ถ่ายทอดเทคโนโลยีสู่เกษตรกร ขณะนี้กำลังมีการเจรจาเชิงธุรกิจ ให้บริษัทเอกชนนำไป ขยายผล

ผลการวิจัยที่ดีพิมพ์มีเนื้อเรื่องย่อดังต่อไปนี้

ในกุ้งก้ามกราม กุ้งเพศผู้มีขนาดใหญ่กว่าเพศเมีย ที่อายุเท่า ๆกัน ดังนั้นการเลี้ยงกุ้งก้ามกราม เพศผู้ล้วนจะสามารถเพิ่มผลผลิตได้ นอกจากนั้นแล้วกุ้งเพศผู้ล้วนจะลดความก้าวร้าวลงเมื่อไม่มีเพศเมีย ในบ่อ ก็ยิ่งทำให้ผลผลิดเพิ่มขึ้น (Nair et al. 2006) แต่เดิมนั้นเกษตรกรใช้วิธีคัดเพศด้วยแรงคน ซึ่ง เสียเวลาและค่าใช้จ่ายสูง เพราะต้องเลี้ยงกุ้งรวมเพศไปนานหลายเดือนจึงจะแยกเพศได้

เนื่องจากพบว่ากุ้งเพศผู้พัฒนาลักษณะเพศก่อนเพศเมีย โดยการเจริญพัฒนาของอัณฑะ จะเกิด หลังการพัฒนาของ gonopore complexes และ appendixes masculina ทั้งนี้ gonopore complex จะ พัฒนาก่อน ดังนั้นหากทำการดึง androgenic gland ออกในระยะที่พบ gonopore complex แต่ยังไม่พบ appendix masculina กุ้งเพศผู้โดยพันธุกรรมจะเปลี่ยนเป็นเพศเมีย โดยที่ยังมีพันธุกรรมเป็นเพศผู้ ซึ่ง คาดว่าจะมีลักษณะทางพันธุกรรมเป็นแบบ male homogamety (เพศผู้ =ZZ; เพศเมีย =ZW) ดังนั้นเมื่อ นำเพศเมียที่เกิดจากการเปลี่ยนเพศ (หรือที่เรียกว่า neofemale) ไปผสมกับเพศผู้ก็จะได้กุ้งเพศผู้ล้วน

จากการทำลาย androgenic gland โดยดึงออกทั้ง 2 ข้างในกุ้งระยะดังกล่าว จำนวน 87 ตัว กุ้งมี อัตรารอด 70% กุ้งที่รอดชีวิตทั้งหมดเปลี่ยนเป็นเพศเมีย 21% และ กุ้งจำนวนนี้ 62% สร้างไข่ จากนั้นได้ ทำการผสมกุ้งเพศเมียแปลงเพศ (neofemale) จำนวน 12 ตัว กับเพศผู้ปกดิ พบคู่ผสมที่ให้ลูกเพศผู้ล้วน 8 คู่ผสม คู่ที่ให้ลูกเป็นเพศผู้ 88-99.4% จำนวน 2 คู่ผสม ส่วนอีก 2 คู่ผสมให้สัดส่วนเพศของรุ่นลูกไม่ แตกต่างจากสัดส่วน 1:1 ซึ่งคาดว่าจะเกิดจากความผิดพลาดในการดึดป้ายตัวกุ้ง ทำให้เข้าใจผิดนำกุ้ง เพศเมียดามธรรมชาติ ซึ่งเลี้ยงไว้เป็นชุดควบคุม มาผสม ส่วนชุดควบคุม 10 คู่ผสม (เพศเมีย เพศผู้ ตามธรรมชาติ) ให้สัดส่วนเพศในรุ่นลูก ตั้งแต่ 1:1 (ข้อมูลรวมจาก 6 คู่ผสม) ถึง 1.72 ♀:1♂ (ข้อมูล รวมจาก 4 คู่ผสม)

เอกสารอ้างอิง

Nair, C.M., Salin, K.R., Raju, M.S., Sebastian, M. 2006. Economic analysis of monosex culture of giant freshwater prawn (*Macrobrachium rosenbergii* De Man): a case study. Aquaculture Research. 37(9): 949- 954.

2.2 การปรับปรุงพันธุ์กุ้งก้ามกราม

แนวความคิดในการปรับปรุงพันธุ์คือ

- (1) การศึกษาความแดกต่างทางพันธุกรรมของกุ้งก้ามกรามสายพันธุ์ต่างๆ ทั้งที่ผ่านการ domesticate และกุ้งธรรมชาติ
- (2) จากนั้นศึกษาเปรียบเทียบ performance และคัดเลือกประชากรเริ่มต้นเพื่อการปรับปรุง พันธุ์ต่อไป
- (1) ความหลากหลายทางพันธุกรรมของกุ้งก้ามกรามจากธรรมชาติและบ่อเลี้ยง โดยใช้ เครื่องหมายไมโครแซทเพลไลท์ดีเอ็นเอ

(1.1) การพัฒนาเครื่องหมายไมโครแซทเทลไลท์

การศึกษาเสร็จสมบูรณ์ โดยสามารถพัฒนา microsatellite primer ได้ 10 คู่ (ตารางที่ 2.1) ได้ทำการทดสอบความหลากหลาย และการถ่ายทอดจากพ่อแม่ไปสู่รุ่นลูก ผลงานดีพิมพ์ในชื่อเรื่อง Isolation and characterization of microsatellites in giant freshwater prawn Macrobrachium rosenbergii โดย Kansee Charoentawee, Supawadee Poompuang and Uthairat Na-Nakorn แล้ว ในวารสาร Molecular Ecology Notes (impact factor 2006=1.22) (เอกสารแนบ 5)

ตารางที่ 2.1 แสดงลำดับนิวคลีโอไทด์ของคู่ไพรเมอร์ annealing temperature (T₄) ขนาดของผลผลิตพีซีอาร์ จำนวนอัลลิล และGenBank Accession Number ของไมโครแซกเทลไลท์ที่มีความหลากหลาย 10 ตำแหน่ง

Accession	DQ019863	DQ019864	DQ019865	DQ019866	DQ019867	DQ019869	DQ019870	DQ019873	DQ019871	DQ019872
r°	0.9110 DX	0.7847 DC	O.8789 D	0.8753 D	0.9146 De	0.5596 Do	0.4253 DC	0.9057 DC	0.7071 DX	0.8213 DC
r°	0.7692 0.	0.6341 0.	0.4583 0	0.4643 0.	0.6591 0.	0.5600 0.	0.4800 0.	0.5185 0.	0.5714 0.	0.5000 0.
์ สำนวนยัลลิล	13	5	16	-	- 71	ဖ	∞	47		2
ชนาดของผลผลิต พีซิอาร์ (bp)	272-320	296-332	224-346	288-326	280-306	268-280	254-270	240-284	241-265	263-291
. ℃	09	29	82	62	62	62	62	09	99	09
ตำตบเบลซำ	(GA) ₂₄	(GT) ₂₂	(AG)₁₄	(GT) ₂₃	(AG) ₂₆	(TGC) ₁₆	(AGC) ₈ (AG) ₈ AA(AG) ₄	(TG) ₅ (AG) ₁₇	(ATG),A(ATG),	(AG) ₃₁
สำคับนัวคดีไอใหด้ของคู่ใหรเมอร์ (5-3)	F:CCC ACC ATC AAT TCT CAC TTA CC R:TCC TTT TCA CAT CGT TTC CAG CT	F:TTC CCG ACC AAT TTC TCT TTC TC R:GGC AAA AAT GAT CTT GGA TTC AC	F:CAA CTC TAT GTT TCG GCA TTT GG R:GGG GAA TTT TAC CGA TGT TTC T	F:CCA CCT ACC GTA CAT TCC CAA AC R:CGG GGC GAC TTT TAG TAT CGA C	F:CAA GGC TCG TGT CTC TTG TTT C R:GCT TGT ACT TGT TCA GCT TTT GC	F:ATA AAA GAG TCG CCA AAT GAG CA R:ATT GGG AAT TGT TGA CCT CCA AG	F:AAC CAG CCG ACT TAG ACT GTG C R:CGC CAT TTG CGT CTA TCT CTT AC	F:TTG TTT GCT TGT TTA GTG TCA AGG R:CTC CAA AAC CGA AAA ATC CTC CAC	FATG ACG ATG ATG AGG AAT GAA GC R:TTT CAG GCT ATA TCA AGC AAC AG	F:GTA TTG AGA ACA AAG GCG CAC AG
ตำแหน่ง	Mbr-1	Mbr-2	Mbr-3	Mbr-4	Mbr-5	Mbr-7	Mbr-8	Mbr-9	Mbr-10	Mbr-11

(1.2) ความหลากหลายทางพันธุกรรมของประชากรกุ้งก้ามกราม

กุ้งก้ามกรามที่เลี้ยงกันโดยทั่วไป มีอยู่ 2 สายพันธุ์ (strain) ได้แก่สายพันธุ์ CPF ซึ่งปรับปรุงโดย บริษัทเอกชน โดยการนำกุ้งจากด่างประเทศเข้ามาเป็นประชากรเริ่มต้น เกษศรกรพบว่าสายพันธุ์ ดังกล่าวแม้จะมีการเจริญเดิบโดดีกว่าสายพันธุ์พื้นเมืองเล็กน้อย แต่ไม่หนทานต่อการตือวน และการ เปลี่ยนแปลงสภาพอากาศ ส่วนอีกสายพันธุ์หนึ่งนั้นเป็นกุ้งที่ผ่านการ เพาะฟักในสภาพการเลี้ยงมานาน กว่า30 ปีแล้ว โดยไม่มีการจัดการพันธุกรรมที่เหมาะสม จึงทำให้มีการเจริญเดิบโตไม่ดีนัก และมีความ เป็นไปได้ว่าน่าจะเกิดการผสมเลือดชิด แต่มีความทนทานต่อการเปลี่ยนแบ่ลงสภาพภายในบ่อ นอกจากนั้นแล้วยังมีโรงเพาะฟักบางแห่งได้นำเข้ากุ้งจากประเทศเพื่อนบ้าน โดยหวังว่าจะแก้ปัญหา พันธุกรรมของสายพันธุ์พื้นเมือง โดยทฤษฎีนั้น ประชากรที่ผ่านการเพาะเลี้ยงในโรงเพาะฟักเป็น เวลานานๆ โดยไม่มีการดูแลเรื่องพันธุกรรม มักเกิดปัญหาสูญเสียความหลากหลายทงพันธุกรรม ซึ่ง นำไปสู่ลักษณะที่ไม่ต้องการหลายๆอย่าง (Doyle et al., 1983; Eknath and Doyle, 1985) ความจริง เหล่านี้ทำให้คณะผู้วิจัยสนใจศึกษา ความหลากหลายทางพันธุกรรม ของประชากรกุ้งก้ามกรามในโรง เพาะฟักต่างๆในประเทศไทย ทั้งนี้โดยหวังว่าจะสามารถใช้ข้อมูลนี้ช่วยในการวางแผน นำประชากรกุ้ง กัวมกรามสายพันธุ์พื้นเมือง มาใช้ในการปรับปรุงพันธุ์ต่อไป

การศึกษานี้ทำเสร็จสมบูรณ์แล้ว และตีพิมพ์ในวารสาร Aquaculture ในชื่อเรื่อง Genetic diversity of hatchery stocks of giant freshwater prawn (*Macrobrachium rosenbergii*) in Thailand โดย Kansee Charoentawee, Supawadee Poompuang, Uthairat Na-Nakorn and Wongpathom Kamonrat (เอกสารแนบ 6) โดยมีเนื้อหาโดยสรุปดังนี้

ศึกษาความหลากหลายของกุ้งก้ามกรามประชากรโรงเพาะฟัก 5 แห่งที่มีประวัติต่างๆกัน ได้แก่

- 1) ลมโชยฟาร์ม กุ้งพื้นเมืองที่นำมาจากแม่น้ำเจ้าพระยา และผ่านการเพาะพันธุ์ในฟาร์มมา ประมาณ 30 ปีแล้ว
- 2) รวมโชคฟาร์ม กุ้งพื้นเมืองที่นำมาจากแม่น้ำเจ้าพระยา และผ่านการเพาะพันธุ์ในฟาร์มมา ประมาณ 30 ปีแล้ว
 - 3) ขวัญเมือง ฟาร์ม เป็นกุ้งนำเข้าจากประเทศพม่า ประมาณ 2 ชั่วอายุที่ผ่านมา
 - 4) นิธิศ ฟาร์ม เป็นกุ้งสายพันธุ์ CPF
 - 5) กุ้งจากประเทศอื่นโดนีเขีย

และนำกุ้งธรรมชาติจากแม่น้ำเจ้าพระยาและกระบุรี มาเป็นประชากรเปรียบเทียบ จำนวน ตัวอย่างที่ใช้ 28-36 ตัว และ 36-60 ตัว ในประชากรธรรมชาติ และประชากรโรงเพาะฟัก ตามลำดับ

ศึกษาโดยใช้ microsatellite primer จำนวน 6 คู่ ที่พัฒนาโดย Charorntawee et al. (2007) ได้แก่ Mbr-1, Mbr-2, Mbr-5, Mbr-7, Mbr-8 และ Mbr-10 ผลการศึกษาแสดงว่า ประชากรโรงเพาะฟัก มี ความหลากหลายทางพันธุกรรมในระดับปานกลาง (ตารางที่ 2.2) และมีค่าไม่แตกด่างกัน โดยมีค่า จำนวนอัลลิลเฉลี่ยต่อดำแหน่งระหว่าง 7.50 ถึง 10.67 และค่าเฮตเทอโรไซโกซิตีจากการคำนวณ ระหว่าง 0.64 ถึง 0.73

ตารางที่ 2.2 ความหลากหลายทางพันธุกรรมของกุ้งก้ามกรามจากโรงเพาะฟัก และแหล่งน้ำธรรมชาติใน
ประเทศไทย; ก=จำนวนตัวอย่าง, A=จำนวนอัลลิลเฉลี่ย/ดำแหน่ง, A=allelic richness
คำเฉลี่ยจำนวนอัลลิล/ตำแหน่งโดยปรับจำนวนตัวอย่างให้เท่ากัน, 出。= คำสังเกตเฮตเทอโรไซ
โกซิตี, H_e=คำเฮตเทอโรไซโกซิตีจากการคำนวณ, F_{is} และค่า Pในการทดสอบสมดุล Hardy-Weinberg; R =River; F.=farm

ประชากร	Α	A,	H _o	Н,	F _{is}
Chaophraya R. (36)	9.50±4.85	8.96±4.38	0.62±0.22	0.71±0.24	0.127
Kraburi R. (28)	9.00±5.73	8.99±5.74	0.57±0.18	0.68±0.28	0.162
Ruamchok F. (50)	9.83±4.88	8.82±4.55	0.64±0.16	0.69±0.18	0.072
Lomchoy F. (46)	10.67±5.35	9.37±4.41	0.62±0.18	0.70±0.18	0.114
Kwanmuang F. (60)	7.50±3.02	6.34±2.68	0.66±0.08	0.64±0.13	-0.031
Nitis F. (49)	9.33±4.50	8.51±3.40	0.58±0.19	0.73±0.20	0.205
Indonesia (36)	9.67±4.93	9.12±4.47	0.67±0.16	0.73±0.19	0.082

ทุกประชากรมีพันธุกรรมที่แตกต่างกัน (จากการทดสอบความแตกต่างของการกระจายตัวของ ความถี่ยีน และการทดสอบ pairwise $F_{\rm ST}$) ดังนั้นการสูญเสียความหลากหลายทางพันธุกรรมจึงไม่ใช่ สาเหตุที่ทำให้การเจริญเติบโตของกุ้งก้ามกรามสายพันธุ์พื้นเมืองด้อยลง แต่อาจจะมีสาเหตุจากการ จัดการที่ไม่เหมาะสมอื่น ๆที่นำไปสู่การคัดเลือกทางลบโดยไม่ตั้งใจ นอกจากนั้นยังไม่เคยมีการศึกษา ลักษณะที่สำคัญทางเศรษฐกิจของกุ้งก้ามกรามโดยการเปรียบเทียบกันอย่างถูกหลักวุ้ชา ดังนั้นข้อมูลที่ นำไปสู่ข้อสรุปว่าสายพันธุ์พื้นเมืองโตข้ากว่าสายพันธุ์ใหม่ อาจเกิดจากการเลี้ยงที่แตกต่างกัน เพราะกุ้ง สายพันธุ์ใหม่นั้น บริษัทจะขายลูกพร้อมกับกำหนดวิธีการเลี้ยงที่แน่นอน จึงควรมีการศึกษาเปรียบเทียบ การเจริญเติบโต และลักษณะอื่นๆ เช่นสัดส่วนหัวและลำตัว และความด้านทานโรค ของสายพันธุ์โรง เพาะพักเพื่อจะสามารถเลือกไปใช้ประโยชน์เพื่อการปรับปรุงพันธุ์ด่อไป

เอกสารอ้างอิง

Doyle. R.W., S. Singholka, M.B. New. 1983. "Indirect selection" for genetic change: a quantitative analysis illustrated with *Macrobrachium rosenbergii*. Aquaculture 30: 237-247.

Eknath, A.E., R.W. Doyle. 1985. Indirect selection for growth and life-history traits in Indian carp aquaculture 1. Effects of broodstock management. Aquaculture 49: 73-84.

2.3 การศึกษาสภาวะที่เหมาะสมในการเหนี่ยวนำ triploid

การศึกษานี้เกิดจากแนวความคิดที่ว่า กุ้งก้ามกรามเพศผู้มีลักษณะรูปร่างต่าง ๆกันถึง 3 แบบ และมีพฤติภรรมสร้างอาณาเขต ทำให้ไม่สามารถปล่อยกุ้งในอัตราหนาแน่น์ได้ หากสามารถทำให้เป็น หมัน พฤติภรรมความก้าวร้าวก็จะลดน้อยลง อาจส่งผลดการแบ่งเป็น morphotype ต่าง ๆ ซึ่งส่งผลใน การเพิ่มผลผลิตต่อหน่วยพื้นที่ได้ในที่สุด การทำให้เป็นหมัน สามารถทำใด้โดยการเหนี่ยวนำ triploidy ซึ่งอาศัยหลักการที่ว่า หากนำไข่กุ้งที่มีการผสมกับเชื้อตัวผู้ใหม่ ๆ (ในเวลาที่เหมาะสม) ไปฟักในสภาพที่ ไม่เหมาะสม (เช่น ในน้ำเย็น น้ำร้อน ภายใต้แรงดันสูง หรือฟักในสารละลายสารเคมีบางชนิด) ไข่ก็จะไม่ กำจัด polar body และทำให้ได้คัพภะที่มีโครโมโซม 3 ชุด อย่างไรก็ตามการเหนี่ยวนำในกุ้งก้ามกรามทำ ได้ค่อนข้างยาก เนื่องจากกุ้งเพศเมียจะเก็บไข่ที่ผสมกับเชื้อตัวผู้แล้วไว้ที่หน้าท้อง และหากมีการรบกวน ไข่เหล่านั้นจะเสีย ในการทดลองครั้งนี้จึงใช้วิธีการนำแม่กุ้งที่มีไข้ติดหน้าท้อง มาเหนี่ยวนำทั้งด้ว

นำแม่กุ้งที่ผสมพันธุ์เสร็จใหม่ๆ และปล่อยไข่เกาะหน้าห้องได้ ประมาณ 20 นาที ไปแช่ในน้ำ อุณหภูมิต่ำ (10, 12, 15 และ 17 องศาเซลเซียส) หรือสูง (33, 35, 37, 39 องศาเซลเซียส) แช่นาน 10, 15, 20 นาที โดยในตอนแรกจุ่มกุ้งลงในน้ำอุณหภูมิดังกล่าวทั้งตัว จากนั้นขยับภาชนะขึ้นจนตัวกุ้งโผล่ พันน้ำ ทดลองชุดการทดลองละ 2 ตัว เมื่อเสร็จการเหนี่ยวนำ นำแม่กุ้งไปเลี้ยงในภาชนะชนาดความจุ 40 ลิตร ให้อากาศ และปล่อยให้ไข่ฟักโดยติดอยู่กับตัวแม่กุ้ง จากนั้นนำ nauplius ไปตรวจสอบจำนวน ชุดโครโมโซมโดยวิธี Flow cytometry ซึ่งพบว่าการเหนี่ยวนำไม่ทำให้เกิดการเพิ่มจำนวนชุด เนื่องจาก เวลาและทรัพยากรของโครงการมีจำกัด จึงได้ยุดิการทดลอง เพื่อใช้ทรัพยากรที่มีอยู่ในด้านอื่น

3. โครงการย่อยที่ 3

Genetic Contributions to Fisheries Management and Aquaculture of Orange-spotted grouper, *Epinephelus coioides*

โครงการย่อยนี้ มีวัตถุประสงค์ 4 ประการ คือ

- 1) การศึกษาพลวัดรประชากร (population dynamics) ปลาเก๋าในเขตจังหวัดตรัง
- 2) เพื่อศึกษาความหลากหลายทางพันธุกรรมระหว่างชนิดปลาเก๋า
- 3) เพื่อศึกษาความหลากหลายทางพันธุกรรมระหว่างประชากรของปลาเก๋าดอกแดง
- 4) เพื่อศึกษาความหลากหลายของลักษณะสำคัญทางเศรษฐกิจระหว่างประชากรของ ปลาเก๋าดอกแดงที่มีความแตกต่างทางพันธุกรรม (เพิ่มเดิมจากรายงานครั้งที่ 3)

ผลการศึกษาโดยย่อ มีดังค่อไปนี้

3.1 การศึกษาพลวัตรประชากรปลาเก๋าในเขตจังหวัดตรัง: ความหลากหลายทางพันธุกรรมในรอบ ปี ของกลุ่มลูกปลาเก๋าดอกแดง ที่ได้จากแหล่งประมงในจังหวัดตรัง

การวิจัยเรื่องนี้มีวัตถุประสงค์ ที่จะ ประเมินการเปลี่ยนแปลงความหลากหลายทางพันธุกรรมใน รอบปี ของกลุ่มลูกปลาเก๋าที่จับได้จาก อำเภอกันดัง จังหวัดตรัง ซึ่งเป็นแหล่งรวบรวมลูกปลาเก๋าที่ สำคัญ ทำการศึกษาโดยใช้เครื่องหมายพันธุกรรมไมโครแซทเทลไลท์ ประเมินแนวโน้มของการ แบ่งแยกประชากร ในรอบปี การศึกษาเสร็จสมบูรณ์แล้ว และส่งไปดีพิมพ์ในวารสาร Marine Biology ใน ชื่อเรื่อง Temporal genetic heterogeneity of juvenile orange-spotted grouper (Epinephelus coioides, Pisces: Serranidae) collected from an important nursery ground in Thailand โดย Panuwat Pumitinsee, Wansuk Senanan, Uthairat Na-Nakorn Worawut Koedprang and Wongpathom Kamonrat (เอกสารแนบ 7) ขณะนี้ได้รับคำตอบปฏิเสช กำลังทำการปรับปรุงเพื่อส่งไปยัง วารสารฉบับอื่นต่อไป โดยมีเนื้อเรื่องโดยย่อ ดังนี้

ได้รวบรวมตัวอย่างลูกปลาเก๋า ณ อำเภอกันดัง จังหวัดตรัง ทุก 3 เดือน ตั้งแต่ มกราคม 2547 ถึง มกราคม 2548 เลือกติดตามความหลากหลายพันธุกรรมของกลุ่มลูกปลาที่มีขนาดใกล้เคียงกัน ตลอดทั้งปี (อย่างน้อย 40 ตัวอย่างในแต่ละเดือน) ตัวอย่างที่รวบรวมมาตั้งแต่ มกราคม 2547 ถึง มกราคม 2548 แบ่งกลุ่มตามขนาดได้ 2 กลุ่มใหญ่ ๆ ได้แก่ 5-10.3 (S)และ 17.5-29 (XL) เซนติเมตร ยกเว้นในเดือน กรกฎาคม 2547 ที่รวบรวมได้กลุ่ม 10-12.5 ซม. (3-4 นิ้ว; M) เก็บรักษาครีบหางของ ปลาแต่ละตัวในเอทานอล 90% และได้เก็บตัวอย่างปลาเก๋าดอกแดงจากจังหวัดจันทบุรี เพื่อใช้เป็น ประชากรเบรียบเทียบด้วย

วิเคราะห์ความหลากหลายพันธุกรรมของตัวอย่างลูกปลาเก๋าที่รวบรวมได้ในเดือนมกราคม เมษายน กรกฎาคม และ พฤศจิกายน 2547 โดยใช้เครื่องหมายไมโครแซทเทลไลท์ 6 ตำแหน่ง พบว่าความหลากหลายภายในประชากรมีคำปานกลาง (เฮตเทอโรไซโกซิตี มีค่าระหว่าง 0.51-0.63; จำนวนอัลลิลเฉลี่ยต่อตำแหน่ง มีค่าระหว่าง 6.33-7.83) ประชากรปลาเก๋าจากดรั้งและจันทบุรี มี พันธุกรรมแตกต่างกัน เมื่อทดสอบโดยวิธีการต่างๆ คือ การเปรียบเทียบการกระจายของความถี่อัลลิล ด้วย Exact test, F_{sr} และ ระยะห่างทางพันธุกรรม ภายในประชากรปลาจากจังหวัดตรั้ง ตัวอย่างเดือน กรกฎาคม มีพันธุกรรมแตกต่างจากกลุ่มอื่นๆ (F_{sr} = 0.028-0.063, P<0.05) เมื่อน้ำ genotype ของปลา แต่ละตัวมาศึกษาโดยวิธี assignment test โดยใช้วิธีการ Rannala and Moutain's (1997) โดยนำ genotype ของปลาแต่ละกลุ่มเป็นข้อมูลพื้นฐาน จากนั้นนำ genotype ของปลาแต่ละตัว มาเปรียบเทียบ และจัดเข้ากลุ่มใหม่ ปรากฏว่าปลาที่จับในเดือนกรกฎาคมร้อยละ 83 ถูกจัดเข้าสู่กลุ่มเดิมอย่างถูกต้อง

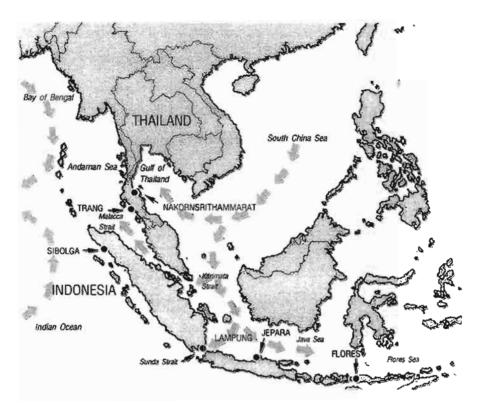
ส่วนตัวอย่างจากดรังที่เก็บในช่วงเวลาอื่น ๆ มีพันธุกรรมคล้ายคลึงกัน ผลการทดลองทำให้เกิดข้อ สันนิษฐานว่า มีปลามากกว่า 1 ประชากรในจังหวัดดรัง ซึ่งวางไข่ในเวลาที่ต่างกัน ดังนั้นจึงจำเป็นต้อง ศึกษาข้อมูลด้านอื่น ๆประกอบ เพื่อจะสามารถใช้ประโยชน์ทรัพยากรที่หลากหลายนี้ได้อย่างยั่งยืน

3.2 ความหลากหลายทางพันธุกรรมระหว่างชนิดปลาเก๋า

การแยกชนิดปลาเก๋าค่อนข้างสับสน เพราะปลาเก๋าหลายชนิดมีลักษณะภายนอกคล้ายคลึงกัน มาก นอกจากนั้นยังมีสีและลวดลายแตกต่างกันตามช่วงอายุ จึงทำให้มีการแยกชนิดผิดบ่อยๆ ดังนั้นจึง ควรนำเครื่องหมายพันธุกรรมมาช่วยสนับสนุนให้การแยกชนิดทำได้ถูกต้องยิ่งขึ้น ทั้งนี้โดยใช้ เครื่องหมายพันธุกรรม microsatellite การศึกษานี้เสร็จสมบูรณ์ และตีพิมพ์ในวารสาร Fisheries Science (impact factor 2006 = 0.766) ภายใต้ชื่อเรื่อง Evaluation of genetic diversity of eight grouper species Epinephelus spp. based on microsatellite variations โดย Worawut Koedprang, Uthairat Na-Nakorn, Masamichi Nakajima และ Nobuhiko Taniguchi (เอกสารแน้บ 8) และมีเรื่องย่อ ดังต่อไปนี้

การศึกษาครอบคลุมปลาเก๋า 8 ชนิดได้แก่ Epinephelus bleekeri, E. coioides, E. malabaricus, E. ongus, E. akaara, E. maculatus, E. merra และ E. fuscoguttatus ทำการศึกษา microsatellite 6 ดำแหน่ง ได้แก่ Em-01*, Em-03*, Em-07*, Em-08*, Em-10* and CA-07* ซึ่งเป็น microsatellite ที่พัฒนาจาก ดีเอ็นเอของปลากลุ่มปลาเก๋า การศึกษาแสดงว่าความแตกต่างระหว่างชนิด อยู่ในระดับสูง (F_{ST} =0.4403; P<0.008; R_{ST} =0.4954) พบอัลลิลที่มีความถี่เท่ากับ 1 (fixed different) แสดงความแตกต่างระหว่าง E. coioides, E. ongus และ E. fuscoguttatus โดยแตกต่างกันที่ microsatellite ดำแหน่ง Em-01* ส่วน E. fuscoguttatus และ E. ongus แตกต่างกันที่ microsatellite ดำแหน่ง Em-08*

พบอัลลิลที่พบเฉพาะในบางชนิด (แต่ไม่ได้มีความถี่อัลลิลเท่ากับ 1) ในปลาเก๋าทุกชนิด ยกเว้น E. ongus ค่า pair-wise F_{sr} ซึ่งบอกความแตกต่างระหว่างชนิด มีค่าระหว่าง 0.238 ถึง 0.578 และมี นัยสำคัญทางสถิติ (มีค่าแตกต่างจาก 0) ค่าระยะห่างทางพันธุกรรม มีค่าระหว่าง 0.433 ถึง 2.710 ความสัมพันธ์ทางพันธุกรรมโดยวิธี neighbor-joining tree แบ่งปลาเก๋า 8 ชนิดออกเป็น 2 กลุ่มใหญ่ๆ พบปรากฏการณ์ homoplasy (แถบดีเอ็นเอมีขนาดเท่ากัน แต่มีลำดับเบสต่างกัน) ที่อัลลิล Em-03*157 โดยความแตกต่างเกิดแบบการเปลี่ยนแปลงระหว่าง T-C โดยเกิดที่เบสตำแหน่งที่ 119


3.3 ความหลากหลายทางพันธุกรรมระหว่างประชากรของปลาเก๋าดอกแดง

การศึกษานี้มีวัตถุประสงค์เพื่อศึกษาความหลากหลายทางพันธุกรรมของปลาเก๋าดอกแดง Epinephelus coioides ในประเทศไทยและอินโดนีเซีย ได้ศึกษาเสร็จสมบูรณ์และดีพิมพ์ในวารสาร Marine Biotechnology ภายใต้ชื่อเรื่อง Genetic Diversity of Orange-spotted Grouper, Epinephelus coioides from Thailand and Indonesia using micosatellite markers โดย Suci Antoro, Uthairat Na-Nakorn and Worawut Koedprang (เอกสารแนบ 9) โดยมีเนื้อเรื่องโดยย่อดังนี้

ปลาเก๋าตอกแดง (Epinephelus coloides) มีความสำคัญทางเศรษฐกิจ แต่ความรู้เกี่ยวกับความ หลากหลายทางพันธุกรรมของปลาชนิดนี้มีน้อยมาก ความหลากหลายทางพันธุกรรมของปลาชนิดนี้มีน้อยมาก ความหลากหลายทางพันธุกรรมภายในประชากร ของปลากลุ่มปลาเก๋าน่าจะมีค่าต่ำ เนื่องจาก ปลาเหล่านี้จะรวมกลุ่มระหว่างฤดูผสมพันธุ์ และไม่ค่อยหนี จึงถูกจับได้ง่ายทีละเป็นจำนวนมาก (Collin, 1996; Sala et al., 2001) มีการจับปลาก่อนวัยเจริญพันธุ์ จำนวนมาก ทำให้หมดโอกาสที่จะขยายพันธุ์ นอกจากนั้น สัดส่วนเพศของปลาเก๋าไม่เท่ากับ 1:1 ทำให้ effective population size (N_o) ต่ำกว่าจำนวนพ่อแม่พันธุ์ที่มีอยู่ และมีความเป็นไปได้ว่าจะเกิดการผสม เลือดชิด ซึ่งเป็นผลต่อเนื่องจากการที่ N_o ต่ำ

