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Abstract: A finite element method for analysis of pollutant dispersion in shallow water
is presented. The analysis is divided into two parts; (1} computation of the velocity flow
field and water surface elevation,and {2) computation of the pollutant concentration
field from the dispersion model. The method was combined with an adaptive meshing
technique to increase the solution accuracy,as well as to reduce the computational time
and computer memory. The finite elemeat formulation and the computer programs wete
validated by several examples that have krown solutions. In addition, the capability of
the combined method was demonstrated by analyzing pollutant dispersion in Chao
Phraya River near the gulf of Thailand.
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element method
Chinese Library Classification: 0242.21; 0368 Document code: A
2000 Mathematics Subject Classification: 76B15

Introduction

Nowadays, both the industrial and urban zones in Thailand have increased rapidly. The
discharge of thermally or chemically polluted water from power stations, industrial plants,
and households into rivers has become a threat o water resources. Authorities now require
proof that the environmental impact of a planned discharge will not exceed a certain level ,
and plant designers must keep the impact below the specified level. For this reason, both
authorities and plant designers have strong interest in reliable methods for predicting the
distribution of pollutants resulting from a given discharge into a river.

The behavior of pollutant dispersion in shallow water is governed by the conservation of
mass and momentum, and the pollutant transport equation. The analysis may be considered
as a two-dimensionat depth-averaged problem by assuming uniform velocities over the depth
with their values equal to the depth-averaged velocities. The above governing differential
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equations are coupled and nonlinear, anrd thus cannot be solved by analytical methods
especially for complex flow geometry. Several computational methods have been proposed in
the past. These include the finite difference method'' "> | the finite volume method'®”! and
the finite element methed'® ~*!. The finite element method is widely used currently because
it can handle complex geometries effectively!'.

The accuracy of solution by the finite element method mainly depends on element sizes.
High solution accuracy is obtained if small clustered elements are used in the model.
However, the computational time and computer memory are increased if a large number of
elements is used. Adaptive meshing technique'"™"! can be applied to increase the analysis
solution accuracy, and to reduce the computaticnal time and memory. Such technique places
small elements in the region of large change in the solution gradients to capture accurate
solution, while locating coarse elements in other regions where the solutions are nearly
uniform.

The paper starts by explaining the finite element formulation and the corresponding
solution procedure that leads to the development of computer programs. The basic idea
behind the adaptive meshing technique is then described. Finally, the derived finite element
equations and the developed computer programs are validated using simple examples that
have known solutions prior to applying to solve more complex problems.

1 Flow Model

1.1 Governing equations .
The goveming equations that explain the flow behavior of shallow water flow can be
derived by averaging the mass and momentum conscrvation equations in two-dimensional

over the depth. These equations are
a( Hu) +6(Hv) -0

a 3y . {1la)
(ug—:+ﬂ:—u)—(a; ‘3‘3;1) 5———‘”;2;"2, (1b)
( ot ) [ax ay 1) -& Czu___v;v , (Ic)

where H is the total water depth, v and v are the depth-averaged velocity components in x- and
y-directions, respectively; g is the gravitational acceleration; and C is the Chezy friction
coefficient. Tbe stress components o, , o, ,7,, and 7, are defined by

o, =2Pg£—€§, (2a)
d

o, = bg';’; - & (2b)

Ty = Tn = v(%rgf . (2¢)

and where £ is the elevation of the water surface over the mean surface level as shown in
Fig. 1, » is the eddy viscosity coefficient.
The differential equations, Eqgs.(la) -(lc), are to be solved with appropriate
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7k boundary conditions which are either speci-
4 Datum

fied depth-averaged velocity components
along edge S, ,
u=u(xy), v=v(zy), (3a,b)
or surface tractions along edge S, ,
T.=o,l+7,.m, (4a)
rL=rl+o,m, (4b)
Fig.1 The potationa of shallow water where [ and m are the direction cosines of the
problem unit vector normal to the boundary edge.
1.2 Finite element formulation
The basic unknowns for the shallow water flow problem corresponding to the coatinuity
Eq.(1a) and the two momentum equations ( lb) - (1c) are the depth-averaged velocity
components u,v and the water surface elevation {. The six-node triangular element suggested
in Ref. [15] is used in this study. The element assumes a quadratic interpolation for the
velocity component distributions and linear interpolation for the water surface elevation
distribution according fo their highest derivative orders in the differential Eqs.(ta) - (1c) as
w(z,9) = Nyuy, o(zy) = Nyo,, (29) =H{,,  (5a,b,0)
where 8 = 1,2,--+,6; p = 1,2,3; N, and H, are the element interpolation functions for the
velocity and water surface elevation ; respecitvely. '
To derive the finite element equations, the method of weighted residuals!™”! is applied to

the momentum Eqs.(1b) ~ (1c) and the continuity Eq.(1a),

LN,[(uu_: +ou ) ~(a,, +7,.) -1-5—1';:;" v’ ;]dA =0, (6a)
[+, = (s v,y ELEE D ad <0, (6b)
LHs[(Hu) .t (Hv) M4 =0, (6¢)

where A is the element area. Applying Gauss’s theorem!'®! to Eqs.(6a) — (6¢) for
generating the element boundary integrals, leads to the finite element equations which can be
written in tensor form as

Kwuﬁu7 + Kﬂﬂr’”ﬂur -H ., + Snﬂ.uﬂ + Squa +C¢r“§ = Qx, (7a)
K#upﬁr + Knﬂr’”ﬂvr - Hq‘y{“ + Scwxuﬁ + Sﬂfﬂﬂ + C(ﬂvﬂ = QJ » (?b)
va’ ({ﬁl + h#)uﬁ +Jnﬂn’(§# +ka)9ﬂ _Rw—{s = Rmhﬁ' (70)

where the coefficients in these equations are defined by
Koy = [NN,N, 04, Ky = [NNN, A4, H,. =g[N, Hda, (3ab,c)

Hyr = g[N. B, Sym =[N, N4 +v[N, N, 1, (8,¢)

S = W[ NN, 04, Sn = v[ NN, 4, . (8,g)
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' Jut + o .
S = ;,LNMNB_,M +2pL N N, dA, C, =&X% 2 N N da, (8hi)

C{¢ +h)
- LINT8S, Q= S{NTAS, Uy = [HNH, .44 (8j.k,1)
Oc""J;czf af_ps&r';&r;‘ r{pﬁq_;! PRkl
Jaw = [HNH, 04, R, = [HHYdS. (8m,n)

1.3 Computational procedure
The nonlinear finite element equations, as shown in Egs.(72) - (7c}, are solved by
Newton-Raphson iteration method. The method requires writing the unbalanced values in the
form, .
Fu = Kgpugu, + Kgyvgu, —H .0, + Seg= g + S vy + Cquy ~ Qo (9a)
Fo = Kgaugn, + K oov0, — Hopl, + Sgntry + S grvg + Cogvg — Qur s (9b)
_ Foo=Jae(, v b ug + D (L +'R )0 - RL(4, + R (9¢)
Then application of the method leads to a set of algebraic equations with incremental
unknowns of the form

(Laa')(sxﬁ) (qu')(sxﬁ} ( “Hap!)(ﬁ:d) (Avp)(m) (Far)(sxl)

(C.ﬁ-)(g,«;) (-ng)(sxs) (_an)(sx:) (A“g)(m) (Fa‘)(ﬁxl}
[

(Zg) sy (Zog) 3e9r (@) 6en) (AL) oy (F) oy
where the coefficients in the above equations are
G = Kgpti, + K o, + K g0, + S + Cpg, (11a)
G = Kppv, + K gv, + K _gu, + S50 +Cg,, : (1tb) -
Ly = Kpotr, +Soge, Loy = Kgou, +840, Zop =Je-({,+h,), (llc,de)
Znﬂ’ = Juﬂv’(':;x + h.u)’ Qm = "ryﬁn‘ P +‘Iﬂﬂn’vﬂ - Rm‘ (1if,g)

These coefficients which are in form of element matrices can be evaluated in closed-
form for triangular elements ready for computer programming. Details of the decivation of
these element matrices are omitted herein for brevity. In these Eqs.(1ta) - (1ig), u andv,
are the values of the velocity components at the i-th iteration. The iteration process is
terminated if the change in percentage of the overall errors of the nodal unknowns from the
previous iteration is less than the specified value.

1.4 Adaptive meshing technique

The idea behind the adaptive meshing technique presented herein is to construct a new
mesh based on the solution obtained from the previous mesh!™ !, The new mesh consists of
small elements in the regions with large change in solution gradients and larger elements in
the regions where the change in solution gradients is smali. To determine proper element
sizes at different locations in the flow ﬁqld, the solid-mechanics concept of determining the
principal stresses from a given state of stresses at a point is employed. Since small elemeats
are needed in the regions of complex flow behavior, thus the velocity distribution can be
used as an indicator in the determination of proper element sizes. :

To determine proper elemeat sizes, the second derivatives of the flow vclocaty mth
respect to the global coordinates = and y are first computed o
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Iv v
2
dx’ dxoy| (12)
gv o
xdy  ay'

where 1'1s the magnitude of two velocitly components ¢ and o,

V=V +o. (13)
The principal quantities in the pancipal directions X and ¥ where the cross derivatives vanish,
are then determined

A
aX . (14)
0 2V
3y
The magnitude of the large principal quantity is then selected
2 2
A =max( %Xl: . g?‘:) {15)

This value is used to compute proper element size, and is the maximum principal quantity
for the entire model

KA = const = AL A .., (16)
where A, is the specified minimum element size, and A, is the maximum principal quantity
for the entire model,

Based on the condition shown in Eq.(16) , proper element sizes are generated according
to the given minimum element size b _; . Specifying too small k_., may result in a mode! with
an excessive number of elements. On the other hand, specifying too large A, may result
inadequate solution accuracy or excessive analysis and remeshing cycles. These factors must
be considered prior to generating a new mesh.

2 Dispersion Model

2.1 Governing equation
The depth-averaged pollutant transport equation is decoupled from the associated
shallow water flow equations (1a) — (1¢) and is given by
I(HO)  (Hu®)  a(HeB (., 36y 3 e
e R R =i A G | I
where @ is the pollutant concentration, and D is the dispersion coefficient. This differential
equation is to be solved together with the boundary conditions that may consist of specifying

the concentration

6 = 6!(:‘!3’): (18)
or its gradient '

9 ) i

r g.(x,5), (19)

and the initial condition of _
6(z,7,0) = 8, (20}
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2.2 Finite element formulation
The distabution for the element concentration is first assumed as

O(x,y,t) = [N(x:)’)}(uni@(f-)I(sxu: (21)
where [N(xz,y) ], are the linear interpolation functions. Applying the method of
weighted residual and substituting Eq.(21) into Eq.( 17} lead to the finite element equations
in the form

[iwiimiaaier « [1wile c](Bld1|6!

oA EHE- g (S )
({5 }[ ] [N]{H}{W} gl{”}[%g])d"‘}‘ﬁ‘}

= L[W]qﬂds (22)
or
(116t + [[K,] + [K1i6) = {0}, (23)
where the coefficients in this equation are defined by
(€] = [ 1w (N4, (242)
(K] = [1Wilu o)[B]d4, (24b)

[Kc]'={LD[{ax}[ N1 - m{uf}[ ]{H}[ ])dA

L({ }[ [N]{H}{W}[ ]{H}[aN]] } (24¢)

10} = [Iwig.ds. ' (24d)
2.3 Time discretization

The explicit recurrence relations are applied for time integration of Eq.(23). The
application leads to

LLCT8L. = ({C1 + 1K + K1) 101, + (QL, (25)

which can be solved directly for all nodal values of the pollutant concentration @ in the flow
domain.

3 Examples

In this section, three examples are preseated. Theé first two examples are used to
validate the finite element formulation derived and the computer program developed for flow
field calculation. The validity of pollutant dispersion model is shown by the last exaruple.
3.1  Flow in rectangular canal with variation in bottom profile

The first example preseats the analysis of flow behavior in rectangular canal with
variation in bottom profile as illustrated in Fig. 2. Figure 3 shaows the finite element model
and the boundary conditions with the maximum inlet velocity of 1.5 m/s, eddy viscosity
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coefficient » = 166. 67 m*/s, Chezy coefficient C = 50 m'”/s, and gravitational acceleration
g = 10 m/s’. This finite element mesh consists of 357 nodes and 160 elements. Figure 4
shows close agreement between the computed solution and that of the penalty finite element
method in Ref, [9].
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Fig.2 Problem statement of flow in Fig. 3 Figite element model for flow in
rectangular canal with varia- rectangular canal with vanation in
tion in bottom profile bottom profile
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Fig.4 Comparison of velocities for Fig.5 Problem statement of flow in rectangular

flow in rectangular canal with canal with varfation in bottom friction

variation in bottomn profile

3.2 Flow in rectangular canal with variation in bottom friction

The geemetry and the flow properties of this example are ideatical to those of the first
example, except for the mean depth of 10 m everywhere and the Chezy coefficient of
10 m"?/s in the shaded zone of Fig. 5. Figure 6 shows the boundary conditions and the finite
clement mesh which consists of 187 nodes and 80 elements. The comparison of the computed
velocity distribution with the sotution presented in Ref. (9] using penalty finite element is
shown in Fig. 7. .

u=0 'P:O ':
' -_ttosml ! .
= : £=0 not {o scale

wizg /
== .
w=0,r=0 * Penalty FEM™
Fig. 6  Finite element model for flow in - Fig.7 Comparison of velocities for
rectzngular canal with variation in flow in rectangular canal with

bottom friction vatiationt in bottom friction
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3.3 Propagation of pollutant through open rectangular channel

To verify the finite element formulation and the computer program developed for
pollutant dispersion analysis, the concentration evolution of pollutant along an open channel
in Fig. 8 is studied. The finite element mesh and the initial and boundary conditions are
shown in Fig. 9. The mesh contains 50 nodes and 72 elements and taking a time interval A¢
= 0.1s. The transient solution for times ¢ = 6,12,18 24 30 and 36 s is presented for
uniform velocity / = 0.05 m/s over the domain and dispersion coefficient D = 0.01 m’/s.
Figure 10 shows the transient solution of pollutant concentration along the x-axis. The
computed result is in very close agreement with the exact solution given in Ref. {12].

Y Y4 d@an =14
ISR IS ENNSNYY NI EN P TS TFIETEE PSRBT ZTRTEETFEEE S
Pr_Opaga_tion of pollutant / A
with U/ =0.05 s E & =1/ | Initial condition @ =0 at all points
,,,,,,,, I T I I T I I T ITT JL—)' brrr ey FF i i o i i e
L, im x e *
Fan=0
Fig.8 Problem statement of pollutant Fig.9 Finite element mode! for pollutant
propagation through open rec- propagation through open rectang-

tangular channel ular channel

Flow in Chao Phraya River

101 0
I6s
s
s
& 05 185 ’
Computed 0 1km
—
Exactl12] 125
0.0 ) . 26 s
00 o5 1.0 Guif of Thailand
Fig.10 Comparison of concentration for Fig.11 Computational domain of
pollutant propagation through Chao Phraya dver
open rectangular channel

4 Application to Chao Phraya River

4.1 Flow in river

The geometry of the Chao Phraya River is shown in Fig. 11. Figure 12 shows the finite
element modet and the boundary conditions with the maximum inlet velocity of 1.5 m/s,
eddy viscosity coefficient v = 15m’/s, Chezy coefficient C = 50m"*/s, and the
gravitational acceleration g = 9.81 m/s’. This initial finite element mesh consists of 4 111
nodes and 1 948 elements.
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The numerical solution obtained tfrom the irutial mesh is then used (o construct the
second adaptive mesh as described in Section 1.4, The second adaptive mesh consisting of
4 153 nodes and 1 954 elements is shown in Fig. 13. The figure shows smaller elements are
generated in the regions where large change in velocity gradients occurs. Al the same lime,
larger elements are generated in other regions where the velocity is nearly uniform. With this
second adaptive mesh, the entire procedure is repeated again to gencrate the third adaplive
mesh with 3411 nodes and 1 594 elements as shown in Fig. 4. The corresponding flow
solution and its detail are shown in Figs. 15 and 16, respectively.

Inlct parabolic veloouy profite

Fig.12 Initial finite element mesh and boundary  Fig. 13  Second finite element mesh for
conditions for flow in Chao Phraya river flow in Chao Phraya river

%
FATAT A ATIR Ta,
SO
FROEK
1 XKD 'a*‘ '8“4 e ,g.v 3
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Fig.14 Third finite element mesh for flow Fig.15 Predicted velocity distribution for
in Chao Phraya river flow-in Chao Phraya river

4.2 Dispersion in river

Contamination due to poliutant discharged from an industrial plant is studied. Fig. 17
shows the boundary conditions with the initial conditon of no polluant concentration
throughout the computational domain. The dispersion coefficient is given as 50 m®/s and the
tiree interval has the value At = 100 5. The final adaptive mesh of the flow model as shown
in Fig. 14 is used as the finite element mesh for the dispersion analysis. Figure 18 shows the
computed concentration coatours in the river at three hours after the plant disposal. Detail of
distribution of pollutant-concentration near the plant is also shown in Fig. 19.
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Industriat plant
Il
. /dn_ -0 0 !Lm

%zo 1,-29-0
0
ie=0
Fig. 16  Detail of predicted velocity Fig. L7 Computational domain and bounary
distribution for flow in Chao conditions for pollutant dispersion in
Phraya river Chac Phraya river

“

Fig.18 Predicted distribution of pollutant con- Fig.19 Detail of predicted distribution
centration for pollutant dispersion in of pollutant concentration for
Chao Phraya river at three hours after pollutant dispersion in Chao
the plant disposal Phraya river at three hours after

the plant disposal

5 Concluding Remarks

This paper presents the finite element method for analysis of pollutant dispersion in
shallow water. The finite element formulation and its computational procedure is first
described. The corresponding finite element equations are derived and the corresponding
computer programs that can be executed on a standard personal computer have been
developed. The finite element method is combined with the adaptive meshing technique in
order to improve the flow solution accu_racy.' The adaptive meshing technique generates an
entirely new mesh based on the solution obtained from a previous mesh. The new mesh
consists of clustered elements in regions with large changes in the velocity gradients to
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provide higher solution accuracy. Elsewhere, coarse elements are generated to reduce the
computational time and computer memory. The results in this paper have demonsirated the
capability of the combined method for the prediction of pollutant dispersion behaviors.
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Interaction behaviors of high-speed compressible viscous flow and thermal-structural re-

sponse of structure are presented. The compressible viscous laminar flow behavior based on the
Navier-5tokes equations is predicted by using an adaptive cell-centered finite-element method.
The energy equation and the quasi-static structural equations for aerodynamically heated
structures are solved by applying the Galerkin finite-element method. The finite-element
formulation and computational procedure are described. The performance of the combined

method is evaluated by solving Mach 4 flow past a flat plate and comparing with the sclution
from the finite different method. To demonstrate their interaction, the high-speed flow,
structural heat transfer, and deformation phenemena are studied by applying the present method

to Mach 10 flow past a flat plate.

