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where the origin and the directions of the £-y coordinate sys-
tem are shown in Fig. 8, g is the moving heat source, k is
the plate width, H = pcuv/2k, p is the plate density, ¢ is the

(27)
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specific heat, v is the velocity of the moving heat source, and
k is the plate thermal conductivity. The parameter o and A,
in Eq. (27} are defined by

R W

2L

.ﬂ.?'JT 2
=y
where L is the plate length, and w is the width of the moving
heat source simulated by a square pulse. -

Toclearty evaluate the performance and compare the solu-
tion accuracy obtained from the conventional and the node-
less variable flux-based finite element methods, the
steady-state heat transfer case of the problem is first used. For
the steady-state condition when the heat pulse is at the center
of the plate, the transient temperature solution as shown in
Eq. (27) is reduced to,

I mmnmm(ﬁﬂ)

2L
2 P

2
n
k n=t3

+ HZ, (28)

29)

Such steady-state solution behavior represents a very high
temperature with the magnitude of 581.82°F (291.23°C) on
the edge at the heat pulse impingement location. The high
temperature is localized with very steep distribution in an
approximate narrow band of 0.01 in (0.025 cm).

Figure 9 shows sections of the four finite element models
used for predicting the plate temperature response. The first
three models are the structured mesh models with graded
elements near the top edge. These three models are crude,
medium, and fine finite element models with | 600, 6400,
and 25600 standard triangular elements, respectively. The
fourth model is an adaptive mesh model with 3245 node-
Iess variable finite elements. The table in Fig. 9 compares
the predicted peak temperature response at the heat pulse
impingement location obtained from the different finite ele-
ment mesh models using the conventional and the flux-based
finite element methods. The values in the brackets denote
the percentage error of the predicted peak temperature as
compared 10 the exact solution. The table shows that the
adaptive mesh uses fewer elements than the fine stroctured
mesh but can achieve higher solution accuracy. The table also
indicates that the nodeless variable flux-based finite element
method attains higher solution accuracy than all the three

conventional finite element mesh models. Figure 10 shows
the convergence rates obtained from the conventional and the
nodeless vardable finite element methods on both the graded
and regular uniform structured meshes. In this figure, N E de-
notes the number of elements. Figure 11 shows the predicted
temperature contours on the entire plate obtained from the
nodeless variable finite element method.

For the case of transient heat transfer analysis, the adap-
tive meshing technique combined with the nodeless variable
flux-based finite clement method is used to predict the tem-
perature response. The adaptive meshing technique s incor-
porated into the finite element method to adapt the mesh o
the transient solution behavior. Figure 12 shows the adap-
tive meshes and their temperature solution contours at three
typical times. Detail of the adaptive mesh near the heat pulse
impingement location and the temperature contours are shown
in the lower figures. These figures show that small clustered
elements are generated in the region of steep temperature
gradients to capture the predicted peak temperature and the
localized temperature distribution. At the same time, larger
elements are generated in the other regions to reduce the com-
putational time and the computer memory. Such 2 typical
transient adaptive mesh consists of approximately 2 000 tri-
angles. At the heat pulse impingement location, the predicted
peak temperature is 572.62°F (286.12°C) as compared to
573.07°F (286.37°C) of the exact solution given by Eq. (27)
with a relative difference less than 0.1%. The comparison of
the exact and the predicted temperature distributions along
the top edge is shown in Fig. 13. The figure shows that the
temperature distribution obtained from the adaptive meshing
technique combined with the nodeless variable flux-based fi-
nite element method is in very good agreement with the exact
solution.

5 Conclusions

The nodeless variable flux-based finite elemeat method was
developed to analyze two-dimensional steady-state and tran-
sient heat transfer problems. The nodeless variable finite
element was described and their finite elemeat equations
were derived. The flux-based formulation was applied to
reduce the computational complexity as compared to the
conventional finite element method. The solution accuracy
was further improved by implementing an adaptive meshing
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technique. The technique places small elements in the regions
with drastic changes of temperature gradients. At the same
time, larger elements are generated in other regions to re-
duce the total number of unknowns and the computational
time. The combined procedure was evaluated by two heat
transfer problems that have exact solutions. The problems
are the steady-state heat conduction analysis of a plate sub-
jected to a highly localized surface heating, and the tran-
sient thermal analysis of a plate subjected to a moving heat
source. These problems show that the nodeless variable flux-
based finite element method incorporated with the adaptive
meshing technique can increase the analysis solution accu-
racy, and meanwhile it significantly reduce the total num-
ber of uoknowns as compared to the standard nonadaptive
mesh,
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The characieristic-based split algorithm is combined with a mesh adaptation technique to analyze high-speed inviscid
compressible flow problems. The solution accuracy is improved by coupling an error estimation proceduce to an adaptive
remeshing technique that generates small elements in regions with large change in solution gradients, and at the same time,
lacger elements in the other regions. The efficiency of the combined procedure is evaluated by salving several problems for

both transient and steady-state flow behaviours.
IPC Code: F15B

High-speed compressible flows normaily inctude
complex flow phenomena, such as shock waves, flow
expansions, and shock-shock interactions'. Effects of
these phenomena are critical in the design of high-
speed vehicle structures. These flows are character-
ized by steep gradients that nreed robust analyses and
computational techniques as well as dense meshes to
obtain good resolution of flow behaviours. During the
past decades, several computational techniques were
developed to alleviate the'computational effort in or-
der to capture complex flow fileds. These algorithms
include the Taylor-Galerkin algorithm?, the Petrov-
Galerkin algorithm?, the least-squares algorithm®, the
cell-centered upwinding algorithm’, and the charac-
teristic-based split algorithm®,

In this paper, the characteristic-based split
algorithm is combined with the adaptive Delaunay
triangulation algorithm™® to improve the accuracy of
the predicted flow solutions. The characteristic-based
split algonthm is selected for the flow analysis
because of its capability to provide solution accuracy
for most of the fluid dynamics problems. The
Delaunay triangulation is used in the construction of
triangular meshes for arbitrary two-dimensional
geometry. An adaptive remeshing technique is also
included in order to generate small elements in the
region of large change in solution gradients to
increase solution accuracy. At the same time, larger
elements are generated in the other regions to reduce

_ the computational time.

*For correspondence (E-mail: fmepdc @eng.chula.ac.th)

The paper starts by explaining the theoretical for-
mulation for inviscid corapressible flow anatysis and
the characteristic-based split algorithm. The basic
concept of Delaunay triangulation and the adaptive
remeshing technique are then described. Finally, the
efficiency of the combined procedure is evaluated by
analyzing four examples of high-speed inviscid com-
pressible flows; a Sod shock tube, an oblique shock
reflection at a wall, a Mach 2.0 flow in a channel with
compression and expansion ramps, and a shock-shock
interaction on a cylinder. The paper concentrates on
the demonstration of the sclution accuracy improve-
ment and the computational efficiency by using the
proposed procedure.

Theoretical Formulation and Solution Procedure

Governing differential equations

The Euler equations for two-dimensional inviscid
compressible flow are written in the conservation
form as,

d d ]

— UM —E}+—{F}=0 e 1

HUF{EH () »
The vector {U } contains the conservation varl-

ables defined by,

{U} =|p pu pv pe] ()

where p is the fluid density, « and v are the velocity
components in the x and y directions, respectively,
and £ is the total energy of the fluid. The vectors {E}
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and {F} consist of inviscid fluxes in the x and y di-

rections, respectively. These tnviscid flux vectors are
given by,

{E} = Lp:z pu+p puv pue+ pqu (3
and
{F}r =va puv pvi+p pv€+per . (B)

where p is the pressure. The total energy consists
of the internal energy and the kinetic energy defined
by,

£=e+%(u2+v2) e (5)

The internal energy is assumed to satisfy the equation
of state that can be written in the form,

e= £ __ . ®

ply-1)
where ¥ is a specific heat ratio.

Characteristic-based split algorithm

The characteristic-based split algorithm was first
introduced by Zienkiewicz and Codina® to solve dif-
ferent categories of fluid dynamics problems. The
basic concept of the characteristic-based split algo-
rithm is to use the characteristic-Galerkin method and
the operator-splitting procedure to establish recur-
rence relations for temporal discretization, while the
method of weighted residuals with Galerkin’s criteria
is used for spatial discretization for deriving the finite
element equations.

Temporal discretization

The characteristic-based split algorithm for the
high-speed inviscid compressible flow analysis'® con-
sists of four steps. In the first step, the intermediate
values of conservative variables of the momentum
equations are calculated by omitting the pressure gra-
dient terms. In the second step, the continuity equa-
tion is solved to determine the density changes in the
fluid. Then, the conservative variables of the mo-
mentum equations are updated in the third step. Fi-
nally, the energy equation is solved for the total en-
ergy in the last step, and the pressure is calculated
using the equation of state. These four steps can be
written in the fully explicit form as follows,

Step 1: The intermediate momentum equations,

a(uIUl)+£u [az(ufb’)).‘- 3p

dx, 2 ‘\ oxdx;  dxox
AT

where U, are the mass fluxes and As s the time step.

AU = At| -

Step 2: The continuity equation,

U, 138U’ A ¥p T
Ap= At —— —— LI S . (8
d [ dx, 2 dx 2 dxox ®
Step 3: The momentum correction equations,
) ap. |
AU, = AU, - A e (9
X
Step 4: The energy equation,
ou, (pe+
ox,
£y i
a9 (3w (pe+p))
1 .. (10}
pA axk|\ ox;

Spatial discretization
The triangular element assumes linear interpolation
for the variables U , E, F ,pand p as,

U=N,(x,y)U, .. {11a)
E=N,(x,y)E, . (11b)
F=N/(xy)F, ... {11c)
p=N(x,y}p, . (11d)
p=N,(uy) p, (o)

where =1, 2, 3 and N, are the element interpola-
tion functions.

The method of weighted residuals with Galerkin’s
criteria is employed to discretize the finite element
equations by multiplying Eqs (7)-(10) with the .
weighting functions, N, , and performing integration
by paxts using the Gauss theorem'' to- yield the ele-
ment equations shown in the steps below,

Step 1: The intermediate momentum equations,

[N aUdQ =
j¢]
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l: )n dl_':l
x r
a U
a.::{
8 u,U; ) dp "
dar .. (12
+;[ a{ ox, axl.:l" jl 12
Step 2: The continuity equation,

N, (, 1
N ApdQ = Ar U +=AU; U,49
[rovsa=a|[Ga{vdeur

o i

- j N,J{Ui +%AU; ]n, dl"]

_*_[IBN ap 9L 10 -
ox, dx;

Step 3: The momentum correction equations,

[N 400 =
i
[N, 4U; 40 +m[ N pag2 — [N, pn, ]
el 2 9% r
.. {14)
Step 4: The energy equation,
[N, Aped =
2
N, "
:5:[ o 2 (u, (p€ + p))dQ- IN (uj(ps+p)}ndr‘}
o 9%
z ad € +
A, IaNa (s, (e ) o
2 %4 9%, dx,
a T
+INR (uj(98+P))nkdr] . (15)
- ax;

The finite element equations in matrix form can
then be derived by substituting Eq. (11) into Eqs (12)-
(15) to give,

J’N ndl"j|ﬂ (;3)'

Step 1: The intermediate momentum equations,
[MI{au]} = af [C]{u}.U'.}—{Ru}]"
- (R Huu b+ [ K, J{ph-1RD~{R,})

.. (16)

Step 2: The continuity equation,
[M}{Ap} =N[[D]{Uf +%AU;}_{Su}]
As? e
2 (KK} -{s,) -

Step 3: The momentum correction equations,

[M]{av} = [M){AU;} +ar ([oHe}-{1,})

.. (18)
Step 4: 'I‘.he energy equation,
[M){ape} = ar([Clu,(pe+p)}-{RY)
_%I_ut([Kn]{uj(p£+p)}+{R“})" . (19)

. In the above equations, the element matrices written

in the integral form are,

[M]=j{_N}LNJdQ .. (20a)
[c]= J’{aN]LNJdQ .. (20b)
[D]= J'[ }LNJdQ . (200)

=£{a& H ‘ ...(20d)
[} - f{ 2] 2o o)
[K]= [{gf“aNJdQ ..(20f)
{R,}=l{N} uU,)n,dT ..(20g)
{R,‘,}=£{N}%;andr .. (20h)
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{R,.} =!{N}§—iukdr . (20i)
{s,} = l{N}(U,.Jr%AU,.‘}n,dr . (20)
(5.} = [(m2nar oo
r,} = J.{N}pn‘.dl" . (200
{R¢}=1r{~}(uf(ps+p))n,-dr - Gom
{R,} = l{N}Wmdr . (20n)

An artificial diffusion is also needed to reduce the
oscillation in the vicinity of sharp gradients of the
solutions. The second derivative of pressure'? is se-
lected to contribute the artificial diffusion into nodal
quantities. These nodal arfificial diffusions are deter-
mined from,

Uﬂ*l __Un-i-'l 3'V|+C ) "
Ye -V e e, 1k
[M]{ = } = V25| [K U}

2D

where U] is the modified solution at time step n+ 1
after adding artificial diffusion, U”"' is the solution at
time step n+1, C, is the user-specified coefficient
which varies between (0 and 2, /& is the element size,
[V] is the absotute velocity, ¢ is the speed of sound,

p is the average pressure, and IVzpl is the second

derivative of pressure over the element. The fully ex-
plicit form of the characteristic-based split algorithm
is conditionally stable. The permissible time step is
given by,

Af = h

= GW .. (22)

where o is the Courant number (O<o< 1).

Adaptive Mesh Regeneration

Mesh adaptation procedure

In high-speed compressible flows, the flow proper-
ties, such as the density and pressure, change abruptly
across the shock waves. Small elements are thus

needed along the shock waves to provide good flow
resolution. The second derivatives of any key vanable
¢, such as.density is used to determine the proper
element sizes’ that is, small elements are placed in the
region where changes in the variable gradients are
large. Elemenis which will be either refined or coars-
ened by Adapiive Remeshing algornithm, are identified
by a dimensionless error indicator using the pressure-
switch coefficient’’. The indicator at node [ is given
by,

2|2¢; _¢J _¢x|
E =</ o 23)
S(A"+8)

where J and K are the other two nodes of the triangle,
A" = max(p, - ¢, (@, +¢,)) and
B = max(](b, —q)xi,a(q), +@,)). The value of ¢ is

prescribed as .005 in this paper, which means
A" =.005(p, +¢,) and B =.005(¢, +¢,) if ¢,

and ¢, are oscillated within 1% of ¢, , respectively.
Practical experience found that this type of error
indicator for complex high-speed compressible flow
problems, where regions such as shock or discontinu-
ity have different strength, may cause inaccurate so:
lution from inadequate refinement because the point
spacing is scaled according to the maximum value of
the second derivatives. To overcome this problem, an
element size scaling function, which scales the point
spacing of point p; between minimum and maximum
clement sizes, #pi and K., within the range of %,

and %, . has been used,

h . —dp,
—max BV (}' 1’ -
h k xmm xm:

X = ScaleRange[
... (24)
where dp; is nodal distribution value of node i.

The coefficient x, controls the point insertion in the
regions of high solution gradient and eliminates undue -
distortion of the triangle regularity. The value of ¥
limits number of points insertion in high gradient re-
gion such as shock, while the value of upper limit
allows more points to be inserted into the lower solu-

tion gradient region. As shapes of adapted elements
generated by this function may be distorted, the Alpha
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and Beta coefficients’ are incorporated as coefficients
of such function to control point density and the
regularity of triangulation.

The proposed adaptive mesh regeneration is based
on the concepts of the Delaunay trangulation and the
mesh refinement as described by Algorithm I and IT".
The new mesh is constructed using the information
from the previous or background mesh, such that it is
composed of smalt elements in the regions with large
changes of solution gradients, and large elements in
the other regions where the changes of solution gradi-
ents are smail. The proposed algorithm is terminated
when number of inserted points in each iteration is
less than some threshold values, between 2 to 5
points. Detailed process of adaptive remeshing tech-
nigque is shown and described in the algorithm as fol-
lows.

Algorithm HI; Adaptive Remeshing (P, T, P0, alpha
beta, _ Hmin, Hmax, Xi_min, _ Xi_max, threshold)
Do {
Do p ¢ PO.NextInteriorNode {
If (p.hi < Hmax) {
¢t & T.FindTrangleContainNode(p);
pq « t.ComputeTriangleCentroid();
pq.dp & t.ComputePointDistribution
Function(); pg.dm(1:3} « r.Distance
CentroidToVertices(};sclcoef = Scale
Range((Hmax - pq.dp) / _
(Hmax - Hmin), 0, 1, Xi_min,
Xi_max);
If ((sclcoef * lalpha * pg.dp) <
pg.dm.Average) {
var = sclcoef * Hmin | beta,
If Not(((pg.dm(1) < var)
And (pg.dm(2) <var)) Or _
{{(pg.dm(2) < var) And (pg.dm(3)
<var)) Or _
{(pg.dm(3) < var) And (pg.dm(l)
<var)))
P.AddNodeAslnsertedNode(pg);
B
b5
b
Do p «- P.NextlnsertedNode {
Call DelaunayTriangulation(P, T, p);
b
} Loop Until (P.InsertedNodes <= threshold);
End;

The above algorithm III can be described in order as
follows;

Algorithm 1lI; AdaptiveRemeshing

| Let user-specified threshold be the minimum
number of points required in each point iteration
loop to continue this algorithm.

2 Let PO, k = 1, ..., n be the set of points of the
background mesh.

3 Let P be the set of points and T be the set of tri-
angles.

4 Read next intedior point p; of the background

mesh from PO.

If h; > A, then go to step 4.

6 Search triangle ¢; in T which contains the point

pi. Then calculate the centroid of the triangle ¢;

and define it as point p,, and compute the point

distribution function of point p,.

Compute the distance d,,, m = {, 2, 3 from point

Pq 0 each of the three vertices of the triangle ¢,

8  Compute the Xi coefficient, 2, for point p; by
using Eq. (24), and the average distance, s; = (4,
+d;+d3) /3.

9  Perform the Xi-Alpha test for point pg. If (x, *
alpha * h) 2 s; then reject the point p, and re-
turn to step 4.

10 Perform the Xi-Beta test for point p,. If two out
of three of d,, < (X, * Amia / beta) for any m = 1,

2, 3, then reject the point p, and return to step 4.

1 Accept the point p, for insertion by the Delau-
nay triangulation algorithm and add point p, into
P.

12 Repeat steps 4 to 11 until all points in P are con-
sidered.

13 Perform the Delaunay triangulation of the in-
serted points in P.

14 If number of inserted points is greater than
threshold, then go to step 3; otherwise stop the
algorithm.

The proposed algorithm above does not guarantee
the good mesh topology. The mesh relaxation' based
on an edge-swapping technique is highly recom-
mended for well-shaped mesh improvement. The ob- -
jective of this method is to make the topology of ele-

Lh

~J

- ments closer to equitateral triangles by swapping

edges to equalize the vertex degrees (number of edges
linked to each point) toward the value of six. Finally,
the Laplacian smoothing is applied to smooth the
mesh.
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Algorithm evaluation

To evaluate the performance of the adaptive
‘remeshing technique with the Delaunay triangulation
algorithm, the specification of element size, h, is
given as an analytical function for two-dimensional
domain. The adaptive mesh generation process first
generates an initial mesh from the domain, then the
values of the element sizes at all points are computed
by the given function. The mesh generation coupled
with the adaptive remeshing procedure is repeated
until the resulting mesh is globally stable. The three
examples of adaptive mesh generation with the ana-
ytcal element size-specification {unction presented
herein are: (i) adaptive meshes along centerline of a
rectangutar domain, (ii) adaptive meshes along a di-
agonal of a square domain, and (iii) alpha-shape
adaptive meshes in a square domain.

Adapiive Meshes along Centerline of a Rectangu-
lar Domain: The first example presents an adaptive
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mesh generation in a 3 % 5 rectangular domain. The
element sizes at positions in the domain are given by
the distribution function,

[yeu ¥

o5 )

My)=042 - -—F=—==—¢"
(y)=0.4z Tongt (23)
where y is the variable and the values of i and ¢ are
constants equal to zero and one, respectively. Fig. |
shows a series of the meshes generated by three suc-
cessive adaptation from the coarse initial mesh. The
value of mesh generation coefficients, & B, Xmins Xnax
are 0.3, 0.6, 0.75, and 1.10, respectively. Due to the
prescribed distribution function, Eq. (25), small ele-
ment sizes are specified around the centerline of the
domain. The {igures show the pattern of graded ele-
ments along narrow band around the centertine of the
domain. The value of ¥ . limits number of points in-

sertion along centerline of the domain, while the value
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Fig. 1—Adaptive meshes along centerling of a sectangular domain.
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ol %,... allows more nodes to be inserted into the other & mesh consisting of relatively uniform elements in a
regions. wider centerline band of the domain is generated. This
o o mesh has better physical correlation with the behav-
The specificalion of scale range and limiting X. X,..  iours of shocks.
and 2, have strong effects on the resulling meshes Adaptive Meshes along a Diagonal of a Square
as shown in Fig. 2. Without the scale range, the mesh  Domain: The second exampie concerns with an adap-
is composed of small elements concentrated around  tive mesh generation in a unit square domain. The
line a (see Fig. 2) with progressively larger elements  element sizes are calculated by the function in Eq.
outwards as k, < hy. k.. The scale range function sorts  (26) where the constant & is equal to 0.5 for this test
the nodal spacing values into prescribed intervals ac-  case’,
cording t0 %, and x . In each interval, the gener- -
ated element sizes are relatively uniform. With them, o a(l-2x) +a?ﬁ-f(l-x) .

V21 8) 201 Y

h(x.y)=2y(1-y)| tan

25 L
' (1-2) _a8y(1-5)|
all= & -

E 2x(1-x)| tan™ B - Y, AU

10 p VI(1+ 87} o1+ p2)

0.5 i )

00 e et hfxy) — % - (26)

_(:; Q5 .1¢ .15 20 .25 30 35 where B =a[(x + y)/ﬁ _08] .

s Because this function generates both negative and

20 positive values, the onty positive values of this func-

'2'5 i tion are used to determine the element size by scaling

into the new range of 0.001 and 0.2. Fig. 3 shows the

Fig. 2--Distribution of elcment sizes zlong the y direction. sequence of adaptive meshes generated by five itera-
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Fig. 3—Adaptive meshes along a diagonal of a square domain.



BOONMARLERT er of : KIGH-SPEED COMPRESSIBLE FLOW ANALYSIS

tions based on a coarse initial mesh. The value of
mesh generation coefficients. & B Y Yo are 0.3,
0.6, 0.4, and 0.73, respectively. The combination of
the values of Y, and %, narrows the band along the
diagonat line with small elements.

