

of Eq. (1) with respect to time yields

$$\frac{dM(t)}{dt} = -\frac{6(M_{in} - M_{eq})D_{eff}}{r^2} \sum_{n=1}^{\infty} \exp\left(-\frac{n^2 \pi^2 D_{eff} t}{r^2}\right). \quad (2)$$

The drying slope was established experimentally and replaced into Eq. (2) on the left-hand side. Accordingly, its effective value was estimated using the method of trial and error. Ten terms in Eq. (2) were sufficiently used for calculating the drying rate. A diameter of soybean in the experiments was approximately 6.4×10^{-3} m.

2.6. Thermal inactivation of urease enzyme

The apparent kinetics of urease inactivation in raw soybean were studied in a series of experiments by means of thermal treatment in the fluidized bed using superheated steam and hot air as described in Section 2.1. The thermal inactivation of urease follows the modified first-order reaction which is expressed by

$$\frac{C(t) - C_{eq}}{C_{in} - C_{eq}} = \exp(-kt), \quad (3)$$

where $C(t)$ is the residual urease activity at time t , C_{in} is the urease activity at the beginning, C_{eq} is the residual urease activity at infinite time, k is the apparent rate constant, min^{-1} , and t is the drying time, minute. Rewriting Eq. (3), it thus becomes

$$C(t) = (C_{in} - C_{eq})\exp(-kt) + C_{eq}, \quad (4)$$

where k and C_{eq} are obtained by the method of nonlinear regression when the residual urease activity is plotted against the treatment time and their values depend on both drying condition and drying medium. Relationships of k and C_{eq} with temperature and initial moisture content are explained by an empirical equation with constants determined by a nonlinear regression technique. The validity of the proposed equation is dictated by the coefficient of determination, R^2 , and residual sum of square, RSS.

3. Results and discussions

3.1. Moisture reduction in superheated steam and hot air

Fig. 2 shows the changes of moisture content of soybean in superheated steam and hot air. In the experiments, soybean at initial moisture content of 135 g/kg dry matter were dried at a temperature of 135 °C and the experimental results show that the curve of moisture change in superheated-steam drying follows the same trend as found in hot air, except for the early period of drying at which soybean kernel gains in

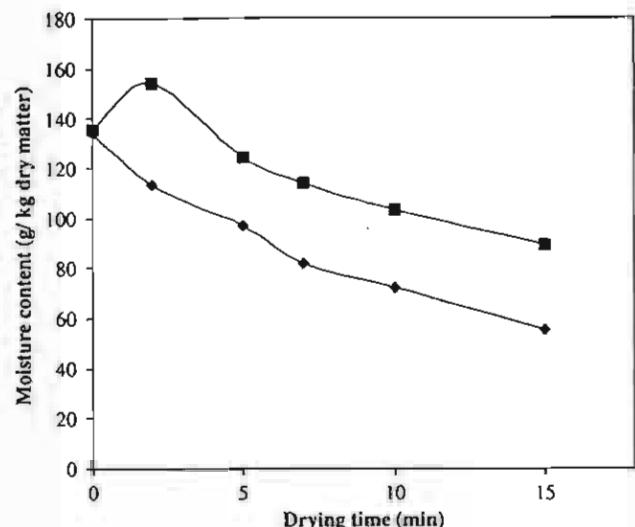


Fig. 2. Drying curves of soybean superheated-steam and hot-air fluidized bed (→ Hot air_135 g/kg dry matter and 135 °C; ■ Superheated steam_135 g/kg dry matter and 135 °C).

moisture content from the steam condensation. As found from the experiments, soybean adsorbed more moisture in low-temperature superheated steam than high-temperature superheated steam. The moisture contents of soybean in superheated steam at temperatures of 120, 135 and 150 °C were increased by 30, 19 and 6 g/kg dry matter, respectively, for the samples at initial moisture content of 13.5%. Tang and Cenkowski (2000) also found a similar result in which quantity of adsorbing condensed steam by potatoes was larger with lower temperature of superheated steam. These results may possibly suggest that the amount of condensed steam is reduced when using superheated steam at elevated temperatures.

During period of steam condensation, the superficial velocity flowing through the particle bed was dropped, and this caused insufficient speed to lift the particles. Consequently, bed of particles likely acted as a packed bed. This behaviour occurred for a very short period, approximately a half of minute of total drying time. After that, the bed of particles could be moved freely although the condensation period still existed, indicating decrease in the amount of condensed steam.

Difference in the behaviours between superheated steam and hot air reflects on the temperature within bed of particles where the bed temperature from the superheated-steam drying rapidly increased from room temperature to above 100 °C in a very short period, as shown in Fig. 3 for the temperature of 135 °C, whilst the bed temperature from the hot-air drying rose at a slower rate. However, when the drying extended for a longer period, the bed temperatures amongst superheated steam and hot air were not largely different.

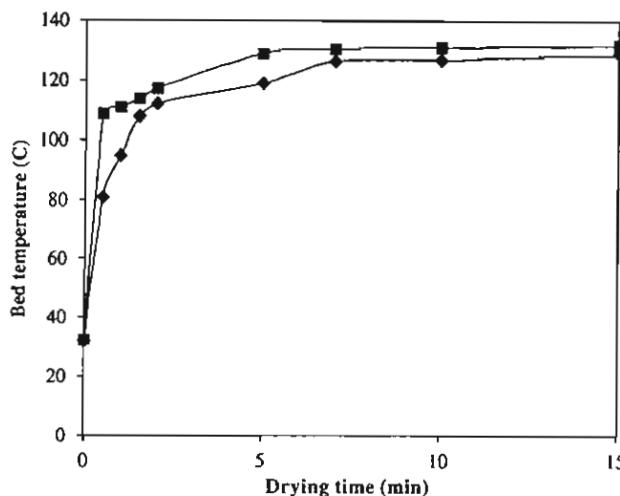


Fig. 3. Change of temperature within bed of soybean being fluidized by superheated steam and hot air (• Hot air_135 g/kg dry matter and 135 °C; ■ Superheated steam_135 g/kg dry matter and 135 °C).

3.2. Effective diffusion coefficient

By applying Eq. (2) to the experimental drying curve, one notices that the effective diffusion coefficient varies with moisture content in a way that their values decrease with decrease in moisture content as illustrated in Fig. 4. The dependence of effective diffusion coefficient with moisture content was also reported by several workers (Azzous, Guizani, Jomaa, & Belghith, 2002; Koptyug et al., 2000; Pel, Brocken, & Kopinga, 1996).

In addition, the value of effective diffusion coefficient also relies upon the drying media in which soybean drying using hot air has higher moisture diffusion than one dried with superheated steam. As seen from this figure, difference of the value of effective diffusion coefficient obtained from superheated steam and hot air, throughout the reduced moisture range, is very large at temperature of 120 °C and the difference becomes smaller at elevated temperatures, the smallest one being at 150 °C.

The lower effective diffusion in the superheated steam was also found by several workers (Prachayarakorn et al., 2002; Taechapairoj et al., 2004; Tang & Cenkowski, 2000). However, Tang and Cenkowski (2000) reported that under certain conditions, drying in the falling rate period is faster in superheated steam than in hot air.

3.3. Inactivation of urease enzyme

Soybean treated by superheated steam and hot air was withdrawn from the fluidized bed at different treatment times to determine the urease activity and the results are illustrated in Fig. 5, showing the variation of residual urease activity, for initial moisture contents of 135 and 195 g/kg dry matter, and soybean thermally treated by

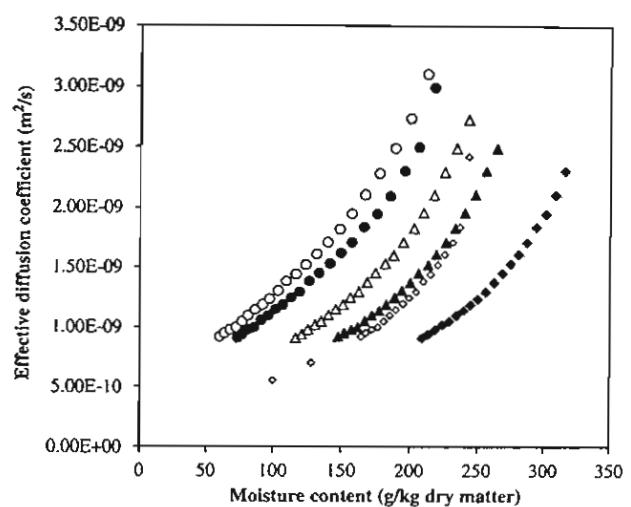


Fig. 4. Variation of effective diffusion coefficient with moisture content for soybean dried by superheated steam and hot air at temperatures (◆ Steam 120 °C; ▲ Steam 135 °C; ● Steam 150 °C; ◇ Air 120 °C; △ Air 135 °C; ○ Air 150 °C).

superheated steam and hot air at temperature of 120 °C. Insufficient inactivation is obvious with hot air for soybean at the initial moisture content of 135 g/kg dry matter for which the residual urease activity, shown in Fig. 5, remains steadily 40% although an extended period of drying time is applied. As the initial moisture content is increased to 195 g/kg dry matter, however, the sufficient inactivation is detected at a drying time of over 25 min.

In contrast to hot air, inactivation of urease enzyme can be achieved with superheated-steam temperature at 120 °C, to a level of residual activity below 20% for soybean with moisture contents of 135 and 195 g/kg dry matter heated for 7 and 5 min, respectively. The appearance of steam condensation on the kernel surfaces makes the bed temperature to be strikingly increased because of releasing heat from the steam condensation, which is more powerful than the heat from the hot-air convection, in particular at early period of time for the superheated steam and correspondingly stimulating the faster inactivation of urease enzyme.

Fig. 6 shows the apparent rate constant of urease inactivation, determined by fitting the experimental data to Eq. (4), under conditions of different initial moisture contents and inlet-steam temperatures. At each of the initial moisture content, the apparent rate constant in the superheated steam is higher than is in the hot air and the difference in their apparent rates becomes larger when the higher level of moisture is employed. As observed for these results, it can be seen that the temperature shows a strong contribution to inactivate the urease enzyme, as indicated by the steep slope of plotting the residual urease activity against the bed temperature, when soybean at any moisture level are treated with superheated steam or hot air. However, the temperature effect seems to be less pronounced for sample

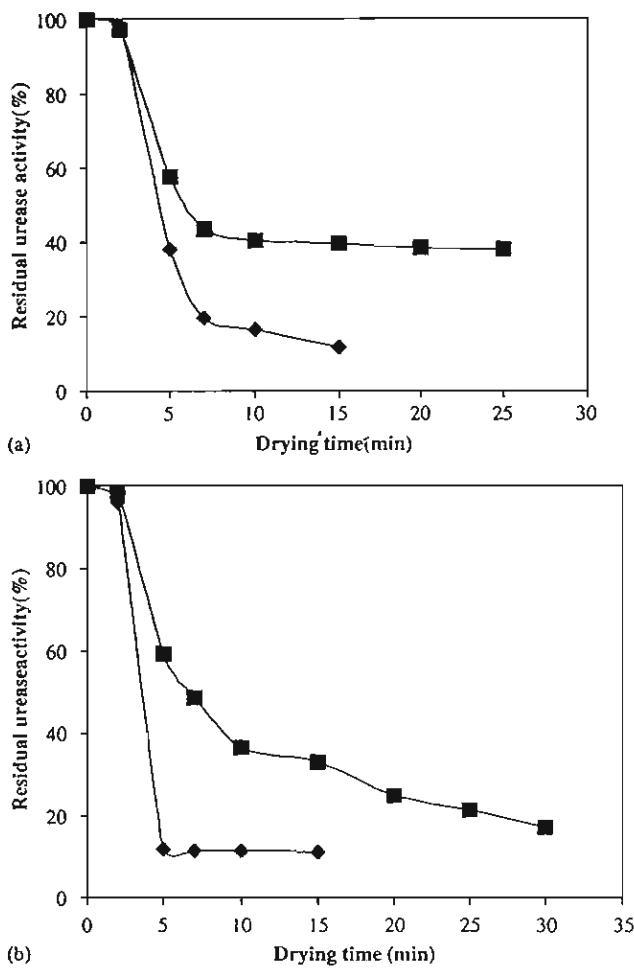


Fig. 5. Apparent kinetics of urease inactivation present in soybean during thermal treatments with superheated steam and hot air. (a) $M_{in} = 135 \text{ g/kg dry matter}$ and (b) $M_{in} = 195 \text{ g/kg dry matter}$ (◆ Superheated steam_120 °C; ■ Hot air_120 °C).

at 360 g/kg dry matter treated with superheated steam: the value of inactivation rate constant increases slightly with temperature. This is perhaps because the prevalent contribution of moisture initially present in soybean induces the rapid inactivation in the first 2 min of drying, at which the residual urease activity lies between 15% and 17% for the temperature range studied.

The relationships of the apparent rate constant and equilibrium value with the relevant parameters i.e. bed temperature and initial moisture content, are given separately for each heating medium by the following empirical equations:

Hot air:

$$k = \left(-7.92 \times 10^9 + 3.54 \times 10^8 M_{in} + 2.086 \times 10^7 T - \frac{1.224 \times 10^8 M_{in}}{T} \right)$$

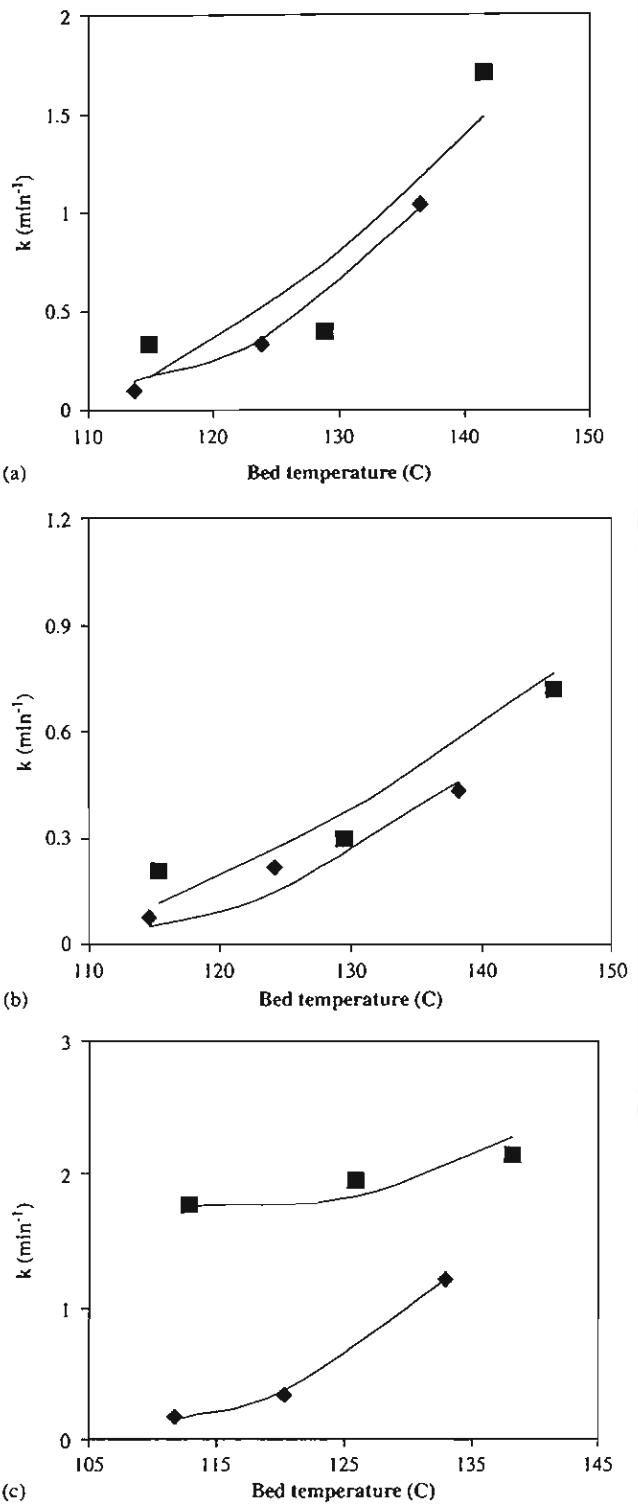


Fig. 6. Variation of apparent rate constant of urease inactivation with bed temperature for initial moisture content of (a) 135 g/kg dry matter, (b) 195 g/kg dry matter and (c) 360 g/kg dry matter (◆ Hot air; ■ Superheated steam; – Calculated).

$$\times \exp\left(-\frac{0.5526}{M_{in}} - \frac{6697.61}{T} - \frac{2392.2M_{in}}{T}\right),$$

$$R^2 = 0.99 \text{ and RSS} = 0.079, \quad (5)$$

$$C_{eq} = \left(6.67 \times 10^{-8} + 5.0 \times 10^{-6} M_{in}^2 + 1.80 \times 10^{-11} T \right. \\ \left. - 2.69 \times 10^{-11} M_{in} T \exp\left(\frac{0.740}{M_{in}} + \frac{5960.5}{T}\right) \right),$$

$$R^2 = 0.85 \text{ and RSS} = 10.4. \quad (6)$$

Superheated steam:

$$k = \left(-1.014 \times 10^4 + 0.075 T^2 - 7.66 \times 10^4 M_{in} \right. \\ \left. + 1.89 \times 10^4 M_{in}^2 + \frac{2.62 \times 10^7 M_{in}}{T} \right) \\ \times \exp\left(-\frac{0.5348}{M_{in}} - \frac{1507.5}{T}\right),$$

$$R^2 = 0.95 \text{ and RSS} = 0.347, \quad (7)$$

$$C_{eq} = (-0.047523 + 0.071742 M_{in}^2 + 1.22 \times 10^{-4} T) \\ \times \exp\left(-\frac{978.15 M_{in}}{T} + \frac{3227.286}{T}\right),$$

$$R^2 = 0.95 \text{ and RSS} = 1.47, \quad (8)$$

where T is the bed temperature (K). The adequacy of the fitted models to predict the apparent rate constants

throughout the operating conditions, for both steam and hot air, is presented in Fig. 6 by solid lines.

3.4. Protein solubility and amino lysine

In addition to antinutritional factors considered by feed meal industries, protein solubility and lysine content are also important because both qualities are detrimentally affected by thermal process. Overcooking of soybean can denature and insolubilize the protein, resulting in poor performance of poultry when the overcooked soybean are fed (Marsman Gruppen, van Zuilichem, Resink, & Voragen, 1995; Osella et al., 1997; Zhu, Riaz, & Lusas, 1996). Treated soybean samples that contained a urease activity below 20% were taken to examine the protein solubility and lysine content. Changes in protein solubility of soybean thermally treated by superheated steam and hot air at different temperatures are shown in Table 1. Raw soybean contains the lysine in the range of 2.9–3.1 mg/g soybean. When the soybean are thermally treated, quality parameters in terms of protein solubility and lysine content depend upon the treatment time, temperature and type of heating medium.

Soybean with an initial moisture content of 135 g/kg dry matter dried at the hot-air temperatures above 120 °C can have the urease enzyme inactivated within 5 min. At this temperature range, the protein solubility

Table 1
Protein solubility and lysine content of soybean treated with superheated steam and hot air at various temperatures

Temperature (°C)		M_{in} (g/kg dry matter)	Time(min)	$M(t)$ (g/kg dry matter)	Urease activity (%)	Protein solubility (%)	Lysine content (mg/g soybean)
Hot air	120	Raw soybean			100	94.28	2.9–3.1
		135	50	39.3	37	71.10	N/A
		195	30	69.8	19	70.98	3.0
	135	360	30	100.6	17	63.28	3.0
		135	5	97.2	15	78.68	3.1
		195	5	144.2	13	84.33	N/A
	150	360	5	237.2	12	85.19	N/A
			15	126.8	0	66.64	N/A
		135	5	82.1	10	74.17	2.8
Superheated steam	120	195	2	155.2	16	87.86	N/A
		360	5	207.4	10	76.83	N/A
			10	103.2	0	57.90	N/A
	135	135	7	139.5	16	85.66	2.8
		195	5	183.4	12	85.20	2.7
		360	2	389.5	13	80.59	N/A
	150	135	5	124.4	11	71.76	2.7
		195	5	165.2	9	82.25	2.7
		360	2	341.4	12	81.38	N/A
			15	147.0	0	59.51	N/A
	150	135	5	106.7	12	54.94	N/A
		195	2	189.4	11	83.84	N/A
			5	140.6	10	72.90	2.8
	360	2	316.1	11	75.13	N/A	
		10	114.1	0	53.59	N/A	

was in a range of 71–78%. Below 73%, protein solubility was unacceptable for the feed meal. The lysine was in the range of 2.8–3 mg/g soybean, which is above the standard requirement of 2.4 mg/g soybean.

For the superheated steam, the urease can be inactivated within the same period of time as the hot air. Under these treatment times, the protein solubility and the lysine fall to the respective ranges of 54.9–85% and 2.7–2.8 mg/g soybean. These results, for both superheated steam and hot air, show that the treatment temperature can be reduced when the heating medium is changed from hot air to superheated steam. The temperature of 120 °C can be effectively employed for the superheated steam whilst the temperature of 135 °C is a minimum required for hot air. Under the specified temperatures for both drying media, it is likely that soybean treated by superheated steam have a higher quality of protein solubility than those treated by hot air, due to faster heating rate and the corresponding shorter treating time.

When both drying media are introduced to treat soybean at an elevated moisture content, the results show that although the level of urease activity is in the acceptable range, using hot air at temperature of 120 °C is not recommended because of poor protein solubility whereas the protein solubility for the steam-treated soybean is beyond 80%. The increase of temperature for particular hot air shows positive results in which the higher protein solubility is clearly noticed and its quality is not very different from that obtained from treatment by superheated steam at temperature of 120 °C or higher. As can be seen in Table 1, even though the higher moisture content can eliminate the enzymatic activity in a short period of time and consequently improve the protein solubility, the moisture content of soybean does not reach an adequate level for storage. Under such situations, treatment requirements can be met at the initial moisture content up to 195 g/kg dry matter for which soybean should be treated with hot-air temperature of 135–150 °C or steam temperature of 120–135 °C. Beyond this moisture level (>195 g/kg dry matter), two-stage drying, where the soybean is treated with superheated steam or hot air at such a temperature range for a certain time to inactivate the urease enzyme and then followed with low-temperature hot-air drying, should be applied, otherwise the soybean are overcooked, as indicated by the lower protein solubility than the standard range which is between 73% and 85%.

According to these results, there are two practical approaches to treat the raw soybean for feed meal industries where the dry soybean is stored. The superheated-steam fluidized bed may suitably be applied to eliminate the antinutritional factors in dry soybean and the appropriate treatment temperature should be lower than 135 °C, preferably a temperature of 120 °C. To avoid the difficulty of operating the superheated steam

system, hot air is an alternative method and in this case, the dry soybean should be added with a certain amount of water in order to accelerate the enzymatic inactivation before the large amount of protein insolubilization is developed. To achieve the high quality of treated soybean, the suitable initial moisture content for treating soybean with hot air should be kept below 200 g/kg dry matter and the temperature should be employed at a temperature higher than 135 °C.

4. Conclusions

Soybean when subjected to thermal treatments using different drying media exhibit different moisture transfer rate and inactivation of urease enzyme. The diffusional rate of moisture in soybean, as evaluated by effective diffusion coefficient, is relatively slower in the superheated steam than in the hot air, whereas the rate of enzymatic inactivation in the superheated steam, as evaluated by apparent inactivation rate constant of the modified first-order reaction, becomes faster. For each heating medium, the effective diffusion coefficient and inactivation rate constant are shown to be positively related to moisture content and temperature. To get rid of the urease enzyme present in soybean and simultaneously preserve its nutritional qualities, protein solubility and lysine content, fluidized-bed drying should be operated at temperature of 135–150 °C for the hot air and below 135 °C for the superheated steam. Under such temperature ranges, the superheated steam-type heating medium shows the protein solubility of treated sample to be higher than hot air when applied to the dry soybean. For the moist soybean, the types of heating medium do not impact on such quality since the urease enzyme is inactivated at a short period of time before the protein denaturation is largely formed.

Acknowledgements

The authors would like to thank the Thailand Research Fund for financially supporting this work.

References

- AccQ-Tag Instruction Manual. (1993). Lysine determination. Manual no. WAT052874. Revo April.
- American Oil Chemists' Society (AOCS). (1979). Protein solubility index. AOCS Official method BA 10-63: AOCS.
- American Soybean Association (ASA). (1990). *Fullfat Soybean Handbook of American Soybean Association*, Singapore.
- Azzous, A., Guizani, A., Jomaa, W., & Belghith, A. (2002). Moisture diffusivity and drying kinetics equation of convective drying of grapes. *Journal of Food Engineering*, 55, 323–330.
- Babalis, S. T., & Belessiotis, V. G. (2004). Influence of the drying conditions on the drying constants and moisture diffusivity during

the thin-layer drying of figs. *Journal of Food Engineering*, 65, 449–458.

Baker, E. C., & Mustakas, G. C. (1973). Heat inactivation of trypsin inhibitor, lipoxygenase and urease in soybean: Effect of acid and base additives. *Journal of The American Oil Chemists' Society*, 50, 137–141.

Berghel, J., & Renström, R. (2002). Basic design criteria and corresponding results performance of a pilot-scale fluidized superheated atmospheric condition steam dryer. *Biomass and Bioenergy*, 23, 103–112.

Cheong, Y. L. (1997). Fullfat soybean meal production and utilization. *Technical Bulletin of American Soybean Association*, Singapore. MITA (P) No. 044/11/96.

Crank, J. (1975). *The mathematics of diffusion* (2nd ed.). Oxford: Oxford University Press.

Fitzpatrick, J. (1998). Sludge processing by anaerobic digestion and superheated steam drying. *Water Research*, 32, 2897–2902.

Hebbar, U., & Rastogi, N. K. (2001). Mass transfer during infrared drying of cashew kernel. *Journal of Food Engineering*, 47, 1–5.

Hensen, B. C., Flores, E. S., Tanksley, T. D., Jr., & Knabe, D. A. (1987). Effect of different heat treatments during processing of soybean meal on nursery and growing pig performance. *Journal of Animal Science*, 65, 1283–1291.

Koptyug, I. V., Kabanikhin, S. I., Iskakov, K. T., Fenelonov, V. B., Khitrina, L. Yu., Sagdeev, R. Z., et al. (2000). A quantitative NMR imaging study of mass transport in porous solids during drying. *Chemical Engineering Science*, 55, 1559–1571.

Liener, I. E. (1994). Implications of antinutritional components in soybean foods. *Critical Reviews in Food Science and Nutrition*, 34, 31–67.

Marsman, G. J. P., Gruppen, H., van Zuilichem, D. J., Resink, J. W., & Voragen, A. G. J. (1995). The influences of screw configuration on the in vitro digestibility and protein solubility of soybean and rapeseed meals. *Journal of Food Engineering*, 26, 13–28.

Osella, C. A., Gordo, N. A., González, R. J., Tosi, E., & Ré, E. (1997). Soybean heat-treated using a fluidized bed. *Lebensmittel-Wissenschaft und-Technology*, 30, 676–680.

Pel, L., Brocken, H., & Kopinga, K. (1996). Determination of moisture diffusivity in porous media using moisture concentration profiles. *International Journal of Heat and Mass Transfer*, 39, 1273–1280.

Prachayawarakorn, S., Soponronnarit, S., Wetchagama, S., & Jaisut, D. (2002). Desorption isotherms and drying characteristics of shrimp in superheated steam and hot air. *Drying Technology*, 20, 669–684.

Raghavan, G. S. V., & Harper, J. M. (1974). Nutritive value of salt-bed roasted soybean for broiler chicks. *Poultry Science*, 53, 547–553.

Rasmussen. (2002). Determination of residual urease activity. <http://www.analyticchem.com/Applications/Kjeldah/>.

Schwartz, J. P., & Bröcker, S. (2000). The evaporation of water into air of different humidities and the inversion temperature phenomenon. *International Journal of Heat and Mass Transfer*, 43, 1791–1800.

Sheikholeslami, R., & Watkinson, A. P. (1992). Rate of evaporation of water into superheated steam and humidified air. *International Journal of Heat and Mass Transfer*, 35, 1743–1751.

Soponronnarit, S., Swasdiyevi, T., Wetchacama, S., & Wutiwitwatchai, W. (2001). Fluidised bed drying of soybean. *Journal of Stored Products Research*, 37, 133–151.

Stewart, O. J., Raghavan, G. S. V., Orsat, V., & Golden, K. D. (2003). The effect of drying on unsaturated fatty acids and trypsin inhibitor activity in soybean. *Process Biochemistry*, 39, 483–489.

Taechapairoj, C., Prachayawarakorn, S., & Soponronnarit, S. (2004). Characteristics of rice dried in superheated-steam fluidized bed. *Drying Technology*, 22, 719–743.

Tang, Z., & Cenkowski, S. (2000). Dehydration dynamics of potatoes in superheated steam and hot air. *Canadian Agricultural Engineering*, 42, 6.1–6.12.

Topin, F., & Tadrist, L. (1997). Analysis of transport phenomena during the convective drying in superheated steam. *Drying Technology*, 15, 2239–2261.

Zhu, S., Riaz, M. N., & Lusas, E. W. (1996). Effect of different extrusion temperature and moisture content on lipoxygenase inactivation and protein solubility in soybean. *Journal of Agricultural Food Chemistry*, 44, 3315–3318.

Mathematical models based on heat transfer and coupled heat and mass transfers for rapid high temperature treatment in fluidized bed: Application for grain heat disinfection

T. Madhiyanon ^{a,*}, A. Techaprasan ^b, S. Soponronnarit ^b

^a Department of Mechanical Engineering, Mahanakorn University of Technology, Bangkok 10530, Thailand

^b School of Energy and Materials, King Mongkut's University of Technology, Thonburi, Bangkok 10140, Thailand

Received 28 September 2004

Available online 9 March 2006

Abstract

This study sought to develop a mathematical model of rapid, high temperature heat treatment of stored grains in a fluidized bed. The model was intended to evaluate dynamic changes in temperature distributions inside grain kernel, and grain and exit air temperatures. No differences in temperature profiles within individual paddy kernels obtained from either analytical or numerical solutions for one- and two-dimensional heat diffusion models were found. Cylindrical coordinates gave clearer pictures of temperature profiles than spherical coordinates, and the former was chosen for the model. Thin-layer heat diffusion alone is inadequate for explaining transport phenomena in a fluidized bed; it must be incorporated into a deep bed model. The loss of as little as 1.0% dry basis moisture content from the grain surface during heating significantly affected the predictiveness of the model. Therefore, a model coupling heat and mass transfer performs much better in predicting grain and exit air temperatures than one that neglects the effect of moisture loss, when compared with the experimental results. The results showed agreement between the measured and predicted results, although the predicted results tended toward over-estimation. The results indicate that the model is a powerful tool for disinfection applications, to predict the exposure time required to obtain lethal temperatures throughout grain kernel, so ensuring the total mortality of insects within it.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Disinfection; Fluidized bed; Hot air treatment; Mortality; Numerical method; Paddy

1. Introduction

For many decades, chemical methods have been used world-wide for controlling insect pests in agricultural products, such as fruits and cereal grains. However, because of increasing consumer dissatisfaction with the presence of residues in cereals and other foodstuffs, more interest has recently been directed towards thermal treatment methods. Heat disinfection, conventional heating comprised of convective heat transfer from a medium, usually heated

air or hot water, to the product surface, after which the heat flows inward from the surface to the center of the product, as well as combinations of convective and radiation heat transfer, have been extensively studied for controlling insect pests in fruits [1–11] and grains [12–22]. Technologies for the rapid high temperature disinfection of grain have been available for many years; among these technologies is the fluidized bed which has interested many researchers [12–17] because of its great advantages in rapidly promoting heat transfer and thorough mixing, leading to uniform product properties. High temperature disinfection of wheat in batch fluidized beds apparently performed very well, in completely killing all stages of insect pests when grain reached maximum temperature, up to 60–90 °C [12,13,15]. Evans et al. [16] carried out

* Corresponding author. Tel.: +66 (0) 2988 3666x241; fax: +66 (0) 2988 3655x241.

E-mail addresses: thanid@mut.ac.th, thanid_m@yahoo.com (T. Madhiyanon).

Nomenclature

A_t	surface area of a single cylindrical paddy kernel (m ²)
c	specific heat (J/kg K)
D_p	equivalent diameter of paddy (m)
h	heat transfer coefficient (W/m ² K)
h_{fg}	latent heat (J/kg)
ΔH	heat of vaporization (J/kg)
J_0	Bessel function zero order
J_1	Bessel function first order
k	thermal conductivity of paddy (W/m K)
k_a	thermal conductivity of air (W/m K)
$2L$	length of paddy (m)
m_a	mass flow rate of air (kg/s)
m_w	moisture evaporated from a single paddy (kg water evaporated/one paddy)
m_p	mass of a single paddy (kg/one paddy)
m_b	total dry mass of paddy in the bed (kg)
m_{wp}	total mass of moisture evaporated in the bed (kg water evaporated)
M	moisture content (decimal dry basis)
Nu	Nusselt number (–)
Pr	Prandtl number (–)
r	radial distance from center of paddy (m)
Δr	space step in r -direction (m)
R	radius of paddy (m)
RC	fraction of recycled air (–)
S	Biot number of heat transfer (–)
t	time (s)
Δt	time step (s)
T	temperature (°C)
T_{abs}	absolute temperature (K)

\bar{T}_p	average temperature of paddy (°C)
T_{mean}	arithmetic mean temperature of air across the bed (°C)
v	velocity (m/s)
V_p	volume of a single paddy (m ³ /one paddy)
W	air humidity ratio (kg water/kg dry air)
Δz	space step in z -direction (m)
z	axial distance from center of paddy (m)

Subscripts

a	air
amb	ambient
in	initial
i	inlet
i	space nodal grid index (radial axis)
j	space nodal grid index (axial axis)
mix	mixing condition of air
n	time nodal grid index
o	outlet
p	paddy
s	surface
v	vapor
w	water

Greek symbols

α	thermal diffusivity (m ² /s)
β_n	root of Bessel function (–)
ε	bed void (–)
ρ_a	density of air (kg/m ³)
ρ_b	bulk density of paddy (kg/m ³)
ρ_t	true density of paddy (kg/m ³)

experiments in a 0.5 ton per hour capacity continuous-flow fluidized bed, where grain was heated to at least 65 °C to obtain complete mortality of all immature stage of heat-tolerant species. The other rapid high temperature techniques for grain disinfection are spouted bed, studied by Claflin and Evans [18] and Beckett and Morton [19], and pneumatic conveyor, studied by Sutherland et al. [20,21].

However, different insect species and stages, physical and thermal properties of products, and product size have different susceptibilities to heat treatment and furthermore, mortality is not related only to grain temperature; the rate at which the grain is heated is also important, and an increasing rate of heating by a higher medium temperature will create thermal shock and achieve significantly higher mortality [15,19,22]. Above tests for investigating conditions to meet insect mortality, therefore, are very labor-intensive and costly, and the results are only valid for the product tested under the specified conditions investigated. Furthermore, there is difficulty in measuring temperature distribution

inside small products, such as cereals. Several researchers [9–12] have endeavored to develop mathematical methods to investigate the influences of the physical properties of fruit and heating methods on the evolution of temperature profiles inside fruits, and the heat transfer rate to the fruit core, which directly relates to insect mortality.

In an effort to predict maximum wheat temperature during the heat disinfection process, Sutherland et al. [21] developed a model for wheat heat in a pneumatic conveyor, based only upon heat transfer mechanism, without including moisture transfer from the grain to the heated air. Thorpe [17] used his model to predict wheat temperature in a continuous-flow fluidized bed disinfectant. His model was derived from a simplified assumption of thermal equilibrium conditions between air leaving the bed and grain in the bed, which led to the model not necessarily dealing with the heat transfer coefficient. The model could not present the evolution of temperature profiles regarding the time required for complete mortality, which is useful for explaining insect death.

The purpose of the present study is to develop a model to investigate the influence of thermal treatments for paddy in a fluidized bed on dynamic changes in temperature profile and moisture content, as well as maximum paddy temperature obtained at a given exposure time. A model accounting only for heat transfer mechanism and another coupling both heat mass transfer phenomena are discussed in this study. The spherical and cylindrical coordinates for grain are compared in the simulation results from the heat diffusion equation, and the results obtained from analytical and numerical methods are also investigated for both coordinates. The validity of the model is checked with the experimental results. However, while the insect mortality test is not within the scope of this study, we anticipate that this research will provide valuable outcomes for further research into heat disinfestation for paddy by fluidized bed technique.

2. Transient thin-layer heat diffusion model

The thin-layer models for heat diffusion assume that grain diffusivity remains constant throughout the grain kernel, which is isotropic and in which shrinkage is negligible. The first model is based on one-dimensional heat diffusion for spherical geometry, as follows:

$$\frac{\partial T}{\partial t} = \alpha \left(\frac{\partial^2 T}{\partial r^2} + \frac{2}{r} \frac{\partial T}{\partial r} \right) \quad (1)$$

which is the equation of conservation of energy.

The initial and boundary conditions are:

Initial condition

$$t = 0, \quad 0 \leq r \leq R : T = T_{in} \quad (2)$$

Boundary condition

$$t > 0, \quad r = 0 : \frac{\partial T}{\partial r} = 0 \quad (3)$$

$$r = R : k \frac{\partial T}{\partial r} = h(T_a - T_s) \quad (4)$$

The convection boundary equation (Eq. (4)) does not account for moisture loss from the kernel surface during the heat disinfestation process. The average grain temperature $\bar{T}_p(t)$ is obtained by integrating $T(r, t)$ over the sphere volume.

$$\bar{T}_p(t) = \frac{4\pi}{V_p} \int_0^R r^2 T(r, t) dr \quad (5)$$

The second model is based on cylindrical coordinates with similar assumptions to the first model, and may be expressed as follows:

$$\frac{\partial T}{\partial t} = \alpha \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial z^2} \right) \quad (6)$$

which is the cylindrical geometry of the grain kernel, as shown in Fig. 1. The initial and boundary conditions are described as follows:

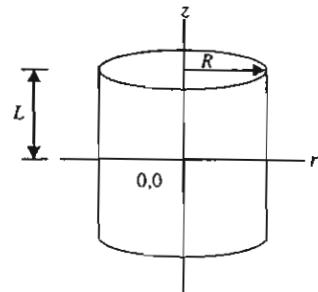


Fig. 1. The cylindrical geometry of grain kernel used for simulation.

Initial conditions

$$t = 0, \quad 0 \leq r \leq R : T = T_{in} \quad (7)$$

$$0 \leq z \leq L : T = T_{in} \quad (8)$$

Boundary conditions

$$t > 0, \quad r = 0, \quad 0 \leq z \leq L : \frac{\partial T}{\partial r} = 0 \quad (9)$$

$$z = 0, \quad 0 \leq r \leq R : \frac{\partial T}{\partial z} = 0 \quad (10)$$

$$r = R, \quad 0 \leq z \leq L : k \frac{\partial T}{\partial r} = h(T_a - T_s) \quad (11)$$

$$z = L, \quad 0 \leq r \leq R : k \frac{\partial T}{\partial z} = h(T_a - T_s) \quad (12)$$

The average temperature of grain in a cylindrical shape is defined by:

$$\bar{T}_p(t) = \frac{2\pi}{V_p} \int_0^L \int_0^R r T(r, t) dr dz \quad (13)$$

For a sphere with an aid of analogy between heat and mass diffusion problem, the solution form of mass diffusion in a sphere proposed by Vernaud [23] is used, as the solution to Eqs. (1)–(4), in which the solution is in the form containing temperature rather than the concentration of diffusing substance as a space-time dependent variable, and may be expressed as

$$\frac{T - T(r, t)}{T - T_{in}} = \frac{2SR}{r} \sum_{n=1}^{\infty} \frac{1}{(\beta_n^2 + S^2 - S)} \frac{(\sin \beta_n r)}{\sin \beta_n} \exp \left[-\frac{\beta_n^2 \alpha t}{R^2} \right] \quad (14)$$

where the β_n s are roots of the following equation:

$$\beta_n \cot \beta_n + S - 1 = 0 \quad (15)$$

and the dimensionless number S is a Biot number for heat transfer, which is an indication of internal thermal resistance to external boundary layer thermal resistance, and may be expressed as

$$S = \frac{hR}{k} \quad (16)$$

For a cylinder, the solution of a two-dimensional, time-dependent heat conduction problem is equivalent to the

product of the solution of two one-dimensional transient heat conduction problems [24], thus the solution to determine the temperature profile of a finite cylinder associating to Eqs. (6)–(12) is

$$\frac{T - T(r, z, t)}{T - T_{in}} = \left[\frac{T - T(r, t)}{T - T_{in}} \right]_{\text{infinite cylinder}} \times \left[\frac{T - T(z, t)}{T - T_{in}} \right]_{\text{infinite plate}} \quad (17)$$

where the solutions for infinite cylinder and infinite plate are again adapted from the solution of Vernaud [23], as follows:

For infinite cylinder (non-steady state with finite rate of convection heat transfer)

$$\left[\frac{T - T(r, t)}{T - T_{in}} \right]_{\text{infinite cylinder}} = \sum_{n=1}^{\infty} \frac{2S J_0(\beta_n \frac{r}{R})}{(\beta_n^2 + S^2) J_0 \beta_n} \exp \left[-\frac{\beta_n^2 \alpha t}{R^2} \right] \quad (18)$$

where β_n s are roots of

$$\beta_n J_1(\beta_n) - S J_0(\beta_n) = 0 \quad (19)$$

which J_0 and J_1 are Bessel function zero and first order, respectively, and may be described as [25]

$$J_0(\beta_n) = 1 - \frac{\beta_n^2}{2^2} + \frac{\beta_n^4}{2^2 \cdot 4^2} - \frac{\beta_n^6}{2^2 \cdot 4^2 \cdot 6^2} + \dots \quad (20)$$

$$J_1(\beta_n) = \frac{\beta_n}{2} - \frac{\beta_n^3}{2^2 \cdot 4} + \frac{\beta_n^5}{2^2 \cdot 4^2 \cdot 6} - \frac{\beta_n^7}{2^2 \cdot 4^2 \cdot 6^2 \cdot 8} + \dots \quad (21)$$

where β_n can be simultaneously solved from Eqs. (19)–(21) by iteration procedure.

For infinite plate (non-steady state with finite rate of convection heat transfer)

$$\left[\frac{T - T(z, t)}{T - T_{in}} \right]_{\text{infinite plate}} = \sum_{n=1}^{\infty} \frac{2S \cos(\beta_n \frac{z}{L})}{(\beta_n^2 + S^2 + S) \cos \beta_n} \times \exp \left[-\frac{\beta_n^2 \alpha t}{L^2} \right] \quad (22)$$

where L is half plate thickness, β_n s are positive roots of

$$\beta_n \tan \beta_n = S \quad (23)$$

Numerical solutions were also used to solve the partial differential equations with mixed boundary conditions, and the corresponding results were compared with the computed results obtained from analytical solutions (Eqs. (14) and (17)). The finite-difference approach was used to discretize the derivative in partial differential equations into a system of algebraic equations, the well-known Crank–Nicholson implicit method was chosen to solve spherical coordinate problems and an explicit method for cylindrical coordinate problems. To simulate a heat diffusion thin-layer model, it is reasonably assumed that air temperature remains unchanged when passing through a thin layer of grain; thus, the thermodynamic properties of air used for calculation can be evaluated at the inlet air temperature.