Key Words : Flow-Structure Interaction, Acrodynamic Heating Rate, Adaptive Mesh

Nomenclature

Ae > element area

{A*] : Jacobian matrix

{Ef} : fluid flux vector in x direction
{Er} thermal flux vector in x direction
{Fr} : fluid flux vector in y direction
{Fr} : thermal flux vector in y direction
c - specific heat of structure

cv . specific heat at constant volume of fluid
{G/} :average inviscid flux vector
{Gv} : average viscous flux vector

{ &5, Bz} element sizes

# . unit normal vector

p . pressure

X,y . coordinate directions

X. Y ! principle directions

{2z, v} . x and ¥ velocity components
{Ur} : fluid conservation variable vector
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{Ur}  : thermal couservation variable vector
{Us} : nodal displacement vector

A . element boundary

2 . elernent domain

L) . length of element sides

£ . total energy -

A, A& . absolute second darivatives

Fe * density

1. Introduction

Fluid-Thermal-Structural analysis methods
have an important role in the design of high-
speed flight vehicles, such as hypersonic aic-
breathing vehicles (Glass et al.,, 2002), for pre-
dicting vehicles’ acrothermostructural perform-
ance. Significant coupling occurs between high-
speed flow phenomena, aerodynamic heating
rates on structural surfaces, structural temperature
and their gradients, as well as structural defor-
mations and stresses, creating multidisciplinary
interaction phenomena. High-speed flow phe-
nomena normally include complex flow charac-
teristics, such as shock’ waves, shock-shock inter-
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actions, thin boundary layers and shock-boun-
dary layer interactions (Anderson. 1982 ; Ander-
sor, 1991). Such phenomena have been studied
by a number of rescarchers using both the nu-
merical simulations and experimental techniques.
These include, as few cxamples, the study of
shock motien by self-induced oscillation of an
expanded jet impinging on a cylinder {(Kim et al,
2002}, the experimental study for the flow cha-
racteristic of the supersonic dual coaxial free jet
(Baek et al, 2003}, and the numerical simulation
of shock wave propagation using the lattice
Boltzmann method (Kang et al, 2003).-Some of
these characteristics, especiaily near the structural
surface, generate aerothermzl load to vehicle
structure, and normally affect the structural tem-
peratuce, deformation and stress. Under intense
aerodynamic heating rate, structural temperature
begins to rise within few seconds and significant
deformation may occur. In addition, the deformed
structure may significantly alter the high-speed
flow behavior and thus the aerothermal loads.
These coupled effects indicate that the analysis of
high-speed flow-structure interaction is an im-
portant consideration to high-speed wehicle de-
sign. Such coupled effects have been studied by a
number of researchers recently. Compuiationat
fluid and structural dynamics commercial pro-
grams were combined together for predicting the
flow and structure behaviors (Baum, 2002;
Lohaer et al., 2003}. A paraliel multilevel method
for adaptively refined grids was introduced
(Aftosmis et al., 2000) to reduce the overall com-
putational effort. Embedded boundaries between
the flow and the structure were proposed to
effectively transfer information between the two
different disciplines. The approach was later
extended for unstructured grids to minimize the
computational time and memory required for the
flow analysis. The examples presented in these
references, however, do not include the thermal
response of the structure due to the intense
aerodynamic heating rate from the high-speed
flow.

In the present paper, an integrated flow-ther-
mal-structural analysis approach for predicting
each disciplinary behavior and their interaction is
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presented. The study of the interactions is a
preliminary, but important, step toward the ob-
jectives of analyzing more realistic structures,
such as thermal protection systems and scramjet
engine structures. For high-speed compressible
flows, the cell-centered finite-element method
{Gnoflo, 1986 ; Dechaumphai and Limtrakarn,
1999) is combined with an adaptive meshing
technique to solve the MNavier-Stokes equations.
Based on the solution obrained from the previous
mesh that could be either the initial or adaptive
mesh constructed earlier, the adaptive meshing
technique generates an entirely new mesh that
consists of small elements in the regions with
large change in solution gradients and large
elements in the other regions where the change in
the solution gradients is small. The combined
technique is used to improve the efficiency of the
finite~element flow solution and the accuracy of
the aerothermal loads, as well as to reduce the
computational time and the computer memory.
The Galerkin finite-element method is applied to
solve the structural energy equation for tempera-
ture distribution and the structural equations for
deformation and stress. The paper starts by
explaining the theoretical formulation of high-
speed compressible flow, structural heat transfer,
and structural response. Then the solution proce-
dure for flow-thermal-structural interaction pro-
blem is presented. The basic idea behind the
adaptive meshing technique is then described. The
efficiency of the combined procedure, the cell-
centered finite—element method and the adaptive
meshing technique, is evaluated by solving the
Mach 4 flow past a flat plate and comparing
results with those obtained from the finite-differ-
ence method. The high-speed flow, structural heat
transfer, and deformation behaviors ace then stu-
died by applying the present method to Mach {0
flow past a flat plate to demonstrate their inter-
disciplinary coupling.

2. Theoretical Formulation and
Solution Procedure

2.1 Governing equafions :
The equations for the high-speed compressible
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flow, the structural heat transfer, and the strue-
tueral analysis in two dimensions are described
below.

High-speed compressible viscous flow

The equations for high-speed compressible
viscous laminar flow are represented by the con-
servation of mass, momentum, and energy. These
equations are written in the conservation form
(Hirsch, 1988) as

{UF}N{EFH SUFb=0 ()

where the subscript F denotes the fluid analysis.
The vector { {r } contains the fluid conservation
variables defined by

|
pu
{Ur}= (2)
pv J
PE
where p is the fluid density, « and @ are the
velocity components in the x and y directions,
respectively, and £ is the total energy. The vectors
{ £) and { F} consist of the flux components in

the x and y directions, respectively (Dechaum-
phai and Limtrakara, 1999),

Structural heat transfer

The thermal response of the structure is des-
cribed by the energy equation in the conservation
form as

3
ot

where the subscript 7 denotes the structural heat
transfer analysis. The vector {Jr contains the
thermal conservation variable defined by

Ur=pcT (4)

where ¢ is the specific heat of structure. The heat
flux components Er and Fr are

r__kar

sUrt3 Er+ Fr-—Gr (3}

T
and Fr= kTy' (5)

and Gr is the heat source.

Structural response -
The structural response is governed by the
quasi-static equilibrium equations given by

a {53}+ LR} =0 (6

where the subscript S denotes the structural
anatysis. The flux vector components { Es} and
{Fs} are

g, T
{Es}‘:{ X} and {Fs}‘{ n} (7
Txw a0y
where the siress components dx. ., and Lo 2re
related to the strain and the temperature by the
generalized Hook's law (Beer et ak., 2002).

2.2 Finite-element formulation :

The cell-centered finite~clement method is ap-
plied to the Navier-Stokes equations to derive the
finite~element equations. The Galerkin finite ele-
ment approach is applied to the structural heat
transfer equation and the equilibrium equations
to derive the corresponding firite-element equa-
tions. The derivation procedures are briefly
described below.

Finite—element flow equations

The method of weighted residuals (Zieakiewicz
and Taylor, 2000} is applied to Eq. {1) over the
element domain, £2, by using a unit interpolation
function as

JE U= [ L EYaa-[Z(Frlag ®

The Gauss divergence theorem is then applied
to the flux integral terms of Eq. {8) to yield,

[Rtedaorf o[ ((6i+i6 )2

where the flux vectors { Gr )} and { Gv} are the
inviscid and viscous flux vectors of { E;+ Fr}
and { Ev+Fy }, respectively, and # is the unit
vector normal to the element boundary, [
Equation (9) is evaluated by summing the not-
raal fluxes from all sides, [, of the element. The
fluxes normal to the element sides are then
approximated by the numerical inviscid and
viscous fluxes, { G, } and { Gv }. By applying an
explicit time marching atgorithm (Hirsch, 1988),
£q. (9) becomes

% ML F=— ?83 G!}"‘(GY}) (10}
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.“,'
The side length, &5, between the left element
{© and right element &,

Fig. 1

where {FH

ables at the time steps n+1 and n, respectively;
A, is the element area; Js is the length of the
element side being considered as shown in Fig. |
and the summation is performed for all sides. Af
is the allowable time step following the CFL and
viscous stability requirement {Dechaumphai and
Limtrakarn, 1999).

The basic concept behind the cell-centered fi-
nite-eiement method used in this paper is to
determine the flux across element interfaces by
using the Roe’s averaging procedure. The average
inviseid flux, G, is given by

and [J} are the conservation vari-

Gr=FIGHGI+ A" I(UE—UHT (1))

where the superscripts L and R denote the left
and right elements, respectively. The last term in
Eq. (11) may be viewed as an artificial diffusion
needed for the solution stability. This diffusion is
tepresented by the product of the Jacobian matrix
{A*] and the difference between the left and right
element conservation variables {J& and UJf (Lim-
trakarn and Dechaumaphai, 2003).

The average viscous flux, Gy, in Eq. (10} nor-
mal to the element edge and its components
consist of the stress and heat flux components that
are in the form of the first-order derivative of 2,
v, and T (Hirsch, 1988). These derivative terms
are computed from the nodal variable gradients.

As an example, the teroperature gradient at node -

K in Fig. 2, 3Tx/dx, can be determined as
follows. First, the temperature gradient of an ele-

Fig. 2 Node K is surrounded by a number of
elements

ment can be expressed as,

S-S 1)

where | N jis the element interpolation function
matrix. The method of weighted residuals is ap-
plied to Eq. (12) to yield,

fimeLao=[inyni{ZElae a3

Integration by parts is then applied to the integral
term on the left-hand-side of Eq. (i3).

1 [ SE} = [ atintar-[ {2} 1 aona)
where T is the temperature of the boundary, and

(M]= [{ NN ]de (153)

For the explicit algorithm, the consistent matrix,
[M], in Eq. (15a) is written in the form of the
lumped mass matrix, [ M Jumpea, given by,

| 0 0
[M].m%i{o i o}
0 0 1

{15b)

Then, Eq. (14) becomes,

iT| [, (oM
(Mmoo 3L = # Tl ar - ZET do (16)
Also, the average temperature gradient at node K

is computed from the coatribution of the sur-
rounding elements as,
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aT

oNg
; (Mlumped} K 'é;

K'——? nﬁTsNxdF—ga o Td4207)

The other derivative terms needed for computing
the stress and heat flux components can be de-
rived using the same procedure above.

By substituting £q. {(11) into Eq. (10}, then
Eq. (10) becomes

et gpn—Upy=—L58l(GH+{CF)

+HA\(uEy (Ut 8)
'?&{C}}

Finite-element structural heat transfer equations

The method of weighted residuals is applied to
Eq. (3), over the element domain, £, by assuming
a linear distribution of the conservation variable,
Ur, and the flux components £+ and Fr in the
form,

Uz, y, ) =|N{x, )lf Uc(2}} (19a)
Er(x, v, ) =[N(x, W Er(8)}  (19b)
Frix, vy, =|IN{x. ){ Fr (&)} {19¢}

where | N{(x, y)] is the linear interpolation func-
tion matrix. The finite-element equations can
then be derived in the form:

IMI{AU ' ={ R Yi+{R: (20)

where [M] is the mass matrix, and { AUy }J** =
{ U} ={ Ur}* at time n+ 1. The { Rr }7 and
{ Rr ) vectors are associaled with the therma
1 fluxes within cach element and across the ele-
ment boundary, respectively, and are given by,

(ReY=[{ & hiNlal 1)

(21
+ [ S wiaetFe) )

(Re¥=— [ (NHEInAFFn)dl ()

Finite-element structural equations

The Galerkin finite~clement method is applied
to Eq. {6) in the same fashion as in the structural
heat transfer analysis. The finite-element equa-
tions can also be derived in the form:

(KX Us}={ Rs}+{ R} (23)

where [K] is the stiffness matrix, { {5} is the
nodal displacement vector, { Rs} is the external
load vector, and { Rz } is the thermal load vector.

These matrices are defined by

(&)= [[B)[C)[B}d@ (24)
{ Rs}= [ [NV(Fs}ar (25)

(Re)=[[BY(CHaNT~Tad2 ()

where [B] is the strain-displacement interpola-
tion matrix, [C] is the elastic modulus matrix,
{ Fs} is the surface traction matrix, { &} is the
thermal expansion coefficient vector, and Tp is
the reference temperature for zero stress state.

23 Solution sequence

For high-specd compressible flows, the flow
behavior normally approaches a steady state
much faster than that of the thermal and struc-
tural respbn,se of the structure. Typically, the
heating rate approaches a steady state ia about
few milliseconds. At this time, the structural con-
figuration remains nearly uadeformed at a tem-
perature only slightly higher than the initial tem-
perature. After few seconds, the structural tem-
perature begins to rise appreciably and significant
deformation may occur. At this time, thermal and
deformation coupling effect can alter the flow
field. The coupling cffect continues to alter the
flow and structure behavior until the structure
reaches the state of the thermal equilibrium.

Based on the fact that the high-speed flow
behavior normally ceaches the steady-state con-
dition in a much shorter time than the structural
response, the analysis procedure of the flow-
struciure interaction preseated in this paper
consists of the solution sequence as described by
Fig. 3. This solution sequence can reduce the total
computational time by avoiding detailed transient
flow analysis that requires significant computa-
tional effort (Limirakarn, 2003}. At the initial
time, =14, the adaptive cell-centered finite-ele-
ment method is first used to predict the high-
speed flow behavior as denoted by FA (Flow
Analysis}. The flow analysis generates aerother-
mal loads that include heating rate and pressure
along the structural surface. After 2 short interval
of time at {=1, the predicted acrodynamic heat-
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Fig. 3 Solution scquence of flow-structure intecac-
tion for high-spced flow over a Rat plate

ing rate is appiied to the structural configuration
and the structural heat transfer analysis as de-
noted by TA {Thermal Analysis} is used to solve
the structural temperature. Both the structural
ternperature and the fluid pressure are then used
to predict the structural response for deformation
and stresses as denoted by SA (Structural Ana-
lysis). The same sequence is repeaied to predict
the new flow field behavior, the aerothermal
loads, the structural temperature, as well as the
new structural deformation and stresses.

3. Adaptive Meshing Technique

Adaptive mesh generation techniques may be
classified into two major categories: 1) refine-
ment/derefinement, and 2) remeshing. The first
category, the adaptive refinement/ derefinement
technique, can be further classified into three
subcategories : a) the & method, b) the # method,
and ¢} the » method. In the & method, the ele-
ments in the initial mesh are refined into smaller
elements or derefined into larger elemeats {Rama-
krishnan et al., 1990). The p method maintains
the geometry of the elements of the initial mesh
but increases (or decreases} the order of the poly-
nomials used for the element interpolation func-
tions {Dechaumphai, 1982). The 7 method keeps
the number of clements and their connectivities
the same but relocates the nodes (Lohner et al,
1984) .

The remeshing technique, the second adaptive
mesh-generation category, generates an entirely

new mesh based on the solution obtained from an
cartier mesh {Dechaumphai, 993 ; Peraire et al.,
1987). The technique is combined with the cell-
centered finite-element methed in this papet to
obtain solutions of high-speed compressible flow
problems. The idea is 0 construct a new mesh
that consists of small elements in the regions with
large change in sclution gradients and large
elements in the other regions where the changes in
the solution gradients ace smail. As an example,
small elements are needed in the regions of shock
waves to capture shock resolution, whereas larger
elements can be used in the free-stream region
because the flow behavioc is uniform. To deter-
mine proper element sizes at different locations in
the flow field, the solid-mechanics concept of
determining the principal stresses from a given
state of stresses at a point is employed. Since the
fluid density changes abruptly across the shock
waves, thus the density distribution can be used as
an indicator for the determination of proper
element sizes.

Because small elements must be placed in the
region of the shock wave where large changes in
the density gradient occur, the second derivatives
of the density at a point with respect to global x
and y coordinates are needed to compute,

P _Fo

ax? dxoy

Fp_Fe

3y Iy
Then the principal quantities in the priacipal X
and Y directions, where the cross-derivatives va-
nish, are determined,

(27

Fo Fe
A =| YT d -——1 - 28
=loxEl e AT @8
These principal quantities are then used to com-
pute proper element sizes, &, and hs, in the two
principal directions using the following condition
(Oden and Carey, 1981},

KA =l =constant= Ao Amax (29}

where fun 18 the specified minimum element size,
and Amex is the maximum principal quantity for
the entire model.

Based on the condition in Eq. (29}, the element
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sizes are generated according to the given mini-
mum clement size Agn. Specifying too small fmn
may result in a model with an excessive number of
elements. Oa the other hand, specifying too large
hmin may resull in an inadequate solution accura-
cy or excessive analysis and meshing cycles. These
factors must be considered prior to generating a
aew mesh. Note that, because the technique gener-
ates an entirely new mesh with differeat nodat
focations [rom the old mesh, interpelation of the
solution from the old o the new mesh should be
used to increase the analysis solution conver-
gence.

4. Applications

A Mach number 4 flow past a flat plate is pre-
sented as the first example to validate the adaptive
cell-centered finite-element method for high-
speed flow analysis and to compare the results
with those obtained from the finite~difference
method. Then the performance of the propos-
ed high-speed flow-structure interaction proce-
dure is evaluated by Mach number 10 flow past a
flac plate.

4.1 Mach 4 flow past a flat plate: )

The problem statement of a mach 4 flow past a
flat plate as shown in Fig. 4 was taken from a
reference (Anderson, 1995) that presents the ana-
lysis solution by using the finite-difference meth-
od. The flow enters through the left boundary of
the computational fluid domain. The shock wave

Computational domain

M=4
: Shock wave
Heat flux
¥
X
o M "W W " W . W W W W W W W W W
— 2 | L !

Fig. 4 Mach 4 flow past a flat piate

is created from the leading edge as highlighted in
the Mlgure. The inlet flow conditions conasist of
specilying o=1.2252kg/m® w=1361m/s, v=0,
&=1.133.080)/kg. Re=932 with the wall tem-
perature of 288 16K. The combined method of the
cell-centered finite-element analysis and the
adaptive meshing technique is applied to solve the
probiem. Figure 5(a) shows the final adaptive
mesh that coosists of small elements clustered
along the shock line from the shacp leading edge.
The accuracy of the shock resolution and the
shock angle strongly depends on the {inite ele-
ment mesh near the sharp leading edge. To cap-
ture the acrodynamic heating rate accucately,
graded quadrilateral elements normal to the flat
plate are generated to capture the thin boundary
layer along the flat plate and in the leading edge
region as shown in the figure. The total of 10,353
trianguiar elements are generated in the inviscid
tegion and 4,011 quadrilateral elements in the
boundary layer, Figure 5{b) shows the predicted
density contours with high value at the [eading
edge. .

As the flow encounters the leading edge, the
fluid particles stop at the leading edge stagnation
point. The oncoming freestream thus sees the
leading edge as a blunt body. A viscous boundary
layer region is then created between the plate and
the induced shock wave. The lost kinetic energy
from viscous dissipation then transforms into the
internal energy, causing aerodynamic heat trans-
fer rate and changing flow field temperature in the
boundary layer region.

The predicted u-velocity distribution is nor-
malized with the freestream velocity, %, and

{a) Final adaptive mesh (b} Density distribution {kg/m®)

Fig. 5 Final adaptive mesh and corresponding den-
sity contours for mach 4 viscous flow past a
flat plate
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Fig. 6 Comparative normalized u-velocity distribu-
tions along normalized ¥ distance at the flow
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Fig. 7 Comparative normalized temperature distri-

butions afong normalized y distance at the
flow exit (x=[,) for mach 4 viscous flow
past a flat plate

compared with the finite difference solution along
the y-direction at the flow exit as shown in Fig.
6. The figure shows good agreement between the
finite-element and the finite-difference solutions.
At the flow exit, the u-velocity decreases slightly
actoss the plate shock wave, and then reduces
abruptly within the thin boundary layer to zero at
the plate surface.