Alpha-Shape Adaptive Meshes in a Square Do-
main: The third example generates an alpha-shape
adaptive mesh in a square domain as shown in Fig. 4.
The alpha shape function" is used to calculate ele-
ment sizes io an 8§ X 8 square domain,

min(0.2(A - 1) +0.005,1.0)  if A =1
h(x,y) =
) {min(0-2(1—1)2+0.01,1.0) ifA<l
.. @7

where the value of parameter A is determined from
= y* +2-3x=0. The value of mesh generation

coefficients, &, 3, Ymm, Xmas are 0.5. 0.6, 0.5, and 0.85,
respectively.

Results and Discussion

To demonstrate the capability of the combined
characteristic-based split algorithm and the adaptive
remeshing technique for increasing the flow solution
accuracy, four simulations of the high-speed inviscid
compressible flows are used: (i} Sod shock wbe, (ii)
an oblique shock reflection at a wall, (iii) aMach 2
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flow in a channel with compression and expansion
ramps, and (iv) a shock-shock interaction on a cylin-
der.

Sod shock tube

The first example, used for evaluating the com-
bined characteristic-based split algorithm and adap-
tive remeshing technique, is the Sod shock tube'®.
This example was selected because it has exact solu-
tions for comparison. The problem statemeat is de-
scribed by Fig. 5. the initial conditions of the fluids on
the left and right regions are given by (0, &, p). = (1.0,
0.0, 1.0) and (0, u, p)r = (0.125, 0.0, 0.1). Figs 6 (a-c)
show a transient adaptuve mesh which consisis of
32,091 nodes and its corresponding computed density
and pressure contours. Figs 7(a-c) compare the com-
puted density, pressure and u-velocity along the tube
length with the exact solutions at time ¢ = 0.1. The
figures show the combined procedure can capture
abrupt changes of the solutions across the shocks
wave very well.

An obfligue shock refleclion at a wall

The problem statement of a steady-state oblique
shock reflection at a wall is described in Fig. 8. The
Mach 2.9 and 2.378 flows enter through the left and
the top boundaries of the computational domain re-
sulting in an oblique shock from the top-feft corner.
This shock incidents and reflects ata wall as high

1* iteration

4% jteration

Fig. 4—An alpha-shape adaptive meshes in a square domain.
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lighted in the figure. The boundary conditions atong
the left side of the computational domain are given by
p=10.u4=29, v=0, £=5990714: and the upper

given by p=17. u=2619334,

v=—0.506320. £€=5.805957. The slip condition is

imposed on the lower side and none of flow variables
is specified on the right side. The combined procedure
starts by creating a relatively smooth initial meshes as
shown in Fig. 9a that consists of 2,561 nodes. The
fluid analysis is then performed to generate the corre-
sponding solution such as the density contours as
shown in Figs 9(b-c). The figure shows the computed
shock is not sharp because the elements along the
shock lines are not small enough. This flow solution
is then used to generate an adaptive mesh to cluster
small elements in the regions of sharp changes of the
density gradients, and at the same time, o use larger
elements on the other regions. The fluid analysis is
then performed again 1o yield a more accurate solu-
tion. The entire process is repeated to generate the
third adaptive mesh consisting of 9,989 nodes and the

side are

Expansion wave \ Driaphragm -\ Shock wave -\

TARLTRL,

; ———

-

Fig. 5—Problem siatement of a shock wave propagation in a tube.

High pressure region Low pressure region

(a)
.45
G.70 0.33
095 N % 0.22
=y
N
(b)
031
0.58
/-0.15

-
=

<)

Fig. 6—A shock wave propagation in 2 tube: (2) adaptive mesh;
(b)-(c) corresponding density and pressure contours at time £ =
g.1.
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0.0 =t .
0.0 0.5 1.0
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Fig. 7—Comparative solutions at t = 0.1 for a shock wave propa-
gation in a tube: (a) density distribution; (b) pressure distribution:
(c} u-velocity distribution.

M= ?.178
19, 94» / Computational domain

ITO

.~ Oblique shock wave !

Fig. 8—Problem statement of an oblique shock reflection at a
wall.
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-viresponding censity contours as shown in Figs 9(d-
¢). respectively. Figs 10(a-b) itlustrate the eftect of
C_ on the predicted density and pressure as compared
to the exact soluttons. Figs [1(a-(b) show the im-
provement of the shock resolution from the third
adaptive mesh by comparing with the exact solution
and the ioitial mesh solution at y = 0.25.

Mach 2 flow in a chamnel with compression and expansion
ramps

The problem statement of a Mach 2.0 in a channel
with compression and expansion ramps and the sketch

®

@

(€)

Fig. 9—An oblique shock reflection at a wall: {a) initial mesh;
(b)-{c} the comesponding deasity contours with C, = 0.5, 2.0; and
(d)-(e} third adaptive mesh and the comesponding density con-
tours.

of the flow behaviour are described in Fig, 12, The
flow creates an oblique shock from the compression
ramp that impirges on the upper wall resuiling in a
reflecting shock. The reflecting shock also intersecis
with the Mach waves generated from the expansion
corngr. The boundary conditions along the left side of
computational domain are given by p =10, «=10,

v=0. £=0.946429. The upper and lower sides of

the domain are specified by the slip condition while
none of the variables is specified on the right side.
The final adaptive mesh consisting of 13,387 nodes is
shown in Fig. 13a. The cormresponding density, pees-
sure and Mach number contours are shown in Figs
13(b-d). respectively. The figures highlight good
quality of the predicted solutions with sharp shock
lines and clear Mach wave. The comparisons of the

3.0
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£ 1.5 F
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* Initial mesh, C, =0.5

1.0 ot

0.5 + Initial mesh, C, =2.0
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! * Initial mesh, C, =0.5
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0.0 L L L f
0.0 . 1.0 20 30 40
X
(b)

Fig. 10—Effect of C_ on the solutions at y = 0.25 for an obligue

shock reflection at a wall: (a) density distribution: and (b) pressure
distribution.
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» Adaptive mesh
0‘0 \_ 1 i (] 1
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F4 9
15 B )
to b . — Exact
. » Initial mesh
05 | .
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0-0 —l | | 3
0.0 1.0 20 30 4.0
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Fig. 11—Comparative solutions at y = 0.25 for an oblique shock
reflection at a wall: (a) density distribution; and (b) pressure dis-
tribution.

¥
I Computational domain

Fig. 12——Problem stateanent of a Mach 2.0 in a channei with
compression and expansion ramps.

analytical solutions, the numerical solutions'’ and the
present numerical results are given in Table 1. The
table shows the Mach number at the four state loca-
tions are in excellent agreement -with the analytical
solutions. This example demonstrates the capability of

(b)

0.31 0.28
0.50 k Ao. 19

(c)
T

161
1.31\\

1.68
/r 1.90
/

150 ~1.76
{d)

Fig. 13—Mach 2.0 in a channel with compression and expansion
ramps: {a) final adaptive mesh: (b) corresponding density con-
wurs; (¢) pressure contours: (d) Mach number contours.

Table i— Comparison of analytical and numerical solutions at the
four state locations {Fig. 12) of the flow in a channel with com-
pression and expansion ramps

State Analytical Present Ref . (I7)
location  Mach number {% difference) (% difference)

I 200 2,000 (0.0) 2.000 (0.0

2 1.65 1.640 (0.6) L.639 (0.7)

3 1.30 1.290 (0.8) 1.287 (L.OY

4 2.00 i.982 (0.9) 1.985 (0.8)

the combined characteristic-based split algorithm and
the adapiive remeshing technique to provide flow so-
lution for general flow behaviour that is not known a
priori.
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Compulalional domain

M =803
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M =525 T
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_l_ Bow shock
a=1235"
|"—‘3,5
—.—} Cylinder

M =803 Incideal shock

>

Fig. 14—Problem siaternem of a shock-shock interaction on a
cylinder.

Shock-shock interaction on a cylinder

The problem statement of a shock-shock interac-
tion behaviour in front of a cylinder is shown in
Fig. 14, An incident shock generated from a Mach
8.03 flow over a wedge interacts with the bow shock
of the cylinder resulting in a shock-shock interaction
phenomenon. Such phenomenon is quite corplex for
which the interaction pattern is not known a priori.
The inlet flow conditions of upper left side of the do-
main consist of specifying p = 2.879051E-9 Ibf-
SHin', u = 6.6932406+4 /s, v = 0 in/s , and £ =
2.364019E+9 in*/s”; the lower left side of domain are
given by p = 9.596836E-9 Ibf-s¥in’, u« =

6.240757E+4 infs, v = 1.383542E+4 in/s, and & =
2.307711E+9 in%s”. The slip condition is imposed on
the surface of the cylinder while none of the flow
variables is specified on the other sides. The com-
bined procedure with the adaptive meshing technique
was applied to solve for such flow solution. The final
adaptive mesh consisting of 20,332 nodes and 40,359
elements is shown in Fig. 15a. The corresponding
computed pressure and Mach oumber contours are
presented in Figs 15(b-c), respectively. Fig. 16 shows
the computed pressure distribution on the surface of
the cylinder as compared to the experimental data'®,
The predicted and experimental pressure distributions

790 -
0.51 B

{a) )] (c)

Fig. 15—Shock-shock interaction on a cylinder: (a) adaptive
mesh: (b}-(¢) comesponding pressure and Mach number contours.

Cylinder

«  Experiment 18]

— Combincd procedure

PRP— -
[ 45 L)
&, degree

Fig. 16— Comparative pressure distributions along cylinder sur-
face.

are normalized by the undisturbed flow (no shock in-
teraction) stagnation pressure. The figure shows good
agreement of the pressure distributions and excellent
agreement of the peak pressure location.

Conclusions

The combined procedure of the finite element
method based on the characteristic-based split algo-
rithm and the adaptive Delaunay triangulation algo-
rithm for the analysis of high-speed inviscid com-
pressible flow was presented. The characteristic-based
spiit algorithm for solving the Euler equations was
described first. The concept of the Delaunay triangu-
lation for two-dimensional mesh construction was
then explained. The mesh generation procedure with
automatic point creation and mesh smoothing were
developed and described. The solution accuracy was
improved by incorporating an adaptive remeshing
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technique to the Delaunay triangutation algorithm.
The adaptive remeshing techrique places smatl ele-
ments in the regions with large changes of flow solu-
tion gradients, and at the same time, larger elements
are generated in the other regions. Four examples of
high-speed inviscid compressible flows were pre-
sented to assess the effectiveness of the combined
procedure. These examples are a shock wave propa-
gation in tube, an oblique shock reflection at a wall, a
Mach 2.0 flow in a channel with compression and
expansion ramps, and a shock-shock interaction on a
cylinder. The results demonstrate that the combined
procedure can provide high solution accuracy with
reduced computational time 2nd memory for analysis
of high-speed compressible flow problems.
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A nodeless variables finite element method for analysis of two-dimenstonal. steady-state

viscous incompressible flow is presented. The finite element equations are derived from the

governing Navier-Stokes differential equations and a corresponding computer program 1s

developed. The proposed method is evaluated by solving the examples of the lubricant flow in

journal bearing and the flow in the lid-driven cavity. An adaptive meshing technigue is incor-

porated to improve the solution accuracy and, at the same time, 1o reduce the analysis computa-
tional time. The efficiency of the combined adaptive meshing technique and the nodeless varia-
bles finite element method is illustrated by using the example of the flow past two fences in a

channel.

Key Words : Finite Element Method, [ncompressible Flow, Nodeless Variables,

Adaptive Meshing Technique

1. Intreduction

The finite element method has been widely
and successfully used as a tool for analyzing both
the solid mechanics and heat transfer problems.
However, 1ts application in the field of fluid dy-
namics is stfll under development and is limited,
because the method has encountered some diffi-
culties arisen from the nature of the governing
Navier-Stokes differential equations {Zienkiewicz
and Taylor, 2000). This is mainly due to the fact
that the derivative terms of the velocity compo-
nents tn the momentumn equations are one order
higher than those of the pressure. The order of
the finite element interpolation functions for the
velocity components is thus required to be one
order higher than that of the pressure to assure
the solution’s stability (Patankar, 1980; Chen

* Corresponding Author,
E~-mail : fmepdc@eng.chula.ac.th
TEL: +66-2-2i8-6621; FAX : +66-2-218-6621
Mechanical Engineering Department, Chulalengkorn
University, Bangkok {0330, Thailand. (Manuscript Re-
ceived May 12, 2005; Revised July 2, 2006)

aad Han, 2000 ; Schafec and Teschauer, 2001).
In addition, the non-linearity nature of the
Navier-Stokes equations also poses difficulty in
the analysis. An iterative computational proce-
dure is needed 10 obtain the flow solution. Salv-
ing such the fluid problems thus normally re-
quires larger computer memory and computation-
al time as compared to those for the solid me- *
chanics and heat transfer problems.

[n the past, the six-node triangular efements
were generally employed for the low- speed vis-
cous flow analysis in arbitrary two-dimensionat
geometry. The mixed element interpolation func-
tions were selected such that the interpotation func-
tions for the velocity components are one order
higher than those for the pressure (Yamada et al.,
1975; Kawahara et al., 1976). The use of the six-
node elements requires extra effort for generating
the finite element meshes and their related element
data as compared to the regular three-node ele-
ments {Dechaumphai and Sikkhabandit, 2000).
Furthermore, additional difficulty arises if both
the fluid and the solid regions are to be solved
together simultaneously as in the interdisciplin-
ary problem (Wansophark et al., 2005). The finite
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Fluid reeion

: : j : : Softd regeon ; ; ; ; ;

N /N /N
(a) Incompatible modcl
Fig. 1
iaterdisciplinary Muid/solid problem

element modeling incompatibility occurs because
the three-node triangular elements are normally
used in the solid region, while the six-node ele-
ments are fequired in the fMwid region for the
fluid analysis as highlighted in Fig. 1{a). Devel-
opment of an alternative finite element method
for the flow analysis using the three-node trian-
gular elements, as shown in Fig. 1{b} for fluid/
selid modeling compatibility, is thus needed. There-
fore, in this paper, the finite element method for
the analysis of viscous incompressible flow using
the regular three-node elements with nodeless
variables is developed. The performance of the
new finite element and the proposed method is
evaluated by the analyzing several the viscous
incompressible flow problems.

In addition, an adaptive meshing technique
(Limirakacn and Dechaumphai, 2004) is also im-
plemented. The technique generates small clus-
tered elements in the regions of high changes in
solution gradients to improve solution accuracy.
Larger elements are generated in the other regions
where the solutions are fairly uniform to reduce
the number of unknowns and thus the analysis
computational time. The efficiency of the com-
bined adaptive meshing technique and the node-
less variables finite clement method is demon-
strated by the problem of the flow past two fences
in a channel

2. Governing Equations

The governing differential equations for the vis-
cous incompressible flow problems consist of the
Navier-Stokes equations and the continuity equa-
tion. The two-di[nensional steady-state Navier-

(b} Compatible model

Meodeling incompatibility from using the six-node triangular elements in the Muid region for

Stokes equations, which represent the conserva-
tion of momentums in the x and y-directions,
can be written as,

O

av ay 8ty _ 80,

o(u(ge+oiy)—GGe=0
where p is the density : & and v are velocity com-
ponents in the x and y-directions, respectively.
For the Newtonian fluid, the normal and tangen-
tial stress components in Eqs. {1a) and (ib) above
are written in terms of the pressure, p, and the
velocity gradients as,

fib)

Or=—pt2uSE g;‘ (22)
oy=~p+2p§§— (26)
T =% Ty ™= {4 —'-l-—a% (2.2

where g is the viscosity. The Navier-Stokes equa-
tions can thean be rewritten in the form of non-
linear partial differential equations of second or-
der as,

ou ity %;L)‘ (ax +a

o 3"+v§§) (:;ixv_Jr___) %:0 (3b)

)+—£—o (3a)

The above two equations, together with the con-
tinuity equation tepresenting the conservation of

* mass,

du  dv_ '
'3}"!“3‘;—0 (3¢)
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are 1o be solved for the unknowns of the velocity
components and the pressure.

These differential equations, Egs. (3a) ~ (3¢},
are (o be solved with appropriate boundary con-
ditions which are either specitying velocity com-
ponents along edge S,

wix.y) =wmlx.y) {42}
ele,yr=p{x,y) (4b)

or surface tractions along edge S,
Te=0xd + toym (5a}
Ty=1ol+aym (5%)

where { and m are the direction cosines of the
unit vecter normal to the boundary edge.

3. Finite Element Formulations

The Galerkin finite element method is applied
for deriving the finite element equations from the
governing differential equations, Eqs. (3a) ~ (3¢).
The computational domain is discretized using
the regular three-node finite elements. These three-
node finite ¢lements assume the element velocity
component and the pressure distributions in the
form,

plx, y) =H:(x, y) i (6a}
wlx, y) =H{x. Ml +Gilx,y) uf (6b)
pix, v)=Hx y vi+Gx.») vf {6c)

where z! and pi, 1=1,2,3, are the velocity com-
ponents at the three nodes, and pr is the nodal
pressure. The uf and pf, j=1,2,3, are nodeless
vanables related to velocity components that do
rot need their locations as required by the actual
nodes. The element imerpolation functions, H.,
are linear in the form,

H=L, (7a)
H=L, ()
Hy=L, (7c)

o Sl Lanable F10
TN ST P

N

Campatibilay
s pretn od
Butween clemiznls

Convaptiond FR
1w, = Hoael

Fig. 2 Meaning and distribution of the nodeless
variable finite elements with the preserved
compatibility condition along element inter-
face

and the nodeless variable interpolation functions,
;. are quadratic in the form,

Gi=4L,1a (Sa)
Ga=4L.Ls (8o}
G’J=4L|,Lz (Sc)

where L; are the area coordinates (Zienkiewicz
and Taylor, 2000). Distributions of these fune-
tions together with the nodeless variables as ¢com-
pared to those for the conventional 3-node ele-
ment are shown in Fig. 2. The figure also shows
that the compatibility condition is always pre-
served along the elernent interfaces to ensure the
splution convergence. For simplicity in the deri-
vation of the finite element equations presented
later, the element velocity component distribu-
tions in Eqs. (6b) and {(6c) are first written in the
form,

wlx,y) =N:(x.y) u: {9a)
v{x. ) =N:(x,y) v (%)

where =1 to 6. The Bubnov-Galerkin finite
element method is applied to the differential Egs.
(3a) ~(3c) for deriving the finite element equa-
tions by using the element interpolation functions
above. The finite element equations in form of
integrals over the element domain A and the



Nodeless Variables Finite Flement Method and Adaptive Meshing Teghniguee for Viscous Flow tnafysis 1731

element edye S are.

j;N,H t A+ j;N.f' A ““'.}‘J;Ni.rﬂd.q

¥ %‘ Vo sdA+ £ [No.dA {10u)

L [Nordh= [ NTdS

[ Nacv.dA+ [N v.dA- f) [ NowpdA

+%£Ngxu.ydA+§—fAthy.di {10b)

+% [NovsdA= [ NS
fAH.-(u.x+v.y)dA=0 {(10¢)

Then, by the substitution of Eqs. {9a) and (9b)
into equations (10a) and {I0b), the finite element
equations can be written in form of the tensor
notations as,

.Kq,ﬂ'y‘u.ﬂu;r + Kasﬂv.eur - Hw!ﬁ,u

11
+Saﬁx¥uﬁ+SaﬁX!®'.ﬂ= an ( a)
Kapretigtts + Kogrrvsty— H, anyPu
(I 1b)
+Sa3rtu’p+ Sasrrb'p:Qa’
Haprtep+ Hoprty=0 (11c)

where the cocefficients in these equations are de-
fined by,

Kasre= | NNV, d A (122)
Kager= [4 NaNeNyydA (12b)
Hw=7:; [ NesHidA (12¢)
Hw‘—*—:; [NesHLdA (12d)

2
sa,n=—§ [ NaxNsxdA +-§ f Ne NoydA  (12€)

Supr=ts [ NusisodA (12)

{12}

_ M
Sa_}rr'— pLNg_xN}_ydA
"y roaa d
Seawr= p L No N dA+ s LN”N,,,(;A (128

Q“=fslN.Txds (12}

Qur= [N/TodS (12)

4. Computational Procedure

The finite element equations, as shown in Egs.
{11a) ~ (f1¢) are non-linear to be solved by an
iterative method. The Newton-Raphson ilerative
method is selected in this study. The method re-
quires writing the unbalance values in the form,

F¢J= Kahxuﬁuy+ f{aﬁyfvﬂu‘y

13
—‘{L)‘ Ha:.rﬁu + Sasxtliﬁ + Suuv,g - an ( a)

For=Kaayettsty+ Kaayrvavy

L3b)
——’io‘ Hairpot Sapretiag + Saprrtts— Qa> ¢

Fo=Hauxtes+ Haortis (13¢)

Then application of the method leads to a set of
algebraic equations with incremental unknowns
in the form,

Ganx La,a.v — Har Au.a Fax
Lagx Gaﬂ "Huy Ab'p = Fa)’ (14}
Hpux Hpr 0 Apa Fu

where the coefficients in the above equations. are,
Gﬂ’ﬁ":Kaﬁr"ﬂy'i" Kayﬂxu:-"‘ Kamr!}y‘l‘Sasﬂ (153)
Gagr = Kaprrty + Karrvry + Kagastey+ Sapry {150)

L¢3x=Kag;xvy+ Sawx (150)

Laﬂl=Kagyrur+ Saﬂx.v (lSd)

These coefficients which are in form of ¢lement
matrices can be evaluated in closed-form ready
for cornputer programming. Details of the deriva-
tion for these element matrices are omitted hecein
for brevity. [n these Egs. (15a) ~ (15d}, u,and v,
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are the values of the velocity components for
both the actual nodes and the nodeless variables
at the /™ iteration. The iteration process is ter-
minated 1f the change in percentage of the overall
ercers of the nodal unknowns from the previous

iteration is less than the specified value.
5. Adaptive Meshing Technique

The idea behind the adaptive meshing tech-
nique {Limtrakarn and Dechaumphai, 2004) pre-
sented herein is to construct a new mesh based
on the solution obtained from the previous mesh.
The new mesh will consist of small elements in
the regions with large change in solution gradi-
ents and large elements in the other regions where
the change in solution gradients is small. To de-
termine proper clement sizes at different locations
in the flow field, the solid-mechanics concept
for determining the principal stresses from a given
state of stresses at a point is employed. Since
small elements are needed in the regions of com-
plex flow behavior, thus the velocity distribution
can be used as an indicator in the determination
of proper element sizes.

To determine proper element sizes, the second
decivatives of the flow velocity with respect to the
global coordinates x and y are first computed,

Zv. #v
ax®  dxdy
FV PV (16
dxdy It

where V is the magnitude of the two velocity
components # and 2,

V=J/u+1* {17)

The principal quantities in the principal direc-
tions X and Y where the cross derivatives vanish,
are then determined,

IV,
ax’
FV

0 5

(18)

The magnitude of the larger principal quantity is

then selecied.