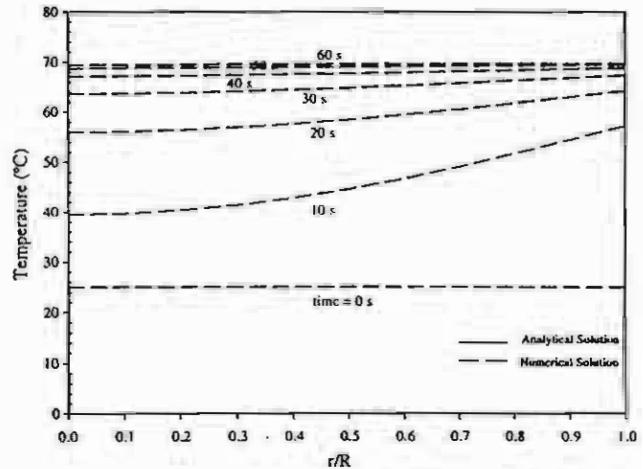


Fig. 2. Comparison of temperature profiles inside a spherical paddy kernel between obtaining from numerical and analytical solution of thin layer model.

The heat transfer coefficient correlation and the thermal properties of paddy can be found in the relevant section of this study. The moisture content of the paddy was assumed to be constant at 14% dry throughout the heating period, which is generally in the range for the moisture content of stored paddy.

Fig. 2 shows the computed temperature distribution inside a spherical paddy kernel with 3.5 mm equivalent diameter at inlet air temperature of 70 °C and air velocity of 2.5 m/s. The temperature data of both solutions, obtained from analytical and numerical methods, appeared to be indistinguishable. The intra-temperatures became uniform across the grain kernel and were elevated to inlet air temperature within 60 s of commencement.

Figs. 3 and 4 show predicted temperature profiles inside a paddy kernel assumed to be cylindrical in the air condi-

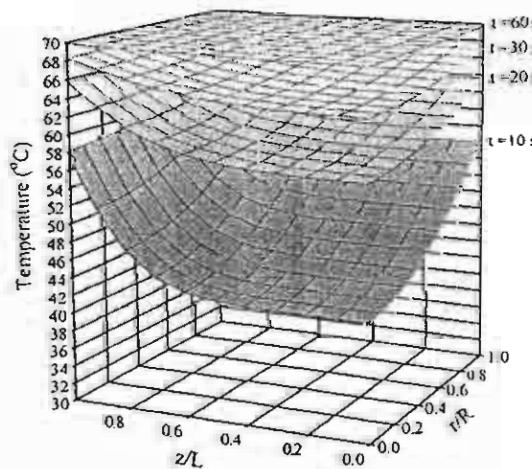


Fig. 3. Temperature profiles inside a cylindrical paddy kernel computed by analytical solution at inlet air temperature of 70 °C.

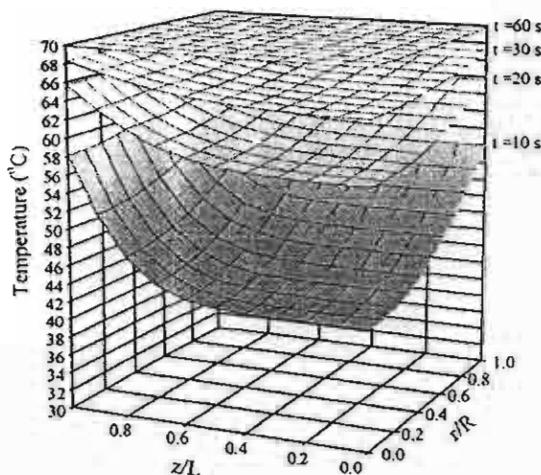


Fig. 4. Temperature profiles inside a cylindrical paddy kernel computed by numerical solution at inlet air temperature of 70 °C.

tions for an assumed spherical paddy kernel. A cylindrical paddy kernel has a diameter of 2.5 mm and length of 9.5 mm. In Fig. 3, the temperature profiles determined by analytical solution are identical with those determined by numerical solution, as shown in Fig. 4. It is clearly seen that temperature along with the radius became uniform more rapidly than along with the length, however, there is no evidence of temperature gradient within a kernel, either in the radial or axial direction, exiting after 60 s of heating. This is consistent with the computed results for a spherical paddy kernel.

Fig. 5 presents the average grain temperature of a spherical grain kernel compared with that of the cylindrical grain kernel. It is evident that there is almost no difference in the average grain temperature between both coordinates.

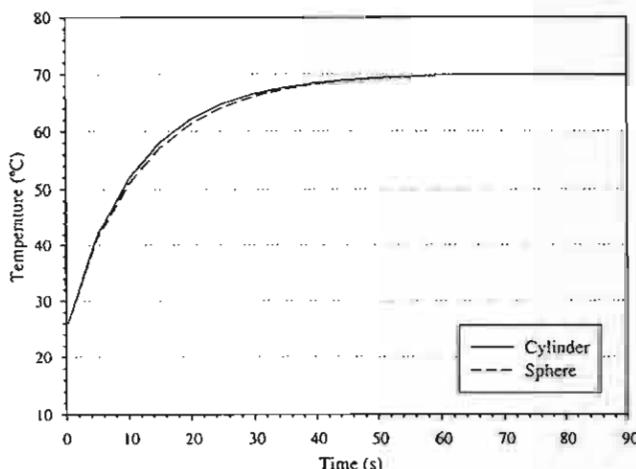


Fig. 5. Comparison between predicted average paddy temperature of a spherical and cylindrical shape at inlet air temperature of 70 °C.

3. Model development for heat disinfestation in a fluidized bed

Even though the thin-layer heat diffusion models discussed above can provide temperature profiles inside grain kernels, which is necessary for analyzing the mortality of all insects inside grain kernels, they alone cannot sufficiently describe the transport process phenomena in deep bed grain disinfestations, such as fluidized bed disinfection. They must be incorporated into a deep bed simulation model derived from mass and energy conservation laws. Because there are differences in heat diffusion rates between axial and radial directions, a paddy kernel was assumed to be a cylindrical object, as discussed in Section 2, and a geometric cylinder should be more appropriate than a spherical shape for paddy. Thus, cylindrical coordinates of heat diffusion equation were used in the simulation.

The following assumptions were made in developing the model:

1. Paddy kernels are uniform in size and internally homogeneous.
2. In the first fluidized bed disinfection model, assuming that any change in the moisture content of stored grain is very small and has no effect on the process, moisture loss from the grain surface was not accounted for. However, in the second model, moisture loss and the corresponding heat of evaporation were added to the convective boundary conditions and energy equation, respectively.
3. The effects of heat conduction and moisture transfer between the grains, and heat loss, were not accounted for.
4. The accumulation of thermal energy and water vapor in the air in the bed was disregarded.
5. It was assumed that the grains were well mixed and had the same temperature and moisture content at any location in the bed.
6. With respect to up-modulating high air temperature and high air flow rate, as in a fluidized bed application, it was assumed the exit air and the grains in the bed had not reached a condition of thermal equilibrium.

To simulate heat disinfection in a fluidized bed system, in which part of the exhaust air is recycled for energy-saving reasons, the system is divided into a series of elementary control volumes, as shown in Fig. 6. The basic principles of the laws of mass and energy conservation, accounting for convective heat transfer and mass transfer based on the empirical model fitted from the experimental data, are employed to each elementary control volume, leading to a set of governing equations, as follows:

3.1. Fluidized-bed chamber (cv. 1)

The appreciable fluidization of grains accounting for a current model is characterized by assuming the well-mixed

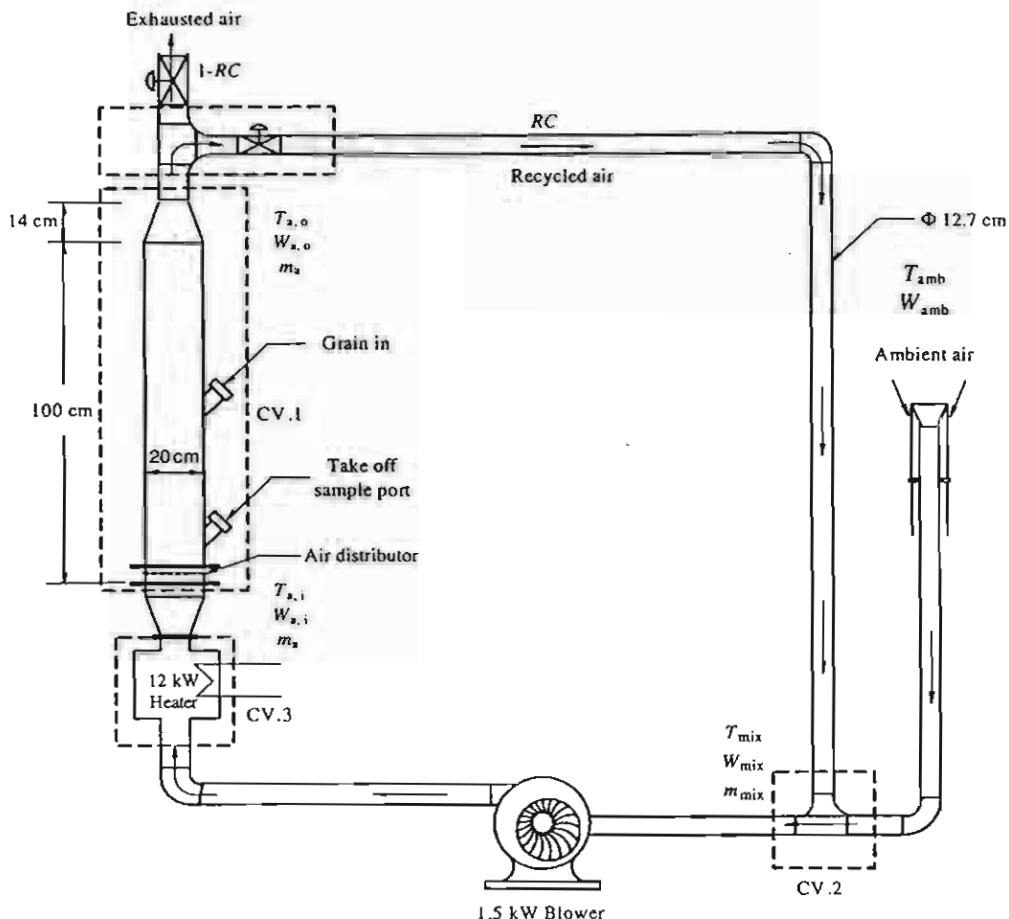


Fig. 6. Schematic diagram of batch fluidized bed disinfecter.

condition of grains (Assumption 5) so as all grains elsewhere inside the bed are in the same moisture content and temperature.

3.1.1. Macroscopic mass balance

Control volume 1 (cv. 1), as shown in Fig. 6, represents the fluidized-bed chamber. By employing Assumption 4, that the accumulation rate of water vapor in the air within the bed is not accounted for, the physical meaning of the law of mass conservation may be written as

{Mass of moisture evaporated from grain}

= [Change in moisture of grain]

= [Change in humidity of air]

which are mathematically expressed as follows:

$$m_{wb} = m_b \frac{dM}{dt} \quad (24)$$

and

$$-m_b \frac{dM}{dt} = m_a (W_{a,0} - W_{a,i}) \quad (25)$$

term $[\frac{dM}{dt}]$ can be determined by applying Eq. (31) and is not implied if moisture loss is not accounted for.

3.1.2. Macroscopic energy balance

With the Assumption 4 that the accumulation of thermal energy in the air in the bed is negligible. The exchange energy between the air across the bed and the grains gives a relationship, as follows:

[Enthalpy change of air across bed]

= [Internal change of the grain in the bed]

+ [Energy used for evaporation of moisture

evaporated from the grain]

+ [Energy for increasing the temperature of the moisture evaporated to the temperature of the air]

The last term on the right-hand side of the above equation may be omitted when compared with other terms, and is mathematically expressed as

$$m_a c_a (T_{a,i} - T_{a,0}) + m_a c_v (W_{a,i} T_{a,i} - W_{a,0} T_{a,0})$$

$$= m_b (c_p + c_w M_{in}) \frac{dT_p}{dt} + m_{wb} \Delta H \quad (26)$$

which is a non-equilibrium thermal condition. The last term on the right hand side of Eq. (26) ($m_{wb} \Delta H$) is respon-

sible for the heat of evaporation and is not considered when the moisture evaporated is negligible.

3.1.3. Heat and mass transfer of a single grain

Heat transfer of a single grain is governed by a heat diffusion equation for cylindrical geometry, with appropriate initial and boundary conditions, as described by Eqs. (6)–(12). In the second fluidized bed heat disinfection model, including accounting for moisture loss from the grain surface, boundary equations (11) and (12) are replaced by the following equations:

$$t > 0, \quad r = R, \quad 0 \leq z \leq L : k \frac{\partial T}{\partial r} = h(T_a - T_s) - m_w \frac{\Delta H}{A_t} \quad (27)$$

$$z = L, \quad 0 \leq r \leq R : k \frac{\partial T}{\partial z} = h(T_a - T_s) - m_w \frac{\Delta H}{A_t} \quad (28)$$

moisture loss of a single grain (m_w) can be determined from

$$m_w = m_p \frac{dM}{dt} \quad (29)$$

where

$$m_p = \rho_t V_p \quad (30)$$

Term $\left[\frac{dM}{dt}\right]$ is the rate of change in moisture content in which the relationship between the moisture content (M) and the disinfection time (t) was evaluated by fitting corresponding data from the present experiments carried out under the various heating temperatures. A exponential form correlation performed by least square method was found to provide good agreement between the experimental data and the correlation, and can be expressed as

$$M(t) = M_{in} - \exp(a) \exp(b \ln T_{a,i}) \exp(c \ln t) \quad (31)$$

where t is disinfection time (s), and a, b, c are constant parameters for the various disinfection temperatures, shown below:

Air temperature ($<75^{\circ}\text{C}$): $a = -20.3969, b = 4.3215, c = 0.4883$.

Air temperature ($<110^{\circ}\text{C}$): $a = -9.7093, b = 1.8136, c = 0.5778$.

Air temperature ($<150^{\circ}\text{C}$): $a = -6.7201, b = 1.2184, c = 0.4234$.

3.2. Mixing section (cv. 2)

Because the system employs exhaust air recycling, the ambient air temperature must be elevated to inlet air temperature and hence the mixing temperature must be determined before assessing the energy required to heat the mixed air to desirable inlet air temperature. Using the basic knowledge of energy conservation, the mixing temperature can be determined by the following equation:

$$\begin{aligned} m_{\text{mix}} c_a T_{\text{mix}} + m_{\text{mix}} W_{\text{mix}} (h_{fg} + c_v T_{\text{mix}}) - (1 - RC) m_a c_a T_{\text{amb}} \\ - (1 - RC) m_a W_{\text{amb}} (h_{fg} + c_v T_{\text{amb}}) - RC m_a c_a T_{a,o} \\ - RC m_a W_{a,o} (h_{fg} + c_v T_{a,o}) = 0 \end{aligned} \quad (32)$$

The mass balance for the air phase is written as

$$m_{\text{mix}} = m_a \quad (33)$$

and the mass balance for the vapor phase is expressed as

$$W_{\text{mix}} = RC W_{a,o} + (1 - RC) W_{\text{amb}} \quad (34)$$

The increase in the humidity of the air leaving the bed, by moisture transferred from the surface of stored grains, which usually have a relatively low moisture content and for which it is difficult to shed moisture, is very small and can be approximately unchanged when the air leaves the bed. Thus Eqs. (25) and (34) can be simplified to

$$W_{a,o} \cong W_{a,i} \quad (35)$$

and

$$W_{\text{mix}} \cong W_{a,o} \quad (36)$$

3.3. Heating chamber (cv. 3)

The energy input to heat air before entering the fluidized-bed chamber can be calculated from

$$Q = m_{\text{mix}} (c_a + W_{\text{mix}} c_v) (T_{a,i} - T_{\text{mix}}) \quad (37)$$

3.4. Properties and thermodynamic equations

The correlation of heat transfer subjected to the fluidized bed reported by Kunii and Levenspiel [26] was selected for simulation, and may be expressed as

$$Nu = 2 + 0.6 Re^{0.5} Pr^{0.33} \quad (38)$$

where $h = Nu k_a / D_p$, $Re = \rho_a v_a D_p / \mu_a$; ($0.1 < Re < 10^4$) and $Pr = c_a \mu_a / k_a$.

In which D_p equates with the diameter of a grain. Although Eq. (38) is primarily correlated for spherical particles in the fluidized bed but it is permitted for non-spherical particle as well.

Expressions for properties of product and thermodynamics equations for air–water systems (Eqs. (49)–(60)) are listed in Tables 1 and 2. Eqs. (52)–(54) are used to calculate true density of paddy ρ_t and hence the mass of one grain may be determined from Eq. (30).

4. Solution algorithm

The solution procedure for the governing equation involves the following steps:

1. Parameters, i.e. inlet air temperature ($T_{a,i}$), inlet air humidity ($W_{a,i}$), which is approximately equal to ambient air humidity (W_{amb}), initial moisture content (M_{in}), initial grain temperature, air mass flow rate (m_a), dry

Table 1
Properties of paddy used for simulation [27–29]

Equations	Property	Expression	References	Units
(49)	ΔH	$\Delta H = (2502 - 2.386\bar{T}_p)(1 + 2.496 \exp(-21.733M)) \times 10^3$	[27]	J/kg H ₂ O
(50)	c_p	$c_p = 1.11 \times 10^3 + 44.8(M/(1 + M))$	[27]	J/kg
(51)	k	$k = 0.0863 + 0.00134(M/(1 + M))$	[28]	W/m K
(52)	ε	$\varepsilon = 0.62 - 0.25(M/(1 + M))$	[29]	Decimal
(53)	ε	$\varepsilon = 1 - \rho_b/\rho_i$	[30]	Decimal
(54)	ρ_b	$\rho_b = 552 + 282(M/(1 + M))$	[29]	kg/m ³

Table 2
Thermodynamics of air and water system [27,30]

Equations	Property	Expression	Units
(55)	c_a	$c_a = 1.00926 \times 10^3 - 4.0403 \times 10^{-2}T + 6.1759 \times 10^{-4}T^2 - 4.097 \times 10^{-7}T^3$	J/kg K
(56)	k_a	$k_a = 2.425 \times 10^{-2} + 7.889 \times 10^{-5}T - 1.790 \times 10^{-8}T^2 - 8.570 \times 10^{-12}T^3$	W/m K
(57)	ρ_a	$\rho_a = 101.325/(0.287T_{abs})$	kg/m ³
(58)	μ_a	$\mu_a = 1.691 \times 10^{-5} + 4.984 \times 10^{-8}T - 3.187 \times 10^{-11}T^2 + 1.319 \times 10^{-14}T^3$	kg/m s
(59)	c_v	$c_v = 1.883 \times 10^3 - 1.6737 \times 10^{-1}T + 8.4386 \times 10^{-4}T^2 - 2.6966 \times 10^{-7}T^3$	J/kg K
(60)	c_w	$c_w = 2.8223 \times 10^3 + 11.8287T - 3.5043 \times 10^{-2}T^2 + 3.601 \times 10^{-5}T^3$	J/kg K

mass of paddy in bed (m_b), air recycling ratio (RC), and superficial air velocity, are taken as input parameters to initiate the simulation.

2. For each given time step, by applying the heat diffusion equation for cylindrical coordinates (Eq. (6)) and appropriate initial and boundary conditions (Eqs. (7)–(12)) or replacing Eqs. (11) and (12) with Eqs. (27) and (28) where accounting for moisture loss, temperature profiles inside the kernel, in respect to a given time step, can be determined. Moisture loss from one grain (m_w) appeared in the convection boundary conditions (Eqs. (27) and (28)) can be evaluated from Eqs. (29)–(31). The temperature of the air decreases as it flows throughout the bed; thus, to calculate the corresponding heat transfer coefficient, the properties of the air are evaluated at an average temperature between inlet and exit air. However, the exit temperature ($T_{a,o}$) is not yet known; therefore, in this step, an iterative solution is necessary and $T_{a,o}$ is

assumed as initial estimate to determine the heat transfer coefficient and the solution of the heat diffusion equation, respectively. The implicit finite difference with the discrete grid of the cylindrical object, as shown in Fig. 7, was advanced. The finite difference representing the governing equations, including accounting for moisture loss, may be written in the following form:

Case 1: $i = 0, j = 0$

$$T_{0,0}^{n+1} = (1 - 4F_r - 2F_z)T_{0,0}^n + 4F_r T_{1,0}^n + 2F_z T_{0,1}^n \quad (39)$$

Case 2: $i = 0, j = j_{\max}$

$$\begin{aligned} T_{0,j_{\max}}^{n+1} = & (1 - 4F_r - 2F_z\beta_N)T_{0,j_{\max}}^n + 2F_z T_{0,j_{\max}-1}^n \\ & + 4F_r T_{1,j_{\max}}^n + 2F_z \gamma_N - 2F_z \left(\frac{\Delta z}{k} \right) \left(\frac{m_w \Delta H}{A_t} \right) \end{aligned} \quad (40)$$

Case 3: $i = i_{\max}, j = 0$

$$\begin{aligned} T_{i_{\max},0}^{n+1} = & (1 - 2F_r\beta_M - 2F_z)T_{i_{\max},0}^n + 2F_r \gamma_M \\ & + 2F_r T_{i_{\max}-1,0}^n + 2F_z T_{i_{\max},1}^n \\ & - \left(1 + \frac{1}{2i} \right) \left(\frac{2F_r \Delta r}{k} \right) \left(\frac{m_w \Delta H}{A_t} \right) \end{aligned} \quad (41)$$

Case 4: $i = i_{\max}, j = j_{\max}$

$$\begin{aligned} T_{i_{\max},j_{\max}}^{n+1} = & (1 - 2F_r\beta_M - 2F_z\beta_N)T_{i_{\max},j_{\max}}^n + 2F_r \gamma_M \\ & + 2F_z \gamma_N + 2F_r T_{i_{\max}-1,j_{\max}}^n \\ & + 2F_z T_{i_{\max},j_{\max}-1}^n - 2 \left(\frac{F_z \Delta z}{k} \right) \left(\frac{m_w \Delta H}{A_t} \right) \\ & - \left(1 + \frac{1}{2i} \right) \left(\frac{2F_r \Delta r}{k} \right) \left(\frac{m_w \Delta H}{A_t} \right) \end{aligned} \quad (42)$$

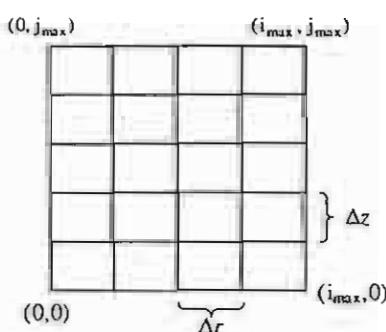


Fig. 7. Numerical grids for a one-fourth cylindrical object for the governing equations.

Case 5: $i = i_{\max}, j = 1, 2, 3, \dots, j_{\max} - 1$

$$\begin{aligned} T_{i_{\max},j}^{n+1} &= (1 - 2F_r\beta_M - 2F_z)T_{i_{\max},j}^n + 2F_r\gamma_M \\ &+ 2F_rT_{i_{\max}-1,j}^n + F_zT_{i_{\max},j+1}^n + F_zT_{i_{\max},j-1}^n \\ &- \left(1 + \frac{1}{2i}\right) \left(\frac{2F_r\Delta r}{k}\right) \left(\frac{m_w\Delta H}{A_t}\right) \end{aligned} \quad (43)$$

Case 6: $i = 1, 2, 3, \dots, i_{\max} - 1, j = j_{\max}$

$$\begin{aligned} T_{i,j_{\max}}^{n+1} &= (1 - 2F_r - 2F_z\beta_N)T_{i,j_{\max}}^n \\ &+ \left(1 + \frac{1}{2i}\right)F_rT_{i+1,j_{\max}}^n + 2F_z\gamma_N \\ &+ \left(1 - \frac{1}{2i}\right)F_rT_{i-1,j_{\max}}^n + 2F_zT_{i,j_{\max}-1}^n \\ &- \left(\frac{2F_z\Delta z}{k}\right) \left(\frac{m_w\Delta H}{A_t}\right) \end{aligned} \quad (44)$$

Case 7: $i = 1, 2, 3, \dots, i_{\max} - 1, j = 0$

$$\begin{aligned} T_{i,0}^{n+1} &= (1 - 2F_r - 2F_z)T_{i,0}^n + \left(1 + \frac{1}{2i}\right)F_rT_{i+1,0}^n \\ &+ \left(1 - \frac{1}{2i}\right)F_rT_{i-1,0}^n + 2F_zT_{i,1}^n \end{aligned} \quad (45)$$

Case 8: $i = 0, j = 1, 2, 3, \dots, j_{\max} - 1$

$$\begin{aligned} T_{0,j}^{n+1} &= (1 - 4F_r - 2F_z)T_{0,j}^n + 4F_rT_{1,j}^n + F_zT_{0,j+1}^n \\ &+ F_zT_{0,j-1}^n \end{aligned} \quad (46)$$

Case 9: $i = 1, 2, 3, \dots, i_{\max} - 1, j = 1, 2, 3, \dots, j_{\max} - 1$

$$\begin{aligned} T_{i,j}^{n+1} &= (1 - 2F_r - 2F_z)T_{i,j}^n + \left(1 + \frac{1}{2i}\right)F_rT_{i+1,j}^n \\ &+ \left(1 - \frac{1}{2i}\right)F_rT_{i-1,j}^n + F_zT_{i,j+1}^n + F_zT_{i,j-1}^n \end{aligned} \quad (47)$$

The stability criterions for the above equations are

$$F_r + F_z \leq \frac{1}{2} \quad (48)$$

where

$$F_r = \frac{\alpha\Delta t}{\Delta r^2}; \quad \alpha = \frac{k}{\rho_1 c_p}$$

$$F_z = \frac{\alpha\Delta t}{\Delta z^2}$$

$$\beta_N = 1 + \left(\Delta z \frac{h}{k_a}\right)$$

$$\beta_M = 1 + \left(\left(1 + \frac{1}{2i}\right)\Delta r \frac{h}{k_a}\right)$$

$$\gamma_M = \left(1 + \left(\frac{1}{2i}\right)\right) \left(\Delta r \frac{h}{k_a}\right) T_{\text{mean}}; \quad T_{\text{mean}} = \frac{T_{a,i} + T_{a,o}}{2}$$

$$\gamma_N = \left(\Delta z \frac{h}{k_a}\right) T_{\text{mean}}$$

In the above equations, terms involving evaporated moisture are neglected if not considering moisture loss during the heat disinfestation process.

3. Knowing the temperature accompanied by each node inside the grain kernel, the average temperature

can be resolved by applying Simpson's method to Eq. (13).

4. From the mass and energy conservation equations (Eqs. (24)–(26)), the exit air temperature is determined and compared to the initial estimated value. If the difference in result is not within an acceptable level, the initial estimate will be changed to the update result, and the entire procedure repeated until the difference in the exit air temperature is less than 0.005 °C, which is considered insignificant based on practical considerations. Once the solution regarding the fluidized-bed chamber section has been assembled, the simulation will be continued further for subsequent sections, by solving Eq. (25) to determine the change in humidity ratio of the air leaving the bed, Eqs. (32) and (34) to calculate mixing temperature and mixing humidity ratio of the air departing from mixing section and Eq. (37) to find out heat input. In the specific event of not accounting moisture evaporated, Eqs. (25) and (34) are omitted and consequently replaced by Eqs. (35) and (36).
5. The final conditions of the air throughout the bed and the grain within the bed, accomplished by the procedure in steps 1–4, are now initialized for the condition of the next time step. The entire procedure is repeated until the end of the disinfestation period.

5. Experiments

Experiments were conducted to validate the simulation results of changes in air and grain temperatures during the heat treatment process.

5.1. Materials

Experiments with paddy heating were conducted using a fluidized bed batch disinfector, as shown in Fig. 6. The fluidized-bed chamber was made of stainless steel and was of a cylindrical shape, 20 cm in diameter and 140 cm in height. The chamber and connected air ducts were insulated with fiberglass insulation 25 mm in thickness. Hot air was distributed to the bottom of the chamber through an air distributor plate. Air was heated by electric heaters with a total capacity of 12 kW. The inlet air temperatures were automatically controlled by PDI temperature controller, with an accuracy of ±1 °C. Temperatures were measured by a data logger and a temperature indicator with an accuracy of ±1 °C connected to a type K thermocouple. Air velocity was measured by hot wire anemometer with an accuracy of ±5%. A mechanical variable speed drive was used to regulate blower motor speed to attain the desired airflow rate.

5.2. Experimental set-up and conditions

Dried long-grain rough rice (paddy) with moisture contents in the range 12–14% (dry basis) was selected as the

test material. 0.8 kg of paddy, which created a non-fluidized bed height of 4 cm, was loaded into the fluidized chamber for each experiment. To guarantee complete fluidization of paddy is attained, the fluidization velocity of 2.5 m/s, which is equal to 1.5 times of the calculated minimum fluidization velocity (1.65 m/s), was used and held constant, and the percentage-air-recycled ratio was set at 20% for each experiment. The exit air temperatures were measured at a distance of 85 cm above the air distributor. The paddy samples were taken for determination of temperature and moisture content at intervals of 10 s. To ensure that the process mechanism was not deviated from, or disturbed by collecting the samples, the process with same desired conditions was restarted after collecting each sample until the target time was reached. The inlet air temperatures were set at 60, 80, 100 and 120 °C, respectively.

6. Result and discussion

6.1. Prediction of temperature gradient inside individual paddy kernel

Fig. 8 presents the moisture profile inside individual paddy kernels at an air temperature of 70 °C computed by the fluidized bed model, in which the moisture evaporation effect was not accounted for. Heat flow patterns similar to the thin-layer model (Fig. 4) were observed, but different times were required for temperature equalization. The temperature throughout the grain kernel, as predicted by the fluidized bed model, attained uniformity more slowly than that predicted by the thin-layer model. This is because the air temperature used for calculating heat transfer coefficient and heat transfer rate in the thin layer model was assumed unchanged and was equal to the inlet air temperature, whilst the fluidized bed model acknowl-

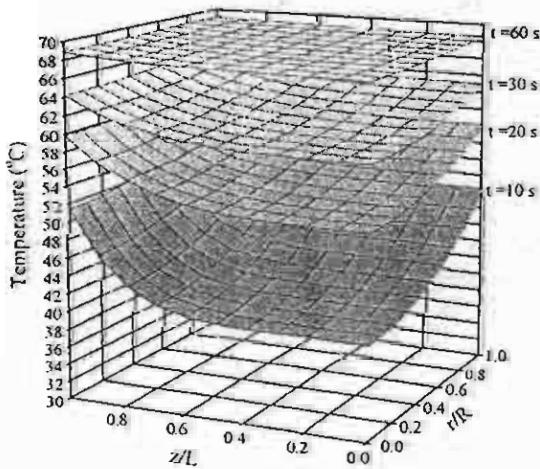


Fig. 8. Temperature profiles inside a cylindrical paddy kernel computed by fluidized bed model excluding moisture loss effect at inlet air temperature of 70 °C.

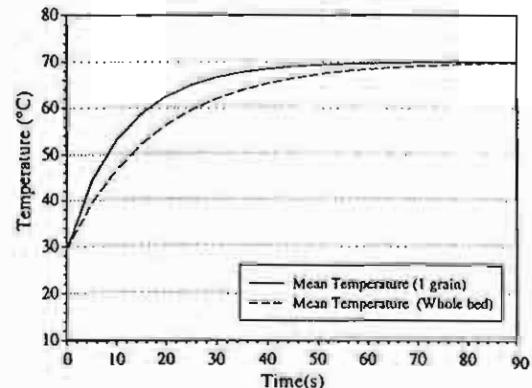


Fig. 9. Comparison of simulated average paddy temperature between computational from thin layer and fluidized bed models at inlet air temperature of 70 °C.

edges the effects of air temperature changes within the bed. Therefore, the arithmetic mean of the air temperatures across the bed was used in calculation.

To provide a clearer picture, the average temperatures of grain for both the thin layer and fluidized bed models, corresponding to temperature distribution data in Figs. 4 and 8 were plotted, as shown in Fig. 9. It is indicative of more rapid changes in grain temperature in the thin layer model, leading to incorrect determination of the lethal time required for mortality of insects inside grain kernels.

6.2. Experimental validation without accounting for moisture loss

Fig. 10(a–c) shows the experimental and predicted average grain temperatures and exit air temperatures at inlet air temperatures of 60, 80, 100 and 120 °C, respectively. The model excluding moisture loss effect over-predicted experimental results where the dynamic changes in predicted values progressed more quickly than in the experimental values and resulted in predicting grain and exit air temperatures approaching inlet air temperature at the end period, whilst that did not happen in the experiments. It was also noticeable that use of a higher inlet air temperature resulted in higher discrepancies between experimental and simulation results. Over-prediction of grain and exit air temperatures was assumed to be caused by neglecting evaporation heat for moisture reduction during heat treatment, leading to over-accelerating the changes in the predicted air and grain temperatures. In an attempt to investigate the relationship between moisture reduction and changes in grain and air temperatures, the moisture content of grain versus time under several inlet air temperatures were plotted, together with air and grain temperatures, as shown in Fig. 10. It is clearly illustrated that the moisture content of the grain decreases with heating time, especially at high inlet air temperatures, and this could affect the predictive-ness of the model.

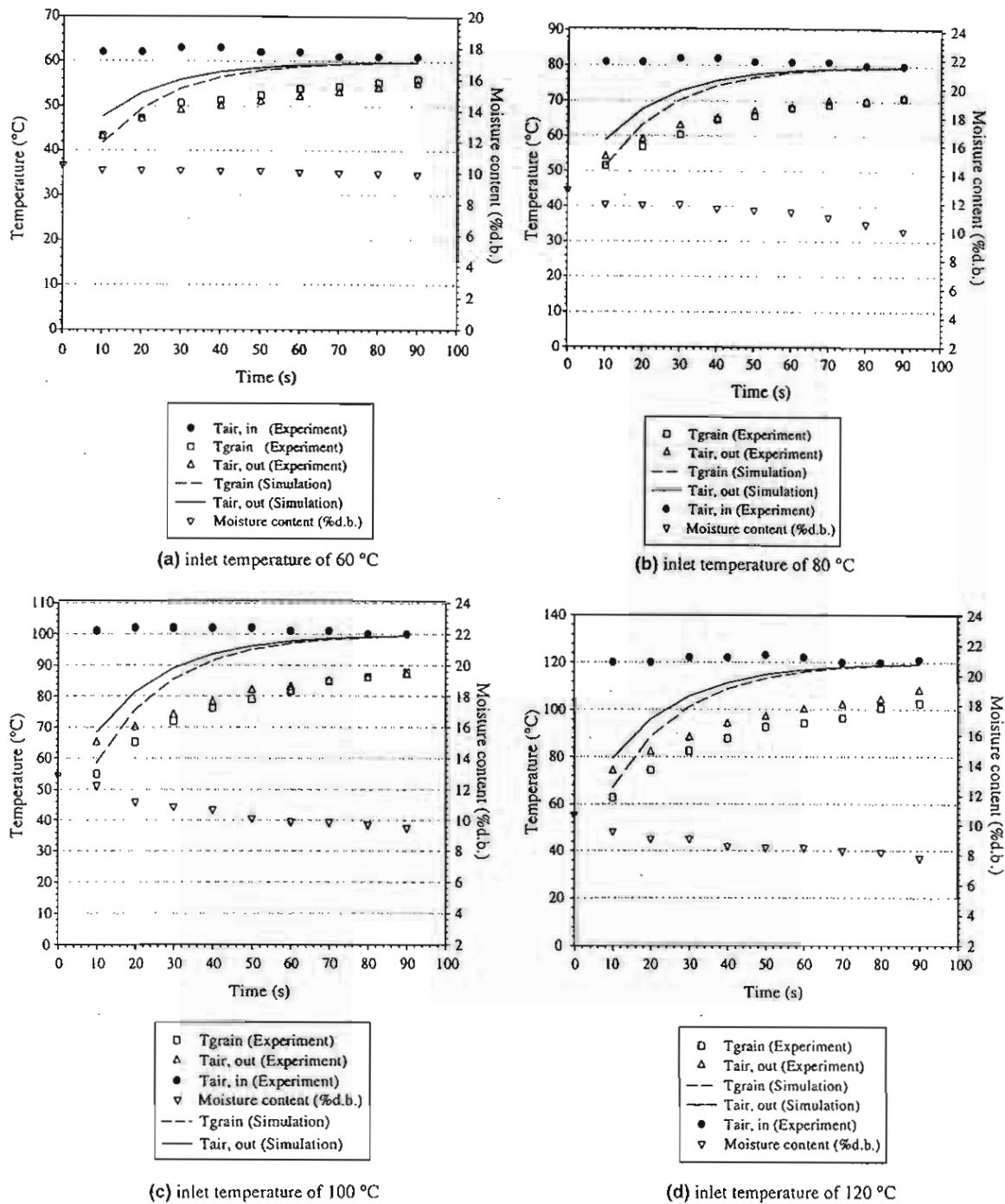


Fig. 10. Simulation and experimental results of heat disinfection fluidized bed model excluding moisture transfer effect.

6.3. Simulation of coupled heat and mass transfer in fluidized bed disinfectors

The previous section indicated that a model in which the influence of moisture evaporation on energy exchange between air and grain was excluded did not provide a realistic prediction. Fig. 10 indicates that only 1.0% d.b. of average moisture reduction may significantly affect the pre-

dicted results. To improve the model predicting grain and exit air temperatures, moisture losses and the relative energy used for evaporation are taken into account, and then the solution is resolved by simultaneously combining the heat exchange contribution and the moisture transfer in the bed. The experimental data in Fig. 10(a–d) are duplicated in Fig. 11(a–d), but the model incorporating moisture transfer was used to predict grain and exit air temperatures

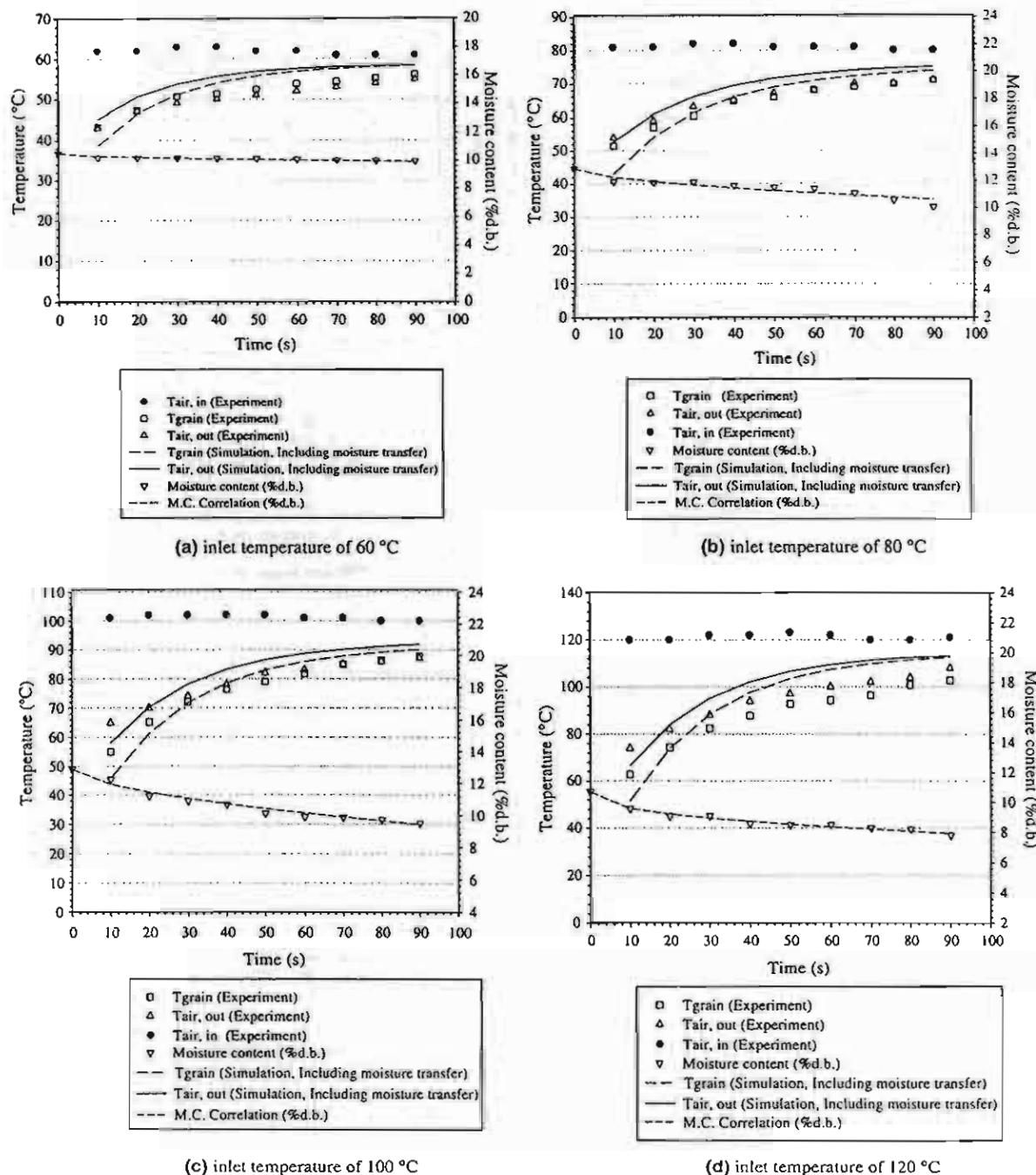


Fig. 11. Simulation and experimental results of heat disinfection fluidized bed model coupling heat and mass transfer.

with a consequential improvement in predicted values. The model predicted grain temperature more accurately than exit air temperature, but not for the test undergoing inlet air temperature of 120 °C. The discrepancies between predicted and measured exit air temperatures are between 2 and 5 °C (except for the testing under high inlet air temperature of 120 °C) and may partly due to the effect of heat loss through the wall of the fluidized-bed chamber. The measuring point for the exit air is located 85 cm above

the air distributor plate, which is quite high compared with a dynamic bed height where it is accompanied by most of the fluidized grain; hence, those temperature values represent the temperature of the air leaving the chamber rather than the temperature of the air leaving the bed.

The air temperature drop due to heat loss effect is reflected by consistently lower measured temperature of the air containing low energy, i.e. air with a low temperature of 60 °C than the measured temperature of the grain,

as presented in Fig. 11(a), which is not possible unless it is due to the heat loss effect. To investigate these errors, the hand calculations (not shown herein) were performed for heat loss calculation and found that the discrepancies may reduce to 0.5–2.5 °C instead of 2–5 °C if involving heat loss, confirming the responsibility of heat loss effect for these discrepancies, in part. The model performed reasonably well in predicting grain temperature, although the predicted values were over-estimated. The differences in predicted and measured values were less than 2–3 °C, except for conditions with high inlet air temperature of 120 °C. After thoroughly checking the model, we believed that the main factor significantly affecting grain temperature computation was the heat transfer coefficient. The heat transfer coefficient used in the model determined subject to the arithmetic mean temperature between the inlet and exit air, which may be not be an adequate representation of the temperature of the air across the bed. Some additional data were required to investigate the variation in air temperature along with the fluidized bed height. Measurements were taken and the data are shown in Fig. 12, which illustrates that the air temperature decreases sharply just above 2.5 cm from the air distributor plate and does not fall in temperature once it is about 10 cm above the air distributor plate. This means that the heat transfer coefficient, determined based on the arithmetic mean temperature of air is over-estimated, resulting in over-prediction of grain temperature. The effect of over-estimating the mean temperature of the air inside the bed will be more powerful, especially in high temperature conditions, e.g. air temperatures of 120 °C.

6.4. Model application for heat disinfections

Although a long heat treatment time is adequate for us to be confident of destroying the insect population however, the period cannot be too long because it must be balanced with the impact on product quality. The appropriate lethal time required for the complete mortality of all insects embedded inside the product at various given operating

conditions may be determined by simulating the time that all locations inside the product must attain the target temperature. Increasing the rate of mortality by allowing the product to undergo higher temperatures near the surface, and more rapidly promoting the target temperature at the center, or creating thermal shock [15,19,22], can also be simulated by the model.