The predicted temperature distribution is nor-
malized and compared with the finite difference
solution along the y-direction at the same flow
exit location as shown in Fig. 7. The figure shows
the flow temperature increases slightly across the
plate shock wave. The flow temperature then in-
creases again before decreasing rapidly to the

010 -

'3y 003

000 | 1
o 25 10

=L

Fig. 8 Predicted heating rate distribution along the
plate for mach 4 viscaus flow past a (lar plate

plate temperature within the thin boundary layer.
Such steep flow temperature gradient next to the
plate thus introduces aerodynamic heating rate on
the plate.

The comparison between the two solutions
shows good agreement with high temperate gra-
dient in the thin thermal layer near the plate. The
predicted flow temperature for the elements near
the plate is also used to compute the temperature
gradient and then the heating rate that gccurs on
the pfate. Figure 8 shows the computed heating
rate distribution along the plate, showing high
value at the leading edge. Small quadrilateral
elements are needed in the thin Boundary layer to
provide accurate heating rate solution. The ex-
ample highlights the benefit of the adaptive
meshing technigue that can generate proper ¢le-
ment sizes automatically to provide high solution
accuracy with reduced total number of unknowns
and thus the computational time.

42 Mach 10 flow past a flat plate:

The performance of the high-speed flow-struc-
ture interaction analysis procedure is evaluated by
the example of Mach 10 flow past a flat plate as
illustrated in Fig. 9. The flow enters through the
left boundary of the computational fluid domain
and creates a shock wave from the leading edge as
highlighted in the figure. The inlet flow con-
ditions consist of specifying p=4.303E-05kg/m’,
u=1,418.7m/s, v=0, £=1,043,000]/kg, Re=5,
580 with the wall temperature of 288.16K. The
flow-thermal~structural interaction of the flat
plate was analyzed using the solution sequence
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Fig. 9 Mach 10 flow past a flat plate

shown in Fig. 3. At the initial time, =0 second,
the flow field behavior is predicted by using the
cell-centered fnite-element method. Based on
this flow solution, the adaptive meshing technique
as described in the preceding section is then
applied to obtain the adaptive mesh as shown in
Fig. 10(a). Small elements are automatically ge-
nerated along the shock line to improve shock
resolution and larger elements in other regions. A
total of 13,727 triangular elements are generated
in the inviscid regior and 7,560 quadrilateral
eiements inside the boundary layer. Ten graded
layers of quadrilateral elements are used inside
the boundary layer to capture steep temperature
gradients for the accurate aerodynamic heating
rate prediction. The predicted flow solution is
shown by the density contours in Fig. 10(b).
With the predicted aerodynamic heating rate from
the flow analysis at time #=2 seconds, the struc-
tural heat transfer analysis is used to predict the
temperature distribution on plate surface between
0.I<x<02m. At the same time, the quasi-static
structural analysis is performed to compute the
corresponding structural deformation. The com-
putational fluid domain is then updated by the
deformed plate and the cell-centered finite—ele-
ment method s applied to ptedict the new flow
* field behavior. The adaptive meshing technique is

{b) Density distribution(x107*kg/m?
Fig. 10 Adaptive mesh and corresponding density
contours for Mach 10 flow past a flat plate at
{=0sec

again applied to generate the new adaptive mesh
as shown in Fig. 11{a). The shock pattern is
altered by the convex deformation of the plate
surface while small elements are automatically
clustered to capture the new shock pattern. The
corresponding fluid density contours are shown
in Fig. 11(b). The fluid density increases through
the shock wave and decreases as the fluid flows
across the convex center of the plate along the left
support toward the right support. The emtirc
analysis procedure is repeated to compute the
plate deformation shape and the new flow field
behavior at titne =4 seconds as shown in Fig.
12. The figure shows the development of the
shock emanating from the left support on the
windward side of the deformed plate. As the plate
deforms into the flow field, the boundary layer
thickuess is altered over the plate, becoming
thinner after the flow encouaters the left suppont
and then it is thicker as the flow approaches the
right support of the plate. Figures 13 and 14
compare the predicted acrodynamic heating rates
and the pressures, respectively, for 0<x<<0.3m
The effect of both the fluid/plate heat transfer and
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{b)} Density distribution (x10~*kg/m?)
Adaptive mesh and corvesponding density
contours for Mach 10 flow past a {lat plate at
{t=2sec

Fig. 11

the plate deformation causes the heating rate and
the pressure 10 increase foc 0.1 < x <{0.2 as shown
in the {igures. The change in heating rates at x=
0.1 and 0.2m. is associated with the boundary
thinning and thickening, respectively. These
figures. highlight the interdisciplinary cougling
between the flow field and the deformed plate.
The heated plate can deform into the flow field,
and at the same time, the altered flow ficld can
change the aerothermal [oads of the heating rate
and the pressure on the plate.

5. Concluding Remarks

The multidisciplinary interaction behaviors of
high-speed compressible flow, structural heat
transfer, and structural response were presented
using the adaptive finite-element method. The
finitc-element method based on the cell-centered
algorithm was used to predict the high-speed
compiessible flow behavior. The method was
combined with the adaptive meshing technique 1o
improve the flow accuracy, The technique gener-
- ales an entirely new mesh based on*the solution

Wiraj Limtrakarn and Pramote Dechaumphai

{b} Density distribution {x10~*kg/m?
Fig. 12 Agaptive mesh and corresponding density
contours for Mach 10 flow past a flat plare at
t=4dsec

obtained from the previcous mesh. The new mesh
consists of the clustered elements in the region
with large change in the sotution gradients to
provide the high accucacy, and large elements are
generated in the other regions to minimize the
computational time and computer memory. The
Galerkin finite-element method was used to
predict the structural heat transfer and siructural
response behaviors. The finite-efement formula-
tion, the computational procedure and the basic
idea behind the adaptive meshing technigue were
described. The Mach 4 flow past a {lat plate was
the first example used to validate the high-speed
flow solution by comparing results with those
obtained from the finite-difference method. Both
solutions were found w be in good agreement.
The Mach 10 flow past a flat plate was then used
to study the flow-structure intefaction and to
evaluate the performance of the proposed analysis
procedure. The later example highlights the
interaction behavior between the high-speed {low
and the thermal-structural response of the struc-
ture. These examples demonstrate the capability
of the proposed high-speed compressible viscous
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Fig. 14 Pressure distributions for Mach 10 flow past
a flat plate

flow and the thermal-structural analysis methods
for simulating fluid-structure interaction beha-
vior.
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Abstract This paper presenis a combined finite element
methed for solving conjugate heat transfer.problems where
heat conduction in a solid is coupled with heat convection
in viscous flurd flow. The streamline upwind finite element
method is used for the analysis of thermal viscous flow in the
fluid regton, whereas the analysis of heat conduction in solid
region is performed by the Galerkin method. The method uses
the three-node triangular element with equal-order interpola-
tion functions for all the variables of the velocity components,
the pressure and the temperature. The main advantage of the
proposed method is to consistently couple heat transfer along
the ftuid-solid interface. Three test cases, i.e. conjugate Con-
ette flow problem in paralle] plate channel, counter-flow in
heat exchanger, and conjugate natural convection in a square
cavity with a conducting wall, are selected to evaluate the
efficiency of the present method.

Keywords Streamline upwind - Conjugate heat transfer -
Finite element method

1 Introduction

Conjugate heat transfer problems are encountered in many
practical applications, where heat conduction inasolid region
is closely coupled with heat convection in an adjacent fluid.
There are many engineering problems where conjugate heat
transfer should be considered such as heat transfer enhance-
ment by finned surfaces, design of thermal insulation, cooling
of nuclear reactor, design of solar collector, etc. Most of the
studies in this field, however, employ the finite difference and
the finite volume methods as their numerical tools, Vynnycky
et al. [1} studied the conjugate problem of forced convection
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heat transfer from a flat plate using the streamfunction-vortic-
ity formulation based on the finite difference method. Chen
and Han [2] derived the solution of a conjugate heat trans-
fer problem using a finite difference SIMPLE-like algorithm.
Schifer and Teschauer [3] used the finite volume method for
analysis of both the fuid flow behavior and the solid heat
transfer with thermal effect. Horvat and Cation (4] also used
the finite volume method to simulate the conjugate heat trans-
fer in an electronic device heat sink. The results from these
problems show that both the finite difference and the finite
volume methods can perform very well for many problems of
interest, but some assumptions on heat transfer coefficients
have to be made in order to compute the temperatures along
the fluid-solid interface. Furtheomore, determination of the
unknown (emperatures and the heat fluxes at the fluid-solid
interface is normally performed in an iterative way, usually
via adoption of an artifictal heat transfer coefficient.

Al present, very few procedures for solving conjugate
heat transfer problems by the finite element method have been
proposed in the literature. Misra and Sarkar {S} used the stan-
dard Galerkin formulation to solve the continuity, momentum
and energy equations simultaneously. Cesini et al. {6] em-
ployed the streamfunction-vorticity formulation with segre-
gated solution algorithm to stuty the natural convection from
a horizontal cylinder in a rectangular cavity.

In this paper, the streamline upwind finite element method
{7]is selected for analyzing conjugate heat transfer problems.
The method uses triangular elements with equal-order inter-
polation functions for the velocity components, the pressure
and the temperature. A segregated solution algorithm [8-10]
is also incorporated 1o solve the unknown variables separately
for improving the computational efficiency. The main advan-
lages of the proposed scheme can be illustrated and explained
by Figs.1-2. Figure 1 shows typical control volumes of the
fluid and solid cells along the fluid-solid interface adopted by
the finite volume method. In the figure, the control volumes
1 and 2 are in the fluid region whereas the control volumes
3 and 4 are in the solid region. Because the heat conduc-
tion coefficients in the solid and fuid regions are different,
the harmonic mean of the heat conduction coefficient along
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Fig. 1 Control volumes across fluid-solid interface used by the finite volume method
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the fluid-solid interface was introduced and assumed of the
following form [11},

kok s
ks kg

where &, and k; are the heat conduction coefficients in the
solid and the fluid region, respectively. The heat flux across
the fluid-solid interface was then calculated by using the as-
sumed heat conduction coefficient. For the finite element
method presented in the paper, the elements along the inter-
face are shown in Fig.2. Employing the finite element ruethod
for both the fluid and solid regions with common nodes along
the fluid-solid imterface provides convenience in analysis and
computation. At the same time, the application of the same
finite element method in both the regions allows the fluid-
solid interface temperatures to be compuled directly without
assuming the heat transfer coefficient. Furthermore, the con-
tinuity of the heat fluxes across the Ruid and solid regions
along the interface is also automatically preserved.

(D

Kimartoce =

The paper starts from briefly describing the set of the
partial differential equations that satisfy the law of conserva-
tion of mass, momentums and energy. Corresponding finite
element equations are derived and the element matrices are
presented. The computalional procedure used for develop-
ing appropriate computer program is then described. Finally,
the finite element formulation and the computer program are
then validated by solving several examples that have exact
solution and numerical solutions from other methods.

2 Theoretical formulfation and solution procedure
2.1 Govermning equations

In this paper, the flow field in Auid region is assumed 1o
be steady, two-dimensional, Newtonian, incompressible and
laminar, while the heat transfer in solid region is also assumed
i0 be steady, two-dimensional and isotropic. The fundamental
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laws used to soive conjugate heat transfer problems consist
of: (a) the law of conservation of mass which is called the
continuity equation, (b) the law of conservation of momen-
tums, and {c) the taw of conservation of energy, as follows:

du du
—+ — =10, 2
ax + ay (22)
du du dp e %u
— —_—| = - —_— 2
p[”ax +°ay] ax [ax2 + ayZ]' (2b)
[ av+vau] 6p+ [a?v+alv]
H— — | = —-— i i
Pl T Y%y ay " Hlaxt T a2
—pg(l — 8(T — To)), (2¢)
ar  ar T 3T
pc[u-é}- + vg] = k[m + 335] +pQ,. (2d)

where i and v are the velocity components in the x and y
direction, respectively; p is the density, p is the pressure, i
15 the viscosity, g ts the gravitational acceleration constant,
B is the volumetric coefficient of thermal expansion, T is the
temperature, Ty is the reference temperature for which buoy-
ant force in the y-direction vanishes, ¢ is the specific heat, &
is the coefficient of thermal conductivity and ( is the internal
heat generation rate per enit volumae. Equation (2d) can also
be used for selving heat conduction in the solid by setting
both the velocity components, 1 and v, as zero.

2.2 Finite element formulation
The threg-node triangular element is used in this study. The

element assumes linear interpolation for the velocity compo-
nents, the pressure, and the temperature as

ulx, y) = Niu;, (3a)
vix.y) = N, (3b)
plx.y) = Nip;, (3c)
T(x.y)=NT, (3d)
where § = 1, 2, 3; and &; is the element interpolation func-
tions.

The basic idea of the solution algorithm proposed in this
paper is 1o use the two momentum equations for solving beth
of the velocity componenis, use the continuity equation for
solving the pressure, and use the energy equation for solv-
ing the lemperature in the solid and fluid regions. The finite
element equations corresponding to the momentum, the con-
tinuity and the energy equations are presented in the next
section.

2.2.1 Discretization of the momentum equations

The two momentum equations, Eqs.{2b), (2¢), are discretized
using the conventional Bubnov-Garlerkin's method. However,
a special treatment of the convection terms is incorporated.

These terms are approximated by a monotone streamline up-
wind formulation for application with triangular elements
{91 In this approach, the convection terms of the form

)

which are related to the transport variable ¢, are first rewrilten
in the streamline coordinates as
d¢
Pas”
where U, and 3/ds are the velocity and the gradient along
the streamline direction, respectively. For pure convection,
the term in Eq.(5} is constant along the streamline. These
terms are evalvated by a streamline tracing method which
keeps track the direction of the flow within the element.
Using the standard Galerkin approach, each momentum
equation is muitiplied by weighting functions, ¥;, and then
the diffusion terms are integrated by parts using the Gauss
theorem [12] to yield the element equations in the form

Au = R, + R,,
Av =R,y + R, + Ry,

(3)

(6a)
(6b)
where the coefficient matrix A contains the known contri-

butions from the convection and diffusion terms. The load
vectors on the right-hand side of Eqs.(6a), (6b) are defined by

R, =— j; Ng%ds'z, (72)
Rp==| Ng-i’—’dﬁ, (76)
R, = ,ufrw(g—:nx + gun\)dl", 70
R, = uj;N(g;nx + g—”n‘)dr, (1d)
R, = TLNlngl - B(T ~ Ty)lee, (Te)

where €2 is the element area and I' is the element boundary.
The element equations are assembled to yield the global equa-
tiens for the velocity components. Such global equattons are
then modified for the specified velocity components along the
boundaries prior to solving for the new velocity components.

2.2.2 Discretization of the pressure equation

To derive discretized pressure equation, the method of
weighted residuals is applied to the continuity equation,
Eq.(2a),

du v aN; IN;
Nl—+— Q= - —_— —v]dR2
L (3x+ay) j;,(axu+ ay”)
+fN,-(un,+vn}.)dl"=0. &)
r

where the integrations are performed over the etement do-
main & and along the element boundary I'; n, and n, are
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the direction cosines of the unit vector normal to the element  where
boundary with respect to x and y direction, respectively. As N p ON
mentioned earlier, the continuity equation is used for solving K= ""'“(N:' K; )Edg’ (15a)
the pressure, but the pressure term does not appear in the con- aN aN
tinuity equation. For this reason, the relation between velocity K, = f ——(N; Kf) as, (15b)
components and pressure are required. Such relations can be
derived from the momentum equations, Egs. (6a), (6b) as F, = f v uj)—dQ (15¢)
ap
Ajui=—> A + N; dQ 9 . . ON
H Z ."}uj f f ( a) F” = -/.(N)vj)_dg’ (lSd)
i# o dy
a
Ajjyy = — Z Aoy + £ = [ N; a—pdg 9b) F,= —f Nun, + vn,)dF. (15e)
J# r

where f“ and £ are the surface integral ierms and the source
term due 1o buoyancy. By assuming constant pressure gradi-
ent on an element, we get

a
w =i — Kf’a—p, (10a)
5 ap
;= — K7 10
v {3y (10b)
where
- EA:juj + £
" Jdi
i = . (11a)
‘ Aj
- Z:AUU}‘ + f,-u
- J#i
P = s 11
it Ajj (o)
f NdQ
k! = “—Aw—. (llc')

By applying the element velocity interpolation functions,
Eqgs. (3a), (3b), into the continuity equation, Eq.(8),
LN S

N;
_f iN_t(N A — [3_
Q a dy

+/ Ni(ung 4+ vn)dll =0, 12
r

and introducing the nodal velocities u; and v; from
Eqs. (10a), (10b), then Eq. (12) becomes

N, ., 8 3N
f—(wJ a—"m+ ——(NK )apdsz
Q

aN;

=f _(N, ,)d$2+f BN LN D)
Q

—[ Niéun, + vn,)dlI' (13)
T

Finally, by applying the element pressure interpolaton
functions, Eq. (3¢), the above element equations can be writ-
ten in matrix form with unknowns of the nodal pressures as

(K.t'l'Ky)P:Fu'!'Fu'l'Fb- (14)

The above element pressure equations are assembled to form
the global equations, boundary conditions for the specified
nodal pressures are imposed prior to solving for the updated
nodal pressures.

2.2.3 Discretization of the energy equation

The finite element equations corresponding 10 the energy
equation are derived using an approach similar to that used in
deriving element momentum equations. The streamline up-
wind method i applied to the convection tenm in the energy
equation, Eq. (2d). The standard Galerkin method is then ap-
plied to yield the element equations which can be written in
matrix form as

KT=R+ Q. (16)
where the matrix K consisis of the known contributions from
the convection and diffusion terms, and the load veciors R

and @ represent the heat flux along the element boundary
and internal heat generation, respectively, as follows:

aT T
R=k j; N(an, + gn_v)dr. a7)
Q=pf NQd. (18)
Q

These element eguations are again assembled to yield the
global temperature equations. Appropriate boundary condi-
tions are applied prior to solving for the new temperature
vatues.

T=0 u=1
| Y-l S S S A S A A A A A A A A A 5
—n
—
0.50 fluid

W

o h

iy

Fig. 3 Conjugate Couetle fiow problem in paralle! plate channel
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Fig. 4 (a) The temperature profiles, {b) the u-velocity profile for Couette flow problem

2.2.4 Computational procedure

The computational procedure is described in this section. A
set of initial nodal velocity components, pressures, and tem-
peratures are first assumed. The new nodal temperatures in
both regions are computed simultaneously by vsing Eq.(16).
The new nodal velocity components and pressures are then
computed by using Egs.(6a), (6b) and Eq. (14). respectively.
The nodal velocity components are then updated by using
Eqs. (9a), (9b) with the computed nodal pressures. This pro-
cess is continued until the specified convergence criterion
is met. Such segregated solution procedure helps reducing
the computer storage because the equations for the veloc-
ity components, the pressure, and the temperature are solved
separately.

3 Results

In this section, three example problems are presented. The
first example, conjugate Couette flow probtem in a parallel
plate channel, is chosen 1o evaluate the finite element for-
mulation and o validate the developed computer program.
The second and the third examples, counter-flow in heat ex-
changer and conjugate natural convection in a square cavity
with a conducting wail, respectively, are used to ilfustrate the
efficiency of the proposed scheme for analyzing conjugate
heat transfer problems.