IV
ox

|%2}—[ﬂ/—) (19

This value is used to compute proper efement size

2=max(

A at thar location from the conditions.
K A=constant = HiinAmax 120)

where Aqin is the specified minimum element size,
and Amax 1$ the maximum principal quantity for
the entire model.

6. Examples

In this section, three examples are presented.
The first two examples are used to verify and eval-
uate the nodeless variables finite element method
with exact solution and solution from othee nu-
merical method. The third example is used 1o de-
monstrate the capability of the combined nodeless
variable finite element method and the adaptive
meshing technique to improve the analysis sotu-
tion accuracy.

6.1 Lubricant flow in journal bearing

The problem statement of the [ubgicant flow in
journat bearing ts shown in Fig. 3. The problem
can be simplified as illustrated in the Fig. 4 if
the length L is much farger than the gap 4. The
figure shows the lower sliding pad moving at a
velocity {f relative 1o the stationary pad inclined

i Computatianal domain

Fig. 3 Problem statemnent of lubricant flow in jour-
nal bearing
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at a small angle with respect 1o the sliding pad.
The small gap between Lhe two pads is filled withs
a lubricant. The exact solution of the velocity is
(Reddy and Gartling, 1994),

L 1 ap - _ X
u—zt—g-;y(y h}+U(l h) (21

where
h=kq+(k1—ko)—’-;— (22)

and the exact solution for the pressure distributi-
on is.

P (/LY (1=x/LY (1= b/ (23)

wULIHE (1+hufhe) (= (1~ e/ o) 2L T

ho

¥ ¥ — e
W s LA A AL P IS T L AT ST L T LTSS LIS AT LSS AT LTS LS

|

L) L =1

Fig. 4 Computational domain for lubricant flow in
journal bearing

e

b
X

y
-

w=0U/v=0
Fig. 5 Finite element model and boundary condi-
tioas of lubricant llow in journal bearing

1.0 t
08

Exact {10]

L U6 Nodeless Varizbles FE
viha

04 |

0.2

0‘0 1 L] 1 i

0.0 0.2 04 0.6 03 1.0
a(0. U7

Fig. 6 Comparison of velocity profiles along the left

boundary

In the computation. the values of AL =2, Jip=1I,
L=20, =35 and g=10 are sclected. The finite
element model as shown in Fig. 3 consists of
686 nodeless variables finite elements. Figures &
and 7 show good agreement between the predicted
and the exact solutions for the velocity profiles
at the entrance and the exit of the computational
domain. Figure § also shows good comparison of
the predicted and the exact pressure distributions
along the lower boundary of the computational
model.

6.2 Lid-driven cavity flow

The problem of the flow circulation in a ctosed
cavity driven by a moving lid has been widely
vsed to validate new fluid computational methods.
The preblem statement is illustrated in Fig. 9.
The flow circulation ia a unit square cavity is
induced by a2 moving lid at the velocity of /=1
to the right. A finite element model, with a 50X
50 mesh discretization along the x and y direc-
tions, consisting of all the nodeless variable {inite

1.0 v
08
vy 06 Exact [10]
04 .
Nodelesy Variables FE
02 L
00 1 1 i i
{4 0.2 04 0.6 0.8 1.0
ul(L WU

Fig. 7 Comparison of velocity profiles along the
right boundary

1.0 r
03 +
6 L
PP
04 | Nodeless Variables FE
02 | Exact [10]
00 Il I 1 1
0.0 (1.2 0.4 0.6 08 1.0
L

Fig. 8 Comparison of pressure distributions along
the bottom boundary
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elements is shown in Fig, 10. The predicted ve-
locity vectors of the flow circulation behavior at

T

e

Fig. 10 Finite element model of lid~driven cavity
flow problem

Fig. 11 Predicted velocity vectors of lid-driven cav-

ity flow problem

the Reynolds number of 400 are plotted in Fig.
1. Figure 1} shows good agrecment of the ve-
locity profiles aleag 1he cavity centered lines ob-
tained from the nodeless variables finite element
method and those presented Refl (Ramaswamy
and Juc, 1991},

6.3 Flow past two fences in channel

The problem of s Mow past two fences (n 2
channel is used to evaluaste the performance of
the combined nodeless variables finite element
method and the adaptive meshing techaigue. The
problem statement of the flow past the two fences
in the channel with its geometry are shown in Fig.
13. Results of the flow behavior for this problem,
including the separations behind the obstactes,
were obtained by experiment and presented in
Ref. (Durst et al., 1988).

The procedure of the combined nodeless vari-
ables finite element method and the adaptive
meshing technique starts from generating a crude
uniform mesh throughout the model as shown
in Figs. t4(a) ~{¢). The nodeless variables finite
element method is then employed to predict the
flow solution according to this fiest uniform mesh.
The flow solution shown in Figs. 14(d) ~ () is
then used, based on the adaptive meshing tech-
nique described in Section 5, to construct a new
mesh. This second mesh as shown in Figs. 15{a) ~
(c) consists of clustered small elements in the
regions of high changes in the solution gradients.
Larger elements are, at the same time, generated
in the other regions where the flow solution is
faicly uniform. The nodeless variables finite ele-

= MNodeless Vanables FE
— Ref|t1]

viel, 3205y U

A0 L L
-0 05 00 05 1D
wel=0.5, W) f U
Fig. 12 Comparison of velocities of lid-driven cavi-
ty flow problem
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ment methad s then performed using this second
mcsh 10 produce a new Nlow soluiton as shown i
Figs. 15(d) ~ (f). This proceduce of generating
new mesh and performing Nnite ¢lement com-
putation is repeated. Figure 16{a} shows the third
adaptive mesh. Small clements are clustered in
the upper left corner of both the left and the right

fences. as shown in Figs. 16{b! - ct, where the
fluid pressures chunge abruptly. The fgure also
shows that larger clements are gencrated 1 the
other regions 10 reduce the computational time
and 1he computer memory requirement

Small elements generated at the upper lelt cor-
ners of both the tences provide high soluiion ac-

| Dot W seale ‘

A O P S S A A

A o

4—L;=3f‘{—r

e————————— L= 8/ —————

{=0.16H

fe=0.48¢

H

T el s A 7 ]

Fig. 13 Problem statement for flow past two fences in channel

P

(a) First adaptive finite element mesh

{b) Detailed mesh around the left fence

PFRR VI RN NIRRT VRN NIRRT R RN NI IFN TR NI IIFII I F IR I X T INII T FF I IR FIFY)

7. e A e p s

{c) Deailed mesh around the right fence

F A P kil
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] Ll

L A i O o e i i A o i

(d) Predicted pressure distribuiion

t f fy

j A4

2\

0 B

-

i

(e) Detailed pressure distribution around the left
fence

() Detailed pressure distribution around the right
fencc

Fig. 14 Ficst adaptive mesh and its solution for flow past two fences in channel problem
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Fig. I3 Second adaptive mesh and its solution for flow past two fences in channel problem
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Fig. 16 Third adaptive mesh and its solution for flow past two fences in channel problem
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Fig. 17 Comparative velocity profiles for {low past
two fences in channel

curacy as can be observed by the smocoth pres-
sure contours in Figs. 16(d) ~ {f). The predicted
velocity profiles are compared with the experi-
mental data {Durst et al., 1988) in Fig. [7. The
figure shows good comparisons at different channet
locations, with flow separations captured near the
lower surface at x/H equals to 4.8 and 10.

7. Conclusions

The nodeless variables finite element method
for viscous incompressible flow analysis was pre-
sented. The nodeless variables were incorporated
inte the standard three-node triangular elements
to increase the order of the velocity interpolation
functions. The nodeless variables finite elements
avoid the need for using the six-node triangular
elements normally employed to provide the analy-
sis solution stability. The use of the nodeless vaci-
ables finite elements reduces the difficulty for gen-
erating the meshes and provides modeling com-
patibility for the interdisciplinary analysis of cou-
pled fluid/solid problems.

The nodeless variables finite element equaticns
were derived from the governing Navier-Stokes
differential equations. All finite element matrices
were derived in closed-form and a corresponding
computer program was developed. Two exampies
with exact and numerical solutions were used to
validate the performance of the nodeless variables
finite element method. The method was also com-
bined with an adaptive meshing technique to fur-
ther increase the overall analysis performance.
The adaptive meshing technique generates small
clustered elements in the regions of high solu-

tion gradicnts to inceease the solulion accuracy.
Larger elements are generated in the other regions
to reduce the computational time as well as the
computer memory. The efficiency of the combined
adaptive meshing technique and the nodeless
vatiables finite element method was demonstrated
by using the example of 4 flow past two fences in
a chaneel.
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Application with Higher-Order Compressible Flow Solver

Sutthisak Phongthanapanich, Pramote Dechaumphai’®
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A combined procedure for two-dimensional Delaunay mesh generation algorithm and an
adaptive remeshing technique with higher-order compressible flow solver is presented. A
pseudo-code procedure is described for the adaptive remeshing technique. The flux-difference
splitting scheme with a modified multidimensional dissipation lor high -speed compressible flow
analysis on unstructured meshes is proposed. The scheme eliminates nonphysical flow solutions
such as the spurious bump of the carbuncle phenomencon observed from the bow shock of the
flow over a blunt body 2nd the oscillation 1n the odd-even grid perturbation in a straight duct
for the Quirk's odd-even decoupling test. The proposed scheme is further extended to achieve
higher-order spatial and temporal sclution aceuracy. The performance of the combined proce-
dure is evaluated on unstructured triangular meshes by solving several steady-state and transient
high-speed compressible flow problems.

Key Words : Adaptive Mesh. Delaunay Triangulation, Carbuncle Phenomenon, Ff-correction

Entropy Fix

1. Introduction

Spatial discretization of a given domain is a
prerequisite for solutions with finite-element or
finite-volume method of a partial differential
equations system that represents the physical
model of the problem. Generally, triangulation
process starts from the generation of the point
list ; the points are subsequently connected into
triangular elements. The points cornection step is
often performed by coostructing the Delaunay
triangulation (Bowyer, 1981 ; Watson, 1981} of
the peint set to guaraniee triangles which are
as well-shaped as possible for the given points.
Since the Delaunay triangulation in itself does
not include procedures for creating poinis in-

* Corresponding Auther,
E-maii : fmepdc@eng.chula acth
Mechanical Eangineering Depariment, Chulalongkocn
University, Bangkok 10330, Thailand. {Manuscript Re-
ceived May 25, 2004; Revised Seprember 23, 2004)

side the domain, poinis are generated indepen-
dently by ar automatic point creation algorithm
{Marchant and Weatherill, 1993 ; Karamete ct al.,
(997}.

To enhance the solution accuracy of the nu-
merical analysis and to improve the computed
solution, mesh adaptation is needed. An adaptive
remeshing technique is incorporated with an
appropriated error indicator to dictate a close
correlation between the size of elements and the
behavior of the corresponding computed solu-
tion. The technique is implemented to captusre
the fast variation of the sotutien with a reason-
able numbec of elements. The process of the
adaptive meshing is to first generate an initial
mesh for the domain. The mesh is used to com-
pute the corresponding solution by the finite-
element or finite-volume method. Then the re-
gions where adaptation is vital are determined
by an error indicator, and new adapted mesh for
the solution is entirely genecrated. The same pro-
cess is repeated until the specified convergence
criterion is met. The efficiency of the overall



Two - Dimensignal Adaptive Mesh Generation Algorithm and it 4pplication with Higher-Order .- 2191

procedure is evaluated by calculating tlows that
include the supersonic shock waves and shock
propagaton behaviors.

High-speed compressible fows normally in-
volve complex flow phenomena, such as strong
shock waves and shock-shock interactions. Vari-
ous numerical inviscid flux formulations have
beg¢n proposed 10 solve an approximate Riemann
problem (Roe. 1981 : Steger and Warming, 1981 ;
Liow et al., 1993 ; Toro et al., 1994 ; Kang et al.,
2002 ; Kang et al., 2003). Among these formula-
tions, the flux-difference splitting scheme by Roe
(1981) is widely used due to its accuracy, quality
and mathematical clarity. However, the scheme
may sometimes lead to nonphysical flow solu-
tions in certain problems, such as the carbuncle
phenomenon (Perry and Imlay, 1988) with a
spurious bump in the bow shock for flow over a
blunt body. In the odd-even decoupling problem
(Quick, 1994), an unrealistic perturbation may
grow with the planar shock as it moves along
the duct. To improve the solution accuracy of
these problems. Quirk pointed out that the ori-
ginal Roe’s scheme should be modified or re-
placed by other schemes in the vicinity of strong
shock. It has been known that the original Roe’s
scheme does not satisfy the entropy condition and
may allow unrealistic expansion shock. Harten
{1983) proposed an entropy fix formulatien to
replace the near zero small eigenvalues by some
tolerances. The mathematical background of the
Harten's entropy fix with the suggested tolerance
values is given by Van Leer et al.{1989).

This paper proposed a mixed entropy fix me-
thod for the Roe’s scheme on adaptive unstruc-
tured meshes for two-dimensional high-speed
compressible flow analysis. The entropy fix me-
thod by Van Leer et al. and the multidimen-
sional dissipation technique of Pandolfi and
D'Ambrosio (2001} are modified for unstructur-
ed triangular meshes and implemented into the
original Roe’s scheme. The presented scheme is
further extended to higher—order solution accura-
cy and then evaluated by several benchmark test
cases.

The presentation in this paper stacts at Section
2 describing an adaptive remeshing technique

with the implementation procedure in an ob-
jected -oriented pregramming concept. Section
3 describes the Roe’s flux-difterence splitting
scheme with some well-known problems that ex-
hibi¢ numerical shock instability. A Roeg’s scheme
with a mixed entropy fix method is then pro-
posed and examined for their capabilitics. The
presented scheme 1s {urther extended to higher-
order solution accuracy and then evaluated by
several benchmark test cases in Section 4. Fia-
ally, the performance of the scheme is evaluat-
ed on adaplive unstructured meshes for solving
both the steady-state and transient high-speed
cempressible flow problems.

2. Delaunay Triangulation and
Adaptation Technique

2.1 Mesh generation and adaptation

The mesh generation implemented in this pa-
per follows the Delaunay triangulation (Bowyer,
1981 ; Watson, L98[). The algorithm itself does
not provide the procedure for creating new points
inside the domain. The automatic point creation
procedure presented in this paper are derived
from the élgorithm suggested by Marchant and
Weatherill (1993). The shape and size of elements
or density of points inside the domain are con-
trolled by two coefficients, the Alpha and the Beta
coefficients. The main idea of the automatic point
creation procedure is to search for the element
that conforms to both the Alpha and Beta testing
criteria and a new point placement at the centroid
of that element. New elements can then be created
by the Delaunay trianguiation algerithm. The
step-by-step explanation of these algorithms was
presented in detail in Ref. (Phongthanapanich and
Dechaumphai, 2004) .

To capture fast variations of the solution, small
elements are needed along that region in the
domain. The proper element size /i, is computed
by requiring that the error should be uniform for
all elements {Dechaumphai and Morgan, 1992):

A= hgo/max =constant ()

where Ai is the higher principal quantity of the
element considered,
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A=

%—H. |~§1% ) (2)

and @ is the selected solution indicator. In the
above Eq. (1}, Amax i5 the maximum principal
quantity for all elements and Amn is the mini-
mum element size specified by users. The cegions,
which will be refined or coarsened by Adaptive-
Remeshing algorithm below, are identified by a

dimensionless error indicator uwsing the pres-

sure—switch coefficient (Probert et 2L., t991). The
indicator at nede [ is given by,
2”26}5: —éxl
= 3
! GEF(A‘+B‘) ©

where J and K are the other two nodes of the
triangle, ¢, A*=max{|¢:—¢,]. a{$;+¢,)} and
B*=max {|¢:—¢«l. alé:+¢x)). The value of
& is used to identify the solution discontinuity
or numerical oscillation. According to numerical
experiment especially for the proposed scheme
that will be explained later, the value of a is
prescribed as Q.005 in this paper. This means
A*=0005(¢;+¢,) and B*=0.005($ +x) if
¢ and g are oscillated within 1% of ¢, res-
pectively.

Practical expericnce found that this type of
error indicator for the transient high-speed com-
pressible flow problems, where regions such as
shock or discontinuity have different strength,
may cause inaccurate solution due to the inade-
quate refinement because the point spacing is
scaled according to the maximum value of the
second derivatives, In order to overcome this
problem, an element size scaling function, which
scales the point spacing of point p; within the
rang€ of Ymn and Xmax, has been used :

x;=scaleRauge(H;, 0, 1, Xum, Xmax) (4)

The coefficient y; controls the point insertion
in the regiotis of high solution gradient and eli-
minates excessive distortion of the regularity of
the triangulation. The value of Ymq limits the
number of points insertion in the high gradient
region such as shock, while the value of upper
limit Ymax allows to insert more points into the
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region with smaller solution gradient such as
the tail of the expansion fan. When the adapted
elements generated by this (unction are distorted
in shape, the Alpha and Beta coefficients arc
incorporated to contral the point density and the
regularity of triangulation.

The proposed adaptive mesh rtegeneration is
based on the concepis of the Delaunay triangula-
tion and the mesh refinerment. The new mesh is
constructed using the information from the previ-
ous or background mesh, and it is composed of
small elements in the regions with large changes
of the solution gradients, and large elements in
the remaining regions where the changes of the
solution gradients are small. Detailed process of
adaptive remeshing technique is described as
follows.

Algorithm AdaptiveRemeshing (P. T, PO, ai-
pha, beta, houn, Foax. Ximin, Ximax, threshold)

t. Let PO, k=1, ---, 1 be the set of points of
the background mesh.

2. Let P be the set of poiunts and T be the set
of triangles.

3. Read next interior point p; of the back-
ground mesh from PO.

4. 1f /: > hmax then go to step 3.

5. Search triangle & in T which conraing
the point p,. Then calculate the centroid of the
triangle # and define it as point pq. and com-
pute the point distribution function of point pg
by Eq. (5).

dpe=47 23] b sl (s)

where M is number of surrounding nodes to
nodc g.

6. Compute the distance dy, m=1, 2, 3 from
point pq to each of the three vertices of the
tnangle £.

7. Compute the Xi coefficient, y:. for point
bi by using Eq. (4), and the average distance,
si={d+d+ds) /3.

8. Perform the Xi-Alpha test for point pg. If
(zi+alphas b)) >=3,, then reject the point py
and return to step 3.

9. Perform the Xi-Beta test for point pq. If
two out of three of &n<C (xi*bmn/ beta) for any
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m=1, 2, 3, then reject the point g and return to
step 3.

10. Accept the point p, for insertion by the
Delauaay triangulation algorithm and add point
bq inta P.

11. Repear sieps 3 to 10 until all poinis (n £
are considered.

12. Perform the Delaunay triangulation of the
inserted points in P.

13. {f number of accepted points greater than
threshold, then go to step 3 otherwise stop the
algorithm.

Since the proposed algorithm above does not
guarantee the good mesh topology, the mesh re-
laxation (Frey, 1991) based on an edge-swap-
ping technique is highly recommended for well-
shaped mesh improvement. The objective of this
method is 1o make the topology of elements closer
to cquilateral triengles by swapping edges (0
equalize the vertex degrees (number of edges link-
ed to each point) toward the value of six. Finally,
the Lapla-cian smoothing is applied to smooth the
meshes.

2.2 Mesh generation implementation and
aigorithm evaluation

This section presents the main algorithm for
combining together the mesh generation from the
Delaunay triangulation, the mesh refinement pro-
cedure, and the adaptive remeshing technique.
This main algorithm is demonstrated using the
object-oriented programming concept that takes
into account the advantages of the code enca-
psulation, inheritance, and polymorphism capa-
bilities. The implemeniation of the main algo-
rithm is summarized in the algorithm below.

Algorithm Main
(P, T, alpha, beta, iteration, Hon, Hoax,
_Xi_min, Xi_pax, threshold, isadaptive)
Let BP be the collection of boundary point
objects that stored in sequence of counter-
clockwise direction for afl outside boun-
daries and clockwise direction for all inside
boundaries ;
Let PO be the collection of background point
objects ;

Let P be the collection of point objects ;

Let T be the collectton of mesh abjects ;

Let alpha be the constant that controls shape of
formed triangles ;

Let beta be the constant that controls regularity
of the wriangulation ;

Let iteration be the number of loops to refine
meashes |

Let Hupn and Hgax be the minimum and maxi-
mum elernent size, respectively ;

Let Xi min and X7 _max be the minimum and
maximum scaling coefficients, respectively ;

Let threshold be the number of minimum increa-
sing points for cach iteration :

Let isadaptive be the flag to generate background
or adaptive meshes ;

Bp. Initialize ;
£0. Initialize ;
P Initialize ;
T. Initialize ;
If. {isadaptive) {
PO. ReadBackgroundNodes ;
8P, RediscretizeBoundaryNodes ;
b
Else
BP. ReadBoundaryNaodes ;
|5
BP. CreateConvexHull ;
P. AddNode (BP. pl, BP. p2, BP. p3. BP. pd);
T. AddTriangle (¢, BP. pl, BP. p2. BP. pi};
T. AddTriangle (2. BP. p3, BP. p. BP. p4):

Do p— BP. NextBoundaryNode {
Call DelaunayTriangulation (£, T, p):
I8

T. RemoveQutsideDomainTriangles ;

Call MeshRefinement
(P. T, alpha. beta, iteration) ;
If {isadaptive)
Call AdaptiveRemeshing
(P. T, PO alpha, beta, Hyn, Hoax, _Xi_pin,
Xi_yax, threshold);

T. MeshRelaxation ;
T. LaplaceSmoothing ;
End ;
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To evaluate the performance of the adaptive
remeshing technique with the Delaunay triangu-
lation, the specification of clement size. A.. is
given as an analytic function defined for two-
dimensional domain. The adaptive mesh genera-
tion process starts from an initial mesh generat-
ed in the domain, then the values of the element
sizes at all points are compuied by the given
function. The mesh generation coupled with the
adaptive remeshing procedure is iterated until
the resulting mesh becomes globally stable. The
iteration process is terminated if the total node
increment is fewer than the specified number.
The three examples of adaptive mesh generation
with the analytical function for specifying ele-
ment sizes presented herein are: (1) adaptive
meshes along the centerline of a rectangular
domain, (2) adaptive meshes along the diagonal
of a square domain, and {3} an alpha-shape
adaptive meshes in a square domain.

Adaptive Meshes along Centerline of a Rec-
tangular Domain: The first example presents an
adaptive mesh generation in a 3.0 %< 5.0 rectangul-
ar domain. The element sizes at points in the
domain are given by the distribution function,

h(y) =0.4z——2f';—ae-[’*ﬁ* (6)

where y is the variable and the values of g and

Fig. 1 Adaptive meshes along centerline of a rectan-
gular domain

¢ are constants equal (o zero and onc, respec-
tively. Figure 1 shows the series of adaptive
meshes generated by theee iterations bused on a
coarse initial mesh. The value of mesh generation
coefficients. @. 8. Ymn. ¥max are 0.3, 0.6, 0.75,
and .10, respectively. Due to the prescribed di-
steibution function in Eq. {6). small element sizes
are speéiﬁed around the centertine of the do-
main. The figure shows that size similarity of the
adaptive meshes is generated along the nacrow
band around the centerline of the domain. The
value of ymwa limits the number of point insertion
along the centerline of the domain, white the
value of Ynax allows more nodes to be inserted
into the other regions.