7. Conclusions

Cylindrical coordinates for the heat diffusion problem were chosen rather than spherical coordinates to model fluidized bed heat disinfection because of its clearer picture of temperature profiles inside individual paddy kernels. The simulation results from the thin layer heat diffusion model, obtained from numerical methods, do not distinguish between those obtained from the analytical solution method and the numerical method was used in modeling. Coupling the thin-layer heat diffusion model with other relevant mass and energy balance equations that were developed for the relative parts of the fluidized bed system gave different results from applying the thin-layer model alone. It was quite apparent that only 1.0% d.b. of grain moisture reduction, the model which takes full account of the changes in energies due to differential changes in moisture content, significantly improve prediction of grain and exit temperatures. The model tends to over-estimate grain and exit temperatures in most cases considered, but the errors are not considered significant. The use of arithmetic mean temperature for air across the bed, to determine the heat transfer coefficient, was primarily motivated by the lack of information regarding variations in air temperature within the bed, and led to over-estimation of grain temperature, whilst the over-estimation of exit air temperature was mainly due to the heat loss effect. Finally, in applying heat disinfections, the model is able to predict the mortality of insects inside grain kernels by knowing the lethal temperature and operating conditions, so that consequently the lethal time required for completely destroying all insects can be determined.

Acknowledgement

Thanks are due to the Thailand Research Fund (TRF) for financial support and the Japanese International Research Center for Agricultural Sciences (JIRCAS).

References

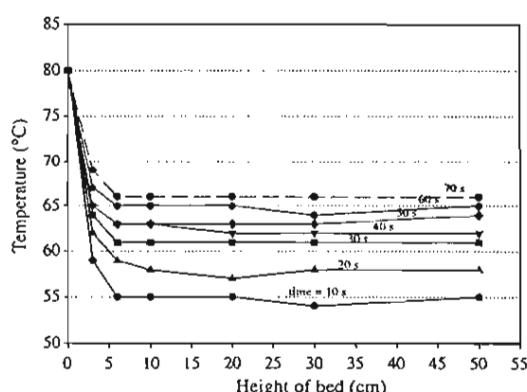


Fig. 12. Experimental results of variation of air temperature within the fluidized bed.

- [1] J.L. Sharp, J.J. Gaffney, J.I. Moss, W.P. Gould, Hot-air treatment device for quarantine research, *J. Econ. Entomol.* 84 (1991) 520–527.
- [2] L.G. Neven, Combined heat treatments and cold storage effects on mortality of fifth-instar codling moth (Lepidoptera: Tortricidae), *J. Econ. Entomol.* 87 (1994) 1262–1265.
- [3] L.G. Neven, E.J. Mitcham, CATTS (controlled atmosphere/temperature treatment system): a novel tool for the development of quarantine treatments, *J. Amer. Entomol.* 42 (1996) 56–59.

- [4] L.G. Neven, L.M. Rehfield, K.C. Shellie, Moist and vapor forced air treatment of apples and pears: effects on the mortality of fifth instar codling moth (Lepidoptera: Tortricidae), *J. Econ. Entomol.* 89 (1996) 700–704.
- [5] S. Lurie, Postharvest heat treatments, *Postharvest Biol. Technol.* 14 (1998) 257–269.
- [6] R.L. Mangan, K.C. Shellie, S.J. Ingle, M.J. Firko, High temperature forced-air treatments with fixed time for 'Dancy' tangerines, 'Valencia' orange and 'Rio Star' grape fruit, *J. Econ. Entomol.* 91 (1998) 933–939.
- [7] K.K. Jacobi, L.S. Wong, J.E. Giles, Postharvest quality of zucchini (*Cucurbita pepo* L.) following high humidity hot air disinfection treatments and cool stage, *Postharvest Biol. Technol.* 7 (1996) 309–316.
- [8] N.W. Heather, R.J. Corcoran, R.A. Kopittke, Hot air disinfection of Australian 'Kensington' mangoes against two fruit flies (Diptera: Tephritidae), *Postharvest Biol. Technol.* 10 (1997) 99–105.
- [9] C.F. Hayes, H. Young, Extension of model to predict survival from heat transfer of papaya infested with oriental fruit flies (Diptera: Tephritidae), *J. Econ. Entomol.* 82 (1989) 1157–1160.
- [10] J.D. Hansen, Heating curve models of quarantine treatments against insect pests, *J. Econ. Entomol.* 85 (1992) 1846–1854.
- [11] S. Wang, J. Tang, R.P. Cavalieri, Modeling fruit internal heating rates for hot air and hot water treatment, *Postharvest Biol. Technol.* 22 (2001) 257–270.
- [12] T. Dermott, D.E. Evans, An evaluation of fluidized-bed heating as a means of disinfecting wheat, *J. Stored Prod. Res.* 14 (1978) 1–12.
- [13] D.E. Evans, T. Dermott, Dosage-mortality relationships for *Rhyzopertha dominica* (F.) (Coleoptera: Bostrichidae) exposed to heat in a fluidized bed, *J. Stored Prod. Res.* 17 (1981) 53–64.
- [14] D.E. Evans, The influence of some biological and physical factors on the heat tolerance relationships for *Rhyzopertha dominica* (F.) and *Sitophilus oryzae* (L.) (Coleoptera: Bostrichidae and Curculionidae), *J. Stored Prod. Res.* 17 (1981) 65–72.
- [15] D.E. Evans, The influence of rate of heating on the mortality of *Rhyzopertha dominica* (F.) (Coleoptera: Bostrichidae), *J. Stored Prod. Res.* 23 (1987) 73–77.
- [16] D.E. Evans, G.R. Thorpe, T. Dermott, The disinfection of wheat in a continuous-flow fluidized bed, *J. Stored Prod. Res.* 19 (1983) 125–137.
- [17] G.R. Thorpe, The thermodynamic performance of a continuous-flow fluidized bed grain disinfecter and dryer, *J. Agric. Eng. Res.* 37 (1987) 27–41.
- [18] J.K. Claslin, D.E. Evans, A.G. Fane, R.J. Hill, The thermal disinfection of wheat in a spouted bed, *J. Stored Prod. Res.* 22 (1986) 153–161.
- [19] S.J. Beckett, R. Morton, Mortality of *Rhyzopertha dominica* (F.) (Coleoptera: Bostrichidae) at grain temperatures ranging from 50 °C to 60 °C obtained at different rates of heating in a spouted bed, *J. Stored Prod. Res.* 39 (2003) 313–332.
- [20] J.W. Sutherland, D.E. Evans, A.G. Fane, G.R. Thorpe, Disinfection of grain with heated air, in: E. Donahaye, S. Navarro (Eds.), Proceeding of the Fourth International Working Conference on Stored-Product Protection, Tel Aviv, Israel, Maor-Wallach Press, Jerusalem, Israel, 1987, pp. 261–274.
- [21] J.W. Sutherland, P.W. Fricke, R.J. Hill, The entomological and thermodynamic performance of a pneumatic conveyor wheat disinfecter using hot air, *J. Agric. Eng. Res.* 44 (1989) 113–124.
- [22] H. Mourier, K.P. Poulsen, Control of insects and mites in grain using a high temperature/short time (HTST) technique, *J. Stored Prod. Res.* 36 (2000) 309–318.
- [23] J.M. Vergnaud, Drying of Polymeric and Solid Materials: Modelling and Industrial Application, Springer-Verlag, London, 1992, pp. 13–70.
- [24] M.N. Ozisik, Heat Transfer: A Basic Approach, McGraw-Hill, New York, 1985, pp. 124–127.
- [25] F. Bowman, Introduction to Bessel Functions, Dover Publications, Inc., New York, 1958, pp. 1–3.
- [26] D. Kunii, O. Levenspiel, Fluidization Engineering, second ed., Butterworth-Heinemann, Boston, 1991, Chapter 11, pp. 268–271.
- [27] A.S. Mujumdar, Handbook of Industrial Drying, second ed., Marcel Dekker, Inc., New York, 1995. Appendix.
- [28] D.B. Brooker, F.W. Bakker, C.W. Hall, Drying and Storage of Grain and Oilseed, AVI, New York, 1992. Appendix E.
- [29] C. Laithong, Study of thermo-physical properties of rough rice, M.Sc. Thesis, King Mongkut's Institute of Technology Thonburi, Bangkok, Thailand, 1987.
- [30] Z. Pakowski, Z. Bartezak, C. Stummillo, S. Stenstrom, Evaluation of equations approximating thermodynamic and transport properties of water, steam and air for use in CAD of drying processes, *Drying Technol.* 9 (3) (1991) 753–773.

ELSEVIER

Available online at www.sciencedirect.com

SCIENCE @ DIRECT®

Journal of Food Engineering 76 (2006) 327–333

JOURNAL OF
FOOD
ENGINEERING

www.elsevier.com/locate/jfoodeng

Characteristics of heat transfer in two-dimensional spouted bed

Somkiat Prachayawarakorn ^{a,*}, Samart Ruengnarong ^b, Somchart Soponronnarit ^b

^a Faculty of Engineering, King Mongkut's University of Technology, Thonburi, Suksawat 48 Road, Bangkok 10140, Thailand

^b School of Energy and Materials, King Mongkut's University of Technology, Thonburi, Suksawat 48 Road, Bangkok 10140, Thailand

Received 24 January 2005; accepted 19 May 2005

Available online 18 July 2005

Abstract

Heat transfer characteristics in a two-dimensional spouted bed with draft plates were studied using three agricultural materials, paddy, corn and soybean. Increases in inlet superficial velocity and bed porosity result in the increased superficial velocity in downcomer. Heat transfer coefficients for the spout and downcomer were founded to be a function of the superficial velocity and bed depth-to-particle diameter ratio. Two equations correlating heat transfer coefficients for both regions have been developed.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Heat transfer coefficient; Spouted bed; Draft plates

1. Introduction

Spouted bed is a fluid-particle contactor similar to fluidised bed, but it is different in the sense that fluid is moving through the core region using a nozzle rather than a porous or perforated distributor as in the fluidised bed. The inherent characteristics of spouted bed are composed of the dilute-phase spout zone with the solids moving upwards by co-current gas stream and the dense-phase downcomer zone with the solids moving downwards by counter-current gas stream. Such characteristics result in the contact time between particles and fluid stream being very short in the spout region, and relatively longer in the downcomer zone. These unique characteristics make various types of spouted bed popular for drying heat-sensitive materials (Hung-Nguyen, Driscoll, & Srzednicki, 2001; Madhiyanon, Soponronnarit, & Tia, 2001; Mathur & Epstein, 1974; Zahed & Elsayed, 1993).

To overcome the large pressure drop and instability of the operation that are usually experienced with the conventional spouted beds, the draft plates are inserted at central part of the spouted beds in order to separate the regions between spout and downcomer (Epstein & Grace, 1997; Fane, Wong, & Firek, 1985). This particular configuration takes advantage of the favourable characteristics associated with the conventional type of spouted bed and yet enables to improve the uniformity of the products resulting from the chemical or physical treatment due to the elimination of the back mixing (Eng, Svrcek, & Behie, 1989; Kalwar, Raghavan, & Mujumdar, 1992). The insertion of draft plates results in both hydrodynamic behaviour and subsequent heat transfer characteristics to be changed from those found in the conventional spouted beds. In the present work, the heat transfer characteristics in a two-dimensional spouted bed with draft plates are investigated.

The heat transfer from gas stream to solid particles in a two-dimensional spouted bed occurs in well-defined regions, namely the spout and in the downcomer regions, each of which is governed by different heat transfer mechanisms. Therefore, the heat transfer coefficient for

* Corresponding author. Tel.: +662 4270 9221; fax: +662 428 3534.
E-mail address: somkiat.pra@kmutt.ac.th (S. Prachayawarakorn).

Nomenclature

A	total heat transfer area, m^2	T_{out}	outlet air temperature, $^{\circ}\text{C}$
c_g	specific heat capacity of drying medium, J/kg K	$T_{1,\text{ps}}$	particle temperature at the spout inlet, $^{\circ}\text{C}$
c_w	specific heat capacity of water vapour, J/kg K	$T_{2,\text{ps}}$	particle temperature at the spout outlet, $^{\circ}\text{C}$
d_p	particle diameter, m	U	superficial velocity, m/s
H	static bed depth, m	U_{in}	inlet superficial velocity, m/s
h	heat transfer coefficient, $\text{W/m}^2 \text{K}$	V	volume of static bed occupied the solid particles, m^3
m_g	mass flow rate of drying medium, kg/s	w_g	humidity ratio, $\text{kg}_{\text{H}_2\text{O}}/\text{kg}_{\text{air}}$
q_{conduct}	heat conduction from spout to downcomer through draft plates, W	ε	porosity
q	heat transfer rate between drying medium and solid particles, W		
$q_{\text{loss,s}}$	heat loss, W		
T	temperature, $^{\circ}\text{C}$		
T_{in}	inlet air temperature, $^{\circ}\text{C}$		

each region is determined experimentally and empirically correlated with the operating parameter in a simple form. The calculation of the heat transfer coefficients is principally based on the energy balance equation that requires the data of temperature and volumetric airflow rate in each zone. However, the data of air velocity passing through the downcomer zone was not available in the literature for this dryer type and thus the correlation was determined in the present study, in order to predict the airflow in the downcomer under different operating conditions. Products, namely soybean, paddy and corn were used.

2. Materials and methods

2.1. Spouted bed

The experiments were carried out in a two-dimensional spouted bed with draft plates as shown in Fig. 1. The dryer has a vertical rectangular shape, with an inclined base (60° angle) in order to avoid the dead zone (Passos, Mujumdar, & Raghavan, 1987). The inlet cross sectional area of $4 \times 15 \text{ cm}^2$, drying chamber with a dimension of $60 \times 15 \times 50 \text{ cm}$, spout width of 8 cm and entrance height of 12.5 cm were used. The selected values of spout width and entrance height could steadily maintain the transport of examined materials in the dryer. A 24 kW electric heater connected to a PID controller with an accuracy of $\pm 1^{\circ}\text{C}$ was installed to heat the air up to the desired temperature. A 2.2 kW backward-curved blade centrifugal fan supplied the air and a variable speed unit controlled the air speed passing through the spouted bed. The entire drying system was insulated with the layers of glass wool to minimise heat loss of the system. The dryer front was made of heat-resistant glass to visualise the flow of solid particles.

Before starting the experiments, the system was heated until every part reached the desire temperature. To prevent the entrainment of particles, a deflector was fitted at a height of 142 cm from the dryer base. After the particles hit the deflector, they fell freely to downcomer region.

2.2. Experimental procedure

Paddy, soybean and corn obtained from local markets had the equivalent diameters of 3.7, 7.1 and 7.7 mm, respectively. The initial moisture content of these agricultural materials was in the range of 24–26% dry basis. At this moisture range, the materials did not agglomerate.

Grain samples of each of the above-mentioned crops were dried at temperatures of 130, 140 and 150 $^{\circ}\text{C}$, inlet air velocities of 40–70 m/s and a bed height of 65 cm. The air velocity was measured with a hot-wire anemometer, with an accuracy of $\pm 0.1 \text{ m/s}$. To measure the superficial air velocity at the downcomer, the equipment was inserted at above bed of particle. Temperature measurements were made with K-type thermocouple connected to a data logger, with an accuracy of $\pm 1^{\circ}\text{C}$. This thermal couple was inserted axially at 20, 40 and 60 cm from the base and at the bottom and top of spout region. The temperatures at the both sides of draft plate were recorded to calculate the heat conducted from the spout to downcomer region.

2.3. Heat-transfer calculation

Determination of heat transfer coefficient in the two-dimensional spouted bed with draft plates is divided into two regions: spout and downcomer. Their calculations are based on experimentally determined temperature

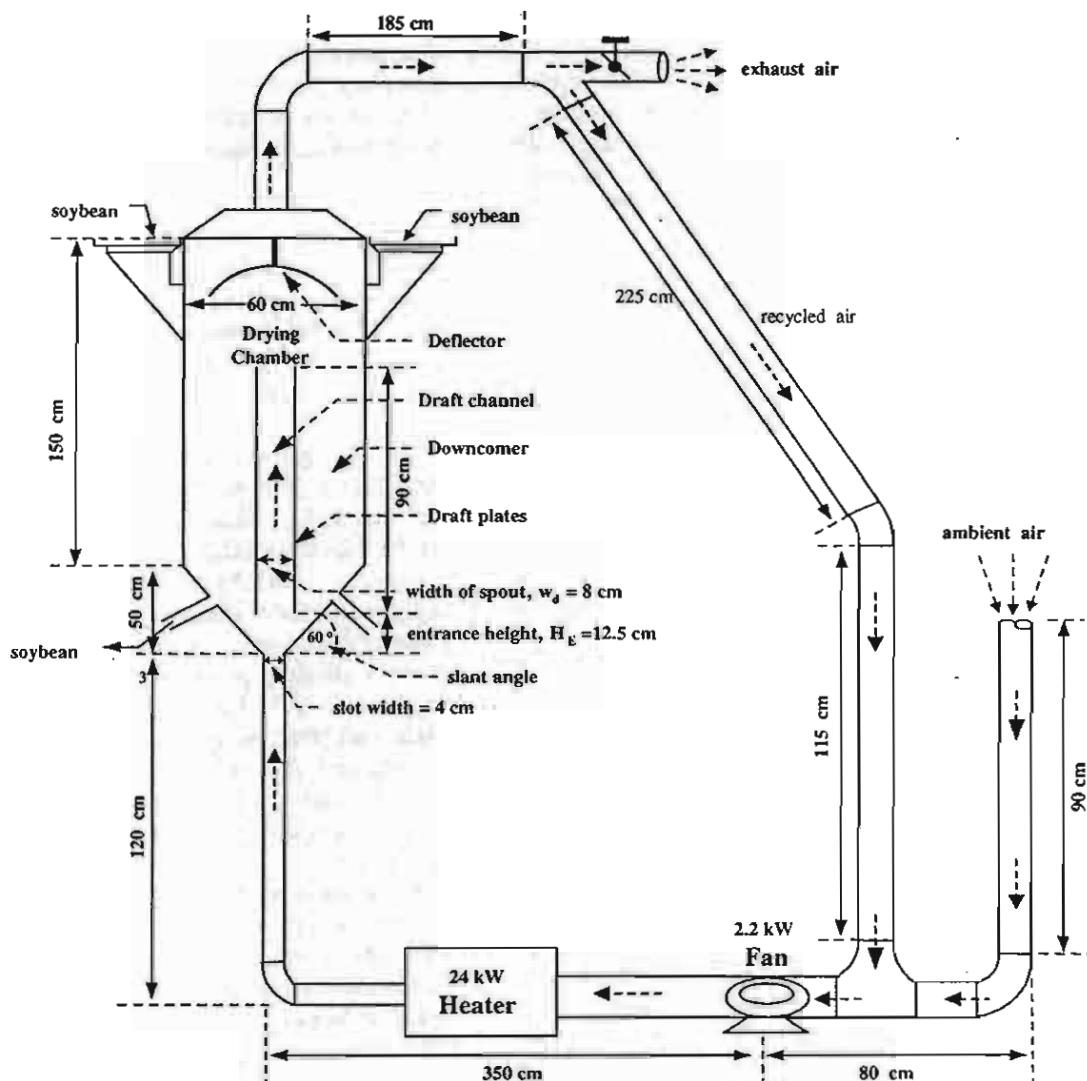


Fig. 1. Schematic diagram of a two-dimensional spouted bed.

for each region and the calculation method is described below.

Considering the transfer of heat in the spout region, the enthalpy change of drying medium is produced from the heat transferred to the solid particles, conducted through the flat plates and dissipated to the environment, yielding

$$q_s = \dot{m}_{gs}(c_g + w_{gs}c_w)(T_{in} - T_{out,s}) - q_{loss,s} - q_{conduct} \quad (1)$$

In writing Eq. (1), we assumed insignificant change of humidity ratio between inlet and outlet air for a small time interval. The heat transfer coefficient in the spout zone is determined by

$$h = \frac{q_s}{A_p \Delta T_{ln,s}} \quad (2)$$

with temperature difference between air and particles represented by logarithm mean

$$\Delta T_{ln,s} = \frac{(T_{in} - T_{1,ps}) - (T_{out,s} - T_{2,ps})}{\ln \frac{(T_{in} - T_{1,ps})}{(T_{out,s} - T_{2,ps})}} \quad (3)$$

The particle temperature at the spout inlet ($T_{1,ps}$) was measured at the bottom of downcomer zone, near the inclined plate before particles enter the spout region, and the particle temperature at the spout outlet ($T_{2,ps}$) was measured at the top of downcomer zone. The K-type thermocouples, connected to the data logger, were inserted at such both positions to record the temperatures. In this work, the total heat-transfer surface area is determined by the following equation:

$$A_s = \frac{6 V_s}{d_p} (1 - \varepsilon) \quad (4)$$

Paddy, corn and soybean, when loosely packed in the bed, have a porosity of 0.56, 0.41 and 0.36, respectively.

In the downcomer, the particles travelling from the top to the bottom took approximately 12–18 s, depending upon the inlet velocity and material characteristics. During their travelling, the particle temperature did not drop. Eq. (1) was applied again to determine the enthalpy change of air in the downcomer zone and it is written as

$$q_d = \dot{m}_{gd}(c_g + w_{gd}c_w)(T_{in} - T_{out,d}) - q_{loss,d} + q_{constant} \quad (5)$$

Replacing q_d from Eq. (5) into Eq. (2), the heat transfer coefficient will be obtained. Hence, the mean temperature difference is expressed as

$$\Delta T_{in,d} = \frac{(T_{in} - T_{pd}) - (T_{out,d} - T_{pd})}{\ln \frac{(T_{in} - T_{pd})}{(T_{out,d} - T_{pd})}} \quad (6)$$

The standard error in the measured values of heat transfer coefficient was in the ranges of 4–14% in the spout and of 2–11% in the downcomer.

3. Results and discussion

3.1. Effect of voids on superficial air velocity in the downcomer

Fig. 2 shows the superficial velocity in the downcomer against the inlet air velocity for three agricultural materials. The amount of air percolating through the downcomer linearly increases with increase of inlet air velocity. In addition, it depends upon the material type through which the air is passing. Thus, highest superficial air velocity occurs in the bed of paddy followed by corn and soybean. The proportion of the air in the downcomer was approximately 28% of total airflow for paddy and 21% for corn and soybean. The larger amount of air flowing through downcomer can be attributed to the larger proportion voids in the material,

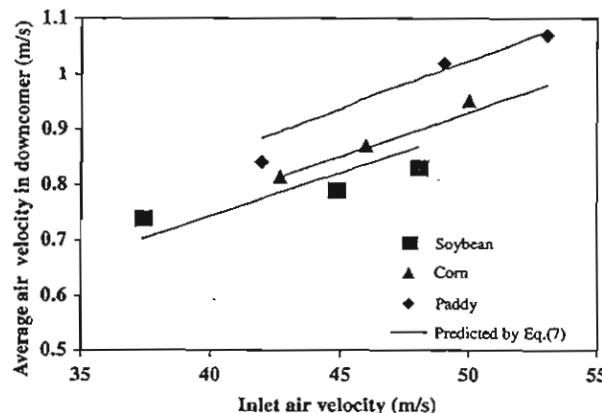


Fig. 2. Relationships between inlet superficial velocity and average velocity in downcomer for different agricultural materials.

thus reducing the resistance to airflow and the corresponding pressure drop. The relations between velocities at the downcomer and at the inlet as well as voids can be mathematically described by

$$\frac{U_d}{U_{in}} = 0.0435 \varepsilon_d^{0.3} \quad (7)$$

with R^2 of 0.93. Eq. (7) was statistically fitted with the data in the range of voids between 0.36 and 0.56 and inlet velocities between 37 and 52 m/s.

3.2. Heat transfer in spout region

Fig. 3 represents the effect of superficial velocity in the spout region on the heat transfer coefficient under different H_s/d_p ratios. The heat transfer coefficient is related to the superficial velocity in a way that the increase in superficial velocity accelerates the transfer rate of heat to the assembly of the solid particles. This effect was also apparent in some experiments reported by several authors (Freitas & Freire, 2001a; Taranto, Rocha, & Raghavan, 1997). However, the increase of heat transfer coefficient with the superficial velocity seems to be less pronounced for paddy than the other two materials, and a possible explanation can be attributed to the geometric ratio effect, which will be discussed in the following section.

In addition to the spout velocity, the geometric ratio takes the effect on the heat transfer coefficient of which the higher value is associated with the lower H_s/d_p ratio. At the inlet velocity of 22–24 m/s, the heat transfer coefficient increases from 100 to 123 W/m² K for corn and from 78 to 80 W/m² K for paddy. The higher heat transfer coefficient at the lower H_s/d_p ratio is due to the turbulence intensity which is related to the size of particle and the amount of particles in the bed or, in the other words, bed depth. The collision of larger particles, at a given bed depth, is stronger which makes a greater turbulence

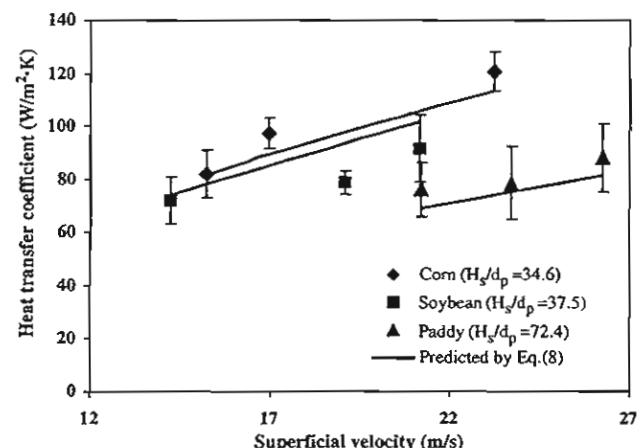


Fig. 3. Effects of superficial velocity in spout region and H_s/d_p ratio on heat transfer coefficient in spout region.

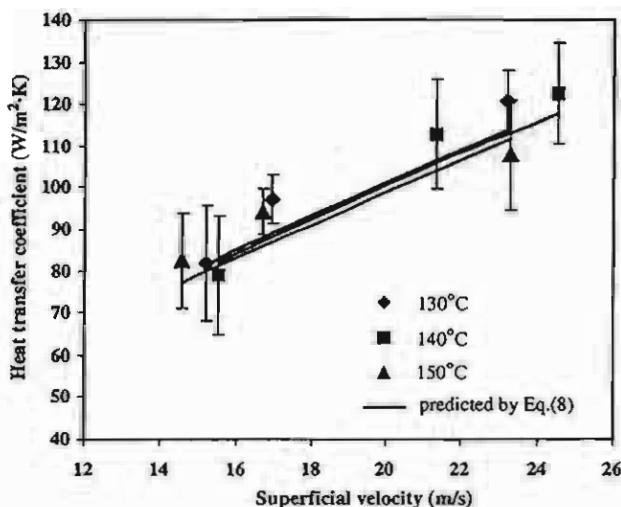


Fig. 4. Effect of inlet air temperature on heat transfer coefficient in spout region at $H/d_p = 34.6$.

of gas stream in the spout region and reduces the gas film-thermal resistance around the particle surface, thus enhancing the heat transfer coefficient by gas convection. As bed depth is increased, however, the intensity of their impaction diminishes and this results in lower heat transfer coefficient.

In Fig. 4, the heat transfer coefficients at various inlet air temperatures are plotted versus the superficial velocity. The heat transfer coefficients obtained from the experiments at the same superficial velocity are very likely to be identical over the temperature range of 130–150 °C, indicating less important contribution of temperature to the heat transfer coefficient. The dimensional analysis was used to correlate the heat transfer coefficient represented by Nusselt number, Nu , with Reynolds number, Re , and geometric factor, H/d_p . A power form of the function was assumed

$$Nu_s = A Re_{p,s}^B \left[\frac{H_s}{d_p} \right]^C \quad (8)$$

The values of the constant A and of the power exponents B and C were determined by the method of least square. These values are equal to $A = 0.4$, $B = 0.779$ and $C = -0.81$. The coefficient of determination, R^2 , for gas-to-particle heat transfer coefficients was 0.98. Eq. (8) was fitted with the experimental data in the ranges of $2600 < Re_{p,s} < 6800$ and $34.6 < H_s/d_p < 72.4$. The particle Reynolds number was calculated using the superficial velocity measured between the draft plates. The heat transfer coefficient over the range of the parameters studied varied from 57 to 123 W/m² K, which was relatively higher than that found in the two-dimensional spouted bed with draft plates, varying from 29 to 74.8 W/m² K (Kudra, Mujumdar, Raghavan, & Kalwar, 1990). The higher values in the present work are due to the different methods of determining

the value of heat transfer coefficient in which non-separation zone between spout and downcomer was considered in the study described by these authors whilst each zone was taken into account separately in the present study.

The result of fitting Eq. (8) with the experimental data indicates the Reynolds number exponent found to be 0.779 whilst the Reynolds number exponents in conventional spouted beds reported in literature are given in the typical range of 0.47–0.64 (Kmiec, 1975; Kucharski & Kmiec, 1983). This implies the transfer of heat in the spout region for the two-dimensional spouted bed to be governed by the relative combined effects of laminar and turbulent boundary layers. If the laminar boundary layer controls the heat transfer, the Reynolds number exponent is equal to 0.5, which is mostly found in the packed beds. With the prevalent contribution of turbulent boundary layer, the resulting Reynolds number exponent equals 0.82 at which it fulfills with the vertical pneumatic dryer (Bandrowski & Kaczmarzyk, 1978).

Comparison of the heat transfer coefficients from the present work to those from the various kinds of turbulent dryers i.e. cylindrical spouted bed with draft tube, vertical pneumatic dryer and fluidised bed was made. In calculating the heat transfer coefficients, the heat transfer equations developed by several researchers, except for the Shi-Jan-Fous' equation, required the volumetric concentration as input parameter, in addition to the Reynolds number. The volumetric concentrations for paddy, soybean and corn, defined as the ratio of circulation rate of particle to that of flowing air in the spout region, ranged from 0.08 to 0.11. The circulation rate of particles was determined by suddenly interrupting the steadily flowing particles and then mass of particles in the spout region was quantified. The results

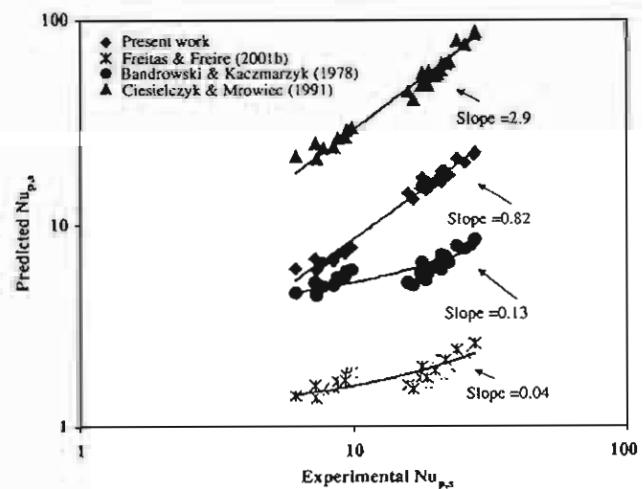


Fig. 5. Predicted and experimental Nusselt numbers in spout region in comparison with other works.

shown in Fig. 5 indicate that the discrepancy of predictions amongst the heat transfer coefficient expressions, when compared with the present results, is considerable in which Shi-Jan-Fous' expression for the fluidised bed, reviewed by Ciesielszyk and Mrowiec (1991), predicts an overestimate as indicated by the slope of 2.9 whereas the prediction by Freitas and Freire (2001b, 'correlation') for the draft-tube spouted bed is an underestimate as pointed out by the slope of 0.04. However, a good agreement is obvious with Bandrowski and Kaczmarzyk (1978, 'correlation'), in particular for the low range of Nusselt number that corresponds to the smallest particle size in this study.

3.3. Heat transfer in downcomer

In downcomer, the particles at the bottom before entering the spout regime are in contact with the hottest air stream and on the top are in contact with the colder air stream. The temperatures at the inlet and outlet downcomer zones were measured, for both particles and air streams, in order to calculate the heat transfer coefficient. The effects of superficial velocity and H_d/d_p ratio on heat transfer coefficient for the three types of grain are shown in Fig. 6. The heat transfer coefficient tends to be increased with increasing superficial velocities and with decreasing H_d/d_p ratio, as was found in the spout region, but the increase is weak, in view of the standard errors (2–11%) in the heat transfer coefficient. The scatter of the data could be probably due to the unsmooth flow of the solids, which sometimes occurred during the operation. This problem leads to the error in measurement of porosity.

Fig. 7 shows the effect of inlet air temperature on the heat transfer coefficient, indicating that the temperature

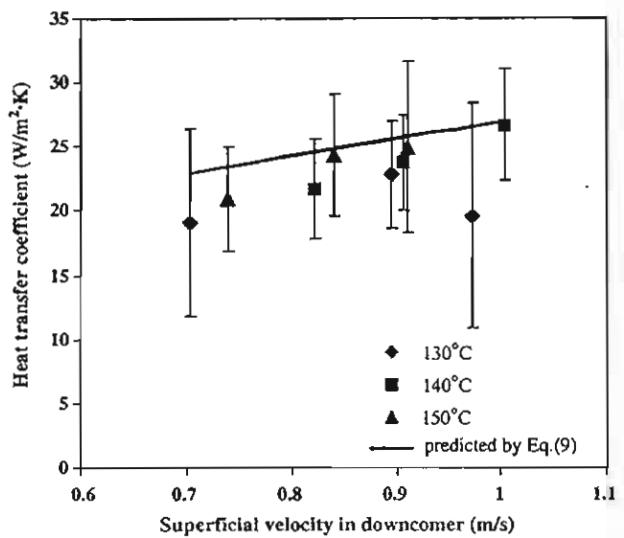


Fig. 7. Effect of inlet air temperature on heat transfer coefficient in downcomer region.

is not an important factor to improve the heat transfer coefficient between the air stream and the solid particle. The heat transfer coefficient in the downcomer is empirically correlated with the relevant parameters using the same equation as Eq. (8). Thus,

$$Nu_d = 42.07 Re_{p,d}^{0.454} \left(\frac{H_d}{d_p} \right)^{-1.006} \quad R^2 = 0.91 \quad (9)$$

The range of applicability is: $150 < Re_{p,d} < 380$; $84 < H_d/d_p < 178$. Under the examined range, the heat transfer coefficient is in between 19 and 32 $\text{W/m}^2 \text{K}$.

Fig. 8 shows the validity of equation proposed and predicted from the correlations of the heat transfer coefficients in the annulus for the classical spouted bed and in the fixed bed. The Nusselt numbers prediction by the equations from published data are prominently above

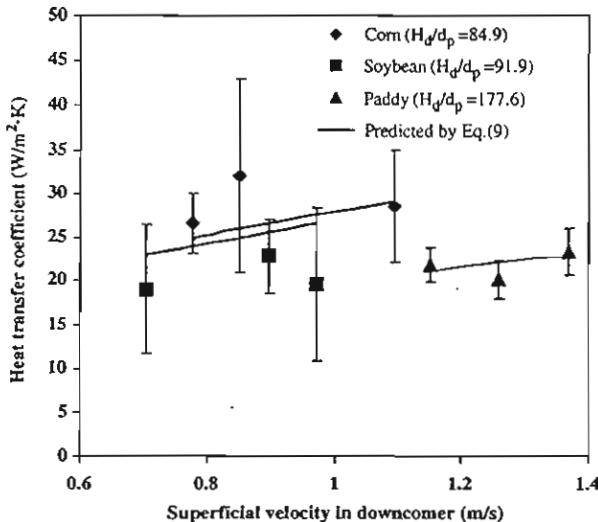


Fig. 6. Effects of superficial velocity in downcomer and H_d/d_p ratio on heat transfer coefficient in downcomer region.

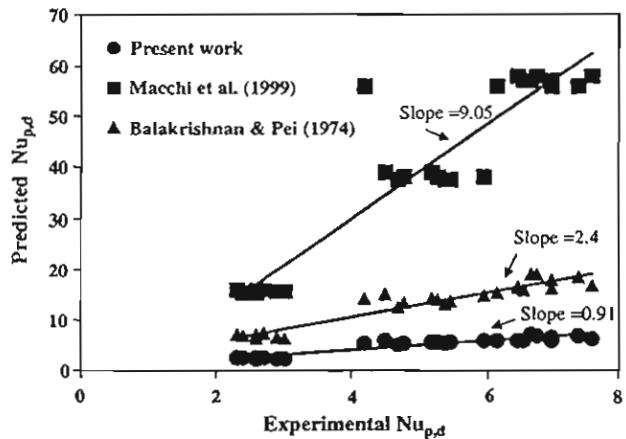


Fig. 8. Predicted and experimental Nusselt numbers in downcomer region in comparison with other works.

the experimental values in this work, as indicated by the slopes of straight line equal to 9.05 for Macchi, Bi, Legros, and Chaouki (1999) and 2.4 for Balakrishnan and Pei (1974). However, the predictable capability by the proposed equation shows a relatively good tendency, with the slope being 0.91. This difference indicates that the use of correlations from other equipment types may not reasonably be applied to predict the heat transfer coefficient in the two-dimensional spouted bed with draft plates.

4. Conclusion

During operation, the air flowing through the two-dimensional spouted bed with draft plates is divided into two directions where the main air stream flows through the draft channel and the minor one flows through the downcomer. The amount of air separated from the main stream is related with the operating parameter in a way that higher airflow rate and bed porosity encourage the larger quantity of air in the downcomer. Such airflow characteristics result in an increase of the heat transfer to the particles in the spout region in comparison with the downcomer, with the heat transfer coefficient being in between 57 and 123 W/m² K for the spout region and between 19 and 32 W/m² K for the downcomer. The influence of superficial velocity on the heat transfer coefficient is very important for the spout whereas it has a slight effect for the downcomer. The increase of H/d_p ratio with the decrease of heat transfer coefficient is evident whilst the change of inlet air temperature remains constant for both regions. Two equations have been developed by correlating the heat transfer coefficients of each region with the associated parameters. A comparison of heat transfer coefficient in the developed model with the earlier works has shown that the equations of heat transfer coefficient, which have been developed from other equipment types, may not reasonably describe the experimental results for the two-dimensional spouted bed with draft plates.

Acknowledgement

The authors would like to thank the Thailand Research Fund for supporting this work.

References

- Balakrishnan, A. R., & Pei, D. C. T. (1974). Heat transfer in fixed beds. *Industrial and Engineering Chemistry Process Design and Development*, 13, 441–446.
- Bandrowski, J., & Kaczmarzyk, G. (1978). Gas to particle heat transfer in vertical pneumatic conveying of granular materials. *Chemical Engineering Science*, 33, 1303–1310.
- Ciesielszyk, W., & Mrowiec, M. (1991). The method of decreasing the number of experiments needed to design a fluidised bed drying. *Inżynieria Chemiczna i Procesowa (in Polish)*, 4, 551–567.
- Eng, J. H., Svrcok, W. H., & Behie, L. A. (1989). Dynamic modelling of a spouted bed reactor with a draft plate. *Industrial and Engineering Chemistry Research*, 28, 1778–1785.
- Epstein, N., & Grace, J. R. (1997). Spout of particulate solids. In L. Otten (Ed.), *Handbook of Powder Science and Technology* (2nd ed., pp. 532–567). New York, NY: Chapman & Hall.
- Fane, A. G., Wong, C. W. P., & Firek, A. E. (1985). Spout with a solids-laden gas stream. In *Chemica' 85* (pp. 465–469). Perth, Australia.
- Freitas, L. A. P., & Freire, J. T. (2001a). Heat transfer in a draft tube spouted bed with bottom solids feed. *Powder Technology*, 114, 152–162.
- Freitas, L. A. P., & Freire, J. T. (2001b). Gas to particle heat transfer in the draft tube of a spouted bed. *Drying Technology*, 19, 1065–1082.
- Hung-Nguyen, L., Driscoll, R. H., & Srzednicki, G. (2001). Drying of high moisture content paddy in a pilot scale triangular spouted bed dryer. *Drying Technology*, 19, 375–387.
- Kalwar, M. I., Raghavan, G. S. V., & Mujumdar, A. S. (1992). Spout of two-dimensional spouted beds with draft plates. *The Canadian Journal of Chemical Engineering*, 70, 887–894.
- Kmiec, A. (1975). Simultaneous heat and mass transfer in spouted beds. *The Canadian Journal of Chemical Engineering*, 53, 18–24.
- Kucharski, J., & Kmiec, A. (1983). Hydrodynamics, heat and mass transfer during coating of tablets in spouted bed. *The Canadian Journal of Chemical Engineering*, 435–439.
- Kudra, T., Mujumdar, A. S., Raghavan, G. S. V., & Kalwar, M. I. (1990). Two-dimensional spouted beds for thermal processing of particulates. *Powder Handling and Processing*, 2, 347–353.
- Macchi, A., Bi, H. T., Legros, R., & Chaouki, J. (1999). An investigation of heat transfer from a vertical tube in a spouted bed. *The Canadian Journal of Chemical Engineering*, 77, 45–53.
- Madhiyanon, T., Sopontonnarit, S., & Tia, W. (2001). Industrial-scale prototype of continuous spouted bed paddy dryer. *Drying Technology*, 19, 207–216.
- Mathur, K. B., & Epstein, N. (1974). *Spouted beds*. New York: Academic Press, 304 pp.
- Passos, M. L., Mujumdar, A. S., & Raghavan, G. S. V. (1987). Spouted beds for drying: principles and design considerations. *Advances in Drying*, 4, 359–397.
- Taranto, O. P., Rocha, S. C. S., & Raghavan, G. S. V. (1997). Convective heat transfer during coating of particles in two-dimensional spouted beds. *Drying Technology*, 15, 1909–1918.
- Zahed, A. H., & Elsayed, M. M. (1993). Performance of single and multi-stage spouted bed drying systems. *Drying Technology*, 11, 1783–1808.

Paddy Drying Using Adsorption Technique: Experiments and Simulation

Kittisak Witinantakit,¹ Somkiat Prachayawarakorn,² Adisak Nathakaranakule,¹ and Somchart Soponronnarit¹

¹*School of Energy and Materials, King Mongkut's University of Technology Thonburi, Bangkok, Thailand*

²*Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand*

Quality of agricultural product can be degraded easily by heat. Heatless drying using an adsorption method may be a possible alternative to grain drying. The experiments of paddy drying using rice husk adsorbent were performed with single and multi-stages. In single stage, where high-moisture paddy were intimately mixed with rice husk in closed containers, high water concentration in the air within the container limits the moisture transfer rate and the resulting moisture content of the sample could not be decreased to the safe level for storage in spite of using low initial moisture content of the adsorbent or increasing the volumetric mixing ratio. However, the moisture content of paddy was reduced to the desire level as the multi-stage, where the adsorbent was physically separated in each stage and then replaced with the new one. The mathematical description of desorption-adsorption processes for a single kernel associated with the mass balance equation on the humidity ratio of the air surrounding the particles was formulated. The predictions of relative humidity and moisture contents of paddy and rice husk were shown to be in agreement with the experiments. The quality parameters, i.e., head-rice yield and rice whiteness obtained from multi-stage drying, were similar to those obtained by shade drying.

Keywords Dehydration; Desiccant; Quality; Rice husk

INTRODUCTION

Hot air drying, commonly used to dry agricultural materials before storage, may cause deterioration of quality for the heat-sensitive products; for example, paddy, corn, and soybean. This work is concentrating on paddy. The drying air at a high temperature can accelerate the rate of moisture evaporation, which induces stresses and consequently creates fissures inside the kernel, thus resulting in decreased head-rice yield after milling.^[1–3] To minimize the loss in head-rice yield, tempering of paddy between each drying stage is used practically.^[4,5] Tirawanichakul^[6] investigated

the pasting properties of rice dried at different temperatures by including the tempering stage in the process and found that the pasting properties of dried rice, i.e., peak, final, and setback viscosities, were changed from those of the gently dried one, whereas the head-rice yield could be maintained or improved. The change in the pasting viscosities reflects the starch degradation, and this may have an effect on cooking qualities, such as tenderness and cohesiveness.