การศึกษาครั้งนี้ มีวัตถุประสงค์ เพื่อศึกษาความหลากหลายทางพันธุกรรมของปลาเก๋าดอกแดง E. coioides จำนวน 6 ประชากร ที่รวบรวมจากน่านน้ำไทย (ตรั้ง และนครศรีธรรมราช) และอินโดนีเชีย (Lampung, Jepara, Sibolga และ Fiores) (ภาพที่ 3.1) และศึกษาความสัมพันธ์ทางพันธุกรรม ระหว่าง ประชากรปลาเหล่านี้ ผลการศึกษาที่ได้จะทำให้เกิดความเข้าใจเรื่องความหลากหลายทางพันธุกรรม ของ สัตว์ทะเลที่ค่อนข้างอยู่กับที่ แบบเดียวกันกับปลาเก๋าดอกแดง โดยเฉพาะอย่างยิ่งชนิดที่พบในน่านน้ำ ของเอเชียตะวันออกเฉียงใต้ นอกจากนั้นยังจะได้ข้อมูลว่าประชากรใดมีพันธุกรรมที่แดกต่าง ซึ่งจะเป็น ประโยชน์ในการอนุรักษ์ และการเพาะเลี้ยง

การศึกษาทำโดย เก็บตัวอย่างปลาเก๋าดอกแดงจำนวน 250 ตัว จากแหล่งต่าง ๆ 6 แหล่ง วิเคราะห์ความหลากหลายของ microsatellite 4 ดำแหน่ง ค่าแสดงความหลากหลายทางพันธุกรรมแสดง ในดารางที่ 3.1 ในภาพรวมความหลากหลายภายในประชากรปลาเก๋าดอกแดงมีค่าค่อนข้างด่ำ (effective alleles across loci มีค่าระหว่าง 3.57 ถึง 5.09, เฮตเทอโรไซโกซิดีจากการสังเกต มีค่าระหว่าง 0.36±0.16 ถึง 0.55±0.19)

ภาพที่ 3.1 แสดงสถานที่ตั้งและบริเวณที่เก็บตัวอย่างปลาเก๋าดอกแดง และทิศทางของกระแสน้ำ

ตารางที่ 3.1 ค่าความหลากหลายทางพันธุกรรมภายในประชากร ปลาเก๋าดอกแดง 6 ประชากร (microsatellite 4 ตำแหน่ง)

ประชากร	จำนวนอัลลิลเฉลี่ย	จำนวน effective allele	heterozygosity		
	ต่อด้าแหน่ง	เฉลี่ยจากทุกตำแหน่ง	 ค่าสังเกต	ค่าทางทฤษ <u>ฏ</u> ี	
ตรัง	7.25	4.13	0.43 <u>+</u> 0.10	0.50 <u>+</u> 0.13	
นครศรีธรรมราช	7.75	4.24	0.55 <u>+</u> 0.19	0.59 <u>+</u> 0.19	
Sibolga	7.25	4.81	0.52 <u>+</u> 0,15	0.55 <u>+</u> 0.15	
Lampung	7.25	3.57	0.48 <u>+</u> 0.16	0.54 <u>+</u> 0.17	
Јерага	8.00	5.09	0.47 <u>+</u> 0.10	0.66 <u>+</u> 0.12	
Flores	7.5	3.65	0.36 <u>+</u> 0.16	0.60 <u>+</u> 0.17	

การที่ประชากรมีความหลากหลายทางพันธุกรรมด่ำ อาจเป็นผลจากสาเหตุต่างๆ ได้แก่ การที่ ประชากรถูกจำกัดขอบเขต (population isolation) ประชากรมีขนาดเล็ก และ/หรือ การเกิดสภาวะคอ ขวดในอดีต (Hanfling and Brandl, 1998) ในการศึกษาครั้งนี้ไม่พบหลักฐานการเกิดสภาวะคอขวด

การที่ประชากรใด ๆมีความหลากหลายทางพันธุกรรมด่ำ อาจทำให้สูญเสียความสามารถในการ ปรับตัวเมื่อสิ่งแวดล้อมเกิดการเปลี่ยนแปลง (Hoelzel, 1999; Hedric, 1999) โดยการสูญเสียความ หลากหลายของอัลลิล (จำนวนอัลลิลเฉลี่ยต่อดำแหน่งต่ำ) อาจลดระดับความตัวนทานต่อโรค (Allendorf and Phelps, 1980) จึงควรมีมาตรการณ์ในการป้องกัน หรือลดผลกระทบทางลบ อันเกิดจากกิจกรรม ของมนุษย์ เช่นอาจจัดให้มีพื้นที่อนุรักษ์ กำหนดขนาดปลาที่อนุญาตให้จับได้ หรือห้ามการซื้อขายปลา ชนิดนี้ระหว่างฤดูที่มีการรวมกลุ่มเพื่อวางไข่ (Rhodes and Sadovy, 2002)

ปลาเก๋าดอกแดงมีโครงสร้างประชากรที่ชัดเจน (F_{sr} =0.074, P<0.05) ระดับความแตกต่างทาง พันธุกรรมระหว่างประชากรสูงกว่าค่าเฉลี่ยสำหรับปลาทะเล (Ward *et al.*, 1994) จึงควรมีการจัดการ โดยมีมาตรการณ์เฉพาะแต่ละประชากร นอกจากนั้นประชากรที่มีพันธุกรรมแตกต่างกันเหล่านี้ อาจมี ลักษณะที่สำคัญทางเศรษฐกิจแตกต่างกัน (Kumagai *et al.*, 2004) ดังนั้นจึงควรมีการศึกษาในเรื่องนี้

ความสัมพันธ์ทางพันธุกรรมของประชากรทั้ง 6 ประชากรไม่สอดคล้องกับระยะทางระหว่าง ประชากร และพบว่ากระแสน้ำมีส่วนสำคัญที่กำหนดความคล้ายคลึงระหว่างประชากร

เอกสารอ้างอิง

- Allendorf, F.W. and S.R. Phelps. 1980. Loss of genetic variation in a hatchery stock of cutthroat trout. Trans. Am. Fish Soc. 109: 537-543.
- Collin, P.L. 1996. Longevity of some coral reef fish spawning aggregations. Copeia 1996: 189-192.
- Hanfling, B. and R. Brandl. 1998. Genetic variability, population size and isolation of distinct populations in the freshwater fish *Cottus gobio* L. Molec Ecol 7: 1625-1632.
- Hedrick, P.W. 1999. Genetics of Population, 2nd ed. Sudbury, Massachusetts: Jones and Bartlett Publishers.
- Hoelzel, A.R. 1999. Impact of population bottlenecks on genetic variation and the importance of life-history; a case study of the northern elephant seal. Biol. J. Linn. Soc. 68: 23-39.
- Kumagal, K., A.A. Barinova, M. Nakajima, and N. Taniguchi. 2004. Genetic diversity between Japanese and Chinese Threeline Grunt (*Parapristipoma trilineatum*) examine by microsatellite DNA markers. Mar. Biotechnol. 6: 221-228.
- Rhodes, K.L., and Y. Sadovy. 2002. Temporal and special trends in spawning aggregations of camouflage grouper, *Epinephelus polyphekadion* in Pohnpei, Micronesia. Env. Biol. Fishes 63: 27-39.
- Sala, E., E. Ballesteros, and R.M. Starr. 2001. Rapid decline of Nassau Grouper spawning aggregations in Belize: Fishery management and conservation needs. Fisheries (www.fisheries.org) 26 (10): 23-30.

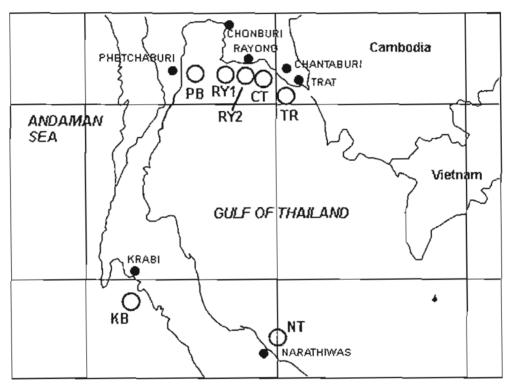
3.4 การศึกษาความหลากหลายของลักษณะสำคัญทางเศรษฐกิจระหว่างประชากรของปลาเก๋า ดอกแดงที่มีความแตกต่างทางพันธุกรรม

ไม่สามารถดำเนินการได้ เนื่องจากในระยะแรก สามารถรวบรวมลูกปลาได้แล้ว เริ่มการทดลอง ได้ระยะหนึ่ง แต่กระชังถูกพายุพัดเสียหาย ในระยะต่อมาได้พยายามหาลูกปลามาทดลองต่อ แต่ไม่ สามารถหาลูกปลาจากต่างแหล่งที่มีอายุใกล้เคียงกันมาศึกษาได้ แม้ได้พยายามนำลูกปลาจากผั่งอ่าว ไทย ซึ่งนิยมจับลูกปลาขนาดเล็ก มาอนุบาลไว้ก่อน แต่ลูกปลาก็ตายหมด โดยนักวิจัยหลัก (อาจารย์มา โนช ขำเจริญ) ได้พยายามจนถึงที่สุดแล้ว หัวหน้าโครงการ (ศ.อุทัยรัตน์ ณ นคร) จึงได้พิจารณาให้ระงับ โครงการ เพราะเป็นการสูญเบ่ล่าทั้งในเรื่องงบประมาณ และเวลาของผู้วิจัยหลัก

4. โครงการย่อยที่ 4

Genetic Diversity of Scallops, *Chlamys senatoria* and *Amusium pleuronectes* in Thailand

โครงการนี้มีวัตถุประสงค์ 2 ประการ คือ


- 1. ศึกษาความหลากหลายทางพันธุกรรมของหอยเชลล์ชนิด Amusium pleuronectes
- 2. การศึกษาความสัมพันธ์เชิงวิวัฒนาการของหอยเชลล์ในประเทศไทย
- 3. การพัฒนา microsatellite primers และการศึกษาความหลากหลายทางพันธุกรรมของ Mimachlamys senatoria

ผลการวิจัยของแต่ละวัตถุประสงค์ (โครงการย่อย) มีดังต่อไปนี้

4.1 การศึกษาความหลากหลายทางพันธุกรรมของ Amusium pleuronectes (งานวิจัยนี้เป็นส่วน หนึ่งของวิทยานิพนธ์ระดับปริญญาเอก สาขาเพาะเลี้ยงสัดว์น้ำ ใน สมเด็จพระเจ้าลูกเชอเจ้าฟ้า จุฬาภรณวลัยลักษณ์ อัครราชกุมารี)

Amusium pleuronectes เป็นหอยเชลล์ที่มีการจับเป็นการค้ามากว่า 30 ปีแล้ว โดยในระยะแรกมี ปริมาณการจับ ประมาณ 500-1,100 ตัน/ปี แต่ในระยะหลังลดลงเหลือ 100-300 ตัน/ปี จึงมีความจำเป็น ที่จะต้องนำมาตรการณ์ทางการจัดการประชากรมาใช้ อย่างไรก็ตามในปัจจุบันยังขาดข้อมูลเชิงลึก ทาง ด้านพันธุศาสตร์ประชากร ซึ่งจะจำแนกใด้ว่า หอยเชลล์ที่เป็นเป้าหมายของการจัดการนี้ ประกอบ ด้วย ประชากรย่อยๆ ที่มีความแตกด่างทางพันธุกรรมหรือไม่ ซึ่งหากมีความแตกต่างก็จำเป็นต้องมีวิธีการ จัดการแตกต่างกันไป นอกจากนั้น ข้อมูลความหลากหลายทางพันธุกรรมภายในประชากร จะบอกได้ว่า ประชากรเหล่านั้นจะมีศักยภาพในการปรับตัวในสิ่งแวดล้อมที่เปลี่ยนแปลงไปได้ดีเพียงใด และควรจะมี การจัดการอย่างไร จึงจะเกิดความยั่งยืน นอกจากนั้นพันธุศาสตร์ประชากรยังบอกได้ว่า หอยเซลล์ที่ กำลังศึกษานี้ ประกอบด้วยหอยที่มีความแตกต่างทางพันธุกรรมถึงระดับความแตกต่างระดับชนิดหรือไม่ ความเป็นไปใด้ในเรื่องนี้มีสูง ทั้งนี้เพราะหอยเชลล์มีความหลากหลายของลักษณะสูงมาก ในขณะเดียว กันหอยต่างชนิดก็อาจมีลักษณะที่เหลื่อมกันได้เช่นเดียวกัน การศึกษานี้มีวัตถุประสงค์ในการศึกษาความ หลากหลายทางพันธุกรรมของหอยเชลล์ A. pleuronectes ในประเทศไทย เพื่อทราบระดับความแตกต่าง ทางพันธุกรรม ภายในและระหว่างประชากร และทราบความสัมพันธ์ทางพันธุกรรมของประชากร เหล่านั้น การศึกษานี้เสร็จสมบูรณ์ และดีพิมพ์ในวารสาร Marine Biotechnology ภายใด้ชื่อเรื่อง Mitechondrial DNA diversity of the Asian moon scallop, Amusium pleuronectes (Pectinidae) in Thailand โดย Chulabhorn Mahidol, Uthairat Na-Nakorn, Srijunya Sukmanomon, Nobuhiko Taniguchi and Thuy T. T. Nguyen (เอกสารแนบ 10) โดยมีเรื่องย่อดังต่อไปนี้

การศึกษาทำโดยเก็บตัวอย่างหอยเซลล์ A. pleuronectes จาก 6 แหล่งในอำวไทย (ซลบุรี, ระยอง-1, ระยอง-2, จันทบุรี, ตราด และนราธิวาส ภาพที่ 4.1) ตลอดแนวฝั่งที่มีรายงานว่าพบหอยเซลล์ และอีก 1 แหล่งจากฝั่งทะเลอันดามัน (กระบี่) จากการศึกษาลำดับเบส ของ 16S rRNA จากหอยจำนวน 174 ตัวจากการเปรียบเทียบลำดับเบสของสายดีเอ็นเอขนาด 534 คู่เบส ที่ได้จากปฏิกริยา PCR พบว่า มีลำดับเบสที่แตกต่างกันถึง 16 แบบ (haplotype) โดยความแดกต่างที่พบเกิดขึ้นที่ตำแหน่งต่าง ๆกัน 27 แห่ง จัดเป็นความเปลี่ยนแปลงแบบ transition 21 แห่ง ส่วน transversion 5 แห่ง และเกิดการเพิ่มหรือ ขาดเบส 1 แห่ง หอยจากฝั่งอ่าวไทย และทะเลอันดามัน ไม่มี haplotype ที่เหมือนกันเลย แม้แต่ haplotype เดียว

ภาพที่ 4.1 แผนที่แสดงบริเวณเก็บตัวอย่างหอย Amusium pleuronectes

ความหลากหลายภายในประชากรหอย A. pleuronectes มีค่าค่อนข้างต่ำ (ดูจากค่า nucleotide diversity- π และ haplotype diversity-h) เมื่อเทียบกับรายงานในหอยเซลล์ชนิดอื่นๆ และพบว่า ประชากรจากจันทบุรี มีค่าความหลากหลายสูงที่สุด (π =0.0017; h=0.511) รองลงมาคือประชากรจาก ตราด (π =0.0010; h=0.364), เพชรบุรี (π =0.0006; h=0.345), ระยอง-1 (π =0.0004; h=0.197), -2 (π =0.0003; h=0.182), กระบี่ (π =0.0001; h=0.059) และนราชิวาส (π =0.0000; h=0.000) ตามลำดับ ข้อมูลนี้แสดงว่าประชากรของ A. pleuronectes มีขนาดเล็ก ดังนั้นจึงมีความสามารถในการปรับตัวไม่ดี เมื่อสิ่งแวดล้อมเปลี่ยนแปลงไปจะไม่สามารถอยู่รอดได้ กล่าวโดยสรุปคือประชากรขนาดเล็ก อาจไม่มี ความยั่งยืน

สำหรับประชากรในอ่าวไทย มีพันธุกรรมไม่แตกต่างกัน แต่พบความแตกต่างระหว่างประชากร กระบี่ กับประชากรในอ่าวไทยทุกประชากร การที่ประชากรในอ่าวไทยไม่มีความแตกต่างทางพันธุกรรม สอดคล้องกับคุณสมบัติของหอยชนิดนี้ ที่สามารถเคลื่อนที่ได้ดี ประกอบกับมีการปล่อยไช่ผสมกับน้ำเชื้อ ในทะเลเปิด มีโอกาสให้ตัวอ่อนลอยไปปะปนกันได้ง่าย อย่างไรก็ตาม ในการนำข้อมูลนี้ไปใช้ควรคำนึงถึง ความจริงที่ว่า เครื่องหมายพันธุกรรม 16SrRNA นี้ จะมีความหลากหลายค่อนข้างต่ำ ดังนั้นอาจมีผลให้ ได้ค่าความแดกต่างระหว่างประชากรต่ำกว่าความเป็นจริง

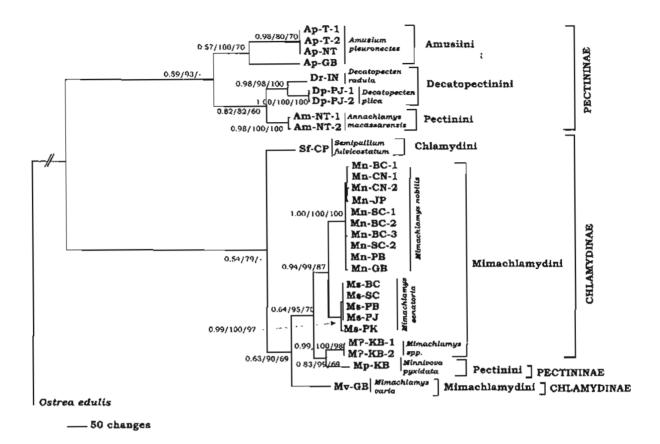
อย่างไรก็ตาม ข้อมูลนี้ชี้ให้เห็นอย่างชัดเจนว่า ประชากรจากอ่าวไทยและทะเลอันดามันมีความ แตกต่างทางพันธุกรรมในระดับสูง จากข้อมูลที่ได้สามารถคำนวณได้ว่าประชากรหอยเชลล์จากอ่าวไทย และทะเลอันดามัน แยกชาดจากกันมานานไม่น้อยกว่า 1.3-1.5 ล้านปีมาแล้ว (คำนวณจากค่าระยะห่าง ทางพันธุกรรม 2% ต่อล้านปี)

ช้อเสนอแนะจากการศึกษาครั้งนี้ มีดังนี้

- 1) ไม่ควรมีการชนย้ายประชากรข้ามระหว่างอ่าวไทยและทะเลอันดามัน เพราะประชากรทั้ง สองฝั่งมีพันธุกรรมต่างกันมาก และอาจมีคุณสมบัติในการปรับตัวเข้ากับสิ่งแวดล้อมที่ต่างกัน ดังนั้นหาก มีการผสมข้ามกันอาจทำให้สูญเสียความสามารถในการปรับตัว การเปลี่ยนแปลงประการสำคัญที่จะ เกิดขึ้นอย่างแน่นอนคือ ความแตกต่างระหว่างประชากรจะลดลง หรือหมดไป เป็นการสูญเสียความ หลากหลายทางพันธุกรรม
- 2) ควรนำเครื่องหมายพันธุภรรมที่มีระดับความหลากหลายสูง มาใช้ศึกษาประชากรในอ่าว ไทยอีกครั้งหนึ่ง เพื่อให้แน่ใจว่าประชากรเหล่านั้น แยกเป็นประชากรย่อย ๆหรือไม่ ก่อนที่จะออก มาตรการเกี่ยวกับการจัดการประมง
- 3) หากจะมีการเพาะเลี้ยงหอยเซลล์ชนิดนี้ ต้องไม่นำหอยจากฝั่งอ่าวไทยใปเลี้ยงในทะเลอัน ดามัน และในทางกลับกันก็ไม่ควรนำหอยจากฝั่งอันดามันไปเลี้ยงในอ่าวไทย สำหรับในอ่าวไทยเองควร ใช้หอยจากแหล่งใกลัเคียงเป็นพ่อแม่พันธุ์ เพื่อป้องกันการปนเปื้อนทางพันธุกรรม จนกว่าจะพิสูจน์ได้แน่ ชัดว่า ประชากรในอ่าวไทยไม่แตกต่างกันจริง ๆ
- 4.2 การศึกษาความสัมพันธ์เชิงวิวัฒนาการของหอยเชลล์ในประเทศไทย (งานวิจัยนี้เป็นส่วนหนึ่ง ของวิทยานิพนธ์ระดับปริญญาเอก ลาขาเพาะเลี้ยงสัดว์น้ำ ใน สมเด็จพระเจ้าลูกเธอเจ้าฟ้าจุฬา ภรณวลัยลักษณ์ อัครราชกุมารี)

การศึกษานี้เสร็จสิ้นสมบูรณ์ ชณะนี้ได้ตีพิมพ์ผลงานวิจัยแล้ว ในชื่อเรื่อง Phylogenetic relationships among nine scallop species (Bivalvia: Pectinidae) inferred from nucleotide sequences of one mitochondrial and three nuclear gene regions ดีพิมพ์ใน Journal of Shellfish Research โดย Chulabhorn Mahidol, Uthairat Na-Nakorn, Srijunya Sukmanomon, Wantana Yoosuk, Nobuhiko Taniguchi, and Thuy T.T. Nguyen (เอกสารแนบ 11) โดยมีเนื้อเรื่องโดยย่อ คือ

การจำแนกชนิดหอยเชลล์ ทำโดยอิงข้อมูลทางสันฐานวิทยา เช่น ลักษณะของเบ่ล็อก อย่างไรก็ ตาม Waller ซึ่งเป็นผู้หนึ่งที่มีความรู้ลึกซึ้งเกี่ยวกับการจำแนกชนิดหอยเชลล์ ได้ให้ข้อคิดเห็นว่า การแยก ชนิดหอยในครอบครัว Pectinidae ไม่ควรดูจากรูปร่างและลักษณะภายนอกของหอยแต่ละชนิดเพียง อย่างเดียว (Waller, 1991) แต่ ควรจะศึกษาไปพร้อมๆกันทั้งครอบครัว โดยพิจารณาทั้งความแปรปรวน ระหว่างท้องที่ต่างๆ และระยะต่างๆของการเจริญเดิบโต ทั้งนี้เพราะหอยเชลล์ชนิดเดียวกันอาจมีรูปร่าง หรือสีสันแตกต่างกัน นอกจากนั้นคำอธิบายที่ใช้ในการแยกชนิดอาจกำกวม หรือมีค่าอยู่ในช่วงที่ทับซ้อน กัน


ข้อมูลทางพันธุกรรมจะช่วยให้การจำแนกชนิดได้ถูกต้องมากยิ่งขึ้น โดยเฉพาะอย่างยิ่งเทคนิคที่ ใช้ปฏิกริยา PCR ทำให้สามารถศึกษาได้แม้จะมีตัวอย่างเพียงน้อยนิด หรือตัวอย่างอาจมีคุณภาพไม่ดีนัก โดยเทคนิคนี้สามารถเพิ่มปริมาณ ดีเอ็นเอ บริเวณใดบริเวณหนึ่งบนสายดีเอ็นเอที่สกัดได้จากตัวอย่าง โดยการออกแบบไพรเมอร์จากข้อมูลลำดับเบสปลายสายดีเอ็นเอเป้าหมายทั้ง 2 ด้าน

การศึกษาทำในหอยเชลส์ 9 ชนิด โดย 8 ชนิดพบในประเทศไทย ได้แก่ Amusium pleuronectes, Semipallium fulvicosta, Mimachlamys nobilis, Mimachlamys senatoria, Mimachlamys sp., Annachlamys macassarensis, Minnivola pyxidata และ Decatopecten plica และ อีก 1 ชนิดเป็นตัวอย่างจากประเทศอินโดนีเซีย คือ Decatopecten radula

เก็บตัวอย่าง adductor muscle จากหอยแต่ละชนิด ชนิดละ 2-7 ตัว นำมาสกัด ดีเอ็นเอ นำไป เพิ่มปริมาณ ดีเอ็นเอ บริเวณ 16SrRNA, ITS1, 5.8S และ ITS2 ในปฏิกริยา PCR ทั้งนี้โดยใช้ไพรเมอร์ ที่มีผู้ออกแบบไว้แล้ว เมื่อได้สาย ดีเอ็นเอ จากบริเวณต่างๆข้างต้น นำไปวิเคราะห์ลำดับเบส นำผลที่ได้ มาเทียบระหว่างหอยแต่ละตัว โดยใช้โปรแกรมคอมพิวเดอร์ เพื่อดูว่ามีความแตกต่างของเบสที่ตำแหน่ง เดียวกันหรือไม่ ความแตกต่างอาจเกิดในลักษณะของการเปลี่ยนแปลงเบส หรือมีเบสขาดหายไป

วิเคราะห์ความสัมพันธ์เชิงวิวัฒนาการโดยใช้วิธีต่างๆกัน 3 วิธี คือ maximum parsimony (MP), maximum likelihood (ML) และ Bayesian

ผลการศึกษาด้วยวิธีวิเคราะห์ต่างๆทั้ง 3 วิธี ให้ผลความสัมพันธ์เชิงวิวัฒนาการเหมือนกัน ต่างกันที่เปอร์เซ็นต์การทำซ้ำเท่านั้น โดยวิธี MP ให้ร้อยละการทำซ้ำดีที่สุด โดยสรุปหอยเชลล์ทั้ง 9 ชนิดแบ่งออกเป็น 2 กลุ่ม (ภาพที่ 4.1) กลุ่มแรกเป็นกลุ่มของ Amusium pleuronectes (tribe Amusiini) Decatopecten radula และ D. plica (tribe Decatopectinini) และ Annachlamys macassarensis (tribe Pectinini) ซึ่งสอดคล้องกับการแบ่งของ Waller (1991, 2006) โดยทั้งหมดนี้ถูกจัดอยู่ในครอบครัวย่อย Pectininae

ภาพที่ 4.2 ความสัมพันธ์เชิงวิวัฒนาการของหอยเชลล์ 9 ชนิด ตัวเลขบริเวณูจุดแยก คือร้อยละ ของการทำซ้ำ เมื่อคำนวณจากยืน 3 ตำแหน่ง

กลุ่มที่ 2 ประกอบด้วยสมาชิกใน tribe Chlamydini (Semipallium fulvicostatum) tribe Mimachlamydini (Mimachlamys nobilis, M. senatoria, M. sp.) ทั้งหมดจัดอยู่ในครอบครัวย่อย Chlamydinae และเมื่อนำลำดับเบสของ M. varia ที่ค้นได้จากฐานข้อมูล GenBank มาเปรียบเทียบด้วย ก็พบว่า หอยสกุล Mimachlamys ทั้ง 4 ชนิด เกาะกลุ่มกันอย่างถูกต้อง

การที่หอยเชลล์ชนิด Minnivola pyxidata ซึ่งเป็นสมาชิกของ tribe Pectinini (ครอบครัวย่อย Pectininae) ถูกจัดมารวมอยู่ในกลุ่มที่ 2 นี้ แสดงว่า วิวัฒนาการของครอบครัวย่อย Pectininae เกิดจาก สายวิวัฒนาการมากกว่า 1 สาย (paraphyletic) ผลการศึกษาครั้งนี้สนับสนุนวิธีการจำแนกของ Waller (2006) โดยเฉพาะอย่างยิ่งการแยกหอยเซลล์สกุล Amusium ออกจาก tribe Pectinini และจัดเป็น tribe ใหม่ชื่อ Amusiini ซึ่งจะเห็นใด้ชัดเจนจากผลการศึกษาครั้งนี้ว่า A. pleuronectes แยกออกจาก สมาชิก ของ tribe Pectinii

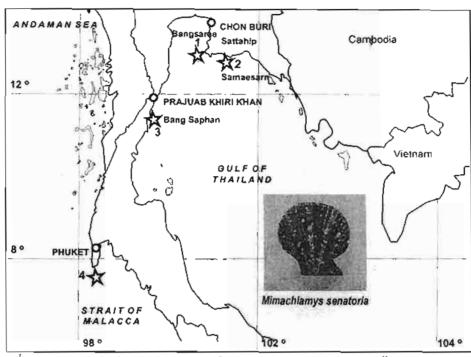
การที่ผลการศึกษาโดยอาศัยข้อมูลเชิงอณูพันธุศาสตร์ สอดคล้องกับผลของ Waller (2006)
แสดงว่า การจำแนกของเขามีความถูกต้องมากกว่าการจำแนกแบบอื่นๆ สาเหตุเพราะเขาจำแนกโดยใช้
ข้อมูล ลักษณะละเอียดที่ตรวจสอบด้วยกล้องจุลทรรศน์ ในหอยระยะ dissoconchs ซึ่งลักษณะเหล่านี้จะ
ไม่ผันแปรตามสิ่งแวดล้อมเช่นที่เกิดกับลักษณะเปลือกของหอยตัวเต็มวัย

4.3 การพัฒนา microsatellite primers และการศึกษาความหลากหลายทางพันธุกรรมของ

Mimachlamys senatoria (งานวิจัยนี้เป็นส่วนหนึ่งของวิทยานิพนธ์ระดับปริญญาเอก สาขา

เพาะเลี้ยงสัตว์น้ำ ใน สมเด็จพระเจ้าลูกเธอเจ้าฟ้าจุฬาภรณวลัยลักษณ์ อัครราชกุมารี)

การศึกษานี้เสร็จสิ้นสมบูรณ์ ขณะนี้ได้เตรียมด้นฉบับเพื่อส่งดีพิมพ์แล้ว (เอกสารแนบ 12) ใน หัวข้อ Development of microsatellite primers and genetic diversity of *Mimachlamys senatoria* in Thailand โดย Chulabhorn Mahidol and Uthairat Na-Nakorn เนื้อหาโดยย่อมีดังนี้


Mimachiamys senatoria คือหอยเชลล์ชนิดเดียวกับ Chiamys senatoria ในรายงานวิจัยที่
ผ่านๆมา แต่ในการศึกษานี้ใช้วิธีจำแนกตามหลักของ Waller (1991, 2001 และ 2006) จึงเปลี่ยนมาใช้
ชื่อสกุลว่า Mimachiamys หอยเชลล์ชนิดนี้ พบทั่วไปในน่านน้ำไทย ประชาชนเก็บมาบริโภคบ้าง แต่
ปริมาณการจับไม่มากนัก ต่อมา ศูนย์วิจัยประมงชายผั่งประจวบคีรีขันธ์ กรมประมง ประสบความสำเร็จ
ในการเพาะหอยชนิดนี้ (Nugranad and Promjinda, 1997) ทำให้เกิดความสนใจที่จะทำการเพาะเลี้ยง
หอยชนิดนี้ขึ้น

จากการศึกษานี้สามารถออกแบบ microsatellite primers ได้ 4 คู่ ดังมีรายละเอียดในตารางที่
4.1 นำ primer ทั้ง 4 คู่ไปใช้ศึกษาความหลากหลายทางพันธุกรรมของหอยเซลล์ M. senatoria โดยเก็บ ด้วอย่างหอยเซลล์ M. senatoria จากแหล่งต่าง ๆ 4 แหล่ง ดังแสดงในภาพที่ 4.3 สกัดดีเอ็นเอจาก adductor muscle แล้วนำไปเพิ่มจำนวนในปฏิกริยา PCR โดยใช้ primer ที่พัฒนาขึ้น นำผลผลิตจาก ปฏิกริยา PCR ไปแยกด้วยเทคนิค electrophoresis จากนั้นอ่าน genotype ของตัวอย่างแต่ละตัว นำมา คำนวณค่าแสดงความหลากหลายทางพันธุกรรมภายในประชากรคือ จำนวนอัลลิลต่อตัวอย่าง, heterozygosity จากการแจงนับ และจากการคำนวณ

ความหลากหลายระหว่างประชากรแสดงด้วย การทดสอบความแตกด่างระหว่างความถี่ของยืน, ค่า F_{sr} ระยะห่างทางพันธุกรรม (genetic distance)

ตารางที่ 4.1 แสดงลำดับเบลของ microsatellite primers ที่พัฒนาขึ้น, ลำดับเบลซ้ำ, อุณหภูมิที่ เหมาะสมในปฏิกริยา PCR และขนาดของ PCR product

ตำแหน่ง	ล้ำดับเบสของ primer		ลำดับเบสซ้ำ	Annealin	ขนาดของ PCR	
		(จากตำแหน่ง 5' ไป 3')		g temp.	product (bp)	
Cse01	F	CAT GTT TTG CTT CGA GTT TAG TTG	(GA) ₂₁	55	220-356	
	R	TGG AAA CAA CCA CTG ATG TTC TAT G				
Cse02	f	ACA ACA ACA ACA TCA TCC ACA	(CAA) ₈	60	189-297	
•	R	TCC AAA ACC GTT CAC ACT AAA GC	N ₂₄ (CAA) ₅			
Cse03	F	CAA CAA CAA CTT CAC CAA CAA CG	(CAA) ₅	55	156-180	
	R	CAA CAT TTG CTG TCG TTC TGT CT	N ₂₇ (CAA) ₈ N ₂₄			
			(CAA) ₁₂ N ₁₂ (CAA) ₄			
Cse04	F	ATA GGA CAC ACA CCG TGT CA	(TA) ₄	55	172-190	
	R	ATT TTG ATC GGA CAC ACT GC	N ₁₀ (CA) ₃			