The specification of scale range and Ymin, XYmax
have strong effects on the resulting meshes as
shown in Fig. 1. Without the scale range, the
mesh is composed of small elements concentrat-
ed around line @ {sec Fig. 2) with progressively
targer elements outwards as ha<</,. A Hence,
a mesh consisting of relatively uniform elements
in a2 wider centetline band of the domain may be
generated. This mesh has better physical correfa-
tion with the behaviors of shocks. The scale
range function sorts the nodal spacing values into
prescribed intervals according t0 Ywn 20d Ymas.
[n each interval, the generated element sizes are
relatively uniform.

Adaptive Meshes along a Diagonal of a Square
Domain : The second example concerns with an
adaptive mesh generation in a unit square do-
main. The element sizes are calculated by Eq.
{(7) where the constant & is set to 0.5 for this
test case. Because this function generates both

L N S —. My =2 a
LSl AE 20 035 30008

i

Fig. 2 Distribution of element sizes along the v
direction
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negative and positive values, only the positive
values of this function are used 10 determing the
clement size by scaling into the new range of
0.001 and ¢.2:

devort — e g g1=20)  @Bell—x)
bt vl =2y11 _L-lllal'l 3 A —2“{'3133

Zhyil-y) ]
i+ g

7)
f!r:l—.rrgian"ﬁ—-w |

L UG
whete f=a[{x+y}//2 ~08). Figure 3 shows
the sequence ol adaptive meshes generated by
ftve iterations based on a coarse initial mesh. The
value of mesh generation coefficients, &, 8. Ymn.
Xmax are 0.5, 0.6, 0.4, and 0.73, respectively. The
combination of the values of Ymn and Ymax, nar-
rows Lhe band along the diagonal line with smalt
clements.

{nitial waesh 1 jtesation = inernion

™ iterakion 5™ itermiion

"
3™ nerwtnon

Fig. 3 Adaptive meshes along the diagonal of a
square domain

Initial mesh 1" iteration

4™ jteration

3" ttcration

2 ireration
Fig. 4 An alpha-shape adaptive meshes in a square
domain
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An Alpha-Shape Adaptive Meshes in a Square
Domain : The third ecxample presents an alpha-
shape adaptive mesh gencration in a square da-
main. The alpha shape lurction {(Borouchaki ¢l
al., 1997) is used to calculale clement sizes in an
8 X8 square domain :

_ [min{0.2(A~11*+0.005, 1.0) il A=

x50 = | (020124001 1.0) if A<

where the value of parameter 4 is determined
from 1*—y*+2—31¢=0. Figure 4 shows the
sequence of four adaptive meshes generated from
a coarsc initial mesh. The value of mesh gencra-
tion coefficients, @, B, Yma, Xmax are 0.5, 0.6, 0.5,
and 0.85, respectively. The smaller elements are
generated along the alpha-shape in the domain
while larger elements are generated in the other
regions.

For practical problems, the preferred values of
a and £ are 0.5 and 0.6, respectively (Karamete
et al., 1997). In general, the acceptable ranges of
these @ and 8 values are 0.3~0.8, and 0.7—1.3,
respectively. [o addition, the values of 0.4 and
0.75 are chosen for ymn and XYmax. respectively,
for all high-speed compressible flow test cases
presented later in this paper.

3. High-Speed Compressible
Flow Solver

The performance of the Delaunay triangula-
tion, the automaltic point creation procedure, and
the adaptive remeshing technique has becn eva-
luated by applying to solve high-speed com-
pressible flow problems. The Roc’s Nux-differ-
ence splitting method is widely used for com-
pressible flow solutions due to its efficiency for
providing solution accuracy. This section brielly
explains the method and its flexibility for com-
bining with adaptive unstructured meshes to fur-
ther improve the solution accuracy.

Some certain problems for which the Roe's
scheme may not provide correct solutions (or the
compressible Euler computation are presented
in this section. Nonphysical numerical solutions
may arise from the implementation of the one-
dimensional upwinding numerical flux function
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onto the multidimensional formulation. To avoid
such solutions, a mixed entropy fix method that
combines the entropy fix method of Van Leer et
al. and the modified multidimensional dissipa-
tion method by Paadelfi and D"Ambrosic (2001)
ts preposed in this paper. Details of these entropy
fix methods are presented herein and their per-
formance are determined by test cases. All solu-
tions in this secuon use the Roe’s scheme with
the first-order accuracy on structuced teiangular

meshes.

31 Roe’s flux-difference splitting scheme

The governing differential equations of the
Euler cquatibns for the two-dimensional inviscid
flow are given by,

JU |, dE |, 96F __
7+-§r‘+‘§;——0 (9

where {J is the vector of conservation variables,
E and  are the vectors of the convection fluxes
in x and y dicections, respectively. The perfect
gas equation of state is in the form,

b=pe{y—1) (10}
where p is the pressure, o is the density, e is
the internal energy, and y is the specific heat
fratio. By integrating Eq. {9) over a control vol-
ume, {2, and applying the divergence theorem
to the resulting Mux integral,

-gt—LUd.Q+ﬂgF-ﬁdS=0 (n

where F is the numerical flux vector and # is
the unit normal vector of the cell boundary. The
numerical flux vector at the cell interface be-
tween the left cell L and the right cell R accord-
ing to the Roe's scheme (1981) is,

Fa=t(FutFu) =3 Sl (12)

where « is the wave strength of the &' wave, A
is the eigenvalue, and ri is the corresponding
right eigenvector. The eigenvalues in the above
Eq. (12) are,
Va—a
Va

= 13
A=l (13)

Vata
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where V, is the normal velecity, and a is the
speed of sound at the cell interface.

3.2 The mixed entropy fix method

The original Roe’s scheme previously gescrib-
ed has been found te preduce usphysical solu-
tions of the Euler equations in sorne certain pro-
blems. These include the expansion shock from
a flow over a step. and the carbuncle pheno-
meaon of 2 flow over a blunt body. To avoid such
unphysical solutions, the eatropy fix methods
(Harten, 1983 ; Van Leer et al. 1989 ; Pandolf
and D'Ambrosio, 2001 ; Lin, 1995; Sanders et
al., 1998 ; Dechaumphai and Phongthanapanich,
2003) have been proposed and investigated. By
numerical experiment, the Van Leer et al.’s en-
tropy fix method can pecform very well for flows
with expansion shocks that contain sonic points
such as flows over a forward facing step. Mean-
while, the Pandolfi and D'Ambrosio version of
the A -correction entropy fix is suitable to cor-
rect the numerical instability from insufficient
dissipation injected to thé entropy and shear wa-
ves such as the flow over the blunt body pro-
blem. Thus, this paper proposes a mixed entropy
fix method that combines the entropy fix me-
thod of Van Leer et al. and the modified multi-
dimensional dissipation method by Pandolft and
D’Ambrosio, the modified H-correction, toge-
ther by replacing the original eigenvalues as
follows,

“1.4[ B |/ILA|22’?VL
Rz n
fAut= 4’?—,1+v LAl <2p (14)

max (| Aal, 74

where 3% and 7™ are determined from,
7" =max (A — A, 0} (15)
77 =max (72 75, 74 %) (16)

The values 7, £=2 to 5 as shown in Figures
5(a)-(b) for both the structured and unstructur-
ed meshes are given by 7),-=0.5m?x(|m—/h;,[)
where L and R denote the left and right elements,
resPe;:tively.
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Fig. 3 Cell interfaces of: {a) structured uniform

mesh ; (b) unstructured triangutar mesh

This mixed enicopy fix methad is equivalen:
to the Van Leer et al’s entropy {ix method in
handling the acoustic waves (for =1 and 4)
and the Pandelfi and D'Ambrosio version of the
H-correction entropy fix for the entropy and
shear waves (for £=2 and 3}. The mixed entropy
fix method has been evaluated in this paper using
three test cases involving expansion shocks, the
carbuncle phenomenon, and the odd-cven de-
coupling These test cases highlight the perform-
ance of the proposed entropy fix method on pro-
blems with different flow phenomena on struc-
tured (riangular meshes.

The carbuncle phenomenon: An unrealistic
flow solution, the so-called carbuncle pheno-
menon, of a steady-state flow over a blunt body
from the original Roe's scheme was first reported
by Perry and Imlay (1988). Such phenomenon
refers o a spurious bumgp on the bow shock near
the flow center line ahead of the blunt body. The
phenomenon is highly grid-dependent {Pandolfi
and D’Ambrosio, 2001}, but does not require a
large number of grid poinis to appear {Gressier
and Moscheita, 2000). Figures 6{a})~(0) show
the computed density contours from the mixed
entropy fix method using meshes of three dif-
ferent clement aspect ratios. The enfarged views of
the elements near the flow center line of the first,
second, and the third meshes are also shown in
the figures. The carbuncle phenomenon does not
appear in all of these meshes with different ele-
ment aspect ratios.

The Quirk’s test {(odd-even decoupling): Ano-
ther test case is 2 mach 6 moving shock along
odd-even grid perturbation in a straight duct
(Quirk, 1994). The computaticnal domain con-
sists of a uniform triangular mesh with 800 and
20 equal intervals respectively along the axial
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@ @

7
(e) (n
Mach 15 flow over a blunt body, enlarged

Fig. 6
view of the mesh and computed density con-
tours: {a)-{b} first mesh; {c}-{(d) second
mesh ; and (e} ~{f) thied mesh

=50 1= 0D x=din

Fig. 7 Mach 6 moving shock atong odd-even grid
pertucbation

b

Fig. 8 Diffcaction of a Mach 2 shock over a 907
corner

and the transverse directions of the duct. The
grids along the duct centerline are perturbed
in the transverse direction with a magnitude of
+107° Figure 7 shows the computed density
contours of the normal shock at three locations
along the duct by the mixed entropy (ix method
that provides accurate shock resolution.

Shock diffraction: The last test case, the ex-
paosion shock probliem, used to evaluai the nu-
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merical instability is the diffraction of a Mach 2
shock moving over a 90° correr. Figure § shows
the computed density contours obtained from the
mixed entropy fix method. On the other hand, the
ortginal Roe's scheme could not provide proper
solution due to the negative internal energy that
occurs during the compurtation in the vicinity of
the turning corner.

4. Higher-Order Extension
and Application on Unstructured
Triangular Meshes

4.1 Linear recoustruction for unstructured
triangular mesh and temporal discre-
tization

Solution accuracy from the first-order formu-

lation described in the preceding section can be
improved by implementing a higher-crder formu-
lation for both space and time. A higher-order
spatial discretization is achieved by applying the
Taylor® series expansion to the cell-centered so-
fution for each ceil face (Frink, 1994}, For in-
stance, the solutions at the midpoint of an ele-
ment edge between node | and 2 can be recon-
structed from,

Qf.-,=QC+*§%&*[-@l;ﬁ—QZ)—*Q:} (17
where ¢=[p u v p]7 consists the primilive
variables of the density, the velocity components,
and the pressure, respectively ; gc is the solution
at the element centroid ; @z n=1I, 2, 3 are the
solutions at nodes. fo this paper, the pseudo-
Laplacian method proposed by Holmes and
Conaell (Holiees and Connell, [989) is used to
determine nodal quantities,

Qn=§1(wlﬂc.f) /gwi (18)

where @e: are the surrounding cell-centered
values of node ., 1: is the cell weights, and &V
is the number of the surrounding cells. The celt
weights, w;, may be differed significantly from

unity for some severe distorted meshes as indi- -

cated in Ref.(Holmes and Connell, 1989}, with
suggestion for clipping all the weights in the
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range of 0 to 2. Iln this paper, the clipping of
weights is slightly different by modilying only
the value of weights of boundary meshes. If any
weight becomes negative, its absolute value is
used for simplicity. Several examples presenled
below have shown that such modification per-
forms well. The ¥ in Eq. (17) represents the
limiter for preventing spurious oscilfation that
may occur in the region of high gradicnts. En
this study, Vekatakrishnan's limiter function
(Vekatakrishraa, 1995) is selected.

The second-order temporal accuracy is ac-
hieved by implementing the second-order accu-
rate Runge-Kutta time stepping method (Shu and
Osher, 1988}, To reduce computational effort, the
local element time steps are used for steady-state
analysis, while the minimum global time step
based on the idea in Ref (Linde and Roe, 1997)
is used for the transient analysis.

42 Namerical evaluation

The higher-order extension of the Roe’s scheme
with the proposed entropy fix method described
in the preceding section is evaluated by solving
several test cases. The modified scheme is also
combined with the adaptive meshing technique
that generates unstructured triangular meshes for
morte complex flow phenomena. The selected test
cases are: (1) Symmetric rarefaction wave, (2)
Oblique shock reflection at a wall, (3} Mach 2
flow in a 15° channel, and {4) Mach 2 shock re-
flection over a wedge.

Symmetric rarefaction wave: The initial con-
ditions of the flow on the left and right sides of
the tube are given by (p, #, p).=(7.0, —10,
0.2) and (p, &, pe=1(7.0, 1.0, 0.2). Such initial
conditions are chosen (Linde and Roe, 1997)
to produce vacumm at the central region. The
1.0X0.1 computational domain is divided into
400 and 40 equal intervals in the x and y direc-
tions, respectively, using all triangular elements.
Figures 9(a)-(c) show the first order accurate
computed density, pressure and z-velocity distri-
butions along the tube leagth at time £=03
which are compared with the Steger-Warming
FVS (Steger and Warming, (981), AUSM (Liou
and Steffen, 1993), HLLC (Toro et al, 1994),
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Fig. 9 Comparative exact and computed solutions at
time {=0.3 for symmetric rarefaction wave
problem {1}: (a) density distributions ; {b)
pressure distributions; and (c) wu-velocity
distributions

and the exact solutions. The density and pres-
sure distributions are npearly identical for the
four schemes. But for the computed x-velocity,
the AUSM and the HLLC schemes give less
sofution accuracy as compared (0 the Steger-
Warming FVS and the proposed schemes in the
vicinity of central region. This problem was re-
peated using the higher-order accurate scheme.
Figures £0(a)-(¢) show that such higher-order
extension of Roe’s scheme with the mixed en-
tropy fix method can provide more accurate solu-
tion than its first~order solution. '
Oblique shock reflection at a wall: The prob-
lem statement of an obligue shock reflection at a
wall {Yee et al,, 1985) on the domain 1.0X4.0 is
presented in Fig. [1. The adaptive remeshing
technique described is section 2.3 is used to gen-
erate adaptive unstructured triangular meshes.
The procedure starts by creating a relatively uni-
form mesh as shown in Fig. 12(a}). The fluid
analysis is then performed to generate the cor-
responding solution such as the density contours
as shown in Fig. 12(b). This flow solution is
then used to generate an adaptive mesh to clus-
ter small elements in the regions of high density
gradients, and at the same time, to use larger

FQ - cmman 02— —_—
o= Enact -
- Computed ; I

™

Fig. 10 Comparative exact and computed solutions
at time {=0.3 for symmetric rarefaction
wave problem §{2): (a) density distribu-
tions: {b) pressurc distributions ; and (¢}
u-velocity distributions

¥
TN M=246
M=329 -Et-:mpumiona! domain | T

o> |10
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Problem staterment of an oblique shock re-
flection at a wall

o
(b

- - ///f’_,,
(e) : -Ed-)

Fig. 12

An oblique shock reflection at a wall : (a)-
{b) Initial mesh and the correspouding den-
sity contours ; and [c) ~(d) Third adaptive
mesh and the corresponding density con-
tours

elements on the other regions. The fluid analy-
sis is then performed again to yield a more ac-
curate solution. The entire process is repeated to
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Fig- 13 Comparative solutions of an oblique shock
reflection at a wall §(2): (a) density distri-
bution ; and (b) pressure distribution

generate the third adaptive mesh and the cor-
responding solution as shown in Figs. 12(c}-(d}.
Figures 13(a}-(b) show comparative density and
pressure distributions between the computed and
exact solutions at y=0.5. The figures show the
higher-order accurate scheme can capture abrupt
change of the solutions across the shocks very
well.

Mach 2 flow in a 15° channel : Both the ficst-
order and higher-order Roe's schemes with the
proposed entropy fix method are evaluated on
unstructured meshes by using the problem of a
Mach 2 flow in a 15° channel as presented in
Fig. 14. The third adaptive mesh and its cor-
responding density contours computed by using
the first-order scheme are shown tu Figures 15
(a)-{b), respectively. The analysis of Mach 2
flow in the 15° chanmel is repeated but with the
use of the higher-order scheme. The third adap-
tive mesh, and its corresponding density coo-
tours are shown in Figs. 16(a)-(b}. These fig-
ures highlight the capability of the higher-order

T Computational domaia

10
I
le—s] 0.5

Problem statement of a mach 2 flow n a

b[i;

Fig. 14
15% channel

(a) (b)
Fig. 15 Mach 2 flow in 2 15° chaanel §(1): (a)
Third adaptive mesh: and (b) Density
contours

/’,/& \ . ’/

(a) (b)
Fig. 16 Mach 2 flow in a 15° channel §(2): (a)
Thitd adaptive mesh: and (b) Density
coniQurs

scheme for providing more detailed flow beha-
vior, such as the stem generated from the shock
impinging on the upper wall which could not be
captured by the first-order scheme.

Mach 2 shock reflection over a wedge: The
computational domain for a Mach 2 shock re-
flection over a wedge at 46 deprees (Takayama
and Jiang, 1997) is illustrated in Figure 17. Fig-
ure 18 shows series of the transient adaptive
meshes and the corresponding computed density
contours at different time instants as the reflection
shock starts to form over a wedge. The transient
adaptive meshes consist of approximately 20,000
elements in early time before the normal shock
reaches the wedge corner, and the number of
elements are increased to approximately 28,000
at bottom’ right image of Fig. 18. The figures
highlight the use of the higher-order accurate
scheme on adaptive meshes to effectively obtain
detailed flow solution.
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Fig. 18 Transient adaptive meshes and the computed
density contours of a Mach 2 shock reflec-
tion over a wedge at four different stages of
the computation §(2}

5. Conclusion

A two-dimensional adaptive Delaunay mesh
generation algorithm and its application for
high-speed compressible flow were presented.
The adaptive remeshing technique was described
in detait with the pseudo—code presented in ob-
ject-oriented programming concept. To capturc
fast variations of the solution effectively, a new
element size scaling function was introduced into
the adaptive remeshing technique. The combined
algorithm was evaluated by generating adaptive
meshes for three examples with prescribed ele-
ment size functions.

A mixed entcopy fix method was proposed to
improve numerical stability of the Roe's flux-
difference splitting scheme for solving high-
speed compressible flow problems. The method
combines the entropy fixes by Van Leer et al.
together with Pandolfi and D'Ambrosio: The me-
thod was then evaluated by several well-known
test cases and it was found to eliminate unphy-
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sical solutions that may arise from the use of
the original Roe’s scheme. The method was also
combined with an adaptive mesh generation tech-
nique to demonstrate its applicability for arbi-
trary unstructured meshes. The entire pracess was
found to provide accurate solutions for both
steady-state and transient flow test cases.
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FLUX-DIFFERENCE SPLITTING SCHEME WITH MODIFIED
MULTIDIMENSIONAL DISSIPATION ON UNSTRUCTURED
MESHES

Sutthisak Phongthanapanich and Pramote Dechaumphai*

ABSTRACT

A Rux-difference spliiting scheme with a modified multidimmensional dissipation
for high-speed compressible flow analysis on unstructured meshes is presented. The
scheme eliminates unphysical flow behaviors such as a spurious bump of the carbun-
cle phenomenon that occurs on the bow shock from flow over a blunt body, and the
expansion shock generated from flow over a forward facing step. The switching func-
tion suggested by Quirk is implemented as a choice to detect the vicinity of strong
shock. The proposed scheme is further extended to obtain higher-order spatial and
temporal solution accuracy. The scheme is, in addition, combined with an adaptive
meshing technique that generates unstructured triangular meshes to resemble the flow
phenomena for reducing computational effort.- The entite procedure is evaluated by
solving several benchmarks as well as steady-state and transient high-speed compress-

ible flow problems.

Key Words: shock instabilities, carbuncle phenomenon, Roe’s FDS, entropy fix,

H-correction.

L INTRODUCTION

High-speed compressible flows normally in-
volve complex flow phenomena, such as strong shock
waves, shock-shock interactions and shear layers.
Various numerical inviscid flux formulations have
been proposed to solve an approximate Riemann prob-
lem. Among these formulations, the flux-difference
splitting scheme by Roe (1981) is widely used due 1o
its accuracy, quality and mathematical clarity. How-
ever, the scheme may sometimes lead o unphysical
flow solutions in certain problems, such as the car-
buncle phenomenon (Pesry and Imiay, 1988) with a
spurious bump in the bow shock from flow over a
blunt body. The scheme may not provide an accurate
solution for the complex inpinging shock phenom-
enon yielding kinked mach stem (Quirk, 1594} gen-
erated from a moving shock over a ramp. In the odd-
even decoupling problem, an unrealistic perturbation

*Corresponding author. (Tel: 66-2-2186621; Fax: 66-2-218-
662 |; Email: fmepdc @eng.chula.ac.th) .

The authors are with the Mechanical Engineering Department,
Chulalongkom University, Bangkok 10330, Thailand.

may grow with the planar shock as it moves along
the duct. To improve the solution accuracy of these
problems, Quirk pointed out that the original Roe’s
scheme should be modified or replaced by other
schemes in the vicinity of a strong shock.

It has been known, for some time, that Roe’s
original scheme does not satisfy the entropy condi-
tion and may allow unrealistic expansion shock.
Harten (1983) proposed an eatropy fix formulation
to replace the near zero small eigenvalues by some
tolerances. The mathematical background of Harten’s -
entropy fix with the suggested tolerance valués was
given by Van Leer ez al. (1989).

The main objectives of this paper are to propose
and evaluate a modified Roe’s scheme on adaptive
unstructured meshes for two-dimensional high-speed -
compressible flow analysis. The entropy fix method
by Van Leer er al. (1989) aad the multidimensional
dissipation technique given by Pandolfi and
D’ Ambrosio (2001) are modified for unstructured tri-
angular meshes and implemented into Roe’s original
scheme. To prevent unnecessary dissipation injec-
tion in some cases, the switching function suggested
by Quirk may be applied as a choice to detect the
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vicinity of a strang shock.