In addition to hot air drying, drying using an adsorption technique by which adsorbent is intimately mixed with moist paddy is an alternative approach in reducing moisture content of the paddy to a certain level. In this process, moisture is removed from the grain by pressure differences between the water vapor at the grain surface and the water vapor in the surrounding. This method does not require heat for removing the moisture and the resulting grain quality may not be degraded.

There are various types of adsorbent materials, i.e., silica gel,^[7,8] bentonite,^[9,10] molecular sieve,^[11] and ash,^[12] all used to dry agricultural products. Since this method provides a very slow rate of drying, the acceleration of drying is very important. Mass ratio between desiccants and agro-products and the initial moisture content of the adsorbents and adsorbates^[7–11] are found to be affected on the final moisture content of products. The optimum value of mass ratio varies from material to material. Moreover, the particle size and temperature of adsorbent also have influence on the moisture removal.^[11]

Generally, the limitation of using adsorbent in adsorption process is the high cost of the adsorbent when compared to the adsorbate. In this work, rice husk is therefore used as an adsorption medium to remove moisture from paddy because of its low cost. In addition, rice husk is a waste material that is available in plenty in the rice mills. The difference between densities of rice husk and paddy enables them to easily separate from each other. The objective of this research is to study the effects of mixing ratio between rice husk and

Correspondence: Kittisak Witinantakit, School of Energy and Materials, King Mongkut's University of Technology Thonburi, 91 Pracha U-tid Road, Bangkok 10140, Thailand; E-mail: k_yong28@hotmail.com

paddy and initial moisture content of rice husk on moisture changes in paddy and to examine qualities of dried paddy in terms of head-rice yield and whiteness. In addition, a mathematical model of paddy drying using rice husk as an adsorbent medium is developed. The predicted results of moisture content and relative humidity of air within airtight closed vessels were compared to the experimental results.

MATHEMATICAL MODEL

The moisture exchange between product and adsorbent in the intimate mixture is first mathematically described by purely or semi-empirical equations, both in the form of exponential function of which the constant parameters depend on system parameters.^[10,13] The applicability of these results is, however, particularly limited in the range of experimental conditions studied. This drawback can be avoided when the equation developed from a theoretical point of view is employed. Graham and Bilanski^[14] described moisture concentration in grain using the Fick's equation, with convective boundary condition as primarily required for solving the equation. In their model, only a partition parameter, a parameter linking between the equilibrium concentrations in the grain and adsorbent, is determined experimentally.

In this work, the developed mathematical model does not require any parameters from drying experiments with adsorbent material. The changes of moisture in paddy and rice husk are governed by the water content of the existing air within the bin and the Fick's equation is applied to predict their changes. Moreover, the humidity of air within the bulk also varies during mixing, and its change is taken into account on the developed model.

Desorption-adsorption processes between paddy and rice husk simultaneously occurs under isothermal condition in this study. Paddy is well mixed with rice husk. During their mixing, moisture at grain surface evaporates into surrounding air because water vapor pressure at the grain surface is higher than that of surrounding air. Rice husk, concomitantly, adsorbs moisture from surrounding air, with a lower rate than the desorption rate of paddy. To describe their phenomena, mathematical models of moisture desorption for paddy and moisture adsorption for rice husk are therefore separately considered and are described below.

Paddy

With the assumption of a spherical shape for paddy, the movement of moisture in the kernel is mathematically described by Fick's equation:

$$\frac{\partial M_p}{\partial t} = D_p \left[\frac{\partial^2 M_p}{\partial r^2} + \frac{2}{r} \frac{\partial M_p}{\partial r} \right] \quad (1)$$

where D_p is the moisture diffusion coefficient (m^2/s), M_p is

the moisture content (decimal dry basis), r is the equivalent radius (m), and t is the mixing time (s).

Initially, the moisture content of paddy is assumed to be spatial uniform. When the paddy is mixed with rice husk, moisture around the grain surface evaporates into the surrounding air due to the vapor pressure difference and the moisture profile is assumed to be symmetrical at the center of the particle. Hence, the initial and the boundary conditions are as follows:

$$M_p = M_{p,i} \quad t = 0, \quad 0 \leq r \leq a \quad (2)$$

$$-D_p \frac{\partial M_p}{\partial r} \Big|_{r=a} = h_{m,p} (M_{p,s} - M_{p,e}) \quad t > 0 \quad (3)$$

$$\frac{\partial M_p}{\partial r} = 0 \quad t > 0, \quad r = 0 \quad (4)$$

where $h_{m,p}$ is the convective mass transfer coefficient between paddy and surrounding air (m/s), $M_{p,e}$, $M_{p,i}$, and $M_{p,s}$ are the equilibrium moisture content, initial moisture content, and moisture content at the grain surface of paddy (decimal dry basis), respectively; and a is the equivalent radius of sphere (m).

With the above-mentioned boundary conditions, Eq. (1) can be solved by analytical technique. Experimentally, however, relative humidity of the air within the paddy-rice husk mixture changed with the elapsed time, which subsequently affects on the drying rate. A finite difference method (explicit method) is therefore used in this study. A sphere is divided into N intervals, the distance between each node is given at $\Delta r = 3.57 \times 10^{-5} \text{ m}$, and the time step is $\Delta t = 1 \text{ s}$. A finite approximation of Eq. (1) can be expressed by

$$M_{p,i}^{t+1} + M_{p,i}^t (2\alpha_p - 1) - M_{p,i+1}^t (\alpha_p + \beta_p) + M_{p,i-1}^t (\beta_p - \alpha_p) = 0 \quad (5)$$

where

$$\alpha_p = \frac{D_p \Delta t}{\Delta r^2} \quad (6)$$

$$\beta_p = \frac{D_p \Delta t}{i \Delta r^2} \quad (7)$$

Subscripts i and superscripts t refer, respectively, to the spatial nodal grid index and the nodal temporal grid index. Equation (5) is used to calculate the internal node concentrations starting from $i = 1$ until $N - 1$. The boundary conditions given by Eqs. (3) and (4) can be written in the finite different forms as:

for $i = N$ at the grain surface

$$M_{p,N}^{t+1} (\gamma_p + 1) - M_{p,N-1}^{t+1} - \gamma_p M_{p,e}^{t+1} = 0 \quad (8)$$

for $i = 0$ at sphere center

$$M_{p,0}^{t+1} + M_{p,0}^t (6\alpha_p - 1) - 6\alpha_p M_{p,1}^t = 0 \quad (9)$$

where

$$\gamma_p = \frac{h_{p,m} \Delta t}{D_p} \quad (10)$$

In this study, the grain has an equivalent radius of 0.00175 m and the moisture diffusion coefficient of paddy was obtained from Tirawanichakul^[6]

$$D_p = 4.33 \times 10^{-5} \exp\left(\frac{-37099}{RT}\right) \quad (11)$$

The moisture equilibrium for paddy was obtained from Laithong^[15]

$$RH = \exp\left[-21803 \exp\left(\frac{-18.7M_{p,e}}{(RT)}\right)\right] \quad (12)$$

where R is the universal gas constant (kJ/kmol·K), RH is the relative humidity of air (in decimal), and T is the air temperature (K).

The convective mass transfer coefficients between the paddy and the surrounding can be calculated by the following relationship:^[16]

$$\frac{\bar{h}_p}{h_{m,p}} = \rho C_p L e^{2/3} \quad (13)$$

where \bar{h}_p is the convection heat transfer coefficient of paddy (W/m²·K), ρ is the density of air (kg/m³), C_p is the specific heat capacity of air (kJ/kg·K), and L is the Lewis number (dimensionless). The Nusselt number of paddy can be calculated by Eq. (14).^[16] By assuming that there is no temperature difference between air and paddy, the Rayleigh number in Eq. (15) is thus reduced to zero and the Nusselt number is equal to 2. When Nu is known, convective mass transfer coefficient in Eq. (13) can readily be calculated.

$$\overline{Nu}_p = 2 + \frac{0.589 Ra_p^{1/4}}{\left[1 + (0.469/Pr)^{9/16}\right]^{4/9}}, \quad (Pr \geq 0.7 \text{ and } Ra \leq 10^{11}) \quad (14)$$

$$Ra_p = \frac{g\beta(T_p - T)d_p^3}{\alpha\nu} \quad (15)$$

where k is the thermal conductivity (W/m·K), \overline{Nu}_p is the Nusselt number of paddy (dimensionless), d_p is the diameter of paddy (m), Ra_p is the Rayleigh number of paddy (dimensionless), Pr is the Prandtl number (dimensionless), T_p is the grain temperature (K), g is the gravitational acceleration (m/s²), β is the volumetric thermal expansion coefficient (1/K), α is the thermal diffusivity of air (m²/s), and ν is the kinematic viscosity of air (m²/s).

Rice Husk

A rice husk was considered as an infinite plate with a constant effective diffusion coefficient. The movement of moisture can therefore be explained by the following equation:

$$\frac{\partial M_h}{\partial t} = D_h \left[\frac{\partial^2 M_h}{\partial x^2} \right] \quad (16)$$

where D_h is the moisture diffusion coefficient of rice husk (m²/s), M_h is the rice husk moisture content (decimal dry basis), and x is the thickness of rice husk (m).

The initial and the boundary conditions were as follows:

$$M_h = M_{h,i} \quad t = 0, 0 \leq x \leq \pm L \quad (17)$$

$$\frac{\partial M_h}{\partial x} = 0 \quad t > 0, x = 0 \quad (18)$$

The air water vapor adsorbed by rice husk can be expressed by

$$D_h \frac{\partial M_h}{\partial x} \Big|_{x=\pm L} = h_{m,h} (M_{h,e} - M_{h,s}) \quad t > 0 \quad (19)$$

where $h_{m,h}$ is the convective mass transfer coefficient between rice husk and surrounding (m/s) and $M_{h,e}$, $M_{h,i}$, and $M_{h,s}$ are the equilibrium moisture content, initial moisture content, and moisture content at rice husk surface (decimal dry basis), respectively.

Similar to the method used in calculating the moisture of paddy, the explicit method is applied again and it can be expressed by

for $i = 1$ to $N - 1$ at internal node concentrations of infinite plate

$$M_{h,i}^{t+1} + M_{h,i}^t (2\alpha_h - 1) - \alpha_h (M_{h,i+1}^t + M_{h,i-1}^t) = 0 \quad (20)$$

where

$$\alpha_h = \frac{D_h \Delta t}{\Delta x^2} \quad (21)$$

for $i = 0$ at middle thickness of rice husk

$$M_{h,0}^{t+1} + M_{h,0}^t (2\alpha_h - 1) - 2\alpha_h M_{h,1}^t = 0 \quad (22)$$

for $i = N$ at the surface of rice husk

$$M_{h,N}^{t+1} (\gamma_h + 1) - M_{h,N-1}^{t+1} - \gamma_h M_{h,e}^{t+1} = 0 \quad (23)$$

where

$$\gamma_h = \frac{h_{m,h} \Delta x}{D_h} \quad (24)$$

In this study, the thickness and the length of rice husk are 0.2 and 5 mm, respectively, and the moisture diffusion

coefficient of rice husk as a function of air temperature was given by Steffe and Singh^[17] as follows:

$$D_h = 0.1344 \exp\left(\frac{-7.38 \times 10^3}{T}\right) \quad (25)$$

The moisture equilibrium for rice husk can be written as the following equation:

$$RH = \exp[-5.24 \exp(-25.25M_{p,e})] \quad (26)$$

Equation (26) was experimentally obtained in the range of 11 to 97% relative humidity at 40°C, using the salt solution.

Nusselt number of the rice husk was obtained from Churchill and Chu^[18]

$$\overline{Nu}_h = \left(0.825 + \frac{0.387 Ra_h^{1/6}}{\left[1 + (0.492/\Pr)^{9/16} \right]^{8/27}} \right)^2 \quad (27)$$

where \overline{Nu}_h is the Nusselt number of rice husk (dimensionless), and Ra_h is the Rayleigh number of rice husk (dimensionless). In this study, the experiments were carried out under isothermal condition, thus yielding $Ra = 0$. Hence, Nu of the rice husk is equal to 0.825.

After knowing the moisture profile inside paddy or rice husk, the average moisture content can then be calculated by the following equation:

$$M_{ave} = \frac{1}{V} \int_0^R M(r, t) dV \quad (28)$$

where V is the volume of particle (m^3).

Mass Balance Equation

While paddy and rice husk were being mixed within a closed bin, rice husk adsorbed water vapor, with a relatively lower rate than the rate of water evaporation from paddy, and this enables the increase in the concentration of water vapor in the existing air within the bin or, in other words, the increase in the relative humidity. The change of water concentration can be calculated by making the mass balance of moisture and humidity ratio of air within the bin for a small time interval:

$$m_p(M_{p,ave}^t - M_{p,ave}^{t+1}) = m_h(M_{h,ave}^{t+1} - M_{h,ave}^t) + m_a(W_a^{t+1} - W_a^t) \quad (29)$$

where m_a , m_p , and m_h are, respectively, the dry mass of air, paddy, and rice husk (kg); $M_{p,ave}$ and $M_{h,ave}$ are, respectively, the average moisture contents of paddy and rice

husk (decimal dry basis), and W is the humidity ratio (kg water/kg dry air). The humidity ratio and relative humidity are correlated with vapor pressure by the following equations:

$$W_a = \frac{0.622 P_v}{(P - P_v)} \quad (30)$$

$$RH = \frac{P_v}{P_{sat}} \quad (31)$$

where P , P_v , and P_{sat} are, respectively, the pressure of air, vapor, and saturated vapor (kPa).

Calculation Method

The calculation procedure for grain drying using an adsorption technique is shown in Fig. 1. The relative humidity of air at a time $t + \Delta t$ was assumed and the equilibrium moisture contents of paddy and rice husk were then calculated using Eqs. (12) and (26), followed by determining the moisture content at positions inside the paddy and rice husk. After obtaining their average moisture contents, the relative humidity was calculated by Eqs. (30) and (31) and compared with the assumed value. If the difference between assumed and calculated values of relative humidity is higher than 0.005, the calculation was repeated again by assuming the new relative humidity, correlated to the old value plus δ with the value being 0.00001 in this study. Choosing δ is important to solution. If the chosen δ is larger than 0.00001, the solution will be diverged. Iteration method leads to the final values for $M_{p,ave}$, $M_{h,ave}$, and RH .

MATERIALS AND METHODS

Materials

The long grain paddy (Suphanburi 1 *indica* variety) was rewetted to a calculated moisture content of 32–34% d.b. and kept in a cool storage at a temperature range of 4–6°C for a week. For the rice husk, three initial moisture contents, 10.5, 4.5, and 0.9% d.b. were prepared, the highest value being the equilibrium moisture content at ambient temperature. To obtain the desired moisture content of rice husk lower than equilibrium value, the rice husk at 10.5% d.b. was dried overnight using hot air oven at temperatures of 45 and 90°C, which then obtained the moisture content of 4.5 and 0.9% d.b., respectively.

Methods

Before conducting the experiments, the cooled paddy was placed in an ambient environment and hot rice husk was packed in a plastic bag and left in a desiccator until their temperatures were close to the ambient air

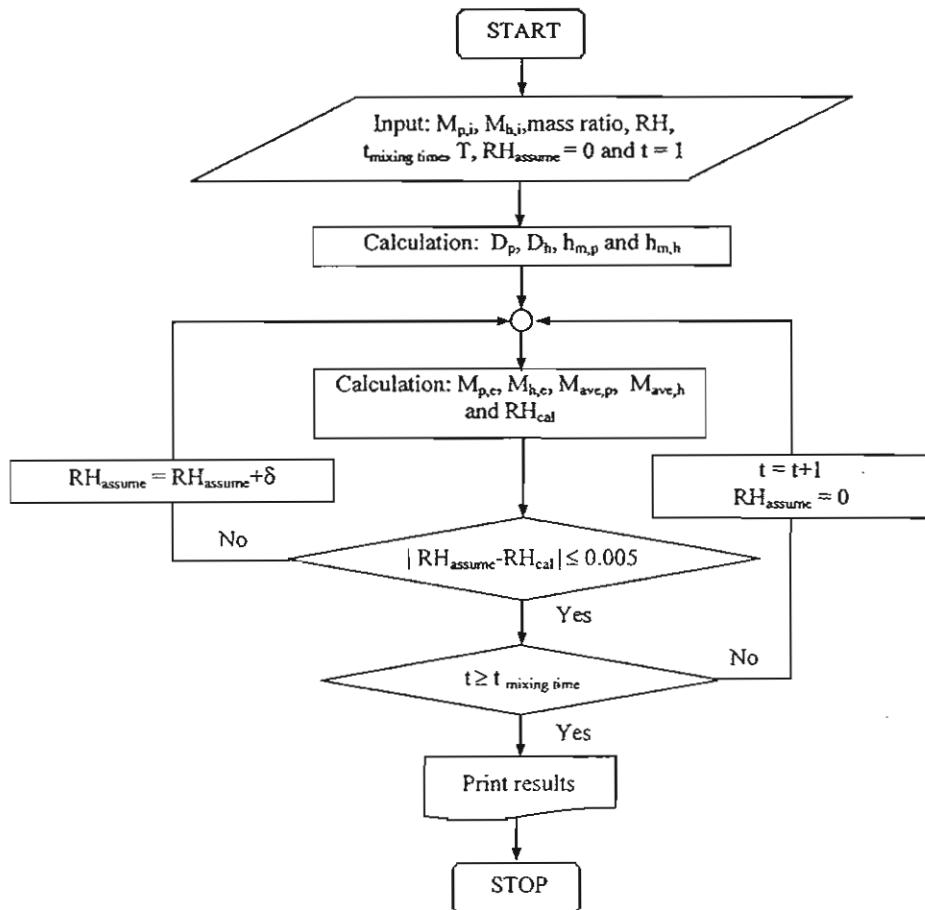


FIG. 1. Block diagram for M and RH calculation.

temperature. Paddy was then mixed with rice husk at the following conditions: the volumetric mixing ratios between rice husk and paddy of 1.0:1, 1.5:1, and 2.0:1 (corresponding to mass ratios of 0.17:1, 0.26:1, and 0.34:1). An intimate mixture of wet paddy and rice husk was packed and sealed in a closed insulated plastic vessel with an inner diameter of 18 cm and an inner height of 22 cm. Temperatures of the mixture were measured by a K-type thermocouple connected to a Yokokawa data logger with an accuracy of $\pm 1^\circ\text{C}$. Relative humidity of the air in the airtight plastic vessels was measured by a thermo/hygrometer (Sato SK-110TRH) with an accuracy of $\pm 4\%$ RH. In this work, the experiments were performed in single and multi-stages. In single-stage drying, each mixing vessel was opened at drying times of 1, 3, 5, and 7 h and the mixture was separated by an electric fan.

For multi-pass drying, paddy was separated from the rice husk using an electrical fan and then mixed again with the new rice husk every 2 h. The moisture contents of paddy and rice husk were determined by the hot air oven at 103°C for 72 h, according to AOAC.^[19] The final moisture

content of paddy that was higher than 16.5% d.b. was then dried by ambient air ventilation. Qualities of paddy in terms of head-rice yield and whiteness were determined and compared to the reference samples, which were gently dried by shade drying. The head-rice yield was defined as the ratio of mass of head-rice obtained from milling to mass of paddy before milling. The whiteness value of rice kernel was determined by using a whiteness tester, model Kett C-300-3.

RESULTS AND DISCUSSION

Comparisons between Experiments and Calculations

After the rice husk at the initial moisture contents of 10.5% and 0.9% d.b. was mixed with the high-moisture paddy, the changes of relative humidity and moisture contents of paddy and rice husk were found. Their changes are shown in Fig. 2a for 10.5% d.b. rice husk and Fig. 2b for 0.9% d.b. In Fig. 2a, the temperature and relative humidity

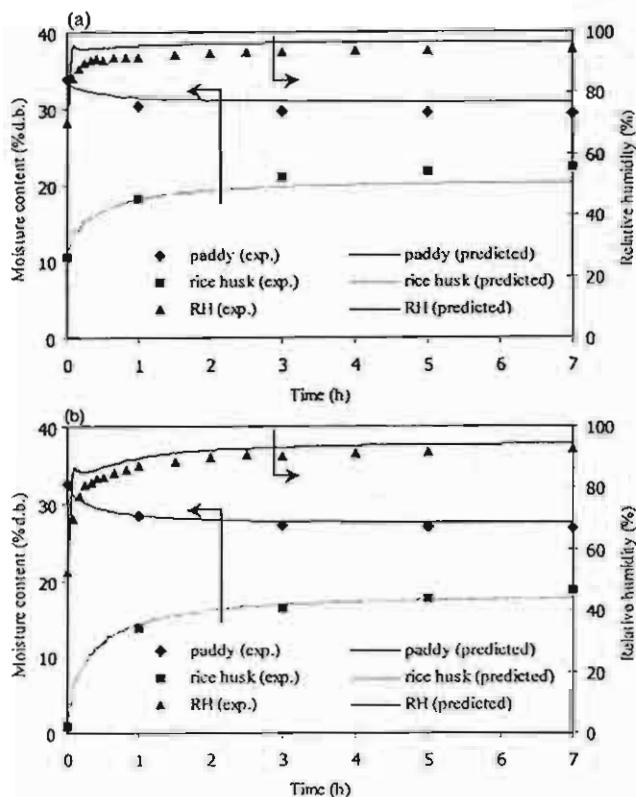


FIG. 2. Comparisons between experimental data and calculations at a volumetric ratio of rice husk to paddy of 1.5:1. (a) Rice husk with initial moisture content of 10.5% d.b.; (b) rice husk with initial moisture content of 0.9% d.b.

of the existing air within the bin at the beginning were 29°C and 70%, respectively. The loss of moisture content of paddy was very rapid in the first 2 h of mixing. This responded to a rapid increase in moisture content of rice husk, from 10.5 to 18.1% d.b., but the increased quantity of moisture of rice husk was not the same amount as the moisture evaporating from the paddy kernel, as directly indicated by the relative humidity, which shows the increasing trend. Beyond 3 h, there are no further changes in moisture contents of paddy and rice husk because the water vapor pressure at the paddy surface and rice husk surface tends toward equilibrium with the partial water vapor pressure in the surrounding air. At the end, the final moisture contents of paddy and rice husk were, respectively, 29.3 and 23.2% d.b., and the relative humidity of air was 96.1%. In addition, the temperature within the bin was increased by 2–3°C after the elapsed time of 7 h, due to the respiration effect.^[20] The similar patterns of their changes, i.e., drying characteristic curves and relative humidity were also found with the 0.9% d.b. initial moisture content of rice husk.

These results clearly indicate the diffusional transfer of moisture from paddy to rice husk to be limited by the water

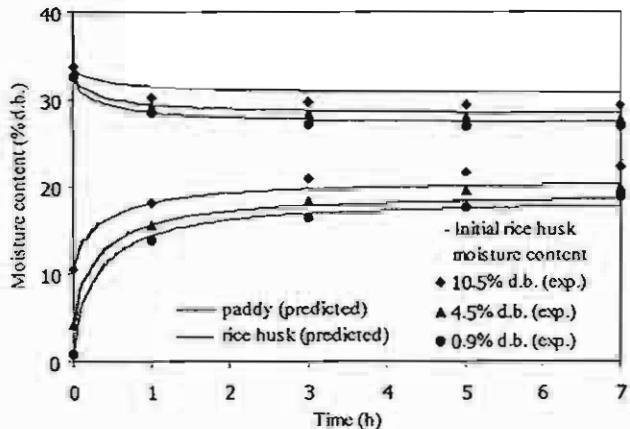


FIG. 3. Effect of initial moisture content of rice husk on drying rate of paddy at a volumetric ratio of rice husk to paddy of 1.5:1.

content in the air, where it has a low water content at the early period, speeding up the desorption-adsorption processes, and has a high water content at the later period, slowing down the processes. This evidence was taken into account in the before-mentioned mathematical model, and the predictions, shown by the solid lines in Fig. 2, reasonably agree with the experiments. The comparisons are also made with the other cases, as will be shown in Figs. 3 and 4.

Effect of Initial Moisture Content of Rice Husk on Moisture Change of Paddy

Since the moisture removal rate from paddy using an adsorption technique is controlled by the resistance in the gas phase, it is important to know how this resistance affects the drying rate when the different initial moisture contents of rice husk are employed. Figure 3 shows the effect of the initial moisture content of rice husk on removal rate of moisture from paddy, indicating that using lower

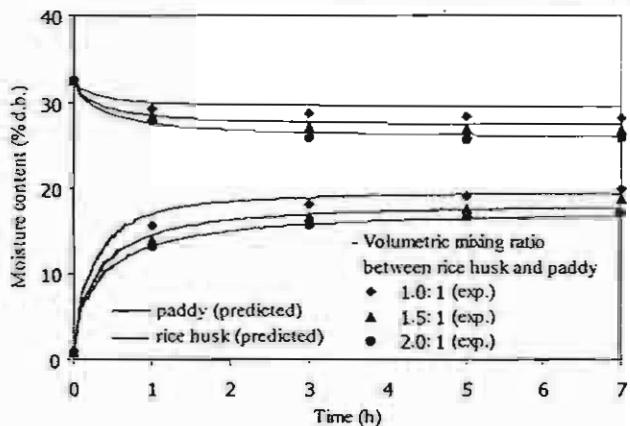


FIG. 4. Moisture changes of paddy and rice husk at various volumetric ratios of rice husk to paddy.

moisture content of adsorbent led to the faster rate of moisture removal from the grain than using higher moisture content of adsorbent. From these drying curves, it can be noticed that less drying potential is evident after 2 h whether the low or high initial moisture content of the adsorbent is applied for drying paddy. The final moisture contents of paddy were 29.3, 27.6, and 26.8% d.b. for the respective rice husk moisture contents of 10.5, 4.5, and 0.9% d.b.

Effect of Volumetric Mixing Ratio between Rice Husk and Paddy on Moisture Change of Paddy

Reducing moisture content of paddy as fast as possible, without any quality loss, is a primary objective in any drying process. One of the possibilities to increase the drying rate of the grain using the adsorption technique can be made by increasing the volumetric mixing ratio of rice husk to paddy. The mixing ratios of 1.0:1.0, 1.5:1.0, and 2.0:1.0, along with an initial moisture content of rice husk of 0.9% d.b., were chosen in this study and the experimental results are illustrated in Fig. 4, indicating that there is a small difference in final moisture content of paddy obtained from the experiments at the volumetric mixing ratios of 1.0 and 1.5 and insignificant difference beyond the mixing ratio of 1.5. The final moisture contents of paddy were 28.1, 26.8, and 25.8% d.b. for the corresponding mixing ratios of 1.0, 1.5, and 2.0. These results indicate that there is a maximum effective contact area between rice husk and paddy and the mixing ratio of 1.5 may appropriately be employed for drying paddy.

Multi-Pass Drying of Paddy

Using rice husk as an adsorbent material could not reduce the moisture content of paddy to the level for safe storage by single-stage drying even though the low initial moisture content of rice husk and the high mixing ratio were used. The remaining moisture content is still higher than 26.8% d.b., which is risk for spoilage by either micro-organism infection or yellowing-induced grain respiration. To further reduce the moisture content of paddy, it is necessary to separate the rice husk from the paddy since high relative humidity of the air limits capability of rice husk to adsorb moisture. In this study, the experiments were carried out at the volumetric mixing 1.5 and two initial moisture contents of rice husk, 11.8 and 1.2% d.b.

During the experiments, the temperature within the bin was in a narrow range of 33 to 35°C. The experimental results shown in Fig. 5 indicate that after four or five times of replacement, the moisture content of paddy can be reduced from 34.0 to 25.4% d.b. for the rice husk at initial moisture content of 11.8% d.b. and to 17.8% d.b. for the initial moisture content of 1.2% d.b. Rice husk at initial moisture content of 11.8% d.b. may not be suitable for adsorbing the moisture from paddy since the relative humidity of the air within the bin at the beginning of each

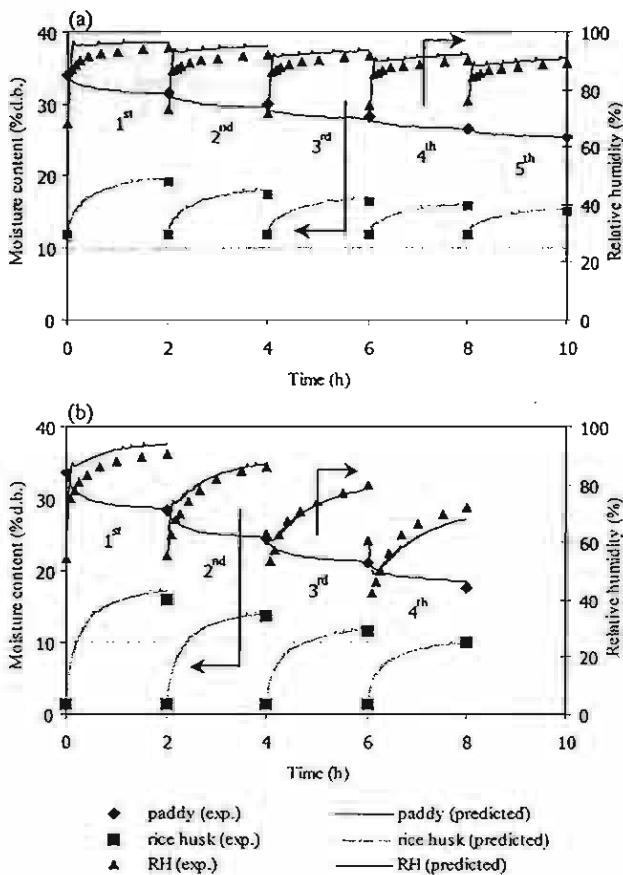


FIG. 5. Comparisons between experimental data and calculations of multi-pass drying at a volumetric ratio of rice husk to paddy of 1.5:1. (a) Initial moisture content of rice husk at 11.8% d.b.; (b) initial moisture content of rice husk at 1.2% d.b.

replacement is in the range of 68 to 76%, which is near the water concentration at the rice husk surface, thereby slowing down the adsorption of moisture from paddy, in particular, at the 4th and 5th replacement. With low initial moisture content of rice husk, on the other hand, although the adsorption rate of rice husk is reduced at the later stage of drying, it still has high potential to adsorb the moisture. This can be observed from Fig. 5b where the relative humidity of the air within the bin is relatively reduced from 62 to 42–53% at the beginning of the 3rd and 4th rice husk replacements (at drying times of 6 and 8 h) before it increases again. As shown in Fig. 5b, the final moisture content of paddy at 8 h is slightly higher than the desired final moisture content. To obtain the final moisture content of 16.9% d.b., the volumetric mixing ratio of 2.0 was required; otherwise, the drying time was extended longer for the mixing ratio of 1.5, approximately 1 h from calculation.

Figure 5 also shows the predictions in relative humidity of the air and moisture contents of paddy and rice husk.

TABLE I
Head-rice yield and rice whiteness from multi-pass drying

Volumetric ratio of rice husk to paddy	Initial rice husk moisture content (% d.b.)	Final paddy moisture content (% d.b.)	Head-rice yield	Rice whiteness
1.5:1	11.8 ± 0.5	25.4 ± 0.2	50.7 ± 0.5	51.0 ± 0.4
	6.6 ± 0.1	20.9 ± 0.3	50.6 ± 0.5	51.8 ± 0.4
	1.2 ± 0.1	17.8 ± 0.1	50.6 ± 0.6	52.4 ± 0.4
2.0:1	11.8 ± 0.5	24.7 ± 0.5	49.6 ± 0.3	52.0 ± 0.5
	6.6 ± 0.1	18.7 ± 0.3	50.8 ± 0.4	52.6 ± 0.3
	1.2 ± 0.1	16.9 ± 0.1	49.8 ± 0.5	52.4 ± 0.1
Reference	—	—	49.6 ± 0.5	51.2 ± 0.3

In calculations, the same mathematical model as mentioned before was used for multi-stages but the initial condition for moisture content inside the kernel for each drying stage was not the same. In multi-modes, the moisture gradient created inside the kernel for each drying stage can be known from the calculation and was then used as input parameter for the subsequent stage. The simulations shown by solid lines were in agreement with the experiment results.

Head-Rice Yield and Rice Whiteness

Head-rice yield and whiteness obtained from the multi-pass drying process at different conditions are shown in Table I. The values of head-rice yield and whiteness obtained by this technique were around 50, which is insignificantly different to those obtained from the reference samples that were dried by shade drying.

CONCLUSIONS

Single and multi-pass drying of paddy using rice husk as adsorbent were investigated. The faster drying rate and the lower final moisture content of paddy could be accomplished by reducing the initial moisture content of rice husk and increasing the volumetric mixing ratio. For single-stage drying, rice husk could not adsorb the moisture content of paddy to the safe level for storage. In multi-pass drying, however, the moisture content of paddy was reduced to the desired level using the adsorbent with low initial moisture content. The mathematical model of desorption-adsorption processes developed was found to be quite capable of predicting the moisture contents of the paddy and the rice husk and the air relative humidity. Considering qualities, the head-rice yield and whiteness of rice sample produced by multi-stage adsorption processes were similar to those dried by shade drying. The adsorption process using rice husk as adsorbent is technically feasible to replace the hot air drying for reducing high-moisture paddy, with insignificant loss of the quality.

ACKNOWLEDGEMENTS

The authors express their appreciation to the Thailand Research Fund (TRF) and the Japan International Research Center for Agricultural Sciences (JIRCAS) for their financial support, and to the Institute of Food Research and Product Development (IFRPD) of Kasetsart University, Thailand, for rice whiteness testing.

REFERENCES

- Cnossen, A.G.; Jiménez, M.J.; Siebenmorgen, T.J. Rice fissuring response to high drying and tempering temperatures. *Journal of Food Engineering* 2003, 59, 61–69.
- Bonazzi, C.; du Peuty, M.A.; Themelin, A. Influence of drying conditions on the processing quality of rough rice. *Drying Technology* 1997, 15 (3&4), 1141–1157.
- Tirawanichakul, S.; Prachayawarakorn, S.; Varanyanond, W.; Tungtrakul, P.; Soponronnarit, S. Effect of fluidized bed drying temperature on various quality attributes of paddy. *Drying Technology* 2004, 22 (7), 1731–1754.
- Poomsa-ad, N.; Soponronnarit, S.; Prachayawarakorn, S.; Terdyothin, A. Effect of tempering on subsequent drying of paddy using fluidisation technique. *Drying Technology* 2002, 20, 195–210.
- Steffe, J.F.; Singh, R.P.; Bakshi, A.S. Influence of tempering time and cooling on rice milling yields and moisture removal. *Transactions of the American Society of Agricultural Engineering* 1979, 22, 1214–1218.
- Tirawanichakul, S. *Influence of Fluidized-Bed Drying Temperature on Chemical and Physical Properties of Paddy*; Ph.D. thesis, King Mongkut's University of Technology Thonburi: Bangkok, 2004.
- Danziger, M.T.; Steinberg, M.P.; Nelson, A.I. Drying of field corn with silica gel. *Transactions of the ASAE* 1972, 15 (6), 1071–1074.
- Yamaguchi, S.; Kawasaki, H. Basic research for rice drying with silica gel. *Drying Technology* 1994, 12 (5), 1053–1057.
- Sturton, S.L.; Bilanski, W.K.; Menzies, D.R. Drying of cereal grains with the desiccant bentonite. *Canadian Agricultural Engineering* 1981, 23, 101–103.
- Sturton, S.L.; Bilanski, W.K.; Menzies, D.R. Moisture exchange between corn and the desiccant bentonite in an intimate mixture. *Canadian Agricultural Engineering* 1983, 25 (1), 139–141.
- Raghavan, G.S.V.; Alikhani, Z.; Fanous, M.; Block, E. Enhanced grain drying by conduction heating using molecular sieves. *Transactions of the ASAE* 1988, 31 (4), 1289–1294.
- Akpaeok, O.I. Drying and storage of cowpeas with ashes in air-tight containers. *Journal of Agricultural Engineering Research* 1974, 19, 279–287.

13. Graham, V.A.; Bilanski, W.K.; Menzies, D.R. Adsorption grain drying using bentonite. *Transactions of the ASAE* 1983, 1512–1515.
14. Graham, V.A.; Bilanski, W.K. Simulation of grain drying in intimate contact with adsorbents. *Transactions of the ASAE* 1986, 29 (6), 1776–1783.
15. Laithong, C. *Study of Thermo-Physical Properties of Rough Rice*; M.Sc. Thesis, King Mongkut's Institute of Technology Thonburi, Bangkok, 1987.
16. Incropera, F.P.; Dewitt, D.P. *Fundamentals of Heat and Mass Transfers*, 5th Ed; John Wiley & Sons: New York, 2002.
17. Steffe, J.F.; Singh, R.P. Liquid Diffusivity of rough rice components. *Transactions of the ASAE* 1980, 767–774.
18. Churchill, S.W.; Chu, H.H.S. Correlating equations for laminar and turbulent free convection from a vertical plate. *International Journal of Heat and Mass Transfer* 1975, 18, 1323.
19. AOAC. *Official Methods of Analysis*, 16th Ed; Association of Official Analytical Chemists: Washington, DC, 1995.
20. Witinantakit, K.; Prachayawarakorn, S.; Nathakaranakule, A.; Soponronnarit, S. Drying of paddy using rice husk as adsorbent. In *Proc. of ICFPTE'04*; Asian Institute of Technology: Bangkok, Thailand, 11–13 January 2005, 312–319.

การเพิ่มปริมาณตันข้าวของข้าว คุณภาพดีโดยวิธีแซ่ร่วมกับ การอบแห้งปั้นฐานให้

สุกอธี วานิชล่าร้าย*
พัชรี ตั้งตะกูล†
วรุณี วารัญญาณนท‡
สมชาติ โสกนรนฤทธิ์**

งานวิจัยนี้ได้ศึกษาความเป็นไปได้ของการเพิ่มปริมาณตันข้าวของข้าวคุณภาพดีโดยการแซ่ร่วมกับการอบแห้งบนฐานให้, โดยพิจารณาอัตราอุ่นที่ต้องการของระยะเวลาที่ใช้ในการแซ่และการอบแห้งข้าวเปลือกต่อการเพิ่มปริมาณตันข้าว, ดี, จุดข้าวซุนในเมล็ดข้าว, ค่าความแข็งของข้าวสุก, ค่าความเหนียวชิดเก้าอี้ตัวของข้าวสุก, ความหนืดของน้ำแป้ง และการเกิดสภาพรุน, จากการทดลองโดยใช้ข้าวเปลือกที่มีความชื้นเริ่มต้นร้อยละ ๑๓ ฐานแห้ง (db), แซ่ในน้ำอุ่นที่ 40°C เป็นเวลา ๐.๕-๔ ชั่วโมง, แล้วนำมารอบแห้งด้วยเครื่องฐานให้ที่อุณหภูมิอบแห้ง 140°C เป็นเวลา ๒-๔ นาที. จากนั้นนำข้าวเปลือกไปเก็บในท่ออบภาคเป็นเวลา ๑๐ นาที แล้วนำไปเป็นตัวของภาคปกติเป็นเวลา ๑ ชั่วโมง. ผลการศึกษาแสดงว่าการแซ่และการอบแห้งบนฐานให้สามารถเพิ่มปริมาณตันข้าวได้สูงสุด เมื่อแซ่เป็นระยะเวลา ๔ ชั่วโมง และอบแห้ง ๓ นาที, โดยคุณภาพด้านความชื้นและปริมาณจุดข้าวซุนในเมล็ดข้าวอยู่ในเกณฑ์ดี. ความชื้นและปริมาณจุดข้าวซุนในเมล็ดข้าวลดลงตามเวลาที่เพิ่มขึ้นของ การแซ่และการอบแห้ง. จากการทดลองเนื่องด้วยสัมผัส พบว่าข้าวสุกแข็ง และร่วนชิน เมื่อใช้เวลาในการอบแห้งมากขึ้น ที่ระยะเวลาการแซ่เท่ากัน. นอกจากนี้ยังทำให้ค่าความหนืดสูงสุด และความหนืดสุดท้ายลดลง, แต่ค่าอุณหภูมิเกิดปีกสูงชัน ในการวิเคราะห์การเกิดสภาพรุนด้วยเครื่อง differential scanning calorimeter (DSC) พบว่าข้าวที่แซ่นนาน ๔ ชั่วโมง เกิดสภาพรุนมากกว่าข้าวที่แซ่เป็นระยะเวลา ๓ ชั่วโมง โดยมีอัตราการเกิดสภาพรุนเท่ากับร้อยละ ๗๔.๔ และ ๖๐.๔ ตามลำดับ

คำสำคัญ: การอบแห้งข้าวเปลือก / คุณภาพข้าว / ฐานให้

พิชเชรบุรีกิจที่สำคัญที่สุดของประเทศไทยในปัจจุบันคือ ข้าว เพราะนอกจากข้าวจะเป็นอาหารหลักของคนไทยแล้ว ข้าวยังเป็นสินค้าส่งออกที่สำคัญ โดยราคาของข้าวจะแปรผันตามคุณภาพของข้าว เช่น ร้อยละตันข้าว, ความชื้นของข้าว, โดยเฉพาะร้อยละตันข้าวจะมีผลอย่างมากต่อราคาข้าว. ในด้านของข้าวคุณภาพด้านนั้น เมล็ดข้าวสารที่สีออกม่าจะมีสัดส่วนของข้าวทั้งสูง, ปริมาณตันข้าวดี.