ภาพที่ 4.3 แผนที่แสดงแหล่งเก็บตัวอย่างหอยเซลล์ M. senatoria 4 ประชากร ได้แก่
1) ตำบลบางเสร่; 2) ตำบลแสมสาร; 3) อำเภอบางสะพาน และ 4) อำเภอเมืองภูเก็ต

ผลการศึกษาแสดงว่า จำนวนอัลลิล/ดำแหน่ง มีค่าอยู่ในช่วงกว้างและค่อนข้างต่ำ (6.14-10.60, เฉลี่ย 9.39) ค่าเฮดเทอโรไซโกซิดีจากการสังเกตมีค่าด่ำเช่นกัน (เฉลี่ย 0.621) ยกเว้นประชากรจาก ภูเก็ต ซึ่งมีค่าเฮตเทอโรไซโกซิดี สูงถึง 0.716 (ดารางที่ 4.2)ข้อมูลนี้แสดงว่าประชากร M. senatoria ใน อ่าวไทยเป็นประชากรขนาดเล็ก ซึ่งอาจส่งผลให้มีศักยภาพในการปรับตัวต่ำ ทำให้น่าเป็นห่วงว่า เมื่อ สิ่งแวดล้อมเปลี่ยนแปลงอาจทำให้ประชากรเหล่านี้ไม่สามารถดำรงชีวิตอยู่ได้ โดยเฉพาะอย่างยิ่ง สิ่งแวดล้อมในอ่าวไทยกำลังเสื่อมโทรมลงอย่างรวดเร็ว ยิ่งเป็นปัจจัยเร่งที่จะทำให้สูญเสียประชากร ท้องถิ่นเหล่านี้ในระยะเวลาอันใกล้ ดังนั้นจึงควรมีการติดตามการเปลี่ยนแปลงของประชากรกลุ่มนี้อย่าง ใกล้ชิด หากมีแนวโน้มที่จะเสื่อมโทรมไปกว่านี้ (ความหลากหลายลดต่ำลง) จำเป็นต้องมีมาดรการ อนุรักษ์เพื่อให้คงอยู่ต่อไป ส่วนประชากรจากภูเก็ตเป็นประชากรขนาดใหญ่ จึงมีศักยภาพการปรับตัวดี

ตารางที่ 4.2 ค่าแสดงความหลากหลายทางพันธุกรรมภายในประชากรของหอยเชลล์ Mimachlamys senatoria 4 ประชากรในประเทศไทย; n=จำนวนตัวอย่าง, A=จำนวนอัล ลิลเฉลี่ย/ตำแหน่ง, Ae=จำนวนอัลลิลเฉลี่ย/ตำแหน่งโดยถ่วงด้วยความถี่อัลลิล, Ar=allelic richness ค่าเฉลี่ยจำนวนอัลลิล/ตำแหน่งโดยปรับจำนวนตัวอย่างให้เท่ากัน, Ho = ค่าสังเกตเฮตเทอโรไซโกซิตี. He=ค่าเฮตเทอโรไซโกซิดีจากการคำนวณ

ประชากร	n	A	A,	Α,	H _o	H _e
บางเสร่	27	9.25	6.14	5.71	0.565	0.609
(CB-1)		(9.14)	(6.06)	(4.66)	(0.390)	(0.387)
สัตหีบ	24	8.75	6.41	8.75	0.552	0.620
(C8-2)		(8.30)	(7.15)	(8.30)	(0.277)	(0.350)
ประจวบดีรีขันธ์	40	9.75	6.56	5.92	0.612	0.652
(PJ)		(7.93)	(5.73)	(4.36)	(0.302)	(0.327)
ภูเก็ต	37	15.75	10.60	7.76	0.716	0.723
(PK)		(13.27)	(9.72)	(5.05)	(0.274)	(0.318)
เฉลียรวม	128	19.25	9.39	7.03	0.621	0.669
		(15.97)	(9.17)	(1.47)	(0.302)	(0.345)

สำหรับความแตกต่างของประชากรสัตว์ทะเลนั้น นอกจากจะสัมพันธ์กับความสามารถในการ เคลื่อนที่ไปมาของพ่อแม่พันธุ์ ซึ่งทำให้สัตว์น้ำที่อยู่ห่างไกลกันผสมพันธุ์กันได้แล้ว ยังขึ้นกับการที่สัตว์ ชนิดนั้นมีระยะตัวอ่อนสั้นหรือยาว พวกที่มีระยะตัวอ่อนยาวจะมีโอกาสล่องลอยตามกระแสน้ำไปปะปน กันได้ในวงกว้าง ทำให้ความแตกต่างระหว่างประชากรมีน้อย อย่างไรก็ตามในหอยเชิ้ลล์นั้น การศึกษาใน ต่างประเทศแสดงว่า แม้จะมีระยะตัวอ่อนค่อนข้างยาว แต่ถ้าบริเวณนั้นมีกระแสน้ำวน หรือมีปัจจัยที่ทำ ให้ตัวอ่อนลอยไปไม่ได้ไกล ก็จะทำให้เกิดความแตกต่างระหว่างประชากรได้

จากการศึกษาครั้งนี้พบว่า ประชากรหอยเซลล์จาก บางเสร่ และ สัดหีบ จังหวัดชลบุรี มี พันธุกรรมไม่แตกด่างกัน แต่ทั้งสองประชากรนี้แตกต่างจาก ประชากรจากบางสะพาน จังหวัด ประจวบคีรีขันธ์ ประชากรในอ่าวไทยทุกประชากร แตกด่างจากประชากรจากภูเก็ต

จากข้อมูลที่ได้ นำไปสู่ข้อเสนอแนะที่สำคัญ คือ ไม่ควรมีการขนย้ายประชากรหอย M. senatoria ไปเลี้ยงข้ามแหล่ง ในปัจจุบันมีโครงการวิจัยที่กำลังดำเนินการโดยมีวัดถุประสงค์ในการพัฒนาการเลี้ยง หอย จึงควรดระหนักในเรื่องนี้ โดยไม่นำลูกหอยจากแหล่งอื่น ๆ มาเลี้ยงเพราะจะมีผลให้สูญเสียความ หลากหลายทางพันธุกรรมอย่างแน่นอน ด้วยเหตุผลที่ได้กล่าวมาแล้วข้างต้น

การที่ประชากรหอยจากภูเก็ต มีความหลากหลายทางพันธุกรรมสูง แสดงให้เห็นศักยภาพในการ ปรับตัว ดังนั้นหากนำมาใช้เลี้ยงน่าจะให้ผลดีกว่าประชากรจากที่อื่นๆ (เลี้ยงในแหล่งเลี้ยงบริเวณใกล้ เกาะภูเก็ตเท่านั้น)

นอกจากคำแนะนำดังกล่าวแล้ว ข้อมูลที่ได้นี้ยังเป็นประโยชน์ในแง่เป็นข้อมูลพื้นฐานเพื่อการ ดิดตามสถานภาพของประชากรหอยเซลล์ และเมื่อประกอบกับข้อมูลที่ได้จากสัตว์ชนิดอื่นๆ ที่เก็บจาก บริเวณเดียวกัน จะสามารถสะท้อนถึงสถานภาพของสิ่งแวดล้อมที่เปลี่ยนแปลงไปได้ว่าเสื่อมโทรมลงมาก น้อยเพียงใด

การศึกษานี้เป็นรายงานความหลากหลายทางพันธุกรรมของหอยเชลล์ M. senatoria เป็นครั้ง แรก ได้ให้ข้อมูลที่เป็นประโยชน์ต่อการดูแล ให้สามารถใช้ประโยชน์จากประชากร เหล่านี้ได้อย่างยั่งยืน นอกจากนั้น microsatellite ที่ได้พัฒนาขึ้น จะเป็นประโยชน์ในการศึกษาหอยชนิดนี้ และชนิดใกล้เคียง

Output ที่ได้จากโครงการ

1. ผลงานวิจัยที่ตีพิมพ์ (หรือ accepted)

lmp	act factor
1.1 Antoro, S., U. Na-Nakorn and W. Koedprang. 2006. Genetic Diversity of	1.545
Orange-spotted Grouper, Epinephelus coioides from Thailand and	(2005)
Indonesia using micosatellite markers. Marine Biotechnology 8: 17-26.	
1.2 Charoentawee, K., S. Poompuang and U. Na-Nakorn. 2006. Isolation and	1.219
characterization of microsatellites in giant freshwater prawn	(2005)
Macrobrachium rosenbergii. Molecular Ecology Notes 6: 823-825.	
1.3 Na-Nakorn, U., S. Sukmanomon, M. Nakajima, N. Taniguchí, W.	1.35
Kamonrat, S. Poompuang and T.T.T. Nguyen. 2006. Mt DNA diversity of	(2005)
the critically endangered Mekong glant catfish (Pangasianodon gigas	
Chevey) and its closely related species: implications for conservation.	
Animal Conservation 9: 483-494.	
1.4 Rungsin, W., N. Paankhao and U. Na-Nakorn. 2006. Production of all-	1.374
male stock by neofemale technology of the Thai strain of freshwater	(2005)
prawn, Macrobrachium rosenbergii. Aquaculture 259: 88-94.	
1.5 Mahidol, C., U. Na-Nakorn, S. Sukmanomon, N. Taniguchi and T.T.T.	2.408
Nguyen. 2007. Mitochondrial DNA diversity of the Asian moon scallop,	(2006)
Amusium pleuronectes (Pectinidae) in Thailand. Marine Biotechnology	
DOI: 10.1007/s10126-006-6137-y	
1.6 Koedprang, W., U. Na-Nakorn, M. Nakajima and N. Taniguchi. 2007.	0.766
Evaluation of genetic diversity of eight grouper species Epinephelus spp.	(2006)
based on microsatellite variations. Fisheries Science 73(2), 227-236.	
1.7 Sriphairoj, K., W. Kamonrat and U. Na-Nakorn. 2007. Genetic aspect in	2.081
broodstock management of the critically endangered Mekong giant	(2006)
catfish, Pangasianodon gigas in Thalland. Aquaculture 264: 36-46.	
1.8 Mahidol, C., U. Na-Nakorn , S. Sukmanomon, W. Yoosuk, N. Taniguchi	0.479
and T.T.T. Nguyen. 2007. Phylogenetic relationships among nine scallop	(2005)
species (Bivalvia: Pectinidae) inferred from nucleotide sequences of one	
mitochondrial and three nuclear gene regions. Journal of Shellfish	
Research 26(1): 25-32.	

1.9 Chareontawee, K., S. Poompuang, U. Na-Nakorn and W. Kamonrat. 2.081
2007. Genetic diversity of hatchery stocks of giant freshwater prawn (2006)
(Macrobrachium rosenbergii) in Thailand. Aquaculture (accepted 1 July 2007)
1.10 No AFLP sex specific markers for Pangasianodon gigas and its congener. Aquaculture (accepted 25 August 2007) (2006)

2. ผลงานวิจัยที่ส่งเพื่อตีพิมพ์ และต้นฉบับ

Pumitinsee, P., W. Senanan, U. Na-Nakorn, W. Kamonrat and W. Koedprang.

Temporal genetic variation of orange-spotted grouper (*Epinephelus* coicoides, Pisces: Serranidae) juveniles collected from an important fishing ground in Thailand (อยู่ระหว่างการปรับปรุง)

2.2 Mahidoi, C., U. Na-Nakorn, S. Sukmanomon and T.T. Nguyen. Genetic diversity of Mimachlamys senatoria in Thailand based on variation of microsatellite DNA ตันฉบับเพื่อส่งดีพิมพ์

3. หนังสือ

3.1 หนังสือเรื่องพันธุศาสตร์ประชากรเพื่อการเพาะเลี้ยงสัตว์น้ำ บรรณาธิการ อุทัยรัตน์ ณ นคร และ วงศ์ปฐม กมลรัตน์ กำลังจัดพิมพ์ (แนบต้นฉบับ ตามเอกสารแนบที่ 12)

4. เอกสารเผยแพร่

4.1 กายวิภาคของกุ้งก้ามกรามและการผลิตลูกกุ้งเพศผู้ล้วนโดยการทำลายต่อมแอนโดรเจนิค โดย วิกรม รังสินธุ์ (เอกสารแนบที่ 13)

5. การเผยแพร่ผลงานวิจัยในที่ประชุมวิชาการ

5.1 ระดับนานาชาติ

- (1) ศ.ดร.อุทัยรัตน์ ณ นคร เสนอผลงาน (ภาคบรรยาย) เรื่อง "Andrectomized Freshwater Prawn Macrobrachium rosenbergii Developed into Functional Females" ในกา๊รประชุม World Aquaculture Society ณ ประเทศอินโดนีเชีย ระหว่างวันที่ 9-14 พฤษภาคม 2548
- (2) ผศ.ดร.วรวุฒิ เกิดปราง เสนอผลงาน (ภาคบรรยาย) เรื่อง "Genetic Diversity of Eight Species of Grouper in The Genus Epinephelus (Family Serranidae)
 Based on Microsatellite Variation and Impacts of Microsatellite DNA

- Homoplasy" ในการประชุม World Aquaculture Society ณ ประเทศอินโดนีเซีย ระหว่างวันที่ 9-14 พฤษภาคม 2548
- (3) Mr.Suci Antoro เสนอผลงาน (ภาคบรรยาย) เรื่อง "Genetic Diversity of Epinephelus coioides, Hamilton from Thailand and Indonesia using micosatellite markers" ในการประชุม World Aquaculture Society ณ ประเทศ อินโดนีเซีย ระหว่างวันที่ 9-14 พฤษภาคม 2548
- (4) ศ.ดร.อุทัยรัตน์ ณ นคร เสนอผลงาน (ภาคโปสเตอร์) เรื่อง " Captive stock management of the critically endangered Mekong giant catfish, Pangasianodon gigas in Thailand" ในการประชุม International Symposium on Genetics in Aquaculture IX ณ เมือง Montpellier ประเทศ ฝรั่งเศส ระหว่าง วันที่ 26-30 มิถุนายน 2549
- (5) ผศ.ดร.สุภาวดี พุ่มพวง เสนอผลงาน (ภาคโปสเตอร์) เรื่อง "Microsatellite diversity among natural and hatchery populations of freshwater prawn, Macrobrachium rosenbergii in Thailand" ในการประชุม International Symposium on Genetics in Aquaculture IX ณ เมือง Montpellier ประเทศ ฝรั่งเศส ระหว่างวันที่ 26-30 มิถุนายน 2549

5.2 ระดับชาติ

- (1) อ.วิกรม รังสินธุ์ เสนอผลงานในการประชุม วิชาการมหาวิทยาลัยเกษตรศาสตร์ ณ มหาวิทยาลัยเกษตรศาสตร์ กรุงเทพฯ ระหว่างวันที่ 9-14 กุมภาพันธ์ 2549 เรื่อง การเจริญของระบบสืบพันธุ์ และผลของ andrectomy ในกุ้งกับมีกรามเพศผู้
- (2) น.ส.เกดุนภัส ศรีไพโรจน์ เสนอผลงานในการประชุมวิชาการพันธุศาสตร์ แห่งชาติครั้งที่ 14 ระหว่างวันที่ 11-13 มีนาคม 2548 ณ โรงแรมมิราเคิลแกรนด์ กรุงเทพฯ
- 6. จัดการประชุมวิชาการประจำปีของโครงการ 3 ครั้ง

ครั้งที่ 1 จัดเมื่อวันที่ 18-19 พฤษภาคม 2547 จำนวนผู้เข้าประชุม 54 คน ครั้งที่ 2 จัดเมื่อวันที่ 26 กันยายน 2548 จำนวนผู้เข้าประชุม 49 คน ครั้งที่ 3 จัดเมื่อวันที่ 31 สิงหาคม 2549 จำนวนผู้เข้าประชุม 50 คน

7. การใช้ประโยชน์ผลงานวิจัยเชิงพาณิชย์

- 7.1 ฝึกอบรมเพื่อถ่ายทอดผลงานวิจัยเรื่อง "การแปลงเพศกุ้งก้ามกรามเพื่อการผลิตกุ้ง ก้ามกรามเพศผู้ล้วน"
 - ครั้งที่ 1: 21-23 ธันวาคม 2548 ผู้เข้าอบรม 19 คน
 - ครั้งที่ 2: 24-25 เมษายน 2549 ผู้เข้าอบรม 10 คน

- ครั้งที่ 3: 3-4 มิถุนายน 2549 ผู้เข้าอบรม 23 คน
- 7.2 สาธิตการทำลาย androgenic gland เพื่อการผลิตกุ้งก้ามกรามเพศผู้ล้วน ในฟาร์มจำนวน 2 ครั้ง (เอกสารแนบ 14 เรื่องการยอมรับเทคโนโลยีของภาคเอกชน)
- 7.3 เจรจาธุรกิจกับบริษัท Power Prawn เพื่อบ่มเพาะเทคโนโลยีการผลิตกุ้งเพศผู้ล้วนให้แก่ บริษัท
- 7.4 ถ่ายทอดเทคโนโลยีโดยการประชุมเชิงปฏิบัติการเรื่อง การจัดการพ่อแม่พันธุ์ปลาบึกโดย อาศัยข้อมูลจากเครื่องหมายพันธุกรรม "จากห้องปฏิบัติการสู่โรงเพาะฟัก" วันที่ 21 มิถุนายน 2549 ณ อาคารวลัยลักษณ์ ภาควิชาเพาะเลี้ยงสัตว์น้ำ คณะประม มหาวิทยาลัยเกษตรศาสตร์ มีผู้เข้าร่วมประชุม 22 คน ประกอบด้วย นักวิชาการจากกรม ประมง และสถาบันการศึกษา เกษตรกร
- 7.5 โครงการ Development of a conservation strategy for the critically endangered Mekong giant catrish ภายใต้การสนับสนุนของ Darwin Initiative ได้รับแนวทางการ จัดการพ่อแม่พันธุ์ปลาบีกโดยอาศัยข้อมูลจากเครื่องหมายพันธุกรรม เพื่อการอนุรักษ์ปลาบีก โดยได้จัดสรรงบประมาณเพื่อศึกษาฟอแม่พันธุ์ปลาบีกเพิ่มจากที่ได้ศึกษาแล้วอีก 200 ตัว
- 7.6 ถ่ายทอดผลการวิจัยเรื่องการผลิตกุ้งก้ามกรามเพศผู้ล้วน และการจัดการพันธุกรรมปลาบึก โดยการใช้เครื่องหมายพันธุกรรม ในการบรรยายเรื่อง Genetic aspects on broodstock management of aquatic animals emphasis on freshwater prawn โดย ศ.อุทัยรัตน์ ณ นคร ในการประชุมวิชาการประจำปีของบริษัท CP Aquaculture (India) Private Limited ณ เมือง Chennai ประเทศอินเดีย ระหว่างวันที่ 14-15 ธันวาคม 2549
- 7.7 หัวหน้าโครงการร่วมนำประสบการณ์ และความรู้ที่ได้จากการวิจัยเขียนเรื่อง "(เรื่องเล่า เกี่ยวกับ...) เศรษฐกิจพอเพียงในบริษทของการเพาะเลี้ยงสัตว์น้ำ" ลงพิมพ์ในหนังสือเฉลิม พระเกียรดิพระชนมายุ 80 พรรษาพระบาทสมเด็จพระเจ้าอยู่หัว

8. ผลงานอื่น ๆ

- 8.1 microsatellite primer สำหรับกุ้งก้ามกราม 10 คู่ และ sequence (Gen Bank Accession no. ในดาราง)
- 8.2 microsatellite สำหรับพอยเชลล์ *Mimachlamys senatoria* 4 คู่ (Gen Bank Accession no. ในดาราง)
- 8.3 sequence ของ 16SrRNA ใน GenBank 67 sequence สำหรับหอยในครอบครัว
 Pectinidae และ 57 sequence สำหรับปลาในครอบครัว Pangasiidae (Gen Bank
 Accession no. ในตาราง)

ตาราง แสดง Accession number ของ sequence ในข้อ 7

ชนิด	Accession No.
Amusium pleuronectes	DQ640830-DQ640845
Annachlamys macassarensis	DQ640846-DQ640847
Mimachlamys nobilis	DQ640848-DQ640865
Mimachlamys senatoria	DQ640866-DQ640880
Mimachlamys spp.	DQ640881-DQ640886
Decatopecten radula	DQ640887-DQ640889
Decatopecten plica	DQ640890
Minnivolva pyxidata	DQ640891-DQ640892
Patinopecten yessoensis	DQ640893-DQ640894
Semipallium fulvicosta	DQ640895-DQ640896
Pangasianodon gigas	DQ307046-DQ307049, EF433412
Pangasianodon hypophthalmus	DQ334282-DQ334289
Pangasius bocourti	DQ334290-DQ334299
Pangasius conchophilus	DQ334300-DQ334302
Pangasius larnaudii	DQ334303-DQ334313
Pangasius macronema	DQ334314-DQ334315
Pangasius sanitwongsei	DQ334316-DQ334321
Helicophagus waandersii	DQ334322-DQ334328
Pteropangasius pleurotaenia	DO334329-DO334333

9.รายชื่อนักวิจัยที่เพิ่มตำแหน่งทางวิชาการระหว่างโครงการ

ชื่อ-สกุล	ตำแหน่งปัจจุบัน	วันที่อนุมัติ
9.1 ดร.วรวุฒิ เกิดปราง	ผู้ช่วยศาสตราจารย์	16 ด.ค. 2546
คณะวิทยาศาสตร์และเทคโนโลยีประมง มทร.ศรีวิชัย		
9.2 ดร.จิราภรณ์ ไตรศักดิ์	ผู้ช่วยศาสตราจารย์	31 ก.ค. 2546
ภาควิชาการจัดการประมง คณะประมง	•	
มหาวิทยาลัยเกษตรศาสตร์		

10. รายชื่อนิสิตในโครงการและสถานภาพเมื่อสิ้นสุดโครงการ

ชื่อนิสิต	้ สาขาวิชา สถาบัน	สถานภาพ
10.1 สมเด็จพระเจ้าลูกเธอ เจ้าฟ้าจุฬาภรณ	สาขาเพาะเลี้ยงสัตว์น้ำ	จบการศึกษา
วลัยลักษณ์ อัครราชกุมารี	คณะประมง	
(ปริญญาเอก)	มหาวิทยาลัยเกษตรศาสตร์	
10.2 น.ส.เกดุนภัส ศรีไพโรจน์	สาขาเพาะเลี้ยงสัดว์น้ำ	ยังไม่จบ
(ปริญญาเอก)	คณะประมง	
10.3 Mr.Suci Antoro	มหาวิทยาลัยเกษตรศาสตร์ สาขาเพาะเลี้ยงสัตว์น้ำ คณะประมง	จบการศึกษา

มหาวิทยาลัยเกษตรศาสตร์ 10.4 กัณฑรีย์ เจริญทวี สาขาเทคโนโลยีชีวภาพเกษตร จบการศึกษา มหาวิทยาลัยเกษตรศาสตร์: 10.5 นายภาณุวัฒน์ ภูมิตินทรีย์ สาขาวาริชศาสตร์ มหาวิทยาลัย จบการศึกษา บูรพา 10.6 น.ส.ทักขึ้นา เหมยคำ สาขาเพาะเลี้ยงสัดว์น้ำ ยังไม่จบ คณะประมง มหาวิทยาลัยเกษตรศาสตร์ สาขาเพาะเลี้ยงสัดว์น้ำ 10.7 น.ส.อัญลักษณ์ วชิรไชยกาล ยังไม่จบ คณะประมง มหาวิทยาลัยเกษตรศาสตร์

11. หัวหน้าโครงการเป็นวิทยากรรับเชิญบรรยายในระดับนานาชาติ

- 11.1 ศ.อุทัยรัตน์ ณ นคร ได้รับเชิญบรรยายเรื่อง Conservation of bio-diversity in wild population of fish and shellfish ในการประชุม "International Symposium on Advances in Bioscience and Biotechnology for Future Bioindustry" ระหว่างวันที่ 16-24 พฤศจิกายน 2549 ในโอกาสฉลองครบ 100 ปีของ Tohoku University จัด ณ เมือง Sendai ประเทศญี่ปุ่น จัดโดย Tohoku University
- 11.2 ศ.อุทัยรัดน์ ณ นคร ได้รับเชิญบรรยายเรื่อง Strategies for Development of Aquaculture and Marine Biotechnology: Successful Experiences and Technical Consideration ในการประชุม "Biotechnology Symposium III 2006 "Agrobiotechnology: Modernizing Agriculture Through Molecular Biology" ระหว่างวันที่ 29 พฤศจิกายน ถึง 1 ชันวาคม 2549 จัด ณ เมือง Kota Kinabalu รัฐ Sabah ประเทศมาเลย์เซีย จัดโดย Universiti Malaysia Sabah
- 11.3 ส.อุทัยรัตน์ ณ นคร ได้รับเชิญบรรยายเรื่อง Genetic aspects on broodstock management of aquatic animals emphasis on freshwater prawn ในการประชุม วิชาการประจำปีของบริษัท CP Aquaculture (India) Private Limited (15 ธันวาคม 2549) ณ เมือง Chennai ประเทศอินเดีย

12. รางวัลที่ได้รับระหว่างรับทุนส่งเสริมกลุ่มวิจัย ไม่มี

นักวิจัยในโครงการที่ได้รับรางวัล
 ไม่มี

14. อื่น ๆ

เกียรติประวัติในระดับนานาชาติ

ศ.อุทัยรัตน์ ณ นคร ได้รับเลือกเป็นนายกสมาคม International Aquaculture Genetics Association ในการประชุม International Symposium on Genetics in Aquaculture VIII ณ เมือง Montpellier ประเทศฝรั่งเศส โดยมีวาระการดำรงตำแหน่ง 3 ปี เริ่มตั้งแต่ เดือนมิกุนายน พ.ศ. 2549

เอกสารแนบที่ 1

î

Sriphairoj, K, Kamonrat, W, Na-Nakom, U. 2007. Genetic aspect in broodstock management of the critically endangered Mekong giant catfish, *Pangasianodon gigas* in Thailand. Aquaculture 264: 36-46.

Provided for non-commercial research and educational use only. Not for reproduction or distribution or commercial use.

This article was originally published in a journal published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues that you know, and providing a copy to your institution's administrator.

All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution's website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at:

http://www.elsevier.com/locate/permissionusematerial

Aquaculture

Aguaculture 264 (2007) 36-46

www.elsevier.com/locate/agua-online

Genetic aspect in broodstock management of the critically endangered Mekong giant catfish, *Pangasianodon gigas* in Thailand

Kednapat Sriphairoj a, Wongpathom Kamonrat b, Uthairat Na-Nakorn a,*

Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
 Inland Fisheries Resources Research and Development Institute, Department of Fisheries, Bangkok, Thailand

Received 21 April 2006; received in revised form 29 December 2006; accepted 30 December 2006

Abstract

A broodstock management plan was designed for the world's biggest catfish, the critically endangered Mekong giant catfish (MGC), Pangasianodon gigas, based on multilocus genotypes of seven microsatellite loci. The broodstock included a total of 129 pit-tagged mature MGC from seven farms in Thailand covering, approximately five year-classes. The genetic variation within stocks was relatively low (number of alleles/locus=2.29±0.76-4.06±1.83; effective number of alleles/locus=1.84±0.51-3.04±1.04; H_o =0.58±0.34-0.80±0.12; H_c =0.43±0.21-0.66±0.11). The genetic relatedness (r_{xy} : [Ritland, K., 1996. Estimators for pairwise relatedness and individual inbreeding coefficients. Genetic Res. 67, 175-185.]) was used to ideatify the unrelated pairs wherein a minimum value of r_{xy} for half-sib family (r_{xy} =0.07) was considered as a critical value of unrelatedness. The average r_{xy} within farm (0.21±0.13-0.31±0.07) was relatively high compared to the overall average r_{xy} (0.20±0.01), suggesting collaborative broodstock management among farms should be carried out in future. In the short-term six scenarios were proposed based on the 28 and 63 mature male and female brooders, respectively. The results suggest that the best strategy for maintaining the genetic diversity white minimizing inbreeding of MGC was to select mating pairs based on the r_{xy} . A long-term management plan simulation using the BOTTLESIM program showed that if a random mating scheme is adopted N_c should be kept at 100 in order to preserve>90% Λ for four generations (120 years). Applying the mk (minimal kinship) selection for only the first generation can reduce N_c to >30 individuals and can retain >90% Λ throughout the same period.

Keywords: Mekong giant catfish; Broodstock management; Genetic relatedness; mk selection

1. Introduction

One of the world's biggest freshwater fish, the Mekong giant catfish (MGC), Pangasianodon gigas is endemic to the Mekong River and its tributaries (Polprasit and Tevaratmaneekul, 1997). The wild population of MGC has rapidly declined, thought due

a hundred years and as it is something of a tourist

to factors such as overexploitation (Froese and Pauly,

^{2005),} improper fishing practices such as poisoning, and environment modification (e.g., damming) (Mitchell and Braun, 2003). It has been listed as Critically Endangered in the 2005 IUCN Red List of threatened species (IUCN, 2005). However, fishing of MGC is still practiced in Haad Khrai District, Amphur Chiangkhong, Chiangrai Province in northern Thailand as a part of a cultural ceremony. The ceremony dates back more than

^{*} Corresponding author. Tel.: +66 2 579 2924; fax: +66 2 561 0990. E-mail address: athairatn@yahoo.com (U. Na-Nakorn).

attraction, contributes to the livelihood of the local community as a whole and not only fishermen.

As conservation measure the Thai Department of Fisheries has performed artificial breeding using wild caught broodstock since 1983 (Polprasit and Tevaratmaneekul, 1997). The mass production of fingerlings was first achieved in 1984 (Phukasawan et al., 1984) and has continued until present with approximately 3.4 million offspring produced (Sukumasavin, pers. comm.). Approximately 18,000 adult fish covering approximately 22 year-classes are reared as potential broodstock in government and private farms throughout Thailand for aquaculture and restocking purposes.

Offspring of wild caught broodstock were grown in ponds and matured at about 15 years and breeding of pond-reared broodstock was first achieved in 2001 (Unakornsawad et al., 2001). Despite the fact that this captive stock serves as the only long-term hope for conservation of MGC, genetic management of the stock has not yet been initiated to date.

Improper management of broodstock could lead to reduction of effective population size (N_e) , the number of parents contributing their genes to the next generation. As a consequence, this could result in a loss of genetic diversity which is often a case for endangered species (Frankham et al., 2002), for example the captive population of the endangered haplochromine cichlid, *Prognathochromis perrieri* with N_e represented only 10% of the observed census size in the gene bank (reviewed by Philippart, 1995).

In addition to the fact that the captive broodstock (G_1) of MGC originated from a small number of wild fish (G_0) , further decline of genetic variability may occur in successive generations due to genetic drift (Frankliam et al., 2002). Moreover, the G_1 fish were not systematically tagged and hence the pedigree record is lacking. As such, the genetic diversity cannot be retained by simply maximizing N_c because the variance between family sizes cannot be controlled (Doyle et al., 2001).

Due to inadequate documentation on spawning records, there is an urgent need to employ molecular tools to facilitate proper MQC broodstock management. We selected microsatellite markers for this purpose because of their hypervariability and due to the availability of primers developed from DNA of the same species (Na-Nakorn et al., 2006). Moreover, microsatellite markers have been widely applied for broodstock selection approaches, e.g. genetic relatedness (r_{xy}) (Ritland, 1996), minimal kinship (mk) selection (Ballou and Lacy, 1995). The r_{xy} approach has also been used to facilitate selection of breeding pairs to avoid inbreeding (Norris et al., 2000; Borrell et al.,

2004; McDonald et al., 2004). Selection of brooders with the lowest mean kinship value, an average genetic relatedness of an individual, will enable hatcheries to keep fish with rare alleles (Ballou and Lacy, 1995; Doyle et al., 2001) hence maximizing genetic diversity and reducing divergence from the ancestral generation. This approach has been proposed for broodstock management of many fish species for examples, red sea bream, Pagrus major (Doyle et al., 2001); turbot, Scophthalmus maximus L. (Borrell et al., 2004) and Japanese flounder, Paralichthys olivaceus (Schine et al., 2004).

In the present study seven microsatellite loci were studied in 129 MGC individuals. Different scenarios regarding different broodstock recruitment and mating strategies were proposed. The efficiency of each scenario in retaining genetic diversity while minimizing inbreeding was compared. This information will be utilized for making recommendations on development of an MGC breeding strategy to the Department of Fisheries, Thailand, and also to private hatcheries. In addition, the results of the present study could serve as an important resource to develop guidelines for the genetic management of other endangered species.