3.1 Conjugate Couetie flow problem in a parallel plate
channe}

The first exampie for evaluating the finite element formula-
tion and validating the developed computer program is the
problem of conjugate Couette flow problem in a parallel
plate channel [10]. The problem statement is shown in Fig.3
with a fluid between the upper wall that moves al a con-
stani velocity and is a stationary conducting solid. The other
side of the conducting solid is maintained at a constant tem-
perature that is higher than the constant temperature of the
opposing channel wall. The numerical results are compared
with the numerical resalis from Sugavanam [10] and the

analytical solution given in Ref. [13]. Figure 4 shows that
the computational results from the present finite element
schemes demonstrate excellent agreement with the analyt-
ical solution for varying conductivity ratios X = k;/k;.
The numerical results of the temperatures and the u-veloc-
ity from the present method are compared within 0.04% and
0.001% of the analytical solutions, respectively, whereas the
numerical results of the temperatures and the y-velocity from
Ref.[10] are compared within 0.5% and 2.0% of the analyti-
cal solutions, respectively.

3.2 Conjugate counter flow heat exchanger

To further validate the numerical scheme, a conjugate counter
flow heat exchanger problem is selected as the second test
case. This heat exchanger consists of two parallel flow pas-
sages with widths &, and a,, separated by a solid plate with
thickness of az, as shown in Fig.5. The outer walls of the
flow passages are assumed to be adiabatic. The same prop-
erties and uniform inlet velocity and temperature profiles are
assumed for the hot and cold fluids. The parameters adopted
in the computation are as follows, geometrical sizes a; =
a; = a3 = 0.1 and L = 1.0, the flow parameters in upper
channel u, = 0.2, T, = 800, Re = 133.33 and Pr = 0.75,
the flow parameters in lower channel uy = 0.1, T3 = 300,
Re = 66.67 and Pr = 0.75, conduction ratic X = 5. The
finite element model, consisting of 1 763 nodes and 3 360 tri-
angles as shown in Fig.6, is used in this study. Figure 7 shows
the predicled temperature contours in the entire domain. The
predicted temperature distributions at x = L/2 from pre-
sented scheme is compared with the finite volume results
from Chen and Han [2) as shown in Fig.8. The figure also
shows good agreement between the solutions.

3.3 Conjugate natural convection in a square cavily
with a conducting wall

The last example to evaluate the efficiency of the presented
scheme, the problem of conjugate natural convection in a
square cavity with a corducting wall is selected as shown
in Fig.9. The fluid in the cavity is heated from the higher
temperature solid wall along the left side and maintained at
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Fig. 6 Finile element model for the conjugate counter flow heat
exchanger

Fig. 9 Conjugate natural conveclion preblem

7ig- 7 Predicted 1emperature contours for the conjugate counter flow
heat exchanger
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s+ coupled FEM
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0.0 0.1 0.2 03

¥

Fig. 8 The temperature profiles at x = L /2 for the conjugale counter
Aow heat exchanger

zero temperature along the right side, all other boundaries
are insulated. The finite element model for both the solid
wall and Auid region consists of 2009 nodes and 3 840 trian-
gles as shown in Fig. 1 0. Figures 11 and 12 show the predicted
streamline and temperature contours for iwo different thermal
conductivity ratios of K = 1 and 10 at the Grashof numbers
of 10 and 10, respectively. The temperature and the heat flux
distributions along the fluid-solid interface with the variation

o

Fig. 10 Finite element model for the conjugate natsral convection
problem

of conduction ratio X are shown in Figs.13(a) and 13(b},
respectively. In addition, the predicted average Nusselt num-
bers along the interface, Nu, g, are compared in Table { with
the results obtained by Hribersek using boundary-domain
integral method [14]. The table shows good agreement of the
average Nusselt numbers for both the temperature and heat
flux.

4 Conclusions

A coupled finite element method was presented for solving
cenjugate heal transfer problems. The method combines thes-
mal viscous flow analysis of the fluid region and heal frans-
fer analysis in the solid region 1ogether. The finite element
formulation and its computational procedure were first de-
scribed. The flow analysis used a segregated solulion algo-
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Fig. 11 (a) Streamline contours for K = 10, (b} Temperature contours for K = | and {¢) Temperature contours for K = 10, all at Gr = 107

T {a)

(b)

(c)

Fig. 12 (a) Streamline contours for X = 10. (b) Temperature contours for X = | and (¢) Temperature contours for K = 10, all at Gr = 10°
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Fig. 13 (a) Interface temperatures and (b) Interface heat fluxes, all at Gr = 10°

Table 1 Variation of the overall Nusselt numbers

Average Nusselt number along interface ( % difference from Ref. {14] )

K =k fky i 5 10
Gr=10° Hribersek [14) 0.87 1.02 1.04
Gr =100 Coupled FEM 0.85 (2.29%) 1.03 (0.98%) 1.04 (0.0%)
Gr = 10° Hribersek [14) 208 3.42 3.72
Gr = 1% Coupled FEM 2.04 (1.92%) 3.30 (3.51%) 1.60 (3.22%)

rithm to compute the velocities, the pressure and the temper-
ature separately for improving computational efficiency. The
convection terms in the momentum and the energy equations
are treated by the streamiine upwind finite element method
1o suppress the non-physical spatial oscillation in the numer-
ical solutions. All the finite element equations were derived
and a corresponding computer program was developed. The
efficiency of the coupled finite element method was evalvated

by using several examples and comparing the solutions with
those obtained from other methods. These examples high-
light the benefits of the combined finite ¢lement method that
can simulianeously modet and solve for solutions in both the
fluid and solid regions, as well as to compute the temperatures
along the fluid-solid interface directly.
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ABSTRACT

A combined procedure for two-dimensional Delaunay mesh generation algorithm and an adaptive
remeshing iechnique with higher-order compressible flow solver is presented. The flux-difference
splitting scheme with a mixed entropy fix method is introduced for high-speed compressible flow
analysis on unstructured meshes. The scheme eliminates unphysical flow solutions such as a spurious
bump of the carbuncle phenomenon that occurs on the bow shock from flow over a blunt body, and
the oscillation in the odd-even grid perturbation in a straight duct for the Quirk’s odd-even decoupling
test. The proposed scheme is further extended to achieve higher-order spatial and temporal solution
accuracy. The performance of the combined procedure is evaluated by solving several high-speed
compressible flow problems on unstructured trianguiar meshes.

Key words: Adaptive mesh; carbuncle phenomenon; entropy fix; Roe's flux-difference splitting
scheme.

METHODE D’ENTROPIE DE MELANGE CONSTANTE POUR LE
SCHEMA DE DECOMPOSITION DE DIFFERENCE DE FLUX DE ROE
AVEC L’ADAPTATION DE MAILLAGE AUTOMATIQUE

RESUME

On présente une procédure associée pour la formation algorithmique de maillage de Delaunay a deux
dimensions et ia technique de remaillage adaptatif avec un flux de solution compressible en ordre
supérieur. Le schéma de décomposition de différence de flux avec la méthode d’entropie de mélange
constante est introduit dans le but d’obtenir une analyse de flux & grande vitesse compressible sur les
maillages non-structurés, Le schéma élimine les flux de solvtions non-physiques telle qu’une fausse
bosse du phénomeéne d’escarboucle, qui apparait sur le front de choc venant-du flux par dessus un
corps émoussé, et 1'oscillation de perturbation de la grille nombres impairs - nombres pairs dans un
canal direct pour le test de découplage de Quirk nombres impairs - nombres pairs. Ce schéma tend
vers I’accomplissement de la solution spatiale et temporelle précise d'ordre supérieur. La performance
de la procédure associée est évaluée par la résolution de plusieurs problémes de flux compressibles a
grande vitesse sur les maillages triangulaires non-structurés.

Mots-clés : Maillage adaptatif, phénomeéne d’escarboucle, entropie constante, schéma de
décomposition de différence de flux de Roe
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INTRODPUCTION

Spatial discretization of a given domain is a prerequisite for numerical simulation of the
physical model of the problem. Most of two-dimensional mesh generation schemes,
including the method used in this paper, first generate boundary points, then create interior
points which are added into the domain if prescribed criterions are satisfied. The point
connections by the Delaunay triangulation [1,2] guarantee-triangles which are as well shaped
as possible for the given set of points. Since the Delaunay triangulation in itself does not
include procedures for creating points inside the domain, additional points have to be
generated by an automatic point creation algorithm [3-7].

To enhance solution accuracy of the numerical analysis, the mesh adaptation is needed to
improve the computed solution [7-13]. An adaptive meshing procedure based on the
advancing-front algonthm for computing steady-state and transient solutions of the high-
speed compressible flows in two dimensions was presented in Refs. {8-10]). The anisotropic
adaptation using unstructured triangular meshes based on the Delaunay criteria was then
described in Refs. [11-13] with particular emphasis to fluid flow computations. The process
of the adaptive meshing is to first generate initial mesh from the domain, which is used to
compute the corresponding solution by the finite element or finite volume method. Then the
regions where adaptation is vital are determined by an error indicator, which dictates a close
correlation between the size of elements and the behavior of the corresponding computed
solution. A new mesh, which is better adapted for the particular problem, is entirely created.
The same process is repeated until the specified convergence criterion is met. The
performance of the overall procedure is evaluated using computational fluid dynamics test
cases.

In this paper, the Delaunay triangulation and the mesh refinement procedure introduced by
Marchant and Weatherill [3] are used to generate meshes. The second derivative error
indicator [8] is used to determine element sizes for adaptation process. The main objective of
the proposed adaptive technique is to overcome any disadvantage of the second derivative
error indicator by the virtue of an element size scaling function. Testing criteria are
introduced and designed to control the regularity of elements by limiting a range of allowable
element sizes in the vicinity of high gradient areas. The algorithm is terminated when the
number of inserted points in each iteration is less than some threshold values that can be
specified by user.

High-speed compressible flows normally involve complex flow phenomena, such as
strong shock waves and shock-shock interactions. Various pumerical inviscid flux
formulations have been proposed to solve the approximate Riemann problem. Among these
formulations, the flux-difference splitting scheme by Roe [14] is widely used due to its
accuracy, quality and mathematical clarity. However, the scheme may sometimes lead to
unphysical flow solutions in certain problems, such as the carbuncle phenomenon [15] with a
spurious bump in the bow shock from flow over a blunt body. In the odd-even decoupling
problem [16], an unrealistic perturbation may grow with the planar shock as it moves along
the duct. To improve the solution accuracy of these problems, Quirk [16] pointed out that the
original Roe's scheme should be modified or replaced by other schemes in the vicinity of
strong shock. Harten [17] proposed an entropy fix formulation to replace the near zero small
eigenvalues by certain tolerances. The mathematical background of the Harten's entropy fix
with the suggested tolerance values is given by Van Leer er a/. [18].
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This paper modifies the entropy fix method by Van Leer er a/ [18) and the
multidimensional dissipation technique of Pandolfi and D'Ambrosio [19] for unstructured
triangular meshes and implemented into the original Roe's scheme. The presented scheme is
further extended to achieve higher-order solution accuracy and then evaluated by several
bepchmark test cases.

The presentation in this paper starts by describing adaptive remeshing technique with the
implementation procedure in an objected-oriented programming concept. Next, the Roe's
flux-difference splitting scheme with some well-known problems that exhibit numerical
shock instability is described. A Roe’s scheme with a mixed entropy fix method is then
proposed and examined for its capabilities. The presented scheme with the improved higher-
order solution accuracy is then explained. Finally, the combined procedure is evaluated by
several high-speed compressible flow benchmarks on both structured and adaptive
unstructured meshes.

MESH ADAPTATION TECHNIQUE FOR EULER SOLUTIONS

The Delaunay tniangulation employed in this paper follows the Bowyer-Watson algorithm
[1,2], and the automatic point creation by Marchant and Weathenll [5] is used to generate
points inside the domain. The step-by-step explanation of these algorithms were presented in
detail in Ref. [7].

Adaptive mesh regeneration

In high-speed compressible flows, the flow properties, such as the density and pressure,
change abruptly across the shock waves. Small e¢lements are thus needed along the shock
waves to provide good result resolution. The second derivatives of any key variable ¢, such
as density is used to determine the proper element sizes [8]; that is, small elements are placed
in the region where changes in the variable gradients are large. Elements, which will be
either refined or coarsened by AdaptiveRemeshing algorithm, are identified by a
dimensionless error indicator using the pressure-switch coefficient [9]. The indicator at node

Iis given by, i
Z|2¢; _¢J _¢x|
E, == (1)

(4 +B")

where J and K are the other two nodes of the triangle, A" =max(g, — ¢,}.a(¢, +4,)) and
B' = max(g, - ¢ | a(d, +#;)). The value of « is prescribed as .005 in this paper, which

means 4 =.005(¢, +¢,) and B =.005(¢, +¢,) if ¢, and #, are within 1% of 4,,

respectively.

Practical experience found that this type of error indicator for complex high-speed
compressible flow problems, where regions such as shock or discontinuity have different
strength, may cause inaccurate solution from inadequate refinement because the point
spacing 1s scaled according to the maximum value of the second derivatives. To overcome
this problem, an element size scaling function, which scales the point spacing of point p;
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between minimum and maximum e¢lement sizes, A, and Ame, within the range of %, and
Xmar Das been used,

h_ —dp
M’O, l’ , 2
h h Zﬂlh zmm] ( )

= ScalcRange[
T it
where dp; is nodal distribution value of node i {7].

The coefficient z; controls the point insertion in the regions of high solution gradient and
eliminates undue distortion of the triangle regularity. The value of y_, limits number of
points insertion in high gradient region such as shock, while the value of upper limit y,
allows more points to be inserted into the lower solution gradient region. As shapes of
adapted clements generated by this function may be distorted, the Alpha and Beta
coefficients [5] are incorporated as coefficients of such function to control point density and
the regularity of triangulation.

The proposed adaptive mesh regeneration is based on the concepts of the Delaunay
triangulation and the mesh refinement as described by Algorithm I and II [7]. The new mesh
is constructed using the information from the previous or background mesh, such that it is
composed of small elements in the regions with large changes of solution gradients, and large
clements in the other regions where the changes of solution gradients are small. The
proposed algorithm is terminated when number of inserted points in each iteration is less than
some threshold values, between 2 to 5 points. Detailed process of adaptive remeshing
technique is shown and described in the algorithm as follows.

Algorithm III; AdaptiveRemeshing

1. Let user-specified threshold be the minimum number of potnts required in each point

iteration loop to continue this algorithm.

Let PO, k=1, ..., n be the set of points of the background mesh.

Let P be the set of points and T be the set of triangles.

Read next interior point p; of the background mesh from P0.

If 7t; > hypmayx then go to step 4.

Search triangle # in T which contains the point p;. Then calculate the centroid of the

triangle #; and define it as point p,, and compute the point distributton function of point

Pq

7. Compute the distance dn, m = 1, 2, 3 from point p, to each of the three vertices of the
triangle ;.

8. Compute the Xi coefficient, y,, for point p; by using Eq. (2), and the average distance, s; =

(dr +d;+ds) /3
9. Perform the Xi-Alpha test for point p,. If (¥, * alpha * h)) = s;, then reject the point p;

and retum to step 4.

10. Perform the Xi-Beta test for point p,. If two out of three of d\» < (¥, * Apu. / beta) for any

m =1, 2,3, then reject the point p, and return to step 4.

11. Accept the point p, for insertion by the Delaunay triangulation algorithm and add point p,

into P.

12. Repeat steps 4 to 11 until all points in P are considered.
13. Perform the Delaunay triangulation of the inserted points in P.

O Lo
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14. If number of inserted points is greater than threshold, then go to step 3; otherwise stop the
algorithm.

The proposed algorithm above does not guarantee the good mesh topology. The mesh
relaxation [20] based on an edge-swapping technique is highly recommended for well-shaped
mesh improvement. The objective of this method is to make the topology of elements closer
to equilateral triangles by swapping edges to equalize the vertex degrees (number of edges
linked to each point) toward the value of six. Finally, the Laplacian smoothing is applied to
smooth the meshes. This main algorithm for combining together the mesh generation from
the Delaunay tnangulation, the mesh refinement procedure, and the adaptive remeshing
technique is demonstrated by flow-chart as shown in Fig. 1.

Algorithm evaluation

To evaluate the performance of the adaptive remeshing technique with the Delaunay
triangulation, the specification of element size, A&y, is given as an analytical function for two-
dimensional domain. The adaptive mesh generation process first generates an initial mesh
from the domain, then the values of the element sizes at all points are computed by the given
function. The mesh generation coupled with the adaptive remeshing procedure is repeated
until the resulting mesh is globally stable. The three examples of adaptive mesh generation
with the analytical element size-specification function presented herein are: (1) adaptive
meshes along centerline of a rectangular domain, (2) adaptive meshes along a diagonal of a
square domain, and (3) alpha-shape adaptive meshes in a square domain.

Adaptive meshes along centerline of a rectangular domain: The first‘example presents an
adaptive mesh gencration in a 3 x 5 rectangular domain. The element sizes at positions in the
domain are given by the distribution function,

1 _[};ﬂ]]
h(x,y) =042 - o _ 3
(x.7) Vno &

where y is the variable and the values of x# and & are constants equal to zero and one,
respectively. Figure 2 shows a series of the meshes generated by three successive adaptation
of the coarse initial mesh. The value of mesh generation coefficients, @, B, Zmin, ¥mar are 0.5,
0.6, 0.75, and 1.10, respectively. Due to the prescribed distribution function, Eq. (3), small
clement sizes are specified around the centerline of the domain. The figures show the pattern
of graded elements along narrow band around the centerline of the domain. The value of 7,
limits number of points insertion along centerline of the domain, while the value of v,
allows more nodes to be inserted into the other regions.

The specification of scale range and limiting y, 7 . and ¥, have strong effects on the
resulting meshes as shown in Fig. 2. Without the scale range, the mesh is composed of small
clements concentrated around line a (see Fig. 3) with progressively larger elements outwards
as h, < hy, h. The scale range function sorts the nodal spacing values into prescribed
intervals according to y,,. and x,.. In each interval, the generated clement sizes are
relatively uniform. With them, a mesh consisting of relatively uniform elements in a wider
centerline band of the domain is generated. This mesh has better physical correlation with
the behaviors of shocks.
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Fig. 1. Flow-chart for a main algorithm of mesh generation and adaptation.

Transactions of the CSME/de la SCGM, Vol 28, No.3-4, 2004 336



Fi

L'-{PA -

A

4““"#

AN A A
v.s"qé'

<=
AV

%
I3
)
]
]
4

e,

TR

ZA)
S

<IN

A

A
ooy
|

FAVATASN

ﬁ'

Y

Initial mesh 1% jteration 27 iteration 3™ iteration

Fig. 2. Adaptive meshes along centerline of a rectangular domaip.

Y 25

05

) 1 1 : ) h(x, y) o
os | e 015 0.25 0.35

L=~

Fig. 3. Distribution of element sizes along the y direction.

Adaptive meshes along a diagonal of a square domain: The second example conceros with
an adaptive mesh generation in a unit square domain. The element sizes are calculated by the
function in Eq. (4) where the constant & is equal to 0.5 for this test case,

afl - 2x) N a?Bx(l- .r)-

S20+87) 20+ 7]

N g g l=2y) | @?B¥(1-y)
2x(1-x) tan™ B «/5(1+ﬁ2) 2(1*'[32)2 |

h(x,y) =2){1- y)[ tan™ g -
)

where f = al(x +y)/\5— 0.8}. Because this function generates both negative and positive
values, the only positive values of this function are used to determine the element size by
scaling into the new range of 0.001 and 0.2. Figure 4 shows the sequence of adaptive meshes
generated by five iterations based on a coarse initial mesh. The value of mesh generation
coefficients, &, B, Ymin, Ima are 0.5, 0.6, 0.4, and 0.75, respectively. The combination of the
values of Yo and Y, narrows the band along the diagoral line with small elements.
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Alpha-shape adaptive meshes in a square domain: The third ¢xample generates an alpha-

shape adaptive mesh in a square domain as shown in Fig. 5. The alpha shape function [13] is
used to calculate element sizes in an 8 x 8 square domain,
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min{0.2(1-1)*+0.005,1.0)  if 121

3)
min0.2(1-1) +0.0,1.0)  if A<! (

h(x, y) ={

where the value of parameter 1 is determined from x* —y? +2-3Ax=0. The value of
mesh generation coefficients, &, B, Ymim, ¥me are 0.5, 0.6, 0.5, and 0.85, respectively.