การแซ่ข้าวทำให้เมล็ดดูดน้ำเข้าไปแทนที่อากาศ ซึ่งจะทำให้มีดีแป้งพองด้วยชีวน. อุณหภูมิของน้ำที่เหมาะสมในการแซ่เมล็ดข้าวเปลือกจะอยู่ระหว่าง $45-50^{\circ}\text{C}$ ถ้าหากน้ำมีอุณหภูมิประมาณ 55°C ก็จะแซ่ข้าวเปลือกประมาณ ๓-๖ ชั่วโมง หรือถ้าหากน้ำมีอุณหภูมิ 40°C จะแซ่ข้าวเปลือกนาน ๑-๓ ชั่วโมง จะทำให้เมล็ดข้าวเปลือกดูดความชื้นได้เพียงพอ^๑. Ali และ Bhattacharya^๒ ทำการทดลองอบแห้งข้าวเปลือกที่แซ่นน้ำซึ่งข้านั้นมีปริมาณอเมียโลสสูง โดยอบแห้งด้วย

* นักศึกษาปริญญาโท คณะพัฒนาและวัสดุ มหาวิทยาลัยเทคโนโลยีโลหะและมateria จอมบึงบุรี กรุงเทพฯ
** ราชบัณฑิต สำนักวิทยาศาสตร์ ราชบัณฑิตยสถาน

† นักวิจัยชั้นนำ สถาบันค้นคว้าและพัฒนาผลิตภัณฑ์อาหาร มหาวิทยาลัยเกษตรศาสตร์ กรุงเทพฯ

อาการร้อนที่อุณหภูมิ $160-200^{\circ}\text{ช.}$ จากการทดลองสรุปได้ว่า การอบแห้งข้าวเปลือกที่ผ่านการแข็งตัวที่อุณหภูมิสูงเป็นเวลาสั้นๆ สามารถทำให้ข้าวคล้ายข้าวเนื้อได้ และความชื้นหลังการอบแห้งความมีค่าสูงกว่าร้อยละ ๒๐ ฐานเปียก (wb), ร้อยละการแตกของข้าวที่ได้น้อยกว่าร้อยละ ๕. Velupillai และ Verma^๔ ได้ทำการศึกษาการอบแห้งและการเทมเปอร์ ข้าวเนื้อที่มีผลต่อคุณภาพของข้าวเนื้อ ที่ช่วงอุณหภูมิอบแห้ง $140-150^{\circ}\text{ช.}$ สรุปได้ ทำการเทมเปอร์ ช่วยให้อัตราร้อยละตันข้าวเพิ่มขึ้น แต่จะทำให้สีของข้าวผ่านคล้ำขึ้นเล็กน้อย. สมชาติ โสกณ์ รัตนฤทธิ์ และคณะ^๕ ได้ทำการศึกษาสมรรถนะเครื่องอบแห้งข้าวเปลือกแบบฐานไฟฟ้าโดยใช้อุณหภูมิในการอบแห้ง $60-120^{\circ}\text{ช.}$ อบแห้งจนเหลือความชื้นสุดท้ายร้อยละ ๒๒ ฐานแห้ง (db). ความสูงเบดที่ใช้ 2.5 เมตร และพบว่าการอบแห้งที่อุณหภูมิสูงถึง 120°ช. คุณภาพของข้าวเปลือกที่ยังอยู่ในเกณฑ์ที่ยอมรับได้. สมชาติ โสกณ์ รัตนฤทธิ์ และคณะ^๖ ได้ทำการศึกษาต่อเนื่องโดยอบแห้งข้าวเปลือกที่อุณหภูมิ 140 และ 150°ช. พบว่า สามารถเพิ่มปริมาณดันข้าวได้และมีค่าใกล้เคียงกัน โดยที่ปริมาณข้าวดันจะสูงสุดเมื่อข้าวเปลือกมีความชื้นสุดท้ายอยู่ในช่วงร้อยละ $12-16$ ฐานเปียก และได้มีการศึกษาต่อเนื่องโดยทำการอบแห้งข้าวเปลือกที่มีความชื้นเริ่มต้นร้อยละ 45.3 ฐานแห้งที่อุณหภูมิ 150°ช. พบว่าอัตราร้อยละตันข้าวเพิ่มขึ้นซึ่งคล้ายกับงานของอดีเทพ ทวีรัตน-

พานิชย์ และคณะ^๗ ที่ได้ทำการอบแห้งในช่วงอุณหภูมิ $140-150^{\circ}\text{ช.}$ พบว่า สามารถเพิ่มร้อยละตันข้าวได้ เมื่อความชื้นข้าวเปลือกหลังการอบแห้งอยู่ในช่วงร้อยละ $15-18$ ฐานแห้ง และช่วงความชื้นข้าวเปลือกเริ่มต้นที่เหมาะสมสมควรอยู่ระหว่างร้อยละ $30-45$ ฐานแห้ง. สมชาติ โสกณ์ รัตนฤทธิ์ และคณะ^๘ และ Zhang และ Litchfield^๙ แนะนำว่าความมีการเทมเปอร์ข้าวเปลือกก่อนการอบแห้งในช่วงที่ 2 หรือเป้าด้วยอากาศแวดล้อม เพื่อเพิ่มสมรรถนะในการอบแห้งและรักษาคุณภาพข้าวเปลือก และระยะเวลาในการเทมเปอร์ข้าวเปลือกที่เหมาะสมมีอย่างน้อย 30 นาที แต่ไม่ควรเกิน 1 ชั่วโมง. ความเร็วของอากาศในช่วงการเป้าด้วยอากาศปกติประมาณ 0.15 เมตร/วินาที.

จากการผลงานวิจัยที่ผ่านมาอาจสรุปได้ว่า มีความเป็นไปได้ในการทำให้ร้อยละตันข้าวเพิ่มขึ้นโดยการแข็งข้าวเปลือกในน้ำร้อน การอบแห้งบนฐานไฟฟ้าที่อุณหภูมิ 150°ช. การเก็บในที่อับอากาศ และการเป้าด้วยอากาศแวดล้อม. ดังนั้นงานวิจัยนี้จึงได้ศึกษาหาแนวทางที่เหมาะสมสำหรับการเพิ่มปริมาณดันข้าวโดยการแข็งข้าวเปลือกในน้ำร้อน การอบแห้งบนฐานไฟฟ้า และศึกษาระยะเวลาที่ใช้ในการแข็ง และการอบแห้งข้าวเปลือก รวมทั้งศึกษาถึงคุณภาพของข้าว สมบัติการหุ้นตัน และการบริโภคข้าว และลักษณะเคมีภysis ของข้าวในกระบวนการอบแห้ง.

อุปกรณ์และวิธีการทดลอง

ในการทดลองอบแห้งข้าวเปลือกด้วยอาการร้อนจะใช้เครื่องอบแห้งบนฐานไฟฟ้าแบบงวดซึ่งส่วนประกอบดังนี้

การทดลองอบแห้งด้วยอาการร้อนใช้เครื่องอบแห้งฐานไฟฟ้าแบบงวด (แสดงรายละเอียดในรูปที่ ๑). ห้องอบแห้งเป็นรูปทรงกระบอก มีขนาดเส้นผ่าศูนย์กลาง 20 ซม. บริเวณผิวห้องอบแห้งและระบบห้องตู้ด้วยฉนวนไยแก้วหนาประมาณ 2.5 มม. อุปกรณ์ให้ความร้อนใช้ดลัดความร้อน 12 กิโลวัตต์ ใช้พัดลมแบบแรงเหวี่ยงหนีศูนย์ ใบพัดโดยหลัง มองเดอร์ชันขนาด 0.4 กิโลวัตต์ สามารถปรับรับความเร็วได้. อุปกรณ์วัดอุณหภูมิที่ทางเข้าห้องอบแห้ง ใช้เทอร์โมคัปเปิลชนิด K ต่อเข้ากับเครื่องควบคุมอุณหภูมิ เพื่อควบคุมอุณหภูมิในการอบแห้งให้ได้ $\pm 0.1^{\circ}\text{ช.}$ ที่ช่องทางป้อนข้าวเปลือกติดตั้งด้านบนห้องอบแห้งมีขนาดเส้นผ่านศูนย์กลาง 0.6 ซม.

การเดริยมข้าวเปลือกซึ่งใช้ข้าวเปลือกพันธุ์ กษ๓๔ ซึ่งมีความชื้นเริ่มต้นก่อนแข็งประมาณร้อยละ 13 ฐานแห้ง ใส่ในถังกลมขนาดประมาณ 50 ลิตร หุ้นด้วยฉนวนไยแก้ว (เพื่อรักษาอุณหภูมิของน้ำในถังซึ่ง) และใส่เข้าร้อนที่มีอุณหภูมิเริ่มต้น 40°ช. แข็งข้าวเปลือกทั้งไวนาน 0.5 , 1 , 2 , 3 และ 4 ชั่วโมง และจึงจะน้ำแข็งทึบ และปล่อยข้าวเปลือกทึบไว้นั่นในถังซึ่ง (tempering) อีก 1 ชั่วโมงก่อนที่จะนำข้าวเปลือกซึ่งไปทดลองอบแห้ง.

ในการอบแห้งข้าวเปลือกใช้เทคนิคทำให้เกิดการให้เหลวด้วยความเร็วลมภายในฐาน ๒.๕ เมตร/วินาที (ความถูกต้อง ± 0.1 เมตร/วินาที), อุณหภูมิอบแห้ง 45°C (ความถูกต้อง $\pm 1^{\circ}\text{C}$), ความสูงของฐาน ๒.๕ ซม. และอบแห้งนาน ๒, ๓ และ ๔ นาที, แล้วนำข้าวเปลือกที่ผ่านการอบแห้งมาผ่านกระบวนการบ่ม โดยปล่อยให้เหลวเข้ามายังชุดแก้วขนาดเส้นผ่าศูนย์กลาง ๑๐ ซม. สูง ๑๐ ซม. ซึ่งสามารถปิดสนิทและทนความดันไม่ให้เกิดการร้าวได้ เพื่อป้องกันการถ่ายเทความลสสิ่งแวดล้อม โดยชุดแก้วผ่านการอบให้มีอุณหภูมิเท่ากับอุณหภูมิของข้าวเปลือกขณะที่ออกจากเครื่องอบแห้ง. ต่อจากนั้นนำชุดแก้วภายใต้แรงดัน ๑๐ บาร์ นำข้าวเปลือกกลับเข้าตู้อบซึ่งควบคุมอุณหภูมิให้เท่ากับอุณหภูมิของเมล็ดข้าวเปลือกที่ออกจากเครื่องอบเพื่อป้องกันการถ่ายเทความร้อนกับสิ่งแวดล้อมเป็นระยะเวลา ๓๐ นาที. จากนั้นนำมาเป่าด้วยอากาศแวดล้อมเป็นระยะเวลา ๑ ชั่วโมง. เก็บตัวอย่างข้าวเปลือกไว้ที่อุณหภูมิแวดล้อมประมาณ 45°C วัน แล้วจึงนำไปทดสอบคุณภาพการสี.

ก่อนและหลังการอบแห้ง ข้าวเปลือกประมาณ ๓๐ กรัม ถูกนำมาหาความชื้นโดยการอบที่อุณหภูมิ 100°C เป็นเวลา ๙๖ ชั่วโมง สำหรับคุณภาพของข้าวทางด้านกายภาพ ทำการวิเคราะห์ค่าร้อยละตันข้าว, ปริมาณจุดข้าวชุ่นในเมล็ดข้าว (white belly) และความชื้น.

- ร้อยละตันข้าว คือ น้ำ

หนักของข้าวตันที่ผ่านการอบแห้งหารด้วยน้ำหนักข้าวเปลือก

- ความชื้นข้าวตันได้จากเครื่องวัดความชื้น Kett C-300

- White belly คือ จำนวนข้าวที่มีจุดข้าวชุ่นในเมล็ด โดยการสุ่มตัวอย่าง ๑๐๐ เมล็ด ทำซ้ำ ๓ครั้ง.

การวัดค่าการยึดเกาะตัวและค่าความแข็งของข้าวสุกโดยใช้เครื่อง Texture Analyzer รุ่น TA-XT2i ใช้หัววัด Ottawa cell load cell ๕๐ กิโลกรัม นำข้าวสาร ๓๐ กรัม ใส่ถ้วยอลูมิเนียมแล้วนำไปชาร์จแล้วเท่านั้น. จากนั้นใส่น้ำกลั่นด้วยอัตราส่วนข้าวต่อน้ำเป็น ๑:๑.๘ แล้วนำไปพุ่งร้อนบนข้าวสุก พักทิ้งไว้ ๑๐ นาที. จากนั้นนำข้าวสุกที่ได้จากการพุ่งประมาณ ๓๐ กรัม ใส่ลงในตะแกรงสำหรับใส่ข้าวเพื่อทดสอบ และเกลี่ยให้หน้าเรียบเท่ากัน เครื่องจะทำการกดอัดข้าวและแสดงค่าความแข็งของข้าวสุกและค่าความหนืด yayield strength ของข้าวสุก ในหน่วย kg.f ทำการทดลองซ้ำตัวอย่างละ ๒ ครั้ง.

การวัดสมบัติการเป็นแป้งเปียก (pasting) ของข้าวโดยใช้เครื่อง rapid visco analyzer (Newport Scientific Pty Ltd., Wantiewood, Australia) โดยการนำตัวอย่างแป้งข้าว ๓ กรัม (ทอนนิยม ๔ ตัวแทน) ที่ความชื้นร้อยละ ๑๖ ฐานแห้ง ใส่ผสมกับน้ำกลั่นในถ้วยอลูมิเนียม ใส่พายลงในกระป่องและนำตัวอย่างที่เตรียมได้เข้าเครื่อง RVA. ตัวอย่างจะถูกทำให้วร้อนที่ 45°C เป็นเวลา ๑ นาที. ต่อจากนั้นให้ความร้อนแก่ของผสม

ด้วยอัตรา $12^{\circ}\text{C}/\text{นาที}$ ไปที่อุณหภูมิ 45°C คงไว้ที่อุณหภูมิ 45°C เป็นเวลา 2.5 นาที จากนั้นถูกทำให้เย็นลงมาที่ 40°C ด้วยอัตรา $12^{\circ}\text{C}/\text{นาที}$ แล้วคงไว้ที่ 45°C เป็นเวลา 2 นาที. ตัวอย่างดังกล่าวทดสอบซ้ำ ๖ ครั้ง, แล้วนำมารวบรวมทั้งหมด. สมบัติการเป็นแป้งเปียกต่างๆ ถูก pH เทียนกันเวลา. ค่าที่ได้จากการวัดค่าการยึดเกาะตัวของข้าวที่ทราบดีคือ pH ของข้าวเปลือก, ความหนืด และความหนืดสุดท้าย.

การวิเคราะห์การเกิดสภาพรุนของข้าวโดยใช้เครื่อง differential scanning calorimeter (DSC) โดยการเตรียมตัวอย่างแป้งข้าวที่ทราบความชื้นแน่นอน โดยทำเป็นสารละลายให้มีความเข้มข้นร้อยละ ๓๐ โดยนำหัวน้ำหนักแห้ง ด้วยน้ำกลั่น ถูกสารละลายแป้งให้มีปริมาณ ๓.๔-๔ มิลลิกรัม (โดยน้ำหนักแห้ง) ใส่ในถ้วยอลูมิเนียมของเครื่อง DSC บ่มไว้ประมาณ ๑ ชั่วโมง. จากนั้นนำถ้วยใส่ในช่องตัวอย่างของเครื่อง DSC และวาง reference indium pan โดยให้ profile อุณหภูมิ $25-100^{\circ}\text{C}$ ที่อัตรา $5^{\circ}\text{C}/\text{นาที}$. บันทึกค่าต่างๆ ที่เกี่ยวข้องกับการเกิดสภาพรุนซึ่งได้แก่อุณหภูมิเริ่มต้นในการเกิดสภาพรุน (onset temperature, T_o), อุณหภูมิสูงสุดในการเกิดสภาพรุน (peak temperature, T_p), อุณหภูมิสุดท้ายในการเกิดสภาพรุน (conclusion temperature, T_c) และพลังงานที่เปลี่ยนแปลงระหว่างการเกิดสภาพรุน (Enthalpy, $\Delta H, \text{J/g}$) โดยอัตราร้อยละของการเกิดสภาพรุนค่านานเฉลี่ยได้จาก

Degree of gelatinization^a =

$$[1 - (\frac{\Delta H}{\Delta H^*})] \times 100$$

ΔH คือ ค่าเออนทัลปีของแป้งที่เกิดสภาพรุน (J/g) และ ΔH^* คือ ค่าเออนทัลปีของแป้งที่ไม่เกิดสภาพรุน (J/g)

ผลการทดลองและวิจารณ์

จากผลการทดลองแซ่ข้าวในน้ำอุณหภูมิเริ่มต้น ๘๐°ซ เป็นเวลา ๘ ชั่วโมง จากนั้นนำไปอบแห้งแบบฟลูอิเดซเบดที่อุณหภูมิอบแห้ง ๑๕๐°ซ เป็นเวลา ๒-๔ นาที แล้วทำการเก็บข้าวเปลือกในที่อันอากาศเป็นเวลา ๓๐ นาที แล้วนำไปเป่าด้วยอากาศแวดล้อมเป็นเวลา ๑ ชั่วโมง พบว่า การเปลี่ยนแปลงความชื้นและอุณหภูมิของเมล็ดข้าวเปลือก ร้อยละตันข้าว ความขาวของข้าวสาร ร้อยละของเมล็ดข้าวที่มีจุดขาวขุ่น ค่าความแข็ง ค่าความเหนียวที่ดีเก้าด้วยตัวของข้าวสุก ความหนืดของแป้งข้าว และการเกิดสภาพรุนของข้าวโดยใช้เครื่อง DSC มีรายละเอียดดังแสดงในรูปที่ ๒-๖ และตารางที่ ๑-๖.

การเปลี่ยนแปลงความชื้นและอุณหภูมิของเมล็ดข้าวเปลือก

การเปลี่ยนแปลงความชื้นและอุณหภูมิของเมล็ดข้าวเปลือกแสดงดังรูปที่ ๒ จะเห็นว่าความชื้นของเมล็ดข้าวเปลือกหลังการแซ่จะเพิ่มขึ้นตามระยะเวลาในการแซ่ และเมื่อนำไปอบแห้งที่เวลาต่างกันพนท. ความชื้นของข้าวเปลือกหลังอบแห้งที่แซ่เป็น

ตารางที่ ๑ ผลการทดสอบความแข็งของข้าวสุก

ระยะเวลา แซ่ข้าว (ชั่วโมง)	ความแข็งของข้าวสุก kg.f			
	๐	๒	๓	๔
๐	๒๑.๙๗	-	-	-
๐.๕	-	๒๗.๗๖	๒๗.๐๔	๒๗.๗๗
๑	-	๒๗.๕๙	๒๗.๗๐	๒๗.๕๖
๒	-	๒๕.๕๕	๒๕.๐๗	๒๕.๖๔
๓	-	๒๕.๐๙	๒๕.๗๖	๒๕.๖๖
๔	-	๒๕.๖๒	๒๖.๐๕	๒๖.๖๙

ตารางที่ ๒ ผลการทดสอบความเหนียวที่ดีเก้าด้วยตัวของข้าวสุก

ระยะเวลา แซ่ข้าว (ชั่วโมง)	การดีดเก้าด้วยตัวของข้าวสุก kg.f			
	๐	๒	๓	๔
๐	๐.๗๕	-	-	-
๐.๕	-	๐.๗๔	๐.๗๕	๐.๗๗
๑	-	๐.๗๙	๐.๗๙	๐.๗๗
๒	-	๐.๗๙	๐.๗๙	๐.๗๗
๓	-	๐.๗๙	๐.๗๐	๐.๗๕
๔	-	๐.๗๙	๐.๗๙	๐.๗๔

ตารางที่ ๓ การเบร์บเทียบอุณหภูมิเริ่มเกิดความหนืดของแป้งข้าวที่ใช้เวลาในการแซ่และการอบแห้งต่างกัน

ระยะเวลา แซ่ข้าว (ชั่วโมง)	อุณหภูมิเกิดแป้งเปียก (°ซ)			
	๐	๒	๓	๔
๐	๗๙.๙๙	-	-	-
๐.๕	๘๐.๗๙	๘๐.๗๙fg	๘๐.๗๙ef	๘๐.๗๙ab
๑	๘๐.๗๙	๘๐.๗๙ef	๘๐.๕๐de	๘๐.๗๙ab
๒	๘๐.๗๙	๘๐.๗๙ef	๘๐.๕๐bcd	๘๐.๗๙ab
๓	๘๐.๗๙	๘๐.๕๙fg	๘๐.๕๙de	๘๐.๕๙ab
๔	๘๐.๗๙	๘๐.๕๙fg	๘๐.๕๙de	๘๐.๕๙abc

ตารางที่ ๔ การเปรียบเทียบความหนืดสูงสุดของแป้งช้าที่ใช้เวลาในการแข็งและการอบแห้งต่างกัน

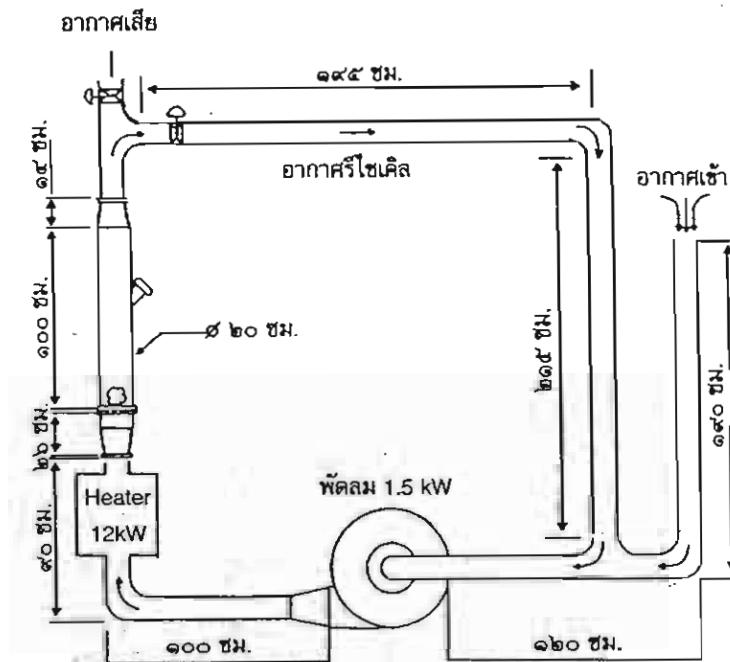
ระยะเวลา แข็งช้า (ชั่วโมง)	ความหนืดสูงสุด (RVU) ช้าที่อบแห้งระยะเวลาต่างๆ (นาที)			
	๐	๒	๓	๔
๐	๒๕๗.๕๙	-	-	-
๐.๕	๒๕๗.๗๖	๑๘๕.๑๐	๑๘๗.๕๙	๒๙.๗๒
๑	๒๕๗.๕๖	๑๖๖.๕๔	๑๖๘.๗๑	๔๔.๕๑
๒	๒๕๐.๖๖๖	๑๖๔.๕๔	๑๖๗.๕๐	๔๖.๖๑
๓	๒๕๗.๕๖	๑๖๗.๑๖	๑๖๕.๖๙	๔๔.๗๔
๔	๒๕๗.๖๖๖	๑๖๖.๕๔	๑๖๕.๐๐	๔๖.๙๗

หมายเหตุ : ค่าวัดที่คำนวณตัวอักษรที่แยกค้างกันแสดงว่ามีความแยกค้างกันทางสถิติที่ระดับความเชื่อมั่น ๙๕%

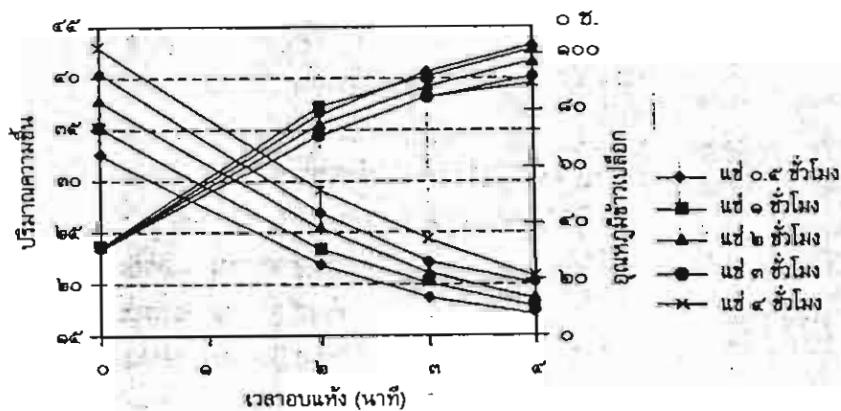
ตารางที่ ๕ การเปรียบเทียบความหนืดสูดท้าวของแป้งช้าที่ใช้เวลาในการแข็งและการอบแห้งต่างกัน

ระยะเวลา แข็งช้า (ชั่วโมง)	ความหนืดสูดท้าว (RVU) ช้าที่อบแห้งระยะเวลาต่างๆ (นาที)			
	๐	๒	๓	๔
๐	๑๗๙.๖๖	-	-	-
๐.๕	๑๗๙.๗๖	๑๘๗.๗๖	๑๘๕.๕๙	๑๕๑.๔๙
๑	๑๗๙.๖๖	๑๕๕.๐๐	๑๕๔.๕๑	๑๕๐.๔๙
๒	๑๗๙.๖๖	๑๕๗.๕๐	๑๖๖.๖๖	๑๕๔.๔๙
๓	๑๗๙.๖๖	๑๕๗.๗๖	๑๖๖.๖๖	๑๖๖.๗๔
๔	๑๗๙.๖๖	๑๕๗.๖๖	๑๖๕.๐๐	๑๕๔.๔๙

หมายเหตุ : ค่าวัดที่คำนวณตัวอักษรที่แยกค้างกันแสดงว่ามีความแยกค้างกันทางสถิติที่ระดับความเชื่อมั่น ๙๕%


เวลาสั้นๆ จะลดลงได้เร็วกว่าช้า เปเลือกที่แข็งเป็นระยะเวลานาน ทั้งนี้เนื่องจากปริมาณความชื้นของช้า เปเลือกที่แข็งเป็นระยะเวลาสั้นๆ มีค่าต่ำกว่า จึงทำให้ความชื้นในการอบแห้งลดลงเร็วกว่า และเมื่อระยะเวลาในการอบแห้งเพิ่มมากขึ้น ความชื้นของเมล็ดช้า เปเลือกหลังอบแห้งนี้แนวโน้มลดลงใกล้เคียงกัน เพราะว่าความชื้นของเมล็ดช้า เปเลือกส่วนใหญ่จะอยู่ที่ภายในเมล็ด ขณะที่อุณหภูมิของเมล็ดช้า เปเลือกมีแนวโน้มที่เพิ่มขึ้นตามเวลาในการอบแห้ง โดยอุณหภูมิของเมล็ดช้า เปเลือกที่ผ่านการแข็งเป็นระยะเวลาสั้นจะเพิ่มขึ้นเร็วกว่าเมล็ดช้า เปเลือกที่ผ่านการแข็งเป็นระยะเวลานาน

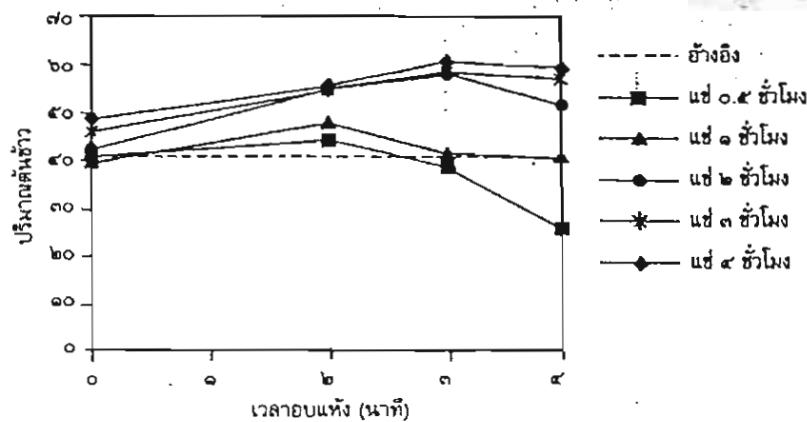
ร้อยละตันช้า


รูปที่ ๓ แสดงความสัมพันธ์ระหว่างร้อยละตันช้ากับระยะเวลาในการอบแห้งที่ใช้เวลาในการแข็งต่างกัน จะเห็นว่าช้าที่ผ่านการแข็งเพียงอย่างเดียว (เวลาการอบแห้ง ๐ นาที) มีร้อยละตันช้าสูงกว่าช้าอ้างอิง (ช้าที่ไม่ผ่านการแข็งและการอบแห้ง) และเมื่อผ่านการอบแห้งพบว่า ช้าที่

ตารางที่ ๖ ผลการวิเคราะห์การเกิดเจลาตินไซนของช้าโดยใช้เครื่อง Differential Scanning Calorimeter

ตัวอย่างช้า	อุณหภูมิ (°C)			(H (J/g)	อัตราการเกิด สภาพรุน
	เริ่มต้น	สูงมาก	สรุป		
อ้างอิง ๑๓% ฐานแห้ง	๗๓.๐	๙๖.๗	๙๐.๔	๗.๗๕	๐
แข็ง ๓ ชั่วโมง อบแห้ง ๔ นาที	๗๒.๙	๙๐.๙	๙๔.๙	๒.๔๔	๖๐.๔
แข็ง ๔ ชั่วโมง อบแห้ง ๔ นาที	๗๒.๖	๙๐.๔	๙๔.๔	๑.๔๕	๗๔.๔

รูปที่ ๑
โครงสร้างของเครื่องอุ่นแห้งรากในไทยแบบงา



รูปที่ ๒
การเปลี่ยนแปลงความชื้นและอุณหภูมิของรากที่ใช้เวลาในการแห้งและการอุ่นแห้งต่างกัน

ผ่านการแห้งเป็นระยะเวลา ๐.๕ และ ๑ ชั่วโมง เมื่ออบแห้ง ๒ นาที ร้อยละตันข้าวที่ได้สูงขึ้น แต่เมื่ออบแห้งที่ ๓ และ ๔ นาที ร้อยละตันข้าวที่ได้จะลดต่ำลงตามระยะเวลาการอบแห้งที่เพิ่ม

ขึ้น ส่วนข้าวที่ผ่านการแห้งแต่ ๒ ชั่วโมงขึ้นไป ร้อยละตันข้าวเพิ่มขึ้น เมื่อใช้เวลาในการอบแห้ง ๒ นาที และสูงขึ้นอีกเมื่ออบแห้งที่ ๓ นาที แต่จะลดลงเล็กน้อยเมื่ออบแห้งที่ ๔

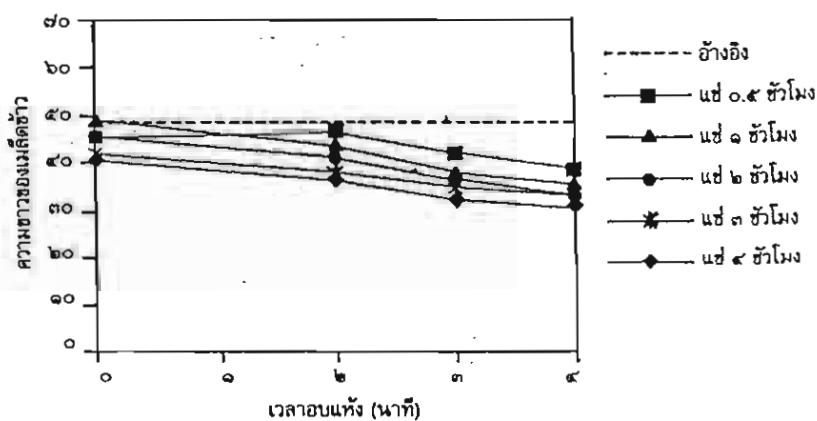
นาที ความแตกต่างของร้อยละตันข้าวที่เกิดขึ้นนั้น เนื่องมาจากการเกิดสภาพรุนในเมล็ดข้าวเปลือก เพราะเมื่อข้าวที่มีความชื้นสูงได้รับความร้อนแห้งที่ถูกน้ำจะพองตัว ไม่เลกุลจะยืดเข้าด้วยกันทำให้โครงสร้างไม่เลกุลแข็งแรงขึ้น อย่างไรก็ตามในเมล็ดข้าวสามารถประสานกันอย่างสนิท และเมื่อนำมาทำให้แห้งเมล็ดข้าวจะมีลักษณะแข็งใส เหนียว ทนต่อการขัดสี เมื่อนำเมล็ดข้าวไปขัดสี จึงมีร้อยละตันข้าวสูง การเกิดสภาพรุนที่สมบูรณ์นั้นจะต้องประกอบด้วยอุณหภูมิและปริมาณน้ำในข้าวเปลือกที่เหมาะสม ซึ่งถ้าความชื้นเริ่มต้นสูงก็จะทำให้ช่วงเวลาในการเกิดสภาพรุนมากขึ้น ส่งผลให้ร้อยละตันข้าวสูง ด้วยเหตุนี้จึงทำให้ข้าวที่แห้งนานขึ้นมีร้อยละตันข้าวสูงขึ้น แต่ถ้าใช้เวลาในการอบแห้งนานเกินไป ทำให้ปริมาณความร้อนส่วนใหญ่ที่ใช้ในการระเหยน้ำ ถูกนำไปเพิ่มอุณหภูมิแก่ข้าวเปลือก ทำให้เมล็ดข้าวเปลือกมีอุณหภูมิสูงขึ้น และเมื่ออุณหภูมิสูงถึงอุณหภูมิสภาพรุนของแป้งแล้ว แต่ความชื้นภายในเมล็ดข้าวเปลือกเพิ่มขึ้น ทำให้เกิดความเส้นขึ้นภายในเมล็ดข้าวเปลือก ซึ่งนำไปสู่การเกิดรอยร้าวและแตกหัก เมื่อนำไปสีจึงได้ร้อยละตันข้าวลดลง.

รูปที่ ๓
ความสัมพันธ์ระหว่างร้อยละเม็ดข้าวที่มีจุดข้าวในการอบแห้งที่ใช้เวลาในการอบแห้งทั้งหมด

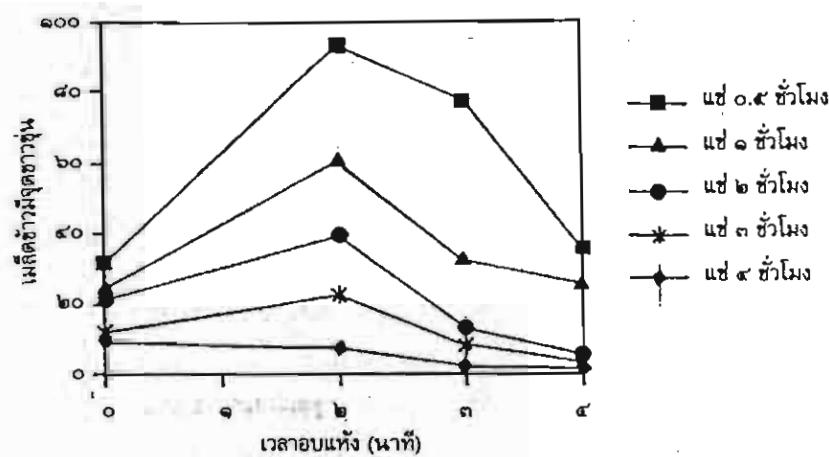
ความขาวของข้าวสาร

รูปที่ ๔ แสดงความสัมพันธ์ระหว่างความขาวกับระยะเวลาในการอบแห้งที่ใช้เวลาในการแซ่ด่างกัน จะเห็นว่า ข้าวที่ผ่านการแซ่ดและการอบแห้งจะมีความขาวลดลงต่ำกว่าข้าวอ้างอิง (ข้าวที่ไม่ผ่านการแซ่ดและการอบแห้ง) ในทุกเงื่อนไขการทดลอง ระยะเวลาในการอบแห้งและการแซ่ดที่เพิ่มขึ้นมีผลทำให้ความขาวมีค่าลดลง ซึ่งเกิดจาก ปฏิกิริยาการเกิดสีน้ำตาล โดยมีความร้อนเป็นตัวเร่งปฏิกิริยา และสีน้ำตาลอาจมีส่วนเกิดจากสีของเปลือกข้าวพร้อมเข้าสู่เม็ดข้าว แซ่ดและติดแน่นจะลดแห้ง จึงทำให้ความขาวของข้าวที่ผ่านการอบแห้งมีสีคล้ำขึ้น

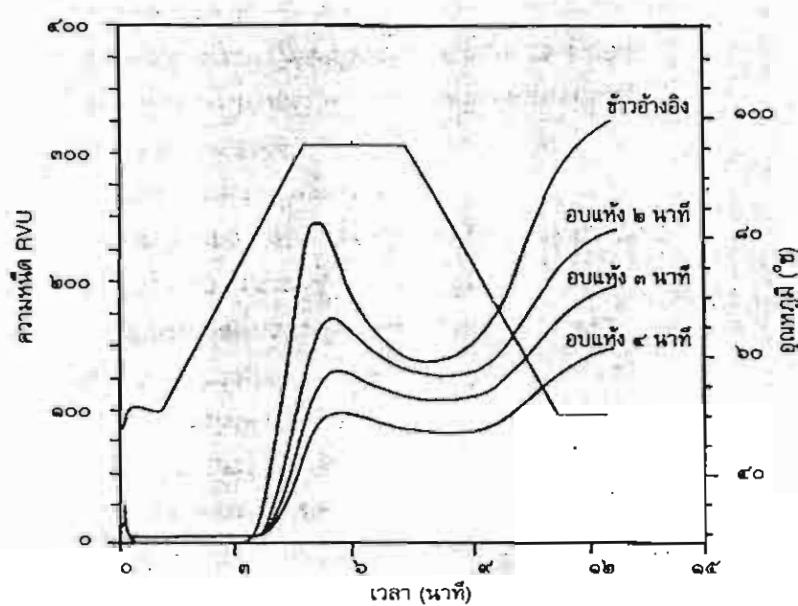
ร้อยละของเม็ดข้าวที่มีจุดข้าวชุน


ลักษณะของข้าวที่มีจุดข้าวชุน

ที่บีบแสง เป็นส่วนที่กลุ่มแป้งและโปรตีนีการเกะดัดกันอย่างหลวมๆ จึงมีส่วนที่เป็นช่องว่างอยู่มากและภายในช่องว่างนี้จะมีอาการแทรกออยู่ซึ่งจะเกิดขึ้นเมื่อข้าวเกิดการเป็นสภาพวุ่นไม่สมบูรณ์ทั่วทั้งเม็ด จากรูปที่ ๔ แสดงความสัมพันธ์ระหว่างร้อยละของเม็ดข้าวที่มีจุดข้าวชุนกับระยะเวลาในการอบแห้งที่ใช้


เวลาในการแซ่ด่างกัน พบว่า เมื่อระยะเวลาในการแซ่ดและการอบแห้งเพิ่มมากขึ้น ร้อยละของเม็ดข้าวที่มีจุดข้าวชุนจะลดลง เป็นผลเนื่องจากเวลาในการอบแห้งและปริมาณความชื้นที่เพิ่มขึ้นทำให้ช่วงเวลาในการอบแห้งคงที่มากขึ้น เกิดการสภาพวุ่นได้สมบูรณ์ทั่วทั้งเม็ดมากขึ้น Degree of gelatinization ก็มากขึ้นด้วย ทำให้ค่าร้อยละของเม็ดข้าวที่มีจุดข้าวชุนที่ลดลง.

ค่าความแข็งและค่าการยึดเกาะตัวของข้าวสุก


จากการทดสอบหาค่าความแข็งและค่าความเหนียวมีการยึดเกาะตัวของข้าวสุก ได้ผลลัพธ์แสดงในตารางที่ ๑ และ ๒ ข้าวที่ผ่านการแซ่ดและอบแห้งด้วยฟลูอิเดซ์เบดันน์ ข้าวสุกที่ได้จะมีความแข็งเพิ่มขึ้นจากข้าวอ้างอิง (ข้าวที่ไม่ผ่านการแซ่ดและการอบแห้ง) ทุกเงื่อนไขการทดลอง ที่ระยะเวลาการแซ่ดเท่ากัน ข้าวที่แซ่ดั้งแต่ ๑

รูปที่ ๔
ความสัมพันธ์ระหว่างความขาวกับระยะเวลาในการอบแห้งที่ใช้เวลาในการแซ่ด่างกัน

รูปที่ ๕
ความสัมพันธ์ระหว่างวัยและผลลัพธ์ข้าวฟ่างจากน้ำกับระยะเวลาในการอบแห้งที่ใช้เวลาในการต่อต้านกัน

รูปที่ ๖
ความหนืดของข้าวจากน้ำ RVA เมื่อแข็งเป็นระยะเวลา ๔ ชั่วโมง และอบแห้งเวลาต่อต้านกัน

ข้าวโมงขึ้นไป เมื่อใช้เวลาในการอบแห้งเพิ่มขึ้นจะทำให้ความแข็งของข้าวสูงเพิ่มขึ้นด้วย แรงที่ใช้ในการยืดเกลากล้าของข้าวสูงของข้าวที่ผ่านการแข็งและอบแห้งจะลดลงต่ำกว่าข้าว

อังอิงทุกเงื่อนไขการทดลอง นั่นคือ ข้าวสูงมีความเหนียวลดลงหรือมีความร่วนมากขึ้น ที่จะระยะเวลาการแข็งเท่ากัน ความร่วนจะเพิ่มขึ้นเมื่อใช้เวลาในการอบแห้งนานขึ้น ทั้งนี้เป็น

ผลเนื่องมาจากการเกิดสภาพวันอะมิโลสจะละลายน้ำและคุณน้ำได้มากทำให้เกิดการพองตัวขึ้น และเมื่อน้ำมาอบแห้งจะทำให้สารซึ่งเป็นเจลแล้วจัดเรียงตัวกัน จับกันเป็นตันและไขมัน ทำให้เมล็ดแข็งแรงขึ้น เมื่อน้ำหาย去ทำให้ความสามารถในการดูดซับน้ำและละลายน้ำลดลง ส่วนระยะเวลาที่ใช้ในการแข็งนั้นไม่มีอิทธิพลอย่างชัดเจนต่อความแข็ง และการยืดเกลากล้าของข้าวสูง

ความหนืดของแป้งข้าว

รูปที่ ๖ และตารางที่ ๓-๕ แสดงสมบัติการเป็นแป้งเปียกของข้าวที่ผ่านการแข็งและอบแห้งด้วยรูปแบบใหม่ จากการทดลองและผลการวิเคราะห์ทางสถิติพบว่า ข้าวที่ผ่านการแข็งและอบแห้งให้ค่าอุณหภูมิแป้งเปียกสูงกว่าข้าวอังอิง (ข้าวที่ไม่ผ่านการแข็งและการอบแห้ง) และสูงขึ้นเมื่อใช้เวลาในการอบแห้งเพิ่มขึ้นที่จะระยะเวลาการแข็งเท่ากันอย่างมีนัยสำคัญ แต่ความหนืดสูงสุด และความหนืดสูดท้าย มีค่าต่ำกว่าข้าวอังอิง และจะลดต่ำลงเมื่อใช้เวลาในการอบแห้งเพิ่มขึ้นที่จะระยะเวลาการแข็งเท่ากันอย่างมีนัยสำคัญ ทั้งนี้เป็นผลเนื่องมาจากการแข็งที่ผ่านการแข็งและอบแห้งได้เกิดการสกัดวันของสารที่จะมีความชื้นสูงเมื่อได้รับความร้อนจากกระบวนการอบแห้งทำให้มีดีปั๊งที่ถูกน้ำเกิดการพองตัวและถูกทำให้สูง เมื่อน้ำหายตัวจะทำให้ความสามารถในการดูดซับน้ำของแป้งนั้นลดลงเกิด

การพองตัวได้น้อยลง ส่งผลให้ค่าความหนืดสูงสุดที่วัดได้มีค่าลดลง และด้องใช้อุณหภูมิสูงขึ้นเพื่อให้เกิดการพองตัวอีก สำหรับค่าความหนืดสูดท้ายนั้นแสดงถึงสมบัติความแข็งกระด้างของข้าวสุก ถ้ามีค่าสูงแสดงว่าข้าวสุกนั้นมีความแข็งกระด้างมาก หลังจากการหุงสุกและปล่อยให้ข้าวเย็นตัวลง ส่วนระยะเวลาในการแข็งไม่มีอิทธิพลอย่างชัดเจนต่อค่าอุณหภูมิเกิดแป้งเปียก ความเปียกสูงสุด และความหนืดสูดท้ายอย่างมีนัยสำคัญที่ระดับความเชื่อมั่นร้อยละ ๔๕.

การวิเคราะห์การเกิดสภาพรุนของข้าวโดยใช้เครื่อง DSC

จากการนำข้าวอ้างอิง ข้าวที่ผ่านการแข็ง ๓ และ ๔ ชั่วโมง อบแห้ง ๕ นาที มาทำการวิเคราะห์การเกิดสภาพรุนโดยเครื่อง DSC วิเคราะห์ค่าเอนทัลปีที่เปลี่ยนแปลง (ΔH) ได้ผลดังตารางที่ ๖ ซึ่งเห็นว่าอุณหภูมิเริ่มต้นในการเกิดสภาพรุนของข้าว, (อุณหภูมิสูงสุดในการเกิดสภาพรุน และอุณหภูมิสุดท้ายในการเกิดสภาพรุน ของข้าวที่ผ่านการแข็งและการอบแห้งสูงขึ้นจากข้าวอ้างอิง แสดงให้เห็นว่าข้าวที่ผ่านการแข็งและการอบแห้งได้เกิดการสภาพรุนไปบางส่วนแล้ว ค่า ΔH แสดงถึงการใช้พลังงานความร้อนในการทำให้ข้าวสุก ถ้ามีค่าน้อยแสดงว่าข้าวนั้นเกิดการสภาพรุนไปบางส่วนแล้วจึงใช้พลังงานความร้อนในการทำให้ข้าวสุกน้อยลง และจากการคำนวณอัตราการเกิดสภาพรุน

รุนจะเห็นว่าข้าวที่แข็ง ๔ ชั่วโมง อบแห้ง ๕ นาที เกิดสภาพรุนมากกว่าข้าวที่แข็ง ๓ ชั่วโมง อบแห้ง ๕ นาที.