The presentation in this paper starts at Section
I describing some well-known problems which ex-
hibit numerical shock instability from Roe’s scheme.
The entropy fix methods of Van Leer er al. (1989),
Sanders ef al. (1998). and Pandolfi and D' Ambrosic
{2001} are examined to investigate their capabilities,
as well as solution accuracy. A modified Roe’s
scheme with a mixed entropy fix method is then pro-
posed. The presented scheme is further extended to
higher-order solution accuracy and then evaluated by
several benchmark test cases in Section III. Finally,
the performance of the scheme is evaluated on adap-
tive unstructured meshes for solving both steady-state
and transient high-speed compressible flow problems.

1. NUMERICAL SHOCK INSTABILITY AND
MIXED ENTROPY FIX METHOD
FOR ROE’S SCHEME

Some problems in which Roe’s scheme may not
provide correct solutions for the compressible Euler
computation are presented in this section. Unphysical
numerical solutions may arise from the implementa-
tion of the one-dimeansional upwinding numerical flux
function onto the multidimensional formulation. To
avoid such solutions, the three entropy fix methods
(Van Leer ef al., 1989; Pandolfi and D’ Ambrosio,
2001; Sanders ef al., 1998) have been recently sug-
gested because of their simplicity and convenient code
implementation. A mixed entropy fix method that
combines the entropy fix method of Van Leer ez al.
(1989} and the modified multidimensional dissipation
method by Pandolfi and D' Ambrosio (2001), is pro-
posed in this paper. Details of these entropy fix meth-
ods are presented herein and their performance de-
termined by test cases. All solutions in this section
use the Roe’s scheme with the first-order accuracy
on unstructured triangular meshes.

1. Roe’s Flux-Difference Splitting Scheme with
Dissipation

The governiog diiferential equations of the Euler
equations for two-dimensional inviscid flow are given
by,

%?+%%+§;0 ()

where U/ is the vector of conservation variables, £
and G are the vectors of the convection fluxes in x-
and y-directions, respectively. The perfect gas equa-
tion of state is in the form,

p=pe(y-1) S @

where p is the pressure, p is the density, € is the 1n-
ternal energy. and yis the specific heat ratio.

By integrating Eq. (1) over a contrel volume,
£2. and applying the divergence theorem to the result-
ing flux integral.

G%J;}Ud9+_l‘aQF-ﬁdS=0 &)

where F is the numerical flux vector aad # is the unit
normal vector of the celf boundary. The numerical
flux vector at the cell interface between the left cetl
L and the right cell R according to Roe’s scheme
(1981L) is

F,=Y(F, +Fo- %’}; | Ay Ir @

where a is the wave strength of the k™ wave, A, is the
eigenvalue, and r, is the corresponding right eigenvector.
The eigenvalues in the above Eq. (4) are

A= Vn )

Vo+a

where V, is the normal velocity, and a is the speed of
sound at the celi interface.

Roe’s original scheme, previously described, has
been found to produce unphysical solutions of the
Euler equations in certain problems. These include
the expansion shock from a flow over a step, and the
carbuncle phenomenon of a flow over a blunt body.
To avoid such unphysical solutions, the entropy fix
methods (Harten, 1983; Van Leer et af., {989; Lin,
1995; Sanders ef al., 1998; Pandolft and D' Ambrosio,
2001) have been proposed and investigated. The per-
formance of these three versions of entropy fix meth-
ods are first evaluated for structured raeshes herein.
These methods are then extended to unstructured
meshes and presented in this paper later.

Van Leer’s entropy fix method (RoeVL) is de-
signed to correct unphysical expansion shock. The
one-dimensional entropy fix was developed by replac-
ing the characteristic speeds of the acoustic waves
(for k=1 and 4) with

|2, | Ae| 2 27%
12| = ; (6)

|4r;""* +0¥, | A | <20

where
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Sanders er al. (1998) introduced an idea of mul-
tidimensional dissipation, the so-called H-correction
entropy fix method. The method has been shown to
eliminate the unreatistic carbuncle phenomenon of the
flow over a blunt bady by using the structured uni-
form mesh as shown in Fig. 1(a). The advantages of
the method are the simplicity in the implementation
into the existing scheme and the parameter-free char-
acteristics. For the two triangular cells shown in
Fig. 1(b), the H-correction entropy fix according to
Sanders er al. ([998), (RoeSA) has been modified as
described by Dechaumphal and Phongthanapanich
(2003) to

n=max{m, Mz M. M. 7s) (8)

where 1, i=1 to 5 are
n:= -%-mkax(l g =~ Ay I) C3

Pandolfi and D’ Ambrosio (2001) proposed an-
other version of the H-correction entropy fix by ex-
cluding the 1y from Eq. (8) to avoid an erroneous in-
jection of artificial viscosity, and this method is ap-
plicable only to entropy and shear waves (for k=2 and
3). The method was used by Druguet and Zeitoun
(2003) to study shock wave reflections in supersonic
steady flows. The modified H-correction entropy fix
by Pandolfi and D' Ambrosio (2001), (RoePA) is

" =max(ny, N3, M, Ns) (10)

where 1;, =2 to 5 are given in Eq. (9).

It has been found that the above three methods,
namely the RoeVL, RoeSA and RoePA, perform well
on certain problems but may fail for others. For ex-
ample, as presented later, the Roe VL caa perform very
well for flows with expansion shocks that contain
sonic points such as the flow over a forward facing
step. Meanwhile, the RoePA is suitable to correct
the numerical instability frominsufficient dissipation
injected to the entropy and shear waves sach as the
kinked mach stem problem and the flow over the blunt

body problem. Thus, this paper proposcs a mixed
entropy fix method {RoeVLPA) that combines the
entropy fix method of Van Leer ef al. (1989} and the
modifted multidimensional dissipation method by
Pandolfi and D" Ambrosio (2001), the modified H-
correction. by replacing the original eigenvalues as
follows

|)°|‘4|~ |3«1.4|22T1w’
2
ul= gl e ageane an

max(| 1, 3} 774)

where n** and n™ are defined in Eqs. (7) and (10),
respectively. This mixed entropy fix method (RoeVLPA}
is equivalent to the RoeVL in handling acoustic waves
(for k=1 and 4) and the RoePA for entropy and shear
waves {for k=2 and 3).

The above four methods have been evaluated
using five test cases involving expansion shocks, the
kinked mach stem, the carbuncle phenomenon, and
the odd-even decoupling as presented in the follow-
ing sections. These test cases highlight the perform-
ance of the RoePA, RoeSA, Roe VL, and the proposed
RoeVLPA oa problems with different flow phenom-
ena on structured triangular meshes.

2. The Expansion Shocks -

Roe’s original scheme may produce an unphysical
expansion shock because it does not satisfy the en-
tropy condition. To illustrate this phenomenon, a Mach
3 flow over a forward facing step (Woodward and
Colella, 1984) is investigated. The density contours
computed from the RoePA, RoeSA, RoeVL, and
RoeVLPA are shown in Fig. 2{a)-(d), respectively.
The figures show that the RoePA produces an
unphysical expansion shock on top of the step cor-
ner, whereas the RoeSA, ReeVL, and RoeVLPA pro-
vide realistic solutions.

Aunother expansion shock problem used to
evaluate numerical instability is the diffraction of a
Mach 2 shock moving over a 90° comer. Figs. 3(a) -
and (b) show the computed density contours obtained
from the RoeVL and Roe VLPA, respectively. On the
other hand, aeither RoePA nor RoeSA could provide
a proper solution due to negative internal energy that
occurs during the computation in the vicinity of the .
turning corner.

3. The Kinked Mach Stem

The kinked mach stem generated from a shock;
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Fig. 2 Mach 3 flow aver a forward facing step: (a) RoePA; (b)
RoeSA; (c) RoeVE; and (d) RoeVLPA.

moving over a ramp is another test case used to high-
light the performance of these four methods. Figs.
4(a)-(d) respectively show the density contours ob-
tained from the RoePA, RoeSA, RoeVL, and RoeVLPA
for 2 Mach 5 normal shock moving over a 46° ramp.
The RoePA, RoeSA and RoeVLPA provide reason-
ably accurate solutions, such that the kinked mach
stem is recovered with the slightly broken-down in-
cident shock. The RoeVL, however, yields a broken-
down incident shock with severely kinked mach stem.
Such a solution may be caused by insufficient dissi-
pation that cannot counteract the transverse pertur-
bation (Quirk, 1994; Gressier and Moschetta, 2000).

4. The Carbuncle Phenomenon

An uvorealistic flow solution, the so-called car-
buncle phenomenon, of a steady-state flow over a
blunt body from Ree’s original. scheme was first re-
ported by Perry and Imlay (1988). Such a phenom-
enon refers to a spurious bump on the bow shock near
the flow center line ahead of the blunt body. The
phenomenon is highly grid-dependent (Pandolfi and
D’ Ambrosio, 2001}, but does not require a large
number of grid points to appear {Gressier apd

®)

Fig. 3 Diffraction of a Mach 2 shock over a 90° corner: (a)
RoeVL; and (b} RoeVLPA.

Moschetta, 2000). To demonstrate this grid-depend-
ent phenomenou, the RoePA, RoeSA, RoeVL, and
RoeVLPA methods are employed with three meshes
of different element aspect ratios. An enlarged view
of the elements near the flow centerline of the first
mesh and the corresponding density contours are
shown in Figs. 5(a)-(e). The carbuncle phenomenen
does not appear in any scheme with the use of this
relatively crude mesh. The second mesh has more
elements which are refined in the circumferential di-
rection as shown in Fig. 6(a). The RoePA and
RoeVLPA provide realistic flow behavior while the
RoeSA and RoeVL exhibit small bumps on the bow
shock as shown in Figs. 6(b)-(¢). The carbuncle phe-
nomenon can be clearly seen in a more refined mesh
with higher elemeat aspect ratio as shown in Fig. 7(a).
While the RoePA and the proposed RoeVLPA still
provide reasonable flow solutions, the carbuncle phe-
nomena are easily observed in the RoeSA and RoeVL
as shown in Figs. 7(b)-(e).

5. The Quirk’s Test (Odd-Even Decoupling)

The last test case is a Mach 6 moving shock
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(a)

)

)
Fig. 4 A %kinked mach stem from a Mach 5 shock moving over a 46° ramp: (a) RoePA: (b) RoeSA: (¢) RoeVL; and (d) ReeVLPA.

Fig. 5 Mach 15 flow over a biunt body (first mesh): (a) erlarged view of the mesh: {b) RoePA; (¢) RoeSA; (d) RoeVL: and () Roe VLPA.
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Fig. 7 Mach 15 flow ever a blunt body {third mesh): (a) enlarged view of the mesh: (b) RoePA: (¢} Roe3A; (d) RoeVL: and (¢) RoeVILPA
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Fig. 8 Mach 6 moving shock along odd-even grid perturbation:  {a) RoePA; (b) RoeSA; (¢) RoeVL: and {d) RocVLPA,

along odd-even grid perturbation in a straight duct
(Quirk, 1994). The computational domain consists
of a uniform triangular mesh with 800 and 20 equal
intervals respectively along the axial and the trans-
verse directions of the duct. The grids along the duct
centerline are perturbed in the transverse direction
with magnitude of 2107, Figs. 8(a)-(d) show the com-
puted density contours of the normal shock at the three
locations along the duct by the RoePA, RoeSA,
RoeVL, and RoeVLPA, respectively. The RoePA,
RoeSA, and RoeVLPA can provide accurate shock
resolution whereas the RoeVL suffers from numeri-
cal instabilities. As explained by Gressier and
Moschetta (2000), the exact capture of contact dis-
continuity and strict stability cannot be simufltane-
ously satisfied in any upwind scheme. The solution
suggests that additional dissipation injection to the
entropy and shear waves is thus needed to stabilize
Roe’s scheme as done by RoePA, RoeSA, and
RoeVLPA.

The results obtained from the above five test
cases show that the proposed RoeVLPA method per-
forms well to provide realistic flow solutions for all
test cases. '

6. Quirk’s Pressure Switching Function

Roe’s original flux-difference splitting scheme
may not provide a stable solution in the vicinity of a
strong shock. Quirk (1994) suggested that the scheme
should be replaced by a more dissipative scheme such
as the HLLE scheme (Einfeldt, 1988) in such a re-
gion., To detect the vicinity of a strong shock, Quirk
proposed a pressure switching function,

'PL_pRl
Fe” PRI 12
nun(pupn)}a (12)

where « is a threshold parameter which is problem-
dependent; p; and pg are the pressures of the left and
right cells that act on the cell interface.

This pressure switching function has been exam-
ined as 4 condition for modifying the eigenvalues that
correspond to the entropy and shear waves of the pro-
posed RoeVLPA method. The test case of the Mach 6
moving shock along the odd-even grid perturbation in a
straight duct is repeated with the use of the above switch-
ing function. Figs. 9(a)-(b) show density contours ob-
tained from the RoeVLPA method with the pressure



5. Phongthanapanich and P Dechaumplial: Flux-Differance Spiitting Scheme

987

=

ved 1)

(1) x=50 =210
| | I ] |
by =50 k=210 S
Fig. 9 A Mach 6 moving shock along odd-even gnd perturbation (Roe VLPA and Quurk’s sweching fusictiont: (ay g=1 and i) -4

Fig. 10 Density contours of a diffraction of Mach 5.09 shock over 2 90° comer at iime ¢=0.25: {a} #1)-RoeVLPA: (b) H2)-RoeVLPA;
(¢) ¥(2)-RoeVLPA with a=15; and (d) %{2}-RoeVLPA with o=1.

switching function of @=2 and 1, respectively. The fig-
ures clearly indicate that the quality of the shock resolu-
tion depends on the selected threshold values. This ex-
ample, however, also shows that the suggested replace-
ment of Roe’s original scheme by a more dissipative
scheme in the vicinity of strong shock.can be avoided.
The proposed RoeVLPA method may be used for the en-
tire computational domain if the threshold parameter is
selected properly. The Quirk’s pressure switching func-
tion described in this section will be examined again for
the problem of Mach 5.09 shock over a 90° corner as
shown in Fig. 10. But for the rest of the problems pre-
sented in this paper, all computations are performed with-
out activating this Quirk’s pressure switching function.

IIl. HIGHER-ORDER EXTENSION AND
APPLICATION ON UNSTRUCTURED
TRIANGULAR MESHES

1. Linear Reconstruction and Limiter

Solution accuracy from the first-order formulation
described in the preceding section can be improved using
a higher-order formulation for both space and time. A
higher-order spatial discretization is achieved by apply-
ing the Taylor’s series expansion 1o the cell-centered so-
lution for each cell face (Frink et al., 1991). Forinstance,
the sclutions at the midpoint of an element edge between
node | and 2 shown in Fig. 11, can be reconstructed from
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el +4¢))
2 =4t 5 1T -4l (13)

where g=[p v v p) consisis of the primitive vari-
ables of the density, the velocity companents., and the
pressure, respectively; g¢ is the selution at the ele-
went centroid: 4, #=1, 2, 3 are the solulions at nodes.
Isn this paper. the inverse-distance weighting from the
centroid to the nodes that preserves the principle of
positivity (Frink and Pirzadeh. 1998) is used

qec.;

lrf

where go ; are the surrounding cetl-centered values
of node n, | 7;| is the distance from the centroid to
node n, and A is the number of the surrounding celis.

The ¥ in Eq. ([3) represents the limiter for
preventing spurious oscillation that may occur in the
region of high gradients. [nthis study, Vekataknshnan's
limiter function (Venkatakrishnan, 1995) is selected.

u M;

1
7 {14)

i

.
QH - ‘Fl

i

i}

1

A
ﬂﬁﬂ). A_20

A .
Fe=min, o3¢ H—7 ), 4.<0 (15)

a.
L, 4_=0

where A_=gq;, 4, nux=Fnsx—¢i aNd A, nic=Fmin—G:
The Gmax 4rd Guin are respectively the maximum and
minimum values of all distance-one peighbouring cells.
The function ¢ is similar to the Van Albada limiter (Van
Albada er af., 1982) which is expressed in the form

2 2
o Y +y+2+¢?
The value & is equal to (Kh)?, where K is a constant
of 5 in this paper and k4 is the average mesh size.

2. Second-Order Temporal Discretization

Second-order temporal accuracy is achieved by
implementing the second-order accurate Runge-Kutta
time stepping method (Shu apd Osher, 1988)

. n__4l__ A

upt! =%[U?_+ U{-%j& F'-n) a7

where At is the time step. To reduce the computation
effort, the local element time steps are used for steady-
state analysis, while the minimum global time step
based on spectral radii (Vijayan and Kallinderts,
1994} is used for transient analysis.

Fig Ll Lincar reconstruction on a typical triangutar elemeat

3. Numerical Evaluation

The higher-order exiension of Roe’s scheme
with the proposed entropy fix method described in
the preceding section is evaluated by solving several
test cases. The modified scheme is also combined
with an adaptive meshing technique that generates un-
structured triangular meshes for more complex flow
phenomena. The selected test cases are: (1) Sod shock
tube, (2) Diffraction of Mach 5.09 shock over a 90°
corner, {3) Oblique shock reflection at a wall, {4)
Mach 2 flow in a 15° channel, and {5) Mach 2 shock
reflection over a wedge.

(i) Sod Shock Tube

The cne-dimensional shock tube test case, the
so-called Sod shock tube (Sod, [978), is solved by
using a two-dimensional domain. The initial condi-
tions of the fluids on the left and right sides are given
by (p. u, p)=(1.0, 0.0, 1.0) and (p, u, p)g=(0.125,
0.0, 0.1). The 1.0x0.1 computational demain is di-
vided into 400 and 40 equal intervals in the x- and y-
directions, respectively. The domain is discretized
with uniform triangular elements. Figs. 12(a)-(f) show
the computed density, pressure and u-velocity distri-
butions along the tebe length which are compared with
the exact solutions at time r=0.153. The figures show
that the higher-order extension of Roe’s scheme with
the entropy fix Roe VLPA method provides mare ac-
curate solutions thar its first-order solutions.

(ii)Diffraction of Mach 5.09 Shock Moving over a 90°
Corner

This test case is taken from Quirk (1994) as the
Mach 5.09 normal shock moves from left to right.
Figs. 10(a)-(b) show the computed density contours
at time =0.25 from the first-order and higher-order
accurate RoeVLPA, respectively. The better detailed
flow field, including higher shock resolution and
sharper contact surface behavior, can be obtained using
the higher-order accurate RoeVLPA. Figs. 10(c)-(d)
show the computed density contours from the higher-
order accurate RoeVLPA again using the Quirk’s
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Fig. 12 Comparative computed and exact solutions at time =0.15
for Sod shock tube [RoeVEPA): (a, by (1) and {2} den-
sity distributions; (¢, d) %1} and K2} pressure distribu-
tions; and (¢, 0 K1) and (2) u-velocity distributions.

pressure switching function with threshold parameters,
c. of 15 and 1, respectively. High value of the pa-
rameter & prevents adequate dissipdtion required to
suppress osciilation in the vicinity of the strong shock
as can be seen on the upper right of Fig. 10(c). The
spurious ¢scillation of the incident shock is eliminated
by reducing the parameter ¢t to 1 as shown in Fig.
10(d). The soliution contour shown in this figure agrees
very well with that obtained by Quirk (1994).

(iii) Oblique Shock Reflection at a Wall

The problem statement of an oblique shock re-

flection ata wall (Yee er al., 1985) on the domain 1.0x4.0
is presented in Fig. 13. The adaptive remeshing tech-
nique described by Phongthanapanich and Dechaumphai
(2002) is used to generate adaptive unstructured tri-
angular meshes. The procedure starts by creating a
relatively uniform mesh as shown in Fig. 14(a). The
fluid analysis is then performed to generate the corre-
sponding solution, such as the density contours, as shown
in Fig. 14(b). This flow solution is then used to gen-
erate an adaptive mesh (o cluster small elements in
the regions of sharp changes of the density gradients,
and at the same time, to use larger elements on the
other regions. The fluid analysis is then performed
again to yield a more accurate solution. The entire
process is repeated- to generate the third adaptive mesh

Q M=116

AM=20 Computation dowmatn T
1.0

t

;L- ]

Fig. 13 Peoblem statement of an ¢bliqoe shock reflection at a wall

(d)

Fig. 14 An oblique shock reflection at a wall: (2)-(b) Initial mesh
and the corresponding density contours; and {c}-(d) Third
adapiive mesh and the corresponding density contours

3 3( ——
2 2
P _J_ P -_,—
1 — Exact L] — Exact
+ Computed « Cormnpuled
0 L [ i
0 H 2 3 4 0 1 2 3 4
x x
(a) ®

Fig. 15 Comparative solutions of ar oblique shock reflection a1 a
wall (8(2)-RoeVLPA): (a) density disteibution; and (b)
pressure distribution. '

and the corresponding solution as shown in Figs. 14(c)-
{d). Figs. 15(a)-(b) show comparative density and
pressure distributions between the computed and
exact solutions at y=0.5. The figures show the higher-
order accurate RoeVLPA can deal with abrupt change
of solutions across shocks very well.
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Fig. 16 Problem statemernt of a Mach 2 Mow ina 3% channcl

(d

Fig. 17 Mach 2 fiow in a 15° channel {(#(1)-RoeVLPA): {a} Thicd
adaptive mesh (b) Density coatours; () Pressure contours;
and {d) Mach contours.

(iv) Mach 2 Flow in a 15° Channel

Both the firsi-order and higher-order Roe’s
schemes with the proposed entropy fix RoeVLPA are
evaluated on unstructured meshes by using the prob-
lem of a Mach 2 flow in a 15° channe! as presented in
Fig. 16. The third adaptive mesh and their corre-
sponding flow solutions cemputed by using the first-
order RoeVLPA such as the density, pressure,
and Mach number are shown in Figs. 17(a)-(d}, re-
spectively. The apalysis of Mach 2 flow in the 15°

Fig. |8 Mach Z flow in a 15° channel (%2)-RoeVLPAY): {a) Third
adaptive mesh {b) Density contours; {¢) Pressure conlours;
and (d} Mach conlours.

Compulational domain —\

AN
- M2
1.00
460
0.25 ‘—.‘|<— 075 —

Fig. |9 Problem statement of a Mach 2 shock reflection over a
wedge

channel is repeated but with the higher-order
RoeVLPA. The third adaptive mesh, and their corre-
sponding solutions are shown in Figs. 18(a)-(d).
These figures highlight the capability of the higher-
order RoeVLPA 1o provide more detailed flow
behavior, such as the stem generated from the shock
impinging on the upper wall, which could not be cap-
tured by the first-order RoeVLPA.
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Fig. 20 Transicnt adaptive meshes and the compuled density contours of a Mach 2 shock refleclion over a wedge at four differcnt stages of

the compultation {1{2}-RoeVLPA)

{v}) Mach 2 Shock Reflection over a Wedge

The computational domain for a Mach 2 shock
reflection over a wedge at 46 degrees (Takayama and
Jiang, 1997) is illustrated in Fig. 19. Fig. 20 shows
series of transient adaptive meshes and the correspond-
ing computed density contours at different time steps,
as the reflection shock stares to form over a wedge.
The transient adaptive meshes consisi of approximately
20,000 elements in early time before the normat shock
reaches the wedge comer, and are increased to ap-
proximately 30,000 elements at the bottom right im-
age of Fig. 20, The figures highlight the use of the
higher-order accurate Roe VLPA on adaptive meshes
to effectively obtain the detaiied flow solution.