HIGH-SPEED COMPRESSIBLE FLOW SOLVER

The performance of the Delaunay triangulation, the automatic point creation procedure,
and the adaptive remeshing technique has been evaluated by solving high-speed compressible
flow problems. The Roe's flux-difference splitting method is used for compressible flow due
to its efficiency with mathematical clarity. This section briefly explains the method and its
flexibility in combining with adaptive unstructured meshes to further improve the solution
accuracy.

In some certain preblems, however, the Roe's scheme may not provide correct solutions
for the compressible Euler computation. Unphysical numerical solutions may arise from the
implementation of the one-dimensional upwinding numerical flux function onto the
multidimensional formulation. To avoid such solutions, a mixed entropy fix method that
combines the entropy fix method of Van Leer ef a/. {18] and the modified multidimensional
dissipation method by Pandolfi and ID’Ambrosio [19], is proposed in this paper. Details of
these entropy fix methods are presented herein and their performance are determined by test
cases.

Roe's flux-difference splitting scheme
The governing equations of the two-dimensional Euler equations for inviscid flows are
given by,

P )
ail_}d!?:}[f-‘-nﬁzo (6)

where U is the vector of conservation variables, F is the nuraerical flux vector and # is the
unit normal vector of the surface boundary. The perfect gas equation of state is in the form,

p=pely-1) ©)
where p is the pressure, p is the density, e is the intemnal energy, and y.is the specific heat

ratio. According fo the Roe's scheme [14], the numerical flux vector at the cell interface
between the left cell L and the right cell R is,

1 1 ¢
F, :E(F¢+Fm)*§zaglik|ﬂ (8)
=1

where @, is the wave strength of the A" wave, A is the cigenvalue, and r, is the
corresponding right eigenvector. The eigenvalues in the above Eq. () are,
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r=lV,-a v, ¥V, V +af ¥
where V), 1s the normal velocity, and a is the speed of sound at the cell interface.

The mixed entropy fix method

Some unphysical solutions such as an expansion shock or the carbuncle phenomenon may
be produced from the original Roe's scheme (Roe). To avoid such solutions, the entropy fix
methods [17-19,21-23] have been introduced. After extensive investigation, the Van Leer ef
al's entropy fix method [18] bas been found to perform very well for flows with unphysical
expansion shocks such as flow over a forward facing step. Meanwhile, the Pandolfi and
D'Ambrosto’ s modified multidimensional method of the H-correction entropy fix [19] can
efficiently correct the numerical instability when the dissipation added to the entropy and
shear waves is very low such as in the flow over the blunt body problem. Thus, this paper
proposes a mixed entropy fix method (RoeVLPA) that combines the two above schemes
together by replacing the original eigenvalues as follows,

2.4 J e 2 27
Aal = ! 10
| I.4| ':::;JL +qu ) |/?.L4| < 2}?”‘ ( a)
Aaa| = max{ll,_j Iw“) (10b)

where n"* and 7™ are determined from,

7" =max{4, - 4,,0) (11)

7™ = max(m,,17,. 7. 75) - (12)

N/

: )\’
=
]

Fig. 6. Cell interfaces of: (a) structured uniform mesh; (b) unstructured triangular mesh.

The values 7y, i =2 to 5 as shown in Figs. 6(a)-(b) for both the structured and unstructured
meshes are determined from,
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7 =0.5m3x(|;.m - 2| (13}

where L and R denote the left and right elements, respectively. This mixed entropy fix
method is equivalent to the Van Leer ef al's entropy fix method in handling the acoustic
waves (k = | and 4) and the Pandolfi and D'Ambrosio version of the H-correction entropy fix
for the entropy and shear waves (k= 2 and 3). The proposed mixed entropy fix method has
been evaluated in this paper using three test cases involving expansion shocks, the carbuncle
phenomenon, and the odd-even decoupling on structured triangular meshes.

The expansion shocks: As mentioned earlier, the original Roe's scheme may produce
unphysical expansion shocks on some certain problems because it does not satisfy the
entropy condition. To illustrate this phenomenon, a Mach 3 flow over a forward facing step
[24] is investigated. The density contours computed from the Roe and RoeVLPA are shown
in Figs. 7(a)-(b), respectively. The figure shows that the RoeVLPA does not produce an
unphysical expansion shock on top of the facing step corner as occurred in the sohution from
the original Roe's scheme. '

Fig. 7. Mach 3 flow over a forward facing step: (a) Roe; and (b) RoeVLPA.

The Quirk's test (odd-even decoupling): Another test case is a Mach 6 moving shock along
odd-even grid perturbation in a straight duct [16]. The computational domain consists of a
uniform triangular mesh with 800 and 20 equal intervals respectively along the axial and the
transverse directions of the duct. The grids along the duct centerline are perturbed in the
transverse direction with magnitude of £10°°. It is found that the Roe, as shown in Fig. 8(a),
suffers from the numerical instabilities. On the other hand, the RoeVLPA provides accurate
shock resolution as shown in Fig. 8(b).

(a) X’n‘JSO x:-.210 xz410
” l —
®) x=50 x=210 x =410

Fig. 8. Mach 6 moving shock along odd-even grid perturbation: (a) Roe; and (b) RoeVLPA.
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The carbuncle phenomenon: An unrealistic flow solution, the so called carbuncle
phenomenon, of a steady-state flow over a blunt body from the original Roe's scheme was
first reported by Perry and Imlay [15]. Such phenomenon refers to a spurious bump on the
bow shock near the flow centerline ahead the blunt body. The phenomenon is highly grid-
dependent [19], but does not require a large number of grnid points to be apparent [25].
Figures 9(a)-(c) show that the carbuncle phenomenon does not appear in RoeVLFPA, while
the solutions using the original Roe's scheme exhibit the carbuncle phenomenon in the
meshes with high element aspect ratio.

(a)

(®)

(©

Fig. 9. Mach 15 flow over a blunt bedy, enlarged view of the mesh and computed
density contours: (a) first mesh; (b) second mesh; and (¢} third mesh.

HIGHER-ORDER EXTENSION AND APPLICATION ON UNSTRUCTURED
TRIANGULAR MESHES

Linear reconstruction and limiter

Solution accuracy from the first-order formulation described in the preceding section can
be improved by implementing higher-order approximations for both the space and time. A
higher-order spatial discretization is achieved by applying the Taylor series expansion to the
cell-centered solution for cach cell face [26). For instance, the solutions at the midpoint of an
element edge between node 1 and 2 shown in Fig. 10, can be reconstructed from,
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¥ ¥ :
9, =49c +T‘{(i‘—2@—q;] : (14)

where g =[p u v p[ consists of the primitive variables of the density, the velocity
components, and the pressure, respectively; g, is the solution at the element centroid; ¢, , 7

=1, 2, 3 are the solutions at nodes. In this paper, the pseudo-Laplacian method proposed by
Holmes and Connell [27] is used to determine nodal quantities,

N N
q., =Z(WJQC..=) Zwi (15)

Fal

where g, are the surrounding cell-centered values of node n, and ¥ is the number of the
surrounding cells. The cell weights w, are determined from,

w, =1+, (x, ~x,)+4,(y, - y,) (16)

with the Lagrange multipliers, A, and 2, defined by,

i N N N
D~ x ) =y D G =y - 2=y D (X - x,)
- i=1 i=! i=l i=l

s ¥ i ¥ 12 (172)
Z(x; "‘xn)zz{)’; _J"'.,)2 "[Z(xs =X —¥,)
o N I N }
Z(xi _xn )(y.i _yn)Z(x! _xn)_z(xi _xn)zz(yl“ _yn)
/1). = J=l - - i=1 NI=I 1=l - (l?b)
2 -x Y Y (=)’ —[Z(x.- - %) - ¥.)

Fig. 10. Linear reconstruction on a typical triangular element.

The ceil weights, w, , may differ significantly from vnity for some severe distorted meshes
as indicated in Ref. [27], which also suggests weights should be in the range of 0 to 2. In this
paper, the weight clipping is slightly different by modifying only the value of weights of
boundary meshes. If any weight becomes negative, its absolute value is used for simplicity.
Several examples presented below have shown that such modification performs well. The
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¥ in Eq. (14) represents the limiter for preventing spurious oscillation that may occur in the

region of high gradients, [n this study, Vekatakrishnan's limiter function [28] is selected to
improve the convergence.

Second-order temporal discretization
The second-order temporal accuracy is achieved by implementing the second-order
accurate Runge-Kutta time stepping method [29],

(18)

where Af is the time step. To reduce computational effort, the local element time steps are
used for steady-state analysis, while the minimum global time step based on spectral radii
[30] 1s used for the transient analysis.

Numernical evaluation

The increase in order of accuracy of the Roe's scheme with the proposed entropy fix
method, described in the preceding section, is evaluated by solving several test cases on both
structured and adaptive unstructured triangular meshes. The selected test cases are: (I)
Symmetric rarefaction wave, (2} Oblique shock reflection at a wall, and (3) Mach 1.4 flow
past a 4% bump.

Symmetric rarefaction wave: The initial conditions of the fluids on the left and right sides of
the tube are given by (p, 4, p), = (7.0, -1.0, 0.2) and (p, u, p), = (7.0, 1.0, 0.2). Such initial
conditions [30] are chosen to produce vacuum at x = 0. The 1.0 x 0.1 computational domain
is, respectively, divided into 400 and 40 equal intervals in the x and y directions by tnangular
elements. Figures 11(a)-(c) show the computed density, pressure and w-velocity distributions
along the tube length as compared to the solution from the HLLC method {31] and the exact
solution at time 7 = 0.3. The HLLC method is chosen because of its capability for capturing
shocks, contact discontinuities and rarefactions. The solutions obtained from RoeVLPA and
HLLC methods compare well with the exact solution as highlighted on the upper right
portion of Fig. 11.

Oblique shock reflection at a wall: The problem statement of an obligue shock reflection at a
wall [32] on the 4.0 x 1.0 domain is presented in Fig. 12. The analysis process starts by
creating a relatively uniformn mesh as shown in Fig. 13(a). The fluid analysis is then
performed to generate the corresponding solution such as the density contours as shown in
Fig. 13(b). This flow solution is then used to generate an adaptive mesh. The entire process
is repeated to generate the third adaptive mesh and its corresponding solutions as shown in
Figs. 13(c)-(d). Figures 14{a)-(b) show comparative density and pressure distributions
between the exact and computed solutions at y = 0.5.
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Fig. 11. Comparative exact and computed solutions at time /= 0.3 for symmetric
rarefaction wave problem: (a} density distributions; (b) pressure
distributions; and (c) u-velocity distributions.
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Fig. 12. Problem statement of an oblique shock reflection at a wall.
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(a) (b)

Fig. 13. An oblique shock reflection at a wall: (2)-(b) Initial mesh and the
corresponding density contours; and (c)-{d) Third adaptive mesh
and the corresponding density contours.
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Fig. 14. Comparative solutions of an oblique shock reflection at a wall:
(a) density distribution; and (b) pressure distribution.

Mach 1.4 flow past a 4% bump: The problem statement of a Mach 1.4 flow past a 4% bump
is presented in Fig. 15. Figures 16(a)-(b) show a structured mesh and its corresponding
computed pressure contours by the higher-order scheme. The fourth adaptive mesh and its
corresponding computed pressure contours by the higher-order scheme are shown in Figs.
17(a}-(b). The results highlight the capability of the combined method to capture lambda
shock structure {33} and detailed flow phenomena with sharp shocks and their reflections.
Figure 18 shows the density distributions along upper wall obtained from the higher-order
RoeVLPA on both the structured and the adaptive meshes, as compared to the solution of
Ref. [34].
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Fig. 15. Problem statement of a Mach 1.4 flow past a 4% bump.

(b)

Fig. 17. Mach 1.4 flow past a2 4% bump: (a) Fourth adaptive mesh; and (b) Pressure

. contours.
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x
Fig. 18. Comparative density solutions of a Mach 1.4 flow past a 4% bump

along the upper wall.

CONCLUSION
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A mixed entropy fix method for Roe's flux-difference splitting scheme for the analyzes of
two-dimensional high-speed compressible flow with mesh adaptation was presented. The
mesh adaptation algorithm was evaluated by discretizing domains of three examples with
prescribed element size functions. To capture steep vanations of the solution effectively, a
new element size scaling function was introduced into the adaptive meshing technique. A
mixed entropy fix method was proposed to improve numerical stability of the Roe's flux-
difference splitting scheme for solving high-speed compressible flow problems. The method
combines the entropy fixes by Van Leer et al. [18] together with Pandolfi and D’Ambrosio
[19]. The method was evaluated by several well-known test cases and found to eliminate
unphysical solutions that may arise from the use of the original Roe's scheme. The method
was then combined with the adaptive mesh generation technique to demonstrate the
simulation applicability on arbitrary unstructured meshes for high-speed compressible flow
problems.
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The present work concems the evaluation of the damping {unctions in the low-Reynolds-number non-
linear g — { turbulence model to improve the accuracy of the predicted results. Different expressions
for the damping function (f,) are studied to find the most suitableuse in low-Reynolds-number
turbulence models, followed by the re-optimisation of the constants in the expression of C,, for the non-
linear ¢ — { model. The non-linear form is considered as a result of the inability of the model in linear
form 10 predict the comect anisoitopy near solid boundaries. The fully developed turbulen:
incompressible channel fiow is used as a test case. The modified model is evatuated for complex flows
via the numerical modelling of the tarbulent compressible Aow in an S-shaped DRA M2129 circular-to-
circular diffusing duct at subsonic Mach aumnber. The predicred results are in good agreement with the

expertmental data

Keywords: Damping funciions; Non-linear ¢ — { turbnleace model: Complex Rows: S-shaped

diffusing duct

I. Introduction

The errors in predicted solutions using computational fluid
dynamics are due 1o {wo main sources, numerical and
physical. The present work concems the physical errors
resulting from the modelling of the Reynolds-stress term,
the additional term arising from averaging in the
instantaneous conservation equations for turbulent fAows.
Two broadly speaking approaches are usually adopted. in
the first, the near-wall region is bridged by wall functions
based on the Law of the Wall and is economical in terms of
computer time and storage, however, it can only be used
where the fiow is attached since the friction velocity U, =
v/ 7../p is undefined in separation regions, In the second
approach, the transport equations are solved down to the
wall and damping functions are introduced 10 account for
the turbulence damping effects near the wall. This second
approach is called low-Reynolds-number trbulence
modelling and is the approach adopted in this work.

The ¢ — { model has been proposed by Gibson and
Dafa”Alla (1994). where the two dependent variables are
g(= V&) and Z(= £/2¢). The square root of the turbulence
kinetic energy ¢ is preferred to & because in the region

*Commesponding author E-mul: ovrsk @ku_ac.th
§ E-nuail: a.marquis@icac.uk

very close to the wall. g varies linearly with distance y and
similarly the destruction rate of g, £ is better behaved than
the energy dissipation rates £ or &€, of the k — & model;
thus, the equations for ¢ and [ may be solved on a
refatively coarse calculation mesh. Furthermore, both g
and [ are zero at the wall and numercal problems are
alleviated because there is no need to calculate terms like
D = 2k /3av?) which are needed to provide a derived
boundary condition for ¢ in the & — £ model.

The linear ¢ — { model is based on the linear stress—
strain relationship of Boussinesq (1877), which cannot be
predicled accurately near wall turbulent flows, especially
in the presence of strong adverse pressure gradients, and
those with separation and re-attachment.

Lien etal (1996) proposed the non-linear low-
Reynolds-number k& — & model, by adopting ideas
proposed by Pope (1975) and Shih etal. (1993) in respect
of sensitising the eddy-viscosity directly to strain and
vorticity invariants. The approach is simpie, easy €0
implement and performs well in both transitional and fully
turbulent flows. It is important to note that the desirable
reduction of shear stress in impingement and separated
zones relative to that retumed by the linear form is mainly
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ISSH 1061-8562 pint/ISSN 10290257 onhne & 2005 Taybor & Franciz Growp L
g ifwww taadl.co.ukijourmals
DO 101080/ NG 185601 LOO0E 730287



226 V. Juniasare etal,

due to the fonctional dependence of C,(S, {2}, where § and
€ are the strain rale and the vorticity rale, respectively,
and the anisotropic behaviour of the wurbulem stresses
only mzkes a marginal contribution to it.

Ong (1997) adopted the approach of Lien eral. (1996)
and has proposed a non-linear ¢ —  turbulence model.
Ong applied the non-linear g — { model to fully-
developed turbulent channet flow and produced the
correct rising trend of the rate of dissipation & ¥ in the
near-wall region, however, the distributions of U™ and
shear stress #v™ are not well predicted in the logarithmic
region. This may have been due 10 the use of non-
optimised constants in the C, formulation or an
inappropriate damping function (f,), each of which may
need to be re-optimised.

According 1o Patel eral. (1985), the proposed
formulation for f, should agree with that deduced from
experimental or DNS data. Patel eral. compared the
behaviour of f,, from different low-Reynolds-number
models with that deduced from experimental data, and
Rodi and Mansour (1995) repeated the comparison with
DNS data and proposed a new expression for £,. The fully
developed channel fiow resuits at Re, = 180 and 395 were
improved by the use of this f,,.

The present work aims to find the most suitable
expression of damping function and the optimised
constants for non-linear ¢ — { model, to improve the
accuracy of the predicted resuits, using the fully
developed turbulent channel flow as a test case. The
performance of the modified model is then evaluated with
the view of its capability in predicting three-dimensional
complex flows where effects of streamline curvature and
flow separations are important. The model is applied to the
flow within the DRA M2129 circular-to-circular intake
configuration at subsonic Mach number.

2. Mathemalical formulation

2.1 Governing equations

The instantaneous mass, momentum and energy con-
servation eguations are written 1n Cartesian tensor form as:

dp  dpu;
it dx, =0 M
Spu, | Aoty D 3ty @)
af ax; ax,  ox;
J 1 a 1 P
a-} ple+ En,-rn -+ a puie+ -iu,u,- +;)
dugty  0g;
= dx - d_JrJ @)
1 §

where ¢ is the specific internal energy, 7; is the viscous
stress tensor, and g, is the heat flux vector. The pressure,
density and temperature are related by an equation of

siate, which for a perfect gas is,
pP=pRT G

where R is the gas constant. The heat flux vector tq) is
usually obtained from Fourier's law, i.e.
T
g = —kr-—— ()

ax

where ky is the thermal conductivity. The viscous stress
tensor {1;) for a Newtonian fluid is expressed as

du;  duy 2 A
= o[ 2 - 25,20
v T H [(axﬁax,-) 3% a.rJ ©

The energy equation (3) can also be written in terms of
total energy E=¢+ (}/Duu; and 10tal enthalpy H =
h+ (l /2)“,‘!!,’ as

apE BpuJ,H _ au,-f,j aq}‘

+ = et 7
al Ax; Ax;  oxy @

If the fluid is assumed 10 be calorically perfect, i.e. the
specific heat coefficients C, and C, are constant, then the
specific intermal energy ¢ = C,T and the specific enthalpy
h=C,T.