2. Materials and methods

2.1. Fish samples

The broodstock (G_1) (n=129) used in this study were the first generation offspring of wild caught Mekong giant catfish (G_0) produced during 1984–1994. Hence, the different genetic structure between stocks reflects the composition of different year-classes rather than hatchery management practices. They weighed 17–120 kg among which 28 males and 63 females were mature. We collected G_1 tissue samples only from potential brooders. They were reared in four government fisheries stations and three private hatcheries as detailed in Table 1. Approximately 150 mg of tissue was collected from caudal fin of 129 individuals and separately preserved in 90% ethanol. Then fish were tagged with microchips in the head area.

2.2. Microsatellite analysis

DNA was extracted following a procedure described by Taggart et al. (1995). Amplification reactions were performed using seven microsatellite primers, Pg-1, Pg-2, Pg-3, Pg-6, Pg-16 and Pg-17 developed from the Mekong giant catfish DNA (Genbank accession numbers: AV 364900-3, AV 364907-8) (Na-Nakom et al., 2006) and PSP-G 507 developed from *Pangasius* species DNA pool (Hogan and May, 2002). The conditions for the 10 µł PCR

Table 1
Details on collection sites, abbreviation, number of samples and year classes of Mekong Giant Calfish brooders collected from farms in Thailand

Pop. no.	Pop. name	Collection sites	Size (kg)	No.	Year class
I	Chiangmai	Chiangmai Inland Fisheries Research and Development Center	40-120	31	1984
2	Phayao	Phayao Inland Fisheries Research Development Center	50-70	14	1984
3	Ayudthaya	Ayudthaya Inland Fisheries Research Development Institute	33-46	4	1984
4	Maejo	Maejo University (Department of Fisheries Technology, Faculty of Agricultural Production) Chiangmai Province	17-22	12	1991
5	Suphanburi	Chaomudcha Farm, Amphur Songpeenong, Suphanburi Province	27-35	19	1990- 1991
6	Chiangrai-W	Wangplabuk Farm, Amphur Wiangchai, Chiangrai Province	47-62	39	1988- 1990
7	Chiangrai-J	Jaran Farm, Arophur Phan, Chiangrai Province	20-22	10	1994

reactions were 5 ng DNA template, 1× PCR buffer, 0.25 pmol forward/reverse primer, 1.5 mM MgCl₂, 100 μM dNTPs, 0.4 unit Taq polymerase (Fermentas) and dH₂O to 10 μl. Temperature profiles were as follows: denaturation at 94 °C for 3 min; 35 cycles of 30 s at 94 °C, 30 s at annealing temperature, 1 min at 72 °C and a final extension at 72 °C for 5 min. The PCR condition and temperature profile of PSP-G 507 followed Flogan and May (2002). PCR products were separated on 4.5% denatured polyacrylamide gels and visualized by silver staining. Allele sizes were determined according to M13 sequence ladder (Promega, USA).

2.3. The referenced rx values for full-sibs and half-sibs

Five full-sib families and one half-sib family collected from Chiangmai Inland Fisheries Research and Development Center (a total of 20 individuals/family) were used for calculation of referenced r_{xy} values for full-sib and half-sib family, respectively.

2.4. Data analysis

2.4.1. Genetic variation

Parameters for genetic variation, number and effective number of alleles per locus, observed and expected heterozygosity were calculated on the 129 individuals of G_1 using the program POPGENE (Yeh and Boyle, 1997). The differences between populations were tested for each parameter (A, A_e, H_o, H_e) using ANOVA included in the SPSS statistical package (version 10) following a post-hoc multiple comparison with Bonferroni corrected for multiple tests.

2.4.2. Pairwise relatedness coefficient (r_{xy}) and mean kinship value(mk)

There are at least three estimators proposed by Ritland (1996), Lynch and Ritland (1999) and Queller and Goodnight (1989), for genetic relatedness based on codominant markers. In order to choose the best estimator we used these estimators to calculate mean pairwise relatedness of five full-sib families. Then a *t*-test was performed (null hypothesis, Ho: r_{xy} =0.5) which showed that only r_{xy} based on Ritland (1996) was not significantly different from 0.5 (P>0.01) (Table 2). As such, the Ritland estimator was employed and estimated using the MARK computer program, written by KR in FORTRAN95 for Windows, available at http://www.genetics.forestry.ubc.ca/ritland/programs.html.

The mean kinship of the *i*th individual, the average kinship values for that individual with every individual in the population including itself, was estimated following Doyle et al. (2001). The mean kinship for the whole sample of 129 G_1 individuals and separately for each population was calculated using Microsoft Excel.

2.4.3. Short-term breeding scheme

The mating plan for short-term application was designed following six scenarios based on the fact that at present only 91 fish, including 28 males and 63 females, were of known sex and ready for breeding and the goal was to maximize genetic variation and minimize

Table 2 Mean pairwise relatedness (r) calculated from five full-sib families based on the three estimaters, Ritland, Lynch-Ritland and Queller-Goodnight, and P for t-test (Ho: r = 0.5)

Family no.	Ritland r (±SD)	Lynch-Ritland r (\pm SD)	Queller-Goodnight r (±SD)
Full-sib no. 1	0.45 (0.16)	0.14 (0.14)	0.15 (0.15)
Full-sib no. 2	0.39 (0.10)	0.14 (0.14)	0.19 (0.13)
Full-sib no. 3	0.41 (0.13)	0.13 (0.14)	0.12 (0.16)
Full-sib no. 4	0.47 (0.12)	0.19 (0.12)	0.17 (0.14)
Full-sib no. 5	0.48 (0.15)	0.21 (0.15)	0.21 (0.14)
Mean	0.44 ^{ns} (0.14)	0.16* (0.14)	0.17* (0.15)
P	0.026	0.000	0.000

Note: ns=not different from 0.5 (t-test; P>0.01); * significantly different from 0.5 (P<0.01).

Table 3

Genetic variation based on seven microsatellite loci of the Mekong giant catfish broodstock kept in hatcheries in Thailand

Ν	A	A_{e}	H _o	H_e	Mean rxy	Range r _{xy}
31	4.00 (1.29)	2.72 (0.93)	0.74 (0.18)	0.60 (0.14)	0.24 (0.13)	0.03-0.79
14	4.00 (1.30)	3.04 (1.04)	0.80 (0.12)	0.66 (0.13)	0.27 (0.21)	0.03-1.25
4	2.71 (1.11)	2.42 (0.97)	0.68 (0.24)	0.63 (0.12)	0.25 (0.04)	0.19-0.29
12	2.29 (0.76)	1.84 (0.51)	0.58 (0.34)	0.43 (0.21)	0.31 (0.07)	0.15-0.48
19	4.00 (1.83)	2.56 (0.88)	0.69 (0.14)	0.59 (0.14)	0.21 (0.13)	0.06~1.12
39	3.86 (1.77)	2.49 (0.86)	0.65 (0.20)	0.57 (0.14)	0.22 (0.11)	0.030.64
10	3.43 (1.27)	2.44 (0.57)	0.62 (0.21)	0.60 (0.11)	0.23 (0.19)	0.04-0.84
129	4,71 (1.80)	2.71 (0.90)	0.68 (0.15)	0.60 (0.12)	0.20 (0.01)	0.03-1.25
	14 4 12 19 39	14 4.00 (E.30) 4 2.71 (L.H) 12 2.29 (0.76) 19 4.00 (1.83) 39 3.86 (1.77) 10 3.43 (1.27)	31 4.00 (1.29) 2.72 (0.93) 14 4.00 (1.30) 3.04 (1.04) 4 2.71 (1.11) 2.42 (0.97) 12 2.29 (0.76) 1.84 (0.51) 19 4.00 (1.83) 2.56 (0.88) 39 3.86 (1.77) 2.49 (0.86) 10 3.43 (1.27) 2.44 (0.57)	31 4.00 (1.29) 2.72 (0.93) 0.74 (0.18) 14 4.00 (1.30) 3.04 (1.04) 0.80 (0.12) 4 2.71 (1.11) 2.42 (0.97) 0.68 (0.24) 12 2.29 (0.76) 1.84 (0.51) 0.58 (0.34) 19 4.00 (1.83) 2.56 (0.88) 0.69 (0.14) 39 3.86 (3.77) 2.49 (0.86) 0.65 (0.20) 10 3.43 (1.27) 2.44 (0.57) 0.62 (0.21)	31 4.00 (1.29) 2.72 (0.93) 0.74 (0.18) 0.60 (0.14) 14 4.00 (1.30) 3.04 (1.04) 0.80 (0.12) 0.66 (0.11) 4 2.71 (1.11) 2.42 (0.97) 0.68 (0.24) 0.63 (0.12) 12 2.29 (0.76) 1.84 (0.51) 0.58 (0.34) 0.43 (0.21) 19 4.00 (1.83) 2.56 (0.88) 0.69 (0.14) 0.59 (0.14) 39 3.86 (1.77) 2.49 (0.86) 0.65 (0.20) 0.57 (0.14) 10 3.43 (1.27) 2.44 (0.57) 0.62 (0.21) 0.60 (0.11)	31 4.00 (1.29) 2.72 (0.93) 0.74 (0.18) 0.60 (0.14) 0.24 (0.13) 14 4.00 (1.30) 3.04 (1.04) 0.80 (0.12) 0.66 (0.11) 0.27 (0.21) 4 2.71 (1.11) 2.42 (0.97) 0.68 (0.24) 0.63 (0.12) 0.25 (0.04) 12 2.29 (0.76) 1.84 (0.51) 0.58 (0.34) 0.43 (0.21) 0.31 (0.07) 19 4.00 (1.83) 2.56 (0.88) 0.69 (0.14) 0.59 (0.14) 0.21 (0.13) 39 3.86 (1.77) 2.49 (0.86) 0.65 (0.20) 0.57 (0.14) 0.22 (0.11) 10 3.43 (1.27) 2.44 (0.57) 0.62 (0.21) 0.60 (0.11) 0.23 (0.19)

Note: A, An Ho and He are not significantly different among hatcheries.

A = number alleles/locus; $A_e =$ effective number alleles/locus, $H_o =$ observed heterozygosity, $H_e =$ expected heterozygosity. A number in a parenthesis is standard deviation.

inbreeding. The scenarios were as follows: 1) single pair mating of 28 males: 28 females, pairs decided according to low r_{xy} , each male used once; 2) same as 1, but each male mated with two females in order to make use of all available females; 3) single pair mating of the pairs with r_{xy} less than 0.07, each male participated in one mating; 4) same as 3, but each male mated with two females; 5) single pair mating of each of the 28 males mated to females with lower mean kinship value, each male participated in one mating; 6) same as 5 but each male mated with two females. Genetic variation was calculated from the genotypes of brooders selected according to each of the six scenarios mentioned above. The calculation was facilitated by the POPGENE computer program (Yeh and Boyle, 1997).

2.4.4. Long-term breeding plan: Genetic simulation

The long-term plan was designed according to the assumption that all 129 individuals are matured and all of them were involved in the breeding plan regardless of sex. Two scenarios were used, 1) random mating of different effective population size, all available individuals, 100, 50, 30 or 10 for 10 generations (the "RANDOM" scenario); 2) using the minimal kinship approach in the first generation (the "MK" scenario) wherein 100, 50, 30 or 10 individuals with the lowest

mean kinship value are used as a founder stock followed by random mating for nine generations.

We did not apply the r_{xy} approach for the long-term plan because the simulation program (BOTTLESIM, Kuo and Janzen, 2003) did not restrict only the designated breeding pairs. Rather it covered all possible crosses of the input individuals, hence the results would include the pairs with r_{xy} higher than the critical value $(r_{xy}=0.07)$. The computer program "BOTTLESIM" (Kuo and Janzen, 2003) was used to estimate the genetic variation that resulted from each scenario wherein the N_e value was stable over a period of 10 generations (300 years), with other simulation parameters kept constant (lifespan=30 years, age at maturity=15 years, discrete generations, dioecious reproduction, random mating, sex ratio 1:1, 300 years simulated, 1000 iterations).

3. Results

3.1. Genetic diversity within and among stocks

Genetic variation (Table 3) within each stock of MGC brooders was relatively low in terms of number of alleles and effective number of alleles per locus (A ranged from 2.29 ± 0.76 to 4.00 ± 1.83 and A_e ranged

Table 4 Pair-wise F_{ST} between hatchery stocks of Mekong giant carfish in Thailand

Stocks .	l -	2	3	4	5	6	7
1. Chiangmai	0.000	<u>a.</u>					
2. Phayao	-0.004	0.000					
3. Ayudthaya	0.006	-0.046	0.000				
4. Maejo	0.147*	0.165*	0.212*	0.000			
5. Suphanburi	0.018	0.007	-0.013	0.094*	0.000		
6. Chiangrai-W	0.048*	0.054*	0.064	0.033	0.031	0.000	
7. Chiangrai-J	0.043*	0.031	0.048	0.034	0.008	~0.008	0.000

Note: Asterisks indicate statistically significant ($\alpha = 0.05/21 = 0.0024$ — Bonferroni corrected).

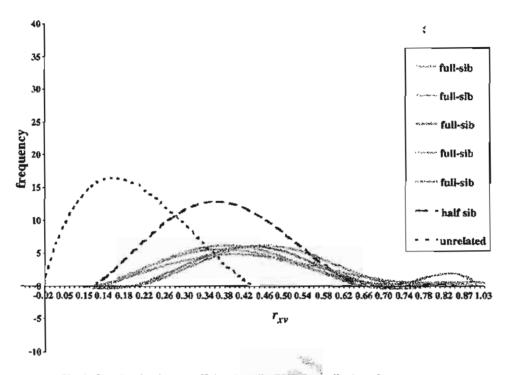


Fig. 1. Genetic relatedness coefficient (r_{xv}) distributions of offspring of known parent.

from 1.84 ± 0.51 to 3.04 ± 1.04). Heterozygosity was moderate (H_o ranged from 0.58 ± 0.34 to 0.80 ± 0.12 ; H_e ranged from 0.43 ± 0.21 to 0.66 ± 0.11). Across a total of 129 brooders genetic variation was $A=4.71\pm1.80$, $A_e=2.71\pm0.90$, $H_o=0.68\pm0.15$, $H_e=0.60\pm0.12$, All genetic variation parameters were not significantly

different between the seven hatchery populations (A: F=1.831, P=0.116; A_e : F=1.272, P=0.291; H_o : F=0.703, P=0.649; H_e : F=1.930, P=0.098). The pair-wise $F_{\rm ST}$ (Table 4) showed significant genetic differentiation between seven pairs of population among which the Maejo and Chiangmai stocks were distinct.

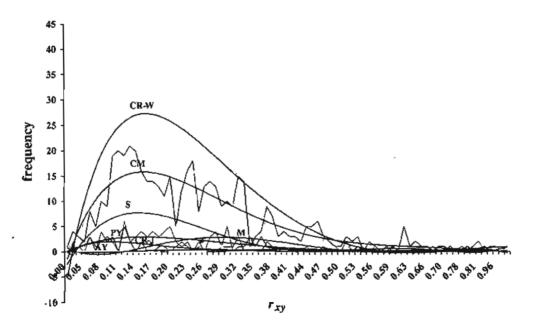


Fig. 2. Genetic relatedness coefficient (r_{XP}) distributions of captive stocks of MGC from seven farms; CR-W=Chiangrai-W, CM=Chiangrai, S=Suphanburi, PY=Phayao, CR-J=Chiangrai-J, AY=Ayudthaya, M=Maejo.

Table 5
Genetic variation of the broodstock recruited according to six scenarios as shown in Materials and methods section

oders A	-i		$\overline{}$
Odela 7	A_e^{l}	H_{e}^{l}	Mean $r_{\eta_1}^2$
4.57	7 2.83	0.62	0.062*
(1.6	(1.00)	(0.13)	(0.024)
4.71	2.70	0.60	0.085 ^b
(1.8	0) (0.95)	(0.13)	(0.041)
4.57	7 2.88	0.62	0.050 ^a
{1.6	(1.07)	(0.13)	(0.015)
4.5	2.85	0.62	0.053ª
(1.6	(1.05)	(0.13)	(0.015)
4.7	2.88	0.62	0.096 ^b
(1.8	(1.09)	(0.12)	(0.045)
4.7	2.68	0.60	0.088h
(1.8	(0.91)	(0.12)	(0.038)
	4.52 (1.6 4.7) (1.8 4.5) (1.6 4.5) (1.6 4.7) (1.8 4.7)	4.57 2.83 (1.62) (1.00) 4.71 2.70 (1.80) (0.95) 4.57 2.88 (1.62) (1.07) 4.57 2.85 (1.62) (1.05) 4.71 2.88 (1.80) (1.09) 4.71 2.68	4.57 2.83 0.62 (1.62) (1.00) (0.13) 4.71 2.70 0.60 (1.80) (0.95) (0.13) 4.57 2.88 0.62 (1.62) (1.07) (0.13) 4.57 2.85 0.62 (1.62) (1.05) (0.13) 4.71 2.88 0.62 (1.80) (1.09) (0.12) 4.71 2.68 0.60

Note: ¹no significant different between each pair of scenarios; ²mean in the same column superscripted with different letters are significantly different from each other (*P*<0.05).

The abbreviation as described in Table 2; SD in parentheses.

3.2. Genetic relatedness of full-sib, half-sib and unrelated pairs

In order to determine the cut-off value for unrelated pairs, genetic relatedness of full-sib, half-sib and unrelated families were studied. The five full-sib families showed r_{xy} between 0.39 and 0.48 (mean = 0.44±0.14) which was not significantly different from the expected value of 0.5 (t-test; P=0.026) (Table 2). The r_{xy} value for half-sib (average 0.38±0.11; range 0.07 to 0.85) and the unrelated (average, 0.19±0.07; range, -0.02 to 0.41) were significantly higher than the expected value 0.25

and 0 for half-sib and unrelated respectively (t-test; P=0.000).

The values of r_{xy} for the three kinship categories were overlapping (Fig. 1). If the mean value of r_{xy} for the unrelated pairs (0.19) was used as a cut-off value for being unrelated some full-sib and half-sib pairs were included. Thus we decided to regard a pair with $r_{xy} < 0.07$, which was a minimum value of genetic relatedness of half-sib, as unrelated.

3.3. Genetic relatedness within and among stocks

Mean genetic relatedness (r_{xy}) of G_1 in the different farms is shown in Table 3 and Fig. 2, ranging from 0.21 ± 0.13 (Suphanburi) to 0.31 ± 0.07 (Maejo). In every case this was greater than the overall genetic relatedness (Fable 3: 129 pooled sample, 0.20 ± 0.01).

Genetic relatedness among the 129 G_1 individuals regardless of farms and sexes (8256 pairs) falls between 0.03 and 1.25 (mean $r_{xy} = 0.20 \pm 0.01$). Most of the pairs showed the r_{xy} within ranges for full-sib or half-sib, and 6% (439 pairs) were unrelated ($r_{xy} < 0.07$).

3.4 Short-term breeding plan: The results of the six broadstock recruitment scenarios

Genetic variation of the broodstock recruited according to each scenario was shown in Table 5. All scenarios resulted in no differences in terms of genetic variation (P>0.05) even though different numbers of broodstock were used (28 males and females each in scenario 1 and

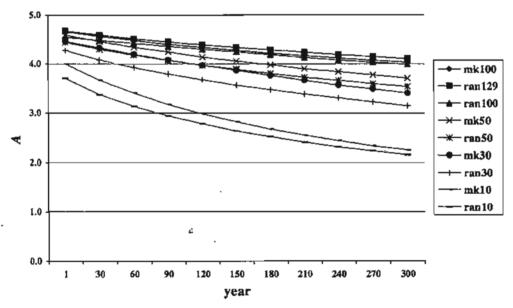


Fig. 3. Number of alleles per focus (A) over 300 years resulted from the simulation (BOTTLESIM) based on 2 scenarios (RANDOM and MK) using different N_e.

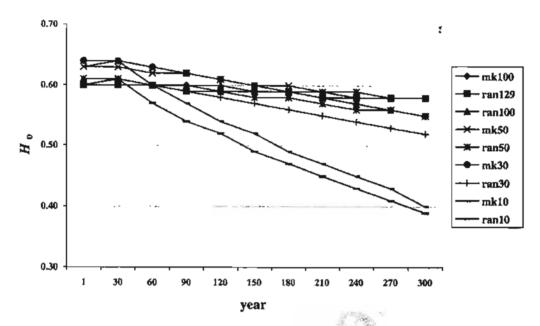


Fig. 4. Observed heterozygosity (H_o) over 300 years resulted from the simulation (BOTTLBSIM) based on 2 scenarios (RANDOM and MK) using different N_o.

5; 28 males and 56 females in scenario 2 and 6; 20 males and females each in scenario 3; 20 males and 25 females in scenario 4) as well as different recruitment strategies. When compared to genetic variation of the overall stock (from a total of 129 fish) all scenarios gave values of A_c , A_c and A_c not significantly different from the overall (P>0.05, t-test). Mean r_{xy} was not significantly different among scenarios 1, 3, 4 but they were significantly smaller than the mean r_{xy} for scenarios 2, 5 and 6.

3.5. Long-term breeding plan

The results of the simulation are shown in Fig. 3 for the number of alleles per locus (A) and Fig. 4 for the observed heterozygosity (H_o). The simulation for 10 generations showed that both the "RANDOM" and the "MK" breeding plan were almost equally effective in retaining H_o (96%) if 50-100 broodstock were used. At N_a =10 and 30 the "RANDOM" gave slightly lower H_o than the "MK". Number of alleles per locus (A) was retained with equal efficiency (88% A retained) in both methods when 100 broodstock were used. If N_e =10-50, despite the remarkable decline of A, the "MK" was slightly more efficient in preserving A than the "RANDOM" (e.g. at N_e =50; 82% and 79% A were retained following the "MK" and "RANDOM" respectively).

Notably the reduction of N_e to 10 individuals resulted in sharp decline of both H_o and A for both practices. After four generations (120 years) the MK with $N_e = 50$ and 100 both preserved > 90% of A while the RANDOM scheme required $N_e = 100$ to retain > 90% A.

4. Discussion

4.1. Genetic diversity of the captive stocks

Genetic variation of the captive populations (G_1) was not significantly different $(P, t\text{-test} \text{ of } H_o > 0.01$, Archie, 1985) to that of the natural populations $(A = 4.43 \pm 1.62; H_o = 0.677 \pm 0.140; n = 15)$ based on the same loci (Na-Nakorn et al., pers. comm.). Generally the captive stocks often lose genetic variation due to founder effect (Allendorf, 1986; Tave, 1999). However, in the context of the present study the impacts of founder effect were compensated by inclusion of samples covering a wide range of year-classes (at least four year-classes) while the genetic variation of the natural stock could have been underestimated due to limited sample size. The significant F_{ST} among farmed G_1 indicates that variation among founder collections contributed substantially to the genetic variance of the captive populations.

Based on the substantial level of genetic variation of the G_1 (relative to the wild stock) the captive stocks are suitable for establishing a founder stock provided that proper strategies are applied to maintain genetic diversity and avoid inbreeding in successive generations. Stocks selected for a restocking program should retain high genetic diversity, which is essential for an adaptation potential (Frankham et al., 2002). Vrijenhoek

et al. (1985) and Quattro and Vrijenhoek (1989) reported that a failure on captive rearing of *Poeciliopsis* occidentalis was attributable to a lack of genetic diversity.

The existing captive populations did not have all alleles found in wild samples (Na-Nakorn et al., pers. comm.) implying that they did not fully represent the available genetic diversity. Therefore further inclusion of wild gene pool, by bringing in gametes and/or offspring, is recommended. It is expected not only to enhance the genetic variation but also to reduce the effect of previous domestication selection (Schonhuth et al., 2003).

4.2. The genetic relatedness within and among stocks

Mean genetic relatedness (r_{xy}) of each stock was relatively high compared to the overall r_{xy} (0.198± 0.012), indicating that using breeding pairs from different hatcheries may assist in conservation of genetic diversity. Broodstock should be managed as a single stock and collaborative breeding programs should be established between hatcheries.

However, if individuals of known sex were considered only 28 males and 63 females were available for breeding in 2006. This number is much smaller than the recommended N_c to retain evolutionary potential (500, 5000; Frankham et al., 2004). Therefore, the genetically important individual approach (Ballou and Lacy, 1995) might be more desirable, in which genetically unique individuals are identified and included as broodstock, which is expected to maximize retention of genetic variation.

4.3. Variation of ray for three categories of kinship

The distribution of the r., of each kinship category calculating from empirical data obtained from one halfsib and five full-sib families showed high variation within a category (full-sib; half-sib or unrelated pairs) and the overlapping between each category was obvious. Our findings are similar to those previously reported in many fishes using r_{xy} of Queller and Goodnight (1989), such as Atlantic salmon, Salmo salar (Norris et al., 2000), Japanese flounder (Sekino et al., 2004), and turbot (Borrell et al., 2004). Such high levels of variation in r_{xy} , value might be due to low levels of polymorphism of the markers rather than a property of the estimator. Norris et al. (2000) clearly showed that increasing number of loci or using only high polymorphic loci reduced distribution of r_{xy} for each kinship category.

4.4. The cut-off value for being unrelated

One of our purposes was to identify unrelated presumed mating pairs to avoid inbreeding (applied for scenarios 3, 4). Theoretically, the unrelated individuals should have nil genetic relatedness $(r_{xy}=0)$ but the empirical data from our study showed r_{xy} range between -0.02 to 0.41 (mean= 0.18 ± 0.07) for the unrelated pairs. If we use the mean r_{xy} for unrelated pairs as the cut-off value there are 3780 half-sib pairs included. However, if the theoretical $r_{xy}=0$ is used all of the known sex pairs were discarded. Therefore we decided to tolerate relatedness smaller than those of between half-sib, i.e. minimum r_{xy} for half-sib $(r_{xy}=0.07)$ as a cut-off value which resulted in identification of 20 unrelated pairs (scenario 3).

4.5. A short-term plan for MGC broodstock recruitment and mating

The genetic variation of the stocks recruited according to each of the six scenarios was not different regardless of different number of brooders involved. All of the proposed scenarios were capable of retaining A, A_e and H_e of the overall stock.

The advantage of applying r_{xy} was to reduce inbreeding (Norris et al., 2000; Sekino et al., 2004) while genetic variation may not be efficiently retained. However in our case the low r_{xy} strategy was efficient for both retaining genetic diversity and minimize inbreeding. This was not the case for scenario 2 (mating of pairs with low r_{xy} males mated twice with different females) which resulted in high mean r_{xy} . This was because males participated in second mating hence allowed for inclusion of pairs with relatively high r_{xy} . The failure of increasing genetic variation as a result of more female inclusion in scenario 2 was explained by small overall genetic variation of available stock.

The application of the cut-off value for being unrelated limited the number of breeding pairs to 20 pairs, nevertheless the genetic variation was not reduced relative to the overall genetic variation. The effort to efficiently exploit the stock was made by allowing the same male to mate with second females whose r_{sy} was lower than the cut-off value (scenario 4). However such efforts would not alter genetic variation nor mean r_{xy}

In scenarios 4 and 5 the mk selection approach was applied to recruit genetically unique females which might improve genetic variation of the stock (Doyle et al., 2001). However genetic variation was not improved, which may be because the number of alleles in our stock was small. Moreover, mean r_{xy} of the recruited stock, which represented mean inbreeding

coefficient in the offspring, was enhanced in both scenarios.

As a conclusion we suggest a recruitment and breeding plan following scenarios 1, 3 or 4. This means that the mating pairs should be decided based on low r_{xy} with or without applying the cut-off value for being unrelated.

4.6. Long-term breeding plan

The ultimate goal of the conservation program is to retain 90% of the initial genetic variation over a 100 year period (Frankham et al., 2002) which is approximately four generations for MGC. Due to higher sensitivity of A than H_o in response to varying N_e , we would make decisions based on A which is more related to the adaptability of the stocks to environmental changes than H_o (Allendorf, 1986).

We suggested the $N_a = 100$ to retain $94\% A (98\% H_a)$ for about 120 years (approximately four generations). This value seems much lower than that generally recommended for long term sustainability of genetic diversity (e.g. N_e =500-5000; Tave, 1999, Frankham et al., 2004). For endangered fish species, such as copper redhorse, Moxostoma hubbsi, Lippè et al. (2006) suggested an Ne value of 400 to retain 90% genetic diversity over 100 years, which is also much higher than what our data suggested for the MGC, although this species has a similar life span (approximately 30 years) and generation time (mature at 10 years) compared to MCG. In general, for species with a long life span like the MGC and copper redhorse, it is advantageous that inbreeding will take a long time to accumulate (Lippè et al., 2006). Moreover, in the case of the MGC, the number of rare alleles is limited and as such the chance to have allele loss due to genetic drift is low (Allendorf, 1986; Tave, 1999) and hence the low Ne value suggested in the present study can be justified.

In addition our results suggested that applying the mk selection for only the first generation can reduce N_e down to 30 individuals and can keep >90% A. Our recommendation is in concordance with the empirical data in red sea bream which has clearly shown that mk selection was effective in recapture number of alleles/locus (Doyle et al., 2001). Moreover, it could remedy the apparent mismanagement that could have occurred in the past (Ballou and Lacy, 1995). This makes the mk selection suitable for the captive stocks of the Mekong giant catfish, which comprises a small number of founders with unequal contribution of each full-sib, hence effective population size was decreased following a random mating scheme (Doyle et al., 2001).

It is of concern that the mk selection may introduce inbreeding (Sekino et al., 2004) because it does not eliminate a mating among siblings. Moreover, two individuals with the lowest mean kinship value may often be related (Ballou and Lacy, 1995). The same authors also recommended that a mating of the low mean kinship value individuals with the high mean kinship value will partly reduce inbreeding relative to the breeding between low mean kinship value fish.

Therefore we explored the result of the mating between different groups (of the known sex fish) based on mean kinship values on inbreeding coefficient. On the basis that r_{xy} of a breeding pair equals to an inbreeding coefficient of the offspring, we calculated the inbreeding coefficient of the virtual offspring resulting from a random mating of five pairs of either low mean kinship (5 lowest mean kinship females) × low mean kinship (5 lowest mean kinship males) (LL), high mean kinship (5 highest mean kinship females) × high mean kinship (5 highest mean kinship males) (HH), low mean kinship male × high mean kinship female ($L_{ro}H_f$) and vice versa ($H_{ro}H_{ro}$) (mean kinship values of the lowest and highest five individuals are in Table 6).

The mean r_{xy} of all possible pairs without selfing, was averaged within each mating category. It was shown that the inbreeding coefficient of the virtual offspring (mean r_{xy}) of LL pairs (0.232±0.156) was significantly higher (F=2.859; P=0.037) than that of the H_fL_m (0.154±0.042). Although the average inbreeding coefficient of the reciprocal crosses (H_mL_f) did not significantly differ (P=1.000) from that of the LL pairs, the mean inbreeding coefficient showed a declining trend (0.198±0.090 compared to 0.232±0.156 of the LL or 0.214±0.064 of the HH). Such differences may be more obvious if fish of wider range of mean kinship values are included.

Our results likely support the breeding between the low mean kinship value with the high mean kinship

Table 6
Mean kinship values of the lowest and highest five individuals

Low mean kinship	female	Low mean kinship male		
Chiangrai-W #21	0.18826	Suphanburi #9	0.18918	
Phayao #2	0.18834	Chiangrai-W #33	0.19209	
Chiangrai-J #6	0.18901	Chiangrai-J #9	0.19445	
Phayao #12	0.18902	Chiangrai-J #4	0.19464	
Suphanburi #17 0.18976		Chiangrai-J #2	0.19516	
High mean kinship	female	High mean kinship	male	
Chiangmai #15	0.19863	Chiangrai-W #27	0.19843	
Maejo #9	0.19867	Chiangrai-J #5	0.19859	
Maejo #7	0.19888	Suphanburi #3	0.19917	
Suphanburi #11	0.19888	Ayudthaya #1	0.19920	
Suphanburi #8 0.19898		Suphanburi #14	0.19929	

value fish rather than the breeding between the low mean kinship fish. However, this is only a short-term gain, since the avoidance of brother-sister mating in a random-mating population has little effect on the long-term N_e (Falconer and Mackay, 1996). The alternative practice to avoid inbreeding would be applying mk selection following by culting of the pairs with high r_{xy} .