1V. CONCLUSIONS

A mixed entropy fix method is proposed to im-
prove numerical stability of Roe’s flux-difference
splitting scheme. The method combines the modi-
fied entropy fixes proposed by Van Leer et al. to-
gether with the Pandolfi and D’ Ambrosio metheds.
The method was then evaluated by several well-
known test cases and found to eliminate unphysical
solutions that may arise from the use of Roe’s origi-
nal scheme. These unphysical solutions include the
carbuncle phenomenon on the bow shock of the flow
over a blunt body, and the expansion shock gener-
ated from the flow over a forward facing step. The
swilching function suggested by Quirk for identify-
ing the region of the strong shock was investigated.
Such a condition was combined with the proposed
method in order to aveid the application of a more

RS CIAT™ B xE

dissipative scheme in such a region. This, thus, al-
lows the use of the same entropy fix method for the
entire flow domain. To further improve solution ac-
curacy, higher-order spatial and second-order Runge-
Kutta temporal discretization were also implemented.
The method was also combined with an adaptive mesh
generation technique to demonstrate its applicability
for arbitrary unstructured meshes. The entire proc-
ess was found to provide more acturate solutions for
both the steady-state and transient flow test cases.
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NOMENCLATURE

B

speed of sound at the cell interface
internal energy

convection fluxes in x- and y-directions, re-
spectively.

numerical flux vector

average mesh size

user-specified constant

unit normal vector

pressure .

vector of primitive variables

right cigenvector

vector of conservation variables
normal velocity

contrgl volume

threshold patameter

oo
9]
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oy wave strength of the £ wave

A etgenvalue

Vekatakrishnan’s limiter function
limiter function

numerical dissipation

specific heat ratio

density
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Abstract

Fatigue crack growth {FCG) behavior along 63Sn-37Pb solder/copper interface was investigated using a solder-
Jjointed plate specimen with a single-edge crack under opening tensile loading (mode ). Finite element analysis was con-
ducted for evaluating stress intensity lactor (K) and J-integral (J) of the crack tlip. Under frequency of ) Hz und stress
ratio of 0.1, the fatigue crack propagation rate could be characterized successfully by either stress intensity fuctor range
(AK) or J-integral range (AS). A fatigue crack propagated in transgranular manner through Pb-rich phases and Sn-rich
phases near the solder—copper interface. With increasing ceack length, the size of plastic zone al the crack tip and the
von Mises stress #long the solder-copper interface increased, which resulted in the interfacial debonding near the crack
tip. The critical crack fength (/¥ and adhesive strength for interfacial debonding were 0.46 and 20.2 MPa,
respectively. )

@ 2005 Elsevier Ltd. All rights reserved.

Keywords: Fatigue crack growth; Sn-Pb eutectic sclder; Solder joint: Solder/copper interface; Adhesive glrenglh

1. Introduction 1994). Due to their low melting temperature, the
room temperature corresponds to a high homo-
togous temperature {greater than 0.5). It is known

that the time-dependent mechanisms, e.g. grdin

Eutectic Sn-Pb solders have been widely used
for electrical joints because of their low melting

points, good wettability, good plasticity, reason-
able electrical conductivity (Kang and Sarkhel,

" Corresponding author. Tel.: +66 02 564 3001; fux: +66 02
564 3010.
E-mail uddress: kehao@engr.tuac.ah (C. Kanchanomai).

boundary sliding, cavitation and phase transfor-
mation, are possible to occur during fatigue test
under high homologous temperature condition.
These damage processes lead to premature fail-
ure when compared to cyclic-dependent fatigue
failure, and life under low cycle fatigue (LCF) is

GI67-6636/% - see front matter © 2005 Elsevier Lid. All rights reserved.

doi: [0.1016fj.mechmat.2005.02.002
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dominated by crack propagation (Kanchanomai
et al., 2002a b). Zhao et al. (2001} reported that
the mode 1 fatigue crack growth (FCG) behavior
of bulk Sn-Pb eutectic solder was dominantly cyc-
lic dependence at low stress ratios and high fre-
quencies, while time-dependent behavior became
dominant at high stress ratios and low frequencies.
For the single Sn~Pb cutectic solder ball lap joint
specimens, it was observed that the fatigue life re-
duced with increasing the cycles of thermal cycling
aging (—40 to 125 °C) and the fatigue crack prop-
agated in the Pb-rich region adjacent to the inter-
metallic tayer in the solder material (Pang et al,
2001). Based on the finite element analysis, the
stress state of a solder joint in surface mount
assemblies was a combination between normal
and shear stress states {Liu et al., 1987), which re-
sults in the mixed-mode loading condition at the
interfacial crack tip even when external loading is
pure mode 1 or pure mode Il (Nayeb-Hashemi
and Yang, 2001). The proportion of normal and
shear stresses at the interfacial crack tip depends
on both distances ahead of the crack tip and the
elastic mismatches across the interface (Hutchin-
son et al., 1987; Sou and Hutchinson, 1989; Hutch-
inson and Sou, 1991).

While extensive work has been carried out on
LCF and FCG of bulk Sn-Pb eutectic solder
under mode I and mode II loading, very little is
known about FCG behavior and mechanism of
crack along solder/substrate interface. In the pres-
ent study, the FCG behavior and mechanisms of
crack along 63Sn-37Pb solder/copper interface
under mode I loading were investigated and com-
pared with those of bulk Sn-Pb eutectic solder.

2. Specimen and experimental procedures

FCG test under mode I loading was conducted
on a solder-jointed plate specimen with a single-
edge notch, ag shown in Fig. 1. To make a speci-
men, two copper bars (99.9 wt.%) were jointed
together by Sn-Pb eutectic solder (63Sn-37Pb).
Before soldering, the copper bars were cleaned in
order to remove the oxides according to the fol-
lowing procedure. First, the surfaces of copper

bars were lightly polished using 600-grit emery

7.
7.5 ‘ 10 ( 5

1

10

notch
20

1¢

00/

Fig. 1. Specimen geometry (6-mm thickness).

paper, then dipped in a dilute nitric acid solution
and rinsed in distilled water. The copper bars
were coated with flux (Hakko 89400, Japan) and
placed in a special fixture made from nonsolder-
able matenal (aluminum alloy), as shown in
Fig. 2. Bulk solder (63Sn-37Pb} was melted and
reflowed into cavity between two copper bars. In
order to allow the remaining flux to escape, the
temperature of fixture and specimen was main-
tained at 250 °C (above solder reflow temperature)
for 10 min before left to cool in air. By using this
procedure, specimens can be manufactured with
good alignment, a specific solder layer thickness,
and a minimal void content. The excess solder
was removed by milling and then lightly polished
to obtain the geometry, as shown in Fig. 1. The
geometry of specimen was designed in accordance -
with an ASTM recommendation {1998), ie.
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Fig. 2. Specimen refiow fixture.

W20 € B € W/4, where W is the width and 8 is
the thickness. The initial notch was introduced 1
mm [ar from the copper/solder intexface by electro-
discharge machining (EDM). and then the pre-
cracking (ASTM, 1998} was performed to obtain
sharp initial crack (aq = 0.25¥) before the FCG
test.

FCG test was conducted in air at a constant
temperature of 25 °C (71T, > 0.5), and a constant
relative humidity of 55%. A servo-hydraulic Tati-
gue machinc (Instron 8872} with the lead sensor
capacity of 25 kN has been used in the present
study. Cyclic loading was applied sinusoidally
under a {requency of 10 Hz, a maximum load of
0.3 kN, and 4 load ratio of 0.1. Crack length was
measured by using a traveling microscope with a
precision of 10 pm. Scanning electron microscopy
(SEM) and optical microscope examinations were
performed directly on the specimens before and
after tests.

3. Finite clernent analysis

According to the theory of fracture mechanics
(Anderson, 1994), stress intensity factor (K} can
be defined as the severity of the crack situalion
of a linear-elastic material as affected by crack size,
stress, and geometry. For an interfacial crack
under plane strain condition, the stress intensity
factors in mode I and II (X, and Kj) along the
traction ahead of the crack tip (0 = 0) are simply
the real and imaginary parts of a complex stress

intensity lactor. whose physical meaning can be
understood from the interface raction expressions
(Hutchinson et al.. 1987 Sou and Hutchinson,
1989):
. (K + ik )

(G + 100 Juco N (1
where, r and € are polar coordinates centered al
the crack up. The x-axis coincides wath the inter-
face, while y-uxis 1s perpendicular to the interface.
The linear-elastic singularity solution n the crack
tip region cun be developed using the bimaterial
constant (&), defined as:

. 1 -8

8—-2—};|n-[+—ﬁ (2)
_ Gk — 1) = Gylky = 1) (3)
TGk + 1) + Galky + 1)

k=3-4y (4)

where, f§ is Dundurs™ parameter (Dundurs, 1969),
subscripts 1 and 2 refer to materials 1 and 2. G
and v are shear modulus of elasticity and Poisson's
ratio, respectively.

Considering the low yield strengths of solders,
i.e. below 20 MP4, a large piastic zone is possible
to form ahead of the crack tip during FCG test.
For such a condition, the energy reiease rate in a
nonlinear elastic body that contains a crack, i.e.
J-integral, can be used to describe crack tip condi-
tions (Rice, 1968). The J-integral for an interfacial
crack between two dissimilar isctropic materials
under plane strain condition (Hulchinson and
Sou, 1991), can be determined as follows

|-

J = —%-(Kf +K&3) (5)
where

1 i/1 1

==i(5+%) ©
- E

E=(l—v2) (7

In the present “work, fintte element analysis
(ABAQUS version 6.2-1) based on the interaction
integral method-(Shih and Asaro, 1988), was used
to extract the individual stress intensity factors (K)
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and J-integral for a crack along solderfcopper
interface under plane strain condition. The mech-
aniwcal properties of 635n-37Pb and copper used
in the calculation are summarized in Table |.
The two-dimensional finite element model of the
specimen (Fig. 3) consists of 2118 plane strain ele-
ments and 4388 degrees of frecdom (DOF). The
maximum load of 0.8 kN and the stress ratio of
0.1 were used for the finite element analysis. The
calculation results are shown in Fig. 4. The stress
tntensity factors (K) and J-integral increase with
increasing crack fength (a) in accordance with (fie
basic theory of fracture mechanics {Anderson,
1994). The stress intensity factor range is in a com-
bination between mode 1 and mode II, however
the magnitude of Kj is significantly greater than
that of Ky, i.e. K| is the dominated fracture param-
eter for the present FCG test.

Table |
Mechanical properties of solder and copper
Mechanical propertics 635n-37Pb Copper
Young's modulus (GPa) 12 134
Yielding sirength {MPa) 18.1 140
Tensile sicenglh (MPa) 39.7 295
Strain hardening exponent 0.30 -
Poisson’s ratio 0.32 0.34
il
crack tip TS Rt H
H
T )
SNG '
/ /
LY A B i ; it

Fig. 3. Finite clement mesh.
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Fig. 4. Relationships between (a) stress intensity factor range
and crack length, and (b) S-integral range and crack length.

4. Results and discussion

4.1. Microstructure

SEM micrograph of solder—copper interface is
shown in Fig. 5. In the region of Sn~Pb eutectic
solder, the microstructure consists of alternating
phases of Pb (light) and B-Sn (dark), similar to
those observed previously in the solder joiats
(Morris et al., 1994). Between solder and copper,
the intermetallic layer due to the reaction between
molten solder and copper surface could be ob-
served. The intermetallic phase is a double layer
of Cu3Sn(g) on copper substrate and CwSns(n)
in contact with molten solder (Morris et al.,
1994). Lee and Chen (2002) found that the activa-
tion energies of Cu3Sn and CugSns growth for
60Sn—40Pb are 59.2 kImol™' and 42.25 kJmol ™",
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Fig. 3. Microstructures of the bonded interlice.

respectively. Duc 10 the lower activation encrgy, 1l
is likely that the intermetallic tayer was mainly the
tayer of CugSns intermetallic. As seen from the
Fig. 5, the intermetallic layer is about 8 pm in
width and has a wavy profile along the interface.
It should be noted that the vanation of size and
profile of intermetallic layer has some effects on
adhesive and fatigue strength (Pang et al., 2001,
Lee and Chen, 2002).

4.2. Fatigue crack growth curve

Relationship between crack length (@) and crack
propagation rate (da/dN) is shown in Fig. 6a. The
crack propagation rate increases with increasing
crack length. The scattering of the data could be
obsarved when the crack is short and it became less
for the longer crack. In order to study the crack
closure behavior, relationship between load and
toad-point displacement is plotted in Fig. 6b. No
evidence of crack closure occurred during the
FCG test, which is in accordance with the results
reported previously by Logsdon et al. (1990),

Generaliy, if the plastic zone size at the crack tip
(@) is small relative to the local geometry, i.e. the
small scale yielding condition (w/e <0.1), the
stress intensity factor (K) can be used without sig-
nificant violation of the linear elastic fracture
mechanics (LEFM) principals. For plane strain
probiem, the plastic zone size at & = 0° crack plane
can be estimated as follows

- 5(8)

where gy is the yield stress. From the estimation of
the plastic zone size at § = 0° crack plane, it was

(x107 8 T —
o or ’! 7
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(b} Load-point displacement (mm)

Fig. 6. (a) Relmionship between cruck length and crack
propagation tate, and (b} relationship between load and load-
point displacement.

found that the w/a ratio was less than 0.08 in the
range of the present experiment. Therefore, the
LEFM can be assumed to be valid and K can be
used to characterize da/dN. For comparison pur-
pose, the refationship between mode | stress inten-
sity factor range (AK;) and crack propagation rate
{da/d N} is plotted in Fig. 7a together with that of
bulk 638n-37Pb compact-tension specimen under
the similar stress ratio and frequency (Zhao
¢t al., 2001). From the figure, it can be seen that
the present result correlates well with that of bulk
635n-37Pb solder.

However, the small scale yielding condition
may not occur for the case of a small crack in ac-
tual solder joint. In such elastic-plastic situation,
AJ should be used as a fracture mechanics para-

- meter instead of AK. The possibility of using AJS
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Fig. 7. Relationships between {a) stress intensity factor range
and crack propagation rate, and {b) J-integral range and crack
propagation rate.

to characterize the FCG rate has been investigated
and skown in Fig. 7b. It is seen that the data points
Le on a double-stope line, which represents two re-
gions: one where a crack grows at very slow rate,
and the other where the relationship between AJ
and da/dAN is linear. As an importance characteris-
tic to assess the resistance of a material to fatigue
crack growth, the AJ and AKX that correspond to

tion (Zhao et al.,

the crack growth rate of 107'° m/cycle are defined
as AJy, and AK,,, respectively (ASTM, 1998). By
cxirapolating the present fatigue ¢rack growth
curve to lower level, the estimated threshold value
of J-integral range (AJ,) 15 about 14 N/m, while
that of siress intensity factor range (AK,,) is about
0.6 MPam'/2, which arc in accordance with the re-
sults reported carlier by Zhao et al. (2001},

4.3. Fatigue crack path under interaction with
interface

A crack initially propagated in the solder paral-
lel to the solder-copper interface and perpendicu-
larly to the load direction. As shown in Fig. §,
the crack propagated in transgranular manner,
i.e. through Pb-rich phases (dark) and Sn-rich
phases (light). Since the present FCG test was per-
formed under low stress ratio and high frequency
condition, it is likely that the manner of propaga-
tion is dominated by the cyclic-dependent FCG
mechanisim, i.e. transgranular manner of propaga-
2001). Furthermore, the crack
path is near the interface, only | mm far from it,
which is much smaller than specimen width. The
copper only elastically deforms in the present
experiment, while the solder can plastically de-
form. Therefore, the region near the crack tip can-
not deform freely under the plastic constraint due
to copper. It is reasonable that the plane strain

Fig. 8. Crack propagation path: Pb (dark} and 8-Sn (light)
(loading is in vertical direction).
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cendition can be assumed for the deformation
near the interface of the present joint.

After some amount of crack propagation in the
solder, the crack turned to the interface and prop-
agated along the interface. as shown in Fig. 9. In
order to wnvestigate this growth phenomenon, the
distribution of von Mises stress and strain near
the crack tip at the maximum load for various
crack lengihs was estimated by using finite element
analysis, as shown in Fig. 10. The discontinuity
and irregular distribution of the stress and strain
are mainly due to the difference of ¢lastic modulus
and yield strength between solder and copper.
According to von Mises criterion, yielding occurs
when von Mises stress reaches the uniaxial yield
strength. Since the yield strength of the present sol-
deris [8.1 MPa, the arrows in the solder region of
Fig. 10a— indicate the plastic zone. The plastic

oW .46

Fig. 9. Micrograph of final failure (loading is in vertical
direction),

deformation occurs ealy in the solder side, as
can be seen from Fig. 10f. The distributions of

W =hi6

Fig. 10. von Mises stresses of the specimen for various crack lengths (a) &/ W =025, (b) a/ W =0.32, and (¢) a/ W = 0.46, and von
Mises strains of the specimen for various crack lengths (d) af W =025, (¢) a/W=0.32, and () o/ = 0.46 (loading is ir vertical

direction).
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von Mises stress and strain along the interface arc
shown i Fig. 11a and b, respectively. It can be
estimated from Fig. |ta that the plastic zone ahcad
of the crack tip reaches the interface when the
crack length is longer than a/# =0.42. Based on
the experimental result, where the nterfuce de-
bonding occurs at the crack lengih of «/ W = 0.46
(critical crack length]. the interfacial von Miscs

— o ™ T T T T T T T T T Al A
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~ 0F eaweom A
9o ——a/W =046
2| ; ]
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Fig. 11, (a) von Mises stresses along interfuce For various cruck
lengths, and (b} von Mises sirains along interface for various
crack lenglhs.

stress, i.e, adhesive strength, can be estimated 1o
be 20.2 MPa.

Quanr ¢t al. (1987) measured the adhesive
strength of 60Sn-40Pb with a cross scction of
318 % 7.62 mm by tensile test as $2.8 MPa, and
becume 46.23 MPa after storage at 250 °C for
6 b Similar reduction in adhesive strength with
increasiag storage time was reported by Chiou
et al. {1993), and Lec and Chen (2002). Since the
siz¢ and profile of intermetallic band become
thicker and rougher with the increasing storage
time, it is likely that the adhesive strength depends
on the size and profile of intermctallic band, i.c.
become weaker with thicker and rougher interme-
talhic band, and results in the differences of the
adhesive strength among literatures.

From the foregoing discussion, the cruck
growth behavior, where the crack turned to the
interface and propagated along the interfuce after
some amount of crack propagation in the solder,
can be explained as follows. With increasing crack
length, the size of plastic zone and the magnitude
of stress near the crack tp increase. Consequently,
the plastic zone reaches the interface and the stress
exceeds the adhesive strength of interface, which
results in the interfacial debonding, as schemati-
cally sliown in Fig. 12. This debonding crack cox-
lesces with the main crack and forms a crack along
the interface, which unstabiy propagates in a brit-
tle manner.

5. Conclusions

The behavior and mechanisms of FCG along
635n-37Pb solder/copper interface were investi-
gated using a solder-jointed plate specimen with
a single-edge crack under mode | loading. The
main conclusions obtained are summarized as
follows:

debonding crack

nofch debonding
[ o /
e solder _T“' "'_"T
\
copper fatigue crack coalescing

Fig. 12. Schematic of the crack propagation process.
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1. Crack propagation rate {da/dN) could be char-
acterized successfully by eithec stress intensity
factor range (AK) or Jf-integral range (AJ).
The threshold levels (AK,, and AJy,), which rep-
resent the resistance of a materal to fatigue
crack growth, were 0.6 MPam"? and 14 N/m,
respectively.

2. Fatigue crack propagated in the solder parallel
to the solder-copper interface and perpendicu-
larfy to the load direction. The manner of prop-
agation is dominated by the cyclic-dependent
FCG mechanism, i.e. transgranular manner of
propagation through Pb-rich phases and Sn-
rich phases.

3. With increasing crack length, the size of plastic
zone reaches the interface and the stress exceeds
the adhesive strength of interface, which results
in the interfacial debonding. This debonding
crack coalesces with the main crack and forms
a crack along the interface, which unstably
propagates in a brittle manner. The critical
crack length (afW) and adhesive strength for
interfactal debonding were 0.46 and 20.2 MPa,
respectively.
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A Roe’s flux-difference splining scheme, combining with the entropy fix method according to Van Leer
et al., and the H-comection entropy fix method by Pandolfi and D" Ambrosio, is proposed. The presented
scheme eliminates unphysical flow behaviors such as a spurious bump of the carbuncle phenomenon
that occurs on the bow shock from flow over a blunt body, and the expansion shock generated from fiow
over a forward facing step. The proposed scheme is further extended to obtain high-order spatial and
temporal solution accuracy. The scheme is, in addition, combined with an adaptive meshing technique
that generates unstructured wiangular meshes to resemble the flow phenomena for reducing
computational effort. The entire procedure is evaluated by solving scveral benchmarks as well as
complex steady-state and transient high-speed cowmpressible flow problems.

Keywords: Shock instabilities; Carbuncle phenomenor; Roe's FDS; Entropy 6ix; H-correction

INTRODUCTION

High-speed compressible flows normally involve com-
plex flow phenomena, such as strong shock waves,
shock—shock interactions and shear layers. Various
numerical tnviscid flux formulations have been proposed
to solve an approximate Riemann problem. Among these
formulations, the flux-difference splitting scheme by Roe
(1981) is widely used due to its accuracy, quality and
mathematical clarity. However, the scheme may some-
times lead to unphysical flow solutions im certain
problems, the carbuncle phenomenon (Perry and Imlay,
1988) with a spurious bump in the bow shock from
flow over a blunt body. The scheme could not provide
accurate solutions for the complex impinging shock
phenomenon yielding kinked Mach stem (Quirk, 1994)
generated from a moving shock over a ramp. In the
odd—even decoupling problem, an uarealistic pertur-
bation may grow with the planar shock as it moves along
the duct. To improve the solution accuracy of these
problems, Quirk (1994} pointed out that the original
Roe’s scheme should be modified in the vicinity of
strong shock.

"The main objective of this paper is to propose and
evaluate a modified Roe's scheme with adaptive unstruc-
tured meshes for two-dimensional high-speed compres-
sible flow analysis. The eatropy fix method by Van Leer
et al. (1989} and the multidimensional dissipation

technique of Pandelfi and D’Ambrosio (2001) are
modified for unstructured triangular raeshes and
implemented into the original Roe’s scheme.