The differential conservation equations for mass.
momentum and energy presented in the previous section
are written in the instantaneous form. and they are only
valid on an instantaneous basis “in turbulent Aows,
therefore, it is necessary to convent these instantaneous
equations Lo the time averaged form. Two time-averaging
procedures are commonly used for the instantaneous
equations, the conventional unweighted time averaging
{Reynolds averaging) and the density-weighted time
averaging {(Favre averaging). The Favre averaging is
helpful to simplify the formulation of the turbulent
equations when density varies and it is used in this work.

The Favre-averaged mean equations of motion for
steady compressible flows can then be written as:

a TR
P )
ax,-
3 ezt ap @
P =L St O
ax; ox; 93
apiE o
ﬂxj (D‘I

8 /—  — |
+5}~_ (f,}u;” ~ oy - im,ﬁu;"uj")
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a an,p
- sy — 2L

a_rj (q} + puf ) aa) (’0)

P=pRT=(y-NpE-K -k (11)
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with the mean viscous Stress [ERSOC as:

- dit,  0i 2 i
I = — 4L} -y 12
! '“Ka.r,- a,r,-) 3 a.rk] (12)

The Favre-averaged mean conservation equation for
mass (8) has the same form as its instantaneous equation
(t), the mgan momentum equation (9 s different from
the instantaneous equation (2) only by the presence of the
Favre-averaged Reynolds-stress tensor 7; while the
Favre-averaged mean energy equation (10) has four
extra terms, in addition to the Reynolds-stress tensor term
7,4 that require modelling, i.e. the turbulent heat flux
oi," . the molecular diffusion }-f;l.'_”, the turbulent
wransport (1/2)puu, and the pressure diffusion pu;”,
and are modelled as in Wilcox (1993).

2.2 Turbulence models

2.2.1 Low-Reynolds-number linear k — £ turbulence
model. Fotlowing the Boussinesq (1877) approximation,
the Favre-averaged Reynolds-stress tensor 7, is wrilten as

Ty = —puu
2 Bty 3, om;
- 31' oK -+ + —_ - l3
3 ;(pk I O.r{) 'u'(ax,- + ax,-) (13)

where the eddy viscosity u, ts defined in teoms of k and ¢
as

kZ
!-Lr:ﬁc.ufp'; (14)

For a numerically convenient boundary condition ot the
wall, £ is written as £ = £ + D where D is chosen such
that € == 0 at the wall. Thus, the steady fMlow transport
equations for k and £ are writlen as:

ﬂﬁﬁik__ i) T l-r.'.fr.f
iffusion
o, — g
+ r,j'a—'— ~RKE+DY - WL
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A gissipation
pressure work
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pressure  dilatation
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~ (pD) - 36 T T (16)

destrugtinn

ping functions 217

where

aﬁ,+ | dity
an 4 33.‘(* v

additonal teem,

- - £
G, =ﬁP=fleeIETe}

5
~ £*
D: =erCs2T
= e 0€
H =2
P o creﬂxj

The damping functions f, fo2, f.. and the closure
constants C,y, Cpa and o, vary between different versions
of low-Reynolds-number £ — & model. The version used
in this work is that proposed by Launder and Sharma
{1974), because its damping function (f,) is expressed in
terms of turbulent Reynolds number Re, = k/ve and is
preferred to those which comprises f,, in terms of distance
from the wall, y*(= yU/,/»). Formulations in terms of y *
are unfavourable mainly because U/, is meaningless at a
stagnation point and because the calculation of y * in a
corner of the low domain is ambiguous.

In spite of its simplicity and popularity, the low-
Reynolds-number k ~ ¢ model does have some dis-
advantages. [n wall-bounded flows the model requires a
fine grid to resoive the small scale motion near the wall
because both k and & vary as y * and large changes in both
k and & cccur in the near wall region. In addition, the lack
of a natural boundary condition for £ at the wall, where it
is not zero, Jeads to the use of a derived boundary
condition. which augments numerical stiffness by tying
the wall valve of € to derivatives of k.~

2.2.2 Low-Reynolds-number linear g — { turbulence
model. The eddy viscosity u, can be defined in terms of
g(= V&) and (= §/29) as
7’
Hr = ﬁcpfp éz (N

and the Favre-averaged mean equations for g and { are
expressed as

g |
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where
. pF 7 [(od,  lak

= =fCo =T — +2-— 8
Gs 2q Ja PE T’(ﬂ,t}-+36.tk 4

g’}

Dy =f12Cp=—

5, = 98
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where on Cpfa. Crafpz and ¥ are equivalent to o,
2Cef et — V. 2Ca fer ~ | and Ef2q, respectively, in the
low-Reynolds-number k — £ models. The constants
(o4, T, Cu- Coi. Cea), damping functions (f;, f.2) and E
are adopted from the Jow-Reynolds-number & — & model
of Launder and Sharma (1974).

The damping function f, proposed by Gibson and
Dafa’Alla (1994), is writien as

_6 —RC,«
e (m) (1sen()) o

where the turbulent Reynolds number is defined as
PE

Re, = W (21}

2.2.3 Low-Reynolds-number non-linear g — ¢
turbulence model. The non-linear g — { model is
introduced 1o increase the accuracy in predicting the
commect anisotropic behaviour near the wall, while
maintaiping the stmplicity of the 1wo-equation models.
The non-linear model wsed in this work treats C, as a
variable rather than 2 constant and the non-linear
Reynolds-stress expression of Pope (1975) is used
instead of the linear expression of Boussinesq (1877).

In the present work, the Reynolds-stress expression of
Pope (1975). further simplified by Shih eial. (1993) and
Lien eral. (1996), is generalised to account for
compressibility effects, and il is writien in terms of &
and € as

_— A
Ty = =

k] b
L S

k.
= pfuCa “Ezsa;i - pfFE_erj

quadralic 1erm

- g‘ﬁk&" (22)

linear fenmn
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where the mean strain rate §; and vorticity Q,-J are given by
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The quadratic term is defined as
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C, is treated as a variable and defined as

-2/

Cyp=—% = (24)
AL+ 5+ A0
where the damping function f. of Cotton and Kirwin
(1995) is used and constants A, and A are re-optimised o
4 and 0.5 (section 3) using fully developed turbulent
channel flow as a test case, and the f, of Cotton and
Kirwin is written as:

—Re,
Jui=1- 0‘9?cxp( 160 )

Re,\?
— 0.0045 Re, exp (— (W;) ) {25)

3. Re-evaluation of f,, and Cp

This section presents a comparative study of different
expressions for the damping function, (f.). to find the
most suitable for use in low-Reynolds-number turbulence
models, followed by the re-optimisation of the constants
in the expression of C,, for the non-linear ¢ — { model.
The fully developed turbulent channel flow is used as a
test case because it is simple and has well-established
reliable DNS data.

The results presented and compared against the DNS
data of Kim eral. (1987) are calculated on a non-uniform
independent grid of 65 nodes across the flow. The non-
dimensional axial velocity {/ *, trbulence kinetic energy
F g dissipation rate € + and shear Reynolds-stress ap * are
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plotted against distance from the wall y * in figures 3 and 4
for Re (= U A/} of [80 and 395, respectively.

The comparative study of different expressions for
damping functions (f,) is first considered. For two-
dimenstonal boundary layers, the distribution of £, can be
obtained (Patel eral. 1985) from:

PR (26)

The DNS trbulent channel low data at Re, = 395 are
substituted in the above equation in order to obtain the
distribution for f, and this is then compared (figure 1)
with the expressions in table I. The expression of Rodi
and Mansour (1995) agrees well with the DNS data but
unfortunately is expressed in terms of v ™ and it is more
desirable o express f, in terms of Re,, section 2.2.1, and
1o this end figure 2 replots figure ) in terms of Re,. In
order to find & more accurate expression for f,,, the DNS
data are curve fitted and the resulting expression is used
for f.. However, this produces ne improvement in
accuracy compared to expressions used by other workers

Table 1. Expression of f,.

Launder and Sharma (1974} exp(-«—'—zl-‘-_
{1+%2)
Rodi and Mansour ¢ 1995) 1~ expi ~0.0002¢ " — 0.00065v*7)

1.5

T
s DNSat Re, = 395
Launder arid Sharma

— — - q-{ model of Gibson and Dafa’Alla
- - — Joncs and Launder
anrane Hol’fmn

A Conoa and Kirwin

Figure 2. Distribution of f.(Re,).

which may be due to the difficulty of obtaining an
accurate curve-fit. [n a last attempt to use the f,
distribution derived from the DNS data, a “table Jookup™
approach is adopted but while the trends of the DNS data
are reproduced the agreement is not close (figure4) and
this is probably due to two reasons. The first reason is
that the previous idea that an accuracy of the resulis will
be improved by the use of f, expression that fotlows the
DINS curve is not true. and the second reason is that Re,
mav not be the most suitable parameter to be used in f,
expression and a more suitable parameter may be
required.

The comparison of the accuracy of the channel flow
predictions (figures 3 and 4) using different expressions
for f,, table 1 shows that the linear ¢ — ¢ model with the
S formulation of Cotton and Kirwin (1995) exhibits a
closer agreement of k¥ and ¢ * 1o the DNS data than the
onginal formulation of Gibson and Dafa’ Alla (1994). The
peak of k * is well predicted resulting in the correct near-
wall trend of £*. Unfortunately, the predicted axial
velocity U™ from the linear ¢ — { model with the f,
formulation of Cotton and Kirwin does not foltow the log-
law profile in the logarithmic region. Furthermore, the
normal Reynolds-stresses are not accurately predicted
(figuresS and 6) because the model is based on
Boussinesq (1877) approximation and as a result, the
three components of normal Reynolds-stress in*, 75*
and wiw * are all predicted to be equal and this disagrees
with the DNS data.

The non-linear g — { model of Ong (1997) based on
non-linear Reynolds-stresses expression of Pope (1979)

with vanable C,, i.e.

2/3

A =25 and Ax =09 (27)

R et . = =&,
Gibson and Dala” Alla §1994) cxp ({_RT::"T) {1 + 3exp(5))
Jones and Lauades (1972) “P(ﬁ%)

Hottman (1975) “P(f»f;’?)

Cotton and Kirwin {1995) = 0.97exp(5Re) ~ 00045

recso(- ()

C,= = —.
B AL +HALQ

predicis anisotropic behaviour near the wall (figures 5
and 6). Howevec, the distributions of & * and shear stress
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ot are nol well predicted in the logarithmic region and
the peak of & * is also lower than the linear ¢ — { model
using f,. of Cotion and Kirwin.

The nor-linear ¢ — { model is thus modified via the two
constants A | and A.. equation (27). and are re-optimised to
4 and 0.5, respeclively. The predicted U * and @™ are
now closer 10 the DNS data in the logarithmic region and
the peak of k * is improved (figures 3 and 4).
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4. Subsonic flow in a circular-to-circular S-shaped
diffusing duct

This section presents the modelling of subsonic flow in the
DRA M2129 circular-to-circular S-shaped diffusing
duct, whose lest conditions corespond to AGARD
(1991) test case 3.2. The inlet Mach number is .42
and the Reynolds number is 1.15 x 10°. The DRA

¥
o LNS a1 Re, = 395
= — k-g{Laonder and Sharma)
0.25 — = q-{(Gibson and Dafa” All)
------ q CLE =Conon ans Kirwm}
0.20 — - pon.dipew o {(AI=1S, A2=0.9)
——— non-fincar -fiA =4, A2=0 5|
015 — non-lincar h-€(Ab=A, &2=0.5)
[t — —- g-L "able kookup’ DNS dxa
0.10
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0.00 +
0 20 40 60 80 100
y"

Fully developed wrbulem channel flow st Re, = 295,
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Figure 5. Mocmal Reynolds-stresses at Re, = 180

(Defence Research Apency, former Royal Aerospace

Establishment) wind tunnel test data of Gibb and Jackson

(1992) and the predictions from the non-linear ¢ —
model of Ong (1997} will be used for comparison.

4.1 Cemputational domain and numerics

The wind tunnel model of circular-to-circular S-duct used
by DRA bhas inlet (D) and exit (D,,;,) diameters of
128.8 and 152.4mm, respectively, a length (L) of
457.2 mm, an offset between the centre-line of the inlet
and exit planes O¢/L = 0.3. and a duct area ratio between
the exit and inlet planes (Ag) of |.4. Table 2 describes the
variation of the diameter and offset along the duct and a
three-dimensional perspective view of the S-duct geome-
try is shown in figure 7.

@ DNS daa: uu*

8.0 ' + DNS daa: v*

01:' = DNS data: ww?

oe —— non-fivear q-L{A1=2.5, A2=0.9): uu*
----- nondincar g-{(A1=2.5, AZ=0.9): v
—-=~- non-linear g-G(A 1=2.5, A2=0.9): ww*
—— linexr q-C: uu*, vv* and ww'

—— non-lincar q-G(A]=4, A2=.5): ue®
==~ non-Fincar g-J(A [=4, A2=0.5) vw*
pon-tinear g-L(A =4, A2=0.5): ww*

640

. * non-linear k-e(A 1=4, A2=0.5): vu*
+ non-$inear K-£(A [=4, A2=0.5): v’
¢ X * noa-lincar k-e{A =4, A2=0.5); ww"

40

20

0.0 100.0 200.0

yi‘

Figure 6. MNornal Reynolds-srexses ol Re, = 395,

Table 2. Profifes of the 82129 circulur-tociecular $-bend.
Diameter (D) D‘-——“‘“-?_:Pg_h = 3[' - G}ll -4t - {%”“H
Offset (Z) %-:%[l = cos{n )]

The actual wind tunnel model described in AGARD
(1991) 1est cases also comprises a constant area circutar
section upstream of the duct, whose length is 0.85D,,;, or
[29.5 mm. Therefore, the inflow boundary of the $-duct is
implemented at a station that is 70mm (=0.46D.;)
upsiream of the infet plane, and the inflow bouadary
conditions for the dependent variables of the duct are
obtained from a separate developing pipe How compu-
tation. In this separate pipe flow computation, the inflow
velocity profile is assumed to be uniform and the boundary
layer 13 allowed to develop from zerc thickness at iis
inflow. The twrbulence kinetic energy at the inflow of the
pipe calculation is prescribed based on a 8% turbulence
intensity, and the turbulence length-scale ({,,) is prescribed
using the formulation of Patankar and Spalding (1970)
that /,, = Ad in the core flow; A is a constant of 0.09 and &
is the duct height. Further information regarding the inlet
is presented in Table 3. The outAow boundary is located at
about 0.210.,, downstream of the exit plane, and the
region between the exit plane and the out flow boundary is
bridged by a straight circular Juct conduciing the flow Lo
ambient air.

The S-duct geometry is symmetrical about X-Z plane
(figure 7), hence, only half of the duct is modetled, and
since an O-grid conforms well to a circular cross-section,
itis employed in the present configuration using transtinite
interpolation with grid clustering near the wall to generate
the near-orthogonal grid. The domain is discretised into an
independent grid of 55 (circumfereniial) by 45 (radial) by
62 (streamwise) gnid points.

The modifications with respect to turbulence models
made in this work are implemented in an existing
computer program called BOFFIN which was originally
written by Jones (1988). The program uses a finite volume
scheme with a collocated grid amrangement to solve 3D
flow through complex geometries using boundary fitted
co-ordinates.

4.2 Flow in the plane of symmetry

In the wind tunnel test, the velocity field within the
diffusing duct was not measured, however, surface flow
visualisation was performed (figure 8) and this is used for
comparison against the computations. In figure 8, the flow
direction is from left to nght with the upper pan of the
duct on the top and the lower part on the bottom of the
figure. From the experimental data, a region of flow
separation is observed on ihe bottom surface, and by using
the marking tapes on the test section as a reference
distance. the onset of separation is at X/D, = 1.0 in the
first bend, and the Aow re-attaches after X /Dy = 2,45 in
the second bend.
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Figure 7. Three-dimensional perspective view of the S-duct geomeiry.

Z
Y
Table 3 Inflow conditsons (AGARD AR-270%
Total pressure F 01123 10° Pa
Tetal iemperature 291K
Thraat Mach number 0.412
Inlet Reynolds numiber 115 |98

Figure9 presents the computed mean axial velocity
profiles in the plane of symmetry. The figure shows that
the Row is acceleraled along the convex curvature ¢ver the
first bend and the boundary layers are thicker on the
betlom surface afler the first bend. The separation bubble
is identified in figure 9 by joining the locations with zerp
mean axial velocity at successive stations. The modified
nen-linear ¢ — { mode] predicis the onset of separation at
X/Deyie = 1.10. and re-attackment a1 X /D, ,;, = 2.70. The
modified non-linear g — { model shows an improvement
on the predicied location of the separalion over Ong
(X/Deir = 1.30). however, the predicted re-attachment
location has not improved and is still over-predicied. This
is probably because the present calculation does not
include 1he bullet (afier-body) at the exit plane of the wind
1annel model. The bullet is not included because the
present work concentrates on the development of

the turbulence model and it is more appropriate o
simplify the geometry. A summary of the predicied
lecations of the separation bubbles is presented in table 4.

4.3 Surface pressure predictions

Figure 10 cormpares the prediciions of surface pressure
along the top, side and botlom surfaces of the duct with the
wind tupnel test data. Static pressures on the respective
surfaces of the wall are mormalised by the inlet toial
prgssure and ptotied against the normalised length of the
duct.

The pressure distribution along the botlom surface of
the experimental data shows an abrupt change in the
pressure gradient at X/ D = 1.0 and al X /D = 2.45,
which correspond to the localions of the separation and re-
attachment gbserved in the surface flow visualisation in
fizure 8, respectively. The meodified non-linear g — £
model predicts an abrupt change in the pressure gradient al
X/Dexe = 1.10. which coincides with the predicted
localion of the separation in the axial velocjty profiles in
the planc of symmetry, and represents an improvement
with respect 1o the non-linear ¢ — £ model of Ong which
over-predicied the separation (X/Deq = 1.30) (figure 9}.

Figure 8. Surface fow visuslisation {nm 10 scale).
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Table 4. Size of the predicied separation.

Bubble length, XfD,,

Turbulence madel Onsct Re-attachment
Expenment 3.0 245
MNon-linear ¢ — { (Ong) 1.30 ’ 270
Modified nen-binear ¢ — £ 1.10 270

5. Conclusions

A comparative study of different expressions for damping
functions (f,) is made 1o find the most suitable use in low-
Reynolds-number turbulence models using the fully
developed turbuleat channel flow as a basis for
comparison. The non-linear ¢ — £ model is then modified
via the two constants in C,, using the re-optimised values
A\ = 4 and A = 0.5. The predictions using the non-linear
g — £ model with the damping function £, of Cotion and

Kirwin and the re-optimised constants in the expression of-

C,. show the best agreement with the DNS data, The
modified model is then evaluated for more complex flow
problems in three-dimensional turbulent flow in an §-
shaped diffusing duct where the effects of stream line
curvature and flow separation are important. The
comparison between the predicted results and the
experimental data shows that the medified model is able
to predict the main flow fealures in complex Aows
accurately.
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Abstract: Adaptive Delaunay triangulation is combined with the cell-centered
upwinding algotithm to analyze inviscid high-speed compressible flow probiems. The
multidimensional dissipation scheme was developed and included in the upwinding
algorithm for unstructured triangular meshes to improve the computed shock wave
resolution. The solution accuracy is further improved by coupling an error estimation -
procedure to a remeshing algorithm that generates small elements in regions with large
change of solution gradients,and at the same time, larger ¢lements in other regions, The
proposed scheme is further exiended to achieve higher-order spatial and temporal
solution accuracy. Efficiency of the combined procedure is evaluated by analyzing
supersonic shocks and shock propagation behaviors for both the steady and unsteady
high-speed compressible flows.
Key words: adaptive meth movement; Delaunay tiangulation; cell-centered
upwinding ; high-speed compressible flow
Chinese Library Classification; 0354.5; (0241. 82 Document code: A
2000 Mathematics Subject Classification; 76N15; 76L05; 65M12; 65N50

Introducton

High-speed compressible flows nermally invelve many complex flow phenomena, such
as shock waves, flow expansions, and shock-shock interactions!'). Effects of these
phenomena are critical in the design of high-speed structures. These flows are characterized
by steep solution gradients that need robust analyses and computational techniques as well as
dense meshes to obtain good resolution of flow behaviors. Several algorithms had been
introduced inte the compultational modelings, such as the Taylor-Ga}erkjnm , the Petrov-
Galerkin®®! | the least-squares'™ | and the cell-centered upwinding algorithms!®).