4.7. Conclusions and recommendations

- Genetic variation of the captive stocks was comparable to the wild stock.
- 2. Mean genetic relatedness (r_{xy}) of each stock was relatively high compared to the overall r_{yy} indicating that using breeding pairs from different hatcheries could assist conservation of genetic diversity.
- 3. For a short-term plan we suggest breeding of the 28 mature males and 28 mature females that showed lowest pairwise r_{xy} . The genetic diversity can be retained with a reduction of number of breeding pairs to 20 pairs if only the unrelated pairs $(r_{xy} < 0.07)$ are bred.
- 4. For a long term plan mk selection should be applied at least in the first generation then following by a random mating scheme and N_e should be more than 30. Accordingly it is expected that at least 90% of genetic variation will be preserved over 100 years.
- 5. As a general recommendation we suggest applying the mk selection approach for management of the captive stocks of the MGC, either for designing mating pairs or for culling of fish due to limited hatchery resources (Ballou and Lacy, 1995).
- In this study only 129 fish covering 5 year-classes have been explored, further study is required to cover fish from all available year-classes.
- Introduction of gametes from wild fish is recommended to increase genetic variation of the founder stock, prevent adaptation to captive environment and avoid inbreeding.

Acknowledgements

We would like to thank "Thailand Research Fund" for the funding of this research through the project entitled "Application of Genetics and Biotechnology for Sustainable Development of Aquaculture" (Senior Research Scholar 2004) awarded to UN. The senior author was supported by the Royal Golden Jubilee program, TRF for her Ph.D. study. We greatly appreciated Chiangmai Inland Fisheries Research and Development Center (CIFRDC), Phayao IFRDC, Ayudthaya IFRDI, Department of Fisheries, Maejo

University, Chaomudcha Farm, Wangplabuk Farm and Jaran Farm for providing samples of MGC broodstock. We thank Dr. Naruepol Sukumasavin for facilitating sample collection, Professor Roger Doyle, Ph.D., Genetic Computation Ltd. for his critical comments that substantially improved the manuscript and Dr. T.T.T. Nguyen and Mr. Simon Wilkinson, Network of Aquaculture Centers in Asia Pacific for revision of English. Finally, we appreciate the critical comments of the anonymous referees which significantly contributed to improvement of the manuscript.

Appendix A

Table 1

Allele frequencies of the MGC captive broodstock

Locus	Allele	Frequencies
Pgl	231	0.392
76	239	0.596
200	25!	0.012
Pg2	256	0.0513
A Company	258	0.1614
4	260	0.1457
17. ST/98.	264	0.0787
	270	0.0315
1	272	0.0157
	276	0.5157
Pg3	204	0.0874
	206	0.0992
	210	0.1825
	212	0.2063
	214	0.0516
	218	0.0119
	220	0.3611
Pg6	250	0.5708
	252	0.1457
	258	0.2835
Pg16	174	0,0773
•	176	0.0081
	178	0.5366
	182	1800.0
	184	0.3699
Pgi7	235	0.7126
	241	0.0630
	243	0.2244
PSP-G507	251	0.4031
- -	253	0.0465
	255	0.1318
	257	0.3798
	261	0.0388

References

Allendorf, F.W., 1986. Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol. 5, 181-190.

Archie, J.W., 1985. Statistical analysis of heterozygosity data: independent sample comparisons. Evolution 39, 623-637.

- Ballou, J.D., Lacy, R.C., 1995. Identifying genetically important individuals for management of genetic variation in pedigreed populations. In: Ballou, J.D., Gilpin, M., Foose, T.J. (Eds.), Population Management for Survival and Recovery. Columbia Univ. Press, New York, pp. 76-111.
- Borrell, Y.J., Alvarez, J., Vazquez, E., Pato, C.F., Tapia, C.M., Sanchez, J.A., Blanco, G., 2004. Applying microsatellites to the management of farmed turbot stocks (Scophthalmus maximus L.) in hatcheries. Aquaculture 241, 133-150.
- Doyle, R.W., Perez-Enriquez, R., Takagi, M., Taniguchi, N., 2001. Selective recovery of founder genetic diversity in aquacultural broodstocks and captive, endangered fish populations. Genetica 111, 291-304.
- Falconer, D.S., Mackay, T.F.C., 1996. Introduction to Quantitative Genetics, 4th ed. Addison Wesley Pub., Boston, MA. 464 pp.
- Frankham, R., Ballou, J.D., Briscoe, D.A., 2002. Introduction to Conservation Genetics. Cambridge Univ. Press, Cambridge. 617 pp.
- Frankham, R., Ballou, J.D., Briscoe, D.A., 2004. A Primer of Conservation Genetics. Cambridge Univ. Press, Cambridge. 220 pp.
- Froese, R., Pauly, D., 2005. FishBase. Available at: www.fishbase.org, version (06/2005).
- Hogan, Z.S., May, B.P., 2002. Twenty-seven new microsatellites for the migratory Asian catfish family Pangasiidae. Mol. Ecol. Notes 2, 38-41.
- IUCN, 2005. 2005 IUCN Red List of Threatened Species. Available at: www.iucnredlist.org.
- Kuo, C.H., Janzen, F.J., 2003. BOTTLESIM: a bottleneck simulation program for long-lived species with overlapping generations. Mot. Ecol. Notes 3, 669-673.
- Lippè, C., Dumont, P., Bernatchez, L., 2006. High genetic diversity and no inbreeding in the endangered copper redhorse, *Moxostoma hubbsi* (Catostomidae, Pisces): the positive sides of a logg generation time. Mol. Ecol. 15, 1769-1780.
- Lynch, M., Ritland, K., 1999. Estimation of pairwise relatedness with molecular markers. Genetics 152, 1753-1766.
- McDonald, G.J., Danzmann, R.G., Ferguson, M.M., 2004. Relatedness determination in the absence of pedigree information in three cultured strains of rainbow trout (Oncorhynchus mykiss). Aquaculture 233, 65-78.
- Mitchell, R., Braun, D., 2003. Giant catfish critically endangered, group says. National Geographic News. NATIONALGEOGRAPHIC. COM.
- Na-Nakorn, U., Sriphairoj, K., Sukmanomon, S., Poompuang, S., Kamonrat, K., 2006. Polymorphic microsatellite primers developed from DNA of the endangered Mekong-giant catfish, Pangasianodon gigas (Chevey) and cross-species amplification in three species of Pangasius. Mol. Ecol. Notes 6 (4), 1174-1176.
- Norris, A.T., Bradley, D.G., Cunningham, E.P., 2000. Parentage and relatedness determination in farmed Atlantic salmon (Salmo salar) using microsatellite markets. Aquaculture 182, 73-83.

- Philippart, J.C., 1995. Is captive breeding an effective solution for the preservation of endemic species. Biol. Conserv. 72, 281-295.
- Phukasawan, T., Pholprasidth, S., Koocharoenphaisan, N., Supachalus, M., Phoorakkiat, C., Pongsirijan, S., Chatchawalchaiphan, W., Meenakan, S., Seethasith, P., Bonnyaratpalin, S., 1984. Artificial breeding of Pla Buk (Pangasianodon gigas). Phayao Fisheries Station Annual Report 1984-1985, Freshwater Fisheries Division. Department of Fisheries, Bangkok.
- Polprasit, S., Tevaraimaneekul, P., 1997. Biology and culture of the Mekong giant catfish *Pangaslanodon gigas* (Chevey, 1930). Thai Fish. Gasette 50, 441-457.
- Quattro, J.M., Vrijenhoek, R.C., 1989. Fitness differences among remnant populations of the endangered Sonoran topminnow. cited after Philippart, J.C., 1995. Is captive breeding an effective solution for the preservation of endemic species. Biol. Conserv. 72, 281-295.
- Queller, D.C., Goodnight, K.F., 1989. Estimating relatedness using genetic markers. Evolution 43, 258-275.
- Ritland, K., 1996. Estimators for pairwise relatedness and individual inbreeding coefficients. Genet. Res. 67, 175-185.
- Schonhuth, S., Luikart, G., Doadrio, I., 2003. Effects of a founding event and supplementary introductions on genetic variation in a captive breeding population of the endangered Spanish killifish. J. Fish Biol. 63, 1538-1551.
- Sekino, M., Sugaya, T., Hara, M., Taniguchi, N., 2004. Relatedness inferred from microsatellite genotypes as a tool for broodstock management of Japanese flounder *Paralichthys olivaceus*. Aquaculture 233, 163-172.
- Taggart, J.B., Hynes, R.A., Prodohl, P.A., Ferguson, A., 1995. A simplified protocol for routine total DNA isolation from salmonid fishes. J. Fish Biol. 49, 963-965.
- Tave, D., 1999. Inbreeding and Brood Stock Management. FAO Fisheries Technical Paper, vol. 392. FAO Rome. 122 pp.
- Unakornsawad, Y., Pittathano, P., Khachapichat, M., 2001. Artificial propagation of Mekong giant catfish Pangastanodon gigas (Chevey) by first felial generation broodstock (F₁) rearing in earthen ponds at Phayao inland fisheries station. Inland Fisheries Division. Department of Fisheries, Thailand.
- Vrijenhoek, R.C., Douglas, M.E., Meffe, G.K., 1985. Conservation genetics of endangered fish populations in Arizona. cited after Philippart, J.C., 1995. Is captive breeding an effective solution for the preservation of endemic species. Biol. Conserv. 72, 81-295.
- Yeh, F.C., Boyle, T., 1997. POPGENE Version 1.32. Microsoft. Windows-Based Software for Population Genetics Analysis (Computer Program). University of Alberta and Centre for International Forestry Research, Alberta, Canada.

เอกสารแนบที่ 2

Į

Sriphairoj, K., Na-Nakom, U., Brunelli, J.P., Thorgaard. G. No AFLP Sex Specific Markers Detected in *Pangasianodon gigas* and *P. hypophthalmus*. A short paper submitted to Aquaculture.

Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatujak, Bangkok 10900, Thailand

ξ

July 23, 2007

Dear Professor Dr. G. Hulata

I would like to submit the article entitled "No AFLP Sex Specific Markers Detected in Pangasianodon gigas and P. hypophthalmus" by Kednapat Sriphairoj, Uthairat Na-Nakorn, Joseph P. Brunelli, Gary Thorgaard to be considered for publishing in Aquaculture as a short paper. The article showed the results of the original research attempting to find the AFLP markers specific to sex of two Pangasiids. The first species is the world's largest catfish and both of them are of economic importance. Although we failed to find the sex specific markers our result is useful in the sense that it may reflect the absence of genetic divergence between sexes of these catfishes.

Your kind consideration on this matter is greatly appreciated.

Best regards

Kednapat Sriphairoj

1	No AFLP Sex Specific Markers Detected in <u>Pangasianodon gigas</u> and <u>P. hypophthalmu</u>
2	;
3	Kednapat Sriphairoj ^{a,*} , Uthairat Na-Nakorn ^a , Joseph P. Brunelli ^b , Gary Thorgaard ^b
4	
5	^a Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok,
6	Thailand
7	^b School of Biological Sciences and Center for Reproductive Biology, Washington State
8	University, Pullman, WA, USA
9	
10	
11	
12	*corresponding author
13	Keywords: AFLP, Sex-marker, Pangasianodon gigas, Pangasianodon hypophthalmus
14	
1.5	
15	
16	
17	
18	
19	· ·
17	

Abstract

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Sex specific DNA markers are useful for hatchery management. Sex identification at early ages can reduce broodstock rearing costs. This study employed the Amplified Fragment Length Polymorphism (AFLP) approach for the identification of sex-linked markers in Pangasianodon gigas and P. hypophthalmus. Eight DNA pools (4 females, 4 males) each from P. gigas and P. hypophthalmus were screened using a total of 570 and 102 different primer combinations, respectively. None of the 570 primer combinations gave sex-associated amplification for P. gigas while 21 of the 102 primer combinations gave apparent sex-associated amplification across the pooled DNA samples of P. hypophthalmus. However, none of the 44 SCAR markers derived from the presumed sex specific fragments showed sex specificity when tested using DNA of individual P. hypophthalmus males and females. Apparently neither Pangasianodon species may has a simple genetic sex determining system. 1. Introduction The critically endangered Mekong Giant Catfish (MGC; Pangasianodon gigas) (IUCN, 2005) is not only of concern for conservation but has also gained interest among aquaculturists due to its extremely high growth rate (e.g. 5-15 kg/year weight gain) (Pholprasith, 1997; Unakornsawat, 2001). At present there are at least seven farms in Thailand, private and government owned, keeping MGC broodstock for artificial breeding. A broodstock management plan based on microsatellite DNA data has also been proposed (Sriphairoj et al., 2007). Rearing of the MGC to maturation requires considerable space (e.g. stocking density is less than 300 fish/ha- Chairoengyos, 2001) and time (maturation is reached at

about 16-20 years-Manosroi, 2003). Therefore, it would be of great benefit if farmers could

44 sex these fish at early stages and keep only good mating pairs (based on the molecular 45 data). However, manual sexing of the MGC is not possible until maturation, forcing 46 farmers to keep unnecessarily high numbers of broodstock. This increases costs and 47 reduces broodstock condition due to overcrowding.

Sex identification at immature stages may be done using molecular genetic markers [e.g., AFLP in Takifugu rubripees (Cui et al., 2006) and three-spined stickleback 49 50 (Gasterosteus aculeatus (Griffiths et al., 2000); RAPD in Clarias gariepinus (Kovács et al., 2001)]. Molecular techniques employed for sex identification include subtractive 51 52 hybridization (Devlin et al., 1994; Khamnamtong et. al., 2006), Randomly Amplified Polymorphic DNAs-RAPDs (McGowan and Davidson, 1998; Li et. al., 2002; Kovács et 53 al., 2001) and Amplified Fragment Length Polymorphism-AFLP (Li et. al., 2002; Griffiths 54 55 et al., 2000; Cui et al., 2006; Wuertz et.al. 2006) among which the AFLP approach has been especially widely used (Griffiths et al., 1999; Brunelli and Thorgaard, 2004; Felip et 56 57 al., 2005; Cui et al., 2006) due to the simplicity and reproducibility of the procedure 58 (Griffiths et al., 1999).

Therefore AFLP was used in this study aiming at identifying markers specific to each sex of the MGC. Concurrently, we attempted to develop sex specific markers for striped catfish (Pangasianodon hypophthalmus) which is the only congener of the MGC and is economically important in Southeast Asian countries including Thailand (FAO, 2006).

2. Materials and methods

48

59

60

61

62

63

64

65

66

67

Tissue samples were taken from 80 mature P. gigas individuals (40 females and 40 males) and 64 P. hypopthalmus individuals (31 females and 33 males). Phenotypic sex was determined by examining for the presence of eggs and sperm using catheterization.

74 poo
75 rest
76 emp
77 hyp
78 poly
79 200
80 sex
81 pres
82 (SC
83 elut
84 usir

85

86

87

88

89

90

91

agarose gel and stained with ethidium bromide.

68

69

70

71

72

73

et al., 1992). Pooled DNA samples from captive stocks of P. gigas and P. hypophthalmus were prepared using 100 ng/ul of genomic DNA from the 80 and 64 males and females respective to each species to make four pools for each sex (n=10 fish/pool for P. gigas; n=7-8 fish/pool for P. hypophthalmus). The AFLP analysis was conducted following the procedures described by Brunelli and Thorgaard (2004) using 500 ng total DNA from each pooled sample. Four DNA pools of each sex were digested using three different pairs of restriction enzymes (EcoRI/MseI, BamHI/MseI and BamHI/MspI) and were then screened employing a total of 570 and 102 different primer combinations for P. gigas and P. hypophthalmus, respectively. AFLP-PCR products were separated on 6% denaturing polyacrylamide gels and visualized by fluorescence imaging (Brunelli and Thorgaard, 2004). The primer combinations yielding AFLP bands which were associated with a single sex of P. gigas and P. hypophthalmus were re-analyzed in individual DNA samples. The presumed sex-specific bands were then eluted and converted into single locus markers (SCARs; Sequence Characterized Amplified Regions) following Felip et al. (2005). The eluted DNA was also sequenced and tested for homology to other sequences in GenBank using BlastN and BlastX (http://www.ncbi.nlm.nih.gov/blast/). Similarity was considered significant when the probability value was less than 10⁻⁴. Forward and reverse primers were designed for candidate sex markers and tested with male and female DNA samples of each species. The PCR conditions comprised predenaturation at 94°C for 3 min followed by 30 cycles of denaturation at 94°C for 30 sec, annealing at 60°C for 50 sec and extension at 72°C for 1 min. The final extension was performed at 72°C for 5 min. The PCR products were separated by electrophoresis on 2%

Genomic DNA was extracted following the standard phenol-chloroform protocol (Taggart

3. Results and Discussion

Failure to identify sex markers in Pangasianodon gigas

Two AFLP bands (from <u>Bam-cgaMse-aac</u> and <u>Eco-agcMse-att</u>) were initially considered as possibly being male-specific because they were amplified in all of the male DNA pools and only one of four female pools from <u>P. gigas</u>. However, the primers developed for these bands amplified DNA of both sexes in individual samples.

í

Another primer combination (<u>Bam</u>-agt<u>Mse</u>-agg) gave a band that appeared only in the male DNA pool from <u>P</u>. gigas. However, when it was re-analyzed in all samples including male and female DNA pools and individual DNA samples, this band was not amplified.

Candidate but inconsistent sex markers in Pangasianodon hypopthalmus

In P. hypophthalmus, 21 of the 102 primer combinations gave presumed sex associated bands (22 male and eight female specific bands) in the pooled DNA samples. After analysis of the individual DNA samples, 28 fragments showed sex specificity (21 male and 7 female specific fragments). Twenty six of these 28 presumed sex-specific fragments were successfully cloned and gave clear nucleotide sequences.

Forty-four primer pairs were designed from these sequences among which only one (PHM8 F1R2) gave a 526 bp fragment which was relatively more specific to and gave stronger amplification products in males (Figure 1). The fragment appeared in 25 males and 13 females but only one female had a band with an intensity approaching that in males. The remaining primers yielded PCR products against the individual DNA samples of both sexes. However when this primer was used to amplify additional individual samples (22 males and 22 females) from another stock of P. hypophthalmus, no differential amplification success between males and females (appeared in 10 males and 12 females)

was observed. Further SSCP analysis of the PHM8 F1R2 amplicons (obtained from eight male and four female samples) showed no sex-associated variation (Figure 2).

The Blast analyses showed high homology of 15 fragments with the sequences in GenBank, but none were sex associated regions. Three fragments showed high homology with the protein-encoding regions in <u>Danio rerio</u> and <u>Takifugu rubripes</u> with no relation to sex (details of the results are in Table 1).

Do the Pangasianodon species lack sex chromosomes?

Despite the large number of primer combinations (570) used this study failed to identify sex-specific markers for P. gigas. The number of primer combinations used was much larger than the numbers reported in previous studies, e.g. 486 primer combinations for rainbow trout (Oncorhynchus mykiss) (Felip et al., 2005), 256 for Penaeus monodon (Khamnamtong et al., 2006) and 128-396 for sturgeon species (Wuertz et.al. 2006). Therefore, we are confident that our analyses have covered a relatively large portion of P. gigas genomes.

The success of the identification of sex-specific markers has depended largely on the presence of a sex chromosome [e.g. African catfish (Kovács et al., 2001); chinook, chum and coho salmon (Brunelli and Thorgaard, 2004); rainbow trout (Felip et al., 2005)] or non-chromosomal genetic sex determining mechanisms (three-spined stickleback, Gasterosteus aculeatus) (Griffiths et al., 2000) in the target species. In contrast, failures to identify sex specific markers have been reported in species without demonstrated sex chromosomes or genetic sex determining systems [e.g. Atlantic salmon (McGowan and Davidson, 1998); green spotted pufferfish (Li et al., 2002); giant tiger shrimp (Khamnamtong et al., 2006) and sturgeon (Wuertz et al., 2006)]. The sex-determining system of P. gigas is still unclear despite an inconclusive report suggesting presence of an

XX/XY system (Manosroi et al., 2003). The failure to identify sex-associated markers in the present study suggests that sex chromosomes may be absent in <u>P</u>. £igas.

Despite the smaller number of primer combinations used for P. hypophthalmus, we observed a larger number of the presumed sex-associated AFLP fragments in this species than in P. gigas. This may be attributable as a family effect wherein the male samples share only one Y chromosome received from the father, thus have many polymorphisms distinguishing the Y chromosome from the X chromosome. Although our P. hypophthalmus samples were not a full-sib, it is likely that they came from only a small number of families (Po-Charoen Farm, pers. comm.) whereas the P. gigas samples were collected from widely distributed populations (both from the wild and from a large number of hatcheries). The recombination events which have occurred along the sex chromosome pair throughout the evolutionary history of P. gigas may be responsible for the inability to detect the presumed sex-associated AFLP fragments.

Nevertheless the present study does not reveal any sex specific markers in P.

hypophthalmus. To our knowledge there is no evidence for sex chromosomes and/or other sex determining mechanisms in P. hypophthalmus. Therefore, we surmise that sex-specific markers may not exist in this species despite having analyzed only a relatively small portion of the genome by a small number of primer combinations used in this study.

In some cases, although sex is controlled by a sex chromosome, phenotypic sex may be altered due to "modifying genes" and this may result in failure to identify sex-associated markers (Li et al., 2002). This might explain our failure to detect such markers, especially in P. hypophthalmus.

162	Our study was the first attempt to find sex markers in the Pangasiids. Despite the
163	failure to find such markers our data are useful as a guideline for further studies targeting
164	similar goals.
165	Acknowledgements
166	We thank Chiangmai Inland Fisheries Research and Development Center
167	(CIFRDC), Phayao IFRDC and Chaomudcha Farm for providing us with P. gigas samples.
168	P. hypophthalmus samples were obtained from Po-charoen Farm and Sakonnakorn IFRDC.
169	The study was supported by Royal Golden Jubilee program to K.S. and Thailand Research
170	Fund through the project entitled "Application of Genetics and Biotechnology for
171	Sustainable Development of Aquaculture" (Senior Research Scholar 2004) awarded to
172	Prof. Na-Nakorn.
173	References
174	Brunelli, J., Thorgaard, G.H., 2004. A new Y-chromosome-specific marker for Pacific
175	salmon, Trans. Amer. Fish. Soc. 33, 1247-1253.
176	Chairoengyos, T., 2001. Mekong Giant Catfish Culture. Farmer Technologies 13.
177	Available at: http://poothai.bravehost.com/plab.html. (In Thai)
178	Cui, J., Shen, X., Gong, Q., Yang, G., Gu, Q., 2006. Identification of sex markers by
179	cDNA-AFLP in Takifugu rubripes. Aquaculture 257, 30-36.
180	Devlin, R.H., McNeil, B.K., Solar I.I., Donaldson, E.M., 1994. A rapid PCR-based test for
181	Y-chromosome DNA allows simple production of all-female strains of chinook
182	salmon. Aquaculture 128, 211-220.
183	FAO, 2006. Fishstat Plus Version 2.30. Available at:
184	http://www.fao.org/fi/statist/FISOFT/FISHPLUS.asp.

185	Felip, A., Young, W.P., Wheeler, P.A., Thorgaard, G.H., 2005. An AFLP-based approach for
186	the identification of sex-linked markers in rainbow trout (Oncorhynchus mykiss).
87	Aquaculture 247, 35-43.
188	Griffiths, R., Orr, K., 1999. The use of amplified fragment length polymorphism (AFLP) in the
189	isolation of sex-specific markers. Mol. Ecol. 8, 671-674.
190	Griffiths, R., Orr, K.J., Adam, A., Barber, I., 2000. DNA sex identification in the three-spined
191	stickleback. J. Fish. Biol. 57, 1331-1334.
192	IUCN, 2005. 2005 IUCN Red List of Threatened Species. Available at:
193	www.iucnredlist.org.
194	Khamnamtong, B., Thumrungtanakit, S., Klinbunga, S., Aoki, T., Hirono, I., Menasveta,
195	P., 2006. Identification of sex-specific expression markers in the Giant tiger
196	shrimp. J. Biochem. Mol. Biol. 39, 37-45.
197	Kovács, B., Egedi, S., Bártfai, R., Orbán, L., 2001. Male-specific DNA markers from
198	African catfish (Clarias gariepinus). Genetica 110, 267-276.
199	Li, Y., Hill, J.A., Yue, G.H., Chen, F., Orban, L., 2002. Extensive search does not identify
200	genomic sex markers in Tetraodon nigroviridis. J. Fish Biol. 61, 1314-1317.
201	Manosroi, J., Meng-Umphan, K., Meevatee, U., Manosroi, A., 2003. Chromosomal
202	karyotyping from peripheral blood lymphocytes of the Mekong Giant Catfish
203	(Pangasianodon gigas, Chevey). Asian Fisheries Sci. 16, 241-246.
204	McGowan, C., Davidson, W.S., 1998. The RAPD technique fails to detect a male-specific
205	genetic marker in Atlantic salmon. J. Fish Biol. 53, 1134-1136.
206	Pholprasith, S., Tavarutmaneegul, P., 1997. Biology and Culture of the Mekong Giant Catfish,
207	Pangasianodon gigas (Chevey, 1930). Extension Paper No. 31, National Inland
208	Fisheries Institute, Department of Fisheries, Thailand. (In Thai)

209	Sriphairoj, K., Kamonrat, W., Na-Nakorn, U., 2007. Genetic aspect in broodstock management
210	of the critically endangered Mekong giant catfish, Pangasianodon gigas in Thailand.
211	Aquaculture 264, 36-46.
212	Taggart, J.B., Hynes, R.A., Prodohl, P.A., Ferguson, A., 1992. A simplified protocol for
213	routine total DNA isolation from salmonid fishes. J. Fish Biol. 40, 963-965.
214	Unakornsawad, Y., Pittathano, P., Khachapichat, M., 2001. Artificial propagation of
215	Mekong giant catfish Pangasianodon gigas (Chevey) by first felial generation
216	broodstock (F1) rearing in earthen ponds at Phayao inland fisheries station. Inland
217	Fisheries Division, Department of Fisheries, Thailand. (In Thai)
218	Wuertz, S., Gaillard, S., Barbisan, F., Carle, S., Congiu, L., Forlani, A., Aubert, J.,
219	Kirschbaum, F., Tosi, E., Zane, L., Grillasca, J.P., 2006. Extensive screening of
220	sturgeon genomes by random screening techniques revealed no sex-specific marker.
221	Aquaculture 258, 685-688.
222	
223	

Table 1 Blast analysis of 16 fragments which show high homology (E-value <1e-04)

Clone	Insert size (bp)	blastN	E-value	blastX '	E-value
PH19	254	Gasterosteus aculeatus clone VMRC26-21C14	3e-05	>1e-04	>1e-04
PH37	530	Conger myriaster DNA	1e-06	>1e-04	>1e-04
PH41	397	Ictalurus punctatus unprocessed RNA for Oct2 transcription factor	8e-34	>1e-04	>1e-04
PH45	503	Oryzias latipes gene for membrane guanylyl cyclase OlGC1	3e-09	hypothetical protein [Danio rerio]	6e-05
PHM2	390	Pseudobagrus ichikawai 1e-05 >1e-04 DNA, microsatellite, clone:Pi-m03		>1e-04	
PHM4	156	Zebrafish DNA sequence 5e-12 >1e-04 from clone DKEY-14H17 in linkage group 11		>1e-04	
PHM7	191	Danio rerio similar to	7e-04	kinesin-related	5e-08
		kinesin-related		microtuble-based	
		microtuble-based motor		motor protein [Danio	
		protein (LOC558819),		rerio]	
		mRNA			
РНМ8	557	>1c-04	>1e-04	putative nucleic acid binding protein [Takifugu rubripes] •	1e-10
РНМ9	464	Mus musculus chromosome 7, clone RP23-184F6	4e-06	>1e-04	>1e-04
PHM10	174	Mus musculus chromosome 3, clone RP23-324B15	2e-05	>1e-04	>1e-04
PHM11	357	Zebrafish DNA sequence from clone DKEY-267L4 in linkage group 17	3e-07	>1e-04	>1e-04
PHM12	245	Zebrafish DNA sequence	2e-07	>1e-04	>1e-04
		from clone CH211-			
		151L13 in linkage group			
		21			
PHM13	420	Zebrafish DNA sequence from clone DKEYP-50B9 in linkage group 25	3e-08	>1e-04	>1e-04
PHM14	303	Zebrafish DNA sequence from clone DKEYP-4C7 in linkage group 13	7e-14	>1e-04	>1e-04
PHM16	213	Zebrafish DNA sequence from clone CH211-286H12	5e-11	>1e-04	>1e-04
PHFM1	366	Zebrafish DNA sequence from clone CH211-190N9 in linkage group 15	2e-09	>1e-04	>1e-04

Fig 1 The amplification results of PHM8F1R2 with DNA of 28 females and males \underline{P} . hypophthalmus. M is 100 bp DNA marker.

Fig 2 SSCP analysis of the PCR product amplified from gemomic DNA of females (lanes 1-4) and males (lanes 5-12) P. hypophthalmus using primer PHM8F1R2. Lanes M and D are a 100 bp DNA marker and the double strand PCR product, respectively.

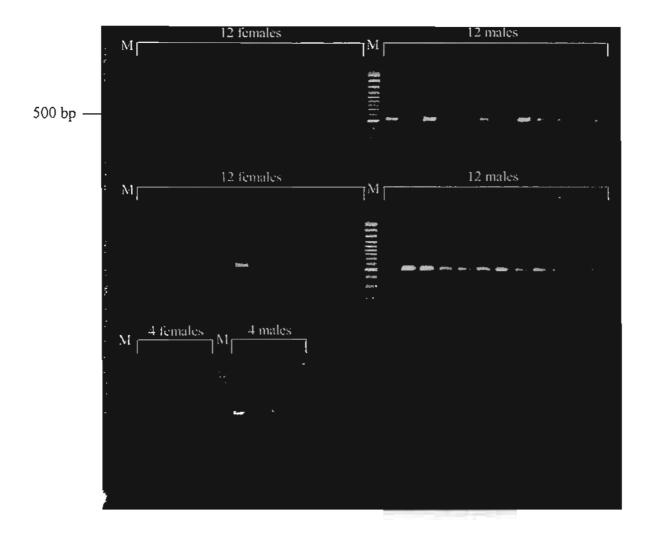


Fig. 1

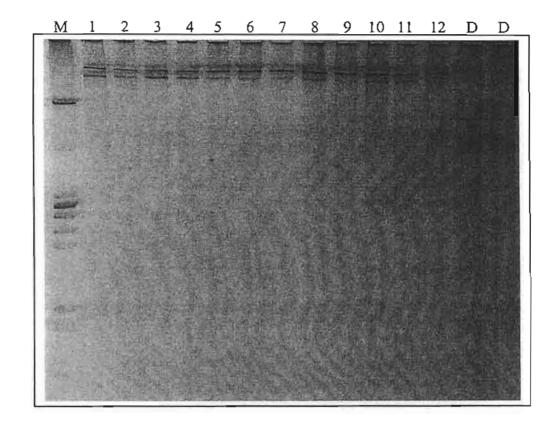


Fig 2.

é

เอกสารแนบที่ 3

ì

Na-Nakorn, U., S. Sukmanomon, M. Nakajima, N. Taniguchi, W. Kamonrat, S. Poompuang and T.T.T. Nguyen. 2006. Mt DNA diversity of the critically endangered Mekong River giant catfish (*Pangasianodon gigas* Chevey) and its closely related species: implications for conservation. Animal Conservation 9, 483-494.

MtDNA diversity of the critically endangered Mekong giant catfish (*Pangasianodon gigas* Chevey, 1913) and closely related species: implications for conservation

U. Na-Nakorn¹, S. Sukmanomon¹, M. Nakajima², N. Taniguchi², W. Kamonrat³, S. Poompuang¹ & T. T. T. Nguyen⁴

- 1 Fish Genetics Laboratory, Department of Aquaculture, Kasetsart University, Bangkok, Thailand
- 2 Laboratory of Applied Population Genetic Informatics, Graduate School of Agriculture Science, Tohoku University, Mijagi, Japan
- 3 Department of Fisheries, Kasetsart University Campus, Bangkok, Thailand
- 4 Network of Aquaculture Centres in Asia-Pacific, Bangkok, Thailand

Keywords

genetic diversity, mtDNA, critically endangered, conservation, pangasiids, Pangasianodon gigas

Correspondence

Thuy T. T. Nguyen, Network of Aquaculture Centres in Asia-Pacific, PO 8ox 1040, Kasetsart Post Office, Bangkok 10903, Thailand, Tel: 66 2 5611728; Fax: 66 2 5611727 Email: thuy.nguyen@enaca.org

Received 22 January 2006; accepted 14 July 2006

doi:10.1111/j.1469-1795.2006.00064.x

Abstract

Catfishes of the family Pangasiidae are an important group that contributes significantly to the fisheries of the Mekong River basin. In recent times the populations of several catfish species have declined, thought to be due to overfishing and habitat changes brought about by anthropogenic influences. The Mekong giant catfish Pangasianodon gigas Chevey, 1913 is listed as Critically Endangered on the IUCN Red List. In the present study, we assessed the level of genetic diversity of nine catfish species using sequences of the large subunit of mitochondrial DNA (16S rRNA). Approximately 570 base pairs (bp) were sequenced from 672 individuals of nine species. In all species studied, haplotype diversity and nucleotide diversity ranged from 0.118 ± 0.101 to 0.667 ± 0.141 and from 0.0002 ± 0.0003 to 0.0016 ± 0.0013, respectively. Four haplotypes were detected among 16 samples from natural populations of the critically endangered Mekong giant catfish. The results, in spite of the limited sample size for some species investigated, indicated that the level of genetic variation observed in wild populations of the Mekong giant catfish (haplotype diversity = 0.350 ± 0.148 , nucleotide diversity = 0.0009 ± 0.0008) is commensurate with that of some other related species. This finding indicates that (1) wild populations of the Mekong giant catfish might be more robust than currently thought or (2) present wild populations of this species carry a genetic signature of the historically larger population(s). Findings from this study also have important implications for conservation of the Mekong giant catfish, especially in designing and implementing artificial breeding programme for restocking purposes.