The presentation in this paper starts with the
describing of some well-known problems, which exhibit
the numerical shock instability from the Roe's
scheme in the second section. The eatropy fix methods
of Van Leer et al. {1989); Sanders er al. {1998); Pandolfi
and D’Ambrosic (2001) ave examined to investigate
their capabilities as well as the solution accuracy.
The modified Roe’s scheme with a mixed entropy fix
method is then proposed in the third section. The
presented scheme is further extended to high-order
solution accuracy and then evalvated by several
benchmark test cases in the fourth section. Finally, the
scheme with adaptive unstructured meshes is applied
for solving both the steady-state and transient high-
speed compressible flow problems to demonstrate its
performance.

NUMERICAL SHOCK INSTABILITY

Some certain problems for which the Roe's scheme may
not provide correct solutions for the compressible Euler
computation are presented in this section. Unphysical
numerical solutions may arise from the implementation
of the one-dimensional upwinding numerical flux

*Corresponding author Tel/Fax: 4-65-2-218-6621. E-mail: fiocpdc@eng.chula ac th

ISSN 106)-8562 print/ISSN 1029-0257 caline © 2004 Taylor & Francis Lid
DOL 10.1080/1061 8560412331 297641
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function onto the multidimensional formulation. To avoid
such solutions, three enlropy fix methods (Van Leer
et al., 1989 Sanders efral, 1998, Pandolfi and
D’ Ambrosio, 2001) have been recently suggested
because of their simplicity and convenient code
impiementation. These entropy fix methods are
presented herein and their performances are determined
by test cases. All solutions in this section use the Roe's
scheme with the first-order accuracy oa  structured
triangular meshes.

Roe's Flux-difference Splitting Scheme with
Dissipation

The governing differential equations of the Euler
equations for the (wo-dimensional inviscid flow are
given by,

U 9E aG

—+—+—=0 l

4t 9x By ¢ )
where U is the vector of conservation variables, and E and
G are the vectors of the convection fluxes in the x and y
directions, respectively. The perfect gas equation of state
ts in the form,

p=pety—1) )

where p 15 the pressure, p is the density, ¢ is the internal
energy and v is the specific heat ratio.

By integrating Eq. (1) over a control volume, {2, and
applying the divergence theorem fo the resulting flux
integral,

il Udﬂ+J FadS=0 3
aln Jan

where F is the numerical flux vector and h is the
unit normal vector of the cell boundary. The numerical
flux vector at the cell interface between the left
cell L and the right cell R according to Roe's
scheme (1981) is,

1 1<
Fr.= E(F“L.l- Fpr) — igﬂklhh‘k )

where ay is the wave strength of the k-th wave, A is the
eigenvalue and r; is the comresponding right eigenvector,
The eigenvalues in the above Eqg. (4) are,
Va—a
V.
Ag = v, (5)
Vota

where V, is the nonnal velocity and a is the speed of sound
at the cell interface.

The original Roe’s scheme previously described has
been found to produce unphysical solutions such as the
expansion shock from a flow over a step, and the carbuncle
phenomenon of a flow over a blunt body. To avoid such
unphysical solutions, the entropy fix methods {Harten,
[983; Van Leer ef al, 1989; Lin, 1995; Sanders ef al,
1998; Pandolfi and D" Ambrosio, 2001; Dechaumphai and
Phongthanapanich, 2003) have been proposed and
investigated. The three versions of the entropy fix
methods by Van Leer et al., Pandolfi and D' Ambrosio
and Sanders et al, are first evzluated for structured
meshes herein. These methods are then extended to
unstructured meshes and presented later in this paper.

The Van Leer's entropy fix method (RoeVL) is designed
to correct the unphysical expansion shock. The
one-dimensional entropy fix was developed by replacing
the characteristic speeds of the acoustic waves (for k = [
and 4) with,

. [, fAd = 29"
W= v, md<zge O

where
VL _ oy
7'~ = max(Ag — Az, 0) a

Sanders et al. introduced an idea of a multidimensional
dissipation, the so-called H-correction entropy fix
methed. The method has shown to eliminate the
unrealistic carbuncle phenomenon of the flow over a
blunt body in the structired uniform mesh as shown in
Fig. 1(a). The advantages of the method are the simplicity
in the implementation into the existing scheme and the
parameter-free characteristics. For the two triangular cells
shown in Fig. 1(b}, the H-correction entropy fix according
to Sanders ef al. (RoeSA) has been modified as described
by Dechaumphai and Phongthanapanich (20063) to,

7% = max (m, 72, M, 4, Ms) (8

where 7, i = 1,...,5 is given as,
1
w=; max (1Ace — Aucl) &)

Pandolfi and D’ Ambrosio proposed another version of
the H-correction eatropy fix by excluding %, from Eq. (8)

FIGURE [ Cell interfaces of (a) structurcd uniform mesh and
(b) unstructured trizogular mesh.
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to avoid an erroreous injection of artificial viscosity, and
is applicable only 1o the eniropy aad shear waves {for
k = 2 and 3). The modificd H-correction entropy fix by
Pandolfi ei al. {RoecPA) is.

P

7™ = max{(m, 73, 74, M) (10

where #7;, £ = 2,...,5 is given in Eq. (9).

The above three methods have been evaluated using five
test cases involving expansion shocks, the kinked Mach
stem, the carbuncle phenomenon and the odd-even
decoupling as presented in the following sections.

The Expansion Shocks

To illustrate an unphysical expansion shock, a Mach 3
flow over a forward facing step (Woodward and Colella,
1984) is investigated. The density cootours computed
from the RoePA, RoeSA and RoeVL are shown in
Fig. 2{(a)-(c), respectively. The figures show that  the
RoePA produces an unphysical expansion shock on top of
the facing step comer, whereas both the RoeSA and
RoeVL provide realistic solutions.

Another expansion shock problem used to evaluarte the
numerical instability is the diffraction of a Mach 2 shock
moving over a 90° corner. Figure 3 shows the computed
density contowrs obtained from the RoeVL. On the other
hand, both the RoePA and RoeS A could not provide proper
solutions due (o negative intemnal energy that occurs during
the computation in the vicinity of the turning comer.

The Kinked Mach Stem

The kinked Mach stem generated from a shock moving
over a ramp is another test case used to highlight the
performance of these three methods. Figure 4(a)-(c),

FIGURE 2 Mach 3 flow over a forward facing step: (a) RocPA.
() RoeSA and (¢} Roe VL.

FIGURE 3 Diffraction of a Mach 2 shock over a 90° comner {RoeVL).

(@)

(®)

©

FIGURE 4 A kinked Mach stem from a Mach § shock maving over
2 46" ramp: (a) RoePA, (b) RoeSA and (c) RoeVL.
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(2) (b)

FIGURE 5 Mach L5 flow aver a blunt body (first mesh): (a} enlarged view of the mesh, (b) RocPA, (c) RoeSA and (d) Ree VL.

respectively, shows the density contours obtained from the
RoePA, RoeSA and RoeVL for 2 Mach 5 normal shock
moving over a 46° ramp. Both the RoePA and RoeSA
provide reasonable accurate sofutions such that the kinked
Mach stem is recovered with the slighdy broken-down
incident shock. The RoeVL, however, vields the broken-
down incident shock with severely kinked Mach stem.

Such solution may be caused by insufficient dissipation

that cannot counteract the transverse perturbation (Quirk,
1994; Gressier and Moschetta, 2000).

The Carbuncle Phenomenon

The carbuacle phenomenon (Perry and [miay, 1988) refers
to a spurious bump on the bow shock near the flow
centerline ahead the blunt body. The phemomenon is
highly grid-dependent (Pandolfi and D’ Ambrosio, 2001),
but does not require a large number of grid points to
appear (Gressier and Moschetta, 2000). To demonstrate
this grid-dependent phenomenon, the schemes RoePA,
RoeSA and RoeVL are employed with three meshes of
different element aspect ratios for each scheme. An
enlarged view of the elements near the flow centerline of
the first mesh and the corresponding density contours are
shown in Fig. 5(a}-(d). The carbuncle phenomenon does
not appear in any scheme with the use of this relatively
crude mesh. The second mesh has more elements which
are refined in the circumferential direction as shown in

(@) (b)

(©) (d)

Fig. 6(a). The RoePA provides realistic flow behavior
while the RoeSA and RoeVL exhibit small bump on the
bow shock as shown in Fig. 6{b)—(d). The carbuncle
phenomenon can be clearly seen in a more refined mesh
with higher element aspect ratio as shown in Pig. 7(a).
While the RoePA still provides reasonable flow solutions,
the carbuncle phenomena are easily observed in the
RoeSA and RoeVL as shown in Fig. 7(b)—-(d).

The Quirk’s Test (Odd-Even Decoupling)

The last test case is 2 Mach 6 moving shock aloag the
odd-even grid perturbation in a straight duct (Quirk,
(994). The computational domain consists of a uniform
triangular mesh with 800 and 20 equal intecvals,
respectively, along the axial and the transverse directions
of the duct. The grids along the duct centeriine are
perturbed in the transverse direction with a magnitude of
# 107° Both the RoePA and RoeSA can provide accurate
shock resolutions whereas the RoeVL suffers from the
numerical instabilities as depicted in Fig. 8(a)-(c),
respectively. As explained by Gressier and Moschetta
(2000), the exact capture of contact discontinuity and
strict stability cannot be simultancously satisfied in any
upwind scheme. The solution suggests that additional
dissipation injection to the entropy and shear waves is thus
needed to stabilize the Roe’s scheme as done by RoePA
and RoeSA.

© (d

FIGURE 6 Mach L5 flow over a blunt body (sccond mesh): (a) enlarged view of the mesh, (b) RoePA, () RocSA aod (d) RoeVL.
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(a) (b)

FIGURE 7 Mach 15 flow over a blunt body {third mesh): {a) cnlarged view of the mesh, (b) RocPA, (¢) RocSA and (4) RocVL.

(©) (d)

(8 x=50 x=210 x=410
| | | [ |
) x50 x=210 x=410
L 1 o R |
() x=50 x=210 x=410

FIGURE 8 Mach 6 moving shock along odd —cven grid perturbatien: {(a) RoePA. (b) RoeSA and {¢) RoeVL.

MIXED ENTROPY FIX METHOD
FOR ROE’S SCHEME

The flow behaviors obtained from the test cases in the
“Numerical shock instability™. section using the RoeVL,
RoeSA and RocPA schemes which were modified to avoid
the numerical shock instability have been studied. The
flow over a forward facing step and the diffraction of a
shock over 90° comes problems show that RoeVL can
perform very well for flows with expansion shock that
contain sonic poiots. Meanwhile, the RoePA is suitable to
correct the numerical instability from insufficient dissipa-
tion injected to the entropy and shear waves as
demonstrated by the kinked Mach stem, the flow over
the bluat body, and the moving shock along the odd—even
grid perturbation problems. Thus, this paper proposes a
mixed entropy fix method (RoeVLPA) that combines the
entropy fix method of Van Leer and the modified
multidimensional dissipation method by Pandolfi, the
modified H-correction, together by replacing the original
eigenvalues as follows,

[ALal, (A4l = 29V
Apal
A = ¢ 250+ 9T, Al <29™ @

max ({A23], n)

where ‘q“‘ and 'qm are defined in Eqs. (7) and (10),
respectively.

The mixed entropy fx method (RoeVLPA) s
equivalen! to the RoeVL in handling the acoustic
waves (for k =1 and 4) and the RoePA for entropy and
shear waves (for k=2 and 3). The efficiency of the
mixed entropy fix method is re-evaluated by solving the
five test cases presented in Figs. (2)-(8).

For the Mach 3 flows past over a forward facing step,
the mixed entropy fix method (RoeVLPA) eliminates the
unrealistic expansion shock as shown in the computed
density contours in Fig. 9. Figure 10 shows the computed
density contours for the diffraction of a Mach 2 shock
moving over a 90° comer. Figure 11 depicts the com-
puted density contours of a shock moving over a ramp
and clearly shows the recovered kinked Mach stem and
the preserved incident shock. The computed density

FIGURE 9 The Mach 3 flow over a forward facing step (RocVLPA).



GCFD 41042—23/8/2004—KREETRI—117952

6 S. PHONGTHANAPANICH AND P DECHAUMPHAI

FIGURE 10 The diffraction of a Mach 2 shock over a 9" comer
{RocVLPA).

FIGURE 11 The kinked Mach stem from a Mach 5 shock moving over
a 46° ramp (Roc VLPA).

contours of the Mach 15 flow over a blunt body for the
three meshes with different element aspect ratios are
shown in Fig. |2 without the unphysical carbuncle
phenomenon. Finally, for the test case of the Mach 6

(2) ®

moving shock along the odd-even gnd perturbation in
which the RoeVL yields unstable shock solution, the
proposed RoeVLPA can capture the shock accurately
without perturbation growth with time as shown in
Fig. 3.

HIGH-ORDER EXTENSION AND APPLICATION
ON UNSTRUCTURED TRIANGULAR MESHES

High-order Reconstruction and Limiter

Solution accuracy from the frst-order formulation
described in the preceding sections can be improved by
implementing a high-order formutation for both the space
and time. A high-order spatial discretization is achieved
by applying the Taylor's series expansion to the cell-
centered solution for each cell face (Frink er al, 1991).
For instance, the solutions at the midpoint of an element
edpe between nodes | and 2, shown in Fig. 14, can be
reconstructed from,

¥, +
c |(q Q:)_qs] a2)

‘Ul—zzqc"'T[ )

where q=(P # v pP]T consists the primitive vari-
ables of the density, the velocity components and the
pressure, respectively; gc is the solution at the element
centroid; q,, n = 1, 2,3 are the solutions al nodes. In this
paper, the inverse-distance weighting from the centroid to
the nodes that preserves the principle of positivity (Frink
and Pirzadeh, 1998) is used,

oo

=1 |§l

G =cx

T

where q-; are the surrounding cell-centered values of
node n. |t is the distance from the centroid 1o the node r,
and N is the number of the surrounding cells.

(13)

— | =4

©

FIGURE 12 The Mach 15 flow over a blunt body (RoeVLPA): (2} ficst grid, (b) second grid and {c) third grid.
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| ]

x =50 x =210

x =410

FIGURE 13 The Mach 6 moving shock along odd-ceven grid perturbation {Roe VLPA).

FIGURE 14 Linear reconstruction on a typical triangular element.

The ¥¢, in Eq. (12), represents the limiter,
preventing spurious oscillation that may occur in the
regioa of high gradients. In this study, Vekatakrishnan’s
(1993) limiter function is selected,

¢(E:au)l A_=0

A
Ye=ming o(%=2). a.<0 (9
1, A. =0

where 8- =q: — 1, Ay mox = Qmax — Q7 304 A min =
Qmin — Q- The Qua, and Qui, are, respectively,
the maximum and minimum values of all distance-
one neighboring cells. The function ¢ is similar

1.0+
P
05+
0 | I ]
0 05 1.0
X
@
1.0
P
05F
D Fi 1
0 151 10
x
{c)

to the Van Albada limiter (Van Albada er al, 1982),
which is expressed in the form,

2
b =2+

= - - I5
yi4y+2 (1)

Second-order Temporal Discretization

The second-order temporal accuracy is achieved by
implementing the second-order accurate Runge-Kutia
time stepping method (Shu and Osher, 1988),

(16)

L] * Nha *
at+l _ —_— .m;
Ut =3 |0+ ”";ZI:F m

where At is the time step. Local element time steps are
used for steady-state analysis, while the minimum, globai
time step based on spectyal radii (Vijayan and Kallinderis,
1994) is used for the uusteady analysis to reduce
the computation effort.

1.0
0
05t
0 1 1
0 0.5 1.0
X
(b)
Lo
Fa
05t
o L r |
0 0.5 1.0
X
(d)

FIGURE 15 Comparative predicted and exact solutions at ime 7 = 0.15 for Sod shock tube (Roe VLPAY: (a), (b)Y (1) and (2} density distributions;

{c), (d) %1} and O(2) pressure distributions.
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40 v |« 03118 |
M=)
30 | I_/ 1 I
0.0172
Pzo — I—-— 0.0260 0.0300
0.1056 —l
1.0 0.1559
0.2415 |
0 .
0 02 0.4 0.6 08 10 FIGURE 18 Problem statement of a Mach 3 flow in 2 coavergent -
x divergent channel.
(2} . . . . ..
80 - a two-dimensional domain. The initial conditions of the
fluids on the left and right sides are given by (p, u, p), =
6.0 - (1.0.0.0. 1.0) and (p, &, p)g = (0.125. 0.0, 0.1). The
1.0 X 0.1 computational domain is discretized with uniform
poabr triangular elements into 400 and 40 equal intervals in the x
50 | and y directions, respectively. Figure 15(a)-(d) shows the
predicted density and pressure distributions along the tube
0 — L : s ! length and is compared with the exact solutions at time
0 0.2 04 0.6 0.8 10 t = 0.15. The figure shows that the high-order extension of
x Roe’s scheme with the entropy fix Roe VILPA provides more
® accurate sotutions than the first-order solutions.

FIGURE 16 Compuied solutions of the stationary normal shock at 500
iterations {2)-RoeVLPA): (a) density distribution and (b) pressuce
distribution.

Numerical Evaluation

The high-order exlension of the Roe’s scheme with the
mixed entropy fix method, RoeVLPA, presented in the
preceding section is evaluated by solving several problems.
The modified scheme is also combined with an adaptive
meshing technique that generates unstructured triangular
meshes for more complex problems. These selected test
cases are: (1)} Sod shock tube, (2) Stationary normal shock,
(3) Diffraction of Mach 5.09 shock over a 90° corner and
{4) Mach 3 flow in a convergent—divergent channel.

Sod Shock Tube

The one-dimensional shock tube test case, the so
called Sod shock tube (Sod, 1978), is solved by using

Stationary Normal Shock

The nomal shock of Mach 3 (Kim et al., 2001) is used
as another test case for the proposed high-order accurate
RoeVLPA. The initial conditions are given by (p,u.p), =

(1.0,3.0,0.714) and (pu.p)r = (3.857,0.778,7.381). After
computation with 500 iterations with the Courant number
of 0.5, the highworder accurate RoeVLPA predicts the
density and pressure distributions as shown in Fig. 16.
The figure shows that the normal shock is captured by
approximately three intermediate points.

Diffraction of Mach 5.09 Shock Moving
over a 90° Corner

This test case is taken from Quirk (1994) as Mach
5.09 pormal shock is moving from left to right.
Figure 17(a),(b) shows the computed density contours at

FIGURE 17 Density contours of & diffraction of Mach 5.09 shock over 2 % comer at time + = 0.25; (a) {1)-RocVLPA and (b) H(2}-RoeVLPA,
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FIGURE 1% Mach 3 flow in a convergent-divergent channel (9(1)-Roe VLPAY. (a} initial mesh; {d) third adaptive mesh: (b), {¢) density conlours;

(), {) Mach conlours.

time ¢ = 0.25 from the first-order and high-order accurate
RoeVLPA, respectively. The high-order accurate Roe VLPA
car better capture detailed flow field, including higher shock
resolution and sharper contact surface behavior,

Mach 3 Flow in a Convergent~Divergent Channel

Both the first and high-order RoeVLPA are funher
evaluated for adaptive unstructured meshes wvsing a
probiem with more complex flow phenomena. Figure 18

shows the problem statement of a Mach 3 flow in a
convergent—divergent channel, which results in complex
flow behavior involving incident and reflecting shocks
with expansion waves. The first-order RoeVLPA s
combined with the adaptive mesh generation technique
for capluring dctailed flow behavior as presented in
Fig. 19(a)-(f). The entire procedure is then repeated
with the use of the high-order RoeVLPA. The adapiive
meshes and their corresponding solutions are
shown in Fig. 20(a)-(f). This figure highlights the use

NEAVAN ™, oA AAVAY

RN

e gy AWEAVIT

(d)

(e)

®

FIGURE 20 Mach 3 flow in a convergeni-divergent channel ((2)-RoeVLPA): (a) initial mesh: () third adaptive mcsh; (b), (¢) density contours;

{c}, {f) Mach contours,
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of the high-order accurate scheme on adaptive meshes to
effeciively oblain detailed Aow solutions,

CONCLUSION

A mixed entropy fix method is proposed to improve
numerical stability of the Roe’s flux-difference splitting
scheme. The method combines the medified entropy fixes
by Van Leer er al. and Pandolfi and D" Ambrosio, together.
The method was then evaluated by several well-known
test cases and found o eliminate unphysical solutions that
may artise from the vse of the original Roe's scheme.
These unphysical solutions include the carbuncle
phenomenon on the bow shock of the flow over a blunt
body, and the expansion shock geperated from the flow
over a forward facing step, etc. To further improve
solution accuracy, the high-order spatial and second-order
Runge-Kutta temporal discretization were also

implemented. The method was also combined with an-

adaptive mesh generation technique to demonstrate its
applicability for arbitrary unstructured meshes. The entire
process was found to provide more accurate solutions for
both the steady-state and transient flow test cases.
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1 Introduction

For a standby systern in the maintenance of nuclear power
plants, a surveillance test [1] is performed to detect hidden fail-
ures and to assure that the component is still promptly operate
when the systere is needed. When the standby system does not
operate propeily, severe damage to plant may occur. Therefore,
the surveillance test is imponant. The surveillance test policy con-
sists of several parameters such as unpavailability, maintenance
costs, and surveillance test interval. The unavailability is probabil-
ity that the system or component does not operate expected func-
tion when it is required. Therefore, low unavailability is required
for the maintenance activities. On the other hand, reduction of the
maintenance costs is also needed from the economical viewpoint.
From the literature reviews it is apparent that single-objective op-
timization is widely used in probabilistic risk analysis (PRA) for
nuclear power plants; unavailability is considered an objective and
cost function is considered an implicit constraint, or vice versa
[2-4]. Nevertheless, an obvious tradeoff {conflicting scenarios)
exists among these purposes. Consequently the multiobjective op-
timization {3] is required to solve such wadeoff problems. The
results of the multiobjective optimization usually consist of a
number of nondominated optimal solutions that are called Pareto-
optimal sotutions.

Furthermore, one of the important parameters for the surveil-
lance test is the surveillance test interval, which will be adopted as
the decision vaniable for the optimization process. In the surveil-
lance test, the system components have been grouped into differ-
ent test strategies. All components in the same group are deter-
mined as the same surveillance test interval. Therefore, the
management of the surveillance test interval groups is also signifi-
cant for improving the maintenance activities. So, only the multi-
objective optimization may not lead to the satisfactory results in
the risk management point of view. In order to manage the most
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satisfactority surveillance test interval groups in the viewpoint of
risk, the optimization inciuding priortization of maintenaace
should be treated.

The risk-based maintenance (RBM) is the method for determin-
ing the priority of the maintenance usiag components risk. Hence,
the RBM can be applied for managing the surveillance test inter-
val groups. There are several guidelines [6,7] that are developed
about risk-based maintenance and many researches [8-11] have
shown that the RBM has been efficiently applied in maintenance
activities. For components in the standby system, such as pumps
and valves, risk-based maintenance for testing is called as rsk-
based inservice testing [12,13]. However, the methodology for
updating multiobjective optirnization by risk-based inservice test-
ing has not been reported.