Among these algorithms, the cell-centered upwinding algorithm based on the Roe’s
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flux averaging'® is selected for solutions in this paper due to its efficiency to provide solution
accuracy with less computational effort. The algonthm, however, may produce unrealistic
results near shock waves especially for flow at high mach numbers. One of such results is
referred as the carbuncle phenomenon'’! that arises due to the use of one-dimensional
upwinding numerical flux for multidimensional problems. To avoid this effect, the
H-correction entropy fix™®) has been introduced and applied to the standard cell-centered
upwinding algorithm for structured rectangular meshes. In this paper, the H-correction
entropy fix is modified for unstructured triangular meshes arbitrarily generated from the
adaptive Delaunay triangulation technique.

The Delaunay triangulation and an adaptive remeshing technique are implemented to
improve solution accuracy of the numesical analysis. The Delaunay triangulation'*"*" used in
the construction of triangular meshes for arbitrary two-dimensional geometries, will be first
described. Since the Delaunay triangulation in itself does not include procedures for creating
nodes inside the domain, additional nodes are generated by an algorithm that was developed
by Weatherill and Hassan'"! and introduced as Object Oriented Programming by Karamete
et al. "), Hence, the proposed procedure can construct meshes with required nodal density
and triangulation regularity for arbitrary two-dimensional domains.

To further improve the analysis solution accuracy, an adaptive remeshing procedure is
also implemented into the Delaunay triangulation. An entirely new mesh is generated
according to the solutions of a previous mesh. An error indicator identifies and activates the
adaptive remeshing in regions where finer elements are required. A cell-centered upwinding
computer program has been developed and verified by problems with exact solutions prior to
solving practical problems. In recent years, various grid adaptation methods, such as
adaptive remeshing or adaptive mesh refinement ( AMR )!®~™ | have been proposed to
improve numerical accuracy for computational fluid dynamics. The AMR is easier to
implement on structured grid but needs efficient hierarchy data structure handling routine to
manage information that transfers between gnd levels. Such difficulty increases if
unstructured triangular grids are selected to discretize more complex domain. Currently,
implementation of unstructured grids using adaptive remeshing technique is common because
of straightforward data structure handling routine. However, the unstructured mesh
regeneration is time consuming. The AMR method thus normally requires less computational
time as compared to the adaptive remeshing technique.

The paper first outlines the Euler equations used in the analysis of high-speed
compressible flows and the solution procedure that lead to the computer program
development. The basic concepts of the Delaunay triangulation and the adaptive remeshing
technique are then described. The presented scheme is further extended to higher-order
solution accuracy and then evaluated by several test cases. Finally, the combined procedure
is evaluated by analyzing a scries of both the steady-state and transient high-speed
compressible flow problems.

1 Higher-Order Cell-Centered Upwinding Algorithm

1.1 Governing differential equations
The Euler equations for inviscid high-speed compressible flows consist of conservation
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of mass, momentums, and energy. These equations, in two dimensions, are written in the
conservation form!™") as
8U L 9E 3G _ (1)
ot ax  dy
The vector U is the conservation variables and is defined by [p pu pv pel”, wherep is
the fluid density, u and » are the velocity components in x- and y-directions, respectively,
and ¢ is the total energy. The vectors E and G consist of the inviscid fluxes in the x- and
y-directions, respectively, and the vector J contains the force and energy terms associated

with the body force as

pu pv 0
2
E=gft Pl G=g b e 'Z; : (2)
puv y
pus + pu pve + pv puf, +¢f,)

where p is the pressure, f, and £, are the x and y components of gravitational force. The total
energy is composed of the internal and the kinetic energy defined by & = ¢ + (4 + o) /2.
The internal energy ¢ is assumed to satisfy the stiffened gas equation of state for compressible
medium!?? : .
pe = (p+yp. )/ (y-1), (3)

where y is a constant and p_ is a pressure-like constant. For water, y = 5.5 andp, =
492 MPa. Eq. (3) is equivalent to the gas equation of state whenp,_, =0 andy is the specific
heat ratio.
1.2 Cell-centered upwinding formulation

By integrating Eq. (1) over a control volume, (2, and applying the divergence theorem
" to the resulting flux integral,

% [van + [ Fonds = | Jaq, (4)

where F 1s the numerical flux vector and n is the unit normal vector of the cell boundary. The
numerical flux vector at the cell interface between the left cell L and the right cell R according
to the Roe’ s scheme!®?") is

1 1 < :
Fn=?(FnL+FnR) _?;akllltris (5)

where «, is the wave strength of the kth wave, A, is the eigenvalue, and r, is the
corresponding right eigenvector. The eigenvalues in the above Eq. (5) are

A=[V,-a V, V, V,+al", (6)
where V, is the normal velocity, and a is the speed of sound at the cell interface. To avoid
such unphysical solutions due to the original Roe's scheme does not admit entropy

condition'™ | the eigenvalues | Al are modified according to Ref, [ 81 yielding the | ALT
such that

b ALY = max(1 A1 ,7"), (1)
where 5" 1s called H-correction entropy fix. For the triangular cell interfaces as shown in
Fig. 1, the proposed H-correction entropy fix is
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7?" = 0. Smax{ 1,7, 73, M4 M5 ) » (8)
where 7;,i = 1105 are determined from, = 0.5 m?x(l Aag —Aygl).
By substituting Eq. {5) into Eq. (4) and applying an explicit time marching algorithm,
the increment of the element conservation vanables at the new time step m + [ can be
determined from

m +l At 2 3 . At
AU™ = _ﬁ..zﬂa[(ﬁ‘“‘ +F ) - ;aﬁl Al r,‘]+-§‘|’njdﬂ, (9)

where At is the time step and § is the length of element side. The nodal conservation variables
are then computed by averaging the quantities from all elements surrounding that node.
1.3 Linear reconstruction and second-order temporal discretization

Solution accuracy from the first-order formulation described in the preceding section can
be improved by implementing a higher-order formulation for both the space and time. A
higher-order spatial discretization is achieved by applying the Taylor’ series expansion to the
cell-centered solution for each cell face™’. For instance, the solutions at the midpoint of an
element edge between nodes 1 and 2 shown in Fig. 2, can be reconstructed from

Fig.1 Cell interfaces of a typical unstructured Fig.2 Linear reconstruction on a
triangular mesh typical triangular element
Yerlg, +
9., =9c + T[—l %) —q,] , (10)

where ¢ = [p u v p]" consists the primitive variables of the density, the velocity
components, and the pressure, respectively; g, is the solution at the element centroid; ¢, , »
= 1,2,3 are the solutions at nodes. In this paper, the inverse-distance weighting from the
centroid to the nodes that preserves the principle of posnwny[m is used

qn-Z"‘"'/Z

=l an

where g ; are the swrrounding cell-centered values of node i, | r, | is the distance from the
centroid to node ¢, and N is the number of the surrounding cells. The ¥, in Eq. (10)
represents the limiter for preventing spurious oscillation that may occur in the region of high
gradients. In this study, Vekatakrishnan’s limiter function'™ is selected.

The second-order temporal accuracy is achieved by implementing the second-order
accurate Runge-Kuniia time stepping method!*")

Ul-' —= Un ______an U:Hl = _;__[UO +U-. —Q%ZF. -nj]. (12)

lrl’
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To reduce computational effort, the local element time steps are used for steady-state
analysis, while the minimum global time step proposed in Ref. [28 ] is used for the transient
analysis.

2 Delaunay Triangulation

2.1 Mesh generation procedure

For a given set of points in space, {P,}, &k =1, ,n, theregions | V,} , k =1, ,n,
are boundaries assigned to each point P, and represent the space closer to P, than to any other
points in the set. Therefore, these regions satisfy

V. ={P:1p-Pl<lp-PIl,V¥j#i}. (13)

If all points which have some segments of a Voronoi boundary in common are joined,
the resulting shape is a Delaunay tdangulation. This defining charactenistic of the Delaunay
triangles is called the empty circumcircle property. The key idea of the Bowyer-Watson
algorithm'®* based on the in-circle criterion is summarized in the Algorithm 1 below.

Algorithm [ DelaunayTriangulation ( P, T)

1. LetP = {p,,k = 1,---,n} be the set of nodes on the domain boundaries and are
stored in sequence of counter-clockwise direction for all outside boundaries and clockwise
direction for all inside boundaries. Let T be the empty set of Delaunay triangles.

2. Create an initial convex hull triangle that contains all boundary nodes and add the
triangle to T.

3. Read next boundary node p, from P and search for triangle ¢, in T which contains the
node p.. The search starts from the trangle which was last formed and uses Lawson’s
algorithm!"*"®) to march from one uiangle to the next in the direction of p,. This algorithm
performs the path searching strategy and removes the need to search through the entire
domain.

4. Destroy surrcunding triangles of ¢; which lie within a circle centered at a vertex of the
Voronoi diagram. Delete these triangles from T and, then, form new tiangles that are
connected to the node p,. These triangles must pass the in-circle criterion. Add new forming
triangles into T and determine the neighboring thangles of the triangles.

5. Repeat Steps 3 and 4 until all nodes in P are considered.

6. Search for all triangles that have one or more vertices connected to any vertices of
initial convex hull triangles outside the domain or lic inside holes in the domain and delete
these trangles from 7.

2.2 Automatic point creation procedure

The Delaunay triangulation algorithm described previously does not provide the
procedure for creating new nodes inside the domain. So far, researchers have introduced
several approaches!'"'**®®) for creating new interior nodes by refining boundary triangles
such that the set of boundary points guide new node placements. The automatic point
creation procedure in this paper is derived from the algorithm suggested by Weatherill and
Hassan!"). The shape and size of triangles or density of nodes inside the domain are
controlled by two coefficients, the Alpha and the Beta coefficients. The Alpha coefficient
controls node density by changing the allowable shape of the formed triangles while the Beta
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coefficient controls the regulanty of wiangulation by forbidding the insertion of a new node
within a specified distance from others in the same sweep of the triangles within the field.
The suggested values of both the Alpha and the Beta coefficients for coarse and fine
triangular meshes are 0.8 and 0.9, and 0.5 and 0.6, respectively. The detailed
implementation of the automatic node creation procedure is described in Algorithm [I as
follows; :

Algorithm [[ MeshRefinement (P, T,alpha,beta)

1. LetP = {p,k =1,--,n}, be the set of nodes on the boundaries of domain that are
stored in sequence of counter-clockwise direction for outside boundaries and clockwise
direction for inside boundarics. Let V be the empty sct of newly inserted nodes and let T be
the set of Delaunay triangles which are constructed by Algorithm [ .

2. Compute the point distribution function dp, for each boundary nodes p, by

U, =35 1B Rl (14)

3. Read triangle ¢, from T. Define the centroid of the triangle ¢, as node @, then compute
the point distribution function of node @ using Eq. (14). Compute the distanced_,m = 1,2,
3, from node @ to each of the three vertices of the triangle L,

4. Perform the Alpha and Beta tests for node Q.

Ifd, < (a-dp,) for any m = 1,2,3, then reject the node ¢ and return to Step 3;
otherwise compute the distance s; for any j = 1,---, N from node Q, that is to be inserted, to
the other nodes.

Ifs; < (B-dp,) foranyj = 1,..-, N, then reject the node @ and go to Step 3; otherwise
accept the node @ for insertion by the Delaunay triangulation algorithm ( Algorithm ] ) and
add node 2 and V.

5. Repeat Step 3 and 4 until all wiangles in T are considered.

6. Perform the Delaunay triangulation for the derived nodes in V by Algorithm | .

The shapes and sizes of triangles formed from the previous step can be improved by
applying a mesh smoothing technique such as the Laplacian smoothing technique’™). The
basic idea of a new node insertion at the centroid of triangle is depicted in Fig.3. A
demonstration of a domain refinement by creating a new node inside the domain using
Algorithms [ and [ is shown in Fig.4. The new node that conforms to both the Alpha and
Beta testing criteria is inserted at the centroid of the triangle and applied the in-circle testing
criterion to all neighborhood triangles.

- ~N

Fig.3 Mesh refinement with automatic point creation scheme { Algorithm I )
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5th refinement After smoothing
4 324 nodes, 8 407 elements
Fig.4 Mesh refinement and smoothing for computatonal domain of an airfoil

3 Adaptive Remeshing Technique

3.1 Element size determination
In high-speed compressible flows, flow properies, such as the density and pressure,
change abruptly across the shock waves. Small elements are thus needed along the shock
waves to capture a good resolution shock wave. The second denivatives of any key varables
¢, such as density, in the principal directions x apd y where the cross-derivatives vanish!'
are used as the indicator for the placement of small elements in the region where changes in
the density gradients are.large. The proper element size £, is computed by requiring that the
error should be uniform for all elements,
BPA, = RL A = const, (15)
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where A, is the higher principal quantity of the element considered,

,\,.=max( 9| i?) (16) -
dx dy

In the above Eq. (15) , A, is the maximum principal quantity for all elements and A, is the
minimum element size specified by users. The regions, which will be refined or coarsened
by AdaptiveRemeshing algorithm below, are identified by a dimensionless error indicator,
the pressure-switch coefficient!'® as

Ey=CoY 124, — ¢, — bl [ 2,01 60— 051+ ¢ =91, (17)

where C, is the constant equal to 1 for this paper.
3.2 Adaptive mesh generation

The proposed adaptive mesh regeneration is based on the concepts of the Delaunay
triangulation and the mesh refinement as described by Algorithms [ and JI. The new mesh
is constructed using the information from the previous mesh or background mesh, such that
the new mesh are composed of small elements in the regions with large changes of solution
gradients, and large elements in the other regions where the changes of solution gradients are
small. Detailed process of adaptive remeshing technique is described in Algorithm I as
follows. ’

Algorithm I  AdaptiveRemeshing ( P, T,alpha,beta b, b,..)

1. Let P = {p,,k =1,---,n} be the set of nodes of the background mesh. LetT = |¢,,
I =1, ,mj be the set of tiangles of the background mesh.

2. Let ¥, be the empty set of nodes and N; be the empty set of tnangles.

3. Calculate the new proper element size &, of all the nodes of the background mesh by
Egs. (15) and (16). Then rediscretize all boundaries of the domain based on the new
proper clements size h; and recompute the point distribution function dp, for all the boundary
nodes before adding all nodes into V..

4. Obtain nodal solution values of the new mesh by interpolating the nodal solution
values of the background mesh. Construct boundary triangles from the new boundary nodes
in N, by Algorithm I and store all the new triangles into N,.

5. Refine the boundary triangles based on the given values of the Alpha and Beta
coefficients by Algorithm Il and store all new inserted nodes into ¥,.

6. Read rext interior node p, of the background mesh from P.

7. Search tnangle ¢, in IV, which contains the node p, using the method described in Step
3 of Algorithm [ . Then calculate the centroid of the triangle ¢, and define it as node @, and
compute the point distribution function of node @ by Eq. (14).

8. Compute the distance d_, m = 1,2,3 from node @ to each of the three vertices of
the triangle ¢,.

9. If h; > averageofd, form = 1,2,3 then go to Step 6.

10. Compute the X, coefficient, y,, for each boundary nodes p; by

Y; = ScaleRange[?L:;—pir 0, I,Xlnin!Xmu]! (18)

where ScaleRange( ) is the scale range function which scales the 0 — 1 range to the new
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Tange Xuwin ~ Xmax*

11. Perform the y; test for node . \

If two out of three of d,, < {y,-h.;,) for anym = 1,2.3, then reject the n.de @ and
return to Step 6; otherwise compute the average distance, s = (d, +4d, +d,)/3.

Ifs < (y,~dp,) ork, < h,, then reject the node Q.and go to Step 6.

12. Accept the node @ for insertion by the Delaunay triangulation algorithm ( Algorithm

[ ) and add node ¢} into V.

13. Repeat Steps 6 to 12 until all nodes in P are considered.

14, Perform the Delaunay triangulation of the inserted nodes in V, by Algorithm [ and
smooth the mesh.

The coefficient y; controls the node insection in the regions of high solution gradient and
ensure undue distortion of the regularity of the triangulation. The value of y,.. limits number
of nodes insertion in high gradient region such as shock, while the value of upper limity,
atlows more nodes to be inserted into the lesser solution gradient such as tails of expansion
fan. Practical experience with this described procedure for high-speed compressible flow
problems suggest the values of . andy_, as 0.5 and 0.7, respectively.

4 Algorithm Evaluation

To demonstrate the capability of the adaplive remeshing technique with the Delaunay
triangulation for increasing the flow solution accuracy, five simulations of both steady-state
and transient high-speed compressible flows are evaluated. The two examples of steady flow
and three examples of transient flow are (1) Mach 15.3 flow past a cylinder, (2) Mach 3
flow past 2 15 degrees wedge, (3) Sod shock tube, (4) Mach 2 shock reflection over a
circular arc surface, and (5) shock wave propagation from underwater explosions.