Introduction

An understanding of the level of genetic diversity of rare and endangered species can contribute to knowledge of their evolutionary history and potential and is critical to developing strategies for their conservation and management. Genetic diversity influences the adaptive flexibility of a species to environmental changes (Vrijenhoek, 1994) and is an important factor in the conservation of endangered species. Although there are instances where populations survive over long periods of time despite low levels of genetic variations (Groombridge et al., 2000; Visscher et al., 2001), the long-term risks posed by low levels of genetic variation have made the management and restoration of the latter a major aim in conservation (Frankham, Ballou & Briscoe, 2002).

Pangasianodon gigas Chevey, 1913, the Mekong giant catfish endemic to the Mekong River basin, is one of the

largest freshwater fishes of the world, up to 300 kg in weight and 300 cm in length (Hogan et al., 2004). This species is considered to be Critically Endangered (IUCN, http://www.iucn.org) and is also listed in Appendix I of the Convention on International Trade in Endangered Species of Wild Flora and Fauna (CITES). Conservation initiatives by the IUCN have included a 'buy-and-release' scheme to reduce fishing-related mortality (Hogan et al., 2004). Mekong giant catfishes are commercially farmed in Thailand and, despite the apparent endangered status of wild stocks, a substantial population of first-generation broodstock is held in captivity.

Several species of the family Pangasiidae are important food fish in the South-east Asian region. These species contribute significantly to regional fisheries, especially the fisheries in the Mekong, which supports one of the most significant riverine fisheries in the world (Coates, 2002).

Some of the pangasiid species such as Pangasius (= Pangasianodon) hypophthalmus (Sauvage 1878) and Pangasius hocourti Sauvage 1880 are widely cultured in the lower Mekong River basin (Trong, Nguyen & Griffiths, 2002).

Populations of the Mekong giant catfish and other closely species are reported to have markedly declined over the years (Sverdrup-Jensen, 2002). The decline in wild populations is thought to be due to overfishing and habitat destruction caused by anthropogenic activities (Coates, 2002). The numbers of Mekong giant catfish caught from the wild, in Chiangrai Province, Thailand for example, have declined from a peak of about 65 individuals in 1990 to fewer than five in 1997 (Pholprasith & Tavarutmaneegul, 1997), and in the 2001 and 2002 seasons (April-May) none were caught (Poulsen et al., 2004). This species is also of important cultural value, particularly in Lao PDR and Thailand, and in the upper reaches of the river the annual fishery is preceded by a traditional ceremony. Pangasiid fishes are likely to be at high risk as most fisheries for such species take place during their spawning migrations and species are generally of large size and mature slowly (Warren, Chapman & Singanouvong, 1998; Sverdrup-Jensen, 2002).

Despite the importance and popularity of pangasiid catfishes to Mekong riparian countries, details of their biology, especially levels of genetic diversity, are not well documented (Mattson et al., 2002; Poulsen et al., 2004). The only genetic investigation to date is a study of the phylogenetic relationships among pangasiid catfishes by Pouyaud et al. (2000), in which intraspecific genetic diversity was not examined. In most species and populations, the amount of genetic variation and thus the potential threats posed by limited variation are unknown.

In this study we estimated the levels of genetic variation of both wild and captive populations of the Mekong giant catfish, and that of other closely related species using sequences of the large subunit ribosomal RNA (16S rRNA) gene region of the mitochondrial genome. One needs to also appreciate the difficulties of obtaining samples of wild stocks of a highly endangered species such as the Mekong giant catfish, of which only one or two individual fish are caught in a year in the commercial fishery, and of which knowledge on the spawning grounds and life-history stages is almost unknown.

Materials and methods

Sampling

Details of sampling localities and sample sizes are presented in Table 1 and Fig. 1. Finclips from 16 individuals of *Pangasianodon gigas* were collected between 2002 and 2005 from commercial catches in the Mekong River and its tributaries (from Cambodia and Thailand). In addition, finclips of 127 individuals from captive-bred stocks held at four government and three private hatcheries in Thailand were also obtained (Table 1).

Finclips of 95 individuals of the only congener (i.e. species belonging to the same genus) of the giant catfish Pangasia-nodon hypophthalmus were collected. Samples of 435 individuals of seven other species, including five species of the genus Pangasius, that is P. bocourti, Pangasius conchophilus Roberts & Vidthayanon, 1991, Pangasius larnaudii Bocourt, 1866, Pangasius macronema Bleeker, 1851 and Pangasius sanitwongsei Smith, 1931, and one species each of the two other closely related genera, that is Helicophagus waandersii Bleeker, 1858 and Pteropangasius pleurotaenia Sauvage, 1878, from commercial catches in the Mekong River and some from the Chao Phraya River were also collected (Table 1). All finclips were preserved in 95% ethanol until required.

Laboratory procedures

Genomic DNA was extracted from 20-50 mg of finclip tissue according to the method described by Taggart et al. (1992) with slight modifications. DNA was suspended in TE buffer (10 mM Tris-HCl pH 7.5; 1 mM EDTA pH 8.0) and stored at 4 °C until required.

A partial region of mitochondrial 16S rRNA gene was amplified using primers 16Sar (5'-CGC CTG TTT AAC AAA AAC AT-3') and 16Sbr (5'-CCG GTC TGA ACT CAG ATC ATG T-3') (Pałumbi et al., 1991). Polymerase chain reaction (PCR) was performed in a total volume of 30μ L containing $50 \text{ ng } \mu\text{L}^{-1}$ of template DNA, $1 \times$ PCR buffer, 2 mM MgCl_2 , 0.2 mM dNTPS, 0.5μ M of each primer and 1 unit of Taq Polymerase (Promega, Madison, WI, USA). Initial denaturation at $94 \,^{\circ}$ C for 3 min was followed by 30 cycles of denaturation at $94 \,^{\circ}$ C for 1 min, annealing at $52 \,^{\circ}$ C for 1 min and extension at $72 \,^{\circ}$ C for 5 min, and a final extension at $72 \,^{\circ}$ C for 5 min.

The majority of samples was analysed at the Laboratory of Population Genetic Informatics, Tohoku University, Japan, where PCR products were purified with ExoSAP-IT (usb) and sequenced in an ABI Prism[®] 377 DNA Sequencer (Applied Biosystems, Foster City, CA, USA) using the BigDyeTM Terminator Cycle Sequencing Ready Reaction Kit. The remaining samples were sent to Macrogen Inc., Republic of Korea, for purification and sequencing. All samples were sequenced in both directions to check the validity of the sequence data.

Data analysis

Sequences were viewed and edited using MEGA3.1 (Kumar, Tamura & Nei, 2004) and then aligned using ClustalW as implemented in the same software. Data were then imported into Arlequin version 2.0 (Schneider, Roessli & Excofier, 2000) for further analysis.

Molecular diversity indices within species, that is haplotype diversity (h, the probability that two randomly chosen haplotypes are different) and nucleotide diversity (π , the probability that two randomly chosen homologous nucleotides are different), were estimated (Nei, 1987). Relationships between intraspecific haplotypes within each species were assessed using the molecular-variance parsimony technique (minimum spanning networks) using the same software.

Table 1 Sample codes, sample origins (MK, Mekong River basin; CP, Chao Phraya River basin; CS, captive stock), localities, and sample size for populations of pangasiid species analysed in the present study

Origin	Locality	Year of collection	Şample size
Pangasianodo	on gigas		
MK	Tonle Sap, Cambodia	2004	1
MK	Chiangrai Province	2004-2005	11
MK	Nakornpanom Province	2001	1
MK	Ubonratchatani Province	2002	3
CS	Inland Fisheries Research Institute, Ayutthaya Province	2004	4
CS	Chiangmai Inland Fisheries Research and Development Centre	2004	31
CS	Maejo University, Chiangmai Province	2003	9
cs	Hatchery, Jaran Farm, Chiangrai Province	2003	13
cs	Hatchery, Wangplabug Farm, Chiangrai Province	2004	39
CS	Phayao Inland Fisheries Research and Development Centre	2004	14
CS	Hatchery, Chaomudcha Farm, Supanburi Province	2004	18
	on hypophthalmus	2004	10
MK	Tonle Sap, Cambodia	2004	18
MK	Chiangrai Province	2004	4
MK			12
MK	Nakompanom Province	2003	_
	Nongkhai Inland Fisheries Research and Development Centre	2005	11
CP	Ayutthaya Province	2005	20
CP	Paturntani Province	2004	10
CP	Sakaekrang River, Uthaitani Province	2005	20
Pangasius bo			
MK	Chiangrai Province	2004	4
MK	Nongkhai Province	2005	2
MK	Nakompanom Province	2004	33
MK	Ubonratchatani Province	2005	3
Pangasius co	nchophilus		
MK	Mukdahan Province	2004	7
MK	Nongkhai Province	2005	13
MK	Nakompanom Province	2004	● 6
MK	Sakonnakom Inland Fisheries Research and Development Centre	2004	11
Pangasius lar	naudii		
MK	Mekong River, Cambodia	2004	27
MK	Mekong River, Nongkhai Province	2003	6
MK	Nakompanom Province	2003	8
MK	Ubonratchatani Province	2004	27
CP	Chainat Province	2003	49
CP	Pichit Province	2003	45
CP	Pisanulok Province	2003	4
CP	Patumtani Province	2004	51
Pangasius m		2004	
MK	Nongkhai Province	2005	14
MK	and the second s	2003	3
	Nakompanom Province	2004	•
Pangasius sa	•	2002	1
MK	Chiangrai Province	2003	1
MK	Nakornpanom Province	2003	44
MK	Ubonratchetaní Province	2003	10
MK	Sakonnakorn Inland Fisheries Research and Development Centre	2004	10
Helicophagu:		****	
MK	Nongkhai Province	2004-2005	21
MK	Nakompanom Province	2004	24
Pteropanges	ius pleurotaenia		
MK	Nongkhai Province	2005	3
MK	Nakornpanom Province	2004	2
MK	Ubonratchatani Province	2005	2
ΜX	Nongkhai Inland Fisheries Research and Development Centre	2005	5

Unless otherwise stated the samples were from different locations in Thailand.

ŝ

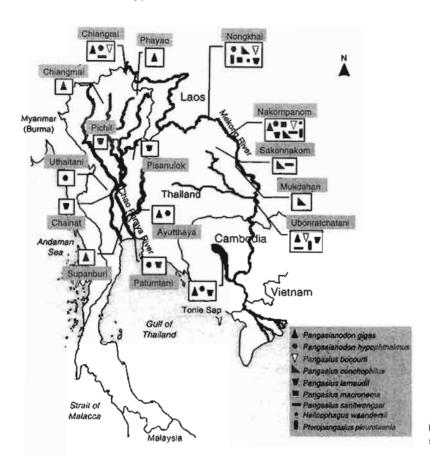


Figure 1 Sampling localities of the nine catfish species in the present study.

Demographic history was investigated by analysing mismatch distributions of pairwise differences between all wild-caught individuals of each species. This kind of analysis is able to discern whether a population/species has undergone rapid expansion (possibly after a bottleneck) or has remained stable over time. It has been demonstrated that population expansion generates a unimodal distribution (similar to a Poisson curve) and stable populations typically produce a multimodal distribution (Slatkin & Hudson, 1991; Rogers & Harpending, 1992). We analysed the shape of the mismatch distribution for each species to test whether the presently observed genetic variation fit an equilibrium model. The interpreted data were subjected to a goodness-of-fit test between the observed and simulated data (Harpending, 1994).

The time of possible population expansions (t, in number of generations) was calculated through the relationship $\tau = 2ut$ (Rogers & Harpending, 1992), where τ is the mode of the mismatch distribution, and u is the mutation rate of the sequence considering that $u = 2\mu k$ (μ is the mutation rate per nucleotide and k is the number of nucleotides). A mutation rate of 1.0% per nucleotide per million years (Myr) was used, as the 16S rRNA gene is considered as one of the most conserved genes in the mtDNA genome (Simon et al., 1994) although it is accepted that the mean rate of

evolution of fish mtDNA is 1.0-2.0% (Donalson & Wilson, 1999). As there is no reliable information on maturation age in the wild of any catfish species studied, we used the data that are available in captivity for several species, for example 10-16 years for Pangasianodon gigas (Meng-Umphan, 2000), 2-5 years for Pangasianodon hypophthalmus (Pimonbud, Udomkarn & Meewan, 1994) and 4-5 years for P. larnaudii (Pongsirijan, Rungtongbaisuree & Pongjanyakun, 2001), 6-7 years for P. sanitwongsei (Unakornsawad, Tripolaksorn & Yodpaen, 1998), 4-5 years for P. bocourti (Pongmaneerat et al., 2006). For species with no information available, we applied the average generation time of 4-5 years.

Arlequin 2.0 (Schneider et al., 2000) was also used to test for departures from mutation-drift equilibrium with Tajima's D test (Tajima, 1989). The statistical significance of this neutrality test was obtained by generating samples in accordance with the hypothesis of selective neutrality and population equilibrium, using a coalescent simulation algorithm as adapted from Hudson (1990).

Statistical testing for population differentiation in each species (where applicable) involved an exact test (Raymond & Rousset, 1995) of a contingency table based on haplotype frequencies and pairwise comparisons of F_{ST} using analysis of molecular variance (Excoffier, Smouse & Quattro, 1992)

Table 2 Distribution of haplotypes observed in the nine pangasiid catfish species originating from the Mekong (MK) and/or the Chao Phraya (CP) River basins

	Origin				Origin	
Haplotype	MK CP		Species	Haplotype	MK	CF
Pangasianodon g	igas			·		
Pg01	13	No	Pangasius macronema	Pm01	16	NS
Pg02	1	No	•	Pm02	1	NS
Pg03	1	No				
Pg04	1	No	Pangasius sanitwongsel	Ps01	52	NS
				Ps02	9	NS
Pangasianodon h	ypophthalmus					
Ph01	36	42		Ps03	1	NS
Ph02	0	1		Ps04	1	NS
Ph03	0	7		Ps05	1	NS
Ph04	3	0		Ps06	1	NS
Ph05	1	0				
PhQ6	2	0	Helicophagus	Hw01	37	NS
Ph07	2	0	waandersii	Hw02	3	NS
Ph08	1	0		Hw03	1	NS
Pangasius bocou	mai:			Hw04	1	NS
Pb01	26	NS		1105		3.10
Pb02	1	NS		Hw05 Hw06	1	NS NS
Pb03	4	NS		Hw07	1	NS NS
Pb04	2	NS NS		nwu/	1	\$45
P605	1	NS	Ottomorphis	Pp01	7	NS
P606	3	NS	Pteropangasius pleurotaenia	Pp02	1	NS
Pb07	2	NS	pieurojaenia	Pp02 Pp03		N:
Pb08	1	NS NS			2	N:
Pb09	1	NS NS		Pp04	1	N:
Pb10	1	NS		Pp05	1	14:
		142			A	
Pangasius conchi Pc01		NC			•	
	25	NS				
Pc02 Pc03	1	NS NS				
	1	142				
Pangasisu larnau Pt01		120				
PI02	63	139				
P102 P103	2	2				
	1	0				
PIQ4	0	1				
PIQ5	1	0				
P106 P107	0	1 1				
Pl08	0					
P108	0	1				
	0	1				
PI10	0	3				
PI11	1	0				

No, does not occur; NS, not sampled.

based on 1000 permutations of the data matrix. Samples were grouped on the basis of their origins, for example Mekong River basin (MK), Chao Phraya River basin (CP) and captive stock (CS).

Genetic relationships among haplotypes were assessed by neighbor-joining (NJ), maximum parsimony (MP) and maximum likelihood (ML) analyses using PAUP* version 4b10 (Swofford, 2001). The optimal model of nucleotide evolution for NJ and ML analyses was determined by hierarchical likelihood ratio tests using the software Model

Test version 3.7 (Posada & Crandall, 1998). The resultant models were used to calculate pairwise sequence distances and to construct the NJ and ML trees. An unweighted MP and ML heuristic search option was used to search for the best tree with starting trees obtained via stepwise addition of taxa, and each search was replicated 10 times. Branch swapping was implemented using the tree-bisection-reconnection (TBR) option. Confidence limits were assessed using bootstrap procedure (Felsenstein, 1985) with 1000 and 500 pseudoreplicates for NJ and MP, and ML, respectively.

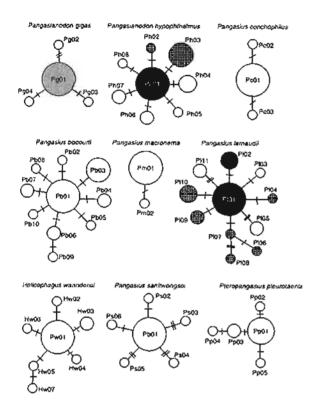


Figure 2 Minimum spanning networks of mtDNA 16S rRNA haplotypes of the nine catfish species studied. Bars across branches indicate single-nucleotide change. The size of each circle, for each species, is an approximate indication of the frequency of the haplotypes present (open circle: found only in the Mekong River system; grey circle: common in captive stocks and in the Mekong; checked shaded circle: found only in Chao Phraya River system; black circle: common in both river systems).

Results

MtDNA 16S rRNA sequence variability and haplotype networks

A total of c. 570 bp of the mtDNA 16S rRNA gene region was successfully sequenced for 633 individuals of nine species of pangasiid catfish. Overall, 56 haplotypes were detected for all species, of which the highest number of haplotypes (11) was observed in P. larnaudi and the lowest number (two) was detected in P. macronema. In the critically endangered Mekong giant catfish, although only 16 individuals were examined, four haplotypes were detected. All individuals (n = 127) from captive stock samples of Pangasianodon gigas shared one haplotype, which is identical to the most common haplotypes found in the wild samples. Distribution of these haplotypes of each species of different origins (i.e. MK, CP, CS) is presented in Table 2. Sequences of all haplotypes were submitted to GenBank (accession numbers: Pangasianodon gigas DQ307046-DQ307049; Pangasianodon hypophthalmus DQ334282-DQ334289; P. bocourti DQ334290-DQ334299; P. conchophilus DQ334300-DQ334302; P. larnaudii DQ334303-DQ334313; P. macronema DQ334314-DQ334315; P. sanitwongsei DQ334316-DQ334321; H. waandersii DQ334322-DQ334328; Pteropangasius pleurotaenia DQ334329-DQ334333).

Minimum spanning networks showing relationships among haplotypes within each species are presented in Fig. 2. With the exception of *P. macronema* samples, which consist of only two haplotypes, all the other species showed a star-like phylogeny with one common central haplotype, which is believed to be the most likely ancestral variant according to coalescent theory (Posada & Crandall, 2001). The peripheral mitochondrial variants are connected to the central haplotypes with one to three mutations (Fig. 2).

A summary of mtDNA variation for wild-caught samples of each species is given in Table 3. Overall, all species showed low to moderate haplotype diversity (0.118-0.667) and very low nucleotide diversity (0.0002-0.0016). Of all the species examined, *P. macronema* showed the least genetic variation, while *Pteropangasius pleurotaenia*, even with the smallest sample size, appeared to be the most divergent. *Pangasianodon hypophthalmus*, with much larger sample size, showed similar values of diversity indices to its most closely related and the critically endangered Mekong giant catfish *Pangasianodon gigas*.

Population differentiation

Estimates of genetic differentiation between samples using pairwise $F_{\rm ST}$ and exact tests are given in Table 4. Among three available pairwise tests, significant population differentiation and significant $F_{\rm ST}$ values were observed on only one occasion, for example between the wild and captive stocks of Pangaslanodon gigas ($F_{\rm ST}=0.376, P=0.000,$ exact test P value = 0.002). Genetic differentiation between populations was not detected for species with samples collected from both the Mekong and Chao Phraya River systems, although several private haplotypes were observed in low frequencies in Chao Phraya and Mekong Rivers for Pangasianodon hypophthalmus and P. larnaudli.

Inference of population history

As there was no evidence of genetic differentiation, all natural samples within each species were pooled as a single group to conduct tests of selective neutrality and demographic history as for intraspecific diversity. Results of pairwise mismatch analysis and Tajima's D test performed on each species are given in Fig. 2. D values obtained from Tajima's D tests were negative and ranged from -2.245 for P. larnaudii to -1.103 for Pteropangasius pleurotaenia. These negative values (indicating more rare nucleotide site variants than would be expected under a neutral model of evolution) can result from selection and/or population expansion. Except for three species, that is P. conchophilus, P. inacronema and Pteropangasius pleurotaenia, the hypothesis of neutral evolution was rejected with Tajima's D test (Fig. 3).

Table 3 Number of mtDNA 16S rRNA region haplotypes, number of haplotypes (H), number of polymorphic sites (PS), haplotype diversity (h), nucleotide diversity (π) and parameters estimated under the sudden expansion model

Species		Н	PS	h±so	π± SD	τ	1	T
Pangasianodon gigas	16	4	4	0.350 ± 0.148	0.0009 ± 0.0008	2.065	90095.99	0.90-1.44
Pangasianodon hypophthalmus	95	8	7	0.322 ± 0.061	0.0006 ± 0.0006	0.927	40445.03	0.08-0.20
Pangasius bocourti	42	10	8	0.576 ± 0.086	0.0013 ± 0.0011	0.908	39616.06	0.16-0.20
Pangasius conchophilus	26	3	2	0.145 ± 0.089	0.0003 ± 0.0004	3.000	130890.05	0.52-0.65
Pangasius Iarnaudii	217	11	13	0.133 ± 0.031	0.0003 ± 0.0004	3.032	132286.21	0.53-0.66
Pangasius macronema	17	2	1	0.118 ± 0.101	0.0002 ± 0.0003	3.000	130890.05	0.62-0.65
Pangasius sanitwongsei	85	6	8	0.345 ± 0.069	0.0008 ± 0.0007	3.000	130890.05	0.79-0.92
Helicophagus waandersii	55	7	6	0.324 ± 0.090	0.0007 ± 0.0007	1.013	44197.21	0.18-0.22
Pteropangasius pleurotaenia	12	5	4	0.667 ± 0.141	0.0016 ± 0.0013	1.345	58682.37	0.23-0.29

 $[\]tau$, time since the population expansion measured in units of 1/2u generations, where u is the per-nucleotide rate of mutation (1% per Myr is applied in the present study) multiplied by the number of nucleotides in the sequence; t, time since expansion in number of generations; T, time since population expansion in Myr); so, standard deviation

Distributions of pairwise differences between alleles of each species were compared with the pairwise mismatch distribution (Fig. 2) obtained under the sudden population expansion model (Rogers, 1995). Pairwise mismatch distributions for almost all species in this study conformed to Rogers' (1995) model of sudden expansion (P = 0.052-0.542), except for that of Pangasianadon hypophthalmus (P = 0.045). A unimodal mismatch distribution was observed in all species, and all species showed a high proportion of paired comparisons between identical haplotypes (zero sites difference). Estimated possible population expansion times of the nine catfish species are shown in Table 3.

Interspecific relationships

K80+G (equal base frequencies, transition/transversion ratio = 3.1268, y distribution shape parameter G=0.1293) was selected as the most suited model for the 16S rRNA sequences of pangasiid catfish. MP recovered a single most parsimonious tree (L=130), which is identical to the tree recovered from ML analysis in terms of topology, with minor differences in bootstrap support at some nodes (Fig. 4). The tree recovered from NJ has a different topology with regard to the position of P, bocourti and P, conchophilus (Fig. 4). Overall, haplotypes within each species are clustered together with high bootstrap support (81–100%), whereas the confidence limits of interspecific relationships are rather poor at some nodes (Table 5).

Discussion

Genetic variation and historical demography

The present study reveals several significant findings in relation to the genetic diversity of the nine pangasiid catfish species investigated, including the critically effdangered Mekong giant catfish. In general, low levels of intraspecific variation were observed not only in the critically endangered Mekong giant catfish but also in other closely related species that are presently common and abundant.

Table 4 Pairwise $F_{\rm ST}$ between samples (MK, Mekong River basin; CP, Chao Phraya River basin; CS, captive stocks) of three pangasiid species examined based on 1000 permutations of the 18S rRNA sequences

Species	Origin	MK
Pangasianodon gigas	CS	(0.376)*
Pangasianodon hypophthalmus	CP	0.027*
Pangasius larnaudii	CP	0.000

Parentheses indicate significant F_{ST} values, while asterisks indicate that the exact test of allele frequency homogeneity is rejected.

In general, it is predicted that genetic variation within species should positively correlate with population size, and as a consequence genetic variation in endangered species is expected to be lower than in non-endangered species (Frankham, 1996). In addition, genetic variation in body size relationships is often negatively correlated, and proven to be significantly so in mammals (Wooten & Smith, 1985; Frankham, 1996). The results from the present study, however, did not conform to the above predictions. Pangasianodon gigas is the largest freshwater fish in the Mekong; however, the observed haplotype diversity and nucleotide diversity of this relatively small natural population sample appear to be commensurate with that observed in other related species. Other studies on a range of endangered species have also shown similar results (e.g. Lewis & Crawford, 1995; Ge et al., 1999; Gitzendanner & Soltis, 2000; Madsen et al., 2000). This lack of correlation may be a result of the complicated processes involved in determining genetic variation at specific loci.

The unexpected, relatively high number of haplotypes observed in the present population of Mekong giant catfish could be a reflection of large historical population size. This genetic signature of large historical population size is likely reflected in current individuals for a long time due to the long generation time of this species (10–16 years in captivity; Meng-Umphan, 2000), as in the case of an endangered population of rhinoceros Rhinoceros unicornis in Chitwan Valley (Nepal) (Dinerstein & McCracken, 1990).

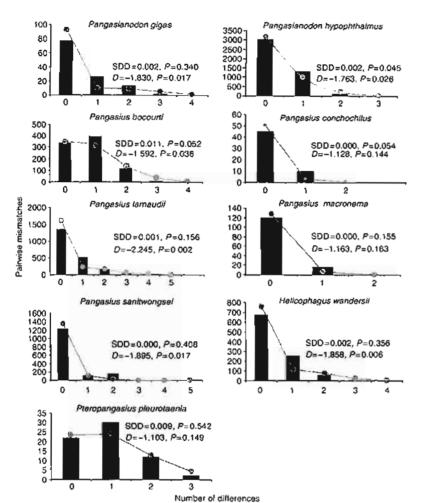


Figure 3 Results of mismatch distribution analysis using 16S rRNA sequences obtained from wild populations of the nine Pangasud catfish species. Grey lines correspond to expected mismatch distributions. SDD, sum of squared deviation of mismatch distribution; D, Tajima's D value; P, probability.

The results of mismatch distribution and the neutrality test suggest that many species have undergone recent demographic expansion. Nearly all species appear to be in a mutation-drift disequilibrium. It is estimated that the possible times of expansion (Rogers & Harpending, 1992) for the Pangasiid catfishes range from 0.08 to 1.44 Myr ago. This implies that the expansion of these species occurred in the early to mid-Pleistocene. In the last 0.25 Myr, it is estimated that in this geographical region the sea level has been 75 m below the present level for up to 37% of the time (Voris, 2000). These geological events could have shaped genetic variation of the aquatic fauna in the region, and the catfish species studied may not be an exception in this regard.

It is apparent that the indication from genetic information in the present study is not in accordance with the available fisheries statistics. Although genetic data indicate an expansion of the populations of all species, fishery data report a significant decline in catches (Sverdrup-Jensen, 2002). A possible explanation for this conflicting observation is that the genetic data information presented here may reflect the genetic signature of past population(s) but not its present status.

Admittedly, in the case of the Mekong giant catfish, which was never caught in large numbers since the time records became available, the current catches are very few in number. For example, in the Cambodian sector of the Mekong River only 46 fish have been caught between 1999 and 2005 (Hortle et al., 2005). In the Thailand sector there has been a significant decline in the number of giant catfish caught per year, from a high of about 40–50 fish in 1930 to an average of three fish in the period 2000–2005 (N. Sukumasavin, pers. comm.). This decline in catches may not only necessarily reflect a decline in population size but may also be due to behavioural changes, including the migratory pattern of the species, among other factors, which still remains largely unknown.

Implications for conservation

The level of mtDNA 16S rRNA sequence variation of the wild population of the critically endangered Mekong giant catfish is similar to most of its closely related species, except for *P. bocourti* and *Pteropangasius pleurotaenia*, which showed a greater level of diversity. It is important that conservation efforts should develop a strategy so that the current level of genetic diversity of the Mekong giant catfish is maintained over time.

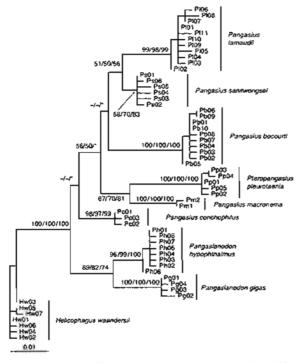


Figure 4 Maximum likelihood (ML) tree showing the relationships among 56 mtDNA 16S rRNA haplotypes from nine pangasiid catfish species. The numbers at each node represent bootstrap proportion based on 500 pseudoreplicates for ML and 1000 for maximum parsimony and neighbor-joining (NJ) analyses, respectively. — indicates that bootstrap values are lower than 50. *indicates that topology was different in the NJ tree.

Almost all fish samples of Pangasianodon gigus used in the present analysis were derived from wild parents captured in the commercial fishery, from which eggs and sperm were stripped for artificial fertilization. In almost all instances, stripping and the stress of capture of these large fish lead to mortality. It is believed that these fish contributed their genetic material to the present captive stock, which is currently held in a number of hatcheries in Thailand. However, the present analysis of 127 hatchery-bred individuals did not correspond to the level of genetic variation observed in the wild counterparts. The captive broodstock population is thought to be a critical resource for future efforts to rebuild the wild population(s). Thus for conservation purposes, it is important that a broodstock management plan that takes into account the process of founding broodstock be developed, and should include all available haplotypes to maximize the effective population size in order to maintain the genetic integrity of Pangasianodon gigas in captivity.

To date, most conservation efforts have concentrated on the Mekong giant catfish alone and little attention has been paid to its relatives. Species such as *P. sanitwongsei*, which is considered to be relatively rare in the Mekong and thought to be extinct in the Chao Phraya River, also deserves attention. In fact, it has been included in the IUCN Red List but as 'data deficient' (Poulsen *et al.*, 2004), and currently a strategy does not exist to preserve this species.

Captive breeding programmes for Pangasianodon gigas were initiated in 1984 with the aim to replenish depleted wild stocks. Currently, there are over 20 000 individuals of the first generation of Pangasianodon gigas in captivity. In general, most management strategies focus on the maintenance of a maximum level of genetic diversity of broodstock to ensure minimal adverse genetic impacts on wild counterparts after restocking or incidental escapements, as revealed in many other studies (Waples, 1991; Hughes et al., 2003). With respect to Pangasianodon gigas, although the samples analysed may not represent the entire captive population, the common haplotypes seem to dominate the stock and therefore care must be taken in selecting broodstock for restocking purposes. For species such as Pangasianodon hypophthalmus and P. bocourtl, which are not widely cultured in Thailand but mass produced elsewhere in the

Table 5 Summary of percentage sequence divergence within (diagonal) and between (below diagonal) the nine pangasild species and calculated based on the K80 ± G model.

Species	PG	PH	РВ	PÇ	۶L	PM	PS	HW	PP
Pengasienodon gigas (PG)	0.004								
Pangasianodon hypophthalmus (PH)	0.024	0.004							
Pangasius bocouni (PB)	0.041	0.041	0.003						
Pangasius conchophilus (PC)	0.027	0.030	0.034	0.003					
Pangasius Iarnaudii (PL)	0.038	0.035	0.037	0 033	0 005				
Pangasius macronema (PM)	0.039	0.038	- 0.035	0.034	0.039	0.002			
Pangasius sanitwongser (PS)	0.036	0.033	0.030	0.026	0.022	0.028	0.005		
Helicophagus waandersii (HW)	0.038	0.037	0.040	0.030	0.037	0.040	0.034	0.004	
Pteropangasius pleurotaenia (PP)	0.046	0.043	0.042	0.039	0.041	0.030	0.031	0.043	0.00

lower Mekong, particularly in Vietnam (Trong et al., 2002), special attention is needed in designing breeding programmes so that genetic diversity is maintained and the risks associated with inbreeding are minimized. It is also acknowledged that maintaining genetic diversity alone does not ensure survival in the wild due to possible behavioural and genetic adaptations in captivity.