The purpose of this paper is to propose a methodology to de-
termine the robust surveillance test with the most optimal surveil-
lance test interval based oa risk based inservice testing. The meth-
odology for applying a multiobjective optimization to risk-based
inservice testing is proposed in the following section to determine
the most optimal test interval based on risk consideration. In order
to obtain the robust solution, the decision-making for the multi-
objective optimization in the viewpoint of robustness is then pro-

Finally, the proposed methodelogy is applied to a standby sys-
tem of a simplified high-pressure injection system (HPIS) of a
nuclear power plant's pressurized water reactor (PWR). It is con-
firmed that proposed method gives the satisfactory results in view
of RBM.

2 The Proposed Methodology
In this section, the methodology for applying the multiobjective
optimization to risk-based inservice testing having robustness is

The proposed methodology is illustrated in Fig. 1. At first, the
methodology begins with the definition of the standby system.
The inventory of the system is performed to detenmine unavail-
ability parameters, cost parameters of each component, and initial
inservice testing groups of system components. After that, the
multiobjective optimization is performed for the inidal inservice

FEBRUARY 2005, Vol. 127 / 13
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[
Toveatory of
the system

t
Dxtermine a condition of initial
surveillance test groups before
the risk ranking is performed
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Multi-objective
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Finding most appropriate
point by using ST (section 2.1}

(section 2.2)

Fig. 1 Prdoess of the methodology for applying the multiob-
jective optimization to risk-based inservice testing

testing groups of components. This paper considered system un-
availability and roaintenance costs as a simultancous multiobjec-
tive optimization.

Because the Pareto-optimal solutions consist of a aumber of
solutions, a solution that has fowest sensitivity is selected as the
representative solution of the Pareto-optiral solutions. This point
is specified as the point where proposed sensitivity index (SI)=1.
The detail of SI is shown in Sec. 2.1. Then, the selected solution

_is used o construct the proposed risk matrix.

The risk matrix assists in categorizing the risk significance of
the components into first approximation of test interval groups.
Thereafter, the revision of risk ranking is performed to update the
multiobjective optimization result

The revision of the risk ranking and the multiobjective optimi-
zation are repeated to improve the multiobjective optimization
results until the test interval groups are converged. By this updat-
ing process, the optimal surveillance test interval groups based on

14 / Vol. 127, FEBRUARY 2005

High sensitivity of variation in objective function
valiue F, to variation in objective function value F,

E-I-hgh semsitivity of variation in objective function E
valae ) wmmmohmﬁmonwhmﬂ.

Fig. 2 The typical Pareto-optimal solutioas in minimization of
objective functions F, and F;

risk consideration are obtained and satisfactorily Pareto-opiimal
solutions in the viewpoint of risk management are achieved.

2.1 Decision Making for the Multiohjective Optimization
Because the Pareto-optimal solutions consist of a number of solu-
tions, the decision making must be done for the multiobjective
optimization in order to select the point to be improved.

The conventional method called global criteria [S] is widely
used for the decision making on the Pareto-optimal solutions. By
using this method, the one solution among the Pareto-optimal so-
lutions that is closest 10 a given reference point (ideal point} s
selected. The ideal point is denoted as the point of the tower
bound of ali objective functions in the feasible region. For a two-
objective minimization problem, the ideal point is typically repre-
sented as Z* in Fig. 2.

However, in the robust point of view, the decision making by
the conventional method may not be appropriate. For example,
point A in Fig. 2 is the solution that has minimum distance from
the given ideal point Nevertheless, this solution is located in a
high sensitivity zone, where objective function value F, is highly
sensitive to variations in objective function F| values. In this case,
the decision made by the conventional method does not have the
robustness in the view of sensitivity.

Therefore, the sensitivity of the solution should be considered
in order to determine the solution that is robust. The sensitivity of
the solution on the Paret i curve is expressed by the pro-
posed SL defined by the following dirnensionless expression:

AF,IF,
Si= PR

— (1
AFIF,

where AF; and AF, are the variation around specified objective
function values F; and F; on the Parcto-optimal curve.

The basic idea of this proposed sensitivity index is that when
Si=1, the variation ratios of each objective function are almost
same and the solution at this point has the lowest seasitivity for
both objectives.

22 The Risk Matrix. The concept of risk usu-
ally consists of the likelihood of the failure and the consequence
of the failure for the interested part. In the standby system, the
unavailability is a very important parameter. Therefore, this re-
search comresponds the liketihood of the-failure to the unavailabil-
ity of each component.

In addition, the consequence of a component’s failure to the
systera unavailability is defined in reference of the concept of
importance measure of the risk achievement worth (RAW) [14].
The RAW is defined as the following equation:
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w-U(Uf=|) )
RA —m (2)

where U{U;= 1) is the increased system unavailability level when
the considered component £ is assumed to fail or unavaifability of
that component equals 1.0. U/(base) is the present system unavail-
ability level.

In this research, in order to make the parameters used in the
propesed risk matrix easy to assist in examining how the risk level
is improved quantitatively, the consequence of a component’s fail-
ure to the system unavadlability is corresponded as U(U,=1).

Both the consequence of each component 10 the system and the
present wnavaiiability of each component are considered on the
risk ratrix simultaneously.

The likelihcod and the consequence are then plotted on the risk
matrix. Maximum values and minimum values of the likelihood
and consequence from all components are used 1o defioe the upper
and lower bound of the ranges of the risk matrix. Each axis of risk
matrix is equally divided into three calegories, such as low, me-
dium, and high. Thereafter, the risk significaoce for surveillance
test is considered as shown in Fig. 3.

In Fig. 3, the risk sigmificance is categortzed into three zones,
which are corresponding 1o surveillance test interval T!, 72, and
T3, The T', T2 T are selected as the design variables in the
optimal process. T' represents the shortest test interval, 7° repre-
sents the medium one, and T° represents the longest one.

The risk significance for each divided zone is categorized as
follows.

{1) Zone 1: The componeats that [ocate in this zone are the
highest risk significance components. Therefore. these compo-
nents should be tested most frequently. The surveillance test in-
terval for the components in this zone is determined as T', which
is the shortest one allocated in this paper. This zone is considered
as an unacceptable zone {or the operation.

(2} Zone 2: The components that locate in this zone are the
medium risk significance compaonents. The surveillance test inter-
val for the componeats in this zone is determined as T2, which is
the medium test interval allocated in this paper. This zone is con-
sidered as an acceptable zone for the operation.

(3) Zone 3: The components that locate in this zooe are the
lowest risk significance components. The surveillance test interval
for the components in this zone is determined as T2, which is the
longest one allocated in this paper. This zoue is considered as an
acceptable zone for the operation.

23 HRevision of the Risk Matrix. Since-only one of risk
ranking process is not sufficient to find the most optimal groups
for surveillance test intervals, the revision of the risk matrix is
then required. '

In order 1o revise the risk ranking, the risk matrix (for the
solution of the latest obtained test interval groups) is created
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again. After that, the interested components © be revised in the
test intesval groups are treated according to the following two
cases.

{1) Case I' The components, which are still located in zone 1
even after the reatment, arc considered as the highest risk sigmbi-
canl components. An example of the components to be revised ag
the case | is shown as the compoenent A in Fig. 3. These compo-
nents will be revised by shortening the test intervai.

{2) Case [1: The componems, which arc still located in zone 3,
are considered as components that can be further disregarded in
the maintenance activilics. An example of the components to be
revised as the case [[ is shown as the component B in Fig. 3.
These componeats will be revised by extending the 1est interval.

The objective of revising the risk ranking is to improve the risk
significance of components until they are converged at the optimal
test interval groups based on nsk consideration, whose risk sig-
nificances shoutd fall into the medium risk significance finally.
The medium risk significarce that is shown in zone 2 is nol (oo
conservative and not too risks significance.

3 Formulation of Maintenance Activities

In order to optimize the surveillance test, both system unavail-
ability and maintenance costs are treated as simultaneous objec-
tives in this paper. The formulations of these objective functions
are taken from the model developed by Martore!l et al. [2). A
summary of the models is shown Jater.

3.} Unavailability Function. The systern unavailability
model in the PRA is usually shown as

ux)~2, [T wn &)
J

where up(T) is the unavailability at the basic event & of the
minimal cut set (MCS) j. T is the surveillance test imerval. The
unavailability model of w;,(T) in Eq. (3) can be expressed as

up(TN=u{T)ta(T)+u(lT) (4)

where w (T)=p+ [f2-h-T is the average unavailability due to
random failures, while p is a perdemand failure probability and A
is the standby failure rate. « (T)=¢/T is the unavailability due to0
testing, while r is the mean downtime due to testng. w (T)
=1T(p+\-T)-d is the unavailability due 1 comecitive mainte-
nance, while 4 is the mean downtime due (o cormrective mainte-
nance.

3.2 Cost Function.
fined as

The maintenance cost model can be de-

C(T)=2, ¢T) )
where i is the index of each component.
The cost mode!l of each component can be expressed as

(N =c (T +c (D) ®

where ¢ (T)y=¢/T: ¢y, is the yearly cost coatribution as a conse-
quence of the number of tests being performed over a year period,
while ¢, represents the hourly costs for testing. In tum, ¢ (T)
=U1T(p+i-T) d:c,, is the yearly cost contribution as a conse-
quence of performing corrective maintenance, and ¢, is the
hourly costs of comective maintenance. .

4 Simulation Method

The multiobjective optimization ts used when there are conflict-
ing objectives in the problem. Many classical methods have been
used to solve multiobjective optimization problems; these include
the weighted sum method [5] and the e-constraint method [3].
Most of the classical methods start with one random predicted
soluticn. From that potnt, the algorithm is explored 10 search for a
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Fig. 4 A standby simplified HPIS

direction to locate a better solution. The process is repeated for a
number of times to obtain the best optimum solution. These clas-
sical algorithms must be iterated many times 10 cbiain a different
solution from the Pareto-optimal sclution set. Moreover, some of
the classical methods are not efficient in nondifferentiable, discon-
tinugus problems or in aonconvex Pareto-optimal regions. Mulki-
objective optimization using a genetic algorithm (GA). however,
can diminish these problems. Because genetic algorithms work
with a population of sclutions, it is advantageous to obtain the
Pareto-optimal solutions in a single simulation run. GA enables us
to give equal emphasis to all nondominated solutions in the popu-
tation and to simultaneously maintain a diverse set of multiple
nondominated solutions.

4.1 Muldobjective Optimization Method Using GA. In
this paper, the elitist nondominated sorting genetic algorithm or
NSGA-IL by Deb [5] has been chosen to solve the multicbjective
optimization. The NSGA-II is a multiobjective optimnization using
genetic algorithm, which has the advantage of a crowding com-
parison procedure acting as an explicit diversity-preserving
mechanism.

4.2 Case Study. A case of a standby-simplified HPIS of a
nuclear power plant’s PWR modeled by Harunuzzaman and Al-
demir {15}, which is shown in Fig. 4, is examined in this study.

This system is normally in standby mvode. Under accidental
conditions, the HPIS can be used to remove beat from the reactor
when the steam generators are unavailable. The unavailability of
related component and cost data for maintaining the system are
summarized from Harunuzzaman and Aldemir [15] and shown in
Table 1.

In order to investigate the effectiveness of the proposed meth-
odology, four cases of simulation were investigated. The four in-
vestigated cases of initial test interval groups before performing
the risk-based inservice testing to the HPIS are shown in Table 2.
The symbols used in Table 2 are shown in Fig. 4. T', 7%, T2 in
Table 2 are the surveillance test intervals, which are already de-
scribed in Sec. 2.2. The 7', T2, T are constrained by the follow-
ing equations:

short test interval (T'}<8760 h
medium test interval {(T2=kl1-T') while 1<kl=<10 (7)
long test interval (7°=%2-T?) while 1<k2<10

Consequently, the maintenance activities optimizatioe of this
system has decision varizbles set as shown in Eq. (8):

T={T" k1 k2} (8

Table 1 Component unavailabiiity and maintenance cost pa-
rameters

A P r

d C [

Uit (0°%m)  (07H W ) (m (W
Valves (V) 5.83 182 015 26 20 15
Pumps (F) 3.89 053 4 24 20 L5
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table 2 The investigated cases of initial test interval groups
before performing the risk-based inservice testing

Case i T? r

i All components

2 VieVa P Py Py Vg VL Vs W,

Va
3 v, Vi, Pa Py Po VLV, V.
Ve. V3
4 Vi V.. ¥y V. P, P,.P.
Vs. Vd- V7

4.3 GA Parameters. By using data in Table 1. the objective
functions of the unavailability function and cost function can be
derived. To formulate the unavailability objective function, a fauit
tree diagram has been developed to determine the MCSs. There-
after, NSGA-II is simulated for solving the multiobiective optimi-
zation using the parameters shown in Table 3.

5 Results and Discussions

5.1 Discussion of the Proposed Sensitivity Index. The
Pareto-optimal solutions (before applying the proposed methodol-
ogy) for the investigated case | are shown in Fig. 5. However,
there are some Pareto-optimal solutions in Fig. 5 that are not
appropriate because of their high sensitivities.

For example, at point A in Fig. 5, the optimal unavatlability
value is 2.43% 1073 and the optimal value of costs is $5591. At
point B, the optimal value of unavailability is 2.53% 1073 and the
optimal cost value is $4399. This indicates that around these
points, a slight variation (only l.e-6) in the unavailability causes
the high variation in maintevance cost optimization value by
$1192. This means unavailability has high sensitivities on cost in
this zone. '

However, at point F, the optimal unavailability value is 1.38
X 10™* and the optimal cost value is $971. At point G, the optimal
unavailability value is 1.55X 10™* and the optimal value of cost is
$905. This indicates that around these points, a slight variation
(only $66) in the maintenance costs causes the variation in un-
availability optimization value up to 1.7X 07>, This means cost
has high sensitivitiés on unavailability in this zone.

-On the other hand, for poiats C and D, a variation in the wn-
availability optimal value of only l.e-6 causes the small variation
in cost optimal value by $2543-$2477=%$66. Thus, in this zone,

Table 3 Parameters used in optimization

Pamameters Values
Encoding mechanism Real-parameter
Population size : 500
Generation numbers 20
Crossover probability - 06
Mutation probability 0.01

A (24310, 5591), 5r=0.004
& 5000
g B (53210, 4399), T~ 0016
(53R, T543), ST =0.975
g T (3.75210, 2477), ST= 1.000
| POLIEX104, §71), 8= 1 N2t Al o
. G(LS5gh0, 995, 5o 1741 ¢ .
0 2 4 6 g8 10 12 14 16
Unarvailability x10™

Fig. 5 Pareto-optimal sofutions for the Investigated case 1
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there are fow sensitivities for ali of objectives. Consequently, in
the high sensitivity parts, slight vadation of the parameters may
cause vast change in the objective function values with lacking of
robustness. If the single objective optimization is performed in
these high sensitivity zones, the optimization result may not ro-
bust enough. .

Therefore, in order (o obtain the robust solution, the multicb-
jective optimization should be performed together with the
decision-making based on robustness. Thus, the proposed Si is
required in the process of the proposed methodology.

The Sis in Fig. 5 show that the values of SIs are far apart from
the value of 1.0 in the high sensitivity zones. And Sl is equal 10
1.0 at peint D, which means this point has low sensitivity against
variable changes. Therefore, it 1s shown (hat the proposed sensi-
tivity index is appropriaie to find out the robust solution.

5.2 Application to Risk-Based Inservice Testing. The
Pareto-optimal solutions in Fig. 5 can be improved 1o be more
satisfactorily solutions in the viewpoint of risk by applying the
propased methodelogy. In the processes of the proposed method-
ology, risk-based inservice testing technique is used to group the
system compopents into optimal differeat test strategies based on
their sk significance. Aod SI and GA are used in finding the
multtobjective optimization solutions of the specified test interval
groups.

The results of risk ranking and revising risk ranking of the
process in the proposed methodology for investigated case 1 are
shown in Fig. 6.

The proposed methodotogy staned with defining the standby
system, which is the HPIS shown in Fig. 4. The HPIS has the
unavailability parameters and cost parameters of each component
as shown in Table 1. After that, the multiobjective optimization is
performed for the initial inservice testing groups of components.

Thereafter, the Pareto-pptimal solutions are obtaiced and the
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lowest sensitivity solution at SI=1 (described in Sec. 2.1) is se-
lected to create the risk matrix {described in Sec.-2.2).

The result of risk matrix is shown in Fig. §(@). The result of test
interval groups obtained from the risk matix in Fig. 6(a) is that
the components allocated for T' ate V, V5. P,, Py, P_and the
components allocated for 72 are V5, Vo, Vs, Vi, Vi,

Thereafter, the multiobjective optimization is performed again
for the latest obtained test interval groups and solution at SI=1 is
selected to created the risk matrix as the result shown in Fig. 6(b).
From this risk mawix. P,. P,. P,., ar¢ specified as the case I
(described in Sec. 2.3) that should be revised by exteading the test
interval. Therefore, test interval for £,, P, P, is revised from
T' w T% The result of test interval groups obtained from the
revised risk ranking step | in Fig. 6{b} is that the components
allocated for T! are ¥, V, and the components allocated for T°
are Vy, Vo, Vs, Vg, V5, P, P, P,

The process of multiobjective optimization and revising risk
ranking are repeated until the test interval groups are converged
like the last step in Fig. 6(d). Figure 6(d) shows that the risk
significance of all components falls into the medium sk signifi-
cance (zone 2). The result is then shown to be the most optimal
test interval groups based on risk.

The results for all cases are summarized in Table 4. As shown
in Table 4, the converged results (after applying the proposed
methodology) are completely same regardiess of the inital condi-
tions. This shows the appropriateness of the methodology. The
obtained results for the optiroal surveillance test interval groups
based on risk consideration are shown in Table 5.

In order to confirm the proposed methodology is capable of
finding the most optimal surveillance test interval groups based on
risk consideration, the Parcto-optimal sofutions of iaitial test in-
terval groups before performing the proposed mcthodology are
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Table 4 Test interval groups for each step in the processes

Test interval groups

Risk ranking
Case step T T T
| Initial risk All
matnx step components
Risk ranking ViV P VY Y
siep P, P, Vi V,
Revised risk V. vy v, VLV,
ranking sicp | L P L
Pb~ £
Reviscd risk V.V, Vi.Ve Vs, PPyl P,
ranking step 2 Vg, Vy
2 Initial sk V.V, P VLV, Y
matrix step .. P, Vs. ¥V
Risk ranking Visva v, PP P,
step VooV, ¥
7
Revised nisk V.V, Vy, V. V¥,
ranking step | Ve. V). P
Revised risk ViV, v V.Y PP, P.
ranking step 2 Ve. V4
3 Initial risk v, Vi P, Py vy VLV,
matnix step - Ve, Vy
Risk rarking V.V ¥y, V. PP,
siep Vi, V. Vg .
Revised risk V. ¥, Vy. Vi Vs, P, . P, P,
ranking step | Vs, Vs
4 Enidal risk V,, V.V, P PP
malrix step Ve, Vs, Vg
14
Risk raking V). Vg, Po. Vs, Vi, Vs
step P, P, T
Revised risk v, v, V.V, ¥
ranking siep 1 Ve, Vi, P,
Revised risk V.V, V. V.V, P, P,. P,
ranking slep 2 Ve, Vy

compared with the Pareto-optimal solutions of the optimal test
interval groups obtained by the proposed methodology. The re-
sults are shown in Fig. 7.

As shown in the Fig. 7, the objective function values at S[=1
from the Pareto-optimal solutions obtained from four initial cases,
which operated with the nonsuitable test interval groups, are not
sufficiently appropriate. Therefore, risk management is required

Table 5 The most efficient test interval groups based on risk
consideration

Tes! intervat group Components
T V. V;
T? Vi, Vi Vg, Ve Vs
T’ Pn ’ Pb' 'Pc
5000+ «Casr |
—~ »Caic 2
84000- aCme 3

g 2000 4232109, SI38) 0 Sotuon x
St=i
g 1600 -"-‘:’fnsmua
LEr T
| T

0 2 4 & § W 12 14 16
Unavailability »10°

Fig. 7 The comparison of the Pareto-optimal selutions before
and after performing the proposed methodology
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together with the optimizatien and the proposcd methodology is
required. After comparing all of the Pareto-optinial solutions in
Fig. 7. the Pareto-optimal solutions obiained after performing the
propased methodology provides 1the most sausfaciory resuli
Therefore it 15 confirmed from the resulis from Fig. 7 that the
propased methodology is capable of determimag the most optimal
surveillance test interval groups based on risk consideration that
provide the most satisfactory resuli of the Pareio-optimal solutions

From zli of the earlier discussions. it is confirmed that the pro-
posed methodology and index provide the effective scheme to
achieve the robust sclution with the most optimal surveillance test
interval groups based on risk consideration,

6 Conclusions

A new methodalogy for applying the multiobjective optimiza-
tlion to risk-based inservice testing and the decision-making for
the Pareto-optimal solution based on robustness were proposed.
The proposed methodology and index have beer applied to a
nuclear power plant’s HPIS and the resulis of this paper can be
summarized as follows.

(1) The obtained multiobjective optimal solutions were shown
that there arc some Pareto-optimal solutions that are not appropri-
ate because of their high sensitivities. The multiobjective optinti-
zation and the proposed S| were confirmed that they were appro-
priale in determining the robust solution.

{(2) The proposed methodology was confirmed that it is capable
of detecmining the optimal surveillance test intervals based on risk
management. This obtained surveillance test intervals provided
the most satisfactory optimal resuit based on risk consideration.

Conclusively, the proposed methodology is capable of deter-
mining the most optimal surveillance tesl interval based on risk
and robust consideration that provided the most satisfactory sur-
veillance test with robusiness.
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Nomenclature

C(T) = maiatenance costs of sysiem during peried
T

yearly cost contribution as a consequence
of performing corrective maintenance

¢pe = hourly costs of corrective maintenance

¢n = hourly costs for testing

c(Ty =

c{T) = maintenance costs of component during
period T
c{T) = yearly cost contribution as a consequence
of the number of tests being performed
over a year period
d = mean downlime due {0 corrective mainte-
nance
Risk
achievement
worth (RAW) = U(U,;=1)/U(base).
SI = sensitivity index
T = surveillance test interval
t = mean downtime due to testing
U(base) = present system unavailability level

U(U;= 1) = system uvnavailability with component { as-
sumed failed

U(T) = average system unavaiiability during period
u (T) = average unavailability due to corrective
maintenance during period T
up(T) = average unavailability at the basic event &

of the MCS j during period T
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u {T) = average unavailability due 1o random failure
dunng penod T

= average unavailability due to testing during
period T

p = per-demand failure probability

A = standby failure rate

HI(T)
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