สรุป

จากการทดลองแข็งและอบแห้งข้าวเปลือกบนฐานในอบ พบร่วมเมื่อบรังและแข็งขึ้น ทำให้ช่วงเวลาการเกิดสภาพรุนมากขึ้นอัตราการเกิดสภาพรุนก็มากขึ้นด้วย จึงส่งผลให้เมล็ดข้าวเปลือกมีความแข็งและทนต่อการขัดสีทำให้ได้ร้อยละตันข้าวสูงขึ้น และจุดข้าวชุ่นในเมล็ดข้าวลดลงอย่างไรก็ตามการเพิ่มขึ้นของระยะเวลาในการอบแห้งจะเป็นตัวเร่งปฏิกริยาการเกิดสีน้ำตาลให้มากขึ้น จึงทำให้ข้าวมีความขาวลดลง ที่ระยะเวลาการแข็งเท่ากันเวลาการอบแห้งที่เพิ่มขึ้นยังมีผลทำให้ข้าวสุกมีความแข็งและร่วนมากขึ้นอีกด้วย ส่วนสมบัติการเกิดแป้งเปียกให้ต่ออุณหภูมิเกิดแป้งเปียกสูงขึ้นเมื่อใช้เวลาในการอบแห้งนานขึ้นที่ระยะเวลาการแข็งเท่ากัน แต่ค่าความหนืดสูงสุดและความหนืดสูดท้ายมีค่าลดลง สำหรับการวิเคราะห์การเกิดสภาพรุนของข้าวด้วยเครื่อง DSC ข้าวที่แข็งนานกว่าจะเกิดสภาพรุนมากกว่า.

จากการศึกษาหาแนวทางที่เหมาะสมสำหรับการเพิ่มปริมาณตันข้าวของข้าวคุณภาพด้วยการแข็งร่วมกับการอบแห้งแบบฟลูอิดซ์เบดนี้ พบว่าการนำข้าวมีเปลือกมาแข็งตัวที่อุณหภูมิ ๘๐°ซ เป็นเวลา ๔ ชั่วโมงแล้วนำมาอบแห้งด้วยเครื่องทำรูน

ให้เป็นเวลา ๓ นาที และนำข้าวเปลือกไปเก็บในที่อันอากาศเป็นเวลา ๓๐ นาที และนำไปเป่าด้วยอากาศปกตินาน ๑ ชั่วโมง ทำให้ข้าวที่ได้มีร้อยละตันข้าวสูงสุด และคุณภาพด้านความขาวและการเมล็ดข้าวชุ่นในเมล็ดข้าวอยู่ในเกณฑ์ดี

กิตติกรรมประกาศ

เจ้าหน้าที่สถาบันคันคัวและพัฒนาผลิตภัณฑ์อาหาร มหาวิทยาลัยเกษตรศาสตร์ ได้ให้ความอนุเคราะห์ในการทดสอบคุณภาพทางเคมี สำนักงานกองทุนสนับสนุนการวิจัย และ *Japan International Research Center for Agricultural Sciences* ให้ทุนทำการวิจัย.

เอกสารอ้างอิง

- อัมมาน ษามวากา, วีรจัน พ ระนอง. ประมวลความรู้เรื่องข้าว. กรุงเทพฯ: สถาบันวิจัยเพื่อการพัฒนาประเทศไทย; ๒๕๓๓, หน้า ๑๕๔-๕.
- Ali SZ, Bhattacharya KR. High-Temperature Drying-Cum-Parboiling of Paddy. *Journal of Food Process Engineering* 1980; 4:123-36.
- Velupillai L, Verma LR. Drying and Tempering Effects on Parboiled Rice Quality. *Transaction of the American Society of Agricultural Engineering* 1986; 29:312-9.
- สมชาติ ไสกพารัตุกช์, Pachaya-warakorn S, Wangji M. Commercial Fluidized Bed Paddy Dryer. *Proceedings of the 10th International Drying Symposium* 1996; A: 638-44.
- สมชาติ ไสกพารัตุกช์, อดิเทห ทวีรัง พาณิช, สมบูรณ์ เวชกามา, งามชื่น กะเสริ, สุนันทา วงศ์ปีบ欣. ผลผลลัพธ์ได้

ผลกระทบของน้ำที่เปลี่ยนโดยใช้เทคนิค
ฟลูิดไบเดนซ์ วิธีสารราชบัณฑิตยศึกษา
๒๕๕๑; ๒๕๕๒: ๔๕-๖๓.

๙. อัตติพงษ์ วรรคพานิชย์, สมชาติ ไสกัณ
ร์, สมบูรณ์ เวชกานา, งามชิน คง
เสธ์, Wongpiyachon S. Effect of Dry-
ing on Head Yield Using Fluidiza-
tion Technique. Drying Technology

1999; 17(1&2): 345-53.

๙. สมชาติ ไสกัณร์, สมบูรณ์ เวชกานา,
ก. งามชิน, น. หุ่นสะอุด. Managing
Moist Paddy by Drying Tempering
and Ambient Air Ventilation. Drying
Technology 1999; 17(1&2): 335-44.

๑๐. Zhang Q, Litchfield JB. An Optimiza-
tion of Intermittent Corn Drying in
a Laboratory Scale Thin Layer Dryer.
Drying Technology 1991; 9(11):
233-44.

๑๑. Lai HM. Effects of Hydrothermal
Treatment on the Physicochemical
Properties of Pregelatinized Rice
Flour. Food Chemistry 2001; 72:455-
63.

Abstract

Increased Yield in Head Rice of Poor Quality Paddy by Combined Soaking and Fluidized Bed Drying

Suttinee Wanichsumran*, Patcharee Turigtrakul+, Wanunee Waranyanon#, Somchart Soponronnarit**

*Master's Degree Student, School of Energy and Materials, King Mongkut's University of Technology Thonburi, Bangkok, **Fellow of the Royal Institute; Professor, School of Energy and Materials, King Mongkut's University of Technology Thonburi, Bangkok, +#Researcher Specialist, Institute of Food Research and Product Development, Kasetsart University, Chatuchak, Bangkok.

This research is a feasibility study for increasing the head rice yield of poor quality paddy by combined soaking and fluidized bed drying. The effects of soaking time and drying time on head rice yield, color, white belly, hardness of cooked rice, stickiness of cooked rice, pasting viscosity of rice flour and gelatinization are considered. In the experiments, paddy with initial moisture content of 13% d.b. is soaked in hot water at a temperature of 80°C for 0.5-4 hours. Next, paddy is dried by a fluidized bed dryer at 150°C for 2-4 minutes. After that, it is tempered for 30 minutes. Finally, it is ventilated in the ambient air for one hour. Experimental results find that the soaking time of four hours and drying time of three minutes can considerably increase head rice yield. Moreover, whiteness and white belly are good criteria; however, these will be reduced with an increase in soaking and drying times. In the texture test, the cooked rice is moderately hardened and flaked with an increase in drying time. In addition, the peak and the final viscosity are reduced, but the pasting temperature is increased. For the gelatinization analysis by DSC, paddy with soaking time of four hours appears to produce a degree of gelatinization more than paddy with a soaking time of three hours (degree of gelatinization of 60.8 and 74.8% for soaking times of 3 and 4 hours respectively).

Key words: fluidized bed, paddy drying, rice quality

ເຕັມໄກ້ໄມ້ຈໍາລັດວ່ອງວ່ອກ-ຝູວີໄດ້ເປັນ : ການສຶກຂາເສີງການຄະດົງພຸດີກຽມ ການໄລຍະອອງອາກາມ-ແກລນ

The Vortexing-Fluidized Bed Combustor Cold Model : Experimental

Study of Air-Rice Husk Flow Behavior

ฐานนิตย์เมืองโบราณที่ 'นิวติ พริยะรุ่งโรจน์' อดีตศักดิ์ นาถกรรณกุล² และ สมชาย โภกภรณ์ฤทธิ์³

Thanid madhiyanon¹ Niwat Piriyanugroj¹ Adisak Nathakaranakule² Somchart Soponronnarit²

ภาควิชาวิศวกรรมเครื่องกล มหาวิทยาลัยเทคโนโลยีชิโนมหาสาร หนองจอก กรุงเทพฯ 10530

⁷ คณภาพลังงานและวัสดุ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี ด.ประชารัฐ ห้องอร กรุงเทพฯ 10140

โทร. 0-2988-3666 ต่อ 241 แฟกซ์ 0-2988-3666 ต่อ 241 E-mail: thanid@mut.ac.th

บทคัดย่อ

Abstract

The present work involves the experimental study to investigate the basic feature of air-rice husk flow behavior as well as the measurements of air velocity are also conducted in a vortexing-fluidized bed combustor (VFBC) cold model which is essential for proper design and operation of combustor. The results shown that a combination phenomena of vortex and fluidization flow were simultaneously developed. The vortex ring functions as an air nozzle which facilitates the swirling motion and hence enhancing tangential air velocity. This created the suspension layer of rice husk between the vortex ring which could substantially reduce the elutriation of solid. The circulation flow

is aggressive at near the wall due to the reverse flow of air which is beneficial for solid combustion. The vortex ring and spouted bed feature developed at the bottom of VFBC induced the fluidization in the next above zones without using any inert materials mixed in to the bed.

1. រូបំរុះ

การเเพร่ไห้มวัยเด็กใช้หัวลักษณะของการเเพร่ไห้ควบคู่กับการเเพร่ไห้แบบ
วอร์เทกได้เป็นที่รู้จักกันแพร่หลายมาหลายทศวรรษแล้ว เช่น เค้าเเพร่ไห้มวัย
ไชโภคุณ [1] และต่อมาได้มีการนำมาประยุกต์ใช้กับเชื้อเพลิงชีวนิวลด เช่น
แกคลน [2, 3, 4] สำหรับเค้าเเพร่ไห้มวัยฟรุตอิโคซ์เบคก์ได้มีการพัฒนามานาน
แล้วเช่นกัน ส่วนใหญ่จะใช้กับเชื้อเพลิงถ่านเพื่อผลิตกระแสไฟฟ้าซึ่งก็มี
นำมาประยุกต์ใช้กับเชื้อเพลิงชีวนิวลด [5, 6, 7] แต่เมื่อจากเชื้อเพลิง ชีว
นิวลด เช่น แกคลน การเกิดฟรุตอิโคซ์เบคก์เป็นได้ยากจึงเป็นต้องใช้วัสดุเชือบ
ขาพักทรายบริการ อยู่ในมา ผสมลงในเศษในอัตราที่เหมาะสม [5, 8] และ
เมื่อประมาณ 10 กว่าปีมานี้ได้มีการพัฒนาเค้าเเพร่ไห้มวัยฟรุตอิโคซ์เบคซึ่งใช้
กับถ่านหินชนิดปืนเรือเพลิงได้เบค โดยการเพิ่มการฉีดอากาศในแนว
สัมผัสเข้าไปในเค้าเเพร่ไห้มวัยบริเวณ free board ที่ให้ช่วยลดความสูงของ
เค้าเเพร่ไห้มวัย ได้มาก [9, 10, 11] ต่อมาได้มีการศึกษาอย่างต่อเนื่องการไหลด
ก้าช-อุภากคากายในเค้าเเพร่ไห้มวัยวอร์เทกพบว่ามีบริเวณที่เกิดการหยุนเรียบ
อุภากคากายในเค้าเเพร่ไห้มวัย ซึ่งทำให้ residence time นานขึ้น [12] ซึ่ง
งานวิจัยนี้มีจุดประสงค์เพื่อศึกษาอย่างต่อเนื่องการไหลดของอากาศ - แกคลน
ภายนอกในเค้าเเพร่ไห้มวัยวอร์เทก-ฟรุตอิโคซ์เบค (VFBC) ซึ่งได้ออกแบบมาเพื่อ
รวมลักษณะเด่นของเค้าเเพร่ไห้มวัยวอร์เทก และเค้าเเพร่ไห้มวัยฟรุตอิโคซ์เบคไว้
ด้วยกันเพื่อให้เป็นพื้นฐานในการออกแบบและจัดสร้างเค้าเเพร่ไห้มวัยริง

2. วิธีการทดสอบ

2.1 การสังเกตการไหลของอากาศ-แกลบภายใน VFBC จำลอง

1. การเครื่องมือโปรแกรมการทดลองและประกอบ VFBC จำลองกับวงแหวนวาร์ทก็คั่งและคงในรูปที่ 1

RECEIVED 7 July, 2003

ACCEPTED 30 October, 2003

2. การปรับอัตราการไหลของแกลนและอากาศให้สอดคล้องกับเงื่อนไขแสดงในตารางที่ 1. (Run No.1-No.8)

3. บันทึกผลการทดลอง

2.2 การวัดความเร็ว ณ ตำแหน่งต่างๆ ภายในเตาเผา VFBC ซึ่งมีวิธีที่ทำการทดลองดังต่อไปนี้

1. เครื่องอุปกรณ์การทดลองและประกอบ VFBC จำลองกับวงแหวนวอร์เทค

2. ปรับอัตราการไหลของอากาศให้สอดคล้องกับเงื่อนไขในตารางที่ 1 Run No.1 โดยไม่ต้องป้อนแกลน

3. ทำการวัดความเร็วของอากาศในแนวสัมผัสและในแนวแกนโดยใช้ Hot wire ที่มีค่าความคลาดเคลื่อน 3% ของที่วัดได้ ที่ระดับความสูงในแนวแกน(z axis)เท่ากับ 20 cm. โดยอ้างอิงรีบบันด์จากแม่นกระจาดลม(Air distributor)และตำแหน่งในแนวรัศมี(r axis)เท่ากับ 0.5 cm. โดยอ้างอิงจากผนังเตาด้านในดังแสดงในรูปที่ 2b

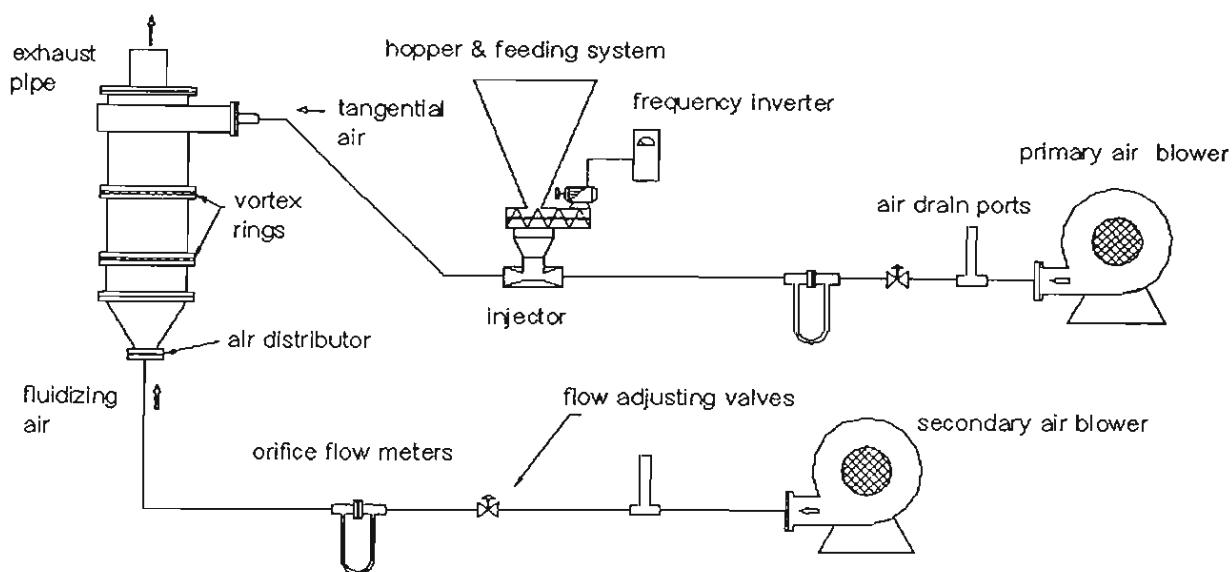
4. ทำการทดลองช้าข้อ 3 โดยเปลี่ยนตำแหน่งวัดในแนวรัศมี(ความแนวสัมผัสสูงชัดลง)ทั้งหมด 17 ตำแหน่งซึ่งแต่ละตำแหน่งอยู่ห่างกัน 1 cm.

5. ทำการทดลองช้าข้อ 3 และข้อ 4 โดยเปลี่ยนตำแหน่งวัดในแนวแกนเท่ากับ 30 cm., 40 cm., 50 cm. และ 60 cm. ตามลำดับ

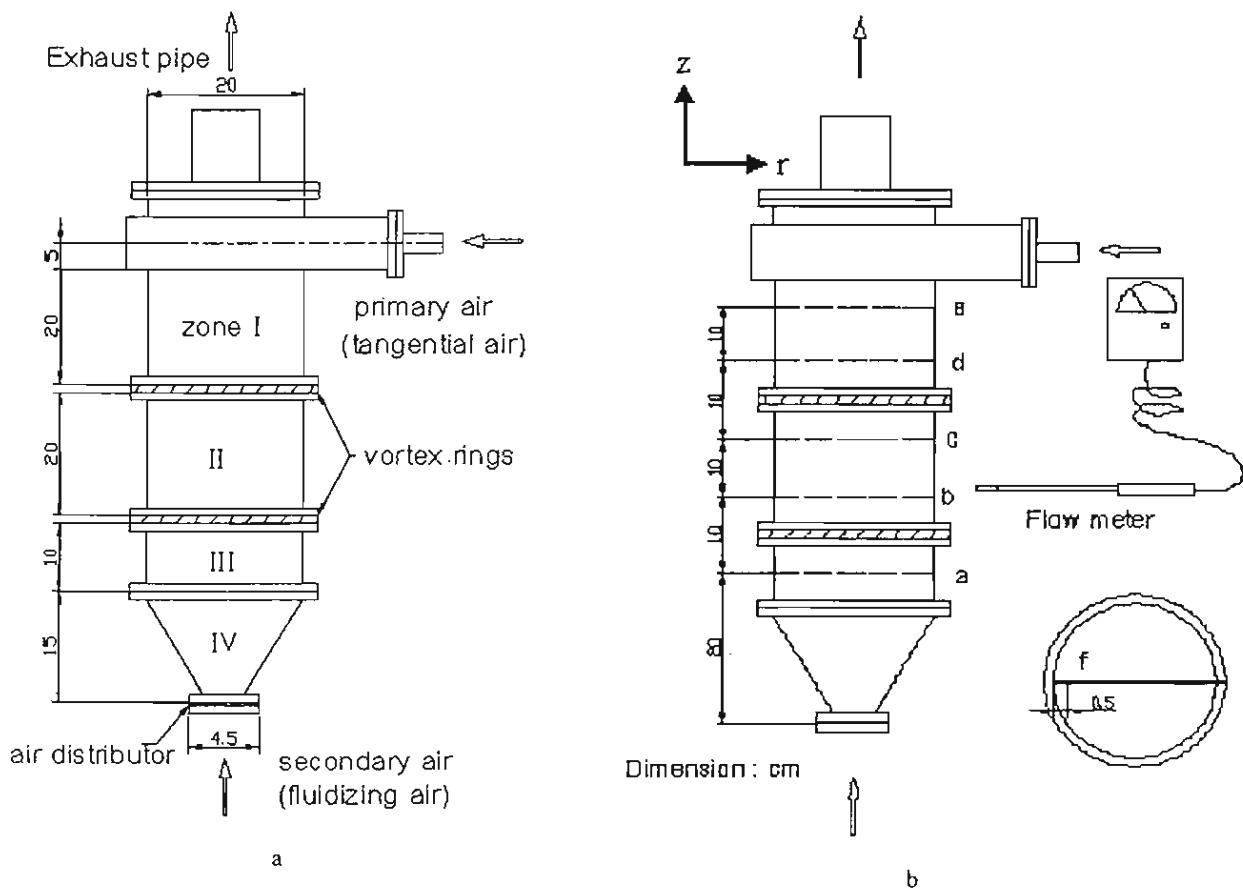
6. ทำการทดลองช้าข้อ 1-5 โดยไม่ประกอบวงแหวนวอร์เทคเข้ากับชุด VFBC จำลอง

3. ผลการทดลองและวิเคราะห์

3.1 การศึกษาอิสระพุติกรรมการไหลของอากาศ - แกลนภายในเตาเผาในวอร์เทค - ฟลูอิเดชันเบด จำลอง


เพื่อให้เข้าใจพื้นฐานของรูปแบบลักษณะการไหลของอากาศ - แกลนภายในเตาเผาในวอร์เทค ฟลูอิเดชันเบด (Vortex Fluidized Bed Combustor, VFBC) จำลอง ผลการทดลองได้แสดงด้วยดังแสดงในรูปที่ 3 และ 4 สำหรับเงื่อนไขในแต่ละการทดลองได้แสดงไว้ในตารางที่ 1 จากการทดลองพบว่าหลังจากอากาศส่วนแรกและแกลนถูกจ่ายในแนวสัมผัส (tangential flow) ที่ทางด้านบนของ VFBC จำลอง และให้ไหลเข้าไปใน Zone I (ตำแหน่งของแต่ละ Zone ดังแสดงในรูปที่ 2a) แกลนจะไหลเวียนเป็นเกลียวไปตามผนังของ VFBC จำลอง ลงสู่ด้านล่างในลักษณะการไหลแบบวอร์เทค ซึ่งเป็นผลมาจากการแรงเหวี่ยง (centrifugal force) ของมวลอากาศที่ไหลในแนวสัมผัส (tangential flow) เมื่ออากาศพ้นแกลนไหลวน น้ำขึ้นเริ่มเห็นวงแหวนวอร์เทค (vortex ring) อันแรกซึ่งทำหน้าที่เสมือนหัวฉีดอากาศ (air nozzle) ซึ่งช่วยเร่งความเร็วของอากาศให้เพิ่มขึ้น และไหลวนผ่านช่องตรงกลางของวงแหวนไปยัง Zone II

สำหรับ Zone II สำหรับพุติกรรมการให้แกลนจะซึ่งก่อให้เกิดการไหลแบบฟลูอิเดชันเบด (Fluidized bed flow) ของแกลนจาก Zone III ซึ่งอยู่ด้านล่าง และถูกพัดให้ลอดขึ้นมาพร้อมกับอากาศ ซึ่งเป็นผลมาจากการไหลแบบฟลูอิเดชันเบดของแกลนจะเกิดขึ้นสม่ำเสมอทั่วทั้งบริเวณ Zone II รวมถึงบริเวณแกนกลาง (core region) ของ VFBC จำลอง ดังแสดงในรูป 3 และ 4 และที่สังเกตได้คือชั้นดักจีนคือแกลนในบริเวณ Zone II นี้แทนจะไม่มีหลุกคลุกเป็นไปใน Zone I ซึ่งอยู่ด้านบนนี้ของจากมีการไหลแบบวอร์เทคที่รุนแรง บริเวณเหนือและใต้วงแหวนวอร์เทคก่อให้เกิดแรงเหวี่ยงที่รุนแรงบริเวณนี้จึงมีลักษณะคล้ายผ้าม่านอากาศ (air curtain) ที่ให้แกลนซึ่งเป็นอนุภาคขนาดใหญ่และมีน้ำหนักมากไม่สามารถไหลข้ามไปได้ ดังนั้นภายใน Zone II จึงมีสภาพเป็นเหมือนชั้นแบนลอย (suspension layer) ของแกลน และแกลนที่ไหลเวียนมานามากผนังจะซึ่งก่อให้ก่อให้ไม่ไหลเกาะกันอีก ดังที่เป็นเห็นเกลียวเห็นอนันต์ใน Zone I แต่จะไหลตามกันน้ำเป็นแผ่นใหญ่คุณภาพของจานเรียงที่การเกิดวอร์เทคใน Zone II นี้มีกำลังอ่อนลง


แกลนที่ไหลออกจาก Zone II จะไหลเข้าสู่ Zone III ซึ่งอยู่ด้านล่าง โดยในบริเวณ Zone III จะสังเกตการไหลวนของแกลนได้ในชั้นดักจีนนี้เพียงลักษณะการไหลแบบฟลูอิเดชันเบดเท่านั้นที่เด่นชัดใน Zone นี้ สำหรับใน Zone IV ซึ่งอยู่ด้านล่างสุดของ VFBC จำลอง แกลนจะไหลวนก่องรวมกันเป็นเบด โดยมีอากาศส่วนที่สอง (Fluidizing air) ไหลขึ้นมาแนวแกนจากทางด้านล่างของเบดผ่านแม่นกระจาดลม (air distributor) และด้วยความเร็วอากาศที่เหมาะสมสามารถดักด้วยแกลนบนบันดับด้วยจุดก่อ เป็นโครงอากาศบริเวณตรงกลางเบดและ แกลนที่อยู่บริเวณล่างสุดของเบดจะลอดไปกับอากาศโดยแกลนที่อยู่บริเวณรอบๆ โครงอากาศจะเคลื่อนตัวลงสู่ด้านล่างของเบดเพื่อให้ไปแทนที่แกลนด้านล่างที่ถูกพัดไป กับอากาศ ซึ่งลักษณะเช่นนี้คือการเกิดของสเปรเด็ดเบด (spouted bed)

3.1.1 วงแหวนวอร์เทคกับพุติกรรมการไหลของแกลนใน VFBC จำลอง

ในการทดลองเบื้องต้นที่ซึ่งไม่ได้ดัดดังวงแหวนวอร์เทคพบว่าอากาศจะไหลวนมาจากการไหลด้านบน ลงมาถึงบริเวณที่เป็นเบดของแกลนใน Zone IV ก่อนที่จะหมุนวนกลับขึ้นไปในแนวแกนโดยอากาศส่วนที่สองจากทางด้านล่างของ VFBC จำลอง ไม่สามารถพาแกลนให้ลอดขึ้นสู่ด้านบนได้ nok เสียงจากว่าจะต้องใช้ปริมาณอากาศส่วนที่สองมากเพื่ออากาศส่วนที่หนึ่งเบด ซึ่งอาจทำให้ต้องใช้ปริมาณอากาศส่วนเกิน(excess air) คือความจำเป็นในการเผาให้มีจังหวะเพื่อแก้ปัญหานี้ จึงได้ออกแบบวงแหวนวอร์เทคและดัดดังที่เข้าไปภายใน VFBC ที่ระดับความสูง $H/D = 1.25$ และ 2.25 ตามลำดับ ดังแสดงในรูปที่ 2a โดยผลการทดลองเป็นไปตามที่กล่าวมาแล้วในหัวข้อ 3.1

รูปที่ 1 อุปกรณ์การทดลองเตาเผาในน้ำอุ่น-ฟลูอิเดซ์เบดจำลอง

รูปที่ 2 ขนาดและตำแหน่งการวัดความเร็วของเตาเผาในน้ำอุ่น-ฟลูอิเดซ์เบดจำลอง

ตารางที่ 1 เมื่อนำการทดลองสำหรับการศึกษาพฤติกรรมการให้ผลของอากาศ-แกลบใน VFBC จำลอง

Run No.		1	2	3	4	5	6	7	8
Rice husk feed rate	g/min	300	300	300	300	250	250	250	250
Primary (tangential) air									
Flow rate	m ³ /min	2.68	2.44	2.19	2.07	2.68	2.19	2.07	1.95
Velocity	m/s	22	20	18	17	22	18	17	16
Secondary (fluidizing) air									
Flow rate	m ³ /min	0.573	0.573	0.573	0.573	0.573	0.573	0.573	0.573
Velocity	m/s	6	6	6	6	6	6	6	6
Swirl number, S	-	5.25	5.07	4.86	4.74	5.25	4.86	4.74	4.61

3.1.2 การเกิดขั้นแบบลอยของแกนกวายใน VFBC จำลอง และความสามารถในการดักแกน

จากรูปที่ 3 (a-c) และ 4 (a-c) จะเห็นได้อีกชั้นว่าแกนจะรวมด้วยกันอยู่เป็นชั้นแขวนลอดอย (suspension layer) ภายในบริเวณ Zone II ซึ่งอยู่ระหว่างแนววาร์เตคทั้งสอง แกลบที่เข้ามาสู่บริเวณ Zone II นี้จะมาจากสองส่วนคือแกลบส่วนแรกนาจากการไหลวนจากทางด้านบนของ VFBC จำลองซึ่งก็จะไหลออกไปสู่ Zone III ซึ่งอยู่ติดลงไปแกลบอีกส่วนหนึ่งมาจากแกลบในเบนดของ Zone IV ซึ่งลอดขึ้นมาพร้อมกับอากาศที่เร็วกว่าเป็นชั้นแขวนลอดของแกลบกีเพรเวลังเกตได้อีกชั้นชั้นเดียวกัน ซึ่งแกลบอีกส่วนหนึ่งจะเป็นชั้นแขวนลอดของแกลบกีเพรเวลังเกตได้อีกชั้น โดยทั่วไปแล้วจะไม่สามารถดูดลอดเข้าไปสู่ Zone I ซึ่งอยู่เหนือชั้นไปได้และเมื่อปั๊มแกลบที่จะสามารถอุ้มน้ำได้ในชั้นนี้มีมากขึ้น จันกระหั้นน้ำหนักของแกลบมากกว่าแรงต� (drag force) ที่เกิดจากการไหลของอากาศ จะทำให้แกลบบางส่วนคงอยู่บนด้านล่าง เพื่อรักษาสมดุลทางพลศาสตร์ของชั้นแขวนลอดนี้ไว้ ประกอบการณ์เช่นนี้สามารถลดอิฐชาได้วันกิดจากการไหลวนของอากาศที่รุนแรงบริเวณหนึ่งและได้วันแนววาร์เตคทำให้เกิดแรงเหวี่ยงที่มีกำลังมากและเมื่อแกลบลอดดัววันน้ำในบริเวณใกล้ชั้นแขวนนี้ก็จะถูกเหวี่ยงไปชนกับผนังของ VFBC จำลองและไหลหล่นลงมาสู่ด้านล่างเนื่องจากแรงโน้มถ่วงลักษณะเช่นนี้คือลักษณะมีม่านอากาศ (air curtain) ที่บีบริเวณแนววาร์เตคทำหน้าที่ตัดกับนุกากขนาดใหญ่ เช่น แกลบที่ซึ่งไม่ได้มาใหม่ไม่ให้ผ่านเข้าไปได้ประกอบการณ์เช่นนี้คือลักษณะที่ Yang และ Nich [10] กลับพบว่าการติดอากาศส่วนที่สองเข้าไปในแนวสัมผัสบริเวณ free board ของเดาณาใหม่ฟลูอิไดร์เบดจะทำให้เกิดชั้นแขวนลอดของนุกากในบริเวณ free board ได้

3.1.3 การกระจายตัวของแกลูนภายใน VFBC จำลอง

พิจารณากรุ๊ปที่ 3(a-c) และ 4(a-c) จะสังเกตได้ว่าใน Zone I ซึ่งเป็นบริเวณทางเข้าของอาคารส่วนแรกและเกล็นจะมีเกล็นอยู่พะ

บริเวณผนังของ VFBC จำลองเท่านั้น บริเวณตรงกลางรอบๆแนวแกนของ VFBC จำลอง ซึ่งตรงกับแนวของท่อทางออกด้านบนสุดของ VFBC จำลอง ไม่พบว่ามีเกล็ดของไข่ในบริเวณนี้ซึ่งทำให้มั่นใจได้ว่าถ้าเป็นในการพิจารณาความไม่ชัดเจนของเกล็ดที่ซึ่งขังเพาใหม่ไม่หนัดจะไม่ลอกหัวออกไปจาก เต้าปี๊ด

3.1.4 ផលិតផល Swirl number

คำ Swirl No. (S) สำหรับ VFBC จะใช้เป็นดัชนีของการไหลของอากาศ-แก๊สเป็นผลมาจากการไหลอันเนื่องมาจากการหมุนหรือไม่แน่นดัชนีแนวแกนมากกว่ากัน ซึ่งสามารถหาค่าได้ดังนี้

$$S = \sum_{i=1}^m f_i^2 \frac{\pi D_e D_o}{4A_{ii}} \quad (1)$$

เมื่อ ก็อ จำนวนท่อทางเข้าในแนวสันผัส
 ก็อ พื้นที่หน้าดักของท่อทางเข้าในแนวสันผัส
 ก็อ สัดส่วนของปริมาณอากาศส่วนแรกต่อปริมาณอากาศทั้งหมด

ค่า S ของแต่ละการทดลองคูดได้จากตารางที่ 1 จากการทดลองพบว่าการทดลองที่มีค่า S มากการรุกเกิลควรเทียบกับริเวณทางวิธีเก็งอันแรก (ที่ระบุ $H/D = 2.25$) จะมากพอที่จะทำให้หินแนวนลอน (suspension layer) มีความเสถียรอยู่ได้และแก้กลบซึ่งเป็นอนุภาคขนาดใหญ่ไม่สามารถไหลล้ำข้ามหินนี้ไปได้ ดังเช่นการทดลองที่แสดงในรูปที่ 3 (a-c) ($S = 5.25, 5.07, 4.86$) ซึ่งมีอัตราการป้อนแกลลอนเท่ากับ 300 g/min และรูปที่ 4 (a-c) ($S = 5.25, 4.86, 4.74$) ซึ่งมีอัตราการป้อนแกลลอนเท่ากับ 250 g/min ในการทดลองที่มีค่า S ต่ำมาก จะทำให้เกิดแรงหนีบงับเกินไปจนกระทั่งแกลลอนใน Zone II จะไม่ล้ำข้ามหินน้ำใน Zone I ไม่หล่อเท

อุดคงอกไปที่ห้องอุด และออกจากน้ำเกลอนใน Zone I ที่จะไม่เกะกะ กลุ่มกันเป็นเส้นเกลียว ดังแสดงในรูปที่ 3d ($S = 4.74$) และ 4d ($S = 4.61$) ผลของ Swirl Number อีกประการหนึ่งคือการไหลที่มีค่า S สูง ระบบทิพท์ของเกลียวจะสั้นลง (มุนที่แนวเกลียวทำกันแนวระดับจะน้อย) ซึ่งจะทำให้ residence time ของอนุภาคน้ำในเครื่องมากขึ้น ซึ่งดูได้จากรูปที่ 3a ($S = 5.25$) เมื่อเทียบกับรูปที่ 3d ($S = 4.74$)

3.1.5 การเห็นว่าไห้เกิดฟลูอิไดซ์เซ็นในชั้นแนวโน้มของ VFBC จำลอง

ในตอนเริ่มต้นของการออกแบบที่ส่วนด้านล่างสุดของ VFBC จำลองซึ่งเป็นท่อผู้ของเบดไม้ได้มีลักษณะเป็นรูปทรงกรวยอย่างที่แสดงในรูปแต่เป็นรูปทรงกระบอกเหมือนกับส่วนอื่นๆ ของเตาจำลอง แต่จาก การทดลองในเบื้องต้นพบว่า เมื่ออากาศส่วนที่สองไหลจากด้านล่างผ่าน แผ่นกระดาษลินินามาไม่สามารถทำให้เกลนลอดหัวชี้น้ำแบบฟลูอิไดซ์ เนื่องจากภายในเบดของเกลนจะเกิดเป็นไห้แรงอากาศที่น้ำในบาง ด้านหนึ่งและอากาศจากด้านล่างจะไหลผ่านไห้แรงอากาศที่น้ำในด้าน ไม่ได้ทางเกลนให้ลอดหัวชี้น้ำด้วย ทำให้เกลนลักษณะเป็นเบดนี้ สามารถน้ำจากรูปทรงของเกลนและความหนาแน่นของเกลนซึ่งมี ค่าน้อย ทำให้ยากต่อการเกิดฟลูอิไดซ์เซ็น Rao และคณะ [8] และ Natarajan และคณะ [5] จึงได้ใช้สัดส่วนของพากทรรษาระดับ 0.5 ที่ ค่าน้ำที่อุณหภูมิเดียวกันเพื่อให้เกิดฟลูอิไดซ์เซ็นนี้ได้แต่ลิ่งที่ ความต้องการความตันคงร่องเบดจะสูงมาก ในงานวิจัยนี้จึงได้มี แนวทางแก้ไขที่ดังกันไปคือนำหัวลักษณะของส่วนนี้ที่เป็นเกลนไปติดกับด้านล่างของ VFBC จำลอง จึงได้ออกแบบด้านล่างของ VFBC จำลองให้มี ลักษณะเป็นทรงกรวยทำให้เกลนในเบดลอดหัวชี้น้ำไปได้และมีลักษณะ ไห้แรงแบบภายในชั้นแนวโน้มของ Zone II แบบฟลูอิไดซ์เบด

3.1.6 อัตราส่วนความสูงต่อเส้นผ่าศูนย์กลาง (H/D) ของ VFBC จำลอง

ค่า H/D เป็นพารามิเตอร์ที่สำคัญอย่างหนึ่งในการออกแบบ เตาไห้ใหม่หรือเทกและเตาไห้ใหม่ฟลูอิไดซ์เบด เตาไห้ใหม่ที่มีค่า H/D ต่ำกว่าที่ซึ่งมีประสิทธิภาพความร้อนสูงจะน้อยกว่า combustion intensity (หน่วยเป็น $kg\ fuel/h/m^2$ หรือ $kg\ fuel/h/m^3$) สูงในขณะที่ดันทุนในการก่อสร้างต่ำ และสะทวฤตต่อการติดตั้งในพื้นที่จำกัด โดยที่ว่าไปแล้วว่า H/D ของเตาไห้ใหม่จะถูกจำกัดด้วยเงื่อนไขของ residence time ที่ต้องมี ระยะเวลาล้านนาพอยเพียงต่อการเผาไห้ใหม่โดยสมบูรณ์ สำหรับเตาไห้ฟลูอิไดซ์เบด มีค่า H/D ประมาณ 13 และค่า combustion intensity ประมาณ $265\ kg\ fuel/h/m^2$ ($530\ kg\ fuel/h/m^3$) [5,6] ในขณะที่เตาไห้ใหม่ไห้ใจกลันที่ใช้เชื้อเพลิงเกลน ที่ผลิตใช้อุ่นภายในประตูเทา ค่า H/D เท่ากับ 2.5 และค่า combustion intensity ประมาณ $100\ kg/h/m^3$ [4] สำหรับในงานวิจัยนี้ ค่า H/D ของ VFBC จำลอง เท่ากับ 3.5 ซึ่งถ้ากว่า

เตาไห้ใหม่ฟลูอิไดซ์เบด แต่ยังสูงกว่าของเตาไห้ใหม่ไห้ใจกลันเนื่องจาก มีส่วนที่เพิ่มขึ้นมาคือหัวแนวโน้มของอนุภาคน้ำ ซึ่ง เป็นบริเวณที่มีลักษณะ การไหลร่วมกันระหว่างว่าอร์เทกกับฟลูอิไดซ์เบดซึ่งเมื่อนำไปใช้งานใน ลักษณะของเตาไห้ใหม่จะริงส่วนนี้จะทำหน้าที่เป็นห้องเผาไห้ใหม้อีกส่วน หนึ่ง

3.2 การกระจายความเร็วของอากาศในแนวสัมผัสและแนวแกน

ในการทดลองที่ไม่มีการป้องกันแล้วเข้าไปใน VFBC จำลอง ได้นับที่ความเร็วของอากาศทั้งในแนวสัมผัสและแนวแกนบนระนาบ แนวตั้งที่ผ่านกลาง (vertical midplane) ของ VFBC จำลอง ดังแสดงใน รูปที่ 5(a-b) และ 6(a-b) ซึ่งเป็นการเปรียบเทียบความเร็วของอากาศใน กรณีนี้กับไม้มีวงแหวนว่าอร์เทกโดยห้องทดลองการทดลอง อากาศทั้งสอง ส่วนนี้เมื่อนำไปการไหลตาม Run No.1 ดังแสดงในตารางที่ 1

3.2.1 ความเร็วอากาศในแนวสัมผัส

จากรูปที่ 5 (a) เปรียบเทียบ รูปที่ 6 (a) เห็นได้อย่างชัดเจนว่า การเกิดว่าอร์เทกในกรณีมีวงแหวนว่าอร์เทกจะรุนแรงมากกว่าในกรณี ไม้มีวงแหวนว่าอร์เทกโดยความเร็วสูงสุดในแนวสัมผัส ในกรณีมีวงแหวนว่าอร์เทกจะสูงกว่าในกรณีไม้มีวงแหวนว่าอร์เทกถึงประมาณ 3 เท่า ลักษณะ ไประไฟล์ ของความเร็วอากาศในแนวสัมผัส ในกรณีที่มีวงแหวนว่าอร์เทกค่อนข้างจะเป็นไปตามความสัมพันธ์ Rankine vortex ซึ่งรวมผล ของการไหลแบบว่าอร์เทกอิสระ (free vortex flow) กับการไหลแบบ ว่าอร์เทกบังคับ (forced vortex flow) และเป็นไปตามความสัมพันธ์ดังนี้

$$W_r^* = \text{constant} \quad (2)$$

เมื่อ $W = \text{ความเร็วในแนวสัมผัส}$

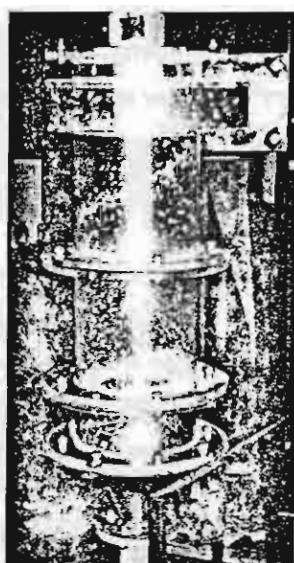
$R = \text{รัศมีภายในของเตา}$

$n = -0.8, 0 < r < 0.65R$

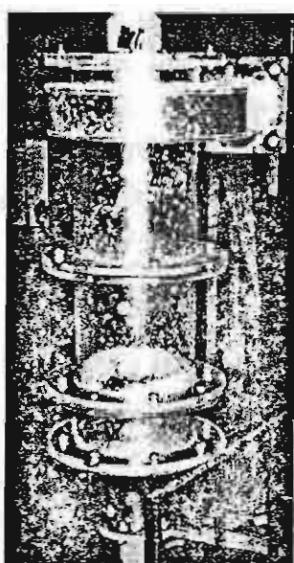
$n = 0.5, 0.65R < r < R$

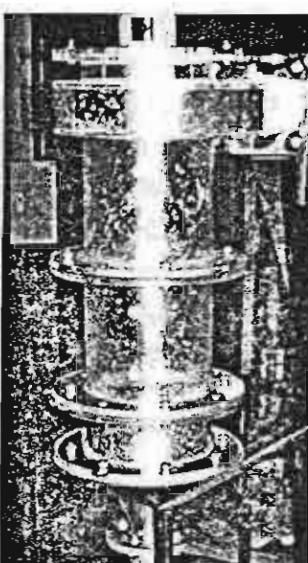
$r = \text{ระยะที่วัดออกจากศูนย์กลางในแนวรัศมี}$