Further studies

The ultimate goal of conservation programmes is to identify and preserve the historical population structure and/or patterns of diversity within and between populations of species under consideration (Vrijenhoek, 1994). With respect to the nine pangasiid catfish species, information concerning the population structure of each species is currently lacking, especially on a finer scale, for example upstream and downstream and between tributaries in each river system. Although no genetic differentiation was detected between the Chao Phraya and Mekong samples of Pangasianodon hypophthalmus and P. larnaudii, it is not certain at this stage whether to consider fish from the two river systems to be of one single stock or not. This needs further clarification using extensive sampling and more variable genetic markers such as microsatellites, which are readily available for pangasiid catfishes (Hogan & May,

In the present study, levels of genetic variation were estimated based on only a single non-coding locus. However, recent studies have criticized the use of non-coding genetic markers in that these may not reflect the variation that is important to the fitness of the species in question (Reed & Frankham, 2001; van Tienderen et al., 2002; Bekessy et al., 2003). On the other hand, using markers that only target a small number of genes is risky when assessing the biodiversity of endangered species, especially if there is a threat to the species from genome-wide inbreeding depression (van Tienderen et al., 2002). As such, further assessment of levels of genetic variation of pangasiid catfish species, including the critically endangered Mekong giant catfish, using a combination of both coding and non-coding loci, may be warranted (Hasson & Richardson, 2005).

Acknowledgements

Financial support for the present study was from the National Center for Genetic Engineering and Biotechnology, Thailand; partial support was also provided by the Thailand Research Fund through the Senior Research Scholar Program to U. N. We thank Chiangmai Inland Fisheries Research and Development Centre, Phayao IFRD, Inland Fisheries Research Institute, Maejo University, Wangplabug Farm, Jaran Farm and Chaomudcha Farm for providing fin samples of captive broodstock of Pangasianodon gigas. We thank Chamnan Pongsri, Chawalit Vidthayanon, Naruepon Sukumasavin, Sombat Sangsri and Kemchat Jewprasat for assistance with the collection of

wild samples. Special thanks to Prof. Sena De Silva and Simon Wilkinson for their help with the editing. Comments from two anonymous reviewers significantly improved the quality of the paper.

References

- Bekessy, S.A., Ennos, R.A., Burgman, M.A., Newton, A.C. & Ades, P.K. (2003). Neutral DNA markers fail to detect genetic divergence in an ecologically important trait. *Biol. Conserv.* 110, 267-275.
- Coates, D. (2002). Inland capture fishery statistics of Southeast Asia: current status and information needs, RAP publication no. 2002/1. Bangkok, Thailand: Asia-Pacific Fishery Commission.
- Dinerstein, E. & McCracken, G.F. (1990). Endangered greater one-horned rhinoceros carry high levels of genetic variation. Conserv. Biol. 4, 417-422.
- Donalson, K.A. & Wilson, R.R. (1999). Amphi-Panamic geminates of snook (Percoidei: Centropomidae) provide a calibration of the divergence rate in the mitochondrial DNA control region of fishes. Mol. Phylogenet. Evol. 13, 208-213.
- Excoffier, L., Smouse, P.E. & Quattro, J.M. (1992).
 Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479-491.
- Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791.
- Frankham, R. (1996). Relationship of genetic variation to population size in wildlife. Conserv. Biol. 10, 1500-1508.
- Frankham, R., Ballou, J.D. & Briscoe, D.A. (2002). Introduction to conservation genetics. Cambridge: Cambridge University Press.
- Ge, S., Wang, K.-Q., Hong, D.-Y., Zhang, W.-H. & Zu, Y.-G. (1999). Comparisons of genetic diversity in the endangered Adenonphora lobophylla and its widespread congeners, A. potaninii. Conserv. Biol. 13, 509-513.
- Gitzendanner, M.A. & Soltis, P.S. (2000). Patterns of genetic variation in rare and widespread plant congeners. Am. J. Bot. 87, 783-792.
- Groombridge, J.J., Jones, C.G., Bruford, M.W. & Nichols, R.A. (2000). 'Ghost' alleles of the Mauritius kestrel. *Nature* 403, 616.
- Harpending, H. (1994). Signature of ancient population growth in a low resolution mitochondrial DNA mismatch distribution. Hum. Biol. 66, 591-600.
- Hasson, B. & Richardson, D.S. (2005). Genetic variation in two endangered Acrocephalus species compared to a widespread congener: estimates based on functional and random loci. Anim. Conserv. 8, 83-90.
- Hogan, Z. & May, B.P. (2002). Twenty-seven new microsatellites for the migratory Asian catfish family Pangasiidae. Mol. Ecol. Notes 2, 38-41.

- Hogan, Z., Moyle, P.B., May, B., Vander Zanden, M.J. & Baird, I.G. (2004). The imperiled giants of the Mekong River. Am. Sci. 92, 228-237.
- Hortle, K.G., Sopha, L., Samy, E. & Hogan, Z. (2005).
 Tagging and releasing of giant Mekong fish species in Cambodia. Catch and Culture 11, 6-9.
- Hudson, R.R. (1990). Gene genealogies and the coalescent process. In Oxford surveys in evolutionary biology; 1-44.
 Futuyma, D. & Antonovics, J.D. (Eds). New York: Oxford University Press.
- Hughes, J.M., Goudkamp, K., Hurwood, D. & Hancock, M. (2003). Translocation causes extinction of a local population of the freshwater shrimp Paratya australiensis. Conserv. Biol. 17, 1007-1012.
- Kumar, S., Tamura, K. & Nei, M. (2004). MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. *Brief Bioinform*. 5, 2.
- Lewis, P.O. & Crawford, D.J. (1995). Pleistocene refugium endemics exhibit greater allozyme diversity than widespread congeners in the genus *Polygonella* (Polygonaceae). Am. J. Bot. 82, 141-149.
- Madsen, T., Olsson, M., Wittzell, H., Stille, B., Gullberg, A., Shine, R., Anderson, S. & Tegeström, H. (2000). Population size and genetic diversity in sand lizards (*Lacerta* agilis) and adders (*Vipera berus*). Biol. Conserv. 94, 257-262.
- Mattson, N.S., Kongpheng, B., Naruepon, S., Nguyen, T. & Ouk, V. (2002). Cambodian Mekong giant fish species: on their management and biology, MRC technical paper no. 3. Phnom Penh: Mekong River Commission.
- Meng-Umphan, K. (2000). Plabuk. Thailand (in Thai): Department of Fisheries Technology, Maejo University.
- Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.
- Palumbi, S.R., Martin, A.P., Romano, S., McMillan, W.O., Stice, L. & Grabowski, G. (1991). The simple fool's guide to PCR. Honolulu: Department of Zoology, University of Hawaii
- Pholprasith, S. & Tavarutmaneegul, P. (1997). Biology and culture of the Mekong giant catfish, Pangasianodon gigas (Chevey 1930). Bangkok, Thailand: National Inland Fisheries Institute.
- Pimonbud, S., Udomkarn, C. & Meewan, M. (1994). Pla Sawai. Bangkok, Thailand: Freshwater Fisheries Division, Department of Fisheries, Ministry of Agriculture and Cooperatives.
- Pongmaneerat, J., Toedwongsevorakul, Y., Imsilp, A. & Singsi, S. (2006). Breeding and culture of *Pangasius* bocourti. Sawasdee Sat Nam Thai Mag. 7, 28-32.
- Pongsirijan, S., Rungtongbaisuree, S. & Pongjanyakun, T. (2001). Induced breeding of black-ear catfish. Pawgasius larnaudii Bocourt, 1866. Technical paper 15/2001, Freshwater Fishery Division, Department of Fisheries, Ministry of Agriculture and Cooperatives.

- Posada, D. & Crandall, K.A. (1998). ModelTest: testing the model of DNA substitution. *Bioinformatics* 14, 817-818.
- Posada, D. & Crandall, K.A. (2001). Intraspecific gene genealogies: trees grafting into networks. *Trends Ecol. Evol.* 16, 37-45.
- Poulsen, A.F., Hortle, K.G., Valb-Jorgensen, J., Chan, S., Chhuon, C.K., Viravong, S., Bouakhamvongsa, K., Suntornratana, U., Yoorong, N., Nguyen, T.T. & Tran, B.Q. (2004). Distribution and ecology of some important riverine fish species of the Mekong River basin, MRC technical paper no. 10. Phnom Penh, Cambodia: Mekong River Commission.
- Pouyaud, L., Teugels, G.G., Gustiano, R. & Legendre, M. (2000). Contribution to the phylogeny of Pangasiid catfishes based on allozymes and mitochondrial DNA. J. Fish Biol. 56, 1509-1538.
- Raymond, M. & Rousset, F. (1995). An exact test for population differentiation. Evolution 49, 1280-1283.
- Reed, D.H. & Frankham, R. (2001). How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55, 1095-1103.
- Rogers, A.R. (1995). Genetic evidence for a Pleistocene population explosion. *Evolution* 49, 608-615.
- Rogers, A.R. & Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic distances. Mol. Biol. Evol. 9, 552-569.
- Schneider, S., Roessli, D. & Excofier, L. (2000). Arlequin: a software for population genetics data analysis. Geneva, Switzerland: Genetics and Biometry Lab. Department of Anthropology, University of Geneva.
- Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Ento. Soc. Am. 87, 651-701.
- Slatkin, M. & Hudson, R.R. (1991). Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129, 555-562.
- Sverdrup-Jensen, S. (2002). Fisheries in the lower Mekong basin: status and perspectives, MRC technical paper no. 6. Phnom Penh: Mekong River Commission.
- Swofford, D.L. (2001). PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4b10. Sunderland, MA: Sinauer.
- Taggart, J.B., Hynes, R.A., Prodohl, P.A. & Ferguson, A. (1992). A simplified protocol for routine total DNA isolation from salmonid fishes. J. Fish Biol. 40, 963-965.
- Tajima, F. (1989). Statistical methods for testing the neutral hypothesis by DNA polymorphisms. Genetics 123, 585-595.
- van Tienderen, P.H., de Haan, A.A., van der Linden, C.G. & Vosman, B. (2002). Biodiversity assessment using markers for ecologically important trait. *Trend Ecol. Evol.* 17, 577-582.

- Trong, T.Q., Nguyen, H.V. & Griffiths, D. (2002). Status of Pangasiid aquaculture in Vietnam. Phnom Penh: Mekong River Commission.
- Unakornsawad, Y., Tripolaksorn, P. & Yodpaen, P. (1998).
 Breeding and nursing of Sanitwongse catfish. Technical paper 9/1998. Freshwater Fishery Division, Department of Fisheries, Ministry of Agriculture and Cooperatives, HM Government of Thailand.
- Visscher, P.M., Smith, D., Hall, S.J.G. & Williams, J.A. (2001).
 A viable herd of genetically uniform cattle. Nature 409, 303.
- Voris, H.K. (2000). Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J. Biogeogr. 27, 1153-1167.
- Vrijenhoek, R.C. (1994). Genetic diversity and fitness in small populations. In *Conservation genetics*: 37-53. Loeschcke, V., Tomiuk, J. & Jian, S.K. (Eds). Basel: Birkhäuser.
- Waples, R.S. (1991). Genetic interactions between hatchery and wild salmonids: lessons from the Pacific Northwest. Can. J. Fish. Aguat. Sci. 48, 121-133.
- Warren, T.J., Chapman, G.C. & Singanouvong, D. (1998). The up-stream dry-season migrations of some important fish species in the lower Mekong River of Laos. Asian Fish. Sci. 11, 239-251.
- Wooten, M.C. & Smith, M.H. (1985). Large mammals are genetically less variable. Evolution 39, 210-212.

เอกสารแนบที่ 4

Rungsin, W., N. Paankhao and U. Na-Nakorn. 2006. Production of All-Male Stock by Neofemale Technology of the Thai Strain of Freshwater Prawn, *Macrobrachium rosenbergii*. Aquaculture 259, 88-94.

Aquaculture

Aquaculture 259 (2006) 88-94

www.elsevier.com/locate/aqua-online

Production of all-male stock by neofemale technology of the Thai strain of freshwater prawn, *Macrobrachium rosenbergii*

Wikrom Rungsin a, Natthapong Paankhao b, Uthairat Na-Nakorn b,*

Department of Zoology, Faculty of Science, Kasetsart University, Jatujak, Bangkok, Thalland Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Jatujak, Bangkok, Thailand

Received 1 March 2006

Abstract

The giant freshwater prawn, Macrobrachium rosenbergii is commercially cultured in many tropical countries. Males of this species grow much faster than females so that, obviously, culture of an all-male population produces significantly higher yield than an all-female or mixed-sex culture. Although sex of M. rosenbergii is determined by genetics, sex reversal from males to females can be triggered by the removal of androgenic glands at an early stage. The empirical information obtained from two families showed that almost all offsprings of the neofemales were male. Therefore we conducted this study to explore the result of such mating with sufficient number of crosses in the Thai strain of M. rosenbergii. The histology of the gonads during the threshold period of sex determination was also studied. The results showed that the gonadal differentiation of M. rosenbergii did not occur until the stage that both gonopore complexes and appendix masculinae appeared in males. The bilateral removal of androgenic glands of a total of 87 postlarvae at stage I (presence of the gonopore complexes but not the appendix masculinae) resulted in 80.4% survival. Among the survivors 30% developed as female and 27.14% eventually matured. Mating of 12 neofemales with normal males resulted in all-male offspring in eight crosses; 88-99.49% males in two crosses. The remaining two crosses produced offspring with 1:1 sex ratio and hence were attributed to mislabeling of the normal female as neofemales. The 10 control crosses (normal male × normal female) produced varying offspring sex ratios from 1:1 (six crosses) to 1.72♀:1♂ (pooled data from four crosses). Fecundity of the neofernales was not different from that of the normal females. Our results suggest that the application of the neofemale technology to produce all-male stock for aquaculture is promising. @ 2006 Elsevier B.V. All rights reserved.

Keywords: Macrobrachium rosenbergii; Andrectomy; All-male stock

1. Introduction

Aquaculture of the giant freshwater prawn, Macrobrachium rosenbergii has been established for more than 30 years and is expanding worldwide with approximately 23.5% increment in the world annual production between 1998 and 2003 (FAO, 2004). However, culture technologies of this species are still varying. The differential growth between sexes is of great concern in *M. rosenbergii* culture wherein males grow much faster than females (Holthuis, 1980).

Culture of all-male prawn gave significantly higher yield with shorter culture period than the mixed-sexes and the all-female culture (Sagi et al., 1986; Cohen et al., 1988). Moreover the manual sexing was not justified by the relatively small increase of income (Hulata et al.,

^{*} Corresponding author. Tel.: +66 2 5792924; fax: +66 2 5610990.

E-mail addresses: fsciwrrs@ku.ac.th (W. Rungsin),
uthairatn@yshoo.com (U. Na-Nakorn).

1988). Therefore, the alternative biotechnological method has been explored for producing an all-male stock of freshwater prawn, among which the neofemale technology is promising (reviewed by Sagi and Aflalo, 2005).

The androgenic gland of crustaceans is the only source of hormone that controls sex differentiation to maleness and the development of male characters (Ruppert et al., 2004). The ablation of the androgenic gland at early stage of development caused sex reversal to females (neofemale) (Nagamine et al., 1980) while the implantation of the androgenic gland in female *M. rosenbergii* resulted in sex reversal to males (neomale) (Malecha et al., 1992).

Sagi and Cohen (1990) based on two crosses (a total of 567 offspring) showed that the mating of the neofemale with the normal male resulted in 99.1% and 100% male offspring. Although their results have shown the potential of the technique for producing all-male offspring of *M. rosenbergii* for aquaculture, more information is needed because it is likely that sex determination of freshwater prawn may not completely rely on the ZW system (Malecha et al., 1992). The authors observed the fluctuation of sex ratio among control crosses (normal males × normal female) towards femaleness. Moreover the mating between the neomale (ZW) and the normal female produced varying sex ratios that ranged between 14% and 44% male in 10 crosses (Malecha et al., 1992).

Recently, Aflalo et al. (2006) who failed to identify male postlarvae at a sufficiently early stage of development for successful sex reversal by the androgenic gland ablation, overcame the problem by using a two-step procedure. Whereby in phase I, 25–60 days postlarvae were andrectomized with a low success rate of sex reversal. In phase II, the presumed all-male postlarvae of 20–30 days old produced from the neofemales were andrectomized resulted in improved success rate of sex reversal.

Therefore we conducted this study to explore the possibility of using the neofemale technology to produce all-male offspring in Thai strain of freshwater prawn which has been domesticated from the wild stock from Chaophraya River for more than 30 years (Rabanal, 1979).

Moreover despite a study on morphological sex differentiation in male the histology of gonads in very early stages was not available. Our study reports the histological sex differentiation of freshwater prawn in relation to the appearance of the stages defined by Nagamine et al. (1980) based on external sex characteristics. The results obtained enable defining a precise stage for efficient removal of the androgenic gland.

2. Materials and methods

2.1. The stock of M. rosenbergii

The stock of the freshwater prawn used in our study was a stock used for commercial aquaculture. It has been domesticated since 1970 from a natural population collected from central Thailand without the benefit of genetic knowledge.

2.2. Histology of males at stages I and II

According to Nagamine et al. (1980) the male freshwater prawn postlarva was first identified based on the presence of only the gonopore complexes (Stage I, 6–10 mm carapace length—CL). It reached stage II when both the gonopore complexes and appendix masculinae were present (10–28 mm CL). They found that the removal of the androgenic glands at stage I resulted in successful sex reversal. Nevertheless, histology of these stages was not provided.

Therefore we studied the histology of freshwater prawn postlarvae to elaborate the histology of the gonad in relation to the presence of male external characters. Thirty postlarvae from a single family were collected at each of the three sequential stages: (1) I week prior to the first development of the gonopore complexes, (2) when the gonopore complexes first observed, 15 each of specimens with and without the gonopore complexes were collected, (3) when the appendix masculinae were observed, 15 each of the specimen with and without gonopore complexes and the appendix masculinae were collected. The samples were preserved in Davidson's fixative for 24h and subsequently transferred to 70% alcohol. The histological study was performed following the method described by Humason (1979).

2.3. Removal of androgenic glands

The sex determination study showed that the external male sex character was first observed at 45 days of the postlarval stage at which it developed the gonopore complexes, an opening of a vas deferens, at the base of the fifth walking leg which is visible under a stereo microscope.

To remove the androgenic gland both fifth walking legs were cut and the androgenic gland which was visible under a stereomicroscope was pulled out using forceps. The walking legs regenerated soon after the operation. Then the andrectomized prawns were individually reared in plastic boxes of about 1000 cm³ floating

in 1×2 m² tanks (20 boxes/tank) with water temperature of 28±2 °C.

A total of 87 postlarvae were andrectomized and they were investigated for external sex character and development of ovary on a weekly basis.

2.4. Progeny testing

A total of 12 gravid suspected neofemales were mated with normal males (1:1, male/female). It was crucial that the newly molted suspected neofemale was introduced to the male soon after molting otherwise it did not allow the male to mate. The male was removed after 24h and the suspected neofemale was allowed to brood eggs until hatching took place.

The larvae from a single pair were separately reared in 250-l round tanks until they reached postlarval stage, after which they were transferred to 700-l rectangular tanks. The feeding and water quality management followed the method of Damrongphol et al. (1991). A sex ratio of the postlarvae was determined when they reached a size of approximately 10 mm CL. The male prawn was identified based on the presence of gonopore complexes and the appendix masculinae.

At the same time 10 replications of the single pair mating between normal female and male were done. The larval rearing and determination of sex were the same as previously described for the suspected neofemales.

2.5. Fecundity of the neofemales

The berry 8-month-old suspected neofemales (n=9) and normal females (n=11) were measured for carapace length. Then the eggs attached to swimmerets of each female were removed and weighed, a sample of 0.94-1.21 g of eggs/female were taken and enumerated. The total number of eggs/female was calculated based on a proportion of weight and number of eggs sampled.

2.6. Data analysis

The sex ratio of postlarvae of each family was tested against the 1:1 ratio using the chi-square test.

Correlation between number of postlarvae and percentage of male offspring of 10 normal crosses and 12 crosses using suspected neofemale dams was calculated wherein the percentages of male were transformed using arcsin transformation prior to the calculation.

The carapace length and number of eggs/female were compared between the suspected neofemales and normal females using the t-test. All the calculations were performed using the statistical function available in the Microsoft Excel 2003.

3. Results

3.1. The gonadal differentiation in relation to external sex characters

The specimens collected I week prior to sex differentiation without the gonopore complexes developed a thoracic spine between the fifth walking legs (Fig. 1A) first visible when it was approximately 7 days of the postlarval stage. They all showed undifferentiated gonad which appeared as a cluster of germ cells (Fig. 2A) located between the heart and hepatopancreas (Fig. 2B).

The external characters specific for male appeared first in the postlarvae having carapace length ranged 0.6-0.7cm (approximately day 45th of the postlarval stage); the male postlarvae developed the gonopore complexes (Fig. 1B) at the opening of the vas deferens (Fig. 1C) at the base of each fifth walking leg. All of the specimens (with and without the gonopore complexes) showed undifferentiated gonads.

When the male postlarva reached a size of approximately 1 cm carapace length (approximately 67 days of the postlarval stage) the appendix masculinae appeared at the inner rim of the second pleopods (Fig. 1D). The gonads of all the stage II male specimens (with the gonopore complexes and the appendix masculinae) differentiated into testes which were characterized by a structure of spermatogenic lobules (Fig. 3A). All of the specimens without the gonopore complexes and the appendix masculinae were female, as characterized by the gonads filled with oogonia (Fig. 3B).

3.2. Results of the andrectomy

At I week after the androgenic gland removal, 70 (80.4%) of 87 postlarvae survived the surgical operation (Table 1). Mortality rate during the rearing was very low (<5%). Two weeks later some andrectomized prawns developed normal gonopore complexes followed by the appearance of the appendix masculinae which represented the failure to sex reversal. However, some developed normal testes but without the vas deferens.

Twenty-one survivors (30%) were successfully reversed to female as shown by the lack of the gonadal complexes and the appendix masculinae.

Nineteen suspected neofemales (90.5% of the 21 sex reversed females or 27.14% of the survivors) developed matured ovaries, 2 at 5 and 6 months and 15 at 8 months

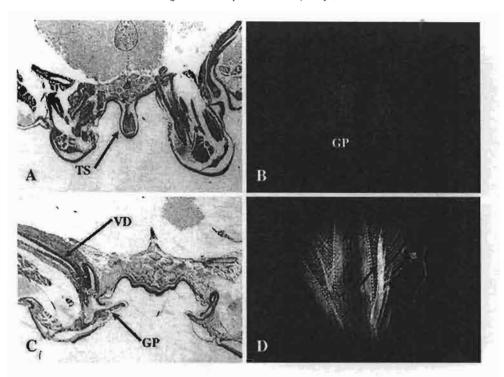


Fig. 1 (A) A cross section of thoracic spine (TS) between the fifth walking legs. (B) A gonopore complex (GP) of a prawn at 45 days old. (C) Cross section of a prawn showing the vas deferens (VD) and a gonopore complex. (D) An appendix masculina (AM) located at the inner part of the second swimmeret.

after the operation. All of the suspected neofemales with matured ovaries eventually spawned and showed normal egg-caring behavior.

3.3. Sex ratio of offspring

Sex ratios of the offspring of the suspected neofemales varied from 100% males in eight families (a total of 2357 postlarvae), 99% males (a total of 376 postlarvae from one family), 88% males (a total of 390 postlarvae from one family) and 48–52% male (a total of 585 postlarvae from two families) (Table 2). All but two families showed sex ratios deviating from 1:1 (χ^2 test, P<0.05, 0.01).

Among the control mating six pairs produced offspring (a total of 951) with sex ratio of 1:1 (χ^2 test, P>0.05) while four pairs (a total of 1015 postlarvae) showed offspring sex ratio deviating from the 1:1 ratio (χ^2 test, P<0.05,0.01) favoring female (1.72 $\frac{9}{2}$:1 $\frac{3}{2}$) (Table 2).

3.4. Correlation between number of survivors and percentage of male offspring

The correlation coefficient between percentages of male offspring and numbers of survivors was not statistically significant (P>0.05) for both the control crosses and the crosses using the suspected neofemales as dams (r=-0.25, P=0.487) for the control and r=0.294, P=0.353 for the neofemale crosses). It implied that the density did not affect the sex ratio.

3.5. Fecundity of the neofemales

The number of eggs/female and CL are shown in Table 3. The neofemales of 8 months old (CL=2.85–3.25 cm) produced 4000 to 25,000 eggs (mean fecundity=16,148.8 \pm 6997.5) and was not different (P=0.737, t-test) from the fecundity of the normal females (mean fecundity=20,668.3 \pm 7927.3, range 10,000–30,000 eggs/female) of the same age. The carapace length of the neofemales and the normal females did not differ (P=0.690, t-test).

4. Discussion

4.1. Gonadal differentiation in relation to morphological sex differentiation

The histology of the undifferentiated gonads in the stage I male samples gave an evidence to support the previous report that in the freshwater prawn external sex

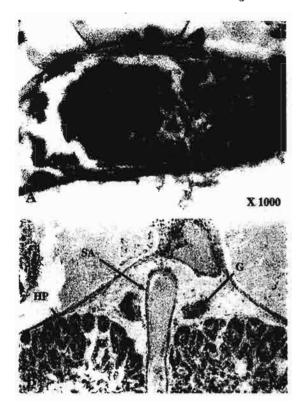


Fig. 2. A cross section of a gonad of the undifferentiated giant freshwater prawn (before a presence of the gonopore complexes in male). Notice the undifferentiated gonad which appeared as a cluster of germ cells (A) located between the heart and hepatopancreas (B). SA = sternal artery, HP = hepatopancreas, G = gonad.

differentiation to maleness occurred prior to gonadal differentiation (Nagamine et al., 1980; Sagi and Cohen, 1990). The gonopore complexes presented at day 45th of the postlarval stage and hence enabled identification of males.

The explanation would be the development of the gonopore complexes is regulated by a genetic factor. Then the gonopore complexes triggered development of the testes by secretion of the androgenic gland hormone. The removal of the androgenic glands in a young male resulted in sex reversal to a female. However if testes already developed (day 67th) removal of the androgenic glands did not result in sex reversal.

4.2. The success rate of sex reversal

The ability to identify male postlarvae at an early stage of development (45 days after metamorphosis) enhanced successful production of neofemales (27.14% of the survivors) compared to 1.3% (phase I) and 17.62% (phase II) reported by Aflalo et al. (2006). Moreover the time required for a mass production of all-

Fig. 3. A cross sections of a testis (A) and an ovary (B) of *Macrobrachium rosenbergii* at 67 days after metamorphosis when both the gonopore complexes and the appendix masculinae appeared in a male. SL=spermatogenic lobule; OG=oogonia.

male offspring was reduced by half of the two-step procedure of Aflalo et al. (2006). However the low proportion of the presumed sex reversed females (andrectomized larvae without the appendix masculinae) in both our and Aflalo et al.'s (2006) results indicated that the success rate could be improved if the operation was done earlier.

4.3. Sex ratios of the offspring of the neofemales

Due to the large fluctuation of the stocking densities because of the different mortality rates among families

Table 1 Survival of the andrectomized *Macrobrachium rosenbergii* at 1 week after the surgical operation, number of successful sex reversal and number of matured neofemale

	Number (%)
Initial number	87
Survivors at I week after the surgical operation	70 (80.4)
Neofemales	21 (30.0)
Matured peofemales at 5 months	2 (9.5)
Matured neofemales at 6 months	2 (9.5)
Matured neofemales at 8 months	15 (71.4)
Total matured neofemales	19 (90.5)

Table 2 Summary of the results from mating experiments between neofemale and normal male *Macrobrachium rosenbergii* [$\chi^2_{0.05(1)}$ =3.84; $\chi^2_{0.01(1)}$ =6.63]

Type of	Offspring	:	Sex ratio	x²
crosses	Female	Male	(female/male)	
Control				
Family No. 1	133	67	1.98:1	21.78**
No. 2	174	62	2.81:1	36.04**
No. 3	98	102	1:1,04	0.08 ^{ns}
No. 4	95	101	1:1.06	0.18 ^{ns}
No. 5	86	76	1.13:1	0.62**
No. 6	53	31	L71:1	5.76*
No. 7	103	101	1.02:1	0.02^{ns}
No. 8	12	15	1:1.25	0.33 ^{ns}
No. 9	73	89	1:1.22	l.58 ^{ns}
No. 10	282	213	1.32:1	9,62**
Total	F109	857	1.29:1	32.30**
Neofemale × male	Ø			
Family No. 1	96	104	k:1.1	0.32 ^{ns}
No. 2	200	185	1.1:1	0.58°s
No. 3	0	738	0:1	738**
No. 4	0	634	0:1	634**
No. 5	0	542	0:1	542**
No. 6	46	330	1:7.2	214.5**
No. 7	0	10	0:1	10**
No. 8	0	124	0:1	124**
No. 9	2	388	1:194	382**
No. 10	0	309	0:1	309**
No. 11	0	2075	0:1	2075**
No. 12	0	1679	0:1	1679**
Total	344	7118	1:20.7	
Total a	48	6829	1:142.3	

The supercripts * and ** indicate $\chi^2_{0.05(1)}$ =3.84 and $\chi^2_{0.01(1)}$ =6.63, respectively.

we were concerned that the sex ratios of the offspring may have been influenced as was reported in a copepod (Voordouw et al., 2005). However the correlation coefficient between the numbers of survivors and the percentages of male offspring was not different from 0, implying that the sex ratios were not influenced by the density.

Our results support the previous study by Sagi and Cohen (1990) and Aflalo et al. (2006) in that most of the andrectomized neofemale freshwater prawn (8 of 12 neofemales) gave all-male offspring from the mating with the normal males. The result well agreed with the ZZ/ZW sex determining mode proposed for freshwater prawn (Malecha et al., 1992). Nevertheless four crosses gave the controversial results in which 0.51-51.90% female offspring were observed. The presence of females in the cross numbers 1 and 2 (1:1 male/female offspring) and the cross number 9 (0.51% female offspring) was attributed to human error. The

cross numbers 1 and 2 were done during the initial stage of the study when the tagging system was not good and might have caused misidentification of normal females as neofemales.

The presence of females in the cross numbers 6 and 9, which were expected to produce all-male offspring was not surprising. Sagi and Cohen (1990) also found 0.92% female offspring in one of the two crosses between the neofemales and normal male freshwater prawn. Malecha et al. (1992) also reported the skewed sex ratio towards femaleness (1M:1.29F) in offspring from seven control crosses and one cross produced 1M:2.22F. In the present study 4 of 10 normal crosses produced more female offspring than the males while the expected all-male offspring (arising from ZZneofemale × ZZ-normal male) contained some females. These may indicate the presence of modifying genes on sex determination and a selective mortality upon male (Malecha et al., 1992). The additional explanation particularly applied for our study would be misidentification of a male as a female. We could not rule out this explanation because we identified sexes of the postlarvae at very early stage (10mm CL) based on a presence of gonopore complexes and the appendixes masculina in males hence late differentiated males could have been misidentified as females.

However further studies are needed to find out the minor factors that determine sex of *M. rosenbergii* to enhance the success of production of all-male stock.

Despite the brief observation given by Sagi and Cohen (1990) that the neofemales produced smaller number of eggs than the normal females our results

Table 3 Fecundity of the neofemales and normal females at 8 months old reared in tanks

No.	Neofemales		Normal fem	ales
	Carapace length	Fecundity	Carapace length	Fecundity
<u> </u>	2.85	. 16,868	2.08	10,899
2	3.05	22,367	2.14	30,377
3	3.18	24,020	2.72	24,760
4	2.38	4358	3.36	23,033
5	2.85	9506	2.89	34,761
6	2.72	11,273	2.89	10,899
7	3.25	15,680	3.18	21,384
8	3.07	15,985	3.03	24,714
9	3.21	25,282	2.67	12,525
10	_	_	3.15	19,472
13	-	_	2,77	14,527
Mean	2.95	16,148.8	2.81	20,668.3
	(0.28)	(6997.5)	(0.40)	(7927.3)

Standard deviation in parentheses.

Without families 1 and 2.

revealed no significant difference between the fecundity of the two groups. Moreover our observation showed a tendency of increasing fecundity with age in the neofemales. A neofemale of 10 months old with comparable size to the neofemales used in this study (CL=3.24) produced as many as 68,876 eggs (Rungsin et al., unpublished data), suggesting that fecundity would not be a problem in using the neofemale technology for aquaculture.