4.1 Mach 15.3 flow past a cylinder

The problem statement of a steady-state Mach 15. 3 flow past a cylinder'®! is described
in Fig. 5. There is a detached bow shock in front of the ¢ylinder with subsonic flow region
near the centerline between the bow shock and the cylinder. Away from this region, the flow
behind the weaker part of the bow shock
becomes supersonic with steep variation of all Computation domain
flow variables. Figure 6 shows the final
adaptive mesh consisting of 18 537 nodes and
36986 elements, as well as the resulting
density, pressure and Mach number contours.
With this mesh, good flow resolution quality
including sharp bow shock is obtained as shown
in Figs. 6(b) —6(d). The convergence history ' -
of the final adaptive mesh represented by the |:‘|> R I P ‘i
volume-weighted error E measurement'™? s
shown in Fig. 7. The error reduced about three Fig. 5 Problem staiement of a Mach
orders of magnitude after 2 500 iterations. 5.3 flow past a cylinder

Bow shock
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'/ / /

(a} Final adaptive mesh (b)) Density contours {¢) Pressure contours  (d) Mach number contours
Fig.6 Mach 15.3 flow past a cylinder

4.2 Mach 3 flow past a 15 degrees wedge

The problem statement of a Mach 3 flow past a 15 degrees wedge on the domain 1.5 x
1.0 is presented in Fig. 8. The flow enters the left boundary of the computational domain
and creates an oblique shock wave, The final adaptive mesh consists of 10 543 nodes and
21 013 elements, and the corresponding density contours of the problem are shown in Figs.
9{a) —-9(b), respectively. Small clustered clements along the shock line are generated
from the error indicator given by Eq. (15) and the adaptive remeshing algorithm described.
Figures 10(a) - 10(b) show the predicted density and Mach number solution of the final
adaptive mesh along section A-4 compared to the exact solutions!’!. The figures indicate
good solution accuracy obtained from the combined adaptive remeshing technique and
higher-order accurate scheme.
4.3 Sod Shock tube

The one-dimensional shock tube test case, the so called Sod shock tube'™! | is solved by
using a two-dimensional domain. The initial conditions of the fluids on the left and right
sides are given by (p,u,p), = (1.0,0.0, 1.0) and (p,u,p)z = (0. 125, 0.0, 0.1). The
1.0 x 0.1 computational domain is divided into 400 and 40 equal intervals in the x and y
directions, respectively. The domain is discretized with uniform triangular elements. Figures
11(a) - 11(f) show the compuled density, pressure and z-velocity distributions along the
tube length which are compared with the exact solutions at time ¢ = 0. 15. The figures show
that the higher-order extension of Roe’ s scheme with the mixed entropy fix method provides
more accurate solutions than its first-order solutions.
4.4 Mach 2 shock reflection over a circular arc surface

The computational domain for a Mach 2 shock reflection over a circular arc surface is
Hlustrated in Fig. 12. Figure 13 shows series of the transient adaptive meshes and the
corresponding computed density contours at different time instants. The transient adaplive
meshes consist of approximately 16 000 elements in the early time before the normal shock
reaches the circular arc surface, and are increased to approximately 18 000 eclements at
bottom right image of Fig. 13. The figures highlight the detailed flow solution that could be
captured by using the combined adaptive mesh algorithm and the higher-order flux-difference
splitting scheme with the H-correction entropy fix method.
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Fig.10 Comparative Mach pumber distributions between the exact and
compuied solutions along section A-A for Mach 3 flow past a 15
degrees wedge

4.5 Shock wave propagation from underwater explosions

To further evaluate the efficiency of the combined adaptive Delaunay triangulation and
the cell-centered upwinding algorithm, the shock wave propagation from an underwater
explosion is studied. Figure 14 shows the problem statement describing the dimensions of the
computational domain in meters and the shock wave phenomenon generated from the initial
pressure of 12 GPa at the center of explosion . The figure also shows the location of mine
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Fig.12 - Problem statement of Mach 2 shock
reflection over a circular arc surface

which is at the front of the ship length and at
10 meters depth from water surface. Figure
15 shows senes of the (ransient adaptive
meshes and the comresponding predicted
pressure contours at different times as the
half-circular shock propagates from the center
of explosion. Small elements are generated (o
capture the hatf-circular shock wave accurately,
while larger elements arc generated in other
regions to minimize the total number of

" unknowns and the computational time. This

halfcircular shock wave reaches the ship hull
at around time ¢ = 5 ms.
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5 Conclusions

The combined adaptive Delaunay triangulation and the cellcentered upwinding
algorithm for the analysis of steady-state and transtent inviscid high-speed compressible flows
was presented. The cell-centered upwinding algonithm for solving the Euler equations was
described first. The multidimensional dissipation scheme was developed for unstructured
triangular meshes and included ioto the algorithm. The concept of the Delaunay triangulation
for two-dimensional mesh construction was then explained. The mesh generation procedure
with automnatic point creation and mesh smoothing were described. The solution accuracy
was further vmproved by incorporating an adaptive remeshing techmgue to the Delaunay
triangulation algorittun and analyzing with higher-order Roe’s flux difference splitting
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Fig.15  Transient adaptive meshes and the predicted pressure contours for shock wave
propagation from an voderwater explosion

scheme. The adaptive remeshing technique places small elements around regions with large
changes of flow solution gradients, at the same time larger elements are generated in other
1egions.

The results of the combined method shows the shock waves can be captured with high
solution accuracy. These examples show that the adaptive Delaunay triangulation and the
cell-centered algorithm increase the analysis solution accuracy, and at the same time,
significantly reduce the total number of unknowns and the computational time for both the
steady and unsteady compressible flow problems.
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A comparative stady of a number of flux-timiters based on MUST methodology is presented in this
paper to find the most suitable fAux-limiter to be used in unsteady and steady convective flow
calculations. The accuracy and convergence behaviour of these flux-limiters are assessed in five pure
convection problems: (1) rotation of a cone-shaped scalar field, (2) advection of a square-shaped scalar
field, (3) mixing of a hot with a cold front, (4) deformation of cone-shaped scalar field and (3) LAHR.
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Koren flux-limiter is the more appropriate in steady flow problems because of its good convergence

bebaviour.
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INTRODUCTION

Al present, convective lermms in the goveming equations
can be discretised using various differencing schemes
such as central differencing (CD), first-order upwind
(FOU) and second-order upwind (SOU) differencing
schemes. The solutions obtained using FOU appear to be
more physically realistic than those using CD* (i.e. the
solutions are always bounded), although the results are
diffusive; while SOU gives more accurate results than
FOU, the resulis are unbounded. Thus, a non-linear
function called a flux limiter was initially introduced by
van Leer (1973, 1974) to prevent the appearance of over-
or undershoots of the computed solutions, Several SOU
schemes incorporated via a flux limiter, called second-
order limited upwind (SOLU) schemes, were wused
successfully with structured gnds. However, these
schemes are still under development in the case of
unstiuctured grids.

Tamamidis ([993) proposed a second-order fully
upwind trianguar-based differencing scheme with a flux
limiter called monolonic upwind scheme for triangles
{MUST) which 15 monotonic and accurale up to second
order. MUST is different from the other triangular-based
differencing schemes in that it uses a different approach in

*Comesponding author, E-mail: feagvrj@kuac. th
E-mail: a.marquis@ic.ac.uk

ISSN 1061-8562 print1SSN 10290257 online * 2004 Taykor & Fruers Lid
BOL 10010 1061 ESRD32000 141868

calculating the gradient at the cell centre. In MUST, the
cell-centered gradient is calculated using differences in
the upwind direction of the considered node in order to
ensure that the scheme is fully upwind. The results using
MUST were found to be very good although only a simple
flux limiter minmod was used.

The present work is therefore to compare accuracy and
convergence behaviour of the results from five different
flux-limiters: minmod, superbee, van leer, MUSCL and
Koren based on MUST methodology on five pure
convection test cases, to improve the understanding of
differencing schemes for convection terms, and to find the
most suitable flux-limiter to be used in unsteady and
steady convective flow caleulations.

CALCULATION METHODS

Governing Equations for 2D Pure Convection Flow

The following pure convection equation is considered In
order to examine the performance of MUST in discretising
convective term :

ap

— 4+ V-F(py=0 (1)
ar
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where ¢ 15 a scalar function of two space dimensions and

nime.
U
Fl$p) = v ) .

where U/ and V are the two components of the velocity
veCtor.

Discretisation Methods
Monotonic Upwind Scheme for Triangles (MUST)

Equation (1) is a governing equation representing a form
of conservation law. It is integrated over the fiow domain
using Green's formula, assuming uniform values of ¢ over
the cell faces. The semi-discrete form of the equation
considered can be written as

L o P S
Aim=—) Fl=R @)

where F{k is the numerical flux through an edge jk of
each cell i. The equation is then solved using an explicit
fourth-order accurate Runge-Kutta time marching scheme
(Jameson et al., 1981).

Using Roe’s flux-difference splitting (Roe, 1981), the
flux across an edge jk for unstructured grids can be

obtained as

Fit % (Flé0) + Flon) — ¥4 — $1)) )

where « is the scaled characteristic speed defined as
a = (0F/3¢) and equal to U (the normal velocity to the
cell face multiplied by the edge length) in the pure
convective problems considered in this work.

The key point in achieving higher-order accuracy is the
method to find the left and right values (¢, and ¢g) in
Eq. (3). Frink (1992} used Taylor series 1o obtain a
second-order scheme by expanding the cell-centered
solution to each cell face

Wx,y) = dlxe, yo) + Ve br + O(Ar?), “)

(a)

FIGURE |

where the subscript ¢ denotes the cell-centered value. The
gradient of ¢ is required at the cell centers for the above
formulation.

Tamamidis (1993} proposed an approach in calculating
the gradient at cell center to ensure that the scheme (s fully
upwind by using differences in the upwind direction.
Following the notation of Fig. 1{a). in order to calculate
the fiux through the face 12 in triangle A, the second term
in Eq. (4) is written in the finite-difference format as

Vb -Ary = (‘i: :f’;)(xf ~xy)
ba — ¢3) . -
+ —_— — (
()’4 -»n Gy =) >

where f is the mid-point on the face 12, and ¢, can be
calculated based on 2 reconstruction procedure, i.e. the
cell-centered values are used to evaluate the vertex values.

Identifying the nodes in the upstream and downstream
directions as in Fig. 1(b), the left and right values of ¢pon a
cell face can be calculated as

_ l atbtqu: A¢H|U’)
(h.. - ¢u’| + EMF)(AX“I‘Q Axﬁ" + ﬂ)’«,u: Ayfu. v {6J
Adg,a, Adg s

|
dr = g, + 54'(1”)( Axpy, +

Ayw, |, (7
Ayn‘ld: yﬂ)

where y{r) is a flux limiter. In order to maintain the sign of
the higbher-order terms, the Aux limiter is assumed to be
non-negative.

In the FOU scheme, the cell-centered values of triangles
on the left and right sides of the considered face are
assumed to be the left and right vatues of the variable of
that face. According to Fig. 1(a), the left and right values
of the face 12 are ¢y, = ¢, and ¢Pp = 5.

Axgg

192

Flux Limiters

The flux limiter is introduced in the higher-order
differencing scheme to prevent the unwanted oscillations

(b)

{a) Triangular mexh canfigucation (b) Definition of upwind and downwind nodes for MUST scheme.
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TABLE | Flux limiters

van Leer (van Leer, 1974%
lﬁr} = %I?

]

Minmod {Roe & Baines. 1982}
) = maxi0, min{r, )]

Superbee (Roe, 1985): 1
¥r) = max[0, min(2r, 1). min(r, 2}]

MUSCL (van Leer, 1979
¥r) = max{0,min(2r,} +4r.2)]

Korten (Koren, 1993): w
)= max{{),min(b,%r + %2)1

and to ensure bounded results, i.e. it is used to maintain the
monotonic property of the scheme. Since the Aux-limiter
is assumed to be non-negative in MUST, only positive
flux-limiters are considered in this work. The distribution
of the considered Rux limiters, ¢ against consecutive
gradient, r are plotted and presented in Table 1. where 1 is
defined as

D-C

=2 8
TC-vu )

where D, C and U represent downstream. center and
upwind values, respectively.
RESULTS AND DISCUSSION

Rotation of a Cone-shaped Scalar Field

This test case is chosen to test the ability of each differencing
scheme in capturing steep gradients. A scalar “cone” field is

advected around by a steady velocity field and is defined by
the inittad conditions
0 it r> o,
Hy.x)= 5[1 +cos (ﬂ)] it rs o

The domain is x = ~0.5, vy = 0.5 and the cone is
centered originally at {xp.yp) = (0.0,0.25) and the
radius of the cone, r. = 0.1. The distance from the cone
center ris

r= \/{x - x) + (= ») 9

The velocity field revolves counterclockwise about
¢0.0) with angular velocity « = 2.0rad/s and is given by

Ui, y) = =2y, (10)

Vix,y) = 2. (1

A time step equal to 0.005 is used because the results
using the time step =< (0.005 are not different. It can be seen
from Fig. 2(a) that the MUST methodology results in less
diffusive resolts than the FOU scheme and also the results
are bounded. The steep gradients of the scalar field are very
well captured by the superbee and Koren flux-limiters
while the minmod scheme results in more diffusive results.
This is reflected in the predicted maximum and minimum
field values from each flux limiter in Table I where
superbee predicts the highest and minmod predicts the
fowest maximum value, respectively. The predicted
minimum scalar field value is less than zero for all Rux
limiters except minmod. Although the predicied negative
values are very small, a problem may arise in the case
where the positive-definite values are important, e.g. heat
transfer problem. Note that the grid-independent solutions
are presented in all test cases.

Advection of a Square-shaped Scalar Field

A square scalar field is advected by a uniform velocity
field in this test case. The initial conditions are

O i (e = gl by — vob) > 8

L1

if tle = xgl.ly = v =

Initially. the coordinates of the center of the square are
at {xg.x) = {—1.5. — 1.5) and the width of the square is
a = |.5. The domain of the problem s y = —3. vy =3,
The velocity field ix steady with two velecity components
equal to unity. The solutions are time-independent for
& =0.02 and advanced for 140 time steps which
correspond to the square field being advected for a length
equal to 395 units from the initial tocation rowards the
opposite corner of the domain.
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(a) The 3-D Perspective Plots of the Revolving Cone Problem

V. JUNTASARO AND AJ. MARQUIS

FIGURE 2 The 3-D perspective plots of the revolving cone problem and the square ficld transport problem.

Koren

TABLE Il The maximum ard minimum field values of each test case

Test case 3.1 {64 % 64)

Test case 3.2 {30 % 80)

Test case 3.3 {64 X 64)

Test case 3.4 {100 % 100)

Grid nodes Max Min

Max Min L] ¢ > 07 Max Min
FOU 1.44 611 x107" 9.63 0.00 11.10 1.62 0.00
SOLU;
van Lea 5.74 ~2.26%x10°" 9.93 ~1.65% 1077 4.53 1.88 -258x107'¢
Minmed 4.07 7.09x 107 9.92 0.00 6.04 1.77 0.00
Superbee .17 -454%107¢ 9.95 ~ 140 % 1073 272 2.10 -6.11x107?
MUSCL 658 -9.70% 1077 9.94 —393x107° 377 196 —-284%x 1077
Koren 679 ~6.06% 1077 9.04 —-269x107¢ 3.77 154 ~rosx 1077
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The predictions of the maximum ¢ value of the How
field using various flux limiters are not very diffevent,
however, the ability of the schemes in cupturing the
discontinuities can be observed from the 3-D perspective
plots of the solutions with the superbee limiter giving
the best performance in this case, as clearly shown in
Fig. 2(b).

Mixing of a Hot with a2 Cold Front

In this test case, a rectangular domain has an initial
profile of a narrow region of high gradient from top to
bottom called a “front™ which is then twisted by a steady
rotational velocity field in a manner similar to that

observed on daily weather maps (Doswell, 1984}
The initial conditions are defined at 1 = 0 by
y X .
¢{x,v) = —tanh [5 cos (f) — Esm (fr)]. (12)
The domain is x = —4, y = 4 and
1 fi
f==—, (13)
F i .

i

where fis the frequency. r is the distance from the origin
of the coordinate system, f; = (l/cosh® (#/))tanh (#) is the
tangential velocity around the centre. and f, = 0.385 is
the muximum tangental velocity.

The expression of the steady velocity feld ix

V= -2 do (14)
r J‘Ilu;u
xr fi

Vivy)y=—- —. (15
P fr

The initial profile of the scalar field changes gradually
from positive values at the bottom boundary 10 negative
values at the top boundary. The solutions presented are
after the front has twisted for four time units or 400 time
steps. Since no scheme introduces oscillation in the
solutions in this test problem, the maximum and minimum
¢ values of the flow field are not reported. However,

1Ll = (f D16 = dhexsal” /rx x ny)

of 64 x 64 grid are tabulated in Table II to show the
relative accuracy of the results using various flux limiters,

(a) Countour Plots of the Initial Conditions and Exact Solutions of the Mixing Test

Initial conditions

Exact solution

(b) Contour Plots of the Numerical Solutions of the Mixing Test

FOU

Koren

FIGURE 3 Conwour pleas of the mixing text.
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and contour plots of 64 X 64 grid are presented in Fig. 3(b).
The exact analytical solutions and initial conditions are
also plotted in Fig. 3(a) for comparison. JILI| from
superbee is the lowest indicating that it is the most
accurate, and sirnilarly, minmod s the least accuraie Aux
limiter because of its highest J|L}|. Moreover, the contour
piot from superbee is in very good agreement with that
from the exact analytical solutions.

Deformation of a Cone-shaped Scalar Field

The deformation flow problem used here was first defined
by Smolarkiewicz (1982) and its exact solutions were
obtained by Staniforth er af. (1987). It is chosen to test the
performance of the schemes in highly deformational flow.
The steady flow field is defined by the following stream
function

| I
wlx, vy = yy sin{4mx) cos(4 my) (16)

and the two velocity components are derived using U =
—(3¢p/0y) and V = (3¢/dx). Contours of the stream
function and velocity vectors are shown in Fig. 4(a) and it
can be seen that the velocity field is built up from sets of

symmetrical counter-rotating vortices, each vertex occu-
pying a square of side 25 units.

Initially, a cone of radius 15 units is centred on the centre
of a square domain of side equal to one unit; the origin is
specified at the bottom left-hand corner of the square. The
problem has an initial condition as in test case 3.1. At
1 = 0. the cone is in the area of six vortices but its main part
is in the area of the two central ones, and then the solutions
will be divided into two symmetrical parts which will move
inside an area of these two central vortices. Since the fluid
elements cannot cross the boundary streamline of the
vortex, they cannot escape from the vortex in which they
are initialty located. Thus, the scalar distribution will be
zero over the entire domain except over the six vortices at
the centre where it is initially non-zero.

The imegration Uume consists of 2400 time steps of
0.001 s, which produces results independent of time step.
The maximum and minimum values from each scheme are
reported in Table II and the isolines of the scalar
distribution for various schemes are shown in Fig. 4(b).
The contour plot of results obtained from the superbee
flux-limiter shows the closest agreement with the exact
solutions from Staniforth ¢t al. (the exact solutions are not
presented here). The predicted maximum field values are

(a) Contours and Velocity Vectors of the Deformational Flow Problem
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FIGURE 4 Comntour plots of the deformational flow problem.
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highest using superbee and lowest using minmaod. as in test
cases 3.1 and 3.2.

IAHR

This steady problem is used widely to test various
differencing schemes and represents the convection of a
siep around a curved fiow. The velocity field is specified as

U =291 — x% (7h
= -2x(1 — y%) (18)

and the boundary conditions at the inlet face (for y =0
and —1 = x < 0) as

¢ =1+ tanh[10(2x + 1)]. (19)

A zero normal gradient boundary condition is imposed
at the outlet. and at the other faces of the domain. the
boundary condition is specified as ¢ = | — tanh(10).
This steady-fiow problem is treated as unsteady flow, and
the solutions are obtained when the ¢ values reach the
steady-state values. 1e. a pseudo-transient approach.
A grid-independent of 71 X 35 mesh is used in this test
case. Figure 5(a) shows the variation of ¢ values along
the inlet and outlet boundaries of the domain and
residuals defined as (3_(¢*F! — ¢")/gt]) are plotted in
log scale against the number of iterations per time step in
Fig. 5(b).

It can be seen that superbee exhibits the best
performance in capturing the steep gradient at the outlet
boundary of the domain but shows the worst
convergence behaviour, while the flux limiter that
shows the best convergence behaviour is minmod but the
solutions from minmod are the least accurate. Therefore,

(a) The Variation of Scalar Value along the Inlet and Qutlet Boundaries

240 T

INLET

0s

0.0 .
-1.0 05

residual

00 200.0

4000 6000

number af ierations

FiGURE 3

Plows of the steady-flow prablem.
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the compronuse has 10 be made between accuracy and
convergence. Keoren is the most suitable in this case
since its results are close to those using superbee and its
canvergence behaviouwr is good.

CONCLUSIONS

A comparative study of five different flux-limiters—uvan
Leer, minmod, superbee, MUSCL, Koren—based on
the MUST methodology is made using five pure
convection test cases. The most accurate results are
obtained using the superbee flux-limiter whereas the
minmod Rux-limiter causes the highest ermors in the
solutions for all five test cases. Therefore, the MUST
methodology incorporated with superbee is the most
preferable scheme for the problems with unsteady flow.
However, for the steady-fiow problem as test case 3.5,
Koren is more appropriate than superbee because of its
accurate tesults and good convergence behaviour.
Minmod always gives the positive results unlike the
other flux-limiters (Table H), indicating that minmod
can be used in a wider range of applications.
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