สำหรับ VFBC จำลองที่ใช้งานวิจัยนี้ จากรูปที่ 5 (a) จะพบว่า การเกิดว่าอร์เทกแบบบังคับจะเกิดขึ้นในช่วงประมาณ $0 < r < 0.55R$ และว่าอร์เทกแบบอิสระจะเกิดขึ้นบริเวณช่วง $0.55R < r < R$ โดยว่าอร์เทก ที่เกิดขึ้นเหนือวงแหวนว่าอร์เทกจะรุนแรงมากกว่าว่าอร์เทกที่เกิดขึ้น ด้านล่างของวงแหวน สำหรับการทดลองกรณีที่ไม้มีวงแหวนว่าอร์เทก ดังแสดงในรูปที่ 6a ต่อกริการไหลแบบว่าอร์เทกไม้มากเมื่อเปรียบเทียบกับ กรณีที่ไม้มีวงแหวนบกวน บริเวณด้านบนของ VFBC จำลองซึ่งอยู่ใกล้ท่อ ทางเข้าของอากาศส่วนแรก นอกจากนี้ยังพบว่าบริเวณของการเกิดว่าอร์ เทกแบบอิสระจะควบคุมกว่าของว่าอร์เทกแบบบังคับมาก


การที่ความเร็วในแนวสัมผัสนี้ค่าสูงขึ้นมากเมื่อไส้กรองหัววอร์เทกเข้าไปอธิบายได้ว่าเป็นผลมากจากความหนืดของอากาศบริเวณพื้นผิวของวงแหวนทำให้อากาศบริเวณพื้นผิวนี้หล่อความเร็วลงอย่างมากทำให้ความเร็วอากาศในแนวสัมผัสนี้เหลือนอย่างวงแหวนขึ้นไปมีความเร็วเพิ่มขึ้นเพื่อให้ได้อัตราการไอลอคเดิน ดังนั้นจึงอาจกล่าวได้ว่างแหวนวอร์เทกจึงทำหน้าที่คล้ายหัวฉีดอากาศ (air nozzle) ด้วยนั่นที่ช่วยเพิ่มความเร็วให้กับอากาศ จากรูปที่ 5 และ 6 จะเห็นได้ว่าไปริ่ฟล์ความเร็ว

ในแนวสัมผัสนี้อันข้างจะสมมาตรทั้งสองด้านของแกน VFBC จึงอาจสันนิษฐานได้ว่าท่อทางออกและลักษณะไปริ่ฟล์ความเร็วคล้ายคลึงกันทั้งสองกรณี

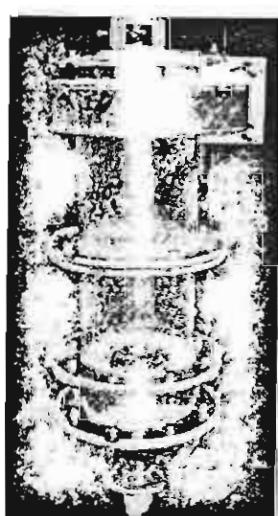

ผลประการสำคัญของการเกิดวอร์เทกที่รุนแรงใกล้บริเวณที่ติดตั้งวงแหวนวอร์เทกคือจะช่วยดักอนุภาคขนาดใหญ่ที่ซึ่งเพาหิมไม่หนดไม่ให้หลบหนีออกไปจากเดาได้


a

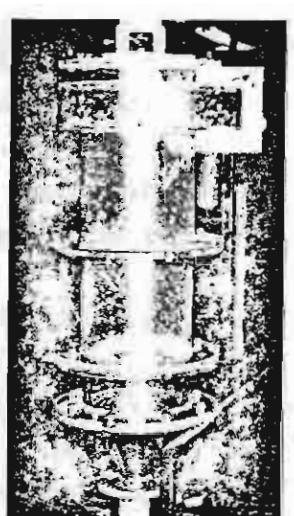
b

c

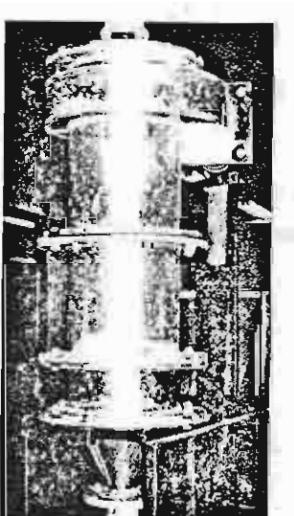
d

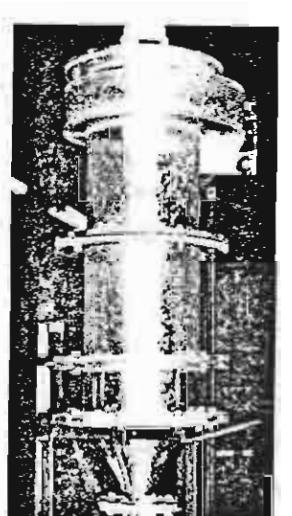

Run No. 1 , S = 5.25

Run No. 2 , S = 5.07


Run No. 3 , S = 4.86

Run No. 4 , S = 4.74

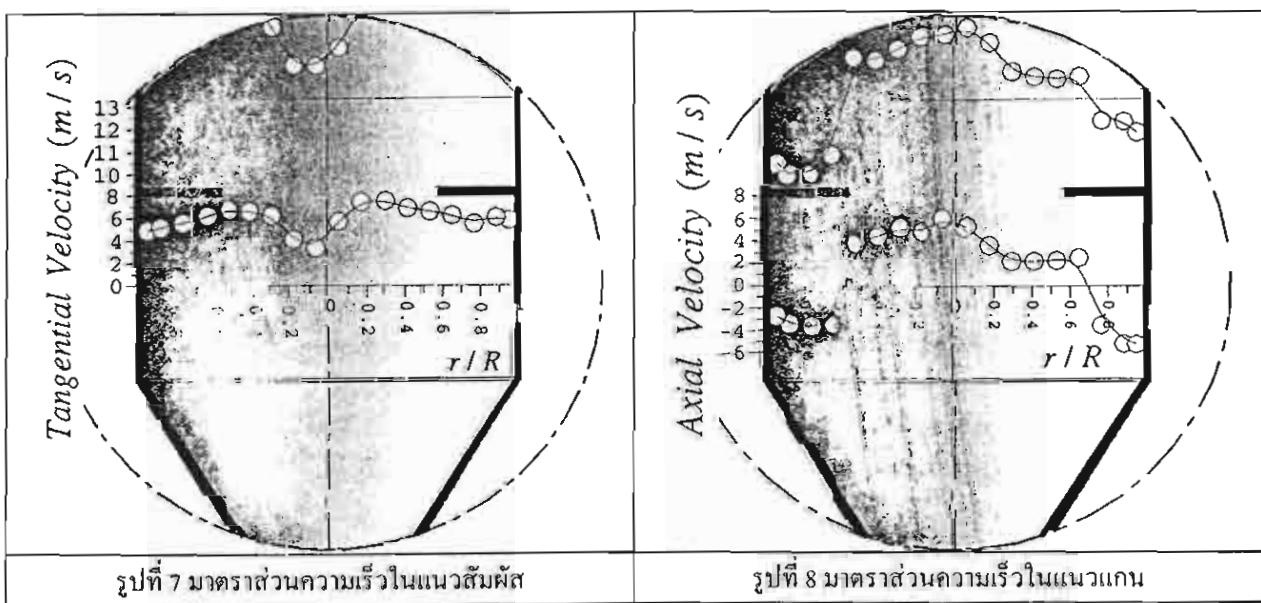
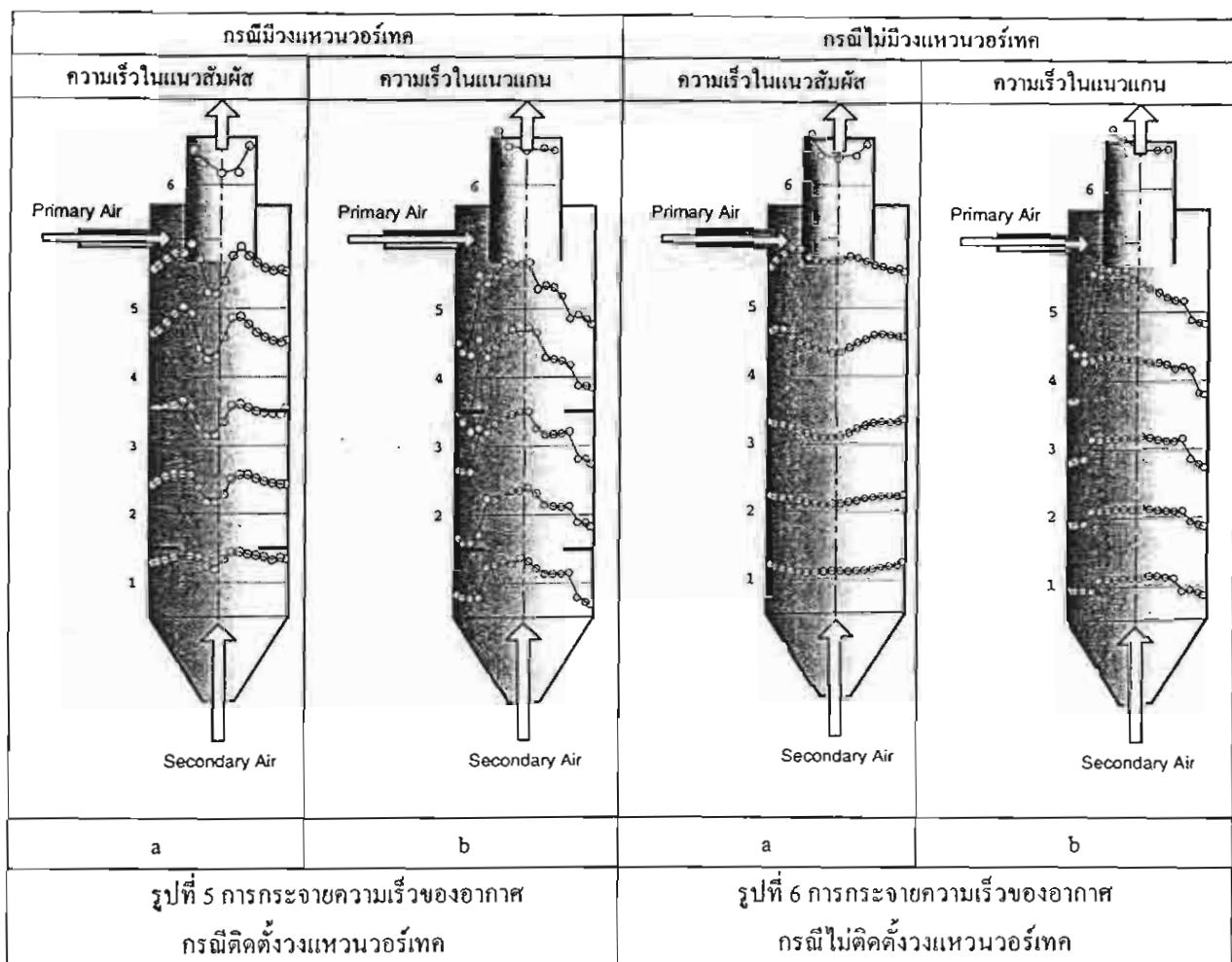

รูปที่ 3 การไอลอคของอากาศและแกลบใน VFBC จำลอง ในการณิอัตราการป้อนแกลบ 250 g/min


a

b

c

d



Run No. 5 , S = 5.25

Run No. 6 , S = 4.86

Run No. 7 , S = 4.74

Run No. 8 , S = 4.61

รูปที่ 4 การไอลอคของอากาศและแกลบใน VFBC จำลอง ในการณิอัตราการป้อนแกลบ 300 g/min

3.2.2 ความเร็วอากาศในแนวแกน

ความเร็วอากาศในแนวแกน (axial velocity) ในทิศขึ้นในกรณีที่ไส้สูงแห้งวนวอร์เทกซ์มีค่าสูงกว่ากรณีที่ไม่ไส้สูงแห้งวนวอร์เทกหลังเทาดังแสดงในรูป ๓๖ กับ ๓๖ โคไซด์พาร์ที่ด้านล่างของ VFBC จำลองที่ให้อากาศสามารถพาแกลนลอกหัวสูงขึ้นให้เลี้ยวไปสู่ที่แขวนลอกหัวใน Zone II ได้ซึ่งจะตรงข้ามกับในกรณีที่ไม่ไส้สูงแห้งวนวอร์เทกที่ความเร็วในแนวแกนไม่สูงพอที่จะขับพาแกลนลอกหัวสูงขึ้นได้ซึ่งอาจเกิดจากสาเหตุของประการ ประการแรก แรงเหวี่ยงซึ่งมีมากในกรณีที่ไส้สูงแห้งวนวอร์เทกทำให้บริเวณกลาง (Core region) มีความดันที่ต่ำลงทำให้เกิดผลต่างความดัน (pressure gradient) ระหว่างความดันที่ด้านหน้าของทางเข้าของอากาศส่วนที่สอง (ด้านล่างของเตา) กับความดันภายใน VFBC จำลองมีค่ามากจึงทำให้อากาศไหลขึ้นในแนวแกนด้วยความเร็วสูงหรือประการที่สองอาจเกิดจากกรณีที่พื้นที่ของไส้สูงแห้งวนวอร์เทกแบบบังคับซึ่งอยู่บริเวณกลางเดาถูกบินให้พ้นที่เล็กลง จึงทำให้อากาศไหลขึ้นด้วยความเร็วสูงได้

จากรูปที่ ๓๖ กับ ๓๖ จะเห็นได้ว่า ความเร็วอากาศในแนวแกนทิศลงจะเกิดขึ้นในช่วง $0.65R < r < 1$ และมีความสมมาตรทั้งสองด้าน โดยกรณีที่ไส้สูงแห้งวนวอร์เทกความเร็วในแนวแกนทิศทางลงจะมีมากกว่ากรณีที่ไม่ไส้สูงแห้งวนวอร์เทกมากซึ่งการไหลกลับทาง (reverse flow) ของอากาศภายในเตา VFBC จำลองชี้นี้จะช่วยทำให้แกลนลอกหัวอุบากาศในเตาหายมีร่องรอยการไหลหมุนเวียน (recirculating flow) โดยแกลนลอกหัวอุบากาศที่มีขนาดใหญ่ และน้ำหนักมากที่บังคับให้มีลมดมเมื่อสูดด้วยหัวสูงขึ้นมาเกิดถูกเหวี่ยงไปปะทะผนังด้านด้วยแรงเหวี่ยงที่เกิดจากวอร์เทก และจะถูกอากาศบริเวณใกล้ผนังหัวไห้ไหลลงไปสู่บุบเดาด้านล่างอีกครั้ง ซึ่งเท่ากับเป็นการเพิ่ม residence time และการถูกเคลือบกันของอากาศกับอุบากาศ (mixing)

4. สรุปผลการทดลอง

ในงานวิจัยนี้ได้ศึกษาพัฒนาการไหลของอากาศ-แกลนลอกหัวใน VFBC จำลองและได้วัดความเร็วของอากาศภายใน VFBC จำลองในขณะที่ไม่มีการป้อนแกลน ซึ่งผลการทดลองสรุปได้ดังนี้

1. การไหลของอากาศ-แกลนลอกหัวใน VFBC จำลอง แสดงให้เห็นถึงการรวมคุณลักษณะเด่นของการไหลแบบฟุลวิเดอร์เบดและการไหลแบบวอร์เทกเข้าไว้ด้วยกันโดยการไหลแบบฟุลวิเดอร์เบดเกิดขึ้นบริเวณหนึ่งเดียวและภายในชั้นแห้งวนลอกหัวส่วนการไหลแบบวอร์เทกเกิดขึ้นที่บริเวณผนังดังต่อไปนี้ได้ค้านบันจอนถึงด้านล่างของ VFBC

2. เกิดขึ้นแนวแกลนลอกหัวสูงใน VFBC จำลอง ระหว่าง แห้งวนวอร์เทกทั้งสองโดยหวังแห้งวนวอร์เทก หัวหน้าที่ด้านหลังหัวดึงอากาศก่อให้เกิดการหมุนวนอย่างรุนแรงทำให้บริเวณแห้งวนจะมีสภาพคล้ายกับม่านอากาศทำหน้าที่ดักแกลนไม่ให้ลอดหนีออกไปจาก VFBC จำลองได้

3. การออกแบบด้านล่างสุดของ VFBC ให้มีลักษณะรูปทรงกรวยทำให้เกิดลักษณะของสเปรดเบดซึ่งจะช่วยให้แกลนลอกหัวขึ้นมาได้ง่าย และอนุภาคในเบดมีการหมุนเวียนทั่วถึงโดยไม่ต้องใช้คุณสมบัติเดียวซึ่งมีน้ำหนักมากมาผิดลงในเบด

4. พฤติกรรมการไหลของอากาศในแนวสัมผัสรั้งคงเป็นไปตามความสัมพันธ์ของ Rankine vortex

5. แห้งวนวอร์เทกนองจากจะช่วยเพิ่มความรุนแรงในการเกิดวอร์เทกและลักษณะซึ่งช่วยเพิ่มความเร็วของอากาศในแนวแกน ทำให้แกลนลอกหัวได้ง่ายขึ้น

6. เกิดการไหลสวนทางของอากาศในแนวแกนที่บันเริงพนัง VFBC ทำให้เกิดการหมุนเวียนของแกลนและเป็นการเพิ่ม residence time

กิตติกรรมประกาศ

ขอแสดงความขอบคุณสำนักงานกองทุนสนับสนุนการวิจัยที่ให้การสนับสนุนทุนวิจัย และ คุณวิบูลย์ เพชรพันธ์ สถาบันวิจัยเคมีวิศวกรรม กลุ่มงานวิจัยวิศวกรรมหลังการเก็บเกี่ยว ที่กรุณาให้คำแนะนำที่เป็นประโยชน์ต่องานวิจัยนี้อย่างมาก

เอกสารอ้างอิง

- [1] A.K.Cupta, D.G.Lilley and N.Syred, "Swirl Flows", AbacusPress, Tunbridge Wells England, 1984.
- [2] R.Singh, R.C.Maheshwari and T.P.Ojha, "Development of a Husk Fired Furnace", Journal of Agricultural Engineering Research, 1980, Vol.25, pp.119-120.
- [3] J.A.Tumambig, "Testing and Evaluation of Rice Hull-Fed Furnace for Grain Drying", National Post Harvest Institute Research and Extension, 1984, pp.197-214.
- [4] S.Soponronnarit, T.Swasdisevi, S.Wetchacama, A.Shujinda, and B.Srisawat, "Cyclone Rice Husk Furnace and Its Application on Paddy Drying", International Energy Journal, 2000, Vol.1, No.2, pp.67-75.
- [5] E.Natarajan, A.Nordin and A.N.Rao, "Overview of Combustion and Gasification of Rice Husk in Fluidized Bed Reactor", Biomass and Bioenergy, 1998, Vol.14, No.5/6, pp.533-546.
- [6] J.Werther, M.Saenger, E.U.Hartge, T.Ogada, and Z.Siagi, "Combustion of Agricultural residues. Progress in Energy and Combustion Science", 2000, Vol.26, No.1, pp.1-27.
- [7] L.Arnesto, A.Bahillo, K.Veijonen, A.Cabauilisa, and J.Ibarra, "Combustion Behavior of Rice Husk in a Bubbling Fluidized

Bed. Biomass and Bioenergy", 2002, Vol.23, No.3, pp.171-179.

[8] T.R.Rao and J.V.Ram.Bheemarasetti, "Minimum Fluidization Velocities of Mixtures of Biomass and Sands", Energy, 2000, Vol.26, No.6, pp.633-644.

[9] G.Yang and S.Nieh, "Particle Flow Pattern in the Freeboard of a Vortexing Fluidized Bed", Powder Technology, 1987, Vol.50, pp.121-131.

[10] G.Yang and S.Nieh, "On the Suspension Layers in the Freeboard of Vortexing Fluidized Beds", Powder Technology, 1989, Vol.57, pp.171-179.

[11] S.Nieh, G.Yang, A.Q.Zhu and C.S.Zhao, "Measurements of Gas-Particle Flows and Elutriation of an 18 i.d. Cold Vortexing Fluidized-Bed Combustor Model", Powder Technology, 1992, Vol.69, pp.139-146.

[12] S.Nieh and J.Zhang, Swirling, Reacting, "Turbulent Gas-Particle Flow in a Vortex Combustor", Powder Technology, 2000, Vol.122, pp.70-78.

การพัฒนาแบบจำลองทาง คณิตศาสตร์ข้อระบบการ ทำความเย็นข้าวเปลือก

ปกรณ์ เกจีองมาลาวัฒน์
นักศึกษาปริญญาโท คณะพัฒนาและวัสดุ
มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี
อดิศักดิ์ นาครณกุล
ผู้ช่วยศาสตราจารย์ คณะพัฒนาและวัสดุ
มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี
สมชาติ โสภณรัณฤทธิ์
ศาสตราจารย์ คณะพัฒนาและวัสดุ
มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี
ราชบัณฑิต สำนักวิทยาศาสตร์
ราชบัณฑิตยสถาน

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อที่จะพัฒนาแบบจำลองทางคณิตศาสตร์ของระบบการทำความเย็นข้าวเปลือก และตรวจสอบความถูกต้องของแบบจำลอง โดยเปรียบเทียบกับการทำความเย็นข้าวเปลือกในไขโลหนาด ๒๕๐ ตัน แบบจำลองแบ่งเป็น ๒ ส่วน คือแบบจำลองการทำความเย็นอากาศ และแบบจำลองการทำความเย็นข้าวเปลือก แบบจำลองการทำความเย็นอากาศใช้วิธีแก้สมการแบบแทนค่าต่อเนื่องในการแก้สมการที่ได้จากการสมดุลมวลและพลังงาน และสมการถ่ายเทความร้อนที่เครื่องนําออกเปลี่ยนความร้อนระหว่างห้องกับอากาศกับสารทำความเย็น และสมการสมรรถนะของเครื่องอัดไอเพื่อห้ามภาวะอากาศหลังจากทำความเย็น แล้วนำไปแทนค่าในแบบจำลองการทำความเย็นข้าวเปลือก การจำลองการทำความเย็นข้าวเปลือกแบ่งเป็น ๒ ช่วง คือ ช่วงการทำความเย็นและช่วงการทำความเย็นช้า ในช่วงการทำความเย็นได้ลดอุณหภูมิข้าวเปลือกจากจุดเริ่มต้นจนถึง ๒๐ องศาเซลเซียส หลังจากนั้นได้ทำการเย็นช้าวเปลือกช้าเมื่อข้าวเปลือกที่ทำการเย็นได้มีอุณหภูมิเพิ่มจาก ๒๐ องศาเซลเซียส ไปเป็น ๒๒ องศาเซลเซียส จากผลการเปรียบเทียบแบบจำลองกับการทำทดลองพบว่า แบบจำลองสามารถทำนายสภาวะของอากาศก่อนเข้าเครื่องทำความเย็นได้ใกล้เคียงกับผลการทำทดลอง ± 2 องศาเซลเซียส อุณหภูมิของข้าวเปลือกในแต่ละชั้นได้ค่าความถูกต้องอยู่ในช่วง ± 3 องศาเซลเซียส การทำนายเวลาในการทำความเย็นใกล้เคียงกับการทำทดลอง และแบบจำลองสามารถทำนายพลังงานในการทำความเย็นได้ความถูกต้องในช่วงไม่เกินร้อยละ ๑๕

คำสำคัญ : การทำความเย็น, เมล็ดพืช, แบบจำลองทางคณิตศาสตร์

๑. บทนำ

ปัจจุบันผู้บริโภคหันมาให้ความสนใจในด้านคุณภาพและความปลอดภัยของอาหารมากขึ้น ด้วยเหตุนี้ผู้ค้าข้าวหรือเจ้าของโรงสีจึงต้องปรับตัวให้เข้ากับความต้องการของตลาด โดยการรักษาคุณภาพข้าวของตนเพื่อให้เป็นที่ต้องการของผู้บริโภค โดยทั่วไปการเก็บรักษาข้าวเปลือกให้มีคุณภาพดี มีปัจจัยหลายอย่างที่จะต้องพิจารณา เช่น ความชื้นของข้าวเปลือก อุณหภูมิในกองข้าวเปลือกต้องไม่สูงเกินไป และต้องปลอดจากแมลง รา และหนู การเปรากองข้าวด้วยอากาศแวดล้อมนั้นไม่สามารถลดอุณหภูมิของกองข้าวให้อยู่ในระดับต่ำกว่าอุณหภูมิบรรยายกาศได้ ดังนั้น เพื่อให้ข้าวเปลือกปลอดจากการรบกวนจากแมลง การทำความเย็นข้าวเปลือกจึงเป็นทางเลือกที่ดีที่จะสามารถยึดระยะเวลาการเก็บรักษาข้าวเปลือกและยังสามารถลดการสูญเสียมวลแห้งอันเนื่องมาจากการหายใจของเมล็ดพืช ในการที่จะทำนาย

ภาวะต่าง ๆ เช่น อุณหภูมิและความชื้น ของข้าวเปลือก ระยะเวลาและพัลส์งาน ที่ใช้ในการทำความเย็น จำเป็นต้อง พัฒนาแบบจำลองทางคณิตศาสตร์ขึ้น มาเพื่อทำนายผลต่าง ๆ เหล่านี้

แบบจำลองการทำความเย็นข้าวเปลือกประกอบด้วยส่วนหลัก ๒ ส่วน คือ การทำความเย็นอากาศและการ ทำความเย็นข้าวเปลือก งานวิจัยที่ ผ่านมาพบว่า การคำนวณการทำความเย็นอากาศสามารถทำได้โดยการใช้ สมการเรอมพิริคัลท์ได้จากการภาพ ข้อมูลผู้ผลิต เพื่อมาทำนายกำลังของ เครื่องอัดไอและความสามารถในการ ทำความเย็นของเครื่องทำระเหย โดย สมการอยู่ในรูปของอุณหภูมิของสาร ทำความเย็นที่เครื่องควบคุมและ เครื่องทำระเหย

ภารก์ รัตตันพิสัย^๕ คำนวณ การถ่ายเทความร้อนโดยใช้วิธีการ คำนวณหาความแตกต่างอุณหภูมิเฉลี่ย เชิงลอกการทีม การหาค่าตอบของสมการ สามารถทำได้หลายวิธี เช่น วิธีของ Newton Raphson หรือวิธีการแทนค่า ต่อเนื่อง โดยทั่วไปวิธีหลังจะเหมาะสม กว่าวิธีแรก เพราะไม่ซับซ้อน แต่มีข้อเสียคือ ใช้เวลาคำนวณมากกว่าวิธีแรก Khan and Zubair^๖ ได้ใช้วิธีการ คำนวณแบบแทนค่าต่อเนื่องนี้ ศึกษา การจำลองการทำน้ำของระบบทำความเย็นแบบอัดไอ เพื่อคำนวณขนาดของ การทำความเย็นและกำลังงานของเครื่อง อัดไอ และภารก์ รัตตันพิสัย^๗ ใช้วิธีการนี้คำนวณแบบจำลองการอบ แห้งมะละกอแซ่บโดยใช้ปั๊มความร้อน ได้ผลใกล้เคียงกับผลการทดสอบ ทั้งใน

ส่วนของความชื้นสุดท้าย อุณหภูมิอากาศ ที่คำแนะนำต่าง ๆ ในระบบ และอุณหภูมิ ของสารทำความเย็น

แบบจำลองทางคณิตศาสตร์ของ การอบแห้งเมล็ดพืชที่มีผู้ศึกษาภัก อย่างกว้างขวางและมีอยู่หลายแบบ เช่น แบบจำลองแบบสมดุล คือ มีสมดุลความร้อนและความชื้นระหว่างเมล็ดพืชกับ อากาศ แบบจำลองนี้มีการคำนวณที่ง่าย ไม่ต้องใช้สมการอบแห้งขั้นบasis แต่มี ข้อจำกัดในการใช้ คือ สามารถใช้ได้กับ การอบแห้งด้วยอัตราการไหหลังของ อากาศด้วย แบบจำลองลอกการทีม (logarithmic model) เป็นแบบจำลองที่ สามารถทำนายการอบแห้งได้ถูกต้อง พอดีสมควร แต่แบบจำลองนี้ไม่ได้คำนึง ผลของอุณหภูมิของเมล็ดพืชขณะอบ แห้ง นอกจากนี้ภาวะอากาศที่ใช้จะ ต้องคงที่ และความชื้นของเมล็ดต้อง เท่ากันทุกชั้น แบบจำลองแบบไม่สมดุล คือ แบบจำลองที่สมดิ่ว่าไม่มีสมดุล ความร้อนและความชื้นระหว่างเมล็ด พืชกับอากาศ แบบจำลองนี้สามารถ ทำนายการอบแห้งได้ดีแม้เมื่อการคำนวณ ที่ยุ่งยากซับซ้อน และใช้เวลาในการ คำนวณนาน จึงไม่เหมาะสมที่จะนำไปใช้ แบบจำลองที่มีการศึกษาภักมาก คือ แบบจำลองแบบใกล้สมดุล ซึ่งสมดุล ความร้อนแต่ไม่มีสมดุลความชื้นระหว่าง เมล็ดพืชกับอากาศ แบบจำลองนี้มีข้อดี คือ เวลาที่ใช้ในการคำนวณน้อยกว่าแบบ จำลองแบบไม่สมดุลและมีความถูกต้อง ใกล้เคียงกับแบบจำลองแบบไม่สมดุล โดยเฉพาะที่อัตราการไหหลังของอากาศสูง จากข้อดีของแบบจำลองแบบใกล้สมดุล ในงานวิจัยนี้จึงใช้แบบจำลองแบบใกล้

สมดุลของ Soponronnarit^๘ ในการทำ แบบจำลอง

Maier et al.^๙ ได้ศึกษาการระบบ อากาศในกองข้าวเปลือก โดยใช้ อากาศเย็นและอากาศแวดล้อม โดยใช้ ข้าวเปลือกความชื้นร้อยละ ๑๓ มาตรฐาน เปียก บรรจุในไช้ไขลานคาดเส้นผ่านศูนย์ กลาง ๑๕ เมตร สูง ๑๐ เมตร อัตราการ ไหหลังของอากาศ ๐.๐๔-๐.๔ ลูกบาศก์ เมตร/นาที/ตันข้าวเปลือก และใช้แบบ จำลองทางคณิตศาสตร์แบบสมดุลที่ พัฒนามาจากแบบจำลองของ Thompson^{๑๐} มาทำนายการเปลี่ยนแปลง อุณหภูมิและความชื้นของข้าวเปลือก จากการศึกษาพบว่า การระบบอากาศ อย่างต่อเนื่องโดยใช้อากาศเย็นสามารถ ทำให้อุณหภูมิของกองข้าวเปลือกลดลง เหลือ ๑๕ องศาเซลเซียส ใช้เวลา ๑๐-๑๔ ชั่วโมง ความชื้นของข้าวเปลือกลดลงเล็กน้อย การระบบอากาศ อย่างต่อเนื่องโดยใช้อากาศแวดล้อมไม่ สามารถทำให้อุณหภูมิข้าวเปลือกลดลงถึงค่า ๒๕ องศาเซลเซียส ได้ทั้งใน ฤดูฝนและฤดูร้อน (ใช้ภาวะอากาศ ภาคกลางประเทศไทย พ.ศ. ๒๕๓๑-๒๕๓๒) และได้ศึกษาการระบบ อากาศโดยการเป้าด้วยอากาศแวดล้อม เป็นช่วง ๆ โดยวิธีควบคุมความชื้น ล้มพักท์ พนวิธีระบบอากาศแบบนี้ ทำให้อุณหภูมิของกองข้าวเปลือกสูง กว่า ๒๖ องศาเซลเซียส ความชื้นลดลงร้อยละ ๐.๙ จากความชื้นเริ่มต้น และ ใช้พลังงานน้อยกว่าวิธีระบบอากาศ อย่างต่อเนื่องถึงร้อยละ ๓๘-๔๘

เอกภูมิ บุญธรรม^{๑๑} สร้างเครื่องตัน แบบทำความเย็นข้าวเปลือกและทดสอบ

ทำความยืนข้าวเปลือกที่บรรจุในไชโภ
ขนาด ๒๕๐ ตัน แบ่งการทดลองเป็น
๒ ช่วง คือ ช่วงทำความเย็นและช่วง
ทำความเย็นช้า ในช่วงทำความเย็นจะ^๑
ลดอุณหภูมิข้าวเปลือกจากอุณหภูมิ
เริ่มต้น ๓๗-๔๐ องศาเซลเซียส จนถึง^๒
๒๐ องศาเซลเซียส หลังจากนั้นจะ^๓
ทำความเย็นช้าเมื่ออุณหภูมิข้าวเปลือก^๔
เพิ่มจาก ๒๐ องศาเซลเซียส เป็น ๒๒
องศาเซลเซียส จากการทดลองช่วง
ความเย็น พบว่าใช้เวลา ๑๒๐-๑๔๔^๕
ชั่วโมง ข้าวเปลือกในไชโภจะมีอุณหภูมิ^๖
เพิ่มขึ้นจนถึงอุณหภูมิที่ต้องทำความ
เย็นช้าภายใน ๔๘ วันและช่วงทำความ
เย็นช้าใช้เวลา ๓๖ ชั่วโมง

งานวิจัยนี้มีวัตถุประสงค์เพื่อพัฒนา

แบบจำลองทางคณิตศาสตร์ของระบบ
ทำความเย็นข้าวเปลือก และตรวจสอบ
ความถูกต้องของแบบจำลองกับผลการ
ทดลองทำความเย็นข้าวเปลือกในไชโภ^๗
ขนาด ๒๕๐ ตัน (ขนาดเส้นผ่าน^๘
ศูนย์กลาง ๖.๕ เมตร สูง ๑๘ เมตร) ของ
เอกสาร บุญธรรม^๙ ซึ่งแบ่งการทำความ
เย็นข้าวเปลือกเป็น ๒ ช่วง คือ ช่วง
ทำความเย็นลดอุณหภูมิข้าวเปลือกจาก
๓๗-๔๐ องศาเซลเซียส ลงเหลือ ๒๐
องศาเซลเซียส และช่วงทำความเย็นช้า
เมื่อข้าวเปลือกมีอุณหภูมิเพิ่มจาก ๒๐
องศาเซลเซียส เป็น ๒๒ องศาเซลเซียส

๒. วิธีการ

แบบจำลองการทำความเย็นข้าว

เปลือกในงานวิจัยปัจจุบันด้วย แบบ
จำลองทำความเย็นอากาศและแบบ
จำลองทำความเย็นข้าวเปลือก แบบ
จำลองการทำความเย็นอากาศใช้ในการ
คำนวณภาวะของอากาศเย็นที่ใช้ใน
แบบจำลองการทำความเย็นข้าวเปลือก
แบบจำลองทั้งสองมีรายละเอียดดังนี้

๑. แบบจำลองการทำความเย็น^{๑๐}
อากาศ

๑.๑ การคำนวณอุณหภูมิ
และอัตราส่วนความชื้นของอากาศ
ที่ทางออกเครื่องกำรเยย

การจำลองภาวะอากาศ
ที่ทางเข้าไชโภนั้นปัจจุบันไปด้วย
สมการดังต่อไปนี้ คือ สมการในการ
คำนวณกำลังงานที่ให้กับเครื่องอัดไอ

$$P = A_1 + A_2 T_c + A_3 T_c^2 + A_4 T_c^3 + A_5 T_c^4 + A_6 T_c T_c^2 + A_7 T_c^2 T_c^3 + A_8 T_c T_c^2 + A_9 T_c^2 T_c^2 \quad (1)$$

โดยที่ $A_1 = 4216.4694, A_2 = 120.05706, A_3 = 0.88326514, A_4 = 117.71113$
 $A_5 = -0.026719114, A_6 = -4.3301458, A_7 = -0.033485281, A_8 = 0.093942676$
 $A_9 = 0.00055950600$

สมการคำนวณภาระความร้อนที่เครื่องกำรเยย :

$$Q_c = B_1 + B_2 T_c + B_3 T_c^2 + B_4 T_c^3 + B_5 T_c^4 + B_6 T_c T_c^2 + B_7 T_c^2 T_c^3 + B_8 T_c T_c^2 + B_9 T_c^2 T_c^2 \quad (2)$$

โดยที่ $A_1 = 49539.545, A_2 = 1536.5762, A_3 = 14.595157, A_4 = -344.00485$
 $A_5 = -0.96297989, A_6 = 1.5698803, A_7 = 0.12180095, A_8 = -0.13283189$
 $A_9 = -0.0021689060$

ภาระความร้อนที่เครื่องความแหน่งคำนวณได้จาก ผลรวมของภาระความร้อนที่เครื่องกำรเยยกับกำลังงานที่ป้อนให้กับ^{๑๑}
เครื่องอัดไอ เมื่อทราบอุณหภูมิที่เครื่องความแหน่งและที่เครื่องกำรเยย

$$Q_c = Q_e + P \quad (3)$$

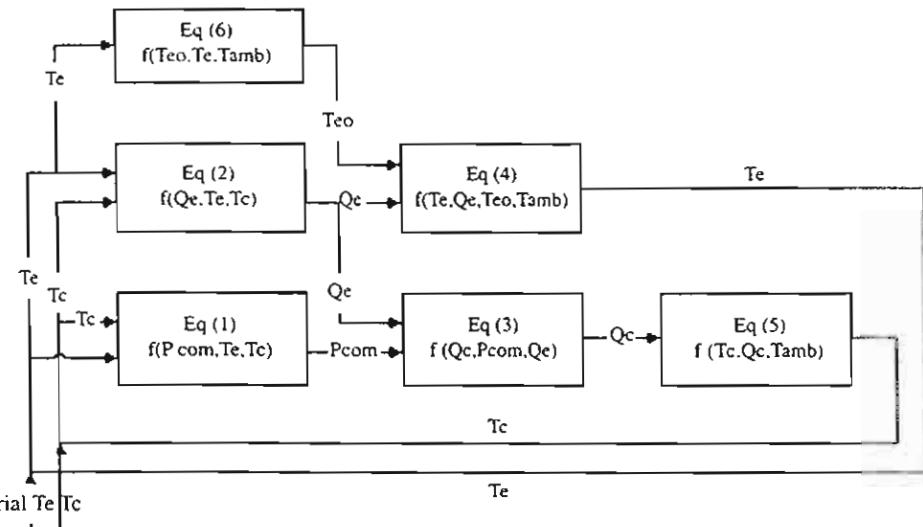
อุณหภูมิของสารทำความเย็นที่เครื่องกำรเยยคำนวณได้จากสมการ

$$\text{จัดรูปได้} \quad Q_e = UA_e [(T_{ci} - T_e) - (T_{eo} - T_e)] / [\ln((T_{ci} - T_e) / (T_{eo} - T_e))] \quad (๔)$$

$$T_e = [T_{ci} - T_{eo} \exp((T_{ci} - T_{eo})UA_e/Q_e)] / [1 - \exp((T_{ci} - T_{eo})UA_e/Q_e)] \quad (๔)$$

เมื่อพิจารณาให้ค่า heat transfer effectiveness ให้มีค่าคงตัว อุณหภูมิของสารทำความเย็นที่เครื่องควบแน่นค่านวนได้จากสมการ

$$Q_e = \epsilon C_{min} (T_e - T_{amb}) \quad (๕)$$


$$T_e = Q_e / (\epsilon C_{min}) + T_{amb} \quad (๕)$$

เมื่อ C_{min} คือ ผลคูณของอัตราการไหหลักความร้อนจำเพาะที่มีค่าต่ำสุด

เมื่อกำหนดอัตราส่วนอากาศที่ไม่สัมผัสรเครื่องทำระเหยมีค่าเท่ากับ Bypass factor (BF) จากกฎทรงมวลดาม เรดค่าผ่าน อุณหภูมิอากาศข้าออกเครื่องทำระเหยได้ดังนี้

$$T_{eo} = (1-BF)T_e + (BF)T_{amb} \quad (๖)$$

กลุ่มของสมการข้างต้น (สมการ ๑-๖) สามารถแก้ได้ด้วยวิธีการแทนค่าต่อเนื่อง โดยการกำหนดค่า T_e และ T_c เริ่มต้น ให้แก่สมการ และคำนวณตามลำดับขั้นตอนดังแสดงใน Information flow diagram (รูปที่ ๑)

รูปที่ ๑

Information flow diagram

อัตราส่วนความชื้นของอากาศคำนวณจากการ

$$W_{eo} = (1-BF)W_{eo} + (BF)W_{ci} \quad (๗)$$

โดยที่ W_{eo} คือ อัตราส่วนความชื้นของอากาศอิ่มตัวอุณหภูมิเครื่องทำระเหย

เงื่อนไขของอากาศที่คำนวนได้จากสมการที่ ๗ ต้องนำไปตรวจสอบความเป็นไปได้โดยนำไปหาค่าความชื้นสัมพัทธ์ของอากาศ ถ้าความชื้นสัมพัทธ์ของอากาศน้อยกว่าหรือเท่ากับ

๑ แสดงว่าเป็นไปได้ ให้ข้ามไปคำนวนขั้นตอนเด็ดไป แต่ถ้ามากกว่า ๑ จะต้องปรับค่าอุณหภูมิและอัตราส่วนความชื้นใหม่ โดยใช้หลักการอนุรักษ์มวลและพลังงาน

๑.๒ อุณหภูมิอากาศที่ออกจากชุดตรวจสอบความร้อนและพัดลมหลัก อุณหภูมิของอากาศที่ออกจากชุดตรวจสอบความร้อนหาได้จากสมการอนุรักษ์พลังงาน ดังสมการ

$$Q_{\text{Heater}} = m_a(C_a + WC_v)(T_{ho} - T_{hi})$$

$$T_{ho} = T_{hi} + \frac{Q_{\text{Heater}}}{m_a(C_a + WC_v)} \quad (๙)$$

เมื่อสมนดิ์ว่าค่าการสูญเสียความร้อนระหว่างระบบและสิ่งแวดล้อมมีค่าน้อยมาก อุณหภูมิอากาศที่ทางออกพัดลมหลักคำนวนได้จากสมการ

$$m_a(C_a + WC_v)(T_{fo} - T_{ho}) = W_s$$

$$T_{fo} = T_{ho} - \frac{W_s}{m_a(C_a + WC_v)} \quad (๙)$$

โดยที่กำลังงานเพลาสำหรับขับเคลื่อนพัดลมหลักหาได้จากสมการ

$$W_s = \frac{P_i m_a}{\rho_a \eta_i} \quad (๑๐)$$

๑.๓ อุณหภูมิของอากาศที่เพิ่มขึ้นจากการถ่ายเทความร้อนที่ท่อส่งลมเย็น

เนื่องจากอากาศบริเวณรอบ ๆ ท่อส่งลมเย็นมีอุณหภูมิสูงกว่าอุณหภูมิของอากาศเย็น ทำให้เกิดการถ่ายเท

ความร้อนเข้ามาสู่ลมเย็นภายในท่อ ส่งผลให้อุณหภูมิของลมเย็นมีค่าสูงขึ้นจากสมการอนุรักษ์พลังงาน

$$m_a(C_a + WC_v)(T_{od} - T_{id}) = UA(T_{amb} - (T_{od} + T_{id})/2)$$

จัดรูปสมการใหม่เพื่อหาค่าอุณหภูมิที่ทางออกลมเย็น (T_{od}) ได้

$$T_{od} = (UAT_{amb} - (UA/2 - m_a(C_a + WC_v))T_{id}) / (UA/2 + m_a(C_a + WC_v)) \quad (๑๑)$$

อุณหภูมิของอากาศ และอัตราส่วนความชื้นที่คำนวณได้จากขั้นตอนต่าง ๆ นี้จะนำไปใช้เป็นข้อมูลในการคำนวณในแบบจำลองการทำความเย็นข้าวเปลือกต่อไป