4.4. Implications for aquaculture

Our study showed the feasibility of using the neofemale technology to produce all-male postlarvae for aquaculture based on the following reasons. First, the attempt to produce all-male offspring was successful. From the mating of 10 neofemales (excluding the misidentified neofemales in the cross numbers 1 and 2) 99.3% males were produced. The inclusion of a small proportion of females will not affect the yield in the grow-out ponds. Second, the neofemales had as much eggs as the normal females. This indicated that the mass production of all-male postlarvae is possible. The fecundity of female M. rosenbergii in this study was lower than normal because of the marginal rearing condition in our laboratory. The fecundity can be improved in a normal rearing environment. And third, the 30% success rate for sex reversal is acceptable and can be improved with better skill and technique. From our experience, after a sufficient training it is possible to remove the androgenic glands of 100 postlarvae within a

Acknowledgements

This research is supported by Thailand Research Fund through the project "Application of Genetics and Biotechnology for Sustainable Development of Aquaculture" awarded to U. Na-Nakorn (the Senior Research Scholar 2003). The authors thank Mr. Pedro Bueno, Director General of the Network for Aquaculture Centres in Asia and Pacific (NACA) for improvement of the English. We thank the referees and the editor for their invaluable comments which significantly improved the manuscript.

References

Aflalo, E.D., Hoang, T.T.T., Nguyen, V.H., Larn, Q., Nguyen, D.M., Trinh, Q.S., Raviv, S., Sagi, A., 2006. A novel two-step procedure

- for mass selection of all-male populations of the giant freshwater prawn *Macrobrachium rosenbergii*. Aquaculture. doi:10.1016/j. aquaculture.2006.01.035. Available opline 13 march 2006.
- Cohen, D., Sagi, A., Ra'anan, Z., Zohar, G., 1988. The productions of Macrobrachium rosenbergii in monosex populations: Iii. Yield characteristics under intensive monoculture conditions in earthen ponds. Isr. J. Aquac.-Bamidgeh 40, 57-63.
- Damrongphol, P., Eangchuan, N., Poolsanguan, B., 1991. Spawning cycle and oocyte maturation in laboratory-maintained giant freshwater prawns (*Macrobrachium rosenbergii*). Aquaculture 95, 347-357.
- FAO, 2004. "Fisheries Statistics." (Online). Available: http://www.fao.org/fi/Stat/ FISOFT/FISHPLUS asp 2004.
- Holthuis, L.B., 1980. FAO species catalogue: Vol. I. Shrimps and prawns of the world. An annotated catalogue of species of interest to fisheries. FAO Fisheries Synopsis, vol. 125 (1). FAO, Rome.
- Huiata, G., Karplus, I., Wohlfarth, G.W., Halevy, A., Cohen, D., Sagi, A., Ra'anan, Z., 1988. The production of Macrobrachium rosenbergii in monosex populations: II. Yield characteristics in polyculture ponds. Isr. J. Aquac.-Bamidgeh 40, 9-16.
- Hurnason, G.L., 1979. Animal Tissue Techniques. W.H. Freeman and Company, San Francisco. 661 pp.
- Małecha, S.R., Nevin, P.A., Ha, P., Barck, L.E., Lamadrid-Rose, Y., Masuno, S., Hedgecock, D., 1992. Sex ratios and sex-determination in progeny from crosses of surgically sex-reversed freshwater prawns, Macrobrachium rosenbergii. Aquaculture 105, 201-218.
- Nagamine, C., Knight, A.W., Maggenti, A., Paxman, G., 1980. Effect of androgenic gland ablation on male primary and secondary sexual characteristic in the Malaysian prawn, Macrobrachium rosenbergii (de Mae) (Decapoda, Palaemonidae) with first evidence of induced feminization in a nonhermaphroditic decapod. Gen. Comp. Endocrinol. 41, 423-441.
- Rabanal, H.R., 1979. General report on the Macrobrachium fishery with emphasis on conditions of the resource in the Indo-Pacific region. In: Singholka, S., Rabanal, H.R. (Eds.), A Report of the First Training Course on Freshwater Prawn Culture for Extension Workers, Report No. THA/008/79/RP/5. FAO, Rome, pp. 7-16.
- Ruppert, E.E., Fox, R.S., Barnes, R.D., 2004. Invertebrate Zoology, seventh edition. Brooks/Cole, A Division of Thomson Learning, Inc., Belmonth.
- Sagi, A., Aflalo, E.D., 2005. The androgenic gland and monosex culture of freshwater prawn *Macrobrachium rosenbergii* (De Man): a biotechnological perspective. Aquac. Res. 36, 231-237.
- Sagi, A., Cohen, D., 1990. Growth, maturation and progeny of sexreversed Macrobrachium rosenbergii males. World Aquac. 21, 82-90.
- Sagi, A., Ra'anan, Z., Cohen, D., Wax, Y., 1986. Production of Macrobrachium rosenbergii in monosex population: yield characteristic under intensive monoculture condition in cages. Aquaculture 51, 265-275.
- Voordouw, M.J., Robinson, H.E., Stebbins, G., Albert, A.Y.K., Anholt, B.R., 2005. Larval density and the Charnov-Bull model of adaptive environmental sex determination in a copepod. Can. J. Zool. 83, 943-954.

เอกสารแนบที่ 5

Charcentawee, K., S. Poompuang and U. Na-Nakorn. 2006. Isolation and characterization of microsatellites in giant freshwater prawn *Macrobrachium rosenbergii*. Molecular Ecology Notes. 6, 823-825.

PRIMER NOTE

Isolation and characterization of microsatellites in giant freshwater prawn Macrobrachium rosenbergii

KANCEE CHAROENTAWEE,* SUPAWADEE POOMPUANG and UTHAIRAT NA-NAKORN†
*Center for Agricultural Biotechnology, Kasetsart University, Nakorn Pathom 73140, Thailand, †Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand

Abstract

Microsatellite loci were characterized in a freshwater prawn from enriched genomic library using six biotinylated probes: (AG)₁₀ (TG)₁₀ (CAA)₁₀ (CAG)₁₀ (GAT)₁₀ and (TAC)₁₀. Primers for DNA amplification were designed and synthesized for 20 loci. Ten loci were polymorphic with the number of alleles ranging from five to 17 alleles per locus and the observed heterozygosity ranging from 0.27 to 0.83 per locus. Developed microsatellite primers should prove useful for selective breeding programs and population genetic studies of freshwater prawn.

Keywords: genetic marker, genetic variation, heterozygosity, Macrobrachium rosenbergii, microsatellite, primer

Received 14 December 2005; revision accepted 13 February 2006

Giant freshwater prawn Macrobrachium rosenbergii is a species with wide range of distribution from India to Southeast Asia and northern Australia. Culture of freshwater prawn represents one of important segments in Thailand's aquaculture industry. The potential growth of this industry, however, has been limited by low level of production. Genetic improvement provides effective means to increase yield of aquaculture species. For freshwater prawn, evidence suggests that increased growth may be obtained through selection (Uraiwan et al. 2002). Improvement of prawn by selection depends on the existence of genetic variation in the base population. Development of highly polymorphic genetic markers will be particularly useful for assessing genetic variation of founding population and the selection of suitable stocks in breeding programs. Based on phylogenetic analysis, freshwater prawn in Southeast Asia including Thailand has been recognized as 'western' form (de Bruyn et al. 2004). Recently, microsatellite loci in the eastern form of freshwater prawn have been characterized (Chand et al. 2005), but these loci were not conserved between the eastern and western forms. None of six microsatellite loci amplified samples of the western form. We developed microsatellite primers for the western form of M. rosenbergii for genetic

Correspondence: Supawadee Poompuang, Fax: 66-2-5613984; E-mail: supawadee.p@ku.ac.th

characterization of wild and cultured stocks and for determining genetic basis of suitable stocks for selection purposes.

The microsatellite loci were isolated from a microsatelliteenriched library of M. rosenbergii following the procedure described by Billotte et al. (1999). Approximately 500 ng DNA from swimmeret tissue of a single prawn was digested with Msel, and the fragments were ligated to Msel adaptor. Microsatellite sequences were selected using six biotinylated oligo simple sequence repeat (SSR) probes: (AG)₁₀ (TG)₁₀ (CAA)₃₀ (CAG)₁₀ (GAT)₁₀ and (TAC)₁₀ and Streptavidin MagneSphere Paramagnetic Particles (Promega). Magnetic separation stands (MS-MSS) were used to select streptavidin-biotinylated oligo SSR complex. These selected DNA fragments were amplified and cloned into pGEM-T easy vector (Promega) in a final volume of 10 μL at 4 °C overnight. Plasmids were electrotransformed into competent Escherichia coli (DH 10B) and grown on LBampicillin agar plates. Colonies were transferred to filter paper and screened with six DIG-labelled microsatellite oligoprobes (Roche). Filters were stored in hybridization solution at 55 °C for (AG)30 and (TG)30 probes, and at 65 °C for (CAA)10, (CAG)10, (GAT)10 and (TAC)10 probes. Positive clones were detected by chemiluminescence (Roche) and cultured in LB-ampicillin medium at 37 °C for 3-5 h. Cell cultured was amplified in a final volume of 20 µL reaction mixture containing 0.5 µm each of M13 forward and reverse primers, 100 µm of dNTPs, 1× polymerase chain reaction (PCR) buffer (100 mm Tris-HCl pH 9.0, 500 mm KCl, 0.1% Triton X-100), 1.5 mm MgCl₂ and 1 U of Taq DNA polymerase. The PCR profile was initial denaturation at 94 °C for 3 min; then 35 cycles at 94 °C for 30 s, 55 °C for 30 s and 72 °C for 1 min; then 1 cycle at 72 °C for 5 min in a GeneAmp PCR System 9700 (Applied Biosystems). PCR product was sequenced using dye terminator cycle sequencing with M13-20 sequencing primer and the ABI PRISM 377 DNA sequencer (PE Applied Biosystems). Seventy positive clones sequenced were analysed and 20 primers flanking microsatellite repeat regions were designed using the PRIMER 3 program (www-genome.wi.mit.edu/cgi-bin/primer/primer3.cgi/).

Primers were tested on genomic DNA from 28 unrelated prawn sampled from a natural population to analyse polymorphism and levels of heterozygosity and determine optimal PCR amplification. Genomic DNA was extracted from swimmeret tissue using standard phenol-chloroform method (Taggart et al. 1992). The 10 µL reactions contained 20 ng of genomic DNA, 1× PCR buffer (100 mm Tris-HCl pH 9.0, 500 mm KCl, 0.1% Triton X-100), 1.5 mm MgCl₂, 200 µm of dNTPs, 0.5 pm of each primer and 0.3 U of Taq DNA polymerase (Fermentas). The PCR profile was initial denaturation at 94 °C for 3 min; then 35 cycles at 94 °C for 30 s, annealing temperature (Table 1) for 45 s and 72 °C for 1 min; then 1 cycle at 72 °C for 7 min in a PCT-100 Programmable Thermal Controller (MJ Research).

Following amplification, reaction products were mixed with 2.5 µL of sequencing dye^f (0.1% bromophenol blue, 0.1% xylene cyanol, 2% of 0.5 м EDTA pH 8.0 and 98% formamide). The reaction mixtures were heated for 5 min at 95 °C and electrophoresed on 5.5% denaturing polyacrylamide gel in 1× TBE running buffer at 80 W for 3 h in sequencing gel apparatus (Bio-Rad). Gel was denatured at 100 °C for 30 min before electrophoresis. Gel was visualized by silver staining. Allele sizes were determined according to an M13 sequence ladder. Heterozygosity was calculated using the software GENEPOP (Raymond & Rousset 1995).

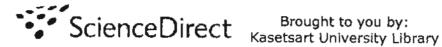
BLAST results showed that all microsatellite loci developed in this study did not have significant similarity with sequences from the previous efforts by Chand et al. (2005). Seven of the M. rosenbergii microsatellites contained dinucleotide core sequences and three loci contained trinucleotide repeat motifs. Characterizations of 10 polymorphic loci were summarized in Table 1. The number of alleles per locus ranged from six to 17. The observed heterozygosity ranged from 0.27 to 0.83. Significant deviations from Hardy-Weinberg expectations were found at loci Mbr-1, Mbr-3, Mbr-4, Mbr-9 and Mbr-10, suggesting heterozygote deficiency (P < 0.05). There was no significant linkage disequilibrium for all pairs of loci. Developed microsatellite primers should prove useful for population studies and management of genetic variation in broodstocks of freshwater prawn.

Table 1 Characterization of 10 Macrobrachium rosenbergii microsatellite loci, including GeneBank Accession no., primer sequences, annealing temperature (T_a), repeat sequence, number of alleles, size range (bp), observed and expected heterozygosities (sample size = 28 individuals)

Locus	Genßank Accession no.	Primer sequences 5'-3'	T, (°C)	Repeat sequence	No. of alleles	Size range (bp)	Но	Hg
Mbr-1	DQ019863	F: CCCACCATCAATTCTCACTTACC R: TCCTTTTCACATCGTTTCCAGTC	60	(GA) ₂₄	13	272-320	0.7692	0.9110
Mbr-2	DQ019864	F: TTCCCGACCAATTTCTCTTTCTC R: GGCAAAAATGATCTTGGATTCAC	60	(GT) ₂₂	8	298-336	0.8333	0.8387
Mbr-3	DQ019865	F: CAACTCTATGTTTOGGCATTTGG R: GGGGAATTTTACCGATGTTTCTG	62	(AG) ₁₄	16	232-284	0.2692	0.9276
Mbr-4	DQ019866	F: CCACCTACCGTACATTCCCAAAC R: CGGGGCGACTTTTAGTATCGAC	62	(GT) ₂₉	10	288-326	0.4643	0.8753
Mbr-5	DQ019867	F: CAAGGCTCGTGTCTCTTGTTTC R: GCTTGTACTTGTTCAGCTTTTGC	62	(AG) ₂₅	10	286-328	0.7308	0.8997
Mbr-7	DQ019869	F: ATAAAAGAGTCGCCAAATGAGCA R: ATTGGGAATTGTTGACCTCCAAG	62	(TGC) ₁₆	5	274-286	0.5556	0.5108
Мът-8	DQ019870	F: AACCAGCCGACTTAGACTGTGC R: CGCCATTTGCGTCTATCTCTTAC	62	(AGC) ₆ (AG) ₅ AA(AG) ₄	5	256-266	0.5000	0.5896
Mbr-9	DQ019873	F: TTGTTTGCTTGTTTAGTGTCAAGG R: CTCCAAAACCGAAMATCCTCAC	60	(TG) ₅ (AG) ₁₇	17	240-284	0.5185	0.9057
Mbr-10	DQ019871	F: ATGACGATGATGAGGAATGAAGC R: TTTCAGGCTATATCAAGCAACAG	60	(ATG)3A(ATG)4	7	241-265	0.5714	0.7071
Mbr-11	DQ019872	F: GT AT T GAGAACAAAGGCGCACAG R: ATCTCT T TCCAAAACAGGGCACA	60	(AG) ₃₁	7	263 - 291	0.5000	0.8213

Acknowledgements

This work was supported by research grant BT-B-06-AG-11-4401 from the Thailand Research Fund (TRF) and Center for Agricultural Biotechnology, Kasetsart University. We thank Natinee Rattanamahavichai and Kantiporn Fungnapakaew for technical assistance.


References

- Billotte N, Lagoda PJL, Risterucci A-M, Baurens F-C (1999) Microsatellite-enriched libraries: applied methodology for the development of SSR markers in tropical crops. Fruits, 54, 277– 288
- de Bruyn M, Wilson JA, Mather PB (2004) Huxley's line demarcates extensive genetic divergence between eastern and western

- forms of the giant freshwater prawn, Macrobrachium rosenbergii. Molecular Phylogenetics and Evolution, 30, 251–257.
- Chand V, de Bruyn M, Mather PB (2005) Microsatellite loci in the eastern form of the giant freshwater prawn (Macrobrachium rosenbergii). Molecular Ecology Notes, 5, 308-310.
- Raymond M, Rousset F (1995) CENEFOR (version 1.2): a population genetics software for exact test and ecumenicism. *Journal of Heredity*, 86, 248-249.
- Taggart JB, Hynes RA, Prodohl PA, Ferguson A (1992) A simplified protocol of routine total DNA isolation from salmonid fishes. Journal of Fish Biology, 40, 963–965.
- Uraiwan S, Sumanofitraporn S, Ampolsak K (2002) Genetic improvement to increase growth rate of giant freshwater prawn (Macrobrachium rosenbergii de Man) 1. Heritability estimates and within-family selection. Proceeding 40th Kasetsart University Conference February 4-7, 2002, Bangkok, pp. 632-640.

เอกสารแนบที่ 6

Charoentawee, K., S. Poompuang, U. Na-Nakom and W. Kamonrat. 2007. Genetic diversity of hatchery stocks of giant freshwater prawn (*Macrobrachium rosenbergii*) in Thailand. Aquaculture: accepted 1 July 2007.

Login: 19 Register

Home	Browse S	Search My S	Settings	Alerts	Help	Live	Chat				
Quick Sea	ırch Title, ab	stract, keyword	s				Author	-			
2 search	itips 3	oumal/book titl	8				Volume		issue		Page
Aquaculti Article in	u re Press, Correcte	ed Proof - Note	to users								
Sumn	naryPlus	Full Text + L	inks	PDF (2	47 K)	View t	thumbna	ali imag	es View f	uil size	e images
Add to	my Quick Links	Cited By	E-mail	Article	Save 8	s Citetio	on Alert	Exp	ort Citation	2	itation Feed
	6/j.aquaculture		(2) Cite or	Link Us	ing DOI						

Genetic diversity of hatchery stocks of giant freshwater prawn (Macrobrachium rosenbergii) in Thailand

Kancee Chareontawee^a, Supawadee Poompuang^{b, ™}, ™, Uthairat Na-Nakorn^b and Wongpathom Kamonrat^c ^aCenter for Agricultural Biotechnology, Kasetsart University, Nakom Pathorn 73140, Thalland Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand Received 14 December 2006; revised 27 June 2007; accepted 1 July 2007. Available online 10 July 2007.

Abstract

The culture of freshwater prawn in central Thailand has experienced low productivity despite the rapid expansion during the past several years. Deterioration of genetic variation and inbreeding depression were blamed for slow growth rate in farmed stocks. Six microsatellite DNA loci were used to assess genetic diversity from five hatchery stocks and two wild populations of freshwater prawn. Natural populations were collected from the ChaoPhaya River and the Kraburi River. Two local hatchery populations originated from the ChaoPhya River were collected from the provinces of Nakorn Pathom and Supanburi. Another ChaoPhya originating samples were obtained from a hatchery in Indonesia. An introduced stock of Myanmar origin was sampled from a hatchery in Nakhon Pathom province and samples of a commercial strain which originated from India were collected in Ratchaburi province. All hatchery and wild populations exhibited relatively high genetic variation and were similar with an average of 7.50 to 10.67 alleles per locus and average expected heterozygosity at all locl of 0.64 to 0.73. Pairwise comparisons and the F_{ST} values revealed significant genetic differentiation across all populations. Results indicated that poor performance of freshwater prawn due to deterioration of genetic variability and inbreeding was not an issue.

Keywords: Macrobrachium rosenbergii; Microsatellites; Genetic diversity; Freshwater prawn

Article Outline

- 1. Introduction
- 2. Materials and methods
 - 2.1. Sample collections

- 2.2. Microsatellite analysis
- 2.3. Genetic data analysis
- 3. Results
 - 3.1. Genetic variability within populations
 - 3.2. Genetic differentiation between populations
- 4. Discussion
 Acknowledgements
 References

1. Introduction

Culture of giant freshwater prawn *Macrobrachium rosenbergli* represents one of the important segments in Thailand's aquaculture industry. The annual production has dramatically increased from 2.2 metric tonnes (mt) in 1997 to 28.5 mt in 2003 (FAO, 2006). The rapid expansion of prawn farming over the past 10 years was due to some extent to the crash of penaeid shrimp culture in the country. The major farming areas are situated in the central part of Thailand, southwest of the ChaoPhaya Basin (Fig. 1). Prawn production in the area accounts for 80% of total domestic production. Despite the increase in annual farmed production, the inconsistency and a relatively low production are potential problems to the development of prawn farming into large-scale industry for export market. There are some factors that might cause low levels of prawn production, including slow growth rate, size variation at harvest, and deterioration of pond environment. Genetic deterioration in the local hatchery stocks due to inbreeding also may be responsible for low productivity of prawn culture.

Display Full Size version of this image (123K)

Fig. 1, Map showing sampling sites of seven freshwater prawn populations.

Domestication of freshwater prawn has been established since the 1970s by government hatcheries. However, the number of foundation populations and information on mating scheme were not known. A number of private hatcheries in Thailand have been using broodstock identified as local strains to produce farvae. Despite a long aquaculture history, the genetic structure of these local stocks has not been determined. In addition, several private hatcheries have introduced non-native prawn broodstocks from India and Myanmar (Nithid Patarakulchai, pers. comm.) to replace or upgrade their own stocks due to the inconsistency of prawn production of the local populations.

Previous studies of genetic variation among wild populations of *M. rosenbergii* based on allozyme markers suggested low genetic diversity and falled to detect population differentiation (Sodsuk and Sodsuk, 1998). In this study, we have chosen to use microsatellite markers because they are capable of resolving low genetic differentiation un-resolvable by allozymes (Liu and Cordes, 2004). The objectives of this study were to investigate genetic diversity among hatchery stocks of *M. rosenbergii* in central Thailand using six microsatellite markers developed for freshwater prawn (Charoentawee et al., 2006) and to provide information for genetic management of hatchery populations. Currently, three hatchery strains are available in the studied area, the local stocks, the Myanmar origin strain and the improved stock which originated from India. Because baseline information on diversity of hatchery stocks was not available, we used two wild populations from the ChaoPhya

River and the Kraburi River as references. The ChaoPhya River population might have been largely contaminated with hatchery released prawn from the long continued restocking program white the Kraburi River population represents the small and uncontaminated population.

t

2. Materials and methods

2.1. Sample collections

Prawns were sampled from two natural populations, four hatchery stocks in central Thailand and one hatchery population in Indonesia (Table 1 and Fig. 1). Broodstocks of Roumchoke and Lomchoy farms were originated from the ChaoPhaya River while those of Kwanmuang and Nithid farms were produced using broodstocks which originated from Myanmar and India respectively.

Table 1.

Freshwater prawn sample collections

Sample name	Population	Number	Source
Nat 1	Wild	36	ChaoPhaya River, Ayutthaya Province
Nat 2	Wild	28	Kraburi River, Ranong Province
Hat 1	Hatchery	50	Ruomchoke Farm, Nakorn Pathom Province
Hat 2	Hatchery	46	Lomchoy Farm, Supanburi Province
Hat 3	Hatchery	60	Kwanmuang Farm, Nakom Pathom Province
Hat 4	Hatchery	49	Nithid Farm, Ratchaburi Province
Hat 5	Hatchery	36	Private Hatchery, Sumatra, Indonesia

Sample name refers to location in Fig. 1.

2.2. Microsatellite analysis

Genomic DNA was extracted from swimmeret tissues using the standard phenol-chloroform extraction procedure described by Taggart et al. (1992).

Six microsatellite primers (*Mbr*-1, *Mbr*-2, *Mbr*-5, *Mbr*-7, *Mbr*-8 and *Mbr*-10 with accession numbers DQ019863, DQ019864, DQ019867, DQ019869, DQ019870 and DQ019871) developed from *M. rosenbergii* genomic library were used to amplify DNA samples as described by Charoentawee et al. (2006). PCR reactions were performed in 15 µl reactions which contained 10 ng template DNA, 0.3 µM forward and reverse primers, 0.2 mM each dNTP, 2 mM MgCl₂, 50 mM KCl, 10 mM Trls—HCl (pH 9.0), 0.1% Triton X-100, and 1 unit of *Taq* DNA polymerase (Promega). The PCR profile was initial denaturation at 94 °C for 3 min; then 35 cycles of 94 °C for 30 s, annealing temperature for 45 s, and 72 °C for 1 min; then 1 cycle of 72 °C for 7 min. Following amplification, PCR products were mixed with 2.5 µl of sequencing dye and heated for 5 min at 95 °C. The reaction mixtures were subjected to electrophoresis on 5.5% denaturing polyacrylamide gel at 80 W for 3 h. Gel was denatured at 100 °C for 30 min before electrophoresis. Gel was visualized by silver staining. Allele sizes were determined according to an M13 sequence ladder.

2.3. Genetic data analysis

Genetic variation within each of 7 populations including mean number of alleles per locus (A), allelic richness

 $(A_{\rm f})$, observed $(H_{\rm o})$ and expected $(H_{\rm e})$ heterozygosities were calculated using GENEPOP version 3.1c (Raymond and Rousset, 1995). The significance of differences in average values of $A_{\rm f}$, $H_{\rm e}$ and $F_{\rm is}$ among populations was tested by independent t-test of Archie (1985) using FSTAT version 2.9.3 (Goudet, 2001). Genotypic linkage disequilibrium was tested using GENEPOP version 3.1c. The exact P values for tests of Hardy-Weinberg expectations were calculated by a Markov chain randomization method (Guo and Thompson, 1992) using ARLEQUIN version 3.11 (Excoffier et al., 2006). A sequential Bonferroni correction method was used to adjust significance levels for multiple tests (Rice, 1989).

Population differentiation was examined by testing for heterogeneity of allele distributions between pairs of populations and P values were conducted using GENEPOP version 3.1c. Fisher's combined method (a chi-square test) was used to calculate P values of all loci for overall test. Population pair-wise $F_{\rm ST}$ values were calculated and tested for significance by bootstrapping using ARLEQUIN version 3.11.

The TFPGA computer program (Miller, 1997) was used to estimate Wright's F-statistics (F_{IT} , F_{ST} , and F_{IS}) and confidence interval across loci. Estimates of F-statistics for each locus were tested for significance by bootstrapping over samples.

Nei's $D_{\rm A}$ distances (Nei et al., 1983), were calculated between all pairs of populations using the TFPGA program. The pattern of genetic relationships among populations was analyzed using a multidimensional scaling (MDS) approach and was obtained from SYSTAT (Wilkinson et al., 1992). The $D_{\rm A}$ distance was used to construct a UPGMA dendrogram and to test population grouping by bootstrapping analysis (1000 replicates) and was obtained from TFPGA. However, UPGMA does not necessarily reveal a true lineage of a freshwater prawn in our study, because natural populations also contained hatchery released population (Kamonrat, 1996). Nevertheless, UPGMA was appropriate since grouping of genetically similar prawn populations was our focus not their lineage.

3. Results

3.1. Genetic variability within populations

A total of 76 aileles were detected over all six microsatellite loci, with the number of alleles per locus ranging from four at *Mbr*-7, *Mbr*-8 and *Mbr*-10 to 20 at *Mbr*-5 (Table 2). All natural and hatchery populations exhibited relatively high genetic variation and were similar with average number of alleles per locus varied from 7.50 (Hat 3) to 10.67 (Hat 2) and average allele richness varied from 6.34 (Hat 3) to 9.37 (Hat 2). Observed heterozygosities across loci ranged from 0.57 (Nat 2) to 0.67 (Hat 5) and expected heterozygosities ranged from 0.64 (Hat 3) to 0.73 (Hat 4 and Hat 5). Observed heterozygosities were lower than expected in most populations except that from Hat 3. However, neither allele richness nor expected heterozygosities differed significantly across all populations. Only one private allele was observed at *Mbr*-5 in Hat 3 population whose broodstocks were introduced from Myanmar.

Table 2.

Genetic variability at six microsate lilte loci in seven populations including sample size (N), total number of alleles (A), allelic richness (A_r), observed heterozygosity (H_o), expected heterozygosity (H_o), fixation index ($F_{(s)}$), and P value for test of HW expectations (HW)

Population (<i>N</i>)	Locus	Average across loci					
	<i>Mbr-</i> 1	Mbr-2	Mbr-5	Mbr-7	Mbr-8	Mbr-10	

Nat 1 (36)							
Α	9	11	18	4	6	9	9.50 ± 4.85
A_{r}	8.746	10.62	16.372	3.749	5.689	8,603	8.96 ± 4.38
H_{o}	0.67	0.57	0.89	0.28	0.5	0.83	0.62 ± 0.22
H _e	0.86	0.84	0.93	0.34	0.5	8.0	0.71 ± 0.24
F _{is}	0.23	0.32	0.04	0.18	0.00	- 0.05	0.127
HW	0.005*	0.005*	ns	ńs	ns	ns	
Nat 2 (28)							
Α	10	11	19	4	6	4	9.00 ± 5.73
A_r	10	11	19	3.96	6.00	3.96	8.99 ± 5.74
H_{o}	0.74	0.67	0.70	0.25	0.54	0.50	0.57 ± 0.18
H _e	0.88	0.89	0.94	0.23	0.63	0.48	0.68 ± 0.28
F_{is}	0.16	0.26	0.26	- 0.03	0.15	- 0.02	0.162
HW	ns	0.003*	<0.001*	ns	ns	រាន	
Hat 1 (50)							
Α	8	11	19	6	6	9	9.83 ± 4.88
A_{r}	7.98	9.98	17.21	4.87	4.99	7.88	8.82 ± 4.55
H_{o}	0.53	0.6	88.0	0.56	0.48	8.0	0.64 ± 0.16
H _e	0.85	0.74	0.91	0.54	0.42	0.69	0.69 ± 0.18
F_{is}	0.38	0.19	0.03	- 0.03	- 0.14	- 0.16	0.072
HW	< 0.001*	< 0.001*	< 0.001*	ns	ns	กร	
Hat 2 (46)							
Α	10	12	20	6	5	11	10.67 ± 5.35
A _r	9.55	10.14	16.86	5.49	4.35	9.83	9.37 ± 4.41
H_{o}	0.59	0.58	0.91	0.46	0.46	0.76	0.62 ± 0.18
H _e	0.88	0.74	0.89	0.52	0.45	0.74	0.70 ± 0.18
F_{is}	0.34	0.22	- 0.02	0.12	- 0.01	- 0.03	0.114
HW	< 0.001*	ns	ns	ns	ns	ns	
Hat 3 (60)							
Α	8	8	13	5	5	6	7.50 ± 3.02
A_{ϵ}	6.65	6.51	11.34	3.92	4.45	5.16	6.34 ± 2.68
H_{o}	0.59	0.77	0.73	0.56	0.63	0.66	0.66 ± 0.08

H _e	0.75	0.72	0.80	0.47	0.52	0.60	0.64 ± 0.13
F _{is}	0.22	- 0.07	0.08	- 0.19	- 0.21	- 0.10	- 0.031
HW	< 0.001*	0.003*	< 0.001*	ns	ns	< 0.001*	
Hat 4 (49)							
A	9	12	17	5	6	7	9.33 ± 4.50
A_{r}	8.89	10.91	15.03	4.35	5.34	6.54	8.51 ± 3.40
H_{o}	0.69	0.47	0.81	0.33	0.46	0.71	0.58 ± 0.19
H_{e}	0.86	0.80	0.92	0.35	0.64	0.79	0.73 ± 0.20
F _{is}	0.19	0.42	0.12	80.0	0.28	0.10	0.205
HW	ns	< 0.001*	< 0.001*	ns	0.005*	ns	
Hat 5 (36)							
Α	9	12	18	6	4	9	9.67 ± 4.93
A_t	8.71	11.62	16.50	5.69	3.98	8.25	9.12 ± 4.47
H_{\circ}	0.54	0.67	0.89	0.64	0.42	0.86	0.67 ± 0.16
H _e	0.86	0.83	0.92	0.58	0.43	0.77	0.73 ± 0.19
F_{is}	0.37	0.19	0.03	- 0.11	0.04	- 0.12	0.082
HW	< 0.001*	ns	ns	ns	ns	ns .	
All populations							
Α	10	13	27	7	8	11	12.67 ± 7.34
A_{r}	9.16	11.01	19.30	5.07	6.15	8.55	9.87 ± 5.09
H_{o}	0.61	0.62	0.83	0.45	0.50	0.73	0.62 ± 0.14
H_{e}	0.88	0.81	0.94	0.46	0.58	0.75	0.74 ± 0.18
Fis	0.28	0.21	0.07	- 0.02	0.01	- 0.05	
HW	< 0.001*	< 0.001*	< 0.001*	ns	រាន	ns	

^{*} P < 0.007.

Significant departures from Hardy–Weinberg expectations were observed in 16 of 42 (6 loci × 7 populations) single locus exact tests after applying a sequential Bonferroni correction. Fourteen deviations displayed significant heterozygote deficiencies while two deviations showed excess of heterozygotes (Hat 3). The genotypic distribution at all loci except one (*Mbr*-7) deviated significantly from Hardy–Weinberg expectations in at least one population. Departures from Hardy–Weinberg expectations at loci *Mbr*-1 and *Mbr*-2 were observed in five samples. Four samples showed significant deviations at *Mbr*-5. The heterozygote deficiency could have resulted from null alleles, small sample size or mixing of populations within samples. However, none of our samples showed indications of null alleles at the three loci (*Mbr*-1, *Mbr*-2, and *Mbr*-5). Linkage disequilibrium was observed in four populations in at least one pair of loci. The Hat 3 population showed significant linkage disequilibrium at 10 out of 15 pairs of loci.