๒. แบบจำลองการทำความเย็นข้าวเปลือก

แบบจำลองทางคณิตศาสตร์ที่ใช้งานวิจัยนี้เป็นแบบจำลองแบบใกล้สัมดุล

ของ Soponronnarate^๗ เนื่องจากใช้โลหะเก็บความเย็นเป็นชนิดฐานกรวย ต้องปรับรูปทรงกรวยให้อยู่ในรูปของทรงกรวยออกโดยใช้ความสัมพันธ์ทางปริมาตร แล้วแบ่งข้าวเปลือกที่ต้องการทำความเย็นออกเป็นชั้นบางย่อย ๆ หลาย ๆ ชั้น แล้วจึงคำนวณทีละชั้น บางโดยมีขั้นตอนในการคำนวณดังนี้

๒.๑ การคำนวณหาความเย็น

ชั้นของเมล็ดพืชภายหลังการทำความเย็น

ความชื้นของเมล็ดพืชหลังการทำความเย็นของแต่ละชั้นบาง คำนวณได้จากสมการการเปลี่ยนแปลงความชื้นของ Bannaszek and Sibenmorgen^๘ ซึ่งเขียนได้ดังนี้

$$(M - M_{eq}) / (M_{in} - M_{eq}) = \exp(-kt) \quad (๑๒)$$

การคำนวณอัตราการเปลี่ยนแปลงความชื้น ทำได้โดยการหาอนุพันธ์สมการของหัวใจ แล้วใช้เทคนิควิธี Finite Difference เพื่อคำนวณหาความชื้นของข้าวเปลือกภายหลังการทำความเย็น

โดยที่ $k = 0.0038177105 M_{in} + 0.0081804980T - 0.038923141$ และ $n = 0.67924731$

และความชื้นสมดุล (M_{eq}) หาได้จากสมการความชื้นสมดุลของ Bannaszek and Sibenmorgen^๙ ซึ่งเขียนได้ดังนี้

$$M_{eq} = 0.12669489M_{in} + 20.633281RH_{bd} - 0.029797360T_{bd} - 2.5887973 \quad (๑๓)$$

M_{eq} และ M_{in} ในสมการที่ ๑๒ และ ๑๓ มีหน่วยเป็นร้อยละมาตรฐานเปรียก แต่ความชื้นของข้าวเปลือกในสมการอื่น ๆ ในบทความนิยมที่นิยมเป็นเศษส่วนมาตรฐานแห่ง

๒.๒ การคำนวณหาความเย็น

ภาวะของอากาศที่เปลี่ยนไปหลังจากการทำความเย็น หาได้จาก

สมการอนุรักษ์มวลและพลังงาน จากหลักการอนุรักษ์มวล ความชื้นของอากาศที่เปลี่ยนไปเมื่อผ่านชั้นบางของเมล็ดพืชเท่ากับปริมาณน้ำที่ระเหย

ออกจากเมล็ดพืช ดังนั้น อัตราส่วนความชื้นของอากาศหลังการทำความเย็น (W_f) คำนวณได้จากสมการ

$$W_f - W_{bd} = (M_{bd} - M_f)R \quad (๑๔)$$

จากหลักการอนุรักษ์พลังงาน ผลกระทบของความแตกต่างของเงินทัลปี

ของกระแสอากาศชั้นที่ไหลเข้าและออกจากระบบบังคับและการเปลี่ยน

แปลงของพลังงานภายในของปริมาตรบังคับเท่ากับศูนย์

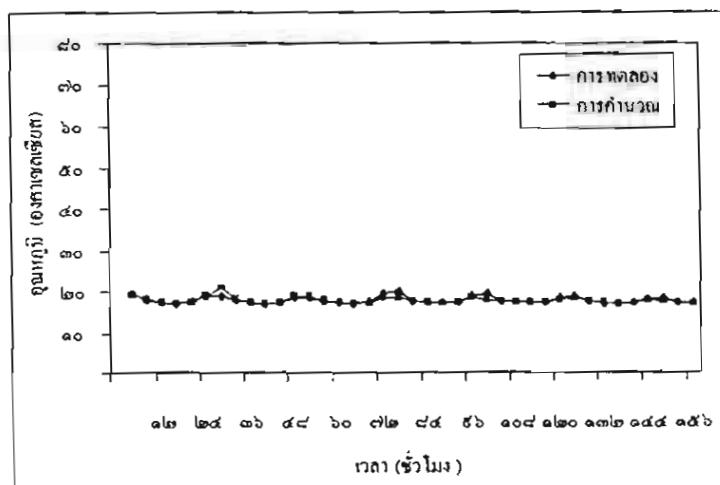
$$C_s T_{bd} + W_{bd} (2502 + C_v T_{bd}) + RC_{pw} \theta_{bd} = C_s T_f + W_f (2502 + C_v T_f) + RC_{pw} T_f \quad (๑๕)$$

ภาวะของอากาศหลังการทำความเย็น (W, และ T) ที่คำนวณได้จากสมการ ๑๔ และ ๑๕ ต้องตรวจสอบความเป็นไปได้ ของความชื้นสัมพัทธ์ของอากาศ

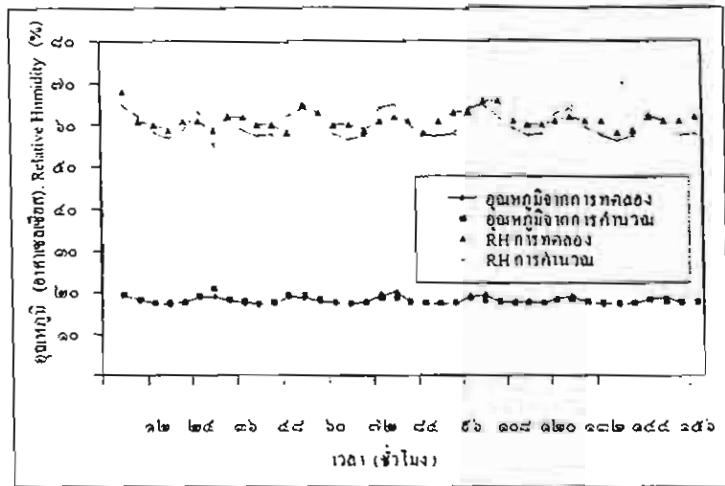
ขั้นตอนการคำนวณที่กล่าวทั้งหมดเป็นการคำนวณที่ซับซ้อน ด้วยเหตุนั้น อากาศที่ทางออกซันบังนี้จะเป็นอากาศที่ทางเข้าของซันบังถัดไป การคำนวณจะดำเนินไปในลักษณะเดียวกันสำหรับซันบังที่ลະซัน ตั้งแต่ซันล่างจนถึงซันบนสุดก็จะสิ้นสุดในช่วงเวลาที่พิจารณา หลังจากนั้นก็คำนวณในช่วงเวลาถัดไปจนกระทั่งครบตามเวลาที่กำหนดไว้

การจำลองการทำความเย็นข้าวเปลือกมีเงื่อนไขในการทำแบบจำลอง ตามการทดลองของเอกภูมิ บุญธรรม^๙ โดยแบ่งการคำนวณเป็น ๒ ช่วงคือช่วงการทำความเย็นและช่วงการทำความเย็นข้าวช่วงการทำความเย็นใช้อัตราการไหลของ

อากาศ ๑,๕๙๖ ลูกบาศก์เมตร/ชั่วโมง อุณหภูมิเริ่มต้นของข้าวเปลือกอยู่ในช่วง ๓๗-๔๐ องศาเซลเซียส ความชื้นเริ่มต้นร้อยละ ๑๕ มาตรฐานเปียก ทำความเย็นจนกระทั่งข้าวเปลือกมีอุณหภูมิเท่ากับ ๒๐ องศาเซลเซียส ในช่วงการทำความเย็นข้าวเปลือกจะมีอุณหภูมิ ๑,๕๙๖ ลูกบาศก์เมตร/ชั่วโมง อุณหภูมิเริ่มต้นของข้าวเปลือกอยู่ในช่วง ๒๒ องศาเซลเซียส ความชื้นเริ่มต้นร้อยละ ๑๕ มาตรฐานเปียก ทำความเย็นจนกระทั่งอุณหภูมิข้าวเปลือกลดลงจนถึง ๒๐ องศาเซลเซียส


๓. ผลการศึกษาและวิจารณ์

การตรวจสอบความถูกต้องของแบบจำลองการทำความเย็นข้าวเปลือกที่พัฒนาขึ้นมา ทำได้โดยเปรียบเทียบผลจากการคำนวณกับผลการทดลองของเอกภูมิ บุญธรรม^๙ และแบ่งการเปรียบเทียบออกเป็น ๒ ส่วน คือ ส่วน


ของการทำความเย็นอากาศ และส่วนของการทำความเย็นข้าวเปลือก โดยจะเปรียบเทียบเฉพาะอุณหภูมิของอากาศเย็นและข้าวเปลือก เนื่องจากในการทดลองของเอกภูมิ บุญธรรม^๙ ไม่สามารถหาความชื้นของข้าวเปลือกในไซโลในช่วงเวลาทำความเย็นได้

๓.๑ แบบจำลองการทำความเย็นอากาศ

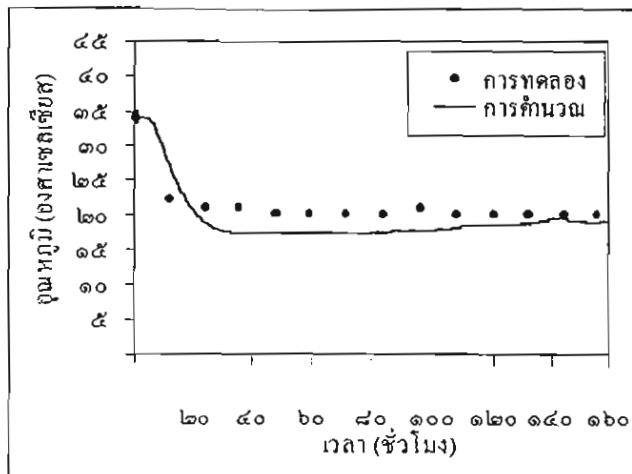
แบบจำลองการทำความเย็นอากาศ ใช้ข้อมูลภาวะของอากาศที่ทำการทดลองมาคำนวณหาอุณหภูมิ และความชื้นสัมพัทธ์ของอากาศก่อนเข้าเครื่องทำความเย็น จากการจำลองในช่วงการทำความเย็นอัตราการไหลของอากาศ ๑,๕๙๖ ลูกบาศก์เมตร/ชั่วโมง ได้ผลการเปรียบเทียบระหว่างอุณหภูมิ และความชื้นสัมพัทธ์ของอากาศที่ทางออกเครื่องทำระเหยกับที่ทางเข้าไซโล กับการทดลองแสดงดังรูปที่ ๒ และ ๓ ตามลำดับ

รูปที่ ๒ อุณหภูมิของอากาศที่ทางออกของเครื่องทำระเหย

รูปที่ ๑ อุณหภูมิและความชื้นสัมพัทธ์ของอากาศที่ทางเข้าไฮโล

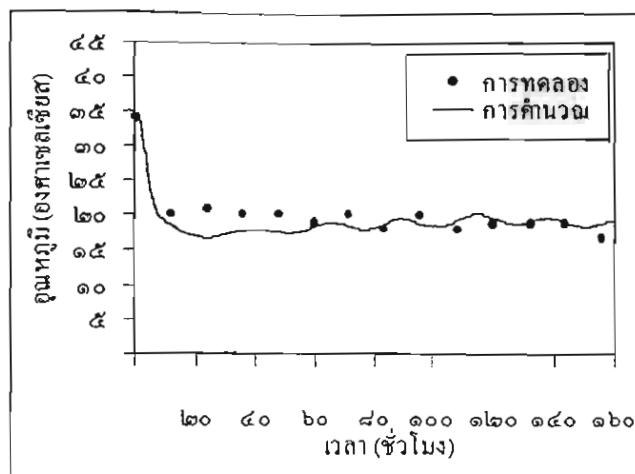
จากการเปรียบเทียบพบว่าแบบจำลองสามารถทำนายอุณหภูมิที่ทางออกเครื่องกำระเหย (รูปที่ ๒) และทางเข้าไฮโล (รูปที่ ๓) ใกล้เคียงกับผลการทดลอง โดยมีความผิดพลาดในช่วง ± 2 องศาเซลเซียส

สำหรับความชื้นสัมพัทธ์ของอากาศนั้น แบบจำลองทำนายได้ค่าความแตกต่างในช่วงร้อยละ ๔-๕ ซึ่งอยู่ในช่วงค่าความถูกต้องของการวัดความชื้นสัมพัทธ์โดยวิธีวัดค่าอุณหภูมิระดับปีกและอุณหภูมิระดับแห้ง ($\pm 5\%$)

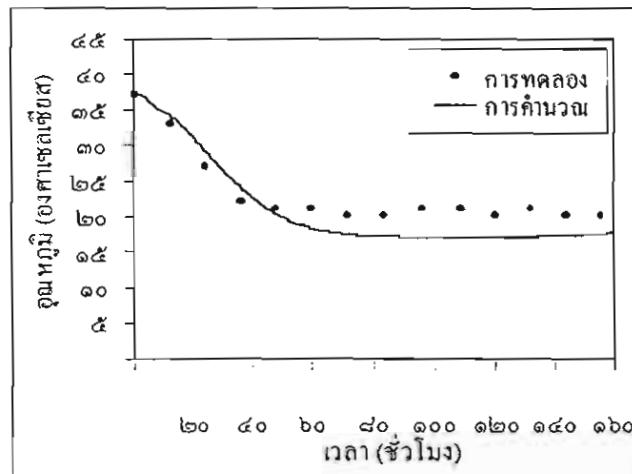

ส่วนผลลัพธ์ที่ใช้ในการทำความเย็นอากาศ ซึ่งประกอบไปด้วยผลลัพธ์ที่เครื่องอัดไอ พัดลมหลัก และชุดลดความร้อนนั้น แบบจำลองสามารถทำนายผลลัพธ์ได้ค่าใกล้เคียงกับผลลัพธ์ที่ใช้จริงในการทดลอง คือ ในการทดลอง

การทำความเย็นข้าวเปลือกใช้พลังงานเท่ากับ ๑,๔๙๙.๖ กิโลวัตต์ชั่วโมง แต่จากแบบจำลองคำนวณได้ ๑,๖๕๙.๐๙ กิโลวัตต์ชั่วโมง และช่วงการทำความเย็นชั่วโมง ๔๐๖.๓ กิโลวัตต์ชั่วโมง แบบจำลองคำนวณได้ ๔๙๑.๖๙ กิโลวัตต์ชั่วโมง ซึ่งจากการเปรียบเทียบจะพบว่าการทำนายผลลัพธ์นั้นมีความผิดพลาดอยู่ในช่วงร้อยละ ๑๙ เมื่อเทียบกับผลการทดลองทั้ง ๒ ช่วง

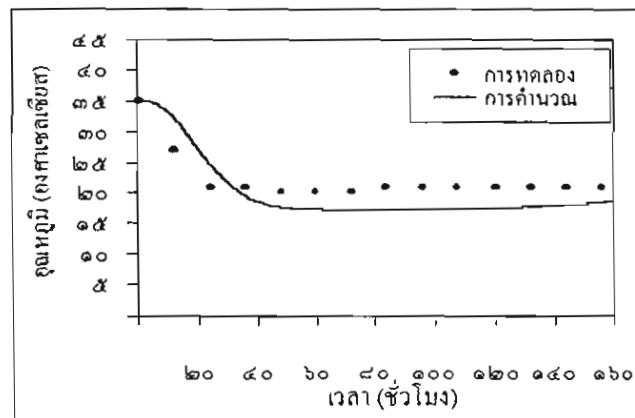
๓.๒ แบบจำลองการทำความเย็นข้าวเปลือก


จากการเปรียบเทียบอุณหภูมิของข้าวเปลือกในไฮโลตามจุดวัดที่วัดได้จากการทดลองจำนวน ๗ จุดความระดับความสูงกับแบบจำลองโดยใช้อัตราการไหลของอากาศ ๑,๔๙๙ ลูกบาศก์เมตร/ชั่วโมง อุณหภูมิเริ่มต้น

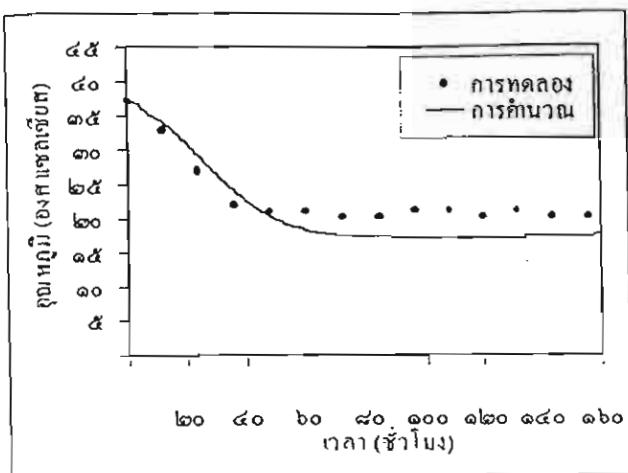
ของข้าวเปลือกในช่วง ๓๗-๔๐ องศาเซลเซียส ความชื้นข้าวเปลือกเริ่มต้นร้อยละ ๑๔ มาตรฐานเปียก ใช้ผลการคำนวณอุณหภูมิและความชื้นสัมพัทธ์ที่ทางเข้าไฮโลจากแบบจำลองการทำความเย็นอากาศเป็นอุณหภูมิและความชื้นสัมพัทธ์ของอากาศที่ใช้ทำความเย็นข้าวเปลือก พบร่วมอุณหภูมิข้าวเปลือกที่คำนวณได้มีค่าใกล้เคียงกับผลการทดลองในทุกระดับความสูงทั้ว โดยมีค่าความแตกต่าง ± 3 องศาเซลเซียส (แสดงในรูปที่ ๔ ถึงรูปที่ ๑๐) การทำนายผลที่ใกล้เคียงนี้แสดงให้เห็นโดยนัยว่า สมการอุณหัติน้ำแข็ง และสมการสมดุลของข้าวเปลือกที่ใช้ในแบบจำลอง สามารถใช้ได้กับการทำความเย็นข้าวเปลือก


รูปที่ ๔

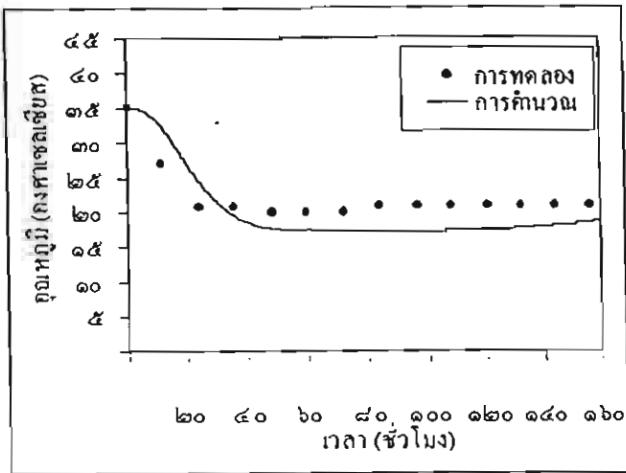
อุณหภูมิของข้าวเปลือกขณะทำความเย็นในระดับที่ ๑
(๒ เมตรจากฐานไฟฟ้า)


รูปที่ ๔

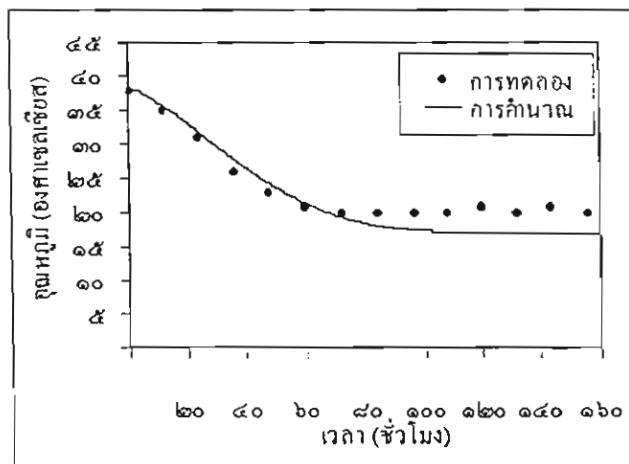
อุณหภูมิของข้าวเปลือกขณะทำความเย็นในระดับที่ ๒
(๔ เมตรจากฐานไฟฟ้า)


รูปที่ ๕

อุณหภูมิของข้าวเปลือกขณะทำความเย็นในระดับที่ ๓
(๖ เมตรจากฐานไฟฟ้า)


รูปที่ ๕

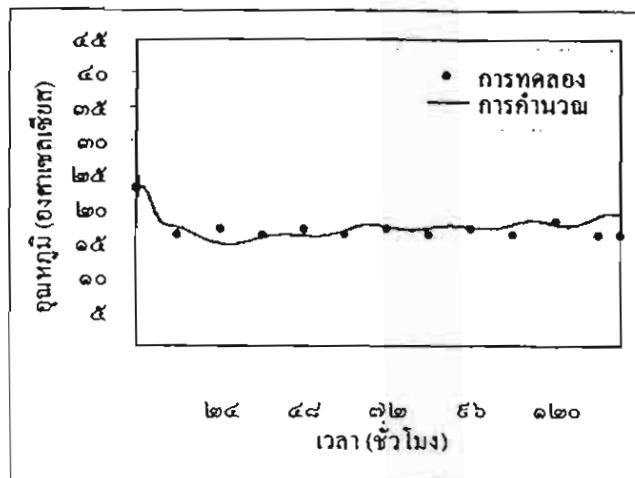
อุณหภูมิของข้าวเปลือกขณะทำความเย็นในระดับที่ ๔
(๘ เมตรจากฐานไฟฟ้า)


รูปที่ ๘

อุณหภูมิของข้าวเปลือกขณะท่าความเย็นในระดับที่ ๕
(๑๐ เมตรจากรากน้ำใช้โล)

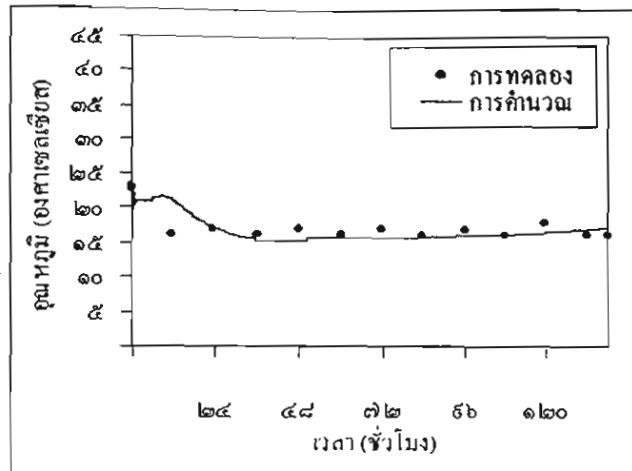
รูปที่ ๙

อุณหภูมิของข้าวเปลือกขณะท่าความเย็นในระดับที่ ๖
(๑๒ เมตรจากรากน้ำใช้โล)

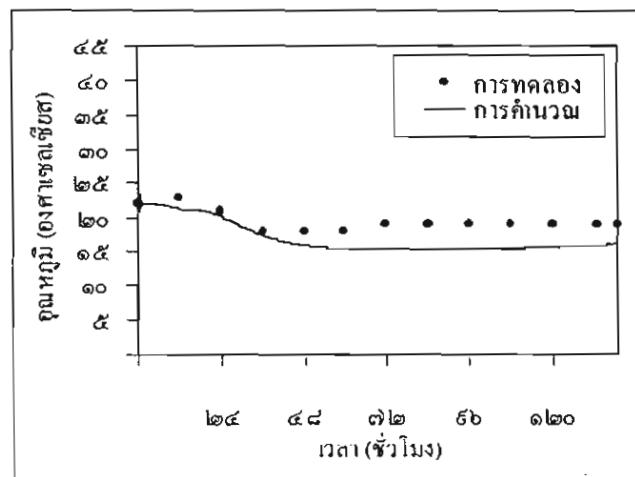


รูปที่ ๑๐ อุณหภูมิของข้าวเปลือกขณะท่าความเย็นในระดับที่ ๗ (๑๔ เมตรจากรากน้ำใช้โล)

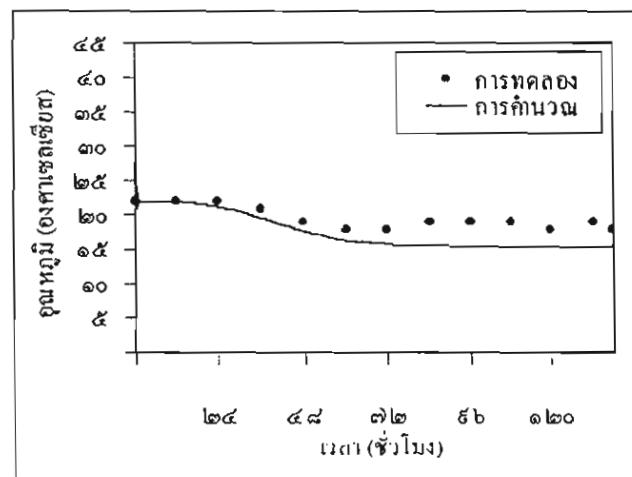
เมื่อเปรียบเทียบผลการคำนวณจากแบบจำลองกับผลการทดลองในช่วงท่าความเย็นข้าว (แสดงการเปรียบเทียบในรูปที่ ๑ ถึงรูปที่ ๑๐) โดยใช้อุณหภูมิและความชื้นสัมพัทธ์ที่ทางเข้าใช้โลที่ได้จากการคำนวณจากแบบ


จำลองการทำความเย็นอากาศในช่วงท่าความเย็นข้าวเป็นอุณหภูมิที่ใช้ทำความเย็นข้าว อัตราการไหลของอากาศ ๑.๔๒๘ ลูกบาศก์เมตร/ชั่วโมง ใช้อุณหภูมิเริ่มต้นของข้าวเปลือก ๒๒ องศาเซลเซียส และความชื้นเริ่มต้น

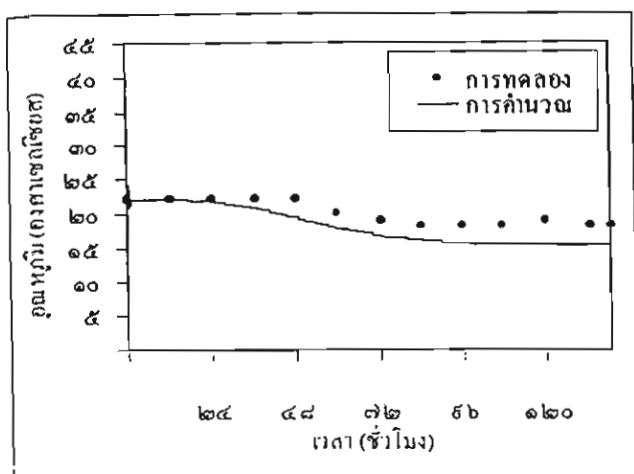
ของข้าวเปลือกร้อยละ ๑๕ มาตรฐาน เปียกพนวณแบบจำลองสามารถทำนายอุณหภูมิของข้าวเปลือกในแต่ละชั้นที่เก็บในใช้โลได้ใกล้เคียงกับผลการทดลอง โดยมีความผิดพลาด ± ๓ องศาเซลเซียส เช่นเดียวกับในช่วงท่าความเย็น


รูปที่ ๑๑

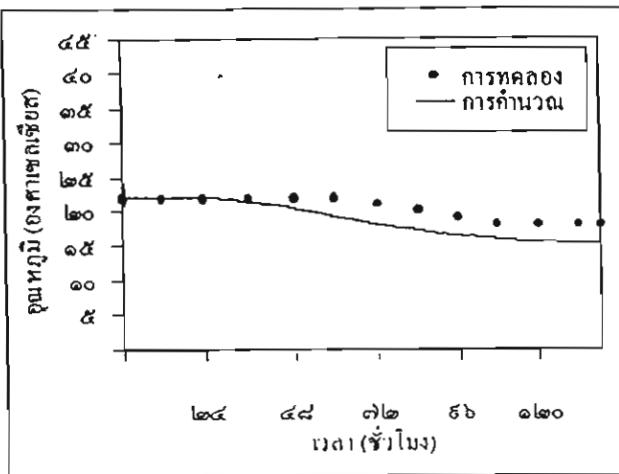
อุณหภูมิของข้าวเปลือกขณะทำความเย็นซ้ำในระดับที่ ๑
(๖ เมตรจากรากน้ำโพล)


รูปที่ ๑๒

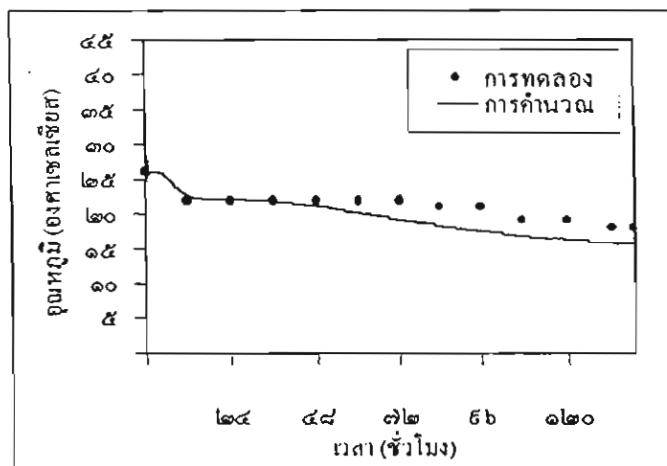
อุณหภูมิของข้าวเปลือกขณะทำความเย็นซ้ำในระดับที่ ๒
(๘ เมตรจากรากน้ำโพล)


รูปที่ ๑๓

อุณหภูมิของข้าวเปลือกขณะทำความเย็นซ้ำในระดับที่ ๓
(๖ เมตรจากรากน้ำโพล)


รูปที่ ๑๔

อุณหภูมิของข้าวเปลือกขณะทำความเย็นซ้ำในระดับที่ ๔
(๘ เมตรจากรากน้ำโพล)


รูปที่ ๑๕

อุณหภูมิของข้าวเปลือกขณะท่าความเย็นช้าในระดับที่ ๕
(๑๐ เมตรจากฐานไชโอล)

รูปที่ ๑๖

อุณหภูมิของข้าวเปลือกขณะท่าความเย็นช้าในระดับที่ ๖
(๑๒ เมตรจากฐานไชโอล)

รูปที่ ๑๗ อุณหภูมิของข้าวเปลือกขณะท่าความเย็นช้าในระดับที่ ๗ (๑๔ เมตรจากฐานไชโอล)

เวลาที่ใช้ในการท่าความเย็นจาก การเปรียบเทียบนั้นพบว่าการทดลอง การท่าความเย็นช้าของข้าวเปลือกใช้เวลา ๑๒๐ ชั่วโมง แบบจำลองใช้เวลา ๑๐๕ ชั่วโมง และในช่วงท่าความเย็นช้าการ ทดลองใช้เวลา ๑๖ ชั่วโมง แบบจำลอง ใช้เวลา ๑๒ ชั่วโมง

ผลการเปรียบเทียบแสดงให้เห็น ว่าแบบจำลองสามารถประมาณเวลาที่ ใช้ในการท่าความเย็นและ การท่าความเย็นช้าของข้าวเปลือกได้ใกล้เคียง โดยมีค่า ความผิดพลาดประมาณร้อยละ ๕ ใน ช่วงการท่าความเย็น และประมาณร้อย ละ ๑๑ ในช่วงการท่าความเย็นช้า

๔. สรุปผลการศึกษา

จากการเปรียบเทียบผลการคำนวณ แบบจำลองทางคณิตศาสตร์ในการ ท่าความเย็นช้าของข้าวเปลือกกับผลการทดลอง ของเอกภูมิ บุญธรรม สามารถสรุปได้ ดังนี้

๑. แบบจำลองการท่าความเย็น

อากาศที่อากาศการหาค่าตอบของระบบ
สมการ โดยวิธีการแทนค่าต่อเนื่อง สามารถ
กำหนดอุณหภูมิที่คำนวณต่าง ๆ ใน
ระบบทำความเย็น เช่น ทางออกเครื่อง
ท่าระเหย ที่ทางเข้าไฮโล ได้ใกล้เคียง
กับผลการทดลองซึ่งมีความผิดพลาด
ในช่วง ± 2 องศาเซลเซียส

๔. แบบจำลองการทำความเย็น
ข้าวเปลือกที่พัฒนามาจากแบบจำลอง
ทางคณิตศาสตร์แบบใกล้สัมดุลสามารถ

กำหนดอุณหภูมิของข้าวเปลือกในแต่ละ
ชั้นในไฮโลใกล้เคียงกับข้อมูลจากการ
ทดลอง มีความถูกต้องในช่วง ± 3 องศา
เซลเซียส

๓. แบบจำลองการทำความเย็น
ข้าวเปลือกสามารถกำหนดพลังงานที่
ใช้ในการทำความเย็นโดยมีค่าผิดพลาด
น้อยกว่าร้อยละ ๑๙

๔. แบบจำลองการทำความเย็น
ข้าวเปลือกสามารถกำหนดทำนายน้ำยาที่ใช้

ทำความเย็นและทำความเย็นช้าได้
ใกล้เคียงกับเวลาที่ใช้จริงในการทดลอง
ทั้ง ๒ ช่วง

กิตติกรรมประกาศ

สำนักงานกองทุนสนับสนุนงาน
วิจัยสนับสนุนด้านการเงิน, บริษัทไฮซ์
เอนจิเนียร์ริ่งซัพพลาย จำกัด, บริษัท
นากิจกรุ๊ป จำกัด, โรงสีบ้านหลวง, โรง
สีคุ้งหลีจัน, โรงสีปูมวิวัฒน์, โรงสีเทพ
มงคล ให้ข้อมูลสำหรับการจำลองปัญหา
ทางคณิตศาสตร์

รายการสัญลักษณ์และสัญลักษณ์กำกับล่าง

A	พื้นที่หน้าตัด, m^2	a	อากาศ
BF	Bypass factor	amb	ภาวะที่อากาศแวดล้อม
C	ความร้อนนำพา, $kJ/kg.K$	bd	ภาวะหลังสมดุลทางความร้อน
m	อัตราการไหลเชิงมวล, kg/s	c	ภาวะที่เครื่องควบแน่น
M	ความชื้นของเมล็ดพืช, เศษส่วนมารฐานะแห้ง	con	อากาศอิ่มตัว
P	กำลังงานของเครื่องอัดไอ, $Watt$	e	ภาวะที่เครื่องท่าระเหย
P _c	ความดันลดที่พัดลมหลัก, Pa	ei	ภาวะที่ทางเข้าเครื่องท่าระเหย
Q	ภาวะความร้อน, $Watt$	eo	ภาวะที่ทางออกเครื่องท่าระเหย
R	อัตราส่วนมวลเมล็ดพืชแห้งต่อมวลอากาศแห้ง	eq	ภาวะสมดุล
RH	ความชื้นสัมพัทธ์, decimal	f	ภาวะสุดท้าย
t	เวลา, ชั่วโมง	fo	ทางออกพัดลมหลัก
T _c	อุณหภูมิของสารทำความเย็นที่เครื่องท่าระเหย, °C	hi	ทางเข้าชุดควบความร้อน
T _c	อุณหภูมิของสารทำความเย็นที่เครื่องควบแน่น, °C	ho	ทางออกชุดควบความร้อน
T	อุณหภูมิของอากาศ, °C	id	ทางเข้าห้องล้ม
U	สัมประสิทธิ์การถ่ายเทความร้อนรวม $kW/m^2 \cdot ^\circ C$	in	ภาวะเริ่มต้นก่อนคำนวณ
W	อัตราส่วนความชื้นของอากาศ, $kg\text{ น้ำ}/kg\text{ อากาศ}$ อากาศแห้ง	od	ทางออกห้องล้ม
θ	อุณหภูมิของเมล็ดพืช, °C	pw	เมล็ดพืชชื้น
W _c	งานที่พัดลม, วัตต์	v	ไอน้ำ
ε	Heat exchanger effectiveness		
ρ	ความหนาแน่น kg/m^3		
η _r	ประสิทธิภาพของพัดลม		

เอกสารอ้างอิง

๑. วรารถ รัตตวนพิสัชต์. การพัฒนาแบบจำลองทางคณิตศาสตร์สำหรับการอบแห้งผลไม้โดยใช้ปั๊บความร้อน. วิทยานิพนธ์ปริญญาโทสาขาศาสตร์มหาบัณฑิต สาขาวิชาเทคโนโลยีพัฒนา สถาบันเทคโนโลยีชีวะ จุฬาลงกรณ์มหาวิทยาลัย. ๒๕๕๐.

๒. เอกภูมิ บุญธรรม. อดิศักดิ์ นาดกรณ์กุล. สมชาติ ไสกยารยฤทธิ์. การพัฒนาเครื่องดันแบบท่าความเย็นข้าวเปลือก. วารสารราชบัณฑิตย์วิศวกรรมศาสตร์ ๒๕๕๖; ๒: ๔๖๕-๔๖.

๓. Banaszek MM, Sibenmorgen TJ. Moisture adsorption rate of rough rice. Trans. ASAE 1990; 33(4): 1257-62.

๔. Khan JR, Zubair SM. Design and Performance of Reciprocating Refrigeration Systems. International Journal of Refrigeration 1999; 22 : 235-43.

๕. Maier DE, Baker-Arkema FW, Ilang-antike SG. Ambient and Chilled Paddy Aeration under Thai Condition. Agricultural Engineering J 1993; 2(1&2) : 15-33.

๖. Soponronnarit S. Energy Model of Grain Drying System. ASEAN Journal for Science and Technology for Development 1988; 5(2) : 43-68.

๗. Thompson TL. Temporary Storage of High-Moisture Shelled Corn Using Continuous Aeration. Trans. ASAE 1972; 15 : 333-7.

Abstract Developing a mathematical model of paddy cooling system.

The purpose of this paper is to develop a mathematical model of paddy cooling system. The model is verified by comparing with experimental results of paddy cooling in a 250 ton-silo. It comprises two parts, i.e. a mathematical model for air cooling and a mathematical model for paddy cooling. The air cooling model uses successive substitution method to solve the equations which are obtained from mass and energy balance and heat transfer between air and refrigerant at heat exchanger, and performance equations for reciprocation compressor. The results of this air cooling model are temperature and relative humidity of cooling air which are used as inputs into the paddy cooling model. The simulation of paddy cooling was divided into two parts: cooling and re-cooling. Paddy was cooled from its initial temperature to 20°C and was re-cooled when its temperature rose from 20°C to 22°C. The comparison results showed that the model predicted conditions of cooled air in good agreement with experimental data within $\pm 2^\circ\text{C}$, temperature of paddy in each layer within an accuracy of $\pm 2^\circ\text{C}$, cooling time nearly equal to that of the experiments, and cooling energy within 18% accuracy.

Key words : Cooling/Grain/Mathematical model

เทคนิคใหม่ในการผลิตข้าวนีป*

สมชาติ โสภณรณฤทธิ์
ราชบัณฑิต สำนักวิทยาศาสตร์
ชัยยงค์ เดชะไพบูลย์,
สมเกียรติ ปรัชญาภรณ์

* คณะพลังงานและวัสดุ
** คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยี
พระจอมเกล้าธนบุรี

บทคัดย่อ

การผลิตข้าวนีปด้วยวิธีปัจจุบันต้องใช้เวลาภารานาน ดังนั้น งานวิจัยนี้จึงมีวัตถุประสงค์เพื่อศึกษาเทคนิคใหม่ในการผลิตข้าวนีปด้วยเครื่องอบแห้งฟลูอิไดซ์เบด โดยใช้อินโนร้อนยาดอิ่งในการลดความชื้นของข้าวเปลือกจากวัสดุ ๔๗-๔๙.๕ มาตรฐานแห้ง จนเหลือความชื้นสุดท้ายร้อยละ ๑๖-๒๗ มาตรฐานแห้ง เนื่องจากข้อการทดลองที่ศึกษามีดังนี้ ความสูงเบดของข้าวเปลือก ๑๐-๑๕ เซนติเมตร อุณหภูมิไอน้ำร้อนยาดอิ่ง ๑๕๐-๑๗๐ องศาเซลเซียส ความดันในไนรูประบบอบแห้ง ๑๐๖.๑ กิโลพาสคัล ความเร็วในห้องอบ ๓.๑ เมตร/วินาที จากการทดลองพบว่าอุณหภูมิไอน้ำร้อนยาดอิ่งมีอิทธิพลต่ออัตราการอบแห้งมากกว่าความสูงเบดของข้าวเปลือก การอบแห้งด้วยไอน้ำร้อนข้าวชั้นยังสามารถลดความชื้นได้ต่ำสุดร้อยละ ๑๘ มาตรฐานแห้ง โดยที่ต้นข้าว “มีค่ามากกว่าร้อยละ ๖๐ ถ้าลดความชื้นต่ำกว่าร้อยละต้นข้าวจะลดลงอย่างรวดเร็วในขณะที่อุณหภูมิของกรอบแห้งมีผลต่อความชื้นและ white belly จากการวิเคราะห์สัมบัติความหนืดของแป้งข้าวเป็น peak viscosity, breakdown viscosity และ setback viscosity พหุวัตถุต่ำ

ค่าสำคัญ : การอบแห้ง, ต้นข้าว, ความชื้น

บทนำ

ประเทศไทยเป็นแหล่งปลูกสิกรรมที่สำคัญแห่งหนึ่ง พิชเศรษฐกิจที่สำคัญ

ได้แก่ ข้าวและผลิตภัณฑ์จากข้าว ผลผลิตข้าวนอกจากใช้สำหรับบริโภคภายในประเทศไทยแล้ว ยังสามารถส่งออกเป็นอันดับ ๑ ของโลกมาแล้วหลายปี

* บรรยายในการประชุมสำนักวิทยาศาสตร์ ราชบัณฑิตยสถาน เมื่อวันที่ ๑๗ ตุลาคม พ.ศ. ๒๕๔๖
** ต้นข้าว หมายถึง เมล็ดข้าวสาร (หลังจากกระบวนการเปลือกและขัดข้าวแล้ว) ที่มีขนาดความยาว $\geq \frac{3}{5}$ ของเมล็ดข้าวสารเดิมเนื้อ

ข้าวนีปเป็นผลิตภัณฑ์ที่แปรรูปจากข้าวเปลือก โดยผ่านกระบวนการต่าง ๆ ดังนี้ ๑. การแช่ (soaking) เพื่อทำให้ข้าวเปลือกมีความชื้นเพิ่มขึ้นเป็นร้อยละ ๔๒-๔๔ มาตรฐานแห้ง โดยทัวร์ไบเพชในน้ำร้อนอุณหภูมิประมาณ ๖๐-๘๐ องศาเซลเซียส ๒. การนึ่ง (steaming) เพื่อกำเมล็ดสตาร์ของข้าวที่แช่มาแล้ว เกิดเจล ๓. การอบแห้งเพื่อลดความชื้นที่มีอยู่ในข้าวเปลือกนึงลงท่ากว่าร้อยละ ๑๖ มาตรฐานแห้ง ก่อนจะนำไปเก็บรักษาหรือขัดสีให้เป็นข้าวนี ผลจากกระบวนการตั้งกล่าวข้างต้นทำให้ข้าวนีที่ได้มีคุณค่าทางโภชนาการสูงกว่าข้าวขาว

กระบวนการผลิตข้าวนีดังกล่าวข้างต้น อาจรวมขั้นตอนการนึ่งและกระบวนการตั้งกล่าวข้างต้นเดียวกัน โดยการประยุกต์ใช้อินโนร้อนยาดอิ่ง เป็นตัวกลางในการนึ่งและอบแห้งในฟลูอิไดซ์เบด จากการศึกษางานวิจัยที่ผ่านมาพบว่าการอบแห้งโดยใช้อินโนร้อนยาดอิ่งมีข้อดีบางประการ เช่น มี